-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalityka.py
69 lines (51 loc) · 2.52 KB
/
analityka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from orl_faces import OrlFaces
import numpy as np
import scipy
import matplotlib.pyplot as plt
NET_NAME = 'net_conv2_even_bigger_pooling_tanh_no_reg_bigger_conv_less_dropout'
# load data from saved files
orl_faces = OrlFaces()
orl_faces.load_orl_predictions('pred_' + NET_NAME + '.csv')
orl_faces.load_orl_keypoints("C:/Users/Michal/Documents/Visual Studio 2013/Projects/faceFeaturesMarker/faceFeaturesMarker/orl_faces_keypoints.csv")
# add avg from train set to plot avg of keypoint from train data
from load_images import load, load2d
X, y = load2d()
def plot_predictions_agains_obs():
i = 0
for keypoint in list(orl_faces.orl_keypoints.columns):
if keypoint in ('LEFT_EYE_MIDDLE_X', 'MOUTH_RIGHT_Y', 'LEFT_EYE_MIDDLE_Y', 'LEFT_BROW_LEFT_Y'):
# find sort order for real data
sort_order = orl_faces.orl_keypoints[keypoint].values.argsort()
# apply sort order to predictions and real data and unnormalize
orl_pred_sorted = orl_faces.orl_predictions [keypoint].values[sort_order] * 48 + 48
orl_real_sorted = orl_faces.orl_keypoints[keypoint].values[sort_order]
# plot everything
plt.plot(orl_pred_sorted, label="predykcja " + keypoint)
plt.plot(orl_real_sorted, label="target " + keypoint)
plt.plot(np.ones(400) * np.average(orl_faces.orl_keypoints[keypoint].values), label="srednia ORL_FACES", linestyle="--")
plt.plot(np.ones(400) * np.average(y[:,i] * 48 + 48) , label= "srednia Kaggle", linestyle="--", color="black")
plt.xlabel("obserwacja")
plt.ylabel("wspolrzedna piksela")
plt.legend(loc='lower right')
plt.show()
i += 1
def plot_error_against_keypoints():
all_errors = orl_faces.calculate_error_by_keypoints()
ind = np.arange(len(all_errors))
idx = all_errors.argsort()
fig, ax = plt.subplots()
bar = ax.bar(ind, all_errors[idx], color='b')
ax.set_ylabel('Blad')
ax.set_xticks(ind)
ax.set_xticklabels(orl_faces.orl_keypoints.columns[idx], rotation='vertical')
orl_variances = np.zeros(30)
i = 0
for keypoint in list(orl_faces.orl_keypoints.columns):
orl_variances[i] = np.var(orl_faces.orl_keypoints[keypoint].values)
i += 1
ax2 = ax.twinx()
line = ax2.plot(orl_variances[idx], color='r', lw=3)
ax2.set_ylabel('Wariancja punktu charakterystycznego')
plt.legend((bar, line[0]),('Blad sredniokwadratowy', 'Wariancja'),loc='upper left')
plt.show()
plot_predictions_agains_obs()