We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://mp.weixin.qq.com/s/MHDnRT5Hi_1VqQ49d42oQQ
The text was updated successfully, but these errors were encountered:
肿瘤微环境是由多种免疫细胞、成纤维细胞、内皮细胞和细胞外基质成分等构成的动态网络,其中免疫细胞又可粗略分为淋巴系(T细胞、B细胞、NK细胞等)和髓系(单核,树突,巨噬,粒细胞,肥大细胞等)。肿瘤免疫中T细胞、B细胞占主导地位,其他的细胞类型其实也发挥着重要的作用。下面来学习下大佬利用Neutrophil中性粒细胞相关基因进行分析的文章。
Neutrophil
中性粒细胞相关特征表征免疫景观并预测浸润性乳腺癌的预后。
Neutrophil-related Signature Characterizes Immune Landscape and Predicts Prognosis of Invasive Breast Cancer.(PMID: 39417978,2024.10)
Notes:
NRGs: neutrophil-related genes, 中性粒细胞相关基因
IBC: invasive breast cancer, 侵袭性乳腺癌
TME: tumor microenvironment, 肿瘤微环境
neutrophil related gene sets, 中性粒细胞相关基因集,作者从MSigDB收集整理34个基因集,包括1394个基因在Supplementary Table S1中。
MSigDB
Supplementary Table S1
技术路线图
将NRGs基因与差异基因(DEGs)求交集,共获得216个基因。
针对交集基因,结合cox回归分析、LASSO得到7个基因构建预后模型。并在GSE20685数据集中验证。
GSE20685
针对构建的预后模型(riskScore),分析其临床特征(TNM、年龄、性别等)、基因突变、富集分析、免疫细胞浸润等,并构建Nomgram。
针对构建预后模型的基因,进行基因表达、预后、临床特征、免疫、富集分析、PPI网络、单细胞水平分析,并在临床样本中验证。
碎碎念:
仔细想想肿瘤微环境中的每一个组成部分都可以拎出来分析,比如T细胞、B细胞、NK细胞、巨噬细胞、细胞外机制等。同样的定义某个范围后可以无限放大,如金属(铁、铜、锌、锰、硒)与肿瘤;翻译后修饰(乳酸化、乙酰化、磷酸化、泛素化)与肿瘤;细胞代谢(糖酵解、脂肪酸、氨基酸、鞘脂代谢)与肿瘤;细胞器(线粒体、迁移体)与肿瘤等等。只要言之合理即可,有实验验证更好,能详细说明机制课题标书估计信手拈来……
信息大爆炸时代,用好辅助工具非常重要,推荐几个好用的AI工具:通义千问、kimi、NextChat。
通义千问
kimi
NextChat
声明:本文仅供交流学习,禁止用于商业用途,如有侵权,请联系删除。️
Sorry, something went wrong.
No branches or pull requests
https://mp.weixin.qq.com/s/MHDnRT5Hi_1VqQ49d42oQQ
The text was updated successfully, but these errors were encountered: