-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize-video.py
117 lines (88 loc) · 3.64 KB
/
recognize-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import math
import os
import cv2
import face_recognition as fr
import numpy as np
def face_confidence(face_distance, face_match_threshold=0.6):
escala = (1.0 - face_match_threshold)
linear_val = (1.0 - face_distance) / (escala * 2.0)
if face_distance > face_match_threshold:
return str(round(linear_val * 100, 2)) + '%'
else:
value = (linear_val + ((1.0 - linear_val) *
math.pow((linear_val - 0.5) * 2, 0.2))) * 100
return str(round(value, 2)) + '%'
# Display annotations
def draw_rectangle(frame, face_locations, face_names):
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top),
(right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35),
(right, bottom), (0, 0, 255), -1)
cv2.putText(frame, name, (left + 6, bottom - 6),
cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 1)
def compare_min_distance(know_face_encodings, know_face_names, face_encoding):
def remove_ext(name): return name.split(".")[0]
name = 'Unknown'
confidence = 'Unknown'
matches = fr.compare_faces(
know_face_encodings, face_encoding
)
face_distances = fr.face_distance(
know_face_encodings, face_encoding
)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = know_face_names[best_match_index]
confidence = face_confidence(face_distances[best_match_index])
return remove_ext(name), confidence
class FaceRecognition:
face_locations = []
face_encodings = []
face_names = []
know_face_encodings = []
know_face_names = []
process_current_frame = True
def __init__(self):
self.encode_faces()
def encode_faces(self):
for image in os.listdir('assets/images/know'):
face_image = fr.load_image_file(f"assets/images/know/{image}")
face_enconding = fr.face_encodings(face_image)[0]
self.know_face_encodings.append(face_enconding)
self.know_face_names.append(image)
print(self.know_face_names)
def run_recognition(self):
video_capture = cv2.VideoCapture("assets/videos/manoel-gomes.mp4")
while True:
ret, frame = video_capture.read()
# Verifica se chegamos ao final do vídeo
if not ret:
break
if self.process_current_frame:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
# find all the faces in current frame
self.face_locations = fr.face_locations(rgb_small_frame)
self.face_encodings = fr.face_encodings(
rgb_small_frame, self.face_locations)
self.face_names = []
for face_encoding in self.face_encodings:
name, confidence = compare_min_distance(
self.know_face_encodings, self.know_face_names, face_encoding)
self.face_names.append(
f"{name} ({confidence})")
self.process_current_frame = not self.process_current_frame
draw_rectangle(frame, self.face_locations, self.face_names)
cv2.imshow("Face Recognition", frame)
if cv2.waitKey(1) == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
faceRecognition = FaceRecognition()
faceRecognition.run_recognition()