forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_SUT.py
74 lines (63 loc) · 2.73 KB
/
tf_SUT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import os
import sys
sys.path.insert(0, os.path.join(os.getcwd(), "DeepLearningExamples", "TensorFlow", "LanguageModeling", "BERT"))
sys.path.insert(0, os.getcwd())
import mlperf_loadgen as lg
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
from squad_QSL import get_squad_QSL
class BERT_TF_SUT():
def __init__(self, args):
print("Loading TF model...")
self.sess = tf.compat.v1.Session()
with gfile.FastGFile('build/data/bert_tf_v1_1_large_fp32_384_v2/model.pb', 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
self.sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
print("Constructing SUT...")
self.sut = lg.ConstructSUT(self.issue_queries, self.flush_queries, self.process_latencies)
print("Finished constructing SUT.")
self.qsl = get_squad_QSL(args.max_examples)
def issue_queries(self, query_samples):
for i in range(len(query_samples)):
eval_features = self.qsl.get_features(query_samples[i].index)
input_ids = np.array([eval_features.input_ids])
input_mask = np.array([eval_features.input_mask])
segment_ids = np.array([eval_features.segment_ids])
feeds = {
'input_ids:0': input_ids,
'input_mask:0': input_mask,
'segment_ids:0': segment_ids
}
result = self.sess.run(["logits:0"], feed_dict=feeds)
logits = [float(x) for x in result[0].flat]
response_array = array.array("B", np.array(logits).astype(np.float32).tobytes())
bi = response_array.buffer_info()
response = lg.QuerySampleResponse(query_samples[i].id, bi[0], bi[1])
lg.QuerySamplesComplete([response])
def flush_queries(self):
pass
def process_latencies(self, latencies_ns):
pass
def __del__(self):
print("Finished destroying SUT.")
def get_tf_sut(args):
return BERT_TF_SUT(args)