-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathexplain.py
148 lines (119 loc) · 4.34 KB
/
explain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from torch.autograd import Variable
from torchvision import models
import cv2
import sys
import numpy as np
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
Tensor = FloatTensor
def tv_norm(input, tv_beta):
img = input[0, 0, :]
row_grad = torch.mean(torch.abs((img[:-1 , :] - img[1 :, :])).pow(tv_beta))
col_grad = torch.mean(torch.abs((img[: , :-1] - img[: , 1 :])).pow(tv_beta))
return row_grad + col_grad
def preprocess_image(img):
means=[0.485, 0.456, 0.406]
stds=[0.229, 0.224, 0.225]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
if use_cuda:
preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda()
else:
preprocessed_img_tensor = torch.from_numpy(preprocessed_img)
preprocessed_img_tensor.unsqueeze_(0)
return Variable(preprocessed_img_tensor, requires_grad = False)
def save(mask, img, blurred):
mask = mask.cpu().data.numpy()[0]
mask = np.transpose(mask, (1, 2, 0))
mask = (mask - np.min(mask)) / np.max(mask)
mask = 1 - mask
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = 1.0*heatmap + np.float32(img)/255
cam = cam / np.max(cam)
img = np.float32(img) / 255
perturbated = np.multiply(1 - mask, img) + np.multiply(mask, blurred)
cv2.imwrite("perturbated.png", np.uint8(255*perturbated))
cv2.imwrite("heatmap.png", np.uint8(255*heatmap))
cv2.imwrite("mask.png", np.uint8(255*mask))
cv2.imwrite("cam.png", np.uint8(255*cam))
def numpy_to_torch(img, requires_grad = True):
if len(img.shape) < 3:
output = np.float32([img])
else:
output = np.transpose(img, (2, 0, 1))
output = torch.from_numpy(output)
if use_cuda:
output = output.cuda()
output.unsqueeze_(0)
v = Variable(output, requires_grad = requires_grad)
return v
def load_model():
model = models.vgg19(pretrained=True)
model.eval()
if use_cuda:
model.cuda()
for p in model.features.parameters():
p.requires_grad = False
for p in model.classifier.parameters():
p.requires_grad = False
return model
if __name__ == '__main__':
#Hyper parameters.
#TBD: Use argparse
tv_beta = 3
learning_rate = 0.1
max_iterations = 500
l1_coeff = 0.01
tv_coeff = 0.2
model = load_model()
original_img = cv2.imread(sys.argv[1], 1)
original_img = cv2.resize(original_img, (224, 224))
img = np.float32(original_img) / 255
blurred_img1 = cv2.GaussianBlur(img, (11, 11), 5)
blurred_img2 = np.float32(cv2.medianBlur(original_img, 11))/255
blurred_img_numpy = (blurred_img1 + blurred_img2) / 2
mask_init = np.ones((28, 28), dtype = np.float32)
# Convert to torch variables
img = preprocess_image(img)
blurred_img = preprocess_image(blurred_img2)
mask = numpy_to_torch(mask_init)
if use_cuda:
upsample = torch.nn.UpsamplingBilinear2d(size=(224, 224)).cuda()
else:
upsample = torch.nn.UpsamplingBilinear2d(size=(224, 224))
optimizer = torch.optim.Adam([mask], lr=learning_rate)
target = torch.nn.Softmax()(model(img))
category = np.argmax(target.cpu().data.numpy())
print "Category with highest probability", category
print "Optimizing.. "
for i in range(max_iterations):
upsampled_mask = upsample(mask)
# The single channel mask is used with an RGB image,
# so the mask is duplicated to have 3 channel,
upsampled_mask = \
upsampled_mask.expand(1, 3, upsampled_mask.size(2), \
upsampled_mask.size(3))
# Use the mask to perturbated the input image.
perturbated_input = img.mul(upsampled_mask) + \
blurred_img.mul(1-upsampled_mask)
noise = np.zeros((224, 224, 3), dtype = np.float32)
cv2.randn(noise, 0, 0.2)
noise = numpy_to_torch(noise)
perturbated_input = perturbated_input + noise
outputs = torch.nn.Softmax()(model(perturbated_input))
loss = l1_coeff*torch.mean(torch.abs(1 - mask)) + \
tv_coeff*tv_norm(mask, tv_beta) + outputs[0, category]
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Optional: clamping seems to give better results
mask.data.clamp_(0, 1)
upsampled_mask = upsample(mask)
save(upsampled_mask, original_img, blurred_img_numpy)