-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_log.py
74 lines (63 loc) · 2.17 KB
/
plot_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import ast
import os
import numpy as np
import matplotlib.pyplot as plt
import itertools
# Function taken from http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
epsilon = 1e-10
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
cm = np.rot90(cm)
cm = np.rot90(cm)
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
loss = np.load('loss.npy')
plt.plot(loss)
plt.xlabel('Epochs')
plt.ylabel('Cross-Entropy Loss')
plt.title('Loss of Softmax Regression')
plt.savefig('loss')
# plt.show()
train_acc = np.load('train_acc.npy')
valid_acc = np.load('valid_acc.npy')
plt.figure()
plt.plot(train_acc)
plt.plot(valid_acc)
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('Softmax Regression Accuracy vs Epoch')
plt.legend(['train acc','valid acc'])
plt.savefig('accuracy')
# plt.show()
plt.figure()
cm = np.load('test_confusion.npy')
class_names = [0,1,2,3,4,5,6,7,8,9]
plot_confusion_matrix(cm, classes=class_names, normalize=True,
title='Normalized Test Confusion Matrix for Softmax Regression')
plt.savefig('test_confusion')
plt.show()