From eedb6a9b1f87f6ddbcf91ef257a086e060ab0818 Mon Sep 17 00:00:00 2001 From: ivy-dev-bot Date: Sat, 1 Jun 2024 03:18:18 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20Transpile-AI?= =?UTF-8?q?/ivy@9a5a578e665531034b9a69cb456502acb9d12647=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5666346 -> 5666346 bytes ivy/.doctrees/index.doctree | Bin 927130 -> 927130 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index febab247cf23502201d5f8cf417e3478db22b4d0..c08c078249cab0b01aaaf6b926e21f1a36715d51 100644 GIT binary patch delta 138 zcmbRCl6Bfk)(zK8*i%wc4O7evCvDobdAg|x6O2Fou0Ep$jI;TpIY$+YvuV>g9I8aN f2A9KBP1g9I8aN f2A9KBP1?tX!hAC!-o6`(WGr>5MElez6?9JsStg!&8#Sk9= delta 47 qcmeyfi0RKFrVa6i>_!Gj#+K%mo6`(WGr>5MElez6?9JsStg!%uwGM;; diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index 71e7eb948e43e0ac94abbc50ebad46a2485d4d33..6b204753ed190c984b06ee34d8e8e6485985489c 100644 GIT binary patch delta 47 qcmdmgiE;lW#tmVr>?tX!hAC!-n`2c|nPHsCCp9c!?9CjS<_-Xw{121> delta 47 qcmdmgiE;lW#tmVr>_!Gj#+K%mn`2c|nPHsCCp9c!?9CjS<_-XL><#$< diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index 3940af4938818bc4a83f3ddabcf342e679a12b40..4b3d9d867b872f36025a0c17bc5ff2b693d3dec4 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|eXG%(nX_AR)n!)Dj9Eyxc+=HCVRR9sB4CMd- delta 39 lcmX@o&UB=mX+s|er;$OTxw)xnn&IZ@9Eyxc+=HCVRRH@73&j8c diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 774f4a0412892fd502bedcbf070c74f462c2a8da..bc7090f24f882e9d88391bb472e2eae8c8984e34 100644 GIT binary patch delta 859 zcmY+?ze~eF6bEqbG6{l6L7Wu*3v!ps4?$=Lm#%_>;1bhVq&hit5Zpv?a4B*wwp#o} zyI2Zd*MftfQ@0{II4do>IT?D*y}R+fys+KvuOlcq zso@nU+k0;p@RafC0XnFhzCWoq7~ieqWhmR1AGvH=x^bo3KjHgx=oMOq;Kt%?9s%J7 zBZ5CJAY~*y-Eaf(yomk)p(A81(hzDQRFn%E!Xk;BZv&F_bc98sQAD!}VV*?p0AZei zFi({4b;KSc4GpnP#1@Svn#`ryP#IVL3lJI`2#rPQTSI6dl8a>3g{T=-^0+!gRBb_J zRFRF-*y) UZv0qk{iLUVnQx2IuT}i~2aZT3P5=M^ delta 867 zcmY+?y-UMD7zS|evM2~r3gRG&{snirOJhN32bZpbg5Y4A&?42zp@ZNif{06zb7^af zU$l#*;B_rH2)fvyam#IZ8i#H2kRv;>cS%5DgZ_A<_tHr~j)6vlRH-;O3gV5&?FMA+hVdLa7$tpY`pSsPc#-OOBgfaqS|&PS nQvbxvP@XWUcEY55d1Q$C$PSme`C~-&$C>(Nc9Iu=jl$Uq6Yt|Kj<+~o;;|i%muz<8b>e*U|8=VB z)&=UmdjUKsvPpKM>Ymz8o&B8p{ENQk1LvK89{)GIChj)F&be~X*$sP9ryX?qqv7HA z4Z>FajPui1kB)u8==IUj;hU=6?&zuEp?Xy7_ky4v_C~|&G>kz%Y?UkBYQNbEH%G%u zD$n(M&){#Puf~VxFO7y5Hlubh8os$V=yU>nc;VTow=){PDcs!~HLo0A2%zz3c+np|jCfAlOqi+eSW*Sz#-^HB4$=H<;Rnpfigu9DVT)M1@h3qv0*w z|8fNzQmzf+e$-YY#DjLb+S|h#lID6CqX##w!Zi|(^KrZrcDvQhR#0gSI%=KRtK?&x zcBNkJSM9oSQvF`IS>DB&M56$U7<9Y6AdV|%tG!Ox+2Y9zFYflDZEPFxcftmm-;CX9Mwr+|`iF~qK`W@nIE**dgWb{a%6`!9wyOOg zRw%0u|4_yLI2vA6Y4+PK_m{yE5qL?^cZtZmgvF?T%DcEhOThc3?jFYNtd&=mm*TJ= z9Pd_ZJ3KcuaMcxkLj7g{Q1WkIOD$@5qYkcPj2$^7GvO!LHBWbJf$9?XtNpN+Ea>8j z{4yGTXs)?Wpw*HEd~Y^jp81lx&FHS^j7CE9aWK46O}mD(ZiFo$H?QE8`0J8jU>Sep zExn}M3!`4x-y1zydQ<$V(eU|Zzu%4TU0P}YdE)X`6m8*jyJ3v`*ckjyb@;$5gXAS@Kf~`TT+Pmij{=9*IPU4?a_~-QUGKOkCAtMCCE7a7slbH># z*p8QWs@-b28kV;?FVnd?ye2uJO4Q}uX8Y0Mp-y#ov)Zc!ow{1vVGs}Ao8$4>uwQHP z=3J?e!1>{7`Q~_ti*cOyizuLftaSN(43gF7rMMyvs=ZqCxW4Pv;VsReS`T{aTE>;l zpb_(SZH=<)jSMv$JUQ^$?2#JF#q8?dykuGl3cFvt6#c-7&Bt!OJ!OSmj- z<7YrrSM3vK;|JYVRISIy&@tmx<2dNY$G2M1 zW>t--ZkNKE+;KNfuAitaZ?2!JuAi(o)|XG8st4}4$Imvg2{QVH+;MfE1i@rt)o?Tz zUSbc8M|*`n$_i+It!c>0CEGEm;-CkzewUfL0kNbmg#Iih-2fVaL=T3SRy){@bsO}Q&MnfF7tY27<+G4eiYPh8TTh>isw6uv+ zS!!3q&QjRkS|UsBVL`1uVGngKRgM`vZ?D|#Y`v#fJ$qljH^5}BGkmNav^RmeQ4a`= z`BYooCio*ZrHakG*)Yb6-W={F*hXh-^v3We+t?YjyI?Q2?K8u-*|xA#YYpl_CG3R# z3a($1{qXf|6Fop}cEK6;?-X}~T3Br*ojxDP(ClhEnT{ebm?M$ij7HPsWeL4<}1!C~q>e11*pN3i>9d-R#HUwafC&^Os!@Llj( zfQ^+{!FgP70kLOK6ctOIZ(V$)MUQosoS3 zk=K8UM^|y+?3I(KfYDwozY2_`L=!gXh63mE7%v^R!<((}31N>H{^bD>q!9*nV9r~st+Um=nAc2E8Va4&wneO)l5cGf!N|`HuT9#B z)8^-ElAr5AqdI6&=)DLmzYTHnrZ~g}0~^sC7pN#FTDT$`%4g8o%Z0IA|JrhGFU{=i7@nyMtZLFf|mzjFMzl}1!y!p4+6X+ zCfAy{9zhGdqN|wdEhPR*9;~&<+2V4Qs4V{`4Zr5}+S=Nw<@Hl1*G{aRI=Q-jVjW!h z_KD9xtObQZq4l5S^HZxQ`TgptQyc56t0zvM!sl<}=M8)H%KU2;5;};T+9!;AEkvc| z<@L4o)5~kCr&mv`oI1Un@g+sn5E3-mhx6r$)s0j5`ozYmWsa#MED|R?l2(y*iL{_z->44X;_0*%fYO1Ny0bcQ`t(VN zXpn&k+P8UIy=pyFdWiGg>D85uwY8JLt7YzkZ}VE!J&3CAV5c`uo<4PYWdnjZcl_Dz`j)M)tU&`= zUc)R`x&JqLM(KcDr51&qUp|RZPHw1ge0$%kcIr_(H8<@0iBqRmPMp}_+N4mp2>r%}+VFJuc2plg;!jqN3j_iU)<8-I=+~s6k0aaK>e`7@pm@tC zPp|Pb(`%-p+n$*I>dBL*PA;FusjQ!z_#_6K1Tn#~-8n6vJhgUeW&PyZ$Z?Uu8g}ZzxpEJ;2pl3YG~p^j2CGmG4WSDwD)2gVh>DU&I@NYisf>oVSI+jT zU2Bypzq=Jdw}|gAcY?F_*HK&@mZ*}rHaZ9gK_fh8B^d~~m+eJ^{$Mk(Ed6jjXh-o9 z#DLlkj;jYL;k-*=yjK!tM0Bp z`a)y(nWwQQOIhD-RGQJ*N*{&+h=0)5BPEqW^#$IpL(VNTf_0J@lTC?kBdZ8?PY_tXTz=4#|Kp&%rW_TYd~u<&(UlW zs9U9q*~2zdF<+kjAk4;3ys!T9v)HdY(_gAHQQND(Y}n71-@ny(_(Knzcp`YrVuDd6 zp>x%-IYc|yOFKbd{ROl9;B!IqLodHj*=#S5hIdF0&qvi(aL)PaffwHY)C+qLZ$9$` zPUdvxS7M%tgDq=45FME4I{-M0|4R7s^DB>?+J0dGNZI4d2H}vE>HM-MpML)b2jQdL zlP|*nb9d(W?KW;Bb~?l@GM{dJVCBr-@nCr`+JZUduocULb3qOC07^n90DXpS#5O_R zhvjMXkso{0dFLG}mrJif$LW;9PU*o2cKO#zuu$B4Z;4isLx)QE-@B`&CaA!DM~r2p z#(rgNyt2V*8>BLnh+)LoNi>cpHj-CgEx}q$_r@xfg`@f}Bvbd4Koo-eo`UK3*lW>RmY%~8!0CYTa@B}FDGMztli zlH;4z`j#?+X<+YOs@{J{?aU*}{ZL>_JjNoK`~SSft5tPC;`>YLk4v;~Ey+aR!$03A zf4);WV^T|h^^Q{5P)CJsa4wY{lK-M}XfKuSc%Az+ficbXQrzEb1@|3+3uPd3ip7f*N}N4=)~rThEKP6qC5@PQs|EU5sA^`L%4T=p5zGr# zzv%3JM_`)j?REP>{dgNr!s@$9-LTdl^n&Bq1pPa? zoCECVI0|g@q48__nnun;xZBzbw+7y(oPjjcz6lDwQn?R>9jX^kQay*80slWd|Mt=L z3-E*n{L2L&J37L@j*SAiCA1OjOkAsWAx(T{Fud3`>t6*=8Z7INf;c=#{T&1y!>odg zRix!LJr(m;W8i>cS%Y@IT{hq9Ci}7b_tzk9bO-%P6*}-}Fc@ALbO)Q2l;@=R{?}nT zYd*z)!+!x=D3F%6M@&X-!NpppfsOq+@j#aDz}(-AZa5qG*d7LwtDi3F(}4$D#|Qae z_0u7WCdYA+YoN}Do}eh+*<#CJ_!di46EldrT@c&)!Itvh4A7o%neG0@M?QM`{qNs-;68AaS`XSC?g?%Y ze1FwW)Y)rC0}g(jGF(G-ZbO!av!o&h?DOA&h3!^b0~{alpt;^WF?$Zw(+10pWtq$o_tr5=bHMgrY`VEPszjRomqzIV(t2 z0zvuB$T?tddbJlt{nyK{nzq+pg)Qs#1bhh$gXS&h*SMsRcwd2JrbHIee`zSYSoh)5 zhqpM5w2y5mudKFMjoz@6I@GShCDl{*^x;KHMo&h)gtJmj+h31uv>#m&M}r>Z(0I^* zXsz(`LM7P`4`Uek1{A@lbHZ@0l-qEDTmmw>qdZx|H8k4Oz^O_?9p-uKq?Smc-`H1%Lo;C>1sRONIBS( zb2x0g3GPSqza(8Q*Cxse1dYHs{hO-wx>Yx56NN(5gcJcXV`qMteMEVy@O0g_Yv9+Z zM4Jj{@o6tiwZ46_wGva7mVtQPVH<$(lx)DQfYAn>i2B?^m@>6*0Zv>nt^kQ= z9mry5du4Y|34<{lyI^-%tGO`OG{L5n>(F8>$c)~YWCm9!-4eQCz&GFByw3u>%6RB2 zn~34S4NAtkVkZc?Nz8zqUURj%W?&6(z@{n$#dUAPKch7}a0ENVA*h#?0ICk8!{pAY zUvUT0zh0xZ4%8hwXTQ>DRS~R^oFdo=gk`u|^^OlO=D;Mg5y6 znm?%UMEz{o)Fbb`M8$cXH@uL)E24f#^-w_vqwQ-iz(Mj~{Pvop#R+1t&H6*-LT;Y0 zKVPQ45~45yUp3HVf@U8^+n*)6m`0IaFr`))GYZ1_P75{(Gd^j*x=IZNsTmd|_?V#1 zT|DUQbQs!T`^a=+P;KzU?K|A{U7|jRvaWwO5`ZjB1$K>&85~Ds7zHe)+dIGNi37b& zz>57qX4j2K2y`%uY1^)I@qxPove}09jDIkc-2*MxckfLG)KC`4mOOIR-2L z3HNr&)M&v{%Dan4*QsUV_DT~}c_rVGZOTB1k7&E>x^bQ1kWXCk@Qz zqs_W>-WoOUBSryuvbRqb%>V-=JonG#RmRcwxB@0nv^jtK`gZ3p!$&p*)_R zAFrE%kO&YmKMp+ECUDjK5tVj)kk=K(k9V2ya*I`sjqy0 z^B)i2%Aq8-%ebe*Sa^3AvifaKGXras24gys`{I0uH#?nR5J2>*?!iWP0QMu>>8q$6 z_3fR`w~Cu{f?;Q%yk!uK;m(KP1M2;Q!&{xMAn4FxAf&=%3I~Diah=mcn-CH0g-@?_ z8e+IlYp{nvEvtvSWh)kzVDf{8{$$kGyv1yz`8YxddthrTy7p>&&_CQHc>c zR(e%gEMPYr^g6JYFmMQ_JF%}Vy;#2co$vYh?XSLm^w?`Je(a@>ee9*Bt$Rv$ee7em z-+9-uca@fwO1IxxY6mcYmq1oZXTgnw666sunYspc2&RdpyYD_!y1VqO+U2;UX?wlI zGc7d`UQnu*o&pUkqZd2ASH(k=UgdAEYlEKZQ0hk|peQzuU2Q*^_Ui_4>A~loE13-| zMU7Gia4^HjbdZl_&2j0~hn{}&IkoWDOCPi|`h?gKKLO)XzbP{nEUEMBr9*aCWj_4y zsC;sd8OCfbkR$GwYAx6%p3|r?8yi1+-Qt3g+ubYVP1xCPhTrCkjOLAXJVT@%$Fc0eG z(uc!VtF#%Ey0o_fAAmz@=zg=>FP+6c=$?nLGLV=-OZDlL;CtUxy%h$**pGE9l!ZAh z0Qu&jt0o0VzUNbo%$G>C5b&QL!-WaSs-P ztAyADoM{8zGMK1IYY0JlJwZal1IPK^qYp+}l3%$oXGmJook>$Tx*;hKf}#Ktt=yy` z4@I?yNI}$31_2P=hCw(XIVb*IUB!2anI2pCP*ge_l$73H!cmtv3>KG+gEmdN;u3fD z$fIYTJ#*aH=;9;qQD;xc*hWs7lf*1;yUjOaxAUViZPnLZf}NWRVF~mKcvnHIs4aoO zG5knP2bc)`oYplCr@-?jn1e7o!K)xUf#Kl71mRI6@2-y@y{q(2?`h)ayN(?#-+k<^ zV+t&22~JcK#~gSmvdRM;N0nm}&}G%wdC&zxL~bV0;>DMe)034y91U<18po2xt*GxD zfI`4jW3u5+n~ccKdnD=$E;?fpC5|Rt%q8L(;~JD>$}UIm`dH_#WA08X90L?WEvvsA zmCcu(27ox{A;^&P*J(D)tNJN-fdO(-|1)Z5pSJe5`XM zb*-IVn4a^uat!Vr99_PrbbLjyKP3@3Js}K?n*XHv0|TpMh)Y7&iqsEde7;B-pA%h0 zl13Ot2{9VxvKYpyL?sZ7PAqV=m1#Tq@PcwF0U;x4mBZRv5|u`)Ey_df+H{OMBvUXd z3!*HPG%uzkt#Tnm2AZcx>^K8gDHE-QHYg@MI9k>%N*$uZNcoGDDG&j(+C04d5Un!l zDS*&4q1hn3hf_#Qc4~-q36McpyZs9GP?d2fTJ!K-)+t}_AgO|i$8JwKeLLMYG80ta z_pU7k@rflI-SKw2b-cz&GLgpuH4a4IPF-mR)Ygx*%Wx6|f`1{ZG3bo0#TV&Xd}$Qe zeij@U5nMWn3Bh_XSB)3bp62$m)WM%~74fT#OGjf7@aJpMPHWy_(?lndvR)=_mz%Z$ ztzmE2Z>}-FGXSb0iI|B+^ewhEF*ArRKr5#;P~B*{!7~bL3gd?0Uy7j9-Td(LPdrh2 z>VYTEl-_;j$p;>L;=K<%^w6_so_p^8k)6Wz$=BM$)en%mFud-G2cCN5`3D}sr%ycb z-d0$SdRxwCmt%DFP4$1lK2ZpKy8Y(+dCi*iQ|FJ=H7JLiYvn`LMgtKn z?XU&PcUMZAj$fu3TYkSmes@eu##kxsS4+Ec80!m8oWF#=IQ$5M;iXu2)aylOk;o?B zT&BMfBkiw)9LVo_eqy^zJVDZ^cUu}&l)c$)J$0O}@=e;QA11w0dO+e15m;|cT8s(S z#f^zh%3}&L*kj5w&Li2LD-%exfm;l?Ir*JVak_^jH!u10YPSp6J@Du8^JQqK2{D!d zScy4%r-d1)bP7Cv(Zol{Oo1&E>_l2_N=DKx$%YIs`1oxG$I0sThNb(d3?>r!V*>D& zq$2|J=<9)<2bNQr>Lc&%{fP2ANass&m9#z5UOScaJ-qlaB%(1L7bkhT`uO?wvR%PX z5){@b`WF7$uI|8gCwGFLa%C^Fm*?6T_oNkwIS!rzBsd~hC9#uUjjJAZ8WHVNDk+6` zR+9orL_Yyv#42LKhHrlw0teO^V20L!O>F^!lVl=a@gx$VgBJKMPAE=D#WiLS4`n!P z+9ofWY4P7{JM&~)hL;$pt-h<*8xS2V5aH=z3o&{FbHi^kttyxTxNLLCG@5XTzS&#q z$hf>0-+kZlPab*aCldO8h3cgxGW56*SvKdA=4(|m{nu7@p;%*_Eu5knL%RS|VvXr^ z=o~Vy8Rdtl?c~#|YDk1k2l-mC*D&iD@ePo9BVq*JO0H7< zDQaLfpj!y^yqF9X;gO(T6n(;u3Ld?LQ9m>xGWC}6=(P$>I*j$bypQO>Y8`2g5SYN| z%~IZ81I89}jow)6cExBu>6|v;u2y}rcHugBNN1S=XOUP&*#epSjeQVN*iVEWvKwjut2GL2D z?QFj7CUG7RdCh<~B(T)lp{^+bWq8%nAnq+~A~CudG7Tm9#Mv$jSH8L0eq$PvuS&^4 zKvh*_19VMgTO$}cf_paEZ6qY@3XUd00*t*;KPvRRnrt%N1>W7=J@7`&P?UbDdiY&t zNjn7sqoZ1lWq8%g5Z8E3k||gf=&){6@l7hyDEaPk-KK;+MsG(bijXL3*SXC;ZS86* zFiIGt7Dc-r^F&psrn$w<&uf0Z`Sb8b_Q$d-@{J8*!B_3@T!4rHLx62h6Wx`FskYBs z4KzR$r%giJ9DbH$z9Xg*8g>^nC#6ZLRd7}|?G@}OnVTK&b~B#s2eNHNmWt?TP;eM- zV?VN^^CO$q4TrH==}nVR#p#AkQS>qCdV}ezE4CnR1@eB+S?gO&kFW!)9ArhiHLh@Q zv*`ui4-oKG+BDyUw%=$<@MsxU$H^ti7hIkokWg<-2jj#_x=g@O=k6$Q6EM1a5^|To zxXKP=E3SyVi>zTievLF8IS7f&KRK|jzhTs^q=O^{QE8wMYD9TBS~YMbfG{Brx%v?X zBKqX@iu-ly5?bDKV4-FYk~fHJAk5l3uQ@uL#AZbLuG=9h{~#Izyb+0sx{qjDAfuQ^ z9JO{4m#6k(`<<{xBodrDUoE?3&7?E6tT@et81-JFTs% z`5no3-<5Ru?&Oc()BIiw;vXfQzt0XbyfL}ioLfQzZ13UQGP>YIl*DR#GPJ-D;q6aB z_qH?L{xtq(Es)!vN&W4O)Ze}oe@hI0+h3Oc>oEP-&*HD!U(SDNqaV$s=Fh|H6K9e( zGb%oqKu3i!guZ}`SI+{u5Y?ls2aafXohoT10i6sHuFyX3v|pjxw;Jv7h8t7^BIsDH zii}iO0{e=Dv|X#Z7-k#qVHOOWH0L$EQMH4z(#VPEbHk3E;SZ}Wkd`VEmPTrDlo95A z)>6AjnJ)1MSe)SVM>Ns!O%1jrL4g8*VUeO5x-pG1euK3@po?gQ7*6z&vj*v-6)p-D zNE!mmN%0!lLnSVeoQSQ$S%kFnXI_3I+c|M!vX`bq+=A9Xx(iXtFqA9RJ}A{(f^Iye3OqsA?Zc<=)oGd0GVe;y5oyo|S)|J^>8Ha$BDCXueGuaTgi^Nmgd#`cF z?NLX9gYp8HJ(Iae7m#k^sWw2{`#h9&NsJf>s#Ky&Mv;><=4->~hSO)A*bPcu8)aYH zjL78dl(wIuk@{)=%PizNnHl;aqRw$hIp%BjH1~ z)!3r6$uz0dLHwuD2Aan?xEh8RLbh~bdK38KAJYMm!;99-Ctwb+RO@Ct5;z`8wZ*t| zw(p7cHr zJL`sD4>kQngmdpj^PeW9cDv764)`zQpGoF}&`=oXb%m2eR=>$k#B^{(Vguz`+XJgSmi(x%D^nYOZuC>;$~BoBD9_`zvi{Gh7ByHT=9lna*lL;@94+n+u2z(Y@- z84Vv*b8w3$Ev5cKf}pB-srk4~NO9FoWf~$z!}s}?qwC}NR->DwJd+|#FcE*u2gEJn zv!qS@tOewQ>h>)=eap;;8`g5c>pCjApmo1;s7jPjc4`l#Qrl>FQjJ0z4LnJN1gjk4 z5L5sX3sRJIQ&~AMfn}@>M_1(VG2i^CsU`({d^1b;D0eZb(eND#77b)l7E%4FT;Br% z!o)5#bToXIZ$yNq^nK&-cdQuYLMr?t_^0|ykz;d8V)-Daj?L+dBOIV`qHmJ!CreVo zB^R=ED_edPgdMOp%NIw(cl$;%_s$32w3UNB+<^yupBK0Th(ITrsCs2ZmJ6Sqt+3>q zmAf|xtV=rM*3w;0^2e0p2YmB2OY#9WZDqLZMe_D<844KrKF7~xc(%X=D>{vMxapgM zJAYIF&clDVyDB7?T$eI(`bWcX!Gr7|=(rbFdQ}uK`B45?s;HK4f6@z4-O8;Mc#4<~ z?qY38r~$#lkUmB)TRL^rr`u-Ym7*^ zRAq2W7hU)0aW*Yygc4wg`AnfH=~gyBmqz^mrF7(1v< zKN`M}yE)U5*6Qw7r3%lQESrQLS_Q| zby*ZU?+Q3`q}6aVtme+oMRV`EU3_ypmz$bae6ootS-WEq3STb!`vfx z>!&y#N0=(Y2c7P|^`-8T)3?k>4JgjYsAfPHk;;4f_qnFJ2@Javb(xVztn09zhZmCC z4w~nE)3l9cm~Sar)!8#c-m#tYAPJ0~53k&PnNwh4ejZR>mH&bM#)4p@;Zwdr3v8xD z(m)ICDn}^z5cn18o=AQ(;*<(p9u2?LH>uQ4Kt#lo7{Zf%yX$sFl1S3IjCuz&{<*)= zgbq5um{2V}s##GX;)I9}kv? z>Q%5yBf48o4&L(N2?aF!$S7R7t-A2>@W|wM<6TF?x^Kq$0!F$AUhH6^DGw^%LH);g zuMMX}59%f?f-ZfYJwn#>jef6h-UR_R7_^w7bi3#8Ll(Ea9G}Gt z7BtrT55C}Z21u=DwLw*bn-Zg0qgShRh_7#cPIDRFWf(W}<%j7cJ-&beOC<%p+pIvF z2)~AL>OimI8Q(z_xDwnGC4VSe)@b;i8R4Mv2izlYUioKY9sgp78`n~tW<2E6hS31z zz^*za#-D{Q2%jSEE*TGEHc@xc-xC(cI&O=4^q|48N4&K%8b0A$U_lgu9Rcga6Ay4{ z=?fwjK64t{%9y^kKKx1dfLH`3w5w)Tz^>KY>qan5qtps~p1D@A$==!~sJ|TzTfQxE zdB>bA7YSA!C2my!7D|I6f7e zjB5TC4|ib(f=UWG12Ptz)nyNSzJ)1mB$kr1lr91OdV5ALRmtEi?nM?-pYBgCyb#y!-D^kY^-aq?clSL4 z8pcCx`_sMw3S2hCZ)8}Wy-Jlkja++@+d1vXK~UIk$cM_Zh*zGa3uLth+X8bxR3ruB z_(%^kM1d*LhTDmJ9TpFreN&AltT=E=4bH#Qd2@A5txn%^6@jyO2GNHG?l~;c9fR8R zRH6-6!Si|itJ@7|#ct)D7QF$ZA#{RCcfb3=%&zU$R#iRLw3RzTzToIiXxx?78X&5H zamd3UcO+Lo&fO`uGl@pKLLU;?vVNt(Q)VC5#-z&r_9Cal)W|9dFd;zm9QCs~e5Q~e zRZfN`iHf)B*ug0*x`w=FT>ShqPWQkQjdhq*u(DZIYXq<3zE=_V=Qr=xLP3$Z!8siMtEhgDTh3GvDonhff#p?>zMD)cCp)wQ-bIQyIF5D^0yBl)Ez3 z3yg^DSclXiuM*|T_)3ds7kMMbSeo&DdmY6Eq$6Y4*iWMqf!D>dDafG|T2bLskNeh? zj|}M^e@@~}Igvn%4`a@6Y4~vwLcqI;6>xui+dh)m1F~a8V zxYHNDqz;1YpkaD#p$hHt9f>$KX0aR1(t90TsxqZH2BN2pn|RoV#x5i9t=?@XS7Ufr ze%O=yl@F@BqO|@2XC0p$LxNiaUfXiIBr{mCXFf?h}sj=ST=(!B(Ax4y@)zGothg* z4N5Y6l1axaX1`H(ZVRLo#vMlUWZ4x_LI^J;h+Q!oQu?*Ee96$=10No{*E>z`VCRhR zHn~J4)cDST=W#->kXzsiqgE|Th|ou_#WOFfDgepYO;E296(v;ch?lNRA$hlI5EmD1 zTYwUZr#?cET`%`5uyTmcCTK*WuEeF4eQ6ZwP)OkR(NS$_f;QjNecq`49Al-^TtI!BalW9`6G?3rdr#OJ?Kh%%h7*938{!s_-d?I|Ie3peOr< zZ1pm+Z(PSas-GQ2?H4E&$nRs;NWphF=cViM%d97KyN4ecbw^xHirRXeK`v$RtGKo{%*dmMi$&#SE3r3F)Hq0V_`_`g%D&UT8q-OBp%P^|;QxzmHbDB%)rfh*yj zBH{uOXmkj8363*E@9{aNECik*>7M1FGW^bJlk#;YSJDA(VqA>GP)_k|Z@xWky1lH{ zQ5>A1g|5amy^9J7uqp>iJE->YA{RhWv5~NR6KW+z_^*`q^vVEv5{%o9TpP%()C9dU zfU!#W(808oL3!#eSgirX8zWK>6;$+<+INit`RAI4u&$ZZ>03r+D1=YKgHS|jaktC2 z52@?ub}kzQSk&KHZRflqtoky$r))g7S3hh6T@F!O%=KivDxOhJ9>-p(tiUphG;XGy zprRn32Z5lS;dnNf;M*P3X2NxqNR>hL-OcmCa@)%>QpAE+K+2YUO1Q_YU}iEJdUbxy zMSSDxrZUpAGb98Ekz)N(>)-PtJwTSW)tmdhEVvibgwLto_B$j z@nz-FPz=-A5>^8ODIX$3K!SKe6lAx5d7?`h4iw`y5kxK!a*A@AA!^GYO4iar9Jg1= zC~&LkzoZ4tAPpTW#$KdWVE%&KX(Y5Ed>zaQ<9XwJTy*qptlN&n1eCS#Gk1q0`oK8N z<*gcsfLHA<$lT#tLMd()=?#i)rBpY7acMl*S?5Y{9|YgsV@?a+6K7rsEe3ce2wptp z%*&8nrbc5O{@_&*bM1aL(ht_VkLNv1R}^yk;;k>#r-8*4 z;>Fz}40u8*U>Vr$psI#)K%&G3E^4M$zNRBFMbGd`mDa%To2hLq+eBe6_Ytq74}!Fm z<0hUsW~z-h9An?;GO@c$P%k@X=(`1Rf3p`=>orxCAGSez7TYq|X~D_B zNtM#G=2zs6f!ZH&5a97HKT2w{2~QNB6lR2NK9U;|&UfmrtW!1}%bUn$+W|qe{#5TQ zb1x=U9OZS$kU#dtCN}auqacz$EW^y!w=C0UQnmbq1#y^)w)!Ag#DK6rkvMd@CB=>E z%O>c<*h6$Gh`Y1C0o-;KEu-mB5#`D(FBh)qNQD)W9QHE~)a%zQNSDEwi%5m)jTV83 zDo1uV5^t2f{C{B$}0|I_ri9}JdE#UAc)cu zCxzTo+D^-NJ)s;K`>!|reristogLi>PbH0p=aha^KyaJP72+aAEt{;bGuhkZ|C_ud z)N8U>K`{=@ljv8ZF2Yn1I4jDnqa?p9bl#uEyIfs@8N9S&Us8qeLzLBLW+AM}NpQ8; zuDtmgDeRwS!JB-@Q@gUfXlexkAClTe(8Vo0M8$VXy=7JG_4PrqjW(nS!3s|9hfcUz z_373g3xjh4#tEWE@CI-ea>!cK_TmB|+IU-qms}*Z?D_8R3scUW(eT>Do}|NXS5D0y zHHxDJDrP3&<{A)mYWSD|!AIonVSvbc1vHB(`=e1P)4jt|jD(L^Z#8^nc)UQlkrt`O zH`R-ZqhZ&Fys2B8Pnq5B<00RP!dmGog=#cx<_>ANxo6k@4YSKn7$;M^TCfjL-tAr*zt)I=0}<$?m{ zHi*B7g6~1otzuo;mFRJDETeq%D|?k)n3wr1Tb6*I+;tyHI6Gd}9??Z6zf}8>!x0(9 z3|en###~zhj$oHYeQ%hCvzolc!j6C-c#}cu*NuvA9U|FQpdjbd(YzVDmM*7n85MNT zVSss8tttW7ReSHCtC0CN(QPMjCWS}E=_<~|YmO;`@wkb2y`#qaEIH8Lbrys)S!BR# zf-3?|0wV|WADsl zNG5Zn>5tEliUDvZS2lL3gKugn`Pl7TP7KZJ0s~9(si_NKy3rK9nwRP;9`d=Y8>7V4 z#J1ygu(>;&yC*#2(eR_W$2!e*fEflX0p%?CQ4wk~`zcCniuZo(EBdjJs>W{64lxjU zp_rTG+ep&}-W;_z;jYQNs|8q%Di>UVe*@8w8T7G`XtWB~auR(ypIJoZciZ4uj|95P z*JG-1E}(?Jgmii11ROcWw~tPxFDvX{zP!Kc|K%Fm}RN18!Fx+9MXES98}_HIfyxf{$4K??`VHbgyg|!0S)|NAWn{Nx-aXYIF_ikQq25-`n%#nf zxhr-%mw}r!MZ3RcuqNj~y+b5ob-4j?uZS@^+gj$Hs3}R%9Be{=5>X@Hf;2n%F(GoI zNYlTJ0)ZLfu}av=4=GKXCsNMNTJGVdG1R;F`ye!Ad7Q;o?kI-t<-#`|C(U1~zMR*< zKLze=p$ZK3WUaR5OAAgoc<$VtzNmBC8f;`lkk}jSgJ>IZN!xfEwF@MGB2hzwlG%UX)ZC7V!}gQlt7W~BN^a3^l7|1fEs!Pwofi}$cl!xurl zAPcjb$<>p92pGyBeg()q9_PmE69_i+*sYCS6nS*!U8n+yxOqtEULvP&nZ>eUm&ynb zbx_K8B2IG|&uG_Un73d#oyVZBt(#tabLQ=vjnj<$9O`U-?v@`Rp#p*`4M;WmZ5GMG z$p{2-#?70Su>ew3@P?940ShWBDp}%EjE4Dg!}Rw`m-*hrM&cDSWZxq|A64-odpcFW zO?DDunUw^GybzV0gpfh_8fh1S<#&;`gSvLQ_zAOv^xl(k+TH3?BVC`@+(d6UO@{e) ziUU-6tzN59K2uEhKw4xUD(^f(_*zN`e@9}Lpa7*rW^=+|UvO9RJ&F8Mh5H1Aq^P;> zhiiL|f6TaOxlu!DNyG#YNw}_biR~^(#4+VY6 z9$1pL3fn5Gtzz32TQCX;BT;6M&dNUN3@fxD0J>0@#(|9VCKp|%jI6J-LQTGhAX`^; z$2R$2j7;GRBE4?J_d@WDE?;}h;C(iD!bgQ{V_An)MH{4+q#iZN-?^qy=S`hE-wq+1GsEcnTFJmTyxsE6Ck)(~(be ziLJ)#XqbXqD3fLv@BJ1ayH<$Lou}~^Ij2!9Cq=U(j00Lh=Es&Gq~oPr)evzVw2hnwCPeHm+G6ePuRsGBx=38L$f=d3F z7cX1NyH{>IOif)FwK4*HEY70=tA)-*u10x8H6%>*69TQYXmCJ2qpgibqCIGn)+i;uOeT54Kj7 z7a?3At>>fRZnao1RdP&OzO8eb5wFg-w35mXshm38GK8CMA&U_f&nj(v`9<{HbMXzH zqGfJpR08N$Y$<_k#NAi)74EWVGmX?d@NRtp3TDW!JZoIEuALQbN5h+~d=bF_Of<$b zz$*5SX?PwFln42hj^I^R_I2EH?(C2%OW_4$=j%fP+gL`qjJB?aCuAV|;0u{H&f=wY zyibgpW?p9CpuTTjPO~al(`~V4-MVj2_uVGt0L`~3O{b;ngm?zudEfuC9LTpa+sIeP z+Yyv}m7YLj4~hm1c()I_Rurs}^DT1M0uBeSdio`_c48d#)x-AjX-uz^j zKKXXlZO8j^C?r%Qn8OH$K8UH+nvQs>w6%u_1(V@E#@pO)W-js`^crxTdJ)UsR^Nne zqZP%WJI7M_U;Ep5x03`t9X2@!;UP;sG2T6?$_m*N(p%kWzi_2mi?DI(S6VXLFEy2aUGp44wAWzWS9 z)3FRi3I=v$NYkl(QZcClDUN-xZ#uTDQkQQ{-p7iX!du<1%+fMUlt4i~q$fzYNybrS z2bM?+)ZJ78mwcw0efX)lO1ClsRXWk2)e3E#)uaJs32*X5yHI)}hFRBXpB33pkrZ!! z-o8Srz9Sho+L1wgsNgg!5k=J@_KKo;IO~J~$$LKeh>%v9eA7$qak_iiWO#Wcvngg9 z#&}s1aSIt15NC&cGjy66?uI8v8hy2iLeFMAQ+M4NsGh?CoMyN{kqqM{)A^>h@#l8( zEsxoE&|Q@Y?lO_&9mH_*%h9m!laJj`=QOYC`vO4~nhp{bB0Q}Qrs3s>mdpE&-Zr8J zzw^ec2msj!Pe$anP8JC&A^_wecoqvW0@i4_q4s$^PJI(KDi9i^)~nje`WHm8AXSt> zu?Lb?C0J6#%xV~v?+9G9u%^ti5M#t$6bb)uh3?!T+|JCgKyDXb4S~*yu(beD(xYMW zxQG%j=#U0~TuKVs6**mZoarXTs>CfU{92DzkKhgaYmyACm?m@39ho5a z@;ZGbPB5eewUh)It->V7%%Tu)xUE)}D?3rI69NGj89IjB0b-vacuaAZl``vB?25(F zqaIkdlCZ3Nd~vpOs;!UJwtEF%%jSImZDScl_E9a3`8W9|;|OOype}JrY450U+>ul{ zuQWHs$*`CX!cp_5I_riq=2ga+*Qpct4*(PKCTx-DkZksnIup%ng7#)m=L@UI>$Z$F zMWV@R29-A1pMx`3fWT$N*{4*%uKH@+ClyGo^$B;DkJ_>|z1yuA%k8CMaU*?XeX zARk|uf66E37uW_G0eS(lvwHAT;7_$dFGl<=6mEM2srlQ#AS|#KoMk9>hBd#y;Bp2c zG0CoZJ@ADgnF_lCOD=UbyV}YX&9n})Rh5>E|{dU z{Fq}GnZ3(*Ey8YR<@dpZ8z9rDX(Q@PQtm4q6NGoLRHYU#OEBEWH@ay zP(Vn7C$NR2*W#}n8{>I)mGpKS=!qaMp$Xjp5u0_^PKEJrmJ@;EO+Lc$}=G1ptxVYOCeUC4L$=g~g*@;iOY=iswM z-b{W#)pR12d98}kWe@mnMXva$!k_Sv4WHP^c=ILOY%eX!4+O0ByFDVPEg(4vT_9Tl zq43f)XRo|Oz~L#t{|tM0_TFiQ#;7sg%4P*b^|lD=`AD9(oGdf}dLo=_(|3}oYd}_0L_|3}S`)ToT>9rk(uhrhAlM z25p;FYS5T58lvWFPMIJp4tZ&qd+BXYzDrlH)CTat;IVD(t#LBAm&6b>Sr>1k(!{f_ z5IP1Z|7dGTW!XgX2!=yntICF-PlK|ltxKwmoZZ2r3yeTd83DZBl>!KELmDZ&yA;A| zf=io&P|4Wpg*zUct-Z3?SO{>zdM=(ADLofWOh*X5t;$(Gm&Mn#k-L0u^fecqcm8?& zUq($}2itOoan+O}>}R^8w{L5j&~i#E2Q3M?u)VA;d(P5Q=5sq4>Bj|75*HB`0X|mu zc6I#O#)J&I?(j$7c{$BxpuZ{w)y_pU_h5ZcQ#aM^Y@8KfZ!ugye4^7Y-sz|%1m^T9 zc#auw(h7dcpn;CMiD2Tb18jmOyfvWe}dXtEgI0)l^>v= zH}Nca1UY@GXvZ_Y8#@yz3>(Pjp+(^q1yaSEt7WS{naK0e@TxJRM}{2Z?oRIR>C3WV zL8q)ZQYBr#0&7h=*2Dt(7x;D|HG|nHig{Oq3W>LzL0Z1?tu@`F9K+6Ary<;Hh04PS z2bBS5)y?ovG+SyGh=oVtuTDKSvE=vI?cLv8r8rf_u@=yBqykhgs-YyKlJ@h((^5w`VRAO=Jq0LNue{J2L52QsdLOqY6mN%#Ot+LDVb?PpUVd_*hoavX2&*y{@TT zGK1Q4x|R>RnzXI`2n#6qc;(5|wmIf+FX2n`9N#IVd$2YuOokQct*F%E)j;i#K4`YF z3@Z;Psk|ucI;y>I{kUuLfpyzahM|g}SQMOwbL1fQkcKPp4pzv}Z-Gsk(ARCr-~i!s zbufi|)xxu|O=sU%7Ctlsl!m@36+H5C+T{Ea6_7m^2 zA)SIR2;J(JKf{j7yD^DG``w-Ffm7(DXMuQ!jCf(x-u94ON((y`($m9y!fOEe6B&)=`;BrtXnJ{#gP;~EzZQHUKVKL z4NmaS{OFHamw_txxE1-u+6;pDE=OvQOh=oktsm?4@`v=b^1)8`KtUda>d&rAs#lw6 znKw-Tb}JLAD`zsgk%0tDuF~a{%IUqN?y{#0itBYihrOQYDJ~h*^%W$-77aOfFa$4f zD5gkaG-+zYPVk{tBs^r0xGCmX-2@Qda~~WZ0wO}Rj4d|D$pChx7G{u9P~(Wknl zPRk&v598d9i8c}Jv3?$_=icjszOUs`Wo)oVh9I0RUucm++a=)VGBqt+0Vm%om_0yh zv3fL^Gpp&CiH2{?Ld$L%531|yy^?$O zwr@|n^OVHeiP|A6wuvP=Td3OC<73@THQ1;=>qcWiYMF)70t_yT!3`P-E3?NT7%r0A{h~h^YbwVe<48nl#j?{Q!Y)cI&F{*uQSL}1|JgGMm+Y53>UoM9nsJ> zyWEUi3QXiGk$Br-Tw99jG2&{yNk>JLt=<+aJZ%CkTKCniDT7Dx9^uybwnI0SRiy2K zV5l6=Xn0Se1K_o!W+2bS#7ircwMu;tE5zF|co$u%McA(V@S?Op=v$1-n9AwyWmtUr zAhs1#V9a^(N8Yi~q2sXRNXP^1W*Hb>;1K)0J>>*rPzWT4BwZ!tk8(XvUMblgtZ%ip zky*vYCMa>N5^}COcuUXGCg`@N;(;?(?NCqOY@B91s-O}dytye(zdSHdXpPyy%T{u2 zr8?bU(5az_2SdrdhWP@=N%M)TRk$2S!WA$ zpxe%xVlu+y(ig;c80j9yuq!rm^@6$h1I8?9xyNGqSK>jpi`TEiRpeuuFzQ4jRvh*yr0kV?7`V(PTs3|+gd{nwn9 zed*K2lVT>LE8kz5cN??BU&S@?VEkFm-;3)7whYP*jI~n7Afrx+wF;7fa4$1rX3g#K zZI)?61PKe(n|mavFSC%=8_E(;mPM=yvS#xhJ4erjVh#wdFF|K&>`j! zOgeQGmI+_cIjmk4)m`h9rl3&0)Aq7Y_)S4|omIZ|xSdm;Ek`bJVT^`Xsxc`9C=Dw^ z`epj7Z#@3aM^IR^N|)sq3BG{q)ZnFxBvA&ow|glhV$Qqrre8+*Kt2|xdmxNGtKPr6 zf4=p)?K=KqcIh4gakS~s{y*=94`cNXeZGY_kBDRvc@=Lb`McTFawbhvQqJRmyE4Nm3Jj`+5-6Gl>G}JFK8kNOWdV?;WirEd8jMyh3@}Q7@i*Q1Sy(pA4TgyXF z<=5y^^DQo1F84XL<|O|T^s-y`8L=kXY*Tc zn}})%=@exx_agCGc}Sf_jG({OKn)1*{OWUk#x_|j-tI5=Ojjd7gXUvAtcD04-{sU6{A9}{e?YC;qxdxFSC4$Z9Hw=XU} zC0>(emBArfw$zC?w5T9%Q}8o!Ku*1i#Hf<;;GwrF05Cw}zIW8LVBlL)x<^?epPzoCwOwJM4PF8G~Z&~#abuV2{=n$_J9Dbq#`NmvnQB8mtvvu|E@zbM&_>3aFT zpy>}0S6ihh$b+u4n@9<#NGxM|-+eofLbi1Ga%*5KONiwpTV}DQ5jBR}kCB%Wz{2n| z#IQTZZAAi55yk-GO6Co;ujd9su{fi!n&Wbl%>(o6G>HVQi0@S4scm-c0DV+47Vsp) zKfB)%n>Ny~SbH?zX;+uBOQMjD3ccajM6+rKb&6@sP{hVVe^8r>SG0}54sZHXE>Y}7 zA)c&LK}z$+)~IAvZ*E5c9wFuwP%c`laoh86m9k&swG;^Txd`j@Et^MQ4u(V_7m_ce zQ&KXHrZK{j$9ElJ5>6{Fhx{eO!!iXh6d72>tA`otPT?czqxdE&|757D1;9wn%nbX; zzN&5`YFBY1P+1ZjB|oevZ*Q^$99676BTOw1rgM0xof|?9#Q9}#80#MSmm#Elm-fD4j* z?sAW`9g%?_tVUX(1dB6~41jn)RPE6jTJN+%x32h3?MTjzB?A#|4DgPKAF zr!OmLW|M69WPMQG_Hs=Xdt7wLO0~Wnsrpl1E2gtD-+Y~BJ}iWnqOdQk?sJ_<>XmpC zM#DABr1#IZB6nd-7hnA_qHi{GS~*8e)9vSoK<=Ss@D(DtZ>9VlL3`At8B&CT75G8t zUoz#@>+f{O^8t0+A)i%yH6}tKb4@9_W&_lh<}YsOrfca<2|OTsU23w`nu>ipkTe(P zsEZWAvy?Y?-L_|WcNosA~Z6TacReyV{L&01n3flq|tD9@3a;dy` zP?t};oo&&twm;b?w}|yKe8iZ~3+n<*)F1 zf|1v}{K@v+9}v(Jj|b4e#1AsG&3#Efo;MyR`Cg?g*P2SJNxE*Nmvt0S0r03q54k~5 z?bK^%km#XLB!L_W=ar|-rNWSR7pJ%cMww!YWqpB|j&k2EmHXrh6Eszl_TcSrolBD+ z@1M6e_pUj8VUp7J*=Fu4)8x>Hi77^(?p~H;FXc!+s)kZdOa(>#Nmr~wcm;ex+Tefi zCBR(1=Ead*n+I(=c>NTo16{iw;`B&fye!SxXYXz~`X7Xt?kgEl5(VxE42w$c%+NxL zKOZ-#4TlgvW0s3Y!q3BVM4WP*Q{fx~NWngSRKXqd3eaYW31b`d2+ z6V%MVFfLE?B7l1--OlAkh}^xzKa(%!IX0@?k(|Er5CR5*t4(&a_-4d|O-qyQdz5eS z$PB_OAclEm-YL#3Y%`0m@N>xBup5vF=_C8xlnGe_G4RTA1@0g<;Y!LTnBgoz&?{<* zSL2;{^p(TILNXyIfvhqFdGz||=rUoz2m9!0(@z?;nIozsCeGSV;9RD8wK3OAjKvr}S{II;fW(LMnfaUf-n$Ra=E^ z71dU;Z3g%{=d2&ip}V+`bXCMS2ME3c5jVYlo4fK(8E|q}mQZly98LP{U_PmF);fdS z^NBUHoBn^mJy^~hf*giLn3d>D7oqv?TRF~B=6B<7S)0#3#dW_Y^E2KmL<9v}r1~mo z%K9tdPe81hKARRtKbZ+8tDcqlyv#-CeQq40BJs2Ol=*yl|2>Hb0ca z@zY%6I@7&oQ-uTwh&UJh9K92+Hqni9`Rh(P!Y$ad3yzdukfe>ljFTRamWX^27*n?Tm zhq)f@>YJR|iAt;b${w>K0^FpY`RHpo)QPN3$SBQhKE9YEW`2Cq9v!v4Jtzx&m2}U1 z{8t=VpWNhhPmO(?!moeMPxURG{PeUwxvF3a%1RSa8JeYO#E+49UN395Nj0YNE4Zd( z(s(xPE@dWgm=FFgKhVg|52W^&kf^8u|EfSRE;IAlD({F>rNEoZZaRk?l#?0Jq~@c);^8~TFrMnHNC%Z?5LdHD@@ZuAv0(ajRx*& z)G;6Z1$W?jrG^tpsS(fzAtKtl*m#X?6zyCIlK+@vy~DIfGzH>pz}g5!EA0a0T3Ip+ zWTrGoc65J`-v1wQK+Jn?W6q~av9Jx9hj_kbJdQE@ zr#g@wLY;4ps-~aJ@nW9GTqu(=I;k0+nfpjo+_y~dSLa@?cy|QaPt1*e))*-OAK~=G zC^h35!-ycD?w|Xn=_nfk_lI*+XxGT64)!h{>|C^ff&lW-Wrp9#1&FDgz?oaT54rIC$tn_EN6XIcZSD2QC3Qaf7 zQr|;tm%@&7!d0Iqto2RY-#k)TXu@JCmL2{Kp&rN%Pq5mHE&*tH>0!>Dm}I%<5%z&Z zqNG^wuOHaqjj`b0C$>rY_MCg+u;LX0JrIm=S@KsCBP8p3&Z+uX^FKJaIXf)+?-J^P zpxPv>t`H{<UVf29lr2V^zCmWvLzUY7n ziMh|Q)(d_O>I#a4R9HcrpXImS97|fxlBt*ZS5oGl^JtTR_#`L4R&;oVE7G*7*8N!? zaM78ogG%Jszr&fY6dcwSReyya7TxTLgZ(A0R)QLm-Qh9$j%rfiyp}62T2nM7Q$91z zDUXSb4Nkh~Ub#ZtzvQ6aKu!;O_~f*grW)B1#r|-beV&xIeuEmHWdG(LlN8%v?8Q%U z)S{n}wg?`VxJ}CianTXqev01}Jr`F(J2TD2856>u<+tU6leKbIlRHxsaZ{qy2EQzN z-zKD`pPuHzqy(b>gPZFO?r|un@76laHr}EQ>HrPROj7IIGOdz&*voP1(&S3#3Vf4t|C^D9X?5=fc`d-PS;J@76(qWc5*5cZKT~L(bSN$GN`` z*T?&mrE0!_{!z|WECL4y8ubeWdV>@9K2&*(NJewW6pi;2-9pdP7BxJ=440Mhuj4aRTc9;zoEQ zg$shhLo)*D`?zLrkasaivE!?LlneAyszR_-b#e#X&k@}0i$wUNvFZOPMV#3urXZ;j z1+r&)A| zQ=ok@H*EGrvdWAA`tA943xKp>eJ5u$J5CS~LhS0SpCdDS_k1K4@!`NhSd)3^g&-{28Yx z7Wy$lSrFJ}FRIpS%;r%SU!Tp*JezqoGXdL=WZB=&WqXgi;7n`P4vJtKtH5{gxV=hA zQE*A|e3{^9xn?nl&bE~*dk`Cm)YA}k&5}dHm?g8mjoa$goTr5C z%=fS6-3c>aDYEQ9{s>P^{3x^Sv4M=RUw4PUpSvIq{rTV~mA7SkznNR%6?ThmZ-NFT zF5XLvr-4=BLqRgRbMsCP4`(;@_52^iQK^(V+YXwq+?wcIyPoScJfV;J6tRMfxA0Nn zDyh2ejPO$&VVx6a4u%Q+&}TrlGb(sGbynIP*^ z+<|!*%Xoo5S^jSlWxYnZf@lD+6IA6pIoElp3V=4ND66Rg#FIU^lyK+af`B_lsD6w` zHIGOEkdq?C-{Y>%i2&o2?~mt2DpSkVxuXAyFug{qf~TK?SwZ3piW?6MIgAK>9+3d) zB7+uOvNlrsn}`7O5Jgz{k?JN70DGACz4Icj3*WiCZzbG$_SuCyaos*i=<|p(F7&bc z@oU6nuc5IZhPbfDQTl@fJ`YtVW{lM+7P9tpggg&-+vgPw8R1*!oqKu&2U-5@yhxsg zJb^CP%zNq6@W&A5JkH*0fh~wIY3So9^GR;|JTzs3S$`F`!)w#cEhJ+!)L>U|;(Y|= zwUQM9W!Q*;_5m){&qYVhIG0S z2LFSLmgk|2NLcjA5<8`z;ZnVJn%s>;hYCHRasq!ssoCq$$pvI4@5;++KeWL7zjKa$ zN|?887Bp}>5tUuwZ{eBvDPbP)EwD5`r;Qi|^IVX7+NTNGujJ%H9(z$nw)i`^4}NZw z2T)3Jq@G;CyVW7ZJbi%(d$tS2*OF?Oa4mw=Akcn+m^m9(5gH!U(SSb8J@gBSc}pgs zjFVa8^k%!?DE(by-KjzBx!>>PY-c;5E?&{y7n?px*nSB-Zzo(qKrW-4(n|#C*FcJZ z9Dlz@fPN1VX*R6qJl*PG0`NwviC)J*E@7Dj_GdhKuh*z3F!KPNOzwZygjoENF51gC>$zKrnZUTnQC zv-^R}qnKuPoh`$u?jyXpHxD%`WO^_1-p##vd?Zug{jUddwg{aSa6fz?(*w9wfp^D2 z!PCqAE}n*$K~HhIP7ODi<(;JYUL*DlP+=xS;bH;&J6yh3l$-%@D`LBhwEikIZL)?OS>5-+D-%Duo z(hoj%Eo*%nG0LkJPjNnYRACjhSq0+9IYF-^Fb%|TH$+J!75;w9LEQP^uFSw1TF|RyAa4r(QejqE3 zG!Fhct%ma+Fv@bTEXxkY2SHy6PqULhI*=2Iwlq7rkJIydC#Se__N@_F@*M|q%J%&d z0s6O`=)7{FDVL7Y%mVd493)g5k$(@*Xl^vu?_?Rq`W6z$gW3Qq7+=b>nwQrg(}VBB z%9j2(w{&iZAmJ9`-{&0XWecjVd$*@@oSMt#3 zy`I2JmtKB74`|+LcB44#;{{`x=I@bc&dYSVsG_T+`Tz4Ea8kbvClLQ5mprfZnDE#) z4g!0Ur_^MQf5th^d(^0jj{=`{6Z8K(Cps@P>qP@YF2DF7_AyDh`u7KcHr8(TPA+!d zLr%bX@FKEzG%OFmOUHCb|sA3S?7Q?)TCvH{O#-=Arw>bj1;>tN2x zk-TN9eZuv#hH0jns;clXmp}jckJVdvnn&fAEvA{NTZ!Q;7w-+@aEnajBC4-O!^aN> z1@LfuY~l=lh#>ubf@wBjvaZ9G1nlP@QvnY8RY9sh;8D#FFsTJ`9s&9V|7m9EREao! zFz4gekN7Q$9P^|7SY?R|vU$lgOGmhYoXrm%%!N-?qxf$JgPBN>#8dMUT_lrzo`C1) zP!k0({>i~?LaH>zIl`>^G96OHB&T+Q+c(8oYql1}f8=Gze-3Tdf$TWHKz!a>*n(8q zjwT|3cI2#EJnLYw!-b}v$G3717du!YUVb+R+g#YnXnE3?`zUd6aYu%cQuRDO%_Cdf z!n#Q>x&!OMa4fN;^%Xj={K{D#ht}7-OYYQ9@iGGcEzI51O{O^Dew}k z@rr)|cX1JDf@%~POjk}@S`;#Nqt+gBcVyT4TuZ*BJ^d+(+K5B~8Ruq>vj{S%$1!zu zWwa-`cMDuqUkAp0?Sgl&uZ7;rxt>MbTfKWyL|68%!?9`$pb@MAldib(TO3MiM4QAO zo$%zcyrt=pk3(sh@c$(lYAs+n2v?7Ke8x#Xs)>Mo6PEHTTMz!++`+@ae4UyhhzKAl{uWgWn_J+5+`y4et~G2udg@&rW?$bb}VyM ziyX*c$KxC*pZdN5)H9{>C{!}rMdggIjQMF$|Ac?ui-?msn*sz4~pL3vm6>sK+ z^&n5kQT_2^NrrLg$zUU*;Nq6m-0PYuwtvbE%;&|kZeSQY?D1B*YZkYv7BnDzSlf%m zzgE!G1N{XDS{$utIrMLNvCI)c^_r;PwAeKve9uaPf5V{`Cth@dbNyZ8=FP2-8 z<0FAhZt&X{%dHSErMcB#aiDxPW!4L<{ElH`FZE8!`+01OyU6F@OVI(N|7Ee;_=xogb{q2%)CZ*ccOwTgp=z66#i2D(0Cg@)) zMl%+Kd@~oAuQHpjrx|^FS5w0Wcv_1YV|QDR@n$lSe3BudEV)~#BVMZYYL{WPmFh0u zXh+$%6_a69j6lsf+NvJyCl@*zgeJ8%GukB!-AOarnqJ%IlYQlL$|-je0c$KL2Ywv2 zteN#SZsSY27j4R+#xUdXA_p-?)a8X*)Jn|B{4VK|Ke5=2qM2^H>L$4LB$sgD&`qZG zjl`;aiZkWhdr>zU^bHN@6r*Z0jbRS@rUkCUobv^X7$azJ26cEJbQ;$`TEuBL%xS;G zJLfHImNNTJcM^cEld>M<W-o5aENfpacIYhCt z6ZATPcH5ld8V`C4Lwno5ZxJU1bCZ^;-$4}i7N4900SI2Fh5iY5N1o|3(v#1xFdYWS zQHT_FBljoY131e74g>r}F5{rthGFQ2EdJ>t2QhT9L>XmKD=~!eX<}7=?89`2!tEM# zTv_s~ILtvyt{qev#ItbjeHTo-bP+d^%MtKD!qd;UTu!%VJ*6$B{5SuO;~X@->RE#F z{zVWJg4YD)Rl+}L>8IDx(0e@Ne3STehY+Ju|9B+L5iaAPPa*Cbvi=0Y=X*%fxdi#T zUC7IU!i-zNX0KYV*0&>&VnN^k&YkP#^W7APX-C|w_Eq&y$dbkc^%&7PKmKpNmBP=Z zm9A?!Tmgw@u4UH4>Q)2Vm+b7l9I^nFn{P;CzW#2W>bJ={G z-Na^N;HZb7w@N!|!|oNIE%Qsukxkd~Z)S&*znf?YbYSCl11{HaEUdH@)yhV$qz!)=* zTBa(%3ejiL7q?yA2`ce!oq-3Hbn%3@amkBDUkTu>SdZTYpNoBlk1T+mph?7UelE~S z)z3)Ad>i$lmlsTyWX$wppC?i+dSJw2k{+gr;n(nB7tM3k?IF{xcD4qss-_p0@qib7 zcX@{ztx$V6LT+=k;PdSVj6lS4QL{p*)cZK>qQzmAWDg@f0v~s^e0n*@T{MsHn{aPd zjghs>svqR&1&nWViK;GR|574U0UoOooAb2|$$xG_S%Y=a*kSQht||NVAg@jVZx z4K^VvC4(I1nhKcArW#}iSqPzyky_#@dEXI9+x(^)pta&G;ondeDd3u#ZUj7N-i^XI z27gR;>%Vd_2R)P-ro$IrF-gJhujIiLFb+($s<<6R{bnV#egA@JcF=25)x6u)-d5;t z-zSRQST~J7_ZqpK`QT+t-7C-p>I642pB}p~rX4VjY9TxVa6TjdQPbo4!q?fy^CU1E z8e{Iec!v3;aE^8A0gYkz4?b5bG)CSfN=}PB$>e!Yyqad;`1|i%XTA(E`^Lh;RNEoy zSh3}wamf6T_j!hlqF9$h`qPE4FKP|i9o$MJEec`#C6eoWiExhfMV%VrS=GznG5mEw z$As|wFC+(x+}gT&sY2Fybn$~Fn_6G=U|`m^{Nq35VEKyp>?ha=!3xs`v}47hUFH}Q zCQwM1a(4GE`VLZMXlXs=>lS@>9BiOD;ya6R`#JW}rd?mab>%05&OTH#sP3Z3uqlsz z_o5H2>D=yLTKr(i?fwIj%zRmJ_MHru1@FIQ(MP82J~dcOWxTf%8}l`)*%#K1b_0}I z)iU*;bGZD#*V%{bn%e(=yJ)^@Y%L9Q-M;3g^Ugny|J(jF$IiEX&$CKx=h23UsInXA zaOSItK>5bQ`NtmMnP*eq;RBzm1!I}xMu@A)mlnF<0iP3#P#Yn^;|g~26n;!Kf+iDi^m%-jDn53T$uXHC&`*@6wxJ=5FR2(`Uz* zK_`UTf`=G8aZp1gHscz)p8RW(tK4-YoJSTvSRJ>pA#{)Vb@m}{YtT8Juq1OBa^ zt~34<2S3CXiad9nA^rssBR@QFnpGg`6vdNjfiuea93|f_Jk2OD2(r8KWeZLGQSR0O z53)Kw$X{}hd=fa-N+Ot2P=+b)^71&l_Rs?Id0KK8NYxYcstZ z!mn@z`GHHe;A!qz+n(h?r&rxYsUxQ(&^=sFzM7;9m*$U!`X!XJ^Vj7TSw$fcz8dTTkdd$C$b-d>tREtu9Q^xv zl8an+=EyH_*R%HJ7k6H2tYl?(Q`=kICUP``h`-8(<%_6uY$Bs(g+4vW16v$1MCMwjADZWv zzmp5gHwoxE;JLTU)C-T0h|RF)3bWXB)dE@F7jeLcd<PPJ{GG5AVO>*1NF)vNBgi~LFQ#%E`RhFYLKylOn?b|G^? z7V30SH&%1q|3=8OZeOhmpLM07iOdn6>f_zH>hIaWfLFP0?~4dUAP#yxgsN9I;S>)j5ShA?H*uctn{hYm zL8CfoY5DphqT;NZh+NmG8$*k(_MjteX{`A##F|HEoSX%j6x2AxDb5YA8<^CU*LWlk z%sM|fiTc`jc?$tOHY1=$H0XuE6+|5%+*r`>e6G|h3l=~YW0E#^83CB`dX5Owbq6W0 z=gsl@x272f1ulhZ>@(6HN1Ao7x2k<)ZOGRAXKu}`)DQax{%E=u6I_7sS>*Tfu==|a>b9#F-sIBMsP%1BkSMi%x2{hoLMhu1RzH} z-uK#|7h7xdKjn7Ly5=TA@gPU(NnXTB&U!MMb(xc~$SDYPoS>hWaXSs@dVpH9N%qj~ zB*XK43jzzKDcZT;(cLRXTWd%11irwR*PI1+7jk`t`uTL|{~84tCKM~3#}TffQ6GV7+|pb-++ zLw<`9v3`%oeP+hF8gPbP|3fZ(R*Hy6zhpm=_G!ed3;%!Wt^+=*qKQ*|^xiwtTSD(u zx=2Svif77&+>u5K9i*4%fd>Q-r6@`fu_2;T1XQYu^dg8-1QY=U6%oX5|1*0vFUh-0 z^4%Rje!2hb%+Aj4&X%`t-!824c9elau)dJK2HI>g}Kkt>|Gf zRykG6$IzLPY7zG^g^9~EoK)UKS!Tpc@#bE4eTH*}7AJ%TRL+dK<(QQ{e%Tii92p0{%^p~?0#%VC=tS@m|N1C2@1 zaq?lZ7_#Z@Gp|tPJOSGYUEca|V!T*zjG}E4G4iQm8T5JEql%RS(d22GKwWq{ z!C{rD56pw1ytkKK3M)@JH1C8`Z)YZ~)OAGt8KtUu*{6=4+MzJTm^vL!>Fr3(dNoGX zp|Cb%Wtwtay?`>!n5h~g>sDyhyf|2Q!D^4Kg;27Z`=2~eoZjf#4T*T$c)9vq#@Ab@ zIB&aSdO>fX=T5n{pBshi?JzqgIz)aHpATxZb7?yPS?l$Z{U~E`^ixQ*SR*$|eP-y> z?%O@k=e(3s4&|oZL+R6K9EW|HMsf6+_`23%INifu70R^-4t>g@k4Lov$hr2CkA77+ zoLbDz6TJ^r`;SPzXE6vzs^VvMTJC%y4Y4aqjfGmuS{^!SOV(<+H-P! zxy75#Xk32dqV_IoTl?`rpIWgoAuT3y8MDjwF?5xTl~FGo@~280UTF z!^P@O{iLglk0KJ^X^Mq$d|m4}Ie8ciZ0l9`6JvYzWq}UO0V`d@;$uzX zZJ)UDgUkFHG-*x%($$2AF}x^^6*nmH`FHMFoe1TcbJX;YM{|`33KN$a8xuy^Zr4D? zXilkJqiM~qTqT0S#FsnrnZ7WzYK~y8adc=6w{7^&m%0n3dpeJ6szLZHoGUFn^UBrr zTl4doR|594C%3~`?MCEj3E+fDE`e8JXy$m9JUdbv+>R_vz6ZB#=37=X7ZAkj(3R;_QC+RjO~HJuZvUa&K~%Z(4GRMdWaj&gA==p>7w272AZXborQ_wu|v)Q zlTq%PFX%X`=D5d7HMGq{1N6>B`K^<5ATip*$oY)S$vKYEaC9JD&@*YSPKhBVM6*Z2t(Xz9(IL@MPH#R9WUKG8PIiJ8B%~w@;A*q!uga=`VHh@@hksp?F|D6*}Lo;`2s>4n1 zq>r^sNOcrQQ%iVKT$K3SRJ{M;SKsvIwjnH1d^950R7#-OG}oikRLqJX!uEZGR-pNO zl#Uwu7D((A6x$GlGO<8~(lg4>IRC9>(MypBenPhACBGWCkJT6VW_V>rXhEln|;#OC%(`zap^lb-X`z-11Vw8ag3Y{9zuy}uKK2F zlTA(h$g$$P47m~H40L(!vQn4561R9)Og1%CT6Sd*piHwbOf!FR@kuc_VmmHTmeWnN zBhP(-^&ly?7E}v%X%6)|>~hlQ@UF(_i9GjxY`<~RXKUdXVV~#ub<^gs&II4k90gK6 zs)ZOqw3_bpU0%Ud9agM5g~vu~jRVXHqE`#pVrsi$XDW(J(>c=B1p)irQg>mKX3^`? zBd%~pUTs#r0BxG%oL+6>FsKOohm2*QPV?nZy6O^)wik27&=q=DQVEes5fQdeh~G}N zZQD;X(W*c@Gf3>#w;wLh2-TeqQqhVH#)GNEV#aaa_&e)Ggw}bTrFap0g9}&~p!Zv>h{j zJ?tJ(W^2jY;7XcZN43QNFQwcE5KQ|aZ|-g_-by(Z%*(vNeZ3Dij=1~v_feoSBK!x5nxS%V>q2A&{7DaM(~5UrvqDv#b_l`UX& zRc$%(39C5IMH)LCg0(aS!^ew*pu`(rQ#1}-V!dCZUuFk!H+k9?I)$ zDz{6E&kJ0fsxo|5yD;qEOi9~AQ!h8MP8}zXOcDb$Te1z7XqTJVSR(H9k~{F8gG%jk z6VpX;i;FF5_aXSWX4XWD3XM%L*_P&JA!(j+xfhwNGHS(K-?mD`Rah>?QX9q6S~I=W zwM2?lAiKp&;PX7m)o({aQmFk*Cl_t?U{6_b7e)LSlW}aY=t#uwfKZ{>R+6`oTq(Oi zxY3BuW^J>rv)~qY;wIR4uC_#Z6|u7-LPm2HevA??V-LqcFQVsjJUM<2en|%(y9GjQ zr`^h(>A(XqCkl67BpWs6IC#g~_21GsdwSHX5P2$cOjNPbj)b?qc#77C^hY7+g&o4XFVZt zCOO@wet!j|E2btb3;Pi))>0`Or9oywN6i0;Esu>|3!e9*M z-7Xwj`XtBsEurH`UN66ng}xQ_pgyYIaf#4QhP4 zf!&$}$XC%&j*p}8b(}QfS;%R5tL=kfmrvopK(#npqoeTfTrBRQ6K)h^>vTFob6pJ! zTx6Y#x;?a4P9=t@7dhc5f`Zn{n&aV|TI)rq(=s4N+^8i^Rila)U5MidyGf}PhUmf2 zI)rD4DWlCt|3Lj|xt=(@OND2^NpajX%rVinT0+!foU`P(ALM5PbJ8>T95Ux1(oMd}DSnGT58RA)SUH^g!O zLt(Yh8Q1psVi5hWjEPe{s98cwo8Z%nut7EKeJy1Fe; z?P%am;$tJn8}MREzEE8aK}YZJm=Od!?K~Zc#2wmPg~SZhel+bx2x@9`O0oi6-H{dN zSw=9%CR>JNWBw7nwqr1H5f6)vM&j|JuNM`}Ya23pxsd5#yQ{dU7PU>qgQkcag~Zq&TYf?+ zty76cuh_?k&PmL5>?PrDXKQE(($*m3;t|3WA)bIl>C4>ZL8s9~Uo2bFGU^+M>X@*& zi+CeI)8C$x;NfNSxz~1MB0&>6FQnlWUs~ z3zsoB6(w%o3)BqgDIsre4pa@O1<;=&U2{vI$3-cbTLBpn)*7fOfi@tl1JG>5=m->ruuechkb45CAy8+apCQ);s0rk{0-XT28&C+sx&zgMTo0gF zg!Ke^1?Wkj%ZSkn=mms51vDC{H_%%^eSn^UTwkDN2bO~Xjftn*mJWyA}NB{~0N(7n!ZW7RZgpC23 z12h(B8nlc9`V*SR1AUDc6M#kmO$1U9V-iqT#Fz|p3fw6``@nqxs5`=@0<}ljG@$Fy zJRPVO;?4ki9o(5fp8?GRdJ5dxK>HA54$xQN&IRfK&GUeALQVym3-lsTZv3&}Pd5CS zk3VM-V*$_=Xn6^!5s(#VG2$)+T92?rKuduZ0~ruE87KsDOMosRY$;F;{8@%SKZ5%* z&^tiOfvN+&0(1y5UIiKj%`1R*gS!%_IR31{pP}Hc2AT)%Yd|Xy_jRB*fz|+J1NRM} zdq8gj)kWO3K#2%j2lO@2dY~!bZUCAOEpGuW1a~9QNualZjzew}P;tn;1Jn=PcYz|n zeGlk!guM?m0%0EjT?g6>bPo0QA&{m+XNaJIm0YIMsMIy$hK+S=+ z0UZQ)JJ4Fh-2wDGxI2L=1APV*4Y^%F7KH5v%8sx-Kw*gcInaHeFM#Gk?n|I3puIo_ zaQ6Xyfw28R5ePc~R0HTBP;;O|Kru+;E1+(O@iovUaK8ci2;9R!J;41I=o_FTKwqG& zjspDyxnn>_5q2CXAO4)cpInG>5@;kep8~psu+u=z5cdqw3B)}M^cv*819}nMb3jKC zb{=Q}(Dy)BfGz;dgxn867ZCO%P)&qg1Zs=aE>Re`mx1~t>p<^-`!mqHi2DoBd~k07{fijC0#$|FO`yNQy#+J`F>V8G1@||gH^KcKs0z4u zfW{&0F3=G6F^0P`h!~(XdPk{19}8*aiFij zEdg``C0P>a4TO~fDu)=Qfm#8T0eTnQvOrG&l>_<~`pN@61Gx%7O%PTQs2;*90SyJJ z3^W3$3eaX~sR~pY1^YPA9mK5$v=ZFvKp!GT4WK#*s|oZupjxAG)E}rSVhjM9jIe<~XW?~&fD#b*X`r9M9SqbCVb1{7 zK-?if|03*JpkIN80@X*1VL;_z-*BM3h%o|aFXWyBT7@tJP)DHWfszn61gH?=h61fX zj4+_furD0wZNxAF-2^uRXdc2w0^LDaB+%0cGXc#+m>K9NXc+}m58NoATR_o3@vtBU zs0m`k0(C-I9MEZ?(Ikf$@j#Em(gdLQ5F-)j2IP`}>OgJ`&|q-K0u4aeI6?>;5A;4_ zOaMv*nh4Yl+(|%v5o0pYSa7ERJqPX!Ks$h@0u=(926PoMrUPXIngP@b+?hb%qYP#N z<$(3Gfp$Ri9H2iSHy7w>pm{)_fU5$H19}nYCNx`szJiKyDGxD4@kar689K)CplrfTDqx0=)z7GN3Wg@-omFpyfbyA@>T<5TI9qZo{e- zK${`A5@{a^C>`hOomxGZ6MI&=uHx1n4n@9R=zHxnmRttBwN|2KNNe zexQ>;dB8mdG!^!p2ATx!8K5FSXMy6N?>nGNNbMX@3xu5qDvh|`1H~Zh0#F%*{Q#5$ z=trO};9dk80nL|yIwR~d&=F|90@M;=KLLFNxvN0cpye9S4REgml?L}`prZ);1?YF6 z8$eZ%w_kz!BJNF~ML@TJ@*?hSpxub^8_*9xzXLr9xjR4;f$jpuBgP**$I8Zq(%ErDDC zp!|?42xJ1c5YQ7qg@FnH6#?oDR1`=>jA9f9EyaO~AglyXFyu-Coq_eGfbJr!G>{c? zWq|e|Zdst`!7T^W4BYZS;Rve$)CO`DfvzH~5>PO5R2k?Y!m0r61gZ-3JJ91m$6-M= zpqHV!I#6w(8bIMdHGwt))dH#m&9#BrK}#K=SHP_cR1db)1ImH0`apFd*8u1^P!P~n zq#F#h4ss2F$|G(gpg(~c1O1B_O@QVAH3ce)7|nqCBdj@v!KxNO25?&f-9s9!fPO?+ zYoK00ZGf60Zd;&GgtY@|jIj1V<)Nj30=Pqf`T;!)G!T{!1$q{8!+_Q! zY&g&_2pa+P6~dkaI)=Cgpt>l@=YdWkECi@Gu zY6Kr4W51FZyFi5RPZDk5w( z(0GKs2J`{KUI&^7vqM>ln>}5AT!Wb zpmLD=7^o`HCqMVItcC|pv4IL3g{SY`5LGw z&^JKuf_oTf7{a~{=JP=HfxZVS2)PSDyAk&Xpn-_-BhVV4i$Fuby#$1VtIU^y za)EmVs4dV>Kx-j)6{tJXxCYb$Vb_7a2l^T4EMoiu^fJP30QCU+6{rHZH-T;d-2%et zH|EE4Y6G4M&W>fKCJ516m61-$2hG>^=}q z^DzGd^cuJifD*uc2xLLnzd-$f9s%Km3G;tIe;_Pde(`4pPpzNr(d_a4_%?}ifxCMYpfm;x08n}gkHUSj| zIs~~QKxcr80&M}e7|;Wt;z0Py*<1ps7Q#vbHHKBCfG#4eG>{2e$^aDvDho6fa^-;T zBCI^n3qTcs$^caaDh5j{0lf`3aT0u*7pnrgB0KJbG zHGy^^tQHWy;xpFH|Fhw*k;&2nzx#0nNcc3&3p%^fgc; zpkY9bfxbkHCP14J))eSE;x+>^0yPI(1k?g(0b;ZST8kL1fZ71H208?}Hb5&O*B0ng zgtY^z4b&d!4aDdGgs(Zw9f5*Sx}AWIL+%NnzCfLUrXxldp#0F>73e>pZa{m0x&wU& zxgJ0{p|2-U60|%CGzi>YK&uhsDWHc4>kZTka(#f_L|9*-1_-b82ZA2J_j-aJqfu8pvyobfnEiQ1S$nN6HpN# zGtk@6HwtJwxlWf9{Apo*|yDo{>v zrvW7ZO$T}wXa>+1&^!~UBf@3@wMW=&pd!#W2k0Wg<^oNE+&rK^kcJ9$4%`=kz5}uV zsX+6A`T#8e>Hzc-(0_<)C4{hrKtCaD5zrQdEe2W*lngWy+$BI4ftCVQfPKq=urqA+MQ{_*QK#B;1zS{ z#l(=WJ^I)bcoodh0h>G0?CnPOA({^ zWC%Aej~5$jBaNbX=UGaI34u}Kpb)Xu)esUMF7|PY!}pTsS_;I8?fAGK&5#rym24>! znV1-t&^kC+1SbS>2?WK)j|@(>6oMq(s4DLN6>-Xd?R5p zCPt6~u?;CWGBG*|nh?)LQz5bMG)Y`ihl_=g3-duIsyU;{7iY16| zImD+3uAxN{DhgQav5tzse*IBGG+$&$RH7luIK~*2+$*=G6h7GyyWr&4nj$HDb{Q^8 zpm;*G_;_G+QmokiD~b_kUMD1vNH$LqCPd~m?-D=rECr*)X1F92H1>@qo9Dy60uQrU#B9*9LNV0D93ZnWG_00U~M3p7Uzbnor>K)M@Ri$c|IYi-YyQ*9o zIEJVx#QPv=HBotqYQ6InqUMv9lQ-Cw1w?(gZX)r9Pnj#q_vk0!rF zygtOc_u9)u%_J)7`edSJ5w)r745GFYb@4ds{F1a(8~-ZtiV?5jsU<`$CtEt4Wggyy ztICA;ml5wplAN=798pI}(tKe8Q8kHbRCpRuM<@l;B`(486mNGGE(z>JP?hX&j3vof zk{r-)B~evLa>avrM7>Fpp@|lvE)Z4Wiz!4MAjvJQmJ)TIczsRFiKl}@})6nc79i40{) zj0LJ;7(&b3^+aKGRFxbhjuC|!fvU7#_7PE-BME;Q$nh}ps>^9}37d`wk#y~UE4 zy9wR|&JpGis#35&mlEa{s?xIHe$s*&j;gHM@BvYnm8i<0qhAt**@ddS(e@xwm>Z~y z;r0=tFyBy>9%Z;ZF?Ujxk1DcdmD)S!b88_j`yX<7&LhdUjogZ{ z(@Es-)LGJUhvFHY+)h+wiuco|Jwy#9>g!_Ms=gp<@I5Z2k0@U0dM8P8G4U2IVJ)vv zda+G7N6!i)$reCV_G#xS z^;{&`e)~D14pAOD_2toN6G>X9vlqNW)WLz=duJo+*V0^Lmq<&;@C&4+8&P||;C8!$ zbjD2Np07E@JF|jw6ivJjtn7m^MBOXP@vy&5ReqRsigaQxtEw!iv6iT2B-!=tABe(^ zS5?__fNgn`c(aG`h&PwCs7c&5cT?)4hVZzFRRdKydFpr4f~RX$Y5ZzwBgS{EH>k>= z$~EHQSzT4CT+Bl}JP)hNv_Y+j!uo-#gjc>#l2~<6m6)w}iNce;s?08vpCs|@uPQ~q zQ;5Pdx2pVnyf#sIdRLVOQ5A^73WKUN+xH)7!ODZGlotpp zqK1)Vvu6tvg_RPF7S|~rRwz_uYWp0-!wQG+!S@~z?*UP9_j3~uD;Q$5=#-NvtVyWK z@vwqKVZ}pLo{!2-6jmBkWpwvSMB!OqRe}#RB?_xJs&XarGNpiZ8C5yl{|-@DWe|Oc zu`Wp(iE6r`98p*&P?Z~(S`dZR4^`<{tSC`fwGq_Gd!z;H2&(dJ`&Pum>W!+btNah~ z+7MOkC$l&U;k{wLyLWl2>!@BE9X7l>EA&<&!n&Y~(cE^>`w4Mp@)!`qUUHpKh8 z&n1#9PFjxt&D1QS7MyQKl31xwmB(*1A_`C7qV-4hAquM^s&eaU5u&ipp(-`&S0xHx z4X8@<-5rR+>WZqA{*UVcPx+!xj_E}_tWK!Pk*K zcA_`&u!p4BF z->Ayu&$%A3uA?e#i!+6_Csk>pa*v7i7**MDs151F3WloeY{5Cg+J&n0-2N2tuo9#y zzwhIEz}k+goLa-J_zdZ66WX05u{xtFo3n8|tPH8jv46RZVYNwB21qZ!YK!ot^;~9H zlTww>&D@7z9Z6Ldwl&`Q6H1! zur=%xSSM4JCkJq!wVHJPaGBc!*55>V?!HL%u#F@)%;9puI*k~MH})l+So;wp`tZ&~ zVJ%tA8Lq?-h4pSx)~10(Va;1r=FJ&I6xNGXlQQW@Cc%&5jEqJ2}EH{S@e8W zrVurQsNLbwL}C3}lxOj=L=C6(rq+3esD325D0?_jgNW+1W;9WUNV0#`Nko+(UWw== zq8<=6zQhYeVU1o@h71fP>NLd*+cAVFtdFb8)epuKb%uDm%S;vlz4bkqAG80>_!w;;>8^E636?5sPB%(6YmC5^<%kJ zO<>9GiNwSE3{^Su_j5$yt%~sZX54aSlAUqo+2=2k`l7{&XpFsFz2U8?fa*BdBaeUhwM`gNij5H-FEx130#+TMJYc*jUfpRO~A!dp01 znQ>|bQFzy;D(|&_gQ(q1Yvs=V+i*WW>+_T>m8Nxbn?l_xH6%fUNBRjFTL74h)CQ&sZy z<~D|Rl&UhZh)TR%M7=!kZK7T!ojqS&N)+DsiFwxX_lUwNZg`OMg!k-s!8#>AV+-!u|wRd2v1GVK3?YXu}TT z6(z|kr}qtnWaF7XzeIZnL6L|uRXJW<#ypeoNQmxwZw&c{1)j>-}*e;<}y zMOOdZo3$Jvs)~u@SxK_wxGzadMWULu`GKgFq%+4Q&JlKRh}DH@Y$x_!sLH01oTHHx zZ~o5DDc(ln#XLMpR0HC@n!vRZN4)M=4-l^o@#6DxZC0baFFCcBc;hMchSPr}3j0n( zOI@&ssL8~e{2|xTD$>&JmCuNWJt(U3`eDw|ZA!0d=k3I6Ns^1qTz}U{%a21Y6Ym1? zj-6y*x=hsWp+|_fo~TzHb%=VNB#XXSo~U5b()`jx zO5qeyelWykm!ySeGhLop{+Pz0vbH4~0m}y2yV? z%LJm#A7v*=?9URu+nLJ+`_II>TRtvb>^u{r#m`J(kC^D$YZsw-O-XX@&1^(XB%LeQ za*lo>-ol6i#LG?8v)djgY7$9)|8q^E@)2+I%Qc9aLA-4($`Lh-sAiMzkk!~JrYisS z=M=E_P|S><9z>GZFDT~hl|zWSO6AgSZfm02ad{T*MO1f+*C4laqV`aFlfFtM>K;ix2%kWdfq1=o3@55T@e0-*O4J;p zcD(%zQK2MRaC|sX*w3jd?@aDQR5($y_jf1iA;l}Rye(1Km8mMb? zj4LyqsCrZ`t^Z;zIY{zHr4RAKNiv~sOQQA>wY6sgQP{buDit0?5cMO)`{B`ZL}9O~ znDb5PPgGrs_swl&x`1=T= z8dJQZVMd~w5_Nb}C{Y_pOR2p*h-yRmn;YJWDD2l2vx{AAh`LUan|Fp0^*KrAn#y*z zC!JT8EhpbCM!ZKgc$T-7;)T!P*~J0kts60ev~;C-@v(D=Do4EbQ+ck@jd+%3FOtr| zq~)CfbBWqX)Xa5E?I3FWKXZt;khEN#%Dwk=(z0LCjULn#l^$h1>8A&dEgVXz(sFwA3HadcAsgRx9=1}78d52R!K)elG z*t3e0PGdjrO(Tf6Y8aRGeBu>ozKv`-Nm>SOJxi3CBx9;16NPT`MCC2B`2 ze$psSl3hEkAW7`S7tfmyS5W@;5Vh#~0islr>^F4>QJsl*xYjPBo}fHzUjH#s6N!o& z`VvbL_3fTdiF!!!4z^iJ)Lr6j?X{OEd>x=Fzs-Dws3(b6to#C^c2nw$r>R8YTL4vw z-oBowN~H7R3!8{~isJ2FyqKs0L@nR@2~pU4FP==Nd_k0zbk1+IpQwdIB`tk}sJ;}h zMH081C6t1C=R@KhCTh)4E+u@8Al^I8+CaRgDPCCc2ShC*>bpC0iF%%>jg1Zw^#f^X zar-Tz9w*-MI}3?AN4A`5%e?bM#lP_`@mdo#Y2C|2RU#k!Y5aRc{Xo0|i58+hpcGcE zUQQIgsZf>j32zdG?;BL5Z@G_%GEwS1p4dv%38H@AwvMPAq-9vAcZiB7YDj{Ws3N4L z&BonC1yj5t`9CMB5mDizHWF2wB&!@=MpRFt`s8FPFX?>Yt$D=zi>Tjr{XnW$vaxp(WIL_J1zJEKD$O5tzf^=g%asQW~9el8nP z_#R3;+5GVsQFVy-Xi*8G@co&pywv#=>0Cy-Xdz_g*!y8A<3tA z-XaQLdWm(@MSl~ONW5nzeM^*?;$5D5pQt3_jfnY;s2Jjny>OhUPQ?4;x?vT-K9_ z+VFj8%HLR$Y+8rg!#JXpp81Jagd}(DC`(ih;_cg6lc+6}qla^A5!H<(OO4@n)R%aF z4tbkwxj|Iir67_VK-8P1RuXSN#XB&&B=PX2nX0UQvMy1jiTBm>!9-1^)Qgm5tKTPT z`6SlzJLzoNp$Vrz@$wm&hi^{Be0LnTRD5@;Do+*SQhJ&se|VhR*kF$LBKOIkPzvQf z&PO`&b)Bk&KBz<#zRnZtts_biHG<-uIaHgd=ZJcz3Adxtq~)zij}xy9QDuhKAZiCu z-RrR}M=1|21~wvIHlnOsxo%^KDs`_K@mdgdZ9x^H;)r_fUU{Ng67}#nmtZwYA?Jt& z#KU)YVs;qSjHu2e8Md(wQ6G`jv#Zx9sufXhZD$|6N|GS>~$&BIpTBI?S$mc-jkS}vRzN>o8gVUc1cY6wwB!=53kCdFH;jwEUY z@hX1CrHgOB#j|KZuD@!;`{k;EB=JSJc)D)D{#lQ-tnc1}c%_IMQnDXWrzqZu{m&6q zm#8AagNed-zG5xmY9vwd6mL;jN1{fNO`F(-cwDVCTbe-{#(zra)-2-va|2L zL%icV2a@DGqOM=&HWp7>IxTBWydySj$ zza%-g@D!q|QVM&nBoKu&5X7#Q3uB0Sj(8tG-NeL7K(TG_GqHMr+A^O!#E!C*6fQXYAo?u9qvk0UZOs`K7*)^M4hfYkEr?- z@55bFiRwbU|AM(kDNNMv>g=sJZ9`Rh7w=4xI0HjfVs~?IlR#Fl=sJ#gzY_Iq%nL-} z{0i}Q{9F`KuTy%*N^t8hNhw5}FcGgE#fu1;NYrOU-9H;g)Q=Qzfr)#mDa0GMg44@J zy#EF;^#t(-)#iGCpHi66b_r?eLzLx5_N-5dQhLrO-is9Prw%U?^%C*Q4Vz8Whm=Cq z=$SH2K}3DJkNxZpNfy5`jkJ72ylhR!619kU6$`M= zSBY2e6)W+cq15l4;2hyZ7x9LwKG)bvl3aC;J!Ba1n)Z2#;*}%ngJAaLhLpn8nQZ4H zPVdSDlKhsankuI-g5oup&nbLH)ag$alH_ShZ+Z3WH+~b^fh5Z(9i%7da+G>RJ>H$!l_YOXjVIm&l6>Vd@2!|i zywc^*5N|%kyH%wpQBM(XMJrx|=uYu|oy+g5DiW{eJl>o38O3Y=Ew2z{qmnn)YD{Ie zm?VqUU@zZCl0S-##&{yyPgGbO?|aHk@xDCMl4c%X5pVQ-et#53)S$||44Mt zr4Yot9K2TyC)9~uG)<>d3bjb`+*MwsT1t{%{Ir4MH6ki!UhcsRl)tq6p?I6}MiCF^{fYf3#dr^7d*bb^ z&F|PpQM_%cnIv(3pQ_}2jqA26N!BRAd&P26>PheOo00Xz`}6LbWM>U3LGy%NL|q}? z!wBxZPjUXD_?>BUqNbJQU2|uN+IW}8={XedROdlt%O&ESZ?c1Q;w(q;2E3}7>Immy zino>(R?*IfDUIAq&+448><`{W(xf-Rn_Q^%0 zWhqI%(ESyX#MzvppGaV6bP~pai z5OJ1mxG5|#d9nB`1gFG{bEyR@C%&FpoIERefH>9lU6H~|;zNuQD|5c?y*Xs+Z*TEkFKtMph{NKId>}U5A)O+2k*zAL!_B{(Wvq0xqV8(Q zB4>O@G%{b?fKPE?gU>2riYJAThLz5(EIoH|mbKEEl)9@SODvc#`eol*us~Xn1=+Lc zYL7!a>6Eg-N-G^ws=E@hs7I*cNhx?_LowMY8pKD2rbL4Q1DBN!YxQ-WXUYyB3o2Eg z>&^0c546?i7JQjyj;DWaR?O$6u-xbUFuo(z-5|4|#aQXoYgmwma_5;;dPA*?tgeyZ zX!=8ui_%P=8rDqT0OturdL`f@tE&W#c+wcts3(_{(v#1ot`Fvm)mlZvNNArU~SC)#io_Hx9$2ie?d2qU-#wa81Bpqww7*@J_ z2-&Qzy|(Loqdb<2>uaUpSdn)Z*R-9Db`!PI%}D-XiA8oqzAuw`(gzx76?=pz!q|Az z1mOqbBG!c1_+YyuG}b4d7%yY;q7_a*@u|z-k-c9!P1^2ni)GlH#6DwWJgP&G?>qSL#TK&7&o51;|poDZ9H>-3xo^cW1|caQL$qUv2=)>SO@(`)~IGB zaYx`h5y|{V{#RrRYN%CoF1@HTL5`)_c{xit`PTD((`EdVeu=wGl5N$Q%KKm!SzQxq zgDml^sB(QhvX$(jN+`Vi{NHmGl4?XKlYe@aJ zlGD{2gvm(ysxd1k8#ww34&rGKtaD%ui*xFGt#r*MQnM9SDs9cVC$!QHkp3}TMR-%! zBW0vCT7YwYJt-S~^XFXYH$hJfaA~f(I>JM;C)ONC921nJL{pS0kp@}qhYg3QZGLB^ z>paux;5^Bki>$89y(6nPoy>_@so1c@yLmJ{K`V3F($byE0DLL^+IFeIbef`ztgZs- zCJnGD*3}`dkS>x%-B4npOE=Wqn|2&6P4s=A9V0FAsDyj?+AnbIAX=(sL*W^)Xan*{ zXdJzqY$+w@s&F9#HBE7#G8ncEelFvOe4LJt50Mk~X0n_#+nY==OSgc%>7`dU*P5fJ ze9BEs!U@w(o}CE~H*=+%_}K;WT}eV>e3H0u0%=?6S|qfIDx6FA&nujt z-!z8@$4KTZY8!Ag=5kJAR=O$*saMcWU3>>ZC8Vj&k+Mz9mIsYgrHGZTsrvt>cu2ar zM}B0bJECA{XHhibK-riv?u*w6rbJ_dxR9_>;sOunF(%j~JUcYUEGeBWc;mA$wRW`6f%(&;op=OqcvR>SjCXE9r=aUWVbrL9@j*`+_uSn2Xxr2qeWdU->ZdggdS#@c*akNwEy zQQY&PH09Go=Jb}HTap=rI<@8u_nDT=Y0XP~I>%iry*euax7yO5PGA4hMhsa8I=X7vj33o`FM zc)(vNn_xPtq2khCQxtA_HAG-VbZl(=D6WkjUd|j%(Q)EQ9~&d_#KTV!xPuE-VVm)T zlOQ$(idT~{;lbj9sa~{{MbOk#SwpoW)XU2%6sNm?>@T4f-%btQ46^o;4 zxb$1d?Af|5*V1=ROh*ODRY$5^M-__OhQ%GnRGkK=>a?118ybu+Ac}TC*G^q}cMXaT z7t6$hWWz}3g^RuQQ^}T-^?^aGS8j~>ULLlMhf;Bh#_QCuZHd~e3g>2+ zLZZZn4Dp<&RQJE6P#YC8UPiK-hsz4KEdbf|Cm2U3iEmy+5>#R-lsIg&nir;~MC_gy z7kk@Gw3?4+a??y_8OP;?)N|6v(k`wX6+3dI{atcpDPrqixPx?k5oa}rYDyW$g&9R| zWV#~8s?&b}+S`s?F-Xp~8u$GQqcDAA=*!Dlzrl4%7ZSEB!ww5@Rf~C8c2{~qc zwrx?*WLT3SG&VL7V`H4bIF4UIQlFIZLBn9*dzBi_I4$;rCyi5 ze4DH-Z<~YItz>HsuI*NI&vAT`BzMkTWJ0zT1h;pY(IGLWxTGk@!GN0k5ABoJ;1u$j zuSxis)LqtUe&A2W^zLrMsMv!>lHlfe_d}*y|(Yw>v_049_8y7<8QLG+V;SwHU8RH zhwV!Y?&GdQ!ZtFy=y4iv?UGh=f8mB!~ zc8n&Uq%G(e$Zq&w$2B2s+Z~yF&7ZvGq4aS-@|KyhpYlN$c~NiI@Si`8DQ*3)G4z&o z=tpiK<>*NQ>QnKy%a(hZ~`yTf%IVAX?13c)v zq=(6B^FgkM_@5Kk_rGaD1K;^Zq)a;P9pzT@G2i)60k_xg8k44!OZr*+x}c!{nY7#g zT3WdO4Hv6@*V3BHq-~ol-A5|tuV1Uk%Je~xy~h74ZLKsZm6F4b4ErYB#l9=KgEDE` zC!X#V?0Pn&)%=+6d@q(icSmvE2W9j zmwYgIY ziJHa(rIVO=_LXbbI&z-{sh3atxxvX&i`M0-w(Ya2^{`Iyt>%IH)5;P*|JcXr-_-AC zS(5*4KF1(w#tNDYBDe$PNp4ZCe-jeinG2QNQnJN$r=_pZhFHf0h1WB1_Ug;^XwK`pZ8H zysx59Q(vjy_q7H|kH)yy_1Cipk5l%``O=&BuhXA=mbm#ypH}on{khKqCvTuX?^#mz zaX!s`9Uteun*Qlc7S#QC{as8Jq+Z>pd7rF5?^)vatMq$b7L@&cA3xOG_GzncslV*A zr0%cj_q{Br`wKqK{bl{>XF=}Q%hcru|E{ZbyffJ4T?oz&aK33!-ZS8Sc3PToTFC=X zT;@TJCFr!`TFviCX9*aC_v`OlvY>ts%G7P=0Jyywb1iGfRuGG3@upTsj(Aq{c>V62 zC7nsXK=Y4ZrNQ#(jC5O|9ev*HG5Wn9BBsz zS`C-<@zC?U{!SwcM*3js-?kZ<%j`g?@9XWD+}fk`SfQ#3sRpU^R8!s*6E8gj}~a1U5lR4Bt@j=S}AHg61hhdw|B@o4J4bd%K2#^+1xGwZSEd` z{#-HuZ9Xn1l7ZyUze|7irn|D5%LiaB?U6mDpRU5(lNI8p<{1KToarBcefFFHv^g{Y zeWP{&+8iE$Hb3;0KU>XL18`XW*H^`5@%|CyVV*tADx&XAfZU8p7 z;{j;%@&L5CXaM?iodE3X?gii@Y~uj*=cWN@^Tq&dgKYwEsvI1E{l<0a8@9WG-8Sb& zIo+xCxvY}ZM4fKoXfIny7Hk@{q;dlP$oPRj`A7T(LWSoc<0Ur@v78U@Dye?SL0|Ytwb%;&yW%drLpvosiXBMargoU1?P* zm<1h&uGVTbpObS|y$^H3jW@PITq73X!_WmsH#LXh^rHmQ zB9$_98z<(=bgF8n6Bch2#~Q@Ouzik%`SqXQy>RTI{QtLvH=)XTgMYj34-IKK&(-1#V(B zn|(YA6_EMQg3Re`13&wCm`IfAr_yVLge98BP`@l6;-<(Fvwef$*300TBR)3D5D^tS z)({&fBi-_GCO7#(Q`@P(46>lJxhqrm74;Zd)ZWp(jJG)sJIDY#uV0*K>vdnc?ucKSCH340Y z)X^JmvRwTENXh&+5jP^QSY?tNgdevC8)1zZNd^*$hwf zJRL_br`19Bb#qn!>mZi|Y)5rCU@gCxp~1zM9oW-u{v0@6?;-nuJ?xw zwK%K!alfyFa~T?3#08%jito#o-8x_`uO#0gc{f$}WtsmV%iQ*Omr9=$Wq&UDe>^dL zkfBEI%i_Enu)}Kp3^hKh+2q!-2F|d2B491g5wPtfURv(ynn)4prT#lX3HJLbRHF>} zyVYDgLp_Brd*_}3Yk6KT+sj`vp6#f$w0dQ?oiW76KGkjB)igpai*Tq z`#r52?PFgYtKu$iyj=&4-vX_SdIee!@m-*ea-VwZg|=gOT$WHY=1a~Vm;u-QHqiQ` z*@5P|$${26JSLYRZEp$Fn(e!NmGF0<<@J7`8GOa9BTTQG7-@_##)m}VI}lx$B00-z z9*>{Ofany@YOdo!sixQyeNE=jo0fz~>A1)9MHq`{ugwF}9Z zw)UFV!)(fP9sZE9_1tBY;J8lKYEJathppzqGF96?AeU#nRGz>7zguf2NeexF@jg}- zi>L9%$#{C|!R4N(B7R?#Ib_!KZ=Le2@GR9*|H{(gG*Pr=_)erWFZsA@K=D1HHrH^LPe(kXJF@JD;8OiF5!x z%S<*^mK|=&F{O8Dt+w!!!K5`pVQt3xs8oX1d z`hT#nm9)@y@I#tiQEYs)JWT7VEJHm#nB$bk9WpUp#prYlMkg81lg-U;FUT!=W`6E* zG~eWFY$|e#XElEyizi?V9wYmefH8Qcbcs}sjB{ITwogw|Yk;ojQd%?*Ka&;jDk|Op z%A)hVC36C;ncVQ3qWe}p;suQV-wd=K=4olL@0-ajzp-Sq^nXtmAuYD`6PNBxV_?dp z-L3^?$KvmH4hgglu%>iHj|*1wuGLiDaXCAI)x5%Q2F}Z}&-HzeP|aKa_P!c^@|(=p z^PBFll(ZyZ2H{ixf4`|4XkFaT($W8qU0l51c=V`1tF2%!J=$uH3bd@gCk^)f@KZa` z9=@Xkt*&ne+T&dZFDHiLj4iqT>U+0t;x`R!L!eD8#>=Afc+mVmKN#Nhn<_r-H%m!x z`_1g*j4Tr`mcFg#Xc&Nj-V>($;Tk=eplm@}l3=&R)Oq*x7z#$v(faelr4=^Ba$??l*q&z5n=$-;~K%zbTWveq%{Tzp`)I6SDi3 zS5J0PxW%=aYx+&^Tgz`ON${Jo@mIgGq(PR}j`o7}>weRxl=Q46+dg}6*|q7kY0q_M zxksDO+xd-0eC9Wn{OC7+GDVijrkIg*ET!$6$W*+^ zS=MUKCd1>a_r7<7a=xvHhQ95R9{D!;Z+)Bm2;bKI zXMWQNPWyahYT{c@sN>u2@D1N4Us^6{`Die>A@^JODESROcm5iF(-FMuTSsgsdja21 z3+nlHXn4Z6-Qi~6x8&B9GscMJwMn%5}a?eqUO{q~o1R zXh;Gr09(q*C1MJ1pd3AW2tks&Suf4ln+0{X2Kb=*0=d%~ISN1h* z?Gzjvmlzxwn~-P>PmGO?3JVE~GzRw@pBNb%6Wk=IQNy4{O@qfZZyFqB3Js2X=NgS0jtPkuf8zx&(P#(_2_I<;8fi+5 zObQjDHJWs-(V~m^pKR$Hnq-O!4-N{C4NHtS8WVzJLKEU5O)=wwNv%PsH5g;U4T-V* z6CYxV5ickVai%yUj=nUQVhpA+;|)!k8yW`1#f(h0wAO7;SZq{?t2tJ4S6NY|oL2k| z^s2)cpZZ%7J{iURoO(;9l=B4X2%dbmFjwXxos%4$mU1;`gDG9dYMw8v-S*9w%PO(P z2{BH`zUw|!#`*gp`?+fACFFFpxbB2pT8|fp;pyEv;dbJ$MQ>7$Q;{uAQtvrjPWN*; z5ZPiowK=`QGew7p28zq*^k&IzM~5ZV2Gdff;VBQY)oqL0@p$$N_0r3=JkeEmbwt^Z z4Aj1COT+zB^a*@>!D*G8HNw~2^~ z9cu_Tni35yGH3Ap%(Le(vFkuCrFe2olFQ(t+1ojWJ=dPqagmJ0lf7?l4x-(4q>`q~ z0OiTi=1wDrC()exj}}_}b}DAN_6K?!mM4YiK7x8;ooj3Jq{^M=6rRL$p7dz;!>N>` zZ9wuQcdi44CuJ&(aOq21dr;#k#x+m8%;^MTkD@t-Ur(~>K2ynr?pAxCOr=uoLyx7c z2L-G#9nzdSq>`w8LT5EE*7q>rR4F9Zft18PkG*}XlNU&yjRgY<5o14R#?rs02|J90R)qtWO#BuE<4MTd7`$si=b5MoFa{+SSGiZaHFm4w9j zSc7dH!D_zl_F<~V(}dI9*=nvObC$+~y4xsbH7}Jm>&#?&d$Sx5C{}YL4^^jAAx<5N zK~8XOx4yX)jH3!u3=w)WnF$@V)%>HZ4cnS>Dn{ByT%ERA&9BR1)zr%mfKH>o)qE*^ zuW)O6R`b`gfYaz!9lf>H{EZaP*wjBG>t>c_I@(;kF(Jm7XlT^Z(5Q*M_fuqXrj=Fu zux~Zrl5H}LHs&_nwwl|^B&ukQzFcGWt6fIPqO{#s;Nmqbn{r^bn*Wq$*$K2nJ|+Ds4F|E0cvf?BDXpoV9mM6qFjETPtV~q1X*p`w z`H@J|K8L9N-AJa`H%C@b8Xd2*ZJCnhC0QovtfM>TxcVF26{)(1<8?(NLt-S}l_Z$L z61;hr(%m~%TCYK-%MPcDLuC^~bZod$yxa2PEl+39)o59@L6+H5>5MkUaUs!hQARPp z6VDHnv_W{~m>A=@M7&5!jExVAG&E^!dl1MJb&YJ#6=F1yW>(-_r?e(0J|QvLQiRzf zlT6{p1P&_4K~dsT!x$%LAg0y)m(=TDm69x7#XlYSZ&_yj({UO1A~!T_;dnL>el*@7 z-i5}8#E&;LvOT(4GEt|)c~ohze->w`tn8=QQSs8Zp@E7PFJ(icV#7wI+d-sk*_PfJ zP^a-$*=lYo2aD0^RD0)G@z7@qO%h##>?k_N8^gtlcIS}za6`BFkfd-!7h|F^4Da#{ zY4KXvx)bq;E32@3I*F(37!2b^hQ^B5@??vlX)D`0LxwepIXADHWK>hLCYh$GsnldO z|01W){_a&_vSPb=Ua=uj#&LN1fukE*ijl`0C-y3MQ5!CbnlzJ|tY(vJnVr(H4I3&_ zuB{ow;#$*2_6o@(n~#5XLT^dyx;c7{#A%uh7BAE$|v2Z}U1o+#-e!_uh+ zjkZruh=v5?$Y^6sVhD9OW5tdc+TM}`-)UkWd9p%#W82D?B}=rovdy-#LVF{0zSN?! zLVMGO_J+~K`yN0pe^3WNa|qaLHUAwTecx=^=z4kX*x{y_*fEVU^NtG%505e$9Ip0c zCTO$0e6}W8@|a@6qLRXm;mPJ>`Lks+pA>&)B@alhZGM-`H@BwxGyhGUrTG^Q?9V@C zIq)48IYISep2AdK{+Z7r3;1UU$9s=?Rha6-)J*=F#Xnp5=SvnT#?*4wl9!f7%rA1_ zQ4XxhKSwx1dFH*wfw3G|l>^`8zzh6yfCJAnRg=OgAVX6hA=_dHYoFt09C2Il2s1Ha+G>Ks^uf5P~uIE##8ktqI& zVBSdn$;E+(IE76d_zwSMI%94xt=Ojni#Uh6|Fh5HUD^U~ zYlB$zC;W4pf41{aUyk>Pe{yoN_c__&9JqufAM#Ir78%YW3;E|bOFqZca+X}dKb1K! zlz+~!=XXE!9NrD z=QS32$nj>f&WjxQ9|yK&$==K>%G5O$`HDq;W9nW0v9L%!rV8>;Vg4D&ya7!8#X1l2 z&oJfY`{N}{Bw*&3UHYfd!Td9ie~c_ymZ?>&`UwA6Ij|!CtYpd8 znYWIAMlx?BQw^AkW2z2Q)j0L>9KAYIlbKq@BKO(q+Z?YY2VP^53rt<+pY{Cn9`p8d zyo3BRo_YP4_bdN&;lK(^J`ZG0$e?mF1Hvfe4 z&qL;2Wu5;r^)mBzGF6lfe1!u~@J}=T$<9Atuw*^9B?kwFbKpMyDbHGdWZpXdsmr|M z{Ii^YiZZVbN4Uq9HD+E@{@KVPZ8*JPmb}h^pL1Y)mMq59R^}aGsw?x#G1ZN!!7Q?q ze|GTCLKd0MBK?@E!ar5{=NubYh((rh;Me>!g0&1~>Ht&4Su%pD`AnT;5inOx^t-b5{W#SJAaYOzeQ#lvQ^N%m&5o35k+#hu{6-Q9|7ad$6Jq(ISP#q~e$JsX*OH$B;&KKx&v zCwtzp`<{_IGk26lSGHWqrbk(v#FmrTG?5t&VKIrtU+lJ#O>c2Z%w*Fe9Q7RUBCHvP`xQw}$TO`o&rTsE!cr(DnC z3byRcPl>U~Vz)S(LTsAArs2#!lEwDy_9mM;v6mxQWUz3Igs5BV$qeobYt-#i&vQ;jYWvXjx1_fjAJo?19Ii^0rZ!zR8)(%PNF@lA`?7JuL4x5f-(~s=sW;UJ3BEnwcEIwoL1pB;$z3j@CU$8itEuUmB$FX>d#h2`5 zC5yk=vL6TFYdx%k*t9i^fh>Mz@ehaNOAIW&LBQ(8mVH=U!al3`(R^gPHIUubCfwMx zlufxT_F%CcyG>?OF$+F=*y3}4ttdbG8y0-rtaUku>&yYhv)jWgK4Q1S*p$YmiEO%! z1I%G@AB&UO?KC#s!2$MS%g5OAc{VL%@grNl$fh&dbRnA-bMXCGT+EjHv#AG*ksRP3 z7B90nklh|;@ivDW!)`;^bR`Qup2Xr~Lagi9a%&EE3!BDsxS?!0kxi@Etpl6t*z_)Y z$zjt@Y`TU8@36LxWVhYfvIhsB!j>!8@&q=W!fvzJG>zSQv*}@W;|)QHCGUyl>4|0M ziG|kI^X${d!pp&jvx%4dCRXw$7Uw1w(psg=_YnuUoCB<5(+lkOB8zNxiKf~&PBS$xWtv)Ic~{OIf0@=Lb7 zo=u0d_}LbN>$~tgnsW(6Lwx}|@CucN`fhA=PhHV)&uL8e3qQGmO~0{e0F$4?mLIUT zi`mql#US=_5(g+_%hhapgH5B^%UBj(cH^02%f}`^i{Ts~z~U1YIUMd>_OhNWN3ytp zEw5)UK{kzH!Sgd#Hv0^-<#FtDiEWD47e@RMzqh>98(ivL9&I>{<{R*3XrYa^Fw$e) zL_V$AFrrbm&}FplgdIBE7CP7#T3zcbda#97)k4R`!uN@V#>9FOr~(ep0%4TJLLbFK z2hPHGniT`Wpo)cdz`_uUh5m$v4|NM4Qx-b=7P_t0ru6jsE_B?0uR7?b#bkU; zL8*OWLc>aWC+Kj10G)6^4sOSs8h^}-MY)OTsMl#asy?GU;EOe!)zCaIwX(sUmm={S z5tI0eSV`=~qB~pOOnQ?g=A}p+#->~rr?8h(S?t5%Ze=$Qo93|T7#7E}xSPcj?4<*n z&gZ9KUW$lLX3JOEavK(}aDbldb{SiS*|Hy7Ud5Iluy}?o-)GY{Z2FW&|o5_}#mm)8}vgPkAwql?4?BztZ#Jm*w{E^-IvfF-%r?9w--B8z&&kH!*!EE}2 z-L_>@DZ61_ihRDvmIK)mFEd&CSYTd?Ox5fq$O82xSyr;hV9V#2;U>1cnME3lb?gQ8 z4u!jjeWErXQw^I?9g%4|d%?UEnYL$3%uA8!DmI#Sv`Ti3R4RDBKMk z?nV};vd=6w-N!!9WPy1p3b2~JJja&#>~nv%+{ofr7Jsn#lg0h)^944&#Nt%8{FenP zNMgXe6p6vi;AinDdwGJz(=6WQ06VeRg~e?g;7T@~%|5SY(o`n zz`PVGu?w3zvX^67U|x#cy0B?a7CW-QycAW@xl6;5a$h(eicy6J}2qYZmz#iRC&6+P-+=KhYw11#q96aQg>87uPnJ1cYmTb|86|6+j|EAnyxdpU!} z>+JI&Hl5EtFJjS`Ez4NE!#>xr+qG;O#^Od6S0%zR(JLHo3A;*GcyY0hn+p*;^7F8@>V=tJo zB3jH?k$8jyl(XBV>~jYe9(KEe-L7VF7F(kCNx`$&XPDhEV?~yqvnhkch3s=0``nRD zhp^iNEZ%3!wJd5`T+Lz+_A;GC23uybz>F2~_2fq{U~vzN4eaH9Ha*M1zh%qsSlrG6 zGgkDJC)sBSTVlqFEKgw5-YiaJ;b))S*>nj%`V|(Zvt@4<7qidH+3gw@mF#u{n})He zmQ6$0gc&PhU(UfXV@0NwY`TQKV8)6pzvFP@*z$As@&TJZVR0>sTiFdWRum53C17B; zdF=KLi^*)+i%t8oIGu_5vY5?Y`X{`woT6jG39}pY&n=k zIg7v84Kr5s%)i-m9=konCd^oo+XZa-28-=kY{lYn_BoVwX~&l3Z21%m%vjM=K4Q0P zSZvE~ud_IxMG3oM#)<-9#)`yfb{os$2KKTG^I^t{ynMly_%I~XZtSxIo9Wg~d-PVAGfUFnpv_IDA}^_?AsKvFRZ; zZDi4vEmyMXQ5Gk$#uWQIdnOk(jDyKQ6>W~_*4CYv7N;23@&%RcOL7P}R&z>F2S zoz6bbU@@27&gK9wvA~QK`CPTqTnC0>2?l)87s2H zFawDI2Y-V_JN6P`(Vo4GV7E~$I3YD5@+!liznFU z9qeUSw)}#{$!z%~dpVB9Q!Kt@FDqI6&6fQ*0A{R6`GeTBHH(2PerE9xhr^5&`NWJB ziC%2khs7oAvx*;$87uNKklofM+}N~~O}Q-gV6h#$O=eRu3(Q#2Q!ryiBFc~ch6QG< z$ntUy*O>#1XSau0e8g^tu_=vB6WMed2bja+J{Bjl+i7gNg9GfvmXERJ^K4qk;zzc8 zkxgf^=|VOw=HUCWxR@>XXHyRrBRRl7EM8`DAiF)x;%yE$hTVp+=}H!uv7#ivj1`IN z*m7$QcMF@wbGV^wIgw4P*sTMb>e%!yd&yzbPHeh{1!k;>;YfDdoh^HC@F{G$f-O&A z(<$sWi%rwmtv8zX*RlySR^;|6o8IC8JFr;8 z;&^sj$0p2JQ2@+XwLUVl`&KPRX4=un%%>c97C-7JR^d9f{E{uNXVc*eaNER2c<@M|($fhwYFeyb0+3YjSmdCNrCAKMEpA`$lXb(KbyzJdC z^+hyCVV_PtJVYD$qYd?$whx+$7;>aNGL{?hE{%rcblg@$)dTf8zA8GIIpPmB97sc5 zy)kpKkT%eh_xfC)HM}CCE?7Fw}w$pdAzpSQ0DbjNBkA=6R*#Xc`M=6q;9;-o-MKdBqmne`iEfE z1J=JJNY{3KNY`F;q)QrYbgb~kg9LnG90;(CY;dSbLTf9Vd|F-ThcvcwNFuHBNYYaZ zSQN2n&!U4Z;#Mb;R%iMlWqzYf5R@ru(!)(ZfS#hE|B7;5pf3(Y(@NuXyj8O3k5uyS zCG+R6@JGU=LNHKmCjEFNcXv7IOUfc)Z#jx;TB&_!nwk-&8L1#OT>bdZyv zXGJ_@pP72#s*(K&ZkWq4+m; zN8NS8Af*;3%Xw1RmYKDud~ld$et#u>PdTqUn!PV~d8<%#F`OvlLmEXh{=xItlu9EYjQxbopVr+vD&nt{>{zlYH2qmL^57hC`c+AbC9(o-5jw$i$a%8v ze}+fb{d-j|W0?W!@t9*BB}&$1a!wZoLUrC?ps}NAl<_`Vdby0}+pTO`X<5M0&J0y@ zUm+)W0i7;o4|KW;+c+gT7F!F2t+S8Lo%dset<~h8qSOLwy#*~YD_mu6zLNDWxy*G~ z9P!rD6%`&jE3(E6u0QQ~Z&#Fdb`Y zycZEuKdX|=H2NK2QO%-;Mc5XJ(eEW>AU&>>_2|AgUEmmw3|mm^_XR2fKF=f?jK_@& zW=b7S4{SLQo~kC)d0PUOKwfNQP@n4YpXBeO#_Xi)VytgEU(0SyW5=W*p7+eWqU4Eo7#$ zdK-&XEbe4+w=EK7^svr$Wc3R9M(_KaG(L+5L2d@n2bo_RwJg9YpG{hzC7XO&JPw zQY!G1oDaowsa@sLINP4EZaIO`Psx9e{5qshov@b?=iy4u^W;R&Yo!~pi;^0<)r9_2 z;WX;WRC%bt`J7GjbR|1B$w}-~z);#k<C3)p0)7@U!k{zTiyb*7(X(^1cl%yn3w|qF=6Xx@mQn{$D8a%|% z@4|$BScFpF`QU?Hz7IZ_HZ#$TPkj?j(^``@^dagqaGy@YocgT9(wsRwa()ic##<~~ zX~Uy<*-D}_^njcvd6Q}Dvd7&OS*6SoY=ISC$idY344XysS39GpzV3+gqn=6eXe?Y~ zcS;hk2j!VrQ><1hc4-?b=*3mbJ&Qttisj~~!wX94)8y>vFg38uGu0cQ@=)nnNZ;Gh zosELHMybNzn|x91RaNv!$)9diOIAc^Xe$!;#o`gOm$+W3$Az*Ud2>U458ew$0obUd zeoW4V{AvCe8Y;|a8p)s5U)LpjS1x?T6XUcb57|G_zG=hYFI4isC-Zk$5T`B~O)YsQ z`m5+$fz}EdD)dmQfIaR)#gNA>Bfe1#>Oo5CkLB3sQcc9~oxwa-$-H|TnI}Xd-sJ}K z1SK<04`@BPFQ9iRvA(k9!peNKZ*f$Bj&^Xbgf@0NSj_EU!e3(xXkAIqOr`O&ZlC~j ztQ+lLd$r~qV$n2v|H_q%JqCadp%)d5k>Y-3ioYh;FCC~4=&wcZ(=(lV!>H^H6(UL% zK9h@E=h?G{*-ad38r1mS5Z$X`XmPkwi;p*%4XqTtVidim3tJt<@3e$QcJb@j)D7dy zT?Y@@f<>^Nm^4N3PB{mP8^44CE8HIJ|iHjPj>4?>y6|2d^XOJ#*ROb+{~e}z|YO5!>@;|+XU zsR9mtX}$8dvm<-5zs@yh`l*ulGr1TP%$`MYuBAyO=QsEdO7aio`ZupB-OVijM@hX~ z8?qc7jK;y|Bt4D%0lFUMOgZUurr`={y5`O(Yu%K@I6X)xYnlF<+L+0@waL20rXhZn zb0U9A(2s%NrGcpVZ8Of)$r?sxnt~X?Vib!pEVj2rVhUnMGSC#n?=p8b)x0%f$Ev9* z6ujl+L#n)6$pt^7CJ?PMvVFdiv|cW61++bZmWYNcVm01n26?HH{6smWa~DQDG|xkq zxEsttB{NRI5=wizf4Nz%mMb}bl=C+?d6)J$C39anlXI&urc3XVS-j3tGVdod7tixX zycJ&G=w$hPnUeo;nLpcCQ%mb`%$DS4CGTBwUT3v4K9%1=z=*kEJp0^=)a*PKUj`_Mx{S!F0A`lN&1JJ)A@G0nPg?%w@U792kbZ1LvCHaeTdguGXwX~woUAX%z zxd+NAo{yQ}Kr|Nc(KJcRiP#ZJ?yY6++=?)5o(P7+wFdL9N@kzToDp%p(leB#IHyu5 zW4V)RlU1L4E19e10+y3>Ign3D9BczI-sjq2+^k4ymBbZt2InOj=#XPy%1R}5rA(bc z%PP!Q=_Dm-hMdrOsK3hM6|^16c$dyqQa>lRRN0GSGd zw<~FHmT9vW(55%%;O)ao-ZYsvW1=@|M)r9n>AJQQD=N!LIw9{Usi(@+`Ag}T3fgAn zY92mQa$h7D>D+~}WHt4VO6DEpT+Rv5mL`ADk<pEYd zHgLxx#O$}{M~v6GyOMjlT+Fh)G%DttfZImNi_@cp&Oqh_7wZ@$>-KU==g_p1`_za% zl*Bk5TZnFfz2v0vjF^`F%-KrvtK?W0E{yxCX(@k_Z`b{l>?gFLge4mVt5otnB3C8u z1|y~6{}vngT_x+49*vo+IvPw}tP{yh1HLD-IEBS& zEY7e+V!-z-GSGnU5po9P*I?=?6s`$4KCLdNN3t!|1C;doMtb) z=Ee4G8*S629eGh_C+Ptt{|%WUe|9Jw!nSau*gd1QvwZOyXVLmjNqe7MqT4qPN>MdV!xfIz6MrccI8#<2-Rt3(>4K==8}U^kxgBdY3MKroX1H2$&O`sL8%5VEfN~cjHusHwAUy}2g}V=HZ86x^9IdUV!e{rFY~6? zdCk$@jY`f(ku*dMSj6fQ?=Nqe{)<)X$R zNW|GO@^-h9{$lwx>NKH_w({XbVh`=4OLlb3<4PrPZKBW(DxMdp^0Ev8I1Hds1GkG?ncu|6X+4F-SC;!74^v)EvZ#9;7u zWT3&|W3xrx+`Vy1Pt-Y2{x?0KbUaU>2IsXJMImpnj=qZ= z@#2YeRxlm9;#uI2xe~ssl7CN`KWi2(e0L0;4OG(ZDAQ&qqHQGiC?zj0J{5913+uTY z>uq*Z(k_%M-R$W}2FmtS^4=@+c5HbT*1SlVHu9U39{VVD_)gZLph*X3z2aArKOmDE z2{7Nk)OE^6M5)7ExvY0Wo$8^RLa4c;z5AYuptsWOK_9ME;vZRwEPKG#q^(!d;yz&E zeaoLf$6@o!6B1KBx z^X1~5w~$VSqxFRWpBd$zO6rSb>SCT}!zoer(I-Y#Hdx8uS5ETQrWm(ZQkS)Xy6Hp! zGu0<5so#+cIK9?(XPk~>G!lHSl6sAt;klFj{#wsuy2Zm_K0wKQtsLpXDfXHebW~_o z*hMY%Uht-!nP#frprl?R=X=qVNF*Fde$vQ2O8TK~Nc{!zG7ql% z!-qeed{^%5q&}h4VX&-2{sj6cNj7ovs*?L2Ir%fOC&JA150tENnKh5f8?DoE9iR5K zlKN7)s29u#1<*-!ch`PXk{=~kF~x~7y`;IFxvj3-c7GeveFiP6_S@GY8MSK%C3U_` z-NRMCdm4v+4ORLoRT(9}Z+UdAYsjg4>O-# zn6_0K{@QqHsq?V*KV{W2e8GU($C_noWlbP64K`0=F@?o67Bg&-7;N5?3^dq0Lnh7g zg+o5CIn=u^g>E_0oGR^$^4McOE&9M+tXKtNl)efj_cw9{R7g>d(lN8N^u$>VqDuCg zWcCjBQg3_JOVR{5LaD;{a-J7dgloJtv{{Qb%9{o56eam$xdzUP_-p-+0(XIucDkJG zS#{L4aCGIbRnqp7lRB%;?<;p~EWJ}n`;#2o4C+&uA5D)cNsp9CyVQ8;q>D|j>v~D4 z#+|Yn`OpAY4U#%W)$*Q_`)HXvo9>s2IWN5YLdm<8+@SWR&sFNpp;p1In?@e^%|ms5 zR%&yA{E8R&m(h8FxPvF)_>65gRM)c1ld~YxodLy4)`c=_UMm%9FD3PJa%wk~cjrRV zAxiE}arR_mF4+57Qda+Bfsa>N(%&ANo@81qeeg2g7>Cp7LwSS>H`Gd9D*H zZ&d2@jr>KEP1mngd27x0{$3?-gPaas$}qu76|XNst5;}md?*&7GlGno_erH1QMpWH zMyVk%KjmIivcBAg$kPsW8lm50fb1w8pj+-YOaIv>uX{XuGl#Kf%Y`AGc7Pji z;&rAj*2QF|QS3`uT+ZT37FXLMF^YXH8E6!{L{5W@U^Hef=Ddr-wj9GwmGpDD*kS0r zZj`wtK7$vo*dzH=c}APOjnW%WzGzgWFv9gD@luG(oDP2Fj#vlSr^DzTEHzN zonGb*nU~CMt0bQ%(ay{q22Y;Q*;^DlCxY}Zwz&AMu`lJ;4dwxpc;rBygWpFYv3 zj5##eOR2&Ba(;J7Ot)3h<=5D5PQxayYaI_#sGRV!JylaoJ-3OmK$ zc*mA0X@|+QCCKVAl-zt#4_ypzXmG4jgDP2rbXv4%aGt5;d`&KCS=dD9*kymIlD0q| zg3a* z*OjD~%4OPqt46i@R(+(@U;g>&XNna{d$dV_4V3CsXbP>QOi7&~ zQ@2}UcFe*`$_wR!o+K-MRnGTcam+mxK|%W0p3UP?IR*pBy*l6b95 zoXd05&UJ6kDVb|!=5CJ4EP2cQwo;L+WkoXG6Z4-cS@)1jS+V`GOQk*8nYuri{99~D zc)F}tZlxb<(_(&ej5cG0*@OC>G^ByyKUw_E;$Ie9k>3Lw5(C5OWT1iJ3^^a#+fxIH zrAam6a`Q{HM5#cgtN>knMw9X(uVXD#A0_i^@;Gr(fQae3+{DT(qxKo9r0*%WHaW=d zC~fjEh{q|37s$k&?JTELQK|Cx<4En0mnJ6-Ev6{7xJTBaW7C`z&iA2-IcM3Muhe0K zT=qKHI@Ct|K6?Ppr9!Dvh5O}X=x)FH5kFlv6QSMNxHQ5Sk3^kYI)h40o|WsMi~yZ7 zZj^%MO44uT9O!E2fW0m#@fs#63CAh*_)gX%)4eq5EG6shGHW(2FD`e?h+d}TeP6Em z`qa{$$>{B2nVMbqqb8*KpvGSlcHC=wvr?TW<#!;j(n~vPu{^@;e&4U8E|GJfOH&)r zyhhS_gUQoMHL~SzOpMm~s?tiU>C73&aW8Ku*-wxYA=iEhUA>QwmCSp~%!M{{3>Scw z2h1kuTP6F6GJB6`ycWlJ*@eG0==D)E#Pg`;=h&Z0Rs8ZRP-G{B-6oeg@21Kbsp|!H zms4WvL^T|y#WEG~5UrD08u8ZBf;D@J0_oyv8#^ntx!___B zTS zE0rqTASXpWjZ@K_w7YX~l9GFv9Q__m(QnL(M1$ct7X4hMDz$Pll%P=3cN%>cBnpO+ z5mzZS7$PS|FZ)BKEj`BDmC6i|`%Ae<4m(qfWO!J~yj-r5@*8VJnpZWrpI34Zlw;le zI+pvBy^ilFRahxUpTF8^0~apRp(Dlo&PlM(lsa4@m&78wB-&M^YbE`UO8VdBk0;tn zn&^q@Xk5m?uR}B9uwfRo27_#`=$ta2iqjVj{adIBy1frNgaIEI&t|b0kE`T}c zkOk?IZ6n6pD2YFiW8Bm3BJ;(Xbcs^y9pf=dT|SX@DQs#K>3C2xCH7FVUn{fcR#Ec1 zPlugtGH2h0~M}v3hrPnyh`kPAXzA|-YrMITWYqW{$l&rJmGM7!$c33)K@P4P{?Js9{uFvbM zq7q(V)^~p?nfH~`85efaD4h}E+|jzKeu13OHm%p(w$?>S+gYX^(p7sJq!6siYnu7ryMEf0^rgpYclGw`ATddfA*sZ>Ey=HJKLgxa+#X#Y)~c+rV2J zrf&>KkEUG7yPaIJ=$hCF-I+x#seJ;Q@un|P(sz@;@jKJ(Z-lmBq?IO){KSrBb7tf) zr4~!%#4ilupep;$ALjyvla=fha<$U|=ls!>gS}NZNk8U1r3#nH36N3dkD1Ns)k@Om z<#=b+_-RF&*|@Ay(!M0q=GxtsK&ZmJ>U*`4`Fr^bri5-*57*LHLWK5((0;Q@bB5ss zr3PEcZ+me?I8K)@(D1T9*4P_`;EhFYK={s=JL! z;-BOa(A^v5bJ-I83n~kV;Wa~(v@yCa*4=VR=-zUKz4go}RBG~zoF+RY{g|NvCrm}s zwbJ%?HD6+$_`Y_}P4-Z#xvkt%<=PzsSA{i5$vjrhsvJ7e$G%$9C?jK)#D~bQN&BW5 zLCOu+kj4b10$<57&kDG|^X4dNGiBQBa({)F4vaI>dw(VGp>lc`HMbA0BT=iA^m%f$ zThP<$c(ZMaE9sAxW8WoAN7i6@IyRqBhtMB%&%hp~RO47#ja<4kHx!Nsg8?J^Pg63F zlxvtoKd|vU7uR^!MM@QZmWx16O}NhQr7=W8F?> z8s@%(#a%4!VR4@=62sgNkb#D|*ULS`d~Yo1_u@Ko$NuzZ=@BhQxl`pHFLP&Oii7q` z7#Z-El6RV%^I3K71KU1P(sq_;H^ zZzcN=a)xKoNh;1A@p)r)<*cWi@VWNqrqB7g+f~W@sQgOjS4P6|#P_z5)dQ8>zsiYS z7#!W&hyExfd#N1r_O)@UQ@p`&h{nxbwd`(61@@AoUreVX;;IeIUR8vH=0NtIO8(XjO-m#g!vDtA48zLNHDIpXQgyCbeqa-JvWG4^WHdO?~QiiBweWz@cK z(b03iL#f6?a?}fHcFI>x{O%<(k0{wol+&OB_u`%R6;KtK%1m4|6EDCy-b^reT=-J$81M_QgUx4a~IKB&vao67V5jclD67j*LQln z4dp#JszXo=Vzwa++tjn(VX-O|0?%XGb7>HPG%{;N69)`&h&iR zgiD=8+x2h zJwh(!&D@SN(|%KOf6<2Io<)~XIMxSd?qKxLw%Bm;V{$fR&GIgHUJBpMRL3eLGYu#g zvnXNFkws@)BnFhbl7R-4caw{Ky5%+Nwyh~>%Yo!nIXlQv&BgpF?HX}h{V`g}e7BtE zooQ(_CU7>fZDx0+7SG7>PjYGYEG6p{Ij6JcQ{@sikG0uXN!vq?Y=O7joBUMl3MKhe zInIL;`At2=w(qBoD)ri1E{DAndbME_%MnU#9+I``l+dPWJC$pH_bEyx9+Z{nkWeDA zkHe+H1xgjpkc(>WWN*yt!Eyql4Zc>%e3V>HyCx!UA3M<6Q9ySp^_VB8K=w2~ThWOB zqe@R8?5w~Ma?> zn*)`^Z^}h2YqGr^(P&>RC9Nf=bRKs?U6+V2RZ@47KXD6aYc@?sBsn$a7$y1Za=i1W z@JcmYYhk4M8A|TXa>U!)3uCE8!M;8iXj(lUcw)Im5Z&WIgDJxNwNCjTg zY|atftE8`!>AN>}YOoPF>a(}ABq@qdDmBTIHOZ)RUOoGolGKvxxe|M%p>dAJb?51a zN(~Cy5N%h<|3*prrCiIlZ}~alI>qdFr2;Wof&2-y6}`@GVa(1{);L`^?l3vU+fz4= z?v)LCDuUsq9@^Am)H@xO3VbU^zBrNkNe|QWDEV)a6M&8i!)l_&H{XcAdR*gip5ODtN@v5aJ!mC4T~^~CALTmZb!*LgWD&`xser% z`>Gv>#vMtaTaIt1N;^r8cb6)fl%`y5G266%|pE^;UN&)%Z&;0omSiD@+Ib8j1dxl6RvV z{SI`$DxE^Z`?Zslx|fwIyd@82xvr0RU&%RBj&=shnvvFDDoG!aE0>JgaM&C&_(e(j zww${8)m7MwjXNRDJ;Lcb>8iCpa-r^4W6zM&H7QtPMw=2seme5ZxhtZ*QjuA0$nI#& zk=?zOqy;i*Q7l3SEO}$Nsl|Ca&9+MVcjS!EN!o_)s3bmJF6JGYYLgHaq_~>#$x0Q@ zkX7i~bmNnK?NrkxImR2mmr{?pauLX{@h(H{8V)*ED;%WcK3jhIn)gQ}>C;pz`CpRx z>41Pr>dE1h{A5@4EK_RmvHS*PR7V_VkQ}QdT_k6D`^25Bm=B>Ll(5;#oT*gcOj!Xs zkDkh0JcLr`Sf6vLlKo(rJ+aubhR&tHr39{*|0bmhAIb$UFBqpy1YV!>VwC%o)cxhy z7e|9s+R=SqO1u3Xr_4U3Gutx--h1l$;yo%Di(GH76LR z2}jByYQmU;GaB@MN-gr`gfFqLKC@djI`W1l;LRN}!<8BYHoK z6{iy%k~E`XCHDw9yR)n9)#TG8t&}`EWTM=qRt+ z%tR#xA<_ z{YtLWGAkm^7OO`lws9Kl5fxXO8W2RXlE{?sf6W5 z4wouf_mm@@;dP#?8&s0MD_56A_6c_Om^OBv8F5~&q`yy&a~E1JKv&<{B4Q?TGr`OX;(%)s$+>n1+%v<5?3BRFa{#1Ucvv^F!C{iCQ zX@|%WZgt_)w@U8M$!4_n>yHzv$1n_)%C;H%2ie&BHVNms}b?e zO7`nz_5xa8h68Ts`Y}h<)n7?|g`Dac<$(&bD>On$+FP!+vI9|f3$d$`Hzr3mo4#Y0 z(>hushi52xEjfoXgXPYC{@zN~xE$LIf26{!sC`P(kQ~*b#=d=$k-%Cd{RBDA=~kWD zAg)w$4ww5K)YtTypUEdFNk_`0SwZ))!RIPzx0kawi^>$;QDwY9S1D=Vlw*r+jjpb( z-*HmT?Mgj5$;B&K7uz{l@vu^jBV;wQ%aa@${k)PlOU``{^{{C~(if+N!88)q*z4sB zrd_*$-cc&_o?I?4G;0}!@iQgq4{|DGRxPh}%-{d0WL+(@W>h$9nSYg}1u|)KpUfP# zC>XEnlNHI-t?y;+Zjx`YLExWcrLq@LE#y2XYCBUOs~?$Z1b6_8tyv6WF~k;$5#XU@ zpb_AhT+UnFezg-lqU9iPs@%nLoIBH&H(CvE-%?y>FA8-nAepMv;!s(O5}JGLEdpW`Ly{%;S3MF?tInKG|k#H@|dpTCe z9j|1*Q*K#vo0i%etxAKEd8(Y=Nl#3;T**7P4KbdUbnoyjO6IR+=1ltXbS&(DK*>5^ zW=+0h`57hg({ctUt4AGY@4uA#bFh669@HONzzTXuFl&!r7B(J1j*v5 zW#dKrPDy)&T)DK!ht`(i{-xC7Hd%{g``2@K(>3Nl$fdt|<*{Q8Xcr~-d^x{cITdGs zl6kFM=(CcXST#~f+fE+l%3VN=L z?%X?dvXb*4nR8PI-khhT?k>Q z4GmUn>(5?La;M4M?!&~^C`m&yX=C;}+UNC3<{f3`^m3m$%Ck|)Su1lk*P4#voVL5J zFEmc(?q*-X)}nmT#VK?zn%`_X3YCfskl(8edt#g#D>)VjNt`pGqSCT#`M>T7f`xxXZCG7;6 zwg4xDV9gUX`uLU7Duu;n#HlUNDLGo zPX-z&u9K^hJX~rJt%?Lf<{eOH(-T^b6Q@djjGPg4(tF&oPW}od>jXK%Inj7oEJC~b zjI6&^NqoE<-8@>>NGm#P!U1z{z=KNaujM$?auwP^jx+u1ocB09t7Ly!{?JMHJJtrh zrR3ZozfT!HC+R0j(nT_9Zp2?h=bg~DGNWvLuVnsKX2udbvo8BvNxDidRqe}yUSD;M zm$v67St*>ihpqxCl;5b1HGW!zwG{iqo6cS_QogHFhkaxna+|J$F_;G`nYWSiyl=HP zK=-Dnm6rLVQ6vPFJDPN(hAl~Mj8f`zk(?5Fp)lnF#)i%Q@NP=#PvjaVr#2j=ErpI- zQukC650K+rP~{CJFaG-|$v=~0O)q_=xs%YZBpoW3x^${(jFKKva(0n9Gb2=)?_jVV zu4H{n&fDTDZw;-6Pre7gUdg|$%%6wuV3MBM`AX_9<&ss@ShXanNv=`SN96pb`>h?V z*&RyKYB{+x>9AHuKjjf6>j;@OJ4DAk&{|KUaKEVJ4a&TE_})lTxZYJ#-zrnnVsYw> z8WH|n$vRl>tYlK}+p(4ECnal*9M=qLn9X(ZTTRe)i@uZJ-jb#+2|5F=QeC9fV0ZZi z&ZaUQ@HuWc>Z#=IFAq^s(el==FpAb-CF>YDle41K=ZToRm$p~ZUMDBAJ!BAd?z@<% zBwjAZH`l+M76SwW)n=6EDw#LP%-OW^WOTXToE<$t$@{ikd8AW=WR$9alJiD6d(&xm zhrwB=b^VLh8vWmC$@o<7Dbw$XZI*cBXY6Ih%Skk!);F}N#inU0UZlKW4wIdoADyO zYLaiUVcySVr83>0$Df+oSZl~kW4!ONSj*x=79ZOpF~<7|8EB063AvDWrcLCyhk-f+ zJX8{`3OMGEexQf79PUk3i#z0^m+o_1t@)3VbJsScH(gvCGIy)xPt?Wq3z@Z$_UDCZ zU?$0MYd0nP$#Od91fsO#Cg3=IWosqzlX5Z3rqywQ8plZ-qm{hJ$-D(k#d}%U9C_Vc zN&b{fo=N-kYDO9L%Pb}9mvRZi*UTt$-`c)P)|E1Aevn2QlMV4zD7pWZ(;2fT-g4}U zH0Ob%O6q>{3q_|2IS!CNLP@$t{)kJb_!_0^6eZ_DazwMKYdzX|UCsqc-mPWc+@`!W zVtlQVd7#Xk-&A!tYK}XV+&|0Q>CPR#k19F;k>B70x5}nFq-=n`P>Bq~NoIw?}`6Ze)S=ZNkSSHO3L}^shD9;_0 ztRKm_Tinzz(m^hM$4IV6$$yv}>z;{Q4a@x%-guB&<~S|Er_r_8@>+8SYM80Z78}@2 zlhde&Q^!_R+{0AS+Mdib+Pfo*omlL`V!SO9qrJP6fkt~L%E{G-)+Ch&X|NY7d$B64 zj;3PMO6%yPLtL?Kl%Co2)Rx1(sj73E{GMidU2{tNDOu;ptW9^z8)<;MC5-r2DmA%J z)+C)qtqjhXlJjJ_2xNL)UxG&}Sx=K=+94jrf`b}AZ4t*MT~zXnh@Yxd;STvVv~K|A z5^qpnsHEOYPV-_f4ULBETglu}zfQ^jSQ}D5R!isIDzLB(9Mi_E1yJXDis+c z7lH0}5fH1$OO=`ok&~ojEF8o1L93nQo0K|SDeKUyxtbCxsr!`5bd|@eI@o2TvEguE zw)m7%g|9Qj7c`gZC91LM)I8$_d0okTotzVWoHevBTvHqL)4gQw4%A0Vb+*nF6T<#f zHwU#gC|Pfj6QKk3oi_F1@`qA|@pAo;Nq6u$MnUxet<>c;J>yP;COE-iM=T1sp zCdw&LfUj4(f~1$hcn$g~$ydoGpexq_n;xneuGFK0oCv*~uVdnzefP__i&B|7IZ@KR zWoB1px{~ueWKOD!Hf0dELs9m>JV_uU&6B);*`kE9vg}%BfzT z-?Pw<`y{A8u+%fzA6RI#P9;iR9+tB|XEAMTtaY9X+DA#8CV!r_Uhak}$X)|ZgGBLAL|Fn{|RBp^$?=`-mB>yN|e96)mI1Z!zSjl<0oXkn@;`mm{yH1X4 zt99s~O70irOitEn=SYMfDRbyhNG%bA?)74EO3{Z_6mTkVyP zP;&1kN7?l*?W*LgmNR%$CwI?K(*GP(bPM52YR+wv*%-70s z-c&}fRMKyqBeoN*d~u$nWd2l+cq?OD=PH@slHaW)9nhBA@=&@wZF#AfWsxV6~haILY^J1czzWr#p!JP^nlqwu0H!nqFkP1yB9YzZD zRnlK4XTr!uc46dUy{Q=1n~gFW#c=xaa6ICfw|rrkuHx~`i-aw|FJ_KJY^PN4OF4@M zP4LkX#yArRFU{=P^CEtG?4RGIsAp*)R^^#FVIL#mc2eqfy_|4)qy>$K`kX82rz)ur zm#K@mI>D%gi++KU{%4uK%ffgpOnWG(kW8SrrtuXrGT>mP8mGxGPT}0i3ntk^H+XLi z_8KMoFLEMu9y5H@&K|loiFT5BCet+(RH=u}g=H(0S~SRM&}G!{F*|!EFAsTZ0zTBD z_BBrCnUcpV)%dLqiP1D}M)l}&PcTpx@kY$4xCW&b1LT?_Yg(KRbvG-h%ayd}$a&D6 zW`!y7=hC#4eHmb)N^;Ic-lEjx1GyP5Svc1-f6BaB6DCdB*|RVZbFAcfK&ioEIW3Bs z3xca=dPYg#U#4$Ai`EK+Jh3Xjrwo~5mW4N!3Jj8q;LyhSqpk8bwVmAUi-kR9@j$Q~ zQyHK@ls6JRo<*TRg;_=X zrKDahr$NWY{GrY`RaADq7%fNcOkJPz4LSM)jSfv?_sUkKmEKGjrBb8ig4=fzEx4r3 zQdqR_30F|re{$LmjHK;1_(L8oINbAbOA#cz_ za}##^lYA89WTkRBa^2E#6yBBznD3qJr=2if`kFBk=scwk=gK9vu=Qb&tCj5Q|!-dIa=(QL7tN$#Y*pj7XAxoqZ-M&D@9 za3mD)8o9DY$sLrF#$!)~Q@^m%UR`H*1?=N51=`)%kD=% z{{nRa`U$T6fbK!q;XvoXbr+xvDB2HF>44+ZK1bRtkCT+ab| z0CuZ@+T(evfi4Bd3qYsAbq&zp2(cdMLZFR6kHIyqKmELm5QRYR0rddtZkHUOk6||! zXm_9qK)v8P2k2is&kyt(o)-c74E_!W`WUYDKzG9KN}zE-w*h?u*N1?1hTU^OOM%`7 z+729_0(}O5KLC9Qj(>o5gTMR%^fME#-GClP`fUyLD_q9`{SGt*Xe)%B4^)p3r9dab zH3;-7!Y&8;5&n(?>I;8o0qqBL8PMZEHv`=TfA<5O1-qw#F2M8N06G|U9|QdXf8PRa z3%fsoO5rbOApPVamYsoKglm7Gfp8rGv^CJKKt7-uKphccZ=h;~@BsyZYJn=?ZzWJA z&`CfUa6K33Ip}f~&`of?9q4ADhk??7o(Eco5bpp@1^Nu=B82@BXb1TF7pMky1zXck z2&g;IbcEOj=#LEg83VLET=xL_6LzzKu7cfuKqnwXCD0>yatx>&?2ZIl1=Ij^1Y9o% z>I8HP&~td+13))q($6zMHv+v0bSlEG1ImKkcR=?c>|a1<0_AQ)KX2kGU4T|2!~me@ z;5rg0A7RG>?GM+PKpTM;1N{nA4)h1m5}-eU4gE|e*FMv)1DunArKzG3IdZ5E$cQ??*c*^5I!=e2v zK)b+hEl|g7`uQH{SfIawUO?LC4W^$iutu6+7 z1<$(yXbJq?12hz_PXG-DdKKs%xPAZ>2l^W5QiS~t=qNlnb6fhkAFdsM@`3sSjlxs5 z1DXuGoq+xXnguiiXkVZgQ5-6OzQL2DKsNy$0rWlmodUENY!?7chwHUKz2JH$&`+>? z6zE8xmw@gBdJpJmpf7;7f>u8R9f0Sx8%jU(;93l{5U3Z>b8sC3)CqPw0R0Ix38)@u z9?;wHcOXy~JlO(z2X;$=YJiRbS_4hb07{45B|uN&DK`RrgEY7or~!6Q0!88PHK3Pa z_aV?Apl^USAjI!L=fEy&JNh{fs3Xv5uz7&)1sVqQHPFsLD}bf}U4{?~f&RktygI7p^A&?TWBx1I>oN>wrpNcNfs-2=N%u^9b=W(D$%=ALtgKFM;Y2;uoMi z*rgAnpF*JaK*d14ffm5uwm|b?wNU7HPCi&T?RA^=vbgC zpfiD9Lx@X(3XpF%0Tlw>2lNP@@)S@x{JjozDZ+jPv;)uvAP@Zg0dxiYWe=yHtARQJ zodwr^K+ggV2g*X&U4X*yHyx-ScozYE4!bg-44^R3g$R2n&@_ZS5okx)oda|T{9Ot3 z0MKnf@5A*WptV5H0o4M%4Rkfor$Bok#1BBzfigzm2d*VRnLvGjUPE3E1?mY6#sMt= zngVnW(0rf`2vG`jKkR})&*I6;fxd<7aX{Yzodt9|&}BgHgX3nPClU63pc1$~4U~-( zdIRVL*nJGNH_*30Cj$Km77UI7{bbUIvj1?mkn1L$Ie-5cm~ z`11i>15^uC34berZh+lMK*L~nE>JD(t^yhYyW4>VK<9^nmgC9K0}X`TJ3uR8_ZiS7 z2=OD(??{7xfxg4@3P#b-IJkBP`Wzv)0r~)TV}L#Z+5_lXpxHpT!r#F_PvdztK+giL z09p=z#{N3I5W?(9hlQR|xbA?0Nug z3k?PVjfLx2phFOL0?=2mn*)>yv_H_HaIFH$gIyfxXxJSEbS%(mKqK+wi-3NHzw3ea zgzJMq>k*GU_Ufg(WVK!*eU1%LHG>%n_I(BH7T2IxHay94MU*gXPNf>^!? zbOBu71$qPMbD-^kegfJGXshk%=W&EB0vd{V^aN@L*TF#LaNQp0DWHi!J;5;-=p*<$ z0O%T^0MNGZR|oVu(9uBW1Dy_30)H0+4Z%}x0Qwbiy9a1A{5=6Q7U)%=8xZ0Hpk1Kf z*FYl>_BWs};F`Gu{X7QOZa}*s?AAaXU^g1*Zur|B=o#3}0-6GU`vUcVT?Noo*hPW% zMu;PT9s)WA=s};Wuz)PME(Pj@v^oapb=aK& z)ERb{0DS&UOX53+ONS zdkknJ>|O?X3u*s8&`j8U3G@h_{0q?Aa82Kde)=G6d!SkH*Bht+Xj`Cn;BQBu(-C$u z&>28`0nLTKgMiM)Q>uYp0$K+2F~S}Tv4k6!*w`N08icp=nbIhK5l{rE z45&Rqgn>rD-=RRGfKCMJ2-kCfW&m9Yl#8&p0sR8>5Kwoxz5;YO?A8K31FgOS`U7^q z0v!#Mu?zit1&$J+nXu~vG#h9rP&c4)Kz;D!DL^w2Vm{FKuqy@H6LvwMcfqzC=swsT z2lO(Yau(2Wu)7SX0by?j%0imn5A+-Co(B3I=nbGx@w|_LhQRJypwD6VC(yaD%h{EF z)`Fum(Dgw5fv$k-2%z5J*cB)SyBR`p+%u$u~WD9{3+rEonMXcEl+ z(0ZU9fi?ow0;TOvKjVN3fd=3yJ%BvWU=YwGxQ+$73mQxS+6ib5(0aJ;5A-1Hs(>Z{ z#er^z>j^-0c=Fjm$H4Up+aK(11v(yf4+4D+yJvx3MrynTv;j}~1ZWY^_dwqQ{SCAV zA@cU1pF%vPE6_eb1A(@IzfnLJ!EQI8Pw?bDfd;^CAE3`*=LZ^!5D}m*K!*dp1%LHG z+X9^r^d&-E0~CS3JAkU;`UubnpcjFHK<@(G3iLV9VCei4Pz~&Gg}n70o`Bgjb88Iz;SO@^I=JFeaBDg2a7nkd0SMP-TW{mZxXjwR5&m$+wDk_`aP6~o zBnR}ItZ99T5V-BqS_y=^C#}EXimM>4 zes~J*XSCKJg>Y-4br9@ukD;|S5bhPU1_I%hKkH{8+`VW0gXiHsJj=e+4mZ?U_BC_3 zGS2D+SKQ)e^#Q`wYStwPi_6ZeDrkTk$SnIBG291c4TL{j(PgcLKir#TRlyFoSy@YA zhbyJ5Tp--us!W zfNx)Xhjke2h5@C)4mVfu z^%Jv!Zo^Y>k%Kh{2p1_>_W|L01M6gj#gzlrX|Th||JEIN3J&78_JZqmK##%oE}-XO zhx6jCg+Ms3-TD!(I6K{X5q4h!oe4V}CT?8_yYwmavlvfq540apZ=j3ex-HQDu-g%+ z2he1ok$B2pK>q+81oSdcHPC^X^s@};VW4Ay-p2FJ1R4W>mjVre-AzDO0^J8>A9?x| z(AOFC^E%LVaQz5q>rDFD0CWrN{s0<}=Vec&pP_K=1T+zL{eV`%-*BJ~u-gTw4tCRl z-bIK-Ksm501KJ68VW4Y(4h6DLc{>s4Ncg)5Xm_|?57Z-ze(naE0@ufZR>1WYpc7!X z7U+~L`uPfI7VLfnng)Lv)99x+>`H(hhQB^Q_6b8nfzE>KIH0HCItA!yp!q=dku;@1 z&%-VV};_H;CYt=odZ{F_OR?78`yMVEruQT zKUn>Nuo1x;gb-NvZ=HmvVBNh{23IVDw^qXri_xt&V22gp)@X#l+G}ep5LP)`UiiZb zW6NG9jK#i|4|Z5}Yx#k&2-X^or(jL06#&8#Q0o&Qthcms@I0(~w9Z8ctU$EZ!xd`* zt&u=jnrB@ASFD1wu15&0Nwb2m!(uRN3=mdjS@zN@ERnLZ5f;motT0@$EXX)11E>y0_Wd*(}CgnW$|FpA1e(8qOpdv8j_wYZhOpyk5bxVThofS z!S%(_+NwZk*>GA76rwGA(T4gGoH0!2ESJ`LBi>3nR;;R(z^qJe#9!f$_(MK_Yu@Zb z&U1ZUI`!V?C5?}5z)|RY(tkNcvgPTBd423TyaEAbaR;)hH8}e1r8bjI& z(oppP&lc9Vh#>1+ii|1qS~;W-GDg-p@uVav%TL_bexkL2M6%2rZ0*yEi*-gwLYSYfOy6LyUYnksg;?J|*IuO;?`K2C!fvzmKEmq?UF`^V^EjbBye&FC2he zZB)M@G1VIh_QaU2OjCNw5ka+T;O;0`|YIi-qd44ZxvpIQgozs*wccq*(ZO!hEc6OWkyEA=N>iliY^jlMYa-!Va z(v&#=b#8Z}6`?UY9o8RddQBWT{u$|}%<*+8r%PLNysMq#?l`z}{lnCCXk)IwpYoGi z$#s9~t%uR-w`@03f0or;2p4W{jEZO3i)eO6SEaRvtJRup@Mbhzb~mDzd1J^Xu0zQQCoPEe3l%*JQkE{cvu_@wt7Yt)8xj{c7;RT$SHo&lvn=s;H8(g@Qcky|xo(Z6=NNfZ-^Z?gT8)ak7Mhs4Ds8NV zc2D`qu3Bi<&3y!3d#-%Ae5op*UK%ZE1>bM@ib}bFZ+7KV)O=Bu>uTBKDJol{x|y!1 zZW^l^zLdczzDcT>V>UPOo2!^3?MI}Z16#a`DK?_+s8()BIcr?i%C#w{Rq|@(9D0tC zFZCVlYQ<3BU6ovwI(-|flFL(mva2e&WOE{C8DJG45e) z?V9Q@DK7utbx9yiJ`u`GRaDvzKxYhddg3BRVHcnBU=4#*y0UGXC6T?lFX6gJCRDMy^XFM z-y!9MN#1<8bG%!NVGtt{?tCAUx)N>7_mL?-`TsrNyEl&`7|G_y`wD&D`%+Gvw&r~= z$AE|t5qJI{oVp@y%>M&ZesU}MzZpG%=1v4RAe-@s=E0DUHn$l|42JCW-*zJMSNJ1g z>PG|v)#lEqt5YtvNy}XFSruQzZy$%0Y*MAsZMdx&D`qrNNxnm_*xb_7+;_Ote#HMm z-=Uy6;*P51nUwRy)r>rua!Mu5R_jiBj*%<%#dcNFth>ARcr119Hr5`iQ+~3m_IS{K z#DCXo=)k>(=Jayp_0Ob_vdi#e%Bj-Uyzbnh%g`JHcaDFTx(02`@o!Ro^8b5|cWLe~ zG^d#(*Za>==Xzgy#FqFpaKGW*9i4^dSh#b(SL#}{G3UFd{Nz@0elwc+=AHsK7n|{j z=AObun_GkvJ%#T7?Z{A0zTZw-DSHyPq?|Tw&G()ydJ@ifxO4x;)b(g% z?q8SklmFjyzgKgA!kKc867Ye(1iY7W`n0tK^mX(qoN;lNf_GBarH!TF&6JpY!LYoHlLEdG0|bkB2+=8&cP!jk$kD%1>@3 z_cx>AZ|*yA)3F(kXzn|7+T4gF`VRI{r~lnDh@4=!GD@3G%;}3Y6p7R-tEA^ZOm;?%1{1(&+Qf)J{nWZk>h*ob9_O{>C)C5cW(G-jDtJZ z=cTSg8*_bj%1>@3*Ege8Z|)dy6R{bOXzm!ivbmL2qGNE_e>Vg+G zx7)U- zxt{sKe#HMkJwsXKh`ytS>9JR;S>&o=y3!-IL?1Sbo@3T9UF?BPR}|cJOQ+OTXk*<{ zlJb*XbxYCaKBBp9;qs)aTfW`gQl03~obunUz$oxl`F+)CrFI9wI9g#}O3p1&sZ3Q= zDzSTfai2s4=q_9QA9Tmx;DQAnTB3YhtN+s{ARMB&cT&Ztw zS0pWzcUK{Gsgt*{3W=utWLFhZySa~Ou0psBsj8598ZD@Ma_WCug=B<7j$6DRpa^V< zs$+bzs-sNa1<7Bi>B;$*wx$watA*a~;8@MpZ|w(r7_-#6JJ+mXOX( zThv<}GU+{k%TyY3l2sZ_qavFgGHKlJoXT)XkN;!tOW@=xs`W=mGLy+vdb*olCK(>cA|PlhDg!`u(gSEs&n>YP*CDUe$)E$1dByvPCyu^)Jm zrkYsF#pZDyr*ew6niQvUqBdjxPUUdGk(~;=cIc-?#m5}4FGNTmbF4P9;$vQkg%Cc5 z*;FJSGdGG9;A8G>?J~(MvP=@_UM_{s#F3M1j^JKkhOOgSF2?dNJj)1$2=pv1yuA+E zad+P1Rc_PPj^b6`tId|bS9u%Y$X znKO^hzX>wwjYvi3|EtYRSe>(bNq)UhHUCw8DMD)gOWMd2uKC5{)YO>Te=)lD|EbMR zSnV&PlarvHs21>deMv%Ez+bhI11tcM35aBZg%JdV*ytU`c7#X)$wZ>H6PC&9p6&^~ zy8g=7+#07u$RNU%&^itzjW{JannLUki9vnO_(udNFucDzoTBwuyr&j1`bU+ARX zgQGspz`CUz?P$x}NLF1p>zPefk1~)c3vG$N~CB#BY%Tuz-Mo z5GlY>*pBcNU|Va~6KE~GzEY{+d*lN8qUWA`?X3}|t|sKyM7*%aEwJp1)r99L#Qu;J zkXm@6@1Epf@lIXc@Bt$(ku3lSy$s4%z46MYSdDvX;fYSDdS9n6L`c1#q>Vh`dY5bA3EDiPy%t^f z7iyCeR`))&@I*&c{TKBG390`*+Q=#SJo)N0{{_I2bkdkX=OB*gs^fSzP8pl!_R+&JS|~Wxqu;OAhSVcy`-9(lJFxl zDa3x@M?gJN=RMx!IBoSP-sEU)wtO|5KL~JSZ^BkIJRMMd%2E0Pg!Cyr+Q^DeIUEZi zd2zBbp0a*?EYdIv-d=~rr4EeOAI zA%)lv{7O?rX{Y-h&vLW2iWJZCE^WSiwVb~iaAeQIE|RDkXd^4W z4W}(!!Hhpc&D1k2iTyTQiC``KLBl{@&!bfFpYoR&UEKy_%%_UBC5^j^wY}$ciKR zGlgi~=9_nKY0BT>=!ApoJ5#fR0myWW<&531Ia`Z9#ndO{m{!nN+Ix8-Kd zqxoIYHQ%evO<2u)>utIFp=y7-z8oR7zf~JKK>LWuFOmlqIuHVfGct_cWqN0lw#^)?Q!jCKH$7h1M6KH*w5eqAavRIAj8bTo8F4s{!F> zo}&=^fu8~ONS*h1m&Lnv)uVWq1ppC8LOTU;WbeWjT0I?5^O?E&0)+G_-P*{CPnm&* z5I%+3QY4@9EY_lVJ~OqWrO&9&%N6_W3S=f0^Uq-YU^Uq!e0Y~;P>|~Lj7P$~2ZyDAXBBYP0Y9lK? zri_IUK8D#;BpU`#Uc+UNry{513ihuw`}s;91eB3gr_S^G|6av z&X;@&OT2I?_fv>Km(t4BR(IDu&g5s>dQqIokF~k-cP3v097!+ybpyBbYNql7{nkTz zk?(3FD_-Q=6ry!AV7}VwX3V4SY3JyULq*>m01-!Ws_NUl+Uo9us`bhGGKAFn0ouqD zu65UHtD7~C=8uc6`J=VD2|LogtF7*SsM<{_E zRNiZk1G!mS8%pSSmo`nl3e8^)IFd>lUGz9=Q(e4aG1nN?Z#bmKc!xH!;xXPvAzGIu z%w)Gj{k8mM5JoRiSG4??HYH)T%x)@4;;Yf&^ZLz))b(ezktbZ&bHp`Qe|WdIk=fBrR4$wIwoQsTr1qTF#$Owwqj_{1&kk)1dlj*bDQabR8 z*Xp_^Ups4@gkD2nGD(rgCmA>bHCIhXD745Xko=jkuwjz`m(W}jo zuP*cJ0Y}nDgO$2qn&QohJYc(ivmyP&R&8X(Pn>~;5PpK$O(Z{YSQIH>&GCsAAMz|$ zN<*a@%pPhZWlz!H8=xzCxs0!oMY<8s#pBXRrt0H5-Wits8xClDSsVH9ywUvZ<>X88 zA=go?{lJIJlsNGCl22*tNbx22hb7J7%2&<#+W|*XP=n>0lK4%Yg-^Lpzxj|p?8B-N%?CKdHpZtGM4%dI9<2!DsA$Yx(#7ZMsz~uG3jjhdkMs8{QvgTOO@qyAlrE^gWv;#mA$?1? zHnQSdW?&(NZ(;Tn$+tXecH$qu5H&l zu1&@~8vkB&jekd*m#`Z5zT?{LgR1o>^koRC^~bf51GJ8a>LM{mOu z5E(;yneSosAiT_XD8zo?WtvJ#i~f6D%!}GeQe4bGwF&cgF~0>I*~PF4R5MtJKB)fX z@A@)?^e=zaMppdGpRo|azc7o60{uq|S5&8vE_+v;isrst`AjjypQ!VIG+ty@?&(-^;8&+}N#h^fYN z6e2KHXk9#U)aFBkCxKXep03)I0J8uf^pY%J&F7~8j+{UwXn+|@t6Uh7SIpHHCZrGQ z)<#x*&g_KdNH`dT104##t51jhqaU!=9eaf^fP z!dimxHoX)g(A%_dVgeeHyYKNa7i()s@i8OXeEIvBLBNrH%slF2ygg8pn_+zkLOPbJ zHnQSa$`qn?0cNR41-;C9bpK(HOmB25y8oayKVfyhg6clFFRB%MKwp-SR`5P;OpZG9RLwWYWe~YC5Mfv)OAqX;jM}sbh3V{A)Ukl+Q^ENc!}x! zoHN_n)?7Y%$>{3*f0nhi4Spv75`4imj`M^5ArtfuH?ItUI$$}lCf2sR`aKRhqc_eJ z{T{8&hwo6$tNQh=fm9KbhL31-6ISQm z@|*5{sM^0vUyhL4|ByCvfc6mqK*SK{L=X@nhU~_6gvXG-Ols-l08^|gsh%UvF#iNy z&@)(HYisykNe_AJgNr3OD4)Rb2Q1qnaQu!!><@vXgLT^DK4xE_s|_V&%mj!y^3VSO zRgy*;)95lYR~BzqEHroNw;R%3Ow~qK+{F|M(YjzUgU!r*b$l|&qBr6c9lu(e5#K?Z zS9Q!@zI02k28LJZw;oc{$7mx@xTa@|`IxV^3(>Wm(`F^Cw%K_DZx2+B_v=d#QsWtI z}(d6L~zl)%EgHH4ul&`%tqCA>x!OOwJ zBOz~Q-HA0Kkr>=TAp#SF7Df(t&pp|}H?$R_M2@d(Q{}7M{DXiaX9p~DxTRP9$XE1R z59vp~sEw@nkuP8&gdbs66v>a=7DWm;l>M#No>-ZjgGZoB(u`ud6_5KkCCV8{DwSlQ zJ`;*gkW?>K=0+p@MmvQF^cyWa_}ET0;qe$pXzN1p7%6R%{5{4}z>yTfOZYMa;?0Wb z#9{i)hIAE&Y9lMI;vfpqx}Y$fCFFh@J`Y6E3)YH;&($U*tcGXN8KX;hH6-lTZ#<-) zcWNU~xSqR3D(FI!~?<@5M2&wPOwUGn#jfmeO1z-UI0U@Rm zldv7(Q;B`8-I$e@!eQeT3R@}#WEQD|$ z%z`4hk5y5m0QYfQYZoKBDt5JAsIfOfq&(!U(2+RukW(Y9NigB)3nAm)r+G7$c#(y? zi9!TAkQS~?On3F%<3c{Btrx|Gd_s5IY9S_fG=_e7BmnLV)f!mtP%6oi+{Iv zBXnM-P^#KhNE!kcF*a+PudnSjwna!DxRgxDkV_e-VogdU5gRB(U=q=~*wR#!n*dLA zDQK%ni7q*9#(XuMKL>E+T!Nk5_tPR5LhO9>>kARm$7HmT6(4f}7DD(KW>b-T%qdZ% zfO*M(TI*vb_bZ#EcS8^KQXyYU^MCU^)EwQ>Zj|~*~q#+7$D-9Y^bBzyGa_L z?^XH&gw*#6ZR7xbBjUG60a!plK!|C^ZCJzQ(~SFDyGc5Gcf~4~?MmX*iZx{KEmii& z&;1N|taczl>lNhK*BO^VQ2nOeGRRjdJMe~=?u6tOkg0ImAc zvB?^+E89mB(vtAC@i3kr1{{gY#;l}G8Z3{b_;+(1VITY`WA$pvfhbQAmeu^F4#XRg z5RIvYT(y?Y)$Adzkjp4ioPnCsKIKfiVpV0*KLSm;1M&F%_BC@K(z}v-NOLLrsS5Pp%V-4xS12Xn=Y%=8lmnXZxMQuI@0`f)5x!nD7Jg)q+a)SY&*TB>aE z_>#XGBYSqTMq4b5q?&(FDgQH;FG2Yqu@J^7@7QM7E2Zrv`6b=?wkbz4DVfV2sd79A z8g%D`<9jZiI0=qtVIjO6i^M6c6pd+p^+EyO(k8xNio^O?c_GgESgUyzr6NCTa!c>O z(#?uWuCHDzRT5ilD{EK!N>)X-tg}G07(!HIp_7RXmkRY_&9*D)idBTXPs$dWnO9yU z2V1aqB1~;FSI%xr@o<_yA8;i0po~GSR8D2w4fAm) z_$)-{Glzu`W2K)$#GYl%*^#T}iUYyizZ2Sx!Jd7%pPQ`Ew#T9WIxKg>oEumOkfI&i5gu^bTN`j@?;f;jiEPQP zCN>X`B-UlKCrg9%qwyG1<52%dvlm)Vlh$dW1uL5!cV2oomS16OcT$KJMwsdAwr@`K z)~sR{=J|3Y|3*Cg<{t(eIo8ZbTIF1->a?n)iC>S-&kA*N!erLe`;@kmKq)$tZMRqr|8!;=LfrT(m_Vm-p zwq{~y#mac63C9}adq$FOrlxAVRmHwviRDY!_mNl#|(Begl$a0F|cCJQ?q{Rps9RxesZXg zs`J*VV`8lIzO!8yk9{=` z^Itq+{#Gp0Q-3Qh0{E=ZpMa@ZZ(JwSeI>LM$C8OkcV{wF&sr(+q0)RgmLp-X zZ@@x$X-2p=;UU?uK|ly8j>C3@d&p{QJ!JQ(^Iu-k3oHuoh<(t z`?`;PeS&>GK)-y?;WiF(++)_Z%js-x*zW1)EvM;X9BEk^;Z4V=9yR~8hvM;tVlh4V zsQCjFv4!q(=0+QiWmx2VS*ZfY%Oui&77yw9uLF)mDV#XZHrq|Hc6qk*IQ%Hv(El-| zLYz1cOK$#22jT}v2=&DIcPUcro^uYI2!ZPlRmbeTt8xeAWIsAS3BG3Uqk*~PUa()HnrLG804>l_T35p z_}b^ANDP4$SP0|f&poSNORTF5)Q9Y1Ezw&qmrIa2T{TLcRc2a0-5CAzlBIerW%0&S zRo=MbgEnE=6AD<5g)pvwS=*qBgwea)4hJ3z-lYFYW310e zk}Ibv*qCFjDwKZ<%a@@18(0YAl+T7eNxMuZTfV%%V2t-UWLJ_kJqG#DW0@1=KZk`d zPX7F@xoXBP6s)3Ms#pCJ&&7FDY5#)ckh}RYlFtPoL&W5BE*8S81hEhjHU;*(KgK54 z`dE1(&d0HHnG-1$`A6GZdPIEY=3==3XFU>Um!ZUtXGfzq9wTe4@>x>Jv3ApS-mWzJ zZ!W0h#WZs})>6cX-^v(n-3_uXm_sC*a|kJ0sK&!=z7KFD<{HzbiA!?2g4`BHb6n`8G;iVW6K8WvUD;ms4As~blXJ9+RBhV?WUDlsY zPKuvefjek$Pe?YT=b$GsjM+xQFaE$&eEm+Vk`MKXKF?w~754Re3em!a`>xG!t*?}Y zGi|VVEJdI0J+bhbZvz~OIfyFg%Bg8gF?g}edg>OgfpDnrV{I| zYAz$&^DCj<80^`H_qoa1pbbaF*(gf&v9=ZZkHm5(%y=yp!Z`hlcUN*Xay-XTL37~A6>^a= zg{*+3GY~_lBj*uA86kVIj0&aHun@+TGVAPOy$b8e%{>)a4YwLoLwB-H8+LMJpV4qL zmNh~AyRZ<(iEr+o0QVcMnw8i&QidyXu(X)iXb4t(;g<9!U7n_UZejBWXY_)5HB~LE;OJhn|mdr3A zs2*}$h|~}lLQ%*suxtv2{1gjeTp_ER;Oz{Q#P&*Qs6^MIchn1>u`;D#Dy2%oB`}^& zIYT8?ZiA6OmN$<5XP00*j68cnv=Ag1Z++=!$=~P*Z{X@yn8cijHzZt zvREI2B^P=(0JbNaOE0Mm7ei6YAy`hum`P$GjH_jFbIeo|8|&plE&~g>iR~r$!-zEP z+hR;1OPsM%O=X)Rq{>VLMH!p1ObTV3iiPkh1F_N~7Him)9swbw_$_u}fiKn^*xJRK z8Otg9_vKjg5Ek|Z3em#ln(pnD+>lj)wJ?6z zRL;(CkB8m-^?)O<+00IsS{m~hH4;DgPt~WAR2+0J{k4v_F;_9>a1d4Eys~2;*v)DW7(d?f)5L^v{9~Z};&gAM5`OmNP;7 zudootX`j9#6_djLkqlQipB4Tpgj)gF;hPl18xJsc^ghgcE5O9Ps9n4FT znQzu2jgRGiQdsuHI5-RoVO#;Tozt%V^!FO0e~vis+V5yyNt?H0nG@u1#X=Y-e;&Q( z0C#H1`inpR!^ZfZ&u%)f*2l8{DwaQ?f-)Aus{+KdL(E)Qc8h=zQv4S-pz)c@#jTyW z%-LoQ=LTT+0XB$WuMFx;WaUC1AC1Sn8i)8yUy4rKX=ocNU_#qc67I9*d^grmgst64 zAzCwQD8&kxr$HrmzPfV|iL95foov_+*I&ZRdShTQ|&utNN^Sk{CQ{~ilrocMNH z<8b?C$;{^#P4V54%nidavvN*7)YlD-Mof%nU?GgtJZ-&|*#l>T5>S3dqWV~4RCgu& zSeyQIzY@!pu<9eR5XR|VEZoWIc7eX{<>aL9yLaarV}FUuu?$iX#>&ZdW0@4n*olQO zu8i(o{O<4B#d5A#^lq_SVoV3Kq4E#CbqsZ9nk_5d{UR)Hg8IE!2ru=BTvnvREKx#0 z2r2HshAEy7zqz&N{%4ce1y7k-a72f{-Y5Ci`{S`J>F7U65qcnorLAh(67Tknn+e~C zwGm-v_fm+!OgR7gGa;#Luaz>jifxZxKe~q8F9F2DPV}(?YI&XCKw#E^z`9c6glr*^hSF>_OD8O*_=(ffy zLjD%4>(uQ2dLd2n2J(xChx|pWQn5zhH|$0iyo^?;XYGC{+D~Q9{|tJO{{{JY3O?*c z$B?xz3wO2#N6&Z({%f>nEP8irwBcuFjY$KAQs3ycjVXha19M1%dRh&F1pI1##;6yH>Wfow*`^H+(fV^$eDV z?4C-!2+Z}+haH6{6SX*(Pm-=4<--jqTAv_H;#7Lgzo+whlOX16=wDgA2 z?B;5Yb6&u+vRsNKVQw7kQl(P2rFlYN{H?=I5C^4W;cVI|M4+>Y|D~#qP5Ufzuu z6%VobrGO((xTnG$P2QlA6C4(uzeBMQA{rk=A!46u!>I~qmyn#^JJTKkmlAZKaytkS z$JAR@z{+IV5rm!^+rtELPQv(Xo@~XkDh&G!EQE2zz+HzjEfxYnOCAMPV@e=*9iUO* zoHnYAgff;bLHH0B!aU*RYGd;Nn3Or*XpnGsO%`<(4?ol8WFuEj*UHc>v3#P{zlx5XP0U3=Tp`tC4ig9_3XSc$B2surv$u*|Ob@ zwGuJPcT$KJ&K;LE505*iF38D#DD^X!|k^a(S67Z$>}2A0!p zj1+A0gBYql9>$U>^zk4T!mAIh;B>>w+FsU1{-aClc@gNC7u3RH5JH^SV0**^-Ak| zsn~H?wuHGJjfF5yc;{KL@iwH=eZDcerzK0GNrmj!VVM$SpM!<)l8p!_A|f#lg@6!J z{0ZwPc|>}?wflB6*}@jdgGl}(58oT(u_x(xKy%ZMEoDKwX_D}azhiej)1^6ieer6yO^bZG+Qv^#+gDr5FXu;JRIDJurWh=Pk4oi47@1s%= z#6xuc4#1IP($XZ^hKFeuoK0XdklXD|8I+Oy@#rjnY;2a}+!tM)r!;q*X4in+8sb|wG?y@)-)*( zDItVn8Q-DOB2Gn!@%IE4LU`B58E5AN4Lj|D+BBhFKNFf(A?Zty33U_00Or#EW;C1r zGB=}n%#5U;j?t8epiNVnOm~kYiypflb4WkxMM*a4*AH^{WC81m=jRRer86OJO1V#^ zvJROT7RM%m2XH3MVIhVFRL>zpg?8Nee}#C;fa#z*i8Np)V{ zQhWqE@`V&Ect?`rtx=?a;q}SZ-eo%Q)OD|s#$lC@LyaSe9c0(40@vN)_}!EW91*PK zMjKtuDtNzj;kf5A%UB~6j(>Je=mQ z0312`kc3K5tJV>99D8%K)PP%e|`g;}et zfd`<)IMxVM4a`VpS*xikZB=p6AII_~O#5S42;-D5Am!(1F2G+j8MHHdU_3}J<%h<| zUzj8(S?Dnm{;)~2eMJr5!*VFp@Et6KaW!1-K+xE|f+{EmFzgS5!@Tn{KlDYZu^>q|>ls=}V#Yh|9o>un@+H zpWF2Du(t*!siDG7p|n>bf4wpC=Q*yPT%dr)Q~jiIMFA&c*%OxkYAl3#1+1&rN~w*x ze)^aptjH@R!EJ*Iut?)sPveRL`mpQ?1*EYM#uaer4jB7Tn6G*`jk~nA<#3g4EYn56 zLcuQNszcJCxW<@H4oz0LJnS?lDFr)RWgE-OzHxEOiDJ z!Z_iR>G2yW0v~IP=_#b*8f@t(6u%P7kFe<@u@GL05o@YqS(YvBAs~bldF)h@@0kC0 zYtL|XI#=oCb*xf6R^)odsA3nuc(Q4FpSizzfq(q1@&eW}gmL94LZ{ZhQ$&otle*RQeZ!7!ecLc~}VJ^tZ!|!77$y;!iS0{0uT#fcD5;5%^NcJ^{;= zu=V4x5a!9=P6{ShWwI@UWS41susTPYRmnad%akDdbyx`FWKTJxUdUN8*H;?jx+|F{ z&86t4%Jk(}ngr8tz(N>jdd|ACm4StaUN{vB7oWBia(y!GA2LS!AxVq24bS>O+o_=f zv<-Ivi8${6OI672ST==1-j9Vau8=7kEZDV?b?`M~I_QE@y3iavqy(QT(_hBYB$$2- z3t^n;jtzsfzM9PSAB}N6E16*pruetY_cK_s1mC~GLKx?J`cAu8Emg=~aNB$?m?L1Q^dY3VxJCm7WZBL4Ps5JLtITAE)$3hsVxnui?&zj1JF{WoF z%Oh-6g@3Dj4`ay^d{?m$#`&InYN5VQHtSoAk=>c>ht}ZiPJN$B^G#Te1kE>MA&k>J z>5O&f$Si-(7|R{WytOX{|5G`B2uqOQ_|sSj;~cwFk)vd?pE5@F;-oA4ILe)h9Hr9# zb1Zj){-0nW%+tSd(>aMPR&k(i4S1$HllPj-1he+ORDrh&hcm@rRQeA9F(PJyFU3Va zVoO!*%ChY{1cWexe(d@)-<6%z(bD?E(@(2d<-r6irXz36o*0jDxr#?g8?ytX;WVqF zGydM}@zG7}SPId?z1fah|5{3~v|)H&JhbMw0FJylJ2hGBPf=RcA$o3f{&r&_#NgOT zA!6T`oqUG1uUwH>z6@H5V_Q~bc?!t_pf%-e$|YESL=d_N3t^n%sWg{go6pJD0zP1j z=FTLWJ&+a^s^5p@Nl<+&7Q#5y9gOP!eUd?c$r#h%Ht6m*G^h~$D3&Eb^dndZFVTpw zEFwE|{s;&m#VfHL;gS6plUf_up-dsEnFSkSm8=}u{}Ycb1x0qKOqhoAd%R&OM)?%T z`hQqjg^B%xLIg(kz<7f$P%?WRscKFNkvR-YgLV17c%sjAz>)ZCOiJdmN2=p=3H)Hh z416Jl&?galwROr)tFK@mFY$JgG2W&mYos}qxf7x@cN`W%_?Dxw5W>ST{YCO{^P)?^ zhGHZs{)Tl3+|T~JwSIO!xwe-p)=Twjf>zmvdgpK;U$W~ffY=za(Z(950zuYp7K9=f z_gM33T56j&FS!jLw|gm8*TU^yOd$e2M*QUoR&6K^4Z#Vj)!XaU!Jh3q*1)_qHvq-O z?QCMFT_q)nB-(F_hxYtC07v4pu@Wkf5>ZlRkOV42K{Z$|2&_~wL6ltTz0n!J1q&fO z%}o>{FeGBV`P9u&p_Ax9&NRLVt;JyYJ{stx?|l-oeUAHl0n3vx?$2Q%j8i>hGkML3 z+|X7X&2NqIJu{h;n^o-l*I32`=}%!HjFUcdU1DdcoZ490TTJZA+4BADX(Ohrd{)we zQ_1C27TQe>lXex_JD~B1so!KQgmKyr>V>%}DMqszrW1*ZO7Dpq45jH~D14TTb|6-2Z{f-+H6twfar zce=?dT&2p06q8?LOh1PtGfWz)9}<{B8W=rPKX9YFDUG6{ZCHMViq6DBgjNxHuDU`F z7f@DnTdr0cNt{-JFKtZjGb6rFXsA3tXvOwRcoZNFlvnL<WZ&SB`a$NMQz~P{1Ds}rYUM-1DQqa@EMvTPC!uILZ8&&kY73S%G3qvBA&e8hY^znQTZO_%Vq*@Hp&DG6$vS~w z4mcHKT38PE=9v^w>Z>V*6ZL(@LJ7;KP)Pv`5n3haImzq|o1Nk)} z!I&c83QsN-T*Bp@Sk46P*HMTTPB|u#iMK@G{l@5n zP@*(-qg5U3E5YdrX>hgwm#Gw~GYNN>d5em|Cqc6jlcSemA-q&0v?UbIb`22_LW&XW zHUZxuwp#mE(5y}S;0|LE)*DVORiJQ=oOGNVk3BUGarTC#W41PLI}LRcY1`69rq9Ok ztFcxhJj<&nL<>XUPI^IQW-$3ts=8{kNkH9C`}VsT%Je5ir&_0idTEfzuykX;la z_D$Z&+qP{wRlWdn1+)~$2CpB@#iHGxA|EQvmtr{*MtU(8!Z^+C8%h;>>lT^lJB$%M z1I{v3?4bgz%aAXX?Ax$R39{ddh47M%h#MmGFu#O=5K~6X(|C-jvDAq<;ye;uK;SJ(Zqp~y{0PgXu&eJ=h!#egjT zPaslNuqtUYNm6wpN%Q^hrk#@&O;tC`K%9u_`eF*v65HmlxlJNPb*0J9DU{Wqm)w?; z7tri|b_Sl`OYhCq2GdPas;lLl&eOPd=-Ys+jwjE59Zw$!^#ASg9}8UFn6wYxWg2Z9 z0JRYt?NCyVV2;}P`x0$!=Z)q+!M+}#Up|irl8!ZBew*XGmX@gI28tFbr|rXnPTcT+ zO;EM1qi9KC@;(|TB1LE(2 z0T#lzI*vZgF2X6b0^BgUb=KaTTs~o;(oxf-_guTox2d&Rxms${17Es-!cF97)JA zEVm?zYA(R?DpYeG7Q(9rxX4^?fEHZQL@L)dk+L}S4kfN7j{#U{A|j^9&B71c`Cl<($bX$!#^dDUo8;qL-AcQl{!p=GqFJ zugSNQ5%O7r*oRnV5Du3O(MS&WJyE29<;8)P9W=NZNSFQ10YGD;8wg)ZYiyCF+47)g zS@ys;uuPu#ru=OH!Q9ga$e+TyC!gijHUQRBpYMukW05l)N<}+O-g>K4duV^gb@Knl z>P|TMe^H1)Cm(#l9lhz%$qKP4yBlk`qQWc1m(Tn{z>znYrX^VkHvesmL$vkC(?~&L zl0pQM7`SnSxQXr>1U%aE*c)anY|*Beca@G7>a;d%vlUiLv&e0C_dr(HCQj9Fd`@*w zuAHvg88R11!<#&Pc4hP$MS~l(kvW9OTu;G52zSoxD3Uu*P$>c}4n1mTolW;8;H8%Y z8%$ENdj+%_$7-=UcDs{o{T>>I0u*qy#-}RXrC8?02)>xn)_bNCVx-X(>;@4-n2yv% zn_!={l7J_m3)V#=a7~G1fNHUW+l&#rIB63J$g9sp0+=cb3Ak-PJ_s?Aj{5gTXZRK@ zgcxBrF(t*lC^((n7RtaoBap00cKtPx8nl~@SlWOwirT(TQG&luHHn+LUg_R7!2vLuM!jfLPAZ2oq@k=Sc=!wshzRI~zOQ$ws_#U|= zq13U@R6yC@c_2i@TzNJYLU@Up6e7@`v03VpZEy@Jj4Dnrri!J>BFNCR@Nv~~9F|Mr zG>*nXc-4W(jYN9Ih8zMyNbx7^z!y?52O3F=aRM0DG?%Wc4Ae>O(P|FG&&NCXO5 zW=Nw7jo*t-<9DzS!tFePg%Ht*DKkelhFsXo%YVvyY+L&ThU1{OjXq#-3N5afdoAO+UwWKh<^vBtEp&^5UR zcR<>w^Fkjryb{Zy2zEzeA&jeGF+@c;qXSQ83w`iFDNQ2JHKvIrBmhzoM9PtZ|BK{E z>X_J#Wl|_(ClHo$@mueAepe`Oc&&Ug&3vBYQ97|!UBGitSQ&!%06H5p-b4GIyM@5aA2{3i=u5SnZ&oTC-&dt7&Wri?qaAVr^M6^S2r!dup;m8cfy8YN&ZLmL);-o3IdGq7nW{xHy&)BOrtn*J5KPkpiYb z?`?-u!9h7q{F!3s?!ggQ@rSovPL>Smi}4te>u3x)sW42BVE61D9AUTD#+~MT0c#e* zvOY&40x69@Owg$1OF4JDwx za;QW2spv%i919@^&rc{spp|3ugJn-$cFX2se-56DvY)!_)Xxe{ zeRRAro|IA5$6Ux0mjIr{?x0PPKBdfHS~eGL@$zr^I7hje~p^j{0-^(*3OIG<(ui@&-Pq4o}2diEypQ zQ-~J2)|qgmg%q^UL77=NK_Jt6K|J*4&jK8Yyv9s&s>s!@I%?00PUg8-2r*uEQ;68z zXJ@Ys@BD#Hdy>sJLUVB}BB_MKk$2XlZ@PIImMLMmmtY}`lRb;BY?Kmk?>)f=vio4| z2aQqQ%~mu@|Cj0#?!zr`rX2Li-0})Xz`uC9RX^U7>ZdSe=5j z%x8A{J1l=f1y5rkyedGXQz9c{;Ti!Uq&ODa5uTC#yJh7p=r!O4?BXw+Fog8qUHZlC zQxCc_mN2GUeMU+#eDbrEAXdbQz;X)F!u)K~mMy!sO7p3W@sOK;1>i`GH6|r<*(23V zY+ZEPPQpTnadHBMh&>aVv~|no9TL9-&`=yXm_NTqsr+WK^o4kA zs4>Tx`HNyk7 z`6AE~YEmJzr%AKFB_Geghqu7lws0lQcp?ledPvGb}}!ewKwGY|*tTDr1z1#UYh&8K+tiV}vf3<@RWu@Iq^fW8p5ta%ETl_H}@d7LON zkAUlqDPt)ql$WaVa%l8Gk4pwcBX7sjDKzp{3eiHJ-U&Rz>E;5QVwBv<$BmIXjgs2W znp8OaSac3Qf`t%PeHT+h+(#AXi`^4?ViD$-i9Pm+MEv)R5x>B-lS0ocLN($PXuOW|cE2Z=QX-ox>#n8s7E1@rd)5aAA{2j}lP{3cY z5MBi!CJSP|!TcElLP)`KDFlR&f@R7G2qDGGuypd(haa`}EZ5BS^;{uKHfq-wAc>Q2 zt($2iUV*Sx+2%bxJ$7hxfcD_~A@ESwI-BH&d8h5Zj0V}F)21_oK% zY8LZ8EN_DPTd@$vsh_r!mS|Q_k$%Y-y2Dy@F>6)i#pva4iYH7>2ONpR#sav6$(yH> zK3GI$%`3UW68PPS+1NrXgcv{bC`9bJ0-P_hYKdHxses?k_0A-Nt$u-sZGwFc7#FB!81Nri4XFD@DrC zWt#$wp$H4hqEN*7SP0{aSkxQ}#ZqmI;qWGdnrIFOkYJo4aV3^Up^3|}5XLpJdc9S! ziWw3a`1_o>i|Dne1bMhUv8f;4)Q)2sWTWAo50SkqYG0i?j+vAZ2X)5zDer z)H7HJuc8o>8!Gl-1Y7k}SH8D~WpXyp9BE zQp)9h=0gXA7@9fz4X3xgtd0D~Uk@FGKhdX$R#B`LPK>5)fpQ6n4TH9Kf%^1#$ju)M zI1+=6t|XjZsiiWkO=X~Nq7)z=iWCENJr+U?k&`Jz;1meGr@j!jAM532Ei2+!x0Et) zo=0|}d!Y3=ra>zCi^v9Kz1%DY1OlXBpMVOWXkrjcqtJxSXbieQAOHENPPmdtUiTWx z)g)i>7GsP~BexNoO)4B-6P?4Wun@wUuV8A3doR6xS1-Kf<|)wsQDaPZB;onCjBjoJ zyRjSzQ@s-lVV>sgBOBn!p&`kjzh#i-@<@iZr&#khup9}RzmA3Q(u~M}L=wgP5&}X< zF;0X)7f0at9{C9gIte8{jr`vppVoG*sVK3$c@L5wl^{}(w*vy*+`q9}6^8LIEJSFP zpo8{&QcWpWte5IlxVcud;pJuJnU|z7Wh|g|m00so9$z%C49^6}pqYt!6VPQ8Vt+_L zHy9(7TvhYAN_9$f_D;k?2pc}0DIo4pJ(K470TZcyV^q&#xxQ;Qr5J4n%b9Q;7hoa0 zv?Bt7h$(F7ARvSkET$kJgcNKBiGUDNtiXC=zC7@M?J%7UO8MiTQcWdCP-7qhJ_F#toJ(vq`Rf?iWvo1|ueIofM*l9%9k%N{)Jn z5jd-oDD5pKs&FX-GE;dO>j-09E>7-c5~PR(DUcxLNTB$PRCI<9!$JsaK9ngb?!<0k zQx(E@_yogVW13jxXkyTDUO@$mwqscoZe=SL!nh*lG}Dm8Mmtl2(cmpxG;B-VNe>y*$Qro6>8z5F9bz6DKp?VyQc8`Xs83^A7K(ZR z3t?PQE7xV|5y(yZ$oa2aEzvwpL27;x_aTp&pBvNAs-#6FN!eTy_=7c6E`WkSJxmhC zeft5D4ku@J^plOTnkv!%pdJ5jXZ^ZXc4xtU*miUORCVzi&zNbdRfEkKazCQPIz;y1f0gQ;RTRk+p~dturUQ4)+`K3 zB}#ddu9RCMWeBYTu_DejR$w8Ft7^s0=CTD88X-?dZq4n3k<>h>B>T40jVUN0Rxy|y zsUaeVb3Vx@JJ^KfRE(hYSP0{4Ib?mQSg#)M8awc^7epR%AfBklwrcf?=QY(m#T8+b9yO-76K(Pm`C~Z~K zRvHR057~Q5l|AhLq7q2^aXv?#kBe?+M^lIv?p4g(2^T&o!HEq8t13?eUKbC|`7;1V zBCjzkN$wfaaGA=`c9pF1oak(xjfD{7We0_beJ^u1eZ`6du(MzxLtPDj12h}Qo~FwD zoFuIyN+MXvX<8xwzp%`S2(}LkVVwLqq^i}{QV}XkCAM3&%pi~n6VRE?b=`|EBlji-qtKkBIXkRbYVx0U@L~3fmE$DlF}2)j_A5SGKjSxqS4J(bf5vmbJB=H=3sp zDolfDzLt8s)oY~j{Svpa|G*FD&shZ@bC<)%2LLAD0e>PuA5Bo8kFl@&*w-i6*8}v6 z6;9qp>n3kw7nEMqrmWFHc4I0fdYjmv)^AdGfXPyq|iUp{p)ztk-XLPIXVNoUW41h*B|KtPk};G0|%j z!#`OYnL`Mt`D!eLaNW#yBDwCRREjvQj5^fGXDd%tzX4i`BT-dtU`mqSVOI73Us#HT zhuepR5Q;WLac3{wEh;Daa-QAh_Z#CGp06WKrf8Ggo*y5CNJz){d$3Fivfqt`Fiv(y zbBAAwI*%EndMZ>pVjKCYRev7Kk|6rCSO_oC2;U>z7t09S%(rz% z?5A&rBRu31lm(~3<>F*7#$!v3BSJ1z!KMtCLdtji@(1OAL1Hr#8h!iJ-I zrSD{DGLFcvQa%%w_oZeP(qD~bOc?L0un@*c@7`f&>Xj-fBjdL~(r1i!*xPEh9K1r3 z#_}epe?1n$IQ3IWQEDiISCrSJt};e>XOdK;W-TgKeg&2%LG`6r2;)>wS(nM!p8bY9 zjq%)`v{-Wr$#-BG5+vV-g)mO?>|Q9C3Y!d2P!lStSmb!C6gIzZjPNU#m zC8);+2NLA8MP|SII#YSel4QmaAtk3UKF1nofE*DM$7xsyPW4>oW@7)jI1z634;*1F>_Cy}o$m~hb_i>~|?F5h_ zjwMx98LLFP0FuA~w5&~voWk8-kc7P+s%}Xghviim{LxqlgQ{80P6tgQyEYR2=TrLg zt^*bB(?nh5T1R?s#VW(GN$K}&t~PS~qA~Y)QiJpO3*0|_!RUAgj2e?@QK;ol(?n4;Fywh>WIh<&z93I`i{hQI2iBsq^xH;vBm$ShH6-goHxc&oEoTv z$OKSA_3N<4AnfTJEQC>e3b2^jr?8j5(vB09S0et~Z8wX#-Kf7azV+nGfP}N18z`a7 zb~;6E4#~dB&s6(NSkKZVV+by|^Gu*BYILX$>77*ANX4(O!$KG|AjbYYh!yNYU1kI- zLnJm;D&86?U#5!C>3`T^JfFmeX6vy3k+NCq${2nO%bys-pT|NNSHbLc)v67*qah(} z-iww7!ZXJBpOb{U7p!ULDzs|&|Z8P1BpB7G4Gu1MCk>K(CUe~p(rXGJP@0m_bL)ASzGP$3O*xqk!% zNYh;cDu9%;`%HRPfKU^~7kC?_n7^is3S(#dC>lVp~ zuQAH7PXWfOu=EIqufRfh8Ab#Q5p$RuLO=*97GXQWW6uAz>|A2NjASM`RuA>Ziq$e) zn)cj^d6b(Ly%lp~jJIMQ(WcEeZFRjwR4UqOQhK*i?QwcD?)u%s+G6m$MOgBK6ao>- z&^Kddz$y{bRzpapaYiiHaPYY! zGv=u1dZ%tk<5nZ?$xH0m41+4qqDSuBv#TW6hkNb`F_@%Sz8?A?N4BJn-+6Ev0ve|;m%19~8W6WTPR43L zxWrde2!u<-mI0sF^oWGrW~m){Ce>$**!hlQB=m~b6=u`XnSDJLLX5E2GUWu>b}TB` zlIyF$DL2n#_No@Cpy0HwsNf1Lf5Nyg#X=ZY!5sG}pi?oA0`4@XfVt8bfUTrDR3=qJ z&mCCq1pT*RA-wb>0)&V$%)=odgcRe%80F+3kzYKZ2!xG z|1w7PSeFG~z_KKWejW?qB^og>#MojJDg=a(;*;2!2%nUHqO}XbGhy?;n6)Zdzmu9r zT^~zE*ho4{z(Xadze_J~^}t@g)UY(=^I7`s0b%r}Ej$DZBRiZzv@kjB?A=376lHQ% z`8~)T@erF|2RIUM4e*GfNhJq4D>{c;un=O1Y^D%#PN?ZwgQa92qmZKqk1HdI;VRwO zuxs%6$*}w?QXK?{W2U3hzl@$hc7#aLH&BPlO(7J8RIqFcqb^|~j4NdJ#u7POL`Qiw zu^Y~7%7xMY+n5?=C!r{M)4^0zWW!0#2yeg=C%Atn7Q#69^F<*&QeLd725G|o8Dsn} zaMjZz6~>yXP?hj0EQ3M`_hTWvNnSD* zfOh^@toi%`BFiH3u>?Ns{L}FNpYam>m;Vj?snOJS{&(=VYxB>*=Qa7?(?9IEG(?}lni(IWziio-8%>Eiw>tT@G)!L&WX6yHHRd?_ z5{dn|8(*)&YElfc#A+&QKiyFg{eLv!QxS*r6%}cMaEGf){PL zG9^bEuCIt91)O0%zO@lGv9(^P=X6_&)Kq0V)-l3P7D_9!}6r$zJjIF z`$a4_!bHD-g)mR=X&W|3^#0x;y#twyO7Cy6+z5JqjfL>ii-;p4b7X!90U@Ng7~2t^ zIqq$3D1x<{43rroo7%or36nR(GE{vpLz0;QZ5q-kUY}6%nLg9M1c-x5H-x1vqYy2O zHSP4Uj3rN?H^jqh{wTnaNNaSkcW0qJWfk(2=2g=k@fna;>0H@)Fdj6~`G#Y1WS3BZx4Ys^S8O3AHm(yB5#e-@p| zA7dfJxcC8uh&|dYT~`^XlPyT{oOYrF$1P$04mY*QEk4<(C*2rN1X4AyENL}`Aa^IJ z5MvzKd*F?ssWeyfm~d<-~sHQeQS4mGBOS+0BpZe3fqz^tgb((5*;bUX&t7=L|Pa=Je8>h)OD5b^4@SO}rl zU04XN*Po+G0Acmo=}dZMSN)clv?}%kT=_?HvOE5Q>NQw0g-Wl&LI{;!fra2IJ*mYD z8JnT5%BdA7L=P+33Gy_ttlLk3fN_kgDIbve&{)Wz>IMduhR za|@u+h^hHpEQGM)ZVC}-#prNLi0-c!3Ld6UG{!VrnQyB0 zk;VMoIe6o;UQ4jsfHWK?c3FkGXT{|LV=71{iOV3@)%G$`Qv7ZpiH@mZCW_+C&%-h+ zlyfc?!nkr~t}EoMYQW{eHyYE#tR&QDwyI;T3|xlgOwfJ_7Q#zAVty&6s4R#eAcPd- zgmSDCT<%12&pWg}x$1q!Y+;3n=rKJ(x=RV!NSiK6X0$D z;-7DQ*O+z=9a}qNn}|Itpy?NE>v)oazZqk9jE$tfM5pghSO{U{ zf51Wr|HqWLKl;Dfr;n7$3N=*wOPp>OpqQyVKR@WdO{Lv)l7mjusX^Yfl6kCz_9JHC z%drr`1PleA)sCBU&KT0LLo!9DRxsJRkoJyFGp3R?!qN3N4?WTVMDj%_2|3ma0~@g{ z3s<)e3*l81VxWn!%9d{s5JHNNVyE4FjqZ$=E~j^#24|+LR%Jx8vP++e77=tiroJDoiEm-H;yk zbtLf!xuFXU==#VYV#KCaE1ubT4@0*<7rMkg&O#gxb+^F#1M>_*Vn^qU>CnAD>V@|U%d zIWbcUxoRy9XF{>w`rqy9QR8A_I_XS-lsvBXNPj89q7)RYwJH^hUQ%1@ z{@1nce_d<4M3s!#i7&!(XM*_doN|2ex$z4V?V=F+o(1FH$966Aw^5ST5srfNb+op= zc!z)LnC?;9ocXFezY=gH{WR85ClgAuYXkbK_@*9xX+!#^!zps0;$z(o8C&rQe=^pl zt-ee;2c;OKbS@2YyLY2P+q^J=*Xxto0h@$&r3j(wn#L4}_w`C{)W-zQjBEm~UMt4% zT79`g8pAGaWGtXL_R{236{b!XNG_f_PYk#5g`SOrIDnV8bu1YX!_6ACRXiG zxM8T2laK0uANrs-(0oTp<5a)dngwS=SmCECnZ3cbuQXwE{qx$UY*Li=$)cXbaxSu{ zZ&8T-A(&3(z4lDe{-v!GK1@Z_d_kKgU$y3+1{_HxjV|i^n(9)*-t+nmhjd=gX(KDn z>sboXy0ABs=EqIj_GtOgn{`K?qUD1CLT^eDR?D-gmL>7kK($i8`H;F^u8ln5x}F0| z=QWGegAdU6&glAnjW#V|^*x{JTj_$T^KJSfgw*+&+Q!efDp;aH?WS1 zNC9cV%TULkF>`!+`D)Tot~w~q+OF5OR9`b|Y>1c>P{E|=da3p;+=-IlpR8hRuhnzhBWBRRzbQK@bMpj(KT@<2q zsX!Ntr9S%oB}k%|fh+p`g*G2y^*hs*2l#9Gr}}M&)bfwCktbZsvqS{-(e$i$N7nRo zfQTdGQ%CX~PX^$x?N0snLu$KS8#zGRh}bQ{KMMs22oe6@j5S*x{u`)mcy##hDwGD= z($!LbZOGaur2%JYo2#!^X`B%;4FCZh`K0LMlMQUaT9L>GHdBcGAsd+P>bWN=sA%g( z2^uABs(jU(KOb-;wKQf?SK<<0okkS&8xQG6a@xp>AL*wMt;-GOu-w2!m`B_11%V=_ z2)Ag{5?0%6>Zo)<)%i{OB81fWjoQc)uJZ*VQwY}k|3=sQSGB1LtM|p8gu&GfRrg=g z7bB$ZAJs+<&^;pPi@bpa4FrV98&1V`gy#*{wstpR>ds06Zr4^z^6RV9ZqapBzV_BQ zZ=6FK{jhmZs^l($gBnZ_;zV3*+!TqH`6<6VW!V&}Jp98#o1P8%|dhhj6LBupy1(Vr}FJ zH;!43aTMt>X8FOQ`=Xo1z1p0FHI0*yrqS%EVi@=6iyG1}KCF#A;f68SF^pP?=S-fM z^7H7%@e^%c!WswGZ#bP*gUS!}g$-#Q-_u5(aPye&HjjF-zf{QD-n*M!w?+;uQvpIR z3lD1`>yh3A45Zmz)kLP~iyP8J4%9}Ta1-fvo5--8@wksyMYoP)v`GnT9Vg@kl1=*E%JCMK+L_}m;AW2M2Fnv%tbz}({keQ84) z$a&hx6K)_2+y>%AWRHnlAKgUWu1!r?6WM_EAFw{vOt(}o@>YF$LmJ7OwUH;>NEUgF zq#2bxX7WgMGkI8>oUmrHDUz8qd#oDDgZdJOG?Y(jBTu-YxMnhRbg8MxAEVpIGupg_ zwGs48rrBB5Jbt4uY)JF?l{WH(o5vEzk3bc&94t87X$aI6tGLJGNfy5+@^oeaK$w}% zoQCuy-af0wGFM;bkjB!jjXdGTvdq_5*#48pTuzH_E*rH83hPuh$6zje?~m(5Y`Cn` zmpY`uoTQB$U@(YnTC&H=Zm+Rz9|VNh>0O0g@DWn5&BaJk91ukcIHvxs)>axh&>oS? z0lZUtg!vAS#;g5~r!{Md_+49T{@Yq2k+f~;b0FM{R*z>&1U9>1bmQoPi?`i+M4Quk;hD_-iuSP0=Cn9W4;57$PK z0{p{YT6>LUs&k-9I>h=s^g?fY)7QEhuNvn(3c21Y9aqRSuY-;2BA&w%EnLL26e7?? ztRDLr^G18El&Mv0D2dduyshn$(bf6!3pF&la>Y!cp0)eoiP-8Wyk*`vYaEUoO4PGD z&OfbnT?!s;oE`^apH&4v9gA=v<}lPMq|f>^w!|S^GnkAvw#ETRO|Ujnh7Pl1*KV7X z%iK7WkEIRvs#8qtN!4<;$I)GQdE2h!NVOm+_R%;q4#)u;u5c2xSo8sP!Lm8>Fw`i# zb@Q?|@?T?f9Af5%tbw?cT(Cw+0nWybI0P%e6>$`FVb%aDV$hiqvmCi|;`E;55qNOQDtS{&M~+O?R*85|rX1>s|I zEwr8rRG81i<_GGv92C488I8xy?}hq+Wzt={(GKpQl4BurTYm9-+uE)k-Iia%znAjw zW&C?N|6akr6a0H6|6awvll=Q2{(Uh2K7@ZC%D-3h?=}4UF#i2={(U(APVw)x{JV#L zA3?wEMhDy$%G%}H;OH4I!GDcOP-nAmbX%i6W0h&`*lmr@inUktwVuCgWn0^}{N41k z9rBF)G{AyH@tiZ;+SXh?O45%1ENg2U{7n8O_=1EY_OoySIpR4WhhC1TOk&QaU9oiX zC*R|d2Lg^fiRn?-YMjWuR{Uv$lWr<=ogMnJg`Df0MUlryJA+gkyJlV07t&CQtg0M= zy#hpysN+lZc?_xJV>NXQXJ2U_)#ciY^<@mH>k(~aWnMc>Ap*y{VWY@q6{ENp1d3=B z_h{4NJHO1U10Q1)q>rjmd{|$`kVf%AZR80zirJ2*gi&N)sMy3$qT9p|wOI*k6F%1> zLY zZQ98DnMtTOYL1C+60gu^#h{lMfG(;gafH5zAx$EsjXdEdG1u)?eXm(%q8r5p+Ps7{ zisSTiOx8)&EY8yxGNf6YtBpM2W+CMh1vPlQJ-Si6RhyNtMu7+(q>HLayjfqwkS6ga zZRGvTB-G&XaCDP+P@5H#CgB@AKB+HaNR#-4HuC;u5=GTZJQLj{exuEbL6aa|RK3Kn z^hFG5691=-JmDrGEm@UIdzER&g7-(BcFY9`Gt&;l>IChhY82i2GKMsY8QRDbZWL0I z344d?n$^bWRV^8^?V2#5BM*-V@z6-mT3{Slc)rVHx*2Q6;xfa#D8&A7s%)CmZ_l-- zN3`|A2dlXD^sqKjzN*dN12~dW8Z+p0$`M_4Vh`#!9ny(?QX5%uVxOQ8tve*v%_>(r zba^!WM-V6C5wT~qNeQdzxm44h4ygM6jlKXO_5CYt`(j%$zdoqnsq>3#ZghqQuQwUL$JbTfqr^boP% zR9NUW7pH#pRior)6e~UQ9gr%bwLGECO;}gq^C-H$wK&~YoW|q&f`>GhuW2JsxVgOC zV=i#FurNXkcmw4}rOTC4-iD{QOU0_k-?ZHx*@FJ9O;=b8I#1mO)V82tCR7jfFa4f` zG^rP~ktf`wmU~R9zfu}XZ`jTf7LOIBqFd2n01?OhNR3+CW3VEr^Qz$-sxN#)hxDvs;^)ux{s!7!0P_X(ep!)E7IXsk}xTdBRO4=`odZb52Og zCqVVZs<*n-o1)vzmD)6gwVShJup5;D)!SUI--D1Q^agF@2{)ltK_&!sldFYX#%n>J zh;Bjuqs>xS3)&f{1vLp!4d|o#9SCVacWWb0xB&(FpeBFbl==UnThPz6X$osWvHBo~ z0o8CiDYs#=j1ps*ky__|FuDcV+8l+o zpdB$=kncM@efr{uG@i6J@`M}DVvq4a`1g%oH$*p^cWSc})@Ws118h#x@t5J>5CrHXg;ltJmE&OKs6dQ zGW{vKz5GF&ny~f~>am1!b193tQ13P<*o$vK`klViAx-6JZR80zl{FqyaULh}kn3?a zOFtNScC`o~%*?J{7lX42;z9L1^Y!}?(wydKBL|oh;s#0bB0Wb-@(+IvEmltOD zoK4R_Inzq1knS%)VT4k->UTih`!j1nN+P6mgvsZKdKPQT;%J#gA@ns6`@xY8)@P4P ze6zM{_-GZ!)8C{`lCO62!+;|xq%n=UM6N5|t~eZarGC31UD)N?$chVl0~SI!4`w-$ zoX7c5qyXn}|KyfBkI7c0VvR_y@PAv&WReWi$5VU> z%e3$mk5Y*Jz*Dr-E_)osAG8&rIEvqCbL8(RegHU|7^k&7}n+y@2;d`KDRJ41UeQw@hfER?qCQoj%z4BbhaA%bx{C zOy0KG&c9#7zjyHOUjDt4e%tvo;1}s@68SUXPuuca=;u}n=kt8TdiXWeFcV&u4YNpI zc2yK9z{}p;-cm2ywau>9z{9FZ**@q<97!2_Pciu2DaFASsYK~;DOnv$xA3hM3K8gA z$9XIb?OeBwGxppxsD9P`uWOl0Jv%-?_sd+a0elNEMF#M#^jmv?UdMy!z{-5`mcZ7X^1owPI2UwC;F;K+HdPdyt++tOd$Jyeq7JM?7? znH1kfk;fP_K}wE&#bdsU0q1&=XIk@JkT#;azpYQD@3ksb-99h6OB$B`;@4Sq-S?aN z!iLoQ|7s&ElcBFth`>e3*bQX4n=^WnzXEHB1-m#<8}uITJK)a9hVqg&L;mw$)lg1X z_YNf6kp41Or&WV_QD5kg2J=sC92nZns%S#auLW&Z0^bsjwGIBv{mwYA- z*oC^ZGJKKt0P`IkjSVz6_N)xMDjNAM4!iz&Efq{k(|neP_hOA#%tdMxVt>f1rjRas z@~B(2wZTWH*hjiqn=xmlg#rYG2>%yiJHo^NzgoL9Jk1^|*GAgX zh1?!n$^wr0u&!V7H8uY%AQNVPm`cV3lcJ7K7VruXRxhFF)+4fjBPhiFkOg#!j(cLo zYqfR4yD4&kUD{0fsx`j}a3rlXSga7TtKOqmzwMCTW4ku8;yt!fh}LBUvsqLXe0g+z zHOLb&FLOkaYK8oxvvdBQdBdLu$`=F$4cqig+R+RTL2`XWz` zAbO!{{v-NQgw*_9+Q6P8ht2K<3S1f~IbGlxEo^6C6I%Oj(WBSQWXoYAe; ztYQsLe@)z9&MyTHj=f6q0Gc+BP?z1t<}aWLN;RW zE8CUakX@`czHTt>%a>$Mzgvy63a_IO!MQ@q&SP{od+nJ`T&b-TWxe2X zZJK=3yL=gNB$YI#)7eB*a&-pr2K|;p&LI9v8(En_?88C`&%vxGlIJ)liWIQb*xAui z&(TFrg0!Wxg|d~|BYBTUp(Am4kBxrbBh+FeJ*2`VlkC*Tbv%NlUAT^iDMX;_XknG? z>8_r8+{e?}T2b7`FSV)icOTyd97!#WS=4>FgjYStFZ3G^=|O&~jjVW(A5ny0kLJldXfx9%8Jv^@(T^zx~&+Me%PaCCJ+)%kRN5kl&`QyY20b?$mj&_$X@@25o9 z`-$4rgw^|E&yu678>;S)*B2wC?vK?*4$wU!+>4BX1q}p*SaW<3>$vz_mo4z!Nx_##*WUzr^b&SO*Z-@{N?2XH zcPB*;RE>XCUxJVt|B^QHglpWjJ1IExX#K_LTK}guGhwyv-JKM@P&NN|eJMg}{;%4| z0h&jId66lwaDjjjnZhu(BRo?$sI{w-(|TP?-|lx0PPj+cQ~4SkFOd^`rIJ*_v0$U6 zqTU;H{%NhWKHq5-GlQi{(HgQxeO4Kc1HttsQ{0k7)^Ie12+SG+!%6(N0vDy7qlLS3 zwZR}|ov*DdC9J$on>Js4=g$BfIfYn9=OS(kSnI3VwZVPm(mv!Il0HXY+K`UuY>FJH z`xdS+B?I|bn|2o#Z~&e`d%GWt-$9+HccyV^;)rqEA-_KX%ClbBXi+I zNVu3n1bU6wZxOzH48x(GG?UKMhv22HtS3*o9|VnPK==KB>aGJ$uBv)3kluR%5(1%w zl8N*#kU;36Bow8Llij!38D?jeDJdWbR*(Tj7gQ`*P!L2B6;Tkyf`EviD2N^YD2fFI zK@j18-hFrG&U^R1+4J2yJ8$v#GYd)h-Z|&{-Z|&qcMBXYZW=ksIgO;!Vej?+=1aKs zOc{LvMowHtyRc+buJ%V%^n|;Leg{X3t0Kb{TW}guDkA4~5&arBo++YV!pMn>Xs4k? z)SoRx6g2f_=R7otAh0fwtDxiCmxsu6T|VP+%bD^S10yFcpCv=f$56)(a@WuPaICoc zF`VITn}K}Sbph>zo6Z!_o-lIa0%GJJy@F-k_0tQ7imRVC<{xAE>c%Z+%I7UG^6No9 z>ocWD`MTO&J|Bcbm4JN6b3OaKAGe$-pUYw7#O2ds2yY&Nea~Gw-+{x#m5$*y0km>S zuXWjc3%8mnn{UF%iOXiY_^yWnsMo7!-Bt59I7(dA7>)w6P>r!v{RKCgDVjgQ$Rk-a zUbdi%X2BPo2U%MZ#PAHV+8~<1X+6`-#f@f)W)_T`xM;SC&oup+jgh|Q7B!`vh(=Q!XEckrS6oi~M4k=6l#(FAu^o;_9Uh z`NcfF_aoe7reN-ckrNk8i~LfqL_cr7>aLgn!Xe`7r49LoJl4z6e{hSLa``umJfh{I zeaGDOOU?tNB?K`%1EhAy#q{xV2i#(&T(*OeN3vY>S>My$<#Gxfq7G&k<81HAxW!Dl zoB$)o$i-qcr&=pL9J z`Od0y_Pz&)$;fc-R>BEUBKOVLE!P{R@8C~nrm}Cr$XY75&QPHeY@HWB@W}Z#skS7$2M|5I4WFi7;Z%5q=8m@8TZDGWr|}D z7+^lWlAFrBPTA6xsAL*@#@WI2h#rO zsu6u$<*ttpz@g#lV}-pw8vg1cc^_^sQzSJQIdPH9YZghqTq&QM_D>FvsN}ouD)}}X z8?H(Yw^xaBSeMD2xWP=Bd;>;KTqbjxWzt{l@zOoTN<<|8a2Ls6;mB}BvfN%Ib$4}% z{24cwDUm48is6W#f~^{vjG>U@G2o>7e97#3EiO2t)rs|#cfZY@(F zGhyV!1)|0=e#qzsg-HH5+Fczh;iz!)heNCCyQ)iL1#T)+8i&HjiAy8Ys`~NDUWnVt6vg>4a^j*; zoknA%7pWy*c2~w1;ka;>VcTgmoYjlTO}Md4dE5Xak05z8#&{8V{MKC_zk=g3-12BR ztIOjt+*qbOehwpJ^0;bL*JfS*|IQk0`!W#q38ra~7g5T@uR1rS;|OASno`?OFir02 zS{aR-%hbx|FfyiCE+?0>*bpVODAl(OkkrWi>ip1V}m!eQb{*Gv4+vvX=3-6%d`<&#`@`rzf3V zzloOX%d6eebpC9GZf*0@{a&T7*i())R&OQ?9d~$~2FHo35JO|ta7-y=XrFb}tif$& zs^%mZIYu=WBQKv5M<8A&sDKb>r8LCT$Ug2b0Eva7N1OXA-D|D`qOl-IvsUaI-g0vb^ zh2v!8IM+isAx>&jL`G?tt|yWb{%B?*DZvD|psvT@hAtf*4PwW^|hy1gYFe#)=L$>&;ZJbrM__BZ)0oh`V?{Oqi zJPy;KC5lJk5E+@w-9tDbI^>adf+zXZI~y0OKY~A%nIj&Ck+mH0pe=;T5rJx)a>N&1 zte_k*s#z8PATH4qjj+8lVEFqi_E4ARHL}k0)VC;iGo0&ZJgpsx6@dg3Wxh8Us z8r!LuMflE=O<1+o`0j-x!{vK^WQ3}`(3$VXtza_$78p5(d5fH{%0`epEFjbvb(*as zz7gt-{uSH)gOCGC7aJyHif#&8^{MtuST)ejukZ{^jS6ZFaB6H zlP!3qR^M2w(!fxbGSrUG+6G?Lj!z4S&P4y3ZM(X5zIgD0!6ms@7j$*?-I05Ze$XmP zLCfs$&1)u-egu=GC6#;OkQsT-eVuSZ^wjom^_^8Rnlk$+tyI104{$4)N$0x)IhOAZ z_6m`UjU?Yq$Hq19$oe;#jlG^4^Z&wQIxbtNc%?!nKX^%vj`!}Zma>Be<_#wYG+y&m zOXi!r)im%A++L;z{t6>Y<5bH3vw(=r&23*gAGv0_Ar|`RUdeW+Gukk9yW5=wvkgID zojEsE7`BJA1*1IHdzGzmimnd9Ivby6~gO}b=`#w}(_W+jZA zxMa36mgkh7UEb<0l}&JXxKc6f!{BBY@>G||dfZZ`M9MJoh?R(zO+N1~k5>4Zc~ zS>!XgrA&!@5=M@Zh{Xt34U&Vd*#bg!Oy9O`x|9{cSk1|bYhA3Mq52m(`xR&m9YI)F z=Y>Y<&%-a4@vW#GVm-SnjS3C_45RaZ+DccA&i^hTVn=J8>%YeZK1U|`=6=Ju$(}_J z?P#*MAe;~(wTWUpF1eCPL5;Ad6;QtcOEpXNPKch?(|VH8$h2PFM=j};aVwcgXFwpw@}1nYo{UA)L|5~)-e<^c z?Df=`|0Et$a8^l8{>!R5nH<>A#ZDHiZMHBgOxtbzI!;VzOSgcNS*UK6>MBHR!xG;fRtfaTP zR8GRJWlCigjGVYs7MSx(zn{n>UCle)g>o?*Ag)jhr_pkSB7D_lav^RjQzqxb$cf7& zrVKR~@`zf#?5>tC!g1oN#i0x}yR3`mCfsDEXl{U!6Bo_a=G?C#Uv}5}}N=#iPq9aZv z&=}eTGbG>Grq2;@u#6<-=A<1!WXPTF@TeV5CPr6usWGHxF;-3^s9^l9U!lco zyWHuVOm-rOwv4VQzTslCpG~n5E^2vXd)!E-EVhM_6PLvtO%~qzYR~=UUhHz1n#bdaUOj-OKMowH73!}NC`JIc*eoXw9b3;0g zAcm(QHC$ZR?24GUj81l?n*WAAUKx!W%M{AyFmmET(Ta?Woqsb-D2?pru9Cgs@Nmh2z6jiQzkQbEYuo z66LC%Nz%BfOp%-kBPT8rZK|vuxoWvwdT{;%%x`7<0Ru6zt@=NM&5b6FS7A90hJqInWVPFytFw43;z6KZ+q-{m|o znnMu7GcdB6b_;xzu~%yWX5v;dg)t3APFxuCqS>TcSeq^ML>k?d?%G%Z$A+6htS0LN zH}$M>C~hWG90$Y5G2*aTPNr6*1^w`eDQ3>I#w7BAie8wln7w38Ecc zuKsq<6Pz2I(0Lz+8^Pp#G>ja>yG40d9YRnjEFe^$a*3^geJiL#SlQVQVd93qY~G_5 zp;#OU4a|;*C2PzvwbjNJ!R9I{VQFA!s5}{ZhGT5iqd9P`2yIB!@qnnM~Hf$XYV#v4v2{Bv6o3GCADE3Q8s)>+F&L zJw zTbZ0c2P136=2-#Jxt3yv5=Uc?O7nSfJAcPn8#@w2JBBN|HVmtkc-m;VswITQxUo!e zEP{~}7snhW4yuiX^Z=dh+8;?Cr;=Na$zwGf8E&0eZdWH#Y2~h-KTgEWWlH3D7&&o? z%xy@7KH7L2)71gmp5jF`@(y>6Tm*-Ps}aMYldL4t?5{483vhdxA~_F6PFy6@8X}Q7 zBs3tW=?g`o<}K!!$Ym9)POHj+Gk<1UZK z;mC01VOwCD+|_f(qqww<8_w$T7=;_l zl*eW;a^mt({Rc&?TIen2d+2D$h(h*tSIAy)Xt*iFw*P4MR~O0dxV=n~q+sO4MKZlP zhphLyBl75Rmq!K;3RfP6^Cnmg2+4yy)rE03ZYfh3XTZpb3!^D}(A;lKeYw(I9#_Dj z;mX50do=m0i{vugUZzMcfsqpz$$XVPM9_jNqaAX7m%B{vfP=%8iQ)cBUKR;?tPACK z++wCsz6K*FE|jKLRfJ8iG|#wetQv!L9ixreW`a8S$ZDQWboU^GbUGnnP(5J3{kssK{a-+s-N1Jj8 zEqTkX&s4I-LRqYK>#Y{(cZ!8fK1DloQ%!%I67~h=g`{do9{;cny-FT`6%et>qk~JK zCMm}w31s&7P-e6QGJ_!6(Q|J`I3ZT#0$OFe-aAjlpUuo6lVD^mhm02xovRTuf=w$b zUJoYT3UEs90d1D)}Ma0{4>?++s<&iEX)WhIvNqC4w(I5J$; z=L^9K(-WV^v zj^vCzVK%g!@dh|dMnZGj5Kf2^Ia^VuOFsC{#*Ue#_=A}VV;2}%OBg!|h|ZOTsX?D^ zX8A2-jN>rlEI1@wmS;2#Gh(@ZGyZrc*QdeAiE}+ub?0WjFL&qry>M8#e9wstFk(4> z4{idJ^LN6?F`QdebJY+8#lZqXjV{L8IwD6GFOQ-N!B!vJ)wT1*gBJ`g$-TOutE=yh z+-vmXtijmiWwY^f^M#b%M~fsCY6l)553tl^)LCusA-3WA^N#*?CF$;brd;;QbY-{S znS=_Cp$E9nHo&R}xJN+5MtMo@p+Y16GVqdySroI}^lRytar93+7T`= zLImOx3VBdevnrN_{-tGzdV(uX+@j;*Q|xz?O>hY~Eu0^$9pb`P z*{e9d2L27x!VafQDy|+bSF+vCuVuB8&1WlAvYfK$hEir=z<0~b?H*K$Rk>%WLcM!% zRqmhi=fC97=j6}l<)A4nQI8$*fPbnIXjW*Seqj|PPHmvdxF5GBaEF=?pG9!P}@^mEIRV$bQ*L= z^4G&erzGuB!|!czdzkI{LV?_(V~V4)?bn2k6~3p|gj&{<+__wZ$If_2h0f&;3@*tZ zjm=|mi>J#6+T~9lvQrh&)Y zHSlvdB3upZ!b=3cTe<{(ikrohz)xW0kt2b1o+g3O_c+&r%?V<7+B&8Le7AH7yap3h zV@lu^7LN(Hi{MN+Cfri6 z8?O`uj_ERZ6K)t&2B*TviOZnT59IY?P;(c-rEo;JB48E+-z{AN@5aqyO5hzZ@(7ZE zo(I0+E`i(Nh_qV*#$xal+$^R9Zh?_UjsyyN7WkvP1fGN=(q;+xZs}Rz_qbV13H$~| zPFw>M*FmOzl!2!5oOd0G8BPT9{nf0+jsZ{RE_Udgxzq=B0a9FrXSjHP3GxIdL(_Enn$$j25nO*TRS3sBpEAVroIkT$jQiZW>bxSHj4NOF@-~a&@iN zB>d1_2;YZe!W9CyJP5~h8QhH<#+1QbFmmEDXtatZ6+G{*f`7sx;i`byD#nQ5@3>t| z5j+DUCoY0Uk5DO9y`JoPEgfuouk)B;Awdk!n1R_NGp}a7fym5rkj52#&(-Vv67h7&&nfOb$j3Yct*Fc!i$O3ZwJgC9n|=NLwXP z_ew@tts1N1b}=PTf{_!Kz=XO4X!&>ZRW~=d^Z!{m8eIODaK;F0Gvty+{-<%HnB-pz zBaamF{biRS@_+75{!ig(w3U3}l1BbdaHE*yKL8^qPX46e&6k@8vQ%tRx#<{ z5k^j&{@IfLO@&Ny4TiBoa=n37lxBS$51)n;9r zb@~6xb$a!=>70o>*;fUm$2;R=8?W882{6TvOGVN4O+3?nBlf^k80=nwBZdeWW#-@~!s(!V38 zAdo{E@xQ@MViNy2jGQ>}GW8dFvi+eqf7<=dgM!HfF+5EnEAOuqm1g&NDqp4aRJK8WSbohqh%&|#iD%PpXc&jtV#tVp%aDv8!y4#Uc6!w7mkWQ)t zQI^4RGE$mbNH`%*YLmrawr;sTX59^cGBb7U3?pl)Yexamxx+H#D#v=XB0Q(b8pqQz z&V*ya<$0#yIhbsz+pn|zCj9wKwoiqT6K8vtI(xJpu?XWecg8P;u!XL^cNh9o5msVAA2V)MAl5|1;EO|A-vHl9W+z zwe9p1>!Rn54te6}y|zJB)&BRrSFU(H>5MoQt?3xOe^A){WAvVtKmRFz{!9FXkF9%x{xhpKP`%@U z5S-re@48q)&Hr_sZT=^(snT-F(js|LXY){c)&uQ%$umRfMU$AWVC}D@D#GlvG&|Id z8b%1y$rUSUs2njxK*Z*V_?rpZe_Z0EfU`ATfsWh^<>h^0%CtekUT~<4sXe!ta6+`y z-l%`^8iLnU$WdwPosIhpcE?R+b{r{zY(aM0Pu82;9D-CjZ9GjSL*`=TSfl-HJeI}- z7IoTrw@x>|&LP?xKIhp{WjCP$rI z21kaQ9*%NL4=Fl(Qo5`qic4^#nL>FNjGVYo!WpH%*yE*pij~Ni^bU8W+zy9^s}$Fa zQukTUC||>EW(wt27&&pF%nD_cLV6%m%7j;0JngQMr{K77RkG4CpVS@JvdI&;$xM;_ z4n|H~B=bTdsT5^L9!V#&f9za%W)K9{!gGb-l6VZZuOWlVIe;rLtvID%C=7 zG2i3$M8vY(T`Y&d(cy~a7{{zaVyU~W%jF>4Y^GfHhmjMP%j~FJ)_dI%r4-$jl7|Ds zRmu_WN+FMRkz{d;nIh?hkrNk5B&P(U$nN66rifBL=B|{Fz|r9<#W|-aw{^K(jhoGs z%LifP#O1OuoKu3h)rSKS$=v5InS0;}aV4|LHMxXc*JblP+;paFz5^pCE}I1=*~sxh zL^UtCtL8a4KwQ-v-yYS(j*OngEoX}6Z!mJ=qS?kM8oD+tlc#-35!oz$(0PEgh#-b% zfOJBeWK;KD&o&Ei+nK`I5=I`G!f6aLBf>e+T{y?XA>!tnHVLQUyDpq#aNC)}ITA)r zTsYgBGEUQgGa{V}+@*6K93-xEPHIoiY4Tnd&j#Fjrg$naa^m9IIz~MDsQX5D-CPgH zhpU_8+NK-h;QKn&4aWWz)8?raw;AZ40eGG%O3< zWGf!EEOfnq7zrx{$4jpxDd$?46ZwLuePbVk!(^m2cNyV?D5*^n1+z|BF&$M4Y-DDoKVeVQ=yP8!t*NsV-p;0TJ6J#1@hE?;V-8 zk{YFAiM~Mf81|2x0h1+NRn5ZbaI}nk=Z++t5Hq#?IiqWz(Uj(+wDQiz){#?iE18++ zWPuz@b^Jb|wr?HTDjJ5yR*FcA_%1Tpv3Ynq9#7-;5uNqr)~q+&)eFztaC4dTzZFK- z3eP415t|d*u9Gcwoiw&mG-vW#$u38kdqO5d zF)OEj=Ps0A!{Oly#UY>6-PQBSFL863I{5{RoVZTrYWbua%Uf`ZnQA!;MowHU^G#~em#=)# zT`2E|gTocdq4sSo3B|Z%<#OCurbgZiBgbgOVunmjvIPTf3kWsIc7kn_rK|{Mc$}WqbXur+KXS+sI3H=?-08XAR~q3w~T4{CHpR<4Wo-S4E`h){Ad^!nntQm@YTkbyk4*573kc{+}MRQOZuyboQJkKkaKN% zcd?(&&#Z_Y((6i@fj)`&m_Qr}b3xO>A&Jz^Eq)qq#@U{a&C>-HB|3gRh+r4tGGgnrquQ9oalM3Wb~0CvNzXj$u&0Ct9vWvyG%2vMh* z-%@>nYsr3^ENq_F8~Ux4t||7JKJzs> z?at&)okr6ir+m9Y<*MFegu~A_Zs~; zi~jZWm_KRz7lYB{aioNN7v@4sBHxBXWTZ3qMZyWuQ5z?ch)bQ#asW( zndkWg(T*{I{uT$z$U^4p@ADk|@l38~!pJdPThwg7;0AqmPy{R>RN24UR?9WE7`8op@t1+Y04mFkkpkp>w{@_ni%~pk~jiLCTZYv#C{7(@OBVj6G za+BwgCg4Jt5v@#|4~NP~YA#1OAzEtFM44zZUQZqy@rN^$M-@ial1E8Ebgmhg84S6b z0v2KWCNjveDYyX+3zzL+4XWmX&iQ9?6PTQT8b(f>^SP?J#`FG|JMTY-L&N2L%gB5| zlN&nsKgG>pa{m(;Ifi?SO0SxQplDb?sAl10TSsKGFsrl8!WfV4vZ{u^Ma+E!%~M9P z)s8Ur2~G0=re>k(k5kgLP*pNC3$w^vtbvx&QO&}10WlJqg>iw?k;-uZ%!qVR%{cB0 zN6AQPZb!liF;bf-GKeHgK3B~b?1ev4E`5TO^C78bmh|V<+ zQ+rEvFIkKt7XKW5H#J2pA_%OH<|;yLMB^$Vg`>*OnF1m<=pFo2JzjbpsW|U~`Oxyq+u<-7Db1ZrI3Y^p zsTg&-x2o++5#*^DW|nUyW3UcSWBE&PNVqIFpNbL7 z^%wBRGr9gejGQ>vO{Zd*`Tm_d-@k^#!sR=9Dn=~lzr;;oa{db#IfiqKdahc6pg34S zsFvVOwvNb_;HD0@1m(VJZ*M+)Fvh}PpvlRoGdGa$W=Gy{jhOlW1|jc}NZWagF5F?=-7)>5WT7mz;T*#L~%|yQphsa20?$3l1qC+lY_i55f z!;APsnQ7vA7+Fgb{}d3NYXjsmcAec_9!1|YjoqCH0_%sl>^3iBH*&l^{%9u0+rr3+ zbKJCyUFZ2Ucb?b4A>r~IUB+(Y`Xv1EOs-eK$T3`7)NEDugCbx7q00WlwuwoW{V|=L z0~pg??T@ZZyBgN1QDn|5)1+ykYGWw=AGDQ@D*o>m5F?@Zj|-fR)cQK3B~Id(v|JNH#)meecH-uLEILz$X_NFU7B_>ELvlJsqM#InpXdOAXc^b z)`TjLp%*y8RyV2_I8H!}gkE4~rnIh{rUSIPX+=^dThQ+9slt3{C8Gof%t&c2LpULF zYT~rYxaCMuVpE!{`eZ^8HdN>SZYfh4AAyk*SH`SNsg&6y@7lNK7jO%iN_Y-NPF@MrRjjX+ zs?j^&cmAbw<=BxR+A%WGn+i+`bq{qVEXFNlDq#_foVXHZb(cK@fLprGI z-~!x0rVh@7krUU!Oc|y$ov-T;N(%!KMcm@9h@0WCa20`#Mm1M;ZQO{P%GAd7FmmGB zm{AW{%!uPR?$UT1jtW;A*l0BBsjiGiaZ8!XcmzgHTp3$MPfo(GBjM)wK57fnW>e{VC2NLGEdWrsm$!_E|k6C*l=@+xP65^>1p;?SIO?U zy-by)VC2MAGGiT`INW%(N?s+>hV;1WBLhc;s}HQ!L_O7&aW-x#QyFK#$cZasksmJ- zgy>M^yXEyzqe>%NnkJ0sT{V~Cb~9CT35+}fR8z|IWW53% zict_ZW>m6k^Ip3C86u*ZyWCZC2OOheQcX+0b=BOC+s#zX*I?wtRWp??R0&k$e<+WL z-|^Bq zt7J|%YW-fNuNb`!2ZS0jf(sl?>1u8@!5)-n}xHH@6NLZ${WlPf$UJ?jJR z(zp)}30E3e&l+-5*Tg-znM_T54@OR06N^K^O4knx^asLKe~)f4`rY>>cb&Wdhl#6` zRTe2kz78hWb?rQdo6gkEvoLbv+F26T&bm^u>VFz8RV#h8WI0YiJO0{v=(Ct0hG*!r z+Ce~Z{_84Qgxk+l(E=DbaTNs_s4;XNIs>hC7to1tn1(R}wQ^n8&hfbEOzj*4BPXt% zAOkf5821K7TAhpB1#|%%E3SYnGSHCz>nb`Ax1Xt^4KQ-zDw-_nm~p^#v%6Gogag8r zO3Ndl>$3#)ty96d-+`059pXYlrN*URpB#K&dnNc>WPZo0grHm2nDR!iAI!6!XL^^58s55we;|H0nxc51mt;yI=j!3A&zGU{0$BVm)+*`2#p;7 z1%EV?<3GX3iF4d^9-+?jg5Nsxyd^=jW9*^7#nJN!ja<*gAJ61^7K|LjwMDH~2m=(Y)WGY0Id)+QFtNgP|LTx=En|W#}AclbKjEEw!UM zhZzE5Byb2jJ*5$)F|s3(S2)tODMLTf$U84MvVpfJGOe8i}BuSU{*o zVydkpvXQvIv)>yg99AxSC4b>_c=F*9as$g=M$Ogs;GTV)QFesNlc8~V*fzwfad=Qb zjD*HvM&NjwCj8Rf`C>VGKH-Zn5%R@Qt;6$hyo_Ato+O+QH?@8J{1JElhhj7p^-*sx z{)yYj%q)M0k+sb7jDYA|dr{X!In(c@{r$9&c5?gQqc5kXiERl2Yrcm`6Ad4AO)SK1 zWNKn77&&oGY%SlRM!dwaALYJ`rjC=`)v*eW4_6&6cfIKu!{Dv1lVfpfnL0TNMowHO zTXy$(-RGo3yVJe(+3si#xzJrD=flzAs-)%0swS1h`KoJVBW^2GBUKnVagA&r7dMep z#0d_OigS~@T5f>j#8u1D%r0bTuXWvg7Pp$In@_{YiR)&*A%ceXl*cnES(SgPEmzqHf zCRQvU)C}5>YzORe25n+zuN0juz6C7m^YR1qB`&mr=UiCL#wu1@&z(f;+cZ$D^m*lM zIW6t+7x~0Z(CB}g?xmuWBkTX|kn4U6wvtm5apwq#kuVXrP2jtK-22*6G1JqXDOWQ7 z(TJuo_8`oxeA(2j+?8gXvLIdL5Ym)?;8I{G{`kXh(t=o-t9&!-s|}LMHEZ#Vp3HXDVh9jGVY)7R#$~DRkX*9dJR+ z^~x^Bc!|ZS?($g;hl!hP&UQ*RLxw`v(uue$Of4M`BPXt<*)o6yx*W$p&#FM9%Sc=E z4tMoj1P6wzo)g=lo@VEDyH&Q!|vFmmEbnJMEXzRS`{5vAz8e!p>-%HwcYxKe3(K>d(Sjpn+pl}B;YnOb=S zMowHSbG3l^hj>Kl(1ibUZi2@W#PBr1Cp*<4qx-sMM&af&HM1FvoVaFWehI3O>4U(& z?t0k^4ofHVOOxxmR(8itXKEz{BPXtvsa}>Y`s+6ju6x{dl7U0Q)yXkVc_rkwu935G zvzZz>14d3AAk}enX>pePGyVBj4?$1<8*^QA>bfvpwu7D%Nm5kfB##T|# z6?7Ty1yeznz{rU!XkIjSM(y0?uAMvJ*l@Me@=}W-+g`K(x@vC6?PsdyYcO)+s@cYm zTGPNlMowHq^R?g^Q_sAooJUZz31WCg zP-~nzotOaVx|xAHz|_rD7&&p>Ovz`d-6{5_%h~gy+iZ_;7t3-uBHUEtwmPQSYh59S z;8rsgauAH1xI)JIv5J1YF1bsi2#10zjpa^xM7XPKB9EKP)I=6WPFxe)^j9lYI`w6f zX}d{OE7!Vf0_#TWLqX>)rkZMb1utm-SLT#z+v)$q#w^W|d+0#w8=+72H8!0FL z5pB7Rf~+k!o@nY{{9LYNyEA#?k?87=Q@&lHy>^Dv$;OebSZ^;yqc%m377!z0Q{-s! zI5KOOg1M0XsjZK@!XYx!ncI?ZLUhQ>P<)!?L)CKaCHO;`X<`Q$SxXb!35d>ZRFs#Y z=dX(fHi`5fF&fO%FMT*_zx`ho2q{BC#kwc zp(q{{B z{%|JG_ru7E^E_SEPt)7n^|UkB|AT|V<$6}60f^!IW!wNJ-!H<*F??IpZdLw+f?xrm z%Kv$`j>z)=a%ao`#Na-vF8^MP(0srluw0E=tL<<66foqisJ=O&f@A0a4k8n=@sHGu z>Hzi^5F?=jm?SR-BgZ2}VlB*sRwUAJq>N_fXVo~VdTUapQE}06|)HI zce=Cw4LCAf)`OetOkU{B--cVkWd18Kat!kp#a;CWLAkJiQ2oI^wvNdD;J=;i55{&^ z`^9pQcMbX<8ggUl148b<cy5Zd<4%85)KE*v4En3jY=m zBcV|kFTIZBkcEFnInla=tq20^r;N1bCJ;`D68Y7jPM3VJnl6}!KbV;|X2Zx@+L$3A zI@cn|uLfq8k0oQUH&0{vC^#fsmYcsC#BzNE{&*(W%VFfixo-MuVCH+HJKt3}EL^^$ zUkze8FX1LIIWNM_A;gJK7YpE>j}*p zd>vM-QEs&r#@=A)j|U;cLRHAn7<|=MKB_VJvVa%~jlq;=*CXA*<1i~)-FOs^m66!o zJ%khDr8ZrRE1Rv?M;4FZPiLl(hhbzbg*+%AI@co13T6?SBNpL%>|dPwgi!?1j&4xr zdv4P_LbDG#>zm;=Fj;@~^~d@=H3n~vT7>z%+?n4UkNP-TPUe*gnfzeWJ?J{~TM6dP ze(3C{a66dn?+PQwyz>?{U$qTE>9BxMZNnFBWh~o<2Rb{OFsk3ngm)a2VYwQsN=&<; z<_d9B8(N$2K{!T6LUV5?oDd(i@gjK$ zqU2N648r^Ir!rH;2G zWciyga^fscQ)SffCO_-W^xxo^aG9PNX#>pf^k4AjGui$Vj2y$ZMeSDQKPUwj5UTv= zY#ov1|H00d|FN0UI&HP#vS-koWRzL$jg}Jzb(=!P#!&osBRjG2kQ9w7{yPhZkx=}{ zORppK|74g8>7&|uZ~`1ABb~W75>AK``4OQ`mwd2l0gl5T%uE+Y!^m2?SScVn*8<3o z2xgYwM#eaH0dIvv!ezPnBSI|KoAAdoxn2(=C(d=#M+7t9UvTI9^Ke+Wd`CYb#B%;Q z+yo})pMjBMIJc#}-2Zw~qbM)8&BiC#3$1}N3!^kmQThwY*?t>y= z0inwM6Sk#DmiyN_TkaUp~RF^yv!S6jV<6zoz|- z>++9M`Vm;z-%bU0Ak=*cRVhQ$aGkB>RMYS&0WlJq26;)Xh(PrGy!&AywfgcyI95h2 zsV1j&ef$$QnyHV!!^ny2V^&kB%(q-@|2JouY)cUB z7=`G01ihR#oJVxub+s(SZD*=wD;PO>wfLuH`%x1&M~YxZlFCW$YFP!xg_~5|)S~;Y ztL0eScBWd6f{_zf%OpQyL6wfE8&VELnQ}!xdY5y8f+O|#q&(djb-Cj8~qWTsrcB4{jhnuES z{YRVTQT^Xfk#WK{GOb}*s1G-ckG^TEBsD(zx`2osA9b$zooxs}BoqA}CP%(FYL4|c zaKw!K<{luN5IePbVsVDS2|cwujvK*DEsw&;T55U37DA<#KvPbs<*P1MRM+NajO*yW zj!|VVvY%s{zoVVFQE29KAci~_QkWCcry+Z6O(tTUz7&hf9`gmn2*@5|e2*jPVmVBK zmM#u~Lu6zzmm-`H9dcEs;7LAJeUmu|e=0LS><=Sr`C%Vh2$dfK)i~vcIWAUEepoWL zqxoU%k@@1(G)s}H*Z`Vm9LP|6wh6`!9;?l<1XNZL8uo!~R@I5N}D z-Uz`B5A}R=I&LA8=~G~2E#I6hAYz-2w%=bcts#ltLb{OY_d+lHWn_(G({TwL6YdMY z7o>-}d)kZtF5Ez-9NrEik1RP1~TRFB^WtzIm~Ee zhip0B?^XKfPQm6wq*D!M8l33J`M7cUJAkGd- z_jv2+o4VILSdMh+HZQ#HH|hBp=v>f8Mg!`t>Zz4T?YI*`r` zWW_?k$RKE=yC|zLGh9*b!O2-+_w*4^2{(@^$s&xbNwU*o@W1tw7%SyXv0c@1Ibow zpeRM7RtoGVAV$Je{b=$yl2|e@7t%kq;_z%ZL`FJu#}iJ74!Nt_r%66ktspuBe<(9e zoDL&vY2p+C(Yg6{xvN`e_X;w^ajN|?I2>Gdn|E~^IlcscG?U|Z!N`eo+_bA(=lKqI zo^OXk!sR)-tJ}!+*YL+PxxN)fj^Wy(W~;Iv6afneRrdF`b;P%V%KqJ*-PJwyNRKW( z&g6~zx?d(=u*76kTWuqEWuWuE?sb7Ta#vz`$j0GCTeei=@VtN+35~;)<)vb#$KPsq zM5$B^cXJE=g;FWsFV#V8Nf20*WmH3MJmG{ph~rxgO>|A9A}psOeoM<$8!{KSoSC*} z!N^+Lnl2zZ*M`i_3=HHqrOTOKud*rKo9V6;qwVG~WD@q?YhpPP4h&Z;Cp(J8;J)6t z9*&#ORLo&8a^i}av9_L9(&fI)fEPVAVuQO}DsWV|azXd+MsrKlcU>#z;Y z*UI#sY=1eOp~>`OZ!b-+M+UOjxl83!a8S5XS>>2nBChL7`2=n{Qz;*XkrP+S46lE! z*VB_NtTUe>@vys89)zR9m5OUtiTbW<D+FmyHj2X}_4rhmi8iK}UXf8Ii7V>a5y?E0K@+q;AyhG&d~o-h#+ z35}TopLK2QfZNQ}#&$4r;@S}BkE|_L3q4VFobIlUQ{Z@TQwn-Enn@jj*SbDV#;s=R z;{+HvaeYkj-y{FRi*&gX-RS);cZIwijtEyF$2u1s<+rYpx8Zg(HS$&%IdP3l^fe+z z%8}8}t?mN(5*!Y$K+x0kOesV-t*he;xY0~?d>%$lTpcs|GnGkOP+s@R=FJR=vwKA>biC4-z?>6aq=YDlOK@3m7>N=+%_FUJ= z7~FEEPPTxN6W7VOa`rs09NkI2zq>y6fn&kVBu6;*BZ0@dF80JNX6oV%FmmF$7+p!1%z52^-tRcH*$H@_dB~hYScg}vhVpdSl>o*I^TFL z3=1uzF|3Pz#a1?IdDBY*Vk9hY8sobh87y!2Z|5PJ&AR;moi&)datHs1@y*TY zL{Ih0N-DVe+D!M+TqD%8nRKs&krSu8>FR3(C^v4GYyCLoaZptkL?}6LEWPKTo z9K*UrU01C^P$DcKRBLdnZL*TB!Q-91&SlD~DlKF!88=XEfJJLmTx~Pi?{%TiYeh|YB)W3mNJ6h9;z9Oosz4@ZJ4isj%ecSIDvySgOq#?56);w~6D zaY>8|LKbOJo_80;KjBz#Md6q!0*7^3{2e!#DT`-dMIu(wSRMI3Yr66T~5V|7sg$Rs8=fAYzMu=jy{4-{VN>pYb1*1o=9s z(m$0Tu>Q!%WA0UoQ;3fGMUuX7?aB;s zOJ`4uoKh`h&#ii0>2BI8Nz(<*H$$960c}UFILMSMXf?AbPtb3t0+Z?%h16+C7OQM& zSIOd70TG)lI(WI{)R6Cyv{8Zi(9*`aaInm2<1K^}BBmA`I~Ouv&mRT+@yz^j4vehj zk3Ip>xymp*Xud-si!lBvG6{PFHO4;y2Zqada6!4j37z+k;zlre|1gZ4IPde-NTL<@ z54v;zBRDu*?zfJNC_;|t{NIZk!sP!4Fmeq47DZq64M731fKVfgqih|KeZyxuJF=K@ z)TV)ArOzv8%f=6;lV3tJmr;7P1MEMT4tZwe1hNt9p`~_I=P*`4#C8t3hYF3`YF}F* z7NovPKl<*-&00tWbZn*AEp9N&jiZ0PU~oz9Qn6e$cUkb`^5Dn&f**1z>!fUEKjXmB#rEl<<*XVz> zQU1-|gR5#|yE6loY_UN9IH8o;pfIbs8@KK1T9vy={5qBtncJSQtlkin8iO~)DK(CA zv4T$Gy=pYM0^b{Lb2s?r{#!k&OgE~922y8{16UhpPKL%w7yoH-i%Ww)N(qBP?Ydzc z^=8{Bt893hfQSus2ggxke3v85^hGcWS~GnC93vxxdi?eYUeBqEWQw zFnqJ_{Fl*$WYn1Tw-#YgsLUA3{v0yWs>M@ff2M$lE&H9T4P$(dBUS$(m;|jV><@>? z$YX8^;e_arRbTL=)q{QTr!q6do-neOA>LpMp)y3E8m9~~&BY2D80_BJZ!KeJ4-5^; zLPLY|$px%wF>0%JnE4wEcjuXJR!EwLOtH~6+A3321w?G7=->ds-v>xeN0P-SU^cX5 z@liNRMnZG%C7ci=wTWWRRcc5}7azu-%S;zn!N^*=_<(@uTp^eee3dYA{3Egjd*d{Y z?}a16<#>A2s;oGse}F%o$@F(& z7&(S5@*J=dZf+{AD;K zT%MzsbQ-z-BK~+L*Ehk)Fw&7M&0Dlt@Bcbw7QjSL&fH|+A zY{=I`tZ%l@fwY)JwKyR~VTn7Whs0TXZ2jdnn89x9ysJS_JWxAX|u(jGw}6XeHw(aFmRM=I$b#5F<@r35YEDTs1}T z0RCKNy0{NU*3!j20-|%RLDN?PjpNtI7RR>W6*wYXj-y`*OiaIoKb^_+3ovrxOh>*F zXl(EHKWDagCWv-4{Q4Vh`buD8d`H{@CgY1?+>bPnJg0f%%p<02@*-BTo0&nZ= zbitGo-M?Mz59SLp`A|!64lG$?b}@f22%c-2G6?=875osB24q*L0vUROK3n~$p1>0j zBcUgl8uC5T8e9RhBHt7>b8s0PEF-bG^9UzIjNGCbGGFfyF2Ntq%p&iCk+m%Hb^+13 z4nc0w423Mh_#I@DW210892hR+&091>PUyUU4L5?x`>il?;=DI)(F}zx!u`|k+&={e zhs%9*i)P3Xo&P6rLzw*k4n~gQ-=g%Z?ja~377(g?SZnKu>>fUDwGSzG_OXpUgmUws z+)CIT_XlDd(yYVQXR>+!La;@>rA)uKp;$U6e7?g@ucE2TsJ&WnzJuI0*lI^%rfyNX z$)Zq=GBgj{la*LwE#;${hiz>k6!!~lAtd*yaUI=*Huc2pfS0FZxaH>DQ0ut5O}y{R z-FG@5jgcEThwK+mv<mn=O}9C z^Ij=L#d??uDQ?v-mf>I--{Ra_!U?^LwFCTl=(yd%5l&MPC#9Kc=4k*olUZN-1#&Fa zo$D623CAE+9q7qay!6_D{z&ieNwV6pZ~QnO(s6VquvaS3nC+6dK1 z)$Ft;nO$(RnW2$V`t)$bDF8qV;+`k_WD6LR@dx0NZ<@4?8LNP{Y7p)e)VV2a8DLeZP5dy5vo>AKOZrFI zl`Av>(_4-CLR}kAGaz&oY@yp5%!%{P#*qchcJ47_3QtVBBQhGGyZ{a<-ytxE&d{Fa zZP()O$?pJzwVhi0CBGPFGx_X!0&d$De^V@erAM~>J4Kz z_XmleZ93?Wu&jhXacwo9r^=PjmMbC2tGqU}WaUdV-Umr%D_*}u+T7Br+#2y8=4OuV z=tq~aYrL|56kjN*okOOyBdKj8bQ?b*AM;UVYkGW;+xl#Sxwrx02?)z%mfOY0sULJY zv?y}B)8F@xH{C;c&iTAZS%A($6q(HNo8*4nXZBVLlt7CG@tMTuzP60}pZe!f7lLY%;9KWx*R9ync9M&7DEd4j|ULSV0Zr zyE>au$Ditz))vcjr%WiPeuunhM^0TRURD2UnqYgR_@@+gIr5pI&!LT_2`Z(2%Ql)S zrG8UD#HZAb&F_xu9w^br!N`#FNjTE7mXD>2fV>iQKY{Lk4@b(_+UI^kI3ZSQTlwS8 zRD`)y;7ol?sTlhWZb!>8r6Tfi7+H=f)yw&)Erj3h1aS`JwCS31 z_@+XpKij=1+dtr+p4&X2T)bI(^2B0ep6Cf4oR$v`$zM~>0%GU3Gq_fsVQBA2~352(o@HwxJ}H|aWIUmrH%t^ zAyn!J#O0Jawsf(AQpcRmb{A9Sx64KJ;aeNGy^DNlM~|^xk@|`CS#QI#9?u&{_hi?5 z%hm=fg3@%^m3VGQqK4G*cH6kB)bTa}5t};Ny7EBG_06s4dV){8NB3G=2vz()CLm(h{8)T%5HxIG4?itFT(nYtURXqJb(sdO zi&j?$w4!-08PW#f8#vivah(e?W@-If$5MJfd}EfDr7;>oKd_CilK*#YA)*9Xv0EqLtr1`Ubz zf40$7%6eHqSR_`PuPCiQAw}0Kw>J!D=ked!0lo-Xj=;8SdQD7v|BU0tvMEPs~e6dyRlTRk$nsv zRO9Lfo$S2;vKtQSZTXS7flSs9hmmFURJK0M7DCmGKzmL#W3I3wR;BGvMAKTPpm&ow zj;eeI99M1%+QFzw%^xlKT!dT1l;H&ddvR-qV`;VM7+WWwt)fwAyp@p&fLq)Nz8McE zGwq~U1UFpM6V8peX-uZChmo~}bDb@ON;rYuUSA1k%5lYYCl<5iao5e;oM!eCI&6Bu2ObPy8Adi4fXMQ*ajrTEieAn7SsAT#v0nyG;jhF|Ya7rQDoAr7Y9d>jm@7>#;80Wr9IN`~xiHobjBbR2f zdU5}OZKPDNziSJ@4z|tAfQa_gBZDtni)b#7mJEllMSN!1LOyLVZ7lG=s4cBOS8JW0 zwhfw!`%?lUw!*YOH%vLYK>p3A@6@oxd&1(X|3q`BceRa^3iT3Oh-j!S%Cf5L z!OLR-p{y9D3NiWcVt2Kl*6fST5TTdstYIU4iodj|>8aW~_GVkw6!E9oLJWJzC;8iP zOWC#5!A4fiUo>nHpS+khvZ#k@0l&aDS}Ne@*+L9^z{jsB_V-g;5?N3CnPH3e1d4Y3 ziCU;XX&WaM>W|w(411`@t;iZO$vwjs>G6xZ>krfd{XN?#sX%|n7D5YjTL<8^F|=2J za`vETVB})|+Nh(7^u50}s_f-^2j4xIky}Zcmh1&DRAG_y|;l=;OKwpf;Ql-XzDOu0j8kgK($*$&@ELl~X)mVw5?Rhv-CZ0OF=Cc0vQmWC6kjNKFwyWETPcY~G8 zor=nw!1uhDDbXgLKL5Bb;g27eNx`43t7dz=GR0(7ZC>y@-o{M-0BIpjGcjrLTcL=} z@*_6K|7D&jY@-kN!_ACXZoH4P75yS3H8-h9&1~qWzgXWhDuOb*@dqU@PaAG~(!S_J z5!uOiVrNq@Cit_F>q^CHp$Ce{ZYm<%CKZvX4aZ3z*>#0TG(wGrP*3CUuP^4Sw9}t< zIMK1JbS$U;r!yLV+E^(net&x7_i4vixlAj3#BWb({C02VT>2gL!tUn>`vCu!gZy9K z=>Kx4|I2dvMSF==6IP_Hy}Z{r5akgBCq=nSA{4BuDNPm&9&JLUjOz!pk?~I=6El&# zUz>c`iAOIwS#A9mWniex6}Y@cxx8;jTn;ut$_>}`&4!u0m=#w4n)1iz8Cm{T<=#S8 z`auA%VZJ`8S#zD2zAH7DCOP1+ubu)0GwPb+LlJirwDXWHGZbK~yX)I=KIk@ z+n{Je%%@Y#OWx9kz)gYQ+cs)SzI)h0413^boSYTkbmBsP#;}Ec=HilgbnD=sZW}oj z{8MZphCTRG*Axe0MStP2MSj}iN^zid*w43(nF{+xTZm}bEsDG94}!vB0imq;t8Mv` zgNc81wm(pF7ts$$x3x!6H8r=@$eaG7Le_*SmZkbC{rOf#6$d<;2FCA^p{Iv09>|n1s38o3Xu8iBQEtJzsOpQ+$v6O#Ryb z<+uJXPx`++<^S?0|Cc}ezdS>~G*2do8T;@H!<_8~^$;P|d+& z0nzsH&_ogBMQgIrS-}(NdF>bq>5-lkM0#mOJW~tzakjBiQa#!hA{uUsw5B@3;Dxb( zP*!YV>xk?KPw4FChFSg@oQoO<2rdc^5Nv*b-_ssdxgKda#4PkXZNsi4c(H)6$d)$C zep}B&Pn3tjtfb={L&@|;m<;){s#)mk;YgWhp|2*Ka6UfB-@g@i|C#Ba%2czPT2{FZ zH0vaf_Mc z{|H8w;Z!;PUIEe0!rnR^%xYE%oe@iGM%IOwwQn}gStGB)apC3#H;pv>)e^*iaf_K6 z`45a7qY;Z%LUkiSnzDdUO8rD@rMACv&99%CwNf7R?DrRb84C{z4sh4&z661dkGOhm zdE=F_j>S8ziFPmCY^G>;7sw-_s%;+|k4DCi)VLmZJ!J5}GHcvwxW*0bzh3dq#_eYc z;|v&C%Vwtwh|X2Ko#G>y85qcK3JyAti0Dc((y>vx0uB{7shrwI5jBNC*U@FT3rrnd z0wc%h$fBgFsu-j>3y1`(;_SMdkEXpO=8AZ~yLf*H^TQSIN^9|k9oDMh_i>Y%V!c}+ zkA!O2I7T!Si?~Yoyt@wmi3gQg2~TK`4jR7e+3WAP?My*D10!qM>uCYexhlBWm^M;P z=|55dw;k_X0T&X)@U+z@w@Exr?(6#53OAprpLsBHjD9Rim#Th2TC;#iu=>rd%lLS& z(pT&;*S|NrOZPOGA#VLU%38Wnm$eGG1~-~1*pmeENT`6@#R#BL2O??go$gw=7!ND6 z2Av)F~W^-NKm4kaTov3QPCZS9AR?eIlZlQa!7svr;wF1?o$RnZpZLN{s$o!GCHEV)%+L}%f!_&SW>&}0}Z#`R0!R=-WVIqvIWvg)lqH`5* z8(lF?sXii_!^k+tTK7gcMBJpYstuxPa$VQWfw<{R-RuV=$LPkQM5!tlq%jMK1gqRk zf1)co@M&IBbe_9pH^A(0C3`q5S(Ce3rK{iuGlhDtKpqK|ZlNI(jhr7zTi3a3;8S== znPa@;+o6Gm=X%!q1a3J~3?GG&wXF4F0nxc?x2;JvO-Vl@oQKIg$9nf593*b?II%6l zX>wlI&W~{8ncBG*Mvl>rMY&QHFGyz=5D8YisjaHrgo)0A9ZL|y)72je3pVPiR_R9J z#xe!EnLr*1m2S&O6dJiclC1V}=YDrQoXjeBv@7=wuLrAFb3lS|T7iSLzl-Wz&@DBg)B;X^v&?Y&byNGIyM_a+)01OWYZ_;Y`h(4kO2C z#-cu{5*Oq#3y1_u+<5b6yKCHK`XQJTu1pVrWvZOi%Gw}qCR3DG3gpAaFdzr-vJ|QDd~1w2$hlo4Gw2YYWv=qNn$s=SP2@b zo&TeFIM&XW;gE8Z(t&VNQhw^Xd=a;ksmteKWKEYt>^^9_BIftX3%k?3^3#)Xo$xM` zoaM0-K@87;3}0#zAn?o=GLp7Jy~YVVWm=LQ+V6=F|eeKsj4==aY|a_FuP@$;BlcNNem|q z9%(BFbx_RV0wQ+4uKmYqO9}_N=Eq_qCLS+r*WZvuWg)^WZz>8G3=q9 zB1FCDDF2S;=%J*y3|qXXE*7$0+Bhsy=6vaLb6#r{R|nvq2tvXwsV8qc2%8xz~pwW$qTmIk&gm9{MPZ82Z)`H*dF6+J(;g^1E) zQPovr5EK&&2xY}#wvNcgV2g3|#eVg%U0pk0Jb1z2lH98cy1M%A$h}5C&Kiu(tu|-J zh~zr)uNamKnO3t>V$yvEtsG`oE+yP0tP$JVUE6j_kp@XPHHm z#zqT>*x<&u3O3PgeTdW+M;v!bsCP)g;g;^Hv*dP#BV;a!TM|x)joJdgAf`;TrF=iM zbiD+(ggJiLK_JIc82f&-{p-dQa=fwPCi2DWbTSg_Of)V}!6Rt=D64b1V@oa@F6pG6 zjGM$H^#mAM#!F@0<7^>R?hmBpl>4_6R>X?1{b^+Mkw+XENhDX24UXcw0uClOk!%w$ zzQ7YLm0X6~!c^TQ0aFlvCtt&jViJ2R zjI5=TFWEwP!BPo5IxGGXi-8^d(b$ z3LCFoB$q6l>dfX=1c9~TTsC)V&1SM+d84J5uj2MF)%RtAJQC7N!~MAQ@_+8U{sE7pdwS6w)6>gual@Dd{|ZLd z(#vDE5GuU{GJAccmkGxe*R9U3>n~<|LhZ|fY0mj&OM)1l2AV$J#Ldz+xuYeRxwt`0 z{ml}{BOt-dR{qCjm?PbpJsb}tGs7(9Fx&74 z#okJPW@9MDTtwk;Y+){dBg$=IhDb5e9WBM2ha1Gy-v)s^Qc_Idf8#}rjFE11XZCtL zknKq^5zq7#a~*COlj2Xo$Xbf|ge`rNH}Jf-^0P=W|tOU zhXPNu#PS>57N+VR7sw+Zu}l-L$K{mC)1CR8KoG;zkhb_b6n08aCu4D=n8c2Pk+pQP znJt7$CxN_PU+HAj@zL4bl@tiaY_bB5B{!S2_&OvU(UQrbxG7A{9W0PXKr)%?dmfid z2He@~$3w{MPg;B(3i+g`k{oUmlh$=GvX)AEY#~%C3B>jKN+qLD)TVAfPmyrUC7*+X z$;~A#I+MT?Etz}eR4NI?_4-OBqkYcy3C)=lDH4vI zNgfVn8#lMf&Ael@PuE%AQkGS)BH6BA|HfhnBgq_mU$p>+xn8dyx zM%L2F<+cziodoiFeWjC8tD{R)eoBFG%qBm9W68}XEjkn7h?Yzqz)fLl?mmG$0+Pv8 z-}AU!@`^i~FX16%=8_hjNysNXmAru4#H95(7+Fgt&)Pz$R1%2m^_EJqk=1T{&vZ^D zdk{p&2RW;KN3>M33^#?Tx!nZvh)5;md0Z+O-Hl4hTDTHl1*#H9697+Fgt zt8F1vDhb5(`bs5ZO>5geOtElmOs;~%$!$!wjb8y(_eD!6AHc0)D(`&)c?2Ys8PfT< zobp|FPQQ&uk(pC=8Ise6TY6f#6E}-V?l)j$Ev?*U3!&0VAhFk5S~09=`!B`9F|GUu z4re>kO59?$f8*9LmG>`!JR;IcWW85pCEE_OoH^Z&Acm*$Y?W3bZs}=d8{8}=xm&}? zT3VTJ3!&0VAhFk1S{b*RXdB2^!{^hSO~G)?D`&v*U}P<|yww&$rItWsudmcH zYE7mP-k^Lp1;R0{+y%#yn^sy(&k9GhlyV1d3R82p3*-@yQl|QzH(t9)I(f#O&8P7Y zGSf+m>DiD^dMbGew~0yX6EL!tN`7Yxp;Ad8t~R6+3kYRJa9o@PggTaLbNIj!8BX5{ zIwkm}(H%VuaNLQdVsAF@l|tXY_nD2RL}NayEf6OGRx8{wXz3e`M&$Il}>f zdy*O0h(X3u9RTD?4AcBOXF19-5?-h&*5vk3??;Xus(ZUD0kjMmN?RXGaL`@3%#h-3!U;^ z(P+OBH-<_3^)Pbcw9jnNo=%IqHqw#y^EdA7KMse5%l-~6*{^$~OW;x5BBlf$fstb* zV9~RwwlAnI77!}`94{Q{T>jaz;uXrpQg6PvAw3ZEQ+_EbRU&$vGsig_%_In{3*+iB zIHf64jN%;AWjPHuj48{>FtR4gP77kbF>b|yh#pqB>)}v1I9xphvuzwb6bE!U9E{t= zl*0iqa^iBBT`88j`|7EoB#Ko;3Ipy^=!XNtl|nF65|x7PlP-fCZWB`m>tN)>WiTfq z15=6kxVsLnfg{7!fpNTIa!MD%hj62qLKuXR6Bj}>AJCN}(b90gyAFN`2ZpNyPCoE` z(q-^{+$N?B?uLE2=~T@OH{iP#N}x^!1f zU+xS?%t%~r9^r)8sRb8b1WiQU{*>;Lo-=mDO=9MZ#W1p#GZqPm&J8uU?#_FeLUkZb zSA?Z|y$ZFJ^h`DNUDHLe8aIt8iW6bv7*SYM0aZwX zv||CG3Q3o(BeIZOHKwB1&w$os_r= zk8BC0Fhha4$~MNTz4~FmVUWgjQQ_hl6D#Gj~1V zgovr_+?-AVQtK3^B0fp0)OWJ4;Z`v-$*lr8mf6k~jrrji#I4qNitNQ+HjUyZ@L(Fh zmFX1k!KS$3o?bP6hnvUb`qwbBRyBTU3!$n;pg5yZ`U7N7CVN64TZdr@%S0AstPva!!lICCNy%(RWQR( z*TD8{XuY`7T?dz=(_*TF;9@ztKl#neCFOjW|?@PQdB;WjjK%at(GzjgA7o}P>sB88{irSK#=FQ!tU$CT+OpVX15TKE+{ zGD9u=5{=w)EzI#V7FfospNwqZ+qs3D01(Y-A?wXD=trk&Vk|y7LrsiABez@=q-UV( z9rbcp<}QaL(P=TYhn@8d!oXA|9F7mnPzi^kkz1~WDdntx2kBMN=dOYtbV^KB5M0A6 zcaFlKR0SmPK^ZFGd^B>)6)<^QsswAV=v<97u`ui|fUD6NF%>{?@vba@;FwhYKZuXX zkpB;$kwf^mc=gTSp3{{$77%>R)rVZ(;lqXluSdJ)YRpNAA($EyKAC+KEncniDvQXH zEB}jZueY2bYpkmOqbox%D=gyCtgd?4Ru+79)sG28=o*|Tw;Y(Zq9>6rr3SqfgMFKF zxy+&B+19V2^Um%8zIgW)biTCIrJn{Ifg84XSK_Zr9S{qNudaF-ACjSG{E;AsG8^3r zmU&7VYAcYWx)7V|{IoD1AR6(spi;bqOgQh9;@a5M`mi@XHbbuWL?bKpVWuqvuMbpl zPW9pcsA$jH(AIX~Wy2Q_FHXNPzpbtR-t?RB<2?AE=ZE}FIvMsCI~M7&(z`EcYpckn zvs5&lvmq;vOa9J4C$^!c0|Qb_XEQz|Lm_S=$Rp5nmiE+cOv!XEcc=JLd_J|SIxS5n zFgBIzi}A4;a(y8hSuve$wh-KOsN!}l(-~jwa8?VQ<$aJ1N3*#HolsM=k@ohZ9cmXJ zh+;B#;X^SL-kk(_1enas+VI278D2BqDO^`>BsVwC;pwzLf zcc*kMK97wsmB5%(Zdc)BGURqS8d))w<7^?gsZfROnx=A?Xe#f9Y&do*??NZEA)N{g zL@||%@SzwAZ-^j|AX7Ok)Kos}PU-*R^VkSe35-eQ_S5*747vRj8d))w8*L%DsZfRO zTBb4vKDQh^RCJVQAr+2}@-#Y|rj9aKJN3s#q1egq@NpPQ?l%N^1lY+mI`-NVg4Cc) zneR;IB!Fm6&$(|MGHU};jbuDNAVXHippg|L*~1os8wu6cu4N=ss0>eoZ)1yj_()cm zO<4yyadeb5=(L(TN<9(s;V9O!5+9JE2#+VoBfwhrmN>25l9I<1-098XvuW6`(3OVr z%u3kERI|z8BQxYVg+^A)rq>pNn+;Xlu4Oi)Ymp{bZiiGjddz3g*);W-@UBHSvvLbQ z4nxV^M36^-wUDkQFa;qw%46#$0>C!|Km>P$M8usbd>O}B`_e>NUp&LWXS4= z(a4ICe8?7p8wu6cu4N>oYdI{WYxz0k#L-cHhEA)gqtp{2Z^D$W)?ePQ$vEH{9v{H$Iz&9uwZR=ticR%|Gyw8S?x$G_qngf3=0+W<%AsYnja+tCJ;R zGWW=Z&IWThKs4vEXpZ)cfR~EaK|3EGrP3B+dbeftBJtkRxH(4EqVlIEj2Vy9?R|)b6 zFqi3U@L{HMK+KuWeF365%_lu3HH6OEh*UFKgpbIO*9B-~#Z2bfLU1#o>e{u;Wc-?e zZm*{&mF*KAezrh19PQ*hbV5z-M8AZe4@5DPci=-Y6yBKxc?1~B%-Zm4H=xv~yx*PD z_u}(t*r({f3sT3Vn#vXUm<+kS42`Uq$|bfC+*GK-b}ducW9{101UvaQ?4Mc!ccDW3GxWAk177h z!~A2DJCP^jQ)uWP`-Bo%8;)uqC*s2~Wb_0yvSJ{sZ6UaUP+jd>1~P7a4;)33Dh&xO z$W@RG#}?#DbUsa6kokJ;RmY(i$>sP+3}tsIK^_4{GNa03?e3GFXYO<-^bUL)4b6le z9wASWC__>W<#YIu44J(RjjR~Tt+o){P^i9IXeih0*0x)l{~z6EPw5?XcWxSW(&p1n z7F^{e$cUq>yns%ssjKK)6EX(HQJ%v`VW_)j2y&>Sgm3rP@Qt^o_(Kn~liB+?GdTkw zn$u+JdlO+es+CN|hhs=-I~rNBk_iMNx*Y-MkYx422EnOps+3A(;>4V#nz9O_a=e|F zqjO_=JJU0%GY$31IH$ggH3rhhn+1Gc214O+cJ6@%{niWhtt4fr+UR)xsde4qsJ}=VsVX`wyUZf zkQ?+0gDG#@l4LGhDx|vMOx$eWl74#ec%gQ2;gBoM0c022DvcjNw#^oTb6m28U>u)2 z+JNe($Owh;e;dT^esvC(EAmV4jN4D!W|edMDFT7NeQZ)&f3ZMV z&VPi?IkN|TsN4_GdD7mL>AL|(;H1(a)+x?iS3p5ZBl2B*Jcgy|+XNX;r-d8VXLA-G ze^>+Z8pMjTN`=^0@QKtmAS$u+q~Y4jV=b|@fvL^M%lNn$f)`q0g`aXO} zhP1v1jjWWQcN2){)}2fx{1;(4n{FA~y%3F~0PaTT#PoKS-si{ysEtWgz*q1w87kmQ zXyleFU;$6OiC#^P;ly|0THgoZz7>aHVK@ROA zLP>0R6G4i|nYEHDbrBof>0F1;p9^%x^LJzURU3hQ96Kz;^>h%yX4n=au;3F}V+))I1g!B-nZVu}q zwz{*~kI$hYoAr8#z>rj0J$y)pw05JBl?oCk5Rvu}kgTvC;$skvV-Il+Iwy_jA%bI4 z74TtvOoj^h5E{AV3V;UqM2%e62ypoNl`m*%P7?Jk3Np>tv?gYbDOaZIWL zF2cuTsDL3fa)<&f8U@~K(4u1j(ZXJ1kIg5Dn>F0)uD!d_Y?x|KI>8}eLH;n5{^Be6 zKnw-`isdh@>&I!eB@boE}zDy&~UOsI=(^VvNj@>)ZgJFG9>jkXk^7jo*)p> z^%PTl_G?8~qJR2<&fUZmfM`x*89rAf3`ymG5P({Th9M@k}PGS;&^xFk3}cL z)WpLd75QKkD?b_^jv?!BMI(o>Zc+Go??4NR1%%u?SU~V7=<09_2p+{zwrkn^C}8FP zqhlleByH^GQlXqIiC-JOAAS31wO?66zDM&vE`$#YmZS!U;w7(GDt7sQ#^HZ{uPwkgm|nK$WUthp>sg&BC4~8|&!Jgh zHzxl=?KX72v_z&q4mbigmACp|sO^N#F3kWHW4jd}qM@?9Y{fj@K$BcCl+VA>$Ss%8JdJ$( zU6$inkdRPW4t1AISJNc3+)^@psESMu#s_OClf`J{mdj)xolKyXll*D?<$QOsoP*Ai zX&bWERxHwh70H~157|&Mr=yWuE|~=y$qbODRrQt+xXa~z=nR?4Wu>KDf`e70@*aG+ zhEjPq8aYHN7EiSNp_um377+ZQ_>;EPlt)3I+nl1f%q0qVG(SJukMhT!lIlBw_bNFlMd}&!rKMOblH*BXEfju%G9vqMQ*!2oN9z)A|8I7!1)*lH(bdOy# z%h{bMVE==iAF(jmc}e1UN$GD(xL`M3R5ePJf16y?5X3p2v6DLh#$; zA_CD!qb3QTdRlIEE_PC?ScQ6Cw}_LiEP5}IAdqS7L>8IFzYDj{fA9U{fv$QcInO`xO8W)e`zK8 z-?z;iPyU0p5XQ;3c~3+)hdi@C7dtH%TTv9V{->s8ePYM9{#<7%*O`DzD%pO~HdQ>^ z&l89Uy?XkYsZxJzRc-*})B_fh^_B?=o_t8N%wu}THn?xO@x$kqSQZaT)FRUUE5`THq5N)39k^@BsP)w$$WuK;{xO9?Q3@g&JlH;s!$9Vs42C#=Wlgh@RJ1jwldq7d^b z+pKb8ZnT9kCdRslnssV9oAn#m(|j+Aos>(0R>cG8f6z2KW_J|m)jP>5r_Kz!y28PC zZ4<~j_%?wE?W`JJ+$WOaPIWFg%?nLS=OkL%sif7){+xRfpRtADLVn5?f>(A*Wiu#BNM)tdS?+6EI;V7$ z{mVik*<}?YzQ;Y6ciBR4^SP7K(daXe+G)~#5z7t5@0ynL$<>^LfVC~eZ*23$9pMRE z2sz~zC4*NTdJ|bd@F+gg9OCyr)$8-%IXOYztN8{NTboE_%5eOYU}TfK8q-#)MmD#j z5D0-dS!ZuG1m!NA2yr-emE&w7nodSL$^Yi9seB&1NXY-8P0Rn}4!?MG7OPiPQr=~o zFMbyuYzrZ$+~OAEcOmT#EFgFkMO!;zz2CxU*R4%hQG_=D{^_6M-JEKSnkoxnN}#wz zUb>dx7ZrLIP0!bBD-5o!B!RH#`79cg`X^#dO!j-pt#O#=l9sJi(CKD3Az!w36*^J+ zckSB&MCf0gc>pX-sF*NDX+|qThi@a#-#zhvU#$F_i<|5{0g0 zR+@sI+K^NUEW?LnD1jr<$Ss$^Oez5{;|;(!eQ|#|qa=a>cM+t~c`+5i;(DGC9F!`9 zK73GyGU!1gw_FD8Oa>Q}6Y`V64tM^qMJL3Re^}HI{$v2lePD8y<(99?9mYpvNc`1k zo{UB%{!jR542gdcjofnL_onxJUjp8x6rk$o%cb~WB9rQoD*vLl zI6n<60Ep&14RqCWesyT7BZnwegTc# za`NX=@}WXx5=k#!OkL;|wUy#C?n1Z)ogPymEUD)Snz5;(xCtMdp(t)ZBez@>Y|WkS}ZbNQJzOw;;w>20HQh1 z5wUvJ!5@rD`+@ji3~ApVjofnD*^@&q>&3UhT3YzFGSQPvKxOF8$d%z-cO9IKPLQb^ z)O~W$j!qTE8TjZ7g|Qip+;U;CKA{NPNyd9hLwQ*ZSGlXHG8&cmJMhsM68||ga?6RIM|%O1s$$)m z@Qk|-oA{h-@`Cn@ z(2~~bF=Roz$1f_Zoz^U9AF>q&U(h~CAS@QN+kC`We{u8d^>lXn^n4Gzp{V6v_%h`N zbn4lyz!$e)hfbQ7z4QkFMzq)EpgK-`XN*}scVs`gM6mF*(}wPUAj*G8z;jc?;4G^G8TXk?{seBBm;*9|H@ zr@HYG5=E#?8*fF^V0WJtrBWf)T?QvA6msI$KD!_0tjjmii8Xa0dQPqCLdu8~19}}F zlc5s-NeSG%p{?z}%Z4u=UYveoep_4rz3DgM$9cn{%r^Y1sd);qwL4StoKX?dK|dc!q>uiAGlJ=W<&JZa-9ZyO#aT_7z%v>$lmT>Q`Hz??Y-F9q2)Hc1;~9 z>;X(aEX9N#zz1fi$@>ZN2r!{VdWvf|s^mj|b!Yp}_@o;8P}l>QmhIXIRV#W4AE6=b zFQAbXD|*frf?E+4->zjvlR>Aey}?vcV?hTW?rcGe0irpb`Mx2u0^)EK>)8(8d^@L3A?qCsaA6eJ~Bg^PeLOrRPPv;At<^Fc_BW7qQmbavgl9^J4M>v+!oDO)hFT zs$@ZTyR-cjd{PZ9D7@>bH$v5lzJ!m^koGU2krgZYtStn$A}YRJ%ZkQXfY2(5^8Ad20*h!4e3ch3{#5nwm|G#(j!n8D0F!kN)I0MVQdHvIj8I40Fn zX5nKpq;@(QS+SHUwh-J>sK9nDOPSN)_$7M)y8I7!1Ou-g{ zTMQN2u4OUppvm>w9&fwax_lKf;^;A7Mkm$OV}hR*iyjjgjbbui#K&W(z|Rxp5nwWN z1VU?fqx6*Ydv|Vsi_fK@%Y?rP;M~>*rrOM}@qrnV{5Tp}v6;tgA-K&@sqI=evo}#C z+1*5WpZuO-e^p6(>;gD7}Dd|4qb@OuxUFKZcSlBQ>Hh>8S+S=7v4!B)L`Ar3S(E>8c19vo*1Si53Nqs8Mo*%X zYU)Pe4`+eVCm~6T7e9L+YFUjGi|2f%j#$JC$c>mFV34=sRpic*W+?DIi_9{^2S3MlPbmI z@G%)maTyv}ks|$S#zIG2iuCJ13kd$rXA%8TN#KTn11ujO3(xfE4@Yc12_gpqPT1^` z;}l}2=Y_W=??ww)tG-ICc6OzISU35=2zK0BQlwXnm-9P4x$<4M%HSV;UPK^5vl@PK zrG;^jtj=4TD{O^v#=s_G$xM!%)$O1ESMc&VA%*zg@3c0L56;q6L#x~|+niK3N9@Q+VFYJKJ`+;-@1L@4>I>QdN9|y7EdTn+G zab89fhzLD>3O&UY&dp6hDeFlHK5}r=k~@{1q9T)OLQA>?FRG^)JUr8kfT1dn1T#oF4~7E=3)t%s@Q z0+dnsGqx>N>W}FP%f(F-Lac-OS7(aH(doz08Cq~I45#**HaMZ){||is{lWp{$BXpG zAIT5J;kFU12pw+hnW=0~Zku?T>Ge%Z@3@X_?0U*gwj(@^rrEpJ7J|!rm=e%vM;m=| zB6-SY!OXtdv?Pz|7)T^@nyp~JZkr$OV_&m{XnKmroZel|mdZkopJ`f-$99zIP}^~m16qQ&FX*`bg&7H z&T^g{vhF{2r?TO7VhV)f*Z@zmg=jh@i%-rKyx3~51P9G~J+XB|`5a6;6jR06Nx8ma z7&}KajhzEK1|Xo$9u`n%e=VTS3?QXQwc5?r%jBqzRL@)0%$40USFnZP%FWT_ zH@b(?75M*YYKD(eGyE~z^l)unV++yr4DWH~=92^~_(l`cyRE1>?ebpR-0<|?Z41%# z^iDe=Ra#f>j;+e|c*Q)NQ6xTf{l00*p5D<1Pq5`~n3}F#S#jOp+UAX?{@1n;a_TLb zPTsdt@3(;9Q8cMD&C)uy(0_^*Gus~1&hZ-*;8cBK<+A>@Qx zaK>q;FZ?VZcoajn^ZtGm@E-SxF_FH<9lzT1^0C#aL9u^Z*BC8Trq^EM_P}-GJ^pos z*NvLpde_)Wft$!m0ukD}r611LHdtgkE3$nSXZkDS4+19A6b>q@1F^mOdkjT&+~>CZ>;REj(bTqF_?m5I^hv74!2X>_tD`ihc{LhX@0l2oK5;$ zEX4f{7mDQ9_S5`Yv7Gk`@CX_2_WA)mS1yoW-AD7Q-E_Y^*ovIIwQ)k3z9#;!xF{R*rG zO86_H!_z@Hi6`=@cnM}I=Z(&fLdjxw#R#69)jGhEa_hQPd8^oj5f$12H%e zqUecxCx0DA(ts5vm3;_xWSe83$u73xF}bdP5`}-=omJ$o*=ChjgR9YbF_l4hRZz#JD&d3pxD1u>0W@;Ul`yFf z=2@r&q;l{rcLjU{oext52p>YnjqBXium+tOQ;P^! zgKlK18dl;XGgQOzXylfwVQxNGET+0ML-4MLPC1ow@oae@FISDSyCe$e^q5K_e5NUM zc&aXP`0xyMkwGJe=)z*&nNMBQ=}ij=KHv3a+bJ{l;tabH&bY;m^g}G48E95WQih@sAf1W^COjz42s@wsuU$h7Qk&jR( zu1u7Y{eHfet`?S7{SuvUrhPs`{d07tw49~C4LAZTm4&3+6p8B!j)cX+za;({J{Cih z_z6J{B{RB7=GlP+gzZVP+i}kA;v4u(YWG1>S*7zz;jGpMrPhFdx_kuL$Q^^@sSwn z?ofg}0&HbwZTPkOPkILJac4Av&!eHK>|dAB+K^OBIUgUAA+_hAkrhih%NBxL3Kdub zEX4wXM?qU53kcra-tJ`e)oR~M5vdAFVL_lN~En_pd>j~F2Z^%-6j-2ZA`|~-vAuBO|7Pz z>~Z5idUTR7LN}rKk$bX#V4G~)uN~*m-4Mt;L>3m+CA}D3;~he7?&0)j{J-R9h{F+mc3CqQ--fyF_(GS$;G zVJs4bLCTcBr3eHPTBs7X+;VxGZwnz4W5F$#2klKPAb1p?wyg+$6wrX)9PMX0V@}TX zlr!QtIoCBtT$M$>c$QSBaK!0VSV!+)R%nql^Q#}Xl?7MUM+rnk{bv37Rb8_0M<<)P zGoM<$51l0a)avbkBM?%VD?Tq%(z=*rlqzu#J`Tf&79pI^#cP^?)_`=AsH%Q7>(R= z1x%{>ekvpG(EX4*`QJn5!<77;-uWf<&i@WR8bjW{g+^{U@9m6tx{-iT?*Hyi{Hy4M zm=aIVYYr**Y%t0l{}+5XhRpv7jofnPt9N{lzcYqF{JzVboBTxp(VQl~?j29ZqVT=| zAB`dJbJ55x=e>Hzd+;HK)a1S0o%oIDgqYs(v3gCOKN!{NH{gRYBTAB-XIWi)cjd7sWIJZ+3&=cuIE-`(y`{%6oxF(sd#loe9u zgCkNr{}y~qh8nmDjofk#%wZZRczy7?+$+TCgotGSkGm`3F?4QBl|Vnh4N-zLF4Ykp z!N+B&hM%I5Tdsz=vKnCbn#6#A$b%$^(JP!A!QBC(IgMafy?&r3h}zIpO}vR_u41T( z*U`u=*F?1|EW$26k_wi(t6)jfR8Y4o^arEzeh5AoL*5TWBe$IQSS>slI+? zx1P8=|L39;V_FuZ&nRe1z~10?1qY?-;B0(QhB`O{jofk_%&6+1KesIo8wTe4B^Ri; ztKcehT1-_?cMiB%8#Z&_O)oTcABT_x!DSSkR3V0HY z+;RoXWOblafGzR0gg1YksfibBnXvfE7sDcS-2gqnt=9l54F=YNoG;+(CpTh5dST69rjCjrI1gg4|;dnT~ZXR{l-NR^3Om!#i$|2~Ej6`vo zALC;&RNg~qWJP(Da|_vU<c zJDD4RO~t)N>q8kmZY%TNRDXyle_U?w@1tGb1>?r5r2?n+pW&WouM4&6yLP)Dcg;W&JBhI&|r zMsB$t=FyC??UwzMLt(QpZLgSj*Tn!jKc>1k+DI3=QL6e#DXz*!54bJL5o?d#ES0pV&7cZC50I<&7|ZLwzA-plD{Aj z(M(E`O&9mBr8Kra3oEAlod99pzdr}Z0S8n3dSg z42(lA^1W;!nohtBpMcGIFPTbYw70>^rsaPo$$ybvJ6!+A+vbj^|5#gyrl)`UMmSkJ z(Vg*PYuS1Cq6v9T%l?dxEW31P^;Gww+EH}dW{xL6ZVMqN-=gmG)`6B83kV*?qqZ)} zT89g)c5t@XD2h1iz5%JKf{ zm4)J`X(D#m3WRIyT3ZOt?yxNcWB1^Q-(YVpcgMOD$*o?tCq_~&ou2-K264Pn`v#j` zIdGmj`!`*1#&VqfGnIhB>FVFL%{^DZw+TcvZDjq8_+}>IMD;>EkO%p^)R)lIu!e%a z=6(U4F@0C`IN%8PXC*jCQHRqmb(CuLcn%+>;q&M-Xk_Ji^eF<-$d0zYF6NUrfr-IH zD&rUYdIH&NEw<-X1Tq^Sa80YJKvo7OvFZt=&Tv(w%)p0hsFbN_8wU7DVPLRRRj1z7^*6bMsB&PrWO6Ozj<#bY34?E&0LR8 zim7JaYN#1$h^iuX;6pT2#I$dykuCPZ@t)HB*tuvz*kJi2%-QICX*o@= z0~~P@<}DhJ2{75E4vhuJUmKo*56;kAHWOqEjxDCL>r*^W$wTd=OsS$=2{Aiy^v;`-;FngF#42 zxf5b^RLULbOqu$^Dy%PbspC~O^ErIHhMKtzjofn0#8k};riyT)3jOzzTAp%O%aiCF znX2VDv|55ARdwL9HJMCXA}N-LmMFr2>y7pi3mTmA~wD&9>0EY=p@*CS?Y$@x@&V4niErP z(yapNCzsVXPC|cF8xmugcfrf?K^aQ$ID$M9y5N~LN^5CP}Y0~)U3~BB|BP&kRLm)!$@rFMY?aB4vZTFJ?sX%a|r6h^#At=W-cLzE(rZ@cI zJ1a)j8@?+rKvfmj;sZ2P#V{Hxb|D8(NWzfN!yV^7NyCQ?b8l zwW!youP3W|N1t9wWyB@o8_+kD*7GWp$(x1L;7}Low0C*}_ByyO?pc%xk-sfiLm)~u$+kux2Up%}x{pS3(w)2M5Z@`cKd($%)z*krY0R!oA@K65VKYIZA`#;bhFVG(^ z(jR}MKMsZ8KW}((Wuf*JN}^cw3ME)*RUEF&)BXl)PKPV=^?#kpCJHGJ{_h>yzwa4> zHC?cL3ufeC)^WJ9kM_4b_#mh}0N=hBAe>>${!#j2dE1j7d{0k?rT-1MAh@*uD`5lA zzYdUT7-`mtK$!TtoR^0^~{X< z+sp^h>C&>7{vzNA)Kuu^I2sDsZl8fMDUI{}_^1pUsrv}B1-A`qPL!!sjzyY^Fi=%1 zd3>OTS{Xniw_GbB^{138B>VMJ`INgLl&VS|!bfSSlJB9BLsVihlffrL=tGqS1n;Wv ziMXqt0;IvLr{2KEZ*Xp)#{fig8ffY8JU%tjB@9Vb;U4&q3{}{MMpjfv`L~b|S0SCY zv4G$z{J8DoA$u=yL$v#ZODblv{^Zu+|qV2h^FAg9C^7#f7;a&9vMa zTZ!;#xs?RMV(O;x({kfr@(M~rRy>-0D>~`yHsI57{pd7lc}t%OI07Y=4zWcJlGjxm z4U31br1J3b781>HIn+2Yamp|iMJ2q^QfJ8Q+cIJ6l#5nme<$nV2+BoADtf4JDskh z+KD3M0jkQl4x$N_kL975W=KEJG>&l`^<_Lv6_cTWi2p9-I~S7w3ol zMKbI!>c8mQTS`LBvZY$I-$~9S?*kBxcr;OK5#7(&h~(P%RO4BQkI#_pd1z$Cc=ob| z;KoBWw`&R5x$cUruoP$oPsqN5@2=s~+hoqR!S@@s~Wq3M4 z4sCry>q)~q-#J1GYPY0hIq!2P_&xYs8n(amI|2iOYok*Q=iT_|44Hlx8d))%i)#(LQq1OFd`N~8yqh480JB*TNI;kT z_#s)&i|!;pkI$%~_>gY$OI?g(LbcR%~K_e@UvywnW*Z#)DtnH*Gy%VByY&^E3b7b0hNN=l! z#-siyRgIMKQ5tHbfJP3{h($@^Rf(FC1w;!c{zjbw=Qaq%=*#YM{34nTQ#mfI(;|_P zC^hKw_*e`@cRN82twGV*%@lv+VU_2%?sWbdpF+dRQ?IuW2Bn(GYCmk1l& zJ%cF-bD0(H{JssJOGB5T+aKzu^0b3f-R2m4aE3%5g+^A~<_H22UA~6QBQ)Jps(9L%ZlpzmNRY*TRNJE8qXyg!uSQHapkEkJ8K(w&A9j(60zBM4nYxaQe zc>VvFeeun*%GXrgj3&lZm$5n(iH=DrMW4h6W2nDR5aiHO6rJx(B|{G@K|c#HYf0!& z@HsRrLDDy?!eg{JD%Dwjh>yyU+3%x~6=!+S7J@qq)z_}&EMs*qtS6k}TOk)Gq^bM_#O2t~o{!FsY2#3Dp;XxTR9&2dkIzsSXQ7cpbYW30 zc*UXSV*%01UiKYcAt%n%?r>M)wP-#}l~}KZr9)Aw%`iR~L)l$TkVC6YbS5*E483N_ zlC^xtozQRLb7)v<>b0=qs8mDw20ki7X75EKD~58nEd)0ds;>qZiUkCZf_}$j0l{tU zc=Up3mQFtk*gERnV7aW-^=(%J^0&4#Y=G2 zVweA?|EXse`z!JUM0DkD4$Bs7K$R`Q z(cZv%Hc^ga?9l~E9-A^ z?C%N;`wk~E@kF6d{<3<;+nt+?sQ`iN*G*+{Jf?zZ#;UqSJ3dxJc}zefw_G0cG$~_G zX;PoD++8Kdq4Q&^lC_R1VMA8MvJ4-xp;(SYBack6Xj_i~cd?|=`H4&{VSPv+K4e3& z^q`SjE|xJx&yyc#ceu;qT688%WkJ@$nKmH);8eF5#s_C8fUD8SAp)?N1Lf1GbWY6z zf={E4v2CH)H0swP-hqETKeQpZ4g3>mC2M6EazsY(q=*TLY_dOBfFmuuVa+CAzpxbs zpDBHmK#YW$(rK_6E_A4c#8BKnDno8mUq>gM-2{B9^q=T-X?aUO4>;mf>3(Fr0X;jB z^VcPfNcD`@@DUk$#w%!K#WP+e5Yf$wPU+1C_?J4+15b5+PT3zI8u6T>(ogq#Q|K4Q zqmti&kH?Vw7#cZ*d<(bd1%q0P1q3e`58JAk6^x0|7L2`DmQ$G?|HWIW-;1rzC5y35 zsl1m-Wj*0rvVOFfwMJCw%)u!ogDG#@k{-{?$9qzP-jZ$>LL5Sf`>*KY`DzG)XKBib zXDb_CPPz$%MLDtAyNjIF6aUD5!JtcV$ zx+m`eTL^Cd_uE47B19>4Dnd7qC>l=oRR2DL8UY)&$5I1{KCwjn9WIJ{`Kv7v8l##< z?jSHJxNs-EutNWQOwzKFLuA*PD0zoLs=zvIYO*Dhx%7_sN ziypyklM=SWBr)3Y{<+B8yI^lmA!LkRd`!&3&HQD;|N3}tu(O9XOQ42aI~ktS$Z5gh2F0GkU;Yw zMB#fYp?SuZEz<8cknAElWu|0L?O;*+y-;r_j8LIGkG{A<`G74%3n-tMFLrI*R3q+$ktsA^kG`-%^A1}GnP!VZ%WE~Q3lgnhr>~)}uiVwI z)aNvUDm-aff2zmpEcsjdFB3d@|I-2`chAjk_Uu48jFK$ic^S;T%d&}9Rzt~M+z7k{} z3WxgZ4W#}mbmB~@pV3hZyt6h=h5IYf*H^f|+!mq*+>i6unD-<~34!r@f{ags2YL2O z4dnSQbdpSY9`CmPCp9xH1N=Ik$xID;gr0Wjh&V#ZWTY89(8&{W*956+AB$zmnaod-SAdC+qWbK zSB;m*RfX4PnzxX360uh?nMm|!Iv`!;0cXP2-RV|4xNme&4 zr_<@%+?+qVMpf*o30>iy(6`w_a05EV7J}O#rPav>=aMKw1z>Fwy)=7-W*%5{=ZIuo7MQ0g?c|Lvah|FVVPcia0ZZ4G>y zCFD%6$voNbCAVf$(wnKfnnuP9u62HCwePge92fi@wh(giEqsbw9lh-=Ab1qbvbq^- z*~4pWt$!9q$#0y57UJ2aiC|_&)dD*G^Tyb<6%{;fOCeXm?+8S69mGtY%NW;p(C0>< z(X288jae<3o&4fTT6c#C96R1OZJFV+e%%&=-&~a35qWdXTt7GjuWw+llGK2gEhRF3 zKOx**hc{6N{sX-ixVYa|sQu)j?mFlq5TUnMSX1mpJr`l-|n8-jkXZ{4%{+fNNMc46R@}|+oSL6wl$58ebl~=MN+4&E7|6i z*OUuvA!KSSoQs>L7RsQMP{%7*;mrPgA-X;dqh|-lB=WrW@7w>uz_P+Jf9F( zJpNWv+=_$R+RhtJucANJ&>ttzAM42v?euzOy}zh&NwvF8Wc-cFmJB4aseBn!4sVM5 zf6>MNzRUlg!N2eF<0Ih-vu@Ri%gXqI*9#A`un>MYJ$3=i<^Ea{(#|8Na;{8E<_7YK zWC<=-Nc0sF`F@7@I6;i2s0Y?&h$nLsCz()9hV*sT9%qU@wDFk7W>O`u0O$VE+_eEt zuoK=nj+XWGA0cA`U6pq7g=~hwcYb%WL2<^w?f z;=pNEE4a!U=RSgjCKRP=50U0&=sH^k@p|)dn)ygxEYzn z()8y6N8qDER$g=wqS#eAGxy=IYUmpGppg~VxQjqU*BMNrl~u#%1IEoXTuucjKN=bh!u^j-kbh<0DSlWG4a#;tAWP1i0 zIfQMC>g|_a+5pf}U;)7!fREbBmNfwDqiq1jBy-thLj0=l9JElieo{HXy#=7b2}MWK z1e|3n9^M3;P9R3Yl)*U4h|~sLg62di6YoT4NlR-w4LAZLm5HQGFeS0;@rPs+RgTeh1^(4^FBbfN-$f##0SR?S(+SLkAaM;cQw{F~ zrV)tHP9VBcF^P{`Diq7mRIpLolW9zLi2~k9zBD>g(`bkK0HcAs7j+snH6paR{Xe3SL)f<{ z|Ga~srNaV(KX&A82f`jZJ{xTZF@2z%DW%%tVNV}NyaQ`nTIE$%=-P<7Pah;O8kgBK z$WjQ^@flIS|{`7G*ffxZ6(jFMNManL*w`&8d))p&)Y(91R~TuBAmMzM+YrA$Gmf}oG8w*7eL_JG`(|- z0~~=7_Bxc2#jeY{joJ9?8k)uoG_qnEQwcII($&bb9M0>gXzKs0g);}#X2HwCmTSU~Wm;Ip>UWlh1nXr~v)40_3)oH$Ex z0a~is%F(E%fCea(AWc({wG|L=3bqo6k8K}$`+Fq#*3kMOlpSEI9}r8a#j;0TOV zn*vG}yDo1EK8U}rp>ccwjjR~Q`v^qzO@WT%Z$T`MGX>v3XT+3ap(zMq`d<9i4Vk_h zjofmkgH3^s?LWD*{USOmrfe%sK?vi|<0CL+{8=<|2;&wNoi_!vELcGBrl8+;Agn2P zHQJeiQKeKy+ytoeJghBgRn~w{sYz%;>CrR;2SK>F=OQK?-V7W-AVxwnFvcIU)Cz1u z^T7tlTY;0&Inq*^J{E8UKG>(!geZ1Z-UytCzp9~GoPb7F%wjcxh^`S}pHgf1y%-{K zYy&Pt=fjlW;HT7jmbc-rZOC#7jofmU1D{fBn7+-O>08k`F=bl*lv>aB&G_pZvi(Uk zatPZN)tff}v=mrC@CIOC+kvnK;Ie2NfY}3yJpFE}EuMfcAz&$ED(Q(^u)hF9!daA7 zb(Ph+R|oZ%F(&e4`67f?i%h6MnvUQ(TLO4T@C< z%h6iPME}~5BDyYf3jKCb z&+>mD7~H+5u>3D{N=#XvPFNPgSBu2o@s~H``c*V?%ekJxzq-`(eNfz)?*jm$5ziCq zT|Jxdtqeisd|!MBhMX@#BZqKqQPp{4K#PL~1fQt5*;c&lX=1l%kF=bh$`-u>nV~4b zPV#yJC13dynjOVgUPPx#OK|#EfFsbtKG6&WuR6)| z_=_7l$+Ku=#Yvtf5YbhW8MM6*Burv^?iTF5sIWZ;AR5uJs%+DaRT+ZH`7C@0hMZ4F zBe$IMJ$Z{C&igud-q)a0V|thGEj_6OhM{u55+8;k_s64=L%6pn`@D0YMZ*GuKdn4q zYh3JUWmB}%n4{H6%=e<@s?}O$t#ivjV-u>9rdhbcRyw>{xQsxIgl1tZ8M9P4ZbLJo z6pmZbNz#&<{wUxGgj6OF1EEy0%kt^VoAH-5G>lK8krl)E1c8XIL1?GdRmbozArxGj zt}y&_bV5uSrh9b+f>#T}&+r#FRpw+rZ#de| zzoWIE>9j+DmELqeYi_i}7sK zl7svS&5Gh6FQU_=caUEJjz9@p0$!y{F^=c)7dAAGXVJ)taXd{RqMIILOThIk&rM?Q zJ%!~t0D)`XO<4{u0T1PR7XI>vTu()iQXgHDSn-|`ahP|jE4Lonq0 zcru{T8_Ryn2LBea2$aM?FOPN88ejOOPxV4ni!>W zB+>cOa+^LCaKz4lK2s<|P+wha!G~a2K+Z!WE0*#OTL^9`R8LNpvdkq4c&2zf+GmQX z)mImZLf^K2uOQAk-U5Tc^*dV0RhFaegiUlBcWPyGLq|Dq5vZq zh}KB7Nu#B9J3*r<$St2*y-k(9I#*}yYd-A|ARPLX`hhfP5lW61+?k!pX-bK*rVFAHsKDXEo#E$}=F7}A_ z>0)Lglc6)8{)W1`O}h8%#k!VOdX-hWcEW$2)in|Rzwd(3$jqnLQwvNeRhkZB9|+d* z>0=>*2<;%Et0z7+()cA~S%;=ZDJW~u3DdHhJ{)iaaw>b0hY@uQs;jKT$6)9x$D@%I zS2@-eg1ZV;l#{E>bBO|6<-urIS}vr!oB4*K?5U@m0`OiK8?G(VN>IP$Rb7J#*@KNl zD2Q3(G*{R%!k<+xBM>9NY1kHsgstGaCO;99<=loQOR=0=(V5foo&G4`2rN}%#B%Df z%7O{3&%g&`=sllABP-tX30ny6Jyc^(-gAjd6yQBCjcRMdi+pkV{0(hw2VORO@$lmG z8}r-R`tMD@2|wU@FB$e1yDw;KtBfsp#r{NIoD+Eg#?T0labM+KjZRRm#$TSZ%{up& zX9z@S>LZ*B8P7&7naQL+EGvqcj0Xr@!>2cse?YDTO4uszDqV_kjKN>n&^Y!$BP+(y zMj)bVRoN?G;+(i4y^Ll^WE#tcM_cz zQ@-U@-l3dt!G~bT`FUvM5Y8>CI&TbUaj<~kQyov)mMAvWF&ynf$?Wb_Hc@~t*pr1^ zvDg;(vZX>UFYSea)~;4~mG!#GjtpGZE9#~@=-+hF0BL-+@Pw+QX%ud}QtHWr=$vV3PJbD21b!-ekw*|Mkt_=S?C}6T3PX#zAC0V7%zXqR zx)x#{eS4zIoW%d%ATq~(;;-oZnDW1n@E<-Fb@uDe_*e{8@DduiuhDs+KythZ&*eb zVF#U(u!1Xr)~(il8nI(9iA^YBnik`HTj}r?;~WAp5?YM0gb%5vT!ChU-5mU|)639F z(vq6a1CBsQb;n*p6}v2NA}+yS*3dBCiAGioV>^L}u8FAb*z2cCV)%;?ieuOCd2~Wd z85VZz)$@Ei{^Eu_e+G@*a-M@b_G-BPtvlDhMkmFTYh}k?J>QSx12E+KF*I@r-xgJz zHv+UESU~Vb;4IsLutwmg5zjvq^NB(cHqxsz|1dv=bt$dvEax9+fa1gVP8WRd4I$$? zXeKA#9PCLTMnZEiTbBZlFG;)XZ8bf)wMaw6aetgz3`0>P`saTfmKhQ@I^8d))pQ*9x*aZn988OKtWD8M*A z8f{O~p7#m^W&cnCSJB9dn|zr-MAv@Kq$?Hb z@cl=K2zNg!eE%OhFQ$CcZ;aG2s5Rsd_!taX|9@!Yma{&GuS%%H{N7ugncov2a1E9z z^K+%u6~S?+?9ar)33V3z2q?Z!hAZ! zi))^lns{$8g+PS%2GNy|J?R9WpQU)BRNc-)Y88$`6T}A07gijB&Y70u^uB;2whDBg z9PKdF=Z&TKFbpkb2^v|km_uwKxW!OiIa$mkmndMy^6qFYroG_hOQ{UZSQbm3xF6>> z7zwWb(Q2-8obI_}px%k=EGDx<*Gsku=XP=dffxaHGC4SM$whXc=}=tcT6C(kjHa&y z9MMJS1Z6OK)jWprS2r||tI^1cd3?|of}00bk&}63U7`TNEDd<)+bMXsX3b>s-N+3e*B*GUS?SYX?cJex!A;nJqiB6T? zPM!xGffn}iG!VS%Ca>WyZs;bjppg|fd6_^&*M`oZuL=SQlh{6R0DC_wZ0`>cxVGJt z?cf%jfgz}zci=-XDq@pNvKh z;ohS3^X`Eb4GRc9yYaBCak1Hr3#08GCM02(3c7w%=pC*>YgQ|`$}-(^N8R}hKOnMZ zbEhANeAreqyi52Hfe7sqqAMN~Yr~ez<8Cw&O40ZVI!{_I(>DW-*dk0OFG_2ntA_C< z{G|;I;|pkH#V|f=3&9P8>c`12DlSpLPObJo!s{Ebk zO#D?1&0-oFSuu;r1R}bEz>YK3@OuJ8g1g@oepjROp|1!kzro{7^(?QzU)zx7x1o_+ z&T`;5Qw`H4ccw2u=fsq0`8ZQO+gbee4cXp`Mh;=yqI&ZNfR+La2>!(IC)J+AKZynu~veW9$kNcUOL5|Z%a86 zI}g1Yxlpb&?ZX|mvg7T;=Lp0|Xdf2sBpXs^@e4GQO67SJoj$D?(hmTRKviX5@+`8G z0jWik z;Lu`a0l^!b+ibromG^t_K^XFW7aF zgn_91KZg&*kpE}U$RYe&lz!el&;nus!MlfE+kvp|;rG$LADLP7U?&`5u{i8H^PXY< ztfBN+I729Xa31SjTJh<7h`O&sGgiGWgnL);Far} z(ayMzD{f2V6WhI_U?cwpgTS>wTB+%G^F+ONt%WBjRx@|{e%rirH+e6C2z8SPU%gJK z4qI}OJJ7r+F7i2ap0w1auLB%`lS(^jPpXlt=5ZVT%7*4~D;ilbkDCcZbOmE7ZQ-lg zl6Za+qQTvN3eUen=fsp}`f^T;UuFB3`0E?8{c|*O%h{gEpFTnupKyUQ<6{8=*H4); zPIoI&$Dp!43Lk?Z>${(pj*+Y z)AF7^3vdLs*rBCWCfTj~4)`_7SwH^5b$umKL-x?fEH&dZDflKB(lfx4(@l_~Ya!U# zrFzD%hhTyogsI5W@2q8J2RbvRWCzbK4W;~A{N)WPA4VfHJ$|H?o2a=CoL#Et`ymL; zk?-%J(_+fEe0FIl=ikAHV95Em(8wX2^V)BEOI0Rzmopid9`g-Ds2F&xG?(CV+Y!A= z{*URCqkZ$aM=Cog%rQ(TU=^#CTSa@aIl71NqZ2ApwSP$SA~Y5v4mQ}P0!Z^}Gm1cr zgic{Jj9BUtI?;@}u`B@v<+79$r^Da)mF~6;?|K9YQ@Z-GU^!Z_bkqrBb z9g9Msc87Js6}AI}hTp^8`8^b$>2awnyl2kBi{|%L#=r~vav?RW;WxMggr4Ot{Iv~P zJ{XOxl!d5S4(tG-VLIW?^!ezVnBK|q4iI{_&%s~cknOY3$RTW7RB+w|&{ALl!JXyT zw&ui|fS0442^g2`&t<&gR`FEM8_`nL>a3zYTMyj`)It=BkER*8-d04s8Q4J}MnW?% zp*n1-A^0|$8>J!mCOS`AdedJ39Dx(ICb=59`rP<+{FMz2Z^CQye7Fi29@(J`;@`!n#F;=S>1F5f%`%loTfCg_ zNtDE+^v*>~R_id8E! z(vq6q3OE8SY#aJO@Tz+Z;V*9J9)oCP#XX7yBDxNNZ9^YOn8fyHAt1*l;eXL-F=acr z4Siq;D(9cZhhWJ0r_jhP=RB|teIRKP?@ze%{tI+!OnH~Lp$`m0<^EB87>3+Gj7ARO z-lEj=Zh;mJ3kcpVY_=T;>lP}}E%r znMs8=2h#~eXmb!<%@_>>mfYePGy!aQeC5$m=nQE&OdkL^0vl|hvCk5_C|`JV1pcCi z-mnynta!r`TL|tAR5MQAFvTSbSa>uc+9!!U^=m6;O;kt-S45(Vajgss{}2_-@#wnkmGNmkz3Aj;Hw0c=fAu2{3<#n zraa4EC1|<+3;yzkT>lA;9Ky9l<>tko76A(g{$Ox{?LgRrL3^~tf0VyEPFQgC)@@if z(n`$os{|5`P+v6V{xAs9@zLNd1R}KDM^_cdvTv!}pN*zKDF|nvQ>0}vy#{auI@tOm z!V|kHe>m8Tzp9}>Y(gU|{&2D_1osE38Yh3~bcq5U4yHuw52MKjn}R`n3`T%!SG3Zq zoT!~TfF-+$LOhY_^STR(C8@!ouHJGsSxV(#VN{p@KgFdAT{J#Hq8i7z#y0Ex0pY_0 zBGfS=d_WjW#w>Zpy=Ybx&$t_%BrUP&TLDKPq%whiqEN^cH8Tod!C%(UG`@sJR!rjy z1R}a}(9YKQ`>B!`ejY->-FFJZ&!Q7z%J5Xea3FZ~Veo1E#SMA>9U8giJWpH2zfaI` zJ!`u&*V6$4*Cd&8JyZTXL4RLQ!3SW-_aroO2;UZ!oHqlsAXq@~hlLN>3YR@BY>xIV z!X$e7R9n1|$Zi#Sg457?)rzgMsUbZ94UGX*Kg5S& z$o==x$RXTYlz!el(4t`h!MleIwgX|^!>Q3uC5+z;Pxi_FRJKoO9i|RptxBu6%3E}; zgJ%AqSc^iaL7LW}9U{YZ&`c=2HJCsk>a+$AXKSCRvCrJtM{hIzPt?Yia>-J`gI!z4 z!TiQD;pYn4fH6ueb^Zzl^w3E za*JbIKkQ*UtUs5d7I6L1WOLaIy+UqSzqr*9gvQ}j#(G&ejFskiWBRQ?^_9aL(?_zO zN3owrv!BbzPp>i#(%IwXOZ~$qz6t-SjOxqex`#Jb#wHVaf0_&aaY7-njboS7x50Oe z8`HOwKgkg%2LKk#1xEI%)!NlgU657Enzp6mDs%)2I9!>h3H&ptvy|jUGNo!-EH{m8nRnLBe$I032+Y( z$CCKH&7I#{(b+KNm!6|hja+5;X8e^68U7?1x#bLxXH`ui_?PYk{~VnRQ-UXvImBu? zR_@@R;V*2+?@!RkE$4Tv?)DvZp|d^j1`xRZ)|6fPzK8Zn3b${d8K{5iGw-(ljYbaP z*5a{@KiScq-vWX^*^RXw2z#=7E!usp$r^^G;?{Mm(E8Mht75-(9Rwt_gqkP3<>)(r z35IL#I08}U2`{=P-CvWjv`4A}y=WfT5cxXuBsxo4D$}O|j=)G@>pCDyF^Vnt>lzk; z^U%nOQM`jdME3|5*t$;P_#+UDW2^q(=!}?hEN@+>WBR}FS2tw({b=NtGc9dhr?CA^ zcecNd&Wb79x~=PUjDHOufg$5xMI(nWZc)K`6F|#?1q5#bme~%3H32_}wh5Rx?pYG^_o(sTx|+a{lP2LB`wBcU^xE)QSo z5%zf}mK%1<@E&0yKs4f6Vlv{@JG_v9-vk63W-NGEY5=+jS z#QP}_74Du?cs~i98|`hKR(YQrSWzaALuG$GJ`O|n*P@YI&i*{UxJ=HRq=1Xu6)=R( zkEsF{O6$zzv8XB-#K&T&f+89@LH79>CtUm!f8glXD~yKUvf+l#Ldh>_4< zP>!S&NJjHpG)GFQ`87IcTAI@j0gk{=WiMhhS|V8#{LSIx_$Ul5<}oy~Vlj^pi0Imk zd9=;YWlrLM;ziD_#yEgzM2o5NPYX@>Skyu@8Xt?H3U)^$w_F7=-fkEu;V5?{9D&Y} zsS|WaEr)JAsv4H!<1tjj5;Ss%8Z3GS-geMZV*$b2jxX7o8*4kxigvBq=v*20;ugA$ zZD`$UMc1Iu-e`P68Pl{GC0qIMHsb;Uam}c<-P-*BjD&t;EE&91V0NJCVRs6j!?+fm zEiJ?8D*;DfhJF7=Ib)aQ9mO#IvWD()H5yrQj}H=v=sF7a{hN;A??EVzvlZV#C&ZND z;P-DKJbw#+aYLTJfktjQ&w=mXbX>pc&h=l=NipSG{{Ah5??2%KFy#A1G;#>v7A2i` z1++3)K=7_0Yda9u6&w=nD~>Vn#R7DMLR)ay#aLI;%B-?M`(6Y4H9QMYs6Lv$;4Kg| z?oo;fi1!7Z1Y#t#1F)dlXGQ7<&Or0RhRFMY&FCy?sZFm09DxzG?tziTuFD&OP5A2? z8pp|KWW_j6BoNUx1Z>@dmgCDI7RQd@QglX4IS#IS2xIzU{M8Maz7UPva;5|89<*%V z;m-Ew&{;8MTVD4N#`tac2n-p&6^$IixJ5wkeqAFLpQ# zUQU$YtN3C*R}^>S|1*pR=TTb8S+0Aau?0dC>X4>0c*!>Tyfb)#K#YXWV7fefsYjT8 z36>jn%kUmy3P9jGDJ{L}Hy~*OH*DR5JOXv{aS}cPLq{2pMphhU41tKQTVU%R@g^hI;{n2(6du)dNl!J>LZbvItE4Ru) zx_JieXYxDWcKb87;^57~Ed-)YvrzW~`E)0ID1-QTIDI($zW+u1(Yh=Yy^{Xx@lsbg zo4TOv!M22%;mWag|KDV;oGrnz2glj{-{BNuuK>NJ?d1m(nKFE;?xl~RDcG3)DWu;2 zVEtkC^JnbmBjl%-UJ1WQK2cAvf`8hWUQPa7L;mlYZ_*!t|67#bq)+0UNap@DMB-T9 ze@6!6{$2Xl07q===<&TgcGb*(gTJ<+nLmL>R?IwVmZz{x(Yr??ddj<;iJk-yjp*N1 zqUna(Lij4zWyxYzCy{-uJK0C0bE2)GX_ahx_NExW%Jy6F*EeMQ zFf?+@*{mp9~k3mQ3uYm0uGx8$^Ovw+|& z`AxRvh_&R8M7tDu4BdHJ=*mBX)~QxxmR~uufP@A^GpBcptzdYYeiMPH)22uFl`|c* z;Hz%h$+Xxw|!wu{}q3AL#F?XMs7LNfwz5Hw)eZ#neBZ5q7l8ldPmD|`@$Gs zh>yUK@p)+E5XLPkIBx=IS+IcMO~4Jd(q&D+q;Yi?rG^^U;`I3&Y8x-I9T(aDi^;IR z*xlceah#XxgO;z@FSG$YXt8R2rE;=vZitEtaU@19M4=368iRzbh=|GhiozeVT8l<_^KFNvySP+9*qJ_bY9A4emHux?S|d6Pg(garg|63($5 z2x}7Bqiqsu=VWAag#n>ah+T#?DXrcbdrk(4Qm9LsUSU2&j%%iwmUyqQH-Q)ly+ZYz z41eTO8Civ9h>erC3(NmMbzcG|Nl|UxEHl$R`_2q7ETRaCGk_?Hfb7V=$tFTm(_J%D zNq1FKRXxmzsE8m)iXe^1zKNpn!$UztQ1(?6MNw1`6hTo?o+yff{I?>aDl+0mPREJt z$*Sk~y;u6p%!wQK+&uSWWMm|qDksU&BEm6fF~5@`Xj6mhb;lj>!9CSvI~bX%$+iL_ zKgVExC&R(^5CxRcGz`LN@nzfboeVeU5gvjk=SyMawsX$Eli}d~lI*-+2&cxE_muBs zxVb+c55trD5g0jz`+(N3-Ggiz0T9|ftP?sBNM0)z^G9Z9{xCQa4YtW75z!l|^_)b8?u5^FoV9 zn}#n6h)ysK;~P`9B;+=j6V^Pw1Lw#|YxFh3G5Cmk#1f_;N{ya6Wwbm0OW@?7S`f4jlfwzE84H&X}Gb56<3 z^h|;n3meF@OfX!3~Ialatf8oWTh&H>`8i;e0vijrs`3 zbOv(&Qy;zfo}2+!l;iOTJQbx3BQr%gPC(@65)$twC$nbp{uPQUqhq)N&W$hc_Pfc+ zd2seG#pCc~{~{Q)qt!TzD1y0FTA93Lb=!Q>q}q z5@=T;TS@?gb`|@CPDHti_vY&=CLB_!*4bygKZEL)v*hB1u16ED_mfo&Mq_d;AxxpT zFjK9HM4N_*0%8@WVfDPDyrU}glQweHdXx%`TD z1EWY^;B$Vz&tn!MhQ!;-+Ykwjx0TnhxO$4I2gI@+)hm@nnm#y*(tsh&WJC?@@a1}dT!4y!bkUH`pYnK z+nFBU=sFg|Kg!PV58zDrGAx(qMXzMn@PqiMp3L3{Bd0JM;F`7ZmbNSaLL2W1p%YQY zd!u}J28r)1zuWxI@|0829^)SthcWP`m>l*Hb9o4kI(6c&mWOZU_axt=fbOCCp;FY~YrR=v;2$=t7z5P}(i|kMIMhM5abmDHYqq|W& zYEb<&@7wsGo)Z2o7@0|U{=Ak~TD-nMv&hKn^Kc@Z@)@P_O4l{x^;vvSPhOvak=xGe z_=b8}#LoR}W@2X%#8{YdPON;sBQ%#WI~^a@li4XSa{HNWbQX)*U9&U06PyX(OIAI( zYxG0L><;*-p3H6sBd0JM;DxoFmS!seLfh$&hl-D~)92><r{Vf^ z7MJ^r5Tic2Yer-^1c$l)WN67~bNz7vu?lmY+q1hKHET;Lu7;UVmxW%4yAn>5lg#KG z!Z9dO+pwB+F|oJ|AJ|hYE{2hrSX>|=@>_qKrru_gSDVH1V-!qA3->6T5?_|(q4Gxf zyfHk25AVtKLojmNxt_Ia>wrM_RsCjmzF&va;>))@+=)$rbN(70f+y#%!pJF{2Xu06 z24r&xfY4@OW#~kd8F(mPGcf6pdZAvb)k}Q^^IPIOo{kEXv)baVU8_p2J@knFLJkvMZGB?8GBiexEkD789Kof)LTb5@Y$g=%uGbTM5% zjkVG~_1mw0i|TiY`dzAim#N>9`i<1@apD(VTRoKiS)OaFJ?gr%Ox(#7Mn)6&2{DuG z>#O?_jv<@Msy78g37}qMJrN(+vz4!aky$Ixo8N9q6UmrG@AWj1jPza$=fc@VBTnxm zv3xG$=0@!rd|Xd^=q~x1HT_WF0JO zyU)mc;f^B+%wqadE1!Ec{0`%FO?*&KUf=w`$Lsipo3n_0Pj+Ir#&g_VD%XqEGTk7Z z9*?gUmkd`+BMwEDtLVamGG-Uyqk1yC1&rJQS8T~9c5!xMd*MWYS1jEYFkU~359-P5 zkuY-Gc^%)l>9MZZFJvb+hBM(yth{2ytr}zY4182iW>15W+s^Dbx)HUAy*)dzx5A0= zC06#>#@#dH_1pNMp1ghwM(zM!*-g(2*?D~)P6Ws+Eod-apT!6Dts?y_;s61$if0kIZAlOZ0Vbz!iO33= z8+FO(y$Qo`zMS+%{e)vKcI(Xt#{8>Ujsn8#M-qwT~b0nrI|VuF~nr6k+Htf(1k53v=TBqy=aMucM!63c_g zBvooy{m677KCGu`yc0%dqOqBP$j>-Tk=p}Z3>PSrjBeo=I3d0aPZ!Tk6T$Q5a1=hc zC(lQ~$Zh9&#;&cMjV`Xw%Fgwfa8i7^o-MexCcybV9S^{h?^9vq6utvGxi$l`Ap}5Z zGteD65oHE8&iA9oa~lq@t9NOUEJ0zQtGB;2P-vV0d+JEzgYMCU4Z6CbAJUXCm2#F{ z$|r~lD~r{dYd4=fjAKFti_JWa_XzURRp+!U1PbSgWG)ojD z8f)h(8fzY3HN@f^3V$pt$ev@eKtaJ773xrpvqJN&4ak`SB2_gu%g=$VeZ2jQ^d^`O zrWZHD8FK5z<%DCf5l;|$K_sa$wY#_;AJbDPu7#1AP+TJ*@?&+PytQZC{+8mvt~JK( zZ{TeBayvzE+l-tu{A+wk=xGjRDDCwSf2X%%q&kL2+SGzvMf)%6|ZaUW+(Av}Dy<#6|hOVYzm(v~-!#_Vk)HvWB=4a)yGK$W8TG}@HIIea3tzO-{V zQ9yKpbJ$>2sj%$CS76Rqqqzdkos;(HY{D^kiZ>Pyo>w&+euHu;9*w64T?8XD4f?Wx z$j@WERo%6Vi`ac>SoQD|iV!pYtR8*@=gGGo-k#WqfK|m0@R&TS;z1a>?NzZ^;vV0> zGX9&rGX4YS%C|D!DJsKnUR*Q&g~#Pt9shulQ>r7tbZFlqTT=jp_AM(yC!&1IZTb3^ zwdm26v7oWT*{H5LOK*&xXf&cTTAjm^Y)27e_iw6nv?bYAKy-p78Amg=I?b^#BdpUL z4X4OSYP2um7<8y78V#D%pn4JGBlw`6VsSW(%*5iu0wOIAy4u@$1xcN{k0 z)zI8)8}N#N=mZ-uu{mwa3#@+*%8j~G^h1sL1cBKlC%sWO;TW96a{GHTa&8Fb;v;(s z$SfF{3CMH-k)I)$E>|3y*|K=vi=x44~_&M9V;^TX=y%UVwcD85h zJMI+5muF|Z2Is|>@pY_KgXSDK>qB@9o~#eT$SJG`ba-tNWQz!Z&?e#K&_<<9!c+O0 zgdTc=QL9wxae?6yZiegCS#0tCW8xBYj7Cdx*o1F}mXWpzHwcJMunCh|^S1iO6EHih ze>@H+%1Ll^FX0%Zs8^<2p>q*=3?JH4L>`5anTR|hAo4Q`Gi0M}rORS^+!r%Dg*6Fc zEF2+cTAtivO@Qy-e4gbMT9e?sZ-EEl$@}Io zatiMOonD&-*(d@av{|?=w1Aaa7|Pcy%si| z|Dh3L>%<}*pwXio#-SWqQrb8iCm>RdLw-F)(8P0KwU!Z>CT1eefs^KBI{Fmh7zD-g zxZo5nRUGqVY05tfy$a1S2!i_>+LhuVtu%VqFYxaxQw^F@`rHh_Sc@;S47aicR5p0Y11V z&+Ed-ZRa_0P^^pV1G96zpCc*fb#<-L)%efRBhh7Bh@UIu&sFm0YVqTHS=%SZrVzik zBa%@9@Fadu7&(RbfR?UZf$R(c5c>Y(;ZUV&L_w}#r+l|FO&c5@sF!H_bziYoE0xWy zO<%BT_qBzh(EcNT-jF|U%AYkBHU7+5Z?W_1@9L0R*IBXZj~3do8Lg=44dNd9G-a_` zEcX@F3AeFTOQVM^YbmBL^b8Ia`e>VXp;}m4EetJFh-V1IRL78CQ<-6<#Ig=I!Gx)q zPZ%iCr#|Vqwmc*FMmU2`;-gCm#~>}1LSxOMxzKSr{dF0@^>_fQ6q>KKkgtW2Rf>8B zO0{|~rD;$l>6%caNsEUE28#9G2B1-3T6la*Hu`02Vy6X$6FnpTVf3MVg{Nm}kzV%@ z=}hjWc$I=l-ja--2xsNRA9SsBct{RKC4(}`wy8CduFzLP)2&PKWtsRx_UY={ym3DF zX3>8abagGeEqarFsIBJq`KyV|SzB^4e*`5%HRZc#X7WOwOAtw)8pvlfj&KZ0)aHq1 zq5R;g@r6MQ7#4r_E0Vm7Z z6{4ktV-OR|tvP1=TuX-W@jbPq3L`Tusf0pkEs>R!NlOmM5(VA&jLTO`dX^PxUA<*` z*kU|r`7X_3EJP&Keo$00D5FXp@^MROy0v`VBp_1dBgbXXiOp$S%JCG;22+k-!Fh5k z$3ui;aH9N2GjgsOzraWK)Qq3O$V@YSA|Uc}m}>K8Gg}tV6VF4hI>z$^f*1>*$$3t0 z-fYIt*Q= z=3qHow9bl)cMZJ5DAgK~slbe8j}*{aMr($$Kc8OS7GE7)&qLFwgs|91VCt8uzBc2lr13H=AnFFFhYaJO95UDznsm7P!9Jy8FRKhX%P~RLEm7_+zy!Fb( zx%jA_5^*++%p~IT0wTXC_F`GUl^H*%wC}o zT4ZEZWfGaqvqV86^VfVuW}G11xVadi8DO@@S!(h2fj1X2BBMwhcNgb`=2_oeoFyPq zH6+KoiwR=RmTKGr^T1T&COAn>Dx<3i#~`G6epaJ7aW8TsKCGuqTn{5NnYdO!+;Kng?vg!Y_ghE7Cz z&KvV>2NP=bYN@|yzD&Hyg=m>NYb@R|v>~XN3ZvU%uJL?bA5F5D&qV^YdZk z6wU*BxwZqcIRrpxJFsr(M3fzPGT*m|HyEmx%8j#%1_sm;RO78;+53kiJ#Z!G=gOQo~yc!Cj)kjuXCiVGw zmMCa#>b`vU*-Ttos4pv4>3E}lLuqz~3)fk7@lJvFBQmT;R7TA@gk?vHG~*q~2Lwc_ zu;jQ%HK{dkOGx@*KA4ac;6ynojSeIngB116saEJ*H;%!F_SB7|U}UBnM+k`gx`+Da zR4ZK;)8|k)SdV8+p9Lqym+9m;r&<%>e4mL2;K}#tFml`ZPJDB!l`@O-?`P-yHaIc9 zoZH`=YE6Rk{vA9BPu_2akyCgNXztn{$VL$Wq3=%K7djDjcQPa2#mc#@GmaW>rWE^K zXC1vkQ^FL>S$e@QC8}dUWPqMW9{oF%27Np7PXUqY8uDu>a~uh<1ZJa)QHoeoSwIk& z&vLRHO(q=EK1hLaOo9u{x_A(t0<#W`%mik3D1;UmSyPz==I^1EtpsL5cdm!1O&KiI z`<8X}9(O{ay3~9o(o6Xq3tb64Lrp~149qB5$8E?*L&?{Ia-@Lh0703WoVleWpN2_c zO7clKRc<9I6OKWPIzlZOJ(rM=A3NcLd+NsyFf!AR?Lr~6e#jciq#x^MiGuXwjC}QD z-P-WbP^DTIk7|bo3VrnY!0=Fip>A#KI+dn179Qk)P%%+q(t}zNWh+Rdh8@cC=}r4sRcK=(TTlRmeqQtO z(1|pnAY)R@cR$BeabqLSkX&4-nFmbo3>UGp0)xLv(eTKP!y`ptMssr*kR2)5jJGx) z5D=*bB){&{Af+{P%X9R@q_AF7fK%nyy_rU3M z@*jPZa7+n$o4oBAWky_Dd3D2=S@Lj2WXBsW->W@OJg>J$zdAvHaJ~w zjhRh21~suhW->Vgt|@Q9Bk+NWzvvivP40?2+XwmaxM=EbIpP? zKMRk-llkc|a@(0-S3mkNuNaH{J+iaEE1Vr)_T}Tv$lZ{J#bxr|=)p{I!3O4I}_U`-hK*PDJ^K zOY+_Nu{Qgn_|9;>I*Tn1{e*=G$mmH9v#=utiQQ1Ca?xht0|KHG%)} zK79F2e!{}d@|pP9o-CgZBe$L9#3w8qOn*N+)3?Dn@nzcngoT^!@8IKmvVAj*oWgcM z&(>{Uwt@f%-S*!XIuX_OugLci=FHX!9etH@y-+F_&G*^fpy^=p{Dmw3fwboTeebMhQrL^x)9kqv$BNBJ))knTgC* zp%7YRWL0GnnNzYvL65tZ=KHv7rg~P}IPAKwS{y8v>&7FmztD8B4(Y7B_(Oq@yqb@a zb#zAcI*jX|LkZC0@<#!YDlR#0o|(nwZ%NCHt5ANJv`i(4v2d<$P}U4`VtJlEn*!IB zNq7jJy3!3JGhG=cAoA-d^UcjCt;)BU-;u(?u1v=K2jJv5FYbslFCT-XOoa3QK0FXl z{@(*5x1Ik5`soq7bgUXUE_)3ugA?Ri0~=W{M6=28Iw<17c-FyU7&)a50?dK-7qYPg zK>IM4>42iK9Lt6 z6}iRrzbT%K=HZ`kR(!dZFM`=K;EewrkHC}h|Amp;&iGvI8uV3SvHte2WM=)X1Thvj z3;YU~>kzJ4aOOA0qwr*Y0~k4l`G6*`eS&Nk0T9|JToGEr$|t-l-*t#}l{?f6p6X1X zqWMLfC2$ElRVNNT%B^W)3)O02Wvy2SX|yZHvP55KVQCX_tbj;05&3nOCRxpu-&PhZ zy*UFWi#dwZ;IujUj)n=xph%tMmddA!Q2Ff!AelR_c1=E&;Gq&Y`t ziGtQXhw{BQnbCM=UoO;3%jw)maX}kPpAXV(FpuOcy?BqnI~026Cxi3+n8tmf+1Cnl zw}41hm>d^Ai5p|~ma_aA=7uTDAK`R4>5YCtIHt15&ofyQ;3nodJOEEY`5lbR1m$S~ zkzY$$N7{WWX%_4Au12p&#`+wB7z_W(Szp(DTyI>uDh%CBX5wLZaz715ZaequY16-I z{&&yL|1NNPe6RWq?Bz~V!1(q5K|B=C8rU92PN{(aH=qrLY$gE^`X=U%P$6qXL55=U zd~agbUt0A1gz#tJN_LiE@NEnQ8ukIS^4@ z@Y|Q?X%=H~`x5%$9ctw=D5G8-Df=<156x9(I#d0RZcH#^VohI8WX6`W`Ja*7#0XM0P0d{4ID z1tYhe?b*h?iHq^R?2I1^=f#)tb@)w*m;-11Xgmf_);|Ixr?4K-)U_{=Eg}Fy-;F#K z+Njjs$jW@*M4lvHqVMV*s+?dfY+eahth3z0w_eDD9U5U7eaPVrE(@(4?F}v#5S`!+ zCaY5oXyR7axDRH8xr4jmOgTx7ZX_Iol~`@P(4?ucFK;~>xdR{DQ#)>lk(qYfDj@Q^ zt88w)Xywb|`fn5u=F1t^e}%K+%eArfqBR5FEndVU@MQc27`g3?C%0a-a%Qo<;ny;= zzCJ;Wh5zSQINN&BngwTmJ|2Z9^K)V36y^h(y!HvQT?9aApKw8F2`iuQ)_m6w^eZ6! zMb|4J$H1lQRGZANfavIq{^W2CM}=0Bb`3`eh)!?~tye%=^S7ksWSAe;P(A@C%t>)H zNH_*L)+->bDR5mm5f8yrS60BtOjm{lM1CH^dIhAFHjDY|DXffE;#xR4zRbH`0clNy z^M4H4{5pFLJOL-jw+7N)0clN!*TLg>FrIbr7>t}!2La|l z`wQ7v0wA=%I5c!3%3qw6?>fXR@gb|@hl|6s&8l7+ELMiicTCs429+^q{RJD0#)q0j zc&+G+9_BC@>rlj)6<4LC4aRH%k!mpV>opB}%;{SSvja?znyfw?Wji=uPKKk+3CG|@ z`3p7$t}EN(A$aP_HZU^Nm90V{w64f{%A_kZvP418Jul67x5ZSk+d>?Y(O(*@8B3fW zr>S7h$XRf~AK7d?k8d2QAObTg)}baVL-VfHWVwJyRg)YafHqiZP2EzG%V1WRl3Wbu z%1LZ=CgB*osIP1$qvs-W0Y18?hZ8AeWF zKcMSt;~-l{0EE6FsfA8N-H^Ptc2`$w?@AT4%>uS|h#edYTJM@IFH}o~#REm!K-GGO z$?y^H`#P#%&LWHt4t)nieMhGiXd+IdeK~B!dnopdHz`{S2%MS#W>&rFrb$_^BN0~9 zISQtXHJu~i%sE+)_9PsGrC2VAG+#P%Oor>vp?EN!`g1Uh%=G7gPzbF*vc@v$&!Q|* z(2dJq^L_7Z{L(^wnRPzwg){}sDmhCo-XTzER7gg(IyB|{&`j%Fl@S4vswp|%s&vaq zTl(=mmlf-^5MV1=(^430#Tkvr`rQ#+SnMuWs0wT4Wk9o_O zs;s@Z)+~HgX zA>T);-StXW??9<$K1clyO#*W@&I*fn47`V+Pp*rYjOug<#?7J0)`Ia(0g);gIo?F{ zs99Tr@oSh1CKyk^X>!sTJwP}HCGli&7ty4P>BZytz@B>X7>vyH;!y#SUq_fGjkufT z?rYI2jfu9ij|SG7ECn@xdpz6cM&lk+WLpqXnwAe%z~gua8gA+&ha9mH?) zy@Oa!Y_Te?=qnD@OO-Nhv#J*QXt&j1#rlGE9WG#JPYFJEqOnn@6{d_*25B@Xhi5oG zw6e5kC<};G&yZhBSvM^UmWMbWCX02K5jbs5zN1qJ$Dl|ZpO-chE;{Gnk$8&ESuipa zoijrrwCKp{$|O3+Wr>1rLY~c6bf(b#raanv$w0xp6ZtvKWGwDPb`87}QIYkEz>KgdoP^?u7H5+SpC@ z`TB;QWwdZvSz0X&8e6TtXw~eYTZ!X)4wpYi%Acd;&(Y$?S#a@UmuD!h7%Eoj)f4(O z@4zBDhM`U&l<1kuqSEq}3zrO+`x>`Rg@J{Q|C#)|3lo2Lp^n>VT}?|7_t3q0v05zm z6-S~8bW~9E1*^hFpOUPwct&4kaH!B%?;R>s3zVs$WePDCh@D_GCbhC*Y0oV%k808r z21>NdL8}}xc{jnybJjz21>qQc#Z$%dXDj}u=3GU8Q4W10KJ+Rz=Nm2L>tSS-oSw$Y zdM_ntP^ITufs~)!m?0MuTUoPMf1bigI)2|$kM3>d=2G8vba=kQAG_1xU6bmL+ z&Z>(GtIcY(!Ztcr(`iJyRUH^wVY(;nCz&}UwL@&ezea4T%fI;yupJ`x$U*e0i6je{xQPbAK8hh9~!@z{n}w2Q+)_ z7i7~2fY5$neCR}!Uw9~Azd)xnE-zN;>p%3IVQ{$dfT2=0Y{L&|KA31ZD=+SI*@omJ zi$%3cwO%SOb$N*7-&?5u-a;9<5xCL79KPbgP;#`dxKBWIg0Gm(6JQC?UtsQ-z4$Yn zF(>`euL#FrCzf|9d=6Z7{)ormsXEWW$V_#9Cm`~385?M+=DD-@U+)I=+GYIDBM8ii z`|`iBwb0FH!z*D99*t)u%!H9sDj}eG=>8+cB>+PApSwd#TJ@im`94&CXY(O;SMPAS zb(Tq2Z+~%lsjqRqNuk_N|Es=osA!&)_7S+YorM`68@kv5pUg(26B%FOy;&lqCwCX%FiT8io`h567MULqjzLG2nkUxS$>*QYqUlm7?31{u3O1Thv)m$NJPZM8z@9FNC`_T+di7`g2n zPt!Lzoagsv=lQ*GN_?+k`QoY(KIi(~`0$=wZwVu(a2?RiwIPsAAOJ$&!h9=KnA9!I zi}@OYp8is`)VGZGEE%?71zf7mI*X4O)fQCgcB3*l>bjZyYYTO>Mh|jWg5l7D(w3kq zAUeSkOlr;BG6omHJh9gCWjIkzs-w>mjzNmr^4kiX%gK58(4KPgMHrdM$rl7fe)d4^ z^=+lgV){V}2Q%u7>HFZM_%fZ`>)V0DYbRx<&?3VA!=bV8Gy~xwmTP@ax zD&-oTdQh%Z%~y-Ixe*mCXXVAmj%pzqL)S)i5aMqw6mhr0mQfpB%V8z9qM2YfSE|Ug zl~^bsQmsUOT}BdTCcsji!(rlBr};3PF(>!Yu7qQ-6HC=`v8aO3iw_6kL3pap{xC9A zoqa+fwCc#3%A`8)%n}8yUap_-&C2-V3VI>Se3bGfngZsFoTV0ghO-LEs8WZ9oEw^H zts!R%h*S;9afPy5PTJCqTVW=cZhRZgl9SBnYQixXQD-WG0 z1VnxZ$ z%sctAZ6Dp7#`qLG0#C*#!pJF%2lQ}l17uqWfY3J|pARivb@Op#zBXV^nRfaur+bbX zy{X^0_Yk{RjrGfe;mUQET}*3}eYHi+2k7!0fkozHO%a0(VbpsN8L<4z3*{`-B-9*? zrsc2^2ZWZKwh{XZh*TSqU!PGl8VRs0#V|}GYd2LmW6ny53WQ^@qi#i9EUF;%tw;qA z!c&6=U}UC2rBDd1L9(VYY0zF-qM%!mv-AC&%)~-{yiFX7 z5AMnH(J*q`d7h!SFuAxsH#^s7!%6YwT0Ta%CcydrJRX22-=Bk#Q}_<(>Dm^^h7bUu zS2U)CPDHI}?3eH3)CuK6d8k_HH;ln!GzUzUoOR~$05x&m;^<2l`W#1E!H`iKJ;`Ab z9t~wfn}kOML?@Vp9yM#rCj0|ti#3tI!D(_59{rYZ3`*3uXPR`WfwfWiD?YHNpu7kp zGeLPlK;&l>)VF8cEWhO@^qOQWZ%7cBWAe zzW0UG;>)-F?U_{0_rgQ)okaX5lAL+eI6g3|>=sw2p+VN7h!+HwRp!ep>saXp+S zC!f(Jgkw;m4p3}H&hIg<#Ygs(jB8+ICK*?ULTJg5)ssmwPR$YpEj=EY@6zM=zTv^a zlBpLj(-g+y7Nd96wa3s~3>CCdybe8iDU=JXCw~$Usd|#*GGw=$v?V9AZbrFcax$GD z#=?5ONvSdzQQNB&S!!H;e=!9g*HcU;!pKZaCJ2c9+J)L)<>YuLiUqqK8OJ-o8F9A^ z&T(>kRT|UV;iG#py)BH~cBT{CtDI~PW@kHsv*OFPy}c@p@uheKo{aay$SI5mba`zQ zWLpS;(DxR92yIU4-r|sa7bAsHD6BBnBCmr>)mdlp>NN@!w9%FvM&awBMWv0xR|Q1J z7=^+L%P2ewbH$p-BXE|SbVs)lj=@O6C=gj{Tx}E{!pHR#llx(0CMNd?h_)C7#_{VE zOGcyc8k`Ydj%}mhV)|8lbWf&VfsxzJv}F_++nawoGuxXI#8_B=enq>Cf{XD@@CZB^ z-v~xdVLYJAYoj3BLI8v|3Ri`et}+U9@-+&r6VqrX_VCaUoq$?w9CtU`;djg6YIX`w z>^ySHV~b>SH@6PD88dS9T`{!iw2@dWAX1G)ex2s+UMaC`#+fjU>Z;Sb|I(YVR#b zfL>PTpOtu+rh(ZgX90%q)*cw}{HVkOp$XS=bFY9%m75$FI42Pua^9Avyae;XH04il zqMVdQza$(}Q{+i#t>2+^GuRO-|Is`Em zmXoK0&IocEpaAUt{B z5k^koJ)pU3e;^x00EE7ixhqt#)Sb+te793f7$~l2e3`*m^E?eMS7)txoPmdaJfaz` z(VrZPou`DBlQs>X5)hqW8hX^MEm8S8%o1xPUxm};Bsw~ea12V+zRM@neQ%w7z=yIuWEbWWh&=yz|6#+oc|j}PT@SD%WI<`n?nGEHVP+&PDB}npXX~7 z#?u~KdlS_zaIHFpWi>t={<1bPy8NI?6;EeckoP0K# z#&nF2?#c8SFml_OPCOfRvVBK(wr_{C;>))EY&4DWTk!}y8UHqnoWgiOm)Ax?wuJx) zZ4}-gIuT_Q9?RD#G~VbOEEde|*8inBV9MkywAK4Yr-<5UOb)B?pHMcmRrr^H=me|K zc%!p1Ys)Kad@IV9x^(md&J74+Ebc+35RO5Kexp;+r3Th!VLg0cPeGXnBQrsnBOvlK z3;K;t2h00YFxWN8Sl$OtiSx3KILpbEg{Gh|u0Mni@5%My*3Q8IRrpx!|;#L7Nrcs<2f6Kp-QP%v%X*bUAS1C zl@=d1>ib#P*-*_`jh^JN3Acn6leP&r35brc32N4sO?V3Ch&7O3!D({R96dxh1|`ZS zH0ffk;}`hAo-*OP$`?RMZP;3 zrw*5^h2=%s%~&e;7tNQnmcupcEVy{_sBWQFEL8iJmC8#;KQ5~IHy5hFRoq6KayW-t zXnkqtFeD&4!8uGb=5G0i3t-mNm86#$z62-BNqlrF;TXikva=ZB^Ziig;=_BY%-Jw9 zQ<={Ti2Pi{9C=iukur<%`zfT1OAhzIiScDz?t^nog7bbS9)u_F--D6c&ij0QY~!l9 zeYGwM$dAXiA5AMcITzaNt=l+1O!e+ z023E(oWh+!Q8EEme>oJUNKIEeii6>dIa!W&CLDtu_0CzSB7<}k+ zp+n*mp)y>fkR38}PAC~#X3i22sWOw}J6cl*5>vMX<`$SMCNMX_xpLAST}3zsFR|QV zlZ>7_mmBfXJ(cBp7?~-{wE`lwxsQ2AnJvwJGGi9szo&?>Ym@Q)TR1Pie6J%+E1v^r z{Wo|Fo~-{GMs7Rn^R&%h1@kj*&&>Q(g22p|FZ1hJw=2ncaP}wRad@)d4I`(pA7BNv zn~<#|07BoboEcii>TYF8zUNQO>>DVNpBOCEtECl=FOVMy7q7GO;yqoK!sk|n!c)=t zeQ12Y&_dD%Vs8P_2?j#2lbpWQRBA9gtf>sa`En8*^%9P0BIL%+Mtvn`z(r*ckHAw@ zA{d#8%2EN5pOKg+o3NcVi}%YZs*Gmh5;!-$yvvs2o(E_DLOc#n_Roir+s^*_+E9#A z0YA)M0T09Z@vVRjEmL97g;&7?cr2b(a4(FUQUw97KpP9$QUV~fvDhI^CNwezlVyJv)Kq2MtGuF6Q;itz%X6Kuu!#+0p= zvIu5JO;9g*ZUN`WNpQ3t;TU|xJwi|fQEF7Z!nrvc zqZCO-%Wx!|4_|(#CDtF@EFXrC?aA^XFml^jo~~_zgXuG}GkqGI6JMrhS=PYK_9^)I zo@{>#MowWnpqFbqAX`BIgth}~g-%4-fgj|%&MLAHee2yGPZ2o))16n>PiQRpdD zmo_$LFR2(?8$JV9tFzRCzsg5Z$)JqRZ^Rs$oW#^75K=Wl5r`F%p~KYPzWs!ubu0T z%NfN|xiVDi>aEg?614WW)Z7*IJk4e-ZZkq3Van(d!5Q`HkdS9X)2}7u83Bj3Q{IrZa75a!WqhCW zg{$0Ms~%z6S+jV5Z+70_4d=$)LpblrN0|0JIQv`Tad@)-E*QD(>?a;!+L^N|pf7s` z91G{iw*u@(nD$(F6&#Jn;#mbBfss?HAixx8Um;sc0EE63c`CHAsaugX@_kQq+LFp} zwN$LqS1-zam44GzTnSgNv-INKT~9MTHb$w~nxPqe%i$?53#}pTDJ~Weo!}{^o0GS6 zCR5Jo?GLIf=T^1@QBF$*;bH3y@+Ief=a zp*5#{#}NV|)pz9Ah~_vFU@6hbFpaDaeFDyyvl5~~!ZFxUuZ=n;!A0mqJP1z_S^*<7 z5gHDK&>|#jDw7Bunk5QaB>h;vBGlbisaE?c#U+O9+)0zbe3P@-;=<^%Q!ms@wR)+q zFfh96=)b$L6}C~!4yE~CC?8sBzAGS7l_tkk(}~S#Tl(@W%oo#_XW%?JDL-$mt~I(E z|A`(YK!Y6h2&Op&t}ajEA$Y3GuV7@RF24{E`E`})^7f{gEsOB!ccB+3BYX-$jD@x3 zJjIZD)J7zNJZFe246eZwKead5Jr&Z26)vp95!oTRa9&*0+I? zQ&ih0S<;_`(@$oK0 zGImR=aw6F3>U(Hv*sYzaJndPw77(ePCBK$6j}|5!Ik2?pD40yvtB!z^=B$TkPr@-B zi`+Kko(C7CL-9B~1?gZInF-PXp%7Y-WMyR%q(xbxpf%Q4^SwiQuTzY=dg~Q&)Oe|{ zNP@MzFfiQsEr^prmlcN0+oua@%9t5*R%iUV)u>jE%arCwcUt|8DXJMZCfHjO^E0jz z$F0}-p)_k58xas4AY)sB$+7h9docY>-@XfH(^)~$*9pg9F5X6XFK~if_-?@i^c23E zU}PqIH-gMe3_n|SoCR4fH#so@Blpd z-W5h}JKuBkGEXaI*44c-JLk*c#Q1V9Kbql~1n0em2jR*45R9C{dqDTs20}K900_O5 z^GayDQcF48))(P1c(T3)jGS_f2XuXH9At|KfY8R_hS2g=#^J<# zx3y01tCZ`7Qn~S#UVY_Iv1S;EI$XBSZW8a|T1@rWi_!{C#b$IQhf6p* zV+x%dZ+ahkJu;3rA&9ZK``{cWk10%JdLw*vPo@{Z$ZcmjaZI6;?L)G&eIT3_-z(Za zrZA21{qP7p8Q&X5PGLNt%WI<`+d=?@zVG;9s7R^%j&b=Kg$ez|C57PubG`D5aIHEE zE#5KkcB2`S(RLh0;0vKeqm4i;AUeSa^r%@|PT*#k3)UsR38%?PXLJSO7?i}5#q+Hu zU20%$1#Z9x_LPh3U}Pp2Ul$PhS%GQtIi{QC-%&7_H)kwA4X4DH<(Y}6n5kSpi4X6| z^)F%M6s`kwUAG1)6af&rHJlMT5!D(#p6`;>RC!id<2cHpV!`YX8{d!CtFzeR-2yvA z>liZ;nITG!KCuBsi`isVLAp<@Cm=eZPfRoBZgq>@U|yJx>B##8M1DPEj_esm$}Gl@r;svsjxwAWU&iHL2*)Hi@5kXmc=Ems zMs7Rr^LK4N4OqA;?k~;G{Y7wce7TpeJ*G^A^Z#W$5KsQkgOOAC4`}|{Kgb3W0HOWE zywHg#|1dG%Tg!xh=pVLTu6~N9f~l6X?6Ug@5t-4Z9RA@~p^4Z2;THm;v;0G2?p8PH zdI05x`G+^)WI3sgUL+iY7~4Mx>eTT1p7Y=M@SZyIPZ*i$$lnD-`}~80@pols{2c^= z*=t|Mo&Lei``hs#Jb8aBjNEqKUH-wr{YSEMe>j{RU+z==gPZ>kI@RXl#!N^R0{zpLMXFJxHcl@r*S^U31 zkzw}%jQ{81{P^-Oznzdi7k(4_EFOzz6+8nYx4jBB()a!zl`!|g%#|>UAjZOnawXVA zJONqte0ViX$K&y=hAA*|N;L%d32jMas|kS6mgMZvvR0Pl)O;;T&tlrfT^Sx2C>h&x z4~1*jDM9fOqq-3KDp-GIa8wf_|Jp(wt ze%Z4To{CNeXLKfqU6@J%V@_KYlC}$z1Vks;1;I{o`j)P21GA$htJf&Dg7f7hINFGC z3~tnyJsE*20=+)55Rbr9RNe_AGf~-0K;&m0)R#T&tXaGlD5{Je;uttLzPu;D>}k(~ zx0IvsI6T=u0!D5-`-v}m+L^N|;H>Nwa3-7|-wLq5>}k)1SHbCcES^`1p%%= z8w=S|0wA=p=nkETG8X^HcZ)^$U}br+u%cwXE&M~8L{hkJe0NvZ(Ie5f9W=N9>M ztN3x&T--P6a>QVvTpAi4prdOm6R&!EcA z^8zV9^P!F;X(r9$eB+1FYgZ}ho2}GrKoCiDKKiBNOLy`}l4ksz^!4!ZJxQMjBdg@B zL;p}#WZrBijwESj%wl|hiVah1#`r#PUVIt1k0fc%fwTT0JO)qJcZZQvSl7;A^h-iQ z#FG}&Vn02=Z-|D`H*l;-7va5u;uWnBsfhN;_o>I)^}=!H;m&7K99Ydd3(n&xfuw1` z9EJ$mXje^l5$OhXW@v5cPIS8D=F>RNVN^d|irP5<+Vls}1% zN&ADov_H6TWA`A@n&gq<@r@~4>T)B@6jPV$;T$>1jxHe_gO9jJJXRG%sZljE*W#mk z>d7@QGSic*1w?+#PL`Vx9Q^)3)u{~LS97b+C%hUA+ z0|(QSevp~zZh{yKXUMN)=?u;Ixkng>kMGI$nlN$-+W~#O(UhgRl&v5DLR*7VL(5iK zgXhQ5&2m~VN)@cl0(y~XIg<+YfnuRXyEC`$Hy&y14OgpER6I6jhC2imdn0tCFFAa| zo}u-neZp=6B9)sQeZpitamy_X!mP1w62X~r5+5B&I0h@R>?S&Pt}jdRu|4&rA4X>S zQV*Vuq)QE~mmD_12lkYdjbLOZDGLNde)d5fSL9~-FbXE4 zcQ^!2i7(5^=DYu4{PNlmJ?l0c!`*PLIt$I?V=Li~L4|E}Cx>CU zBeblvVYppDbb?{%mXo&p!gDZN>dMi6;dgMBoP(A%;A-48Dd%8J!RS~H4{>5>y=f1zLO^tahnUS1VEKtF zU>4QorTxUEaK@a45PhC-40d91shvy z6?`_l68?cl<5>xRgOO7zA;3szFCyDZ0EG4;!=V#VUgW21=elcRN?&DQc(B~nTdNoP zjx$y-w)+vPVb0Qvm##(^BBNKq8y(K!KenX_VRvq-#cqrC{n;3bxKxyk6c&K!=9?x`~$hLM@h93&v}^Bl9K=SXJE;`?(HQAW4% zSvW7gd`qXv=fGM23?73g>nFp=ZD)O+_8F^S{+8^_-vsBzmwEYOuzMby{TuN(JlVe< zMowWrz!+$6AzMcPg!UF&g-%3yi~r4c7sdF#WtB?JT-tb*rhrM6v)WecBM}w0(Y73R z;+0S~w4HcaK&0A<{CZ5coU_$e=0A#(#eBqEg1|hNlkaF8;TVLdCnAa~HLiXlG7BHq zQ%$DB$V^S9ghFUFk(HB4O^+qkHLxY<=j5}t~CkH`=fXep1eN-Bd72l(EqiCkc}b$Lf?=a5IPZMA@0ie z?eR%VtCe9o{f?b_H~Yt^OgZZf7VuZ!HwjuIdy#ZFgtT1TdSeDoXo? zsRE)Ce8XftaZ6gZg?VD_WE(hBPO76#2*)%I@})2xJ6Dvg@UcA=Wg(2r6y==)B0uM# zUJBFsvbgT2crsdt0-P0Ju9Gi?=^1dwkHI7GWc(-?x$TT6UJBDWvsgbTJL_k`nek=a zekn}Pf-`?69)&0Kr^Co8%m=i7?H**i2!PP;VN&QslzaGRzRQ_Y2DX;gp)g=CLj0I! zf@zhr8#9Jy({O@XqMQ3r!o0(*#5(7>ovciOE~Sa|6sCYdP1!*>V;@bP?eg%*671EHi#CIA6!d z_Y|D3!pKZ;t`ZRWnT)w|_mY`2i}NQbChQh~asEp_2qg~{Ysyxi}fHWOX}YvGZ2RzMewoKgV+PC=Uu*+v2&wAnZ% zw3LqCcFaf zz$5XjfZJi@lnMwi3fgPPHWC1#y~YPaC!)N@XY=(MQ(9hwIgPb{it3iL>{ja=Wh(k! z5xmjO96nHD90cdZm+$05ljIyY>-*y|c(T3^ zjNEqC6Aw+2S+kfwIXm;8fOF%^y#3H5ISeXaMtnI=9>kl*^!@ngo=o2ZBe$LD#6i4HwqMK6 z_N#DKeA%`S;!R`x6+8k@#$Se!Qy35E^V%xNwh#cJtwJqyBFZZC=WZ3)sdw*t92F*K zovmi8Ai_2plfx>!ho*wvNU5^YR$*%a(IHl$F=@*x90jwbrl_sL5pb5AghzW4j=@OF zDhRUFxY{ZlijV6lCkMmGOim6E5N)su4vtT!STb6LQ{jyGa%@@!H`AZSNB3mG#gB#oFx|@w;CTpv}Vw&CSY_chky9rP>QsF_=|w( z1phG8p1$QI*7-Tgpt`WMlbB5qnBQ_1L9`a(7~I5CckCJP)yx@q1fIGx6-H*dGf6B$FrXT7p=46R_l$b3fmAfN2B>vXj$n-bCQ7QghtaXCv8d0 zS7El8#9Reu$w_$hMZz%{Q8%iJEH$paQN0`=*Hca|fsvVqa`^^!uB)| z?Cwexlr{r02>%ACdjJ`@>tB{Tj%1n0+>f4QoiK9{EJ z(N(ZJ9*buc>;faVy$UwkwNkDZO66j8p+_aG$X*G1CJ!R%6Ffx;wAB93_nUPhLNoKCk62aADk z|BB^W#Z;X6zeK&0v+ClZ)p!@weEFT`LDOi?!l-eF^vtE1VU}LiotBCdWhY5Kslnre{9u*LsU_!d(q^+LwFPJTL<>=Mdf52IC z5+41Ya12J&hA%~y8du-+{0$%1Q%?R0BQrU9Q9$HpGt`DJC&zF56?#Q7j^9EMm>u`! zIJw~~jp+^X(LI@7A4YCF(}@jVPPPxu&h`OtR(#pEH+-crzAqkuC*ym;$SI5m^m%O+ zWLpS;&{pA*P?1tr;b%Ep1;>%@=fI`vth3c>6;#+pV{%x9vqH;CTZJ8^fZz&ecyfcn} z182mS4a5qvOV?Jnc1F15MyBs`4w$jg*3*y@d!K_9|t3+ zFdoq7wN;R9Apk;Kh0{YzS6PMk9W+wO%dt7tKB5`@!|+s^o0{oEpz z^@p>w{s5dAU)JRoPS-3r^Y`LWcrt$%jGV%JfDzDMLbi(l2<;_y3!RAa5^Ln^C8n0j z^iDeM9`6z#nK$-p^*o7+m9ysJkBn+3%9ZM1ZBc3Y%7sgY%YF4yrCb?L#!nrI>AFsGv;o!mMvhm)J*l0ip}9< zISG&E5spDjEZD}h%UN~tkz;Bq2DTD* zLWXO!E{CVMJCqFVDee#uo!}{^CZ}$R%pYN{n5B3Q&Xtqy=x2mu@S^s8C!^=e@;iKV zPi1);MrO+Lq=3lJQK-+wB{OF6J?AO(+GKpsBnZrJ`|_RqTwHPvob_pV44$k{hLPLO zdg60&$*ft-?~= zufS}v#&QLmB`4w0*@R;-lGsH_WT|oW)`&~-aXsbaA{d#;$(IF0eikCJi;{8t6N&{h z_Kf2n!5Q)8IJq@KU6zdLAK;^VGW{To+;*lDTO(w?EW_~M>}>xB&WbPF_ST3r#{Y#! z;K}$uVB{3W1NywS3bHK(KxnJ5B6K3kDy*6BrxXsRznh)uTi~4dGCj+BIN`pgZ^Fm-Wcx-KIfd!)85GmsN7 zdX!^n;nh%zv}brlKy-pCSWkk)M~C*W8QPx^P9=TfFZ@QDIju<9!b}H@>{fwQKi0IQzTead@)7 z6O7z;_7flev9BAe0+wg5fEt`1-wLol{A16BSHTb-i)R%K!pJFA5MUg%_mC|m0783@ zmqQzy@*el+>pdndF4X&$Iks5d3|FqR?Bc^mU7bL-Sc+)<_E&y0w4$`bxIsX4g2R}s zCvGXs6EIJ#$2<;a%1L!}FX5QpLf*UT*tw!ShL7#3D38L(Oi>;Y5c#O`HqI30cZS8n3vd-@z-JGwlki1M?>e#VtwoEtS?$^tlRHs=vi>) zx4@(DWPWoPIfeOv*00@zY!?9#+C5wsTEfabte5Xump$}qFFjVE^DT`Pi{s&nbvBf^ ze^l>~d{}`!+0c<2Ez7Y~Q4TFGZ6uBp5S?HoCbi~msmut>8S@e6z=?9w9({^%3{qnG z*_c-7Tw2b;hxU|~Ght*VEvE~J{A|Pwc~jp?m&Np56i&ufiSNTn@nw2;;^mCi1UTQf z;Q@H^{T&#&?R?MCk33o_vpD}tcFz9{C&rg^`9h9k5}fxx;z4-w{v3>)!h1mf*A_xH ziU0_0A(n+sL|KSu^4%9PvsPI`9}KE5s}^g^=+S$rywva#@A@sOR?f1E2Ueq(XiUMJ zfziGkp5h%eE9^E*Rh#w{Zx;}q;3;OY`CIC9Ak3kft$zNoADl2}8ARI?jzLa5S9BaU z1+G1N;~{uz&z>+c)1KV~M1CG)zVsL@Z5Hze2~_%bhF227a<=l=ve5KsQ= zFml`ZU!dFdXf^PS>^1N;I6=NOAP+}h#bkILd<752vktC+kyGj*z(8mZA{$Epg!UkB z4V{ScAYaYbgREKF((oKFQ23Z?Im<0RdNq0u3fbsm4wLbGC=1$TJS!kN!DOsm+S2MR zlYfV@#9T!WL0~q_Np$otN|V7xJVCe$B1w&@_hgR8$MlqswP0i>A6)_>KN~Soc3;Nr z`za3W3S`{A7tV$+w^I^p6fTC}jgRcf@Rl%g+Zmp!dn;pkNp_a|;EedPEMLq?M$fP1 zWAV{FnLZjuPGLHrk83L+%Kao_xOuBe$LJ z#1oBH$}G;`@@!_#HzbI$aR2=3wx4LUCc$}M9}mKl_xUh#3hx2^Ut0*-C;}j~g}6Ah zfR%;#X}%U>{Ic56K&fu{hXP!!PI+0aheD{ZjXvct566U-l{ODY35ZTG58ZOombQEb zW{Ww8li@5m36F*d$6!Pq3ZckS6< z4`;-e>kM7CzH8679nNA!E;bi+a+1dUzoE2ZT?L#5b7=Hqfz?1REVdNCX z1NywS3bHK(KxnIQMCe46Rk$E$tFWAoxb8d7unG%)j|!8s&Q_~cP+=R5$zc`NrKw;B zTa}fz3hM}nj<5=H(w0@&31&-8QEzS70nU<>@MsIdF&I%+L6N1#)mC9Ud|XdC*%n4- zaKhp;e|m$rl7fCwP)+#@ww=^c|Qx)`@P0ljWp8 z`U>F~#Hder8R2uS`6fQRr`Fs6BQveJPC(@6LDVO_jFef7KSv>9cM^>8-@%FTWjy%_ zFJls%_owk7Jb8Z-Ms7RriBEVLX|uSW`Fv*XrxCllJkN^nnG2+ldRvzP@Yv=mWjd9gV{r%<(8wbG!>r|Tf*wtt)WYk9Ia#)J} zLyJmVihTq`Cs>LJV$PPh)M2hzV>up9l9TS}Si&&~i6@F18A+8IRzEN)uKnG-6kw8_mh#7ADekFqf_BOS^>$0-_V#!el*h%Q9>U zv!!T^2 zjOO7Za8`V|PM&e8XTTXh9FM@0@ejkuZD%}j#-+}g#ro&6v;J8)Grp|bXI$!8aOOXQ zN8!o*$uM#X^8rRcdkNVt0wA=PSUYqg%1dmMua}rnFC0gogaa9IZ}AK{JpOkntN0%wa3;4`oQ(ihBe^C)f(XUt;!_^1KN1$GpW0aJrl&5IsRS z1~sv~foT+AVgg)rp2q|56rE>bWF|V#2#EX)#yWCg!b+OO`usnlS1n_GEG(#zyFJGjR}2-(=7+^kg=^MXaI5vj5EZu3#T*9X)1hUh z4aO%0L?;-GZaHbI!(0Qi#X8K@aF(2eMdCZ@o_!n`2qW?zdEZY0vNh0nrJbVX~gMuy|z?pIq zA00?I1}o}WhmM`!iX4NF?Wr$E!N^Qsjt~&}c?b2ZL+8ul`W%WUqklLH&WbPB$!8sU z2AuIT@d!K_KOIJHJL8FG9Xe+g>)+4L`fYG#d|9`jb?8}e=D&kS;mQ2XFmej>0Y*T3 z3E3_JAhefwU+6@XmsphV>l@ljyxa5=Z_qq2rE(TrE?$B{H@cR?OZ+>O7VRbeDIhw^ zOT4?^QksqagtErG!~%lAT$hvhXfoj#tXN)xNK<3$b%=HGu|4%=9T=JE%WMJBHZQ@r z-jCwJu29DH-f&iYxpsL87vp>45qL7b8;sm`#vNXQvHr2_te*g9#+UUpFX3Xojz{6i z{P8ey3iAO*Kzj+o<-J{9M~_6)}9-piFOnHtwO zQ{|s5TwE#_sw;c@XbWwvw^*)MD?=+s;$4EUERe8(YLwkt(F&*-PiVwel2hG3`YmPr zw2}Rz->Khc#cwh09xSZrFAmk0jqLp<{U=^~=|E-i$o}z!zQRzWVCcV2tQJntSi{jb zHty=$Ke|@@e^DQg5!UeH{96887X_BZ`zOVeZ2O}Zh^pBMbVO~jO0Q_k+W)(lTLCGw z?oyc$8gF@@9*?JMX}DS%i5?^z<8q5-7jR9b>G&R|ew{aSO)vdGW z{JozH!DvQJ?-%Kob9QL0=-%>qnd3wDX?Zzi;-sb9ELx?@i=JpSDSv|(JxzbVVe8)S zv|?h`PFpAbWMN;WynH17K=8k9JgM6~!@usWR}1CZP^DJP62;b;qS(5BY@%qaG=}Hm z-9{8{Pwc~H@6uwq;pFJtnt?*SNHOgb%ufp|!BW@^h1ou#)G+K+aSgt<4~nXv?mH^O z_0VD&D3yza>PXJ0!1>X3#y~9KOM9E0XE!b%64h|30OTF~*kpA96osLTs zH!AV_g2E{e)<)tTgZ^o?QljnWrKRPO_@E$wT3=zH*x%bi2H-dyo3PSN-0ne(zVm z52)V<#cwfsfdUh^i_xFxzwICWS^WPOMYxXp!*9?(%k%zleB;Wp+~M;S1J-4g_0cy3 z&x&bezZJZaaE$I7_sAQ9Mh8-(>OTAoKB}i1d}n5UUBf$N=XnP>D^9Z=ah~O)9D4?w@$K*k zJQ?2>Ms7Rf;(FfNzMcoO^Blps@a0)w&*a_M^}G}x*OT3T7`g52it9OfPhnlp7iQ=A zd^jtx(grIlilyb z$Zcm=T+hk7bL)Ekdv>1x7tV?=&-!{!&VXOff59X0Wc<%Ca@!f7+we23wGXw9VzIvQ zOPSsG1_ZHs+_zkJcg=z`zaAciC-d`Q^_Q*>&fmT68XHYt~I(E{{fysww>njji)OX$!q>4vq5_kPquRx6kj%zOW)#o5~KKa zd{j@0UxSg`&g_)Lb2E$JMcE17f*@9p1DEFtCxYjVcyoMkPo6i0k=xGmT-U=*i|~(T zC;Uh_GrqDdZ@FBv;LIO}N8!o*Auw{=nIA`wqAjA&$WHWWa3Xw(?iTi|@%)@A_bK?G zp1ghvMs7Q=lUn-(EOx)0o!xK2>F{NDs$jPjI_LO*@S#09{(mrX+d1A~Ra-eM+Mmr% z`!jHcd}-fU(7vkK@Je_JkH)hSegz|^R6@We)5Z=_xf5LOV+?@M`&2&{y4OPOQ{6G& zvt8GU3g-87-||=V9>Q60?u}OTW>9~Lc5&5Q+cR5#xUdnEv2Vt)Yjs146Z5gEVDzrl z^#w%gyGi-I<}!{ZY)QxNFb!&YdKc3!aE6>rMq3e%!A30oK!YVUs9uWsAU>$4LTnEs zGlh76D1=rBSu>dwVt$q=Xm{Pre0Q?~f%D`f zG&+}X3{K)H!f7-k=bCW^KC-7~TnZyI&A3QF-9tf^j|v&ia4w z7(7}37mS?3dO%axzCgB!00@2OaAN30)Sbh(^F7^Q&TzR_q%#+fA1)5l*CFbq!D8br zm83`539emd;l+CgdIS-n46qfS(V84~VF!vi<9)?;0wUEepldFg{GVh!b3 zIAczhqXP)XU?-LzId-wAg3$LJN8>?w>dQx9WTr2NheBw5ku{Y`U$)H>1>JW%nD2eZ zxcw_tT5(S5$(1w%%>6hkE#AVVCyv8Y$|3@zCLM}#S!iDWKXqpUCr45C|KZ5y*kp4j zBqZEO011~MazjEO5W;3#WpUJKsc{nb;?xB984tLq3}Fh1=`#72zK z*+1Jn$m9mE&88PG?+1%Z?vA~z`|m?JxovG_@keC-`{=*H-D0+j%e?+Y{!Xo_eG^Y68&cU1MQ^d=*K-e zigu~HCPX@;A^c4xvn&&)$(}@;!`~wFu4d6{Qveh{S?qo9E?4>sbnK6LNB6K2?k~{M zK{01ZvHrZ$?*(Dkh9#yj&J`Ib7kb=aZr&a~tV-Q+ciS8HwGaQdeFHr`C1)tK{dr&N z2=4ahx5{!qS-wq{`^)kGuY|WJ?@WKz&h5!lLVZOUagHTZEJvK9z1G-|INOp=p> ze9wWEQ|CKX#4;Ii70O?>r~F0OC0xql0J4brI_uBl)iYUt7FJH3^)%@$IWQ`)e`62( zSFlgGu*Lj))P9}zFYx-Aw0{aKr%t=WO<)wpo4jZpwqJ)m!DTE~QG02ZbY3tA_FueK zCfQeD<V1{9nXG%=LngbHZd|B3HClyH%jIb?Mt`N-iF`ZQ`6V=v8GB>% z?Z$LMEXgz`6LPht_=fMA>{;v^EbJBLMusv&hVdq90+x2m{uX2y+j|nR8AkgCo*jnw zhZ2!izyM|IgS=xo>_B55DDFo(5m?Qgypd@5HtFGM8Ez9ZJS~BhweWOkQi&iui5_Pa zp0=^Eg1&Z~+TLYh3uSn6*5&E45xQ3-J}7;VT83p;#tvydl9#cBTy)r$p-3=#e^Mwx zFuK^27z4p*LA)Q7Aanx^ObbHS!;UjDFJ47D(IB*SCJ+E_us=g#&9pII{a6w1|-IT3oE8Z;6y$9PyhJLX9Hc!|%mNf`vO z=4nr248$4%C>w6S5@V+Q69uHjm?+n^^llW-fDv1L50 zti_hilS%}!Mf51E*s>vMzn1S^ceFRQ%#g7qSF7dL8(y)FBd3l;WI59670a`Z7gts! z?FB(xS?)=Ufw&^zWP{c#QKbgM(V|KPc9%J-oJBg(s3MNB6Hz5-fgV#zxCP9ZQh=4U zn9`F}B8VxXH(AA$Wj0n&zVgxbe*c-cG}p*&(^y}P&eq&Wtr&?=vWF>@7}mMd4K2B> zXGNrA8YW?GNb27pW?b({#Kw%#S?j*2X$-5ahMVTDT0dNzt7pk;*>2$?<8GwZFAu9! z&NT{yjxTnY2@zXN7-YQch^eu^heb9BL@7kTK092-XkYK==$gJkR;Itr!8@Xpy8ZckBqr4TSWJcT_R^iFBFqo-afqySmVzN65yMoleYtvHZgr_OwAl#sB%FYTfS^F)gWGa{9(^tjV218y8LF8*P5j+#?<$0yNeZK4rv5^p`2 z%4laZqJ(ATlV#(>uw3M!uo>jTqM`0=yh4zPB`g{4iZ;R1W$a!{==DcG4YV04#H*|y zjTPuNmPUmocAL%_6^wwl=}l4D5c-oW9`mSZ7{1MO9v|m@T;yehqmv_=&Xb`hqgCKjKs|R_sA`gsfy-w@9SUKdVT(E54?8f z{Ml}>vNnI#Zqn1qSK-7+ft|O9eKzbA^Mt7mdzKG7+yI^TD%=1j?=xWK)Ok;!$rKvr z70e&8$9x&=3od4HErhUJr+X=0FO%*iuyX2jX9P2EB7svl-)YbJHrOj%&f@!r+5(;U zEw}|t;y1&}sT1!C{MD!^w4b%7{WRYQgAJ|ii-&#~uSh8@G@EzaXJG(zXT1~-Dqy$@DSo%>wlRG32kv-ada1-phz zUhFwCHbZBBC2j_j{S~ls>g=cbPV;6f73M#+XMQj25-xLbc1Xm0o%KC<^-R`x!^)|% zp6xp;G?AfC4gE^E#7E7W)Vw{@z%9Z8H% zsxI~sYfaFZZ;hM4WWE4aPM!HI-(kUr7zO%?_Rx=m{lb0J#Y%R)4LbD|xD8C|%VFiz zsgE~};_tQxeID!zF6c?#T)FsED%}_CfLf1N%VawUE2qwOvgagk377IDf6X57b+A9U zfTsq4#qu+a^0j!~Ov=~5%BfQx?=7%X06$_6_#xO8T)^T97V82vwh!RdGTGh_E2qwO z%h;8V3h$0rtn;zWNMdyIv8}uZI<_hL2%W)AVfKO7{_pjHg)PU?dKqPzs?rPgw(kXd z;I21bm#%-~-X_`$^v3A@U^mC5a%UkW>hOIpmc7#g8J)0f~zFu7j@E2qwVYGhTuLi{#+;!Z*H{v*j@_Ph^T?n9LnmId$e;E^e_tF>Jj~`U<>uCh5yz<UTAOha`3 z%W*@P{FlMXsq>!_+VZb3KhK`|de|Xc=3*6k$atOeAYM6>a~)Pro%5FAGXyp^?Q)$x z^=o1GaH)&0q_IuW`@l80Da<}_HLRR^AD9_-oM}zdL-y<+fZf7nFW$(tCg{xX$4y`| z|2eFjI`es9hs966ZT4U5tS&Q=MaKe+4;a_Tx{u0bSVP|6uzbZ~*Ka z?(;9+`eGWQ^WP6Qgvoy&SUGk6^P_Hy&HdNdcYr?FJKPSi(98YfTB7#=2e*XT16ISz zsrP^>p(8$(tnW&D=vTlF;X)Vl`XS?W&X?nrGdX`4R!*Js%%$Q^fhFQffu-*IQsffY zd+cf74ZDR)TjY4ACP>EyyH@YQjbKv016EF*`ef-c9rug&xL<(%!No0BSw(EuI6sHi z&gA?IteiUM>C#ur+{;XK*jvA5oxv|4iP6d6#rGP$0UGgnxCu<+b71AviBFXdTV6Ks zUSZFBIqVYd!!1_Tspf06m*EC5X)l45Q>Q&my6Y5rL(?Dc_4c?2VV`huiyaV}{TlB& zZUK{b6;_Vno#67h;Ql&svsnU(1%KTnQyjllCR6;1ciwxhID!7-{Gmm~Df?zJtA>hG zMKN6zGet4mD`Z3DotPJnBaxGi$z*oEV95RZ*B53oeYY3ipn_yhkNLr(;#o02DdyvT zuqj#Coa?=k(Pfwgy5_svDOc!Ua*awYl6HOQS)7`g| zcB$Z|yPG@-97h5gS8W@EJcP-m6n25~F8C;nNp`)>TfO&T*k?x4#UGPSgilj^`4tlY zN;CAg!Uu6Pm~rOUu(B3sewkDvh%=&JS;d)e*jPaqQXJpjdosr#>6D#Xt`vzY^Iu0( zUSn@-E;ilCVz?z!hMJ*B&oo4ixnviXN6StUM2=aWL~P_3tvfP}m$)$^Y_3$wI_C@! zpXMPZXL2NJy|i7(z4 za@XW@bi#7BryO%NC&Q$CsZh=K=Nh%bx@@^p>$g-Ibn-ODOC{soLmZnbl1j?h4@=Fqj0t8@7^PPsciG@w&f&OfFp`SWg($MSLQFG`f(3(?opTYb zCvO;STBb3jOeQ6Dwv7J1vs;~NsA;@BlJO+@irr4W=JZqKvzIEATT)4%Z{MncDqUnq z9yi{e2efW5S1Y)eiPrsr)S(`qG`XM+i(Y3>-akpfy#ZXR7;iS^G)}1G{h@EDnRL*T z_LS*PYP#K5nw4}YCNa5xR|*}F@F_0T3zVfKr&Q19N;wLSi4`aY)eGlR_e&awC`roq zW!J3D)q3fnPwLQqx;eE#o6u-fB9HVAHH|m4GdheL5YE&OBS=_-x; zg}Toy=_uL@`kl%Eb?&4Ou`5M4W78eG;qG}_!Wb*mDr>WDCY)Vc%T=rH zJ5;EfCVl&Ll^gw4%E2fEADGlUx1mGLq$7xk-br7XWFP7-3>MsXjKtAMbj50AZSogM zdJ82RED}eVDYoVhvLdr0#iXISQSovZuPY{R7^#%#RWSMBNCGn3kd`D3hOW>+f0f=_ zlD|S2>T*c~mzdcO$A_eYyihU^V9OIe)Iu{lge4uOg;p>G zjqq2Uq$8RzOBsgj{1qLD>VwhSE%i1w93_3S1d-N&lr-wm`av4Ry;mH1 zH%U4!4ff}%L!s-@52guv_j>e0WO=A850mBLvRop|rLsIimdj*$q%4n;<#JgbEz4tM zxk8r5%5tSFkCWx`vOGbSC(809S)MG*Q)GFnEKif=>9TygEYFbTJ7jsLELX|$ELmn{ zdA2NbvRp08yezwA>BzE2mc6pjRqh3P1#T(X$XOjf>C6$X< zTuzqq?>Mt0u^lj` zAv*t0;)XE!e;ig$oj+YBFIJN%z<*{B{3ozCxWN6(BL||(2ww%nS_4;E2mC) zhPv8EA^jhF(*J_J!X+)1lB+GypXrxy3z)?J4l9ol;-OVp3h_5(Hnn}(+MXmvCle15 z54Auiz71{xllVedId$UGTT2MU>Ny4YN%p{xhn>QG#Kq=-U{vANgK2%Y=6xDib5YhmToxlfeqQ5Du-w`cuT*cn{blfBt9 ze<7`OVUVkR8Lybh_lvM{>U?Lk7Wukwu(VuQ0sT9B(7%Pf!UZixZnXva6a5?90w(ca z!OE!;IQoyKChEw{f$Wed8urIrYA=bIXaeK4~L6#FXCg7yI7vXV_WX-tp#W@7Q?5 z^#1WD+%RVUcpO$vy?;y)8}t}Qa~=p^?(49^q0J=Vykk*Gc~XuboNyd$4lqr02Q5G8_(| zK>wFL^p{}gaG{HZPcaSA`Trd^gvtMTSUGk6ll-$B6yV!$W}TXELlUEtnu}QOTdosc zh}X;{JReq0o$!2rgPOM*G<0x;Li~7p;>W_?;XdLbUyEyr-UE)tEn)V6BVpy#d%#TJ zZ>_UY6!hoYqdymR3m3gOC0T2N&U`Iy0+V?IRvtUdTZh;v%)e^S{L8Rgk}+>JL1+F& z+yo}`&%?^8GoR)^Bw|mz0{pl3z<&e#gbQ4Jj)~f@)BY7+Ka=(^VCB?lFZ8`-I1@@i zzxn3Y$=oI+F*?bdxW#TGjnVtT>o6_u{k8vvl~eBrlV}sSm)a@N_q2z;c+{Ya4Bod~ zC%h|OGxJGb1S_XbxQqPMI%Z9we3m`scfcOuMs+b86SiI_eL7w{lk_RDa_XdKNME&< zfh)8>Xixk7uvfUW#llCm1v>GIaSNElFNBp-Cq7&HD|}?30{y%8(7z2kh6`ORVK+2F z=YA7z1e5zWVCB@gPbZg!PnT4f|Jk1TpJ1nOnTxF|N&|G>kK+a~dH)_(PMvp$dkClk zdB!;Fw0tT_j80lU(OdoE9bGD&7c735jMvH}I}uh+oh;?w;$7hrFIg#Dv`HNri3%}m01SUGjVUEu?c70REq zr~Gl)BV5Yj4J&NDJ`R5juboNyBd~Jnq^B!~P%E&1WDolXuv56OMc$<}K`{u%o2N&E`;W9_*g4SR(9+>4PtY`sqUNW69? z>7}r8>ZB+8zAASsoX@rAycYHcm-AHb`3`K?DL3%CnUv3gl~boY%{`7^oNMRaiJ*}F zvOVc9!am`W7T>s|_Up7ikJrzn{aIK!b=vb?ZOEkF>oVXWW06m_B!kpE_v}qOl^Tq{J*#bOyaM=%Bd5d zo%AVq?M%`q!pfQAN1C8BpNN~lWZnTQr_Owi8y3}@ zvJ~tG+GBqk>>2KpF21LjTA`EQ7q@~*es5Sgb@JN@pT*y4ru2e>eJ|*Ny~OPWJBnFX zuP?{9NbeDO+#+U=I2%?@y+=%OdxX4+PJ#b%d-xxN9m0h#E=LI&uXFwgUOAKVWw3JU zoX30dULpJgd&1v?UBM+hNj%=(rMuF7!Rp03@oJfDZ-bRnXWQXkEv%sZyFJ?HVNY<; zigl^pg~%G&XYpE@WS@qWQztt$a_zH%c;Q6r%zQpcj80}Qj@gZvuSe*)c=b%yvtZ@a zSx=VEqPw{j&_~;YJ`(l^_gR+TzJq(kwI_NhUN@8SVX$)QlqbsD(-p*P?GZO%XK)dV zYY+Tu-!;DH;1x6ZmSN@8`Oc5K++G3xMSI|%hrPoEF28n*Ghk`oYPnj<<(;fJlAx}~ z@z3IxFnhqKVCB?%Kv$#U?esMz+`qD?{tMV6TSlD`<^iT2HnWXQ9l~X4@k$hDu z)YT=4uiHcZFYF91WD(1y;X2<}@QRsyUxt-a=R2L;B=>ik9_C#qS?Ax2NMdyIZ?Vrn zX@JgqN8A7=@9kja)Ok;G-8Il(U9XJQr`v-*1@;E_fflP)e9LvhC*n0T2_FY5r%t$& z{6x!iOSzhY_+op+7sBq~A{J*`w@lX=zZc#yO}Gg)5;E2qwS23_bt-!Ed@!o zpGkWateiUSxq-LhR~~=N9{NXM*KncF4?X5?rwuhjXMY)P29y1zuyX3`XAAZlTYdaJ zd-8X}j^UCQYt9Xg(7E4+8^Pp$3#^d)I_e-`!&7khYI54S<5{xog_ zlllf&Id$stX^$-7Rj|*WY@N){C5h2V=EF~Wq!BvzS-25Q?$crA)VXgV0^~3&k&m=T zzZCWj_le&!G{mdz(CHtB+rgxNFsz(9{T+Pz@oRULAkeVy3Fp9m;`W4{B0V9#O?s~= z<2EsS#Tr;S^o8fX~7%;dTHqdmAxdXZdM4{DVdd0WcMaxB15VaE zgjPLQ^%wT2e+qkqi(0Id2wSg{z89~ZN%|gGId#$Pxuws6I{Y#g|ch4 zPWENIRwmgOVdd1xPCTqu%dJ0_j`10~c<6$m^M{J#x5{LSi>6rT>pPOf=;Z6-dum{~ zbYif(U^~2OCgH7N<d>mdmlky5!Ifk-R zoIp?0`9q6}Q}*?)?w%@&>7tk^irHQvCC>lrCK>Sz&U$?ldVms0ENDqg_at)3tQc5b z+-5w*f|HKPWOjB#!=mEr3p1I%+ly~dL3dQ29`l1m#j|35Qq0HwU{mr_bMuu>y%C8+ zLvSB8cChBI-IaWO_nv`rzEP-@bEVzsE*JOz76<>Y#qNK)GnPZmNx5>quTm@L`kkS^ z+qI7O(WKquSI_!vKjcZox^_|V{&LId(%aJav)u6fuq(vxTE)ld_g4)qYA!Lk!EJM# zFBa!YCGQXkr<;}$cNg+beW`VIQ0_$>X~%Hm(W|9#Fgd!YE$Z8P-$yWaa>FLS@1{)|TMxUo6G(0mn% z8^?cd%$}u>5Xy_h^Hv`7l-DRk!k7jWuOXet=-w2ceDpTxuZ>UQHZar8 zKf=mdy4h~(ovjgFfjy_o8um<*7>O509kzIJY?-bzo`zS=WIP2{PMz^q8%w+t>`Uyi z9}0Vj`;2evP3>>2HF{4t2)BmW6ZVIdQ|}3rgOpj}UbW}m5Br15U2JU*Y}Y9l@w%Cm zdtv3&DQ`*dQ|4D21^Q>~pV1GNv^MquH(6GC z!F~3<;K#6oxV^x?&^op;dO!FfZVa;@d>>X$y&sID_fCcPzwLSd6Ltib_XO{$cVCvJ z>w=E~|G+C{a{U{uoI2N;gPHU~)eSR!*J!4DXh@&|IqWsK3h|`a5B-aG{IM zb!rQA;_Gk=n8XKQ<IY$`a8Zk6EtCf6ynl@wz~uc)SUGjx{!>jOpn`hbH0xw-Q<4~+WG(Vk zlkGa?H((Y`CguOZ%BfSHAs-4cfsIeBKwb}xm_?vMHn8bI6l~X4^CG?S2 zd9btgu+M}Y!j0i#X;#R1o%7rA%9)%`g_Tq1JlpU!UE$rd=lucLFK2 zbAJ+c3zvIvEsHy(x0;|c|08Y!lldQD<aA56Na$F+hMaBbV(rPo_H>zw>R!^vdV z78-q-Y;P^sU2w{cdSp5FiE#flhMeXJrlo|fDou-#TR&VZ4fX5{nHgEuWmvR*T+)se zEZSb-NyIMNZr_?aAC}?+Wr!JoVaZ1+Sa(;0oo3`+%#lt6P*ZHYj$x_An+k3RGv1V7 zWi8$ml1c>eM)WMJc(dHb3W_(6Zr;|d9+QvFl?&B@QqJ9v5s5K3Q$w)jqQ*Yg+}jjm z3|l_>!-hmUsUeEonAFQb6uH5Zh>aqnwe{l&lRLs~H$~m>&ll%Q1=?P4q`gk1OuIQ^ zc7lX!9NwZznJ(QZH?q}Scg*$+NY7bU&6T^e-GzSISYq$69?xOM4KI*cRj1ZZL$kEY z9ze~hIxc{ttWnk+@6e2qa8|8SDh)M_dki3F)oHWPh_tOvN5MGf(*BPTu&I&DuNi7C zxAu2^ZLXSI=kCF>@12c8i5h3$2k69vk!s$#POaiS%b{%<4^y~ww`Dvc%iqcJQCa?8 zmVc1tW3qf)mVcDx6SDl1ET5F+23h`DmQTs@X|II0U;LE*tex90I^3wNBz~LCKu1t5 z@yn3JNW5kKfZP!oQ=4LEzBiU=Y2Is|^Pp`W%rx&+SXoQ++D&#s-Ww+swtLvK-EGv^ zc6zJugx&gN(JpwsOu9S4%Bj=sA}_Ua7lrXEd&XzL9x*1-Mg92|XQza%*GZp-*Ult; zGOV0B=_#SCQUQIbJ?Kkdhj2lQ&wL@{bAYZq_eQ){CfOTc<6$;*i?eQJ}JA?ZOi~HXE zc@~ZDet5-9zWcz+sq^h{=a3Y*YwY3n!Jgp46(g`W^QDn>@LHKM3Zi zv`2dd>$V%Nb&g?_GGs zOul!(%Bk}m?@bRYbYHZm`vU9=E?xQTdb8RZ+vo6VnQWhdl~ZRs$^Rgs;N5zbb;i7a zBt|D=7B_DCmg{ds^YEIPgy+D@sT1ySKNBf*SJ=~C4ts+8@QR$u`?#e&yUXxenPiv1 z%Bho`C_mgOaM#w~klLYaV+bc$#T6_B6N`fqNCXQ{uTT1^Q!YI18rRl^VDr2i7cyCIAxTCY z@tVoHH$p~Mh5Z@swZ<-IK7O{>DLXZBD6o1Uu>8?t&q`rr=(^frj|%=%(q0v;7kk{3 zh+Qw%##N_gA1L8v!ffl*ZyZUCMC$iX@?3QB0e0Qbrnnu{TYgmc86z-gI zyb2=AVV=Yoh%6hu^1TRSkqr%&vG>BhGLkKxN;(lPP1cp~-FWrPIFf^vwWQ^&q!K|K z5&g(2jvQ=b1;vq{wKtATTq0NRM7PIWN39r%rR#f`7K$2{uKTNSXg%mKR~B5G)W1Qr zxWkL-SyoA@uWcqhlId!I+m2=UJJ#U(0 z4Rw2x7>PFn{W%o}NV+C#RJXw^Wl~)TE2mGjQ0|F5swde~Jsx%g_fZv8U6VDc$KsVT zsU8h0r%rWz*;$)gSBPda@3AL)KI{rESuqpro2}737q6H}cP*?OLpMRb9HiVL8A~7$ zOdwpHbV!l&gsVE*I#1ZOqEL2nwQX{xUT1YJ7l}c4!9CU3&6@i#^X`&oO4c_elJOZ{ z)$d5!WrF1UR!?Fh$@l2o7iQeM7;U|2lVAjIbK~F=TP>f8Z8l)2t z+(%)A)SUbX`fkw4H!3w5_qs=fuauJpWcj=-|0c^9Wchbl{zH~8%JL;y{!^AO%kp2c z{I@J$k>!76`Km1cE6e}M@-iap*FVOJPm6N@@tv0~UW zTW5P5UM-XD3RpRHw&N%TQOI6sPxjrgBe-P645FJiX>&~H;gvGEu7{OV=i1RtFTV=d zZ`gzV8te%!Sg}snwOS{89bPMw?6t6R>SQOmK60lb6uQ5+r~3%(4K7_V-ujm7gdf6d zW)gk?R!*JpIGTk~;7;7aI+^MqiP1@>L`-&Pw6vJK8D1%qYX(*xHLh3ekl7^T{?m7R z@r{L<%&MW{#_#CvaHs4P!u#42-Wzra_wg0M*|l0nya!$@6Y*}a@~9!^lAT08@+MFf zx_NuLXT#p$(iOqkw_GQ@3a^<-_zYM%b;9GlDQyMsN9^%l2D^fbSG){~nRqQgUy4`D zWP1s$oI2ZaG*PUOz0;oTZLlM_Wc}q7gZeXj3tlOc>&>uo>Rcy?&pis-XYJ8G4f}$N zRvaTEKT~N>?FPJFCfz4s<<#j;5mUq7G_-~cS%=y-$WJAOYK1)27842EQ@2m!q)4g55{X}l0E=dPMx&>M7v+A70~C{gD%4k z;ew7l(cWivEpo5HD`#@ps>?9bZ6{uJyLE^K)tviDgs+iHRSWM7F} zz$AVJteiUW@!rA?1@lksG2aWjf{R(aJ&E-w+S7awUM-XD-LP`%Y&+a_HVWET?9sjq zdxDEr%xZb7gEX=);5UteGsBVqd$)vgf zR!*JjM7aV@L3^S-+T&nna35KD(3@O3r}15ZSIp$Q99B-9?|5%fn?m>9_H@sKUBRU* z4|?-fGHPts{iHr&7SOaup_u+#Y`m`t;ghR@k*IouYr|Q=Q@#G ztrri|o=B4*HJ8DkPK&>!jSTreSuR_M_ zoOi=3XL8;JR!;p{9`CL5R|ubNPk0sV3T~tp`IXq7Al(-nmT(4MEtBnOuyX2bCx~qq z3f#-=;a&>+f(uuCF_hayG`g4I^)l&R1S^jLy52Szh3;+kbZ>!u0n!!QcQm>; z-UutFPIpRZTatqKX?w&QV25xKi}5#PygvRufmhDt{1~j9I_GVN*(;{7pS8d`!=6qO zqmyCp;APmuG)V6cUARHa{?G|4$MlB;XJQ1$YKUVN5=aEcYJA7r4u{-fDjOn?)i|TQ zC)v%G$M2RMx~5@u$uS(gdlKA{jSj7WC6;Ec>V>@g$d;%d@~&}nYr#TpYuX+-c&P{oa4#+QCr zS&J{lq!K}V5q-)kz8r011?|(lx4p;qY<{fMh#uDSZE65^wx6-1HFq`b|27kX$m)Z8Eb^Uxn3 z1phJJQ|MmJAu12;t$&1^=kBfloh%>qN_a2&&jf?hkI7_qzF_G5p+&{lX@5+xnc}Rt zALQeHugQ8YGo4J}Jc?l1?-vi_|}4yq@Z9z$<5l;wNBb zEflw#b7!m5E0pIhw5B|ZBt|01*C~r>^p@#5``0+KAXj$ND&AoAFpt$hQ7mxlkP_$v%68bz8+tqP>ngNi)=3W^Ipq zwBv|$2ig_VU7=GVjVH}PF0a$+yZOFCna&Y4-f#nok(=xvLOPnS;aOzgqw3XMt?r1s zy+$J3&~$2}P;V6Sv1hnK4jZ7?=0anA_&mBV(>Un9Gk-;v*U9p$vbxG2{H`o-mE~=+yj_-ecqRNUe--^1_Fg0t%OEQh znSxbTc&?2VG~L$I-s!f9N4Cb2a7y@hY6UhKVNMCT7t@4Bv|%o$c|NIsgM9E=Pa-xS z9Ic5rV-RdL+?2kxez-W-o$HqqaK^Es^_vWtfhr|jl+v7F8g!UK&N?SgC*Wq+78-ro z*53>@53$g6Wrmt3S}M4CQMTKu=iSn8>cJMG#aupSfNr&W<4!N-`d7Csv7uL@0jDKo zJZ_a~QHADI`wMhwYD>*HvNF}`jY_rE2V#yyW=he@;sF{`%iW${cAFP}@{SJ2s zR9N3(&-zx_6I|9}^Ra8SPWC%^txU4tf|XMzJI_yUl(bWU{fs^Ar(oxBVK4BO+{83Q z=l>*b2$TOGVdd2MkE1sPh4q}Rt+TV4B!SIla9NA3j_zxXbX~BVY8qZClj{^%Id!g6 zLN9I#-zD~Z4}~4V22R_(02!8KWpx8`sQI+ zjg|L}h|J*{R$}ciSBqkJTcfF`g`fn!xD?o zvMpN6;;xyq(5UoUYxFzyzTR4az5yGTRk0jerZqH!twlM>AG%7}$@aN-cqV5{60{&I zIa~MdCEMg8bWNq-*ORw|?zN;|YW4R6Hc+Ylfo!4NP3t9Mnt7Wpi6;@82 z?Zli&T@|`7*wcLub_SQOI4e*Zu1~oh-Zr_2 zr+U*Zf$ciwIe6Vn$}?f*)G3emUfUGF%k2R#gI&P|EF!dcUDYD=61-X_+e2aH)Y(oB zUda`}gZ6;yus^tf#SIKfM{x1V>so1^M|*ld zgICJrdKIjkI@c+oxh#e6{q}r+4m*U)R~{x2nuyal--lPuj+{s*p?=IU}=g~Wn#OUPFVu7e@wN7>iyjCXJ zZDHlq$#%A;=@q=E+2cJKb_e(I6`MF(rt6GPz^i65UI{Cw&Uljl6-7aOkv-xIU~g~{ zi+iKAKkJrp3{1sR^eZu}1 zNQLlY_JkjWy@3(-E!Usnhw+-3gdc>JQzzUN{ywZw?%duw*P1{QqmyfiBfG-Z>!iow zwKGX?3M;2hdZPS-uRz|<9`Zi0Gq{hk`1as0JO0;;Nlf;OD)rN#!b9xCgTsl z%IPz1txHlE-(}DE4%i(S!E2qx5!(BF};C;>>?=!F`xOhc`_7=NI z=LPRcPvNyP$vz1yj|s8^3fXx(SZB|3NMdxd=N8!k{h6JK*UBV24OUK_Y*%=xr9ya_ zJ>ey=N4U?fcs~kTuaiC$uboNyAXqtd(&N3gtP0|~J>n|t3NB)?sza>d)#7tMUM-Vt z5mru}?c`vcvI6*Od%&N8{lNt+z840z>re1ic->6OpMaH9r`)xYj*fM@Pjb!~aLTlM zBfN*~=k}cMgFV9KEVer;)@x7nkMa7MtbYhA$FNSYS25V`D7L~SkO;Or?v`}PsNC-O zV0&*4>sTs|<_>q%$vdKHqp_DYcQfsNGHiDAPX{07kkN@`7M6<2E)r~Y?C>PU##Tqs zYST7F@sq{5dX}6;=NApe>{#L`$k}O6#CZDpup;>q9T}a?=kk3{cedZ@&sNI9CgYZ! zVdc7=p4>pmJq=VG3BRAIlQ2}sDaOrDoIlOF=P<_{u0HJF_Y9Qj3IK9KeV|&UldH)q z;%{gdlkxOcz9QYOrfaTDTh2(^*^-gwA5 z%Ls$BlRa~E6^A$~x2`;M$$Va|(OvFw-NATS!LZG(Q~y#QW#a`FETwR7=&y8B=StQ| zU90LpwSspCQLu7fVEDw|A;j&yJ%cZhBLYB*9d890llI3z) z9_^LzHq-6t&)T`obaIdbDKE|EkR_J85zAg!}9rzXOuh?UM8TJVmyO<)2+ON}o5wD*~ z`vq7zb=u=7gHsUi_$KRkz8y(m6G2?WVv`#gt#jQPuawDk0j!)l*Gc3eZxTg;d!jwu z<6v)a;fjUzzU4aM6?n}|!pmXh)Cn($pXO4SzuTVqd9Z)D%(wQA6^L((-V4^_wlI6a zAgr8vFW9Q(Im6VX(ht67-w&>XJ;dz?+eZ6=p*4C>xE8mD*%PjTl~eBtTgFZ(E8XA` z`)=?M>>h46*vjh$u}#tYzyr7`%sy~Gtekoun4x|HP|$bmWS!b=MiQfw+KIEe)fVW) zGq?pz;;;SRBffAWUuzWjd)vd`19$xd`mo{D%5*#H`eT0W3#39z@7%>!3iq--_cgF*xZLNpxND1kq;rGqfql3YO!5w_oI3d#>e4uc z`lsxvUkQ7KOI^&}s4dW+^($}-n8YuKl~X6)6AUgT znWXQ6l~X4@UHZyjYO26~*&gScUyV_Us>keZytHrI)yw+o99HAGd=^|L3rB>hz~8 z8;um~o9$wq#brohbh0>+uPY7EdA|lzX)<}g3M;41d&*L==Xt5V)qW3q*1L@wYw_(o zYP@u2Fw3?JUOkiaPOx(7q$eC-tMn8~bpLGlJcU*Ekk5d9!HwhM%X!OgjqhoA%}l;0 z!^$yy6P(u(9Qh%Rgh(I}9QmxF2k~RmR<_*q!UoWa*rmYNVTf8t$gXK4!iKy0@0=E;!{z-E`nZ z>xYY7(}ZP_9hHWQ&p(;8_XMYbeB6_W_57k(*C+7&Roj{=7Cj`Lt#&K9z+EsC`HXD- z*G)3T@r1j02ka;#*5dV~6M@ncGdeBP^(^34ylQ6b_ztYB#g1=z676F={V?~&_@IX? zq@N>mEcdxS13QIFT4a4n19aX`;RY~yKM5CmQ(P_>GG31%19;`k7*d0kwHQ+IB-)oN%oIay$YBcYuaH5O z*}|7#w{U6C@kS1<2|DvH;3hDce-2hoo%!5gsEz0Tpgs3r!>-|S7pt<3&CuEZ5;ud% z{%5dq4EqEFevmVWK_h`gkTV>Yv>`HQc%Z%W3Y|xkoPK)6Ut6e0Q-)b@MuU~H$2Ipd zr3|!>VX?nUIagZj{-+bNBQg#d(u3(_8mOu%yQq) zAAXkJ)F;rtxidUd_I0Oric>`~T@*7#Fxv z6Uk7UjHhe@uvZtnK$E58M2DKknj%92u|j#!sWoEGaZR9Ca_E%PdS9W3G>xYvCeU-f>UpwT*FJbh0+3Qm6iEd|w6dbvwO#(HwZp$)<=< zVX)wykZK!r>4wvRA24H@1B=d-Eh>`%v}P9GagZKO2u(2K+3Avhty@by1-|*E`fSo~#TQ zRjBtA$_1K#vwqeKlt<8GY8x^N^|G5t7|#!e+C|t#AoP^-{r0`NYy0U=ibA!t-o9&5h|JP12RfX< zegr5xy}3qVkVXL8XNUTeAD?VpRjt$u!YJEFSFNnI?*f!m??uVA{YW4NCEJmp=Hv_2 zT7?3FJ+zwBPalxGDZ#m7)66Cr_aEzlp;j4i-`G6CBT;7yX)n=%q}B=vLL z7k}H-rcN(aHF{iapRxMD>PC&Ou&{TrH}zxdVlic7o0CwBs^{A0B#j#F6SRM|@?`v1 ztI$;s`_Xi+d)33+WVydA50K@7vOGwZ2g~vhSsp6O!(@55ESJb~sVt9>d6j`1s%hP0ex-8!=%QIy84q2Wl z%T=;GOO{z#o-NCqELY1iFUxLOI0DS(0VHEX%U2$g(QSb7WbQ zWnGpHSq{i@P?l?DxlWerWqGbF-zm%UWO=?U-zCd;%kn+4yg-&0dL?|-#;){d?YwGZ z9DNT^J~BT-CRl!Ce#mQu{T&47^e%*VAC- z)VYq&xu2I6vX|MDy%cr@m#lndy|3aL+e`3jnQSkDl~ZTik)zjH1?_G2Xm5c%!9^=a zTK6SfBYQJmE0gSvuyX2T$Gc?Jk@jhOv>RYoaM8-A)-_va`vhJslkH=$a_Ve5ax}T2 zJhihHTj$5qNn%v%hvXvz-!J+NV6dpRy->CF~F`VX?_2WW4?i zUx8Q7DbItIQ>Q%J_f%*-xq|yRd)zBv$8aBRvDMws2%YHOnA!C9kZ5GD z!E0rby&6_do$NUM|@T!38V6Ga0`P-;Y19a;Ly6HmPZJPs8hF(mfegPMz*}Z-bcv_fmVfm%y&z!WCZ< z#lAR=?L~OCOtu%m%Biy*M_XYPvbWfiy%}}{m#oO8-2J;6*BkLlnOtvxmB#?rbybDy z279hgz>Wa9(l$Ab>tlGOOs?ACi(r^^dSVsz4F@qX)`Go*2yhgZtvItNxxo$Ew-_>sbPg+1Hlurs(1 zt(Z~vkAKqmF2gHk@?8Qer_Oh3yxxh3*6Pbnl0~!KEuM7xOLG zpWUD1H8Tm{2P>yec)WK?pMp2Dw{?c~8te)#UNLJW4j0s(-dFKznQZ?JD~|=XbS{{} zb~k&ryO6}_WY0cZ_ryny?M`^LOtw3~%Bi!RP^h~{hbeH+u!nmZ>o&YPSPInxgGOD1x#2)QMup_u=#apj?G^+O0UVvB1IXH}0;roO=-^XBoaQTWoCxPwy^ZO`XHcF+T$uBN)e z9_{6@C%9;3KINWFuSMh!8 zOvbmu%BeG++;Wuq48LFx`8n7hT*xwK_WP&dNqz>en@Ra8SUGjdQ;4#ERfX~_FWARA zcb-QQqmw(!>w^R1^{06bUOAKVOjvpBaHd-y6wb@-IWL19!hM{hoXL2d^AfyrCg($8 z<YOLaTalEAeZM{9pTo}JG8XHw{Og>g3xiWM?!zl)^8GQaJO=oR z%c>NuXSp@6G@CtYAsgi_?GJ< z@eX*+Ov2m3%Bd5c9Ng`uFh0$m@yW11xDT<&w*uRB$|vA;Gbyixl~boY$-i|^VSJH2 z;|pMKa2bo|*tc9K{4Ts^CgFF&%Bd6Xq*qIE8=`{vMtj6J!0zB87BiYH({;wz<5e>m ze+5=fo$)09no0%nWA=z2g}uQ=ES_TDa-HzQc+E`055mf+6COv`hbnM8-)fy|O(2QU zNwvfZ0Qb&Q>AK)OX&hcDlk29ia_U?s${Sr3w)@$$-3N9C_rVqK!TwdW8sEL}ikW)69x4SRwMS9~e`c5?CfRAQa_VHq=@$?#vj@8bb_DmC6>mhw`v(ujD`j#$2v$y=D?PE=^@DYLuvOR- zT(JHVTQ;2L+>h7FBwK`)#{k)LYU&c5tL@2t2KEFKgR22()}T|3rA{wH2Dlkh)a<220Y@(v_1I!Us~rHr@2Zi`pSo&s|9T;;{~0(-RYf?dHyE9NXbvvs!b z#H(epT?Z?V1-1j_yu$Vdd$!lZu0Yw6**e>=;MFqOehF4ioo!d6Mo!8a?>%|c9`VDl zN4SW^slQ?Cb92}iZ*~)!1QH8c5}lqzE}0brtBbQIkR2x-lgaFS!I0aE*B53oeYY3ipn@86 zddv?N70-(KNiiSygH5T$&1r+V(twl6=E~ifY%hKC9lChPtyuVD{{Co=XzXpx<=vHh zefJ)EFdBtQIak`fFt~nqx3+>)Zq(iXS{(dvvHPE`A1?L`bnO%7H7DiD`Myf6oa=Xn z`fis9gT)7P$z&`il@h;t*6#(gJP8~^0tQ!Y8v{B7r`2|4z&HqoBU`$8tF!J8JIlzo zxHIWQz%<33(h55b)?4xVnepT;u(C8Rc#`)_DiOpJ(UYv=$#felD4sml(bjk}YoJ_r z8kua>{QzC3z|vpob|Nw5JZeyVH4-3=eJ&=ZIAy0M;)@nh#E%wx2Kx31^CDf>5L4DC zWe~)aK~G`~#1sK2(tahbd=3Vr#g$LP4l^OP9=53iV9ZJ;*VfsXRta8HuQ}#F(iJA63LiSEzf2 zMY^mZo;;e=??F6y*prBjCyQb;#Su?Z1eL64x)Mq@IRK@ig_74{UztP6^Q05u(iAT| z5pY@%`7d5OGl;wbD{DdIWly4gq-PygtL4_qgxtt`u|4lyNdn8?xxB^Dp|?SQ&0U1s zz@)w-teiUaEtXWuja-59s*RCYHo*4{}kK~CjAp(Qi&j*h`wYMPrhMe1;vxeZO%B{Y%`K^ z%s*&kLdYS;5W=7F7&hyeONL?@x$H7Q?3m?AjDgtE;bKq%#z8O$Enw^qyT}|cb|#%@ zzz|u7*Lh^ELDunByjEtEcnhqoMTtF=N(50t^ct%uG2O-riW1L^Z)?^uO|IaeEA2Dc z)wy~!={S!XGZIP15ypry{5y*H@=vx2(;^+!kaMh0>iZyW40;k{AZ`dSS-12pG8dzr$BVL2)7ZEM*P>6(U^@n}*X2QlMePa-yEEGph# zZms*2D|_WS-&yW5QX8~X9$UZ*rL)I7@M)6lOC zr_z_Jb=TJx>U~4zHF|(l$;qu*pRIXj9c^hAoi3lPS9%(Byz`K?r~19-+4@^F%=rEd zIEjvu=&uyIhs-bXh>-7{BQ0I+y17~!s1G$qLdiQS!zpeMoqT0+(}Oq7yl-e_aWh$N zF3WMU?2zSnSx%7UL|IOfWv5p<#b-$P=r`z};whQRO717fZAueoMSo z<`BOHtgH?3?IzpVij)f8mG*d#f!)EyD~_IOnXXS99feoTWPAjyoH}E=zSSSX6v*$i zhrAB<2N$xu)TCv*PI&;Yn@PC_E2mD`z0|}{E)>jPvB&%+*dbiZtxHXO<8{toz$<5R z{v52FI_C~I?^6IjXbSvMC~$ZmRwb(Zx8 z>=fZqpug9}(5PUX*o zXoTO3*UTjR9$0y75O!yI6vE%JC;Tng8#rNaeo7J+1jx)7-1!i$-1; zlXZ>By2eB%;S8TOUQF6;g3lT+coJ>@tZ|&lC2IRkUnSJvS)A{$(ni%G^9~*Lw*f`E z#%QQ{!ibsKQ>kT3l?pA!J$}SA3q4tZVPY78jNrKZ=vUhcwcGR?Cr@@in1Y&bS) z7YZgDj`k#CCmY)Lt|qW#Wz&@)Qirj~XC*j;q6+)UNVb?Iod}oa3~#5GSa$7`lhp^G zf&205nQ^2DD{FD2H>pGrM?^oeiX%tbSV7YYUu*9~WmmmXp$OuiEf5JKH&IitH&A0| zGcOYMYaHf8U)Q|Ax=5EbgpzM0b$$>^zUE29hLScOmNzxhb|scP2(!^*$**B&8Sxgs zPdX7WGL}Tl*K?9z;?*-_$`ru5MlsHAQ8NaT$i*X%Xg7G+xspu$vu0bp3jwX(bteN+-r^Drg><>*AP0k zKw1?Uo(y@znxs7^$Q$}RiLsD3bhg^9M3IleJhTzyL$ITaNQ>u_P6SF*d{JnbuE&iJ z;#D)_#`|GqEpA-wNwhCtm@e{#mb(-^C4J^8Plg zoI3B>!SEW#{IB-R{{lOP%UtA#hDPYz|BM^K(O5by`%;iG?BGd^ zg^Xc_+I(d=ITj|Q4JSv#{xU)?zKwLEiNkE~)l+SO9#@XUEnvo#rLeLVR}S+e+Lu3U zA%31ygY<6Dzzt${gL7cz)VslgU_>6K zD}33$D|`|5PkdL1_JFOu5D?!My%&5Qw}sgYJ_{?y^nwH#LXc#Lu_b{-kYsF|v>`Id znA_eD8Iw!7{?*3(;wfqf7R8MH&U|DB^D~BP95=OiGO6Q()Z&kx#8^lzri5Cqj4l(G zqFl7BqJt!`EX;_u_%it`8dBtL=MXkodGIlGGrV$U49URCS`2wj^nkW4Ql2Ts-+0>l z+SA?}b_9Hl$eKB@R=PjM_H z855;1l+g2In51m-_)?+aUJWZ7`a{@t#vW0;k#r)onqmpIPf|YA-=bd=S89JBuXv*o z=eCye|AUpKYbKTo^+uN5(=VNKyQkE?nTx3+(J&ML7a0>y^|_tA_?wnzUV=Ttg)LUt zMa=gHnE?6U@#>k#pNExYe|)axn|8CF86+5H-rFBx&3hY?2){xM-(|SGMN+9XL1(@Y zH-X7~KCB$WJje=$_m7MeovQ~*C8v>f14d-Tz_p4&7yM+>UVNb z`U6_;!Ru#6oAY61E!v#xNwhDUm?MVcsLvGU-y)l^r&MG9P1rMB=JP@`7tvPeNTQ5Tcma)Gzo#E38s~HSwdSnnYq!$aQ zIar1+yH=21%=0A1!c@fs(P$;e91auHhL}TOFBzd17n4qeh&;?g!jkm{>BNC}z08pE zHdt8;Df@a7?Mo-RL^@$)Tp?R5(})u65iaBDp)?|nbOEoONxBDCPM!3OAbl{>{B5rs&PUAYE0lZb zhES(}wbR{A|8AI-c$Aui1uA2|YvzYfAD~$Y&-B1@-rU5)N%;iH!-Jm0SV$fOJ;en| zD)Bl@Pd-_}48?z8pBXzq@mbP|rV`?9)d*5r5hNC`;8rk$&&#l~7JOdxB-)o)ED(u> z$#V+-U5`YcUXA}ElE4yfE`PC5FTO4M5VRw13$qt&2P>!E3$_V{Y(`Hw-M%NB0{e*D z6Sh}oE==vwd&7yiJW{(7sZ-w~$Tz~zib8(YQP$+Alf+15ocfb4 zHV2v8q0{fe?O@XHgq36HCrA#0{6Y*J2_%C2;zLQhvCJ>t+1~tOT&<_45zQ-3g8Qp6 z%rs9PKCj5FcWR7P7v8Te7M4Z^DnkNseA12-BoN1X5@R8O81J=Ni6?_FA8jP5!%i|H zF0Lk>2$1F^ZzK_@WVOMRMHR1>89w@9Wi5OZJ&E?E3{ynPU?O}CnPQnMTn#&fOIYmu z2^p^s6Q98=XL7y@R!*Js^k8r`vA*A)_0M6aa9N9^NR$TXyzj#eVDkPktQ^BT!I&PT z1!6!*AQ7YmM<;EFObeE@H!YacXk@bexkjz9j;0>y_$ra#M&=);E=Qx3vD-Ck!{-Th z^A8Q#5^9Lwj>w>8$RZ|F+pvUN_PZd9nCMB2g)CxrL-&A^Q|tw^l;jK-0b-d;oS4w;yb$d=W7;NAC;o!_8s#h4;eB zF?}IHS`lO>VvtE75o9JENgE$t>?R}j;_pZ&f<$gS^>N9HgNcm4;1x5& z%Aa9nEv)>>lW1R>A$OdbDQ|f+`ebU9w;%~D7w1wA?>LQRJsYo{$$AE?oI2~!j#D%5 zqwIMf0lS6ETitOQ%lvTM1Sa!CVC5L*3C8>&Z4iS)0*N4PxI1Z}l4-+B?VZq=QL4~d z&T6GluUE>3MV*(x{nps&n%UteGoVGCWVUZLZ$alpNjq4OI$YpMjD^&}r50(vl0$qI zrlyT9Uxxi<1Yi6(=|pn~v5H)6f&Py2Mce{ru=zZ!tOc9TdJ^qRCgj1Js@D|mza^`% zd|%`K8`w8o?&0$`)pqFge}&t@r2h+8Id%G>^EOq_DLr8GW2}3?CL}Qud8Pj3tLJU1 zZP9zd>oBV(vlsjqR*vZf39^MC;SfVg0*N5ucvsSf$b{pe%`=(UF)cR0Eh?TBbLK)Z zANPYzx1u9>H=`3-B6Ac=;2vuXIL+0=XBbwWOI*7n1DRod;!ya}k)0|?G7j=2Vu7^r zM2m6MVkNrtz^t_KB@esEh`V?q=|pfeCwLQ~E+$!NFfVa7UMVw-tb&!bFmi?`5&NVi zc+jre)_fdF(R%_r#pe&5?#IXw%k1GJusgVP#XT=A({;v|;Z-vkUkWRy&Uk9@c|+&? zJ$ue~!Y<)*7IRM#^L5s@;ng!)-vTSguud?h2Wf#A1QJLDX~F(U8zR$!quV>?xI;(eqO!O;}ifX7LT91r8QG9$-> zu(B38ew|bzh#aEVSVfMTY^)eqUHol(=NCKI^tsEkGuc|M5(yv+k3};YV+U&%hJT;1 znr9UDd*(;_u_3I?rzT+;wCrO+SeffdjDfH+IcT>MTn>f7X~E?n*ilCI#W#~q1WHq+ zqJiytD!M;jH#5Y%6;{?l%v+L51R+NBAgd5F%f<={F>ZuI=fIz zBN$z$^nhQIY1k93^?;wj4&wHJZM-+-jWkB@2S34$VfKR`!OE%kgKdLJ5>8+EpM78W z59}mvU)VvJH8D0w?+^dN4Py3(mtf_X{*WNe2r?Bh;3SX;rcnlyHbhRNtZ4IBm3l+@ zs&c?eG=>>F-H1=4c!oyCG(*y{9~p1?zO#=fF&2`J4!6n52y+%pM;l?@0sF`ZxOg<_ zM0m(~6c3cFHJE`t9j}!cI!=L=wa{^*C(*u?LVi^-@ckfJVwpj_ANB{AZ}_W2Je6;gVLrs+eitgxAlc{S8<-hIWFnJV*z`P>?_(NC);x z+7OuzOm1&F(AB67l=HcULlYPD#vhrk_%}5L3r)t})+~+kbVaKPUJD{4lp$mIXHr1H zG{rwWiLsC|OpUZ%Ngd`Nhw_upRIngpE=geNm9YyHJ4h!2rYRP6Mah4_(V686Mu#FxU3;Sv{TlNcJIb3Y6>g30}0SUGj>^MYxJ zjj?aovp)xR4wwA`W%?n~5S@P+H-yQ54Xhl)KS7cZsl#U&*j7^Jb*0}-+M9x0;_IHoSjZ(N%1c_6G36nckv6700K3VE zxp+6}M6(ES>$!istgJYggSa2Bm>EZY4l8SM84jPQ!2Q-Zl#KY{6VmJ~S9 zlNbxBgHNs1d?kmt9Hu6preG%G!?3@M;EV4fooEgr4xi8fN(+KyqKR9;3^pHtm9=2= zK2M^3$%H(7LiL)${VuY~az5e?*f(76;ln4?cIdC9x8im%>3;`SPMv<}@Cns(N)LF> zz6U%5`-j^D)Wav#w&=a!DclxjFL)AGj_CynvV|bw5JO4=i6G(VN!k#ZaD24A3CG-C zr|i^nlxq~q^e=SqRjtxJkdJOW-Sq@Cjv2e)s4v`$uUbew+LSzIpYPc$?6l z_=QTY5p9Xy1LotFFnhpUSUIK#BuEy5d_xQ)2_%Ai_wRXm7qTolcqUqhzC2 z=q}`XE9G4D@UAS}dyRpoSsCSw!)-;R5s{J2kaL`ww7&&8$J;%Lv5<4jP@AueKo`Ok zwGrsuu)mBQp;#uJ2%DyO%T-&T$DZ?W3z)HIJ*=$7o$};o# z8tfY`_wd3FwH-SB>u@`m^sj}LQ>PzV*r9q(=>fmD?*Wg%{^9ljbzz6v7QGidgxkXG z1rNZ=F})x`@(|=7Vn|6K5#%4ICT)n!Kb~msj+4#T)GFo3B*&H~qe08q-J>A{So4Uy@=DeYZO zF|B`~)Sxqg`zzgaaA$WVy5RG-)EF!{8T;F)e-H5*;kChQLS&FKBn`hw$|y)0e&tDw zg``0cY&BjId$@(?;%mYDfCaa zr+)(M9WH(Kdq}h;dJkBMTf*!C$H2-lJs?505F{L87)c-zBpkm;8pLG6ad~?ajw!U< zCX*c~yDK>NjIQAP7~FG>-LCnL;U^~G6`U=DBO{n0xA;iXeih^vmw6InA-Cvq*GBnG zSK`cfU|QNJ^DWp{M&QLSkWPe4bGrB4HEg{eTfT|c&WtTzhn2P1@>NfweR;*KU=?Hx z?|H?P{YTg@T;6j%-g+B!>VLp(U{e1bteiUaErK-`;b%p8(x;tjO@0bVj6^=E zKk4Etm$@A}{YkhTO#0(tClm>k3BcqyODq{k*2us>!4+}Dmah^nM#?ijvr?b^;CEhHCvB^dTA4qnE{bVFx zoKHFtCe1GIwYFut9$psVRWrlOj)}qUyNhN~lBKnV2blJwn3VM6_eVe0;c^&BosTEj8Wb9+j-r?U{ ztmZ~s>sc#E-=7pq@CI|SClMQ5+V}=D$#1q2TyB7=X~E@s*iT0A#j8js8eFD`6&^k? zS#$95 z>u1vbHLRRE?OCDK5N6^N-fm5N97$m56_>bJ%cHkJr@kp}1C#n2BSk&I;2-1}#W*KD3OF3{{4AlcjLSl|dy)9}e>* z#zgwyH(ME2iZC^8Sm}lRWCUM4m2@IZnj(GhE!RU!H(oO{wB%rAZ9qB8lW2ST;CoBq z{0XwgGJP0=eZu7&P9J>xb=n`r>u1vb5UiX!?NIvQdrTqzLwn-ihyB7OuBH!u8+7Xb z54V9y{dQP6hI)drKS&?M5RpJ4NFNSP+7OvOY&9X1i5;V21K6S>eoXPETV*K3d;5v> zeXN_Efrcn!ZyWX5O|c!y-Gv(&tqd7NhFXNB-?E1V8N_QITc6Gqn`Ji1xc{6#w5a&{ z!c3;`_Tn2UCX84`&*lJ=}1k+{{9@DqtN z^M|RCwkuKQPcSbnhj<)zmJxaJ7o-yb(-e1mN6gpb%kS~(nepWjSXqlN4|x*p%Ohrs zJR;&Uh4|EWSmzRxNdn8Wxx~e|VrYcUeIjlIlY0lOoI3Y;!BD(0_6ORte;e!^F8c*a zP7!H{&VOIr5GMb!uMh)B0*N56_)gLQCMPOxZ0{zL&D4{&-U)YCV_$2o z9zL0{S|P!in^>2$Qw1r-fG05)Qi^f{@fR(i{a=9nbzVx9}jJ!JCpOPV#6A<^p?%>iD8-iM<>x}Qgt7bC38&*!8 z@zfwy&^fCDb7GqXA13xXVijv}}SA|iMzilT_32+AQMprGP~f}$V@3UVI`zv`-*sqU(p%==Vt zckhos(uk9%-g-Y(@B4Ojb#-tVt&Do*=w66jk4M9kb<8!Y2^R{YC!!+_4>7}H78+;4?xE7(JoKc)(iJlqoq?M|90RAp z%9)RWEmY>VI8Pe~*Tx?Q*T62Kj)T`}D;1XRm}B8;+#KRqxC&NoGZq}G3RRehB;z2V z3X^`y8KFWu)L3u=|pO7<9pea0+b9v&~{qi0_{!+L{-GVAzD{3~X>7vWAsQl6zE zdCC=&s!0CDCE8Xb=_Mw1<`!cZ>b(|+7B5F3%DJVgkwr`bE8wi-z@Nr+B534C%=8|Z zp=UmB0WtK0&C`EoKs zPSUTGG3$l#k@0K^HHW$m4i#$N$0gc^niMy3&1!aAi!rNVYDSD1hy7%aF@sDe!bI)~ zZ(44~mMY#dF}74-Wh1tfxI}u{M7~ni^p?i?i_98qb{d>N2m6G|IlL#lX}?MPvv~VN z+Lyt~nbQvK32%B#BmS%S#D59DZ7JznvIT|TvN7!N3q2O=HbRuvXi}^B&(FHU9^y4NFM8s7k+(X!l5scd2Nu4py4QNR*zFzi!V~>Jur!HfLlN$z8j><9 zG-hWcHCYOVb6f|JDj3e>5^W2H^fJi|21ZLBUx(2c$>XcAhpcq{OPEfCMnmiv4@Q%0 zRBi0~65c2=YJ476HloHAt`aJ0h%pl@YMdU&3U)x}{B$>R^o@)U1UpNO@1#A>`Y{=I zA;)x%9_$lsUTufs$~FB%cr!_i1X+iV{0s ztGF_9=kaBDyjllasV5C!@G2|z(vJpdWw_KBtq*1fUq|KJ^dl8Q0UoW^z>@e0-t1GG!uUvr zveXPGx{fbZGc4y4ZEJ?~k_!8xt?0E@G@JuNlXFPD5OOB$CM$Qp%5)+~Of-PMxN_XjUdZAJtj6{{&SO>6*$2z(ih0gaK zu@24QhDV04C8FHyN<&4Io47>Vh?3&!Wp~hJEu1_G(=x)z!?2I6!2RDaod}P{OkSUI zP_k8Z2l5c!DlwEi2rC<*kpu_(crs~NlZpXYVsB9(#m!-Va&tZ zCQ_aaD`!r5{@xY#5QYW4YQKf_yW^AI6ZQ#pCX2UwqV}7#cgNc&(%ubLZbRE4x2y6% zqyh&Cb?0$|YjBcx9{ZAKe@2h{^v&+z=xF=V0YF{2ht}RcD9<;vk{wjMc6kk#)w*boX7Z zSN8H%uU7BM70ay77^|?a6?&0ni9HHv?6M9%%2~e9MoejV#O_Ecv(y-GXMMr$$mA$f zHO8)7qHT?lV%o7dKnp!5!sv{&vmExAmA-!v(}~cLC-PZ3VTPS!aU+Of=O|d&2s?+n zN~o|S##F4Zvr8N+*y`u=>4u%@B^GNUVdk@}1K|?swzmgg>+)|GmpjDePI0-LU#tVI zvAp9=jaTx5O_{5THLv5g&CqZAxyg|++>9`dnN@Gdt9s>vH{tiNPq+D(X*fFfMvSY* zff6zmo%=J3j>9rnNQwu!L+2`fv-Jl1kd+LS{pqZZOz4#p6s2x$;m^6>dakHM^}vm4{(oMpStS_LDuT+{<(#Oyo|l zrsZZ(c@S@z7*zfQD;q)O4_qR>#37I6YuwSS%TR)bw*$0#QZnzCZ>TiXW+faAN`l@gcDZ)WQ z-HTlB8m#2K$j{RK)X};_#nqAJ%+uhJY8_^Tn~=~FWykxF&~N(#izBJYQZAh0I-FFw zu$oIug>qpA>#-J3u7oKW8RT-bb&|S`#YvZGln&9n2XgsnG zvPLekbp&a2BoA52f?Zihu)8KXs8m_73zwJ*WkIj#v{o4`hgli9<5<{BR^0ynOeaD_ zzG5z6$#zw7a1`DyF_;_~%-fMZ3vZoB z`V3e(bJC$#%&oM)7oYaEuve(G^;gW>5x)kvfJppmSh)>xhb*rO1(6mUBvhfWqiaWG zp>Srpg~Ifcy?Q=UCOpqNfQ2RNC`)iB6gN4Nk}O5SGp-y|k?<6kmiwoa~g}g||(lya%kDIpxqkCkyFXe9~jEPpG8zeNJ}Tqj>v7+CHq@ zhPFdiSA~H{1r8FbF!+~iLXw5SKhr&XX2wue|F*`r;c;pmWQ`LNTR;#tM^cfcH29|L zkW!_=*SW-0C=GgepS9ZHKA4n|JAMT_$qL*53Db!HY0ToMLkLu|SydeT5^t6mNbZ7_ zjX-h-mq@QTm?Mr@uo0d%61zHh4R#2X@chvEbZt2Q7jK-%`6XC6bIuFY0Sh+PJH%)G zMkX;CmA*Nf*W;|U4w#P&x5Et}^400Bm@TuRUmxTb>PYZ;ed2k4(8X` zJ3_VM&>Hq3P_JC8L=TB5!(-MOTpA;Z)e24Xo7P8?l%;A|;X2M#)iA;(rb5-QKf zsNcwpin-$OL)bM`>Klh@3auL^`|sms5ZQkhR?eLLCMr2=j??%*9-sfCuzRTdH`nS6 ztt;jjco;W@I0hbqmD`K~hjKwx93q)GNT`a#bM1(%I1Wy^;%L5c6}+50lrQWQd2aEB zA{xD{LyvG!MDum3j{6;(KWx5t)v`O1&@8pawyZB$xh_YTsx`Le5^ZaZ^it0P`3h6B z^IFh37{(^Ms!ELmU~gH;`@1on2pL&wXdN&^&3?E6#89&jtZamuy<8&fyYmBTJe`K?Gga z;>kB*PDVWWI_x7WYX8$rC&EKM7UiI1t7_%*t9Yx#Ao3+x*$5(^=Mw294f$Bq!uL*&856TkxCnL$m9ls%Ct|*NS9u}cJdySJuyW?C z7ljrvt-NoG&--TBEmYo%^~FmWj*aL`3v*x z|8)0J&0Sfk4isx$xm87WT-2&a-7tLx8l$WOj!-u=S0d?4mcs0&)sZA+sT+!}V46}!KP=|sTD)AJ+dn|Wmk-aIkJYz`|M zF=i7kkzNfEIz>I=HjVn>%&eHz#38VAsMPgS)FT}+`7gr_A@V;ER&K-JAwj4dBLazo zgvv3m#LO{IrF&C4V|A%Aye5)bJ^>F{>u5`Gudc8;62B~o<>RhHN+p($a*3&sSbBJ$ zwa{`MOv*?o-+`TEh3$Wi=|q6Yy}AOGY*yWjehY7w7)ZVWD;t62Yg{6|L?ZX<+6e!R znG!R3`~`Lhm2h~kZX3>j#v3Pc{v)iMIp@$`T^sB9rP!?JFbS-drn1)e>bBuM3paqs zy9ZWo!`mUds{%nJ1P2LKAbi+$;L4lO1Jk_;ot_^pMh_KzA3RR2gDkeJHs}8C#Cplx(?Pdk`krlOn0@I1`kdL!DDA}qi4oY~d#2`|H zm5m@W#3j-z4&>u(3*XN&OJddrm%;v^@(n-Ewp0ET-Zqi)Ct>BxDTf|sTS(s(pY$ED zPpG8z$Jut;KgHW8(!K>&ZbRE4tE<95qyh&CRT%8++7Ve8{4w2wL+2JM<7M{swQ{9= zvRAD{mJs?z(a>ZaZH=MCo@#UBTee4XlciSZW&OeGYB|PKtuTX2OoduuUZn3@(a;Z* zlRZ^M!}hSVtnmGfnN9?ZT%(SdZ>~`;#hWKan%Be1Mx=Qimq@RAkY9L>xJ)B{95X3q z8F4i17%K7b7hWTsFu5Or8$slLD6E`0_t3M6h}$&w=f-D$HtZZKd;Qr&q$4K(58{Rp z`F{XbZo}W9JWv&eNFWXps=}D&+7Ve{T%YdJ!{YJa-QargDfyZ=9DMn(E2l3;+|Ig$ zMK9~{YYca+H1Ox(P4k=9bK@f!%~ERI>dHu!8b9F@Q=!yo5e&OPi$VW{2^tm0KVY9( z2Z8@vrW4`Q*og1Gv4WIVsAY@4<5my@&|hI?BLF?XCDJQAHWfS6Y@XBjZ%{^Ou)%*l zCV`dbRQ_9V{_Xo>rlAG6EyPhU7go-E6l|%s-VsK^KJiDwUa*g-BVj9TAD*p0=4f~) zZVz!ZyaQHlGa4K!3RRSdRO29_ijo^$gPSZ$ewps;eZBcosZgraqMw>S6CS$Oao0%h zLu)OwBMHt@fSm3+uv7tZDwmiF1<0&sx3#46C773ybUqLJ$%@>+km*F2$PcYGEjNS8 z6?n_Upz;}5*$66^a*6Z`4f&z9rnfZCzh>58w+9C2dtjeXIfp;A*0kTGeK+1dk@nAF z<;-b^KD5^Km`1#-5}Ww{V82j_>mOQc_Q9n7GHwHr`U|jf8|n^OUlk4_ML0;P!r^4s zj>y8{oOD++W)2j~`D&3pD~UWR*%KbG*1<+NdnEJ;wT^rFL%;1;c1O~brF7Vx^#!{R zlS50D4!d!QsZcufwfe0^m;soWkyCQ8qpZ;VWlSdmMSl9ZWx5$yj>nrO29{%BWh1a0 z$tBV&9u|l@`&pLwx4f z!;Yac7mvd%oiMpyhZ{lU{vBAk4R?p^uL=l}C>$hI0r6JXj>rOHBHdRtdWWm|!6JJK z5~&|vVV%HYly$Hrxbo04JCdm^<-?1vJXHDc9G931<-@FIx3!$I`54N}s2(<95?GmK zMefgHIuRyv<)LZ08B{jJTP6mT^=!C=edVFq2a|dgw}D8#0xP$n?vV9W z;UH3kgM=y^o_0-CvT*3`?docqquK_rrTz&Ac6Duc#>A-;OZ`_j>*^Z$q5m4YET8ZT z?f#Exn|F0J)?Mk3MQVoc!6Vf=%o;~`+%(Y~X0?th4y|AI2i8W?lBHC*)^#YUQsEjd zfn#u>aOsjZ+&G>YtixI;`J(`I(e$o$x`KcFUdA!Ne%sqQ@7u-Y4sp3tT<+!9u0H5Q!oiorG36)`6Aadtlt;$e6W+lEthWST!vNlnNz_xJ27flIF3dL6@~)vOCPl zh#|YdKC+_rmol9Q5BVM#2W142x8ki5gUHUXvJphy%q7|;>q*ZN@;xvM-y*Xl=AFh6 z><=p6@Oxl($_2b_BIOfd<;*FE-UG9c{$za8pMZTrC9S^)W~cpeynQ0=kHX4rXgg$e zRTzj=;2@#yF6O&-MBZJzlx|@#v+S*|=ZEUrbIto$FR-X&9cT$Y*Hm^#Qj(=a_?0UW zRU-V7OH73lp|90%txk9mCMGA4diCo$*ilyK{@{&P{{#>zD*qHB(84pKG={VDjDqH-N}{Q&>53-l6B3EthG` z4~@_KeXwJw%=PD*txlNS55kQga^D|TZo}On`>O&%Bnk%!RY2V38n9#m@%MCJB=4?z zgX4whe(DS0(P|xPjiWlRP@Q5TvsdVTE$ ztaikEaSMpVXTZvBh&yC=RUnA8;2@z2gmYbot}GC?OLv8#Z?8hVxH4ZaR?4-=6NrQ1 z@oEh%je|N?3B{Fb`iI8L%#KPqU+NG3r?+~{s}_T|(%FB=hb)XFB1>s-fa@?)rNMq& zVlAb?J>}LDNBM|YJ}_P{cp%(UuN3N4&zk_AD>i1cCkv(VL2sy7@@f;yCzcW(+=SfH zvA_!bw!h$&#wQxbcf=CElCKWdMykc~iV4ELI@eC{R*He6I=?j-r;U2P zJTgHz&DpgLb^tZ|C{iOi9IOHMRh-dEaWKhlj8*xlIw7%973jZpqA{3Q1GPfF;FY&L(JR4&+%^LkqV@@SY}U| zSp79|Zi6iv4UJce6aMi`CsJ|AEd{)UkoC8^@&7E|D)HvvGFaKTIY^uA3={0HSTACN z{Uz)OYf)|i+sp3&gY02&y$f%Y$n_3bIdiVFRsE^W+t=db{V(hfDqgWwMA>dqehF`z zNcnkKIdjUhn)ScN_>J}0Q+PWjF&T?EW^A6rr*PA9lkhfp%S6Ik!OByEa8RacgpY|& z_(<3r)LEC1OkQ9GR-0t= zc&kLRC&0>6fGk_**QV}7e6kn7o&d=PPbZAn{4u;$BH53?%9)d$t)8%Ge18(3?~SlO zsC-4`tZX+a{}6ARNcsD)a^{qK_!BM-@W0~&ejIiM6|ktT#Dh6w20w~7OJw^nteiR9 z+3Mk<26&T|vCHQTnM5+>vzWokc5?==kGD;vybxB-oN{05;jRYxz40Nx2X+T_7SH7c zR?Bpg@w@S+iH!Gzl{06&u;nQEY+XY=9v^iT_6ilX*fOg3z$9M5Eg%vv!OCrjJM8yV zTSmopK?e!7Wpp3c2V`=~=s(hZr(_1({K4w%vnPVna(upT;#zp5T8A0o&>Q?qLBiU| zHU`Va(Q8}>liE0XHJ4b+#?jQamGtmFYtiI)Fe5o#)GMgJft_Ty?C?45b_IH*$5$ba*6b|49yX5l-LMQUlqIlTZc(ZM*U|J7K>{kU|O$>mB2>?oW)hc+FVrfXRD%+yEl)rLb}v-VS+Pl?EaqI7q0{;40UF zD@%im(|wzSZLlm4Rz|yW_2@zTWAJFTCJw?|3wV7XOb#rLq$Ep?FzPz0RE^+siMBOD zdTFGu)oraz_ymkfP90Syd>rNPr%AXe0hvZq?bcBj8=Hf;jS@%-D-4}8qBv~5|eRPVlv-^FId|9Vbb3ew}VK3 zBUrf&eTUSbvWo~J4ic(hy~A}F%YyZ*>1LPNL#0ZdefoN=vPwH+Ee{V{Yn&mxQW*Lk zRL2)>L%;3krc28sk<5}|PH-JxD#IMdC8k1#nG@={7HrOfsTslM4A@mx@ctOniC}4n zC6JKuW`sEnZ=4umPJxw;2(y|?q?cb7iPfTz!!+90FoUoH(4c)a>=r8R#XPkbT`-wn zg_}TR{uNj`bLJbUT-=`f1M#`v54(oSePgYp2zA3`|9jjFBK!Mbdc$^lhTh@{~l zp(=`_T{|KxiqECH1U7xJI5ZTwP2Fq_8l|j5jc_DLs5*cu32t&ES6NDkjafIaB3uqA zRYGjQC8k0N(H(SI%O>xFIT_hx57=P?PPuR^a}l zOecb*F`M6aG;zs>Rgv&K-Y_wsJOe8m0p%$!kzSE7Pb6A9+#%bm zf?SK}{|ihff<%@IOlUA=oWc(t7%6%ltvy1S0c4!OCrzJH&pKK19H9kWlHP z;o1?IKKyhaZOLUGFx9&5>wjNgzvDKd|yz4k?vDHs=yk zA%XPpK5OY?KbVveRQ7?LWQFbT%yc3^u(7@}KI_Y2r%+kzFKe{n{b}3) zBJWFJvb!n}L_%(E_H0xO}csQo9Iqar-ylWGo1wyKJQ z|G{LaZ}`0oD;q)N1;ISEw{+!`Y75^t$LIT|#Q27vRNE=P0dJd_Dz=4{Gp8JSQf(o< zJU;1TVV_WEvi_vnPWvdleIo6{VdXZo9kRMA3`8n$kWhue?_7hEEDXx&t{lv5y~R0R zSfOo;zYHF**3m|IV2!UoH{S~sR!6durAqje>*!Kd!Y8>z+bSWw`^-sCBOOvlM`zPbpoox-*{HhZ*aUBs7&|tEm5tc3zN>_a z9b(MHiXG3nj$B!u^v__Q&N{5!H?!K^Pc8NFuW3ySzOXqx&%X2(d9HCHbK_(LkIvuC zbA7JCO^%FNO9WZ&IvP|2IhISbg^}WG;N3x&wHR_H%*lu$r^7z7S0WXr6X7A(EjTD6 zh@6VIN(>?=!^%bwS;ZyND>mi2g@y08m?hXeH28i4_6L=3c-_KI`D=LFM9N==l{2Rt zTDP!}{&RfNe}sKPC9SVp*lGU`Z=Xo}H?VRW+74M=6$T;|I7p~<)X$ire3w=|qS$`uN6c2}`!C?lN}6+a(5*x5COsFxi<)q*ox!6}#)Lj7!Xx zm?c6H_6U`+H~}bZy?H-5gtty4U4WG{C%sT@Ot;ehRD9Z>guOzgEl#l3dteg(1a1M5 z_{U-8HpCsWyebq#T5yn1g~B4&j>tmcE$Kes2%f1I%PS*=!tYrZu)t&;X9*Sx(&$K9 zvJ?vUxw24&!mqf*lqeKLr?o=i6_}NrH|mMTi?Elhxcz@Hod^+GC`eecT~#PNhqp@% zCQrl4MlgAjOQc>XSQ#(<06HHH#;<1*SjkLf94-{vk$xTCI+64iuyW?4LxqBs_7U-E z9}0VgN?R`!+7W*rZUK?_L9lWg;tp9}6$&CPI7p~M;g_yKN)`(DrMsfA!Fah=sn)&0 zu3XI<9%WAryKCg8Da9e9nAj*l+!EfG!oo8}AaBMHk=LR{cF+*AqiF)lF` zN{AN2h!3=i;(IVdBimdHJIy)_{LeF;2%v^IQOu4~nxP7eYj87&LFj5&*$6^caf$Q_ zjLpQoyw!Eu2>3fQ4Xgi+5%5>oLDUhjW$3McYiG>6)(3E7h~waXSUK}?uteSETivIP zg$1X_9t(4s#AMW-W;EEEkA)5$GRH$7ZV+)i^uo$*#)Cs;p^6ica2zC5aqtIu*$pKtqDwHNIg00eo zxj>6WHJG50m&Rb9SqFiiV>%H&jg5FLYL3HjFU$Zmid#VpKt8N&1fXFqkzQf4X`8~t z?7(( z*s4=iVjT^)zD#o6+Dk*Sx>OCUJff&espt*sZf5*l)cs}jvZiHvXAQN${S%fS%LeT zFr5ezd2~?|muy(2m+kO|i2-FBSlI|DTXBi>iVS(mp`G&a%$S&U#WAo;sFcH}9JXbB zB;Guc^zhitD329X>bBviq$ zu4_kR!O)%VUW_dV*r)xva)t3)J@{~F^PQ`%+|YQrP%l=Z&su)QI)_Cq>kw>IJFaIm z4MAQL3%VkE(&~unM^tkY z@PEg2BAgnp<2N>I?T&eu`!H?}F-$!KD;r_zL01VCro=dl6{c>AV+DI*_5O691Wzwi z%6?>N^$j1KoKTe9OK05V$Y{1ioo!h+V&2hg%_Z7KoitxM3%aaDmxEzWMszs<_K`ih z?8bB=JmgDf9F%NT-OKEUw@M5m`@qUZ5ZQ}Mq?b_SOJ^3oCo@a1lEC1*3ibz;Z}_D% zJLNjwHj(m4uyW>!9$|D=2WGGk=TSfw7R3?5-Uz#@`$kR^D`uCO_hiY%qU-&{$k830V0pt6{uvhsyJ8|Zl52$(vyxSyB7fFr5ewxpKfk$yQZya1-7tF^Jp%D;q)NdM=Ur%7KON)65dAPB-{I z3HyV}H@tFSr~CxoHj(mUuyW>?bR2f0XG&D}=fH$z{uQ^C{&ic+&0bTaoLVvti!BvaL1rhT)C#dxpyO9>JR=W`wp2`Ee5a8vi~p|HZd|{oA(%vnN@Gd zt9s>vH{tiNBR~BgX&5?NFUC`2L7_4_mM_$EWBF>HZRr>rk%~Xyifv=dQvaTEYsE<} zHOYmi^@1}s6xOlkM!3Qad{* zOlhE6$qyC+&(%iqV{G^lUg-)CCv5B$M!dp`U^JBS)rm$v!O>S3sZ?rS!o8`K#z)I+ zHsuQ|CK{C_ds8VF^7Y(MwKB?HraEbyhrmSrH&`1h6mG}xN&0N4R2(ZMJU@dr#u=AflFq7>SPO#* zwlL!5R~Bn5mnI8jB!$U1A}3?#ZD;NirTFG#ag63!VN)oc%y1MEq&`|%>E%}!S*|=G z!B)odZ18q|zuKJ!D}C$5d?`1?r^#5NT@fv@$i?j`fquC zQeK~u*Z;`t)AIU^ygn&okNd7UAz-SXNauf6g*Q(kAuYoEN%me)D*I#*uj$?JT6^%}kGS@WPbRv(!- z;5GJ7WBPEZGBB~M(NoBe@s+z}4fb$gmGb?#|24J&YMFl(|C29?{eks~Eik6G$7;4( zPtq2_4`98*mKNpWTo1eR^s4MuN-Xm2$8^F^*a$0Xy~Q$92=2ztZFI9m!|`fy!v7`n zOk`cLA)ckG4m6j-?`6LfZSRA(z1F4h-?x*=|z40&km0`7^Nc)S@CJ2z82!!}G(|o1_oN zTPKn}1Xj+Rbgy{GsWJXge8y+NzMwJ|U(1pYXN?ek2Hq}_?rE@c=5*&4LXVd<#@EJY zd=2aoDq}g1L)M$~_-ed$BI&DO<;+PhW^07T<9&_zU*i*h0QL-(xH#_B)(eyT{kRoG z^1p|bGbi6GwpnPb=YA-5A>PL%lBvl=1ee=Gj0oO~w@aiu16H02bc3xy8r^rqr~5Y8 z7u1>Dq|3K78Fb%*w@akE6Rey)U9q)DqdO9xt_S-9qbs*W8FUBmc8PRzuyW>f=S4Pk zX^=095BWmaB~-}bjLeAnW)?mlZ=T4y0V`+DdZv8ltWmx>KINNWXHY56<}YzHAC?<) z`3AgUBH!y_<;?l^iVck#-Y4VZeFF9c6|cy{awDce_c6R(BHc$|<*7k;Twl!I^xW7r z^hQh~$r@U2fi>tZ#@i**T?8vIoMNaklh<^l}Pqo zuyW>P`&yf)HM}e1E|Kn~u<}%(Ygym8CqCV~VPBwh?duyq$J-^+y&YE0obL4Eo3(lSzxZTd zhW$V#+r#rNd&9(-voGLn5~)55D`!r%ul0_M2KNo;#V(k)WfI90%p&WyOg9;CjW zNTv`IXVOLOH)+qn+b7bV1}kSyyEW4zuLo<;-xeSGTVU6?&Gbk&O!hnBW)Ru$04rzC ze*ReGJ#7uT7a#fn>=P<V9w|3aTAEluY;8{XWkv0 z;-F!EB0lEFU{6pni)WAgbPHoPKZ3VPB>Oj5IdifLwDUPM$Qykmb_u?iNhDK(iw{O< z9WZC|BHREX@A&A7<2huc(X*dd%((>vz@KZ zrqKY`;sYLo{XqpRUQSoGn=^P6Z<|Qjhm|v@+}Ao8NP~Pue8``H-9d#co?Ep{HyK}w zH%(-GF|3?9<6i4}*xm5~{~Y!O6|mSXBJ4Kl-j26Rqb>GvGL7`Mjo1bD)=VOq0$a>!d7PSbpjs7Kg11Yg zyE&{p73f-afE^y6?jf)*sPni<*S-U68Qw0D?t!p!8@lSd6`c=46B3QSf$>twtLK7~ z!y?}~z_omJ3f1@cNppGNO9!$?r*T*K&!+ngjGn_P>=asdwCLFr!3RUd`5qI@6zu#e z>o{w?x8p&Qoj!lT4#wryMNX(|e)+;z@#g~9aior(`>D0lb#%NgzHQPtx+4j+m6EqQ_$w2h zzkr?p!+NsJ|333zaNyoeGCXYEo$+hb*yI()mEf1znNK$-Id5;q_XpyxI|k7NoD8G9~24sp<{*){kA_}DiuonV?3R|EfM;ASR28& zloR~$aelPOKDyHR%Py|=4;0J!D*JE+`|3(^PGSf2_>?oqT{}^zjIF5^hnb^>I!-$G zHpa{KT)9#X4x>-fS%bx)p@~N4?<%-bWMwK1ulH|l@A4nW5vLsFU;Eii1 zM%Ii~SOdvTxMEFaq0S%eaqUBCkb_7rf|tB11D)KAE+rn5Mk|9XtR~lka=u&}A5Ah< zm%Y{X{1E%RK$3$sNTUP6_xF+;OEvb@QObAmTqi?~?GmpQht{;dhm_pBTV1LQuSwEZ zCwujLc>U)nR-*^&KS#^!G4gt>ydEd7$II(-c|Ad1bMktkyyoR~Kwb;-Iw-H6ybj6h zu)L1QYf)Z(d0io|C3zi{*Rs4;;?Ue`K+{k1f|Ju<6#YoRT1T*mB( zxy11)-j(>PS?^{#k(OK| zIdigot;Gxt?^Yj+J#n{W64?406|dN;)iT{=ycym!k@3c`a^{S?gS8|L@B8E9Js9=` z6|acPdoOO4wjIAO5U3|p9fjvP*EaEg@ zd^h6sy?CocvcG_pGbcM!K0wgmPCq|(jkOMwNT$XTPxqToJ`BFE!W0@rzOTT_ne*)q zp5AD1cZ?6WKQXvs=JIDw2HEZLR*7Vn!pfPG?G?|>G`1(iXL}s%3u;srn`Y(nK7;Pj zc)LWpN5ION)1ASdS!!rM5+Cikup_8w#nD{BgI0s<*?6Nwt{;SzGv_*INIfjp_q4J&2-&+Y8Z*u-N-Z+u-H(}+>Id=z7>ovd+#|Qin>U{9ik_L=x-pMpI>MJwuMzLU}*`!BpzBH4e!%9)ex6}v$- zwp(5hyI|goNhDJ+i*+iwi`AgJG2Skb?gp@O=5)J*owyp?gX6P30QLknZ~6XVgY15I zt3#OQd@eteiRBzSjP84e*!a1O5W+ z4k}==yQ*cnd9QmV-ZYW%<*;(*jAzR2{~F=n#3y_&>#31_$-YSvoi?DL$WEW^}y=aj8<3rw_NhDJ| zi-Tpg4w#X8DQ*Cf_v>Nh%z5|lSC2Hx$Hk|7H0%oMR2C~6;*BX|E+2t6OJsW}teiR9 z?%=I24ehz{(Vh)^f{Io|Y5uO7LH2`qt3jbvX7!otz?0&2W%VC#Sr@^;HXb za>~4P&of&;KbRk@7gu^+x%|rEF7_IGrL^N<-4)L@8 zrsaX*O}is6$yrWTxz%-;sgqTH!X?&nvPx{R4KH6~F&m zrW3)_*pP23v0*d<&);z)h=J#?u(A<&9^evfPc?El)acSB_Cxi2e%jF{dsVCXHMa4u z(cj<`vF`@fV-k~5D4O&)=k(il#Vi>Y;HD7Az+6~4^D(f+-j#AaUo3l7!Z_F`{y5kR zb`doSypE59wRXoG3-83uA&!N2z{+jLfK0Xh-%gWuqkm*FwG}af@ht>l#)LemEKnyjXft8I=bE&I@3N>Oh z#R@ei$FYJP^|315(;~YM;`bSmo1BMP7qH_XtmCY)U&k}+Ivo@#;?G26uv+5CL#{qo zapXZR(Ke1Gbw*_8^AEugEbm}LcR`esn_@Py(_n&)u+8KAjy9D>c4j^4e3TaGElkcY@pOcgAefBy&V|w@``y^0h$L=06*|PkWZlZB)BD&&Mani$d zGXn<^YO+&6Q#*s%+ zyx`?l70ZK_Rg-UYHIdmKsIu8U+2umD%tSk%H;Os9Rw@R$F)MWjyzRWUnLY&Mw zOJ4irb+)|Dk=MEMI!|8b%j*JpT_~@Mn8HLsl09` zuba#37V^5Kye^T~*U9Tv^18LWzFuCpk=JeIb*a2=C$Ddi*X{WgKFRaH;s$dnJrFyV z^#r@mH?`^A8wRw)!G2w zHj#1;R-QVPjbwdMe99NX{&1sg%hBiKZ4)UsVCBpy&tMDQTByD`KHi&PM^N#Klk0+2 zdLu^PfHz9ydOfT>1-K6BT%U~3^$FM!AXm1oXK;NCZ5Z5~GR3rb6S!r%$#^l|G?DQlSb54YHp;90<1^kDb_aC^M;P0xtG)52iHzR`D^D55 zMsc+=KI0nf4kyO8+G-4Mn#gz*R?ePrYnO-?t3Mx~@fEN;Fvcy@%~<^zylEoiOJU{A z8P8ykWi`6@#HV{V>HyBXJ=G_e1R5B6o)6I8JBMBreb zmvo+b3iSfsDv|87uyW>PH*U9UO{4vWi(?nm+cJq{3hK@Hiepq{B8X(=^ujIL8QM7R?eJ$cd*A(V|`Y9)@Q(; zpt2T`o$pLFBKv80t3NRuIdif-e6O=M zX&;D>_I}tERJ7v69kE5*n6P|!;|{1(_D)cGsEpc69Q{XE%4l?Wk|< z^5SD2fc-(mEOve<+fB+jylo=o<6-5gL)myVabbMQ=fnPRqilON(ZJg#Qa%q>o;s9` zhZ8r&r+fqK4>!uTrxVxXZ4)V92P36= zcMxTmZZZBpM$&}mT;5kbtOzw+tBZ%DR!^)X+?+#v{)IjeW zAN1a^C#W-9taS00KBe>2GmLlPtrE%Z0V`)tc3$KaRt<42KH@RhB~-)#aktky%<)`oNNz&r&~jNcYL%z zhh0HMD^@kdtLO&X+wo?JY;T2?GiN)4y;!f2eK|ha7hp$F$%=g;!D#>n*JtrYiCq5! zD`(Die)Mbu4e_>@#xA3`W)jJi(TjNMjoNS0UV^tzq`f(;oH_08;G_wS@!|0q9|C)V zI*mo{<>zA<^LQEFDv|7guyPx+4#!%mlQG5lhz=6!5Z*tzp3*1};a#2X$(TJy)QhEJ zeNE(O%um4M(>k~s@9lUTQKzFZ$E9_VQ!^}QV}9Iq_^7inKguOiJ{z;q`IIy1f{x!v zkiYA%u#Y=b%K1_**rMc>yiu=QpUC?Q&Ysq_d}5jZJ=V>0*#F+0{qF-_WB>Sjuzy?T zzmxyDC;!#B|21|T{WAY5{%6nTU0wdygm+Rq*k!S;8(J8>mDv>YWS5`tZsq-6*2hyP zmikNf=we>-w-T4vi_5m+vK_xzN4ozxrV|;Xjg5G!wDrPFm^b295X0&ZVPzw%3i1vy zQH518wHzc=SpBeTM`T!?pYGY_eeFK2vhJtRF>4)glYT;-dh5R9ImBJ83s`w6$CQe- z|Kl{*5^Gb7GwqKX*ajvgyQz*c-wO7W6}G>S=|rPT=i>&p#M>sul+9peBc^Q3B~m=L zUVe0>bv%QXNe*N7#LOh`hrL2&EshbRB%=%%P+ilrJ>vXNt75wAyNhtp1 zr{jF@AXygZO44~_{?{M9YbXwr>a!#I~{3u9?|DW$K~Z!MWz4s$ZfhEKzevZD4s%yc49 zWZBR%-3%v};7t?5$wjcT5l$}T66rCPWkbtd8tFTkIWboreg->*N;+INv^rq&z702k z$opnkIdk5jvZ3WNjroi5nLh_RhRR$o8(N((xj&5?LFE1&!8d7I@TuPX|On~f_=_qR=!*qsZ`7PQE$RhB<#X0 z#%`qK@KHs=j$C3bMZ!JhRxS71X8fVytL!rJLw~*Cap{9+P3r<4D*BJG-!GqN9M$oG zxpYCtr@``f{bHMJ==tw)tYZ$(f0qe=v@28{>eRJ=@w`_Uu0_rfW<|_w>G6)lf8x6@ z(}|43hIpk{I$RDYwfTGiZbFi`zECpSMNT-6Om@p0!Dp>Zrc0>lt_oaM~wO=(q zSY*2^YLRgHW!4L9jM~HH0UcvOr_D3NE&Cz^)eXp%4^Y7<|#><6ZYYpX7kj=kT0~+;LjwL0%(jNKwKg z=q`D^n_uCNJ>4jfrqzzRoe?DkFKVsm^j#f{2fUA$2u*DhE& zd#)^0X8MSRvuVS___q5pK!v7xk?dnx2I^-fW4AwY z0I70ddoHn-av+Iy^QDAO(>I;aaY3f}!~TI%zOZ66Uv7Pa{J4%Jntzwxh_}Yem5M98 ziAFvF^^yGOX!tAYCnVBFS-I%g1R7v#am9jHn`l%L5MPlm*1T$Nz^m1~Qf|P zcwvRddXP(i0-IT-Tq`;qolpzo6OEAsq{qv(O0~{nUCkQ~UJ=fXdU^I}V>p$jifOe} z8y`((c&)5d2a2_3qVVMF)k~N8N3a4Yc(!t+ydEX5N6YIm@_MYi9w)EI%j^g=ES`D zKack){!^ZJF`Y<(-4Hi~S_jMPts#zt zL0CESkuXpCPAp()=r4_r{$kiARP^HD;E4Gq>j}JhBI^ra<;+eB}cUjqkGfd=G@3L7l^b zZ}Z8F!S}s*!$iLCft54o+t+%=q!B(PKH=4{JE(-knKLcZ%@{q7H%(+*g_SdByg)jt z`JhiD{gwEnzX&^pN?NRbYaK9oe-1Z*$osRfa^}37bGlyDNZ%Kq^siudP)SGTG<#fZ z#O+_=O%oa41uIV-#`>x7(>@ow@_G$+hZ|$d$EN>_H%(;x60Dp#<9RadiQNaRMQ)xj=JR%V^F-F$z{;7ko*Ui?0F>SPxcdc=H_^{#mHMAo~&%57LXydkDuG83;EIY_9N%$B-trjjq2-Jb5zZ0qL- z^X$t`E4{8<>)SFrMGuAlKX}+$#~k5}g;IWvSM7YZjrduA)AGRZT<~dTW_M(#tmRd- zHLk-7N|1M@&%-zj*!0w^a-<;oAwC#$Se13|XLL39P zz{;7Afi2Vv;ho39OYz6S^RSDk<3Jo*wbt&KW8oRx9O77b3RZ42796SwRfvcr;~=35 zk(z5qWFd0T^i+?Q-&hImmK+Vc%{mVJ{g_S!QDZZn znA-A`mZ%%xBXCQIvFK1(*@#8&bCpoBNQ|ynv1o@lR==dfq7I&nnks)k}G8elNP*G-rOH6?%(<}O{#grexfQ*>(1K3Gc#{O5C zP6UWN#96X3BFOjfc8L+>T3FeLAlJA`s0boPPOJ!WK^!Ys1UcR9LwgPfkn`{BwQkM3 z*ijj)yZG{i_N~4DvK~!FK6%}xzbV5<#{gAHoBzv`J5KJ z0G;%J7HhWnBFfH)HJdUCtn9PLnm(oz!J{v$s7{!-Q5)e#5ChL*SlI|Xi?~F3#jC!o zq8z8uKZqHI&0K^2{;+$f^sUP(sw?Ig*cUg2I0p8Hl`|g$wq+INJZ&7Ti9Zfj!Y-nY zgSN{msypUbsNv=i$HEw_+-58|R1vBW5lO~DLM^L2jqj*+Vj4JaP z=B@~p#ys&BtgMh3G#Rhey4X5++r(t@sw;mrn_m(9Q+rmsP(0{r%X*jitarryEml&> z?6|^n8{JiJXuMjS@J-h1haT0b9+<@YaSMpVw}+LD@*!>Fi`647FPWN$a_o4h< zoyd*DU6TYq{*8lp52|CGc!#Uc75SfXiM7;;$s9c1`P5h8f{rJGi=Xumc-3-cyi_Vq zG!E-nx1-YaJmmv(nCf7$S}cr|Ja&xl;gf9eFgv}RS$yOq%Z^owwHo`3U+B=*r`X^L z4sHF9ygn_j&&cbu{0bkI`ZxC1(mX7+uQhtK@@2-CW8a`mV-k~bgK|IfNhA@-@5#4J zH*1#HxErApT8TBwe_>^#W=WfI_kdT=Yj}5xk9UW}@XqA-B!Sf?**D^?63K1{D`!r& zuN6u)yt(*zkB8l1EeHK}v$tis$@mz&X(HnzVdcyj_wbyi@omKCdmiixDqrymsYu1r zeQM?C9K2Z~+cRP1%-PPAg@s1<`uKFOgPlR8+dObdR73{f@8As+`F;ylZo}8%R$r|a zh?@on33a=8i)#rXZx^Tarn-A~=3!pGS{Pv;1&Z7;z6cLe>j;~K<$_wvzDSj5SuS|a zbqJ}O#;3VN$~TRK_p4e?=y==M`epxkxtd?eKK#SZGiIO6$;&TNEb}-0N^ozJ_jf;g zTGs)uv48wM*uO3F-^u^nll{4zCGD>*>0!N!P(}|4ChIk<}V!l}gZG|^ajHFw_%0?s=tR2FjilkyDIY_8T`lRc8 zmXY)br*+q*t_!cT4`ZjY)x0h9)oOlCB$$pcBG_oP2h)Q)E_`%)ZeQaj=7fonQEQ2( zp6ftT@pOPoq#RF|HrThe3bh@E#><7^D~$P45H)x3R*$i-xdop#V*erRh|V!Jgm+@Z3&vvVr zP9$!~O{1y;_S{`#HKzZ4(+^RQ#6=*0;DmQI-5pTUhFa(@a|&Yb&>7MHCp(P`me zo3F+W2U{_T$#`yKhJ#&rH~>3nj+ZTQ1Bv5hGgvwE@v>kUFa5-=1>cDlxwAMd{&;vl z>=bH@5TDyHJ0P8^R*etFO&}6K09MYNcwal#r^jb~D(ns_Yw@v-u;~WnlkvuhlvlyZ zZ74e|SEv;aaj)wjp;kO{t_e-9cpT}p;^DgBF_Y~utkv`7dMy%@Zi2_Db&yTM(s7|> zU*wj>vea>d>j+Xy9oM@`DE!yCN=W?QcX~s`dBLmiusTalwR*9@wjrNAamK`{6Fy%m zeteQfz(E}s96GLdg)Hne1|D_wz8V7$bBWZKyYe0V#HMMJROi($_1pe|V!2QmFSET| z$+c0aRI7!GH$?fWylX!Sm6eoFzB|j0vyEx1lWrmSNP6dY#$Ed`!e(-1xSD6*N6#fT zo{Dk{Uve#sdV|H_yY(j~)`xPwJn98aB*%g`A^MS=r-DX;A(g17#;O(eR#(g zt`|#@1>t#L6AQxg<#mC)E|k|r^17b9t}m~P<#hvj-B4aPlGlypbrXJt7nY~7zn130 z@~md?*47YqVRpn^QrwYuCH`vi%Pe0;(sDz5IlXDQxj4{|w@kc=*dA6kZX!}A+)SMs z;e33;C&1pY7V&;N!cEIf!pGq)6A2#;D`!r41}j`NxF3rT_am?)sBnAv5@1km8MpuE z;*Aoyo((H!&b7C|D@G0N596c#KI{uB+CG6+RJsP;@8aze>3$nlo*HzGFGf5XpYFr3 zFL1i7BsAzggttqi`yi~GIo-b2osu?v*S{)uVYQG+Ovb|*Gwq6R^0iDi8PCI;CNiE4 zD`(EQSKO#-fZrV-@Sdu@2KEINu(&@GcAIpc!rLX%{THm9 zIo%*a2Mfa*-mShKyMEr1NhDK0w<0uO(KaIVW_ZIyz8k~Jne(01T$R@Vzdt_UgJEw_ z=dW0KZdz{6-~;fMiG=rqmD><@*n6V3uZU;Y4iakr!b7f4(B=MxhtfSMr?2(hH0^-z z^Wkx79b}EkK4`J|xin^O<61=dHcU!R9rb3! zH(^g%Vf&Xeod^|q(4w;4j45Bo+a|`8ufobkO!*R*NbeMHdC;Qrm&W=*W>3uLmVbi1 zLS-F3Xi@dRB>o570wVF>!pfNw4;{3qe5O&K{f*evXEKS&C<@IPt{=3hdSR09#;qWd zUl&$xL*60ztNKBt3kL~RKb+$_gk}BEo9@vGtfE4LX74poFIL`0HtkWhulyIngX z3z6kc@8LMVh_UX_P(AVjM$gq~@Uo7$#-SZIQDbFCU}q$cSynElGuyFhT@E5uW~{>{ zrb3x9gY{Uup?L$$M)prFS!@ft$coor%yc3+8e;!mfJrv0%80G;Mu}l#39M{{jm^14 zdSyhP_$Y))_b6sa%(CHd*d0{5;u&Pibd&KRc+*72%V6cq8P8K6P%t^46`%7NuuG_% z#Q|gy^G(*L;ms3Sp8_klVeOE^RT&_XfP;i8173|;2Aq&?88G*tVwoM5xMjXH>)D<0H z%#8lLKR@VK*msF18l{9A8pziRBi>-HGS0rOJ<%v6+#Gvrn?2tePPi5JcHQt$DbL*3 z`8B?%<55n7l@uEBio+9)O2R&4jf~{#)neeg;8?whM$%)PwaAWst4%cO33qMSD|^*^ za9Aq4=7K#Q;{}GTnsBot%%iNmN_CL^Ia&!0C!A=ECERGST&x%KrQ*q6u0CE^5zOgg z!cDFi$+K~jtL7`o$Bz|N_AQUbNYXuGt$4zDNjFs*&kf}Z^$O#ZbW~(b)heZxUh)%e zG{1r!Xt{DQSFV(EWp9`tbCmo*91X_d>Kr=@G54E*OG3J9laU^t5&2+I>+(hA0)Yad3d~(PhrjllVGS+WCLs5CCZobY6N7lpSQ)#`<9_8`L&CZP#J)LNHNqbb}&(LYK|6n&8!D+OQ%IjnD z`cHX%Twb4$*MG_DzvcBwd3{P=|0AzY%j+}p`mDS@C$G=T>kIPwqP)H&uP@8%EAskZ zdHtWfzACS;$!pg)ML*V&*J=C;AA0adCYR=+2Q%eek-q54tdF@Yw=I*v)}^g?(EhKO zMUOL7-{5Id`wZTP70z3ap$t;Ti0{M}zx7e7N_+j-bL74?csNHDl)f9&eP$^*&fR zd#-FnPUG75t=P3yFOx{7wh~-})lq}%47^by*J-eF=3E!*Yr7icx5bD27T7D)$tyPB z>pd`u?}S@GB)$WzJbux-UF&oO|M=?#pVv}P9n&tUXEMhHi|iV4FFx@B*eg`x;+9Do zZi3F?4HH2h4=ZOrwKuRn+t6rV7@zj}uxqHaH|9rAS-WAfZ{TJS*`Eh1XU=|o%L68j z{7v!6-vB#?N?vSpw{*hfem!mkk^6P9a^~C@8PE7M>QBU{{ut~QDs}PU2%`%o^G9$K zh|K>6D`(DpwtC2_!QSYa*cJL>CXq~qK92`?WxGjv5#BbD@_bl1bIRSp<86)azVZ3) z4SRw*nZ=?Qe<&}Vr}h-T3vZQ3b`MxNbFzJbkNB1X4R0+z-Z9u6RJ>wOam#db_KxCB z6B+xka`uc{dpR`5SHx%h8Q2{d8t#|l<9-2l4HdVzqqcU#WdAH~29f=LVCBr&&sICg zG~nBQJ9d@5HIqoP%2u|Ul$YRb6De;FD`!r5R&#@!#`y5~j1PgmL7mhhhBqxY2`|H2 zCK5gnR?eJoUu(~#hWL#5h);vvK}9U8?Uv~#<5TdaiHujn%9%5sAKk2~fxbFE=&N9# zP(d%^t0GbRP1;|<+b7cgBCMP}?dVovjrRTVY5yMf2}V0=ze)Q(ynQ0=U%|?m(_W}= z)Yf?SekXP{HiJndQ;mrS)_M<2;?r;oh{Rv}|Bv{r=0yuc*nImYalkz*{B~ej}`$`JA2`enCN_JP@C94)zE&elOtJI&8g3 z`gpu`BI#pb<;+RXi@Y47p*}x8>IUo*Dr&KfJ7T`c`aHaOBI|Qt<;+>HZ+SCEBYs1C z;@88Dp%NE+5Gm>t4u*VP!|;!D$<$`vv=T2epIKmR^hAHCTt% zq#v9X*co|g%yLr7>zVD??TYlhIw|FKTw*OJrKEP``wZ4&Epi+PvyuH%2dBLkc99jY zzbn&;;E)HW1(;-`Dr~$5Zj$Srha9fT0FeY7Bve${ z!nGr^4A?N;GGOLlwKB#|w_>N|o;`8K#Hka0Pw+~{-&rrPkYpWajiWmsLXcnMRcoCO zmf}C_SJp;ykfkK}t1Aap53*Xp-c81#G>iQM%NVN{L#y%bEg-&Oz)|h3HG-Rm_KI1xSRBdpntAs*+v8#kces4D`)DCOMsa@W3 zK54&?KlK}{u!BRrNUeC+B(XoXBYW(`{jj~AM#LSiEYyhjDVJyqWNCT}4Rb<0*Q$so zVOB=H_yp`K>s0seXF3rqjrqKa2pMl?lE?7IiJ9aPSlP%Vf8!GAab6?}u8_kt+M8Y% z`|e;PCNUXz2PSRtrlZjXllfxY1S0cAuyW?iH&6vvd+z(k=e{rO8tN<;`|qvYFxl^o zn?Yp%E?Bt@dxx@5RgNNQI7p~6;uhDyCCi8|r!vB|a-6=*t3^x4bK${i9chjCbSxh_ zm5$}Wv`9*_)Q)GnjvG}ee9%=wLH~fOgoIvpg6>>9Hdh&UjIJ_XJ4xshT4iL`b{Y-W zxN=aV;c6~173#+3D&vm&$%DUxIT=;sZ(v7RXSsh1(}_Tdt}-%YvT5}Y@?N}YVh;HQ ztZd|vJGn%9HDh#@(I7qjd$B9Vb(q9tRE#ER%POOd_p30K29ftGuyW?S%~eK&`Hu0K z_b0}@%_^gf`}VjIMD9yr!G44=|kwj^-XEhDkQ6%7c&MjS|Dghhb$SYwnf^E3ORHzDOtBz~M!TVrRM*27i_LLR2{|=@Tq0$h?@G0BP8exCD zZDLH>7gjc6%HCWey&7SmcxI#grLq1$W>3sgVGZmRDr@ojvEBod_)6RYBJmomoH_Bu z>S;||>R*jd{Y$WCsMI&&PnK=HFv))&w}MFi3Rt-fd57e$>Iac793)izu$5~^Wc~2A zbnAx=hrN0i`@AW8XB_M$f0n&cWNqP5)+sD(Sw|n`yKB&vXJ&lZ_NM8P6lN(b z9(HA<3X6xhMBBn5y^Iq8wD>^FJAK!q0F4@>mq}pNm~{;JFEGzV05vw@5y;*TGX~AT z?I6aWX|S>pgI;qTSt<=nmaYL$XHxtAJ-Zqi)1+a4F zl;^9$-ZGPKk5Bqm*e6ud;;g%<{U+_7;O!G>-v}$Wq3w{%RXHG1frEs)CE3fhBl4DH z%ieT1(~ss?TbDGue}Kj%>rk8YB~4~8bxCtw)&;DHmSalQ23=fYD%1w-%;RRqwF+T7 zn3R!0wt+omh3&7;bfOi4$RNsgGp1~Xw@r*GTf)jlOxcV}q*o`%B~9fojrEbto|x6b zVX#-Itiwy1ss|?V_v022i60CrXHGn{q^W$SQ9m<2_0wU`P^s%nnyMEj`BQN#h~!U( zmD`YaNdBsR5b44}Le&rdi&;PHo$iw6baqFxQ)Kz_W_Yk#N7|$>CvZa}$;q;uaFgpW zQYFI;Tw*Ge4BbJOwNUafOvfk|9)f*j1?=C;bRsTUE;m58|y7L&u+BWg~R_ zflH)UCdlOk3*Uu5j9nniV-i@|OywJ1POwv+jkistJQG%KL)js^s{|o}gM)-h5ZAj7 zS9yc^-JVo$FsB#wy|ahFL)1FHCOtuLLn8snk|3734kMKy4&)M3B0&UQ))GV=reh?C zlVBfN0sAL1od}QSdUG(Mj091}TP22$6|k}qI!3re>IuTa_ey3-%sa@-VSiBhh7$yz zjt1pV<82cuUji#=P_{uWLtSIj~#0<-m+(mFj3Ma>F?11~ejB2U%m^j?bSvzIV-Si=-S&2{4P{R8=WVI&v)`@|$G4_7PWV^X>EVLXV<#d59A-j4F5 zc<24rhs$OlZQm!TB8i7-|#`71P%?IQ% ze@8YE&Y4)|?Yub#g<6FA^C_K&{@`?qEOJNch`a@leJYfHM= zf4hqR$xjj8n*BAl)u!E1R1RlIT*}0)=aune$!4p$p_SJMFiT>VU;FXSAm_VVdGhH(6hfH&0~!X;?XP)^o!tTtj_teAK^yJwin-K7JLp z-Xwh|-a3)=&tT;#Ksr=VX{29`Px=+uBOvLJ^(N^T@z#l?pM#Y%C%wLdY<$BkMQyTDaKLI0SmgoJ)Wx~rkx2UTh{FS;Ch%Or8%uj3j~r{&O+ zFs>8%AG`Wok^d2wNPRuD(9uQ01sxYe#n1XjisfN1=Zy|{gM;i}bHRV6EChnBj1PEK zseQyG_h3aSH&|Rb(KvFFb=jSXa7J#jg)6}c7sXnwQckFarh2(lk}WKse=W_0 z*u}OfsTG6MZj4?1zs9>2e@XUNOeYd<8)A2@truod_+Q)#Vo~@KtZWp8X_KEl(h8Fr z?;Yavej}5ZjJrLPx7Y!pY&R)yhqq0nybY|JIptoFur$KQ$0vLY>g^Tet;8;@^OkvnQ@s(;D%=#V7t3*ee)uy$2@oKjRh< ziT@E+&YbxC=-rLRd;U$aYwtNsBAHrD>`{!`Z_=KHw@;+q11o1vd!c@>sqx+;KJT}~ zUcu(K-UE~PuDAt6;=91gZHPOpoU6rmu^Q(fq1Iu4;CjO-*J1ZccO7 zbKpp175@LU0ekA6e7EHX#N`ZeIa6HD<`?T|YYcW=Gs+k0#g+Mbk?q0jxZW80ZND&G zSRPqBXfDz>W>&o+uj;XFkMg71YqVk3xl>}8H5L>qqhqY`+*rPvAFk%dMx^3OuDF&3 z+|;(-%?bHK3qDuEEM>QQN=0^LU%n(edpYbr>zMFA!gM0UkFuYN52Ak> zZ+xx6XQHKi39KyLGqY5zv19S--l%lYMO-Pp?UwTUgCW0ZZ-!ZJn0Ya|zYM#E%3c5dV5l1= z`xkICi0q$*mD{ja1p{?@HTnj|OC@%sW)MIknFQDJ)ljUt_GsH5^QRNnI6e7yK9R9^ zBwrmg3XeUQE!fbtj=M%avBINeb|i;2s}5hKthaNws;48=;o+;?w5uS~?jzGFp3yj~ z*=;SB5J=$`$Ks9MA~P;%9+z%Pn~(#hWHQS6aOCU7b@`$ zv;*aveK4tCi`zh?ehsYLhPp%64^p#K@2&ssL9|GQsU7D-2zBH`Pv14k7J-{cZgp-AZAeb%DK?_nNB&bSYDk`<|cE7OSp zY0Tm`Ap(_bR;~X03U8JeE`A9s8{y(EE|FeoFh|^*+X&CNId)YrjY&*K1!xkU&k2W& zH`BsvFpaf;?OsjI|H8_db6%iU6>O|`iqCq7#8|JVEh)5_*KfoPAkORUVC6Qv9dfuT z14Ke_kWgj7*Ifs$ECcpRcRiuEHa<|VvU~bSC2$fvR;_8HVSgV@rTR{lK+CvD?y(dD zW!K@OBF+jfF%^n|SG}{`AcJcDzhhM z32`#)6)NlS;|A3OllUs!0wVD`teiRV(BlT>GmZM!;#2=J>=`O`{c(fpg-QMkxD`b5 zSHj9|$U9U4s*n)r!a+h65?i}=L>3Z{r@PKDr(PW|7rKIzMv8-8WU=8f))OpNS%+NX zz?hF6xP?svBiYGPGd$wzepNI4jY~|0nqh9Z>sm~ieJe`Gs2XN639P=d0`^~I4vTPU zh-1^j)|;`U8*iN$OV)*zjabsfCDN-K))UM5VUKCNcViY|v(e!FR@g68-r`o&?1M>t zXWRxN^*6)HnN#0TJ(*Yw`Jwpa3$Smf#gTMn zDI-4TI-FD)@mVf070QSitjAh5`58>f$R@YJF0z95uVp$B9F1NcQvyt~QMG~LX1q~i z0J#ZPHUh{ETq3=qp-&`SlkRiOkeIc?)37_JbmxY)FIX8ri8oDT`~<9=IpcY%L@+tO z?zY&Rw_p;JaSve5V)4a;i23Gx-V|@1$a*7KxeaTFY_19dkpvthR6%f=>!6hd!N1ad zgK~NynAB%aoH22#e2X*>k5X$WX>>m7)3qYtCP#9Rr6f4PbwH_-;5aTZ6-t8cpvziK za2Cu-&KUI^;tbeFR@D9&(~0nqUmNA1WUHzuI1O)=7(`Bim5m^>noFct6v)p}TlikX zEQwhaTn+n!$~XMAQ9I?U@V1GRzXB^~PC4|oQ48q@;*-7~_6e1={*FkmMijpmExL9ZIA4mSHK8kMXAt?^##dI5b) zqp~iNcr1m$#>`@@WR?R+6#^S@iK$Qs^tJk}RRiyWxyW9sYG4o8QC7768<|c7N<-X3 zwoEtgE8dPbO$;Bq!pcVY*o8}^R}w6c?+P^MpGJC=nG>@v@L{J=NsA5eS_e$t!?*!N z-h;4m=DgQeH{Go%qA|ZTKJ$xV$55GzuWVU5VRE0qjUaNr09J0p-66-TGC?E?2MJXs ztmoPhStk5D-7;Z%t*9OQ_y^VjEIwHWT4V2+6#_Rbl7}qC!Ear?t%`$RbBU=?9CQa= z)*{D$VH!qV@KQ$~UDVaJPFL{H@(I85fu8=OOfUjQE*EfOvU#;!@O;PSjaG><;~7}l zh#60DiS%j%xm;iYz1{8Tv@<|&!z8du**bGAe8bBHcFJ4fZ4)VP2`gt#Ika40A$??g z(ucu5p_0~@3+%MtkGD^xeK4%thPFczS9O5M2@Vpf4!FlPILSKT+v#phoIg;?7gmhs z%U!uuY}KH$Dza*D5j-j$|fF$#9|T z2va4)`CMWulne{B-fPvv_hD{EQu!|IE-QNf3rr`1rXlV%wGNo~9N)$bAjX<+!pcUh z`8t6Rey$`%Tm>`r7#~ z{8?=N^O(eBl#=GG-(1_lsCC601G8~ch+|+TtlVY{I1~!1))2|WK|<9U4cEaeYmGVS zzD>Dk)GM(v!z&Jt)VtW%IqTKp>PWe92t0tT(TDKmiDnf+FE^O&()6a~k*sDZIF`8% zGgWXL$R(yi!4a^F_Fqdrb(o!zd`^NLX2tKH$aErb8sd8cMi`2n50#L;}b|GER19cW2n0S!QPQ zKv9r~AY(L_1%!)oK@mk!1W_b{qWAzo5JeE=A&4Rff+!cR2*2v;nyIcw@1Cz}w|jp6 zarb(;e0A!4-+bp(b#*nIAgTuDXsw4a8B+(pz=I*`;HNNhj1C++2ibgtg~b6vHXnz% zPDC^xCnei_jHz~&bCs@Aw|bMqgnLl)vZ{`-!{K^rQpT;+G)u!Vmdyog-i5Se!_mqi znxWws*O<3vHSdBM6SI^jCKkbovXWldf#E2mh!Ycy&`o369Uq!#EW5$ThOz9zA(Cq_ z#EFSUx-_OwW8ru<7N@{Tp)wskG0~WS$@how0Em1a4{Lzcp{;rcnwP1LZSlB>>evQGj!}n0@saf_G$98F zS-*bdDsxf4u1a2j#oH`3=mb{<$r^MV zhiHZxG_Emk&0IbT^J19GdN@&5Y73nVM*{g;|_m(R8DqGnqUBY(1 zL_NwXHt$a&G=fv=k)=tP!~(_|Yat)mBy7zgnxRP;Tc5V(BFkV_jLNYT&Xbkc!d!-< za3Vg5P>Y|;L*z=Lcem`PdnR$Dy`d)`6N)GhA&T?vt$!@V4$89Ijv zk(p~2^BT;T(LB5Yr^-rs;VFirHV@&~_aecY-trPYIMG{PfRPPv`3r|gu7B8GZeT}} zrZGO}KJ*uAFg}YxU~M&(@$dx!>oiR6XW(HFx!)c}j^W;+D9E}J8i)ggtSdiv6|tx* z&n3I;WG|$57L_Gu23D(8YD4fsItxs3C(Cm4!>+QCMdM@+(F{d{y^!8n)V$-9FdK$< zd;-pqmC!7}>CjwHzY3GSPSs-Qf3IEE24HGx+@m zoDV9$>U-!mmcNFNO=S5iFmmcFEAOEjO#i{3>EFXSp)zg0hi+s0clh{3wtoX7$FS{C zyJh(gOMwG~EdM9EPDGUdJ(4|LwH3Q?K&k#S???T}DzVxM>uQpIVOXjeS6q7*v-2_u_*RZDMa2 z*|3SdI7D)#UtD8vvU@rU#Iy2u!Rer~8@j<2;0c6Z)AlrD^5M)ER;NUkxMP`~z-{Sq~Xcl#CkTQnHng+XAw zF_q!)5kVw)vjN-*ADqbZY#2Fpo+rt@b=$A`cz>=x2q%Tgb$AL>aCWw?h!<8o!b+? zFGj>oedzo-SAEHD;WHef8M=jS)X8f_<-0IzMp3y1&X$$T%aXKupB zC;H5dFtXt@H*kpL`iB|Pmesszyg$q0!Ww&n_ow0PP@2wJY89j?)(5MTdU@3ZG#pW*Y#*5 zaK+3li_#t0WUy{rh)b549XLcYl$r5z;+oa0ggG;;W(AxnEA53P3`b$57Cy|Bv76?y zKR!0mT=s*J4RhItLnK#TCWk9LnJ+nr`>x%VBHWkdQteUHRWYA^;U$Ke{0>o`5O3ku#5|6u*B0GskIYcvb5)+lV zYXxSD2T{(9X5wu)SytK$FEJd2m|FPUObOrgn1AEL6Fue)7}@Zce{qQ9`ibeXx+rPW zSYPbV`W_4dYqqJZhqs!>OvL1WJ{|~>|6O6^82%j!gsd^4kvKre8uPHLkVTCtC;QxV zM9@+w%hVoNuU4^npO)rVHjJ9_88}B)LJJ>b zI0_%)v@|D5j4Gduei|Q@XceD=kqxUjk3%F^D#U4N3%_@;NU%Q6;P-YoA5?y$r={&I ze-9s<$ntk!<#x-lm_uQe zS|v7&$6_LZD;l=A%E7Q~h4Q7V9LOPJU1ff9w!&^`sxziJO9AH0aF$LuQ&!pwCo&v` z6>%&^#%?~wXvfDUnoAZ&7KxGOvYJCA$FevUBlD$keL0H%jrF_zS-%U;43%~LSd5&7$^4yo6h!7X!^knrJ9GiEkqFC$ z1B7&(_q$F+EJ?nVY$GwUTJ9^hDSMV%{RZ_YtJG=-TNfnsJ08NwlyYQg5?WZaSW_*8 zBb$W(aLSsYNoeJB*4$$r%!g4k=E6y`Qd*eIa1=ts&SXfH7*?)3=HSB;?P3;;Y}myN z4v}1IAa*8g46kCLcy@=9Nn3W;rVEMa3aq~z{sid9NC$)aecNw*Jr^=p>nP7 zOvdniCLREh?{zS84BrklT($vWL2!VOZNUF|wgK};wzR}nq*&9MUs!!)OUr_D`p@d0 zUwC^~OH0@0!aMBGY5j$^xPP$a?3R|=$nH{SzN)kVKZJ#9RoO5;x(s7h>XD^E_<^gW zWP|X14iQU7g1ZQz|vO)N+t3io#9eaJ__s9Dze&X)@_35H4mQ_XY{Qi1*A?DKLLxva);l5S%Zo1PX^R z9EF=&_`q79f!RqMk4Hdsoe#puhU*-|A(HDPriptmurHV4eNtdbj+)715Nl_F+o zFkW%xK{gmKafsLkBe`lbMod~Wm#M!)X)@Z1Z5agChFO^|Y{_sGM#O3AI$L63xi7H| zJ}}WqCcwyslZ>7fJ4MOMv~7sIUAZ`tcUq945JTDlHD-c8ID3o;}BFpm0=fUd|0Aglwf4T zF1k5Ha^;|L2#TdjWB5823igXL7`_%x2$kXJGtST~44$vX2Pg7;6^xuZ&yi=GwqNr@ z{#-u*Cxyzj{){t*@B8ooh*u zuo}(?mE%c~-N!hlPsK+kGJO(^oI2B!<({LJ?T!9yUkqo3%69mSL7#!y=3j_MKxF)U z7&(S%}g3qR)&&Co1_Z^SdUw07YYm@o0`k?q1uaGtD`7yiI-6i#XrcqwTRCPtPG z!wdMxL{s?-jBJ?7pEyKv4Z}8J!%)wb#`CO4(ch)P^9%-oHP2L@!^1IZ{ALN+9v`2` z_I5CG>TGW(OKuF~NBA>-D4Z86`3gQV(NDevBO8A5KO7?Q zo}r#CjpyI9Xs}-1;Q4oOPN+Obdxm=aCfmQk$0xG=AdH+k+mW83o-vK_QNQ9^)5XrR$6T{`Wo#jheFrJ;kf59oCvK)S0 zN(tXA5ue3}CvshbkyGb-Te+EF=ljS0eE$$m3zhGw+FnBJ@B0UM2t>}m4=0f}^)HP90RAr`eQAa>~783ZG>)ed?Y?Jk>kT)4EqtGGB zen68LRF?h6@Ii?-@d%7;*u-x+MB-)NWOu^j-erF*gBXgY&SW=Q_N^SZ;zJWT9swh# z&T*vdn>_F9&+{@kCDdQBUiPhAFU5x^a=ipbj^Wy&X3Mf476AtcS@yr$ihVt~a<-}-L3*6c1KZQEDvaPJ_z|RN%!+y~Zt|!rAJR=8<`7NbCKDnP*F5EI zm@dOp{tai!%6Q=ghNG}j3tx$i1aGc5-oOVZI?KOcWW!nh;R+$0CDf3YvpnPz1#^~v zBzsI@Y&qAK?=6?wvfax5#PUB3jj~tqJ?}2Mm8+ucn*oF2p^ls@&Pb% z>MTcZjW?NI>(6ur&Iy%iAsd5NTnmzD3@%Ez zF(~J>9fVt9nOZegJIH$nfd!_N8%z1W*;O{O{C|r>G)4IjxX{Y~qc9srd3YGkk(JQG z-3&+JLzI86ATg>e{}17#60PC^7}>Cj`#1!-{9n3N%N8xce+XZ39Qf06q7SeTJ@QHK zK441*F%*5CNp!Riu+#kxOiGPN_ggTsFWufONBRH@(|h?dz2~qot@i zBge4qP{d^)5Y_|-2-ydG!&SDT4=5*l;$cMPjI#RK*)w37TFZuaAHV}s>W-xkD7wl< z_5r7Jh^FWRf+=f#KtIfe_+7|T4V&N`SqUwi&2SVx>e~Q;g2bq@57>y0O0#v|j%0Y(I~WPh|T!7&(S*huSU6e^?3}AY}RPa-E1M|9#1p|MA6au_aS2wPe_F zCFMZDqNh}2`u&0YEB23vf1U{cJQe==BmZO7TFv)B0Sl1D$HP;KPrVtajVb3ka^+mH zE!SUYoy|U5u{(=Ax*Qrj@=!~)No}Q`UUunYrZ-#8cCs&0bP2@WIASxj2mxOr9a^Js z9L$%Pb!&IN$_}b^i@AOP&YqR`!hQ@#AxxY#kQ1o)4DV4%s7K`I5RQ~w>mZIC$h2v^pTpvbHV{;`7c!0Hd>l>=mGbD3133ee_>bZd z5Q$$8Ba6bau92Rk8IK$}kU7&>|0avhll8B|nW3_-A32b-Fq!`<9tDy4>tN&<=4C%X z{cY98t?BFT&Q;lsewC_HLvXBu6yh$fGkTQ&i-qTs?JY*;*w-A?Q;ILMKrq=_HCOZf zs8bl3Ql9GlL_wCL7hUr$>(29G=2sor(z4*3{8_rVFFG93M=Qw-1V#Rn(yyf=)TI?s`hI@!2B-Jk0&I4M-F^^ZEm@SVd0Ao9Hi zMvmdzp@s(qI9%d{1;GJAwgJz%mL<^!+@0(j3sctQtLyR=b|G^)-`Q1d$yB=X9qJ>8 z8(`sDRaZOC^XP$yGz?V4snjG(lW@JOtYnk$We(8{+Y5EBq8ZRyhWlZzjDm76oH8rj zh3_*Qg`V0pek+fSMiGQ;AbySqK{T4XVPwN-?&1*1H4rnyi;OIZ)7bw%7MN!{@xO3- zsO-;<+{t8_in;jwCmsq>1Fyo!scT?IdC8F_d72J(`=hrGc3}`hv2ZY5U}vs_0jFbX zVJAEsq84Vu$T3=Q=o)0>5f&K-2-$dC<0@*=c-)fg5y!3CO6sTSJ7CdToyYqQrywq+ zZduxjHdoQew&Eikq8ZwXk!;4Afm{T0A$}Bc=ivf4MOHcseGEsTL)_sM&?E+xZNs_v zphTNE8%8#4;w%o4T-zY7ZZz5bE(^r7O}GV42bJCE9Zpt`Z^DNra(p9V<8+_`ghyTQ zlopmS9EA|^*de4!3@gk3{`jy&yVws#Htb>_4v}2>7mpom43}9bo((_=P6(CZ=wpW% zp1bkEi9F|F*8y@c&aHWSR8tZJ(r>G`;UM_3O~DMFU6;BnXV z%dX&24$%xP??{pJw%Ak!({&iJPsoJ$HB-k>^l^H**}D(!vR9}4-dPVm*^iZPWI`+ z=zOIkUt|Zrm7RnuVaZzcRy)+Qb!Y^qlqXBuaJj2|WZTfsA)29W7+asVRzmK8Sut9M z+u=M}i7kAM;V7Jl&qdcGH?8A)_{c=-_zsM0SjV?HL~`xIHeso)XG`Px1r`m~xEnnG z1+zdx{|O(T$o3y$@Nndq0BHDrrl5Gpdi=(qG znf0ZzvU4!`In<%7a;qKTxpPoI+Z)8E6eCN2Fp}wb5((a1UhIhvPV|w5FtXtz3phk_eZscty9`X{8ry4F zK%Tuq22Kl=?XY$jQ!qLIFdhPt^OIrZ)H&Z?K5vNpP&D2@>(6@)P7Rg!8QSB9$TUpu zFT%qha(@Ag9K*ds(U*NgSTr0UWZy8xbt0l~_*t@j!^qtF-kv2&!|*FM1I(tZTJt`% z7)GYlBulICOV@nMR^b;Mq8VC+Rz7FVK3;|SFq(vy;UrlpEj+<+6hi8EC2$dmVdXZ$ zi}_4NwID_Gt3 zAcp7P;)4@;{xyu8I?s_dz{Yj!U%a^oMhBcJE4hUe7>>eu;2FOBQVSUjE$!X^~z{sgH9=UQ^=1gP# zC;qJe2+j}9_YmJ0_6*)J@2orvfc{*&y}gR!hL z%(l0)ZKA!Dy@M^EM~%v=H~)4)hNl!JOS|xnYvyIU@D_(?j&`9jam`G2g_$whg`FA1 zP^>#9F&u@Jdb`kw-L#M$@v(^(vIC54Sjcn^k$k(*$d|_TaV#FscHskXR;)kdg2}bg zE;MFfGJX^u0g>^;VdT^qkG2bqoN26o!k_hz!I`15ZnO)HS(wakz@s2CzZOQ0VcwzE z%XT3w7Y-1zU3k;AXo+@Vr(|Dk91(PfN~3TmELN-1yubO#15=8TrA656DjV4%+{PiA zp+y)KOj)yzKf-Jn&B2p!j;w?h?q@g(AL5&joG3A>JZSJZJ}S{F9)*z&t9Y10B-a** zZ$4W1-TJTI4Z%1DF%-?8$#3+Vk9L+v<6{$99tk6-&T{0Nj~1ri=g;(e;ha!^$@(`R z?QHLjk56QKFBmz7ZHL+|%YRr393W)*ztz>8MEU>y2=>*&xK9Md8rJ;6>X@$z724wd z!Itd%h_$WQZh=z$&xBQKm6-Rv$U$66v9T2Yb*`e3#lOlSViTU=H<^Ot9$M}H0?dW@ zQOH*ju7p!$rL%Am!%^rE_aX;0i9u!QzZ@TwXcPS~vSAaOI7I9($>E1|_+cJwsL$oJ~WZzyI|zhIgZ?mZ1ViS{yhH^P6?G~{a$1% z*RSHk6S;mFMvmdyp=Qgn9~J=z2wC>eaGi)K`>T^(^|!X?I`=AP+m+J)o)=IO+}Yc0UZFehS;vIRI1PLq|^!b*mtP$F(D zsM93|mTkZ)d|;w&919~GwsACvNUjYKHx}4gzJLYe*$SKsr-aIK^u~f%uFuAYCvtrj zjGQ{xksAx_eBa{F_f2qGsC?@;7Q}LXBOU^g^BZ8~7|tDPx@-%=;@|)w+k!=|6A^8} zuF19qV_5qao*hscgMYADVD@CyTJ12;>k4FaN*%Ja27h?*k*J&i52~NkJUvC4bJl;lxlm4?nJI znS{xE9uI=Zdk2gh!@EO`mu*5=C>$VUoA6iHawXb?U6O4R#)%6lS~A+bM&E=bYt@_g z8N>R88H8(%zV50a*(rRLLo`FDP``1C@uC%wU&G881>{$7rmW-^?qE1-s}MeBj*uqC zmRkwG#K$Ij$S+`I!$W?`A(HDA#48ChUmDkMvv@q4g@40Yp>iEPV<=}}R*g6C2#AdT z3r0?z@yHoNnKO;`J^tp+`g{g46pI1#7p|W%l(R6I-xZI7$o$SQat!kh#a{LcVYzUC zkp04St`Zjg!oQO37q((ABPbgR1z4+Ad+|PG5X7aFBFk1nr>kgWgV4?)nxR1mu9nh# z<1;W9;zuDj5k3v4$Vz8n1H)115Qhu`n#7>8CHNFRDA6X)gOLrJIEOE%KqEQ-dr$}eaA>|!~GNUr>gdkk$1uVtZlHUJekAykH=7Z}Cx+=~xRUkM|}@a<5;Wg8F{1P2J&2F!Auh-d>Qj!yIygVxS+E?dp1 zUqE<<%>lC|tIoX78rEY|DvzZVc*-^BvK9CPhiHaYV2qfx)(nh%8RbO$Kx8wpC4;~^ zCM&IlS6QwUO2k>iI$dI5*$%t|^HU?*##=D5VHS;JV)PsT$aa(*I=9K*Ro zO_yy!SR5Q6WLxliSECYb!Pd#P1*40(&TKWmR{f^(7h$zprRM!jg&P@;!io5%ay@eMLBVExWTJK41|u8R zaVv*NZl^$eQ@NfkjpvtHG+0+|@cbg26DrTqZz|X0H`#t3AD_tfb1-u1Y)8JST+f)s z_{_h1Gd_($3`Ngx{<8IND%a;=vOWcmfynw~7&(S@huSXNgRn$6K*;vsQdjwk_F#u( zA0CWq&#%q5tIfeFuvo3$Qd{Zy9)bu>DMOal;6tv`k*&e;9HJRogVEunHTyUVX2d8M zXTn*sl3K_!9EFkEIQ|(mL6#U-?ij4Y$0b@u6-G8J;|vawTwAbpczWN;@eM2%&!*sd zI3rY!CvlFW(VNBL%lPO-rmumKQ)hazJhN|Q`w@S(e+y@Y%652oRG)##_^ZUV zMvh_Jp_a>bAS??G5V9TkpzB0LJ1{%hc3?zXsnVq!C7AjOYD-p?d0$h=15*l*r4`tg z1&j5_LN>A$*oH$iLn|;Un6lOg>;tnQCMb6Z-UH{zN@!tMhNJKyt|{b1iBV-6@NRrm zqE);LMmDTs5r;^w4G`B9TKMf?k$5%%ZE!xQ{6?=Sw6pvXd~71ir@_dnvmCjm(8Ba3 z{!D)k&Iy%i{hC5M+n>S5C$jx%7&(S*huSU6e^?3}AY}QU;5rde{=b;)8w9OA`C`7O zuSe+s9%6IAJjp6E?=uAT*p#AUX#yT_&ADs>?&A>6&;*PTv)1~6f5DuHABgM&{sE`S zN^9Yd3`e0voFS;wB?gwQz~AwKiMH`K7}>CmzjBD=S^;r}z|Qi{ucE&^gXJ9=1lAE# zS&p6|h~;_*e0U<)(_!S)xsIG6u=D)^f4+}`(?aE2KSL19`Qdm7M9vR^kz+V_sOhpT z2#bRQglr4$aWyK@7IY>1t)mg_O%nAhM;l?KT4mtQ^Xcb?DkqxW3jzc8Z3W!|+ z3%^gYNU#pv;P-JjA5?y$y8?EWAH~NevivZNoI1;qT>%Tz}-$3$0xGAC5#-ywnOcfZ&2x3mnWLnxPjMFDI^b1U)b_M#U(=nX-~wIGN!ntjKR22BHc` z6JyK1pc5aP=ppSevf&|F4v}16Q2#V?_#-s$oVt?5J6~%0~$E;4E25ElgoJ3M1l7p&(0)E8By)__##Nm;)mlmNAP%B-b8@ zGlf=;Ph_!pwg#)`{@@4Ez`ts#Rs)PY-xtO5w4z z0zY(>jcf&ez#*EU6&MvvS!)EIgV_+j3)u)f1Lw#}XyMlkN8v*}J>W!%QDqzO6h11^ zD*gZ?8&>gq4v}0NAf6sr_?`Su?an<6{$99s?t%&T{1GfraV) z{h8hm&Iy%i{po?7?S1g^iEO_IMvh_Ip?1siAC>|K2wDEW?`lqBH=rxo-GHsS+tl-f zABR zFYuv>9RCzXPMzb(t;FW9_}~6KzX7L&%Cmkev6bt8;lmTT{s)X4!?i=rmSsOI0uB(e z?Dx4&M3nt?$*%gh6W^X_$#myBsx6sHSH7dF>;mljufg2u(yd#zXbJvvT7TiG1Nomn z@;_GX)jsHX-$4Cq89~4zUZo&e`h#U`4%os-s7v+-OF2X{^apjyIAdV~w07aNK`GOj z64RCK!YOdZtYjAsXE+KwweT7f3yC5I**$y+kAdhm$HT~m+kB8iB-cI62;b^A^QLkC zX%?4fGw~@nJ5=sxMeZjsXJYmi=i!kM6>tuWoVo&L%QyYa+-WNKp1%sd180b;f}OYu z2AYkjgm2@~5S8#v7&%4>4sC<%Ji_wg03kb%C9V?@oyVADJCFLQxR%U%?YoJuvx#69 zW>sG82+u~NejFx(Lp`{jHpdSg|^pS1x!HGVy4UBB~$OI0NTu-rW<15Adh$qvz#`YmBAnccDuze7m z7Ao7}n{LJwOwJF$Lm+a#97ax^^X+Bbjr>qF-YfpR_rj^6@;*arA0pE*x$nWlAaY-T zkz=@bDEhK*2#baTgzOt$axGn=Z#W>?zF~AvUw1X%+r2^ArMMYZtW|E_HzhZMQ!10C zVfdD-d}PD$4Gz%^4a3;_v^5`j7-q$&9}mHKvJzXki{U7oh?|n@k(<`>06sF&I_`s! z4ePjvLnPNKh?|n@+0uC4@_)Vigm>VaPl^_!CGb1+$7fX6^&eIAS)!@5Ilm+e7VA{-!Od+;?^`HJ>nVY25K z1o0^q$l9Qjsi;!fq^BteFQ^e8{GQ1o@$3oK!TF%_8-4wO{~QgLtN7SNmd}8ZQ)fBy`h(?{e7!%@Uxsr+WmIH=MB&eD0+=CLHRfIZ zd0=c@t$r{4QkqAH^WB7RgFz;a@CK3LlNPADM!T z!mt%SD$y!hU}VE8{u6SZ*r%8qZ$BFRzQ>>6cf;}h9F1xAix+o5*L@*kE02MAgIpKvWmqWsTG_U^>- z;zVsrCRZr~~o(G1x z_tWt(h}=(wkz=@bDEhK*2#baTgzOuxa22uW8+J>!Z`dkV?of6OR>NYoI*j+N2|-*+ zJ+ib3r@D$pwh1S3h-PRLMzR@e#&HhJg;6j*4yVXUXQ7ATD0GNh69SsVpz?{qNAW?4 zHnAQ?Hf*AgLnPN0h+7j(cE8C2@oWda4yS|4ZuHg!E5~2OhbD4-9gLhh$B|nTOr9V2 z=lM}MB~+gETNA8YKa3AgD0760WhA7X}bZ(v_I zNmfb=3mA?}5W%#f}yI2Y%8+NgTLnK%JCp6ygTkky)_uyWWHcK;(NP zj2y$aLk*X0Kv)nQAY>ab$#o*44ftEKZGe2&K!0lRJ2nx_o2+8?Q*s8<*Sv>86~8a_DDM_z%E z4Ig=lLnPN9Xzv=BY|ncO{UsV~&t(u;vrJ_>`qUu$Q#ClBgNH!md=`wHI_Ht629cy` zzw%Z7ydMjvhRVDC)F3hq^Y?x<9tM&7BVgnh?j4H0>>I+O;Q%4~hWlNOOY{wkl6`70 zBHxqkRCW*k3s$RDYTkzpd0SsLQK)ff1yk0%<5rjrqh{O;=g3NE z;Tndc@F5Nxa-xhf@hyB*qE&nYMmDVCYaAlE)<7IKwD9{3iv;V=4St`3^Fie|df3p; z@*nWAi7fvfMoyjO$YDbZ(-Z&W&GdK%F%;dO`AgOh8`{|(gO5*SdlZZu!?r{1mgPSz z1r89h{9oiMTT%Y6N%o3@tvcJ(Gls{&Dz%!4_o0CxE~VI5ivN+WqLIb_Fb>fS#eXE5 zu~z%ffVnVgLlI7qmCnLx3`e0u92y8{5`)U82B+hL5^bUjMmB6B$03p{{o>Go$?g|f zAfA=~zu|OH*^M3=uyXu)d}t!am%_-Ya~wG|VDkJ+f1ZBxB-bBI2_MWWDbpA~g@xqVDSQY{43+U|{E4$=5+?7* z<3SL4{~(N}kf6tb`UGW;hBT;^_e=N{lME5T3*D zFUQ9xvb`^i9K*Il?Uv;~ECmh_vi#rSYEGj3-YvH|!QhiHZdpq0;A>j18U`7kQPwQ!QGlomEI9EA|^?mhm6Y95Nh!B-RWa$jv$HK;zMM6umGk7nDXok*U z8+Gzpi;#sGG789QI9pbd3r8~?g_&Bov{2(WcNR~@$0vHqNieeEDJO7<~HpG|28-~RQAIU zbH~lZRKTrxBt!+=3?s)Vz@ZtC{X|$s93W&rvA63)L_hKIWVaP&_7y9+YD=a)*O6r( zSZvAk<%_|8t#0VeDVq)d$L1AvvAqv&X*sRGuq^zuPx$A3;h*LFk5z=VRkq%uJzLFY zf+6?Juidb?qp#Rj&6kSV?#01>ZT!Q&;Qpf5YMr}+v*O4pdify_6LhJ07 zmcsvP+zdX4P-L}9ZKa;xY+E(cn=NNM%h}#8f%s337~6LwSBPfBCO43$!pI_5 zW4iN|YKG;jM`UYTSEO-k`ntPw)l2}WNKSgx;F%Xrd2nN5uR8t?3PYrbDdsa(J*XF`I z><_c*#IF0EuKsu%Nzkn5JeV#a{NVYMW-Njxi@6NSkDy0tIAFa)|vH!Lqu~EpMyZIp-WWw}=SQxjNZYxCLo`7P zG;4rFXx8&*m@vb7o`o}Kx1NU>j>1xH4quWFFd5T+p2mYA+Rqa(vSB}uxk5<$2{q|w5WN<$Vxa#b`x33a1=ts->gx|4pi+=59m12YRLBnDaSjpNAtYBsrrC3#bqpi6LTNJU$rcO(YpbkG z7hYkRQwXZfXJw-s17*wt_K7tQQw29MTWWy#-;Sk9c32{Az$?hdA5UhL~?0ybT2bJCE^%Pc) zKZ6fVq}a%;k!Yi1m0IonP7f-oCGmh_(EY?2EKaOn7P^rJvOR~0HIM}N6UQ~? zt$D`*FdK$X-xO9 za6A_n1vn{Gro$?sO~B;46AysMcRP%nI^R>|OIvZAU+K^J<#1xCoQGE#S|(xg-j4@C zc?9!DMqL8CY&oPuZ8Csj@l`N zPcD@3O&56`AD-wUuffQMi@f3rAzdWYk(Y}+=o1B7WBfSbEsJVzAG-#FSxI(nHs5W$ zmGQn&Lt`W>-PRhteJr*}Xo_Yndlv6y;d(AP_T~^x;3bn8HOlNYJ6R1=W7x^5aJuYv zas)|J0mve|%*GO=qVkDcf<`h4I88DpU4md@2r}zfLQRol{ zp8}f1pySvf;qZmY+wnn(=I}ij*)WIiaERnuOL6eYWcMW&2=@Cj*nI&`2bJCE!6z%n zf5C?)a{MP4IdzUB2cJxyXS90rygh@!+9N8@`oSkF*W2O46SV$7Af0~;1~1^dh1Q(lQu+lV#MC4RF$|d>6VHj@m7RFId>;VKxwJ@i>TvQ-P5U z!|8Q}kcJZ~%gb<%^@)NR&Oegfub5EjWp^mGWIEVIQl+x;SadU+3DyT$MOQn}YBGae zAi?9RhoxxNvf#MQHR;k+Zsib7U@BWjXRcYvlQ1QQl{^lo%F1ftUWTL4Qk%rLD5BAu z2J$FAI?+HLhLH^edB_z)8c3)jF9W&RCkkdD_b1!2ObKqtYsvJMOFgA3`(Lubu^I`jTM4492U(9%k*~#7X0W)i?p{bry2|z(q6u7u)1)OpGnWHknhbMU z4rk16E(;ls!cHxGG;3o~1Tn6$%dsyW1kq!b!N`WkEOmvD9usQH%VW0liGq2|em?< ztNzGlFcjY5eRUO&Owp*N8F|t*-_kiA=Mb^Zk>E3xR?dcI8Y9M_d>E#&1%tpkHoIxO z!ZM{0Qh%e2QzeF#9mm@+H{^RKU}VEC-UwMw?4s5B8)ZSNG=`V>GrV}%7*^gWv-7+M zJ~*)~%!iRv=Q;XDnT6}s{#>65Cx!ZJHr^<+^L-K?0Fmz#VB{FS9cs921Hyvf03n~R zJnCvtK@_YF_)xO1fQ%{jv3JQjd;8QKiZ8%owJNQ)+`5byY^#&S6o#af97_*yrK@UW z4{$k$i0uKAdv-FmK5MN;{0OE({4(SP+;_lfva(tD2E$P(sZHQpob|}fb;IrW$V9{V z9*k@l#&=vHq+x{W@iL5lpD37NoRX|z%;_!ji~Y0R-RxNB+70y$PWua~@36@Y#gfA9 z&TSrQhD90#DmFQ(FQ>lcN{h6XH#tNTSj(&d5}~=x&SO!+47b^lK@7#3V{3+^x=ncJ z_5hPH4QK~E7@`49hmj2fn(7K64Jg!@mjS)*s&vt@d?DG5i%IndwCwvsEtxj<>sFqv zWLZv!!f~vd80^r|z_4Z}5_g>z(gjfWVH!bfckU;S{R46Aq=AC+hoPr%5ARXoNal3Ux3 z4__O%@Vo6e^w(zayA6XFihk4NcOvIk#%{Kk6Y#N#ERTheQ)hV_`J%Xm=>zG$u+dldL_Yxw*s8vmGvEb4(q<7|YflqE}>@G)0;$u?mFhlp(xlB*>R z%50g?x`%6F%8crAHJmyt>xGRBN1>^<6R$1<@+zW{3y`buXowDU1&nMs&}FU=(t$#i zc{$KppD5S@#JPb2);ME%Vc5uPGt zi{m`$%7S#9$2mk3I8I1Wogrbmn$wIJk5Xhf%@zz|DEin}Sl$$RYSX#XSa~!Y=53fb z^3e?#*>IRQTp^^xgsSp#m`8o0U=H(kvJNxRW-XVtv~1B5{O2t3!Rmux0bA=_&ARO| zsKIFoTp^^Rgi7*qlzn}oV2<)Y!j8fZjkE<9`?QtHIdz$I9h=KgG%G8dnw8)v z0t-yUrO4INrCjTpcj+TnbBHGJk%`LGH5>T_Op0M6KZSE;w~_BK9EF!!_-elrzUd-A z#)l`m$PZy;!$p4J3L#x2)RC8qT;&r5bCJ`M-Fw+ieYM}R?rEJcG*)t`la)l@0Vl3{ zMzDaf7G6k6`pFg?q6z#Ypl9GU&+afihN_%!a1QbZ9LSqvi&qZK9TJwVB{FK9cs5M|6wU`fRGP$KjJ!(APTmycqG{qqQNax zkq0XLxVrhK{H|N0CS}!K&3-hUb_qwcJ!N4M-b(hNJciGmM3XWKx778;BKn7(}z#A4WFJW@K<2Yb7exVL(bt4&EPZE6lgwk15A?P zGuOj8v+`WHjN#aP#ySmiq4H%s45H6m10x$g^F>z(=`*3OynN>4K2b2AS&(c~vu(9h z&9YbSV!!?PS2mxaa2UrADFo3WAAkI_YxSqsIGJ_m_J(8t&D7@tZPTfmAOc|v(gH;*y!wZMG>O#8AN)FKkF4LgP%!B4PMVKzb zZ%&63XZM>^7>?>UJF3TC8_H{NYB*099t+WVaxk*tJZoGbr1OLd^KzaQK2b2|*?x3O z3oh~bh1Ey4v@AHM|E&J`g|}z5v~+DQyu<#S)?a9g`v+UjZfU7a<~ua?7kSN_mTzR! z84AB~>t%v13Gpgu7@8tr%LAJmT(d7-=6Vi+Q{ceBl{>|7)}Th2z2+?s!qgbvazC6d zySMy+;V9IIk3t#z8IE!<9s$u&ehwoWj&ipvgmjcpOjPPM)^d+4CAZGE`Da~@7=VO zdV0Ha>ur}RpTVX!6z#}~*5wcFQIY!gh6tAUz^Ld-jkK53IYblK%d7zsp*c=JOq=02 zo8ZjZ9p`L@qdHD_m(c)|F->SA9t_chE{2f}6S~k9LYh#hF)tJ9@`-|((5}fIR2vzb z2ir?IsrDN-gQ4&m>-|NMqiB?qYI_a3zw)4KzNNF=&mm%+CBdU=t(*mS`6*!N`VPyucxnJ7-Y8ggN-VX$;Sug#O|T zhUYK{tbeC6tX#s(&BEY$7CtzU=NT|^>O4m;VYYC6tUuRB!%3lXZCt`^=lcje03zRq z!pJdvJJfL5280E{0YV;FyVupAf+$!U@Xch`B9qzu%j`1M3cE{nZ8qPXUDKUYdVXW{KWI}>bCr>73NGRhu}wj8bt9lgnY~s#ZicBbipRI$bXnOge39X( z?LqixSD%5ou=oZZ0nt&u1|u7e@)cJI=_sL^yd32MpD384EKl}S+Q@9NQ!|lQ*$kRu zVZkF)glgFlec3hN(nDV45V0PT=)xkHv*sMzO-A`JoMRG$7>c&Dh2bcK)W7b+sS?A= zg~itRutd8U2O}GHF`7dpS0L&O3k$;svQV&JoWbz>;e^<0gUPV6u(0#|K74Q@&+mni zQ|CFlu&{7l^ym6?I4M-FjfI7s?=Cz5BHuX}IfieC8ZO&_upl@<$c4r8u4PFqEcQrt ze{p7SuH44%8)i>NE5Wsfv4=-*gyn11UhOFB6OO^|HWX3vAS0(J2VH2~;3_NGBwWuS zVw;5I>d5q%Bxqg3gD_D>O}QV=nw9Iq4;YTxHSEB*BV#6FE<5hU10nj&&tYW4Z|-)5 zkbV=OlBcC1Kt*)cxL_AvOnFzivfvV}2mTeKIlimtZ5lfh&w{PmY0C`GZB zg~xanDArR8=}1o*!y%f$Qy3lfd22SZ7fgp?BYVP$vNBqj&2SV_YT+B&GIrBB7UE+Q zonrxvY&gd}R|x4Gp@O`eW0X%6%sFmOb_+Ck50o84FLm%YcZ092ux_Q)uI_`L!RCZ5 zsH~E!x!r@xj}@{2#X;pTJVm({J1M%-AnoLI4$%a5GS!v=%~<+jiVS1f1gFf(a^Y-- zqtGMnLAA}ow3v-}6hw=;7)CZM=0aBpX)&Ryyey{6CkkdUlap;ucF<3Jb##}qf!$O$ z^r}Ad8#b|_@R{SS&5Fx;FCHrKwAX{Kv`EXjpF=c(<;+wMNJY}1`OfPwWrpv(2ItN0 zJI^p2)pus|by4h8O!IjK4~1wxFTu!$`Mlr?Ak|btpS8*MH(O=bsMnbWM`lS9NhN`en#MlvQe^Ee6S!Z42$;1t=-<6wrP z&`}#5p7CNdi9yFTPIw)M4@$I&55UNVO&rA`lG{KVC%)5UuzNlW1gqu-yPt&9L1lMq z&Tb=gljBd|LlZgv7>t}c#}gx8Xfk-d*`Mcc!6~8g9NuxPgl}^F4SaYa*I$E?W4Lyx z*|O}1MZf_R`wrD_5sWkea&GmHeO{j!tBYax!N&9w%7<`RH~4rDR|kH z3AxO8kwe5b1206KcxKW1e?aw(ywI$u2EMWZO#W+F}(;<4{bEd~6L35mbm?*<>Ho;l5a$Pu^;i!%i9xjcUi0L;Q@j!@vb1{r;_|1i`5Ylf# zZF%`kmroSTZ+@2S6<;G(WGmV^4K{(Ov1~eo-#vIq_~+8_&*kBtEBGI)*lLIIt<(14 zU`AVawo=Je_Ei2$Td7#h=8L&9zceHIj}|xn(c(2hbc$r_n;o?=z3VyxA~Z-Kbn;W+ROf)g4~ISj(yfC&@x zZtc!jbLDKenC-vd{8@=FJi~Al%4&=GPU-*@FIHzKe%gOxK!sLzwPoQScxVIq&WjD? zzjI^ZG;$1_ zBC1A~!5RtYXbR*=JVv5G4ug?J0uN>XV)!FVS{a6curs+<1Nk@$(Ni2Bh0{Y72W}vZ zX`1?2kB3RrM<0xwx<0nooFluYEt6;0Gb*nXecfLhUxiac)y8{K<7iA#Bwv=6>+m3n z%D5IrPF)#GG-b50);yD~W=_v-$h38_CY`OQ<8j?r-HS;i>G^%Ef zMKv?n1{tSlu}}IHDpDFueJ#YNLDbg*7&&!)?QGRoso2IUUtclbu|e~ujK7RN3}=a2<_>g|QDnBJ zT298JC935_7&&#d%(AH^cvQz8wQ54C`3vPDI6+jQ?B^sDF;P<^7vO;sHF7SDoVrGK zjMa$c?CbaaRq|apMO2l%-(4mA#ZN(nTyNcihf37RO)zrv>ZH<@HO@%?*m9o@UZFl3 zn~Lhk<0mR=6O5d?qTY=u%G?hAxxb+9hSNqB)Nw;BDC>^!U3mCJJ>3Z-r>-Y!Evt01 zd(8re();0m`itjPI7d|RxYaT_SJQc3#$zQa){MhWwIP>TGW}ED(S-`C90$hBd4yC zxiKn{=V&xX`KrHEu7lG=mC6cNsmSS?dbt)4m#CMkVdT{HqCHb={MM@FKHXFv_E*Y7 zaDu2xL7yoq6E!vR03Ik&Blp3`&8d+}W=*NotuJ`Coax=iz5^#{cr_v>YHH*yJW!%W z-h`1;*T`PBy2IYMDpxbXPmLeotn{s^|Cd}@D?@ww3uhsN7@h^t2c62$K(ja1v;dEu zsHS-^^8Yt#s<1NER_!b6rRu}}YC0Lt8r6n|Oihj1n`$}{kDjQeRWNeuYT7m4oAT}K zD@u8Glu@&zi~I$20h}nRfDZPsqsD|y&76w|Ow`QTFmmde*^{6db_m#RKi~CN&n43mbo5weV^Px*R*oEzgGI;Oi{J6(#1`T8JnuvghxzN%|;kG zb=6F_s;1bH?^MqE-t8}xyWr$dg@WGkz}pk{KY~dL0%X;>6AzQ9j?FM~>gw3Tu8zUC zfM503%gb=OsCqfV%~)(Z-==oR+m_i|_^gBYIWkiUK!(>C=p z4G){BpD8eM>iV%)r(XS4>LdNtau}Q(s@tG%qKN9$yTR1PN<2uSHdesMscXabB%rOF z%U0Q8yN(R|fE;@optZZ}{dLj@CyJ^QrzZjWgiXzq@qme%DZ$98Yi1W)Khsw&buhsM zuip1oyEMsM=P#LS;XF|#bC6Rbqt4e<%++|jM8#YMBd4wytIISp*ptzRKjMn8Hf3ds;XNW2mr_;TSnVKqj z6OWXrlGkD6)KxOoQj3D`Y@FYJPXAfrHrR!;y_Z1?7{u@_gV1|dd1D*QP^4b&xy-|3 zB+g{Ht*1J`3*|Zs&b3JG;V@(LzTup zE^8X)JF2p-+=xd>)W!`ka_ZVpKZ?LVijisW>t(My2U{lmTVKJ0!tjD#%}k#5SIiS| z#;A%p+DS2SGdCUPF+6gjiXMTHQ&-V$mhPk@Uu@3|^g_Ud9lhJwu?%8(+So%}t-38Dyr@H>83GdQ#VWTkcqlk0wbrc8{4Utj_z!= znu{E3(PY!=Y^o-UM@&@BY8W|n)mW>Pt{VMlWxu~{Ho>W)%ErxY zj47MC*@%Zs)Xl{(a_YLVx=pFvqkOzVbDO*TWpgK-DXMJT+(w_VshZ7r#6;EH1|v78 zYRaV^_HmQS>A^=%y4pMT)>QMdziM8DGc~-b(PwO`=6O6~qH3Olk(*yNg-WTYsb=OJ z?}gMf1~EJfDL1c)swSARshTNx#6;ChhLKZO%>vu{JDS7ZeB0^WxpqxBhxrR&~|6uO40Nua~RgG!3g>)ajafxe5=LsFy2XiV(m z`N~AHBQ)$aQTkyBTWwX5mKu3)n0uPs{mn~rA z)b(O}twjHF-!gxREQK>ebrYx8N`e`R)XU?)OYj(px>yV&r>=|LEe(sj7l^%@#;>=? z7dtgOY4_Jk7S0w`D~G$ZEY?|@>RF9PO;pdRFmmeZu{ABh1EWl#l-D0pZ}L~nMmR%M z#W?jUjhUJ%xfqX>sFDj|%l>$@M78V(Bd4ww+hK&B?E3JMALT{*vcFDBaDJ#daq3s)JOvGMP27z~ zO4LXmMowKLwpC3}Uw1X1F)Pm1{wlc&&d~6xq&`#ANv^;nC932y7&*mh1DDq$z# zG97)zwrbuutbL!qV(x*nMOBQ`&WUx_rh0ycM@>}EPhjNK)ni)|7ulDi`3v`Y%krkb zWL}3;M3s!wnpjTN)X8gjs6?H-0wbrc6WcMC(%M{kT{$0I&k*_YinbJ*w~O~uXfA^o zo~4k}F&6u@P5sQl!zSuy7L1&_eimBx_w9+)O=p$AfR2UpMKzrxU3U0m=4~qIXgqGB zf{uWZQ&-R&i-LN~eZ^cR*V9|ok8q#uubQ*q98p!Xzl&-jb2XK6CLSwMDeGY5)Rkhp zMmNk}4q;B+A%MEazsA_S#Mpv7!shI2Wc!`SnGK`$MVrZZe%Vw#+Y?k23ADu5&bLC>TyZ^%4sB*5Oubl5MJTrBxmfF~C zv8}7b{!ve^zvi_5mQyu#vKSAQsFOWlX5OZPZpGs!D(GeyIduiu zF1Hhz>@Bla!YZEU{l)VfoGPk#oG!OBr)=ux89Zd7Zk~dXQ`e2{^Y!H%e>Ij#=5+l% zk}31Nmr#=##PBSkoIYP4ovf*qiFmL?t&E3}Q`d@ZFPNpTTJCGB_LX(1tnio0{&0?{ z=Hj#$9GR=Bl>P8niAvcAMowKRw&#|S?8Se3y5ujKZa7_3(KtP~v`^dAPaY4OsGklP zId%Qm&VpC6Yjumc%3m#4z{#Pi#px_~FiBGzm*GJYwQ&iIoVqq_PYo)$>OiLj5YK%cOwnV;YR6E*WA7&&##*sk-?Q>btIzV0uY*WgT1MdNgxhcRPQHLu_i z6IJsPjGVe^Z2hjxp{|#?yLm5-<}iriSsFR@yOFt?N|}YnN>s`W7&&#N*xpa#YiQ-2 zf@A#^ax|P9s-rl4Vk?}ZNWXla;0QcQqBahNkyF=(wU_P6_U0;zIL`7H$C+?)sN!(i z`48_`Go51{9wt#8RT#NR)lpif9hJJlUme%O$)T#lZKcyyT4!qG%XpAPZCnE*r>+g# zo_>X;t?_bWHebw@HKjb_uaw`ysiG>yX;0srvZ&1LcpQ^##uo zf59vsHo-WZi;`0{b+QK@Dp4o%VdT_xVtea8Oy1gj)^fG`YJaJm3TKI0l$_qWS7vLf z{>qFPRXkyBTTbswcvu4dM3uxRCCf2~{y=ZLBmw|x{jS5qnHSIY5^cVwVs6IcB`W4yFmmdOvEArVEit9E=_lo$ z^H<6w53i$(!oVr46p29O1`x(Z`3%plC6B)$ttc09AMVqgw znDKbLM8%AOk(*sHmQOJ5@2{Bs;5<>i#aA)*4>0b7$4gYqdtl_$6=U0}i~Q#7pI_|u z7fl{c6;(7&J9XxiO{eL=Lni8`4Mt8~H@4HaEQxWSUcACzF_*zfqAJGe^lfyqrdBS& zgC%O^b1-u1TCuI7S^C&TFy(Buq(27unZHzi0_TV-6{l5nWUi)CeuT$LRLUJNa_UO4 zosf%UFW7U@_i|tJm&+?~qNs9lIw7Y|*woBRc)&!>yZ|Gou9=t)rtU78wb|~zoUWQV zyL&H`W-*B2Stz-7Fxr$&-ORv4ChBH;7&&#_#8jnV&5&KwtsmGv+Fvk7z&WDYjB8b@ z&(&1Qp?IuBr5p?+r>+#+H;b4_7ugF$?2)wPL*r-qi)9_0CaPGRzFDMB*VIcD50|Ky zGhpP@^w#OdT*I89R@*Wh6i_3=d*Idy%^vfQaqE$4eI zj}(9FuaIBE38E@wKbLFi>Jv3J@+&-0qDFoRBd4wrtA~`?Q|C7A)Z7+(cz3dI!|96DW)TT?A3;L#G*avY4@oND3UVhzN? zz89{QoD2Qcaz31;;Z;j?wx(J>iAPIR%O_yu)YW3UAz@vfUGmhP>&UWia0Fc}(@nRr zv45+-Y;K0rMU{=y4GH#XoBH_{9yU=w-++-**N^S{BRrA0B3m2eDw%AB@2TiD>KT9e zJOyWqDj%osk634Is^<@Q)I|0C9!5@GJ+>!AJdf;?$(c3mvz)o2{@uli3%yrJ;~B*8 zw7^bJi1Z1Yni+!!Ow`OM7&&###5zt;sRp>Aa6f;q?O_#H=|wW*%>;87FR^KKY9 zb@kY8;NU;N@OHv{v7HqztwYZHE2jg_6jeD+H*gp;HdWJxM@&@BM_}aCRTEpM;_tM) z%wIH@z=@)Y#=TBOCTwcvb9lf+&3pz%PF*v$yL2PJyKeT*bf(gqZOa$+75Pv6rSl^= zUsUNh-K85dZ&N{c;BgZbbUTckx`MPPOYIxjRr~q2dS9&E+VP6NWL|<3M3oHs4y-;= zL4>^58yHFa_@9x72M2g1my>qL7> zUFq%4SFI12*7<9s3a5vv5%ei_WSXWv&cMSY>Z1rF$LJ$h7(KhC<*fesg-wUFw4Byo zxFq~@Y53>z@XrC8+ zCmq?+vf!NlAfUHrwX}3?F1*A3u((#o{e!l+e{khaF;H8wkZW6K@|8^e(4*#J-}YDN zH(`RP3SBhlNt@`*Oi_LvkBlhFufoWND3ew}Yo?s*)!#aK(x3jv;Z#uRpEo%D!IVti zAH_o=^8PT49K*YVfn3AJ4h`gfe-FBsLu6q~ECf;Xttp(-%Diw@oFBzm+k6La;}$mN z&~mmt&vqQuI~ZpzMjLgj_G&BJOKp`s+q2bdrmZ_$spPc(!awuACwtbiIQsvynE#&_ zcQ!&(zVz0$Sx_&RV>4K|*rGr{yvW!Jso$PMB$N4ptID>S1Iy*?h7Yl4;C6BjfXNZF z9oeXq%i)As`7JDDI0`wny-jb?*j#LzpF!!qc!Wf&S;moLnVz3q|1isviN%@hnzl^7 zr?*?#UMaAkD{CBVMRMMWXVm)XMU!*O`yvF+BQrJFZ^vULvY&;KMR2msT+JbplgW-Y znPl6uJsI}GNUzp+Ue1E^6iPpwBC0t!3Z*euvm@Dr$4V5+Mi@DDq3jeZls@}`||IZ zxw2g`>-`ne2WN_^7|SgTl)9u(*_2Hg51A;N5{#U>Z06czQ>m7EGxY+mHNn^UYvx)w zO;pWTF07+yMwzcEn5*%4iGsNbMvf7T*Dh|j!Q%iSm-tIvTQRwp9BwFjMX{Yv6l^bf z|B;FAC67L+oXb}8rJ}NP^$Pq0v;I12M-8%-%w8?4^3Q;n+sTc8w79Jvp|WXd*-?JU zRmpNk`2`LUyU!TAf8?^4Kk$z7)J)^;-e6bRO4GLQ@@~zyVGu*nn!m#mr|?r7@Mun* z)5S5f6c!_&7EHk7B>LZ2jvPyQf?LaT?8%7ixt`x2JR%Ptek}JVe_uSQ*4<^3`~lCG z4?=!qzJ?5z;Sm#MuoOl%%HR?X5$h2SkNXC;h~47!!d~*OvLm0_a< zvUtLIo9fww$4ykvMi@DD_3SZ-dfH088^Z5&X#%?2UqE-k>7okg81pf>*@eb*EQ{H5 zJ#M;k>ZXS7#6u@)XfuqQx`yTrqM=+*Z&km^=2d_BybNcGDxU%0|EBs6pS7u+7xAcx z%6T3}PF*>Jxew1FJEnTN-uuj6;@$hqWDvu%UK$ejkyAG{Gz|}(sG%t^a_Sn|Wia>I zpo`~7fAJg!=ZWe)1AbwW>^&QDrfOE=F%wm@0!B_jUv3`OG;nY*c?G9EioMI{(HbrtP8n2OkY7Mgsn^Ow)HaH6R4Ic!Me!zOL& z=4w1>qHeB&kyF>r?gZV~+Mb8}#q$81Evk4dM}P1|R|gXhpSh`^`|!w#3c3eIPF+C@ z22l{ZULd$!KyQ8C@fXlraI&ZZI%+7~r#^90KX2lJ6ZP{tjNJVCDRtWPvv4o(b=Lw0 zF+A(8q0x_+xT&9cc;H0+%!QGgUOzp#N>^t&uixHwvcG;#gp-x1|I{aL>Sq-mI8i^x z!pN!XXVD<_tH`!s*XFD{&lmV>=v+8qR1FbemcfZi)OmtQo4Q$w2Tjz?5*Yda2i^2(JIZXP^;shKHw z$VAOdhLM|AGx8XnrkTV1HM0^<6V+tAG$W^MYGwr z>c^Wj!Mx=!m^a}hQ3W&L*MM|{&J$fURJ?LO2l946E^+jSUg~&UXF&5Q`bw}^UCN^ zB~3Hu`fKKFI8jv1c%77pPTJJXS$NPy-JA&{r>>j0onLlNz;Z6@CV$D?2`Cxjld%(DrgHBIduiay$LMx$j&77W!Pt- z^KHga&}IG_S_ONj?0$b*8s%QxwJ5fc8VdT_RG%IGm#&V9Y-Cs6YI6+j|9N_c* zLU?}f(w3GjT7v%+whO*2CvW~+jYmxs%&9PPGYdvPz_-a?FdN|nB_$Zk!M%&|V2L`p z5Jpa2Cvgk!0qWA7{(9LACyJ^UuZ4GX(q=)r4G)^An_FSz)O8d0m{Oiu(>mf8{Z;ck zoF=MjydG1^DVv&k4iA~AnP*_+7|l3bVlD5%4)4TufRMLwx4PadCZh;1WA=*TFRoWY zi!VFQ7&X9c+(UXbF#odS+?B=lMb*+G_GixVWp*=mzSueE*nDq}JP4XJ=asJ?71%AyJxQ0o~f2H{ErAB(mi>*lOsS8*{ZEBt(H*!X$(To&AJl|?+XMJ%*M_0Sdtp)JZTlA$fC zhi1^X!8P}izO}9p!%pAA59Q`$%egsymEZ?-^f8C8I(|;@9ob5*I;W#lW_;!=bB^z; zmdg38`Z>+3hmE#Hb3c?@#DZGHgIdIcS|oy6#DZc><|~UDK^cTy<(h3t*cGl2!%o;P z$FrlMC1!IQ<{T_|%Chow@P=ZxC*L-wyOeFum6hMukB5z@UFSA}StNp4#DZBQf>|Vj zF$nshYj!0;KX8Q@c7moIoa+cXg}@70hcM@uTy7Gb;F#FzG7SOnH9BD82#QMY2PfJ0{f+i z=50|BOjv$IFpFd`20BzOuIl9!IQw#qw!^Xw-bA#a} z54rY5;qV3tN4jQEl5m(SgieCPidZaXSGEqYoQ+*5xqRG+uaw3goh{~j`?}2!Or1G2 zl-3R#>aB)+2`e<5II? z^wQRy@710G{F8;|DVA5^1W}#B@@SeamSD2x?*Geputc4_2qUMilO5x9QYyA(^&9kd z+Q(Zdvl#@oK%pvSg?WepPzs-}sg;>{xJ0c?gOO9$%C7NRVP}Vm)l6?zzxwqUf5jXL zCyJ^V%TsAcF^x%^x;YFFny8zVFmmd;*(F9dx%Itl_b=0)@6j(I`l!Eb*28(C%Et1_ zHC;B5Ih(5K!(%3@rVJyeu9~)-@Y<>J-B1d}y&axES#Q72c!$f@fj zt}6BB$~}G6oXuVy_SefpaH6Ps@v2JENt?QP01uj|oBLqo)O8cr`Id9N?33!+8fnXY zy*uA`;1p361m779K89D{sQcscR)}_od7}c#!SYzqhidzgQMBh~Zf#Szc(P zcQ0bTrdk%@@e2@v1*!zNT7k!s8{X9hV?c^b|TRV#kJ63o_A$`g3B zM5R0iBd4yEo#HCcx@>QDz47krHt+LZ1x;WO!_(MWE)b$OwiPj9Q!iujfQfo(g^^R& zOI&BmPRZ#-Xt}>u_JtEfH5RYVHkhoblVy0YM4c>!kyF=6T))y+WY0{Dk82nFrP2xK zh$ zMowKPaotMrs;A}I^WFYhxeHDbRV!ZIN`1nnUhc#LChBD~j2xpE$K$Vs*5F==@Iame zgglA0$@P$qe6uw?3F;Na89q_;ttp&2GSQ>J<5qU(dUD0;x_l+4yq7X@KXgf8{e{#H z^*ITgiv*_}G_@QA9?t^C79c{$@*waS4iS4QH1?36%R%gcPlZmA>$f<9_JRo#^Ofg- z_k>es<+w1L;VAUf_KDj#j4&EG1{|HEh*G{ayAY3(XnhMfaxC8oo&t_Mvy9{-aws-> z2>8P+Y|nF@C*wJ_9s)L*k8P_5Wj-=nLjxz`@e(z#3Pu*e$-;9ihlq8DAwL2<(`pWj zvupIzRu{3rJcV)roF1x0EO)kuV5Vk=bS@q#Q6gu<$f-+YhZu>p8J`9GuD?cZf%8Mv z$ooAs!lr79xio~bfw6~iQ8H-0slt?R#oVrBfoTS)kK0fdl z$-Z!cs3P%kl3=c;OqSuX5@oU!MowKOaa{?!az?8+1%H)v!ug@9#HTA^Q#D1>j)zJV zNft&6V+2PDN%L8=fL}qSE=uJFwqJ&9dq@&ueBs!n2GpdP%f6|*&^ z@)#a1Q7VtX$f-*u@~Ztx`4Yn7_Was>yZ%P(gaf?0*s%;^c)Hlwch?9?;gdCm(uxO5 z6v_w~Id!4LJYvk9(U;Xb*nRzVvJ6fT)lod29r3xEGFghpN|ebG7&&#B#I&%va)-9e z>GT&#JDeV>NIY6tHd9j~Sv*prL{`JdO)HW0`n~S`{u0>)rzZ)CthZc=x)G0*D3Oa{ z(QyI?xZ7#Fdzs)5EA4i!oZ*?!oYwah%hiX zD2g~Jh%zuZQ550gMNt&NyX)0;YJdB5uT{HF?JoZ?;{=!cTjy8bet+9~g7ZEl5zhq2 z0+VvA5|j7xZ3QvemR5F-NvOtucp_Z3PL<#`OoxxQr{yTxCp4)To}Ned1H&OpXpZ2U z3_^1_t?V3{h;d49MqKn5wudE8`-8$_F-|FkDj~`7O$8xI)5^{viI@`iCG}&J|7_35 zS7>`sMl7bpDpHBawR}rKM6RNhog)&lVBeQlh5UW}1k;c0G5H~F5sHb$f_*hwiOTo+ z)`F;fk5+b$O6awa@HnMvUc$5<`*(X_{z@B#0u%Wd(ZuWa4KYh>{>---#O9B*vU6-g z1ueta1clPm?L~d3XYV7dCqjEFiFhVLk*|eJOiV3Y3Cr$$b3s_9)5^|aiC9?))OAgL z8UGXZq?}9}gyt5DDRVhiiOETPTR}{YrNyHI@prA&#`quHk+H>+v+98w^iz5b=U?nJD=Nk)x@>N>dIVcem<#aNmE$9EY zJte=O?LjHAm?*1AB_hx8Ed>$zDXr`rk%$Giv|rF`0>0}=>mlr>N+O;iti^&`DO3r` zMtoC2NH(CAokJ3FC9LF}aen+^dsIF|yM(3_iz{LEfF&^d^9=@p>86#P0~6KpD`XnN!^DPAtIgM6!j!49mIGyX;f0hQx7wsYW0&NfqiN%z-9IM3S zBEGF4CKu4klNl5JblZ3BF}a^Ms7;s{&bQsmw-vznZ;(-GZwG}=5W5jATWo~%Fcm_sA8ag zZ$Z*a8_Im;?TN|JHlf5=R51ueERjj`Ee4SZXywU{Og5*NY5IyiGS|{JwGkN=u|(!7 zzQrIiSJ2ANk%{h>%2`I7!TzB=G2f?MLW!~KmZ||uV7|vU7zE}KTG=@;6Ld?mxXxeg ziTN{a6G}`Ax+Pv|29fy#t?V3`h~twPZ&i>P);ACLJj!~Ww7ZgsXP#tne6kv? z%r4XU)`F-^rIjZwD(V!RMCD|AR8FETLNkjEDwSv@D#!D!1yMPcR(6g`#F5F&aJm=_ zrAM{pm(SX>awhE&%8JF2$y&G)meqW7L0DGO%Fbbl80M{1I?!tztTxgab* zp_QG(60sGaRv(N9S~i_;J;dEeNyIb6wb%+6i&x^Z0pDH_mv=f3mx$allq&>=-0~rN zTK4DN2cKEC$St*SB`n>1b3s`4rInrMmWaboL%EgO2-mac>QGa$#ULL21EIr+I-eh%5Uva`8Dklii*W# zxgM|t=2v`!L112>m7N0wg+XzVtTA1m55xyw-iL=a$4Cr zB9VDSJmmg;dq%!T`-3uKl}ECMH#r{Rn+ihm5Uo6EAz2~bMg6lqB!8s+X$K@KRGCTs zz&90yFBA!W(MX8KRuo9H1d}BdScA}M?gA%dB zQyA_k=DnnT3i~8`RF0=TLNkiR4o@vy3Cpp3b3s@Z(8|tXi5S8bMU|#A?KxRZ+k!jEd>!N(#p;ei5S8vN{Pj?S~*sU$xryUf|xu(D^FfbhOZ>+B;pyv zT4ADMm6*Ikf6O%?CU4Qo&M}F2aG{u2)|nq%*x#O(?$~ItcyJ*cvV>+|zR4goGic=q zX#9cAcIoOmbM1_QFV64kTDErJ^2#6UDt~;b^2b%>KdKTp%$(9Su&MfQ4eWhb=?C0| z#DX1a5_^^+0J3?6oB?->GeDX-`yl4-9{ z@U{Pt%w>ye=hn~f7mSQ{hyS_mvA^n0Rob`aU0ycXpUY>xjK8-3{whD~x37Kt(PkSrxJcwaeATP?HiB92in4O#$DR@SOKakXHvY%n#biZy!s|&Ug3M65;g|V+)#^e| z6Dh9#*}unIYCNPXKfB>no&Ga6e)dqT0)R*O)`9>$L@QStSMP8hC`+`Dl-^m7Vi4V_aU;g|tfFs!_B1 zvDVZ~R}!t5jmaEyOp{$pccMzoSk#i8seG$Jc6OqbowKu(ksX<1PO_)vc-kE_#~j)$ zEhvVm~qgD<1`5@z~nRDaR;4%6q zX8e7uIeLOgd-?rPIbp9pD;jQH!=%tKWq-6;lIv6UhszR8%;K6^FByLt7do6iH>vJd zsxf&kTZsHzzo$P}^=Dk4$^Dl0&-ld$o>4jt-)hYw*>B44+pSI*)WYme%+2S$(b8f? zRPfd2*H>(Q%{L!Rk-sV{H$g?q=l1(f=u2qw8(xBY?{U_H@NJbuD+b{bk59E8kB|)l zl&$$dKv1@%l|^5=d0C=;YXCDQCMxNthqdw75vrAzD*=boUZL4$aSS+>JdmTZ!|)i^ zb#-mfRr=RJWy1p9f;$BNpQtK3M{2K$k&;B^?1@U#R-r_FA_k(2Km~jVU~1~6m7Q}m z@gShP-^-^8{rMm}s3oXt?Qyz_b_~U7SqwPUosenj3O*8$s>^9*=Tv=g;_OuRG7z2K z_wAYb9_<&()M;@srF@V?J;KKU67>+R+$lsEPCfqFo~S?4ez_*fd?fM@d>kNAuhPoS ziQ0SO9960=uOGKId!UY|9Yga|9HXeZ6OyW9`A9&j7SPJhsRA<8P+rdR&a?+=HEk9OR2&(qY=UHI zB_9OHQju2f1eQuD9i%0vuiLZqRoX0Zi12C{d@!Fn$VIA-Vbq9}39T6ST5(u7G9og6!@#I^KFfzJZd6XFwjuGI_}Z zNzyy?_eNL8-=dW}f+V^2w7)$`-JL~}aouTOJ_ax+&7hT?lLXA{3c22*aee%Bd!A0C z9YediIA(TrCuDwF!bbv9bteu#Y z{fhPtMJpM@gl`P3svnZD7x;KU!k(j*BM58ad~W@SZ{;js6B6}<#xGQk1Ge(&EPNDH z-Qyhb^M!Gbg6?vH^{n&#N+O}VTUlgz4D~a#%V__-5bD2^)fmHR&J?y__tSjCL3US_l_PUp z8?Um5R$WajgnruL4EGItD!#^>3uZX%C@Dxq$N<5|zwjY|eEc)5EOOgd$`bACEoarI z3PzB6(q3{fqh8fqsUCh1PgMO}wbnAt{EYStO*7aG6a`8%Le3BViw^|E>c_OQbF4zA zAdFb~qkbYC4C*y@H$Kstrwx@vJOlJoTiI=O*Bp=_{e%A8=%&!$X=Udi9WX(D%J}KT zN(y{wGFc%>U1R+Cw5FjBLT3Mu)fo3J@Jza&pS|-L4F>T))4S_884>M`PKo9AP-M$&dxLxA2VyslBaAV4{Y4+I2dHmxkO-K?@i`z8XR@<&lbdFgaA zoh#_O)`4oNW zq@Ez_<%89JUfbpQgFQ~K(uScp#W8XkGeTykm-#?Ire30zoihdWbLwKkfQHl5Mb@LH zos>j8^RzhnxsnHxq#gJeK$5njm7S9WjKPz+p;1+nEvwOVtUXN&Xur_p6vr66=7S_^ z9v=rt)LdHGIZ^x9kIzK)cgftaI+>NtWmT7#)391;k5!R24aI6Xv_Q@c#v9C#Y^~sf z0olsZ%FfvW`n^=p+p8gUlRZ*5&|aZP#nJDTJdh+^$HxGYbPcWSoFrg1GZplCnT)5w z^b>oSo}leQVOknPeyZ9ad3u}=1LWy3TG=^IKxXpuy-5wGckE$$i}nhIDUQrk@<5XG zCLaSx(i^n0bCUL%c>JVX46^!*xci=LJ-eHsB;uLfeKLl`RB=Jlv4+Z4v3|iSaSHQTbSMJ!|X%E!xv{xulag3Wv9!QdI zjC)YN+O;CICemt?Bz-(NR~F?g8*5YLMuCG3D{rh%X_Inow3w#I>a8QgJ{3d%oNA| zO3epJ)NDQukf>R-vU8$;2T;`>c2a=?@ zd<-B-b7*DfBmsFT>t$u}pQ1fWD`>Y+mg2}u6&EB;Sw0Gora@ZSIZePlgRH-*==B!G z{@e}rKwU>0h5{AGJ%ceLBvaS$fq+b1Nh>>N3RoW~oeb|0&%ZxmPt@bIT_{m;tPfOe zkUTxchXL~RD6QQsBG7SU#*sVa_@%(4lRr4#ueK$aHL%FbB=dcDswchzI@Uwp2OGnnbyWgJTd+G0l zQhY3QD!s1~VyG^ZDd;L2^-7+1^UVgqy|b)58EQg>PL~@z2^B&L*Ms`CJrcj-y#?z* zozglaLg5QIUf=@&;dqW#7Fq4tvPAppK!pk?nkdTqso|tv0czXD*2DL$l|($l_m8&_ zqDu6#U)+*!JxI{zv~mPNO>}DYezB6|nvihVFNW$|FQ^{sD@68;$JrBnH2tN}o)N2a zT|2Q?2=|S~z(oQ)if=lI?-6C?$lkGiX)QE`G|~|2AHv<^uss)f-dwPI#HNri7akdQR3ED~JMtVBJ*RXFXe1o!^>!2g(x*B4z9_BQ2@Wr4mB>N``xknnem;7bw#^djOtzJhh-adK73@!!BMhZ7L&$>KE%-)* z)NWQ*j?86kENLB@cuGq`Kk0BbJJgePn#_JbH@Xl3UZ?N(n%H*{*Lq+Y+{Mtgp)r(Ht% zS=h4POa(5xu`lxt2f?|TR-WwO^y=U|X%EhiXqOy-(`x|d2YkapaQ>54b`DPH7_uSb z_?aF*l?t+b+KKkJ?eX~=?G=ho>(;x+!k5|SFMRVsi2g(?JBMieZmU;hpM92EPr~+6 z67fvJTGwr0AF&+#oA@RTB#=zN@S zIf%{)wDKfJCy-<1bM4VNo3^R_=#(Ot=zNB6If%}uY30d|j_j}Qut(=M+9n6+7(1+Q z@GS??`5LY49Gwr0+hM5}mWuj|c+cCj^Gn(%lpX9uH?rVd4qfJ*pYu%z;rSV@>>Qp@ zX&=K}E6A!EEJL}pSJbbyY;l_PaCtK&5zlZLyBh@|R5w6^v@st52-1eMvU8Be-}|cV zO^ahi2itRWAZ-?!idwg6QIB6@bO7Ie5TpHQL*xx>h`_m$w=4`TEw zTDe0o5_?~l*<*AGZI(NXOnYBz`1XSseV$f!j!~$rm|=8OO6tQ|<7wFk?LqnuZ5ImC zsV!R*3OgV>wr}$hfGB;7R(6h3=zR?XN|npgiIqV%m0PK;FTP^W((h=$P?oSq?vSB& zg9Q?%-|!)TF#RvB>>Q@?*QoPywP?prSx?utR}%3|*IKtmU5Z?y^B%tCAUf}+m7SwA z{%TRlKz+4nzCAlf(mtX2r**4E<qtYA;k z5N#Mr5mqG(>BSm7kT_-d7(ko`Xl3U(jo*zGiei)gdV7ezOxuJ))Vgl06uCs_YQE(l zI$xrdBhYE$Zgu^7cICQl6A}&!>4XUmvc8v}o9^>_@?K;yooDR{ewzMTD8XPFEC-tK zDv^e7Yezaz#id?z?kPS7kmV=K%9G*JcDS>Qawc?rIed3}$};QWdY6)jXSnWR%LgV-)Lo#`~FfvZpm?7U3;Is_RO_22Hu(4)zyFhz(3R<%hnE@9`zT=sK2;+ z*9fT%cj@X{1A*nG26AfqPFqWuWe?WO*uYA}1ykN7zoeBr z11CSw?=)?5y7fG8DCyIHsChzs- zvR+#2{^r=Tbtvr|nyUKa>i%?7BxncoL4lwhNGm%B4O(hYo{o6wg2vaNJzxE_VJKg* zEj3iVkXZSAEFe}rw6b%o4n^`;^*NJ7kX0|YB!==i^}2#ShQHDtvURk5C}f$ql9{yme+_+kO|QG4JXrp-fv8;lD$gD(=d2l==_ z+`dCAJIC$A2yQ_(Cqgo!6s_2Hi)v;_u&(EW0m1q*t?V4E{h+KhoGu0ivYxUh>q*)&l&shedu3{F zNVI;$M+2hu16tWRS|7sEs{L5CPO)pb_3-{}+BcN1-neFw6~1bgNXY)ihXg|Q7h1V9 zARF@XrPT`aQpHSr$o5eZ@ysD(gRIdK3E5tJNFZb%pp~6N293T-6Up9mpbzYq+T*pD zb_~s7v5mfJW=OD3;e!Fe`Z%rZ9IWuuR*}2mML%1}<<)+;7wGF>=i9?|F6|l$S1PU! zGHi$h>})>M#@d$L$eRM&cnxkTmntAX~SJ!sF<=Aod)wmoU^MdJ2LJ}wZqpVP|DaSK-? ziS9B@dy-pu*0aeilterO{nKOXEX!6%s5aw60ioKMR*rzGi3_#$JGqtHlubxDyptP# zGC5Z$_|Z=$FR*8M9{rinYzaP@T#hh2wUQxM!Km+=&*d8pQah)tJQ;4^hM!CpmV~aF zhOgbOu;(GmTie~=d*;QW2M*^a?j#hS#R``060j=R4b^g!*)Z_L* zJw}^_0tHsfMSvQMUt;tq-+mCIhiPT!80`_-9FiCfrW2`PM9WEU+9UJ^Z4`>oi7m@X zmDnXduk&pO@p+9_c8<^ZW2E%{rWCYCk9D86o05oU{&!N#_^Adj0h-1)9t3D-TG=^3 z;d2i%|DSgwzP*4X04V~E{dy-D1EkiTWCtF97=7L0OAs+>Z)G@U3BuA=-Q#PG8 zA$68LQfJVXwI3e9Z5Rp^Sgs8i za5s7&ak`n00mSJ>TG=^H<9B+6TyJTYCf^qrJH2P^fqI&@38(GY9+obheU~452&s+d|1S%7X zGqj2x8GaR&`da#yd;lQFo0pX*!&-W1w=l|>(4um9Mg1^)LJr{#23ORv-9nO(kP(8F zgZNNDR%X-6BInI2OSErwJ=BdxLgf__g;E6*Uq4V2sK#2ZtoPEEq1`A}T!Q7Q?uG13 zlYA^7Sj%Z;=U^RJUlbh&tU@jsl&>l#3Q12t5qO0?UYFCxp?G2EwRpT59g&b-%0~o3 zb}_B&95N_-71O>~C?>?ChmY9f^$=|tidRh8Ys?D?)&qPjAXxX&${hukcn0wg_F%nA zTQ)hsGChg-G9L>F)=RWf%MBH=oNS3jT^=KbzDGkgT+atVo-OLWWgR;vti+NZ3~JQGu{!X=UfIg`Rtjge_GV zN(Xuw!kg^zx`DO}#S5#`%i>k>K>~Fh9|s83HMDYv0A=VDe_{{R6SQ5ffhzeRfqI;e z0|e?ZTDc>DQe}}m@q)%X_CUQw+vOIhiVqT~H~Ba~px&UBodXrRJ002O^#7@!H>AXhNdG|--N!?9;n-CyW9gcYa%ml>7wmC*jy4O$2|F4{ z_jt+$nVp{HqX1!gnpSoW6L2W4yWjUlf`U3GqxE=O_F50lH&+tz49?>@eKlr<#A*{h z6cDQ^w6b%okWo~>X{qxNd!`Pe?LxCuJfokN9vuNcG0m`t{*=r9}lD5k= zQ0Ar1<$N3xwrdzdbztwLeK?(48)s9=`NOc(PpfFNB+D?0}X z89|lHswLG!JQ`0A+4J-O?HI~aJR_(vDo?KM+3q&hgNnD z*GHf{Redj@T6sH{81a+Z_^N16*$Ub{l(K=CGMB*?iCdNr3&d@ZR(6hCs1je~SgZEy z9nKoE*$wubT}Ru7a+Zvhvx*-Quxt2uK)|k~m7N2|fTHpRnibaoRnUvv~7a zgDn!b$M~>7+#aQso#O`Ov*BXGOXsqE3BwHXEql)1q-{eviz%Nq_#pv%gO3LU>~&h% zIbflufFnE1e6DzizJ5BR-+CswhmweACb=}0ezI(X#A!D^3=pSjw6b%Y4g!Yz<&r3u$HNm>~yeit4#(jjVI* z$vTTR3neR_gEJ);Bur=UQGhUw(#pj&ZqL=Nv~MU^*t=kC#?lOt zh~2^m1R{1bt?V2zWRz9R4JGs|&(GO|^(^fc3RXO$tg;Ofr>FTaK%AbUm7U{+)Ra-x zuri6&ema`{a3Q>wcUSWiEvD~WifpYx$!H(LrYG*yxT zSE;BMf1k=X8ANucvhrjo{vLW`PB;=Ob{?+!e!M*l$MVjCRo}5U!X|_v6uQ7-0pEBK zi+QxN$YgWN678$=9y-!2`RVbB$^JyiY;8|xwQ8khf%lcPS7^WZ@z&&%?t1iccva+E z4>GiZR-W7p_2qNJLnem4YR}M3v{&tBs2;s!=mx&^AVb&D%FY=I&G}>=3bLv+ttuO8 z!sw^=82yB{3&jX~klA}}k_JbTPqLm{!YGT2tzUEX}MrcC9;hNLV^);tO zs*r6i6Z!t&T6=)MNPi|2;G>~QV!j+7^y1 z#h389(|7H8xSzKcTz6X3Djq_?3o`EIn-7w4H?1u4*_~wxCo4||gnImZHaDD32inTh z?^P=;SDt=Ldxa*I)EW{Jd95#4|cS zzGX?M6uCraTfXHWI$P7q&d~|2d>islD#!=P{ZC32KKKS$7BwLkxig)bpGoNqn| z(P6Z*bBI1LZvN@>G8sJqgQ*_*_dnh2n#4-sUHsRCQN_mjGSGHy#A&3R*b=peE+?^(BGI6t4*hhf4y}>Phfq z-^(Za)%DWIRe_(|1N<}kOQ8T``L9q5GPE#Y4!lZ8eQn^s_@;yS{8P*0u_e71Z zgl5R$<$(<|)+6(O@a}@k16Y|f7>tkw0+GM-L4b(-l~xuR?#~s;tvftdB4+NxYPg*&GswO(UdcRpoe@#d@>^FA|_nXDY9<$#b zW1s#;XpeaWG-D|E#fHAJF<6lTd-&#puqMjNk-cR5RzE`vS10=oc7*zdaQAqbJq4HW zwu0T`LVF5AVGADC@C^rf_&lvFlGo>&m8d7L3YDFeyrzbdS5DPT9B0V?xN^vH&Hgdk zWHf;ti=kTyF`UEY8`dvdkW6>)Hg<_EO(vida)9fK$LVqi?cLX7> zhZ*i6>;K<|;6)-lm2W->@uITwWauSB=i5&<`x5FZ!ae1A_IRAb`wRAz;37sn;EC}F z*&skUiw^_@Rl2GY)o5Ufl<& zB~}2bnh&!7yp@jwBg$rj>a2~v19XTzN(a$yp?L|bJbE`7)zs0V1bP@v-I?fB(wYJ=oyJ3b7Mr)_9u z=R5)9r?QcT1hv4PsCl$uXo8Ak{4{2SWNI!S2*}hNTG=^M!1$?TrI_Ir?SWcByM+Q3 z$M~t@f}|Er zJ9jIFy=*Z^>($erum|dK+AkESICk!8K1iY-4KdJg^&n^FW}gh4*-N?2CXcz+8$+z_MLDE zy%A`lC^u9La#=5(=<|ySKka9Hanj{<)ndz&E~nAHq5UQH>=uTU$qU(MF5zPV={l8G zj-acF4zJ#4RuW(n5_+H6ghag+4R6 z`QuBKKdvhOQMI$wis7Dtg`0MDMfL-cKj0ZnT;D9;(%fQhQa$yfPGqTPe;RuETj<}P z@yD~~#8fU>*e~T3y+ktY6$-xgAJlt8MK8$u`Tc^C(eCg+r_PsD|Ek*yHFC|nR6XJT zTt4e%{I&h}i#&XDvpoNP`zc)mo2t(?aAR4bJzrt`OSC&Cj;xumI4JfP2Nj>04b$5~SlidyjS2fp1P53kb7)yCDkgqO<_k-58x)IEOEm@y7G z=dJ0Pt|VG9t&{W^s(X+*q&pD`U5>A&@=XT;+KE^(6|q-l9BN z{B?V*zS`&=U>Sk;<`N@CKFxJ#i+fZm}$^BNGKw`gVO0PQ<*hgJys zGPyuMr?9_0L*214WO&Z6*)dWzdWq4#eCt7sX3)wVfst`cbhiLO?H9_Cp&~}p>8KjM1nE4!`5;K=(8|t1 znjQ_3VFmJDdwA}qJwo9zJax^&QwmuEb0^}Pikp^ler-?9uV|xC zYFe=CF&4K(=LNpqAUe;{%FfZ*Ga8-x0-MIpwngh1*w#uSo*9^-GAEmH>VZpmw&WWQ z!m~N8>>QrG#(^htA@Oi~dJdzlLNkxyK_Z%-dgKzHL->}1_#8wlJI807agJf(Fm2CG zKzoF8(}Ho1dBL!kZ!!o>l2)F~z!(+^ud)Z`3fiMK0%Kkvyqs?`2+XClvU6a@ISgc8 z82p|+Gmp?Vq0Ag(zsnW5Aovj9Y7m(>u2IC z2V$F$s2>k`sM#}=^;T4lWLvf3dYe|LllcoaZtKbX&BtC%YB-laNdM4`*>%lP6P(NU z@_BDmp2;u&zq`lYHd@!N3O3u0 zSR=Bvl4!*cS|$<;L`-E!x8xfNBC>QC@BC^QJem}355jor*lEY|+&^$7y={!;n zRc4Yy_@;uG97HQS$HX`$$>y@F{d`W_*G$_}63_;rlzg-~N~)1cNP78}f{-L>W#^E* z-;_&CiR3DKM6RIiK@mB$IYc6|$mM)HK|n60l_LOYVqv4cHd2{3H6c-7p*g47fmOW~ zm1(+FD|&2Np;l<7wzqb|`;Q*(>r=01&i9i3^i%w-dJwKRom)A5o*$gjuq?2i{;e5* zC~J03`I%f{zm>tze*L|P;@JOUBIO6g372ACY!=q~Qq1#ZiO30h3nyMP2Fm3r_Fj

3ftQ2N8Wl%|5NeAvuBSo5{YBKnjRb`Mub$g*g^l(bhtgi^UG{lqv0*a)2Dwf zHyTSH|Hy}HJDYDl`{55+-E4@X;X~uyAT2EECehM~Q>RX%h{VPTlvp`+9JLWvkPB%5 z1humX6KVcn^M}kyZ{0;Ky4yyjcdH_na6{pmfgy{{(TLMA3f{{u$E<#X!RGLC@dT>c zh_L=VbuI%V=^NC)2r%g7!wcaSV)2}3o9n|XBz>eD+oUggUR$S4!PDk7&Fi+lnS*@` z|MNHbpKrx~Xn#VWI+I;wf<}8+?S>aa7f_lx1c@WV4^mxQGJ2HPQbjMRmL%0$R6V<- zg(@zTZcz@9em8u?1c#z#kD;kI5azZd}GqW)%#OW7fL;Snf!=W=ifLx?LH}jsF}CpLBuNrGQ+}^r!Lw z!P5-kR`G^9^!|Altn?YXK&D%uR4OBUk+0W-TlY~HNQp;)oaurVe?+mY1|mNg82p?I zN`XbP(kzWG@j69_f>ii^7ewu{VQnYZ%&gC4<@j{onjFluK9}KvsiEd1%-}=MIUlQH z)KY8?klQ(4=PQNrR$GM0q7oN)WyV=pi^^Mb^ac^GojcPsJ~*LT3scqB5;9X(o^*wf z(1tMH1FrE9u+(<}=I@}DC{rP!?xW%3uI@0B!kzB|AYaP78!Aw+QpbV8(lt~Dt#Jxz zZ~Dv!q%!E?aXRIisni2<%~ZZ1yPrfiAAM}<2o?z|*l9F)4!$v?_sxf~QX$St2D#lkqJz@AL7?rh9Rv-ZiNLoNu;?eLK zwKlsn;8N-jioL34rCOu?iASw#0b0xZuxqc_5~-}%P8jsUuGFF(Sy_K7OSNs>r}-%^$O$GxwWYwB<{_Rf9$0P5aI|_z4y9S=^<2cUI=c2Z zg*{eVlG&|{bGMo~K_<09%Z)0KXCvl4c%6VZy26;QB@uC;z%_Ac`hzfM7Xjz7n}CFSsl*NJYd!^{+A`u|S8iI6y+soT!t0 z25D9`ky)}ZgLqm>sSB9(8TtnT^YV=*(}@OrCIjZo70fUHz8Egl`3qG!I{Y(AvNTCz~3;KY&Nj`A@S(B_hs zg@e)=$$(G>b+LNO;)n`q%EoB;S}xTx=ujMQMB0Q)bg!D2*!Z0etj%=Y!W_Z(Nc`Nn z*bFLnK6c}>hi62X+`+r@lp04Jul6m@psTGCYZh?qbgUs52iBnD7ZeN~g z0wTtDpPZ(~DI_+$-UJ-d<;~o3f3D7;50kb}YB$a+t_Z@k%6U+)FqJoh8%()MU{7;_ z*aOcTRamcqpgwHE{jQ<*uy-31x7fEIcJ(e`i$HZK(Aqjq)Tu)kBv`IsoM&k|?ibV;66`dl zLR@f>2mA~#K>#;lMb}x}qtx%22IA^LF<1_E|AdJ%w7lM;c4Ay`fkTWQV0@ofEAgr! zCDMCc8}5+ZdAA`D-{zcEfFjRuf2b3586M%nMLrE9Y@ox?kma;M&2h}?l$|zPy*zhTW_z z&C1A<3#!c)k9%=uF<6xFRO*8+Dp_C~k(H+$E%W#T(&}-_=I*p#=Ic7?7G;$;mtpI$ zD}V(-7}d{XzuZVVYmf;5W1adCy( z9?AwvD%st4mZ9f(@0f@<~ccGzAA+nIjDg+9H*1L zpjrwm8q=7K4b3TX7Qh%`s7%!q3yM=y&JpXZ&nmc1nQn{vLA0uG0=%-tD$h@IHplp(5gP1~n z88`Pk(QAskj{pvAxO%F0Uc(wBN9fm1Gf>X@5OAPYW;C;G1ld#WR>h4nG{xdKE+uf@ z8B@iC!J*O!m>+b1U=Om!q2-T;ujEp==` zy_lT&MsYz$M}H)LFQ@YMwpO&0cPkgLEjZ_5l-;=8XIU2y#bc3N23>G8bZUaB{mn)* zyP1jn>DB9fSbLqCU}0WJdZfs{2v7x_$m$u?+^x{}LgoR*(8pooF$I$ZQ^X@F#)JHk z)X^(ej2I}sN~I6iY5L7pBeiLP{|5{Pue>=3o)M$0OfI+i%f8jtC) z?8XF0FNu?ppZKnFmK`?!&m{S-Z>?MD@)$(aUt1 z#md{FC_jC2S6iE-V_J<2WzIzBaO4_nO?x}YQbkAOiaJ?#fxE=$BcmbA$g)lFgXqa- zlFrcg(a;$KTVS3d|0Zl3{0d1ua`p4wt2}%7G@Y1bDHO^^fOcicnnO+q^(c*d#$cDd zOB3EsHJ;tx;SlZjwD&aQ4ELD2{#1^Ta)x(5V?Ty9l?bWY*8;9Y_2m5$uXH;Gu|JEv!JNvmzSrA;FF@mvPAa>1L1 zWtcSJ>ZKPRxHz}LD`>P)t$H-WsCtm zO3375oPlIe+G0c6Z&}E|W}Q(MPxA4EhEqyI4ukpx&pi!ihYuofEChGE^85?6OcP=RQcf2RV1i<__R=bl6Xo|AijmvxmMl29cYFL01RR=x3 z=?SB`ik$|5hI`0KN~{axoMfV(!j)fJt@*GRe$sUa_Ht0}Jju>;_qn^Q>KQ{1VCZ4b;#q#Y+-#mC~BRs6BM28i^xA)YMy@(f9mAvOP@)n$wSqdb9$<*0= zu`QberLa$nx~R(RDTjWq8#2eONT}HK=(X7bu>~!Q5$wILYvc&mRF%lwiE#F6T<2nc zw}THMdlej<=Hv`lqzycGaEp%^i;+2FZRbmYvzku>y6h?EthpFQaR#%~n_F~xQDtD6HZB#)NZ&4^eDhgB-kI6LhSj!A^%-KWF&d5GYr(m1_Cl{# zrCnWdQ5@8YOy3c|){6RVNsdX>B=~F*J?7lK)Qxcv4*R>Y;bw(>OObeq?cY(DR3Q1f zx!Vnq4~9pejnjaaH7iwnvb6{nrf(4!t7SaPr3+Tua%}%WAk7{|H+#pX%ueWaU}|v^ zp1oLw`6j}omVovl!biE#iumN_kWCSFv)BN?8YWjom8*FTN63zV$vmdRDL;TJ&S*tD z-7yrN>s3P^IqkF7f}+=jWn6`jKw@FZzOV=1p)*S>9be$OF6kD?Syd4TQufN3 zl#uRF0AyDcR6ALepcoRXNQg4k&VLt#?-z;G%U_*MAI75}RZ(dOXK$0JkBEWqv5lzP6hciE8nO}rhGTTuxbIQAUHEeDIJ5OsOD;Uc2hj=mVDJ2 zp6`jNkd-zEiqff}kXrDjjwha#Ko~Vy6Np%I$_Q^SU?_?&WJ(Vc?>ZCZ#oGk(>NHW< z*Ts4Iw&bO=($-vO=s0*A#WRH8Y;@L&pOUwXZNzz7vqM(oizHki#R$c!x*){2#OI4# z8~N@Yq<( zB-T10C;x5dOv9v@m#&uu1F$P906n#i~Y zPPZtdqzSX2o$^D0>qCTR1_0cmA^xvC$v`&@OQHcT{)tP)0*Z$u66D?A!7CjCfjn`j1!Rd&!{t zvunXHinTWfb-elqax;#74x(c-+{C;VdxF8)oB@E@JU|Nu41Qpg;++bMsPRqaxG@;6 z%}Q<Ry& z`I%9+2$wsM-I&q&crlnZR5%;>b}8N#$&e$`6LbxeZoztLqu~ug(POLM@ zRK5Xcs**)LT|-!(k?PC}?4w~V_bBWoJE7Y2+iuK+P)ru)<&5C60#w!L5<4hY$ar!* zjcsa}j)o`H+zVI;Y1<~lh+~TLnU;n9xr?^iD)kY>$9duRB+vXvC9VUOx0!n=)=}n8 z&uR;0@J!#UD@NDL9VC{2a)*dpva)2Yf@c``gogQ5y>BD6Je)+?nxJze%bS5)4{yeP z$H+!~DhjXXZb;rl?VDh=E&IJXT&Ygww7?yp>nIVcwcW|08_S86SQlF81 zma8G_z$1ClH&&FLxq>zgb8UwGT^IG%1q$3m*}@7JID2(v@v=I-_POFhFAVrRA%iX5 zp7^|C?GnYSB2~rXr$hMjFNQ?{bC+nfE#rM5L>^0eh%xeLM{I%6dPOVer6^Lg$O>~9 z)16jD#YD7hh*(D^u;*`wb@y|(!)l9=su~RQP8~Vd1q(%(qAA*CReF-5zYJn@?pcmU z!TL;d2gK6lOwl;5z{}Mmu0!V>kA_!{b(!5-L3PUr2a;&wluWHzyH3LTTvm=Gr#`eN z-_A%LrgAlpAvhgTual>p=T?A&=-^95WHV$jn+i?obF7hhzMRWEvq`i)HUub0yHRSRKi%bv&X)@lS_1JmQ+_o@cCOGyS3l zp2-^C6C-jeXn4F74PHjTyqp8Zdb1NRjZ)2!P=%O6(X$z7e906zyB*aO{oFyE>EN7^ z>O>2sYew-$Cg-X0{D~{m+HE{!s1mnN#lmsH84u#VMtRK4xG9ys z&d9+Ck6H?O%onfI@{Vgi(m0z+xfb2+Sd1ab_QaMeie$vXN;l}@iN&NK))*5kuumj} zeZ(E3c9rqz+NYm3?8m6E7nWEII?F(mNaW7FNj}H!GmMc|Qp;fB^7p|f>i@Ie_Lt{bg zLCv_+N=2)vTZ?2wJAZSwfG~(56-scKnU7S(@%Vyz26=!d;6Ns;F1l>rvzbeotM{Sw zV`WF&s?pN&dJ@VCk%hJq5eDYGO~TJuFO10*DPSN?;!TU+8l5M4PRj^4Ip_{)AgB!3 zbmAGbJin)#yOQf-n>$l{4VrwnDQH1Mqf^hxl~DU(AAWTNi^PQZ=8U;&Mty7I&>#&3 zAFS~~TcmQL^iKfJaAVxx@^h-Jo!R*g`39ftHr~zDiKYH1L`)M#m>(fHjV}Q25@R#< zld3GL$VcLw>TK!;5#s&&gRnYJ@n*ZTgp< zUkm!BMcbxofuCmhr-LUzhL5Cx>~+VVR3lsq|7dP21e>RM(Dkm~;t4E`fXm z9}lRrlPlyhnV7~q;_XaqjcKFJwP{py?OwV?8Ff?P&fA8!Yu@AKdlRcM{c8;1*Mze) z$xNf^$3t*+usu))?aVqL`C&+S%}GB$=?qNHJ6eZc%zM8$#Rseb=_8U_zu!(X)(Oi{ z>8IES2=$^xJJs<$ReE`zmQ7OcGda1t5iMMZX}+PPi1M;&8$5G#)Qo1>qD1;1`rAH*wF+gysdw0D z<65@;o%<>YWa7O`;Zo|4J@t;*b>n1j1?ZD;mYPHZu}4k>kw`sFRptefN&a=4{$TX! z_tlLkl5J`4rfauTeAaGU?ha_#NJ^zHs+1%V#p#kLa4rxA5F*#B&_Ckz@8%Lo6J{?B zjea}El+#jyYa7!oQ2117idU(tNwc9*HfA@i!i}S4D+$jZo8q2wLv7G)Aur2hMNxP_ zP3tP8dR9P^DjBKUl=_47w|___MP(!|=I(o9IU~bWE1Sy4I90`4J`hVu7sfg~#-IyC zytV+kX|5+E8K*a*07}z!+ws~I?VRFf8q*5k;tsrrj5L#DE+7Y_Jv^nZ45>SkO|1!UrhU zqsz@X#hAVH7W0iMOO}B6nLe&fv`J4=Yi>f{Zu{hB`9q}-H+R5v^YS(-KKV38 zm_X)igrCXMQSHW7j(4ttj}!ydk{xq|8EZ4H+tzj=l;VBBpxsr-oc}oB^oI(UB_rDN z_2yYclA3wu$WFE-k0u_Bz3X6@YxW5j3SqI)H$y2X7|eRQ>G$A$bc!Secpy!+6l~>@ zEh*zZp4Vx5Nhy;a!F_DY5m&EDzUdz~(&>${eef@g~(xxnql z3{qsZgc_f#yEYC9A?}!XY~#bq#T<`T!kv!tmmd)b8;H<_M$rG8)G8|G=hi+rJ8&C zmVl9a_*PqZ^E=H*hfazuH2aMA6p(C;n&0JvIF<}SD~0o*iF<~-ne7}67idbU0&NOE z1glG?IW3h1NTg{0dq?y-b6nC=f(u2`Ey_U$*laYxY@8^>VT7RHt&rHrlWGd)4~!P{ z10=UeqPx?5V$RYvck@kMn<6y`W@XRnwKqO-EoHNuMw~p@R+NAihSmF42wTYalVme7 z`(Bv3GAUzXzD{Y;1=l90MzGq_a?FR|oTpX*ryCy9C4g%At2f7-J3G@5c%>=mtZrXn zjL`aC&n3Zm=bmMSdQ&}kcSFp0lShNVQ!17uKl z(`-)=Fmu#eT~%*!UrPAIf@y}-sR&oTU%QHe$*i6_8g_Dz*_O*(YfW7fyRnHsv46|R z)+;#eR9UJ@Sckv>ml!a{>5VUN6>*c*Tdulz#JX!U_7tU*4E639l@lY72=17gGutc8 zdtAGkZc!FTyQ%=<1Xyqbjg=_%Wa+G%hqnsDZUn=Q6hf4=p={2%r!-}e*No>T3SBpp z6Y0ZDFE-fhsT5-3X#ww0;wgaNiq*+hP9kO4g)j~wEjIIHT-!WSYOzoR83L;$sAEjy zvv1-Yk3lqXD_9`bDa=!X(JvIc(AN5lv_W~%%Bdb(4fEiL9jWcw>U~->6omRSqCRWLb-cl9$VDMnfLFE z8M3?Pg4XLA4V`(NDNvbFV|FWDK(5gX2VEUPmLJ|~6ZG5}+l{3@OclynhA6nFh(IeJ z8(3B9l3eN(cJaXw)H7w#N4WXLX+KB|j5A&lUOjcuob)`GqTv|?KJyqyAY@=}A@)*`h%tA;1_nx_Li1xCvj!=GlZ;nIT2;r2@T&RT|8 z3+|idKX^P9mpVThGEGc!kvZL*Wm%Z6-yeO$bLX6U4*y?)=jf-omo2%J%Dz$LL2vQx z=PpB0J#j5{upQfgyT?vQrla?|&A@T@k|`<*0fPu8U9FL4B;7wVibXr5{>kJS26p94$Ty>?Vf-+mojxtDkHr>*sDr%zaDic)i5%tlL z%-Y7Be7JYu2ZXU`%Y(e-487e`j*CC4`Z|P>@3GzMaBVt~c=)$HaL8W#(w0-DDL{Zt zgfNR~7O{d(!+D@`!Z?e^+S#cHp_+adnqC{aSR>vBDUO~^@e3In(qyE#VIe;FA_RY$ zjcl!`Ez~SLKfl)EK)D3WYRgiR>M@gie^t&!Pob>U7QV{ZL!Ny|RM_mVNs+0zYVG9R z%_!KRs?Fp-NTpI|_zo5Cz4GX0cmT8cw0vQWQm==)ba*&3N*+ychHhG0?>r{U(1Z;| zsAz23Olc~nu#O##>=dD<7!Qw}uHvy%ds7p0suI&6c`Q1b2r1>_*^kd}yyocA@+lo9 z>xl;*wjPoLU{H~=8|jPgJcB*Ni^OeMG5IE9b{#W%OtI}G>1yFS^(}+~ zI5$z9O};NTc?z?S5@L&-?M@`Bxziq8aJI&5r(@Jhv3#Lads7ZI?D|lLyok{N&e5ho zFpwQ{zeTai#`y^;a3abtNytVONa7sjC0@ZOXa$O_IFTbo!;R@?9es8bc$Sv25J3?Ix*RHeEmx8=mxwn!PS*biugH(iFuiVJW}+xmwu{y@@wIB0tqD#=OKT`#78jBn z4Ofe@x5SqZk7p9#uw03glQvP8aU0c#@Z^^EP8BJ(WvSn}du+93Av)#ec7`--Kb8xi z{)FPZ)E`}MgLhyhrFH_+%38&e+$fftF^rqZ#9T$e;viB2?xHQseN#hFnGJOPjYV>O z$|wVD>#HuTvaidOW!4dJfGVxsFl_NnsD3{5xoX8}X&gNN|-_#Z8D77A>Np;z{<-XGQ4ee$0;v2uQi^>5T4Qw zqUusui%=VMLtTOKXdwNlp4txe4Nn6irLR-NLv0-t_>AN7$7uBwA|#9u$g#kR?3~?{ zP1CkzO04eKXa#HuCS3u~8l{SGIYTUS(O+?Vsbr1{YuHbxCB{OSJbc0?s1$P*>s7!( zJe45o?Vw-+j-AmH&M1r&Iytm$`@1S=lHtC%P0feat)v60+?Mpgs zd=KuFU-3~pv4%=>4J{XB7S>*s7Z$W8^_-f_oTQKzFBJI=5QSYNur*sYvv^hM&dM@olX8mpDzQRI73`2*r$(-vjdT+=PeZ{S)wV@L`j1Sotvu94Hs<&LxR zb0zu)byg&1f!T~X7rdm^CQ8>-R5qRoF)Ton_?(ccHVcgh#w^6q(fI6?6ZZ`NMDn7Y znINSX9&qhkfqSH7`$Z%*qdep;u6qXQ&pSv<=7Z``M9`hiltQIidkD19G*5;mQa^B{ zhHz^yX?`$g-X>&8r?AXWxSU-$XDX5+h)9X*u(Wm9gD)q~(YhxIRbh%n;u)uulC*t- zf?s|zVVXF($X8m*Oi|I;8f(IA@=X!59v~_}L8#Id9Zv_{rLpIJmn$vr&E3il0t3AU z4QWMFR>2U#%Tzu}eqhS%Ixgg^uo|eiu?mc-SWABB(;TDq;gAIJq>ai+FO9|8b>QY( z8O8mOf2Y&>oia?mX^%RsRqRpB5TZtniMB;(FQCQGrPIHP0BC{eG-MWJPKF5C(xcM? zY2O6b#@XNP!h)B@&X>CP29elRd)BztJl&Y8cj>PoNyKaO%!E(BJc^hfYy`a+b5KxxyCYUO%VAW15a8jo{ zPH4$<=CLtk5I{-KC_R+)S;TsLxF-6C`r)|+CJj(iqNlYq_S6H?4h+@*act;LL$M~EGr!e9GgZa zSzG*R&uX~^aCYJW=vk3}M^)s>SC}k2jSJyYTV}PDI_(rwofFJH1AVatkw?QjGxGtZ zwj(HrN(J1Pvtg}!sCarzDhaL#uVwRQasivsbdKS1(>sywwj|t)v2@U4thbOWd<^+E z#a3ZUhO89zBUBZE;7-$WECo7+(Ol7+8Y`h{treDebQulB1z3Qr#g76=+agzU7SUp7 z3!;T{g$1sY5b!Y)lJ8=+eB8O0!fK0>=x~QGQcFx?+?AOL%(0OxbQzI9cO|AFUp7j= z7^QS;XI@Em0I7}{RRpaQwv{70i84#x_0BLH7C79P=$a>srRKmGQ#Gq{E#G{DHbiYF z^OdIKT|?M=9i&ji9D6Nk4!x&2%}jXFxgnBT z<1`=VvPCV8%(>F!ZF+b7QKC7x4$nfra)cThEWDG?3T^Gd3Dvf|+KtOhe}@$yBQ&4@ z9bhG>o)2?z4__2<>= zU;^#FIU26T21Y!g?0!>#hoNT9{MQN?p3#TKn3H{VT?c4?FGr`nu6Ks-g}I`x#I{Jx z%W%6`l*l!d^%+DYghkCnF+J$ITZaC-K$&lR83eOEnjExbd#H#67FzZANC7N$W>-vs zeDk+X*GZxI9*%Ci9ip5OV9{xyb}_9uOk`;f7(T{mk(;d(^t)WBzhqIRQ!?Sn(hN&V z=P^%z$}&tQ9rPR@8nxWhY^EBES!(0#c1dvv)XW1UC%v^!$+h#=XVh=#tJ-5NAFn?} z&4BMv=Ua3w0o*x&&3LS~m@=hxr_5M@Fdz%B9Vr9T?F!j==_gai#eIppPqB%>}zGc|^Y~0G-82j255s<9mb75O;nPjdVt?z_;YYhsvQ+O?Kz_7*R zZHevEAjY5w`kk~F9)IMqXC9v&Yse>wIgII5d4V)SH0#<6qKcr@d{+H(3U0aLBd#in z_UXhz<<1tqXJ6VWBxX_JW*5vPX3UhIpyJbQsa#PfH!ftbsG?dxHAF&f#=%+_+=Z9c z=Q6S}VDfZ^&!)|+E2C}IWKi~zo|Pe4SY*Nl-1>}!>S}=0 zHMkaF&2weqXp9uI1UB$OOZ8t8C6OKKV6bQeJoUf)abiWw^}fKeYFrP1Nf% z{qE$j*>(PO)p+|f-{eTy2w-~x%pkwPL9)A?X>5ie%;fecH(6(CY+idjC}l?aNuH%f z0n-gf4qA}BLxtC>w+CV^Gu=AurWHohEz81Y`ur&uwI=6n`mAFOdsM?PT|dIEc>J;* zMoZ&lfOjtao~`NiH#kXsRFl2z)CSYzFIa~=*+VT5F*i&rH$6VVF*0Yi9`9tj*ZbKk zv!ulFbTF40>VBT^@vKeQz>|-v#vE$WV^bkTc)+a4bbfHp&KcDjOy^HpCpWn*&I%Z& z>uc<)Z|P*$%o=N^`+e+wt*klDFEtltoWm$>$X>C_lIE?1|7 zR>fEH|KR-fmE`osj9Fu$l4h_Ugb*;H_VXLZ`#tHp~qz5fV(_-{*)HUXAr# zmHmz{rRjDv_i;6INQc$U^gO^by({Ut3Ma&74=+jk(b6iaglvbsPT-l=6^>)Iwsdr> zponShj~$iOdQzh|oo?cUu2t#*6#!!{5E1R`IR4e~M@juwg5(3-xc8VZ;Lh3$x+u>1wjoOf|JXoEs!XRGkzkv%H>|A!^!;vy6?N zYKs4zyO$ScvFEDQG}I&93gEACf|AHG;{-+NmF2!cXmcG(N`a)3b}m<(SKnjL6{j?6 zwdg}U=sb(+o-nmaDy#k$u6nLRiH*bp@H;ubybHJI{FL${z&<+n3F~MewRIooaY)L@ zjQBEUlu=MOx!}35P;9ue;xbn}7s{k;Bx;5~JNJ>Oz*Cvv_i+>FTCN!V1lpZsT63Xa zTp&{beu&c(i|mYN3?qVox`CkPx@pGWqE6wnJcYUF3t75;5lm+Ix96UrHWLcC%Lr~R zf^Xsi1m6E7Jb7Ir`z&I9txR%uJInbq!R}6QGxM%VA<%q5R;K%lgt;%%onWQk$eobl z#r6u*vQVMvrdevAaK$M$CtTG%VXeP(J^<&D%0d&iS?s6x4Iw62?f*u)DK8z(xf7Et z_n#0k_NDMbiuHamr@SwRH^zd0mw+YWf6l$ISn+T2?DhpCY?k~Yw^jn^=bWmGHNSWN z=B!@V7CP}L=e#edHp#00Kf>OZqqA7{ukPD6*sS|+ajN@*zGE!>-xF{iqbx*wVpe_~ z#f*Kq!6}x$#F_33$CzO4&+`uN%Z$@3o?!Qd5v5uEv)l;@d(OVc6I%5o%b#e1`gDdr zU(UHp{mp$IquSNp3Ax}u$i*}!?Hs95CuUk?F{mBsp(8A2${8ZV{RDu2{<)ZQfB+*H~}#vh@!7Pq=npXV%MTGS7(#RvF~Bum4d6bMb-C` zV-(%&iG#hFy^EH*n-n-dz*!fK(@M#de?+;x=w6M9jeksREV@^=5O!A$hKcymOZn|-1z$ivzi zsD>v~{SuzTyt~P;IRSTMKMp5Z^QVYo&P2Z{HWJb8?J%gx1V6to5bYg&mJmhxnf+XN zCah*HlRU#i*$=%$8L5kutHp_AD@47nUZOT&AUqF8&H$W@``v)5D1qk$QPTZM< zK0c{J6Gwu9dhS+$|1vMC7zXxZ>OsBYw~X?06}RQ1E><-dhk zsy>2Ga%yt`3mX=&ADM4v=4ESHW{HO>PQh80sS^{e+d1GRnEj?RmAq*<$oCW0?5M%? zFInYP6mDim4Fa-I-z@;rg7q(RMziAt0U^Y$ z#>$(r#GfI++4;zuKHdNpNPmr6KRfMFkgSvZrv&E|*J9g-i}=JJ%ZMz5-d#}@EoFue zaIH>ZKkk(aQr{{I>Q`qHkit+CL(MX$DE98LJ6{l3Qn*50e0?@QIPYdAVEdtL=5v{> zrr=Cbd$CeQZA1b0J6yO^DJcprscb6{znv2lgXnBq>8OG)kVk~<6mSd9)mi9DV4u&E za%#>~!nQE+zKZP zEV{kPU45LBbkgE!U{#Qet8eKy@a*TAoT}a-3;l0gsIvxP!O59@H(7;9mscpI=lUy@ zbey%9r-hFqID>9i>fqQT{GapgM!;GovK!w^So6>VN0nrO{13R#^W0Y?p?j@BZ?3?6 z*W56p3es{~_Dy}7J1`GpL8*&WT|SxW-yvA1QLZ2w0PF-+`51xDLsbB@>7j6wO8HJM z?1u?=9+3iY#|YIQ@u=nzDFAX(q_~h1oeQa=$~fiw{&`^{4-`)pqC((q*9eclL6}Y> zRl(Cw!DQJ7WG)X3IsCnOMFOOY3|h!F#DoP~uj72@A&Ri@BcrMA5v=1jTuE%02XSrq z76boJB)0SHvkiCRy8RlV&m+#*(8un_Z*#|;hQ@*zV#6Ls>2Kk7&qLLT8GJ@j;k7L< z|2(HX4|m(6psAqZznORL=@Besxr^6k9wbjgo^4SgJC zzIa}mGQq6Rqy55Z(-l9uQ=?R6o?;Ev-w~X+m6LOtLW+PgY{WqOn}p^jMtN1Hs?3js za)#GJYJ6g$A~h>zmM;^oQ_s(xr6HYmgu&MmoU@2q0dRWbev~kr=9MBaD)fZP+8!n# zr$Z+fkV{@x`>X}#Fq;zQ9Y+irxSfc~Ht=oE+f51cfU__Kip5M;D3u*qBV@OdlM5Lo zL?GUHJ6_PDC?)_eC*gB*n>>K>j8p0v1H7#jB(VPuCp+5(Vv*Lk=84SoZr<$Ku!_(c zUE_KD9v;10NX%QZvv#aZ?{~6=jXbF8>2?&yM1uC@{r)p<;%o=h#k2H#V$)wBY_|lS zH)mTAu<6HzJSDdVQUv7qn;5dU|CoC_8`g84`W;=k(?jh^`PodzKrUgK1a=4U$>}vJ z3T)7+g1j5=%%`|orwuq49u4Mdn`Peyv+r9!?Bg}@ac1-6?Bu8KBtIYI3}-`^v}9o~ z`_Fi~Zsj@;2L-4b3vb}!XFF%-&HfbOImx3Hx#yBstj}d{Q!})G$wfQm0IPW}w5o9* zoXuS9l;CvG%&oj6b1$~0BV2xNUuM^77%up$`?7g>OhE44KPOf@F=d*~U018~Fssyr~K0b>TBJv>jN%T~&ixA*h-&X_shOsMnTfvRs* zi?<1GUV0Q$%OBsD$%Q7u@Ft#*)B85X`PBTzDqcpFGdV#VbxKgvKva)q3&8XCzE@Htz+l<4Fbq_dmGm`N4(yg8U)5!@L;NsA_1xPiXUA;0A-b zOzhY9a=A|P(G-WGAxd3u*~VYlk8NZ^u7LY%1n1N!r$fH-oAN-sQ|*1 zrVW3)*!-RYf^Y*KUh<%+LrD6s{LS1EkDv~#-H$joeJ9&2TX7_ z68^@1Tt0;T%Zk5iKM)4cR+a@`gG-(lVF*vNlh^j+$^o8cC*REjc6ukLIgzk|N}k|R zvgEVe!nse`z|<4{e|gGIyW4aV4PYwa!|yWHlibbyf*MEUKekUBpyp~AYj;1V8Vklh z$Mc_;*C1CWXb&{WxS#W!8zM+}3^5|adD()z5!cey%3j`&69N%u6$15p$8 zZ`uzwmhjkzIKg=dTvCo(R=q?CciyA!`E8GNu6qLWC9Zp3=FE){ptM>^yFnJIom(qk82zaHu>PUp5s&dagAd` z;S>9@fr(x36Z?V7>S-U@zsq>v=Di#J9=tCC?^Po6yo#@amr{Jcj%VUl-K;lSoTho} zd)dkcmFfOHZl_!FvHIo0MW&uzRpEDuqj_Sx1V4dkdt*CZXs^D4FyvH_WPb7)pcC_`~Z_$5MRc# zcZ+S)%+RV5@k`vy`LC#5KjNnda(=WQt1R(HgzDxc(<~j~268q>32*)jpQ=XjWrR6D zX4-Ef%4Gi;5ovy^H&FoNdBUB46H=uy{vkKPbETZ8h>685a|w&pwp@*CQQXMMe{x|1 z#pC=wFI{6{rRsUS!QmFSux?U|kZ+ZZHNavgpQ-E*3SYg6Qy%Ut8?$;z0Jo{uPI- zFANj=P2{~a!q>mOb%C;9ocsFPh9zGu#kA4q^@LFmspX35-iyPWT#k+ZI`CMlD zV{2n^r+pRqga=c5fvz<6F>dQ3&;$lyI4OKQ-KE_MpIa1~pc(}R)9d*(*Ru#@?1rsf zH=s4Yrv!{uDpxeCpDt?ms@ctEffADE~mAC)`2#I4wBDMwn+Bx_o%KcZdq`e zY{@|XfdefLD_DasakqXY4{Iy;QqQ`FRrrbfl}^}U^(R^0zvTs6+&^`o#>Iz zUS?fdEoeZj*M{>SUhJX}hO9k`mvf+eJ~r#3Fc1+WSNImm7 ztg)ze{!IF*?s1P_2THdujdvnj${~zo+gAO8H-z1bGK`15Plms zaB(*{h*SkIS=IM&3m3PlRuT&NEsMp!mfzFb$@_Uwi=!1Si~bE4%k$e|O%wH7xOt0P z6Tv(4^L8M*GX}$Y^VN zZNEvCE1#=Od2R?;V>vnSnRaj9-j`!~4)XJIqj)44R=NdUUebvi@v`KHk6z>6e+nvXt8 z=A)z$)2I7Es1ss+4jJq-sbV=QizrsM{a(k{Zku~)qTKH-4C32<<04K7<|cjJf1Ti+ zb@}E%0D{-Y@dnXXp6N5vlPk_@It-Ab5Gm}JIY7Q|Zk7Qo2KcL_iu=u*jQC*4Vw-2N zs6h-}{QM$UVhH2Mxsv?Yhv^Q5+coIevSf#6zu%H;2UP~~ES!Dc1=GHfJGb8#oy!sM zZ*npD4$SHHtf#c4l>g>+j~@fdOE z%!03owv&N8iSUn>F`g#6F9{?RBr_ujemjL94`2L`#vKOv0T)w5GwT~H+j+G zuu8Irk-kQ{A>*DVsaiCT?<2xeg?qDVjI3QoZ*kQHjBj%Zk2Yg}KL;$pV^v~vzP2Ix z&rK+6ur3-qEFKXyWxu|G!xga5OgG$M6QWWw$h$d60h8HOgKQ%UAulgRZ%+( z`^`#f`*s(xCRNS5?e!Xgy?u3_RQ`>%)A)0*k=>ZjiA2=Bd`+N!g2&yGN_FjcpSI660 zEzOq*=NYn7MLer|89ai&&hMBIo^wbJ7P+-G^-_hbv&MBUcCchqe~jn2$icv@xk7AZFvTT9(s zw{N)ZoO93N|J(X8lIMKe_dKiAb{=hr2rE0j4rhLen3`|xXbxjAG7arFYKSvB;l`ef%&$j*~e0hyVejFa~1jFfzzx4 zQKu-LRQ0V(84zRzJg_}WY_hp@>J^34%(!PDHcj$4)oou0RYQb$%v zpbI%#zM7;9m*$U!`X!XJdtrzu2TO%UhV6h|XhsY-fKc8E>$Yp1a{JW%opI_jz z9V1g&(k0L;h)f&!cnTYtj>^C;Xz&?gcD|4S9@r0}K3{gp$AY9S6Dw7H4H@iJp8Vnl ztA@Q^HS~2F_D^uI{0Qq=S5^(Re|3pFn6D?zJk9_WJalEUuU-65CZeIqp$gE~HM(m#>iOrX;X2lE?0!S)f{rY0hOO2JR z?5{8Oyf~Uc#2@8(Ep!tZH7oS#n-@!;kh#|B2j=V=0$#AeuY zg;{L6YJse-&(%HVVnBOj<(ou&Jk)MK#`FZy?a^6b^%~$xbsadnN?e+GS^(AY+P=1W z{3XJAV&-Y}yj^>dmrz!CVOD6U1=_3#g*E=i4R0-XEUz4|I zxZ)4YF-sIBMsP%1BkKh`^I5qBXV&xUKFCpz_q{skMX|N{+XDqlrB za^|KMxaIp)Rtm7ZCca2oKwf7-5vbnw6PrkbKbz1k;-6b%Z*r&;h90pkhHh#ic(yE3U^+K6d9JW(bM4f)&HL&;&Fw zieo`;B)OTDE+Vd^+N^A!M#QluIVFOdb@%1j+g?~jN&VO({cAi==Tn6RE*y!rI>`yv z^1TH6@{EVt#Un#|@vV={bN6u22#M<yBVXPm16XV~@EaBj0wL_GQ>`-!wq zBWArtfU|NL0`$*ReWkxLx#oXScOCFi6-}J}=)L#eN$4G<7wJW5YPcj9az`4;h0qlQ zh2y{jL$v@ls)7nu1Qq3@DZL3OpdbR$q)PktKeJbPN#0!&?~Wh8y#MUX&d!_No!#5F zZ=ZPP=1~1TZrt0T1J$;G>rh!OJza-X+NTs%)6;dJN-TGXA0xI+!9Tz9l34WKj&Qw?a8Sr=U{xZcJ*u9kcOp2v6u7^|}t0dV9}8U6l9@&n;vUGdZA>T?-i--XfMhGTj_A40!7<=Xxfv;%L4*|E_&`BMC8SfzfKwiA%m9xvICG8RWa z>7vCNxnAm91GCg)y9fH5mr~ZjLiGrxO{0Ds_G#+H(P!fAT8H7Z{E;o?Wi)Ndp^rzk z$+&a%B_Hjoa5%MCK~4z6)!7T7qkjY+I3jjbee*`EI{J z-&3EHYr9)K>5Rt5Z(P)lgIe|FNNsAx#)LR~6XI%Lj^?R8#%a^ZT^n0(9Bt`+C~c=U zaHf3T9CL!i>Y3bpatH&ZYJ||F#P<5~eblb%N`OW+_}vmCwtU)t!9E9t-rHq+%lTDQ zruTL=79YcPwW~T}f%kUVUWQ(nK7TcN!mgQ6sM^9bRe*TdFCLGIhyLLPu~cMx`TjH- zhiVV=OsSg>_j+F`;bL_sG6}!;(S&WaTo^q;^;c<{c82p&)7(uTLXUTq%jaaVnzP<_ z%%}vDe8{vNPE!4ek>))?iAzX3>3!qiqlm8TgMD5K?oyoqq^Su%#_*stR(wH;&%blO)g+jyI!8_Wcr;gupfK@K zV|~JC`8zTSR;$kbU9+jpu3RO=*M-G7BJ7JMs2SA}%r%b&t>Lx}->YD$dVERqbRO4I zgYa578#(|=Gsds3@0xFf;*9Zt{p`uC8Rr3sh$<(+DA1+2HS~VuG6CzP(a2sJEuc?ucthIdFt;td%N2MrK;;>9{Xa9 zTpeGFyH{N#@>pep_ym(Z_#V$VuR0x5IWOZnv;90d9du@p2gZgw&cZ#7%2M4UkQgs@V{Lx4J}D$&d~~#4yb>KIH@C9q_rUY&lb{q2al?6VVs|lp zXm@-F&C?ADV__8bv64zAO}%Dsv*rI#eDpd z)3(178RJyP(WS4$sp^hW*}XiWcYCy3`LdfN#+4G>^6z)HtqMWs>#9_sSZ)zXf=pElWgrE zSld#q#igp({@n0y*rhtPNh`nFT~>oNs!t(3(dM|j4QMN>n|)H(C*II8u=kxBUTg2# z2TH=8;}|&^%ndcFtG=n)WK$DADoMPTAvc2LOYu>K7G3sA{23;B?j~uHJj&koB)LA6 zsm8)oZHkLejKLAxaVF`f{TN6+ZwsskMY;8$n`m3AgQy0(ob)+bmkD?3dE3YK8z+6X z9-bF%)${vx)8?@5A^fL03Z!^c3o(LdHQi|`?Bx_2tXLQdkBwFv2bdE?O#@p@ZJ*e= zhMQDv9BJx;fc@K2qfnWuuGgeTe8L&`YO|^^w5g7BTD6J8pd#$=Mt%x)s!wgxRF|N) zJ(xR(>hsQ136Y5r5w=%|tEU(O?WdWjRiK?2BzEiD4;QGJ5z1_DZ3m%Use0XBc$$_u z#ll^1m}-;Is7`!k1+zLH7x$qKRim^bz3kMQUa_tSXMXQyss=ubb2kUU6av zg^3NW_M;4{!Z6j}Yff2IjdK(TjpCELT$RJ&xb!OIZ}_spdr+v}ryVAwWuZNKWq}9P z1C9sU^tPir{>>2MY|*fK%8gFDagMsJoDs$)nB<%rbkCT4^-@lqtWk+;!` zRex2cax8}JBn*3aEs`!Rwz+*-cwM!tYp^9M*0zPvkYdEppe8{aOvauW3qLof-*%Du zD6#05fUY7w&x4of@fTbBgCt9QmIFUP#knAIpjZYYIKFGiJys{S72(C72ytSMJ}EYS zwAAwke8QVZH0ZIvNDuq$Z}t6zJ87czPDVw=hT1=|_!p)H+&nZCA2~iwe0xQoAa>Z= z{6hOfkHHyjv>HIuUeOm_-b`!Qpv)*)7YA# zX$tdWKMFc!vAUC*=4kOLSKIHr&ghucQ!#^o+>_$ZU`1+9v~Qc1PJ95jq?Um{;ernf z@_o*NHPy%(3|Tbr1QB{-oY@N9l~qOM(L1d25o*4Qx}120Rh;J{jje>ctEDO!K3*II zC7$>iqH*97>)irzZXoWa@>EnT^NSNJ=w}3PP@5}{!q%!jE=QMO4c0*-43?+NUwPF zQfvU14eh$?&Bp6#Pk0FCZJd7(Y%XtCKURDqD#oN20bHzM*`{`XK&GBu#@S=Rp^1hl z`o_JOPKk}TVY1u}$kISPi#@+M7A#&bj)@4Dnd%}_ZS_pzSR5fv6=|=i9q?NUcA*K1 zVMY{?AP#}DKL_c6BC4ww5gVtE2{GvsY_~lSzDq$?tbL%th`rhD#+-=ZDagVz;)Q;L z%{SRoG27vP(P_mCBJvk^60+2^n{98B!945H#Tn#upJ%aXG8IyimdS#3g{#^Y0tkX!O>zIw+KN)Ok!*zPU|q~g;N~C zu_H36X%|QH=$wy;dkuG6QN;{-d>0#g1;*A4rIG}}i8x3)bDnjL+?;f@Hge>Fn<2!k=0cgq6mrQ~OEmh4D`%f~l z*p`U%m!#%MSW-j9DfSFbr=AUg8LDO{#?YX~ryJOiUlsR&aU1B?UhoT33Ux1(=iWCUB7$fpE)tJv7hB$8(nAk#NUfa)?5D|YldjZ#Bz%f_{i~S#B z-DRO)W9!$vxs@-u5j_B{05d=H! zJZ+37=ej4D#S%rgrm4fK9R*X zwd#SJ4z@QH7jaSBtKE{)1WvZs!#Y??LJsWM2G) zFhq!7K*Ia-?i#?{Cfah@ik4ZM!DPog%jHg!BE<%l@K|wZ9rfdIxsse6zO1ian(cfW z_xoxt@+4XcV-|^Xd~slXoH(5_d2(`XVqEXCTtr0A&Me3v>=S+5xoyY7dkb=qaG*A=d$@1paiypC%}`6VNx1 z>kL!_XKIs6%gKl8zj1ZoQ{2A~U&GXix1cQnu)q(uQW1d0Y43={*j0CKTFH-O@R zNSwO#tcw#gIy@IsaK=WXq1?YR^odfhD(&hqP1bPkV59F`{4T9V}pn6D~ z57ZfHuLIo#N(TBB+yy}IBW)qj1)xPhCGlr5{sbd!2~dBOwiGBo&>KK~!F>~`0Mgz9 z+KjZffp!Be14;yUInYj&y8>t$xbFZR0ry>?kC65rP(0G!2Ra1w0nj(dyAsF(vOuWYKby70Of$($3REG{RHR)xSs-j z1hf%o1JEX*NT{A2ofV}?z{R{3*pi}V6EugjF-Uj*{ z=nl{($lV3X26PXoH@N=-tp>UeG!*Co&;X!^K(~u6fw6Z|8P;NP(&ycq~&|i?N0Q3NI6@eB4RRYR|9F>8-gIpD$1Mo{#pz6?44d^9s zs{nTL6V2M@yj5$k7U@JWy+( zNkDCY{s+_+s2p;%18M<%?SZl*?J1x#Nb3MJ0cjn9njx(dP(Gw}2KpaR7og72+!d%W ztm+2z5ZvxSH(-4apud570(}nd(?F+ydI2p1>J2murS$>2iX44`ZUglLs*Te61DSya z0Np{}fk3}QZV=F?&@vck6u8d-JqPqG&_?7P0yG(NLxIjB?=Ya2kQ)xv1>6xpaY%a( z=pgbw57Y)}F90O~g#bN+93z2hLQV(N4r!r4gMh+-+5&|G-3HPFy@?zVK<$w>3Md#p zjRYDDt^w#eEHwgsfO1CzT>&===oz4BpuLcb0eTF5u|U0m;()qAZVb>1K=DBNQCb4f z2xv9|%}0(zp!JX&3v>~hlYkCEZXD22q>Tqspk)Hk$H*~}(x7D$&<{Y9fu06;3eXy8 zd6BqCdkLrlv`hsm3GOtYmy!2npkE+29q4DE89=vyUID5D^eWKHKr?}MK+7zk{y=7+ zE#S@uDuXl&(BCLy4p2v=%>}9fxz~Um0$G6+aOVMy0h$kV4?cJuC^zJifyRQn0H`$X zXd%!Hl(7itN90%x^c&=s0PP1_3RDkT-T?Xz=uMyxf!+do7wB!Ey3n@_s1?$d1D%1E z6+k_a_6|@j$h`|R6x{cK=79S?&?`v$0O%9QtpqxZv{gVefK~(LL5?**i;=b#$O5zu zC>yvR0&PXwM?hZztp~aa%^QHGBkg0L_mSfhpo;L&r$C<|Z6nav$gv6N5`6U;&}E>{ zfnJ5&7eFVW?@OR6$nh1>w@CXMr~uGrpdfI+0eTf^3y=Zatw4`}z6E+6-0y%cp^Wc= zJ_L6g&}ZQO0Q3&hegx_Sx$Qs}p#K3?0Cxw_G^FhW%7e6BKwl$mH&8>MJwP8q^G`rm zk@hpt@5r$is4KYpfbt@3KhV!eI{+B0-Xe^jdD)`WkuSrK&O!7H=z1RI}P*`(#`<=fwZ$g0rVHpudv`EP&DK&0nJ6)WuW0m`x__*Ij#UL0{1G= z1f*R9dLHOHP&~LdfWnaXAE57nZUP+ux&@RUa<_r*Angv&5NNpzloM(9fc}Md{{>nD z?tP%9$ol|jFVY?YbwQ3tK(R=B3{(LqOJ4D(4Nz8~eL&fO-T=xD^fmP50BVJ_oIv47 z%LTLqX$sKuC?hveF{I@IdW^KZK>J{6KA^9_%@4E}+yX#Hz%2;W6Wl^TNhqT*P!!UN z0CfT?3bX*I7*JWD;y`tfqXdu+no9z01h*8>9h6ZTXgt!&07XEqEYMEmEeEs(-10#A zz^wqZ6=@ZLDxnQk0=j~<%0S1VxeCxz$WaxjH@MY+vOsfnpm3zs0NM_@nm~tf->p=^+k@lK+!<;faUL5YSze77Vl-X$^t$05t+yiZU7ljYV1$ zpzW}rDbQf#Z3Yw%ZgZg5kfR0A9B^9#y@j+^K+}O*1L?tS0~Ct1wm?&n)(&VSPYVJkV&Mw}GO7 zZa`l&&>KjL0eTB*u|SQWB@SpV(#8N?M``iIMUDiZxRgF z8wa!t-0?ttz?}e;6L}{BWrf@%p!txS40H@=3eYP+F9P99HO7~K%+N9wC@0V~px1$3 z2C4-#9q0p;F$1V1&?`W#zfry@oU^&_tklK;MHqAE+AAUI(fQ&B;JNAZ-EA4cM{}Xf|>z0_uvi#Xu*KwghM% z&{ClG$omFRbD%eYJ_h$Kpd&zU16>Ap8Bi_gTMl#wzvq z%Lbqqfj$O03hpOB?;`C}pee|^5$H71HUX_c+GjxPkoGxHHu(7qpvmBV2{az)E1;D? zUjwZG+6?psO8W+A9MBe^<;ifSv>WIw&>o=ekoyVfB((etqyX&&It;meK&2qJ zA1DcF2Y{lGb`YouavTC$g|x#!1AvYIZ3H?BlojY05YBTm9tXk!Y{p-Jj)8ju2uGb6 zPXe7o+9{yjDC1Y4B1roUs3UAS4fF!g8KCQsI}5Z2=y#yC;Qj%09OxX-JZL!&qyzdB z=rnR%0J@5_zknVCT?86|yqAEMBJDCz9n{C)KsaN^cm-$=yWzx)D-A0(0-tMKtqw^UmzUAVZ0B7<1>s8fEvKQ zhd`wu_XwyU(jEgDpe0K_@nziR;ARJ!j=VX5W+5#n(0It@0;&YA0+fuj z+(6GlE)P%*q~!$~gtUA>esOP+_2au(=4(&qyl@R3E4q z5Z-b&76-ZseIi~2SX&r&yL|P}H^+@XslnZHHfWC#ku0Y=)tsBr=K;40+0QCUE4tHZuAS2SA25OJI zy?}l}T5q7DKz)G9qJ{MZ>Wp&x0euE;f1n4*I{;`FxC4Q5c2ye(164wfXMnZ< zJqt7&Xb8}DuiXpbbEyf$9Q90quak zXrK;Aivb!4EwMm3;nO&v?2sD+lmrwHbPN_G0JTI86VPpN6M>pR-&ml3k(LD15ojFH zYsfJk=nCW}0G$PQB2XB(lYoXHZ8A_j$V~w%1gl;IiUjv1pdsK+1!@E|4X8NeUIuy( za?^pV~vefu07M31ox?vw*5V&J5HL`ep-NLz)HXJLH%HbPs8Bfs8<} z0aXFl3RD1j=K+-lcRtWjpx1%ALoOMpG0I&4^eeavfqH|x2KKKkmF4tE3~`?gnco_w}Bdfy9}rqxXXdEBku~J=0NWVl$aQ5oRKw47O}y^QaB+l z(hxH)NE~!PN5zCC_sVW5?VdLSM2AEOzxGz>!d~7rn8QjehFMf*T z$oe8jF4mRYt8JpCxY!$yeQLaWNgT&Ow>8UB)FoZ)YKqq<&$1}eWn!O>CAZu(oPbR` zmV&xOv4_VHE)HYXi*2jPmTZRbWJ>`9&-8lnpi7yG!y;d{w5E&1cbc6@vvEhI5MD%nyx(qxKDXdN6Zk`sd1 z13|Izqk@wy1tCdaR2AR<6?yww^2bMnIpwWs%ZuH@*c>-nydz=In<7Yo*oG7wX^M`5 zCggL`R8Z_YO%xxg!-s`&7sfTB9a##BJSKxlyd60XyU@gK6ipECa)?(ETvLl6RXAAe zv5tzse*MuxG;gFX$`lf%AFGc_?v>M060dBCU2yVkO;HqHy9^f|D3%Z{ULF{e7%R5_ z3OC}+>xAUzlZ{h^36a^2Tg7FTr9hO}43`K;W8Y}9aSrUuPdP(4tI$*guL_7FV@8R0 zS)#-j6imraXE}2#XQCxH4tK(Ke%gK2R`e&c^3v`sT|O_9i=I52m3-TB5H&#bCbM$! zJB6rQL|yu$G*NhlZdOj!yV)7}9*MqaRvOj2PgEl5%r^5jQU6lD25XB_zRE;d$KN8} zpCq|;Bj@{zsJ3@=lH@YddFJ>dlKhx>H}2;q-Zs+GY+)XvE)lQ9pJj>aO4PG+@)MOz zlCNyeMbtIo9SC79IjDryP5Ay+6LoxdNs|1MBrmSLOQmBcfLXDc?h&Ts6XzPBVGcP*W{%KWHp|~o0VJTxc;^gwc5z_KAWf! z<+D=0k0@XD0qnCvL~R*Xo_Gz(mOmF}BMMLC&C0{A%o|Et?tfN_cng@i$MtZ6@->Zp zNVaSuoulsYy(4~`l>@yiQ$CFOW~JlIszf2)o0XR1DiMX4Z&vzlWeU;WtkgTr`7pki zm95?Sk|bsrVor0tCs7zV&C0emEr`PSZC0keTZ<@+!=lDc1`~zZidnIA;d~f-%}THD zni3DAy;=GEXl58b|ea;rCBMop$}0Qcg@Pjce)dWnS)tbQ=IL@_-j@M9eSF0m~)tw!Q<)^g>l%d z%$nVsD9l^TN`am=h{Bj}R=&)_rDK+1RwBwbAs*%pA{M;ci73q0%u4QA>_@0#6H6e z%B(#1K|SJOj$l@rnwf`rhsf8GOTY}qtStMkD@kIOU{)rtX76IAWmbmjf{2HCgIQU6 zg?X4=nU(7ajfscZnOPYytpQP(DVdcLg*p?3*@#(ryA0>U+{vs|9m7^*o+@g35!Wqd zP9jDw?LqneAzqt$1BjYRRILx$&O1bz@>L_=M`TN`Zmo$bPrSxST;4sRs;_#6c;6CL zwAB!z&QrcpeFqUWl1i^w_c@{lljQJO+{!;C$%6ISYU}_rD^DM6N0QiYWmdM_U^{mb zb@4}zOI;{m^i;NN8c~JTbDus!<&FP|Yx5uCt=T-7boM3c_yZn0;z`m_t_|@TQVHMp zW6N|zjc&&+1iQt|%8*rD)0;_4WVXDNuLEgWySE=viA0@S!m%|!QJbo9c?F0%yOzg} z1*GL>*_M=VG?iz}&n3J>k~hY4jTIrv)Qd~lP5J6}^O)nuQ|B`s}_b051*RMuNVDPJ(z zGOP@bqS&J+>aQ&KxJ4v+*vcNfOVq3FIUj!Ynw5pMSCba3I*3@XVI)ylA22JcvW+DQ zzu(PD(E&4v!g_*PSrC>$6xJEc%DuetMC~J;ONJ&9g|!N^Vww;^6xImLO7R_2iNdd7 zvyzbgOQN!ni}lu@{YHN!b*Wz8JB%2QCRCREBmI6BMR#YBJ$;1OcYiPgk_ak3)TzF%D=xY zBOX>G%u4euuMvfH7tuSOjUx){6J}*>@ z=2DyI5QTLXVOi*8qOh7`R>F5qBMK`jW~InaFB7$zc*lEBAPVaXX64e-&xyj?hFRG= zU^!7(6*4Qieq=kpB`w!3eL_5}c$k&S3)T>YRTQ%_`rI2tVWmfSzVwSkT_j%KikpcF zq7ph^HW7t&A~A~YnMf2?tAwxThZD7!v|PIW5>f3a-y6rc-tnthcz4Ba;$i(l%sdWq z9bpZ_th_UgZ4uf9^|$#mlEklf5uyLuN)%RJM2!`HfheqVn3a+La=l|cz^vr&!B*q< zzZlgLzadGibO@c(*%Md?5H0J=ZN$T>ifCC|77&G%5K-?JHxY$Z4zu#pgOx;K)xfNL zv1~h0SlJLgXVCwM!b*V{`$KjTg>@XW@>x!<>9)jMbBV3SI)ho6ah>yF709go@_P*B zOCqZMK`sGnHe!xB>qFwrCaTY*^+aJMMvQ9h*}L8fNYV$QoVhzZwEFa8T zu(n}VcAwrsyj{fGb&(~peq&ayJ>(XG6)4dLch4nBtS*@q^BndyR>jQ9z{fo1V0Fu^ z{Jy|Il68r<<001rR?WniI+-KU1)^?t3?a$RM9qm!CJO6FV(#{UqZHPh%*wYiYE&kw z_S4)ZuwEwSJ=ZxdVP(dwOniP9X)zLYepED3SPv4Tb{B31SaUWjb9(BLLAeuF5iA)A$>xo;DNwOdgS*>iNoFB`0^i&);7TQb(2&B|A;ZjmI`!OcoipA$q4 zB`qJdK1CE(%f&o0+b=|6Em`>N>O-Qi0xjC^{d+`V{aD0;j@hU@tn-_d^Vzw*V2#|Y zoc#GbNn&kZ+)=JQL}7*8tZbToohYnPo0a}$9}|UDcC#|`;n-oR9?;2KNE$g10vQfJ4_T-+r=z)C;JR*{vz7kI!!!0 zZ!jy*9@tCNFp_+;@HL{ahA(EgWo{CM^?5OioqU(5pNU#FG7EVkFO_$_Lr$WW60cQd zZpm29H!IUa*n{o(M^psmYx6XFX&&*4FK9qKJP#DHwFcKMp5~dAuXp4k-buQni?_JVZ>N0o z9&^3VBwnk{+_Lb@Osp&nt55m%5U)eMI$Q!#hL0N(wU@Mf5YKHwVJ)4wJUnwWD^u@q z@4$0R(c_HVbMSo5tdu!km$cvsqxd~`B@a>kNK1(>+$MBX!mJO1iHB#0W~E7%azx>2 zpjo-vrv_1liJCcwTgY|NQt{VX#KZd;;@3o_GgL=-?r2u(4=ztUJed^zD7iRM3n|}- zTHIGwk>neN3KH)*;)QJF$k2z%ySAVE=5FG(%f7`CdtK1bwuSPYSr@YMBy2{h@b1jiNf9i@te6a z=bJ=S&(aaZ!%hja^7_(_M9rfTVs{N8sy0z&3l1a-doRSiXJmV#`jD0btDhn&j_&rF zt~XJ~h>EM+nJDbB5UW(nyAoxle3N^#ov#tq{gXk&!wv|uQg(8GqOkiyMDI6y5cLC5 zhaNpc6!tNQ7+IF>#Lfh>vOf24;$atvS&9Fx15vFg->`&UL}BNLSt%Xbg{W%8+mefQ zVn>8n0SRTD9}v~E-qR#mizG*`>q!)LbckR2mHQF(8%e%*fhp|q5VNPHOkrP!@b2qe z!p9`}W7T1l4?9!DX#ZU&qOe;-#Ovp|rc09KvPoPzc4LUKV->fFS|oWm2e+44;^qE| zJ^wl73vSIG#2y*5lD8<=QC*^jE9txyQmDdp!OeM^}@+wjNh?g{GG*O|%d#~6eqD)j?o&9XtaiWf1V-I3SnD}LLY6?kW z&y!iXIcz0Skwk5bolR6OqG~svOjHTd^7@5$h&n^OB{B1eT0*vb^I$1a=SlL{*6$HD zkf`VXH#^@_kW{B})+XYR3u08$psg_e>{hCsC0LW)O9QBnubimerrA zxf}l>9(F8>)z=e8iCRkeJ~f>rYAf-2UjCM-Ekq>^*+Ntnvh%O1|0Aj*@kZ@FLKJo~ znw6mTr-^!tbiP~rPof@>a4boFb^2H0y+$Q$Yxf6H+ld-cb|+DK z%C~#|MWX&8-pLLRiMm2s!WH&eU!tCS_aO0l6E!{IN20zVs^Z3aL^U8SkG{`K6n2=2 zS;?3Ahzcj(d#myjh5cJ*rDWOaL{%d#x3BVOv4SL96{tcy3-RWT;W-%gjEULI9-gBd zBFXG^xb&7peH?L$@)e{KT8HE&Y9;X^hg2l$3*s$XU6rUc#M}E$X`*fuug+F(XCYMj zufs}G-6oJ^J_Fy;M??+TpNn{Jl4Mesj-+Kg@rItOK-3AMa%{g()CQtHsZ)gV9in`T zhO^Hm6K{A=o;~Fto-z3<<(ophLcU|@NohLD!E*Q*f~LA)`Ko+au4Q6K+Xktpon zH!F`Ko+2tgl~8wfWumZq->fXU*O{mVq;q}o-b6i5)Ra19h{{Pi-#k&Bs3lx_kv2qq zO*)?&+mfig#G6054pIAvS~ssbQExEscnhMskj?`|>k<`3yoSNuiHafWYO@kV#S-;i zYxY?yqP{QHig;~^YE-@%QH$7?3fzy@5YN1$Ch@+f@+yt0Kos6N5F^RnzC?u+b!8Uo z>_qtz*7qdd1fn`;DMi$HqApmUA*vWrh6`|C%lqkHp zWLDn0K7*(#M0Fi8ji`pC^V4RFh{{9xW_MjcR9>R)Tz-S7_erw!yU|1yAl{(<(}|i+ z)VFh^hf^(|3r#=cBc1)_S)nNQSu%D3r_ z)kJ+l)QqRb6E%&fGdYrpdX=bRSEms5HBrr~E+h)?q?wg}UPvNpF_ln#Rs>NW()}gm zT1?bo;(bt({c?%4Oe`w#n{<-!F@wyVPO(NIrCq&KZ97epWM1AqmXrfM1zD~tn?WbOuT54Y+3vVqOub8;PX$3`ib(jTl6_mc-vI`1{%ouO41#ze1&aU zOp=2hy-Sk6kd~Wk*-QONGG~?*#9K;|Kka#+sC6Wn6uFY9aYWVK^d(VqDc|#hw-fa- z@tP0h$gqQW8^7RI_cHNLe#E`_1eI`N=T^%1H1WpOdzL7Lcx$V&C%zzFvz;Fj?+j6o z-~WcFF(lcsHEa2Uc%4pvLA+DMD?M@(QFv?CtlTchp4dW?!LRe()+ReI75aoE@eZIE zJFFiNRfZ&c4ctuB4@6yB9z)b2%D3X*AfoW@uc)!@<%v2^rN4FRJ)-a~pIMpkH`jDk z($b>r2IAc!>XV(^Cf2Y&hZ>3ZD^d3^d`Hw6qACyigQ(k7!k0gDJv<~Wb9$a79^Rf6 zD+|hHqGpg}qwg*fRgWaMJ$03+Go(|0=mAl05^rL@uZbEeT6z+1<=+p9H-dOw9v&kK?<O%&dd7f%uAaqp->T4vooO}t)|uW|N+MEyqjTCU>ug15EB?u{wu zi1z~J`=#FzqRLRdlBc;1)+XM_f;q`&aim4Jz64PTL`CJTOjLHF9+c)bF@dNS7r2CH zNauhaRY?-(I*2EsH`uaa#JgLA>-Hd(SMYvGlFUb1zRt$p9ZkFf$BvVopA#>7Kerd0 zz#w*@jJ-v?JH!*O?~#_8lyB1#} zK)gM}4im2hQL`$YA!-t7`F!t5qHsoqSs8PH{rNxA^8B~giMNp?tJf$*wme6?b{`iY z3g!yFoW+Tn zOw@yK3KNC%D$Gi=zq1qdDe-=tl$WSeq~&ZG?r|-NI&ico@!Aljd!;l{FHyclUCR>H zgQ!)nmM045l87f_zcTd{<$JDpG2(qkk{9~3md12PRgDFShZ9T0Q`!ENh?-3K>L^u+ zdXcE`M=Y70>hI&xTt_bvZ^On4B#9GMgg;Mn2{>~_%w~QsMZ8^9`khX-h&oKAXPd@# z+mo~$4q~fgiFbKETm67|BhGT0FHO{_R$Ly=PZ7^rE7l~PR^m;c$StHIQE#7QJD(xy z=|fx(1*wF{I&~@EkHmZRZT9t1va{k5wrnBswvOR@m`eF_u47NULy|H1S@JXDRlLT% z{}MepY)$wcD4{6jgS4pP2-HMm{> zMZB=#>=&GfV^)j{x%7&p<^8=JQQo6`al`rEn-KNYt6bh_qVAMrsygM{H=qoax0-m( z>a)&hqPn%OPrNUv^dXD*nOkY1Ui&@={epglsM(7ni3%c}Z&l)FiuZ|^>*jOxJm(Qn zMfAl<@&c6*wD~zI;S-|ze8^9J-XSe7C-d{-&cyp@V^@+KPFiN>xkNha5motAN8jk{m-imrl?Tb&Ghd-|98AnBY%)ZoRuLa>O+ z>-c7Sx(A#gXI8TRt|w{`Nfvvh4&}>Ak_$^tq7uF*-ZO=H9K(5U;`!g95R!b6EE~Em z7g4_vbvrljN?J);cFiqHCHzX%3nd4U3TbEk*fq_js1d%TJQu?kq<6Ohldk zWhhbAsPufLgGllZ;)M<8cKsJ=nKHC3@j|JD(5C!MzXs(y+aoJ!xk!>XH*(uuPLf$l zmZN+_h&MYAKY5);)aUi~P`=|NIqh6)qTVMeA$l0y(bHthU!AiPuLbco{ZN^x&BSZ` z9gmcEiFzSB-%&P_9JjX?m0p8*6BhA)hG&Ud7@;FAok;R}%myxjESncJobnYW-nq|s z4e2?`x9fTiiu!r!-Unai$k2xJJsijDyQ_%0Qj}-u3n||prz})LJL3Hj&8w&*iT7C& zuWmIW>i6KP^lULsZ-KogkTL$saDh0WZE=91|u^woSI=3lra3=a(8l zh3g}9;w;;6LzpS~b@5sVPKg)iQVUjgygl=J@{Htx;#AkRLg#DZMUkpOK{&)Y*mk10 zjy?|)Y(Ku}a|c?}OuGXtrnI}&o><^X1#6wcS?PFXpN_?Nm(!;KaIGhmkSWa|m(MN0YqF>W-*pAN zn(JE&viUqDelFXAFMlF^=?6Ca?(_bzPYzCLOgo)_)@Yi+X$&7$I(;79!Iw>;w;wcx zl73)Ag0Ful4e)t?*d{Ib5Br02-?Gvd8hkrEeB|@tp^(olXeh&?FQXF9xbSUD80rTx zX@So}!ioQWh;$7Jn|$6K{*e~=Z0%;MG@yR!tKiPxe8*yLb@jzucd^=PT6v}3P1H(X z0Yk4$C68E@m#13c^r&R}Zw-~F4E%{n2$gg)l|N`I4vrEGD}6^Q#S&xm2_|vQ6&s5q ztf<6bwHtB~)ko>^J=P=x=djY(kx+_l;B#O9#wV>~qe3F0Vv|B*=~ygb+C5n-pdvw-irEf4fTm7FKaNgI!VWh7oET2jb_`Yl6s2MZ{-&^uOU&qUx(trkP zfgnNzwb*#W1Q9pHM~f3;!5lS$^}2sKSM0Z&V7uCcU4oTBGcqNROsY@8`L zG8VDV6dM~ArVESI2luD53WJ*jHEI~tsA=%H=1qg6457h%fFDwW!(!vcv&lzfw^0q_ zE|Jpa8>{gjd7C~P1^a3XHm*zl4P{eM{YCDG(YD*Pq_O&H&%u7wN$na(+B60VXUny( z?BXCN=RrWz(6!miHmk9RgvB|vS1Wym&|?!5WgGRhTWK`W&{Qq$ywoN0Tj>k0a8N_FsO1teoCzvh)mP3^ z_6TgH&slohR9=z}_WjUTL|S6&>6$v@ZZA7yOSP(aa(EM`%IZXFW2Y{e0Yk_Pd8fV` z4*aIl`%6o-#*Q?asra_L$&g?&h+}AZl)*7~=o4w=bNjKD89)DU#GZ5S{Lg=IjFSVd z?_E()T4L+z|G6vX`c3=4?CVevECZ<44yZaHIRn?P)>q`i+;`bx8ZbiPH>&9)Y& zX>7Ucmgzrerq0t?D}4%j@8 z_(X9~I88vB@j#i9DCNZ{8Lc;oUs@4Sx>1}@&UI4C7iWmm(|O-qCKXjL^`fxHRy3~I zm{bcOgCgR^qLbJVoZx!fjZ!bb)+oqkdn3kiq^N`na>ihjlG}nY7vrG@CzV1lg$)7; zdR=^&IMtu`1*h_Oz*R7fA5|{GR{FjPY*6i`ywvA5M5Z+|x{IgqbInc6O5b|%wKuBE zai*56x)eHaye>w3HGrC6H8n~0o0C)}^`_vEu+qnDe0}?)Wc>2M?QfE!imkP{cwV+c z$4H^xTvZ1ZOJ#N6yNo+iWa*t)Hl-L8IX*7d6sb=zB!t)^UreI-_(Qynq$bf>Co|;B>Dxm7(KBC`-m%3gmAZ)$ z-;3ZVs~V>qHRBMhs9rC20V{n|$v-@BPkO-jQSuvUNk@-cYPe~9oZh9OdOqS>>1$M| z6WhGVr7bwB*?C%$QV(=mwozXR;%@J(%1U3zLiwr031_{k73MJ0Su}+>;Ur?EZ+7`d zi`?ecC*39)E~9*E8=hPRJ)1jBl*5IplmFAXgF)NxL+7THp{;V6EZ?IEsg*tu=O4}K zQ{RpJJ^ZE>4fmTUe@wQgwjM`$mtSq34-(XCT?PrvX2efD52i$;^fCH)U6hL!&xaaI z8&R-l(u7%)6bEN{&7=W-mj{)@`k+n zX|MM?~d~XuVkL;%*$|2R}ZGN*Dci!^t&Sq7Nodi!*Bo*EDjslhvIOAuo*< zjfXMfiH9e@9iqiaErz)GSn-YA1lz+B&np+3B#miEMm`?ImL1QA*Ra@la=kcCMGla*@xe8my8OzvO=et0oFlGW z7NUueBPNUQDvPf@iESJzHYMdT{_zVsuEH_r5>?30_? zXR-;Dc5iC-rFKhdt>cpdR`LKwlKSR7M$YF9wXl$%Wl&gyi(U0Q? zN2J;7U5B>k(M4r7rdi{uwwEW`Qj~7I411}(dD31sjx<)F?LV&Rj&1GD-ZY&YZ8dI@ zx6?cQ9(O)C#P-~Z`&;<<7+tg>EQG6vJKStpaGE_ci`yW;D#Z&up|Rpwq1@0~NO~r} z=v)K4cI?upYfyB!_$^gQmV$9gLzFX(36B>0G{VVowot$Yh8kjY@!}jbw*Eb7l+C#^ zuDEn&i-!>nUtUB+d$MiB;v6)x=?R`=B(xg0N+-A)<+{PcYJ5|=B#q(7d9cf%Uo}=E zJ{gHyv^5WVn{?kPnCgA5m(K65tx}zyAtNA|^rJ*Ix^7{~pc_nU`5*(wZL6`f^nyph zAj9`OrBYEATRXJZvQy--Z~U<{Mbr|VT7+uZ#U{!7vjtk&4OM=tdDzb?WY`c3lc-yE z@-ljw^wDt<204>;jW=Sl4vw6jRF*b-I|7Tx+O`qcRx9jJF<*+~GaWgw{UW1-&Fl8+ zd2&Kybc^72QP-MG`^UD`SW4El>H~9Lq>9$X7~&G690voczJ*~Q`huU3w=ICVEn>LK zS&d7iul>T9>C!W{Vba}ty-CLvS1ENt$A&tSTeZ1qbO_>$w+Pm%FRwZrjs1qY_z+#x zD1B%=8Dk&#RGtc`NZXbQ+zfeA(rO&9)%N}VREI8TAzPw6~srB(P&fX zFOJqdLRN|&wQhqyRm~p%^Unv;KPl9$*efk#A-;jFsS)7w*bwxKP+wfOaobO1wdm>i zC14w%-J_;M!WLIu^f<+ByQI}vLKf{8ewgV`#ypnB_)(Z>Dto36+Q~tG8p)Dn)ua#( z9HAZ`rT3d&eo6*0AJpD3f9hDXv-EEFWUtg;? zHfZ(6vs#O;BS%#~a$5s`8t7k_j`WMs_NG4t$D3N4ST(JJYh^d^3tzX^+9&VJ+e>Yb za6B+bX)5TDNNXx+m$VwU`QNYptkP|^bv~B~Ew2texmaM|zUe+eesZ}&ZXo8bfY`n| z;+QDw$BEZB4LF@kynOUzL1M#}w9k*?-9rs?M0=&%SLobb<&f~80X30r*N?oh(f=yw zP-fj9FT_yGTFA5s2iQiNNDoU7`ly+o^xZ^p zyKg)AOyAx4asP|9d;D+Gb=v<-+UwgUtN5Qz0GRW`QJc)*Z&qKI{IJxD(t)Vb>060eq9-RQfTtn0%hMqdd&Zt{6GHJ z8*%DUU{=jg_jWrZ`p)oJDQFVO7?? zoW!igb=ph!)i!M!QR_#`fCF%9MMZEgPwZn$DE+zxQ$Zm$my} zd$p!^tdmPi&#AriO!5A1IeclT{Y<#~i9WvjN!rWLguBn0`pn0vov3eqbHrHZ2M5}Z zAe-moo>yCY`I+GT+}gdL38nYZ-tsb~-^a-*hj04*G3}*i%H5yzY1A`oulr1Bd9V4j z^k=n~o+&l|y7uxj!S_FCFFjN4zN?S>-4X2(Ki%`{oZ8FEgqm)py{0pv^jEakb0(Bt zP5ZrPN-IC9z2-Be{0}mxe62s8YiW0XCRBbI?bE7sck$mc$I+UX2`X#9*Gy?>RefCk z$J+g`R@YYJe4oat8`?|Hlaw5M@pTK^5rwYXka>G^N?Dr91!9*qZ^zP23faVQm)iZ4 zDfKf`w$H}W{?t5_Aijf>pyw|t^Q-RvlfSU#;bUn!%;|(xi|y2aR7-R`3Adf-;aWxt z9(F3nY7F-KM$kxmBglkKa#4mz@0!5dKDB+hEZx=sQ*BJHdnhffJm|7GQN!uGd+Lo* zB|^C6vl{1W9}hC2s(*ItuYT_?t8`bu)Nc+sS@*6pHTU~abuiFcP#*2So-(1sHS%fc z*R@Z6GvVHY1Fi4&lkT#;-IiK(v>!%kHHOOj^xsLQ$!(N$nWUc-<>i5? znx<(^`K-p{+9wj3G7~N)yXt>7FMUhqZIB+RToZ{l+wtObg>UN3tk;;?4pm~k=y!HyqgpqQfTYOHnrMdkQ z@yV~4r!psWX|Apx1I=MIeL4?ZA$wQA{E8}`TBuJUXxnFG_CpU->qZV~TX;`vQe@9z zH8%Efw2BP0`b?Jn)w^HC-LyxWObE^;Wa<7py&n;1(Qs#=8GJ)~3(S=1NqHnPZ{*nt!`rUqc!*d2gvqmHy$b?G>T z8Lj>Ie&(+y91g%CuXO;1;s*ZR4DJSCG&r7)rfW4mm5xSaHQov&-?v5q(%o|cbgu7O?PJiHr-+Y=;z%2-QD5?u)F06K$|NC;BVcL0T?32 z24LHGEdayX_5ie5AAs%oAL(a5T?e_6p6-^uro4=7Zr|`K0u@)y@ znTavUFAq16?N!71HJS35dUJeiR7gZrY*I*UoNVgZ z`Lu5}%p@}(O*|r)J zw|&#g&9iD>IGZAk_KnMyOM^8HQkfJ%-qqe{GNsbq_rwR8V!>%2d!W3Ws-!Sc&`0U< ziM}L5f}E4}(cWe=#b4_@sj*CIwHLJeAQM7e2OqbXw|zYSJ0iP#o^TvKGQPYnLcC>bU#^xr5sBw*Wpgx}Zx0l%;PeE}P<^ZWh$<4C~zc7fl|KA)Es zdJ$JO4Houkq{X(Nm%{UzD7&Q9m{WH5z#B-H1neO2wG0E^PJZ?V?49qEmV0~WZv^a} zcL~^j78S5QkCB#p5pZn{G=&K2`fJ!8PA#6rX{#|-TBv#mjN^g&lTTuN@e99|G}h)D zPge-q1Z+cEBm=gm)w?EO@A!L9ey7;mztvdB6Hoc%*KK$@2j5NsTc;DG<({_U@t)-K zNu3r8*g9z{TchpFSC{dI_oJxYMnmd9%RS~l;1G5GgD^YE*I=HV)V zW^h9pE&`?v=LxhnoL3rb`z`J^xpMi*@Ai(s`?7LWU&L|zjCWDtywTR8WwVEK2CK0^ zpt*OtG}vn&*$!4xnIdPTV_y%n$S^}X*7G)$?Z0ofL4oGopQXWGM1`*cq{Ziv&A{^p z^eE7Rkj3l1(kal!->m`C`o0acHdGmtcOp^xt?~br9{ocYla*(yXE1lXp zd4k@==i-50{ARe-ctSQ!Piy08FB^;^ z%hO`0%ddqmyl-i?ZR#$+f>L-G?`Uxz&LXVFGk$O37{8B0fB3x*Pe~v8dL~*yPVcnD ziziP;+amp}r5h%i3{eKtcn&nR{XPo+A?G~)J5H4G`$qnQv{2KiVBhR*H6D_!!}FDy ziyq8WMd)@uoAeCYYEj1gWJY5R%kGRUjU5}e;luz3CxV6Pk) zeILu_`%Q;zmEOAZyc+8M_boKP+wUWnhUT`ELpSQUuOK^t?f6?iSwHnm*6*+ zWcM3OCismd&v?~|GNbQ2_L~XKFu(E1LBEM7`TVBEj`ka$eC{_sDeO1%$UA=HlbU|h zP9FM=PdfXJPn!8nj4kIkwR6C4eA2>iEScmtEw+^3#MuA&O^e;=H?{Me-}vOL-^^ow z_Zv&he$!6c`AuXC^P3jCEK@B}e=PC0-?Yv0e$zIu`i)Qi=QlpNA${V>y0qKdfLa$T zv~J&aQ*Skn%GCbj$x?I|zlm;>{l=2pe$%Ty^&6j@@|zah(r+wj<2RPPB-=@v-%7XG z&I(Cki(gW_E-p^KB4nwN@?js&a#mvx-xmKs_E#U>{Zq0T_^9~reCzzia^SBj8;jd( zWYo@Vr&?%jQJ%C?t8tItgzL$E6A)gMmiVq#vdhH}-&ydIZ~Nr|-$tce(*Hh+O1u1K z=5pBQ0jj5O8)B?%Mg1lu)Reu# zcm1+}td%r_h$p`cwf@?)8vpcpzf6=4@Ih2QC~M#MZ({xB+g4D^x4)Pw`b|7|&$pvw z6WmS)!L7z1*?3Z!vPU@`7k6J;(lIzT&J-LOn_$w1n_^?5!gOJg z`r!WKO_8xN!A*i1H4JLhGqMrv?OVsxlJo=)gZZLoDdm%?g%l-ljH zV_lyvT##)-tG_bhZfvJ6yVSa)ZrqMi`$Sq;Gv(TM`%dXQvZ8DUa=DblPH;MX)sg|X zWHom7(2r@%MVuSba9O9RwL9H-*;K5?dZ{%5hnMX=z;?Qwi+aWa3 z5EULA6doI9ir4ECf@4Ax;>00%;|;MP zjT?tF3W|#vm2B}|Mf3ElXc*Eky;d}pDy+sE(kZEI5O6!`%xWByc1UrKK(}NOZOFaB z!o9&YT6DtyCY@_EZa7vKFaE|0*PHYqp}O!<`k+w;Q)FVONUhPNYmF9N#Q$VVGYz#C zuTO~4n?f433~AKF=A_n|OAU*S(zzCDH5QY$H%Yl0yL{i4nxp;MmhC84mqw~`N{<`| zEMA^%Hln$topFga@8Wt?-3)t>CDbn~^Ptp}y5ghbm>#V!#z1*4t% zzUoMkLN@2$D(Zt-3K<=N&=V`2g10Arbsu#-$?G0}TYFF^PXq){3U+IY>LED=?>Yqp ziziLjbta@bf~Qm>e=y79No_g}QL6K&6pC`5FnH2donycH?{7ze_TN&Tc+Vx2dDI&m zGYn50;XD9lz)<5+-8rB8UQ(_EYaJ0(M>2=+?JGYo%HL92^{NJThu#c!m(}>2v@ex) z43{QhHLgs12y%-z;y8E@$8%L{9A2;oUaRqd9Nbhlx$->ti3pbB3^)TCpw(DPdQ`P0 z*&=Z#&NEJ{F~9VWYOCTrP7%XuGgx3tr+pb!}m zV$#QmktQN4Hc2cB8B8H9>`Nzqc6Ofjv- zU7^lh) zY1qOM;X`yW<3q%Qw|HIr_>e~S=K&e0)A4{{pltMG(lEGltQd3*p^2v0crj4oIZEev zeYhAfJL}@ZL%PN562n8f=uP@CM2J**EgIVguDrHdO`~xAI9+sHlwJ&jB6f4>m_xB)%7?6S;u zAD)P5HJ$VjR*2&$znV#{>(@o zm|WY~mb#v?AJva>0AFtLdKd7 zPQ1oc4$iQeFJE$E5sFd9wVarXFQ?d+-}sV^wR|q~@#S~E>|-sPnd;4#l6* zk*W8Xy22ve__Bj}-I?ma7b8nP%~Wr`6kyjC;>%GM3FGXI`O=XSzvB$WS<)y=VBQes zRpCn<^L}OCCcac<-X6Z3<-~j}S(>S9e6jMS9!p+f7c^pO81t&|WeR6+$R=H9>K^m{ zVQMO0?(pR!)>2+d^5t8;oM+xh&OVqEKjp-q*ogme;!eJFVcs;p9FfH`)t4{voY;^v z==gGim2GB`4lI($m;8Jwz?TIqGMe+f#EC`tvYUA`nCi=y{(Sk9OE}M$ah$y%U*@vN zWxfQnmfGyWMVxq-FF*0+A#2&im#VC#CSR)aWgkn9;>#x1IfXA-IPqns{^iR(zI?-% zu`E)Sskd3@Hl`*r&%lYx_)?j9pE9opUxstyF%~JziPbr=7gMX4SDdNUOufY-Z}8a+@zjS)?sf$5?fHrjq!wg+*rbB?}icpQ%D5QrnV8EK?5b z+ObQYuHx5MCFZqc$z4pn$5dH1a4V~RlX(}o*t$%uXUPkE>CBf&e5t_sD)Z$R&d`i6 zM!xJ|UMbG7gsJIFRpN_@C3kYM?z#@B?`hcl?e18S` zQk?UZ;LA+DJmyPN&UcV6$((qGOE|^KhH>I7rfM+tGhgy@zNJhJVv+hxZD8KBoLGl# zX~37)Iq@bJbd#xSd|AucTl3{UCvIcOtekj`FAuqdCM>d%6A!UuedZP6#H)OHl`k(a zuM|@Q_!7mJ2NG1m%!wztpzX|?$<%S??P2OPU-q(y!qiz7sm}MlmZ>DZ^kWen zXSmDdb!1*)zFcRKx}5zOOa8->3z@fy6Q5(M59iy>)M@6e_&e>~mVk}diGjA6s*5ykG zU*6!$Ocwbc-(N5%HsZ@g*77z}%lR^wGyKdMtW4!#1DmtRLFVP*#72C%&dP#0LqDcM znKE&{<9sQ`8Qx-EBwupzr38zdVQL9$InRj$`SKL=eq^d9D_g;m#hKTbsYt#gvt&0} z0$)aO;!eKY;KcrXDaV(k%-hP;7QSR*ofVnd&YpOSB_D8NC{sCDa*oW$c24EQ-JDp5 zFNax6YtGkz6YsL*appb6y!)IO&LV@E%E!DpOzmf0G+(AOZzuDLF_oKn@qEd{mr88l zNR}MSiLY^n?R?QQ?;obFut;CN^ybSqd}+WUJJ|Serp9shYAmvX6D>?-^CXPQ1WW2d3U;laBD^C|@G@a+yWyv6f1l?-skKJM&)TOIg0ebH2wc`4uPr%NZ&# zwU>EGEU9BEj4wl2B!Z~}eA&m@^K*tHOf6u^=lPP8C6_SuHB0VgY9C+T;7b>ljAAN= zFR^@S#g{gG`9E`C9UxWpzQ3^D?9%BFN;e9EsB|L|V&m-W?CxAkax;syWPj86IeXRqBlSDL^kzf z)2l4JES_e!Ojfs&Et|1;h27p|mD(`TYPNizz06|EOW5*Owp_yEY<9bgP0zFGL^gfE z0j9DklT8n>X(Nk8Z21M7K4Md6*7H%e?8VRgf)#AfmQS;Ii`~9uw=X$(KMvlFz5K@F zX7>3pi$yGc=K$N-%QO6xli9K_TW(~Zm$9juO>@}Ge=NqZWhRTBYkl^V!EW2wG>%Ps@>4pp<(q68&f*yM!e{4O&#{+#*z#~T@p4+;3Ful{n+gZwj9Dld_JMIoZXIP!N=oS$FYgeinI94HtR(W{x%1n!d`-G`iD*J zSn%mm*12rz!eSna0uJyDo8IMTUdX27+3gy(ypK)qv#FR(d$7-Zw)~1MqikBwZr`wp z&rPtpu$SxDZ77R{EPAlpO>C-U@c;*J$Kn(g1K8(QHvP-uYYwoM#Wn0@9GebhFMU}| zW6PgeEMlL(v8g4CUs;^a;vx>mdq85FHLPZA`6PSc)xg%V{IE}0+`wKwX7MKbY|CzW zY#Cv}s~@c|*z^s1Dd7OT=q|RHF1G3|woJ@Ak9}@npKDl5<);j1)5C1~lST8`GudWQvD=L-E@ZdSY&wcfgINq^F`J)~!(O~>SWU{BiQFFEFQ9b_NvL_2`!$aTvgMKjqwwdv~`W0oRgC@>a&Sic@EHegiS{> z&jJ=*S=-N9l}#)*v(K;C)R9d`v*}t6H-N+4z@~sLqBZ#;Z^-K|UEuaFb}tRDI)~;P zBIIN(#ot_dfb|A7P8PaA*7f*9hsSO?EOfCge1=#UV71UXTjzm zhz_5HK8y7v9G1ZjeO(J}q;(RE_$;+B0&2ZxKMzK9{;lTtL%-8Pf678v-a-%FLd$Oz z0bx+bLMO;V>ujOFZQTif_afEqv`-S@=VL&)SSXd}vr`G%fVy ztlwd`AB_9s4;@|$ZK8#ahJ|j1wL83I!kB}IAeK{_xRb zp|fQ51j6^Ug;v_a7?_2xWefcs3*W}p=|FqK6<-||dMg&1SPQ*n3*QhHx**mn*j+?_ z=hn2LC83^$elIOI;%(#$>=P1JEvEuXyC!|Kmzf;m9kVLE5jWP~#-^jz({xl#TB*+y zS+#Oi{k+ujRrb6Ti33S362Gy)ycC)KB^^jaNj(yOvzv>>S8VwWi!0gZU2J-ay?n=} z2`pBz<&SJi;{Z3Yc#thIFGWPRuw@1d%uA6a=A}q9=cn8s3&-Mf7O(SD9%j>Y7HwFB zIoyG4dWyxFEN*AFLKcJgDVUcczJuAz1uQ;bw|m)VDvK}JvOkMG+2>yD_A3j_OVPvb zU@zyeWd-|uhE3P8=?C^Qk;U`uHi=D>Sy=3IDx0RWz`PVOU|x#EyX?io!H2LI!$d@;^3$Q$;;hriFqk9J;#2mgRDGSU?Q8XWCFPN7iQxW^@z?R>#X#fW(X48)> zRozJF1+e=OM;$W!M6O0BT)N1sqNry4KYDPhNO(q>Z z5{-DntEOc{!}g37J%0p0<3)bPb!@_n6}dgeq?fT9W~|7v51Z~_pI@^W$Kn_kojII~ z#rqs!PZk!7=h>|-2e_C`=u!{^T3Qn5*pR@C6$$ikNW8&54`wgJ*o58yxuGinFC5@7 z_TpnNFS7}KBJzUPngnL7NVMW`ty!GL;y)I{INW*`=o?W0%vh25h#z(cTcWimOLQzq zyvibn!(GBA^fJf|{R|R!vfDvyi5V-h#Ecb*m28O_D>9)kL;}4b61Q;hku0{dC1$M1 ztr=TxVzG@GhO(D?*b*~VF1n8N+TZSp39ZFk?k- z@3BwJSdr;McDs=+4`*3ZfCLS4R)(!aT2?|z-}$s zl*Mi#7TGK?V?_){vCnF@Jck23%ficUzpx1(W)xs1i|H&LVbPzxV8)8Pl(K0F2k*{a zu4c;`Hetq!e7?n&BUlu0fE(EK0Gn=R6Fx2}zyb~)W=niSljUV>xs**Gu(*@OTkN)+ zO=)ae!KSO&bS;ZDEIws{Z%2Cc4EA{|TYk-^{n>N{tMm?wcUhFN_@2GsYm=U`8;8SJ zJeel3+p#P62w3ecHNud&-=_UUGmhsAvMQpTn?SzyMBg6DAn%vh1> z0`_?Xi*)vRF`L%0&)3-WI*UtLjAx&IHU(G&S>S7%9zBZ1Mf{YT*@Qt1a_h~Or7Xs> z8^$)sZ7GYEEQYZc%vh1zp&a}kcALWD54Jpl#cdp59lL$brc>F}mBk?TnayrFEY`4P zKATQrv62Iv%qEPdkP-vf@>LcOv0FB~{mZ5r7Gv4+F*ZHUqBDy-*ljI~6Ih(eVjT<2 zSP|c94saXuz0IcY*h>uy%vh1nEo{P!6`8Jy`Q&guHcepDS{7Sae8_J1vFQXB53=aZ z&peS${n+#>3onbO*$p#RL|e(0%~-s`ZkVwmw>C_)nl0aFFSFS461KdREtjx3o89hW z)AMXPkxd_PfT?WCWYYs|+Q?!NTYkZ&kJyAUAkyVgw(P~v#EcbLwr9(yS-iz=n6V3pi$yGc=K$N-3ude++{tX&mn}E4&&$|U&89i*Xii7XCg%PDL+j7^xaqTp|^X&-*( z6YOPQHqB+zSuB2FF^>gitSIr@BumU#kvNjw+Ou0PHdV2g zFpE?c%UH}~pO~?t;D@kjJ%`I>FALdpKbtUPMLz#v(;n=$jZNd&v?o8MBU`@7rr|7( zVK11mqNhB^UhZMb!`XxxD{{k(6^S$0Z8Qh>u$L=YV8)8PbYd@K?Dhm(4q+n9SdrUub~}~@W~|8aI5uI% zicFZXBJm;zf186(VJ|^8{llhqEHGn50nTMp7Z&qa6mWoN*z_(x^FlTq&u-VS<$Y{= zpH0PV+Jk-Ov*lN88D-OYcKe1+n6V-yy0Dk)*lj3_g)Dlo+f8h$Wbpt8Z^z;k76aJl zRyO_1;%g4Dmc=#fWgMFhWiNeMOk>NRSuA3ozp<$$i(grs&f+2thZ!r1!yLA3#+FaA z2{TsYb}T>a6BakHmycPz$v)e%TOM0RSYXDAf`7rLZ`ex-2f&OKxqZu)SFz=MHl4>} z16!_PF_oV(oJ|k2=}#8T*>ZO_9mHZRTMp-kwP4fX?1mXDVjsnBH?p{p-A1$NC^ijd zF_gt@eo78|@vkf0>IkZfJ7eZzE^V*~`3{%3YjWHX z-X_j!)TH`o%&4wz)Lar`xctiQ1Dn^nOVw9m8>qAmF76Z73CpcsS({pO5(5N#LkHX>CN&}5nE_b zuTWBdBU5L4+<_FD1Eww14GZ^~O6Du&!kxa%8w!RE*40YZyX5$`tgFcysZZ7@b$CiH zXRYdVh&H0cTBQ=-$qCV+Dip-g<sg4zS2ZZ+Xkf;Kgw}$T~`+9s5W=P7Vb->7HRUk*tSj!PY?&vEJ>6a zzbN&%N!Ftn4gGdhNZC!-*LYCQkSuC*Qx;SN&H6B3NsNUkLW`S*#@?t7J19wSkrTXg z?H$)C3!;H=w5p0utM=Bu3#K+bmD*&;+7u!CYdaqCmBKKk23YtbWJ1UK^w@rCj8W=> z)klIZ9q6!CdJk)R-i_7|GnJ||m+Q&`U!c)S@-QX+{c^cT_r-MwE0nAc%B+Pbjg7U? zQ6>N9GJk>DLK{`X2}=6c<%%$$zIUVO63`+)N5yoGlKo*h@OYoQHeM<7M{KBVE=KGBj_mqVvlsX(N z7sD2K4IAxk^i?WwfviBT9qp6_B|gWu=m;hE2Xeln;)@z3e}arZ`d`ZdZ}wnY3Y7OLM$*<*x?~?d+@n-#Gb~VzmRjKZG%%< zUDIiQiZ@ger1Mz~{X(XGRymnz9NfoZA&W{DL0iPe!55K%^yn|^(dr;NT{{@+Kc~v; z@s;^Jt}(Nwm>rX2=~)d&!;@8FPxVaRw18qz%?gA=jT#!Fxjs+*>_rb#oh~{8qb=9JA3GqW21mRXewmg zPG%~gcd}T^;vN?F*&bTFt%&xkUHc{s7MdiHzbQ(P$iMHyq<1P-n z#zn)CV5MsuO$fUt(sjl(Ve70CTPYQLUM>VJCM@w(xC7<2I+&%ft5ShUa?0e)uUP7u z7x0xWHCyiiO6tinb^au34k}!8LsTFgjnOD2yCuI0*>{xXQ+U)-4g4K- z6m3_bf&QAhN7t<@XhMTglZMMiR?V!*h%LUD$zM(-L>O(bM4<_f;w1{PmJgc|g(kNJ zvY$Ev5pP-4kA9gE;}y!hz&1!hft*;SL-#fq)MqNG-<6AgVQmMPTMyI_>Q+Njq@QARJwC;=~! z8k(Np6Wgtb?Bz+tc>CO8m%IK`z);~Gr3%nei&L@tJI>e{3;Yr^eu5sbo=O|qnzu2k%kI)DpkM{BSNpkHG}48ef@bz z)=mkG#MbwM%rtpKsnB3KO^WIo!_SY2E>0-QsY1yp+FYTiBjBY8qqb@TS5I& z+5};w{=Z5UeriJO4+wZ&7zl6-0_Aqs^#%WuGrncrcLfX_a``PK^LROz^XwVj+C7d9 zdr=#eYkzDP;FP=1+nJe5_nM>=(OE zNqt-s5<9Nvb(fN~NG8ql(JoQC9^U+{dQ?gLlAOzhv*@e3%&d^(y-6>vyvOf4+~xUv~uV7#D7Xs9Cj>_ z=FpN6+U67Y*_^k#uIsf#u0ZVGK$Smgc7WO|i3?=nTu-oyn#TBAa}Oo=*>VBPr0!2; z&~eVfP$lp8GH)94*(lNbD@g~+HCN^w+EeQs1D~Pf#kt%@t)GcbiVW?%II@2-PalEO(P8;~e;p;*HXk+gs zqD|$rix?*hB-+Wj%2dxfoy;@@d?t&tSe(P+JX^$ufLD@%hJbPSyP!svJ5;{7f^HQt zGUjRu-*6N-S>kST4VUSOR?-$)b2-fIO5QzWUK;-|cMi3$Q_}X3X*0tWRQ~;DGC!~6 zeLY>w-^@TTfK8J|_P(v;EpGxZ&9cx8xOq;)XG-3C<@!9mGE5b^5!)?F))g{q!OUo7 z35|tSc>S2(GwAi}{WCwo!8bEpw+;dfn#A zp6*K0zhu%3FU=-I&A1Ly(mo>7=8wlt*Muc&w35AAE?H?|cePn(O;wV1kfWUH4w!=@ z^Oc-e$n|q-wcG5Qlqxx&lH-{k-|#L{vK}pGX{xgjuTXOO+GtdLhLsa+XjtD6?rvst4gy<5)MLNvLU<;A8FXRW+e$v;`U5BtIiYvv6~6BAd&mi& zN|y;4&HgV+&S`R#3#ni)iqh&0I`0UJs0{v;p1Lm2jdHH%g}v^Orve>J$1?tWC3!13 z@@aAX+73$6o8%bh)~2}IF*4Ir$$hz8!U`vOX^ooOpYR16rsTg==5IBon%1u3up1XG zWKOh!evDEHTv{f4o~MPqj-obGN&2{4)bht*wNAoxKTOGvo7sdYXVUKc61U%Mvn!Om zMVTURsqlrE@!zv%q7sAGlp2}=5JO}U6f~CCMumEgl7E2wirHf^ zj&|fSC2g@B?YdOAugNnD+D%IOA7%R7N-Rnb1S@@xX8S%R_iDMoWzy(ZTto7dl6SP6 z(}ngzeCid`VRd2WDD3M>{=emT=hQ7IF|+$4lX|BO0RPhjl@6$i_$q0Qpkut~M^hzh z6Pany_bV3Pu=tL}W?RGteYcQ-27OP@6sx+NIbP~V(auyy0o+DUXgKVfEcF>Ob>{S7 zdAYLy9D>tUNuAMzvXA|56y<~sY7ZqpZXlH!)UkAOIUP7- z)b4|oym!j+E~?uFg>ARknr3LQuTq2ko1npD8jr<+1GBw+;(@8bG^Ga5%Ehkb1bfiX zRppLUB+UPVl{(;-St0-FZI9UHZ=Sj2-K(U&PtJh!ne=gLCVEK8S}3#T)NOGxsgG4s z`{hbKcT6~vFrRCb+^I5m&RlxUXj!b!@uFR+ z|GsjpGf|&AQ~N6=?_!y^C3=q`UrCfUb+~4Qf^>|BIS=%!Qin(7f>tnoDP2rNhZ_1S zaSXgs&YSht^`Fj^>GSIvG8%X@XG#i`>?v|Hntc$Clngr;&305WpD)L|sBW*QE73lS zUP=uL<-(VN^?r^OXnQJYcatNYHP#n!hn(BS$0~_O$a$S%S2AYZc7T%hMLE8Cb?>*R1H`E_!fTh57=xNs2}b<0^@=qyY=l*Z(~T*=)>jzzg2r7|44VWjhSN@ABxoHK>?{(9|0XASBA~K2~Rlb zr=)KyzisK^i1W6%znaGHDs>*zezBY?X&%4N90QteYGsWfGYvM6 zV=;lnBoU?%k;^n`|k&B;>l)&y$aMS(@uM%gb@ zQb**n->xbY4bW1B?Jw{SD;0S`?rh{$QzeM4rEv>2k5iH_l~bV=&8c!4;M%f8OWe;= zD)EL~>N7&#DzDot0hcIg50(pGCfyKJ;jX*1n2*}MLCHHzj&44UkW@w^xT44B7<;`( z$(|+WcrFS>XU^^9d#QW|^CoL7P>~t4hu{n(%tX-t+jA0X|TYA0`*Ebo*#rqiXwF z$?B5}SQ-sIn&Z5`DM??JquRZ;8pCD0;f3DC^uM%{z8^w9Ps##1PCn!_k56jeSJ%8; zFDFD^S+J3|tx!pxD}S!HsC&^8ZQ$voRG>gsAS=AsUFBZl7%}LrByJ_Y=56Rq9~y+D zt4QgFV!8~8CbC1cThe$9_EM_RT2>>^yM)eF#BH3;YIdBG{4|+7lkNkJ>tfDQ^8P3D z=JIJT;h^6!)pLZBdzf4Wv?;-eB<+gbPQF`8HP*{&Lr(Z1WegY9k=t^}rwEoiRUcneNa>a$U9|I)*xj@h?5Ps#d`T=N!erwCl3 zq(4N?glz1ni_iXBl+35g5znW-ESld0-%}4L*>{)Y-I)p)eb1xFp&2&5ZMeEk7hT__ukiD)Fok8;}AfunICwQk^9NG}4<9&!riIz$=4w7>wm%gyk6d*y2hQOud z?k#r*GpK`J>Nsbozmm4UOq&^|m5knH=J&`*CGSc(sng1wLur$gq`%6IZCWVk*oQG! zODe~-O`?%3M`h<$s?l9mqgDJX=1?M_RN@x7s>z_fAN9SAck5^+?MRunI99VY_IjVD zRAH-}{D^t=U~>)W1t#tGhqRLz$$m|{AN$($K9vO$?|MDR{9?=&vbx zhsvca-R{>LvHeiVdXJpQS*1RAc`)Eu4F8Ri_$|2mh&jLuaq zsr_|@xkygud>*Ew52xT_N4K?wl6{NJp3OrS&OS?93WYS31WcupwjqhSia^B$h@O6mh;>NLF5#;bLplGHDgW_c=tes6f8 zITm@OlDJIH>PF85T&UzePmXkY{9xb`CF`eh)!7DBXUc+d-Xn}bSo_)~Bgaoxs`0j* z@TmdE6x;bq&JX2AGS455;FJgZPGKX$S1QS$m2*1{uZ&y7s?rHe{c>p-{U)#v^UBroa*c#J)-11T#l;USPgEpv3gOd!3_C5 zPNkivMveKdlJg}w)^!zE+@j7el;oev*_=U_Y14_pMx1{#X?NOC@U5~s1(=Gao0Vxw zJZ`yV+Ca0n^cSf~qrzKRY-8~si)Q5ah*hys;Z!ovsPJbpeI{LT>nnAvf+|w-?kn@| zZqGo6D}uBVt}Gg$MR1F8qbQDKwO0kwJSg3*X=G9trB-LkFGI_^d2t+^l|YBSN*$h* zb?9j8z_-d!uf6f~7@^eVdpVa1Xr+*y5T(9qDkVmCOi*d1HD(oP3oGUh4sm)7rTi7ASOghx*#iJPJr{)5sDo4u+)50zzu?19dFN$BOz%jA{ zS*W%Abd85mB$g_Po5|g;_T^sst_gYREdCH}r3dsxLt*F94W}qIIZu91+s0}zS|eY# zmMtzTRx0)ACF_w-pMLa-PZcL^L^Si`DkXcCoF6&dn$n^Tv%hwml6r<*2D9y=;EQ<8 z0lkNm%vEy#CCx{NfEgwKIVI_PGHHjpO2>Zh8?6c7QmXQyToV@8sp1QGLiTOAMrv$S zs&Iy!`Gs{VBp68kLCJrP%%5BL);S9PRwegAGIy7%5UpUu%oOcTsx1sY>M2xuD}y0( z_9knPt_!(RRwvs>Wzkl{ClJl8=0M(2c{_L_m*?L2<0t6mxxu@HoQgx z9Hi9XlqO_+UFB2iO;rDRlqz(W6M@TKogQ&zuS%)HhjKCCk0n~ah%>F}EJ&|&#m#c1 z4%f>%6r(KIU(YlK8KE5njt~1Ylq&R;bE2S5h4?z~A|-u$xdWDk4p3YzaGjF)6FKP% z?OCQq&P2US$?uXQj^#L>ij)Nl=@1ad`5TWa*}KW?*>>F@*ZF)&$$Xcb?& z>?Kz=`F3JNa4&4B&rF28!MdJaPdO`cYlnkq1)S05wpVfo<(Oyr!kFW9%qQ=mB)(tH z`L=dPN9bk`RqFAgocNvWURP84{QE1F=_4ysSQd=Z>1s6S;0<`31GO_u{+%|OzChM1 zt;8E~8%6UdQyFU>nQ07tK8r(G9LC}ZTg1lD7m$I*&@YuqThjfu3_hId_%HKspfO? z*g>Y>yCm)i_fwU;1LaK0rux$7sqi~yyH+Wg2g}SE-X%0pYK{?Kt)%@{t}t6CEDy%J zal2BBE9A%*yOeeZye^qYgAO{vV|#d&vbZ zo9@yK1nD+tpTV3xMArtam-9TM(n|}+&7tWwO4@8W>GNVu4PDFN*oD$vNj_L6FRFjd zphlqFeA5OgHTX%cX&b!gaVIs6R?-iY-?vmx&|G6XRmpjP9Oc&jAa%x3wb9ND+Eq^j za?UIJ<}0-*kz<}&6{N2M$I8}HC2vH2!P^As6a(zI!U}%s_IdsBb0CY9YHX0z=!=CD zPy}}-)=i7km!Y?sdwYDo3oc+admk&5y0w(w%9i#eca%1KoEMGOIh;R`OQJymkZVm>^uEq|K0N>0YQ1U3W``(%xum#ColgzO`H$vpsH41yuxP zX7lryl6j*XadhzFu2g(#&u;cQz|e^Rv@D~{*btv zOxm3`#NDw8>Quz5^RTIobr+dwko#^H_p-R3#e=qp4RWs|0}XOt(uDl43|4#HG?HoL z{|gkp;kb6P#E;4G&2>loUU!&2B^+Cf-cfQtDsvZ6+Zy!vVrxxk{>kjyey-FYMXuqo zQJmIyQnxx3r1dso`{ql>VB(KTHM+cBP%yIhAfw2)RkHpgr#96%ai^p9P|}vjku8e27h*}3KNz6znz(m; zuu_9GxwL0T16agN8RjY;GC# zDrsMm)3~|Me3L>-%HA?%0Uh>8huvZeN!&N`u}b>4<;shu{&2{$QJ8C#v?JvgIfGs! zXJvV@lD5B`*!lj!jeUh(uVnwT35B{MzS6u~NxMPL;(QwP@+_p5Ieu}<<4X4Znvm0U zWRLS?q*s)*TjjKF84dVo;itXxJ4_pJuol-SiQ#m zAQvyNp!sbh{=X^}$(6IdzF+J(*Ra{1x^B@~aw4>-ic*)fv5rE4Qh_(*%+L1^X{@U0 zsAR8{*)wo@YSgUOdnsv8l5@N`94w<`k5u4l7OLN!XW;FrRN)0V<8!eJl(!6<(I2bi zZYf8h&yq7ew>%V##)cVV>=Qt4JL?!o8O(^WNHJ-k?aaz7P>T#};yIM~1ROjUkmn%8XkzcU- zrj432Zr8YtGm87oN=2TP6``g*?)&$CC9PM^?=*b>8gYGEN&1T%*W41`#t`>;@`jT8 z2f2_Hm4t%sQja~jW-kUci}}Y&4Q9$3*e$8wTr2yXl6JaGOP8Sdqm{I7BEFpcsbqgd zX3riMyMo0`?)1Hke%nqPQ|>Pp!omnHrt$iDAy2@33EG)@S@~q9!R100MJ!sfXl;ww z;Bs3s(BSg(@<&uFTEBvYG>z|P+nt`(aG*I^B}(N)XdP1m8$230{$q$zizRX;RD`uf zmDJMG+WG`roA*;{(7g%8bG$p^c44Z;s0*hnnXi^}AkXivEJ+ycLzLt-a+i_pfl@{qgKN81WaMZ!u&-jcJS(F?wh zQ*w`xxihA_m(sZ&M%tgHq%CN|TW4PgR6EZTcM#JhN)2w1Bc5ux%^`#vl$;O9v8MM8 zN2nyIX6{jv-z-Ns$6e~ijF$6a-6xdPzsvE?o|N#_dR581K(1smX47zR&^)l@10`)( zPV3IGrmYF5N`0-==5|?|v>DD#TE8htFOyR~Yg~wK(RHpuZ9ZJrtyn6@wta0qj)l2l zkG)SU!5deo)Z_zMle`)30F7JG1e-G%Iw{HTl*!X(Qn$*e)_W^S-;y&u2i1Clk@>xp z)XSR?Uu3%x-*HOPG&#Nn)9oXdU2cE5w_xxWjMWRH|@=+=Xo0FzXvTm*Nwp9`DF{WK5?^q#gSY zzE{$|E7SIjML($nT>nz)RVM3IJCM})pFa8khGnnky&g#4gOK5`|oqa`zPnp-; zO;VB{E0edcdkMFD2I*X-CLLr=ax0>==b27~rOL?20=LP%)5f$za#fHPDl0QTI3lJp zmXFLdkiC#aC5s@7MYf0yWQWN>1KIz{r9UTj^@{VFw&Upu4TrCjrG7}xgZeq*NR&EPgmFjEUaBPSEJwU`1>I4A(iaTTb<#Mr8?U2L3~y9w@tU0TMfN>n zG;2x+RR_xHBiqb?dzBh2mJ57ABt-jx-E=ZGee*i5L3vV1@0JrF3#o?B;P3M%j8JM)&f=1)-xP`8kg?BD^++?R-rKL_hAhZ z<|}AW(>xI@b#GmT_qtr+w20NU=>F5#n&a~B7D@&3VnTx0EwJuGkG%s&Ry@MgbqEld#l{SJJ1;r5=~wn&Wy0 zDoHPv=l5?yz^M5)2+vIe;eE8Ij+hn~32jlL%3F%QXT~lzGkC95 z^7`e-wu#VEklLdSFvyf(722&zH3G64binKqoUBq64Eh~QtRGae2W9rQb$7$s7k|}V z>Stuevr0Yomi5T-N2$4Sdz@#ku2)izlBwyM0Ux&h(P9`X1Mwdx|qPo{|lAuf5?fS=`OW`)My#J z*D86Bka;Q7sgq0{C))aIaNnuqzD<75(kqr$IfelqFVPS<+MGn5LHbmKb^ct&+2= z%$Zi|D>Kic`9n!MNG{xT-A=$OGqau)mSONZ|P+rXN^8v$$GLJ`4)7bFRhoQmfRh3(^u#a zqr@#xD$ramarxAkQTHi!fWE=*SF#U~6Fq|p937-;&@NTdzADqETGeLTeTtIvAvve9 zpvGCu;|}#)snjD|&hVVt66d(V;VLEdzj6|!l{t@1zfDP6Ba;@?#W#L{ssQPRC0fHCW$LvOX@eW|k&6F?FMox3kQfM&G?=Pw59G=^b*uHoAvs ztCD-I%uO9{x7i=f+DF$*J3%JRpasv)X1TSJ_EecR%M+|x8upc&-f{`do4mn&(%lgI6{>6?o#yQlrXMug8$ zGH;P1oW6v{%*@+^FH*98FUJ@2>6Q`I>y)I|$mKcRU+Vmrxl76Vo%|Z7R$J!l^Qe;3 zC&x68b~EGnP`a_tQKDW_l24E$oRQ$>qxY1wYh_xx7R0}lHp3XDYLk+8i_DwoOWipH z__I=t59KT`u+N9a@mK*IU1Oxee@goM+kuyc;G_t;`-(m~ zNYc$)al3jem8v`~XLut!>6a;)Gv)7qMB7_VRnk_3E}8DY=`;+_eSW!F;un z`IRPQbKROxqcyo*$^5R|JuRvHHz65CHEysrF-3?1xGjHAEg$z%IRK2 zYt7t^FEz{FSJ!|qku^x8trX@QOB*HW*-gm!#*)0dlKU<>!i{bpAEe}dUXFL(9GcY% zdtLT6W~0Q9R+676M?7;5&9*pCke#aJ{Xl-xGI$}S5#9Mp+NpAM6P+tns-(@7W1Dba z>LMlY19EihKZYE=;uT8njWTx{EzB^7NY7M~E|L>E9i-+U_-ZBV7jjfnoiSabBji(LAkHGIy4{+>M_f^q7+TQ8}qI=h0o(zKA(K`LdF?mt0AwmO2Xa1|{bga;LXJ zFR-p@biBu3Dz#`Yr+AvL)MLKKzbHwcmPr$xXOXg>uHW;PoXd$%2g_Fye=BEoBWJ;O zP%?ih*CP!IS>30GqfY6m)S{nUr?j&#P;Rifg6^fE+ta<~7r-#3BHiSIm+CC+W0ah~ z$(-49Xm^PR+bWIj&`c%s&2o9)-a%o9Dd|6!>2n)oxDoXVCHEqkJBMbuXzsc)=rgx* zMosFSHcb4x{3@o>?2M5Nr4%lf8|9LonP}DG3rgP0i=Zwj4+MmAhh)ms=~Rb1mL9cLvi6kI zxnQB&M^|kpTz%d{Nq?>UT4j5e(y*}K=eVO{u#)*TxynupFAAAo0{bdS&zDo1R$kLC z1Kjsh?Ywq$nv#8QIkEF9+yOdgA;CU_gO%icN-W8GED zjOHq&WIaWGsWSs~s0gjgF?f$v@@C0dogVV~qk9>wHA>d@a%|H)#A=XUtR%fnj%te% zzuU90(w(?uU$0bPqO3qFHO)q(?^bdiET?qKN-yo;Sd8;SsDK#btC0%tD_Psg^-3B=-7NE8DM{auqnd-> zV1jPSuS)8Dh=zdPC0RLH1N~{~&Xx(xy}+zGIb~^JGqJ zgf&MF4p5T*BzHsUGWMwB?5)F?!Kk>wnRAuI)8x#}3P($*v+J1WxLis6iJZgfbjO(E4Z2y$`d1U) zAUYS@(H7jVWIa;OUAkA%5!I)ar0wOLO^+XndBbGgX(PP7T4 z-Va!O#Nrbc8*LFAem$F=plhFH&vvG|k;wO4U!*SkZxx+GdCVj#BDjgfu z|5fs)%Dfo~1`Kk?>Y}?$rcI@-+C~z$Q*zFe%XpT30&11toD|<(N&KH&kL1zDKU}y$ zs}vm#@(?BYAx((2FHD=_eU5Y3_EQqCmtW$%y0>YG<8_*@B+r%0R~l_tGFRpuq9k1? z$GCM}K8N`0Ib7j$EQcslYH`0D^~`cy-R0=ihn2i7AE) zd5@8c6%FtD%<+%kl%#Ft3aeFJV*9;iI3_5rwr)O7*AaS7E@tUev?~W2FI1tD^`0iA zH?_@X^VmsAdUz9}N~D9$Exo;!te?r9FDzhjmtq668R5N@)St`LxoDFT&2o=Za-SjR zaH`*9wn(#-oTKI1BP-!K>qjVwJ#xv)t$ULlJxxo=eWlEu=Bsp@Yd01vNjJ+SE4AEX zF2_1a$=OLRQT1Oj&i?#)O7bmogwuUAglc{u%jH6h6(WNN8Bu*k$vR%HFY3P#X*G~R{-%T&xOWpQ4G{z>M*_zSRhszP@}p$6Z<~$w$fLnY0%nZa~ka z4_C$9bggYPZktF7ca-@b))V zv-Tu2jqnai~%n>goPN}!d9rfFw+UGIVm_bi#IM|!48vDs*BfHdFO?PF`79AsR4plNgA?HC` zJNj5tj6^`(aRXebnF8fXJ%-3FYbR$$#17smjV!G)m5C^oc{xoi6{+qLvzb3$$+=uE z0%>k%-{Nc~>9I0tM`x->X=ecygt$b%RH;j<{PmqjM-KUDxkWtrjY{(4ws^RT1=5kVarI6?!nzoG5lSrLr_kMPPK=V8T-XQd_|r`6XK7o?>$ zOTn*^-b*@NmFnm-^-?Y0;PDs?GHuP+CUWPh65xg7XNCFwJA0;D<Kx?mC>TROtA0u^@DCrcWcixbu~&Tq9>yd$SAC zSby?Lr6%{uiIPoIuypB0Rn%;?ZdEeBFQ-8|dNAfx;e$%nVmZF)s0~ckXO*mb$nQdH zXVHs)BiAdn$d^;Rn6i0$BMF}>RrpFy{&r@;Z{!W!tW+c_r$r8yA8>!o_=NdeNxfb! z45>7)W^iUs)O8WRk)zw*e$DOf!1ik4R!U8J%3n`~wk95wL{E@zy);sytCGKqTmsWE zf?!qv1C*@SWr%H0A$ns0`!?nH4%sLr|4^B~i+ut{)0*PRN_7@CL7n=~C#o5@{{b~m zsZI~MOyt)N{>G0dlqlJ6YC>YrF3?gxeNLO>i`8^Md)#1eP^nI(td8A6nv?#=C|Mtn zE2spgL7r~1?zA!YcCt39a~#JSUuNoJokwOG9bd`f0u~psxY!o4LH0|@K!fb3$efAJ zn!SlaHyl(?mUe(#_7k0jbf1!Ts~p?JXCXbMB>uMv#Pey}ah3BloY$4aUuTF-KqKey ze57Pv+XUuGv^LF014L$H`>m4s8o6*KJelwhCGR*n#)%4b+9ch(bf{dm5}p58q@?XD z({Asar7lYPX>wwB9Pjm3(W2T?*DQ=f(oWRSlmlGBfNRpMc}DN9uTqzvWnCJ*5o&~z zdy!n&6II|7l(fIeQO=(24F|jt*WeLGV$W7Gx0IRlCM=Ee-(Wnwk#W>U4oP3B zWS%3ZcA{$aDkW{RCM5O*zZYd2dytG*>oz6#lX8?Bf3+S`lDCmR(c^l*&nY>Nl`GGL zJ%zWFyr0Otjg;z*O6D6f<#)NUljwg?a(^syC-~ahs$_k$35B}RDm!bku5Z>>&ge#~ z&elrqJUO`&9xL2U$s3V*6Mtk4R1$a363ceS$t)8VO#7i7}cRMm%! z*J_ig!cH4S{!>`LG2tG@oKkH$$q2EUNC6D5URLp zyVph@EK|~7D3^nrc>%gCJ^md$RY^Tsj(O|J^esiL2QBw?m3nCzg*y@qnJ>aBr4~oY z3DCMO>0Njc{JxTqJ7o50uU2X?Sk|I=!V))@Int*V^|VnVnF(>bQiY+i3OV}(g02V} z(0z?UxK2quTdoZUj-%VJeG%6fZ-YKqs7jwm2j|9(5^PcG(@8E*EeE4c9fNU;@wF9; zktY8rbtsp!ByZ4w!6RLqFy^>T_EcS$beUXWTX2EJ=nc)Q&2%gSX`@u2wOk@x_HdPJ zj@p>eReU8b<3T@7lV|VjFdHLJ3mARvQg3G z&!@ya@X<;=j*wrHA!vT*2C0bJrw!FsX=R~cWnFznt@A8e=jr$Izwr)DRjT-ktYY8V zwwXU+YHL~fyK}x$w}<3ctj*jgbys|DY6ZqnlU>_>8%b2ERAZB@Mhm=9V`zT_y;IbS za(u}wQYz37;7;qghmEh9#bl{ zNmeRn5VFDkkTP=NWhM1yx!kuKjJL0@V@wUMpS#V5A{&&7d?lwr9~6iB?^smWSWq>C z7F2z9+{NMgzUh<$4As6=s@73Xqs~T|Ie608U@#m>JSz8#Qk$dYgvvi){G4(2;1g2J zNQ;zdx{l$sa*a{Ioewk`aTQj+l74_(Y2+Lj^?4T3dESoG4Lc~QZ;)f2F)2!SBbi@j zJ(aWpnYOptg{g4+7Di(|zwHg257TKDt)Y|e0_FDCeAqq@Wgn>e51oc$9e^_0h7Lrr z4g~5B^c&D1pr^5fYBbQlc(bMgMG1oRbLR{(tjbSBW12)i2SF4(OB zdI}-d0(}R&$ABgPy$rMpt{Z@Ugx!}wX?V&nKsN!U>_&eN!ZjbL2*s@f&@FK736ude z4Co`oV+_zIKr?}wgX1uu`{Azw=s}<;(C0uW0KE>5bATR(-DN=2fo=k719Try7|(kO z=s?)L4)hezM?hx+eG7Cu{QUt`2$bfczd_(A0{Rj9bpbjUA^HMc05k&V1NfT&bT7ir z21*550Q3c1LqPq3js@BiVQYZ)g1?J_eg(Q7Xe-zr1iAwuo&`DwuIqs+5cX4`XJEG( z=sMW_4fF#-WOk*$i9oG@o`=7#K$BoM0BADMC?E@ACj(7|-8`V_KqWx=$iWprg+ONl zy^9d5fjoHf8lWLSYk|hV^#!0O@RWCeS|RM`Ko1|dfO0{sNL-0t-E7yPvY`UQ5o104@E0_YE*2|%}l zV>VDH*ewA13&;=jIM7m{FX8VLpri2Ql|XahdKJ*!aJ>!a6=?qu&~tEo4(J7-w}8gO z-$tMlfPMga2hZCI^b72=deGlYpw>VkxOM{?gr^Jyas%xH^g$Z^O#ylsAr1oCA0a$I zQJ^ZIJfP)3`9Nm?U4Rf50WHMyt^+y_u6F?y0X+)z68yacbTaJT1DXl631}A3&p=q(BT)zbB0oPxErok?yC;if z0bL3-251vfawgE@2yqzDH?XS!D$1n4C{PEuo&fYM?9KrifTvsrR1CYDfPMtJ4`?+) zJOwlw{$2S$v zS%f$kC_Rh*yg>KCH3U=$bS#h`yfr|nKo4py4uq2nBVolQOMMFL;3 z_=d%IEH>LBwn$(L8EBEfZlE6v`VpD*cL30fusa;+I@tMuI%LsbHPB;F^F*M_;O|_Z zuaN+k1NDL3%|Le`?ESVY(9=NUfZhN)2Iym;&UoH;KrWy^f!@bc()-Zgo?J@4Bg73r!(ew0 zP!{|>0kj$DRiHQUln;OoLx`_|ddM60F}p8|af^cq5J2Firp-$0)sMCJhc z>w$D`1#}DSx&kc*8USfX2XI2~Z25Aka?;aSTu&Jo$8>_Yn3% zpkEO7TA&Nz?@pi_;ra;B;jnuVXa=75F3?M``vT}w`1=XyR-m+j^!FK15zxLsU4YI+ z*uFqd0*wIr9& zhk&Y}>2pBu0lfwEAviVyodJJ80G$K073d(KtU>g*5~wxM(?H#TCg3Rpf!+b{K0xU} zQ-Jn{zk`5Ifj0?XLs+1g>`hxnTDwP&c5LfbN3p zdqC%dV-wKNKtBVuf$M)jd*R7>gXym)T-yT$VYdg+{qQ#w=ta2h57Y-}2G9baqkt|2 zssuU>A(jC>hx9uYXdqly0SyMa8t7Ya+zxaF?A8HY1@t`7*?7v^K(FE{p8=f^hE06hk~cYq!R`Wz?)ygveUf!#KsXOZ?f!|3mFgl!A-4_tcymB4N= zP#VJS3v?D-rvarPz6S#x4_7bHOK=SV^#(c?=xuP+0FA`+E(Yok*Xx1)MA*B5Ho)KG zK>NYpD?nS}`aV!8LVN`@7k0k_<-%XHJ?ZZ(*cAZ10e>BVDuH?dodkb-0=)o#V}V-2 z?f{@H_&XdZ1mpwC2C4?y4Y52C=qQ9e7pNMpmjj)Hr`!zmEYSTxUif<&=oi?%0rUex zd<--b=sTe4Kz{-~0+hZN{q;wPc0kV~HFgIoh20RKC3y0FK;02yI?&Z{Jp`x*c4a`# zp>r7MEw~;BGy>=>paMMQ5}+GkcLUG^u)7E7X4pLe^gHZc1zLb7e*hGQ>(@ZH1N{bc z8C;tWr@y7JD+Kxgs1wkgK)r$9g1^0hmcwowP#WxJ0j+@D5kObL&H}m?XfeksrBa%LpZB>0;IbS%(ZpbkK8pb(xH0s0SNj|X}Pu4e=Nji+1+)ERa+ z0=))*_W~_O*e8M9uzL;21N0%#e1!N0s0?<$1HB29x;Op3jwiPO%EMDS1HA*gK0p^B z>~NqXfW`x*BkX}d7sKvIpmhkl5a>17EdhER=wzTvfzAgSkFZw)`C)e}Pypybpdiq* zKzjqN2O0(RDbPjW*bH_wuYCL5M&~4D~AfUHl=K=Z-A*z6CfR@{K$eA;Mw!rQp zpzmRK9nduhdzbAG&wCWe2fLSmCcy4JptV4ofVKer4D=!V{Rea(?D9s_-w8nNfgS|v z2h<@t^#TXbT!Z`@OL}VyNJ;` zpf=Fzd7#yBeH-X~g!l|-7F@RgT>{sCfNq6r_P+GD1gH(r+3?pL=q}g|0(u^Hqk&F@ z-Bh3t@Ra#LQ(;#MlnJ{TDrvYt4hzo$80mn5!C&Tp)puTW@7-%EHz5sL??A`&YhTZ2ta}eT3 zp#Olj0gZuc&i?e53Dg#-CtP~~U5lp-26_#=`vRR0*J(g|!}VaGKCtrw@Ehn4R+T9O$53d=wP@$4m1UJuK*neyZ3?G;mKbCy#c#lf%X9}?vJ;g zKnUF9ZtV*@T&`}-g&i(Cx6T5>)#KI=K)4Xxng@hix-I*vZQPt~ZAMt!XKh^%4qP&A z**8Vw&Sz_Pguo@t)-?FTt;p6V@Q0gM2xGL3}hp@Q2)Uq!i#YLjlA+W>Ep4NIi57%s3xd?%~FRg{J z!~K)i{jkH0kd}R|BW`E3{(v2>OtkiZKipqvZG#;y6|}~|4j27ddx8Vk?^zw;iaYVF zH(`g{>8#;ExG&B+1|e{Xn`Pg`hMUx^=MVz7n_2h36<3Z~hreWIYEvT-{^Y z_wV379jhE+amS4{9#6)FGuCn-TmWO)x47U^7VB=<;i?qtBZR=MCDsTaTp?nO0>Y&p z)^YIHA80ZV?y}$uDP{oe2YAf5h>1bPN`3xVDR?-HO3VRtgn@#*w;KF~FA zy%Oj?*xd^BKI|R@Du&&&KzktUdZ2u`ehTyzTsH$nVfQ!CdicwnNPpkJt`(4dSYub9 zE(kFI=(-I08wE5JXfn`3pm{(&;I9PeCfEgmDuIpxdH_#89jG19Wk9C@-2^lMVebRl z3cII({snp+=<5vn`v_<)(6>O>AjBU)<6xIIiT(~nh$5iAKwW^Q!L={Y&p;!979s2e zpxl7F0-#@k{6MDzEd{zLlm1Qtvd=uo?!!tNm;`y`F$fQ|** zTR@)xZ3Ma@lm31H`WR>{(3=RGHJSd}!XHi^u=3!FvjD6J&_JN>S@egk@zxix!*+G+ z8-&07)c-BEc*z{(NMOf@Vvxb8WJHf0L zu)~%t>u~tP#waT%i~g`T$r=TJ*e7J&2!t&=)`jqg9W>Tx*kKoobrkHb1{w^64IS1{ zAndQOW`hGe8LS+Hz?K2a3sZ99U>)Z34o&H)}J(V&R$f73{Fi%jyU_tg*6=h8@;BS=ZuuSbAjH z>xZxs$hrY`Se#=8fUp=QT9XzD(l$99>$49m|LROv`s9{G{eEv`f!`O7tXjD$;oU#B z$87jmKkJDkA3#!~9cR3xnSJ6mdRwg^- zE%S!F0lHGC5moGKhzjbDw2!-brIcdY@TA0?F7{Md9*Y7NEm#!Wq9%(@ANGc5Pv@%B zYBETJXvnv!W>P7o)xg^0N!|W|zUrj|OX<+)1)zj!K)vGt80#DdxWhPbKX%%BO^!R@ zsh|a>wDV?F#X6pNt7#BZE0ff)79fX8+*TGDkVCTGu_q-+Vt(Qw_7kl+BogN8!Hqc_ z*_eZ;F^96Qjd0XvSABZ)>TN98JDnbxTz18xok_QJ(MAOSDvsLzHk-0{e#wJgrEFxRb(KrQs5>f`ACk_Q z*!y=O1>}*;FuFL6G zV?rVK(g6)q%#q(6rziU+#^rZAdc@9XN8?^a(@RJeze+LqjJ-+ z1COY$d7j+S$}84)I1rysjkR5kR%koicPOa80W9uw<sz`-zyDz z4=3$tDXQ;19B)4&`5f4R&fE6CObU&tJ6e;Qlg^sB*5rny(<))^S{KrD%-%z>U8fl8 z$5$oSB~RbPs^sdVpBz_}T(P5%sIN-69I2|36&fvQvO4O_EKI*ctuOKPkb?nuNzU z8fqV3kz^##-o%O|HR&hERU|3)BN}bCcY31{`wnTCVvhXYn>0%9O^nO$y^>Cs#4SgB zemDFMX&8t2Tpyae4o%GUK}kRPf1c|NzC#+Onj`1S^f~WII&GSo^Um*(hVh8c{iBlC zqlvkHMAA=gB=>iq<*)BNaMQ5^kEs6+`E*Acu-JEqy;FGCeTQWEgXLkGjWPEQtx3Ab zCM<6?V-kIVctT$Lte`~mCADq?>eMnCrUV0**X(G)sqZjcX+PrsLWhC2mve47s*vZC z&X2gpDPfjc_t0~UJgLdIKRaqQkFPYIOrE)kmBwR9KRK?_c-Vf#uInhY;K9Dy z)N(eR zFIIW%x{g6kFyN(e1;1~h*)?z{U0@T|FEwL#xN88#STCa;O3*hra!1Qfec#|P`w@+% z`z{>LL)I-?t>MKoj%(#-yM8KhN*h z^=)fik~#AHV||`~kaWT{HP74Gd7dB=@%jE<@=7!@-``I9$&KXu4m9ueJp^tjcHj~9 zJ%odIG$OGcLKF))cU=!5zxK*{H`ZVnEBHDekZeVju*B6&*x^nB>$ZSZGn%9X{e%vr zZgM^7SP81{C$zO6(P--L!hS+Q!>Btdll_ya>CiC69Qj>I8Yw#rR?_Lx)ckHZ>Ci9^@wr}} zybevw_0puD{6Ek229pjAQ_Yd{m*{i;qNLNNsX6bQbZ8il_}pKWydF)={qvH3awECF z1I>PY&w-nc9e6~2&!N?hMkLmA_ zIn+50V6BWsDM4r9ogGc<`p&|7`w{;aIt!V0oE>$?KS}3BTrc6Tq!TG&c3NN4bBqkB z$+15mF(LVm&1F|Ba-Vg zH#LV_G#E%|B%iw{Pu|3Qb|wAf|9L(a)qj5{%Ikylc|9lTL}_YX^PrI<0`XmdS;;HV z#QdI-^phLO?;U8r>$?ElAnd>+>bn51?`Q=T>jJoTZ5JS`(i^TQ5BW-saf1tzE~^O( znqu8Somxh#lb{=L{*D%$`fk8E_9Ol;bOUl~qwVMkJdkvL#I+OmCY??Rv(&ndo@3-m zY~4Yv=JA!r+T@v=SZUmm^poQ%ja%(U?7GfCY~4X^YB}jD^KTA4InwrlI z*B#XAAD`QwB+uW(-2O1>C;!iLyTQ7H+7xr-c=3Vi9519t?2H~@{G07ucTgLL_*~CR zUWX>;dUn!JZY0-tpjEH$7;qD@1COZh7}V@&@r`v1zS_033OSKr%7RiqElD)*BRw$b z0-LaYQLHi1_Bh;6 z11Sq|8iVmkaW};xxvovZGFCHAF|bIQv0_FcO;B;%xuZ#5Uvb=KKcdl!V;4?D=F~>p zQE|MJbdJPT9P5)#r-YemJxR|o@+9_AQLA};z43bT%uTE}UP=1NarMTF_9J#(+YtMx zs7)p z+_j6D)0cTeLGzNzVA5qZVG~lbZ=!xd?KY-F^NqD`16U`c`AN_v@b74msqYf_>_;@( zCD?WCMW!8PN2PIo(isugOq`Q+8vQ@&-UUvsqRJl+m}DlCnIx0R`$Z?sBSAXDLwukp zc_$DUPJVuNXHb%Fo%()HojO&w>XfIJ`Lh8>(8K!L$dt00 zt=nH48|uvlj1w0tBTI4OLM#N26U=Wy#fiQ!R=^tK>+!B3y6mbfKJ^s-8~PK)YGR95 z)UZz?c!dr7U#@Hx_y}H9;fGiicno=jLhJ=Gq$v@vDdCDIuPRF<#gjiO^W_~+ehD~Y zJefnkZOaNuvE^lT69UGTmz0sE*zy7vg2xu-PoZMV!(ps|*z#b!Up!~ov8C=4T#nct zO>o&7L2w~91}xcfD44CbNV6P@N0$_Z*bAadQ=~NSzbm|)q%4vYUbZU}<{e&E1CAJ8 z*czu9UU(nmHO@A58v@3ct;)z!d^r{i!Q%__s8I3c;4oG|e0eF}++{(zQW`APOsGW* z#i-%xW~q;qg(}x;;=<<&=vEXd%n2c)jAbgb6bxbUSHKYzYAmAZj88}8pmT@1ApwKV?aIhf(76>0!GjL-tx!Ry z5ylD#I_u&MI+L-OHtEcIpshKf#QWGPfkqY&}!n^`Bhy%gR6 zrl^fJN#V81galRCd6L^l=T+*B2h{n4%E;rcv*RSUm)5oLT7OiTl%QI>PjdU{T~s$9 zpx(Qbk$v<=%-=i(U=soYf`40i89OZzD_rZH4*akyihTwx$#Dg3>af(g57HQwdGPg#!ROWdqa%zAix!4-m5H=6l0E5 zX3SIR{QiLB6=OU)A#Y_Iu5LuY7}KqcEX9~Zun;`PFrNw)W7@-50WoG`yk|t_+A)T_ zPgpSbctx4r&?mL!mZ$GEwuQ)Kn*M2-88FV&uxju)^HB=17sQ#SRB3?%SERXGSt=>g zd|sI|Pqp(G0*)AI76{*gg>J~PW<=eLfU)Lt%E(fz`3x3<#~S8Wp<+!jj1>@TZjLwB z%p^~Cj1p#k4&8|&%xn%3W}p(h=$C>Adu*rv466Z;Fh8LXz7ZzI?Nm@m?7l0y{9Rcg zDZ2bsnJ@3?@&e!p+B9a<=;H2y99Ujgw;*6(`Li;z6j)xN5b-UL7x5|tZsuItuQ*9{ zbV}ME2oP#ne^BlBquTrTMfQTEx-9{{Afb%x;{}Mhfln_is30KtmfT}lcP3WA^m1>! z%jH%mCORQKP!exK4Jf;~M#A^8vNKT^V`YweI5cs`se=ZFs$( zRi-7V-t6$P)CF1dXVgsysQFXM$Ud4QrgNSVu*m@d!83w1wj)+X(AgSmt>%f~uHrGk z{dcNHCQmnO9PPElY|i*&WdqeQ-=$v)W~wF1mc#H=U zi~H)uOf6S}Dhl;twO%flDmAnDJzoqS7edd}(i%^fYn7OMb{HP2Fry&%?rJVNJP@n!1Cs`5zjr4=C5@;&eP@&-^QDAQmE z6kQ#V^O{NO1_X>L`zj+#G39NnFY%bdd?{2+c_xe%5L13JG1j%u!seVZAw7ClbF8xa zdiq{tM~LXsw3VA0G^g2sbuS)g)>4SQAkNs5Ni?`3&Y-enQpCwC^X92~{=R6)N_u3S$Mto@e5XJqxNPIjv~+8TA7E zgYW6ZTcKM~BsO6#WrC?qOPQeoPZr&bm4pYL8!5zI5P0VMkl+eCKT?)U3OhegX3ab7 zd=qfQu){88`gBB2c)q7@NWh@;9c5%G=sbvp;6aD^R;Zx!@$cpxGEA$Fa-{7+$7=#cC@8%Zqq;X{8W*L3o)iblnwH4pWv!3Mwm=x$+JwivdRr zD(qXKV7?qm-l^Vvz)-SW8CeP?2Vfz1C}DmSDwIqLV+Dkge~))RW>QXisjCbuvLJAq5RVK+hWSj#yf*{uYZYGu0 zEMMw;TD{qTq2dyM?Enb<jE-1-CC`Mh0@fps z#e2)GqgKh)Nr~HRF5^1feyp;)diq*po!3{6K!@9jZMJEGyLxO?ZoqmF4fJaSf;Saun%TZ#`fX$tojDQN*AS@y!_X zcpm3u&87L(V3pdeE@}RGWp09MzL09}-49v)5p_EPs{c7SP(%#@N{$) zwj)+LdSAThXlHMwWMs*skrUEJrD6<=_Z)r>y;1XBPseM7sl#Dg*fdaxS{}2>&#)5k z+2kh_VsDsDX1crYiY|XwR!E92e^utoQ{?;$fFo#Q)!}gWK#nV~t6LB-uKZaUS&A#K zP>2|36}B_vX3eGhic?ibrlk9U01?H4MAn_nD&GB&)laJ15m5bvGV-{q@2J8uh6kJ! z-UGHP^AmLByQ{Fc`yzY6Hg#J9dcjs@WFId;BnCXUU{eYLg69^GVS|~KTWpCpx1it4 zdP}8(*G;A?l)cx}^+N4+!7ef}FW@=6%dl?5(~3(e#NLorknd%@@2WZj=pHzJ_!PbnjhyYAxmGESRI`(^?BId-KM6_4TD!n=+J*sfLvfp|JoW^>uJ#M?q z!ss;^m~r$Ow=ut!^qsmlyN}E3&aK!9^9n^Ff zFUOFgdgB3O$S!4MDTWMCi1>1cF1Cnw5av?*U%;S{nZrLT(-Kr|R`5&ef~@%$)lCSf z`4^Ot$6fQe{BwZ6?mrB#`yvS z!$xdJtel}5@BP1t@HMU=oUG~ih-#GbbhQx0-l$2!T;%cPq7BSc%cCua;VD83h1eTX zgvq4KuG!*HWgV;zUTN1}O(}EaDP?{U;0Ss&ShY7Ql+|k8ZuMaGRs#l!gOrh_AhAD% zh%YH}NC;o}pj#v}_@$qgJbdei614ebg z=q*42c=?gE??Hdm;*+P#HMWGuWba)ogKh42j} zF`l$-=N)$iksf7Dq#&|cnJMoeaunbQsx(+0%59gU$42$G14fT^%E(gmSWO|~n=xjx zjGgo4()vuWM{Q1*wBDo4N>HuYOH}S2$coq1EeNQ1MHzYA6`#Xb9=@vI6khckl$i;t z`h3^=gZDyK{(5yQ0xEy4GO~~Ih-sc@3T(PSK=4(_GHgezRmi8}%@jI~QENCq54}-~ zSDtRy2vft^5X%^k`R(#ISOxeBODy*+LzIpvJM9sbhwc^;i$$p=1q(*b72Qhoj@JthAskixft3%1n7Gn?D(F z#4y56K{$+;Lr9-`;{iiRMj2TOA*W*@cnDcTAwq?aW5QSgA!K^IA!LzQig}dRmv4cN zMUkO|sRQpU->dcv^G#S;c!0TqLhJ_C$Wrk6HWq>hALd`7g3t9~tbpKiXuP!wCc_QW;j*}K+F?W!W>$G^ zoCZ9=X_+PXtH-u!8H`g#<;r&vf`gmw;-V6=P4umD2|xN zc`CrB1q1}&9-WBo2(bcEfmh;v5~fRBhj<*)fc~gODNm;hbx6aRtOk4L?mJi&c#7~K zh44)g;+sQ=MD|lSwEM1P;rGfCNfXJ7%6xgMoPPpv#AJaT(vZ3!$Cl^RO$ZoUeyxlw z#g<=UA$V+I{uC;=3mt;L)$;U~$+A@Bnq3op;5Q9%Xf;n6g=!E$^6e6yS(4g`FrB?Uw_}M)mds29$Nm$WlOA zO(Ei&MCPzmUgXTB`I%so+Eg!TzDJpvpqjI<_+Gt`m9MK?5m5PxGV-`9zksLpqpE*X zc=c~kW+$lni(O|p#Gc3=aJ{-E0X^VaWn>=@Kx6_unPAfh0)j78mSH<$EmW?EH<_49 zGv5j6-ds(riuXM9LoI4~I-PfQ)qoq9)HY_CFjIMKUj7D4J71anibDA25b;ea?Y!Tv zsiZBVDvC6fv;c%!vgN63{&iqW5XCz3$!(Xz$3*qE1BQ=%l#!+I@fOyDc=%u*6e@f? z9mWb+i#!?cCl7K9wJsjjP)LRW0Br?j#Qjj>ELc}-~u*}>;->bk9wfR}n_ey0x zg6iwKh3cX5Y$m6cEcnj4%lD`vP=?9fL397WmEmRM+A5d>UpxWP3M)pw~ zF>CXQpG^e_2)=GO2HO#9-EddD2d!qqld)#S@#;Oz`-DtjQdTuWc{*LAC(KSHu~OXS zA2T)B7wlHckS&+uslnS+OyATXzWIa6Bog3C6qYN?Buyj-C^P1%bbc1#h=~F#i%5M< z?1Y>*EK@fkV2s&M8Ci-ki?9$p#xS1>6=VJ$GRC|k-WW4;=YUa5WJ_i>v1w>Hu_~MW zkPu+{fmCM-)SsZQ{pQ%OUF_E&`&FX9Jl(EwP-)1l4CTz--4(N7)XZ#pcd4?gdpES6 zCatG)L&Iq!oAr(yjVToqf{a3U>&~Ljz6 zEmab>CO%RBRBd`JO%75+hNvMaTb$A6f)8U^<-(kVh0rd{EG9{6d)dt7`f`~B-HW+yEfs#fDENJFd51t!lvKZa$G3owj@&@RAyw*bw-A*yh_HWd~~Dl|uhhZNUh zdE`=j2@9cJirHJYq)sg6`i67Gej1~UV$SvS=|kFNn3EhVr0Q1dG%&H&rFr7pSpK*K z_hTX467Wrtph-hxYHz(zfCIo}RVOU6)v@y2oR45LzZWPK`QJ>21z&ws@4uVnoG1zl^>BG{E&Z@mVy;TF@#nw8!XEck_8mbaqu zwZ=Sqmu09_s26J{Y|K`SA}nu(T>$%R2M@e&V*P}>+FuyIe$+<4fih!9sSJa+2w(0f zyu6XSx(nfNh0L_)VIlZfnN1;lof_-YT_@zKEO0s~ zxL|~gC$@F43fhfg14ZV3R|*g z4J>b*`j22Cv{T>i8*ViPmRZzb69@u=Tk#rp z8ncpv)Z|!`gRz%n_ebMajf3sXK=}T`R%Pktsw_=cWx{Odkt^JX^%m}M_fiPoG%WgD zVag7(SS?jf*pUztuV8c4Om|x{Q_mVH@VS|9+R@{y4h!r7^ zoD^$>47g`BL=sjZPd%&=e>wtGrh!|t#J2tIZBSgtlqG30`32+3$ z8WWSb>|yeN-5H*>9asoHRF0<*k;g@#_hf^aHhzSn8vcT%!Al*z~hUxQ_b6MQum!c8z@w%`*Ei#-SkZpC5Pj#v}UyIW$NaK<_t z@&t4zg2CEY?mg33$3xPNuT(g5`@-{!ds4?Uc9nnDt6&TS@$S^$Bf^`z#O6!xF?fJ{t?+<`|J1 z@$`z#y9fww#gDLaj+I`$+7fGeHOisq`&@2x8#`70HTLTc_Ujw$*WL7&_fhktcV-1! zn`wUTSx66>NtJxe{9c!vjBOL!p7%dyem6z*O|^Vye)I=u_UsKg>|-A`7gnE7M?-u5 z5x@~x6&Lr9!oOzQ{7+H__zCl%oaTROLp(tt)JepC@SMDZJOp@@z}s73gL5G;b~ilT z)q}Um$r@>{Ik#};-VD#&Uyu;;+5FeANFK*Rn4UZij?Ja@6>MRy=~a&-&B-sbA=uCi zWyPIgtbo!2Z%)KSW2{@ZZYY$hRiiR2IQCi~Bm&27blP#azuAlsADU4&&mDXfH0@j& z1oi_S8a{}H;I8z3ECg{S5b^fO7!lC{zJpxcT3>;0#BkD8JOfh(gQAc!VN01c&2l=M z8#24eg{?lj)v=Tv#B$1&%`lm|JShGaX0=d7D7Ay3wBm=HFB=YmSBCoNS$9);b+=ZSP0kSs0mz&KHCII zjGthclI;VfN{vggX|P-{2hC#5Akjz^xxdD$vSN~W!Mc%#LtJ;L*`C%un^jbPi(K3 z%ixH>{aT}DBzC|XAk_q1oldMZhjJO$(fto;6Jlwy+B76Z3hbrGVk`0!Onb>O921>46v{#!bi<22<1l1vD8Ic;ajF1FL zW7*__oQj3eF32)_^0o&`Vq2v&SR&I#;)Hs^HC8UrCQA~oU0dmtJycTVrYWfkHANEV zd@QqEoO7@c+Qmuq)Cb|CC%u7Z6zpjvkxHzA`>K$739F2ov`MpHvREI4kD>J3r%|w{ zl~l$uLz3kNET>$S>#-2pWm(W1Gu6b}dbyCxK!K9Pwi5h;qmK)7 zn>^aSnV_HX1P{GX8>RDXN^Sp4`Fz*=czAZt#X|5XaTXKkNG+zJ*zLs>D#1cv?I zu*lxWOXP})5_|!Gl5qBZvonkMjW*w0oV54!pl(o#8j%`h)B9IgLAY~1jfLQDF@_-M zjADPj&qp@*PAuBnZH|3EA%M3ObVZE=9D99agRjnwaqRucImbk>C}a-34~6i}p`*_^ zx`XhZSXE=C7F=6M2WgYw&_EKT3~rZ{f$tw)jipF6uwkjaxjzJ(LSh2AK^xN@$>v@V zYyo*BfNR6kxC#rw!_Eh>5PUXbVuqTHmV~#04e(G_j1hvd&NpYZk=X?YNqD?XtgiQq zn-%8+0eUjExyfGEJdd!cUedfYuFt`Wz~{k_VIjCfY7${CUszik!*nqys&Iog73Mh> z*Vc|OT^D-Da6OhoF2l802<gnQcGD1>j08~uJz>$*J#IlUqhn}~+k{B*z(_lKuIL0+pt zY4%zSe>&tEVF4C`kCC|)!gn=+O(EdZSrtxkm5T6*ldR%4o5N6J-S5=Q8ZaV?WI`5T zX|ik^LXQUQVuskCJ3Z#JW3a4p$37Yhp(pnW|Dgi zq~%oAZdsZO{twF=r~da?2<_C*>@neVB;4!s83MD5y7Hi|WYKDRG{2t-?T1WBr(+@9 z$k9 z1BHljQMhQU0f7nrpWJ(CZhf8v(}i@&VlWy`^QQuixKLc29OOp8)g!w9nu7Pzm=RK# z%!lW>9}B_9NR~oGzIg0dJ6tpd;dP4bxieg|(`TW@C{~KH0@IRN)@rIsTa_sPG?p*! z+LvG0!heEgixd7B7D7AWGspqE0^A@f7fQqA zI+rkq{#6_4ok?=Yt^hZN?1m-cU&pe>iT^VeLOb!ZnlYYMQ!f<~>kFmb0{M$dxZL-ek2Ed`Fdr-knGVmvLg*J@6+B0hTAS;mkE+&k^iHWDz=t#nV35YMuEr$+ zK7eJ9kAU}KA+!r{&?{2C=DUvK*40hggjkd`xDD(xy#2PM$CmC5 zST4C7*JB~H%h9=}Uage|t?gWCjr@o<5#Z?=+H$Hyw{U68QZRZL%NwWuAuNP;>f1?i zlx?{(%nL>FRN%|nSnr@!QOeCmCBk3Avc(C10Slp>@JZXD)`rM*XIWQTIyniO!_b;U z@ib^MWF9&d3*n|1v8T$nW!csq0)kty7Q3Rcwq^e{-ZMSZ;d6Td9^OuzScaQ|uFb4X z(YR7$nY~5pD9y#%P1mh2ghPLWKRtWyRn>&G-?Rokm?hSiDuZy<6V62l`Thmbcw1wk z$9zVL9K(J~ZOpST=VM)ld)+w{BF1^F^*A_VLXtj#&KshkGd}`2;uJQ;ewjg@y{-?> z-?dl>K3={=A$*rk=xgm=>-OYmeK$WJei#~#Vg)6WJ_~N4u(ru}gy#5>qUJ+b^0@zg zn~~>NC@1<0J@cDqiI1yf%?ccvumgnP&@X7?c0savbqcPxPz!8|We@*tc!rc>?~DwRmCSWrdD)$`Ml&nX*axr1tq+jPM(50N4q?}&$NOO zA@k%(SO~Wch{>Jj2W-3{Ah;D{#5?Q-u-Ti)S#LP+51(o1_w5s_@cN!GD38+S3Uk;= zbJjZjoL#4_OCj$)SQUB5dlwc$y9Dj@XicuSPBajhKTR9+9k5vkj~6r>l?Xot%N8em zCl*3G;jJf>>ZD>#Ss?pdZDdbLR!D=XdRd-o&cd?9i9Q1h;U*dppLmF4DKP?qTk$dM zoM|nA9**}Y|BQ8eGO)JoZ_cFRQs{yMsc+xayg7Tu;x*;`^LWL_=%-yMQAudD@btVsTH3{E&y~owNYvmxHyx3--F!%%TA z*EjqjA%{6B8gFuxrY4UO4AIp=_wIq=be*(0=3KKK>lS<%Z=(<~&Nch>l;A5-#Y~)F zrd%)QBwo4p>VFe>9*TzNya_nsEVK~npTc*eikX7{bJ-ye;c9rI%UB3Lcm^p%Dz(IXrB;ln2r^t6?Dyczk~UA(mF|VvkUW7=vnSt#2izR~W5-jE2_yF9AnjtuZB8 z>q}8uZ3(Lh!-y0)>b?R!%zB*i)_uEYGS%6BA{YCnxi?HEGwV6PgT}QBK1` zXs37zltjr4tjy=cyNB=5Msr(|wwNLslK%M*_VhhZVKQ{Bp_?%N|c^eNhyhOj}j zO+kYa(L1p$aiVu%A>2eGre!{}v*3?_;8r}0jepk6o{#rX_Y^ppz$&N-esozhe$+U` z-kHmq)m(p(KC^68(+0e?Yz&%on~oexpykxYTr*vYbrSAp4GIzC^gf;3bD<^b67+3B zf#y4+p*jCAfFsWGGw4+pN^6QfCn%5F+rzVYD;9!}mzya>#I5JY zq1h-_Lo)MS@VF^#06^2$<*pKB%u>kwF_t;*%0I$FXeYmG)wWHrQBZ^em2msFmKktY zfcT3x_GcxHat<~JNZWAL*J@j$|1~Ukoc=#yA+*y!W7LOB7uI!oekbe$uoqMPA1j>) zt%pp1XJaAU#3SZ;o+_}31OdUVxESj}R;qApyqf?tRoDTg*ThJ=JsN*%EOMj@W;vaO z8`3mefSYE}qArQE_=9~1ze7$h|)U=~TORQI`^d$n?Xgv|BbSfV)BcT$KLBgFij6{tK85n{MhuOv#liwP*z z00$iU#fN-;;$3kcqqKoWU5ayxM8GN=URhY#nzTc3pC=MUG;6?`_ z9g3aVZAFkRju}!ktsrK;Kh!4B!R!hS2t+JOxs$Gx z(;_JYcm&Hcm+E0Ggm$U+Bgq%twlFGCYqOBpn%e^-sd;-%%m@CcO`rtd#b9=%28kV` zji8sYoN`%S!a``5<-paYV!e8lW9-0rw2}P2OW>Q>RM?(aNzZC5Um*n8 z=Ph@83;uAv2!A<03;uk*ME$|hJz8u#F*DFosx z2>L_P6ndB^0jEj?ojUeJlfC{OIwXD}ZDVJ6QgD_;o(|if*^o(U3x)8dFv<^}4(BKS zJn+q6W8hF_ZY@8dql9{UN|`55Z_j(lV-HSO_=Kh}gr!7t0}3X7)X?Jl zef5Hr#QY{2cWNAA=Y*r5w5N6X!H_h`ZG^1H<5b$0?qjvlJvCY4O-f{Mz%s>S!&)qan{32% z;+T=>06{=-E1tv-Q)@<=9`B6QW>uCXo9oVl2vMtuse)yI6e+)rrIGvd z{ftJxq&501s%;x=jAu%NgRZOGztzU*)MS}ADRKC0cn+VzLU3<>ipdalF4c0<_5>*j zE(GJ&Gj#cGYZ4yA%#ijZnkPY{Ayd|Uu@L%c-Zs1j_AA9Cl;3w5ZsC}W(aJ-zQt=GctO41P1R~04#@7#)dmtIrjh^I71K`9 z<^oHgz8tY4m7`Xqh!v^P!rV@*s@ySlU?Boag5C+41IJF_L`S_;uO>F}n#w}hJ4>4w zb7?(a);u|%+$`xV56?5O6mk`IQ;5AG0lh{Wp+1+|t`5)M=dlpnhewzIQBT#=X`b)1 zetJL~)iYSG?^r}hbIP}{oN=f94=jY6cEp6h=M*+{5D?r7Hm4vUxD{*#iGbi%3}X{c zYggcZ;w=R;9rmb;S)-E8ogrV>oOos=*{Gw;o1qBkX1P_^MDPv zZEH&zC<_3apyJ;5L(zDZ=l6sxZ&H}{Jko`4W4(eq*8NxrF6n((2usq#QIcZT>W(9W z&hxUJ+<9 z$GO=t#=_Cc6kGnnPtP8u%$BFu=Vg^v z%#T9N(4Eu@UynnN+8HNS$=6J%PL*JTNyyWx&}tOR71=8~;XEz*iU|#;tcIl}N*T*M z4}*h@w)ocF^Vh*!eHF3Fl($*c*W5Ld zey)x0smXp;@XfRA?a#1Gak77ch0soRD=e*Ra7C*igzUd-qk2jb7SpUj$*cd0Wr-90 zIu^oBG-96RQ#G3~5D?soF{Wzts@LZ(#yii_HAjzr7h^fJ8#2E>01Kg=Z11}mJ=&-q z?JmYqRgb&^{&IN6ufsy{(RB@l z@LgnLXD**g-rs}PqF7wY3bfgUGd&I}e+SDGckTzV5ZbApwh6ugn)E}YwC4Q1Hom7P z#b*&^|9%n67$^NXEQEH_r>{!vD3w!dNx|fka^`L!AD@1T|9cuBC&8y|4rc}j*Fl!FMe_ug&v$h)LG6}WL3nzzb(;^9L zBWesSDaCD}`&)ySDUv+hSZ?{KI0Or!U7iEh6iT$x5mARs%0wzskQBBWPcX}+Y7Q6^ z?@yelO`ijk8D?tSbn)g$6+A?ON8G2-A|k@ptxdBu2vgP zY=9z^HK?mAjGjH()JeGJ52KKRiJy0y|PwVn@m{Bjp>Wt_aWdWmpJ41}u^)o>BS55`rOK|pLP?y>zo|`?rO9m55LWU%V;Mrv5K%*?xtxbr|Qc;)#_BlsaHak5@jt`LHoK~|E>2F~faLO*u>)dU~J++KyWKGt<b7Dbv=hI0t5K|zYut&oIY@@!`9|0+Y)<^5_YY}PVM%h( zvLcnWt*~c(kFik2^2sGBV<7@df?ku%T(c?Be4#G!>_7j@|J`$`Fa=$uO^EhnCO66( zbys3JDTb*cn zYI-KA)@M``Mq+*Qg?hoG)j3S80~$)5mrG+N*v z;hRBqBR#k}h~zIG60kYCGJ>YeMtiQ9Db%xOAC#`A zHs=e_i+qv%D8mo4(K=}C$-=eIfste1hW|8LG6viMg(ZB$%gq`S`wOMsk&7FX2Xfi0 zS%i|`9aa<8|8Q}ml~pG;vm=|~D>qzdgr-YHD0_5qqpf1><^`UPplm0)sTGKr?8!Ia?!Ll;2rx5sFLqT~fWb#PE95Ga+ zIVy}5_1^rfc&o5Y*-$aEIZ#Yo*L)Fr5y4k@&-b+9-j3DcSfS+$ST1>Jxq?FYhL-40 zoU|SXJH_<7tMeP2S*{}sRySZhp4HV28EW8V{=zq_yyeD1x2LinB^K`#lHS`Qi~ zXvOaYyhTYqA~yY5x^eV0m=S?Xdq}V>X+3C|qSe4t@CYTjz|iz_vVkRQ^CXs7?%Pi= zV&k~Ru$;YCF>wblEMy{YQC9Pgi%QPhdW*;CI&z0v^qzG_vwdHjVa6b180_v=VqTys!NQ3&G>S zYmCw8*4ma+cCIQWtO1yy*M~$8eK+;2@E&?}TtP3l18!lL@Puz zawNjv|Kz}S1T_qihVj65C>BDav$04pe@z{Z^bGP@#{0p^9CSd>T(cmVp%(DjrTILY z$Chv(mPal{1`FYqLd8?1yqwK+2ncS4t}JB1T9ZWHG1HGPXmg2$a7KWb5G?Pw0xKx@ ziOVQNj5+n(Y#1_AZgQdVErw6pNBg@<~=*B`)uc~_T6vf9Y(g2#5@6qlLF^})wu@esBs)LYtwdbf20vjDYrEbE9^ zy)NrgZtElo-^B9ICHxB(Lc4@Z?d@Hz7aXyv=CW|wjO@{gaxFbyS6Zw-KsSql^-{warnl8%{{Vi{uV^hZaWRTHECLkT-aLk_}0;jbyx23X$lcz z@-%IY0ab?K8iGeb%?qO8H(vuBfxE`^WJYXOiXP{O=kgpZ1RpUUqY%EEli15`Gq%@z z*^^9gl9(jtLaKTbG#bV7P^P^zS#36)Vygmqfqny)HSWaMV&EmGbO5D)<$)EvY9-3()|*aD^B+dSP1QOFW}*1qgjCC znF;TGr_PV-3M>m9fn|W2VDCJ8Y&=Z^J3?lLQ?U@*#ppZS0*k_&8XJg>X}k$Ypst%n~I81h?W;?0~k?;SKTDg_yd* ztdYvNl^UF^aDF{5MB`G8S#}!SZ`RUKw}-YQByJu_Zw~7Y+@ty^M2t!AtW8DeUIE@F z>$koMm2+i*(?&F$=FbEifx*UXcp$Rbxb^*nG%k(Qi^KDJAr^vpvN zoQ86`@$Jx56lt$ac?;Cnrp-wt-->03JMYa{2<;@#ad>%O1wKnvVWT=D)|UUVHqz%h z{hTzPvYMAf_z{*tF2WD65P?NNpF>#;OO9vHy{c-J%1n@(?NGe3ScM9Ut`YE>HZc~_ zg-F$^nn~}oJ8X~?`4g5-uE_sUh!|sf8(G?|FBM>KR0u1xKcOqEOr@muu_h%BXF|In zlicZ82=3MG6e9BYJqMn)r2BFwmg%u7a`|tUDHdjUuQuZ6l7}rx^C@`UlANW2C0~j( zFNts@mO<{whhrhMi!jT2H;zP<5ITWX_El581`HoG@hbYN@(Mf04HPF;{u$B zg>VaiSS;}M28(A12yO+-r4SI@3YIA&Ah;D7Y;3nyJv-yQ>oBdkm66ynT!tg;&W!Qe zXxzK8)L!`T{r~2-MUgYWx8W@4*Z8z^PP)q1x!-e&^uR?DeDt7VD$L$JK@xUm8Y zp`H3EtLwQ!Ed}3gh3ImEHp<(Qy>^Qd)yH9Z;#6wej4NG+1*I z$rUU^oa7P~LOaPbx5MFPIQl?79Be7UjceB#r7vhByenCyP17%s1*>U^{421`aq=(2 zLTD#{D%tuoDmf^LBD(oEwXqI0>KtuKbl-#Jiqm};7D7AS3)q$1+!?UXC#EeT`%i0Q zf1!0JmzY4x#yc`6kF$|aVwvP(Jb{JKF2$RN#`%&;hH`zFdEu z-P98j#|_$;pGKCYj#eeg*JAnNKEDbJp`G&fwMNZIG}8*_hD%->;~h|Av1X*2jY@>~ zW7*<_XR#3437_6$)<{{l#BMX!Kj117_GxXL&w$-)+HR`Zu0;DKSk5@@pTt7AX-8~& z@_kdbn}&ekRy=^+NV4`#%PmkW(65Y?@8%Nvz+~IjQY|+m?<_qOjXyQI?9(2DydhzC z&tqTo+gNAd{&YWu@F(&ka68wxbY;F5{;fjo!hDYW`JY0Q`8@m+EmoQE=y>;FA#Ls{ z7vL-a?46PtlZ(Cn)b4@dG=1`g{t>&TTsLR1n|;r#WSgl5RG-XOSkw6zi5)MIAAf)! zX1)ghJFPaEufsnz+Q@aW{z|D{%#P%D!~b$|eh>V-C_ha9`3(5Ec|!h7`d>ZpUhJym)_D=j^+_eS{QH-|4^o*mUs?)3TH&A08d;vdEkQN@8v7NnBHJ_oRuj*& z$eP3d;k$Smu86>;s&2bCBVz@Msmf+pa~BU3trWsnLjR(a=#V>YhkYPjy0ZBmOR(VL zc=DP*5O4(Y;1ak^YsI??;=96=dD!S=`c7YntKE*_U=4r`<=~Nvq%m>4 zGO`81)1V$K1W(48Glh!oE2$N}ZigPivrZ(X_~>DLKB|OO=VzhiD2@}#19>*=vXImG z9!bu$UmhmRxTIcF$cqh(C!*f`Z+;B*9}?{tBY%OK$q?){QgXMK?0?ZP|0IQnfv2XroEO(s#SFjLn`VkWZpJP~rLqKpV#+YNU zp|EZHfKe$YdULLgo&zq{HL*-hR!Ng7+N3n%mO;B}8NUU=CEpJVp`Gkjt9-dQ%rQqy&4PQCK@p?_}F4AD+C0$ViGn;5G!DHephU(bN*D!`U;#vgsP7T z`F+N7qj4zD5^AtmfQMpO)73P4qfuA^dhD~Eh4mBeYG+Ug#PS&%7uz?%lQ1wR($r9x z6|aki-TbA1BQOW&4|C2&rPz2)cpk6DLh!-zc?uEzVrP!v(FxB``5?3%#d1gHelAqQ zWM0i4UAC&rdj!r0uoQA{{uZM!z6H+|y2dw(u6?^-Yon7DNrT%U@_xcE!}IqGECl!B z|78+Hy{u^?MEAj?d@iOZU!u!#r?7$r(412Yt*q2fki=YCLcJeD&G0l zKWkIxpwZQ7K1Sn_e|-^4F<0pe6vB5k;hWoH2Lw&OjBM7G6#ReM*tKfZX0vim@Xhe_ z-GhbTPJR~_g2z85;@%klW^NoVm*BfeHCIir+O1+H@&|3YcO?hxrckSk8asy_+sg|;`WXB=-GC%M-BLm(KuOSx_z3>e;`>1@fYrfI;1b%!%}-bFm)-^q`A z$&YW6AKxNB?k7L~ll*v){CJ4`_%8YJJ@_F7S#i9ogxVhfoE2(UvrzlqprO`DrX%3q zL=eLTTsA~Q1>B3mSOEd|*_gjuLV<7?AS4s_{JQfy=uQ-2_W;{TdFe+e7S5W6lkvu2 znH+T)D{Fcl%PtSYzo8JmVL1AeZ7tS^9$`9bYed3p{;$v*fwaabpLtrKQPc?G>`lZ% z@KwV;6v8*X$8PAf5}GR|_~zo=*G_5UnSJD;4NBh;4#u*?i9QGmp`B>z&#-eQ@VreM z&!g;{ZN+lLX+9PU;iefeY4Ei;i%AFwZpE*#kkO!qUSTegO;NW*9M9@cD*?9|Q!q;v8&8toddhYMp~k4%@eGf%Q%E`mJ-0 zIq=hw4ATbR1>sj-#Y?|Jko1^Vl3+>5>^y;m;JPlxLRh-Kg3=Yer$3#Pj3ZmliPdb& z*{SUb5otT-KKEGC9)~5B2aYWiBF2niVe@U#X3buxBMuR`nt1k07YGwwB^s9V2H*%p zHs;xHjW!Q0K`n8*yC$u;O5qtUU?KS6$x(>NlZ!c<$dgOfoj4|gq{0=@bQI}^tU{M{ znvq?}V+zP~<7HU(xQkzkh0rcQS92_Egl%%NXmO8$d$h4X!yW^${Y~1IslN-$8>jvb zEQEIIr^1am_%@Ju<=U(NO$a+rYNNb`+=PQRWu~9N(!`m591G!Q8j-#61dz=p2ncS) zCTvHnMB%gXCJM8+Zb_Y3%=HbETw#s<0mYdvbbTh05ZX}sf+Ng$9$DcGFe+qL*g+v; zOdX~iUx#-WNu?@b#2yh1zxic=Bhcoz<8Wwr?owC?K2Q#(5RoSZE%bV@AwI%*60{XX z7T`^>$EL$}EI&LVZo@)or+D&lnObS<7Qu;!wKD9n=`e()hcjHoLbw@5Oc;F5VPOaX z!L4Y+cEp-<-Wl&{mYM5wdlKu79DVF_ry{;jLn^Um-aS3)}A>0xm(kY&ivFREC!L7In8#k?t?B$8E9y>^ECFeX-C((1B zbQ^%4L0Dfg22FAfSRCe8MB{4>?3q&`>G0SaxD4w>+z~IO5HV(KZL7*gX24ABa2-du zD;loz{|Yz)Z;h!*gEpC}4GqeJ`Ht`$-j0Rf!{}BD5qYBaj+3{n5~Al5&`uN?n#}UV z7NPbX<-#Z3VhJG;%5IUZS2E2fo9XAkbfnXIZpoNSP1Rp&pHlj9<8eM*U4sNVtc(@ zE>*;DVE1XGe|C~oIWnxqQ&p>RDfrxrWseJRHx@#>05j~D-o40wMjQE^{GE4S;-A8@ z#)$`St<0ZqspVKt~?3aWWABh>ML1KnobIN}-yp3g) zi}H6YgmzJ8Kq28WJOpS@io!g6fHoOANjc#%ya&h|mcr07Xgy>`xgQonJMkSS<;>j) zdRWYz*KgFu`n2Q_w3?#F#7L_WaW2kz?jOjIJpdt_R|ui-zO;=N)g6IUgZwCl^-O_Nr^+@d!&c z@^V>Y)=?QC_o&mIfBN*1v0mzHOeBA6#K?QS*w<)v7B2zwWq4d}#eIk=P&}mo*jSj@vpAB;blrn|KMl!>RoaY&(E2t1E z{SP{f=aBiK*?KDHe^%)-EPq^rOR*5zC78LYS~X#_2^O5q-7aAu+@p>Et|TO8tZ93P zOZNY}u*`At@4!O1$yW&n)=a?HIxG)HKyWL*g-!abwa(Ib*E-XWgED*YFgM&(B59yF z5xf$OUkT+l&2l=M8#22~&34ly=^MKo*B`JB!hP&_6vB6v1nMm20$ z!=bMlTrJ#IA^ono-#VOec{B<3+t5RCwX-PMPi;uSZZ)$3@*vv=DHZAfLqew3Z4|!kMwg=qR7OAMMecbkqrl(iIeFV#Hp&W(^f zBSo!Mnd2=8KK>5ILh$H%5aTSmcYB&HM6MY~E@VP$)m}dr>LiW<%%#2Es6hX+k*97n zo4Jwjrz3PFVrbKqCMDqVwm1|M787SIt8+=>=# zN4OPi@(yLi^Vk%^O3luWw{BgV&r$J5t>M@TPs9g&k-ZgO7BnkGqcCz&V{*mpt5Iz ze#%UDK*M2kTP%crrgxMonE}zOkI=|89CghM!2KooDKmX2mL?t-QdkK6O!w3W-9CMi zMy8APLGWq%Q)YTQmL|^hHY|j8raK^dY|hmZTTG);6kU5*8{rE`5ZRThr3$1~5=-p= zBGW&F<&M)|#X@MOzh%dOX%tH$@n6zL{In#znFZ~o*e{vvtFTOQvaiHK=qGy{c@?87 zl6}8Mvf)(+Xb-l9$S;}f`>;%LvhT%0XeWE}v2}PSROI?uZCtk}^Q5^H{V6m343;L& z^ix;}?M!!BS1`B3_T#R^)-8oxuSol(D|BUp2R83wR!Q5b!2+}m6&=Zq(3InUk_Fip zObVGNzP;B9GI@>B*Jp|vEZ3$%don|sOVOV)(+7lSdKnf%yX&{E88C81*z*_m(l%@3 zdPWjnEg}u3tlu)<8?j{ZP_qsTp`GuJ9cHmws;n+iUjT1^lUDnn)zo27 zyM+H2nf_f^?l}DeSP1R(Pu_ZRk69CW|C~17+mnNPie@cEf67dM21^rX`cqg4?MzQv z)3alzptThFA=CT@mLpE{t5^u_G*3Ks)yX2ui?7s` zg108~#-0@Xzs&IhXf$M!Jr@h1onvPza=1wLG1|x$Qjx=*sfb4{)uXZ8aTh-d3!$I> zwd+n!Y_X0ei}YtS(w{Z=q?!k!;j}3KFS7Taj^&Qie;O9TO+Vt3D*r0WKHniAxE23} z{d#46l|8gI*0NqR;hHfNI)GGnwK-r6;f|%%JlTp) zHQy_iNAW%3xxEVu!N<=X6e99Zw@@F^s3mgM1eL&YyblR`8BasYQB+rvHJA!^ziG|QE#Qf$^D3)rY42S(SD$yJcV8IweVkuY=GO=EQh0w0V z^3?`pSQ&C!eS-;Gokk&d1{_|8dl9>HwSmOCzP?;0M=q)eLu7+CVOGG4IhH}Ge!-v= zF(_qngQOv|7RxdpGOMr<+J)-aT7u%bp3i*ewW$GTt)Nx7vt_;TEm7W&<%?6E#X@MO zeEC*mPi`=G1{oYDR^d`+qSTk@fzdH!+P8*aywt?8@o8;ptbmhmO@mT(Vo<8omnu?& z?7KwFAW5i8uq<<-K8b~J3x!zR@bwYPoe>b+ip#L`qP0HyW6Y;k;q}x6yg~tqf)Ios zipJ3zUG@VMrJ|X(8WJ*ik5$mOvChE#>3#~~y9&yGDr_@6qvYc0>Nck)Fn4pMPDfmZ9$S2>BzP2yiL8 zZy5fynXj;x@-LERUm`#L06)xp4gU9I--iF>>+nx-!yA5HoZkaKFUk+oe?9|#Zk~`o zlm3^F!OznmRVUZMH_xN@!5i=H9w-f(-EaXL{GyvwzwU-h2lW55rA)Qk!}gVxYHftw zBYz6aK&3Q%95VGnjl=uGSOJ$a{u=MaK3ZV|4ip)ro&$3NaigN+3y~}w8cAC`xW*{N(qkD!)2T1rQGJTrP2d} zsc5*)F9IBa%EtU;pJjz(PW5@X^x*I$AB2VA^V$9sBJ%x;xhIsMlnJCfWWNGj-t!^H zZP0cUI~KAIUC9cxPcj^`XGFuY$D@v0vGj2_KNbt2U4bP~C;%$r(!0cP6o5o|dZ)Nh zm0#4XY7=6CRhXBUk%A)v#0*+jrr>ePv5X~?>oJIhaO;7XocR34f*%5cTQL#a5i8I9 zbG&)xWVp{sYt$?{W^^OI)eQ=lK%3%E!+4IO-h<~`-}ojR5BHl zZZ(kqvXcM1mE^xR|J_QxOv6uC0mKjO)kpEwwJAx8lCWR51eGIrOB=C zeyHg_U?JW>5q&4YD5I{UxQvzQI;#@3GA5R<5CnQmSs<&!EwFGU+dWn{A5|vKQ|SDE z0FIy)yx>9fv}Cl_rT4*~Vwvdo)!Xf=?#h+ZRg+#5O~W;gUZ~P^k%j!Ajr?6@WQ&<8 z1*pxE26hH5ZvG34G_|*0D8O}Q0w}l>4=X_(H2<32vFnlMIX6VZOVumBIR5oYFwnM7@ZDyd$#Z|54mLZ} z>alH>9J8H5_(qgS)9TSfN{6H8uDEifvNl#fe_{LS;mTBb%9~#bID#zjN&^Wg4&$5O zvA9m%>Wv4CD~Bi}Tg>ngyn;f+H+6Kas#FYtFqhiBV30G55A4-k?X)s2LDil^)t0&- zYksP_2>~_#url(vYd#m&4mEmu-8oQPx?dVz_l7bxL3Lk1b@%Lsto_C6W(3s!LSbB2jrLqI zQ>bUnKG@Z+j=;`%W5XEyP&#NSRD$-9Lhl%-f--g1^R0C?pzg+Hij|B+yjSDa^%$;SPnMUgn_a?*@xsA*56q; zbWj7?SB0@AH%Kb!hSREG43iIU)*{2{?_$gtbxe?tYDOh(6#C8HiV@bL5)_aGi$ZBW zXcTkhdVwyGLb6;eRR+PFP$L3%p0cIEkZw~2jxz(WOF3fgHzC!6qo^T=0o-3ByQLvV zIGmHL!Oj63RSP>T>$My`rw}fR+7AwzjTRW46;gANd`Qi|3bPh`4$Z%2{eIp0{f71X zFV^qBTEG8h{eIK>{dep4Kdj$xS-;=5eowfX;qPPp-q-s54(s-Qw<_hjpLi}kzJ z`aOmIHXE(56Oo1YMg~UcSJ=ixQqd7U=eA@F`Una9V_U`8&HLz4Yw)*V8+?QGtDA?Z za5?&7-6J156#Ao<4@ryk6hNr$XLzPm`CkAX;vzjs(|6|(WNDQ3lVx|7Jv@gxSlyn0 zdHg{Xd6d-3PfA3orqPvbp?zPuL&$AU39sc&b?&^%n0aVShIWfl129 zdyxy&Bo}ypco%rDG9wX3fqv+g>;gxsn-$On4p&AVcNdt^oCtEooa_Vx;hn%#<|L>S z91?6QU>%d)pjX|nfNqdhMjm%Ju=9a}JQ-XO-U%*KW+bQ+1e^>=w`3Q%RNbtAF3?a$ z-ius7jsxEg?*jKLGZM86cuofQshbth1@2Ww-g{gCZsEAM2mUX-3;bT0k%(P@bW4r` zFRGgr&;_1TMjm$;u(ycHrQMPbEc#ODWx;%a(6cNExJ5+!B|E_!b-MyOL6sQcrRG5%t_El5HKlZ9h2Q)jk;k0-QXBy(E|0U8z(Da(!}IFcjVs zs>-wk^@Q$V%LBV_vNM#`Z42lOgUZO`?hG@V3q>Da_;Pq(xK5dspuVs&pf6Z%F1x}t z>ZS#Bg{zg3$K4h9^iZw$N=d?F;T_>oWln-RLeS}fc1(7I@2eXY&<(z;j6CjcV5f>+ zUht3bUhp?%N`iVpz*N!43Eoh*E1(m+s*F7DPGIK%gq}4+ zz#PHun;a4LSGO&oGb~j`9(QN3Bf_3iMRJ6l;T>UzG9?j51lljz3658{E1(nfC?k)% z6LhddvDe7#f;tMq38PPhcY*Vi35nDNn!U1E=BLKaR<|pl3!JHpJnk;g)^q_l81B5w z{q^wr-=@q)Q2mz&StIls&?QOyThxsTDE>{#$a{OY6h16u(?PaYWPE27mY$pI#*n-$Oj_Ekn6cL$hi zIRL$*^5@~h&0=mSh%E;sH5>_%uZo&!qz-8h6;8JBag8D(AWRP}A z62GBtR6y}BRz@Co@vU=3q?AoHcZRqcxIerD+^5V)PzMOKQEYcha)Nu+4GZW5cPk^0 zyA!msNnudDZuI-`^1rCeMNs(<3^ETuha};jQ#Z*|czA1Sp9$nYa#^WgD>pIj9$?J@ z@czf3FbB-PHuR!k4nXKx6a<_vl%Kfejul_a4Yy?$5(AcM4lElAS-Kc=#e_k1R+{L%P1XZC<1C$XLM*pMX z_5Z#yAwl&IbUdKhE6D}Et8Q077x*t_WFHqm6!9VzxL6%9R>c4T!Rvsr$`uF*ZUrk- zg@E8zJVfhf7z%}|EINr5PK!(*~(TCYRoF{@ay8WvDiI-D#jyfgM3}#G{_+Y%pIffwyGf zHOppFhB9U&$(C`*~fDb`3O&GSTI9CaR2Sbc7$8O=F(7BOb=rPBvy;!E%Q2c_W;x# zosce+N@Zb@@(bvP+FDUIzkvEt85kmRWwN{iOud6{%y0WR8=%AO_S-G62!wUiku zOxqr5)&F8e;Az$WPzc}IHNG&}&in0(hZFuqRU&KT@?7d4%0zjpoc}%G2%)Hibf#dR z$$1ZC#V=O3AfVzGDkG1(;&b@J44gBU>i30L{a$5ef~r2Bs_xYbS^2xwtq7?6oyy2Q z$|I(Eo++^D0s+AnKkvqNgjfNY!UOSU3hnU7=ir2Nwg8X5?Gn}h~hvRLm? zIgFPh$UODN14fY9%E(d#nMony%NDF_s}90kYHtRE)W)Es_C{q|f~xI&kIK;nS@U)3 zCIr-cwKDR!YwmcD%0Ze-_dVftuPaj%RCo7#RE}=Q+E>)g2&jEY8QDjB#B|Ry1~zFR zAb7^`C+yT^Wem^7`vthgsM3$GLbCAh$`0%4ZH;3*Hz|YcD>SVVW+ab9;Tu@D;fcc6 zDa788C`_?>?Ft|NtE`4JZTyciO`d}0zXLdeB#m~u-e}5YHGCf=zwBVgPt_X^7%=`@ z8CeP#Kco=xB?wk218n^?o_tyJe z;q^XDop8_3^|Ib98I-ypCj=|iO$ey@JC%`r#y4U%=LrFu91svZA-E0eyjDVR`lMKo zgtfw}ZdKSm5Wh53mA%z-01}VhekP@^tyY0#eu2j}T z$_Xx4=E+mi{P}<*XwvAQvqjT#IcR)Vz2$&GQqZ`BLd2I8ScUJJY`JuP5UdHg zW$=J9CqZ@Ya%2Tf`(?GirQUu(wf{pIdEC{W#pl!}V=l#C39tAclz9oN_*|;E+y`0p z->KUWQ1$1Pk$qH0%<4QbU{eGFf+q%fY)7obU`M>)7CP6%8_1;!+_=srYGx500~PiR zy8l%*Qh7Svm`~$MuUPllW~D8&gxSa=LpTIXRa+-n9>g<*6%@iZL&$&RT>A+B+lwbm zIBg_vo#dYd$L{kl!7TxWD+2jH!Jj8DSf4z`X?lqY`AEI=M^@7EQ;pMfKxfLfBpDs} zWusz1hYq(}(b9`rMKgZQ#y51ZRI5YPJi8BOz75_LqYvC}2PY;E-0rY`pJ@F)$@;z1 z`h7C}ZRVH3U!+gV=9BPGJ^B6V&jTo&$6K=N;jf{F8IQ7Tn1zb62Zpf%zTn;&?|$sm zf@$o6vtAXmP#5Cs$Dki-nV@%k-9%l?wE}azZcjr7|JN%?ymkERmDE0F-dJ&V7)w2m zvqKcZH_pa+;){3Om9br`tc*3C@bjWyQfA6i-2A5iM^ME&@x^VIGqtPK+YXqiU8#&L zWonmGi1=1x)`>69mrLs(fIVuXP}2H)%B%#{+IixO_dr(sJL(n$RQy3@1|&%DoZb?$+2CGF#x*3Dc6tqU=bp7?myZWZ`fMu{R_OQ|*4c zBFR4~>mtn`Co2=>DQ$iO;0U5LrqSIU+jKd6oT%P(!0>T`GO`ptj-wFqr3#(wXthn3 zOX-WioRFEq1yPJQ9OHVwvWN!OIlFH!+BB&S;@BxT40~8&!pna)Ma^p_V*( zYMFlr;0Ss&+Gx~Z-eWa;pMAQkQ@z=MablV>vJ@w#Vj*~(V15%SPP~NmUMo&~FWxvY zWk=2H>g&{b^gKZ*OZ_37)OKIxr1TnfTLWr-wKB3a*?gWt#Ft3S zL9DJ4#K-D$B#GE%?;=xuPP&tyNk@VT_jh`ntRgqGR(@R%SR6Wx6nc4 zAb^NsVIog3Ymh$T?62%3`>Wd<&`FjmBage2%&?uriXp-$hMnQPV}~*)K_kcqk>1hl zs5HSGuWo8U$LLW;9(Tv!6HM92rXlE7jN&d=@c2Y{_c%|PnV{~0onRc@m1D=*>gEP? zku#N%$K6F{*|DQmvW~a89OUca9ppA;UV=IZHbu2NE4#-n>c$3ikDHW{$K5@6{sD~D zi+!a+HdpL-dC1e@J>*GcYJz$QHve$;S9X#o)a?!EB#$d2kGqp}I%CL?nQ^(t)SE)5 zr>y{?Cp|qHnSg+MKu=}In51rLK*!iu8F}0t!x24Tv(RULd2e|4I8vD!?a{;0U)f0x zSGPBylXNR1kGqr1=h1_b#%3AQUH#e&?i5p=5B?5yk_4RvD!y2r)J$m8xF3+*^EWE65_o6Kj$dw+N@ zxlfs%pkA^88A;rImYwBZb(;e^%iYSz0M{wUc8# z3g5mK4i+S=g9XA?^?PnsT`78wlg2XndZzn2@|efj-UYU(EjcY83nN!FDWED@$g@LVk1hI%TRnRnK1vID#yVV4o13 zck5RQ9hLH)Yt&5*nD<;wkr86&KjQb)WXA7bjD9F_u9E`$FqbRyeH6@98>y1)-&g0- z^Wd5+d$5I)uk3c8<%QCB)ol)_|9>eXTZHnA^FJv>dl{P>~cOr`ZusCq@TQ@ z%uLYmurbgIX%s)PyDSBYSJjOU=qP_wMjm%Z5hKcADQl*)rJ5_E9Q2jYp0YncsHI~; zJtb^JY4%x;C`;9C4(KRLl#$2XQDzAdrFoFY8BcbE_mbn4c?s$z>qEwqW{0I{(xYy2 zKquL(j6Cj6GEZ<4zfXtfg?E&*mAMJ(C}AfayVG(!IaA%}fUdGf8F}1YWr5pOd_ExF z7T#HIQD!Hovm6^Ts(`aJyDhuRP3mR`be9{Hk;mO#X1m=*{*3r!cu#pknV6uS66{m6 ze?AMI;(2i8adnFWI?0cfk;mOhTrq{QnJJZrUHNS5Eur(-NdTcIpA8*Tc(>)4vah8|M%Qwi5OEDZ_VX^%VmxX?=pw0b02V1r6=q(Bz9ePn{IW}1G>#2%E;p$Wfpt6 zjkP{-c};J4uSqKt6m&}38jaWZu8dAqw>+TJd{`NI+?{4WPp2tW2I0`l8Sa~5mxgzn zhB8G#-R8K6+@{%gIoe#TZhJt-xlkE-?{pk{k?D#z_l0+ydzC4Q*>UW?%Z_umy6piS z=T2qhad(`hUJ=K!;B>jpi{V}8Ic1W9y3X;@#2iQOW#{>|y7d8_=aV^k&nGR*-ad(-d;4=JRD_dK5Twz@k-gAyorYUH| z*&fn!y!tQ4oTJt459mNgDI<@&1067`19=|uEr)lZL1m(Xy3mOcyO7_3-@JMc0yg0gRWI%cD1jN`@5)5P)_Y3IMSUSb-fhT(6q9>mXvK1(5dj|=)nq3Dl> zPVX_RH8Z=46oQo$n)=nyiF+$RM3K0^0gQ>KLywT>PD#s^?%r8r`98aV>Lhjh0tT9W zDYCD|{^x%qKN7mY#e#i8(lyx}8D8$g)#>#7fFaBM0fgLkN975oTiwurx*wv9EKM*g zD1>hmh}=QuOAcZmjdY&g>IJhxo(4@Tlj9ll^Rj<3~pGe)(Rt_~Pwv+9Z@mxlM0hB8Y*J!LH>lDIo8N0f`z4G!oq7b+u< zyTiFq?s1GVJwXG9M>X~$U3sVJC2hL% z;9jk+boNwolB3ma4d^6CDI<@&lSuhSF`F9{yrUf6I|h|`3F;lFe1mpTa*MpWkpbPJ zUm1Da-C~J5b~wkJYt3>^cn7&!nW3N#;!$GC*%j~b;rtWwdgb%##s+kh5oP3YcNA%o zvA84Oq=hi@{qSD$U1fTLdI@TharRV-CjX^wYd|OYPi5qBcalXt;$Hd6iqYS1X48X4 z*%eFP2=67YD)ST6OFYUdI3tC3Ea6?1Bgr4tO%3QIFDoODyOT&;WliSlg<8(TRrbF< z^rB`dKG9%aUY z#+hxH74c}DmmO)dy72)WX`?doxI5DR()47O3r5CFLxnW9%5-njpB>(P&Q#_psQY+a z#}6<~NnMtmW{R!sdrNpPxk;Irpk9L7c4K|CxaVg9Zcw)} zpkrLGj6Cj+G0z=M>cw6-q2`)^o(S(7k1KN%)HhI@^{kt6)cCQwnE{>SN6N@P&Ve{i z#!sZN<0=RUej@E{?7=8*1v?lO%8F;gSOMqa{v2;T#YyI1xi%~W+~n6(mjs?8BE-Ak z%qHQyl}C}p1lXyz?yww}AB0;>A$$)>#didzg?8B$-Tr^-t^`hwqUtZ?*xctPgph;{ z%Mp&9Kse=+9E5~~1d?C`fpK=WH#?KrnPHAiRs=y5MMn`_5R^kj5fo7bK`v2HR1`rG z1Qi9j1XR?|6A`}G)iqO7UDdnqRn2rS{(hf>U&6oNd;fpG_o}*%m1H8ggW`0=<>VM? zxlAts9ElHpFSy4Pf2=5F$Iu^(%vMK{k(F$9xG99l6P|9Y^2A&lD{bMf3x5)`|#$mI}X@FsY)mEA>H1J zy9zdJPR8kTvZZaXBX6*BAo3y3_PkR_x&K}wGgyfs|E(AEy$d6TS4{@)dPo%FiOd$KtB@c(Cs!;w@EmN!`V!exzMSFw?~9BWlufV+ z`?uXW;=#&(NbD>eF+&I}EC=Y$_2IcILRgc%Zqr`b2We5!0rRn9D&`6$hK?0FyyvA< zv6M0XDbU470QIT+={{ap~C%BCtJx4V>q;wCsJ} z;Ms$V(r?ahX*qo`{RaH>-j!}!04%+71^m}I_$T+zJ3H8)FZO;8@O}>Teh&72{sw>l z^ua}y^(?zcw*g82qt>(!HGY?xhgFS0>~i<~HpV#cpdX5w*V!~=x*}QYL{4aguXSz8 z@eRS_JxoKWl^UEA8)2T@{j6yOWUV!72p@HQ)9OZ8m+DJw0Wmj(+iHWhp%I4pySK(z z$XmOHXhrV(8o~x|+#2F*wX180?CM&+;~K#(>jxY1dexf6hGZ0}lWd56)i$%ilhJiu z>zAN7yIt$`{Pza_`(^(775;l8|NScey@~&RjsJd~|K7}hzrlZR;lH=?-*58Y+xYM8 z{P$b@_YVGhC;z>R|K81i?_s~>uJzOKuR+`Q&Na18gSQx7!_oLdBmz3Vr@;#`T9XtL|Fpc;%W~W9t{olmE4ppS8O&cY`#zCQ_=YvdtpGtAWMMfzl*n<_M|HM(G~Grd*E^7rmD%byJh?<9 z3i#gP7sa9WqBw{gmS&2=^-&eY0dyOYqKJ`^BNxSt`b^=Rsc53xUK0s&RIr*jgq|o| z7gb4|K{pX8iFc8aN0ubEIEo}LwwJ`m$x&&dBwQC&Nqm%UB2p3`CL@n9Nt6^xeA`|U zcafvgOi6%?swBQeHxVg`Z<3KCmqc5A;YejuswiHu7sVgQalwj0vvoUJ9W&_05ks6w z_B`E4q%3|tOp*m0HQeq4}*Tfby3X}Gw3EFB{7wZJi;WQ=80qN zC9#Yg6>Od`k%YE*yq#_$QW8g!kw=y!vTBwn*h?Zuj!F|H;ku}1i45IDq$E;gU{Huk*LdN|Sn5X~8mXg0zQH%6_#0;)9H z>1HCOF`tYaxisXuQY?2V-Nr_HVVp>g3pQz(loRHpDvJ~7Mj~Z#JQ+E1Sx7yoP8H|c ztKw{OSg@)v=s^QS@gBO3NKtGfBS$U@smCZ4%1(ExUr85VwHL;h$)Ujt!=T5g`Ke}% zFVXEpisK7pL(sf*9usjmI!xK!nk6tr&LUB$x3?@_xL8Y zYuCOJ6>p`dZ=+S+a{6Jm>cwitNo&+JJLh);gK1*~9(A!pVOItbxVS8E*zcX$m1Sho>H^ z%rVc#3dkJ49v$v>rk-4(C7#LU@>1&f5O_gb+^UsW6s}hR+B_NU`l{UBIhxPk&r~HUi*^Bm&x=fN#sl9FliZ1Uj{f5B|M2#EmxDs7wAt$ zCXvsPk(DHJwJC&1BA$AzlE^tWRzMQDJKWQI#xKve^UHbb_e8z~UNjlOE_r za)s1;;IL}X3UwQx@>gQXJpaqX9;@(zDH$T6Jj)>H38nFy8OAL?ag&pU%`#HDpL83Q zDJ7qb2MAj4rq3t;hEU1*M6J*NToQuQM$J_vA)HP(7AcNX$;cx}98emQx%_}HaeTsF93LY`1uG8C ztq&-1a97p5@e#VINNIeCj2yW%cB=l9%mO@*+7lSe0ll1i`9AIIPO#Il93} znLI;Aj$9_Q>t)iH>vrPZxsp#LJKb*GhqM7ibA}_!%u`9#T~#8}>EHOIMZGo zS#ngc>ab{4T~}3UY^9rultwQZIdW-8t*RTZLGmQ;aw!>kWQnAd;}gL?k^I^|2^h?_R4rKIVMiG6XdtKZ>4hdElnq~B;NmTvd_By(qNKsr%Mvhz*qSL62^nA7CNqc2HPL2y!8K#{^ z%~`dWJW4kfDUV0U$RkJ|wK1Mg9%JvYZbU}`#K>wyYtE|jXrUX6l*j+xdh!roUh2kn zK7kx)FOdD|F-NWrGX3&W=dLP|PP(~BiR?p0jy!`*uXP;|Gj$yMZhLi{P7VsTx*TOV z*Wr1p3gc9|rAT3HCL>2KjE2uiLL%o&Bpl|RxjaV>5LPa$4RcJrT=<>}&WV^Qd4_H^ zQZTD_J=IFlR9qHz9yB84ciU~mR1dwc8h2>1TF^SX(LvyX|aE2KL!!F zzazXA{F8*=zGQeZnIi6`*jK!P94IZz>7{@pky4q;lA*9&t%2+5&qk)SwPa)^rL8uF z5Xr<-kX16-+r|n=CgpIG$@onL-KM}n@Pf9-L@TmNQ#J*b3fN777n_nHlFG*!1U;!V zVN>9y4Vq1Xx09JtGRm#wC~3(~Ukf;LMnP=~tkD^(Imk`CyVh&mOg9mkcy40If&7NK zDX{8(ZKIs8csv89(q2l1>fh4isGasxsYZQ*R;jM}sur7H(``j^{sb9WDK?KWi11p9 z8A2SjopSXbp{Lwst&NEQLF>SiHJjxl89$i*?OCXVW7`+8{{ zVK0rt$T7i61GPRuBaNz~iZBkQn~D_15;Ah+!f2}r1Ln`QvopQ+;&8}u!HUB)Z`7Ps zi%J*WSfo7SWaP-@F}q$K0V`)OwHL@Gv#vNqj$b~UW2%`|^)z~*)dDUJVe=Q|~D*I%z+Fm9r$-%*964dscK$%oMR)w;hZZT3Q$B>aD7fRho z24;VC%bxn}HBuzU1*;L`kxbQDRUUb|u}FFJk&z>p$1b%zQu{IwZ=7cF%C+_?`7Aj+ zSe2j_uV^xf-)B`USJ7=oisjQ}^v^vEOja(RdxAgo+ai&ut`OVHw#2kBNL z1@i+ka)4kAKGTXXz20XZ0|>Ergsx%-i zT-oIw>L@__id5DNa|CVe!YTFW+1ek)%G^NdOQvSQ${aA7Htyg$7T=aArqsb(3f5p<3Bgi4s@|@lWa3p#vZ&TOtDU8PSK5{F?x8}p> zRw7g1!3;T&?-0K=@2ZVOEMEKIR{sI17tFT&?(EQGs{QV)GOrn=Bbl%BR?$Eg-Cm>y z;$&oQoG3h}F^ItI(C|w#Is(K}EG0^*WIU0{_=fA3f`OKTxr7`hY^u-<*U^Fz9;+?( zMRbdilBtl9N4#XR{&Q>ZvzN@hOPne2cnnY-y0BPDYO898#v?4r*yYIb?mUMhbi zhX*Sa%{M1(b^%XSiM&L&6e*Dx$jBpBB1$%y_igI}v@<}^+WRmhqRS$)>6RiTGLwuP zAQ6KRt{5bHU9$m%=$Mw6YF$|2jn%BIm|Sz{*e}qgHe|g1t z{X^tvY57j~1CGRuZoIB%G^Y5-trX++574bd=D+h8av;?qj@NhbhoQD^+BfvN6->4q zdfiNqr*^EavW{A=<-W%X>os@P4(TSkxk&oILPl1~-}MY4Fefy8s6JQKiFQio8L-Pz zCch;|2b&x;Q##1xFw~UJuj%$8b@BumIdYw-`J{Rjpf8_Hxz}1K69J+TopeL?#|JACi;7e8SIs0{bbFCXiIb5dSIPpNQmTvJd|J8GUMrW7BZSq8 z=KBG*I{~d!Jyz9n5#3^>S}J7Z$knp5PA!`42lhg_mmD0dP*7|B^p(e3;HYZkZo08Z zjod*-4$z3f44If@^9I}o5MrwD9Mfi8SmDj^SXps~jTJD}cWJm+Lr+@g6iZHbd!kTC z$V+o3e}~%tYhRDbk;6>+rTPbAaOPMdp3EeQMW-0cGK=D#MbhMvW?F9oSV#9YrA=eD%$ecs^NgNxE{&TnZseK7q7{Pfk>L z;&tf*AW|0$u1harzfO8L_=Dr$g#V;F;Gfo|cW3{-2m9;gbpJy4|F@0(H#;_JcQ4TI zTvH1tkE0jW#!r(@^u)bX(e^Q5iRC27QOubHfqCugk)8)QlE^EEsw)fyZX>d29LkV~cxQr0Zuq>{?79fl<_djXWg4utqH2>x&n1+u|7~yQS1y^a2~k3Z|Hc#mj!Ze9vAl-z5hKs~63l5-FER|6>TBRk?hd zZZlFYcaf0;i}8cx>=7>sOfh2C~!K))84 z!c7{v9if4)Oi1?STjHr=HYXo%IrY2Lw5)wcDjQgb+*8gbOQ~Eok#XDV#qJ`lLM{XM zrbAiC<%_J>7Jnz^j!*o5CkBRcJEh)DGeDUHwp$KR#xn>y4-N0NCf3~c)y*Yjg7|AI zRvauQ$4Sd^dI8`_oK&W;x>++_O=tVjAB{|Bdy|osbhf7{gh(WweykG7SQ{%Kk(?Xy z0;YnKDN75O&IAW&ot;)*mF2n=0*i4{{jefFm(^yEx<8IF!z6ubaz@rP+G0{;D}xBk z86hrU8SA?2%NK)WHk5pEF*!zBLeu90j>Jc0Jj)l1DE`#DYo}3uoc>f~s`w}wSxFTi zW)Oj8x#8tt5}R0IlJ@cYU9g1qwkiC6n;Z`;zusZT!gjSF+(myjlI3rakt1h$+VblD zKpoS6wrBbka!jyH&tz}1Y`@C(AL!3Vvi&?6Ie=}0+AYezR|*Uu#5khY)Db?8m>zEV zAD8NZWAZaFd0oGmvGYD^QqtosfSK_(E%Lv^uLKhxuNotSwQ$0xEwcmgk0J z&&jWt5+jBh7cvNXYB8B6>RG7&c9>@KM^mb_X*NZCgUp(eV7^97}WB3 zAGI-`vr1aJk!~(BE#1J70~rr-aJjP_grE{EjOyWk=A3ObM+F06u1Z-9b=BcW!X z{pp?{CDlnrj$Bd;e3D|{=BrmK`o=^_dlkK#93iZVPHcdRBJ#X{Bs^gl;xcDjy;vM=q5PpHylE%iY!lH~bbI zU!u9kUN?7=!-Un%$qmqr8UZ!i+)noZDWO}*$dOBEw;&0@{)A#CmGmpplSeA0X;`|04bnn$jFfkC@=?A7^s%%@4`Z!OEr)v(7cg)ok;9y5UH{+($-^Trl%g!Bq3KuU7rr zUNZk6#|JB!bq&ZgAepM`s%ZX3HytUOSINkci)JTPG-_qqjIb$r;ohJF} zw-+yk`agq$UbF>iSGv_msmvoIM=q7UeNw62A><3LFWGFc7teZfu&~MIT@6S!L2*zs z&sw@4NI9)0BL~RIV6~Q5@a3)VFn|y%Mz1qn93ZUl))iS&>!c}(93I1(F`aV+tk3d?MoTEJwW9|Ng2BWL?asQDS#tU!dJ6b=~B|hJolD--Dz!g~u^ZI5ky1g@ z^a$TFRg<zR4g0dxXFe()e8|JImKw1(EezGFeJB`87FgTE5c{0**vcWvM#9qGi^1 z(`LP|+*&a{d4g^&G7&w-kOR37u|M=(pja1=x(f^HmvD~zfpt$Y1|S;IIjSnq>{KDD zpw4SW4?EKBM(W{BveJ~o^tvah(2h0SH!x|$;w+OUR#>_F)D4LuIF7tj(q5!$Uz zs(?q_9G)lE~9-=GAfq+7dv#>t0+#67Pc5^wjPkvka&l{c~wNG z(Tzun=oB(?`kx@|jFVj$A%N4B_=7 zu;upBIffi2Z06CdvZ7Wl?zJkLqv%#6Wpg+gIda+T7Tonf0M&Yxw^vOcIZ9a7XpWvY zP>r@!rRhc^MYDyBJd#D@q_V1LuCf=+r^!(YQ8b>@YNq)V-Dsp}2Fb{gi)Pp0Oap60 ze0|M>_KNudIYd~+XfD{JrWtp23}-}qY4{%9Vx(NYOGb`dF6~3e#Yy<5asFkmm%o!^ zgw@MR`)Qm$a9I`1U+E?z1@mVzah)@K~)&+vye~3m2ikYT`ZgwJn6%PSvlz7$>cl6Iw}TgF7fTxGg8gNK0sX3E)V4@Y|ReQT(Z5UgsG4Q;`Yl zC^E8=unuPsf$NN$bsLk0-y&FIxlbiejt7?C`rDZFEcel$jbu4ZMvk22y4#pEOn=s% z>8r>w!7}Z?jY-e;r|Hi}vi&JCasb-~wOf>buM`+Sh$dvNsUxlxQ2t*CxBO4&DQ7Y* z@l0x~yt(~%;07%%X_Z!4rrWrh#B6SN4fE`hYL2D{_>F1EMGx>KgBS@tz{Hy0zD8ij zA5$6OZ-{6F-XsS~OKSShfFqH@uW_xJu1=1;PJc8qbNq*ltYnUVGKlcHf$84P&sw;A zOfR-)dOv`mwZ&Mb+t_Cvp93o2d(#a-^1UY+IdZ;dEwApuiv@9hnmy;IkOPC|d=BGW z zHn9GXiP` z!L^JVCRHL$cd*G+J)%1}i9w8n?qHH|+?Pe(L*_)O8{5c{($bpl0UU{yiZ|ITY*({K ziT-S4_BfM_tYnWYg9xufnBi4e5icLtUjln9dxS5Lqk`pnR^2Ru@IYn!b94)kj9*Pg zj-2t?qDv4l^RfO5d)9wOjtrLdoqc_R@Iqz&r*tcj%>S5-9KgImnHQacS1t@7M5nOM z)Dhk(d_3Hfuv&|$Eq%FEx6~!fe2AK*v|_7RACSpylS-1NQJ4ny(wb;49?>XFW)LHx zQ5eq|@#T<1$eeH=#g~Qy$zjscn%)g?Buc6WWOBOrgYSlKXX(}j@L&7WAB;>Jon&Ms zZS2D!!fO$#2V{D|^0Ax*V=ViFcauYcWm!5PGl=Wc>5oTpeJU9_a<1zS$kg)v346Xj zMh**>Z{>i@AkIHRHv!4{hsekQoEy}1(H3~c!2m+E1rtmi;cdYm!)*&jyPw3Qp5S3{ zfR>rGGOHY=`?i3ZIbbG9bw|?*{KPcQq80cNg9vN|!mAWxU5|YQ;%{Uc_zNN0fLF;O z(lVL;E#OFW@Rf&*C;n8?1N@QxRAi2LiHxk|h!;#DM2_%OW0fNwu(1MGDJ>ow>Nm*N zjk!W8mE9txi35Jxm^87bAqVJk10|Jel12=Swj4j~%OL1Uqw$C5&hqV6){wM`Op=mB zP9ld)pG1xU9EqOF+t_?WccPStCo_p+(J97~wUru0&l~@tx!gx3>8zt$iA*|c7;+%r zAs(3P-vd~UP@*dtPxa;HDt-=_O{?Mx^Jmdxsy*veWq!Fa^FtkyyPa+?QUhf&vQl^o z3?jUi!hbMaRV@5)&qQI1`-b^?j<0}`mZG_y94c(O82Wgos(-af+Rdp_FRxp*gK@dn z>U8H9=~g49^La9I(?MCqsAbyY+^ zr<;xx(Zgiq$VIgKFd|Zu&zOg;lh2L-L2K`@;u-ol6`XkBZ>gerlT2*|DVo>G$dQXC zpu^D@t0ne&S==PxV)w`^U<^sCONYR{6Mvh!G z^YpnzlUnYu7t3wr_+Z6yw0UZAT~$SL3*A(tNWM-+j$9-`nZ>({ zSh3h-mO7VJ(L7Bz87Z2l$jAYrF__C2p98%4K?4Z!$#9ivr!K7UW~HsHSY%@be3V!; zF4T__qx(|DUipi}Bh&$;_T|toc_wU%Vundm-MTLkU@UE@%Ec=_U+&8wM#9YWSl4A= zAGL|h26s?=zdVT?BQ2rnV*p3ugMYtdMDeGJ@0aW7PemrIHDqKZVXa~i;Y}k?@|HPk z_&pCSv79SDha3+qzx5}l=vh9C{%j=6+sVk0vs`y_iiYW%?3w-wIVM=9{U@jB*}k6s zd?ednBqIl~ZBV=G%0IKh075h&i%cDHt$_0Xsc_dVwI=)WE%B7RE&5O311%?MWyUY{ z?I~xIrBp7P$hg~}7rWo43%N|ZCzIP2&*h7{z0v-^69X$}dl4Zi3GUStq~ z-9UIHW1Q!+uN|27Gb%OwJrV7|WPqTxOj>r+uS29HLMjv4NSSlRpDP-I3H0Y8lSeBV zSxFwFO(8_`@RVbfJf1VvFHau-4mWvB=qcp-y2?F0PC*($tcPGWB7ZD5U-~EvlO(Fi z8EZ|M7dc}!g9ywSA+BwiBpC4}jslqzC2{1)kRY^wyV=08Tzx4$s?G4t_#4cJ6`2Nk}rBu56zw|@(r@Iqz&3c3|Y<}V{72QY7t^F`V4 zl7|6==s8!KI>O7wL*bTJh9Z^%czpO1Mz7kNJyvmdSM zDu=P+(d%ULPJuO-ja#OWpRK^z^sB=y>=?r?C zw0`Z2`tXK&@~KQu=KAt55f;xU3W+U+M820JKEV)2LLHguem#$ua`DZpq z-1*i_s^kE(u*diR$b1jI#N?kf zf-ug3TUm zJqbY@aBhs`tE!Gu=(Zx&@eVR_y|?sMu@bLUJ^)nmCx2FSv)Q5-y-y zh*ZM)WaQ|T03AkusZe%&O1Q&b3Ad4>(HtdIJyex&3*ADb624AGj$8?CY*VWPXI(+- zxpkZS92cx6Xca^CRaM8+bX$??c#4c1xjM%8WD+IlFnyAk`KWahF%2M^ zGXyz^R4}-MstzX84Mgf-0vS1S9n9omiYKz&?f^BL_bK8Sdqo^Y4huF(&<3T7tEx5* zr<;n@#-U{7$h9$}8nA#7N1wek(&VUMr9m5w`aM;Zv4w6aQW@Q3dqhMNn8 z`KzkryL5YzD)}}UIdYZE*y5Dp)jAU|IQ~80f4A4iU&&Fy>VsBm{GO`H_%q#7q%vM1 zBS)@`b~j!i2-czUT;g;?qw1aF>}yvS{=#|yvj8BPGk{q`8o&(gx2l?5=yoGjGlz^k z0#s8-bf=swe9pMYsfLeW*4GrhV)xi%__RxNYxxmMvh!H zQ{nTmryBROwofEy*^6X5IV4z-98OCu^=_(~DAUbEYN9|!j$9M-Ynmu$i{*SC_8>y} z=`IcA9sh*t_4W$+A~`@OHHUe1FVd zD?cX(2dkA8B&`HEtm@=py1_`D{Dh1gxlZP=l~c7LPe5m~<73wS?3?7+U}ZuZ7wi31 zRq{IBUZhI?Lq?8VC9~zI^*N>9oPSl&VtbA32N2B}^ROdl&~qm`Z&iitO}7@QkUh!B zkt<}X7c;)<($}+|W-pCX$RWX|4_ePExv6U69dt91n%GE2j$9KRQn2D(iR4yTObDw_ z`|@S?ScIJayYGeeI=O%xCag}_5qZQEQeA|sab4BU`E=8f+Buhu9JzKD$=cac$d%ns z!-aCGcL)L9W-p*y$g#o-Xd|he#rdzQ=<9U*kt+Hs898zlc^RlSbk@9vzDo71y?~x3 zhY2engA6p3>#BC1qMMG?&acSGk!#1xK(zoOGtjihtw&0e0irowut5eI)_+w+6X^CM zRn$sGj$B2PSsvF8n2xfS%HiaIU~|o3^kU^Xsp{cSx{*jd97INrTn`KD^nmDy)AkzK zLJksEBWq1HqH|o;O*h?eq;3*qDD6^ z^l>tB5VE8T9 z9zzdq+d(w_|I#yb2OnuC7^K*KaU%G>z^#4YOdS2%2qEl*#XJNHPOFRMp zm&$ghl8$_S)&XD{ZD*@ivy~OP^KaZo>(0z_|Nk*Cj@bsL)hv^?#aE9rNQ-^#F&4)} zdK}z5d-mX>G*%C3u|IiVkBW_JT3Yr#Z_ovKV}46Z?_KFP;pgS$TyMhM#0(Tzanm^EZ%CC98Xg>YYLZ{NSCDXY}7 z$i@mtEf0p9TE@Zhi*3Dd#)x#7)+fPi7ya-8%TZ2t8Bl@_EYrdBia5H898#c+m_d^ z#SCD4+7s4{PX>raOv$Tn_D<~0R(()epFp<($$BdpIe>M8x-MD+uS6I?h*8H!Oy$c* z9lN!LI_hXmmizLBT({I2tS75gn_Ma@b;AsH!6lr|mh_J8t(}sV$i!HS>aNQ0{y0{( zO)5m1=3uRz4aOkx?NN*8~y7*S;C z4@Rbq6d74b8$Apnyw+f_24h(=Uo8<=&>xTF`Z6+d5ROR7GahF~0+O6!%mY(zsahCz&khQOV@ z0jGWaK#a@=cTvnX?n{o6meBNEz>yf?=k;?9@#l(mU=jVf$aJv>8CgjeyD^CH+JPyx zk+#b5yTBI9Zs48dh+sLMUe^r-F?}-q=}4wGkdY&2dWL8Qv~To>?b-eyIVxDTXZd=8 zAjaQMw*blb`^d-vj2qN((F%BF!2m+E0y~;I!drpe!)*mxi@k6WM@Ig3@B{FHmYK9d zs~oB81qyHiTdq&{;lTToSk)q_=xEx2@0mtgv;p5`5F?=t7|*@-^#L!Fnc%O5=mTCP zhe=Cj`f* ziLor#&kF={J)Qn|B-c~O$dPkhH!q;)dxbsUOUYru^6j4&2;}@|x(P_mk02ulaBfh^ zMKj395AQ2aA^Av-Afe zQ^r+fWF=*Mnn8r#66jfe6pW#@;0nu+kVArHxxOU`$;Xe&v(nO zt@-{RIV@Pd{VhQt=daOCKyv;sGI9Xt2K8LD1YU74fDkRgdrTeSEy0$MTLO1bp30V_ zmf-DVv1*lOI6qLeNUA)VX5dJ$k~Spbk`c|o+Ze=%Xa=~~zGk3{%!E=V;^Z)C$xN>U z9ElR%3{>gj4;Ib9Y4isplf@}yWF=X=gF%Ge4CquV8PM~6w>{r?ki&xI+usZXa()}#1SIFTkdXs8H>l*I8SsjO0fcA<4l#9v zHv``s8|wVPn7$&M3M#b%{{;_dsY$CdeJkKTEojkz_eU|$BB}0ZT7iF?##yui|6mX! zp%rLlKKmMh1;3&4z+VaRpl2%LM{>K9>G)B+tvp$dU6rU91++alPH1 z>oPegSgzZAivoByG8l;3W5QIDF1&mEla%opA&BRpR%sp*X0!2 z`3>k&A8Ce#p;BRfNsf|M2I&U?NA4kpJgQq2gOA>r=dik<{TFnDky+|zWMm~v z{ggq3*L{qIi9Y{X|E*71w;iJaq7jXyDvD)pDGE9z?W0VCNhH`u8b`>J>^1bu<@C~b6Ax{jBYSe7W9StAc|yJYpYklQU|g1QM=ed{BaDk2_kPQ8qtsRF^G}S zkBm`Q$6rR~LTN@mNe+>g&h+~MM{Y*Oc@rA2SA{=ROlN$8{!nC^_!t>kNfRGo5aBfx z6Zv$8vcKhiFvM~)<2&SVVA-8gKbfK9_#XPBksRMiMvk20sdZBs3eSJB=lM_MkYIWC zzFbM>tMBv6^v5H)evynEz_mfm7G>Wn0tOJG?59l~;bs5)aHlaQW)cHV0S;r!75bz( zjK#mDCMB)XDo5#7I=W9Q>Iy&mgBY{PGf65nnvWU#ftj@76xWTY{ChKqkx=<33CDe7 zj16QqxSQgO#(Hw3w1lRQ1{{f%%2ZY&gzakHSWAC4GH$mKAViO_r>P^nM|dsV9$|E!lgLWV!7JbZEk$XSR?(lQ zCyj3FGM0jn%BtAW$@_PhWLVMd3eh(wZ1Iw@1 z{0ZAtmJg;s8_Dt#GIHcBPZLE{^CtHqn7(w!mK|E$|D-S4gB=WgG5b*{cgVrPQtlm_ zDLbOl-bH^tlJ+P9A};y>uO=8kh(6%=rj?2J0sjfN4;bsD;4*Z1n&3+a#mYj} zs;qLXZknL3)DPDQaMPsPqv-{{U@9Ha3w(}2jD%iboaeN!8+ee+h>|*fK#r1@)bwqD zBQe5HOX6hl=Zb#dd-UfbQ^t46$V$riHiHPSAK<4YX*vEE*kaic{GA*TEXVbyB?U44 zSNhYDO#hjT968f&wjrO0G6vX%fx&=tacOfGOFm6!GMLXb? z1p^4t4qR<2UEU7d6K*>&c|~a;?`Ri5CdrD`CYMToXbT{_U0=}aAKz^%InhR(&LBoY z8!;tOC?p2rECT)oZx@h>t6%K+0>34Isoo>QvLD$OlsW;V!)%T}<@L zXU-0grLEOvPe^zBY@u!Mu)XV5kMP`Ukl981R@d;B1ks&`4>Gcn9{$E4!sC^1%23(e z_xIE{OksBsKr~_uqOx1RDMQQg9`r{eIo^$o9685zn=(|M-)YbD$>fk=-(vr!3@z6i z=#NKoy`GF5z_mfG7UkY60tOIbK=5#SBHBK#i;&7K`Qs3B8yb3FzdaTu3b`{ z(Uko`Q_+aBe=&m?5oI4d_LcoR$y_Lf;dXL}v~;Gg100DCUiMv@_(R30;8yxWk!j*) zGP05;ZekFjmwlDp7r_u(W390J9620VcI(T&mg8sWk4AF*TQYLw9M_e7mFKo+t$Cgf z5RGW>)VJ7Q_O)D3p+6qU^+Ymq0M`aJTan@*8nUbbHV)+9|RYZL!_lMy#R0|I{3)nrHMaOl>hzc4@IVly~)T*n%I*;gjfFg zgulve91O86{-=?{fn~RT~V@)05Wj__}g#Tzbfw)_m@&7S6K+8s2i5af|Vg^YS zMpN*AXc}cv@W0O>0t%ZGsN>`WF&uq z?;%H}Nt&qnsA^&x-A1G)N@V27H8GFBL$!Ft;m*)_u{WWp z@>SKy&*-)yHS$w3a^xD>Jt%H0r?5>?zKS#Y1?!5l13=KaHmq8P+^=2Ng$(bts+%{+ z>{gJv`7aqca^38#iJ+!EIlx{lv8IXTX!F$Kx~eK3#l1crEOc_QtpcS7iK58$E z50m48mBj%_SqSe`9ej{(9a0DHCnE>wz+n1I%%FJ_D+Ul^j(vC2!pP^?+sB4_U-RgE zAt%qVKL||FhUZ!ZTAyOf43j2oG?QsRFqMs%YyTdD7zvYUV_lbhDdkUOHu!rXCfi>o z$4Eki{i(=Q@f;ahNfpm9i14Pw_$kI3e&@bOecKd%cLIn; z3{6yi>rXM(v)o31Hj?G(WaP+Mt~iUy_EiZB-=-mkptK^ zsNJIcd!@htLX`jSnkFY+{%;u*YWbg9fO*(lUkeO+Qa%35jxHc8Rx3AsC*VC;x5nQ4 zlbH8YGfb*Hnoi(+Qw51m;9LeV5;}otvh%*4;07`;O3k>A94#%i=}Q4eVy5C{64`!r zAaO1I`N&N2Su(PcNv>iL;dKYIy?X-WnE5z=9BiU>YxY|Jq7hx9`o_<9Cl+Eso~R1=ADJiYr1WcK)GP2=!(@{7SmBN~Sz8N^6v z9L4|>zRKZ{xlk%c7db>)I@2csjzmXweLm2{A1Wpg;`E0i3&m+sxnnqj{|9>-xkx=}{c~1N4|H7B3jPSQZd_hf@ z5q|R#CyPHC?(OO^_bGngI+|I__T z7w*CS(nr0Yk9j}RC8w21scbS+?sniV8mBmT`rx7vuZZ$44B~7IhWKFVTAIPicI;Ly z^@baohGJWstW!v2#I;!4LVI+!+}Gt4YEO15txmR7NO`2MOFs?LyI^o#`WgQFd;a?@ z`*kYg`V!l_oqVZx@c1|3Kb6s2GP$n7b(Pj+BJZwpgnyh+NNf|B<#hkTmX>wtZS22U zga0$YqV8ST12TMzAdS}3q zh^ct9XX)>~s zCZ1vt;k5_+^Qy}3>{qC7n!@f(fS~ovSa$0_uWC7-Mt?Mt=kJr^(Ly z8i6m88Bt2b=gHC1lA694a3p5EM0h;`UzIJ#%*Xl9 z!6sTGu5kV^IWkzz>sMvVUZ~9fgl+|r`5%#yBWJ#DRkj>AANz0Gv;R6dI#~AotFmQJ zR0aHpZV6HW|0E*^D8Qiji~hkYBL)zne;6=zg!d2Ehxmp${}BF6^H{4T!F4fTGg?0=JP z2a^47kdXt}H>mldZSYEm0fcB94mNd!w+(IKPCJZt3%JxSyao=?5|vhK`cv02?SgBN zRE{)l!oN(TEZT&>Gl-GUCX98X;!7Iy|3qa$X%FTC1g(|Q5}6(kI1(THBp9X~{#5a$ zVJG@iktw2$jI5-H=?o&gwt$}mqv7{>u!Q!ODf}Ksjt7?C`jcSvEU%zH8_DugGIHcB z*PR5TVS1ZA(k1~C$9|0F(B2afwXfG5dJ zC>7#ya-_6mroRt35-Sz2LI~T{p~9o|XCrgQBV=SHXFS9p!s`QOc+&$SUOukJ{@J=4 z7zGfG==M~uy*)mD4^+lm=oTOu|KD4W@!4W(AdvL~?OETS9`kXjY{@BPVO{!%D`N{z zPq~m9)V$%|_avPcD)XImE0E0ZLq-mG*A0rh=nuSdVE`fegRh!OnD+-)g}VrG>T%w- z7wy)r0$I1(vJ&Mco(YL;vNs2BL7y|IX)$u9vJ)*vhCz&k7Guh?0$l5sOcYDU77Dq7 z)b3qMrc!A#E+NNCtA_M>fFm~WY zuSJ=a$mcTy@nWLKDGkJX63J4o;OkQE1CuQ0Ebb)-1}l~gmSWMkuNJzy>EdN(s^%5%YNw)4F0b0l<&Wg3VCAyjQZ9bqRjs^4w;idK7s$wwYh`+Os;|gy?8)`? zz{*0OROY>EomqAUh(?Tm)H1ZrQYt>zRi(_Pn~qeBZA;FPR3odj$9ox`Vw%q)Ao3(2q`4dmGR$!yxCqPo5)eYW)a)j6u*FSJEU@}G*0S7q9;>?e3f*F)F0LmdN3M(U#c~%+!up3YzqJ>}ugSr{ z3S*_MFg%x4WjsMQ8L5oN$jFf^V{U0%E?)b#;kF_A8Z+^))-CHefM`z3y4g}HK`~IZ zGluR1Qad}6kt5g6)a~p84;)Ji>x=xkS6#PmPe&bKWXyiQJ*nd9+f_0P3?4Mek?OTq&XS%2RpjQHn%P9Poy$# zc5Lq{z!IWuxx&_>w610wS?*e`R*u9THk_zh6tA;LT27-`=2SA3k67k(rYVHrK5GiW zxqp6is0W{qE;^2U|Jk(-B3rv=e%Ld8nK{ET{aMo(3#PAP5P=KY!ds~{*7evorg?x& z0Z)YDT)z9sA=19G>2CmzL`QYIoGTmtRIvu_JM^a_Yr{QcWTiITX$m1~gQps++VE)` zE8z6+?}WRfb~0NjuU$Ah=5N%lSu3#+kKIoc3WEgbIFM;^ClxZ zFw2B^VEC?{?{H(bZb0PAKa0rBD*0y*a`3d`NVfrwL{#NeVtXr*9vd;ImXE}CMI?vVi{wCZP_QDQeh$!xL^!VMWPiHh zNS$<&kt5fM*SQqqJ-I?W55pwb_u(5_C+(&3ZgO0(QfWZvBKfYW<#f93NVS|wMvh!9 z!)-bIguPZiMve+rE7YY=a$2cSa3Jc%)vYkdY(T%M5Shs{5@;JEmS?FP5d`s9;l#U0>t(Tvf`^ zbjy)SIf9HFxl(5Gc(L!Ya9>nmz?WCfw3kYj92Trps7EQtEwJLcs+FyD(~(-~B_l_! zm7SD;x!J|1m#gjd@)>eyuzH~$>NAX9T=!MYTuwJ1shLa3$dPM?=NGRE={^Yj*j_I` zB!>m7mqz55I@eXLe4lPQQY-h7kt5g2R40`!mizRB>wnwpX-E6c&&FO=eS>+Mt zuBwR^y17VA{O_%&iCz23r83+HGoagd;@8T7_FCDW9(?T`5{=$?GGrK34RzApKx$|o zGIHd3Wo*8X^Y4*-x4l$OCr1KXah6)871vu;5vS6vMJi%5896`^1{)*A-b!z;oB@Q` zd;PlQ-pZH4-Fw}7Tqf6*$jE!`uOaJNE6U1Z>|XmV+z4rxon|}am8L2Y+aa%D5F=qb z^-mu}=b(`WVH>_W`>DYBE;>*{sTeDYt&$W-w6LTtmnmmD-Lo9UYXMbIV6!Y!SG$)=70P*7 z?y?CMy-2Ef6|Aw`>i9=;Ot7jr5TgpecZwQbqT7d5!wVjj8-orcd1ufc(9bp*n&P>> zAjIOZt|?WD`;V8~`Cry-&jyG_j9%0naHIj-HAmGBVXq=mWR=~nvDFI<{g_#GzxFoz z=F{G5Pw)Uej@p5+nsyGR5M1+6%{TpY3z1A0$;e8+$uo$+rla9K$F!Oxda`kLlivpi z&l@~@Fx?7gbfs?qYb;;*>&P*|zVHW;^iXwAdGW8M8;F#{XUWJTOAe)i<4F1caeFyD zN{&g>nk0(ld_Grjw`O!Z{cvQ4ci@OTt+c1i7oo zWgoi1NV)7qMvh!AqQ5A?h$7yTmGZ~w_VPHD9Fyi0l&X7*95&MpM9N_k896`>24hn( zy!D1R1`uKbeVE~G3t(MCoN5QjlqB03xIyRiX;=xi<{f70TPxK_Zi%hOv! zJ(hhGteBD-^wY><)@G>6;cQtzPdS?`rE=LsW^t;2U~##W%A`sI?mx%GAI04N$^R(k z+9Q2{)~paX#Z)X}g}^%)#7LN;9|Ioy63Y9?9B>VZ^#JcBhe%6fdMn^abX3N<35C(b zA1XfX56~ZqOb`8JWF=T!|o6X%o`PjV?46&SIzkwVMEW1+}yEW6*5^x>; z(MXQ3B_l`9@zmuogh-^aPC>)-llDA6P7Vo{=NXJ=$$XXTN9m78a{UMyIe=?}S}n@G zR|E_oM7iH+>Ig6QbHlx5VM;lhg5xh*_<1Q(<)8B!H7{w!#xLIy<(*Z27;@{XKK#F9 zo=H`Uq++9~{jWbODEvgQcZ3y%*p}#8kZe zA(^k{kAvxtN9KV$9ON8WZ4-w3oUJFbyqnQyOSW#jp0YA3_D-&Gt*#; zp5dnq!k}kp{G#zG%M!`0@ZDk+oO_pX3KA9nB2%IC41XsFOUq{ZS-_Edh9RdSeVoR8 zPI5EFT*F`KW+HRUpBZu>)!}svyUH<$mGf{guX_{>qu*CQ7XFv|5-Q9u00>%Zjb(nw zjnP9h@AFzMHoMTRMhamL8CfYdvrHjGvGL?+Rcv1I6dknZq46ndhOFEZa^3Q>!c!qE zw2GmKbu&4#Sg{`MHaqO2a52W#c)0VO{EDU6&|+ndDyeD{-BhGPPh!Y{sVc;4|K_WV z$2K}8{{NL~)CcUzKaU=wI z#jTDpcWm!$m-lVHY_HZA$>diFz&}SHOU~vmCRn1r9P}^+e>%!Y! zx6V}40irow_;HlRW(c3v9()SjW~2xvl981(HO>@5q$y8|%}i4bU-3GNoqt$e;+V{3 zds6-@qE3LoSeDh}$+5*Is<%_bs_|77>2Y*hks@6|Mpi`XRWSpF36XkJR0a^Dmj0ML zslpv`t$@W#v9X~pUK*PyZ0SqM8w@IBQEL@hS*lyVRD>0x$zHf@P5&*E{~=th%FL2x zzcimRFEo{nn3lYNK?K&w5C?$cJg0s2@M~l?xS+&0%p1v3(h{2f4B$wNR3@^o8k{Wt zTrt6T1O2(kba5RSSxFbyGKlb6pecMs5EHhKp3V3C~ z07A3^=bK8Gw*oW5{Xkh;*p$qbvn6>;>MF8iwb{jVVH3AVsy&)+;8;`Th;CpRgBS_j zKy_i0=ew_9Y$fx--x1Li^pb<6r8K=6a3o^ng-x6~{&>+FIP}LO^G6pMS;-%91`%Fw zATMmvGJZLjWZ5EIN)8N`am~V}Al@&b8-e8gA~JI1ysHbFwA_E+p8NaA!NGDLu&^nJ z|9k0%Ao;(Wj2ytfLD3g|gI7QdAVlBrc2h@q-|&}k`-X{qhX%|0T;Kdc zof|6mXVJ|-a=)F79KgLnr5DYDS2PSDM6>W;%Vy#7aCc9&!i-oE4#1Kch3}9Bt5sX& zXkDY=J}u~TgZD@7#|CDTRF5=m!ab&<5pBYq3}Pg-3FEofzU1*NnG2;wc$yq0EuHCy z0Y{>wGKnRRDqZ}+Vou>H`h$__;#Xv3C0+cIL4?;HOs&n>yV~}#Jnc>E)?hL~(0XPp z%ihK~$$YgmOrSp=$#p9kIdZONinc)iRv%^0_u=HQVEOi1LB$1?^F!$-AUQvXj2ytZ zK`j^UfL9z0AVfQGyJ@20a|cI-yZm743GUnhT%wb7ibbf>Qd{s|vS_u6!*7aWy=a{= zQt{FB0|Tb25&b|vgBS_@z?3d;Q%u|qfUjI!LuP`%9%A0$N^-2UWTrm~I1(?F!`!AI zXtRNj(pbHdYJ$0fZX`0nTt-G#63izVM2HPU?Z7ULB7OqKSk5i{h#V5EBHl((gyf|v zi3jLbA|-J@896`_1_eXZ94`SGK!}=CGUY{!#uuC(r{H9h z4!=cU99UD|UJq}Lr;f_>WUeotNS5OHL?N-IkjVFP#4!vpoKnNCW|~_Ibo=UTv6KMk z+D~BTq052qY)s(Oa{)ZC#I0^gb9CUkm7vKOnb`aJlzyo($5VF5~{$1U*g^u~rf z-BE+s%MhY6o?Ts=Dmi_et=$g=l*CXRL#h ziW6NKr+pBp<|_mIXjwqbSL{4)31lzV64xVQhjjodO_CKBVbJfGHYcIHq8w(E;&7Ab}DGB z`afbh@o1?O)<&Qq%xmPXKT2NF=u$YFBtn1-I5{4B7(@58FDzi;n0^oPIX-m z+8elF2kINdW7q=!qQ~Yg@K3b98q4OML$X3RMKKiX0QH0QMSM05zXf1sqGa38{c(WaP*dFu_xRTi&F6 zzTKYtGC3Mp?mLFzo_WJVD-wEvZV!_892q%)cZ0^w?Yg{V>y;G)2$6qY^eR($2k(q= z<+oW<-p%&PyNS#PR(T7CRNiJa*?fg=3Q}~}GvvT7BIF{nxmI$0Mda7^bUs0kq4x9~ zwI>|9hzOrlULT{|gyi+-WMn0oJZuUfl8L9Tw^lM4y>{sd%cNY=wxe|iGaVqB)4~Q1 zNSGf={hC6z1Sz?R3^_2B1dl8mehS1?*Y%)Oa)*)8 zN+x-gL4?{vK(K;(h()8Udx$*%qB%o?p?ZjVpHv0xMz;y6fL+PRkt+at2sc_v4{@?R z_Z!I3z^3w{dWf1gNxw+G4lS~79~?*7*>Nm^1K4Pc>t-wG5^LMA$v1?31d1Npzc#3K&mD4p4wWqab<>ujm*+MA&PL+IZXwsmoYn zuf0`dHn1tkJHAM_2FrCr=`W6@8-f(vGKM@7`im*xd94Eb@<`d9%K|-w$j)Mqz;aUW zkxFWgZV{5y3>jI;A}IzDUQaRAja9Aa`sn{W7-QK@Ttf~C_Eir4-X*!D@_!}WBqaY= zkdY(je>@A8GEwocJ@Y>y2LsD|@K8}Wqond5(ak}!{s0*{fOUhyFM0>Bpcp{-dj|su zVa0=N{gwfQu;K>{!eC#PYXuyse_?B=N9s@5=)nEp*^>V_yt!kjxl=3uA(#Ib#iOOA z=9=aIJApa0cAkq=tQv1)5P>aAV9jd$>i?jaA4QHicTy}EKb#yVEp6$&0Y~Db;+tL- z+`$!SH3cbY>rlEq$h373L#ET&@Fh31g#ST(=oYZmvJvT~2U6RIs>J%HHMGRm98=qo z1l=$s!)K6@mBREcQwUKKJe^sUgahoY@RFC671M33fWq{Va0^rG+T4~c{zF#20Y1=P zByD=D%wwC<%B57M$PQ&?{}jvcCrXJ=Q;fc58c9)%Ze$RF*(<~qgEQRG6Zbsc2UlA9 z22qcZL#`C1pOfRIWi9<(z>&D&MM+|hjRx!eQB&5#bbF8~>nCJnC1w4HK?HUq4KH79 zbJMcMKai~)og$=qP- z2p`F82)AHNSf6*Y?VA$Ct@1|ZrDXYPwO47cos{Ap(@{uuf#~33upB%!USdy`a+9WR z91WIO4q}dA5C(O_WEA6_!Lc&69sF!xnMh^a-%W5XfE?gNV*;E$5pbjsR%Uhdu!nc{ zcn|M%ujkgBLvV(DVBa-#U>li_Sy-p9%57^e<=Wj-XPB1c?StnvEv7R%dUM-4OS#UP ziXAmOo?{=-vrHjG0@`j0A=02nt5q6&C$l0@0LCxYJ?p`!?k>2{^VX(Oz}3y?S_w z^oj40riHhoW1DM=`+6}`Iuo5$Q)=g^sBhat_A!6Z6hgdhKk#S^+Pi8>&WxJOlf6!I zD?4kY{@#uMYZ@6dh1SKRd9NjQHUGslazgNbGKKI5-ylzkROh{R1`xuEW~I8B)#HoW zSLOKQ z%bFHdXv}KC>=X}I!uodmupVg&A!PkFQwZ^LdE}1Bm#b}c|3Le(+w)E#)dwGP;Gj0> zC#1LQ%qHppPP6TF>K^X46>5dcnld1g>{bR5_cO(Db^_F<2lM)wX2mBx;rh^+7HZfzPJyQzI0 zw`7R6?q<`t3en$W3gM^5AajZ2=e>Fc5W+H>#^ z{R6*0_ljcsajDX(a#wrVJ*yoC1)H2cXv%%(^gP=%%^cW~R-vYjc{xXv8>1H8$_ z&Mm1@Z@H_JnFfOdI7!trO{t(yn<_wv=qXbOKYa!Y5F+wst_&cA6^EJj*{&7v1#4`` z*9Ev!Wv=vkoeWfGd5FKuxQ2AR`0E1PsWUJpUNuIVY12$r&H)20JK|XkBAk-lv#_OQ z@AC%F9$b`uV}46Z?_KFP;RjB{X0?1;FI>QwapKPQ1iWbePh3Znx!|vI_ZX zJ8Rqb{c|f=MVpIL#L-KR4OSe>48-AcR~3mvHy0_AE;4fDBAM+MiTld=ByzdEL@p&q z1}l+cY$W13s|w^2y0J)sTtr5WTp&}qK(xu@`}WGXj~o)LGKRc(B%rc*UaFF~mu@9e z5_gl4BbUTvE(uMl_?x{TUL^+vD~Ll4QiVQ4{E==WQVuVXkt3JGtZcb2p3fCirBp7P z$i&@C?|ckO zCdUV>l9iS!;V!FUSxGk;DVF7ABZR;^$FP46Cd_ogTP#;pHn~W4oo{Sv1SjH9| zr`wl9uCtfLwd6=(WwAdchq%tE+2XTwDy^klvQ%*38b16raFt1^Y%){sc6w47r#N`};G)Xm+U*cL3UwPK`2Q!C zD3-)L@*%{3*&7@c1}n>m|6;M+73UVjs~}FL6~1{FQl2C0(i11_&~m}xy7VOeJDL4D zm2rKE?cGkk)H`_moA95?=q;IC*WkKJYcc_M5aqJ)j}r=sZ33&D?uQxWb?I&Fzgr>L z>DNu!7H_Y|w$@NQB zIDA8oyK)=$mEIo=q79>XmKU#dCxZxlrGr;07%wGVpahwJ^n`eCbqZ4E+}N0iroj%v8sk_9*1`~xTaqiY6_l*pea+6Vgt(_ou^a-MTC`zuBkfVt=*1zsc|M>>_6)kCLhh%A0bVX(R<1x0pis$uMXSM2F$!Ljwq5#qrFMMt+B7-{9LN zNx(~5Y~Kc}U~=VByZ6RQ!uUhegt1T-2E3xhPHqT)U)6W@c~fqMJbrHq;U~s`TOkjx zH!*+^R_tTy2p>KkW7L3}mh0)OVDSxHJlej&Ddx(BBn%Ylmq@oyY-<1MF1CS(#|yQG zOD&UT+0A?~$g=;OYYHJa-pLe#bNoQKTR&$W3-_g$``Yt~Qm=Nk)!GKpyvWTKi`j1D zx?!=yo(@;omwLspcmmuY-+XBfOoL$9P6pG;(7c;#Og zkt0W)*JZJ;DnkyFc6^wA7vM;*Ud20q&D%JxAuz^WQfonqZW3~av4@Pz<0W3)B!g&V z?H-!>*~wgAzFczRMYusa-Zc>KP9^;^xDsrljqw#3TtSWuRt5*UQ_is=WT5d+)x>3V z`;eOWBpEq!P0Z*?WxL~SdvPM^POkYrLHx*G4-b%|g4M&~Vf5hlP1VBvblZ?x_zoF4 zKns`d01Kks|Adz)CiP@;c@RZ8>rW5=w3oyGkpqL3!`{Qmq2`q;gul?OLJHweWaI!L zgvbBnE%2G5dw?}bzI@Oz$+|wY0|c#W#tLAcVFXa;ma2gHbhD5Om`g^ETme&Z@TH{> z)<3y@vQGjh+DqUBazwBa@UDOeZV~GJQZ;Zq-7cgCjw2&Su7S3EqELiw7~X&>m4(*P zr-ZZZmGB;NT(C+wV3=f}dZ+4P8{Imj9!g~7$n`MKix@19ET+0(e@<}I_+@)te2E+% ztS;C}>LCUZ!CtER_yXNZq&_}JMvhz`v&;Ez*s&SU!S~yOJBwD%l>BRFe`&9bUyvh% zRmO0`OPznJCVob@52=Ztl92;6VKAjEW~IHEECUEJ@v+>rCFV1hW5$KLs0ogMW~ZRE zpPZNGqi0X1_QF~v1|3!hCq1%Fpym9q3n6BLCA5~BD??0BPGb<^Oi;2?=)!DtNhqL4=so zr+UkL`cl~xj1IaJlDhA0T5zZFH9g|FipuY{kLDew5JKg*d4x22b=3qf?6AhIUyAte zn-=kjJmTz;O0a)t8Yv;&-yaHfDUmd)x!1`%RnYuyZ=$#UD|^(Y54 zEvn->w(;jF?^et{di$C}2vslg2xxR78*@S;xqhRR!!|W7$YVSD63LwASlyFM<0I17 zI#YlP%^ToUcI|-gGyv}M1#C1(mz=94wkI`Aqvm@c%(RL~uTpq49WmO2{v!)PDr)1Fy zIXL`!g;Rnv@}2JXRReiTm35o&xT{k;n_+CeaSR< zBK|Khh^YIhNmHBEosRBEbswTeZah5DvI8A!3L%s`ia|7d8c$c?7dJJ+hp7?X&on$j zn|qr=G(EzjHg8-jrGgDj4DYsLMh)+J)7Xgct~G^ddU&VvqhOcA{bt2H+z}yegg<$MU(p0Nt@s+(6UrE!M2Lm*W52O zjr++R(1&$)RUfL*{y9_51npOwLihu2z?q=k`_5+oA*`5eIydK90lV67Gul*S+{uku z2iG6SIpjBu(NU$HZ80gjSDM4lA-2n;`afb>_EhP6qh@Q#lcu5&x_X>J7&LJv5gmGm z!Ng^WQnJ^L_mUM-g?y77aQ+60-6gM+Bc=Zg`3m4jtWhL7$!uh|I5d^B>jF@_QP{WsZ|`Z;#$91`Pk^Ac;#gJ}4Z~{9DYd=opc{pxx1Eg4 zBPO!%d{YQf13Zyg)qwx=bQ&}P-1yWoer;mFDY&UcN-SLv4cg)aMS^j1K(P{>ualtg zLrE*A(Jevh?i7YR0@6xb&HdW@=SwOTdqyv$$5DI#x>_o{jflQdp}M4|lndx4A*nr| zjI5-Tb4?*cO7R5NfRthYA*}FPAp;1JULPfwb{Qp zDJ?H*lUik0{U&PhP^p#DG`PPo)s|>*f5spJlUHNUXd0#~TAhWvUy{zrY^ifC_EJfD zjU0NVB>jsVG%b7S7XU{hsIp)Eu810ou>iM}3iWroVaPQ0SB4x&a(IpJLVYZP%GK`E zsV|zs_CkPYL=UX8eK3XXnulujT0plDN&7BjWF9_|vFDgVh`Qm4&#G?x+0$=$4e@li zIcsT&-$#9Hp^%f0jyoNqLMs4@E>9%~7Mq3k3ectEk&=Km(``a3aT7xx0SRcHLTv5L z^tH+#vgh~%^muApWi|J(^MR}Ttm-O_pW~WyYT7xEZXA;AbI8a_+BwS)-~N0D;$oS2?jeU3n|P!n0whr?J}If^PP$b{HQvsUM?mUXpdq*Re)^Kn z%l16KNRKEo`78-6Fn*qE?y2eLIl6gB!k-}{E9vLArVt|ic(QwIrJvcZLJPS>cM{IE z-q@SSJ8J9GF~d3owF5+RTJoR)nBFZV3C*V)hScO-hCBk2&_X@MwHMWwhfc6(`*?a# zk$EU+0H$TT=AoL3j-y+Mq*xp*H#_f7mlm_z7iG^HW&YkU7yPlUIG?ppn1#)z;DJQt= z(Yd9ho@eQXAvO6lLmmOC$L)GFv8cVMz7#ZbrZwBs0HQfPZgAH#l!t06noPG4N&5sc zvXY8gO(8@o^2GPnN=4&9r)u(93&F5VKC8*`#3r8wffdnnL`gR*>82ocx11r5fOO+d z<1z1p5=_56qeXfckv&fE_XF7{HKpX~HX*6)BO@y*C2a~JQi>+>=v9>YR)LB{-8(9#~{Hl8!}|dY%B*YhJ3U=?c1)Nct}$BP*%tlco?N zHF+X@>!qf3xzg&se8zDPL3FzHL#`(vJeH~HF>-|MQ&W&@N^1H!-8iH+A7;oSBsB%Z zqxRDJQqzvJtXY4P9$4$tG@O@eYI>b+C6fOCkdc+t^iNX=k(xXazO_=5J2-nsB2(6U zM?b<|mxlpF*n_h=ZN3unB;wIxoix%Jh+t063wozG{;k;QgC z0be{6pHwMcPPYju#Y@S^iWI$FGX^>mQuKBQ8bF90L_a0(YU7T$R=|NKnK7Z>M=^0} zv825@_bIZ1weqVRuHE$6<*oX!yGxhTWQ%Z8U!Nmy!fKgqol^csj+d6x^dA97-U?bj&!b^7rn;u|GOy8%L*|x$nR49l zx-n0QLr_Drk3HLa0YoF3Rh8}f`5hG7H80hYvOC>MB<%~y$Vy3Bz#zigFTAI!k5pgY zDHL;A_cko}XGjpfR%0{RXxVCPB1a0F7naw3bHXV_^;gx*NpyRWnpsCij$AYCs%H9A z#Z)Qo{r`Px`GCDz&LhVNtCpk4YN_{B)yX+@OOZM`i;Nt(PIez!Co5q!uum&D+iT?} za-6VQS!$&f*IQLDU!hxz)XVi`h_sfxqM$N{P_C?2BzcqzyLBEtIPeo#6QF0Nk* zmniva(0lA9xsA*VR+9A}9Rjjcom)yBD$xx?O7TpF99W0KOFQlcO%Z}v4-gzL=AEQ3 z@qEFa<~hCaN`u zO8(JQT;e0bOAI0~r3HUPFlepWZCsO%NYnB97xtA;jx3mO(VKh_HZ9+mu_8YhRm!k7cWi#j@`jktIzF`t*)c zt~=M6fd_Y{yay|RUu+sR5%~Q~A(|fe87CyNi7oDJbEo9WaB~)1u`aECKDlY3p9xnw zdXMfLfJb-2C%LVv>Nl81P6U6wDFizBCMT$S*SK%)&9!gJwJ$BoQQzLQs88(J)|=}r z^G7Xmy z@i$E&{1G>3MMXF3y-EfU!ipx9>&YjUGnw`c&Y4iDOLF7+a?^O9(vgR!b{48nRkGKM zrmP9#pEHGMddO#P>`Oq*-8`2n72DVMl$@-T=O*vmtj-kfxOAV*5*<9dGsm8-gnt4U zVA-IynnE-^{NCN|iDW6&@3h0jM*9kOl{)Z|h5KQ%zL~52o5sb$4t9CFXGmwNf1nfA zf4O(MCu@c%#B`cQRlFDbm_ne5G47#eZ7656ZUei?%|&oGZxXaRAiWwJn?}d%j)M1e zc3pB2F5>l`u5fUoX#fQWCoqV>&Z^;KvWcv?dpeiGS!`N3CwZmaleAjd^Y%gPGldXB zPMboA%I;Cw%*t;3I_*-O`hY2(_P!hp$a7`*zn=EhD~^>^@cE{xU|ww|#J%UywV@Mi zfU?t>>eh7F*O>AlUacz`M0l^(BzNGTz1;o2rbU&v&G~_3ZvrmnQZm%N_F=r+6hgdQ zcbGzmm&+rw0WX&Ugs{S!vowGZv3S9B=G3(UrlPaqPDPJj;W+vB70@6_d1CC`hV-SC z8M%I^(4TU)E$)Wr#Jk<+NHeIKx#v;vY|ECkg+TY1#X{!LtV!rQe+2(sKG> z`VIK$y(`_e05%%zIAMpD^f>q@_s^f-i~aeF-p@rFhr>Q}-osauwD310f_6 z$KTIxl9_z>ob!G6t8?qtt?TswI?T$EU)@dftL&C%41U`Wf&AV~&F{tY`FKA);#|#- zt6gjOuXM(X@j%?OG$@^9XI~1T3pPn#1QjchH$lPKb=0cYfVt zxn#~G(|>*`waQ9vi*?15@H_CYSkb-ID0+UU_VQ2mcK>6U|FN(Cv7i5Ofd6rz|8cPY zaj5@sxc_ma|8cbcvBLjY<$oOOf2{F8*7_go{Erj;kCXk64gSYQ|Kt7s#|Qk6GvLEZ zO@Szm-wyvvO@sd`2W&hw75?I~@`#>fXD7@yTv{HN%p}sKPLKV?W#y5XQtxIj?{yBW zh1*%hWD#_i&A{c?WvS^Tx$@|Id}|_3-g-BXItvb1O7$&hX<7S$)K>T^AF!+^+v_d! zucEyCvaN6rz<*|m{NJzaGPV32`2zT3tM9IJeYnkWgu$||hY!=#-kpZ&cU@W*7^dHd zc9@=U41G4NZ3DCJ;7i*tgo@VVwz2N?l821J2JiE2+2wuxxdb9~@UH)j;~6XaGx6SJ zqODeuzfzwfr#=NZLJ`ZmF6^YoZ)e4BuZ+)1yZVDo9g15MzB@lI=x>!^xzkf>z z)}oUEs_isrZeWCH+fd5+&-n;l>VptS9fYspWbwiZ7Z6N)WgKjWX4Vg;9eOSjj6%@; zw$e&pW!W`=o3(y>F**V$YwA zJ+axD*s>FJNTkh}0}!}2L%WtLH3o1*zm{H6P5J9k6H?4!CO#y?<%H7-awxO)wCdWt z&QZ!xUGFcgAYB6?`DX!+GPRy;q$7aa&QD|gVIPT1c z+d}a1fhx{ve3(L_2-W7$o6d64bUq64I4bfZ=)%_3bRZ$cbUus^$xw*>l)nvYt8-~= z5{*r%)p6Yl&UBV{R!>aHbZ&E}_!fLU>uEZH+*Gb_!pCOF^$lob#dN-G3&Bl?DsIOz zol%tzXQj~LJO|ZqG@C!63u0*NT5aw9$zL*ZRdkekR<_6s$YXWS`$3SY;1 zm`WfgmD?xqF&T3EC>mKYm7mx`a8scQ+p$b#1gy30+gEgy@pGLWWeh+JO`|+pJN3u1 zQ0!zRJ`O|44JXJ=U?-Dk?qLneLGEN8fG?tM}I4VkCRp zLU1FY+S;*XG2XKdz1{itfoCmEfMl`6l>Xn56Do2Jp{Q4tYwzO zX_&`+-ksjh;;U)sG4yrtdXK5nTg^;0n``iq8S;EJ8d))$D{UdT*-*9ZSY|`I7HM+j z=THhqkNFw8nx-BT-nHmvRvyR4VJNvr2yzox3+Y+{QxMX$%6sl)zJo8Kp`(Nk7=eUT zBY6uSkRhwDqmdOO`KK)eHxjC?9m_~a*Rp(NbsP}x0UbEc*-`cfh@rU-swG06j?%U4 zix0?9gdGIA39N;5EdfreW4q)rad&#p!dKJKW5T-@U1qA;oPm$bkmu9U$cou)w1wbi zL)ErpnGNY$q}kigK`9)&md~K8>E5;IrfvuDaTrSODuUbu)?GU<49UjpSZ@K!&W|gGN@21BF`L=8 z5Zr92+IB3n*=1!ye5z*?)WOkU&P12e)L?ei-X8K(P%ec&h!4V0Z0{$?O<*eHA@MLH z`Gh--AIDeFuvvi}nfm%WZ->JyyD5mm#d_aaG{4POm0#lhK6(P)EUUsMVZ}@5& z8jQYE3Cm11o4?>AGvxXI(8!9}{LvPIn+;Xlj%7BjEA!bLY-%M;;_lw&Y%&W0Vrcs1 zIr?FarJ+n@HG?m4*=&WX>n#u9_hzxl>7LBZ! z$x2%YZYES+JC>P@S_ONsbox8e2zGKARKu}nxddHM)1F2DTo6x0F_eq&p%@D90)pHG zhBCF9e)R;DW^KRWPU)TaIvQGvehI&tlWHor<6|=9_Et2qVk%#?h2W+_6}DrU$}X!{ zpDNhNOHc<#J9ze-0&!zY&C`R%;J_tjx{h1&)fsu@d#KSCP`T}PfrvSvzG@1Ij zlwdY0pA+%X81gv|jjWi*Xj=$w9#mC3mU#?YBfH0mPzXo&I00QtQ}>vuZH7q>ihZoX zM`0+p)daZ->|=tTd6<9nyA#=mFQH)zvRf#T)pS$?Dd58~WHg6HRt%)q7J?fH)zyw= zAS2hnhLf|krfBok3fWOwr24zx!TCPOJMA;?W&GjmmD z!>)|Za3}e6d_fKUW*_a`ZH?qq(8!AMoM;QdjfZNk4#r~v!K0urr?P&CRLRCzpk-RBo zJfDQO$(9#tf6iXm7)$n&*8rAx)Bcv1%oIw!F?c&PgfmcHQu~*RJ+U4y?Z3-;ASA8o zYj#6_0}hz;$V;Qc5>IElyZvVlLK4sAvt7xwAMHGCwD1DN&Dny##K)_?=sNXNpdQ|# zn|g$OKgzxzW8aUn?&g3Q z*V8w?eINcAu2W!c%1wxh*vW*x=n@5((65HUJ95$QRI+(l*3R%Y-tvT_{dax09evW8 zwo}O~j)U#nyO2vg>`3=wS^0g|gIUzuwsqwe^(KJ`EpGVA2Y(cW@6MvT{yXSn>}Gg=B|SYI%rzEf2JX;2qHZl#V*Sd5si(94)#p;x#K* z2{qp|WHldOsW}KZ+3Bf$`I)x$;`05VEreWhiy?!LI`ky6fZ$O~9U9_io#J(S@Q(L* zk)CvgV%zF?GF{3;YZM$Pt{gHI%wCuegg~6Ey{i&}au$|t`Q(zg%obwE$r$Gk&}|#G zBy%}nL#Y2%~icn=OP~a*I=lpM|tLuz=uEyk^^@unW*5 zqP+lZJ&s*(1W)C^)kjL~lBlx7j`+&!>UGZOcqY-4&1d4h-hk$^^e?u;;M)2>0ukDv zM7LmR+`4RMDedV>K5lnx8_3Q={vY-qvM_$`N6>Th^CNmoi1q%g11jf*f4Xsm49l*wW11V>N*Yb&v2X zM%&AqF@Y)z)lJu@x~Ve&M<`r*?80iDvw5}4PP$jI%NBy4vIzoFPq!u)HWOE5^Ilt6 z&98)m)8C8rlS9`o{vEcJ z!f-3|ZwTE-YqqwafmLZOwSupRk3H%Wg5a^ZtMi92O8fiWRnr zu>RoQ5s^+Lk6+mjZG1A(#_ov(uPMguQ5PdMycsjdMa5_c2G=UH29j&6l|Y2H1@#=J zYCmN)ffhT~ORg=XbwK-|tFByDw4-aKzpR)8IAYg97hllZb>iK$4k0JCA=wijli{Vs z9%y9c(qfS<1h)<ln9++$e2hH%f!fk%dg^(1MxWpdG|G(zaFQ z#*ritp~g|y>xr%fEiFqg95`=aN$S11EiFCwq_)G?nFA@(`Ob#k6RxxT$1~xkM%s(_ zd7bdzxl&Pbk*m=RC@yj(x^Q|IIUjID7g$R~5ff+UFhAR^o;sR-hG=(?B+fyZhSYoDvqGsM}3O*=94NOEMH(Uc#;Vy8jlqnUUNhtL9ZqBCV zQDL>a3|64)Vk(31Q9;d1b%UeuaTzM%a5Qqml`z)d(t}DsGJ=A;0&?hjm@0tY#nSZ! zJRg<$UVJ=;%%{-E4QGCCPrMN8i>H&FG1h7)dSGR1ESpL9OH%lU<@!2q1>$N+NuwDKtG*7Yp#=8R}vl8aYH47W2-0>Y7e(T0ro- zUR|~q$n36HOKYTey+)l@eIO<{ZQX^IveudgeF#UG4b?1xN!ZGQPg!pw5TR4n(alVb zOyu$~SuJ%Hm!T`ogwNN`U4kx>maJ3>a0Eiibk{c8RaBpx>Y#b3?r;%44nudi0FA7; z!+Ew4+#RTroZR6|mnh)I*45G8*qXE&7Rh;Av-vG;iM0PvqPS}QVaNtIldctBc@lY4 zFZe>s0YQfvV|d86klYv^AQ0ikFfrGTD4Dz|^WjHdjpc zvaoCYUco!Nkou0^m`Qdez0S6y*9ePukE&0NQ+orB;Oylw3rqBn z?eV1AQ5+cQY*JL1{blQK=4_XPKm=_IMF()j9r9bSj?fzkvT3+B@ z%kyj@xQ5T6bkzI7+EMhu+BH(WZyK_Ck7f_mYD;~CZJoGmzibO3m)c@j<|8{jc`P7! z6hkyZj9ZyalzO3?B5kU0l07qIq>uMEF$o-1Ime!|WsMX6ge}C7mwfDsz+*&0#orpT zijU*Z)cB9;Dg}StwpzU4|Fne|@`8_Ak?rk;wnTal)aNU*^vs`A<-j|C5V;asv6U2&aiqqpNYZl zD6!2n55FE`>Cd`Luy;uTYO%h&EBza9Tf8@y_6o5$EUzSgB~QirZ-!eq$5R{R{cTVOUL0VF6N6}sK~W`F+Q&=#^__>i7nmv zY$?-;s>qjkMHV!wA`_~KgFceo8L1jDMMr+oblztKTQ0ANRpquXviRB6j zbjFME7`u%^QV9MamKh|~9udC+cVN(-5USdnEE1Qp13LxEhUxKbWyJFxs-WQ`QroI1}nhH1q zJ7xM7SbF2V5`Tx9l6qmj8$Kk%d+_to$gE!c+GY-csOMda+9H^ffX+5k%8^dB%PS^& z!o;uW`$x<002=m;$Me zS3ETmF2DRIPM_O@JZkzE`t<_+dXav;OukqmY#=$PHPU5UBgn3|;*HP&w1%|;EYGa= z*40*g8QJU>ZpRPugz;6ja^O=aR}hG3h7fYkbL@JU%I@>pNJWL|)o<3Pps5=GN2pwR z+`Un3Cpv};oEQEU2Ozh-~eW}(`@grngsSSw#mwMYB@ z8CL3_+t!Io_Gh*bLtg6fq|9x{!Ay;RUsR~~+e23G2@8p=+j}a9Wmd`WFTZJ9F<$i7 zY$1lc=nL1tjs&p58@aWgC>4s?-pcB^wynuxPaEi8U}A3jP$?f?)XHONr?IrNOVD;d z7X2;jSrCxpmB0*J2$>#>QJvpMrGtqD1drl!Tb;4S;HS}EVe$zr`F!74AC;B)gr_jY zCk$|!tIJbt1;J1G6A46UYmgd(n+Kh6$m)9{%5BxoD46=P0$olME9J=CWXNwx)9WF- zL~br6)15#anT_}FlmKLT)Jm8WZCmNjiI(^6DHd~uLzXS`*G=_z#FNYD{S>&lQjM6nh@L4$s|e&Rbb(9-a*UxsYNV?w<#l|xhD!M-8oA+0*`q5H^LN;fb>*|Y zF?bHG08hxo{1=76V)aCf{ZyXb?{L=4Vt~L6#HN}#!BjIQiL2__4Ij9ndgh~%8?K)H zjMNjfA4y3Y-Ia6-x@@LOI=!As3Kl_C)rt5d3{`ak8oA-Bngkbp!E#BO`KY^QK7uZa zsb=11s2M3mRS_S?hiIsXel&8!6|q<_v(ohvoqme^YVKJw| zr=#gbxdjBDj=tWueP`3rvqnaHpZWy)ICyX-X7(~{XReiE%_q$LwW2VUC|t^GCZ%_U zP;ebSlLen>nMNQiCR%JB8?AjsJ^dJesaOAsJS4vgR^MiG{eJm{X|N;E#b+7wRZoYa zi>Bo-wI|>R1eNJFm$3N0=)sh52PLs1Br6sdzo~c-J}yJ|IDjCBava^9$pU>XI%2T% zd9oObN#jNj#O*k5;^B)rlI+OtzuWfG@`yYznNJRA$fnyEnvq>iP#rTi;{!BgJ%&bB z#*7cyLhvzzYR_rRSWcn{RcZZ=XktwZ`U-^OsLC&)>uPF2i%B;lt5V5FF`v)lBQliX zXDNGOYidJjwRnSD?crs%T!rdcDcQ~=?gT%KFQ=jH(8ZL45nN48HJpd=p&2s$02)~_ zocnAcxZzN}?O290{)BAzN!etfkj*F^&#--*?Pe!{z_p2{b|bxI^48 zjRgdcf?mH_K=5nw$>`IOmD7&`mP*`LYZI-|@!h6vqnkV(4cEqby31Vfy1XAK#r0)c zmn+l9z~mJY{_cV7pu$C;=Bm8UR$Kh4yg(pAeJsM|4`b+4JFqd4WL;lCmz$}EUx{Cf zE|iwB)TMwUkW!u>nAGFUu_urq7uBskjgQ69t^Ny*thm*u2t??qRQFbST9xz|tXGR? z`r#(EME_49B;47i(ElTJVNB^?ItcwdD^&4Pvp=KR0a9Fg;{&pwxb|#34flu2+l#*#Z&~rH_|C02qvY< zU@JZ-Lm3p&$PJglIO+tjHFaFRGPu>9|F5D8V#@!5TCE|;MkW5g@zEF({}nWH!-*fy zh~EY$zHI-$bZ7qO=!%#!zgtb_NjfU^Kf{M(Nd4nz>B>x~rgL$W##AhC~_p z)znl;?1c}_&8MCq?q^daWwXa#zI}=mMFJ3j5X?6__f->{MZ#j*rez z7#q>Z4Hw1)CXBoX%b?`94qomqg-g*TF_l8_9kr@K(0o+#FUH4XNd8CB$PFidHYFdt zARSM@GjZ^C8}?#SX{5N@T?pSom&a5H%W8RoCO1_Scj03*6vZ8Ax5oQpoAcRtXCe+O8sRB=$qmx(I!K}mWU7OjR}R|j zRAF@Cqcapn0*%~oVX!`-;6EzgS?tfrYPi;24WC9=#Z(P7`vjhnDuMsPhh!*$Poa?; zE&(>fSm=o>?ElD}{U4$WV#35iT(yO_u1Ip9*SPj{K z5{;}3D31|{P)DfylMhQYGUi%S*{sh( zG5WL>^Ju{bZYZC3cRcyb(a48vZQ<|#C`e{McggI7ue_nj9A#-TJXJ*|?f75~WwIw4 zx#2Fen@%QR>!f}ff7#?NmNU^+GHpXv+loa>Sdq*J@gW;Z=KW~ohD&CiMl!vmX(fBh z3f}Tbce#85T_IDsko|@&hNEDzic~(157$sCA44ODNX6ocmR}UpKH36;UliY9JDTz+ z=yjV@6c@Qf0neKMby%ePzl}K>-r3p*ufl;xorF{DSLjnrdw!I6C)@E?wsRr-?^piN z5f2<&xbo9nl|N%EQ+`$c6oIg~R;&MI`7WzY*eI0y9dx22IF zE~_c2q|V2OWJu~9G_o=R&9sH!-cP0F^MXC#gi(4{Fcu4L^3(v67LT1(k4|+c^VWOj9GF&#i04M>A2ZvXP#sxm%8(LF}{Y{%V^b1=(DEbd{&cE?c}5QpbUxq2pUDT}WxYGEYw>k7bQWowM=h__#8i7Z z4j-5y!K={7ioG0T3&HJ$%4`R-mlM4Bmi|*b>Eh?(Pz}d+hJqsm!`G4-bejQ&&cY9G2Q|;wz_`nPaz8Q_I*vpN!5Zqp<%yuk$ z84Y^?Z%B6cW|N&l`|>v^hoisz1zk~7e}Q+&_w~anH}-Ol;4l|RM=_ZH!v|!jzdsV> zCNP+3JpV9LnVkP_9LU1dg;@YvSWcW$S9Bv;}!m%?c zpo>|D&V**7m`M&Fi=paz333yd$wZQRn45grozE}gYiQ^uH98Y9Db-FshY!k-*w3Jm z6+0QQh2VBV<+Wqk$uPxDehr0ibdz78Yia5xH98ZLh+-yB<3lmj+>->k3Cv`IpLv*< z>~e@Rn=Jq_G<{}`&P2#bwUT#-jMlf&$cmM`X$!%vgoX98bC_s&F2O0|V`rti(@5 zv6BDbLow9czX@_vSP5hvW+i*Ov$+%?BEQJl5X?!Xb$5JBhO{n3BP&+YW(&csgo5mVB6}T~Y)7*d&BC^ap%#v|@({Y5^{|z&Rc#O8 zqcK$8eFV8FY(-l5B`sy#V-V@NsinXkiHEtY}L=;Q86d#JA<}N14O<*Y#{LHJToz$q@?at=6@Fg^~lN!^rLQblc+=Y+H zkk&iU$cmNRW(&csgo>*UR$>9cqoDi7SwQf;37hI+s+zQ|2aI8COt*yK?+vnx`lHS&3iOLa^nQs1vY(AD}hZnY_(`*pf z0wLj=I96i5LEyVYv7ug8*Uj8_p4ZY+9&t>(v)dC(yRbf`O-%+Ip=RaQg`4T&l;NSx zy>@eLA^1r$i$K(K4?j}mF{H?CrzX9;Sn1VpJlqhk6|tt$V`-(^i{zL}xmVcMic9q< zTL`(_7PiKnk)ALX5Il;vT}BCT#yeUg-7j_Osa~PjMqbe4!P~#vy3+A(QB~*HM^)v+ z$i}G#?=>kxMD&$Genc@Ek#Oc~-11yo{cs6xBM=sDS^s?y$E@s!{pXX3)xd@@PJIPU z20K~#wyIx3S4!^^p9CC%mGWW!Wn|b!(K=Q;f@vzQ@_BrqhRxt-39<##b>HxEdY}Sf zz5XK*EzZ^z&L75?QrqjRoUd}>yqd9kCGZeFVngyDKqIqqa*w}{K-6 zwNJ1kMt8s93vWS0jv9F#T^CbdaMMUNU&SE)iI3P&Bd?&5Lo{O1O7L!k+LQ$ZSL!t+ zkx-@9f8?53dF#RIQU-QI&u0Ao!XL)OrefbCob}oP5V-3jQ@tLK_O$S%718d658F_* zO9*l^jB1NQ>rr)lX+G-=cRierFRbAhx1oM|sOGPZcpLHY8w%qTG_vAmClZKIAE|p^ zv`4st;<;S9pI#M6BDxfUbQ}aPMwiOeR8Fg-hyo>0b@Wku3WhrR2pTy=M;1dG9~G(1 zSwJ*!RGe0k^O{Vus2>sUcNg!yXnst^Tl0-k+ABMK!pdlP4?bi=vEEIPn_)C;)7GLo z5=bWYqPq_MiZ80+NO+>Pi3!55=B~QebNJW|1@R{|vf^HUAP~`wf(!M^3E00Ro?VZ0 z9s#ET#L%?Wr_@P2f%H}VOvZ3|)Nmqqb%N(ZJDfMn%T-oz433?__uB zu17OuI{qDJEnPWfWdvM{586<$#}VXa7y+fXXI2GJ9S0;EJJ($c+wf&I90O0Tmlmqo zt1ec;M{g*KJQ`VXu`GdzZWLS`VjmrWfj|<_%@CsFmEeu&LYbP$sdW=jpa80duE!@} zsG;l7$RQfC7{>TWNbSu6qJbmfq}sEhe{`4a|Dw4um2J(}!0N97l__9l^!qJ7Ttkum ziXb<`=r>0pz3TjuZH+m~*|tUk#L%?wYw@-v^Iy$db*tg{xDAD{Ga6ZOtL;=vVedh# z`|Rg@RWSjpmqc@ryJ!wTm&nvK*4IHafz(yqEXRj#sGDVInhei(3j>T}rM?7k077z^_@g~$7?RGlaS+MV+nK2dY zQE0)+sVXDgJNRG?1^O02ZibO=mQ;nR*Gp!#mpk`M0Agsa=+?M$U(H%|sm1uH4MngU z8d-6v`2-@m5pJ%mmVm)af;k;Ra~$0^q6=hd7AH6hCXl$QnN#qA8*1i6G;)Y$EQTdM zvQhi8fN0>zHmZ8FMp$ormAg!@KyzX$(?ifQ+2_w)Qe03UG)yEU~a1HhGC>pup`WRnB8auCWZd13TD`F~*!_mGG%v4pyfAEnSs^Z^h z#`)ZeQrz3nFFc!;H&4J)Kq`z z%g&>BYDtZR|MGwS+#clTf1zJ5(61Ni*UR*46#V{~153)wO?S_U7Ybh9fAGFAV7}!} zyf2ut^Ex4=I?$n==i-k`|1FE2Cwr`_r7=6D(oc8KY}=;_a8i#=W; zS%|UCga*n7n*QV7Qo5MT<+BN|Q1C@+{x5UMoR>~!Ja*6l^AuqNi&CP9p~Ekux&xAN zl8l9FdA!tks-pEN55#-P!1`1d`|f7nJ?uNlzEkXb3;Ry9?_TzuA>UqV3IHF!9sZY^ z3jeh}HH~~uCxrR4f!C~E} zgD27CVR1qto=(SN(!|Z5AyC|@qpRI23kH(PsI2yU(%vW5W-Zh8%i4F5-+{qt67sZtP-D{ut{&EMBkaF%{g%8P4 z0au`r8?Jz{Ro_phi^A2?gYM+tkFJL)`GcPMMfJ?T7axrw@AsgQ8_xSU#(SsNmrRIf z{j2W8{~cWrQ{ts}DZv>ISNRpoXUQmM{EPT-44MBc8oA-jSI+p(Vt-B~e%>nQCVw_S z3{8_?^NgptD7^2AkH(PqX=vnz^IkdQy}o!_YVy{)6Mr1KAf{)0Tdi^4Peyh6Rrp{G zc|Qh?+%&wWvvIk(-{#JH30;u7@a`w0@}9>BW5|0JjofhFC$kZr4w13WWJ2ukZgeOA zdURDx$(P=SB@Xk!j1Mv)xD3_s6Et$e)i7IDL-h?dk|4Ib3*tZM@|X&uqgFpq6+|^PRTKZl zhi0gWH_*rp*F>c&EX4afNdfj_aa>I2nrJ{qL?ABO!KA!85 zT;LLS6V4~&H)#yDXAK`03VW}2F^nxH(Udiy8vVni+Z8(4R;0Hi7rZg6i|eh zKGB3&k@=#I+wmb8D&ST$a>Er+xmGM@V{{HxGJ$8^CGdN6RZJzYxYkfm%}Dit-{2!M zRKPFM$PHJ(R5lL4d(sk~b|4sctaCd!8X$(I9jrND5XebYK`TBcLlq1|BR5+Yv$PE2(-zlQEeCW_Pi7$1wF z@*YGZE6SssTgZkhk3NWC0l}5`N!ta}>~XyhNBeL|>v8c+XWGjPsvUbAwm;TNuKYgo zbV;e0Oc%(bCFH+4HpdfNV6ztWZ#sHdEW#5Gny2_iL43I8n~8-#ax#KISUj#!|3^;7 zukd%T*;ZT^&&0bWCYGU@V43nqPxeL^OG{>IHsA=vl$R3!5J;_1*dgVlILT6cREAEn zJ3$U*HoE5!W{NeaZk8!sjC=s%b$lM>G<-3&&!eamFE^&Rnx5LPY`}+S$n{BRWM$M? zXA8kc4XQY&QDY&AB06o(Nc3d01uvEd$IbS}m?cZfyc&XXROXfF>YAF*J~fo7O-|Ki z86TXXE-ynPE4qwY5t9<7eBR3xL$q+8yB5BOE{drZ_N=7^F)dXE-@%7vsDf{!ksGdp z*`58FcyBUMQ9&$`&Gf;30$yJ7hL_y+@B+F#rh3@Fh8{u_RF&~OK0rfd{27hhaAoY8 z%X@vkKg1LM<_WQM)_=OTUy{YlHO@oEbb!D$_olMgw}veA*{PbCf{)Hn6BE(M4cEkE zziP>BsZg;CNe!#r)vy9x6;n0P)p+`=7dbCg2S?%KGStE0Xyk_LU|hiq>l+I063C$o zVk!Z;=0Y!lKuRk6z4(v}*-xR78_xcMK&fJIle&=e63H&;A)s+6z(z!pDSX*o5nn_X z$y5-dgA6`@O0Rmtb@VH&FBGic<7t7MX|l2m+K$WZZ^yDEN)E{drtYF%GQX{jps zF+MCq6+DPWZnz4j_~q)|mI)m%-gei)o9MEb>R|604WyEos)X0@ff*{{RWx#QC?Qko z&Gm;k!XC#vUrHkB`hy3v1EH4cEf1z82tB4ux#KD-FxI^%K(O> z5+;-~{u!h6p~UE@C-gELj^pAMsBzQ#&1m)!)##WTIYsw zI6w?d!$?jePDAI%U0?%z!4}Z&k0;lR9Ne%DuxBZ7k_u+12MFRI6=0cvF*b-Ur6mDDwWaT;IA+$q@=KW1wJT4b}vUGv*5VxUP>UMTeLK` zDuce{IRgFnLnMy$-;1t?=?P7r@25k*O240qLi;`VU<_%$8;#s>+NV@$kHxe*I{)3B z{TI#l=ep$lWG0~0^+b5dpS3_d1989aqX4v~RH=gFH_I>TiF!JF43Y`bta zXW16*oaN{>8Gl`$|6)Pm%6ry2Y_F?TAA7SSxl9T?7@Fh<6(-3v^OiFp5M0O1gu&-6 zrxJ)}nDCket07|Xd_LY!R#VE`*&U89I?I*MUmk)kmzKBGQos?YDF-ijIe#5eMyh8V zh>yt7GxkR#E1t10fr#!>b3#`pz`xW)rXU!{*{*JMNlfXdFEOI?9Rd1Rc39APe{7Ex(++K6KnbAS{NC`fn#N5*|B;OOA}VMf#)YqANqjPtax3@|Lc6*d{La^p@bMUW#t#Xy1)Fuh^EIWCe)aKsX)JgHLdBg-3a|gd z*HL@pOXZc$H3EG_ud9^q(DGVMOdS;dfe*}(;FrqkVdS^wn0R*m>Ha*knlevQ^LQYUs#$0@WhRT?QMh;Pi#aPeV1!_PR5WHRZ zL2Z53f83d{I+-sNPl)$>`3*_fNkF(v{E)jSKY(V&RFw4b9=#~#q?A$UG<;ZwQrtk0 zLr0qASAzz0`mUDtT$!qWxHME=qYqUGHa#W3HH9kf|)>ojB72`R|7J?fO)!vR}Jmc2J zlfAGP_z$*8*~+Qh02 zGA8{FqH{d^e~qq@>Dhm9jWMZqma0a6fsfKqBTu7|Lo{MBr0`LRnvw-X17`q-otW{& z$8x5f0=*&xE#;&`_R=fJXMx6pi;DzR1zOH)xso7eHd7|QOS1UYoH ziOysulGMY7n#HF$Tgz?$F*MgCwOUv)E7efu+df<2M^W0GIw0ET)Mg!1N~SwuEk#?g$7@@eO%&QrO6I(DGUEyBDsn(E zZp_x&T)909uSMxgdRv!udR{Kpne6kHZDt|FAcUCzR9h@p2|;*JO7rYmudVX{e24$hDm$@8#Q)g|^L}&qKZ>K0ENK`cyvk5x^13SzfTP zC%d&BiryXwq&-<^CxNv4fhZ%)C*2GFiO35+{Z!C)!he-tCh27oURxoNPv*oY1n(TO zGS67(mpE|vc6NBBxVO6(_tx6Qt>-vRwA^}P&fgS4Y^$CevRaN@m}SRPiuag%@qTIx z!R`OYwh(*}q7*s}LSH3O)Sc{!{&@sr#1`MLdf{!|!Vs|?4qAsHLSs~u$QcAC1qW`Y z2Uh6+k8R=kNbql42u?pOyajiherk^v5Il;H*QVck;F{+TTx22$PXAFfhpUleq9{g%~+@?*{-`cckAT`xr5lc2b843S&-oTR7 zb9)fPztFE2=+}$%>t*s)O7$&hX<47zNWUsHc^7L1mZvE0&j}f&@>8K%|KCyQ5$OI}knRaUH~+ml zQhhVJRHjsqU08{@9WqmBz7c(3h34yRA!M2@23kH=({aH9f=4k_WA&sJCD@#$!}2^ zp1!u)sQG&JnnXurD7g&^x+lxon;HbaW+4 z`m4}|Go^mY!fN2{)jSpMuRtGP;r?=4hz4*!5~eOIPk>`8S zMKa}il)p5po#dpjdk^}k3cGjPLdfh|j0${Up$(@61doC?`xX#9iWHgKvw+}Hblc8z z`cc3w%2c$sC`YgG@7&~z@7s_Sm=*nk%V_oU^wpcG=U0N6Z0SFy;V@F~8G<;pP z>o--l4-r@8)?iynQ@see+Q(HI`DU@KIs!}e%$7!gP^U%o6suZ}KjTiJv`G&hv?nKvVsFV`SQ&r0C_&5!f zaw{6S;YwMo_mmvG9sw?ewWH6o?o#$8y z6O&dd<4$uPe?|iYu8TL73U>Sn=BX;B6(6UeQih?C8?Kby6jv!`V?kGz8rnnLb#frO zN~SuIwh5}$&`MdVD%l?&rJ+jpMI(o(#9}6cPlnKoDhmkSRWBsQ7+qIA0Z8-b_Ou38 za2I9{O^m59rHwNK!W2?cRoIIU$xwwUG_s;X%D;t#xC-gCjRgc(;V!nrGnhQst{VvE4)|4OVLy(d{mxPpGIqF=|- zuQlXL&+2M2*IKz16i@rJt;>4jnPje%j{6JA$@DA#c?bNwBlz0(U0%y|3<3+ztqy)hvWz&_A3_(!^rW6jxRw%7 z`ThVt07Je{LnDXq&AT|$0++{ZE~V365f<>kDt3BS(NO}AmE!Vy#?r7-myuGWuC?k2 zZPrGTmT*`ioy-X>!*vh`POw_Fl~*~p3?wvR6smTL+>5?os~|qcTuUpzA!HF)_>-g- zeRyC&nda8b2tQ?Muy_E?hhiZ2p=+e2H1&1B5%?&R1tcAWD0WoN%=hp|HFS;dppg~V z_%?xvt{WIj2UHEeuRtWY^G)IRC3HPZ`JE7G2J|eyfIqe&%g>{c8_x1XK9p*ho^!f0 z(=!309{s&~CQp%C0X^H(@y9o0dkPvkgl&t_+aG#q13-rY3kco-eA-sFtO58~w37y- zd*i+7mRO!@yKeVA?l+ehEVdQNgxM5KJ zI2pz%E>Xa;&iN4=Mk1T*Z;8Qv`{EPL--k4CeT-IQdc*LKrZWux?_sfLuAjyuh*M)2 z-?c3@H;n%w5Y1p1)wCtUcot2BVi>QTTEIAMlS4P7;i-{22zXc)glBP)jS zb6W^*7*sz_hVf08D8Mj^(XIpEH3vHqdDJmlV)0^23^or)CZu<+%>O`r>_dB}qNaV2 z@Q8mvaMjoZ*=nq04#bP=#F?77mCPg%O<*N6v?Y*itV95EyXyk@-K7&ts28t%}{+>JU@1RR#$~)~I zv}vf^zl9IOko(us$RXTY4E?-&po4}51fK%kW}Ao~1#}Pn(O#fTji+G-)W1gXI`tPP zhkp?3T3YFqSLnKkninS!8jH;M%H$9T*73^ZKmrlkI7By|_|!=GOUAMZO^q_3oQW=& zmfh3|fFrgKGsu9V=AgRD2k|i&y2|^}$cn3+Y74<#g(}L)RrYs@0$k;1(XOl*k@s?5 zT%04l4pP8%KU$@gkJb4|aJi*!t~B`b4i=msSItGp7i??JFG8**5TRZY;YG+unzUpf z51=_w4CFp^m9(^`z79A7Bjqu~Kp0u|V zSa9c^!tqP!ikNadDR9*h#`FvLqZ=~)JQ}&-Oi$*Wx|Z!ZXE?Jx6CiLslquWO2-|W7 zYC|v`AAup`Q_#pEj9ZN6ydj{&f&~P>%=omeblGLb>CxUeZOwayo_J2&eEkfxR<%Ma zA6JKtfJP?_K$@1|bX)oGmS7`+Xoi*mo;)F0OFhB)XjYW*;#_o@w8W-TfFn>+9?NzvyI79$N&7?3nQ!c+(w*FG~P z@g89kfoO&vVSF%ksZlrt%@0eIKizd8x>j0>Q@aC>z)P84SO%k4-DH3K(GA^XUo^7f zCLIJKx^7`A?G}O+llbn2h#XsnPIO&N`KGhYY7Q#vaeNGhte=HOZaC|^@ao8uLI7kk6G-GHVZ!zL691kSPs!SUQ;Y15KZ6`!y#eG9!^IWU$KXc=nCoW zVI|-QY?Mcm{=#R89h6Tuo`OH9p)Z_>Mpk^`1X~F13sf^szOc7T6#l}6h!<0{=QX_E zTv6;MJ_Cu=qnkJkZ4h*2KaEI`rp71+Y|G8tiK_@i6Bxy~K;n{Nd>2iIVi^B}u9V&| zZUP*E6}E0V5WH#}-^3r>&^Z1d8d))puiHX!AG5Ff74EqM}uql3mLC{^PhZ`f9y`^UcsM5up6xaO&qG;DMn#L3~vSJz&2}E?)nrw$T9m8uN z6x?~IFuWRF5L1SOJIsafyaIo4L!OU9BR8Dqzz%aduKV1%E})BI%C)@1TnOJed;o@g z_o9(Q__i3yc{4x<1Pcg0CHW8AVabmInt^1rH#LV9lWDOR_!e5HT9MUZV>uFbk2&`MI|D>Lx;&NN;Kp)#mbat1Fx^x5KWOBJvmDr1PQ&za zcczyO8PoE{a(cG+#vkACoL-7X4q@A3^yUo!9SSTUcmr^ot!!BX@MyHN0SoEFz%8+2 z7Pgn$;%$Y`{@z{>-U*OsiS@?edz&yDYrVG8&|ak}B?pARXr!ma2_=@L?Hh<8Cx^ z!?m#&UrsehAtinM-CZ9qqRVBfj}B>t)gY;<8u=?eG((L%hei(3h(&k88yq@VSwQdx zr^hxC*5KR}?F`4*u58HOx$T>>17hegNL03XDxHd^Ew(?QB%OL;A zx*Mhb-*;4&|5c(Aq^h~ZDchEv8^~n@q6rLSl9aq;B6p!lQB33xbhWg+roIF?0yAZL zk3~vAHIm!#0T>#|EofxLNN%!);6_5Vx#RpTUox2-#Ok{1a?sFOsvX;rF$RsSn8!#05nZ=AkxqY9swMG!G(>|t{}i5&K-a{S zXF3}%#;>w{DE|0{Y#)S1ZaCXh`GiIY;~96xx1j4{$~b*0P|ZPQy$2tIA?qF*IfQkK z(VaI4bcnEk;8PTTwH>I~6vfnNAMu!8fcM}Q;KA}lK3gcX#5{N-GrTNAxZb!OEncni z%G!1z4Ttp#x<-Niq=N=X>1fm(*1;&wB0%=Hj63vk^q&$YM znU?0%_W(!Wr#zFk4n%2U7OKVk6d#45#rznJtXRy01R}aNVh$UIHI`_R?1Nvq_@mt97CB z3C?p9G(@xQY`Sc9#QTi|foO()V_YC}X_zUa*x>Q<%Q`-PXY%}Psl0fik zcX0{+;D%0e5gJ)>k_!k#blnAe6-S_865HQ_fE=5OZ==g%%69No9Dx*6&cA^V!I1Mi z(Z~(wJn$-xK+z=LpLgf|&*;*a@-DxMBanv5{j>Nm47vY38aae}i(#L44s_74fZ(0O zCfh_<=WuDXokMFWQz*t0TZ9>k#R;rYY1LMTJ#s722_utcf?_v_7}sJm`S6BeK7nY4 zhG7)TTC$Pj(5$c=d9$zzT_!EDsr>;*poHy_TcL{`m|uV%gFmpLaU6+8R*d5?0uf!K z!1l=1vs{8;9GiqZx+JD72lvPgx}YEFgIE@GD#6V$H+;(LRbg zeRDDs&-d3{2JuC-ezoGWTn0e{lHoy`1Vap)2M6xLO{KI$gQ5agx|Dcf-i}@yjh;IIYErZZiPU8P%hz!^3 zEByZrT_02agUcXvxu^rpU+}RQs^I_7$PHIPU>St2dXf@mdCp3h0TA`Lrcj+gUIwAd zM^(dAd_0C~n1n_SQG-R#z}pTw)L209wqw9n)~xM#I@-2lTq5h=&Bzp6V!3#ya7*I@ zX#Hw!s1EP-sl-S^6h<^n$8nmil6c3lfj~4v$1y&by5uh(ru(uY zU8})f@Dr?q0vMjvJV%|z}mVD%MXhswt`3$;9T2fP&0FFQi+tr^^ z#SY7-LkIAOH8hN?(8!8mTtOhB8#>so{yK(#458r8IfdZ|(FHMOIJm2S2+#N94{pfw zy=dfy^BmaKU&r-p?p(i$E{ZAF@~-|NeE%IEfFa*6qLD-Rwiv~EBR~fP3kZH4lCe#M zU5ETW+CA^a*LaY8zizBMY2{WvM%NJx`XD(8%=iiNeIQoHYmIgS(G1x0! ziZW(wKo?6(Z0Z=m5xWAqfL91#y_`4+e|SR|S%*eeT;zBH5nXpMjXpCjluTm$A_&Q` zOSk}C7*ob~4LmF^B%$(t9zF;|-p@fJH=OsGE3%m)%=CEq4xwxk_jkH;e>=K3rrghw z9uF51QTe|WABZ9UUqvH_@NY5n^X`ETAQlk3d)U)95!O9?Alg~XQRjGhco~3vGxQb6 z0%urS#p#z`1vjMA&07Y4-r>h*bR+a7+rsnNgck@zGxQImD``t+GPwuKi_$tw00>;4 zrKL9Y9u!M#9q5L2mB>~17>hr$p?i!%BP;GPfi+Xv&1Z^-uh(8vvEJFsD0rD77}X?Mnx=(?CPE^k;@$w6hk3m=0a>j^Y+ z2!q2jxU;kph$e8B z*`Z~SY-S%cQHss9qwA*SIyDDy1dht{h|PqiqI%Ar_)rWzXAd;8;yH_KA-LyIeK~o~ zFqbI6a~_Y@bH?~5y9Zm{^~S|^B@21rE~>PuD<7(BS86&8jfey!$W>!0Y1?9ROGy%l zCa{#TJa5TEu0~U#c*vFLLTTAdoewwyDP{U1Tpqh>8fE;k4Nc=RG_qnEm)JsZ)1V4+ zGL0^mD8MvENBdyN)Pe_HiO+dhfATX(s2=X2y_f1AST_~w|9uC9hU`low=F(5kw*wb z6PU;pC4I?DUPBY3c*(2idg;C7S-=s!gl=!3q@Y^L-|-27axUi(5q@i#hHfP!K* zEy+F*wBuDyJAnvwlL*&oj-*LT9&#F*7sW$1psS?!kYfNxV5B^TT+=YJ*m3zv&6DuQ zH8hTOXk^7WjwcWiPLI*G7+Q`mf>>|^xWe%T=!%$fOsB_!(W^tmdHACnGJOsjx#3Jt z=BqEXY~Sh5_U-7Zn6f=hT6Ph3Zr_TJz>x8;qLD)ww;0iRQ$U9W3kZHUWl!5g{3xI) z*bwdAl=(F#M3V{WwSlidZaBx%3Q)f_f6YsdkO?#rp)fdU+J%>F8Q~WnFA#{(b|Jd) zgw0xxK7pljTdiqP!YT`f_Z4ID!5DhaC^WL- zJtJ%(xc5+vIeE|Xwn}H-vv;%?B$NG9o=l9E(#51YKYB70wH|hJwC>`hrrprMV!eJ` zMzf^rZTaUOvz9%sfuShedN(1u^NU0u*ASexQ$F8 z5KUksV|m_^dmMzOLUE4+(1p^w$0EQH-Gko2<*}=#u^fMFL(^D>MpjH?Z(9g%8dO0} zrZLtf3NVeOBVm)a4Pkqlhi#9(#A1JRvJLu(J}=Rk75!o>q)?CkqfWP5Xn=xLHS;G$ z+q!fAIGaF(7C+M4EhK5lJU)l!MKO=hpsS=ek4peYV5D-pg_6aN%cn&K@W(YYj;qkf zig8>)AflTd8_#Z7=s5l{#DY8b6pkN6SHzTK;dV<1)A!?#Zpie#Xyk@79lYJ5WBWCC zwqHe8#guL3c1sB3f5%5)$oPwBg5Pe**e2pf0Zl=Bv`s;4;p~#< zog==VXun>pGiilZhnE*tq7w!nO-ry3MC^D;(M}+mp(Pl_vX**+)6lFa}ka_It1oFZ7V;i#kJ~VQ} zS)RxjV``XAyEC0c*Tj@*x|xX>zshzO{`iJ$C(y_tY+H=pyaAv?fdvF_0G_uUkXQro zTD1FT56frMY2oJL*U&Q6YOD?o00~VPa5N3T&9=hf4Zw{AqA3~xKV_)_cpS}#GC(|n zu923~)OP_#;Da>)geZ1Y-T*v|KdPZwJcLG8%;Et85qSfk;rAVg#IXT*3tbOWeuE8w zp5@o^$2Mg7pJ?QUvm9suG)ynaIy1c(AnMV|t7o#@0O;A?4S#$?w&$afL)f+$y?Fyb zhXM---T+*0E89u~5bX@W^jyA_fnBZqMMh!Ie0QUTtM!*Me*Gc|F1UgbcFPe)AWcWm zX{#jO5yS~ZXh#s;urW+7?7NZctk2_Q7QO zM(PhnpN*wO89Q150@p=pnN7U`H4~^QQ#VogV-fI9VHiFFLpRw8jjXuId$wxgZbH@M zKFHJX*qKsbshcs3jMl)e%(mEv^vvomz$3F zd-;NHmV*AIg9RiAwBjA*QF*V+%X^uGH;`(b2alPpmUJ_CtW-DUNr`N4E}kgDD~9s% z?tDDg!w^>x#85|x_(B7?k&GmRW`||m3a^d!^6@mwa|^n1T9#9%1CBrzzuNGH#ZJ=? z!f#Q=dho}s=^^ndvWG@yl^K;z7GUT1qSwo6vzZ`8H+b-i4wdgOLM*}Y+*IMIbE}2< z9J(;3R7)2fTEahrKe{2|188KX#{a68CTga|iw>3TpF(7gZ2uTt6;rk~7ady0AH+vs z$oTzeo6&3JAEtg7?dqvrl9@iCSs0zi z3RbH&{WDeKwzb-(LD>4X!;elFj4GW&iVr}o5OJ`LHWfgMk2J#wL^JdV!y#j-L1;%a z!p;#sVC;!5k(SidOu!N7D34_O(eNNQK z(FvoCX7K-^ZN>TE{{sTi6oWrxEDioIpczpH|L4&q(vq5b25Ke#16`vvOnVw zYG@YEqLCG|_&tG$eDGJ%;MfH{|*dG;#>n79%$w{OKTI0l^3V@7o#^8~mS(cJLq38!y5g zB4PahC|ajlk(KMS%^C|(7;`i&z(;Ha#9M$56NqML0Y=iKr7qw`G%w0HaXq?9T53~Q z0gk{3yFI|jV#no;z;*cJ8XCtJ(8!8$TuUILYXsPR0WHT*K`gl5TjBT#bVW=#4&E0C zWBO72(G8jY2^zWKOb6}@XxZNG&h~%MRWW5-zAq5Q_`mTH7&86_8aae6RxCx_+P%kud0J+JHkLO5BAI zlMHVI4k8fE&<2cRSxbFD9LMx2E%la|cXI=~SqVOy(J=wb)vjldcB0~?yf>1brd zEH)B|=o$gGwVIygDvy-*=F?wOT0W-@=Dr$oXAp81i{;o z0nVDVIx8QqZ3TpT{|2iAXnevbq-hM^w5>XC3|=D;&CnRMlANWsU~UP^3Ohmg3V~Sw zf$N^M#HL08jzCCxG`WXNsbYuaO~DNOVGT`VDjHcajY$L|x~5*3s{}%LUWq@rA z88mVT-xeb|ZwBaqU;)9KfmdyZCDsglGuqn)BRiAv?ra8@n_oO|;lO!p!Q{8mTGa}z zysj?&Ks7{R1k$tw->?-CZwc-s5Y5mMjIN|Dbp^jhbEAwIzd+YXOK<8Sz!5kpk0U-( ziCi_1r}0NNG>|9J$clkHMj)bV3?|aXpi(V~=MjC*y}>R3QIGCV<(Y2ECC0C^-GV>9 zA=~fncx+GQqiYD``?)i|55D3flNos4$R7bNEsucbwo3Wrfac7eA$16q98}iZ@i7>( zz9$+v^D__9Mls@2UbcwVqrY-~=u@9j8uM^p@qw>jtEAdA) z^oKGUS@DO0iBc__GV_hfru7 zUb)rF6!S@1J)~DWK-~VCX@3Qar$hTL9MPA!FyQzRU@%ZB!jxJ-+$ja!_5O$LpiQS{! z**yYX3$3-MYOxExqOf}?{3MAmhme)+VfjL@R^@SNPibcbp0$5HuEzn+S^0p zV2yA-xveFZ%Wn1Z!W2;JHf)cm)mZstUB8arQG&+F!W8;N&E?-P2p!j(G7|XZ-%bRg z#^qmR9sKxU>e4{5Cz>OcC|^Oc2f9{Tnp4vON8qJQA3g|1uXY2A@JBavlm%#H#Zl%F zi0H1>rqcT@!HP+IzaJvP&A2FhpNg)FDc|%Cf|`TM`pNhh3|U`~Ms7IkyYl-+HJJaH zJM$N!Yh%j%Z0X)nFb|de^YL*QvVSfbIfQ+S7JzpVbm*{v;9bOfw(St>B3_BMix^e( zGKFluGb=uT@38lLCISSm zqc&xlu1u5?Q28E*55SP`(P-p`^F58X3}Kuf<<9xx=)#zCPG8QYNkZlQ5PT4ZydQ{0 z4&mKmr02~79Vjdyc(d?bTf<__!pEa+7RXwM<>FS?A3>{CD>a9$t|1^{1k$txAGQ?? zZwvYfL^HGnBmK1-%jHe2uSfHs^aR(TtE8nebp_xEj0E?O_{0)2rhK&CUjU2+b#R$%u06HvKK=3A@&o&X(1e_J^in2*`il`-4 z%*Qi@T(;l|_Z|*C2kTK<$(1+OW#)iQXYo*laY@rD90cLxu9ldpc&BgxfoO(KVX~aQ zbai z^)XezeEmI%s+v_5+=Y+DPz86Okwa8q(IUK7-6)$5DHagC%UEukh#v(kdz}&ORKw_e zHrW!3r<2_op}lw$(!g1lR(0hgwC%-UPq#o&EGA*B()1Cp*_NC45w8-6&^{u%L1j!e zZD|~tbuN|+c5?9kVFp0p`YkP=sS$u9aKi3GR6|!yV=Dg8hNdwIjjWi)cv}c=8dN_{ zrtx=M6*JQ~Ia<>g=0Eu;*u@8+jP{zf zC9Tftv~5l`L}BpJGy{_%Y+QTHM8unc2?U}Unt{=kw55jNAT&41fN=o2PFi|XivUO9 zgl(HsiCi_1<@h5T8ptv!= z5$IZ&(mRGs!Fbw z&hBt%9VBW$?@sM!(S%nq7tzux)XZ>x)8WC*1vjI zcwK`(s3EVb(a24}t8&rvVRv5p(S<r9o#6w}1<{_mDV5>iOa4N5UXDMw zAHZcysV20ukCAM7OAoP$XACY88Hrrih(B{7I+>(IwNeocadf2=tU^(pzOZ z9$6Ipw&?x%C=4CuUNo}eF!$I(aEGC)a&nl@yF>wZ?VpKuh0`vXUh$3MBQC(UwOXN- z57I4pNe^Zxel&tSHSVzsM2PE}nN+xYv=E3UaF5}Tuw)iX(F7=Fu{*j#S`Jgw07qb> zOegz&mK1MTh(D;IH?*OV6>pep3&FjCYR1VM-gWeb-wlT~xf{Y(;f7r@!5gi@{z>SH zUh;~evFSpwwqERd>Dq@{|=2D!o9^%&$|UWXjnk-xr&%=B5bbWN73H680O1X=n@uP zh;=Eg)GXgMOu`YyAx(R*077)UmY7E%LfeDrMvW1E#*$$ii>5#sC|06Nq-8O+AK(ad zu-z00Pwc3Crr~J(Q4Rg!2sEXZt!==$)O-%Bq3is;_+Zpl_ z$OhNaXl15<^k>jZ3L0BrBSAr_8soUgw)p(I;sOE@Y8(+>S4@`Emt5o)G&hQi+=Q-| zmfqAgfFp3jc7l{MP&^~s!6>60;0m5lM3%oqibWz zdvGU6IS-ZnC-HF@vi}$wx#8>wc7l{ECn;c;k2))$1t4%OmZ<{dogn30R2967=BjL{ zg16DgAu6zF33yjQhZGA4e${cFZ6fTd@qDK|mCQ z59Gc@K~6ys-SDo%~aRX*?OvXd&WN;G2yAV-skP-eY(238m?Mv$%WstKEpuI zb*o3Hv@MIJ*b%-^L5~ZExGbxyazTpfwC9W(_h%8UWavkEsJ92#rjNEjt zC+^xfINHwl?aBH69h??dzWH*rF$L2c+=7ST$oX$z}gJ=a?Ftj#h%@eG9 zJj#i3mnqhv&hQKcbR10U51@Azxz-m z*fnSHyEmK<>t!35{6tA**Kk~6&w&WS72`iZZ0wtMmM z9oa6!$T4htbZ}_`cq{OLkS5>*--aYiz>DdcfMJy-olCL>b(iCB;YziZ*+8ujhzOO| zW3d7^`IeBh0yi*-R#;yB+N55bZ1Suk=8=N_G1ngiY(JRqbwxXxFoggJO5-AzlY*Pa@;5V2+Wgonw9C`M8Z)B3i;#e7%oK|(n2&pu@vJxpx zcakV*`_r&=Z$qYZ_ZF)3(Ymf&mi9nptJPewnlGuJuX~E7gsqfVt1o7CvOk?+0kZfa z;VDIIQJE)wS&%C8ID?2)nH2XyagMYUXd?3o%#k57AHg}Z(j5GQa1?&TyPQ@c4T<>x zkHS%6-h+`1iFunrq}O294$z`Oxc2cr1=p zur`d`^eR|KJ|%RhgaeXS!gt^txhlbW+RGTW`Iy!4Z9E>wYWNn698(P*oF$pjT3`<)m4~2xaN%03F8sRJ?TiRWX3n0_7~-I3{MVC1GVJwX}->lHozq{M8GA&7x6 zhvpSMS+fLjjE}@4aAbTqj2y$bM+cWCfVTw?2x$UN^DSLr0@fd%>Ol_d)vGOHU%i?O zSFKfG61;k~MJMp;)g0d{lFnc@gJ=b3z+SzIPG9RE6_^{NfAqllveFy06OQT;xT4h7 zG@~;xZ!5a-2pkn9fRPPFS;!#La|@AIucBGgc)yUMO6VKThjZh~yZ-7`bRH)A=i+fV zvVS&=+;sM}SFfU((<55`a!eI?SOV!PcuVns zkgj4+--!rUab>zo3o9=!E6WO_zK=?lwc5fxt;-7N-f9X?X;zjchBgWqv)ZC?q>&iP zAX>pl3|Xw7X}>AVhnSvx9J(=_AuFZ98ib>;5e{QFBSexIQ!Xvc#K&|LiVa|7Lnzi` z5b2qP5qxRE;P$%|M?!mW2%HU9ZbwI!6>JP2h>z^Z@P06I(-|HkmlO<^Pf5=5NpMD7 zS>}sJ(df-<`FMPEN2ZU3kz<(l=-9I9bNTmxkWGIT--(E(zck&ZzjlQ_g`K0Ngw9em z(_Z^HRBs3U5Bq+GdueW%N?D69+}G*|`rFUIBdrBmk24ac(v2+M;BH@9q&K*eL9~K5 zSZhV8&~7_khdC1$mUIoT!MU^29{h!H6rRF$S!Y?%Y)lP$1&_v2gI4GnsML8Rv= z*5`g=MH$rUVfB;IYuKoV$pnGfEtx#?9gLw4~MWl^h) z-IG_wE^w|~E8{DyGTi26R>zKbT#nVTJ&YVv9Ui7b`WD`rJRqcRx!qU%gm3wFy4x>@ z?N=&S^TmbAip2?V1zXE6oMrPT`6WlpTF_hUsO|F17G~A{u_9tnnwrIY9Oqjk(tI4l zAXZ>L4nH=NnR#5_(S0+5FQ#WQ^ZJ6%>8I<~VA5LjZ0g-5D`kS=^uKC9EL7xbTC82zt(g5m7H z+vvaNktQu!H$(s5Qug1&YNVV;{~GNeiaY1s z?kjLAT-hDLx;nqs4Q^k;hjrxk1sJ*M+>VJVnnv;DQxa1=fglFL(wi4BUsj4nZ`!l5 z_~?#IkAjh#&h*e)*U=c>B{{=8!kKWri1~NLS+6v%;qCEJ9hu!0Mvh_D!!=9e&25+^H)swad2%~3oG2qX7%`b99pZ~qHJS{uxBws2 zQ7q1bkqxmphe4!g)<=q!J%ioHD3FAP?qN6`uI!G9F5uZXegGfZk>h(|t5WQbP&fyq-V8hj--q0~k4mYmd$?n?G*?9uTtmFY}#&M{Ge4?Njo)PZ`}p{dY@YxlH=XTCvbV-C{@dh?-vsBymGRZI$945Nn5^G` z$Kc5Nbue-a>mD6mngre=JRqb=*vfYz!X)gR?v|oa-Pvk6zbw;EXD=;MjKaq>5lp14 z^%l+@5Tn4uJ40^rb+0h4&dmD|m&`k(q04WX;o1h77wfl^`%%WhFTnPB;oJ z;M7)v!?OBYM9tYtV|FCVH!=|qwhBB^Dx=}0_Mo|gMy#J$W3QI@@})9IjsV= zNL~S(4q651?>6gmF{@x>JQha{m(Yf91wvtoFN<#3X$#0JL_ zjzUPtw<~h0#ISNJ>go8fj-qiIjBJR;$qXVr<1m^p_S+b~gF;ET=x`gH5LbrBMfNYm z@O&#ixFgRu!^lnNdAxi~VdMI(Zu* z9uU$Dboow1n1PMbJw9#N0o8mVUp+!uSlHwTs4Q9Q%=z7+UJ--RVJt0wBZ>>VGZIB2 zTmFU&Vg)UKaNZr-&Ss3nv~4>%#UIVe77Bf#_rF{`BIbP`hmi}VY~0&I4*zx~yCl~a zd0S{-N_*{Xq3?*_{lxG7>=%ApXgB)T(tKNJRpLQ2XPp#6!q%N-vq=7?(DsC*TsmT7 zX{~s~1t6{2;rO7A5`GwrY)E+eycUnpcwJ7jNXYBya3ZYo8N~8R*R{dxY51Uyyq*jr zH=Wm^HTBYny)8Mhx5AllC6>Q8!Zg=l_GWxkM`mw?k(^S<{R;Fe~B$k$Zt>!%4Cd8*EEB3L#=`jZVmK+TT(pzREl6LED&Coq&C zFuP=>HTZxMrSK8*`$9&P7*($1tb&i~C>R+S*$|A+IOnOEyitueYIJ_LPR{R^a6Vl5 z9UFPZW@mXbd~8RSH-V9x&hj|vrk+0Sw-^mlf!2uNu(md5`x z--3~i|ECP16&n9=K54D>-wpF1t_j)t?}W2tr82mVa1=(wM+ya5VqDq$Z^y@V6pG)$ z$c9kd!XVOH1rQ%8v~v6&#e!LGgX6d1jJR?f{YYUP({JFTJ2L%G7`f?8M?O+$Wqa)( zCT4q0f*1%hZ(h;*M+)N@pNdD|$oLc(IfikM4lYdqZwnp}(ggg(w{(RGxGder0;_c9 zs>%+V!{Iu$O3DBo6jqB)X+9P^aF}oDNIP&agJ=aiuqw@1^8&}gj2M057&t{%QiE>7 zQRoo+IchYCL8TEm3Ln%_ESAB@hFJ76i1dtrI4I0y_i73xp$oVYPKPVI(SyRQ9AAbH z?a1*ZFmls5jvN$b^88G4o}YqK;>xprP?(kLC-LDOxqci*j^Wy)bIaz>n}7#|Z2kxM zPDC{S@20x~z`jttdF&U8r!7aN$y#roZ}HYV=;p{5idUm>F?%ekNcwCM>}O%*rn4V;i&xK_Rsm-xuYf){Kdu#^ zzs0N1#ngc1cr1=pa5{_}Qw1KDK)MRvQam7jw3t2y!@fW=-ghFxRm@5EY>-v<)0Pze zOz~ryWi7XGBipMgw$Ix*EE+uFn^S2P9%T?KFbjk8!p^p~EL3t;+siuif6wYI<`?(o z=x}y=U&sEPpML+{j#6*2TImaS@EbZ`T#_qSa^Az!S+>2oO7x|j|5EB}FYSCHem@nz zpRr%~rJXnFUrY0)ol%k#P25MHiC!u~v!tyXK@gY?wq9+)E0h$~*6}R?GImqUhv8#8 ziun*2*%0%zSsp7g#jhTX=NK(! zCMUZS&WS78eEWwQzsYtMAK#Jf!(rs6vt7Tkd1KPZ?n_SgayTWfWGh#;=&K@~^2Y3R ze0WE$PlJ(Txc2bV(voxI<^drs`9sVxATP*@i3m&nK)MTkjl+J6rE<6OxbF$LTCJrv zu!sG!C>8HvdF=P7Z!Jj&{}6*%frC$NlW6_0-`dPIJ^2u3NR*nigzv+tvXUIUL^uj9 z>S4c(HbYI`!3TF#lQ&^xLrwn0AktgpQxE&Ku)W@o65jx2GnyuExh*p^9AEK)w=27MW=)H+IF9h=@X;L!|0|3vs`2SYYSLypva8t2_PD;pY>y_0s9o&8 zU|iYOcNNDmJ_3)xk?~>QqM+xbFQuy?!z%QlvQByc zd}3eivf*jCp5`zR;_(en@u z#vO#CP!f(}@3GhE5(7)QcmyBVQ7#^Ykqx=Hk3po@7{>CW3hXSed=`4e87zMRr^JeXK@7yLg?Ux;m1tuMCg(Hp z5F9z*07j1C+@qIEJHVTR2ZX$(xZJmR#Vy4*(zOF$rcG_N+lkWBO#6b~Vn?QZDJ{qK zuof_jw;nE!mIte}EQ^a+&|$vY{*g@P&}N z!s{uKuH2I(3euH3)76zVn6BiObokGH{M1%3a!HIEYeD%orvHkG=JRXE2@6W)d%kFvcUq*Bus<+;X}52-v?F^E{@N%6L(!Iqu|O?RGz*)nwJaX4>Q!h<^q zN8uWc#&@rNfXk=AYx5OdL5`nOl0nwzAT4{F*?raaI&o221gT)>OA-XE^7Ry zmYjx<@2Djw!^nn~oahT7wS-qvA}z@!iGpr&{wG~68D4w0hP_=B-5CEUO=2K!X?!=v z)7u#=CZ$F#cQ6n6CR>Wf{R|>jJW{-aX%n;7WaE993qv;EfzxD{jTZ<cEtU`%4=mZ;nan-jq&Wni!zS}B) zgT2?E;kV9~C5^XeP6Kf}vbU$&)NYGeh>@H7m@kUST7BJ@2q`tMF^CqBnklvnXgV|g zT$Ch3XT}i3KseaXC~vCHOl8Zbwpo~q93$~497Se0jBJR^s=g3XWO!925}8+gYg?F_ z8R?45=t@VnO6O3~yMBeN`lZ6Tl+S^X7T@zjL}WZLrDiSeWsWcTQc`9!h*(KUak*nm zbn2RxRA5#NE$M-CW%n%Ygro2x4iJe(Z)!+4KDwiZ1TeCpAqyEq?7hQ)8`VkT!7RTB zS*dG$Uq}&QSE0f8`EXub`CcvhFg7v=ll61)7#vwY8%AzA>#Ii|z(%sBG5=6<=I@7d zSC6b^xt;>z@- zh*4-vz~uWtJOD?&_k)p}&i7>5T^lLWI6oyh=O@95apj!9p=6na$@}qm5RSYb3nRzy z?$O+(Kj4kR148;CcKYWpFzYbMT#qrLu*skWMU4?f*}*L;T+jzVq3yd_z2sWOfaIvsPZw>p7^Ma z60sYMY)Hh;3?jWIFpA$jSol4XBEfpH!S7NyAFllJZ=%ZB%|=kg$980SF^t@Fmd8oE zZDIP-qDe0)c?FMyF_*!JkzvhDL$-~l1;6xQ{fh`3XDD&4j} zt?>qFw)Waa?2GKL(zGy{vR0n=yQKA3o_UnOTkJ3U@*!^}UStrl1|hvJQYVY=_Nd4# zXr7_%e3UGsrwkI^qo9_GT6B?S6FLso3-MON=^)>`g7{@yJ9gG}P2Oj1?`U~DzJRsyf&5phk5%)Bwru+0` zY{Osh180;~%^??{5@xME@3+wFok@hIG%t&@Sc$^Le7L9~=`22H?6rck7^hBNYc3nY z%oxpOeK=cIa)XJ4qc9Wl^$|6GQ%lyx$9L3{wP0jJOV(fz>3NDNYAfaiuW`OV#gx!c z>>mSX$CZ7)P7yZ~vjUF7BXO*N zWiWC~1$dYM=_7a>@qmy%;**3v;*4~C#K^|m8QM0>KfrZsExK@L&nKhxE&dMsEPwA? zJJLV=mO-?Fe;6evuJw_ZVMYw^@FJWkE2+UFgrj-~{uE8dZfeJK_}Grx@mCnx(2l<_ zi1d8J1m1CFzBI1K{VcI(7)=nEt9Ip@e-&Jxfywv?JOW3?hr!5AXMBq6vazi1kev1H z;LNzP&Yhxd7AEuC;88d-zZHxe!@Nh6mp*~F3l9kC6K?VqEwSEkV7fkGt)6neNQYBo z3kC72I6Ik_-WShxm&!*d%Mbqpm$9`5!+kxi0}HhlY5f^uzE}@aX7@>eJR#WTgvHHVhT{9L|%K(BMtNQ8*Esz3Y*in(+xfvZH2v1S1=o z@d1NKuXBtO>w%)YHJ)cB=lLrHF%b7ACeM5gTaDjjdj>wfBimnwk({S8`XnzF-VH zz^Xe>A61>7t*EEuoeLMOwcV~@)}%DI0`NGvt=UDn;LQxKDwiZ+yEmR8giX4gwzmTMTs_58JLMVkhNevPg^-%Ut0|GDyzg7n z!k7Fx-81ioRPslvZsc%E<3Om0?~A4^Af-GlF61y@uBCDu%phWwBgJKkp|vS%a&a8Y zf*}{jz&Wzpk8Z+I_z*9eGNQz&@&%Ej@KGHlVi}BVNJKA#NY7x37fmhvUQLl;SDC@@ zm2f^>`HjA4YG?T}d~8RSFM*Mp&T`~MQw!72Bxm|5I47=5>o1zx*?tlq-;wRdVdNOL zJ$klm`@9u+K*;5Y1AHeU+WxBPw*4{eNSb1AcZNRq-d$0iRZROiDoxgE^IndqopVBw z@xYYEV=)4&QLvaN76l}Yz$6CI3PzyDN@MDpA=m+C#b_AY!MU;$8_Xmeg%`0N5sluw zci09W-BCogf{_go*_=V7XAHzyx6zDgd?2+vo6SnhmB}*1`+-@LYnV$AUaK$L$VJ_-0?)hesJiE7%9( zMwz{)D<8w$7!Kk?I9*nHgI5SgbrAeeRBZyLpuCR<;3z2Xz{rN6yvZQaGZCvbHV;H= zUSoZOU!Yf{!TNdxfq86K)~7{|!tIy)b?`78xt|UrH=X-6lx+kn;D5j5{Lh8c!rJ3!8c7cOh$L9Q{C>c4_v`k2?~>JnyMdU!h%yen8jY~?ORCF zUhKsnV(mqGorZ0iiq2k>m&GtSMvE!J>9X=0%p)9ynow?Lh1^yr$oAPX_6>NSALnUu1u&sT*)svBGcYcDps@kVy>+0%$RV= zz{rZPSD__ZiY^kIQn?mY8A}0U-d+@vRFzQ-B34yW+@?wFsMFU}<*P6|hN^4<=gY1t z>k^K_jW8?v3`|kk6pz4BR5pf@4N;lNAkwp^t2Z97C}pqlKA)n(n!Uk$JDeL=-ud%- z`#enczl+D=$o?TPat!+({Xn)9E+!rj^7gmQcOv5Ucf)jVf5$XhO4c}(;3Ap|R=C!x z^WNwu)QAVB$d#p)T;Q8`*-Fl15UtQkh!xgK*wi&SxeI2+kdr&$Tv>??t|c6W7qQVV z8oenZx8b8ZipZ@nvLPZjGl=wBh}h^C&6vjbyA%<26&ifM1?R<;@90Lq=p0PeU&mu` zWc@W5x#_G&Hu^=grZKs3+m(5JqhE9$Ci|=7aX7L+8Ags_-=phGo z2ZS^Z=lGVfFb-4G{iyx$+DB5^>mbo@*3N@V)>?1==NQ$4QreQmE*$DxHqtH}#2{M1 zE{v#ip$W*bFdIheI2z8AmC&F-I0`5AbByYQiIL@tf=A*bJ4(h<7}=1FDuYPRCe+U{ z64}yt{uM=&&>~y`=fss~->apFug=)U1T>l!@>&bo9;QZ2^^PB{lnI8d zmB|F#!r8L28_Xaag_)3V{?{g8-ehcz2jHkCTf)eOnr!9^A=QM}QX(}Omm~^$;I&S= zHyNY5v(=8SO#7mx+44g5E##wUCYa~3R-5>G-Q}x}|jdg+a7{bd0FaT9b{; zWhfbjYhe1&c^2Op8`*Pf;ekU)h#H#A-!~+i8X|7Br=p5A$Fs zMLV1%E0w`Mgrg7=j$m&q^5PN0%H_=O;=?-1#33-UArl8Oi1cnoNAnFQHipljP_V{q zFdV`OabdPOlB)f?2{dxxnha_N48p0U&uHWu3c;4g|mHc z8)=oP_T`Rfd`fGw*oE)=mXov#CoqUuyO3TlsZpdSK$DkW!4w${&frOhTV zmPr@_bJmc|N}1Y!f;K!FN2M7GBO6MyiZ6sz8eUw9l;&mM5*JQp>vUfN8qJ(cwY#Tw z+PCUp_Mv0RXfmE&cbAV zLp%yc=GTXjW0?17^3o^pcHsdbS4=PUEn#t=QA+ndV|cz&>Bttc>MceAE?BF^ct1#O z1f?`1i$%!$mW{Ls3m8PKMM$rAjHu6AQ;#!XGK`)P!fCSd85~783MKVd2J1y6MwWYQ zPQgcZRE(2gWJ58I_l1y(!K){cVss>lg6=GCN_P!(HTDTIb__=C=qvg;O!Xz2O@)n#j zyRbY*I0`)>w1xBUSWp zrBD!0SmKptv#SP1X};~LG_|j3QJlEiY(jx!j$V|ORGW<$L<^|Rw74v2inAX~mZ3Ov z;k4NmXGg+O6=yoT5sI6MsXBA;NE}sXHjHej&Yr#yQgwKBB~qOYlSDzPvr)RLGj>6# zx17(FGwr!zhkok#nKYNEr8!{pOlDqRa1j4Fg#R4If9A0tYvF~vdkT$+tsa_EyLB@Y zwv}@Wa%GA>*T>%gK0{-m|EPH>h2uL)-96ckYI{$%oLyMX_H+rvkRis3PKryaB>HL8gVl*D_}GpiDLzffRSS= zK-z@<(`HSu5Bu$%$;>>i@94f6!ROO6nXX%dFX(3;{o}zge-a!X_Xizuf3RR( z`yj!}bb3lSv^Hg}t1N-pF}g|x&XJYiU_Rj}e1vW64u%mWMwQI;;G;TfNH>gZXh^^y z(qncM@4Oa%e?gI8SD(S}g>XJx`Q;DeW$b3BI3FL|k>zt? z=lpEPqFj-7m{+Rmv)Qp%qY7m$I`0=)M1=JKS$s+xve<%A6f&#*BbgrmO9gpmz>*}xY<>I<)_ zMEWu`Nfflgd2+fBZ@1>39Vbz5icz}+=cN&ar2;a%R z5K{PfEhZAat|U>A@ZB?n-dl>h$&c;kGdync*}eR*LT*{5R93(F_yo;iAe8Lj{*{b| zrlWWJ7cu_#X4Rurs@tMVkNUD8b?G4n5lcmi>n&|!)|%ja2(x4e&iinh?1J+W;V6`Z zqnO~-=@J7=2lWm@2T$4SFpaEU!Zl*j zk1j8b0&fl;5OM|PeqW&yD=?d;y8_cjuiNH3y6C}_@>J#wxLmEZ7WQuyu%|LITBR>p ztU~BpP|_-#!XR3~DvWH*TQdvS!#o*n^GR#Hq6jl#^om7rmaJq3hZ2s$NH~(Y0zsA-SFRv*;o~|=MGi(bq+&jUNY4_C z;T_e=@p%+WLO*a0oDo-!$43?r;+Q@QAKj7ZGhyVWGd)4}Q7hZ`CTII@I4iDf^Me%h z8JITUPCNof#&3s_V;J}7;nD{1w%`FFZNM(R6A?DxU+KP1KiT?xRar?Gb{(oy*0Kv} z?`B73Q@L@o<^(p4Zrt27`t;N06QX~4R`f619-qdXX)YVp5SkZetVPL58?h3Dh_w;v z^%+5v_BbY`pUHN*!hH%ELl@LrJ9Mw|rTM^4+P*a1}$AfUxpmkwnLxa}x zg^(J=YbucjeV$N*E=c!QWI{(FPsau>$#u}#$C>tGsjPlyD^E$qjFPqN!aZ#Qok`PJ#1fB{*0{I0`o*H#P== zA_Cb9PQoK_6qVy)WJ6SrWf18#lhyf6i=H)&_gg3`?5Z?){|%fQSKil%+`j1ZFk8y6 z@i-jWzZOPrI{RzN+W5;Ha!eI?xB_V` zcuVnskT*Bq^PPyexw$Z1V=;`rZA70D?^JGQzI;8ZTh@{bzh`q3(L0n)>0r7lEokQH zxU&B5X5`p2j8*2YIfNmd=7IJ zI_k(LFtVW|AMq+k?F@s-;)yA{5Jk0XjBlQt@mYh$IA6)OOv2>-D|ir&yw8AuI5fgmx|hXPoapzjHpjr z)0jWNd>M}7_i&!9lm}N4j>3sJzq}r~DJs9kM|KpIn_y%^RBm7p=`A{l??BhHrSbeG zMT0qdgXe$2IdSDV`W@(c{3hG~z{huF`|mJv)7g%E2fCgyjqzzWBxZayf*6Q<1@p?* zzXM&LgUR|NJO)SB$HT}mtb25QX&iWq@PLrUq0hH`g>m>{x(g3OJ9@jjv&)nPheP0E zwQ5V)K4`W<1g$hEi)lE}x2U9P*pET9f@v7eC#?y~|G-=st>g$eOIEsrF2Ye55&N|T zSz=uIlwt`!uA`V#U}Qr~dKg4{hC%GtwsL$q#gfo2{1VQHE636O+Hp+(0w3Lx=?h`x zrZXMcuWe=f&&k<-0?vvn+xmX(IL05vBXDH=As9J^agQ!9jRJ2A9uU$f%=Mj!FbYG4 zr+O^R)Y=E#``@!Y`9@T$tfdz&?%zAGbGdwuyrM6L+cx|vz02YzCeYL{11>60x{0w2 zBGyf$*KSs~=Rh+TUxUdMGnP*{z6vMJS`Wecgrg7?@|||}d6;)DTi|gx3eu)9vLQ$t z`$9-T;+2(1kVYkmg3hVhI^8{1ZS!;GVu=n$&nq`COKBFES+W+~fFD00qgBe-qBB)r z9;D7JW)QJDlj0`sk&St4+Hx+;lc6nV!-=v|9h^is3Mu0FiALzAob=&CJIcv&7}=1M z(-}m1%|skO(MXrZ^gR>~c10RY-vuYdmFej56O9R&eBXfw;K=uFFmluRjvPPHNSVg@ zzms$RE}R%w&h_Ib8j~=2e+v)7k@weO&$11if7pJH>g5cOKlJrJVnq-m$F!g&1fPCZ&5a35UpSxhVw~l%5osgmC;T1gR^9% zJJ^MA6h_2?ryxs=D;GTH;^R7s$s8Ej5R=&qB0bX}7CfySA5XC)bPUJB8FA$}y5Jed z^wId}j!Yj3BR8Gt$bzSp?Q4^>{VO;tu59ZIo^gy{fk)uT_@yv%4C5YMUK$177Ca!N zQP{|LBEl%NrMuucD$5W2&(Y)Xf?^lmriozkWUaPv7uy=A!-i}YSUZnP=|2`n@P=>F zRh(xNQR;WFPklFs202GI)6VS+w= zt)V;&vtu-r2jF~J2@ZZsI0`r7EE#8y;>N+e^7XT1 z^tqT-@FhGJ$0}GGMvkch4^tq01#c-H5Ykut+_#*CuXs1zgEAwphWF&M>bEu)!o_RV zp5(8Fv&fXLWpNapz7-@LMV3Ldf}@bHhS%nui0+0c<=7({wrLVq>f!uU-TQbHqf1DqIF#;vc0+j+kZ55kf6t6}7( z^KN@J+`|3elXL$!I61D|$G#eF=l^*;5J&!>fsteQ_h|moKkx?P0U`av;l2|Q{$bN} z-|$+cqqIbMe6ijws8m^NE&Q(S@x_3=6<&*2=~)&tu@21wGu@(`q?wq`AX>pptV%Q1 zEW{o#OJaWVfySw1t5WBT5P1 z7yZQxl-MhLwMd z5+|-H=^DO(GiK#Jc#CjU*T8Q>Z7hl)q>K0z55iG(K8BGE)%nmDLaGk0sYI&t=Oj_k z>ss^Ey$u=GQ_5E=C3WNV&TzR}Yb`vm-&+yvTfy~MmHM^ZgnWbIPk0mZbp{cuE-AjM z)h1@GNlGWoks&ErI89cXgSmvGP$CY(uG3}6$l>_Fjxur>jBLor!3-k3_8|_!wzIsP zg26hz!Sd;FN?civ9)ums^=bItKd@zN&n=HLM#Z%)4EI}venQcd@*?kT07YQ9vg-JdMXRWt3mLasYkRG)f& zMpMGH%363~u3y*COGj$vt4H*Ee-TyH5l2DpGgcNJ$tbx zUof;~PUC+LMTT9!2LH3+{J8SZx7@_f#atoV6OYBQ3U-5$n_dO$$mK+bN;ookB`k$= zqY5Tct^D(QTipS$v4U1vqm}>Cw6Vj6KR^tI7Ey=%q8=kNvPp4~1zEb~kaHhSt zSn2KQDV3|a&P;n}Zb`l)N2g+Ci?x5M9?_GlC=Xh1fvekEn&II#pW^VISUv7&*!8Gu zLDyqe8lc6X{KmKNq(S*LgNQXK>2;}@j!Ds4*0V5`M$38{&Z4y%f_n)^VJzI336F%i~SMKhuec(@9 zcU|Lmr~|XsV%T9*CUpx4iDkaHu-`kV3jcevc;rgpO0iqyX?2#4|lR%m1Zd zuq)1B`9E+#{X)q40o^t>GfyiHO$Fm2PWb-y6xR zyFj-6JzA&MA{)fx_iD%7Q_zY|Sz5=|G?9dNB3m+uR%jjUdn5Ux);Yclb7g4CA#j$g zbO(D8j>1Ufdm}`a7*{rq1MzVk#biGi*$|Vt3?jY85&7PT!SN{+OTxZ!5}XlNj-$u# ziObSp`gnYFN2ZU3k((w>4QIubZTqXEta!OaF9D=z^wnxSt4)|x6+|3p5Z-TTIB8K+YF)=Ji}OJ?wZi7ejCb~xRT`F^vMK)87wRD z!4Sexh!HQvE8&|CVgf$Aqsokhkqwm@#URpi5aOkHC1o1pyHiNmb!sra3!E5N#-lIA zE0ZvJ-w_YOk@xLkl~-_pGy8CJ{|yK~x?LnhviIvi_(IlL%ascqw^RP*%e zZvUGpEMC8AOqki`=`=$mlq3GQPM zv7R8kmNBw1ZOs(C2h$-g54kM)Hk>Cbqrvlpqi`ZVMA``5yw7+8AKFni{s|)+vhk`f zgp>_lKZ#`Hk4d7S`;1r9U7DECQONgX+PkyWa(A_>!V}TC9lD{xsDfP(&c_HTJ-Q8K`UDY>f3YdObOK%YOV2YrXj%K-M`Ij#j@}A`% z45Ag>#&AAqO=-s6fpTT^n$ZM-c`_^A!Kaieg%Pm_Q;;RbmCj-WKCYvx416<4

E=Q8Z3MXawzZ>cua8i%uGeUoePRBavRG+0ZE^n$36+rqO6Y_rW=|Rzh$y;ixua zBlXOS6*4Wtk}l+rcvy}~^?xw3p;UkHg^)_c>n@Q}U6>>aS~R^otWqa!WIuCW4uDQB+ciR%H;eN|fRP>To`3O>1VsTp3#P6*x;)x`Szi zqc9?FX#`n@n9RV(brh2?!^no1e2GD%*J#8ojg{lWD3*k`GzY^OapgFAOB2WR0r=>S zOn(PPZaUMETN*3dCnsn7L^vz1Z0ol)ag6^j9)Tm{{|`ovVcet3OQXQsf(L}WrCHf` zBI1^2gLIF^nwqUt*wI+RG1BpU`C?BY+o67~{T`YXrd8I`3-|GS$jYOv-*r_QF)EG8 zVioT4WkXtpI~YVOSOvkAkp;~={0rtvTuO2S$3Nh-S?Lb`OgIWfA%D{(j!qGXyfgVb z9*Cph{0&An1m}4Mk)D}Yo1elPlRT{oR{KBniZ!ZW5GjfmU9_I zdd6cs@6?TSX-q#s;b1oh2GftiNpWR*Qp9RBCSdaY5FUUd-}l4FP3L>EG#8DOX`E;7 zO3e9ZaAI6J=SLY>CSmgaUpxp$-v0w5$MEja{iT86jlu&$8i*r(Cn5~Qq;wzBjxNw{ z@!AJcvxWST>MF*LaM4;TE`XW>u!_`!z!#n5SXp9@)?XE z9EB2bFit&kQ!-Y^M|PBq$uP1Z854XVq-5~wNhBHX`PQ(IjINX=ql?a^DJ?8#yA{cp zN4Xpb$#6KN({lw=#;ugFMO6;w5qnU1btHYQ;5 zeJLJ*Bi|Rp$W7-vvVz%2na25FlXLzTI5DoA>noUzNtnF<2@k@N_s3x57~Va)zcdiM zQFuVedyf5mCn5|)U%H#Or{rt9u$CM_Z<+LD%N077Gg~fak5Jsi)IXw%Wi7q1*zZy% zkAa8K{{vALF#pT5^0ZHD$q`}_Vh&0Zvp9<>G%w7Ei<*Fhyu17bHQj+FP3emym zttrR_Fdv43oChb$N@;K^;V7ikkL#+3ZtBK4_|T5JaTbhh=*F20BE5bgZc^fyet^Qk zt~`V3d*P(GG9A51X-vT6`))h{N51cbk(- zJv<0U-rt6iV|e#y?$RIdM&SV=Z&J#>6A?EllhgGFtD0x#Y;zAPP}WKd_wV`T1f;skf+p>;8S31g1;YLJPC~Is@O&f;7Tbx{}2vyyMGf}%-i96p6};>vT>IMm}eTgb=w z_>OFU2qQP0?TB%xXH2`YH@+`1<1-0jAZ`iFD_b`X^*NZVZ-B?($ohIPat!MpU0)gp z-Xc68q;dGAZ}|%2@LswPBF1%;iq&ksm@8-6t4H)`9~WB$m#tN0!aZy&4-RMVHi8qe zDILk;61se=NV9vsY+T=AwIUS}(TrhHx;WRi~R(69U2}fZjB`B_C6%5+UR}O?h^7#AJJ)TQ$;|5u ze$9Vwr2>H&MnB5b45DU zkALLlevOp=XT+;3q-(mnC)-hNr;VOjddH=wOCa9E5Mxy*#jR4qc`7uuc@O4L%y<}8 zL#|A_;CSZVhBIfah2UAjQOFX<>Ixpk#r!<|Ek5oW__!-nnpYag|Adi6X4(q$qEkC% zr(5LaRfd#agAu3eTKQi0e)O6ZDgUC8n6(HZ>R0=}NL;Coo~|25_!{`=j)bocBa76m zM*kwO#(<~4`k6=ncyP?01c%4{K}XylELhh*NU$<} z052TQC$0I1>tMDFg}EBel9lk_e8N!}5!OMFCB~KPT#1kCs4JJj$cC<5!XVOPS9k_1 z$InwN*cEAT{0y8CSB|5eA&%*%@X;NaeiBA*I@1x)U}byc1BuxlP7nj(5X~!E_Y852 zuZlCS6GE}Q+^QIU0RaMF3VSx2cfg!Vzuf@ z*kN18RF1BTt}0+l5RJf<=47!8d-|4^ve4TN=;jQZxxo!`X07TzQT@3a!U) zvfYP|@5uIY7`f?eM;?XNGo~?qPjbfZg7f0axc(@#J_nQaJMb7BS-%ZNj$z%S?@Q~z zTZ9LMv<^G_PDEIT+tXcT7@4gWa@k5X)4oNg;vR-Rh-#Fz+``--x(5+^Ep(+OD6E8I+3s8!yQweh;bS}M z%Q`T!p)b=JM0y@#0^f%%^QCcpAjOl=MeGM>#g%J*Gpf(PWPC0jfg|H{VC1GVK4sVX zzLZ(9tRJ78^<&}8xUxQ#UE#J_n9LuIN8!l)kuY)$^BzV(dI{bxJRqc(_$;B9xGh~T zF`mA`RO-mnPJ|_N09B>pR@jC|53cg}O zgg`cZt>e4`GibPrm*9L^iy(N6a1?Gr-f{F9n7Z=<9)Y9oJPRWmy7M%HNY7)eE;_VU z_8RXK9!l&q#u5bPzg>Cf$F1AvVX{98kHeAuHW<0-?5`Q=)GMxl9g|nU_Hce&D`0Ki zb!c-jt6*C^7RM^s8b*$(0uSRLy$5e89uU%d+~O-{VjUxs?g`pcXy0u|mX6%svl>3Y<8iEp_h96hYVdFt(wy*C;{hSfNw4ojggIF&-G!01u3UCWzLM`$zb&}k z!>Ec`3oq;(L_Z=USDKu~glt2z!S3)xaY+-h6@zF66Ed{spgEF z+n9jaN>0E7aOC?q7`f?uN6yY|q)fZIZ%WSj4RB&yIoHq5ZA`-C{W?4dN8Yc7kz;uG z=>O6}@J8VQAuYt_z7r7^;*Ucznb=MhD`GP|UOixM7>uTuC#(4^ov**3R8V(nd`L6F zgvwfR;le?*5h8jXywbERPU3xEYNV5Rhe5>hlj5r(W1>^nD4Jy$3~vU8x4& zyTW;Ku1B{}mwaBf_g*FRVsorlSOHy(#0 z`vHs`!@h?xkluo~4i5`(Lxyu7)2c8uiz0lGX4^b9K*OrpO;pF zw*?OfX%%w56A@Nne!8m(3D8 zEcRhTniFQYMX5>qus(xm1^dAGi_Bj05p!Vv#9XD1m<^}PS^~kggriU+j^Nel69Gs= zu_qpYqv-4gBO9W#GlNLaP^`vxDr!m7SU-}2O6V+>!l`j(eHzrHseJG(F!(W zWMkf1t7&^2FO9hQyIO=(#LAKFn`GBC0sEuV4rQ#%%Q zJnzYkbZJa)ot)_{;iR}S9o=Esn1IRmW_SROd~X6HH=Xau4$DT$G|oGcbN)RzF|M5J zJ1iTMFnOPc2jR&3p)hg`?;ibMS_s}KJRqcnc+R(72@COqbRTgHF*a8I9IjPsp@r>( zxKzP{R(h1hIQ-1Fq@;29DT8PQ<1n-~WldG?hM6)v!<}%BtYin*5stz~*v4*87*S$W zxe{?ZKB}XP{0>GoWaJhGk={zgC~g-l{Juw#U_Rd9_iZ>IuKe<2&1CFmvv>m^+mYpe z!pKc$d7NBxurR&$6N#B#lOP7d{hL=ZKN?ky-(-6#KE5N{Q()v6wmtf~vn%Dk$On!E^^=O+;x(7K3n@Z(&J;a4>^t1%uEg*wQ@0 zaWG#-4><--la=zIn{X6L!cp8K2)e|;(k2{*59}x@%V1i`-VG@IA1-~$i%~|UsJHT9t8Oo;++rde)(jCks9EA|^QU#|< z3@g3DHu$iPTCx?4Y-q{m3?ez%jjNEjd zBQI6hxIQ~M*L`qOT)Ea?s)*rxIUax`->1XKF?@S8c_qc^YRIr!*~OwWdq zW0>~n@dRi1)|K=GA%kcIPcT-QyJin=gxNA$$n|ittb_*_5spGk z$QPiM@J)5O1|Qy0U9N(W4RyJkL8RvtCJUz^E>BkN8sjffNSJLm7=Hmyj4R`OOPgg9 zChyPUK{)dMG>qJI-ls-7@Cvve`{%^mk0OYHFpTEazNYs0p`Yu%4G+YT|DiB)4F4XM zK)MRvKs+F%t2o8CkcF#wGTlQXhtgNNvqkl^$bI07wMxyPp4uS7R(hAkRP60rR?<}L z#UNV2R1D{n)_Tigm@T8X6yYpc2@mEGj>3pIwLy?2#+3^Wi|}zB<)jNnHsmD7AkwoD z;?xE!#}`m63H`%)a7J7?j-J{O$MiY)=#EUE1tT||>By-KR<<8V&i1`kN68JOx8LZRI4Du zRvMGVDh#8kU?y9Xm9z>&7(`201wLubDr^F?C8j8!OKb#Z$x3)Im2ebBgjEn^iE*V> z*bpDrQBKx}kqtRnmqDa%6|5W|O0gug3J1X%apgE_72=rQA0OS3>3w13rZXL}3Rbqi zpPcOz;He$vtaJxY5{|-)_zFcddUN6WWqfo;WqA=sHk9Q# z29ch95MQB)W=!LI%2VjIY4AOfATT@a%6IfD6wx`DtdGNEaAbWnjNEkABVVD2W=&&$ z*W}Fa1n0(;dHpLC(RrBc?|{eQ$o_UPat!+(RzSK5-a0%Wq?`D?uXqVJ@lnceOmvw? zO#d%ju-0lD)D;L3w$ipNcH;l}mX)*<|HB|!!A=b4lh)+r5|}NcvHTp)l9ljaIpHXb zh!qGymKaywocs(Q*HKP>3L_hG@)HJ;o`nz(E36zpPO)Id-r)EVI3uncM^_-?n0^o+ z-I3}0VC1GV9a({}vi(JJwm*fl;>xzZ0ujgf$9M#ejDH9t$1v{E=cQHPZNURVT7@Hg zCnBuE)9LPO7~Rp8>sXX&uXJP!*|M@(@*7X1`eZG)LH!sei@qMb(xoiE;p;RZ>{d(E znDh-_V-T^vA;rcLow;TnvM_N*V>uj7m6iKo4&f-Yh*gMa^yVGOVfg5dGIKDDY{<+3 zz7SGocoij*nXe{^qIZ6)H@Opwo<|tWjWuM4XG^W zGKdyXmf?KPnx_08OqQW3e}I!@Z1xh*q#1!}+8&k@*|UmeFdShqGiQJa~w36h_3YjUY>mD{pO{!N+x! zlc!*0Lr$J#5b0S9@vOzl@t9{4+li3`F%VYLhKo$1K47AxCd zPtNw&;Hsj2u%B9u`Bo6y9(=Af!uK>^l+RQbwlxsCHzw zTF7N9)lB>5>TwraKZ{D4wf4f?AQ}@9do6UO*;(AkmNXsgeooYvbR(NFh*oeTqvXUj z(K!TWO-xf-kOSdNS&0vJCme;9kbmz<#%}7%e)!mq`Z5BlFwB$W3Q{nlu^e6{B78rR3}v;Ow}v&-diS&BUyLJRXT-1uTG(V=BPI zDM+)y+lU8*G#mf)ZDzu3JeKZGjM0TH;?B^x8m?Sx*$wm=8e0HoXk6)ARnl2p#voe3 zS&S(}rmm^XV=z}nk9io*m6h(`_k^SR3jU}*8ojA358$IaD$BhvvY{+@Gl=wDMg0to zc)mZUh!T2=PvE?`@~xbq5t)O@`bT&Sj;wzGBR8G(=ouQ3tZ7&JSDsJI{0xE^h&u@L zN;l5Xh|I%e|I2tBj_iL4Mvh_M!wN_@!CQw1gme>^_?EG76W!^$iJ=P$^kRql1SEh9 z)~Yjuy024&t+Xx6Ld8PgvXXY9lR>nCofyt1t;x#|V73e+aVnf8E8)QrgrhJb_H_!f z#JF-_=lAh(9p&T%7}=1M;}}GG7DDXnv~v7giY1|WxCzdPE634&opDUxfRFCT^mQ$I}{kK}Cs9nOj?+xouFIL7~mN8rf#^DuG@;~srpS_R$~JRqc1$ofu1ScMbP z-7zttQd&TdIjUXdT&0Un{>~Q{D$hAKcmWkDYt4m)L43|pn}Rw6rC(Vb#CkL<%zBGz zlMZ4X2GI%*VxlpB%}jg~=1|O5Zll-(PMEa}g0B*eLQXh^J!CbeVBV(eiihB+Jv+h3 zhW6~hAky;{Q~9F;BW)V_7NY_u$CY{hU86uK|t-%-cGp{c=Jnj!V;{IU4x-n2I({~%f`mW7JzBI14NY3@9gT}S8YqK!}lktu5 z2pk!o2_rY1@#wD2M$RKwoWmem!BLD==B`Q39WZx>skjYJmX-eCSA?SwBfh7ugl}rit@!YcT5~guY-r7m z3?jYt3-LX5C1o1pZ&65?`8ODU9ZrlZ`9k@r_%DBYcPtXa(AWQGdtPen#H1JyEXfLuk;|_ijsa}e+JPC zeqxlIxF#=0!#o+S)u87)Fj^-lO$P_rTkQ2ZVGF`}$5qxQBAO?qRGrog~vPzLk4oUu`8f7*_jE z?v$5MwXzo7;J#MMPXeoluXHcV8pTAK5@y6jok>qIjzP47rx;g1TE_aN=51m2#8l-* zi>={oSqmWeGT|u9)L$!A$rIzt-J4tD<2&ljW-zj$H=8hs^t?s=wNfQ#TBlh+F(vdD z9dKq`IagjQRc2v!n(yIJI5IyEMs7Ou(br0qylL$JC^`E-gtOzyzVTYAG83}`et<{f zSOKTP$T1b*VHBj-;BCYMLVAtSz7r8%qb*&p(bk=%Z518*XW1X8SzwxFExE9>-*t-U zS3~+;u898SSu%2^jadxFBfgwSgYh7PXa$2YvN3N>X+D5C6PJ+m7Vp7{veF*>jc^oF z!ZBdQHvlZj{p2tSIG^W4wGJ16yOs`E4nCEt7dJrh*)k?{61OZNX;!fwdQgi%$m_$u7)#ZB|bQxa1>VRn=>V8 zVr;oQaV0*sqrO}QBOCg134=(_N7OfGHu9x${XE5k*?fcRXW*>3avgp2Q9oFbE>nZ? zr|<|I8GjN+ZaU+UM;|h08tWtfo|yIF1Thfy(Y(U-M;~$)CiAP}Q8+TcGK?I zn9SdSN8!l)Z7^~S^BzV(dI{bxJRqc(*x7d?!b>bk_tC~GJy~@6vU?x}lF%pY2dBf8UH+J=5xU9oTzqIp zj_1J0P3L&5T=6$~K0Z0m$HFOb<#__Tik0w9u8+otcjWp=7&(S(kA5yK0dE2x5YiHS zme3NMk?y;n@*Ab}T~hvmQvR`0EN)9b+UjZ!6jS}p9D zycV{HljK?pao;FaCS=ybws=5}^{_RJ98(V-7DKue-f%o1q)WNQSK!3L#UImkDMLFe z)ojNi#giNZSFW|}2K8`m5w_CfEGFbA-?EY>WEq2K1rsuyPg>KNi(s}4*Kq-yB`e{< z4+uwLL>$g7$P(kqMU3rNVMqD|L9?l)d z^u74#j!fSTBR8Gt$l=^pwm(VE_D675T-oMNx8!O@9OED05jZmb9*i8rxJRFtR)Mz# z4+v=$dVMD%tU@l`{Srf}*+n_UC~Wr+RFy_&%HuSAO{!A~JUKzVZZoY)6)lgOQug@;KRCEll5(oar0j zoVYU0KNhUUZ?b(IKE5N{SHs9LYu6KpA;>vY&^Q4@C z$@orq1dfdF03$b@@yO;$nKO;`N^;hF;LNzPu5X@{voM+O#-ng#K7f&9nD=P?(mn8Y z;Q=At!<)WMOSp%((%n2cetx->?d-@_=+j@7u53?EeI4U^xN@y!7cLsaRffh4>Jv~p zm}SM`8sA!zzTzqd(F(p|f4e!b+DjJBl9ljaF5xJQL_SYVWQlR*^7i5QxQ=pi7>sPl z$-xXFy`~cRJhj2`a*8G4P3!4!MqD|LJ^>e(rNQ)R_~?#Ip9~{6o$1IEaGo#iioPv5 z+qc45ab;V70v^Zs&3FWkjNb?&$1v{E=cQHPZNURVT7|FqPDEIRZ>4J$Mt777z1_vy z=OOhybDz;nFnzL?Texr#Z&G>mB6y`sS$xBPeW{VY;Xe$b6@0^(=+rf>S?6CUbK+u> zOW)H80`pi_@`F)?qwo^)&JvB@^bphV(H(VWH5l2@nMn*HJr6O7KW2_*OyheFMTA|c z2H&&cytwkc8oMDi=U}qFCmw?%>$}0oO=o>|xg41wnl!-{Lt{3;yU*JPNg%7zxy?CsF{3MJllG0YlSE}ulm~N4l z#~D(3R$=9yyt3#w`gPS9xK?uTdLtPl2qJ0(`-gC4b{J!pA{J^ZsU3!o=}7Gm7+D0j z3jK?`?$YLTm14H2kh&d(5_Nn1Ga}|7N!a>6cgck*ao|& z;{!Xgdm4-!!>)AHu0j}&oZnk0=wO(oKoGm=C>`m!wD_y5P2daC(u`g&uTJ{H~6nXRhE<-atWfzXz{t=dw~cII>R zaKw5aRR6=s z&%zd= z3*J&ZAmsY$yS|OB76o~W^-|vbuv@m8U8j0PkLoFY1J|v!=$v;ykg3VGvnZ72WHAoE z_AL}?9Ij;$D=-d+AKO^_6pNl>33Sq0nM^pWTI#5lbF>d*IQ?U7fwcc6{cu#i*iq>1 z%q_?l=q<~6eKW#6ZFZ}X2byXrClN zg;Ir<8`_s-3;E7EcXJZ}QfX#;3)S}8=Ac4uSsik(0e}=`nq<25=ve0Jv3+X*V#^n+ zb+|bL0M{GA+bIbizmRrM3ei44Py5=!B%v&z2kLa~?4KZ%`c}90N^eh3sa(y8immjW zH72uCruLukz=6Q01rmLPM03ycxhJVyLdccd>-8%xg(O#1zNlRDiJ&U&^Gl^d{Q^iL z+xd#F9M@ATFLDM=44=PI>E#T7D%EYSnO#)YZ1y(FzA3M;PnBsq-2 zDHlbOZXX4Wl=Hp`xQ;?bOEHOf);Mmj7g600Cg~J>1--7u8tF+QRe=TVNs3biRESSf zO)6}J`u!46uYyL&Pja0{+gvUjMvKtpJim9^CwP`_;ZEw?CwNZ$J}-V>5Wg>q-@l39 zm&EVO;`i_3_Z9K`s`&kf_hre%}zkZ;Icy#P8eU_Z{*3uK0aV{Jt-K z|1Ew$5WgRa-~Wi;kHqiC;`hJe_Y?8^srda&{C+NezYxEfw|IV562B{p-&Mr#5b?XJ z_#MiAbK&sr?6S^WPqnLW_80V@aLB?!X@1{6;joS@J%cC}>3@zWXO~JYdV?jjQD~oF zDf{nXbVD3GL^04p#=(0xZlcu)Ep4X9Q?8E190Sf0gT*qzK7F#3poId=AR~~`6qBLTxlLDXlCwIBv9`C`7u7OBfCF>k(=h?8xvm7`f>T zkM59_x!+g@D@qKi1zK?_x5^_ZPv)P3L}W zJ!xzmQ{((E$vOWMoDx^g`6u6%@J+5C!-sd|`e7Kk>0D2)Co8hVtT8_1oy4YXC4v|n z)5i7PG6|FS&tY~#N8Ueyk(b41=UhIb(MUf$Iq8SNd2tnY{*IkF2b1-K@faLgKLAE&Wf@!pKeMb`;~5?efyDSAzM6rDW{p6?{EDwj;~ez{pK! zc^KP+rxE;0a)MuiQ{hT5zk>PJL6JWB6yybb*#A%6nZQR<2sJ z#xVQA4zP0K{h(d!H`a*f-HB&mS8$2TI4`$J8*#oHua?QS6IM=~?HtQSaE6wocpxUetnJj{qDr?g_zkpZIWc?hhoH*;5^!Y|;|G0*G@qeAu^@SucGU>Y9 zy`;CmB)$N*fJuBFteiOU>Ey5Imn4U|^FA2%33qtU5{Y@(ev|eAc>PS;`@+hJ)1F1% z3V%1I4e(RlfvrK+v;VCmvCvTRamq6ChNEH>Y1$HfR&SHUH@Rze}7ok!gz-}>&;1GWYTiUI%K}d zdI?@Vll4Zha^kG#hny9BVXjd>-ktifuyeR0d>xUTM>NFb|6$w^CjTR0<;3|03 z8BF%u!pe!WU#r<^k&E}NJN$0gH(dDgjAeT}O!}R;9ZdQkgOwAfKgVCaYiB=c8UAJN z=syoThKpYAm#{R#<2%9l@sp=>c*D(*B-Wf|0Q?+FTjrB@|WX3%wIIZb zKj)l(0ZEKZ&M#N`kxeoCz&zX(W*?XhD<|Fu=7${@mG>X)-UAMRox>gfa@7~n5R?DD zxFJmbd%?$$4gxLcMuyW!(U`o^BpIX*` zojdevVTW*`%jfz{#+#h4#w%xX{vxcLIOkdW%4-Mqk+%-)D?a%=ujb!7EN`lP$es4D zVYhH;%N)DLa|XYJBt|BKm+x!L1{lOQ!cAZjUmsRZocJ{5u!9N~-p9K0 z{xIwk?%U8rB+DGCBFlm1XR!*GubmguO(+bTT-sidFJ{$H47q|QZ!m!`qeFkm; zllN(`as=-f*VP3#-pRYrVn_rx-rX$Dd(Qy3p{a(b8}F`d?QPwY^O?S7){AuSgFCFX zx7jZ@>8an9YrBuF@xu<^IPM*~_r&c%!Bu#735h|j!fV+n{!^M-uC4f!w7G{#Cwz#%T=6v-Z?5?Mj#ti%A%BCFjTrK0AMr6Mm30$VnrHM36JAjvKgC&QNXbExFTu@}**aF};pjvAEb@ zt~EcSIuq`>)^1nb(RKwB-SgT}KOQEN@9_U;r!>a@7r-#X^y8a<$%@ z7E83dSW4%M#r|5=dc9jL&1`qt%a^@c)q2NQEXhh~RoYwGNjF6er|ODcx*b_I-^;br ztq0TvmgcUbuIJzN^)*#qugV)#d7~=7E=n)A9sQxWy(+go{oB&q4&uLe6mpj9sxGHL zYvpxS<7H3OvYypsh2uq4cZ!A}>o98=%6*1(LJ_4ZFSSu4NX;n0qwPEJdYRMRZLqR2 z-L;zTB)(a+A8{CgEv#%}m0RVdcaLPf$~)26%6GzX;Ev(R@{A8P*BeoKH@spd z-<@IQ#Q9DR@)r$p(H(If_6HZSJT^D5-5kYPyly7tZdf^a%0WJ`;aZJDbc5Ef_41 zApRJ)V+D^OelH|&C^47}e&KK(mgWO3#=Hl^QbQ?tYwHmscO=__WtYW58QO?-#K-|)@>t`?D-`||_z z7<@RCsC|W6(}UU!4KDvd?J`w%s7Pk9I6mb&T{Oe}G47$H6N;$S3E~NXh$Y4pe=1%pbBbR9D;raMtI1AkL`n_s&D0i0 zyf?w_uuiZ!6R&)T+c4c+Hr{|&&18HXteiOG$-xw+L4M2~@}sanxRB)|pul#M@*{ZN zOv(?z%865+k`Iy#4RiZj&SQBjNni;n7qi+`78q}G9)nlTa9 zxR1xvUTCjW$mDAmRNG2k_dqFIvjl577mIAwn2S5`TA5@whm{i_!Q?|D%gVTuJqh*% zcj!v8Vg+H4Jsz)>N%mM+IdQTR)cQypwimm@y$E&&7p{ECR$tf|d@sN&X7W7`Rvra> z<)U8WyV{-aov<@NzUpa&!S@clVkY0)VCBU5PV^s3_)ilwz|Xn^ej4@$7qHw0QMcU8 zs-DDaW)glJRvsOM{ii${;W=+Rr_M7;Vq{Y1fUtNzWsKozc+E`0lVRlu!ZF@N1TQn> zBkmXy!OPR_;w}Kx%hR1&`!b{L(99~Y6n>9!G~7k45v01M?TM@9Jw{%d5PINdd4+LA z+%6Kl!dNOKTK)=SXPYBrt8I_3dR}@U1R_4*7WpzKZn0gS4x>exxeV|evWU& zHcnP-(=|L+Z0lsjwjnF5?|)b{(>)%2$CJsYyR!LA#Uq;ziOr{>)kG;C?JnAh-b=5x zJi3#uu-xahTP&-(O2z)-0BvfI*IDxPjZ>yntHv8F`EsSNR^2m};r`z?z8j54w{IX{ z$)ateV@vZy|mn!$$MStu42VM zKD29~v(nU_rq@*~DUkZFt5&J9cRw(!Cv8VmdAAHEij3{ja$GZ{syd^IB_wax6#LQhdbxZNn$t_?SqYH z%H51;y#%k9Np~YyIdQsTJU6c?wDEkrJLh9zui)dkxdkTi591avi603oCr(_9=WX@z ze1SXX^I%_aIS2DIty+!od^TP$lkOR?a^iHwcy3;uYvcJ2ch0xLUg2^M=I7=Xn8d$@ zTfij#O;|Z`;&c6crt$1UJx9@~Kj}{Wao96l>htC2!j@K;YlX-+ zo_cBQr@iZ(kxwRxk;&BLmm~IenDi&$b};F;!ODr#pQ%5k)VS~F&V6UtE8HG z@LuMQ_w%qXxOin|u3l6abU%yN%cT2hSUGXJZT?FYjqSbeZ109W!DTDA9*WmU2H79s zwKB>609H<%?3AY0Wg6g@+yTD;JA?~ZZ3}OD*Jp5k4zHZa`59O_an5sX?=&^w3*U3j zwil4Z$Yk4crDbb{nR(5_tzeR$4J#*3ejL4l)<7TZ4*CGt5!{hIUM#8o*XG8E-WRWw z$#pMSIdQI&8ruUjx+~o2R$zB<>B>*@8m60!Pr<8ZGA_W%i8Ed_*bWX2`*rTvuZ2Ct z#lD^x)PuFg>un~Q|`_5d!a*po`QR@wfor*8Bm+`Y&$g7k2)$vWt_4tw28*Dh4qQJ-6+_? z`d1+lxrMcLhtU(7P~)}W()PY{YPcpz3`c7CUvgQ9OjTZ3qcy;cCn?+jW;}T}Zbt}4 z@>_8wf_NhPl2bf+%*6`Yf_Fn}x4W;I%XEe!$bN7)wMP)^e$B?oU)C5>ztp6|w<**= zEs@$o!4utO zc%{q;k%pCxjN^p35XAF<4nA2X6!f}RyJbCsY0T4xxx&2mtezP8tL1~9LG%IR@f7%ua*#48O;BTVj(;YKjIKME^HaE~#;2RVYAC}Kzi zIl@QdHbmtJueJ8M!h{3rEBsK3uA=XG7(PttlJyAdhW`eCP9x&eKz|pV@(}SUK2s>-nt|#bHr`B4|JQ2OBOMj8 zbjm@x%PV*KWxc7+kHKA>-h7et@I7U-9?`+{bg{pZ?aQ9(l^PDRoYEzjf!ymY3}CG?sPBHxF`tbek@zN*|$mHVsm0978S%7avSuqqEx<)NxPOqB2m z4Li`Ewep09$n`=O8RD2lW<*=uk7?*29dNyH5?(bkk2oGyHu8v8GoI2Em9@3PCDa;6 z$``{9vCiZ9_e)pf`%}?EHFiqoti1?6uZ#j^%Sm z0$clVVXq^e0Yo&!w2|Za;?hLZbECD-gzd5oO z$TmVQOlb|gLNF7}09ym@d(wT2Y- zA@_8ax^F`0`K@IW&a${&BzWtV77{Ig>t;QBTejNvu1x-_t zy_$FFoYa_<|4**{#W8dV^OB{x3#mu=?{q$;%8OK4RpqBud9f(rcQvQcpSAK`&6K82 zqfI~8kSUJO@xLTm!$z@ANdXHO9Z9 zmN+tg5O#(&_~%T<@&qVlxXJecykaKb`(Wk7`A(BTO@&^K@>}kdUx!`7r7TwsA@fbv zuj17+S-%V`C(e4ha+aDQHQ1Ysbso|ilEiSV8q6UrR}EqNP1@_>^)qQNf|V1e-R5U9 z8snqg86N?Af;*t)J2;VlDdz>N|D|}XOtOc-%88SmP?mY72KOv?xSxQX!G)_X9#sjl z!S~~M#Z0~{VdV(EF&68=dS9*wV@L$+{S)F&IBLCLZteFt3kM2iuaZi8D?90KE4qp) z<=^1ZNk@qE6}!SGh};c#Tx+khU$?|KK}1*@7%J_QW`-6ImPZ9Yirc$_M+H9+5|NJz zTK6f(I?;a6BF$4UFg2!vlLDTA9cN{p`wi)YAXV2D4;Z7{Vx|p$#cg2*pT}TjBltWT zS0V^LvWGbZpYOR?LC+;_X>ITsdze?rgdR1nKMu`qt^KXKx$XIuWsiTKZ$PMHTB66g zWE7S!tL_m*k9CAZWb{~)8=39>*5_k>n{AI7{r|tCyV#fM%d4*-cd>bK&_8ebqSVdu_%?QPHFO`7MVXnrZ_&AIa;*F{n^{rq!Std>e*Y9@n$GK0-JVT^e&DNWwzk%1zBz+^S96>rpRum*wa`KHK5v=Ow$8CsO)m_!vx47f? zDS31fBweg~Ud^BCa_uxB%c@)1W_C+*)mb+pG{0C9tQX>XH%PFa6A~>? zu&mz}*4u4Mvg$wU$k0>L9{S?Z`WayTw}wzCWmZL8VUuGG-p!Vp3 zZ)*myQ?k&<5jQDIxg04M}&({BY#WubOod{d+>+xGsDP^gbI{p2C3skCq zAf2T*=bgSs;|DPMY`I7R@dKC;kW88uzO&op!gr1;=c;m^D%Vowd{r(`<=U!TN0kdz zxk#1ks&cU^*Hh*Cs@y=88>(_6Rc@@xO;ou=m7A(^GgWRbN_c_ZPJhKd6Uv>c@>(U8JE(et*KY^m^)eIr{b6Mzk#9BKc9E87 za8GlGy9#!NHH*%fa3_kjn#`sQw#)HqnQY6ja^h?!WMt~9(fztR-RogzaOuidtIBY5 z5&l)YVkX~fVCBU5P7c-;8sa~=BYqh62N&@)F@OWxP0GK;>t<5^6|9^%<#w@b(*Up8 z?mYdbNCJCb!v!oOv|O$l5&B)2K$Xe%Em%2mwv&S;xd!+H?tr%(F~D*J2ez9dcr(0i zCgn|F<-{qEqemth-V@#NeiU{Dcl^rF%>Cy)#_0VBUMZ97(XevjT&FZW%hLFM%AM~g zVTW+}%FhOxj5j%-i&xI%d={*nIOoa1!$uAB_uMgm2lfXSvy9S#?Iz`K<8?DB-vTQq zPPwg{9tLZC|KZN}@31GheB~Bn-)fWW-|$+QWd95+Cr);f?<4WpP{TW8ymJ;kl_W+c ziUf5DybrLZ?J!gb5dG5k5a zW+vg!z{-gep4$9=Sfl(?cgjD3J;J3dH;6S`Z<78oUOSWY4`JoRNl#F3@HNQ)b%*>P z*cn{N^4&vy>wyug|BYA7<;eOm8+$O=_cd-@v51O_kop@XWZDAqz&O!?u?hi?!Xu~ zOg9;q@v51O`(fq88Mpb{#x%UwyW{;T>}26WD;n(t3&SLHRAIoc(qKn8^X$ovz;95Q`P`~)E)3gV1IDO zuzX(_*lv#Cqw%_#l#hUw6Q?|NsYmzob{*xNGT;^H>y74b$Uf=L`CQl|T+Z_NDb0Fg zM4yG%&t&}xSUG}qjBgc#&mHBba4{r;&mEtM`$3-i+;LTF&yi@{c9N=Jcao~#BG=q^ z?}z)Ywd0MDt{0ru# zhEwn*#y?@VS&`>{Pdec*F~Hktp27`b2AwBhWh3bPRY)gQvoB16l@sp^8w8g;^ZLU+?)_m;*iGE1u(9Y5 zLpI6m6T9OkG5f?WuyRD7h>=kQNr{|%Vn_r@$&ca&I+c|CxwT2jC$?&h}JPE%<9c}HhH z+h405U~_Bp?+vX}EOch*6Ys-@L#bTJ(5=z^{yo%(I_r5W`{|(YbXT^IK38^kShsMP zdo%mJQr|$uQ+Bxnp!06%{F7SMdWAHEvP4G*Wcuj@19xYYivE!d)?2$Flgj=1?69=0 zOzV5^RBGEW*i;dxUL54yLCY&L{h5{i*ZA%Z_YadBjy^z#R1R13{AW;NEH{1Se?5gu z|9HC_RC%K+zpl!gRQU~6ep8h*fApO{NjCKbHx`vqPrGtK)MtZbxtttLCZ zQ_PbZ+xMs;j%?qCePKt)jYAFP}>-KpfIM((09-h8q%<0T|9 z9BX=$v3%p#Y`sZ(BfNGd>Gfgd#7R$S$|^O`$GU_5FzgWSV3uDCHW_bnJ`%5-$@xRD za^jrZ{B&Ofe4abtvtdtg0juxG{6&g#UN94%f!E3;dm5~qIN7Pq3owoFZSI7>1$%@` zSjOsR>rK+%#A|1g{yMCjIO*|nX{<4R+@0}XU|(<<%bZIs>5XyxC%j%J-9Ny}iPN2+ z9#?31Cr@!sw+yQA%dUBN{wcg@L%kp|n3;ngzPo(L-^&US)&(5lh> zygS{`!p`8*RTqJ&C&UKdPvaFc`F;vkPMmMMcs#7pz1yAck6>4D>8i0So@yIxe}GrZ zWcxi>IdQfV>n|iUyf3)peGc{p7q2{hp>DakB6@dGIZubZ_e%&l2TE6kidhLSW zX4^(B|NrmE(5Y$uzj$52?GM(=4hK~c2R-}05wX*2&_C`Pplv*~OU#p3iuiVTE7P65 z8M-s2R^8RMk!Dam`S;SAgJb-4*(+7Z2>J%y*GOml|3MZ-Y&sjl6swrLWMeznw!RE) z%ClZnGN={wXL?htcl#hBvI*A9YzCJZ$XBuovHy#40Q-MO{WVjFy7OsJ3+jJe>RHk2 zm1tWO-ouoHz=6A<{@212Lc@Ad)1Zy$FAdP`Ir8{z`$bKRKlgv7se4=ZzF{)5SKvLA zF5Y(Up_+)WrD=27qZE?;&1HX7<)2jfm@5CQ%D<@cud4i;Dj!$n6RP~XDxXy4Q>y%j zDxX&6KUMjRDxX#5zeEXdI(v}*td*P2W}7pFmSm2f=Db84M-s!aMEnUkCp5cP=ZVh{ z%r=`NOB`VZZqe;;-a z7y2SG*dv=__JQx>rZD@!?XYsjnRE?*;#a9mMSgiwElkBJ)?S4z@Wy zg&V`{2T#DtiT8tXwC>b+&zv zypKEOJz=+SNA+AWs*NU?%y-94U^3qYR!*Gx9L-^tSl;hWy$^N_m-<>Z>h>6(!;N5a z?}3#Q=RUJfdzPvV^)I_3f_PrfzQ54y8{ z0QLu$wOpqKwwsji!|P^Jz6VxLobrsir_>t?4fX5ps9%Mh!bLq>3~Q|cChwPV1DL#D zgq0KLT_4pnjccekoZ+03uSXIilahxAn`=*1f*K&Jq42fXt^-Xa% z^{B1akF=*!k^6%q4xFHO;MF% zDqZf(H8AcQC6h6Gf5`|r7HJVHB2|-#>IHm z%(!t8tZc-M3xq`L7|)Q0VK>~Rk-mq_aXj7aF4!qt((*Z;)&P_DYTN)O?>k}T#Cgxz zr&y@aM+;slh-w=17u}gZ4?Bj-T;>OsMwr~6#f@Nce;QVf;2vXg5Ap*!QN)l4@`K*E z4N>{Q=`H>=%Rh2Hlo@O}3yn|Kj#k~nni)`SS+7tjTXTc@55>I*Lw>Hc85xSLlT?=p z5`#^IL}X&nx;dlG$Djp`!(kAreL+fa80;b|%iM0H6HW=_C)lF%s9J*^R|n&@GNZ%+ zu(A;)_KhnML_TIAY)s*ikNyRO>ddf;!M8BTUN@1;>BmEDOf&Z?PJyL zZSlf#mVaKDlCGN)>Xw$}Lp83agD7#Kkcf;Dv^G1lk@KrXnOdUFrX^VJ;TOiFa^vaW z{I%PZ9mJw-nk;6>VwNoC$l@{j{S#|T>}ThPTW^b^;os<>E0ywI`DFTJ&iYMc__sNF zrDB;r&$ON^4~unq^dX@2$aGvPo9T)83N@Bi(f{gXn40Nj$+Y2VCQ0=US2Ia#c_v>b zz2WH^*#hOj!{xJVVR@~3h%F|-IQudcdiz?d9zI-ZrR>Udp;+pxRgV}>$^POB-+#ku zW+_uRxmNw~aGF^m&2oRSOrOvWProVB#TV4>;Ta(PqT^UE(11J6DP)!P#t~SloG zU^hG-D;M+2qb_#9ZCf67u}T~%KcdvCONXVyRlGvESn4X$Br!aLLJBJH4G#($4Rk^1 zFh#26bTy4X6ox16E%!Qy(RZX)DV9{+>lzlmO45H)cCxo3U0&7K=g~dWooR~L6k}^m zUvb|~Ihg+y_jgozhbq6T%I~T2PE~$il|NABYE}MFl|NGDU8?-CD(_b1J*xbPD(_Y0 zeX9JaD(_e21FHO)Du1rZ2UYnCRsK?yzf$F|RrwoH!e517Pk+|RufiwR(@AZu`Ucs7 zEdq?S>ixkUdq!U^cRONv~b<54CTK~msX0BKN11lTr)m9U3@AMOV4ev&? zo$;p`$`;#}LhXz{CoJ;NRBX|N}_VCB<8-)fWWD!f)E+2ycu;$$cKKJp($Xmr2n zPWS7uH@I}=d|S8NBz!$yGn4RFVdcaLkE5qB8r(m*!~Fy72rgV1lgVh4>%(}ZOs>C$ zl@sUMMlR~rz_!hCPNUW&iIGX8WK8z0Hp!;&TA5_u{r^XHBKb%>H`VBF>rVFrxSy>@ zBt@-(>Xw^?x5R5^65b3}PJHaPiznF{-jBKCJrQ;VH!90DkbD5I+!y4^AH}O>vi%6G zoH*NY^n6$&`)PNwpMo91B`fD!|Dm?Q^^TLXn)|2_It1|xM=0I zUh3_XLH9d&y-d2_hLsbiJ4HSb7Ehlw#Lu`R{s-(3E@JsjU6b+VDE>QMIg|6>VCBR) zPgSlGuR=A@v*$Wz&ofA3WU^;@4P&$QCh4ho?M%{>VCBR~*GIJff?5N;mpkYW!VZZw zqQ%>FBXaMGSI*?T6Rey#=b36uGLG~wjtxU2%hLsa1JNA^4#`S;hT>lIEfy=dBe8Nr}v<#~M!RusF{Wq+fIMoSi zcvJ0|Gx)B9SIp!)A68DBZ@bvbrqTV7JKaNJS8xZex_DD; zU^LhsgjdUCyFaX)INNdM<@zT?^p4PnS8H-l@sSXsj+QYBm4(&9$6!s}xC$Ol~EgM>iR7j^%e@8r-vg-h!1A=iDx~_iKbd z;7)kU5hE<~EBRG|F@`t8t7VSiO>L~GC7nM$kw0WX!#mQ(3MrVu(!V}tqV>cQIm zs@5C98Rzl|)5tPm*rf-j#-#jzLf_L_4%t{tR$~hm)suolHWmtrK@QnCHtL*1{A9$z z&*+nQln=B3vpHY$NGHUlD)*p-2&&qHy`X#IwKJp1?y#~EO?D9y ztvhvTwmj&r*<%{-GFjyKU28w=7cOsk$FbQ4a}MdlZD3N*!ODqKUn@B3ZV>X>DomwM8mnZ-+_$O56@6{mWtH2>LOm{~&{qQ%4MmAcI&Cw;?KnxTeMDag{5@{#4pO ze$78kFO)$%PEEl=mbKT}k3Oo`IK=sVzIlOlp;^k3J^UrE^MmZ+PeNieWDnCqZP%ug zH5Q<3)OZQfhxcJ;S@GsxB%KhL>P!(-Lgt&Xb9KkI< zaM!i=yXwBSbD|iJA%tzdX~MG5JY`8Bz7V$y1qsBZLLxGOXx*G5vDBNc%_eujSd9E( zHS8-Z+1yQ}6XK%shcG!+eenF@PP}?%9JvElHsZ)_aV3H{BKwh39QmA!6?7Qb*IFA# zri(>%Dosb%$rVXxHS#VsW;j+O*25v0s}Z@%C;P;bWXN;H--_%1Aey``Bt}6rk#KxA zqU~BZS-dt1#|S42Nn$vX)5)Y04kxqZ>k|J_dBc7)FIj-s&x|MYU}Yno%#JGq+* zoZ`u=ar?8%OP*+LJQ=&(zf|_Tnt#_(uH8RCJ56pJju^6Q%w$9u6zZIo9OQ(!tb?d= zoRAm=QKQXou@)=Nh9MZS;tbeD_SB<5Iw2fY`IV30q-qT^j??g3nGs?YtZYPx<#8o~ z2qAloQ-nCi#R|$e)*0W@JIyBTm-qVUvFD0x*$V}Vd#D}55h%8?1q#bm1YVOJp$=(@ z4|m1&aS$I?3yH}1FjDsr>}~T#Q`2pi1~mP+BeRSSgtoqqZu+euMLLV5VqH#xDs zi@j3!Fo>+|ckeRZ%Kl*pPo&bfwYzt_^F@CcSZ@pf#*~nuhpiI1YftX(^Cu;Dl_GUx z*M8H}Ng}R;s;A^-#3d!x>p%cME1|R+6s|7H_W8FSS#LW5jLMd~vxRJB7{+>*@(3EH zt|22^_V-0PN3d*}unj}#$#>FKKdz|g7B0$Qtnub8QV6-mTDpm>lI_paeSEG?rx2N@t8)r|^IWYecs-d)Hu6p> zVC+zTs>df+qv(#YtTf6s($R5(?p=VA>TM{wcAp94q~wafAh@E6Livt>EkLkWN@ckyh*-IU>YG*UjrU+=rF$;z~rDp8*1I<(3I%luD- z$s$)5izhy=E+!FL`MP#JYEl2G!yz+J=yYFERZ1jNUr~9v_7}yiu1j-I(^FjkCbNI4 z@)=b=tIB_=@;OyLugZU`@CsLKDS@+DQitjhnY@)cFSs>=VV@-Gvu{M zVq`MpfUPAW&%vu@vYiPlC(d?CeN!6k=+j2;f$oI&gB`*hz4Gk1CgaU9yfYcCGcC)8jcLF*50~WGl~s zFxbw-t7WpC1}i7dc53q}7aHRI+!5~$dxSfD<;_0L)|+$h9(e6c(!0URiIZ;gPax3< zm)r>#VNY-g%ehyan_`UNJYFl4Y!+4?4P=Y@ww*7#lf4S|1WK09vN6bBf!E3;dl{^p zIN5P@Qja!df9VeP=ddHVVCDMOKVHb-dOuz%lk2^(a^hSks56f=wr{$#eGPU7m#uuF zTtD^6;QI<*F_Z60uyW#jr-jb6(kO4dzH{ch0ZEKZ<}7bK3Yl+?<;8gQOx6ow<-}RH z`3H_^h>vndd^qe0?m(7#l{hBN7{!O-wKB;b3@ay2c4GYyIF0U^?sQLwy}_kBMeL)i zTW*fsQ}LRagjc}Ii4$%Yhx2K8Z+6Ff6YL5uUioB0o+)UI-W%|0nQX6vl}7_xIu1-@ z`Z2f~C4YrTq)iT*W1S==bcDy{sQiI#RfpcOtmLx_dv664>)$yAK-7$E* zOuFy=|D!vO4j0wXZs(46Yuv@-vjsZgwm`?pT~KW+dEEo0Y%OOVpCVVi{)wmt*ABc= zCfChj<-|vAn}1TP1~%gk_9WO7+<+`IWpPTaLH2mORwmhFVdcchP7coC)%afQ&i5kN zA6&ljo0GtHbNpU_*UhAS9;}==<#BY{u7-EDJKj5CM{x0~xJ*Yn8>9CQyiz9D+hFCy zxweY~t2MIEx|4kxb_JKLTm=cUO}0q~WD@0otz|dW zG`w0S+sUwU;%wV!0O-4^_I5|R2kZ&%uvPh#e;~aPk$1yuWs=<)R!*GkBqA%1+t;FU z(H(Cdb_W;lRPpGsVY!-|IFRZ;s}B@yeN;?}n8}4`;gULF4?IJLgwm zhs5Jd#+#g9!YgNTegRfaoU;$ZPh-5bJL8TKV=TvU-Ex!g=6KCa!b@P~#0gKLrKP+CQA2!^JL2PEcW^_s ze4^Pf-DG?$UNw{PhhgQ!8BeU=PN^Zj$Q|(ous67f!jQ8N|{{01uG}cb%MIcRb%_KJKHB=XK>ldb#VO# zT7&Q7c*RV6p;H*)fToL?r1kB ziIGW@cm=Z znk;6>VwNoCh(bx+_57GruATlWw|Z?qIL44zvmtS(kjTWdVqjVBuyJI^QHP{bo1Rtk zTk+n)RH}D%?tLn#F~>&yU`g(zh@a#-qkgakwYWNcpiuTIsWcs6oJudtl)c({HNRr% zj|bomYwc~-{kn>s<*mADU{tb2I`n0$?DADx^>_uZB>%l5_)!P_s6+jzLm21VCQYkO z%oI9%i*#&EpI7T$t?&gK5AKWGi5_~c-UIFt5;%Yu{_kEd0&)|WM%%T?;yD2etL|@&BeYQ^>lG?xKdKm!r2fMW-?+MMq5f(K zBpZ{xSdy%IP!LEq5E7ArWJzQwANEKxrK#mw7&#Q?VuX={U{_hu=5`{T5SFU^PPWN- zGauO>ubde}_JNg+7_z63XdUNSdzDI=Rn7feqrHj@DldzXngo-^a@Z|g+H=JT2SyW2 z=4IRjCi8w+IdSIm_9+%BnJgtzgK)pzo%>f|*KoNn5ZtZJFxg*&o55uNC0IFveT)e| z$Qk6M5kn%#To%V|h;Ieu49~W9{V}0ZOr;A0ef_IK3y-I%6M)|;(O9OE}fX&7n3IFi6JDl5?3tK_T@ld60VRJYuW z8EfD*Gh@d4aoGo>^&QDRYFR(*x!`m;!PdQ{ao*mY^ESA*tw+I{oaL%AY`;l+E4+Rt z?JZzsV}@uo?b*S!8bN%SJMlE^7w*WOr=6Wlg8W)!L?#NYTWLx->7e!6JaQil$H*7%f!$^0o4b{CLTIXUL{u^ODGP#!$#>xv zFk{MUSlNgvcgB?nVv6idPBG;RE>_T5r8u@qW)thoi6 z>smWr^-!n4;=l4}wlLI%Ezu=KR%7Y4>QX^;c~`(31<^%f5^p}5T%d)RjbThih}i)4 znU!>ICh3IuROK@b8DeyjMx0rUo574T3t?p=&Mb&45yTnUubkq{TaIz&53P+eZHE@i zWv?6xD;_y=I38$hX$vcs_a1p^La1L_;>NPLe1o`=77~$hgWgP^*?7;X-eRkF+Oz#v z?hn5}uU`4D>~oLN@1Iy(Qa#A#2-#}edm#Cfj%5__ORLhIC2~)i-WipO^x&zwcPuSU zB%VR#{!FRtX$E<@_7_Dfm*y@c@19>gD-1hWuOLIGj|K3sj z*+6bNy;@$HTOs~iY-~79LTcG_hPgIJYa#qfvI!d!MhL%LGz)p7VGrRI(g_Wf>U@zU z+FD_*K5MuY%m{u7tZYQ^R+FC=8WtMz2dF)c$nS$)!bL9c=M0%|vc3nep2_+ySUGXl zb8XQ}L;k8e@|R)HaFNSVZfk`}{zcphCi&-K1G&9PC!BU{()4g@ zur`_D>2Ta8W_UUbRyM-Z!Eq&m@FaVjQ+V3U#R_^{)!o|gG+TwIe*Y|&vMm-}N)5u& zDQiEpucg?rNZH4WJ)euqAXspIMo5f;*dqa@o7=C&nmb`YMy$C5c9@lM?mE&5#~S&1 zO~%jWHkh&HHrxhgZ215v1o@Uox-MP!7R zc_e}5g7)yzMmixn)wP;ZnNTCl_%a(ef*D_Cz{*B^nHpCjh%d5FImMS31<8P=OA zbmhHtx!7Ir1L@_NQdUY@-|q}*8tqC>canLX#S*>Di`gxF5o#m-y)_SF8Q~9C&DrtB z96i|Tq?calfwDH{;`zM4lqIoqT8 zTS<4*Avv^Rq`FtEPFfCW?CYZ8e`DTBuCG-;7)yrsQp#r6V)~>~tYq?`z#T6DREz)+ zkGEXMYJKO@HB)0!{y)`2VtGl5n%yWKI(^tRz2-fgG6?@Q?*|=CiQj1laq*snEYqrhA{b0gOwBKKRuiQXxR62$G$i06YgM_A2@~W zH)-#I*UzNA8?2l-?QxXDYKTkjh>NfzxQOMkhGewKHIG-y=nsdz!i@m(vr@eU zCh@~?3z)vLl@ljC&-at@(ptmazO{26Hq%2l&)*{&V)F064Po-%99B+z>@OT-Q;60FGVXogB-laRfG;z;K^kNBgX3{y znEl{bSUK^2Fx%Y8qv5~U9sfnJU%2??w-II=OzIclHZZB52P-E|eXj2@eY=dteYHFH zJ7LdoxvLL?Ev+!g-+^1fB!3&MoH+TJf_&5dHjVnT?$n=#y~3p~pWWy!Fo{2jTfij# zIINsF@u|(b88zB-wsB7GXOhIoB=_>7n`Y}x($nzTnWQJf%88Snp?p=}bE?7K+a2~E zuv550d$xEor!~Ojy&G--llRWBa^k!vH8uxpq>JvP^RPR(q^Anf4bx4=S-ff{<8D|v zamF+C{o5MqtK3mv0egjuTF%#c3rymd;TAB7e;!sI1;n+T_8Re@yA!`3_6kT`Yk^7p zUfcpE@w;K=#EH+feG{Qkf6blxE3jv{)a7c-)(VsSOSlzG@-M*3iIZPT`fP}m_y*fL zXX%ScVq~)PwZ(L9Z-+^LA#Mkg{sLGzar!f~4~?`Tf4DpL!(gXyhrGP;Ev$z4|z6342j@a#lz!%hNaH_ zShuxTdW~CJEcJy?zy258L#^Gbx`pj4Ud!p%1z|zxqe;ujAODQoL4uP%o)Qu*KKa9b z6oF{7?c5LXgN}S=l~+pp|6a?eA^?s2gu6>Llg9Ia4)rozYb>jQ%5(}Lfz340FQ~=NrC`)l#pm~09;bt)8+}riIx6g zCEh6m89Fz^dU_H^qSTYl7P^bI_(qU|e}z3A3S&K)hGhg@i&bxl^(Y^X2;EXqqWAUk za3DGss?eXOLyzOTMx5r9?k?0~U#r!b&-SPLGL=$xrJSqWl$Lw`aV<*8etG!NcY$`+ zuh>mjR`vVPtS9*}{M|WFD*4CnEX#DB>=nAw8E>zDzF}B#_&T=rqW9b&Dc>+{(ZX86>%aO z#{_lSm^%E5?!=;l;)*4@u_bQs_CL+aR=mE5W9FDP`5S|~vb4sj#tpr`9VM^ZqkvHI z#~_7nDvhI#sQDV9YLBSM2gSOI{yEK6j~Xp&=D_ zeAlfS=a2gib+fzrH;&x8?k*IZ)K;~U&+$psp7&CrD#2Tk<&VVdX%dG zr4+Y=`?k4Fw7!CWdE&B6nTAQ+oV%{lbdzNKS;!aj1DSuS=rDLXbm)HUS=Kiye7<(< zLF`MFdo%rBsC#}SW{j0;gWXdTclGNlSNi%X2crpiKG7fAT2X1Qj8m_X%nBH!-%dJzhR`3r=?*0$&mz9 zwxKME8w`D+fj*nQQWCk8m3J}hsBJ}Qp}u; zM)KOUxFbv2+L(~yM!n^k{D9{lhF-|f+9dA0w7f6VUu!;Dm>$rJlZ91zhAPig z`6E@{rOF?x@@`e$qspJC@?KTmr^=tI@_to5pvs@A^5?32P?f(>#+xDS4fAH(JHKJxgd~P#lO*{h^h&QPzjs-Ex!g5qQl^!b@T0#0gLG{UlzkYKYHuM|>9S z4lZIfitDDEj6Z=_&1C#>SUGXVQ{>u1yv5fjf7_k%EwDqll&6ag?M=p;oWFrr&g6U} zteiOK`5F861daLM+?oFwb`F=hJjp$xAtwJn;)XE!{~lIOod3l7ZW0anq#c|SvhgG_ zG6|WSt?QPXgva4EGYPK&D<@8ProP)pBfXP5>Fr^!aEG@1232o?NqigJ0w(dTVC7Ll zylGdKM%;5Jz6|zC4B|~KFo~ye3z)=DfRz&`KBKXPK<=K?fPc;%_-A0JaDmHj(X~cw}44}I;@;H@o5cz`P;fR-21!Z-UoIGcU;TwibLj`toOvLXR_WMRvtyH z{k``Z>#{rRe%K{3S&L5xj7Z*xSI=afgOw9!J>C-^NNA9+afkdR*cV*Llf*K6@)O$Gk<`|A5x4f!qZ z$iD%5hl_ln2s{yknZ zlko3g<-`e3_5D=;-dv+RerM-YZ5&CAOsXbN*>ASqB)tY+JCpSL|NltO_kCqK6F`H$ zy*u=6aJSoU&N4Qu%Kc6e4Kev|g&V@;zXhzE_(-2vKf*x+zRVqX8ukVj%j=e#gipY0 zW)eOQR!*Gog8Fx9Dqm}?$~EGjaVK7dy~8Cg^R=j!m_6V^+!AIFI3HF{ya&vx`>k;# ziiZA&?&!Y{yM>E>u1M95CYa2>i<`h?emkr@dYCuPuF;tP%boc@VYkF%-e`i!{3+Z7 zCi5p?<;0m!uMZOWDZB=J?k>)G`z(?enY>-Tg$dhl(w>gj&!jyCR!*Gu!n(ICM?q=m z_i;zRC+r~ZSeJL64$>I2AMB1B!|VsUz{-jDgNgL*wn*(X=>6`{`(STyq06T+b<0h{ zIlN{j;T~8yal%u{PmR;nG|FFcr+g*s5iVu71De>I;}s6l_-9r~-VW4O@e&UH&8Oztn^ zMliX*2rDPfeFnL#`A|uX`G&hXC+q8x#Kyk;ih0a$qy5LV~rYJ|VxPWVRH8zABOiN6Nnui-T_34aAvPMq-6=5viT%71jH z{Cn6VT*`8V)oi^Pt$&Bt&LsUCSUGXhGqkg(HQ3{JbI!ZgAc>L8yR-(Fyx)hZRGGZr zft3^IJ=b zA`g#li`ff~!);;qf@5Ii#CyTi`qBCR0sI>Gsyp`!VUKXR%bC5|dXx0|c=Q0&`Hnkmze)QEynZI_zrxCi(_Y|v%XU_~#(mcA&T0E}k{Fq^UG80rYKhqcrr?$^ zd%#3kIq@Da)Aw6_b3h+mji-^{)1Cb8uvfSvUcM32TVN931-F1nd`DP0apDt&zv#J@ zM!L_PbPo0gm$ZDITDROJ+=JK5B-{lnCr)^(@2C0=7aHX&-6>xVdxT3_<>XD)o1|-a z?M%{_z{-h}o>M2?bP<*Y`~i31_rZ?g0+(;MEsZd_--8>$=rI{x#Qeug30_v+yo}`=V9f=9pvl@sp~Q~VyGE}+xk|K1(`?_h^;;mbQwnv6F&{|2v|$@!PCa^jrZMZDJt zud#=7I`=;83NGP^a(Iioc9r{r-HY$w)iT+>2`eYgw#~m$SVOy&JK8NsVq`LPxi3}R zgKUu96t9&@c4JsMakA4ww>@i!PjE+k9PASA=#?iahs-x4^f7q#Ox8!i%89d{teizx za%-S3bO(Jt><=zz_3k^kPTUyL=iqfSDW3@|Cr){Sx-?xw{9Sj%x5LihB9^xu)Ngw? z_}+?F%;bABteiOC1yOg}Yrvm!2mS=?9WHS7wp$+k>YonSpU-r9X?Y|;*^J|V#Vuj> zfX86v#CyQhN>P02YfHGN@9CUyPa%ns$;#xLv1aQ{(i8F8nWWoc<-|!(AYbLPWqnKH z?(UFxft|q}+A@|a!%e zOx_t-IdR?-eRmD?^{>+A>dW0h*I;jOLCak$b<0h{m*6!s3118=Cr)@0`H8ma<})P? z@qO-y?}6RHMJ&&@ZkTQ|z6-CK$#^xaoH*lYmC~xTmoIziLb0Gf7JJ#9^NX-cxSZuP zlaTo)>*w+6nXI3Ml@n(@lkRb#_ZN|S$rtVAoNup95+jpu%l!&^3ryl`;TAB7&w-T_ zC%%sK7h^y9A@1xCg#E)E>hg=Q=(d=>U_aazW-r(qR!+PZ%$A<3KbWxWDPQSMe*pFi zm;OBQYRhbcNxg*Iz@%P;l@q5vU3x5H*YVffiGKz5375G1ZYXTON&Cxq{Y=_d!ODr# zo)>s4dgt-)+@b#lb`2N$f~H~aciN_AnCyRvo55uNb67cX_H!ir!FC_N?@s<5*fCu4 za?iP?5hnLHaU+=AUxSqs=dR}U=KZ_cLVb(9oiqAPNn&I&`sR7PxeX@ujd2^8)Hi^Y z6Q{05duR)}f--n**>f!p1C!mY5MxIJN$P)~?%li4e7#%*Huiko2N z#Cydw*(>ZjlAmzz0DpyD!tDU^>21h-ll5bG^-R`}!pe!Wp1M4fAMn!R5L*3Q)hYWp z=Xn!JVr23>xl^LqdXscJUOSWYSXeo6(rwH8GW}XK-^HEqj<6@VgIVrS_N_L_Zim;( zB)c`NoH*GDdzDI=Rfo}`9<}poXVp%x<=PjeQn?;?xLvR_xNznB)WC4%#Ng|K3|=*p z@JX<8;)Ew1Uh+D#WzS$-b7y=B><%tt`F&8c=?3MC@yeN$FM^dLD0{i_G@4GYEy+#U zA(c9@mYXJv8M2rqi#eiD5_dg6CMCzSz{9sA$q==v7I-`ED2KlKvdB2tYUMbt>6)Ks0C>}iw z_f>00t8Uv>>@089Jy7VZWQ&DNek;1u#s5!7@PBpq|I=$Wq&hKE=s&cF<$EmVSmF=n=ugVFkoT$o4s+=rJFSi{Te(?MBPi}kq zx23rq#DDK7nlq4FzFvy{zZK%Y#ro`g8G2zZ!AU#G$gt-O21&T_VUL zcM%fNS!7hg9wT4xroL=l6o^Eg_hzUQ2BikU^NqauW3bb#taBeCoe-cZ_Gair+z#ei z^rNt{a#FAg{777hU@ap6j4~aT=lpi^9;XguWSo7&12Zi+%mH^h;A(k)Z^?zgH<Xg1{(L*$R2FmszCZk!#S_O&fy}L-xBC8Fu}isTfhYW0<5gu z^Y4axT1|ZJK1F&^NDKK=H1!SkbEdwSB$^Ymp~EDXx;zKZ)(VsSLfi@_`310Y1oKz{HD%^|o}F6f9?#O=$630LGwZ7qH5J+{={T?yqFon!|VtE^qF zdeqQ4hIpbjbdDi@twR_Znyl*CMJ||}J{Gq>1+&nJl0(#+hZg1$ZGMxrndE$!jxm#* z1N+DdI9DQ_5Ra;S^DRKBS_3j?;UThR!*Gq^k87hvv>(IkXVQKYR*s+@ zV=nh6V!70jQ$Y-gARYK<+=i%h;QeteO$R25+eK69u3|VTSa*LkELnS6wRh;GAoOx< z=;R>u>m9;;VSQ+3vSbSDP>Zn4TJ^9XQB8PHH)A^419p@ZeXfIa zLQtx5FIB^IGrsJGSIvwsJHyIGeAz)rv@U0uA?MwOyEM{8GRHA-$iq(Il9ne5X$>%W zXK@3Vyt`rL#CgvNX5T30SGhC40(K0Sx%`gN(g>6LWw;Sc?w^O1Be=&%0)jk3P82aD zf;?hw+=i$;;s>pLgE5Vs&R4RTd@5ZT=sejgg`P0{nc9MdDr=vs_Kk2dq1sSyLTK`` zWE6jlizvt_elH|OLq;(@+<0xWc@HLNq!n+&-m-Rr+;gN8B2$%Xm$3b2%y|Q^pBZ!h z2P+#f=f6Utb-Be{IW>oUrZM0A0CdzE%$JY^mUDBN%ct44R+!{B!mVJEUmsRZocw}d zf*zFqvF`Lg410%5U!FM})e^G@9En@P>;WHwl_PpUjAS9mH{>)DLn6pGeit{0seI$D zu`PXWF}^FC>FK6ztD!{Wa=6o4dt9|=gcFU1@u7*#l48{2cCR4CxI{>dh7@CBz1iAC z^8=WgG0}Vv_LCKS?t0P*F{#QUQ|p$Sq2)Vx&CJm9ZCKd|Ew>1X)}u1vb8?2l-?b*Qu96@~cfzHHdki>ALkmksi2k@9} zFsV<)ZD3NL1S>~Sk1_WL>4TgiVn_t(!^LsCuSy>lw)SzwoZf6tufOB6SnBeNzM}s{ zQz(}>3huksP*W|9a4sQRA{$a~M`#MOq!ow9?RG(0ahQ-84QYj98S;QO^DKv18Z%EB zcA2$1GJju;J(EZ@I?)~6bu#33;V13aK25pYn7aqjT zVfKXwVC9Iu5F@Jy5)(Pe#E=LQlY`?nL?tG_Y3+WD8RcSrxkqnNO4&@IhrY`Vze$;P z5E{y?{jXXa;iN>gqPY>FDbJFTOs0lmX};=jK}Iq`NJM5Nt(%x;>aEx2qitY_s;$At z0b9ZDvi5`ABGL(=smhN7^cI+*XA9f{X6V@zRyIP<#&IQr&?9@3Q|M`Pv4TEAThZE` z;ZrLmI;td7@w(`%*X3QI#n36#6fA|Z_P1(&gyT-538Dp|o^1&_g}8u%pmVa2hzvR{ z+&oTK*(iK|+qIBWgZUXD=Mvai)-I4clXOC0s`aaEn#?!j&Bb{2%y@GVtZc-a3xq`L zW|%p0y)YQ@d&neg#2Uo!f*r#pE|S^ zzmB%h2{pvz|153@lmFAOas>YvNkWik$O$BdM6kr^joT2l#L2XFi8DUGwdG6qEe}TH zm9@iFj~P0{fWCCkZ#~Fo?oA(}ZASJxE?_nh5~CrPn4ns%Wf6zNjEp(uFxX92%(>l2 zC!9sd%WCVmRK>xg(}VGfnQ`O*SlNgp`wEHHR!*GttRQEw^S;TQ_YJUHxV-0T*+S&_z798m$^2SaIf8kNNj}IE(pPZ;NaLsx3WOhNyQ>;K?! z!&5?HG^7aaf{vCTOg;qVqlQZGWOD*ZV0n}kaqbQBR0v3Qq6j6jQ>khLHf?yd%)WF8N z+nseM>=Z6*`Guj@0F(E}a08gUPlS~tc*mI2gS0?S2r(prwBU)j(~?RHKGNE)TT_>1 zDxJOlON!zE9g!Bw555NXSZjA1@z)fp391F5Y0C1N;wy1`T97wJFnJHs=jo@~ML!Xg9r zUTfH?(&07cEiuh!?rw!0&Fh=3tmeJBI4N!i3(||@g~Vt`F9fyb=4&zMT$q}XVVni~ z%L+c%PdecYqrUe_1E?$r9#(t;w}2UJJ`O7z!Dgk9XkC)AmR#@a-CpDVZL-QS&$tEl z4VSw-{@vaVbE^3UZU>Y8jj(d!^w$ZV01VLs{^s5T{tWwv+XL3sUUTSeF?+!uaa)+Z z;PY28maZCF5qh$*@Gvxf zS-W2K#G$hd=*@?+xo&c3KC?W^SU}Cd@^#g>f?Q*skQfcQ#`JLGwHaqmn3!s6@GfL` z*jrZUxh+U1L`EH%6Sm)sF}vXPGh@t-u(Af2BM9%VFFY=4gj-_vfEsQIvj1iY}9BH9BlJ%>G?6fE2^)qQtfR!U?$C%55bU;o8 zF(iU?pc=Q^s&wEFt$qG5fsQ3erMvUl{?MC^BjCPj4JjjjW-nPUjStOBmONo;-2N5h z35N)Y(U2!htT$WB6)G?_V=g%b_LCKS?qj4AVxrFMty^v`H41pm%-C`=tZc-VULn!C zd_kSrTlbd6`C78ZF=x0M_6e7B^O?PM`%T(k#Or6${sOF=IPIo0d+Q$4i2vH1_%C3; zaEa?@_SV~AQvVrl1C#nsVdV(wF(&^Ye~?o|42d9rI52KQRQ_;jYd`#$+e@1x=x98z zZ<*I6H%ju zG#6;0=L0Z3)!<;u#FntntQ{b?4(WuG3i&kK3Q}1SJdoH7w}KgbHi4Cm;IpBSXkCJ_ zj@;O2^PI;2M6%2=+4v~zA1;5nMK8K7<`nc1+!kgpI2u+?ycaAEHfl0@!l&GO!Y5%L zaeKlB+Gb5#d(7T&E^ZIAH=G44NA!jm*+h_#$f+iVM39h-joT2Fket}sgk);T>l)~! zjKs2E^XJqQERPW`tmenz8PQsiC52zFHgbBMtpffNVG2JP+y*gT&5A9e*`*0 z4dQc20!z@j#GAi74K>2#J_|R3$$dJkoH+NUFHb{m)7bCt&VC=*Ib8Pom#3kInEdy| z4Po-%9afIuA0sIU@(MYD#E=N`io4?mFqKz~Ywd?1V>^q5@bTN{!Tr_R**K3ivIQ?w zN@wyt-m+3=tL*Ys9o=*;b0u3WWbz&U|7`v=wId(;^$uZpXzsEk6=%ooRzXs6hL9Ky zNkyCAWG%Yf2-7lVmaoA+vI5W5NGHTY?V}K&RIR~di?86dGDFFiVPzwfTqPu0mqMt0 z6c)a}Crhy0-r)N?*dJWJ&HE_qlz)TQ&7}NGSUGXZP5US;q}Mpone_XxPq?J@eH3=u z@8I<_X}<|8N6?Njw+HEgoC;z{1nI$PaT}u2gDYD5*kP@{%*pi7fnI&3(uE=&O;PZA zGL`IdFZ3p4FSzSk`(3p%^aF@c4uGZ%eq;Q$_)Q5~5}LCtIm8F4b=b;F^}Qg6*i}f3 zh8$v^)dyNq(FOA~CY=oIG;5d09ZotSK-C4}iKw+1=7QxU+ze(!Iv!RwBGR!!qIFru zLis|$>N>3lTtcQfrX3f<4&wHJ#i9oc(ipQJT!b6L><1UX%8B=b_4X+iDjABTr4CMC zxXZmStcIP$?F$=f??TtM-m?Y7$rni*Z@!OBK-nH^Umh%U1KI7OFN z1{E4!5?s2n7!a(SUI8>#7G{3{6kJDF(iW3%`tHsqVkX5wl@Em zbaHQo=IvCvlqrTXkF}3RW0$qtRkI_#z7h5d^F#BRCFfX+nuI0ps*eRZ#~dLMnRB#m z0-7wj`R&$1&Ie&|#-y_=>?kYy+-9T`f>M<)_5$0@5VI3rH#5X+4=WoXW}CPYL5Pt( z$SK6kbg_c2WdCAoL(EuzK^uxKr&9y4yvW+WMtmoTFg( zWZL{DYXRjNn3fSxz6ATo3OrXOoe&ST6GVVgwFWyuuEc9)hLX!+Wh0c-ghUG`4Eb8a z!uMBX2{sxHz7N9w;PP$W31X-G0A4qf@_n#!;*^_qf>=nu`X@s+gihtLc-x6v_y&a+H%aT$2H!iN= zvBQ6a#AwJU=2$$SWfyB5gR)fPEcmu{4oP51n6*3P#*$75PgQ>DXlaD`d~+sl1Tzv% zgO!a)G+9WrF4I_BK9sOHPNTmc8HSBygZ|#Id${x$HEkQUG{x)#d*G%p`@n9na^ihp z-C)zG#d%skD7p88BJ3h=KUiPeGHPj#*%$J-In2J0g_R@vLX5N`$V}uU6GI}%O#U5r zs#BRsp|zRGl)en5Bm;&1VllsU_!HP~!`;`~_o~Maosd8WYLLZ&!J(WCo`?ZzsfD7H4AnAhXc z7gd>jDxEFRzogRrr6L{KRS9jW=!1K(HSmo1m$IrYvMG(0gr+u2%8`rP^@5b6M@Wo@ zl%viw>;o+#eHP|v>zFrX#P^x+8A?U`W|i!vmbm1R!+PhG<_*+b)VK3o^$UD z&%jRN_67Y*S!;vL{_qdnAZCB~JFFbhA7W$~L82ljoEQ>8qS6(&Au3VXxwVPP#QXqV zjgslCXs=;5Jr<2*)~+|=pUUP3>eh#*J4-&YF|`Ow_EirH@{tXML}WhFx+!T=quE-} zITXgG8X3HCISBTXm3(d|(g`t9pUO5&H^a;Rc-74CvJb3mgqJENKsfbm8CMbsQDVX}6%YX8s=SDg+E3Yt-GMW}0A!p#M7 zK?ULFJRuPoZd$m-e3sFEE$-X`b2Q@4H(-ZZyF%_t(h0$-${i<06U_K?BW?mS{(KEq zHsa4$ghcD+nECR#rQtS>{GZ7zYy=zR{|GyWOJ1I68_^Jx|L<`_nEZbSD<{r>Ves^F zs6H_MIOjevjwG<`jN1p~vUiZinEhZ4+!$s*cz?M1L5w6K$V24B583@Bp|ETRUKN+0dB?^qN;09?I^3bC1?dLvt(+(59dqjLw*XdSH)P>F16ioe&+h&CJpWGwgKXMli!p239tv zpOfNB1Yt+^DW|aWK^H4%`Eyfimp^NE6~nK5zE1XI*^;%NaiWaVddIgr)Q>Gu=K8oS zf++J>?}f+?}Ko!ciSBwvzamRHebooBQ!fnPKE! zSlI|8cMFNuO&^nF@^8|8lMKN|qCxjH*d1KD@=&>k=_cb>2CMqgF{v>r|DRmnPN~$1 zwOmmar--7;g#FTBRali1hdnLG@=f3yf7BWH1|%^YixhJ>%a5Q!=9|zL@!YL;{+EgXjQRkYaeE`pG^D8y0Xhdo5>!aHemUTwQp5FJapuME}%X+ zFH8+}S4;4?FD`;0c-$i-B7;W@7Zc-UqqP9?98AavAkV;FvO>=NfpkJds*}WeLcua( z$UpFUnK9(=u(A#uOMeQT}VXc z46U0~Xdj+zwU#to4?{C1l&`{WvU1OTj&wpus#8RWsatMNCfDFKGegUlU}Yn;Tp3p) z2raVrIE9u|U96y`$KI`dq0wg9!}T;ZVK`PE-U!DPWqPO!TcXO7aft*`<#8bq8C6=j z5|NG8g39<4P+~?<8AlSsk)^&$t_l%RD-i`t)f+s`SOc$@8B*Sl%RR^w-jUpoJtURd z^sL(HwI#Xt7N%0Yt8?#DLC@h&iuyrk)DODXi;!AlQ7TncD-kQ>?cEt~gZp~C*k0k^ zh;l)-t>kqNl(My)$+&qX5=D9|ymlt(EnsD1@@O^brj>}5_A+zBTpy$ha$1NX5k#23#0^qvC30$O(}l7Ac^aX|l-I%?)!NIdM-81U zK-;W@p`nS$k{Vncw;Khi!54)@WNOg51xK6TVl6MY4~App1^2)%vhvN{N;)AN>eO(- z$;b-s!fRzlj@7WT5jpORD-lEv*=w94#}{0zpoPY&)<%x$<-TIELbt5tx2FHl8;4L7 zS@T3RfwlIs>WM=~5$I)yG@5LdCWkt(C7z_H8CVjnI#&=+-W6CQ<4Fsb8vjS#nFq*G zl<$8b$!<2An~(@{D_?@g%At57A_y8GAcr6b%Vc&oJDu5?WoCAhaL5@z7*TOi6h%=K zQ4~S$Ll8yq;7}ArQIJbP5j;=?fnRl1&D7K}nfIyM>E2)dNGGs)>aF)v{l0HkS5-@5 z_0Aii<^Nz}R%m$@>@6qsXd%R6IMu10kpb89;Mm!|cqsjAu1;$3n78t!Fr9rkQHC{oxZX%wn ziF(+SN^~$&k-CUevnH~Nk*RbyPoC8k1+F{|EfBhx$#Q?oM7gRq~R z;G?^kj>bg3C8=9($Cd~1mWi?DepuOxE%$MWn@M0bH~Z*K)_0WTWcs=XrRe#4vI$tZapmbGSrurGnhr zWz+pBGbC`{;SSgxRJzSuyPS+~!^rP;C7w09S8WF5htqvQZnCBlweq9vRJ-(A$HHM(!q3x~nf zWM|c}dWXRNa)OWcVmf-gAeL8H0Hp=0csK~RfEa8(04rO;W;vHgu6THbcuqIHW^g~9 zSru4GoC^Df%3Yi>@9u|PI-Z2vL8Si?SUGk2o2h5^HY4E5@DXr1>>ug~*wT25VfMuy z1>eSPA&!D?!pbd1fk(BV3J#G{JS0@X(eK+4S#TVd>=yDq_K6Jkc>%VVXJ`GpMgL^| zz+#tk*wsGNzS4kJTE(CAkmhQ6%rOn|j4ujRV?4zrrb3M|TXo#XGK-HwNy%GBRTmpE z39K4(!j3j%IvSPQJRW0|?RHF=kGD;XDRW?DE2hli63NvS3+4QOV~`uH_h9y5ccsPp zU9eZEtVJbh_P{2-D{cXi_}gIR)QK-vwS>A$4C{0N4xGls{@G4lj#VGKo7F59@Qi_L!DmcF8JDg>~ z@xEjWjycs_u~K56M68xGdHwXeRq)t#hMwB0_EQ!?Csc?Y$PQ?^%`u5F>^sg>-I3!G zQ=#sd+uU^{@|+FRvucjBU|%^0Ky(b#(YVM@FE?9n$C@+n)`_uZ9jt7{nv=Oia`lG% z^m4Pu4Bj^|ivnwnYhk}oc{hK0xw#KE^{a3jh}5rul~bqQ^y%ehuNmb398Uf**f&)2 z=BJmN`(e|67`KB+|3O%}1$~d=K-Cu_b$Cdq`eKD|M`V5RpJZQ%^kfF35<7-MTb#Mw z3N%(Zhg)r^!<9wdb}e~1ii%gW{$M4#99*iX*qTdBg`%QY_S%Rt%V1`*kLtC^-msgT z*rQ#Tj)tT*o4*#RNx>@#cxFi?DL)tT$5c5!}2l3g>+x>=r6-@ufhk3pVo$a1)5k&xe&;F!#v$ zs%#L+!9zlo4O{qjM3xOlBwIGHbrjWdo-L(dt0T42;StskEI>I&TP@$=(m~kI&DTr2X9@xZR zk6S<_{u)@>$|^|{*Va|keP&QUDxCTeuxF@uxV^5T-V2-jVYn4U@`u36Ey#Nm1FD`7 z>B2)oMV#OI1}#}nd@I@gp)-cpjv8l6e9;)Kx4n&@3VOS^{8(ImDlT{Oi*u;ej%-^= z-CD(QXNYl^u3!Ak>RWBcEz3e#8Tsc?F=HyWspEpKU`|gO5Ra=lPjf`fp z)q&AWIkU2y86B32pXG{Ep{VHLo-m@#4`F_?!##yO`{*n?6jhut@_pEG&T$ZZo9Sq* zYP0yPgrF#IDe_`gy}I&%l16f}YPoHyK|~DGK*fc;iIePr}M_EI!fjOwybesAqZ?>#YWZ zS#QoHnx7Qf4;L!yMVz(K0h{-xxB*1oOJL;|yjA{h?;RN-`c{k;3c2b)94NFbfonx- z_t9X++-~~)hmfe#i%2EN0!Px zhY2FBcK9Z^iL^WJvQaXe0&|kLj!GgY!aj1Mj!H~N;~`Jf<)CD%ip=qNtHfw>46JNL zlhs@zxhi3{d;?(f{SLDPyALhC--7)?`l4BV85 z@V1GRv#@gNl$#0z2kFm-lm0a96Dn!5FmTiU6y83O_9tNF7PLLGx+)ArD)5j{g~3L? z9g&5>>B-I*OdHCt(dvTVF#EB1AWw6NDgO>uPMvboOo4;+f|bFf z=Q4@OsQ>Ic*_`crhPl!K9TkhVdWOIJ+itg3`8pMkWhue-o71?g+Xt!YYTdd zxi!_y5L>veRR^<&(WvAcXoSyP`K~-vc55lgQ6luRzF^g~99pVG=;jhrp+x9w^xLQt z-T)Jmy;Lt1UI#nM2|aox)6t;R#I$q6boby5rOZr+d|7bY#(_qI?nZLr=y3pu^ z&HWVI2qO0rVdWOwJ+i+lAVi|@kWdB0G~bTM0%BIO1;kb>^2Ncff$UhNS{msZU>p4g z^K4UM*FgPqR9ane2kRUbyPSitR&KjMp>9a~Z(}unvOn&M>`9{|svlZPbJQ8P`GQk* z#;shUWu1{+3fgkLt}qhPUtp+K>G5aScg}GU{hH}$oNC+f;I!WE*kS51+#F($9fX@sPk$r(J}-jxYKH$)^{W3>SovU4Uky8lN_{h< z4Aweg^RMED5cwYsE4Se9kswr#5rM=*LY2Z>`*uW@!gG=>g{SArL;6d$>sSY{@#-9G z9el~gP1d59BduKR%RyDP-{lfhA+2=BT{hy%1288muG|m%$cZ|-gXw5I_R!pc?|w1qM^hk zrb5xsAlU2zqlh>UCTJy@b77x32SIcy)6w|U#4&|VkkSfORGfobK@312hn1}WRO1rK z6&0I_cUdma8T@Z!mSM%d#s5~=KUDtWn_R8?Vn3hWjN3vS1vkRVsgHuK)cgctB>W?M zBs>lKh&mEpWlU4J`eToVzvA`~N5d1aa*NU6QBkO(M5G!I300I7d^;kGl20YOS7^pi z**pY&$5m(qa}K%=9$hMI)>50J^yp{(z@F9QkW!_`Yq`W!C_Q?3pN(8|5KPL-H6MVT zIC0*X!EOlq0%943KPS5ETL|Cq}(GBpuu zj1Jh(BC~JY?z zZv{8?!_F?B#qA){|1_-Jg1$#;P}xNU5f2Gf$nNFa5t&{3lbz{`SA67)<62tz1M31d zV4b6_);_KHZg7)EYvIe0R(|KpLZy}8aEYmqR%VJ$8^L9R5tNk`Twa2`hBBI&72%H^G49oua0*u7^G3WE@?>bTk_BDBYNnY*f_+*Wis3W5<=S zvK2cn_mxnwLyVcA*zw5_E7%6J>yw==Us7L3(X_^IB$p{_PaXebeVUA?j^VcP1fMjo z+uvB>#;w;zv?IR!*O!utFaPEeE#pgqvsw*?nh%VSvtIun#j0yNj(6@IKfj(56FnaZY` z@Te?QaUv3qhlF~t`KNE%lMgn%$-ZBkRezOV)sOkQ79PFMp-1>$2wsoK*TBqTEyX!% zkgI%0m8wCm;1VrskmS-(U!&Vbp!pq)%1S!Ff&Jv99o^1!G$!(VuZHP%Nck1sG%=+7 z0#>#{%H6&aDx`?<6BJS|3$cPd@4S@k^Un04k<1$H;bzkkS{6BnR|hvcbCb1^>xd>x zSU0fZTn;D|O%`#9meC}^Cz|fK%SI&G73O3`lDEM=a-xp5XF3`Wx!IY6lC7#qlQ-k7 z5`)MaVPz|b?8qgOOB8amvx9HMED3x(Sqb}t%C~v5vzziD-ZqhP23Ag;a?@sK2kFm* zlb(QmLM3f(c6QVLB;G!e_Svv<3)&u8T@?l*6?jOfXN?8E9g)u(wPXu}xs7LyvFs}2 zSmFCvSFq6J9Bs8uoU~Q1UWL_KR&rDc_xeInRl+@7qGgqkTq>ETb={~I{tF|Mw~>0o z@^9EzPU_KPOh@A)58Beqx1T-!i8oISG0(utR)~4ZS3-ptF^+;l%$*@tuxF2VCp(=n zy^t&GFKXX1Iyr&mh_)|Qe3x@^leN+7h$?Sl-3Wa4*ojNDj4DY!d&FHfqRHVfCo7s9 z3j4?%P4;Fw8V~vG!9mGZ)w9RJc&o%9asaGs1(E%@L~;p3K6^O$p1~}^61>HC9qbP( z-{xlzH|3M@wuzKafR$6H-1O|>AbnLh=__ELP)VE59&Xx~;q4P?UkWR?piRo^=Wf%r zL09}My7O&aT}RX_AXOoVoIujjCDcR68+>~tA3|j4&;oTH7f zmJ5H^A*|K1k)t~JyDtOv%<(raF%_zV9^Pl8JXmrx%E(F|i_A( zP|0RheXsy;mKaOs!pc@G>EjZ~)d%ue0~g^vnJL&^Xc68Wb_kVl^RWgkIKLBboXGj@ zuyX30n~pVbu|7JSbrE(7m9=@SK?~lia07_EhhgOwygl-|Dh)(J@Q_fY!C!pSk}M5w zNwzfT8O*QDjErQo;@~^*P<4(o!o;NS{6XDnEhjmOgm3u{D^(BB59I+9(t5 zg=twy+A0rrcEy zE)`ycT|%WSKJlQLUw`gWte?l5C$jzzteiUQjnq0sH}BVn^L`DJn2h4zzN;4-ODS94 z-`n9P5ShOkR&K%EBipNjK_mwc2~{v$>^pd6!LWI<1;g}_(%_I*EfnC9>I^F#T`YAN5?W9jfZ^Oz(L7YRpR(4 z-YPMOoCYgfLF5!JkzA1=-!?e--pDKooJ_b5_6L=3^V1~69 z^b_HvABTNHC2hWKaMOMSZ=Xo}Ay~NuZI7(33ImY}JS0?MkoE0|EDSD7b{Rt7?%8U7 zoPW?yKeKFU1&vG2p;p_c?P`Sl_}c#ZhgLI%{`jx#Q0H7ZAAe+m{fA7Ggwe zn#uke|Ilsxg;sRCxcpdLekv~FWmj!>zL+hH4d#aO1$K1Y5fe)ZWmS_~+U~b+`q}<$ zj=fYO>~?ATH;_J;&$gxRD?gkm4_1cD`QoaHTBftD#Bbj^+(tE19G)PYHSX)JLTP2b zI#KH!4%R>=zjCCMAM9i|M$3Fu9oaG7vHmU-wZV=xP|0QrxxoR!yZs6+U)~k&rw;1# zd!lp0sZtuM*6;4l(XI##o$E%dU+>0>j*Y46a5+~QE*03Vm+yQdZ1nQGFjwngdAXby ziE4SYoaM{YCYDG0$?N{|`T==8Kwb}&*MsEsV0rzZydEO2hsx`RyiALtIcG)ga&h?)!~U{FSB2@=_?DR6%)&AJ=x4?{JmoKN4AA@wX%II8sECBYk9Pq z|K7v0b+jAPVoN~}eSagv%hWCt{gJKyN4C}f7-HhGSkR?5jEjZtI2juc{3kLS0v`yE z=iSI470Aqdv6?FvGlhvWYTf1B&{#P?5xtq|Xcd=y;O8ZTES%H>|1o&0#D{~`u(I`V zkTlsDHrQ{mUIc>u2J8rDQSJaclg|yu*~8*`G2SSV>qW3~>Re~5`qQ{?e;bbX*RVgR zc*R7HvfZZqOT29&<)6dKsZ*ZCJ;iDrgKVZGvRoTgk3?sfoJg> zSUj>@Y!AnqC9*vfR!*JmY&Gp*06se$@L8}wsDMQlR<_$Q`V72nBIR|ka_W?O__U7! z_=a%6*TSx#0v30$n60wz;H&UviEOWcmD6X-XWR_7e-3B+80-p+t(YjZ*glLmOJw^X zteiUAIZczD2H}mzf(z({OrkRdv{*XdWV{`p=i!YLInRcbQ|H_r&o&!?-yIHkH`o)@ zTez1OSbUD$x`W?=w@M`YR#_p`7+sC-4`tZcU_e;RL_NcmH+a_W?O_!}+*@Q=d*{|I&k6|ktB#fv%X4*mh& zERpRkuyX2bXRDWs2H<~(1O6xM4=P}B2P@m{JNOyAZ6f8TVCB>)_cdPb8jxQ#9$Z0h z#UwgYLC@s{R>O3g@#c8bM8=!K%BeG6*l?75w{D=`KOFVGuve(}v-rZ0*#n#SGTZ_p z@x5W?7Q{W)d#WX)V!5D)gjzDXrSIz#xn%T;WS5Li&zPs?ejFaC&QV5K^ys_ul$)$A zWpFGWt@#cpwRrTSTw*^Gz{*w-`5Kow;=A3 zwT{#li+$Vk#61v+CV8%7xd!yksX;xv(AVCnxe~G1JkQ)WlNRy5;t?a-WB zL#$d5KQ)~ANw8n2#Fy}QOm-h^>L0;vAW}aTR&GJvBkQZeL8J%|2~{|}6j(UikZj@5 z6Bi9D*pBvf6Y&8I5#O}=19-GLhgt{Ey{ucUr6@<)aEtG-Qf0$UTw*Ge4ZX70MmBjI zre#$PkHBtn0*`*dbTlOL+{-#H*|3^rcnEKp7*Ku>D_a5Ow_GB*qCuW}>88BV+TfaD zK9j&|Xe#CAb1z%6o`W|}WIYR3PMvkrxtDI~oe zbB}DV3I>rJJS0@XaJ_G!k~0lk%w)$b9N6l#gjR3Imqz%>3;ckEnVCW%TPRg>TE%bz zJX)PYt%EZS4YRfU1a&kOhesr`zhq}c+13~@>y8f3M!xG63G<}a;Bl~Eravj%$mTNhM&Pcp>l4XX{g(8 z)BZ8uK9Tm1VCB?lH_bHEJ!TO9UpVpq!hWF=H)k5^eXyzj8@GW-{hzRM3+f(OUlk4_ zMR-W4!eQLEBeHNfFWCdL*-=r&!O}?AKvkb?c>6JEh;oiL!ugB%7r5%*kYxw{&B_$B z!zFf}(@1W@Q8m1U^#XgglA}sh4R7KSEvts)Qc7Q=+eU0T5=JFEsj7y(*-n+7VQBP1p;F(JzbA8c!)E^{+zcZ7M`7jE*}qb~TwFi@O^*%czl2F(l^B)( z7RGy0qbv3pScIEG90LnrIA zFk-T4^}=)=11&pxnSZ zffYi|A=becDh;!>5$uR6*ZT5MQRONw(K4ze_|!71-fbhQ`~l`=MU~&desUs@e!_G# zCh~FD=e9nZ#ris5a;37bNDCeks!%BUc0?8mf0>@>Ytr5o`C_J=KPIQYAKm$QG&VVhTCM%( z*nHoQD!aAhm^p!U!-=p{sHDZ)Z=(Y?@8fX; zh`f)1l~d=vv3djAiurfKnSTp*43+sSjCY@nPT1VPfg3^Oele`vg1bldR|SMf6dn?) zfOw5>M`QuXKoeKu0b!jGV&tfFBalfbGgC+z4Y<|z$GO&n4#P|0T1EW>QPSz;jRg_W&9(#<83 zD;Va8eCr~-8#4vF7cIi?fE_|5EIt9#WW1d)-ikL)4oI2+Ps!(vTE`+nr!%m^H z7KNeF0h{*_ZUB*Y7FKS-+atTH0zo7M4+&KuJnoy8WP$M4WM>$rXG_IMs}H^jk5lI$ z>)-*_++-~qIm&~t`wl2o9(&a^^swveL$>c(cSnauTd;1(J_&iR6j{IdkA5d<`=tusXOB zb_kVl^UOgD&X?nj6FGkyR!*IB)69X3^`qge{|GyU%G#VcXu35tNp=hOwDCwU4_ytstJR4;f)ew$F8ul6+7PME1_bC7&Ae! zW77~T*v_eZvJV%thYF=kwQFFswAxtOw2pNIt81JCtTxy-i1@ypXC@1@3 zQ32%yF3~ceB)EZUPE*f~$ntfVniW~T3cJb)KAK=U8kU->U*xn7e{(l_ zmzWCW!%Wd>BbN-qjI3OefxYC!9PQ6^G$L{IpX@4)A_6@LCsI<+kRIP|# zi(5b>eif|Tg1AR^R|SGd3my`xKzNI9M`VF;MY07#&uFQzc05zi);hh&`hZ0y=Rm6+ z*0w^xPq3}qtED7Ik?_1P2Q|m=A1*N!iiBR-Yokio>SUCYylK?T<>pKRtEHT%quESH zLn1$vQ^zG6R%ODbc*Dd{vIJJPLdha7kzAS3^zjro>3x|&*d1w+UIx2`O4|H*N=xQ@ z<0cT9?+GinVD1t7Rr(MC!$U%)kAL}wEtx)^PBwik9*a*YuI2{21}eFg@!O@Yfswra z(bgI~cAW#Swz31+q;7uQdTzWH#~i8UqrQVprIypU#8gNv4T8-sF!Ic0FhMK&TnhWl zIS8WjnU2P%wh4bj<^(CNP)X+!+zMg<`Wmck1)#5RiR6;bW@0wj~lZt zA1ePXIsevuv8Orj!)+msf_q`*)JMTqYHpY?5_(Sw9tqt{VlpaDI}*Ig*wX9jk3AZu z;r0+mLl>;vVl;SE6sjl@sm4P>6(y(m4r^JIJdo^b^tsv6SX_t{OGS1>NJ)FNeJ?zK zopGo()V3J$eUZ+MZ`iKoI!7(?9^WyhYLRzyiK$SF%+vaAB%xI>Ie9m!huvY=Sx)%T zAxuXDQxo3{)y%geO%89K7-?3(%2uQq;1bDI9~+B|t+~t~ejYO^u0aKw$qgYY8qo}ykTNM*#cI!0?I47 zL~@0M{K&kU@}Q6!O)0air|)!?5?9;~=`5>1e=e;!FzFf%@~w&)H83au4EduQ%NMrlI@*tSr6L zTgX?c1I$As(m(ferR1uLh2qIxxy|6dXq{eIP)B?8kA`y=Fp1_WyS)SzxmeC+_P_=| z7q@^2z7JNGd1e;-hhkJFO?f%MHs~0x;x8qh2 z$-f0wZb4p^2UIWD`c{k;3c2b)96Yoff@?);AYS7c#G+N)714ERl^Q$hrN&9j9BlA9 zM_$KD4Q8&Ex$31xq%zey|j5(*YFL|%j|Ll`|F`C z{!esdtN)R0^*@HTb~h4j$O@)fqo~+%&`2&9!KAD(b0O?0C+z4GOh=<))DsMvY+F&f z0B@TZT+WA;t>AJVmq?DXQAk*Mw;;e*yLkm3pf}!bSc$+zKN3XJO?Q#nDv0m?bfYJ0Ywp=ft%NrhRaG_E059jj9md>?@&=ztLAh zB0t5eWb{QoeR+=6%j+iMa!8E&{3J1dPcZXhY+5_$L%!}-(6hc03i?sL5)%6ByzcX* zzSMgM%carMSaoOpDdF5nLf`(lB5XoZS=(+joa4(ujfRhNiK#I2*w^T{@r-aS%*m=7 zuYw)rjO@`xOhXk1=xspAa5~ zokAtu{OP1d2W;LC;sy|TKL9JI&b#T;Ne!17%om;>%zPe`z$zgsbMwCk6(dry(wY`JO#j-H& z+#S0%=!$=7Y02@pu-tbPsaoOvTw*=7!jUI7W&y<1t+T z(hVNWm-E?SHv2zOJ7|&(7GEW=eQ=UxM@#uirBs~A)q2>z$#PzhTpq1v1M0Mi< zT`RB0$m_BEnybwm$*dX7jaG*zmc7h=)uyj3lvYeEuk~azqw&F??2og`nbk^rEE;DM z(yRggJAY|E%(U1!hl$O3_cg|qk?=mr3<)f9&gOl|AotPCe389`XGf$?oKa&(B@K<0 z^ApigOh=0w^)G=oZV8!5)QtC8c+&b#XFbdZJ2H|ehhD#$oOGcId#T8 zJlh$3UvWn8?Yl9Pn2g5}J35O`E{Y^=MdpQgvqZM@VCB@=vSVa;$zjlaPdMFo!_J`I zy|ekRd}+NhUaKh`&!Q*!4mkBJ`VlVC@>w*w zI==zY^nww3E`}k>n@laJy9joha~wpUVmcb4+U7j;wB%{Uq6=|Lh_UDbSlNn2=le>i zSR_VQP%Jt�vJH`a`c5qyF#6_AX}z^Xv(_qRn?b&U%48%{Yf#ZCTqHg?6vR8z1s$ z`;PPxU(c)P@(`D38C{r{*EiD@68biZYQLqT@ss`0IQ!a4`!}PFe*p9+{zOPFI!^d(c{J;zViKuO zUT5=bE;@z%0G}?3PGx^u9o#Yi5nWPQSJLo0c_f=Nuq zQ^~W;PkQp$MocQKca&KfWMkYMVg^|VD_a>P>9H__-7N<3_l6UH59|nM?2c^W;!{2G zEpBmrH{K|b>u#`e`dsZ#FpY(CEyIq$xHf%)NzMC~@J5MT3$Stvt{&x@s`y04_mEIe zpTGC5JLJ=6&rG(ru+?h)$$X&Us~@}f%#G)b?~sO{FA*ym)XmA=rVKL4T#_SqEG|k zw_Kv-jhN)N8P##4I+%85a6QDBJBK;YFBIjhIZHhn1~l@*lxJ zu?GRUZASUaV7)^)>(_UTb@R3v)dQROYj6vQ#J7W$QzzcEZASUbpngO+^}}G#IJ0?V z-{I!A8PyA${2{m%MDhp0$}PxyRDG&&6zRf4Le&qy_6=IHe%K({`k}s@-l!fv506;q za3f3_VQ(qqnoUCS@LAshrHY47bBU=?Jk*!dTO0CjhB?XGM!kr*5q6Xlb@WZ9qt^~{ z1%ueH!H~(O)pO`|c+i)4RBDgd0KRJ|9+Y!QCV0tFl2P z3J(cYHhju=0L!xB&V=7E=0;ZJ1_$%SmD;4kq40opMwm%286arnQ5qsGV(mzW9<5Dj)s9x#fHkHhR_AXJYMHP~g&_#Yk1 zbhKNzCW;LgMrnkai~J~V1hLpS4OX^_jZ?Tpat{@+l!x%jJGV9c8<}B&j~Ca$?xE7( zg0E$4*%iCsyc#!!I0n88E2lmNwro0*x9vE1B77V?4!ejt4#b+)^>)V|3y!PDX^Mh-<^=+?bp>I4k_%&Wiy5RF}VrCQP+_6PR-g!O{!B0rEI1!P|j6G zOT|iuTqAG_*EDT4*@xW-@p&ct%Ik7@-A`Wkm)8%->jC@W;@qLwp1=>OSz$m+J`&Vk8EjtqBhVu`LPkU{i)L})Tni()!F+}}s{MSUucL~Y;z%xTqH`>G6QUoT z^HkhOJfu46snK$YZP@Ny@L)&f6|3x6@aDsS?qg9no}vA#5Tqy!7M2gtui9lQA36ig4X>`#E77yk#Qc zEn(%<3D01KivjoGaJUD+j&RoJkquWI3Kdsd)}6Z_-YAjlKCp7?TxVu^#b}^CIUMZ? zurH`+`*>s)cH4B1!`mg&T?;Eu4Z8WFLHDw7x|hPf!0ED*(7Jao!P_O${Ti&CI^Dj; zlac}WfpEb0!|tF07MtoDrrV6~!AoITPMvPAoS-rAX2bCw z1v`U^SA6!NKC@);Jpyl-$oDW_7cq&>)X!q(xo)|A2QR=|CK8?tE4Lu* zvG_o(Ul8xEJtWlng-d*=(B=At&!x7*n7zFfJB)YIPecA7JYt>kgz&1+bBA&L)JFqF9jx*?gjTsjBmh&sHd#LoCJB(FV>@n~q+!W#%_yVk) z`WSHSFjmep#=*Veea*1eR%&fWhM%;N53{Cb`RUbRS?s9UEwq`mSnwmJV-|T@MYTkfb zKnyjngO#mNv%Rl`3N>Oh1%;a45G&YnurPa z)k3{b;;j-x$Jwy56*|u163Hct+2SxE2j3quOR&4o;`@ErA5^~cIA3MEoglu4w@svc z1FYPFvPX1R2|@%14+&L^uJY}OtVPdGcvBC1^l(mvP5Tr&Qk}z$aL5RjCz>9WwCLo> z7G10hf%WH$oaR)>7PD2yjhyj+FexjhybAV|6Lz$a>1b4p4}-C3OWC%{99!XS6JyHe zu(B0XHsun@We(%RU^|)b%noGs1m=(ZVXshGyFLu&BEBzf0g?DJSUGj#jt_%b)K3hj zemv|MD)m+$26K@=2DgGpel@Jzg1kraSM`HP7akI-et15xez-i@2h6_r6mlcEVs&-C zqR(R843AmofSZI(!MP?2wdCX|8E*6)M(P3cIxexElA$vv=e6H+*W`z`J4Ks*wm(xS zWD6yRw{}F^Xa1&thqb|~o6hRfcGLRW&-UJB%Ir|Rawj{HEfpim=1SjAWJ{xKEBTdd zkLXaxK=XZm?4ZCR^Hr&n&Kk@Qu`TB9H@o^eYp}kzxpOx~t~`{b?9TS>0@KeI*+%*H z`|y2R7|OG|daz@IX{b=jRN0B^t2=w&4e{V~Waqk3&aD~kqB9XgXr8HUC5Og==OX3eebt|Ja3_MJs2qsvas5@9@$s10{4Dpf`^O?WC`ci9g%Ybg1tmtVWNIjCfRDACuR|<@HbU`e%84LSCPg*T2Z?U*+{F zdHtKbJ}s}$$m`$b^&j&3PkH^9ygn*S1UooBMS>enxjOmuL@-^2mz1<@S8$Hh9a#IgTx1 zWowQjX~NwZRy!GV4-Th$0PG1WUGa`Hw%R7UAKogF>^`vaR3K|@*f}|z>nMgNj#dxNDeh-@TXMO%oY^4OUK_ad$kIWZ-=u z9Pjl`jwsxSt4z`!U!VRJdYObp6eT#rI6SVItqtVdd2M zcE@jT47fLi!@VB%1Qo8hbNM?bi|jRct3CRy9EDf|vJ{?>-FJcm%DV@a;obiiRi|YcsQ6ks5uyX2L=QO=6 zHu&xt&Ubg%A=F!UzSwlp^rqY5{7$@aBImcm%Bgeij^EZBfR7FbT!cMA1uXI|Ut?gA zU4^$wBs&Z%r%twKC|)OFpuHd*?fI}PsAy-2dzUZou-Kl5H%nxDF07n7+gbG`DhA%4 zhU2{h_68NNI6|myxt)J+!&@d2z7Kk#OW zY@ddeQ)k;N*Jc@XxBX0T-MkHx=uF)#<}&Jw$}GNH;tdn|ZU!r-&bNmzj5FvS5KebL z*cI5lE7tQ_Z1=&NC9-`VteiUA?s!e2f%b%Ow8z1oprRG^GG9q)kzI?oN+dfDE2mC& zrdSPXu)Q>#?Io};sBFbNm0ZPY(fu0UE|Kn6VCB^5cE>Am4Yv1(v%L@Y1eLA0Z~6LR zi|oC4t3>8y&E-@s+p%MBbOf%Bl12;aiUk%6|%{ z{3z@SDrGS%DRxX*_wpa{W{GV704t}?wmaVSWuRU3+2AUA0h8!V6)mDP->YVkor||h zB-;low;=0r?1?%#MVy-9A)!uAxti}@L%vchJ0eeByCd0?*Jd9WZ?Md5l_{4qYqcXf z4}=G)GkDbYZM!!#KfbnqXsnp6=1c4mpg;aAd&Qb7=i?(?*ni;3BsU;T)V9Gn&Q96i zcOa>=Q}*Q&iJzTPZ0o3IN3=cIr1^*Y^OXVS)`8~#Hc>mevkewA)%jC~;a7OiY{dRq zl6z)1b_^&Z$(_ke3Opq4blxi@mO4XFw1VkqaYKFy!_f)5Qau$nf|&D8f|aeDmo)cR zFqb(-y@CE3*0DhJSHixbqJJfSKymlOrhhqZ2a*1_Vdd26Z`>aJqv7cP2s?&~{uLa( zqZ2mwKj20Xx&IDUPM!OX4wtPj(HY@j!RLa*!CWRW8IL=5CU|43F|oc5+T*1UH;_19 zX2Qy;kCz3@dFgi`f3)Byd23G=?+hOgZ-<>ijS-9ac(6MlovQZxz6CddNc>H(a_YqU zTCrXg&UzSj2bHy0)!uBnMLCBzPNcj7R&GJrW4c1kc!+0R4+%BnvCKE2$r+DRl07T7 z=fG0AnlG-@Lee+jVd@-XwfDAt+H5=7A+6J%R~+*k7yAw$HP3Momq>h`Biq(T?4Ylh zQ2Qwk@pJv`{K#CH9l@9@kBn7W>M60qLl2$wRtmW_v0=?8c-_T37(d0|&9CrN`}YNa z#J*p-$aa)bs{Ni>6!_%!Ti&VghxY53j&>8&mWU@e8@3g-e~sHfjM~41m940qH1%FN za1GS6&JRZ2!z3o7Dz{OKbpZ7{&f+^AZT`p6*hx;t(V1-(YlLkH=RHZJk)2sj+8>Y&GBLhB zJ2C0sRcnU*p|&?2XuTXrvHLrv9ee$NNw#}1%TDl~bkQLu+Wr|C^YCD~G+G*~#&>Fm zq+@m+l8(_$wsdY}MQ(5~o@|-M{fIAmEHD}T{o1AOtk&yL@)u^&*k+O@_Mhl{!(6lC9n6%>#ybYH}ZPFy#7{RerJt}0H zpWlt-{>yOaKZm_Sg)TljZ}z|@eiv>5k@!zx<kYmTT*$oy`-94Q9$$!} zY_}=DfVWMg{2Z)2btqfuyFZ-rYneo6%5|Nxt6E!%w@swHEv!6sC|k+;@Nmk9!v65P zmt8sfV7zT2Pnvc_Hea5&uuVRumJii5ryrrV4kz?&vA zz8_YeGK{VAYTgCGMf7YY(V6l}W9+J~dhw=-jJsjwDZ|(*uHF&O_^q%zyzXOHZM6&D zG?DSnuyXp08_PwESe*}NJOsM~W85&^j@4PbX(HpJVCB>q&tR`*4Z5EWr~4_`5mdVJ z!%nU`>l1jRM6Mr$l~d>1&A9Glfc-%@*jr#vP{E30zGAEGJN72LRU+BzVdd1xZrW=3 znnC-SaN1A7-l5XooX=Rc>WMu9p2RI7j(|VG%BhclSFFrw3z+1xLWBS2Ukom`H)Rr? zDYnI-H|~De^q1gv5a}<1l~bqR9WVAYST74_y*KO$>b))^J71zIou}r!_QYEylHDCv zo&sd;Vr+Fd*(&S_kSw#>zGsidTP2b$!pfTKOxQGXr|_b%8MRJiNkiuzN$T_W8(VCB^5&Ji1SO9i%H#JGQ73P=0` z><}tqagu`B_*wb2lZywDZAcH9Duh?q`V)jJas5rFDKT8Q$88?haY9v+ldqK zwuzLFgOyXKJU5Pd^^IaiYQ7?z^JTC{sGJw@xvysH?Wlbz-a3)=C9rbpq&IeK+B1MZ z7!Lda*fCV#@|a)8&O_;1H6L<6ZUmA0eXw%s+`HrLlLqM77Y0{jy-cDr)tH#+;+sA# zvfX&AM6%Oh<WUjy+_ zIN~hq2`XZ77xP`v)?IuQ-YSvo5wLRVWPA9YZUgP7!qI*Lb_Er!nAH?p(Ji(g!+wd3T(5zZQ|CHgKij}S{8TvNCt;sZ z5pTp(uWr9h`%ifLMB0zS%Bj=tj!&8}7;pOJ;0k&Pljvjx&CkcM?&C#xt3PkhVuRNf)#|`Ck59zj!d3$VA7T zzG2r9>`0sAS;tOee?Nu&ec8+GS9B`-)ADE?|NS)nQ)AKi)?Mtst>(Y?Y|+&fjS7Dx zb`t$eVYm@0&tz6$$F<7aNu4KrI`0T_M>X#Y|!{%50mpI2^?6 zf&DPG5pDsI_fTnD6!8!=h@k@t*P%7PJIv9Gt@hL6aE10>V-}IUAPrQ^1H&y zEy#N$e^oz-bm1YP>W5o=gO;ox{+Mk2Fr6Rg+gv!Tg9oc~q)qy%soYR4IXOy(lYNJg zDj81T5>ugM=#IN=B#^JebgTsORoF*Pz|jQL(RkG4nttcX?=R!65<|xqVPz|He4a}r zS0>CBN!G#lSIiQuY`6IS0`>=$uP6qU?RJ8=8*iIP`Dd_l>XhfJr0O8O;YGouUxs}` zB`s#vb^C4F|HIoS(*7^3+=8}8E?4D%NCh4esvJ1ZwxNc~@WzRp&w!Ov=e$5q zswV62g|of^b_$jCB4esRBn#ou(1SIw!+3DE|FY0&?hn~8_&iB(7wzN?9Q|3 zE`!}cr7KR$YnX1A0(;|46B+LbE2qwQo+<@w&c}pvUJbj1%2}*;*UYzBSMlbFtdEA3 zTd?-X;i?P}Nx(xwl>z_qO+~T{_Q(V*1Y9<+KN-ZU|s+zTsP;p84J zkz9GOK;+oQ2ses^-me803EfO$GD<+3w0Md%I$)=dX}AGI-d(VA>by5rxwaMaUBa2~ z3_FH;cZCUBfp-FSE-L6D@<-(&)%m|0LV$e{9H>?bc@Rn>s>jwSBcBE;2{4wSv z+F`YIBJITMZ#zk8MY)t2%*LLp3};4jm5EyW54QV{iR^GLyDAkl_Sw#$g%8+JBDSKm6x+=q!$r3@dE1`C}N4YzL{2 zl*V(JHF=gRkL+M8qZu}MJDH3}Gv#VNQy3WHx5;QnyCPa*k*iWF4^&G7 zW5wjU$2t}FP4u$E-5aY8WD2F?$^kJDkLsW+%cbgD*^OK1U=x+nP<5a>T+UU7*lftp z0(t$SynabuFO=6W%j;L<^&)xws=R(pUN4r{ugmKt^7;*V{ieKLDzD#?*Kf<~W%BwR zdA(d-uaMX8%IlT#dX>ChEw9(e>$UQFoxENzuQ$l+jq-Yvynat!ZvI#ZE}v+|p*w@JSQ^QaL? zzW^(zPI{(zYiTgvF`RLK#~6#RQOUQh(t+yf>a}>gM7m31<<#lU%{IL+HW(in&iHWH zBh;uZ@8c%x?fdvpymcb!gJI>=NiSxTe%AYXgZNqD#Ls{|LnST_8*=r+Cch51f=K>k zSUGj_GsU_IgY~uHtgnK7L1ir>xLogHMer-|c8PQ^gO#TO-FU@{LHDt6x(~y?K>Gs0PsneaOtO#h=V511DbMDIHq_sKTlex1 z-Y}7G7FJH3?@X~m(ZKuJaJ-*}eL=-5BDGvuY0>=@-Y${uCt&5NL3hmjlJAeg>HYxr z1x}Z(X|?Fyg11YgdlRgjI^FJgJ)Uvr{xh8IGq5M9Y{hArd=;TZ_9?toBH1Tl< z2P)Yf{y@aGj9B;Vg?O7psu#e@sZ;H1YI6LZ}83F!s;d18&t$|`2AbA+$Q`2-ZGK!bFgyiglDkbUIyI$aJa8!5}m1< z#rc5o7Bwq6FU1=ra@`hIPMz!A=1q16;KRcK9}0VfdiRQV{>|3gqz}ehCz3t@R!*Jt zlDe<7O^ycgGs2OtgIz;Kz9|pb&TiQ3PsYt4vOfVfcagRpC;(DgfA>xRw#0o)8C`}<+#)Y;D; z)iz!m(C1wmT#wIY5}hg8hO# zu`k`HR^#r1H%nx@Gpw9C+l{O<2Mo^naLz-pTd15D^IFa7f_*<{aTAElkAjs`XWktj z%V1#sbU5Zu!JeRE7VjSUaTV6x{0Y2OBH53@%BhoGU>vw%K>k5ElgL)T>_f`$lZN_`z zO%oaK4lAe5c&2kcY;`!`D(nj?V6j?6*lp828gG|Kw+JhzPIr-g!j*9=UldOILf9`< z(o6Uwl-&oL`USWRMC#|m%BfSIDb5))NdG*X^j)wosHDX`Ezd`j4pg%uKgHW6(!B## zo(gmwE5Kd~r~3lz3zV*V1=w?VyF|Lr!pbe^dVFI-eWpTupuj^yeWs$|dr+DDOvU$- z{m5m{!PPuFntZMHZL3|sjXoJThga>rZ4ZQO_k{{}(j&J{JBZHlaf-Jwi?Ih0IegT| zDc;N_68<;^;h0hBg0`QFkU!U78Wo@W7+9IB4&(~C_*)+n8F|L!@+iZ)c^dosDW`AP zwd`f~D>{|^X?e7c|9%?#{Roz`$JzOX%cIr&_n!FM8wUyR9NOxeC-_%V)_+9eVplhe zG+AUe1s;~Tigzpgu*7|sjy6VXV$;8?7j{WBj9Wnrt2tQN3af&=M@&>+8%ZMrWqL$Eu~qWe7T4k}$S113KU=wkdIylEoif5FPBGj95Ju+8~3 zmj!d)j!9ruB$c!I?O^Bq{A#>;BI~VT4mFsam0CUuyUd9{TElcSJT>w4Q5QyOgeoLX!;K&Yo>O3DEAX7i zC6X&7UMaG%!*K@v>zHAIg~ipdd#Loc;PdeiOT*4rI>EIfppLmUgghm~851&=C16(SeiIfYla_W@ltL*9^{pE1dUxa-^B`tQb==R&RKaaOhr2Sb~ zxdm;HT&~IikqSH{R5`GjZ%1S~@WW)wf$n`ul?wYjdGkcXA6XZ$kmMX?wY}RG1npk> z7KCwH(s2|4fAICWDgu7TCDu~}9C>2nJ8my;-o;*xMlZ3;@D0(T_@!u(y)BJqvOgU^ zu{7FxSN{KBB`({F%XZ?jy||3=x2sDDpVJjCX#Wz2d#Zn!ed9AXkQ-T%8;n2qIS~Kr ziQ0$Sf&g0?TahbE?Sm&-dsY0&@9~M+2Pav#u%k4%{g<&ZXB0{+*{oQeec`Rxp%&`u zMfN##0kr+cq_I9!MoOjX@Ic3W#5YupWXdb^(nn2Sx}0&j_|j#!y!OcJOnL2<*IDw~ zC$F>l75>8GbK*u%>@DMB*DYz(_*=2AU;$SqKUL#z&LptsAZN^uo?-6M!mV7s;Od24 zA8d+SL97p!z{*yAkTm((!;LU$@ZL9^_cGWYRNkWISGL=f_r}{MQr;6*PMz{hk+2NH z$AlAJ4f}#hSghNXiB>vLJ-1gK?Vh_~*9KkjFIM)fr>v zIOmICXHYqdqtEL}-2#0f-Y}8x1+a4Jd>5K!oB{fm;h=vGdxZ*GeE!eufgQN-!Yv>Y z|0%4TK5?_GHi&OxY+}n_zSoNMB>lE%Bd5duRrD(y!*p>zm`dKrU)0) zbGrRD?WK78MB3ZJ%Bj;{Xg+irybllOeJJb|?EW@;U=u$Ww}43e09d&NagW(lH6bge z@SmDFFtdRaxN3^+t8+DKL-z1=SZu)ukEZ_yD8ah-8^lUz%eQN z8Q%epeKKBW)Cwiw^5R1I+vREPLNkD|JA8RVH6y6XPp#?3D_e#?F=5 zde6azzmDo$i*+P}9cW^Nb!BxfzjCU8@`<&&%m=b znDw0yA1xKuj%NxJwGVfIKsm!g#>hZ+bb_$9w;plmp-IZKvr02Vne0v-?L)QPS$VdF zsS~%EbWwFIyDG9Jy^RIajESIMo6cbN{1 zAxAIR$u z<@Gjs{gJ%hF0XgU>yPF2C-VAJdHtEZ-YKtl$?M(ndXK#RTwZ@6ulMpR{4VZt_Rq#v zB)1A{fl-ASPlV4ha{^z({e$-?d>8R0Oh+rQYvMFJqXYH>;nTPQ#0SE^!phbIVbZ*3 z)eB++^fuoO2E8Sdn2f0&8?^YoN8NIp@Md_+M8ccE%Bd5cuRoL+oc9aoybtUX=Yw}- za~4y2y8Slo_u=gmY3~Iqr%rp$aHjEiXrMkW9Q9h*Aym}!`PPdj<8994c;iIQ6<9fS z&b_h@HW*(L&iHGvGpLNk%hq}UFI}kKs(%G0u zn%~&#>y3S<--BC290_;A%BhcpdD3@c0?R-@?aJUXt&2%?rc4w2_%-uw)-S?Ds7q*` zhm})jy^%GOXz<=4ocHTH##?+D!0Lj{{57}<#QS?YSUGj(bDE}g4cbS9(>@G#2sN;a ziml0boAV)f<3!E}!OE#~?v=Ca2IDis8J`Y2gUVP`Z1vXy(uJyGI~8x3$oC{zIeotJ z1&6`+nsB~X!p^|>*5Axnd@sivCi49@teiUEzQ#KygYcu_g#QS;gGyMOnbk1ej?sU> zn;|0cxK7;gvtAeZTxlE!n)wY=ZHacMQ?!yfr@}3DRr_Q^6PglzZ>34>c zemm?AuX~!kF1F(KTkxidjNb$+PaVeQu@S4n84ttm@MG*a&oYNMO=P?RR!*JqJQ?=H z>I36mJ};c}xv)#9oW&f8X1;wtpMy6~Wc_hiId#@^o0owYsBa5LeJkt{Dr)gv^JeR9 z(l_I+6G`6)E2mDnhcCx55dR|_@zby?sEFm4*7zzS=|1(e{8zkLBHJfm<j~+l)LU)F!h}`Yw)?o6Mf{I*mNSzqPX= zJEN-B%g%YLR5Qh@e(u*}@JMwIv)Zz@%f8!gGHckUErNCIGJDu}1gTwS5Bf?d{15m_ zNc@lYq;(j5W_+bMjD9EmF!}}8pw+2+EVSQC=Xn@CGn^kr&+KkDM&`1{FDRmgV@_>1cS&!{}8f?7Y*D8$rxFuZ5MZ zyt9-`B)50LJd9pB&Y+)Rh6V0oI1+XbmA>;Zdes$s3>=P|LL38!!pfy^^otcK5@MK~Lg# z5M$7vU}Y-?J?bl=VvrbFK{4ouAy%;MpxY#S0`@fXdl+xHc5=eaq<^53eYZm!x{lcL zI%a#|qt5nRqGfDZnp|+1VSf$d0GN#xN%n(X#$g|0o0lf$2GUaT1 z%(?dL@fX$$EF?L{*(A(~R~q(dS;tWX{Mpy@>H*_1F0q~>pc9|NAe?U0a6;STjT%4M zKUOSf#@QiOY;P_*{wWh3$G^R?Jeqf1e7H&`I)(jx*~{!#bSnGP@@O6Z{WShlW6}85 zUF^TD=D+vEpZeI4{j($wEt#j;Z#-FT#*D#+r!@n zIW<4JKW@|;rIm8 zfpVtQ`S`J_%+7EooVFNtFT}0n#Hp0+4|WV|sxUUd&IhfQSnTa|RAfz6N`-ND5^Se$ zxRK1N+(2b~aG=OO-&V}6WJhnu&31Yqij#B)a%79IP6Vs{QfNVK*Be{&AAa6jzQFG6~#s@l7yP$g=^ts>AH6 zx%jwP*11f4bZe)}#%g)2m}Re)+2OR~tf1?3Dy`O!$sVYd21HLMC~uyFYE_v(n@)~B zfjw-*C&!*BuP4dt$?|%Nyq+qr>*Vz`c|BcT&yd%T%Ilf(dX~J_PUA!1? zl}L6YSUGjFv+A=i2Hp3C)7=a929>TjAG&V2eedppw@f7bE?7Br!ZX-&j{$c)9Bu`6 z1QqT~e(S~$Yu24RiZ@E+Isz-F&y~%{8C<^-&h<;MBQUP|%@(00=q2A}O;MJI;6E^n`;6@O+FNc*==f08kYR{m4YB=?iV7E}Ii<7>sF4)XJ zf}22Oek`nJ&)hw%66ObH}STKl)nxur%t&$e&1~H{X;n4 z-@%@s@)dJo{9U|so|@7A4c;n|?5|+u)XDZWRuUL^`)&-b&1N!*&eUdNQ%1vd`|h2A zH%(-`A*`G}e;uWwr zsEEa!cHMHD@BrR2k?@CM<+rUTl&^-BQ>Q$uzOKz+{MT^CPr%-wG8QqsZn;hP zalBN3e40v=^G| zvkl%~3g`U=*eg`t;ytz51Dp8ga0`gUKLabLPJC8X&T!H{fxST`Eo!p58l z@s^2%e+Vn5PIzwfz668v^Wl{L1ABx@S$=z^c~^yWrkd;i7v4IN^xt9S)Jf0N_JkOy zxBFgj1^#L#(U}Tdtlrklx9{q$@#cxFw}6#XXT7mwLykfGpm5?JfE`1+>kJU~|xdk4j&LLJito=sL%-USJ(*Dp2{$u^k_G){_ z90#V{iS-x|``}SZd-k_D#my zN#pl;BO(eCAPW^MC0H)zklIk-5S!z3o7IJ9Ytg=g``kGGbPtw6c<4Ia12&pYS=(7_-Ok*41^yM0A3g@(#R-ldw@-IXI7Roqr*~hoGVU+B4f64hmmzIgh|R?_Z0H%tTc8)mhj#Mu=kuJ zB07udXuxXX1;6S*J??yr{iJC7e7x=T#+`|V@_Deb^iFRfUtwP_sOCnbf6nDf$(0)m zMXpwEGq~Tw>}ftofI8ZvZ#SHCC+r+5a`6_y?12sbC%6Sf@VCRtGU5EF;hv<4FIHK) zCG{7Xb%E5Mhdo23F1`-y>V-}IKe!b{^8bRBTaZ_E0`=ai^{p5y6xdf!;^3j>5L_!# z1F_=UqwQ{qA19)JC;J7#X``jp+LXnv%nWSMI!9dX-OeeCLM}d%aCN?tbJiE?fA`0B zX{o7ROGGLay^Xs}9ic--AE})4X5sY%-`~}>{YewYPb`gI+Ptf4_=f0Zb~%FmHL3p@Psf`kGCmbnPMvYnM>1^A*N1by26hRRv-yz>C+jQm z=83E?hm~8f_Q=_B!WEA+A_;g%sI>n^-;T(%|6;Nq$(T8uDG#y_M-OYc|G%sgSVVFT zvs%WP``3)-%K13`X9{mXzF@!eYE-Vo=!#RjU&U?W=p>h^WjCK2M+I!&b6KTH-R!*JvBK6qag7|ni@e1r0D)A+J zd4t^toBAkj1Cja&tlWaSN7h$`gGdn`5~^@`#y3&P!r`{*iGJvJR;4sltqhm*#Z_AA za1}gYoujRT?%<3?Kf4b03+E5Cw0<-{KSkm+bt zTl>6b@L5`>V-}Ib+{Eo^4r78Ey#OR0jiJ?>B2)o z6%v>F4q;hHtV{OA!}LnNFs79dN5g~FnM-O%bZqv4o2;cNNAXbf9Z;%xSj8o#Lh;ZY zci9Lk6EG*MZ1^PXBPZ(UM5d$hsEK2uI4IewdM$A_-YPMOoCPaeLF5cBkzBzrTRgEl z_1$`0Z>wkboCFejR ze44uHeFOAvLfNgQBu9zx8rB!=NlFeaRU&N1C8k1&(AVg}27$S^R@fNE8zzR09IR}GjTKxXxwJ4()ah=@=QCrlJI|tg9_$h-WwDS}Gv6*Y z&&8W3vOWh^PM!5esy=t~z9XFXZLnLYyu}`Us|z;sTX7SJ%x{L3TQK*?>8dOc$-zTH zJz%`swgU;HZX;HNI0%~Epuv|-1j>=&= z>kU>(%kiZuhYh&IRHz*0H1*u59$o`ev+~Mzu&bQlqs2@|!y-?9X)@l9Ft5fNCq|g9 zVPz}AY{4axt03gbFHH_JXdl813alayg55%;-F)&(Qx|OJAHYo@GG7iWr_Q|T#y*z7-on?YoMEUesuy+=8qDhiP_JS0>_@ls$#abU8Gp=K3J z)vkfu(PQj{k98CAK4h^m?FaCfbq=`Nd!6-!noMXn*TBq^)@jMfQ8V1)JAzcra1)o9 z3N=Gtqu)j>c^u|qRSb{7j&h=ne!+A!DDu^2!*n}-JcKt*j32*;m96;kTP~4Yy&zw0 zHr!>9-snfc)xvxxftArz(#@|n8y&ED&%q5K@}31Nr_Q_S)n>zG2J?4?Gv5_<43)Y0 zYO~P^oBP{vBZ%DJ3@f+b?vdnGogfm0hlHvVuJ;XCa^~UXWb1_P3M&!HIju%G0UoW+ zp;miOV2vP6({hocKse5K=%@l=Eti-I1;R|xX(N7o875*?2VaD}Rz0wZufr`M5lW#|4A<>g;Au)p; zW}L5T^9%oBJ-}j=bEwshbj~kK#+n9UvzDkF<-@;xNvQJS?_6Rkln*_;&qiF?^bVAi zRXHqS5?GDpgdKG=9Sulr7T<;=P|0T1w8J92Sz;hr04rO8WGtgGRykA|H>Wi8%386B{B7jXlK zyjQ`>EqHrmcU2&Wgy12e3WUG;rX^V*Y?tgCh`FmW?C|z-*T8DF55_n;{=4vqbq=@M zQEe-Q`qnAux`n2aqQCxw{le_J)mmzD)C%A69bKwc_!gI#3bn#Kt?x$7a39Rf$|(23 z&T?XpZe=caE%&>mrb+ON~ ztkPd}zZ)L3&Nx#$yaVZlSu70J0+=JS>;~U9a!jer@(wOB6*9}Ldbf@6l7mTENo57> zCnxOa158I_BF`nSTW-gb0lZ~mKKU@LY{iogaf#&ei9DCQ?k$7!In0{C$I*|&KB01M zK9{_1zfHS_w@;+~QCK;3+D+$@*F9zszd4-vjj&&+#LaWb>wU1PUx(X3q<%H5+=9AC z!dEqeND&?qs%ChrZ%1U!aCfrjl25N3UDoHVUt%4=f|GNc)%I|f3-q<~+%PQ#Im&_; ze7&v8g6FuzR45DBD#dcu2pn7g1f^k>1Y0nP$#~+J!*nzr^+QAB5hPnxQ`4`+TP22y zSHQ|vsMwfGBv%g94-K{XE@zftcbmoc{jfirH*93{)ea4HQhqPqHj(msVCB>)Hy;{m zlRh?_^cvVFRMOU=p-$Rkc>6@!WmvfdZI9fo(!WRr9ug}3KkJ*2WcoiR*=gxH)&ED` zmj}pERR0gTLk`t;X*_~NtWL_rWmj$d_k%~aRXyYEvq+dcA!qpp7Hz4!U_d#{eJ zuJo5WGuf`fib9vVY;XsxSF70Si#_`QZehbfrT$p@fgiZ)NcID_bBK262PQ^c*ZP7d zVRnqV@i-hSE5XHIF&u@LdU%dHYQ5PX{2m{jm`i>KBOAHow;Uq5{$O&r`x}jz#`n6v z_U;o#Gl*97fhOPK1k&`uWPJo~1CjN0VC2+U-$ZUY48Z(O{>*;}jt%umpQi0OMEx+? z-wwBf$bJWm9K*gt@t6HWSUMaaWdCrhYw{BP!!F5gIk4l{rIK}1dj%|8tL6yD-x_<> z^iA!+XzG@B)m2%tqv+!h?a)z7h@xK`B>KDX^sTDaZR>N1SE zg7xG=U$VNq&zWt9>axBdO*pTmo4GJ+MuFK1j+T}9;$()S7MO7TOSRw3Gh5)}6Z6dG zFtU+nrgMnoYRsl`_M*m3PliG5lv{if4^@1`Y_7;pqE0F+4wo4^HIy2^cwbo+Iz)*tnkbfH&6@83fifQ@PgP z&xzrC9Bu%S?=diP4BrklT($vWL2!VOZNPc1!W9$Fvy**+cQpH!P^l}wQfUMZhox%O z*^qqvs9~>CjV$fKA+Caw?ZH7DBDOt9u7ZpePHX)^6{bl%GxFw-J~&ENri)pIqc9@A zV$xts3@kf@UVLC;CMm+mMkZP23L!H|s2#6NvcHcN{Y#2tlHC#+S;_bG@2KRF+n5Jf zdt+4>VK2n>8?2$tigGQvw;tCy?*D z@cR>H3D&0@{N4%2gUWC8WehvZKg7o-viv<5IdzsJFJoAke%YVt7vY#tnbu#%u(SO< zK0cA{XJOmzDbBE(}L)8p274 z=74$ZVSn5JVy;;PBOAG9FAkAh|FCiRqJtJRjrC75qdZ%QQ{d20Sq~3aTHP?Yui<78 zxjz|3PM!N{^3c=3{9ohG|5b2!sQk~+PCaR^m>T#dZVFKYm&3?08gOV7WUmnx69)*{ zYs_+WMD!Z_CEIHZXWw8})*xPB_G1alsjr3 ztZhJaD*|6-V73d>8-Dr40-TU~stNLV5avXVlTr{ z+ml&5K@H@MnW0X_ts!Qpl`yiAq53&Qa-GUtS*Zq!qNa(PnU$W6%MEa>sG9hIRclNQHMkEk@YJ~LJknJejVfLh^Sv5Pj>RmUKM7SB`T}te`6kC`n8I$ z1+NMRmMJOCG9CV_YrJLY`3r|=htk7d6=ptb`DFcvQ9g_sGl4<0q6vP7MM@#0`KoY0 zl^9m8ov(`zOH3D|VPqp+jNlN-6_e(x!Y0GJGgGi9&S3b%a6qgNZP8>ndVW7l76#8d z;e!)-{t%3uI?s{w`?jaK=+E^sI4D%E_4E5Ne0Sjn5c$r*$T567)Nt7bgayF?Lbd^a zb}dVy4cH{v8$(90xvP49|2kNwR*?-+Yqw^ZRzTXX4`% z+1?CBj$zxOs>{Y8ECmh_vN5>ARkorr_-(T51M9LgAl=pON};q|StQ8AVzuU!dgq`^ z*{-kuM+{erlBG#l;wmoLBxE^6J2VO7rQ=$wa1P9wc!uO&`dM(Kth5(v3`b$59+nbm zyV)>&1|OT4Ts{pW8_DHU93r`fVT0yzHt}?7Tz`+*mR4Z~GZ^cz zg?wbIFpWdBL#wcE!)+~%EP`1PPRd4MFE~zCVv8SSI0`4?o6QZ&&D606J~A#pRh-Q}LH;Oty*Z}=Z*Yj@ zI*U!j^j(v^#`}DK-nU^8SjSD}J^aw0-4B!fIk+7}_GiP$sk1*lvKTS20*?1rz_Dk-i!Dmt`N)K=htW|4DsUP6o12n8t3Xi1`IMP)>vJp6p zL$pI9Fs{jp)(xzLc`>R*KO874wZ$%mqmWV$FPdqZZq6Pm_|U}kQHGI?^wGm1l4}Vj zg){GFxHP7}&CK!a3%&&hh01hzP+oJu=rV}Rb_v1zodH)rR9K*XqjhAggSSTDIWSelXt0SUK_(HO6!Z_9;l=^$~m0V3d z!7%CfXqvL>jqn{L{BohF%}S-Rv=0-RA6RECgeBXDaU3GHeMqjdOo%wHRh19HbO|@* z(T45dNLd*#&SW?WEA{YIyNK~-X6e8OCuWupz{o~snd=H6GfSu;ugo&W#|rjswO5nP zEW@h>_14lVvma}Gtori4wKT9x(WfPA^tr}bW{qAB5t}s<{Ce6*=CPJ8z5;V$q>C@Z zA+pk0{0zfU=n%J-1~iF5<=W#H@j;1c;tMdcktRORA(ATx;?`1=-Cr<6uqVx6_h)c8 zsO&~>Ewys|V|-{L$9KTUsdF5;wbbPKAO1Z54GsyFXZ_YvE7yO;hbMCV7Z^E)YloUG z%YIk{93bR`qUh>~m{1&(Y}p^dcW+SV_ytf^>VM?X36#i|Qv7Xa~c^sl0 z3je6UWv%ib3A16;hQr_(SqUxf!Eh8l8t+vH3KFBr(tj{MDlt_Y2qPP*Vm}U%TV6OGVgoWLd%qbV`%_hbd9&1`9IGgVuPOG%zrfZS?d5M{sHAfJQ{MTa2$ic zx+E*5#kX0c6ha!`P3Iyqio+OuSYo;u2_qZnVi<>reWDy5sDZy(()ezA5Gsw~U70D^ z6K62IGaL{q!_j-!!bj5Jc?W!OBF_t9l$b#7hLMc~ z@)Hh`Tw@@%1x$9|VupCO1#iINpt2j?7O-;s8a_0U<5ywi)H#l93z$65e%zbqSq!2T z4Zisl>)QfWu4mxG6SLM{q?7LJjX&|-z*D10=x z1sG9cRJkp120kh=Rh$MR8>!-x93r{W-`o~3`28-k#IyE)2aX4oUv*o+#_~=0*hH4E zhmlifS=kman10%y=_lcsP?F=&t-y3>GU}PhO?8qUKYYW7s zsxn?0*JWmpXLHa4M}^9D^ioynfysCQw}8m_QW!aP#v_-i%9v@af8C$;OW?>*S=TRB zm0p<4e+9RK$o!XKqX{jO*8}HheHyKN7cr$ogS0at!MZRbMs^ zVTo{nkd4E`uE|O?4vUjLcQB^fzob@ScbzIH5HE)1YSo(eZR}0slu~4A57xNKN45tS za)`EQ4;pT3N#qWg6{BqY0FIND*y7a;N8v=Y2Mx>3)NwmLGBI`B3L_h-<7N(#cze)@ zmd5j6m^E12Zt(nPI3`q{qwPV%ev|EI@bQUkKLsPF&UU0dXhck7eDagtj89?^t!N0% zCtGh18a|k;PsD8?vOW$*j$z%Qw#)V)ED;V6vOPH8RlcG<_*1f{5JpymkMk(K!BMbQ zt*M1@&xz{|?4iv{d9t(&hr3EjwhV`Gh}f1Pxq331yR0RZ6);go8L7fCvT|Kq!f+Hm z#A^#7Q({4xYl2Uis5@(+yElq z^I+r{z8%WE>=eSv-~b_K95=cOSIjt0N_Ho6gfZbb8P=(_c6gtA=7uT7$I=ayTxBD> zf#n>c9lC*0fy-Jmum)zss1O&zF|ra`JcHpVe28<;oG3A>oK&2Tk4j7x=fTKEsyK&3 zB-aawbI%rj?`D=@ZMnhkPvCe^`Hh}?wzGUEJ~ol%AHv9~vm811Y+?FUf2LoCV?t$G zKlf~B`$c?wBHPcy$T4g?)NWb+!&2Y?AWa&-q)domMI0N(E!xh$0L^JEBR7qeob-o40eIcHq7YgENF0} zL;chzb(VYk*veziz*bZ&MXdVfzFE|orNjN;Zr%+?JY4->>4}$|| zWxKc=!%?^rD+M8o;$hu`{f|Pv4#tNaFq7=tL_QEk7J(VtQ>fOmEI7R)H2ZO+7DV>iA?VRBd5;v2J$OSR<@V>v)v6xh01pL4xH|R$#@>OfXMg~ z7&(SkS@&nKA0dS~yZxa*ID=I0`G`&1q@7nM3Zw z$0p{GdthWEhuqB}lIst|o6|C08rN?#dpvuDx8SHyxsJX$Ej=(9e*?FG$oOk8a_Wpn z-kg>((^#MLj5q7E8AL0(fAa~~-<+0Sn9R?@tspW#14fQv-l5pbejzLu4iK_m_@=9b zMZZu@wqF?CTPPKJ`+Jo$&P!pvT2oAYKhO1phHXkovNQ^vuHuo6!Y4RHJ2VPoh1XgR zITz-{=n~F`!(^qk*w1hjO6ueJ?6N_Z7+6j$KZ_4cOdDsw$VS>YjYA~YBCHoq!tE@7 zpBdxXAAA=M36By#FI)`Y7reI9ywAK^s3o{~Il)DOh!%?!5THKD|D2#|*1wob= zSGELu;^Pui#%?gOkurAS5XrR!VpqY+afR99*%6fCh)_9>?kdDF-Gh%#WV!$&r_OX_ zSHa5mH~iWDIvf=$+xo6T9OIYZ77!W#3XB}XxI-+%f zzOqzVA$W?}k7XsR$h^PJ9@wRn9ZMtdglnv2Bk&l9Xop5%B=cD70@isB9K*Fk&6Z_9 zECLP?vg|+VnwUh{KPK6?5ytfP_tXk~J*$-3e<`d~tIWJ_M{63VR2)kKaIvd=WCO5< zL$pH!ux`U`tqb@u%!+tMWEXG;949NW#p@W3!il&Ytzo&@3j6>cnV33mhmnocaVv*N zt`!iMr#7Oc@%&e24c2)ZJpTob36z4~PFBI( z7zJbn94afl#XQ4NXsL(qu0@PD^GFpRoR~-YU}PhY^m2&gdW8+c-S|krG`6p126?s% zSHfYTvK?+P8!nifUxAxI>I+O;Q%4~hC^H(5q-nQ5?)p)RF|?-hc)$h!3NKxnaV0R?`4IiaY|*f zGz{x8gR!Ps$VWB|<2gh-Gz{xD+}7&H4lpaiNx7`B5RQ|T*y1dPqi`aY6&jYCsbc{? zGBI^*3nLq;V;+Y{u2m4r3XN!KJTGC^c=icdI3`q{qss~n`%Sh_z{e-D{V^Chb+#kR z3XOn2up+mglrGSx;i4-gGZ9R z(V+3BTqe6xdx!Bi%n>X}S@q_Etz- z8>3Np6%Lh^-r|!CN1;V5D@2Sp^T^Bi;KV%gB8+V0k>@!?a=n6BR)_>lV|&I6=#yx$ zJ&i$N?K73_=(0k@1(Wkla1)4}Zv-Q!&Us{6Ardr=_r?Ca9{`7j%DcX-5OKrgeqY=S zBKLd4$T8eI6n)t@ghj&vLiP>!x+X5sH;ha6km88^%D#olNrlhDYPCwu`|4zFm{O4} zjl$<#Wg{DfGdV;%Gzy~vm$lq+6U>HDGp>hYWF@qC3BytN5LYL2qQt23pyD<7sKiup z6^v}8if?j=+gbh{J~ol%-@?eLvmCiP*~0Yb zzj!k}flO+yS4K5i3Wv-}ckvj8qtH{|gl}Lrwk@MH3L|9m(1{yCOf;W>k&Uu)B8Nz> zd6=f|^+y7yvHuljm}f8XWjH)k_GfVRV_h-lnqS0CA!^_YFmmb|*xWq65U+z@`0LTfv-&2SlD_*n&Z{ zV%jo^;V6`dE0h{^iGgJsu{l04F>OqTk&U!5l|v-gMu;nv>?|M2jPYz84ueBteRzu| z%h4;8V!1vTAD+ndfiQCFTt}`@vh)3Ef4)BjhlR?weuYvj=c{lNh@7v0kz+V_sOhpT z2#bRQglr4`<65FbTd@8Z_FbsOwsr@C?k3cwl6k@Dv;?E5XGF z7>>eAJ-l%zYP~tdcmf}tm`fgmk&RsPD2IrB+#H^^rL*iG{V4LsaB?_Lk48-6d*Vyp z4Z}DF(TcXvEA13=d z;C2w%UkD?|ud;&rr+{s z`VBZHRHpUg40g6(!^bDG{VI$c!?r{1mgPSz1r89h{GaUVh$#PCCwrV>d?{DTWNYP2 zwxoTXVaLCsiOH%p?=Lwq1DSo?Jf-+pnt|<^$=Lizh)6aAALJ12&!Yin1!rd%b`grW7Mf zi|}{XXv-Gi6%Nr3EyAe4Wi54V^fJnZ(Hv~RAh0&dN@#H%hNJKy)(bdMVpO?aupT}t zF;$F*k&RR_mO~`h7Krr%3%`3aOR%TS;CD|r9#np#>jid}cf-dfvb+n7oI1;q^#Tji zWq+o7;FwUE*4GQ{Y!~qHiEJ;0kz?3)sNJ&sho!&)LYDuRTnmyY|NA7nUNDmH4=MHk zW>}|Ik<}Nq;+Vmp7bV=_DjeAWT+1Qap#d1p+0Z(G-@<$t72-E=kgSvzf6Q>y4q#or z-582U3@clJU*p3P)5R}gWFuYN%OR3$0VYIt<28ogW2Sia0RM#pLS;C-TQg$3IV=1( zJ~)x*H(}(|d7h-5A<($~z$@Nd&t(v;=;zI+d9v;BfXVk(xB*1Iw}6pj_;#q_vJD6e zf&+wX1HSDlT+s&XknG)x!`bVuN)u3oWopeQ{$FZhb}1FdvIelsRWz~%=;9FV&;pEP zOlT?N3osYrp^*CnpNB(arL(w-;V5)8zSP8M5`)U}|2ce6VwyM;MmEyKY7UWH`EPuw z$zb;mW{79;{{b8hD!a;;nrs~3jt@=b_*NJ>b&jK7YBG5Ki$BkQhC@Q-+4xeEjq7Ld z;fY*71tZ6B?NGC2*$<0=1B5L5IafzS*`Jp1;(uqk+O5?6t^bB*Bdf%`7yr3oN~N(B z{wE8z* zm6$3%0wWu#Vs{RaTEJqgqElgkO z&-4{=OsGuji~n}EFT=+tvVAFx9K*Il?Uv;~ECmh_vixu6>WC=+4<|e8U$1%hQK7UV zUr}#8dY1WuW6r412nG75hf}%$kG%1$&~`x6a0}wv_ns@zUsWz9gKVxWk@_W zvO5^YAg~U~N^9e z1HW@PC0t}zW2SMw(4X@KL&kY{lFa6X$^5ps6-4Ie!N{pIzp30a7?Ay}Kl>-Z(V;%^ zn`xT|swbubK89ODRKQ1Jh_S+Jt%}?Yb7FK3KY_z!rL}ky!%-*^ zR~j|w5(CSng*)+qiD~19FtU+0zQ-YwTUroT8rfNXl^KI|@CM5-!y%!v9KF&gmg^Vs z;fY*74vDTJKxj(?#=fm45AhD0rRQWuQZC~d?VZhBIg^x$T6Hd)O6VvgvG%D zLbe4Lxr$e`1)oaxjNypRe4$6_366)AYE3Kty9|M0O7*cc1jo9{Mm7XTbBK0m2u1~5 zXx+eRFdIgl_#_-7E1|^#!%_HX>@oyIiBV-Ma0)&uF;&!HWFu9a%psC%1sb~yCcoD+ zOFa94Yv6cL`BioqtSn!Jk4hR^&?ue)ezW8 z{Jz45%yg__7NU~P!TKDc9h!p%Q=BO4=M{E=nG){GEr%W9h*`-lZpCoaRw2CfuCeSG zAyL>M8;9+28;D8fgD|p@Wae{-|+J5Yih{317giAu8eXFmj9%9J&SBaD?T> z0YWw$6I>k;4aa@So@xw^(D!bqEI2&OJiv07RdU|%G=`QbWy`YS@StnFWm9oKhiHeU zVl?+zt0iy3e27Ow_7ShcL9$X>e1_pDgw(@#8bhkYu(EadJ3cHiUAzJ#8|mUD4v}2z zAl_-TF}%fV=o4o!yg7rwdTT1f(RUhSc%F_APULwijGQ{pk#`zxTp#Ao^}%pZs9fvs zG{*3KAZ`GW@BLup7``29xNHN$g5Url+kjuWCMeMc+@A2Z1N)G-`eEnuVVzn<=DqE} z4O424r3pCCRW`B-IEO>DLlZD6a9QgCZiU$}D#XojjI4wfFJm|gAB~%k0|kjuWeacv zJ}NO)Tni%`sp8ulBDofzaTBu1?^DbYtmiiPeFBaLmEY*L1AiP1mLJ2%CbIk}jGQ{l zk!=UdlRWNqZ>GmEh*tD^=98>%JJ{JCiH}cYdl-xy!?r{1mgPSz1r89h{Ga72TT%W` zNO%>15xt#yslh?8POa(0dlewGOer{)24H_z;m8JH5r=4p24FPzS?d6LVLprsQG|nJ zrL_1lhNBQ7Rslk)jN-5iAC{Odx?p4@UF0}KaxH*Z1+X!EDKo{h2e=px2$kXJDnJa+ zYw*E|JYNVSr_OU^6~M;zeg0hE0|$l5wY~}v!}r~|0Ytuk0wc%p?NGyI8xR%*2ME~) z?B(i+Xak-dk?8jn*JVuSy1Lk^kGd8x>Yr$4vP#YSa|jXhl=@?72!=D0u^w4SNHzo+ z4$%$`!FcJo))mZynGtTvy@9RaNLk4(Zp3gDR>bEJr0wSFz?S&f#1t|UMmAE&W*j29 z)nt`lHMq&;H;jI4V@Gqn|^N9+-?Dj$1%v{16y9b;cu~Ly$4kSpTd)>u11` zp|Y-j4ncZhGJhIw1(Eqr!pJeqJJfpFE`;U60YbJ5?|QZi&n4R~j0--LmC5E$?$4>O zEc_hStW|LS{Q|R3n5R@GOTX|_R}IO2;Vur*9{oboaV?uX4>M!*3(vxlvXWc;EyGb* zY4i(C+sz#ECwy#T4*4UDY~+wXaERplg=V}ot~YqYyI)w3L10}pm20J6XnJ5WJ|4G# z$oN)Ot9&35y zn=ltfXK*STB(#CODC`svmBcg2_4B!;6ogu9Xf$^ z8*Xduz=;uhXsie)<;KGCaGb2f77t`N3Mcgm{MDs~ zuzvWWUn5!?&!1=3cs2%~gJVMFIXsT0+HbObCO$rq?bR@H>TFMzuP4SZ{sVu;Z-?VT zWjuT>+4R9={Z`xtBI`H9$T6%t6nWVvgeAfOLiP#UxjG{HgwA9SA&zU_eNe6_t-`;U zA6SmE%FTN_q4BmnGf$~UmLB1suA!Gb!aq1fJM;+SrQ=%lnEEf28KX;>!XU72%1Ul= zB*Rfy5!(sUb~A@;h>uOoA?w4)Mh=<4A(HD8#PI_eFOBQ{m_682XmGs`92F|p(d`83 zfywwsa0`fx?+zoU&Uj=yLB>pDz3R_;9~>Df>-u(r^ulDm7q^1Qd=W;DVcwzG%YGp& z7Y-1zU-+AA(GvZ_HYxxBUW`0zxopM{ZQxOS-7vh0UNzyU&*{k*FqqU=vk_7GuXF*=i7scjQ% z^KUdOS*2D#$nzjUV-+f}PboZ>K41>B8EcD$iew)!n?tliA21=}xz-OH0&^q$l>NX# zaHy>G7I$Gd3N7{U-S&v_W?!&BJ~%OtEP|1ZJhB&uNUkr~P`x^s>0D#`lguE`{@@fi zEL66`kLwsNn4H&e6NsFj3?rw``NncjKJuVwykFzb`&DpgsJw3)bKh~0rbT$=Jm8zS z8AR?chmm8rcPRR@ZwQNq1BC1wX1O{d`i8$JyIe4`P%V^}D%%AwFb}XaW!0MZ6-S|E zN=>q~3eUO5Teb>MbBK0m6-INPwe&IeKPVsK(U48TCW+hIFaZ1FmmcVN3J-s zaoy?9^(WwMBD%(-^atqF?>7JaM=cg1;GJAwgFGNmL<^!+?VX~!SK#< zRcQjg1R;e|Wc%K#IhAEZCQusgaDjQk&kK+*SQ20j$ zE^C#4HOz)l8%~E~WF@rN%WxDv#92X3lo(Z({!{T$iK${GjBKQeeh!gb=@(}OE&Sfh zEb*-UH^A|r@*6!XXlMCad~71i--eM>XE}0K(8BZ+{!Bjx$ArqXepb-V_M`atM7AG> zkz?3)sNJ&sho!&)LYDtyTpbbRe_67x3XEhIQ*QS`W!}H(f6`r*Ar``s4Zvg$(GCp&|GvQowGLo+m=EEhocn(m4w9A9;yi|<5EA*m!3WLR|4#U@ z#B}i?7}-b{+i{5GT7by+4RnT!%oNWaU>O_`D#Ovm|L~C%p_Hv&7d|+V=NycjI?s{C ze;zLFX};K>>ossts9fud|1o@Dh#NrU`+OKVhHr-&F57^xAUHtCHeiygBccshlTPoL-Zs7khN3h&v6`S|jL17@bPboo`p5PJJ;LD!iAr8?FJ;8*C=UOiL z56q2tT4ZPNFE~_IdW+999EBEfb}(YR*&qB9ADoy+{sAK!dE{>#BDwxRoE?k=Ok;cN zchD!%V0%jjfi=riwxeeUBQBVn&%{k2a=saioI2-`vxAYKX}llh&->wUXsEpFX9pv0 znA{(Nn?dCMAQ(A@dxxSg`-ZS+I6%n0;Q`mgCHjWblIS}({F}LWBOTU4%W6CO#cZE3YF<_nyEQp^8H8L03zRi zfRR(@dn5UpK^*7nz3a{Scm~mm2GM-FH_=`)XgXo?J{C8E$onW5Ifi$K8ZX;~uuwQa z$Ts0zR{@JQ;a|xfGGMP5lyW7dMK}}|t2MiL?=pmzDV5059xQehj%*JO;1KQ59SL;NLEUVCo&v`kmf4}fr!Mga`kyRJ}fa^bi>F-y2x{gehhq(~`$<2gq;1F5qEKX%O3LTBl95I^2ptAhW z!3QO#iPy_Jd6Laa5$*!Mqe=q9z}!Wqw%4M93KHAr_OQY z6$A4r{+vJ0XTl+&@~ppNVC8x>K0J}@(_!Qot{rN&Ec;;*aDb3ye;rpxMA?5b*)xU{ zmsRq)TE1fYAoBk)SFpTf6c{=o4u$ zz9ECaT4gHZ;VQDl36uBraU+PlPk@nA=Y6W&Js61lef+uq2pk+L_tUi<1jP}P|J`vz zi2Q#TMvmd%p$U+EL|8x^AY>o$W7h;G`iPyA?IYwN#au~!W$`nxZmptg*&)TiKBZJy z))PMMsv_A#e2PP~Ll4nBq{uwi>dCiZZj5^JEjUzGdW#n_9EBF`kYYfa7+kI|d;=ex zm`A=2BO7_-5)P4E|DYXGG}(Tb8HDxo2HOw9VWF~ZJEUmk{C?a7BImz?kyGc~a!AqS z{e6Gl-+@Cz}Nnk-&=nCBnYSS*`@uZ&P<1LP@+%6R`2~d)t2%<=YlU(t*V7UF$M7#5 z+%|4nXqi%r8tp-SY$d-mU&)s`^J|KuXJj(Pw=@a{H#*c(eNtz+w=dUO%l73exn-4H zU$;PfgCoW^4awD%kS-Y#t#{ab9h5HN`DiABd?nW-{GHBlqJ7rj5wy}?9LsPN((2){ zC!JXFERSRV^N_-+xB&wunhl!BQ($BfqOm=NYAwsc)GLCtp)1n3CH*};`C2vrR0Jjy z&)@+UAzRdR>@`Q#7Z-CsiU%Z{cs8i@^=Gn$Y9^aokt_7%mh|M6%#&kQwIcKEYnz%3 znt7OU%(jSWii#Vlrziz`lA{=kQkfqQc{pluCNppKn$y-^{so*Xk{c}r{fk7Gt8+lvhggh zbcG0>=#=bEy?ss~%fk#up{E{xQr^m=utH{-r*SKY8RkhC*~l=DyF$ne6ROH9!`$Ix z1?CJn-jGzwOPk$DCd+O&R(q1qF`v@wNtlJ%z(CQCgyt!_wWN|WU1^Z1 zWHpCqgH$rb76C1-Tn|%Zq?K#nklEA9R~U{$kLXEkUYIH7D%=WUiuoptY^0dWT_I$O z3038lVovw5f~A;+$$qhBx<2b!+EdO2>87@-Pt7wgF~?ewXO6bEDY;rM8w_b(&Tag$ zL+zZoslrl4)0UL;f-5aDVUJ^9{zsdh@CYRxi{KX(LnDQdN3lmlEDmlk(JQm6o#YlAwHMIi4vpA(mxv?m6$4K z!N^9cn86{EEB)egSr&eeWtMo>{-fb|Q2C91F3ZmH5%}0dmJfxIQ)fByxhxCQXZka} z8jcB-Y5j9qcD7H)$0xFVDvTV%wnOcfs(50|eZ2QB&wCF_dg zFJSdrrB^@7wi?jYSX4w-90N;<3ywc?RhR4%e#{|ayM*LQ$)@Tmos5FkIJ^K8CY~sH zvgKIKaoEhV-Y7jW*Abq^Eg>eJCt+kG@jUJdArnuiF0aIMhmRF(xpDZI zL{E5)Uy$@VTA z^jGsNgY@QmGud(}=wVhU3mKnd?qE|ZtK1x4cnORPY-6Tz%M`&{Rx-|X4ZiGAR&$6p zNF$Rp=e1OFJxq*|O0I#UW#zW`6^5fQBi?G!95B<#Rk#7fbn;CY*+?gsyF$ox5^BjS zot*At1xqInC%XZ}u8CM9IQ9?C&Wt68~H62*NGRmlA=QxvjMj7ZGmc=Zrt;i|+TUS*EeJ7VaRl+)P zWOVR@7OpywS!G`i(FR#1phxpx%PS?A9wVXeJJqt#TVcVg0%km$V0tX1WYkQTeY{kUl z(PUo~*(i8BBa`i`lzYoH_HS~PN^X^UimL$Y)|y`GhuZo9;x0;HWy8pZjY=u9v<6FE zB_&&fP7V><8YEXgI89mrv__#0(_|EqbK!_tnJ%tmI0`%U@N#+^i^2%mH=Kc!uH||L*k1WH^9SpJth%eat%q{!ko}ck zx`tmSmU}rw8zhzubnmsS@+wS?kyT!X!)0Z+_&CE+vx>OYCs0?EKO?2Qh+9BRDbK^m zMoM|s6+)(zP)%Mb<>x+Du#{3xwr!c-xEe5%t@iizl`FMi|CVjrva5a6?q&X%*5sDM ztli6C>!J-arIk%16)9WVmu;BgSg$XnC9}*N4$%f#rb(9>2QA+m4%21in?vBh+4IeA z3`ZfUzBykf9e`6K^BjcRLd-n-!^lSFS>y^KGf${6ugo*s#|oBt-buEZnbw!Dbh7tN z*^NH~pBcG;`PGW1#`^iTFw@yqP{Y4;2rIdf(b}j8+LCqZu58Gxb1sKygRC<(CJ0)} zxeX@DNIAE_QM0F<%NdTsP(A#zQ;Z|#qU(*gA;f%h9gJ+`o2y+RWWEWt<&|&F_OXKH zn@y6#d8XC#&A< zS9%P(ssSD`9nXx#T4kXi*$<565V8G0awTJZ)pxBgSP0W%RE-62u&m4$XD}SKF9^?; zsP>zQWLtcEVj`IbBO8fiYgY)FNJ1rfC6ZA-RXcoy;1FM3Km_ZMzms}$*Gstod(FPfW(b4c*%N}cBI*jabAsi?xqs22A zj+#BfGl%D;m*+aW z2YfO25$0Db5{cU;3%61jiEOew^~PwDA&*mF*kx@ri6-2P4O@?NGaA`43Bh1B6`h+}72R zzzSCW?@e~PF+5lbh+bU$8nYkEM^=f|cXnEzpe#(h>Kb7=g?O1mv_r`s$voC7{^ao} z14c!d#2~P)$Vy@{!*JA!KZb8~1~iF5Wx=0_4@yi9<6vYXIgH^D$rXI@nF5pDy_g}` z^JTERM?bOL(7K3+ zVA_m2^8g$7>?RS%#0kjv^ryU7i)22h)L)^7}-cd_qamHBou1QD+yiYV+EUf zd?neb$IQM8za~A`!(Nc(d!^wU`1X59*PDR$O;$1154WbF!Cq$Lre>L?d>b*elX@rV zcxE})j0=6q1T>aIv_k?KAP`ytS_l(nB%lRwGXZUj8$(P$^I&8n z0d4IHArnxjF|PzP%EtD7jK1lh1Mv(FVyUd>^PmSHM=-0&0n84NRAjcrJvaW@Ws12E$PkPq^QzwsB2I z%%pQZZU`~yoChNtN#`6_2$^(3ZFwb~ZXYXH()m`hQ?IG&b*6D&ig|>2)ry>Rgh$Sa z-ijIdu81ON%a-gzu7t>x^8klvgOsz0JqB9F`4>!kbW*{2S zYl0bUKE-SbO;WUKNhS-KnVyrU1stLclF7OaueJ1X9886gK8}IIWKSQ97>+_oeF9&q zX;^M1j3e=pi3#H{7}-b|2fISZgb}L8D`9NwV+BhXk0;xqj0~>g?N&C0FJ>OJq8ssk z7nWP52-K1@*0{!7HXs*rh}fKw;F++|oDD5w+yV1pWQ-rcL9%Czs~L_$NaI~tPL&vT zT=P`e?f9_7ba5+;Y@~~uIYe^H`HgpBgHUM<|Am=?J#hxZe})4>WmtI^*3R=Y_~1mI zpMsH7=Q;W=tcB~z>v?lMi9uj(5|wM?U06Hc6LABGe2;^XWB7Kc;j#?~3xWfL+#^2U zRk(o_tPR*8*?Ggr;4re<1{?(o)v7Z4x8NdoUJQCA2DeP9I+ixza982THsBBr(H?C; z;ImdFR=|81MWPA^$x3N)3ByqcX|w^HDlx2V1N!h`iRq#jMmEw#kwYZk23Q!rl9}S! z23!FLgvzke2H1JN3?H1x^QACy>O4o=01MX-`E&gM926?oMjK$~do6ANk?;FpW2SDo<7Q!?McjdS27r+s-GF_a(a1?gLR}yS2 z3L|9iuq|!`F~`hMIgTnLBD z%5L!thNDm;J{qfgVD4d@k6S>@DCfb*Mn*Zu6+&i|P)%MLrQ62}mQnta?BYeRZ$J3K zu1A=5H{vk!=3z3L%qCs4K5zv)0E7mTdZyZC}={mH9ni z>;o*yyl96>tw}F?I32O5m4j=(0-F@ET9U~^W~b*oXaR?aO(qHMmyT=tt!0qoU^a{l zats_Odj?s=a1>JN;ro_N)6J}LBtA4TYa9k68(HIE4w2kscT#u_Z!=sP(`PYru(ED2 z{TVnYRHnm)G|d5%?@!|f5c&QTjGQ{(8_BD9<2b*~pYvPbz)(34KLKfR!sPu%+z2A? z*TKj!ygQV3*&T$1!T~}qpl<8xNMHr)4jxH%0d;t;t4nDMUSsxS>B*|I`rfv-0NF)l zb}3cJ(i*(#8f!Vvc$q`ALu)XSF`<=;$s3?t7^PwogTT5cE1ks*!%^s{hj(oR@)3iM zYaXMTh!09k6XRfHBTbCq5XrRz;;s#o-MyG0*pp_ky9XQ&D!b7uHmn@)iVscXcxMu!8_BG-8sIfiS8nk~zISOgp(WZ8ewwG@f6|5CDx z0#o^G7lXdmeiJNRtM2Lt*_wfH{%<=?75=3oIMyHB2adhae!Z)tWK(brhlp(olB*pX zTSK6A2@k;}8Fl0VIA&I!i+3>`wMz&WAFXbfeZyMZ3}T+S4@Nff%ss9UGS7s%^2#$; z`B=fG7jwpBGPtnk7EfB7$;?~5Cb&%Nz0ES2?mLU`v!4^!6g%VoFlpJhK(+qlJKERvF77@ZdYde(9_jwwk15 zo33lwWFbt7kxdrBv9j`7oWXDuUg}}D5@eI6`DPZ`79XCNMdrcCMi$xH6+&i_P)A-_ zWR#B;EQ`!YcE5CFuCrWK4||`?JisPTR*m@|_U4u;Dz#*fl54zW_E^p#VzWnrdl;iR z8(P{}1M^{|jSJx*St%`^!Eh8p8i&0(Rbtq2&BcoI@nMPS;yf7HNEhdDh~yg1#yej@ zs5FM}W~N|IoWbx<;DAsWRt|gHdA<`LoXGPJVdT_#jvn^5aQ&)3*Du3Cp>k~;_O|o= zB5nYY@8@CU7``29xNHN$g5Url7cIJ79SN*pZNOE@?p3T8e73BVs})w{`H2Q)-(vn` zG(B1M<~W&PU%?6u3r;l*x^J-!v(j9S$Qq) z#&FcGAe>An=9`m=gYe;rS!910*~lV`Tp?r@33cR^MP~b0!LrEq$!3um%Yws~v}-*t zV6I_3k5zmz?~V+14GlBY@lwyaDtJLf@m%c+ArnuiFR#RNwvQDo@hnd`@ht5xb=C^yQYOpZ zBQdtT-cZIF9r z3=|11{Y>5nrOZe_lNbcn7uwTLhT$kQ)o1baGmtlC2AYUlL(D+qU}Pf$jd6vL87Nel zR|a~~RqJ8`H9OgL)CtwTo&sxrmgYKZ<%%+WI*P@!6$xiAr=4DISHmntxt0WTxGVKC z!5qRN+91J9jC!smloc=~Mnb8=p|U5GB@9QQr9LTqsU*--gEukyxaP`gA3i!Uf%L-2 zMgl3iLdXOXs>myW9OPpKYhkWSxP|G?mAZP^>Pxk}l)u3iyup#luEnZS%?1dBmTw+|2{ZD|qj2Qx`Q{#m zqp(yDzsWLyGiLwtFm4Pn{X7UG8|mkMR|uJYLXCN)pBsIwVCknf+4RFN{aUE>EgMg1 zO_uS#`;*-`vvAOb-^t8cticz;k(p%@hltHAiS7djK5I$j!!RF464?n3l0AuR&2ZEt zvMz60f}7(On(5+0_^`xuu^o(Tq>By?k=&|&V;|VU@G@o!R@V)NyWoIO8CLdz?L6o3 z!HGPd1S6-;b95ir!u1+|t}ldxLgm`n2e$KlK5hV!@AF{f7``29xNHN$g5Url_kkz6 zIucmH+JGM>dw6~1q2)@ix?cJS^B|g(F5HhFPW^KDb5Zznarkoy|FNp99xh*W1(#!V z_T;M7e072HANWypeq=rRUw82Tx}(I+Qc6x^c2OT&$uG@U@+J1ddvP>78C!fvi}~Od zhvKPE3cjnz7I3nCxk_$XCD+$25Fg-(v7JF|@o+iZJIDdkEPsRe*g~z_r0U-=Rl@Pn zY^@<*$@K_#--H8brM&no!%;Y^&*yDI9KjvBbK;@?Gs6j~eI2)Kz>M>96Z!8PIhNuC zo4=`A6gslGC7sy<`%bIUo^QD^`do@=j%5GGFq$*jzl-+FgFh%#o_B(Hj(BJ=z8P*K zk?~DoWbw3&?I~1iS@y*Aisxlxjue{(T7JrWx~`C(+^T#f8zf0>&Ts^?3`^dINDhU= zL>0--m`J3PjTwf_3yX0hi7Gh&Mivp=pZy=h$1IeGY$FDL%!JU!E$Q#+VJ8&=y$Pv> zX$r?GN^@R;bExp>)TT#aJ@m3-t&bI~G1?^A#%TCa`I?e`FJr;Lo-FHQQQwpA>O?Cd z&=#?qr(zaHw+!JcPhh1WBKJ6`Ub2e2) z(O)W@+@BAQ?P*QU#+!KSVlsnhMJH@N`5&U|LON(Bfl0W5L}5&Xky97OW>#TzmitS! zs-}%a{@U0J4iL2}#Lkk8s?Z^{5&CG#V-MU$qC9qmkyDq)468f}r4{)~HLvO8WPg2> z;0RIm5j#PO)rWA>6v%SiNTNWxVdT^WV$UBday|WdJ%3#8uaB?60ix;y&mW5#Rx(*Ps`?=kG zKT_7`LEL;3KXdLZmuk5}DPJ)+6`FtQ2v3L)I*ES4RmE}={TzpgoovOn)vcdIPtG=P zqzv{EEEJ8O>fKR~We~0CsQ=Bvrp~1;Sx@J)!|I_(EOKT&3b&D%^@elgSh5qGSM93nO^w0yd~gsrdI8kIp)XyYPkcB4pl9?x~hfwY3kz# zxSd3O+zunBu8)~keKemgtrGp!UnPHmV?ine*yCqvx+5w$O4MOp9<;9{)N9 zj+T|#;v$BlFjHS(R>trgXUJn@$6I(NY?DkLiQ7iZaEEc^Sb`Irnn(6G!!Sgqs?llr zXPCvF6Rl6<;j~W6O{#YRsgC$)kp3y$N+Rj2U}RyOEGR2DMC|k5^6B^-{qgTuQYhsr ztFoOHmJGA`Qms<%TcveEw=g3;rE()2Dr#0(gi6Kcu-ObZ+M(sAeF! z{Lx=7e}H2|mCNp^Tog}Do%}!CQld^Cfss?!iJ4uh?4^fle!%Q9cA9r~8O0#54vi`o zIJ?*!HdQkmH<+lJ42&G38iyH*oaBVth9*YW+9aozXG- zRPtjmNfIt)FgfAS3`gOn9(($5@<)zM4uo47Zi2l!Ia9)Rhu>xj`z0y(Vl+D4+4y$*186QFY?f!7gohYO3T@ zxTQputb&nKS4rdzho(w;3MIDW)u~sVTl__GBOD;ANOp5cCJjeTja-KtO4P{JFmiip zq`b_gkw5xty#kkw;+Uw$w;(zS_O4Qs~l}lChh4cdw%u#L#rF zPI;u^sHu_RxS>RiWMJgfH8RUG7ZzV^vMrhH=&zIQ;UH0S$wyr3P1IRaD<8y-C2D0p zjGVewY%6Q!Qa;;Vu4(C{(_bc^fa61ziPOrO@Y7VtiMX9ag&Yqfr>+p&{DwuYYMbAD z(O)B9fFnfJh|~P0>8Yub&*PR7Rq{C)Idzpp?#OG-Z)%l-ely6A{RMId92}}ZV&CrX z6#K81J-d#;NmCm?z>Oqo<8~OiUA57#6_~&JYvV6)aE4kN{iZhlj2lVR#xpQ->e{gF z+k7(54piF8%f>UjXEc);#L&!WoYv!|tENsS;ieLGG7(0O(TT(PAbG?nJc8f=ArCq& zcin)JR)ptWysTL4V+A|t^j^XTosMM}Dfbmh%ansoOWYJJ6 zK8@Q(%yOTCk&P_3ibEuK&Shq_A|jM!brrZNWh)l|xjxUEE`Tn8h^D8-?S$VwC@BnJpt4?pJWNMHr4L@$nFxAh;j zIFp$dT=F@$_}*rjO!u9|_u0>hYhoV*m!qG<*mnWyV~@(`DxKYWDSC~0f$7>R%K9OL z+~nK5tz@A4h^kE!mCR?UNw2yFU)H3TIYcrH4E$Mxjn((P?L902@BJT{cDGj20c2|K{Z!Z=w17IKK#T;1}cx!R>O%?GF>EAH*d zRhISUR%%V{a%QEca=PJIS*t|RRL;Sk%26CQ`0pNrsF zr68X|$&}BRaKnl6xd28^T|V2y7A*M?p3==eMx_bpUVj1o9F7)MK!>(0|8Un$3H=l| zohYHZVC2*#G;c5omCB`HnO0NK>;4M*I~**kf(~hof`sR$fL_5ZCkp5#7&&zT%^6HU zwgj~KOz#G0I)fORsng=t$R{TIOvUXcif0OpoVs|ld(~w7Y;Btl_E*h;aEz!)$MU{E zGT{mxHgnB>xWPoZ>;ogWw_J=id6mChR=_bzP%gIixQZK0luI9soVr}J8-$hYVyjA5 z`wQkuI7(E(?B`dNSbm8qNLSz{6D4yQjGVe;VwV8zZSW)hig^eQ5>+w#`Y9&1{e1wp zm?)UFFmmdG**vcOwI!I$Ebq4WT{uKkxeRzkd9|?*6t`p05tCis#_c7FF+`VvskZaasTqk|fig4%5%Ze9W_wU5!>1_#bp6*}CbrsmHgX-N)OP50#xvD;^{TOlsn)&p;vZYW>8 zv6EAR$r0Ylvpmb;fLZx19?x(Ta_T#n)ly?Ka{gKRCoGg3rQNuN#DtgU$gxZ(xKSE; zowpf@$d+Mrlk}_1XwR*#i|~kAH%U#-V^8TcpI{s35l;>Fzl7ULWd8yfSr{h^O`Su; zW`ve+jz&&5OPS=la=mPGG~cJKDBsJB^AyU@;Sf=igQHNIzMAVgKgDe&3gs>sId!2# zUfI-y(%;7}4b-=!N{qLWouiVD)-e2y#;ol!mgOB{S|X1 z94V?|EISaC0;Rib%H|5(WTI>?gOO90&6YOVRBPqFY@^a^6Q@V~HS-W0CaPvEi^>$u zDE^v)c>uSUD44Y{a*SXc)?(#yZn)Cp03ql4OI#a!X+^lQ=w-#;K31?da=w-9_r^x= zpJ(6a&h;p-hR)a$oitbx12RJgp1KCfl(WFfEH?JL09mdmguw$omo)Sr{h^OO`{# zW`UM3B1iWcL@;ygdfEKR{W<-5ov$*}JSB1w93W~!aF9sTPqPF15^g6^A{W5OsY@if z&(M%arIK4^70JE+BKbKSBC1F%Z*7WpIW~{*zlWZhGWjWPDN!bO!N{r0e%DyQW~K;^qjHOnsOWc_YwnSM~>YJZ(v3CD@56Ndt% zyK4&O3fx?xU@n7^Qx{BhZ(GbCni1^kH@>{_h`(AMf`dd=OZ*9}*qM>yt0|QSa9fE| zSqme#wN(1phheqOHnWv?XZtQ3q$H#g_-ab!ZQNF(RNjJ-Qe5teCrFSUD`-|jQ zI7-w+68rUyc#){inqoN`H}o^JQo$E|RHsQPf&_i6fRO5|qTPNGC^fRR&|NaQP} z`-@q?vV1LD>Sy06E%fUB$TR*bc?ymZRVA_4=f{_tsH>(>p1@5d3gs~vId!2#KJ(NN zN_VcBE#*qONG5LWJ+T?bAcm%C{V={{-*D3u$QayAqCiH%$f*ltE3<7CTY>C_688O@ zUiM0f)|Bk(uauqPKvC04{ISc})e^&BQ!+c?_7Wwt5Jqli$rMU<$#nZmCJzTH0m(G| zH6^nIx0fiHER3AGWGs{8##3i~UF{-&y?hCd5>+n_lVjCcQ!E$Y#uCL+hmlhki=}5N zRI~hOhgOMx?k|&{!ttTX#Gz+txM>RHF5FC_Kz;-xr!El7?1x3J`S}!0B!Bl8$t!S- zs3LKg{X|_gh4K<^Dp4pez{sf!#ja z5(Tp%jGVe)qOYKd`2vez^s~~MUJmrv%YJZ}sL3V%t?2lOzTpWWBLI+lZdA+4GRUOdfzEM3u>Icpj0C znj%??8%h+(eK2zBBC(uiV_!L0(vxSKJu3>v$%1$Nb@DbGB&tpvPO~Y#no@ZSx0NWB zH(=z{rDDq`p;Y?Hr)a(FHgmn_I&&Dr(9CsQ@=4QCQzWx-Ly01p1tX^}l5NelReujm zT+*U%5+3U>nWN!&QB%u74kbu?{jK4)DWD^8vxx#a6h=;6K$h1vYUS+GLXUpP?M#2Y ztcJrw)r-UH8p2Cc9;f4066J9!jNGR3=wT;iwF-2rzdUY+!!xw<2)s1qaRY88Q6AUA z$f?W2vcJQgD|U9NZs`D3C{C=*_yG(D`t0m!DGrbI^Kb`m8r3`R~}B9;ZV6}g`Ne3mcQ>z|F?*(>7UHH7g|YxfjuDE()oSu~w(trk2MBqU&knAaFi0!H%fh^@*vQ8U zc1PSkqu5QuM=j1|=B-|H+M2n=_cqI9y6-H$&wfr^6MIjQ%WY-DW@Iw;Q3sdV^%?3{ zM?MQbS=Ps*e$XIS#5MP8%`cBM|J2bF+NWGcX1OWu3|AG)o8nI65Xr=T;7^ZCR=>hz zq3CLuBJt45%i^wtBW7i}_$7v;uv6d3oU`kEYTsQF9ts=fm2p?#HWIVmWgIz{>;$ij zn_(k6a-UlC*0_h5)t*;^J%ESQdTX3XyJcsZM0>>}N2UOHRQrc!4Zz;`T5UrS_nVHD)?FnKg5>iq;H#IaHx16Y< zSuk?y8X7n&Rr_+4YJR}1bgaLWj)udQSXQzHz*N)`xC2B*9SS3-uBZ=Kvyv^nYfFn~ z`YUNQ94@Mo4tA|?Hpfi`osJt$RM4p~a_S12ZB>wx)ivqd>Mxy};W$yHGvKF>!wIr= zLe-&oY-;8P++w0;u7#0P*Ni>u*wVKqou~Yz^8_3&s&t&Qj?HmXL66~v6BYC*j2xpN zht)i}AQ&zaI6%l{$xB_Q1=5OeWy;HnPx@HFmL-oLo$#_`ZdJabE=$h)06OKcJ|y+M z2U(WnFQu7FlHoPPJ)vF7f|q4Ea%*NQHn$P#mCKP^a){U!s@P=*m!;r=mm}AgM~euHe-U}lO<77c8a){XH zzvau0Q}xHcgDs}4*iOH;=t^dmr#P;FgG0>&v2Vo0i6eB;Y z@A_-xZ8$hojX33zg*HS@^nxUodFoC+hip<24~eYNgW3c-FQo8cIp$*ulsxfu@A zkf}v?)>O+4xUodFTni(ot`>8Rq>G)fDfjEIzdYqHk|*HkP(@-nnK$5aScmY@)W&1D zjYMrc3L~ekjmXO{Vje8wW-OA7oA2GYj$sf()40MbXiYCoeT>AdB%2LNoBr4-v7&&!iM6L!Aokvf#)+=s2(B$z` ze|g*mM~Etq*w-rK7T+U&ni}~LZYNPA--nS?*T@`W|E`yPgR_wB&gZ(a!Tn{WTA{4J zUHOW?SYCodMHR~;a96*>=CG-n7jT1#s(B7ZPF*z%4AlhhYUjJMUFBM~uTo}TT&%^a zXKIJ{G-nEf7@BF0%+(~DsnhUCJ&>9$5tF5!JIDmd9$Y4`jLYijbqEAwHz~} zVjhoc{;4Bu+_DWjl>=FpqjEV{Rm-DtCvk|_lT@)sWmuVgn`nhw(VPUd7Ot%_0nV1_-=g6@VNboS-Rs%>Na^@`h z_}%^_lQNXw7g4fI4c-*xTm zF8AcC%ZD)ABcK-6h=;6Px^Z;(F`s16udRA ztrv`2;4P*x45AfHyqT2-ep{UT*yuoL4^$8UQ%NIn2Z%}<1|z4gqY8RYpg(T1L!& zQ%70cexi;}fRR(z5h<;Au{f4XxgJeRU-H+|1#rZuT55Hl)QEwpr#kKfQBUW>$f@gz zl$Y{_W!;*Ve(JBKyWnV1wbbgo6!>rI=tsEyL>+w}MowKvq`bu9$nJZr>RNimUrR5+ z5u<9U)p@BA15-~g;64!b^c;+wx}He$w?c_6%4&&e>Ic2&Z&Mh=|Hk}{2f$R)hPVSn zC9Mx5r>-Q@{H;)0q3LKpe;w@u2aB4NT0MVb?wcz52yQ-6MZ3eusjEo8GtRo6)SIiZ zJ$Fq=RevG%!SSLB>6jMJ;KB%)TI$6;AZn=yBd4yV?I>#jERvPN%514z>D2^vg}zMy3^P7nCYYAqZ!s;oXfG_vAxFm-hw z?gvp<_rS=h>k7$M>;i=4TDE%IUsi9yL8HoQh_Y1>22)jU;BF9A^%{(vx~g^rvQ^x@ z8gsVup6bnJ5JNN7%MMM(YR1CU*DTx@qP}Lp$f@g#w0^+eV>HU((f*=30uC27U$uJw zmj}R9(xJEmL?tbTkyBR^X@$JcTtHauFQn7qXiJ{?9e^W=N;`S4Dv=T;6T}N{% z74KwyIrCGimIX`T3q8!u9zCS7Pp?Lp>M;;scUFHMMKq|@-p*0$`k%VdJGO2 zRY)Igv5-UvOf@}30p>gl)^ zcT3G6n2I_VcY>&>vti`a6-8PJ4})pzn(p$~)Q{kxQ8m@-mGDRyOjUg!cY~;^@50Eb ztBTZxvt{2-y$gTIUr#T<;iBrP)m=CbfT^VCa0iG=dKyMfT}h-fDl2lOE@RPq%J$w9 zx(yk`&`juBeMTjWfT^YRaSw=EngApJk7z01X|_)L_-pASaJ;B#spVSY5iqs1JMIBd zOCN@jQ`ZuyZ(5P>td%Ra^G<#Kg6f5XMio@6`=&@3OjQ+eH;AfQ1|z4gs(mT*I}y%W zIa^(xKP6jT)!UnA=juAM;qf|c)_0k|(k_JqNmW{@#k0OaLSw4$V%#;N`qse6sjF}6 zfz%gsPr+J$dEEy`iYl+eS|qQA@1}n4!EGn%=WZA|b^UBPpnfd(61?Rvo;TnyQN?4q zT+HR_obb!7rgC1x4JRt+RTw#S<;)sLIp)6a><@WQ?Pf8Ep_$qp)S{$gy?y$Ook!tFQMJ>mywmXA%sUU`wiEU9AdH;4ezqT|-&vMt_Xgy8 zvi$Y=#*fSFNYrxHs+qg>y^)XMW)oHOQ5ZRO z)yy8Kl38z@sQU}&TsTft;T+PU(iL~p#M!vzMD2VQMowKj1D?x{zhUA>{sQ_w94xAU zT6Hcv;=bAOd>1#LsG{${$f>Jnz&9X87;QI7yx=dR=iq2jWz?!SAfx`9I(iznpQxiJ zVdT_xM9D^$8zeT|(R(JgK7$yVnOKXnk^Sa~3Ap)06|D;+r>>#_Z<-WOWAl~-ZBqXc ze<|$_M~s@0T6NQ;9s@HgeHizFsHdG^CESs3L0Bd_Lx8h-J9p zMCEkB$f+x5z`YI2jS!dm3+G}uN>t&rYHuUF3F4wmW}Qs%PjT`L_Al~VNNaEhhyuD0 zMowKoGY6X58&^Tx=P#do;22Tmb6|_6^|mV@?#8VqYUU>}a_X8H@Izbns~_I*7tU*N zps2z*v_-;+z4GBz+;pOPUWSoVSI>aWj_swzSvz@8zGg6pp_zQOs@aLT;$a$YI8iy9 zz{sg9=feZlD)AL0>vp0x1v}JVP>bQ{QIk<;tCCSIS7R?3SmR+%#}2^#A?j>j7&&#F z4Y)~WULkU-znoUWL88j3Rhwkit3vx%yyz{shqX5g;KdS%G9{>u3_94M-CTGkcC zT@~^z+;pOPz5yeruAVsq)wbsC7+N8F)L%aj!=a+;r&XV?Z8~pOtp{=Ai3++OMowKp z18!|Z?!wSCG;C+@?)rT=SX2$QYHK6nzNw;jaPx^O`VWkpx{3yzo!PDcS>UgqZ5c#+ z&(315{+NdwPE^j;Fmme38Ss#h^~#SE{H60TI8M~m)2c&4aaVnO6t|qHougpnHrI~r zijQ;swR1Kcr^K}rbG653am$I?IRi#cT{{EzJ(0UCw7%#2{sQ_g94xAUTGjVN+&BB4 z@8ISWRdf@KoVtp3A87tH$UPOBvYzu-*3)nRsmfZ~qUFUwLSm}zN!%r(+8&3IW7L)} zj$u2+r>&V=yl}rv=EOC{FNZ%Dg+CXEKbPY8Wah126U6ep%`%zpJB#nL9~RQ%V*W6NC3X zz2)kHQwn_xy2Q}gzQ)jn@|ya(xe~j9q*BWD=GS!JDTE@AAAEq>fz5UV#LH6}TARxu zVuL)l^-&&wV5wFqclCGH3gwa#)dK)R}R>jO({ zqpGK8=HaVq-R08u9Xrotmm$uq=4<_ZGi%-XnalH)QocutaB0XQJcmV?n=`*@&U|Lh zd~VKsX3l(JjuHFi{;}_Ng^&p|AJP|>Q(Q@!wNFpEl;?C5R;=O#vETW<<*s~Bb!H{s zS62ABaLD-CVoPobXCkm5;6_?9pIc&3bG~a_Wqvu&6=KM#nb&xJBE)0`F-t4uUQSvN zm#RY1?L$VQ>h{OR8>mh0v*T=v-v;6XsC|2x-N>+>zE- zuJw-WFL6}_W&7DPu2yvM+>q&F{VmzJocmzhj*bqqBYxVII?4W%VbJ2bt@uX3H8pO; zB6v!n);*J5l-b!mb4jjqdA`)8#B}(FTheD)8iFZXvN#5#&*!7hZ;Wm{R~cr4XN&c& zD>+ipZ-?Zxx;jl`6!0j_40kn__LNVt60!A=5iva=LNLL28#_My`?2#^Vhj~-7! z!8Lx8f~BqyIt30@S{C}S;5a}?E5btW03odi=f4gR(u%EI^Ltbsb$!3Lupb{~zV>jB(K;sWnljvUK(OS{~G`QF?bi;iq=NoTgu+o!JE zyvxk4E^%1SmCV15$JF|1Ig|N)oSBb!YiQst++Lyv-hh#XaWdt<#vx*}gTs_)V6jZM zi)C59r(fGK+Gba8rOaUv*p!EwBld7tO5mzF@12dCN)*W~7&%(9E5J6Gwdo>HiG zYf3rRUnxh!L82IBbf5CY_+_!)|*?YWtdz26>~EjCaPlg^-zrT*p$o- zxWz=tTni(oE}59VrPr)RPx))*2{=Aft$6e;fvcuS9>Yx~isVrkxm`tKDM90Q^KNd( zFo?EmZUa|Mk&MJmC5mJijGVeiVy4U0!m{3SLH`o_&i*>t0S*y0ne63Wc!am6R2Jga z5~Z>LMs8cFSbLPbzf_jMAxc6jp|_?~vbeQGshj{Kr!JM5_LeqiXZw2kt6D$%C4a44 z0LO@`mAyUEig4EyOC2|tD3)_!Wb_ z2X*quL{Hj|T9jW==*%mJJ)VT0F6*OF-`i*VsVlTg+1jw|JU#BJUb*x1dkzu16A`<% z>~gw!;Kk+jWfHW|lG)w6=YAKCmX+D!D-1_rroJF9>4iK-_M3!fB8kW&)NkXq5i{Id z0~4I!R@0_B!I6EJ=&|-~{HdP9AX+iKGO3Q;UyPwT;-f+OY}`sB>9b&DqpZ!~5V6mH z%lDS180ugV)jFSJnN6Pik4M9ip(cUt!6eYZ{4-mfBXIkOnm80jPF)j`b-OTecCc?w zhYy;jj5Ga}u^NsKRT*&3XnJYt<8<6gqCQTAkz@4X&_T*3G%QyR5V9411FogQ5otx( z6?s|lJ0B}pEBvO@aV&?l%#ZzyJu+V{oZZ`P`+VS;R9vaKuQl~ z>2B|L6{PHLf8`1x)%1U^5P_N)j~hDi=+a(uBFFE$lD)cD=*^edOIZq+|7{VM2lz~E z@=@ys6TrV+LoWsJCWnZf-o$smE(8obzpgW;}IdvTkUi&-vVae`Fp|o6^*FWelr~BcEQRQ^v5XebJ!pu&;!aX6X>i=Nm z)K#_Z;Ms}CvS6G|f5%@_|AFI0)zrs_N>eNjrlS6Z`$1IHKVjtm6-Cu@CH)Nhygj|U zr>z;p(9G3_N>M=^Ohs*p`$1IHOc*(JMa>&LNA;AK6>3`1`>4O1j)H?lO;E=TL4x8z zFtv0z?gUXwhrr0GYl+ZBu`t>XB7W9iP-nmqqY7#$x+ob5Q&p$oo)A^_Nf97axENrahQ@FqyrwmyELzn;#ABSzKJP|WOPB+UGD9_|TIRp-FS{|l-L zS|_Wje&VmH|4-fd2gp^G=YL}`5KW~}G>Qfgj0Pf0LNFRZXdn_n`)S8~QdM_CQgtsM2}sr5w6b@qj-Py7UK%t< z{08$``!?*)^ichjHVlO-i4!XmMo6Zfh~G!_RDYQMR%pV+PJpKCVMa!|alzL(sh?2f4S z>Sq+fN}b=>O!rM=k@EEEH)xm9Om{A{V4JSR7)^7oum!t+#5Wvd_YW(|u{kdO?nB#? zTx8YN#X{t#9nEk*)>HA1yt!b8!;X@IR74CAeEb6+0?5bT)5;>Z{ar<(bG_w)=1HY@ zZPq;BF&yMl8_e@*`3=@ivo2e0J=0kL`wt?V7E$SDYC zehN2*scdFlXz}zuJx}kU%|g4amF?`dddD4*Af3oZ0D^P^t?V776DP?}!(leHA1^8RtkH|8R}`^n~X#<)4+rQGj2%0euIw&1nk#o&bT9APE zirT(nHghDO-82?tEp%7t(LJC3Bxr7Y50@Kj5lS4-_Yk#dOj|rJwo~TFvLgYF}`w;k(G3J;I(g4-!9z5Hys3LtfCydl-{`o(8x-a z)0D_ca&#&E4m}sQ@#ca{>DYZ8n2U%7f{?HAL4bsOg;o}+<@Z{ZsP}YLPLu5E+J7oS z6nTuzZciJ7l-q>+XphnC_CYMWRSG*tQ(NWVXb4$QyO(b?NbOS<`lqH`00Ncp2UqJnHT zoy`~RUF$EImMSyOO|)NV#=(l!a7c~&AXgf0;Nt*^+D zq_vq`P{?c!3)WKkF=wi~xuc9kGPA=ZMotq($m}$S4+LcDa9Y_rQ$RmwE+!0FI9;H} z={(vipV_JGfh6f1J_eAa<+QSQl7KOIIzO_>)MT^II9#r$X*2B?N>dVJ@Npj`Q5*O; zK%z>tvUj2u){oD`^>^v~s5zOH%jZm&m$#DCoqDWpr%gk#S_3VRbA#~)GbCHL^1*;? z?WC2xvjy~feVP7#3#lLKk$Qsm3Pmc3`CZuqNz&td3?NC5(aPRQ0#-BoG6TWzaA3i7 zz**`s`7|Su%$WS*1oBhO2FcTY`m1jPd3u#r_RbTKnZiPU+Jb4J9;V*JU`ir0l|7Io z&F5nPNt#D1dnf6*$;VH|#Z1nASoBgoOPA1Yp}pM46G%)|7bH!q_$WY{R?^DeX^K36 z6E_;~7gxBh(WA7LwhBcFyS2=X!Horyqb+<0AV*iy%HBDO6tj)xD4P#Tsge8!v5tAK zo~OHM%TS)MD}f|Wbt@!SyZKN+u6EJN-njzCP5pAm?pZxhPt#tZKqWD5DtjPF+Q-KL zlC+mr?hcajc16EKm#e392OEiGrgO=Vl<$)y&EjJKNt#J3dnYM!Ks~mvD})v9|uTOnpXBs6p)<;H;v?NoNm(NbOUV`ic=EVsbYd;X*(YT$kKJRvUiq%Rq#yF zbpZ2WJxveNcA+#Su?k+ZLGrYR4+G@s0b1ERPe5+U_Q{dcOM04Kq|HKUN+LH^Opq+S zzy|@c^gONXoh4vpAR89!LHJQ0RL|$;7>Vwg&y_upBpuGj0FpGDR`yO3u%nW7ZS|g~ zXXzZ;Ei^49v7=ITLDICGj{>A=8LjM{CLk{j=lkq4D4X>xZJ@nESxRD^sqBFysl>+s zlC+*y_D&LzmvTW)7XP_j&(f{5TPRCObFr zyiU}=DOC!~MPaS&l}q$ct)gv1GZaVo>%#lC+DD z0VL@zS~-TK7K%I7>qAuw{Inne7j|ubxw|>_&Ubm33kyLuTIy^^wD`||=qdgg{hd&X z&w);*4^%^pR5)`5U1OtO$@8atvq5m5ttd~0noyC`os z$4~4PqkW?@aFGBv@=XWv9jz$G_KuxPYmq6WlZHtD5bYlSK+nbR^X7u(60s>H%tgck zLC9D6AV5OCOe>27_oY@P>ItsOX?G>Kx7G*#XAcJh@g-q@V*F{|Jzw9`Gp(om&*~jR zUp%Yw$4!+#YF@u~_Vk{i1CQwG8Tv8pHJatlg8J!9InqdmlaUK{|B-Jp$nHN>l&3&; zo7)71$j>^O*y`No4(yoOd58SPgzvNef%Mys;f zT^TJ>x&Pc?Q&@-}uPxKlyOjP+XePrd_h%~+MpBt0WI^qze4{~XPp&A(=CTgfwvNm| zr6rM{bTpgg^gOKNtp&$vSk-fYhe+^(j6uHnAQ>U8Eb`gfibUr|`;ljJ9S8+|!AL1H z7N&x+0dqw@pIvBQM7`OxxA}-^($4Wl+BG!2U}ta;oE%2TwTk#{W~`s{fq-EB zJFVPpU@fvU*3svxyTT)lL^AWl1iHd;uogKo*4y|%K(O9ID|-hkvZCr5W5o@v&e!vF zE^QW?s4j%o9iXArMEo*8oz1r&#ON$qxl1q-{oQ4Hj5g6``NPOHej4N34`NiLmAeEZ z(YxKD$LKcNEPoieI<>Fy?FTXX3a#uNqoeB!>5fjVFKrj{cv8>L4``QAe$H)MZ)O6Q z-Prf}hJ)bz4Xr%Y!RfcbnSP#nSlweJk{MRF5uAPpIR8t3UbI&A|D%Z2fHK%AyhX&g7iK<01%}2(8}IHYQFb1zJ(}`6|K{A zG)S9;a@4-PuX_9vqmXYuh|yYFxl1q-dtW!|F}j{M%O6Iry{|9u?FTXXU0S(IFcN!T z59u-bE^U@Sj9hzP-{IR2V)SiV**iv&`eKgJQ8}rP=A5Txf1wBI=d@iYNGsd6CKPo* zc5MI7M*yPqZ?v*^lp+spI8dtIqE2nd>Z}&Yt#j~T6C_Sp|fe5(0tUsHR^KY5}mX7mV@Y=K`VPlr}=78*+6@> zXp^3uG1@1To%XF3RYI5W6#1ru@Ql#P-rl+uG?Un)N;pXs%{bAV%3DiA&ARtiRq?Nq`g^WIX`!c~mzd6HV^@Y#t zp?Z#X425b|#4FabKcXIA9cCnwnciWKqG$O; zWqgo09m2-};`9buxjS$QGxnXPWqO>J(q^G4Dlwdl4-%(S`8YtFPNtQ;-B8qXy;J229xUkY*Qp?>-eBR&<1H`@1Q|T4aU>4AX~Kf zx<${|&9q@CUx_U>)Vz>b-N?rRVs$;O>>aC=e4)?$-{JglC>Bs((F6A~Z5|5T zx}<<}_#$!p1s@lP+s|ob@3_4e!7Y=^lrlj!vpGzaM$_xWyT@}^sArQ$8;N9QlbNJo z6Rt?qj^v{PQF|M$>>V{|QFUD*Z=dU0p{MJ7+ATDdCAO$qHbMe*E*}U8)Y-JMcc7rr z*>JEfOclraQn`FCl?w-ga`|X$3UGyA= z1GAd3F%@ncu{gU+&)FTcXDDabTgfe~y4LNGaNWj-1H$z+TG=~X&?eDvzAsG41^uV= zXgx_ghN6|&CegSV609Ha!GK_WpH}t`)(KG78qJn64zgxks2-{)>QT2>X+oJXZM{w?smAJRcGW*>SY8_xuGx zHWC!dixln^iZy!3R@1(r-D6^qHCiGeyO<9NgzO?(**j#==&L-D?9XQGf&I05ysoAl zL-9&%^fhjV1nVk37!a(_(#qb!ioR$Sy9r(jbH#kYY=Z|Gd;RM^JzV$DuAy-CCDlPj z4UvF-lMe_4>>ISQcfg#^_3UHtRdKQdcvNeZ9@r5>_BvbBNDNn@DYKC z{g_tvju^BnSt_M!YdxiWs`~r2Ks)TC>bc}0Mk1NHWMaFL4qqg0Z{XtsaeF>amg z5t8^W)3p`3R8QEcv|nf{yEL)RvSNjV>SR6?5UTgl$}v#2aF4cr6}NhcvIPl`S8<~+ zCFhI9F#e_F&3cwM(4Prq8GI?Z5@B>|B}1-(QNMIs;u{T8yS}146)xRIUrH91L~fWy zZ`w$WeHVXv`ERu@=H4(qW=oP;GAVx3K%HA=W8`&I^7_G~u`Z8lyPMW_`os;GniDYJo z=eI2>Z!xW2EdtR|;CC=VvAD6qK%_3Cm8UpT<2dEA zSr<~f^+@faE$ci|whI!eyZ9(Tr0$@Vy(1O9yC}0%aX6nZ4W`_^-99}~duhW^puj3^ zz<|5a1Bug9d<-B?PtwZXacbV_74!Y&U7Er`#@Xr3`j~q7J<~`eGyHB}r)Rq$k($9r z0U|Y>R*pfcg=O#h%6WAqv;_%|E9a4?QqK!=nUPUbD<_lB#n!MqQxEg$^v6Q8Blh;w za3s#iDtc`AHB{8J4lfE=GvQJxBG>5<*SIAbD<%Fz||yq=IOZ!ox`j_nqbghY%G ztYr95Kvw!`Ws&pJ6^YKRu1C7jSg3+xs#q>u650o9zGND!Tv@+~whYZYSWO9*tGXAm zGrfV21q5q5t?V7F_tY0fn}Ai!r!$qSim75cuulYjPmkBbv~eh2*m*4;uSQ2CWDoKY zfspN?mAyj-Wv@~;42q?cc}v}q_>*!5R-tQB=bc844IXh671w6b@&BIn{`2lJ*p zwz+tb>M!JnQ^j!oXqZde1xW7HLv}lD9ts&&K#7M;x*}n_m5&O9Z6~el9k$3Tud%T8 z6-TleyZYb{^>{r&+lAtVmFH#gs`?;-dYq2~1nMzbxl4d@bczS8QV-;(8Hr>D@<{5{1!!OlybqVbn+Vf!*x7ePq!48SnDn1+#ua&g2cf63D!}5zP<}#}_Exbk#)>hgt z6fCSLB@I^92#M4dJ`fP8D`{o#NFjstas`oW!6NEjJyCblcA-QiGp4HgAc5M=#{mMh zi&pL$phoRY=x6mnJx$x?AE;5sTV(tAI6$EG(#qa}id^oBA5-PCHcp3rTs`MI*hnNZ z=fjQ$(mkGWL1w2}d=wx|Gihb-Fad|sdI!T`EK@YcWUL%pq6S?{omo9o8QLzCsboe`RUaf!{d^oCP-$AZOMr4Lb>5^0>IT{_ z-$1#SI=Az2fIwYGD|-j(UBI?-W`Wh?J*0xzY*eo^fgoNsFJ`xbB*|f5EsOABk-bi4t9Gs`;=^WZCG)t|5 zZqlpiM)WO6FKz)C~z&iH`<^Ydx*( z9j^C7d8+naK&|q2J~bAmt?||EddhC4-9srGN+@$VY>~L_U+h?G z{MS30b7Zq8^qf6T+lF$MPL#8%9}=*~_;^6T9;KDN1IFYtlf_bT^|z;8q8{1rr`XKFib7s^yJXGr5#;jiQ40D-!eR`w3m zdx2$!(Okw<_(++WAH^^|TFQ*sv%v@TaP6V3L*W`oWC=@pA~V+md`uu{_tDDUK|?av znCtZWi+Z?TpzT88N+xqveULys&&L4*^&G9-B|te&zt35%o(djrB$Am5CIyuH^!sc+ z4iKorXyq87S}5mUuLxhQ=iP#Y$BOW8t@p?u&KHK`pHlspp5qJYuY@MXv!Gr#R}L^T zRgwYMsHhizzkqKti0pY4<*88oJ@Uq!a3oUfJX-brQ+gOK=bZ(szGH8MO$tLKbb-ZY zzVRRy8)#*b$x0Q8&eeI39BG#PtPM)(!Bp97YftCvrj^P9?|0H(q50$^?a3#-_2}jB z>UO^MAVas(%2S)6fkJ+C#Kq8$^bGxw_Nvni)uWdTJ;ApgWax2P**im#IiJi!nVcz2 zYs!YYFgoy3bt*c*NF*~v$6mRayf*r620)Irh^#F5fY4X#bp^ zp27Qver5hxy<;dH_ZR(dkNI!B=7^r2ZOwr?F&3ym57ec!ZDM%#uF_J4WeNNBOHMCnD=O_}tYkZWMn*Ps5JZ!}2lpH-Bn!unI> zk$P!KWECd50QH}G9{z*37944|90;uq3%UGg zHk+}QppHnX=Y4NA63NW_+6U1@__9-cGv9m=qBqjY-XS`sS#Q+4HY^1eKOfTb^Fi7s zv{O2-ZAqvcxkTqozU3e~r_;*b(TOa9JMvForjSVwW<&c?k&SwOMrp55e%hCRCc>8x z75L_Z5anrQ?-0GCY5o}qhKKD0^!s{%zDoOq0`%dwC7?>^5}q&fO$Xum60PhVp5}w- zk$k3D%-a?C|4xt3-_lN@_+Y!Zg~=yXy|v&aK!43Q9t7xnv~mnUEzIZZO9Is?UJDW) zmjsTiC&3HDppYIk_e^6~1zx{KJ%B&RNF+0W$MRosJjlqxfIILSA@#L^*YZsV@qJB2 zc`B?8L@tavU5U()qss&D(Sva!?=HAJfYnQb!H8HO5IKPl0z~B9w6e%>$5tddw@47V zedT6pG*<}5!fYy&>kBtpbG@~uvC88rDcUl$uf$%f!HH@xLiU@V-~$1v`Z%o|Lsbi% zUcKL}roR>>JocM!iT0bN*dFs{J;pcE-w4I{bZEv<3`-4tWn-`+1zyiL7lic-73J7o zvU7r&(#S@zh`S%-#l>P9lw8>}!I|oCz8e%kwIf548zQQ*f1o!2Na%>`-*SSm< zc@p44=}F{g9nEI*0yPqIjYKlDK`r=v-PkhM^X^wR+E3O>-?scpTQhJ<>Cl zf>Nef%A|vA?C}0`dWf%~zg3$du7?@zA?yEcL+~OIZsnT~LcFD-JQaG$$U*lD-M&P+ zifB)HuO5%Pd4IuiKe&id4|sAsA~pz6cJqONpzNZRMYg-EBGI`XGxCaa98qgCxpaOs zXLp;=nwBcN&8KO<(2Rp!Z#EZ0#uF=m)VL3_|J=vN0TQ*BR_+F(()mImoe%r1f!LvI z)kGa^B$6450a=^d>kNAGihb-L`CO@^nXkY3k>r z0BK6o%H2X!#y)#JF`GG=U*Hd^{ z57dLSVJJ{Z%mc#rwJn@QzbqS zkg4^wvUjF{@l)AKF~hrE57e!+TPRRT^mtVlBuzW{C_tKSp_RSUg!OnMg}nU)_!D}Z z9;fX>aZ0GiE88G>dW;VP@T}^`#viFzwu{y@23YC)pj zieFSDf}w*)xsbsmm`p5OvKfYM~cOaB0!zn*Ou^ySmV6Z(QukVXXrrl;f9{9NOa~q zG_PfPc=E-RF1qZq|HJziK9+U3jjremqV=! z_{M__okuHsXJ|gcP(GIq?33!B(Npv(+AfqL#|1A1MV0U+N0;->2RYhID|_c?A;yvU zVdhGyk-%P#|6@H(U#Cq&X>wGUQPDJEf@JDWJ_wMh+i7L*Of3MI3OA0Jnq{fJ%&`5y z_dn^8`Vs9Jiqu7I7%=yyYTaDK14+~m`4~W=o}iVz6NQYJ`sIk}b^YoQ(}6}JnIU&u zM@;45B|``BjRzT;Mk{+~2(Yt{WQz0x41|#S3X0nyfJ4sMJDh26vRz5mY&(Z0$ zTYmCUIeJOaX?*KJicX=Gy;F2N(yMINjH3K9|Sv~-e zr3|g?oh4+H?Ko@xWj#k=CCXl3u*G#f=5%O{T8SkwAX>FK$gHVdVvEu-jY z@G|#o<{J+(w1HOk&d|IjxhHbI#zN@pdW7zzy+RQ>za3|cBC$(?Zs*$$5_BuA?46)y zBOb?@q95te`5|o*icVWbJnpkZPwrZw;H5oH?8cQnr3~J`^?Wz z_1rv5`-F1SmOd)>tk2VYyFqgH(aPS*X_{{wd!cU}QctN4H4@28soIlo+-G|Z=35O? zGmBRCPR-nAy_EY*&*^$_PNR)N6OQBYXMPW&7<-oI6u#jgJ4KC|;BJvKMdKB3sOWqcERR_6x3-5@#JX=U%^ zH0!CxkEmFy#^2MU^Du1`icVX4s`0?(it&Sd!$EfT(8@9Fv{03La<3z z)vNs5y|vfNCoQITh-oZ0YpH$qdNI8>R3u`nsl^t=YNe=Q^J033MBevye3UdXo&Omn>z<=AiB!HRir72h~g zFfLjsFECA3);YVB_tUx0CBOE`^w*9=DZcw9d^^GKzKT|^HLl*VtgJ}HW`Pzen>J4Z z4nTs!Ksg^;1ESBFhA9ELhPDSy2TOQBYEjD3&sM&bARb$2W$$>rMdpuT2ORh7;kcJJ z2ZiIkJRFr6B^r10Z3NNSO)Gmx<0y$nF$@an!7?AAU9;||dP1J1JwgdNl_w+`ss!a} zzNsK6`)FnFpuE`uitJzBm{s>LhZ+fPbdCbDxCKB=h!Tv0`6hy3%%YWJz-VDcTA$Qb zN4_mc)JH(`TP3{Sis~Fo)r!|^T4AQvUp%m*mFr)BMm{$d7K-K}iDJX_dJX-va{eZ^ zoj=L+dSa(UPO&Hcs$9Z;qLB^rIY-_4)vfYepK4!Rk%*m!#SXIDKh=Iq<5pSR$NCKY zv1-5J`jq=qv~AAsJ(M>(4WDS+QkestU)HKxAC0xv+WHjya=x`-I^0}Qj{Wu>oPt|N zP9uIqCaKY>_}5L-l{2k7d0(AVaY;ebT?@m*`0qQOf=JYYhuisfgFM_yD~s-NXGJ15 zYqWi8ZdG7u0H;>WwvlSO%J?-{4@kF$5>DBjRzrmoL2S@ zk#$Wy2BKV0%8c0+p$;5Yb98`_Xvc_L=Aot)4``06@k^AZ@$Cmu+TVRBS*OIJC^_@c zNqT-3^8SPUSkprr7(dmZB{aQ!qd{oq)5_lSkG1t~LF3Fjfu5U7X`|5os}18H!%bYi zxrA>wh|VfnIR>2;X4UnHd399Yf<%3JU_+~kv)+p8yinDOi!`k;%L6|;prgwJGnbhc z=Z-3E8VMT~2kxSOY0jU?w)5JtI8b@)uF}MYd8cD(;Eq;Vt}hMTR*{IE9>xyx+rKn0 zyK!lt{GmQ-zEk5W&fn4>s`l%xFAV%OZJP6258ZEc8a~jr4>VgCnE0yJgs>iGt)=xv zf$#Ax1(V>z73J8k-oZry>-_748 zgCx92D~s;%g^EOMrfBtlQ>CE({qfIW{!y` zeX4=Wf%s8;!$ExJ(8}KNIWeZ6nQ(D!As_UmjhCs)Nh-S>>xFudE}&gQyP%ILQ&8;} zWLqGSI*$(lMCu$`**j8kUAhCQQr^l-pVH%WIqevVQ`5It@Vr#Vsg#!}ZRVQ~qO^fl z_KuRZ)-5}?bdXDxlaqzf*Yz0PNxOw&^x^horSZ@uLbvlx2NAlJR`!n2dnfDQ`ojKT zG+Rog^TQ+AaAT^^Fkc&%$;|7T9+Sfd;|=jkm=5OK55hEy zR`w3lq#G^9%w|har|Wq-jdl%9N^RO`u`Q5Dox+CzBDI88_Kws7AU{QxT&y+nydJ15 z?HLMG)90qB1Qjtr;*{Y70CDQ4mA&IM>As!$d1i9%Rm?BxVY-QS427vp`*zXrB}zB& z%?DB1PAhvy2^l$!#uU&8bt-+mCLJ+!iSn5?@haue88oG)+S zIab7fsYmH0+AtKQkF;lTAQHU<=|#TvAV@FJ%HBabDsH^wJR*0@di4bEC?k=~1a6s* zow%cMbNB{>xExL^d&edA@JamukMl^}1$uDKquoN2j`Hw{9lFdo=kQGj5n4_wdq?P< zaT%xXqc{S0xgMX*v{NWPO`jH;d|nm}TcWdpZ#IZdiB|TGj&-fFKI$1i_hn7z@6=;+ zJM9vR%~`tcYCL3#%&mNrL1cE)%HEMVGA`S=jS5`fs<6ato6hIk z3&JvwR`w1{?4G+>K#koly;Kj)CA3v&cck2NZ-`rtVOF8-zJ7Yow4U-mt9K0DbXNHf zH07*B|0gDty;BrB`!;Si+b6w757JiJEfgf>?As1qvb2S7I+%#Aq?NrR6niz+_!!w1 zv?fyb>H)f&_6h|^c{R2%aEZ@uzTqG~yJ%(a_{1*W7#HLAuAbGy^EB-g3XgK}CK|Rx zXCL2e5S_iWvUhZv4T0+Wepcc+w5XnB9c(0$nPlmQK=rsKJhS+AgYe9xmA%7b)yAr? z{6%*9EObuOqjL&v6qqZv8*DOlvm44{T}}VUoWGE5=d`0NR<_!{hLTH; znpju0N^!j=)@LgcvDJ}cE8VoeCe~q%>)Vb`^mY0Z)qb?~f>?Lbjyb>b&`n0C;p=R3 zJUC)1N|u65E-ds`zo&HsuNGmgjrCGkxAScTv)-*0<=Bti!BSX9xIT8IDpa%%)(=gq zm36S5;4O7te3hTQX@T@6pFI+*0N`=HwIBeG(aNIRd$b}En-|(%0m~XMRev-S#b(My zTNm2T&Kyuu12fG?v}33(foZx~+7y^ty`pN!acWSI7s!nQBr9zM^ zj^vAW`Lu<4etHw*r)e#9oS%B|lBD^3MJ&mu?u+08c@q-Gbb?46p)^UtFA{PV1ypQmZdP=4Byf1<(5 z{Iid5JV?@BT6v0-)EADF1~+7iq1m<1jfs)ap`+@V*uh33nVFcHBs+LX(k#C5AW1W6 zW$z?eJFeE8tgnzC$&cElK2OsFbPDYhnu?m%Ku4xxwU{M0OZYZ}+$^S*y>nw7^l)<{ z7J;&Qax%16C^=0x%?NT9I>tf$e5*lr(zJ4Sup_#yoAm75Kzr3`c3gA#?R=|2cCMq9 zyMrAu`FdE-&V#g9oo2^1|JuX18f51ITG=~0&1dadvnd!9tW}?v^x(Wm8-;?Sp0!s) zmLr`P_$GtYJWnfor^Y%JZH;uY#nNzUbi|ygu{SJ^8dFcR<`{`&rddtTmLX%ENZgX2 z!})fD{LH46z4Noky{lf^I2<-*G%~5dFz8DKrBawHmwB~v(0O{0&Y^8Xb5PT&Q3yyb z10+$)`2awomeI=IiF$Waq6%T(XgW-7$mII+8!VJI>rvW3`-P%(Ub7ph2ucl+ONL5( z%Rz?L)5_i%vT9CSy;?CHWW&BxU%r$YDdY`L<|(R}>~y;xsat9LP^3PgMXH$*lCYh8 zARuA4(8}Hko8!z<&a**J=oxyPHV9?t)K(daI}`L6-&By2M`>m6lvvj`YI&$?UF=@` zv<>Q^^?uqal$WOOnK$dk?4V_Sd6jQ8NX{#?vUhUg^NUzI?A7x!-$*1g6;tIG*LvYR zzNsK3b7^Jol*H$k=y4Zon0$$zmsPY?9my}zpk;np$u}A#X9cb7ot*gmB9@o8>Ur5h z8-((r$}g@p9r(BAKD@X{}DJ zW6$W!AQiy{Jd!1==MPm8QjU zn{5C@;+3P7=lS-6ygWxMd*@}ob8pdgl*9sO&L;JA=x`&E%yg(}rNL(4xB{01&E^{p z5_A}??46)@I0vwVYE667}+NJ6kR7Qg21If|#lm zpVqX(l#iQsU{6nMRjb%iMXi)Dd(9C&J=1zug-~8rM*w%uzt@JFRkDFCh2ribQAJ?|*ww&#|B0 zarusUL;L6S^bFoV^egj+scK&NEN@ILEfj)H7iCI=aUbYe`UBN|xAh8gPt%q;zwyxH zMyKKPY+E8bR`Er9-7(f$S+60tk8dTI`u0|oW50I?Ysekx^deGNEm}nG;LYmM_$(vQ zj?uXM@{Va7_~j$f3I=BK?FAW_K`V>yZ+b-{HaEAujNDt@umo$1*1+i$(=cVV!6mdk zXo~ni%PFGQL@Gx}i}{v^b7QHg1}(vv%QqSX=V)5lJ2=NR2PYf$mr}*SOur4! zDm^?aX}8dn<2b3u!cz}i0(GXnB}riJpk=O&&3!$~>}$Zz>4MYFgPlBr&IK`@(?}3xU0Ow_VT4b+kn&Cyv4n z=&-gHtwiNozO^7KSJTSgQ8~gr8|ur9W%}$REqnB&JU}~ylJc9aPo1m5N>J|O8w-MR z53TGSl$b5XaQ$dtk6>TWbMicG5Xy;Si?I@`#N;`?tso}P(8}I1i5bF%g??+AbNFwm zr#Z8YL^9JH#Sqp+DiJx1Zz+h#A+++8MP%cMg~)O}BFkud&^)3+WaEfLWGUZL5Rp@9 zW$%c@%yPnwBldBYlAe+Ev_B{#idjxMR0&CrZz>4MI$GH~Byl5>jU&SgtxU30PsuH` zK`14f5lJ~#iOJ1;TR}{2q?M;CCjHsGSf+nWkIAF7K^?%P605}I5x%V;CJ)id-Z6QH zdm>!1F6EpKzpAI@71}417RTd%=)y@fWC_j7e3L8jW zB$Ao#D8?z}P$eWs^GyXIIg(cP4oS?Ecpz=B#IDpcvVyh;O(=@_j)_zvaz5Wu5Rr3f zW$%c@EZ7eeLi2E_eS+yqJtkMs7NM9Z7VK-$N>nc6TMMGHiB|TG%3Sw2rDk5rwH~`m z56oS(Q7ACWTVJUQi)Y!GM#TLh)EBvJasY2 ziMy$b^_VQ84MG!&3KJ8n#AE^ARuGfpX=U%2#2him6wTN)!`i6RAYxYQCi)B3IGM-VupeaLa~8 zyWZOadPeS}{XrQ~EVz|Jm5|)SHx-2Bo3yfbNMf#pm7R0WkDu40@*M3Fii+Y&SUq3~ z%rkt0L12DDD|-hfuH(rMSRK#oPpfA;hZ%`vW;>dWCqEz&IfQR1h{zjgW$%c@Oo_Ak zfrSe!NS5g#SxOs(rW3_nrxL5gloUm^{E2uaE)VhT1#$T>Zhy9ABOpUR0|XpJ71)wD}!FQgde)&rKnT+BBZ1m+@I z**h>X*(Dba1f|TFU3%wQJuX+%9-+7>vdeh55|*p@=7O+%mR9x-OUzb)S$%LGXt_^M z%RRJ7C@qSufQfh|F5l$a3*zz(TG=};F}Y|uTVV_mch7K_j$;^fnho4NO5|KCXEd>#IJ+15=k(l)rQ%mwh zQ)SV@WT_sLQ)!FPbfTCv*P@lEoXoctMCE<7vUgNsPPRC%dgSz+tfT!wIZ>Q!DTgW{ z8RVM^LK4!--XV#ZEEmFbW~7ieo6lBCxml0OjkHTBDvHT+JzxpU^?ZXtV7@>rdj}?F z{!<8tgG{bZR7iM4&&xx!NhmLh`OieW5|{7t?FDi94z27Rmzcxah5V>^y6$B?D!-r& zLQzp1)~>`VG5I;)RuGearD8?$~P$eX9W zMk1Nvt73;|JX{IO|I(jy8wkt)qm{kG5;KG?i7HJC^qd@@7$=G$tcg@2ava}M5RrG$ z%H9!)8NwRl>}Tax>lwM2_6O~D6hqi@s1lNk_@;u8e3Vx94oS?in(1*yHd~Y7tM!yz zMH_@tqF7d|#40iQEZ zmK|XM{&7>~kDA0MXHV}LI?(*LhW2hM&n#MySUw@~R7E1twBp<9R$RZN zXIfABpP_GQnlrj~=({tF$b}#3={fe(JIbc+pVQMbc>mC^%pbz_qTB)>E&NWK z;{jRIn+n#ZQ<>qB#-I3QCW_+P7E)&&luf+F&TC5&lyqXCMBEU_jPdb+$P{ViTI1?n z-AF|uHutohtwqSst~XUInS7K^rNiu~HN?NeG*}7PZM1D@ChAWRu!tpcQ1>-HB#^PM z(8}H!JCR~cBKD*nu^-T`p@@aaBW4_tgngfn2qf%pXl3t&Eujb-3<`b4!9pgt&dO!e zx2khlkCEU8rYLCHfdthsh|^sHS>TZd-04zU)q1H^{~vi4D0**k0Rr}A3S+~f%RQV!g%*5h^+ z?H-ETaPp}w;*890pXDP1iTgCI?43An{#lg0=skMWzDe7LqSk@=XW0_T*f;o)K*s)v zR`$*qH#;ci`%BK*!83Z&enOjvlGcIQLERY1+mHFcK;Hh5R_-$1%H5}vw?lqMJsW+4 zk?7jlXx$je+w1wjK;90bmA&)!K5Eof8Z3mx!F<+!o%~ciZYR^;q3La1@?*9MUnFhs z-wvK5l4kPii9YAvnoovGs>rsU4Rje4Z6 zr`rJ$>cedUQ<*o9IIrb&PbM;`IP5Xr=tyFSJtKx;E>MTAMkg79i zW$#pBqb=j4DM&J$&)7>3oAhXn(WaqjB{!s(z1F?h>lXP%XBmhdH+-!(ypOwC3xC3;)o>d|M3xlg#BMy**js_3Vcy^hR5sCI?hNW zGdE0d1-@*BWa?dfC?Hespq0CYDY=$)v7V`mXuHsKl_XQnb*zu_p@2+%gjV*>6gDfY zA1kps!mIRTeU>&2B`d*MVcig!vp&rS1oHJ;w6b@;u(N};ds?m~t#9fH`vz?rN?3wt z2cwoq#{P&831sXKX=U$>VP|XVhPoHHexe8M$Fz4SXbGOJ5xz*;{*jLhr0pMQW$(06 z8O^oa^@eTg$>ZydL^31%veiL|nJ#=teOYEc2lLdBpSv50qOcz zTG=~YSmlZdH{BiP+pbm5GT&k(l9^>DSWUpTMY8rLJ}i*6-=LLaSZkpYXT6wbwJ2T- z67>paXI09*#8xmXnAZf|yNw zJRmV+w6aKm#a1Qi39!m-cO}518%LC9m=}zj7MH!(*rY7!csK1dn*Kft&xg~sIPG7! zD}2H6Zax5z<6RZy*vuDScew4T&pK7>;v(`>k0!pS^@Qx>4F(e*e&~ZBBw~bMWiKBJ z$jVc+vdDQ)RwO#tpIS@5Zm7mro(l3j(ZQcnC!bkHBAK}bet(HVD{62+jr8bzy!}A-g6_Qi*fGweYLwh%T0geI8GDIS_m=6dOqe0jdVmiGMC(3U**jWGfevw9kST_R)Y{Oz{*z7hnU{RV%-(@>0QRDuwHIg; zQP%M7b|#ZGb4SAWJRcnh-*dFGcleO`WX)bDZF7ECJ)b<>NOaSDvcV3C*K9r<5U;~% zW$$<`26Ef5$!HtG%)nqNH5`-*nT^(r@*F*4%W3D(goYo8WD=UNL}Ip#4++F>a6-fy`A~ShUuEEW&Qp z6SkAK4NZelG!vb-8nO63W zn{^nnIc^iHMHXxGuTxJj=NXA)CYS?>4A3Tif)k!d(B|?nfuJ2tD|-j+gZNmj*;0{3 z-YPwLD`_v$EVnU9@|u|>QCz_X38HvDt?V5|>oJ^WIj>?J`=~J8U1o^PX5yvVhyI2W}T_APOA*q+AO_I^m3j?k+wu5V|{PW$(}- zTkW+GjC;v#pB}Znv~4JA$!xVZ`XK>(ijM~b>`7YLJ788#m}Xt5*)7PX%qg@?IxJcV zZPw@2^M;v5BAI!^V3Iv()D(%@3_d6jwdu67chr!r_u6lFG*`?QN@ml&7!C}FIkQ(4 z204qlC3@x-(HG0L-VJq!z*Q0kG?cvl!&zK|8yOs|QMDJ=^**ki~0?Amuur^b4 zpK{xyXYK*oJe0Xa7f2dhk+9vzM+L%m53TGSHmjJ7b1D%XE?bH11wCZX)25-21&Q>j zQ8y%9&+*ZKa6LmSdxy(MwO#P{9$|;AWnzS%HDB8 zHs|F~S588g>+xDfyN4#NWH#rWw#e+Yln)EU?NnOXJ8sB0O!_LOoh3bO>uK{)+L9TE zxm=O3<@l&T*w)d?-3gnVXztX*b_;FZ6obtQJ?2ObZeo%dQ>MxO%)SC zjU(oEV0nik$nJ<1l{s*`dfIV-kw|9R@iBPX(KjBbRd>j3K#i7q$+c;G2q4P)D=5bn z9_n0)7^}d7)0jxTohTy<^^ElL27`r%@O#P>BM~bEE%W(cKw9R}$|CX2ZB?S4_^Qly zSK>R$N_^p%+5L~rdPBw}WwEsZ+Gn&gzW~pAl_>3$Cqowm_wkJf2@WdCQy|}2>u}42 zE0JG#G}-OYqw#s(T`<|<>u`M-8W9r&B%kBM03o@CRu*Y)YpW9VG*?BnyVBg;#x!?k zHY|_nE;3~xVsqW!7^jrE?yqRG(OicE9acl#U_!MLUYrR6=)dH{0D=CCigIk$>tK1w z6Cgk$Kl^Cz`@ecr{)_h*%zgM(K^m2a9RiyFVu<9Mf{PKE( zY&MtJBfdOd<9^6Blq2|fK)T*aD|@HQs@D)p*KlAL1Nn%a ztPj(Ep?zEm9?!QxmhnPT^&vhMkg5;T%H2bi*v0xSJyoBi{hAt7Wpa|LjeIO1Rim`B zcdD#2L~*%lZ6+5KGMmGKwVUvVdbIw4HVs89$&uECA(F4(=K})y`YNsLoiDI2G_Obu zS!n%(9<9Hp{X)@7vM(%qA*uR1J{FLwzonJEQw5IS)A^B2=1pz;GQn%FSC8LcVtdnf|7ptq;()p(zWm_}&6rbxR~;@8?4T8GA3S?42=ioYgOP5Qp_}4bgs~ za3wj;DtjTR8sK9Asp_MZyN9ZLpEb(*KYFUZNc%N4sLJbc<&Mk1NHVUk&^Vus}E zt$Z*bS8t}3y>kVwzGsTAgQXwVll39mGBjx=x%ytSL$dWjJ{*v(Gihb-Y=Jo|+b2g_ zpVX7Jkv0q^E6JQyF+*}S$_E2-RiKr#6!X+OMfVRoM$k)!*{5fK>f8t?ZpDaIY{IQ?dT)43m^q0i0&Ix+B-fbk3nH45^5`MxE z$=9)bKp@|l^=;``6Z5f)nlAIaV?2v4Ij1LE7>q1)DJ6qrg zzL?3`=dylB57uwfexYC`If5^HA*uQd9}7s;r)XvGR9P=v#_jABM}k5z)4wTI3d^sE zSPSugst4>(XzNhG@Pe)U9*<>MOi?*4oEkU+*xqLsZfW<4bsJ3gy+4ih)ltxj`D5843j z9SYjI1Z$4elG%hWGNbkJae=f2w6b^FxL(t7q5q3|(00(ap`djjqq*<(f1VEsWbAXa zvUkSN8D}-4jbCTC653zrIs0?kI+U|SXPk|;$b9x^d{`iB_tVPWSvv*08&vBh8t%1Q z!2PElxc{L2LxIaD--9-IBdPlt9~(&BPibZE)N#FN zx&rUMSv}i4)<|^iY|~v{;GKL(AY;eS%3a5ps501D|=_`Bx*&Y-%)emxAl;HhV~7GY@h>urn~gOr}&sa$}Xpsy;H_*Lyh0Kw+3f_ zq6h7dY3oqXIb2X+EtixeElM+K600IlquG%laHY8AX+&)Iuv z-=`J7wH@hNE)9fF80w+BOuj4$L*(1q=c{B#^O7Y2_|s%u&Z+ zhn}&|)3!|^#@yu$KF5ayGIkBE?42=gPt#e|;Lr7x{TXc>N?8Z?G~?GIkoR?47Yw zsXZs_+P~F)wtxtaU$#O^bqj^3$ki0Cd?43MrEp1~qKd{N-?W=m;zD)au z^45X9fr=-RvM=#5ft1}uD|@Gm>q9q(CHv99ztuzb*R*XYWF6>3%a%ySzQ>0IGWIa7 z?42>Nbg?Ui{g0lm|E3K?=}NM6aZK*|B_9mP)l0Opcdo#~XO5(G>@Di~&aDYxP8@=x>E4$`$b3 zVxStPRp{3heC;DY^QQ5S{0YAKAjBW9C=Xp2^C9QOQqguOtS2oUzVxPowdqu5c%%`J zZF)R@hxhlOOwQEG%^6g;ZktgE`$r3z9Yd#@U(&YM1-bNK-u%^YxMSNV+K)%X1_8=% z^MQb%e1=vQ+3r&niOvya-FI>lRl7e{2>V9Up*6?+mT7NsZNO*e*G{C?Kc!tm^A28C z8_qkusRlRX$p26HXh6FDm{#^q*Kw0}V!ckP{#8%aztC=>RDC>wbX9dh()7=K6d+Ci zL@US8)WWc;J~FFztu07+9GM+sL0x-;t{6KuJMzow9QigQk<4u4V>r#@f!d?9@qfR; z0MYHfg%1Hl`Arq&*zsBCI#X+*W4X(i$jBr*em`5!$XUF>-~bI@=omluUql#*SRrUR zgAWFzyC19m!69|cyqx-x2nBdL@W@5+{On167n@# zStPixv?@_ga8*vbE5RMri1fL^rmzq{tb5j&q|9(n(>|ja?gE(PY$Zx7#W_M31n=V; z4-&k$q8yv!I=J9wO<<)hk)L=p%N_g`H5;>xL^4DEi`&gc!~{XfOg;>dk{PtJ$aB*x z5}lhMO!_OESYGPyw_kxe#k5tKZkEuFq3H%+!UfY!)CjpOvX~D9glZA3>>a8lll58? zUKX>NzD#Z)wIP%1%Wtq&ax;3q`f2k}zVOpREMJYDNYv7NOdx7&Xl3uHS!cT)-C@ud zjFd8CVJa9KNR8z4*@b-;XE*3M+fF-&a)!T^h;rsIL_&5Q9}o!HwX||KLUy7J*@Jq> z_R!8vA;?a2)Dn7t4+w_t6fFVN0S0m$lx$V~P;9}o!HbF^|d zLbk}xWOH_^hy8~eiDYJy33iv`kS%g#ve|qq(l#Rs~)MH zv|;{{a&>&S@Ns}h-ApTcN9vuEu6y;R?M2kb^(;L`JB70J(YE(^#sJyXJ<10FLi7l& z+zk+kmH7R7h+d_g@(5AC1EN>>06>Udrj@-zWL-pZ48g~5Zs zNM?4|{(Zs;8)R0R%ZC91bu_K)9jM8>Hn~5zN{`Y?+9`io$rvCZTEPbZLUcZ@>>Z+a zO*%fx$N|z8Jw;d2R-qKFZ2JJI?104R3O)i5qswUJZoo(;quqLpcF|UO#K@VA?&2c= zF}j0R_KwlK$+M9$F=vgB_USp=OM8WKgkPONH;Xf63uHceiVpz<=}B7IJ4lnCp{m?E z9m!{dl6_lo*4Na-?U_a*nc;T(&rn5-kWkIw0|B9$PAhwdYVu8#@%<=qo@I%isl~Km zXo_n8CQ980iPR!K4iKpYv~m|AB{os|^+=^@!~7%V+C*8y#{nX>npW;2q{Jr5c0E$p z(T4d)%C(7dEguJn)YY`Iccf03bXZKZT;n|uYZ+>}o~UKCX=rA`>jk3AP>o(l zw3hO*fM}gcD|<)l1Cygw3QC!D%5f9K!mOmnY&~rtiW&aI28>y(FA}*N9~X$+I$F7l zkrPV|JN3xjLK`^skaI0P+|0)XB6lOL+=a-EFBA&o9@8WDC~e@>L9XtL%yN(Lae>G^ zL@ReOa$@!CRXuXA&<0LDbd7! zBazJ9b8Xv~#DpC(ryb3Q0|Is=t=xTpiQaRi9LM@W!vO)?L@Rp-Z1R&5wLU?fE#0Lj>n_?bl&tojl&Je4JHIby4cciRm&Eg006E{+S9{iJ5-aO?;8JsIu24?r>E*#+A@@? z_Mh*HIw5n_)qEr%R#(x=-m!WQy6GLcf?$oX9?-*eA8i~8S30Sc(uf}tv3vMiOZ(Mk1N{VPf51*$4^Mk$fN^ zRBxk|y+bwm^;ic@EA%v-Pg{j%sP7+(j#k zoOnk?qH|Ad!jJ`hLwU0sXYEQpZJMimWpf{G8k&}fR}fo+tmcUvz3t^=0ug(PR`!nA zd#%my*gUp2D5VF(zEpm+6c#Md4!%PT+AJfH%-mo&>1@{EjKpmw9~p?-3|iScZs?$* zH=WPfuZNwYr)&xB7@E$A)&17eS=kT?*J3^(5UxeEvUj*nL~~hRCK%{9B~`67meB*& zPrHT!Hkfo88#hHlmga*3AzMQ$dxy+kmW}N&`|>tlH|Y7=P8){uMVu0AErA(7BwE+; z@qlPuODlH|T4Bb1d*wkrT6<{2rVLuf4~f8+t+#BR` zLDuRbU(|E<0_`5k*+|k|q-~Cb?s+~q5W44RW$)0z%NNGiu^?NtSetXFdRBS3kw|7% znfUTW%@c{(Y(6FsvBPL(?}*t2>taV^gC?(qg;c)KXa4VSemE4XW#{N|TTUB@rnX|z zsmyrjgxFfM! z&qoJhm!p-vV+XIGtt;g1b3wQ2N!v*~hLV=}3R>9^3D+%rKp&)m2z60}$Nut3mWrj@;e2JaLM=ljBxT*;mPhw7>6 zJR_0J)HLy(f^kzMWOMnTK*)}!mAyk|*X@bVW~13s#zEOCJ!LCt+t6f|_#vU;aaSZ} zEBL5D%+9Bky<_%1c+6HYbo|F_b(~xDtX)Zahq9JSyyI-JMgn&Q9~ubUWwdhl05=j8 z$_pRvRgc|z;C9j8O&Q=Ct&zap#fJt0cL%N9J;2p2#JW#I?$ZOem-cST0M}@Z1nwz5 zG!VEaX=U%gor-p;HCG!>09qaEth>}xg_%YonW;i4>5kQ9kc4jrA0PL~Rit7l_&dTG=~lOUOJoenikpas7JS z(zJOfZut(SxN&bJa%=e5K;%}_%HENKmw0QxV!8IVT~FI}v~MVFi7)ZiZIPf|%ZCMm zb~UZsb)cE^Hdb2OqX+E)+PA3&nz2QKb{`)W2--cgvUkvylAWk=wAl&E7xdIUPn(ER zx1mFwsqK+O@Hsw45W#0?W$y^WOTe|>!`SOMZ+ZCF)ic%EMuM5CUVmWEw4U-mt9PIX zCcYNj=#eDvFfv9H8c5zDw6b^dmXXQNam>)_b(iZYTt@qd!ne6Y`OjgK1aT=JCJ5rG zw6b>)PbWbX#||wFOL`2~(=MVIZtM_-!Xyb{jt>%qa2>7e9YS{L&T&L@r=Gi8XyZ`s zI<<7?KB;*#9~X$)jkL0N)XpOFo%1-NmGd6cv-c?NB+A}p9m;u5qh#KDgbx&i@gZ8- zJB;vEh}zgX_W0(jdIDde?L!Gn{3?WSM`HIfA03F@FKA`&*s2S23#S@>jSflt?%*Q?@w<&y_KqJr$}8VW?9XQGn_+wP;5|i~hl1CsQQo*W61gY& z*g)idKr4Gk4z4Ou>rP5xu9z>FvN=J4Exk$XKgu@?+-gG`b5WOB+ z**kjd(c@BKG?xxarZB7dZCicqVm*6{Xa~`h*Quk&4F*a07VrUr@EuPpdxwwR%`KHu zwWYjLK2=SE7J_L#f@^3WQ3N}+o9nPig1DLw69n;MTG=~@a8>H@4#rhi=Q=%m*V5LZ z>?K~6y1^NV+tqwzAZ}OD%HDB<%K?m!pRFwSfS$DbXxC8E5-$fZZiJz=%HljHVw^X#Oux^UR5t7S}XZjK(toS%HGkkcMjsw$}V)JuC02uw$QGjY^`bk zSgbaJsF@+*x{?nDgzE}g**jeJwVEbycxIL}MZ69r)f81ab#|5^hBaIlaC2RZ3eCE9W}foE#~{nXW9w_8D~d& ziXOHlw0-_Fo9&9kZ80Aeh}$As**k9b=DW;nzzSMMk6J%%9g14m_L+gp5s6uvj|jwU z4Xx}QGy5fS2WAs1MAnkV4SKk?(}tmNUDAHICVY@cUB|}(B6TgT>>a6NC*4wVu8=*b z$7v637K+nFZO18YW$Xby1`wtDXl3sxO};zn9?!q1XXypnEtI8IZD%QVCG2@V2oR>{ zXl3s(*-vT7uFhWTu{yjtf1;ix9&RL(nI#78r)tubui1PwAYO;j%3Xk$y|!cFb&ejd z<+N>R(rQ0mwi|L(wTzDj#A_+7>>aPk_a7Tqb1b+v=;12SrlD}PfB&)33yIcxJ{AzI z9Ifmft;st^d+o-8>sCEnJ89ccxZ0n&Y&RrcxA4(`c->4Z$Kch%!PWZN*XsGj79>2L zeSK%+wDi0nml+w&nm5Pux!4o1|D*@|NAw3n!Ttn1;v0^{YMq0PwV{Sh{WRduD02AuGYxWOS0rd#`KUn9w$RGnL9t6yI+sn zy|jHOZg{Cb6>byWNa*h7V*{bvO)Gnc&MN3UDRiT`elzhjl_;zf_ftJ{&(iLp%;9fl zX_%X^Mk4n#9~y|WZP-wu7m7E8?x`| zA$yp%ZE8VwVxNTUK|UrBvOTnN*Fm<(hU}Mm$X=ptn_7@9azOSX9}@`K3$(I#$k6fG z+Co0)OP4#$;$Scm+Usq{{Hc2Wd6bbzX8xJ%_{?@jX0@z0O)_yFd@yd9-n8UQ2c_A?k_*?HoQT5VYmAvUkv|f~2uCPqV0IUe8GN7xKfY zVrZ7xa%p>Y?Q%VEn`r}4;P5v|TbX^j+>zjI;G+Yn$Qj|YV7FO$cet#_FJi}I4W|OF-f^Lx zvEIZO8%p%hWP>ddwfTHlAZqhyW$&n=2f^LvI4;#gb_wkn+DrB&3t9DGi^OXc9}tMw zN?O@FUg!Y7`~+>bV5P8Y^mJ{dEko%_wwtW_A>rD>#{JFxtoHBb;{oB?MJs!U%c>U?KL*QZZM2@%qxCdx7>X8tOSF}RiGJgT%v$^SXh5*` z(#qb!vWg(bf;AWhW0|5kOJ?J|qyanY6NZ#L!XK zplez6G(BIZ(3YXuE7?(3)ei~R53mv!2U(yryB5fK<7+$`( zmFzX{hy?5fJ|YmX=V@i{fV~^+7)JtoHR7mmsppGxj6^c?Mf}m6R@gFTNURR$g8{Lc zO)GoH3O!;t5)?|AAe$<$?^q+R^Ynb3LmP+Yu4IoGMqQDhE$5>GL0d*Edj}1z2Q+S} zxienO7gD8sYAj4!#BJ6Sw}EyLB`(=|Ku&ukdL=$Q5WV%ZvUl{X2PR_2X5-$PoB1-! z-L7ZuR@yq0xpj%|bT|4UVcW^a1;Ta(f@94pKu35daY4@pT3;Sv7Q05ZOa}B;o*k0x10%3cFR`w1XSY5TZ zkS{H<*J^w9jLkO^$;?RCCfb))?2u^9a$9KkrU-JjH4?ci z`OrY*uAr5>4!MbXBNlRZ>yg_{yEnCvo3KVAw~G%AMD8wHxm%GF6VC6^oY_-&_sMDg3$8T_P462t5GAVCbTrIo#7 zh~8YU^)1f2E)VL#+e15tf|u;g^#)rcY7g*XfvDX_D|a7ij_U|7>QQ@vc5aHH=DwBi zJRcT_+HKW|eMk1LRY)7(MTNM-k{!3|QQJv7H|0=sRqnWj4+})?W?I=hYA10^A&$eokLy8ujP?x$ZLkwdAMQFH zkMco*m_0%(d&dkd2VWbJOw_KhR(bd9S$mZ>4`nUca`3h@awJ**jw7NNu9#g*8&! zttV|4Z5~QmM@DKB&Pd?y;v)lryMtEt4&3{=8R&Qk42!pYdfxWZ-l4o@J249#H%8+2 z6dxFf+mp1icihl-JZt@hEDy@0wJ4DD|?5GJl8gU zY22~8wnR_cV%k46uXW^HThtth-6B3X5W5AmvUlvxDTj@rj11T+ti7E z)#;K1aSb0O2;yp5**l16VTXwhrCKn_SxjWRp1|v92T=l(E$ra5N1}HvA0CL_)wHsA z^jge;4Yf0@xy2qmfe+9|q6Bs{2R67QLA;NT5(M!cTG=~@XtlW7kK9%J;RQW-&(p@C z;3ZovF6xQ|?KwUw5VU7#W$&OZHQB{Fc!cqB*bF3H&U7Bz#Nx_(1qhrIo$IM|QKN z{7A}v_r0V?Zar-rid;v!*@`O?v>YE52--SY**j?Di4x~rcBh`STWIG{(mJxuU$sS| zb~7Iqh}w-+{&9Wvk1tmLxT*3-w=p;7 zdZOqtJ#&xpALpPL3YR1Z8HjC|7anzW9ZbYruS@nU64x;=FMLXhdZ`)gt@9M zlDS9tut4S>qLsT3HODEYSM{j9LOVC5(%YDsx4KR-z08LNqV@|~**j|JYmw!Fur)cI zw?{oWooghLnVcs3T4dP`nZu6eqXEG>l2-N(7J8J#nqgUtt<*ENg7yy0V#yvQv5b+p zozDjb;&v{r>>W3>tgma%d8Hn*D`>}1$dWDV8#CFwj1LDyYZI;P9WC^fl6iw|IJG$} zkd995VG57W$%!or^(HnJsXtFDG`gYy?Vx;qFqB7 zOZGJRge4NOC;5;-#C||4dq)g?T-mu=HuKNbgZ&vsBALN{vX3jrEt5^>;{oC7p_RSE zbuzf`G@8q-9}QFKe6AR#M@yM8dsewv585KyJ~WZ#6Ww!?-pGu$fR7D??s!_+J9KD9 zbFRgv^`NbxEki*|HlxKY!mj4y0pYrsR_-FW9ILO_>EXJTwrr}vnd6~ z2Ck6bkNV{7={-XSnq91+C;p^7ylFvV`Gmw-W>02x?a-LvHf#;dIs+w z`jz>^Y>!&n zDLt4f{~E1Tuk%bxi)#bE+kWjtpL-7N7n)~2-e#QYF37%WIUfbc(=u9l>hm;E$d8V= zc-pMzX#?$-FP`cyNS;c36d+IQX=U#`S<4JEKV@>}sEHXmyO6qFkJPQSWhhdgXmg5c zFhWwblMe)>>K0nrJ5`g7D|@pGD?A0+%w~I1_Jkg)$7#nM&!NTy!p;{cg@g;wqYrm90JSDxzCGd15xBs1M>d!CB; zAeoxS#{n`mmsa-9ly#&=j;Lx^PU}-1YvOl_9;{WgZD_Ju)8-CPm?7y}$p-_{wSrde z8oKHeAd9Z8db+mIwt1$jZib}mN~1|^yJ_c8!0^52 z@`~J~>*Kw(^wr>pWNa5756IYEw6b@`tc$d3SN|e?bwj=Z!B=y4)dA{)=!P$!PR5%=Q++;*Vjs`@J&3swU#+P_| z!SVnXx0{WK34)TF_%J|9ZutM)oe7*ARki;I0$Bi&NF*#-hJ-*^W)g_(n}HAr1cFHr zL_?>iyJn_3y$rofGAtq}AiUv;FcFj|qA1D}MHEFrMNtGr5JXWFL6ir|B7&f}0RLOn z)m>Hh-0C^My47re}uci1nLK{vT>mH7&SljSk<(|(m(ZC`a2vdE=#8* zo}8QrP>lYDd%(o#uduRljHG>AioBGy%XX$eZ&f9hcE4LYFU=Ja?HM{IpO>0ppg?uv zZZLtG2`d{1YW}EssV`k9$cbr{K1?UWvEnACcPE~h+z?QZPQ+bcf^9C`@PJPB39w4=WpoNm{H{baRab+K4LrOZrs( zFB~>5Rs4gJxKzo}pm=>A_lAkrXJKXIc#S%T(pW%K)a1X>C+k;m#JFVfHsY>%- z;Eph%dI(lF4i!6RHA_>eLZ9>_?FxMhA<>=+y=^(G84a4VHp9JP;`PR+hnKV?KDtX( z)$8xjM{8faF_^QQYZ9;5z3wogZ12WBVPds6tZY1M?K|rD&kLrydQaw!Rya3I_$n)1&h*>GzR2amPv|p!72H}} zrumZ_m4>5IwW|(*M~lB`ID)&tMERqx@_1M@luqJRMkcUi7F;*{p*|$v$0N+_QTe-} zAxHwDAh>)NcZP|}9k4RVeBX2>#%}fS5Jt*r3^8lPa(d9pr|e?Z+8~VxUJ`a|t|k5j zjvhA?tz-AD7-U|(5sC{P8$5^m#pLZzu(EO9q@kxekA(s%fi~+NZP0cR673m!X4?c> zC?J%u9dU=4guNYBjvy>XA?DX|^=>$Zguz;Frkq%-kyYHO`be*a+liYy`G+V~tSYJB z!cLQ}_+7Z!OmI(fl_M*+vFl)^-4v^=P)GuGO0Z-*U!REgci{a_*B1)P?;calBxruEhALF{4a&l8R zPawV(H=hadEv|B8f*ZrbzV;p!iojzY%yLiZgKzST@gbB)T zVP%r-e(g$(U7snvM7fGSY29{l&?;9`;)KCMt(vadWV6Q9d$n`VwnCyk;{+@D+@pvH z9Vl##d&Hz{GOTQzGDhCYTN|9GTN;8Mp^w&~aJabL8h?KxKW}+qpgbLfyTRmXe^}W# zPlu1*4|)?uqb9F)`h@kv0pt?Kzu1aTSY%)*a~AFxler#P**J63#W1R#(hIFRm0hh5 z+D15PT+sL%IbhHtGujonH%z)d0xL(*6=TTgk2>qah8PkCr_$z0iPfq1Dpfm^&PPtE zJ*3a|18{qBxdysu-&J|^>Hj1Y1dkbiar8di4JOd{y2|5W1S)MfTBVLnVE7drh5lO~ zmDlhXGe@Dof`acf50yYT2sE$a4l$v58CE7)@I_a`+-TGfbnwaRPI(<|rY2rOk(Wp3 z|5$r8I!{QnXEbW_N29*)T*yLEq1D_R+$$z&vti{;ku+O=N#zuM(pJKe0dw-c-nS(yE1BOa8l8*zV_blm_eZz^+&`m@<-Q07 zWoiQM3X`c0SlKvJ%>1t$MINA!)gm}z+W7t$^Tn*>op6#lh->xXx(1FI7p`{piuGtvvaZIx zVUo2GRyIx+zgHY6m$K4){C)ap-3y0|i&mR^MJF7Tt-En|m~7nzD;sBvxki0vEnTeI zdHK5K*Yx3f6^?{-q2y@2A>B#yLWw zJwwJ^8&?#iuu#@!<8Coon*l3tVyrc`0Z6Q^)Msr496D}78w1uFVWF%o$K7JGwhUG_ z&YJx0k-w@N+8yCNz;u(udHR^014oUE8SsX#?>BSw<41%NHiUb`By12?Hcr?Qe3%**syyA+Ncm$fk%4>aRKX}cKri%HvuU}fX9 z!Ff%w@N~OAYq!CX0kbSv%^leAl4W#gn_D+G;Y7ipT~8GY2Af~pea2KN(^Xs{Kha5vfuIFM%_*U$Bu~RR_knpY8-IYk^ zCeP~VICo@z?xRaPI@XNjuB?A-tbbfp|M9Hz-4gB#3*W-Y929GX2xg~mN=t|D>sF@0{XgoDN9=2&fR>ONC+F2`+VqH`In zY#g1vMn%WHyrCk$1o8uYcD@Hki_6Y&+U$5vQ+U3E8_k60c39asJfr8G!F0Z6$$96m z`s};_2aC&&e%`73OwoB3x0#8~GqAF8bY{`K6ItKPd{Dc-*;z=mXXJAjo@;zZDJ0Wz zLz$3FgO!a#A}yMUQDe6kJ7qm{ygnz#!a?HZl_O(w5>>}6!EI%tvKUr2j>??Ke4?&j z*6XuUg`>n}<(;uviL6`B#EoUbQiPR_!xEiWl=aGI^;!8e93(C)@$*VlopLR1D-)G# zVC4u@V$9O}6aDqsz!(z#tkA@`1($C{ecoBiil^hwetXLe=WRKr%MFu`wZxQvIv-wg zfS)bpgE4$U5=#z!o`IpcZPl_vT#f_F4z5Jxlyu~TW1PjF)-#T85BHp^Mta*r+6DMq zg+w9+xQJV*d4>;e)meHiDlI=WeDt!5zn-)WZY4AIO>vbY+j|U`AZ9DuJ1{{XT87YX z`GfJ8s+S>1%O4%P5Of>zb1NaPXHxr+=u(EM{qz#S)pK>`pqy*?=`T$)C zhl>l)i3tGYdrlF$9Jic_&}Fc)afGCI1qec7cS*ULs?-Js#Kq;6lwBOir!!==LLaB^ z!J*^g^qvH8Qb&QJ^&Q*`CR(?{%Er->jzN>r%H-{VR3Tk0+Z$5FQdvIb|F8N?y#U9I z%T&uP`hE3bj=Csr_U*F!6sBi!^O-O`11oP5Fb!InYN@P(Y39$h3#OfgM0-Y9Nx>9w zpTaa9H=ha9G+24O!(`dT(m*9uw$h@EDE7&{-SPS`9Sg^73^SALK80xsZax#H#jvt* zn7Sec{N7lm8O>~s)J^O4NvgsD0y{81t8`XMZ zG?Sn?u(EN2Mp+f9$1qitZ)G@5AEHy>U~$<=U{$2)H^pZqZZ{L36|k~#eD-NQAamZ! zFV+gFtX+@`p$qj1x&V$Bm!OmM`>~+w6r%HR)0q&R11lScXnt#m`qPz^IQUEk=&Skw z-3-Ty3()cU05#mE@Z5x(&4lMhSlKu{(zR&vAk14tOJ%K0S#>_h6Z#ZA1_zBx(JFn4 zi2oF)M{)a^I6VR@Zz?$1MKw;_{6f39o+2b#7uTdbWo|M`5T~a96sL)}{Y;!Dz{6sY%i(x&0ZL$$7Id9L zbQx|s6QWCDW#bS@w|J65+Zm))?Ll#>hawSuPoJajz#-#u^sWTT?6CI~rQ31qnJC=` zD;q~?lzddlq^ni2{?VH!%dao!bM!16FD^$3#i9fLMmxv%Qeb0!=xEqK10{S(c&_cMCa9XoC0(WZa5R5t6^p107<8#lj=u$ zi6~W{VU*X<9?-|>J~(zV3lg$$n?HQ9LFi+iZ zo5C{(H=7C1Y*^ViJfmzz6Hyd{+k9Hy(RhkJJuBg0aWhW>o6(wnQ+!t7b~Eu=4l5hS zXOwA0_mHTRnDG~ziKM>k0)2wcgX6^|D1m9kpz9Q(b8yp{5Dme~#vzgpRBII0&0{ho za&Fcq=O#EvTyiu{m1+7*ak&w_u(EMn=Bi6&cMVK=9LQt(z&r|vi3`jz@yq0Z z#}t`IaEqD9JPa!vMRQz>gKq(*p8QJR2T&qS#MRyK}O z#Ar)C??URc4$x<45gaRS3ep&D$!=447UE_z;pu{v$2B~G^DQKJGWzhWg<~~V@C4kZ z@T|ejX2NqitUO-fX`VvhlmqlQkIVJpxeSig7{DXDP2sr|H=7C1#jvt*c;=~#=4KQX z$9H^3pPbv_Kyk@wdC^8+%Ok2nK2vON!)<0_b1SSo?y*rE*YT`AHqXF;8cS@{$81gZ)@<2-$K&VeJv zWk+Mc9d??6GlUz>1ZNOdHV#fijng;|LP|F`=_7L^93w6=8Z}PCT?)$$xVcPNu7{P4 z!xAxy3LgC+0rRLnFpt1-;sT>FiVC_+p?MfLnF-B}x8Soao%93^gs(dmqu4pU$b z#SLZxa}ca-9GHmrD#bHbwKL)+ZZeiG>JzgL4ilFcjrS@89#drcaf_MASg^8jWFn^Q z8Ua*~tgq3>=4v=pTx>L^>?E%#Iva7Tndn>rD;q~AVjd*%5^IaR3eV3lM3QFk7*C0W($e-45C(QuoK}vg=q$EJ`<*$U}fVlMdTfEQk3Fkz7_iH zEQdoh26@NxmZGu@x0Z>@QdrqIDiJG9B6zBk_|DO1WeAQDmlchbriQx|mO2DK6LJ_A+s~4pugfOT@xt@VGgtj(J3% zn1|swaf#7bm<+m1p?MHDnF-DPuyO=6R&MgFj*fFj=I1`T)V;R*%KFE~`bX#zZ%^Xv z=@U9~lf>W3O?k*EEn`R=+mx8-N~CqH`16C>Ry^%W#I&N;lY3%I5sg(Rbad=_{)iLH zH)eKp^xu(tQ+$Y98&8Y)!Tj7A5kJXgqJFTsi2LxACFyFqvpO_jja)e5d}F;icKsbX zSWrG8!^dPxnaTojHDNlH$vY=>N&n)W`L;mZ9o8NEoo@F(*Z-4i+VEECVy3@TE~X3C zNdFxkJx}e>pl6ma7aN#(63;ayc5x-fCi1nz7b=qF2Yp!Xh9kv=MNvpIx{+?#Ws1#RxXDax?u3<%V>72UHr0}pUtZNm z=4CiaTx1k;I~X$662;|3+*~Fu&%?^bahavUC6g|uoFpTmGUsvau4uN9z^ZyKDvBL` z98?;vQcPyxrZO?v305|a$u25PvWjwLg+3$8;qY)7IW%6m;`&JeS%%xm1Y{|!JU#*G zwTr!Se{+sLAVY9?+6;*6Ck12>x04A-1y&xPfY=H^Zqx_l1~@!z2E_G~0&+cWCliqC zU}fWg%vE(U;w96bQYoKObv2LZgYqyOCN3z7btXR81f!S5n zC6%p8EniJ32FsV~<8m<^BrYzBy}z9PDBvxH&}&4$-%wzV5AM#f~~wh%FDFpERah9=2ZPyaHAcZ-J%5YplP7pD^X)F?_7frU&=s z3D3CD%DQ6P!_VV#>~DMcnJW>w7#_LE8E3;u>&5W5`{^*MfnI|f$a`-6MetYQkSW_Z z_mt2HHP7(DQS*g?77c8D2>R$*>F;NG8Ml&|`d)OEBinlnH$Ti)ws&AtKyW|OoZo8? z#%2qNBnD%&whavJ_S}j!IyWGLU1tMer)Mf<($W`lJlO5#o}f zxJsj5Q?p1B&QeeYabuaFRAA-t3W~T-je>HcJ}5W95gG$f>dsP7uE&jKf^r?KY#fxp zdUi0Q6w(`{bn=KkB@e^l;ZkyV?E17@cuEm@5Vw?x$o;UgaYO=JG((73Y5By?2~TPl zCmlkfJ(XBeqLW8dhq~^CTguEM zd%()Z5sAnnib2jAeMU})2ha@78RI2ho_)>jFE{4Oy zWke&72u~>@AHpqVB62>gJZ=#oBjDTg5xEr(&sZR$8vfpbTgpV_%dqlzMPx8tmPR#C z=_B$a9G)>iM0iTG$m6)BOhkSQD@Py_W3A3#?yJxL$B^(B9iN96Cp<@dE9$FGT2}m2 z#|p9N`1sf^I&OJVsay!Z#=GDT=txlcPz)~{Ww|j^Dpu2W(JIsTteZdTF1qH0R$osAa|OI#!6v z=;ss1bUW5IC#H+`KrJu!WR;4cGcR5dj$lui^6?lxZj=JaT~(#UQGKzs5VS7T1uN>K zm*R%ruaExXN<{XWk=Zc$`e+A#gHB`MBbz8mq^ou1XfcjTRAsD=!Dv5IPwk7 zV4DWEWQDvWUFB5VPGV#d@-ZxwI@L`cs33y1(qdsZ_I#4YKLQV`vR0yvuQ)KD zKF|@3AMlr8a42pu6N7_bWzRUj1KQt}h|Cd*S4@EejDinOcP4KSNaa#dn5GHKIygYw zOra>3_^>$6(sHREH%4;$vxP)^#yVORjN>fjWCm_5larlbW#gPg^-2R)xlpTGs`Ro#pO@uu zpt$Kpt5*s-O}SZy8_ncqDXeUqo2bgSYzHai1>-9!`SZ;u0#DyjDl{n5Y$@7=eay@P@la}jXW#hC&RW9XHJ}=F^ zJfe@v!*GDOsAyF#jb~Is|?!K zdZ}EQ`n2{iXj>uCo?(zyR&kuAoNSF7%j9G-tZbZ6`kSU)Ky^|Tm29&08p^c`BjldVh<=Ec{{6SY@JnRac zUcWyq<=lX6txxrc+R7@*dvI=oo5*`|{hh!!!a-BEa_(xO6KbI7vl#BzV39rv3-NF(-x8oCEMk-3cYG9wF5EsQ4tv4M#&g13(&fI2x?5PQkHQ)_AlzH zw>M$%)2Kwm?fOLA1_y>q#DNeIzK=9V+=|=C#NrlM**F%Hm4k<8!X#|mtYfnd=bzk1 zmv(fl8OdE)|JYdnxT^l~areXX$RAQZ1qX$T#9kaEq6QI9;$|@^cpO$XPQlh9O3F@R z+Ml$?5L1Ojd&Ur5%=VA!AGXCUVC?HmOBv?+BBi}g7;0*(nc53q`buzR#u zI21RJ3By6Kas&)9=Ar$m?D|}03<-Zi{R43a#@#)cS~75mLBluCI{%cfPvX`w6U--E<;XT3!^0~A$KrZ%2%O^(Jh$S0 zVY24z^iS}3DrclkCZY^4lf_28WzjCqo049X;>Jly%c3}DK5!=S)6wzB1@*o4l((%c!%)8sLE#A z2se}W==!s8SHLk-wsh`%p%ZE!)e&#a=I(B^sdNx-(@W1zze@fHZYMMU4ZF&bO+JQI zvUJF4BN%}qGFU3#DeTs)hQ5slRaq+2##bEi#%}z8zXXGC;TAJ7_y(*@y1}ox5|KF~ z@uGPTb&BXtxmQAE#HOiqu}|Lp@w_ln6PrK7q2lI@<7p8MU=wnimQYXQW;5COBdlzk zo%y4&Q*pQ4Nz=VMJ*y4R4niV{Qk&+S6B2=^?l+}pd)#g&J=?*`#_8F66nZkHfuZ`I zO$nf-`T!jbhl`tiPD%nG-*w8+J8{#Q3>^+D8)sp8i`?xVoIz;WWjqd1ZhFPyC*#cR#?;5IX<`5~-qoSJ<`p{BQ7Dx|Xc0s4yb zzx3((2OKXhJu8yvxdOh^-17=_<<2mht*KR_hJp(Vrft7gj z=@m{>Zg$0uW^ywNRyNMfUJPzjWzTATc-{p^i<^5+OeFURcwEmZK_}ssGYL8YRyI!1 zo}&ZV#5o_}y`ua`Qgi zXeKxBft8JOGursw388BI{tw8@SO-ZoUR9ZwlPhq@5an*5~GFI8bBFO^tH%N8D&8H@}CK zjdL^F9u4OlO1ae8;RWr1*7ic8Jp-*o_Gq|XQ*yS$t!9$*7FgLhIiu~-aAT+{c8=D^ z=bdo4xOpd$JsQ62l%d0M)0qq%0xKJ5C~7}^TDdoMKp&g}93w6`ibKTtOQfE^l$IQB zFO!x&SlKu&b0g*k{SBE?h4V>$U_Jqdi3`k9of$#jWy;J|xXDarMquS}%Z$H`PGaUK z`pnz|hiOch@m;3O{17*p$;|g*W#i05?Hmm3f0Cg2hdwl~z;WV2qqTD|;4`J>CER8v zHGhGXjZ+iVJ2?^TsrB|+WeJ+y{-QmM+EqxjXBef`JNYhCW@h0gGnv^1RyNMeoQR6X z*(#?RI=xFDnUmlsar2DU8=*~)DKRJD7Bh)C4puf!%&rl{G`2TMIp+QPz?=;Si3^P4 zf)xIcso^l?Wdm+7lb0H-Jbrmm@8kNSJ}+N@gETh0MDE}E9Bwd^m(Re;dLZUr&uhx2H&}que zn{exLue<&atZbZ{sF`1}Pe8FRYd?Kt7PJi+t(jlXUrNh9xV_9QvnQ-nWf!w{hHM4>mOew@faAqwNb5~th3}N2ui>^c zDf$YmY@DK*5%V>QeSA;rWAjHiKwNAT7a#NIYSjDpevcc=mXuaFdzLWMSn9W@4OO?H_+#KMFU7gntP4 zC2^0!^sT6$!K`J4tz(5agnRB}ai`g;6FNHfJb&cek@>kdW_EP+-;sM$e281lPK)?K zoI{{DpViSZyvuR5zCOFyw^SUx(7D63bp4x~1lu@MEWZW`<{EtwO1? zV7)!Cpuaa&ZGK}aYuVM2&^gYEbGE-87gqnA?XS8Lc!=>cbm!;X5bt?xIX%$dnMoHr zd#uhuyHZQ%?X#?GXS$f}%-WTKe0s?Fw@POy;JcZ%};gNxAjzpOYK~#~gvD`{mnp_S$)? zvm_iUm)2LTa>$Un;mAXzBqeu`_{I7031M2>foN^>?A+u6D z%vHu)8t=J+y^f-xrMV+F5P_rfgI5KVgw2{~zUT3PDi1E8O@3sno$irM9`KYjzKz?; zZ2VqW*)z`XXEJdm{C=j6pjJO~u)Y=bl&59IPC8bI-tNy^j%k_RxomLAsSwkhtHsR< zl>t%MlslIdtL0L*mLYfO+%BBM9y(=`9G>gf>h_>GRlSl*r>f2G7mEzy`$sL=Z;Kmg zzl*!om55Ay(f6dp>Eqn4Y=_mQ&RWIltoDolH9bBgRBrqxnJDLeEOf$M(e$~iOI_mY zyTsRb1;3u;n_uY%_ZO{$8#&~R(W|(jofan8D))+^XDG1$YFl96KG*;9F7fzyUrxgM z5B;#d5?8{{*DuAD@bh)OakVn#L#`ExV=!g4mA493wH&?-ch8p-NnMJEYOA^aHa%gx}z83iU4gcKh8%=h9ly?J+8yfBn?RXF?C&^0ozk#@v0oyPD5lSJQ?r z*9OuY%i_k;?=zOhm1uu+>=$f~<#tawUA8T!Ij;Ofs5we)Y>xec&C#?$G>5Q(G)F#e zEdA!N<4Ux>Id)tWY>pF4Su5|f#qi~!wz#5gZL!nbMZvbH8z34&7(g20BXOhXH^gvU z3ArI+bSi$oRIlh_NcdLVqSHHy3chFJm{#!HF1L$Ty4;!0_gUhJ55e`5WZ)V;ew2wT z_g<|9qLlB>rmN{xCZDcUtV*~0pS#6-E5g21!@f{Os+hUDCoV@mia&HEBFp;7k|R!4 z-+JaMa0hg~nHDQr=>@ozyyw@Sy?Pc7nsQ*4dsOIz8c0lyvzj$bZ^rAmB1V zVJdDk6NPPIWzRUj8`#>Fh|Cpm9QB`f@;tlW*;%Vgy)SlKu$k#&m`yHYVNAKv?#J}q|C<6Ws))jRyIybWKSeQ*Dv)% zEA>%X0Y`|NS#*0M$6w0Ia@<}fE6ZSI3l`zs&*I49 z94#(Bij#ukWS*w)l%ZR3+nEgA0xKJ5D01vws)-HsQr>w+ADpM)5OKlL9ecYDQ(B(H z4QA5vIIL`(mdKgl0Xq1e_IK^^)KnqSp7E6KOt9lGWo293UM4GB!^*~4nGw}Hohhf4 z#rmWi0mp}%Ru*dxqRuQ+P7cMbWpZ*5tZbZ<$bFiXe5sG_iYe;DvJMUs7Z$|{K~VAH zxlD=a$4zDuW5LSCiHWRPDy96OT&&$|c~9@0e`pViW($e-42pE$GHE(ZshNQr&7@{0 zSlKu=ku$#a0II5(75dyPhXcjUHM%pt0kH<(FF1y(jrOXU8CL2;rYncTfmAD0{87;$mY-TzScnDTNxZZVUW z>tN+^%!`$wrOYGxygUrYXv}zVJ*K=oh+E9$<$hS%I4_ZP%%GL2mddLAG810Yu75j( zM0@IA-8v@VHYMkExP7_zu>A{GHcrmLQR5~rgw;~2vd&tcstgsJQ>5%ns=gOV8i6m= zr>U!LG@YTja4!aq;oN%-6g&k^5>`ne`r zR(xN_3URp2ysmO!Q zb0s2AHHkc+BKgB?w(~QmqFJtmo5kbXKgH%6I9ke<&0Q*VLM=1AASxl&+c9u>iRYPT zn}4GF)wpfU47br$j%?sDJho9OIybMQ(n+y&` z2?_W~OP?2UJDH3;4=WpIgk}&Y!HV;orRsUkKehRoEhLf{i_r{nAj*g5BV}U-ZX=V8 zonU3-Yy_qRz5LLi1#&?jU$93yT9IXn&_O;0H&%WzAXoGgWvjdK!M3J-Hq zE84yEHK=p+K^cOB#04et^u#*)r0(qY9tqD?O3EN^DwC87tZbYV+S^q6YrVaBc{S=r zeMD}6qr*i6?rl6DDI3@0HZs|`4pxp}BgWi?KmAc3D8-QQYvwEBmQ=nK_3^lt6=fYO z#3anKV|z!)6mdCP*0ze(N@yPD75J%AJ`%$xjxrC^yex?xFx>o6cVE-Q(7<0YCG%2T zmi;N2zqk^SBlgH4S@Kgd)5AAosT*qgzqE_(X+k22Vtazn2{q8LqLfm!s&qq^@28h% z{CS$GxTVY_xUH)k+3I6BPqS-8s|Thsg3~pNh2ffm@gwl4DyM5``zy}50op&{F(Khl z+-4>T2f@muJKW!uh|Cm;Pu?tuM5aNCtF@cixI3Lq7X(SxfCSJr`T$)GhlvZ2W(I2dOrhC` z+suUK3Ru}VH1nb|kQ>0-fVeqA9=F}AkImh1pt#s9)5|*nuPHcp;Z`%jxf5144$i(& z;52$Gal>~dBZem_B}A|4L-aBnG%iG^=s^?_0SeTMxCcz2o`;o<0~MKx^65g48lpM> z)~yG{`r#7$=+RDqR^BeX{pLahew zH|q0q0~{(YKZ+LM(<{*Xp{(L?>n4Tc+n8Q_OZ%OI_l_x%<{G+Qq)klkEY^x#qCbE;<*g zhnGprd!2qN^DbiKRgps1D*-u^7NFrv2WC!sV~K)IIs*7SHef|Iaead zX;8P3wqI5lD3!(Dw7$-K;~LyhqfGw~TF)yRB{xCngx52s&24^nm;c>f2Jn|Dris6Z zjRrgkKm1eUO0+%v?^teC|L}p2S2}xYc0TLgb>G0VbG=>d?@V{Dwu+Tfxi?>0-`SJS ztP?1Q+UJnAwa=ot!ni#uU9M?e)qbn1VOp1CT35QuH?6B-8fm@*}t2>>0T`N|#Q*6Ky?P*s!SJ%XAR$}94sM*%Et=YQfo@#Xo zqq|e;(qN~@jke!lr^c0NdxPz^+H&$;x;)gm#A_$9v#xW= zP%&MwGoATTTD)=_YN!vit)b@4Z5q?%8Pg?<>GF)}@{A!3bZ*?}`VDkeT#2?f(2h&2 z-g>1V5{^?Lbe?2Y*O$ucLXC2L+Ztu3xeWu{j3*4}Y8XHo;<~s|^c&)naV6T`5W6)? zw&kVLK)o}nRqec89qR0@6*E=4RBY^W*|xf6jtKzyGtLpub zXH}PP6=|s-#0|6GQs0X!(e{>_d2+r~bt^dMkr78O)SsXFE18WZs<+Ia+txC(<~FQw zpPPmiT@5QplRO@3F|I`0n`DPo=|RyHjpnejohO#ER=5J#=Jj?J*3;)YU+=er zmF=p3J!ym~!UoOSdSYA&xe;OvjlFU0sbjmzZ_8zcbe|RKj}A(vEr%D6vcb-7oUwo`PG(oU~i%D&wu2_(rUqq{a>GU<>ZqyHMDxx#j8t zJebNod$gG&x2(GltK7^14@rZchug?(@N-~g&p1DW55<-6=SS<<#pnclD^}=RQBQ4J zRxHr5Ld?>BbZmRGt&hoD1+gV$y8CX984&m5l?mCl4U`mhsQ(6ZB~~SX_b> zH=f1LK;q$1+)#flZaWj9YhY#L2ywcwtb8-XL;3(c0EdbTP?B9(R&hzheYoXJeC~yn zjpM`V!o-@r^zzjk`uzMGjun@mB)c%-I_<(GBlc2A`R7=DewM(oGLe6j+ejAUrZWLL0#-H-(B7k$+gYn`KXD|w z#86eAp)=udaT$77awWFsJtJQ$7)hs+spi15_Mn}Wk7fO|K1J8U(c)5c za)K1O&Qpl4!Hs7^bTzDO93sYYu61UOT<`RNK127x!QwKM;Bv0(J4NVT+;%2Hcf-oY z5n`0nR=HQ|%Kohn&}(q0xBw+sP7BW|KCj}IGx2#DR^BA=*&v@tKYw%W(bzm8G44lW z)`kI!&m7!xCO)%aW#jm8Iq^G}i;nBzM|Xa#ON6QSj>@}_{0 zIO&eeOkbdn(0OpM3?StCP7yi>x1EX55Ugw*p@pLl>D@4rmbi08Ufh37pQT6PaB*2maE{3Ho?`R}ZaovDhhb&o z7)h6}sOE^gK&Di~{3#Q(%j}6lqCI8ysmUd#Pz)$i6L24xNOi!<#*x}*^sdgXILBp@ z`=Accr)d!!FK%jDnH)_G_bEsVar2oVb-~KUL1K*DZ1F~yJad%Mr)Vu4EG|U}j@(?| zDMD*-+nETR4l8dO2o=feY?tdJbQv5hBM1rKDMFXxwlfjB7*;lp5Mve1u82xo-cR%$ zeTHs_qs3(?!Bw=n^Aw`naO0T}-3lukhlsHRlFt;RDadE_33>(&6_=m{mq3K)6rZPX z%bEB*2`d}Nhq0q5Z&l>8jizs*Jvf^tB-%4LOK?Y{<2nUsDsDOxplxAg;{Y+<263XO z9OEz1$7nGeF>V@4@NE!302HPpa0i$$9SSQOhl$gfmHMR4>`Z-%ig2j76eZc2mHH?? z>u}4N`1Hfd#_?ec>+_|)eHTgqU8@h!HE^)F03|rAcYUV_U5(q$L}(+dys020Zwk3j zAEA5UU>QP4u`T3o+;%2HcfrcW5#p58r9SzTn%DFRdKHcpm!Kp|YT-J~K`-N`GXZ)L zRyGb$*XYX}B9*7JS+PY+>dNMAsXZ{8BP7~0Fk6+}I!DugiqdS{ekMvYU}fVdG2VX_ zp|msUyyCE$mHIHPfJ4SjNeRCH8i)YJX*uoz6Q^ac@}`7Su_PZTa-Kd;=fEK|h?9r_ z#c2rlfQi!}tZW=7&fJlgoyZo*oAhbA5sny_rX=T%ngO6N-GDp5gz0)%**HuP3iBa8qicuGCJrkq7U}fXkh_Umr zP|H{Cf&7p(Bd}JVqcw26xIJ5fJ0BbFQ;<%_&1ZsiDy+OIfK;^l#Fbcs^1J(&>4S7B z94`YPHQc8lU5uO01nEPtvT=|YlayirtX%fLU7w`e;DB*SN^p|0=|4s3R@{CjO1Hqu z#!+H)ZUd!?t;k8w=#%sm94{_O33hG`_bEtE;^s3!dK^|Z4iaPg$UtemR3J^8q&;4n zDkR!7UQ2NMi13`^vn_5p6Q8YNW#jlThWz4Sto_6hQ4&In^$|J(4i`5KB{){|yr&o) zid)ab=pb0xI7W?V;^)F){j95F6Q3C?Q!0iZDT;|?%kvS4N7Ffq#P zvQTJ;17}GC`Zf9loel?!+lwVQrRe%j z5jqvOor%zDSb5Vxs8-BK2wkd=(8X}Dj36X@rwDxrx1EX5`LMEagcv7aSIZ)d>JzYU z(aR$Wq7zN~YdJ}~`oh`7Kc(IsWGv`eyZ ziz9lT6?54Lr9F@k&<$SYA4)eCNMj|%Ep0dm19Kol3pK4$@fW z7{_OtW0vAJGm$wORvz!j$lcPAJ~D%Fkj5ApMYmMJZDt}f04p0uro}dj9=p2Uu2_oG z5pU23=Xy9)TyPS2Z#3XJ%{bTLmNW7BB&=*4pB8%p8$q;-gBICV`mjDh55m#n5|qH6 zz_9ZaqWf{D_am-u2)l{Y5?v-~1c5I_vD8CLzj0;i%Z;jFbP?-LO zJHUkLAF#40Pk0ahw>%H9e2@VttH01c!=?QG&&_ z@*LLlam$(bydPFJj!%mz!;EFi=V#oi&&@4xjJVt+uq@%YO!Li`ag&+Ad=XYQ4or)c za=IDkNqt@(heO2WC4rT4>9If?ut zT&DSDGHx;xm@Q#t~9$Sf%!S)kpWJz1q57lSpAUI6i9J5S+VC8vDvDqKDnu*PR zu(EM%=Cr`Z9<;OamYjZlYAiTPTxyO>fEw3n3QZ4gG!vQ>tZW>b7R#TOc*|U_emCkf za|IkEE;9*iv2cB+$b1C1nTgCWtZW>a7Ui#1?v=WxyYzv%6Alpk851W?Se1rVwUmuY_40XLZm%=WOdabQ|iFdGI6`$`?sGJRr}!a?F@m?SC~$7hPn(YVb_WZnrY zk7s0h^ChxwIjE0J1rE{}BIEi@kr}{kW+GF7m5n3Q;vf?@eCjv9uh%E%IyhEbauPVm zBMP1WdAP15@s1MHlaE!R%Brpr?xJ-fh32rhIn0sJl}8Q|CTdHEL{A}%ip46}vD6qkSC7Bg{q1y(kWON&K=zOt3BlEeG=daL%(X%8XM zo}p6$iw2(86r0^}tC`sB3M(7Orp5VMUI3LBtevV4&uTbW+oY~>*SO70WPS-Nk8fm(Y55|Mt+&%IiYE(+_7ug5AR~OH$ZUz*%tU5$SlKu-E%wpa z6)}{O_e30|&&>XCl(=aofqgV}rztf1;YKr|SpX{=ho;4BO+HhQ)}SnXVtU{ZafwM_ zwnlhNaY^A8GjVwztZW>Y7GtKoRgn(>y+WUtkH9hF@{+)q$#IziGmM+e1m+T0**GvQ z-nVq3r<|m@Qy-ge!;#`*lfe6yzT*_0Z{dbB;rRxv+-`U_Zqcz>hx5;xkzDVt9UXg~ zKXUHK{M;KeJ39LB$h|2(#1A%~)zLBBs+TIsGd0ia2XxV!WL%_3gV*Dr4U2WDRM`hj@f(%G!oH7n(r>-4GlBpfI%H7DpVAT<4^=zIdVn~Ba<@ca-~HV#jVb4JATXJ^uR#UXzG(x>MiaHzQS zByi41z;lYvE4bxMd|rZ;HwAo(CHdgBJ>I50rrJ$Nv}a6}AU?u#iqEdNE%t{NYWb=?kROt!cP4MIT_tZR zB-&FYC$K-X;WhF~ zPb^!#wX!{ud*by89m89ti<$nC_))o(dtWA?Lm20 zdXGLjDL78t-YS8t({P)D^FG{cCOGebm5qbbVmU(0YAAQ+d_GYM?u5*|}r{)k)5#O3#}vTofCCI7Zwwlfcd#$7Kr4;ke06U=D$m zjRVtS0A98-_CUEL7RjYlGoX)60geVQz^-H0 zXNt@ZahsXQd>>Xej!cW%regQW?}h(EpO{zR7;%Y7ptf;brog;}o6H2}FR-$4U|I~h z#n}^5QM23IwZ~7p3W@fNpAr~y3y&!-vv7-txCZ7-a_A6POyTY#f*t=af{$)h%Ut zx$=wp$b12g5*L{S&MB!oO`-W5ZZs2`&%nyYp=oiBb)_m6xijJwhQ7Rv&ad^+`6V1H zE;g zV~>*WKSk;Hxcy9&eg`WXM``phd|K>4 zuGD&}<#a|qk>H*B>>LiqiJO2D*n!+|o93NEaI=}<90)5L2dBkyXq6nRUeISI2ZxBu zOajZH!efd{A8s)dmn^Jo9G4c$p(1$la_A@YdASOX5to+)wp%zZQ(#7LlbOJL6jnA4 zOp7gDqE{L?ODc=+(I@7IaFDpfB(SB+^_e2`ecWayGT()j$2T&yVn#yd6@6r0f`c@s z$OxY)GJnBsW+L+(tZW>a7R#a4vIw90THjrF)E+*~5)$nhJ|(am8g!ikv? z^!j>BE9UAP|aS48|DbednM8hgPn&u;L(|EDkviXn??p8C}PCIso9V5+n32quQ#a-ko$7tOcPgU#2-6a%*?o_JJs*0Nz3#pV; zCw)tpT1VQ1|Co42`RLx55bx`=qByizJ{C0Z1%6f${v$`pYkPFBJ$}^oR1x4 zKAej=2^>!gt2E*GBODuU9ykz&qwXUm)Mw*xI5gbEaS)m~nl6%3;tdRERnp$TKr851Z1h1s*;y_LOw~82flclGEJ~KHuXk2DaMwuDS zd75SVaO0UQWnpFGEG-0Bs#s@AMeQf_QMw9_85gA$NunftrzDNwwlhikD6DLpq(fCC ziGwQgDQ{m>!K(I`vZ?iUwLjIHw>H>4c`KDJ_sREk-lGrI58?1}p*lSlRID&izP^vU z!Q|_^u(EN!<|z3p6*Hpes}=2D`83;C^f7t~juIE6#qlr-cuQ&d3vMlwmgit)cn>4S$ljnOGvb5e05kXP&`K|BfH>+G8x$sRyNMa>_|qcLj&^5dnf5r zasnJ8ZaO(4J|&K;l#}CdQ<axo{TXf~lZ>Cj%Erl1=8%FV?p;ugaW>yYyL5dMju97;csa!P zmFAHD;I=YJ`6sMwoRoK{dYb{U-OA!l1TWC1XCEQao`Fxx_vz^FgYJ}@U|Rc6iP{sl zpGnm2u(ENY7GXru>EQS21N9y_Y}|CTGFC|w4U}?5_}#eqOrBQ3%Eoz8_GOj4opCdi zTn}HO56?w#jJWW`>&tv!Y3BJLZYz_N55UUCNm0(kRB8of(en*`P`(C-hzm-*nV6=l zl#{RErZPGC60AJ#IC17V&#YNBE9LCDlje2*sL#po;SjZrld!9lli%T{GCBDTtZbZ< zS>Z~?Ee)NO$li3mB2VmYH$!_2^%fz~o+|iouxJT;N-5b2x0FfABv{!vC37Pv@%Pb4 z8Rc+&R1Sf|#LXy2#YM$;m-2ETZZ4CTcfiWVd6Cu>o6nkf(ML`yIek+4-~e$+LDv*R zj#5UlxS>o&(y;RQWTcYnDV6f_fafZGMn>QOwU-gkQOd|iaYLDm{5Py@oRR%h{f>B_ zs$6v^vD^)u;{1%pzmWS{ey9)5_u;5ADpReI z1Fc`ur|Bm@=~?ZZMOXx5LWDnOVSKMr;CBr=Jt_={XJ#88`j3JOx0p2vx6?>z!GX9^ZA! z(J{E`OpcC%m5p<>tBRw*Yc0}fe1kqYH8@CIa^4v$?*yEstdwzMnXHsxW#gk-D8X^$Gb89G|ul;`vDl`6q5ClaRl|%Ek%VU6DgX zz#a_EFwAc4N z`k=fU4h}b|pr^yQ<%#&ianfr5f4A={+)O4NC&S9d>DXIMhjWZpCDm#Q_#%B?J_v`4 z%S+4SqoWgxdwQ7UHs$97xYbRz0mt}E_dKIGP(FBtZbZ%oz+}8tMnl@ z{-V#ub8vLHY{Xg#5^T6$5^Mnt$J=ounQXibRyNLtbeeZP{1&4}@Ps@w`qVSsrfr@F_W6V!OF&|QT9?YHS*TVJ$Ka}G3_oS+B0H`*GmzXDK~R*lbPIf!pg?E zQD&P`xe&U%LdrJp*2iWQ9I5tZ8`)z@&B?gMOlnSqmB%MFs2^S+4&W2G?SfQz{br1Ew}-pR1l9PNsDl8|UmMI7rqp|HD@mo0E}nY?TUE00TF`qRa%xE4v=-4ue!^P+l-v0s$GVpT!vj;EoD;jby(RrC8~GSnz8fNwUrm#Jg1M$ zpWtwDk%{$=n%Zs3&;Q|OGx_-gtZbYg)ts*%NU?=Rye29y73?@ydtmf-A<>?JQLGgv z;xVP>ZMeluYTgPf8>eQzVjjkiVRLm?>ZOj+=jJFlR@{_xY@BHrh0m0nBXOIV$KuR88(nsTe;n;A|h*iM~A1N81$8BVi z@mW~eI2o!nLlL#+3rF&t$#3)-`4t=`E+etl3`5>hT7H3B%cSKYSlKu&syzsW^oIJ` zKB4#LC(YBYSGN!n?hmB zs#Pwg^CKS~o>;beYh`;RclM53bPR8mE@t{m;ztE*WH{ESrs*loB;B~BOiK2Km5pZ- z)yzpVc47lus<&3mRBf_HJFQR58KXvP)cyFl`@!vqVojka-KQA6 zcU1F<)l7^|gO!bAq#7I-#m&*~3-@yE^56RG{1+S|E;6wO$G)qSlMmyjGC8>rRyNLw zY8y*w&?>Jli>srZ(+QjNm(rN%4t-|635SczOss7zYPTsrU&qa6^7B<#**HJ@C?@*V zfs~WZpY#FxKR8}ofKG@r)gR$ECFl>h-Asa>fR&9C)Ttn7pj<0jDXTD0mA7!eeRu8Q z)7ykZdxlR(#-S$QD<$QvxUEc5wt8U|88WF{)#9r3lL1Qb`|~JRB%4GO>=)l^v$c*to$=W_n>|KFTl#iIod@r ziYi;#8hKfI?jG6$s7@i#o&i*>E7j_5Qa)zlW-|HM8CEvVhiaatY!$?mg*(HSw~Bq$ zezAS3V9Td5oU9MbiEzBQNha1jO@!Z+pyP47nFJjRD;p96YFq0>N4eKJ#I3Sn<}hqoEz2k^<~R_HC7|3_Rm-(ZwN{o<`ISB@zkp-JMJ3i;aKKke%0sxVOi~_zm5r04 zTDJ^D&tJBb$J$%W*RFpz6B6yIe`Bp%s@+ing9CvYBY0fgPX~uV+yQ1PU$GE zm-h1>sZYmYaB#S(Bi=}-zqFpRaWHNqlZ^vlW#eq9=JYEfY|XbE({|A+OQhuWNwMKj zaY>0ar%zp`-1OomGr7sY%Eq}-9Ya^K&$3dba@G>-vFg`MKCTbW$KY6T!HIPYox*2I z&Xu^$OmZ%Vm5r05+80$3mw~#=(DH!iNBY4001gosm{|Lwd{-$a-@{F1a`GKm**GVv z*YE4W8?@7kquu|ekIG-+C~;AV_4<9tTT06dxV21Lo`sc-)1sV5DV3|K9`|x#setL+ zOM4(RQ%JODAQW#N#rKtxvNLWgla%SOvT;&W?~pXsm(zK1bsD+R{zQFRj)&vK%`CCr zA(8y0#2ky;%OqwAtZbYZ)zKc+k{~4`@02@BpOp1*e7K~VR)76r^4DeokR8E6q z#7!=-M$rLZDJiGmwlYas2`d{XMYTgN5ItvpPM*vCus$vq!hz!A5^IN?>@a2K0^DFG zGv~p|#+iwzU>eyaHJHxVESZ|G>r?YpI8fkl zp1iza`w#lSJORgu3ryTzso^Un8Qf4NBWq!0n7#na@?|bOGrWmMOVC?N%XHjYCN0xoW#hD{PDog9i$k8W zR&QEdJ5oO)p_C^R`^W2Jb1WP#Zjy<0LW0_D%FhzqY$iX8VP)g|s4gOL18Eh-*ubi! z(iL}3Med{4>*G^}qs7H1*8L+&uPHre;#M>1DZUJ*pEp+y}6JI-y<6ijGUFkl)ZJ=ihLoxa7n-frEHVsd){zm`Tm6u(EM# zBKxW6GcEV-)*e>P7ZU9mR>kk90uEDV=HUi2nVADC8)rs!mTus=%ZqoWQEN4u-UW)jI&%E_a+sZ35Dft8JO zBCS$a2J&`Qxxlo|0`1y%ijZheZHul_2i&B5OvKG(@-YEcj^M+}O`g@!aqh_c+(+wo zEnivx*jWDvUBK)~oIQO)M{bh%Te*wGwcWLz7!t=eB|hj%Fpq-Ug`2#(M%`c&^o+82 zByJg##lv7_!s1v{Fez2G2IQAb%KFV;febId8CN15FB8^!a-W+ha^b3|d=!=1=EulwZVH>YGF{A;3ZW6)Eik)E@P?1imNJzE z*>p9X%H-3PiY5Jv*aJ{?&ud#C)>yiOzt`RTQFpm+-|$xHVy3@T7UNE9r2h`D@%?ew zm*evD+zyQn=!>qz*u=hdzcMY=+=O+iSO8Zv(J$a8@*=inv$K2%j+nBQbKes>q1G8b zuvL1gw`aG~L(-}b;5IVz&3&$NWMj`CyCPziDiqzRbWbK_7Y6d7C-V(qb)_dpa`Bt} z-*`wTi_4NM@#N)4K0G|JZ1vX4_K2d{TW*kP(d+?V2>`F*)-nNj6;}3)^UKYbU5T+H zWiK@;V)tED%*7SN78$!(D%k0~REqAsP@9_hLL!MV5=|B@CvjU+L;a=&%RJm}CO>mv zW#jzp-jW|D*5W~z*f~v~om1dQaXXrpM__W;@qDJ-ti)|*a80- zfn=Tw_360)ju)4nme)&j>1ldS89EQQoXOBRu(EN6x;P9uJMaZYQVRO2K14Ue0pmi{ z^3q@cBF}Y7(M`DNOp0!Vm5o!>x(D;7*d=_P(8uR7I8t1Ew0khmXUff^xXny%9)XpO zb2CSoeWEMoZT8i!n5PJd_EgL*kGpG?asvKRUMAx9GI^N*D;wuUJtp_6MJc}=tk22; zaD=$|rR4z*tyuAVrJO9nZDn$@5LPzM$!^NLQje>;BJS0vB?HHaOH0cQoTJgwq7q(< zTg+r;4XkXOnR%_4QCGlM>O*rm94Ia{Ee{o9KoeQ{UWS{@q~=ms**G=o9!XvCeor5l z@4yk_;u5<@imY^R$8BYDavQ81!HL$QWPPb3hJ-&;eQ(^!ZhvXCzB;C5#TRs}5KE)S zPa4yu(J8B}bUD*6HbsZlV7A^59UCYgjp1WPSshK6%jqGyGV1>4?n=|N(9)Y?VRW)E z7aNCo4EqbCTe=dFYh{rOAaNF@TQ7`mpIYoh#aR?pH%>R)IG(ru0@>bhz?AKq+ga#@ z8fSQax-KfUX1B^e&q9B#dp>RGDk2eBD7#xLZWw!nbSlKhq?`W305|J4p#x9lC31Nl`lXSVSklr8- z(=Qa3X;N|l93O6GP#k#0p``989iyLz8_GoF99Vh$B4QUMM82wz$jxwk#sCq!ND;XS zHN62(gi%sk?{N-=p9HSmDm441@;2?51y&G~V8 z_GfF}?@C0D;UmXp$;MElj`j^gq51~{2PuHH;1&`BgmvD z;5se9U&Bpj0`w}ZY#bnIr)eM)cc;84_NU9)%6hxfFHyAjJG3d9FC>x}wb2~3ijLZp zHAZw#ME$2I&BN_yqBI9qHjWY_lzA(?Zb-ZUOfu4G`YfFSM~s`1Rwu`j9{>u|O56b^ zOeW z030rEDoPTgy7v^LMY#1$j26Pm#xas!QdSN7ozi+BUz6{D=+);a1ILTY(aHqVk>@@I zX)SI(6Qnh;vT=|)qq{Z5#N(Cv@LUeZhzn24S2K7MkB-X}n9FdJnZR5MD;oz!dZ8zn zd7>s7zo$>lci=#AsYzh5qvBS>@2a{G|tmN1rbo=ibZlV*TT#`p4huAFsL}%Ex7Re%30KDht-z0}J*| zRr@V*5n06+XU*@MTA0dd7lhwPLpOlz|Y^KW|&4r_6P~uuFU)3G~n6M#&HK zPvc6+f%g0E(I4l!Bg0$w)be?&nsRbcs4Kv=a=tl-$Mxt{_b=vN8{0adyYV22!;?DG zovW>4rBv?Cm)3U{N?9x4SuJ(;)a-n=vs4uSKTO@$2PKk7hj*{n2z@m>D=wZ{xF}Wi z(uuGsl}=TAQ?4x|p^mLlA>{lXZL+W@PH7Oxv0J(lk+neL9hCZU-aDDV=5`i3p`Z=7 zdYtF$hi_h73IF+-6Ia4{e(Jqky%DvZ;>~re5Y_zVv0kr@@rssP=1g6^qI2ajCof-o z^f8BYuC}XE!IKfrBv9}S?^u6Mo%^Ax;yD%dyd|!^Nms2=pUky!!|C@FYvM}yXq_Hc z!b{EbVx{J|jk?F;OvcJvW%1IqNX;jncyieix!Nw)6LY20xgNXo_{FD%3W1L#)YN;` zo7&ot7AiT~{l>o}u7uzC7sZwE8vos6 z+W7k{u?DStX`tRKi?_!HOZl4f_Ix_uS+uI_OXYQ)wTko8WrN|7I<=s`U)8JdRYM0UwN;(OiRdDKVru(*KukLba1C49yXa3vBSOHE%^ z6mN~^#hA6<>daaLRxxX3Y%6@;OiwbckvmD~grDsl=X&4YCB9$up8offiIY^^82Zid zzPJ)?Z-%!mD-4vxgW$A+7`N9%`51a0E^J#1Y(KaD)oueczM2I8g1C|MgMVIJ33l*f zmkir25tsOOim`&T%Hb4@q1b<+ZLyy^*ZJbE;1`p~e=cs={K$XCl^DAMVJ|1I+eL2) zsy^mgWt~}b7Nk0lcCJdcd+iJj^u28h^xkuYNnK5ox||BUt6@@?WD;qDyY-vkuDB9D z{CCEc@QaK(2wFu(o4O&VeZ0xjW-HafsWvB9Ll5OY+Q!OmE-UWjsZ31376QpDahu0~ zPG5>E;X~4<=9v-MJjaWl;Br z&1=`2cjIOqn{_z<?Sp@DBAclRUXG>Nu%4Zo~L(n{g$gE0r@o z(9yA{b2Y;J+?zAqy)|!$kN!Jy(}d5%ld7dmwQPw^FF*(;ikiX#2l^_SK=^VGG9B}T}ZlBkJG<;qCQzjR<=;wxPo66?b~ z<#c(-{Y&1gC=KI5(qF2tSY9+@4R2!?Gx=K9>J|G?+{VaVE}AEIh4aUV^T)@WKdyHE z_=NMv|2ThKEB>&CCyV2S#6YszKXUw=;-BG3ne>2L)1NfFMPI(uGjhrB#C|)QwTdGj z9)64WJ>Gw~WO#D1RuEGIR(9kBF;uNO%R-e>F+U{!)>h^8dLNHkZgAI*juRH-){Bqf zgBSFd3f6*htyr|m3!Ir|=g3s|fAup~-3?uG1iH)3Mf48{+hg@sesx!Wcw%HVKQXS= zu|iBCy)V{$f9!GF_Wo3_V6I+2hH~RQ!k;7-@j!w@a~z6E-yg;ev!5xy?@B~x%F|A0 zW=bzbdI|H4s2^mae&Ej5d28;q@MeZ*l8JBb5up6#XLYJ^w7>e zG?|BXpLz$U*hRZ2m91OgY^1FpnmKB9GecMvD?$6u>`tykp9y{{udPQ{Io zkLdg2O0+S^^K)(wlv!O`QaYs5+8}n%hz%Wsc3S-Z`c8|^_5DMg-XrZ+0iAZGQ|z~K zHsY-=*R0MS@nfquUCUR+uUcX#8i z4up3R40~4I}pw*+0?cI{gK z*V^PS+&&YWtwBMPe-Jcz(%QA+=WViev+mFr*WpJ>6Xj%rB7c2KjyvzK91u0-*Si3d5UA3Y6q zd)^~S?apJQ+g-_=q>*TLWPtkUjPztOQ-za*6Kz?9d){(v<_;k;BjqWI1q+d4lI;(1 z7uWVL7KTu8?6#hfjx4;LYtYB4GKQDFEMrWk^1L?=Ab~1uX8kma9XJQgvu|sc>gZKX zBtC}93h&#ht6XylTNd(YOxG+5wqe`(=RjHpp{;(wabp$LRE_CpJ{5Cqk=f^RTm8uF zbEz$h*i~F$vsP+9f93&InZlIlmNlAMo~idVlBU9`_Y}?I|N8m- zM0M1v>WPn`G~Z>DZ`bq3Dp%jWwk+iN{D>_Jc|O^Q6+NGmDv^So&jWVsKss?H?Q5n* zQi=wkMN~f;Ao#X%9Q~pyyls>pl3+BzJWp-TR@E}9eonI}_|#V4X_M!L`5V>IuR4|Z z7%D6L!rWWA=DupnLLS(2G>fXwT=Kjy-%K@Cp$X?zae)`+8*KF>jq_St7O|_izzg%k zv8lP}3-d#^dJTH^$R+kERJ-*LZFUyp36&ud2(t;w0HamVyVkHE(H1aEyz0E zMu$N*WSz}z6rZg3)%j;kQ0Tdn>qD|stFx`dAF*w7V{PXdz;hknXR-0 znxV5Jo15u$o#MZl569S+LjjIbp*V1LAzMIQ3v*l#awEviAh&|t268*dokSeLn2KeKD9eS{x=R9Uea!6?J&0RU!p-czYJ@@Jio_5r{<~t{Zmj7Mlf2Ddaz$ODv^N zrze(orn=CV=A0&M9FQ|(aHq{dbidKZzCaqRMjyM5AMm9a>_MS`l}x98&a%aXbMG}k z@CGe-gD-fWUGslzO)p*ZGnz%guDSZlBNJBh&XR~A9N6uEn>c;t?tEqyVjEMqT@jM52oYoa%T|+OjDOg&h}{@7 z^olG#hC(kP`jDE$GCFo!zZ--PDXKXzu1W7qJ~p1k;Ind)h8Pi}d}ymtG0JM#b7!{bqLkogh-MQNnePFK@PUnraS`&*|Lb;APe*k#4K&xrIU5nIH_zGErVhP zwc6R7&e3XQ&f&;Q?lepr9UGgC7V^$WmMiJWh53}oMcatzs~etN5wmTv)w!6>v1Rdp zXEwcVL}w1R=L(zcoc{x}iCle{?JQfJi`h=MWf8mCrsMlKDZQ)`XuR~?(M+Jpe73HN z%}6u!S9-J*L0iyM#!^I{q$_RpDJHqxmPPC)q0d7#JDtgm*tLimG6tlBQmrXE;E)!M z^DL_TH8#V{3CW_zB~KPTQelB7VxB+Q>Q>BipDl~n&9gJD=F^)a875WSEN{kUmT7gK z49QfoZ*#n6t4lG*E4D0RH^;n<^pxbZJ@oV~-A>`8%gI7|+5o@xrc~!<`aFg)o1VHP zt~Z+bb-qA6m4iS@PawTs>0CyU8xO4Otzn`zUA5as4a`wO-7T0_N{c3IgFwoE_$@+ z4KcB#vop2be4vhr%|w_ScvA2aMb8sSk#wbqnB-_%eTqpwWy>OVlT4-65jvwpFQI9Z zEK8FQEK4gkraitKn>}`}6A{=R0TCj`ILTI%VvG}PS;TIPDcS;o6Sfn}yV~`Nnlad1 z6q_xkM$Y(7`VvG;@grM3iYYF%Wf8k6c3R(=X>xc;+3UV_pJiC$p4cogg`8iW0CJTNbe!W_BP8kGx}ZQw&puip>E5(J5koDo)v`QAd)Tsw-B62zdO>%Vq*JqLU8Yo% z9Uhy>_B2iAi&mcTHrQ%jjJM8~MeN4g%`l#6GMdFTr`a1CdCs=QX0+W+qnXc{h?LC# zq;=V9T8!0c%c5jsSs$LYzhN!EJ%=7OQBq>P)2YKcXra{TCchn<`95Zv&zCXu%!!Q2 zpp228^P9HD5PP1lSriPJt$M)bnFs0ak75WKy%8*tqZO0v9(s=9Ys9x&8lNxqw-O|_ zq_VW}yNzC7b953sb)+q+ES+ST=nz{bay0H`=?n)rDkujnLLdT^j@E5&Mntvy(3nRI z-V&S5&#KcuIhkos`ae0zKUvRZ{GaSM0`n&)=_l(WzrCNFRVB6S~fpg>(s5+p>_&2i%Y=+I$dGjPf2lEt7}ZjZikeJ(bwt;G1ja zqRf9{Ym~`4o|*-O;?QJ6sH7)Ur003Y)?m`}JZZ~9noS=DvmQz29K4mH%yhUP0tviN za#1%E?2dy`nIo6R_3|^fPJ}`9fCy83Y#2roRrvZdShFZNHdKE*#VqOz<@W`Zo!7yf zj7{kj3LBIpsOiE^=G`jS_^!4rYcF}fWCtqPslqp*I?ZASjsR2q&Hc3ZOfT!?(v4{fTr)R$tg4Q>)jq_>P-FMhI$r|Xfo4h& z83mSCuHmJ&EaX8uP_rnwVre~NnokZj+89aN*D;)dC!cJ{5t@>(P z(7LYHzM=B&*i^oAofbi_s)`7#?&u(VM&&v_)s}@k4_{_8ReM&nGX*vx!Y|p?!RzWY zC{V;k)EYmF%^K5a|C1*JFLY}e3Yp^yTU|<%ztomR?B-Y?(T>_2+$ZS|h)KTyABfi@ z1m~@Pj?F|1gHf39MQFMBdq^Tz(VpslTb+y9es9YncC$@%U&CogLAOR**64e1=3MIa z*o-sDd&8!u7`E|hj|>+7v(=xN;3ZoYv6~>VJl*ajbM!fE*9g+F=jqLMIykQ3d{$jR zkP=6ji6l*hbJ}sXEW(Ddcsr68ES^hPun;NwnD^N(Xbz)}l|K88P-$b5u_CsHFdTiR zS7qc`TxM%8c@~%0vIr~N!d_x>ewnghAyOo4I~Dhx+9`TWT(xIRqxP&{xF5V(O-`D& zM;NW?#Ok!BZXFbnU4ZWk@7bWo+ARICuz`XE+**zIyF9PSU$AW)(!RFavJlH|wPoR2 zcHEBrg!D`dp6 zJ^!|HP2O$GLLQ$xHH(64Ahu)S2tH>78vpi}4UNA@6;@-FBdYO{?lB`!I8_=^`17{f zlBWBtEsNL{KAsh>-E;hmhsKSu%j44f1Xu6c@8;JXQU53spu!pGa9b87tKWLfZ;ID} z>o7vEgQtdgq0##Hip>hN{_6JOI;zi=0FT0j(MMsCts>=7sMjoZU@tzLmT(e{sitF{ z_GUw;n_|=H2rL^>{5{thY0-yOuEn*sETlyr%7&=+9CU;}9s+x+I=ajwHjj%<-y`d| zQrbU-N+Sx-*=kFg?dNP+#IEqE%bXTkUr2aUF)YEky{XaMzZIMMY2&RHA?b;L)izIr zh%vrlt4T3NuPuw%jWJ=Vo+p$0fY#bPbr@#&MQmo6s2AJPt+docOKpDT5d++8t35Hm z4Yn*|H^9iHTb!n2^Dc8f8k^=v)#+LbFK<3Xn zD-tI1XpSI>DxB*M)hu@4{Az?d{;YwI+UV*Q#HQbo-iX7MM)bHx<$9cN%R*ZEE^Lab z&#?3vOZgn38)8&AS6ayPxz1Kw(!s5^Wf8x^-4-65(ssqDaCc5sU`pF*t1VG@#+F6w z3LovwqTJrn=vBTMo6g7h6DY6VNXK%%t~^P=cTc%!YB zMA6sTvIr~MV!9(UCLWJ1ScnunW3pf&Qt;Zj1q+elhqh~&uES*7j{UaL_(k=L_e(6H zEs%87i~Id%qaXROI!(Ge;3QepKyO~`8ObhK)UdcAl_gJ!|M}=XzfAO=ZHtvg|F&ka z1E+s^KHNNWWp(D&qlk~`92rE%e$p}h(e7dzWvy`HJjIrUJR*}ci>ff0 zx~kz1i7I)BHw;GA{0UnfNdx_uEsNOIT;Su)PHc)U`tjyQTRn-Y8*Ev`uIl`sfjvDo zO&9xk^C`Ak5=EbE%Ob33ive23c<%ZwScnvF*bYGM7{A#n+{JpyXT-w#Mf)Z4^^Uh! zrzv&s${#00w9CSV#;$ZLJ|fo8*qUiNHcM9)H8k;hZ=XZ^FKnBLw6dEui-JRY)rXz@ z59y=T(X6_k_?Uxxv4`~G%GLLfEem-(9<*g44=Ee5qKEW`N~EBDUdQj)eO_aDpBHwT zZg8?|=~(t)sM1cWsxpn~F6~>zMuW=}nl_Q7sc;%OPO~WZlvaPw$_O`JNQZ_Qy4|Nb zx>dUpA47B96f(m>N?d7VnPl(E^|;uUg*>hcG>fYDi-X-5B}3Prrn;&z9gpgIh!>s| zosJ)6t0Ngy4!31dvYM?&_c7r^j17fBe)7hJHtE_L!-^OskEd#YnnhkaLp7h#2KITa8My zzr~hC>_!>w9^{gx;H9?IX7i}VCu6h181Dd?ES>+X>y4=WFSvVBdH;nW~cz$64rihxO1z@#f+`U%$7Z_S>qsO$$Iv3_&`?*TB#wFEF%Nq$NTi6dw%Tf1 zjFq)z5jK{^uq7iO_qP@-M2a0e^6kCQXd#!x)`6uJb!>SxD>uC7W$WjeL7AENA33>wM{2=Bq~IaVf`v%I>+KdSM2gY2 z@5YdV94ZrwZ3Qp9;BWn^nplNp0{R-|X8Bx!o~Faca(LLovY|Q+ynA1Eg}Q4*6xh_> zOrcF}nd|~Rscgsw#A$#y4e71h8@eczvQOveI@|Uv9n)&fVh4`udA$Ig)zP&|5g*gz zQp5|8sa$)lwk+f!N^2Gcoh{aly|@?Pe5$n?ZkMRSOYs7nXR9`8x976jcH9wn6P9*m zbD1{0(s%eD1~g{+*Ttq&+M%W^$Lo5a^2jXz>dN){Gg}tYqOV}nRC~r*&f5RqV>3nh zYyW?<)u=S~Kijg1-6%!Z{@;zw3MH)lzh$d4QTyw*EW&EHm}SXCje9x^79vGlW6bE# z+P~2q?zTFvA!bZ?$v?W@u`5+x;mg7t&0+`6jAj^%$;L{5WO8~)Y|5Q!E*TrE{9262 zsI#JST`#j`A#HpKo2%NR&R&L5ycdOX);QW?Gu7Uvsj#{a3zfaTp=`A;UFBw57O@*} zvO8~UOJ((^SpEI|L8n-?}8;A9dx!=dfR^5^NqPpJBOF(V?bn$l;RyD6VSb4GsVI>UoP$b z#tu%zABmdrEB05x`&9=uc@DJMcBH$mysjRY$ifLww9-@IFsR zJ)v?<9&gJ+9+~4bi>i;}g-=KQ5mi`?b?~Uh`#K%esQ^fnqmk0HH5*r;@HH$u+B!z9CU?asGrP0^+%qd)wVhmGpw>@5jKP6 ztBM*-U9{ri&Vq$V(Z}r1dNMNCpN!B40_fw(tr!z&KH@(v)Hb@!`N$VzYa6@Bd_<(d zl*E^YS_(-MX(^w#HM6voZJNanoRUn$8R7@=dEPSpGoHfl#ir>=`ZRI3cA4=-HT&(# zHTz9l7Sj69XX8}cfmQgJ(K}+(d|$_m-e#*UY09_QvWQ>d?lGgUIkqffSNzD;nQS)yC#=@Q zru9*@>ph!IF897%6;b&iw)zs4udrnizsfgZA1B@@R%bFDMz`J(qsqNnle*T3%G+%9 zB`R08EW#?cnEHzcm}jOIEJO-^d$3?3Qm`+;f`v$Nr0trM>-5>r%IRb4-kyA9XFBK5 zDy`mQnxJoKQUecre6Fod`|e)E9-mex)!80A@O9z74aY$YI`UPE(V)e^E{Hz;KUdi{ zUTObV+OiOvUvA67wfWII_JrTXD>KK@2?BKfUpsy5GMCVE#w@)JBf5P%A1#2-QKy=l zTOFoGfA?sW+Jk!laGs4ZbXZ_!>*9u7rlCU%(Puk&*wzBl4j$4hcHq15X#K%@?Rw`~ zdoUoa-}>szT3@1HWqJa~)aiP)Yn|(jj4JO}uFZFBS;$lMCL5&M@52*mNNvy3H#yza zL2mv=1Fwrs`IG7bwHGr%f<&nByU z*z=$#ZR(;YhE9UZCYI2O>%rSnh=w)KAf0wtRbCsqhr0(9v^P83`g}I0P^A^lRVQf{ z1)t5rXF=F5e2iI*RS5m^rK3+xHGZr*YE-)uAM+s{Tc?*l^vu((I5P3vw{m@c#Fm9T zqkC!=RqquCt#gSgLcj= z!)YUi#!rq-@4U6$W4Mp}TvwXDX^~5H=6X-M`P<}^U$W^I}Q12xmmw{YC#8E$_n}_ySKcZx<`Z3Wn)K7?> zt}fDlUrh8+Dy6}tM2{vbY@OAw-=THtI7+(f7i`J2ISV?w+S{GZ1qc^iKr62Le{-fO zyMQH2V+5%0%;tJI%I5;A+p4dZk(&)y(a6nxlLZTrf=3(+7V_|puS6F#e|W0c{2_)R z4^dD{TAgjQMK}TL8a=|_>Bm%|5AL2@s6{VGQPp&)kv{vV&pE~4Y;`Lg#Gh?hh=uRh zEUG>R7XI?YyVbFRdWQIz6OX>WJn@#TwnX8t+p>sV;l5D;s@#)pk`N_v^H7Z8g z-Q1#5{CKdLvXzrqiDfnLCT;8&AV!vDsvSztuSjv3NHW zi6woNvEg}s)MyvmYFv!=V_OzsqghO*-G%X;htMlop`-k&KK+`wC%%5TF_&s=brQ>H z3lGJcWZDgrKTsW$2S0-nT6Zyr$-K(dH`kVhJa4mYS;#sE z8_}X`7Aa~fk%HDa8myjA+m-#{i|ZHempC-j*`7`r&u0_;jB2cK=(UsV0({zbaYJjm zv6CWM$i2C^VPV6uT&vN{@^t3M*eX;y^P_E9h*>{n%fjt;XITx})=Sz0mqk{w&#jV0 z-F4Xw2QOK+=HNbi)^1z9iS^FVEOuPaI!$j>LA+Heu{M))8Z((=6PW%&r^Z9_v+Af+ zeUJDUk3skJx~5Kt4wj)kv8iOcD?}2LUA-0=c>}znay4IS%R(NKi)>j)56s4{s0Ti^ z5-F$$eqx6PmCsqy)a114Q-r9+8DS^xnL^=ny`G`pSBgZL?CO&3QU2I;wuyXY!ZCS{pv70Rm>6O`t74^!)Dv^SE^rzsa+`8bw-R5iNddiDe2aizGwElvYRyAW8^;Gc9r z-#+nVFq&YVIrA10Innl&u@&+TAKiz7s#9T>rRiO>%QSy*FufE89^>SMsNdvvamPPDp9_ob>n~MHZ zY>FP{ZlwptQJzi7)MtZ0j&T1I>B`Yl+9 z6pgk&#GQ^mQ*1h3cp!JC*3DMcQ1O zbJ}xe*yZZ#=vM7de9X~*T%E2NM=JU?M~0|Xm1}glEem;&mTDGNp9zdx=Ctqu4gP1G zjdq=(YO66Ri0XcPomaIE>(={gqJvhet>&aJP1~}FU-^0`G5N&Wv$@W$=v&2kF)CkI zO|J7m)sdEeuC3-o`Q5fGVpsmejTFe6*y6NO_nPoNZ(?>l*TtrPI%JJ%Pjc=4$4#=) z_J6gl{=@`7vthuq(dKVbk+Rj~3@LYi>V{8b4sYbDm@G)B} zN<(cceQU9CB=oL4%KoYYZA&=T@BbD~@!6wN!hB6RQ5UEJ{|q^?X;y z_+}B>o;j|)HIr&KG{0MnnqNkzBvZvnzv77IcePcUH2FE2#SWax4#Uq{O?nKSr*}wf znjBsis4}9%6_x97nJo)xy-U~(g%)RRgBFHR->E0BMx$+uP1QrOyuuYm6s>HvB#m{m zEsNL{J$RFog%8@$b5Cq~9zx;HTwg@ZXWQyX)O@Bbi?Et4CNnZ0;-1NZg-8+8d?^1? z+Am|XcCn?jTWxJ6=Dx|6MOe`mwsIG-b}r_!D!hng+bvEvA_jBhwjL+ZuIbb>_D3kj&=V z){r`{zDOrJoGPtwN;|}sMeJ%Gh_SG|WW9ckiU9o;q))hzE_F=YK6UDE!Wl^%?Ene5=sT$gW-%STyd56Fm zNETMZyn%o_o?Wxw@)4K0TA>%JQ8BgWA9%he-XoI9XGfJF1-bos`L?h=bu++M2pu}uEnctSx7%~B^#pJ zFV^n&ds|xR$XibX!S&FGV$-_!{a#dE`1`#N+GY0ftF85nn)trf(O zw`dj?-b8Cfj)M;M2ci8P2*!NmvFd13{gL>X%ZKCTgNssi7JL^vWQ*zW67kG6G|(%UbC>6j@r(gMl5OH z?uSYnqsPBuQ|HJ!s??8=jy_HQs9cW^*s_pz{1-MwwdYF1p>RGdXS<>A4`b8!2(53g z&PcO;&sJB`Y~QwJ5xcsFLfz5m@7bS<>wRFDRyNldQT0r!w!-P?G+P#7RaiVsd86geq?o|m-Qexia%3|xo70qy_V{<>F#;F3==(e zZ;|_T()8Btr5(N3WZPDyXE{c*C^#Tif1PWHziTk)9X+)=x>a4o$6S;dN~@Oc2FXZw z@#V_(cT#cvRo|^YY87oiOSS5cN>Vd5hPaDj)8gnlsWypfBf9)i<+{AkmW6aT-(_=D zdr~oy;{xHe3hVry*mOS1jYgze^Q-*Vw)&FC|1Mh=v8%k#CCC59ruY(<9G|n*ov8n5 zTNbgazvzDz{5o3}u`53R_L*(5DZJSBnJ!x`iK07gS%ejB@#ZBjZ#*-# zU?EbRU^_gC6#RZskrYQ)A_YZB*YDWlgNGd^-)RfJ;@n!D=A7qiaK;Nyo)hhEvTcvj zq_5X33ce;5e$BCd6Q8((c38Kh+S0A*R44Dm3QxWNRUM70dx?*s!|q9SRD05^J$YO@ zw_vNecr2Vj%vR_j_^E+ z5tYyUOm!yH(N;XN&Z{)P!lzNq70#rm*s=&K++u`~L53e83l<{9Ut%&lJepWGh^!{A zjnV9GrTQyB(UqD*ZEYsQ!Ae^eB`e%|-00Jd`MKB>U!ohc-Bx*`|6?@^i{aRI%qZ-} z{Az6K?8}XLPUU($%a(<-u&OOaRT-GMpR!;fQp7Yc=U;LdbaY&Ev0_UO1E|&t=VAS9S%ejB zVJk5=za?6*5Gk&)oxwv2dfC5t$NGy0t>{WOhXQgxUY$nNZGObvctOqclE1%g3y?lz zAI+lRtRjvN-LIi4lU*?OoT;Nh91Jq5NWh^ZS6PL^R-XKmM zhAcJe-<;Gimm6@eR^7zO6P)vp;4(nn$`@C2GKrHcOMMvUyo)cM#pp`rIhvD&EX&JW z-%*_Ne9rk#zIPqx9DroFdJ-20swCIGHy8K_?hR6}AsL|F1+)I@XUH;Kor{Yj)fVI& zs_q6FrGCuiUgR2WS~;WIZzz}G)}EXGDwYt>T1VxBhN&gEI9}a>0{ztl0E#y{Y*-0IUEH$bN$tX1f$zU}S z$xwAZvJ6zma=DXmu~v;mQlsw0y|L;PMr--rdL-l3Gc4}YoNPn!S~ZH3b2#UJx!eM9 z8LsAWEBFRqd<)3{^#>#~)cY*%@0i(a=CTVXb2#}Ua@MNNoLmQ>bJPpUrk1VT6FRjea?UfD^<2(!A1A|5u10-}vuxxnd+@!V^SvYZ z;(V4R$;sE4^=n+wYn-KylgpXee$3@v&UqK-?9ca};^cjndQZ-BEnoaAt7i|~8>Gha z#g{lajg!xExye8^>M*|8%1I0E4Od@f^e8j?8!pzUe{n^>=5nVq`Uf-nJ)=iCxu3HP zX7o5`nZv*Raz@8-vJP1Wsub7v7XQp8d~XaVuP~S0P<){JJLi0rbAFxgUBVYX!)Oi4 z4OI6sdX(>7fuu$~&gkQe&O*)_btfnP<$DA9-o0GI=NWy0@AZceHR`KeU>=fMHH3fI z8qV3l)&3m`>5RFY$;Hp*9&I%oL}|Gou$ zZxJW|VJ_cebRj3_pg^sp_lELMS;WaJ{QDMgfpyHfkx`Dz{R2sj z8jk`4)OT@jfZD=Y25~ZxvpmM=0_O5G7vI3iCvdMu-OXqhuKfpG`vfkxn9FV9i@nTq zxmyD#pXTECaPmLqxt{Os%*nU--Y*&5#z{ZsIfK!!SrgyoobU0)Mn<)q^K7>q%lRd~ zcrRa^&&l7I%YIxg$rs<^od3YR8uba>t5NUr#b(a3iP3N_cQ&Ix@x3-qzQXtJ;d|p5 z4dHv8oDAh;CJT5B=iJH{&*cKY=EUK9uQGZOSq7-JoO3lNzd$lbC6T2@{g#DqX0(lq z*CERy^#kV84K!HQp!OQ|S6m#f_CYdUjY5GMbukyek&9o(<=y}qp&Gb&ma|;R_r8OR zQ`L4x|3orY{T#^z^;g`hRVM(|s9K;I>WiH7LcaGSBsJJQ4aL#AB z+<~0sdo1n)Ea!uaS~&SHXW1QGW~iCW<#niMlUjj${nd$_Wh#{FDpa!uOtFbQ+^soGj#=L;2n?BxG=09H2(>#jkMkH7;-pXQ|;V^?dO@ zBsJ=0&N&qKYSagey1BqXT+uK2;_aMF=j3O&H%?v6Sx)BUG)`{eWClN!-(+S#aX_T z8ty|fNI6Jq)UP<_V2ImawQ-jIocw|BJqVHdt4XM+zxpO$dFsP(uwN_~qjUco%K zAsL{~VacunnxTFRG+2F^@BI@6YSbY>bJSo)Hv-kF$2j>M^L&!g!;Gdw&fU~)xLBj+ zaSczh&ZcnAUm+Q){)&5()qhy{r@8nZC|;vxbI#Y9%Vo$pT|L6gKF7%$T;P4qc{kT^ z3SZovFFuBxHR?NzwsN_RoaIAKmhi>Foa~B=1JsYW!2QhgJkGfdQRmU zhH!x?%;l$ymUD6xUtGn-Kh0<-F8(J*ALAPC-~u0Kw29H#NNUuJj1K4I6_)G;&Uq1Y zS-?E!a+X8+-oJ6LM!n4iKFjx}@V$AAI=Fb2lL4F@&&lDO^FuEFNk)I+a>F^xv5anD zG=_zElhH1G?|nu~8STwncIJzJX7o``zQ9=~Gne0RmTURqXBa)svOK}bnSAd6F5bjh zzR$@EoMjqkd5O_)82yjYX3n{ci=V*B8+`8?Mh|nAeK^^llap|-My=%JJrtmc1n$+S zJNV*aR8*sW&&*EXawl?@0r-72>Lf;g=Hi3+;_tZHzj5(ZoF&8PJw`im@(8o;VKjr2 z!#NqnKl5&&TJ<1{^mV@XC1&lapgPnZv~|Wz>eGR^71O0*zH4AQ_;ZMS+p(Y9zzd50Pb# zS_(8&eF|B|sojwrpbq6M|3flDeGWMXs@H+~tMN$wp*qOgq36hcO5O5iyJ_ItzRr}-KKy?X{8ufL)cK}~J zhS4HswkMK)Y6G~;Rl|^FsB-w;I4~Qdrs3W|wVBHuk1V6rMBE#tet?T()P7vxXyhEE z{(ywWdE~5BPazqsc1D5z>K8!$)Mq(M1Cst~7Vg!kCz#7qT+s{2IZ!-bSmM&InRRuKf`1_EG?9yd&Vqz{fG@SAHwP|_p2;7dK;8s- z3*>E(cR=0+c@N}$kPkpU1nKuJBK<*XKn8%+f(!&11Tq+82*^+(j@sl_yYa_#X%ood zAV+{4333z>N3T6Yx=&w9mp%h>G{|R(IC|9?H}|=UF6|4lAISb79|Ji6PFocK&}P34&-`}8$fOZxe4TEkXt}*1^ERLM=zJ7?nSrLrNu-X^>Y$7C*tT8U=;1z zoh}^*aw^E_AZLPH0P<~+%RsIGxf0~(AXkH23vw68pFti4c@g9#ke7)#dQlnmY){gq z&x4!*ax%zQKu!fY9pp?Rj$Tbh0cR;)Y5~~{vIQg!qCk!XX$5HmX(!^SJ=~V?&Q`kg zF35Wz?}L0m#8EA7j@Q3Hm)-z*6XY$Bw?Wz?$36%WT3v}sWkVioN4e}_+ zV<3-%JOT0~$WtIsgFFNBEXZ>p{{eX(Fu63ELSuYmjyB930KLD6mR(xvSn$Af$x+K~{kr0&*zG zYLGQV9KBEk5ziPvm(Bz^3#1$5Y>;z^IO0My1h{B8 zUAh?L5|B$lE(5t7f?P+$(d%Mh{NO0M^mmYdfII~9 zPmq6sJPh&($iG1z1$hkQagZlKo&^c@5-skT*cy z1bGYOZIE|B-UWFNg1{ne}6l564aF7uoBSA)i zj0PD4G8SYU$as(mAQM3*flLP331kY$RFIuPrh!ZcnE^5rBmpuDWHv}0$Q+QlAiIF< z3NjC5KFDq$yMycjk_4#-SwO^554ex^8GF#BGeOQG;wUVZ!Y(J&)1@zhoCtCf$d^D) z2Kh3`S3phyIThqIkkdiV067!nERb%Hvq8=QITxe{TmkY^kSjrc2J&-|t3a*>xd!A~kn2FM2e|>{Mv$98ZU(sp zZK?Z^h0vQZ41Y{`4Fp%LOBZxQ(E4rw5 zZI&*r16dDp7{~^YjUbyq4hJ~`8m zzk~b(u{1xPHAP;~%2=aH3 ze}Fs$@=uU|fjkWI2*|%d9tC*}c@E@1AkTyR7vu$y7eQVE zc^TvtB92}WrylEsAEL*?qBnlT1sBo%Z-IOpAg6+y268&c86anZoCVSiayH00Am@Vg zfP59?Jdm$}^n#oZ@^z4JfP53=0+4SJar7!2gzDLk!nMx>=>_>Z$Tva01@aw`?-6kn zmfuj|TEur>4{{^O%^i?RW?CbZWDxcH$hl{ z6NHsGL0FO#grzs2hbisRYjA?F7$*p;a)PitCkX3wg0NsG2rGAju!JWFYk7jOs3!=k zdxEgcCkX3(g0S!>2rGbsuoNf=Yl4EXI4B6Kgo3bKC1Yy}u5Z3PmVIfZtR`dj6X-^Q=_yl3GPY_o91Y!A45Y_<&VL?z3 zRt5!OiBJ&M3I$=&P!LuR1!3hC=;M_3=p|S|Sc?^eMOi^uofU*-T0x6$XEcq{9=$Y) zdyKGz3$&cl9=(<;2#dOcu(~Ss8$u~iUOT?JwJRS?!;1z|x}5LRXd zVTo1{R)>MEqqIja6AQw6u^=oQ3&IMrAS@*d!kV%mEG`SeDzhLgHw(hLvmmU|00O#piIN_glJ*2P1Yuu2}fgf(;TQjcCd7lc)GL0C=~gmra6SYQ`~m3Bc` zauz3p&|ASj?AuSk)JV<$Xa| z=NAMI4A4YMd$cP?5PUL%;G7WzFO49$YXre>BM1&0LGa`Vf=fpbd^>{RGY+%baSmk|U9jUaex z1i={r^dY$@dbC$U5Zn`j;HMA-hlL<`E(F1aAqc(F=AoxTC!8sxbUJ^lYmk5I2L=YS(g5XIJ1eb~+_*MkL$s!2e7C~^k2!j7b z5F9ar;E@po*Nh3WC#95WJs);06^0f2bfhMg_q`DhRGpLGYOh zg7Z`myr_cUP89^dsvtO61;NuQ2rgGa@VyFx6IKwsv4Y^16$JmRAUJ9T!DA~3u3JIy z;R=E?R}j3qg5cg21V67JID7@c^D780U_tN&3xZQv5WK^J;3gIXf3YAqjs?MkEC{Y- zLGURHf^%6Ayv%~&ZWaXJAkgEK_Gl-eAb1M}!EGoA{zE}~vcu)|c z2n8X~5vYmM9v$&02%(RH5CbU)!H|Lw6)6bek%AB>DF^|Rf)F_=2qBb$5KActL6w3K zT`34*mVyv(DF}g=f)Ifz2myRR-=nlgNAd|mNS`3Y_6b6epCCm02}0PPAjJO(LLi_Z zL<9;#XrLg(2ns^5pddsI3PSjxAjA<0LO`J)L>3A{h@l|F8VW+tp&&#b3PKp7AjBgI zLSUjGL?{YEsG=amEDA#Kq96p%0p%#|(NT1Q5Kbou5u`w0rL;$fk_tjhsUQTG3PO~r zAcUI=Lfok!1fU8+B&r~UqzXc8svrcZ3PQB1AcU<7Lj0;A1hNW3=q}JAy()$nUO@=v z6@-vipgSq;(Xp?B5Ckg-(XfIL7Apwxv4RjND+m#@f)F|@2r;yR5KJowQMH1eFwm0* zLcp!$MC7d?gy0H7EUq8~}`ss$k= z4(Owl_UPC+K?sr)glIWI2%8gx_&Grcq!WaQIzb4n6NDH$K?t@Jgs3|~2)`4AI6OfJ z$P z5CRzmA)-+bLK_7k#!(Q09R(rkQ4qo(1tAVn5CS3vAu>`BLL>ztb`WR_r9C>Z6zKKS zfe>LT2%)Be5Go0DGo?K`W>OG>Cj}vjQV_x^1tG3d5CSX(A<|M1LM{a%_EHdnFa;qR zQxL*31tC6D5CSy?A!1VyLN^5=hEouNIRzoAQxL*C1tHE;5CT30A@WlYLO=x}7E};| zLIoi@R1m^M1tDHk5CTU9A%av8LP-T7rc@AuO9dfr5lB(mqXQTPA(BxLLK+1jwowp* z90eiTQ4qo&1tI=X5CS0uAtF)`LL&tsMp6)hB?TdBQV_x?1tE@75CSR%A+k~sLM#O# z)>06HE(Ia_QV_y01tA_&5CSs=Awp9SLNx^;=oRSYpTiD_eiei;SV4$~6@TWUVFQC8Y?A;whSDCrUqTQzP6)yd3PIRPAqX+r zK=0fLF4z+QbQ7gLdUJpvY$gC|q?GD25VjY{J?t|OgpC$JcTn1+cU%a<)(b({gCPi; zF$7^(h9GRu5QKdig0Nvj5O!_|!WIre*vlaZn>qv`;2vl-rL+n_A>BaVr?f|he+xn! zxF7_C3qoYLAcTkuLaewT1dR(qTsRQULGRJ$k_$q}I?y&sdvxr&AOx`sLNvP|gtZGo ze7hh7x(h4&3due}Xzkc0=HZuBJ@BA<6DEGlL`t@7eJtCWK#0RXGG-kFsbdbA; z4{};F#}OV#XX>}-=#SyePE%{DGnGqc+6fMB&NQ{B+Ng*=bA4_1=yZ026U=i)_t1u> zEp+mCr_~F!9uI>R%9UWk)R;FlEz@?-VwTk{S6{6PA zrL}4;X!lV4!4peD(AFyw5D>-deTB$madHOt}N-?OjxbgMGw<->nzf)+CYDw zp*9kwtr>^wgnsovC@%P$)pzK(2Y$-n@TuKLlW7NK$xN+IZ}*H;wjoX5rEkt{?{MbL zPs~fVTsdvjQYjeFReeyT4ny0cPO81P$&P=MgDV5DplPbt3 zn2Gtg#b*WY=;BoClFrW5_C%YL+mdM}NhU!OeXTy2+u$=dc*o;|55-fvb~=UERPgez z=i%q*BhBge@z0yt?6jo1T62ZqSB=B_9Be5!h@NNA2=&`$NPbW z6&1{F@R=LDGeBrk&@&vfsqCrjuz zjT7U0IgRqOysKXMJikRZApd$u4mt;fH)pxOW9LjeZRTlBADj1wjD$FT4nvX|{$)>; z&`%jJKgG{#aG331_Bi-Li(w{%i+?>Vi=$874?Ldj)WvOe8d7+qG}nBOc`%b9(X8Md zPpHt(3Ot^{+yGn38t8+0qw zcRdAM71UszH*gdk8787xMsj)#@8YJ#gC&S~^rF6niNQXtw^19O^a$r(mTzdcGj4RwhD z4)mNEQqLq47aw%^_Xl$szXBafh(Yw%=+2LyJR`foX&2*Gkq$*0+5gq(P(%Rc=%^=x z?R};(w&m;b^p7-hF{70FqcQHypf755(MZ~yZp#03>({|xCgUg04c;m83qup?U@7kh z-fEa}w!BEE@XnC8uh89kIHM_F_^u~oXr`v+V|#{682sjk?|S@v>q(mp4HMy#-tS&* z{BAVg#!RNQ@BryGU&&=ih~_J|Jn=$5*KEF$-Qa}gE4MsOd46cL`ARYGS57j1<@8P` zi`9%mi$1!u2;?#3N(63rQiXn>9@f~Lfy@S%Ie{AxM@f+#m^q?V@6?Q;U5txH$7O+7f;%reg*Td*GqX?R|<9{b!6i$sqB_i zW2;lR$!T>)a`F#Jsk;o*PSbB01s5*#kCH5gGG@wk&mtka>Ia@xB6$rSb#mR~;j2N^ zvlCS7U$2)k%*#<{1(h_5mLE%+U4-&^3c4~lK2LAj;xrxGpojf@?L;^IKpv0D=pd8b zgEN9YXTN%iQm}+q!9rtP*oj_-3#`ZvgYx(`m-SYx0!6%*D=OFH2%9cX*_mcp-!xKQ zo8G@})bA*K?a-fI)dhcQ!RerG(~+E>GLACZbb{J`AM-T*z?s<$<={aJvxq85w@X%% zncv{Gt9h?TJD+B@bF&=tr1Oe{ZGDs`#`t6qpk}+Omk_P>vZ}P@`5c!51M)MdP*3endmvrUG`ISpIC6;EI9U|>p=_qr0ZOZm`&&)ZU zZAm{z5;=$ja@4|a)=O@YdFtnl9DEikuL342L7b-t$MQ5sG3u(QrgU-;RddKTh`YLJK zy&9@?=&G&T6Z&EGei~g!@`X^=5yp=xg)oKEnfk@;y?laTByKC)Zjk^z1`#d zD&%6mBFj6;IYpWysicTp3>6uNTD;~$4Qt8zRlVJl{i@_n5_dv{hoLZiTe%4e9_<%$ zuY@v>ax?4iZi_|eYSQ~WGhGc88oegH&1v=pq~FBW*Ov>o(GhF4bHcMFTZgaZH|Myu zwCIK@Q?M#lgLkKJZ9~?lI~?*-lk;<=R)UX1zh>`JG#gIt%MZAl33kNg}-&XI>19r($;;JMuIZQ;)F zZbm<5^de_j&dG22-U>!5IZ>SR5JszYGOxR~BbBC>Gy`Yd<&xw#ZgIQ0{oy*U?`luC zkgKVe9N!-DdTM-a7{?28@*s0>;+hxhWS;8ZME&TT0=#o*#SNR$X`lu@XA4~O>RG~^ z`5P1Zlf_i4a(^M;JCc9XEKWN3-Xr>+E5q!c5Wbn9a=j6BX)l zzBrt#+KJK2ob+(AI~Tw=k4fM~j6TWtW^wXGE{<;=QzQ5bKEHw*3R$p;;xvi~^t49gqmE|k@}jOW2+CWjr#U#XmCDPes%Lp`g!0Su5GguS8d=N zsVx^Z7zD7-Z zH9K3$uU2kdrS#m)*{E$#y>eAw68Z2AM;t~uOs=}y$F})dY zF88OF(ptdRsOckV3XIOCk1yMbrSxbXZ==SAZDmid=a!((HgkTxm|VVXacB^Hjo-7l z)1jrJ653fJ@WN1vt-#l)X-{%wb(C$W5+tkFjE%Y$+q8*Neiir{HSL|Hg>L#@Ww|OW zr6+b-bA9x6Fa4@dG4=c5)q7FF*HelFLKF|br8=!n8^!n^m!^KUdtsq>)q+KWFRq7T z`OIn7ujmI0+hT9Bh4|7-=Yf%@qEP1g{Ph}UID+0sn;Oy-zLv)jWin2ra%9uSuAD<+ z9#W~8^}b|=z(>;>B{>utXug~GCAwUhnVqb699ps5BB0j*r}5ekFa1nAj`r6$4Xv3> zhyDQ}kGl2^Nfu_2Qg0i}N7HDZOKy8{ceG?N^fyzkd-@Bl9R=LclGor-C)Yh5c~*`> z?r16FspWR#H%)J$NZ29~&w5ELkjIcH5xC)r6#7|#C9yzegUg)24UbEn9~N2?3l#Ex z+0$N+qZj+8q_VnC(JVve9**Yb-Zx~K7A!=0Lcd1G%jj!)OD965^ZW{}5C6K!#ZkxT zMNjH8^)Hx8EBk$HKXEe{zhSyjEczp~FOz?Sm(wUe%ez{{7@?4QuY_j_{^YN^#xTgV zRws4rcG`Be=tfV~1PRgJ#hL|f|J=z*M@TPQtooKEAhEy9nQuN5@Xo<9)w^CI_ zca|0o$YKb22<_$K&d9zI`g?jU9}r&zL$Wn=xr?>|wl>q|<|+th+312&81k*4J6oNm zDoFM*yEe!58!~Oe&{DZU!@Y{F>H@+TVjjU_vUQ#O?^9MC%Q8z%YC%153{ekbQ7bZZ zSe>?yiI$QiF$6qH?@yubx%yqrayxB?1v13_RPb)49Zy)XD=Qb+otWtd$y8w7V~oq0dcp*&B?i_%yAmOs4^%3~ATV zjWUME5|mofC|;0HJZ*;X!cdOU=h4sI_D*6wIX#9ku2+ddOi-PO=DR){|-kz=o9RGyd`?Ecpdty*ugw&tIcojdr6UfexF?6M}8HM|BWU_k7MAjgO1w z4Zi*yuvWa<2k9uM!hzWlPNacouuLRZ(1DFAj7GM+=!;IDyksiAf20xhSvdbI&B|i0 zG=1_k-eaOmQGJ##@bYrF?9kWY9(?3Lc;3|~_edYI)Iw`vQ4D(?R3Lz@Z_xtpD<8Fx zDiYwftYCm!S+eYFBa05LGxV~wPyk$6!t7%s4E9PJvaCwC(}9l-g#wbwk|^q5>a%!# zpn5~Dg9?Ow^~o_9oMqE?B4J_cgH`68bO$rkqX!Q6atZE7{de2wGG(7E>Vr89O|5e8 zU}BNSO%p7aU%0@-W@EuX^@dz4J5!rClWVpu#ZfWkcTm2*qKj#L{;GPZ-H_^V?>Zgp zk*+|t@C4GP^9+k(2uj{dR-Y#*Z60axb`DxL!?4inEV__lVi`Z+$WDh&?xpRAR0&7m zRcoM%E@73>93sLP!Y-{!2WZnJM3W~=YJ zYR{^jy!myZ5oEJR2{!U;?d^6=TFgk2J7}eSmwF~I7FFYyt@r;TJw$h<_;)3roR(vl zW=XMKnnl^jTg68ry=BpY^hTjKhDPKlxUH)wyNcw9?CLzQ$ga*3#fSzs6)i~Wi0t+x zDGKiPEXqujQN9$BU7(Pn(5AQeqzLb4JgDf)Z;5h5C%i=q=6~rWeH7d^T9jQSR*CE; zg%ms7DyY$TUP+3AyG&!#MP&CW^_`MpNycF#I06%5awijzyS>CNr=Ciwbb zc`pP1jFkGPdz2mTCTO88zlHX{=;B@mulTLTD?&Lj-c22T&`%jL-cl+!9X)XAdYfP$ zpBc?cqZ5#*tH94+@6~5ChH_)PqwM6VjjrI7B2NB^K$$V#dBiF=#yiTQz#8~U%2`Ip zL6om(EV{T3|4YR*T70)135(+L(q+Mi(X92iPWMJ?DO*yvuszs z2!{R2-Wim~hQ7KiCClG?tPVV@RnVH{NE;Bs&|7)?f{H0E8jMj=8zaHOeZ(;wQAe%| zgp)TMyCp>jCeSJge`BpG)4x(88>2s#&J}fcc!dNrR4RL1h(j5nY0>&3U2)WHQId}R zKr>e$LtNS8;tOEkOvB#LQues`)%w%R`k=tUa5G08$PrxbArZOG?G4VhCZ{9sr$ zb;-iNI;FadAh2>?lXJ2+ri|BQDP_DSZ`xqjt7{A=t=YjTvW5hqqke;#E~=r!3LsPn{yL?6Z|*I+D7DKmvAhx&Xog|f%LC||LprM{{* z{uPt0l<_ZG9@{LuIBnwrC~y3WG8UzkGX6!&=iC3WfwH+aF0m($@{J4~rM&${+0fTx zJW&j_Z9>*^Blo@D)9;ERLYDI8mS0F;7(>h>SWM6I)zfAvZ*Bzz^~5nmJ&Z*y{mm`P zKB7+B=UCe|JS&rF4b@!6w59|(OPSV0*~l!x70A%1Ol$m-)iZx7(;B~8zquO%o70*R z#+;;ZV7j<5x^n5(bZ&cZ;lT80-r)RWX~R-4Y~;vvZp-1!uCxdew{Dt(M5D7JwbtjY z$gtJgVjztY6zIQJduyI04uN@pdo|SO$zd3GWf`lSeMnZy8&zHw^^vts zoan=Ybaj+wZ&P0oLu=T{?#(2tBVlwfDz()GL@{Kz$4p?N)=?3U4o2vQ{<)7MpPuuL(>z6c)spxX zGfznj^7p7m>El8>>GKe+PW$HEmJ+r(7`3epC^)oHD7vTAC~1HIoBFUsh9-~n?`At_ zT3$tQqwhwBga*hfE(^rcI_lV9gwoDUZ5<8iYptWBjxCu!R{fXRBoyF-Xd*JACc-`57bNFv1fUC!FWo# zrNL><=KUI#K4aFs@BP?&jjm$9f?Y+lpTtRtbak;GSG6w}j&>P+mkmzJRT24=7q#$D zDeFB-RKy2RuQx}$uu-b~Q&?2vr)&|4%6{dNq9y&9BdXiNy!S)n=QN2-<-DCqsgi!l zVb%R5VQ<6{)at6)s{CcUDh%AdXolL4qRXB=s?$CBGOwvz*8$-SsW;M%(%<0wXd}MB zrT9;Z^D^G)-Sy;FKWrpawmRw#cRZh}T67ni}1gYI!5+9__l zp-n0B{apRZ9p`YKd+ve2tm{`|q$t3yp^)kb_phuIcer^(Bg-maoP_q;hn9Ahf+*_z@L{Qm!KG9;m)^^Mi+X^PBN%55h3x|R)e zv09D87d5)LZ6Rv7L2Pj7$dxK}epQr|r84Zlt}V4K?_{q`EyzSA>JuxIRXvGh$hf}E zNmZvS_H`LOys2y%c55T?H9vML;q9!?9rF4fL|<9 zZhElXQtxd@dasaQOv*dzX+z$fTe@0X3w|k6djkC&hU7E+%U-`5a_a@Yi|1!GIL!7h zdmQrokjduzqF;nLIcl4C@)jSRfcMFc)-GN=4OzfHc>x&=Nv0dcqL$FwWDlj6(3w>pUw2P0)0$0J z_uV>Gbx+^Ax8~lew=^<*wq+yWAr`gFA|!(sj9H9q%gYBJh!1QT30n(DvasdP7=QS~ zAR7zYAPW$Vj69JUzdVuWo?BHT^Zs~MbuuC{A~G^Ea*O;vnay+CEYm&ygYm$-#6%#! z9^uP@lQoSbY)3QK>k$U_R)TE^k*-H*DnnWBDx zswI`o^2Fz4e%YJsIkCjXVfU+L6}4$`eTB0nr7#_?xPpEVro_{tH|g&?t}_pkwXChi zcjJ`Ux3b+-fp5(kF#ne5`^=Ty7`3%ynxKH$Po0HPgh-=tA+V7_%L-mRIJE`?XZ1^a zEiI?ROn}Z_)lGk@-W1q7dCO{EfXh#uo$~6ZP1`EZ@c>-CRjqZMzG*$7I5?g{g?{-> zHFQy4{ptrE_~N_r;`PEo<|Snw3tb@yxg5ajW4H=)Yk2D#?->~ZqlihE8}Wo!* zw-rD4-*ea-Ou}o-ye~p~p_F{6CkB?t31%|4At(?Tu)AxE^J;t%&$? zmrB}#2fn0YVC$uxdy1R+mh#gm%=zp&7)z@L)}HQ7Y1&7&a~g&opNpZYLS%z1>9$Mj z_Z!BBR0wRm)SndYaZ)y;x9_+gr(tNWhN@Q$tUa|mq#GhdJ(*xzOCXDWY@T+i>H{V| zRekLCM)X+pxI6OC5a?;#9PG^1@oO~$W1p1bv*=%Qb^NqqVC(g?w7Yxf^m=n6dRsMj zvK#=Tuhzg$-MVhNc5*JcdSLOBd&N;#nzuVC>M1|k);6ziPb&ttzQdIgH{2yEEz%1e zqr=R)%^Xa+efhTFon|%?mMKNypcql8FzSyF4(W`;Ey@)wvBGIQ-h3=KvH>i=;Ib+* z%Pzz@4TmlraC@cdT7jWA14GBOH+FbP@jSIUKSFe>A;WFp&Cgz)2VnNoekgOEhex(i z_w-|%OHA3C(M-a6aeQ%`L~Lie}tW)tt(!RAX@hjDHt0zBd^kyMSkM ze6)X7+`o2m?sM#b2wwNWOa1?@`zB6+aj*LTo)h*o<~_geXR-q#Jjdp9diUVc#m{Hq zzD{7~vx*tZ@K2*icUbx)3|f2u)8DC?{&JXrJ2rSC&U4HF`!5|$=#?&dxM-I`!!I2V zCee;Ch0p6cm!=e8yQ{9< zo(o!c=!Q={%A&BIw}}l{PqbJ5q-=UK)fEbc?(7$n`l17o;%#C901d9oS5{YjB~xt^ z3nbv5m#>0vECwdq#DXEp*_Lf$mSb6;debIGV(^w~a{P>u)-+OG2(_hZVQ(eah6u@) zDo`oP%OJrL2`ERm5&?K&))#{oR~1T~{coo3U2Sd~xSNP;FwdLg;k#Si3&*&M@*?oQ zJl&^N;h||nenZ=r1NUnhNmz{w+DiKsAYgAL*n!bVA<;fiDaxObrEPCNqw(mSV&c=Q zChBJis&e3AO(Qi*U}0}1*s~=7Dn+@65>P&}ox!L+F_a!qm7@e2sZjz8dn>`7Edfv| z%KubO2XGrK#*Lq(1^6jIwFh&xWQ3K7Q0M)dqWRY`HvrS%n~&^-?|P%JD1WPP{X=fO z{aJM*J~x`~-#Z*1?HAL*v@5$3qvL~H^gwR)=ezfxi5E6bPNg~r!OHpc?r_|jV@-P| zk7P$p6W*Elv<&AM0{eS~47NUsomc_HqPxw1VtjfwIAQS9zMWb}1v9m9YAt$(ycUb{ z0q_CmG6M)-j|$$q>OD&WT<<%4*v+4dO0m`yR_Gtm=d#xh-{ZmGqWssS*RXZ24SV;< z{6p5Gq{H)8Vgv!3*^J*MddMH^im*WALi{c?0@G2LWIHnAi1vRCWLgNPniFaKPOv&& z%qmz8;PnR3JHaX5y2dlOPIrO>eo_9v!0(be)1Gk55eFVFXP#FTN}X#JaTvIph-+}3 zL>!t%QT_$toxN`5E*m#~jlRf>lhNrueIloeM6}QS3~zGIy97FmPjVUVDAgQZ4LGF8 zjkZ54rl1$R+3(SGVs|h+GB)&2S{-rQG!L33Y)A0~%zi-?R4sTKuM8?8o?kwVhU=^$ z>uzJh!Svi71K0d74C{5)fb}QKA7#cfF`q&r0`jWsRZD&}&P0&AbiL9qts8(L%C)T~VrRs`(Kt{&L^ zlmUNo(`z~`)Xbx+6BxV6n+v*y=iY3NHIn*VV$#{h;16e7wE}Y=rJNwg)JNwz<^bG0 z(vF*0jjz5aw_x;I2$w6h&6Bk3UiB?UKcNfY^`Ssb=xTWD8qXLEk_lbJFUtP}#w}it z8y`@|9nibDK2t-&In#2ha1jhte*w#6a-2-Cd1B1pItUN6u3(waG9+B1_EM=(5Kr3X z6Cmq3xl)=4$kCd*+gXj#@&0KdiXNlmjZnr~lPWZGadjXaqXoMtKL=K{M9cm%+9%BN zG}{-0=2jI--Imle+rZsKTtnN*G+Was%3rMF3yu?>IMLeXyZ5UHrJCY}`aIBUpjUn~ zwDV?V3_j~!ZQ4Ygk=p^FK$qK4Bu1E60dJatLHqiE(q)s9q2N{1oHa$-Kmi*$Cs)lA z1Mv%Y@y@rmW&y67hO%arO2k{U!ZLVHtT|v8<)@%Mw#d1BiJbFbbej&>*JCJZ5cV+$ z270`JWtk>XJ_g}|))g!hT84m$k3l?7vnc$|P z#SzcoI~m_1eo_7h&>m}5qsf~Y3D?X+1OXjx#_ySyV6W&~BEkXnc$f%g~hH)vg+J>6X<<`jPsoOU`J)sGtTef;`G8xll8<%b;7vt64 zc}lyJkkeIleRkYwZ?`zQ*Y)XWYyIuyRg+Kp^yzpv_yg1U!Y$ENmuGROS}aT2mbjmD zaWWy$NtpxIKfg0LnDXptyt_;1M$T66H&3Vcgg0RP3kB_hAc0%r>niv~ZP?Ent`LS-9Olx3zFa|8Y=|q`tVQY4E#P6J2 zOqMk;SHSES4%{otcj-9@cTJ!6YR=Xdp3;k_%mM44n-nb1mu2`l<-m`u0o$)l2k#Wq z?%C?u0i!!dcgEc?-1Bzhmm?ne%;_|o zV-iI9>|KAIjCZHcSo2M1wp(Z(IP**wzT~L>11+NZ-tFFC$W636p)H9!9Q zR)SS82M$K$na;8+xODa>^#C1%H(>sA{xF@3FwWjxo~kdTi~-x9uSz*cq#dM*f0|pb z;h$7x)Dh-fXM}##sc{C3S22V~VaA=_&(d7xT%4Z4yyFf8s5I}5<;>%QGtj)^3>bgQ zp8)?d_)Yho+)1si16%>ayKc2>cQBz-)zk6tc0qT1kNW#vzjAYy7IUhgtcghw=ettK zvlryG(=>$59*D5#V5S8Rbzj~lIn|`GkxLM$R|7r!MtS|TjRFey{DBakap~5&52IaT#!bRTZ$))iDIQx`POH@!%CB`1^P zLrVAb2A$D-_x_C*lv5-SF?ln2hI%>)t#~HyBl9y-dli|_tUT!id$xDf!^Gh;7$YS= z)Pe({4O;!!oH`I9QTWH_sM?nLW4oj7h}NRXwDR$hm`Y%PaxzW^w~mhr62B?EVv5+Q zYC|>9$D>K{8_0sI4On=J_WyhmnUm|`i8&P53H1RRucW8%t2y_{nQFSeU2B|7?ZD#4 zj$A&H-Og>mpi6JgNFm|o2`S1N?tPAM_V)%Rssw>>&rsYHpk=%xM;fJ zB5h;T1gt!LLdxDQw}y!id~s!s3^Y$4iKJ`qkDSb zBopvg{N&XNxi}}ljmK;W2!vl#SkKhcbSKAb19nla$QB%rKXP8tPmOE#L_9O4>U5!p z0zS5(hzZo?P{*DD94K9eBB5l+mK=KqG-;2&C+)%EQj>Y`c&p#D00 zhcv~}vBtAc`xJbiparyHF=;oxCj?3TO{SSZcd$lK?q`n=X?fT!6mVX^O1rr*qnYql ze@M4rVm#0^8EU4~L9T$~PoOk6$2&Au`O-XVbA`>X&$xN^;H7Le%b{{kB_DDfOAA%ajQ;pLq;Ju&>#xuqZon z2%Se8&OKH=j++dPA@^8v359cy#rJfda?AQrk?M+)%Nv&9a_+H+YYZjH6(vohD8E(4 z5Ev=@bd1wDp_Po39tsReMoLAX%}8lbl93WA8RFR^rKVVv|0hVfesDabXR*cy17quf zWaO*y3I-(HQUx-8Ck@8A()e3P0Rxqbsz9h1vMtjPpziW1B(c3e2$9Y*HEy^dk{BOn zUaQK1mo<%4Z!M0EyfhZ}R)TFvk>rj8DnH5gBH2w-desEFqpO70cs@9pQ*!gchVUWf2I>^k`ZYGK@}E`~CeOrd z`jC<1%#M2;sGv9MI^)Bm!2vBmPiSp!!$Y|1GbVu7eSH4q%2PYN0~`e{Jkl`VJ2UF+ zI0~Z1?;21hxkr)_%_7KH(a&DW@XKJe@rY}AlxC6q3YlMcx8+T$x!hPyAPCZ2XPG$| z%L_vGLT~gO-6K71H`n1B4d`EW`g^NY6RbCpeha8R+O`eeijB~yoww{(xbo6dH=l0B zeAa#(1>n7v{cyd0b?e%@KXC4WuXw=yyPq{A2XBke&XAzK`&m_SH77G9uAz+~`8sNb zL{0J9>!)ps*IqwKQ&7Fq6iqGg+Uuul0bNZ)3s5yDZ2_vGT?@E6YAx{aE8>Y;HN*K_ zcMfErEuLu8r2}egkOya0W4FqaL5UJ2S>E5M&}|)fQQ==9nnfT=m$d^` z8BqmIUVi9x z9DUVAvNp^$#2!+VzeDB$UvM#k9mz~7!8*NVLvw>nB%=VTD3W7=>#qmIT)Rfh+87;+ zXrUu8py@xEZC(>Mwla1F6F6z?qWqnpsAV1U9Ul#b)6Q_bx5u&fk_z^)NHfoNQ{i+8 zqkd4K1IVHu_{i3xiGb1Epj0>%jp_1QEMKdHdjM8aC*!Lr%GX#abh~4$M7YF?VXEHBI?4T=_bIoo6d{PN|}% zO}Gp*HO;(437YA6{dC}R=TU|Rw{&odR%=@COIb2%1}(jA0L**1GO3fyzUdlc0^P|o zFq_d+o7!m^HSF%&%^P;@UB>$r{1AKjpFwcD zqMcTlgSzBvqd4y#MCri zoC{rPt{|BQT`hTLcjYDbzJik=H?b4`aedMA5s-oV{Q6>o6?w;rbOM%eUXX6>OpY_2nj%*Aq%QJ0yXogS}OvjSY5*f_AlrN8uUUbWY2eg`9 z>?oVcN}0o$TgnWf7E)#~Z7H4gea59XpJjatNXyd7`XX**KWlvv*yi~0YHh6uO`DzD z1qh0ZZAVh0C9(Wa4h8X&hOzQ+%ZCc|hQU$O%7X=__4i@2FG@%I2IX>|x+Ll83E(OW zFvyTh$_fpDPK`8#&zZi~icoAu)z?~K+HHDsa6soSrnEpwXOHQ3m7v#qvsSbtSMHVh zyyohP>D227UA=I7Knti{uTVC(`RGT^zHMI4bj`rir*z5l6kVK(FLxnvE{&zN18+CT ztGqPs?aXD(Jh5zOZXpRZeZ(FyOnVUmu{G487?2p#C6$^Gr(soQ(6 zQhK6CcXCS?9+~_xE-(1c?&unl0eyZbwcoIGlS7Y+4>26dh{Hj%f zd8H#R{H_KmvyF5&c5LacN}FYu%R-ysVLVZK)#P|Oq&9!4>0Z#H6nL&BCEv__ezC6= z_cu<)J=Gf8po#k%ne#28`^QeF`^QekJ=NNZ`^PfeU!ud;w;!F&IzMiZw!g=P{vBFa zMrRu*GR>Bpg#rgqSsINJ`n9?b3V*jcoLA_6*T)gKgci*``ZK|@gI_Ot!umYZQwi!QQCyBi?_ zrH5uk9ImF|L){HZi=@qE=ULhh*}pTG7QQpgjF`;UO^5*ZGj*RJM@dXylt9~3U4E9X z1&ohp>mSdVR)c+o3{vFJnIcl;9?zK~l+E?k=j1(#nXO>PKmi>%pBV!Mw8*;|MFcpT z`|anSe`6-!ro9s)a6HrAT}{pQP7pSi7hY_`=91Ni947Gj@T`8xbp=N8#BOB}4#ej4 z%8NVhMDEeOnM%bCSRq_t1IPId*aR!8*PI~UV8nFn=`pKb?h*KP(*$(4rxlJ}JO8bKfE?ZQ?$OOxtp= zgVQGNbMdL@zC|$C#C;OawdG!ibWPmnqPjlgVHW%*J5>+02#w;tfwNuV8GHPFXSYNdKP z>-tSzr~E`QbSv#S-BonSY2f|G>U#%>c*Pav9nbz>ghjY5zb@(*;ry!Z&OJ)zHRx9h z{O`);5nhQiAvFJw`)vWe+^Vk_R||?*1&P5nU=epq{uW&(Ey2h7G(n`>r8GoPzPe%2yIt(i?^dqoN*bU=!sv4$19}ac4tBfKe-k?N znV}4}{Xqe9Pqp+XgToeQ;~aUaS#NHeHAj+AHzIMcP^WK#L>7*mlFh!;S?bHcDGk>H{ zUVr4$1JVh6dRvroaSLjT3e`9%Se-mUQQimrjk}-pI{bH`v9H(1H`xs&e=bSDy8e&^ zjdl-vc+E(43c>={Dt_KEI_WB~?6K?y4oK_9c>_gMSY^FnbhhArUT`v2jlFI~Gni{q7clZxQrM-TAs9ks87E`TupPQ82KDnbMFhuDFrHJ`~^!wI6%pX*ams zduBpK&(T$v@gbdanP#U`o;>xrWQm6fcWhdq%a7(41)FHZbq)^15^*yXC)3hu3;+Fd z%bF}zdp=VtAms;VNtt3t`I2KCc4f9?*Iydb!H&U{j-9n?L!1%&rtKgNkg9exGHnLL zjWY4!oMzxeqN4n<{Gx%6d?*zs%{_B>RaB`q_lJEzBROP^XH&c5x>VuA~k3Xkz|yOs3Wmil8o*F>5q9yc8c2+y-y}Z zpHfiMNlr>bZoOz$Ib5hs1@G~DC6Y}R7^vb`dYrr%xi}#k!bIXEqKaSRcd0axf{LE- zk`{Czniej)?%{`4O{ON-wW>5RsH|dzGIf;k(ZJD+_qJVs1QE#P;p!* z2^D`7DyE6dymhNXm$|x;DpdbSRXsnjmYteM!lYQW02058u$~T7@ol~elFQxGI|Atb=8&WwDE`rfKk7l!(&uK318e$pM1Xi@onuPSeW#baKhvtVChIh*LiJVqP3h4J|2#sg zI-A-rl7fmV^KD#GjoO;wU6=}x|90O-TrkB~d|FAQZYD%7G|vf9sJt?eqsehQ^KUW` zM+AsJ?7FS`(?6o= zN{gp^1XhQ0AE#>qwD&ODxmg_Tk9XR?CsPq4GjbE!T!xSes#C88THwVb+Ml0X43(SG z(d5}lqUS0ieJi|sPD2{q_V9~cjp^I-RY2Nyx8gFtlpT{FQ01qX(V0)=v}Cg>BU7G4 zC-4BQecH)<#(I42WO__E0XA>?&D+_}4CNI7P3_hJPteqg3(sCr{#|+5i?@McJ2lJ= zT>_Wey=qoh?N;K9SVL%6aOJs|-pp+RD;(N^Vq@QR%e-a}_i|peGi4@M} z{`x2AHJvG)@!W4`Ke%k7>j;FP9rDX2CTh;0i!FaIKu95I0m)2dR1Ty8%;o8ViC_IO2LpMk@-aR_#-8~DbJf#y# zRk0C{{xnPFp>3(Ik%kA^v&Bk3N7>c@QA4e+INAxcYkQp(C$!yMjbQNFcPkpUSVPbRAIh^c`Y#o&``W=vaEl9Obf zp{+p@V_a(~Njj)CNYXT-J^VVA9uAMQ+oDQ+G^pWC236J(I?yV${5-a*g@s^UxCLuf zW4FuIH+rL%p>Do^I2s^DyWY)J2MO}M+rcH=7v+Qg$j_gJBR?NdM}BhiRF@^!oh+qA zOggCA-5vJ!XwB)#c=%^7L_O<#{#kzn_<16U9)BK^WHTRWm}Xn-cT~mD4zDDAd>%eD z(b)Z;Jq2q?8&(TbuhQBBB}Un!yE~_#4a*d#Vp7-vMZO`ce$O9|IIZj(WJRu>6E852 zf~le18I^fZ!s26%4dC{Rr)l=Qq@k<6c4lnbCh=Xp!^0tMnLGXRg8W%&DcbRyXD5PU z7Fyv|(d3J?-g-9n(zHZqItG&k;PSI)VJj$Mu#=Zhs$`&N+sGG`+D~I6P*t=KUf^{q zopxBUBuPiEiL}>rM==Rne@zV<%eIH_P-;Gr zJ*3q{mT#V(WyKt5`DN##QWJ#Rf%AkA6m>i^FRumzz~Nh`u>*s6RO?G;z^ZKvpHu2S zi7hm;{mNOetr!GtfATDCp=npt^ax4iz}f4kv4ezgw1H2|tIULw-Tt3Z>OD#OCzV8Y zo3_K-Xfzu$JbN}#!mJma(z$UbR10nW>M8XXs7B4r9o+^RS)G02*70CSw~=Tj!HulX z_|EAyKRmA)#;QSaZ|=(T^Prq71WxvkOU0vLViY+L-J^I9ZU53Iey?R%E`n>*I5aR3Z{@+^6Cd1~kB{vBPp zXN!)o_`8SCzzU>&5yvksW-j7Xg?c6N(oIfhfU$mDp!XOQ$zkpj|GCOy0Lr5wuuoSM zy4`A|OG#BY(G}y4IS>xC(i*t^&Zq`Y3u?H2>v(sUlRHr36rmyo^dDk> z-Bv-kLy=OaF$ZWr;>Q94qXdTS*vGR&Mg{H!A0GZ>323jqT?Mlwz`SY?(@l**zcu%` z>w(;RN}!*IcHAQpXTdoW0@@E2bSb`Vv+`lvu;qe$J32u5(IF*)o4bG9B%!_!hQhE9)3!=H z|CgyUP=#6_oKjAbw)Hf%lcNKaZ@4erJH=pczq)Oc_fSE3xEYU=BZ<_KTHKq+bD3RZErA-;@_xGN>wQ7nM!~z6sIou|>Ufm)mgthpTncOI zL5dvI^AHsb{0+YrP159gnGn$K@F%*!($)nu4c)XkNR?AwKTkw?ftyjuvoaUEvMx{U%D*dpN)LrNt7W3Dt zQdp&3s7@BD{irLayJd8(j-KPaGk?_$z1JoU)pPqEjVCUp(!AYwhN^)oRQiO^Ju-KN z9N5|h1r(vO$L|d2k?XnZ;#keDOB3`}73DhQkub7r(fYyeVCZrm>c?w+1))sG443KU zL&ivg97G}a&Dpc@Ye#TF6OVCnG0w0{hl`>^lIjB%9C=bouL08dKAt z9nr}El!?dhorDso=n+af7Hi2hdL%}bsC*Fddk5%?y@g!0%@%y)Q@z0fEoZ&#(nt+k z%G=PUKn^5s*``1s%G%JTfMK`kGxKR1C`KMQ4To)4fYGe+Yp;xo(p6w<^U>FMrD`sd!F62VNK*re@(J>@_)#)Uke@}cC4725d(jd^ z4mhc#Z7v$2*;*c)XI#O35|Ek6fOa2iH=6kR!$t}2XV$B*_4)98V+L+mLM0U;kR*Ri z%R-F}gga&ytS!yA&u1MXd(dISI9$Qbu!+wVloYh3uWqmjCIgymX%oKwAWwr$Fl3^| zqI|+%7b_v+g%=P)x9R&Nqr694<@%c+z#CtJE+VCyDpt6IuD1HRm)!8z0g6$4|w8U5`24EUN; zU%Fmk>lxbN)ykZ!5rgBvfU3!;lInn$$Ec9ht<4Gc&5XW8T^(a~RX0%c6&2-Q^$!9p zR-2ypzlyRZ?hT7~?=KSd{@X0Ru9PbHn#u(FZwt47{op+h++T?ZWFk+wMTn`u#4pP4@tQ7~-PMEMfqUkxFnRt4M@Eeg z_0>ocnh695A#mhJC(pr^!^tt_d2|%IJ@>564xPWMuQL&`Wyg&PErfqUvTd$hpS zi_#L0XaZ)L5u1d9fri;q1=0l*lR6jMM*#zsi>g4V7_G&Uh3_4O)IiV@=XHtLS<)VC4c-B2XrOaRmk6C8LKKb9NI&acfcGuy-dhw0heu|` z>;V*v5cxcq*CHJzGIID*tMEX?r5^LDuXZIO)D24wM0Ly!zziCWnokBIMWHAMU{VW5 zw83X-n+GCS2s|$b@H)$CAgbZ5YdnMDWFU(8Mfu-=mLILW9t8>0w~IUODJ~j*C-hDV zC1IZo?pmVo39uP>Am!sTfW_vMzQe1^zVFN+0JVK^2C&p-sEv1K!gm=Fa=P)g7UduJ z7El@g?l=tHmh#vT6^tj+E5FXaxZ#PMmu@-PyF)3;O@m^aOyGprH_G!J>~mM9cY24t zyY}$@^{yui0O)aDzKX(<=3yK2%_ES2e_p-{eo$=eSnM9d_k@q4e4qD4RR_O3rK7iW zuB`7~5b4rsC-;PirQ;=*$p8lau4T#9`y#JfR{F3NMD zk9B%r&Ao<2j~AGc8=IPf0qM6?fizIkz$(&Gz(D1qDiA6`lqg~nX(=R;?0Z47Wje}{ zn}%>`QI!KPYZ|HEgetVKu(uLyLy9D{04hcK&q0E9zmY#3535t*$>7UvqhLUiEma^| z&9{vL1}Ya-flx7|O4>#tN!vUQBgSQZK#gA8Yt;)aVBqqa1tIJvLaSbAVFBIi7KG3> z)R6Q-3tRN@H$Wd7{c7{r9US8dlBVV$QUd{>=XHtjm&mPxNDU2iF6k1X^GtnCodl5@ zOXPdkTe2UDIy=XQ!$IGj*zfUy1ez)qcf0hgCGG!P;_~tHCL~`?ul%23+PFBSYRrj{ zUw3e&An-~=sCRZ1?lBl(ZUCmCqa@r@6pHeHgm7pt<0;@)Ke_V&w?{sd56~LbLPzfga80X>+)5YNyJhCgg^rRdHE{% zf$2E1BmsnAh#bE|hh`fz`*o3UcHxD4ss{38dgUeEBOW5dubv{NheqQ9N?``eoYyXk zAr<_Tu0ZB(nYovqx2Y-E*Lttyd+h~x>~kh>JfPJeg{MCZHn4P?LJi|gJI%*o>M>}_anLiFA)XZfH_{-H5jl$^fOu!Yu2X)*{RUP5BumeS-D6a$W%hN9%7sWf~bc(~usvNjq(@1spRaj|Z zZzb4<07+O0REqNZVZ2$`ZCdAcg~0oA0IxHymKSPx>l)8sIaywa_(l1D!>GP684vyS z*u>U&Im8trzX80F-x}V!#+%J=#3z1r2f0*R=eC_X_c{aC3)3qvXrdRA?rD=`E2u#V z!9Rt*xIZ3IL}vA2?t{Jbh0F*udRH+-K@RW#Wr9jiUT8xJmCHqnELSU~(y- zsN$bg9U^X7Em3{9A2nldQ3n-^I?j)2)5@tsP-dwk#dYdXxX-jvN1#!Ze?>Y7GjeV) zx^1a|7g(tbxLy+AI?KG}!|@fpDT7$#^?enDWiZPQEPRjHMfnwCbe>bXfSl!&%8*k5 zZsat@T2okoqZsQYoCfTo{5!zu5-nYl^;pcZJ@{hamp0@AN}XlZJq+AU#5EXCx`(Dw zl>ba-ldR?C9a_{HADexfhp4I?xL?yqb@tT|Wnph6*oFYf5Cv3<@-Z2rSb{~KP*}?6 zi5!;#_bU;h&byk()iE~!)8IRq$SDd%`J-SnD?5YU-gs2ya!3X%p5h1q@V+izS>8JP zYKkL}fPY@T3cevkGQ|-LPp2qmD$~Y&tY#sH;*#`A|+EeKs zj_=qrDRwj(2r53WOT=K3Ikj3U($GMM<`xMXWVnXmB}+vbOXT|pAm6HAJj_fFc!&xR zz|ltdoDqvVvLD_8C{WlApM`=U5QlBydv!aCxD{!BJ4nM}#f|2$;)W4cR48?4poS6G zO%q%WD7-zj& zn2BC(tWD z4UN9w+^eN5cA%~h1X>Q@_2yO+tQsDV8x6uI6Re0|ltbWmg)$=0MWMINeK2->0swrk z%U9tcX;3w82_)d3m#=~!8Y-G=GHwZmr&E->Vz5IOkY8>Ze%yi5DV-^$3`zGdH4H!s zP7guL{o@0=qiFVI_VQIZNVr5Fr^n_ACO@g*Vniuu(Wn8%7Xu2NuP}$k>U_mr0A4sK zdZuBsZMs4LKS$SKEKByZlL2%gry!>73X%5o$W$lOrm_UsR*DBcK0si){FddK$~t8h*0mjD(GY|z}x^#!|s!yQ&A|&zomn<%Y7OJx_bqkdF%~o z7k5aTET&d@KidNKjP=T&_kGDb!E+;fJDAl?WrFle5Vo%mr$-0fdS0rWio)T3XtmsbmOEF-2W}Q#>(`q07_ZcyFi3&p@kk z;A%}H)rC_tPz!r2!G5N`q>{`)feM{zf|gr2logL;_TYV4x<0ZT!0U{wG2B6c%MScb zvc?X>W^RLf@p|QN2IXA#>wx=3k8Z>tQIzkl(pz1ToumZ}YP)7ZNEb?6mO5@=VFBIi z7KG3>w3{3^u&_P-qWs&?J(q@bM&2GGIWF_rQT@kQZ*pR!!A{qik_49OI)hP0DA0Fb*a!Zq%~Zs#*{YuQ_yDb`;r;be3e^U z`BD|pT=j$ZVg*`nCl2QQ0Gi;eMjV4ufXB|1!fQI&PSfG83-^xu?qWbg zfAeVu8<0T9kIp1tmzb~EdWoB`p`It2ARF5CLDv>hOHEXyjb9Nz#S@tArU}e=a>T1= zRT2zy^{j${i3=@SQBJ7*P+XOR1{M!;C>#oNDIjc2d3n!a+2JQ!kOl(ugb2J2TgCv8rpB3E3Da4Wh*R6zS^_7(*SZ<7LX!B%0fq;e6UxhuI720WV+)4tNZgZ}V+$nUpO>$KAIvj5#}*8c<0(v?xtqGYIyg0;HFu={0 zDiDSefmDdEfPuCdRLte2U93wFWT`yl>!2Hm(o&U zF%eV^EGY)iyOx#;JwxPVU`a7W?q3n7!vpFf?G)K7$=uhu6gXOm2=$(%roDB{4Zt)6 zNT$7t0zIcGVZcmR>5?W5j_%RRrulUqfzht=9NoBL?Izumy$O|p7S3gE#CYJ*Jpf(^ zdAJkOe*UPkYIBn;ggnp|cuekGl)nh>aB(oAbpT5QZb~i%zE&baV^h{KHvn^XQz{BY z`G0|HTp*8QxQ>}a7l7+%wV%p7<8svb|) zfoDD{P@&YhR?&06j>~KM5!c{6iJmo$qWlwJA?Graa<*D31Fn|@xX!W~FjK5Gg=H|C z4447CD8B$&<~aY+wsF1&1Q|Ha*QMe<^X}N`Ph$W*j`MY?&@)6$+_6o!C~wLz#Ez}X z=aAV$J$m>4dfutgF-%~VZZiz%v>NSZn0}3WO9TPb&FXu9d_1Z$#wWgr8xo*^0NsV) zx@pCO5>1%Pf!yN|3`htM6gM5)7mqX#9?BCa%D)E2BvDJ_ec~!Ya4^7zL@fci-W}>u zOO1*|Et-m9Gj`MxsnNPm)uGkdrM=z}-SD#fK072|EHeH2p*y>zQ0n3+hh*SxBCa7s z;*d0rqWsgI|C0IGs1gfgF992Uz+@n#3| zuMNyV6ovgR?`FK-!`W_^A}~vz`IocZ0a6J5Wliuw2UgteyVLRG(G0$Qj{XdSkpE?9 z;7z*AjIr+vp|r$Qb9X6W1B$u)q5>{SV+{NO?>aJ2e3aapKL)%!&$1qAv( zUqi1qf;uXtp@GgNUDDt#cts#IlUqv-%zJv2nnC8kEMGNE>faL&QZ&Wpltl_O|JVWMW78&truI~Bu9qK{xz3gG8&3>Mpa1KG#@k`+3 zF9`TxM2YzhXv@pe4SRqZBq-`~tyo$-u^I06{Eg0k`*9`I4HSdup;#yy`s5)le9uuX z%HIk8c1t+OpGDw?LNMSmC{U58n+kg*6xzcBtt(hhgSgz%b#XP#qWnD|>zX(U+YPWW zM-bp^GkzDIl1Al7-pdzZfyRaSU1$XUqbp!Nh3~<)iC-$p&uCxpuzwD~B|z%A0oVl| z-Gky_JTZ@`@jN?^;@Rz$-w$eA8B9HK<~o_%vcC}k5SRMDLaQ4Dn^k2H6(r!FPw|6N zqOy`hZ-U|J6y<-ZRYe;w^sWl2=T^_2Wcx8r0f{=E)9z^7k)gM8`fm9<7w)hzq<}*1 z7hvdJm{K}+OS67MhYCR}%K^NuQRR&t6yU9EJVTR-H;(uecmuy1Zg8PDU9x#FSdAJ8 z_&Bdiq#Gn%Nreg;8t7coB|^uLD+v`emZw*g9|CK4W;db}kn{*3_b97rc+gMafV+!H zp)i;T%1aob3+P&b+SLp-LtMW99KLrFM3MO4fOsJI@13IU02m;F&oBUn;*8wJ02ok! zVi*8Ju}};$MrV*200XK>e?fZ%?#?pk%rde3?oVWL7iSvF2mGe#YNh|d77hN1pxf416o}sJ^ESr z=Tm$`mUQ$3Iz{e)PDfZ)#BMEt^FsB?Ej`C|H*4tms<-dB6A>0A zZgUMJWVSV#6*odQPGkf?(ElUo8jIPrP=5@0zjug(;7UZOw}{%0WiVf7QT~2#mMi;| zd3Z$EJS?#}7!m-Ff7MT7*5zxa+bMGpNWecYUj=`*IS7Wx@eg$rbIEDe1w%W&ZlW1;2Ik5F7P3F74eLP{VYQu(@Ek6OAmksc8Zz$UZ0(MZ zCj(loDn|XxdO!Ck1d~R6VnVw*7qCov)l-;HS;eo} zFHEoe-pW*&=u=f>T;=Lxqjm3gQd$F-sD<_b+^%QWCFhF{KJht^xf6$T(h+9E)zAO| zQf!3JV&qAOQLCW=6ew(m&qBeFC0Pv(D4tSLJ_^z-6?bXBz#NZxPuCX%7pn@T-WVLb zuwWencN1|9_IWr6-+@L^{=LeD``%(0q}A71AqK1$s#pFnC}i6uLhn{-S;HoJ(jS<~ z6cChjDJ_*2OWIt`7*Y(NcP%XydO=ljDwm!INd)qAi}H_x+{+Y}O zw*}QPE$poX+Ylw`m_Vf{zfS^Mwueo+vp7C1?t;^SpSSo}TNWecYUj^R~CYezQ zhRE@Ip|#wdRr^Be4}9|jU-5wZ=aaR0IACT~;nuBAc_0IK6LAeO5)Y(l6yFiTFcUz5!gly9 z6bvmT!%RSt*8Uq{wMz#D-3vGO&3Ksc#lXd?LTPMd19uZ~4fc~p)-;OpYh(?BTY0_5 zoAU+Pvw6IY=THg;q}WmgqRpf|*vIj=jsgZM7gd2!F@#DEbtxoil}ACc=wD)bDIld&$v6uEyzR^5`3BKM#LjuZ|GIE;!5 z1nMSgjTALXaiq|c3_)`vMWjf9DtOp){jr%|htJ?r8AwEjjYHzCq}kLN+!Sj~VHrHL z7Q^>Wz%I&HAdnl5X(~?RHf8^ybfwwXSXiM3tQVwL-U9KL563jex9?waKvR{28rC#Y zy-8I-V_|P4*g^CdnSj`H&l_#?A7JVRn0+XWAAp$ac+wkgk=qId?1m z*0HdF?sW@7=o%_Wu9I5Wo_D^+)XlM-eM-jPT%gb|o|ECm<&dsI zsaKqYbO|npbP+e`D)zc$w09w$&?w5U0^aE`_@sBc7`pWlJNqR&0e}J>ZbOmugQS0{ zu>rt=(q$+TN``pJ*Z^o^9p`jcTIu)t`$c!x49IvAApjno5}<>U++;DA;6)~jI>!q) zv70Ogq=cRX`ffFPD%Cs3u*%!$FM*r}18Unel=8Tv|MC!20jz6NqH4fc98akHf5zU_-a z##Mz@r19uZ~XDdz9D9Xz)@LlUoIfZ9)>FlFb++j5kaCBam2vdnz>PUiy20E8?iO?~GW5*c2cQlsB zcSC!Amwl7Q_FXfNCJ%iA;L&^KJ~s9~t(TAYCOz{2F*kOA0D(5bXOSk+ifZft3KX`( zXQ2?}&Ng;H5oNrq;{e%np0#?#7F6vyYgkdy^I$=%ZU-~FT;c~;fdBzF5V7v|l!^i< zP}mNi+p8#`h>FgEG>h5sj?YPODe$lo5$Y1Ca}sq-IxjCnD`6Uq%kqcs9YvuiKMy0$ z3Ox$McPd#AN&L@dE&#y$x_lM&B{r&-i3Jky&&yZA56ngjO_qrTL$v=BC`W%hne@lS zZdMKf06x~`tMHMRLm&a4UOH0M+KrLOAs8aZKh&XzdpXG;K-oF~>RU#(0s zZsRZAjxPfx&C79^FBYMGbm}f+DwMiqsyNKR-9%iYS(7+S(h7^fG z3Wldsls^V-u+}>o7Cm}V*-k*h#~mUF@Uj`dXSx^L0(ZGigasNG;&-88NR*uEi8vzD zUj&)9DQp|}2mbsqo!&90x6E4#2)tcNONGP4iKsbQiUIUo1YKv#b}Gr7EX5SLACQ=Y zZPF#@q+49w-O2c%JEf7Aj`o;q`K(V182PmzGCEKTg%%djy>3AW-Dku>#(^SPD73Ie z9~)o?tCWH7HeHFbFYx*pO(1~74MePWQx$*&P@u3KJ~s%K1mpolr1^2#JLA^fphrB9 z2DA#iJ06-h@Yr)}AmHe{E)k{@OI887h6Xy9bcxV0S}h64HI~TtL*P*tC*z|JJ;D@| zfs6wzE(K0jB0{}|RDe~-+yG32`6R$n6pHenf{oGmn|t-M8h>3e@J-`yK&dkh<8KX@ z#$SzVuwEN~BaNcG1sXqp)O*`y>llyry1Ai@HIcx9G#8UXF^R;q)Gdt!0jOO~3Wb^> zXmU#hZ{3&ZQKAmYuOj2oS*6M))ioCGshc5I}(ftq1F>ZMUCzgn%N_ z{BE$lg`6kgV~ws5I9Lwgb*ody8f$p#8qa8m7M+0{9zJcjhIhW_)5#V>R080GiDj{@zK#6W(rL5R3knFbrnx|NlKM!L#9kX=LUt7+HM+;vJ z+|V)0fKqQ2HCh9Zl_Yl3Se{-{{wnw-nn{PS zAPJthZG18CvZ_$((kQz!aA_tTs%zCYng(s>`#w?nu$Fcp`)_yiw=kF$4dlh>l^^rw z>B%h7TOFA% zD!E$?ba2~pvK)n)&>-1^CWt6KX-K{?>l@NU1Iir}L?|0-xZt)N!*?59TJ-C{Ux$?) z`+slJjB1*& za5Rcw&;l2*OjMsVD)Ut}DpU!yuGq8;Ig?9Eh$rp$v(O_qhBw-bSqcbvJ6}Vux1t`i za&#_PbPNg8F{?(eC=WosCHDmHaXuFE#URtFLa9rm#w-JO6LAd*5|5*46y^6o-?}gz z@6v_JeLAa1Z&~eRt^)JSq6P^PU9J^p43c9_Z;&+G zHM+g)vk{uD=RHdR0q!;v)Ossw&tlWKP^V#tmU@K$DjHYUp!odz108-`8ilNvy~%7eRol&G=nd zN`zA_7h!?Mh4@`)7-A(Y7jZc{PZo*d zSj1XWSO&xFd&BpLP07i?i-*of@xPk}_z3}PB5?^Y698zCCd>o?L{ytJk1-PfG@u+p zc>od0LDm>5XJ!I`F75Z@pcR_ih3R^t2A&)HV&IPEb^)c{kSfwLaA|I*aSc(DNK4Zw z$^!b+f?LbbKmpkSHoM^cm~JG8h6B}*9Ab=YqvP7OYX)n^AJIR z_s#fS%pfr^HNr+%pm8C77aE2%iBF3-o>o!*AJG4|Z%ydQh`u`|z^MUD&&Ir^fWX_e zw6uZ4WdA$G6h2=DK6yqlG*cz8ox6yB7~ZbpnJ&*LDwMj#C_6WBc}5X&4Lv7zu4xqI zOTha^e>^-s7*SkJ+l7|B`(-c%1iGbzMG1Oc8a3O~&_IXYFR0ToBui#{8cW*dFI4ii zd9A%q7rtoq|7hCyT6=`@&xP~TE)T^%H@?JM2NN$?K0kLl#ow;m4aaJ&t2I1n{3 z;CtzCY#oxvJ1Rj?Iz*ZQr4j&L92IxmK5HG^UzYHtqQC3juawLX#Rm82>KEUN8=3x) zhe&|(gnH#)t(IGv5Uq8(JU==In`Ld)T4xF>BzH7#mpnnPw%Q%+@-WsoKE6e*`WR4kYWHmzCBlCi!9CPB#9HV=@#V$ zaRd`*qZcWE-tn+7ALO8iZhL%iu(6v&sOq&L*5?MznyE*0cih24t9jVLXdsaLJe5?J z*0U6N4w1kCktG^JGPSdV_Qimr#-5(LM%-rX@qj>PBaR?P=8qrN)T;m(3ne^c?R^zVNP@0tqfQocBQ(gM;Q!dRz?>2wjxo z<3>vC9_ye$YB8%BJ}bbbfUw4&y0->)9v%)IBM6`_?&hvCa9vyq2oG6zpt47j`KV16 z0|;LaU~oG(OPc3Q4LCr2anL9xmjc2if~NsQS}NNjY-9#35ThdsGrA(1JU}G`rrlfP zF)cIZ`m!gWp@4u(V>+_~^O%?d0+}r;WuKI1gy%a51|%*}8RbUY_m8CH#NiHCg9JjH z`LwCivSTJ1p+5q;N;I5RDi2FUK@VR*WRnV;`@6JDghB$8G3j7@MCodC7tfghKmmbk zP}Cjox&ZCi_5-}?n}G+S>$E#TH@}%FYuw_|N5KH{LoW1_elyeN*g<45fG{Wb6~fsz z^IIp11%?Dd*K~a|%$aqTfd`^jG*B=(OM5&{n$SS-ss@SXV^QP~)CLEVmz+Ma)AhdF3v^ZO276Z7vhG31Y z&W4nM2ci!mP;<-kPCyO;$ga;Afw)gA7(m{B)`wir_!#h6XB%5r`$M{2KrdLhgCp18 zz0Yl700O1e3cx18E?YwY?p9Uuyo-u$0^Iv+U_fP~Dt>X4p}}510Rjq}RpFb|;5HjP zlBQ6e2HpLYWj~%>tq*$#w;Cp@+%5_RIN4GK>=^26H>?pqJypO!<)SJOD#oOg{Z{zi zQAi@$eVC6v)G!~V1(~A>#WU0w?{q2W-n;i7^w8Jc+KWVWys57yVr!Xlix8H`$re zQ`+XUzHA8r0uU*oZ13%RlyS09+_z?*xFqofUmnRGh>?w1IU;8DU2@NZQSYd z<)2)}G;TZ#7|5L)9hlC>Z_OM`0eE#X9?)sgjHBUkAwU44doXNR(3TZqYnCC;+O-P=6QGTP}W zU%)O4#jW(drh0QO*+i@2)&K))qPR5_u*J`aTLUmqp|~{^2$g5*w}5MLYe4eUitUOwYSrwThK>^8Rl{02MFM2BYYNaIPQ)IF}O*5EFM6C!gly96byNIo)x}#0*XlU zkEESu?h1vtu5ni=Lg|6;#9CTshG!U#f&m4cWn5bA^DQ{}Slx*Qvrlt{z`-?92d!~U z`_!=;`T)=QGw?vPT^FnvKGlrzRNeNBc2+kj|IuNXR9LF#MNfbNb#2i)1wHZQGIr(~ zkC&kl%#)xOK46yG6cW-1zcW5)3<)a`-80sCEOPJqG^Bf0Fd*8pBS`BCmR5KqugU>w z({oWB`nOP7p#TL0wyGk!^FuRObA)GwA{dZZm=<G`0l+49#|OQGVRlsE z(Ne*HuITJ;11b+l0Rj*=ChnDcS_;SwX1v~}fkfSZ1p3H@23^pbg*;z>_x^TX9|1_~ zWT{8yWTy=0_|q4IK#RO)Z5cT4R&psIEcd2a6gIP}9FQm}^`U+eFBunjavwneb+I@& zJTl*YWd^wv5Z3q;y}53mRph!N2%w%T?wQ?(<2EV-;B`*zvNJr)91`;e=+eJ<7(iZg z$hWA!7UmH-W-@{R>cTF)Kwvc(y9HMW;H&OSRvT>U0Rj+LXtqL$g0C9m1k>@SM71qG>D|`fwOIjQ53+;*WQ&pB7vdT3O z)V7#CkI(&?O95exKV=ojT_u75>iWxcW~bPBy-L4S+h5@k7-2kqQQniGizhH&mJs#f zOdQKPtxw-n!qp5S$o@zMNT`SDPMl0730E@&L_`0BXov^*D-8qML2pF23u&o{612a2 zzgn!mZfr{cpdQ#3Tq0!4*0{^LLXh39k5Te13qe-qs2EV_%&$N8+LhZ6$r!~}t$_f2 z-Dhjaz9G$nfr0_#1$P+PV%B@~RJskH@4m=Z#;j@}sBMX&6ACb_`dB%>7*Lko-Aa0U z)WY#0v@Zvw1=@|udm&c{;EUNi@9Y=26cCoDlvJ&-^Wpk<*Ovp*V)jh8uf?7C285OA zo!(*ZuI=#s`gjEZXbZXLptwn0A%HJaES)=S&azbHfVASgUd~*ZH39HwMfoGpWt-x0 z8nTWW<8cPiUG$>M+3LR1T3y57z^C=Phk}llWpF(31qeXw>>M8s2h_EzfWR?A z=PUdBJql$kTD(@+gaqW*Jh>cWJQ76^K&AI3IAb@>Lus9nB%?J<&z;2L+n60d)NY0;t;+T`ymT z0Baxx1TyP~lVb{&v$HWC;S>xYU-AX6f=0vVCN*Gz*p(VU&O&&d+Jpvzd< zwmPCmCEFV}XFp!yU|$D+Jmr^o3T9?eieak^lhO;$TF3%$DS=RxSmE zb9C0*0%sYh41kyDHaz)53!YuN|EK zE_KuDo_QZp*X>{c*(VFQ+il!k_amT7XrKUr%pz@u+q`pwa48@x9A;XC?Zg!V`1`(O zwl?1g{8G3m$_{aPN(X*2y~s!Yz8vT;PRBz#mzaouljfl%-$3 z!#@MhS5lO}RVGese;a-mjIS}6=cc$fYan3uye?tR>LatdAFQE)&Lv$Ubd2$tPtJtz z9gQXO{ZScfS-w;6CT_z82{P#4W(`=pg%D<&aE!@t8=j<|Fp>VJ!$y+!$ zYC8W}y;127L^YoO)Nnd1I@h~pdNp=~R0hqp(Cgc|R#*U62;htEiy2F>E8IM>_B z`(!Eu;6>UCv$sP%byo@q3%#lRAeiT#3ITl4fj4mPN&#Vkt_++0!qcZh0AF+1*xBrZzXu%Hxf)BVA& zNrs(a9TZ5dN%`39%RE7jAb@&FzE3E2ZD4~PmH`XIf=ch&jDSiB29Ou}MZ?C8D+F+Q zO*r2*)4sNl>uPL#t`KN1?-YACGRJs0psC6MX=!J0JM+Q=5Bt6tP!_X~Qn8V9DIlCH zCg#IKey%dXEDz^s$=xzc4}2FFN)`y%>~5?fR|t$O(wBorE$W_gSBeO9HN!RvM&MFF z*x*kzJmr+iafSv0^o8Bb`-Uu!D@?)1rWdHd$LL+p?e$G)RxOnQ?d3gprooOO*_x_y zK%y*njFf-3j7MmI0s;$zgNDhoD+KVB!IUm%501t0p7UB)M6+G)17q zC0WB6Ow+U`OM@wCB0pR8#Zbq&Vc$G+#H~YR0K7oU9;PGVmUo2!PB%5C(|n__tBoLl zdX6S$mf)VPF}BAd0YCbP1AOLYK zd^T(I8WY-Br@PxiI~qfGG|y56k0%NS>J7-5i&=n7Fo5is=9+DvB}`W!fEwy;8U%%W zItVV)EuO)_v1z{SE2?s+ahbeXGmWU}=M0HB?tB`6DnyD60cFrBa5xk1r@ zg~07ql>^d3&Y`i(afJZBHYxf8I{i-_!K#K;9zg(gby6JA_FrZJgLM}m0FmB6I=1^9 zdlN1NgoWHSDwZi;p{foYpQB;J5{8vbWhrfYs!`D%Vf3~z{gNG#dvGcQ>Pxhh-m`b6 zIBxUBfU+_@zU7vR%z&LOSpWd-9L+(pLQ@$4Q@+6lp=+}lx3G2ijzygtj7xz&Asmm) ziy9RIl>!1CeWFjZ0x}Kc(Tnn?-UHe4iwfkjy0?1vZ6}^NA($uCEB`dC)tu_=|CYKG zzwC{%0jc=3cZh}c0oMfq{PrbBN{xpk(VOPJNAjVaR=^YVKN=-KL(KdkR5 z(W4fQoU@&s!kvhxvyJuu&H6T>h43%HwU(x1`;`5P(qA)H_78($&`KmPS@SD z@7^IlM8~h(jtjk^lxy?L?f~3uRB5bTU1gOy@X(EUbkQ+a1>32wLW2s)U)FY7vjh9)DtAf15+qFXyv@-;84WsmH$ z5DZArma@qMhZ0lI0sv?aOA3kZ^!V^_JaOl|2rzfVfp3W9QGj&F zPSGX1YD1ilZ3W^65|Dpr&-q_Eo#xDj{qVG*-T3TP76S-x?;X-X=xMiiyGIwHZ`o_j z?AlX6Aai}6=63E%30>f?R7!aUCxaYCKEl<21H?CJ2<`TXPkIa6J`u(?4^Tj0#T60% z<^qAAvQz+ocEzE!QaF!OCNvPdMjq8)4xF~@dl`5jdi`)hC-T}G2dlmT2Z&#E12y(q zt8=rHu7d)p%dTA8N6zE>k;?!Ea@$Ofj!M$|#1z8Y@dF!f3J7F2_)u;G30|MnK!AR} zDse+5P3%m6#3z&zI3Ti0!IyVKmTvtXxtqU2}zkH6Q?hw(ahpR0mD6_Q0Mb1vJR06E2oMBN+t4v1Xp zA5SLkCjKqD4^hyiaC&0OVuvRK1}qSxtwhc)Y!Rro61g0Zwu`}tvY1gmC}#qhORcPp z6cEU4hEhr#Votr;=KxfOKW z2oMZNd_eq{^pF^>^CkbCYXUn6LUd>lSt+efb5EcqCH1*yMuj>007#C z`|5(`oq?T%heIz71nAdX$)up$#}mrXMZZxWo@TZQe98?Q9*C|`5@H$&?3*?$iU0uG zgYy1CrPyFSRoS8+Bmp5yWHle|&EujDjgeb2kk5LWjO}JYl z7?8LwWimgcm-M8wS>o}0r2z+s)Bd-g9$S>S{R9BeIBT@btSwYFMM4d;K|ptTv|ULU zjw}-F=u z2ShGA|JBBu@|?#4267L_d3hV6yg-#l0n!_!cuF}oq2#Le#aTbmRX~8gCg}E{!&8L_ z0;pSV0?y)O7kSxdAQ+H%(3Q1K?85#vhX7=G4MAK>ZaIScts|!afy@e*HjRG*0B9TT zYtsgrZxICq=zLMD#U2WK3#m%&w*awleXQ}t9k@OgAb}98R4>$9-Xo|~0|FW52iE2- zI)NX61VVn*$zA-OVS;hhDFFs@H=H8p-6gr`V#8U8P|do7ZaCJ>^GXE+$cx!~?z|<; zrGP-2{`M90YGeK#JYq~o>$&aoXZmriT2+)eq2YarucLNQ!@m=3x_h37Rpn6M zgH?PHX4qBqVp8$m!v`ca1R(3KCc05St8VVU8VJyrsbomgD$B50l&Tz%PM6}b+Cw_w zuC!aG^rN@MGEX}K1TcN_$Hpp#PrLtIk@<2Y2&+h+#WQFXsneXSs7RdM275*DY@TF8 zU1{HM8C2uOFY*QM-=fvL;ad@t1?R;7TlDmTa{>;Q{~NKbUU7f&yFe9zQ{D(`d+(>J zZRsg@nB*oc4b>LH*^`7~(C5ml{8tU5%C-IDTNKK>^D35k@(3D1M1{Zd4!sAs8NV|s zg(j@)c*u#PGyc|zut4KN{4O-YNuo%HBdYMdMyn_%a(0IqTbS(HS7$g1afQIcasaPO z!18+uYIy4!FK`#R=BY^d-ii1{`OjrDhWTCPd7;bcY&8KJaex5MH^OI8UeW+O>-6jg zP@qsH1d*yq0fFHt2>ZP7y^~NX%0E|GRmswXSMQIGX|>#3j%3Zq%k~}&xC*b{D-!j# zVXN@MHP8wVZzHWBP85^lweUT>g01;0%3qT$E0&cr4CJQ4yx!n43^)LgZ(Y7-nvM12 zB@;-%KQCVeKX4tTNlxVnhNn}M>(FMG_UW=0xdFOdP5&Q^a|?uQ2?i{1chvw8Micww z<0W2D0|}@;Yyb#VLwwE;7ru84WYNS=SBFu#LAUu9Ih|D-&@KxlX*12&PdeQdc?Ian z^~yWoiYQ>E4Sn}4KsR%No@Y1!1!8YQkqDfqk(fe-PXU$PPUcJM!{O-SJVXxq}YZcv5CBO z0XR^)3`IgIND-w=tP9XQ#iHDWwxK>rN5KwgZI*VKa)COzV>z6ko*oD}XDNP~Of(F34>(`_gc78B7` zYy#jw=`s`vr65#n@MQD=G?DTv!Hd#Oe|w{eCxfmKI9U$hjlHdgx32M?kwZt3@uas! z{G$9r&?;9BdT-O|XX~( zfFSavv{a-`^r(V}6a(m8OG|}b&{8y^B#1~cMR7ml<@S^DwYT?O8nf=CXC7qa@gstW z>V6PZx8PLEd?g0RJ;)V;NXr4du?N-g)-|3Xe$s;?eo;OPJ${)qLusAN^(>x^ROP_+ znntQKu4W?^_Ev&zu%FCEfJ#vgLF1Q>T)a!|M(O9qU7xzlY5?}F1}sQ+)c_DHORQE+ z#|9~RHsTbu4G(jgb?$SM&LwcLue$}u#nGu12%kwq#ded?YAucaN zhm!Edk_Iuk+XwNdtqzYHu2HbJ4-lR}ulxw8m5#g7MSpr=?;TpA$u2{3m#jg8 z(3fk)B5=}mI56>6R6_xZbimJIjT$G|O?3I(K;e6*hAQg&1A4H$C#z=}%$B&hV9tPv-JfWK82vt{sjy(GYOn~Qrg9RdQ?tSPJ@bW{fW;P5?S z7v*2}{@+{Axyi^Jt(Z|N6Y;LWq-^PJ_kgE)Z;%hq`eI;rRiV`7WXI$U!ob}`+#pqy zmSd6dy`yOq<&JLe73vJxtDdKj9XC44G0gku3(wa zGE|c+Hz1y;S(NVuSy!4CRoFZP0C-xLufk2@@YM8OAOYW9)QM|3wtGva?}8z6JPtjy zZCYmUfGEDoFs>XB0Rhi02ox+s`H2Gx*hTq|VZmhka7@Qn-R#Z1HI>;}<^G)l0yme^ zQeiD=2{qS9F@WB+v{dLBq9${V6jNI0a}ap1xp>EQy2s4qOg!0$Ai&#Z{4QK2QnJ3h zKaH?JgPvS~>TR3j9vLL&5Y4kJGW{s@o^49ZL^ApIY;4OE5O}+kmS&_>ZJA;Ky=!Ty z&>m{mD&v!;>i0;x%&g-!WoVwJXWCX+;0yq?bUjl;7F_dnaan<6Df=P_YUoo5WE$~rNYVg zeK(y$S&0bsHc?w~b<7RGG}uqJ;uM9V{PWUZn2CiR9iX=Q2}dHX5O`h=;B}VOqJ9l; zUE>)HCyOKzzbO9~8BIOE@6a2gS$@aPOlRSn@8 z>?W2F@r&{i@gv?6=*o(j_KW#-g~)FJZ{)Xzx32MK^BeJt@@v3yS4YL&quy>Ne=4_c zfB?=n!e?<`r+_ zC^z81-7}Wkqn5$*N?Ie9uZZ%pLo;vQ9#3x34XylUG8;HRf$*21NK_aEjqygZM+0c0 zgl~W*U7#$+c@uPnz{zp|Z#2Og-nzy!7*D!P#4pP40e&yjtz4h;XIkvJvr=^L(7dwB z!=D8V@?5hZM8S!Ts+~j&3+P_AAcU?Vf3lNkVN3gcKe)Wb-AN`2;USw#fwPr}P;Wvt zWY;k_0Mig68L}0HqWsr&*E>%a>FM=#dNOd*qr5LStj@;75;!kNul!BWz1%ynlv8Q; zJFo!=6mqGCZabGW&Q+C4({!L|mdJ`TFVFZ3_goCTtSXdx>!@`t4+prLh-qg5LJ(~^fY)`T zqM91sy2dlCCvnjczbNnP&b=w(WEcN=v;!y+{AuXeln#7injs7B3Q_O?-Y9qtZ(ZZf z7Chn?<&Qx_Q5x65(0ss}eKD5;$14$`&a(2wbxihozAC~rm`;4LqEM873Am;xc&~SG zV9rQ*&$cQD&et?jop&`Ix3ISoY=i$~Iu2Cm2sKEsK&zMeu-_E|@5=$a&baCzH9WU0 z>#MO(O4S)?i>lb>$%3)?)oKeZ4+1Ih+J0}cGu@{wcILxytk(zv^-#JFLe2CX zUL_ZRI$ACAB+e2rPT-msEc$x&ek~B#ifYg z;GeX@Ax7X*Kv;KoIq7_HP7mxv6bv9QOf%g1>1W!+bi>#d#)DHKP+xOLZD&|S1OZg{ zIJTW|o7KRjfUxG^XVeuz0Cn|f-#scm9-6Jo<8y!j#O?5z^q*^I4!Kf5Po^mUV;t>z zO~bq^gz9M-tBML5y;u#8ma!t9;dm1-7V(SnUj=@bT!tNc?#1D)F9x1h6-u3J72X=S zn}}<0o`koW1}$j;?}xq1QPHmB^u%zQY0I5g5l}V z(kIBV>|~&qpe&EUV|P^!T&!uNx)5sYwy?JnY(s=(>;@`DxgmL(*&VM?4!}Nb?wH3U zxFrMtWLTH460#?Ab=49A3HaybtKb`ABrPEr(h`4A2fZQ6H=6>Y{OaIEulzGGTcjkU zJxYDGd#~Zp83%O<9Ef!>DHQ1v?eO%=+i8LT)UGClLe0<>A72aKI|-tw?B^|&_014p ztE?a9n|~jye??a9n6YG&jBQ5%K&*B7D)J=SQMMzHfPY@T3Vx6~F2p6aBN(EH`yj{C zFdKlgC-ud^!>U55cVXp84ctw{HMmbasiskse_uA-x&N+mwtPD5WnS0gRtyjz!AAHj zYD}7ejolk*00j!$;j>UML`jx}1B$f7KY*54yi1XsnMjWV4=x2BRw6>Z8Pp7}j=2Gt z2It8PPEjbzUxqet=j=au& z*A|Dlr>j`YTnaU>M1(raO3QW34Zt**PPD8jkfp@8IwCZ2Q>9%_9jQNTduqACz7h9Y=O2;Vyj$x|!J=U}{A@)tlXv-|(J zd)JuDjx{~VM;T@!5fB1wciY|Vwtaj~pNsb#+vo0c^YNwIc6Zyycl+4hUf;^GMD7hf*^fnBwF=>;RmeQU}+NQ_##VOU6}JbLWZ-P>GtcPwXwTVZ{MoGJ-IKO$x~PLeO0xam9`dJ!~WrT+FsggnokEx$!2_AJ>&Zo*EE%3jRY`FMF zq2d!uC%11s8K|!+eH988lB1i4mgR0fFF1V5Zxn93OaZ(fIB43u#6Cjuhv`ZCVsbps z>*vKP1!R1%c1py3ME(^r(3sA5iu(9eV>3@Z z_Kt4^7e{K`45IjK_7`R6!d3fJsA}azk)r+I2-L35Vk)@5-7Ob{$ikM0W#S;`IiLNC zhz*JEB)C0@XIH}8LzTYjQWmlia!XJfsT+m?3ZU}QPjz)5zKeoAIHX)%)Bqy}RVa=S^Z1ldjM5YR;A0X@Vy^|S1<>)EKJP{L#CXIa92HY$tkc>c1Oy9*l+?ii-oHskMTgm(-& zOJ(T~RN=R{!Fs{^^x(mor>^Sz=Rt2z&_kQ6E#2);&y)%8(Ql938a!!16Bj%Qq)sfY z8YgQ#nV{6KdlJY}J({*o)_O8ao&TY1k6iTCxV?Y%w|Wk!@~fWQ>nQQpgUnIj48P;2 z_AMCh)aoQ4i!(>`u<)umt4;!0AE7anR@>-)3r2to&~h;Nlm${j0q5v&7|Y5}k^1uU zSb>@7_U~W3?+f>_Ka>8s`O_ig7>NJ|og85gp40N+s-(wGYuRv%^`wQu&dr4|_i!>2 ziR}68bvaMw#uL1CfK;%hn~B-8=;2!j%uJ>vAELl1pWgbk!9(pb0g$G3w)J{a=HA^I z)jFF<0NL)Jl-}c@Jl00vAn~cmj&`qjH%Re7l=$ps@t+w`S@fv^G3p$XEKBmWy!OmT z9hCy>s^4A1>k^+a%Oa<%GQ39`coy*)vYe*X&brNZ-21J*LngKyTVECDq*6dew)88* zKvv7<0L5p>!T{2{>E3vO1jxQaribV?@FhJETE93b6Nqg2>|dxEa-@so4_M%kqtgNy zJ>=*Fa&QP3a&#srRS!8jfh;v*$kCalB>qive)AZeO3(HkO6T6Golq2)&2GpMjJJjd z=*m9tu3f(3z&--W(<-?e8ZlNJbiRD{PsvUXy>h?)cp0_`Y_Gh^>LT!XDz99Z z;n7WvS1!xSXaBa8VO&R^&-trC*Xe=f@Q&Qf1Rc3t#;)ziWdhJ3ow4$Fv0UMLlSn1> z@FQ8Gb5+Z7K2*FTQYjGDL@r5L-H@~L#p{XR_QA7t2~G0?!p|k~2gVb(UHB4Q)K+AlTJ_H3%GzSiK=AV8HxBS@F~=i$hS+Gos6{VXTI}7` zQJx`un>0@zx7$F}K%pqF3&)!o`v|QvZf6*;q0PxMo-uX@l;EQd#90#NeDwLZ%D%d8 z&Ea*%Y%LHV)%i^yNb|VneftjpEtt>+{h*nd##bIcm*Y`wtHCBmXKv_{%-grB*zSI7t1_5|_C-2W#h%=ycODiyHp%se>G>8c zHz{yGJf%z)y)wo_u-5%#PmyC9-C-S3qLHv2FgiGpz=M zuJu&uO?f2^yt#$>U2>dK$%voyg{zKL7p9$epE$8FofdTI7Uo|T^cVIFdi-4{OclWn zi^?jiU%s#&ZHZN7^$P&9TD#Rpn{awJyN7!mib*hedQjnqVPTWk-~-3txR1@Ny>eoQxA3FYjb>-+eqXrzJq zI;3UjEeert!UmbtgT=#%@YY3@9%Bp-UKT$Q}bJ=(&_W-mhcnk+Xy_7QX& z^Hv2fKkP=ticPmy2LvB=^Sp1;U|ux;D>72bCk??KTy>RbxCbXQm>x;Y-qC#aA4t!M zGwd+9sl8`a8)*y$N|(iIENY*YE@OWv&@L;V{ZGK@0oH5PS|R%gR(M(^cNy@8&gTLn zC*N5!p9i&d^h@W@XP-)I;W~)!gCAmLi3JT8vax}iCj+kMAg2ekwSn6xA)oy-mZ@?}r;`$*-^Xa6I}S9&h~VZiiUESE=a*r+nP*xd~q zRta*$hAu(j)%%>e3$1=1S?(7d&z48L;sO$jY+0=6oa)=R8}P|TTZJI^z^4%olbK_E~`{8{}r09h>+ zs#+Ud0SV0N-5xtwm)Uf}AoH+=_ab-B+fE4J&rOc$#ejx)X8HQPnFz9t}h6adWV5`QIHA>IL#i^qbnYL zmGXc|^&K*uVlUXty$8fNQ1RK#va9FDvg~lm{=i|)8E)>%v5!#0!^e4cQf#Pq@NwaN ztV#hHPaQWaSA4d!G%EL)n=NGd$BS?HaQ!li85ZAwq!07!ASX4?e{&`(1!Sb_iBIzE zM&WJce0PRS0NL(eWnRVbag@G6;&bwS$U5!thG`~(?D`4G>blc%e3E;Yx%l}dS&qDf zl&6LQ)f1V!WgQ~!2Fa2{GAKe}A|%a^L;xm84F#TG?Y84=UebGGb=nY^AQ=?#;JVy? z&ucM!(TIPA43G1N(A3QY6qNOu8xJ2lDWRYTw)AL@FE4L)>?0(9l>M@YEO%0@bWq5H z+j2GbcJrJq{|Xt-kQ=ZVvx7xmTj!&xP6AmUCJU(V^LXo0DInvidJE&dp2xE20rG;z zo-qwDn|!ik!F``(d1Tv7inX6K_fq1sou#ptIx%{weD)tn-#TvoNTg_Fycs@!lo?FV z?n@+B;RIQ8IQMoNq1+HF4e=lZZoZ2 zdOkZXEssm$fw*YnX_een8}A0Hxw9RmJZt9jz_;hlDt|uvixMwyDd8(WbbEasv+^U- zLp$-kNLSlVe2LL^trx?s5EB=lP6Aou-uU2(jeXgcXX<`uyeLLqJKy>l0bWeEw=M({ zKKizQfi<7~x3Y`l=2x96+Q0XFLOTY4rN=`DCg3 z4w**RGTP|39v|e?{AsS1ugMFTHc((I{f(KR_(!VZ_uNGcsi1(z7li6MJ-~4+A4>Ce zDBN*$QbIvzm(zT?TjcASH=S-XO_j0RCAU`X;kSp{8NG33?x4sUIMG3Ae|=|FbNlOfd50Hsi6+mG^43{iV7i+b zYKp75HH|x~&c(8n7>v06W#aklZ?rmk#%3dQoM#(xCRJzQV?j3iUm(7%y;r$1;*WCT zRt=pN1fsoHoq%^qu7l_EUUeoYReP^Gfh^VI{?&P}Iv9!pD}WIgkn!-WbSs49#Oct>Z>2R}n zgrD~#kAm(^@L$@+sY5Dg8R4%w^ZFiQ(PkDw@wo}ycasUAme4m3g{jNO!>mD_MPz{yxR9~+2$W^|d@`<+AO-4r z^!tET#wzYF5Uc9bpCwyHL#^N_ri1J=hUKVjRK54SSl%S&^OD=5)@#)Qe^GHvPz;I zhN5qp328<}BD2}Q2%HnO;8#&?$pGxOwq1oL{}^UhNJJ~GS5XU~C+wR-`DTi7FPIKU3qQijoK>$D(; z$Mx?G>aaR(ok!~9SAbK@V=0`;L*z_U8{b@I7#n?gGQfWhaw?JQmci{&{XQ~E$Y);$ zE9$bw!C8C>mOmQAX^^GSSvLT*gwh0{_~w)%{hX~h!6 zHZt}Vv`6o?$qcR;8@(G(206+6jGPLlZhThnW|WZ6eivN1sFlxb_Q%0Y9*lTkip%IB zouQF3JWa)Oo`anGDH|ow9v>Kn9teK8jMscxC3hhkosIe68P9jt%;y1Ybv8PGKKr*o z%3U`-a5P`Ec0@?qw|X7kC`GShWdH-bV11OOd1zX1xmX!xQ+f#)-%pcjUqj+C0{RA6 zPRYcsdW;x>or}Hk)qvWH5vbhx>^-oh6#Eyrex7u;H%N3sL$qc}m+$Eo&V2=;C?_X~ z=c~?VS+GZ0{MA$S`^d>E)%7x{t8u@GPmjTyOt@&iRXIZSdss;G3bYo{SJ_q;^?M^o z$?NB!TmILjFhPuQI z9kqLv@PY^!J)z=BW-+d|xSuLIH9H6J{EGdxfiHiaM9E=f=ajsE1p0e`wkvu=AmSi5 zeFQwGRdSb;(S}$m$amJvr!dyGA)P;;y#;!rw{R92+kN0&hT_AZN&yJStuiyZ@Qt{Q zN(v=BrhaZvf)%$>Swu%8^a<`2070`P7i2nSTst=Xa74i>CpFw`M`2YK4t6THSED2 z63-a9JXkHCQsvHP|0)cKWDiGP)2-~`2yK_&Str|`HDG`}Soz2vs%nU&2d+JUQ);1` zeDc`8`am0UXQ8XRm_QKeX8$(CpuT4U^bkP$dAF zo`r0#Rtz38CFFlp{@S1si-*i1_3>9kn-D`n_!G|A?Ek^eD&o;>uEK|O2A8+dS;2GL zJm)#c>Cv3kSs5kdvyZ|2=onBg)EW8{l-Bj@T3n|3lz>b-4NtNY0p9g`zIWW}^ z&@v_De^mY|^Lr>*1Dnht%E@PcUye_l$60!Bo!!OGE_d}wp7(=B8bEX2_#gpUgp9oe zMq()Ci^d08iiei9USnjE%-%;06`Mn9%UkdIJJ*m*0BFw2UnLZakl}jBl#u^X`K!$D zp<-!B=8!!85{wXMWtVls-_3Fj8EF8`dEv8tfyWIIWVq4c_oFoP1}^d>+`Am!b3LvumJ!6P(v(((b51KoDL{3Z1feSuLR^I^| zy}_h2xhgb9Nnh^sR&Ea)Ym|gi^4UKkCyl({J4a7Km+O5i=w>3|@~HVm3fNK`Z{_?q z_Wrc049a=J{36ToP_tIh&0JDL|2JreuF>CkZwKLRi+uzfbaix<+*ORxww!!t&3qo* zR@>6~^Vyf6ZJnVPb=dVYbcU9T!Riq>2Au@3Kcat^60|g7_>wv;l<~O!U6$ctWBHOg zkJQ26LmeEFqvm77b-+FXhSMr}qYj*WXU%*b)Rqo({(Sa4=-@$aRzARd2F1Su;)iqw z7qT&fa&wC2*C1+Z24$3x&%OoY{QcBn`!EZi@kaHO{e@ZOGggURyr$1+a8<`ZS+v+n@c)3hV_Y1(z`Bgsd! z>N_AhV`g%dWQ=IO+~=*_9wOF=2BqY)Ux(I9+e!*=0905PeFW^Zt)xos0ynM8&PUry zbUqJc+qzW#eD)xWz{>5P=ZEZq#u{gekD^k8Iw^2bmZ85(>#!`1TLxO1&I4tB&8<_G z>0!-x6sX@vZeCG#KKoChM|hArmc>&(n-eiB_7zY)q%*i`GkRQ}404`>oC>NAlvq8k zQ9?fZ_t4VFv#QJff_8_E#-V&74$PDC2Rri~vqnS^4bG zKx?>vKJmJ&-2b3&fZ&u&?7}zv4?EWxBbNuT<$tK$`Rs=<#yzymkN73Pz7B^+L}UWM zd{+J{`#-Bs*5fPa~l#|aU(4No8?$sX<;Z~%R0G3De?-Gs0 z#%LKjEtH{rnyPwIrH7H#GVHSQ*}nvw9w-)>_ec^Sz1c^=a9SmI4aw+JoqT7_d>+(R zpQ`iIayGQ&`;R7GUx`~ieFL@qOoXLY40SH~#D!^n!CIi=;ZzX>{ckS_dPdgJAMT;pGX%|kka%flGg+??ki zrw6+=t{Eke&jb3P=a9XD32r&`4G^D_iCw&g<=DB-7`Z%HEz424^V#15`95$+hx~ng zWi@}-@B8w(CC%Tf>9@p9ikhCUyRNb_9J0JKywF{k6ILE7Z*W9Ff6= zY}kXFllwU;rw6oU4@L?3>;)K=RD7FG)A@wWaZrA~)JJK6fr@X-%q|b3eb$wt;@d_k z9!^&KbV|!-zX8l1rWC@3^6}#Kt5N_fCS4<=%ZW=@47n;Pl)!F|#1cGwtX**`izq3d z{T*lx)Z0+N%g3bZZRjgtpx#Dia2XiZ#gjo!>TQgi9^{sF871Vie;0IcKe6&*7T#Hj zqv|P{*u`t~Hk1g^GDn?PLAg9wt=>lEre`vs^*&O?s|_F53WD;IAQj+v3_eLjmV3i> zE-VLq zaI0zUsNCqBwSwAzhF?%?~rWx`+OIQZzhk;Y%!w{jpG-DE1*LXw2^A_H`3{RwNV1 z?0>-|`6Y&lUu!D>(Y00nM;Q2oz?WDS`?PSA1gftgeu{t7gC5iEP5KRpT8b@Wz;z%FJq(5hMh};ij z9|7xWmD~ku_+d`Ivt~XIT+0vB`SaN?OoRF=Dq=@h?bK_I2PEq1E-k%)&2- zRu|HB^VN5Ma#{2rLEriyUCQPk?zpeazlxld!9AoixE5#l%5KhckkeyxmalA-kk9^U zQy{b+wQpqQT_7ft0yt+D#U3l8(~osM3-5(>5?RFCW)WYR&|_n3azf}~t$jTe*L_WT zS@=IJgAi4JK%0quW+eIp`UvVdoyp{`cFZBg&Ue<#=h2Nlq^SIKhn5gVWgqv~^wE48 zL*D@HDVf*>YYf(QE?UeK!vN*-K(z*Il{=sPWz!vc634PhxmeMw3i zHErX`)tU{e>q^&{UB>;4XD{y3$@D7jM~Y0PFEF%T9-h(o=iJ_0!^mYz30Qc zC#_WAKV+KLW2F1AS(lwq7WcoJ=JaLL^couhpD=q<%Yt`cXb;nNFX~2WCULx{QYk=n z=hV-<2Y1!S%|=X{RZ=K{Tp_b+zZ$LZn93qb%4dHGduR%``34l;L(?~?|CCJZVmEqd zJJ%T_*Zv+_<<4h+-L#J{v;Kh%&U?E}u264kK_;7h+4S2VVM!-se3NpWdwU-~hCnJ= z&^fCy)10oMF|)5A&xhD#Ok{8+YIZ?R&U28{BUQT#(k0}xf5mLfkB~#N6mP7`k<^;5 za{7=;(tpM*=xgj5u;8(cPyK6i$O^8R6^xV{PJK#<@6LC(G-Z<2e9`PV&Q&p@+9@GF zSYjrU#r*3g+9&B|rs+I~7|TgU_a4^-l=xuZkVjUs5S3Je7#}~pn_9%EM}4^3)xtf< zhuA2fwx{sUM(?FDP0q>5#}Ab=z~poZ^n7^Lh2Hw5RaUHT-})kjn|AYDynr+%OykL% zp8L%=Bi_76%W}P-r!F2B$)03alGLUWxAE&>;CIHH*1N^__$n*r`~_Y%U0cizqOKfz zSncag^^B}yg+eaOKK@;b8UA#f9Zbdrd5z~U#1wL#9&%k52lNU6RsZdnoFi2u0-0ww z=@NP-KRL?O5w;0wJNQl%5M84{LN}|(0rLYUo5%L(n#SJSw;pZQG)q&xy1?cAj8?{* z`F6jCDL)CgPBrw^5C#mPN0if5XYsBf~s?q6>s%Iu;VB6mqoYJ&Dp9uz_ zYXT8Gryjc8(GxTchSdO~&bpl}Bd82;{IvSSx9o1j5vgct)LC~ekg7I7A|*l*%U$I) zL<5PIh^S29pd0C+m3^hQl}*a!mTo!8*CXM!Qah+?Y)(?M%{@0(oj&VZU*JA)Q`56c z^LBA|qLHr_5dGz*_83$gw9cP6jU%Xxnzs5Dd;OfQ98)nQ+bV(zKX2b#_S3c?H5!oN z2NI^59(WsdJFu5Jf>oFR@{7_vZ6{Indg}LEqNC~o&#MY%2hk~1ZLLs&5ZLnBNKQ%k z*!x6nuOR%adG)?&<&V`lT2(T$H~5|&fiLqyntB4WGU^3Jjta~K#!xIu2C=`;)cPBX zfmZ+BI0!YZ{pvxn%+@!@6MEB{cKI&1>vAQIR@+9}j7*uq^O3N8^@F%BCWH2aNN7+o zV7j`Y7h>q_Hl*-2qMoGYt6#RC{})EpFYjqT>bcchU#c5Z1qYSTY(qcPZRmM+$dp#4 z_O~Kg61Af`$5JLST9Pau6me;PTWTl@+Ebl%G~};oQ!i#4F0uxLXed-Wy>35`n(zo` zR8@^anoye-QKznuepu6l8u*NK?T9L0thP7xd%XVsrlDXhs5Yo{?SSg#Lt6VCPv$b7uX3>_vKmZ+u*BM(!Z0HvMK*HQ>2O zKW^?=n^Tnork_%CI!AfUSVK|^OdV)Z&mc3r#3mPpi%#5|OC>9d@?*CdK+Gm_}q zg?#ea{}<(fU8g(!SNt{FJsy}!XnJ5j7_*=G#!=>dafO)6AHJxwET~~3Ba@7>9+y*hA!-kly5UkmX|7HR|9_Lq3w-+c^;-8=M+WrczPG+s z=L7pvn`*d-L7z9}6T?m3u%}GYh&w)e(pfPkRUPQ(jV9+fqEK*?Uvhf~g?=8t47 zCtDxUMrm)S5>bm2dwR7S<|+auz=4DTxV{q@)+_D~;Ci1W?=r`R#IMuKzy3gU7wA_~ z$(+LjsedfNFUuwCe3RSD$Yd(@~C<#)vVg zD!^b~X>u|G3Ipe&&IMGEeQ;`=ikGu#wxI4d7Z;HDr%R0m>i|{b5rZbeRl zf7A^TnrdC{s!KrjkpTg)y({HGi+>w&03Z=gcSsGvSpx?!zdFwr2je>{PXmIDZN0hU z*c1f7_IkP67K?%$sAK@$@hC*eHV!~}WwR|;V`&FoPcNVj-ICqDJ|O!DKnQ&K?9ahE zWi@xN@9T5gzd+Bx+^QBdYkT@Co!QSnYxMKtb3iXI5>g-kjk-Qwq%gZwPu(vC^zU^A zLEl~%l{>1-UDL0>$aZMLJ@7Eys?=FmsJ4W7JgQ=_(2Kmr6o}lJ{~j{r2-5)!Q8i$C zlkG%Y)A3lb$&}6nEm!mAKz*$mw8Y$95qt6ZVF1?4lX-V5L$=T`3JBQAwAJ9Et9SLjd7x%Y>x}5~I(xz=#{JjgAdsxg_STD0!ApfEr;L#p*`>srOg0pQ11EblNr1px59BH{0!`qfE5TUmU+ zfVBg%7ueM+%ronz(0DtO^#Ynp^eb6x3Pka3(X1O#U9P^Uux~e6#d`~O{ebRO`f6@d z=mxGfMpI{(^!O8057>UfuK4Q)=v&b}7^@RdT-r?N;17+;hx4v(OT1N?bpxuGS70PXX%ZT+yQt{Q2r(fFBHRjq?%PTqPqMYh7iss$`B5I}PL8uyUbHX=P9 z$B%uoUO@9A{YnjUo^^E66Ip9@q83m@;0Y{Ir?)tWZMq|T5Tu$2Cmp#K zC$M~HBfO0~s5WO?%$rWv7*x)v2_8sUZPeI*P9msghk?7Q6jY940Js3U(t+=!#a*NW zA3PxPPGTccE00Z^sv6o2J<+jr4jcjE*FY;BWUZh!Z9!;)3P1qkJ3hImfZA57K0E?( zKKlT+qwYOW$By6Aj)Z*&>O?YgnaVs+$G`4hrQ#>=H`J-u9;o958EaIR-Fia~)cK2n zPQ19H5n^Bx^6(m<@5C5@_E`LpQoo9qqpsf<*gc;-Q;7|?aJqw!R7OeM?TNoLHU?< zgM40@=Bw>7e>s=gcsEOmwQRd?K=#~}&d!#*rfJw-Q*wRVMjISeRRWIZs~@{{Lb1J} zs?>|6o0?i;vD&-RM`{3aX%aX$MR_@&+LR7Xr7vy9scOuX!wI;*;Z& zURb;4UvO&0K|~;QOL`{}k1Dbu0fQ#goSVrK@s2)hOJK-cO-bl=Xzyb}`MyB+oTxR~mvq`8VZX*&f&{0~+iz9XK zCPa{vP)V#61{P>2tWOY18{(^E;T6$u#VsGh4>(k|b7rsv{lfr#q4=*GDIXe92r z2rG~{lsy-1DkYDuKOS$T?YjhApmNQi(zri1NvnT9IUk7`NX;!$v=ZEBqxqm0Rva|Y zvUNqFH~$qfcd@P*W+1h)bk!VCOv3ErUi77a13lGoQ{1Lc8%*qSa7M2|gp zV!wca1sVs^+&=Ab6n#Cdfqkl8uH{GTk0gZ+y{6ae1mNwoJSx1P57j<4<^06Iqd!TT zPuxB@S|Fkvo6U(oww{DWV#kKC0tszeCsXD%_vhK9HZ6e{$P}`jP@Hd5t|_9{ADws8 zwiJaJ2&wU3eD1l$B=*$|%s@(Y05pEqoSR9~auRm{94!!0lY$d^)u7LzKJlbLz^$Q@ zPkL=Osi|Sux=ThNyH%zy}YloBH zX5q{pY@+GPBV0aeTwr17K)UbC@M{m46WOsu2)N%)8yHq*kx0%?B=~(9P`!KQED?g7 z53615bhMsAzH%|R2NFL|)9HEP0;6{l2d|asB&LoLx-R&q}i7Bf)- zekuL5A!P+Wt@NE3a#rzDA=n;z$waGsHd4^SJBfqDO8$vDNH;3{cG_sL0-VShaKgWD zrVRTkwC=q%Z91!w73X~~d3;v^Zn`@)!l(5Gbl*uFmQt7#*{~bA-B#Odybesdp2Xhp zbdbjFY61_P%UekU(@HIgd>K0u{T}_0HUg~>r!sy|$oT^mxJ_p_3U{KNehMO3$A?CI zwg>Eq8~_6(pnoTE@L0(_QK#cZi{DKhC039Vx#*s-@VgYIOBxPNj@ga>erUu{?_Rq$ zK!RPb_5?aroFIgwt>@a zTl1!uSoW5y=izm?3hXU{Zrz&Wt1MTJv-NaC2etg$R6_-)I-&MbQ$SFy^E|tDlddaF zCA+%ACi`WlkpRNiXafmm? zs9xO^M~kxYDX_h^qMNFF=R~M3D;O5G@^G8X&N^TdFaX=-4gI*9@BI5+0$FRp)!h}g zSN0=`L!irNpTZ5$`wrI2x2yLYtgn)pqoHxI{)N47RttHEQW_4{iv-4KB}xXt2OO-g zDF(*7x?#8`Z_Oz8LrU&-s7%5RAFcMM9nYyTBYSEbgu!ln5{SE?h?Rw^RNCC%7B1O8 z1}<6kY*p>$%#0(WHPMwlb>|3$3TiW& zjo?GCOZcL}Y`=S0R}r-ncM9B$&9JoRw1;ZK0qZ&1??l#t+g}s3Hg~NVNFNcUf&~)9W;~k z-;3U@%snB}Ra$}(A$R%E8;MObqV`hM8tRD;Lk@fnXjV}8x9xTnpeEz)-R)X7o6Hn= z*!75h+V7pG&`l4mM`K6rtoF=;Qqbu^I~+DLVMM;&;C9`mOgL;{a$McpFhD2pQTlG$ z01vFPP5(n^51s%+ZSm-Ttm%V?J%`64n}4NlX0e{46s55m*PP zJ!qC4Sg@;bZo`KM^o-iIMYbGYFP78ByYs;(4Xib?#||uYWPt|7jPslMcwSudAMS0h zeNDwZMb^I5kwgm|%0)gOUuQ=PwoON?+E?pbJRRg*hpNXx59B_i6Jy~Kkia^%c7o!b zfu)W(R6sx9vBSMv@&-2f5eq<%7kSq7d`Y)vlLZYdRcE!Q{~CFr1G{T(lE$}Lx{>>& zUvkz9FD|#uZV@^M4>TBUhW&CQj5g>6BIU(L z-$|qs5nKzn5kVoX;G$hef~)@NDAn^t-`lsUD?CFM?%48WG08!EZx~AFU%P0W7eMO1 z7}5#^7*p3y{ebkNSVi;V8p{V22Mu}wplg&HwNRSR`Qv}=M(em)qM6Zb+r~oai=ymz zsq7BAHYy^82g%OJVrZoX4yZnMp){%{FoK|eF0;!lY4Uj~Hs3N4U2ZRaehEEKlu_KdDlDR&%R~XZUSN zriT`zprd9eI5WHVER3NB9{HqP-K2HJ;0aGl#q`kfC34_1o0L16!Y#`s8C%)2g4nC2 zBkpHS=IlNDjd<>!-iX$lnMP3pqnAkx_`oci7KevD6Y8N)W2k}0bXpu`i$&Hm7565c zuD#5t0uF4le0@0SnMw~@VW@$}gnp^JtDvjk^jPy=`UWF#1D8(@i@pc{pg?Y1%O}vl z;`nf0X7q+b?bWmC)DjdcjAWz11FP)tp7hKZYMVzHye1kYI^9}&X!nOSsRtehhie+G zdhWo2;uTRs8gbabBtKfy5ZU}lefxn~Yo!NIMj{732gf&8H8)PCYxzBBhQkIX(_%Bk zSoG3k4k*P1%h9AbewVOZD{7BUiwI zO|~hP_uw3ip#~mv{zPtZcylbSsp#1&3tEYe()`FG0PGHK&@OQQ`(No=P!IkLhYd`! z&+={G;fo%|O@>gv%mN z$W;~4qK|uxkjJX3)J2ZEFlUl|!kuJZ-e0E;~Cz2a?w*DUV*e4W!PkiknkVGPvy zH}|QE*6;;RDgOBV2XY!kds$=lALwkRnHu{KE>;uEO&3FzWrXfOP^e5}m4%oTdw;0*FZf6RxGk3TAZ$Z4YW3ksq)u#&-5}Y&y;dxzr^v7s@>N> z>yQ{~b}9!IH@*hirgTuPdq-HCB5PC{wWUNnog25Mq{?F|)!0&UnZK#qL93#8Qfttb z5|P@_t6M)PHg-!%K>48BpluNWg}Tb+UC&`Q%~o`;Qa;X3jwozh&KsZi&W%BT6i}<4 z^aah50!kct0E0qYMvaez-;Io{2gWrcif3~j-7}0d;2Ist1dWfU-%UEwfPv9RJvSfs zCTLF&AJlwQGxy`~$+VK=x7vu3e@}*#9RD-8qVvvl5`5r2K+U?}4LW%fP~wOHg2lWu zJ-piyA0pxp^Tk0<8yS}V_d?n=C@tw^BejBw@;7wEaReO{2qOKu0dJ zZE$2JpeAkDL1CqU5=RD5U_dWc2p6&^H$T}psd4)8-|c>i#Bcj4^7p&lPtiC*{&WuV z#(1~vaiSP>tTUtum`H)cCn97SdDJ$bO5KiwcA5p0I0C4^;@$OK-|I7kfcZW4%U#~< zbBKUC+sq5*HTG#RK`Tcg27_3E$Ge+tPcCFKKY<~Xn0Y+;`!VO)@C}pOx4tJb2Q7M8 zdCg#CrX$Rk`D0hl&5!bfb=D;&36Ew`Y%)y$kjsow*1?jp$*c$ul z@hb|z>w2}9Bj5$t#4P7MsnJUaIPZ?hYU#P#ay_Mg7j*H?FeCY_C&nH+z?XIr7TY45 z)8X3jb~m{ee#ADu%hSW(aZhX=GQjol+PVy%^F@R}1wL0?za52~%2&9b!ZY+U6SH7Dk!{u$$3LF&_`)+VthGNe;m5 z+G01~7DG|%YtE-g0JoL+S@IsjF5P$1l8nJ4WP&VL*_w?N0}d2@u|y`oa>lyT!+9}C z@6uNblpKH=Eg7-9>c}V0!mkC1@7nY@IO%DaH+cZVa=YFwC$uI;xAC0}GLi2qMgc^C z<8CYOfE?4?IdMllx+t?R57k2l_#O}EmIfVUkC)*{Fp#WxI5}=FYsqd0iQLO7@|fXc zb1y6Z+9htx3kcrJ%2S(xTc>_09Ucpb-pjhbe255#?U31DXiW(C=$IC1^0C@JGp4(- zn%;K9ZH4=*)je#`V;ih?x?ILsJm5c=+8_B4qe_l<2Q(w@jY-&geFzhU6Y#%(Z9b;X zI@mSaUz66t)u3^1e~BZ35paJnf2u#B2W{66F`o(~Ag4q7Y$JEE+0fjyH@gWs!y81w zLW^7^kL7%R4{)*30+(#FD9i2fxKG0hTSW|L5r`FdOxQyjv<+l^RNM>pWuui`xI6G& zu|OPlmXdB~FIGER)1ikKZr`fz;tX0_hMcBr@Ub2ot{A18Lqy~eCbKGX6N2`WnR$%i zst%EqAa@yx$Tj82y1;!1@)IK~sBtBVY%|`lMU*^vIulv39>#*!79vX@Y5btBk}kX} zCk2mJj_KK@;J9pL{hD3SOf9l>Vuvh%BeA20uQ%Iq_!h^=`Zc?Lbf@t9d4+F%ygPYW zTOyUd!nZ`;oxH3g9oHu1e79IqKSED?ggU^jnFU2&BTJ`!4VnSi;)ZrSP{3z=xGop; z0>h`fd>MXLJrad(Z9(f-k)^Y}8x9lTnol>YdHAg>k@ahKK|2H@OCJgBHlIN(vL`+a zJMy7qlS*KJ&wZW;?OlH(JvQT4{?ceFPMM-67i*Md8!lJH(*X;Ama~ zJTS`Hs>OWWJE30Mlfdrs+4b-D_Qq$2d+{cR5f33o8iej0f&wCurH>eL(9Q92o}CmM znwRu$ZoSO56ntQnAK$|xtiW#bxpzm{WA3j4pRD*s@8%X1x{7T-#W#S*G2i_$p-or4 z)9I!4DEPqYXi=Wz*^MH2sUuQ~x{nK5_J}NfB+&z>gH_i502Fi~QY;+;4ot4eJr9G7 zLcPoaO$NYiE5FE{0p<8455CheQnK0%i;#7n$kIn%D!_IjlkAp*=rZUH;(+J|vN;rev?mjF~=z)o3!rW5BqQjiBO zjk&&7WHGmZ7}wWcW#x6)`@svRO&>wm*Yd>1ZV#t&&~xndwR=m4jU7Sz;r13;vz6oL z{MGQPJe-H8NUq`kMik;aH(KU$Z&)m@HVV+8DUR~EG|S{CjLe$d{g{h|k$ zz~Cd=s>ky4W169E`Q8e(?F8+;-CN$sL}}rF`kugVptSG{)4$v0Z=jU;;}09GX$iYr z#2q%M@|eSkaoFGuUSfywL=+!-*g&KSLx}<&bQM%Ui6e#(Fn>5L*2Uy_o(Es55>QPK5?3$* z{d-ZbokbxJy6`ff#1V%Gs6VK-wD)4;L2h3N?h2$t&O6_4#cb`~(qL87yn zU9j;6$(yp=4!y9dggW9NO{)w>U+e`U<;A<>N#sWE;98(l4q9>xF1n^`KHM$W*-1X9 z3smUQ$57J^u2pv#L0gQ1%N+r1sT^+1zZz%E+uOHjS#`Rb=RwC4HaT92bXlKDcr)L2 zGTkj1?Q#CVs=7;nA2FoAZ;|P&7 z3rY7jK`vn!{tBp605{U=KvURRD4N-Ci_Nx}u(##D9n;qs8BJsT(CBk?k}d|TOCh5T zlbz0D>O}u)!jZD$nx{47gUPs9tmfx01od{h%>6Zi5r+*qF~!#ybACV%U6#A>Yq$)P z2;ih%q6=DKh$?#|k%NlzNx5E6$~^d)-l#ftEA4@gL=JpDnUuk&s#{VCy2LuFY&vXl z0xTwz-Gc7v4(>5y3|s3YXvI5{2*>Sm3BTbbs=nU26nMkg;W72@B|Qch95Zi8r-%Mb zK}YQrQ4{c%bb7Effg8CjaylLoe1zie;UaJYmnl8ny~ukf6SRvWN>HN;IIub7KMtUr z9@>q94vg57@QZt~R};8_3$wM=x(wb~9Ayu>i|)tP7;s=ir!KSQwwMR+7;8zV2aiS~ zmwe)9$+Sg;&Sc(F+l7ni1 z2}aN?IjGp0iA7P;d!yx&?lU~fx8v%i`cMZjsAAm`gEpE4l{xaE7OKf-|JN_yci%_1 zFI<@I3D(i>rY+q8n6K#?Qu8j6+F)Hx2Gf48jGvdKzFTaMuNVb48Lz)>fg!^H+b; zQGLB&vF|lajiZYOQ+1b`qRXqX(TpA1r|8CbQgZ)sN^hMlzBK!HSIkRa(Tx8u4~LDAJZRNRG$=rTjmV|PCVx7)- zFZ`Qrqw99~xX0me zfK#>(1``MzNIleVS&o*N)4tvPlhI`=EpVJbL7CEqHkao$$9|(LbV#H$r3xv~(3+^- zY~7tiQcbv*v?yb`o~^PQd0*q6JAH|kjJBr=D(FHr>)M%jbcK#RrEJy=CJ<0G+&PSHY5e1QCY!{JU1+`Th7Uf2da!2L$Td4RHx6qf8b z{vVhgbZQZ&uniL*$oQ?Kp1qQCiZc9dktke zbA{wtV{4(noXI$%|@XYafXKNhzL zy=b#udXaD4p8upDtqm^a2(67L~XO z>z!1Y)HnU0p>I;@tR}CjL-Pvjm-ZG4ebP%^;MMd;AIZQiJ<&lz+tVKQ zy^_+VW84$AQ*^x9tyX+)CafrZf9q}&ZDU5Yc!A#9p+}*dz6rY5LU$tQA_j`8y%cw` z;c;vLTg@|y&G?`!=?RuzntRhcBfPl-MxdeG6iU+Xkdnqtv0(xkwaQPajP5ykXV$dJ zAEgunBoI;l77;0ECu={pmB!yPAp!}rh3xuck*tMij6g$er=lf5=6Lne%$v4TgXf(JV<}?dFu*xInIN>8}Z_vlkv4@p7p)I? z#@#wq6BD3iR;(R|bmHx7#Tpdgebev}(xGkIt+KywH6RJB`Rq+t@Bd0bq<)^=q{YPB zw=V1t(^pB&82xh?qrc1x3k%ST(kMFbE-vdaP$aT~u%Z@F&*iYVd_!>%k#AbeY$&59 z7XPjcMi8%)n&+~EC_5o+_YU%)a#YM$00K#>g-r2nyrrulH>+~9ZwaA6EDr3Zh0KO> zEZ7^4 z+`ZB^p@Fm&foZiX zVzp8*-)tA--HJTRl%si*%N=6J1}cE9qS6Zr9~NVJ)Ob4PkD9aPs)XZXQ&c(xzYiV| z`B?TM>wLPSmpZP~jmhQpgbbRl=m=o|xB&V>Lf_CGr1^9_E$Mm)x*};ep=}xLf%(L` za4*~nYDKCOZ-NQLE>XGNd~r2Hc6XzOVHOAg)f?isByOO>*R*@B$vSK-fRxLx)7YZ$ zb&;Pnl5qK%zG{a?rto!Ppgo%jhHA9ATxaW-@Ay2p6hNC|{Y^l9cmVNh;IXBE`a;W|1%Lp? zkDGk46p-8c?M=7@gM9V{IF<9&+Bmv6%T-;k$l@`#Z&g9}+BZSw`GVYLp4N<{Kd;Zv zy{MBkh0>k6DVAP$WXwQl9IP@b0@Yn@il#f&`U`}3y4zv{OR0&dU(62t`x66;)n{tl zqXB_Mj0ge)6c*|hP3 z;BaAe(BKq9XD?^Vqvm^l!%=mR6$1gXx|D62uZ9kX<&NsXDkKbm>Sc!N&RZ4(0k|&F zIU#>|D3Gc)_zuz{41nrohU)1%-VPZE7uTKFBH=*}LYo?K!>){021HE*j zpn&Y&kRJ+mZq&b)5m<+|IXBu6ScHNp&;ZhRB+_|)xE*hfi^D`{T@N=FtwschuS&$F zKe!%Pjh3ss^)j#sCD(Ed2;Y?m*TvCsQlYxx+*qgvB*3g%)s0kQ?cS;g3Shi6$qWBY zo`F)(I&a^9GYo+0VlwBhy}x4nb`*n6<=Sr3R`wQq|I14!y+`epG{8d-I)Dh2{^(bn2jBT#!>90cHco&Q7^ zl&9+@+)ZPly@ZJcP+mIR^HflHqik<$3!4phArezyQw6#fA<^6g68$0?XH-soArOG;m109pB9Wuf-UAXS0NKU)r12TVefFVEtbPAM5CGGqdA>;$ zXl~!rG7Ny~D*Gj6x6yuXtdRi1i}Ug*jqP{PWqAacUM5UWeIpI3_B{m$;o?f<&vwIQ zd9(!ej(fBW14!!%{X$Cz&1i$pb*nXfipxRrQvnT0gQsU~fG_czDryK-Gi*V5;o_8J>fdE{ub6j`HYMO~fpv-6g zG2E8&tF^nl^?5#uJLT(wZQv$vSo<+CxhYH%(divk%|je_M-L zGh{Y*olo%omgiI*FB(LfHlh1PW7bEz(wi<2u7hda`Qk?g=C*9wwZ0!`P=&Co{lM7( zlBkxNUGLZBVcbbR-+7yRqWYaHMDqTaRxeU8N}$aXNp@(iwD^B>#4lf(%(KlV->_#d zx8&#N>rp3TRfm*qs=pzr9%t+6=6GE!uMMi*YrQkp#6ZWt2E>bjjk*|yHqojlUF+v0 zvN@+E4@253j?uZJV18^TNw8T22*vJ zirUA$DUOo>UQ7CkLhOsO=yyC&)XS0mHqMJB!E|G zIOxN$>o1aEPyvp|o54)7Kd*#wuviT?w)M!$9@mz7CNYdT_SZvdCZMSAu2;vm_5M!6BSi8)u)?InLv8&mu=ds-n{b~cF>M#g=3Jo)d2pwW&#WsO1r(P zRT1oObx;ujep~hP5Z0?`_P3y5^O0=ZEuYhDnl5SCv|BzmGdC=sKd&S^_ zMBUCxY;YJgq7t>mV9S_*?v@AhY;tWu=Q4t>pKog~`V?;PbTfvZMFJQeAPOAIsQ0Q_dh*>W(89EW)Rrup7ut}gd#%Vy2A;Mbwrdta%cd{!&N!Id6N0h-lXhIo1Xk=I|_{|@W4n$=&UiM zFXh?u```#&j1H@*y+sLV@2WI%d>M*wFXO+(1&IDy^$~}gq38zBgIlN<83E}VinJPr zhGKl!$8hS>0lL3eeQz3yhT?y{NB&LxKp>x?K>8hVMO}JWI__Trf)G&t&5E)!ehsDg z;Ju_Rnz};@sBbIkJ&(<{o_m=UAQhl_v--wnvGk_(w3y`nTbL5~AvV{e9&Os>1BB%Q z#Euq)*ISw0NkeROVko-#Biy7 zkoWr{h2hh!+kSiOnw83WnN@hHfbKSKlKy&OMYb1r(#K>E*B(3Efw|gU>>RqH-aDLL z0&_q?YLYMTeJ^%_kDv0~-dxeEUDe{C`)XIsD66xYOMIW;65k8-=*yUu-*JskRYr?^ zZ-@4GDwDO!=LIF@$k)TJwOHnhstp$Uf}`?LRk%xi+(f<|Z6f&z%|345`c~u$@Koe8 zjpGB$ICzS#mca`lvv@7oEO-vvCLAna5P2Je2&)H7A$Tko(%nm<#t5RXUNBzIyL~J6 z>IE~iX%15~hw3f9cWKe6qfHnUl3@hP)W~KDwgwuQNZG#@ZtDyTW)FuV6HlCc0@i%Ge9C9bj5ai$nkG6X~_sW1q=b0I&J9IHH|L*+9Aro+!ra zt|9{L3VKn>e_z@?r8UL^cwM7k==H~elolLLj8~fA0o;xci`;H{_8b&QAv zuv*b0PuX@%w*?P2iU;o{YQavE0hYz#=fbmOENot7)baLck!qvtvG+fu*aq;L9j_%9yP~l0JC|q8FKR7 zqeoH^0d})_?UOe5l-@WEU{=iY^-x_&k9{O#fxM{G{2X}xj0NzzMh|90E`UXM%z9Mo z(T5Z~fZKAJ-`Hk{bq_+OZ)rV7OcWJhIA>7>dYF8m;jPDBvLXWP*fWctgLxZc0lc=G zRYpfs4{wgQIokm?koJN%7eqJkkwpmD%6-~02;DDRdw*Y_q{a0Dk{6JcS4Z?8W48(S zINz(b>^Tv4O}6jA`<)d!knmT>{%|5w^#MPYGAVszP+loG23eh z@;uaFO9?jR;PX)JDc3A4$Tr;n`hv~5|2FKbHfXYaFFM=_vepuWJl8tFN`%ce_*`py zb7spc;A}_-QwH^ib+h`P6H8t|TIzU!HH+bO?544ZKOK9+A;Luz<{)eW0) z|E<_v>ySNk|4SY=+x~|mX8}Z#?SCC)c(Tr_i1eR_SRAqG_U}J?mP%w)OD!`DJ0kTT z)l$S@NRoZ@Aj>GWqWkZoeTyox9rwSsV)O04({ff?4c{l6u=FK<(+1UU}RYzER-2UULk&Zd^tv^Mq$8990 z#`uB6>Sozz&xc03k8*m5ls!IN9c2tYu_`l~XV5;xGiVn@*&WZHRTa_Mv!6whvd*1( z;DEIswK#KDf!kjboHYx+qb|7knlol=c@^zCpYA46C(VMZc5b2#-h>leg}R4U&;YH` zEf4)sQ*Ai-$?0%T$fezha~TKO#Gg3VSyGfm???A%{w<(e93 z@vJ+qgiPW}XvfYoSmxjW0aKW?=+uL10TXyPDS;Z*M_)ED&u-Ea1@V^+RQXKhTbB)7 z<|TL3zNm)OAAH$>$YJT<#R3M<=CXmndcXvN55@-;?iztOH7-Z=!^5aunSr%BgL$y4 z5?Fy6$_YQ{>4qe>nbRrAR#%h93Flhz@fNnBv>(r- zM+TOwG0hhT`II>sG4bj^dFc^1xkspAqdt1_1pCv6?fQ+2z8l3`se50B7_=~^D=+$O z*y%agdiaEKSoYc`g0CA4Y;7YB88ksxR?vw&y3#z`Mg=?rYt-#K`P9e&4vcc?yYxIo zNInK?+&-Kp?F>v^V z{c?}>&m1zaC@?D0>u?ji^crekh#h#zEl!@eNFN;S?E%4CoPw!V$4}ijRT%AlI`=z9 z+v@WjZOgv&b3$9wY1Xz(*U!*5xVAMNpuG`5dXClFY=f^uh;7pT(2-4Y7)$P(q}6V1 zlEc_--z2Rd)4Vd*o~G5dohF|*X!y_y6|H_|+Jn)u+`4r|SA}|!ut_FQ8r8TU2iu$d*F3Yr8!XY$oMBiu4XiwnNHFS5lM zG=QcY>7+~3Pw>cAV_zekX3@QDc==lpZknG*#?_@UqsdK zm^^@}91HsjNZADY8VjB9lpHd8i&ELl`WiCan3eQA*UMhQZ#J>M9BP8^HO0+#7>~Ly zQ)Kvo80{tNhml$oO}-jua^O3Ce;SFNfYjvvthexK0~$76b~m}$3MX7eE}Hu%l)c2+a8xdHP}>FY^0-wa8( z?-8b=1U!G^m^7TP$K`rT|1Qc!k(WUnoH9lV{bRnr-H=-vMPQ}=!0KK5t&g}+uT zi*1q3={WUxyPMF1K|`uO_~L_h@*X+lzzCMt)@9smu$3~j*83iE86RNyi$!)VA8$^k z?CG`fGC#`Lft4XOO!eIy@rQaR^K7%pH_R{CW+ceUsU1e;pX~w@Un06ND#>Xsp=cdlLs(&TLhb) zt=>ly1R-~)4HOly`G@aCY~>P-D*jH4KwdE~r`2~r^}$!nw;Z@D>XIR7UEcaS%=m39 zy>FLAGPj}$k~GcJ?tr=nB2DB#(|@`W2K_#Cq`_AE$uNDL%@o8T2R%wOQ24=?!a##w zMG(mUla(!aChd2iLEIe196V$}D8E+;#hJq20g+rEMkEeZ5Qy{$1`1l(?PDO1zzJde z*~$*Q6a7123%@puEqLjIJ;<9&2Mur7R?&9=PbuFU?2z7~oITzFa~Q~5lnlWFep^as zz(9y?0DZ4k*c3qkzYAZbjP8IH^d05&^7M)V0}G#DQ6Ntch3pkr*!yr^3=#FUTg5=V zf@BEv|72w>;^k0U#iU^S9k7GGSGYVZK@2jIv|aC(6S_!X%9cUyfE)&jBmqqjgq&S$ zx8urH*p@Axm2DU8aBgZFXm;Tt3qp}kWDU0DY4;F)Z#0t4gD>d<^|kCZ251awvt{2a zM3NIQJsG$QRBW&HJV!8j0psh?4GgK^zU>)^0q5WFwDlpG_dU>g=mG!LV11af@8EYj z+6@{b!AP>?d#U5E&Mnz)gBDlkihSlC8T;y7o}%lfXZIy;PQ^yG`7juc_Y&UAg;k*Lne`C@O>PzS z-2v@b8;WrF&eB-IiU!bJNt)N@V|qAs2%UzXR*0l1C;+`rCB6AmgQ+n1a(iY|v_H!_ zD8hdrnIc%SJCTdchW4EeWvteX01?VcH-js)I61_euJ_kl^lL5-5Z$Rp!H&#An@H5$=-IR|3aLkX@ z7}P7X@Ux(SCaZA+pRB(zQ)%g);F)b87tbJh&|`O^hy=g)5o&I}(eN6*sMq@_s3?VB z2otCq8$DRtHG72UwGAcbW}^pg1r7$iGE44$B6i?)&F=GiWtLoLHhRg82MB&Z%YXDd zQutx(MYb$fJ35Y7(4mQ2&x-6%hW2le+YA;QqW^rwsKxZ6TfDVoR!M<_;G_6vKFhnW zLnkH6g9x9tIAYzRP6#LjN0?evR1;kI9XWM5EXaXxbMmhR7AL~+X&VC!)T)}f0YlLB zpOiva?dW9vyrfrrvKvKIY$b&hf@7*JDpOKGiXaB%@o(w;R7@w?0*_+?!PD3ll_~O! z7*PH#sd?IIvlxGtugk%;9=vMaiMXN%^nW4g@0RR{I<2q_t@hvzs9o4Ac0m45Yx2dX zyL?RB@;CWp7kgH)1u)0>gEu3$s7x9EZfVm5aeSI>NFa3jJCE8h&;pS@8X6qeXi>{Z z^8udM=|E;VDfpSt@n(|sZt`lX5*$Zw#}-)u=TEckJkK`UaolBkEpQB_TgAuEGwwdU zyPv0Zv!2pt+?9HFKTqpI;OhtLGMi4Am57*^lyvb=4UdFxl-N~YZw{f?qg&p{Jm;v|2bhDZlQP%>s zz@hu&;6=?AwTuK8o8O=o+%rGM1^Lm{3R&FcRV^etkp2W0;J1bO@?afN@X5p$!W;o5 zU^~?OM|HTtx1zM-DJFBkaKUzk&!aB7X;Jk+_A0oz{C305U3%?r7{47}BzNtwoDat? zIE>xGMn;SY=x%jP@1+(SntKk`&-5B=Rdj&m;`nnk;tMV|zt7Kzf6V=F;8zsi7|c9_ z7s%SQzv3IfYsF7UOz1MS!RYnc`V<{tSuVxUX$zW}>*Tpz5HDJG!NhoSRq{kC{)W4lM zi#xppC*Z5JO*$U8I;7SDkap7t(Kb*6_B&jU9L&i3)ix|61K;_&+f4M(g+r0A9#mD!gMRXA zMdou!Ua@N=-~Y1H9npM6-dcoGW?y~oe=X`xlDAf-LkzgkIMVL}g>o zYL_NGLtR-r?u4#AYf2{R z{+E{S6lrUr>87-T0irK9<=`7rIt*aW>XW<{N3GfnJ#6>7F|g96BIj+@!>ml%+8$!8 z_N-IMRxOrzhF114q@A()dSwUwuVL9*?sct4u>!M}En2Mv4XxxMTC^eu)PJLrh+H2U zntAXoP#t=3$qk6#sE7}+1ZG=!uiMx)Eubss-Ey^Lh_w=%_Ym`LlOG7+&nUrE&!yzc zO}S<(C<82(*^;=?=K;1Rq9Bsru~H7Rf@aI2*A*o%LlA;(7qIp;bZw!K$!C?+ z23dQu&7s#dbdwlRmX{p-1K=38W9mYe4B#1&?jmuue`<$L`t?YoE?=&ca7-S>Z zmaB2^=PK?*BjChrJKg(Q74$Yx7h(L<0H%)FXDAw2z`8oD#2ohj|L zAe-zHE)_fEasCST(rV19qsw_@+_T9)et-S7R)$cwu~HuJ`= z_wdH9tE}7?ji(P zbW0~IBb!Ga@d~O~+gk9IuR-OGOw<;ir|(HV25O6sXgc?rehk#W=Ti|M80*d=eFtZU zAc7C0h1s6Nz)Mi~AonUk%>W2)EB?@@^v^MPniHi&AOSQt6-~3J>7QkAzboGw_e0lmRX?l@l%)x^98Byw0Y z1{aHzTI<(<0_%ZEL-1=rfrZyh8>aLS&a&Li=S7Tt2iB>5x#VmVY*5blAm3)a5_v0h z0u(5s5km|drqg0wOpfPy)LmYI)%B2L$L|UfRv2btld$FPCO`feM?0uoz zx4s)0e%4t{pYjt7LBA=>@90*l%E+?}9%@u3%enM|0yDYRA|xGE8+e()agL}eYJ5$3 z)NQw1XD9i5Tr8*gjhH?x3WRejdhk)VsA}Y?W*`L`UBajS_^M^H;JYB>hyo4CkhlG3 z;@kfA_N}L*Tm4qn%4cG4+3kJXxutJomgYA3)@j`U0nmk+-<*H z&EJVub4h#YSqEP|JRJNm5beC@8O`qfLrdKvNmrGNQb_GT3znY9VyoVT1L~(IU=AkZ zVzHW^zmU8pFoR%sv=Z`uBCa{`_E#3mlYG4$uk!U`$K19u>g|Kz>h(M#_y)Y-vT2#i z<^XD&&U3niXdN{b53XDj3l5J2mp!V00~>jm%OxE(Dup%xX9N!33>Z$ca;jZMKwQq8 zdex@weFx8+qS;!y<(+f&_FDMUZ5-}~CR^G3_O0*7j>W9KSDDRDdTMpjI$76_T9-tf zb$ENx+3bE!e=(tf*_3TMZC!3yjnH|AyKb@7)O6zNk*>*(;&gG|cq{~`KL|d{W7uk# zP}M6%f);2MC>L>K*1bZxSo$e1v*qG*NLkPV%8P?yIVpF`xS=~*ziQGIyx1IX%aRH5 zo0RMIq|6VahVHwPpJW33jwj{GK-4}8cF1GJM>{r8fYr4jx>;qD;T}jlF+N**pvz{Hx(=)q0 zdoe?_I>7_D&Dpq~4@NF{CsnlJk18U-ZpnWfPj+Urg zjgq{)q@}<8c_S@(0cmzbjqNDteL7()IXqY$?R;xWKvk}^1&6P%wk52H0d0A~ zoYfCV55?Fb#}gRZ8}_vy$)-UhVLNJwC1^JcO$|JYkRHD=(MfZdKp@ug$o} zsBC4^6)kARvh(8K`ge+L(*1W{iWtx~G~K^9X_FpA(~fT`eJ|;l4LeHp?|VsJQqS%7 zPVC70F19!0_fE)+=CYi%cj9ePwz=-r;(T^hQOw?nDvLD&df-Ue@r?#;_D%%X1j}#1 zdnba6uUU5cv|O?M64`uwlyArRJYVE-D;2>2^sFQJ{+8gfM?MyyI{B!JFJVl(4~FEd zF$O>66kLUzWBE7<^7-t6KYrhRAKkuiVa6N(mjX6U(Wb21x1QL)4A0V;P5W7E#XaAK zHDxM?TJAR*mOi}O#Gvk%!q&&V1wp&}ek_cdX7%>C@-V84S+ecq=df*p}}}Hs9rUiF^eXfcsKM zdsXrIXQPFwYX(FwtE-J@3B8@*6sRAy1?92CS1MdxEKmXaaa&+MlamtbU}_3jYl)e* zmCt_h516CSR|7_&qkNgK*@m#M>>r6_T5~jd9!H~#qPVaTsVa{~rSCTArAlSFkX1!s z!dJsar^W(dl=^8~ST&>7hq70tVQQSyv|-<1)eO}hv|ecsw;H?@E|BZT3if)P-RuGQ zLX)XS>&h~=ffPj+tQMNtK*Gc=E?h+TE z0I+fz#JBNs-wuRE-8y|_cc($&0@!0|C@kK!+%3k_Vv*Lqo34p$l!3Bu6B>a3xdeYq zZ*o%{KP~X4yFkN$OIQGUDnVDi&3Kwm)**4m#yTB?d82ddbnrFPpl#iEH4TLiXsC`- zvfZtw+4gShC=nbGP;H>tjG13^Gig`Zy$wiM09y4r^p)(i2jJa%9TOUWKTr*rbvpF$ z3%x~>T=1`VZ@!2QC@A@FCfRmN?g6{ZJ*nYzm%j-Oz<(s=FH)r5m$4hQp`{DPAru>;xNV+U*iUmJ;lzbdaMweJK*qJRPLYsyHh z7|2+ROlf_brURReCa9bjq~)0gOMdiKwQLXnS9(1{Pp{%Z{L?0o~s7w()q-8llp=0y)mslnMf2%8e86LozhL9|r?Y+6&^ zBS;?e1qr@^k;^n~sC`%x(E!p{62wmv$j}ooy`ln=X~frl+*Ck7a<7|V$21VzPt!~+ zfbz18F{VNIT15i^4gd_`yjp$g8Zk|wUw?@79YV;C4tMTiL^-;r zX&=}y5P>j1kRMX?J2u?*J-3AlAirOI+|bj%)4hAM8yl#zDBa$*Ku`eq)f7mTwf>~_ zXj8!eY#-Kz$J4a`_M6V?Z~^*PDO}q*T%SO)6%4?3nSSgZmsjB059JaEpu0l9(&*GR z0I%S+pWG@SfbVrPoSnuN+q)Vj7J)LK{T0|Ef1!4ZJdY@kXv;=6-rij0w{Ly9ZiBp? z(%c^Zls z5^A=?zm#p5XuVbvP^unY-9s<|*+-&w5Y_7k>oS{8=!@8S;a?LCC|qN6tv4Y1$i@LE zFYB+{vb*%$9x4vuwghySCfRb#MA#jf>m-LDll23t7pG}V%{{mn0*P0Sc<7nn!vxA} zhlf{=c#1oThgS}Gu22l%pe*O(M0#__xe&bp2*7uhJ{``>Y?}(8J6R0`XrKUuEHG9q zli_REOPCk{9nU8W04weD<&XO4tEEQ9Pg9 z$Q$2l5BRxhO%LXI?Owd8uW{P%!x(jY5BNE?8h(sX5h$hcfL~yN;LX%ojRD>d%kXG^ z|Ka3A|KrS>Xa`&)axODIz1q}Q3xewY;ukm4)!<7VeSX%!94UHuF!VkA%?GFn=` z3y=vEfb3%3Rr!HzwLkcS8h?JjE(ro)x>S2pYBZ=iM=Jmn-PQ`IF4o=u84ap~q^#)t zrF2cPy`-FLkuGkw{-ZntN{S$$_L4Qf_Sz!|i0Pzex8Zt9!5UjGi0R$_Jb+VpU0SaggAOsW!L#`V@2q?iA zZcX95GS6<(8H0dx!(0VEqPk;tN3sxL8iBNrKlo+SMf=*G0MjB{7ONc{lAz0>Zr`eI zY0-I7DV$U@@=n4><)C33lTyp@`-mP)?oo zu>Fh;zI{N+P1X|*kKq9ET_($;^E0Wi)lJ<32-15N3<;ongMK5&fTotKtZ4uXC|=9Y zUBHQupMeLE{w%+-%9hjmqo=`jXrS)OXmBAT0}kMPNEW2ba#PVWY@ z*COnqYZDJ3y}ZtAH=VY?*rm+~B!KP;&E=1?##nb$bE%uS1{5-?pa8yC)@9AjX)R>u zj-)9&1QL_&q*kH8q>H??%8W>3|fbf;t=MY+;>(V9|4nTHg#|GeZn(bnD z6%@et%1M#?Pel$aIfes}UHvRymnr?0E>{2*H&ZQ6@`6i~fU z162KE`9Vmgh3KD(sNEy}7ZiX_cK_`d6uKsm#dlg8{Z|5N7llKG-&YpdLhfG=tJ5R$ zAG2z;3|iD3qI0Z7@Xlv{0)lq+*E5Umvbq_%;d*9FXLhO2>QKzv;@0*3QJAVe>POw{ znV}{l_EHrNifz1}c~3zQY^jR_RX|-BH6fNC)5&43=aZXaE7fGqPQGqN`@pEBue$9| z^+>2n5Xz6UrT>V1pBR=mrR8nG^6JBZG-OoaV!G{UUpUZ{*tEeHF=+gJRbZ1Lx+QwU zfo?J@s4D9M6*PtegNp-9B%%%VN+6!O;K0KB@|J-?Y6wHwS0mVmMnLIrTu{YHoD zl5Rbmuj(f1!BsiN-E_ZEsF4`x0KU2(^Ke%)cDKjv27ZIfQsQQ?0I<59ntkcRw3}|H z4wkmW2GG@AQghn(LUxkcyqoTl3PmoV)c`M#?poj#G(YeK#p93Y98%%|Glj$@Gytxy zlN1vx5lcx7zUkiGP;)Wi0RiQyl*@d4T>2yW!QFw=C8qFHDr5j#b%*rPe;S}Y<`mr_ zg9U(9cgVint=*x*2GEtP>42br+IVMW&0y66-X(5~DU5>v?*OoJU0LWkwK=D7T{$j* ztXx~9hp5pYN*HU@&$}qb`j1(Ba zcvbqwsnqQ*CWf~iiN!*g#y?j=?1a$gkYAPF?%g0mi3Mc%hUwC#LfK_>H}L?{E96!s zaIKZHyNos!6u|eIa{E$=u}hm)U;yLC{K&&(th=R-SVeiduj~>{aIgXNPpZ$%>!Xu@ z(_)f*#?mG5Z2)p!6CLYl4>)J!^ z*q{{7E?$R5BT(kE$N2-kv%dz*bs?uaibZzRbUlPNJdx5|sIyLYyv&LUTczV=(Gs1z zK5ErxEl}|)Kr?}-J9ve@!eCjh>2ybJ3HE|qKKtu@C)Df!j#50i=O_hvK=c6HIGZ2k z2kY$it*HylRyD;Mqxc_W&T+Z{&HUH{ZOa*%2bmu}b<%}dE5b4zkg+csrkeI?XNY_7( zDQCpt0K&`D+#f29DOcmG+twatI3ofB=&nqQ?8w`nw}a<;oH6B$7#hI$Gxkflta)cO zrfe<3j&>*!0nW>Lky4BuwM<|D-4*)b`0mj%Lj(Bedh{c@>S>b_V@EAZM1b>Zv83am z2?g1)x8ZOAAq_q!3GsEbLjnWnUZclu7d!vTK)bf=&L3mS83{aq@vVIi^2Su4I~{lX zP)s=t=(-TE1OwW)s}FP~XHvs-SL52i<){F!lrHViYC6^uHkzfDE&~N<->;;*r7xRR zx$!UW$4Ev)c4y)-Zy`x%<*<+^Z{5;FLx=A2UCpt%RAV3p6F;8EiX7iJ&)?l0YU>xn%P zO7a7z<>L0OFE&Ret7K+G@_RZW`35g!e<)IvLLtbyb9y3y5!n+ZgTh|eA9JiJ27-*= ztx-lz-kPZ5i!}M$7Rz!`GzN5P3e`hx-RY*9j3c935YBTf1KnZSV6`~^ILx5iznFzuGbA${#4qPh_J9#B=yAgSjz$F%Wf z-sD%-l-gcnRh0rqKKmPR$h%sjc-B2-t(S3**4ebkms>jKT^%2Dj~)9`oBhW{JP}3~ zBZ_S5Mm%LwZ{nJWC!MuUq^bjDywTLRL=^h}Q}>+#l2t|9faIJrf@BazSU{p-mtA0C zb0X9B^z_X1Y^Uw+ncXD`NLX+YfdxgBsHg~vBD{hif`AB;6hsgtNmLL6S>dbm+;r+x z-P`HT`||CNyLWD%r|LO%Qk~3d8aZy)hNPH!r!TlS%$9mn=iQyXElMue8XX*6rF$9l zO1z_7+%4CT661PUrP?Tz=(eU>>V%V)EC)#*pP5}=jP-0*fuxs@<&bb2N!7zhd3^Ij zmtlFp(4nkF^?hrlMfG~VScR};@m9$$xEIQ9LHCS2@QKZqX;_-5#f&>K!CwzCHn<=J zVp&>@OKKr4C6*8GamzNSQ`JkOxTHSL!&KF~Ent4=TxQ*#*d9)ln)zbBL^a|3LY9NDBJYugWYYa5~fdD4%?>b`}hcWlx><{7}}C1!9B%n2!9xG&MC!=YBNY*55zD&~tLXFh-KNsa)FV{kllx^iA~jkpH=0RwRO&IZ z7_&4I6~ls2N~H8F24c#h5;l*yeAA8YEfwBTbWIFJMm}^2N6Q;e&n0x7@yPC@<%_51 z5}NJ;vwLq)wEOY{V`$uSR2s!;sTF6RC5u9Mh)G{zgsy-dl^7%)V$xDs3Y&G0B#S`k z8s_H>$IP^K+eD=28iFIE9~Rwwt$$REpI*@=hB4F^G@HI?DV0TynIiQC{0@aE(=4c# zb{!SFrV{6zOyj9SezJGHvgrph7{wgCg?NY9w% zQ{C1;>9qkqOBRK}AU*saGox3P&Pgpn7*`gZTo9c?oi5caG@X^|ta6&3T1*0(ED~W6 zFVINN=(G&!6>)HkqhB7S;ifd{6Guir^oj~~D%JY-mTt>*dR~!7l0_hND~dUNp-;E$ z(`%cFA)_Al2xzzJ=*)|x*CQ|#8ToM3!u&Fd^=Nvd77b7P4}bXhNRbrBZiE6SSQh>$QYV-7!~^IRjWQr7KO02 zuH|!uYOO+U)TqQFz1BJ+$|4dL=~}*&r85XeX^1ktA|3K%(FnUmwaV})Ek8-GTLg}b ze%LLl7Y07+%dZSYMn0^GXe@G63PE}`5iw-cExV7>qP_IGqw#C@>hnfvjZ%u_i6XOn zIEG5sAZKeI^_gXlB#S`kMAV0S&2IV8Sx}XpR~pb{kqC<}t?K)T7hPh=sE0+@EJz#` z?&;-zv1T%Ct|;eJj~x~E=`~m2$ZT)XA1>!U^7M%#qaV&NH){0L{~t5VHdPjxscG#G z2{$mxGcVfg3iY@fLZ+p*5hNrj&$elsq`TN`dU`uPLYhh2ZCe}51t}-RQ`*`QvP>bx zoxL2>v*m%9UHfgOQ?wyC1zQ?Y%$C!#X*sQ-F;mEyuA4gDuuP|s3u&fcP2rJF%ckW= zgfvsIrt3LOH!RbcdPAGEch8v9-oFV#XMU+h?q; z4(S@b`}xIyx5ClnjD?&3)6^W%I%JEg@M1Z44!PkOx+JBX(k7wMxZT&n z5i`bkROb7}W=R>X`ko*i!fNSAQ;wLnOW z@tvODZj>-1bl-!N+fSyYw(TUO*?oQ$`%I>$zErRKTFPCiN0v-`p;?SyrEHxM#PgvBPhJ7`O0ntQp-rfbDkA!rc1@}VcXPw?=IlQ3_X=r zY^O`Kd%uY&F^<#Bs`7M6cJDWdmG0Bi+pZTTdiVak+@D80)7qDpDo=MK-eLBxwscd! zdxy#9=H=D=(BrtkEVw;*yB6-&>dl%H1+~|sm zyiSc9og0Iwcp4cGvP%8`!YZLs#%BN4?lM!-$G&E6&o+}N+ndW2N>x6FbVSA&Gm~v( z=H?e>a)Xp#>tw*{Fnz1j&f2Ei;uVr%m6NoOM&f#!Qej3sJTZ7ZKd+12pR@+8UE;)q z@$U0@(}6R^pxfygEHl5*7|hUJ$qNd-#e61P8)$Yus-zMX;KSR@9mobPkz%o#;m4*@ z&QTsRH$XQ#-Af_uI(|tv2THh~ZzuvG1xE1zk0RBIbSLXb7rA2JPE6{nWsDB87&R7F zn;o7ZqZ}o(ysA67azrwNlTjSUsy>+gzhMQ%jMc=*R`{`-GV$3?6VTJlc#ZRTk;E;w zZ%gbJblOyvE~Q#X?R>jcI8u+aF(%VICZ#;hV5U?6J2F&6fYCeJqgN%5Ha{ATOj2)M zmK?vbNM^(MAJvS1cTG*w0WlrWcUv33_|%Jq9IXGpUVI|W%&Jp8tJa50Y313DYQj)I zBX^K-p)>P_^TYX!@ua(GGumav6*E=`qVyZLp+8%!chhL>*H(qq!}T&wlfvI3_pu9W zjqQ+Fq@1xkAY?~0 zG(AvI)>4ssl5~ip#Q8ZbiA#&z>y+TR#&FYf$s~vLxrbaB_u01HX~$=oZh35a2BkvR z^_}76`V+*^KlZJX^j9DfLDMx%5`GY+xTfN&ZYNyY2Vp>Zz zV|IvO)=hQLW{*kgX51!NzjwoGpNKbF>6du3VT{%x z(Tr^um0vhG)-~IZ1YoBh&IC1Wzh`%IH>4RWLVY0R@utz7%1BV^S{ z)0T78Glr8rhQp0YKhZP8L)AvJNi3O>B9CEQ2lZW!YiIm?3x**E^X6{h|7{C8>KQ|? zPtupqSIJH2D$8}!Ckgd3PGga(G}PBcMc3w>L!goI@LEygVSJM=xOCE7`C1vDi5|;B zf3y4Mlq~Kxp`BC^eWaNY+TSB&1|qvK&t4rAx;`=Zd8o%_xJm;hroPJ7YT1RRQTL`q zx+rr=s~DuEJ@2+Jjt8?Joe4x!H*^UiodKUxe=TXwJ&vp-ki;@Icpn?EnNr!5g%vq_G*xX|K1`V74jx6cw zXB_=RuT@Gk(^;QuW;_S``uAv`V=9U6(r89?s9tHdEJzkvaSL-tR<)@b8jR}UUdr2H zs)gL#V!qiCEG@82TKy~GUS-;^Fkytf?j?eml9wqK>fJb5oeW}f<&51-m~)WM=A=ns znwc+Vb1C$JJ0ZzAFp{3HGe`x9n#}ggPguq~@pXKyjE^_E;{W0;Yv_ViC!;G&H{<4c z_2I}>`@G!RrW4mWRL`h+gTdi%z8BQ#ysOKzlOC_mg^~7Z@hBjb7aHa0pgDB;c2YG8 z8jR{;D9cfp&==`G6C^D|jH?+HB8;xryQ8ixINRsRy}o#?I?|QjesI4oxS0PtwSEc#TFhEf!4X6w1v`ZIO8;8sA9TY$#K5LT)q0xG`g9gO4GySq#ohYbduRZ^^BV5#Ns!q9CCBp&uDI)(&l_H>WfG}Bj@$! ziL%-TQdvZb87ptfr81JQ&9Bjt7PjEG{aP(7uAR7aItj+sn;h2z zc4N?_ed4lK@*1!h7L2b~6?==y@}+8{n=VkBYwwWTEX|CUH^Jd7cIzU!JDK2cv@?EQ z&EtgVCV@MdB68I;hTgbv6a*dh$fxPTmYs|X$MRsDy&5PC+l@UtsevNJjFs2-iGIwa zXUa|%ki-*VtUX_%mhT%*W7MUS`EySWcM!q3-SjIvSu13#X3V_ig?{dQ%~jZ9 zchbCAni((8sjz+^z%BI z--b@c#ajU8jpTMgrjrKDQ_9%*MRBm{&G)GnMN-L_cuiBCK8J$^*s|M&W7kR3BndE< z)8XaU3&-X&l^R{~p6~0vbJ@v&vBH4y^gPdK%SRVh?8Nho6f;(y59j?jQpk2WMb*i8 z5Yx@L`IT6O7T@<`y-61)>!|LEG&5da(;he+*&D#nep;wW$D*4byCSYF;iAuQ0rt? zmMdrMJm;4J)UxxtVAYB9>nUYy{5GOiD0SwExU(&tYz1ui+8Ht5Of~XDa{t?Af>OrD zt7KE!(B4TW3aS|;&ygH1V=fp|>fKZioj8(Ax5f?YAq+KI0@FnrcErur&A55aB#t-f z%lBt#rq3HFsua6wpgI{R(n&D3-r5NSr2Q(jLcVSmhMF3!o7C=PvQg#0xO(j>!qF0t zOfRib$d@}<4-k4wowTd2ddASQrkOTLX{5SiYq}g5S8vn{(eXy9X=#0TTb4Q*^%D9S zM=QnC8AmACMY5!|B5mL)nFXs0GYdTilL?QWS`zFKQn-!@J4 z8L6J4{LpvUF^W61aExM&)~{DeOBQe6{2)a?sC|^;*v$UHS&E0!A!#!pthEyrJ!xdo zq?Kh}pdL*Nv+bnT4(>}3w}pLzUy_%VAfqQ_!N?sI9w%p(Qk5&ELeujk5|oHll}Xia zf}9?O6{CGv5Wonbso^FyN`fjuIcbPHK~6~7XT<0pW7DOLLuIqWsF)(@q;(;!k`8$> z>U0KXBTL7OP&e2VMjX6E>{H~Pv=E~W?xyEO#2EQ7oA?btimbcMCO#uZcQO_Vc3lWV zzdUImILWdW4aRSx0d-f}LT*U|g-P6e3XIoO572$F3fU#O;LX_S-H^7^@VU%bvx(a{3^M~!Nj`%ki(H1?g;V5&=}}a$?0j(8R4cuT7KAZ(L8d|r z5@MW%1L$~JS`Dt|-4>)q3u5HxV+-&ePdhUe7{zS=XhCEej0$`s>p{eF{vge^cW))x z$!Q@<#!Ar7>~vtcQa(0ct8`CFF4J#?l&_v~nvjy2WG}T9MwX58LwmBWNly!1lPql~ z7$Lu?Qm)g<>&^Qoc6htKIfQo~#ztb3Y8|t(11nB?EV)$oB=rrfkWQb)Qpyr&PEtLj zQivDK>ZGJzK}$4a>Zj0G9mp4l)vVqwYj;E>$yaTWx$jOJip<({9*5^>4`yq9_4$Q* zvqObi(kHq%Nhja7Br)vhggjX^Xza<0MlqkAyO4$zMkys`ie|RWv<>4C5oHnS4f*kg}mSU?`ALL3*LX5cz|2IzmD;OWW4`A;r;f!C*=k2zt_Bw zFL{4$;{A1;_t%vkuE)cD*ZZrC|AvPbFEdnMa>A1BhYrmyyVMCw7O&uS;LW$8(`ZxA zAxjM}UY5?F8?*zhW=?0y&l~o8{RX}t$vbmsDrr1(XgZ#6;(6z?=F0~}=**#Egn19& zx4`oye0c@WOA+SBc>fiC{VU!l;JE}}-oX2^2>E?HZ^D*HBR`00566`o(l^N0Ap2A;bB`v&A6hF>qh^H2DG1Hya^ z&%fZy&Uo&DFrUWvf8+T+B>V`!o`Wxg2y++Szm50T@#_J2-h=N4;{6~zhY;pqyidY& zHCST}JRifaIiSYiIhMXG8oC`J*F~5iPbNYhitnGmvx@J3#`hcW+!Eh^i|2FrvI@d% zi1#<}{3@QGM3~nRyIt{qIKF=Z&l7>#1=|0C_jmFAU-Z6c=wy6(8_ypCyQvoj&tKyC zBEEltP>Y6U;mh^-az8Zw8ee{c=XiWS1xh=R*iHfaeX6b0VHg;meos{vMw1;(05cBlvY=yk7!2zry=* z_+G%5OYz(S->=8_gYY~8U;c<+*Tk2t@#PS_e-Gc+#rya1{w@4^F`h3V7Qe)=ui$+x zgxMHhUd4M4LavSXH}L#Ae*Fx-zlZn#;CUu~JqynncrK4HA3*YTc>g?}cjMRPVBs6_ zWeq%wkn=G-%Xq$p=i2ynKfM1D(msp#`FQ>UzkV6dr6Bn{ysv>@H^=*4_LSBUTQ}Mnzo(+Wg z4YVx8`@;xx7=GOy?L2c_e-<;Md>c{VKe#0{*Mxxh}%5hvy@xBe-AHZ{Eg#QNKXX4kL@O~Y>&%u`+pm%3H&&QX4L-N1zz7?K7 z0BRpR-^Z6re6J5ro+Z-`B#IzvFoZp2y((26&&2XA#eSd_NcO z&p^VX`0^wq-;M8!@cuZy{}%7h;Q1haT>%?GT7{NB;`t=7XW{!fc+SD|d_3>Oa{@yC0dkhZb8mb<9pAUY z`;+*76`tGS%SO=nG`?(s_bu`KF}|D!>_72bA74HV)OPq%!TbN<`@Q(GBc2&NFUE5b ze*HE0e+plA#q(8QFTwj|czy*TA3(^j;(b{#`80n0J-)AmFT3LT4@meFLQchdFWwsn z|2UrOAmq33eGt#(@mvqTK8yE@fPE2PX5jfbe7_6t+d{(S2(vD}kHPyOo=Xts08b{K zN8-zG@cbvfOv7^%JimeOx8eO4crFDwAIJOMh~u{q=0Et-i}z&_=4>xK_?(O{_ug3J_x@vzPy7lkK_C2@cn&!>BFzH@V*MZpN;p2@x6rSsrddId|wCeE8=?%&z11p z98A7|FeCVK4np3IXCB}Gh4l8dE;dv{bJLA`Tz_1VR3xL`Rzg~_ni}Ah;bUlJE zd*Qh{LVg$TKg0Xgcz+A;8KCO;@0&;rS4u77eY6kbi)L3n|SF2l4(8o)_ae9$|`jFXLIkb8kHN#q(>xUXAxV5Pk=I>BDmzz8{O{LOj=@=c1wA z@$1`Qcmz;C#jg|bd>dbm#`9W){5ifqkM}e1{s}yHL70{BePukqgDW0Ae}d;Jc%Fgh&++^?()a5Kc`f8W ziub?b*Ts1L6>0Hzy#EarxWWsA@CCe2!23_|{5zgc;`@zwKLyX5@Z14%zJ&Lk@csav zc|7mL_Z7gZgfC0uc|X2C1}5u6^4Ia@3H&+@U%r7a*Wk+nJimhPKc@FZL-*kQOZfgL zgghAUE8zWScz+hpdHC`dyg!Ba&A{gu__96Z`~^%l!k0VgxoGGSe18?+Uj%9=pteMq zH}Slh!Yms4GeXY8^DTt@FMhoX*wgUkllby1!h93&BY2;QUq8fiEWWIO=XUsVB|<(( zauyAphcA2M%Z_+o6?{%d_!aSeBfMXW_XF@e3|}VV{YboT2-L%P-w$$b$FHBo`z*Yl zjpyrl&Zg(0p?@GQuOZA;gk3cBDahFdVGhCfry=uQggge{H^TSr@m|HRbv!=?3CH4n zHicO<^dV4(BmD0Xeii&W7w`Xr_cfvMZM<)b@BhX7{&?R5*iG=|cX;0u&*Smy2EhIr zzy6fIEE+lr@6SQ+^LUl6hhHzn^ELdsDSrJs-hYkvf8u?B!YmpZ57Y^GzJ>4C zCgDza3x3K=N<#{RDjfBAy=u|C8|kJN&vlzT6Acqd-l> zuNA!i2k#r=`DcXxD&9Yi=WIMzN65SI{utz3i1(B6{R(`!5${jneQmsNi!iI<%S-q& zjQ8K;`zv_g4%|MDU%!p-yWu$(&#m$O`*<(m`7@w4#Pf7Kdl2S*ynle_%Lw@sJg>m7 z`{Vrx{Q5~e51}uMhW?4~^AP4ud|3z2f8+a^czzAxpMYg%;>*(batA`L5B^_-gs1WR zE`I$pp1(u*4e)(cd}-jh6`>Xl{RQu@(65VzdJ%FPNP89GFN6F;@qR9zk0Z=?@H`mU zJ@I}Ey)VLe=%S%zfZ7IM=HNLFU-pESH4*+Od^h8ui-z{a_wV6(A-;bG?_a?CuJk-} zXg9pifSi@_YaU8)YOkvI(dI2HLi07iA zTk(Dje$C)%Mmx_OdLGyp@O%wnUc&n(cs~yBS0cO_>n;-3hCIeuSpoVm*}jufm)$&i60om#y276g1$YCh}|MJIK))g zZ4$PoiBFjZhUsWMEIwo84%Em&lV>#zxYJZ3_&upeSxI`Lh0}%-Yce%uY8|~ZgD^j_d8)!k^oT+g`v}vDkkp-Qj1zkOgh7H*C7>dCc zq(M;}qp~F+ISC2K3^Ou^HzyMU4$Bdl%cNvUhC{BD5R@fiJxu2|(*Zqso-vNnNI8W< z10Q}Q5!_d5Tge#Ltc>MqGMXAB1j4ecghcMu0P996Ct>?!h*4QG+K}hK7~nh!gyCq4 zitrilt}?%dyz8~4mm0c!SgE>ELI~nlBNFv(4Yjgin62YFG+V`YwZLHI)gv6TX_n%D zs*DDV7Uf?BbVdxQw?>D{=Lq1Ra~9-g#Q$oI95RkaE)M*%$vESr#*g!4N`z04aF`_m zH7bnkwHjHg#n6CH9705omo<}9IAWn+lu)#{xokOOjLHaJrxCOq0T*<~bRu`J)ZnzY zD(rpPAbkZK3jD$Gx_&ls}+??U*+?ON?k7yELk%F+u zV_I0tA`J1x!^t9B$vV%mh{S9wF(?g0CtstxFT7J=SXMyVKB2Kg*(;Re%KB6Bn0ltS zQlY~OMHzoa!+@cev1#kRM1K1yvc@DCvrSA|MHxIEJ5^%QMiL^vI(lBC>a>V`MPrL* znQ(d~_%{t=HOm_Cok4a4)cMDBY8 zMQ&$lewnvpu)9bscvk89#R}axVu~QI_ukZaLLb9qD*fi(!(pctct=B{9;36s%@I?g z%)hT8kiEQ2t>C_JG+AYij2S$MsKm!150^-^3+BY=pbm^L_#edbwehlUTY5z4AHc3Q zPAP(@ftS_Luxq16<4l=>TDCeEc#ta{Pxe_Qr|9!~(X@BDUZqoPg7DieqVOAN;n7-o zN3QuDk^ju6upiUHZfWWhy7(=d$rZD8@&kKv;Q&;fnpv}F*cbBo2S~_3KSnqzeZ$1W z8|g|q5Y89j?0}o82p%$mmjel3Zqh#eM7h>JIGcLOXjmycG{o1Ew8XcG7Jo|@Z7nqc znVG7dnesGj*yk%s+E3G(B5xPB37Zec`H(1esV!+Cc#GQHIE_dxNjoc(wP;3LC>6+k z+9G@Ed8?;n^s_WMUW)JBO0jA2MX5#ZSZ*~EA`YiW>0QLZ+ma|Pb(++&ZBjj9sY1vfhBE z{~ArA-k8>!L6Wrj^+#^FM2&PssnF3SOR9GJ_F>8KI>Py=9(xN&22$twD0KXze zKVak=Hw)CRr+HuvRMMqs*tyZq@2eF1e0!;5Yl2i#VnQd{4$m3h%BBGBm_pO5(&y zjHEN^0#ZHMzCKJ5hL)yr63P~3>ZN;YG{W%~D7r#Zw4GqzPkR|FH9B>+FVo1E$(!#n zw?qV#M}9#Tm`_%;oMc%Bbs0Segra9bG81~NNgCFfme&BZD7Pm=mY|bhGfcq=GVNt4 zZ&^dOHwihcL-y8MjfXkEl11TkDZO(m(J~4z z4>1*IN)@t>YBd6+Vwh%qiha@e0<5%HDv?*Mw4r1qpJS0YN6O!+g|d{ZIu?271}adm z@G51Gb_Dh8KaH0rNc@{A?5s4&VF?-gkX9203Z7UfJeTg!&^4HPUb%Ted)Y}aOxzO0nqc{+P%{Zh*q zR0L45LYgW>g$WfaOBJnDn0hiR6(*FdCY5wprj6c8#;PzOe@!XB!zxM5sOw1a9p)n~ zm#%N5uSng$YQ9Dt5^r#DpN^{O9+62mlGHo2yq-fhO-;U@JvW!~JFJD`^5&LOgY0m$ zR0}B?a~mmqN@pqSIU>|wFg{ym?qHVIFVbn-;gS@TgYBg{>Fu`^7c7X#(%dQ)IGSk- z*Q!FzC#4!W(AKsZ?#)3_k5nYPL{gDy3Fzw>#~r%l4swTXAdy!8qLs|#i0hf=i|4Kp zr2otiX0DMOg>TB&Q6StTX!^M{jXX@MeO0c@1YN%{x`fMgR0|n7*>pYB11>H^!;R#k zI?!w^`zi-49K_Hk#bJe^&RpLc9C5 zcGSs++IwXLXQrr>DneXK8~8HNdB4<|W<&#>;kX2pJ~Zk|d94Mdzn4nqq-$NbR|>U% zkZPx=tJZS6pz(33F@-vaQc^MMlTw$QBx}14AYH00pO)HMY2m_R=S9G+$Vr=P!sn!- zBf3wtu=REbu>$#mRNcxbL!;&-&y_b*v-)WgW;Ls=j536RdS=bwO(`VqZRoM4v=x_L z3Kh*Kr0*vq--=(XiFcb!$p4&?FPh9&dJT#Sr{#cxaYljLa&#C4QR1Lsf;3Sp-jc#! zDP_=bkkrtM>#b|BN*074B89gyx}XWKWwaESA{DgK|JN1hNibciXr*%=tHQ18V5nJA zNvHXUss>iYLH?mqek+|4B@$t^M!(se5~w*ss%fRlZlZ>_L{N0JRMb+vNy|pr%tZbw zsyE-HMTqUzn}ML7S+jV(35oBRWsU9En?k6lHzECfBfb66*@hzCtv4b610!G5n=REl ziV9Nelw2rTS`Iw6RC1*TbBpJK%rLH}4H{RdSXQcNsq&X9v@s)|4t*YG2eSSnUghuOo$b%AfSPJ}*?P zFIBWu{VV*T!ma+HWFx7h({zRs*G`*C`7KrdG7?esuVmNFrJ9zi|70~vjlHE*v`Y&f zdt;dHPj+4BbG}baz;-0iY64oSCTw9nv+x&h3Ltq$LzOiJEm=NRxM&ifWoKy+xf)LP z%$Pw~9ON<==-I{S5lusvF>=TIp=mc6Be}k-tr$6#IJA7)XmKm?E-feO5op?5#;29> ztb`N_tK4X29Gdo%np&!{;q7=<>FDw3ZF=nP7zRE?$eGXw6`_EDoX$lA?BKiB*1{Bk7P%B@N^qNmDwO zWG(tb?50aepKK|1d;uY3&62WOvlQ)G<~BdHV@YoOj_6bpogT$G9W5obmZhqd`HrYB zNKvgBoz^$G*)u0)^|X|LwOW0!(C^x-Uy9qgHF27>f|S-`MC-%7j?s!zR%`Z`qAF5U zYc^}thVy-e5rC z9oMNOvj>^g@h57MTB#%Y@*{LW7L#?dCTsf^@+#XAjtHKriIR&nq^bHAma`?gF|ZEl!~NNyca|opm2y;QwG{JrmzyJ(Hq$l6a45FO#dL|tt>Pc}gFX_1){rO}8CbKpSmTIn};Al7az zA@({cR!;LaV{1Ehka~R@Qf(&>Qg2K}s@1?l>P=GWo^7WWcm5#v7Ad!V%i4}0q~4Z_ zRM!S~q#@OI5W)2>DYgA9%bZ1sy+?{|Kf$=;2)Xx3xpKj7v!WoJNQizwir%~JJm$Km zko>Te+<`HeM+mu(NV)B&ofP|+6x+Uyh0_VfPe{@2GiDAb#6Bg(%BHGJM+?&SH_sok z{|Fj}O@B#k%=t9OY_&0xosH~ae@uabv1YJ>iM-HETeG%CPV+E9><>$-m<0gii{z~M zfg;~Bk?ap!J{D%ysOMMAmj@by;fg-!`KHt(rvR8}_J^vcUZt(TT+O9YjU3ovl5N-j z?Q19vvy>gIG?YHEfcIGJ##tL9A+FElE|z}#CfnB#awUqigXjU7apgQ|Q?_#22EvDo za4~How<|T5A00{xmorQ-s42-f$l9&B4!he0xm6?A?Fz~oxdq9r8wS~RO}50Xc3Upx;8!RgBFFgmK_+NwxX1+GWw@U`kfS~Ksp_0R}eZDNgZ;@ed{p@ zbkN>uu~Qv3`?Az0r(9dmm#-GhNpe&(I>$Rh%U7h9PKui>4d)ucY19(K1(oB$q?RNwIV0gc#vhncg*PpAJrLpDdO! z@@0#HXnfyj5-rLhU26-Dz32<=4|UfVb-cD%(dfdh_Wm}NN$=9(>4$5_8?J7G!W(0N zG51n>>@JTiS=$8PKRj~K)&a<#60(|sMEBO)jE>S6;b2gYkw6{z9isKBjPM4WmX3Q( z;t+f5ih7$|Mk9waYdvxj_T_IAyJw`94LQ3Q;PVoQvnT0Zk&J%>c~DxAoV^;q^^7W? zpTvE_%m?l+^*CpGDjI>@QzDVma0k6@y1Yis%4s&>^A8cH#WLGCIZZ&$kr0r!q86+46p(bd-!NQaUP$8Y&}E z9xMOic$-zZ87q!i-5ePBhK#k#N~if*ay(TJtnoNDbdu4(RIph}S_f-s|%s zXv$NyI2^j@fE^-XAu;=i1C+joMr>uHC0D9u3Zdk4-lm%Ob6Q~3i(cSzbj%6DkJG|~ zOFvC36)Tm{;X?2UT5zOvp+A!^My)JDAEbpw;iOxVGWi9$d^J3X6M#cv0rLmxfLqCD ziUxpfXlH79AZ+w;=g4N-og*t5LuTzU0)*W{3yX+m>oW9KT4<}FIhebzpsaJBtm2$3 zt)U)}C>Yc%*ix=i+EycGwJZ|W|6AfVL*`GXWr+dKmOvOdU#dnYjKRP=Xv`25gq1hO z?4$v#s7Tn9%PA`VBMs(6B?fr21g>E6N`4{FRiDy$p*h9qjdH=!7!6@HrwVRmlVfg| zjGX2)4tb|U!qg^w?{Gie77(=eNSi%0f{xWB^q7Z<<2PgmKwH^A937zs9eZgyP*Itn zGWqw_!dniUK)r7K%FjwVjsvIT#!4J2#Uh>kg^S?)mIG1wtVYdhIb6^wR}!;FWs*28 zhYI_ngdsxa&~eje$z&VUvt;)`-LX2|ME8uw5qY4PT}Zi5>5GH(CT zxFHjHj*g1l=v894;-Ijdb8|sFb`^<55%Ce`Pjn4~2}T`O&qr&#L2wzZPEhH5uPiUyE zB+B=R2CTDapC2KAab86!=D5|vvoW2izf7KXT^|FdQ^uI)MPnnaQdO04ukHjKd`v|%aDqoAbbs+k>M%1d8b?CW&C8nE7 zt2p&?0(f%?woOXw=!c_qPGI^Ejj1##M{f5X5nVx=MK`H}U0Gtio+G~wF_%MdF+NsK-#%c4_$C1$L|pxx2# z&j76ipRMHvjiI9!9?%^m)N=)_D?~u9q>)2?Pc4(5O6c*<9IYIU%cuN=%VeFrh zI%W}&rzHetvFl=Co^F=x_woZ3!*XiI``_RPwUZB|A>T$Dgru%eD zQhb4?FF}{!(Ot+v*9&5QX~eoCWbFyAXG`9ljZE;bG{I(xLi2bBj6=a08V2HPmcadP zO@&$c(}D``9%*)2E?dwA1;5c09Mqix#D(p~vz&f;P(AcOn|HTh;0Rtxfx zMQu}s1FHT2GBo^7)38fx8qog$6PAY_)kJpKTVsgQ|2j>aP}RuHa!uD_ z$=oAm{Wuf*BTZ~u=E%{`D>_#hi8^<_`Hw01iKbw;cFfUVq&q$H;e`Q6#TzuKZDm4V zDrzIji{)^J9P)pr$!{wY2J+QB@^ekRSs&PP9(ToO`sbS>u_iD<_QtXyf$6Rs&Wu}EyWvB-%?tQLnkKV;x8+!P zwT8*Qs6@&cr5gFYrlqZ%j7B`nWom-_K~s|CvISBQRcazVXEs#g-7Lk@<#A0#TWRja zW4MfS#hL6UHQAHfNeL!9*vU-obcwDMr<`2jmGIM=z8RhC8>rE6Ivw6u8*U87Dt%5< z+I}R%lH+gJj@9>qrmy`-hWc8HzcM{ooZ{zbpOy) zw&l>^?smE@uAdr>dBcTTG?)8u5J5 zds5%Ww`7l@Io>+C0*?v!_t^Z(U@0>MyF`Bv(S1p*~!#V*V%Nof4Aa4hzik zlB%XHvv}=f*cw9YtE$*tTQCc)`Whx@v|2z;XC`^g2z5KdNuyJNMLe0ICt?UQ!Eb1S zTgk=^nq=#%%rEPF|D}mda&H2@q1brJZ)vi3PO$Ib!fK^4n6FcA^T!qg6a2A*Zn8SJ%P(Tye)=YuK$-A{R=mXVswY?*n-xRH0vZaOU>fs>+Y>o zq80_3zNBe7vin&2Y2+1I>OS>XeDemW2JNS7+NX4{-Cu5*$u5Z2;zQw?n!>}F#Z<z?% z%{dz2E2G}Ynk^P}r&UFiFVXZ*O+mlEhqF+og2HNo%QcN%r74^RQ&`MBpf;K(drq9h)<+7CF`U^!GCkbj0XgW#L)TYA}tI4S?q3}zoD>Nn8 zL=S!hxUd+Wt|>GpA+=GWcnpm~eBp_9rlu%q>QKqrQkrVt0d zm_Zw5eN^-ONGEf!{2AY+27{RzgEotvqmdX;uh!~HL(v>fQJYn>rl{A<8}U+jxTY#; z*0?3BHfY!~Th3U^D-o}wG-YkJ16sV;C=WDcG)-ORPS2B~BM2y7rgCP*p;uGbWt~>b zBVta+8S%?&>dcKRZL|WeC5`h|56^Fhnn6uX()x=QatEFGNOcL%g>yAMbGnO8V}2#k ze?tVzn&LKxb6h(v@D@XG~s7Vt7O$GP# z(^}Rjl_38h%_C^jndkI-XeV)KBIr0o)6rc_Je5Idg_bFrmK_uF8+J*PYo5#3>(-dr zmp>%4&!A<=mf4f0pB*uD`Ww!m<%8LCBnKmO8uh8GE%(uqT`z5TXy$L?^|)TBzn} zpfK+=%FmmPW2^JHC(U3uVtU4TaX*L#?Te8Y52pojq|u?~5$QR!&=}N|ZKf(~ z$7+`3{mr`51)*OFt8F2ymgHf%F_FT>G%~boWwh{=Pg?unsxe+$Si)$ar@s*1J^=CC z8u4!NO6yV_M-E-j7+oUYCoNS^PzNRU$^fW% zUR9Cg041p)?<_7ZFRF@?+SUX`-f||k&H=G`MOBitOdj+1<}P^>NlphX3XN7RpZyui zqsJ7f?fc-0V3~Z%CVi57VkI{J(bUI%oggi?g& ze+I(Y2`CvbN<=12s+`rx1cmwle?8+Y>hc<+h0YU{4GF6y4W75BNVj20+HiJ)m(r$6 zZ;(aix~kNgR3;O(PNdpJw`N^fGpPgFx{}C}7c8^X(o30tezk@~9FdVr8mnqUZ=5+7 zN{vaK@Xfx2UbovfWIU2w$d(kv+3Z_VS5g;N)iq0PiZ2t^YP*FB1^2|! zzf#gqTDPpy?;S1_`{3Cz2ka^%+U>!#-718Aq;La>Y|Ou}X==OVhnnDFOD)%ETG~#M zPz(9P)VWd|;vZ>xl6qKbq9mB>Cz^t`n;5Sj5*LXZG#yFflxiemZS*rue9{P%5g*M8 zg+A|&D^d^SX6kBNJ&qztS`$jUqaR4lLxQBolqNCOT=sb&P1i`8S&2W(CN$3Jv$t(#CqhY{R0d zXM3Y9%>G+VL9?2mi2`S66nY*U4LwRq{7%!;tW$5t$3Ey0%pcVxZb;p_9&=Mdp3ac% z$P-%RPh8V2UxM>`yXTqe}L4E@84Kp^uhNZSi!V1>`LjGlh@E-lg zW2GE8;XsGOTY|%O$!ML$yOPCb3340~{}Cj%O$6&4K9n5H@S~c5JqOWFg*sgtGRRV7 z8Bm0U{9O5l8P2|~a1&Me|0IjpwL9&Rqgdnk#AQ5i~1J*fwN^*#| zgc0*;R+o$sB;qXrw9aA=$s*noGu+fo(BSDz1auVUkp9O_oeP5g#X#WM5N)iffvnV)`U{lR48Dpj&08 zOY@L za#{X?6q#V=Bk0l%p0|G}B9~xh!1bv8Sn^nhB{wch3U#lt3ALJE8e**`uOGeeJ!AW_ zRT_@Wj~yA9MtjmuK#`Ni&&XJsW zcO$TqZ=dl&&4n19C%Et$#|7&gE@+R#7|!AAZE+YgUgvOedmMJ-94={#!)`GgE|(lO z*0P)FIPJ;_d|MFU!;*eNcu3s>-<8@EWXz&lq3SeM5-wXtez;oD;6s~?Mkqq(bFJhP zYYit$TqkJ6#w0F3TragJ$OxmtO2>_YMyxf)j1NWV*0@RXiM584Id2g(Vq+4QGjEgH z6J&%@Vb-`q(1^9hZq2N5m*m3-DEy2zJ{NX`kU#Gc9QfE*1k+RDKB-r=!+5%`biQp(`qkEBLa;fL<%lN) z1GV)C!8(VhBnLGw9B{xaru`YAUCj#w)Ac?t_40X6KQm2q6~8DHbBEEw>6%}Wn)zgD zAfb=W$Sp*-$s*bRCbX+Q$V4BjGx)n?pvHaD%vqC}(f=v5t8q6tUGtk#GxwJLxI=>3 zYT*; z#YmD`bV9JsVOcrTo5aDX$W~~JLtI0A zG&)FKzBP!hg#**nJDJ{uDb?dq(uz6MD`G_%RWAK^z z`NF_pv`Z9nUXyZ?@_v1=GCxCytXIQ1XGnRYO)16^lgafjBgHMsyoKPgqRBm_1iU55 zBxRmPEt|_Lae7yZNh(GpCb}dKM){8vkW@iJ0L_B1Z1SOI67K19lZ-IzZ<?bt*v&1clfXF<70!e90g-B9Nk|$gxsP zY>IedM2ehXM7SxEV2v3wnKe#o#~L$c>el#@j7EYrNQ!Qa)1{aMYZx)Y8fR+O;C`Bw zKc@zTotb2@FbQ`|Gy%F@&XEz~T@Y22Zk+R^tXLa|@gfW5!+X6@056bY_@JakY3709 zxCXFa7lz?30Eg-(xmfCtEqGBgZkPt0=*kL(p z3cf=~s~P1vG{VrKE-L(cMlov;c$QEl2wQ^552O{aN@}=KC~CKeF4~3YpG#d?i$1&n z7trI~jcHxe3g{Bk3wGCKVa7OKK!(mE&z9*V#c(YUM14&YmB=N!s1*Xfp$RZ|P4vWY zA$OFnII7k1IXdCREN5w$oo7M8hs=`qX^*b>k$>qw{Tag8Pdy|fq_ z16jJcqDEFR*8@;5Hrl5Fc|X$RVFgmMJUY5LPUKHCktp7AB60C!IQR@+H)ukzE+Iw; zu_>Bvj(13(jOfoafk~ONK=c|H(j;J+T?{9>`p~;gsGc97y3Q|&lqu-sAfA}N z*F>)sRmlE{ctPFt@0F-6dYm_<=tp=&{Lpj{bi+Ln@o(#y{uuS+tX9l2tAgyASTc7a zVdmRZ{n4Rxkd+l3OUoiHi4)B;y6pO%sP%$7? z?ANY}5vnj68P7ya_>dI-`EGwB{pmJObmGS~&YE_l)QFS`zb{edG-?A6pnG|o_%0OjHOI&Kj!#T{BT+s5 zBr#L3=EH+2LGXA<5bNJLL2qY$*yL?;5S7K1Xe7!iihDQWEmkHu7BO7c1da3-#oN z$=9R`)8`&!e8^f)lci*_fL-50I>4@w3uKWW>u=6sQa9A3DkUM1TCL?r48v^B9DbT9 zR?JjVc*q%uZlZ}qZ&;7C5m~4VQzPb`0m}G&ToY!s&2B22ey}Fz6Pg@sL()lEa?BOG zCg&IW$(ppk$@uP!=Ppph zXs)L1&=j@V#$*Xp)-)?Ewq>Z$mL?Zk-AM4Ncdct?Ba0Qd}(N zYmzaQ<(DV3Af^zlq*-?-%JXvwWaW9g)cC>uAuMwpUauzMa80c>9ua_0P|D_ZQgWK; zP7vBq8T=F^1{fWs$-}ZcFB(A;&Yk#8x1-2x%_C#gB^+cr1JnUXF}dqEY@yuH16E7^cT}IcV^NCgG{>7|HtsDS;Irtw-Zw`3t&C${O`ttx%0d zogi#iO_om>-}KKXS-@E%^mio(czO;$kx|ZH1^8dg_i>e*T{|Yq(%F4NvWrPu zVi(-mHghmr%}e8LtrCn$TUDISaXZNo>$?2flf`;Gja1|mZab>n?1nE+jLvCi$tl)u z;~NXB`DxUpshHv*?Y4``E!J*|IGy8elB3=3u?S06pH^AL7AgqPdF(BDSTmKpMCn<7 zKb4E!3h>ATf9ZTaC;8aUSpY_foJhm83#4(zsf1#4KqN(HG(j?ot#c-p;gTg*6$h#G z>{iK%q$*P9dPo~wr&Jm=13}Z^G$5Jp)6;fJdt75g>RhKwuCXaSCtDm=Dvntyz1WnF zr09$em5lTv<&6o^VYhxO%A4aOj2PFYv|4eRE2i;KyY=0{oN1Gx!6~a1$2uRc7L5Qs zG&4-6u$s%ejf_w)1oUd7Tb4;JF*I5eNeMi12+3Q2+~`=B5{9$4 zfV1wOHgy61fr>ntch3+h;Uxh>g$9Myz-YvHFyh4O3gJ1ZIrHtZev< z(AZ>DmB3h^*9ff{8H+>44H2XJrF66t5hDfkkOX;@@;Pg81C;h}Mu|aAFA}Afq;!{( z1idOjNQn_@=4dq7Y!hH3b(E8@;*jr2B)Tbncr!;iH$UGD z_0g%|HJYjPE~sU!Cu*!Qa^mH<7G<53p_uG1EryYBE9E`gHDd;82S{lc2gk5E4Z)eM ztr>Fj%-+@@N{yYUfDbQJ3OLq;dQnOea7`b@;|!@8&3_b+rXtRgBH(YtvtFRF#?ZUR zT1Acqc2aQw_N7QABPdsmV#xSm>q_in374SMyF; zSftUj$^wV{@CYKdoRsdA1qHOC01a=ycombi{Y%tYCi}9+3Kh6l89SJvBZ<};Lc?NY z%cu-!sI?^unX6VQhU@Q-{K4j2jg94~ zGQ{cqMCVc&QO8l0m@6a(Nmi#FG5KRd*BOkKXpF2Rb1>sf`TK{I?U2yvJtP%Ax4kMR>ZZEz&s%_tD1~mpP#K}7ep%_V5VdJ_ z4rX`LJ*-RlPF~VbBNBzQqr;&qqItejqh+O?3;Mu#hu2FDPTHxk8zl@Gx4%-#mWnhy z672`vbvbge*3`JIX0o9kejP15>V2xbP2x!v>uV6i#T;EiC+5~o725}Cb}ttN21 zO~av!VGV{-S*;DzmZp5E8V#y}*&`YP7WWYG`ROqY35QuAMQS~v zVUa(~a>00=PiZ)8K@YAw%ocmlveBB;+@LjL|NIEmbY;(b@orb}P6q2O`oTcsjMFh)o7`nbLjCKpt9!RP%LRapY;|Y2@5pAN;jC@)n zr2Cysuq(Mnud7Qd_=BvKd!GUwH==ZPgO2D(bn-C*pQr`4oNwy1S&+l#k^F6?i|9Dt z3TTHIkQX#VYf<at4~T%A1n*!H_0ME0XHX3(6nQLhx&ePy!b2NICpClS zsTxhkh7sf|3yIvV?f4+yT#e?Y>k{_Lk)bv$wYH`sZp_EEPN#i z$MBpXoS`+Lbe~L-y8K1*NVrA68cUi%^^$kK28MO}f+KIS0y4^>NW}{^m}RIq@SR^K zL!BpM>KG~!eu0F;yYJ&?;)3Tz8c)l+cQBJ1L~n{LeU5jpp{7d|ia?PaHVRVT)JR!H zfJ3f4jX3Qm**U}$k^7ED75UAhnk3+*Q;G8!X+~%Cx~YggqzHK1 zyEg-7qDPL2q5k!V6KL-W9W!*qg$Zk``%A}|%~ z4-&K>=&>`%Oh?E#?r0pi{ljtLRyaY_(NYw8%CzH>4g{DR`tg_}d{grzt)8+A+S<5f zH_P1Q^psWDtrCXeAk3Wv1q7_#(O6l-K@73dFi|>8%65i>B<4toLB8tChkh^EysxoA zzVZ^;3Sasvad|{004mKWEnUQ85`ns=uaFH7OaYY-G%Dyo`BW^x;Bmy|IvGc2{KwV- z$n_F}{9^)|d!SiLEv?OpTKUHX-DMK1S88zbj|$667}AT5att^P-9)1pOHNiidn>)H z@Mj%E;U^t0Two`?T*Op~Kzf-&B?Br*uN5@&Sm|X0-uw!g=9e-jIO!!IzmgE77X_rX zgV9yQAhfbZ$Vx94H0dlNb)wYZq?ZaiS;A1>3uSW0n3-17SXt$rA@(+Qx>3q@%Dcqe zBr(W8g{Wr;8?C9avGR`cH# zN_X5H1$3YUApyLV5ONX6`Wi3Ghf#3Pok!%}k%{2=FmcHDB@%YZVI7&0xxD`z=V39P2 zZbpIpvP2?x_)!ua9njodqiOY6;=l(VOI)vzHgS3^iSX}8II0oadgvthmKsZ|8exc& z78A8^N@FvV#Y;okNnoF=&A5BjK0?*zBsYu^J#N{8!H; zE)5w^rvY*i^CiMduaQ3EGq4tDca4pmUL5lqlasfW^4;`OP}@lqV(l$Zb(c5psqsP@ zczIf&erM|TugEmOFn^S_b=O%vl<@@t=dJ%04r{gk*>6DzPegfY;G`_Hi*U$Km z)oLOSI$pjCTT{Z2(!nu{eoEJetL7|)X!I5F+E*irnj(Pr<>}s2vq_0X@Ut2Y*7VAL zEc)^*DW>+xlq<)wqQ z;8tOAL9bm(5&V|q=oA(ecA12sqN2d$wJGE#YvinoN&{Z^9U}Om)Z|oDvCvl}6pfJ& z$OS`^%!<=AqE-(f4*Us2_GzgRt&9%}mlRN&!IaL_l%h=|Bpu;M)u>|AIT{MRCqG~7 z*cVLw|0~H9Yfr3S57(g=CMsX4ZfszvaO7ThjV4ybq)#o-M}$SqSE>|YXwGDV$AIy-3Y{A_K2w~oCU zIpi8lMbL=9IiAm2#(*g0H56(?<6)p$iSuU$H7L5k-p;_L4$)jq03u0AMe{bbOh3(R zvK&;_AXdep0W;sARG2Nz=~NuC(8DAYc{Ttz9_c)dB5E4197@=OrfoS#YC$qYMKA_< zo&+LGnzc4aKejm)iQdpCq9rq+a0jqiR6r+6)BQ1Fw-WIA8XPe+@Sy1xuwykC3L9Xq z|9gTK+{+!Lr9?hrTIA;)Vp^9P&z)* zEMLmZr>mc6VSilOpQnkzkb+^*C{?Lf!cBXDhVTX~%&8tMeqYzZ+5;9gVv2F^mzRDz z+8$ANU#y9?+8!HFx|}5cD5hLl1(NRf3Frgz6A8hHf}eZ(3L^!lC|#nlLXPz-3oqYs z2qY2n;R};gnWYV}bnhxAn0=;1z z8rbfO*7kziw>56|Fb>DuzJ!RaC8LkBXQixyT34dHD%11UO)Kd+@}BR{8|Uw8G_hj9 zPv<5=ZvPtb-a|6Lq`bwu6)}5BF{oB)eX;S@*`ar^@zol6qzFOicr{)}U8{w*QpCYL z{dJ1j{*scDA{y!di9*rA3B=|ssw(YQ%d<(IJ%p+aT2SS$pE^b2QDq>k4ZS_5GMb@~lN?}xIe z!Guwk(s4hQI8?j6*7b6r^+k=ARqfh<-fM}`cq!R&`32-a34x)gB`V|wi_y9VFgitJ zWEo1JF8LAB`hwKq7)r|mzdOq^bq@pVeFhWdv@LCo%3K@2}GE#Neq@z_sDEGhw-BQtw6ybY1mL61%Yzv&x9_IqDcDjY1yijpc`#E!QR z>*b|pq+2n+z}&16*aqr;psBOc&A~kPLy|v7rht=f8tQO~LK^rZ9R3b&^g;rLy%&)| z&eIs8UW`UKV!;<^V5s%SMq-g)*O0rJiA4oz&NB9Q6PYtfhx0VbW-dIiT~I{kVofUg zHFQh>JFD{cuTb1y(@K>!h~R>jxrdVHGMW6&Ac6|JQo=yYTws-}{SDId->l{_{&> zHC{@0%%y-1lps(la9U2| zWHlfTX3N`%)J`(WP6MK$J|$7eR|qR?wW7w$%2xt)-mi#RztrL6D;-ymI3%J89Tg8G z;wl<3D-k(l<2#7e3@P17LAzPiSVC!&qn{U=1~6q!k6A_~-L5`|WV z?hvGFFQdKQFx6TbEvxx+LDyVQye^a)oK{AKT_j-`fiTB4n>D|*g@%SZz0)EC+fDi* zwb6e%NpaY${Q*e=R{c2n4tDAjhYt~3Qji?IYT;cY2nckf+ML!{#^}$jO#Vb z3ho0_k=`Lq>?}8oL*6Bk=tN}e*sSf(;D%#D%pU*I*y4OzpKY>?KbYF%D475_CqD8k znlOQsjFjTJhgrI~)w*gG$@rm08&#G$KFL2@j19H`wv09$WX+()fj@5=-+d%OXN_ed z{4)|B5mruB1L5UbA*_HG{Fn$YkoiI*90xy6!cm5E!Q^ztob1ep7FX2xq7*wNee@NqRr3IY?NQ6Hq;fP`gqFqy*?YbIUnBObSD)J4}*e;g3oPmgV>^Tz4dD;gp z!Kxdy%F{-U{ET@1LF$U*DX@=AEPSXuyBrtaUC%mlF}U?N&%H52<}IJ zWti>OdJ*s7BmL~K?PrZu#siQQ13P}|-c`oc9 zPm}SUZ-~KjX9h{?1Mo!&gf?mvE4hNVf`+Ek!=4yOW;Bvky%Pt1__sv$Sy|IL^-d!E zFB0zAvq5(x(U~vN!406=t5LP>DPR+xB$7XtW^wJQ1Ai)kj9#=89Q5)n(u-j085=$( zjSxf60X`vtj9zpM0O$?2NH2nY>v^KL-f+|0=v&VLZYY6BtMK}1Z%{ETu^>5DBk5$R zI03i6OmvTwT2Y&lYnPjwq1Jov6J#Z_gIat)p&Bq{ZA0VZ^<%^Tp3wa0bM3RJ|&Ud zCp4vGL(YDYD1AnzmY^g+pO+xt#V`kmvP^qY6H49*paJCQKM9eNG#lcv+R!civ)%M!_zf}mizBuO1~#= z`%3xFaFT}ltVAI}%~`0$um=NDXKJLZY|kOnULj7sGP^hls(|tm6jB=Id2DeDlp@H& zKNF<~WrP(<4(N9hgcqcZz>j}Nbas`Jof&vr2Ozskh&Mez7d+Am z-DuGhQtdpAku_FD2X}DP#0QAho3b`^#;SDOI}(Sq8G4l&ix}%I$0)$pd>)2N)UEj7ItB^z{MIJj2U^EDGL6=BSdAY zlnQf3ZHxn$Apyup*h-tTR^`ArmuPIPj3iLcK1ZZhk%igGNIGtHi9^gwm63dw`m@YX zmuu9lVQv?6_3N+qsR~(@9U5%3E6KcTa9wcrb$~ZedVJvhRna42d8vwkWl4km!hUr+M zUahgkCZ526UNlt+Xa0$3e^=_pl?}E@o5{FZ%0R{n_z%+nd{m{w%-3qf;Rti$9J-Au zElbNJbp|kWy#OyO!OYZTU}I;`Ud+_jX^a(9s}deIxpz0IJI2)UGCnP3c&4VyfwRR* zc_1SS{`DGh+tey_>8FVC&t<~8rj7^yLV~f-tX664&Fk|EYEyhWpF`BXMw;!DKrz?h5_F%yu3B?Lw{0pl{?Z5l6Y4_FL#?}v%vW-{{59Mt?b7TI~Xrwf|TuKKZ!X=Vvs&GI9bY=6R&x5eV0ZGUXz#a zB<%3N5VOr?8aX3YF~BV)5DhU^z)Iii9*v#l=LpoBCPBB8CUE>59k-*z!8_%R1Jd$7 zjhN*ybI3-I5v!7v?s%sPs478l5{AnK8oM!vQPydLdBfUY4tfu0^iZXGsTvPo%Z!km zFSR<0Hk$~zPzr!0M`YLIVU4O~Ne+4PH$?9y=>j>HR6w^#kWb0(62N+oG^J!iPI!nY zts^5WC<)N|5`?1Ki=B@4JzH3c|A@AR3tGHHm9XW^aOiYd;+&!y1Dqv+pf^yf413!J z0>=gP9&18R!V1q4y|<+i9C|Up_aqQbIvx8?cl^-yJz>BnG=|n#lZw3jQ6hP`)a8sd z#bb|>SY+?wt}$CKp3-PqT>}mHsHtJ*OHEGKAQpP8gnA^$#E^WZ8A%0rtMT>jlA2tS zanO4t)N>5zegJ=J%U+|5$<^z$89Ve|$^E9CzR?wG2!6d5-0Ho$pnva3lYBX|K!jgp z=k#7xSigj!DWt%Bk^;Okhbmi2@QkF44WA;*k}F)Vb7mDUUQT5e3!N#U z=yHu%mtTO~Ga5Nm6xqIPiKZK)3u$_mCQc7)XBb-*g+SGoBGj)9ipRvMD0JMt66dX0 zG~D=MFkttH#?D@`C~xDm1G+rJ=2rkxgVgx-wa)D64E|Wn?Q- zDpCrDREM(Rh#=zojK&x#U(A+zwKzVnA*_^FaKC?x9ELp%j^|7#<>QchNud0S8B$`aKM!H0U{xyx}D;iB?X|Ep;2VUtl;`%k|)H`b{ z65-#Fa8$?UF6^)nv4Zh8jV-DckFAP)-Bhke$Qsgdy5q4&ODvjpuR1o{*+dEcyG9hY z309r?m+)kBjlu}_I)=5yq<6`*bG*c~ui-(L+ku-tySaok1m9zpdNjzeLx22na2d~X zW`$blU?Ic;WBO(LvW@JLGaE}zUa}a|RMl`ZGy)yx214Pb4HZF}Ak>L!C|bYHLY?e} z@^)P0=i5WSkawyZ664J>-gIR#O@$Px@ux+wfv$7jrs(fSwzHy-bawHyXx83f`k}df zZDXpgEF98!3LRRK@0;l?Zb9(8soj>#6=_MDZ^Rw#rGS0{(`j$e)YC-L(7Tjgi;xyt zLYt(*vgIJAcbNis3E9eGjEchess1Wr@>l8IEOri1&#n0}8ece_h_4t}#OIDOZ)1lg zcr^n5KjN-CPO_r-A0P+Yzv+4N-roJehtJNd`c_w0S66peSHJTk z12GRlfg_$oC{_HI-GXiz{W?)zWuoMrdZJqJ$=e{?j>$zG6aV!&2!%XGaO0y=kK6URJ45>}8BUyTmt3SN-c$9GB3z^7x0vVzpOgwffPDNXtLB$4Y1)0Nx zLhzkU9N2h7oxU7_(>?p}X3)e%iDqpR4fl_rA%TNgZt6Gb^AAkwBm_v%JFy+m~E%_d}4PgqINia$}zQ?Hsh@YaPK7^v31|2#x^zKM``-UXrD zE%MIUdBUD&m`K?cm{h!(of)7gIV?5zshHu;F_H1?!lyzSNx$g)?M>Qc*W4x%h1)2h zI~Z^C%|TQLn1KAPRaF&JzeV3KX+q)lG%5{B-a#kx4-p()XM$;wS%ySaNS85@vEtRp zLKXB$L7Fp>aunDiwe{MB`H1*76EW+uX|~YwM5mo$qT=D#o}i{Gj+Cc{=f#eT5|FGy zMjTw;QRWms8nLh${&g@f@%Y`XR-vrk@SO<8dlB$B;oSF)DxQ_Y@O=T4;+xy#?c35b zsjQ*zSf5yi=D`xJG^Kfv=ZkEA;9&Nji_f}d$;f*7nwe7v87J~VXqcW z_7l^$Ew;28_EkD{e){xr)2A)A^yzy3x8GZWzTMs4GWs?Up?@Lzb`I0G9F+GL8lq!G zog1IK_cC?vUye1boH&l~DO%Nwe4_W>BBFhcGZ3*$_KAufO?vgA!a#7*bme!6uwf!> zod~z(3q9)G9}~fYCIVhF_((N+!AgVL`&FX+!qhND6{8{6CZ7_;izY1YznmAwJB4@X z(_z!6Y?qR?-~1VU`LXHC7E{UCHxydk$@FRa&hFrP(su06-=?n*Hhsu%dJhqvKHuyMPTk1{F^>~ z-^8>f>S(pJu5X7g2y;5p#FoFMC3D!j_q<8pZfyFN=Vtzv?rz8xJRf_FNESAcu+#%m zm5@0E_r8cv!{QyK&*{?%rm@fZ9n1w|^N3IA%co6D*&qhR{!KVXd`n0>kLhck$J$@3 z)fJxlAJI%U$-*rxl){Jn?iVBRk0$m!V-@NHg>s=0Od2b^LZ3fp?M6}7JFugV#K8NH zi8Xg)p)PIg9rz`EyQ)cIHv2-IloEtVUkX$Hu}KJ4bukx|H9GA>`tlbh5m*uQ0%b7O zo%A|=y0qz2_F>{vRmp$)fC#QO5wxVJ1n&TTTXe^IrpB=%=!KzmgH+Ge{!8C}Bl6o| z`0e*TeS5Y^f>!G)gTe6o$$RwaiKb6EvLq3*`8b zzF#v@@Ytl%VueyOFt42_(7e2xNubu(G<2k|n=cUW8%(@;sI|(y7lStiu6v0-f5h}T zx0VKv$ib#Hp5JHF-XMaNOkL1gJbLsvj+AP*{YUiqou<#(BuMY7y+8Ro`hJsR4AB9z zuU6^>nf*F{q0c`vea^!}DptJHee~r!roxb{MVcJf%X`6K+W$fNdSw$|HhS4lT>BJ# zx}a5qqRKbz9+O%68ti+92&S6|SS9rIOO{FthQ2xfSNeWQ)Au~EDbp;B$Uc9XzTL$1 zEz4b(-UF`vgFfBa^eL-Oier!Y8-2O5>B~0LFoxV*;ID1}^pLO`<${mUr!|v`*%{ZV zicu|?5l(-IKAvLwn9ZWz>=)(egE4&dKk4%sCNa2eQZW6|Ir{Wi z6I1R75}ZWUJ+a%ANJv7%z#u3}uzO zl3|tG#^|&282;jy{#HBt)ZJRO^8xSQfX5j%<~H?3aT%WLRv*!HZsn&51QR#cU$f*kbvYe8jTemL)a^>ojOS)rm)0cK-O z>iL@5g(j;hWy^(XlM>FQg0*MOPqcLvk=Ih1yd|m9^Sa^;a>33tBDKrc%WuC)G}ov! zy#1r$i1gKNY9u z&%C46I;%&rIS(eXgYo%fErr)Ym_tH#3*z%;SqMnwKhE8C!WBr&LA-Mv>cUR@ z6Qt!P)ds>%4Hj=S5Waa5X}k%s5yS~>WRrCGux4L7zsp9B%sveb&250T}Z6Mk+at0K=MN*;ZQf5AFj|i^amBc zAO9m$V9bN6r7(?VQa_1wBzh)3kq$LwqB7>6%d&?!(we&U#AJJBSYGM(%nPArLB-NG3S?fw5xdur%?iJ-i#GNpuFHbiK z#0agv)QPU%mV}y!2s~AUooOUn0m*n2OAptwlFl;86b6oc()V}lN8)_bVkMF|;fkFp zzJ(M#D|@uNOYaqtt57Seuvq7t#NxTGr79b7c~6q@Zfv`jCKyS6FOu`{BqGXx38EU7 z^FouH((u%1w%eP;`wQ~dhNp?@Z%D;4R69ne3A{`hm$aazsa7?+pO|Fiz_O*wNDhZj zCyC!jZ0%BZXC5CR4|WwpWCkR7rA7;DdU8vCU6nQbQ0( z*iIbQKn~nrVrP`fBT%MmrqRsJ2=@h8?kh}kvy*GdZKb|&Uy^zP4jS&UQ0i#ZaRraXe`)4VE>JccCflEjBp z22IoS4JL{B`(jf&m**DTWcr@HHhr%=l+K^uV)~qiUP;{Prq|5rmRXrzn^X7KnD#ak ztu*u^IqbFvY41i#)FxdBHq3o zjD)8kA@_zz-N;Du4-0pfNjPZ^)rtOiAc?j$B4~4{k!%{0v03p}ElBnolVluiw+1{= z^=(6db_lLx5k>QgFY$K1Egp;-={2Dnj;h|X)uz_Pm z+nTVF&O}mUyp?Yld4Dwt%Qn;UVk*gp2atTLWB>7> z30;_hXe}gSS2RQ$2VTZ2^?P~VLnzV~sXu(){RN>-FbT-vy&n(S87wO{j?P47XeB6UIs*-%OtWip(5GMQ%TT|#h$sk+ow&a7Q)Yvkh^<^C}SDq8nZU% zF^ML1w@UKY{Yk84vFEhzHV}OWiFi##cltqH^OInJWUOotYMv|A1oCWrUEmJBq=yRbC0^5kU$&kSN zAfhI4B>8?w&Qo2zRH@L-RjpIlBo{G>D}^a$(nUm^w=tq=bAJT!_mP-&%Xz6KdLxA% zq6XbAZW2~91{-m8CldD{G(SzZk>pt<=P^aQ_+zwD;d{;NZXu{mO>$}@M59~a7@}KS zRLW3&5Qo66qZ-O!S5P)Hp>PP?{+>dwEG1V5X(KG#mL@70C42ybzn{|a`(Xcrzu(66 zJ^PckRO|z%N^hy8TMycQTRaF_3}ypd#sco+Cid?epkDv8ll9YJ!mt z0Vog&DdswacyEQgwL<`;nTj;L)ae%ui7NAdE)xQzT(`PmiI}B`PW$pr~g{lSImen;#SEy6QV?SfRSBDxU}B*L*sdzeI$R3sDpL3rkuvAvp#faFyq;gu_W zNOx5fgWB69jA-_6J8P0g3aJ%}EoYE8pJG>NAvMzc7irj; z`x%Rhb>~eYNzPm+dgL&Y>KSaY=FE*`&mkErYG|w)9_6#522D~)ic%OA5uv4@sg0 zk+-HLq*)kgc&yR=(qK`};#5uINMlVV*tSa2Y=ripjWrY$fh7IN1c%i~oV}5=rXL{L7fDz@bc;h;Ke2ws zOyWrTQAzfnNdjGl+%^3eh^|B;o~_E>Xd^oy-9Tfh4mU|91>r!o%n%9oIF4j32shI` ziFE7%M9fQJGOzG7w(@P@kjdb2GeyOZi@8ful`P7PBGm`gs<6ZF ziC||FYmN$;K-$TDL)=Zvn)nBw%U7c2y`Mh+%(SuA3R>tsX5dEW`2&4B-6RQ%PD7Nu zVX0CG&frhEmk3_5GN*#Rp#~p(mcAV`$<2a@Pbc|?bN^%X?d2vx*a3*T(zNp|H*<;K z5yjdjik4@V1i9l$A+-HdN!LgHmOfq3^eHPu9LlJD`JmADTqXi;q^Ot}7IP2^X_^$m z%*CfF^TwZv;2jflp09&PS$r){et^DT()2x#``~+0rQA{f5f?V+GRd`Crx8Z`R%%hm z4}V3xGQvRSp-`wvH9A^FA6Moh^>@LL+Mie=>Le~ zcoRiyT~p4>he@A`{#(KHH5bjAk)>K6wM;)Lqb;@h>J892m7( zs5HM7ULb3t;n1i=U^7M9w4dzachSvH5ZxmtI#vhWm!&((UQN1Jw7j^rx`N5lSRJGd zA__KFGQufbV&dP?E`!2-zN{;rO1$o+Swu1?(>+9G{!mL9J#Z4S_=(D*;}m2lzr)eR z1{7ULqO8(sc(k*u{pN5;usnqX5|55b@u%(J@RBFtGu0M#REm0AlJ5ikQf&+e`c&4M ziUCuFyzGd`sNgGc?F(&(iN5%~X+}3whL1-te>+j;Ow*4_Del4v%#hMMizpX2g>+`h z@P^^&O+@*+Df(ikN_Xh8rYm$SoK0lkF#)o(N3ERsBO>^LNh=CL*rdnBj>aAx3Br~< zE#k;kOfBJ%CLdlN*!&Lq@(`1rTVIAZr|!OyzI@)qlc%VBtx~1iL*Z-a*Pl$^UvCmx z{yuEvAFiVBckRSKY~z*3)AtoC{~)`}A4r3z(D%2QzUP)oH})0~l1wv6!T|?;8RRw` zEBby#Q{Qt=N^2}r;X~=pW`>gD%U+Q4@lP>C zN~W%3F$+>JZy=KDKCrfk4oZSRan=>|>AI#*Im{8C23G`kyOO^BzUf>IX~)4QmVva%}&you8Z?aQTwTkOa%axiBP^fzN_%w50E+~Njfr+ zFOrXnAv!~0&|LLYuKDk;C;i%WQjvr{6}Os^{w%9;VBPOyVg`iTu~>LoAl{-63Q4pm3pM3ZSbBA z&CcR^8(*0I3y9GfDkBa7cj5Xmdx{Mvk2j1Iic7>$Q7TGo-pMj$^uEsAho7f4K&xUo zy9Jvhmw_Z3cO^*_-{F4;GIWgkXid~8)ElBGk*}%yPbb~J(Pc-AlDvgR&_6qg$@Xb= z>`K|>okFfh2wltQ)3V7sad-?lMB#@nl>@f{;k4C^!cO=ahXQgi;rnwyNX_BjQo=gi z@GTscK@L&)VOYXJuS6Def=VPwSt^ouBs z&R?T=1u3L68FScuBWjozKcOL*>25|k#0qQ!uR@j#u?$=O0GnPiz zL^=t}yi~XYX*4V|-Cam0*@F~m^D<*Q)PiOYI>nAi!O?BYp6P3Kaq>NMWYXubNcb4J zYeySE@)?rI2$KA~w%7na*AaA*jgW+cgI1GqNwPV9&)prGKhkW4G#n7MF|cwDuTGxD z!LOy!*w!`wLQ2UA`m>U@wz(2*OLKx2!fTMwfEJEWUKp)~rei_V2-iVEX}FoI4o()k zf9jN}4L3907D&hD)ao~5#lkO;L`$JDl6{3_(!kb>9lnqKs|{?O;v)-1t0krqiL0VS z+7Y*jY7L~4#w!$8Tv%-4svV<^S0GswNhE8t)MVTri8O1o5FUtxlC_x&IxdYgnzfnf zmP0zp6JasP$@snIiI8Rsq>=hZBrW(W4K5j*l@D3VBL@P_)B+aLiOeK_eDh_*)}7OXYq zjfFMK*mTW%8OaVoGO5q$MAA1ZuF3fT%BA(WPVo>@NIfDSj&dc><53)~M}XucB$37* z763gTCDO(o(p-o%3Wi=d^f~+m>`}n@A|N z2oqEeM_p?zLYf~Ujf8=TEmxriGz_G<7HOoFhbBmS#!bnFon9OS2HphlCQE7;1)Wp7)VRL$eTm zgoJEE?fGGdO1TbIib0|lrvfdFG+I0xqy+i%Jku?QbkfE4fX0+YG!G69?P7Z*`Fuz& zWvND`{`?wc=B?Q<(2AnI8>uCaYfK)Rfh3y8HIkK)Oe<6nk$ZF|5^KZTmVQm!tJ zMnd&CXBYhqS!uWO>{&*63vJ7aqce>jLt3pcUNrp^NH2L*|K%b5DW$(zEHYG_jq)Ez z$wR%>R-el75Yv9*X$Ey|t(iy!@eeG-Dyrorr!PM6WQL9`U?9;JC5qaVNS$1Sd{e02){`63Q}o<*vHi=Uqec128H*m zO8B`pg91qvNu-Efe+KI_{923Hb&4;LLT-Wnc-F4?x!wYuWDg`^nOgQw&xydBTREiA z_RCCE14t$91W>W1LOv)!z^`@v8qJM|MmV+%M0X>R6lvl!UuWU>TBM0IvyevWbGjGn z#|Hd7*aP^r*5^9KLr5X>4@*$;qhixguR4E?VmqXeY>E;uf};<9itHm4N3$s)`4may zUVs}UI3cokVeA5m(RYB-)k61vpLd8dkoeW(-uWCZI8i9x&)F+eFG1!t&5*) zeFG#LAc=yYz0)?Ac(X~JTLD2MnFmQE`_-R!dj{pv>{q9F&O*`hSf)qe=0gh2W0|NH zKq_7hC^+iNPyC$R7TA6*-m^bNw>8pAy#vqD{Ru_XdIw1UVj*d@%J_=i3pkv$$lXZx zGLlIn6d%BQ2PM-+DAK%-GztdY=JdTWKb*G)>K8C{nm(kFW-h~ndlzBDwVBI6bO{nk zqeg$J@0ZwaZPe%#zd{PhvfzEc#jA(0l#S_p4ILRnwhn}Qo+ zAL{zjC^kk4$+BoOO?!!OLHu5`ETmZ&X*7)BRv*7$crLctfT7a-7-{5w*Izz71wYsO zT_-smNm#0uN1;|59!y*TTdwW2nCVtRI@!j2tRRBn#}+R|0d*TQ6JCyl(t3p?G``fh zJ<6!9S8S9!A*BJ2PVjx7#_v2XiBuLmopNcURJCb(CGskCRH#i8;k8I;Xq~i%<0mHH zL@G<`bjr7plE-|@E-A%BesYo@sN56vp~VR%s(p}3#xXo?c@s*e;~1!JK`I`a?e;W_ zjY3s>6!S48(PnNgMy``Rfn<_h(EMn6PjeL;6h z5BC2jEJ6q?;n%vBG>TP_LT*EOkS_GLZ}IidM+kRgoAovT&Amt?_k@%-a`!w0aS48| z_k>Pz8Is7YpwEMzxcZv}@i~64w*qLsL>jpjbc*9EYU=z1@g#n(w?Zd*3Q6Qv(C0x| z@VzAnVlV7Fy%j(+9ceU-KvVq-5ysc>djp0_^L3=*%A$NnH&@JxhcNrH;vR~rV8gwe z66`f6vQv>Sly59fFQQrWWq2x?UT6$$m1`76_>x_4`IQ;}OfXiiu52BbZ(k{Q<`K6=F<{k3m)3#i=cYH~uJOkY6K6{GKT3YPvf~?s9vC)%NQ`m3pgBG%;Ma3xW~f|* z=%RG9dbgLk-8( zQi@axh-Lo`GXH*zE~WebbhSAbERvY_{R#1=YFxnk!DM)sD0^&>9%NM%{(I!TMGT#^ zoRGm9A3^?ch7mmsnHdWA5LxAqA?rA{Lagg(D^DQvjbi9UJiVdl`_GB-4RSSE8Gl8- zaeRs>>~7G;-;q1#3>ii}|EV!n4Ti@$&yw%|`#Fm5-@u~EfLQVwQ?rfiUc@g5;h5n+ ziJ|KKZEh%%C;ETp{=DE0{@>;-q7kxn(8h~`y}ExkEsjR|`fHVJK1T?xk*BKY6-2Rx z;?XS#Q5r$je^%3Lh+s3iXoMVX&x&UFLxs7&iQH|jBbs|2I^gZ3SX15l0aYjOCB?b` ztUpB7wq1Z|h0sGS{Zu(CgNpeCA#A$<9U&-TgbLRq#^;C;&n~GMbjQ|!@FgO|R#ejr zF+qgG>JYZA)T0$eIo)&$k^vK)3jvn1`3P@>Dh&E#=RcFl-#$udv9?u#jW_*WY4}sPJJ7ATv+#?lT9NFYE**+Q+(DAK77 z^It^pSBH{q7I9!MWur3p#gV%$QgGuQY1VA^RSLm(FFF`zpx22jS%-8D_tF((F~ETnpLT_Srkzyq~Bp zU7FxFtb-uiS|%uW5cQ@65@OlHANMweHz62f6U5l5=k^%xKQP#2 z1nb=rq@)!F*#bf04@LR90(0LQxySdg`s^?bnfD;Nbo$StZ-?A%L1Jff(k>`4z>WxD z+r4oBQ0_A@|6P!Od^f1vN?`W8Bm4MWD_u!o=6fZ|JiL#<%%>ys_;w@TMPTmxBljNE zE?+}n_6H`(Ub%t5><>ovw%v`+Mrpcrz$iIHiQfbAjRWRBfZXF-rgRyAnHP|Ge7B(8 z0$_k50&Ej|iZLesGfV|xYzz6$9j&M1GeQj!;tvER6Q9{PlVvX@;WPVDWFOxr$s zXZ9y2%|1x5XZEKd`yM)1O0H+_XCn9bdlHaS&k*MzL=W}@ne>ct9%96goek;p401sl zAX3gegItUtJ!wnJlxK`f5uK*K&c4H>>oz< z@%uoo2FctXMegzKQ{Vr69GUkbdYI17qCc4^cc}y_b9MLn1>_!oNGXLLSu-yu%U-JS$n0N5_VIT=OeG;1Kce+>N*LQhY=)nY*!QYlwv@GHBVR+nt8w98F5}Dk>lKW+0U~CTRC2Q{-g_h;R`&+QK+2T7u($wAun|gdaJmu{ zg6ak=z^3CZ06m+lIFZdz0NXthqetqiR*GXI;Wi|X%UjI$f_T75hMO%e!kk+jT zIfeL1Q^d|LT@-MV{LfUn^}A@*rb_TO}yX^%mObxbs&Z@?g*U`YkHDr#3yl#{b?fU&4(52K2lA`dA~Lh0_`QYot-k05di4W_iyoB}(Bu=^(8V1lJw zc?I}z1a?~ebZ1}#g`nIHoAnP7)oCTrB`V(~q$6<6jU0pMDfIDx?y!F}POxE>YS#6M z2q3N0!Ce+{diV(fr_kO~C9lqhKSkIS+Dmy``ttb-1WqB^ zD|@4j>_9_v(^n&Q3ZqGcTy$Ga@gLVAatggnxi4xEa09|R?H6_Dsi{;9RW}=;vSgmv zKT;Zg6H1VR8yThJyr6O!JI-4WHwA?s>NV70?>2;8!zJn(^vYgM+Y`Ejcu9LW+jqf7 zT4-|@U?csjx7^m$uKN<*XnlQHq z)vj^cUJE$Mozspr>elZ0J#>%L@NovSbkQTmF0z%Cqd7c0c@fWM1hoNJTaT&QvgRQH z7fDmw3$9izJpo$U)y0}v)F=>(cK&SCj??C2F*`=3AQcz+S5-Yun~yCvlIS}zU#o)t z4hnMGyK{iCsOXGV2EQ#MtDX7x3y1T6);)sn{=$ z2R1DQx!oG}E8~g1zS{2B5PJ`oQRvj)=5Bs-93V9fzda6+nquEWNT;J~7scjtYM}aI znpguW)+dOSm{;;j{a!v_C=V*G_H#r`Op^mz>%K%RYk>uM=5y&a!U_tqv%i~gGWfg1 zzzVvJ%#|jXuEu!~%qiS*Q6p^Gyu7t3OX|&$Z=89Di%vOO;S!+=Z zU@u$CWQ&7de@)$qSe;l(y9aJ6Q`pI?3;toN7L0X~v6g6svX$VJ8l*PD1=X_VSV!Q) zzQRFHF=*E<@5|w` z1hJh?mt)vKzK|UppvhF}fXRsObVL*fUpuPVV*H@Jf*RItjnIQBnH@n7WhgOGXund{ zb}Xl%9BGX{l7n*S)Qyzw5Wbj_8ru7{RQQ$lZ8OyxJr|@cq;^DMhEoz|i28)2sMPZG z-%>>+ZYqOf7ZhbEB~hrgDotANwvNOC) zeIzgPU+5u=LFFA34*92}Fiz((G2B!sOQUr(Lt%qr6Z@kCX*p^-d-O7S&08Lb_-O?T zT%H01I2Z-+QW_L30gP(Mjh_^BNGFD-X(sOhKxy_PYWP$^A<~*O8kF4Mat%~y+Hi1NLs6U(s$#e(!%WdcbhqP` zig@Br@pPlaN?HiH9j`DOc`3qwu&#U#6XGf>AGeLn&M=mx&XEETmO4(?2`SrHyn+}$ zShy3kt#61H#a<@ZL(K>pMX5()|G4d0xqvtODUJci;}CKeCnw{;8M0+s5WV(OAiPtgYW`kD0w!gjcS>hjzPByA1KgNZQR_u4<&Hgyy;p3n(1ggqRey;Aa*L|CRV0Jb?9yzB^-!_KSc;g2JFDxE!qzU9erg9hL76hb>i!`*gv zVI5^;J&mxbbT#iay!h=<@~e_uML(5l_9J@G45;RGg>#E@4X$aLEuwMt_X)en7u$WGhw-6Hb}J*d{C z=Ldd_Qlv8DHt2*%afF{Cu+t8Bx6K#8w$A?oWk{v-8Ps1Z zTUb&4oTt#%f|@Lz${a}E#}M1jjp(U_I|ko3FG3HbF%dM&1zJO9C|jiN<(eXIU(x^k zC`Kw87{P$=o8txz0pGU}+Ub5xxl${sfy`pWN!kZ=x?jUwq)B`i!PUC+x1^9&+4*zY z3-1VG+3Q2z$<8IyL}#Ydd_p$zWtr3bm51#-3YAY1*2ty~i!oz5$3w9ivf4RLK^C5>jM z^U4+*X*ln}e68boJt3|#o}JDs9bhaYdP4ySBRVlqIxs9(n#E#4F};nkQ=C$GU7Fdi z-~9bPf+g0xe4$pz4HZ2#t!r~cbV|c^XD86Z&ZA! zSgR*M)s^4cP8w~{@oc>z9w1Zr4XM53CVj|DR$Ta3YcI`!UUD1eA?wb7mfk8Gd&_Cn zMzN`{I|q0w+sC!!6g3}$-IfA$u2QSzDxO+5r-9H;*SorFb*`c&Bh5rqr+uj|QJYk| zPIc#pjvKI+j(G$Er(oPeG>9uyD?^RIk3#Gev~4IAc5~vSg??saX!WUxokBkgY|XgOK;U%LEiR@gp7U%(PQh~?(#)0{g`&F4cP>IZ zMM1P*NGTv{b*CQ_FDZ(5ih|mFq&a8r7H8}HdXbP=iQt{0ASWQpyn2a%gy`LAGu#cf zLS<9Ly{*ikM~_jqiZCk{av65hL`z7d6|GupMS9Jv?*yf1YzdBSQmHfAb*g+>nAy6- zOznV8qeVe}sAuN9f#3{!?w&i9Z&si5WbPXY?rK;$xog3*wOV$}zt1@&(L!a)Yp`8uNeRKh_HFrq6Y|aK{Rf_PKmOw zdf`P}X1^=4->7@(DP^M(oOLkYJ&^AfUGp8NG;0OAV?b$*bT>`W`rgRDd%5YxA6>{) z`0k5*yZ1INzM1gOHLK(RWW8C}DiPB`xmlvrzwmI0xgUhwH|d)D5T#U$TA+$bvdG!? zEUw+Zv>jI_@6nqs^37KkKA$86twaqFg9y>RLHey|R_R>~)gXtFfA{(?)H6JtDEcoU z=kD!>IFmIPxL1*T_YShnoeqv0bYD*!QguYwvTMsEgmNp@9u+i#02{^t2!nsN$uZ>G zz1rzs042%R=qjb=cMnJI-|t#xpS$L0eu%ugpOI+E*k7dkz=aVh?~@gC46=_QdW*gE zN;&iX5%RVz8tlGCkCrm6;i`JI6A`KVh=UTuC=pwA1g9j#xJYxV;s;Jg#@%}ul9;BC zYOqXWt)GRQyPx!kvv@x;tInshkahQ?h$=`>S_->>U_XQfKOea-ZyQB^30GgI`>#OD zpoNHmv_Q2z5EWUbRbjY@kVsjJT8Ex5kh~ZQ|Ca5~WeTNguy4)cE-tvkawr}GmF6tb z)fF$e;>`$4p+>FFIuv#*u?Cu6Xbf!|{EgYG^CSZ-g8;U}-bk(Y`M**~QO}7t&U%Nz0)BHtMf`$KFfl*GF_CX`hW#Tw!TJsjRl4pC^E zwwmz;Q3l592(heXs4A6-xBZfa=@aKF!*tCkLTNa0F=Af|X7p!bqz=zX-SEO)3g-G( z!4-z(au&|5f@i*18?Qm_yPcFHxuL#DN~wW6DOHM@)ty4miUYDuYnH-m*hc1ikKhY! zw8dFA-V`B@gjW@r@qK6*w!l1^t0)#xu2-c;x|sh1$UlzM;SERT`VexBBlUWDi_{Mz z|2R^I7b98fN0DnBsn@qj{dn*E^Io+vG?Sj26KSX;n%190{*c<+H5u3emXJ6nj)S_jIm}R&mrS(?XFc>L{aby$ki5L+WM_nZg#dkp|NVWM zP}Wx`Ok2q9Rs=@jJPBq{Tjrx1bDVCt0h<`7)NPzJAy1I3qIN;dzT8ly=+$Qgiyuas zERfVg0ILBh3b(`5q!Jp8u?1q-Hd!3CmJgE*8DVQgutjjL2vj*x>G^30(PMw;_m{aP z+aXMkx{}H;GQy6C(4($IwM9i&yC6i5x@s3vRAF{Um>zAH3neN|*$Xjx><{TBLhg_0 zh%mLcfljwr$*C*N*dIY`J4=oOq+OOvJ}u+s9EeCe^xPa#8&G-Akf9DnsAL*Nk#unN zi;;4OWUK1bo%$eXXSe}`>(Q{4`n!x#K#U&UKvlQwB0|{q9~`xINU*)eZKxoCZF|5G zpiWP8>61$hQF`o+dZid%F5{Lo5u-;pBNgpqgi%E3RaYZ*<7T)}v`B)|=mIRc?(4gIiVEMr?mkJnl`C-dJ zvXl_)vopUOnRnX&el(IcW2_Ch3Nco+n4x?N-tWV?ULtdtJWDYL+undoFRi|ImWtvj zY_}k`s%hAqiUVgf6Bd1IfdOV>+f{SH5vf>8Go}d$)kJJlqZ9v%C>o|9Y=;Q8Ny`y| zj*sa`Mk=Yo%GwceY|A1S9FOa7DY-BVvkSuX(jjskWahs+^6y1m^eAJAUWdST?1ebJ zbbQT|)4#YS(-FZI1G{uc&8rV(tHF6VL+pv#cQVbS$%>O{-Z;P>AnxNDkV1R=W zpcft0slmSP976Qe2Dyj<0}LR5Z6a_|(#&i%I~o>nW{d)2^wQCCVmk9LBL80c zp($?P=Ymx(LsSr=mnMu9yx{pK=3hhpy>x>pkpe!pi5RwnRxTIdPXsS6K@;&0Xfl@$ zB5en)OeoF3yU4XJn9;!^Do~CgZ3i_*UO3q@*PP%AldUcB)6AK7=#>m)W<7vmj4hsR z-H`V6cJimBw^i!VPuDd@mGyL3g%L%f_3} zO3IZIy-=Vi;3v2ouyweNwfMXAP!kLNQ)Fw4j-%LCO6?L9ip*CabK5~l2j)~bXFw`c z!lGY|+`H9CeW*Dw5T=(g+v||+@|JKrxF_zndg=AZO834%F;!d2Q$Q?P>z@8)dWGS> z#85R@TS8JKPc&N=_W;2i%+{807>z&$zomE$3UX88e^A0menRga>+w7~O+%qXr zJ&3EAdmg#lhDJ1Zdi_RBBubwSB6FLkh-Qv*46+g0I9CXOPJ(bgJU*Z1>!(r3n;f zix4x_(^&^aOBC4*{lDmmoh;_!f-`tI+r)2`wvRlVTs(n!FC}=ZF3#F9zK}se=br7q zlz{Cr$kyuJtZZA(L+}oZ__NRxk-IGqMNm`u4TG*h<`t0ZcWuTLmOt=q;N|DZpuSGw zwG`=DyC@`=1q=VGF#U#z*_D{jwzBDXlN)^$i@l&g00XlvGCQN>D2ZIUw9FU_TEk^028N#N7=WyJqw2AbuZoRP?^{w1QKd4r!$ zYRo!%)~U8-SHLiv&u2*B)-6D~OHN)`l%J$SzM)D!2)h{IB@@8+ptZq`zrHL9IYKw| zsCKMxJLjxV?JZNdFEtux93zXq%oP7Fp}1DEm4*2sVlANb`$9nFY-{)FM7&sFe3_yOLH+d^e6;Pt|v>nT8~W=4HSAjqG5g9xSd!p43;W| zV2WjBo|Gz}q4!QjKrG-EyM+W;EjCpjb_OD1=1{kYFyhZfl-|9Wd8D6QWUWK^n4|1!9unwZQm3>TG?9XbOmuzLlnHU9mT9KBT7IO8eS=r z@dE@F@oK@i)3#0r&f*z(jqP>FwrhcD-_RiN4agZc9-{@;_s&=mHwnHFnqjTuXx8Fa zx{{Nb;Ze5M5LL0@VoTx)mO3S7 zG%4!hDYTu!Q76S~L(oHS;5Yg~B#-T-0Or+TIC&<6c*q~(-5`Wd`K1TrDcXn-n%KFP> zSm!DwO7K^Q;e;PUT#i}iouww$rAk?vp%mTEg&8yMD&p;vAq-GnPM{w3>@TgUq z%}U!%j2h(gVJmt@GLMA?5UI;}r>(E>_6BQfA>YkU%|vYj#cIh1Ht15Y?UjaHZV`YK^w55 z81qefFP?6ph$W{epG@IWYtgM}XmxBy)NY;)Y=EA>i3l~;N*KlLf!0BkIMYJ=Wy)|~ zP!zU4g2Yl->-ozNM4db*Axf;Khe&%l#|c;4tXq483cxN15NCo5!g_`I?#Mh&s1z`7`(4A<&|ZiX zXLN^1WZD#DsxD+Yg5X8K&SN43F+1J;5hhlb3}k47R4Q@Kwt65kk2BuPHKiHhU_^)$ z)##gaIl)$sYNC#oY!hp^$>Fc!rIZ(L!2q@(P6r52lo_ssd1=hNfXutx#}XFCZcglq zhj+o4dl9+E3C@a@tm>vK$Tv=>ma@SmVHUTBY~#2$VjF}?>X2jFyXaU(JK$qacq$aHLH6kmm*Z0bzK{(TBB>029(PYCC-L%y9fXQ z%ushmuR{KDMmq5~?ss2{?BjSxiM?$Bd_5w?2@UG>Hm@@7ZbZIu90{dg*ggBrh!H2e z*D=%~ek+2+>FE$eWq&)ekF&ppr|x$O#(EeM$6XlKRri>9$1EjR9npQLjyT?- zPJDyd4^QMCK$JL3wmQ|I&s1tun~Tcf8e*J>5GKytV>$YM7`exZl3UzI3R&1?coYF* zSw7uq%k=ZUsNx|WNA_`|8Q+1@`+~4}{3Jre*@B@WVvsiV6ta#ZJ+rp#=sle{1nlQM zgAj3so74)^Zr*c<5@#|d6!Tu*3&=l?p%Q;uNYt|Qs-I%0FC+UnQ<=nG3^jEccoi{X zc7)%AjCui?z3Ur@5>rvalEkA*ilW{^_HlNRNKs{qi^!+KuI;;s5NApwgj!aecs@YR zak5#c#9#>=>Bq=Bmee(JqB%w5pCRWs(F5i(eu0eROfK!hM7*V@8vIuY0r2Z}g1>(F zKPRS5#|fc1skHqXXDf!T6gB@aHzLK^kzpiJRn(3!~ zLN9!9ja|h2h!MLnVo7dY2YwTQ;so#9nAR$gjz;x-gKr^7Y>nBLnu{SuoVBym5K-PZ zL&Yj{`WEz(2-RgknI9`>OLU#g)b&dX?)r+M%Xn#MLw-drBSK@vQ!UrC=AqC$o9jaDcAc%zk@v4%kE>e_@OTKn>)2;IW$ zaE9!|@*7df+g;o1LHY!Z%h|{*%ELC|6 zANOXkTk*<&WVg1JV$oG_F*#f3oe!l;Zbzu7ZE@E|iB!4PK8u2OC!$4#EUswE`3r0C z9t29FSq!9XF*DkIh!(X;<=m{XU}9#N2M{Le{+BCEE5)ZsK}=AVl;IvixJW1FXoUmK zu;LiwJd8L|hfL1RA{^|hM-eRQ4zep4#epIURQv1kl&~s;i1lPTSS2d0JXj0w-gAdN zg;-Jd9$j^4dTE>So<_VR++l@6_n}H~V4y!HzyVf?g_&**Ug4UzJ(yYOla-3 zk!7?jhG4w}!v5Alt# zm^HOL;`HJyEfeL6h_X_|RzyDA$Y$hAMR%2GFXH>OpCRo8 z24=ju*eFqUBci6Ij=XU{f>E{-D6k(9wUlu{@^>WapslI6`?I%;%5548_9Xgil&PG{ zQlhn*mBEeN7Ez;WAh@?ML~R5W$Qf}5M2w2~+!1qBS3)$?-wt84oe^#SM6~Lkg3)!} zDpgs@aOjEISKXVVOM2tr1c6>(QACGpZl5R5e%2pF{} z>I_H|iBuSh=aQL-(c8=w&XIH2@RswmodolSW&rL zS@lIF;YD!8^&X3Syx48%bC@LEu zN?&>#&Op|2yTUB{*$5Do(Bl=o5+%D)-SfZ*pZ}7K@E^2`A#FfJ$tbbVEODBJ`Lkk+ zL@~#xVeiBr4U?PkFM$Mx8MXK4h~{rb^ao2F#(N1jf1+lEF2Qo)2@s?G8_}Y68oNge zDk3r5>j;;iCiB6Sa0dGif+eWQdU$P~(cVF{1T{%$swUq@xC9$VFIf2Qj2rh6q9xck zLR(LP`!sDhRhR!oxTx0>x*G)j1$K=Ys?MUc@qY+9Jz|!R2g)zX1$%Pbm2;d2Q{VxK z;}*SvMy5Vg7*MglhS*Un{&;N;Q{uV3Uq{RzB;MYdsLN((@HY@VdCMBrTD%~FCg&P* zUYHcY`dt{&l5^?$bhRjgCD^n|_;L$3Z3#q++DGZmT=U-GdbO~K2?Kr`0izO+x&$nY zP+=d%2Q7m!kY@OrF*ol!2$!6xc(tHfAA@~2Rj|>Z5({WaHd`WIa$c>N z3ktO}*c1dyZUQWNb#*Pe4WcC%uL(56aM&I(6I5p)~ z;nZ1a4}?q5SSo|+qHS+Pi#q7)&X18U>6t}On|Aj_$mGInf)u6ZVc~Ybcz~9}ylpnr zgAg>qk=SmjHtlB-GkNXmiBd@Ea)}YEh?tx&ps`_?H|hwPoLZ}udI1_af{4k@RMoH=5o>e|!IB#n zv<_X5)}zW?bvObh=W%LYu0YQjNiTVDBY%jP$(aq6X`}K>R3S-e<}nDFTm(?7G__s7 zA0b?FQ!>3msBYVyh-k@KsJ;Py3W6osG;RO;^iAxr{|(Ouqe5G8@ez{%gK3mvMN`H@Fy-&VAnBj!<5ya~~^7Zj7C!>!cW>j{bn-lUewRQayh}HYL-p8_? zg#H;pld~9o6XCB2*87l#lh3~+O79+BpPl}RAPF=@Kk0lPQKItV+|18(!ucWsMP1Z$ z1j56kR}iOncZ+8?uOUqDCZL~WzL^S$ww3xeg7j`@v|p?45x<8h33LmbkA9d244#XA zf-t==W31<)pCelDJv30#(%8O4l-@0RFsJ4|O~7|Tdv`acBi*?WsQ0Cx{U~=HgzLSF z3Z<;NGdCZiL}k~z`B39Q@dAj{`*6hr;)T+I(GP|fL73j>9>am~;)v7x5Yi8VmqL)< zO$`o!mqC=?!&1w^??l8(KyBKA?+OUgyG7$c?@DRGs0X~OAWQ;Apdak6jwrn++nWz` z*FvZS?9D$rR%4NM5UckUiS5vM{WQV!!{SK@mWUSlI9yvyZh~0JX;EL-O-8WZ;|9~A z@D`~684iQDMxfs3a^oTJG(_s%C}@h!&?O>zSWVfu-43yOZ>`Fa+z}3AJ0M@1Y!tScz#7wj7Q|u-+4M+6@a<0%~}ET#AsE zu;m1VOiZOPVV#U%y@wOV)Q-~-sdu-lpKqRtAicX?NaZ*OQF@;aF@@v2bYS$y26PPkZCfF<}uNC0&Oy!51KyW5;s z3~FbxAfF3C)S4Li)TPjc_!5Pfk-88=*;>9nM9=mH?*gzwCY%lmDU6RS1+8o5nq88} zj+b>Z4@y!@T_<(Q52mO0K$!VZnDoa@UGJO)P>S?Twq6-%7)*Ad*&&PQ7lSN|pe)0w zn@VGdswoXsiorP}TkYZ~%7Lkg0*-YlM31aIAk9@>Pi}p>LtO^JbE!4m;z%c=4B2#L z(8uTs<1GRBs+CZJsKTi|ML2!p^dU&=<`J+8!l!2j1W$WDrAqjm3d^uM%8;H4sx^Hi ztTmqS0)3JaX|99t>4jIe8FPIUB0Wb~*Lz^nxT5PmU=u`7ZwOfC=gBBTdJ#*wucA4F zEl`T|X68@|lTX+hMM+&D=o+TY1}V@(Y==^$=ph=k1kYt)jP8g+R8yO)+qMw|Z4~5# z+uj8QN^jU&LfPF>hV-@x0&OVM$6hExdW+FO1XG7hM@gLbex!#vmDcS~Jf#|u&U-%+ zKWz_YO7H@#b?@gu(GaC}q;scsi!1H@oV(_PIVOmI!>`kmxvLIyXmqd;1vY`!aUFR6 zODu{`bE-}wuP(?-4xgE>P*Ev|UL>`ua{$!o99nb%DQQwxV8N(B=T$~m0{C8wo`q9) z(27C`bqCGaRdpjlf03TBEK$nEOuEM$-VbL>s-O(ci_LCi@Wwpl;VlNQA-MaHYTK8C z+4T)&OO&rXXlj2GMGy}q_i-8KTrpd(d-XmVz74tq?$!E~byhd+AIg@E`X5Dn=lQc6 z{25uQvs=sbQ}G;+o^qh=@DXy>27@>Z1xjUDv;{Iqa3o6L9OHGPk`gImrpFZ+OIdol zX;g8CN23&x^)6$&#J*~!I5wgkl^loI&H;Bf8fbf_DF1K*ijsIuG`vMy8#bqLCWS42y~OBp0ACsmyY1 zqcJ&@i&2EZ6gx(|FD&}U0$q**RZ>(8 z3KU+WVtKBb&GOX4j9ixIT9hZv5j|3=_0yXjh7o-|3KI2_SL`^=YPvU~0Q;q3DMA2s znQ${Ar!xJaaq6SxR+Jk8De8Ss#RhuxGuXDuqP-mu$zSXE(U z*$G93_J?Dv%6k-)=j@jvo{y2?ENXk)s5a-lJ?Va_Vt!Amx^r%f#7{H8X|2a#rqc>o zZkB@j6ll?TnbS3}MW0U__30ccb}vS@Sj-hG;qyCey3YtH)J-YpQ`ZGpZ+9**5!TcyfiYgcy ztA;hqSq0xj{1n|_p^h=pw@`uX;+T#MZ`_Ep{HC{Fs_1B<(@PzvY0 z^w>%%STYM7nld?M^pNEoD6WYAAqxEfD2-aiuQ-$`zAI3R{ahm8!G6|q9ebh{nraM}sTzzd*(8rV=A>zFd%@kR zxhp|))4LM86PQI~*BCYCoJUp6j(IiJ=zgZE%sG#$#Y$_&PR!q`w4a00oKue+;Vf$V zg;8zJe$pAd?WP6>)P4P53V1c)$2r*O7Q0?7EF z9HBLZ{~tm--vM@2cs_hRl;fj6jt8dZ@BW0Ci933))bHhmr&A6N|ANSgYgqU0e?!d3 zN89AU!?jlndbj>#JV5o9K8v8vL8^002{d>rnJxHVh?@A!T_{sF0A1_KHq?OfCB#nL zMfx*@HdFq49HBKA`T96QYcBFX2A)-bWKGD-SLg_mq6=<1yO>;XTtXKS&wxV9!F>`l3f&`owql;v^{e` zy95f5c<|F!JH(jZ9!G3_R$Lab6ORM@cEjZO9RzpI2=B7jZGq=^QG~Rdp6_k92%*!` zdA*@cIh!JO;)@Uf-3&n|Id270*{*CYlPwN<{WbMqc}rp|ooKnQFcg;hAp`%oRSV8~ z)-Xl1NIBYa&c7(eLbn_}Y$N1=GcNb-|9G-w^TQRIT9m!9?Xi!YQyycgq(9rp4N(!a zN>jgVu@eg8?pfpMgwnUw{qJ2-2IsV;m)Tqh`IZ-~lt8L9>&dZkjofWrth{wTj6ykQF~{twR-MO;r(Lowp(JVhT1r#(GPwjWMo5u6l_)F7Xg_+`}!%>=g%01PV z#vVTX5M^@To{bkWv}J-Q>KGKo`RZ9rAJZ1a7)<>L#Yx-c`Qm6X)rqrB5^dLi8Yd?N(bt72%3pP+1Mhs$jU&G~+m zCG8Hf+wp@aOxnY}lL7x8MRLB*7q_p_avwn{+;50f#B(f)zj%z;NryP@H$<3~et5%w zw4T~LAw*YBZQK)w-QX<8G=CPra7^QF+^*nle=|gh%U&i(`N&X>SXJqN#XfXD6X;f$ zWX_G1 zjMO?tJQ_+dOKq@V=$JQA5a&WRt`^$SQM`>pxMxW?cFK_1LA;01`#3MU9ia`5;X{OV zzI*Aac9Y$Gg1GLvfR4?j0s(eM@cB3h5a|HEL;(_?5h4cugtKUlR2CN*Pf-Ue(J|D30?HLNDSp%OZ=1*2#);mO*Kp&slntrf^8p z%h1tW-ODv;vr_G|i71wH+!jZyY@On2%Bu0yeWw*r4CnP#JTdB(T!9=e-A1qHv{%Vi zLSfR?Nu%gx>y3<-WWCC45<|nmdav9nwz0`mGw~&=kudDssi@X1 z-)=UD&{SvH9Z>}5MN+Jus1#KJc0mDBU04ix*^xq>q7B7q?v7HVY79f@qxKqi5x_@H zM-iMC>~V~tu#VCR`y+g+roe}bIZ6^%q&N_zaNeeiql8jr#DfLg!6=0DZgw0Ys#$eZ z<`6&CXvWVP7|`9r01A@oa^DxkKhvyaMm+V|ivmjIoW>NdYg&n~w1(7`Q$$h5MLDDr z%aMEqB}!L0_C1gqisF1FHcmg)DveE4f7V0^Qr&If&B(@3&8rWQrRcSeM#o#4c0CRA z>i)3VB#n7pedO$wMq6GVJ$t3mR@uj)G|o9mamG=5cQbOaeFDnloCDZ{Ox88`$taI= z%56{bbXa0)c_>M$lV!ViOk2?xpeW;ED26rh z#j{TmZE1WdO5&W+*TbNODDQHVBh_urwwah0%2%N<<6$U<_42i|OA_!X*P|q493>_c-|(N3o357uffpV5zQZHNgz)?E6rn@l=(4x%~hNmg+W5TUEH!eFz0{z68_5 zc#mH3K8!-8nwZhnj!1&AC1yN|B8^9fH7eDNdP?{>3Njw^xM6TTIeR1-!5#RgW|t%o zQ9O;3qIG-oZnic+L{ zRAz7)Z=eXNW|cL|kqJ|8p*X2(#NfK#9d{AHXMKPoY#%G0?3hsUu|S%4pjpmwcI-)w zSx3)0buCw{a-~*MvjRUOeo{*9&RucR@ zv(E2cxj}RF5vnazD=EjRbDmAuY8H0Fz=O3)vx>lTBd~L_v|Eb{Ws3MH+X=DfMQrC= z7H-&d<3N1KHLetW&!0Z@dKTz!rVrifXKeMi5Zd{?+)d%_;ND{8i;Wk)#n_ibeCH{s ztM=P%erXiJIZW$H1gq&UH*ONxM!@ppCV_1rtcVggU*@e*!eB-9-rpm3($wgDnYYDC zo38d?{?^HHH6gk(IXYkFb%e7_k828Gm>v@cr(3h-O0!rjDE@kF?6AFD0}$6{_v>vGPb~(yAtF0JU*g)_!EC9d78c$ZQJn)XSJd`ZIHhyHkGRh3cvoD1 zVlrCS<|u%35Y)8*+B3mhA$D4gH{04&6u`M0d6$hxliL=-opUL>1UFgU4hX-lt6Qm4 zeeRsNNvzoN&csog3Ydra++8w@79`S08Ox3HEnj%k8yJTG!a;TdY&he4E5JhiPe5?%fLlD_{Q^+&g}@2vW|LOPU}jp&-s1 zINf(mf1#YKG_^YYr;e)#xk{~;t9S#7_d5ecI55V5cQnvkMJ*w9Hln-xyRJv6VOX3y z?gD65_+u0xML#t}{<$((%c@&W7oiL(_Cf(yZkLR!07VqwvT+rlKnp)Z8B#Pv!<_JQ6d>JhsMad#HNan>1S!r+hcvV0Mxm%) z$NVLV;GC$`y)Cvw7UTT*tJxumahm)!O5(mo>UyGT>qMU|??xfq_eSChVV*MXMNynH z^<&$JVdnVl?2yASf&6ZE$YGdA{(y3%80NR_)HI#^9}1Gbt(s?*KcXn(q7(4#e?mdh zcdSMi{}+_RdAp3tS5dK-F=Z9;H{vHP@twEJ+Pt*Y!`>|f>(c%oLV9Is@4Q{+3}{)> zKP#YNN$;GR=nh}0iY+pFeQD5ZWW1sWZ@m2ryU_Wnv%47W5#CXnmr$DTMl2%-y|Pye zw~7Au#9R}G=Q~HSp^ZC}Yi6^pf$0LoR5g{Y_yss`l0ZXmK>dd2?!d1QSjaF{mDhRi2@2#UUpN$}Om2p-_oTwZfH`^SjG;0Ma z@lKW8=4r8$B{V78R83?{)DJm==TKv_Nd3{qvh^ev7fnA_s zT~k4j_@38gJyS!#__i0hj%g;2WLv+CCW#cRB24R+!w_kk*ftR$!FuJ$RA6A8ax}th z5x+IKJ~QnocQf9tVd2p{_&lSc^z^ZLc|Xntm}_65oN2`9d2BAoP!AQ zCmcT#H?KF&O9RTh&bR=f;v2HxD#QBXV#JBxKgM;%rHByU&aCT+%Mm4hB*nA8WgT%9 z0&N!Cps6sl8f09H+M;lT6FZM-d>t`!X&sA4i1vfsuJx`6NQb_mI}*U zQj~esviX8n4!7gy`kYP;e}1lVYB<@2fqp_|Wc&+atezZ3IzOL>jW?biviQFgC~$fh zxog}RDHzgJgNl+pS!@16o>6}#P}Nh!-Wr$9XXz=Lh8H~d&M?15m`I1%v1JUShHwmY zHv&c7==F7?zdyTeAb|e`?Yh@eS{-PgUAHsUx-4=$(+| z<-}5Lb=2hBlF7&w+sz_hCHOPREut8ff-tpHLTXw(^)J4&WO=l1n# zr5>DtG2Zovmqe?=D)@|YBcdeHs`c`gR^5zvNwg}grq8Xq6;YCC)%vzp-JU#N-m5l- zW)|xFg5-$SYj+}E)MV~ri}_lmT4@I7C#=SM5GHE6>jFj_Tlb{~q$%!!)POV#dkRb*;`GuA%`d!++59fBy*kyD}}gIrSl9jH)5_9wR+=Ng6gLadi}Ma zidVgl)_`xHpsWESqZWmWzG~wiw=y8SM+oYYFfurI2Ei2~H|RqF2P?#VoV63xt{}xd zM~}gI^%+4{5F>vgkkut)q#<TrTVX-+z{1OqP zHZ$WO7P3K=EQXwLA}BWD{-k@#gW@iZA8s@3TnL+ROTEJ2kODamLMGf&f~4*Gx(YiV z!X|9Fg)&_SQkuE|VkT_4REbAHTnG`P_K;&(F1_1BbCLqO2!clCUB&~g6-JfoCv3ip zBXU%|2>g7bgp1atDIVOmI!>?cPwF#>ZbCb75^n^RukT1>1(-66o z?6RYcEK)jVcr!Egu~NySq?=s((yL3XgAWlAZj9PLIVO9LZgV4kV}IF&|wG_c~tH`BD96i zkq8u(u+_y>XIk(ajc5t=7KX#eAy$7f(NcS}w6nK90Yym2gX(LnlMyMYZZxc|PD8YW zw%pBYsxuKUA#Y||OPzy=2^lJ`q0U3Bgl0d(+UbJyz*=i2d8u?Uf+f^%wk6V~i0CCV z=(|}OU5-*jW=_(fix=!(oV^;Inq5SPAX2vIq^LG9wSLrsEH4q~DoVa+IAyHs1s06csQKF&&p$<` zGHHtTZWNH}!FAL;&^2DAOeJI##G4T@YWFt=BDIw+byTy#UNX~31$B$-jaF$p zR4Gu!u(u;@k{vprcj%pnm!x`IFT9A7Hen$yZs$FSo1`JtJh|2aBi@IIQET^ZJGAE2 zhqBe+goYs>K*%IJvsNhvC&-NV5aLB0wsqUYdX;LuDueT31WZz=^+TGTcc`kNz^F)}Yo*T2Rlu3agL@F>ILImC(DEpW!c+3^KLO2SYmSKK@+zKnQL8}zO%v(1LD zB3u$32D9KBh?9gGt+U@-h?j(c7-qe95h-e?)3w7)v)u;>l|*O3EcY?uMD3`$HVJ39 z&k!gH-I->!FAyq`Hi6sy3W1`QY|hFv&0=$6PIVFn0khZKh?7J=nP#nd5h@Aw8E32c z5i9DVGC$((PeYr(NK4(dXDLhFsEf+h7vL3!>k&hBaT|4|!^#tvvn=k0f;%i{qw0v+ z5ja0zNpxh0jRl0de2v=9qoXnDMfUsFCUvew=_8KYc`a&f<6sYDxel>ZwHmdZ7r_Z*cFi{&Vt}vAn z8;#bc$p{v8CesC2vs@UE%FlDtwm`IAHCP{N4h)1ZJ2A}G2otp#7S$-5Elfj*D2EXR zA%4?sU^`?Vwa3|sy}9pqM3AVPFAgB4KHmjV;%ds&*SjP8sOmbwgVnzGpYR=;PF_7; zaeYzMbpi&O_uJEdbX;Nl1~FD0V3fUgIaj<3d`g%)(40c<)6B0*GzgFAlQLnw2u)j%JsUVl`CZt2r0Jl8G=R4T<&1lt}hTO zs`gxGD1%jel?H}p4Rhj2NtDNOY6og-ZbXT4zMWA_y+1F4M9op1L9iY3BgDjrb0vC~ z-nY;H{ZTkYdh1Av2iJ)v1$U@2dqX^&q#W#S+ATkHek|r&f-^Y3X!CBMw85=Ln!{*s zmTm_I8_*2%F24K}?aCc6_@(6FOr2pqK$xh7CG}b7rto9zVWl0$`519}ZVp$#Q=9V{ z!hFB$ez)|<7sxv*urRBt&D+ouUm^Rb1zRM0QxD9EWdUQ0Z_xbQz`i;BEX7Jk%vyDL z?~7<;zbXQ!`FExg9Yt>% z+X#QXcH^VPi~-JvkL8%;jgRwlzzQJ!CmpPfb-;6 z=+}D&-6g!%CBFA zzb^JZ{d$D*>%irK%(Z{fuZJo!9})g~^xO37RtoKX;ja(mCKU zz5fV*ed%-h^_$ACUxvS4w80z`hW|E0rv3I6fy}3EM!z0Zlz*KS{<`|S^y{4p=expR zU)_*?eM{lI%asA=W%j0De^rt>9}@oh*~;|mvI^~J`0E`z)2{`E_L=b4`In(zj~$jd zUw&19yZYMn>tPD#d%|C@nnJ(cqqKMVs{`6M7ouOkQrf$I`0Mj@MQQjT<=4~0Uss!( ze!WWh^@8x%6W5_%&r+oNF#Pqy`RLcbE3}`4zy4=&fvdFlyVnFVFS8x}I-jDeLip>Q zYtgU$3hs&FuZyiozwV>_dQSN3va8UqD=EKT82);s_;n5C*WZP|9xy-s`n=Mj|AfE( zdtv%@A*DroUK_M%HPQPSr9}sYzuqtOe3Qbt5dON)j`Zu63hkNUug%ry*PRuam;70P z`_c&gTCT`;wM_WyD`(NKuTR*ak+5ZAusjAj_65EXlGZ z+Y~$N(e6l^=Ps2qlydE`35t2qmFB2uTPD2`!<8kU$_1Ith=G03nSeBoAKN zd;kA;`n~7Q%RO-r`i&_2uMxi+eCq7OklKy#p5aqp zz6z<@l{CuZiM$DpE`R2Qhyk6^x5Bc(s)!4 zsdqdhl;qj(b*caMdq^F7c9?pePksBlk-8~Lz0Rj@&XD?{pAE}C(Widwg-HFCD0R0_ z{md(o`tWClW%v5j!@r8u+OxvceLnTye;%nXiy+_XQ{Vr~Nd27%@*ntA^**FNC*tVC zKJ}m9h1CC!@P5pvKKHFieR7og$3FE&O5ZC`$ct zF7?w<>Iol?`TbIq+Rddt()Yn9*cly-&W?0>p7la)Bz^6XtBBZX3QqTOD zqw2cM#5lsr?A=(|zhWR|3o}uMIi+C7=4vvrtw=kl*7|H{XTS zwOEe#()g@T{hMzf^^}O_6F%-}e(B#L^_Qd6GkxmQE8xB%=BCKK0q(N9wOfRBihcSM~!_NPSFH_K$q(kIzQxvm%oJ^SRXVD0R=D#dtp)r9L^A z`lnIqL@xC&qSV_y9YcQMOGBzuF7-80>Rc}MO;PHza;fi#Qm^|=jQ0sI3-SKMpU0`6 zj#78$Qcr$)SoUR~jm!SuDD_jh)CXhQ&)0?j$))a&QrCYjhJ1UJdR{KI6{S8ZmwHc> z`tDrnm!s5=`&4;Cbw$*&f8{S6Rq|>CpAPXHo$z^=>aP6vsi*l=xgeOAT#bci+Ehj^{Kz* zQ)S|ts~RqKPCXBIr`+&>x$J~4-cjY;=xt5Tk^1=F>;&VpRk+Rg5FdKL{!v7je3xY> z;wGx8zWUn(CqCf$eYLNR38nAr-#2_2Jbf~V|5OnF`5^uaLHq}T_zwp0e-*@kJ&6Bo z5dXO#{?kGHXM*@Y3gSN=#D6u2|5_0Lr6B&xLHr*E@gEA}KN7@$G>HH0ApYG!{ND%h z{}9B#Cy4*OApRRc{5OO6e+uG%5X65ci2rU7|K1?}eL?)UgZRG=;y)3@|49)4FG2jj z%I~@C$zKZroU9iV`|5>4Rif0YeX^sWwwI5DXsi(`^%Bj`#=Xa84|k?(IV9PQ zTPHf>y{!l5rpH-nnv+|x@Us;!t;@+Wer)k+Tli_yAeuusG&kPbf=apBe)QGv?uI~4 zb>G2HNMy(2pwn0&##e$nfZew^U^kOLN4apKUJg$q0nj{o5z)wVzMNL=g(||LRcmvz(FWNEiHre|RWLUT z)gkldW|IuU4-p{)AY8b)S)dL3!$5zNn460Pj@uSqho<2Gk6?pAx7$1>jOmEFMD*3e zZiLybj^ga6E(2$rJ#q2SYm6|#-_|Dh)WriWW*D-oajCaZSq#8QbCJ<$u_loIFCt|C zq^(6p>di8N_}7V;0TAz7uqO-wH}uEt#va6E)VpY-#%{c!>|Qvho$1!t;m)j>D1O)R zyRYuPm7Nm%DZiMBHhJx$pwcK{jvvX$!=q_~R6dz80@`Webv3j}bh)r8*I zWcx1Nqb7zrzxrxs4@ADgN9f;@l~uZ;ZXHUE2pagB*1#>*G~nPmHE4>39reqs*bKlx zwb~ZQEUMZ%UNfa$Pjn1`Zfr66imG>n@=Zj^04R4?vNn;MnB4852)|0h6SL5Bd2A%yw?KA`yA1zZKoM3{?fyZBJ^o;74Db_cL_CxJ`EwE?EA6jS4Q9AhZey87lZU zt%3?J*n-s3cT}r8=zE1ObIzL0TwgtD+?dUrHk&zGWi_)A@ES7A=7g_^B&wN>rkI|bV}yBa(B@U4w~z;Iy^~{C<5E9G1u+08 zt%dg%lIUWKa559Is>cv910Y`bC^WMY! z1k)qi(UF?z%Sekl&MNZ%(6y|EBBN-=jD>}%&h%Q(!iniCB8Nt=(Hb4EXf7eWu3F~# z5S(g`HIf0?y1klSL#(1&9pSV~9@TbgHzm__TQ{;ygW9QW>AWV?d2+KSU+xFEOs|~H z8xh8;zyO`ysCAZ}pO`mTQ~x{<>eAvW~Q27=i zLiYlqV*qs5SF$~d3nmvxZ4d3tsvq#vP27m=9O!nM6XSrd*EMu^&_(KnGt8O(Er$>5 z3h_adDNi4=w@Mv%I0Aw+ei-D>XoF1m?yGRj#yyW&V^xo*Dj9&YyB3?XU@D{p{nbRz z0O&hQg5H~O2?^Jd1O_1Cjta({2j6fJX1UE6n!1A)?yW5_txDY;hi+`PBW;I^sL$g5 zh_6X^CyL8fyHAv<+}#O*kpPVoc0Hx-x>9#14_r(ujMUiFF?M$tK%13X;}EuQipBMY zNe1n4qGbTIhZe_y??6vmY<<+GvCBlSIb==qmNVEnJ7r+oDY}C_hb<41hAZwlq&kHUR&2t#vU7^>o@Ft-_f? zrC!ze;nw(FV+SWYO=EuiuFE%Oc<+P-u97S!%6#bpw8Qk2@~BM4$TdQk;)}E?R8 zwzfter*WxcZ1xy{mE^SE{5ffeylyul5*eyrpwhG;z33`=$nnVz-V>P}!_^gSTo%u+ zqjn!UzAo{0Z1~ar(Bno^Bua9zAt35CJ^wYTG}6SOihvO4_f=ZIm3mrb0+5!Xh+pGY zf6wa404z>aXeJWa8z$~{ElM|TB+u#>X#iFOd0AJI!$j*~b8d2WY`ilyGub*Cn1V^E zn-psd&%Xu6a7H@O#mC@i5S7}6QX>0`4!;z;-HiKsNYQ6QqP zh!#qJr&fBUrnvw;Qns0yBR=(WR5Ald^|nP&vcUGr4N?6%b!x@x#aPMXTSldAPE>P= zw|adLEBQvN*D%S&>W0V@SIOg-5Z6~E1e*SRt?5Paba?^L<0tTI-0BC^Is<6EipNi2 z@VXb0T(u_8>i1{@Rs(riR~nO9N^t3E!VC~=jo_PH>RWHJW0}|{xHzma8W8mGmBuhh zqWX#?K>Z)p>R%N5cQm`scmcP@tG-CpGXQgUE<%NOn7!f=<sm1eXo zk8_R)Vc#m3(N^tO?}OSmBvM@Dn1@2e-&|#=o+hlXNCh3|PW$9n{Ta1yMW2&$rIAw5fa_V}li8&|Nw+!nFIc^{lAP@*qOS-Z z+WU&uUZn*iPr5j2PrmvVb;JOKSLq$%y(JB4PkUm1Y-XUi>6Li0per z#sJ86RIxlV)d(Sfnbu`=z9=FaJJ6ohs{w+h&QC1n9e`=A3}VcOJi0Iu! z!~lpY8CZGU%U!1PQ7KU0dQVN-7RB$&>KQImQABr!xEiz6kxhcnQOf^=s{zsS={=UOJ}i7Y;K zEJ)Quo*s><($t8>oPe#(i3Gx&R%>&5`l6Uqkq;g9;!Y|tGZHe*Flx$ zE+Ajks6GZDyi#))qtMM=h-fnrF#w`U{x(MBo4XL%gNcj*kX32!1ZE?Id?wAz=p4W+ z%^kp=THP@_RFy8Mu6T^E+o7_=_tohWFt&|SB$s4jV?ea_N^@r=#A!lcmJiluS!wR9 z1cx@#qHr{B^)@P(0a&aucb353kT`f2y?o(@(GMOLWD@}+Opc^FzjB9-AJgS!g)LUgjJi-XY3MQvf zvZj8L8nt5eVyvdi-q?XoXHrAc)wx$^jMe3vZx>xgksu;0#>!hwmmxIWaUfdg^0AAd z%RF?g%PVQL(Z;@R+L1G1k?>=*2}e`_ZKa)=z*}6mZTIp^wtvgjoOOkGM#bf6&Xsm%<^gJp zCVp7-4celsnpc8j45;#$F$uwClpk?8%>bNLS{%;9ccvX#SVWs4;Xg3x zFLq{PoT&-ZPo$|Om0M}|AVg4DJL~Cnd^?jCIp0Q;PS{bUl~CBx;b!k}^T1>)?giLbYt~=kx%~Ao>s$ik zav*5jl~zIv5Vd`i1lac>ZQoT*&GHeltxY^m=_}$@hp1}?V6MtaXn{9Tw?*kRE;tWT z<7xR;8B~^Tl@7Fpz_f0O6T0nc-B$I{IqtMt zU1VPon|c8oB?jQ8Y8`U0i(bnm8MMDZvGVWNcz|MDW3Z~?lQa1^WAR1c>z89=I4 z=Efq}4fA!oma#$gOQOptBgI&0v>QPi>l{S)XJ*dq^)P8#tM$%7^pu!}i6m|uJF6_& zrD)u z*Nl1#?Zm2Q(Us6`^>~cH?WEG*VkEel?G9MRsxZoaNda0wr3Jqna*YsL|81@HN^UI& zTQnWSXpKImQfcxb0PWfh-CzYN2I;Lt$^b|!wUYs8htxM#L8?LgWFlqr+x z1&|y1w{~p?&AVu^#%!FSRI0*wCfKbAMU!d5Hd5V+ok_LbulMsP+otjil9mQd>#j6n z9Y}Ovku=!)hqbL&+L193lUROf4o!!81}%dDn0{IXFIS4EffV#*?6O~e{*%H`AEMn* zSvFsBmb=mbC4}r3gAwbj$1DYZg|~35FD6KwBTi?Az$(ofC5giPjlQPiQ`$Nzjk%K; z3RV%Yu3kiIU;yT-%o`Oj=d2*a`AI6DGB3)vQkN)%7))3e9EYS?xA6gPcRLG3on?f{ zlH$k=fL87j4Is9!NE95#m$XSNnm-Nbca2C19hwGpHqCK4^JNn0va=Hupp#7eYw-2OVQ#iPDU94nmYDe_0o z12AP-JI>Go{5t|XNd!$`dq&hBTiy0#tDClYm)ci553$>nlbS3~OYwfT>DHX}Z?~XH z&%+l&kH(66@L#$f{M15#Y;I3nVaPv$KeH2dZr@Il76@$|FHngvPH5vNp*@MvMy)VT zq~ckpkBpBSa3{*|?8H5{YVv9&)x-fX`_2H$f@mdB{q8Z;U?OqPD|fN*qqRh zBr&$mSh(#!J|f90HRU2F`vSl z;i2oj+2-^_vpa#dP$*p!M`ml#=+*YQOu+H@dEvOb+nkxfR?LIl=2S}>3WI1vA_X$h z*=sv|cA$LJyigWUtqfwal`-h~N$e2FJ6xab;tjU0lUN*?t+|ewYIwX(GJ*V`o)`J8 zqvMC0(}!C1gPrbFlhb#in01BtY~8gcYi)>*C5w z!Fg6$a(32s(;DFMyr>{3*gY?Hr!YCyw%*R+3pA!lsSVAS)piRg-EP$!fw8{J`d(@A z;wt}(Nu<(}q>Uq&IHHiZp?SseK(}$#U(41~_!9XN%MmjM& zWB0E5EvAsDK^KB$Y%*;ig{?gwPTbVsCLeD=o~<*~nIZP0W$v<(_VfjHHp+0S^XczP zobe+@g$~20Qq~bd^_*N^t?|LkTtK9Y^M0d|)kdjB2a! zU+{)MH7bSH;ngBXsIDT|r0XjgFBEOT)}~s@>#0W(!5{~B{iqy-KC9-C79{@|A{@zk zJ$6*gIsajXL#(#y@x)d-9NM-}43<6P9n^NB8Qg39=}~b7jz+{7cp-Hi@szuqCzQE6 zU3?OG{r4EL)*nux8|>gmaWZ4XKSxz z#=XaCHX~4#4RVYW^1`{Rg)Tx}LW5>i7?rKMff;H#!~DU|;`!h4x`Y;d7?rKs&kQx4 z0pLqJqG>_tA^YSpGgmTs%pft7C}Dz~MA>!BOrjt&5MD7az3PFg7>^#Pp1P+s*X``> zOc0i93XK={c4){l8R`j(EbAserldX<SX2(8T77WuWN zW#@$^k6D<{Axtwb1ZyJLD@NARH0@;u_M)Zte34#gM33+Wd89KrH$B_JVK_XReV3m8 z;X+}zePC|3)2&aoniH+=fewaxeYJ+Op6J}CliBvUl-jPKAgDioAW97yzU)n)6}h(z z%)NQGGlO2G!-b|pC|g&E&(`hl%%CqBWThkrL+`eGy4xC*(g-%DlCq6AOMwEKV7fOg z@gdF9i&p zp>58KTD_GJliGV&DJZR-6ts5`TA7|6QVNioNP+uJf=lb&9CtqW1J$XHGUQx6p6qBk05KVN%a)^x_e6W)Iq@!PPDUyqbr1IXZN$+HM07 zWbU6QnYf*G+LB4z6B;{0X16ud>9v6ueLd0mC8K4|F4?Yu)<`Rj5I}3Q9U=8*4;0h} z3o|1rFt&;2WPQ3lJA15tsEa=`wIXz0I4oOsVQfpy$=V(Qs$FLRfwo=qlqA)NK?2rD zF?FfueVXl@uFoHwDZ7wr29Vl50;ydlvq#PLR-@p{X^8W6EEBESR(Gn6r?%-y(AHw* zmvnME8EeP37Sx93%WBtHP*T^?5^GSk+bk%M7mO=LQmKscQUB}Rx#?+{7Zx3^E5v8( zWQG!1Yd4#$KsR4s!+B-)HzwMlugS$`r`=5PqirzRfN0*nhOYtCxgJ2VTc^2J_Phnr z@HNcH)p74Y=PN@j5wtsa{xH{8tSiK4>-L(gVM{PyOP^{^&ow78DvZiDY~NYiYckZn{rWfk z;Jq(pb-HSv)tpY!z&}xbXD8Cd5!7Sm4Qg@{ZNt;%U?2wM>Y2G9E?d19pS7D!7ND4K zqdkFhfM(dD8*Lwvt+>V|0`e1Fmu;A|r5CJwVVDB+eI{un)W_MI8_=!VH6J|e>eMcy zn77V!(blm`6Fr+p zk1nMqnpWMZsrgQg`Z58h`Z0S(hs?%`O?R@-F%@=V)L#KT6kP9+*vsp(ecw-yty4zg)Ww z^*zBnLg(R$qf6fP2c!;Q++iB~xZj}uo~TFa8Tc8nq4Ktke=X`1s2>nlvKuguddRk( z!`ZM0pngcmiB^9;^-$VzE@g#2<3|LXYUAf24cm+hVDI(*Q>2k<(61X^%eI-W`L?`f zHEh~)_5X-yc!TX{{D$gxyj`SesQW-5(DfjLc!d{ZqS1w$v#nBWV6FqpXyA^O`^{wl&mYnXX~!9^wf6itU&R| z;Zy}E^x+_x91tuUJr`HhuVpa8!l@;VHJ_ZFWsx~XYWt-i@FqthIlR-IY0M&}fonyb zJ19$b?j8UbKtpnblB1#7Jv7Hz9o{)m?_iz+` z4g^GT-3V6X?%=F*DkiwUu}*rUYV@Fy@}i$(ul1B}$u0hx&)PNC)MW^B^CFQ~Z_c9Y zi=_ze9udK99fi`cShjT(qHEhcq7f^OYzfCq3?65*X1zL!%T~)4aCDlsGYh~53#X;^ z@j!F@E^MLoI;tO-J7l>(vm`Y;^J-np>!Efvivj5yWX+pe6u=8 zG($b`)q|}IcB}8v7Ec*C-&(=$6!DGhT6b5+Tg!V@HBAy0;wXn$p7Dn@?;};0s0yCZ z@4QZ0o^g9#b~W!5)e%A*-~fkMwbKWw6c@&NVtk*vhrkE9xzqqGus7?!0@96Xn2PmYU7Bo8v92=SGW}xx8?PtKpi_Lxg!#-)xyJm0JG^iR5M3C3;dg){=? z$Fw@Bi1^g+6K+ak$)yaQHAdfW`p{VGXp=LD#?ozc-A4D-|9ugReuFFEQ?d=$*zC1y z4HWhaf}InAyRlg#gc>?(#h-wB6umNOzR99`;kb!)T_NxkSvJOJ#$Q`-HiD$2N1WyG zx}C{M1MpM=l<$l`x5&>0kSOO(Jc<0&B=Q&FB|Th$!iJN7E!K?s1od8`iF(RZi?FT0 zM3U;$1Q-f2*-J}9@$yrjBbZ2X^Pt8FO?}Z(W8{@~oR*xN8Ka%~!qa6U!)55B6Y4*p zfb>L$%fj)th5|GFE~r6~q$hDDysiv-^&K*iLz}FY*j?S4;R+(INz~3!hWjoWH!516 z`NfyBS|(Dm4cA&Iwd-wm5S^@+u6%^BuLvFd{y_7aoEk_Mm1^md>f@8m9;6_|Ze)$h zCuJLVVmahmNAY$k0CJP7hpu!)?q*E89&8_)>vAeX##TJ0!&6jvTv@ii8wxHOo-w-! z%d-xcjJLSeou{qF@6zXoSZlYZ990Q*WShNUw`+6;)6dfGiCE4qP0!AzY*=*6?hV~* zih_jT?231@B_xR1w7l?pIAD+cS4}Le7}1&p^;%sBnCDZEV2iCTtCyQGGH5p>QnC%( zY<4$0ROYaqSe#upTvSa&=k%@qiO!&;j;0224v>cpi$ODBG*JucnEE#YFRN0i`FjV( zLx&1{1z>MoDuC1`eV9ZGP5qd-MyoD65)DxTGx@?Y@Im46dSa--&H2*1E+o)dT(tIEPjPzu9|GE#OLbXv|>^P$v>mxw)sh3klAgJ&XI$ zds0}z)TsntV%f=!1_#?m#|}2z?5K~)3Y4@+h^?DgyAkEXFF}K}zL=10*wH>(+o3_| z%_t4lqsvn+G>NUR2pi4O#ULIfle-m?B{ySohHEYDu51LLtY~?jz~LOqIr%WWVz4$y}ZDMjt2Iy|h+&%S#3F^&U#28;uC_+%JWavb3E z>u~^~z!B{MZ733)qzJ_3pb8CeoY)=gv8U;Ox@$>})urxfydbU94@FDGJo1h!mEOeU98fWknjqWGmrFZ888R zha9m;Hy`2q8=N^8*_>iOvr}%}hn4BA&`7UOzr9L=;^Idk$glgs)On_f*e@ehH#oUI`vfH zG_GL&KunU;BR%X$vUN+15kOe2hLpBdNNiq>OX;98rTV&F9JZ~{^+;EN0!xPob9iM* zw#m+F*qeqY@#)B?ny;OQVC8m4 zk*Qfw$=laC19D_KQRJwL*L-mha{W9AnVy?EfDHt)(1e`?oNRLQE>^DR56+aGzefY% zoX?F0h?|X(jS$HduM#sB_kjIEJ#N37#`2yK|N3G=wtgplNeeT7E;IO_PX(XGW^$R4 zwA5I18xkqmhCL>G%wB4|Z{hh$>Ryr!v?YeCUO`t?;yh9l`w7^tvTKO1A;hTKr)GB& zaC}V`^D;F)p!gRb_kagJfd4e2*AdZ3l{-0lDb#JemB>mP)@$`f;waSS5#h0x+S;Kl zNxfO%<*RS%5JW;iQZLh0PfO%~5&DoCDyOI93eKQQP?UwKcd|}t>y;(R*r|Fa(G9PG z$^I1!d)rnn4nbcLBAVqdfLM5#^yF5d7-qKGQ_ZekS(ruR2cCtr^~Hp2 z{a&3pb}h+O9m`m-jSPbwUv)zdF8FX`K{{FA*5jLIDP!Ll*9jXJJ_PkDmP2Zv zV-ABDa{=3#=)nvRjUG1gVnzfG?#K*jvcO!!_yD;5whazCNfPqy@V|DnODC|mRkx5 z*?Nnlb{j9nVP+spueMkjg~MR>x4Tg{5U7a&11E+my`e zT1{sh+Ov+(h|Ie^uH#C)9PbuX8&gTyMp1zj&@y2Gpd9SPB9!uex_Gf1#tn&-Yy-)t*M4&%B)e70_n9jyeI z1`iG+{?d(V4(|m+a%C5!{mlZo$J3@Wa)=)%5@}q zOPxi)WnOAvBjkWPHs)f6 zHxqQy%?upjI;xHD$aPn8NG>Ik5xmG~oQR{~8DQ%bwAnmVI7zvTf%6QG6FP=q6Ojmh zD`6I0#AvqSyh9%9RfJlyH7PmWUr=UL)$^wKD1skQ=^vV!T*PHu6Bs|3*Yw<1U%lg5 z=m4$o5!s6CY*sez7YzlbL7<~^2k1hHMrieSaJ1~Z1 zCe`Y5JzkoFX90PGlg+}5TnvhfhG)z!GIQ{?TL`SyIVe{mS!wVN7!tK_s6aN82JS{| z9c_){RG?n{v_#>RdZX@ouYCw_y~>s3qJ=BwUog9BKW>-;vMmPL7*|Qh9J0$UcRlr* zM+Y``4`-u^oh*7)0^&vgcK}aD$`74Sk*vOL+U~-x34(!qQ1;2LzT;I)YkUrOGE8|B zu)@Y*LS($DJVUl=yA;MfQ@XCiqs3&uAx4f9IZ){UGdyQNj_jOkqcGit^U91qXU=3T7d_l-OIaTj+h|KL5>syc9hgYwP)XyE1 zB|G;zD{#I-ME(N+AmO&*wtA?A+o>@5VF>4Z!SXklg5!Y#? z*wk#E79i>7jH`Q$sg_3yhDLB~P67@P_IF^rBgTVr51%FeqTv~{i+0!-Cmb+#xcQ3vZ}qc6R&Bk8`=yOZ-OffRZYomi;I5e4$YjbNVEM?~`^Sn>_>CumqX>Mnh0ZI$ z4cvo-JDMlIbs)p=#Wm>}H|{KVuXm=rt2i2^NXSCH^WK4^HS>ORIGsj1(S0sOl2wVBebRaCrpUXlveg{KGjZ5bEOCAHB%Dah*5;$LwL5iTY%bOr z;SZDNSrbS!Q1pM_2?kIux#KxeZgV&RWhmp01;435Z(y)vMs|Rbt8FRR;~iX^?@DU6 z*Tj*Te7hkj!6$bvrogj@j_NJaJV}3KC*3NM0FxSz<)Cm8ncAvFno++_8%QZ5)dR?b z391mmTZ+(3jT2QL(0 zM;30`(1-Cjpl~sL^~^R5c}*Odt=Wl_A3JO@YV?w%;PSvVIGFG!K^he}QmM^Yitggd zpmDC78j7&NCy3*gfZ!95lbzTivm6LnX3>r7wZ~y?!t%ycQnrz!Aj>$qU{V0+l5=lG zba&%oSq^X<%3#zWSkD=dBRl6dUEC93mkwllJb1LqcWjC@^bU9M2&SVT-)q#|Uoa$B zcELV^@sz|j>6Wh<7wMUsp6g-F*wz~>|8<442XCgf!+oX zY`U^o?R-;tzRb>6WBK|TUYfF>H*Co+5Pkezs0tp48l($33WjaV+)>w_=6V{|U8h>J zhdX>rPAuZQfqAm?>dsV$RSqXwaNyj~bMXi{ zvx|2a-{3`r4b=u5?(HQw&^DsQV($wY8GD=A-S>|wx;3b7JCcPHnT0W zR=1b+kfIUmv6TVNWzNlDG>d+K84nw3&KZy+JI6`~hcaz(?3?1Km^7rec|{6q;0q&H zBA$V`|_JM5v>9nc)U+IqlV)gE7NKgY1Vy zHpG!6*RLaq1}8)j?>hzN>e83K5PiQ5i4-hQ1&&4^5~b@(t_YN1>??vtUvSg^mcC$e zBV9?^T#r!b9M&To-XsUou=1CKoOX5^wMQ_WS(2Kaxx+Sl`?1^}U9vK~^BrKP#Cao% zM(3|e;aeNLD&;bH0U$m83%lGokOy&bLaU#p$yLg10*~OF^z}0Tk;IKZzFUIz2w`y=OvgG7^8HLTsHlAAxnhVk3 z+I%$b=4HlUN(qRbICOLp2-w+#^?{}zXO994-V280$}VsglpZI}Yxn|vLn0;HaJ|c3 zl?2o50caR+YOg?o zTI~>GC!Z%h?xW)^(_VL1q55@TMq4J=$h8B!V*gDqMmUw>SBT(;DeLX zF-3n#kr*#44p=>yaAV&)v~y?ZB`D)tHLQmaR?g+7?txE9)0mMQ&f^@EUdv=`uNHb+ zwS`DV^ropP_Y`vRn1O%P>|9AqDc^Z*Vh%Y4)+yAwP1ALZO!1M#GJR#;R@M)&1ojnCqbu71^YFdN&AXs$%of;eWv@$SWgAmUyLb*z>nN^ff-Z`J*qBPn zHePEAGe;5U_L$TsaTTTyQ0K4TQ#p^pQjFvL~b^LJdz z4Jw?fwZ-J2A^3g4d{$X5J&vAQ;06f)wXQ$rG zBy-PA>IPpc47P|;0UO*ogSui?Vp#+2k$P7H)wFnkoniI*_Oo6)sDeGnR)=6mfWvLm zH2rFp(4+PILA4Xtdg=O6B=aZ%l~sq-20}+sxuJ`Q)p0@|Z1QDuX|(u;+y=v`G-tGY ziUUTg!9R=O2U>Pn??j*nb}RN77`1vXL6=)_askR1upH}`+v%P0s-Gvg)##dftA@!A z)V5eB7V8YJ86iY=S~|rb{UFy|$X8z-m_w7mM%4_%a_=@JHyu*X4wwc3*Zy`;0^&_Pho63w##Dcu2A8;m?hZcrX!kfT9)L_ga|ig4itE?gP2{Uw4L!R6sn zM0txi?{?M~6SDO;>&&quNp2;M>j-Z5vfy~J~Te%0zYD8Tzu+ zCRay+OuC6?wanE2VmD_+1fXo;R*E$kqSmXnva(PH3(Uf(|ZH;>?Z52`aQx)buP-Lois4hxYdeX1Myhu{RBI>15wt4j}dsr z?Szw%{fC4R4bem~@ZCmb}U#;xV5btP>b=fqs5#X@q zRpa{$;v19=}U0W$oYKDsGx2&ay=Q=VX?$Nj`W`}r zR3pGJ{qk?fFg-bZEGfI0+qVvNy6t=9z>A^vv|Ma<+V(gbC`_KzD#Oy7JD{IM!_bhY zw+xjt>NRu=6xkmm%)Nd>qM$o<3YJ9(a0IER6n(a zkP~K{Iuw%v>a>7vjkjQRCBY_bHs$P6fa#N*WvNFJUTCSQZT=}R#v%hy4T8$sW~w95Wb2*7}n-5KP4&Xc`j{i5Y zX%Lq^V%srzn8g&4A@tlqS#X$10C3o^0dS+S1pq>ldyJEWv}TE(t`m0!%bbLJ8PHI2 z-l0KxvJ0=1WLYHH@>m1pasGWlHfleUnodfQ!{VMCPZD>EgG9Wch=)Qgp>~9AMfS)A zmd+ltFJJ*c#sW65R0Pah1alDYaf7{7Rn2kNaNqI-ry*HAm4=?Oz|U{*-ENEUqEF9bmyHEh7-@7cLsXaC|g81icK6$jLq|CwL%*;jW*H@ zQA0O6C8r&vdHraz+9a#0o|COA&RC#HgwY&m9Y&W9)B56mY;@g4@&7kTPUnI$;%#W`52*w4p(#!I7QLq3~st8E>7l<1s+hkuKI$r?u4QD%#zgXOg*PZ z$H^`5`o=#L1M+0gxdi#$hnv{qfVpg}blWTj_36npKDW@Et+jg^tr46|6DR$z1scn1 zbF*x-*+%|LoFq%mNt^plDGH`%><< zL=0$#aQ=q6H%DB}fIwfXfthWrIN**j%$ke!UN&<6?6RvZXtTsNX+Z0H*01%TA-3dh zh!T>gIvC*Dc@sm|nm96Bvm2S*+6EOfAE8V&kG7}U_fRUbP|Woq+$DnL1Gm6|onf<1 zC?n_3F5B%u`-@Qa2x!-X*Ptnsgo`Z7q+z3KIai~O(dm`AmeeGQ1>|cAb`luZAXXN; z2K7wBAK(U3JN^?mXy&#$+vLY$3OtktPg zG!{sJ$8ut8rOjfwc@Yr}uDg3i)48jLwYb{qx|OfC>ZL?HuL_yk>}uHwIA*mA_72iV zs8y|BnXgO!HVR$$T%#V;J@sngY(BN>+|WC6L?`XF9o*fv^>w`NEv`h$PXYRyU zJH}Tt=tk6mVOBpdiOqjT2f65Mqh;=TbWSI6FTcSO&FYmhC9i;5;3u1}Y}NiQj`DYF z|NMqudK(2aOr;HL8MV-0)CXyNDH{pBbc(cwoni3u)>mziHxY#TC}9s%Y`FN9!~>lM zRh&3Pd>X|c6U6{MhW;uE-Ev`67=ZpHL6>SSSEKV4sG-%QwWCS>4B_Rq7R}8Hfnay6 z*&A!(CIXD%x!Fw|5iJ{scbYhtW}^G*X5JzvmYqw{M-^~{r-?)9Hal!2n!p%RaSn&d3!BindjiK;9}6;o`X$1i$*~O|#%%HnhpwI?l%I z$wJ7o%h<>(;dXe`^q5&mufVR&63K3kVNHzv#${LLVv&{plOP5m8> zIX1Jf%RH2W1`GkGW?{be>01)7{+VD?CK2{9hXc1dujQ;k{hQRmwD!XXK8B;9`_+oa z3{$9h^<&~F({s2OJsgQur9V0?Qu;4qNGdfNUJruLUFFR-uB~&v#KrX0SDpudvIh3R ztwlOpUtjNneL?1%-f-0F;-C{OU|vwJFD795*JiE- z*Ly_sOQTx>J4Tpm;wvPAaD|V^RPTr=Y0XMpr zWOTxNm{^4C=jOM`4sOq+4;BtKBvLTqm+Ue>y31q-?vdNLm?yph(d@Q+Fg=5GRT!16 z;u8=y1JLYUm{I7%743VlCoQ%-i}joVIkI!~IVKjb#da!9!2<0CSM>0{m6j!8g^$Qq z+|t9{>XHbiqwU6{>s1SKc8Yb+&W;%&pPo$1PS?`T6#)ecbd1n-aDvu2#yFDi=7yPo zY=JI~yXA5QygG`@R?CijYvaH)a*ri8+UeFTJJi^n+&**|JHj<%YxB|B+C4fWb|34E zKpD;{jigHHJ2?Crms$(wpJ-A>Z5|yso-pxFUieUF5ccZrVFKtLwFlur#}&;GzKOsS z&OSUUHJVtQJNK5Cb0`-qipe;>^zRG zX&Ye|Jm{#ses4#{OFEyZrE@Kzr~Kv4Q5$@$9?Z6IFTfav7Oq!rBlXU$A09==d>uRH zQ9Q;181L^hXw7Jl_AM-nxUYx@J@i@d1kV}We>NXLoAur{R0ARW6#JQ-f~_R> zzPFK^usoT#?*|trvST2}Oa;a2D2`W31X;k!$lZVfvd+vb*StKcl|f9l@sS;KxdVdo@1U_^o$$m!k;PGk77u1pj9_`W*tHK7COVhLSci2m(;%WV!nTukbf0?3gd_@_0J@M6Qq1jH{Q^0OhqaQu}u`9%X+#SrzXR};$! ziY)at0X}NVDh1JQy+mXBWnvnrxKVI;mEfeJj4xy_mleB4^#-CEK|^Qw+I6t`G-(d; zx36xWMnye=KeH2dY`cjSaeX1H&W0NIE?`5BErlGLr!e`&nJms5n5B=p*=`9N6D;Qq z%#)qB+k>$0F4WBSUl~h0+o~$37?A&djo}Nt0 zPPbBpb6}C$4i-s6Z_eT1@I)I&V)6VRdKmiXns9%5GA%oO8;e|%D+1_2AIz!_Lj+z9 ztMB)f;r)@G?7`LhT_-17lkMJ=;pV|3=FTp?*?@hRXjkS5j`U>9?xbvkwQxaHu=-_* z!q$ZuxdA$U-d%V;Bb}I?u}>G`l@xCESS&xd)WjlaPGaM#*&`%O>p?r7AF}n}+(B8g zbGLZ_`u^a3_Nf6uxw&X0dP2-B2w_jYMYO({kgeAfWM(-?GDA>_8o~7|e}{vv5m8*W znhRRt-3@0INt6DKQSnLoBRgpy`|mW#bm+*L#^H=J9gi~}<{sIpYO$Q`~Xr5EEZbm$-`U8R(QtCP(a zHgM@^l>Nz4UNCmI=y<{KRK16d;o~?GD6q~fNyP>iSBy7uPt{B@;0hKa^K{C5NnLk) zrPJg)#s=ZJgR*4jVs-`hTbX_{x77y#fI8SkmO_27Gb!&V3v0aP5jU1eOtun$aSNGz z3>Fu6`inMaWG6HR@^$PWu;MC7&CcAXi{Ume*`Lb22P_6$L6^8dbFYUxdPPuA!w>d; zQ2B-W)7z;u7>`7Y!@tQD0hXGpKmn2le&br7ph~EXu;@Zf@GV?e*qcURr$U|DL@1?( zd~TAK(1z9d1Q6KoLz6`U3PKyyG+aaw1I*N)AC8zBU|<^VC4_rE>_u)(D>cOn(-d>( zSYU~EIIp9R}f&SH3b7IobBoLnq9pU z%6|0KKE6wHs{77Pz0TyL$)6c`qoBAh1-H5f$dS$WfGixIBob^otJ+N}BhW$bldoeO zks*V)fB)H6Uw8qiTN%V;D|frxr0{G{q0gnKkXRNp-ll2v4WiG7nLUeHqf)n$&K!#1 zsxqH{>(t~JPsew7bXAi*Dc8tIL|;9EJ8D-?g>l*H-Mespz?32JK^r&#vIYiD?$n(4 z8%;_IHKr!zHi&=}HAcn?1O#KP02Un0^hC2eVGdUace%K}+W2%ZxHcc1t=$(FCY!;u z-(V~nDmZOxPJ>Hs1{d7iyQ_uSGL6AxwJFcmc{h$u{s8w zjA+ebg8T>?UO{x;z&v=ZAp}uF2b2*O1c(WCaSkB{S7TXmp%7Zb7#*L2+R zsh-@`DW{o&T?<2yae$`xBC_GMcn!ugOH#8lIgryk6WMTDTc8p6-L&PH8y1hdLVzMx zhiSVh!}8~%2f_5Z7mcZDg3FnNpTi#jDbh4m$q1`T4ZBO&Lv`-=5e~qH3(TxIdNryW zM?ORxM~I_D!G1|}0AzON^*%zjO%{oPeh;A!(Bs2W4tFc=WE+zmgyJlCLz{f{RjUU# zvBF1WD|tDa>?Rb84CcN9iX(6u2)x2eKpHG5I5SyRWbuo6&c$}W=JUE4jlkW#{^Xox)4MD##m6Vn8kC_1wv zT>!t5fJc#&UvW!f1IJbrOft+X=uyOA&_zI5*x_5W9r_-H&)2|D3rn)AH;V>h6v0Ts7u_m7RH2sx z9{J*v&@+eoYQ=Fjw)yC6Jz};vIqD>daP+cS!pQto_nn=(&nAsP6Q(D-GxY;) z?t#-Z1unOu|P5oq#fZUxk-?mIj6TK$y0ur@-43G0C-OsyI}@c|NmkaD|h=mY;^ zWVRaJd8YyK8?3$QYUXEe^U}5lc+k2UFux;CAg(G8apTTHd8rLDcnoWa`h7x4)(hXc zD!>wpcUE1f66ym4I@tCvEvHm>BdkS>J*W>6V$s$I$SW{v4dP=Wuh_i(d~1P6XUV$s zCs;bN=>fRKc(uLi(w`FCu^A7*?JQQ8{&T?{+HNqT7Za{GMuZMu$Mn^Me;)2$4iiBC zCQ{r#ja+|gS0D7A%3y0~aQFWL%1{x4lTBqs=<+p|u6FxE&uO{X?6mzZo83PZoU|+j z9=Uph#;|;PGA%njY6@%-@KV|w=sY4?OEsqggNb=z>5Oz@c82AQQ@g&<0x(Xt4|K7U zohx=lj6N~OxXTp+#-N{BD$i zUROYWmureYHU!38_3ktQ_J0U0QF;8GKS@|oqhO#K^8SMmOKVA4<6yY9G{&~B`TidQ zF0T#qfb4BuL;i_x=OIT{KSWa@&5^;YlL@!XzWwMaDdDgw5KXNluw0MEUr3yU5nHo5 zjS!-)OfVT10PtgHcJj^G`M>Vw*x5&9t7w6eIH;%ZVD%Lt!1dQb10YlRdvoAWgoA95i%Iu-Jut5jp{C5e z43mwMycViDfo_EX`ANAIp}@El`K{dviBJ!tRpgcF-ZI*n7imMvYY!sjuVndHBYqX5 zSX$&Rl2ngmNw0}yzerOaRt7=ZV9{JqYROk2}ejZ$35d!MLeh`7Ip6W0s_6rCVGS{YysC}fmfGTK` zLjYUR-{(5E%$@6rhj8u`U4Ty=X1^|uL{B-GDV5PqV2gv{YlvX%4$W9FNF7{ob9>?n zLk_N)zoMUQ&_mOZ6bdyMcMSnJ+dMFd$t~gVB>j<{yq}TsM%3wD>K2y@1QU){ASR8D z$4xZjR*#}we4|iKOe29o-A*+Y;rVIULGa|jbqG~+sSXfmiQN3yZUAJF5*{O>%+x_b z3j`J%|BFEA0bHv)hFP<2)9nqBuC7hPdDJkiuU?(O?#?Pp&d%B{6D64Zz~o~9lok*y zevL|p#s{lBs;#oDx>$NrtcZOI+1fr&+_mf0-K1w>z^*hh0I)0j*@?S%?Yw#6z^?MZ z@Z!(OH%_)`Q7qW~X>HWt?lEI{fLRQM7@Rew+b=Vskiz5_LCi zZlLmA!!{DO$;l(wgh{QbXArbgn(x_;1ZQfpjV&?)=h*_s>dWu%8VL?sLeyIW>3M_{ zC@VPq5CLl)9mjnxhgxI$)iCYHZKQcP51#82T~w)ch4^gUwWhpzDo-4GFbo=sOM^!3 z`6UnxgAX?83@y94Gd+E@&cG13!bfB)ZrroyNi|8FFWBkn7H+FUV8Qx`Y{i~E*Y2oE zBEUX6-3o8Df{LU%j%5a{kn2AN^qM%52iv+WtecxmKyj9-Wfr7)-p%U7Bx5aJ>(Qw! ztr~xGo`ZWP0`Vnt8A|Ng5+Hw8Y0(%>Qono{>aKV5)5*=KgzI#Yl9sk)^fAvaKnw3FJ zwsMEdO_-OIn2#^QhE4-Q75N}&LaAVzz#vMdnzNJ519kn!5VIzZ#2s_n_V3zub}g85+>5!l-Q3zVY_nV>O*&bg-D)A3uyoxe!{gVHEC!ViI2ZV207b zPR~t&S_v)KFe+QMXKo7A>I?uI>>C&&guC#V*kr5O#S?bpZTDf2YzpJz4A~|K=!W)e zZ5InuPQEY*7*WMoEox$6SN}0c*Tj+8n*EZA)9c7fp^XT9hCTZp?kwUT3p|d@*6fv3 z+;1b9M%Rd%n`}4h5?YOfQQ4{|GDA&g0N5Kwswuc@2`f@qf5v|2yXsTet9k(4?0l3# zcu6rOl{vd)n?R`TBhcFJT>y%HeF5m`ypK0=ZUon2Ahf)PQ8;eSBplpk27oPV5@Rp1 z84jCkzIF50fL@!A&em?%8EZBpP>g8sxXHBF>2jNU{R+IB=RXXxO<`P|A=|WH^7Bwl z?Fzh75)>X?bW=xhZmce$6Eas3xv8cJP#M7lJl#iua+ezGz^XqRS=)sD*_ z3+Celb26GQw3wqok-AVjE`KbPKNTq2_(y{xtuuOjY|AZ_PYV>?dJ~Gj@?!u;XlZNG zW(#Ak-L)`3N0@8CpKqQCdbree3kyD_rM2L`NN}f^MtC$px;3pG*MBXbuL>a3;EpCT zX+CSm<&OpPbrG3vUJ2#;bT`>sBBq$w*wv&_tx2O=J6>!6E&Oj0{>DU`IU32*>Y+2v z#?ONMj*zTdMM5bVYXl^lrVVg(TW2ACpO8+q4Ip6+w;114q1`&}zv@?5sQ*Z)YohjT zG-jopLN#TpW`X^SFss`!Lh(y(WhTwG37jIdF#eq|PLhUeG==i4a4T zT{$9XvBQ`e-Mi|y*qej5TW~a#viYM@{2CML z>D}N30D^ngM`S=&6@*;9s<7gwIqc8iHGL##A@Ik;Fv?G9X@Da9?JL8@h@(XgdY%Gxgf>>LaDNl{2zZ|6G$R65 z$E6xX`trL^Mt~=~M4%ZB?OB8tYOACNm9)i12YQ*BG@zbKP$%E$RCRmF#LU#(Szy0SPSek2^OH2rDDWGhYQdB0u)EE{u=B;liz zO@rbD{>)Bz(ync+VU>U$8Xvbn`7=A=y6xKu^io@G1GP%6ku|x3T21!)B5C)w^gw2q zm>MDaa%$CUX!s+US($?wVi|Uv<*Y)zo+xwH;7>fw%Y+-w5Y(>{sCb0r=@#ad6C1|_++z(t0&_RUX>x!lzdHKOPFtqOWJ}tMjmC?jj(Lj%}Ozy64kK>K*Llmnac80_<0I{!Me#G{$iZm`} zz&k{wBJ@Zx15o^`Wk|7??GaMS0F=Ib`A`}gz%dfZ07SlY`4Bl3*ywSR$Y6PCJYk#9 zB&7^M=}VT6FaudWhZHhcX0p`2Db)J&NGStQx^EF%-$vZ16x!A2ERNpD5H64zZ%&Td z-1`!J^~pa*lmDX@n*3Ef(`O*D+26ku^(M+UgNHP(ABiDdv{e`$Fd!xVNB8fq^fwG3X+pSx_?3fDCq7m-{B%U8HTlkp%@%V7E1 zZEx0gfi5Mn43;sm&Lcd8#4=dE#QOHEPGT8=*rzVa2+unnUP0!DO#_Bgi!-r1H`|_U z&+01~^*QE26T2pNUp?dxFv@FUSdg7^i-xdx6T1OP8WBc!Kk+vr>&2Pa4G;_(+1YGy z6JcVF2qri@VgN%}oQYkF6{idqOk6mM6HOf=nG8VY;*5|NhfF)MJBb-+Ayko22FsMt zX`HPPLZ?V50}%S+Md=ePibQc4v>|YY1Tt7=1Ud=!NFW0cxG1w^Mt}|T*T|vZq>e9& zw(iCTpPA8D#BBDy>c0z~^K}#OoTuJqV9<5mwCGf6RPdc=YTx1#nt+K3WUiNah|oGzO5%(AixNV20uuG6>`5W@#FL@fl-F^K2DexxV`Gd(bp~ zADsjoPQ;@Na+H$o65PMN0nwDJcdJ z&(H;~`-;|}p%kKjK%yCd=%sNlUS7$Oe?bsid;u%qu&ETP|CLlT0M$#=yn7-RPBmbR zcX(-m(ERVDnE_}Xy5L-p$|#O}k!U_R*`68WTcL*VACqtfApEUMU+ouG2Wd5vz1iN= zc+W6eArbk1l5z&1eCSg7eJOI^trEKbhjcRl-M_Y+B|bgI*WS>*60#r2Hk1L#Ue>iz zcL{~&6G<}z(7dc`C25w|#f`8}A>j;`JK;fxRwTZXgfjr)Z(GjB9rbF3^fe@%0Z3oI zjU}6b4vxd1Yb#W*Bh?H*_44hPb%>#kW@1O)yuapQuKKjlWqo}dub;B7Q?6`hj$4{W&o0Zd)c-y zdd7rDfia&pcGuzNY_~nuZFY>;zKl#T026OtwoDvBmjoxPT4PWmE@a20M$+Uwl*BUt z@xOk*AU+z&Zz1^%K>nenm<)0z-xzn3Dq3=hsg|YbX|UstAqt-mV_S@Q?$nd?iJqED7-?{%# zAIvKW8y_GW48X?k-k;d;CkKU(KO`Rvz{kh$M|@xrfAW}&&ZUxLr=Mz#n^*dTv5$~3 z24L*H_anym$T3=*sLuQmd0_xv-hDsf#SI@sBcC7_48X-7+>f}hZfwkS)VahV41JOe zF#tm!ygxF8US)5xjfdcW@nsKq-~;$iGxljR#^C;{Da#mc4-!p%mJBhtA2SqrgwK;9 z24Ltz_fymJORA!yFOek%VCnt$QO1SwdxnTfq?oa&#)SSrB{)&7s03W}1Khg^L z$l2F7$O!{*vNWS+*HCB)%A)iL8-DV|?6-jePP|!tn@lhO6Cb-Dsl$zI=+vttS&HJ(@Pg0ODDiWde_S#5Hwaz|tBFGll5Kl4u4X zdTHiKJPj3y_Jc~H`thWi0jOS@#f`%K^IOVcYP-$0TXfaImww6G{7cgJG8-b1n(fb6B&0I*18=S}-2 z63zgGFU>mo;t}qYy{&5F!o2;B7~0ZgyR2=PxL z@eDxx(yYiVHt|vCUvOVr(Us7LKNx&oHg zpt~zX|0juN0HT-3aXK0*5be9WLiPWUY6hTsi8^76LG|pc?-~f*55x{k#Q=0KQP*G* z=x$HrWq`4{87{*c4{#z0X8^*NXne5TS$%wSm?$xIUm5@$`rDs-Cgb_Ky3rRc! z5Whqtj726s>JMH_@)>~qr5RyZ>Kn7JYhK!6AA0Zef=;W<&W+!Nmk~7IviwqZGfn~g zmZ)rBz4YxEXXXK=qUp`e2#96XvFFaQVdx?gC(^{9Dwzwq!_^1uK*EK#!^Im1z>6{13+ z2jy)8(q$6zA5Zcb+<#P{InyVDg@>!j0|W4|G<#v9#(UI#7jdCj1)7JPL%NoHFaRG* zvvoNpX%S3G^AY={>&XTKu<@SzN3Aw&_#>iXS2vIm2KP5c@_u#?8DRiMe*gZYk)pf3 ziL5XHD@(Igd5P*sy9+h5?xQ!2Ob$XlU^ivcmxE zEZd&>*nxIWpGO$$c5wXdAZM|0sk$iS4syT%9CVgqw_8+28v4tQUk8qCpD@fk3fmc* z-ELD~LMy-e>g%t?D}yKLkL;vvOy+$$jfF$jFfk5Z^Bob{(5veP5LuF>xd=E=kLQ{W z1JFLUaN3K5(g4*K{TmknQE2LFqGSM+t))ddh6luYyi86IUrWRc?iIwizR@DSo`@L$ z@x)Sd+&+}6b0WzybOSM=;T#N6-jnRi^lBlDHP26 ziJ8H@!SSS*^lik;;9kM&CH)lQWpHoco%a0RLA(rrcgcOnOy_QA(svRu10Y^<)56V1 z-g%4@GXr35FSYaNc6*202fdyT5;+4PAA0z=YK_X_ZWA|ydqw2ExdTqwlf=vbn3vqj zLc|>+W^ixldbT^)nrI(!Tz83_!M(xtQ9SW%o5wjKX0Y^#4>YlIGL1Pi@!Cg;m;n$E z-C9-6y7i5bg7xXd%3$fS^08dQ>(3G^17Ka^KFCDt2oGCo89$qN836D2(z>sS*<&*n z?Q@Bi0nkn@G1_C(%_+S88r#+jNC1PS*K&KRiER~PTfac841jfso2m9}YpREvy$$9U z6Eg!~zH?~>K4nJ|FC$I{OE2T;i8ijs6B)mfSQ#um)^4kb=Mn_#tB92Wur6^u>K$&n zdh}YNWw7+j2FCO{Vr2lVOWXkWa9z(t3kRr0%5NZI20;9nAyXFV2B8s-u2*9uA50Eh zKks_sp6r&%e)rW^ulQ|DKdkT(xYpOc?#*e4$5q3m;bSV|NqQ<`{vOm(mR_as$%$VY zyLtzwj~IZTxoZ3rrza92aK~lotzL1EXmk>HWL^>GU zCvBBd!T^Na>!xbwHH4B+krD== znPz6syqTG9^=9#wmR^sbM0G^n3_8yHFod}}ipy5-kuo)%1tQ#58Ean=5v2DLExq}B z%mN<;0Y^C!9|6beRV`Em2H@`5mANYp782-<3UrEAhhGw+bku7}6ax_T!uyOUxn{46 zg^bD8^r6|q80QLcuOo2`K-|yY_r&#P@W!j9?G2=j0chJfU$+*js-ZuO(}XAY57+Hm0+KW$)Z5oX3XtyemjK6*+9PlK zX$eTJ(evWM{{)*e2B7Sv%Y(9Dx4e*eh$J!qi7#6&B>MgELZc#$3_#g5I@?>Nb00P=>u z;C(MCIYeXX@-s;$gJq;^L#Ey%D#CmYsbl~uU%pH%vfDg#2z~mg=8O^L^GGBE5V>4D zxFvFKa<(0i`tu}}0Z1KsSyX5>OXwo=q~b-{;CW{;gBOu(1|a*j%f$>@Gm}j`?uP?AoK7Q>A{ z(Zh|QFAInC4{;DVR6|A`VQ!5?1|LDR5z$+@{>uQ8dCSsCrZTzVOPZqFx07%NApEV% znQ%N|Ka0&W*x_hI{!UWP0F*a}4EGmiAdRA)lU3p23Aq)z=$v%p7@* zakLc^$L%99v(9uc#bJ=V?W zn--0FD$aADt~iJ~#Q@abwx~$-RA+$d;Y7s%sGhp0sNA|l$l0Tajsf+Ou%Y>?r4g|5 zx3n*<{Kb&l;bwQDhc^4L*q8h2tLxqZBU|Ak!rwq#*`^(2-3SvMZ0^U}<|^wbf-Vi2 zi_xs9@6n?(05i?1CgFgK6lv$$1YNvA`gcUi07zSlkJKAu9`QdCF#{mJxuQin*bVo~ zu=gYJeLfb*o?Mm7$yW2OV`E+G0p+vK&%SyQSLId)G3G;Zv)gEvt`_bSW8@kmtn`%c ziXhF|x5WZ4X6i9&Z0hUO90TxUwp1=ELT#u8wBICJ20(jgk#)%W;Z3!G`mc$a0Z`vk z(N;b1hWxx;+lH8qIvHxrn@nZTGub&b*6SRcooXHxXMpdz`R=QWcph_A7$sk}0B!ch z%EFEb&`4plXKJH0=O-)JPz+yNt&h|A)D=`B1F%%t)8%FA9c++d5I>xV833_4iL|)9 z29{gk`cXvA0LX8vYPueJ18m;zj6|$Rok8QJDYV*fP76w#H)%q17(cUval@S#KpsMUkB2?b)0(37W zItJ8BMS~;QMgaRk-(^ozA^^RzX}Km`H{Q?s2u(|Vn?Gcss&Xunz9M{>*2BRB09Q6G z3s_9cbD-YVf&v%-NoCWDkZ98iP`!hw7ywme(~3}e(+bf22GKE~UMiXv!8QWeSBYs! z1fZK;1Pgc5z4oE0PJ2SyTl2fGF8(wO>=gUye*xhQRn06ws1d=^wrfkPYy<&pF*eJA zFr=P*5L#gXHY)c&^Qg4R#RzXFLIyxsd7P9-=nXGMI!2@nfOJnq+cS_GF@~$Z3+Lvn z18AxnVbJMw9lq24Sd367^?}g*0>bJ>=n?i65y1#=23vq#-3UEwZG?ty!K40>u7Lqi zRX4&MDr1BZ!ha@020&Qd2y+MnBaD##kVqK-X=NkSkQ-M2T8=kqBQ#in=9bEi39x1+ z=X%-|nvcGE$ERS1rxN-9=k7fNB)O`yVT{6Rca;M{$j~5>nGs0DMiQ*DP(+ci(CVG( znd!ST-J|KA4Z>s$2sgPg*x1GxgUt&z=>r=Kw#gZ6f(a&rk%%uC3^ri+p68raMP;on_zoai%Ms=cIdXtXsS|^nL>Lk}5$J3z68=NG#p|cS1)aEAE6Mne!IlB@$>- zx^LrnM__RO$dXisa#aIIDXuhZ>IiBp&1XlU-pF4yMxg!~3RFH+;GJ!wTyU^w%c>df$PPz9>W zxT07zQrEnSl{g6$d|W7Lmcw;kjRAk3j-`=f!&Vr*3)qolx!YY8*WzG?2Sf9Rl1!uH z!C~$``t{oC{OZ^eUQyxJ7physHDMw1`Y=*T-3i4s|G@-H0_`4KnNuA|9Y3~qtFQD;_|juHxD z`7|kpV#BR}rEU$+4aV2gLg9%v@1*2_sThKAVi@|!F7 zauP_q9G_BL^F~g3kW}jB7^W^iT}Gy==1t<|_!btT@Oa7`cBkPQn_%0}Uc+R4v$LqH z7WL=QyyIo?=Arf|`T>}8!?o#jFv=eudzX4FJn1*B>^dz*Rg}M(p=U@S_xZu{mtSmb z8RKz&CmrC-1MU}4DR~=TrbOG-M9De@N{fp47-`cPDl<8>!sQ zk7;!hMoS5+gTLFShf^a)*D@)Z61r0aQi@ya*I)=hK0!DVzy;@Irm8XE);F?# z(F6A%5GCrD2tt`7o`8xuV0I)>ykNL`&lBPCS`@|P5=sO5X0?^{cKW3`|h_-zc9Ojo&{Nq~~ z6eSuUt-Uq~_agdU|9(W@K{z#33f9|-w{0wIWs5-Ddb8N2Os=xR(hHPQ1UBDcH<|?E zKD=jRY>+Xgl&AKPtvlwISFvTWj!CX{S7!8hXtuCPxs|uLQ+m{}H$a~f z#!5je9NcglbwhZXCs#Wn#aRlxcTSPaKe8;4K#hzc-Xa!^x)ZabknbiW2_Q2@HHt#U zb^a*q`v^+{*hdx)K#y;ozqh+EkT@|XFd`*b+VyDPGCUHXe@svk zfCkq|@~hlW7#z?tfSGWA?S73T)qZXt?!D1AW!o0S*}NZQP+44eR}lsSuVB!DYZ z`#82zAPDD`ba%}{ZX+ZKATKQyZDKbGIoI?P6Q04qldy3YkjrjqcC{ z0?*I(TKxupG@5;E;xUhpO4!wRt^N$p&ouip_B>vA_#A@oI6N|PNzSGjWekU7IcG97%) zG`KcOF3c`B_hLUL{+5uH!xhvHsk))v-gd$-~1RGn^LwRW=4Yz}EB!JWX8dEtwH(FhMjp&Qq zZ(27a;4}szw}*X%IkfriN+_4;mDv^UUDWBWw42&Q^^S+;xL+gIw)&@%N6;-iQZg;9 zLLuPRp&7V_8&1=5m6-FT7lq7OZMcRcGZG2`Y21y%Z6h2B;KB{3LU3{HjY6JFND@F^ z5~{_fL9CDR?=$`qaRH$4$jU?{-q7yoA{P4_V}JjSz}w^w<6nRYkDpBgqwEoE&(L5C zXXt4-N}xGuMR;?+MYwrf ze4ljpgb2M#0uyaZ-zF=8z>ghy-8-6U~Sc0u~2e8uBngk^nM1K3Gt{WDurdw-S~F zu)*=c=};vgIX=iL)`R&8k(2fjQBh&rh=$um1sMA=n$XXDa}lm1fga)hKvB3vlqNyHO;8emwt{WH zqM##jngsq1fk^k9A8uw_$DIT7us?dO z=Gxp+yR#T-Z$uZdjC9fM`l3IF=0pY))=BchF!}+Y@IYh4D=&~DAf7%7O~5wX>ztac zZDxqnqJue(9v}fo*x5xvxQx;_m$?n0NB|YC0gFM!!Igl!J>f_I7hF>}6&hA-dRF_$ z&4@4Oe(*0HUTuAik|1roMEUYxx$we~0^tXMN{5#MDFVXli%F`Q`xbSl3GBboC0aWSm@}QF86~Wz?a3p{$8(!^>gjdA-3sHEf*UP$R_fl(3 zYeNK>91P80aK!qs=-B&7g@TQ@`~@ZgR2&4_cQnw#ea-@mT_*FiF~8w(G)V;!5NTk6 zY`FPww_XGs3E;y0z@mC3Le7UggpeeF3=TL=iO8_?`QLIg@>(1eKnc&&<%H>UJ2$r0 zx-zzIf8#S>Ut~MX9mc-^7H*wR52hf9y8nhg;2Ul%P0v?i!AUNPn7h*>B!CHzJQRe{ zmRS<)UIZfnSa_PQAXpr5Nx&Hbk^nF`O*b80J<0v&H?x)I&H*C4k|HNYTw-lR@AxJH z?GQb1{{a#nNuL&EXviKRw&@nJPN{Mdi_Qwv6W_d=4j_TxrE+HyLW9c(`fCD_0H{

8+eTjwVV3G913rEz7F>vF@qRxhxcdE-@jqK)o9v$%)On#Hh+Gb+D__hyJ6D?%Zb2wne>)dvmGVit%yrj0 zeO*4FKr?z~Xs-KTMAZ?=lkT`-Z-Qpw5sJyG#lQ-M@VYDXD&hT@qtu4hAHF)~{%jhP z046J!OkpwYRImXS0(%g_NC1{qCr$}A5^V|X>I5VK;KjuPPWeSKmtcPi!_EeT7XVpZ zfJv&gJG)wIb{hg4W%kt2yzqO7y(3d+-3hF{kSCeh!b=?{N1q3-Xb8XiYxreVX4B~7 zWjH6S=wxoc1Q(G&_N=bpv_OeWmxMcsa3p}s>Ih5=Hxh$M$U6~|1dzccd%2wxMPU-) z^ji>yHa7fFD4GFxHJ8`z0xBDDdIsO&_=T4N?a8PB*kfo}Gy}%K3WX3n2fBe{(fTju z=x0DHsiL1UTvB<1A zJ+aM0*⁣z!?pVDFn80${_MV&LRj2KnlldQinKze4uRvA^}kF<%t|cS@_j`uGcek ztbfaBpj}&v5KaDa5=u`D&86Q*7#;54G)x@=JY#rvvX6Ye%!i7H*jm-tDqOVFj3oyA zlZs?cUV?8(phZSgX?iWZfD1t0jgTaO46mKZ5f46JsYqCa;_&k?TTSmtSQ5YnclDeS z6_e!YI5FK@5R=JZ0b0fYR}Q=47Ez9(4b5f_cpNOh?LRPoc+pyzd^F_97a{j#2oHuC zLo`!JOIO4an;9CO1k4LpyG~j^v?8OJ`x1f#5E-q=DdqPTlYoa4kOY9uaIq^67zbPu^eBRo z05tg0r|13PAZjd<3yyjc;kk^!C^`U>(c*|1<-qB!>smiR;pfmC@g0QVq4p^H0kB6@ zU`Pw5D2Ts5)%eS3)D+S~suxce^K<%z1Uh64X%q&Ef-f?i`32!f0GClu7luoOUJUua zgd_oEcy4oAL^oq;K6)EkR6FblLk38XLGDolWA&hntzgdzb{ z=>(a8^1>?ejaeof3H=i65=`fox~IyA8CmLla4(;y>>4^*(D+%t6Lb)NDg{9KJf#3b zL*|I8FI1JMyv2W!@aCu`Se^u;m(NokgbgV!{-Yx1SOSp%sC=ICfV_Z;z)m0-3BXF{ zDJ)}*?e+OvBv0uA#?pBz>SXfA(0t+B%v18){)7Cb^OOTo{)nhspaU3}&Qp%D)Jw4j z<_j#%BmgO$rxG91)&0DOA|%n?k7en)IlKA5cF5=5njf#P6_!Cpx)k_v(eTRUQI9#EEWyEJuq+-N z9o<2@+1WcZ-~GA-2Yw%a5!t2 zApuALP&_z1053Qqke3pK1R#Zjql0fsL>y1k;7}i)SG0gHcbnQW=8vKIB3m;D%WwM+ z@`k5_b40Uau6z+8XKRFnr-P?pDET9n*u0(AC84yTo=8sKb&uyZ+E+~hu7wTUYwoh| zsN=`bJe%e3V4fV>e`O5pm@8ix_|lRFb_~V9BBe-do=XFhlrS*a)jgh;_{tKdzfMixDaeNw&!Mp@&sP;1bIV=%+#EIfXZnW(nrw^&z2-`*(cim@ zm=>G9mlBXbf;}5zgGhn~cD-u!mYR_)AD}EGkY(4tm1SqfvCh2bsgF@663Dc^;WBxGe3F8YK#<-0RuD-dzL(ryE7nh+ zq9`N~Woh4vB8#1+q+9II5}O3rXG-NYRT9LPfLuPb3`6N{iXyqI*CzRqgu8vD9CM)_I{VraQvL7_Ds=kUF0FXer8#i7YY_H$xw>oGmi{W2GX-FW= z?`@r-x0y(OR=sc|D~d*;pwMD!ck?>!^IiH*cU6Bpd4+ z`CG=mrLjq}@zTqB<%5r02H;Z;;q<^GXBoHfqD{>^G;$48LGH}{R z37OtanMgL)af{d(+&QhW*1`&Q38VK>8WKqJ?2U6ArGXF<)z(_*0d!W~C-FqK4^lRg z4VG=KIp1z|xUc`MgqZ}x^aSO)xk0+HAyE~mwcK+kwB;oObODDiprmh1M9(mqf8`_ z=}8-BsH99Qt^N{Mk4Vw`0wp4WL>n01Dp9heeTkxwK$Jh&XyaH>8awc%H?&>Rre0ZH z=OVJMYZiQ!;*mhS7wj+b7T2(a#(V=!xc*W=#&1wYlKo)9C}U-t@INRX$$l_lBwnTo zUvjHk{m!lUrzPVS3QGcE^A7^K0-xx#jv2TdxnD{~qKJNvf{;Lvn>IM`RFE;H;)fKD z1j0RU{|J}qQ1#=FDIp0Y+`#^4e+}Pens2lh(EPb!y}ib*eI?`ml=6^3o(-(Ucds>9 z<91;bc3$V}=M;Ks8zP84eY1EKF$9OJ7odoFlCkKjJJv}|va6K%MdsoiceUZW5cJIsQM{!G4wYerXF5oDqT?``je+mma z35@>U16$D@-R?3*B}J{LQ!Nsx^|=FEEt^ubO@PMmLf1Ojs`^Z-N&;0sa$u`!zjfMZ z?rA$m-bC$4pxtNw-_QACJQ(}~&vDoS)tAv+RKN9Hog#%VUewn_-1x|DL-;tJ!v}k%!_gFH_pHW#7DErX^ zTv>iBoCC)l)DgBEzLM&Z9LVKR#xo>;CMt)&q;4e8?ZXGE>#T0l^2Ub~*6~mBv9`C2dejU%cW%9@J1>|0>uv42DPkn zYGWXx(d#bnYGIDDKeyCaY4+FJ*bz#K-&?3B3H1ELf$G4to(T=#Mh!`z;Q>2FK@EE? zY0G4~^6gZV1d4w0Kz3z9(S$GGNfk+;;sM+J;~M8iccIa1--uZpDTV(;y-1+fyAD*> z*|poE(0iy5$$?zxR@VFLct>t;Xk5_sk={>5NucOE4^+?TmO0|M4^bZy=<|%cGa92q ztYrq5u@k>P%&jFPV*q>uNB6Y>Ylj(gzGyRQnArrIp;`MHM)z;Tds~Ae&gENe`)PDP zAr+NV$uPQK`>w>o24>q4S;nmfnPg!*)-OC!X2sl3ezg{friIeWNWRtY(qTndc8ohOEDUnr~VKX$~IKsgQG4` zkVtuW;fWg;TPex3QlWIHR8G@MWdpNRK$TwuyU4*}_;cBOB7vTwO)Ox7S=~_4hUwnsfa~#S5q+2~^y`S%KsPPm9^Jb@2BVx4Z=iA{Q100q zHjtdst!|H_F7Slz@jq`|JEOCX_Ul^t0e~c*q4@y5E^E%in9JbE%LF3Q9gfKVa_49l zampe6q+Htjr)=o`KSq21``6ghrQwt|3)te5=}L@!AxF7LVBig$k4T9$eQPeo0B;mJ zjV`7}B+%#p_L3@Sy>uCMB7siN+^~FH?w`~5P^#&xXI*lwoPRR#IO+<^(Z>IDL6u^xK}F^Ws=fwQ{#{xF%*F*(`gR*sOL%8!nbU8g z<1zFm3A~wq(}FbX31OAKJt@iT`YKjBbDfv$&|(EUo`R7;u>8BDrIAVrhGc}LE@GzJ zQW}!|XC_KBi~dH^Oeaz>5(xIp-07)uGtKU9_m`5A{VpXV*+>U^Vqn=>zqJPg$l|~n zr6GYd`M0+#X{S+XybS$E7U*^rqQ@7ZharK7dK-uC#jS|(Wr{%pF`lx4Vnll<>&77(1=hu1 zqf8`_DSu1NS$slG;cgps%&cr-q8n?7ZN5o4NFYc4n#%!{kORBui!2GNe4EmcK$`qb zjq=ji4W>N1e20>dK$6_s4p>3(K{F})S*1DuHXgDC#%h!Mdt(t&16x-v=FKRfM~CLQ zXCl2kei`ZI_^a`TPc7nI6W+`<`S{yK8|KdI`(C`XgI6dg3FLg~ZwA!Dn%uMsL$GeqOxX4 zd%H)`NFZANoi8i*c0#nYr*~0C63F=C-xBlLbw<9I_fkv}heNg&}1e>)@` z_3w~El0eA(``3AN})&~)N?l8aw(zGe*I%gM*``dyZ@yd_358dKoSU;e+aEI zpQf|$pHmzXh_fG>dyzPSHp;6g8VN+pKc`-qrFN{hm*=I!ZTmv6p*$pzXFs-?8m=>> zg8^2!*HSnV2)7@q0@qQ~5gos!`FaXQvVQ_B5=`?(!e(!vXe1CV|EOSP0T%S*n<*0s zWZDmnHP)PV_t}K0-b%4ZAl8%iS6WR-^!JpA1QO-`gj~pXb)Fm<2Fo)}mVcU;5b+}V zX$J7Tr-tTUhhgmQ9hmPJ9CfvFj8-|o3i;O#1jJG17_s}-w9~u+W|Ic%Jf&uJez(!u z(_C3y#{8w|_%2TDkW3wJKIr%WB1mUfU6=K1r!a_P11t2>KMIB7s!P8)d6riyy)et9+LDB*4!-i<}Bz zsYKwqC?8MA)%Q?6u|9GZF9`Ho3+u}=PaI7c&de?IYq3}?__=%j&aDQ=j9wTVbH4lP zYt7vZ4Q>6?%|Lf?q0gD4DZCGQv4Xl7;PT%%An-zHdzXCrDcxcS z-ZL~eKLG86AM6Ci)@|{#RPNqW;3yyHczf0H0aHACax|T&Tn3xt6NAlHxOq&9bm}y0 z+w=Fc3=iVZ6srrTVwGj$*7CYF;g4WKLjo}$Sru<@q(c1k6M~Qco_F#|(PA z+r1?lPPb-Pg#-xKRf~{T<`6=WRHn>wtGRRUT3j{`BLYcf%0vihWwsKE1W=b(Vz=e) zVz0fp(ru&emqK_XAxHr6sEQ%d>KsEXl1kO-F7#KL*l1AHIi3(Cm8zo^TVoF z-0w#2B$fF=xTlr4Ct*k`^Mj|ueaM`oGCz=cT7^@ILQcEI8kY2CckSa_hUN~}plAQK6<};RCwh{-=zEQem6(Gr z$|V={>-&%ukB)6tB_HL0emv&jU0dnSuP<}UWUGvo^zD$;kN{>rzl6DAW-&;=!s(zr z4VA#+zLU5lz-{d_+@)rF=Xw(Op9oB{Pl0!0J3D+FQfzKDeh-030KBlzG+u4a<0ZT# z^81NQvQJgUmT25f-Bu`RBI2IKWx;CCRF zn|l!y_|iH)Tq{WHL?QuFqay86NNI!aAtVVPudWCZpHf}x_SZXYe4uN^s`dopkO1d# z`vNDe*pmoI0>H5i%qhI)-D=f(Dp5#)GPa8G9@U0iB3UJ_dIwn{`3%C6ROq#x&Grf= zCOhyMzm_8b`7Gj)ROqz?PTFhFAs`6=$F|EnBTcer5-_8XKbOEH03JKnHU)4OU&gYA zd;!^$ROm3WPuuUs#32FB*k=0_YOG;nh3-lsF8+`(B!JmoQEB#J(rWz?@koF-wwq8; zt*mnPC&VQI?%45_DRBLS{|fRa0spb%E7S5%8}Kg(L;|3(b5~OUB@_Isi9iB`v2$0` zBczr2YeJC#s;X+zDw7omuOlQ0Agc-lv3J zOLhOiCbV$#blbRGpv@gwy`qisnM56^mxpHS9nkuHx&&peq{81mA$O8WxJQ<;c7GeWlT={$)8-@YX}iCjFeDY&Ju0Q|BvX80mlo`T1TbfpvCmp}waX7pi`73vt|Z_(w%a}-Jz#APAtE((08q? z|0W0tK*}^Xxif1MTaSuWeo3YzU|OcRsZ7&$`8BzdfP0yggtefFZtd@IPK*S6%cP`; zZ(8t!2|!Yf;8FdxiF`?_5qz|vxrG2E)d(In(~cltl4=AWZK)ki0Ftr*+@;!-0BY|v>8C$Ow0r6ZU)_5w>NPsrJDK;K0Lz!ogJqg&4ov5S%tOt`L z1A0EqKCQ;Hh(iLLu?w>%;9wQ`YPa3%bvvF%oKS1sz;664+^U1zrePMxX zbX4>YlQ{{Pk8SAZWscoZEbEVvH3?XcZQ@SBn(Ly_oD-{mlKe@k6CK?jVf`txCIRcQ z9g2LS&$o89=bYG|C2x{y#FlUDTCqP*)+Atk{2s)pBG(zC{ocfQ+rLrUdcU z6N@r86NjW4KlGZrTv&dWoJqiW?3{5v4am8%yVYJ?;+Jhi_8$;|1PB%6gWghicVls_ zxr#;R!v9C)Pf`(o_8k2{`U&}yfdAMgPd*D_p=Tm5{EX~Lz`lZlfT7m8R>D62LjV#0 zRFLWc&_>rlO#dsgCIRaTs#jr+)k&87Z^)el+{X^V|N2c zj1M7W5-=XuB2#he`p-U_Za9q{A>%5Y?B0u99h&bQh4$EQu#d&ykjr>KC)n>gPTh#B zK8x1aGrljnj2(c8o=Ucx^z@Eqe{P9C*^d{2Zq0!W5=b*P+Vk@Dn#BTe2mwd{Fm?ob zEP!+^d50DIFmfdU*ReSuAJ??dTgjdT?C& z<0DIUy=!Fc`9?5W#2^92*mi`+XCel^gyV)N1!RdJBmfy(ET#g{F;D^6NdOW6jBVLY z0kGS8p+nvz6~~_0#`7+g7Hf7CjtL)ugk^uug5>FsYC6Zv5l%;>xOksmo#<9 zHf_`=*SyBJ49z_cL8I!`ka4i(s_4myjjEV~Hmb-4jj9i6qiSrbPd=Iq3GZ6`)5`eQ zG$sj*Iks@dPs$K+Vo27z=KYMbvRLDFL?W5swwOab{yD~?57&|+yT!>)YVvEA`{=E4 zdTXQymA*bS&%Q6b^+JrX54LQJ9;3HT$-`Tpho3&9ezJYo2?Ei8X-Q`1mRfT=8yI`G zG7UNSPXbx2`%AHHbl31b@x6@&^z23HmlA*k0OjTGVEKcv{bRBv0b3hY#pT8@N@K3O zw$_@%7Xi^%!^EWw9thH(5{U#zc4(pmQhTM<=`m)k9)C{mB;amSS#j>I<<<%sDvf0f zFk1evB7YL_w__9~_}{S30bMc6Ysi=cjBO=Vg7F?m>`d}nawd7!aQz+wQEc_Zt}L=H_35@&=-i0L8X@ikrrwbmjv< zZzd24fNWQ$1dzPWid8A1!&}Lk1gz~s;^M4fqGb*y_AqA9OPK2K2}1&y(uJ#y?`QK( zW6qR_68}K%BvmMZSNA)uQ#>k}AB=!zTqBc2Y^a@Ii7X0r%1=sJGNybz*;nj7h-Q z&Y2XqyD;tr>{MkN~H&fAIlFC;z{YFA4bCmz;~szuxI}vG2=#qt{wQ9b+>R!WEnO zx`6sL0Z9O;8yRHd)#K)kjgnCF<(}arYCnN2?YQW3$Uoi8J#yXQVAI+5L)Q@I&J)=T z4If7nX!8$5{8MCbGcCSlUUwk!kU0#GB;e-9!g)64-m`hcucnJ`O^!B` zK&3q!EP~hX6j|me3khU-+D6L)17Sr3HfzU(pBl?rXpvHpK&s!{XsLFgLc~H=ah{dO zP#zM<^OXH54>ww}GObW163Dc;k7e401#ivyD1cW9O#vjRkWQK+MU=FdkIeh`1K8hpQRLy-fC;kM&s{M5E2M-{w{3*t_5k;PRMIUI@@66ml}LWkVAURf0Z zj-mi05Mb&;l2h@eE?(zs==K&3YZj~jv4kf9d}|-+zm8!Lv>ubdClHtfz*Dz1^670q zW9@)39%J|Zv%24oB9K6Y<$a?&b`ai0-J5fB=!7+vyIiA*0Vi?&9f(f?{Dpmo-|nuX z6JlG&ihM^RlK{E7Z;&~_o&>!!K}i5Qbw1ALaSybCwM@*x?S=MS16w|Fgv{Fg6beED zLH1G1QxJnKACnfiJAp|6Jaw}qzXewIbViJSFG7>-TWEY{XcYqjiC~){Gzp-W_Fb^q zjUSWP_a!z7u=i0Br>pT&3cAV*%UJ!F#6O+*B>UFvy7god`hkQd0rcFyF*^nbMgr|2 zge3v&j(r2WyWL+(+4&5jk^uFrDVtcfVAbt^n8o_-(26LpzGcv5f_ZQovFI?K* zue~}n$KMBe_*!T&IP7e95(?dAGFN>Td38nes$JqZ(m(eF@zRq!tuureEN#dumk`+s z^=R6c1mf7`F;nwK?(M9vVwxSFk#1pKbQ)tjF-U-+i-5Br>M7|)O_rg*>#gbFVt6nj zdC$USt9i}xL}b4rncMDXWH6hl98yqJLbA8$W*%ErmL?!`pr3GSr6}!>28eLhjx7O-miyG8?qU|q; zNdn9>f<2yqvT@e)QcaFj^zaM^?wP}8d)Z5gThaBQ`S#JscSm7@arnz0LaS4`4mY5q*b{ykw}14Cd8nMTdye1Zr?4Z5Q795WkM{7kyhyL z1S0`hMxQvc_ITguJNv#O_abi+@XqR~ebyjAEL*Cf7hj;z z?#PzyGsu|)oU?kO?ve2U8gWhw|1d(303u@^BYJi`L>nuA_V{K$o2*H|x?H}9S*OK6 zj~FDtD3`|D9qE6jlc4p)g~TBNPR6p{+-3^mq!qiEfFz|A>!3)ltl}*aEQ4slMYdI9 z6}yZ$B&8M0z)36iNCJ`ouw1~wj_Zj!{c5r%0qb%B7qd=_e;qMMfKeis=}yV}-5Li=xNIyyzA` zt9@@ikJjl=v~_Ayg9-4QduCsLeA$C#`huGO$r;3D2Y3H!oc9GZ9Y{m?g{TQk^ni9SFtWGuAz zSn88-!Eb&bs${(I;635l-<{>0oc(P#ToZBL%&ry*B+01#9EYUo-C3Qr3UGcaIg@~M z_|*XW5VkKA>tz`zW8w+TorN}5Plk=|t`5z$7sKigM-U7SyTU#~vu8{^x#u+W`7G?d z^@pOxSz+hL0>=(P6(1NySr2uhPEdOo?6fO|$0 zEP6WW(CBpZV^{k|%k?61B>~rrtRFo!iEI3Zun2q!S(AXZ-J>j>TPCsgRu9=*X_7Sz zLJ7j8Wuo``kzF23<|JSqp7eAw)!h$k(b3|XQTDKGV@DUSRO}6Bf#~wktltx9;8KjC z4>n)x9%3FiIb5itCp8i9X(WQXj!guKXS_@hpPyS@LxHuzT)|O&5=fz2ilqZTdaxe- z%2woC3PhJcIv{NDV1?uGZe4z)*vL$A`)z}phvtam}V`>Jv$#FtLyH`Us$`I%>C=OwF3=lm?ndyry~hWYavv*x z$qISUvNd3h$ za76Ot;D~b*Hv#vy9tRmr<-n5-fFCHwqMUDgwX{lB4w=>++fl0`magmva6IdareG z`_)K@mmxWW*cu$dh}i zM8Zk>z(ssu#9daF*fDzZr6NnhMTl8+-s+Jz^u|Z>#)Mz)ergwGeOJ4+`&3^FDb@ao zp_#{G!@;C@Ix(A_azMGi0YV@m?h*v%N5|s`6;QJpw8dFrs8e^WWBXu~fCdKoG0`@s z!w~N549?E*?9iOO1qvNAdSP(P*_K5OH`h?)WWU4vOoOM~q3n&S?8VbOeDa7)Gnzpl zH(o)vlHYN{U4uK0s8JI()QD{0gY%{mOND@g@QOscg?H>{bh(8U=ysXc2e-RMN{{zw z%{~etE-xTNi@QZgmR-TiK{MSBeF~*!me#Qon|SsvD$dwD2X|4y+)Y@z19r7;$J(fN zA=p903#Jk=;TYjK6TL_xqMbPAj=_lux2ZtxafothaZzBR-V7IGV-<_Fm$g+bAyDYP zK`kK`La0}>th{)7NU%(g7RkE9lM+Te6~ydiQ4g2D^9%E~VGo$7^q40TC`So-cwSVA zwpt*^)e*%`$rs&=qmbFHGA{U&Bq=(w0!J%jC>1PdJaw}}5%D+Lq2X@?hnqetxS99`e@W)($h4p24y4PJ_!>g5|vptJ) zWzP=HsaSV4IA-+1;Ft@Q1x4~3a2crtBZKOm2IU;#-aK!ocrrNeEE)r{Bn2-5x z?ElrG9pwTK-Q&&n%lpE||mRRrA; zPGmXOah-{;433RV5T69rL-N_di8teKo+n_(g)R+_JKvh8c7D9u9^mqZYxIz(g1Ywj zSOV`F!ZmuNmQXM!B6|KaSdZIUaB2Pd589+H+dC9t4bU6@qNj6|uO;hu3`v^w8;@{NN#k3_R&mI&rY z<+H{d_okyUnw=SZBx_wdeKbmMW)WSQ^&Pg4+(hoe{56*PSxHYT@Z{jMb1Yn~*{NMb zICctQ&b#+&7qt867TQil6M4_V!L#=cSE;d$u}Lgax|i|ICs>K3GJQr%#ABl=xn|RK z%}dwjGh~>VoKKr5A<{1sP&zN0&ueWLO2o4hnYx5ii*vB~5*dyr-g720lh7NVBqbG? zuMr_=jjQ;EM%&Y2l; zGHaB(nx72mRx9+6gf$aSDD^#XqB)|(CJBr{G4G#}cXo=)=)-z09EqHfgrxTQZvy2@ zUsp}k$mJiV63JXlB~T2hL^D^EN|Kq&{EAZCKPwY`<0*eMHWy_zK`}AUJla@a)u|gh zbFz-v#k(HCCaAq(24}djwA@|0W_4T>G|5vLp$U4||0|u>tUh=0sgn`^J2k=2&&(}% zJFeziYpr&zY$uJqXK)hgc(Q<{=WCXQgpsg7e$HtV>;i*!>BJ#q_W`|^eSuTTT*0^>`Y#l?Ik(U(VVZ5p+!=p3KISO>ANw*E|bgm37 z)-K}Pj><^JscN2YbB4)o%-eK#qnn~(;tmI!uCo`Q-M#aL$x3ss>lhuP2ZKW{ZO&bO z6~i{G>zp#t`VPEZvu?#X)E*5Ey+%)i&pG*ov22l4q;JWx-R`6e{k!9D8vO26Q8JR= zCQEv|;~V+1e8Q}BQG)03u`R6UnV(tOyULeBdhH&D=@)yWa@`~M{eyd43f8rAE$iBa z5$oC|V4adSt80~VfoBz@KXfo#Xxd7692dHTeMhXB)>ql4sGZLT;Hj*Uq7+Z4~Czd$bnAD%cjIQ(kNA^JNIWb_eY4e&(*t#e(KY)(Nv zny!j7##KEwwyq3UhGJZEFEXB3YfhHfs~(l{tVo=!DDM$&DR~kn@~%0JJpAf$+e8Mo z&P!Kmoo>xd7tlrKf#jU4{>vC!_GFe?s20~~s(+mbq1tY;EtO$h(V4TvmdOe(V_M3S zOBF`ONmWTn8=p{nWMo9H~RzA}&C<8ftm_lXbt^_1Dcr@cDr ztcj0X!_|;7*_XC8OVUxd-owZxsOV#(-qdePzO z%PJzSQ_N$CmQ{tEGEuiEahnA)a(O#r*uj&?c7@U@+ZeJ5=jfS<(jXPrlIhuW$ZsSm zXLSs~0DFS<+IAI*q;@$RnqS|Roh9$gV9V7^^?DgqNY;3LlBY64XX!N%Y)r+IeClMk zvW;^SR+hsP=LUznrEVAU7I1!GMwOQ0-0#kJXE<1_!)&NJMbo24&JT{hx_fT7b_s6P zAu<^^&l;Ofp~$YTYz6Mcgb)XfcUqid16KyeUdl~iSt=im+c{*slN#mp+U}(;N9Zw+ zVllROX9ioYTk6)X?$);9GI(aSFjDe!?Su3Y(ba^tI%txKnT{E~FgW%)+>E)46{t23 zdv#iMB4sr(LP&T8ayR#MQINw0#GM-)A^gwQTZDDi%t(s$>iY6BX5aA9DVgmN1&&Cb z92{{4Zo;gay$Nz>HCt26dn;H-X}i(AneGAxv#t2Yg)SlI@BuMXyWgu_E)M|i{Cr_6 z6&<%7*rj9Tw$sL8OnhTFGM!e44YdcS<8kmzs?9)a5GpBikHcsVy(1-308TbEv-;>=1H z`GL!bx(hSyc^CY57Kl)Z)n9fVv5a0P^^H^A<>LE=t1gcf(`}7uSjP-)8a8hr zyI|tY7{K;ey3AT*&Slro=0o!qGR?@blWm7&%E9<3y_&xh+a=TLWa${9n03%3$&6aJ z7W@a1PGWW>hi1$?cuEUfn<^d0e@@jF@S&#{Pn+ihu^{ zmLEw2HLHOaeE8&O8j)LRh^SlrQ-iInRppHY+yK$eoYEjNQXg|rh@|s-Zt?}bxiwU+0cWmIw;MgnW_B7-fQ$gb0rU2ei>C=OwuI{d;kscZ@4kK<# zEW2}|BZ`^L@OWkrWn}cR{51s3QRJKU{Dbq$3s3saRbh`K)1aH{c{!^e1H5lb-WeW! zP+sovT7dN($U5Y|JI9eS-)gO51Fu~z$pSo@;nC2Xa3ae7=J>>5^SQWKJC_$xm~NZF zLLWqtJ{91&@1#hD2&v9rwHU?BQqClMud5V2cdEV=jX7IvvW_;dNG#{Ldd00PJN&MY z`>6Ek!BN}zwl-I+Xxo=McrU1o1sNJLg-#DvoxEPk*ym1;TH$Ec+I18n-Z7&W2FJLj zIct!srPl-zy^i&GC>h!V$Qp(V`4vsUIWl#2aHJ0PUF~iIf;SD93xVr}*eVx*BP@VD zIXFW3Qw7`d_9ke@vtMgr_sG_oF2td+WWnG%7DigE6UW>!IPpsFaWS7P9+bzYQBr_= zJKL+P$j45}?)@U1wGRtS(qJv?!4aQJ0%OHD*zHoV7p3HTClg5T! %YWG9pgi zd~{Gak;+?;E=D;rb#`#1@JlR6&rT+4W%f?cqLsCLbL)70dj+dK_@zmGH%Z^S6||G{ z+&VbC=Ow&el)W)UMKpGg}A&5M_$uc@tDXKzObH*sg)+ zPPY4c&!nYMA#a;?d2riv?H=a=p)Uy)QFVW3crnG(@`X0?`ZoOw2bB;>2ODV}NaXd874m16xovL0vI z3j$>=OKMuc8MS7OT1yz!yoh+YO?GL}t?4(C8>{Wr7KgYr_U+~9)#Mp>d1#(|C5l1v zbx{n2^x`{GZ`xr{w^zHua%bW2CK)`7j}=H!QBM9`%gI#*bdq;C(BOoyGxEkDmR4bX z%?|9Nx;TR-k=3j=@xDP#Uj0C`#AAga(VDQTkrlMOsDOxQ|FUmA@-DNO{5Ba^2e-Kz zqIi#a?=gEX667`Y$=vL>+dA=Z2&!QB7byK7g@`s)x-u*4F3xX!Bt|4$<$VvG)v4qN`C`V__^= z(90eRh~*8Q?opHa7rI?6_1*~SX z7)PZ~58N4Uc)T!+8-eG&ESFmwEVL1cW_s9%T5P)2KQ)MsW^n^BycMOnF>Iqu7GkrO zanX6q=!L;C=ST|9?{Uen#j2-s&l8qN4gGGHj4UMqK>JL z;@3EG+1J%Q%KUH0+^>b=HB`B{QF0{lxK>fNZz9`Zl@o7&kc&S(gJ23*6^iv%V%^c! zDe|^NxK@b=%5x!Kf4$TotTnE`UPIixolwczB%Y?r$<@{wu7-$szl*#>^+%{Xmt9@e zufN{a6sQ{_?(Zh|bgl8Q>7rBHu}X`^h_8Lrhr?uD@O}{Cpp&@L|GaR0vZ> z?e*9D={`dEI1xr_g7`(XoF0y|z0K?qz`u&6My^W@KAkVFzdlOtQ67(AJ}Z_Qy@5Ev zo>_KgL@BVTJmUTZa!+LV;20BHK)Q@ZhlAq7p*azoQVh0uX9io&iSDM5cL_Bt;`^l~ zCtT2b+4^JYR@~}(Fk!iJvMM8Zq%OII)ny{djWEbZTfuAjQ`@t(Fw}c4V97zR>Wx$JO~K zdRyCB_arjS@KjT`w{%U&<}$x$dn(5|@UhtD@?vYpT2nr88{aXDJ7$x2%(5owuJyXh zcFxl~9-1G`Ax&)cPbH5~=&so(Vkk6n%Y9)1pxBR*$EsALEbZZICkmSzJJ`OH1i(A@ ziF&eysEjBF;Gal%62N!&9efmj0TG@;5lA4ycDChCtkQbUhDyJc9ZVJ#ha4XTRf6T2Tk5KnUT7X$ae|rc}mXV#rg;+=oshfijJX;>IcC z2W)Ibb1ET80BOIZUafv!kb1DE5tan7S5y<8 ziQV`N!tqdh6#bxP)%Y-mR4hc~Wg3z8Biz$5^^vXZz|_VonHrHo7$FhHs*G+T4{Sfb36?2?~D^UP%lO+5mn z{s3fEp&3Cc7DDrJ)rMvSAhF`>WxhpckwBlSLNf`c6?_8pW`dFcw5rfdf_kAT7u2%m zy96cya7Cdh?6H42!^Wa)*U;2cmD&|M-8VYeX2r!Pj zJ`v2$Dr$H03yMGj5gu1fvW?YbSOagnZ}OcCZX0M(Xx&s%C9Tl-I&g1iYd62=jNav1 zd#3 zJ$J*9U6sJN%CvG+Y5O zF*JXB9fJK}`ECCJ#(ummm4>jWbKnEgy~73NZ%;shK6ev5!4^iL@7POV(sv)$Vmb{YoYUxkypow=qCKBBDQ z=g`zw5o(9pqv!|VE~y|UA~?lCzJmX8^k307|$KHLYq~jnHqbHs>Yr z15i%P;Ka}@wGfVnC(gx(e1-}4%1S~rA%-F&KtHPi8gA5-)6_QOB3#8Z&tru~0?on$ zLgitjkWGWXkl-W$54S1GgTtF~_@)IIQUDSN@YpJXI09fO%fWVu8woA*8AfyzUoN03 zs4K90I3^wOQu~UofYM{U*1m#OCVO@us<-;5+>t!Mn0{pWm`;hHun6gIX-HR)mr@9l zc)fFqXcp*F5~vj(!I&zhJb#C16vlYuq`UT?LR12L0i1YXd*HGs z9c+FF?i~%N3X%^#&43U4h|c;Go$bdUmJhW@(GTcZK_4rIQyfI@F&eoQ^s!>*60^QO z=GOEV3G}ESzonowohASeAs`6=D`?B40OQz9fF4Fr5`dQPV=3!;0^w)|q6-e7ga`Yl zYPMkenx*EduEw;#hsHb>LAc2s#=ii0Y5BU)gH$NQVNK((f|}OjZUa#iR3vjaeMACP zDyW#!U@jDW$fF2J0>}z#h%}@hj6UqKge3uNa7AX3FhMx_7fK`!leK0TNV!*=)NJ9UVZc@^0bL zg38wNWkyvfgx{qaeih^(kGlq-uax;A9Yj)5OnBB~YPCU_fc!BbNdQ?vWt-N|3&aHM zPYFu`*z%RFMXlTa>Nj%rC|Rgnb~a9;3vkY6Mu2_P%Tg5+HH zg26miv!EaXqJo}cZ+COGxyOD7-5m_gt+;CAu;|$P3E1%Bx#?;!4_46-gF7__s|XE` zy@sJZp;+chrU(*fQ$d&1*+~komkpDk*ASEhpsfm8GHD&XkW2zUiohfQ4!+z_$aQt6 zwY8~XY{nr2tO`0HeS8>CtjZrl^FF?tc(DAo{{T}#2gJcB0z&ad4aEvNAda`-pKo_>a)X)q1H zBxH|}B!H}-EtrOkgD?rZi?AesE#DTjyz5DfXEPe3H~~-v)$)z4wQjW1f(N?F;@4dG zdsuX=Kiy<_1=X?-i}^iW_4_i7$_lDwpS^^oJE2(Sjr0}?j95Xn?6{|@Wp~aPS7fwRr_w|Q$vyQH10&{e z2nif=@zf6S1?LnRjpy7#70f&77H6@@MB(~|djW;A6wlA%vwaQzXw5gUHC`K^TNeND z^M868`&Y^7p}B-pyT=Bu$jKBJX0Qu`9xEV@V#9AAQon^8UkV9<}@)k0(K z5+MdyGKy3(xb`dR+TK2}43p_NIaCJoGA36NXu2|W!5jxrk1lRkGe|jY?ZL}3;y)|E zml-Irj{+8>6T+j;W1XO}!ds-^YGm*bz}z}zi+9EzNHHhe!>4yh5>7GT;qR!2!xjBh z^247ohVnOGqxVQ4^956TFJ^}iU!dH$0!;ImTj&?HQDm0z^0En9;CsD&6kNRe%^Mp{ z9stZbg;!B(u^|Gl&NO*|t3z{A8$P-{%6Y~O?plB~Jy^)#V?0k90Q)6kICc?hJf*pI2Bu`Tji}fg&r%kt@tk7!TGTAqgQ;bvB6_PZ|E_ zb@XGoIoBP=-Quo}2rLXBa=0H?B%+VO*%hhB2REu#iB_<*I^( z{KtihhyQB^jP*{Y{m-1Wf(bYL zy8rZ|3=M(dgcH;W;R%E3`AVsQHYv#k%^b}YOC(U_x*`rra;3Whd6bHoy0%Im3uqU0i3OOp5!c#1BM;25PXmR!Q1vSOAE+|pI zB(|iv7rm(F^rWNh3iL$C7lT60j&3BRhch@Fns4xZl`Y;Gcfh*|SD+`7gi{PS>4EB` z0uAFNLn&_YDdlf!EM+8+dHSA6%&x9K(f)MiF%O_Gtc{#m!n3Y?HgkB+VXQ6gUTUrB zyuO~p*nyrKnm^-Y!cpnd?hHDo_C{!V-t>hiAc8`|J=@eh1#0vF*MyIp%%YsRjE*9K z3c)>J$S$uDV{auv9!{58GbW5yy!0TWN^-Ei!Qs$6iG4&@dU(biV9T)8a;3+@DF)ng zN!ik48Ty`~kfMWm51m3%ru2Ya~$gL>d~x!*46 z9qPu}beaAdn=i+VUXXK17A(&NMp%NP3=M(d;is#I3#6_fU-9n96-6^2U`8f^BGZqs zjBu^vOkjkCikYX;qcrQN3Bz-;9IT5s{F3kR^zfaYxg~t1SK2wz(a?Nz7ksukJ~7yQ zmAjQbdO$GeP6AN2@W}JjBjHZpBralq^iWosm_DJL<_4xu5=d5(XB*!t7M^|bBmvLx zI+DC{N;k}M-A%3};2Lgc+)nA@gUl{_>F=R=@v{*noA5y~ zUK$QIU1fhkw)|liGggL(m^W+0rfT;g*vLpe^{B3{` z%T^O@0O9#B`Z>$_n30$GxjW*PbXOJqq>mgTPI znl(K;60w(Y2s{f*`B&t+}o4hNgA(VN(I z$z2&b)>RnFJygXUBOAVfR|HBLTbI^@XRQ)RoI!?sqEu zUQd1`W%%`)yU+j8unBjvbF&j4#nPHKOCkv+4VA=PoVh2d)!+Px zwpAm5X9;od7j2}w>wXBSN8JG9a?@TOMLz%$t~7GVtq{r^CjOP0I6PW41;fb5PHuBD z%}fG$!-LAxve&l=tvSRv=57Qb0Z4fMaas_tkGHsuykPE0AQAwbT{vj&H!oom+31%H z9Oqzger&L*mQ#fWzQ)<iB1m9J=r5YdgQ!26+h2>AAX0rkSL0bVB7jr zv0tM?Ev0QK1;i6yG&TRu+(`m$!Xu`Iw6WczwI&+1Vc@S2m;}J#<+;Uy)8RRy_16hb z0`TCV-qhGOWVeq%ZGk((!BZjyo))LT(~tt6x7VdW9BEO(59n4R1uBH{MpT}tQCT7d zTA5ueI=RhDm^4TrZ;2G>v5!+=1oAS1kN~7a3iLpdF%|*6oIoT1DxLyQ(-atSy*-0S zQXo!&bBPpq+I$?MQ4{5~c|Qd_O}o9? zlnyobh*F?`JA#7H3Vr~hL<&?0<&CI(aOo6iWp*jh$!$JJ zUywlF5-HGQAIDt;@)3fN0Hj0;^gxm^76E;nKqLSvo&rzT6c}-RP?Q333Y<%%z|%u1 z@bp9qe92Q?3QU~W6zD%+G6njqGzAhF!FECE6qsfmr9l6}&=AiYM3<4kuq9HU&pD6+ z{mT~kPy&+xxI_x{IY+?h@bvSNXuX->Bmgg-0)1>rfu|=^pg^4;r9l6722Xfbmt5`7 z#$v0}T5B$2e|UU%s}(228G8YH%gcqKdCQX#&&R_eyGE|*=`=5j7Ty`9uxKg;V*6T+ z?Zx6foV2vQ&v&ISDz5nfTV^ECEc_w0Jfk{k=Hl_~?ku-l_bhI%q1(mm?vCgNNKu6W zqPkX0kZ^ExX=r}`8F2q?GOp@{NWl0phK8hGpM3n_W(9|H`9>CeBn`wQTFLji1b#S&Gifhal+`cC2F*JYz?uryUlM)qIlaLN_28YPhy9*KVXeE za^5>-pD$6PMch466d4X*R)-fH*9fr|SEny1o_Riq^tMp|H{2~IA z0Jva{mgXD*!_S+DFuGa)%$z8V-W+7cQ)l29aoI=4{%w4&FOD%{A3ihK>`1$&3f?GBbJ zNukl7L-VTNM;IMykD?!dDA+rUA(S^_=s6lg1qaAth7v-)+~y%H)FhC%VDB)+UK3aX ziinQi8ESw~iv{2zBv%1IeWi+iC0X&NaAec7R zSLe}9iR?S0$3wIGDKPU^Lb_9WWFKIIQf*%}(34!X#Kz|o#rzjN zK?3m$4pyYZ7a&`9N8tXOa3p{$*v1OMd8K#+@|T1p0pz8HW6kGX2!h+Um(f~HheqwORe}nG$%0S9>kwY zpO>b?w#pK*`W}tdf(hFR$@qu_H9uyeA%U1@6iPJURgd|-oAwp$!LVSff34fb za`E<}CJ`LX$kEUo`UIGEb9_R6>#fWY1zRQwI0b>RKd#0uSScrXN;ZhjD1vz{4Nn5W zgRdh_43CH-zJ!D~L_HgskI@S>RBW7Hu~Oc{s$c9=FyF;zwy}P8eU2|C`Z->2n86J* z_69%Kf9_fE*hypWahJmw^y{_zM)aYfba3_O)z!QA4UBkyoEcRPa~-oG2{eAyPj4xt`Lp-3Rq4TbX6IFPzt#8`6|uaen#PE;Zc8S^<7FB{d_ zVVlu1l`b^Oh^P=I@v$NuX6L9E7DIwM3+V-$7s!0A~y~mIjU^ zKL!3Sf|CIJ+F+Cy#jdB2zRggM!w7g8J-4X=*SbC3k9Cf}hGz3R0`?F+aQ^`p-g{>H zP<3z$ggE_~#%cIv-QxT;NMn`EHS`q;l&PvvIAsLPhNlPlC_<6|GNaE{++A!RdV%S| zK9;Z~fDL}SqL@|dUVxbYVm#U?0Zc~oYg+B*TXyi9uh6Z$0D*WAPN9KL3Yd(BYC#x< zKnNc4Ut+6@N|aNA4x-$mi1}Amh$K*>q8i5s(%_5XK0`PXz*Q9OK3p7lG34h6Ndm~= zC(Nb}JMhNji?iUt@KO{B8S@BJM?$-)uZhp&$IvXX<8rY4{{NYK?*K`T>V8}~OGrqF zY(z3~PUu7&n=B!LP(T8K@QPt>cXoH`W@lD2vlk=;2#`T=fI$ryY}o|a7z`%a7#U17 z24j;V?d%L_P?P+(1?+#bIH#qTFapANl8^?3-FjvMM9;Zo z5s@=S_Wc*w*!U~8GRZW;HWEuK{6WJ=QT;joy2^cL+}xPKiC9yO>;(vPQNN6 zLh|k!l67?$VeOA_pq&KP??&NA|}(`Go*YkDQQ4i)1{r5GVMP@ z+8anq1KN5n?Fc$P3*iIAJcIFQqXaZH%^C5+CL4-)8vgb&XG9U^jI^MsY0hYAlma0* z)DWyKqiiKGXQXbah-q;~MT2V8G~(E51bt&l_W;t-fUdS^PwN#1o~z;Mq@)35J#$7> z2SMlX*BEjx5^9=ht#zkZb|5jQn~8bF1pVJ(cF%91PIK1y@9#C3lv246e^+Y!)f5&f zfkZ}FFY{=&5e@27(}XTVr@dfAdIm{pKw8t>AVZplV?=xwiD_P#yy~t89C!f#<$t1n zzb|ho555$^_|b+m&tibO$f?!A<37F(F&gWdOK@Vp#eKY+|CNZ=qr)P%Cx5_Bv!-rM zIlK&|M)2;@;H|G=qsnrs889oW`4LAr8dPu2lQAXIa)#K)vO8kwe?od1(2wf5dKuI) zXWAJYwGw_x2{e#!X)Py70SChxRmS^QeTCkeHKq zA;yo1%G_>8e*!1WSyxgr47?O&N0|SPhWVVeg;i->Pt8CJYHhA!4@QF;uGJc8zJ|f{ zA#4Y&xOo8u&_KXt4GM^Q@T?bJND(v;fh8J?lT*{T`Epspsb#uvPvWCJbo}cW?l$Jq zAggc4Bs<=)v)xTSu;1c-VvgVgXs$<>BDW`hP=Al^WGFR4{jE*(=#C|f^t8g}YW8O| zXyST%^oTg>(F6Jyk)8(h_4eoy{Y;bx5?(?HG>}khk4_FB;{oAY!X919Yxli>v@;BI zUznIDT#i^j-uCQixho2uM2EDe*V_GfHcC?^2>ly0^y>|Qh$@VKe?a-o@3WtyL2Wmh ztLYJxiA_V*=HQ;Ny`sVQ^#DXfB*Rpq`L1k*X9ubpi&mL0# zE-7h1S<^%{rc5I@r2T!;(tx&}t8aqd4mm!-xU^9MnwoB)t-A|K+(^u^&qpX8BHQ*q zP}Ot;%~2@};_%BFhc#W+aqtp`X>H7H*)}w&NliDbs>#DL<7^$bEvq4)^8?`Y7~ zls;BJuUNP`m~+__G^j&OeQZFZ;pWLMAQ=tFYKrcFEDbeJco7L{K=_1O0`0PK+oOM* zLB=4c&v%o-XvM8iwA+b!((@2(hr8W$3$!)e)(B{o4zc$mjlG)MDPWL3&(%gMXO3k% z(V$8-jf7c34aJ!Dc+%2-}@;~Ccn))n{uffU6DU-R0lY1Ierlxse zOlAW!p!^OgX+T+5Hu&aZ?;iwZK>K~t(tx&}d7)GkUj|9Nc`#Znh>p6tuO0fzw8;*< zK=QY)K_DK?O|_^^O?PF1spsOPKnR|wAy`*N*-Eg1d_~M<>?deYjhb%1*=k6n+u(D4 zGgH#hfUd4+59$>Jo~PVNN*Yksb5|A>Y^NT)HA7C~0R(k*7dw`?_C+olfr;CR`5T^& z9PW10Ezs5%=Z;qC5QKNrAgpVc4k~5?F|C}rE1QZ2RjR9F$`Ja13~28`S{l&SHB4t{ zqreQP??q}FP}ej}D>DN$;JGV<)W;6UYHCkBJB<%B;rUVtRlk>*zvnHhBh!L#8}v1u zad>>~H%W?+JxxQlrqj)cLpn8IqSZ7n;lM^yU;KCq@hdY$1J{>Z>X(t42Glj(HSiRk zIt^Zb%+kMt^faJ(SR!V{c(kv+7a#}8A-0Gft`O2Q5d{4)Y+kOw1$`?-tl+X`=teL z8$adA{F%8IbM}`|X%JQCYgAQibXN^_HmaOzr7C8DEkOhE`BR+z6(7tFvt%8T(SR&} zm?}k<4YIU$+ek03kOAogC!21c)Z=*<8mk$m(lv<($TsXv8oBd`wR`<{G}CD zJtDC@M};adTgPa88q{=9w(;jswBd2S%4Pt=S8+}j&|(X=$t?e+j1D%qCJEdbh| z_H@x48=pIPKMOmjBmBN>%J10N`JWFh*ba_NIncO$ZQT6Rll=tM5zkgh8O$;>mj=pn zUpurP9NJi^i_9uphJNzS$v+b>$T8el!#ln0yS3(BOk8a=Cb7r&#k)u`69y*3C9O61@~8g=t2yp1_r_yEOJ&D9F+pTnS`;14XM4Q08X$EaY7Equ;4BpQE@$7MbXa<)tT6$u;H?gV-F?*fHZ0U*Z z-bf^d=lwtxm?`@r8r0O3?2G16;GraGu5@0TX%q9i3=P*Xx!x~56L6xIdW+-U8eY&F z#fUFW%p2Z>;5fnlypD#pF%PXpc;+4{bjf$oAV z4yeiz-XG>gxGzo2Q?CmnJUx&KO3UhqaF53JPsiW$LOUD75%r5mO#|wuRP3S^IE~(j=;I7s z7ehhFOv;`fx(3|Q9rwH2@Fv@ipZI73+nK6A-tx!sE!Wo|qVMP;I`1d`XvZH-2{>gf zeR8r7;VKS+|3wY_osBst$b!5&ij&M11_%wRyk0Rta#+%6@dpFm_yP&1;YH zbH<5IiZyB`dg_vxAO1c<1aS#_MF7REp>L~@Eiq&= zH?fsyP>b?2@jNm+s0N2D<#$L)1IqFvd4TKd7YwMuVN3gc($avo>{aK`ffADl3Llu_ z&zl*TGx1S=hNSgKD~7)5?lu^GVPfveAU%GjoJA6-=}%Gl{D&lpOk*-&8nEO>!2Uu5 zHh(!$NpRO;GC$KQNNvs6*qk(|QTd5kPL0ADVdk(p+I)l5G@yQZ*>N`mokml(qCaOu z4gX_ITI??{C7C{%T>gR2bR!|oLKt>RYKGS}kY=8e`{ zp~a(Omf#9@`p0bPb4t&EV=QfD5~Gz*)>f`E9ECc=77oi3Lq79iW-|?{lmB*_V!c-g z?J4~r7#_96A0sghh|6Dqob_Y&+%o=!CI4%Z(||m8P2&DnTH;yj=|fpOd>e*xUi6e+ z;nkn?^+QqIz$*fIf8!9@w*R44`QIWfR4oNpT*Tu&H6BZ^qfFKEw9YFwhHXFtwH3Nd z=Zaw7@0?=RNI?UN(sz_2{eE}~YqCxn8v4C-57{3gguL{7Flw|>fm-1dlHd2SAF%CD zbSE)a{4qiXClGc&*aTVW*LbQ{factbv43SPOGs4o@^tes*c+DxD4Xj>!goc?7_Lq!1LelSRgv~E;=z(hQ45=eZfZA z^WMGFNSw_7iK;NKW)DGwXeoQ&XFf?=4k2phEy$-Q%#fj@4K=qdN{{21g5rC#eRr%b1m;bBYrG}6+5w(N{0gypAP88{0X1rjJ`HzU| zXJd}fKF(%$<$1QxaxKPDL5bhtV@{~!bH3w`(X?zp?wLtfje9hnyFIr0L35EUwYpDl+~vLULc(wkprywHHK>;ygL zYh%|=)9~DzZ$tAM1`ZoCa5mfR{IXFRA+=LCO30Y&NEbV_^x9O4?(JIatxx--A>WCK zRqIi}`hzVwXhZkWuSV$J4u9OrJuZiGap{&yG3WU*ViQA62<*3NU_YaDAHFw_1Wh3> zm>=S$XXSfs5f|)vUQiF1QyBI%@bvZy0hmXj3E+<`XdAd(phwJG7@UlZxy^q`-J&v$ zV%{;EAC)>Bx7sYq3%Br1yMaruM?M_Se2B`W2&dTkG>H5Zty22NKD`=(X@^d3#Qg^} z?n~d;&jZ(~Z-zB7WHeu3oYA00W$&(MIW@j)6`e$ZK-*E`Z54p#%$HLyS#%rDtQG;mYdrCmlXp(}`7J=!a3N}2caqMOP|#vQV&3w4w8$}R5nm>|{%;rtrI&WG1|hlf zp>_UVTc^?tFa-9=)4hcu|#Gb@aL8T6p3gZf&|ud&7F`M3Nz8ycSLV7Oj9o+-LgJ4O7)tB|!P zu+ifKQWis0?#3O17nB&%qq)DQ&0YF7ADepyJv`HqYR;bqR!Xp0Vi#r65v{Db6Z;Vw z#MnZG7>lqq!d#IXl38i+xr%_z`qB$EW3myisRB?U~SDI7K@VXcd z4X%pWm?Y2e8!bIK4}BiNR>02a3YWh}{@GW4z%PzbV>2& ze38jXxyPh<28#_|`cCaUafzW0wE1nd&GSF?Q{ZObJc6+Ak}A*dyGpOvoXhR{uWYku zt<8CiIvRMk>^jhrE2~W3C#$2K z9ext7vvb^CU&jr`oa>VOQHwun*&jvMC$Hq>^AxB@j_l=k@)J00J|FXAp~=eNVztgx z@1wc0+$33;H{zoCd2>~xI?^24i|fTR=61{{8nncf6{fX&Yh{;Pqn)@ViI`e&k(ar` zNuQZ}Gu#FM$_Re)cau`WyK=PQfT?z5p>SXb_Ig_nw-45V0OS{`Gy4D5PYdq~d zM7HgJ05AQpgj>;_7~-NSFVdzg{jh`s)O3<1;zTxYV|PshwdF73Iae@DY&)hD?;r&Y zD9U$pAw{t2AfslTJ|))q(!I%$?9=1sgm zd#qlibA@gn9g_SA0?N03R)A6>uC{4hm0yCAMb-cdOO?yqgY83uij==X5d!<3$%b5b z%#z-Vq%cwmbe{$pqVp?^2@LyQe{GDUZ$a0{x($v8^)!tk2!@y3=Q;G z%>khL;D{nJrMo-nXh2u~Legx#W@0g={8duYfU@*5EYIkpFeO-L2->)Cp-_ItfiK@L z_3XE2bUQI0Nf3F5PwZ~Gg&IA!^yr-uDFFiRxf*cghrtxnMw?Vd@y&7U5ojR0LQJRr z2?pEHQ|1H`(SWG@-Ox;3!Uzj%brQ*FK=!!O{hS~ownF6RFs^*71HSyCDSe+OAD+;a z9r~Ik8)f!j%O13^0K+S0Kf*UA-Oj#3i4R!FAN%9!p)4*t!}5!!_99j_AyQwiky?Jy z(q2e3bm#m)6_~ATbsE%kXXzB2!;$So=lsk{c@U-0K*|-3NeRM#?{XeWIW&+{_Qj_z z-V@zHk@_`rw&KswMpKWtioSykzZ{YjPN=Dy!?H#J{scwJPV~CmvX$j zU&~u8Pt46XAO=s&J7h~^AjW3?$y+F-4!J4~(fdA)-u(L_b+bx*=QvQ+nD251PXjmX z$cu_P^|VC?U+}LjhF7lpCNqD|Akud8KhWclw!P+nS{LN*z+LzmtV{Gr0j_ZV6~~*X zjJxUIFlh1@m6vx{0I#DERUleErqMEL*aPgNqAH3P%-RI;L4z7^Y=Q(mx6Ki?ew$C0{ zf3{^?Z#*1r3YrB1Pw$K$jYidNOK`88( zY)=~0u7N%!Aa#N5sm~xa4X7K)>wr28XHS0?>1o)mwMX)_iy-z~-(>u1Fg4+4++^-A zt`2&7a_0B&t=4z2?@kNCZ3wBo@AgbOp&>nD`rjMsyCXK~Jbj5)-CW8xra@(E@4G#j z^cv|YpD(u}o=Fij5K(*I?a91|G}!$yD`b&EXdtBSzT0!P{g!3@H|e|6Qjq80tfe5J$NdlD{B!O)h?Nq-{!0z^{FSbCFiD^X)il>~Zc2j+<}Y}x zjaK{cko?sorvZ8XCH30K)4&b|yp{rJARu?ucvXIU1sB1k?Q4F)V774u!rEJTeS~-W zjr6sdb~`Z_`~`yfaJQRoK|uap#tKyq1Sl~=`ndlU@76v&2)HDuT@9te<_GMpXqt$u zEVTx9EZ}Aepn-te2al|PG`M3C|3MKn5b=zfXDODc9Wx$_){bJVz?e1Zb;paVcsJZW z&o=!pw`>f@-5tFFZYwPHcFE{vOK@)tC5buYg9!U$<3hi$f5yu)1;WykR*|QIkPdg& zbSQ95q846BjmTN5#N3fR9}S%FoPD2|)F(!hB~Q|?P!bI!J%2MLrRkF=>#meV16h~t zGl?oYs%1#ZU^ zEp7$HiMj6wkYl&bIpPXK6lU9MfmW?Wu4+TN-CxtKNQBoyEcrI;Le*mqW+>6X7uRf- zFGNxr;&a6vMsYL{w{zcdUfEsv_z)v)Aqo^@9mx4^8t0-HpKtEE)hT*O%e4XRq;K0;M;9S~v( z7gGWaB;igwKTP{zKGI}pFHKu3Z1*x*j5cyiyf zl;FpB!@Dkv2+M*G&`hMzGNHor42jMenBIo z)fDyLDbYhN9`C`MODCsaF^P`yfcuz9h{&kiam!RBF;tAeyhsD{6}OBGoulMCM--Yj zv)`kEuU^t@c;>Wu^pz29Iv=ETpt+Dix|il{w8zX5EJ3Q}ttbY~$?sy1nRm#QcCxYA zXpcEZd?G>-n9taR9&?TciOQT~s?A)+kfcFKzM#R7%u&$RGOUl2e%Qw%8`oSa9cIp7 zv7h-+lL?-~*};k{oHh3Gu6=x{bFhK`a2sFO_00>?78gqD-?a2^TKF4%K|o@j%USTL zN)^TSUjNMfMHJk76Gvyg{Qog$Y2}d=eNBpw{XeE}Uc&6v&(fggd?phO-2RcxO{Tr6 z%TF{sNX-SR8lnp}u91YpCBI^oQEFD1i8fUCEAWb(2?xx&?k{qNBI3<6AhC87=L`Gky4bFqbd;IQw{GT<4z5<61BeO;t6vdXTvn8 zeUS^Jb;-~(&y1MYQw$Bn6j*bKhtR4=259Bx;PrjQ58s+=Qo}%A+4l~D^LyQ%?t<{ z)V{%Vajeo9=>i2;Y{k5lVrU?y!E|w~UQC)U?vNGqb_$|_pytxWk+$82Wq+Qei!X$R zBG)TR_92U-9X3;TBxWlYvLB41L@lTbtOG0CeOYRyMOM60v!ckg%8HfMzS36M+{l>> z4XWE{$E2PP)4)miCMD27LW6^-YwUQeV0%l`o0}+u1~Lj7zx_FuY`z@Ey$24pmx67E~NroM%%G4dfJAtWlesG-0xmuA(FwNE$RYjCj_z-?AsCR=2 zn~|X7NhIV93Za3J2FH_(kTg9aF=tT>4a77zo+xEIV*a#@C$ita)zrF~ zn8&=ADPi~g24pmt5~&R3M@rn-cuJ(Ck`iJ4&7X08O@n$jm=YNYni7$a_fZH9gfy5E z86jy(L}K1gF*Fd%ib_CU{Hx|ggLBM)RT9J1TAX0+!)}oVRnLDHQ7zZ%vm!J#Vk!5h6dFiraDJDS zk|swi=Typ}ft=OGCR3IZ_YoybH7?8#m>)hqA)x8_@WY1a;9g>0`7xe@qy^zNBsF*r z;yLvkghG%iKh;!eu>X#D(_~5AVHOz_G@B5kzD?3gxL%;Pj#;K08pvtz9K_S=WIMX` z=Z{%QeM+K%q~^{+JgX*7&_e&m)Cr;%G8&w4QHQ;jp__@h!$&#cvU`35G8&w4r81Ns z*>cqXNfR`9nKvc%slrQ1tiL&*Q9y%wH=MA+rKEIJ@j@=75E=++aKe@GMLec>F;Afw z8i;9b!lhayF+B5;h=wp0o1Jj2k4H<=RX_^26Z61#+XR4T3NL|GV<~f{n)1d0jPPifwJ~aX<&!ZF?NNIM$6-kMbBam}7<CS*D@MtQ2PcuZpZ3pHkv4|*ot{I#n3=ZgG)vns~3}|iaTTly_SM# zAgH+|BaXD~HZ1$Sm@R3jLPLSc=LTZFKi$30)qnPPTSoGgcDxpG1)mV<4SIa7qBzDK zXyHK19!ShF???KalzS{K4zYNf(d_%qdtI_sAyVrhnpy=O7p{w1(#v@!a)Efw{D{Fs z1CJDV#^fsMJ~l0zfR zJebMp6CrADC_Fzm;tPE4r#l#QdguoRl7rZ5$zEb!%t!2wObcXNf65d)vlc?7LH0aO zv*)5(P$e;Z#gxNb!$~>~#9vY)&3N3!=Uto^E!iHD(SR)f8QuMEns~KUmhj~yqygbM zdC|H*d~Kj3{1_FsK4&uc7z}9uoLkz5;}xu-Umj_|jaTr@$MPsKNAcG95nZ=0oANtG z+ZlC`DF=e>DH?1~ssmJG%~nYn%uY524V0JtWIY@qwQpmC&m1@xnJ2R;=qK--^0^O? zVRy}bS%R*Yy~KQ-*U^tm3uIe=S}pfOLZv}-JhN)cTBL%L317kDKCyryW^J*rKkVb+ELI zS)dRa2+2PKuR%zV1$*^Mhhk_TCimh{c`a>q10Kz@A1C238ic6X%~Y{*>VM>a13{&y zIE&rI)m~>=S8T{mYZ;f&Kg>6Q9pU%wCVp3GiW8D42V(sijrGz~oDfuoR9B!3=ALXf z8n~(K6vsifWdk3rwJtI*V#BDPtaC~a35$dNdS|VRZz%1OHYwpi)0C=Xm)F5?1aG!J15(x689_k0Va-ds`{nYLsP zTk1BcX+T|iXv$(s%f=^3*`HYYhm)QL^trFvEK%_`xfX1sxX(kdWzDq=W(loq990YI z9lgcrXq*XZEwn+si?4jppbpEenBecL2Xz3(c1R4l5!7$0Bd9arX;23Tl+kQ(f<;p~ zr~_;tSwT<-hb{FkQqxop>HynQr{k#vb?_5Qe+B7jss?ocZG&1%Tu`%R%^TC84t~!# z`i;_^qkDv=Gu^#zPf2~PTT+&o%l`%;eXDG7P@;cKA?MU6M2Qj4@78$k)QGL&99LfX z%)8i8(V#j{EqS`&eWjkkBXjmiCA`dles)xB(A2T18}nZcT%?EG7>{vjzq75oxV^_$ ze@yjL?2B67vgIw5C+1i9a*q@94*Aj$i0xbYs)uC>@wCsP2(EBnH zh2)7*ZUn^_H7H6?t@FU8>9Plu(fkc_nFj7H-Hl|i{Zv5XC41OX{~f7mKwWxjoyGRl ze(>0m{fVXjEa_=Le@V%>%|f@efL~vWg35e>p=={7I0)*}7b`vY(#B#Ypjncbf9Hay zWA$f;H|@c6Qw!;Ao>L=gY8265^6)eLeR!D;o(HEcv0RHS;&5ZDJ$CUyhT zJtU<8Y5vl&0s~-v9dn{KAbvTCX+T`|oAeQH5U&BvO$=5WI6WWl{97n1sm+F~+VB68u5~&egCQ<{^FOig{mPn0A zb0SrUUvx&Z zeS!T;&NrV>w#jBiC@aG41P!;+^Xge>X|A|f*~~-OSTv|h=`-~h*~hu|fbl^~+a@gy zXiHCUV`NX8hGqN%OZ{+C(}4OZCBriYZrfelN0o@OM8`8;T@1NHAbnx!kl7e6@*@`R zR#R`Ov((!mZ%E~yinM>1{E#e z{kdk^JBJ1?D}cbgp9b#BD+lhrIkodIrZF+pXMV{(k_K*han<16yTTxRgCEWdU{QBp z2C$ET0xg@rS|WOWd96F_uWtIcN)& zbQ2}fK+^MbGqXAWq_dV8S>K^78pzuBSG($P6jr{-W&Sjb&4ZY9nee@;SszVCi+v>I zj$UW7XkXNT6*;c3#lpmV{_l`u$Ip~UMe_H|xAn~ytoo33XKL16z1adZ+*7ZqE5vK& z>zty{z%%)yd~MzzDWII{)9a{4H~G~G0-#n(_}q6586VS%Djt`XdtQCF>qE= zkZ=B=_0*qI77b)IItF^;wsp+{qS}hMNXJ0`6Nc}muw733MFY?VP~`QN`S%_}eKc9cc4NqKd8kXK&BWl>(C z7-AYdXWKR&b(a=76P&De-5N|^s2}3Og29h`kLPSN>>`$!3-=IVqNNngoP4ou! z;wm>2^A1MMVRp}Nz&8b61XTXYpz`S{G!-C5UaK)u;B{Gb(AwxoePH%5E@)8q+~@vk zy7Zz|M??hNzs*o^jR5{;yOGggV-5Fwr&tCro$#U*;4T9S@M@2Lk!~a`LzD)8(|k7) zkZFie6GG(r&FDrl4Y$wy86lBaP0kmL}_X@0@gox|x_yf0eTq`&Luk>zw|qr9x^ynh-^Se!|CCKpwEB;q{rtsB|RLiO%JK8 zC@^i#jc8E!hSMVw;nE|J@^DI_fs}^RBa#xPMltTkK&87!Qksbl}=WKdN5%?QT z4~&>tbStBWZYJi^FEKsrp5K6wM$;n|q6&~6-`s@sNNFWKLLZoCvX7)e-5X7hj0jDS zNXjCm&_GI~>5-9=rbi@anQ~|#r^)nCQanGwAl0}q-;ngMMNPY7xsO*p;_C}5qoI8> zC`($dBr$LQCX(gYxKQ`~pYbfI(Hx!;sj`qk|E3w#=)L0^c1fhDRP~sDVbsvTA&uUR zh{*kA0!^#vm=*Rz3ZsFrMo-8iaxW}Rvgo)K_wN)(193YWymB0Ix4DPa%Qo_@l$)7) z671;_s2VjnvtGtx=4nsgAZE7{v-S_jy2IUWx&<-$kKv%Z=#Be)#dddaYWcZ!AVx(X z$9|zXHrXsE@Q${txj4c+lo3LM>Nk1~H>kcOxy>kTA$5rPHHx8um`3lsWW@wo6bX6+ z1<^pzzF#F@IX2pH+x(m<<0BOknjH!7@~wg1rCXNG#9Z)w&gSf%-++)tXLHKO9!?b? zPmcYWG(n@+0#aHXgaRL!4yW`qsC%Qcxr_*xBy1UVhS^3bG?3EhY%U`uOp!oNk8)@r zr^(rzszHJT+{Yj)!l-OKJvQ`YhaxsGrQH2>mmb(tA=ucA^iUzH0O@h3O-c`2e;q|q zADF*mH%YS@=@E!X)5A4~`7EW-Y({znQsVURa{iujXf`1|HkKqkJog=adT3Pk8=Ym0 z1~xgck(hV=JyPS4Wp3O5;D7=jd8;slS^>(9q`03ZMYElPtF@$ruesU6W~V`|o1NT+ z0&F^@GESom8pvpN*a~F?sgO!}Af?bS4w^g@0VN(rcQI)0%Ouc1Y`QI0d)*!V37!{| zlQX}Un8$wx$#7&^5N< zbv3;!shd~?{wYqi?4I9%kVel$QX#4Une%wfoJP+?Qd&(Lafd1}A7(Vrpzh74Z`ue! z!h}*jMkzFq(&(8;#vehdgmV6xa%do@$ukjE)7JlNtDMaYap4L6hSP(0cckZ7wfBBr z@sFAwa@&VO-2I=1)58f#3>6?fp0+9J;b?7oNM%KVc{ZmRG|i_+BtoZNVRM+PD21l^ z^oXQ{=@EG51(ZY6czTc&=@D>0)ux9Ofxp+}nMnTuI;cJ%G2i|I(&C{00}?SH-qt*^ zvLY2$G!+`1-MPBrvMy>V^)*jqL(`zXjb2?3$Tj@Eg!3tZ1`--Q{Rt$bVee&JNEtMc zk^4I6ny&2kAJF!k%M5jfT+>yTPj4*tFW0jTzn7SQ`WDYN(t>asq8g1y&&m{3DaeE! znhA|gS0ZK^7kr88Fh}r8B@LX==-GxR_LF-}4_|Ht9Zf+r5Y*_|h9~xd(q!?+tf=EC ziUy*ZJlpWRZNFs|Y%qg@_=S*0XWMI|9lb8zwJ6SUJBhjEZ;?hv`2AoLf>xUxM;xc- z5OpAjuGSoC^pW6@SX0QlM!jJ^#ThmYJkaQbe@2K+pjghQDTfAf8eOF@BPU3oSkmVx zi3XAe4W6qzMQyiXTj&MMoiu2nqS0I0>s`I(i~sS~fo~&W4(6s>kS{iwCYD@@ks*m@ zNd61kYZ~cYg?UEoD{X$2eI^a6+-O%7(rZejBJM*GG!W5fFA<7J6Co9He+r?2kZld- z02tdT>$Qx0i9XOax{zVLJD&FO>2+RYmNCN?wDhX;p`S$>921rKUHKc%3>$r>H7hVN z)PxLqlV(Vxlbu^Ikz@m(ZO@FfT9lZ3@>0ifF3WAHFTh)IrPqREhno=vsZdph zg#L&obfahYE}>KUXw0=v5MP;JFxY6|lT8`kGNR&fHk+&jlqZC)^Wd-?9Q5Vv zY*M&Q8-pWO9fK(sDf_ui9D`?6M41~MRd<>PFbruBhMO`5MX{mzPgFvZe9>}HI?k%lzKQLF=Sm_g>V(HI>4DbuCdF?eIz=?+H2m5#qc zy1p@ONl}YMi8=5_8H3|ebWYJvZ*0aGJVURU92Kjt%=STPYF8)M+dF6_fr}Tq%}L1MC@K#kgd@Vth^6W9u4GO-sBh@k+%`b_=X6x0RQ=z zH(%F5IQlK)e0!5~&GBgZFulJmTX?%0FE<^kJMMpoX!H)d7oqgXv70r=8ok}@StYfC z>YKwD7c{7Nqi6831Wlw+$dMF610juGgN%iwX%mV$hGJ+SX1T#^5zcnV{6l7jjY*I< zdUZ$D$UN@B!Ep|H`lBGc}6UAw{!tTg^E^79bcw*Nsuqfd-D0m_ZU zJLc!oE{!hUbfl7NY0b?UJO!aats7l36$#Lc3S^u`88nd5=z5(oUCJcgk`gNiqLvgIo-S#HybvaFCZDTD?>8a>&Hg#@V+h&h{LXdq^# z$%G+i8;TaZAMV54U{Go>Hrpn64@&3q-gu;|CGnBRwU+E+{nL4rWE|f$ANzIPivyy@w z@&~P~yHOSmWHtFQp41<0ZZ6n3l`u9BWlBjbr{UY^q#Sqmf>#y!y~O;8lfNU=f^Zui zYV-unvoe%a3R3E9O{qpt4kBjBC|{yF%strO(!dFg-U0E%nSAo)R?xjDhz5chz1{DL zy`VIk{4p!)z7$0RQB5x9_q=VtWfh#oObX%`LK;222ESV@qMM1i{g;tKhuJ;90U?b( z8<`4G1<0JIYUVV0Wih37X(Q|Q=mTRI4K%2G)9LFPA$@c>Y!0(VDKwDM=#vB)e?+O0 zdS;z+XdtJ_M~77nlO*N7m>J^26Z}^^!Ng{T7L;>IQnb1ALFPv`^lUM}IMLERf2<}xBQ&mt)| zPznvCG&;;>q@?*2$@u`~&_GU;!<>?~BkrjTbG8Wl4W|d+G$1|T4*MR0D?g{{A+I1{ zdboEHG@KqzNMfh}>G6V1Ne@SB(?cpN3e55BNNJi+k4S_|k3hRRC3 ztRlUp!HkF}Q3MS{6u5$0QAC;mGeVwBAv6%OxX*c3IUQ|bUC;=V05q>;{A(2Yz^ge2 zR>q@^^)v@$*XBU~pO^zdiQVy1YR-XJN@B>59C%|RIS`Y{fRGj`xA|{&eKhswK+2Ul zBS{Zf5kIB~n)-7f$wbAr!0@EwL!OjND1`=63Y<(-my%{ko}2~Bp@E!!tpi2G)^>X?RTvoNolF%U zramldo;?gs6Xfo|y=7@|nxu&oB<72}uzXBZ#@+O9n844dH&a4*c4evpiSl7hlmd$a z_9rm1bdo1wq4Jw4gMkJ$u6g7l#xKwKz;;l+589&Ss@>%5Sj+^BVhAFg8T>$TQQ%c7@GR?BOq%J zwnq6O4e}YykKktv#^1>8tXF!&-WZ?$$vM@whp<4ZGwkwqN@ud#UAN1cM=dRDNm*k4 z^B2g6Tj2rOsF)?uA5+LVH40H;q`=oT1@h-^B`ZmvWc5o$&AWG?acNMUr{&EL_MZ{! zp3suwXM9ALj@G)F8`+w9emu8|A2-(4cS|6%$+(l4|Gw`*c)yn4=VnI_p_XUVL8csN zt?z4VJ*f^*>6W}ysfBswZnO^#ls~mL5*?T`REwmd0ac|G^DV-#OS_f~-7@KDK==3x zkw-QSxwP@k_ZVtXv!7qVd6UKNpsU|pLQv^mVxD_zMA?yP0k=E$AnJ5xErd#gK>LXX z+C{aXx=0JFV*Yt28iWSoFR72l$67@8U6Rp&?9%$kqG*c<|AmA!AUvmhxGAQ@TLk}O z23#Bf<Hb;yBEYkoM$*Un!`||9N(3W$qlU8z|;8r za7AZrWWO>Zg)J#;u`n_3ydOG`<7dikQSkR{$S0O<$UHI1jkdhCwq>_YaB0pgt1=qH z4xa`!dV0wg%|hd@KirLH5$Nv)akynWf$gde&UiEbDpi4bj*|CwE%w%VAEz@NcX5p_ z)5!jCOAg!S{_G)W?mGxTEB6=nV8!$6JZ8xTbWtM`?!>6kcADE16%(dETp#4bjV-qEa^}CH zhsTl?1a~VsVhcMV3ghFvYVi@mX!7r0$%>{uU7NPzNEbo}&FYG^j^;x4{WPe{#g&@W0lVhJ{(?BzGHqp3 zs!Jme=HI3)9Kobr>J3NuzdIf2xj@=(!I8w=`u=Ft+vFd#<)SS7BewQ+!l@v@xY?@2<%#dP31g~&|R}jA*Sov5SH^9L7qo{MgQhMaaXvvk*n6h zX=Bj#aws~LKmQCg|H&E|Ge_+Ky$&8AQsjlzMxi{BiJ=pi^VJntF+ zUUIdw#hRb;dVcTkkCO z!}Af8v`~_mx84D9cC5ykE42F^`)7=v(pQOR1Sll}<+&OtrLPjtAO|twluPwYcNdzU z1{EoLl{jK^Ee)ClI#%msp2HSZUxvPWO4%NKM|XgkMSp_(q(d28q@dNG;I8v9FLJQ!5S?VWBdabJ=P%s72}f+##;GkYswZDLiB; zFCZliC`-=@LtIap-f{{LTiT0AO9R>qOJ4T~VcW8^fGFTCb{i??#f(l3mmoe$-+ZCTd?t}Qhe zFPPWT(dr7I&bb#m?k@Fv!)fkAA1m(QmhMt_tuvYS)YIH+aW66B1K{o>(*oU=pYEl* zcDT9AU);f%RH@Jcf1oWeXC!ieydTKYUHb|ukNGREG@*g#=3H|uO(ma+&k}xugft+W zbKYN;FwOZa>8D6a1Jd(zqi#Pr+ho8x8Xp_xdIq5ch!2YDO}DYW)Sc=@Y7(||KQRyG zQktW~BHioQAE26ZRzdAYJyUWeL`?pv#^jtSL@DevD#OZ|i#da&sU=L(swiC=nGxwF zB&7jqFTX1-U&l;zM#KvwrUCIqRpV2UZG=WN?_rEe*aU$x=VY{4MSHvWDuiBVXMeid zNxM;Al(C0eJk;`s67w%V!S&aZ=N$D1GKlPB=iF?qDpVCAxId=BJ?BPrRT>Gre0Qk= zb0Iq^8r0QP2!ec)wk^gf5*lP7Z7j?FQO1UAmK^WTnF$ng3!7i&F5F1Wub;@di)`Ef zP~|x*0QZkTvC){H(Z-y!hH?KurRh@T=4Rdzr=jW!4Mj*i%H%v^KFuajw*Yxmr2`@= zr#rYiHd*BV+7I|P;IWoH=0}w;9))JPt^3pL;q*ubl(|`HsB?@NT#Ch$2@r+${ED_` z{)@yMz&<8-?q@kXzKL_3rW#D2txkjL=06?b@GHvDvn2FcJSJ z=E=Xr0Cq4p)dKvnHGnHHLj8Lh>XjyNPB5F$i#G4&2txzOkEzgc0kNH;ewVHne*m^p zM=9AN~h!KRPVZy`YUNxhzAT7!sm6{!5#q(wsMgExk=prd(z#n}-H| ztaNG=KueFGUV{maSkecPlm?`g=DY#4Crx{g;HV{jD2Zu6TxHH1Ah)@lb_{GlJWqk> zl&}c`rDBwhCvlXHCq7Ew%gzCGX_4*)QU;UJ!u%F{-~|(he=FRIZ8b;qI8T4h3?FZ4QLKT z^UVZGr9NPU)v#-L_I4bGsxS2MdgKogugA}n2SrXO9B@IEVa{^|f)Yc1gzpI&zLh$l zJOYW~>;Yvp375gppk~|au9*;PG|!=b4e4n>UumwN#m|ZB>`$x*UPlQukZ@^*`9K!F z?F-T{XG5Fg8RluU1))``FAgxemaS1Ks;xqN0qv!y>uS= zr6i{T`BN)|a)jOHUV5p-*7Gh5VhN@wcq&~z*SksG;gUd#v!$qoB8lU~9K#zv$7M=w zLC5_iqj=7u^J2cA6{5@t<5M+^D~(FC@Dj&yu`-$-o0JB1%6~GYOqJZdI(ST5*0OD3 ztEzh=Z|0xcaYmhab66Lz5!-?1Yw>zmX}@4UF;DzoP7A}LJx4z}{R1}JLvn|peG@4- z+NZ7UlYb9z-#F3`E4{&n0-8%W^Pz#ZGfQd{%+>CAX|l6FS+&3m1f~J-CmN@ zCjFJQQ6Cp;8MbI~C)HGYoVC%?#-P{Q+wT(d$$vp}PBG`( zbL3;)U$gspP|-|`I28|_&&AsL{8}j#=_c^tjcD7&Nhu9P{d#%0^}fZsf_OB*dw6*~ zS=S)~pG`oTYJmOWvQ>B$0cimE=n4vZJM{~@qVfd?CNQGye&(qE1Soha=ny5%k9pod)Rn_vH2meR(wQ z3`Qd?a1rn`2~Gp>{Do}$1KwYj2fHoy*~F#+cK#)>{lUg#Jx zhfs|N7Vc^SaK%LKJX>?;k!3)nzweH_!xeP;)M)O^+eb9e^@s|Pc;4J1oTYdsZ{yi+WOR0{ys#csU%boJA*#I zFe|Nef5OrLws;R5M2`;iyB*%C#G?UT;pyLuKbOa&wa(ID9q)y(*U@9kAioc zbXGZ{iDGHl=(zoAQ4S97xe=deVLFnfUMBJ01@j| zTpESp@>LShfS^M1_lL7x*NudxsR%vkY#ZS!XQ=v{gr)&>h0zTUq~>*qHxZo%=!GxV z&8860XFII#5Ss?r6*??nuXgcT0KSzcbjWUDdx5nFh!eWd+H_yc+Qn5J4Agz&RT zdk9HrKvH267LsJc^l(zpfFgf2V4+wFDP~gPD00w%qrzY!GXod2auwGl#IYox0YQb4 zR^L#tx1c(nL^RcE5)*}Cbs`C9Ku{q$VuIPgI+-*yFHBx_(g6n^z<*V`l9(?WW49+8 z4JwuYGM+*)7L&|G*`3Hj1C|OM*6e)ZE(E5j*622_Y+n^N`rSxC1A+>JrzHrH?@44D zAXn%FEwaQ>2!C(F(*VB0*lghuHX-=^2u=g=3Ue(B&Tt9Qw-B8M=tb|Q`>9r&TYB9{ zuS>j-SF7TyNe?T0(%jpD>xgoLYDqQ|v&uJ}9cK6T9Cn5lL+RH22URp&pSs%thqAJT zZ}TX<=vv3Ey|vzy_f16Fk!iu6BQNj=fnNCbM1aoZ@7haWy&XznUd9KgX#iUMbTW0N z1$A>ikNXPZ(f~JqU1eTh6yq*po!S_ec@|f3%D2{A>)<8TsE<{ikbwpa#rvU{!3Hf+ z5gQixH3X&saC`p)K`t?-GG9kD8lV-w1dx@vqq8yP)p~}7xsH%DfGj>QjUn?+s^u3L z>xJa?B%uLG@ey(k35JyPlsck$6KQBbQ+!?&)2#3f^|+OXh|>E`lQ>fTkQ_AND1P>l z;aJC=h)JirquU?wtjv1pErg~4bnziKhF-;rTAb!_C7umLTqhj&1D3aug$68TlN29} z=`5lWizA#WSoQB9E)8(Y#wKxB*13RC!sgwCqyc2{D{8Sr2sy7U|BU!Fz%Sdc;6-=( zX!j(qUwI!HXuwdmN!Q1mo9!(o-%l1AuoNHCV?Tu_15pq5L4wl&y!dov7Ca0|tdVp< z{}IB|0KRNKQTt?l(4Tgev9@z$M?CXagr)&>;hS+o1fM`)TV(D_~AKMZjbUcBGUl5Z1-(vDv?XRL0lT(mhHZA zp1+J0doKUJMMxSzKCs}eW!2P&h;BZ3ykp06-=e;_r+>3DW47hOb&>QsD@csil zN1>DdU_UXRK%YfW zn#vBH^zpcZU_OVKG?j${(>e5c1f{7g6i+@_p;r@=rm|3AZndB;VU3}gT~#m-q>~k<`qPz0eayX>)y}@J)9^^R{P72 zAt3_|7z&SEdt=~qOyc-8M5Y09;S1w?Lmu~6R%7w6BLxj8YH8P9Uj221rU7)Nu5z)* zb8qp;>xoGN%t}3a+WWqVkTjKLj`*mc$oxZM(g3scNXaWSOTCq?cv{rLzJ;(ffGxaw zCodkB`aAkOpAfNcBPtD0D-AzbCf9Wh^$vp40JKs=^~QMINOZoNkTjJccj37af&4Q< z(g3nji1v1^yYBaW#H6Y0&Ry$kr&*!zCn!x-P+Z*h3Hm{T(g3vZjrhE95>UL~ItZ$d z5Syl|XP5CQAnSy`A|_3B%#ll}PY{y^n3dvmWzj)?ijXvbtd#sKTr|pa1Bum76P5&LF=>EV_`EAmaDRejP5r6suf9ZF8sJvyulktX zxz6P)1f{7CDotrW6@#WmYh-y$RpAS?BQgWklQ z)qIVlSsV5LJifY*0uYVe1s_G9_MM5d`rbUKeejLY+NZlzGh@X)~}XWV76$hRgkO;yFi-U=S3 z-QmW`+YpxqxRtUR@f-EOw<9o3Rl)0{Nk0&LN8-`|x6;72KH6!0`zwT`0c54v#Yxy! zoQzr6yAqZLu$4ODU|7EgF=>EVDZuzuL0nfxr)JgOi^w!Ut`rF4-dY#WgZU}xeF;nh z;7X(Bc(ma!2ek-FQ`NWn{u4>w2N076n3W|Y z8emomeAIpYa+{`S6O^VpDDIM4&~pe%1JFw6_|q|Oy+-Hw=MkF**hSwe6wDgi!M0Vq zoj01YcYum_S-Y^b0AF<+;@+#=j>bgP7bNCekHyWVW1_M>$DA4d1oe1m(G^D_j^1w~ zKJGUieV{Br%l$}D&Z4Uj2j4o#3N}XpZbs(Dz4sJ;W0C!2ojAm9<3{%b;furF?w-TX z>J58i3>fgh=|w#d04pFWf09?#@)laj+8fl`CZ{x&V}&(C0tCCdLPWq%>B%g zkT@N2kXvhlJUxXxy(Y*9rjQS;3GzWHFJjUFv%FAX4zX4g*E$6Be+Wtg(8ANqS)q6fOjQ5>B`ghK3*Y~l zft^fnH_Sb~$0v{02l9RlQT{Vh&{T1;tP$-j<2tQi{*st9z$`rGWMwZ7`sXOf~ z$Xk;{?g_-E0e0chJuBB^FKx)$VRjfN5tybH;B{Pnx8ArdfoT9-_`Mf1ig)!VeDF+s za0epN0I~4tUKVkAv@z}@)bMr+T^~p%+?mKUK)$rZU@j|O<}Xl|x6H~j2CgcnkdOw1 zoyvqcik3C>T$mD$`;&tP9Hj?Ia^Mb&>t#78(z&>{M`#*A7k)w|+f*D@<_w3c#HRs%;pa!P_~`>Ab6B>Mg{F$* z5gt>l@4#y;{5*3=TpHjOzFM1A?{NJzrGs;KbN>Pz%AW9JKUw-a0L9WKKsL_d_Li60AG3nLU?xl^5&Gl&%a4<8h}@7!*$-> z!t&t&`x;`?R27c5{B7VBB)Eb++HfB|i^rriw?8Owf;z%&3Z-&+W3QJ;bB|X6Z{4z>KD&?to zPk0)@7kpRDe4vhZcH(SWUV|DbH~bm6N6rU7v2aY8@5 zCKm(TU8fs~O9R}}vxXgOU94S|VfdTGqXAy&URQdsV6J)-L1_S5dJ1NPJAnNTVQB#S z;DXQk+SqH`|81>L>IY7}jTsyeTU3}9bVEpWG@kx#QP@XPcaC?c_av;|SxG!f; za0B`*e-JJx{EBOjper~Ci$x4y*F_A)+sAQ>OwMMzOWifxp6el&h-p60*D%pQT=8Ve zhjmv-1^5dDrU7vAiQNovZx^nj`_onbaY#(;gyYNPpaDnmdtWmg^tDC&DiLXb zSojS(QCrD9Dp!J$YNBrxS;rfzFb@&gHg%`)!rp zL|~e#!2VOs7Wg{^rU7vAiOh@({8w?^cW>3f-zPc^(2LKaXV9ZBms;WfN@yBD7oS7U zKA5Cf(avj+zUo3cnI<(A|wYSkh_eW?~k9ig))P zX7~0S_C)ywLAMqi@KaDlLx1*j?avCY7)v1}&2XClFa4r2a|L}z14V^%DhKW~^aKL< zYy#2%uy73J0`hVPzWjn0y<6z32u)K_>sF`r1q7t2sCDbojMf(tnx>-G)1B5A6Og8& z*3)OTzLd~3fG&Izkke!xJ7d6=BwYXI%{YmO-y%E>;0vF`>EJNN~u%iEf@HBug{D#4d z=polMh}b_O8V%42U-8MHjYoaFu1vnyDwuyvOd4PozVV&GV;As#nlEUqq zj3fSpG&GULbeqk8irelUmzDhr?S z=D3Du7K`H%pRg6&pAeS@xW$t%U-D897e@v4r$nUzYT;9$Ick^sd>UL}e?eFpz*hAy zVMjwg-z3ln@_|j78vM}fJHdw#m8J$i02Pmph}gpkOH+d%0E;Ou-#Q}DM-iF^&{gBC zKg1GNi+e0_X=?B<-pylCk0&Y(Pz#?<&51KCVL*Rxflnkb4S)-u^~?uO7a)t1PbNAI z(2I{v`AKJ&H{;fi_x0@wPg9?G%!~1XNfCc1qSFBV{K97xdler{uY}?*q@V#s)gZ(? z$UEk4#H9gl)oy7$jlz2pmIkneuky_amdjki+?${@04;ope-7vb52&Y|^ZkfSQ-gOW zqXC~4mR8$BTpHk39ZDuUFqaq9(}+q_haYw#E<)n_W2as0*@yn4H(ZTco9Ah$+qtL zS*>Q#eK0A_oA4ID&V(sr&t7Me&BRRak6HC$_$(d{B$&GE280*C&g4NA4YTJpojn&H z6+MK^nzvy&626WuGh95;fG>{o4mg#X4L(ssL)R8=%osiocNcMKfLm5JJ`6m@9q>H( zD+o^m_`>H`qPlIHMyo$y1O$y#IKS7r!~XgPF0bI^SI(}&g2cSyXhgv=QQ4kj&JF&C zR~`#L5gX!=Oz{yH&(gRkJiKOs^qdOMgDIlf!BYtus4F}b$Ojz_u?Ew^?j|e^U<;qY z&V$8rAv~$I&RZVzvUwK4X#ie$z{&;3Gs3*0txr`5_H&3$1MF%}UQV6-Jc80x_6F9X zt?}kkp!jNn(*V3$3yypGl$JQ+MTDgRY~gMq*U5NEKiBKo#(N2IX(~H-JmRa%MeNH6 zN(0csQ?6XG^2T+G`U;}bRCWR0_t5KcrMak0h)Yvl?NmN^FQ~5}Dh*J}cWSbJaA$YD zyNe6n1o(9XrU7uZl)!gCoDZ%eC{1PGVqHYwh1V08rm`3K8SJ3bc@u$Y09^Ea1Yv}= z!yW6{D>xR-3=)O!xMSj^*ZH`Sn9~l$2y}>S?>XdL7D4I*ijMFOOmQ&M{DF=%g)hT8 z02yJHM{C`+fxT@{Vdi-Hj|QR&U(b&)vxp}Wkp_sxZEUBQVb zRkmr=cjkIFt8anA&BeF#Ue6FAE^XlR7MO~-726=nV{E?cPFpSv?2i+e2EgTFjx5N)?hvPP;^9vck_M24=V*~u2RUBZiO07w zI1BFI5|^f`)HE1ALr9v^ZnaYNUStaVc>>b_xbRpN`CuJyW9oH!YwJ_z*Dny02AJjI zOEF24&EhW;n+Dj0uZZR74X}gg{VLIEfL<==+*3zc-8T}MrnFBo$bsr_5}O9tMF(Bh zzfI%%Um0}IV*yYKzk-ObL($7QvXz*hoQ`4lP~F*c=y^O$z|)G(qdcHOVdTAOKPOTi zL55zrIc(poLT%>zybwYIRa* zzTOf}PS~KIarU`WSPPdXlU+ zagJo<{D5+3AgA9zmN+`i6Srr5aRM`iQJS__6JFs0Ql1xJBGDVKkGNh}+R2u;g7U;% zdk#mS_+y6kC|5k(wLysd>J_N)4H5j^$ z)sEd+T0?Uho12EUtGT&J(+;@q$M#g0f^AfH6~{fkeG$)%;S6i1w4|1_v?MYAcmbO9 z*tpQ`+dpFmP`mGEgsBv?_CvI_YoFrHFiO%#rK-Wah9d?ID!#k<7D)%wJTb4M7#fJV za&yF_!)czN>nMl@g0|P39T8t!_ZD0jO01d(GhuANx+73hd)GH!Ue-G&+(^v$Om=;; zZT|yl?OmTERX!xc;~MJv9FgXLuc7%lA5^A6?P?$NBT}6{ibKV@<^aYO4dbfzKzFUl zWDDXut@**Er(wI+9oC>}2UR^&I(;bsTc?T2>T)7d;HjFQJORObsP4G`L3~ML#7c?y zeTv5KVq;7`fNeF+S!_odRIv7IG~&X{8BpM3^8}L9fV}n-;+Q-RVpscfDS!q7p58zd z4<(Ep+mji`Hm*SU8@0Fc(1!64jMJwhhz}lPQ!NOe+7O|VA$*rKeCy9pTQT-VtdUgC z+=lZ`8dUA#x*KnZrt?gTY&h{HsA|7vF&Xr6NqZ%nb=o37?Y#fFXw2g>rM@5-*SFQ( z#IxcOLp5mak+$|m^OVwS#Y$9#=`n$6&@i=MJc$`I{aAd^%2}lx8px^rWISf{a?+kH z{(+UWoswuEX|3igi3!_wH=ThpP|T3Y<6<`m)!L_^lc}A8aw9R?8k*f~UmDb|_9y^S+q`THq$CzhR5Df%fRbXta zRZyBJv6rr*C>n^uwXMa;sp&0N#=@!b1;{!ywPOW)m_a^zA*0CnSV_k=z6czPwdAo& zNhMp-vJYbZ={ZQKW8*@!725<6WQ zIOdvLMwX64dE%Z-aWoM3(pyGcnt*u%pGtu=5O_tyX&CXh?cRb7YY8y(JIqO!0BOJ% zITf!I@Nkmeqvl3pk|%MdCfoKuxM#KL_H!bXAIbK|nrw}yyCastEcJkS1A~JGwQqb- zjYMch1yZi36dK0qW;KNKhknF^mmO_vm^V`n4dbHWv>|Of;C?G}M1vFTMNW1rr3T*x z!Vf6Oc;$8y^M_|4MUL?M!6rlvnrGBtvE=BJ6)aMZnOHPd{F?VEe(7+Ro z&nXbPPn=~pO;29g>dyB)Wegy6L)HE^I&CnTPckDUB0=4F zGTZ_Zc*MMggFE7RI7kvSn%Z$}l zP?(tEMM#t5`QxZui^9LB=;&gb22MR_;Gvh_5+2ek zhjO_ttKCZc0435u;8cvuAK%83DB~&O9L0JAk!ZQ1;KCBEAjlM$E zrzjm7R73Wq@+uYA;RS>~Lqasv@+O3w^-E=?!RkbNOMRB4Xh16WQn^89Tm{u~E2GJ& z7c{cBnD*V(`ZbyM{kl4&%oS{j#|t!P%$s)$_0%UL!0uRo(WPU*H9s70{}T$5ePlDX zAVL|TxNWO`CM$ajKbDCWU+q=lsBWeJX;5J=%^elBM6~Dql&$tRhU_gQO9Qg6`1z9c zUFX3F-%7$XAbcQm|5?k!exZhsDb91Hq|fN|8A&hHuE(MoIIixJO)X`_@p1M(a7+P&EE<60r2)v^rjFsE!@uU5@Kg7v zJZVr>H~zeQ?L&V&(Fc$y4TxrMrD|xnHp+*6&96+YKA2=_K=!)KL0`k7A!)ez#;BS# zVP&`-$AC96G!iY>=9WNbr8C46`uGNSbGSCQyWN+1b*VFwTBw&@giyb||GB*orkN}l z=GhlhJd=R9&_s}*AVHqJwX9{KLww|la8o~_6lqXNFZelm*WI@mNAeIZ0MUSC_EuSHalq&#>- z4rjF|w4>BX6p`_kbx`)L8N2)D)w(<=)B!4Ht3Eb=P%GKDW>^w}4}F{_`pCXD!vc#k zTn(s?P!lvLef9xtiG(bhXa{I#sE?5f4X9+_no*+S2U-E0n@ER-y2u?Za7ZJ-K9vC? z;@m91wA~PiJoH(ij^zD;9X=sE2C+?vSw~FhAZE^%nAsGKICK{{LDi^tP$M*`41Aa% z>*iDE1uc}2#p9`#z)PDUneJM1p*1(`$*8)!HX~<+dK5>~JA49<%}?16XP1ma;}}8c zKr&C>B*~P}wPak1a8W;^WN1(sgUpg~*p2SmtaXC+kb08VjQhc+Ol*LrKd_-kZ%~N& z+Qthng<=kK=RB0(kyQ2_U=~c|LN1WYE|E+25p4)=)e_W-I)Re_8q~z)`Ng84wN^qB zElQ>2lMRDaACiv|^zeLbv}h;A_a(p~Lu4B5AkEDgwJ zU$w6#;>h|@W$o__;kS`64G2FsbBNdS!0W1Zw`Un1vkW&F6K{rKm*KBN>*p0hnDp;! z;xQgwv+^mn8JrgC7CtwI*CFx;I>nyw*NpG%vwrhoI73btA*i1!L7jcpUxqi4Y^zJy zsH@qB(4aoDZ`rLOB=bCf!O*&nv}iyp`&zI^uZ_-1jomun|i3qH2e}tP{+!C6;}*Tq0H|(m`OoOad$W z0!s;9dN2KX1Kr?|i#n8}BN_-M`#!2sIwrO%qz)%38j#AqlXsL<5M32wN0Ar}h~-{e zaJ(A&$OM>n+DjQ=B5Et-P4b z8IoiRMRo|iH%aJilB{g0U1w5eCahGCvZ6uVWWVoRX5fg0k!V>PdVSKP0lnYbeAnrA zs~VFPifg1u1By@2J;~FJf+b+1ljkNzsWkOQ#%PW9vj-|Z!pUtJ!PbToOp@Jqq5hMd z;?b2&K{_vWDCs>f%>jZ3e-^wT5#oLVWnai$MH*0iTIN746KI%Izu$skp#DO~Y5Aw@qq27pdIgxzJhWC8@nKrI z&!ZFhsE|o4)V`*tAMO$6A;ujMU{^#-c&3WM8`u@twdW=E6&c z+K|*}KrQ=REyQ=!{0J+&Z0PMJJsQy4pLu*0!Z+lE9i0=r`ZD9tsNTywdjmSeCn5O- z*?HbilVG$dyt7@XXL3w+l>3=Z49@xA7?0Wa3_1pus8B;deoq22d&54$KqAssm#zt2 zUFxB1*lAEP*++Qwv`kFakb4Bl(SY1@v$vulfx4&+uZu_3DI`b(g1O(`R;s*)JJWZd z4V{}Am_7ik;PbaNs9XoDVbBU=V88KqB-)E@7 zWdVdN;`V0}x7k<8#_*8nt*IMbnd%EvAq}c3`?DDbqi7;|EYUBKC=G~a-w|^#qCsCf zmh4wZmIh?6&)wyYvScNZ*(W8@KD|I~V?l$K;dvy1-yE}u!Lj5y87`5G; z@qoWzr*la@a6yIke^s>K&IhG+ZwjT$s_x1W2@T4)J2SB8y##*`!qWi0ml@vcyhP#N zq(B1-Pf6S*2vB2p7yBu!yi|kQ4x}}gy4>B9d?VjI$+YmN@_T-V+EX66z`8UefkF`& z;(nZndod%HR<|ve##N`Wzo&t7llLiMJ^M#a$^?Fc1ZY5Dl1b`@n$Ri%ukbR7N0S5% zNMM`Yde5Ft!=ceV$u{70xH^j>4@EY~%yeVGy~XBguQM3nxi2@S>Gl?9Orp{KdoP3T zj~z+ZNu~eKR(?LYI%`N4ikuJ<7fVP?a!)wEW++h9Lb=GAiCSa}NP`-fWTKpgjPwR$ zDB-b~Llg}tO>*lX4W%G{>T7D5v}izUf`_=HST#^JcrThL+{PA_qb_1>QPTFRYsr%b znGLX&Zr2By4KO5{AUmVUAR9?{Nlp9zvjkZk$>PRC4!PYS{HI6`(YBN++Un4CPgK27 zXeR0cYKSIBv{fRp8oL;+ z$t0c1QHwg-s=ud@llSL?N)C{|INt&_aHgyL+TXl3L)h5{gNph2X1a(90(mC#Dw`iw&Az$zyT3-xe{g$8AxWbrw&?3#!KRV|%Ikq!;$B=1wph&2IK{(-5X zUnM0PP@3SKz7ZAF5PXD@8x&HvY7axnh&R+~dg1gIczdb8*a^ml10>?+EE7$)wR$$Y zt&wy|3jcqWZi~1f2>n6B~&t8&>;`W;fD z0j1<)!?E?_d#mbC46PPv(STO!v0)VwdvO=^y;6$V_EuDmx?1;E)!$RU6U@Bl`fa>E zqqnl|-5&eHovXd>e!R3>JI);A-Am6#SRHCl{Sins*Pme7yr&`|;E10aC4MGY(u%?} z13g^{f~|h#>CgcUiaSBW77y>0X{%g&K%Gb;G$68T-C6(CJTP(!i(gQH&iR1O;(~q) zJ=k({PIi9F*~}c?^RRR!w70`2*kk;ZK`_A@^2RHoL`En;fv*+?POz#OiKsQ`I0(M_ z%+ug}8WeglgYz9;Lyl%y!MgUbBj` z!!gxlo6>YYWHsezn@l}f9O>gp3JUoXQOE?N)ijmEC7=o)sUY<;4h?Bg4eLJ*9L>gQ z##W1=@n$N=IIHBEoNdTZo>wvw8TJeHk(HngL4p%Ajx)C*LPjV+A@9oHhM3|9+OSoi z?#DKSCT|-u>^nU;=)VZt5UKX88j#ofTMb|s{+VkKM z;|cEDCLmWR(t$2MF1pCswFXrZY9pu?^$_ZV2Kwmb8)pa;uaS_#P1K2TPvDLTR_8YE z4m{7=#V1SVJ9BN>*Tw{V7f2@*>UX+O%8{isIko?1!i9u*V!{P7`4^E%mYK*%ZBQj) zqOed~C=wcoWP-)8_|oekv7Z;!P})vPG@!JcLAN0!o?Pf)O}V5J^*O3mOT}FPl?nC& zOjkQ=dU#ACYlYf!Ib^y`PV8TRKPATiSfj|Wm#|ReH$;(HhT9HJD^&6+F$B+aKNc>JF*{^B6Tg0zZ=SFJ)onXOk;{spf z6RY|ux%MKz)zn;Wx8&JXdu3)IS7vynP)Bftf5-ZZKD}xFlg^GUcNX1P79}(Z7}7+* z+$sTcZ4T9rMb|2>y(-nG?m{Wipkki8`P3x94o2|qBuE2-FW7v7J^&9!@?IoK1Cr0o z5RkRl4V#K5=_D@j+>Hwi^*;<*7ajH|E(#{t2A?8?&C}2 z_%Ep630@GMj<|3{^lsg*pUj!yEiCE4#{{pfIrUI34bz}jZrGgAFz#g6G%j=kw4JfYvnyxeqYs1zt+5(-8*Z$@N?O<(Lk26OC6Bi2g990{% zyjDY;$(t6mhPZG<&>pv$L2JP4gO=5xYfgQei?lSG7PKL;F+uC;{TJ!cY+BHU^bQiV zp5pgOk!G`k7SMG;>lxjlK4|#^aLlsYwWrtL)fqJRVmjK}tD{v?W+bIhr*sgeN0k%p zx%qD-mu0zYgq+YpMBYy#GRtz;2&xXnQmXJ!pQnOoPytz*)Do!nPI)p{x^75)k)&uq zs+VC5S;B0{*{oH9mW#SCb!;?auaM39V~cjT%_-a7&Y->S9sl6BJ6qlE9Cqo+r#|dS zp`N!N;yuir2Zx}uusL*u1vGo2Xm)}y4oWtCE$Fe8sTSd&-oxny4N5=3KJ#=m`u!FL zdSx>2BN-Zync&IeWMq8bP$Bd|5~2YiwQk_V@@Z7icQR(YRKa0_C9$bVEVuUQ=A?y# zLcMYi!epyHHh%y=!IsfjctJ*J{F;Qu1UL0!A$42sORWkzodzYIU>zqmgbX?2*SVdlMnaZGspVX-sz z3V>kL2{L4V&L+q{oN2pKtCw+*K!Xxzm3;_rWN)ipy@DiYKq9N`0}`R^9g#mG5gPhG zqwG5?kiA1a+sIyYm(dHmIxDR{K4&glTijWpe(PxnfE_*|JVsSyj6{bi@jxPohgpe- zj9Mt+>b}6GNOh?1unD9=1x&CPYudKh!MahsOsQSEp>s3o(16YaH%rse@qtpMbPFlb zfYSP}t%+vTsN!GBxCvC7SE;B6rG3PMLjC2_*=Oiu^9S%5`wR;&$cT~M+4~F&sl&sU zS{=egP8yUrV{27{m!JqpY#|96kjU6hlt|!Yh?jq&{S1g~ClMO@KU<$cz(#I!6E2moKRat=`P3up>TzSLdFSo2y4PYszqu- zy^&2J4N9MJLOnvmhDC|YACn9X$Yh*QkC1^HU3ioTy@iBmKq%jY+VVk|l+gDxRJ>Gk zduR22wpbEJB!xJ-Ug9XL zW~$XA>zF~RRFOK3%_V`AADcgb&p0-- z@Pdp$`h5wcj6rN6wOoCv)w?)@r9p`^j?GH&(g_75{)!}MsKk8BC?yg;HUc8=B@r6> zKik-hfQ=R1q7<>i)9zCJG0`?!nqP;;s9N1)Qq=?h0iC?E>n zAW@K2h7Q#PLQo0nu^e{Lpy(6aAWY!}zmLT_K>I^Io>XW+CF5d3D2Vb6!ZMvFkPZ## zEM<%f?G1!R=#|$qI-EX1AY;GK?k~*g=-@%2KFV9zTlKN|1Ne;nf`u1kM8rF@_X`$M zhl4M*`U+b@8k9I=K$hU8UkFJ2J4w)hM8Y@}1zE+MU85)pT$QcZPWH@-_4>KUFD1n}Fe6rAy z``q|jsBg9r3|n|87SIzsxjAhZ7-)e-417jnV1oBJMEp&UWA>IJE*WBgP z=Xm)g&I?sM6T&|tOfqNkA2>_TDa$f7p@V??j3+EAb>AND?$4k+VIuUN6t5wcoV{)US{T4gH_5Hvx}Efckx^U*reeoUL}h zy-(h!w7{c6{RZEivrSIyUr?Cf8Re-P0!u-_q5az(s-K?9xVEOt=NiMH=;~IE9%xYL zoP!u!=x`+EJ)nL_8Z@AhadoR)4?(98Q28;b(16N(z6c;qZbLYV!Y9ixZaEnMf!U8dIti(h{Nrtdml{P^*sL!z_q(SL3j^-?? zi%#hqY_cKq1(KlwnT&TdEvh5qL&RP(guX;VG$54kF1Q74*aL%p3}eMh6&y158B6_Ae-8>@yq%0Y`k?JA0quFm-SQMOV*f3rT}QXAICX0SSwc#*0XU z1~fAE8D$ziAVMlHCKVb`$=7FS#72mFFWqNI3ZOHNAUXs8B$7EU)N#*2ARKB>{Sl~S zT>T2D2nB@0P6>yMcaAds<_=+4`jg+40Oo@cO^kQ4hC6f*V_j)H(AEKbYbOE^p& z6hYC|;dDF=3Z1c+C=-x?2x%Ne8Z@Ahv6m>*@WBvLIhIstKqX%Tvf7=B7awE^)QZ)X;9*fy;2F@ zh~JZVBuUVKM8;L65{W?io=Ag4Xz2fJb87Nv(1`!lPuz;E2?n%yDSJQdR4 zZqD2RXk@%aEod^0CO!h-QVD>JiwPc7LLex=`YPQ{lUaYh`u**P&=KnEBtios8Rznq zx(Grctd(z(3=PQSyG1Qr8l`HugaKhi3G|FT!E$e2HnH-cP*?WZ6X;{}2k;qt0t+w5 z2n3bAC$Nw@41B58`E)l8N}RDLD8Wll5RkZ#Bxpb)V^2^b;pHC?xrjt)=>Kdz0RbBU zYDf13Isv#DdxDkL3f^m@m(S#|P?zjwPhig60cd3G2|NwKM*!^4-V=CG9Rgwb)hp?C zn!Ng}P>?Vv5qTAf(11wBo}fa+heCl^{J2D=+mXQ;v7Bn(0yYgYxT^+gm zV2%s*X+Excs6F*ZpptRfHJ~CC5Hc^3kjdD31gJV-Y^il6sJF8Lr9sg%F78xGNU)Tt zyn|F|KqX`3R;lCk{qzGYW~*(hVbm?7fy2?80L@Wp_+@FXXs<| z2k;r^85UlU5fQJKh{!m^w2&qoY^l`;*)YI!eLlQI~k+CB!)j=2n zt~NeOA~f`Wws{75K>QB%byU8{54ag`)DQ4gsX=F9e{p4Fik!7l)|yv;&Mx( znShMULK;6J4I0qMI7BSd@X-=dxs6n4KqcS(KaJQ3aX-XxFiHe;#?jan?V&ut&4WTc zn2#oH)yL)!;4_ZKEW98?|NkiZ&o~;hkXrt})atbyf6$=B8AoF!coBa<;teE00}>fW zV#uMbz$`^4rasI{^Ib`hE8F@PZ4$e^mrOL5NQerllU1SKW^r8)#6@3Hq8yXpwn|!2L;p z1_UOEwnzeA;w2IfAPE|fSpU0I({X5&5Whl!Td@K4#tAfL_I?l67rFiAPQ0pczB#ux z7~*Txb|Y?cVQpoO-%-~?9{yrRelcTzF=KyGsLyhx_nrs;kz5}O!%4~n-M0l#T0AKL zqU-w-T`&E4RWs)Z2X%%pRsYQ9mIjsfqIH|wzxA0IbD()$Hylh|v5}LYAG}X?ErkiY6P<1>9qBJPx zY!-b0tKso}Oh@b51z;w3?or}S{4LbUd^C6q55?wlr-2nnxbx7%^s`)<+-VERhQJk6 z9nX%3CYw8f)$n-RQO1qbE7{u4pw->UQ|y&(_dEP31`=B6NcObYnaKBMgY!Z?asXEz z5hfit;y3+&V88I&>&MOpDF`gwc?WUlCCL$VM9#JOrBaqqUB-~4L3u9DgXY2J2u1_2 z%kqFNwfggerG95+w<+KPF=>GLI~g(c$6s}oc8Exm7jf8HSu$np5|IXom*y!WR+&0@ zN=_HBM>v{%ZUh|e?JV~?^9Hj|OqzT}TZyF&1V?@|Zji}U0J#p$>8P*Sf;*l&_zw)J)lBM)=u z2M&9*`5kNV329*k4V8GhRN@3H-s?&sEERvetJ|8}z1&){AEMI*RQG^Fv_YW~G<~+Z z+zrb1{&ut5+1-{Bs(TZT25A{iuTqptH(%tZG0!3<4KNc7X-C=|gnYMIZfVaZBn==h%Fxmh66-sRxHGunpd7{K*Wfhtg@mTrENK1NX$^f5p=kh}L&T*o z2AkquN=zDHo*zGSHiN!~6|+Hk3@0h20c?U9%6x0sY7Y0W%I)k4XDIGJ73zcoXpY~9 zMd$-N9)qmz!>kg`P#g-!p@M|L_5M^d6qkL2M?!pTajuAu-TC$&4EOYydeUmv|D#YJ zx*m1>3fA%V$4C-%c6Lfef`Qt7melSOqD3sFZOET7MVR1L+j@;sus>ASY;azvkH3ib z5W=JbN1X1z$(`sPLXf`*m9VJF-<7INFu1HB=;6Ho;4l#eYsr zBc4G-8X!)vL29E>$lq5!Jf&gJA}me5YL!peXtcA5Mgz1AO$`g_z6zoN&m|yDzT)B4 z^LX4vqn%GQ8lWYZbJc}~ebK$fyO4M^z)NtevJOwbXM<2Z=;FR}+{9z?qtD^ALwF=XHdm$yckgbzY<0Kr|Yl#ou!cx}-*M zY+~?wE@xEdV;9EHYRwL7JsmX1g<5(wrh(I1w1Dyq(EW%cau#25-c!= z1)`4aUT~I4o$yR}j0Pn+FM8H)pc=NKbiJv6pr^trOECPiV+FZ0?#>Ez>vizd4xeyf z$C-9VdZKkDm$yvU2?&3EPW&~&V+8B9C8hlJWPP2@+hm|##NC`UaAbn};iDwQt$#sbCRmU2aDoF>ep6JL;LfPeT-J}~TdUZ9+ite@EaJ;Ez3xfa@x#KYcd`$l zL7_GQ_hgIvZsOA9#lQW2lt`2yze6}4R8}oajX8tO$6Nc!uywSr&iyD z*3SJPL1_S*VDwT2t!n9S2uG6@&bjiVgrms{=RElLgrfo66O*sW zt&Pq0Yqsa>ATIQb;jwUOdYnpGz2{R4g60D0=oX5&sTPcmFw-S&Bfa%B6EA19G z?3daUqtZi(O9R~Wtu>2ifDR`R4S*8dS*X;gtaiAKsyfz>A|g$eqV;|Abu58s0F=J@ zB9Lvqjw2Eckka?z{S}LIC*sfmC&5Z|#aV-HhvSm6x9&10UGcI0@465#Zo{$;C!dGxPY|)1NuCI(f~BYC}s?3 z&*Hs+cr;n@u+`s`uOJ=`@KQ`7>dVJR3!2#R%gXJoa6`QI=t~Gr1MqwS190rY#~P@{ zd>JumfVq-jtX*GVb87&T7`!y8x!T7wZJbtU2CpCk8ZhW)W3YrO2XwEGhgh1+J#Kq8 z_xu4p&yR(4(b*ASfs=y^H@Hj=xS_!vvG-|Cq{zn-u(fX&xh z?e6z5gwW-D69H)enBd`yF%2^T+w!1*Mtw6;X|ker*P3|XW7xA@!CQ$+1JryiGf)S; z?jAfTq>K7?g3@o<+bjx6QI7As5C%LvC356SPN>Uz#kwqO;%_;JH=MA z+(dqu&@_O~*C*>(VyE0%SzPP3Y%G6-;4}cw7t4&Og>DB=s%c4ojG#0CO|Va8Ok*jp zenyd7+%>I%Zz3=afb$KXhkd*c4!4))*^(IKPZF61$oWPAL;FBybJ%k`bacu8k@z&g zPcg-<53N$y|IdV^0p$Ac09<#yx`fyepSyXUxcA|hjMYs6Q{46L;SphT*IOSJ>U)2x z?|RD_Cctul!lt*zF04l+DBo@NRgF^0}6c%d-v1ovmqK&O! z^|)7|GZ0r6n8!k1=m3s$5(qt(oU#Np; z$4?+b1lepxWHfNkmj*6Dgj6A9bI+hT;F?4mT{02XELTQpP_6`{%`u>Z z-dsn|BAR&H6~-YNx=Co7G@`AC9(LO;+yvn*EDgGgpfsBR${Sf4v`tW&O#tQXEDgFu zP@0UM-PP~4=I2u+ADLm z)O!g}ld+oT2diDa)=*dT6$GTo3K&%I(+EhD5fEz|cy);>;WG(H1Hc4#f@?jx(7`ap zFGlN{y^6Rrz)f(2wjLLqEoPynq}LFUCS%odlHJAJUKjCt0@7p#T(iDBKtLJ*CYUbN z*QtIDpDy3;5sn6M3GOGvSn>0d6E9O;*651^9ge(f}~Q zGYz%1+Ifhn&X*I6CZh}Wis~HhOc=~p5|aj)Ifm8jbe4O2+O2&ZJ1Te;A!z`aU=wL= zovyZQ7`~QhG(gKW2C*xd3qBm*Kv){UCRpMcQ%JLbsz3F{Rjxg4Jo~Miga1c-8sH~b zB{?Ym+DcIHKOr#9CKMdS4cGQ`!T*%_G&u{tHpF&}9=5Rrvi>sy(*QWZ-SXNR@ArnM z*w*5m#G?UTf)_{C;^`T`d;6;1Ppm8X-NdE=cCNl{h`Ucl%2RM!@jaHCFr zACYM?I(67vZQ3FI2Z=`myj*jC%=?#{SG4;*+aUi9L1_S*Yv_PBqBQ>dC^2b(nQM+# zYM1_=fHVM1aAT=fLu)G?%#fOVpKW_?P41TJc=p4t79Xu`_ zmqIartO@?7tO-6YzIypRw6W9^RO1RZ9P7ucC#**PzEJzFK{f8y)%XM^q^U;BMe;{A z-jb>snKM2EKZbgOkB_YM`pa^gO&{S~1kc5?^foy;u zex86d08B70ECb^94-@oWGgF;kBpyu`ypu=pzDztC;3b$~Rm#`H!YSkCD3w7DGyi0G+4s1VP zzciUGNP@fc9!_x3gxuk9y&pV5Q2WfK4Z$;Uy|r$)BT(w8bPf%QlHf^}5j1|YmUX9| zK_D6cr7zZer{9@d>bB7rYP4q)jRt559xkaAYY{Kex8=H;NHjo7umhliWNwg~Qe8(Z z8eqlWFBYhV{4of(hwegkCs?@~;1P^DZVu7$-^3$MD@$czym<@L%RjGcFzAM+^ zFhw11XgoS#2%gR1=puA_V9NzKN4d{RMnrOl8&4EBJ~p~X0cF%>E$sv?;-H76Mk{_f zF4VhU2I(JaE)@q3y}(>RO(l3`QUEDXsI5myZ6&xh7UZra-&xty?hl*z_~7!|&^+wT z@~JoS;ZquvDn&aIRHWV<)!s)cQbP5|1fv01{JWY=85`!W!FVJCEc8`^Wq z`z^eEYA`%O5@vKlp?19#LOHUOcHqbhuxdVN-$#Ce@+R0#Q>7uu(9P+hn*>jMR3St> zgC>0046g~adLbQ3g91+Q0qpf|(T51Sp7|d-gXW6aRHLg@+#m#Q+%!0a8EGz#$0>Y z84Np^B1)s<&kOZ|=b_CxBKS#h;D`%?AE4+7R%n9!NkL%I;9MdNPJ+D@6$F|7bXN4s zvjt9lmjh}VlqnP9T(94s>$UNARMxBd9uaAPn4(kkesR$}*Te2)4ffvzqXAfg1(do9 zom<0H2p>k$ct0Q>Oj=s6r z9yZNOg9TQ7fj1#(P_FptlL2m+zXs!}^jlbgSFS&tl{bW(xZddAyeg$N`r=L9E86rK zypVIozCh?o+!{P^T-_y~8ot33H8a8X{v?D8MRL%>b)to5Y*t0Fo^6eUW!HSvN7xt9 zpenB3R7!ewJf7IcNQ?%=uHQ^z*sn0eW1;Q-L2B(LlA{5+ed{h(MeCoJ{%pf1rnnHvHal}5IaaXI&vM7qXD_>;dt_VT{t=}FRl+qTnD*) z;b`AVXll+j7&A!My(9UxUr-9i;8GBdKBK(h=y7DJfaDO4ug@KhWn4XmvXzCWIsLn? z$w%FhLtvV$;pk!Ad|%d%#}m5?iP2;Y#~NZa;pl%Q5>t04Ihvf|=uv}kM56SLR_^L` z<#6=>YjeW!p_Sed_&OZIv2J0wQ4Dd89pJ4iTMiK&}Oj%G8$@u6YwhVb&*} z6UGBlJQs8W)lVP0n}-XpF{# zqjC|c&}57UPQ~qdm;?S|DISmv0@>oh48_304eLM0Pv^P*0V5k94>HWj);|cDLXiRD z;k%jRAsB|*c;GmX=<1g_=A_9P4%9{WcN%1Um+%!qKB3 zS2%S!7aVEm%+%u!TbD8%=N>{2JR~p;fRi_BA+T4n2j5F@8h}43@el_n4UhC=YE~-< zQ0c|GV8qHVA-sn-gSX7%P%Hq`i&X#x3}QXv2>m2Tda;^L62sCMZExur@Kjr|F28EsAE3~ojM%)z= zZy^a9kVw9K<$UX=!GX{#MBYXsG$67ob=z#Q8jg|i!Cfi+K!X6!6#!<|VHj|<|Iyb4 z0e}QYM8^EN0zileJObc>c>^GrY*mV`&SeWnlQ94S_)-Aa`d8O2uO?sfFp7t ziO}Q=08BTlK6pSF0HV8G0br&Xh5?87uf-!-PV`6!k5LP`0zileJObcRc>^GrT~&&% zdTjG(G6p~ZUkU(Q|EfsB`(BumM%rC1xcw`s=-~#aE0pQ+0uKPiE zR;a}r7yv#YJO+{E0pO5i2t;@Uz?qo>poFG}KrTg!uHHeH)1a`)hd>U@jXop*T)H9g zE|Q=DiR42d2j)ol0C3j~k-s7l8W2f61aepncVtk{&;j660iJxqitirk^6L*R9?4

vn!`T(UMPCLr4*{2YxJpX#kvj!Wsg5 z5qt2*6PyO%sVA&JX?UayDOs%`KqYS^fpfA|>&b<>iZ|D{GO;j!06M`-6*e|sv!H?p z#kNJU6TA>$Iw0L1>r&|wsuOsFoCc*!-T~UuX;3FxQ@QGw2u;I^O+57@GL>Vo<|!TV zCeW@c`B{gge(Pw)i#MkP3oe4)q^0(_bX zFhdBBgVwDVA5#i8U)f5~tkg1ZFwme*o}OHMb-<9`u(Z`^w#?|M6dqk#M;a`X_nsYh z6Gq<+c^E$=wUvqJJ@p@eCht8hXrYJ)aab zGl2d9p=kh}d=9Vw|Ac#|{n(RlG(^m&X9* zpDfZfpn?bKz9g4)4UkBe#nB~HC((g4S)?0+8tHoIhY^}4i*!TiK)N3Ok%XtoAzi>U zypGh1MY;qBTJm`)kye~`@!b4*uZ4KG>Ey!x1@HuKci31*?SKUm`hC6VcY=3EPKo3M zY>KIVm42i_0h7;qT>&+$m#_u@HGRij%qP>nf zHo5{}`VMww*zT{2lJ#MsE_yknyj{jzg*#wrQxBO1gW!S+HNQjD+|CCjat_L>-pctf z4azv1x=YnS4O5%CZq=XDr?!HDnSK$q4dpV znUIixx8E<`?&a}zPyv|7hGo>1pgzyp0}YCtd?7l36CZ$rY0Z3PNJXeGk_ZimB!6g#F-}seH3PF9G0YN=LfzRI2y>LH(jJ`Z!}!6Aw`=8FWAm(k`+P{D#YZxeBjS=E>>bFEE_ zCP?Z>bQTRtGG;Oo0Vc|!RH zIp?7P^#tK6bwda%H4AhLfoK4fAc{OtC@>3lE5T?0c1C2Ahq{8SY|e+n8_w5bzO^#B zPx`I-ljqy=X$W&%s7pQ!Q5|Ye{SnF%t=<4ofFQ8DiNKEB8g%T|i@t3+Q1?bcPnCQ_M zULhePKpqt8jsFDsZPmx-4?rFp+p1X*$sekFps4P*Q)MiYb0ttmT?J3jfPK8QZ50J# z^H9eUiUv^8qgPu|x;%l*Jlt`FqoH3S8#kggw6C?_)dQ$5aXxa7Zm0Y0xei{;Yu~f( zPYbp43y|62K}zWa;7^EGMhGs55Ze7?uz_Z1w49+VZ58S8LJj2uyaZvsjMtgY z<9((W`k&Bmo3ldA|1-q8!zYBt08Y>Z2fzXcrJgBDP0*wSxtn&fR5W#GdW{B!iSH|I zy^YAU40<<$(f~AiLhO9wKtqw1f$vFR8UUXk-GG|BA<;6*8B}PX8GuEP;qgt%6=oT6jAin1*!I*Y306Udn zGyse53QAys@B+YJCm;;~>p#T1frgR!HUbH#3n@0E0{}!fNQ2IzZ1Uhiq57Zam{1>^ zKLCjy6Iu|-9~x_m#-hiBHe)R@UjlUweLw^D(VayJLTjG4=9z6vebgZ%<#nx_Hv=mnGz!b-{lJ%B(o0E%uNL!eMl7VNkbtmq7KoKt%)g@zM%GjI=z|8lh+a6)&w2Dv*|k z+ebJW`XyFc$hP7Au3jM0A{cUyAD`f+YhP|^4fJ85p7*zq*LHK}4gmJJc!^msL4n9# zB_fOOu6#Lk3l@|`J(}*IN#lK62CZi+H6}`-)ER`M0bKNbGjT)BOfvMAI*X7rfUN(p z`{W~f$rzFgiu6Ymos|SI;@!2jYuIm@*Ut^iNugf=m;9_#>ZDkPy_~Q#fQ`MIYEc{ZK>ViO zNn9+@Ej$zpfauA90g%k0y!VOnq9+5EINLo(UcH}90u87~ zhieESQu9C`A`lILqN6AT@?EP3`&)w104#PgfLt3s=l4=k+T+MNdc=l&Wir5nLOt_K z9I@$R^9LZ&BQ^^n`9o137ez%63T(!@9rGnnS240_z&?7!RswONGL@ySAruXuqDO2c zsFJKK-1UT`pk-;9v|-g*6J0y6-E!bdPSjL^A8Z$HaW3>0TjLP zs&kYX0U@BTFN(gR7hYY?A~0VJRWQD3P=NTx#MKm=MkBER>?H)F0a*0HYq?B;$O6EZ z5s(Ieu?w#nuc56-K>aIqW^@361VUR|nKMGeQK4@8ln9L{1ma%+B@mhc5(o(GJIRD* zayCLEV_gjO1-gO;1xO&Y5XK74gMEo$GyqE=v=A&5ng{#}0cijjFEr!}q50guZG^^@ zWF>0OclLDVWhSb@W+b6df5+vHBTH%K)chZkI4^c`pz{w%2rjhvW6@&ty~rwnm!vI* zE~$DdeMf^*Mc*;61q}pRhJFU2X#l-Db%pBkR^(cSe>UN10Dp08CrrJX>_xn@Ww8IF zh(%TQ!uSf`x7zM^xR<@vJrT3k&Yl*(-#e(?Tps*(XYkvdbM5Y$ZcTYmsHc6LLqdIQ z{s4YgeWeFkM#Bp-bba_ydNb!3Kc|Eg&%08qH`C8FDDma_ORV8V^SG zgjat+{%50zuMOY~Q zuA=w}9^MM#c0)043(N7QE3kSrCl@p*ZZCgL`@ycKa0V&RfWidN6Q(G?7rUo%7HQCc z#%0;G4!nlPybG1CHJ7*SORfI=V5#3(*{xf7e_E)=eFU;UJV+^>fYwqzRd`gH%8?6V z;Q$jp-r4anq$<)pw3DJO%${REQm5}l1 zk6^%fse(i1aB)kV^ouM$9`*qnF8W;P=tI!S94?klp~wQ^a>k~Fi-mQ)jV`X{pnk*$ zv1m~G%;8d^;d`2Z%xxq?12UPzr9`G2E&-vRkq`|CTn6rPj}&>6TuB8|XDdNU=>)Vg&Q?6C%vQ(+(J?R4kyjOAeQ;>uxk#O;ud|J$K^z zIZ1tsglIr0<7}mdP$_K6q`pm3G$564w&FQ4fXWQ!7)7Cg!6ajUvf9UDgLaiZD%6L+ z$o@o5>|apG*q=BG0*;6oWbaQLrtVLIqO1KJdeflL8T*qm0SS?i##2dy1~f9Z9Az3l zFhVNNAQc)=$=9D~#72nQ*Zqm406Jq3Fa{o>gFqh@>H{}12;{{61%-@3;3x<1R4=fKthh9 z1NAH&1d;;ij5m7*c)Gkj-{c%dhk~5X$VBH(e3R7?VUj)5|A9BLGsb6yTA@e>A@TwV zk&F}K3bGEAAWfL46DbZFRKqj!O@ad8%HS%vVkn(VN;IH!)#g(20W?bM;iN?aT9;>= zn*_KGIi3}nYT>BoGp3A~oqWgaR!A{n9@rrk4+{0JPa~GL>SOZ3$lzKcgybh5NgSzUtMtNP-3=a<-=-i6AC?ZG4+VXz2fZ!2rNU zQ2aln`bB=g%_)1k)IHEk%g_9vmOYOF&p#}7MiCfzY%m5gWdGLuvNw<-dlpe+tE1>> z8k9Jv>_d1NP5G)<$C3mMNaU1#NFtEEuZ`nKgogglCwlSeRE`~l3xeXk5)>In*JWS{4Od0NLv5iXXix_k7pH2d zm@ugl+D<|=Ae3=&s)kSyGF4JLNQwre@-0qzP7Qx({PfohqENtKl5^beCnGWq*`*h! z2KwZ{Hu(z*8Rz91Ln4OYh?tusVlv+BaF`M-zUXR=OEEMkbiP@r#&1aNDwbOP1O4vn zJ7ep~!UnCUKP}YoAK7{aDWwzCNXFLFqly;D1zPxA_SUlutOendq)yb$Y!_%y2N_#W zk6W32`U{58EhIz(LK$06kLw8e*3(}!q;4fC8j#A@dU{y>6qQKXF!-!)J^e2@5Xm?k z94__SgQZ?qZj!mPLY?{{1kw(l5FUe4#wmfrlqez*MA0`TiZTvLOSlq5wsNF8)Samg z8dSiQ`6eZ!L}UQs(hZ%vkq!;$WL!~luyp}csiAw45)CMIvkluFqlP;&Rq_o+PoUaO zsu?Vaa`jbLkfYR|pJ8I5zQZ@DA3Ks>O49$IvA(hix(etDJH*!yB)&2(0|ph~Ym197 z)eFK&ZQ(eE2DNhi=GKai{z}l9N;BlPlN=4mJ@@B8F6hH-2$l)%AVC@syfS|z8gL(w z?fF^Jw3ffRm4O+?fD`-#v&uQVG?$Mft^1^c{o&4C-PYXh<8b& z)G2%g!ZFokpJM(qqjG}o&SFQA6jBJsZAa^8mnP_ClHh8=+nTWD))l1Q$tIl!)iA+0 zEgc<+zj{*dCMg<_x_bTaOGnDbT|Ke)kQfb!4b~02XkHD=Vz%tGt&mTxkSCakZ=6(n zf4kZ3?3PDcaWcb`LjCsNA-)cC=lW3pjuCZP4zGno1RtSvyoAyObMeTMvoEs@1YIpr z4m6ZQ?h*&RR)xlH(x3s2EbXnus~IBNOQuFvNQDMe*8j@c^d4ydcUIJD?dP&`nGPdFgv@*fd z7t=6WDGi~PS}Q9~##jG6WPC)JBxeDs3D#VrNfnAjpx%dwdb2dMEM*wdZ0dtF;h?Ue zKxiP43D(%6i>@Om6s;p^2whJ?G$6D)!)PR^0?2h`#cP#5Q72NXS|NcZvJ9m$%J0mz z2h#n>aiM<5C9FfurNSSfGRC~MFx<$oaqk2q1RSC~O+-1tHi{@btpr~7(Ui~Z)V_5gbpn)rqUK3g{*#;5#XMt(43 ze&AZJWxnR;9tZu6y7DFG?)jY(2$F>Msj$Yi|E=ns`R}&lM!abJ6@exdO^cJSW}S{7g!(U zb7n`C6YY7>1x)ZVj*YiRBjgH2I*64EC04Rbd`3{i;IIo#TpBi)Tf=^5pB^wEbw*NWB(+d) z`y_;X`_T(Jt(*n>f-I{lwPb}FM7>KyJ;8mSjfYY#vKIEp72%^kMjg?hGP114jR3oq z23aN?xo(KvL}D}`Ho;AVly&7JZydQ#k{k`l?aL5-Be)HupgYkKFl$1Qq&I@%PeyQY$FsXco`pPo33=pX=A%bALT!Jl2r&__(VHTtb z2X$ZG&Y?lk*ME9_<1!8q8^N(bU!^!o{s4_E6FE#K059#bIWAO_Pg)&nPyG={WSPhX zBm^81c&bPs%S0}~Gw#=wAlT}aY$a$=+#C}*gATWcs8`bEuFe4+{f^>Yo#9?g+nO!& zRW)-ygY!bQ|D6#ZCb={I2X?aO)=wcOfA4>VfPlia*NSV$NNMW)wJQTm!Bd}MB-5Zs zV+O);kmkObuWbYTSpw4lc+7w$4%l~iqow{l!D#^gige?hL5hKx`d|r8OWTUo{XSF%r6!(CsS5XUM_mtY7NV* zp7b0zmj-1U(?D+AyA|NFs!Q+}6P^a}W5z1c@T1x;QJ5tK8c=vjB6$mdS9l5VMvB~O zEs$2S!0xsehRwlJXF*;hV^z)M8J%3H`+pC5zeCLxm)P{VumyioD&6~RWtc`L(EjU0 z`(y6(Zd?Opm{NQ0FG)S9Ar(M_a*i1%CLvIcgAp2gNrMJ7#w>Uwp)nc{BUG*+6&g@k zNE8zu#K#5GW<{#T7q4Y-SYcK)cyTHX_T&UG%N92HwtVWtbSn+YGiDODafO-6Bw$(K4)!C2r2*`inMV}tsGuG6 z#|TXW=nE4Gx!3msc0hkd-CF$^$t3Gf`+C`Hv_;qHwn@M6n^5p^R>9#Vm)Z<6qNbmm zN_0WKB5sm_xIZM~PS&$ma7xX3aIH|pSGRHCN`s<~*)Xzk-32f#s-{rZeeerI#jZWK}LzyXjP5LW~uus?K{q~IrE1I z4>wC?k~?ei47HJLmTCwHD8k^=5(dd;sV4uD{8C%h^MHiYm5Jvf?=>wk@4&ce=Vo;X$D~H$$)Z1OtxE z9~A7dsX!!uNb@Tq&EHOyvDTz7fl_n}4c(FyL{u0+Efb0cP|4))pR$1;Ck!03>s$>U*N9=mr%m z11A{r>IbZO8c@G55%r)SceSK`L?9XfMNdA;Wx>~4IxFoyUJ-3ebsNEG02cf8K;+u+ zIp0h*X^$i8_;#u{kQYb+0AG=NI9JZL>SOZ;@$FOy6|_?x?tH@0&@Zv=6tbnTjNjEyrJZ5|a=#!p7U$cG zC-+ zUxgCMl>z4nNCUv=74<5h7hV~3fuJ-1eL|%6OwNrm!cp*6NfXf{nc!1z_9Jg6eH9Yi zZqD2R$`t+4aSv7~qCkK56#YeaY(8s|pZ_1E6>f2W1IFWnH5FmS8jhi=7Oh2n}D12IZtZj;!Ow zv~N|!v~RUg`@f^bghK$p0w7*Y0w9?~Opi+?CPQ3{$&y#U#qkOasK<*bfH19;13H~R zGysYhQvei*$$>qVU^D=W7Sq1f27RlYtn(}varJ8h|sb>+424L}{t5TUtB6FpC4gqNZ7(Kco z9%bfoU!=~A4ge4>w1sZZ+gi#1HPtNgvMc}_ zJpx?7`!__)I4IQZ*miDZB1VAv4?v)wt6-vv&Z6_Q} z5^443AuX5pYmBtS>(PrKi*uqZ{4Lbe{ujd9!b7p3AH4`-03>s$>d!<~(Sub>oT75% z)#n)0G@u^62ogewq&(0U2t)&*=;34tW=^zuU-!*KoHmmMPSjLRah7;GQkoYwVf`ZK{297_*Ez) zwi4hD0@465dT3e&3`AD~J(8d_0FAu|YA_q-uc^lmP=HPyfQi1xX7X?PyB{WH#@w0s zr=LQQN0k%Zx%@YFsL?~J5h8^mG$i^dk!bWb_7MaTaa(15_Dkwd*w0j-#4OK_j0rmeudprVI?o#ob| zR5uRr4L&~hv6YD!2I@a3Ui1vZf=K=l>z75W(cxe-)*97xbqUnR*~ZX-eRQK;0+D7k zfcg}nXsCl&A(o)L{sOqq5RQg^iIg3)Z3KD$8#U&<9zE3Q3>G>o9rI2Eds3+TejO4! z%$)~^DAL){H5h;j7UXub$SrzIWl6jC$tDPr`Vwyd(4ZvIeU8oBff?zU0vgD#5RwLv z(QW?-WFWyZ?7tJ12C(PF%Ftxpu<)j6|3x`^p#Uj*fZrK(R^)EKJ}T6$diwDtgl2L!LL*~c4D|pGeP~dC1VRg8tk68zg9%0humnO2!9t;Vz?}r70bsn)kS~Ph zb3YQ^3H%>F0vcd)WuDB?hlTnHH_C1A$eBA}Y2rIq3nnN~+dV{W2?h%`Ya=(F3X1xD zb~ZF9L;MgcsIZ`A3*cT(I2ynu=*3Ir3MCgnzLJnMfQ;RpDUOHeg8c7J)mcdZBYKgf zJGZRICHPyY=l%}_w}ppd0T8{!X8flqoo`|NPFgi z{)|900E%upLm)3K5B5%i(Eu!Vi4VCpe9jM|p0vl2b@Uvxi+A6Ons894>;D6C+R8-C zLG>SiM9)Djh~y7NHAGR-EwIg4w_BR7E`homYo7+}qvxO{5F;vAS?ZpIq5)KN16hI! zWaZ)RLpU1xC35gjv_?>Cr%+kW>+vCi>}9pY3Cu3ped@mf2PT0aIKfbsomPgdi)JuJrEm5a(-cqkSC@%^d*NahgZMIy%d ze$^1y{i-FePUcvehR%o`eWD^NYayL`NI04%=UW+|MKO9Hb_QpXaI27s}XP+bs;%;mm7nHe1b zAc@fAxd)NfAs7W{aU-$PR@jmC!tl={b`q=zIDdJ}e z21N3Q#;z8P#m^Khdm}MZ0(BjIKm+#iGldYu3Cu#>KqwkO#m^K%sFJ)a-17)WL%+n% z6o5u?*}R`aZHe;})mv*GuWOco0gjv%>Q%QvWIKF9cnsk9*{_9?4wP`vTp^lE;iI5f zMtEV-)VW(s%wIuL-*x`=R$-K=FKb3WPi%N+ImA*z)nqo*4maQaH z#5>W{AFwTwbO@5?@{05q{0wdC5n+-$OZJL%le;BQD1t(>Zx_u*uk2Uyw-Xdw zXu(rwu)U#y4^uRBHv7@`)m|~cXAzhNz?}pwtj*p5mxODt8t}6TP6P1Rm(Ks&%lhBP1 zS+^ee+XSWoaI&#N2t2A>5B^^SrvZ4Xu>x}U+VxOhDz&yu2WIpd^>S-pXL(KbLzv@2 zopZ<*JcD3Q{Sg48ZxRK70tBW0mnb!Q`6$R+k7#WPbb-`)>=|iLjOdoU3MJ|+171Kt z8URKwPE-NCD$AfxA}9?&W1mnlIXB7(-=z?pIsg+dLTt5mB9!Aot$hVe=b?Cnl$Y?; zXnO>}coBL)0fGpBl1hX=ZxLZwAoXT87&ItGya+2$Mua86w-S&Bfbk-%00tr~fxexf zGyshjq2%1K{@21#w}}W1Dqy1T&@Qiahn>~#emzIDCxv>`*C4~g+<9;a(C8iiHeXqo zA{LZ*WFW^f>?a9J z1K8Ld{}#1j4@_+y0k4(S5$!eYVoB(@thS;AUmbT1{7!>{cIuj>m~u9NjJFYqk7ns4oY6}L{81DH9b$ju{m6>1 ze|UNdLTlsY!AnjbM?oKV3iT0O)fXI3pCgIZe{nIIC~66eAd$z2L@rMy5zpTBTA>sC zWnrLh=B$$jW!;@fBp#%q5?=5!K?SHsQzrDwnCh?Z#V4$O%CWiH?=AO+_-Jy!-`X!5 z{+T{w(q|;SQ2P#rLXNAuB&n5*sEzvRa~wG#0%4ph!iZ`{$5jAZj+$$NtzJh-(4dI( z5t67uXfSQoRwZtzX{Q+6Cr}I81NH~@I*9Cz36QmwP+@bu<<)L`U(l)O>#kcd*KO1B zo+BZQyC3W)=Bkr$34lVWU#gx^DC>|f6bV8wmxy4l%vn(s&O!JH7xgs?hz3PpixAL3 zkQ(}0&;gk`cdZL6MO{oqiR;EYC#s1lQ}n|Wo$eH6I>vi(kaAqzC6nq%%6~xhMKv*F z$Q6o2pqO@oCT0wV9&y)P6Kr(^hbA;AVoVcLgD|3upz_tcZenWw7o&8LE^_eZ##T6L z)rd|G`l@YSe)tOz#a+k$z+7|E2(l*W`lX7gnwB7EnURqiWU?wUN!S8ckZQyd{Gw3g zp?YjoXi(_OlQk*<&WLdIHP@gB3F=3jHO?VXgZ;8H%R}3;M1ryHGdZ@s^SI0Ailgf? zrF!ab+)Sk&m#=7tq@bNEMLP*YtAtad9Cy7?Z&e0nQ1bCT}$E6pv1jo!tpR8%Hbs^9ZlhCN=Ljj#uZTkyr3@eQp)y868%^X)yIx%#CsePw5B(8LfNTG*rGyET}>DaI9h(AXUge;ppA@WlR_ zQTv$sVA>d@;J{6PAZ{8nKHXTR+CKqVT^98bx`zhbYu`?>f!b=c23Vuovmc(Zb){ZT zzf|gI%zEGi#aYqI=b>jLMVxc$@o>&ja88iO^QQlAbkUhpyU6Dw?I;1^r8kI|#tafS zUM$Z4%B&TU)M*^g)1VNw&o@lsD_;ifE;%(G(w~L#{EUK>O z=7UuP9X{r|psT-Un9`t#OSP@&l=uyeJ8LR)mM)rwkBlH#a`iR}LcCF5=VQ9Z^%&V( z58@o%)Y^Lvl7wk2g>ZBw)g@3!XvyjJ`UeBob^9m zTN;$3zK7fx8onB;@9AhCvVL?ms`t>1wl0IJ`_1W^L)5Kt8M?(oxO%q*NqCz9ElP4) zRJM{O-0)Fx!|74E>8_8wG*R_0tZ*9895cFFzs9BXx~b;!DqL%`|5s*DgY2gqfgm$o zxw>KK+3#n2h<_sl4IoaPsyRSj(21q|5o*JFZu%-|t_{tXy4b%|Ec-YE_y0IUM_zmyD}Gu{DH4wDyG*P5L{ zv$dzy>9%%tW%CgdXF7u!mx$F6-qJgEBwZ(!{y())|0Y!F>1wwcX%FtKqaw(Vz?M7c zEywjc*rv)_JYOlk;HhKia2k~6qUju7$+&^i!Npjfsnn|a1(dA59;ej%Qfpzk1)Qf81cqf;=QJq{{4s+_3L{ePnprd;P6ffqpd{;uNtDcAW%^3~ohr3#Wdk^ZGY zA*NgBE9Kh285Vfh0t6MP?m`!`7R$9Z@S281o-9`#Wz#V{=zJsTYL%Be{=LtLs?A~aTY=(@cOvp^?q zc5{W}E?lV_bG_#d@Xa0TFY5Hs?C7cI>* z8WgU6o6LI6dTs9F>H1+6ORRR%^Q`~+dY-Z#R@?o#Ha2sw4MrE-&9xa`D=oOclGFb? zkGt%yR5PUJFPlF;(x8Ob||AtA&5)iyl zU2tc~)hQH)^+sKtPdPMO?Q=uL`1zT>K5m9~FYbT2`@w!2FqaO`S#*JDkET_vZbRLE+qu7Yg-a zF7h7_2BmqOzNV8)Qv{uis;Pf*-9#R#qb4li@Jq$vWA;z27k{kAy6jI_ZS`BrZG5iO z6nBSDII!b9cM$~}v)6fQWDa2JXbBOun{uN8bZct4Rm&`bW2&D7dS|Oks5yFkq_P;v z)7{3b%dO#SS*uK4M&NRNPr3M{;a0nyVRNB1H#F~4LgLJTi8GRjeX-o4b?ivGPHO6( zn*Yy&Pr3M1M@5jK=Vj4zM1vi&boUjjn1ZKXL^aW%G}A3URWmk9Vx`X7s?xQpy7VQh zcBCGsT+kgUXxWv!xV&^^Db1W(UMTb#)7{CcLKli?aNj<0-;|pqs@Y1<6R1{j)LERw z(4Yk8PS*$onKm@6_ZEwy_R?EYdqH(gxf){1g-27dr=%+%xzcGfypMuSL0#NC-f=tl z>zHb?Non$j`ad)9&WiGy%}MSV5f+ZSN*q`JDF6E1lvHP!bLcypE`?N=GU{khl-dW| zH;U&x2q5n6vDK-bO)pBFmTT~w>1q%!U=VJ)VZr+st$ zaMkm~Ra4GI9WU25x)ecBcV=|afcTVw?6Pzq`WDzumu{f$MkpFUP1&)zEFF}8YTaEk zaQ7q}4dBk2s@-roHuwgG(EIAS)LPl?Qx|E7_sv%J4-R`sEUjaFo{yIvJCbgag8v`U zSL@t^tXRo~A~J;d3K8OzeRW;dy3wd!5IprJwi+~W-o;ZouUxP2Arh*q5-gnh13FXc zHYhzSa$28OZc=Hr4o7bOt+Eq1b|hUVrMmft+)G)BPl*hlzA?_HHCc;KD;EkyJk_L6 zX;87#jlZgeX&_7L=+dZRw*UL66wEAnR;UJYg+9hZl2heM~i3QYxLy zlmq-48dx@whoJsWoIT|Lzb0q#a{0!KpsC-Zduia_+Bcy}gdSvrN(HaM^J+)Uf~k+v zp}JBlRak#(x7}?o)-Jifi@#Xv+ydWi;h|U*tp1LBkV9SZg3A^_ zGDkRmMm%(GZ8!%1al(AHe;j!=pigK(z5d?Bv=DknxCh!pAQ}MGhtrfmeq8Ut_7jW- zV6k7YL#_><^FLBp+T+N&e!94ka?JINns894JMmfBtt}p#KLDwJtYZog$sdaPnkcG% zrZ`2$A}Ln_^)%K#4cOPu6sHCeQF*9m5{d>;^+WJ!p#oWXxT^?9L%-B@P#Z*RXkTl; ztFKa7;(X*DAMRkiq=z2FSi-hC?iku8C-yIZ>id)pmO}#x1oU-_=&OGHa+;i-z)UgJ zLpfuoK>^|$6IWBb$sj8dL7k~b5R3+3_5I}3Wh#rzmhKb+(f}~_k+a0GjqQ*yvA+Eh{$*cRa@@YUl zzC#Qlr0sG*zepe&0L5!K018Cqz;@guJgDv+0ldllhm=$F`$7qZ2J z|JLu=ORYyh;_Jyp4cM_*$_11yFn&W`P6(`r4VQ4YN5*8|I6l z{+E8BK>^}>tul<0n5i@Me*~ieSbQ5+0xOHm0{(=6Gysfl!-%J4W^zsCIN@!-8f)Eher3r;5MbM)$ zUkr6Sx`HN^&;l4IG*f44E5T?|3C)9*g=PT{B_K^Ap`o)3>h2OJv?U4+Z)j;R_Xa2K z?X2Rcy^2r$%s2I81o)Ojzth{3;~>jZmgCb;zfxqJ5j+scCOA4OD>v{aNtZFsRX z?HswN$q6MD6hc7|qcq#B*?Y~*nzL{0wfCHJz`P>-VJJ)H?@vSg^X)285RZ3#ZNfJA5s=qo~I}>`H z#=u-uU}+CK&HZe3_J!>OVp0Fq@lU1d!WD6X&=A)(Ogr!OY_u&?ymk)xNC3N zYlm8FWpX3(+B6W2j}#&bLMB~^s{sJXT_;OplLYk%}zTsM9NBrk$<;3 zjj$Q->V@5oMLg;Wn?AUjJYzWYBZe&hu{rZ&0#i*n4Okk04wjie6xM={eK*Mbqz3U# z82(BchMWJvYWnP)gK2+!jvqG`k{=iFBc}uI4RjHZVitG1cki}X_c(jx<5fN}FGwHM zD}H^tSLkQ=Mg1k+H`J>y?V1njd&9Oyg^d5hCx5w`em-aZXfFLDy>!Y9uHUt94cl?2 zr;~H{jlBBEjUHLezMbo5Kj31Vur=??!Tyog-zx=lzgkT{ozti8>$Vuw+9=mOF!I7Q zNV)XM`7#e`^SS#{oxZbCQL3+#@^#KBL@5KaLUcKzaL!87b;`Ra?~WC6 zr)>H|rgWRjO1H_ykV%=#F|XJ{$@LqXyxbI78B^*2H+iKkjHW0rl2>2I ztG8Cl=qRrZlZc9!p;9Ax(Q|pxP>J%j=e?O~^AVf;oXs;Mr9$$fFXTrL*AG$Hj69*A z-YhYvrNN~9p1j}^UT~ydU<#H=&*?SCP3geR-^tIvl%Ky>%I|)^g@75(!^sa{J`^y+ zPw1z$_a}=(70le>W&YI*bR%MWvDS^cVKZunx-N&!x3&SLN4P-F{L4PMD}8cT)MgL$ z+Va6aRzvFOQ<6vd*E#8@9XsT zTF4_#cE48++;xWiel`2bqz-*GmwvVV&`S%4W~bBLWs)_=B1ZiKW}ge!vZWdBL1_`O z>&Y8DtI)GQImcs3(zQQ1mmWbDQ>vW3tJAG3gkRSUgz4kr!qIydDfTwQw&}#O* z3CHwD=F%S#n#Z3a+0tymwX|Nv$jOB zC$AsoGE-R@qT*bMErD6Snd-@@BsMJmAGbA%tjKmsV3YrrZ!xuPR&G1r%jQg->n@NK#5JbP&0PyoGh}FTzSr3o)5I{=9`mG`eq=TI`#C|(&4+V2glT~^Qi!=Ao&#bI z2zvi1gseU~PY>fx_c)Q`cBb;kS^js@z-DpqdmFyQ1mrXx&N~km=bbm^!vyB?e}Xc5 zh`5!x%9xt2F3|0>y`UX;6?{FeB<-bR)cT$nR?|NFUfm^k==YP~RSKqOlstD%{@n0z zFpm&VYPM&O%nd!F$a<)gmN!9LTjtG5(g)w$Bx!d{Zj(PfTAfC%#y1Vl+}EDu7gz6d z&g5_TLXG#Vw6MXohqjwr5N!JL%swF*_9z(atM8o$%`OFv{chFym=Loc>$Pr2bkof1a$%w^xsnIG69%W*DC*4x#Ku6k974R`cok|mD{>8vq#?~8LgkCG!0&i z=Go;tD&LrlyJ@a;hOO3rYkzX)Fo|vXuDol5{NohT8@yr2j+=3o599aO%_e4IA(@Wb z;McS4kRbmYKRKK+PMRYA_b5SU;huN!k_4Un^1b=x%@Y1p?^1%z-<75KB*7-{I>Nkb zlZ1WZG`^H9^LHgFI!Ttvi|)^hHcYz@aeL!w2d*7bqzxXlprsYS%ZC__!v6AdwV)&$1 zZw7H3#t$F*AG7SY~mP|HXOFS*Ix{^I!4Ys(+rqupR{ zdGVceG1lW$O4?t+wLNLeeckqvk{2nQ9-D;IiwgC-xzXLpk(Ugv=p3KSW@7*CvcHVT z_2piG33t9;Q!id47bb?@2_hoIOZ`Ax44YarVCdcr9pX;_E(N_tto@2wjA0Pp3nC)K zEBpvR-Fmh6K&_Vt;|E|w#Q1Vg7(0t*cXcb+Zv*lVfkgaCiLE@E{|Gw7A37(3KMWlr zy372C;5b@rbs{ZGFuCMU07N_j)SmP__5B%uhyY*aNeBwC+vFf?6NG;bAtJ)$h`ZTq zQ0-3}t+OUp*|W7Gw2DoOz2Yfb5zfbcX z(TW)PakC88jVs$+avw`t5lj`g!+o`Mbxvac*|NWkDB}0clr-Hp%Jo!WLQ*Tp#>8_$ zL4*6DZYeZlarGjQ5FuT7dm{zC#h4_N$JdL&L4@<1vT%mt?4=MP zB6?wIL}T&xGO!R~6m91`S`wZTJH58U2CLxwUz04IHG56a>sz zRJ{TsL_{;ygH9CeasJyHpIGT=33R7E(t&nM_J?oSo38gl)0dv2E1f>Nwp>3_HQ?K{ z*n9P^Pq2Sa^=J2g4845lf2Jl$UZJ{ge^U27yEu>QrTsJ<^1kzk-*>RW9g)+E%j9wU z%O)n?1sNi;i%KO6ViUzSg}etYL|m7Y%2n@l?L8nC?fsx3rK4$uQ2#)!8ST{^g^A5S z01Xk^i%ShP)|=NF&8`-6Tec6vhKQ})Jg_j(t$I$V{V`;S$YvXFOS8Qx5w~7i?A9{M zSV5LX=SKlU$_MK#x?q0_7*aY|D~y*Gd-Tgq2KWSEh`?S_Y6eJJ9Z8K~;r;?RL~!Mn zwb~q0Tk5ErXaeo8;6lVzZq5`}?B>i*Lxza#`K3mumh5SW*#y^TfkJ$M(#W!b`Wv7S zL6uuyUJ&*=Ly`Ce&=8?LrHJ?-p5;$y_wRAX?OMybdyUuHl8EOo?Tl$=1XeX ze&H&$Y!5wI(^GT&0!>?cjlocBcIbaLY}#foNXB(|iQ2ZWOWL-xjS>v~^m>CQ`9pc@ zmd|jfp*&;yZ)JKJk=xly-TZAEjOXMJO+a#6xCZVkz#)R0t#r%ZyKT52HmM>Bwy!~k zh-|j0mIBDMDl2Hz#g~L>8nyobBO=Dt0&~?mjicPiq^Qjq``W;1V)vimL&P^*i#LDu zwqsW-;dDCy!>@+zUtmMTHe0*00Jesc@V*Tg;scmA7%Zf*`CY&eAHX69?E8Qr0-J3@ zs(`4}CC~GnPP67l=??)!1UTD#PceYnPaEh8Eho|a2tq`JrI#cMLan+Q;`<4Fh$m4z z7zI3tfkH%pFD<($)>558vtM)K_h9f4;hi~4GcQYkd-$)U8I=^M6B<{|*#g2`BR0kO zWqRcMzn-Wz-lsHaxq9c5&EL|%)0qS_jG`t#owV-wdA08TG-=($s-kfsz8E0*c= zFd(+{f~)>3nMKA13?Dh+=xS#dywdn}}GaZSFoc5zNi5 zCWh_-A|k}u`i1VhH)x)_k4;822e2Esdjf|DZnl+z?ptSrGY5nly2GJEL^oSyUnrec z2^zd3z(YKWSxyo*a7O}%cocTY`L+h{f#4w?B|Pn{w}E#QbcjcRXAZhd;`Tw{Asz*u z4jZ$9_h9G{j{;A0I&;sYyoZ8^_=T4iD!af#gg4u=-onbf`N-VmQq#6d8-~XKi3oCS zre<;BkP*ugHTY!W`gk}IalXR`AU$b-=@>`N@|pO4JamZYJZZb;t;17*Lp%yP zb2p3$x>KP;L^s=DX<^y95iTCr3(_+DbN~?n&NdWT9ALB(HPp{G0eA*{i1<8d{D41p{bGA9l!m8mY=DfRpS`qgk zL`3LGMI31`B(3WP;2}QYwX@NX{oovv}+=7VlE<5Wn!! zcJyW7A;R+|b95HdcJvj{A)@nSW=?Udn-q<$-gOL8jRP#h=|dXK`aGh zR1ccYaPYN2BK|?PS>SI<>+66-yozlTl3DlZdKeM^0x}=6ya7l=ke;;sb>u_T8l^Dpq?qZ2^{CtHsDWdn_+v04V)P^v_rjL09WmD= zm~!UhARv&Z>w8yJV`4P#6E_s=$?wO^MJMy;@|drYUf&9(ltHsO9J@DbsA zUzx^vt#lW-kxFpqW%|#+jfmU(+BDWl;IUhq{w(xJ73fLjL-aofJtBJVTfO}y9o?|h zX=*W}$*A`N9ufSzeJ^J+cojBIA%7n{Ao5T`PsurK*Xb!apHAp0-5+G6oHXOWZH_$F zQ~E{V5y8*67s}~FZn*c{eJ(xz%_X--@JV>O%EN$11b@TrU#LtQ=HY?Ro;GQycSDVcx`ZazwA8JzS=$$y zJ%6o0=Thpz8H0Z;_=xb!Cgkn8&DyldiCv3 zl^vty6ye!t6Y9w)f{O^ZgprjDZ8O}ln({Qj5rJP_LO4%8MQcI`p9v@;&=LyhUbQ9J1AhI(yLG=aVdJW_=~ zS8sXQaxcS;h}-)N%GD*waxW9+E!YvUzw`F5D7ThD>sm$EueCdE&Xc!+-^Bn@g+$Yc z7PL>(1bhrPBJQ{N9`KE5F=({{i@pLnQiUMbDG*vlV}kqu+=#f}?0b-lTW2>}@@GSi zh`faHs;%YHg>3ZUxnLv0E@ALwi`eFLYOQ6@>Z2Eck5nO@FXWAv7r~8GgS(SXJG>Zf zMBF9xHn*5udg^D`?D~uYwy9xA!%F(`{?L26ChdA>QgV(&p{! z;6|zt;@V4@4;;S%azy0bj}^7U{rzCUobqEb=$nB@1n+&JNH#E5%()@|DNb#*baNz>X0wtx1UTHI{zT3h)`eeDeBme`5yy~2>P|YLifVP zfNL~NO8zLsh=@y=7)(0_v707rMGs zB}}+Z0Xi18e+x1q(;x?ppvxf@wP0nj*40IH$EJfiUjZJe5d3i|{MUd-DgdwX zKNIp9{67GXR0#g~H01vYctr58yZsBmsnYytQvVm25&xO9MDlHz5&xO9wDDb-5iysr z)Oeb-(csVk)3EzKu!zU7T)JUke+VohSWhd*ur(hx8c|y(`WWONfsFVYz6)9S{sdS= zu&?s7R1>TYTQos?(50e9{H2ZZjCL@zh{v>fO1Lw$h-gdb?@d#NX{|y(T@QRHxQK8| z7zLOLx2<7Nt+v&f=QjNw1~ejQPumb_qb+ML-vegEf99+WaZi{L|CzHk#NjX_VlH7f z$}|a@v@vK8b*7Gh8WD8~>p-TVPDZtcxBeUnHX>|KtG!-cG(QkpM6{k3&CsSr^HJa; z!YyG=cA7L1HzQhX!-?WSa3lUEinyP(+#U=qQc@^K?J(%og63j4-wT`p#HRVeem-Hi zYZu&zxJ%fIl;CZJdu;UU7#tvS@QxDN%v%om-9cly6J-l*j)xx+|9dLIKOgk#OWN7i z8RQeokHQ5a7iEk=Zao&XKsy~wIste@@FgsA-bN;9M8V>MnzFVfdm;u987N_a*>((M z>$FaS9jOev_R-pKe?07n*xz4?yvrWonzqxDfI97L-{C13L1d&Fg{X{Z+obN6F+&lj z!jFjm)=ET#ol&nvZOygUbcC`dd(-TEI&KiT`GZQhSyHl+jZROeEZ15cHay#yIRh_< zynLV%UbxIF3Yyw@RO=7wd$Z-nNM$leE7%*>;*|#bd20Dh z0VcbjiyK64N?231jruM*b)lvfxXl;Ozycx*)o62Q^=4RWWcBv5Fo4KFHF^%_(hkSL zc{o7i;JuY7ni2;i5mCnmQW+asWJn1+T)Zw|1F1}gpm17fMrn?YFo4Lw&6P+_$s$iR z2X#GyEtZ;?KxCpCy-{=0v#vIJUr9DH7Z+mz_JEG5t0T{a{}G8Hf2Im=Q5wS3(&-1@qn}$L`xOz64%G zyd|s?ohF4ek97n1Qh*Twm#`CSD&P)F7^65=zr;xzmqCvBOP*4En9!{R``)>@n>ssZiFAH7Js%b=O*|O@s}{_wAEZt?=%Ok zwsNvgytPfTn{j~1K?wumTX)c|2mRVYuhY^|rsogBcD5(&eKvQeHUH`jq!rrtKu3gL!YY@oqMH%(?9Q%yAMX#a zfyhP$8qj^MUb9v5e?g9jyo7ZjTa5t7$1}i>F@aPg1N1xHS~}qNQ_vBiS76{@gZ`}= z2biagqC37+{D}A~&;e65HZ6KbD=-2g?19yRoPv-w8%f;>BKP&~=IDAVx%7!WxCm!#HYdT1~T2 zF7(krBZ4krP1)wqTEW6YW_yV(oPQZ+#9QX$#+ZKvX2e_OBrUt){Hrh{VlH7NYEP43 zotCq5CHY`NaeN%0h(JqNi8=-7Sb_XVkP&~8wUV>l88n-b&32Cl84+>`hfYir%Jcb& zz`qVH;%@*qqFz*AYKG~~zsG`%2)TrFGNuV&_ayztfr|*YghtRbxOV-fO~5AujFc0; zu@0Q5v%K3W(z4Gclxn{TE+X6##`ZI`&2Y!cwxc9>r9 z{8Zo(!C!v+_h93&KNQ~m2?^u3KtzOC!f}loB90}7-vJg8YzZf`bEou3mP) z5uujQfS(F=EPUsIMg(0#+h;oHX1JdRZ8;o*jFg1j*CN}vAJvBr>{r(){d7Xo*b6cu zVRUjR8$74mEs@$W;9h}`?~Wl5!HM>j^K zLv_ys9;rgG4_&lo`!##PoDKBX!;gsn z>5Wc3et0A32eo=L;H-e*{|S1%;K0M9l>@uoXLg&9ce@d~$NeAsqA$JpP6w?Xc8YU( z(wbh`o@t09z4wgUnsms{pc(F3ht58^w!G`;gAZEXeTi7^@}%U}G%!vr3L|;J(g&9x zdf!6`(gQ{P@X;F^b28Yl)njFK84=72OM`KATKQsvaUTy>ES%d zjJ~1!4d@UL=(Oy%-|5+ja6|V5=n&C8zr3((gbTr-sgW`R^+ceMa)T_4+MRA(>uCZ* zvo4Eiaytz=M0A&w7i1Y-a{HqRxF>^#c!JgqIeOTjoe3HuwC9x=YT887*NREQbT&+g zm|k2S(?Vy^i*$aFwoL2jM9cPc*pPC=Ycc5Sz*fuj+b|(wDzQ>em}=}5HqrP@un=Kg zTwXNN$ZZc=+6LT86WH%ThKTG1<&iDvkPz-Bx8W5)g^22<(zB&>^CGNs0NC!Xvqqm5#WL)D_?m!9Ax;I7a$Rxp4p@q}*ht zLyUBeLQf~YW^JEmLxza#qVmEjCCe(#=fZ`EtHhS9M%Cw=Ix;$1G28J?WWE42q~st= z(7K&{Hj%vuE<{{cmKc>IJ>gnX4Wu>vi=jkBSz@nFyKQwaN?JL+6ey&0sHXY=Ha=el z6e6e+TWAU?H66QY;reo@5K)!b&=!@-jAoFw|JT4mgjHfiuKPT+dr6h1+O#$rUjZ2+ zveRc7PPU_%dxl3d#|CbDvt|8W(1>*PMZ9~85#;pQwdH3Vr7`4t$mHswPs%=(;omF{ zCV7d*k@qL#$j>eAr`H`xPOZ3O$?0d-^gW4QL~dtn38lYmf_}Zh?d+kXwYV?pFKOc6 z##t?xuh*hhSA(}EMh*uK@c}Mq1Ui4MAL_7q19t>)h~Q@I>tz8zqTN==8Mw5=V(^Xx z4-wvM(}a2aY#T5A3H3&3%(4+0Mn-W4Sm zD!ZANZ0RhV-Z0~XVMN4uS=o$QYt*f!DbgmvhXRNQ@XVQNxil~DN#CHB<9gN0@=QSy zwSvWPih9mGx3>JGpQw)e^wp~44mpj#WR~=a#Q-EfuDb2Yq;AtJ^9=LOxvzDK!sLOx z0&xv~RtA?5x%>SRFx+`j6XJgZ5F(%_%^WOyT(2XM*__F)y(M<@W>fOu+VZ0xru1}+ zvdrq8pBx+rdoc;>Nd++^Kd%(^+9XA-6!g36)voK@k!xMvO6h>e;cPQ3PAIRFxYr?Z z)0GMN55a`YoY1$=q+zuc&Sf@09{~sv&}>5)V)c&=+Q&dcN)9W|fHpuM z2M8%Std47ph1DlPLrM-S&YL!2^(lamlEdow@vyoLG^9kdM%e8y?Tcb_=*UWz!af5U zBDC2Ck++{48@*0fHx%1={2WAxh{`HNEm2lxeI6#He5Nesz6cXiK2w$lzYG&1rrBCm z+fPl&HCQ$=eH9=?K(h@l&HxnmTUj^96jfh`3K7+8Ljv2UN-ikW8N7{}Idz(KqBhXJ z0Ujc}+0Me*J|3f7f1Wg|XX}ZNTuZmX*wDz6 zdB-jJB6XYu#-r#jAqs%m#;rzPJ2Rl$1UK<^0;q^kuPHdL*6pYaB_L;DcPK1(*OxlY zFy5o2M)u zQdi1b%2S|3{7akpWez4hPlXimFVc0xy$#OOfkga^bU`jz$}^xu{EKu^YH~47NzZ~5 z5vgYdQq(rCOvz1l#Y3nU`QHNUDMosF;dsO5YHoQODQJ7uKsg4167 zo9rzxf%+_95y8%OHq}nSYUK>;*$nM@&?4Rjtw!W@8nA(_1B(cDwxc6=DrlYYLqog( zF(P8mN-K@8WT_wm6A`9oEt76uTs5IYL^<1hW#Q3(ewv>;Fd|}{?V!TK8RKSWF>j3a z07d*unQ^Dd>BlAm4ZuW%=~=_xTv=}*_XCM|80jkwT2D4KF9Z}3sApYdU2~>$nKZg% zQJ(`UB2>@n`~=larOyWz5v*s$ylNyiWtwz)5txWDJ!|i+=!Dg*I=Tc-#6!-oo~O}E z;Y9pPqeHt&P2^t&EF#!<`qkLCuqWoVzlIzl^80|F=t}UN@KaKKUbFo<}k$fccGcJ|L7?PjYsP5g5 zFb5ROxKtwh-E~JGlP8=}+{9Ai@>;oEM&xkDS-$O(xZ|`Ya zK+TMHYCCFQQ==N3HF(#9hX`-BJuJ;_<4xka0WPG(V2gE68dKX05|0Gio4`YaH`_Fk z3AH^*;H{Hc_s>++4qX7Wd9mR>zP5bu->dLAaqUhAUHyWC?r;$QtRD81pdEDw+6Kks zp8P+hP`u=wDpBT=5@oi%n68_RmWB^KmzOT?$2KrdQeZ42az0x>*ZuJs+1ygcMA_q^ zL_|5;Ok0tZ9Hn7{@e}|N0nTBqU4Tg8{=mIhz>h-TW%Wq|g$p+AzmW*ecjR~c=dz>^2pmM{HJrSLV4%C6q| zY;#N6?3=lAhUDj!#(%en5z72`*GuH~i9D4jA6S>KU;r9X9L_dExor|RrJIm{6-kV)r z;+pN0*_pX?1Mz~n^wb2{n*l>gjKX+nu&}^cHHPSI5FsL(Y1lRisXfWR?2nI@V6z=2 zlHdEac|n>zyS9A4+IvrADRRg z^cKx6GluNw(DCzS|YRElEuXcR@jfGTX#x z8n^3~p(A0jTdf<7E7o+%zYUfc7DOx;-oC+NSlvjPqxoY}S(ZZ~MO&{k)0 zsE{-~2jD?U3m$W%TpB#j1_u$&6J{%a`YL%QX8GAJAW5&EoT9`@uKiqFK6}Rrf>THQI`Jtq(#|u>YT$hwSvt2;q`dcs8*>^kbmLaS6l+|TKE@wMJaTXZ2 zR5CGeI9Q0VW;>a4CM>n=_*~a^3ia{r=j)Djg(M*S5TA)4l-|H0`v#s58@6el~{K_wTU0eS8 zS5$`Gg^~8VJ*Q)~Zcn9)Gw zdbSz;(TG^Dpv@6fnsEX+$6>mE>>P+`V(4cpEPw$HjUE@aF(T z1h`sc%9#l;9_VIK!*?(E5P$e|+f2@PANUaQ%{YSMB(9kv*o;${!21Q@5W!vQN8~2A zfEv2{Lx*@2bPS{zxL*Vg@h9kHPEL;MN4xStj&zXTlO5nNWDJOntzAGj3`6*r0Q zVZb4Rd)iFBt-LJR<5V2>H4~c+v-QH#OE5QY#n>m;mM{M&wP0Q?v#WP`dU8c6<3F?Y z!W@j`1!}o`x`^Z0RF;!@z!Gt-hAXMdWg}URe634Qh$>kueyz7iMDM^fIif{}So& zoXyf<_KRDh3AgvQLE zZpC6^vJWyM%`P4fp?n&HKa_CUk*7U@=cEf%PQb4G$CfM zG@Y8~N@x+$dRoPg);L##j0pL4ekP5vn&y=-BVvBNr_5tD%&UP${7uPD&GK4k5r1i& z8s+uSBBFhbp9x~PCV3;kh{wP~HON~4Mg;s?PeXXP=6E~Ah=`xLNf&&p6~~_O-rdAb zZ@-X`nh)ZQubj&8ck}4l@`Xpp`s-eyUih6J&j$*DrxZ$(yh8o%`~QMD{$|rfU>V^? zHFM^3Y&atZH^}ZXBD0&WOwE3vc%0oebw&G8KWx=%HYVN-8X~k!H&E;> zTGWpE8Q0t3Ldp*^Eh`%evUh-n2yN5#3OgEP`R$k{SG@}`L}10#G}}w{yUl2mu5qaC z4RylNk}g`;eemt>pkE7O9hp$qVkiUr9)J-6Usq@$uu;p|n9AbC{NIMaad^JveLuX2 zc#9dlnJIvEb4F7akZMF!N2-}2-WsEOx(+?uA92k$OV2F&AApVsebZA5vcTDiB8VR+ zymhEcjlD^l1~G}@gAgJj+;pYG&J(Jj)a9f)Qrp1&F>r|BHa#)yc7p34;Lr?%_fhZ= zfAH*?9tQ7E!9#?%=^~)pC-e+nnmIlJA0obTOLWXLgJa|MF91XQ2sjqk4CUFsf)5d2 zF&*@o3dC-2&<;1NbUqC;BIaVoL3W5auXjERGU7)vh?|in6;-#V`R8xoL&WDn>8RCn zL#gx&;31{sQK@LViZ-m!qO_U(Z^1)^x9KXnoh%(q;X|8ZK}SocRm)ePLqxafBG}u7 zE^k!Y0Q?$=h!9I{Ib;FY?+w!M`v>3~;ih8#C*Tml6*F?O&9X2Fxi}7c zrft|aU50otpU+!c;(vh{@s>DNA{ z0*MIn)n)d?+=P%ps*^Jurr!q_5$>kT-giDsosO;z&mRJa2(Z-dRuY~LV4C%R1R)~A zO;;%0PC=Nm{RB3|3$}WvrNf%j?0nEG#fFG&)3auGJlw?A>a?9EuT6gkLy3s8)DcIM z{v-?BoMy_yJA;M@ZPUvtZifJDuV2|53M%3s>S&307^sL)OYOqi2 z0VE>G^7}H4Fzl)YnWe=ep+iJh>STw>B>Cv#1K~o%ReoJ8E*e}m*&PKNBDV4imPWL& zV8I>)7$UGuw=M5@J<@PSV;>9|BC=xE1uc6d4J4$IQBvUdr93KiTBHB$a zIok1XT!?f&`J|5DE-(?lFh}d*W57g&S$^|yK{rC^TC2Q$Xyg2NC=ovbbCfde2RsT) z#E-z#DSAV5nl>;`fD-Y8vZu2M8&SNMxz?q|!Xqu^iBKZ`Q7*^2v?OUQo&+T#%3?N5 z%u;kNxMA6i>U*0UO<|g~j|UVHX!*mU29(TRYepOfXb?{U5%B_XN#}NIN?OYRn&##@ zgLo>4h!D$f_$(>MsCKl$cRFl{*vcQmv24j|3QKqfgop^sZ)|6yb(Zcd=n&DB-_OtJ zY%6GJ{`VYE5uuh}Y3HbFZE4&jtqsqG5)tL5SIX>oLoKHqZ2~<5PQ;I7xlq$;n7E&Y z;oT!0ku zA_-C_*Ooh+{b6do2s%V`rB0VqNSGD_tH`(x!{9Z+Lxfj;kH6Uo(l%EIFhpSG=ZjXL zE2>O@_25FpRenoBTv-P?E%XKuA|fomrJ$XSLnE8}p+o$j8#McouBc68_d@6p(Uo87 znM3)ZQ%l-8biky;=Rk^xwES|VtyMT?#3@aL&j$|?Uil5ej!s40*V8hbp>@hOM_&Xg zBGgxwUeirRO@s9kSP`+7y13HRCdm@Ku+{CS{isXfL&R79+{(xjK^xzf!H9^l{7I@2 z#x$a@01^>o`NPUNq#1n3TVpmzuYwj4ZTW>!Mw@IG|t}yAR@r>>l^`&tPguDe2DnUZ)!Mv`Ake&5ZwqWBGmGGTXC?G z#_>&nAp$GEPShs6Ne#7|fkXsZ{>a@ZWE#isgAx&C`Pn6>O!;ns4-sGaQ|a!`p<5wC zL{@&iH#BJcA^Qn0 ztaW+~T_@BS?zVm$PDGsLH)O~5-h2`~M0n*7J|%c7QQ%CZeF{QEgdUWBx?rF-f573p z4L(GC<#$lircBV(EPl4w=`%1QVl026wBK=eaeodr#EbAVY-6h*J`W?}8>6%K;fpXL zVl2PhcEWLZ<-?c3M1)y>=R}yJ>mI%eAR@r>%Nqe|kg*r^J88xDb@&kRmEW*-_$U+8 zCgC@LM0`n%X&~0p`=d--=bK<6zQi^8Indb)wk`H8_z>}xKijOhZmX}X7LKz_=sO@H zLM*?DEyP}swq(Bt8X~mvH+J@WQOjvI`~Wz_k8ta$NmI9}?!Q1ogjRlk&OPMg$B-c+ zE5Efm;DGGs$2Sr-CezJcnF93F;8R-bK*=RTnIF6O70MAGpp(j z0TmHy`E#cRRhxc#Q5ds2mO?O%_Paugh_w7l*^p}CO>JJuGi;{|Anpbv;!kiA;}Ztj z?+z&<((=dUOmHT{?Al(CZ~OXrC=q`meS9+D-asOPEPsB*3CgAhb82xnsORgh?h7j- z)>6kx8VA}zOUGgj=b!t5hX}9KUi8u+A=>hLjz2@zP*HCy3Q7qs5y8 z4-sCet;ATnnUXUi(xUrl&=8?raQiOSs6}yYq{aWs&>*6TZ)cib*iAc`zXAp#jLk0j zn0l@79yU|h1TlPsXE7Ii2!y+eqfUF;3qG8`SX=Hib<4~z>2l81yFDTQrQ$C5a9)<& zUC9e|(C9<&XAT-IX1~hFOEx;l(0w#r1FJ<%Is(x7#s$;%s1s^6R9|kfaJ4uK%YJEh`uN)N^Z!}p^o_dkZ1t{B;5-KX28Hxl#pD(Hi%AL1t5iZi zHYuTt84XU2Y+CB2BqK#$YB>pqo4EZAQ3w>%MJ|ZXEssr%-3%!r(qfj(6-H`{;h-0^ z7gd%S-1mWt2)CfJERE33>W=ie$q~OhJ+n86&H8A|dkegXcnhkbQ;vdoIY}d#8@I@} zf{X~cm=&o-rwF?c*(8V$L5p}Bz=qbYvopva0T~f;F@68S1NcCi-#!K_BGzKgf-Rag z+0Nb6h=sN~nehEM%!rt;Exh{KuDJIHHO6qR+@%y0~qlaxU=X2e+FR0Ti{k0FD>@CrpzSb&jE}GxR~paicS(q zYkjDm`#jKyp#5x0bTkyZ)X_3`6UbkL7ZIbmXEAf!MRAUGg1!eT;vMQ(cj5=2B0}}6J2Bog|1Ve(?}8Q9dCifrlHHVA zKL!;Ms$WAm^d8*o|5Hd2krp&vk@jO|9Ag-1h~M#Qfg=8a4mZFL0Tl5Lbfn>ZS3nVg z`qd_!(BQrsu!vy&s-}h;+INQ&5vN}{f3(f|^N=DU^{bU_$8N_;)q6vXh}f_3q;%4+ z7Y%d@hwih>`ZD*084+_atH_FKwm3b4`vHmg2$}W-9sndFNWY3Jh2&_o&jE`F*00v; zSO?%}P!XX%y@;D<(*(LF{SVtH8lT^LP9X!VIwvitaoF;d(~jBmYs(*OY2NYIHTAlB z=*jw(Idf#Q!r|=V!IGD0=JA?j=CPQy|CyJ~rXKSLhliK>9M|f>n!tE0lhH_Fxh#M4 zCJn;;!F3Sb`9}l$IA9UM7E^`g4700T5V#>e8Dd1lZ!JENZ8X1-TU$4HE%AI$ zC#=;29Z{E_)@0b91Un-3VpiYeNQH%V&ff3XB>kIkBjPTm*{}oLb={*#kXz=bz>J9b zoxY}%bdA5RoayR<*_u7^-XxZ%VgQkW8+|vhpd$r!wT6>Vp9Vf6{9@**b|B5Tz`q4B z;xn+0@?S`E51S6Uf4#U1u?pjw|SPwM|_6KawdL<(0+EULdT&CTnyORytif3wGdK3#K2Su6H-h zt9_6nBK59Ko43J-`VSYtjEK3IH4_DfZqA(b8-5>NM7+h!jTOi{(qDKUtcX~PnZ_xQ z)h*Iq2q@wssM|ih7*NDVP`54g5E%)CO7w7!j~{W!E}wpUYuJ#O&QjlbFZb zJXb=Dh}gT*c0ya{YIqS(lkr#^=am2>0xo9rLxDx^c-!XH;3C33w}@f>jCK$Il?$6gvR)vcd^F!?|gFdkwW0if_akHXmtO}$>@GDXRPSn z&D5_p6Ye%4UT+4vusvo6rQJ(upBfp}b=|*E?w1icFXlYEnaSL-d=o<#!-$CS%7SBO z!(s6xj3H#~G#e6(-SQSyy32#9GW1AG61L9+H&R7!fg^RY;j>B74tJG>sNb#cZ4pn_)}Gn(T|>Y0FFJFV>d7@)H%B|5ua3t9Lsk z|E1zK&O0xoI8R=v;`85&+&Dk-l8s6M_tD{^!1=}o%a@oiN0cgxS>)@yW3zc&_tAAh z-NMzxSBhzc9dFo$s6o{1{mBKUVy13uyu z9ou?ZzQZ-*N5uc`YVbG1g?=qwiWX82cftcA55>%n?pW=aCLoTsH0AnTU`NDW%!-B` zXYWOeOT!WHGnhbRq9QqXe-;Bj3p^rt&s&W3ko}k@-TWNXh^RepoafEldjXA9AgDWW zT0h+fYDCnVpcHh9C);%o4_si{ozK$?Rjq~Jbw_R zS@IXbMuhEomJE9fHmv^_&`1TK_vb1RHxUiCE|qZ#likoGqW8S?UStz2+ks6YKNfIA;KeM4-m%i#g4f*A@Dbo6!Y^jw z-;Uu&vDR?tVh|hfzXmxXa?h)uNJA}YNxlbcqzc&WY^>!mU?alzypa;c%Ajd&{~K^4 z;`Y3@Z`NBjX+HsIM9`l1b(&$Ej*dSOYDCnY_wS(|Dh5x39jQPv=`7l0@?@Y9L3>^T zHam;Q9%Hf31RJRacG{Xf8*D__zGuqLVmjFTbf^(g7jr!Ij@9ow@1fE}q$z~_UU4d4;Md)^Cb z1^c7cAZ@WM0*+JwT%CvL>=;GXw?TH4VPb(^|)z+}=EhrVJD=&u{5w+)o zhp}b~d+8AK8r+DuJ#QSwgZX|hsHZ)+S3r)4-197%ujhLe(1`zuThQscgV#Wfh}!cy zM=7LxfvqZE2R2d#Y#r5NvEKkTB5coRIr}|f56^PG8G1zY#hi0k_-I^^tueSHAh?Lfftxoe{uo-ss=QA^(02&dr zr=5`$dT0y4U%-us+tVSXlzVLH|6jq5h`pF&K?<*&Q}%2k>C-SHV)k_UF=ZZK>i=2b z5y5+&GxOQ6zX2K%w5JVDXKDWzphZOMXdFqu$~sV zS`d^jX8JC)h{ws+*+}qxa1noT-3s%ddod0M7!k0iL-CXLVB8sO#NQ+wwSshM!=cb3qAljQ#KPM; zBRfS7gBTI9r>z}#hsZs^MSRB1cZS>(Ttv8@wta_ogd7epB3@66;Cv^@5x^pX^|XEF z>;O3uT12#-4)cud{CFVDh{wqx+wpM}u!vwiEy>)S9uEQ+@f$bY;qhQ_5#jop+47wo z4}}&Ht*1xTjqd2!1u`OJU(1Jd6H40WJO*Y&%$|;9%#gW=zQ17qku-dP90{S zPc}(#0?dg20iBPtp9nM}Xixif!@EmP0vPcacxYG2;{iql>}elqWH-qv5F;Y?v}jhB zqoz}Q+u5e0Q(;E@4ds!YFQ-F{h}hFQdvwRk86YG62J*;Gm$M*7MC@q?FW=#E4zP$| zJuQoeceb1hFd|@28_CY`56^%W5v`}i+SvY^XTgk!+0#N|bl=T+AR|Kdv|sA(x2c1R z_?w2!KAU8F%>uNDXgw{@^3{wHu!zq=o2}h%LW_7zn{T7(K#Pdh(~;Jp?K3@i5%GFD zp_m>_@2nmkK#hpn(+=gG4h0N1; zgfMxfuG0GD`yWF1-?Srd+3+qc$LDTsH;-0yuurEQ?;gJVDgS0dh<#rnwv5QZA5_bM zd-;}${U725k(Uov&5Lbw)x+k%CgvYu2a%myD{3cq^Ap@4a`VxOx>*W(jd-aSwfEX6 zI_PCGg~-&0t86ODQr*E=LMm=4X*rp4;m%k>Wa&>T8cVT`gbEuq$JL>@LgcEdrCpq- zyTh=9$WB$uhq$xQA1WX2fhnZIrbu!_rtXO;M5aDc(d^V;(#73Nou*dTnwu28mygE{A~#j5;^RDVJqjC06>a2o$qCp%WTR?z{8%&pM9d&EQ?;&GKG&C3 zDkotFk)5hF@N+xEb<5-Ngj6?*+$!c2>>$;(Y2_uSAHrkMy5H_k6jx!cPs#p2)^W|e@Zz8{8$`B*g#~X(5XE7yHm|!q!)8sF z!bB^o-iI>Hg*ZdxtU|?^bv9(>IaontrQ`vCtwd5wQL`_M7MJ?9R?zQ7`)xt+eC!~y zb8~evPq))Nu)@trrZl?<6NpTdJc_ZEII)%Gs*E6H=j5S;_U56J$UOrU0G^b`lv!=dJR1bC6ys2rg#}Fbz6>6f| z$QiWbPOq=VX&f%H{=C)-gSK^c1I`dR`?JbL)wnZ`J~dJHCX6BfGmOO?Lt>1*6=R5u zRj)u_>GbBKc(|K%BaRR``apHk;DmDGCY&I0@~&z*N!R4xj0Hp%D%55jFA4H8?tNH7 zs+D8LEoFt_>nN*y82rG!J+*ocQ&*}M%eI%?83iLkfmAW0%t!5@7hMqcY@~c0Ge{L9MJpYat&eZu z1Cfu)W%zohdmuTH%=CD_i5Em(N*+$ydWNre1{!f`ciKv09UD2{!Vpr$MAnEF7Oao& z-~*A5k{j(?kC;ZZsA=`UTKOJUkSa!rZUfVWm{IMU3D^>R17AXSW%r32kgYUJ)1L1d(I z6?_!Cy~dx%3R1;5X*TkVa&L?vGE%wjZ!_$r8UDWbK&t4Y)oG-S;QQeNk&nu?xO9qS zJ_i2)oFH;ixe>2+xW6AP^s|P_9A*%isa(-T=U2C_+v?ho--c%IP4&@Q}WWVZAa7auA75xHHtdgdL>9cAOF4z1Tryr>d>Ep@H8vh7cL5>Y&2t`0x36LgcBch1~Eka34oV zg>#WJ8oUoXi0qWSr*7K~pUH#57vKz$v#K`f_Ur8019p)6_wj>NIN@Co_S2(<f zfrW*1vCMlhfyhM3jqk0Rh?`Mk?3lj~;0KYPk{4x7>nCUgU0u}})`FEqEgtVQk4;xA z{~>0O3Y$4DHStjsJWM)2$8KlByj!$FePcVbX%)8621*gt4qgmz8@PJg$ zLzbxi91lqKJY;F0** z`2WEIQl0S6TT=fY@QC2wUX4;T%9H;8g&wI8eIE8-f*uil$-@BCmO9!N+)oc*`#bOv z;a8+55w*2a{dedQ(O0BQg+47){{wtP_$ANwOq+xz4ru%* zJ`njRd9lINKI}%Bb;mXSAD)ovd&-L4|HcziT~BFsn0dOx74n2s-&0n#+zC&JJe9oB zajW@hbj;%}SV1alB}-{PgB7H*R4vsgi7r6TQMJ1da)27e9@NcB8q<01FL10oM4 zPt$KPqmK@Y+y^I!oK&QHXj7Ck!0-#0K&odVZxi1i6NpSyq+gQ8gwr(sMO+|qQS#X_ zTg(~bqYnQIFNnNUt2$3xTiM{lFJT3#td*=fe+X8P%38^)^M_#tk(G)}DBCPQVMJm# zW)PXFR!!mzOdN{|L?)_L2)pAGkH7^Y7u9Me_S)$f%dg=9sa$f3`&m124<-&>SP%9Dd?4~s^8SB9|?`_7=e9*5i>0YPKAV2r&$+$w~s_g20d$FXWRMLe! zXJQ7CnUZ(fZ8M4*QLwn6NkyCH&c+ZTLuL0=wii2%>~P4Z;{~a#7hMc%fG=O;=Kp;5zN>j@V~n43V*F7TPkVD{s@A_ny$)OGwo%<$cDNVhNF@PgS|NSf}gwGW;R(SIs)vro!PK2kgqV~C7Za~NmH*hsX!4R=V@-A(L( zz5{ni)iWD|a0|^S9jSU3z7YAU=IFLflgTA1nvV#wn=9UfH$>hl-MjAh2JO1G2{sr) zwL^^W#~dPam2On_`!!p&^*h5?-TVO-5m~I}ba|RK-I<9G;tG+gYK{$$6d`|%Aw-5g zTFGYQgtFtKm_jO>_9hh?e~K$auButuuU}ex0&j@Cm3)HrHizbhCNTd3JBaL*eJoig zj>EBI$;^inmZ5zba75tmD!DkA4t#9g*=MnU$U@l_&$Je7RkNg{K*CzK{iW8_-`f_$ z-{1<7tFl)DZPnFaUP~7oFJHh5A}?jH+1#R+z0F!9T3Ne#<)Awp#6QU`>VJzNM21Q} z#*$#3BD?Rd*(BFI){U93U<8qovS*67YNW&AaZwy=je?WbzJ?>DdX7>z?Pk+;^ba^f zra78qVZD!~h}#Wp75FG7;%U zgGm+2k8pxi$H_Vs$xm>C$Vo+-VG}EmgI+ElNOfXlor>dNoFH;i^7h15(2lwT?L>$= z?UAia?pG7KkcVOdk%^MK@-FF=CdRsxhhYbiollfob!^LyZRamUYDJDL_P+<#5LqjE zKxr0h-9cZQ?mF$oTChJ#`^)#l8zOHd_he@A*4NT&I|6Vxju1I2dB%7qN4=<3yCCd! z(wI5|Ux<8_yl!X~UxPOLwlo-Rqw7d)A+lBSag;< zbUXfnSR)|X{uHKDa!26@k)M)>4Y%hf?$jf*Gou#QgESRB2v=qUewVIvU3Jb!V4lVC2zRcP8yrk7koUH5LqgD%k8!-4Yj>b!3vu9rdD#y%Y{h`f|M3cRgE)@i0r&cF#GClwszS_*@eC|2*sCbF}z zgH$t-ExDEEIe0;;>cy!v&&3NOFC`DrZzsb<$Jq4s416Hf%r0h$YhA}wSUb1Q{4>yS1l)QRnJ8rr`S}4~sg2+e(yJ_jxg@wGDS-=q@M-`lWNFAk1 zbUU?`ux|5Egf&FgO5T&Vy;PSRbf971Ji3~ALaH5Iilo};a{dn1kcvjvq&cDA%1RMeKe2xfGy;X-U7)wVS{ zIR6}MA^#(6Wn=Wu#}@KG!d5m^e-XA2*(!O1-F8YpyRKoK5&KIphsa#X+mL54H(}uZ zQj8%oR`OX5GZ|ZV{QfcwA~IOPu~nNahlcU5z!Fk%OU}T=RainQZE0vw{~9bIvQ)ti zNxIH!XdwJrJRy~irlIlh>#&4W-cmL!em#~DSt@x`@eF0U(+|D@Lx>Dja4n6^N~441 zZ^9K)>6AA#R{mBjAr-ge)J!*G36Z4=&dk`fmyMj?gdL>PS!r|t{bpPta#ixF12dF( zBjf1r!xSP@6B`sJaD>QFb;p;6ip0-g38}QD6?YNO z=dgrS+>+BV`8<{oS*qaTH)ki>7jc5fNd;T)lS{fUV+xU}3Qh*QMch}hg2+k*J0jYa zHM~Rc>-a(Br-EJj(VcOci>9t0W0yLjZIL6_}U?ajV`N)~6u*VK= z_$dYu8Mvte;lA5k!=pRadM&#|@{U)^0a6tQi@naE>pD0D2Z$V$e4xp6i70BTJFLxw zu8F&10+ET555StvgpOX~L36R9O-gse15z0e$BlWoJ06hAcu4Ys8xKE^2Sgr9UTZ&H zTC$@li>}pyWA#X$_%!{SezhoQgY93%TBT!{Wwe@ zm5YwijD0dr5IK2IH8QqMSZ@A)5-t$AD0#d478BKQHvdh0Ao5XiF&l?Lug>Y-BQ2%u z^9hZmr-F|NzvND8hB*!XSd-~#7(ryDfZ!5Q?-4uB&L(Bt@2>vZ4!*{fNalBYc zKAjNmOQ0h{FS)^?<(AW-kA?qUOdv8*^1&g~n~2&gVXt57hP~E+4b7eOaM3ny5VY9KqCribLxdSLaOd4 zyEyk^93fS9)DGIM%+X75gve3JQ#4yob@NfX-Wjyh3TG8BNEN-*JH1}L6E4`w^K!f( z^77u2Ta#NZ+UlJZYvW36AhJ<*b-8sLZeeycPLQfP$+G+_ae~N6f>Rg9L%9iV$HPLL`(X}V5cj}xSdPFkUE@=1GPZ^Q{ACnZn%Z@qS;o)0rCZ@~&8 zE0xRj#)=a!Z^sN$#S}Kw{(2`)kcy_TZm*Lb5&CYdAhJ@qrsVm9pxuv}=_$1D#S0=Y zCGTY0dd4?@QLl}(jz54Uq{5a)8p(f%B}A6W9`f6A>(a(j-d6r2+#qsO_KeDQ-HbNR zK8z_U9NvWTCyh`PJ!z{uFT{dB_A!2bmu z5qil}np2~XO$mGn6NpTdyxDkq6P+&8m_f6)81`#nGi-&~0PWx52a%tWPtu;=k1din zu=V%YLS*Y%jZQs&cq8ZswR$s%<8b7Ew3)FVMD4Km@Mz`0Zuhy}*;l*W^t{LYA3Li0 z?aS_T(CT5Q?ANq$MDPa9HNEu9JjyPjC_8zQ#k`UN1N>1bjHah=7Y($>iqC?WWOenwEk| z%TD4!x2yFUu@=E~n*rB6n#6Gg@QC1V@GrFMy27nyPCeXjw~`v_BcVn-rq+>UeVr%A z1}+=c4}===lRAvroo-y~X{D=H?JlM%a;{mX~pe$B<{8ehZuP*@SMzRo|^h0dTCg}s_Cv+Zy*pJCnwGva6XE(ZOj zP*+tN)?;8r#Oh&%ov_xp#ns>*4=y6y*ZP+n=$f<#ty&{$r3v^^5F;Xfm4C!bL0r=q zN=kbIw1{YnIryZ|0@$`EYK^eovmHQ_EKUR)@f%yqiiWUH0vi#whlN`j+Jmn8lWF1h zc$g7C({mKpXi^-o<;5w`BBJ%Myb!J0+(X2tLX3#`_5PI?B5rF@?TXGFb%ObHpb z)zB;EDrJLwF35O(O>IdQr4mD zO?5zQP@e}ZB3KWbZ-P~Ovzu0Tb!ZXMdf1v5tqQhgkaj*6z(s`XVePyUGzVeL)OcFB zXG)3)VnoCq4a1I(Yc|0|gn6|;S2HfFc6*sI{~4IA#xMM9?0U3G0ks4xmLm zq#Yl(+z&0{7i~83H#}Z>A+(5SU*S(a%V?c(%IAQJc#7(bPd*=1M5tGI6sqpHevBC9ooXh3C*XmvI z|9=u{#IK+o9`^qfkcc2X>OGAN_umF3B1(@s&7;Hop8*pQrbmtD3B&uJgA@_z(~4Me zZ|Bwa*niu`!WU?JqC>6&o(LPwkB^w@*K}f$?qy#xkN%D5z>p-(aF=qqWxAgSBk$#=fY( zq~l3!{MLf`dM#>owT|7y+SH_*YtNS_y+(-d<^BF5wvP? zKkQoAKLi#LY(axnS&Ysc$_6$aQ89_)kHAHQTg)!IH1d)HW~M}u{*;#T#dVcgc8!1y z=?{aB_!!d7pfx{?`zPQce&Y7xVcb6h7ZGkj%MOc6$Lxn|X+)zp%>3stBVsOSr%rLq zIy!2sWcy2i5doiDNK+!^-IL}Wbyn7^w^s_ORHIg~7*5%kFwd?nANyT3BpxE$tB0J% zU$a~9jACJum#6`8(45(;_rhX-exu4R36SAh*){$!A{~+I%RInx_ve|I*$p5fz%z?T zmB#%ZHw;E1e}5st&EdoD)@pr&d?Uz+r(t_s8n!n9ig+5f$2G>n_GXX~Ps8^3 zG;H4oDB@|@9zPzow}6azh};Of{iS_T98&JCWGVPokP#slGs;z5>CotPx}Aa6G@C-< zLy#gOEoLCTaMG;I{RpgxzpPmb_!z8+zpPoA@NrlXvHDi&Hg%2(Ys5`r{Uo4>K#N&y zTU=so#{E{-O*OQif)){NG5aTrqiqeE{iwDS28|lqp>!-Iw}Ke#+rUPIUCeH%;;?%m zt5|FMbfFR(U<~hP;6=n+%w=80@v_4qY}6VZUB9A3Ob7M;Sa5$1d_?%gbQ5RCA8P4- z9zaBZ#jGhP3UI6y_C-(;&%!dR6}}80;#pWuXwiNZRK&Be%xbN#1BiGQmJ?dA-vAZy z2z8y7>o-9~gj&q%yV-O5aEtX@5F#S%Fl^3kF87Z)=WZhC{Ypt%^%_kt;Bqmm4p{?XcU zyjxQN-@Zgs0e640`Mo*&drS$OyF;AGYc)0S+sV{GG4qzg);3#9GV=7uRDlVKG$fKh z`mO?L8BxF#vua=jVY8Wo;ppA~*qul)@%w$y5ux9-Lvgy{bj%je)A@y^PBV=6YX81* z@IxFRa!^pec9^Naz)v0YI6AN{b}W7))TpR|{|WGj;EOp_W9Q+c zVA0Ya^kUH?)k*uhcW03Uovnj|ae!1O{KIH*$zh~VE*jhagb<*GSv`R@roBK~4d#ozI=bLgO7Qvn=~ z2}CB|Q<+HUMf+H5a6CbElR5%MTOrm-qP7pb%NU5rc z;w&{C1wJDDiZqJ4d9nH+=n>JswHnFj{IouMFzkrf-&qazxY=3E+tUxl08*WlA9tE7 zS~+Dh?k?~V;a8+R5wB>)kAXi1c%(v!XQe@F)EYP*1BeW~s~V|aGwN}tr)ghn;ZayX zWT7H$qQrum3r@fUA`=yBWwfI1*6>95v-Cl2EbH}L|LuBmDejBR~kCUDb zIU@3cW?^<}oV4zYkDdWGBJ5&LyWFvEa^8+R3ur{p#hfy*bI|#C=s8d${-^DcanN%i zNBj?OXZ-USP$T|__sF>Cvmi%A{$9UJL3@gTuGP}GXS%x37Ut(+1Cb5Si$r(WwhlHT zY|o3td|Y7xXhhI&^gGE64bw(&BjWbFPdh$5+XNmFyyrtv7Tz6}?Ld!ICg`2v*dFkR z;60yMw?RKT3_HL9A_tzAj_&a5ey|Z?d*1ePhFvd&8WD9d=L_sui!mE+eGbfsn2R|< zWyhF@hgqKwIO2cGb_bR&0vi$bt$tUbcBRNhjju~^gUF5Nt(bg}_)?&e3MBcV!QsmQ zM+ENq6199#`0BeJbcciZCmET%0uP8hc-|Bn9~Hg|ctr4?*QV}h@HJo~!uGt`J~Rq^ zE!;>2xZTm;>)=NGPvhgGzSjef2>wHUS5VW9_TGRYM23PwmVgfpneIv2JK4JGq?lW8 z$#p@e!f5GfIQ6M8=Ha#FD}O~x!C$R)o;npK`A7j$(5WyPPx2Zq{r-HRr@~~vzu_|E zub_cYDF)~PBkDx@*c3ffV3p!;Zb2*Z?n zn%qBGTmF}ZsIw5rs%GV`uJ53SxDuJrkohLXC*Jm~p5bp-wmdG$S33Yrt;;91(aio$?(8@3eI% zv_-!ebVTUIEVbNWbcMc7%I ziH7}Sup^a7@V!n`8+{D;#{owKUd)oQoecE2+l~F5r zaeAYz^sfVs2)vl-r=1Av@z(h_;6}Vo)K07Xn*bwTr;rJ)@oxc+2;AS?IMfRN4#N|4M8zN|b+el7p`VfE-uha5yEBdZ5 zBVMPBk=FCwfJOxUtRhw@xG8jx`#-kzJ9+wKrH~S~-RZTaU7BE?U0Z(a*EFT`@HI{8 z9C8MKUEJMC8BFpLP2!w*RDpLVWk0`BHIh6uTuzwJtnuSyd>K*fUsiAwY;aZGx>)Yi zjER{?0*DCkWj+9!!xw89utE4}2oVvUSwsdhfwRYrrIF-W%sL)zHE48NQ%-{>53enM zA>sr?FoNfNTxZ9m_p5!&kFTa`Omx~LD_x$%a$}sk+;T)5EXx$$p_sfXlyO?!6 zGn2Ww#>CL^Fd|}nl^>zETbFuj;$6F;xe=k=X+<1DXJ{V_7%=MXh#dCFf{>u62ORuNg-YuEG#hGYe*jt zDI(Hh4y2wvXveeGDNrJ!ET;OLoswV3v(%{&A|fnil~yr?oz`$xIvq|#oWlRngFJg(0e`1UI4_Vwi z>)Mg)n$yRJOi$L(JV0z-!Z!0CvblM-50-|-YX#wPP0GP!wXh0DR@xQ~Bl zgZU2`+&m8m&1i61oBN9`0-N1h+w2;78jk$(hx)z39{&eWrABeO-0UL?iSgY!!8h^0JyKiK#VZ z^-~h`Wy)kZzc$yaT;e8j+(e0^dn~SJ#jLqile=h&5>8PfDN2x{q`sEcPD-eM=9rnu zL#k`&(DLs)(~#V2kO(dr#J3G)r6q%1u-!I{Zlf5x&F@I?9SON3fjbhSC_#5{jNL&# zov?iJta+fJ|2iG|XDlBzT`DW+*Vt<2mQ?UL$4Y&X(frq8gvAYu$E6%6(lB}Al;vb% z#mrgNHMGGqtwfEjNY<9nf^P}cvZ)o*>T5WrZhEpLSv9+&rn+h-y~%Ak=r;_vYF_-- zK^eCWiQSrt?n>aU1Sw3!?n;otMEowwe^^fWudFVk)osn=l(M=qX?#+{+mDDv4YsJ1 zQ?b!0**9}J**B{uIlCfBKkS{$#C1le$GSbKSVX3wv>Ux#x)G}5v$)SeeVI~HJyohs zx?4A)njKF#gesdQg!!>FRu`rus;6e=WO-EyvzJ;e?{vxA$5!Rrn}sFAVo@ol)Mld_ zs7f5XygWUHf0ushTz2)$idyNSeN>W~yZ*3PijkILg3g#y@yLWlCM=SSu3t_@%f|-G zWK1e4uPm#rEtyhLtK%3AQ|8}|#?hWYt)&_ysRqYWrQ!(^k|2?mfHE*;Ib|T~C}}t} zds{_aAPrp&sVK}t89%YsE+=bhll0vOs+v>W+uyO>*?Sz_W+g2X%%%9)ZUUMvC87P z={1&*BiL;tW4DcnZj05P+J;p8j)dRA-AHstBJGao@kjR5u)iM6ryNjFb=YQyE6_akHs3`9uA3_HW*D zvc8^wVWOnAY$m-PNsWx#*W|Lwva0gr6lrnMJfX{YNjf&3bf71-0iz+6kxE*dr;_%^ z0;vYlO51W7o@th^-9=fxd~857dQak(mB4<)Cdv{X8@Kz&_=!bqTz@ z6qP2GB@Lz}Wi>Trb3J#|i>sHD#j|Rv%ab~*MN8mZn8BS!NAX^XrJHI<#iDq) zkoF+H=8pA{uBj@c13xzWM=i0Bt1WH?KZRNdDha6<#dBJ-AGGE z6}TaVBneJJiz6&5!ATMoRX(AdyPUF7p7GE=XWHcI>e@P;t5-~|;GbKP9(L2%gStH4 z?X%lJNh#BDO__=(lE*enq;qynL}jwP293$ds`BYG%W7tDTlJi9nN;#LOZ!QhYSJ>d z4jKdF={-N}_{tKmM9f%N|uR8qsTMTGDt%`^K%8 zURCcbnB}yaxEiXu#xj5O|BKA0XPLUWDHZyN87ti$X_-#XD)nuChn8d zMlm?3q>kn;wOdI~l-(5Qp}jK6YnC*zrMsq=(Xs;-7%jQd!!tFRsb#hFJFX=$_myzX zsioylet4l2H2dJ?PkLyrn!-!nR^xh_n@<^7(4uU=H@`(zqCIJiSd2+jS0&({gt|xi zU>JjXoo-Bm+(SDDk$V#Ao%cr>q{joU)qa zbv?}xt&o(P{`4AaHL>fEw6vZzN*iyRsaP^z3yG2?;>jpW%Wa)__T1e0pv544s@Fkz z6RNI}b@5C@%LD0Y;yH*f5iGBqP*+e~PN;=8nv=9N`Eo*sqL<5XGrOX;zO1rhURF)Z z*_gUb$V~3J%WOyKDdY7`Q^uRnS<5MJwhUEEeF8Nh9wL0wz>nA7aREjp>U~G4tx=f- z?nQkNWeKz{sUw3!cLtrKXh_9w=IqnW-bG4};x_}vZ>C0AwVa$1cSDrpQtL|Ajps44 zsI(!)F*$54U9L;r?qDysY=b+yA5k)CRwFu}=|?tmvntg+^_)BMw$)7~zu@t0nRlD|*ygr`rYO2UoxuLIw4B)Us?0#L_NT+` zZ0NFXHhk)k{hh0naJ4v4bASWXj3;~+r9~&^6@b^ zUd9MdvN?@x@6uL9vz{R;r3WeBu}w(FoSvy*5CHW4dUuU@aRvCFcl z`v1)SXg4*N{fi3PUtoiDW^>mJo03*diFNi+h(Rz z<7nLafGsR`TXRNp+v)q6v>lnpzE9Y`#?>q;f=rP&23Y(ly_Su zJEP6NEn`){cCA7ucGLgZZqZ@Q?RD*DqUxf1IKFsj3(#rXM4>bLrOBH=bOCF$_k3^_E-vQ1Ctf@xBn z2blWc`87VyoJToxL;@r4mrd;U@M%Wd0Uu30*6Rb<0F7C$jtR5HB{SzmH{_ z&Kb~?aIfBdCe|hCdi-WH`gAzy89EXR@sH-yXhRnT@hVp8pfm=sy`7|c?*3^y#OLj_Xyp3>}Xso8V+ zkwK-7M0(7a@FeFikMf=JD(_WRnVeIVtds0oY4W_xupAm{2%qmoxota)_y9^iD#^z^ zsSXKB7?J}toYSqEqD*B|#usYFw{ObLUD9{y#LAZRmR+=Smr4(kbxm^xKa7{e77g4L zgPD(x78A%7jN(Uz*%iZ^mYbO0Y0rf|-9)F__%JQK@LWFKRBse7g|t-TBvpzNpiGc} zAKx_rnKhtEX4TPI@9LVVmDPukEoPM&(_x&%4NZ?r#V~IkX-3!|rA<;C%I0KgY_-RL zePS@h;dCAQH%Uj?tXWC=%Hy1p?p*83tLgMIzwzSLKmCDZ3(I!T0l14x19y4j$h<3s z8xq~Qbod78iM{D$-axL}CSMPb)?!P^YWh)iX~Nn7rLBhNxijDfi<%$}mgM#=Qf|Bz zsmxbcX3MnZRlJ?tkP=x9DZC+e=4v{Fi?lPAe^fQD?6Ecz-exUDve`gjTk*@5WA6D%#KAH-h~Q=&VYz` zdZ?%O9$j<0Vc9V$gQC-ulfD9-Zf175m8K7OQXn$66*1h6YeLSb-$Z*YIi#X)I=$#c zpETkT&!0f_5zu_ygF3U!JI4AQgVN5YHl#Rl)Pxc&KH-UR^3%kVhekHdZdqT+v?b~k z%-}9;aAQeRoGKxyGVP5CBol`=gNf9ym~EZ&+O`L!NpW;;qd1zZ*}WO8u?|`)m`rMN z`zki6$?YadKsMzc*ig$$yT}tehi$NA?O_G#7O2z7?qc$f2a!mdf@U>z>2tzrEZVz? ztTbfx)_FVdm#zmIw!~fjj%qZ)us-W-w4n|7JIZ1$ENsN;WD1nqCEkiA z=Wp4x@ix0EIj3%7T{ZnrPbBuZsGmxTx-0GUYN>-PnOj{?@0iS$)HJSC2l`G54Po02 zrcu84c=>+ExabLDWHr5a7Tq^`?l{&$7vTIxCztSVu*&|{e0LM_Y} zFLKQ4^5jSjr1`=Q-C&}xjQCFAKcmb@O4YlfZA__E2>^*RIcY|y(&Qisjj^#|lnk=quSZd}v)5kfQ;br!8;mWGBo&JlvuZ^^WKvnvUBsr+kjBN!Z)}Nk z=(AK;;sfg*T^-ZmEQ!A?IODy!!KyzqRbJ8kaVrXOOQt>2t zD`A1>fqa#aczGrDyL=#5>fD-CG)_|S0QVThJD^m*Mi*5Zt(Q>;YaInW$;bQhP|Bl= zcIfe{pdEU_-Z}qcepcQ~(W#Qe^nOvC5O!rN3iqD*pO>@Md9hP9pq?$$C;S3nTDKVn zv-+m>heMiBG|~~~u0)#s-C2Jl9bW!wQ>bQN2t42aN0z zC*qxmX6yh~lhK`&=kHMIdxF)o`||v7R@sy(mA*SPomP%%9I?XHKD1T`D4!eh=p?u3 z--hu0o-{@5yF1-EuDWE9R*MqtPxMY3m1KaDJ4ef3dJd$UXsMe&tH^c9r-(94*-hMb zHM!kHy=4A9pkBGNr8d$m@i1}{3D~vCeu<_wQqe8bZKC;%z6Hnmriy&Y>=qQw0XO((^a zc%#aluDEu$Lz4}Rw>~i?-taP8;Q@L3l+5BUrRK*K-kP6}=+Yj1IOi@ktNDdPx%Dq& zbK1Um`=Ws@)(pbYtUOoE&;R_Lm2)p*9>Mu#{kZ(&S$_Wd-2^SD*rLPhuJmBxWYL02 zYg!6w#d{R*rC9Y9DV{evUl-5TX{<0_hjS+;-TjN#omn%(S*#^qJxN}H2N(Lb;k4w$ z+T=8RkYXY)$xf`8J$GU~Z9eocH+K4}iTp(3S5=dJUF$oisa4}@+=)Y~M9hR%5 zLjl|b%(gc6RRZ8tL=u{?S+q+x6K#9A_L0^6wWwj(=1;W|!f%B}8~=a5nCRt*I{GEn zih2B0UPULaX45metPjSzhK+{BQ;pJ8x{9bBLt27_CeU*c=ob7tz&X|n#hFF)V{s$A z^U|)2syubvv~Dn^N+hiYuv#VWR zbX&r1OPETk75n_{I%#crW?8L#b1ZtPM*5U>tvP2!rz|F6G11#NWR-v4dfAJho*F~6 z7Di7OHmc}~w3K5lHSr6NvRb^w_@Zw}aaw8V(ja(hWx{n0T7^@?C*hQrv47jc(W5WD zl2JZ`_Mpw^cH^S8bB{^IAiW=`$;phtf7=Y%x{yL$na*VP{fpJ~6-_P2Mm;%t}>GN!V zG@5se{Whel;)hvruHpV~Xwq&ChcmRZ36G1W97Frx@NIld_ogUgdc1u+CBBW1i@C>b z`@q98j2WeAc6jsD#u^RS2^+9|^wa`)maSXn;difPuMgH1vW8DJ>v=Y-&=6}M3t1L# z(b!t#@Ta!C#I`hT&>XSseu+j)41a3IYivfI(Q&6`*N0&-yvYiDRJ7NZm&Lyr4z=4U zG)l#Wk#|}9vW#&1<{!Uj&h+ZfYr2$Edr&VcFHcq`?N=D0M82{sr@6#0m-0&h-3G*y zj~q!8(s4WoPD?IRinNr8D5bAi$?(Z3Y1&a>TR*ZW&1`z*fy|-D^_E@baeYkQLeCOV z8qaYeicT{OISy-)g7j=Rl9>WqfV7@OOCRw=lX~8Qx+&iNlx2}_!^q8T^*ja5YD&f= zYh@WkkvtC=BFAl+zr3?_H3Sw-F6*c++pY=s`q@dD`KX|b)594-vaMf}**Iv1yWHv)4t`v4e{{>_4O_##6)M&#cOfmp0nuXF$p()A1L}&U(~J@+3%kob(TL zGtXBm^=9(n9!)W$vBeK@Kyxg96j%<=s&!p3*YR}@F(aDh7|uEIDe$0^tw^Ri(UOKW zsDAye5IV_pCtBOEhDGryjfxgI=!1^j<|vAaU{q6zAU^raqV$Op5|M@eTR}O-C)FD7aMCP{`kj9L8(q_oa@#J=?x=tA`>CeqTh~at zHP(;y>tDp$hW~_KQF+W-Ft9_&b91a1NUnNhtr+CLBgKi+=S-eB=bAw?)Zwjr7p}t; zpRW#6RCCv1Sd&&gbJbzCD=ks3I;<8pM;+d}_us3-e*ZGm;jMcYQHOgqsVAAz#|nMr z3c74+t;>H>Al4<=2_fnQ=q<}=_7OVplqctWqfg#xR$QzdqmE4$!ul+-W#;=vTNNiR zJ~s#(u_R0osB#yV)$FAWZuwzT$tq6@GGF)GxhUIg=+7~F%Sy|)Y#I6 z^B*-HLKo ze3(mLjmS{A4J&N4lhUbxeb}+^7?iyL;TjuVgb@FhvO#}qtlYCG4`n_1=O4wiDvx5r znmG9VojT#;Oc+?8PUz^-JaqyJhZa>QRQ2Dg6FzKEFJiN%tc5A56MGb@6D}kgwsPzZ z71(H&`Dxn2b(i=PvY#hUd%~B;<0bsrg|2A}0)CK7T6wJw$FdrbmdsC)r#*4oQb2(h z&a(||2y6pA(jHC@qM;!F(s%sc^aTJvHlrqM8%6fQVeI*$jW6)HX5TJ~PsP)`Z1L(c z(Z6&8xp%`f_xi`#Wl=`_nih`_gU8oa3OF>|riQ>;$)P8xL;L5SvSi;Jop=z_F-E72 z)_t2KQGWMBjY_S`zXwO>C+uG;?gFp>=dg}PP(KCEvjG#^c0`QxM1WrZHzcFFAW}B1 zNrvMb5r2}OezKf??VR@ddQ!l;S^6m|`2+=#bZTb#S7m5}JWWE{mwg~1jYi+=*U!~O z>eG_RM<-Z)8s*1@0xLt5o_{7QUX7`;Mthl3@@rAm1WIuT%eN$bmnJzfS^|bdsiVI7 zE1xp(z0o*~t1Pf`lp{laj@6~AzBb;sIZio=Ybx-xmqXLcYFaf)&Y50D=VbT{gv~6h z3amRaPjpIR=va#1=qFUT@CqF1&0&Fmq>JBy7FXZJcDRgc; zHP!TKU0T;ZQHrP9hflaF8)>+t3 zbKncg;$uHeYmxq&u{cdjoE1AK59NQJh&w2K5VV-s=*P;#@jUu9KE%lT{yAR+OVdaj z^ZH{(BKuU9jWL4k&ik31UTIQdLqa%%Wklma{?BZrNw9%HdiSUXgtJ*#&aU4+6`Nz; zpC%W5eqz!jiio;h3PipBq)F28N|N-Rf6^pvSK&OiBpLwt17wk~wB9;@AD;h7J_ zKY64{A?oeFKiMl{mmevJ^yI5bWAI#|QI$2*kt)BL2^&?+; z*$_q^NK@$5ERnC zETcy&TGpQ^&lk4mO1_T0lk4*hNx|>HOs=n}oKiwR^;B0qt0BBHnliB^4NtLKd@hpv zmbBFLx|_c#BdPg}n<(H5>jIZp|6h-8;RPvbcJch4W zU0Uw;%cwc@x>Z!nRCA`6Rm`X_P;(?+AI!7sO#@f{_$!R`QNuzvq@^WKNLqbFFQ(2k zYI{Rqi>S{0N9)Yk^r9_re@4+3GE8)YpV`y#tT&#W%tqWVqbTa87AS{k+{;%O>+|7> zp6QKvT=YVBo^~9+fwB`Pj1Eb@CTRmGB~QpoW>e4=P|6jS!N^lcV*n;{psO&cCxa17CrG$8|GKF_|ONh z$?!`uHUvazs9AEF>dJaPR$5kBLa7g_u9;DSvmp&(0au@`=(n^@ZX@^5zASyZF-lH# zCrw4dRM@Y$adPTweX*xW8ByD)2DK)~kPtg#Tciy7D352U5gW;Ksw%YN5@>Sfx>1$RiE59gf02|nCs+;O|3J|Z%YiIj|2~~?}M`c+GeUyS>&5_ z)i;}DCg@U`EUTemo=!^BPgqx!(}T5WZ=1#G!Gx2_Gm9l9jq7F!RKJ^;Tr;08S+{u3 z<6lG-E1L2})J?TB7w?wBck+1R^3|xY4i{emFLsVg5Eew2R*zcScC? zJ+WEaM)8zxqZlj^W^Gr#E6;~mePvaQoJfT@QA%5)wDCK$AAvG0sNqNbyyn2ei3@%U(`7>+?_4`p4 zTkp+D<*R=}4akWP0c3KoCTddAl;xc@%f3RHndiKgQujyW34eM-Y-};e!>Q}s+H zY^$3Wx1@(s57<68Q|XFZM}XbHorSMm7o7uLJxNy-{r;QkiNdaCP!k>9g>vBwtu$M# zq8I;b%xCS%@{)o27D~zP7L{U}Fq&{m`SVrYqVvZOnDj%oHTC6n^|WJZO55;?8vQyg za7subMo5`2w-v37bLnq4(TH0%tHSiP<4g{%uabp7iWx9^7=5yv^BBPdL(=N+oHj`- z|7u-wYJFU%e2aOkbI~YYdv)acnq29lXDqGsd7iPh&E0=wx1~~P@ABEbsJ(}sxIfWG zpVr201*&oHl%_Y%Fo*@FHOt~HjM^icsf8ML6AQE3psg1cVIdk{OzLo!n%&}dEZUo7 zps$0`!&a=Rg*{nxzLsTcaYb0oO^SZT0BuM5zA%=B=W0c^R8xdtwmfP+2{fOuH_Oh` zTGk%CsdH&UkMU1{d@{Nr z^xTQYzBR{l5+xRpFZ6PE;b*mrk*wlqygQN%q#A#~i4N~qNcgF`rBgNA9jKcQjjYkKDG7;4)8fhBRpq?Bi*zt%+^W)j z(h(2+w_wMYTbeW(mnIE`4~%d-;x0IU)yXSOYqLpQ1J%1B6}u+M+cwQ} zjJHWKKD$jWt5mBCDpjjNtZn9hnksB-tagaxSjEVwB>5jn3u}-%BU@FXAYWUx?>`n@ zar|3e8Ko~(CcMHGlj}|H`jNL^$deOq%bbDmCd-c6a+77n$}zkvva~R%!sVUg=d&xL z^umWMFII#kGw<_GKABM)m+XGZB8zO}+s5WPWmR)0R#r@|DXZ}{dl*YgrE^Oxt|9Ek zKOcp!k0sM0W1Q9&=O+B7f^EE@6{?Tg_-~Xi5|h7H7Zej4fyDkM*XlgdW0RwJe#J@Q zS1yXkQ<)ygThjS-MJ3I72!Cdkw134byHReJQPQ#lm$5ysMJX{2;dNfVZBI4b=C@o0 zG%7|VM@p$^@=t{dXje^CzH4kQ<(q$@uz-+Q>5AP}y0jJTErBk{Li-9yk?zST+n8fQ z3o1Hhr)w~Hu%N16#x?o*qyR@+l zwtw;`O4rqu>-6Yhw2Wjiv_&O(PTw}mKdEfQnufqysifD_lD307O~{ok$fcV_xmC%b z6MIfGmD}{LHfx<(QCr@tdP;4%xrr}jS)Zp>4dKOo$T_X{96WZAtm+SDs9{;~lQ31L zb#hD7`zf27YBv41elnGk-6dtT8AqRlwa@9BW?7S!7&>dIAKJGy*)sYy+(ZP)h90?X z$i1vB`D)s-_U3uyXRTg~?BZ6h3ppfOWz$7!5!;kSYTx(FR zGjiiCBqn29mXUK6+IFrZe@J8C6Q5`dVF$iDs|n=vq&PgY?uT7ifOs;ys;9CnD2rEL zsh44pSin`uUBtC%gUmAEJH7Vmjl1!Une}+RT=&H)a2U>arPo|TIK18rlSzI}JPg&Q|RTg!h5lgkSAQm)zEj`OFa-R<1@k%Qqo77>a@@AasWURkd zW2quXEW5w z)`wZ#+TyK-Yo<2QC~Ya#{ESMBnjdDfg#6Xq`s$dlsD5iF$yo^VSW1pMZG%?qcCXB_ zn~&g|v#N0RtyXunVoHY*j*(k4Yi!pn4^Vz}yvwYr;RKeDuYb+9fxAiffR({1VguF7 zD1u7Cy5?BU`PQ@=7*6LqGke(evyA5(V>K?!=iAb|SnHN!+M-8gDWG%t9($-7FOP!0 zf_+HEtX{n*$_a6PcA8vSO`SB6-n#v1PYAtx_AaFlc+zHPL)dg2chy2{{aykIEaLk? zsiH)yJnFyiClkqWTU)~`>gL#UuUM6@DcO2)BQi@lPxSdhr(6vfDmS`S+q-peW|KLWlN#qiqYB-SOpc?ms(`;&aIgH zeP>1t&EA=bH_)QQp)rZT)xE1o;fm^Iyjm3{G*po|gVZV2;u!qG|MvG`Xq7V#PttqanZxcyejSb-*2z#3Ib4YzeS znU%x`>kMZXkmAi(GLYSTeW|~RjzYB%v8WMgbt68GHNoCkMG@h#I+9Ue{QOW8ZI7l1 zB0pb)wh#OiE1a4&%@j~~=)3J+0i^DPR#b?EYe{TQQjEKNf0Z*4+OzbiecSFw(YB`* zXIPhop-id%#s=e}EXyduumKBm-ipF; z2Q+q?AIXv~Vj4ngp3}DP!&9dLyfHA?4_46Yxl9uSc>O=3l$H1-D#JawHLDhC*!?IM zB*0Hz6mPmcABeHpZQ6H-ikFA-7l|nPv`SE#f8flWP5fdUot6~2u^Nz38w!l~d1Ob8 zSVZS*#5+X~N{ti^wO=Y-S>Vj54xukswtS^uyjQ%zvcX|HmKinJ{6k-6{^{hpJ&cH) z9a#45cbE{}w zw49F<^72fDZwvP6*{`(3BKcgQM$%d39jKkIBe8?^R*vN*$%=B?7UYP8Meyv|BG^Cq z3oNe{s*W1$K9nhvQD7v_E2E2L!c1S?jHBP?@+%TtppE4hoaU0%+y#C?Qh#2CEO)7^ zo>E;(Uk931$)8%ET~X#=3ZhS}O`nS*;YFd63Mv;`yr#2gbnu_vE2QY;)H3?nWlEZ) zcMa{?j2C?=4ZU`tKfy^~p_oO>w-l7m6>LQxA*gdfQ|Tqi;w44z?TR@1!bnf^^JC+x z2QNcD#x++yhW_n*q%;fk#Skfq1QmsUd#N@-MUk+ICF^sEidvd^)bR-}&O%}`MQc$| z(j>jh85ISmA>ZrI<4RFTP>X^-*HGtzBnw4Lii$$SNl{Q8v@Zk|*Y>F|rsnJUqUIZ~ z;$d&@Sqil9{PUWT*W9qDIFDlD>9ouOeC7t1m77 z%&4xZswlI0W?x?QQPL1<__dL>1Pzx&4H`;Vh?t7p0q(h zA_5s%ETln2QWlTYEXD@1+_#mo@x!vU>A)72 z2m0~yfX0;|t|5FnhO*sJBFD;&C4>D&+P-DZ^A8f3h&VYRzA|2fcGW|^I7xjGo7xt< zn_NN$sMU!KtHX)xnfxZk9V9QBPpl^2%15?qGruk&@g-4wY=66YBsplkf&96Fl06|n z6YyTP#U-M+w0&+rV8u1N5i1%3>mnzerA~@J3N>{U)DgsRwzZWDLGxAe0jf&Q;r-_5-n>48>J%lU zPogC0x8bT2A~vDFV=V`fL@d<-5=+MVcY^+gv2eNcTl%}IQm5}QyZhv^yTFYpx+iBA zaF291ri>fR9h{r^u1RAxTGlz_v0-|0W(l>!O~}`$-Dx(j%N28Oj_4F(_)`=!6MQ4- zryEJXpX4pZo3v-I?SwjkswriaTvsz1RmvOHW@uEg#MG|f4Kke)r#PLiGeqgQX(1h1 zO6kZ_e?6rbOZoZB&cQ_*%}*W2Qlx)HVW=;D)6hg5-%*G-X>LlVM$Z@AdhK+8^e-(3 zD;r5Iu9A*lYA~U}CW?H&(+;eD$olikTJj_yDQopslIc z6Fg;z1}RTUIcbWjimF-EZOG$pSq+_saaF^>$0?_yevIV#$q=b(%1~BWU0WL+QPM26 z8o|&Hf$>|I6vihexV|+-13gI6?;X$sePuO&Fi@PCY;H07M)Gxn=!xRiAiIarS@MzfC6k+S>)sb=y@HlS(4uYEMX zV8>Qkm3wr_93a(*YuShi zTh|a+J3YIu++Egl;@jIr3CMhcmCRr;qvvVHE&qUZpvSY_XXGD>52eA}rw&0cBjq@&gY%E;xW ze?6}V*$GmJvqOV&Gkf83o?-cG?A-MgXG?5eZ`#-5*}V0Pw0OvKcn|RmEA}{Eq=qv7 z@p}3ZOPX?;ik4&JjLt<%kbXgnlaP|(O;%zL3GggEORIIXH!NkkzCAMJN|CZibTjrR48qb(KqL` zl@3aSsa6u^pU9I$q-T7SeXg10IeKk{6meCuz9#mq*Tt7z=QX;k=B|;nsVG@OMbhIx zi^R8GMI;&9^jc^Y#GWF>CyhNtHeHF1tNtvhN_2qs_uX3Bc&&E)ot&h#C#&4bFvUQ7 zia+RUsTDVnCH=d-R*TwLB?V47@e<#v9x-(2|DAhn+A4?||x&e)W)kqp@R1??AQ z=#-HfZCe$Em1qo18;J7_v$2CjjcLw!;N$WSEm#l6NIdYx4p22JHSMuagtla%S&x0O zhu`94+E)+bV_#^?qVo-Pu}#*-G*pL8jRm8xO*EaXT>z#2$+qtEpad?3?P=rgmhpxqAFPV{?Zo$>gk=^v&#O zGk0P|wLKnj1&CfG;n{$v?p7P^^H$L38Fm;?&q>_}OL}@PlUFY|{a}(llB835Z1@h_ zv%!+$RSd22fpY_&B}P}0V7TE6zxTlDUp!b4JpF z4e^BDgif|L^RcLqR$3cCP0MsCKJk;`)i_UgY3vkJZAiTchqBN-eNv-Rr87$JT~z9kB2{{%^k^#5 z*n~2-t=#KmcOWYGSQebWi)mDLtZ&J3#fc)DYO?n}u@q!?Y=t%Y7fJ!_=BC7T!~){YzEKOJW9Z!8!)0QDGS52L|*{Vpx`2a^AubH zU=lB9aP??XaRptGimM%nifcU-?pFcV13aYQMu0~Z+zen6Z)334o}}V-x*`>KIS>{1 zcqm+>0{#JTy@LAzZc^|dfJuCW!66e!#iMjZDxPp4DxUOE_)`Tu4Y1;5N&gJMDhd_= zn8fE9^xKasm0Jv1a zM*vqS_yoWte$HUhUZmm+x*`={I}jD$dMNx;1$+-+>3?L<`5+ST6J3#jB@RTuuO12q zY9^NgOj7VWK)HfH0ZihGi%7*j<)mUIx*`>;IuI4BdnjC@0@eVyT)|oZS1D)(U=rIh z*mr+Yu{K?iiVhA$#X24e+o^y~06QpHAHW1`$l!=EByl6UB8i(g5Q$wp6kbxtZU$iK zyE7=ANCLK?D-y7k0};^ELt%zm&>NsiL0^D_74!!%iQ6)$9Zo8?qbpLeg9A~qlZQgR z+PDjVr60&(3EMb`u1LU82O?m14~2TQU=ILGKaxS`G7>O~u1LUM4n)9M4~3&uz<7Y; z6zmOfqJn(^OyU6yzTl!gkgiC@BnP5mvWLPhDqsr0Km}6)hA5a0U=n9Ac#Hj5Nmrzz z+JUGz*h68i`mq+^Fa`AhM=Cf3z$DIN@C3KhL+OfC9N|Dz9Oa?#FBNbMzybxw0X(nZ z1OStGGJ}04k&093id3BDKvbOJp)gn7a29~2Z(#7mI1+FUU6FwE9f*JnJrurH3oZt* z^p`O>VLS=AoUTZ~RSrbJH698-setPMEd7lP&K*GlZlWs^aH|6maJz@Xu`1wB084)l zgRX4By>vwa?sp&p9`sQ7UIjc1VCf%Y@Bugb$LWd$Jn29LJnfI8&?Og^lLIWhez+V=!$G??LY*y^-yT3 z0@?vs`i=~a+?NEbLsukVJqIFS0}q9S3fK^!i-L^-Hdn9-fJyAipu-eWu^C;FitY|X zMGp^!>r}v20G7TNgALin-gHF*`Z*8*TYD&URsq`rSo%^1S06wEcAzT~u(JaZu&al{ zFcmNmV1$Cf0DCGJ3Sbh4G5CVpdG6?=Lp{GwH1FMy>A#sZjt2@FcP{_agz zBym3nBJltZg)`Kog8=3$m;`W+g2@0TG09*NPm89~6{)CjASz~fC`?lUGXX69EC#=F zS9UO6k$^e}B4Dm7)I8$A@>RWIEPVCipTFzG-Na64U*fV&)sfO|X?#;OJX z0GOcQet>-yJP2SCA7StSkGzl46{&c_fv9-WL*Z~0@HBv>f0n@_o<=R8D-!U$0}=3o zhr+2U;3WV{|0;tAxwm|cu1LTl2O{7t4~0%D;2i)<|2~6-Q%S%FbVUL_b|3;i^-%as zqrU|BO2M}P-zoS3z$E?*U^0FIFd0i344Xzq{FkoCh(8^O5i7jq(JRswMXv&|s)7~( zYba<5&`LpD08`N(z=W;?U_#deFrl3p%;sKuL%Je65)Q=7O+6I4X!Pa)-4yfy*iu1H zfL;pv0`ya`4ZyYvN&$9Iurt6e3I+lUQZN)?HwAkD3|BA;z;d=1faPTzfaPUx0L#mM z0G5{n0W2?*04y)%0G5}j0G5{u0Lx1yfaRr{!RK6eX3-TDO05GalzI<^*&00;V4i}* z0gg~`G{7+mjt4kF!N~xpC^!wkj5rg()SeAsYR?5QwHE-G+KT~9?PUyFaa+Bdt|+Tl zIgqSgxiZdGsxz?};20WcN!0hrJS0Ziy404DTt02BHogL4iiyPu*f zvilhaV)p_Mg@0@GLVy<(ybSP)g4Y4wQ1BMO+X~(TcwfOs03R#(4B&GGUjclr;5&ft z75oVBlY%7xzbIG=@LvUg0{o?5rMKM~E7KJ@V>N))6|4!cmV(v*Z4|TvFo$*oFc)?L zFc)qBU@qJUz+AWqfVr?MfVr?6fVr>-fVr>)z+BiHz+Bi5z+AWufVpsc0CVAv0OrD7 z0L+C00nCL%0L+EE1DFekGiW!1>f{KzqGH(7fz-*pJQT)g^mu>?3ibuqPr-oz2Pr56 zn5-ZPFjYYXKu|Cfpi05P05uBg0cI#yjRkD4FODTg27{_Q{FeBEAmxW2a@;AJrufWbPs?n74!t?rJyfBKLy(WY^$IY zz;x~eU|MzsFfD@sOv_LJ(=rUew2WYI)?CWjNV=k&jdmb88{?rcR--2X?5$uwfc+I5 z1Tay-WPox7Qvs$a2mmt_Q~^{gr~#-|FdM+^o(o{N90p*P9tmKU9s^*O9uHuao&;c) zo(f==o(^D!oyDNdOmgUax*~_3<3JpGo`=Hu8hsJK#R@J1xLm3rm|_0}FvFe(FvFe&FvFe$FvDH|FvDJEaO-j8 zzgOsr{P(&8@!uj3g*P?&9e{Tgd;svFf=>WGRqzGCmkPcC_*TJUfFBh63}9CM0$_G5 z1u#4Q05CgNc-M1gcB~9wcB}?qcB}zlcC=(L@J#YfE4m`@v~?ifY3HHPUZd9mSXaUN z02?US2w-Ccn*wxEusJ|C1w8<^RL~Qkmx8_k{S<5iu&shp0L#cu0A~8G0A~6i05g3k zfSEoFz)T+jV5aX0V5W}&Fw@5anCbffnCbg7xbY||g9GS_%3z`cDT6W(g~=M71emIz z0w5@u2~efrV1OD0^#HRK%mtXI;BbH=6dVn3jDq6w%yrtk>fcF%92=I}DPXRtt@Fl=k3cdyS zPQecV=D(i-%wxX*n8%g^n8*GAFpsV9z88vlY-IrR*lGagu{8k9V=V#9V{HJ;W9;$m0f&l;n6$}9|BX$QcwZj2S?I-|KyBC0|9S2})_XaSv`!V=yKIMIX zx}v-vKBtKbBH6BV2SaH@jS0nSh`AK+{S=K`Fk;6ebi>Jk96<8lDA<0=5N<5~c- z;|2h;<7NP}<2C@Z<4y*9^OD+KbVc5|*MWHFJ`Z{HgAB?}qx27H`bQl|`o}#Kp3vy0 z0G?LxEWiQ<&jTz}@DhNjcoo2ez5!rD-vTh9?*f?64;YN$XN?c(it_o11F`!v4|(*L z46dl7^j~TEZyiYb?>!V2YxGY5KP&hJ;8z9z1^8XTUjU|Jr4L-E30)Pygth=Mp=$w{ z(AEqV9Zz<*p)1N~I|pKS2M>jg8r=zCJq4WsHdK%R*hE2BfXx(i2iQWvRsbamdIR)P z&>vuH1=|5^uV6=jofPZ}FhIdzfFTNY2e7;k2e90Z0E-x31GRc2C&@LF!*T>m2@p#QAy8sASFG=Lt(B)9|mx^ zf};SAR&X4ENjwq2WSjzEGEM_98D}!+d_Gxq7G0554GzSrb3GK!)94EUE>dtQz-0=q z1Tcx$0GN#H0ZhhC04C#B1_xA;RkzUkdp4?p|GAtcLvx{K>}bC1ziC)Q_vk?3k6#Nlql#8&__Xk0JCaa0JEbM z!0gxw!0gx+!0Z?VV0H`zFgu0;m>nY+jOBHek#t4g8SOy4GsZ(6J)Xg=dGtXHw&vNvL`^^0fux_}A&;KMpgnJ$P1p1@97y_^9tu?&eK0_cf_i}23g!aL zQ*bzdsW=M2gdPiELQeoNp(g{F&=iAYE!lkM`ep`e97gGH(e$@Fko0$YDBPvd_X7Mw!2QHY>f@o%SEIKE*hazj0Hq3c0@zu>0DzS>?}GqL=THFCG7P}9 zi~uk#djgo2F$^x}N2IZIMH!jkKr*tAhdg?J2LGN;=?~EK6CFtUG7p8x8l41~s-OZO zD3}Rg5@!LJj9LJbF`L18DKg>^x+0_JIS?Zb^H4ZkqmKeOTETGu$16Aq;A90U08?=W zfC-%sU_#FUFrnu&_*V^?c>!IKnHM_{GcWZ}xJ;w31h`7UwE)*CxDntc1-Am2iaP*I z=-mJ&^dA5w^Z^F%oK0pvNLOU$BM!vO$2=4s*XSn!o>K4(z_SXT19)D+ivTYvcopC^ z1&aXQRPYYKy9z!4_)x(o0G}%O0^myp-vE58U@^cC3VsIokAhzTepB!}z#j@$_}JaG zB3+TYRsmR5K?{I26to0rrJyZU{3B2U{2l^z?@tPU{2l%z?{4*fH`>(fH`?6fH`>>fH`>tgAaJx zGLo*STt+*PYCOh6VXQ_^0N7i>egOL`I0#^(g2@2o3Z?>>&I$n2QVC#MssT((4S;E> zXRs+BBbrTDl##g(BqN7*BIM*;7SG809>o!27ntC+yY=KZU-=-cLA8tdjU-7{S0

B3Z4d-t>77exe68l9H!tofFl(w1UN>) zivY(fcp1Pl@*0B$PgBl*NlMNZIgp&a<)N@tqu&AeL&19hE2xSO09ID;5x{B+J^@%m z!Dj$16?_5EM!{DA?G$_i&{4s60G$*p2G~Hsj{qA9sP7(r2HHf^ECJ}M;8%cd3YG%& zQ1ClIiGn`?%%v-SLO$;CF!{JleYT1N@$qUN3R5(?1;8`~YXSrXEdgdKXbmt+L0f=Y z1?>RLh>i>zZYQfQo+2gR$$?n4zK6nP8r>P-N(CDMn1D?f%zlI<9-=zCIuMDQdnnA) z=Y320KY2O9pJwT_5k=(!3cmA)$UOMt0))^u)2aV0Bb53 z2hd8v1c0^*_5o+Bf zpc24JshYv1Pf)SlqbX_}NU_ylM0Ri_?LpC02U}X z2H<%G#{s;k-~@nI6r2R`x`I;x-c*nRct^qM0Pia}6W}8S^8r3p&;VfWI*-9s50L-1 z(G(Xt5dU55p|HJ1Ukb3Jg3AGRQE(-|Km}I=3{h|`!0rmJ2NI{;XFTGe@T*2Y2Jl}6PXPR>;7NcL zr-;O-0aj7)48ZCN767cN;5mR+3KjyiRq!G}dj&58tfSynfb|r-4$xV_B7lt*yalkS zf_DJSJMS|%;|6k9H%;-8198_U9tu4)`ZItM1z!O4R`3--KLy_aY@^^ifbA752G~)- zj{v(U_!(fJf+YY$6#NRXyMmf)aoV1-$?&74!k9R?rWiM#0tq z^$NBHn4@5OfI}7R0C0qYodAwjunWL(3I+h2s9+GlDGG)FoTgwmfHM^g12|j3aDa0a zj0Ctq!JYsYE7%L*G6iD+tUgU(F#is!V0+UQRj~aWNCi818;0>GmRDgmBQPzCUmf>{91D5wGWw}Lu=g$iZ^yrf_bz^e-8 z0lcB$Fo3rd90BmIf};S;p~o`V`D*g;adbrbic7VAG?gThY!QB8yD!3Qm7zOtM9IxO3fRhwF1aPW?M*vP& z@EE{Z3Z4LHQ1B#x`R`v0x?N5Vy-FM20te#I=R6dy)#!x)Hz;@!;ARCc1DM3u7!2jX z_jS6WdiACQQSr8iJo-HbUAU#cujxN>An8BxkVk*cpzi`o|AnUi+JU71)KJb1I z&|kq10NX0~3BV*SVX)gZq~aI4qAVOu>*rmc#Q5ySEQno15vTQhe96}&>5h= zf{g&SRgeHMiCq}%`XZ_5N>`+!n*&j?g@?k)Qzd#!fRus~fHM^I0x*ev865REspv;n zq+%NfqGCG_h3k?MT?%lcf*k>FQLrZbohs4801i+v z9AKh?kpL!fG=tW>khK?Gk&1B+M8yOTg>TiyeE=3K*bm?*1qT3_#EA@U{5PqXL|3Gu z+<~Y_dMFH;D$&ybc2`gVFkHb50Fzk7pg%7~RMQoysBs`F>O2%a)b3|CfTf?y;CHSs z^XQ5M9PU5_9OJ8o<&Y$6zC_4ad_J2{_4t2sp(<;VSh~3c%8z!QfoZ!kKhM z0?u|I0?zSJ_*AoS9)P94kim}pTz?T=k$_7bh=9vI6z)(9t^~03*Dx5s54P9R6$!Y( zfe5(CL!qwQ3oR6 zaSw$O74T00OaC;3mHBb>UvxzR7B~GSo)V3Jbfhzc$uz9z-tafz#AS4 z&!~Vm0sgJvZGeRe-UTp;A268u9I5z_u1Liv4n)Og9twL-mFO=3#whp-V7!8F08HZd z4EpjKxA9OYR{`4rSo$3pe8-cF9qEb$?BYNK4De9cK?Mu~*jd34fB_1212BnuFgWHa zQZbyaNW~}zqGGg%!prKmF#xYA7zeOO!2|%4xG#fU-yjwH(G{sU(1EC!=%MgmwXqDq z(obQq^Lr#9NmnFbx&sjqJQNO?Cef7u6BSeeOja-pz$Df(X#XdvsG}=Vafky^G1o(3 z=L(5F6kvdY!vO{>I1<1l9>ZYN+oa-Hx*`=PI1m*lc_{RmCefz=^jDAq*jB;m04DJ) z2J3xAD(2G_sW``hs5s9G7m6uM25=sy8^C|KbO z7f_;LB>T}~Xa#V+f;Ip*DOel8Bz9o%)VHLfBVCb- zP7XxH`W_0~PM7G;0Hq2x0@z7G0>C78VX*ffq@pWbk&12(M8y^!3jMV(w*=T$K?y*q zf?fb7u`h$Oz9tp@=!#Tq<3Lnw=b^CPbcrqn=&WEzfQ=RG3}6xmFzB|FR1BmmQZdAV zsMyUzVHLG;7{KZZh6AjrU?hM^9L?Yb?yC2qD^fAefvA|^p|HCO*au*^g8cwSDL4SY zBu-?o<~yWf5?zssatER!>7lTL)|Y7jJ1eLF7@%MVfJv-kF!CExQB7B*qQ-%!sPjmG%g_A{9qF5EaLID3nZ>=;Hx;D>xCLpMsMCOk#?` zL5oPmX>>&@&U7Fu=6fitp>AjZXsO^_fHn%w2QY~jF=+KAskoS~NX2CiM8y>z3csj; zs{ocNxCY=41=j(X#2Xph`#!0-iLOY+tqw%R?H&rVRKT48wF>SAn62Pm0F!t>gJa$$ z6%WuAsd(6dsCd*vVT=lR9ALbHe*)~I;3)u;_zZ)kJWG0(u1Ljm4n)O54~3~J;6;E6 z1up|sDtHyZB)-AmHJ)EAqAODIwgXY|u7^UK=@R`uKsyB=0(4aHF@Q<@jKQ0qk&4gh zid1~%KvaC=q41{K_#MDI3Kj#rui!@jllUJ7dwoGFme3Wc_|1W+_^*e;w<_QdfW->_ z0{BV6ieF|(T!q0#pOA`G>55dea3Cty^ia4>1+)aXQ$cHhdla+BBJ=s;Jb zVqFKKVm%Lqi&Ve{0GBG*5a0?08v~fcO&QGijZ}1@D^jt!15wf4Lt*K3iS7aLhk~sD zR;Z8^JpoK&9|m82NGkf$6{*zor(h=llejB`x40|@&=si| z>_Aiu^-#E91?&!B>4!5oiESJ~S0rFh2O?lE4~5fIz*qoFKY_uHpOS!wHO0OTM8N(Y z3Xf^@fdKzhFcIKs1!VxwDkukdPC*jj1qIUpURF>6@S1`d0A^+tgA;fnUa#eOumiEX z)0@|<0vU?qU76|4eqor2W>ZdA|$;1&gI0^F{kCBR(@S_9mx zpe?}t3fciYq@V-9qYBmmctSxZfTt9!5AckF&Hz@98#Ac+fC_e=_R5<&kb>>%p>ViH zZw_#jg6;svD(C@lf`Y98PFBzpz;yOuaP)U%!~iw3zXLI18xMuS8oeFBZVE~P_E4}R zz(@r<1B_O%E5KL<0|6!|7!0tlf}sEhDA*lfqJljDCMy^LkW?@VV7h|Q05cSf0jN?i z4&Yz~69CLz`!aZ%pC5;)hYxTd{yWG+VRwz51Tb8|WPni$rU014X$(&Ni&TuMkPag_ z5EYdk3gb1p3Sb`vvj9v$ErXBw(Y>{%nC(C$&hb!KTchUzbWm^@z`6>K09aqaQ2-k% zI0hi0;5dLT3QhpnT){~IX6C63F6zG`{WQ-E@xxtEGX)m{e5v4K05jq;2B+;rRvlC+R$b{pth(Amp-iK%1(>4XdVpyPZUhJlZU&gC z;8uWH3T_9eRd6T3Yz21%%vEqNz+npR12|H_0|3V;cnIKl1&;unq~I}tQx!Y`aJqsg z0nSqJG(dxbX8_JqumIpf1sV!f4C_JpuUjaO(;2VH{D)lN8z;g7iLBTEn>na!ku)cyp02?Y80+3L!8$cHY!vHo{FdSeD1tS5rQm`jL zF9mx6^i?nxU~2{A0k%`HH^2@G_668k!TtaP6dVXJSiwYq-4v7o?4h6>V5EX1z-R^2 z0LCh)0GOa)2Ee`wW&&6xodsaEu$I9F4q0WAGF z4DK6A0xDF+`3^+Dg&qo(8htT9wSr3lY7|@!P_N)hfH?}T1~^o~wE#ybxE|nW1vdg5 zr{HFQ6BXPFaEgN40ZvnJC%~Bs?gltp!MyrB;0^@~0Ib-aXRy`=RF206sR%DRkaB$4L*WFCeih(k1+N37 z6f6QbL%~}B^A)@UaE^la0M1wN0l-BHJ_5K@!6yJ$DEJKEY6V{aT&LhGfEyKj18|Fi z?*MLBuo&Pj1wR7ZtKesV`xPt!cu2vo0FNqI3h;!2-vORd@F&1C3Rd{WOX=SVRsvY4 zU=@Iu6s!jDs)7~(Zzxz3;4K9$0p3;68sGy3Z2>-3&<@};1swpsRIm=fHwrode6L`A zfFBif2KbMHjR1aCkO26vf=vPbRL~V*#TinsHwRcnL3e=F74!gDQ^8gMtrYYGXse(% zKzjv!0oGB_AHdqzwhVgoq6T-UrYLnF4Q@vdg(Eb2XMm#>>FBq;2NI3JzOd78s$K&8ttL*m`0BQ_@{z#08cBJ0Pw7WeE^pVfVUM)0eDZrRDcf^Ob7TxK>+w%K_$Rf3aS9URWJ)+v4R?apA^&q zEKx8U;5P+x0Df0658y8ahXJglz4s9St137Oz>4iy24A{Z!b;jq zP61d|K?jCB|xDnuR1vdj6rQlY8V-?&EaDsw60ZvwMH$Y0ky#Qw@ zxDQ~yf(HQ3QScDJ`3fEZxJbcc0GBFw0^kY-PXbt>{ENXBt5PXlqbU|RkWzZiL*aUj zUI=iLf)@cyz$*++>P-^Q(q83t2O@EiheCr!zXfoff_DHeRPY|aB?>+OxLm&tI@Rp2PmiqFadKIbnZqHyK0I<9f-ukJrufW^pOCT{ul;F zuz)Q!#qkbAz=<9TJvI7dfIbRN{r|YS>u{~gZ42Oppp%*X1I7^w0e&GA1xzHA0Q^cQ4VXd*7cyO;P7JxS3;4z{)4*TZY}?#rygZk14KSZ@ z6R?nQ8?cyg53rQ*5U`x^1hA6u9I%@33h+B2ocB6~>v7~lV&n5P`^83F$gG6N11z5*O2d=2=QkPC2vkOy#z zkPmQ%P!MpAPy}#+P#kcHPzrE`P!@2FPyuj*@EzbkLRG+RLJh!OLT$i(LUxzYRP!@NevM+gwAu{F2ZF@R|?;-YIO;AFh_;VTyP!fKQBUn_GpKqY!=vd`JiZ z(G{wfmBd2mjAh^xW83D6;^nx65`g%G(tw17a)88yih!hq%7EmAYJg7&H36vzbpWXe z;k?r*bk=`(D31?}bO!!HGT7!S;pI$(aC{bpFEdI&R+;3-m+S^UAct)(Ctl7?$OFhn z$PXw)C=4h@C=Mt^C=Dn_C=aMa_zqB&5KglOA)HukLO8K{gm7XF2;syU5yFWzC4>`e zK?o<-iV#k$twLk{9^FnRxqlrE{Qc`}o4wpkp-6N&zB`WZW#EtRZJX83>ZrYoxc!5%OpZ*nL-FH(+QzvCLy%UQHZDi^gCB3xf2Tv{FN=T%`L{u z%LvN>s|X?BcS86h>j>eGY*g4*T{<_(B%NCfeCIaX?B$&bS@pZ;E*!ttz#qTQHhcMi zLZzs3{6QRl*uWou)HZhvFP|Ws1e_t91zaFp1Y99p1>7Lq1l%Uv0o*4%06Zo<0X!$X z0K6u=0lX)KD~ojBE;U?B6hgR`j|kyfVi3Z$d`t+}5|^E^OJYK}mSlu*EuRp= zwR}nl*YdeS+F0@~rIAUVf^-J{UCLma%ZQgV6S4rZ5wZhv5^@3Z5b^@@6AAzd6N&(e z6G{L|6UqR}6Dk0{BUA=dBUA^}BGd-dBYY3|fzS}pgwPbwg5UtH32gxF3E_rzB7|Gm zl@M-W4??(wKN7+%>`Mr@@FzmJg@Xv;77itZiyJ`*xA12|xZ1IVa0`DSgj+a?5N_cV zLbyTG3E>9KB!n9@N8w#!dE(~Eq@Q&L{)t;;n_G;Rml2i&RuNVM))M{zY#?j|Y$j|0 zY$xmh>?Z61>?8aQI7s*haD;FaaGY=gaGG!iaGnsZ{SqNu?Nvg!+8cy$wYLc2YVQ)l z)jlAEt9?ueSNn_*uJ$D%ThAV$Ry{T&A^}c z*S6WqxfEjRKUsf+Fu073{ItT0;N!67oqc@H=6=RMLkHwrJ0A&dq5LI?qq2;q-RA%s6NU7=59>HJM5 z>6~TYJLlNu=HlfAgoS`5gr$HLgq46bgx>+{2KO9(gP0wG-fWkR_8YlLw5HwoeLZxh1h-y?*}e@FnAD*JiB+o)D1OF_b0Er1n z0Lcj{0I3L};xj@BO-l%&=?Nh;6Cs3VQFzcu&O572a^Beu{CVfF&Gl&GU(QAN5s;hE z7m$|_67ws3^u1IRkVz^E8~BQ%wz)46P@IqzP?C@xP?``D%PACbQc+$esidGV)^$mQ*54O3h2xvsO0cb+F1!zVHiB4g3EvaZJ zlT@@Z@D=TBb5HR5jSht8fKG&0fG&iP*j=G-eW~anlT`d@;4Avr<_h5)`w@x)ej=0r z3?ziaAqqxCGcjxC+=t2#Grt^0t$TT{20CBj>#kyCk%YWDcjsA+=erRF@SS~@qi12ka$_4TSKY1B9l~HH}DlV zZF5Z#aEs6aaEH(eaE}lYA1b_SEftSsl8UDWzT&xU?gau~5?%vd6W#&d5<+5xM^f=c zU8#sDlT>_Q;47lq<`N;`BSKO@bV3S1OhQPEt+1@NRK$@z@5lT>6g@D*R% z<|5&d%t?p>_=fNiAP*rV=2IBdR4VezBo&1Wd_@u4+*F)nF~V~_elT`FF@D;sn zbGZ=Emyie0pO6nQfDjS~E9B50a)!tx6~hgD#Yo#+I|Tep=m;1?=mHo=2#FIE-s!ib zi84vWWCLF@)i$>R0n-Vq0W%0|0ka4pajrtX22wFkCaG9x;42o}=E@*oDIpxcLc!IP zfR!>yz#0P|u+}zr6HmiBLO6b-!iMG&ut_Ef*ka%Vw%I0Mz5eALgmCw1pucpvIZ(?J}O5zw3vj&G^ZMW2IKGD$#N10T@dHWw4`LPtV4zKcQ@ z{TokLnIxcxfe+|qn|pvS=iY>Hd_RSYdK3H0Bmn~re86Da+-_XLP(nCrY}=H}tnTqi69+$1ak+#)Oo+#!UD`wIQ^(S0D3 zbUrrlolk9ZEpXD$3E}ux3N_nHz-yT#;GKaFi15T-{u}|32wwm`AY=eUC4|Ii3K{gt zjxLi_#4_*|v2Al_aFKBd=K=8vmjDR~Au)-NZDt+uTzGEF!!BEFruGEF*-(l?pfXX;>wbRQzt>EB>&}WyM9V zCu9d~B;*AANeGEs6%y)IY?DbUb{hDK-L|=hILEz&aQxp2QF}_jewifT9|Iq7*fzHi z0Y?ep_~QyE21~#RnIzz}fe$!qo2!9KI8UezxJal6xJ(F%*A&v|_ucCHkZNtk8P2 zRD2+lRD5XQE27!v4&ye&ARGh4BAfukCWORz3eEM+j4zW^Br@<7No;dVagNCdD*!17 zs{ttqAu+YWF1=Bo$s`qN4SYp9+gyDFWFRyIWFj;HWF~~fuN406AQjnUl8PJ#z9N@x z?i&Q;CgcU=CFBR>BZS0)3QtE#MIo7_qNstdC~lkk6L-2KVJo0CVF#crAtY8%C^t+h zD#|1kl?{AFRoh%o1XL&V2Gk_<1Jovj#Ci&O^eVoWNh*FY@D+`0bE^^1gs>LSjIbWi zf)Em0DJ0eRqP0v?(aykEbg<23#+~j&_zKX4@HLKigbk z1pGuO1{g>v2^dTWiNh2wkClqyGD*cK179)PHun^_VJzVVU_9Y9U;-f|{;H6un^a7e zNh+op_=?|bbNz6RGYJC#vk8L%a|t1Ffx<`nv%x}{q+*GIuUKZA8;EmUK^Ov9MHmiP zLkNj~D3s|T73*Y@ij4-o;!oS$Z#c&-gjs-Xgt>qngpjyfq3;N(*dvov>@)Bc`)zZ- z;v5eWrUDKTeghmKgv5UpV*Ml)$7Pa=QwF}`jBPG40?rYV0WJ_e0bC-4#H$L)^}F6R znWW;Tfv>n_n=6liJA_JrdxR>02ZWILSmC?=Qt?D4sd#SSD_+{>VjtSCDL@MgZBoz$|d__as zT=owB<;H|?d^3d;dXCLyl7N;5KA^R2t|`u-Eg>A=K_SB|3Fs)31avX*0o`nKYZ1_c zupZEhunEwc5EA<-O!-wR`pYC00}Xt|VB1_71PmpF<3}i*TOa`=Ws-o=20mb{Z7w?Q z(s)8Fzyv}Zz$8LQoTBh_s#HvsNh*Fb@D(#{bDeOGvkBq&c?vUUOTc`YBw&$&4_IQG z+lPQdC!Prw#JZ@@M}NZhFqf4Wrc zl1VD|8u*HRwz>WY*iRS;I7k=*I7A4EM-}Q%l!{|ANyP~RUvbJdmjwZ52;uni3U_~# zfD1B7z-0p;aMd<983ES`(*QRKGXS>;A@Q!lin&s8PbR5&Xy7Xz+vcty;3?rc;5p$x zz)M0%e4~(BE8fZ^6%n2X@D-74b7v9o0pS85Dj@_!Q+T~l5~Ir`iLnfPVr<)75_}EB zC4}P>C|uKzf`l?jKoSEVkjyr>6=#rwumg~iup96xAtZjTkVn7F(#Rwg=?r{D2HTuN zKqf+KKxRTaKvqIX%&yRLu~d95lT_p~@D;gja~W|P@)E-F`4w8tlYjy;NkCx(A5hdb zcNb?+obUiplJFQ%nh+ApDGZx073F1;ib@8)qOxu7H3F& zn|qFc`h;+NLxppCmm0|=0Zk1wK>nKxn%nNO;66D*_!F%ahU?d18<`}cy@5Z6j<&f8 zIET)JaC|p~`jaJ~yG#<$%fJWpw#`*WKwm;NKz~9_zyLx>9IWtNP$y&L3;8 zDqhMY6>kiD#XH;Fd%PU!g&n^D6(0~nz=wqJN1`ii(RVV2Oj7Z&fv<>Tn>&fbc!Y3# zLWQ^b<60t_Bp|7Q4@hpCOM#bD5h@@tH6a9~A%s7YPT@zr)9GcBicAK+BC~BS3trAf zNP>#52_YaCA^ed%3iTFAMP8YtBENyJC}^8Yfv2G`Ask;!p@RO&E28z{`yPl_L88Z`cw zC=nt?(Eo9b?G@kE)Has}NzDoA0FICm(29U)*H&SR-r;sK$>nr3@D-hHbD!dVbR~Qa z=uY?o(321ndn;@kFBN@cl8XKYzG8rF?qi(eAVOTg5JCdLFhWQi=|O)S9VL@gj4|*P z<7{);5%3EkCtxBWH{e%7NSvxrU$0`COj0q!z*o$&%|%DR96~sLzQP6l7PCMm30Q34 z1D4w63L#)Qp(tP_p#)$xAtbIJdO}4okc&j!O!tvV_D(sYi?J`Ng zE(0I1$2Qlxqks7?LOa0UgpPm%gphbhVbJeVaabm)IA-80j@#xI;~Y;CmH|!^Rszlv zLgEF5hD)X5qD)e8#lTlwv&|Jozzsq%z<-32fZK$Scu!&aa;dm4lT9K)44;M0f~DLI{b;6+YN36)9wric|)^BDHNUInMEOLP|hdLTW%d zLP*T0ka3e#WRgiLvKaV^uWWOX5s;k_6_A4v0=`kWyi5{v%Or{48u-Ngwz(>}>Vkyo zfWm}YfTDzuSVAHFZmB3KlT?&3@D=53a|3aX6$s(@?-bJL*HLAeB%qps52#_An~yW7 zMF_{&RYm0Syd%KttPHdjvElgyWkj^wqo6TqX%cG%{6B48JxH((E;AK))SNZhaRW~)>jkVz^I8Tg7Lwz7 z0|B2CLgE(+OIAxoI+>&*qk*sZ(l$2^0a*wW0ACS)1!O0L#GDE-H%dh=nWQ3*fv@=1 zHun?(`3Wxo1qrVKg$W_Cn8GmqZc|()sVHUOE6UjBhT=|_Ba8r4Ap8udL)CUY8gv7xL zTlEK~Au>tDa06d4(l(bC0Y4MM@naPV>1W_LnIvF>fe)BuoBIXhNQwjM2(+MGQ zrb0LU(P5TMQZd)SSIoD~b;f;MNazMwOy~(%N(hN76ngw66)R_W;49MD=E~xE`GOFR&!DhZzcFN#Ndht(_<*dox%W7OY=m%p4uyvo zBp|0u5|G=#2jsQQUF_sv&PTWcC_uOlC`1T}MHLS3mx^LCNkvHmUs2jNcODm6mT(DB zo^TaVkq{CqD-=H~6;))Cis}ZwqNZ(b8P2gbVI`n0VGZDWLP-2UA)#JHLz$$aiGiPb8JC40cc4$4QNdWiR~1oU6G3RGD$@z17Fd_HW#n6f4LhWA)p5#37{7tB=%9* zc2g?)$|My(8Tg8Uwz--J7)+=G7)l5MBNWP?lEjfRN#bY&pE%YwHv~6!JRuxEQDM0T zOp-|grWp8uX|}l$2>6WsfMtY`xKd%{ z0jXFelT`d};4A*H&E3RXyPj|xu#s>N@FyW8ZdEvNS}L~5Bo#Xie8q0t++^H_y@Y9i zeS{f+{e+PCkHX07QgKKosW@ujEB>|3<;86{LC6m{MJNO~LkNlI73v+AiVHGH#bpCu zan&~00Oxp}&)1wbL9}wnotqYmQWeco)8i{DO|cN6`f_0if#tJ zqK9qnBRrD52r&S?2_FOc5<=on3bp>0iUBf7#b5(pG1NA<4|jSv;Q(MH;Sk_wLP#8| zknoyRjFU+!CK&jNNw&E!aE_A+830oWUjn8RLgGw?DE~;sESaQYu7R(ZZ<~9Ab6iMx z4_Hiyg!f`8AtbI)7~w5YYcqFTHD+l1gs;>2W%iL0&F6L#4QSG_3hp&lT_?5 z@D;mkbMFwahY%6>z20-g|} z0iF?J0$vb8;%kMR`g8glnWW;qfv<@8)?Pl2fXIYXfGC8sfDZ{FF}gzO8&VNNCaL(? zz*oev%@xC)jz=g7NI)n9NJI#UNfq)OmWpIDNyR4yz9N-vE*Z`-HQ^J$=Y&rIX$c`Q zy+Q{47|bA(RD5aRE3(+;iXh-CLUBNLLMcEFLP-2Zq1IKY$Ssppd~4t<^4sQ8;5HN_ zqyiKsdN3fN2N0oX?fi3b$^)bAGuWs-`+2EO8`ZEiaP{w3@J zoFME4oFat8vkH&iNyRytq~fB1uefZRTh+zCe3cN6zoGCXVBeuDF_|P~;2*;mL_&2%)oRmod&KUTBbGEq_2)ICK z1-L|L3%EiEiPsgXzL$%v*M!`Fw}g-w;k{I>)pLv}lT>_Q;47lq<~AVUBf_76=!C6+n1qlRTOrzAsfZ(! zRKz#%6$x!~iWyEdk{SZ2%Pr?E#etodA^y;Xcf$Kq)4*R@ZQEQo zyj+*i6YxEuH=qHbAD|&&0H84;bT(7?`MI1#bD8A!wlwf3(b_gw5LeNbPz2DPP#n;a zPzunQP!`aYPyx`L5Kf|(!uu%l)ch!uoK;@~e^&i%bD!WdWB}n)z#zisfFXo00K*6w z03!%r0!9(C0!9%?^111o@1xz9o08Azn223Rs1578B1k50m0n8$l2h1T< z0?Z>+0W2U?2P`7g0xTia1uP@f2dp481gs)70jwc}_wf&fUHYN6P9}L{HyZdi_D|c~ zOgyh!2y+122=f6u2#Wx_2ulHb2rB@85mp2KCaeVF|6CgPu3*Zw%_;UJGp}GEb zB(+TP^_9lJe|>#nn@fk6GZIGON6s$^V*ptQ;{jh0CIYe(CIfO1rU7yhW&m;%W&`pP z<^l2%76J+omH-M7mII0qRso6;eg~8wtOJxHYy^}cYzCAgYy(sv>;zOI>;Y6J>;qIK z8~{`&90JrN90k-S90$}ToC17LI16Y%xBzHKxD04a2oFayLUt))!z__Q(b zk54<>Ts!=<)`8Fw(239m(1p+)(2dXw(1Xwi(2LL?(3>z2(3da-(4R0IFn}-$Fo-Y) zFoZB3FpMw}FoG}{Fp4k@Fq$v}FqSYIFrF|EFoCcTFp01PFqyC%FqN0E`U=Cq3U>;!`U;$w#U=d*tUV^6U)HsU<2U- zU=!goU^C$wU@PG!U_0S9U?<@oU^n3*U@zebU?1T*U_ap%;2_~G;1D4Kz5@TXCPXM11 zQUlTu(gM;GG623LWCnaicz_GbPIwH+L3jqpMR*CwO?U&yOLz~+M~H;qS{5Kg0Td#9 z1Smp?0VqcJ7*K)`7f_0j08oaI7*LLo3{Zja37`_;Q$S_H=YXn&F96jE82~j2Ujk|q zvI6Q7vID*+VPhUT7YhZx_};p`hZ@9hJfCLCV;+#=79c$mVg0-Hh@8d_JARTPJm&Au7DAQ9)MAV z9|5BYeF0+$KLN%Q1_34zh5{xLMgS%geg;e>j0H?5`~sLkm;{(bm;#tXm=2gnm*aFx@*bdlC*ag^1*bCTB z_#3d3a1gMYa2T+ca15}Ia00NOa2jxsa1L;Ya1n5Xa0PITa2;@*5WWwbB7_g=vkF-v z%6E!$GRgOriw6EX#bw*vVf;1lD&ZL5I^hK1CgC*T7U3M=4&fr;9^ne$0pU8}5#c|; z6T%(9Gs1nq3qrWE*9whZ%P)l9$RwBg-oRgK#7OpXPXt6J^aeyB^aFfI7yyVy7z~I( z7zT(%7zv0?7!8O^7zcn|q4i*?mQL0mx2x4ah-w2gpT;h#!1&6FvasC430T zM~Dt6K!^n>M2G_@LWmD2Mo0uGK}ZTHMMwcCLr4WENB9g-fshtZiI5&pnUD!km5>Ec zosbPslaK>YoA3>wE+H@AdqRFd141D{LqbtNV?qf)Q$lG#b3%9)S}JtXe}Qi$lRO-4 z4gAB=-Zs}6KiG97bOUrI^aOMzgv1^SV`4}}Pno2mw}G$dYn$tWhp9iIJ755z7hn*f z4`2wPKVTSPAYcSx2w)UpIAAnk6ksf23}8HAJYWK0B483>GGH=c8el4624Fg2Hed!J z+^*RQ+4SE+=Ex-XZ@z)Qe+zAMaS*VW5FfCVkO;7x5E54@Z2wp)R?8$6YYlwGI@{bL z1Z*HI1#BX$0Bk0#25cp)1#Bm*2kazl0_-Mi0qiAg2kay40_-R31so*&4LC$N2slDG z3^+zO1~^VQ0XRuG4LD6W2RKW(2slp&cleURi?8LDUzSO3`85N7%Wv4`{==8me}r)S z9feMjCE%`167ayl2RyRPJ;V2fCxn-PXM{I^7likKSAsiy2@HHiBHP@xp1vXp z;U*v%;Wi)zAta_!s9sAdK9xx-J~!|cX>D^K;vCZv!toguR@9Y%OfpG876Tvfm2EB? z0Q6{PAYv3#T+vd6>U;v>PU=X1XU$~I82BOI7$eK#}$TsFBKJSLCwI?Lb9tLOA|gg%KK%PbLW{Xy5}1+vfHlpeSJ< zpg7?Gpd=wAmQjeQk7QYyq@sd>uc&03`yBz53E}u^3c2+@R+mWvY8m)|I<~o&2&hL0 z$2U+ITSo$ZkVyg>8~A{xwzf-jA#uLKP5sWl zKqjeJY~U-F+UD9KU^$@!U?rh5U^O8mu2s0DSMi5TQnA6nS8TG)#YMnoLIS{6LSn#n zLP*@Dkg~K??3PI?{xa|tf7|A=BH#ca9DhimK}88TERzHrGw=b&ZF4^%;3Q!X;51<< z;4C2|UQp=qgH&9UNh+=w_=;<`x%PM(ZV);F{v&h++$My?dkTH^Hr$sxD}QW^M))V8^iILFTkqXB6N z;{fRhAu*%EO8t*CWRgiLvKaV^uWWOV@i&X?glB*pgqMI^gpim=;kf?TpI0WS$Zy~) z3fkt9;x-f}qyQ8pqyiKtgv3$``SdR@rDc+eat6Mlf^9B8ZbKzPAwXq9Q9xBfNUWi- zS^u_NQzogXW8f?5+2)$z9P1Mt;0Ho$KqEp(Y^qSAzEm`mNh+LyuV`hPtAck0E{Mt#BmBS`%A@mnWSQ(fv@=0Huq(3|7(RQgsgyRgb*-8p?Ob9 zoGFte&N1+b^K5g+e)Ne82;um}3U69Uz!I4xV7Y-0SZSMkkK4AI5RPA~u&0d#{2`MB zY%uTvn{0ER;S4qt!tvV_%Jh(c?J`NgE(0I1$2PYc0e=y~@%t67wUvMaGD*N810Qh2 zHun_*juFD~CltPKB>^X8l7KS?KH!{fE;0fx5TXJu5kkOKg~;tC@tRDMc+tNPMgiL+|?&nWW;mfvpiQo=nza>7Hv zCxnprsY0F>QjuCFsYqksE55MJokl=lrtG2s!QDIp}b zP}tC0Dx6GG(b~XQw6)Dez!TV>5E;;s5Eamw5E8p7BQ`$Dav>0AmP60pkcEae~6^rcyCcCaIWg z;47xu=GNiOoKDyXm_gVKm_-PQa}~Der`|l7q++3guUKrGD}~#zlu#D1oKOLc1MaRC1iLgEpH8%?C*s7z9E+`w0yw9PHUIi4o01e_(T0h}j<#7hd}`%1-SnWW;H zfv>n>n@fV{ZGz+FN}e4vm)zwbVjNh+Qg_=;z?xi4@VUJx<>UJsdr;`XD`ijW%zdZPgD7Lw$xD6i?UI3yIUIStfLgL2?`}8NM*fPmg#53>}32bvG zagK=yX8=hE=K;wGA@LK1WsRgFrA$(h+Q3(QZkrp8b4*JZ2S`Vl0LVZHiC-$jA0QQ( zWs-`o417g)+gwS!nK=k$0J#X|0l5hw@mqy1eWW6vOj1$Mz*iKu%|%B*Q9>+0aY7tG zNkT|0qfoM)RFsuTDk>QGib}S*9Jte!3Eu#!67mA76GCDwg+aZfqP9#@QP03v)VIxD zM!*k*Yk)?Cn}8;Skl0+IX9uZhA(K?JGVm2`Y;%2l zgpl})!V&$(Izc9>_|?EyOtH1qQxik!@}} z&T$E07hoA-FJJ{BB(7FiqJMu`Ba>A8Vc;v)+vfJ+95)gU0RAK#0&F3K#O(_2^yjD@ zGD*d517ES%Hunqx`v@-q`w4FV2MHnZutFyNmUKiWsrc8xSDdiT&B1LrMVJpbLs$ej zM+k`*6)N?Uic2y{#Z?1eaosle89p9v64C;05z+(h5JKX8g%kSFK9ET&9vk?Ir?$D{ zILGINaQrKUg{>vvwM-K5&cFvm_{d&PfcqGU5RQ+ckX^s;MwLkdq8a#r7`C|txP(}Q zaC{tvZ#qgqT$v;wfq@T5WSeV%Ge|;c1V~0`3P?d{0Z2(`1^ATE7VsIN10W5dGvEtC zH$ZwqPe4XOZ@`y?et;~50f4Uvg8|tI!vHx5BLTSxqXD@I;r@NA@MNvr(E9!S??4I| z_#0ZtHha0K!opQ@d@-5i4Jc{gk1uVTOM$qugj9g?gwFsK326b}5z+&y5HbO(5wZYk z5V8Sk5pn?P5WWG_Bjg3tC*%kGKqv%gL?{YqLMQ=fMkozvK_~}kNvH^DO{ffLOQ;5D zPpAp#NT>toObBmEH-*nf$h))!Ur0R-{JZp{ZT50sg&jlX_-Q!)Cj)={K-=u)Aqoe_ z$?-#FlBZyVfj@qfZSI>s{-GL8$O{-t$PXA#CTFC;^yEC=HlOC2izxY0z4#a0X!yb2RtS00z4<|1-vBu4R}pB2zX0440umC28bBVuIvOL zGT}5J3gH~!L&8NsG{O}?48nClEW&?)*n~TPxP<$F_=HD*goLMn#Do`sq=eUiG; z1;T7VCBi&FWx_&0Rl*WLb;5E$O~NWbZNl$>x`cIr?+F_L4G5b74GG%-jR`veO$mDd z%?bMej&K0bif{5q<=Rl+gA zbwYTq|5K=_KTz+$PZW0y{DXeaHhcM@LbpM3d`lev#K0f_%r<-ZrNTEO<@i@J$rsXF z1AqK`+uSk4MT~C8p8!NAoCZW8oCADFxCn?wxB`elxDJR#2xk>Xp}}A|&A2kjX(ll6 zry_2>k&m2m=8r2}1y%5<=(a3a{45Nu-fUP9mLwKZy*sx!(BH%0vjq zXHh7pZ%#8*WHayqU)yFc=TcZdS&sikCMnEo;E&H|n_GY%N(vAb0}2sBKv9K;ze-{; znIy5Kfln-Ln;VOOvV>m%rWzrfMooonqvX75$t34h z*TA3G_qMsaxN!{#4*(4bj{%Jd&j3vcF9FR7Zvc+)9?*&q3FqC05CzbV@DZQ`AqJom z;bTA-LR>&MLbgwo`&FCeQ+>Aa3{$}*E&7HxA#!rNB{2+y%`k^scCJ7j3-~&e3 z=Jwz^M-lb`MiUMI#u7r}FAAUjAr%v3l8Rpqe8m*oTqArfOd~V}{6=U2m`MnUa}=74 zk&3x8NyP#KU$MwGmk{@H2_Xq!86i1f1tBD^R_L}|D%Qv(6@M7`iuJa+|8S=_67B&0 zB-{sVA%w*33aQ6R#SWRIVz+^>*lU|hg>&3T2*)2#7(Gw|4$33}hYftdQQKTyyjA}a z>H|&?8UjucLgHD4fApWJ&dDSd7Y%&HW!qe31Y9Ll16(K61l%Nq#M=rd_3!3)WRi;e z2EO8g&6`2ftMP}PvMVw<+LS;ZULN&nGgpim^VUB*M`$i_I z$ZOy$^4aFv;v5SQIsgh0Is=LjLSk`+X2YeTgiKOV+Q3(owaxvGfbxWOfQp2TfbR$) zv8qB$y;0RR5Ua26)kLYpX1}9 zCE*J|YeEQUr!Y=`iPc^vN$h0c6T8^vM&PQu5yJ6370&8MdoP(JppStM=x3X2jjxiQ z2;ula3OV#Im4juHfMEtcV1#Y%F>cBz!ZW~V!b`wdLP-2YVf<{Vm>`o>{A%DUrr74P zAz&II2jDltH-MRhkT^%7(j2LnE0a_#Fz^+NY;)ftUTt>U zlT`d+;49YK=9c5V-be_?Z&vtcvjl9BNdmST_<)_Zxzl*7b`#D4_7W}v_7Otj0fqbe z8~TGXNyT9UUvbnnHxrN3zl1q}6NLGIQ-qLsRw17LQvaMxQgPA1S6sHuWyEc`O2`bj zPWTFNlMoVbD;(J+6?bHkiu(q>;-PIWPk;Zb;m3r0fTx6lfaipe_)6icV^Z;2CaHL5 z;431;w3lBZAQIsX-~+;YKvY6VjHXa-t5ignNh)F)_=?!Jx%+rC;}RYL;uD?%5)wjU z5{243r6Q?JQjx;ISERJfrNudZN=Og*jF1VCh7c0dDJ=L`D$>g&6`2ftMP}Pvte^aQ zk(Ce!kc|)@@HHVM=2FOVMk>CMNhG<)NZMmA(K?hHt-d5ZF5BtFrQEYu#iw1u$T}M zmnqCUD;3LSl8RLZzG97St|e~6T0$GZIzoHE20}>uQ{m}9Qn6Vksn}-VD|XoCw&EOj z5q1Ff5OxFpB80^K3VqK@#Q~Y5;*f!_IAWXo3Fml>FbHs*Fcff-5E9QQ%-$~*XJwL# z3kJU8l5K80&hZLiBH$WfGT;UwB;HbZb66^F%On-|41C1{+uRuhJR+P2JRw{HJR^j} zmkNLBL;Ff5sd#JPE8g4YdLbZUEIYmrATpspAPONQex&f@L8*u)lT^es@D(51=9VBJ z4q-VU9$^(A0U;zNR#<&sG%@)-DvZ*6lw;2iT48UqRvngI$E zLSiw6kG4rgahar|l!31(W1D-4Z~o;7ZvYht?*WwvA+d@=)V)$sRVJyZVc;uj+2(5C zHq;^12Gk?e1Joyk#D)sPw@5`JnWUnrfv;$8o4bZ{l>fYBIQ}M}72!6Z4Iw19SJ-(@ zDmus{6`c)yMOWKgciidjgkFH2gg$^D2_dns!nOla(N89+7+~Nl2HECj;Wi8*%moZ1 zEC7rkgv6f}66w#hqh*qcaR$EP7u#G`1WY7k2mDIN37A3%iPII<9g&LPWRi+m2EJmB zZSEQZ<`HfJ77%U&77;??QiZXDquGu8elIWB>t_?P@ky%GD*ch2EO93ZLTw(m!pJm{Bea& zMxNX2!Tq~bpVUvb+umly$e3CRHW z37-HS5<=n=g**CpprrRK%A_DiRs^iX^tV<_JheXbDI`Xah(|2#Ki` z66nttpUET@X$^cuI@{bx1Y{tL24o_HfGi3F|CYq8GD%`~1D}|~Ha7?Xxd=l6xd|cQ zTZI?;yyTNf5(^sm#KN|@)Ced_2*;ODXstitl$1#V${6^7a<;i+2&h0f0jNX>0aX;X z`)@xoNn#BHpIFN__X7gz5E=vO5vs~00Sy#Z9+GqX0npgMCpNXs?L$Cw!U2FI90If= zgv7QApXy(L+Q}rH9SwX%XWLwAJn~%$;rJd3_4Rv6Pnjg3w}B7nYnz*nGw4qU#}8C! za#aEb$s_?o4Sc|G+uSjn!AQahz|Vx!fH8!SI9}o5U8(p*CaIWY;43EE=Bf|yf8(A? zs0El#s0)}u2#K>5(ms%iIWkGbd;?#x&^Ffz0gDM;0ZR!z0Luv>ag{=pXHv0RCaG9! z;49YI=5``r17Qzf6JZ}b=BDz?ic6}t?4#U9(-8{Fx?2=4)Z6C$DF03jqE zQpoc{Dh|se6~_#G#c|u*WdxigTmzgY+ytB@gv1L9E$&OjMVX}Hih-}VW}9;exIt(Q z_>a&IaGMYk?Mp(5ZzLS;ZSLP(6Mu=Ji(#F9xW;u!dfc(%C)2uMI^1V}_^3P?f-iOChR zU6zUzGD$@$17DHaHn$cJ(C38pfV6~7fOLeAm{B3$1*ym+lT>6e@D*R#=0+hPJ7EkU z2Vp!Q7a=6(QMjvDkyj?E$Zy~)3fktjBA_r~2cRfnH=sBnB$iU>en%=w%On-$417fe z+guUc=}Ls+fXakYfU1O$SVQ60>rzouCaI`n;4A9c<{sf3>l2;=ejvO6G$Mq=rV5wz zW3ZV_QsE4IMJwA}Z=7QrLO(z|!T>-ALP+ea@aJu*=pvI;bT{x7J#BNj5%447TREB>&}oy0k=C!7InB%BBQNeGEs72@i9u}vna*lFM^cH8EnB495e8ektG zCSX4yB>toD?>nhDB$HGeHSiVx+UD}%Hk=?71e_ui0h}R(#PbT<^n3ROnWW;ffv>n~ zn>&beyiPa_xJft$xJ3wwcNJ1!lZtyXNyS40U-8&BcOGB6PYIU*&k0unF9{*>jlxs? z-u+f4sfZ9KfUk&To4bQ^{D5#D5S8!<@DU*-#!#sDRw`o3Bo(m@d_`Q_TzcH;_=HS= zgoG@B#DtKTOyRA5zep~VRHQWU6`$JXCgC=GMwkLfLzoWuf)EljD2#j}6&Yocip&PS zBCBm~1#Uw&!fL?RgtdU2gpin9Vd#HSkw+$}$YUwSoUl8V{}zM`&eE<4`L?+G~p z4G6gb4GAH!i9&|gQqfcW+=gC+UjV%clK_1QA@L`LX%D4hfJ{;`*uYl|wapDdz;MEFz(~Rtv4lT=JF@D-D6b188fCKFNvrV`QsrV~QqOofE{M9q>(D&`vaiuty=sW``lgx>&* z39|r8{|7Qj;tGW^@1Mrd z-!IO~Bo&toe8m;p+)V^rBishuAlw7|M+k{`6v{`4EI&KTBoz+~e8nT%TqWFwCxj}1 zXN2m27le@bTA}kLxr#S3NyU2uUlB2`y}ShH7@4pf5QVS`@F5{2MpsyPMJi&*Bo!YU z_=-5TxqS$TM>qgTKsW?QL7B9(0}4W9bcgmi$<2^j%t2_Z4P zLg}YckwGS@_|m{vWUrG&MlKvd~4t<^4sR(5Ar{7 z79@n@i+G470Yzn!fD#5ippD~8Kn0m3;5!2!P{lSk7Xj4>;rN;g zn_@~pEtw>su7MBu-Zpmy0SyS@_(lpT^&T{qNdlS~_<$C+xfr+yEeYZHHVQ8yNkChf zB%p(V59nl@Yl}1J@;|`w-4*)kP3!^q(ZC1vvCZ8^KtDn_et^P}4Oxn>ABM+nDXRLJ*{1YD9y0%bM?#Lto z_YHi&L)%<&yibn_;rM3?)AfyhE|UbjGVlR!Y;%PX@Qx6Uj~Gt^`s&wfB$*^2ih&RK z&^8wv0nrHI_?QYi^%7#qBmr>@d_X+gTzLc}AcW%+E2NAs0ZC+%faC@~;1k*$jNZ*S5J#ID?#oaC~ls z>G~Yxkx2sb8Tfz#wz-u!gF=LGd{Kpz`k7TsCJ88M-~&qA=58RMEFm0UL7{e338*NO z1XMQg0aa~t6A@6I5RR{%Psp@`EiT+o?9hY?%PVJp=(p_*D3I9jB3iD?i#o$%{;YF=opIc-TV_ zV7yO-?@fCYdnzsSNi8(^{7G67!m z5CmA}Q{fZ^cpY%%S6YZEX#%`ywoHK49)bXCd@B5!0;~gE`L``hu`^|Z*)jp%^$-Mj z&!@tVE5H`OmEUHePf-)#eY0f(?C=l-*y&T@Tm{$#3>NGLh6(lnF5+hvD%n-SKC@-2 z_`*X_#g{%6en0`f0!9hG1|AZ81GtDsEsU~f#_!CQsp7bYpo$Yd6>g%rbP`AqoB~=1 zP6ICDFBW3#sW0a8po*gAEr6hki+w6wQvogkY70sNbp@pX7qP5`WIG$mnJv?cSPwxJ z6?`iEx`v?=uu@PNcuPS=75WMlZE!BO%<)omZ_qRhoFi-_*8g{ z0^9;@6Wj`XAh->15j$C^Q^{1(*=(6Ax_Stz=;l-5yL2$S13d&ifL?;0fQ$Gi3(4h7 z6@AQ>sp4J_K^2KU6~0ITl7M1@6yOp;8sH*kSh%@`sUl>yOcj|Pf-16nDx9tC2#_ln z3=9zr2ksY)1RfNO0Ui>J1I7y`0*?wN0gnqN1Fqdq0j{M}0oT%J0oT$QfNSaVfNSY& zz_s)xz_oN9;9B}B;99!SLebM^gcq4DGr~(e1S7oEr^3sWy#jbcunKrfum)HwSP#4{ z*a*BU*bHnDYy;j8AX+9RJ2NTyhUEObyzDG<2JT)g=2vE#zJtA7Up@j{>vsdL^`8Q+ z_4@$V`Y!<2`h$RL{nvnN{SiQ|4}WLj?W1OpkC`pg(tmmg2Kfh{3ZGQ=Pk<|b25==V zs$e3%^PP!U#B7;}7kdaIUgA^X63Q+Olo6Bz$_p+BDhRFsDhsLt)dW`qt`W5WSM9Zc ztF|8Cs=Xd?)y4s?+D3q@wyA|ZH=DlSXtqq>n|lcQ-qNRh_RSXFYH7;9G$D8z)7C>! zzMW5n=PA2A@T#B#uu#wu_^Y53uvE|mcwNvHSSjcRyd~%ktP%78{x0YVY!LJYT+i;Y zF!g}x>afC~tNlC#UG48v;StJC1|Afo0%HW}z{7$JV1ghFJSxZpCIw*r@<0~!gv#Uq zg@Oq1v>*>~T^V8_rK;)M%eq<&_Ym}LginR%D|;mH7r`iCv0x1FnqVxjTrduJLofkY zC71~OO%Mgv2_^w=3kraZg2}*pfEd@WcA91$!Az7s3~jtiCoKM0lsrvxj2 zp9L#{7)_>CKvBVJzzxP)3x`{o(b=TW)_M=Y=xp$*@D^on1hxq_0Uro913Lv<0awNQ z7XC5J)LHVe;E3$-5Y)NTr^02Fy$dKO*bT%A_5c+Hdx6S=eLz*gexSPG08mqK5U4FU z1k@EA2I>or05=GZ0`Y=lKoh}nAVF{fXdyTWv=W>G+6Ybq?F46lTLm!{{g8JQ6ahL5 ziUC~(#eus7C4e4+Qa~?38K94#EO4)&JkVbd3#14t0O^8CKuAy-$P`oovIW(Eh@d)< zFQ@?w71RRm7t{tu3hDr(1@(Zjg8IOCK?7i-AP#s;5Dydx8Us%XngUY<3BWUg=D>78 zOW-*{D`1wOHSnUKEihNm4tPb-9#|mg04x%81eORo0m}qkfE9wSz?*_@z-mEvV6C7B zuwKv;ct_A1*d*u!Y!UPYwh8(H9|-ybI|a$W$AVN~k02fROppQW7leT?1)0DhK^EZ7 zjQ3e6)!LjYKheoF&qHvk9PCr!&y_tCI3O4fd?gqG92SfOz7>oDjtRy9{}hY`P71~W zKM5uPX9N?0iyjHi`B9*lU=nbNpa3W(m<(JhCA=;38NjuI znLs_kEZ};fB2WTXi3p5qX1DXlu11$v$fSUyifwqFhKnKAR;C8`M;7-AEpu1oN z&|9z)xJR%G=qFeWBnj34se*OD0Ks}7EZ6`H5^Mx=1e<_d!De8vU@I_8unia?*bY1> z*a3_Y>;xVb>;fhTb_0(J_5hOvdx0ke`+!2he&A`r0brWoAn<3wAz-H9Fz|xl2rx%* z6nI&1445xC4*W%M0$40K3A`pa1-v0R4XhHJ0sbb4spQXDZwrb58wJIHt%Bmf`+^d{ zM}ktoZb2E~Q$bl^pP)SOg&-C5mW}g6I20?3#tJ>2&x081T}!41+{>f ziNU$BHc(Vh2PiJ62b2`l2g(Q<0ObU6K&&7hs3>R*R2DP^stOW->VoD#O+ibbwxAVI zSI`=`LC_Y67qkPK2-*V)f(}3nK}VpKpcBwW&;@8G=nC8_=mvBYbO$;MdH`JoJ%PIf zy@4KrK0q%)U!aemA8@arKhR&045SEBfpkGS5E5hnnSwBoEyx5Sf-E3kkOSN=hyWu6 zdBAAFU|_6ZC@@|y9GEB=0X!xc2^0uM0Z$6X08<2Gf$4&Az;l8Lz%0Q;;6*_cm@AkB zydo$776>K-iv)$h62TN;nP4igLNE<@Q!pJ^EtmnU70d+I3uXcD2xbGD1ap8bg1Nvp z!93st!F*t+U;*&4U?H$auo(DEumspISPFb8SPmQ#tN^|dtOSkwwdO^}sKJ4M34cgH!NE;9|ihpoCyEP+G7RC@a_oTqf8KTp`#2R1xe1t`h75Y6x}% z*9i6ibp(5X>je9N27>)SW5EI7M!`X#x!@3Rli)DWT5tsTgWxF8UT_TPBsdP-Avgha z6PyHk3Qhrk5}XDS1!sU{LCh6?{gEap0t^%s1F{6gf%^m{fILAdV2Gd$FkDa;ctB7d z7$t}W9uial#tA9`j|eIQQ9%{paX~d;vYcx1HBnxZxUe z9~w74_`Edm5Zs5x`Bb=(vg3iKg2q5IK~tcmAOW~p&>UzhXbIdRXa#f-v<7Y$v<12d z+5vY8+5_DM9e_UyIs&}~oq&4;U4VXqu0WEY8;~mK4h#_V0K$Tvz#u_yAV<&#$QASj z1`GND!vy_-5rSmkK|v}oMvx9XEXV*R2*SXlf=pnNAPaaxkOLG7BEZvvJiyJkAr|`7 zG*hsgN(}c9Ou-R86^>Q*NT8x%6i`_(2B<0+3se`318NE;0JQ}Zfx3byP+u?!aP5A= z!fijBj%w-B7aRgo1c!li!4V)NI0|G6jse+% z<3L1k0>~Gf1cnMu0rv||10w}zfYE}O%KpHP6%+x+3yJ{~1;v5K1SNn1K`Fq^mP;+P zuVSXp6n!aK-a{~bVtp$7jIt{L(*>1)=LD63S%NCSi-Kx^tMh6LML#!Vo0d9ovu&~em_^huEN;eO|kazc~aDQd@08#`! zfpkG{z(u^r!o-uNib74kejb7<`ukM)X=Nt^(*&u&p9Sf_OhE?lf*=gc5o7`{3$g&$ zs{1TdXVkPdO~HJ?HR3N8_J3+xb&00`Vh=&9miSb- zl(LrsmkO2x;u5(f`fny@U?{}o0tz}mOc+hJOmMs`c(KnWgi3b1jm6Pf)l`S!Aal&!6{&r;56`% z;0!QM5Obw(<|Be4KvYl+cwA5%m@Fs(JS8XvOcj&?o)we@W(djy&kJIK*@6ndOM*(k zJV9l^4S7`y_g6N@VCK`oXS=$G;26~KsqhQRt_92y)COJ_)B)xT>H&Wd)CU#|8UU{e z;(+CXc;F2|V_=n_DeyNz0P6519k}710M-G0J{Yp zflmdUfPI24z!!q9z(GMb;A=s5;E13H@SUJ1a9q$E_(9MII3?%{{4D4P#7qrlOMjrK zAQ>nwNCip?(t$F944|AK48#gDfr^4Gpt2wbs49p6)dhJ#O~GKGwqPhwS1=r?FBk#b zAQ%b63q}D=1Y>{%!C0V$U>wj&Fac;ImCGSF2}2;3!@0`w3} z1$qgl0euA1fqMlrfc}D+K#E`%kS>@FgamVdOu<|rTQCoZ2<8L%f(5`(!9w7E!D3*f zUdSJR>1Mr++BQQ&_33ySk z8JH{B3cMoN1}qS42Nnr-080crfn|bSzzV@`;7!3EV6|W`uvV}SSTEQQydyXOY!Vy< zwg?UZ+XRP!4+KYmor0sl$AV+P9>H@xepaO82pb}6)P#L&FPz9(W zs0Lgms1DQ+)Bvs#)B@@VY6I5^>HuypkM`%C0GgECs+mK304C`1Z#ldf_1wgXQIb^ucaJAr2fy8t(RKCy7JvYAh#^cZ2UhhRSK^QrJd%H9u* zbI&1wN8ED=ASyTnJT5p4OcopgTqC}-@TvXIY?nR<$2|nCI^k2{Pn3NU*ef^%d@eW* z91xrVz7oV#^>rQ=6al^!6a$V4iUa=?lmJc&N&!C!$^d5sWr2&P1owR9fntJK;1WRv zpp>8zaH*g&P+m|4xLi;Ts3fQkTq&plR1?$!t`^h=Y6je#fI6)lH zNDvP+6*LB#37P^e1qr~-g62S5K}+BkK`Wqxpfzy2pe@iv&rY6=m7jt&=Ke@ z=mgv&=mPW;bOn+G-GEdI& zF@kj9VL=8kK@bKW6=VXF1X;inf*hbw5CNVR zQNVn`7~n60vA|-%IN&wG1Yo&fBJhSF3ak=L0{$i_0M-d618)lofsKMGzuTZfRcjMKpDXrpqyYG5Gz;@R1|CgDhoCORRx=X>VnNc zO~F>6wqP4jSFjzZFW3RxAlM1S3w8lb1iOI*!5*N6U@y>0un%Y>*blT58~|<=90WQF z4gsA7hk>qwBfwpPqd*VAF`$>=IM7FM0=QRj66h~D1*8a01L=Y@Ku8c%&96T)1x0{t zK`|gAC=TQcN&rIzrGWbdWq^@_vcPCTd0?y{78oz608A8A0v;1o1_}gKfF}jjfGL9N zz%zmxz;r<^z%2@|wa|LJStTCPzo)C`Ay_5W_o?u4Wj6qR5X1qe1o6Png2q71q+oT{ z6euc40E!Em10@A5fii+tKsiBcAXd;8s3>R$R2H-cstP&))dd}anu1P1Z9x~HuAnPW zU(gM>LC_tD7xVy{2zmkug5E$2K_8%%pfAuy&<|)Q=nvc~NCr9zQi0BbbfBvs1Gq~N z26_lGfnI_v;9fxv&|eS%(gk@yC;;f)PNzU?eb9FbcR|Fa{VY z7z>ORj046BCII6F6M>0>DDaqI5>Oy00G<>~2BruKfoB9$fa!v%z;l9Wz%0RZ;6=d< zV6I>$@QPp-us|>ySQNlhcMpsS{uiD@&Jq=!3oH}N16By;18)iz0BZ#cf%SsLz$U>G zV2fZW@PS}Cuv4%C_*k$K*dtg4d?r{8>=z7(tj4hhx+-v~AUM+F;!?**HH6N1ga zkAkhhX~8z&7r}O*$m7Aeb_Z~=U?)&QunQ;Wzl>;)8~9B3>!0o*7!2{ad+0&WtV23iZw0Dlm~T;(sK z?FB`E+XTgcPJ-gV9fA@-H$f@jZb2EKr=TqGCqa3juOJpk6jT6`1(kp_L1iFAPz4w$ zs0L&Sssr~4Y5;kHTEGxNZD6>d4)B1W9xzH!A9zU602n8T1EPX>;Bi4?V6vbo@RT3{ zcvjFHm?3Bh%oel)UJ|qhUKO+j77E${e-*R`mI^umuM0W?D+Qf^w**~)HG;0d-v!-( z4TA2#yMi9TW?UWC8ya_xxk%*c|do;eBh6Q1we1XLf{_3VxXU336LaM3Zx2_0|Nvr zfUsaCFi5Zp$Pugtas_LE!Gd+bFu{6YgkS^kpkN~~Mz9HZSg;wGAlM2#D%b{05^M*a z5bOX71v`PK1-pQ0g5AKM1$%&*g1x{Cf_=ao!G7Rn!2w{t;2`i9!69I=;4tu-;0Ul> za1?k$a12-_I1cHx8VdO$@%eW0?S0Z>&C2UHit12qMWf!czmKwUusP+!m-xIxeoh!?a1 znh07034*pj3qd=em7qP)M$iFhC+G;=D(D1s6m$VP3%UYb1>JzV1l@rif*wFGK~JEM zpf_-@pbyYr&=*J%^aIib{eh4m8ORi*0@;FeAR@>B@&#dFs2~%#Uyuci6yyM-1rcDZ zAP*QX7z|7l3A~07F1zr(M z0u~4gfJK7Iz!E_ruuL!oSRt4SyeXIltQJfM)(U0->jg7`cLcM5O@i6L7Qq}~n_w>R zfnXl6Q!pR+Sg-)tBUlK0CRhyY7c2q36f6Y}36=xj2vz_`1uKE?1*?D)g4Muj!5ZKf z!8)MGz*T~sKn=kz;2Obh z;5xw`pn+g7&`_`sXe`(d+$cBzG#4BMZW0^0C0Ui*P1x5+V z0}lyefpLNgz$1c6KvYl}cwA5gm@KFUJSC_OOcm4so)y#rW(aBn&kO1Rvjz2lmjv~J zd4dMOtAaRSp&%aktDrHkRL~T7U625*6f_6k60`)?2wDMu7qkX82-*Vg3fcji1?_=< z2s!}U1s#E1f=<9Ef-b;bL08~&K{vpC*>$&tGh5BKUnTYDfO~ofzWwU$Q{gho?gNw) z^aWxC{eX&s{y=3xGEh~J3RD-Q12qL1Ky5)7s4K_>>I<@f8w5E(ydVNJ5##|0g26xw z!BC);U^vi5Fal^N7zx}e7zK0`i~%|e#sXahZ6I0n2WI1a24oB;kVI0H+Ho z^?`Q;4S-F8IADt)9@r*m416GH3hWdl03QpQ1A7E5fzJf3fc=8jz?Xuyz#&09;2S}E z;HaPj@V%fTa6-@t_)*XWI4$T3{37TE6wyyvx&s#rdH`;M^|Fu~XJ*_H{h^#b9)cOy z*QdhYDZ3wVT+ko*L68ib5~Kn@3(|oY{pIKkpr{}W6c=OyB?VbP89@$EP7ncN1$jV4 z!C;`WU?@;kFdV2Z7y;B2j09>6MgesNV}SaCvA_+2aX`Fa0?S136L*X3Jeu22ksZF07eQ{0;2`1fU$zrz<9wLV4`3h@R(pd zP$1XTMJ*Ons&dazkPVjL(uNyJ{6v; z>=VE%f|I}k!6{&o;54vAa0XZ=h^grtu|iM;cvDaeSS=_HtQC|1)(c7j?+D5On*?Qn zErRmEHbE@#fuI7gQ&0)`SWp?*Bd7v=Ca4DN7gPtn6x09?32Fh~2x~264L3bcQ&;w{8=n1qE z^ak1p`T*?&eSupA{eX^w{y=9zGSF3!3fv_~2V7S}7Gkb8!~3QFFi&-fNunofun*#;CsOo;Dlf*@S|WFa9S`O_(d=SD5CqqnZU(@ zS%B-vixy6|HZyvT*)sph36~#FTg^@YIj~>wC2&yiHE>w)EpSxuJ#bv`18`FC z6L4Da3lLK)I0i+{n+{4b!6iTmL200jpd3(Ma5+#xa0O6VP!*^qxEiP-xCW>#s0-8+ zTn{u5Gz8)WO@O9?W1G3N(!B(@NjJ~JjJwTw?-jFU&U*_y1n0elJ{4Z1>?MFJzYK6CR#=EMHxb{^ zE~`8Q5m)<^&t7ZcIeX?^r}A%m2+F_XQ$Bl>g)i?i<=<2Jtsa8%+k7hgzOr`!9}0E> z9}D&Xp9=N?p9>BEUkVNZt`Xk=uG*u3tM+@qReJ(()&2;$YEJ{M+FvYmZDINzbB)fB z<}HAr?-%=2xVW-Q0;L3(0%Zl40kMLLKqbMIKo!ANKy^V)z_qG2;M!3aaP6oMxOUtC zxOT(?t{qJP*Nz0hwWEcF=Izbsv@~00F5m1S7@amg6>h8STY&b0+klRO&OjHzoj^Ci z-9QgPFQB*J9-yxv5pc~+23*6^0N1b#z%^_j;2M?%xQ5*axQ68cu3U0l|B`&qU@`H>Vld;Ey1-w9l>=#eZdVtoS+fVSa2hdAZP)!6x)IjVa+ z1V?GFPxP8*Tus?m12qKK0JQ~m0T;18;9}eWxES$(i_yfw(3YlEP0g0+cry<{t6KP! z&u(QQzmF+@v&y&i5R`A{Q{h{b-2u2w&^aBzF$$)ES z8sHk10l0<@1YE;1mpLRPld-S zdpzLEPXt_v$1GH_XV^*FV7@Tu@@ zWxoWt^78;!;#CV3TbYOpw96t7LBzlMRCtN9mjTNKZvZO=Zvm?XYXMiqdcXyJ2XH|* z0WRnkzy;lAVVpf$@0%@iw03w1+P%}K!XGJnH}HvIFYuXQKk$X%AmFO_8gN06050fv zfD3vYa6x~taGSl|KWVm1yMOW!wEJhD3ZGH-MRk5vz8K(2Tw-B|Jx`P{TP9*@4?)CB zeJWg5*_Q#XdbOJgHx&p2%cLA>PJpkAEUVv+S zAHX&KUcfcJKcL2kQvlcWbig$|1h}SW02rW<=`6st^hLn6bS~gp z`U>D$x&Ux3T?Dw6E&*IimszOQ!;J89vt>s34G+Nxzv)xqRm%Pw;L5K9T#2_WZ0Tqs zZqP38dI%!E=TqU$%Kiu7%5Mi;i4QI8u;=rg+T~*pLBvmdD!fP8p8>A?e!!LZ(!w8` znTQ9q%hw))h~M~B_=vK<1C9y)37io82%Hl947e&{>iRle(4v3~S{!geO9C!v84JVh z(Yn-ZnWI(SL(uM6p9){D>`K5Df+|2&L3QA2K`p>laV_A2)&pG7>j4)u4sbymStx7g zL}RmM+I^#kpxw=UD%@PzHvz2#ZGg6dTY&b0+W=QZC%^^018_mR0WRp>fD78wLflQJ z-M!3~X?GtFLA(3AG0hsE5MD%VZe>Y zw}2auV}Kive*$hiP6BQ`egfQhoB`Z;TvX4@mKAn37BO39_Fn8Em@Sw1RJeq)O9N#D z<$&^n%Yh1lD}c&^sz5ct)j$owH9&1aU7()edZ2-zArLQU0yGsg1DXqN0$K^$0Br@g z0B&?T0B$^P2i$mc0o-`p3Apj-4!H67BjCoPH{izO9>9%9Kftv#32@_)3b^qY0J!l8 z18zJ90d72UEZp=*Gdb=vTV`_Pc?c%QV4n&PQTA})e!)oKLBSZ{A;CCcykH{ms9+NC zxL`8yq+km0v|t+WtY8N4oM0BOl~*!7k~Ao7NOokP+h?V`tlcLs zl9ZL36Ut1BxXe$^37BHyC7EXUyniS!Xh%x+pmTTI>|zdxB;{n(_*LfLm08MFm_oo^ z%7_hGpP!YI7s}2`%B+!;6LPKjPz5fd3pFy5vQp2s_ATX?bEERB+%?Lrl9Zp9Jt!$J zlwul|nr2?I2B$@GOG0sR z8cC5z(l9rgpDU}R9qw~|gS<*^e)6E~)O=HMMp|Z0TI4qkJQftp&(Dt*Hv=^wEw?aQ zIyWaHlr=OiKQEM77%ktyOrlZ!o!B@&F+MIQYe1nnX*K=N_H3Nk$nV+g zKijkE**b6h&-P3>Tj#58&!VSoKNHUO(|j%y^Rg3zw}|;rg|Y@D`j2^HC@aw%lf)(o zXPYp?1$z6a4OIJVpp5iH^C8d8j-+R14>7|R%1dl^cDEPYZts|X`BV_S{_Jixeo}5? zQsUW9ys0)XlAU-?rLEoGdv3OSS3A3RBrP{9EibWA^Tb9?&Q|uGD{g-mSP<>4;Q}6(wb+4Ye(`sl?`H|8Pz)i@rW@|G0l||0Xw{4Y1V(u)m)uh&H)k z0Q=F*N*kJI54IVCl#Iki=S=1;|82Gu%E}(x*tR4mDb<`c z&z&gy&x_Ic-;dGwocXfH1+hOJD2TSZV36Qsk(iq{U{IR5qS(`?`RwOq1d~2Lm{_)V z?ojRhzY2P8OF#KP3)%Drl2)&OM*~Uj=O%fA+NWu?uRy$^Ta$ANM)82Qsmd zZInAEKe_$w*SiJL3x9lu4oJ?<&UGKZrsizn&&6l{s{k#|2Kf2E32maG%PVQlpHZ@it|nb@BS}C zoikm2bfN4zzaUyqt@`~7YofWbHf=Z7W;Chqj|a0Zk4hxE$z!i_NAJADP~`8w=a$C%a!)! zQu}hXc_~PaUXq%bZWa(`+4ZA|6TP&3_K>X1?4(q?s>sz+A{v_=2@MFDWn!YvD*2I+ zSu{sW=A{iXtBIt%B%3N7NlQ;Or{X+wCbsDc=H!!PPsV1Ykv23jFO+8knv5&X&#<-I zmC5&fhsZIh;2v z=R#RD_DZe8%!MyEG$1Q6B{w%Q#jKSFq@@-<5-mMwnE6ne@kkF1FntbEIZ2V+v`CyV zZjf1$6h_P5k=iZbTU0byyxBXFa%SZ_C_Bq6jt3@YXJrmEF-r_cALO?$GlOQ)omt1w49EXxhQ6&C8e5Mkw>EC?3P`SC1s^#WJhuf&F$D_-f}bZ z2PE31zNxHaM&6*z#6f9hl7-DrB4VPKr)Ov9Wo753=|dmf85B;4mN$1>skwGZn`qXy z`FUxDoi{`;HOuQXTDa4GH z2^*Vg?qV_$%>bH}UuIHrTBg;@&ehzUq?EK@7fm%Em^@qbaurR@&bLP^loi}#J`ydP zpJP5aX=VoJWrWRvnh-7LHWO1alX7#-h9?efRj9H*3l$=O3q#v>Vx?=6g0%m@w0 z$Ta`iS$1~BCqzq!%)M5YSqN!z=O>#ZlkBFd9XE5iFkLfKEVwgp>)eLs{MGRHZVci= zIm5D&3&VDG?bcvH*?(hk?RT~7>1eIsG#Tvr+vT(`X_wH^>&}+E;0oIBU{}r2E6?u0 zqS+U)>*VMkRlt10&R-@s)H1n-T_)EEmdQ0(CcC`fT|)cd_9x}h>I!a;Szd0#_(tYd z!K{$YvGt|w`q|wUH2m%Ix#79XXTOX6J+-^A{N66+Q>N>^FK<`K(RelFcd9TaobwmR zem}dKjhe%5ZW(^Bo?kC!{cd*c8EtdH-TtSgrwij&(Z5%5W^Ue~b8or)!oD!t?1Hsk zXrF(#w&2FWR>Ym&|6JQ|_whqyfA9G(j>w=vIgvDTTWIb=O_k;Z;P*T<~8^FWnHGUx{5({)=7CT~Yd4?9b8sOc{_LGMBtys=G&7!HL}6dzr@>X_bH9}PR!4;my>h% zu)jOH@E$=2&2{zMJ?!s_F5I%F49WR>+20Pi8}{Gn&yD6fX0C99&0@ejPm1{N*dOjh zZ`7FowmS)l8Ri0Lrcr)wni`0QCS-E~^yFkD2&KFpp`7-rU zpEptLFJk;T;kUcCa7QjlJDIlId0;LozGnLanP^4zc~B@frD1kzZi>&ezuSmbQs#a6 zA+wyxON!+AT>F~?{~5B^&iKUS{7`1Fq|w^PNWA8N-(`#W0@)vy3+>X#9RA=buiwf3 zZoq$nF0|9xPZX2W{y4x-9J`yjEOEnR67j!32kck#(WdJ1@9fnmk%z)&!JMh*Nxq@> z>+y3N`l}in>rog}$M0sposQ~RNU%8g)ox7^Q-_%acPPcqS91W&6J@`r{RTN&=WJse zyZb(~>}hD8Z6prNj%0Dk=?6-*L4w(+U9@b>1n-i8I_=nzp zH+$b1z4mO!f4gimx1FwVezYu$Ki%g&P#7*W3roNL3%>mD_h5zp^J8NF;5B+lUUqh7 zUMQ!qYksgev;p5S_muzj6WH*(W^WVBE*A;*?>&X}yV~_5yZ%Q{VtoX=pd`Y-ej4j{ zu}e&|OSHt{-84>js`$!TKQl_atL zlSi&REcF5H+LB2B&BIO~$gVaC^uKuE$-_Ax_<7TF)8!ZRW>;(`Wfx%7cHxKK=Pbm| zKDG0K?UKxdvdb(&UHG`1yWC2=(Leq2vFyUj#Ig%1^JW)D=FP5k%$r@em^Zr+v3aW1 zE*VV9t^v%Oy{elxdwr%U|M_z?|M1H<%3iTeRD1O`Z}uu`-t6_#yx9w*d9xQg^JXt! z=FMJ?%$vQwm^XW=FmLwMZ{F;A+`QQnw0W~5e?6n8`sFB&|!Bvgff-36(E1E>gspdbQb zFBH3=QtXNX_6~@>!1p{ecLVS5`)BjqGkxaFnKNh3Og10yy7_q5rMEgBH|jYYB~R6N z7_G)g#ag4goLpcAnKdiY)-4+pBcohq1Ft79zoe`(W$eJd14a&%jDto~iMVXEkn$f4 zr&K*}bam%cROBqo%AYegr&zW%GIQjB*J>t*#~CTIbC6kA4m!MTeX^$w-#h zJ~Cq@zSxMC)V-*|R=*J>>+Ud+eyY*jU71xhZ()|IjGXFeHkb6@%$}jeb4yCIDywpG zXUn!~qnBjg=5{fUzS93gqnRw7Z=^eFWX>-pa0j!uq;@nta(+1~b#j@}LozRzF3JAR z=w}s|71l_?bBK5GHFMyG9jIRW1FZX0Wb@<8Mnicp3ZLgD8|~!KzlO76&59V^bvc!l z`BjxEscBhN`6cDWIaT>J;>fq^NxbE$FHL%zt>wVC=vJ0*&8{dbl{Jfvv9jttGuY8V z&bLIPBW^JgrD3ocDvupPd$)#~1KIL)$=GdLa`LiKAZ7=2Q~Y7Gy)4Z)ENgDfivE(2 zZT6DzY||;@UNoBP(7}co?r0<1CYp_c@Yi?ChvCNr(K8}Ca zXy>ZPubh=rp09gd4b$?WmK!~GGRy4k$;quMnwL{mR90GP_hJ0K#xQBNP>)G739n~` zNUu?5uzcLtEIMwo1`M(F+}W*cep9Js)7)tD={Bm{c0Y`7UKbCS$nK}97wh4~vA zo2%sDTJ%o#uV(k)in6M1sWmHFvHGo~{WMe){hug1Xos{XeFtg%`oY6 zm*JL;PlHxkVJ2E7MU}JUXcu#e(IHRP)OWR%TW?0#(x(vr;t9heb%vN--s zE#+T;H80#_ggc5QXRnbZZ@z7W%h5?jPs#n71-7xeNzR<0Xf==0D-D+;MiR2D7)4Yw zLB4NbMakN~joxzTC3lFFzUYnszqXYOH`=9gQ6u@oK&zo#`cC&@Gg-ae2$4^wqScx8 ztw{7{JxM$5s3!+XjB$*(V?s`)GvDwooD3Hi<{6$wVKOo8A_hK#GqFPICi$u|0lHyhmn38&|c?EeE| z?9xx@wsSR@E*)ab(Q+i(*^E=QzV5(#J!Yt5w&uCA-_hFaA0aocUNL6MoAod|)g+wJ z(QGFRg1}yVqabP4E!G@~3E0$%1Ir9lA}2UMry_S&QE8z>jxdJ?<&@^-SI8xYIZ zi*rk^W68>Sd07R;Mdi}BpNYQx42$id7M2Ii87Aj$cdi!ppy>u@%!p)-Gd`jc7x+}q0ou%FubjHORcS||5)*Vc- z+FLSLV5X|+w0ecnHDqQ{X--8ECb;fyE=}Y?4<~JRIhSHuK}A^WmEh?vuQ#`%(d)^Q zJ^*v~s4p zrzFamcd@cOa12_<>K4Hs$294C#vB(sx3s*htT-)CFV{=cF?H0?uHIoJ$k`xtu$H(P zR&zPw0~e{qfYV9tssvXqi-IJjAl%T?YHwBKpmU&G%y7#zd!p^*Q@iQTCCG|Hbt%vUhyY>AL3&yz# zP|H$}fel_NM5Dl^t>lTPz$8~jSS`gn3UXEJkC{eO=d8H}1;zPP3!z0&1C1VHMaX#< z#yjIbD@-d1Se+82bO+{w>dAAb-JQs<17u%+Xf>CA(u$<5d3~}0Yyz6rr$WH)P^rjb z2fCt$s*H$djbJ0EoWfYEu|Zm6-G36rmRmu=vh+!JNJPyFPuaZuig`u(^HU0P=IAN4 zVGr7La*Gj4wky^ho0?&zNXjE<;{LjxPzwJTL`!y5)v{(!xn~M^p6a42rz)qkW<@(S zC+3eg>tU{@9Wd)d)^!aoFPoo_p<8gB9`fyED;!alwGNGzwTq$WD*6AYWw|-+Z6zoE zDU2W2F5SQjH=-w%mI_taD~Aj-DQIR+RqiZVHQpF0zjng#LM>?^+lGKWkK|#j);wzr zmiuNw{ZMk7gXk>D&nwC)#b6uhK{*TaD=MY$Wh`IRvVwCe3bTqJ?Ww$>5@ha+y{)=( zXb0NagMFd(JMJ0!xXe28OY4BveB@;_(kjVEnPo}l zAkB~&3&4<6BxLkYn2zh7H3mwPJV+<3$Ji=BO$^GbS_t)6Eo8Z6r9R2|8d{9n;+(@c zQLn{Z>SE>DIz=z}G6mDnibr>yYvu`dR5As2HJeOqca$#nmyzliCYOEzkDV>R5`63o z8o9MGhWTtevz_E-qet{+3%W*@q+d2&M*BR?VoI07{7*;%zbOsrgYtJ|CJg@H2 z6RMu1-f5&!ns=8khnd4=>m0Q7mnX3B)vA+@1rl*P7E8ozZkAx??^}STsl8_L52z%T z45gK|v2U~ zRLb@WW0F_}*au>}oNram#o~iixUbyxBQ!3IdX83|F1`(k*sC2TaOOHxHRS|CQ!`P_ zO&g(QU;Ym98hnCj^YT#$(&0nUzt|q8a~3s{KHZ`Iq-{3xxmXTYa}4@=l5BXIO!I<~ zWad{^>Lt)K+XxL<4hrWM<>gl@C1As5WOy{r94QAD7!`8h8+6p^%f@t9UZtLx0mY%4 zymKoWsk9pER!~8PI7@P>N}%74SpwZ<<#HoT?%f5QM(ukKjWb3`_Ik|a_iM~L5Lxll z%mi(xxY`Z#we=t~NvvgBFt?DAYs^R)^O7-M4t{N5FEYZ!#%ndE2lhIXNV5$N-9I+# zBeV3;*j`;7VYLXFKP$f?|C){^C(mK4U4SjUo_?Q=vzl3zIoJlElF?KmTFdB7*n%mY zyxlaEF!MiX=gVA{UNM5e^+mZ783M&1{Vnvy-QiFI(4=XUbl8sGZ8mq&tbujpnvQH0 z6jZh6JQyP9cHpPuJY!hs{8>fC`B~uea>1r@q`i89TSIdy)e=*)!roD~j4;EaB5RkI z!s4<@#8@b2UpMmP{x+d;vi3D&uvt_(Pm2fDuZinX9qv2j;y$ypY_lLiv7}%_y4eje z{#1}ln!O3ht2DTap}Wjz47r{54aN=ZQBQ5Ou{$qS{0^O(%FK!1O=oacUQr45 zU$6;yAyBe^2g4{$m|_v8j>7hsZub76&lLzewW6uLeqny`T!~0C6R%kwf~v~Ov#>jw zWAu@I(;$_p7m0TZ+Npbic7VO{*!^Sw(N@xvtPoT?R*vp4q75hjVO}#ucKnC>LY^d9 z&ic8}AZY)ax~A2GYBg!d7q3CQMyr7b-vI?x>}%+SV^B!$?Lwr1x9hRDc$i&{heO2B86CRiBMP%1$*kZGn>jHIS=Sts=*xjo|a(^&JROL#! z?5tAyCixMj3mO-WL{JdYKmh(ok_#31ge7$3H4encERZp$V0XB-#EqB|-Rsw(s%0R!eJxzZ2qSdwjpYL;vK zC#t%n7uF2325VB%6!u3~EYm-CLV)Uc2$GI6ZiyBQ$|C6%^h|p>^cQF}XIObfFr%za z3hpCcH4knmM<#il*GaJAGAu+;X__lLNl+0iZez7VvM3)D1vQ6h=1Gj&g;K-mh?k3# z&@we4IPsLZ)Py#v2U;;x*JKRzfx%{`S%j&jW}33JWj=x(mdX!GUq9+8gEcQ9`*exj z3l66t&8)1-)7j>hRniJKHYC4fW`15CZ49eJoY0CmI7*cK(Zhs^fu;kpn1_pd&P+(g z60Dq~Z-;OIs|~!);HWkwANPeW+(sPz!R{-wu+<;f8w!-l@9&oA`o3>q5!~HM?Vbl{ zX1baU{a=|3mX3lnPZ^E9Mf-WEFs&FC_hGXC5I$?QVEOP*tkxJ8y*rQ^w;3goO<{;U za>eN6%q=O;Dyro6V}zF7YW`g44}K|{V|0;};V=g`mKhVwhCxNJAtfrg2932UhpSCj zsY!!Ec5S1vb$}UclrEI4rsjApqm)VV(65-~N@OV&>dwDWC$(e2MxvPunl<)sRaz5; zDWrufw|s6^ZW+us4;rKOx}}VA6>3vQE%|$U0HA%T!)|emO)s*4AYw zjhnRMuC%B#pF;qtLjq;giTD?j9IDbF>Hh}I3Ybv#VtytPhVNo+V~M|NMxugqj=SQe z@_8;>RO|LXWLUvj#YMC8YgW{e^AEtBd1M!C1LYlEO=aA2MB946Op_&#bCh9Ev5Jc- zt7r*p3qvD}{FQR5E)G4e*{vczhTTdTENHsqvRx{U4ltys{_wgW^)V@?Te)0tFe_k4 zDJsRLx*jY!R z8;4oRezI~X2(aZZq|C4v7aTTtA?({}W8JhID~{IfOtT8wJq`gT$kJCZqA+>%+pq;( zf1s&ZNDF2LPg+9d@Fb(FRa{wBqBU4=ORVK*l0%!xEjOb#*$c3Elq$vg(!XY=#Qz5I zt7LGy94lPXo&f`$TnhPusS&KDEJRL$R-rO@tN^1zs5IH-cIu8*g7Kb2b((_eX`{5H z|AkI@m)k=eS#&h9ZwDkexZ#EyLMU@o<(6K7v`c3%0xl+4*B4? zr;p6YMnCm!7o6yX&NwrtSeD%!;KYeXvDV=ft3V5YUiFb)*~|X@1BSUVErOfLmz!a} zULOS8zEXczA2vG%+nYWd2y(Sv6$B|_-GhErXGH&vu-fUaqV6L*sUK(W!2}E}7+r&5 zh|4XT3zqL=nR(KGJXk^1|C1sJf%rV5NksT{0;IC2uvBNreV>#)W(J{Y;Zt4R+2mr;_FEmmH5;c74#4_t`^rNbW znivyTgKJMGn6qd-8X;p38ofLvIi*GAbFpW@u^E+NY%x36=5&D?@Hhm0WCXmgp&o{rDJf5as+}x$-=Vr`cbPZ}w5Fh1=e8wRXTD z=kfNGtPxO7m)?qfNH%Q^*j^;d;xo`Yisl4`lb5=(@`EJ)py3LFIGJs8km6t1Q#~76 zLgHWwW#|?6;$E{erW}o|t+fRX2Y`LKlW0!!dph@ABemsB8Pa|#z+5`=Bp3mTW`?ZZ z3Hyp#0@Z+I=R!vh{|ps_e%1j)gN+v!10JxBinKyNsNL2DmzGsfyKljhz{alBthuE{ z1(1-mN>PWG3wNT|ek%=}H)Efsn~aH^tW{?+N{C){apEJFqM^`W1yHMFx&@($Emn8P zYNdgm`~-?W(9|GULLjVZ!j_YVAw~`k#>Bkrz#@y@b_I0DzzH38QKho%JQU6HT^Nt7U1VVB1;I>p;`kFJb zALyG4rQvKd*tBR6<{msaYi3aux?`H0T49U}&R>X~AeJ$G^ugJ)J{+cVHNVw3OpV3q zuUd++ny1J-+AW(t2kDFzwXYnRk6xJnASROir}%@DAnz zs2HkG_dR8Xf}^xf9HPyq|6^sARX)g;>>r)2v}uPc0hY|Ja$uFw$tW$6^nMUkTlT_$ ztcEn+7vzi#*ES{`;^wB5P8RUER;~%zYao48K2d;?Hid`Rg{|b7oGZeD*rDHFeHVq)+nEpb2_OgCTRI zwhBDI2J=cyY$kS9VS|=eR6(BWF4&hjwdRe3<+iq!f@bwu3(K*X@WfMIABp*gsfRsK zjnPt~Pk=Fb%BhZVF5G1VYquYs9=b}Prhr2v?PnuXA}D{2vv4-}=6B3}oC<~OojsPt zBxg}!Ng13Lpz%z1f?sP}s5Vi#Y7?d0l+@-ZN-K>EM>)~*^=@N~e4dHTLIU^1_fK(!Np@45kYumK$iP%N z(VXXl&5>NEmg>?*mQt>#@vJpiE;chQZnt~N$gid$bmVY26FKwsGpzRjZKN#!eDi3 z<+ye{*-3hS0ZvgC5~X^tq7}UF8_;0Y@T^G2k)L85)pnc?*SSu-jhsZOLL-A}W5c?z z5vWtQ@=iE)LkEwNwTG~NaxgvcM1XpSvru++-$E-^*|VHjd@w=fLTj^y@;?a1Hm4|y z8h+|-Zwy6qh@5O4jH9~682Z%rp|YqmN37V%^5!(njFhiA<%=kfd&qxrFghrs9BP#) zdt<@-YHM}u0-CC-%hgrx$O~Ay_ML!?xj7SNvZc3R_|);2I==4t2S(%C8S2PzWHqLx zIoJ^=X-zzFa_VEuc;(4AvIk5OFqUOfUk;JaTjG!gE(uW^`hz|8oNLju;SZzXp9KkX(U-7vBuh?FCxx2Q)dAWwz1Im%?tXtRY88!c~+!LAX06`rs_oGq*o6e?~tAT>fl0|5zf zlET=Z78;S>0PzdPmYhOItc=buW1UA?pFTQuNnInpHubJ(IgnxYGKymPw;4AuQMG}y zW0`elt2t^f%N*DZ+&adrW0czUd!(D`2?>-KF2~2}2eYmXfh% zd*i)m**4bf=4>2?dL*k8TzEA^)VA(f*0-&q!!M(*^O0-c+5G;J-%QuWYxmh&_NYD! z-W+9w*Vf~-oErzvnSQZyejHBwRz#W6wWV}mFLY3);QY9e^Ka(bMSa6tG`3}+EjN%} z@Be6Bfxu&OX}p>0JjL=;q|G3+jbu!KwW=gWrcN*uojVwS<3E_XB8tiasSHv(NZcnz zyV|Nwke?=)ZJd)C)JE>xg`Gm5iLjFu$&iU=yfc`!O;lS1SuxQJH|~p-`zD$loE=!b z6deF3NVi-?DrXDTMcPf{pLS+=?I<>hkv@~m?#@?qGUdnNdD4ietw(=3Fv;v@oQRbl zCz(l(FC})e+0OBT44!OuG}2;Z@no|>{5+ zo;4Mx+ijQ`Nph|a^#A*CNEfP$YXqi}F$dua6gJHaGv-7~<7wt-V`+?x$;5Jv6AzEI z1;yE^rBH*+wwhiqtmm8LD!O_8u{6CTX9ot2(#COc+IS++UKI1?j> z`S&jvEpuVW!iL-J(y8x|@afntM%d2LmR&y9Hx<)46C>bcr7!$q42sCD$X6Bsopw>Q z%$aFUa`cu}`Q}is-uCFAm!wH9JPy-2?Z;~?JeFyXoX9nuRu7JwT8-hB;5F*TFq*~D z1-pR1z;r`Ev66I7@EDEk5<3-|;a0Y)&7Fw1vd|2%8U!jAPMb3JxVqqPW94F@ImOCi zU#Pmn^}}Ts6+|Xu2g&!d%rNIp)@6FF7T(ABCsywFnUlGehsfa~)9D<=jw!UGoQCbH ziO;NOtdC*5DcmfE8853uh0YH+=J~Zz`+0PQ&XPPN~ zGV)_&MzPt`u}@Z(L#2i`j^(--gWzI2`|gL{567)G)-!B^V+Rzbi}xbR=o0KWUYBL1 zNP`V#s8h}1H)TzU+0}@MW1fkUev{!1;$j#k2h5@ zju=CAlx;C`sMPFY{l^YHG70s_D8t4o`#~d2N7$$$BzdlzO3heKA4jz8FT)yx1rdL7 zy0+U03Q_f&#=H)gW*fn-#3`f8%^<^!V>yX(Vua<=RavT=b#G9*y)xx2=YTCKFkiDwZa~mqn0d5|@>a_RB`R>r3ltE`yQ|#tO zSD-VeN!8EHk;nZ7B9=>R0~vLNb#_Gf*hCne zV&o)!AXH{e7UD1fexHNw+6WZ+fD9ZcN5!rTon!*d=>sXTGLR!rS?o4FAlt?Sav|BH ztX8@Kuzu8*aNi;`%uy~`i(uKo1rE1a;|u3kZ+ZI;H#}N>pUBa*C>I`;ova$)t9IM5 z^=)rJcMX)?#xC{^UF_=B?)He?Bu@5kL*)W4pJB#fNMlwPly-;^Yv-WcIWBH+!z0+2 zBav~adBDTNi)iy>WdAy(g2gX;7WhZ%d#f|PpD?KV2Z$?9e1WMf^7 zq~DGK2skO?ti^Xp4y0SxB?x=Q9pN}D)$J8A6)~nswvLe`iML?!IH&@7_oBVgEn1c= zM~=0(6r}g9rqdV+vJ2dXIIZRIOYV4sy-H?Avy<$Gd1THi^v}`)*jz?^9Ta8v?|?Yz zdk0zZ5lfUK!T zZcT!NJa)iUiEM*`SGlHq=#D_&zl%wH2Q;A;>MynkXWWq>yJKa{U1%LX;Rbou9fq=Z z>)}{>-rX57KDFBqPky-n9B?}wb6G5I^<={yoBcHi6D8v=Gt+oR4G{X?HpPVCa9cGd zO0qTu#@Dvbhf22JbUIe)VTP%wj@``QIJ;l%J1z}$nP2FL%F6q~*KYW&`0B~xyPzrk%>Y+#jMfaQ z>IJK5oZ}}7ybNP(oMbP;>`(zX4URI}#Y*JH00jo+dX5h%<%c?czOHFFtqU|Qj~R8B zTWjFy_Mcu@1AcU|4&0e*2WAgAfHg4giqW})(%ErLkKq3G7{LRQexEr27sARa^_cWm z^%&r$bzW0m)qS=<%}ff-%hR-9Rel3JrG>@$nzA59`rc>uchgF)DI4@sgLEmuc2@7J z(%kfB)^Yx-jg#aCvAw2d|1Z@}{DYps$}sZpMl;07!2-~SOhr@4xsJ6vhXy#A+XS1! zW4c??UpE5MA&V0u)3}Nq|3(*jf`b<31! zN!w}m53@bebhJ%MYAQ3NSKXtsduNhv5%csYA7C9l{<@;_D+)Amrdrqfhr;To3D_mx zhpo$YH8TA@$_TAP95P2Rddf>yQ@ZJqXF&oNVvkgBfn;u`YcI#PV1)uZW60eFIOW!9 zhFw>S!d#npMmI0Kko%qd3OgnQ_g+jF2Ec zRXo$*LnFD})cMzSi!$QtV*awV0yM%~REY}MBaTVAp(+yP~+YaCgtzbpwggWWhH)X`d9qq^I*ay^C#^U4;9XB8pPGP#_uXSy3VAvjfuW7BRI}Q-|;sr+G z_;9n z?CslQTra0OHeFX->Qcj{cV~Y<$)Qw)%M)%c%?cDbRL?0;yTJWGY27N<#*d*xdvI9o zio?6YjrH_eOK>ULE*FaOMl%k_AOU&Wi(N@VadK|lC z^>M^f&W&YHV#L3Qku}G4j6sec;pc45;1n;itC?$OpnN}YbRA*52%q1l%vr`x^*1w| z`_Imr!N<@raH%y+!~s{4z$Cs2yT%hJg>+A4ZS@|yjw~6CaE@}~8O+9SWelnz9iK&U z2clVAChw;N+1yh{2Ya7Ga6WXhZ?R9Pu4L9(IgExZA#=(e@6Cv?vN%8<@Ml6=H;TfW*t;HlgP#utYNH@Q?*=x-rc zk3i&&huKdxlQjgnp5smqcUDN1E&Wda-(fJz# zah={{_gze!ew;uR&ujJ}wr!y)G&wSo3gAs5`TiwvPXxBi-~A7H#>-F@ewCE(z-58R zamHxXIg@xj)+_0+V5Pkkes0Ij%!t6LuC5nc^T8)Lc-dIHg)Sna&yX8m1&`m(acrqP z1|w>(DC(3)RWzs_r9MrluNXU1o_h__`&o$cFHujtY%m-*zEzH!Uq=HzRTXQoeko41 z)Iq6E{G3F-0UqBUqq}MA8|DCP&(#E@BZ0S|$Tp=|_GnL|Z$YH-rDEtzX>c5Q{~Z{5 zm4dgCbmlEo&1O4JaJK2z$h0>hWRv1JT;LTX2-k;cwpujV=1_R)^s9Aa@$k-WFf__Nv6S;jbfxZwji!03cACNI$;G9rILRZc;z+R{<+i>`p&y%~~H z*LVuMV}>+3i81IPXTJ{AdPEyD+^)`T*ELrDK8e;O>I%9S!GTw2b4bcgnKPYDXpWqx zFaHGmADbC{F_TZ5GqE;hoHnOQ*gII8`r1{^=#FjX;&;H&!|eGEN?^X@mr19unX*E6P2g& z&JVG@x}Y;Y`5{yy=UH=thc{q!uPsq?45FUCmv|whu>(FV5xSzuf*U*y9hH*)8T_;M zdA!z|IVNXrp3v&_snq&4Gsx3&`(LLx-yvoR(Rmzu5Qv>dLFA{ zT7G868Us|NGadhEF{T3G&g|WA7JMCNw`kf~Gt|1RwlUA1#rpfC9wA(p?ipHY@0Ir2 ztBT46k1GWB)|qNUKaLmh17{a^;Ed->+@XUPf!FAQNp=MjgMI~d)s4>lysWahwX@?^ zt~=O*BUrkBj;@T^O~7#XG3 z>=L7)lGzoG`kb+O^3*p_C*z>Je1`@nehW1a{;gjk08Y0Jj4Af23Gd}mMlYCKzcc5+ zdahC)*$b;k`1cr!DKM3NkK~{@W$E|GW3{aM-dx~3$y(cO!mYph242@u1%2}a#P1I9 z`{h7Q18*;QU}QLQCD5UG1;i_#;Y9}LU@ac>+aUGKI`&*#qM4qJ^0WD5e zOF&DV9WJ~CM(a35A|@sLrDVfJoOu7MWUL+W%0*Zk?$I??-Us2|z_qFR5;80Yi(EFd z1g{_j^1A=Jh%%^ z=l=p}^RH-Jk`8wLW=1)~G|S<><#f66H}KFqF)C)5zL%(HWo|8vuL)_|{hG!LXCB8_ zvg{?aIp9uF$H-Fxw%Ax;my5eQ9^*Yb$#Q-a*eegygz@d)D+8>?0-#Hn0|jlS7^om7ax8(fnELx7`Xm3 zD~-)sxzIi{>SZ6D7-!vA%=t!x>-r|5DrdIc`rA3*)qOzqfJ(T{|7EiBklp#~7g}!P zKE(`K>%X!htP%>v+U}Hz4lB&`O^nmbfV(Pg&w8hFslVX{UwAC1u-#Jl_(#bo1D9Dc zPpg}0(<oJM=QV*;9hk{;*1?RwVO z>k57R_#i~U9`U)3smSgy%VV^#wL((D^rHj1B2Ie{7!VFWJ3bAdL%i4L4M(YPBmcTg zVGsvz$=!)4d&&TB1Cw@KeCPHiE$&^SPv49Ag0z~epKxCd%uoYg}%M_OS< zhKVuwi75xS<^|sAVea zKo2@`sdr@phk4tykw>LPSU?=lrqu{fbo4R;8m(hIWuGCcIQ!~Z9tSpVI9k$e!~LSL z+Np(&h)rI7{hL6; zj(Brv)T(y#at5AYb-*(xpN2o?MLaI%7$FyVx~Wp8H?-;+dt#+JMfVh5;tQDWaRUp? z)=NHah$&I2O6?hrhjA+Lc8+F>iT0s1a%v{<9F20|c6=jijB%rFQBwiojjcGxd3}VV z2zYM~L(>?dB-%bHg2#F%qcMhx$02lI4+$7eztUDJb>SEGa48m+K;4lUlXOba!YNnu;8(QWj6!%HA3HWQ}nk>cAR@ISE) zAOr1@QeMh<8X(;9pguNM1l$;mbWG55K@o7Vuc0wru`0NNp60{g8sr$P4{ucz+~tq9 zMb`m)Oi2&*<>czoS*Yi;ij3DmA{}F|D-n*;k;Z6Trlf@%Q3AR^vMq5`D%|j{AR zzaqe&x~`R>T)<9a9}Oqw7I1JxpAC^EDOT@VB_2N0l;SGg zy;o&yR`JYKjBVd*F={u~)3iljMZyyyfy`#HUa+0nZ^?(8<^F;PwOZTNdz+2uF74V|9?N@uBNN=bL#o>_f=oT!_)ZJa< zS9d=OVEn}VO^!TE0p(t zqDjvP;|)X|b0v*0+@2y*UrFu;LG!6P=THR;-sy82>jG`Nzjpm~sRfOd2$^G>g8L|6 z1Cn^VGoY8vzm}OtJ>;m1Jy+X>lGwuvF>Y38_;#5+Fr_QhD$XaK}iD>??jXNhI!Syh`O9x6lnrfn!{bJVe(Ti`1P+IZ&K6U5fTZ`w z0@MAv0&sQAUMW**bLwb!=%MRVb{_x+ueN9Z)*7R=9VrplIS2A=%zji7j-Ug;k*jPq z5*N}^jLVqa1Fey8=`9;*4K$w6vrIoHg_l>G8l$5ne2_KJ5uzPMYH!@&z+N}ACoHMA zL*xcR8rTN18@RFRDwnbiIC1sAv@LjsMPX={-7&F*?O-@{umNdpt@wM-8H< zhYxn?8qdR4926rcP8v_J201^ZUC@5Z68B0YY@YcQi^W7Msg8aH!JbLEH1YP*s+PlG1w~uizc&gPz_7C)i;D`XSQR4pZ8jkhJfK4(}Gzwi?DI#te8Hm#XNZt^xm zg!^H$Gq2@XTme~Xnv)2)_{O|o|yO2o5*9#A{R;C#$#?L5L9d&`(xjP7!AuGeYg z#z}Rim2RAjk)xT`2%{iQ!e>}b9Bn0K2KGR8V`bC~D>kl@=^|?1o4~W3nyY?^mSr=n z#&ECOIs>ZuZSclNGWf)t0oD0F`xrL_PvamW{S!}+F(z6XWnq07j`Nr-E6w>evu#)V zHc_neccy5q2`^Mhx!uaKzPOeeZ!=1rT1tJsE)`+C z3rCkMbjF_Z4*Mq2WtiIXtZ2S56=2>EVzBI3&5Uj^crgf1pVYI)pn@B6J@o`nuEZOI zVr6j-#>~xHwv(f7PaDa0dMu1Y97iHS(&~B=@bx>t8uNBxV|0FDoLps&eAd9O;$v*M zie6W}l_^V`dt62wp5kLfzUjH4h052fJA_ZDFBnt()3sil?6Q3aivyE=}{aG;YLY zSXLx`fUAz2D^$fSghOkd)xtTPy&KPq%<;&gVH{(o8c(ULl8lsCHX#KAo|2E5Qjd{a z%F%m0P3@My!eYShk9o-NckwHgPmiP`vqkVa&$qfeyOY{QUEU4MeLbXeI^t2IRRyrX z#_MeGkP%+CB;f)Hc*o~;Pc!4=Sh-MOHFG||&Vwh<4ov%Vr&KE%svz82`^Xalu`mhw zO4=U=?r}ys1M6l37%~g-uxVFhDGARau>8EIE^2!(^J^~KzV|do+IJYN(&FN&$18UW8|f`;i=R z32C$cao0zWT#S*2imc|bsF>7il-eRpYmaSuZAWHqjCyUj6h{6O}UJ zQlfDFEaT6;q}@z3lNsJZw41bBiQXf+jfmGieYf+67d?G<5b=tq?@l6K?yUCRMaWy7 zK0ncE1}`V-N7@P^-rw}yO~jj-Q8wM^eSB3{Mx z)euc!=z5~b)g*2pEFw{ecmdP5k?1~#ZX)8{OW$T9-naDKL)3)v?j_W?=iT)xwLUad1j}jS7@gfl~DEeL^T148*M7>FSh3F-sSBcX3^BRA8 z@aJ{>RQu{O>o@q_gb|Ms6_a+Hh!+lhZxVe@+FL}tYv_BMXfumDL3A(Uog`|+&{IU& z{5j2^2K;%4Ki@LmyF|Q6=zC91G2S2ay-y;q4*EVI`iH?E67jB}?<4-KXXwX7FEjKL zB3=*logw0lK;NfCJsA2KQF|4@pM0i0N3@Tj=ZSC!5d8N!A@BeBz94#?*?dX#CL?}D z6v3ab`4dLkH$%Bh0A!8&L)#G@B&|A`up1+$5RD{CB{CT?jmSgP zo@f9I=|FUlw2nk~F-0e$Xohws`ku5dL<5Mr5?y7AZba|0;O;~%Vk!T65V}e1Nwk|0 zdl7xg#J!2;67?aPNR&?W3{hXAC>Gq0XccqmPZUhr0HQBQ8%R`-IS(QlNi-O!8dstK zhmiOTBMv2ci^0Q)784C8TEWl}MCX}eBvCigMiDt#+-Rbf49y_=jG<$QCXhCksETMD z(RU0TUro4}Z~{>%(L|!Pj5vv?lvS8aR6yDkqV+^mi8c~VBl?MHrxT53WipA{kv4*7kBdQ?EBB~_1$_%TBjuOo! zs%GdsqMwQ86HQ?m3y3z6wvcENX^R?=|Kdr!k;IuS_$H!MX1JJWJJAv%2Se3>bz_R9 zq%|X2Mij$%Hxmsb?G~alEaX;2W7^w@G8lS0(JauaeRmMPO5&YF^O@u>qQ97-pD2s8 zw> z+(zQdBtAgYjns3n8<6Xg*dAX>xF$B6DG?Vv)WJx=rk3weTQAJLOU%NY6; zk)J7^CVGsa&k$`=^6y!~KN#^jqM=036D1J6K-7bY4-r+7c9=iD)%byi9bNp|21fBzhI7+Si)FuaOu^;_F1aNPC0m3l@Bg=trXCM7fOjCee$G z_ZHDkqPL00Fy0BGn@BrJ^bpZ0qHh^`n&<#?c}GpBIwZbJVm>3jN3@RUeWJFE_yN&R zL?048&d`sDBH7N5iDr=Y2@&rx_|6dJ5PeF-D-6ERh=wrUS)%7-DF4n8^2UPiJkdTT z`J8Ax(HBH_GW1KL)1-YxG?=uni5@2UhA4)W`Ie|Di~Ei!f+@Zy`jxaFh(?q4BT@CO zB>qGg%EUht6_Iv<=ysxuL`R7(5!GknUx=P%!Iz2ZG4xlWPZ|0f(Q`z<6YVGZgQ%P- z{v@)P;x8rtz9jK)68|Rpho}XU{7ZC#=s%()R`3eZWTLA?4>H9K4e^sknuBOIvo?sv zG1MgL#88W7D&q>&UL>JL*M8QOfL?J|nh(d|zX76(o^(D$5k&ooB8i@3E>T2JDgCbw;czCYOSFd>)+1`fi1mpoNQ)*KOIi%k!=%L$ zjUz3Ns25QKq6-XdNVJhTHzHa>T4N$N<27kW{;MQ0p2Ulcm_S7Lc3)GXmZUW!qARM9J0LE)e^bbo*B#I-gI*E`D=)QJDPZA{)?PYKZ zQ6_1rM0XIS5p`j4?TKz>h8>7T5p^V*OVo+zN9NL*D3WQr5QQ*pSE8qt{Od;eCX;k0 zN@m0!MB$|MB#I)f7g0l^-bD48bswTQW|&S?%+S6>QyAKhs25RxqG+N4DwHV(0#*A~ zGsz$lPcnEg(I6H)glGpthY~F&8b(BCZr^aCB}5~LUSW!nipE?<5e+A8G?9<-GKlIB zjUh^A=-6t)8P2DEXH~n9Ja7qWg(*h`u74NtDN|bBPu(aURio49zDhU}Xx3dXZL0 zl+Spxh{8xKB1$05M|7UF*+kV7nYfrRm4%cLb!BiV(Thw{Ml^!7a-tQa%~3R_s36+R z&`P5A46Pz+z?|n2-OkW?L}d(}Pjnw?3mQ`YDoN$W|pjOYsE-AvS;v|EU(NxPNk5zwlAw-Fv;@a;sO5Zyu4ipAYY zG?nNsq6i{CQ6bTCq9A6tg2>0TcM}aIT1j+?@m3MlkhYpAjVaa;l_~kRmhcG%uOnJc zR713q5!VydFq;iTpOYp;E!bNdiJVNaiO9=%n~CxndJj<~Y4;M{$+Y(oea{qIl>9qH zct45vFydCC5Yo009VhJpB9n=?6QvOCAj)LC2Z^?kwv%W!3*JTaBtst}8b{j0MCr_L zH&G%}RPP}iNa7CxoBrwL~<_!*)sX80`81Ef7ibe!mUqK-r_5Y1q`LquNE4ilYW zaYu+okam=44{0wFSxoT~Q6)oP2CDW=WNls{u^)q9CAyJGUL!hB^g2;Ale|IHm?@4C zeZ|n@M12_gCQ&Ry-y-^mp>Gqt#LyE&TN!$iXeH4pHFbU=JWXP2qIZa%CVH2s4bgi< zo1Ac5PhZM5q(Y6oPGHX(F@G)TcY($`yEj%(f35vmzd-S z!l8`#BhfOVpNQHpo1cl&8SetoK%$F84-#D>n!pTyA(~EfnP@OWec!qG3!MPBf4xg6MuF{~`&a88M3JcP6ew^gbijB^u1E>k;i{XnmqPnIf8~ zkSK;|2;;>P{lm0zL@Sx10nw*K4T;t}Njzq0U>qPVkQD>q@)%iyk!q-UbO0=A) z8&P+n?nEifrU%g>(s~l9q3cDI$O`r*TE);lM3-5abfVr&+n4AG()tmNX1xAD)xHqI z0VMWhHUo)nV3I*Z4-pL}8pF^bM9(wDP@->$h7koZ>)}Loh(-`yVCYDq&dg;LQESph z6U`*bs3t67k}*UL8F4Jp4x({HLx{!`J;!(xh?0pW5Llxh-v3F;`;j`BhDxBS0-LSluNXb=rbl+MC4?=8;OdT z_$Hz-qQyjhrdUGs0#m4g9mEt%N$XD9GNOM;yP2pSQdIkHA?(d;ZYA2!Y;Gf3#U!^A zeas|x5OrbbokX`2-9>bk@%%)yNLx zI=J&j6}Cg#)z?#3LQZkh_avUrsWyGw=rv2~;RI;_5mzg?`pcn;}zJu>hX z^>vB+5x?vFJ37;=Dw}2t?@@sxRn*k?*Q>90Rb~2oq{DbH=yxsJFDmR+74weA7N{>C zr}|yK&lah#9F;CDe3|-ktFNNZbstWQhCbwX9f{YS@rep_Y@e^9?pBoNF!&v>i- zuIFdyu9>eA=2b0Kf$db(gHPV7zLL~e+aL94dsNKablv)c>T7q1?(T!CY9(Llq4-p# zyQ4t!Q&;uXCQCP>8^5Yudx~@iUsTy_`r`prAcdOW^~dTR>WeJwcQt-@oB9G9<7?JT z9g~cX?p~$CC>s2(&rUtAVp1shU9S~CrM@T_{4Q6MXVn+QiQiTI%g%%9lfuC7YPI1N z^~EXgcYS*I>*|X#$nP3c{+Rlr5b(P)DvqnK?y7^cjvP~86eK9{C!GtWy5Dsu{!JCe znd^6rU;d8z;_UUiJk{^%PfmKjtIB^$1yYJ4n>%-@FHU~H%cy%=eNp6L#>f-ui_3uD zyO#Mt)aJRrTBIlakl(O8#fR`l8(N zyMo`+nR3nXyAD6BV{&~$*dpB~3Q51qJ4W{tg{R-u)%%*tg)-dl+Vao=^+mDkcO5(R zvihR<^t-nAd_!|0g`eM*b>XB6q(t?*hQ#PDWiY> z?@CS93FA~{eyz7pg>ilHy9U?SUCQ;^?^^eT?ingdepd(o2P!6&CBG}B(HZqcg~{)F z@W}bR=%EiFRD=}uzPqun@d&7@A~=c2z*sLl|JQnz37Wpfz+w|uCeE0)ED(C zzpH1R#_Ef@mEX1aMg2wn%I~`LYP<@gj^%f?OiEB+REGSnPLq<<7ZoDE>#u@j^+lz~ z@9LG4!mnzdsD#~~N>hQ<%KWaTKj<%NW`5V{|2n8JYG;1e+R!fQiyE5W_5K6h)fcri zzw4npdZ;gIYWO;)zo@OD^B?Y|!l<$NT`SM%FZVMBKRX}klYd+qt+$3czLRD5z_TRBQl&bbRHQQvURny8+}O5(jZ*Ka?fzw z%8>z{^tMY>aBlu8RjT5y?y4y%Lq`rBmy%K?eZt}e_}p+Vv3T6fna6%9#RC~Uv-w(@ zYA>Ih6=EvQq{4I_AOA-QQGOmT|MycKKXZx^B-rD#!(1&o51ao3kHW8)YUv{dyCU_+ zBj*2xM8woq`>R;K7xB>M2P0qOJvAF$g zz__up>bYymNp)tUvmQ0th?o4d&Ccp5Aoo~Y1U%@0FGJ#kAh;4U}yK6uqD zd80GIiCcIF(aKHu;0KU3=z~qp;-LZAC6Qw*UVz!W8P|+X-s~&^=G>1l^Tykqr82fT zOX%E{ae`w#+EM%#yefmYI(lz$R&dmzjoa{IOe&~o&KA7NBQL*`C7CH7ez?UM5y`in z;q@_L+&p3QXBSE!!KFXjoDm+pM~IvL@Oda)x3v{FB)_!P*$GM=V&_wQZb7rj;Ev{T zg9eWuURB=ZA$XsNp}m`NzJB>OIMXD5c*f$Zx42>u*Y8p07H1sz^`hUmIm;+`Riw~% z=R`MmkC13?qNtgCX}F-b(hlcHy1w1n2Cr9&>MFJa8oIc{Ss@bgR1U;VJtA56_lkh^tplRM(XTCYB^fF5ASlqi*+2v)x7`gb9QxjPoj8K;iA${2OPq|DggW!u|S$GMx z+fjUe<3*H@=EQ=<0sQ2vUWERK9Kr33b-xCWG|A)bubknI+O*&VhS*uhfhqR3T8IiB z1H}t6+cV2hwO!Akt|oBmMTtxK5{!Q41YF#~m3Qi(vkbm3$c%7V3aY;@8OQPXilpy% z5R#QX0a0*gj1Z;ONqC0yk>bcFIaEICEKmP137p{3*TM7gVHB|YNsy#TSw>|6a~KH< zuBH)Osvdw<#h(Jn%aY5g<8btraYDSr96yaadX>}AN%R?%FZ&^0>7Iz6@Oy>eLytiN zkEGz+IVmRN7+ADD1Cs4hcvlvLF*xCpdCZK zrPOexzL|Dk=2y+F6{Wu4pp~>`q8K{zjkCAovIPA5r&^kNe2bi#$b{r?@EYy7k~I2n zHJe16>&U~D11zUTl}yUI$HdBR7IC#DEOvxxK}hAKONu7=PAFUGF$%u zCXGxclYUbRI;zpt^DxgbUjsAuEb1om0x+-~3|H5?yEh8JXUij4!=7MXNRBCGy_*PHjsq`H!7RY6_N zc%T-=r6DXae?^AdQ|V)Rl;eAu^dC96IhP7T($6AEi88YtJX9}?E`*UvwApM9|LTlo z1K>2g-7DJ3s*8BpJqYjTe&?*K;H_Jc`0NLKpRAxvbWD`uAWfxJKj5=zWlZYs_*B`C z&e9aSN{d!%m8Llt;NN5N9&u2srBnxzPd)X`a+lBxDy>bnA+k6#ufvXCFgfCNR^*S% z*#1_FD+5fzSO(j*pi$UWeA;X*RlJG{Hgik&&+VSft^Vg)VdYJe$yk||{1d**wAf6; zb?$6@%d%lyM}L9kjF$;3e!<5YYF$UdHkoj#k6x5MK!So-u4nuP%$dGggmTp66DO%| zUqe-l`&C$=sHyZH!T2Xmm>?+7TvR&UR4+)aZot%U`~dop?@%-YKl!T$g0=f5>iR9o za?@qKIK6VySstdb`lhpo<0WY=;kTU49KTDNVYkrLbdd2=6TPEt?l=;%U3?johi`-P1<7*vL{|*O-a$egNxlDlR|E~`gqbp7!yO2AMZh!u z!?WPKcs4{nYkL<$oRFNB-9zf;_#2Xa&JM7v19Hn!!h>Fz12C!?zy)S$Jj&n zw&NH(>E50kV?W(Hm}Bg!d&hE&y>;(&jU&@37<>EPg&bpt-@B4y?DKm! zaE#r4?=FtyPY1kl z9OD^*H=biWDe%_k7|#p5EjcE3uzPWgX9wOFImQzN?>LT$oy-{}`RI_?__7CT6jluOziefP&;6Wi`Da7=6;58#;Cj!x$o&q=&*a*U@X-o=Pbljjgt zb0W`9yqh@2dnew{IVQIGk8+G>Dc-Cqh_?;L#1WG291}-K269XsAsNlF3k;shF>!=s4#&h1 zl6N`AD}vq+ImX)^-fbM?tq$)#juFRBaI6={e&86kH(-C)IVui%{J}9^h4VgF7XQRS zj}VUW(wnz1$9SR5TaIJmfJse`@fL=+F~?T$(+(WtwKZ>VjxFW1AsiD2OvZDJw=2A_ za*WD8boRt7uW=(drfVMJ`&RZ;@6khNa~f1j?M`1rXkqlxBYfmIv$Wct(rRP2GyGp? z2I+NF_@9rR@6w0o^>*~Mj#@+sE=Q{is&(;ouPle!jPC#I%uoBasv2#ns}^=>oLZIk zXR0M>wW8KjvdYrx^Li&*R}aoYJri5o58J)IS{j#22w11ba2D`E5EHnth+2()e(ap; z8c^=J=f?NPrb^>_T6-}u#b|xziL)8~bx2LefD1@<>U2!im9fa&kQ?H%2d?)js=2?oAVk{*b6?$KY>!8!E;O(k1R22(2R<% z_BUwIXs@P@wVs#3Cv2ccF+*OdtIet3o9aMn;Zj#n$}DK~iA!CGZ`wg; z;j=Ma+u&9&(TLTmhr-`dqiLOopBBc`y>DTH&?g8_<33PB>1kMyhephTo7*QCB-6un zl`fbMf~eSRHHe}@)Gve-C_o)r9Rj7W{8S)Rtzk(wm#v|_n64|2%2U=8XHzzVDBqQy zanv~sqE6YR#!$X+TAwou!THngNn^cWh7+4bp)x6bLZAiHA(<3eerAvevddp~JzvNwH^=~xTHeHIW z*2W;KCd<@Pw5lM|?w5dmo-D(I&V}&c@q21HM|H|9sA3*m7$$wMi(8}J%OQ`mh%L`% zT2RDNNxoQHB{!s9@#+M95DTf29-*l~s&dr2sJfD(p5no?qAJlr#PAW^t#N79@T}_v@AdfO`6a|-5k6G3> ztfI8G@KUy}!lYEZK%&G~qOGB7CUq(e)%+HQ+Im(RYFHc&b6Qsh8bI6B>759*04*;nFFu&C~YfCyZm~)Is|(e5jCyW-Mlg_yx>ZsQ#;h6%1G?Ca#u8rb84pas!YQ_ zRcpZ86&Z`pWRS#)M%-V-EsZlLU;Az%9$7|uR2nHSGASEPNs_))`(v@hmSi0sj8{{s z;a6%w<%}uGNh!%5+?Mhhn)2CI-r_+U@%Wd6J zTC_Z$q;n)YA?Yj`_sN4o4U>`%$?*h|-jasKi-B0W5R#5Ms}ACcj8By(@m;bH-B`E! z4n%+ZN%aR4HB)|yr_Ea-RjG3r^sqGKlj^Qy!cr->;^o*^_Mejl@-CN?4tDWGQPuC&V5L(Pa+E<&XEEAZ7IU#VKcLOw zrb-_pd?(prg!NBUTXm}vPfFDslcM^R2G#VImB`DY%KR#{wUj!IQuYL?bgnP-FjsOE z6*wC*u!8EfQ}Zj^%(88kBCUiymQkbg4;(ikeUQJQec~tH$F_LNTHx79IMW_&>59qh zM;|k^rC55S1C06yKL+Ol7%Um>?o1nA#~?bjqZ&c$TdC6&$PwNNL-@ef>Kw;f>fFLs z!EF9j&oNW-@K?cXX&v@L@Z&ae1aCyAPGSHKU4;>9d0TYDhgYHVZQBl=o*2tt&cs;$ zM?3Vf7|Y}6Mtgo>4&!c$e;?M8(E(2}mY1ga9j(3+BY0_Q+)4eyF(9L}?L+L7Vu+RJ z8=WD+*9mGrqAu!k`l>oub?piUXX@!Xjjn+%+}%z6!s^-JLHW88ay@VN;rk^|v3R}Z zdGMU`g*up0UI5Q|`=H_?-NCb3A&jia`%%cO?kp57=wVBR&w{f9CRV#A_GGEHa}#%> z5l`P4|3mso`v4hkP92OLVT#MXT67QD+Eza^_9P6Ko2Myxj5j6|KgW_rUc`pUy(aFUa z@0ta}n${=CX19(;r=eMe2SK8WDQbT9Ai}9w7_PA1(-?i-8u^^ZbjNCr4@c22r`eLW zmqq7geC1|>9G=RIhx2)zsZHne8Xk;?^ZCgjnBT($_BNyGx0kS;(PywaM|rL~B|LE^ zSnco{WetH5W(x+^;B!{?_Pjfww5=}lK|M93Rio94N~`LW_JUehXRm0<{%sZEt$)hVtJ%2{wM9uBEaofWmCG6#?w@ zmL(v^TtDWsZRVqwsBsx3VRJLh3|_M{;09^6PYCL3pNdw)HVG6Lr+Ij4!5cle-a-^N zxh=fCEtB$9##bFt+@of351GaNXMkD&cVOGay=_W#p$5$zs8&#Jn9}@WO7oLh+;;|{ z!ivaWCUau*ucm@*L;Myl*&{=N^u+9`9qb6l1s^ye5 zHROmD%6w1-*OL8;n;dUoIDZHd)?54n7@x*z<|G&~^g652MTwYiq=6{cq$t^eqP!pt z-nVb3w5=sIA-dX5sY)bGb0U*glA#!ko7a+Fv601Iu_@UwDOs;t^!zu%D;7eTUa=5H zxK90T!7Kx1c7CpLpy1HfMX4>`L{v6{wxXH|*I1AVan{w6E%8((SZ>+3(4h9zqJfpw ziuB`KXix_sAh$O$Wf>EX(d*J2Nh4e;tRrYtstS^6t{-)Qs__3R;;shtnB^#IK9mlw zE$gdsOEzHSxl|RMIF|Ysq2}=+(6`Yev(wL+`I{d^vx~OIF1pqGu9psw*bW`anN^`P zLs74jTdE@+gPCtVWdN2h*a~O1g2y#iN;F$a^h#|?4~JKm+!~K&N@-rRrNRC*OJ?aA zjBH_2#Uo3OKGF($^u(}fOR=w~Izq~D$dutoFG(;}xlo(Dz16z3eu?@Pude&$17bU$ zFU2D#uX0et8aPe7w~O7@87tAX4!EvFWqck~p5kWU3fiP<`GTqE1dPBB2{XM;8_+YQ z9K>?MzGhe&*!C_)+ZUU|dl|G8vDz!tcnp~+tNQtm6}zCPwOyIbILG-GilSXBx8^ z)2%Ch@E-%=o-Jx+xR8RSfS(J1_q?X^-H2yb!RnA1jIkOm$i$DebpmV%(%R~r$t4H-pMgY@-SPj;KyBxWl_!R`ia&=()zj_$cGO$bB+9a82gwT{p7AYFYVWY|D!o@=tfM8S`ZdkcL2Q9psrOp%_^0}a#W(V1XfMU>qpc4q)~(^fR1f=IbG)7sR$t7rUN4A}v@-F{1MzW%)C3%Uu%V4C zC`CkjI#boca0JJj*fD`vO!I3wM)_ff`>7twFoJ(?N^#atim&Rki-_|Di{R#E`H6B$igFwn9=hNQmU1|0 z>mjI4tgtv}^_P|!!33^gUF_l8YIy9!`xgcB*hSgEB)-awmzK@PUvORo88xH*U#op_ zYZ@}DrzAFzCHd?aPEQT?6J&s&AYB^J{0NLj1CE0zRXz~)*_Y$y0NJa7EK=7Ka4K+c z%2%WXft-Y1@|}cU=J|1YD-TW&Ph#b^+gBLUAwb3{WTYI#1iTlOIABk}6Zuy?++MoL|_uN|>hEguPP^wUv$ zvKuVBVm=>4lfDK^_|Xk%-ytk!?3#{QYSCkuUZ&5$Oz`9}=353{N1<1-bnwz~OfRt# zp;PE<_&NLpo^E*!MJjR<57xhqiE`8_q{Vf@1oFiXh%=A`+X0CbIt6pw!dWO>))e$WXS2XktRuWS6$9?9Z)}z^iIU~?Z~a+{Ee3J4 zsp47igqicmU75bQh>qy&S!-qX?H@5z&;1U}YhQxoiRTd0E{LIevn=lpdTj-N70 zu9fpG&lh034-=)uz4j5N5eX)^iVZILF{Tlfa8ChGTgxNlxrYU+z8;J2AN~mALN?#6 zSL;xhOBkZ@*uP;xKD%L^7lK=!Rb5%qqd4zHH!eeSnAdt~<`qj}HM-(K&1|j>Uc9;0 z6_dh?{Ik{*r*HY1XzR~r1ESKu*hYt8hu25M!LesaynePyd4jt$FlEOfwF6f$d$?N~ zbC;5hq{@mTEO>~Pu^qHdQ(O|bh>foUx2alpkzd~Wi5o=>{^vn~4LYBvJ$z4v4ZX^^Zl!dYG zkzG#Z?<9L71y|y}Y+vF$+`^mC<2!Dxq1;N0yQMCrRF4)(S+}qkbIgMyb4_onpV6`) zErJT)L7Eb*6{3ZA)a`UC7->E4BCU1^(vIFmni8rNphdr_-Iv_cTr@ruSBt3kklrW^ zJiomM+9v~a4>i88&Y-pbsFi8{Kk8K1ykxOS*jCoT;csx�SYV`kC64zJ93UA{AUp z7oycwRwT3Wwx#f`s*`3t!YueJko}En*p^H;A7O=Hzof)@p5%Kl*w2z_VX&4+$Nq)E zUbkthK2{TyYbI@WAZ_Fm__%IL{~PlZuzl%?S{3ucw8!Z4@^Mg|p5DQ3rNw$hX^#ij z!j84wjLJUj>0w$Ca{a4@;hsIgpll$61y37C>ws(bu43Ps#_|#ELFnC6P1CD zrAkUTwYE5z$qbc#jipBZaB2~b*JZ|I8`Fc)dSTazMuIWs%`E#=zpN)UmTD=kX`zmF z{-{WLlhf8n%<4Qat#mC6-lI?ta$2ctC2`r6$l{<)j$@DWpPI!$;rj8fdN{iay6Vcj zWZImrb|pSz=};*B8HUJnH_=*7xiuG#;fj(yF-w+x45zx@K8t&xO5$iH*L6e_DtKG1 zeHXh)r8*Zj-0oQLDkX5#)_>lk@RMWr!dz>$mYd<1Xgp z$Sm`&S|0AZK=;p$=A)9z96PfMzd^QHlKhR_p?d=Exu z>PeVYeVcU9UuqqkPZOjy14&cU^*E)kO}g`MtW5Nhq}?T{Qm6@=aDuR1RQeNH>5oLE zTLukM?q`LNOTg}#I@|G%V1tQfgh%VRsf41HqtC*$ampu6MaEWBnlFCVRptu0q&(>NHp#5TS=}ZPT60Q#2`*On>pHF? ziO@#U^m1B#I`le@%D$FgL#OrzP9@&XuO-u8ky>TyT|f&{Dm0S~N1Le^Q(kCBR|{!P z=~$$epC--JOJLG*KN1$%iG%9yj?F~-17^ky$lmEqJyx0EkNN6NJq{-z1ZHebjOe#A zX6eP1<^Gu9*?LLGQi;jPiHUd}`TR6nFRbkI$8^Qp^o~6evpXkdbvr$Y%FNNrD?j;T z*38i>V@57y`!Od*g#h`*`IU%Arhv(@9arK%Fsr9yA z1aBS)2o3}k%dNFHuj5Q@TR+Il^P#j>64E>;MC8(D0jgr8ALPpgdTC70MJ_{fLP~s~ zRiotvFqD;u(rUQOO2ehXs6u67b9&qaJry74R@ODAtpm8eSLg)@ckhJJ(H=Nzy+$xr zRyUVDv9~9V#U26aJgu3dIUVn*RdgJbc^?SK`-|q%mOkpG6;y8d0CAJRy-05@23MB~ ziGR)$^-FIpTnTAmWz(>aRtlFWCX|Ejbq;*yhip*91oy(`!Wtna|Fp`vQZRS%L$r`d zvW4(jb)`9Yb7}X-XbsVK3eJt_YDKLhc7632Wl#%Y{YtkM^g?sJq60l6XPy#}d7l=t zj0Xy7#gth#qHJL;!GX?^5wGTn@D$O?C>w0VOGUK0j*leb!<-0V!~J8m^2#Y2krfNU zk4wbSoCsmT2a2Mq9@vPI#k49|kQY+j&WYIC0By@zT&t)QXz45Y_~KfUBZ9Wp!T^+9 zRMQ=yB5pN(tN4TCv~o%v8+JBMtB+M~8CCCSEgF098Z4NOek zTo}>SyptS^mpGPaZY9kIE-Qk}`kBDqc>`aKMaTZSjkyu4S6613n5nriVgNZ+6a&aQ z8ucoZQ@0n;txgZB7pnS!Rv^b*TGys|9bqUWk5Zi7Rt8j z(UA2h-dj=VK?`&i;fmf=d1kVHf{hOL);s;{bkb!7U4KcYYNkZAro?=DWu?&E}2xTGz`sHu(^>TzXw)gPF-kc|+pddMqzZndN!S ztyfh}nULeTApX?=O^To9;Pgn=nN<&m#HLOLUKUc^ZG1yiFpa#URmaRFt1}$Gd~JBu z8Y_c$w4O@AHq`E}b}+bl8$Nu>|7y3P*x$5yO2am^;Ww=tj=BI<-5N6h=IpI8<2mur z%Dso2P4bILN}8Gd{d!tsM?aZ!Z`}FJRH!10DX#N?kEM_Jw zB4!LCPqU1#fK>x+h_c2ePHl+JcC{p4nUh#lW9LLIMmb_5HYbX~SFk^jCt_|A5VvfE z7_NVndHkFw;z%Q{j3a~&^nxLy1T~V;FM24VyEOvnB5rjqD8|)fZ4eH2Sb%wrwFcO< zu>lox0z^?JHPK?>Pg*E!QAW}OPV3|cZJ!hB>nGq=T2SsL_>D`Sgy}g^{-%cN@~`V2 zLI+k|&z9SV{LUF{KdlEmzYk98jU2e1oVnls6w|l1vbq<1rw3Dm?ZG(SbV_$SPDye0 zwxx@w^x7DfZE=nUh;yi|?7{t(@ohuP|x7AN(AP$^D zFZbSEygs(gM%>+?m3M5Gh))E@s;gC`Ekp2<8+aYa)axtdOkSl$=o=VH z;Dy}PdS@+#Vf`uVE37VES&eK4x2K1zVK0(>5q>_t|B&dpY8);!kF!^1Qrgq7_w|~} zEA4TSFXjZMI7t5QeTXCY28xsVf!>Y&8={S{EDbXF+YL%9ewsRUNP#Vd{~Vz3t3u&C zr#L+ga|(V7Q#sOJcGxj3;Jh9*i+#XUVO*-_q+>0#vdXWfvd^`rIxV&O%Fia{)j$PZ zZZA!$bSpUU9=x>16$H#{t+Yy*7R*RTBh5UHg*lE{C9*(it+kR$ybU_mTC0U^djS%@ zEe;sx0o&FFJ!mHz7Ty--+uje>CMQe`?!UE#?>*Lrb!-RUJKYa9A}36Ai`Cj|#gz;j zmeC$#96pA`B@;p}$P+fH17N#t*wqez?ev4;!#jDD?QloT0e`e%jXGgY_k$noTuzwq zy6SXBZqIDkiq3dN^@$(sQBIgB+iP7g7?z}~6EL!%((ZRb-%`Az=^}~H*AlEc`?0GQ zOW6~!9s)q4Zdfg8Khd^Ti>k!)m`x7xF`o83+S|lQx#{}6fYp`8lO?z9FKDG`^W*?3 zf6IrF`dj`NewL4!NQEVc|EA!do3qbBF))=S4)S!E~##9(Ca9}JBiw%f`Rf0SM~|*oo4nwO^wJhg1|Hj(i(BBqKQu9a<%LPg-!yIT;6Z*_7VGRQ<&5iC z=Wnlu9hgA2g%-TKj7NOzwL6fK~RQMqcpCx~qs= zPRRvYIMsGa_KIJYSf9y$&hkncNzY4sjbI`3Z%Q*G@F4}<+#E_3CTNB6UV*QK%A78; zKM_-nQxmlOI6WZLk=cdHO+@Fq$tH%+%0MgMkGhDFGh>n#?l|iMb)SS)wJbl-shps! zo9K$FOx7ZCB*w~W)?}@m<4-@-gPbVQ-S?lOMJk26%BBMe_e_C=G2~bcU$p=S{=)h9 zyeKCBwA49EaJMv8L{7^2a}7!t%pYFSdhs3EaTLA@&N(_V2b63gK4*n}q{p`!Ux>bXK{OD;?nPzK8t z!ikWz_+|P@Lj#_*3wYMreujahuq+RMZ9+NMRXR&^zR{XHFv4(A&cL>KdfEM3t(x*T zer&-I-IY##i@D+-f&?#lupm}V-$iLqX&D!A1hNobYLoQX!^JBa-(hwd-A#_Tks|bU z(SV6s`|~@kkkZhH>vm47tkg3hwR1tl!cxue0ZH*e7JskBD}78z&s>nKcQFvWbRIOX z`XIN?Ystzq6EZm$L7Z%-{-^B6+#=+9mjcK{R7K>Z>btyR0QC zuIHtCRT28s3xseBTU%!+<>=O*@xPD19e!z4^=iNN_0l% z_5w~u@5tHKI%D70l40mAl)Q%@x93IN>KE?Hp1@>wCZJz98PG2*m&;D#lQWB$y;yt< zqS%Cd#i`6F)Zqd<7iAtsBevl~qtH`tm(sld0u@h(G+S&soUCN+SQ=SxYUEKmMul@e zRHxBEed~uhlM^Kzz)EAVC6A*ctbODq_H}3sbo;j-^pBiSe+z}wLbqn8`IexyI{L+C zN6(+wNuabtP{7)mSTXO|IoM65Mqy*B3LQ9z9 zBBs{SRP;}+j%RUqb3TqGtd7A2LVdd#{J?+y4~f3~6ALQ~MFw=>FeWrxuHulasew7& zc>y4a4*jLYDksbwzYWOIS>C(0I}QI^OJD-1FJ3M!fc4LRYpoq$%fcQGC@lDjz9jn} ztu&uMFtyY6p;ia;HZCkzq@Q*G@UJLnLi{wvv~-s}0}DbM9%-eODm~;d4=JMm#e!ia z%K8RXQ@)3+n(zL_W=jW~rtxD;z1s>JEbN2SH*hwm8E4UfRCt0#fzdV~;|W9@DFMUs z0=)VkMv%oe!2ML~3N^D7aG~9(t5gx(zih?}=2(x1s&D^@@?+ zs=R#d>4|^U5bL|RdFUYm{wP&d5bea3I11#|CQl?<@jF({#S|r#q+L#oySO%lLtygrSoym{ zrm_9ghN#|I_zDQ#0+#Dn_+}q?;;el?EtKk#~XQ_+DFRP$n?r#<2ddl8K9ON2*6iY$pY@yB_#Zu6>42OHyQ?`&f zUty= z&jSHYEUuO~p%rj6^g$+{z`|TT6H+@DL}bBrfqGvY%t}nia^4mB=N1@*%RvOvfxF@2M!8Ovr{@5dZ998~oF1jctV@t=9Or zY>ncZYd4vDQ(E~YENprd2AHUFFp}$LCf9n&N)omCc{$XkySFs4hrKAaJZckO$1U_U za5!$+7V;dGxB+9mKOClCDq^D2&L*5(5$;KA zN!X&dlq0?py3^q{&C*KfPKQbn1_y{RfJI268I_^3`8MFU$`E$01k4ry%en^imKA2U zU*zboz^0Pcd~I`PE-PsR>vf4(a1l|J4MoJ@%)v9+*y_qW58KwxJ!>QBUzUVN?w$vZ77MuWA8g z2~%4BGK+>ICXeiAPVvlY>JTT7Vqd7Kl~9J**)^%9)x@DXpIkUU;-8(VtO~WUCOyYS zy;B=CIm-|AMqa3ibx{ACY}EBS7;-mA6z@@qm{p_C1=c8RnWeX$X3O?twF$Hkeo=$J zIjCIk!?V$eShMsMLdotUEzsv{DOz7y6@T@S&KAD8`PlNmpA&H_tN;4QK5_a-INW+` z5O#Ab*w_w((H_d$Sfx~7nUnS+%&E0aIPOJsj5xaE%LK0=AZ}G-GG#r5!S@@Yl~RV= zsG~zf3$amybD+{Zx^F69iujkm*uh#&TJF&EQ)#ajr@UwLo#VyI_q%@5ED`ZQY$D+d zZ4gZ!rUffs*jOB%t?0lPS$rkgl_&O-;qX4M+AwVdT-wWiu!|yYDd0b8xuzXw2iWl? zX-xbKD-Rds5;lKKQYq9=t~^}XsCnqt(cl7XdyR}y{_g~8Qqff@e0BcKPu}gs$dI7Z5Pz{tkEqwPS)MXzVroD_x$MDU02-pibVZv0+ zvPAX^Xm{a))-v2<+?jWzOXKw-%3`xHIR2OnAJE5MdD|>QwePVm;Cfjvr0g(-`Jf*S zc^L-+x7yTLO!F_phJHMJHlo(AV9oP;8-@Wal6JnLM>)>=VY6~#8&A-CDF529>63LLr6@rD&YgASL<4Xh z zdOb`2|D*bVRZ5-ZcuBZHL;;x!S!bG5;qGQ9vEDc^XE3Y`y$k7Jkq;d86 z9KxrfFyze-aVpw~Z}LN&a)Pw3QaVq_?noRwYi~n}7l6vzn2?qdVs(E{WffWe1LPET zXilcb2R=o`_&h5RT@w#6&Mpo_CM2Jae2QJ>-HRv1 zADEszK-MDslY02RqE9O2r2(?`_E*Qq^R59`X1OWMoB{M~lU4!m68NYc83Dp98elr4 zf1wY&v>BfGJ{#L&i&h)&6!@^pZZjvb&Y*9_I>Qy4y8l+JGyG^%;}8WSEp43}!291x zl(Y?pr<8$G(-1IY8xBuB^Mm2D=DA=Ul`=Ns$aWw~(v0S4A$Y60In-tLBlx^`ecOlK zEq+<~qol$CEAS~Cux>WDS3kvBJ*=ZJw+@1vA3`jTj@*gWy_apo4?8if87C0R=z%$P zPc|Vo*vv5;3nk2dVF3TP2g==uuXkbZ=rbEuVYe3VFeG9}PK3YdAaj4y!Rx_(rGH8O zGBq<+DAh8nSZP-H9C-od=|GCOk5^$9yo@RT!I|)QAB(J&hi1{ljNkhvW|GAQ$yy5; zM91I6jK2tFwLqx~a^S1yD7;0*2iP{wf_XHy5w_bhFTjj5e6UZ)OBZM@ za0<0^cdPsHh`42*D3K8I{fWV)?3V{>*m(6FEaz79!^h{uiw(So?_eYF1sgVWk(P*^ zJUiP?IbkB(o{P1b$^;vBcCpqHCsJ+L*j%tB+KaTUo8By+7Z%hg1It<^pT`*TLU%nr zXQ8SR7Wenr+}9CagxKT9eRodo{tW}>A%2?150k`>>u}{ao8Rk8v9@yCkKc^|en5yq zPFSWD!`adqsd_U7GP4bb))L>$DEG_1xxQBGda*yY^={IQo*y(z7q zhOLshg1a*NMcJN2>zg`VD}!(Bei}XTZ$R-fmm{1#BpCy7l>b$AB_zBD?Xi855v~kyB}!bs1%_$u)X&Ij&Gc1 zTs_B$0A?or(^I%h125dLo3V5F!R1irx_ zUCL*P3%&V^+fp(&{d#=;gD2U=aKQx*z=L@+np8q>2c0uxr47!Luvg!qBn~U_AyUpf zWhiYfi5JsG$jrSQ_%eSH%fY;MKDU(4-_GzM?v%nR#{!9%mnY(QX}rb3M@P*(s+7SS zN!ul2OHPD19u!elj})gyO~kOWIL~!XBEHRufK*A;qMRNs4vdpm|6)hzw|dTDY-C03GFIlU1*k#Sz8%X)i+GctGO_ua;C>)61l;~T#v^j@*@-T zVcwYIRp6|jvN2-YJ*g^o6px$0qj>{e)j;#W1`e*KS5$s8F}HJJ#95JM30Na5FwCd* zH3^v0MGTW#4;7)m*8RI>m~5cAvvpcMQHVU;AntByH_UH>mRbQ5w9D^cf;R9~Yl7AS zpNkVy+C`X|4mXAAJ&Zpj8Abmsf?W(XB^oRxvOMAe6!9i{gcFPLD%N}(*Jz2}NSSLw zX6FHEKvgnOncId@(+oX6X!kI)gPdD{9#jY}pf0vL$!J=ift3OfW@qSy)oo1Zcf1}l z;zPQ%mCa^epX8ZWxp!g7cZN~VchPFZhG&fPAUM%hWUkyCM#ta9(fymbc~@DAp5eO5 z`&u5nlc?}Ayi1IU+kA9xkOptZ)nJcx4*Dv5-*=APvkFx;q9O00?PJDf(jR|MujYWO z%Jg*wz2&M57$$1h>f2C7qVCOMr>QB7*}26@kDK4H$KU|wP3d5|-U{#RFlQxwxLLnE zpwMXaC77nM1aII>9Us$MBqdl7Ai=!ha!Pf0j2_|G?GG@g9XlmzdrlO0KoK1Wj2qRy zoxOU6shgc+0TS-^50U|v0--3Y;KV@6ox?L`0a zRw;mfJQAll#4fj3ho5{LFEjS2gZK5XEw>s&=m&-9>^sNg+ zuP@ltRqBkO(fmosa`ixyibU*oyUpG1zGhbY%j+?~;mcZ;XzCKZD)E?0yO!v_!|2@v zrEjqjO#SP*<_I}~7K@0L8esh=!zavw2I$KcnZhg>VY*mdF-vdX5WU_`i!dWeFGlUY z4ffC{ZS^2!yNTFhW^7v2#u2>alEm0xTAPU0`GX&W8p=5n_H8bh=xDDa6Xl78ptgw&CW!bK2lagW-_LB z1NUHGY3)eaw=WsVo=+rY?SVJ+femqF2FSHyq%6(Sy_kA_ZDaK>u*ZAY5B60~m>9(W z`U2C!J2tGxK1>R3`oXT}gbCf%->;Rx7j_*Vp-+II@9)PFL@fbd2U7%dOKW4L*7!m%2Yj)Q&?)`h4ZacXbp&Ij@u>gP`u+=}-%%HW`o8KeR1Uf#i<(mP|cW8^xg|PziKLqX)b<3Hve+rzCGx`DpxUC zF20luex4}Tlw*1jTZD%;*TCl}=E)Mi^?xkkDzk(`Yw8n*TP57Vi97k&$OjDBV7UUSWDI>^M0UHYv5T37P)28+y)5wQ( zzY1hS0jaChlTfS2xGzg*6&3>f7xqj*VYkV`^8Iqk%jtf8)Rj{3qXzZGs{J@Km(l66 z;Nm6DpniCFhtg%+pP5d0k35==x5O^oVv~Gfpipn8%ZA?|1zqoFHV~gZjiU7_;AVjT zdp%u=KEaPaAB>oLuT>Qtc8)1*s^p?z$>~sh^zE?X1oh6 zxJ*B-j*@@0^iRV^%Mz!?U@PR;emKlki>aC^rAJfq6daVQZW2}%q0f=6JX)5O53=AW zuLa?AEXwmHq)RRc{N?U=#oMC3l7@5Dub9;1b5Z-35_0;NGFTE@rHtb$E=3D&sTGKC z2*gxO6ji)!HnAq&*y=O{n?YO5tTqN_wLXv;UN&fCG2`0>@c|sc4CkKeD?geneh6f7 zE|A3pVR9MPRfJgmIq)Skj}If@+rrK8Dy$3N&g4m%I!3C$L!ze9<7Q}SxSQomsK4+S z@j(@(yh&I_gg*6`93!2Igcg_+;^?jkS>6Jkc3TtD%H)kT2p6TmZgDo$BD8IJ*ci$> z1d|NpKWL0xqkX#-M8ZK_lfSU!r>$VgZ=0FS$%PZ6(U-09lG6?!u67$eS=nkrHsykd zX;j6wn1p}tgS^!ij{R8^l9dbMZyPA6zimJ_cny58qTxD9-ra;MJG9puD*47ron!g| z-RDwegAUML1sk)o1FE5{i75p)oX<-^moZ9fn@F_N7A8^CK*q`DPqRY?iyTsl;l5I5 z%*|f0IlkQ)GoA4!$1#B%xz^cF8r=o^N$=U1+gtE{MOXU~m3HC{nLh zGkU|%^7+n8<=e5cyR09LhI+;n>SSOJ$K+3o2i7~e!@&ic5mfJ6Ozc7n8>7F)n8A_v z&gwHbLRq1%c#2E$6rqlhL2hHzIlZ??Pxu%&SAKc}4OTqt)ED1Ro_tXcGHRWN_s+<@ z&vX-6v_O!@IQfJAyhu-qvp7yK5EO0z)LEp@SO<>N!d-%6Iiu7id}0PSf2Lj5-&fu$ zL=Y|3C~-yCkZ6?8hIk0qU)5J}*yfu47l+Be=qot9d|ltq;i?fX_Jfo|P{ySjqB?z&w~DYL)FWhCC$J1~Q}5A;18w*EtZf{>=K!woPH zGM+LE2j!;~zo5ix|3VW2&Dp>8EgZh_P=Cm@3xmKde3&P4NvJE>$o>}#Pk0*sMBl;T zq5t&1Io$J1pUu=Q9Ih1F)WPMVoeozg_mbzV3)LL=FlCBUTo*x9?PFvQt;ZXU^0_`{ z_)Vv4n!{JZ%#ohLw51sC+Su|3Bs;0OUKbA^jBrI6LtOX;2uk?@hmdcz4c(%L6r$;o zA))j|xGTt@5LaC$Iuq)87ojM)fr3xRkDd8lsG7ZU)niVis}tg@OSy^~k0MPyVfWUtd#QH19!-VQ_XU&+RE?J?r2uI0E_|5 zDh1uSAjdVct&|QXWz9+fl+3*}8@q6BJ@ptL~aD((#e+O2+jXt_1OGbO%=@ z8ZpTeM!`K$iT!H1rigT0k0QAmt~#!&B57e~kXD}T36-Q%>bhR#bi+~KHBb=DXlmuS zU^43Iy#{!hlqCT{CCV;`&R|F)^vp>XX$Ykzx?IMoB-jk6CtQ=+MjI=VrG&G2p_2D)Ymv|YYIgZ;#(<5hw}jngl3kFZ6y2VATiMWcqoxVMqGllSOV<6`dAl65s;&oh&EP@a~%=C zWb5#{f@os`YCH2K*In$5iR%|}wR0=PMgP?J6_@5v<`-leE>2bEVa%F3!F88*G{DtJ z_^?ZR#|6JBE7CMQtKE zh9)m}1?`;4ojGzBg%!C!t{D_$?0wT!U!V=w%fktWHp{5xEEj zU@5aoK$?Dwd2~W?uPkwW%hc1u(cq7ftEHfUITV-5$tIUdkL$o@x4a4gdM<^8%thF& zC~GJ3=tk&!vIdMs%Uy2?#>ZECQ6nT5ug@?*9q*z<4M~BRAzD-QNKEoxa&M zPjCiRijS88UT8)DKiKc8Xr%05HQ^UJ;IbL3(9S>m)U_%gg(k1?1RDztm<1D}>n%>3 zKXrxB)D^hKvePaY#rh6tjQMwS4O)!%eiq1BGYao|`#T`#+X;=Z?_J6K z%Yeb}7sCc@}-$rJ><%F^Jb=%4prh64tR zPg>56m6^KNp&_=(Hq96HQr38K)m1~t0IT^*@GO1 z*>1RlY0L2k7-VLeZMXREt_XfC%DA#+kWOKrpo8D{H>`N#A3Si+EM#o_({+I(vQj}6 zV}PKJNa~o1Atm&o3l9HGI-t1Ys7kA#sGa|^IRhb_9HbPN7BKxWiiZ^k9%M59gJf5D zj48Hm@P95&zP}%uPI0(HjKxo3M@Xr5O{Rn!e>~&buv2=_mUGw$IN@+N)t8hKem{+# z?XFMz^10C#6?eLF#T>K1G1R!HxLY$m^Qhz)O4+JgHHJIg%{h7WMKjqza+_R)PNT2x zZsGt-W3|gYHt>1+R#<*(j~m8_EXA!jFF4#W#;zdn4os>X0_L0~>W~GadE3yZYz=jb z(v9Aa(IvbIN+6yM-wr3TX1M!#A>s}^gR1Rkk;d_eT)Ebdbhj5-z(p%A*cdwtxVr`v zl2-2U1Q|`E-OU1$jh!)W%qy-?@m8ovA;DYiF-$iqvX|R zj3c#U-Ay^!s=QD_vfJ2N)ZKuSx0E%R8%2t{=L^1Y6osfElx%oZx)kTWi;p>pp{DI! z%qz;5bk|mfm^M4Pq#N^DT%9@}Rd#BZN25l&P?{a3+!!aAh|6uIM@hqrFXP5IF{F@z z9-^O!pi3Cl;0 z>oj*`PzH|25d-5$Q$dY^V}eK)DsI#YqJG`l-9kJ=rlTEr2UpbDnRaM0Bwf#X?cGj1 zU>zI%Ixsbv4kvy^85cUje(@!Dfg9BsxLy)>zO!592k_Zq==SsOf<{PJJXLzd5ZtV2 zBfXm&(`NbH!1LkaQHi7OSeiUMB!Xglpf6m}otrrzkT{y2ZF6fodjiHOqgR9S$%v3* z#;RUusE%Gnc5j#+Kf*W@ZH(v(YXpC!R-w32A==IqHl$ughgA1ML7wKGi4X;gp;R|a zU1U3|7p6KZ2Dq`>(#yCr(EVm$_8C1aTm`+@lPoG(oE{yb8e4~Q zb4T`R?kYyLVX(n~VhBD9#(>YE;X-;T=Wk;|G^74VcSk`jT-MA{P)z{;@V-H+kv!Vn zgOlMio7v7j;VDMHj6w6p@+~hL#Eo;eQpU)ZO*6;2bFMO!Hu8;kPjcW69Xyc-Ps}; zRaBbNvpiA8x6|Di@4)VA8ftC&O1F#CqmATO(R*_GoCT7!q;c^z$%Z<=hooxXcnTRC z-f&~c1J$}utfb;^x?4FMXXKQs;XP-5Ix-7g%o#baDl*&c=BKB`ok znJCb{3!V_ci>iO%{t1^+2{W2^&smJ7ufd=)*tDgyYuup@{sqG+O^tr^6fk1faw{HO z*uVnZCK18$i!!G%&%;Et<|v!067LXzdkGe!BMwMv*34 zAOuO%zje`0cJh^!6iJ|?M+?p}naC;n%pJXoQcey(#KbaXc+wG2W@Go>>6>0M@bR+XVb7OXa zq|?8n66WuBhj4nNQDzUiQ80P>Hj?+u4=G}-*~=c(Pn5n|rW7+O>|?*c#2Ub+@N;;9 zva>RRzvTM;iQZZO1b&24=@CJ(#@?^Mh+*M3k-qsbvP@kV5@obJNl(=07b_lxMpUAL>Q@O-B_JNI&98li1e}sE68kZ2(t9Mo(OvH0Voo$x-rv3 zuBe`(6n_(yh=<|y$s-K7dwyca&K4<@5`ROBn)9=}p-6^Eh*mA#41=Kg&+p~HT2WAR0n znwy144wI$JzUO{JGUh>e$^(pooF7^MmPJKR2A96RkLJom~AD+b+&{AGNWBOwrG5yJr5@Qtk&;4F*$x{D>Ro;E-#st)q z?9(LAYzMvh6h*g79zo?5Po#TEh_yM=K=Itcd1o>HE@x|cE1##f@|W31T+ZhSa_}#B zV$pQj1E(YS12q4Vs;7wqFkkcL`9159%tMfIH_|hbNyK1xd@|Nf($|F) zFeu7{NmorCF?PnVa8@oLDQ3K15E;v-88IGguod?F?$|H2mRiKqM%iyF>}V16w&K?k zoL?XKaY(rFAlCDyC+B_%rB=Yk!LD+iH}iTDL9dqge3I9bth^EZsh;_YQc@L9a*oHPX?GRR$!RwW;!{9Q@Aw!5inm5# z5tJz;66eZi-Q=$uOycy0$zZnxG?T$mCQ-a!%U}`X6z?rb*;{g%Er0Ekfc-LfFinQf zBu#ty>#StcObT8_c=PG4>6mm5(q|KTEc_QK@61o~el5Ha6 zYtpB8WyE)-wHs2UjZ|qXLk~#BZgi)Rn{iW;9SN8bP2g(mm7(X-(P=W&-tT{T|Lg8y z9HgMT@d*iCi~(fL({M`FFzJ3%8Ty?xy^PN(RMF@_GB=|tk*-DnK?P&IbUU9y%t$0~ zG2S53Vf;lQ-RMs7JdCTbl81<=h_xGSWD=K2)x~&5q=!*SCQ(_&=tJNzsu7eorcwkq zqd$f0Mi_;>44tC88-YZYGpZ5kY225Z;|W}h8WJWDMK>#xM$b7@TCTxc>*(j5`!!MiR*!#s(q- zj7L&sjkMW9x_yL5o55c+bHwCP&Erfkqx3&r(Aq<)J>vhr=YmmPQv9(0oLN8>LA<%v z5r=1)iyf(INbuh!f)oAt_stz`>AP@X3rBnU>YLsIVLbJ%YvEX(M~0Ro9<8WcAy!Ym z4AC;mmm$g`g{lBoh=28X8EREVMm~^?)-bLR>lI&yXyM|^P*@)FM?pHUVTCxH;bn+U zX?Pi;lB5tF#kN8mwe~VZXRf^r(cx<^Lv#w;%McyM_A=CXAV!gwK{}!BWr&Vydl?EX z6QaZ0UdsNNE<@CyR~Y}62|XzjdRiv*Y&u2}G9x2CFC%F^)f@$ ztyUPl%Y^!r3H3!NkCKw@m1rGNHmUp?zgS1GZ6#1~xEgj96g|6hSMLq(TQ{+c;cZ{b{mA z_iC`jK0a&A@KKrhO9F;uj7b}k!N-1r8>r_|j?K0Se%zVhNV7E$;8VjLU2Jvz`POcZ z?`%t|@H#ymmu!9fxzXM6m+dD%zP6p?CRS9x5#czAy%U|gI#RIi`C_~y!R1pPo#2SE zedf=fb#}D0y;g;PALHnay}N%UI_|n8^RJ^F?_-xrMx5h&TZtdu#^FZn2>+|6BhL2F zkAL0K(bM*#3O^nW`#t#gT^#AQFZ}tME{^WDm;ipcx1+c1gdcC)!Ew{31@LyA9Y<^# z{(N&sM{67N=gwG17o4lTEfJ1fktkv4B{@wSyi6g#Sw1v3*fJHa%{I{`0;wZ9eZsx1Ng}Hjx)ANRrsY? zM}aNKkN=Y3ILTAnIl^pO75-~i$9uMStME6wqTt^3=il~nM7iAHU3xgawzcu&D^Lcu zwtn0{((zs%P1-p1kS1*aP1*pOv;j0}18C9)(4-BZNgIGkn}FtQfE>BSoQ)98*#Mfe z0W@a=XwC-EoDHBk8&EYwvNUNUNRu{zCT)Nm_Qj-)Vp&oyCnIZIKL357BQl+4aA?pB z4xkwvKodBCCUAfp^u+{@5KZ6!n!o`xfdgm)2hao#pb4Cc|M6jLS1K6jXi<~qatLTH z2hdy&pt)SC@!TXw`zV^!LCd*BOzH^Hqz>3Gf#!6CXif*voDQHl9Wbv7@7u?bWUF4p z_w{jvv%sSN{VzTjZh&~)$I+$?(XOu}unaM*uOp-kv8Au0Ng3iwUq_=dgx>EzHrn)a z)GMQr^I6f506b;HX}j z|Kf#9!XroE!D`1Ht32uEr0|TRs|~M;|2^a2ZuAlo&iEhPbIDQPgWd{$dDZbt zIlQbph{W&_9j|>J+=fGVtp&UO2hV=vxKfT@?jU+i-sD?k>Oup2RlW9uV{$n>ol{zz zb#rkXoO#!A(Gw5c2PymXgnV$+Uycg$+4gV8@2(hJbDuaKil;57c-V4^XDz2u7iH-* z=t;|I(1VuKpyw>7c+7Gd^pxc^=poB#&@+}(JYqQwdctyw2P~&S&sR=^9T;(+AvC1i)s+{7X%4yIumDA`aczU98iU%sELC;f8 zgC3`x20cwV4H~eW20cq5u8`Ig*Yq6a6pv9(gPx*bUoi9x>#d8uI5{77ub&4StPK#?AV4Y%o zb&BEDDMnXRpU|hV)hUKnrx;nC;>pM<2GcyJ7)+gFEOm; zM9>%4G;}(}$mtXhLr!#6V(3xGDV~I!;`R?Y77X=Jl#|e*hajhT26E|BzzXXt4pwFLdgkphDtq|&oQxrvyc}bJ ztHW3&`{9<*9m-dFNnOSxq8y&9aR!>pVeae0{1C0CR5Ex^H-xXSiuM}K5ea{ROp)v^ z4F4lZM3=+-xfcuMaW1T)WMU8V;V!JM{VIv$rGAda-1u%6R;j#T6EP<)v5(Ho9g#gW zpI>ufuSo4a7*1Fn_ZmTn`ScL?Ezhb1W{=4npEfFMWM=;A2=hIiapma${@1{84};no znZP(3tL83<^@sUt8w-_zO^5ke8>`Q;3@w0rxiVk-#@2{5RYq#-%KRiTgBR+|kB@d` zl_fEYJ6%~Fd-t}`#&K1YXJ~tQPsleD7m`&fn*JZjYEf=Hs2mFJIQh9%8c8k(tAg0h z=axgh3tB*kGw~^fW98tFM?(;w%6j~x9INgwh|`C-pBrnox;9>)X1L*YaIi0Ol<&r> z@vfe@I_1VH*n71@)LmrDpFc%Aa2Leehxx;PtTGR>vnrA)G@19dVbS>mJC;oiu#q)8 ztHYPskivO8%IpMPdAT$H)%RFk9_J1R>$-ryX=e^wZZ;p_f@*))9WUXhx*;~&9OJ*b zGaviOdT`?%{_usP7GKs8!+Veib9Wc){zJT-2W#klxCvAqAL3iQk;bPn_!6|umDS=O zc(6KdtsugN2PzQJZ2s|JJ?*ooN&HW;gFRUdewAu;ttZ-PIMwJxDf--#mA7vU2H_=% zBMwYr4hPdE>&qW7q|;sz6?vkAHRLyR%D)4Vy*eN=&Jd&I5xI&auE}^uA{}-wvjGUj zn}>NuJ(O)jShYV6MbtJj>QKfS*pu3Tm@A3x3}tJTtgJD^ zvU!9ZCE7}3f%e1A5HnK7L?IxjRNb?@v6^g;21DOdonL___k)kzM`y3_?sOHWv+DN4 zl;DjH`1T?9_Mg!JX5i-r64M!-~pJfBS^Jn7$0|HnE;G+PR1$d>Z zh_I@vNa3%lY$V9R)kK6#)mR!r&8iD4YpV;Hy#^ZyGQ9>H>Q0lTaioZ!4?#9=*I*qW z2&~Dn>_UM5IiZ5uT9d_re^3+I7CcrH5nrVOvYp_eSLQ32?#_1wGA}8|Q9&d}vEa{( zesuTcdwe{~dzfXjh*z)0Qekg;EtoChpVeZ00X1v0A$EFyY21>r*VkrUC2>a*&ugO~QkTt2$rBj!!cHWab8pvvrxf zRCnhW!;r$PdKjC8nuBi+hML%XL26|Ec0Cs5E~Gxi+@~wX%aR%75w>3N>$8r8kquZZ;gSY2e8CJ?YseyqPj1LM$&~R&7N#qjSC1_G?~GYLP`cfa z#Ym-4kv)$65q7I|g<~yb?uuq(9rerHwU#C?G_rCRCUb`^6y^AlM6BSnvKZ1>x|7}5 zawqzwJLP+4{--cIOFP&<;Z-WRZZD&7qY1<57gQs0QWsk(q%P&UxC!e(_@W8xLfAD( zhMhsIi!ABnVl0%xkQh9~qmtE&p;$4Pb)^WY!7Q9`eK3oW5r!A@g&h!~_>_%V5eofz zKvNb?dlJ%`vi^3u%{0dHb0I8>KWmDc2|?sag7!B!tU^bOF(E98Vx9_N1Et~&Uepqe z<@sVqlTsqELZh%`gSfn|)&$e-Vm4x_5?0C2uP! zAy{cPEJ$ivwy*l}XU$kIvDCgfvW@V%<}88m*XFFVw78j%ZpoU6oe0)kDhzHd=I7&3 z9KW?-RaCAJ^K=W0rNCM(S!cqmmMos|!ET;CVqz=S$z3RXP|R=k zf$8U~J^V{++-k*okg4F-te-S>ls|04f;cu1*m+TF^f?j#V;Bp@1zg?^y-rxfpNWLA zVBh93FKr>6M=Gu--?Sf{DFId};=pj$mM}k@MM(qC3-FFct>JfAH4L4q5iC}^Qm%xj zhOg+0vN~gea36HXC5*ko!5+DjfkzpQzLMr zDE#-4rnS-;;DzlmstIvr(;zM1=d`S!2X(Lv`b&d*KQRqbzFzIXS`i-Vz}ia-wJi&g ztOiLsL}JtfE{jd_RirfBJ7Nw1Ms~y)0-W8EwIeLnX~oUZps^w#pb+rjmP!;;+ktVwj&)?rS=nx7Oj#&)@TK_X#aqV*|+lApU-g zRbk2hjlrMBFo*OlRVu&zvxinHv+%zL*=>wxNg9j#3hsT0?)t#Zh zx}tc5!mBT>dx|$;d{$THK?}7Pb!9CHk9I{{qNj9Yso4^+svApnyP?kudWB2_ug|IANfm5MiG(c=*g?2fSknBE;Z z1isasbtn9@J4OOwXkQ6m+!}4`w>aiqK4W60RkK3)UJ2iqhJj>59PTm^?Nl6#A@u1X zv0o2qb^}nFJ6^(j1i_rh1ua2WW4JJQ;$_z5Qgogkj{yNDv*Ixk0C&Wr2s^ zJbkQN48cFf*&WC{cyHdP7aslv`$VOq^N$WY^ioOe?In|V*bBKw5+S`U=dj4L4{owH z7Gu#5t^F<)>2Plu=|ykWQRda>2=@<0(QGWigDqBjJ9yDF6e|oa?SoMU_;nxD6fm$a z?h1h^ebHcmoBN_Bfj{&`g8??^$J)5lXLFumGvWBoQfwo;BTocnXr2rOC#KqhPxEtpJ}*D0mh`WUUpjJV65gV`{3Dl$55;% zq=nI{7eMQ~bk^HlXstWKANrt=S6c4*a%{sZ_VF3$QNRx}SWkCaEMaUrf}@#H_$kwM zA6n#Wm8=l%FtgczC>l-tOx@Qkb|Ktt3X2A_aJyjkQvG0<7{Y=nk@z7PX@%fD9ytJl z;vsk~Cy0Y)+$TfOVxih$DB7Bk6q%Bp6H!llhvF@dppX2AuE>2dStThuZpsQrBg%~{ z_*yYK6XUOlcS5=3LrbTzf)^qg?X&-y#Cm7b;u%vUn(^5*Og({fbw6`%fx8*QSQlyk zlFFF}twpY&sspQ(e;q7Rs87tDj zz$%zWCWF^Fwdh;Ry9OpUdWCE}JtE()xs`an%pJbMgp9;JC2;0Q)H1EDG3@;47(8vC z$i`3lavg7UMlrh-c}kHePgdet!y0@LKVuYTFW}x$7$t?B@=_V?ig755Rn2vzsFD<+ zrm@InB|Y$uwvxbPOsPZEQtDO}1coTadyJ&svP!S2$zekzQ$t4RJ%-hDN#aw-h%S71 z4C{lCZ#GM?(_3=`C+d*dY1u3k{M*^ctl&c>--rgf>N)h9jJirPmPLIgNOO!_wQARJ99UqyDxdVEK#-Zs7y#%ROeLN-)2nLR4 zu~N{F1i`eVxPn+e%&oZ3#-q1FH7XaQ5^!ZMMl;}zT-MKB*vvdC-()6Cz?)3LjF71; znZTNoYS9F=Q{amUXg$Cl6EW=pS4_k+6!6wWX}akoJcJ^=coK`3hGt1aC^Q@ifx_^#bV{Fm4E%xV7(BI? z%wTmR#9PFn_{=}TKEm$I&7Ylbq#uXQ?N8|&iFnyIt&H^AOKB0WH4{w~ZzUpU;sy?{ z4pIs60$@5Jo?_P$;>P_0V2Zf49$Qj6sd6V&QsRzsK^f`rmr`-h_<0%W)R$7+>V)JW zCEUuy1JPec=D{({zl(?-62Nx=Q^dru=}2h@3QsBr#6WwwjP(3VsX4Tkj(hc`6a#1A zETnV?hx-8GK=Lfvd8ZPMw)8qMLbRQ=`1(-_CHl_H;QhZb?zCkIzVJW^_DL%FoA0e;vM8fS$3BpQ6Xjh64 zEyXu0#dj{ncPYh3m*Qhe@r_IIO^WhF?nRD+O9`5micq5zU$YcHpcFr_6kod(U#Aow zSBmdp@krlDE+t5@1mJs>;(M3k>z3l{mEwDr;uA{oElTk%OYy0=_O$9g?O@`oc(rZ| zZ_M}4WkU(8%wvN!`5hN)wu~R}|96LQ`xf%Htu9ZShy6HT&0{`HDEv$c_+!q6crPeK zv5RrD5I>(eyoLN8$?0bS&lu~5-eubG;JfEDMu~kepAEMiZpmvcU_(9VgYXDDzM|Eb z2ZQGpu&PXcBgThXd?+qFg!@dNg{-qC*x|$uKg>gSz&p^bxJbQdAyO9#1}V^wnL2cW zcz_cLBfCE%IQDbL@77) z45KgB`34j>E@zoG_b~3Z0!0lRvw{uP+`|xO4W+QgOgPZM!N0#PNBuQf$tp>O^`wAL z*|p9fk1JNN)_jwaZ6X=IY#&+4`jT0{Rrt76IfTEu3dsQPtwJ)DL!eZfG;0gZ4t(8f ztg@$|4`aOHD_61ZKI5`R1&fV;e6(BL- z_5vi6j{(<`}LaUBjgZh=<;wj=**{UAovj)898hn7fu!dEU^6ezwF58zS_v9Vc zqLIOL;#$;dK@0xDT9(Y{^F5OIgG%(9#jHJFzMi?&6lIza*#Zxsm|{mNTHc zR^^2=T^sVId1xY?7Bg?ZjPbcsa`3uLC>Byo`oZzHeNogxH}*}YQvw6uWRq+kH{_Sz zWHUWK#%c@HU$axZ)-`yR@T?pTZFvj#gS)q}sv1d+OH^!^4)Ngk|Eqwv&f8fPsr4mk zeR+r{ZfBFcMZ7D-(9Z(yG7e58tg+Qs2?US_?cQQjY_l5i18=c$9+!+6*f7FVyD*H1RU3QA%pR=Ap>h}57_U`Iy`{UEkJNgHwB9*HLl&yoRB-TTyIBQhF8+YReqOS&l$DB<()c}?5e_%u-vK>o zX$Wd0?Nq7cHonbjF>}obY&_p^Cklg_Ody)J?;6Py=;NUp7z3!!GqpM zftJ*At-x38#b^D3cbGpTq45PZlP~xls#qcSE@V|Ge#1hxoYtW%!RGlwyo~w0kmY(H z48JCvqAKplbIQ4S@MVP5GZ(}ge`-lx9y!jDJ)#RcZ zGUj!dU)+TfN;{0gUVeyGWu z4DaNs9*TCw^zK42il=D_T;wH8XF}l`DO@8Lqq&k79AUoR=3*a+Z&I>6s-tUr9`cHt zn zTrfn5wh>kz9H&0|s%ryYavc2&>cM1h<1x0`mehtv9%q{fzd6npdCRp$6nCzOyQQ-0 z%eVo2<}q}On;)}Eoj-^l4Kfz;qPBKrh z=2^WCO<{7j7Ymf~4WW356c5Q_B0c`g30B!#h>A%>KV}g@j3QEzdCEyP-FCPczj_iK zlomOmi2juww8sx_c%uE3)nIb*6IqIseN%`cKEw1ZME_8~!g2g_(WB9?2HToM@UK2& z6A0r^u`%9FsF55a1N5_i7Z#&jb57v{P36;=r=ZsGG@EQoYRb2sMl@i+88(I`HARdn z6b)Z$uCdPi+*#a{<(xqdXKrP7kF4=&gR`?orSXl2@OG~JSvJaBM5#eh=m!IRbJRlN zeAh-4w;EZ#cb3hx9d5%%os)R)9Lr^Lffhwu$P>1swS`PpdK5-sMxooB;6 zg>H@0sK43gFcjrpz%+R$h+n>d8~_t8vK&n==b}jE4$JYu>k7_J=`?j?JHKxN3JKMcrB!d;$}n0kAH<)g#F83;cg?T8Si~X;)N@?+mOr7 zC|)?-ZDf+ddtbw`xCT7rDx2UD*FZG8bRKvHb?kE$CGUC-eRA?;JYm(l#zttQVH~BL z9zDeMv#gWUx=&9b2GZuP&0QV)^lh}X2NC?&+n7~>so&uFN-mb8D5u2pRaHLg z8`e%#0uQ-^0Z=HMC55xp_@nu`+bEcIc*K&T3naQg_rxh=wC1;LnQdWx{?4~-4Poqe zY`!Mf)={|~IK;1i$EGmByoScR1g8g{aKq-S@9~6|)RKSyJ+-iwe8dlIB9lw-C;|K% z^A{K`6Vh$IJp4y$RV{g+AK41q+$k=LeJ&{a8gH?oD!%(Jotk zkCRezer8@2W7f}jD0nlP|N1kU1F+98Sd#+W{tKJ|`rgG?OJMw6j84EacQL2{L+)W} z0?xk2hS`%vH?zv4Y8u;Xu7Y5<)28{7tJ_fcX% z<32tN0r%gR@t)kr)1_}m-tz$lV&L8f_>>1ccTKCyYdpmJS_FLmWlj0Yhj`CRlJB&d z{N6*n%0!^?@5l>q%{N+OUi3R`B4Gc6ISE((!ItCS3Ge-kA+PVB(k`5zWB2VSZb?EP zYoUDLBaBc`p7aR46?pd%>rWW-m&6T!VciYFfBc0nP888_J;OsDX;`N5H_8i=b${cV z7x3xdXlcOFkJ%`xS>X)7co)6p>0_)k5^?>`aNqlwe@6U+*T~S_^$*MB=@0Sn9{Dc| z@jlf-H1$qr#1Ij|qyEJkgFXMEU!Cf}kNk_g0_#6PQ32;aL45%4KEY!?F#aiC^8)8Q zWx1YY$%ug+zWFJJX}@PEFUa~m!@LLF{tVRx{PP)#AK3Ld-h>15pQHNrNAhor1kUMABmK5DW#0ZXxdd=w5Ful%|(kNr_GRxwYiU*R)-IA(`J+4wwtzH3UJ=rHG3f6W7l#eQJuTEYc+U` zyEch5i`=!PgmE6)NWu?2r0F`IGQ7f5n@YUq(B=@XaA>K74;)$|Ar`2J@K&a!dy>z_ z8Y&Qxp9Y%NlXRwNS|;IbO-qzIZ;?)VIjtg(*R^nxEzz~ngimzsRl-?b+Du@9w>FuA zQ@yn*GHMA${pNMUpJTM;kzR$Vcl>SkYG-NSN)b4JW+ft7XZ!Us2r64s2;` zF&k+|dTD+hITL8zBGguw*J4TioAT1@W))CtkMVh_f)+z~q=MFwuv|rLD4|gil>$6p zQA;Nbt%Q;SzFi490Or)xqWOf%Fp9v@%GwUXk$&1bLXRq1n*DK-XaGH{paIOS0;eIk zRYjXZnB=b+geUy9u7o}TC~x490Idh%euO>AfYIzMGS#%PJ%HD%s&$ZDE8=D~vDe^B zs-lpff3B)FhOm7#v=HFYYFZXylj>Rm;mqnju zsEOPIk-G_mKi1UZ30nth9SA1}YJCXL1#0~W>($ayZ1@wExj@hPIii!V#|)E#9j^30 zEI!t&lAzoS{QVC!>()m311HvoXTVQu!y>Ro9m!|c(XcuwhaWKUSsm2RZ)17%D-xZr zXss!H>=iTz{I6Tpy6^xvrLNY)o;(soUV-nci|W5!R~sRTT0C*Jdu^Um4{Z>dx9Vwg zrJyR0T!Yip=ha68hTvX(WEwc60V)T0z5xmi*rcImc#>)33>7@=VE05rtsBXF8)@SR z=QToW1pd|teHhrIF>q@t-_sZa3ecm8)`c*!2`T`%zX{w1`UD|u;G`hL2i^|SvI!G| zQNX~R!KeV>Kfx#-U~E&Z7vaXH$Ug9I3gh3jyN957fGb0^2*L{?NCy}iijEH47>ZE~ zcrO&q9@wIpmSSH#1jSXIk8Oq#=Et+s}3p7!R zU^G65Qi%_Rk*h7V#w2rZiRJ?A+7itQIKQRz@@h*hgTfK5wBCfPTA>tjV)+9T<6EN> zBK+$YT2=mbYb1=ov)0-?!ntiwq`+_6AWOi6w%Q`X>ut5UgoDFSzrc%Os6JpsJG3z1 z@^%=*fcM*Jg9&?wOS@acW#TRoGG0yu+CJo$BhXiYq3uz`KX&1Z+QSa;dV5qMuxmP*c7v3Ppmz`6!IQz_uOH1A$9A zYDw-C+t_!G_ViZcp3z!sCYbk8uuHu8?CDwso*Ip!g#P+ylmhTcv^Ky~XdR{E7n@&s zgcisPE7N~h$7oeZt1t$mSIrn+z7z5U9Nh`y4e($mj1R!towXdod=u?mWO#BHZ6fgx zx}a=<6T70B0&jFh83EDjn(_nbxLGKS)qMG;PMRCv&`qmiuZh1$#;k{HKYpp3)|ZqU z#!8$OivmUX>sa&&V9V}WvL{6_{-7+>?1DjKMx0iUf8AXxPYS`0(hhc$}+M)uMn?AvB>^n6bd~LlZCZV9p@7@Z#FS=+{CQRN%;oUR>o@? zc2ZkX3x~hiYx97f+6;=nrl(dyn3SMxA$*pgO(&d|s7;d*@JT%pCM)*R21%kS-|^I5 zjlb4Qn?{;Gy|qJxXM3akfSvki?Fr}gL3ak;=%X$0q@<1Z| zYV&u}VCiWZdIE?GSWnpyyC&d+JaWEyDMQN+(h>QAGFyp%a%?Fabj zC=?2?;%IG%aNMw6Kp`CM=3bX?8;vS~?Ay`kqrh%s&?bQ=#%RL`gR`Z#bF#IuGHw9H z&FO`Iz^tF6#n~UFAdA=vn1e33DF^e-qZIxiM{7ffK2w!<8jE5^VCGol7x>#)ZL*Ao z^&;cYFXoOz4~O8!I1CrSnDNre>hTzc5dM2S@(t{pi=h;_F&FoCz{k1h$iV&+kX_*Z z321Uamx;K&0Y*XBBJxp+1JuAGZ@0{nX}Mo(buJZ+$ieT-t?oQYn0 zb{-~V-)`J@zLv&(yNQnSjHLG~!fc5X6I0UdaMZ~?m5L3-3127eJSgv{V`HQv6wtwRI#>HB1_D`JfIE3^{r zJa7eE1I}E5u?l!$1^PR%`${x5;K`M^EeFP~(pC}PT%{EdPJ9g$OU7V$f>R+sMgI@X z$Gi-|;(W9W;N5(bBQSn7`a3Ba$&{D%$M7%FU#`YD4Oz7U)F*It0R}gqjZ4htDEofd z{9~>K6aLAyx`b6<#~89XgAacl&H_JtUF&Y&oB=2Nc#YTbAIY`XpaVgWw+594ylaNL zu0@3){Q6qV-@rfD!Z~37b!a$bz}QI6y;y@$^z(IE5Xo%oQJGa@`M~w)*}(VKW0C^? zyB;OFaX25i0gVs1X9Ju8KHq@RADFWdnF9X25j6nJ*o4LkJh=(>fHgLwfPgbMqcLn8 zjr0TX5Te|4ZMw1!)02-auNw?5aZ(@!E4%miT1YX;Q8@{wG6j(*xbUPYe`gRO&5FFbs4F|u48bEm6 zTQcmv0|kcgkR2#k;E^4e;mLsUkep7~iWVHX6F2UVIzc$^os5|nM zc?o&ya2Efn`OSWedyqAH7rp@V-$k0h7w=*?zubezyoVME9Qhvd4&3z~rVXI)`&y#? zau3lWuXnR!{CXd^Q4kz?AGahx#{t{`0@Dw`DPZvdOh~}sgW4P!u@ZkL5u@mtgIaeI z_{ZNbYBoB<0lpCa9oj3SMt46ZU zA8Bm~XMberY#^PcJ?wt`&PQ5(lCeXW*npXbP>aALhcKZ5y$@q71125T!Uzivqi+IF zP@rV3nLj1mRDD8>u~>|G+mMI}rfeR59334v@;L4ukB#LY9!H4-?H{8=fiWMWs_@UnYfXIc zF=iBmTYQ2V0dDvNH;llVC(!YMD^Fk!T|K7YBnk|{o+r@^fxAzlnFGB)MU4YTe~OGZ zNaaUAg_l74XSjiBkcuXQy_^&5Rq^Er{R4u}KSTQlwmXG(4a`4+-j-2(7~vyx}$P~`~sJBQ8ybop9qDGc$Outtn{+I2gxh5E|f==7%i zU;N->3QxR*Su5?l7C?&A&ZCNe$Ihd6fgTqy!UG3gKxTmNTtF=Yf4_jT2ZmgfIL5?1 z7m>LpqxoMKQCGm2OBg7D^Dp6nh&H}sK)ZMe1Dfq~t*<2T$EKg-T%_@zqg_Gs^ylbk zz;<6?6agYLHF?n&Xv7F0AMxeo{`n$g!52TsLMUJP6Ej{75hM6B6FXeNy(q$yub?b|#aEDbAUx_uC<=A> z*IHvHH}I234!+@QtrpT}NdD3$LRY0dHN$i~x+fff@o9+(3x~zq1Jg_XV2Qifg#P_P(iAbI%$Ynr}em*-aDxF!q*2eoJdf;d8gNh3*v9=>7$F zdCY3^>9?ii-P;(vpz-83su|en8#wz$Kl+9+kiF4QBsPW;^Z6Nx<$QyR4!WZ;QVF|* zX%)Eg4#q3sy*tQ1Fz8z}X5hMSrK$Vhq7ft9<~ukAocA5VmwM8-3xR&$qjw{m{5|Xd z4}1^1K>Y`aLw~@OjPPeaU}^=n{}HneaNUnm|F0jlZ2P62Xo+=s`=9U}vhpW9@IvAD zpQJ*MpS6)v0q0b`=Z<44entsHA?O#0bAFL2ef^8H-0Cg{63FM>mEk*gwLHr}WDyL^ zzNa-Og#-66Pyw}HG1LMF{EE&7-1I9N81Q=&8~=u)KsfI=Y53f4X4daZ{nYyycpxvn zk0t^1eSq2kCO?q&_dP(-A^iM-EUJzVW&FhtWjYrhqUa$n|2vu(aOm$c=Ow=*gPVKN zm!Z16?H_p2hQP2t&_01X{y_Tz{`Cjl+x6ld|3u=z)qkSB13&u{?GD)Z5qbx3;v@7H z;D?Xk1n}7-I1h~Z3*RQ@jY9cX;^HgP*MFgO=8fWBe`A~l_Wm0aC~)iFND%n&Zz-?$ zSexZe5sla{`8)q$+5D-;=vvSy_m9-<^$(Ipc*8$%U?=k&QkuOygr);yX)Q% zws+UJ0`9o$+W}4weLbL_r@jqv##7$`nBdS002i%R-foVL-qvYrCiT3MeDXygaI zB7WEp2^I0UD*8gemsNx;#a~~B&|QChHDGpt0Kckw9zwjTo&@;4s@~Oxb92M1>75DZ zR@0jieo##hqjPlstfn_6tW{mFL)f{x9!2NsI;-oEgr}?Ptq5If=!0qB!-^p6cFL=v z2UFmk8hQ-jqZ)co!p=3N(yp5N5DI$->M4Yy1NBTMPKt0ZMoGByoQ8Uw$MDQiI2{V& z&|3OXQscGsbi#jX=~+^}0;yNvn``NDylNfYvz*XBQCrU!l;5f^9h;nsZG4hOX{I%76$8WNp?3_ zpGY{QsXmGDx`};5^vM)HA0qj#q51?0mxM~2b(-lNDGb|wd}cGWMeLb5(M)geNvC2X zp=Fn`oeBvxZLWuqETg#|PPnN#N)Y>M+*+U=1ADeWSpnZ^fjS3PZK;nVT;38{2L97h zA4@o@l|GE{i&lCzVW-y8&hFOw1nsIHN@FJ#$2GRl)S z`Xs5kpH%l3^CP|B;pVn_sHEQ~`h97E=%ze4OlM@GT^L#o@QpBi3}N|pC^jjNd86-;4R}cs+_Q?TEsF+S-m%{Ygi?H-!_T z(RF}(P1IsgSO|}gk@8Pt^b{t{IZ9y8!7s+>UH$NoFlKyC_INB=7BZb=dWqRQJE3{P z#NAHPL}X`~#6}aJc9uyD>7pl)-uqqjfrLI?rQVpX=*7Zp12Wryr>CLk6?W2V^1yDo zC#g2>CJSp(H@%-!4JFl3o|vF_wRVEMUzT&3HOae=|#oq;;52-ae5-D?Tpitq@_4gi{tw;EK3PJ^eUuc^pLqP z=^=AfJ>GJ407V%PaIpq7p~0@yhnPM`7P z+tV>u0Pm%v(EwvIFs=i4WFYfEeK0Zu95Wb&20S%b@=b@JFcDrfMC$)GL?6P$sS?jA z8_%Ubw}<0m#fnqrjHa-3Su?lB+i-tT{oS zMq5zVPe5Y;KAxb@B%C}^Uqo1LlAcevc9On~u+e0F6=CsYeF|aQDf%43qAB`3!kDT0 z48r46^#z1+(@=9j*ssEir=hxWP=U)ly&`WuU2o55(SE z)Ac;UtQoLJ;TgDD0cOn9XNy?IUMj1-{K6c45dFDb6_O6k!>tYQW}ZHtu=gx@0lYp- zpCn@yQLG{?MAtLu@9DfrdSN#50_;9VpGtUg4$1)72pcTWw-KISpzkA`vrx(_IQ6X*{=liPB<#KjO$`V; zf&9xwdIuZ#=am=hVV+zL(%Dz=e|mZ~eh<$+{N`d59-W-viX(OT?#1Y=K<_0O1c2R^ zU?jta-`z{}&YpBq0!nw<74EeW(H|t^kD3}R)fipmwg<0Vr3Y~T zWqKn|I*R~N=UpjSr&q_4Cj1@iJ1cd6`jd=2@8D;}urRC^Jz^Tj8KY=%v zOFnu9IupWMR_LP%eO6-J1x_~c_DX#ug?p?*Cj%n=Y?mbN@|vFLNv99MgDqG1pd2_K zvP>6$@zx6RgRkl10gdy8_PTu0?c7%D2FRS%`bfa_)p$Nj;_(Ig6u_qiB0@OVdm;q$ zwfNgykG5f-{qGz%wzMT5X&t)4gV$p|zxlde2@{vts2_6_4F)Fzug9GO_&~%dSc8EV zQPb8SH^7r?(5!(C*6Jgeh}4@R_2xnA^%#C@tzJp8{fNbDCX=n82fv);5PirxbU|Rr zIus`GmG!7v;KKF#NNFIG3}o`z+fgMKHs}pJ#*NFy`B>2DzCpUQYXiC)!sRyN`AWDl zmg0=%-)x2}-kWrXm9JdlbES*mO&2E-JBiO;sn_5=*Xs57wN1Jop5$P1*(Tg-17B>C zxgNe*hOcbKoG6l-Pm$+Kle4zyl}MX!k&gYf1^2B8w|E1Y#E$b7Z|Lm_FT4SVfsMAp zia6$=fUFeo7h6#230rlCcUTr~CNqcRW@Td$os8D;;0h*kGOoFo+mo$A;^XRtS5lg?O|gXd^W=vK2v_ra_EVglRFC2(i0)0L2J_}U^w64$H{Hcg}aA-|y* z+Aj^_mLh1sG>C5$VVeAo2(dBxdt5=|CyNki{9=WStH~&yfBzCEj%Pf z?0WtkS5SFm5yIr(R!HoJhWH;vnEFqN5WAM2;R+i6!=^7m2m>}NWPB>SYq?Ws|1tvY zhDHRtQlTx+AUqUdnq)+Hh2uxV6*RmpLZsnqg~V=Wh$|?<)UQm0*xl@ht30R#Sd6ex z%?gR#&k)y81VsQ*iwLo0xwa(gT7)oA-wGMKWJxzv#M_c+tcb!q$pk6JG#NsK*pVEH zDS#oSj77+$0V!tGk z6k(biM1=6DY$+=h zVe01-K^u*Y)wqK3*DXRASZjrhM$*7~MVR`VL?wi`hK0@2!d6ltLRi>lg~X0yB=D9Z zO#NL%i2cI5aRrUN79k82S|RK*7UKPip#8=3^Ye`N6jM>E98iR5@t45)c=?Wu_gEuTtVYgix`ndw;QLdAa)xI`58sf7Gr3fQ^ZY4Tu_8* z@^d1@2H`Jog(zQHgmCg}D-|L%zgmPaaNi1vox{+72qN$07GW@dC>7ch4C0X@Op}j^P`i4e@zf$j8qcke z5h)G)@AQB4U5OAIe#_yCCSiAr5f(hHkk|{11ehX31nk@w2-U_iU9poBE+8GG)WA$2w`BT6*7wDs6R{*v_}{QMkwOrJjob}F-?vp zLTm*dgDb=tYY`%i@m5G|5{7t!B24|sM2L;QQ*Z^1=@uaj%rrwNf7%la`7BFrm=Rtj zLTvM$iz{d>un1wnX@#&uScn%Zg0=-if2ks9GcbtdiZCs%I!)t`+Vl&R0#YGDr182H z!UkbsVXY!)lQ8r*5Fz#hZ4 zrqN#&VH$lvgxKNx5LYz*{%JA7(Z8&a@i)oyjeiyKL=w*x@j?=|GnPqLTp@~G5$=+3 zD1u4C%Odg&Z^@Lm7^8wDDl5WI5&?>+Dv273s40osiV%6rH|i?F%uEACn3>6ItQa#l z!HO_*6RHR^H!T!l=BBkG%*=!-!puyBBFxN0ngsg4nVV>0)MjXuVi$`L_0r7>8L_y6 zxQ8O*C6TCzUXtjmh<=h7sE8y<3_3&YPb8WunGB^uTe6YNP(_&O4p)SkuAvAs-O-9L z)6G$YneKQZ_DA9;kM?6DnMoESGCRcz8B?Wrh9YK4VzwgYNMfEM=1an<2s4Q#iZG2X z2azY;Fs-gqDyG%diZHFdPK4Sw4ae78gm8SL6*4yA3gR~uu~ib=74a4k=zqHuvsFz2PN^5A`VHSSP`@V8;%@P#BoWS5JVnr0Y533Q%dEuB+e<~yd*9u z;&Vw{R>W75xT=V2lDMgeTavh=h;MO4^ZyTup}puJepZB8iuV*@mg0Ryh*HFVaw@_s z#7BxS3-Pfc%tCxZM4qTivlO2z6|)pw&RVr?mSQPc}!Nl^c9B$*(k z5-f>OMbMsgm~5#C+OQ6yts=rC5uu3ol8917M@e*2L}wz<{<|qAR;u(+M7$&t712u) zeHCG5c7P(x>?JG0%w4J?%-m%NBG1~AkK7DZDrWYEE5gj4p$Id3qZMIhFGmp~d-!8u zMVPsps0hj(wf`xKF|#+Fh*!qqX9ljIG0P%EUCyyW#;a01Ul9u=u}Be%C9zBqrp1*e zf%(TYlCM-uBU}-tk+nq7nE=K*T*0l479rf)Y=w+1Qv9YOwn<`#B6dn*&sl1JrA@x0 zR7@lL6=52AUlFE}4~Y1UO6x;h!L7p1mqLYDX_5y>O*bL_0_f1g;4h;Y&h8K2?` z_D(B;jtc;BUJ(~0@wpsGj{p5u#0yE-u(w-UaK#lg?22%g zghLTb5?+cBiRK%=7LjKqQ_*4!GZ{Zcn8^ev!c3;RBFtn0i4Z3k)WQ`!d&MF|*6LXy zqrMb3I!DjH>c|5`2v#ahrAjkJG?zpxMYNVgm?GLqqP-$INTQ=6q9xH;5nb{m6RQ~0 z^B#&Y<0L48PG^9ty%k})+D{Rts{<8bx|*U0)77+d)c!;Pn7$5HDqV1eWHO1!iN((_ zNn}}sDASQv$QUKX*^0=K#CS#IN@9{CCR6z%jcJORE>);hWTLYq@v0)`N@9T`7D{5V zB1}J*DZ=z@r6Nqv@98m$Fla9XY26(~*mcFdg|q5vC(wDZ+H*sv=BBZYY8rq51DNG2+;WZ*T?TJBtua z><24k{3yl0DB`XpepAGKN&K#eKP2&&BL0@dzb1kH|3os+mC6fA*l-$wbjuZ2aLcX; zcS$%D!6f0O2s0sB23@wD8lr;o+3=&8!E!| zy@@2K|C`P?B}N=m5rQk^x4A`#YG`SNj8;QE0uSp$^k_jl*C7hI3$T;MU+V5m?Dl#;)EhjO5&6vkP|WgoK=kJ z`~^jr&VQ~5)A`GaphHXG``3yveZQ^<)Aw77FnzxRB2Sj7>HPOf#dQ8BMVQXtC4!DF zG4A0C>E5>pQ4J5Rkny_|KT^bBlK4jv{}O@u=b2)jOBENK;2_hWvq+GJnoB%F#^B#EVp zSSE>;idZFy)rz2VS&-%$m8h{+G8>f2MoDZ@#2b>>riks5*r|wJl6YGYbZiTf*{6v8 zl6c=D@{9wL`OspFk0eo~h+;_`Rm3q#e4+@m1V2@TS!SmdVV2oBMVMulcTq8Bp?#qU zv(Ua$gjr};6=9ay4Mmt`c3Tl+wj#`Q>ng%bw}B$ebQ>$eOgET_f8y}d6jyMh zS)Rp++_$hoMoTGgqlmVW2vHP%0xOF-8%lTVoYr zI+Cjh(~(JvFddny2-A@niXca5{+Xp1(~(ydVLCFOh<@4lS%51sPo$S9!thrKn5Su2SRiuk{>?mf=OYWoBDxaKmxAq?X(?h$cB97H4> zIzl+^F}ZIH#w|(@aZ*BZ`yxfcnIeapB0qzWC@MlYL_`vWgF~s#TKlv1=cnKA{PB49 zd#`6bYwz##o$pL@UTd@kkVL#rSO!=@uzO?><|ASi!IG{aSkiU+`lC?GnyDeh^+)pe zkYqyuU-`x`3e#B%zFp8}#D5sT$8QfKw*%836Lxus+@}<6I3z3mobUzUOM>0w5W%t@ zAt0+eMzEwO2$uAeLa#x({?l?Q_dN@-&%bkF=^7(t$RV4YNs^p|T!1`;ynsYP0YE`QAwUsAQ9yA*2|%d;QCNLSkg(qJ1Y2(< zf~~g-!PZ-iVC$_xu=Um=*m9#f6kBgSf~~g!!PeV|VC!u{u=O@0*m_$ibk{GuE#*wM zxwS!r|D(lUIo}5J?Fj7w9SNNPT?m%4JHc{1POu!Q1k2HPzdnCikI12)%t>7XHAKO` zeOws1!I(}X3$w2FtmnhX zy@2WIgc*QYgqHzx3G)C80J{E#ki`tq_D^!trG(c3%Lyw08H6_hs|jxd))LkMG70Y~ z$j@IJC?6nX6Tw!$g<$L5MzHmMM6mVlBG`IACD?L5^APDK+j{pg#MXO&VC(&gVCy|f zu=O4%*m_SA{CelQ(*#|ve*T?R8QNP8-^rQ4`2haaz7R(4BBn19E(5L-t^sZkZUSx* zegz~*3n;y(eE*qEPUWUKO%hx#KpujXm7idR#0XYMA%YcBgkXgv5l~3vk||b5X@V6} zR>A)n$Z~QfrB)2!_os3gIh(GkutdLGxCim~2JrDU!$_z7`|m!LZ6oAR8yD0K;4k=d z7=`JE3iHzB@Brc;4B+FNhLL*+)6EGj0Idj7Ye*Z)qk#4VyGKWYW$jF`tlbEfv?sxm z_EylQVlGwAWGDMZL44)?!^jQ5ydw+-q!BE`2!dTQieQ(FRj8zo_mgraH+?FA+*98F z6T&dePgL-o!zST^DFJ+u&xMhjis@;D7XdQ~F9Bu~<^bjgh+G`9D2RIn@ETzWU>V^J zz)FHPH%Q! zhWVNbsU76-CtOfFfM5FkVdUy!x;~)+pb?=lpeeyJJ{%wlNm>SRmZY_UwT1I#KN`SS z(JqW!dpVO;btH5GbRl#F^dR&E^gf`Uf4ASG4?`?#e}ZKlM6j$w6to$g8!Bf~$nXHZ z&h#*HBQZUOFjmg=^M5?$DTF*jhyc$L>>ht7Sk~tWnpKj%NU)?c752B4!%K*mtq`gB zLg#XR9_AMi76KL%UIi>Aybf4SSOLf&ya`xMc-uqd)>76XB$MzSU<2U;z$QW#U@PH6 zzz)JkfL(;$fIR^H`m-1E1w-}$4iF9k4ik<5juDOnP7=NWd`qxh|Bm3dSw8>HQ*56v z5^SF@5p19TO|X5wPOyExNx(k4TLjzY-#tY7K-fNKKPcz^39)_7MX-I&L$H0$Pq2NC z5p16e5p0`_5OkaM`A?$QJ|`1wpGy;LpUWyNeM}DJS@@2ZE$nG`ZCfUk2z7`b#zk0y)( zj3bN(Opt#fqx&Q7Spj^Vv%|;@)Mbi{ev=SneV6tpa2>S91Ot%x4fL0p21^0jwrW z1*{=V1FR)z>qfcDJA_$)D3dY=@;+fcU;|+xU?X8MU=v{pU^8JEU@Kt-V4H!w|1uyu z7_thmld#6a=qhd(X&qudA!Gvf5Y_`eBWwhGLC}7Z`t@f&Wh+7s5Vivj5q1I&6LtfR z67~R&5w!cH+~sS+e!xkE$UhPXA*UE(&&U~tEa|7?jv(S(0RJqX4{C4D!e+1<7*Doa( zhW|UCN8yURJ6v8|kQl(n$HFK~7gBgs;|n9cXaFCd6h>h>S)p;Ve*XW0noC2hpp-Cj zW#vp>zY2tkfV&C5Awg9_HtEABmsBI<1l&u|Mw}8+Gos{!)FKoB)Fu=J+)vQAMyLX4PS94Ka!E@<4L~bGEx;p$I)JDR zr5>a$p#h*hp%I`1p$VW9L7RX|A)N^=09^^K0NoAb>yNesm1}x3q%EKq;W0oeLHmQs zC4C6m5>%icp*vsz;c>tqLaK+z4W?+5P)RbBFaR)&U{7i~!5+oY3feN%4aOx;2JjF6 z_%L#5n0}fNjetBu83mX~7z=ooFdi_4Fahu!VItsp!eqcSg4H?0KmXc;)J;XmEDb?Z zQrU~yVdSP^dM?4@;|jjr=1fE^3gDN%IE>uOn0}2gS3y4imr~*gSw>g{SWb8qu#&J8 zkU@9@@D^buU^PJ-pUTqKc!=~%;%dlRhWr!o4naGh$~Bn;?R_fnK4Al31L1!F8wr~M zn+P8Y=;z;N$_|8VC43CnM$nF^a>)+DUcgR*c0`qkT?B1|D)0&65MYl&bo)#9xr%QC zdK4l11NhhSKp45>m_9@}2{=qR4LC|T3phsj-b3WRrd&YCNy1NnQv~g=Dogp6a1C&l za076T@C)EP;WxkqfPVgD+v2nS$dH_XON2WBR|wjfRSLOE&~~f>*9ipyHwbqDekK%C zkmvsvr36BLBa{Lpd=*}o6hL-Dc|cA=B|vV1c661>@(`*4@_Eqje_ahoB15#bt6UQ! z)BzME)B_YIGyoJKXv0^@QH;<8P@JIsUiJA;rnEpvDMBki8G<%{l}pMJ+5*ZG9s^V) zbOKZ+Xg65NQAHv0k9&8>Jq&pqP@Rwps6o&sv6AFZgaLs22o6w(FceUiAn!8&`;Yo6 z+C0{cK*$3D{QItP7`aiHZbBFfc!)3_@GxNlpao$f;4gqkZaNv#njuz28wKB)bt)p- z1@L7(7Dm1it?Wfdf_9!2_#0sspbKFRpj$+l59vWz2zZ>Z7|@%r1n>l58K5s=1)x76 z128Z^Q+!^V11O05b{40J8`u0J8~pk9i7vlH_n2 z5eowN=Vy_QB0ql?^NYj0`yTKb;R0YO;U~Z{!WF=B!ZpB3!VN$M;g>CV|Gh=guDr5; zs|nhMS6~exCtxk%4!}Eve1J?s0l@o&f`API5jN;9$VP?~18gFc0Bk0d0&FFu0Jagd zkFV6egP?7D1$GinZ;8C@R*5Icp(;Z51n{raXJO>3WBLn1O~8JFB{-DUU)f5ZVKNByyUX^tH@X04<@^};o;9sdb!zfG_R_LSueQyF%77gIzlfuYN#B>S5WI##6b6fHL zD@}O;At{9EfO3SF02K(c0hI{z0Cy7>0ICvR0aO!+{;-r98lwG^-4cY<3gFjPJB-{i zOy5sf0jNjF0MsX}0yHFOvt|AMuMuS(LLMY!0-6%m1DX*w0-6)DJj^>)KEeObwdBlJ zgtj7V7trs&9--_+NE^a#KwH8dKzqXHfDVNHfKCM4$}S51^|?8Oi0%rJir?IxoIis3 zUW8+SRKf{BAHpd>Kf)Qn0Kz%IAi@tGgn4d(j3#KS&|7e#Wy>{g_n;O8^^gMi33!E22JkAuuS9?TSJBSYt~^5C2;kSY zB8*%mO#g#W1@I=J8ekQn2H_K|5wk)~^Ty0Y?af0skVT0ge;2gSO;2aaf-}zhl}vTjU#tXxnUo z(}eMWGlU6%?+6nC-xDSSejsQ&ZAp5O5WN8Ti838Qb36)n?&`#cN zJ0hwE@Jp!{Ms6pj@Aa^LQQlaeY~@akl(^H4`8#^q0u*Fn`$Mkai^_@XO`bleee^KlBFiFtapEthkK7ED_ z9e!I_L(4HBJ$3lNvj1oDK1}Ab8_3@Pwd5`1$MVNY=Jv@Sj{llJmVAdlubvezlNd|F zpk`M5fy7w(d;LrbQWYAWK4@ra`na=jzaJ0{0Q+PH4~_vBbt#cm~I{fRe90y~tt4KJ4h z{jkEv& delta 129254 zcmZU5cVJXS_cnX)&2Ez2bW$OZ5PCuiy#z>T(h0qjgfz0Gk%X!kup8+Fj-XQPib$}4 zic-YhK|L-I(C>L>?grl9_s{Ng&-9ryXU?2CGuvP7yZzO^tFCiAW<)w1tq(>y zj7}5f*1vn)d)Gh4(TdJ zS)FBKg%K?|bw;9mJi-i@Umh^p=^S?KF#P4M5+hS4Z$M>F{BAmB;xy*J%NXQev!pP$ zxU95F&bKjRq-mRxA_GHBx1*ix9%e?!hj~^AW9Lf6b|XmcJZB7-L4O%;Ieroak2lT1 za^P8@rdnjU;Tj`cdOV7fa!QR>a@T7JXskev=Z+XoiJZ^RP_u`e{Mzl7O*f&wM^76a zQlAlUuZCaekR(4>1cI zJ!H{EM6McZb&%DY5Gf(b>|*7Xl`fRsWe8CHnfr?25+mE}EJM5bcX5`KRnABHV@YW3 zxxHp@$!nW%usPWV2qT;p=O{w8fCVV4L2Blr6SsNN#Rr@ zNml)643xGm~17R<@w7r zyEeXO_A)XGSz>!hID&cy9!Fae$D6Tob)FR{yL+00r0Q|7{JL@@MDBEh`BycaI=rDZO#+sK$-Y~8(bMny`{E7zelZG^I#$aKT6J_K9M-VF&P1frr z>-^1tW;RPh2cP=^4QYJE=r5Unm_c%M3VSxkYHwCn*GkxEv%h~qe!+sG+~NvJeA+!o z-e>|R=Fc+*%b{7OTh5&WI~FIK)AYPrHQs9Hw8GfHvFXLx0nlR zn3i8*g~_5{jS({Rj8P~ZBEdoAg+OpZZf#|5#o}@XqZu!tX}7(JsW-X8n8%r#L8PW$ zlC1pG2$h3jW|7>P4Nl>}ZY?q_dH!ZQMo?|_^4y}bnxfo_%8DZS=@nzJv#heFrl>}< z!YZegDnI;ebW?M|0*e<&b|N|&GdoH4MOseDc+{9F*M4RwiRf2Qjnw2&w5uM;-dGQT z_sDzB4B4GcE^%7vfz=h2i_6MN*$XEpnz5ewMb)*rg+=9+4QsmT{>n--{WZHN_PgyF zi~@w;Jm=zy;>xl@sS7t!LV^n`3u@9zmn=_RTw7XJBWZgeT`o>GqgDSd>JijVCO%*k zOZzX;Sj8AmUI$@i7FiLJV0og{e74Gps;e%|HD_^IWo31PBpyO#DG52xT#}!wySkGs zxF7Ao^v{x}-59ZUtzFSl^C_gk`6rBOdFx#av67ZqS78dPo+7(Q+62obi<*#&ni#2L z{X7y`hI*-0A*Uba^5m=V3E7k)@$VY`S`>7Whl34&W6cEFJ=z>D-Ar)WwN)si@iliB z*-(tpwR&SH)cvB5%CFMFGNxBe;MQV6e>p0EQ2bj(WR)O2q>ZK<355F1#GNizYm%;r#0rJaQo2@Jic#%{Dni;ZrgP)!nl0F8- z&fN}HSv3X=Q2SBl3`(*5ACM@lofWBO=1j^PtAI)i6fs-g2Mxr`dM*jlQwglrEiw0@Q$TUxw78=`IOfy=l*z@x zue!3fU%H;_D)!O{XduWxT2^g$ca@U|&{b-tK?qk>S4z%R=ueD#CmGnyazpA2vf3pm{>43Xr{bV5Ns{mn2PI2;Gsb zq3R87K)aOqyh1cALhZVGdV<_c(P z?6x9SKXdC=2%(?;1LuA2XC}xNr`b}c0sD57yc;>yu|#eyH$0NG7qf3_3A#v$8l~b~ zbqLFPXfC3uIge#COA5E4OpcBp^}8Z@^Ifty)zu9@k~yfsD24gt_b8W|uA@+P)e@iW`8s z6lgTflHXaKUr|_DEUeTR$}eTs@f)9)xjhjP#3_pxv4|~m>3F%VP4XH5u6XnV7U`VAt zpLyFzm-Rc*9~X+PU>ST4JvnSSl+1avF(5y0Hlo=xQa1qYQX;VwGLfrDl$=TOgv*fU zFoQyy+&wR;J5I!CSkpm^$*WhR;DTHXq?&cZxm~~($(9sB9U&>Q4uR#c%gEsnwo|%@ z{P-#u5-V(`s~Flu!}V#D$Q|aut>? zDJ{g-apPfBopLMyN>W*VZEaD7?r`*~+Jw2}-Z+TA{f?ky$(xQ196AR9*gaTfl_jNe zWQx&i>#g9%&~H$H5+A$XF#GuzEvwBhu0=zB%0)&Wo-%t%$|*Bm=5Iq=@}jT?|FXiE zMjoDJ6;&4(XaTFn@=ym9leHSj7Ig`Xk!Me0dh1!_l0mm&R1)QER!|~3{#YIsvz$55 zZ?bnn{D1Zm1Xas_!4tdoqk!4xb+;wTjviRF_TTFlBcbnuOOv-?w6QO<+fh(dwpiA$ zg?6Kq9Zc^9TN^RSRNcxe3yZnvSadDv?`b&5i*q zC%?KnfB7Z$w+g}jvcHEFCA+G@{OLcL-2xVtu+zl;vw|BZ>WNOR3NS22R_$)3`fO~%7-ApONv13` z+UON$!yiVHb4e~0d#!Ly9}2U>Cd-^9C!$S{qx0s~BRZpdMys7-^Oj{kGNA~g<{&$U zVU?-rfS(?-(0c>7IYTr{sm89dutsKF;c6>cUxSe%urKyoTv1xQT=fs7zU3;dEh=wV zGgj|L(_V)JRLTP7gDmyKT*3l6Oe(*_;s>rpUk^3YF(31xg-wvy3Fd_68p_&skXAme zXo!4x0euHey{{Zu3x+&)5*1W4=7yO@Ys`vcLp_`onA1}w=YkO-N!OuM)sAYkhnod% z@wjVu7A!8WL7!f-7SvWR#wJaD(_Z420nMt5mb5uJSc$^IjV_J^IX4|0gB|xg|Jv%( z@?6?CvYsQ052XS^=nOFO7wRp9(xCtC zj7id51tTM!_LLIYbQpq?3Zv|K#iYVyi@?y-pg`RRYG|OM2T00w=pn3H{_<)^ZEf=} zSWsD3RI_lo&KV}8?v5_ff0EgSLzd~RDabF&uWq&r^)Rq@DwEv4gQ&P#nX0)mDgBQP za$yE5hEx=vfOku}%WNf~x41L(2qaNP_6tJpMTNQC>QKi%yVS_@u&48DK}DxgC`D^+ za7rdvi}PR4f@#C8aGLXmn2?TIzb3Z_Dxr`IsZ>P8ufGf1`m)lRTD4PfspO~l zca{@BU`bqc8)kpmOsv4iTAMSpE||B)OxJoT#vogUZpQ9OX>7lbhQ_YON@;*cpM$QY zOj_zQ?-+Jo`%XY;mpReZYJ)?S-{@YbHxyvB-j1P?m&Y<~SpL|E;enW%BppA2P`G4Es-=F~UtUkd zx(S6-*;u>#LmexsZdjA4yD}ujKZ+*5?v7>u+qYTVSo`+low00j!zOvVOiO-$-005r zaF#%ew9KNyQaQWZ=%_h42!=N$j$-6+7={V90VvFC&D2YC|4cD@uAj

ST8Te zBMOAfSoZq}+1m?Rm)bqTPL||XUPDXS5kIqoRv*>uDXA{Pcvb89q;@6iu?>>$Jz%N$ z`3I;iKGqAf%8T+VsMM5mM?KY5P?Zbqq(<8AHC8&3#IZIA#uggNRf=ckKnH=Koh66g zg0eq3!R+A3p$r}_v$7x*l#YreuaiZixwh$ILM6NA=htAB>nr=an!RLwhUrK9c5kb! zrq-5^3F&5cDY$@f4So!o2BcrErzW=s0 zv5&dZ9ZHf%GZ-fg4b=gzTB!XsRh5$cCv?!zr~GPL-VA&>9sRpA0rf_!U54Yde^qGQ~;aD6j?OYO-`*j-88d`Z!A~u+dbi zQ=(L5n;k56fP`#9HIp9l%hGx&_V&ZMPQg_An9)!6pYZK8x}L^}`&7Vwl65CG2ugM| zZ8X~Z<=3)rm5f+(lv}R9Ahp{H5%fIQilW;5hBYygn2XI3B_Gu~XL){YIi|1LCDQ63 z1CArXuYE8no9eMh@|+-`rYOIgng~57mzGwgRTtG%6xHTt^lgxYDzl61I*E2bAdJ+9 zC0T#_M50=Pi%KiF1miGgh#xs!9mmX-OapQs+oQg+b0gPyTFQ#4G(umU1C+nax2=R} zrwx?%f_d0fU7U?!d3_+X;pFShAXKuGWdGvsBt5Q&i7GQibD2|e(&d(fj*%o@= zY-rS%_Aq_*ddn@rmfMl3l1#osfDpf;Wn{C}pLn{V5M{Z@l*T-AV)K!a-v;Olca}kL zvDaYTuUamiQm8!YY-81D?jVU^sM;_-|23rF#lZbcKZ7MC}tsXFuDR$qm|n3(#t8TSqwtt0l>xsO0I$ z(R-i*z*0G#dqU{YfeRMHmYmC3qs_$&YH)UhW#JZgj7%`0n?Cp~rtbM%WAUZF30P2+ zzXXRj5X9IyDAQ@YY-@!MgE4cM-Z~UwORMD^2VC0x0d`2NGCOZ=X9l{qv}@sL(V~SU z_P|_#4W*rP0XBZHPvT@FO|OBFR%zPoGjA?-kZKsQE`qifXJ~3qt3+SwGiESGW0KZ5 zR}`7S7*EB4=_|4SzpU3}uLTv$=nbK{>t!&DUIkYgBh1Pr4H7aFf^OF;baaF4=n~jU z!e2Au9T{2+T<-+;TC~345URI~8w6|T&waq5>AxB2j?QE^tTLZr{wY&|lJ$i}CEaPP zJUSQ#DG2vGPub$!;{1YI7|YjWKpBq_nS>oFG~7J-WEaxHAd)4sXG2F+sNz28zhI>y z7FLZiU0pRjyLh3qZ#jw)R+{7A9rgK=5-6~?xGV_Pg%s7=ni5c}l#GToiL!A@P$JJ= zhA2~sRY57B_U|{&#+>Wf1G@@ULS9Q8T-rvCT~jgsml! zwWkSd@o7h(HiNJ;15i`@yfXg-thMYPf5^?+(yFrM@@yXr-LT_ErJmTzM$~#9)L=v# zO>^}?zq0)0kj*@+gw*Yh4k{>;Bio^)O#Z-)O+qX*_XmGMl^)>+^W;#ok5qI-7uaVj zP0Ns3#vVjhHWzi`(6%Miz_1yZM(V(){CjXtykxZWw3NmpE}SjFa28OgCR4+j1Zgt^ zdk2`M`Zzk#MA^yaLmon4J3&N<|lixK0~}lin14JRA)$+ZTh=;C@~$>Iisy49#L-7v z1XnGF_*W)Wj)|pC-X@+hhPnzD7eLWc3=)6I#;V31i<;U9sr~%8cG&;d-j87--^&~K zfhnn@I*Y4ugnyaEr0NW`bsQrXOGG%PPwHf7XUfJf>l@m>FTjF)*ZW4E?D!g!8i)KP zm(HA>3#%((`HN zRhw^kAPm+@1I18aZFv=}F_3LTcvPMyN5-OHwFg(p*Q8<_Mw<{VJXkEWhA~*?=7Fh| zQ^zW(&2q;!)V}s2W!rc-BQ%>NUpEy%AbqW+dEkH3cskR>@(g>vcUJ9x&#(N^1(RXks>S537V`NE@sQ5KrJQ9uX=#DD=?Dvi=>MX4noVYUZ|2 z0+)aj^JLXM7-TMs@^l9J0diH(X8C$G#O%-a;Dksye?Xb&7zq1lZedwfe!)UHb_nwN z%dXhp!Qh@LkF`b7>I4~LbO4Rv_L*wJ-$p=4!x~SsajrOjk)%Hu6vHiOfSl|MLu#{* z=cjFMS%;m;+;mLyuT^^v*aXzZZbN%)?3CfK@e>$sVVO|d#lF(A0IL3-JS|tJlH)$3 z-kNPrGrUXW$0s2BRil@6#};25O{mY@FHN56U$#Db%DOjeHCQw*U>YZEGy7h4GTw$K z$=J&bb@Y||-;7>HMY$xN#x5SmI-@1z7VLC3r1%e3+fp)$tn3d1yV85;J>$odT-%69 zA?R0uy;zk#<7+%+^lCow??V-0HjWCoMUcjp(D2l{u7>%UckG_|#v9BYYG>xGs$ANz zrk8}xG<(Uu2=Mc@d$2?+Wg_QVGX;Y@OxwnSXHz%W0RI9U;th7#)c^8GtuTf-Yv7Pn zjlDhnh?Kg}_y-IHzJ1C@C_N9vppHuTD4Fs@GFEFf%|Bd&*>mP|XkqDr*yH>izyLVk zYz~frFb2HgLJHyQni9_Cl~WI4MsldZwu3l6~#K z_^JcfjkHoUdr?@!Dwtojf`>znMo$mDSykr8tf3b7YLNRqJn^=yr*MD&UN8jqk5Kxa z#s(C--*)tSOP9O+u?i_EabARTK2NYOP6BhlF*Ie# z*AvVzqdHpB7z>_Yv3?_1p5&J}Vr2rpowqXfU>&=>rI8Tm%O)pI_UD)bjfzd9vh4EdzN+GL^Hy8JX+W2z(lj9qm8^e(d_P+CjU+}dmH|-(t8rz-yVpO z@=0cQqeq)vpw7h3GlUKi8M`y7P^do@zQ^a+17a*^Xj4U`fxj>)S4-#zf(x;qlnmX#dh?i zUrc(W9+Gmb=V_INH3h!F19E``J#hle+{$Jim9gC*^UGp zh<|OgX>Q^TY(fwD>v5x7b8SD8AEugJjCpYqGtEqc!^_BNW`Z-F`6sJ2K-Nq%LyUwt zxnr8y!+EDJ*yqmRmj9-q^v^iT>e#k(^O*e+D}$%Q8>KS~P17=}b)ym5T=I0;Ki%wS z43CrVr<*B`?Gih~?B>`dSIjVb8q?xrO-fUP_{$ZMvm$J+xIg=XL)?ZVS z;^fQ>GsUQjk)WC8V557SjGt)^buMI`Asc4G#J(%l40ovsvL2hendS)RNtQ51F9o~i z8E%ixtQ!;AWcUt-8Iz*rNFIbDmWyDccbv4DZB8)aVr1f65ckbCJ;p=P^2}^=qLB%^ z;T&_4F&;()qzEq2ZX`P2k0pLKjNq`+1_Wx#52%0~i8lv%=)P5?iJK&6t~t)w5-S^u zFdL}4@erq_afd1~+oN3jblg%2nS(5^oo9wyL8!LMEQpGpEen2$RkaM(vQH<#B?u(U0^WnP|1-Ggq zb7YX-6zQ;I%x9MKHFCj}W}C8GP87h7c#&NSAEglj@2eokQ&Ke_WiBZ+L#z%A+IX+AOmSY#09BT}-`6lrcY9kJAAo zR%JL+a8%$inqt_1k0&Zb92r zD2F*b!~c_EUEYJ z)6WQiqhxOwF_l4LTeTVL_)!{f#j5GEP=q<2mSbWQJXmHH=VyR z+&DmkrcR~nof@Y-&>0Y?80f!me}b zW${1`HG0O$$qBx!+AcQ(97ko5omEF!upC+a)10QGJh2>0ZVw2Lb!Zt%>tZ*d6S#1< zP4Xx|IbG9sa`p-^fvOjLc7q+aT}Hr-7LVEBZJ|k_H@P$LHCv8tLd9`5-pgw6HsVx@ zEp5CKiqfxkx$s}|l{*$a#BxFEj_CdDYT$INqnzI44mR3BQnRk-8r|<8nz^uv?64~!)^<-6S0~Lm05UQqdN=@%hEH@XDN0YYgED+beMe%eXIg- zJ{yGe-=pUSqoYCVCwcXz)A6s=b+=;S=8}%AR!Lr#`bd%FYq2_=#L)}K1sm4xRxb!< z`rbomT?@<1k>j|vQSq!hR0drKDH}_X)_8&<%??d4zO z$sL6<&q>yeSlv^uH^UtRiH8cD+5@HPHPzx9qvd=9TA}>Z`<`%zp%tIo(uGdu_E>I~ z!8c%~USo>@Y{UB*=}_r!#fYMKb%P`nr47-Y1yWC``bZ7PuQrK(g-1VDq&5<^o!r@k zD;#-e+)ksT9v)eB*4^9L;GL-CH@iaJH^TW92V%7DZ$*0MOLqWBDHJJljaIhsP(jIS z%n*3}gD_)IoR(JfaFZ@; zp?b}$%oqg5hnQBaqkuc5#g!eWMsooeW zA8j!M41ci19p+FEy@d1-J)zAI3`-ks1z9n>vrZaWNO zsy8mReOioU+-nXEwvR1!GFX1Oc(Jfx?KG?DgH+cI^(e!bCQXsB6^M%S<&?ncVoiHo z4?rMJE;ONvOTsV@FC%IK4nfhwLxVsm&(I_sW+;-nR-{Q+tI@TMUa*>Zq;3Zoag6R_ zd1VLe>wQ($?qWEH=|rij$$=#W_IDR5Q^SI77aSeuXQ|tZIR-b6KJvy6a}1rA0*w!C z23G^IZx>Yd23;rn!s2T!tpwF4p3)lJYtUJBm#{c+0n-GP*6_qu)8SWmr#U>Zpj>}G z@8h34oB5}^W@#KZq=Yu#%ha*kGVwU$M_s&}i#7dhKD<+R97$Gy-MgX()eYBVyL*4q z5}zj-LHck_=leu+k*Tu$Ziu`#ihYLiSlDf|bq&>kVd|hb5XY}NVO?{=9#VG?Y}*UdIYnyfiFWJFjZm5=F}~9=^PDU$_@4)CQfW>h0M3pu^?cYn!6r6g(Iv9xRu- zb3>btf_1*@ z2b}8GoC3$TK1P4I2ve5Q%S}Gs1I_n_=7uCo+C#`_wVih5LrA+#6)mqlgv048wA@j> z)Os%nTcH*D`a?R={S8~PG2eZ)VE^|GU_XDHvQb4SepKkfiw z|L=kh3=K7V+dUFtj|@nu(zMm^apMpu@OyFmkZ{oO=snr@n)8$+9-M4+hC_6Qiindb zd(-$IM=-AW4xqiMyIxi`nzM{AY<5v;a6!cm{ZETZc)F)b-V!ubZ7OHPNq!c36XZUQ ziFyH13EMn^K{y;s31>GO7df0dQRL+%eC+U*5J1LOwMq@Ky{|O;q^p^yvPrXhxUjjg zsdDI1_*x&<)kE2-67rZC<}f)1(;c^nqnbj}zP;nJ)Bh!5Z{Sc=UD-)~9K$?C93D#( z+|B#L&e)KDiT%*717_yd11RMx+3+fo@mnenpoMwRzFyTaMi_l#aBOGJ#TL7y)SkUV zu;E}1svx-dh8hp4NDGW!bha|*hHy99Teou=Sn>QeO!=gnD^kNc+QAQ`}+- zF^XZSzjzr%-D~o7;019!ZI(N}mddBiV&fCL8+`sjEgeO2^dKs$2)G#=X4FQ@!_Sz7 z&ek*()aXlR@H2AB*e8uho7u06mi32CuQi`$71a?)Kg!swx(uCo#2jk8r1F_ADMukh zkHs+4=^<5>Wy^8dS@+Wqv9kLpDivzCNYw$}#F5yTszLSN_*i6`HBWey%&e*-Y^R z*?OK_`2tG&-EKaQ=R=#{2hb@ysdyeZ=z2Awvo1gmy@<8PTPY{sw$lccDPKMv=S6nU0%L}+Id7Q59M6#9G4*lTD8zT!NXH&_Sq*p( zXTERp|E@`~$k%`dZ@urVI=81-$cr(nZ)(G=cr+b$lfo{U|$`D?Bek9ly%%)3`kvG8>1z z7v8~?dZw8WXea$e8^quTHb4%)i)zokjL`Z$Op5~5I5-2~JpgzGj(#7$`k%Z9xfG*X zs{;ai*mWmO>%s{KPy;X+bW*?M(ghQ%_IAY3C zYJ$A{5e(*0ag&6YIaYTO+KgP?r*ZB?#A|=4r+AS2j zc8?>#3ibJ(>GnNv`FP>}L9B5~wRo=axIHOVJs^<6d+;ujvF+k<7c|%w-|%r!-C9%Y>*y}E2RD9K;L(!P_0+l9antd;S$ofqCA z7;oIF8nwt6ud*rN<;egE`4)WIAGVBd(NUl{W!1M(z&*15TXUK7H&#-$CYN_~qYT_o z1g93rSKmQWhlA^XX|5^U%q8!8u-bJn2m5+j-uxbY@Q66RKpo-0=-a>FhdPkI*~tG{ z=2og)R5PrpGRi_%9+FyVZ=$lO^XN1fV6O z<+=3Q3bj-GrCL-H=$lVhsQ4w#QtWRPUg?-6Ilq`oj4p9oFCc^R?S{wBATnCc{sq#$ z2Mnj|`W3^nB3i}SH_hd|%i728lgDn*K8Lg0@dEf*Y1LAZ|;JxcHZr0h!E&RA&b&GcH4W_fB z&i*A-OKVKbB&^w6T!+q7IplljXRayJ6lI~&L#^(}?h~kw`*35xa?%v5bT8%vpZox6 z`wzNen5{9YO5()=JgYrIlrR)WZk5_V3Hlf6b*(lhpE!&;cR&3+)q+U7Udx z%};uS*g4*zR7=%wgST95IdMj`I~0o+6L0y_3bAe@_cpg%ra7!&_m)=5X}(1Z?_f22 zLHcDET?yRb{T9tr{efE)F-C7aPQgo*3$l)Mi#>MxHZ$HN5MQX)T7Z>^(+wJ92c~S?t(0;FNcUI5eq> znb~%yX4^dBbD@ec#@lN%D1Gcm@Yzocu$DPbQ2s7%_VUe?ivd=wF*uH)xw16SigkA2 zB?R9xVNuC1F}(Ifp`&0h9lm`>d9VK8 zfKuC@beC^AK?=De$OOfiS;>wS)XnX7UV50~^(ZUMXlb7y^8T5$j<(#6R_c_C z7oOUO`urJn?T5nD#Is-obrNS4eBf5KK_BB;036m1P`9@wB*qGK+@#Jo5Y2bKk)=*- z?38f9j5RXtp2nLr!H(BysZsT_-%P+`8a{J0lo>hN8ap!Wbd~I^E{{u%M7u7D0K%;Q788H$iOKw+%cOL#)-IJ zx4Rqe`Zw{JAUJ`?;qVV9>Gp^fx3Ll&8&#L$`cf}PfnH##6!=`Qrz|T9*aZ$6OBH(F-aATf5gnX65Lw8J_a;{xpL`=TSFX%sMia(g1d4Ft;uaZ40%!}PQlP2u#>$>Yo$9xxozXdhOeK#&{Eh(_Txnk z4+cWbAD@qRYh$32H}Jc_Lr*d~1w!fxy$wVZ^?;afraxv6Ka&RHMJPRppI%l9-kriT zfjeQ^RoUbIb(rH9Z8%p1yhPxWM~~`>p~$%X5@a{!BYj$+$hg(g(rTi*d$s}|0m}RN zOe&@i-0s-}AozNqw{4F;ZTQ?Wq&ZFpc{L|Qcc`g%^(nko8(HRiCcrb#ec}SQjxO(bq<`_9K zL02^~q_DcO3Y%cvZGBb2{iIuWj7hxgPPO{Gc{5yxI=IrnA_u9>6Iqm%Abvf-$3vlF z^{|E*p|-b=Di4p)gg7Q?UjRkGeX-Vdhdv_v>5PF38zH{;Ds&O|DNhu2ljGr@SllWo zd`9D`EW3iAsj^3T_th8N|3%69OlwrIzQC>HB3oik;3u`!%?Ie8B;KvMgGrM9Wl6IFw{e#j%mZarVr(&f8i z6bMV1i^wrZvV>Q(3memYuIPcZwtrKwEBCJ`TFq@FrCdv zwED`g1FbfOOPyw8rF6{5S-R zK1quhMZoQmU}Kaz*&6QVBaXU(cQ28dOBQaC{9ccwP0(25Q{?tvzkHXX`(H(*JYEtp+ zt?~!-y_g*5TVthNq_1!AD6ntM=@+fFdORSLCShTeyL@36 z7puaIWZNB4QSdaU?}*|~9_-uC2l6RidkDwaI*E#oX9a^LXRPJ4e&p0q3k(91jl^i} zyU8K?d&oD;GFL znLXZeTmRAsp^C*_%w)&sTqoirc!HIPsm3P?bWY=J?(x0a8f4s{Dj2Jx%CZTT$C&C< z%W%gN$EhWJ97U&oOT``GIHzifr&D@4KC`t!JU1NJ9B+c2OTNbhd>uJgPdbvhudZ2a zuTEQFub*g5aP*Yj6RmMZrroiO=jMYGy6|2M9p1bJ$W?VvMVy=j(Kg%GTotA5WN_BC zy4Mt;oP-0-gr3F+7*NhGT;lF%59ruSr1k+7wqN;Fz5C!@Z&^D9%FNxm!6bP2V5+X% zer%(sU}k+7D{ZD)Bb@KjmSn%lGd{)Nx2yHXYa-LElnDJEw>>5uIQ0fKKi3nXkGdn` zqyka-hM3P1wJe6DY}`?7oM!bm-iu*ba1Rd%ih=*(x3M|_-oA@;X0!Yi&3W3-D}6rQ zig5nJ;{Ly&wR?>qTNM1sv{(Ia+Cg?7y&oh0&9GKGpJbe_vbs%BinBd4?4n=$!&6tm za7DZa!CSL&J0q<}klVk(yPQ#yC1YSvGW-uCW#=q-0F%=XxIBWuEy~Et_Vs(wtvI*d=6Emr9nQg z=>9kWo^5q<&SLsbe3z#aa{G&49VKyNP)B^dz^@d3wUJeuRdEjb{wGP;wxA?L7|jSt zlGw!`?;zb36pW%~tD-t$GrV^;CSBIOK^{+qAbdD!qgfVaNqS+Q|*Sz74jH-a_4wSa+Op4G;2jqI9d zwKn>o21o`EpVOc^Q&?koP@Hl^N!CXmKf@I(@wwREwT+eRT)brS9kcD${1RWRvxo$| zjbXnO>N9YdIG4#qlkhxUnBB`)GN%2eC?0-ryOlS`S~gNsagEa^X0aM}R6ML6>KH6p zxp)#1uM3B3&yz>wWFaOY-rJ8fTEcNG&q^|CU}Y=BychU^iSUT06DDm>W_9!r16$M`Dyw^<ZMvMA{y9;l!!fayloo;+^<vB0u2{qtSUs%;jF9n@+ou3lNmePI z8yUnxLeG2P=k<>}3h5Tb%KfEQ`#N4S^;YqRw@bZ?h(pC|*;m>OROe5_YB7eramgoUyeH~E`{#?%=-v9L8K*SrL-W!Q{*VB6w5pQ|c zd2c3M$>4gTCCvI3qGd#DhAjUGfj`^$!@HQ??L@qP>Aj8U57KTY;=N1n z9YoWKb`TBc&rbeqCv6weE~eN`G>t!Z#ZNdLJa>ZA$MRqDjo}A)?;=*~_0e#(S9PA%@oNBg|xyMxyZy z-cR%~gC8N{rAhCjM4L!^jA#o}JWg~6Lk|#@GV~x3Z$^5bAo_*qNuoUdJjEa0d-NV6 znjB01dz$b$X7dcurwl$!bOq57qJI22%Aab+J4V!!q0bWWR-^Yg(LSQ*h@x1T=ZTJy z_5u+vFnV7ky2xB!0;=;qMdHgO^17n;6{5EMd6hrBpy+*#sF>NjPQ<&3-ZzMNDbag^ zD3(7b`P0PEH;H%&(R+$$B7ffEkC&lu6Y<8O_Z`K5yk+QpmqcDH^u9+linRBMc%9Ju z0g;m#en`~F(2t0Ch0uGNKhH4U$3$U7pAdaRbcSdzQ#28Ukam^`w*|p}pAzz>p!YMP z_lQ0xnn&~nQ89nMtByzY*;w?RTOg{`|q8B!>P;6hQPB z(T^d34I67lMlcM#EN(gqWykd{T%iYS|?9n%gW`k3*C67gDcsM1z=QG|^1b#t@w$8cVc+XdKb2MB|BCu;2+qD@e;BdXPC!B)XTh zNkkPylZi$$#gsb2&qHG?%E6D39p681i2};k6{rC+f>21w@lsNFmW7q9P)Hh87b&L0SpXOwtw* z1v8gYqBzpLM1HK`LZV2bGNRE8EhnnGpV?Fpjw7*>XaG?aQ4o_XBAP^0O|*k4YKZP- zyjr5^M2m?I5-lMz7;h=jG@@lh)vVxhqCupsXhr^;LgJMqK2G9QL{+4%BpN~5)kFqq zYQU~$A*)Cm!)mQ2>dVk;h*BAPEm0Su>xh14F4q&qFy0MBAA(lry^*ki#G8ncndD}o z?nL!O1w^+HJx{bog)+rjqPC>1Bl?lF^+b2FxD7-?w2|m1#@j^n1mkTcYC|VHZv$Zs zBW@v5GI1->9@2y;nCMobB}ChZ9wypOw1FAkMwHL|ZYNqs+8speh;|SyCE7`p!G7DN zx{qiBL+>YY6ForGpSe6pbOUqV zL$sQq4-su6s@qF=1tUI8w3Qj|BYK@l8i~GT#Qj7ai5?*eVd$eo5u`mvG=#Z4PV_x# z2NaF*4if!G^aRoM41JR5ix~3XQ!1FmLqs!}&C^5^S(#^u4m0s#qDaz?5Csq&B}ykc zMpVdLo+Ua=beza!+UJOFVZ7&w{$l70Ky}_JB)&*uXBPYt(N(0qOq9onuMqVm?Ny>7 zM6VG&MD#jQFUEU=h?ge3Cy4el^d!+_=KLnnQC8*@k%RHxQqw7p#J5TG5WPcG%;0y4 zE)cy(^fl4@M4u3SKvcvO9}?A)_7PEQ(oPdyN7~0k^GW-JXfvyIhUlee%D*PUV z`hgKYB?=|_jOZvsKPMW_48I_Hi?lC^UL^X8Xb?lcCiAj@Q*}4koFVN@2tW(qE4ipC+bY}Gtsj|zYs+;-mgS+h<+pbhlTu3G?M5K zqEd$bN%SnyUrPSn&EUUD>__51L~jsXAnM4_i$q@&{Y!M7q5lzmOj?W9_*u!yIEY>( zGKgj{)FgU_G>d2$X?{e%gI4Et5-w!0i|A`+?N8K|5d(=iY6*x!7)Sw zNsA?lVIgruC8V_?@+Yk|QCp^nCwi2jZHRUewQWuQD`CV05~q-uNJIyAZ#yEot$UM* zq8P6|Q7ma4i0)^KjzljrMJJ*yq;)2GfbqHzonmNLqQ^-~Cc2fVE`^X@=H6~ZJD50? z=ps=XQ4mAZiLM~ZAnH!kooExY=|Pmu6g`Q06ZIncf}y>M=mzfXLlnq{^d+iO`d>dn zI)8in6U`tRK(vG?lgP~^1Bu=xZ4lA#%y2MKEooUqJ4wqXdYiN%M7OdsLy5+dHjJo0 z;|&L@^LiLOg2dk#d<9V;gGUmDGjtTubqpO%^aw-85Zy=GSfZ6gH_#P9}Pc#3@9(Nt;S!kv5I!FQVy0S1@!2(ch%aB$~xOnnl!w zXf{zKMy8lYG(hQpxr94O%p-EJuK7e^OfsKnJW&DB0A^iCbTd;F5#3Kz zO!N{_3DHcV1w_+`N{M<9d5N6NWg$`BFcQlM-(ex;MEgmrATmg+BwEjERT1rF=pv$5 z7+OvA5<_c<-Y2b==m^nbqFoGKLUaddONpK)ZCPuszqb)CCvh;*3Zlh~cqLJ97IziV zEkrAc`mp|26QweR8pNRtT}4_U(Q2XvMAr~`nBrQZdZxIJXaYj(yw?*hVsSSRZ6~^s z$V+q+Q4X`YndlCpdZKKiTZqOp>or6sQ>-PTZ?AV9(O`zIC!#a2cLULJqK!mbmHgX8 zXt7?KiM$MMAbOQ(3(;LfTNPqFAzI5qZY2sK+D6ox#cd}#&3LyFwII5k=p)9vgD8+_ zhmwE$2zQdWnuY8lDrb`2L~j$_Ni>XE-$j&9bT?5B)80dr$awb>eL&iMMBNzgexi3t zdw}SDmhm7_8AI##5WY;}LqsV=dsQ%#JWNzXw2x>7LmP=&vbg<3tw?)>Xecv$l*o^v zj}hHO^f*x#;~gN%WW0k!uPgcY1YratK1p zAv()KjuK5II!08>&}WJEFu&tO50dsA5cEIR=6Mol6TLtbNAx1m&&=i}qK!=QGEo6( zuMoXL+N(qdh+ZSQ$k5k`=8^UW(Ol+tg6KceP7-w^dQ(lE7ntM}iK|${w}_&dc_&L$TqhA264%iFT6q4bg7Wz9p*b z#H_y~e2N)l;|&_kC@@#L`_8h5QQ?y1)|=Jcaca)`D7DMD@+E}8oL~%q{F|-xYHlo%Oi!Ws3XxkjMs^%kok2c@?%4~5V=UJ>q=P3B*{cEOp-!0fv6kN z+f0&5^d)I&M8Qm)PLxAh2GJXg*PW=6s0WdUp*@K2vz|(HCqt(ZjUk#&^dr#>qC}#ZM7hjw z7EwOYY@$-;H;2fn_P=up-6YN<`j;q|=yN8?BN|7PPjmybo=-HDsDS7#qC%o`Oj|_s z8B-J!O<-sV(Ol9N5N%<+Qlh$^Bzg%m8F3*|FVf10av8ClXf{y=(Y1_MNpygyis%ET zSVT0IsG4XhQ`8XMO3C4 ziC!SuMC4#0n~6q~)<86yiMJ3v&#bo+%^*#P29S0u(S4+CBRWXhcA_&xw-Naf-LB-{ z1B`eFiE~-V4x$z;cqh>{4BbW4hiEs^9wxq%D24IvB65*-H&I)ndx*Yce)kd;5#2{* z65UU9B~jf2gln1PL82^XxQA#ki+hOZ5u&|BEr}i`s$q(KL>bJck*JDjKT$8DM~JRs zibsiFVT#9yx)4216tC=m2MBkNc#x=pNuD4oW;Ra}jb^o;BD#yAhln;Y^l73pqGyOE zFy3LJGmLkH=v#&!B|1miF{0I^Jqv{W2jOuN?_m|5BbvjA&l4?VhA$8$Gv13t7l>XW z>Phr6(LGG@3egoC4~eQs`-o^zY>NPBLWGNA4~DL> zLXEnmh*$4g^=gY@2VjY0QJ>TeMNp1r@mIHnA6sJ)Yl0WcEi(7^_8r?PUY%c zvbY}CyB_GFTll#u@Pk*QRMcNpHs9{~Qx(sn(R$a0+P~D-mnx>GK0?JDqP`v;AFIA% z)z?+AI;@rY8rv#fg$>lzE{;@RIB2XxrhBe$sXl*IQM1qMY}%;epRUkta;tq_4WBbtyI{8J`C+cn+t-cP=Y^}l;s;Ygp)lgqNp{#dZJfg!ktFM0!M60lq`s*(}6j3Ud zo|P9>WzO-d&QRm@hj8`!!LhD^E&W}=G6b$vQ;{*DrFUqHSSKT#tbyA;{Gxe^kPN%6a%Hw+1 znqfL2WlOzl%(0#-jN+``b@08;>Wh*EVblAmFV53?SN>bNcusj#blw;h#`#+B`lc{P zeNlkayGGS*8=*camFiuUk7lbc3WIuANaHy5MY&S%+W*HD>WiYW-t}NhT~W%Hde`K) zN2@Rj)q2;IWhv^5Vy518^DSf57bSDOD`->)^+lOh?|QODoi3howBA+Rx`zs+V1!J# zYl!;did66NzghPMrEtCL!r%-QM&VcQ8e62R#&xRR^>n1J3}surYfzSM1Z8o(t6!Av zC$4<;F6-rCbt)S!X7#R$5Z!I@Dsaxd$tsLOu-?_PUWZY#B4J-$1Z8x+Yv-}yDkjBX zy=&zIx`Vlx)VpTnr>Zat#(LNGA9WZPkb2kon(o8uIDxnV)w?EM(@jO?Vo>jj3>m7v zC~xasJ7RT0E)Vstc8i9oFs{ZJZPDY)#R1ZC`$!c=MXBC3>A%V9i^>v8SUE#|QDLfg z)wG;9>|h;=e_egf-iA+nEmg%o_?`YrQbqilovXsAHr2a6+fu5&s5;fVzAPzMUsRv! zT_1i{p}wd>flJQUs4uEf^{xYcYtcM^I}=pZ%HFTDvURY8g%LCQfoHmnpy77!^)?+BuRbVcbw_^BY`_nevCyPNX9 z-}mK@%-orI&YYP!bLLFhnMoT(99w5|^?NhE5Wm<$o2ys9{gwE|R@z*>bjz*c7h7sb zIamH-Yi+K+C(m{f#}*spqQ3kUv|Zt!Np-$%Y*3*k?iR{;e5duUdzwBM=@u-;;~UHH zwdKPlxT+yxnL9C0hJPMSU+$i+^Kh6m-kTv#+i=7>a;H(%weC3F@9Yjn1P_wAM(}u< zYXlFSx#q#6Xih{>hB&Q*2po-#Sc?a7GFRdK!_@USCVzD)eBh=u7~x?yCt09*#Qndc z-5Gq(GFK38SLS-abx-WX@u17lycH@`#AEIid*k8s!DD;(t}t>U-obKI-$@B8C!J)P zz8XY+VF$O!FLRftO)K1`z$6d9%w*PT1d}`x|KFKJBi)pA8%hUX0&^|}rBhF2tz+~R z8Dwo>&Nrn8A(_K+P~*`#*9ab{bB*9J+euyukd!!8&I)RN`az44nt-oN>tMl%S;ZfSqejnS!>Ll^o)6Dt*cZcVQ~~IbJrd z|GB$4T8T9tM>V6(8}KaG!_RSOzQO12X*78QzS1bY!5!sgHJBY8wGpzqa)Ub`p4b#L zeH$USvp&b?gBCE7Hg0g&VKFwjU$zn7UX9!AjzbfDfD8G)z)AN%H{$KNlrP;yk&ZPZ zmm+B;XqVsQPE?{|srx2(8J+ba#~j{-_e$T|2<~6r?2gdH(~)B+`3rZ+A{k=l$!x}& zl8sAs!~@(Fj*euNIm5JrgPE0&0!nBIe zN1NP5P?Q>GQC5C|ZyxrMYct-;1C5A?F}Q=b|M0Pcao-?1SBC#7{qcpngo5u9!dG}%s?ipAD_61%h}_~%a&-wr2GQv)?ijwF9I1WjW5!CN2JPGk z#nWr{1NrIFR(AQ5!c|)Y+xdF&z$1pW(2q!eLp3!?Fs8r^s+vR^bR) zh0C*HI4rAhc+`c%6JIzit8iFW;jpa2VOfR4vI>VsQ8+w}g~PH6het^`JSM_nS%t&n z9UPWbI6_w8vaG^kS%t&03WsGC4o^AZu&ly4B^{Pk{NiaP9F|o$EUR!>R^hO$!eLp3 z!?Fs8Wfcy~DjXrJa9LL2u&lyiS%t&03WsGC4$CSWmQ^?`t8iFW;jpa2VOfR4vI>V~ z6%NZP9F|o$EUR!>R^bR)h0C%Ehh-HG%PJg}RX8lGa9CF1u&lyiS%t&03WsGC4$CSW zmQ^?`t8iFW;jpa2VOfR4vI>V~b+Rd|_{p*ghh-HG%PJg}RXA1Y%U$kRLO zyv6Yp$XyPoB}vvg;f|tidl9fn2AntqqTg~rHA&;jX}p|U@>>LSm$_7*qei;$zUV%8 zExba3jPVU}do>?nL8~^NUlW{M{TmObj^Tg{GUFA8LFEhw+?DyPJpfy#@je7Rmyn{z zV6trDfRZwx)=_r}ir9~UX##@pEr;!Qw{V@5(I+pf33Q#K%gKO>byN=}?gRU&2N0Sp zGv0Uc@Ptin} zaD5U2=)H?btDi>W7dVdi4U(6oE7UNW%>j7akR{{Zw`h;wIpDbr*dD4zQ`-}uU>ri0 ztvjo6WZ)-WkP=PY<2!`Lo!UO-KLbQZL0NW_Py^++oB15(_U8BF>Ckw-Y= z7<&FQy1;Xed{3rM{1G1uA42XwL8xAkB(MGi3;N%bV%eu9Kw15L%lPRWXdKA7U&iDx(^mQ3@Pr=8P9nT}p z2Qr^E*I@lu5@~4u?_d`JDmA!<$7xGmK(bkki=_CUk$dEIv`Cv`RPH)H2p;(}KAmq_ zjM9s1NwoGHs;{|Z!~2uFAYMZex#A%k=IrcMT%R;T2IZx7th0u$(PR07b>?lgtf+>& z^?a^5GH4hFiEJyl-l4WX!&3EkqO=QIHD#$YPki!z!Ck}kxkNo?|iaY8oQ)YZ>k6uVgH1R!UHse3k zBa~WZm@at^{XvUSnwnvSI9&`ayNQplnqT=db9^CzMwnq`sft`)aQ=7o@=5Ezc?NV58Oe*C^M&YEr#OmBA|^- zz2{v|1P$eYPLlSgcOlhNMCzsgA};tI;vUMxt?q$`8q&Y~9t(>Pm%Y*SF9#Tssk#qP6<4Hx{sVVYTqq+-a{Gb1j_Zl^ z-}}lNOPw+SIv@jn+UCtqpK*XoGQRe(w=j7hA^<&?Esf?6!C`lq=SuePmsw;!M0QTl??CV+(99tQ!Aw_OXTS4@$s4HnRQs*~fOazXbc( z)b>|qA6wi02JB;l+uxdfY;*g&v5(De{{Z%}9nNv5oF8!#+0Cr~0e2mrZqlBlfYi?oVSM8|?m`>|>kV?`I#I?f&uXW6Rw?gMDng z`xmm0?RWob_OS`?|CD`f#rwChkC&+1#}fj-w;2A3&E9DCiCx-a>=RqYQ!BBTX9xaz>=WC*E!ih_k6&V+*!&*BKAtJ~ zC$Wzw3;sFm6Pw3N*~e1`|L5%ES%ZHE`*_~qKgd3wI{44Bk7p15YwUYl?7!b@i4w|x$rxpGV?Bkh*zYqI(a^WAwKAvCr zUtyovm!8Ewo@MwK!#7oKQLp1bo^1Fxu#Y!j{9m(=XB_@R>=PT^Kd?{i$zNw5Pd)q( z*jJUY&)COnkbZ9o{JYJ}M6-`q7X8K8$9pUOO6(iYl&Te6Rr5dB@)$D1ks ze(dArLjNfCiE}7Z*vAWn{x{jziLuMrH-)qNfPLZ|$`|b8{SyCf_VHec{}}t8GQIQc zt1ZqS-DEE>()k~;Pn;Hcp(K1)7!txhUSsnYVBZt=m0}<7h4`zoPn=RoVIS{-_}j9N z7t8$J*~fby{z2>$r&PwVuMUU3#y%?fx4RpqZC6Xs`+wu|EHQ6;{I|Oar4>@^(zF9= zJY_s_52s2=o;K9@po$ADp1PM(@@QDKkN9W!Kkj7|{SVd#GyZYAsp5a`$sTX17hV|m zl7B9pKBKk~lRqUM7lIs6r{Z`ARFALrqSx1Y7qI0s=?H=u&R5PxXin@X}L>nN(Z00%UH}j+~dI& zc16{q)K5|0MZ)PoB6Q5gKJ3A0wRxZmxzDg={XREUAe?@h%@{)0?Td3Cjl z2t&o;HOF;ddD~FifD zBYakCBd6gfL&3sZbJW^|2Tnco%LOeT_35DMG$stpbT6SsQK@iHt?(xD)JtN9eKs6< z{#_CirV|mI-7~D(Zz_d|>3I=xVm|WxtTcX3jg+j0Q%H)>Oa3y5sGd*VW!26jTyTTR zq-s%W6^pZ4)NVV(N~{N*j{;}UzEFG7%xJLk*OzGM1~H(ydJFRYBLz9z655AeTNg&-|4Th>?@+KqfO)B zd#$L*E~S_{#%lX&c-kRKZB4wGfr;d(5^4oXD~Dp;y{`74UByA}*BfeH8d(C2&;CV? zp@Jn*m`T5aTx2PPB^+0S)d7Qt4;Vq)N~yOf{x=kOPid?C_gbKe|MLZDT-k?3okD2Q zJIkt-DYGCNb!=I?uCb89U6>bAs7N^}1wH9(IW=wRO}!1xo{OemoCw-z`T}_4dR;}Z zyY@L2GS-w=lc|#rB`GmaEvVE=q=;we71d>ujBu1FvOLNmMB~ytH6I>cu+YWWC%I8x zNaWt#ozBl!@jSRm1yAa6Mm7~ldvRBv0D+>eo>@t72Zex#RIuB%C?#onTd^Rde2_?| zL)AtsNww+fT)ZmUwgYq&?&zzi)>76W*ClEn%F|JeRt}jg?6+A^wj@&e65J-dxg(14 zt%Hl*HWw~j@Q*@Sf(@ENORN;3mS|&5imRK~q!hh8^VC(mVA}IDbi2toiXP5-02M9p< zCQ#4kAb|NsfP+`F65#f+ss<$zRr5Sc)m)JJh*#&7??lx!qKql(i+DuKu8ePxJGayu zQ`Nl6O_P-yl9lhvQ|vUgl5e3%i;~x1aBBZ5o+;<#jwke=VHge+bqdj!ZLNLYlcWAg=KmL zSwD5&QR7{oNIuqcyvfH>Q0B36#`d5{8XBYq@x_E3E0|fweqIdWY%OL$QZO?`gj&pC zVUz`#7e=uPXH`^tI`wl<2=zLFi;aKJKnJ@iK$5o`CU2`2s>P{G3w5gUcLjQo25!2( ztrjD1OANIyRHTQB8jut~MBZ1kv{E~=+N?{xcLu4{q6xHhht}#UmrhSw ztMAhLO`$z^w1M_q)(qOyXlrUuYSUbepkb+qfbtBYrY-Puc$!0l#!=~Z_8`@yA}#zt ztwp8V+pU46U#mjgSfD>=eLe_w^Q(U$+kb_8`X4886N%186Q zN4EPr+F4)$j7v)UI@!7zi^-gYy_h_xv&_d&kzJ4lA`<9m7fHATP3|hjn!4R=6__mh zlvsE!`Xa!C7pueQ)Qjp0LYRjpE;|N+rpncj#vq{juzaydJLXOp>}A4IRa=swdL#ZK7F5pCsX&NDO&KABtsaf8%J!hxTex5{aPD1o zwDP0Lz*&=lU*5y+!@nj2PfZ4HRi^3TzG!;yeYKSGm&w3mlYxg>82}-{!0D_EG$dCs zPg~kK2-Za1DzXMX@2u8cS{&~gKJ5%`Qj5~ZS{k={723Q78aE#IFVTx*&}OZw;9f-3 z!6|%wk4+&Yt*~?h6bn4HTv&kw)Dk&>nFClP9BS17?$qQO;EfYywPaw)Fi3maV5J~c zd=Ct)5b32lTZVU}xIK{EOWg;kg_OMrVH0QDfn6gtBq+uIdwSRhhV-XA5Tp_Mkc~SDn_nJ zpqfA_(^NUP3acu0Y`OAkF;^iDPs3{#a4HbXz6+1^2)`wZuoXd3aDfdSN9|zeh_w;# z9ARx8yiB8VGxLPdz`^K@y(JYf+3QhNR?P9!uo!1bhF;@%!4P&dcE1j_Jmq`PnaaUw zScJFvnP~bQ{D7d~r<)yRHQ67s$$0k)tC*sK#CWiKKgNU7N5I)$2@;&`swz#Xt4CCR z3PM!XFB~tc>P%G{a})-|H4aL{^9KR0l#5lRh8TZL&F{)bDf3Xt5tK5+YGy!_nnSrI z9#ZBp$R~Ya=aw5DI&ar|}O^XoM zML?sVM51cGHhFc-MIXzm3GCxx>k@36bBzbB)CLrOA;>39naNDtl&4p!$x6y>jZLZN z9yJ=9MxwlH9lS26CiUZ|UbNyW2b;?!n^cYKYb33ji;juJr|LkNwoOG(Ne_ar`J2$F zGEEwVzv)#eH4Smk!@$tcU<{YZ^CS-DK`{;v62=NWoF{S4DgeKt3dV~vSb|Yl4j^K` zvTk*$Oi<{$(m)yh8qZh|48@8WOZXDl*Ck%Z7GCe_QnB~I+kYF?#)!i(P*LfI;IR-1 zOm0}Mcc?BDs>lodr8=c7LK|0cghHd^oE7&M-XB#~n;c+fnXasm`6|n*%SDl=JJkHj zUNhre$bv_d&#Q|i5&HORM1Eae4lCQt{J*L$r4e)fVzg)pstU=iMGGI@NyW5(#5b@o zS}j%Igo*)sQpthYWs=z?S(*Jy>fZW$v90!y#$Wj=km zDVNk|xit+unO`lYOs*kyAa080Bw_-0{vDnMj)P?|Csr-WJ0TVtuk^s*fIj#MbImyg zpm#qp@z`X@iiZJ_2xHZTu9Hx=avjUP|K)F>T(Dwa!`+T`2<~M2t#Jm6{ ztwkOFT|>(Bx;7Z|udiimv?kZ{i}biP=7qItnqz)V*+NKeNp-wZrKUOXBeFbng89(S2<+WV@Eq#{~8a0G+Z8CWUNY6^!$E@by`(qu4@MKBy^6R_G`7CFNcGU?X8o zOMaDIiohHk>FTlR}pNag#M#8>{rm+_> z%snuXce5df|Ev~Oiq?{~6kki$67r0=q}EX4@cS3^AUNEEkejodV4KUStgLBwEOa3p z5a2Gv2LzP#TC%vXiE7i@>Uepw>`FCO>4jh}cy}xq@+|r4N*F*hOeUtAOpL50t)o4k zL#4gBN)1t_)ROJ>s>#m;tU2)s3O_CF5ZaHe2h} zmW`8GTh2-soejzxGHy_9|6wc{gW=k>W$n~JI&Q71wX+zIpeb4_pA5EC?sLf%AJ$N& z3a;K&CYfwZtSy@-JRG9;uF1w4la04(lc?KWSTj;qnt8ut=DigAj}huH<)jHZW`p*` zpc4D%RpXSyCg^|-63rRbP*Uk-Di1QuV4MRbzKfV48<5>qwh5y(?_i zt};Rl_np{Z3$KJQF>9cyMyC%Uu(BP9PJ%Nq+)4NhjIzpP1UjKEt^ORtX3Z+FftCw^ zG#3e6u-W>c3TDKgeFwewSskesR##PHTst_axx%+;pIRG_gE%=L$-!bf5FFsp4Rat4 z-Tb#-Z33ftB&|Py8R|qA&LH(Th;bu+vqz_71vCGkLt>hGtPCyLjWydwM=-~1w+Abfe;fg+|Lp&&$heQ6%tIpowTQ%iBf#+qd~JzffIDAL6meFWkG~W*WW;n zznuo*;TJKUy*&&0(Dydsn0k`%(la(;JQ~B(3URuq>RHgdTTksz7tWev>;3wez|8*v zB(YM8XJ8v(4qE#heu}kKN>+;~C+o?6d#s-5w-kI118R6aFp!#}CMbvN$?kdp(cE2^ z)|1LCd7H;gX$?W(nMvS@lfcxfUX47B)Z)sYCV@vb0qy`8R-c@+Tj`W62Oo-pWxDWZ zh>2LYhEWr>^y{ER+HqD*fcQsTLyWMutJRmX_VN!f_%nWnthKDqT|JSSUxH!MUM5X; znEF7lYJrFgDja30muM+v;{4SrNA_Ys==mAsWc3xZN-+qysnF+Y2)%d}75U$OXaVT{ z2nxSu)hiTzjO!kgsfFVk$V^ND==@dGY~gdLSt$Bw%n=ZihU0pIn~ZB9AzB4G9xAqh z?9X_B;1{z$OT1`DDEANw-K>USx*+03w~kW|HrzU8pFZ_1bg~VdB)+`1=U!kq2kQ?%hY2I4$<& z1B9(~<5*3>O!XBidmrm;e0In+Ur?o+s#d}^mp0!+Lt)kPo?3ZHf~HgEU6_r03J8Zq zId@9dwF<7!WjZW;W=Y3~?ObPMI`V+_DVgqgwsd^#&h@8E_nTKMg;(Q5zM0w5@%bbr zHpNjRHG{Nb*bp4`6pfScK-FE5?61XaYP2L%{lrr@MQoYkC?M-f90e?@v=_L>Zhy>1Fl$^zS2#@k{LV>5tVU z*V~Tt3j*nO@;?ln+wAlo{ZFlk*@8{~i$MBO=~{hST^u`j2mgTWbI}HE&Z8Hk z+K+H3@+SxKhXC?)ke1}-!o#j;okIMR8_?B4q_(PMkQ@O-Lq$>sOIn2xt(g+ukdpp@ zN(*U7n?tmhTva%(u~M`l?Ya+TKROhL(JGl~$_rOek1gAfYkN>;88*R64^r*T-su@Q zELcBG3q@bDXe|oUN+}&oGHEs$oHjcZq*WG7g8dNji@8^PGLgmpNU0iy{JbUEzx}t` zT6xo?Ia{#bmi9bRL#c^dYoe@bNYB^eNLt0G*pS=d*2d!8*E9{4eCsKaEKp^V`v0g! zC`b#$s_wR(8#SUUnwH8G20eqt{ZQsXAL$w&sdO?tJHRk)&ZAYaxE&>BQ1o5wQh89> zKipF5QH3X}M=8@t)_BQAwC)`(mA<}>wUXAHs$C`Zl2=Qn zYLB%R^bvk4?HkkSlBo5J0vg8gceP0L{)JImEz~odBkQ{{XvkpNaMD(tY%-gjN~LYRs^*t1w)A{2PImqxi=~`t z%)642G~!!528(H&5Q}MoWwQVmL60@o<5C)4X>B5EgJE4uYf0Gr+*<$$7dw@`HbRJ3 z-7;DUrL2wksEk(Ah0`UBD4r`~QCY2w(#A&QDW}!N3Wh*569}vP7bz`9Ye0|6X$6## z5`a--VF9%4fJ80MHB5s1xnxtHs+ZTwDvRuF)|c1nyD}tVelCc5w5$TO&Q=?tRYV8= zQX)3xiugBE$L>r;t+;aDh7GKwCA-c^*qK~l^{IOjSbJt8jwPW6o=C)>xghG%*Of8o z#?z^i==5loQdLmNIMiPXm5isLN@Zyl7EDVNAr4MC{W^<49g+L-d>CEn(o_oLuHQkj zqoAy`Ybs@F`Yo*>7KudW1Deu}TNv2K%FIV)$$WTI+G{{%?!T=S#vI22l)VEXB1v;` zQ?`+c(@0${OTXUHc!Fc4YjjsDi?gd-DrJkA_g{Bm9b5<`>2pu3=K4|QeKt$pr<+Q3 z*ZjU#63g)x&9CmGJWnOyuj~M4O(8>PO>LHG%^nS|MOst#QBEQIb24F))TH$CXcbh< zUzv~>EPhr*me^6LXt#=0F~2_4D)P};6VUw+tsy3v3{W~Xb5u;JN1*g-Al*lgv^H3W z5b4G>qol`LKi>H;sr>vH)wWD#yF_Gb^&e<)X2L84kj@g0&Jv02b1UJxKeZx|Wh*Q1 zUs_eR+qi_MBtBb}Wd4QrdJ+J1`y1^A1C9ZYas{M3f&PeVE;SA+@$)BIO(nKDUY~*+ z-CUfDw{#AwQ7~y12=eJHP+QStmb!gUS^(n1ijE+|ns!bbEk$Y9oLm>dPIEb&PFe+3 zJl4#=Z*$tvRx7EDGV>pvHUA;ax!vp2>{Rq$vN2Cmwff3p6SFV}2DVx<-AmK*DLZV8 zP{`fe!CW#-;FjEg^{HfgEn2x`0~Z!S<`+!Nk2x?xF#B|Xx_E(HDG*GQ=~xHU<-aE6 zY3>lCqgI-Ct4v7APFfx8S`}%6nkqyO8``ogE1@3c>kJLtGyoXi8KT`t0+MqDbnBuO z!f`+=hi|%QmH2Z4&Y^F1fU}v~f?-x^rlhqp`8P+!7feHdzm{>WW9p5l$1tr74oxs= zWkn0xJ4_pg@lj;FsRd0Qj?T49X8d)QjJLI*q@rlwAtRudehB~$kHD ztm+tygl%lhk}+BZrKO2!mIG6yIEM7`W3|G{NE`F>Sgo=$%*0@+C>w7A^X)ib7TK6m zF9VZdV&><-h&l)!k2G6t%*^o+zAsJ8rW}}2^-!M46SR2cyp6drL93#iGcjj!U_?HL zC!&KsvoY0QK`TEoF@NTcDf%j8HJ*|>gC#W2%vT|+adfS-R+%=%V(t?w{MlP*&?GGy zXM-%%{z=fY4IHSt*-_X0dj0SYd^>?{>-G=epG?M-6dSdHTzd<@rL4DM(GOD_Q@5>< zzf755CZx_%ZC9jf*-tub}mrdP)Z9H6dLYb{F~yIs$( zbT`>(*_tM7*UMq34J5>8IqbKJ+rG6uqAOEum>AMub-*U%3fug(UO-uA!}9KgNx#|w zTag{+EHrp_78++Yz?oI(>2e~@U-sd+j41T+f3zAHlmlf^&a|eaeOkKm#N^=j)^vU! z%%DH*G#GuI<;`p@Ewyj|MMsZoBU=lwQqN(k#ZvkZv$d4yHnKjiKZlW9*G|~xKk$I# zA67!_#IoP2&nj(1eJ-h?7gKr%P)pY7)u`kUZI~tVRcPT9Tjrz1FN*|N6gomz^myg1 z01e(CiKJF;lCbS8bU-VdQ9gAQ)srCa!=^#J~WGRAw^PflM_ok(9a;r~SW} ztTn+$j-wV~vb%F7-kFV?l06HWu}X_nHrRA8uR^E)RM2&O#7>|;)h>s2|ohX{IFh zzkYfJih4sEW@(LovlbM*ItzL!OF?H!K@EJ}tgKIy&Hl}IXn>6I!Cq?HOfRUspC%2t zb!oETk2vt4$?4WK>eO7XpzJdf?F9{owYMuxifr{3dX#e8#@vt6izvUDm|t>W#58(f zOTB(c7V_+{ZjQf*U|vs zV5(lxwMYUoas_;xrdPq?QL7Ba+UZSkepKY}Wv+m@_Ijf0=Kx?qd%XdMMgcgN3!px| z)&UCUzX0G-2fd!_nFKt^1yGM}bkwUVMcYeRMAi4|q&I{87_k)96vs}WV_EguwX*6pFkDVJ=-njUD}3li~Tu88S9 z^^(d99Rf9Zzo%Xc%QK>sPqQPOr9@|QmU6Z1B9@Mt#a*{0Wem_u=dIJ>g%`%Wls-uH zcf{9}I5Z(Ys^^W*wOR!_HC2nIBNw1SyA6cVP>n-tDU~}=yH`D}sn31vOsa$QNG085 zGOYvk9;BCY^^ys@caWQU;-Z5Y9r$zpBu^*KsDOXE$YE(dOyq#tJ{YJeGSe`>UK9&B z$f~lX+$YFirhVU?ihN_ob*1T_VmefKh#s!&u=yA_1f3NP0*0~e?<8gd>iw!kDVJ=( z+Lag>(H;yydpL480k5t?NngOXCOlCE&%D~f&A|XPM;3r!&}6rA7IrI&lww^83){_2 zn}#oWP-=E$75cVP4Qq(Jf>XJpR8(OLbSd4it4XC4Ffb=8-s%f>Aiemo~b8`Mx8D z4I4bxuH0G{ZfQLTM0Fd6{W>OLjh2-<$x-2AJuHItus~F`zFqhnwTBstYYx*tYQ>fG}`rQ!C2-_*1gJx0O5oby$+i-R@vFMaTEg3(#b;1THM`dLZw}SF8kd6moT;yRBzLSOU?`G``XpGriKJ4_%ra0JGFRw&& zmhv6iIg7Xg;w&Wc%~nWfEM&tOdt3^FrQ-5R>tx6pWZo6Iu#gFRv}L(Gag>R>Qj|_6 z6YV?8PPS+*jEo7LW$zx?nI5dwODp5dM586AmO2_iu02pWN7m`3lod9l=DT`rWtj9yU3>K*@bRi#PaG8N9sXc z%<_M;6V|+nS^h6}Lac&vd99|p3>JC4 zwAeK$V_(-mVW(fy$|*WFHh2VZ<4O>RLI*~4^xoGobd|R;UtfoIE^A^+<-qVxGSLk! zuaahCGH+lhu#JgnDKS>PToyGUIul0fz1izU@F0fIsWv?xK9xx(y@^?QKwSzR#D2lM zHb(3htT8bwv+~eC3l9zCufSZ7YtriMljNKW$0Lg<7eItN`>^*h$NABud=_UBxrOR} zpp{pin%Up#N}E2w*274X8v*$2Lo5yyAlD_xb4DkPzdK?7 z(x34Ol*yunKet|sRg!IJ^^def+*@WtaUS#k0FC+>3)X#Y=*u5#7a(Pj2+L>CErG0+^*q*>B)e zEr$X|S)B^l5{g1w(6TdZqEoh@WwBTpD8Q5~L;)-EmDW{RZzJ}61?Jy(Al79^2}HDhvvaONTT(kw_~|1gf?elevKY6 zbUQY2eBGti(y>eH&|2>9a?_^a4r~cj3P9HEK>L?BA!Q}Rs(d#^WI|P%iutz}bFIb9 zueE&mR?A|c)lQs1=wZ_9mX!t6ptD(^5S-0&T6TR)pFESs1MU!0NnaHlM#(KSFZSS( zk=QI~pe#0XS=gQDH&IlmrPfXPuscm?sqG8i(;YXJe9Qm#b*JX7wE4=B?(}0T*x?(@ zLYl?G#F7hXDvY;Gj?ED@)wGkvMQaaa-j$l+gTP8t@xA}g-$5$xnq1uKE?2O_ddME} z9M=!<3U)B1{Lk(Y?6>mLdYEI|el1a{Y{N<(&>Emi1Yk;H4_bFX>!q~sL9T;ZJ*8U@ zNMHU$3VPQjI`udfop0Ghm76_e&qz6eU3@H0|BIdhoE3wAKOjF0yHz zD`3L+&|KpJfIHu#tw&41i0lAoeV|;~>Vtn;#=)&DLVVL9;h5ciz-D1%dhF71)nWsj zYuV1(i>ZSf*lTl`nhBYWpo27XzM`>>cV!%~HVaImzCcEbN`?Nn$^@R6}gxJqrM4 zH-tufA_0G92MDnk+z1v>d@tEakj1dAdJLU!gu|1#njjd>gHL9I?dCx~0=B#{mM9w9 zu)i8ZBjTn5M%2v}ai$4GrN516&=jKbl0@{*6;ZaC7N^X%5%Zg&lg*Tf*Rms=jf2_~ ztzjyWO`_nIA_J1o>hmp(%AQ`*Fe)0SSHeyvbFb{^C9D4DIP4N#HFH1Niy9WvD`U4( zln@tLIO^obUb0R~6~~~B2{0^M*g$+~7DZ)?Aj766un`6UwkUoof+^f!J7v|PKn^ey_03AX zPj6Y0uwvj~o{bq_46~~_CgzPC80_%(P&V4h_Z8PGE1#LkKhBZd*;L?C{4|>i#dF4@ zEu0N$h&r?y@@+XH@!grqBamSWw|q6|<4iN>du9zhu7%dssVL{k2fvIyESn9qKXNrlq+OzP4v8OHsnrC*wvj)NQYb@ zM{6M$80uCoRcj-ci6-RbTp@9Fw0PGV0a5%4r4-U5X>lD48!JuNJGsKdNtti$ocO4W zvfG60%oVbso|fSH)rRbugK@TOeeCXDH*r@a&Kf^``023nQ2Wl7y)DJSYCMd1;zp+H zc&DHcB^A>f(TNdy8_XZpl}0CwNteR=!APCoF+hA{B@tnHz(f8~dKA9Y;&iy;GO2{E zoT{cv@x3}qkHwt8LM4yJ>V8iNcrjN%{21&oydD6&HU^8((ESr6BOH)`?{WnkdKtSUcLRXL@z7AWB;aPQfUpTz4-BJG zm1I>7ouHS&fV;2?YRSt^V1%`5srf{#uHk5a3D`0bo20k}g#n4V0@l2OLgSQ!33&Pn z3f*1+XnX~|iX{i2FOK~D@Ty)IXAG_6wI@M;j+699XQwYF{RxxN*f`f<(w{OJ2P~FJ z01h)}ErB@j)N=}oyek0MF$J44IFQOE*p?k2MlG6({jX~Qz~57Gr~=298E`Q>z$wcR zN2eajCmO&KW$gBUtiPnh_LVBg^9h6}no_ERXe2$XrAOuQe*vSkv@cTG+MU{6(8@;o zzhO(bbYJ}21z*p_rQ6cOOr;q8_lcgCen1BK>v4Po{+EJ({r!g!-ts^E`47W4&(|=$ z?~s9`M~oZZ4_Chbvt_!OqW)-P4P0D!a52(t z=$mD`slYMKQMQFSNyWdJ5!d|657}L%5nARQjGe)*xV!$ zq!zbDFxNP#S4&T&dxT9NHzhShM?odVVI#xpqQe6Gyc>i4HW>)7vedW=U z`=kd`vv>4JY^FL0R8fjcm{O!)mf;>av9UILIkZ8`0Oam+?DRD=A&qlF9BTM-j&h2g zzzbEld)VSZtW&*g5*(A2AgU&?PUTt|fQV(PcTC9A91v&s=^=TrWDA#kaI=_mx=d-0 z@#WOGC>sn3OBhqS{=p%XFg#epg8|qbKW*l8qMsZY_;Uo;W68~pe)iW0%0n~Z{j4nA z>BnpO4XDm{XuTMko{H83?%nUOu#f(nrptqSN<@FAk4^r4Xrvl}bYJg-vaD*Sb0rDC zB|a7U%aLahZs@^cfJGe__LRiCJOS$1c42>Z)S&~=Lz4rjx(Bgu`-%fKK37!5Lr`XG z1E`EcAhODVTAm%{Y!Vbx{50hgwIjshm%|t}@SK-fI~|YcbzR3CG%9=vr-4^#3Eko_GkfC)zlj9W<^(Zhn-33OPm z_+@oi5Xp_>N++;)kYbZtd;$YyeMt^qJ%gN8+g2IJpVX@;{cOa;lQx z(Q|TeR0^0S$C!Zem6m*=I=$9eZ%oHN)DubTq9;@Ta-Ik!+ZYff$AC`Z=5C3wE0$St#V+Ic#{{L$PI5>bteWa)0OB7K*<_NHKK$a0; zk%+WPhpXZFqegKx{I5vJ#_(gqel!Kx|pwT zC?Y=y!%`>{cr`l#(TS0xO0iq@5Uhn-*@|9<^lIoNg<9+&)pMN0~rN+}Q@ z@8aS$F8uOHy(LyCn6PrrEb{PtdKl_dgI+l)MgLrJ7r-<^ z(5YDpy7oN>owc-g5T-lRZewNec_|De2V~K{8bm`%>(yM}InwS46 zB`0F4gU1#Eurk7L)y+4wdAKQH*i~CAf0?7wssLM-03Mabg7`Xn;9#kS!sg>BRX;le zC4I0Q!mrK8(Ue&xCod0{ayUaKtdya7vhXp5u8qdTAE!$4DxcUGA&Tp5;@qWB5{r8i zRW}1GKgVs95WOP~)Is65s%i>2cbI74*C}?;6`X@9DFdXWw7HDuTvWd-@tYA)IGN>w z!|AOcm_~|UE@k{D%H5W#1Y?80gkLsXK0hrE))SSYW}32j2w3HtZOp<54B;F6G-^3cyX1g4>lSt5tXn80N8Of{(!_TRD7Qd{2etIi_4dk5 zlbsuWsl)4SfLZ6IYp+2+{q3iBHsB15Mi1YxdO{xIx0?5bA)-#h@^o#TVk;&byEfs6 zH=;}80onk(WNvU;wMh@bP2)4*h z&{-uYl=x|Ova7QGEO{F$9CV=eWk-pD?O8sca7x=m zL6=3+m?(tZmQdb`%MKJv5sjm3i_{P+gBvyDlK)#@r8OiWr1jOac|1+e2e(Z;-80QtNuG1Pg!y`%!3 zMBf=(5XT}`+JNs1LUP|RGg+D=6KM_Log8JijmcLCOMg2}%=X+de-+Y-DA#RF@4{MD z<%)^Qe@0Q=!+O#bSoZ z=Eyfp3f8x;Vfm=GNGc}yWrp!RO3_sBbtJA~CayXxOWP&k05P9W2$~^Q{5Ts6J7oqY zfAf~;6@^8ibjbk}J8;8hV#t^_jQ91TY1vF@s##!XCi<(`+>54LGqDnm1o3Y`^T8E6 ze9YP#dUa*8$<-^l6CW^3ucYi4M$2Yl;Y=JUjd8y{47+-nGjaaQ7)HL?I1CHdB06j~ zjH)dr(akxCLN%sP&pBASyp^Szuu@w^xoN^~-5&=GQcS}2hdVw= zb`QW=n|>w>9flLO_-ZNXX3Ac}d5<-fstv>k2{VSv2I(_U%dfmSoL(7-T{H8cE5x0` z(`lSWR2v9Y8Kl)#rkjMOWG&09!{t_Mp~2`$+fBNy2ZO+#;p88T^>|6Q;P&C-dXeaP zYC`((ehIc7w?K~uYlVZpM=G%nHZO)oEeMWL7YEkDnED7m2*b5F``(WY@2w_hU*_P< zS<9#Z@zd1O-Oa@2Tn!cJjIASMEgimHeugjJzbZ09wurdbA#*D9USV9_!N;fyj*uPg zvuW4?Oc^0Xq0$Iar{m$Rk{|0;#Fvap9T0FB3^nmJ4|lN}({X7&pI zF);^oU_@aKy@4vov@u0yL9gC3F}HKa{5K0shAaJ)oYBh*oL7>Yq%CVU~lCL+qV>=Z`iP+1lSe_Y;$&)Q{zA% zICV;XQ|!%o$Pn}B4L_i#JQyXF3a&rMN1GO52=7q=Q_8z`R?4kWQoFb+Vk1RL;T6##GsgaM;-12n3N0d<89_@*jW43|m3lH34WtKnPW zT{a-9I(8<$mVj-!0UlLH4%ckJuo}qWvIJZd086s8(Xy4yfdJLajb_b9Z^{NX+bq#+ zGk)Vxi5(-`OpO)$Qwxt^?2bfOE~|Ft+GOc5SaP%Wr{=}d!XGi7{}HRVXko43)#DTm z_+JYCWnYlC5?l`OWegM$22kw$s zCjqN-1(fdzZFMjJSk)7KZJz|-<|HnUorANRfkS8Ux{9<`@qU!W!;_PFsn!{olt1P- zMxDWIlRYcW>eJbSn@Bz7DWSKoAf-kId5sb0^zI@&>0`X;_|@B( zMzx=?BG1Tg{=-L=BC=4vAfIvkyxz%$?|SMbcwmn+!D;z|!VO^BiR9DQgW%L~k04me zD0WG&=fY$QkCeO%XKx-~A*09@T|<~r`YM=%`^hzZ4ZAIG=>KCk`B!}vyO(e3d)Qs` zyRIn8?O3Xx;7OwJ-*jB>+20ppJiRSw8#V9h+mLSk!+W}dJnnftjcDylK95l^Q*X-z z<~`JRvfJX3{>;UMEGEm-+5$m&Y1OYN@Q44yS``wV{Zrq>?##dSzv0rtAdm|m;)`4o z>IpWkK1EkRZ1^*M3%mRO)&FF7=YRSfPTkby>793p*L+0GKi(z2(aNN2PxTaf;PQmh z{iis@m2pY;P=eyQ$lO?MP~K>e$MZ2$yXE#w6^x1!uO03yK${BV36)Kc!02(!GlR3r z9Oj8O26@B}1BHH%k>GZnjohS%#L~3LkWktc?g=s|#8Z7%lYut(U zq=A}IH@|0zNV8|6H_G@u*7Gul_AcmoTZBR^1;t>aQXx-Y&K`2ro)QXsG~;ezNdh5n zGw4(iPbHV@xMUEor^b=Ln5VjOTyjafig_9a_7XPZisVwBf=1=yp7#|jwTkmwcx5%5 zs+RIpN5Hybo$G zRGc<1@FY-XQ;6ElDxM^fa#UMSIU4q=FN}h_q7{2p^Gp`uctS!_Has;v6-Cg(c1W5y z$rmbcw>l7*EG3YAG0wX*5S>Z;$yWDP{W71Zte>60d@7^t6b zEjA=z_O#_lqtH~(d69}6kekLUlOC-S6lPSJj%+y9kk>rt zL@J1)No!LE2CPXlJXJ;bwRE7n&qKo^JccH%^aO2vgB5ucjk<_d6WRY$H7LmVW|pV6 zfb=Qoi84axc=l%_e7hQ|F!W7NwE$rQgr|vLT%m*tHJL=xcnV*Q-dN==?r13N>82)w z#^nWO`2#!~bryP7i&W?}W--EQ1O*$Bi_Bu2E&`r+??sdjW5?@WJP)d>A@a==v(ED+n*p~ z{v~Vh3k?5vmxETuO;o^3pRsbbl16UGk#tWTRQ9xup80|@2=)%pGQcYO7{GYoqpZ<; z3pXBqK~tApx&}&M$5);;Swd*iDqpa%&|pD9Lg?st+W3_xgr=;*{k>`1AS9o(MNiGU zotx7l{LPN6gf*kUPR}YQ;c(-@H`!M3T&-_uvH9P!9?BBA zX}`y7wBE=4$YL^nEqV^Zm&+i2GUoXiPq;DqAnQ_8IdtrS02yP!5l<5bI5`OV;9YAJ zN;t+n1C(+0IhuZM>h)55GM?|N@SaaIP9A5qi^zoL&;V9=xNP{8lXhd3q}Jbq&Bv#B zyhD1cadiXXHk$_6#4v{h;IO38_XoCw+T_RM0?|hJkDdnn!+-+cBhm;n0j;Xj@eg3S zrd%*9-V#hReCOuhvAWH@ zyPh{iN>Nq7dFXkQpuEPH_t_wALon^435vu=R$PQpA`=Qk>0}yXc)31;jy{B7;CpCT zWJdfSo(K^w%DB2&kWOKrLHY0g6GHsTBOcT{6)--3?71LPi8e*57y}7vh@jLy7;ZxU z_F!tzX=!a}n+nZ?qP9L|VMeZE7(ht8Z2xKhpmdlH@}RQxUvP$p4|y)r|6h-b!!!4Q zKyQ~f#8~_sVuX-NH)Ke-@#sG^ha;q`cZqJjGHkfKsnjP~twFo;czu+nct8k2gjiGLD6Al)`g-D3tmN^o-jh?!l?1RGmpylDa} zT3BQ=w+)8u2C-g4dvh@%ve=58x!Hi(`w$>i+aM)`)`_8e|N1;ENi0=texf*MV{7?Kgrqlke~1RV^?A%GJ_u&C+=&B5*A z7T%^J4!MqUVXa5JJ^bLFJ0Jbp+FKm~LW$IB<8`}~eX`pdz1lJezk~|HuPEa}Dufw# zqX_GFL_74kr_%cUshwBl2+SH|=uRhZej}sslN~Rr zd(jyLGb3Ka6lqmoFV<|H8h877XJut-X*Uq?jS2}eJ|7^{JR8Uj1VXSl%>tbq6`~rO z2SX=tsjbWnWG;&yD59X2F&fnN4;3YoWw<{&L^Em+_ofQE!oXcS!o=FSg!c?mjpR|@ zt|Ar8Y%}*c$9#q9*U``fc-e?o1ro-3oAZY!yxQ=_Sa0?PisD9|ao$&5I1C|DAA1>+ zyk53!_3_?dm$E*FmtAX_~1~P>42hV_4y&s80uDr0sOH4+cbMUq)-m4-Q z&4*jAPy3>bGt<0DoKK)iXxeJ8hvTA+Y(5Di;_gq6Pc z#TuW^^kQ&C!u6jap$Lkfg#x+^c`0VS2N4gbpU}|EOn^0~nmi^%K(8LPd{sn26GhXWOIAgS z;_SZQ3la3F@_XLvG=tQ(H2;CSFim?OEpbJ*#M$?~p)Tc0EJ1dPQ-hy<`HZ*^xszXs zHL!fQL3pqbxlefh`os)DL$7s#29{)_jb0mA?|}wpdeL-lB1Uv3L?2%9<)sIoVaRE? z$$K4V*~Rd5`++->W^Tst^rATkp5M$o;1_p71JylB{DK`8XS}t=8{y&;pS)Cm?<;Sr z^29{FxYg@%@vlJHjcJD0=fc@WByLORw|Uzr2h7Bcw|k>p{0l0sENvVDg))DK7gG=f zo%{pMuwV}cY=lP|C3Zs1g2?l?5WI6iNI~QMZ`jm2KqJ@5kitfp-E2gdSOeJJ9FJi! zMyM?#_*?H_4w;()1b&24@nJ!6#y8)A5W~W6A$;QjWZ7q7NR-iRza!j0_()D=fY&6K zf-^1=-Jmk=X5z)2U5C+hE@|oJJ>tzHqb>E!S>cl1MIl%lS%ihy)T7L}%XsIQ7iKmH z-Rp;bU?*xZA}E5q=OCM-Pk6BcffPJC$R24YJN7%q{u?J*CXoVy?xa!o7L2F#(=eVm z(yB|me9l~KxP>{|wePvI5Gi`0AiH*HNQBYnthWcaqumo_C3y+KB@OVyOcR(+qQp@_ zQS{D_P@FBL2sD4l#?4QVo|dSf^WO3<#H6k87FtpteY5agsI>VPFurs2v5VfH*&`&x zK<{{w6N@rG0$g@#ERjYXt#_k2DIzln+%e8oFYVC;$z$wuDuMbL_eNKx;a7t=vd zMe`J*^0&~4hzzICo?t-Uc^y`u%~2@TyN@3A<}cp50s@Xo)3p1(C^~u{3vS2}CJ{(s zrWI}M_|4mqe;JUD^I3@O85@+(D09a_#8`0G`>B9p`X5atZ+Y`kW+v>_A@{wQ@tb94 zjUd9qWZ|wpfa2juF-A{*$QCm4L!+JG`~vbTYo_oYVDZdj2!^vjBDCJ07+-SMW$5^z z{IZg&{>>u-auQ>ps6j-=7^tLNfX1|cc*x9>96>Qg!GFCga^bAcV+iEE=iVw7XJ6I# z&2i~V6ft`eEBs5#d7_!1r5qwCUcvrE9mRJSZybnGbtQ|^+&sSO2oOt#m-G07T=)^+ z9R2vR59UYkd+7c}RUfo%cc)o`@F1G6`TlY3mm}Pdy001hdwFoH>+xZP-Y={+3};^7 z0PzcEV6*|Mp)MTO7YtMi0Y`0u!9Z8Zz`9@`dUV$qX+Z7_@iiB}gt1lUZwTO^4?{wX zEfDT7^zZKZs(a*M(DE~R~+b#eY}Qd@kckN@tpcpOnAKNhf)#MEt@|9{*#R zrZs1w_;1R%hSG_ZPC@C^llVXQm)rkXI)!DvK^&LI|CbD$C7pKC*}!oqC;w9ZAIh#X zpo*hwzg*w~cXlbFAfkvG3n~cqt{^r*M6nkTv9T6Vu@~%mt!R)*?8ewjNMbZb#gar5 zD{7*~Bx-t$Cbk%j^?T0D?g;t!{khN1bIzPO(`R>Q_8Kn(b42ij4BnDP<0K51&eWE& zH)Z@H848eQ?n%v-1k9*N;BE|~c&8; zUdI1O$J@9eBZg5#H)AHLdK#{>)MrWCvkBad&7|pW%%xB%V?Kc$-;4yf8F2&-qm1aoj9Db~G*(bVPop1!x3N>k52BElagS6qqd$dQ z3=b)*Kp{7y9fjPCWKwZ4Y7yyfoTiYQF@!>PqoxdvpimAo@+jzG^porXieK6oPCj`W zwFz8|`qK6l0uSR4QmJS}Q^;YQC2%n&P;?igij43Eg{m5xN#G#!vz#r;z_ua2-!-6 zx|$*CR=GxUiBPu^q3#IfQ1Vi>M+sri5}{rtLcL3b`jiOuEfMNhBDBp6QCH73wo@nv z$;;r562hG&Lc23Gf>x-H3hj?;>~MAU zrO6iEYq5Q7#;Bnq2IujUNseZ=g+Y8mE5~&kc9ukN0TpIB9Ew zRcWH*jIE$7|Ghob8kFPXk{x@o)aw@qapfRht*xV#PE#;!*D!V*#7_E@W{!ilYk_=W zM@J*uow9syTSsS?m;741qpPi25U(2V=!*|~INLZrvYij&p~;S9Tdg48F~*VX(wfhV zcl5IT9LU>ra%{2vU6y~*!Ew}

z?1aWt^~iq&O;Bi$Ag$lJBYLM({?+|Dt;C76dq zJNnsL1o2P0AP)}$xmy> z;bpl?lH()~jB~`|Gw5q$9Jg&nf!wvLBia@a#BX<aX3$e#bv=-bl~SwbVfr=xZW;%rYx&4$H{!fCIL<0pkij~SCTDQ~fN z_TVui!$E{g!YHQ7!+SZZl`xj_Ut(D=M~xC1$Nx(_>gA|gLZfbPN97VkYHvr)5=36_ z|K#Cx@BjGmy!U^MHtFLCDPd!Ij26Hr_HmRe&gREzL402yM}^`fzuw0YGt$iVV6l!u z?O+{6l|;)Z04<{cw2T7KG73P;C;%;^0JMw(&@u`@%P0UXqX4vwqCV=Dm6kCkZ*d4e z-yNG7mUnjq*QBKtG-zoBprsXnmR0~-T2V`Dd>EDX21UX@ICOKo5kreD$mJ9-)>;VB zS_?pHEdZ^x0JPQu$VuOzwU#ux5i0cgzypfwkO)?5Hua{=TUK&-hCqBR%XsIfn)ucLw+w%K(~bxbbp621S_ zSjTzyK$>%)MPomJ#$W)pW))0wwDK0)X68G#yU|XTE{_~R{Kam(mM>iFSVCJXIxTVB za?lId#&0UcT!w>jWg=7~2D_vRyBVh_f+%W=n3@nrvzqvHPZpE_1}(W<53jH3fR zRDOEK!QJU$C7cP`zw4r-x+gt6{Q8>X4>vs2+mFP;#dErQH{lQ-ej%x#{bzr0Ty?`! zo`26cLV4|%g8g&2VH0burY0%x5)1Z;x zY0$lwQ`~wvjhBL<8!x9p_gzkdZo8aDE%Do0Xwog0Q`~Vmjf5Owly1132HkHt4Z7WO z8g#eiH0Wl_Y0$kEB8XqQ({dV2@Q(#Uw^>eu?y{T)-DDvf;`*idr5h}#LHAcqgKn>! z2Hjmb4Z68<8gJ5VnA0c{0lKwv8Z>Y_4H}@GVtjUr;n^uhXQvpPonmZuVrV8Ex}$Q6 zfxs!o0hFA`5{&{*F$g%t7~m8`fK!YBPB8#DssHCdiTb}&bbqI~iGruX1od;L=;lt* z%bnu>X@Tg`PSK%ZLO4p@*(rLnQ*>sh=*uWeVSzfZQ}kb_=)O+Td!3^5<~T*?MGXm6 z>bg$RbDg5&Iz_*Aif#+jLQ0($#VA~)F6$IM)+stH%0o!$7Rf2rg-+2$ouY@L#Rv;@ zcjOc|N6s8^bL15FMow{S+(ZiY~n!UEk2ImMlj)1Vt6r??Mt8a(xtqo>_73^yWQ@a5jDG%tFEP1wHf ztnA7)c(I^IqmRY7vx+O5;*siAKZa+$uN;h@j&pdeoW?xtPii6RLw^62qY_`b)ZI%r zt{(f}|7sY5|A%*WXMroP!fbU9R+T>|yxF<&~b+W`~O|>oRS(lXyStZ{8rJENI_hcR(Le=dM zZ|2FuJa$o@3J&p&K5(~JGFF&>+MxZhC+cLT7aBsA#@zY8o~$!3a7R7{dZBddM<9|W z3u2WQt7y+B!k5o*Ai`BIY>h9}pnKGTY0Tk3@Cg;hJqJ2OOA6N45lnZWD&nY)izs3> zdvodvzsf8iYFQ6K+`|8HGUOe-MqgPO@seu8p)kfO*>~4Ngm|9BSabU=YP)Tu2Rj+l z?U(9<=qY^^j(o4!KKveI5mKW+e?vp14{HVO>pYj-9VV{#-{36YQ5f#G5se*JpTNZx(5eijgRZZlzc$ zdr~rprjnRZiq)dCGP_H$ZiKG>tRG>TKQjo=`m;2`$kJ@6oz{s)HoxGHvTR%#C4^Hn z)xFFi2ud$Yvo1K^kyM8D1Z*qA(g9ik8w3~~z(xSB2e8qAq(C+fa3YWm2GlOgMgmrq z6*4V|4MiwBh-CtP4q{^gy~?pPz$fKc2H=fg5n)BJNa3GgHXP)@@*={;@+=jhx)p?# zRTYE`rMH$2L=^lJXDD#$bd`FB*9K{k!2YvkbE?>`5o@Uwn!7Ef^DX=%S63j;PFDtR` zfQpq_x}D~42 zvD*Ia+qO^WZlxduZag)NnFl`3R>h1hSbR;ZDN>kGjg^&zgKvm{nmFu1YGnOpH5Tn5 z)O`!NZwIvVBh$zu9QNRSt1~~+8C9J{6TV-abtHUVoy8EguEF967uS&CA~Re*jI|)X zZy0MUQ?8|4(Y!llj2-scdww&F#Y&|pkv)!68Fs65g=6()?hem%`0&@cYa~q;)wFWg zROSu`H{AHqF4!1qWihgrbSJZxawnMoS;iRWE!}-9!nzpvmR?F zEpFf=8?f5qxP!OZorS?oh5UR13gfT(tgOlvVxF##krY^|0c%H?(SRiq9%z8_5iviY z28K<$%RT*yN9@v&we=7R9~biL-C+9VO3$F;8aEoUPGl;g5$hpM9pm>Kvv7_B3U+?D z5qg}6kKKAr;IegW!H?p2H)gE~lN!s6u4>G>Q25WrtR-Q16V^_qez}lV5g6c_ut3_1 zy}b!y0&h2A2_E!f#kgr^-Mc9Z(CXrYta8kNPEJ#nK)Pp}vgT6vRv};BmQ~Gfj+J=x zX3U?YU7Dd~0hcvHpA!}zP_vHks~7v)7Seg7;(GD*AD}BG!3ss}-JCTc%xlh~rGc0E zHBhA1u>glv!_WzC!Q!MVZbx`Zb5_%@ZpliZy zra{Wr>{hHH;lWm{rL<7lve24^kfc>>jCsICtyxp4QR@g#>yB|Vp4*m*vjG0Z3Tjz2YbfQ7_>oqS-;ZXcDGiSp%mBdFF&IIBGhz zs~jHu{2fmZ->8x`){FcP=O4vd71sB^G5GUX=8(RnNafwPJhft(O>8Th;NrGc6CBDn zcA_TK7N;t(#XpEL64Z`$l0J<*qB;e(`ghSiJY}251FbdfSX+9q^;0|aC}6|(7!ZL| z+Ov2&y@52Q@z5^R;jv3!b!RBB4k#X>F#EN2FYzRd&**^B6??!Jc3=$%k99y>noc9! z60;>>19u>A)e(JO(77@VJVx{8*m>`1{_5S_vsPdDIDfRE@*eV8pDOb6R)!_ce(Qc zi5L)IG9wWa0dQL)S|0FLB8#Nwh{2s%6Aya4VO&0feI4i?VyAjeXI7rXYdfPQ1Fv;P zl>sXzv4$S>9K`tP2=8B&1=9mZA5~|K%JSSKw0WU{?~_w|sZ)rX1lq7JHlSOj4$bmi zP?*5fE+|Cc`YtGa5%Uq>*cmaG*7x$Y78rtm!moEm=E3{$Ze8(MK(NnLIy(R4kV7w) z#GbA)iThoVdn6H=Y&nPRpxv;A~t@mvd-O))dgUCq`&`4R16#D(83H1y+|#bIIiQ5}M6= zVeKL`V@%DXQ*qz?tSk0c>!WmUbMg9=pY6qBVA;1fYa{jJP5sn>)N*@-ABy#$&BtTIg%d`HbQq4>#HSf!6 zOOpfm&3-V6UEbCb`zhbqmvu$lmwm0c8LzzzlfI2GnRoiJ#!&sXAMOX9@(TS~A1NP) zk70V^4mQ6(D?`t`clT$FX`l0N{ZVtkdMT_2;i44W#{vIJVSNeXQ&}qEu2ig2fPbfA zl>&?%z`EM$iJyV5(09Y#=e9xEeMlRoRWE?n&jVPphtOJml;8KId-`Qwug5k#Y9E`1 z9tHe3jdk{*-4w>=qxer~6n?*{x-V^qwn|nAx0%`OIS7p=ak}nj7P}DcG=+x;;^Bp0 z_E7y`m`G<4lt^MaMp_}*%Ukz?pfDXzkOZ;cjQcDdEf%V+2BED9$zfBneLU)E&mcVC z5%kgj(51QWU{*%TJ~d?pBN65Mt9bh`axlhU5$}X@$(J@+2lAs3$!K5x*Ce(`n-u-_Kz6JZN8xarY>n zF$yg(-oV~HpAWrC@rnj=E@ThPSgj3=tAcrCGI)+tiMB?6XkcEWjWx#eqw>L;`w=gH z)zN72{AATcE2*5sq9_5~yg*e#_}@f25TJUQU^!22wXz5E!8t?=+k` z%L+YMlcR=6CPYR^9>uERb<*Tf=)o@h&?wdo;Frmg?6i}}s3o)qc7k3_G(a}Xhvw4^Cm|AIvuT|KBpC{vC zI6;&78#l=NCdv}~av~;AB;h*=OF3-PZ9j>%veQcv<4sxcm`-Yu;Orz;SM182jOiS^ zb6ZbFQPYkxd?{E|BwmNO^K%(Eio9bo^QFD8hbE(A(MuL%EB>Q14AtR11;!w0HU$|5 zPM?C>6dDD*|5!X?xAxcunQc_aK9mWdmDQt2sZ&vTLU2F|(4itFaYzyw4GIW zNA|j~3sBBxVT(F@w}kY{YiTone+KKDQxTOhFVEPDFR>e;^19-exOOSV+lujyVmvFx zKfrr6%g#f2E$sLg(=T02-$P#Kh=e_h3EYZBa4*I`E0)0XVhQ*b)AuW;uNULJi}8<& z+4<*Cj__J|`lOiP-(m^;UW~t0jIUfQfhxrkxKm93&tm!k#qx z##boD-z}EFyG##~3B~@jN!v_M{fCG@lLfq}RT~?8bN=G8a!9&&_ASns^g@kIdXN zz42YZ+DZB$(GN`@KsV$f`NIp4ynKU93je%L9y;N?oD(S{#p+I$X`4}#zvX0EgpP&G z(8T-X?bpYygulrBMk+173R*-Ks2Mv6^}_Z8Sc_{TAZse!&t}MJhKV*FI|R+C~Y{GfDKpmcL{S(sPT%u$2KVn0+}zHS*CZ2K&XyXT^a zfunNSAWgo_CdV%xlnLKliaXuEmZ9EiFK1<>!q=qm^+8_g3~Co<8}ao@c9mpT5AvhS zS$8rUxB~B$_SWXJS0EYSofSw%z7HqOr$Vz8zq!!n70@(0vtR0<5n1@>r#wUG9Kz7U zm#<*)zGE^*M2s1mT_qbA*w5F5m&rqhfth)%k0#%zQ-<>n@ePYnU>h2`y7B2NnO9&M z?X!!p;z5Oz9_Lw{#qwz@Svep1uASIbuZ!zm9u=1rjo)2~THMu=C*&hp;Ff$OE8fC? zMG?O;lkGgs)suJQ%#X=8^d!4NNu~G*;u;b3V^)gqC+=aq!dqBE!Dh9$*l^qKhWyR9 zSe7TfrAKT3mHRG4YfpHaRng2>`LKZZ`IWv!;Ujt!KlwJR#Nt-`Va z7Q3uMWnT>EAFpD48NKs|<%d+ZKP+M``LZ?4y`m`HjPa8qCJ!Eyi6$a<29QBd;qJyW zXhSnrv6_yiN`s$X&4$^QHsuZ0pq7Cf*RUZ>ZXuwU@9?w*a31z?plvx85F^$yP0BZu zd^69X%nA9b<;lix2{YSBjeh3mao@`LZW(#NTdc!#WhB>i9UE&qS&g4u z$HovgThB)Lo~(u_yQp!|58~ZiZ#YW^G86kA*~o@=7Mk&R(;0|O=fWLVH17N^H7LdQl7RKx3 zpc%AX#C!tN#%52-LT*HaLW)2?^ZDqTwm_j8_b$`PZ0~p31Y7e){NlT8x)*JIKo!-+ zzbt&qV)FBC4u1EQ&CYjj#-JzmMT{p?;}7wOkNzXaqvkEFtW=srO4w7;Wec0&Bezo! zGgWx7e6sMMy0BhxD=SB-H`~f4*&?d*eOuWWPufEPFQR$$de#PN8o#%VdGQ6?m^YJ~ zF{qRa_{ME)gl2BW0D&DDnZF9J%m`WASy^AXA%i09lhyKmJvS;WN?$A0bl{lGv_a`8 zt$wMri32V?+|EYY0>b&g9c&2UsT~+O%{@=^>?!DNB=--R3L;GOVo$xci`Ldk`4 z>Vkf926bsEIQWa5%%7RNJfPslk1S`(NNGxE>@JM_yPENzfnKx)1VxZ~ibg}Jw{ADO zo4GXv77D1l#c;5U2kv1$6t%`4Hp>5)x%6$r0S&AQ4z?Qi~V=<1^7vS#aQUS~Ml;*~rqFROiN67lp0(=^B z=liU@gUr<=b2a&e_t_W`&ORk9xYTeB;MredY!q=KKV)9}_kO^Bcd<>3#3xJGe8TD< zvB_*AS*b==s*zJ8Nf5k`&9l{y;G6cbnO?NV1*MXIN>sG8H)9_5L!9g}q5+Ou{@Ct`mXNo=Q5C*ikmi*cwHo}WG;vl;RPtk&>J+C#}6|bibGd~}> zLx*A(2^WtQp-Uaa9ki_w0~DeM7Gm6OUW-pJgj2xp3t5UL_wrC1{`DZgumhD?REWZ; za|9mpBTSbHw@3jSe2`=@h5Vz;Ps;C*{LVohatI?R47fX*4#^lb1bqkTj6BK~*ml?B zkB_pqy=W^C-2WOa=4aSS%CH6Twx6NJ)Nb$a^E2d5A<9HNWg?HK{eXs&G~2ZXKk_LW z*Qn!o=muNsj5uESMvoGp`C&XjYQ5c!tcOQ0zmB zeW(iCaMI&{oIvdgQGXKkr^<{W5sF4d`~x{w3fvCLrjAon{klPa5$}rx6cW?hG5HnLDWv58J6Q?6<|S33r^1J%g-G-^A?Y zGRCG3%*-5NwRv-k74&Cw?JOJPWA3m5F^>}F8=_qUx$gs8O@8hyZW58sowIDZt$7q5 zaZci$b1a)ryo^55V+;C7WD)b_h38pS)|~cAMo}K3_+RJQP%lA*oJRG{JcofOy9jgP z(iZ%35i$Zyy1=qDxowLgoj4>12Jee3T+&|>{iU3)IOssW;UZREBFY(((a(JT-g)Zd z7xBg#Mr&STGi|k-^4%sze#OT7$lYEPW1Wa0MwEM(SYz(?H3k!?m;ahgwk6cyZ+(qL z0Z_ZlM({GQu+%{3SIzUO{VR-y!x7i(H#a z?$ax%Mp(Xl1?!0TdOZ26#GC?ZVzBDEJ|FxYD@AEd z`VLhS-;h824s8r*e2=y%_o|V_;S|kmo4z+$egCFeV=_l(W)H^viv)%KO!-N=Xrqx*2%DA~C%cYsO z9~rIq6I*KYZqDEPiM>r2_cNQvx2~s3`)#4Gw8qhG^cu(LDk7W1YUGj3sbT4i48Zwv;Zf8gm~!*C4Ta}V$Bfaku|s`8Ng z7)E`bvM9d%J|5{3{WJc@@y>lbwM3xS12l5r+dpWv_~8dIh=Bbeb5b04p7#)K2+W_i z@C>^9-_q`ezu7GNDGa_?*+f0jqImB|7@?pw;SoA5@b)9tlQ8xlhJC8faSyuwAL-)5 zfAE5dq8hGec;q7uyD}c5z@WSOFbWu(e3U4m`vC z?xJrG`xg(65o^c4$VRg^-0vw%^=Z~dwDq=Us74pJ;L%U~-a@G11c5;)7``xr@Qn50&^=nmle|K#rDcp3|wn#xmUa;F9%6HkdY)Mq$ zE*@G4kM+Uo2_k=zx* zIkd98{!FCZ+FJ|s%o<1A5)pM}DJ_mn{7_1IUDqGgGo&4#?61WV9`)B^2;E9+g9we% zs1)G&(%JyRs4^%i;O;WW0Whng)`pJ@fKddF1!&s{hX-n_2|dedsrDi5P{jefb6NcJ z!JM+l00cM6YLlb@d$a$w2lGimT099(1Zf=zeaoTXf$8P6PJ|yI>_wK0x@S?Soyuqx zco=R{Nj5YX1rIzItc@aUSsu*;c&xmZL0G$jmP9zcg4UPt+X`ALVe=5A5tqQ1g=ozP z&xF7p&`}Xt2O?|Z2!E@n;eAm8ZxpJvBAghibt60%s`VhOR!Qqee@i+C=+$Yc=+kS? z^3Z-b>q&oU>T5mp2+vN#pUgtDYGo8YaC~KW2K=HjECNHSNItWQ)|SHiOngxVl~bc9 zZ}Wyk=Nnoh3Lk$1?ILU>53ULifRn0fo$O&FQQrRi{i>+@n^m=8lBmRU=Xg}+S=G=0 zp?Ra4Hb)AAc@F+Ei_fi&LWJN>bz~ZtUIR@Kc)kV-4Olx&GrY*OafT`YcB=CeVOmF$ z`PJ0M5YDZs4JG`mCOR;%Q!OC=JaJboj2}SH+FEuUY%zjQ-!Rp6uRVz}5_S4O}P)rcq5)51t=LOrAoJXsHw1gubB zYeP7&KAI%OHfo(ii6lnBz_t2XEs}XOKvMyBXn-aKoYz2lc&&k!M&T9>wPeB-4N(H= z9r!&H6C0uTA^hi8S}@<;2ni$bqLDV2a86?sC-A4n$PO^6iMEjNyC&Kk!huaux4;Wc zQFXu;&Ct4l%bH>E0^V(=4J1r%F70k=E)#cYA>(DWK)Z+hatm})U{p&KuWbNd*b;Vt z-?c>b0jst`KLf68g=z`okEye+0<#t*YVV;Th_A)%Ny*8fsd+kw z9D(0=&<45W^Kw35%0B zBMxPU@HcU2`oIS9T3;`UU_7K;R&0;4VOoM#jeirbl_G^d?;PIsPl+jPzkjVnPbB@(GoQuQdyp; zrP)bkaV35}QLD_$b=Ibl;O)-Z5hmFfBv87m)?X6A+^@)9p1;{un?g~2leL3{XOmH|z_#7AmV|S=p+5t^@21W7B1=X~ z^7edZtqI@K9X$fFXWg~2gjqc>(+Zt9(m~>({NEm0BgrKa*ZQ2j98d14wUk^};+CJc zhwzVkYP}@agSfb4tr_puON%DEyce3^u6XX!8|eXi^hR$6uI`OC3w+WW6$tFy2U8mH zeb8BexBFo105<81p&2-%FB;dSSbnN6CMaM~KiCJ38iEB%PCv9%1P=GZdgKybaxN~% zKM6w_cI}T54uXUIwHbshQY;00<30szpsOk9+Yq!()t1VbmHB(AF!?+ceF=h*1GL42 z&jz6JQaBBM0uQ92lLGPbEQN6RKrO?Ik~ZF>GPvGfdxN{AYxO1fA#wL>+5LH!baZOy zuS&-t0Q4Fp)0sR7^?>l*LDHdqgHdij4dN#TYyG``8YJ4~F7t{SF|mk~nvyk3~$5N${hq+@WoeBG(Zzy!+tHYr5tu$2Sp)txTAL_i1@cZ~&}rt3!N35)_hT@~0At5W zD=Wuh@Iv_USY#2{Jsb4`T$hcuOvxHa(a(a%X-!Gia~!e@{9qi~AkbyJ)|#-* zc(mz#Nwkozz&DTA-k`wg@o1nx?+Ix5!1M`F25z39^|kLyLcW6dy?BpuJai&FfMEJW zv;g44iD04|u1 z+5&z*A9F0l$4Jtp9Y&I23(#I5IJE%lG7=ci$!y|fyuC_xV%~r(*NI{R{^rCO25htt z>owr4g{WcR&4t=P88_ep;@(_=?v^n6(u0|sgvUMbT^)|-WORKeTlG)avKDYGc zz1N`M1NW}MdKdU~4NCV>XWn})8X|DlS~v!LxfXK-Fl(JQ!TzW-9Q5bM(mhIZm-Q$e z2-4Q01p`m6hhbpI2FXv~fQCU4j5Fi})PuNfBgPBp#BRh`T04zz--twkp6?)0VBdF; zS>VZcP{qKen=p|8cWy$}0=?eF>JvEfT?`7qAK%ro343iu)dIiWj22!y4NjKkb+(`p z4%mVg4#Dv)(s0C9R13nZx5}``HY}|WPTz*o1|Hpp6$2SC?vv9=o6wqDZ^xYgWI5YW zBESpVQF6fAJCIS};vML2z`u8(Ab@>#O8%3b(%Fz*GL6Z*WG1fe!UWR38;{wIc)%UI zF?s`^?M5>LrtCrU1Ae(j%A?+cZwN1a4+9+VxA$NV*roszRMuF&x&U^8{}#YMVEp@d z9soT3KJJgR#-cES_J-rw01_Hm2P<6mTAHgf&(T`vN=-7vKCUC$$ zcn2)phsg{Wu^&%IfFJC~+yxB!7&8NK*2ieqz>6QFw1IvHv>JrX4xmi~Cmp~r4m@^1 zi}oT%jOFC?jE^uq)%Zj!PqKEOXiW%beu8NV_}M4uoIrLELpyNrLDU@Z=t0bNK%YYx z%Yc0jVJ-ybA3`Suo}lpg6mB~VUx3jj&Nz$`NBHVtEzW*E1%(m7iz<5HtV3&F}l zR4wpTA?74t@(~$6d_+bpa}b5N2R>cG0Y(d&pigmfoG1PX#gu6 zM{R74<1E2Jmq+ZCkDx}U!vhbaOq35XkfEbXvx65Q|N^U z67x@^;no<-yPl?OjO9yDQ#Qu(!>7@d`uF4>XS4)HXUFkOf7T^bdeK#kC9ThC4)5$S zY3YNat9!_7$l&>5BC6AYoE6e_>*)t5~oiJn<^Z0$6wz zc?ZIyj)bC6hkm2gV)A@HdDN7z{YI-x(hJ|<&JO5z4QpUv{5AAq;Jj-nG2my{&{_T- z!ri|`s=)T&YEgufzeTgF7)ww7lL$kd*{O?iX zz@NVde|sozcU>FBZp%k*316Xk<$jArxX*R1yhp~Ms5}EIFRr5ifN?h@@*7$M3ZJ{7 zE%2bIM*LUYAK+|oBE5R(&4ST4(3VG0V!pSKSk@1y z=!;GG|le_;4eXw1OXKS@(}e?lWhxbe?$3OM&?gz*Q=c;z85 z@E7!Mg!}#iJHUOvz%Ee#RpOvuwRC%ACR!R6?Q=2q|7HqW{)Pz$imQK<5&!v3%an>$ z`40>2)%fz?@rVlw4}O;loo-=PMfj6jn6`o8f1sp+v;L4Nee;Jj*zh(667X|x<95MJ z`SwbCx%@k5!Qj*Hpyq)4?qHk(YJXyp1nl)E`WkTkpJ-peUrem^7fJ%*oWG>qbAOpR zzbo}q?qb}5yzs8H>vs>8fpFh@(*FDRP;v;ryeCU4=Dv)-=)O$n!hMuH?Dj0{-(5&I4oqM&iJgf1|krzx*4`4p{3E zItOt4BXkzvfk$ux_~H?q2gd$`R~zFqP(9|0r*Hnz>em?pU0<&IW6@I1cN;iET!D4+evE^L!1%&Uq=pC@Sw_X8(ft}La z)uvCurz&!6dL`T9XrAV-N4w@3f8bQ9z6AU|#3o z^KNHNe+%%trf&o+)J60tZ#@s86W;n-z#t!e1Hj!^Un-M7OvxXnh%L-Y)Ablx9w}bSRfSKh41P1Fl2=QRO z58y$t-obVjr>D#7?Fi?T*Xt5~TwZTVALaeKyk3j2QU$#VVY>=?G<~GkSwU}2c)Eh# zkkBI4pxQ6Hv6nHO0k0pE*qIV{2S5YeMsHmq?*e6u)M>sN6AI#)uI|@+} z9y}{dPw*T%cmzH*1#wg*eGsYfO8Nl8e=F%3Qr(}_{rQGUdIArwqIVVRpx7}=t=z08@l+;$N4v;FX2@!Uuuz7E$Pch@!byCx?ffL z(zBXW|EQWin9?X;UGGacsk)Tks4nF#YFOslkhwNwu9JtAGnX)_Jv2=3D_u(! z5^=odL|wh5*Cd=WLPAR~WD;a3gyOv1K}q@A6O^l_T_n#Fc1lI?}OVzOR2zmZ;x zPin0Dkm|z5GRm{Y`UI)^0jYja$d7h~hZ~ycQIh_M=#QiYqU-R8raB`N&6=Xk0N-h< zk0LD948=yKn@R8gXoh+gUYsNwC#ii`Aty?Y8VfjI}i5UY0x#NEQEv00g8 zvB_D;bdu>u%;wn^%@ZbWx0NPZx06Y%Gx2#lnM8Vf9q(Jq@{ii#TBAnVXo zA3?aUD~b?UCK-JbI4v3N4R|dXeG}Na8*Bonc7siPZQ<)~ut^8%U^DRwpB9VWceJNo zRnHS2m^2oWp9`sZU@6m6uT~~CH9c*_h}2Y5zJ%mUUdy#q?8M8+mU3RH2U15W(|e$* zfZy~$YX>&zDZ_a^^*$87XNKc@>Afht*~C}9P$CEq=#8lk_<3*S3K-r;>do(ixeVc3 zeWcxveI;)1i&6mZ*-ysL=%@E)=65LI?+NMey?z)6p;fuR-koq#f4!&FI#0PekMBUp z(y+6pBQpn$!xzC(DBL>*>iFWs;1m=kaAS&|%*+o}AlhZB)GEAXitgY`QgOhyRjM99 zdOcJ1ZiKs2;T%vKfH?x#ZUCHagfC4Fz+3^mGXRYS7@LN19k?wGnFs0vks08qfhaWK zsezKOla9hfcwxHK|0`WjXX5)4FDV-@r9U?Z>0tpQ2S$v|PRm9cz1fv&t+fcMz;E18pwF^U0 zPYBlNu%mf9$puVw%n@tgwXs9T_-E~ z8L*B6oSlYaqAO*QQR)F7!>&bxTBlH1)wIlQ% zfWJrR8Gw|LdVj#7k$Nhi{3yK_VB9FZH{iSs)yUKbBeXPA9|m}wiQz(gU7{!X+LKor zt+(gp278sZVIT5=EMYEiv_1s7(?{z)0hdRMn61VL+1fE8jeo}ILm^8UD^&K4)w2+) zo~^e449-TQ!0FVT2onC0t=A*0I8L8Jr&ZUCLt_9w8K+MtoH$-zNa!{}&m&wlL0?K( zbE3Y2uyCS2iLl8eeHP*2N%~yE*va}d!cQmb^9d8Cpyq(EkFNzyL3QJk1}<~;(!AbO zy(Odbu^2JxT*Ylp1C-W-)$51cN!~JoF zXxbvZHYw~}gl-D-S&Z%v?6??X7)}N6T&%bAqR%NH;*_i0dmSR)>+4pE*I1&5kwWqk zGzF;`%=a$QJJK2AfT(k?=C9T(U}F^i4feg|I&zKwqvQBLx>BzA z;4gn~DdquSnPuohz{$(dGlAbPlYE<8bR&c}=ISE}eV1dz1x_^a=5l>Fg*&Z4_W~mQ zOq^kMc~kG=MISDJ2OF>Q{#kIopgIm$;Gf#)KjrqnspEfud96I5y*dva&V{?L)D1w^ zN_{xsyOsKAKw`c=3GhX}h|rwtoe_fhN_;oh+t6YB2OLXUI=7Fs4qoLEYcP{ve@ice zDNCH@k3EK_63dsb!I}YlDB|S5jUg9NQ{P5zfG6KZg9g@Er4M5wQZhwK=HY8}JP=!@ zmyv7_V)2~UWc~Gs*V7xKr>{om10Gq8!UVpt22~4Outpy)4Gbm&gZa!YsFI?!dJWGp zV>0m#E$GCrl`idAi;jk{+dAA=30Fo_oYDM;4RFP0z3#B`l}&uMbP>Gi;sjzR@R`f? z5Z-x}UX6ddUJt|_984}ITe)BB^;4d7d;mW20V%wE0Hq*gqSw zVnw+AJIExCrRTn*wnkzo0CJj4!g5>Ch=CKgV8#WW+kzPq7`7E% z4Y+74svme~E0!m~j@zXE)@?HEwjEs)JnWX?$=mg4mu5U=2PT_c+x2Rm^kD?}UY%dq zj9N9e<1aYfcj)xpgvvYgW-iV4L-mSljyM-RAM&?CICw3@BNaiX zt)Y>r2s%>@VzeSmi`hhov(Mvj1&xUoA(EKB21Gjh!BUQ-^3L(@-0H7 z@s<@b8emI4#H$oRpZf-}MiF$J8pJwDQ2tGm8;KDIso%jBR5n|LNMoxN5=X2d-mVB! ze-{zrK=p21L8HJTgn%)G6Eg2MudGzg-%t2_*fC9$%90wlhV*QVi6*Z zV^#>~tc8J36+tJfp?`u1asK%v5jptZ4T}*L&R8KFtQHZ@DT0ns!$OfF=F5T~Cn;|dzzScFL8TPuV^)F^+*zgNr^Y4V05=;$;weo%yI@@FE%8R%bd1&!Y= zLZtDB6~f7BA-4MuSw0{|aPDdkxU8&F!Xb_%?FikQd#EEAOSJ3dW2$6=L z6%uEmA@)~L|v{3Q$LRgaqM^{uAuRjMF<0{tdKa64DlL8nELBQ zCFDoI%m!&;6R8j(ENr$y;#e{)Y*mD*zk>*I%6KQPps~jygn{Enk@&FOy`0*#Wg2rKs5NRB-LgHXD#K#n2>VHOrIEnl@uAuRSMGVWK z<;E#1h(pRkent^=G8r1@6hTLkK@=&%Gy2z0&} z79J`UI#mqfks?f!Plyo5hUsiDG@e_8NaLjyGOkMl|HDbd68f%0h-1TUxS~ne!(xO5 zFDoQY6e9tq2oWLA@Fqf>|MkHYG)h^7Fi_eG;b^fC2Pk5;B+4pco;eAZQ;cb{0ukyQ zFw&@G5h9H$R>+8uCaWrf4iZDZx+3TxF^HN(h$FzYBoQHqoEBzRi&XLx(n4KD(0O85 zsILe*KMbOwB21G_h!BT{o8k%@Ei6KK-O37yGo9G5DeE5bDSg(6HNrxgJsWaAtWYsriAlDKFQ!i%r0knyz? zUzG%v|2LBPPN{q^iJOY}K@vYJ!c5~gMVMCqP=smpPeqtU?-3ym1>eUNjlX|ejBxZH zD`Y$-d7kl95zi#?QW38tVZ%vJY0?!}h+1c(FI9x&8NfC*X=%R?OlIX689+K#-h(40& ze}>whNHj$QiZIh1st7Y(LlI`WBNbt$o23Xd-LXW7Gu%0Jh#SdFuo#iq zNmj_1EXC6lF7>!Ni0@`X>=Kg9O;H>b%jzft*%srY4t54)X{4= zzQ!Vi=8FMYJOV?Z2a9;-pF^MI=h1iz2#8qPrr@%=S`*nZ3S>Fmsop2s3wSg2=HB z^CNqMl!}?Xp^7lGXDGtV-bh85*~?Od$X=c?RuN|I#w&tyN9})-V$AGKB_b{XKhtmp zjTsgp>T;G9GG3t1m+*pNS;zLjc`SnMph9)UluS{;|gxA zvk2kV1}kK2l;U?4u~`z^6tP_ryUtSkD{k^VrD7WSKoO>qj}&1V`Iv|r*xYX%z!ls& zWD&xxLMvp6j}alhA#nVx?0=tIjEHd33K?JE3ieJbf<8I`;=Ce?BymX*UrFMMBCbl} zTSa^)i5rrj{KE~h`lC`Y)BQyeX1c#C!c6zJBFuFEQiPfAeMOk*{!K(_13!;&Mg8xI z#faQLwL-=-lIIyO74b?EwsV#RS6o5Et_TlFI26Go;jIXfXrAF`5jj>er7gxVlL=IW znM^rFn8{R7gqchz5#n12m2d^m-mnOfwQ5$#s4m4d&(Zy_`gj5&L@1RyQl+jU>Pe!Z zA{t4esUn(5qNO5QNg_rOZ6wi75$$s%6Q>x{^G=E|<0L79zViTAlNDjQ+CvehtGyLr zy4p_>rmLyvsQrloFnt}URNCVT$qXhUy#s!RNFu``M41k^LdFOw&QwH}B*rQtTM`o# zF_Fq2X-rYfRH;IxA`_hKnSRjc-iZK0LstD7w<%%#p%L9=klQCW6N(HWw zXR8!pdbU;(re_-zVS2Vn5vFHbh_DU7&sJQ)=njiO38Me)vVz8LDKAjO`;yqJ2>K8O zEPSkp1CltTh{KXNs)%Ef_)HO>OX3Sb6TtUOG2oFg(6u~6ntq3zGeu^-CFRcjadyWyP7}NQ3 ziZGq8pa|3XP(_%&S5buNdo@LvzK1Eo^u4wusQ;VJ*C9rH>mm|Y$ZtK15Y^DY3Kd zoGFSiou5v`u6X=V*}#!m79px(jukTIO7Q|kI3=-I5lbYIs|eHLn~IogGWm)zjl8W0 z)5sbk#FsqQ;tFnUun6JSJ66cpB*j}4u~iZ~6tPnhdx*$U9|wWS50nah83e>WMeLWv zCyF>Ii9$sjk;HLDd@6|(ia05WQ;I-N#QbwsF{blHiZGqOqzKdb%Zi{6o50m?6k+=Q zogz%%Zz#g_{YMaZ|3Y6!F`fTKshH0Ht_ail+eFaUOpH6YLb`V?LR7f1OTtePr6f^C5%f_L7!49c z4rQgBWGW~XGjE}aFmqEy5oT_xDMI81FWePjW~R0x%*@nL1Z9TipSp@MbJIW(W^NiQ z!pu!GMVPs1sR%PO(L{(Zro`Y1skF5SQBm#95ayo_QXX%~jRZ+_Rs?->1s0MO(M=LP z712u)eHGD95~+$9Ac=HENVjr~A&M~_$xwvp$OuK4j$|srbYzSoOh?8k!gOS!B1}i7 z5V0?b=AWs!MD}tdW4?NrX@!hgQao1?^CaO^#6n3dQN&V7ELX$|Nvu>vz9imOi5jaU zvsS6Blf*_vyd#Otir6BF?TXkTiQS5z54a#}?( zDdM;!K39ZUf?p`YEVI*!Fw5+mBFr+&xu6)c(7sZHS!h=jVHVmoMVMvwy&}vqyQv7X z%zjdYS!TbQ1lqq@Xt$J#S!j0@VHVn5MVMvwKoMq{JyL{OW=|Ahmf15R)Q4(l|G_JZ z5&hByAMKEG8?I1w?uxKW!b=ejN$863mV}=oN=c%OBIpY@FdC$Yoaaa$OnJqa=~h&P znQmo8nCVtkgqdy)MVRTqoX2PTtNSa8wtdS@8WdA6^JB@5N>s~LPoL__fSMnN%T+brN|kVB2iR?aEOQyh44~S-nI63?eDAi?T?>lfA)ITv-bWy zzj=(&0&!jx(gFPmR@NYb6*7cig$yTHAtMP^$S8sqqR*ev6f0yb!3r6#u)LSNOpqfv zWl{jYKa;~KOixqr?R%yper5n4KRb-v9DV;K-#p5Ez(RsH0FsC|2#Wzr33iQ4g7y=V zQTDg<96t8nUdbDw3=X;45DjMqzrr!sWK|vH|fQ2k`Nm!^myH^k;-^ z9wPSzMY{}1*14&}NhA@=+`6-Mqf zrq2@20nQV&(~u;%M7RvNO1K8dA^ZVIh@=IMlp!y<4-kdbrvwS>twgZ(RwdYas}pR!H3_!fS_E5f9fB=4sz<@dUwg zq!BDfkKKCz`36osWlrkqqah0ZLzNjv!c$=LwR-fB)rg zLSKa?c~L`ri>9%1B$pW7`cgFFpDr7Fc+Zfp9fjMkcEIngf{?7 z2ulH(gtq}J2=4+`5wZZQ2_GoP_g`x%A0Z^0V5{Fqu=RdIu=RdQu=Q>u*m}Pp*mA%0 z5VevGu=Va@h^==I!PfgN!Pa|_VCy|hu=O4#`1Q_m#|gSzeg2(P(PmigM>!HW6TrXQ zXT!*y!}NK=1;8c3Wx!R!H9!vG4?u!+fzoTr?>}?Npw@^UZY?+@VPn}(5l0MpG0EdZ?uQENyW z%EN&61iMB@f@SSYu&j>}ENM4_C4EZaqle`sO^#$IdqhEe<-Nkl^~Ss-qyzdBEW;pz zoic=Arwmu9K3HC!l_R<6a{=U<^7$VXhGBlRf^Qx+1}BUQ;ENm|Ms5P8ClOu-OeIVM z%plAJ%n1;=IAneh_bT8u!s~#=gf{`p2-@FF7M4k{!j}`Q)RhD)HOit`t*Z%E>l%WU zx{hF_t|wTjn+R6wW(D8OY>OO8sh=6x^LIPvKgaw|!k2(ugx!F>gnfVmgoA*?gzo^~ z6OI8+e521FHd&Lpeq@LhdWK+?og-Lf=LuHXuLP^?3c)J7Mu@Dm9Ez28U7=kEc}b8a zV^Ucj`Nf033G;=K%a7?ogu;NLgczVWp#-3m{1V|Bjc@}cF~lxfmSC4jCfH?C33i#v z1iMT%g-iO))2(tOE4eKIK7Y4|VVJM2kfMJqdnZn)8^AC9?l5xoG2M{R2+){tAD}70 zGCmj}3Q1Z9ah9aDf^~-TWj`FiSJ5tvTzff^RdpnE0(2of3V58*4e-<+eg55ejqVJw zti1@9wJ*W4KBG`hzozz+BPnEH0AFWD7`efi9!3~0NBaC9NqG(-FAyTYiv+vIKM9ug zC4y#^q%RXJ=~RU~2gu7bM9ff#RD7YcI6oWna|!bR3kVAViwJK3mJpT#G6`=3RuJCx z5V=*9EQG8kd;nNW_y~|qSP$4l_!zK-@F`#$VLM<4K)?R%gnZ4AU4T7=y@36M1As$> z!+@iN?*Ts$Y}bDz_-&Tw-x-SS^Era;^Lc{p^REQk=PLx;=W7J)v&$jaHedG;=?!7~ zoLgGb;SRBV&PT9)E=aI_E<&(UO_5M$y*glsf*ghu{Y@bsV>ggYQ zRFoshQ6+%Cm#c-5yA{*75o!Wz8OZ0qHsmgb)CJThGypUr*hL!?>@rOVc9~`byGjcJ zt`fOcD%Nb!FQrWYzm&FNn9#t^$lPAD|h zd-(t&P6hDy@|iGlhcJDXa0Ku(;TYgN;e?0CU8I~s$R)y0fGdQb0apnZ0KX9~0dfdd z_;rPyx{`!_emnBWF9P!X^-IZz;s4GTR2VL830)zakQl(n$HFK~7gwk({bgJU#Fq-- zi^8QsOQ~}&d_!9|g5OPTeJ~^c(Aur$#LIFVS zh*B6*hfowymrx9FH$mHS%4Hf5N&^}a$^h;mlm|2p5V;h{{Xv{|?Ubxd2~`2j2-N}2 z3EIL_PH9P~1!zU619*r~4-mDXG=Q`vGy=3IGzN4aGy!xXX!B1gq%)xf;88*=Kvx6# z`lGEt<(zH|X$yFg@CYD{pnXB*l=RFd=~^aczd z*qxd|uv>Acf;J0v={V)t0RHA58Ah%@rk^K7gCH+Zh5$wrh67$Cj0B7$i~@`&j0U_! z7z>z0usWys`(L|{x(NuGt|4egDtj>_jNBwl&mvfST){WmoQjC~0sPVzgpqp%)2|U` zDaiAG5hae0#f15QC4_~5WrRh5Ov0OhcL>V>D+t>1RF<~VgFgS=3dkyk{0s0NL3^Ld zIjafU^;F+a@{Cl}4jND;N?;{)q>?a%t93-3s93q_d5V`Lt zXAyFg@C)D=K|8C;Qhp#@2Am{Z1)L)M4md;j6L1!w&!1cyeb%2Dk{58EPyld|pgmco zkV^z@#42!wPz-RDa5LaHLTLrL|8pp15b`IXJRsrQ@V=w~auX^6@)D{7@)NX|t5jBy zP!mwtL!@7{YC#eiqD@`poEV`VpctV6pah{2pd>+Cy-JSKgeHJn2-@jY@Bgxt76>U% zXa%T1(6+B~N-Ci(pc3H`KovqKKsAE)ft4K96(WDTcZJ->kS74Q6Vd>+2-+T2lH5t? z4Y-To0QCs{0QCv-Df2)7XsDuXW8ENx+#A4u?(PdCHw4p72*Uvn5JmzXB#Z*IAdCk5 z4G_si$3j{&#Hwhc;Cr%8Kt#I$zN|;W$hV-Cz352Lp0fh~AWR2zAfQxuvQ?#2Hgx< z$B@#1Y(g2p210qjCPE6}6GA1x7J@eHmBnl&9N!pu*{-rhe=Af2Av*&2ck0V9a<^mp zYeH?nZh|G)tMFTrywpX+{s2DX!7!4aKVbe)5Z4g!9pPTUQNsOzV}u6)KMXaN6C-4sS)x`e`88b1mtO9k-p zNnzwhW4a7sET9}={3d+gmr-Cg!O=ygiU}}gv|o_`>%&6TM^QRupQ8rumjMZ@D-o~VK<-?0bA+1 zC>+tf-G_*-3XzK6({7wUfcYm0hX84WBY^INV}PE76M)`?Q-HpNpFGI-{}ijMzk>FM zcE8}9K>>W7gTu&O#Pm?YWx#NPB^arojicQ)M2rf6{%=tjx*W`pA=nAy6tsV|OORf> z@}5ly;A@%~MlKJgUnb-SOd%8kOanxcG7<6$Lv8}hB$NQmCX@oi3AX^|5y}BxB~$<` zB>0u+_x~!|nc7uC$eRKD+LnfqtBUEj2-N{^6KVpM6KVn8CDZ}@D?sGxL9&9l27vbo zjQ}4I8Uxl4tnhUTzHM_;M63_sSF$mToHoFgH}T{B^7RiVw1jMCNNd2Sgf@WB2<-sd z3EClBvVK9(=GX!|36BE4B0L^Jc2S-Ld_#B|u$Q16vnA`dgg$@+gml1v2>k(v3EDwh zava&O_n+S}?VT<1Jwvo@w!m@1NWclgD8P?|(SXy0v4Ecl+D==No+CsPA-_;211=Ek zy}YF0yJ=5H#D53yZ|=1)ax*dgJ3+f|%SHbnSb~HD`uy=7wC5uvkBA4KGG7?Eg_tft zSOh3Uump(;UG(9+1Q9m{@EMDTk$Vf%H%F9rAf*WJ0+I-;0A&d81IiIT1SAta0;CYK z0TlzZbsHg-gM`YfDQG8ew;2&N0{ErW3?sJ{(|34SGrv%*d#;N9Z!4zy9}7%Q>^p2k z>eFf6(|h*sF<4rNJ}4=3$14=8fLik6@k2#o z2K46bFz?@f$Vy2H<$MylciGy3*R%NUW`YiNJp+&!$f zGU`Z*?|dM!Ocj61Ih=A+zrN4*?D79jNQ!Suj3uLlYVn^ELpjOu#Gnzu zUoRVbRPnKLv0lWh<$xW^-+&j&1OJ|U1D;6+Hm`649J yu3oK9YHa#nXD+11>K4qB{|lr~S@(XtVx?GGd`iVwjlTw+tmsc)Q?61h%JVMeta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1474,7 +1474,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1551,7 +1551,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index ea1e2a950..f69765db6 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1423,7 +1423,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 78bdb734e..726b4744f 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1423,7 +1423,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 291697340..b2e477e89 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1420,7 +1420,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f20b3979120>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fdde1d61120>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index 1a65632fa..8dae05cc4 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1409,7 +1409,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f20a7755f10>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fddd5b45f00>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 303866cdf..d0ae25b9b 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1536,8 +1536,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d0730>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d06d0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b6a0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b640>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1574,8 +1574,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d0670>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d0610>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b5e0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b580>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1613,8 +1613,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d05b0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d0550>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b520>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b4c0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1651,8 +1651,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d04f0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d0490>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b460>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b400>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1690,8 +1690,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d0370>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d0ca0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b2e0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b280>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1728,8 +1728,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d0d00>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d1150>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b220>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b1c0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1792,8 +1792,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d0430>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d03d0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b3a0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b340>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1949,7 +1949,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d1090>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b160>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -2008,8 +2008,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f20b37d1240>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f20b37d0790>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fdde198b760>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fdde198b700>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 17d4ac92e..39e702bde 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection", "demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/convnext_to_torch", "demos/examples_and_demos/dinov2_to_paddle", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_tensorflow_to_torch", "demos/examples_and_demos/lstm_torch_to_tensorflow", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection.ipynb", "demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/convnext_to_torch.ipynb", "demos/examples_and_demos/dinov2_to_paddle.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_tensorflow_to_torch.ipynb", "demos/examples_and_demos/lstm_torch_to_tensorflow.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Credit Card Fraud Detection using Ivy Framework", "Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Using TensorFlow Models in your PyTorch Projects", "How To Convert Models from PyTorch to PaddlePaddle", "Image Segmentation with Ivy UNet", "<no title>", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 168, 171, 172, 173, 175, 179, 180, 194, 197, 207, 213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 580, 586, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 722, 724, 725, 730, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 779, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "notebook": [0, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 46, 794, 812], "i": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 180, 192, 194, 196, 197, 199, 200, 202, 204, 207, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313, 315, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 427, 428, 429, 430, 432, 433, 434, 435, 437, 438, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 482, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 572, 573, 576, 577, 578, 580, 586, 590, 591, 592, 593, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 798, 801, 802, 805, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "dedic": [0, 789, 821, 836, 847, 851, 853], "task": [0, 1, 6, 48, 640, 715, 716, 717, 812, 813, 815, 819, 820, 821, 841, 842, 870, 876, 877], "util": [0, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 45, 48, 57, 80, 198, 376, 447, 631, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 819, 826, 830, 833, 834, 837, 840, 844, 845, 849, 864, 868, 876, 877], "power": [0, 22, 31, 32, 56, 57, 58, 62, 79, 80, 81, 85, 102, 103, 234, 243, 244, 278, 333, 346, 369, 372, 375, 423, 582, 593, 605, 632, 634, 637, 641, 679, 692, 724, 791, 846, 851, 852, 853, 870, 872, 876], "we": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 57, 62, 63, 64, 72, 80, 85, 86, 95, 97, 98, 118, 364, 374, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 494, 499, 545, 555, 595, 617, 618, 620, 625, 626, 634, 635, 637, 638, 639, 680, 696, 702, 703, 704, 706, 708, 709, 711, 713, 788, 794, 801, 806, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 866, 870, 871, 875, 876, 878], "emploi": [0, 14, 876], "build": [0, 9, 15, 19, 20, 22, 29, 31, 32, 35, 36, 37, 38, 43, 45, 50, 68, 74, 103, 645, 749, 750, 751, 752, 792, 793, 794, 812, 813, 819, 822, 828, 829, 837, 839, 848, 850, 853, 854, 855, 857, 860, 864, 868, 870, 872, 875, 876, 877], "The": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 133, 134, 136, 138, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 166, 167, 168, 170, 172, 173, 174, 177, 178, 180, 181, 183, 184, 185, 186, 192, 193, 194, 195, 196, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 427, 428, 429, 430, 432, 434, 446, 447, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 471, 473, 474, 475, 476, 480, 483, 484, 489, 490, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 513, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 573, 576, 577, 580, 582, 583, 586, 589, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 801, 805, 806, 812, 813, 814, 816, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 844, 845, 847, 848, 849, 852, 853, 854, 856, 857, 858, 859, 861, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "goal": [0, 20, 45, 247, 632, 812, 818, 821, 860, 870, 876], "accur": [0, 6, 245, 263, 632, 637, 685, 838], "distinguish": 0, "between": [0, 6, 14, 20, 21, 26, 36, 37, 38, 43, 56, 57, 58, 61, 62, 63, 64, 68, 74, 79, 80, 84, 85, 86, 87, 103, 126, 165, 228, 241, 276, 292, 334, 351, 353, 372, 375, 376, 377, 378, 387, 399, 400, 401, 412, 413, 414, 422, 428, 432, 453, 454, 455, 456, 457, 458, 459, 484, 532, 629, 630, 632, 636, 638, 639, 641, 643, 645, 659, 682, 696, 697, 698, 702, 710, 724, 739, 750, 751, 752, 777, 784, 796, 812, 824, 825, 829, 831, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 854, 859, 863, 864, 866, 867, 869, 870, 871, 876], "activ": [0, 6, 16, 29, 31, 32, 57, 58, 61, 72, 80, 84, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 295, 296, 297, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 595, 636, 663, 666, 791, 792, 810, 812, 819, 820, 829, 835, 845, 846, 853, 864, 870, 873], "therebi": [0, 6, 844], "enhanc": [0, 28, 31, 32, 812, 843, 864], "secur": 0, "usag": [0, 7, 213, 631, 829, 837, 840, 844, 849, 855, 860, 873], "befor": [0, 4, 5, 6, 8, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 38, 45, 57, 61, 62, 64, 68, 70, 74, 80, 84, 85, 93, 210, 213, 218, 375, 378, 387, 403, 408, 418, 422, 468, 475, 476, 477, 484, 523, 524, 631, 636, 637, 639, 640, 641, 645, 647, 649, 650, 651, 652, 654, 656, 658, 662, 663, 666, 677, 678, 694, 700, 715, 716, 730, 749, 750, 751, 752, 757, 758, 761, 763, 765, 773, 792, 801, 805, 818, 819, 820, 823, 824, 826, 829, 830, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 849, 852, 855, 863, 864, 870], "dive": [0, 14, 20, 22, 31, 43, 812, 813, 814, 817, 818, 820, 823, 827, 829, 835, 842, 848, 851, 852, 855, 876], "need": [0, 1, 4, 7, 11, 13, 20, 22, 28, 29, 31, 32, 45, 46, 47, 57, 58, 64, 80, 81, 87, 375, 376, 387, 398, 403, 404, 408, 429, 529, 540, 541, 562, 634, 636, 637, 639, 641, 663, 672, 699, 702, 729, 777, 812, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 851, 852, 855, 856, 861, 863, 864, 866, 870, 871, 872, 876], "up": [0, 4, 7, 8, 11, 13, 14, 31, 57, 58, 80, 81, 375, 378, 398, 411, 468, 476, 557, 569, 634, 636, 659, 661, 812, 813, 816, 818, 820, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861, 863, 871, 876, 877], "our": [0, 4, 6, 7, 11, 13, 14, 16, 18, 20, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 49, 72, 95, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 778, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 831, 833, 834, 835, 838, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 859, 860, 863, 875, 876, 878], "necessari": [0, 6, 7, 37, 53, 57, 76, 80, 87, 128, 240, 273, 377, 378, 452, 462, 463, 464, 470, 472, 473, 474, 475, 476, 483, 499, 585, 608, 632, 634, 702, 703, 704, 706, 708, 709, 711, 713, 812, 818, 819, 824, 825, 827, 829, 831, 840, 841, 844, 846, 847, 863, 864], "follow": [0, 1, 6, 7, 14, 25, 26, 27, 29, 31, 32, 35, 36, 37, 43, 46, 47, 57, 58, 59, 61, 62, 68, 74, 80, 81, 82, 84, 85, 134, 165, 168, 213, 223, 240, 247, 273, 275, 282, 283, 319, 369, 375, 377, 378, 381, 398, 411, 419, 457, 472, 484, 501, 503, 560, 561, 562, 592, 593, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 637, 641, 645, 663, 666, 678, 684, 694, 724, 730, 749, 750, 751, 752, 792, 796, 812, 814, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 863, 867, 870, 873], "command": [0, 45, 47, 814, 819, 823, 826, 828, 834, 835, 856], "which": [0, 1, 4, 6, 7, 9, 10, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 153, 155, 157, 163, 165, 168, 170, 173, 180, 192, 197, 201, 206, 208, 211, 212, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 322, 325, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 348, 350, 351, 352, 353, 355, 356, 357, 359, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 418, 419, 420, 422, 427, 430, 442, 445, 446, 447, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 489, 490, 491, 492, 493, 494, 496, 501, 503, 504, 505, 507, 508, 509, 510, 511, 512, 514, 515, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 574, 575, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 693, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 723, 724, 725, 726, 731, 733, 734, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 788, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 808, 810, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "an": [0, 1, 3, 4, 6, 7, 9, 10, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 175, 179, 180, 210, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 316, 317, 318, 320, 321, 328, 329, 330, 331, 332, 333, 335, 336, 338, 341, 345, 350, 354, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 407, 409, 411, 412, 413, 414, 417, 418, 419, 420, 421, 422, 423, 424, 426, 429, 430, 431, 456, 457, 461, 462, 463, 464, 468, 469, 470, 472, 479, 483, 484, 490, 492, 496, 498, 499, 501, 502, 503, 506, 508, 509, 511, 514, 515, 520, 521, 522, 523, 524, 525, 526, 529, 530, 533, 538, 540, 541, 549, 552, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 577, 580, 581, 590, 591, 595, 599, 600, 601, 614, 617, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 724, 737, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 781, 784, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 876, 877], "machin": [0, 6, 7, 12, 13, 26, 27, 28, 29, 34, 35, 43, 49, 57, 62, 80, 85, 165, 168, 376, 430, 630, 637, 680, 683, 812, 819, 823, 837, 857, 860, 868, 870, 872, 873, 874, 875, 876], "learn": [0, 6, 7, 14, 16, 18, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 43, 45, 57, 59, 82, 376, 377, 447, 452, 545, 616, 619, 621, 622, 623, 634, 635, 640, 715, 716, 717, 796, 812, 813, 817, 818, 819, 822, 823, 829, 834, 835, 837, 839, 848, 857, 859, 860, 868, 872, 873, 874, 875, 876, 877], "other": [0, 4, 6, 7, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 54, 56, 57, 58, 64, 70, 74, 77, 79, 80, 81, 87, 93, 97, 102, 103, 126, 141, 153, 179, 240, 245, 247, 263, 272, 273, 337, 341, 372, 378, 468, 469, 477, 534, 535, 629, 630, 632, 634, 643, 647, 700, 710, 741, 764, 766, 773, 778, 812, 816, 818, 819, 820, 821, 823, 824, 827, 828, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 856, 857, 860, 863, 864, 866, 868, 869, 870, 876, 877], "essenti": [0, 812, 815, 818, 825, 827, 830, 831, 837, 840, 841, 842, 859, 860, 876], "panda": [0, 14, 45, 47, 860, 867], "matplotlib": [0, 6, 7, 14, 26, 27, 28, 29, 45, 46, 47, 50], "scikit": [0, 14, 376, 447, 860], "torch": [0, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 48, 49, 50, 53, 58, 62, 72, 81, 85, 129, 167, 194, 195, 199, 209, 211, 216, 283, 335, 336, 372, 378, 496, 538, 562, 595, 629, 630, 631, 632, 634, 637, 640, 687, 716, 717, 773, 784, 789, 801, 810, 812, 816, 819, 820, 823, 824, 825, 826, 828, 829, 830, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 863, 864, 865, 876], "cryptographi": [0, 14], "These": [0, 14, 38, 57, 80, 376, 378, 387, 429, 483, 522, 636, 637, 663, 672, 673, 812, 815, 817, 818, 819, 820, 823, 827, 829, 831, 832, 836, 837, 840, 841, 844, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 864, 870, 874, 876, 877], "tool": [0, 14, 22, 31, 32, 812, 819, 820, 831, 835, 850, 854, 855, 858, 861, 864, 868, 869, 870, 871, 873, 876, 877], "provid": [0, 6, 9, 20, 22, 26, 29, 31, 32, 36, 37, 43, 49, 53, 57, 58, 62, 64, 67, 70, 71, 74, 76, 80, 81, 85, 87, 90, 93, 94, 122, 139, 141, 158, 159, 160, 161, 162, 170, 180, 192, 196, 209, 292, 375, 376, 378, 381, 387, 411, 419, 423, 428, 432, 445, 446, 450, 451, 468, 470, 479, 499, 501, 503, 532, 544, 576, 577, 628, 629, 630, 631, 632, 634, 636, 637, 639, 641, 644, 647, 648, 663, 679, 682, 693, 702, 703, 710, 722, 744, 764, 766, 767, 768, 777, 792, 796, 801, 802, 812, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 844, 845, 847, 851, 853, 855, 859, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 877], "robust": 0, "foundat": [0, 22, 860, 873], "manipul": [0, 57, 80, 840, 841, 845, 847, 849, 854, 859, 870], "4": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 117, 118, 126, 127, 128, 129, 132, 134, 136, 137, 138, 139, 140, 141, 143, 147, 149, 153, 154, 155, 163, 165, 168, 173, 175, 180, 197, 198, 206, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 321, 328, 330, 335, 336, 338, 340, 341, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 359, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 440, 446, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 467, 468, 469, 470, 471, 474, 475, 476, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 558, 560, 561, 562, 569, 576, 577, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 796, 805, 806, 812, 816, 818, 819, 825, 826, 827, 828, 829, 831, 834, 839, 842, 844, 847, 849, 851, 852, 853, 854, 861, 863, 870, 876, 877], "pip": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 49, 50, 812, 816, 819, 826, 835], "q": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 45, 46, 47, 57, 61, 62, 80, 84, 85, 362, 372, 376, 387, 429, 532, 636, 637, 641, 663, 666, 672, 673, 684, 726, 819, 820, 822, 842, 855], "r": [0, 4, 12, 45, 46, 57, 62, 74, 80, 85, 97, 98, 349, 364, 372, 374, 617, 635, 637, 639, 684, 713, 819, 820, 822, 839, 842, 878], "requir": [0, 6, 7, 26, 27, 28, 29, 36, 45, 46, 47, 50, 56, 57, 74, 79, 80, 274, 287, 291, 376, 378, 429, 430, 484, 632, 637, 639, 672, 673, 674, 710, 776, 784, 789, 806, 814, 818, 819, 824, 826, 828, 829, 830, 831, 832, 833, 835, 836, 838, 841, 842, 843, 844, 845, 847, 849, 851, 855, 864, 870, 876], "txt": [0, 4, 6, 12, 46, 58, 819, 823, 826], "16": [0, 4, 7, 8, 9, 10, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 102, 103, 168, 234, 263, 283, 290, 346, 349, 353, 372, 375, 378, 387, 394, 395, 397, 403, 407, 408, 412, 413, 418, 422, 457, 474, 523, 529, 546, 549, 571, 592, 593, 625, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 647, 658, 660, 667, 671, 674, 675, 682, 684, 688, 713, 726, 739, 740, 741, 748, 758, 759, 776, 779, 812, 820, 829, 831, 852], "mb": [0, 6, 7, 9, 10, 12, 45, 47, 50, 828], "25": [0, 14, 43, 45, 46, 47, 56, 57, 58, 62, 63, 66, 70, 73, 79, 80, 81, 84, 85, 88, 89, 93, 102, 103, 118, 137, 223, 224, 234, 240, 242, 253, 258, 273, 278, 281, 283, 286, 287, 288, 293, 315, 369, 377, 387, 418, 453, 456, 523, 532, 560, 561, 577, 592, 629, 632, 634, 637, 638, 641, 642, 647, 650, 667, 671, 676, 692, 697, 719, 726, 730, 737, 739, 740, 741, 758, 759, 761, 766, 821, 827, 839], "1": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 149, 152, 153, 154, 155, 159, 163, 164, 165, 168, 173, 175, 180, 196, 197, 201, 205, 206, 208, 209, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 325, 326, 328, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 442, 445, 446, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 784, 788, 791, 792, 793, 794, 795, 796, 797, 801, 805, 806, 810, 812, 815, 816, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 854, 855, 860, 861, 863, 864, 865, 878], "": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 46, 48, 49, 50, 53, 57, 58, 59, 62, 70, 80, 82, 85, 93, 122, 139, 145, 146, 166, 167, 196, 199, 200, 212, 247, 282, 329, 334, 335, 336, 338, 349, 351, 357, 361, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 391, 398, 404, 409, 420, 428, 432, 440, 449, 454, 456, 457, 473, 475, 476, 484, 501, 502, 503, 512, 522, 532, 550, 551, 557, 571, 594, 595, 616, 618, 619, 620, 621, 623, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 663, 670, 678, 680, 687, 688, 694, 730, 764, 766, 777, 791, 792, 793, 794, 795, 796, 797, 801, 810, 812, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 857, 860, 861, 862, 863, 864, 865, 866, 869, 870, 871, 873, 874, 875, 876], "eta": [0, 7, 9, 10, 45, 47, 50], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 141, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 168, 169, 173, 175, 180, 193, 196, 198, 201, 206, 207, 208, 209, 211, 212, 213, 215, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 328, 329, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 394, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 418, 419, 420, 422, 425, 426, 427, 429, 430, 431, 434, 435, 437, 440, 441, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 467, 469, 470, 471, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 539, 540, 541, 544, 545, 546, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 574, 576, 577, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 609, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 788, 789, 791, 792, 793, 794, 795, 796, 797, 798, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 827, 828, 829, 830, 831, 832, 833, 834, 839, 840, 841, 842, 844, 845, 849, 851, 852, 853, 854, 855, 863, 864], "00": [0, 6, 7, 9, 10, 12, 14, 45, 47, 50, 57, 58, 62, 80, 81, 85, 245, 312, 343, 344, 369, 375, 397, 403, 407, 408, 549, 593, 632, 634, 637, 674, 684, 776, 835, 844], "44": [0, 6, 7, 9, 10, 43, 47, 56, 57, 66, 79, 80, 89, 226, 273, 283, 287, 288, 339, 372, 375, 396, 397, 632, 636, 637, 641, 644, 647, 659, 682, 726, 739, 740, 748, 759], "6": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 69, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 98, 102, 103, 110, 112, 117, 122, 127, 128, 135, 136, 139, 140, 143, 149, 153, 154, 155, 163, 165, 173, 219, 220, 222, 223, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 263, 264, 265, 266, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 294, 296, 297, 299, 301, 303, 305, 306, 307, 309, 310, 311, 312, 313, 319, 330, 335, 336, 338, 340, 349, 350, 352, 353, 354, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 385, 387, 397, 399, 402, 403, 407, 408, 412, 418, 419, 420, 422, 425, 428, 431, 432, 436, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 475, 479, 480, 483, 484, 489, 490, 492, 493, 496, 499, 500, 510, 512, 513, 515, 520, 522, 523, 524, 525, 527, 529, 531, 532, 538, 540, 541, 544, 545, 546, 552, 553, 560, 561, 562, 577, 591, 592, 593, 594, 595, 597, 601, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 729, 730, 736, 737, 738, 739, 740, 741, 743, 744, 745, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 776, 791, 812, 816, 819, 823, 825, 827, 828, 829, 831, 834, 839, 844, 847, 849, 851, 852, 853], "kb": [0, 6, 7, 9, 10, 12, 45, 47, 50], "3": [0, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 136, 137, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 194, 196, 197, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 392, 394, 395, 396, 397, 399, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 443, 446, 448, 451, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 576, 577, 590, 591, 592, 593, 597, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 779, 792, 805, 806, 810, 812, 816, 818, 819, 823, 824, 825, 827, 828, 829, 831, 833, 834, 837, 839, 842, 844, 849, 851, 852, 853, 854, 863, 864, 877], "45": [0, 7, 9, 10, 43, 45, 47, 56, 57, 70, 79, 80, 82, 84, 89, 103, 224, 228, 240, 283, 284, 343, 344, 357, 372, 375, 387, 397, 407, 418, 523, 529, 615, 621, 632, 635, 637, 639, 647, 682, 708, 740, 741, 759, 776], "5": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 23, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 126, 127, 128, 134, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 153, 154, 155, 159, 163, 165, 173, 175, 180, 197, 206, 211, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 330, 333, 335, 336, 338, 340, 342, 344, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 425, 428, 429, 431, 432, 434, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 478, 479, 480, 483, 484, 489, 490, 491, 492, 493, 494, 496, 499, 500, 505, 506, 507, 510, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 529, 532, 538, 539, 540, 541, 544, 545, 546, 547, 549, 552, 553, 555, 558, 560, 561, 562, 576, 577, 581, 592, 593, 594, 595, 597, 601, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 658, 659, 660, 662, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 687, 688, 689, 691, 692, 693, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 792, 805, 806, 812, 815, 818, 819, 820, 823, 825, 827, 828, 829, 831, 833, 834, 836, 839, 842, 844, 851, 852, 853, 864, 878], "143": [0, 7, 9, 10, 62, 79, 103, 290, 632, 637, 675, 831], "8": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 102, 103, 110, 125, 135, 136, 140, 143, 149, 158, 160, 161, 162, 165, 173, 198, 215, 223, 225, 226, 230, 231, 234, 235, 236, 238, 244, 247, 251, 252, 258, 259, 260, 264, 265, 268, 269, 271, 272, 273, 278, 279, 282, 283, 284, 287, 288, 291, 292, 293, 297, 303, 305, 306, 307, 309, 310, 312, 313, 330, 334, 346, 349, 351, 352, 353, 356, 363, 367, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 425, 428, 436, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 479, 480, 489, 490, 493, 494, 495, 496, 499, 500, 510, 512, 524, 527, 528, 532, 538, 539, 545, 546, 549, 552, 556, 560, 561, 562, 564, 565, 568, 571, 576, 577, 581, 591, 592, 593, 594, 595, 615, 618, 620, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 650, 654, 655, 657, 658, 659, 660, 663, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 703, 710, 711, 713, 719, 726, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 779, 792, 819, 827, 828, 831, 844, 848, 852], "7": [0, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 24, 26, 27, 28, 29, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 112, 113, 114, 115, 126, 127, 128, 137, 140, 141, 159, 165, 168, 198, 220, 223, 226, 230, 231, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 246, 247, 250, 251, 252, 257, 258, 259, 260, 261, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 283, 284, 285, 287, 290, 291, 293, 294, 296, 297, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 318, 319, 330, 334, 338, 340, 341, 349, 350, 351, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 417, 418, 419, 420, 422, 425, 428, 441, 453, 454, 455, 456, 458, 459, 462, 463, 464, 468, 470, 474, 479, 480, 483, 484, 489, 490, 492, 493, 495, 496, 499, 500, 510, 512, 513, 520, 523, 524, 526, 527, 532, 538, 540, 541, 545, 546, 549, 560, 561, 562, 569, 576, 577, 592, 595, 615, 616, 618, 619, 620, 621, 622, 623, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 655, 657, 658, 659, 660, 666, 668, 669, 670, 671, 673, 674, 675, 677, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 696, 697, 698, 699, 702, 703, 708, 710, 711, 713, 718, 719, 726, 730, 737, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 757, 758, 759, 761, 763, 765, 766, 776, 819, 820, 825, 827, 828, 831, 837, 840, 844], "9": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 73, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93, 102, 103, 110, 126, 127, 128, 140, 158, 159, 160, 161, 162, 165, 168, 221, 223, 225, 226, 229, 230, 231, 234, 235, 240, 241, 242, 247, 254, 260, 261, 262, 264, 268, 269, 271, 272, 273, 276, 278, 279, 283, 284, 287, 288, 289, 294, 300, 303, 304, 305, 342, 345, 349, 355, 356, 363, 367, 372, 373, 375, 377, 378, 385, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 436, 453, 455, 457, 458, 462, 463, 464, 470, 474, 479, 489, 490, 491, 492, 494, 496, 499, 510, 512, 515, 524, 541, 545, 546, 547, 549, 552, 560, 561, 564, 565, 568, 576, 577, 591, 592, 594, 615, 616, 617, 621, 622, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 646, 647, 650, 651, 652, 658, 659, 660, 668, 669, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 699, 703, 707, 708, 710, 711, 713, 718, 719, 724, 726, 729, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 796, 827, 829, 831, 839, 844, 852, 853, 866], "756": [0, 7, 9, 10], "21": [0, 4, 7, 9, 14, 43, 45, 47, 50, 56, 57, 58, 66, 76, 79, 80, 84, 85, 89, 93, 102, 138, 168, 223, 226, 228, 234, 258, 273, 304, 356, 375, 376, 377, 378, 387, 394, 397, 407, 412, 418, 420, 422, 426, 452, 467, 523, 577, 629, 630, 632, 634, 637, 641, 647, 671, 682, 686, 724, 739, 740, 757, 758, 759, 833, 839], "116": [0, 7, 9, 10], "23": [0, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 62, 66, 76, 79, 80, 81, 84, 89, 136, 235, 238, 255, 256, 257, 280, 282, 283, 284, 286, 293, 338, 339, 372, 375, 378, 387, 394, 395, 397, 407, 412, 413, 414, 418, 422, 467, 523, 529, 629, 632, 636, 637, 641, 644, 655, 657, 671, 675, 678, 686, 688, 689, 719, 726, 730, 739, 740, 741, 748, 812, 828, 844, 849], "29": [0, 6, 14, 43, 45, 47, 50, 62, 79, 81, 82, 84, 89, 228, 387, 418, 523, 545, 546, 617, 621, 632, 634, 635, 637, 675, 739, 740, 741], "823": 0, "46": [0, 6, 43, 45, 47, 57, 66, 80, 84, 89, 138, 263, 284, 314, 369, 375, 395, 413, 414, 629, 632, 641, 719, 739, 740], "14": [0, 4, 6, 8, 11, 12, 27, 43, 45, 46, 47, 54, 56, 57, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 152, 165, 168, 221, 226, 228, 235, 239, 265, 269, 273, 279, 286, 294, 345, 375, 376, 378, 387, 394, 395, 396, 397, 407, 412, 414, 417, 418, 419, 422, 426, 432, 433, 468, 470, 474, 479, 499, 523, 592, 615, 630, 632, 634, 635, 636, 637, 639, 641, 645, 647, 650, 651, 653, 655, 657, 659, 671, 673, 675, 682, 689, 691, 693, 713, 730, 739, 740, 741, 749, 758, 759, 827, 831, 844], "731": [0, 51, 116], "945": 0, "410": 0, "2": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 196, 197, 198, 201, 204, 206, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 319, 320, 321, 328, 330, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 391, 394, 395, 396, 397, 398, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 779, 788, 791, 792, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 826, 827, 828, 829, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 863, 864, 865, 876, 877], "121": 0, "56": [0, 12, 14, 43, 45, 56, 57, 61, 66, 79, 80, 84, 138, 273, 287, 290, 293, 375, 397, 407, 615, 629, 632, 635, 636, 637, 641, 647, 651, 653, 655, 657, 660, 682, 718, 740, 759, 831], "124": [0, 636, 660], "196": [0, 84, 636, 660], "166": [0, 73, 110, 626], "99": [0, 14, 43, 56, 57, 59, 77, 79, 89, 135, 222, 237, 360, 372, 592, 619, 629, 632, 634, 635, 641, 647, 722, 730, 740, 759], "11": [0, 4, 6, 7, 8, 12, 13, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 58, 61, 62, 66, 70, 79, 80, 81, 84, 85, 87, 89, 93, 103, 223, 227, 230, 235, 245, 282, 283, 289, 353, 372, 375, 376, 378, 394, 395, 407, 412, 413, 417, 418, 422, 431, 467, 468, 470, 474, 479, 481, 499, 523, 524, 539, 545, 546, 552, 561, 577, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 647, 650, 651, 659, 660, 671, 674, 675, 676, 677, 678, 682, 686, 687, 688, 689, 691, 693, 696, 703, 708, 709, 711, 713, 724, 726, 736, 739, 740, 741, 748, 749, 757, 758, 759, 766, 827, 828, 829, 831, 839], "71": [0, 43, 56, 79, 84, 239, 279, 418, 632], "To": [0, 1, 6, 12, 13, 14, 16, 18, 22, 26, 27, 28, 29, 31, 32, 43, 46, 47, 48, 98, 247, 377, 456, 586, 632, 634, 791, 812, 818, 819, 823, 824, 825, 826, 829, 831, 833, 834, 835, 837, 838, 841, 842, 843, 844, 845, 852, 853, 854, 856, 863, 864], "ensur": [0, 1, 12, 13, 16, 18, 26, 27, 28, 29, 57, 58, 80, 81, 375, 376, 412, 413, 414, 447, 562, 634, 771, 812, 815, 818, 819, 820, 824, 829, 830, 831, 833, 835, 836, 838, 840, 841, 842, 843, 844, 845, 856, 870], "begin": [0, 7, 27, 57, 80, 284, 377, 378, 452, 468, 484, 485, 486, 487, 488, 632, 641, 718, 729, 776, 819, 823, 828, 842], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 70, 79, 80, 81, 147, 176, 194, 199, 224, 284, 307, 328, 369, 387, 522, 529, 538, 562, 592, 595, 599, 629, 630, 631, 632, 634, 637, 647, 685, 759, 771, 773, 784, 801, 805, 806, 812, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 833, 834, 836, 840, 842, 844, 845, 847, 849, 851, 854, 856, 857, 859, 860, 863, 864, 865, 867, 872, 877], "handl": [0, 4, 8, 43, 45, 51, 55, 56, 57, 73, 74, 78, 79, 80, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 193, 194, 195, 196, 197, 201, 206, 207, 215, 219, 225, 237, 262, 264, 278, 284, 285, 290, 291, 295, 300, 301, 303, 367, 378, 467, 493, 626, 631, 632, 637, 647, 691, 763, 765, 788, 796, 813, 815, 822, 827, 828, 829, 835, 836, 837, 839, 840, 841, 842, 843, 844, 846, 847, 853, 867, 877], "its": [0, 1, 6, 13, 22, 24, 31, 32, 34, 37, 44, 45, 47, 52, 54, 57, 64, 74, 77, 80, 81, 87, 100, 112, 115, 118, 123, 153, 158, 159, 160, 161, 162, 213, 240, 273, 292, 302, 367, 375, 378, 387, 415, 423, 496, 498, 525, 549, 598, 626, 628, 630, 631, 632, 634, 637, 639, 641, 677, 702, 706, 707, 711, 724, 773, 806, 812, 818, 819, 824, 827, 828, 829, 830, 832, 833, 834, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 854, 855, 857, 863, 869, 870, 876], "backend": [0, 4, 6, 7, 9, 10, 13, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 37, 52, 53, 57, 58, 62, 74, 80, 81, 85, 102, 129, 166, 167, 170, 192, 199, 200, 202, 205, 216, 335, 336, 372, 376, 428, 430, 529, 538, 550, 551, 559, 562, 563, 573, 580, 595, 598, 629, 630, 631, 634, 637, 685, 687, 771, 773, 774, 776, 777, 778, 781, 783, 784, 789, 793, 794, 796, 800, 801, 812, 816, 817, 819, 820, 822, 823, 824, 828, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 848, 850, 851, 854, 857, 859, 863, 864, 865, 870, 873, 876, 877], "jax": [0, 3, 6, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 49, 51, 56, 57, 58, 68, 73, 79, 80, 81, 110, 111, 112, 113, 114, 115, 116, 117, 118, 209, 291, 295, 300, 301, 303, 349, 367, 372, 387, 532, 562, 595, 614, 626, 631, 632, 634, 645, 749, 750, 751, 752, 784, 788, 801, 812, 816, 817, 818, 819, 820, 823, 825, 829, 830, 833, 834, 836, 839, 840, 841, 842, 844, 845, 847, 849, 851, 854, 855, 860, 861, 863, 864, 865, 871, 873, 876, 877], "capabl": [0, 6, 20, 28, 32, 844, 847], "optim": [0, 6, 7, 11, 13, 14, 22, 26, 27, 29, 31, 32, 45, 47, 48, 50, 57, 59, 80, 82, 312, 369, 377, 456, 457, 536, 623, 634, 635, 640, 715, 716, 717, 791, 806, 812, 829, 840, 847, 850, 852, 854, 861, 864, 868, 869, 870, 871, 872, 873, 874, 877], "frontend": [0, 14, 579, 634, 773, 774, 777, 781, 784, 812, 817, 820, 822, 828, 829, 833, 834, 839, 843, 844, 847, 848, 850, 857, 864, 870], "xgb_frontend": 0, "access": [0, 1, 28, 31, 32, 74, 812, 818, 819, 820, 828, 829, 835, 840, 841, 856, 864, 870, 872, 874], "compat": [0, 6, 9, 23, 29, 33, 37, 43, 50, 56, 57, 62, 64, 67, 70, 71, 79, 80, 85, 87, 90, 93, 94, 102, 103, 154, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 294, 335, 336, 372, 630, 632, 637, 639, 644, 647, 648, 668, 680, 683, 686, 689, 693, 694, 706, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 819, 825, 836, 841, 842, 845, 849, 855, 860], "manner": [0, 24, 32, 34, 44, 52, 75, 641, 730, 819, 829, 830, 832, 837, 841, 845, 852, 855, 859, 866, 868, 876, 877], "sklearn": [0, 14], "model_select": [0, 14], "timeit": [0, 11, 13, 14, 24, 31, 32, 48, 50], "oper": [0, 6, 22, 23, 26, 27, 28, 29, 31, 32, 33, 37, 44, 47, 53, 54, 56, 57, 58, 61, 62, 70, 74, 76, 77, 79, 80, 81, 84, 85, 93, 103, 118, 137, 138, 180, 210, 218, 223, 225, 234, 237, 240, 247, 262, 264, 273, 274, 278, 282, 285, 290, 302, 310, 330, 331, 332, 364, 367, 369, 374, 375, 377, 378, 389, 390, 391, 392, 394, 395, 396, 402, 403, 404, 408, 412, 413, 414, 415, 417, 418, 420, 422, 423, 452, 489, 491, 538, 545, 546, 547, 595, 626, 629, 630, 631, 632, 634, 636, 637, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 663, 678, 689, 691, 761, 763, 765, 776, 779, 792, 806, 810, 812, 818, 819, 822, 823, 824, 827, 829, 830, 831, 832, 833, 837, 840, 841, 844, 847, 849, 852, 853, 857, 859, 863, 866, 867, 868, 869, 870, 871, 873, 874, 875, 876, 877], "xgb": 0, "functool": [0, 14, 45, 833, 841, 851], "higher": [0, 14, 57, 80, 376, 378, 387, 433, 445, 451, 462, 463, 464, 532, 791, 829, 840, 848, 849, 854, 855, 867, 870, 871, 874, 876, 877], "order": [0, 4, 25, 35, 37, 45, 48, 50, 53, 57, 58, 61, 62, 64, 68, 69, 74, 80, 84, 85, 87, 91, 92, 97, 102, 103, 127, 128, 139, 147, 228, 247, 290, 328, 349, 369, 372, 375, 376, 378, 381, 385, 421, 426, 429, 430, 431, 432, 433, 437, 443, 445, 448, 451, 474, 475, 476, 481, 482, 494, 501, 502, 503, 506, 515, 629, 632, 636, 637, 639, 640, 644, 645, 646, 650, 651, 652, 653, 654, 655, 658, 672, 673, 678, 687, 688, 692, 694, 703, 706, 715, 716, 747, 749, 750, 751, 752, 753, 755, 756, 773, 795, 797, 806, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 841, 842, 843, 844, 845, 846, 847, 852, 854, 855, 859, 866, 869, 870, 871, 873, 876], "callabl": [0, 12, 49, 57, 58, 72, 80, 81, 84, 95, 122, 123, 125, 166, 167, 199, 200, 213, 363, 365, 366, 373, 374, 375, 378, 418, 421, 423, 461, 484, 535, 539, 544, 546, 550, 551, 572, 601, 614, 618, 620, 625, 628, 630, 631, 634, 635, 640, 641, 715, 716, 717, 724, 725, 726, 728, 729, 730, 731, 771, 774, 784, 796, 807, 810, 827, 833, 839, 841, 849, 862, 863, 864, 865], "object": [0, 14, 22, 27, 29, 31, 45, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 106, 107, 129, 133, 134, 144, 156, 165, 168, 176, 179, 214, 272, 509, 557, 573, 617, 629, 630, 631, 634, 635, 641, 643, 721, 722, 723, 725, 726, 727, 733, 734, 735, 736, 743, 771, 773, 774, 781, 782, 783, 789, 790, 792, 793, 794, 801, 805, 812, 824, 825, 827, 828, 837, 838, 841, 842, 844, 847, 851, 854, 862, 863, 864, 865, 870, 876], "tqdm_notebook": [0, 14], "tqdm": [0, 6, 7, 14, 26, 27, 28, 29, 45, 47, 812], "progress": [0, 637, 692, 815, 819, 820, 854], "bar": [0, 819, 834], "jupyt": [0, 1, 860, 872], "lai": 0, "groundwork": 0, "preprocess": [0, 4, 12, 14, 31, 32, 45, 48, 863], "step": [0, 1, 2, 6, 7, 17, 18, 19, 30, 31, 32, 43, 45, 46, 47, 57, 59, 76, 80, 82, 126, 137, 375, 378, 421, 423, 478, 615, 616, 619, 621, 622, 623, 629, 635, 640, 715, 716, 717, 796, 810, 812, 818, 819, 820, 821, 824, 825, 827, 828, 829, 830, 831, 834, 839, 841, 844, 849, 852, 853, 854, 861, 870], "np": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 53, 57, 79, 80, 81, 127, 128, 129, 140, 176, 253, 257, 307, 375, 376, 403, 408, 424, 592, 629, 630, 632, 634, 641, 724, 773, 801, 805, 806, 812, 818, 824, 829, 830, 833, 836, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 857, 865], "pd": [0, 14, 47], "set_backend": [0, 4, 5, 8, 12, 14, 22, 23, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 44, 46, 47, 48, 56, 58, 72, 79, 81, 167, 176, 194, 195, 199, 209, 211, 216, 224, 538, 562, 630, 631, 634, 637, 640, 685, 716, 717, 801, 812, 823, 825, 829, 830, 837, 838, 839, 849, 851, 854, 863, 864, 865], "config": [0, 5, 6, 7, 8, 11, 13, 14, 25, 28, 31, 32, 45, 46, 48, 74, 641, 731, 812, 819, 823, 826, 828, 835, 842, 852, 863, 871], "updat": [0, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 45, 47, 52, 58, 59, 74, 81, 82, 97, 378, 489, 562, 576, 577, 580, 581, 604, 615, 616, 619, 621, 622, 623, 634, 635, 636, 640, 641, 659, 662, 715, 716, 717, 725, 726, 730, 735, 736, 784, 789, 795, 796, 801, 806, 812, 818, 819, 820, 822, 823, 824, 827, 828, 829, 831, 836, 838, 839, 841, 842, 844, 847, 849, 851, 852, 854, 855], "jax_enable_x64": [0, 5, 8, 11, 13, 14, 25, 28, 31, 32, 812], "true": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 25, 26, 28, 29, 31, 32, 36, 37, 38, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 163, 165, 166, 167, 168, 171, 172, 173, 174, 175, 176, 177, 180, 192, 196, 197, 199, 200, 204, 207, 208, 210, 214, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 471, 472, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 781, 792, 793, 794, 795, 796, 798, 801, 803, 805, 806, 810, 812, 816, 819, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "from": [0, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 94, 95, 97, 98, 100, 103, 126, 128, 131, 133, 134, 135, 136, 139, 140, 143, 147, 149, 155, 173, 179, 180, 196, 201, 206, 212, 213, 239, 247, 248, 275, 279, 280, 287, 291, 312, 313, 319, 322, 328, 330, 331, 332, 339, 342, 346, 347, 349, 350, 362, 366, 369, 372, 374, 375, 376, 377, 378, 382, 387, 399, 400, 401, 415, 420, 421, 440, 447, 452, 453, 457, 467, 470, 479, 484, 490, 492, 493, 495, 496, 498, 499, 508, 509, 510, 511, 512, 523, 524, 544, 552, 553, 555, 575, 586, 597, 614, 616, 617, 621, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 645, 647, 648, 650, 658, 659, 668, 671, 687, 691, 692, 693, 700, 703, 706, 709, 715, 716, 717, 719, 730, 731, 732, 738, 739, 740, 741, 745, 748, 749, 751, 757, 758, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 796, 801, 806, 810, 812, 813, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877], "classification_report": [0, 14], "train_test_split": [0, 14], "usr": [0, 7, 8, 9, 10, 11, 13, 45, 46, 47, 50, 819], "local": [0, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 45, 46, 47, 50, 381, 506, 557, 634, 813, 819, 823, 826, 834, 837, 842, 844], "lib": [0, 7, 8, 9, 10, 14, 26, 27, 28, 29, 45, 46, 47, 50], "python3": [0, 7, 8, 9, 10, 12, 26, 27, 28, 29, 31, 45, 47, 50, 819, 820], "10": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 47, 49, 50, 53, 56, 57, 58, 59, 61, 62, 66, 68, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 126, 136, 137, 138, 222, 230, 231, 234, 235, 238, 245, 250, 252, 258, 260, 262, 273, 279, 286, 287, 292, 301, 334, 335, 336, 339, 343, 344, 346, 348, 349, 351, 352, 353, 355, 356, 360, 363, 372, 375, 378, 387, 394, 395, 396, 397, 407, 412, 413, 417, 418, 419, 420, 422, 452, 464, 467, 470, 474, 479, 489, 490, 499, 520, 523, 524, 527, 529, 532, 545, 546, 547, 549, 552, 553, 555, 560, 561, 569, 577, 581, 586, 592, 594, 606, 609, 621, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 659, 669, 671, 675, 676, 677, 678, 679, 682, 687, 688, 689, 691, 693, 703, 708, 709, 710, 711, 713, 724, 726, 729, 737, 738, 739, 740, 741, 747, 749, 755, 757, 758, 759, 760, 762, 763, 765, 766, 776, 778, 796, 812, 816, 819, 823, 827, 828, 829, 831, 834, 839, 842, 844, 849, 851, 852, 860, 865, 875], "dist": [0, 7, 8, 9, 10, 45, 46, 47, 50], "packag": [0, 2, 4, 7, 8, 9, 10, 12, 13, 16, 26, 27, 28, 29, 32, 45, 46, 47, 50, 804, 816, 819, 828, 841, 855, 856, 870, 872], "except": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 50, 57, 58, 64, 66, 71, 74, 80, 81, 85, 89, 94, 154, 335, 336, 341, 360, 372, 378, 382, 387, 468, 492, 496, 509, 528, 529, 544, 562, 579, 595, 601, 630, 634, 637, 639, 643, 644, 648, 683, 700, 702, 710, 739, 740, 741, 747, 767, 768, 771, 774, 778, 812, 820, 821, 822, 823, 824, 828, 829, 830, 832, 834, 836, 840, 841, 845, 846, 847, 851, 855], "py": [0, 6, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 45, 47, 50, 93, 376, 447, 759, 801, 805, 812, 818, 819, 820, 823, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 841, 842, 844, 845, 849, 851, 853, 854], "383": [0, 7, 9, 10, 23], "userwarn": [0, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 50], "current": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 45, 46, 52, 57, 58, 74, 80, 103, 122, 166, 167, 170, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 206, 208, 376, 378, 428, 429, 484, 492, 550, 551, 554, 557, 559, 563, 574, 575, 595, 628, 630, 631, 634, 637, 641, 672, 718, 728, 729, 773, 777, 793, 794, 801, 802, 806, 809, 810, 812, 814, 818, 819, 820, 823, 825, 827, 828, 829, 830, 833, 834, 835, 837, 840, 841, 842, 843, 844, 847, 849, 854, 855, 861, 863, 870, 876, 877], "39": [0, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 26, 27, 28, 29, 43, 45, 46, 47, 48, 50, 51, 56, 57, 62, 66, 73, 79, 80, 82, 85, 89, 112, 226, 261, 263, 265, 295, 296, 299, 367, 375, 387, 395, 397, 414, 417, 523, 615, 626, 632, 635, 637, 647, 675, 682, 740, 759], "doe": [0, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 44, 46, 56, 57, 58, 64, 74, 79, 80, 87, 97, 147, 274, 276, 284, 328, 369, 376, 377, 387, 388, 429, 456, 457, 528, 529, 533, 562, 629, 632, 634, 637, 639, 672, 708, 771, 806, 816, 818, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 855, 857, 860, 863, 866, 870, 871, 877], "support": [0, 5, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 34, 46, 55, 57, 58, 62, 78, 80, 81, 85, 147, 166, 170, 192, 199, 214, 223, 240, 247, 268, 269, 273, 283, 302, 328, 349, 367, 369, 372, 376, 378, 411, 429, 438, 492, 538, 550, 559, 562, 563, 580, 595, 629, 630, 631, 632, 634, 636, 637, 660, 672, 673, 674, 678, 687, 694, 771, 777, 784, 796, 801, 802, 805, 810, 812, 814, 816, 818, 819, 820, 823, 824, 826, 830, 831, 832, 834, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 851, 852, 854, 856, 857, 859, 860, 861, 864, 867, 869, 870, 873, 875, 876, 877], "inplac": [0, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 52, 58, 74, 81, 97, 100, 536, 538, 559, 562, 563, 580, 581, 634, 641, 725, 726, 730, 735, 736, 783, 784, 789, 796, 822, 824, 831, 834, 836, 838, 841, 847, 851, 853], "nativ": [0, 4, 5, 6, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 52, 53, 54, 55, 58, 75, 78, 81, 102, 106, 140, 150, 151, 157, 158, 159, 160, 161, 162, 176, 179, 194, 195, 196, 197, 207, 215, 219, 562, 564, 568, 575, 580, 598, 629, 630, 631, 634, 773, 784, 789, 801, 812, 816, 818, 829, 830, 833, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 857, 863, 864, 865, 868, 877], "would": [0, 6, 7, 8, 9, 10, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 47, 53, 55, 57, 76, 78, 80, 87, 113, 117, 128, 214, 375, 378, 403, 408, 462, 463, 470, 472, 474, 475, 476, 483, 487, 499, 626, 631, 702, 703, 704, 706, 708, 709, 711, 713, 778, 788, 792, 812, 813, 816, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 831, 832, 834, 836, 838, 840, 841, 842, 844, 845, 847, 848, 849, 851, 853, 854, 855, 856, 860, 863, 870, 876], "quietli": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29], "new": [0, 1, 7, 9, 10, 11, 13, 15, 16, 18, 20, 23, 26, 27, 28, 29, 31, 32, 33, 47, 49, 52, 57, 58, 59, 64, 65, 74, 76, 80, 81, 82, 85, 87, 88, 130, 133, 135, 136, 141, 142, 143, 148, 149, 186, 209, 229, 275, 277, 281, 334, 339, 351, 356, 372, 375, 378, 387, 411, 460, 468, 469, 483, 489, 496, 529, 545, 546, 547, 549, 552, 553, 555, 576, 577, 580, 582, 589, 592, 593, 599, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 639, 641, 642, 663, 675, 682, 702, 706, 710, 723, 735, 736, 737, 789, 792, 795, 796, 801, 806, 812, 813, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 831, 832, 834, 835, 838, 840, 841, 842, 843, 844, 845, 847, 848, 851, 854, 856, 857, 859, 860, 861, 863, 868, 872, 876, 877], "when": [0, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 46, 48, 52, 53, 54, 56, 57, 62, 63, 66, 67, 70, 74, 76, 77, 79, 80, 85, 86, 89, 90, 93, 103, 141, 152, 223, 240, 245, 247, 263, 273, 291, 292, 300, 335, 336, 367, 372, 375, 376, 377, 381, 382, 387, 398, 411, 423, 430, 434, 445, 451, 452, 457, 501, 503, 509, 529, 532, 562, 578, 586, 593, 629, 630, 632, 634, 636, 637, 638, 639, 641, 643, 644, 647, 649, 661, 663, 680, 685, 696, 697, 698, 706, 729, 730, 739, 740, 741, 744, 745, 747, 748, 760, 762, 764, 766, 776, 779, 791, 792, 793, 794, 795, 801, 810, 812, 813, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 856, 859, 860, 863, 864, 868, 870, 873, 874, 875, 876], "lead": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 62, 74, 85, 103, 247, 376, 440, 580, 632, 634, 637, 684, 687, 778, 828, 829, 831, 843, 845, 855, 860, 861], "memori": [0, 4, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 53, 57, 64, 76, 80, 87, 128, 139, 195, 207, 213, 215, 219, 378, 387, 462, 463, 470, 472, 474, 475, 476, 483, 499, 529, 575, 580, 604, 629, 631, 634, 636, 639, 661, 662, 702, 703, 704, 706, 708, 709, 711, 713, 806, 810, 828, 829, 830, 840, 841, 847, 849, 855, 863, 870, 872, 873, 874], "overhead": [0, 7, 8, 9, 10, 13, 23, 24, 26, 27, 28, 29, 31, 32, 34, 855, 863, 873], "same": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 23, 24, 26, 27, 28, 29, 31, 34, 36, 38, 43, 44, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 93, 97, 98, 99, 100, 101, 102, 116, 126, 131, 136, 138, 139, 141, 143, 145, 146, 147, 149, 152, 153, 154, 165, 168, 213, 220, 221, 222, 223, 225, 227, 231, 233, 236, 240, 246, 247, 253, 273, 275, 277, 280, 282, 283, 284, 293, 301, 313, 327, 328, 329, 330, 331, 332, 335, 336, 338, 346, 362, 367, 369, 372, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 412, 413, 414, 415, 417, 418, 419, 420, 422, 429, 434, 435, 445, 446, 447, 448, 449, 451, 452, 454, 457, 467, 469, 484, 492, 493, 496, 501, 503, 513, 515, 520, 521, 522, 523, 524, 525, 526, 532, 569, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 663, 666, 667, 668, 669, 671, 672, 673, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 700, 703, 704, 706, 707, 709, 710, 715, 716, 731, 741, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 784, 792, 805, 812, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 859, 861, 863, 865, 867, 869, 876, 877], "appli": [0, 7, 9, 10, 11, 13, 23, 26, 27, 28, 29, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 411, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 630, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 691, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 724, 727, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 778, 779, 788, 792, 795, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 841, 844, 845, 847, 851, 852, 853, 854, 855, 863, 864, 871], "view": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 57, 64, 80, 102, 133, 144, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 496, 499, 555, 629, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 819, 820, 833, 870], "If": [0, 1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 46, 49, 50, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 180, 196, 212, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 328, 329, 331, 334, 335, 336, 337, 338, 340, 341, 342, 346, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 419, 420, 421, 423, 428, 430, 432, 434, 435, 442, 444, 446, 447, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 489, 490, 491, 492, 493, 494, 496, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 619, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 670, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 791, 792, 794, 795, 801, 806, 810, 812, 813, 814, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 859, 863, 864, 865], "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 57, 58, 80, 81, 97, 102, 103, 378, 387, 472, 529, 552, 553, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 663, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 870, 878], "want": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 44, 45, 47, 57, 72, 80, 95, 240, 273, 378, 472, 632, 794, 812, 813, 814, 818, 819, 820, 826, 828, 830, 833, 835, 837, 838, 839, 840, 844, 847, 852, 853, 854, 855, 856, 860, 864], "control": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 39, 57, 80, 147, 296, 328, 367, 369, 375, 378, 399, 400, 401, 467, 493, 580, 629, 634, 637, 670, 827, 829, 830, 839, 840, 841, 842, 847, 851, 852, 857, 863, 870, 876], "your": [0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 49, 812, 813, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 832, 834, 835, 839, 841, 843, 845, 847, 852, 853, 855, 856, 860, 861, 863, 864, 870, 878], "manag": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 580, 604, 634, 812, 813, 821, 825, 829, 830, 840, 843, 855, 861, 872, 874], "consid": [0, 6, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 36, 37, 57, 62, 68, 80, 85, 118, 147, 268, 269, 328, 334, 339, 351, 369, 372, 376, 387, 430, 434, 445, 522, 626, 629, 632, 637, 645, 670, 680, 749, 750, 751, 752, 778, 791, 824, 828, 829, 837, 839, 845, 847, 850, 851, 852, 859, 860, 863, 867, 871, 875, 877], "do": [0, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 43, 45, 47, 57, 58, 74, 80, 81, 240, 273, 282, 375, 377, 378, 387, 421, 457, 469, 529, 532, 562, 632, 634, 641, 718, 725, 728, 729, 730, 735, 778, 806, 812, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 851, 852, 853, 854, 855, 857, 861, 871, 876, 877], "set_inplace_mod": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 604, 634], "strict": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 580, 604, 634], "should": [0, 1, 5, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 48, 51, 53, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 79, 80, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 100, 102, 103, 113, 117, 125, 139, 141, 145, 146, 154, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 313, 329, 335, 336, 348, 352, 353, 354, 355, 359, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 382, 387, 390, 399, 400, 401, 403, 408, 419, 434, 445, 451, 458, 483, 484, 508, 509, 522, 523, 524, 539, 557, 562, 614, 616, 619, 621, 622, 623, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 691, 693, 694, 706, 722, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 757, 758, 759, 760, 761, 762, 763, 765, 766, 773, 774, 776, 778, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 858, 860, 864, 866, 867, 870, 872, 877], "rais": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 53, 57, 58, 66, 68, 71, 74, 76, 80, 81, 87, 89, 91, 94, 128, 154, 243, 278, 335, 336, 346, 372, 375, 377, 378, 382, 387, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 492, 499, 509, 528, 529, 538, 562, 580, 582, 593, 595, 601, 605, 630, 632, 634, 637, 639, 643, 644, 645, 647, 648, 677, 679, 693, 702, 703, 704, 706, 708, 709, 710, 711, 713, 739, 740, 741, 747, 752, 760, 762, 767, 768, 771, 778, 796, 812, 820, 823, 825, 829, 830, 833, 840, 841, 845, 846, 849, 851, 856, 860], "error": [0, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 37, 48, 50, 56, 57, 61, 74, 79, 80, 84, 110, 242, 290, 335, 336, 343, 344, 372, 376, 377, 378, 387, 388, 445, 451, 453, 455, 492, 529, 533, 580, 626, 632, 634, 636, 637, 647, 666, 685, 688, 760, 762, 778, 796, 809, 813, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 831, 835, 836, 841, 844, 845, 846, 851, 855, 861, 870], "whenev": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 792, 820, 825, 828, 829, 833, 840, 843, 844, 846, 852], "attempt": [0, 6, 7, 9, 10, 13, 23, 26, 27, 28, 29, 45, 47, 50, 819, 846, 855], "warn": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 45, 46, 47, 50, 809, 819, 820, 846, 863, 864, 865], "first": [0, 4, 5, 7, 8, 9, 12, 16, 22, 24, 25, 26, 28, 31, 32, 34, 35, 36, 45, 48, 49, 50, 53, 56, 57, 62, 64, 66, 67, 68, 70, 76, 79, 80, 81, 85, 87, 89, 91, 93, 97, 98, 102, 103, 122, 123, 137, 138, 147, 178, 186, 196, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 290, 302, 312, 313, 328, 330, 331, 332, 334, 347, 349, 350, 351, 357, 361, 362, 367, 369, 372, 375, 376, 377, 378, 385, 387, 398, 428, 429, 430, 432, 436, 458, 468, 470, 474, 481, 484, 486, 487, 490, 498, 509, 511, 515, 523, 524, 525, 532, 537, 628, 629, 630, 631, 632, 634, 636, 637, 639, 640, 641, 644, 645, 646, 647, 663, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 706, 707, 710, 711, 715, 716, 717, 718, 719, 728, 729, 731, 743, 744, 745, 749, 750, 751, 754, 755, 757, 758, 773, 791, 792, 793, 794, 796, 801, 812, 814, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 830, 831, 835, 836, 837, 838, 840, 841, 844, 847, 849, 851, 852, 854, 856, 859, 860, 863, 864, 868, 870, 871, 875], "datafram": [0, 870], "allow": [0, 6, 14, 29, 31, 32, 43, 57, 70, 80, 93, 137, 278, 376, 387, 448, 525, 529, 572, 629, 632, 634, 646, 647, 755, 762, 776, 777, 778, 779, 793, 794, 806, 810, 812, 818, 820, 821, 824, 825, 828, 829, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 849, 851, 855, 857, 860, 863, 864, 865, 868, 870, 874, 875], "u": [0, 4, 11, 45, 47, 49, 50, 57, 62, 76, 80, 85, 97, 98, 138, 376, 440, 447, 449, 637, 641, 667, 673, 674, 687, 726, 812, 813, 819, 820, 822, 827, 828, 835, 838, 840, 841, 842, 843, 844, 845, 847, 853, 855, 860], "leverag": [0, 28, 31, 32, 812, 819, 840, 864, 868, 870], "explor": [0, 6, 7, 14, 16, 18, 22, 26, 27, 28, 31, 32, 37, 38, 39, 818, 819, 820, 829, 834, 847, 850, 854, 870, 873], "expect": [0, 4, 8, 11, 13, 24, 28, 31, 32, 34, 47, 48, 50, 57, 62, 63, 80, 86, 179, 247, 291, 375, 377, 398, 420, 457, 536, 630, 632, 634, 636, 638, 661, 682, 696, 791, 792, 812, 819, 820, 823, 829, 830, 833, 835, 838, 840, 842, 844, 847, 855, 856, 861, 863, 864, 865], "contain": [0, 9, 22, 31, 32, 46, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 166, 167, 168, 171, 172, 173, 175, 177, 180, 197, 199, 200, 201, 206, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 367, 369, 372, 374, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 581, 584, 586, 591, 592, 593, 594, 595, 597, 599, 600, 607, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 783, 784, 792, 793, 794, 796, 797, 801, 805, 806, 810, 812, 814, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 831, 832, 834, 836, 837, 838, 839, 840, 842, 844, 846, 847, 848, 849, 850, 853, 855, 856, 857, 859, 863, 870, 871, 876], "variou": [0, 6, 14, 25, 35, 37, 43, 812, 815, 818, 819, 820, 823, 828, 829, 832, 833, 836, 838, 839, 841, 842, 843, 844, 856, 866, 868, 869, 870, 873, 876], "among": [0, 6, 74, 827, 828, 844, 847, 861, 870], "pattern": [0, 57, 58, 80, 81, 376, 440, 545, 546, 547, 634, 829, 832, 843, 861], "signal": [0, 57, 80, 319, 369, 375, 389, 390, 391, 392, 397, 398, 407, 423, 792, 869, 870], "credit_card_data": 0, "read_csv": [0, 14, 47], "creditcard": 0, "csv": [0, 14, 47], "get": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 45, 46, 48, 54, 55, 62, 74, 78, 85, 102, 163, 164, 165, 168, 196, 197, 198, 201, 207, 212, 215, 219, 378, 489, 536, 554, 575, 594, 630, 631, 634, 637, 641, 694, 720, 776, 791, 792, 805, 813, 815, 817, 818, 819, 821, 822, 823, 828, 829, 830, 834, 837, 838, 839, 840, 841, 842, 843, 844, 849, 850, 851, 852, 853, 857, 861, 864, 865, 870, 876], "sens": [0, 823, 829, 831, 841, 843, 851], "re": [0, 14, 20, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 48, 50, 57, 58, 67, 80, 90, 100, 213, 319, 369, 376, 378, 450, 485, 486, 545, 631, 634, 637, 639, 644, 689, 707, 746, 748, 813, 814, 818, 819, 820, 821, 822, 823, 826, 829, 834, 839, 840, 841, 842, 843, 845, 847, 851, 854, 855, 858, 859, 860, 870], "work": [0, 1, 6, 29, 31, 32, 43, 44, 46, 50, 52, 57, 80, 97, 387, 532, 637, 641, 688, 725, 726, 730, 735, 736, 812, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 845, 848, 849, 851, 853, 854, 856, 861, 863, 864, 865, 868, 870, 872, 874, 877], "help": [0, 1, 20, 47, 49, 54, 535, 580, 634, 647, 765, 791, 812, 813, 814, 818, 819, 821, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 840, 841, 844, 845, 851, 852, 853, 856, 857, 866, 870, 872, 876], "few": [0, 6, 7, 812, 817, 818, 820, 827, 829, 830, 836, 837, 839, 840, 842, 844, 847, 849, 850, 851, 852, 853, 861, 870, 872], "entri": [0, 57, 64, 74, 80, 87, 91, 98, 137, 376, 378, 382, 446, 473, 475, 476, 508, 629, 639, 641, 708, 731, 749, 819, 828, 844, 870], "can": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 50, 53, 54, 57, 58, 62, 64, 66, 68, 76, 77, 80, 81, 85, 87, 89, 91, 97, 98, 112, 115, 127, 128, 138, 140, 155, 194, 211, 212, 213, 302, 319, 367, 369, 375, 376, 377, 378, 381, 382, 385, 387, 398, 411, 435, 442, 444, 449, 457, 469, 496, 501, 509, 510, 515, 522, 569, 580, 614, 617, 626, 629, 630, 631, 634, 635, 636, 637, 639, 643, 663, 671, 677, 687, 691, 706, 710, 739, 740, 741, 749, 773, 776, 777, 778, 779, 784, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 874, 876, 877], "give": [0, 8, 23, 33, 43, 57, 61, 80, 84, 179, 365, 374, 375, 418, 422, 630, 636, 639, 649, 650, 651, 652, 654, 656, 658, 706, 791, 812, 819, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 844, 861, 870, 874], "insight": 0, "structur": [0, 14, 32, 74, 77, 103, 165, 168, 542, 634, 641, 722, 731, 812, 818, 820, 821, 824, 827, 837, 842, 843, 844, 845, 852, 853, 869, 870], "type": [0, 5, 11, 16, 18, 22, 28, 31, 32, 37, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 771, 773, 776, 777, 778, 779, 783, 784, 788, 791, 792, 793, 794, 798, 801, 805, 806, 807, 810, 818, 819, 820, 822, 823, 824, 827, 830, 831, 832, 833, 836, 838, 840, 842, 844, 845, 847, 849, 851, 852, 863, 864, 865, 870, 871, 874], "present": [0, 46, 57, 70, 74, 80, 93, 338, 372, 381, 501, 502, 503, 647, 762, 818, 819, 820, 827, 829, 830, 836, 840, 849, 859, 867, 868, 877], "initi": [0, 5, 6, 9, 31, 32, 48, 57, 61, 70, 74, 80, 84, 93, 103, 376, 387, 434, 445, 451, 530, 531, 636, 647, 661, 662, 762, 789, 792, 793, 794, 796, 797, 810, 812, 815, 820, 821, 825, 829, 830, 834, 842, 844, 849, 860, 863, 864, 865, 870, 876, 877], "qualiti": [0, 815, 820], "below": [0, 2, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 43, 46, 47, 48, 53, 57, 62, 80, 85, 93, 145, 146, 147, 247, 257, 280, 328, 329, 338, 369, 372, 378, 492, 629, 632, 637, 671, 691, 766, 813, 816, 818, 819, 822, 823, 827, 828, 829, 830, 831, 833, 834, 837, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 863, 864, 865, 866, 868, 873, 875], "head": [0, 6, 7, 48, 49, 636, 663, 792, 812, 817, 819, 828, 841, 867], "method": [0, 14, 22, 31, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 637, 638, 641, 644, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 784, 790, 791, 792, 793, 794, 818, 820, 823, 824, 828, 829, 830, 831, 832, 836, 844, 845, 849, 850, 853, 854, 855, 863, 864, 865, 871, 877], "five": [0, 852], "row": [0, 45, 57, 80, 98, 132, 147, 328, 369, 376, 378, 385, 387, 435, 447, 476, 482, 500, 515, 521, 522, 629, 637, 643, 644, 678, 686, 687, 692, 738, 747, 791], "v1": [0, 853], "v2": [0, 853], "v3": 0, "v4": 0, "v5": 0, "v6": 0, "v7": [0, 870], "v8": 0, "v9": 0, "v21": 0, "v22": 0, "v23": 0, "v24": 0, "v25": 0, "v26": 0, "v27": 0, "v28": 0, "amount": [0, 14, 63, 86, 215, 631, 638, 696, 697, 698, 806, 819, 828, 830, 842], "359807": 0, "072781": 0, "536347": 0, "378155": 0, "338321": 0, "462388": 0, "239599": 0, "098698": 0, "363787": 0, "018307": 0, "277838": 0, "110474": 0, "066928": 0, "128539": 0, "189115": 0, "133558": 0, "021053": 0, "149": [0, 62, 637, 675], "62": [0, 14, 43, 45, 51, 73, 79, 80, 89, 113, 258, 286, 632, 642, 643, 737, 739, 741], "191857": 0, "266151": 0, "166480": 0, "448154": 0, "060018": 0, "082361": 0, "078803": 0, "085102": 0, "255425": 0, "225775": 0, "638672": 0, "101288": 0, "339846": 0, "167170": 0, "125895": 0, "008983": 0, "014724": 0, "69": [0, 24, 43, 50, 56, 82, 89, 221, 263, 375, 397, 407, 619, 632, 635, 637, 678, 679, 740, 844, 852], "358354": 0, "340163": 0, "773209": 0, "379780": 0, "503198": 0, "800499": 0, "791461": 0, "247676": 0, "514654": 0, "247998": 0, "771679": 0, "909412": 0, "689281": 0, "327642": 0, "139097": 0, "055353": 0, "059752": 0, "378": [0, 279, 632], "66": [0, 26, 27, 28, 29, 43, 45, 47, 70, 80, 81, 82, 375, 407, 545, 546, 619, 634, 635, 637, 647, 682, 759], "966272": 0, "185226": 0, "792993": 0, "863291": 0, "010309": 0, "247203": 0, "237609": 0, "377436": 0, "387024": 0, "108300": 0, "005274": 0, "190321": 0, "175575": 0, "647376": 0, "221929": 0, "062723": 0, "061458": 0, "123": [0, 23, 76, 77, 80, 136, 168, 456, 548, 629, 634, 806, 844], "50": [0, 13, 14, 31, 32, 43, 47, 57, 70, 79, 80, 81, 239, 279, 357, 372, 375, 376, 378, 404, 428, 436, 489, 547, 553, 560, 561, 577, 592, 632, 634, 637, 641, 644, 647, 676, 682, 693, 719, 721, 747, 759, 776, 779, 839, 851, 863, 864], "158233": 0, "877737": 0, "548718": 0, "403034": 0, "407193": 0, "095921": 0, "592941": 0, "270533": 0, "817739": 0, "009431": 0, "798278": 0, "137458": 0, "141267": 0, "206010": 0, "502292": 0, "219422": 0, "215153": 0, "31": [0, 14, 26, 27, 28, 29, 43, 45, 46, 50, 51, 56, 57, 79, 80, 81, 84, 89, 113, 118, 138, 234, 265, 273, 375, 378, 387, 396, 397, 467, 523, 540, 626, 629, 632, 634, 740, 741, 852], "column": [0, 14, 47, 57, 62, 80, 85, 97, 98, 132, 147, 328, 369, 376, 378, 385, 387, 429, 435, 447, 468, 473, 475, 476, 480, 482, 515, 521, 522, 629, 637, 672, 673, 678, 684, 686, 687, 692, 776, 791], "It": [0, 1, 4, 7, 13, 14, 23, 26, 27, 28, 29, 31, 32, 33, 34, 43, 44, 45, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 443, 444, 452, 453, 454, 455, 456, 458, 459, 469, 472, 477, 485, 486, 487, 488, 490, 492, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 578, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 717, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 756, 757, 758, 761, 763, 764, 766, 767, 768, 791, 792, 812, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 838, 840, 841, 842, 843, 844, 845, 846, 847, 849, 851, 852, 853, 862, 865, 868, 870, 871, 873, 874, 875, 876, 877], "just": [0, 6, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 47, 57, 62, 70, 85, 97, 100, 147, 328, 369, 376, 444, 629, 637, 647, 680, 759, 784, 792, 812, 816, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 855, 860, 861, 864, 870, 871, 876], "verifi": [0, 6, 9, 10, 14, 28, 325, 326, 369, 818, 829, 830, 841, 844, 845], "consist": [0, 6, 7, 12, 13, 14, 26, 27, 28, 29, 31, 32, 70, 74, 240, 247, 273, 375, 376, 419, 429, 632, 637, 647, 672, 673, 759, 793, 794, 815, 823, 824, 828, 829, 835, 840, 849, 859, 871], "complet": [0, 62, 74, 85, 637, 684, 777, 818, 819, 820, 821, 823, 824, 827, 828, 831, 833, 837, 841, 842, 844, 847, 851, 852, 860, 868], "By": [0, 23, 43, 50, 57, 63, 64, 70, 71, 80, 86, 87, 93, 94, 287, 333, 335, 336, 349, 356, 369, 372, 375, 377, 378, 385, 387, 398, 456, 457, 492, 496, 515, 522, 525, 580, 632, 634, 637, 638, 639, 647, 648, 668, 693, 696, 705, 757, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 825, 829, 831, 833, 837, 839, 840, 841, 849, 853, 854, 863], "tail": [0, 867], "last": [0, 24, 29, 31, 34, 53, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 76, 80, 84, 85, 86, 87, 92, 93, 94, 98, 102, 137, 138, 141, 196, 313, 341, 369, 372, 375, 376, 377, 378, 385, 387, 404, 409, 419, 420, 421, 432, 456, 474, 484, 486, 492, 496, 515, 523, 524, 629, 631, 636, 637, 638, 639, 644, 646, 647, 648, 662, 663, 668, 671, 682, 691, 693, 697, 698, 700, 703, 706, 707, 708, 710, 744, 745, 753, 755, 756, 757, 758, 767, 768, 792, 801, 812, 820, 823, 825, 826, 829, 831, 840, 842, 844, 847, 849, 855, 861, 864, 870], "well": [0, 14, 31, 32, 45, 46, 47, 81, 377, 456, 558, 634, 637, 686, 778, 812, 814, 818, 820, 826, 828, 829, 833, 840, 841, 842, 844, 853, 854, 864, 869, 870, 871, 875], "readi": [0, 16, 18, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 818, 819], "284802": 0, "172786": 0, "881118": 0, "071785": 0, "834783": 0, "066656": 0, "364473": 0, "606837": 0, "918215": 0, "305334": 0, "914428": 0, "213454": 0, "111864": 0, "014480": 0, "509348": 0, "436807": 0, "250034": 0, "943651": 0, "823731": 0, "77": [0, 7, 14, 43, 47, 81, 593, 637, 647, 682, 759], "284803": 0, "172787": 0, "732789": 0, "055080": 0, "035030": 0, "738589": 0, "868229": 0, "058415": 0, "024330": 0, "294869": 0, "584800": 0, "214205": 0, "924384": 0, "012463": 0, "016226": 0, "606624": 0, "395255": 0, "068472": 0, "053527": 0, "24": [0, 6, 14, 24, 43, 45, 56, 57, 62, 70, 79, 80, 81, 84, 85, 89, 102, 235, 243, 258, 260, 273, 283, 284, 287, 349, 352, 372, 375, 387, 394, 396, 397, 407, 412, 413, 414, 418, 422, 523, 545, 546, 632, 634, 637, 641, 647, 650, 671, 678, 682, 719, 730, 739, 740, 741, 757, 759, 773, 833, 852], "79": [0, 43, 45, 57, 58, 80, 81, 84, 89, 102, 240, 375, 397, 407, 418, 540, 541, 632, 634, 741], "284804": 0, "172788": 0, "919565": 0, "301254": 0, "249640": 0, "557828": 0, "630515": 0, "031260": 0, "296827": 0, "708417": 0, "432454": 0, "232045": 0, "578229": 0, "037501": 0, "640134": 0, "265745": 0, "087371": 0, "004455": 0, "026561": 0, "67": [0, 14, 43, 56, 57, 58, 62, 79, 80, 81, 84, 89, 102, 238, 243, 283, 284, 286, 293, 304, 308, 367, 387, 418, 523, 545, 546, 592, 618, 620, 632, 634, 635, 637, 675, 741], "88": [0, 14, 43, 82, 89, 112, 387, 523, 619, 626, 635, 637, 643, 647, 682, 741, 759], "284805": 0, "240440": 0, "530483": 0, "702510": 0, "689799": 0, "377961": 0, "623708": 0, "686180": 0, "679145": 0, "392087": 0, "265245": 0, "800049": 0, "163298": 0, "123205": 0, "569159": 0, "546668": 0, "108821": 0, "104533": 0, "284806": 0, "172792": 0, "533413": 0, "189733": 0, "703337": 0, "506271": 0, "012546": 0, "649617": 0, "577006": 0, "414650": 0, "486180": 0, "261057": 0, "643078": 0, "376777": 0, "008797": 0, "473649": 0, "818267": 0, "002415": 0, "013649": 0, "217": [0, 45, 833], "understand": [0, 20, 21, 22, 26, 43, 49, 816, 817, 818, 819, 820, 822, 823, 826, 831, 832, 836, 842, 843, 848, 861, 866, 876], "composit": [0, 22, 31, 166, 167, 199, 200, 292, 376, 436, 550, 551, 630, 631, 632, 634, 777, 779, 818, 822, 824, 825, 827, 829, 830, 838, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 863, 871], "crucial": [0, 830, 839], "proce": [0, 14, 818, 819], "ani": [0, 1, 6, 7, 8, 12, 16, 18, 20, 21, 22, 23, 24, 33, 34, 37, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 57, 58, 62, 71, 72, 76, 78, 79, 80, 81, 94, 95, 97, 102, 103, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 156, 171, 175, 179, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 420, 421, 430, 435, 452, 473, 484, 492, 496, 501, 502, 503, 522, 525, 528, 529, 530, 534, 544, 545, 546, 547, 548, 552, 556, 558, 560, 564, 566, 567, 585, 591, 593, 600, 601, 608, 614, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 724, 725, 727, 728, 735, 737, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 771, 773, 774, 778, 788, 789, 791, 792, 794, 795, 796, 797, 801, 805, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 876, 877], "info": [0, 45, 809, 810, 812, 826, 832, 835], "concis": 0, "summari": [0, 74, 169, 542, 630, 634, 819, 820, 844], "includ": [0, 1, 6, 14, 20, 24, 34, 39, 53, 56, 57, 58, 62, 67, 70, 71, 74, 76, 79, 80, 81, 85, 90, 93, 94, 126, 127, 128, 137, 138, 140, 147, 220, 244, 248, 249, 250, 253, 255, 258, 266, 274, 287, 292, 314, 317, 318, 319, 322, 328, 331, 333, 335, 336, 340, 341, 342, 345, 346, 347, 348, 350, 352, 353, 355, 356, 357, 358, 361, 362, 369, 372, 375, 378, 387, 394, 395, 396, 426, 429, 431, 475, 476, 478, 481, 483, 485, 488, 510, 512, 513, 521, 525, 527, 528, 530, 531, 532, 558, 613, 629, 632, 634, 636, 637, 641, 643, 644, 647, 648, 661, 672, 692, 694, 718, 741, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 795, 808, 810, 812, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 860, 863, 864, 867, 868, 870, 872, 875, 876, 877], "number": [0, 45, 47, 48, 49, 50, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 97, 98, 100, 102, 103, 106, 126, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 147, 153, 158, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 175, 177, 180, 204, 205, 206, 220, 221, 222, 223, 224, 226, 228, 229, 236, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 257, 261, 263, 271, 272, 273, 274, 275, 276, 278, 280, 282, 283, 284, 286, 287, 291, 293, 319, 323, 324, 325, 326, 327, 328, 330, 331, 332, 334, 335, 336, 338, 339, 340, 341, 351, 356, 360, 369, 372, 375, 376, 377, 378, 381, 387, 409, 420, 423, 426, 429, 433, 434, 435, 445, 449, 451, 452, 462, 463, 464, 484, 485, 486, 487, 488, 490, 492, 494, 496, 498, 501, 502, 503, 520, 522, 523, 524, 525, 531, 549, 556, 574, 591, 592, 593, 600, 613, 614, 627, 629, 630, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 647, 648, 649, 656, 657, 659, 661, 663, 668, 672, 673, 674, 680, 685, 687, 691, 692, 693, 696, 699, 701, 702, 704, 705, 707, 708, 710, 712, 714, 715, 716, 717, 738, 742, 747, 749, 750, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 784, 791, 792, 795, 806, 810, 812, 819, 820, 827, 828, 829, 830, 831, 838, 839, 840, 844, 845, 846, 847, 849, 852, 858, 859, 863], "presenc": [0, 771, 827, 840], "null": [0, 819, 834], "each": [0, 11, 13, 14, 24, 25, 26, 31, 32, 34, 35, 36, 38, 45, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 74, 77, 79, 80, 81, 82, 84, 85, 87, 90, 91, 93, 97, 98, 100, 102, 103, 111, 112, 114, 115, 116, 118, 122, 139, 153, 165, 168, 213, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 297, 298, 303, 305, 306, 307, 309, 310, 311, 316, 327, 330, 331, 332, 338, 346, 350, 354, 359, 362, 367, 369, 372, 375, 376, 378, 381, 382, 385, 387, 394, 395, 396, 399, 400, 401, 404, 412, 413, 414, 415, 418, 420, 421, 422, 429, 430, 435, 444, 445, 449, 451, 462, 463, 464, 468, 469, 470, 475, 476, 478, 479, 481, 483, 484, 487, 489, 498, 499, 506, 508, 515, 520, 521, 522, 523, 524, 525, 534, 537, 545, 552, 553, 569, 594, 614, 616, 617, 619, 621, 622, 623, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 667, 668, 669, 672, 673, 674, 677, 679, 680, 681, 683, 685, 686, 687, 692, 701, 705, 707, 708, 710, 712, 714, 724, 731, 738, 747, 749, 750, 752, 758, 759, 766, 773, 776, 778, 784, 792, 795, 796, 797, 806, 810, 815, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 859, 860, 861, 863, 864, 866, 867, 871, 873, 876], "invalu": 0, "plan": [0, 812, 856], "right": [0, 46, 57, 62, 74, 80, 85, 103, 120, 121, 232, 234, 287, 350, 372, 375, 376, 378, 410, 440, 446, 447, 449, 475, 545, 628, 632, 634, 637, 646, 687, 692, 755, 776, 813, 818, 819, 820, 822, 823, 831, 834, 847, 852, 863], "format": [0, 1, 28, 29, 31, 32, 43, 45, 46, 47, 55, 58, 61, 70, 73, 74, 75, 78, 84, 100, 118, 163, 197, 375, 376, 386, 417, 450, 518, 545, 626, 630, 631, 634, 636, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 661, 759, 769, 770, 771, 788, 812, 819, 820, 822, 828, 829, 830, 831, 832, 833, 841, 843, 852, 864, 866, 868, 870, 871], "lt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 103], "core": [0, 6, 26, 27, 29, 45, 46, 47, 49, 50, 57, 80, 97, 100, 204, 376, 434, 445, 450, 451, 631, 819, 830, 834, 844, 854, 859, 868, 869, 870, 871, 875, 877], "frame": [0, 47, 57, 80, 319, 369, 375, 423, 860, 870], "gt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 50, 103, 842, 849], "rangeindex": 0, "284807": 0, "total": [0, 45, 47, 57, 70, 74, 80, 93, 103, 134, 215, 330, 331, 332, 340, 369, 372, 377, 452, 629, 631, 644, 647, 747, 764, 766, 806, 812, 813, 819, 820, 829, 830, 831, 844, 847, 852, 853, 855, 861], "non": [0, 7, 24, 34, 54, 56, 57, 62, 66, 67, 70, 71, 77, 79, 80, 85, 89, 90, 93, 94, 134, 152, 170, 179, 248, 268, 269, 274, 335, 336, 340, 347, 360, 372, 375, 376, 378, 387, 419, 430, 434, 440, 463, 464, 525, 528, 629, 630, 632, 637, 641, 643, 644, 647, 648, 668, 669, 678, 680, 687, 689, 693, 694, 731, 740, 744, 745, 746, 747, 760, 761, 762, 763, 764, 766, 767, 768, 776, 791, 793, 794, 796, 824, 827, 831, 849, 863, 864, 865, 870], "count": [0, 49, 57, 64, 68, 71, 76, 80, 87, 91, 94, 134, 206, 340, 372, 378, 387, 492, 496, 498, 520, 525, 629, 631, 637, 639, 645, 648, 668, 693, 700, 703, 749, 750, 767, 768, 826, 827, 831, 852], "dtype": [0, 4, 8, 12, 14, 18, 24, 26, 27, 28, 29, 43, 46, 53, 54, 57, 58, 61, 62, 66, 67, 70, 74, 76, 77, 79, 80, 81, 84, 85, 89, 90, 93, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 208, 235, 239, 271, 272, 274, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 333, 338, 340, 356, 369, 372, 375, 376, 377, 378, 382, 387, 397, 407, 419, 420, 423, 446, 452, 457, 468, 492, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 532, 549, 550, 551, 553, 562, 571, 599, 629, 630, 631, 632, 634, 636, 637, 640, 643, 644, 646, 647, 648, 652, 659, 678, 694, 716, 717, 739, 740, 741, 744, 745, 746, 755, 756, 757, 758, 761, 763, 765, 767, 768, 771, 773, 776, 778, 779, 791, 792, 793, 794, 795, 797, 812, 816, 823, 825, 829, 830, 831, 833, 834, 837, 838, 840, 841, 842, 844, 845, 849, 851, 864], "float64": [0, 26, 27, 54, 57, 66, 70, 76, 77, 79, 80, 81, 89, 93, 126, 134, 135, 152, 155, 159, 160, 165, 166, 169, 170, 175, 176, 180, 182, 183, 189, 192, 274, 346, 372, 377, 387, 452, 457, 522, 571, 629, 630, 634, 637, 643, 673, 674, 678, 694, 740, 741, 758, 773, 776, 777, 829, 842, 844], "v10": 0, "v11": 0, "12": [0, 4, 6, 7, 8, 11, 12, 14, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 54, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 88, 89, 93, 102, 103, 168, 223, 225, 230, 234, 235, 238, 240, 241, 242, 260, 273, 276, 283, 286, 293, 294, 317, 318, 349, 352, 353, 369, 372, 375, 378, 387, 394, 395, 396, 397, 399, 403, 404, 412, 413, 417, 418, 419, 420, 422, 467, 468, 470, 474, 479, 496, 499, 512, 523, 529, 530, 531, 541, 545, 546, 577, 583, 592, 606, 632, 634, 636, 637, 639, 641, 642, 643, 644, 645, 647, 650, 654, 659, 660, 671, 673, 675, 678, 682, 686, 688, 689, 691, 693, 703, 707, 709, 711, 713, 730, 737, 739, 740, 741, 748, 749, 757, 758, 759, 763, 765, 776, 819, 825, 827, 829, 831, 839], "v12": 0, "13": [0, 4, 6, 7, 8, 11, 12, 22, 26, 27, 28, 29, 43, 45, 47, 51, 56, 57, 61, 62, 66, 70, 79, 80, 81, 82, 84, 87, 89, 93, 102, 118, 168, 198, 223, 238, 247, 258, 278, 287, 349, 356, 363, 372, 375, 378, 396, 397, 407, 418, 422, 467, 468, 470, 474, 479, 499, 512, 523, 524, 540, 545, 546, 561, 583, 592, 615, 626, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 647, 650, 651, 659, 660, 671, 675, 682, 686, 688, 691, 713, 717, 730, 739, 740, 741, 748, 749, 757, 758, 759, 827, 829, 831, 841], "v13": 0, "v14": 0, "15": [0, 4, 6, 7, 8, 9, 12, 13, 14, 27, 43, 45, 46, 47, 50, 56, 57, 58, 62, 66, 70, 76, 77, 79, 80, 81, 84, 85, 87, 89, 93, 103, 136, 165, 223, 230, 234, 240, 242, 251, 258, 259, 264, 265, 273, 282, 283, 284, 349, 363, 372, 373, 375, 376, 378, 387, 394, 395, 412, 414, 417, 418, 422, 428, 470, 474, 479, 499, 523, 541, 545, 546, 549, 560, 561, 586, 592, 609, 629, 630, 632, 634, 636, 637, 639, 641, 643, 644, 645, 647, 650, 660, 671, 674, 675, 676, 682, 688, 689, 707, 713, 718, 739, 740, 747, 749, 758, 759, 773, 815, 819, 828, 831, 839, 873], "v15": 0, "v16": 0, "17": [0, 6, 8, 9, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 57, 62, 73, 79, 80, 81, 82, 84, 85, 89, 103, 112, 113, 138, 223, 240, 265, 273, 304, 312, 363, 369, 375, 378, 394, 395, 403, 404, 407, 408, 412, 413, 418, 422, 474, 546, 561, 615, 617, 626, 629, 632, 634, 635, 636, 637, 641, 643, 650, 659, 660, 671, 675, 726, 739, 740, 741, 743, 827], "v17": 0, "18": [0, 4, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 66, 79, 80, 81, 84, 85, 89, 93, 113, 235, 240, 282, 286, 295, 296, 349, 367, 372, 375, 378, 397, 403, 407, 408, 412, 418, 422, 474, 591, 626, 632, 637, 643, 647, 654, 671, 677, 682, 689, 739, 740, 741, 758, 759, 763, 827, 829, 831], "v18": 0, "19": [0, 4, 13, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 66, 79, 80, 84, 85, 89, 226, 235, 263, 273, 290, 375, 376, 378, 387, 396, 397, 408, 412, 418, 422, 428, 433, 474, 523, 632, 637, 641, 643, 646, 671, 678, 691, 729, 739, 740, 741, 756, 831], "v19": 0, "20": [0, 4, 9, 10, 14, 18, 43, 45, 46, 47, 50, 56, 57, 58, 61, 66, 70, 79, 80, 81, 84, 85, 89, 93, 235, 239, 243, 279, 283, 287, 304, 349, 351, 353, 372, 375, 378, 394, 396, 412, 418, 422, 467, 489, 545, 552, 553, 555, 577, 581, 592, 632, 634, 637, 643, 644, 647, 650, 651, 662, 671, 676, 678, 682, 689, 739, 747, 748, 757, 758, 759, 763, 765, 812, 828, 847, 851], "v20": 0, "22": [0, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 56, 57, 58, 66, 70, 73, 80, 81, 84, 89, 113, 118, 235, 243, 304, 308, 367, 375, 376, 377, 378, 383, 387, 394, 395, 397, 412, 413, 414, 418, 422, 428, 452, 467, 513, 523, 546, 577, 613, 626, 632, 636, 637, 641, 644, 647, 659, 660, 671, 676, 682, 686, 726, 736, 739, 740, 741, 748, 758, 759, 819, 827, 833], "26": [0, 26, 27, 28, 29, 43, 45, 47, 50, 56, 57, 65, 66, 80, 81, 82, 89, 235, 240, 286, 375, 376, 397, 433, 443, 560, 615, 632, 634, 635, 636, 637, 641, 642, 647, 658, 671, 682, 689, 719, 737, 739, 740, 759], "27": [0, 14, 43, 45, 50, 56, 57, 62, 66, 79, 80, 81, 84, 85, 89, 93, 234, 235, 238, 278, 286, 287, 346, 372, 375, 397, 407, 561, 591, 632, 634, 637, 641, 647, 677, 682, 692, 719, 726, 740, 759, 763, 776, 878], "28": [0, 14, 29, 31, 32, 43, 45, 47, 50, 56, 57, 61, 65, 79, 80, 81, 84, 85, 89, 93, 239, 242, 263, 279, 375, 376, 397, 407, 428, 529, 560, 615, 632, 634, 635, 636, 637, 642, 647, 651, 653, 655, 657, 658, 660, 682, 737, 739, 740, 741, 759, 763, 812], "30": [0, 14, 26, 27, 28, 29, 43, 45, 56, 57, 58, 80, 81, 89, 93, 103, 273, 304, 349, 357, 372, 375, 378, 397, 407, 418, 467, 489, 513, 545, 547, 552, 553, 560, 561, 577, 586, 592, 632, 634, 637, 641, 647, 676, 682, 727, 739, 740, 758, 759, 763, 778, 791, 806, 815, 828], "int64": [0, 8, 57, 66, 67, 69, 70, 77, 89, 90, 92, 93, 142, 155, 161, 164, 166, 168, 172, 173, 177, 184, 316, 369, 385, 387, 515, 523, 524, 629, 630, 644, 646, 647, 739, 744, 745, 746, 755, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "proceed": [0, 45], "within": [0, 7, 14, 16, 18, 22, 31, 32, 52, 57, 80, 126, 334, 351, 372, 375, 381, 412, 413, 414, 419, 422, 462, 463, 464, 506, 629, 643, 741, 806, 815, 818, 820, 821, 824, 828, 829, 841, 842, 843, 844, 853, 855, 864, 866, 867, 871], "significantli": [0, 9, 11, 13, 31, 57, 62, 80, 85, 376, 449, 637, 687, 828, 859, 868], "impact": [0, 815, 828, 844, 853, 872], "isnul": 0, "sum": [0, 6, 7, 45, 47, 56, 57, 58, 61, 62, 63, 70, 74, 79, 80, 81, 84, 85, 86, 93, 97, 102, 103, 213, 223, 265, 289, 332, 356, 369, 372, 376, 377, 378, 381, 387, 418, 428, 452, 453, 454, 455, 456, 457, 458, 459, 489, 506, 528, 529, 546, 576, 577, 631, 632, 634, 636, 637, 638, 647, 659, 666, 678, 687, 691, 694, 696, 758, 759, 791, 793, 805, 812, 827, 829, 837, 839, 840, 841, 849, 863, 864, 865, 867], "quickli": [0, 6, 819, 820, 828, 852, 853, 859, 861, 870, 877], "appropri": [0, 6, 11, 22, 26, 27, 29, 31, 32, 58, 67, 72, 90, 95, 223, 240, 247, 273, 334, 351, 372, 632, 644, 744, 812, 818, 819, 820, 833, 838, 844], "either": [0, 14, 26, 27, 36, 37, 38, 39, 43, 49, 56, 57, 58, 61, 70, 74, 79, 80, 81, 84, 85, 112, 115, 118, 123, 133, 134, 144, 220, 221, 222, 223, 228, 238, 240, 241, 243, 245, 247, 254, 255, 261, 262, 263, 264, 265, 273, 282, 284, 285, 287, 290, 291, 337, 359, 372, 375, 381, 387, 397, 407, 417, 418, 422, 506, 523, 524, 544, 564, 572, 573, 581, 601, 626, 628, 629, 632, 634, 636, 637, 640, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 677, 682, 685, 689, 715, 716, 717, 757, 758, 763, 765, 778, 792, 793, 794, 801, 814, 818, 819, 820, 825, 826, 827, 829, 830, 831, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 849, 852, 855, 856, 864, 870], "imput": [0, 57, 80, 376, 434, 445, 451], "remov": [0, 6, 9, 14, 20, 21, 24, 29, 31, 32, 34, 62, 74, 85, 637, 639, 640, 641, 671, 677, 691, 709, 715, 716, 732, 806, 809, 812, 818, 825, 826, 828, 829, 832, 837, 843, 844, 847, 854, 863, 864, 870], "maintain": [0, 69, 92, 646, 753, 756, 812, 819, 820, 823, 835, 840, 842, 843, 844, 859, 869], "integr": [0, 4, 5, 6, 16, 18, 25, 32, 35, 54, 56, 57, 77, 79, 80, 152, 292, 355, 372, 387, 525, 630, 632, 812, 817, 819, 821, 822, 838, 864, 868, 870, 872, 873, 874], "check": [0, 4, 5, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 48, 50, 52, 54, 58, 62, 74, 77, 81, 85, 118, 156, 157, 166, 167, 170, 172, 173, 174, 177, 192, 199, 200, 207, 219, 538, 548, 550, 551, 558, 564, 565, 566, 567, 568, 584, 595, 607, 613, 626, 630, 631, 634, 637, 641, 673, 674, 680, 718, 728, 729, 730, 771, 778, 805, 806, 812, 813, 814, 817, 818, 819, 820, 821, 823, 827, 828, 830, 831, 833, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 851, 852, 853, 856, 863], "A": [0, 6, 31, 32, 46, 53, 54, 57, 58, 64, 66, 70, 71, 74, 77, 79, 80, 81, 84, 85, 87, 89, 91, 94, 97, 98, 103, 122, 123, 125, 132, 140, 147, 153, 194, 213, 275, 277, 281, 313, 324, 328, 330, 331, 332, 334, 348, 351, 355, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 390, 404, 418, 421, 423, 430, 438, 443, 446, 454, 458, 469, 472, 490, 494, 495, 501, 502, 503, 504, 508, 509, 510, 511, 512, 520, 529, 532, 537, 539, 548, 557, 560, 561, 592, 593, 594, 597, 625, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 647, 648, 659, 663, 671, 673, 676, 681, 682, 686, 687, 699, 702, 704, 708, 710, 718, 721, 723, 725, 726, 727, 728, 729, 733, 734, 735, 736, 738, 739, 740, 741, 743, 749, 759, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 791, 806, 810, 812, 817, 818, 819, 822, 827, 829, 830, 833, 836, 837, 841, 842, 844, 849, 852, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 870, 871], "critic": [0, 6, 26, 27, 29, 31, 32, 810, 870, 876], "grasp": [0, 841], "imbal": 0, "common": [0, 22, 25, 31, 35, 56, 57, 74, 79, 179, 250, 258, 339, 346, 372, 630, 632, 813, 816, 818, 819, 826, 829, 830, 831, 837, 838, 841, 845, 847, 855, 859, 867, 870, 877], "scenario": [0, 28, 829, 839], "call": [0, 4, 6, 11, 16, 18, 22, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 38, 45, 49, 57, 72, 77, 80, 95, 97, 103, 122, 172, 173, 213, 376, 387, 443, 529, 580, 586, 601, 617, 618, 620, 628, 631, 634, 635, 637, 641, 685, 718, 724, 728, 729, 773, 784, 792, 793, 794, 796, 801, 806, 810, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 860, 863, 864, 865, 870, 871, 874], "value_count": 0, "see": [0, 4, 5, 6, 7, 9, 10, 11, 13, 14, 23, 24, 29, 31, 32, 33, 34, 38, 43, 44, 50, 51, 54, 56, 57, 62, 67, 68, 70, 71, 73, 79, 80, 85, 90, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 133, 137, 144, 147, 154, 173, 180, 223, 228, 230, 232, 233, 234, 235, 240, 241, 245, 247, 251, 252, 259, 260, 263, 265, 267, 269, 270, 273, 276, 278, 282, 289, 291, 294, 295, 300, 301, 303, 328, 335, 336, 367, 369, 372, 376, 377, 378, 426, 454, 492, 626, 629, 630, 632, 637, 644, 645, 647, 648, 668, 680, 683, 686, 693, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 788, 812, 813, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 841, 842, 844, 847, 849, 851, 852, 855, 859, 866, 878], "instanc": [0, 6, 14, 22, 28, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 587, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 784, 789, 810, 818, 819, 820, 823, 824, 825, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 844, 852, 853, 854, 857, 863, 871], "typic": [0, 6, 57, 80, 334, 351, 372, 387, 522, 646, 755, 792, 823, 837, 869, 877], "repres": [0, 53, 56, 57, 61, 62, 79, 80, 84, 85, 100, 125, 139, 141, 164, 222, 223, 226, 229, 238, 240, 247, 273, 286, 290, 291, 316, 330, 331, 332, 349, 366, 369, 372, 374, 375, 376, 377, 378, 381, 382, 385, 418, 422, 436, 450, 452, 457, 484, 495, 501, 502, 503, 508, 514, 521, 557, 628, 629, 630, 632, 634, 636, 637, 659, 660, 661, 675, 682, 685, 686, 778, 791, 795, 806, 819, 824, 829, 847, 851, 867, 868, 871], "ones": [0, 6, 22, 29, 31, 43, 49, 53, 57, 59, 61, 66, 74, 76, 80, 84, 89, 132, 136, 141, 143, 149, 199, 200, 236, 313, 369, 387, 531, 615, 629, 631, 632, 635, 636, 654, 655, 739, 740, 741, 777, 812, 818, 824, 828, 831, 836, 837, 843, 844, 851, 852, 870], "how": [0, 3, 4, 5, 6, 8, 11, 13, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 43, 46, 49, 50, 51, 56, 57, 73, 79, 80, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 240, 273, 291, 295, 300, 301, 303, 367, 377, 378, 452, 467, 492, 493, 626, 632, 788, 791, 792, 793, 794, 812, 813, 814, 816, 817, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, 859, 861, 866, 870], "approach": [0, 36, 816, 818, 819, 820, 824, 827, 829, 830, 834, 837, 841, 844, 845, 847, 851, 852, 855, 867, 874, 876], "legit": 0, "284315": 0, "492": 0, "name": [0, 1, 6, 9, 11, 31, 32, 43, 45, 46, 47, 57, 62, 68, 72, 80, 85, 91, 95, 247, 375, 376, 378, 423, 429, 438, 494, 498, 535, 536, 632, 634, 637, 645, 672, 673, 684, 685, 687, 688, 692, 749, 750, 751, 773, 777, 784, 794, 801, 802, 804, 810, 818, 819, 820, 825, 826, 827, 828, 831, 832, 833, 836, 841, 842, 844, 845, 846, 847, 849, 852, 854, 870, 878], "highli": [0, 46, 812, 818, 870], "imbalanc": 0, "normal": [0, 2, 4, 6, 7, 9, 12, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 57, 65, 66, 80, 88, 89, 97, 98, 359, 372, 375, 381, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 501, 502, 503, 504, 505, 506, 507, 522, 525, 639, 642, 643, 700, 710, 737, 738, 740, 791, 792, 795, 812, 818, 840, 841, 847, 852, 863, 865, 868], "unifi": [0, 20, 21, 22, 24, 25, 31, 34, 35, 39, 46, 74, 213, 631, 821, 822, 823, 824, 828, 829, 833, 838, 839, 841, 847, 849, 855, 858, 860, 862, 864, 866, 867, 868, 870, 874, 877], "write": [0, 20, 21, 31, 32, 43, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 350, 352, 353, 354, 355, 358, 359, 360, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 426, 427, 435, 436, 438, 441, 442, 443, 444, 450, 453, 454, 455, 456, 458, 459, 468, 469, 472, 473, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 774, 812, 817, 818, 820, 822, 823, 825, 826, 828, 829, 831, 832, 833, 837, 840, 842, 845, 849, 851, 854, 861, 870, 877], "code": [0, 1, 5, 6, 11, 12, 13, 20, 21, 28, 29, 31, 33, 34, 35, 36, 37, 38, 45, 46, 55, 56, 74, 78, 79, 103, 214, 260, 387, 529, 538, 546, 547, 562, 576, 580, 595, 631, 634, 636, 637, 639, 658, 679, 680, 681, 710, 810, 812, 815, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 875, 876, 877], "agnost": [0, 20, 21, 22, 23, 31, 32, 33, 37, 43, 812, 824, 829, 836, 849, 851, 854, 855, 876, 877], "underli": [0, 22, 31, 32, 43, 57, 64, 80, 87, 100, 230, 233, 235, 270, 377, 378, 457, 474, 632, 637, 639, 685, 706, 827, 840, 847, 863, 870], "deep": [0, 6, 22, 29, 31, 43, 74, 545, 634, 812, 813, 814, 817, 818, 820, 823, 826, 827, 829, 835, 839, 842, 848, 851, 852, 859, 868, 870, 873, 874, 876, 877], "develop": [0, 6, 7, 16, 30, 31, 32, 812, 813, 814, 815, 816, 817, 818, 819, 820, 823, 826, 828, 834, 843, 845, 855, 857, 859, 860, 861, 863, 864, 868, 869, 870, 871, 872, 875, 876, 877], "ar": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 49, 52, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 97, 98, 102, 103, 126, 136, 138, 141, 147, 201, 206, 208, 213, 237, 239, 240, 243, 247, 268, 269, 273, 278, 279, 283, 285, 290, 291, 292, 328, 330, 331, 332, 334, 337, 339, 340, 341, 345, 346, 351, 356, 359, 363, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 391, 392, 398, 399, 400, 401, 404, 409, 411, 419, 420, 429, 430, 434, 444, 445, 447, 451, 452, 453, 457, 458, 462, 463, 464, 474, 475, 476, 478, 484, 487, 491, 492, 501, 503, 508, 509, 510, 511, 512, 522, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 548, 554, 559, 563, 574, 575, 584, 595, 607, 617, 629, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 659, 660, 661, 663, 666, 668, 672, 673, 674, 677, 678, 680, 683, 684, 687, 688, 692, 693, 694, 699, 700, 703, 707, 709, 719, 724, 729, 730, 731, 739, 740, 741, 744, 745, 746, 747, 749, 751, 771, 773, 776, 777, 778, 779, 784, 791, 794, 797, 798, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 870, 871, 872, 873, 874, 875, 876, 877, 878], "tensorflow": [0, 3, 9, 10, 13, 15, 16, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 49, 56, 57, 58, 79, 80, 147, 194, 209, 224, 328, 369, 376, 430, 595, 629, 631, 634, 771, 784, 801, 812, 816, 817, 818, 819, 820, 823, 828, 829, 830, 834, 836, 840, 841, 842, 844, 845, 847, 849, 854, 855, 857, 860, 861, 864, 865, 867, 868, 871, 873, 874, 876, 877], "pytorch": [0, 3, 4, 5, 8, 9, 11, 12, 15, 17, 18, 20, 21, 29, 31, 32, 43, 50, 283, 335, 336, 372, 632, 796, 812, 817, 818, 824, 829, 830, 833, 836, 837, 840, 841, 842, 847, 849, 854, 855, 857, 860, 861, 863, 864, 867, 871, 873, 874, 876, 877], "flexibl": [0, 812, 827, 829, 836, 839, 845, 847, 870], "particularli": [0, 820, 852, 855, 863, 868], "research": [0, 6, 31, 32, 45, 812, 859, 864, 870, 877], "where": [0, 1, 11, 24, 28, 34, 35, 39, 47, 53, 56, 57, 58, 62, 64, 66, 67, 70, 71, 74, 76, 79, 80, 81, 85, 87, 89, 90, 93, 94, 97, 98, 135, 136, 139, 141, 147, 228, 238, 240, 243, 245, 247, 248, 257, 262, 263, 264, 271, 272, 273, 278, 280, 284, 286, 290, 300, 302, 328, 330, 331, 332, 347, 351, 358, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 389, 390, 391, 392, 398, 403, 404, 408, 423, 429, 430, 434, 435, 437, 438, 445, 451, 452, 453, 462, 463, 464, 478, 484, 501, 502, 503, 506, 508, 509, 511, 512, 522, 530, 531, 532, 562, 576, 614, 629, 632, 634, 636, 637, 639, 641, 643, 644, 647, 648, 661, 663, 668, 672, 673, 678, 680, 682, 683, 684, 687, 688, 691, 693, 699, 701, 702, 704, 710, 714, 722, 729, 738, 739, 740, 741, 746, 747, 762, 764, 766, 767, 768, 776, 791, 795, 806, 810, 812, 813, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 861, 863, 868, 877], "abil": [0, 819, 847, 850, 855, 870], "switch": [0, 31, 43, 784, 825, 833, 837, 838, 877], "differ": [0, 4, 5, 6, 9, 11, 13, 14, 16, 20, 21, 25, 26, 27, 31, 32, 35, 36, 37, 38, 56, 57, 58, 62, 70, 74, 80, 81, 93, 102, 103, 112, 115, 165, 223, 240, 247, 248, 273, 289, 334, 341, 346, 347, 351, 372, 375, 376, 378, 387, 409, 420, 445, 451, 468, 475, 476, 490, 523, 524, 532, 552, 553, 626, 630, 632, 634, 636, 637, 639, 647, 659, 660, 675, 685, 700, 710, 757, 758, 763, 765, 766, 771, 776, 784, 793, 794, 812, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 873, 876, 877], "without": [0, 1, 4, 14, 34, 43, 47, 50, 68, 74, 100, 586, 601, 634, 639, 641, 645, 706, 719, 749, 750, 751, 752, 776, 779, 805, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 836, 837, 841, 844, 845, 847, 851, 852, 853, 855, 863, 867, 870, 871, 872, 876], "chang": [0, 4, 5, 14, 22, 32, 45, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 632, 639, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 818, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 834, 835, 841, 842, 843, 844, 845, 846, 847, 849, 853, 855, 856, 861, 863, 873, 876], "codebas": [0, 6, 31, 32, 211, 212, 631, 813, 815, 822, 829, 835, 840, 841, 843, 844, 845, 848, 861], "signific": [0, 14, 57, 377, 457, 846, 855, 859, 860, 870], "advantag": [0, 6, 29, 31, 32, 812, 819, 820, 829, 840, 841, 856, 864, 870], "effect": [0, 6, 37, 53, 57, 59, 70, 80, 82, 93, 139, 377, 411, 456, 615, 623, 629, 635, 636, 647, 663, 764, 766, 776, 779, 818, 824, 827, 828, 832, 836, 840, 842, 847, 855, 860], "analyz": [0, 818, 857], "done": [0, 45, 47, 50, 637, 674, 817, 818, 819, 820, 823, 826, 828, 830, 831, 834, 835, 840, 841, 844, 852, 863, 864, 870], "two": [0, 25, 35, 37, 43, 53, 57, 62, 68, 80, 81, 85, 102, 103, 123, 126, 132, 139, 145, 146, 147, 178, 186, 234, 248, 249, 283, 328, 329, 334, 347, 348, 350, 351, 353, 355, 362, 369, 372, 375, 376, 377, 378, 387, 404, 427, 428, 429, 438, 443, 452, 454, 458, 463, 484, 490, 494, 522, 532, 537, 628, 629, 630, 632, 634, 636, 637, 639, 645, 661, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 711, 749, 750, 751, 752, 776, 778, 784, 792, 818, 819, 823, 824, 829, 830, 831, 832, 837, 841, 842, 844, 847, 848, 852, 854, 861, 867, 875], "distinct": [0, 57, 68, 80, 330, 331, 332, 369, 645, 749, 750, 751, 752, 815, 819, 827, 832, 839, 840, 841, 848, 860, 870], "one": [0, 4, 6, 11, 13, 16, 18, 20, 21, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 49, 53, 57, 58, 61, 62, 64, 67, 68, 70, 74, 76, 79, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 97, 126, 129, 139, 141, 142, 143, 153, 155, 213, 234, 240, 247, 248, 265, 271, 272, 273, 292, 302, 312, 315, 316, 334, 340, 343, 344, 347, 348, 351, 352, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 397, 399, 403, 404, 407, 408, 411, 419, 424, 426, 435, 444, 458, 462, 463, 464, 468, 474, 475, 476, 481, 483, 488, 491, 501, 502, 503, 508, 513, 523, 524, 527, 528, 529, 530, 531, 532, 534, 572, 576, 577, 579, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 647, 650, 651, 652, 653, 654, 655, 658, 675, 677, 678, 682, 684, 693, 694, 702, 703, 704, 707, 709, 713, 737, 744, 747, 749, 750, 751, 752, 757, 759, 776, 778, 795, 798, 801, 806, 809, 812, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 846, 847, 848, 851, 852, 854, 855, 856, 857, 860, 861, 864, 870, 871, 873, 876], "anoth": [0, 4, 22, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 133, 153, 155, 629, 630, 812, 818, 819, 820, 825, 827, 829, 830, 833, 835, 837, 840, 841, 844, 849, 851, 854, 857, 860, 862, 863, 864, 870, 876], "characterist": [0, 826], "clear": [0, 14, 195, 631, 818, 820, 825, 829, 830, 831, 841, 847, 849, 851, 859, 860, 861, 870], "print": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 18, 22, 23, 25, 29, 31, 32, 33, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 166, 167, 170, 172, 173, 175, 180, 192, 193, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 211, 212, 214, 215, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 305, 306, 307, 309, 310, 311, 313, 320, 321, 328, 330, 334, 335, 336, 338, 353, 354, 359, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 402, 404, 407, 409, 412, 413, 414, 417, 419, 420, 425, 428, 430, 432, 433, 443, 450, 453, 454, 455, 456, 457, 458, 459, 465, 467, 469, 480, 484, 489, 490, 492, 493, 494, 496, 500, 504, 505, 507, 522, 523, 524, 525, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 572, 573, 575, 576, 577, 581, 582, 583, 586, 589, 590, 591, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 805, 806, 810, 812, 819, 820, 827, 829, 831, 842, 844, 846, 849, 851, 852, 853, 863, 865], "shape": [0, 4, 5, 8, 9, 14, 16, 18, 24, 25, 26, 27, 31, 32, 37, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 101, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 208, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 360, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 424, 425, 426, 427, 429, 430, 431, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 465, 467, 469, 472, 477, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 540, 541, 545, 546, 547, 549, 552, 553, 556, 562, 569, 576, 577, 587, 596, 598, 610, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 776, 778, 791, 792, 795, 805, 810, 812, 820, 821, 827, 829, 830, 831, 832, 833, 834, 836, 840, 841, 842, 844, 845, 846, 849, 851, 852, 853, 854, 863, 864], "gain": [0, 14, 791, 820, 821, 823, 848, 853, 870], "descript": [0, 1, 2, 40, 41, 42, 47, 50, 53, 56, 57, 62, 79, 80, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 832, 839, 840], "describ": [0, 7, 57, 70, 80, 98, 223, 240, 241, 273, 276, 278, 377, 382, 385, 457, 512, 515, 632, 636, 647, 663, 759, 763, 765, 814, 815, 818, 819, 820, 826, 828, 840, 841, 844, 849, 854, 870], "obtain": [0, 31, 32, 50, 57, 80, 319, 369, 375, 415, 636, 663, 778, 841, 863], "mean": [0, 4, 6, 7, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 47, 57, 58, 61, 63, 64, 66, 70, 72, 74, 76, 80, 81, 84, 86, 87, 89, 93, 95, 97, 134, 213, 330, 340, 369, 372, 375, 376, 377, 378, 381, 382, 387, 404, 409, 427, 440, 452, 453, 454, 455, 456, 457, 458, 459, 469, 474, 484, 501, 503, 509, 528, 529, 546, 617, 618, 620, 625, 629, 631, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 651, 653, 654, 655, 657, 658, 659, 670, 696, 697, 698, 706, 715, 716, 717, 724, 739, 740, 776, 778, 779, 791, 792, 795, 812, 819, 820, 822, 823, 825, 827, 829, 830, 831, 837, 839, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 864, 865, 867, 870], "deviat": [0, 65, 66, 70, 88, 89, 93, 642, 643, 647, 737, 740, 764, 778, 791, 795, 823, 861], "minimum": [0, 45, 56, 57, 58, 64, 67, 70, 79, 80, 81, 87, 90, 93, 220, 248, 275, 299, 331, 335, 336, 346, 367, 369, 372, 378, 387, 484, 520, 524, 530, 582, 583, 592, 593, 605, 606, 632, 634, 639, 644, 647, 699, 745, 760, 762, 776, 778, 779, 784, 829, 846, 867, 873, 877], "maximum": [0, 56, 57, 58, 59, 64, 67, 70, 74, 79, 80, 81, 82, 87, 90, 93, 103, 213, 299, 335, 336, 347, 360, 367, 372, 375, 376, 378, 387, 391, 392, 402, 445, 448, 451, 484, 523, 525, 530, 540, 541, 549, 557, 621, 631, 632, 634, 635, 637, 639, 644, 647, 678, 699, 744, 745, 760, 762, 776, 778, 779, 784, 806, 820, 829, 831, 840, 852, 867, 877], "quartil": 0, "overview": [0, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 826, 828, 842, 844, 848], "instrument": 0, "unusu": 0, "might": [0, 6, 7, 12, 37, 58, 98, 179, 544, 630, 634, 816, 818, 819, 820, 828, 829, 831, 834, 835, 838, 841, 844, 845, 847, 849, 851, 852, 857], "indic": [0, 4, 12, 53, 57, 58, 61, 62, 64, 65, 67, 68, 69, 74, 76, 77, 80, 81, 84, 85, 87, 88, 90, 91, 92, 97, 100, 127, 128, 141, 145, 147, 168, 172, 173, 284, 328, 329, 330, 349, 369, 372, 375, 376, 377, 378, 383, 385, 394, 395, 396, 398, 402, 403, 404, 408, 409, 412, 413, 414, 415, 419, 420, 430, 451, 454, 462, 463, 464, 467, 470, 472, 474, 475, 476, 479, 483, 489, 490, 492, 493, 494, 496, 498, 499, 513, 514, 515, 537, 552, 553, 555, 576, 577, 581, 614, 617, 618, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 650, 652, 653, 654, 655, 658, 663, 680, 694, 702, 703, 704, 706, 707, 708, 709, 711, 713, 718, 721, 723, 725, 726, 727, 729, 733, 734, 735, 736, 737, 738, 744, 745, 746, 747, 749, 751, 753, 755, 756, 773, 774, 776, 778, 792, 798, 805, 806, 808, 819, 828, 836, 839, 841, 854, 863], "000000": 0, "291022": 0, "std": [0, 4, 6, 7, 11, 12, 13, 14, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 46, 61, 66, 70, 84, 89, 93, 382, 509, 636, 643, 647, 651, 653, 654, 655, 657, 658, 739, 740, 812, 831, 865, 867], "250": 0, "105092": 0, "min": [0, 43, 47, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 145, 147, 165, 168, 272, 328, 331, 336, 369, 372, 376, 378, 430, 489, 530, 546, 576, 577, 592, 629, 630, 632, 634, 637, 647, 678, 684, 687, 688, 694, 812, 867], "650000": 0, "75": [0, 4, 7, 8, 43, 56, 57, 79, 80, 81, 84, 89, 119, 137, 226, 228, 240, 242, 253, 315, 348, 349, 369, 372, 418, 532, 547, 560, 592, 626, 629, 632, 634, 637, 641, 643, 650, 676, 682, 726, 741], "050000": 0, "max": [0, 43, 45, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 165, 168, 271, 335, 372, 375, 376, 377, 378, 394, 395, 396, 412, 413, 414, 415, 417, 419, 430, 452, 489, 491, 492, 540, 541, 546, 562, 576, 577, 630, 632, 634, 637, 647, 678, 680, 683, 776, 792, 796, 828, 841, 867], "25691": 0, "160000": 0, "reveal": 0, "outlier": [0, 844], "receiv": [0, 6, 45, 49, 97, 536, 572, 634, 640, 715, 716, 717, 792, 810, 815, 819, 820, 829, 830, 844, 847], "anomali": 0, "financi": 0, "behavior": [0, 4, 8, 57, 68, 240, 247, 273, 282, 388, 533, 580, 604, 632, 634, 645, 749, 750, 751, 752, 818, 826, 827, 828, 829, 840, 841, 842, 844, 847, 849, 855, 867], "associ": [0, 12, 57, 62, 80, 85, 223, 273, 378, 387, 461, 525, 632, 637, 680, 683, 695, 773, 820, 829, 837, 838, 841, 842, 844, 855], "122": [0, 13, 54, 168, 238, 632], "211321": 0, "256": [0, 4, 8, 12, 56, 81, 283, 284, 593, 636, 651, 653, 776], "683288": 0, "250000": 0, "105": [0, 62, 84, 636, 637, 659, 660, 675, 682], "890000": 0, "2125": 0, "870000": 0, "deepen": 0, "averag": [0, 6, 7, 45, 47, 57, 59, 63, 80, 82, 86, 375, 377, 381, 387, 389, 390, 394, 395, 396, 454, 455, 456, 457, 458, 459, 506, 522, 615, 616, 621, 635, 636, 638, 640, 663, 696, 715, 716, 791, 792], "across": [0, 1, 12, 13, 14, 26, 27, 28, 29, 43, 57, 67, 74, 80, 81, 90, 102, 211, 212, 240, 247, 273, 291, 377, 381, 452, 503, 506, 537, 558, 594, 631, 632, 634, 636, 641, 644, 659, 663, 724, 744, 745, 792, 818, 823, 829, 831, 833, 836, 837, 839, 844, 847, 868, 870, 875], "all": [0, 1, 2, 4, 5, 6, 7, 8, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 44, 45, 47, 48, 50, 52, 53, 57, 58, 61, 62, 64, 66, 71, 72, 74, 75, 76, 79, 80, 81, 84, 85, 87, 89, 94, 95, 97, 98, 126, 134, 141, 145, 146, 147, 201, 208, 240, 244, 272, 273, 328, 329, 341, 360, 369, 372, 375, 376, 377, 378, 387, 409, 418, 420, 421, 422, 430, 435, 445, 446, 448, 451, 452, 473, 484, 492, 498, 528, 534, 537, 554, 574, 575, 592, 599, 600, 614, 617, 629, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 648, 659, 662, 663, 668, 680, 685, 686, 689, 694, 703, 707, 709, 715, 716, 717, 718, 719, 720, 729, 730, 731, 732, 738, 741, 746, 771, 773, 776, 777, 778, 779, 791, 792, 798, 801, 806, 808, 810, 812, 813, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 876, 877, 878], "group": [0, 6, 57, 80, 378, 381, 498, 502, 636, 641, 649, 656, 657, 720, 810, 821, 823, 827, 829, 837, 841, 842, 866, 869, 875], "calcul": [0, 4, 14, 45, 56, 57, 58, 63, 70, 74, 79, 80, 81, 85, 86, 93, 103, 220, 221, 222, 223, 224, 225, 226, 227, 228, 237, 238, 240, 243, 244, 245, 261, 262, 263, 264, 265, 266, 271, 272, 273, 278, 285, 286, 287, 289, 290, 291, 297, 307, 335, 336, 349, 359, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 430, 452, 457, 484, 501, 503, 529, 569, 632, 634, 637, 638, 647, 674, 682, 685, 696, 697, 698, 760, 761, 762, 763, 764, 765, 766, 776, 778, 791, 792, 795, 818, 832, 849, 860, 863], "pictur": [0, 47, 812, 818, 849, 859], "vital": [0, 854, 859], "select": [0, 22, 31, 36, 49, 57, 70, 80, 93, 376, 378, 387, 430, 443, 492, 493, 496, 523, 524, 647, 757, 758, 818, 819, 820, 828, 834, 840, 844, 849, 851, 854, 855, 870, 873, 874], "guid": [0, 16, 29, 812, 813, 818, 819, 820, 826, 835, 841, 843, 876], "recogn": [0, 47, 815, 821], "both": [0, 6, 9, 11, 12, 13, 14, 16, 18, 26, 28, 31, 32, 36, 37, 44, 46, 53, 56, 57, 58, 61, 62, 76, 79, 80, 81, 84, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 178, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 339, 341, 346, 351, 369, 372, 375, 376, 378, 382, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 478, 484, 492, 495, 496, 508, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 625, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 792, 812, 816, 818, 820, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 847, 849, 851, 852, 853, 854, 855, 863, 864, 870, 873, 875, 876, 877], "groupbi": 0, "94838": 0, "202258": 0, "008258": 0, "006271": 0, "012171": 0, "007860": 0, "005453": 0, "002419": 0, "009637": 0, "000987": 0, "004467": 0, "000644": 0, "001235": [0, 47], "000024": 0, "000070": 0, "000182": 0, "000072": 0, "000089": 0, "000295": 0, "000131": 0, "80746": 0, "806911": 0, "771948": 0, "623778": 0, "033281": 0, "542029": 0, "151225": 0, "397737": 0, "568731": 0, "570636": 0, "581123": 0, "372319": 0, "713588": 0, "014049": 0, "040308": 0, "105130": 0, "041449": 0, "051648": 0, "170575": 0, "075667": 0, "In": [0, 3, 4, 5, 6, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 50, 55, 57, 58, 64, 78, 80, 81, 87, 97, 98, 207, 214, 215, 219, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 378, 381, 399, 400, 401, 421, 462, 463, 464, 470, 472, 474, 475, 476, 477, 479, 483, 489, 490, 499, 501, 503, 535, 555, 562, 580, 631, 632, 634, 637, 639, 643, 685, 702, 703, 704, 706, 708, 709, 711, 713, 741, 812, 818, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 854, 855, 859, 861, 863, 864, 865, 866, 868, 870, 871, 873, 876], "outnumb": 0, "address": [0, 31, 32, 57, 58, 80, 378, 492, 599, 634, 818, 820, 823, 824, 836, 843, 849, 861, 866, 868, 870, 876], "fair": 0, "dure": [0, 11, 13, 24, 26, 31, 34, 36, 37, 55, 59, 70, 74, 78, 82, 93, 214, 375, 399, 400, 401, 580, 601, 615, 616, 621, 631, 634, 635, 636, 637, 640, 647, 659, 677, 715, 716, 717, 764, 766, 784, 795, 796, 810, 819, 827, 829, 830, 833, 837, 838, 840, 841, 842, 843, 844, 847, 855, 863, 870, 871, 876], "similar": [0, 1, 6, 22, 31, 32, 57, 282, 377, 452, 632, 636, 663, 792, 816, 818, 819, 827, 828, 829, 830, 833, 834, 835, 837, 838, 839, 841, 842, 844, 845, 852, 855, 859, 864, 866, 867, 868, 869, 876], "here": [0, 2, 4, 6, 7, 9, 14, 17, 19, 22, 27, 30, 31, 32, 43, 45, 46, 47, 48, 50, 80, 283, 459, 632, 812, 816, 817, 818, 819, 820, 823, 825, 826, 827, 828, 829, 831, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 849, 850, 851, 852, 853, 854, 855, 863, 864, 865, 870, 871, 878], "take": [0, 4, 6, 12, 22, 29, 31, 32, 37, 43, 45, 48, 57, 62, 64, 70, 80, 87, 97, 122, 123, 125, 141, 280, 287, 302, 367, 375, 376, 378, 395, 403, 408, 413, 423, 432, 446, 467, 474, 493, 523, 524, 628, 629, 632, 636, 637, 639, 640, 663, 677, 681, 706, 717, 757, 776, 784, 791, 792, 805, 810, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 837, 840, 841, 842, 844, 847, 849, 851, 853, 854, 855, 856, 861, 863, 864, 867, 868, 876], "random": [0, 6, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 45, 47, 48, 57, 61, 74, 80, 84, 323, 324, 325, 326, 327, 369, 376, 377, 434, 445, 451, 457, 508, 509, 510, 511, 512, 636, 659, 738, 739, 740, 741, 742, 743, 776, 778, 791, 805, 806, 812, 818, 830, 842, 844, 845, 854, 864, 865, 870], "match": [0, 1, 54, 57, 74, 77, 80, 152, 247, 282, 339, 341, 372, 375, 377, 378, 420, 452, 467, 489, 493, 572, 630, 632, 634, 637, 673, 674, 678, 694, 771, 816, 818, 824, 826, 827, 831, 834, 842, 871, 876], "prevent": [0, 57, 59, 70, 80, 82, 93, 377, 457, 557, 615, 616, 621, 634, 635, 636, 647, 659, 761, 765, 791, 796, 818, 820, 828, 829, 833, 840, 841, 845], "being": [0, 6, 7, 9, 31, 32, 43, 57, 74, 80, 95, 102, 106, 126, 376, 378, 440, 468, 484, 586, 629, 634, 636, 637, 661, 674, 773, 779, 791, 812, 819, 820, 823, 824, 825, 827, 829, 830, 831, 834, 836, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 860, 861, 866, 868, 869, 870, 871, 876, 877], "bias": [0, 636, 661], "toward": [0, 57, 64, 80, 87, 247, 294, 345, 357, 372, 378, 387, 490, 525, 632, 639, 707, 812, 816, 818, 819, 834, 849, 866, 870], "legit_sampl": 0, "n": [0, 14, 43, 46, 47, 48, 50, 53, 56, 57, 61, 62, 64, 66, 67, 70, 71, 79, 80, 84, 85, 87, 89, 90, 93, 94, 97, 102, 139, 145, 146, 147, 220, 290, 292, 328, 329, 341, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 397, 398, 403, 404, 407, 408, 409, 417, 418, 419, 420, 422, 430, 431, 438, 442, 444, 446, 451, 452, 464, 470, 473, 477, 479, 490, 499, 501, 502, 503, 506, 508, 509, 510, 511, 512, 515, 522, 532, 629, 632, 636, 637, 639, 641, 643, 644, 647, 648, 649, 650, 651, 652, 654, 656, 658, 663, 668, 671, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 688, 691, 692, 693, 694, 701, 702, 704, 710, 714, 726, 739, 740, 741, 747, 761, 763, 764, 765, 766, 767, 768, 792, 795, 805, 812, 822, 826, 828, 844, 856, 864], "after": [0, 4, 5, 8, 9, 11, 12, 13, 31, 32, 46, 57, 58, 59, 61, 65, 74, 80, 81, 82, 84, 88, 186, 287, 304, 308, 357, 367, 372, 375, 376, 378, 398, 399, 400, 401, 418, 422, 443, 473, 484, 562, 616, 619, 621, 622, 623, 630, 632, 634, 635, 636, 641, 642, 649, 650, 651, 652, 654, 656, 658, 659, 729, 737, 796, 801, 812, 818, 819, 820, 823, 825, 826, 828, 829, 831, 833, 836, 839, 842, 844, 848, 856, 863, 864, 870], "combin": [0, 14, 37, 57, 74, 80, 103, 375, 387, 409, 420, 522, 550, 551, 634, 637, 668, 677, 820, 824, 827, 828, 829, 831, 833, 837, 844, 854, 870], "them": [0, 3, 4, 11, 13, 16, 18, 20, 31, 32, 37, 376, 446, 539, 575, 634, 776, 792, 812, 814, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 833, 835, 838, 840, 841, 842, 844, 846, 849, 851, 852, 853, 855, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 868, 870, 872, 876], "achiev": [0, 11, 13, 14, 31, 812, 813, 815, 821, 828, 829, 837, 838, 844, 847, 852, 854, 857], "concaten": [0, 43, 57, 58, 64, 80, 85, 378, 469, 545, 549, 634, 636, 639, 663, 682, 700, 776, 842, 847, 849, 852], "along": [0, 46, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 92, 93, 94, 97, 98, 100, 113, 117, 122, 137, 138, 213, 287, 290, 292, 330, 331, 332, 335, 336, 340, 341, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 397, 403, 404, 407, 408, 409, 419, 420, 445, 456, 469, 470, 471, 473, 475, 476, 484, 489, 492, 494, 496, 504, 505, 506, 507, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 628, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 646, 647, 648, 668, 682, 691, 693, 694, 696, 697, 698, 700, 703, 704, 705, 707, 708, 710, 712, 713, 715, 716, 717, 743, 744, 745, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 792, 812, 818, 821, 822, 831, 840, 843, 845, 847, 849, 870], "axi": [0, 4, 6, 7, 8, 14, 46, 47, 48, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 113, 117, 137, 138, 141, 213, 287, 292, 335, 336, 340, 341, 349, 356, 372, 375, 377, 378, 381, 385, 387, 397, 398, 404, 407, 409, 419, 420, 456, 461, 469, 470, 471, 474, 475, 476, 479, 484, 489, 490, 492, 493, 494, 496, 498, 499, 504, 505, 507, 515, 520, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 614, 626, 629, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 646, 647, 648, 658, 668, 671, 678, 691, 693, 694, 696, 697, 698, 700, 701, 702, 703, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 743, 744, 745, 749, 751, 753, 754, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 793, 798, 827, 829, 831, 833, 836, 837, 840, 841, 844, 847, 849, 851, 854], "result": [0, 1, 4, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 31, 32, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 180, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 432, 433, 435, 436, 440, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 461, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 557, 562, 569, 576, 577, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 721, 724, 725, 727, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 778, 784, 798, 806, 810, 812, 816, 818, 820, 823, 824, 826, 827, 828, 829, 831, 832, 834, 836, 837, 839, 840, 841, 842, 844, 845, 849, 852, 855, 863, 864, 865, 871, 873], "new_dataset": 0, "now": [0, 1, 5, 6, 7, 9, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 47, 792, 793, 794, 812, 819, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 838, 841, 842, 844, 845, 847, 851, 852, 854, 855, 861, 863, 864, 865, 870], "equal": [0, 5, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 70, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 98, 102, 103, 132, 134, 135, 136, 142, 143, 152, 232, 234, 238, 243, 245, 254, 255, 276, 278, 283, 286, 287, 291, 330, 331, 332, 334, 351, 369, 372, 375, 376, 378, 381, 387, 398, 419, 446, 470, 479, 492, 496, 499, 504, 505, 507, 525, 534, 537, 614, 629, 630, 632, 634, 637, 638, 639, 643, 644, 645, 646, 647, 671, 679, 680, 683, 685, 691, 696, 699, 701, 706, 708, 714, 741, 747, 749, 750, 751, 752, 753, 756, 761, 763, 764, 765, 766, 784, 791, 792, 826, 827, 829, 831, 833, 842, 844, 867], "unbias": [0, 57, 70, 80, 93, 387, 522, 647, 766], "concat": [0, 8, 43, 48, 58, 64, 74, 87, 213, 549, 631, 634, 639, 714, 842, 847, 849, 863], "65908": 0, "51801": 0, "519205": 0, "852437": 0, "191664": 0, "749435": 0, "639186": 0, "666758": 0, "310037": 0, "116659": 0, "554879": 0, "207139": 0, "748058": 0, "229554": 0, "272256": 0, "304838": 0, "251128": 0, "131252": 0, "036799": 0, "195557": 0, "131120": 0, "102139": 0, "442451": 0, "887016": 0, "579461": 0, "325601": 0, "615304": 0, "621226": 0, "291374": 0, "236204": 0, "557458": 0, "159454": 0, "710631": 0, "429388": 0, "234335": 0, "787399": 0, "300106": 0, "108052": 0, "614": 0, "53744": 0, "46126": 0, "823696": 0, "028978": 0, "698815": 0, "498501": 0, "813862": 0, "788743": 0, "279106": 0, "488737": 0, "885320": 0, "300256": 0, "715811": 0, "186151": 0, "132502": 0, "385279": 0, "634010": 0, "231485": 0, "096003": 0, "98": [0, 43, 51, 57, 59, 66, 73, 79, 82, 89, 113, 238, 286, 360, 372, 619, 626, 635, 637, 641, 644, 647, 682, 719, 730, 739, 741, 748, 759, 878], "224892": 0, "144011": 0, "802980": 0, "264517": 0, "123151": 0, "302386": 0, "758015": 0, "307608": 0, "405042": 0, "111496": 0, "265297": 0, "260045": 0, "499437": 0, "056524": 0, "534144": 0, "206880": 0, "386490": 0, "001905": 0, "026937": 0, "172": [0, 279, 632], "03": [0, 6, 14, 27, 46, 53, 56, 58, 59, 79, 80, 82, 89, 138, 238, 263, 343, 344, 592, 593, 616, 621, 629, 632, 634, 635, 637, 676, 740], "55713": 0, "47085": 0, "738160": 0, "575518": 0, "551978": 0, "894729": 0, "839781": 0, "083335": 0, "779428": 0, "083990": 0, "568542": 0, "554234": 0, "707282": 0, "924631": 0, "076400": 0, "157681": 0, "914957": 0, "266566": 0, "168184": 0, "1025": [0, 776], "279863": 0, "169142": 0, "927883": 0, "125653": 0, "518331": 0, "749293": 0, "566487": 0, "010494": 0, "882850": 0, "697211": 0, "064945": 0, "778584": 0, "319189": 0, "639419": 0, "294885": 0, "537503": 0, "788395": 0, "292680": 0, "147968": 0, "390": [0, 13, 26, 27, 28, 29], "280143": 0, "169347": 0, "378559": 0, "289381": 0, "004247": 0, "411850": 0, "442581": 0, "326536": 0, "413170": 0, "248525": 0, "127396": 0, "370612": 0, "028234": 0, "145640": 0, "081049": 0, "521875": 0, "739467": 0, "389152": 0, "186637": 0, "76": [0, 14, 24, 43, 56, 57, 70, 77, 79, 80, 89, 168, 222, 238, 286, 322, 369, 407, 630, 632, 637, 641, 647, 689, 726, 740, 759], "280149": 0, "169351": 0, "676143": 0, "126366": 0, "213700": 0, "468308": 0, "120541": 0, "003346": 0, "234739": 0, "210158": 0, "652250": 0, "751826": 0, "834108": 0, "190944": 0, "032070": 0, "739695": 0, "471111": 0, "385107": 0, "194361": 0, "89": [0, 5, 14, 43, 56, 66, 77, 79, 80, 89, 103, 168, 235, 630, 637, 647, 689, 740, 741, 765], "281144": 0, "169966": 0, "113832": 0, "585864": 0, "399730": 0, "817092": 0, "840618": 0, "943548": 0, "208002": 0, "058733": 0, "632333": 0, "583276": 0, "269209": 0, "456108": 0, "183659": 0, "328168": 0, "606116": 0, "884876": 0, "253700": 0, "245": [0, 56, 84, 228, 636, 659, 660], "281674": 0, "170348": 0, "991976": 0, "158476": 0, "583441": 0, "408670": 0, "151147": 0, "096695": 0, "223050": 0, "068384": 0, "577829": 0, "164350": 0, "295135": 0, "072173": 0, "450261": 0, "313267": 0, "289617": 0, "002988": 0, "015309": 0, "42": [0, 11, 13, 14, 24, 25, 29, 31, 32, 43, 45, 46, 51, 66, 73, 82, 89, 118, 234, 375, 397, 407, 615, 619, 626, 632, 635, 637, 642, 643, 647, 678, 682, 737, 738, 739, 740, 741, 742, 759, 812, 849, 854, 864], "53": [0, 10, 14, 26, 43, 62, 66, 79, 84, 159, 215, 245, 418, 618, 620, 630, 631, 635, 637, 642, 675, 737, 741], "93007": 0, "762195": 0, "000285": 0, "013777": 0, "014009": 0, "039620": 0, "140964": 0, "011996": 0, "076337": 0, "031293": 0, "076897": 0, "029911": 0, "043784": 0, "053381": 0, "010626": 0, "066434": 0, "007150": 0, "021923": 0, "030825": 0, "041431": 0, "632297": 0, "final": [0, 9, 11, 13, 16, 18, 20, 28, 31, 32, 37, 43, 44, 53, 57, 58, 80, 81, 97, 125, 137, 138, 322, 369, 375, 420, 549, 628, 629, 634, 636, 661, 662, 663, 806, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 837, 839, 840, 841, 843, 847, 848, 852, 863, 864, 866, 876], "predictor": [0, 855], "label": [0, 6, 7, 14, 45, 46, 47, 57, 63, 80, 86, 377, 452, 453, 455, 456, 457, 458, 459, 638, 696, 697, 698, 812, 818, 823, 841, 848, 849, 850, 854, 856, 870], "whether": [0, 20, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 125, 127, 128, 134, 136, 141, 143, 149, 152, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 170, 171, 172, 173, 175, 176, 177, 178, 180, 192, 196, 197, 199, 200, 202, 204, 207, 208, 210, 213, 214, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 398, 399, 400, 401, 417, 419, 421, 423, 438, 440, 446, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 479, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 572, 576, 577, 578, 579, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 607, 608, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 648, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 686, 691, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 788, 789, 792, 793, 794, 795, 796, 805, 812, 813, 818, 819, 824, 827, 829, 831, 836, 840, 841, 844, 846, 847, 863, 864], "x": [0, 4, 8, 9, 10, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 172, 173, 175, 180, 196, 197, 199, 201, 206, 207, 208, 212, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 328, 329, 333, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 385, 386, 387, 388, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 422, 424, 426, 427, 429, 431, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 465, 466, 468, 469, 471, 472, 474, 477, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 494, 496, 497, 498, 500, 501, 502, 503, 504, 505, 506, 507, 514, 515, 516, 517, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 620, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 792, 795, 798, 801, 805, 810, 812, 816, 818, 822, 824, 825, 827, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "y": [0, 14, 31, 32, 43, 44, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 129, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 149, 152, 153, 154, 163, 165, 168, 180, 193, 197, 201, 206, 207, 208, 212, 214, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 334, 335, 336, 342, 350, 351, 352, 353, 354, 359, 361, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 395, 397, 399, 400, 404, 407, 409, 413, 419, 426, 430, 436, 443, 450, 452, 453, 455, 456, 457, 458, 459, 469, 471, 480, 484, 492, 493, 494, 496, 500, 504, 505, 507, 515, 521, 522, 523, 524, 525, 528, 530, 531, 532, 534, 537, 540, 541, 544, 545, 547, 548, 549, 552, 553, 554, 558, 560, 561, 562, 564, 565, 568, 569, 574, 581, 582, 583, 586, 589, 590, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 614, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 655, 657, 658, 659, 660, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 685, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 727, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 825, 827, 830, 831, 839, 841, 842, 844, 845, 847, 849, 851, 863], "upcom": [0, 850], "phase": [0, 844, 855, 870], "drop": [0, 14, 47, 57, 80, 331, 369, 377, 378, 456, 493, 791, 792, 819, 855], "015162": 0, "655442": 0, "367897": 0, "290904": 0, "902524": 0, "252967": 0, "226138": 0, "247968": 0, "306271": 0, "017652": 0, "984": [0, 291, 632], "length": [0, 6, 12, 45, 46, 53, 57, 63, 64, 74, 80, 86, 87, 97, 98, 103, 126, 134, 139, 314, 317, 318, 333, 341, 369, 372, 375, 376, 378, 382, 385, 397, 398, 403, 404, 407, 408, 409, 419, 420, 421, 423, 435, 444, 484, 493, 510, 515, 614, 629, 634, 636, 637, 638, 639, 645, 663, 687, 688, 696, 706, 749, 776, 792, 844, 852], "valid": [0, 8, 45, 47, 57, 61, 71, 80, 84, 94, 97, 98, 157, 375, 376, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 443, 451, 565, 630, 634, 636, 639, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 702, 710, 767, 768, 776, 777, 792, 805, 819, 825, 829, 831, 835, 839, 842, 844, 863, 871], "gener": [0, 1, 7, 8, 20, 24, 29, 31, 32, 34, 37, 45, 47, 49, 50, 53, 56, 57, 61, 66, 72, 76, 79, 80, 84, 89, 95, 98, 126, 137, 138, 147, 155, 240, 243, 253, 254, 269, 273, 282, 312, 315, 319, 320, 321, 323, 324, 325, 326, 327, 328, 335, 336, 369, 372, 375, 376, 378, 382, 387, 419, 425, 447, 492, 510, 522, 629, 630, 632, 636, 637, 639, 643, 647, 659, 685, 686, 689, 692, 714, 738, 739, 741, 742, 764, 776, 779, 784, 796, 805, 812, 818, 819, 820, 822, 823, 824, 826, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 857, 868, 869, 870, 871, 872, 873, 874, 875, 876], "partit": 0, "have": [0, 1, 2, 4, 5, 6, 7, 8, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 165, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 424, 426, 427, 429, 430, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 457, 458, 459, 463, 464, 469, 470, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 504, 505, 507, 508, 509, 511, 512, 513, 515, 522, 523, 524, 525, 529, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 580, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 865, 866, 867, 868, 869, 870, 872, 876, 877, 878], "stratifi": 0, "paramet": [0, 6, 7, 14, 18, 29, 31, 32, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 580, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 632, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 805, 806, 808, 810, 812, 818, 824, 832, 833, 836, 841, 842, 844, 845, 849, 851, 852, 863, 864, 865, 871], "test_siz": [0, 14, 45], "specifi": [0, 28, 29, 31, 32, 36, 37, 38, 49, 51, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 130, 135, 137, 142, 145, 146, 148, 152, 154, 201, 206, 208, 212, 213, 214, 282, 291, 295, 300, 301, 303, 329, 334, 351, 356, 367, 369, 372, 375, 376, 377, 378, 382, 387, 394, 395, 396, 398, 404, 409, 419, 420, 421, 422, 430, 442, 444, 449, 452, 456, 457, 458, 460, 474, 477, 486, 487, 489, 490, 492, 496, 509, 520, 522, 523, 524, 527, 528, 532, 535, 552, 553, 555, 557, 558, 571, 573, 581, 614, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 661, 663, 666, 668, 670, 671, 673, 674, 678, 686, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 707, 709, 710, 713, 714, 722, 723, 725, 726, 733, 734, 735, 736, 739, 740, 741, 743, 744, 745, 747, 750, 751, 752, 753, 757, 758, 759, 761, 763, 765, 767, 768, 776, 779, 788, 792, 793, 794, 806, 810, 819, 822, 826, 829, 830, 836, 837, 838, 840, 841, 842, 844, 849, 852, 853, 863, 864, 865, 876], "reserv": [0, 818], "x_train": [0, 14], "x_test": [0, 14], "y_train": [0, 14, 47], "y_test": [0, 14], "random_st": [0, 14, 376, 434], "With": [0, 4, 6, 24, 34, 43, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 168, 175, 180, 181, 182, 183, 184, 194, 197, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 335, 336, 338, 340, 343, 344, 348, 351, 352, 353, 355, 356, 359, 367, 369, 372, 375, 376, 377, 378, 387, 397, 399, 400, 407, 419, 426, 427, 428, 430, 431, 432, 443, 446, 458, 474, 475, 476, 478, 481, 483, 484, 490, 492, 494, 496, 498, 513, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 538, 539, 540, 541, 544, 545, 546, 547, 548, 552, 553, 556, 558, 560, 561, 562, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 684, 685, 686, 687, 688, 689, 691, 692, 693, 696, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 829, 831, 841, 844, 847, 849, 860, 861, 863, 870, 873], "next": [0, 1, 6, 7, 8, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 45, 47, 57, 80, 165, 348, 352, 357, 361, 372, 630, 791, 796, 812, 818, 819, 820, 825, 829, 831, 832, 834, 835, 838, 850, 851, 852, 861, 870, 872], "convers": [0, 56, 57, 80, 239, 279, 578, 588, 634, 793, 794, 818, 848, 850, 854, 855, 857, 861, 869, 876], "becaus": [0, 26, 34, 36, 46, 57, 375, 398, 771, 819, 820, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 847, 849, 853, 854, 855, 870, 873, 876], "own": [0, 6, 7, 10, 16, 18, 22, 31, 32, 37, 812, 819, 823, 828, 829, 832, 833, 840, 841, 845, 849, 855, 857, 860, 861, 866, 869, 870, 875, 876], "confirm": [0, 4, 46, 815, 818], "been": [0, 6, 7, 13, 16, 18, 26, 28, 31, 32, 57, 58, 66, 80, 81, 89, 196, 283, 378, 491, 545, 546, 547, 631, 632, 634, 643, 738, 805, 806, 818, 820, 823, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 844, 849, 851, 855, 856, 863, 870, 877], "correctli": [0, 1, 28, 31, 32, 45, 57, 62, 67, 80, 85, 90, 340, 372, 387, 528, 529, 530, 531, 532, 637, 644, 678, 744, 818, 819, 820, 824, 827, 829, 831, 833, 835, 836, 842, 844, 847, 853, 855, 863, 864], "size": [0, 8, 14, 16, 18, 23, 26, 27, 33, 34, 36, 37, 38, 45, 47, 50, 57, 58, 61, 62, 64, 66, 67, 74, 80, 81, 84, 85, 87, 89, 90, 97, 98, 102, 103, 134, 137, 211, 212, 213, 312, 315, 319, 330, 331, 332, 333, 340, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 393, 394, 395, 411, 412, 413, 415, 416, 422, 423, 430, 433, 445, 451, 452, 454, 468, 470, 482, 492, 494, 496, 502, 503, 506, 510, 515, 527, 528, 529, 530, 531, 532, 571, 576, 629, 631, 634, 636, 637, 639, 643, 644, 648, 661, 663, 666, 668, 671, 675, 678, 682, 684, 687, 693, 702, 707, 708, 709, 738, 744, 747, 767, 768, 776, 778, 779, 792, 806, 812, 840, 842, 844, 847, 852, 863, 865], "correct": [0, 11, 16, 18, 27, 37, 43, 45, 47, 70, 93, 186, 376, 447, 630, 639, 647, 699, 764, 766, 773, 776, 812, 816, 818, 820, 822, 827, 828, 829, 830, 833, 834, 836, 837, 840, 842, 844, 864], "787": 0, "197": [0, 56, 228, 632], "success": [0, 637, 647, 691, 763, 765, 815, 819, 828, 860], "prepare_data": [0, 14], "list": [0, 1, 5, 8, 11, 12, 14, 47, 52, 53, 54, 56, 57, 58, 61, 64, 65, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 134, 136, 139, 140, 141, 143, 149, 153, 155, 168, 172, 173, 180, 196, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 349, 350, 351, 357, 358, 359, 361, 362, 363, 372, 375, 376, 378, 385, 394, 395, 396, 398, 399, 400, 401, 412, 413, 414, 415, 419, 421, 425, 430, 434, 437, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 470, 479, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 514, 522, 523, 524, 525, 534, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 598, 599, 600, 601, 613, 614, 619, 624, 629, 630, 631, 632, 634, 636, 637, 639, 641, 642, 645, 646, 650, 651, 652, 653, 654, 655, 658, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 689, 691, 696, 697, 698, 699, 700, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 720, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 792, 798, 805, 806, 810, 812, 815, 817, 818, 819, 821, 823, 824, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 849, 852, 853, 854, 855, 863, 870, 871, 876, 878], "tupl": [0, 14, 49, 52, 53, 54, 56, 57, 58, 61, 62, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 127, 128, 134, 136, 140, 141, 143, 147, 149, 153, 154, 155, 166, 167, 168, 172, 173, 179, 180, 186, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 321, 325, 328, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 348, 349, 350, 351, 355, 356, 357, 358, 359, 361, 362, 363, 364, 369, 372, 374, 375, 376, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 403, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 429, 430, 434, 438, 440, 445, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 479, 484, 490, 492, 493, 494, 496, 498, 501, 503, 504, 505, 506, 507, 509, 510, 512, 513, 514, 522, 523, 524, 525, 527, 528, 529, 530, 531, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 581, 591, 592, 593, 594, 595, 597, 598, 599, 600, 613, 614, 615, 616, 617, 619, 621, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 689, 690, 691, 694, 696, 697, 698, 699, 700, 701, 703, 704, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 725, 726, 727, 729, 730, 733, 734, 735, 736, 738, 739, 740, 741, 743, 746, 747, 749, 750, 751, 752, 753, 754, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 791, 792, 794, 805, 806, 824, 829, 836, 837, 840, 842, 844, 849, 852, 853, 855, 863, 864, 865], "thei": [0, 1, 14, 38, 43, 48, 57, 62, 66, 68, 74, 85, 89, 91, 178, 292, 346, 372, 630, 632, 636, 637, 640, 643, 645, 661, 692, 715, 716, 738, 749, 771, 797, 812, 817, 818, 819, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 863, 867, 870, 872, 873, 876, 877], "dimension": [0, 53, 56, 57, 62, 64, 67, 70, 71, 74, 76, 79, 80, 85, 87, 93, 94, 102, 126, 132, 134, 139, 147, 292, 328, 335, 336, 369, 372, 375, 376, 378, 387, 403, 404, 408, 409, 419, 420, 427, 462, 463, 464, 468, 473, 474, 520, 532, 629, 632, 637, 639, 644, 647, 648, 668, 669, 675, 677, 680, 682, 683, 693, 694, 708, 744, 745, 747, 760, 761, 762, 763, 764, 765, 766, 767, 768, 837, 839, 844, 847, 849, 867, 870, 877], "reshap": [0, 4, 31, 32, 47, 48, 57, 61, 62, 64, 74, 80, 84, 85, 87, 360, 372, 375, 376, 378, 394, 395, 396, 399, 412, 413, 414, 417, 426, 443, 468, 474, 614, 634, 636, 637, 639, 652, 654, 658, 678, 694, 812, 840, 841, 844, 847, 849, 851, 854, 867], "float32": [0, 4, 8, 12, 14, 16, 18, 23, 24, 43, 45, 46, 47, 53, 54, 57, 58, 61, 76, 77, 80, 81, 84, 93, 138, 141, 143, 149, 150, 151, 155, 159, 160, 163, 164, 165, 166, 169, 172, 173, 175, 180, 183, 189, 239, 253, 280, 333, 346, 369, 372, 375, 376, 377, 387, 397, 407, 420, 446, 452, 457, 525, 562, 599, 629, 630, 632, 634, 636, 637, 640, 652, 654, 655, 658, 685, 687, 688, 694, 716, 717, 773, 776, 777, 812, 829, 831, 842, 844, 845, 864, 865], "def": [0, 4, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 56, 79, 122, 224, 539, 628, 634, 640, 641, 716, 717, 724, 805, 812, 816, 818, 819, 823, 824, 827, 829, 830, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "isinst": [0, 8, 14, 29, 31, 32, 833, 841, 844, 845, 853, 854], "rang": [0, 4, 6, 7, 9, 10, 14, 31, 32, 43, 44, 45, 47, 53, 57, 70, 76, 80, 126, 137, 138, 287, 299, 307, 319, 367, 369, 376, 378, 387, 430, 442, 477, 485, 487, 492, 497, 523, 524, 525, 545, 614, 629, 632, 634, 645, 647, 749, 757, 758, 763, 765, 776, 778, 779, 791, 812, 815, 818, 829, 833, 837, 844, 849, 852, 853, 854, 870, 876], "len": [0, 6, 7, 8, 14, 45, 47, 53, 57, 62, 80, 85, 139, 316, 325, 326, 369, 375, 376, 387, 409, 420, 432, 435, 445, 451, 532, 629, 637, 673, 692, 812, 827, 828, 833, 840, 841, 844, 851, 854, 863], "expand_dim": [0, 6, 14, 28, 31, 32, 47, 49, 64, 87, 636, 639, 658, 812, 841, 849, 852, 864], "astyp": [0, 14, 16, 18, 23, 45, 46, 47, 54, 61, 77, 84, 630, 636, 652, 654, 655, 658, 812, 829, 840, 841, 847, 865], "els": [0, 5, 6, 7, 8, 11, 14, 46, 47, 49, 50, 57, 58, 66, 79, 80, 89, 158, 159, 160, 161, 162, 174, 280, 284, 375, 376, 382, 421, 434, 445, 449, 451, 509, 544, 548, 630, 632, 634, 636, 641, 643, 662, 728, 731, 739, 740, 741, 771, 805, 806, 812, 818, 819, 820, 823, 825, 829, 830, 833, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 871], "return": [0, 4, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 783, 784, 789, 791, 792, 794, 796, 801, 802, 805, 806, 807, 808, 809, 810, 812, 819, 820, 824, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 865, 871], "defin": [0, 23, 29, 31, 32, 33, 53, 57, 58, 62, 76, 80, 81, 85, 100, 116, 141, 145, 146, 147, 223, 240, 247, 273, 274, 282, 284, 287, 300, 304, 308, 314, 317, 318, 319, 328, 329, 330, 331, 332, 335, 336, 338, 367, 369, 372, 375, 376, 378, 387, 411, 428, 484, 490, 525, 560, 561, 581, 626, 629, 632, 634, 636, 637, 647, 661, 668, 673, 674, 686, 760, 761, 762, 764, 812, 818, 819, 824, 825, 828, 829, 832, 836, 839, 841, 842, 844, 845, 851, 853, 855, 857, 865, 867, 868, 869, 870, 871, 874, 876, 877], "proper": [0, 812, 818, 841, 864], "adjust": [0, 45, 70, 93, 376, 447, 647, 764, 766, 801, 810], "comput": [0, 6, 28, 29, 31, 32, 38, 39, 44, 45, 47, 51, 56, 57, 58, 59, 61, 62, 63, 68, 70, 73, 74, 79, 80, 81, 82, 84, 85, 86, 93, 97, 98, 100, 113, 117, 213, 223, 230, 233, 235, 240, 241, 242, 247, 248, 249, 251, 252, 258, 259, 260, 267, 268, 269, 270, 272, 273, 276, 281, 282, 300, 304, 308, 314, 317, 318, 330, 331, 332, 335, 336, 338, 342, 344, 347, 349, 350, 354, 356, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 385, 387, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 423, 424, 426, 428, 429, 430, 431, 433, 434, 436, 438, 441, 443, 445, 448, 449, 451, 453, 454, 455, 456, 457, 458, 459, 478, 481, 494, 501, 503, 514, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 539, 540, 541, 585, 608, 615, 617, 618, 620, 624, 625, 631, 632, 634, 635, 636, 637, 638, 639, 641, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 667, 668, 672, 673, 674, 677, 678, 680, 682, 684, 686, 687, 689, 691, 693, 694, 696, 697, 698, 702, 724, 749, 750, 751, 752, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 773, 778, 792, 795, 806, 812, 819, 827, 828, 829, 837, 839, 841, 844, 846, 847, 849, 852, 855, 857, 860, 861, 863, 864, 866, 868, 870, 871, 873, 874, 876], "most": [0, 6, 14, 22, 31, 32, 74, 76, 97, 100, 141, 376, 429, 585, 608, 629, 634, 637, 672, 673, 809, 812, 817, 818, 819, 824, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 860, 870, 871, 873, 874, 876, 877], "avail": [0, 2, 4, 6, 8, 12, 26, 27, 29, 31, 32, 47, 58, 81, 196, 202, 204, 205, 216, 546, 631, 634, 637, 688, 777, 810, 812, 819, 820, 827, 828, 829, 830, 832, 833, 841, 844, 847, 855, 856, 859, 863, 864, 865, 875, 876], "cpu": [0, 6, 7, 8, 9, 10, 11, 13, 26, 27, 28, 29, 31, 45, 46, 47, 49, 50, 53, 55, 57, 66, 76, 78, 80, 89, 126, 132, 135, 137, 138, 141, 142, 143, 149, 193, 194, 196, 197, 198, 199, 204, 207, 209, 211, 214, 215, 217, 219, 376, 382, 438, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 773, 791, 792, 793, 794, 795, 796, 797, 810, 812, 816, 819, 820, 826, 829, 830, 834, 841, 844, 855, 868, 870, 873, 875], "gpu": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 45, 47, 49, 50, 196, 198, 199, 202, 205, 207, 209, 211, 212, 215, 217, 219, 631, 810, 812, 819, 820, 828, 830, 851, 856, 868, 870, 873, 874, 875], "tpu": [0, 45, 194, 200, 209, 211, 216, 631, 810, 830, 870, 873], "explicitli": [0, 637, 673, 674, 689, 773, 792, 793, 794, 816, 823, 824, 825, 827, 829, 832, 833, 834, 837, 838, 839, 840, 842, 844, 849, 855, 864, 870], "hardwar": [0, 4, 45, 102, 106, 819, 847, 860, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876], "mai": [0, 1, 6, 55, 56, 57, 62, 68, 69, 78, 79, 85, 92, 102, 103, 126, 133, 144, 214, 240, 241, 247, 252, 260, 268, 269, 273, 274, 276, 291, 335, 336, 372, 404, 544, 580, 629, 631, 632, 634, 637, 645, 646, 647, 685, 694, 749, 750, 751, 752, 753, 756, 760, 761, 762, 764, 776, 806, 817, 818, 819, 820, 823, 827, 828, 829, 833, 834, 837, 838, 839, 841, 842, 844, 847, 850, 851, 853, 861, 877], "vari": [0, 57, 68, 97, 98, 291, 404, 545, 632, 634, 637, 645, 684, 750, 751, 752, 806, 827, 831, 841, 844, 851], "known": [0, 57, 80, 284, 376, 448, 450, 632, 791, 823, 828, 829, 841, 844], "advanc": [0, 20, 43, 819, 821, 869], "set_soft_device_mod": [0, 4, 14, 18, 218, 631, 830], "section": [0, 1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 51, 57, 68, 80, 112, 375, 378, 409, 420, 470, 479, 499, 645, 749, 750, 751, 752, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 852, 853, 865, 866, 873, 876], "binari": [0, 6, 14, 26, 27, 29, 57, 58, 61, 63, 80, 84, 86, 230, 233, 235, 270, 290, 375, 377, 421, 456, 459, 632, 636, 638, 659, 663, 696], "logist": [0, 14], "gblinear": [0, 14], "booster": [0, 14], "linear": [0, 4, 12, 18, 30, 31, 32, 43, 44, 45, 47, 50, 57, 58, 61, 73, 80, 81, 84, 110, 112, 114, 115, 118, 295, 299, 303, 305, 306, 307, 311, 353, 367, 372, 375, 378, 387, 411, 446, 484, 532, 549, 572, 626, 634, 636, 641, 663, 686, 725, 776, 778, 779, 791, 792, 812, 827, 832, 837, 838, 840, 841, 844, 847, 849, 852, 853, 854, 864, 868, 869, 870, 873], "estim": [0, 57, 80, 349, 372, 387, 522, 810], "rate": [0, 57, 59, 80, 82, 375, 382, 417, 512, 616, 619, 621, 622, 623, 635, 636, 640, 661, 715, 716, 717, 796, 828], "fine": [0, 16, 18, 31, 32, 819, 820, 829, 831, 841, 851, 854, 876], "tune": [0, 16, 18, 31, 32, 875, 876], "regular": [0, 46, 80, 376, 387, 438, 443, 526, 819, 841, 870], "term": [0, 6, 57, 80, 312, 319, 322, 369, 377, 456, 457, 636, 661, 662, 792, 806, 812, 820, 827, 849, 857, 859, 870], "reg_lambda": [0, 14], "reg_alpha": [0, 14], "overfit": [0, 636, 659], "compil": [0, 6, 9, 10, 11, 12, 13, 14, 26, 27, 29, 31, 32, 35, 48, 50, 291, 632, 784, 819, 841, 845, 849, 855, 857, 864, 866, 869, 870, 871, 874, 877], "param": [0, 11, 13, 14, 31, 45, 46, 47, 49, 74, 80, 81, 103, 535, 552, 553, 634, 798, 812, 854, 864], "n_estim": [0, 14], "100": [0, 6, 7, 9, 11, 12, 13, 14, 43, 45, 47, 53, 56, 57, 76, 79, 80, 81, 84, 101, 138, 147, 234, 274, 287, 328, 351, 360, 369, 372, 375, 376, 378, 399, 400, 445, 451, 489, 553, 561, 577, 629, 632, 634, 637, 641, 676, 724, 812, 828, 829, 844, 852, 853, 854, 855, 860, 861, 863], "learning_r": [0, 7, 14], "base_margin": [0, 14], "none": [0, 4, 6, 8, 11, 13, 14, 31, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 101, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 170, 171, 172, 173, 175, 177, 180, 192, 195, 196, 208, 209, 210, 211, 212, 213, 214, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 518, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 578, 579, 580, 582, 583, 584, 585, 587, 588, 589, 591, 592, 593, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 729, 730, 731, 733, 734, 735, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 800, 801, 804, 806, 810, 812, 816, 819, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 863, 864, 865], "xgb_cl": [0, 14], "better": [0, 11, 14, 34, 43, 49, 50, 818, 822, 841, 842, 845, 847, 848, 851, 852, 853, 861, 873], "ivy_cl": [0, 14], "effici": [0, 8, 11, 12, 13, 20, 21, 23, 24, 31, 32, 33, 34, 57, 62, 80, 85, 376, 377, 440, 456, 585, 608, 634, 637, 680, 812, 819, 820, 827, 837, 838, 840, 844, 846, 849, 852, 855, 864, 870, 872, 873], "fit": [0, 14, 64, 87, 639, 705, 818, 841, 849, 866, 867, 870], "magic": [0, 828], "durat": 0, "70": [0, 14, 43, 45, 57, 80, 81, 375, 397, 407, 553, 577, 637, 647, 682, 759, 860], "m": [0, 11, 12, 13, 14, 31, 44, 46, 48, 50, 53, 57, 62, 66, 79, 80, 85, 89, 102, 139, 145, 146, 147, 267, 328, 329, 369, 375, 376, 377, 378, 382, 398, 429, 434, 435, 437, 438, 453, 464, 475, 476, 490, 508, 509, 510, 511, 512, 629, 637, 641, 643, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 726, 739, 740, 741, 812, 819, 820, 822, 828, 849], "per": [0, 11, 13, 14, 24, 45, 47, 57, 61, 80, 84, 319, 369, 375, 376, 378, 394, 395, 396, 412, 413, 414, 415, 444, 491, 636, 650, 652, 653, 654, 655, 658, 663, 792, 820, 828, 838, 841, 852], "loop": [0, 6, 7, 11, 13, 14, 24, 39, 72, 80, 95, 122, 125, 375, 421, 628, 640, 715, 716, 717, 812, 825, 855, 863], "dev": [0, 4, 11, 12, 13, 14, 24, 45, 47, 50, 55, 74, 78, 201, 208, 631, 819, 830, 834, 837, 851, 853], "run": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 45, 47, 48, 49, 57, 59, 80, 82, 381, 501, 503, 615, 616, 621, 635, 636, 640, 661, 715, 716, 717, 773, 774, 792, 793, 794, 795, 805, 812, 814, 818, 819, 822, 824, 825, 828, 830, 831, 833, 835, 836, 838, 841, 842, 849, 850, 851, 852, 853, 854, 855, 856, 863, 864, 865, 868, 870, 871, 872, 873, 875, 876, 877], "59": [0, 7, 43, 56, 235, 387, 523], "04": [0, 6, 45, 46, 53, 59, 73, 77, 80, 82, 112, 113, 138, 165, 245, 582, 615, 616, 621, 626, 629, 630, 632, 634, 635, 776, 819, 844], "slowest": [0, 34, 57, 64, 80, 87, 378, 474, 639, 706], "took": [0, 11, 79, 280], "87": [0, 14, 43, 82, 84, 234, 263, 387, 418, 523, 615, 632, 635, 776, 834], "longer": [0, 14, 819, 829, 840, 844, 870], "than": [0, 7, 9, 10, 14, 31, 32, 34, 37, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 74, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 102, 103, 126, 134, 165, 213, 221, 222, 225, 226, 228, 229, 232, 234, 236, 240, 246, 247, 261, 262, 263, 264, 271, 273, 278, 282, 284, 286, 287, 291, 292, 293, 302, 312, 334, 337, 351, 358, 369, 372, 375, 376, 377, 378, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 424, 426, 445, 451, 452, 475, 476, 523, 524, 525, 564, 565, 568, 585, 608, 629, 630, 631, 632, 634, 636, 637, 639, 643, 644, 645, 647, 661, 666, 668, 677, 678, 679, 680, 683, 694, 699, 703, 709, 741, 747, 750, 751, 752, 757, 758, 763, 764, 765, 766, 792, 806, 816, 818, 820, 823, 827, 828, 829, 831, 833, 834, 840, 841, 842, 844, 845, 846, 847, 849, 852, 853, 854, 855, 856, 860, 867, 868, 869, 870, 876, 877], "fastest": [0, 34, 57, 64, 80, 87, 376, 378, 443, 474, 639, 706], "could": [0, 6, 13, 31, 32, 37, 68, 645, 749, 750, 751, 752, 818, 819, 820, 823, 828, 829, 831, 838, 840, 841, 842, 844, 849, 851, 852, 853, 860, 861, 870, 875, 876], "intermedi": [0, 44, 868, 869, 870, 871, 876], "cach": [0, 7, 12, 13, 26, 27, 28, 29, 45, 47, 50, 195, 539, 631, 634, 781, 801, 835, 837, 840, 844], "400": [0, 14, 81, 84, 375, 399, 400, 553, 577, 634, 637, 676], "\u00b5": [0, 11, 13, 14, 24], "487": [0, 279, 632, 636, 660], "make": [0, 1, 4, 8, 11, 12, 13, 14, 23, 31, 32, 33, 45, 49, 57, 80, 375, 419, 801, 812, 815, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 856, 860, 861, 864, 868, 870, 871, 872, 873, 876, 877], "out": [0, 4, 6, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 163, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 425, 426, 427, 428, 429, 432, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 465, 467, 468, 469, 471, 472, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 536, 540, 541, 545, 546, 547, 549, 552, 553, 562, 572, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 784, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861, 863, 864, 870, 877], "respect": [0, 53, 56, 57, 59, 62, 79, 80, 82, 85, 97, 139, 220, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 282, 286, 289, 290, 300, 349, 364, 367, 372, 374, 376, 378, 381, 432, 449, 461, 501, 503, 557, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 629, 632, 634, 635, 636, 637, 640, 649, 656, 657, 663, 668, 684, 687, 715, 716, 717, 773, 776, 791, 806, 817, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 836, 837, 839, 840, 841, 844, 845, 846, 866, 876], "kei": [0, 6, 7, 11, 24, 25, 31, 32, 47, 49, 52, 57, 61, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 385, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 515, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 542, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 634, 636, 640, 641, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 721, 727, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 776, 777, 783, 789, 792, 796, 812, 815, 826, 827, 828, 837, 840, 841, 842, 844, 852, 864, 870, 873, 877], "precis": [0, 14, 57, 62, 80, 85, 165, 253, 273, 280, 287, 346, 372, 376, 387, 430, 522, 585, 608, 630, 632, 634, 637, 673, 674, 678, 685, 687, 688, 694, 784, 828, 841, 846, 847, 874], "recal": [0, 14], "f1": [0, 14, 829], "score": [0, 14, 61, 84, 377, 459, 636, 664, 666, 812], "ivy_pr": [0, 14], "xgb_pred": [0, 14], "nxgbclassifi": [0, 14], "86": [0, 14, 43, 66, 80, 89, 375, 387, 407, 523, 615, 635, 740, 741], "93": [0, 14, 43, 57, 79, 81, 89, 198, 287, 360, 372, 545, 546, 631, 634, 740, 741], "84": [0, 43, 61, 70, 79, 89, 168, 198, 263, 630, 631, 637, 642, 647, 660, 682, 737, 740, 741, 759], "91": [0, 43, 57, 84, 89, 360, 372, 418, 636, 637, 643, 647, 660, 682, 740, 759], "accuraci": [0, 6, 14, 45, 47, 50, 375, 419, 829], "92": [0, 14, 43, 47, 57, 58, 89, 360, 372, 613, 623, 635, 637, 669, 740, 741], "macro": [0, 14], "avg": [0, 14, 375, 394, 396, 417], "weight": [0, 4, 6, 14, 16, 18, 31, 32, 45, 46, 57, 59, 61, 63, 80, 82, 84, 86, 97, 98, 315, 319, 353, 369, 372, 375, 376, 387, 402, 435, 520, 522, 525, 615, 616, 619, 621, 622, 623, 635, 636, 638, 640, 660, 661, 662, 663, 666, 696, 717, 778, 791, 792, 794, 796, 810, 812, 827, 837, 844, 849, 853, 854, 869], "90": [0, 14, 43, 45, 47, 56, 57, 79, 80, 239, 279, 283, 360, 372, 378, 387, 490, 523, 632, 637, 647, 682, 759, 806, 860], "summar": [0, 31, 32, 97, 844], "perfect": [0, 812], "fals": [0, 6, 7, 8, 11, 12, 13, 18, 22, 23, 31, 34, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 196, 197, 202, 204, 207, 208, 210, 213, 214, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 417, 418, 419, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 728, 729, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 792, 793, 794, 796, 798, 801, 805, 806, 807, 810, 812, 816, 819, 823, 825, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "posit": [0, 47, 49, 52, 56, 57, 58, 62, 63, 64, 79, 80, 81, 85, 86, 87, 97, 132, 134, 147, 165, 220, 221, 222, 226, 229, 240, 247, 254, 255, 261, 263, 273, 274, 281, 282, 286, 287, 291, 313, 328, 334, 339, 351, 369, 372, 376, 378, 427, 447, 458, 483, 492, 539, 549, 614, 627, 629, 630, 632, 634, 637, 638, 639, 643, 644, 648, 667, 670, 691, 696, 702, 707, 742, 747, 767, 768, 773, 776, 784, 789, 793, 794, 806, 812, 818, 820, 823, 827, 841, 844, 845, 852, 863, 872], "excel": [0, 6, 877], "high": [0, 6, 22, 31, 32, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 585, 634, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 815, 818, 833, 839, 841, 852, 857, 861, 866, 867, 868, 869, 870, 874, 876, 877], "show": [0, 3, 4, 5, 6, 7, 12, 20, 26, 31, 32, 33, 34, 36, 43, 45, 47, 48, 579, 588, 611, 634, 812, 818, 819, 820, 826, 828, 831, 835, 840, 841, 844, 846, 855, 863, 870], "trade": [0, 863], "off": [0, 24, 34, 61, 62, 84, 85, 399, 400, 401, 636, 637, 659, 671, 691, 791, 792, 819, 834, 848, 861, 863, 876], "wa": [0, 9, 31, 32, 37, 46, 57, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 358, 359, 361, 362, 363, 369, 372, 376, 399, 400, 401, 419, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 619, 624, 632, 634, 641, 647, 648, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 812, 814, 820, 823, 825, 826, 828, 831, 837, 839, 841, 849, 851, 860, 863, 864, 869, 870, 872], "overal": [0, 636, 659, 806, 827, 829, 830, 832, 854, 863, 866, 868, 869, 870], "slightli": [0, 14, 312, 369, 827, 841, 844, 849, 853], "lower": [0, 14, 47, 53, 56, 57, 62, 66, 79, 80, 85, 89, 132, 145, 271, 307, 313, 319, 328, 329, 367, 369, 387, 525, 526, 532, 629, 632, 637, 643, 667, 673, 674, 680, 741, 778, 791, 820, 829, 831, 841, 844, 849, 855, 857, 866, 867, 868, 870, 871, 876, 877], "good": [0, 22, 31, 32, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 844, 845, 847, 849, 850, 853], "due": [0, 24, 31, 32, 34, 48, 50, 273, 283, 378, 492, 632, 819, 823, 828, 833, 840, 841, 860, 863, 864, 870], "97": [0, 12, 14, 43, 57, 59, 79, 82, 89, 226, 360, 372, 619, 632, 635, 740], "suggest": [0, 1, 6, 818, 819, 820, 826, 829, 835, 839, 841, 844, 845, 846, 856], "slight": [0, 31, 32, 829, 844, 853], "edg": [0, 49, 57, 64, 80, 87, 319, 369, 375, 378, 387, 411, 484, 525, 639, 699, 701, 714, 779, 823, 844, 864, 870, 872, 876], "ivy_report": 0, "output_dict": 0, "xgb_report": 0, "block": [0, 6, 11, 31, 32, 35, 36, 37, 38, 376, 436, 812, 820, 827, 829, 833, 837, 844, 848, 850, 854, 855, 857, 864, 875, 877], "design": [0, 1, 6, 14, 22, 31, 80, 247, 312, 317, 318, 369, 632, 812, 815, 822, 826, 828, 829, 840, 841, 842, 843, 847, 849, 851, 855, 859, 860, 866, 868, 870, 873, 874, 875], "heatmap": 0, "seaborn": [0, 47], "aesthet": 0, "appeal": 0, "eas": [0, 839, 870], "plot_classification_report": 0, "argument": [0, 6, 9, 26, 28, 29, 31, 32, 34, 36, 37, 38, 43, 45, 47, 49, 52, 53, 56, 57, 58, 62, 74, 75, 79, 80, 81, 97, 98, 103, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 180, 209, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 343, 344, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 419, 421, 423, 430, 484, 492, 496, 522, 525, 529, 535, 536, 538, 539, 544, 546, 547, 552, 556, 558, 560, 562, 572, 576, 577, 591, 595, 600, 601, 614, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 724, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 784, 789, 792, 793, 794, 801, 805, 808, 812, 818, 822, 823, 824, 825, 826, 827, 831, 832, 835, 837, 842, 844, 845, 847, 849, 851, 852, 857, 859, 863, 864, 865, 870], "plot": [0, 6, 7, 14, 46, 870], "color": [0, 46, 74, 103, 811], "represent": [0, 49, 57, 58, 74, 80, 81, 103, 150, 151, 165, 168, 193, 194, 220, 223, 230, 233, 235, 240, 247, 270, 273, 275, 290, 316, 348, 352, 357, 361, 369, 372, 535, 597, 627, 630, 631, 632, 634, 776, 778, 779, 792, 829, 868, 869, 871, 875, 876], "easi": [0, 1, 31, 32, 45, 819, 820, 824, 825, 827, 837, 839, 842, 844, 847, 860, 868, 870, 876, 877], "assess": [0, 24, 34, 818, 847], "side": [0, 69, 92, 350, 372, 376, 446, 646, 755, 776, 792, 805, 806, 819, 820, 826], "pyplot": [0, 6, 7, 14, 45, 46, 47, 50], "plt": [0, 6, 7, 14, 45, 46, 47, 50], "sn": 0, "model_nam": [0, 6, 47], "ax": [0, 46, 51, 57, 62, 64, 67, 70, 71, 73, 80, 85, 87, 90, 93, 94, 102, 106, 113, 117, 213, 335, 336, 340, 341, 356, 363, 372, 373, 375, 376, 378, 381, 387, 404, 409, 420, 446, 483, 484, 490, 504, 527, 528, 529, 530, 531, 532, 545, 614, 631, 634, 637, 639, 644, 647, 648, 668, 678, 686, 689, 690, 694, 701, 703, 704, 707, 709, 711, 714, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 792, 829, 831, 844, 845, 849, 851], "iloc": 0, "t": [0, 1, 5, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 47, 57, 61, 72, 80, 84, 95, 97, 98, 102, 349, 364, 372, 374, 376, 430, 562, 580, 595, 617, 634, 635, 636, 641, 660, 662, 726, 771, 792, 812, 814, 815, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 834, 835, 837, 838, 839, 840, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 860, 861, 863, 864, 865, 868, 870, 872], "annot": [0, 836], "fmt": 0, "2f": [0, 5, 11], "cmap": 0, "blue": 0, "set_titl": [0, 46, 47], "f": [0, 4, 5, 6, 7, 9, 10, 11, 12, 31, 32, 44, 45, 47, 57, 64, 80, 87, 302, 319, 367, 369, 378, 474, 495, 639, 641, 706, 721, 725, 726, 727, 730, 735, 736, 812, 813, 820, 822, 827, 828, 833, 845, 849, 851, 852, 861, 866], "figur": [0, 46, 846], "fig": [0, 46, 47], "ax1": [0, 47], "ax2": [0, 47], "subplot": [0, 46, 47], "figsiz": [0, 46, 47], "tight_layout": [0, 47], "observ": [0, 14, 57, 80, 387, 521, 522, 820, 829, 833, 849, 863, 872], "exhibit": [0, 34, 876], "strong": [0, 778, 855, 860, 870], "commend": 0, "impli": [0, 68, 645, 749, 750, 751, 752, 844], "neg": [0, 51, 56, 57, 62, 64, 66, 71, 73, 79, 80, 85, 87, 89, 94, 97, 112, 115, 118, 126, 132, 134, 147, 240, 247, 254, 255, 273, 274, 282, 287, 295, 313, 328, 331, 367, 369, 376, 377, 378, 382, 427, 434, 440, 457, 492, 496, 512, 626, 629, 632, 637, 639, 643, 648, 668, 670, 687, 691, 693, 694, 700, 702, 703, 707, 740, 767, 768, 776, 778, 788, 827, 840], "depend": [0, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 53, 54, 57, 58, 62, 68, 69, 77, 80, 85, 92, 93, 123, 129, 152, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 261, 262, 263, 264, 273, 275, 278, 285, 286, 290, 291, 359, 372, 375, 376, 421, 429, 447, 595, 628, 629, 630, 632, 634, 636, 637, 644, 646, 661, 672, 673, 684, 685, 686, 687, 748, 753, 756, 766, 814, 816, 818, 819, 820, 826, 829, 830, 832, 834, 838, 840, 841, 842, 843, 844, 847, 849, 855, 856, 860, 863, 868, 870, 871], "applic": [0, 6, 18, 20, 45, 47, 50, 57, 61, 80, 84, 100, 376, 451, 636, 637, 641, 647, 663, 666, 691, 724, 725, 726, 730, 731, 763, 765, 812, 819, 828, 829, 830, 838, 853, 867, 868, 870, 872, 874, 876], "conclus": 0, "appear": [0, 378, 475, 476, 614, 634, 819, 820, 823, 841, 847, 863], "outperform": [0, 14], "especi": [0, 7, 819, 825, 835, 859, 870], "increas": [0, 11, 13, 14, 24, 31, 34, 57, 62, 64, 80, 85, 87, 100, 378, 387, 484, 525, 637, 639, 692, 701, 714, 778, 829, 833, 841, 845, 847, 859, 863, 870], "context": [0, 325, 369, 573, 634, 818, 819, 820, 825, 829, 830, 831], "specif": [0, 6, 7, 22, 23, 28, 29, 31, 32, 33, 35, 37, 45, 55, 57, 58, 78, 80, 81, 180, 211, 214, 247, 268, 269, 278, 322, 335, 336, 369, 372, 378, 382, 492, 512, 545, 546, 547, 573, 630, 631, 632, 634, 637, 639, 640, 643, 646, 647, 673, 674, 689, 710, 715, 716, 717, 738, 755, 760, 761, 762, 764, 771, 773, 793, 794, 801, 802, 808, 810, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 833, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 857, 859, 863, 864, 865, 866, 868, 869, 871, 872, 873, 877], "problem": [0, 7, 812, 815, 818, 820, 823, 824, 830, 841, 851, 860, 866, 872, 876], "domain": [0, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832, 868, 870], "repo": [1, 16, 45, 817, 820, 823, 826, 828, 829, 834, 842, 844, 859], "hold": [1, 57, 58, 62, 70, 80, 85, 93, 97, 98, 334, 351, 356, 372, 387, 470, 499, 523, 524, 529, 576, 577, 634, 637, 647, 678, 758, 774, 821, 852, 871], "exampl": [1, 6, 7, 9, 11, 13, 22, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 784, 801, 805, 806, 810, 812, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 840, 841, 845, 849, 851, 852, 853, 854, 855, 861, 867, 868, 871, 873, 876, 877], "tab": [1, 818, 819, 828, 834, 852], "ivi": [1, 2, 3, 6, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 819, 822, 823, 825, 827, 829, 830, 832, 834, 835, 836, 837, 838, 840, 847, 848, 855, 857, 860, 861, 862, 866, 877, 878], "web": 1, "relev": [1, 53, 76, 138, 629, 796, 812, 818, 819, 820, 824, 827, 828, 829, 831, 834, 838, 839, 842, 843, 844, 852, 856, 860, 868, 875, 876], "link": [1, 22, 31, 32, 46, 812, 818, 819, 820, 826, 828, 829, 835, 841, 864, 866, 868], "open": [1, 4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 46, 47, 48, 58, 66, 89, 126, 629, 643, 739, 741, 812, 813, 814, 815, 819, 820, 821, 826, 829, 832, 834, 841, 842, 847, 856, 859, 860, 861, 863, 864, 868, 869, 870, 872, 873], "avil": 1, "discuss": [1, 818, 820, 826, 829, 830, 840, 841, 843, 844, 847, 850, 851, 852, 855, 861, 866, 871], "comprehens": [1, 20, 812, 820, 823, 843], "possibl": [1, 4, 37, 53, 57, 76, 80, 87, 97, 128, 247, 290, 312, 335, 336, 369, 372, 375, 377, 378, 398, 453, 462, 463, 464, 470, 472, 474, 475, 476, 483, 499, 572, 632, 634, 636, 647, 659, 702, 703, 704, 706, 708, 709, 711, 713, 760, 762, 776, 792, 806, 809, 812, 813, 816, 818, 819, 820, 823, 826, 827, 829, 831, 832, 834, 835, 837, 839, 840, 841, 842, 844, 847, 849, 852, 855, 860, 868, 870, 876], "us": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 95, 97, 98, 100, 103, 110, 138, 141, 152, 164, 166, 167, 178, 179, 199, 200, 202, 207, 211, 212, 213, 214, 216, 219, 225, 233, 261, 262, 264, 265, 267, 268, 269, 271, 272, 274, 283, 287, 292, 312, 314, 315, 317, 318, 319, 327, 349, 352, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 402, 404, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 428, 430, 434, 440, 442, 444, 445, 447, 448, 449, 451, 452, 457, 474, 478, 482, 484, 492, 496, 501, 503, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 529, 532, 550, 551, 560, 561, 572, 573, 580, 582, 583, 585, 592, 593, 605, 606, 608, 615, 616, 621, 622, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 647, 660, 661, 663, 666, 671, 673, 680, 684, 688, 691, 694, 696, 705, 706, 707, 711, 715, 716, 717, 718, 720, 721, 727, 728, 729, 731, 738, 739, 740, 741, 743, 744, 745, 746, 749, 751, 759, 761, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 801, 805, 806, 810, 813, 815, 817, 820, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 857, 861, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "attract": 1, "visual": [1, 6, 7, 14, 49, 810, 812, 819, 834, 841, 844, 855, 870, 872, 875], "graph": [1, 4, 6, 7, 8, 12, 14, 20, 21, 24, 26, 28, 29, 32, 38, 39, 44, 49, 50, 68, 645, 749, 750, 751, 752, 784, 812, 827, 837, 841, 843, 847, 849, 854, 855, 857, 861, 862, 863, 864, 865, 866, 870, 873], "nice": [1, 844, 861, 870], "etc": [1, 34, 39, 46, 53, 57, 66, 68, 72, 76, 80, 89, 95, 129, 137, 138, 141, 375, 382, 404, 409, 420, 508, 509, 511, 512, 629, 643, 645, 738, 739, 740, 741, 749, 750, 751, 752, 776, 779, 791, 792, 793, 794, 795, 796, 797, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 831, 833, 836, 841, 842, 844, 845, 849, 851, 852, 855, 857, 861, 863, 868, 870, 876], "tone": [1, 5], "feel": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863], "free": [1, 6, 7, 8, 45, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 817, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863, 871, 873], "emoji": [1, 818], "don": [1, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 72, 95, 812, 818, 819, 820, 828, 829, 830, 835, 839, 844, 847, 853, 855, 856, 861, 863], "keep": [1, 2, 16, 18, 22, 28, 29, 31, 57, 64, 74, 80, 87, 97, 100, 360, 376, 451, 639, 713, 817, 818, 819, 820, 823, 826, 827, 828, 833, 840, 841, 844, 845, 847, 852, 854, 856, 864], "thing": [1, 7, 29, 43, 45, 805, 817, 818, 819, 820, 825, 841, 844, 847, 851, 852, 859, 860, 861, 870], "super": [1, 4, 8, 16, 18, 31, 32, 45, 57, 80, 376, 430, 812, 833, 849, 852, 853, 854, 864], "seriou": 1, "given": [1, 4, 7, 22, 31, 44, 57, 58, 63, 64, 66, 74, 80, 81, 82, 86, 87, 89, 97, 98, 100, 102, 103, 126, 130, 137, 138, 158, 159, 160, 161, 162, 174, 179, 198, 207, 211, 212, 213, 215, 219, 292, 322, 331, 334, 340, 341, 349, 350, 351, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 397, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 420, 430, 435, 450, 454, 455, 456, 458, 459, 460, 461, 471, 472, 473, 480, 482, 494, 500, 504, 505, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 531, 553, 557, 576, 577, 587, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 695, 696, 697, 698, 699, 702, 703, 704, 705, 707, 708, 712, 713, 725, 726, 735, 736, 739, 740, 741, 743, 755, 756, 757, 758, 771, 776, 777, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 797, 798, 805, 806, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 850, 851, 853, 860, 861, 867, 872, 873, 876, 877], "intern": [1, 14, 74, 105, 106, 107, 641, 718, 728, 729, 791, 792, 793, 794, 795, 797, 821, 824, 827, 830, 832, 840, 842, 844, 846], "releas": [1, 6, 46, 818, 819, 829, 845, 847, 855, 861, 870, 876], "tracer": [1, 4, 8, 12, 13, 23, 26, 27, 28, 29, 32, 48, 50, 841, 848, 850, 855, 857, 864, 865, 866], "around": [1, 15, 16, 18, 20, 57, 74, 80, 103, 378, 484, 492, 818, 820, 823, 824, 826, 830, 836, 837, 841, 844, 845, 851, 855, 857, 863, 867, 868, 870, 877], "corner": [1, 57, 80, 375, 411, 819, 820, 834, 841], "anybodi": 1, "abl": [1, 4, 6, 7, 8, 33, 37, 48, 50, 74, 97, 819, 820, 821, 823, 829, 834, 837, 840, 841, 845, 849, 854, 863, 873, 876], "start": [1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 46, 47, 53, 57, 74, 76, 80, 84, 126, 134, 137, 138, 353, 363, 372, 373, 375, 378, 387, 418, 474, 477, 485, 487, 497, 531, 629, 778, 805, 810, 813, 818, 819, 820, 821, 822, 828, 829, 831, 832, 834, 835, 836, 841, 844, 847, 848, 849, 851, 852, 853, 855, 863, 864, 870, 876], "shortli": 1, "so": [1, 2, 7, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 375, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 641, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 729, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 859, 860, 863, 864, 865, 870, 871, 872, 874], "worri": [1, 31, 32, 818, 819, 835], "about": [1, 20, 21, 22, 25, 27, 29, 31, 32, 35, 46, 47, 54, 77, 165, 168, 630, 810, 812, 814, 817, 818, 819, 820, 821, 822, 823, 826, 828, 829, 830, 835, 836, 840, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 861, 865, 871, 872, 875], "transpil": [1, 9, 10, 11, 12, 13, 15, 20, 21, 23, 24, 34, 783, 784, 812, 818, 819, 833, 834, 841, 848, 849, 850, 857, 862, 863, 865, 870, 876, 877], "style": [1, 14, 45, 47, 378, 484, 644, 747, 820, 835, 870], "stori": 1, "anyon": [1, 812, 813, 820, 828, 855, 860, 876], "ha": [1, 4, 6, 8, 10, 12, 13, 14, 16, 18, 22, 24, 28, 31, 32, 34, 37, 39, 43, 50, 53, 57, 62, 64, 68, 70, 74, 77, 80, 81, 85, 87, 91, 93, 97, 139, 196, 220, 240, 243, 245, 247, 257, 273, 275, 280, 283, 285, 286, 290, 330, 331, 332, 369, 376, 377, 378, 387, 411, 446, 456, 467, 491, 493, 498, 521, 523, 524, 526, 558, 629, 631, 632, 636, 637, 639, 644, 645, 647, 662, 663, 677, 678, 686, 687, 689, 691, 694, 702, 709, 747, 750, 751, 752, 757, 758, 761, 763, 764, 765, 766, 773, 776, 779, 801, 818, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 859, 860, 861, 863, 865, 866, 869, 870, 872, 873, 876], "question": [1, 6, 7, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861], "ping": 1, "me": [1, 820], "guillermo": 1, "commun": [1, 6, 7, 46, 813, 818, 819, 820, 821, 855, 860, 869, 870, 872], "ux": 1, "team": [1, 812, 813, 815, 818, 819, 820, 821, 841, 856, 872], "discord": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "channel": [1, 29, 47, 57, 58, 61, 80, 81, 84, 102, 103, 375, 381, 399, 400, 401, 411, 501, 502, 503, 506, 545, 549, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 788, 789, 791, 792, 794, 795, 796, 797, 820, 826, 834, 843], "templat": [1, 812, 826, 832, 844], "locat": [1, 47, 141, 387, 523, 629, 641, 643, 646, 722, 738, 755, 806, 818, 820, 825, 826, 830, 841, 842, 844, 845, 856, 868], "asset": [1, 857], "01_templat": 1, "ipynb": 1, "pleas": [1, 37, 46, 50, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "copi": [1, 47, 50, 53, 54, 55, 56, 57, 58, 64, 74, 76, 77, 78, 79, 80, 81, 87, 97, 101, 127, 128, 129, 133, 144, 152, 214, 274, 378, 460, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 581, 592, 599, 600, 629, 630, 631, 632, 634, 639, 641, 646, 702, 703, 704, 706, 708, 709, 711, 713, 719, 754, 756, 784, 806, 819, 820, 823, 825, 828, 829, 832, 841, 842, 849, 855, 863, 864, 865], "firstli": [1, 23, 24, 27, 33, 34, 38, 43, 824, 829, 831, 832, 833, 837, 838, 840, 847, 852, 866, 876], "file": [1, 6, 7, 45, 46, 47, 58, 74, 589, 612, 634, 794, 810, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 832, 833, 834, 835, 837, 841, 842, 843, 844, 845, 849, 852, 856, 866, 869, 870, 871], "topic": [1, 20, 23, 24, 25, 33, 34, 35, 36, 37, 38, 838, 851, 870], "Then": [1, 50, 636, 663, 814, 818, 819, 820, 825, 826, 828, 834, 835, 838, 840, 844, 845, 855], "place": [1, 7, 12, 13, 26, 27, 28, 29, 45, 52, 53, 56, 57, 58, 62, 64, 74, 76, 78, 79, 80, 81, 85, 87, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 312, 313, 316, 328, 329, 334, 335, 336, 338, 341, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 474, 484, 489, 492, 496, 509, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 561, 562, 576, 580, 591, 595, 600, 604, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 812, 816, 817, 820, 822, 823, 826, 827, 828, 830, 831, 832, 834, 836, 837, 841, 842, 844, 845, 847, 854, 857, 872], "folder": [1, 12, 13, 26, 27, 28, 29, 47, 812, 819, 820, 823, 826, 828, 834, 837, 841, 844, 845, 846], "edit": [1, 818, 819, 820, 835], "titl": [1, 14, 17, 19, 30, 46, 49, 812, 818, 820, 826], "accordingli": [1, 57, 62, 67, 68, 70, 71, 80, 85, 90, 93, 94, 139, 240, 245, 247, 263, 273, 287, 335, 336, 372, 629, 632, 637, 644, 645, 647, 648, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 841, 849, 856], "render": [1, 826, 832], "webpag": [1, 20], "content": [1, 2, 17, 19, 30, 31, 46, 47, 57, 74, 80, 387, 529, 818, 820, 826, 830, 840, 843, 849, 852, 856], "behind": [1, 22, 31, 812, 822, 836, 844, 848, 850], "exist": [1, 22, 31, 32, 45, 46, 47, 50, 53, 57, 58, 74, 76, 80, 81, 87, 128, 378, 462, 463, 469, 470, 472, 474, 475, 476, 483, 499, 544, 580, 634, 639, 700, 702, 703, 704, 706, 708, 709, 711, 713, 796, 798, 810, 812, 818, 819, 823, 825, 830, 831, 832, 837, 838, 840, 841, 844, 847, 849, 855, 857, 859, 860, 868, 870, 873, 876], "cell": [1, 2, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 61, 84, 636, 661, 662, 792, 828, 849], "h2": [1, 2, 17, 19, 30], "tag": [1, 2, 17, 19, 30, 819, 820], "h3": [1, 2, 17, 19, 30], "subsect": [1, 2, 17, 19, 30, 818, 819, 820, 823, 828], "explan": [1, 2, 17, 19, 30, 818, 819, 820, 827, 832, 836, 841, 845, 851], "go": [1, 5, 6, 7, 16, 18, 22, 29, 32, 37, 52, 57, 80, 84, 375, 418, 422, 641, 729, 730, 812, 813, 816, 818, 819, 820, 822, 825, 826, 829, 831, 834, 835, 841, 842, 844, 845, 848, 852, 855, 866, 870, 871, 875, 877], "default": [1, 4, 6, 8, 31, 32, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 178, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 196, 197, 199, 200, 204, 207, 208, 209, 211, 212, 213, 214, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 390, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 572, 573, 576, 577, 580, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 805, 806, 810, 818, 819, 820, 825, 826, 829, 830, 831, 832, 833, 836, 837, 841, 844, 847, 849, 853, 857, 863, 870], "text": [1, 5, 6, 12, 14, 45, 57, 58, 376, 377, 444, 452, 818, 820, 826, 831, 832], "paragraph": [1, 2, 17, 19, 30, 826], "p": [1, 2, 17, 19, 30, 43, 57, 58, 62, 80, 81, 85, 98, 139, 244, 376, 381, 426, 439, 507, 540, 541, 629, 632, 634, 637, 641, 678, 694, 726, 792, 812, 819, 820, 822], "path": [1, 12, 13, 14, 26, 27, 28, 29, 46, 47, 773, 784, 800, 819, 826, 840, 841, 842, 856, 870], "correspond": [1, 4, 11, 13, 18, 31, 32, 46, 54, 56, 57, 58, 61, 64, 67, 68, 70, 74, 77, 79, 80, 84, 87, 93, 97, 100, 103, 153, 165, 168, 228, 278, 292, 331, 345, 346, 369, 372, 375, 376, 378, 381, 387, 398, 404, 415, 420, 426, 429, 430, 431, 450, 475, 476, 496, 501, 502, 503, 506, 523, 524, 592, 614, 630, 632, 634, 636, 637, 639, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 668, 672, 673, 678, 685, 686, 706, 707, 738, 744, 745, 749, 750, 751, 752, 757, 758, 763, 764, 765, 766, 773, 776, 778, 805, 810, 812, 818, 820, 824, 825, 827, 828, 829, 831, 832, 833, 836, 837, 839, 841, 844, 847, 849, 863, 864, 865, 870], "toctre": [1, 826], "index": [1, 45, 46, 47, 50, 53, 57, 58, 64, 67, 68, 69, 74, 76, 80, 81, 87, 90, 91, 92, 132, 139, 313, 320, 321, 330, 331, 332, 369, 375, 376, 378, 383, 385, 387, 398, 404, 435, 437, 444, 467, 474, 477, 485, 487, 489, 492, 493, 496, 497, 513, 514, 523, 532, 535, 553, 555, 576, 577, 581, 627, 629, 634, 639, 641, 644, 645, 646, 706, 710, 720, 721, 722, 725, 726, 727, 733, 735, 744, 745, 747, 749, 750, 751, 753, 755, 777, 792, 806, 808, 827, 828, 833, 837, 838, 839, 840, 842, 844, 851, 870], "rst": [1, 837], "left": [1, 24, 34, 45, 46, 57, 62, 67, 69, 80, 85, 90, 92, 120, 121, 232, 247, 340, 356, 363, 372, 373, 375, 376, 378, 387, 410, 429, 434, 440, 447, 449, 475, 485, 527, 528, 529, 530, 531, 532, 545, 628, 632, 634, 637, 644, 646, 672, 673, 678, 687, 692, 744, 755, 776, 819, 820, 823, 826, 828, 829, 831, 834], "add": [1, 24, 34, 47, 49, 56, 57, 65, 72, 74, 79, 80, 88, 95, 102, 103, 363, 373, 375, 377, 418, 457, 572, 601, 632, 634, 636, 637, 642, 647, 663, 691, 737, 765, 773, 784, 792, 795, 810, 812, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 840, 841, 844, 845, 847, 849, 851, 855, 856, 866, 867, 868, 870], "grid": [1, 47, 53, 139, 316, 369, 629, 831, 844], "item": [1, 5, 6, 7, 31, 32, 43, 45, 47, 52, 58, 72, 74, 76, 79, 80, 81, 134, 159, 196, 250, 266, 274, 341, 345, 358, 542, 552, 553, 557, 592, 593, 629, 630, 631, 634, 641, 648, 723, 724, 725, 726, 730, 735, 736, 770, 812, 818, 827, 829, 849, 851, 852, 854, 863], "card": [1, 57, 80, 360, 372, 875], "refer": [1, 8, 57, 64, 70, 71, 80, 82, 87, 93, 94, 132, 147, 245, 263, 313, 328, 358, 369, 372, 375, 376, 378, 404, 409, 420, 427, 451, 474, 615, 616, 629, 632, 635, 637, 639, 647, 648, 668, 670, 693, 706, 764, 766, 767, 768, 792, 812, 817, 818, 819, 820, 823, 824, 826, 828, 829, 836, 837, 838, 839, 840, 841, 842, 843, 844, 855, 856, 857, 870], "also": [1, 4, 5, 6, 7, 10, 11, 13, 14, 16, 18, 22, 24, 26, 27, 29, 31, 32, 34, 36, 37, 38, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 728, 729, 730, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 801, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "look": [1, 6, 7, 8, 22, 31, 32, 45, 47, 50, 812, 816, 818, 819, 820, 825, 826, 827, 829, 830, 831, 833, 834, 835, 836, 837, 841, 842, 844, 845, 846, 847, 849, 851, 853, 854, 856, 859, 863, 866, 870], "document": [1, 6, 7, 22, 31, 64, 247, 335, 336, 372, 614, 632, 634, 710, 813, 814, 817, 820, 826, 828, 829, 831, 840, 841, 842, 844, 852, 854], "sphinx": [1, 814, 826], "websit": [1, 49, 819, 823, 860], "alreadi": [2, 6, 13, 23, 26, 27, 28, 29, 31, 32, 37, 45, 47, 50, 57, 62, 74, 80, 85, 236, 246, 273, 283, 293, 378, 387, 463, 464, 484, 520, 529, 632, 637, 675, 682, 805, 806, 812, 818, 819, 820, 825, 827, 829, 830, 836, 840, 841, 847, 855, 856, 870, 872, 877], "instal": [2, 7, 8, 9, 10, 11, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 48, 49, 50, 814, 819, 820, 825, 826, 834, 835], "skip": [2, 5, 47, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 376, 378, 399, 400, 401, 419, 435, 437, 444, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 485, 488, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 777, 805, 826, 837, 844], "colab": [2, 5, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 45, 47, 49, 50], "manual": [2, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 641, 718, 728, 729, 818, 819, 820, 829, 835, 844, 853, 856], "mind": [2, 16, 18, 22, 28, 31, 35, 818, 819, 824, 827, 844, 856, 864], "click": [2, 4, 47, 818, 819, 820, 828, 832, 834, 835, 850], "runtim": [2, 4, 5, 8, 11, 12, 13, 24, 31, 34, 45, 46, 822, 837, 844, 847, 870], "restart": [2, 4, 5, 8, 12, 45, 46, 819, 834], "git": [2, 4, 5, 8, 12, 31, 45, 46, 47, 48, 812, 814, 817, 819, 820, 823, 826, 828, 834, 835, 844, 856], "clone": [2, 4, 8, 12, 31, 45, 47, 48, 812, 814, 820, 834, 856], "http": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 26, 27, 28, 29, 31, 32, 45, 46, 47, 48, 49, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 814, 819, 820, 823, 826, 828, 829, 832, 834, 856, 864], "github": [2, 4, 5, 8, 11, 12, 13, 31, 45, 46, 47, 48, 49, 812, 814, 815, 817, 820, 821, 823, 826, 828, 829, 831, 832, 834, 835, 843, 844, 856, 859, 878], "com": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 823, 826, 828, 829, 834, 856], "unifyai": [2, 4, 8, 12, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 826, 834, 856], "model": [2, 3, 4, 9, 14, 15, 20, 21, 22, 48, 50, 240, 273, 377, 453, 632, 789, 793, 794, 810, 812, 852, 853, 857, 863, 864, 868, 869, 870, 871, 872, 873, 874, 876, 877], "depth": [2, 4, 6, 8, 12, 46, 53, 57, 61, 76, 80, 84, 141, 375, 378, 411, 471, 545, 557, 629, 634, 636, 654, 655, 820, 828, 852, 853, 854, 856], "repositori": [2, 4, 8, 12, 814, 818, 819, 820, 822, 823, 826, 834, 843, 861], "cd": [2, 4, 8, 12, 31, 48, 812, 814, 819, 820, 834, 856], "resnet": [3, 6, 13, 20, 31, 863, 864], "imag": [3, 4, 6, 7, 11, 13, 16, 20, 28, 31, 32, 45, 46, 47, 48, 49, 50, 57, 61, 79, 80, 84, 102, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 283, 284, 286, 287, 291, 375, 394, 395, 411, 412, 413, 415, 545, 632, 634, 636, 649, 650, 651, 652, 653, 656, 657, 658, 792, 812, 819, 834, 847, 849, 850, 852, 854, 856, 863, 864, 870], "classif": [3, 4, 12, 14, 20, 45, 812, 870], "acceler": [3, 20, 812, 829, 841, 868, 872, 873, 874, 875], "convert": [3, 8, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 28, 29, 31, 32, 33, 35, 37, 45, 48, 50, 52, 53, 56, 74, 75, 76, 79, 97, 127, 128, 140, 150, 151, 193, 194, 195, 196, 207, 215, 219, 239, 279, 378, 383, 462, 463, 464, 513, 578, 596, 598, 599, 600, 602, 629, 630, 631, 632, 634, 637, 641, 695, 719, 730, 731, 773, 801, 805, 812, 818, 824, 825, 838, 839, 841, 844, 846, 849, 855, 857, 861, 864, 868, 869, 876], "faster": [3, 4, 9, 11, 13, 14, 20, 31, 32, 48, 50, 57, 62, 80, 85, 376, 449, 637, 687, 814, 817, 826, 857, 872, 875], "infer": [3, 6, 7, 9, 11, 13, 14, 20, 24, 34, 36, 37, 46, 48, 50, 53, 57, 58, 61, 64, 76, 80, 81, 84, 87, 126, 128, 131, 135, 136, 140, 143, 149, 158, 159, 160, 161, 162, 312, 313, 375, 378, 382, 411, 496, 510, 556, 590, 591, 629, 630, 634, 636, 639, 659, 706, 801, 802, 822, 825, 829, 830, 844, 849, 854, 864, 868, 869, 872, 874], "mmpretrain": [3, 20], "segment": [3, 20, 57, 80, 330, 331, 332, 369, 826, 831], "unet": [3, 20], "alexnet": [3, 20], "written": [3, 4, 5, 6, 20, 22, 31, 32, 45, 58, 378, 473, 819, 823, 824, 832, 835, 836, 840, 841, 845, 849, 851, 854, 855, 859, 864, 868, 870, 874, 876, 877], "xgboost": [3, 20], "paddlepaddl": [3, 20, 335, 336, 372, 819], "dinov2": [3, 7, 20], "project": [3, 12, 13, 20, 25, 26, 27, 28, 29, 31, 32, 35, 98, 636, 663, 792, 812, 814, 815, 818, 819, 820, 821, 824, 825, 826, 844, 853, 855, 859, 860, 861, 864, 866, 868, 870, 873, 877, 878], "convnext": [3, 6, 11, 20], "video": [4, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 813, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 856, 868], "tutori": [4, 6, 7, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 820, 841, 856], "three": [4, 5, 20, 26, 36, 37, 47, 57, 139, 312, 369, 378, 464, 629, 819, 820, 827, 828, 829, 831, 841, 844, 847, 848, 849, 871, 876], "major": [4, 5, 644, 747, 829, 830, 842, 844, 855, 860, 867, 870], "ml": [4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 50, 812, 813, 817, 841, 848, 849, 850, 852, 853, 854, 858, 860, 861, 864, 866, 867, 868, 869, 870, 873, 875, 877], "framework": [4, 5, 7, 9, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 38, 45, 47, 49, 52, 58, 170, 192, 202, 205, 216, 543, 559, 563, 595, 598, 630, 631, 634, 641, 720, 771, 773, 777, 784, 789, 796, 801, 802, 812, 815, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 844, 845, 847, 848, 849, 851, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 871, 874], "sinc": [4, 8, 12, 28, 29, 31, 32, 45, 47, 57, 80, 98, 372, 812, 814, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 833, 840, 841, 855, 860, 870, 876], "automat": [4, 8, 9, 12, 29, 31, 32, 37, 818, 819, 820, 822, 825, 826, 828, 829, 835, 837, 840, 844, 847, 848, 850, 853, 854, 856, 857, 861, 870, 873, 877], "sure": [4, 8, 11, 12, 13, 14, 31, 45, 815, 818, 819, 820, 823, 828, 833, 834, 841, 842, 844, 847, 856], "enabl": [4, 5, 6, 8, 11, 12, 13, 14, 26, 27, 29, 46, 57, 62, 74, 85, 103, 375, 377, 398, 456, 580, 634, 637, 680, 794, 810, 812, 819, 820, 821, 824, 827, 829, 837, 838, 839, 840, 841, 844, 845, 848, 850, 852, 854, 855, 857, 860, 863, 868, 869, 870, 871, 872, 873, 876, 877], "dm": [4, 5, 8, 11, 13, 31, 32, 43, 45], "haiku": [4, 5, 8, 11, 13, 29, 31, 32, 43, 45, 49, 789, 812, 854, 861, 864, 870], "exit": [4, 8, 12, 31, 32, 830], "download": [4, 6, 7, 12, 16, 18, 31, 32, 46, 47, 50, 814, 819, 826, 844, 863, 864], "imagenet": [4, 6, 18, 46, 48, 812], "class": [4, 6, 7, 8, 12, 14, 16, 18, 22, 31, 32, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 134, 143, 149, 165, 168, 181, 183, 184, 243, 280, 338, 360, 372, 386, 387, 395, 396, 429, 528, 529, 536, 545, 549, 562, 572, 595, 629, 630, 631, 632, 634, 636, 637, 638, 641, 642, 657, 662, 666, 672, 682, 686, 687, 689, 696, 712, 719, 730, 737, 752, 759, 763, 764, 773, 774, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 810, 812, 818, 825, 826, 827, 829, 830, 831, 832, 836, 838, 839, 842, 843, 844, 847, 849, 850, 852, 853, 854, 857, 863, 864, 868, 870, 871, 877], "wget": [4, 6, 8, 12, 45, 46, 49, 819], "raw": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 48, 49, 74, 812, 832, 864, 871], "githubusercont": [4, 6, 8, 12, 45, 49], "hub": [4, 6, 8, 12, 45, 48, 50], "master": [4, 8, 12, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 48, 49, 815, 828, 870, 878], "imagenet_class": [4, 12], "categori": [4, 6, 12, 818, 823, 824, 827, 829, 833, 841, 845, 848], "strip": [4, 12, 24, 34, 860], "readlin": [4, 12, 46], "cat": [4, 7, 12, 46, 842, 847, 849, 854, 863, 864], "jpg": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 47, 48, 812, 864], "filenam": [4, 8, 12, 31, 32, 45, 47, 50, 58, 794, 800, 852], "import": [4, 6, 7, 9, 10, 11, 13, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 48, 49, 50, 57, 68, 72, 76, 80, 95, 194, 195, 199, 211, 307, 387, 522, 557, 573, 631, 634, 640, 645, 716, 717, 752, 784, 801, 802, 812, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 835, 838, 839, 840, 841, 842, 843, 844, 845, 849, 851, 852, 854, 855, 856, 860, 863, 864, 865, 866, 868, 870, 873, 874, 876], "devic": [4, 6, 7, 8, 9, 11, 12, 13, 46, 47, 50, 53, 57, 66, 74, 76, 80, 89, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 219, 312, 313, 328, 329, 369, 382, 472, 508, 509, 511, 512, 536, 550, 551, 629, 634, 643, 738, 739, 740, 741, 771, 773, 774, 789, 791, 792, 793, 794, 795, 796, 797, 798, 810, 812, 820, 822, 825, 829, 833, 837, 838, 842, 844, 845, 847, 849, 854, 855, 856, 857, 860, 869, 870, 872, 873, 874, 875], "torchvis": [4, 6, 11, 12, 45, 861], "transform": [4, 5, 6, 7, 11, 12, 13, 28, 31, 32, 45, 46, 48, 57, 61, 80, 84, 375, 376, 397, 398, 403, 404, 407, 408, 409, 419, 420, 423, 440, 636, 660, 776, 779, 792, 812, 838, 844, 854, 857, 863, 864, 868, 870, 871, 872], "pil": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 46, 47, 48, 812, 864], "time": [4, 5, 6, 7, 9, 10, 11, 13, 29, 31, 32, 37, 45, 47, 48, 49, 57, 59, 62, 68, 80, 82, 91, 97, 98, 134, 341, 372, 375, 376, 378, 387, 404, 409, 421, 423, 444, 451, 484, 490, 522, 616, 621, 629, 635, 636, 637, 639, 640, 644, 645, 659, 662, 677, 712, 715, 716, 717, 744, 745, 749, 750, 792, 793, 794, 810, 818, 819, 820, 823, 825, 827, 828, 829, 831, 834, 836, 837, 838, 840, 841, 844, 845, 849, 852, 854, 855, 856, 859, 860, 861, 863, 864, 868, 870, 871, 874, 875, 876], "filterwarn": [4, 5], "ignor": [4, 5, 44, 52, 53, 57, 74, 80, 139, 375, 376, 378, 387, 399, 400, 401, 430, 438, 446, 486, 487, 491, 530, 629, 636, 641, 663, 729, 730, 796, 819, 826, 828, 831, 844, 855, 876], "compos": [4, 6, 7, 11, 12, 31, 32, 45, 57, 80, 375, 389, 390, 391, 392, 819, 827, 841, 844, 863, 865, 870, 877], "resiz": [4, 6, 7, 8, 11, 12, 45, 46, 57, 80, 375, 411, 847], "centercrop": [4, 12], "224": [4, 6, 7, 12, 16, 18, 31, 32, 45, 46, 48, 812, 864], "totensor": [4, 6, 7, 11, 12, 45], "485": [4, 12, 45], "456": [4, 12, 45, 844], "406": [4, 12, 45, 57, 80, 397, 540, 634], "229": [4, 12, 45, 279, 632], "225": [4, 12, 45, 47, 234, 632], "torch_img": [4, 8, 12], "unsqueez": [4, 8, 11, 12], "img": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 812, 852, 864], "ipython": [4, 8, 12, 26, 27, 28, 29, 31, 32, 50], "displai": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 50, 819, 826, 828, 833, 844, 852], "end": [4, 8, 45, 46, 57, 80, 126, 228, 284, 353, 372, 375, 377, 378, 423, 452, 474, 484, 486, 487, 629, 632, 806, 812, 819, 820, 825, 828, 834, 840, 845, 847, 848, 855, 868, 873], "set_default_devic": [4, 5, 6, 8, 11, 12, 13, 217, 631, 830], "ivy_model": [4, 5, 8, 12, 48], "ivy_alexnet": 4, "quick": [4, 20, 32, 820, 822, 842, 853], "trace_graph": [4, 5, 8, 12, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 39, 48, 794, 812, 849, 854, 862], "moment": [4, 57, 59, 80, 82, 376, 433, 615, 616, 621, 635, 796, 810, 818, 825, 855, 863, 864], "cost": [4, 59, 82, 615, 616, 619, 621, 622, 623, 635, 640, 715, 716, 717, 806, 829, 847, 868], "arg": [4, 6, 8, 9, 10, 11, 12, 16, 18, 26, 27, 29, 31, 32, 36, 37, 38, 49, 52, 74, 96, 106, 122, 203, 213, 601, 628, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 798, 801, 805, 810, 812, 824, 829, 830, 833, 839, 840, 841, 847, 849, 853, 863, 864, 865], "asarrai": [4, 5, 8, 11, 12, 46, 53, 57, 58, 69, 76, 80, 81, 92, 127, 385, 514, 515, 545, 556, 560, 561, 591, 592, 593, 629, 634, 636, 645, 646, 650, 750, 754, 833, 838, 841, 842], "cuda": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22, 31, 46, 47, 50, 53, 57, 66, 76, 80, 89, 137, 138, 141, 193, 194, 195, 211, 382, 508, 509, 511, 512, 629, 631, 637, 643, 688, 738, 739, 740, 741, 791, 792, 793, 794, 795, 796, 797, 810, 849, 855, 857, 875], "output": [4, 5, 7, 8, 9, 10, 12, 22, 28, 29, 31, 32, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 435, 436, 438, 441, 442, 443, 444, 446, 447, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 467, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 539, 540, 541, 545, 546, 547, 549, 553, 562, 569, 576, 577, 578, 602, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 791, 792, 805, 806, 812, 814, 819, 820, 822, 823, 824, 826, 827, 829, 830, 831, 832, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 849, 851, 853, 854, 855, 857, 863, 864, 871], "softmax": [4, 6, 7, 12, 16, 29, 31, 32, 47, 51, 61, 72, 73, 84, 377, 454, 626, 636, 663, 666, 788, 812], "pass": [4, 6, 7, 8, 11, 12, 13, 14, 16, 18, 22, 29, 31, 32, 38, 44, 45, 47, 49, 50, 56, 57, 72, 74, 79, 80, 95, 103, 122, 123, 125, 157, 179, 194, 213, 228, 274, 375, 377, 378, 381, 382, 387, 421, 454, 474, 501, 503, 508, 528, 529, 562, 628, 630, 631, 632, 634, 640, 715, 716, 771, 773, 777, 784, 789, 793, 794, 796, 797, 801, 805, 810, 812, 816, 818, 820, 823, 824, 825, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 855, 863, 864, 865, 868], "argsort": [4, 12, 69, 92, 646, 755, 841], "descend": [4, 12, 69, 92, 637, 646, 687, 688, 753, 756], "top": [4, 12, 15, 20, 29, 31, 32, 45, 46, 57, 64, 80, 319, 369, 377, 378, 452, 494, 545, 634, 700, 812, 819, 820, 829, 834, 841, 843, 844, 847, 852, 853, 870, 874], "logit": [4, 5, 6, 7, 8, 12, 45, 46, 47, 48, 57, 63, 80, 86, 367, 382, 508, 511, 638, 696, 698, 788, 812, 863], "gather": [4, 12, 45, 57, 58, 80, 81, 330, 331, 332, 369, 553, 555, 634, 877], "to_list": [4, 12, 58, 81, 634], "arrai": [4, 5, 6, 7, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 175, 177, 178, 179, 180, 186, 196, 197, 201, 206, 208, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 574, 575, 576, 577, 578, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 597, 598, 599, 600, 601, 602, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 778, 784, 791, 792, 793, 794, 797, 801, 805, 806, 808, 812, 816, 818, 819, 820, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 864, 865, 868, 869, 870, 872, 876, 877], "282": [4, 12], "281": [4, 12, 45, 47], "285": [4, 12, 80], "64773697": 4, "29496649": 4, "04526037": 4, "tiger": [4, 12], "tabbi": [4, 7, 12], "egyptian": [4, 12], "torch_alexnet": 4, "alexnet_weight": 4, "imagenet1k_v1": [4, 12], "dropout": [4, 61, 84, 375, 399, 400, 401, 636, 661, 663, 666, 792, 852], "torch_output": [4, 8, 9, 12], "dim": [4, 12, 47, 57, 74, 76, 80, 141, 313, 369, 375, 378, 393, 403, 404, 405, 408, 416, 474, 496, 629, 636, 649, 656, 657, 662, 778, 792, 812, 829, 841, 842, 847], "torch_class": [4, 12], "torch_logit": [4, 12], "tensor": [4, 5, 6, 9, 11, 12, 13, 16, 18, 22, 23, 26, 27, 29, 31, 32, 33, 37, 43, 45, 53, 56, 57, 58, 61, 62, 63, 64, 66, 70, 74, 76, 79, 80, 81, 84, 85, 86, 87, 89, 93, 96, 129, 137, 138, 141, 147, 163, 179, 271, 272, 302, 319, 323, 324, 325, 326, 327, 328, 337, 360, 367, 369, 372, 375, 376, 377, 378, 387, 388, 394, 395, 398, 402, 411, 412, 413, 414, 421, 423, 425, 432, 433, 434, 435, 438, 440, 442, 444, 445, 448, 450, 451, 452, 454, 457, 458, 474, 477, 482, 485, 486, 487, 488, 491, 496, 497, 528, 533, 576, 577, 629, 630, 632, 634, 636, 637, 638, 639, 643, 647, 659, 662, 663, 678, 689, 696, 706, 708, 738, 761, 792, 801, 806, 810, 812, 824, 825, 829, 830, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 859, 863, 864, 865, 867, 868, 871, 873, 874, 877], "6477": 4, "2950": 4, "0453": 4, "grad_fn": [4, 12, 29, 43, 618, 625, 635, 852], "takebackward0": [4, 12], "great": [4, 7, 8, 812, 820, 844, 849, 851, 860, 861, 876], "simpl": [4, 7, 16, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 43, 45, 47, 50, 57, 80, 387, 522, 778, 792, 806, 812, 818, 819, 820, 824, 826, 827, 829, 830, 831, 832, 837, 840, 841, 844, 845, 847, 851, 853, 854, 855, 857, 859, 863, 864, 869, 870, 871, 872], "let": [4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 48, 50, 58, 70, 81, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 284, 286, 287, 291, 552, 553, 632, 634, 637, 647, 691, 761, 763, 764, 765, 766, 812, 818, 821, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 861, 863, 864, 877], "ll": [4, 6, 7, 8, 9, 11, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 46, 812, 813, 815, 816, 818, 819, 820, 821, 826, 831, 834, 835, 839, 840, 852, 856, 861, 863, 864], "try": [4, 6, 7, 23, 33, 43, 46, 50, 74, 601, 634, 791, 801, 812, 818, 819, 820, 823, 824, 827, 828, 829, 833, 835, 840, 842, 849, 851, 855, 858, 860, 861, 865], "tf": [4, 6, 8, 9, 10, 13, 16, 18, 23, 26, 27, 29, 31, 32, 33, 34, 36, 38, 43, 48, 49, 789, 812, 824, 829, 830, 836, 840, 841, 844, 845, 847, 849, 854, 855, 857, 863, 864, 865, 870], "onc": [4, 6, 8, 31, 32, 43, 45, 62, 66, 85, 89, 213, 376, 429, 631, 637, 643, 672, 673, 674, 687, 738, 812, 818, 819, 820, 827, 828, 829, 830, 831, 834, 835, 840, 841, 844, 847, 849, 852, 855, 856, 861, 863], "set": [4, 7, 9, 16, 18, 24, 31, 32, 34, 37, 45, 46, 47, 48, 49, 52, 57, 58, 61, 62, 67, 69, 70, 74, 80, 81, 84, 85, 90, 92, 93, 115, 118, 125, 145, 147, 181, 182, 183, 184, 185, 196, 209, 210, 211, 212, 213, 228, 328, 340, 356, 358, 363, 369, 372, 373, 375, 376, 377, 378, 387, 398, 419, 423, 427, 431, 434, 452, 457, 458, 474, 484, 487, 494, 522, 527, 528, 529, 530, 531, 532, 534, 538, 545, 557, 562, 578, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 595, 603, 626, 628, 629, 630, 631, 632, 634, 636, 637, 641, 643, 644, 646, 647, 659, 666, 668, 678, 680, 683, 686, 687, 718, 725, 728, 729, 730, 735, 736, 742, 744, 745, 749, 751, 752, 753, 756, 764, 766, 773, 776, 777, 778, 779, 784, 791, 792, 794, 796, 801, 806, 809, 810, 812, 813, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 859, 862, 863, 864, 868, 869, 870, 871, 872, 874, 877], "post": [4, 6, 8, 45, 65, 88, 642, 737, 819, 834, 839, 854, 856], "process": [4, 6, 8, 26, 31, 32, 36, 45, 207, 219, 631, 813, 819, 820, 826, 827, 828, 834, 835, 837, 839, 841, 842, 843, 844, 847, 849, 854, 860, 861, 863, 868, 869, 870, 873, 874, 876, 877], "st": [4, 5, 11, 776, 823, 842, 844], "perf_count": [4, 9, 10, 11], "raw_logit": 4, "latenc": [4, 11], "nn": [4, 6, 7, 8, 10, 18, 29, 31, 32, 45, 49, 139, 629, 812, 837, 842, 847, 854, 864, 871], "direct": [4, 57, 80, 341, 348, 352, 357, 361, 372, 375, 378, 409, 420, 475, 476, 490, 646, 756, 818, 824, 826, 841, 847, 853, 854, 866, 870, 871, 874], "tolist": 4, "652289830999962": 4, "int32": [4, 43, 45, 54, 57, 58, 66, 67, 70, 77, 80, 81, 89, 90, 132, 137, 141, 143, 149, 152, 155, 157, 159, 161, 163, 166, 168, 169, 173, 176, 180, 184, 188, 190, 208, 235, 271, 272, 383, 387, 513, 523, 524, 525, 553, 562, 599, 629, 630, 631, 632, 634, 643, 644, 647, 739, 740, 741, 745, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "6477362": 4, "29496726": 4, "04526032": 4, "As": [4, 6, 7, 8, 11, 13, 14, 16, 18, 24, 28, 29, 31, 32, 34, 37, 43, 44, 68, 72, 95, 637, 645, 685, 749, 750, 751, 752, 812, 816, 818, 819, 820, 821, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 851, 852, 853, 855, 859, 863, 864, 865, 870, 875], "ident": [4, 6, 9, 14, 29, 46, 48, 62, 74, 132, 201, 555, 581, 629, 631, 634, 637, 641, 675, 679, 731, 792, 827, 837, 838, 841, 842, 845, 847, 851, 852, 855, 857, 859, 861], "had": [4, 827, 828, 840, 845, 849, 870, 871], "postprocess": 4, "routin": [4, 828, 840, 841, 847, 855, 870], "feed": [4, 213, 631, 863, 870, 871], "carefulli": [4, 278, 632, 791, 841, 868, 873], "rewrit": 4, "easili": [4, 28, 31, 32, 43, 812, 819, 824, 828, 834, 841, 844, 847, 852, 853, 854, 855, 860, 870, 876, 877], "quickest": 4, "particular": [4, 31, 32, 268, 632, 777, 819, 820, 823, 825, 828, 829, 831, 838, 840, 841, 844, 845, 866, 870, 876], "again": [4, 8, 25, 26, 34, 35, 36, 37, 637, 685, 820, 824, 825, 826, 827, 831, 833, 835, 840, 841, 844, 845, 847, 852, 854, 855, 860, 861, 875, 876], "speed": [4, 11, 13, 14, 31, 32, 45, 50, 58, 81, 569, 634, 844, 859, 873], "repeat": [4, 5, 25, 35, 57, 58, 64, 80, 81, 87, 375, 378, 387, 404, 409, 473, 522, 547, 634, 639, 640, 712, 716, 717, 805, 820, 824, 825, 831, 832, 840, 844], "previou": [4, 14, 24, 25, 26, 28, 34, 35, 36, 38, 59, 80, 82, 187, 188, 189, 190, 191, 364, 374, 375, 421, 602, 604, 605, 606, 607, 609, 610, 612, 616, 621, 630, 634, 635, 791, 809, 819, 820, 823, 825, 828, 830, 836, 841, 844, 847, 854, 855, 873], "trace": [4, 5, 6, 8, 11, 12, 13, 20, 21, 25, 28, 31, 34, 36, 37, 49, 58, 62, 74, 81, 85, 564, 565, 568, 579, 588, 603, 611, 634, 637, 773, 784, 794, 796, 810, 812, 823, 827, 829, 841, 846, 847, 849, 854, 855, 862, 863, 864, 871, 876], "026875037000081647": 4, "overrid": [4, 8, 37, 46, 53, 57, 76, 80, 141, 387, 522, 629, 824, 826], "prealloc": [4, 8], "temporari": [4, 8, 589, 612, 634, 806, 829, 846], "fix": [4, 8, 47, 57, 80, 97, 98, 372, 375, 376, 421, 451, 636, 663, 812, 816, 819, 820, 823, 829, 835, 844, 845], "until": [4, 8, 806, 820, 840, 849, 855, 860, 863, 877], "o": [4, 8, 44, 45, 46, 47, 49, 572, 634, 636, 663, 812, 819, 822, 828, 849, 856], "environ": [4, 8, 13, 26, 27, 28, 29, 46, 49, 812, 813, 820, 856, 870, 872], "xla_python_client_alloc": [4, 8], "platform": [4, 6, 8, 14, 26, 27, 29, 814, 817, 819, 826, 868, 872, 874], "jit": [4, 11, 13, 31, 34, 849, 855, 863, 870], "img_jax": [4, 8], "device_put": [4, 11], "warm": 4, "_": [4, 9, 10, 11, 13, 14, 31, 44, 45, 56, 57, 74, 79, 80, 82, 98, 155, 243, 245, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 448, 451, 492, 522, 545, 615, 616, 630, 632, 634, 635, 637, 639, 641, 647, 685, 686, 688, 714, 725, 764, 812, 820, 828, 829, 832, 840, 844, 852], "0022192720000475674": 4, "64773613": 4, "29496723": 4, "exact": [4, 57, 73, 74, 110, 375, 377, 411, 416, 456, 457, 645, 749, 751, 778, 788, 819, 820, 823, 831, 849], "note": [4, 6, 8, 14, 27, 31, 32, 37, 46, 47, 48, 57, 58, 62, 64, 68, 80, 85, 87, 97, 134, 147, 179, 247, 282, 283, 290, 328, 329, 349, 369, 372, 375, 376, 378, 398, 429, 434, 444, 445, 451, 474, 492, 630, 632, 636, 637, 639, 645, 647, 663, 672, 673, 684, 685, 687, 706, 710, 750, 752, 761, 792, 806, 810, 816, 818, 819, 820, 824, 829, 831, 832, 835, 840, 841, 842, 844, 845, 847], "were": [4, 8, 48, 74, 77, 168, 172, 173, 247, 632, 636, 663, 818, 819, 820, 829, 833, 835, 839, 840, 842, 844, 845, 847, 849, 863, 870, 871, 876], "function": [4, 6, 7, 9, 10, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 166, 167, 168, 171, 172, 173, 175, 179, 180, 197, 199, 200, 209, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 384, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 575, 576, 577, 580, 581, 584, 586, 588, 591, 592, 593, 594, 595, 597, 599, 600, 601, 607, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 722, 724, 725, 726, 728, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 774, 776, 777, 778, 779, 784, 788, 791, 794, 801, 802, 808, 810, 812, 816, 819, 820, 822, 823, 824, 825, 826, 828, 831, 832, 834, 840, 843, 848, 850, 851, 852, 853, 857, 859, 863, 865, 867, 868, 869, 870, 871, 876, 877], "dog": 4, "006431100999861883": 4, "258": [4, 636, 651, 653], "104": [4, 70, 637, 647, 682, 759], "259": 4, "72447652": 4, "13937832": 4, "05874982": 4, "samoi": 4, "wallabi": 4, "pomeranian": 4, "incorrect": [4, 828], "predict": [4, 6, 7, 8, 12, 14, 45, 46, 47, 48, 57, 63, 80, 86, 377, 453, 456, 459, 638, 696, 697, 698, 812, 829], "down": [4, 24, 34, 48, 57, 80, 375, 378, 411, 476, 812, 819, 844, 857, 870, 876], "itself": [4, 7, 26, 36, 56, 97, 274, 535, 601, 632, 634, 641, 730, 806, 816, 819, 820, 823, 826, 827, 828, 829, 830, 833, 834, 835, 840, 841, 853, 855, 859, 863, 869, 870, 871, 876], "version": [4, 6, 9, 14, 28, 29, 34, 45, 46, 47, 50, 51, 57, 80, 97, 110, 291, 340, 342, 372, 387, 527, 532, 614, 632, 634, 637, 673, 674, 773, 801, 802, 812, 819, 820, 826, 828, 829, 832, 840, 842, 849, 859, 860, 861, 864, 876, 877], "004749261999904775": 4, "7245": 4, "1394": 4, "0587": 4, "promis": [4, 7, 860], "sourc": [4, 7, 9, 10, 12, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 780, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 841, 843, 859, 860, 861, 862, 864, 865, 869, 870, 871, 872, 873], "modul": [4, 6, 8, 11, 13, 16, 18, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 37, 43, 44, 45, 47, 48, 49, 72, 74, 95, 103, 368, 370, 371, 379, 380, 384, 573, 634, 648, 769, 773, 788, 789, 790, 792, 793, 795, 797, 800, 801, 810, 812, 814, 819, 824, 825, 826, 833, 837, 840, 841, 843, 844, 849, 850, 852, 854, 855, 861, 863, 865, 870, 871, 873], "__init__": [4, 8, 16, 18, 31, 32, 43, 44, 45, 47, 74, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 774, 781, 782, 783, 788, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 807, 810, 812, 818, 824, 825, 829, 833, 841, 845, 849, 851, 852, 853, 854, 864], "self": [4, 6, 7, 8, 16, 18, 31, 32, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 805, 812, 820, 824, 827, 833, 841, 842, 849, 851, 852, 853, 854, 864], "num_class": [4, 16, 18, 31, 32, 45, 47, 49, 812, 854, 864], "1000": [4, 6, 9, 10, 11, 12, 16, 31, 32, 45, 46, 47, 48, 50, 53, 76, 138, 629, 812, 852, 864], "v": [4, 5, 8, 20, 21, 24, 31, 32, 34, 37, 38, 43, 46, 47, 57, 61, 69, 76, 80, 84, 92, 138, 238, 243, 245, 286, 376, 378, 430, 440, 447, 448, 473, 632, 636, 640, 646, 663, 666, 716, 717, 755, 773, 792, 793, 794, 795, 796, 797, 812, 814, 819, 820, 822, 826, 834, 849, 852, 853, 854, 878], "_build": [4, 8, 793, 794, 812], "kwarg": [4, 5, 7, 8, 13, 14, 31, 45, 49, 52, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 103, 106, 203, 378, 484, 572, 601, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 801, 810, 812, 824, 829, 830, 833, 837, 840, 841, 847, 849, 853, 863, 864, 865], "featur": [4, 7, 13, 14, 16, 18, 20, 22, 31, 32, 45, 49, 57, 80, 375, 389, 391, 392, 399, 400, 401, 791, 792, 810, 812, 818, 819, 820, 824, 825, 828, 829, 836, 845, 847, 852, 855, 864, 870, 871, 872, 876], "sequenti": [4, 8, 9, 12, 29, 31, 32, 47, 812, 826, 827, 853, 864], "conv2d": [4, 8, 12, 29, 31, 32, 47, 50, 61, 84, 636, 653, 792, 812], "64": [4, 8, 12, 43, 45, 46, 47, 50, 56, 57, 61, 79, 80, 81, 84, 85, 89, 93, 103, 164, 234, 244, 278, 287, 288, 346, 372, 375, 397, 407, 545, 546, 593, 621, 630, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 658, 679, 682, 692, 726, 730, 740, 759, 763, 819, 829, 852, 853, 867, 875], "data_format": [4, 47, 57, 61, 80, 84, 375, 381, 390, 394, 395, 396, 399, 400, 401, 412, 413, 414, 415, 417, 501, 502, 503, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 776, 792, 795, 812], "nchw": [4, 47, 57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792, 812], "relu": [4, 8, 12, 29, 31, 32, 43, 50, 51, 57, 72, 73, 80, 112, 302, 303, 311, 367, 626, 788, 812, 842, 852, 853], "maxpool2d": [4, 8, 12, 45, 792, 812], "192": [4, 47, 776, 805], "384": [4, 82, 615, 635, 641, 718], "avgpool": [4, 12], "adaptiveavgpool2d": [4, 12, 792], "classifi": [4, 7, 14, 16, 18, 31, 32, 45, 47, 48, 812, 818, 863, 864], "prob": [4, 6, 7, 47, 57, 61, 80, 84, 89, 375, 382, 399, 400, 401, 508, 636, 643, 659, 738, 792, 812], "4096": 4, "_forward": [4, 8, 11, 13, 31, 32, 43, 44, 47, 812, 832, 849, 852, 853], "bidirect": [5, 636, 661], "encod": [5, 16, 18, 31, 32, 45, 47, 58, 63, 81, 86, 549, 634, 638, 696, 812, 852, 860, 864], "mlm": 5, "googl": [5, 26, 27, 28, 29, 45, 46, 47, 49, 828, 860], "choos": [5, 45, 47, 55, 67, 68, 78, 214, 240, 247, 268, 269, 273, 335, 336, 372, 378, 631, 632, 644, 645, 647, 748, 749, 750, 751, 752, 760, 761, 762, 764, 776, 812, 818, 819, 820, 838, 844, 850, 854, 863], "librari": [5, 6, 7, 11, 13, 20, 21, 27, 29, 43, 45, 55, 68, 78, 214, 245, 247, 263, 268, 269, 291, 335, 336, 372, 631, 632, 637, 645, 647, 673, 674, 749, 750, 751, 752, 760, 761, 762, 764, 810, 812, 818, 819, 823, 829, 854, 855, 859, 860, 861, 863, 866, 867, 868, 870, 874, 877], "pretrain": [5, 11, 16, 17, 18, 31, 32, 50, 812, 864], "save": [5, 6, 12, 45, 57, 74, 80, 387, 529, 589, 612, 631, 634, 648, 794, 810, 819, 828, 835, 844, 855, 861, 869], "some": [5, 8, 9, 10, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 43, 47, 48, 74, 82, 245, 247, 263, 375, 399, 400, 401, 615, 616, 619, 621, 622, 623, 631, 632, 635, 641, 729, 792, 812, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 855, 856, 857, 860, 861, 863, 864, 866, 867, 869, 870, 871, 876, 877], "mohame54": 5, "automodel": [5, 13, 31], "autotoken": 5, "load": [5, 6, 7, 11, 13, 28, 31, 45, 46, 47, 48, 49, 50, 74, 376, 447, 648, 794, 812, 844, 855, 869, 876], "token": [5, 47, 821], "bert_bas": 5, "from_pretrain": [5, 7, 13, 31, 48, 863, 864], "base": [5, 7, 14, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 138, 147, 179, 243, 244, 261, 262, 263, 264, 278, 319, 328, 330, 337, 340, 346, 353, 369, 372, 375, 376, 377, 385, 418, 422, 447, 452, 514, 582, 593, 605, 629, 630, 632, 634, 637, 639, 645, 647, 678, 702, 749, 750, 751, 752, 759, 774, 777, 778, 781, 782, 783, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 806, 807, 810, 812, 819, 820, 821, 823, 827, 828, 829, 833, 836, 838, 839, 840, 842, 843, 844, 845, 846, 847, 849, 870, 875, 877, 878], "uncas": 5, "eval": [5, 6, 8, 12, 18, 26, 27, 28, 29, 636, 661, 794], "evalu": [5, 56, 57, 74, 79, 80, 243, 245, 261, 262, 263, 264, 268, 275, 277, 284, 288, 322, 354, 365, 366, 369, 374, 376, 377, 378, 443, 452, 457, 481, 625, 632, 635, 641, 648, 728, 729, 767, 768, 793, 794, 820, 827, 829, 837, 838, 870], "bert_token": 5, "sampl": [5, 6, 7, 11, 13, 16, 18, 28, 31, 32, 46, 53, 56, 57, 66, 70, 76, 79, 80, 89, 93, 137, 138, 292, 319, 369, 375, 377, 378, 382, 399, 400, 401, 411, 421, 423, 452, 457, 487, 508, 509, 510, 511, 512, 629, 632, 643, 647, 738, 739, 740, 741, 764, 766, 792, 842, 844], "test": [5, 7, 23, 24, 26, 27, 33, 34, 36, 37, 38, 46, 47, 56, 58, 71, 79, 81, 94, 125, 171, 175, 254, 255, 256, 257, 280, 375, 399, 400, 401, 569, 628, 630, 632, 634, 648, 767, 768, 771, 774, 777, 806, 812, 814, 816, 817, 822, 826, 829, 831, 833, 835, 838, 841, 843, 845, 855, 856, 861, 863, 864, 865, 870], "did": [5, 45, 818, 826, 854, 860, 876], "realli": [5, 43, 819, 827, 834, 855, 863, 875, 876], "like": [5, 6, 7, 11, 13, 23, 24, 25, 31, 33, 34, 35, 36, 37, 38, 48, 50, 53, 56, 57, 64, 76, 79, 80, 84, 87, 92, 138, 156, 179, 224, 244, 250, 253, 266, 284, 341, 346, 358, 372, 375, 376, 377, 378, 385, 387, 418, 420, 429, 454, 463, 464, 473, 474, 514, 515, 532, 629, 630, 632, 637, 639, 643, 646, 672, 706, 741, 754, 806, 812, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 860, 863, 864, 870, 875], "input": [5, 6, 7, 8, 9, 10, 13, 16, 18, 28, 29, 31, 36, 37, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 194, 196, 197, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 430, 431, 432, 434, 435, 436, 441, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 576, 577, 578, 584, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 602, 607, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 791, 792, 793, 794, 795, 805, 806, 810, 823, 824, 825, 827, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 871, 874], "pad": [5, 12, 45, 47, 57, 61, 64, 80, 84, 87, 98, 100, 375, 378, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 549, 634, 636, 639, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 701, 714, 778, 792, 812], "longest": 5, "return_tensor": [5, 7, 13, 31, 48, 863, 864], "pt": [5, 7, 13, 31, 863], "max_length": [5, 74], "512": [5, 8, 12, 45, 47, 85, 636, 651, 692, 812], "input_id": 5, "101": [5, 14, 46, 636, 637, 641, 660, 676, 724], "1045": 5, "2106": 5, "1005": 5, "1056": 5, "2428": 5, "2066": 5, "2115": 5, "4309": 5, "1012": 5, "102": [5, 14, 57, 80, 89, 397, 739], "token_type_id": 5, "attention_mask": [5, 61, 84, 636, 663], "pooler": 5, "compar": [5, 9, 10, 11, 13, 31, 44, 48, 50, 57, 58, 68, 69, 70, 74, 80, 81, 92, 93, 334, 351, 372, 387, 530, 534, 537, 634, 636, 645, 646, 647, 661, 749, 750, 751, 752, 753, 756, 762, 773, 812, 825, 831, 833, 842, 844, 847, 852, 866, 868, 870, 876, 877], "no_grad": [5, 45, 863], "bert_output": 5, "pooler_output": 5, "ivy_bert": 5, "bert_base_uncas": 5, "ivy_input": 5, "k": [5, 11, 44, 47, 53, 57, 58, 61, 62, 66, 76, 79, 80, 84, 85, 89, 97, 98, 122, 132, 145, 146, 147, 267, 313, 328, 329, 369, 376, 378, 382, 385, 387, 427, 442, 446, 448, 450, 490, 494, 508, 509, 510, 511, 512, 515, 525, 537, 628, 629, 634, 636, 637, 641, 643, 644, 663, 666, 670, 677, 678, 684, 686, 687, 688, 691, 726, 739, 740, 741, 747, 822, 823, 841, 842, 849, 863, 866, 870], "ivy_output": [5, 48], "logits_clos": 5, "allclos": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 48, 50, 57, 80, 372], "detach": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 839], "rtol": [5, 7, 16, 18, 57, 62, 80, 85, 334, 351, 372, 637, 680, 683, 771, 773, 816, 834, 842], "005": [5, 12, 57, 80, 334, 351, 372, 453], "atol": [5, 7, 9, 10, 11, 13, 31, 57, 62, 80, 85, 334, 351, 372, 637, 680, 771, 773, 816, 834, 842], "768": 5, "fn": [5, 48, 50, 57, 74, 77, 80, 106, 166, 167, 199, 200, 203, 378, 461, 535, 550, 551, 601, 630, 631, 634, 641, 724, 725, 726, 728, 729, 730, 771, 773, 798, 801, 807, 808, 810, 830, 833, 840, 841, 849, 863], "finish": [5, 7, 20, 31, 32, 43, 46, 812, 813, 818, 819, 822], "sec": 5, "43": [5, 14, 43, 45, 47, 57, 80, 89, 103, 234, 375, 376, 387, 396, 428, 523, 632, 643, 644, 740, 741, 748], "procedur": [5, 826, 828, 831, 842], "60": [5, 43, 47, 56, 70, 79, 81, 89, 93, 224, 258, 378, 489, 553, 561, 577, 592, 614, 632, 634, 637, 641, 647, 682, 721, 739, 757, 759, 763, 806, 828], "big": [5, 791, 813, 855, 870], "jnp": [5, 23, 28, 31, 32, 33, 34, 37, 43, 45, 49, 812, 829, 830, 833, 836, 840, 845, 849, 854, 864, 865], "ref": [5, 8, 11, 13, 81, 85, 259, 273, 276, 282, 289, 632, 639, 710, 819, 840], "fast": [5, 26, 36, 57, 375, 398, 870], "valu": [5, 14, 43, 44, 46, 47, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 100, 102, 103, 105, 118, 122, 123, 125, 126, 132, 135, 136, 137, 138, 141, 147, 152, 169, 173, 179, 212, 213, 220, 221, 222, 223, 225, 227, 228, 229, 236, 240, 241, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 302, 307, 310, 311, 313, 320, 322, 328, 330, 331, 332, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 351, 352, 354, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 386, 387, 398, 411, 418, 419, 421, 423, 427, 430, 434, 440, 445, 447, 449, 451, 452, 453, 455, 456, 457, 458, 467, 473, 478, 484, 489, 491, 492, 493, 494, 496, 498, 501, 503, 508, 509, 511, 512, 518, 520, 523, 524, 525, 528, 529, 530, 531, 532, 538, 540, 541, 542, 544, 549, 552, 553, 555, 560, 561, 562, 569, 576, 577, 581, 582, 583, 586, 595, 600, 605, 606, 609, 612, 613, 614, 615, 616, 617, 621, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 666, 670, 673, 674, 678, 679, 680, 683, 684, 685, 686, 687, 688, 691, 694, 699, 700, 701, 705, 706, 714, 715, 716, 720, 722, 723, 724, 725, 726, 731, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 779, 781, 783, 788, 791, 792, 793, 794, 795, 796, 810, 816, 819, 820, 823, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 846, 847, 849, 851, 855, 863, 870, 871], "emerg": [6, 870], "popular": [6, 7, 812, 823, 870], "Its": [6, 57, 377, 452, 870], "python": [6, 7, 12, 16, 22, 34, 39, 43, 45, 46, 47, 49, 50, 57, 66, 80, 89, 126, 207, 219, 247, 282, 375, 382, 421, 508, 509, 510, 511, 512, 614, 629, 631, 632, 634, 643, 738, 739, 740, 741, 743, 801, 805, 806, 810, 817, 819, 820, 823, 826, 827, 828, 833, 834, 841, 843, 844, 849, 851, 852, 855, 857, 858, 859, 860, 863, 867, 870, 871, 872, 876, 877], "superior": 6, "eager": [6, 20, 21, 24, 27, 29, 34, 37, 38, 49, 810, 827, 855, 870], "execut": [6, 11, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 39, 46, 48, 50, 123, 125, 601, 628, 631, 634, 819, 820, 826, 827, 828, 829, 830, 831, 833, 837, 838, 840, 844, 847, 849, 851, 854, 855, 857, 863, 866, 870, 871, 872, 873, 874, 876], "mode": [6, 7, 8, 37, 49, 57, 62, 74, 80, 85, 96, 97, 98, 99, 100, 101, 210, 213, 218, 223, 240, 273, 327, 365, 366, 369, 374, 375, 376, 378, 406, 411, 419, 420, 432, 434, 442, 444, 445, 451, 467, 477, 482, 484, 485, 487, 489, 492, 493, 497, 578, 579, 580, 584, 585, 587, 588, 602, 603, 607, 608, 610, 611, 631, 632, 634, 636, 637, 661, 684, 784, 792, 793, 794, 809, 810, 819, 820, 822, 827, 830, 831, 834, 847, 855, 870, 873], "made": [6, 11, 13, 31, 57, 64, 80, 376, 378, 436, 462, 463, 464, 710, 818, 820, 821, 823, 824, 827, 828, 833, 835, 837, 839, 840, 841, 845, 847, 849, 851, 860, 870], "favorit": [6, 812], "increasingli": [6, 831, 863], "span": [6, 820, 868, 876], "industri": [6, 860, 870, 872], "still": [6, 14, 25, 27, 28, 31, 32, 34, 35, 38, 62, 74, 85, 637, 687, 776, 818, 819, 820, 824, 825, 829, 832, 833, 835, 837, 840, 841, 844, 847, 853, 855, 860, 863, 864, 867, 870, 876], "practition": [6, 7, 870, 874, 875, 876], "larg": [6, 46, 56, 57, 79, 80, 223, 240, 247, 273, 274, 378, 387, 492, 522, 632, 637, 685, 814, 819, 820, 826, 828, 834, 852, 863, 870], "unabl": [6, 13, 820, 847], "rich": 6, "ecosystem": [6, 870], "state": [6, 19, 30, 45, 61, 80, 84, 100, 187, 188, 189, 190, 191, 273, 375, 421, 602, 604, 607, 609, 610, 630, 632, 634, 636, 661, 662, 774, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 812, 816, 819, 826, 829, 830, 832, 833, 834, 835, 836, 841, 844, 848, 849, 850, 852, 860, 864, 876, 877], "art": 6, "sota": [6, 7], "inaccur": 6, "dynam": [6, 9, 38, 639, 706, 794, 801, 822, 828, 829, 830, 840, 841, 846, 849, 863, 870, 874], "connect": [6, 12, 45, 792, 812, 814, 819, 826, 843, 853, 854, 860, 868], "layer": [6, 7, 9, 10, 16, 18, 22, 28, 29, 31, 32, 43, 48, 57, 65, 80, 88, 642, 661, 662, 663, 737, 789, 791, 793, 794, 795, 796, 797, 812, 832, 841, 845, 847, 849, 850, 853, 859, 864, 868, 870, 874, 877], "togeth": [6, 57, 74, 80, 334, 351, 372, 376, 430, 797, 812, 821, 824, 827, 829, 840, 841, 844, 845, 847, 853, 854, 855, 860, 868, 870, 871, 876], "For": [6, 11, 12, 13, 14, 22, 24, 31, 32, 34, 37, 39, 53, 57, 62, 68, 80, 85, 126, 139, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 275, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 330, 331, 332, 335, 336, 338, 359, 369, 372, 376, 378, 442, 444, 464, 484, 487, 629, 632, 637, 639, 645, 647, 685, 687, 691, 699, 710, 749, 750, 751, 752, 760, 762, 763, 765, 777, 789, 812, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 867, 868, 871, 876, 877], "user": [6, 7, 13, 20, 26, 27, 28, 29, 31, 46, 47, 49, 274, 291, 378, 484, 580, 632, 634, 792, 793, 794, 805, 812, 819, 820, 822, 824, 825, 827, 828, 829, 830, 833, 838, 839, 840, 841, 844, 846, 847, 848, 849, 855, 856, 859, 860, 868, 870, 876, 877], "seamless": [6, 812], "wai": [6, 14, 20, 21, 22, 25, 27, 31, 35, 37, 43, 97, 100, 812, 814, 817, 818, 819, 823, 824, 825, 826, 828, 829, 830, 840, 841, 842, 844, 847, 851, 852, 853, 854, 855, 856, 859, 860, 865, 872, 876, 877], "introduc": [6, 31, 32, 247, 632, 639, 645, 707, 749, 818, 827, 828, 829, 838, 842, 844, 847, 852, 859], "pipelin": [6, 7, 812, 814, 822, 823, 824, 842, 845, 854, 857, 859, 864, 870, 871, 876], "blog": [6, 7, 820], "through": [6, 7, 32, 37, 45, 57, 80, 100, 228, 387, 528, 529, 632, 641, 721, 727, 794, 805, 812, 813, 816, 817, 818, 820, 821, 822, 825, 826, 827, 828, 830, 831, 833, 834, 835, 837, 838, 840, 841, 842, 844, 846, 847, 848, 849, 852, 853, 854, 863, 868, 870, 871, 872], "train": [6, 7, 16, 18, 29, 31, 32, 48, 57, 59, 61, 80, 82, 84, 100, 375, 376, 381, 399, 400, 401, 448, 501, 503, 615, 616, 621, 635, 636, 659, 661, 663, 666, 791, 792, 793, 794, 795, 812, 827, 830, 837, 852, 853, 854, 855, 861, 864, 868, 869, 874, 876, 877], "illustr": [6, 24, 34, 825, 849], "workflow": [6, 25, 35, 46, 818, 820, 821, 825, 829, 839, 841, 852, 857, 861, 869, 876, 877], "pre": [6, 31, 32, 816, 818, 843, 844, 854, 855, 856, 870], "belong": [6, 74, 818, 823, 853], "convolut": [6, 29, 57, 61, 80, 84, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 810, 864, 868, 870], "neural": [6, 636, 788, 792, 812, 864, 866, 868, 869, 870, 874, 876, 877], "network": [6, 22, 29, 31, 32, 43, 45, 50, 636, 660, 788, 791, 792, 812, 827, 837, 849, 853, 860, 864, 866, 868, 869, 870, 874, 876, 877], "cnn": [6, 31, 32, 870], "architectur": [6, 48, 812, 819, 854, 855, 868, 869, 870, 873, 874, 875], "inspir": [6, 824], "vision": [6, 7, 31, 32, 50, 866, 876], "perform": [6, 8, 10, 14, 24, 26, 27, 28, 29, 31, 32, 34, 36, 43, 45, 53, 57, 61, 62, 70, 71, 76, 80, 81, 84, 85, 93, 94, 113, 117, 137, 138, 210, 218, 240, 273, 294, 341, 363, 372, 373, 375, 376, 378, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 417, 419, 445, 461, 515, 523, 524, 545, 546, 547, 560, 561, 562, 578, 588, 626, 629, 631, 632, 634, 636, 637, 640, 641, 647, 648, 659, 662, 678, 687, 689, 694, 715, 716, 717, 725, 726, 757, 758, 761, 767, 768, 771, 788, 792, 806, 810, 823, 824, 825, 827, 829, 830, 831, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 861, 863, 864, 867, 870, 871, 872, 873, 874, 875, 877], "strength": 6, "wise": [6, 31, 51, 56, 57, 62, 73, 79, 80, 85, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 239, 240, 241, 242, 244, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 276, 278, 279, 281, 282, 289, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 334, 337, 342, 345, 346, 347, 350, 351, 352, 353, 357, 358, 361, 362, 367, 372, 375, 376, 378, 399, 400, 401, 428, 435, 471, 478, 480, 481, 500, 626, 632, 639, 668, 699, 796, 847], "supervis": [6, 7, 57, 377, 452], "convent": [6, 287, 632, 637, 647, 677, 759, 820, 825, 836, 845, 859, 876], "demonstr": [6, 7, 14, 28, 31, 32, 46, 812, 821, 829, 831, 833, 851], "improv": [6, 11, 13, 14, 31, 34, 815, 820, 829, 836, 837, 847, 849, 857, 861, 863, 868, 870, 872, 873], "scalabl": [6, 849, 859, 875, 876], "sometim": [6, 818, 819, 820, 823, 829, 837, 841, 844, 847], "rival": 6, "even": [6, 11, 28, 31, 32, 57, 80, 97, 240, 273, 278, 283, 378, 387, 484, 522, 632, 819, 820, 821, 823, 825, 828, 829, 830, 832, 836, 837, 840, 841, 842, 847, 851, 852, 853, 854, 855, 860, 861, 876], "downsampl": [6, 12, 57, 80, 411], "detial": 6, "outsid": [6, 639, 699, 710, 829, 830, 837, 851, 875], "scope": [6, 825, 871, 875], "demo": [6, 7, 8, 11, 12, 13, 14, 32, 39, 43, 47, 812], "interest": [6, 7, 29, 31, 43, 240, 273, 632, 818, 820], "reader": [6, 7], "paper": [6, 636, 663, 812, 861], "mostli": [6, 830, 840, 844], "kera": [6, 9, 10, 15, 16, 18, 20, 21, 29, 31, 32, 48, 49, 789, 812, 861, 864, 876], "wrapper": [6, 20, 21, 24, 57, 80, 298, 784, 824, 826, 827, 829, 833, 837, 840, 841, 844, 851, 857, 866, 870], "prepar": [6, 32, 45, 47, 50, 812, 828], "data": [6, 7, 18, 26, 27, 28, 29, 32, 37, 45, 47, 50, 51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93, 94, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 154, 155, 157, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 186, 192, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 300, 301, 302, 303, 312, 313, 314, 315, 316, 317, 318, 329, 330, 331, 332, 333, 335, 336, 337, 354, 359, 367, 369, 372, 375, 376, 378, 382, 386, 387, 390, 399, 400, 401, 417, 419, 421, 427, 429, 449, 467, 489, 492, 493, 495, 496, 508, 509, 510, 511, 512, 518, 522, 523, 524, 528, 531, 532, 549, 562, 564, 565, 568, 595, 626, 629, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 700, 703, 704, 706, 707, 709, 710, 714, 722, 739, 740, 741, 743, 744, 745, 747, 748, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 791, 792, 793, 794, 798, 806, 810, 812, 819, 822, 823, 824, 825, 826, 827, 830, 832, 836, 837, 838, 840, 842, 845, 847, 849, 851, 857, 858, 860, 870, 871, 872, 874, 875, 876], "request": [6, 7, 11, 12, 13, 26, 27, 28, 29, 31, 32, 45, 48, 57, 204, 382, 512, 631, 810, 812, 813, 815, 818, 831, 835, 845, 847, 861, 864], "experiment": [6, 10, 810, 816, 820, 829, 841, 845, 849, 870], "set_memory_growth": 6, "list_physical_devic": 6, "manual_se": [6, 7, 29], "set_se": 6, "2024": 6, "51": [6, 14, 43, 47, 56, 57, 79, 80, 81, 89, 235, 273, 286, 376, 397, 451, 632, 741, 776], "38": [6, 13, 14, 27, 43, 45, 47, 50, 54, 57, 79, 80, 89, 165, 290, 357, 372, 375, 387, 395, 414, 417, 418, 523, 630, 632, 637, 679, 776, 831], "926817": 6, "e": [6, 13, 31, 48, 49, 53, 57, 62, 66, 68, 69, 70, 72, 79, 80, 85, 89, 92, 93, 95, 97, 98, 102, 129, 138, 139, 142, 143, 147, 151, 180, 193, 220, 221, 222, 226, 228, 229, 232, 234, 236, 240, 241, 243, 246, 247, 253, 254, 261, 262, 263, 264, 271, 272, 273, 274, 276, 280, 282, 283, 286, 287, 291, 301, 328, 335, 336, 369, 372, 375, 376, 377, 378, 382, 387, 388, 394, 395, 398, 412, 413, 414, 415, 419, 432, 435, 443, 457, 492, 496, 508, 509, 510, 511, 512, 523, 524, 533, 627, 629, 630, 631, 632, 636, 637, 639, 641, 643, 645, 646, 647, 663, 668, 673, 674, 677, 678, 680, 683, 686, 687, 688, 691, 694, 702, 710, 721, 725, 726, 727, 730, 735, 736, 739, 740, 741, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 792, 805, 806, 810, 812, 813, 816, 818, 819, 820, 822, 823, 825, 827, 829, 833, 834, 839, 841, 844, 849, 852, 855, 856, 857, 860, 861, 863, 866, 878], "extern": [6, 827, 836, 841, 844, 845], "local_xla": 6, "xla": [6, 13, 841, 855, 857, 870], "stream_executor": [6, 13], "cuda_dnn": [6, 13], "cc": [6, 13, 26, 27, 29, 46, 834], "9261": 6, "regist": [6, 13, 794, 820, 856, 863], "cudnn": [6, 13], "factori": [6, 13, 57, 377, 456, 457, 806], "plugin": [6, 13, 819], "926873": 6, "cuda_fft": [6, 13], "607": 6, "cufft": [6, 13], "928224": 6, "cuda_bla": [6, 13], "1515": 6, "cubla": [6, 13], "936743": 6, "cpu_feature_guard": [6, 26, 27, 29], "182": [6, 26, 27, 29, 80], "instruct": [6, 26, 27, 29, 74, 103, 812, 818, 819, 823, 833, 835, 842, 844, 856, 868, 871, 874, 876], "avx2": [6, 26, 27, 29], "fma": [6, 26, 27, 29], "rebuild": [6, 26, 27, 29, 74, 103], "flag": [6, 26, 27, 29, 74, 196, 377, 387, 454, 522, 631, 636, 663, 773, 784, 795, 820, 829, 830, 840, 841, 842, 844, 863, 864], "40": [6, 9, 14, 43, 45, 47, 57, 58, 79, 80, 81, 89, 93, 103, 234, 238, 258, 287, 349, 372, 375, 378, 395, 397, 407, 413, 489, 545, 547, 552, 553, 577, 592, 614, 617, 632, 634, 635, 637, 641, 647, 676, 682, 727, 740, 759, 763, 812, 828], "071672": 6, "w": [6, 8, 13, 46, 47, 57, 58, 59, 61, 74, 79, 80, 81, 82, 84, 97, 267, 349, 364, 372, 374, 375, 376, 381, 394, 395, 396, 398, 412, 413, 414, 415, 431, 451, 506, 521, 545, 547, 592, 615, 616, 617, 619, 621, 622, 623, 634, 635, 636, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 724, 822, 839, 849, 852, 853, 864, 878], "tf2tensorrt": [6, 13], "py_util": [6, 13], "trt": [6, 13], "find": [6, 13, 20, 46, 47, 50, 62, 68, 74, 85, 637, 641, 645, 680, 720, 749, 750, 751, 752, 805, 806, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 828, 834, 839, 844, 847, 849, 852, 856, 857, 859, 863], "tensorrt": [6, 13], "map": [6, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 372, 375, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 619, 624, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 725, 726, 730, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 806, 824, 827, 829, 836, 837, 841, 844, 845, 852, 855, 857, 864, 871], "dataset": [6, 7, 14, 31, 74, 812, 852, 863, 864], "gist": 6, "yrevar": 6, "942d3a0ac09ec9e5eb3a": 6, "238f720ff059c1f82f368259d1ca4ffa5dd8f9f5": 6, "imagenet1000_clsidx_to_label": 6, "idx2label": 6, "read": [6, 45, 47, 57, 64, 74, 76, 80, 87, 134, 378, 474, 629, 639, 706, 818, 819, 826, 828, 834, 844, 846, 847, 870], "resolv": [6, 12, 45, 47, 57, 70, 247, 387, 523, 524, 632, 639, 647, 702, 757, 758, 763, 765, 820, 826, 829, 835, 849], "185": [6, 12, 45, 73], "199": [6, 12, 45, 226, 632], "108": [6, 12, 14, 26, 27, 28, 29, 45, 636, 647, 660, 759], "133": [6, 12, 45, 61, 660], "109": [6, 12, 45, 62, 637, 675], "111": [6, 12, 45, 641, 736], "443": [6, 12, 45, 285, 632], "sent": [6, 12, 45], "await": [6, 12, 45], "respons": [6, 12, 45, 381, 506, 820, 828, 829], "200": [6, 12, 14, 45, 81, 84, 234, 375, 399, 400, 553, 577, 632, 634, 805, 852], "ok": [6, 12, 45, 819], "30564": 6, "30k": 6, "plain": [6, 12, 45], "imagenet1000_clsidx": 6, "85k": 6, "003": 6, "is_avail": [6, 14], "url": [6, 7, 11, 13, 28, 31, 32, 45, 48, 812, 864], "cocodataset": [6, 7, 11, 13, 28, 31, 32, 48, 812, 864], "org": [6, 7, 11, 12, 13, 28, 31, 32, 45, 47, 48, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 832, 864], "val2017": [6, 7, 11, 13, 31, 48], "000000039769": [6, 7, 11, 13, 31, 48], "stream": [6, 7, 11, 13, 28, 31, 32, 45, 48, 55, 78, 214, 631, 812, 864, 874], "initialis": [6, 823, 841, 844], "api": [6, 7, 19, 24, 29, 30, 34, 47, 49, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 178, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 819, 820, 822, 824, 826, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 842, 844, 847, 848, 850, 852, 855, 857, 858, 859, 866, 868, 870, 872, 875, 877], "convnextxlarg": 6, "while": [6, 7, 14, 31, 32, 39, 57, 61, 74, 80, 84, 97, 98, 103, 125, 141, 179, 247, 248, 268, 269, 347, 372, 375, 376, 378, 420, 421, 443, 486, 487, 521, 628, 629, 630, 632, 636, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 749, 761, 764, 774, 816, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 851, 853, 854, 855, 856, 859, 860, 863, 870, 876, 877], "arbitrari": [6, 24, 34, 53, 54, 57, 74, 77, 80, 139, 153, 180, 322, 377, 454, 462, 463, 464, 617, 629, 630, 635, 836, 837, 839, 840, 841, 844, 853, 855, 863, 865, 871, 876], "regardless": [6, 31, 32, 43, 74, 813, 829, 833, 851, 854, 861], "host": [6, 810, 814, 828, 855, 860, 875], "convnext_xlarg": 6, "include_top": [6, 18, 812], "include_preprocess": 6, "input_tensor": [6, 57, 80, 376, 377, 448, 452, 457, 841], "input_shap": [6, 11, 18, 29, 31, 32, 812], "pool": [6, 57, 80, 84, 375, 389, 390, 391, 392, 394, 395, 396, 412, 413, 414, 415, 418, 792, 819], "classifier_activ": 6, "936026": 6, "common_runtim": [6, 46], "gpu_devic": 6, "1929": 6, "creat": [6, 7, 8, 9, 10, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 49, 50, 53, 56, 57, 66, 74, 76, 79, 80, 85, 89, 98, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 274, 312, 313, 323, 325, 327, 328, 369, 375, 376, 378, 382, 394, 395, 396, 417, 434, 445, 451, 460, 468, 484, 489, 508, 509, 510, 511, 512, 580, 597, 614, 625, 629, 632, 634, 635, 643, 682, 738, 739, 740, 741, 743, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 813, 815, 819, 820, 821, 824, 825, 826, 828, 829, 830, 833, 837, 838, 840, 841, 842, 844, 847, 849, 850, 853, 856, 857, 860, 863, 864, 865, 870, 871, 876], "job": [6, 31, 32, 812, 826, 828, 864], "localhost": 6, "replica": 6, "14791": 6, "tesla": 6, "v100": [6, 11], "pcie": [6, 860], "16gb": 6, "pci": 6, "bu": [6, 85, 860], "id": [6, 14, 46, 57, 80, 196, 330, 331, 332, 369, 557, 631, 634, 812, 817, 819, 824, 826, 827, 835, 839, 844, 856, 878], "0001": [6, 56, 57, 80, 283, 284, 376, 445, 451, 776, 779, 796], "over": [6, 7, 9, 22, 29, 32, 34, 45, 57, 62, 70, 71, 72, 77, 80, 84, 85, 93, 94, 95, 97, 122, 320, 321, 335, 336, 349, 356, 369, 372, 375, 376, 377, 378, 385, 387, 389, 390, 391, 392, 395, 404, 409, 413, 417, 418, 419, 420, 421, 422, 444, 452, 461, 474, 489, 492, 493, 496, 515, 525, 531, 580, 614, 628, 634, 637, 642, 643, 647, 648, 668, 678, 689, 691, 693, 694, 737, 741, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 801, 805, 812, 819, 820, 825, 831, 832, 839, 840, 842, 845, 849, 851, 855, 859, 861, 868, 870], "wonder": [6, 851, 859, 861], "why": [6, 22, 812, 820, 840, 851, 858, 860], "One": [6, 7, 47, 57, 58, 64, 66, 80, 81, 87, 89, 100, 378, 462, 463, 464, 467, 484, 493, 496, 546, 634, 639, 643, 706, 739, 824, 827, 829, 831, 837, 842, 844, 849, 851, 852], "reason": [6, 282, 291, 632, 818, 820, 823, 824, 827, 828, 829, 831, 837, 840, 841, 844, 845, 847, 849, 851, 860, 876], "highlight": [6, 820, 828, 831, 841, 843], "directli": [6, 16, 18, 22, 25, 29, 31, 32, 35, 375, 376, 411, 435, 641, 730, 812, 818, 819, 820, 821, 823, 824, 827, 828, 829, 830, 832, 835, 837, 838, 840, 841, 842, 845, 846, 849, 851, 853, 854, 855, 856, 861, 863, 864, 865, 874, 875, 876], "much": [6, 11, 13, 14, 22, 23, 29, 31, 32, 33, 34, 45, 100, 334, 351, 372, 791, 818, 819, 820, 824, 827, 829, 837, 840, 841, 842, 845, 846, 847, 849, 851, 852, 860, 868, 870, 876, 877], "more": [6, 7, 16, 19, 20, 22, 23, 24, 27, 29, 31, 32, 33, 34, 43, 45, 46, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 153, 245, 247, 263, 278, 291, 295, 300, 301, 303, 363, 367, 373, 376, 377, 378, 424, 426, 438, 440, 443, 456, 462, 463, 464, 469, 490, 580, 626, 629, 630, 632, 634, 637, 639, 645, 671, 677, 680, 683, 685, 687, 694, 703, 710, 749, 750, 751, 752, 778, 788, 806, 812, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 864, 865, 868, 869, 870, 871, 872, 873, 876, 877], "There": [6, 22, 29, 32, 37, 97, 368, 370, 371, 379, 380, 384, 778, 818, 819, 820, 823, 824, 826, 827, 829, 830, 831, 833, 835, 837, 839, 841, 842, 846, 849, 852, 855, 859, 863, 871, 872, 876, 877], "deeper": [6, 20, 22, 32, 52, 641, 729, 730, 812, 820, 822, 844, 848, 859], "what": [6, 11, 13, 20, 25, 31, 32, 35, 36, 39, 44, 45, 375, 409, 420, 778, 806, 812, 818, 820, 822, 827, 828, 831, 832, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 860, 861, 866, 871, 872, 875], "offer": [6, 841, 853, 861, 870, 876, 877], "limit": [6, 74, 103, 165, 168, 540, 541, 557, 630, 634, 639, 699, 776, 778, 779, 791, 798, 806, 812, 819, 820, 826, 828, 831, 833, 841, 844, 847, 852, 855, 869, 870, 871], "soon": [6, 818, 820, 828, 829, 855, 863], "detail": [6, 7, 24, 34, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 81, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 133, 144, 291, 295, 300, 301, 303, 367, 376, 426, 469, 548, 626, 629, 632, 645, 671, 677, 683, 687, 710, 749, 750, 751, 752, 788, 812, 818, 820, 823, 825, 826, 827, 828, 835, 836, 837, 838, 841, 842, 843, 844, 845, 846, 849, 851, 852, 853, 872, 876], "comparison": [6, 10, 12, 57, 80, 241, 276, 337, 372, 377, 456, 457, 632, 637, 688, 771, 833], "separ": [6, 46, 57, 58, 80, 381, 502, 549, 634, 636, 663, 773, 784, 819, 820, 824, 827, 828, 831, 842, 843, 844, 849, 851, 852, 871, 875], "stai": [6, 812, 828], "origin": [6, 7, 9, 10, 11, 13, 14, 29, 31, 32, 33, 34, 35, 37, 44, 45, 46, 50, 57, 62, 64, 70, 74, 80, 85, 87, 93, 97, 100, 102, 103, 228, 253, 280, 319, 369, 375, 376, 378, 387, 419, 445, 477, 483, 485, 488, 523, 524, 528, 529, 530, 531, 532, 632, 637, 639, 647, 678, 706, 707, 758, 773, 778, 801, 802, 812, 814, 818, 819, 820, 825, 826, 828, 829, 834, 838, 840, 841, 842, 849, 861, 863, 864, 870, 871], "convert_to_tensor": 6, "tmp": [6, 45, 47, 589, 612, 634], "ipykernel_65585": 6, "3221769294": 6, "_eagertensorbas": 6, "op": [6, 16, 22, 43, 788, 801, 810, 845, 849, 855], "deprec": [6, 50], "futur": [6, 9, 22, 29, 31, 45, 637, 673, 674, 812, 819, 820, 821, 828, 829, 844, 845, 847, 851, 855, 859, 861, 876], "instead": [6, 13, 16, 18, 22, 26, 27, 28, 29, 31, 38, 45, 50, 56, 57, 62, 79, 80, 85, 98, 194, 282, 316, 369, 375, 387, 412, 413, 414, 522, 525, 631, 632, 637, 680, 776, 818, 819, 820, 823, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 863, 864, 865, 868, 870, 876, 877], "logits_np": [6, 7], "class_id": 6, "int": [6, 7, 8, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 106, 113, 117, 118, 127, 128, 132, 134, 135, 136, 137, 138, 141, 145, 146, 147, 154, 161, 164, 165, 168, 175, 190, 204, 205, 206, 213, 214, 223, 230, 231, 232, 233, 234, 235, 247, 250, 274, 278, 283, 289, 292, 300, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 335, 336, 340, 341, 345, 349, 356, 358, 360, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 426, 430, 432, 433, 434, 435, 437, 442, 444, 445, 448, 449, 451, 456, 460, 461, 465, 469, 470, 473, 474, 477, 479, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 496, 497, 498, 499, 502, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 535, 545, 546, 547, 549, 552, 553, 556, 557, 571, 574, 576, 591, 592, 593, 594, 598, 614, 615, 616, 617, 618, 621, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 668, 670, 671, 678, 679, 684, 689, 691, 692, 693, 694, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 724, 725, 727, 729, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 747, 749, 751, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 788, 791, 792, 805, 806, 810, 827, 829, 830, 831, 833, 836, 837, 840, 842, 844, 845, 847, 849, 854, 863], "argmax": [6, 7, 8, 46, 47, 48, 67, 90, 378, 489, 644, 812, 841, 863, 867], "57": [6, 12, 14, 43, 45, 56, 57, 79, 80, 198, 221, 222, 225, 226, 228, 238, 239, 279, 295, 296, 367, 631, 632], "342029": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 9, 45, 46, 47, 50, 57, 290, 462, 463, 464, 632, 820, 823, 825, 829, 841, 849, 854, 876], "spawn": [6, 573, 634], "child": 6, "No": [6, 31, 32, 45, 57, 63, 80, 86, 377, 454, 455, 456, 458, 459, 638, 696, 820, 828, 829, 870], "directori": [6, 45, 46, 47, 50, 589, 612, 631, 634, 810, 814, 818, 819, 820, 826, 828, 834, 841, 844, 856], "906376": 6, "454": 6, "8904": 6, "993553": 6, "58": [6, 7, 10, 43, 264, 540, 632, 634], "578886": 6, "servic": [6, 872], "168": [6, 47, 540, 634, 641, 718], "0x558ecdd86830": 6, "guarante": [6, 645, 749, 751, 810, 824, 829, 840, 855, 861], "578915": 6, "176": [6, 540, 634], "streamexecutor": 6, "log": [6, 53, 56, 57, 62, 76, 79, 80, 85, 118, 138, 263, 265, 278, 300, 301, 354, 361, 367, 372, 377, 382, 454, 456, 457, 508, 626, 629, 632, 685, 776, 778, 779, 788, 820, 827, 828, 831, 837, 840, 841, 842, 844, 846, 847, 849, 852], "messag": [6, 798, 807, 811, 819, 820, 828, 831, 833, 835, 841, 849, 851, 860], "absl": [6, 45], "initializelog": 6, "stderr": 6, "i0000": 6, "1710255118": 6, "868823": 6, "65585": 6, "device_compil": 6, "h": [6, 8, 57, 58, 61, 80, 81, 84, 375, 381, 395, 396, 413, 414, 506, 545, 547, 634, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 721, 725, 727, 730, 735, 813, 822, 826, 827, 828, 864, 866], "186": 6, "cluster": [6, 57, 80, 376, 430, 855, 870], "line": [6, 11, 13, 14, 20, 21, 24, 25, 28, 31, 32, 34, 35, 46, 47, 290, 632, 810, 812, 819, 823, 824, 828, 830, 831, 833, 841, 844, 847, 850, 851, 852, 853, 861, 864, 873], "lifetim": 6, "grei": 6, "fox": 6, "grai": 6, "urocyon": 6, "cinereoargenteu": 6, "eagerli": [6, 26, 27, 31, 32, 36, 37, 38, 45, 812, 863, 864, 865], "explain": [6, 7, 37, 57, 80, 375, 409, 420, 812, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 844, 845, 847, 849, 850, 851, 852, 853, 854, 866, 873, 876], "doc": [6, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 47, 80, 147, 328, 335, 336, 369, 372, 524, 629, 812, 813, 817, 818, 822, 831, 832, 835, 836, 844, 849, 852, 853, 863, 864, 865], "involv": [6, 16, 19, 20, 27, 29, 54, 77, 180, 223, 240, 247, 273, 278, 630, 632, 806, 813, 821, 822, 828, 829, 831, 842, 847, 854, 860, 870, 876], "dummi": [6, 26, 27, 36, 37, 38, 44, 820], "transpiled_model": [6, 7], "backend_compil": [6, 31, 32], "root": [6, 7, 9, 12, 13, 26, 27, 28, 29, 45, 46, 47, 50, 56, 79, 287, 632, 814, 818, 819, 820, 826, 834, 841, 852], "placement": [6, 13, 818], "case": [6, 16, 18, 24, 26, 31, 32, 34, 35, 36, 37, 45, 52, 53, 57, 58, 64, 70, 74, 76, 80, 81, 87, 97, 98, 103, 128, 139, 166, 167, 194, 199, 200, 207, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 347, 349, 359, 372, 375, 377, 378, 381, 382, 388, 399, 400, 401, 421, 452, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 489, 490, 496, 499, 501, 503, 510, 533, 550, 551, 555, 562, 576, 577, 578, 629, 630, 631, 632, 634, 637, 639, 641, 647, 685, 691, 702, 703, 704, 706, 708, 709, 711, 713, 721, 727, 760, 761, 762, 763, 764, 765, 766, 776, 777, 796, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 860, 863, 864, 865, 869, 873], "ad": [6, 12, 13, 14, 26, 27, 28, 29, 57, 64, 80, 87, 95, 240, 273, 334, 351, 372, 381, 501, 502, 503, 592, 593, 632, 634, 636, 637, 639, 663, 673, 674, 702, 792, 797, 812, 816, 817, 818, 819, 820, 823, 824, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 853, 855, 860, 863, 869, 870], "logits_transpil": 6, "logits_transpiled_np": 6, "class_id_transpil": 6, "But": [6, 7, 31, 32, 778, 827, 828, 832, 835, 838, 847, 854], "produc": [6, 7, 9, 44, 57, 58, 61, 80, 84, 302, 312, 315, 367, 369, 375, 423, 636, 666, 776, 806, 818, 829, 834, 835, 840, 842, 844, 845, 863, 871, 873], "granular": [6, 7], "level": [6, 7, 22, 31, 32, 34, 57, 80, 81, 376, 448, 537, 806, 810, 812, 813, 818, 819, 820, 821, 827, 829, 833, 837, 839, 840, 841, 843, 846, 847, 848, 849, 852, 853, 854, 855, 857, 861, 866, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878], "close": [6, 7, 47, 62, 245, 263, 283, 312, 369, 632, 637, 639, 687, 702, 815, 816, 818, 819, 820, 821, 829, 832, 834, 841, 847, 870], "inde": [6, 7, 836, 847, 855, 868], "benefit": [6, 7, 32, 812, 819, 824, 827, 840, 847, 851, 852, 855, 860, 861, 868, 872, 875], "trainabl": [6, 7, 16, 18, 22, 28, 29, 31, 32, 49, 789, 793, 794, 797, 812, 832, 850, 852, 853, 864, 865], "further": [6, 7, 22, 74, 103, 778, 812, 820, 823, 824, 828, 831, 833, 836, 837, 840, 841, 843, 844, 848, 849, 852, 853, 860, 861, 875, 876], "cifar": [6, 7], "dataload": [6, 7, 852], "cifar10": [6, 7], "batch_siz": [6, 7, 45, 47, 50, 57, 61, 66, 80, 84, 89, 375, 377, 394, 395, 396, 412, 413, 414, 415, 459, 636, 643, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 663, 738, 812, 852], "shuffl": [6, 7, 47, 57, 66, 74, 80, 89, 510, 643], "drop_last": [6, 7], "num_work": [6, 7], "opt": [6, 7, 26, 27, 28, 29, 49, 819, 825, 829, 840, 844, 847], "sgd": [6, 7, 45, 796, 870], "lr": [6, 45, 59, 82, 536, 616, 619, 621, 622, 623, 634, 635, 796, 852, 853], "1e": [6, 7, 9, 10, 11, 12, 13, 16, 18, 31, 43, 47, 54, 57, 59, 62, 63, 65, 77, 80, 82, 85, 86, 88, 101, 165, 334, 351, 372, 377, 381, 457, 501, 502, 503, 582, 583, 592, 605, 606, 615, 616, 621, 623, 630, 634, 635, 637, 638, 642, 687, 696, 697, 698, 737, 771, 773, 793, 795, 796, 812, 816, 827, 834, 837, 840, 842, 853, 854], "loss_fn": [6, 31, 32, 43, 45, 47, 812, 852, 853, 854], "crossentropyloss": [6, 45, 793], "epoch": [6, 7, 31, 32, 45, 47, 812], "loss_epoch_arr": [6, 7], "loss_arr": [6, 7], "enumer": [6, 7, 8, 45, 47, 781], "permut": [6, 8, 12, 45, 64, 87, 102, 385, 514, 639, 704, 711, 864], "loss": [6, 7, 31, 32, 45, 47, 57, 80, 97, 452, 453, 454, 455, 456, 457, 458, 459, 585, 608, 634, 696, 697, 698, 812, 828, 829, 837, 841, 845, 846, 852, 853, 854, 870, 877], "backward": [6, 7, 45, 57, 71, 80, 94, 282, 375, 398, 403, 404, 408, 409, 419, 420, 632, 637, 648, 668, 693, 767, 768, 792, 810, 845, 855], "append": [6, 7, 14, 46, 47, 57, 62, 74, 80, 232, 341, 372, 632, 637, 639, 671, 677, 702, 806, 812, 828, 844, 849, 852, 867], "avg_loss": [6, 7, 45], "02": [6, 12, 13, 45, 53, 58, 59, 65, 66, 79, 82, 89, 138, 225, 226, 265, 375, 397, 407, 408, 592, 593, 615, 616, 621, 629, 632, 634, 635, 642, 643, 737, 740, 741, 842], "94": [6, 14, 43, 56, 57, 59, 66, 79, 80, 82, 89, 207, 283, 284, 360, 372, 407, 619, 631, 635, 741], "ve": [6, 7, 8, 9, 14, 20, 29, 31, 66, 89, 643, 738, 818, 819, 820, 821, 834, 844, 847, 848, 851, 857], "And": [6, 7, 11, 13, 14, 16, 18, 23, 26, 31, 32, 33, 46, 77, 365, 366, 374, 812, 823, 826, 835, 837, 844, 863], "successfulli": [6, 7, 45, 47, 50, 794, 815, 819, 824], "plug": 6, "seen": [6, 16, 18, 23, 29, 31, 376, 382, 435, 510, 557, 634, 801, 828, 829, 831, 833, 841, 844, 849, 851, 852, 859, 860, 876], "d": [6, 7, 46, 57, 58, 61, 62, 64, 76, 80, 81, 84, 85, 87, 100, 116, 138, 147, 180, 223, 240, 241, 273, 276, 328, 369, 375, 376, 378, 381, 382, 385, 394, 395, 396, 403, 408, 412, 413, 414, 415, 417, 421, 427, 443, 464, 470, 472, 475, 479, 493, 495, 499, 506, 508, 514, 537, 548, 626, 629, 630, 632, 636, 637, 639, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 670, 671, 675, 678, 682, 691, 692, 708, 721, 725, 726, 727, 730, 735, 736, 777, 806, 812, 813, 819, 822, 825, 826, 827, 834, 839, 844, 847, 852, 860, 861, 866], "sign": [6, 7, 56, 57, 62, 68, 70, 79, 80, 85, 97, 126, 220, 221, 222, 223, 226, 228, 229, 234, 238, 240, 243, 245, 247, 273, 275, 282, 286, 287, 291, 339, 372, 376, 378, 387, 447, 491, 492, 523, 524, 629, 632, 637, 645, 647, 685, 749, 750, 751, 752, 757, 758, 763, 765, 812, 819, 821, 829, 849, 854, 860], "ask": [6, 7, 812, 818, 819, 831, 849, 851, 855, 856, 861], "server": [6, 7, 45, 812, 819, 820, 826, 834, 856, 870], "forward": [6, 7, 8, 12, 18, 31, 32, 45, 47, 57, 80, 365, 374, 375, 398, 403, 404, 408, 409, 419, 420, 789, 791, 792, 794, 796, 810, 812, 819, 825, 832, 839, 844, 845, 847, 854, 855, 863, 870, 871], "come": [7, 22, 45, 815, 818, 819, 820, 824, 828, 841, 846, 847, 853, 857, 870], "onto": [7, 641, 724, 730, 858, 859, 870], "scene": [7, 812, 822, 848, 850, 858, 859, 870], "almost": [7, 45, 817, 827, 842, 850, 852, 859], "alwai": [7, 53, 54, 57, 58, 64, 76, 77, 80, 87, 110, 128, 152, 223, 273, 346, 372, 376, 378, 447, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 562, 626, 630, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 812, 818, 819, 820, 824, 825, 827, 829, 832, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 855, 863], "huggingfac": [7, 45, 863, 864], "implement": [7, 14, 22, 23, 31, 33, 37, 45, 48, 54, 55, 57, 68, 69, 77, 78, 80, 85, 92, 97, 152, 166, 167, 180, 199, 200, 214, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 273, 275, 278, 282, 285, 286, 290, 291, 335, 336, 359, 372, 376, 387, 428, 429, 528, 529, 550, 551, 630, 631, 632, 634, 636, 637, 645, 646, 647, 663, 672, 673, 674, 682, 691, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 777, 779, 801, 812, 816, 818, 822, 823, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 867, 868, 869, 870, 873, 876, 877], "conveni": [7, 25, 35, 818, 829, 830, 836, 842, 850, 852, 853, 857, 876], "who": [7, 20, 812, 815, 821, 822, 833, 848, 855, 870, 872, 878], "must": [7, 37, 45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 325, 326, 329, 330, 331, 332, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 422, 424, 426, 427, 429, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 458, 459, 462, 463, 464, 469, 470, 472, 474, 475, 476, 477, 479, 483, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 499, 504, 505, 507, 508, 509, 511, 512, 515, 522, 523, 524, 525, 532, 540, 541, 545, 546, 547, 552, 553, 555, 562, 576, 577, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 791, 792, 796, 798, 817, 818, 819, 820, 823, 824, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 844, 845, 846, 847, 849, 853, 854, 859, 861, 864, 865, 871, 877], "reimplement": 7, "choic": [7, 14, 32, 49, 57, 70, 80, 93, 376, 378, 447, 467, 647, 764, 766, 812, 819, 828, 840, 841, 852, 861, 864, 870, 877], "veri": [7, 16, 24, 31, 32, 34, 56, 79, 274, 334, 351, 372, 632, 637, 685, 778, 817, 818, 819, 820, 826, 827, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 850, 852, 853, 854, 855, 859, 860, 866, 867, 868, 870, 871, 872, 875, 876, 877], "thousand": [7, 855], "china": 7, "howev": [7, 14, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 62, 85, 247, 290, 291, 378, 381, 492, 501, 503, 580, 632, 634, 637, 685, 687, 801, 818, 819, 823, 824, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 855, 860, 863, 869, 870, 876], "suffer": 7, "abov": [7, 22, 27, 31, 32, 37, 38, 53, 56, 57, 62, 66, 73, 79, 80, 85, 89, 98, 118, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 311, 313, 328, 329, 335, 336, 338, 341, 367, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 409, 412, 413, 414, 419, 420, 421, 429, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 562, 591, 600, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 870, 875], "second": [7, 9, 56, 57, 59, 62, 64, 68, 79, 80, 81, 82, 85, 87, 91, 98, 102, 103, 123, 147, 178, 186, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 319, 328, 334, 347, 349, 350, 351, 357, 361, 362, 369, 372, 376, 377, 378, 385, 387, 428, 429, 430, 432, 436, 458, 490, 498, 509, 511, 515, 522, 525, 537, 586, 609, 615, 616, 621, 628, 629, 630, 632, 634, 635, 637, 639, 640, 641, 645, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 710, 711, 716, 719, 749, 750, 751, 796, 819, 823, 826, 829, 831, 835, 840, 841, 844, 846, 851, 861, 875], "iter": [7, 45, 47, 52, 57, 58, 64, 72, 74, 80, 81, 87, 95, 100, 103, 122, 213, 320, 321, 369, 375, 376, 378, 421, 434, 445, 451, 468, 484, 534, 572, 628, 631, 634, 639, 641, 701, 705, 712, 714, 719, 720, 721, 722, 723, 724, 726, 727, 728, 729, 730, 733, 734, 736, 805, 806, 810, 823, 825, 827, 849, 852, 861, 863], "dino": 7, "meta": [7, 45, 715, 716, 717, 824, 845, 870], "vit": 7, "purpos": [7, 24, 31, 32, 34, 45, 47, 147, 245, 263, 328, 369, 629, 632, 637, 685, 820, 822, 824, 827, 828, 830, 831, 833, 836, 837, 838, 841, 843, 844, 847, 848, 851, 857, 869, 871, 874, 875, 876], "abund": [7, 861], "literatur": 7, "mainli": [7, 812, 818, 822, 839, 841, 844, 850, 852, 857, 870], "focus": [7, 812, 829, 845, 868, 869, 870, 876, 877], "rather": [7, 37, 58, 74, 81, 126, 213, 564, 565, 568, 629, 631, 634, 636, 661, 816, 820, 823, 827, 829, 832, 834, 841, 842, 844, 845, 854, 855, 860, 866, 869, 870], "65": [7, 14, 43, 45, 47, 50, 79, 82, 89, 234, 273, 560, 615, 632, 634, 635, 637, 647, 682, 740, 741, 759, 828], "749": 7, "env": [7, 26, 27, 28, 29], "flags_fraction_of_gpu_memory_to_us": 7, "auto_growth": 7, "paddl": [7, 26, 27, 28, 29, 209, 335, 336, 372, 631, 789, 801, 818, 819, 829, 834], "autoimageprocessor": [7, 863, 864], "automodelforimageclassif": 7, "device_count": 7, "seed": [7, 23, 26, 27, 47, 48, 57, 61, 66, 68, 74, 80, 84, 89, 323, 324, 325, 326, 327, 369, 376, 382, 434, 445, 451, 508, 509, 510, 511, 512, 636, 643, 645, 659, 738, 739, 740, 741, 743, 749, 784, 789, 791, 806, 838, 842, 844], "libpaddl": 7, "0x7c8738e15470": 7, "processor": [7, 875], "facebook": [7, 48], "imagenet1k": 7, "id2label": [7, 48, 863], "predicted_class_idx": [7, 48], "paddle_input": 7, "pixel_valu": 7, "to_tensor": [7, 96, 97, 98, 99, 100, 101], "stop_gradi": [7, 59, 82, 213, 536, 616, 619, 621, 622, 623, 631, 634, 635, 640, 715, 716, 717, 796, 853], "logits_np_transpil": 7, "4th": 7, "decim": [7, 56, 79, 283, 632, 846], "io": [7, 13, 26, 27, 28, 29, 46, 49, 819, 828], "to_rgb": 7, "cv2": [7, 45, 47, 49, 852], "tar": [7, 45, 46, 47, 50], "gz": [7, 45, 46, 47, 50], "found": [7, 45, 47, 48, 50, 62, 64, 68, 74, 80, 85, 87, 91, 103, 201, 387, 469, 523, 631, 641, 671, 677, 710, 729, 749, 806, 815, 818, 819, 820, 824, 825, 826, 827, 829, 830, 832, 835, 838, 840, 841, 856, 872], "bj": [7, 223, 240, 273, 338, 372, 632], "bcebo": 7, "41626": 7, "2m": 7, "cross_entropi": [7, 47, 63, 86, 638, 698, 812, 827, 837, 840], "01": [7, 12, 26, 27, 29, 47, 53, 57, 58, 59, 62, 80, 81, 82, 85, 89, 138, 265, 283, 284, 312, 318, 343, 344, 351, 369, 375, 397, 407, 408, 549, 592, 593, 615, 616, 621, 629, 632, 634, 635, 637, 640, 643, 674, 684, 716, 717, 740, 741, 776, 825, 854], "33": [7, 14, 43, 45, 46, 56, 66, 70, 79, 80, 81, 82, 84, 226, 227, 234, 283, 375, 376, 378, 387, 395, 417, 418, 448, 467, 523, 541, 592, 619, 632, 634, 635, 636, 637, 641, 647, 659, 660, 682, 736, 739, 759, 766, 776, 779], "bring": [7, 31, 32, 823, 843, 844, 849, 850, 857, 860], "hope": [7, 43, 855, 860, 876, 878], "milesi": 8, "blob": [8, 45, 47, 812], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 8, "data_load": 8, "l65": 8, "mask_valu": 8, "pil_img": 8, "scale": [8, 11, 45, 57, 61, 65, 80, 82, 84, 88, 112, 211, 212, 304, 305, 308, 319, 349, 367, 369, 372, 375, 376, 381, 393, 399, 400, 401, 409, 411, 416, 420, 436, 501, 502, 503, 622, 626, 631, 635, 636, 642, 659, 663, 666, 737, 776, 778, 779, 791, 792, 796, 806, 870, 872], "is_mask": 8, "neww": 8, "newh": 8, "assert": [8, 14, 46, 48, 50, 74, 538, 634, 784, 816, 822, 823, 834, 837, 840, 841, 842, 844, 845, 851, 852], "too": [8, 57, 80, 223, 240, 247, 273, 378, 492, 632, 791, 818, 819, 820, 823, 829, 833, 845, 855], "small": [8, 14, 47, 56, 57, 62, 65, 79, 80, 85, 88, 240, 247, 273, 274, 334, 351, 372, 376, 377, 381, 440, 457, 501, 502, 503, 632, 637, 642, 680, 683, 685, 737, 791, 795, 812, 819, 828, 831, 837, 842, 847, 849, 853, 855, 863, 864, 871], "pixel": [8, 45, 57, 80, 375, 411], "resampl": 8, "nearest": [8, 57, 80, 223, 240, 273, 283, 345, 372, 375, 387, 411, 532, 632, 847], "bicub": [8, 57, 80, 375, 411, 847], "zero": [8, 45, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 71, 76, 77, 79, 80, 82, 84, 85, 89, 90, 93, 94, 98, 112, 114, 115, 116, 118, 129, 130, 132, 134, 139, 141, 142, 143, 145, 146, 149, 152, 153, 221, 222, 223, 225, 226, 227, 228, 229, 232, 234, 235, 237, 238, 239, 240, 242, 245, 246, 247, 254, 255, 256, 257, 263, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 286, 287, 288, 290, 291, 293, 294, 296, 298, 299, 303, 305, 311, 313, 322, 329, 335, 336, 339, 340, 341, 345, 353, 356, 358, 359, 360, 361, 367, 369, 372, 375, 376, 378, 385, 387, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 418, 419, 420, 421, 422, 423, 428, 430, 438, 443, 446, 468, 478, 483, 484, 495, 496, 514, 523, 524, 541, 545, 552, 572, 577, 615, 616, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 663, 666, 667, 669, 673, 674, 676, 677, 678, 679, 680, 681, 683, 685, 691, 693, 694, 701, 702, 703, 704, 706, 707, 714, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 796, 810, 824, 827, 829, 830, 831, 836, 838, 839, 842, 849, 852, 853, 861, 869], "ndim": [8, 57, 62, 67, 80, 85, 90, 102, 106, 376, 378, 444, 445, 451, 462, 463, 464, 477, 485, 487, 497, 614, 634, 637, 644, 684, 687, 747, 827, 837, 844], "newaxi": [8, 627], "transpos": [8, 28, 31, 32, 49, 57, 61, 62, 74, 80, 84, 85, 102, 376, 424, 442, 444, 446, 521, 636, 637, 649, 651, 653, 655, 656, 657, 661, 677, 681, 683, 689, 778, 792, 812, 834, 840, 851, 854, 864], "255": [8, 28, 31, 32, 45, 46, 47, 49, 61, 80, 84, 234, 632, 658, 812, 864], "car": 8, "full_img": 8, "from_numpi": [8, 9, 852], "img_numpi": 8, "torch_unet": 8, "unet_carvana": 8, "ivy_unet": 8, "n_channel": 8, "n_class": 8, "l62": 8, "mask_to_imag": 8, "ndarrai": [8, 53, 57, 58, 76, 80, 98, 127, 128, 140, 375, 376, 378, 387, 420, 445, 489, 528, 529, 599, 629, 634, 801, 805, 818, 824, 829, 830, 833, 836, 840, 841, 842, 845, 847, 849, 851, 854, 857], "uint8": [8, 28, 31, 32, 47, 155, 162, 166, 177, 180, 185, 191, 630, 776, 777, 829, 844], "elif": [8, 11, 828, 833, 840, 841, 842], "bool": [8, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 182, 188, 192, 196, 197, 199, 200, 202, 204, 207, 208, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 394, 395, 396, 398, 399, 400, 401, 411, 412, 413, 414, 417, 419, 421, 423, 430, 434, 437, 438, 442, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 487, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 506, 507, 509, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 576, 577, 581, 590, 591, 592, 593, 595, 597, 599, 600, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 692, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 788, 792, 795, 796, 805, 806, 810, 829, 831, 833, 840, 841, 844, 845, 847, 849, 854, 863, 864], "fromarrai": [8, 28, 31, 32, 47], "interpol": [8, 45, 57, 80, 353, 372, 375, 387, 532, 636, 663, 847, 870], "bilinear": [8, 57, 80, 375, 411, 847], "torch_mask": 8, "squeez": [8, 45, 64, 87, 639, 870], "torch_result": 8, "to_numpi": [8, 14, 31, 32, 43, 46, 47, 50, 58, 81, 634, 812, 834, 842, 852, 867], "img_tf": 8, "math": [8, 48, 98, 290, 632, 829, 840, 841, 842, 854, 868], "lot": [8, 828, 829, 838, 844, 855, 860, 861, 869], "far": [8, 31, 32, 641, 718, 729, 806, 830, 831, 850, 875, 876], "space": [8, 53, 56, 57, 58, 76, 79, 80, 81, 126, 137, 138, 292, 349, 372, 377, 454, 545, 549, 629, 632, 634, 847, 860], "del": [8, 828], "empty_cach": 8, "permute_dim": [8, 64, 87, 639, 834], "func_wrapp": [8, 51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 830, 841, 846], "242": [8, 80], "mani": [8, 31, 32, 35, 64, 74, 87, 147, 328, 369, 629, 639, 708, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 859, 860, 861, 866, 870, 873, 876, 877], "factor": [8, 14, 57, 59, 61, 62, 80, 82, 84, 85, 96, 97, 98, 99, 100, 211, 212, 213, 375, 376, 381, 409, 420, 434, 435, 445, 448, 450, 451, 506, 615, 616, 621, 622, 631, 635, 636, 637, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 667, 776, 778, 779, 791, 792, 796, 833, 860], "inc": 8, "unetdoubleconv": 8, "down1": 8, "unetdown": 8, "128": [8, 12, 31, 32, 45, 54, 56, 61, 77, 79, 84, 103, 168, 244, 375, 397, 407, 545, 555, 630, 632, 634, 636, 637, 651, 653, 658, 682, 812], "down2": 8, "down3": 8, "down4": 8, "1024": [8, 12, 45, 46, 812], "up1": 8, "unetup": 8, "up2": 8, "up3": 8, "up4": 8, "outc": 8, "unetoutconv": 8, "x1": [8, 22, 31, 32, 50, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 92, 102, 103, 107, 153, 163, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 313, 334, 339, 346, 347, 348, 350, 352, 357, 361, 369, 372, 376, 378, 387, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 646, 668, 675, 677, 682, 686, 689, 690, 693, 748, 755, 773, 798, 812, 823, 829, 831, 833, 836, 840, 841, 864, 865], "x2": [8, 22, 31, 32, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 102, 103, 107, 153, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 334, 339, 346, 347, 348, 350, 352, 357, 361, 372, 376, 378, 387, 432, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 668, 675, 677, 682, 686, 689, 690, 693, 748, 773, 798, 823, 829, 831, 833, 836, 840, 841], "x3": [8, 54, 58, 153, 534, 630, 634], "x4": 8, "x5": 8, "in_channel": 8, "out_channel": 8, "mid_channel": 8, "double_conv": 8, "with_bia": [8, 792, 812, 853, 864], "batchnorm2d": [8, 12, 795], "downscal": [8, 58, 81, 540, 541, 562, 634], "maxpool": [8, 12], "doubl": 8, "conv": [8, 636, 792, 847], "maxpool_conv": 8, "upscal": 8, "scale_factor": [8, 57, 80, 375, 411, 847], "align_corn": [8, 57, 80, 375, 411, 847], "conv2dtranspos": [8, 792], "bhwc": 8, "diff_h": 8, "diff_w": 8, "pad_width": [8, 57, 64, 80, 87, 378, 484, 639, 701, 714], "constant_pad": [8, 64, 87, 639], "via": [9, 34, 37, 247, 376, 378, 445, 448, 451, 492, 632, 641, 728, 729, 820, 823, 827, 829, 830, 840, 845, 847, 849, 851, 852, 870], "alongsid": [9, 20, 21, 22, 23, 33, 636, 663, 860], "basic": [9, 16, 18, 22, 25, 29, 31, 32, 35, 38, 378, 491, 812, 813, 818, 831, 844], "singl": [9, 24, 34, 43, 48, 56, 66, 74, 79, 89, 98, 292, 351, 372, 376, 382, 443, 509, 600, 613, 617, 632, 634, 635, 636, 643, 645, 663, 739, 740, 741, 749, 776, 792, 810, 812, 818, 819, 820, 823, 828, 831, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 861], "lstm": [9, 10, 636, 662, 792, 849, 870], "sample_input": 9, "uniform": [9, 23, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 38, 45, 57, 66, 80, 89, 387, 525, 643, 738, 739, 741, 791, 812, 843, 853, 864, 865, 877], "tf_lstm": [9, 10], "torch_lstm": [9, 10], "physicaldevic": 9, "physical_devic": 9, "device_typ": 9, "alloc": [9, 53, 54, 57, 77, 145, 146, 152, 329, 369, 629, 630, 810, 818, 820, 855], "physic": [9, 204, 631], "modifi": [9, 47, 57, 74, 80, 97, 378, 387, 481, 484, 489, 529, 776, 806, 818, 819, 820, 823, 825, 826, 829, 830, 832, 834, 835, 837, 840, 842, 844, 845, 849], "164": 9, "state_upd": [9, 29], "properti": [9, 29, 74, 97, 98, 99, 100, 101, 102, 106, 794, 796, 823, 827, 837, 842, 844, 851, 852, 853, 876], "_transpil": [9, 29], "those": [9, 20, 44, 45, 62, 64, 74, 80, 85, 87, 126, 179, 240, 273, 493, 614, 629, 630, 632, 634, 637, 639, 641, 644, 684, 687, 699, 720, 747, 815, 818, 819, 820, 821, 824, 827, 828, 829, 838, 840, 841, 842, 844, 847, 859, 867], "torch_input": 9, "rand": [9, 10, 29, 31, 32, 47, 805, 806, 812, 863], "tf_input": [9, 864], "constant": [9, 10, 16, 18, 23, 26, 27, 33, 36, 38, 43, 57, 64, 65, 80, 87, 88, 97, 98, 322, 369, 375, 377, 378, 421, 456, 457, 484, 639, 641, 642, 701, 724, 737, 791, 795, 812, 837, 842, 845, 853, 854, 855, 863, 865], "tf_output": 9, "toler": [9, 10, 57, 62, 80, 85, 334, 351, 372, 376, 430, 445, 451, 637, 680, 683, 771, 773, 823, 842, 870], "benchmark": [9, 10, 872], "n_run": [9, 10], "tf_time": 9, "round": [9, 56, 57, 79, 80, 97, 99, 100, 101, 223, 236, 240, 246, 247, 273, 287, 293, 294, 345, 372, 632, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 867], "torch_tim": 9, "cpu_speedup": 9, "gpu_speedup": 9, "ntranspil": 9, "5017": 9, "1101": 9, "7519": 9, "901": 9, "607x": 9, "944x": 9, "32": [10, 14, 29, 31, 32, 43, 45, 46, 47, 56, 57, 66, 79, 80, 84, 85, 89, 102, 103, 112, 164, 222, 234, 235, 244, 258, 264, 280, 283, 284, 338, 372, 375, 376, 378, 387, 395, 396, 397, 407, 417, 418, 428, 432, 467, 523, 545, 561, 626, 630, 632, 634, 636, 637, 643, 644, 647, 651, 653, 654, 658, 660, 677, 682, 693, 739, 740, 741, 748, 759, 776, 779, 812, 828, 829, 839, 852, 875], "original_output": 10, "transpiled_output": 10, "original_torch_tim": 10, "autograph": 10, "do_not_convert": 10, "compiled_tf_lstm": 10, "transpiled_tf_tim": 10, "original_tf_lstm": 10, "time_major": [10, 80, 375, 421, 636, 662], "return_sequ": [10, 792], "original_tf_tim": 10, "slower": [10, 24, 841], "480074623755541x": 10, "362692848996253x": 10, "openmim": 11, "mim": 11, "0rc8": 11, "get_model": 11, "list_model": 11, "mmengin": 11, "configdict": 11, "saniti": [11, 13, 14, 31, 841], "checkpoint": [11, 12, 48, 855], "against": [11, 54, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 153, 272, 291, 334, 337, 340, 351, 372, 387, 528, 529, 530, 531, 532, 569, 630, 632, 634, 637, 644, 677, 678, 680, 683, 744, 844, 849, 855, 859, 870], "zoo": 11, "checkpoint_nam": [11, 13, 31], "tiny_32xb128": 11, "noema_in1k": 11, "openmmlab": 11, "get_scal": 11, "cfg": [11, 835], "_config": 11, "train_pipelin": 11, "tensor_imag": 11, "transpiled_graph": [11, 13, 31], "issu": [11, 13, 377, 454, 791, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 828, 829, 830, 831, 833, 834, 841, 844, 845, 847, 849, 853, 855, 861, 863], "107960": [11, 13], "export": [11, 13, 46, 828, 869, 876], "lc_all": [11, 13], "en_u": [11, 13], "utf": [11, 13], "ld_library_path": [11, 13], "lib64": [11, 13], "nvidia": [11, 13, 26, 27, 28, 29, 45, 47, 50, 874, 875], "library_path": [11, 13], "stub": [11, 13, 826], "ldconfig": [11, 13], "_f": [11, 13, 31], "comp_model": [11, 13, 31], "equival": [11, 13, 31, 62, 85, 97, 98, 126, 234, 247, 268, 269, 282, 283, 378, 468, 492, 498, 629, 632, 637, 680, 683, 686, 694, 801, 840, 841, 847, 852, 854, 856, 864], "np_imag": [11, 28, 31, 32], "jax_imag": 11, "hk": [11, 13, 31, 45, 49, 812, 854, 864], "rng_kei": [11, 13, 31, 812, 864], "prngkei": [11, 13, 24, 25, 31, 32, 45, 812, 854, 864], "jax_mlp_forward": 11, "init": [11, 13, 31, 45, 47, 57, 80, 376, 434, 445, 451, 812, 823, 854, 864], "rng": [11, 13, 31, 45, 812, 854, 864], "06": [11, 14, 26, 47, 54, 66, 79, 82, 101, 110, 165, 222, 238, 375, 397, 407, 621, 626, 630, 635, 741, 771, 773, 844, 852], "block_until_readi": 11, "08": [11, 57, 70, 80, 89, 226, 334, 351, 372, 375, 377, 397, 407, 457, 632, 740, 741, 766, 771, 776, 835], "3x": 11, "train2017": [11, 13, 28, 31, 32, 812, 864], "000000283921": [11, 13, 31], "out_torch": [11, 13, 31], "et": [11, 636, 637, 663, 687], "out_jax": [11, 13, 31], "66m": 11, "53m": 11, "That": [11, 13, 16, 18, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 45, 282, 377, 456, 632, 805, 819, 820, 824, 844, 851, 852, 853, 871], "pretti": [11, 13, 31, 32, 45, 816, 834, 852, 876], "solid": [11, 13, 31], "2023": [12, 13, 26, 27, 28, 29, 45], "52": [12, 14, 43, 56, 79, 81, 82, 89, 228, 238, 240, 387, 523, 545, 546, 561, 615, 632, 634, 635, 636, 637, 647, 660, 682, 741, 759, 805], "110": [12, 45], "10472": 12, "10k": 12, "tx": 12, "23k": 12, "634575": 12, "620k": 12, "jpeg": [12, 46, 47], "619": 12, "70k": 12, "113": 12, "resnet34_weight": 12, "torch_resnet_34": 12, "conv1": 12, "kernel_s": [12, 29, 31, 32, 47, 57, 80, 375, 394, 395, 396, 415, 422, 792, 798], "stride": [12, 57, 61, 80, 81, 84, 102, 375, 378, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 460, 634, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 840, 845, 870], "bia": [12, 57, 61, 80, 84, 88, 381, 387, 506, 522, 572, 634, 636, 642, 649, 650, 651, 652, 653, 654, 655, 656, 657, 660, 661, 662, 663, 737, 792, 837, 844, 849, 853], "bn1": 12, "ep": [12, 57, 62, 65, 80, 85, 88, 165, 300, 367, 376, 377, 381, 430, 457, 501, 502, 503, 630, 637, 642, 680, 683, 737, 788, 795], "05": [12, 14, 47, 53, 56, 57, 59, 65, 79, 80, 82, 88, 138, 265, 318, 334, 343, 344, 351, 369, 372, 381, 501, 502, 503, 560, 582, 605, 615, 616, 621, 629, 632, 634, 635, 637, 642, 678, 737, 771, 776, 791, 795, 842, 844], "momentum": [12, 45, 57, 80, 381, 501, 503, 795, 860], "affin": [12, 795], "track_running_stat": [12, 795], "dilat": [12, 49, 57, 61, 80, 84, 375, 378, 412, 413, 414, 417, 418, 422, 484, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "ceil_mod": [12, 57, 80, 375, 394, 395, 396, 412, 413, 414, 417, 792], "layer1": 12, "basicblock": 12, "conv2": 12, "bn2": 12, "layer2": 12, "layer3": 12, "layer4": 12, "output_s": [12, 57, 80, 375, 389, 390, 391, 392, 636, 665, 792, 812, 864], "fc": [12, 18, 45, 812, 853, 864], "in_featur": [12, 61, 84, 636, 660, 844], "out_featur": [12, 61, 84, 636, 660, 844], "resnet_34": 12, "ivy_resnet_34": 12, "34": [12, 14, 43, 45, 79, 80, 81, 89, 168, 238, 265, 286, 375, 387, 418, 529, 545, 546, 630, 632, 634, 636, 637, 643, 660, 679, 740, 741, 830], "333f7ec4": 12, "pth": 12, "83": [12, 14, 43, 62, 84, 89, 287, 375, 387, 397, 407, 418, 523, 632, 636, 637, 660, 675, 740], "3m": 12, "4mb": 12, "preserv": [12, 13, 26, 27, 28, 29, 57, 58, 59, 74, 80, 81, 82, 103, 375, 376, 378, 387, 411, 445, 462, 463, 464, 475, 476, 495, 529, 562, 624, 634, 635, 639, 703, 776, 843, 844, 854, 855, 864], "multipl": [12, 13, 22, 26, 27, 28, 29, 31, 56, 57, 62, 65, 70, 71, 74, 79, 80, 81, 82, 85, 87, 88, 93, 94, 134, 234, 258, 265, 271, 272, 273, 275, 335, 336, 372, 375, 376, 378, 381, 385, 397, 404, 407, 409, 443, 470, 479, 496, 499, 506, 515, 534, 541, 572, 615, 616, 619, 621, 622, 623, 624, 629, 632, 634, 635, 636, 637, 639, 642, 644, 647, 648, 651, 652, 653, 654, 667, 676, 677, 678, 691, 699, 702, 707, 708, 737, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 810, 812, 818, 820, 824, 825, 827, 831, 833, 835, 837, 840, 841, 842, 844, 847, 849, 855, 861, 863, 868, 869, 870, 877], "rel": [12, 13, 26, 27, 28, 29, 57, 59, 62, 64, 69, 76, 80, 82, 85, 87, 92, 102, 136, 334, 351, 372, 377, 387, 456, 457, 522, 616, 619, 621, 622, 623, 635, 637, 639, 646, 671, 680, 683, 691, 703, 707, 753, 756, 771, 773, 820, 828, 842, 847, 870, 872], "home": [12, 13, 26, 27, 28, 29, 828], "workspac": [12, 13, 23, 26, 27, 28, 29, 819, 834], "95": [12, 14, 43, 57, 59, 62, 66, 73, 82, 84, 89, 110, 360, 372, 418, 615, 619, 623, 626, 635, 637, 643, 675, 740, 741], "builtin": [12, 819, 851, 853], "track": [12, 22, 31, 32, 44, 45, 810, 819, 820, 823, 839, 840, 863, 870], "properli": [12, 819, 822, 833, 835, 841, 844], "_trace_graph": 12, "shown": [12, 29, 31, 72, 74, 95, 257, 280, 338, 372, 632, 818, 819, 820, 823, 826, 828, 829, 831, 833, 835, 836, 841, 842, 844, 845, 846, 849, 851, 855], "8507": 12, "1351": 12, "0069": 12, "85072625": 12, "13506091": 12, "00688289": 12, "resnet50_weight": 12, "torch_resnet_50": 12, "imagenet1k_v2": 12, "11ad3fa6": 12, "8m": 12, "8mb": 12, "bottleneck": [12, 859], "conv3": 12, "bn3": 12, "2048": [12, 593, 634], "resnet_50": 12, "ivy_resnet_50": 12, "3429": 12, "0408": 12, "0121": 12, "34288204": 12, "04077014": 12, "01212029": 12, "yet": [13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 47, 368, 370, 371, 379, 380, 384, 818, 819, 834, 855, 856, 863, 864, 865], "broken": [13, 26, 27, 28, 29, 866, 870], "permiss": [13, 26, 27, 28, 29, 819, 828], "conflict": [13, 26, 27, 28, 29, 37, 819, 820, 828, 841, 852], "behaviour": [13, 26, 27, 28, 29, 112, 115, 274, 626, 632, 817, 820, 822, 823, 824, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 844, 845, 851], "system": [13, 26, 27, 28, 29, 47, 376, 446, 637, 686, 776, 812, 819, 820, 821, 825, 828, 829, 855, 864, 868, 870, 873, 875, 877], "recommend": [13, 26, 27, 28, 29, 268, 269, 282, 377, 454, 632, 647, 761, 764, 814, 819, 825, 826, 835, 838, 839, 863], "virtual": [13, 26, 27, 28, 29, 820, 841, 860, 873, 874], "pypa": [13, 26, 27, 28, 29], "venv": [13, 26, 27, 28, 29], "autofeatureextractor": [13, 31], "extractor": [13, 16, 18, 31, 47, 812], "hug": [13, 31, 863], "face": [13, 31, 813, 819, 823, 834, 835, 839, 847, 849, 863, 870, 876], "arch_nam": [13, 31], "microsoft": [13, 31, 860, 863, 864, 870, 875, 877], "feature_extractor": [13, 31], "980130": 13, "9342": 13, "980177": 13, "609": 13, "980207": 13, "1518": 13, "351203": 13, "inputs_jax": [13, 31], "last_hidden_st": [13, 31], "jax_forward": [13, 31], "jit_appli": 13, "63": [13, 14, 43, 47, 56, 73, 79, 84, 85, 118, 279, 286, 287, 375, 387, 397, 407, 418, 523, 632, 637, 641, 647, 667, 682, 719, 730, 759], "134": [13, 61, 637, 660, 679], "2x": [13, 31], "ipytest": 14, "load_breast_canc": 14, "autoconfig": 14, "sole": [14, 43, 836, 845, 869, 870, 871], "test_jax_gpu": 14, "xla_bridg": [14, 45], "get_backend": [14, 837], "test_torch_gpu": 14, "test_xgboost_gpu": 14, "capsi": 14, "load_diabet": 14, "target": [14, 16, 18, 24, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 47, 57, 80, 195, 377, 452, 453, 454, 455, 456, 457, 458, 459, 631, 771, 792, 794, 800, 812, 816, 819, 822, 825, 834, 835, 842, 843, 848, 852, 853, 854, 864, 865, 866, 868, 869, 870, 873, 875, 876], "xgb_model": 14, "xgbregressor": 14, "tree_method": 14, "caus": [14, 377, 454, 819, 820, 823, 825, 827, 828, 829, 831, 840, 842, 844, 855], "consol": [14, 575, 634, 812, 820, 835, 844, 851, 856], "gpu_hist": 14, "captur": [14, 839, 844, 854, 871], "readouterr": 14, "err": 14, "tabular": 14, "pulsar": 14, "standard": [14, 56, 62, 65, 66, 70, 79, 88, 89, 93, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 376, 378, 387, 419, 449, 492, 496, 522, 614, 629, 630, 632, 634, 637, 639, 642, 643, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 737, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 778, 791, 795, 805, 806, 812, 815, 822, 823, 824, 827, 829, 832, 836, 840, 843, 844, 845, 855, 858, 864, 866, 868, 869, 872, 873, 875], "extra": [14, 32, 74, 103, 122, 614, 628, 634, 824, 829, 831, 838, 840, 841, 842, 847, 849, 863, 864, 867, 872], "dimens": [14, 53, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 100, 102, 103, 106, 113, 117, 141, 145, 146, 316, 327, 329, 330, 331, 332, 335, 336, 340, 341, 349, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 418, 419, 421, 422, 424, 426, 429, 438, 447, 452, 456, 462, 463, 464, 468, 474, 485, 486, 487, 488, 490, 492, 496, 501, 502, 503, 506, 510, 512, 515, 525, 527, 528, 529, 530, 531, 532, 545, 546, 547, 549, 556, 590, 594, 614, 626, 629, 634, 636, 637, 638, 639, 640, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 667, 668, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 694, 697, 698, 700, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 716, 717, 743, 744, 745, 747, 749, 750, 751, 752, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 795, 831, 833, 839, 841, 842, 844, 847, 849, 852], "load_data": 14, "standardscal": 14, "df": [14, 47], "delimit": [14, 852], "sc": 14, "fit_transform": 14, "117564": 14, "navig": [14, 816, 819, 820, 822, 834], "rerun": [14, 45], "436": 14, "48": [14, 43, 47, 56, 57, 79, 80, 81, 82, 89, 112, 222, 245, 287, 375, 395, 396, 397, 407, 413, 414, 417, 560, 615, 619, 626, 632, 634, 635, 637, 641, 647, 682, 719, 740, 759], "t4": 14, "tier": [14, 821], "reduc": [14, 57, 58, 62, 67, 70, 71, 74, 80, 81, 85, 90, 93, 94, 213, 335, 336, 356, 372, 373, 387, 527, 528, 529, 530, 531, 532, 546, 631, 634, 637, 644, 647, 648, 684, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 805, 806, 828, 833, 841, 847, 849, 851, 863, 868, 872, 873, 874], "although": [14, 637, 685, 814, 824, 826, 827, 841, 847, 868, 870], "experi": [14, 20, 47, 812, 819, 833, 844, 850, 852, 855], "substanti": [14, 815, 820, 824, 829, 844, 860, 870], "stuff": 14, "201": [14, 79, 80, 225, 397, 632], "20x": 14, "ivyclassifi": 14, "106597": 14, "10967": 14, "96": [14, 43, 57, 59, 79, 80, 81, 89, 237, 258, 290, 360, 372, 375, 397, 545, 546, 619, 632, 634, 635, 637, 647, 682, 741, 759], "73": [14, 43, 56, 85, 287, 387, 523, 637, 643, 667, 740, 844], "852": [14, 636, 660], "449": 14, "47": [14, 43, 47, 56, 57, 62, 66, 79, 80, 81, 82, 84, 89, 229, 287, 375, 387, 395, 413, 414, 523, 545, 546, 619, 632, 634, 635, 636, 637, 643, 660, 675, 740, 741], "82": [14, 43, 45, 50, 51, 56, 82, 89, 113, 226, 387, 523, 615, 635, 740, 741, 816, 834], "68": [14, 43, 47, 50, 56, 89, 113, 135, 228, 375, 397, 407, 626, 629, 632, 637, 642, 693, 737, 740, 741], "nevertheless": 14, "fall": [14, 45, 796, 818, 829, 848], "short": [14, 43, 57, 80, 423, 636, 661, 662, 818, 820, 829, 849, 853], "blaze": 14, "36": [14, 43, 47, 56, 57, 61, 70, 80, 81, 85, 228, 283, 284, 349, 372, 375, 376, 387, 397, 407, 433, 523, 545, 546, 593, 632, 634, 637, 641, 647, 660, 679, 682, 692, 729, 759], "35": [14, 43, 51, 61, 62, 73, 79, 80, 84, 85, 89, 113, 228, 287, 375, 397, 407, 632, 636, 637, 644, 647, 660, 668, 675, 740, 748, 759], "37": [14, 26, 27, 28, 29, 43, 51, 56, 57, 73, 79, 80, 84, 102, 113, 226, 234, 283, 286, 290, 383, 418, 513, 632, 636, 637, 641, 643, 660, 679, 726, 740, 828], "surpass": 14, "remark": [14, 855], "artifici": 14, "simpli": [14, 22, 31, 32, 34, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 632, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 812, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 832, 834, 836, 837, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 871, 876], "stack": [14, 24, 26, 27, 28, 29, 34, 43, 47, 57, 62, 64, 74, 80, 85, 87, 102, 145, 146, 329, 369, 376, 378, 429, 468, 469, 471, 480, 500, 579, 588, 611, 629, 634, 637, 639, 641, 669, 671, 672, 673, 674, 676, 677, 679, 680, 681, 683, 684, 685, 687, 688, 691, 718, 728, 729, 792, 812, 817, 823, 840, 849, 866, 868, 875, 876], "x_doubl": 14, "vstack": [14, 57, 80, 378, 480], "y_doubl": 14, "235128": 14, "41": [14, 26, 27, 28, 29, 43, 45, 50, 56, 57, 62, 79, 80, 81, 84, 85, 113, 227, 235, 242, 273, 287, 375, 376, 383, 387, 395, 413, 418, 440, 513, 523, 540, 626, 632, 634, 637, 647, 667, 675, 765], "315": [14, 279, 632], "879": 14, "380": 14, "seem": [14, 818, 819, 847, 853, 854, 855, 870], "examin": 14, "600": [14, 47, 81, 84, 375, 399, 400, 553, 828], "conduct": [14, 874], "num_boosting_round": 14, "300": [14, 79, 81, 84, 283, 375, 399, 400, 553, 577, 632, 634, 637, 676, 844], "500": [14, 57, 80, 81, 84, 375, 376, 399, 400, 451, 553, 634], "ivy_elapsed_tim": 14, "xgb_elapsed_tim": 14, "ivy_tim": 14, "partial": [14, 57, 74, 80, 166, 167, 199, 200, 349, 372, 375, 376, 378, 387, 423, 438, 445, 485, 486, 487, 488, 529, 550, 551, 620, 630, 631, 634, 635, 777, 779, 793, 794, 820, 826, 847], "xgb_time": 14, "fivethirtyeight": 14, "legend": [14, 47, 818], "loc": [14, 867], "best": [14, 45, 572, 634, 806, 810, 812, 813, 816, 817, 818, 819, 820, 822, 828, 829, 833, 834, 843, 844, 845, 856, 873, 874], "xlabel": 14, "ylabel": 14, "obviou": [14, 852, 870], "trend": 14, "gap": 14, "train_siz": [14, 45], "widen": 14, "impress": 14, "outcom": [14, 57, 80, 337, 349, 372, 806], "tend": 14, "95933": 14, "9874": 14, "105807": 14, "wrap": [14, 22, 24, 31, 32, 34, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 588, 591, 592, 593, 594, 595, 597, 599, 600, 611, 613, 615, 616, 619, 621, 622, 623, 624, 634, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 841, 844, 849, 851, 854, 855, 857, 863, 864, 866, 870, 871, 876, 877], "balanc": 14, "breast": 14, "cancer": 14, "return_x_i": 14, "171": [14, 62, 637, 675, 776], "perfectli": [14, 778, 861], "align": [14, 57, 74, 80, 375, 376, 411, 427, 636, 665, 806, 815, 819, 828, 841, 843, 849, 851, 857, 876], "timm": [15, 16, 20, 31, 32, 812, 864], "focu": [16, 29, 818, 839, 868, 869, 872, 877], "usual": [16, 18, 48, 240, 273, 632, 805, 819, 823, 829, 841, 844, 847], "mlp": 16, "mixer": 16, "onli": [16, 18, 31, 32, 37, 43, 45, 47, 49, 52, 53, 56, 57, 62, 64, 66, 74, 76, 79, 80, 85, 87, 89, 97, 100, 102, 118, 138, 178, 179, 208, 268, 269, 274, 280, 312, 342, 349, 369, 372, 375, 376, 378, 382, 387, 398, 411, 421, 430, 435, 449, 451, 462, 463, 464, 474, 508, 509, 525, 539, 626, 629, 630, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 663, 677, 684, 687, 688, 703, 706, 718, 719, 725, 726, 728, 729, 730, 735, 736, 739, 740, 741, 744, 745, 755, 761, 764, 774, 776, 777, 779, 792, 796, 805, 810, 812, 813, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 859, 863, 864, 869, 870, 871, 876, 877], "retriev": [16, 18, 22, 535, 557, 582, 634, 820, 841], "mlp_encod": [16, 31, 32, 812, 864], "create_model": [16, 31, 32, 812, 864], "mixer_b16_224": [16, 31, 32, 812, 864], "nois": [16, 18, 31, 32, 812, 863, 864], "randn": [16, 18, 31, 32, 378, 496, 812, 864], "tf_mlp_encod": [16, 31, 32], "output_torch": [16, 18], "output_tf": [16, 18], "output_dens": [16, 31, 32, 812], "dens": [16, 29, 31, 32, 316, 369, 792, 812], "unit": [16, 31, 32, 57, 73, 80, 97, 98, 110, 112, 113, 114, 115, 116, 117, 118, 295, 296, 299, 303, 305, 306, 309, 310, 311, 367, 504, 505, 626, 812, 819, 823, 829, 841, 842, 844, 855, 871, 874], "mention": [16, 18, 31, 32, 37, 818, 819, 820, 824, 831, 836, 837, 840, 841, 844, 847, 860, 865, 870], "fulli": [16, 18, 20, 21, 24, 29, 31, 32, 45, 57, 80, 387, 529, 792, 812, 824, 829, 836, 839, 847, 849, 850, 851, 852, 853, 854, 855, 861, 865, 868, 869, 870, 876, 877], "ground": [16, 18, 377, 453, 771, 773, 784, 816, 834, 841, 844, 859], "ret": [16, 18, 31, 32, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 431, 436, 438, 441, 443, 446, 449, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 789, 794, 796, 801, 806, 808, 812, 829, 830, 832, 833, 839, 840, 841, 842, 845, 849, 854, 864], "eagertensor": [16, 22, 43, 801, 842], "deepmind": [17, 861], "perceiverio": [17, 861], "backbon": [17, 45, 812, 849, 852], "TO": [17, 19, 30], "replac": [17, 19, 30, 46, 56, 57, 58, 64, 66, 74, 79, 80, 81, 87, 89, 132, 274, 310, 313, 367, 369, 378, 489, 492, 496, 576, 577, 581, 629, 632, 634, 639, 643, 699, 738, 776, 820, 826, 827, 829, 830, 838, 841, 844, 851, 854, 855, 860, 864, 877], "efficientnet": 18, "eff_encod": [18, 812], "efficientnet_v2": [18, 812], "efficientnetv2b0": [18, 812], "storag": [18, 45, 46, 852, 860], "googleapi": [18, 45, 46], "efficientnetv2": 18, "b0_notop": 18, "h5": [18, 74], "24274472": 18, "0u": 18, "torch_eff_encod": [18, 812], "modes_to_trac": 18, "1280": [18, 545, 634, 812], "welcom": [20, 46, 812, 813, 819, 820, 821, 843], "varieti": [20, 823, 828, 829, 830, 844, 846, 866, 868, 872, 873, 876, 877], "organ": [20, 824, 827, 837, 841, 843, 845, 857, 860], "main": [20, 32, 53, 57, 62, 80, 85, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 473, 629, 637, 670, 671, 691, 812, 815, 818, 819, 820, 821, 823, 826, 827, 834, 838, 840, 868, 870, 871, 876], "exactli": [20, 24, 34, 43, 44, 48, 290, 632, 818, 827, 828, 829, 830, 831, 833, 844, 847, 859, 861], "rush": [20, 861], "jump": [20, 842], "straight": [20, 812, 828, 841, 844, 851], "quickstart": [20, 812], "introduct": [20, 22, 29, 31, 32, 870], "point": [20, 29, 54, 56, 57, 62, 66, 68, 70, 77, 79, 80, 85, 89, 93, 126, 127, 128, 130, 132, 135, 142, 143, 148, 152, 165, 169, 173, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 256, 261, 262, 263, 264, 265, 273, 275, 276, 278, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 312, 313, 315, 335, 336, 353, 354, 357, 359, 369, 372, 375, 376, 377, 382, 387, 390, 399, 400, 401, 419, 429, 449, 453, 508, 509, 510, 511, 512, 522, 523, 524, 532, 627, 629, 630, 632, 637, 643, 644, 645, 646, 647, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 740, 741, 747, 749, 750, 751, 752, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 801, 802, 810, 816, 818, 819, 820, 823, 824, 826, 828, 829, 831, 832, 834, 836, 840, 841, 844, 845, 847, 849, 851, 852, 861, 863, 876], "showcas": [20, 812], "real": [20, 28, 56, 57, 70, 79, 80, 93, 102, 112, 115, 118, 142, 143, 220, 221, 222, 223, 225, 226, 227, 228, 229, 238, 240, 241, 243, 245, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 273, 275, 276, 278, 282, 283, 284, 286, 287, 288, 289, 290, 291, 293, 294, 335, 336, 342, 343, 344, 354, 372, 375, 376, 398, 419, 420, 429, 430, 626, 629, 632, 637, 644, 647, 672, 673, 674, 678, 685, 687, 688, 691, 694, 747, 760, 762, 763, 764, 765, 827, 872], "world": [20, 28, 820, 872], "beginn": [20, 813, 870], "got": [20, 43, 833], "cover": [20, 31, 57, 80, 375, 412, 413, 414, 818, 823, 824, 826, 829, 831, 832, 837, 838, 844, 847, 848], "familiar": [20, 21, 22, 818, 819], "concept": [20, 21, 22], "turn": [20, 21, 24, 34, 61, 84, 97, 98, 399, 400, 401, 636, 659, 792, 819, 826, 827, 830, 831, 841, 844, 861], "unus": [20, 21, 24, 831, 840], "part": [20, 21, 24, 53, 56, 57, 79, 80, 85, 102, 112, 115, 118, 145, 146, 147, 253, 257, 280, 328, 329, 355, 369, 372, 375, 376, 378, 387, 419, 430, 484, 532, 626, 629, 632, 637, 673, 674, 773, 812, 818, 819, 820, 821, 823, 826, 829, 835, 837, 840, 841, 844, 845, 847, 849, 850, 854, 855, 863, 864, 865, 868, 870, 875, 876, 877], "lazi": [20, 21, 24, 27, 34, 37, 38, 49], "decor": [20, 21, 26, 28, 29, 37, 49, 539, 634, 776, 778, 784, 816, 823, 824, 827, 829, 830, 834, 837, 840, 841, 842, 847], "kornia": [20, 21, 28, 31, 32, 45, 49, 812, 864], "roundup": 22, "indep": [22, 31], "proof": [22, 31], "delv": [22, 32, 812], "theori": [22, 814, 826], "esenti": [22, 31], "abstract": [22, 31, 32, 791, 796, 812, 827, 829, 840, 841, 844, 847, 853, 859, 868, 870, 872, 873, 877], "quirk": [22, 31], "perk": [22, 31, 812, 824, 827], "under": [22, 31, 32, 57, 377, 456, 457, 805, 812, 818, 819, 822, 823, 830, 831, 832, 835, 841, 842, 844, 847, 848, 849, 852, 854, 855, 863, 864, 870, 873, 877], "hood": [22, 31, 32, 812, 822, 830, 831, 835, 841, 844, 847, 848, 849, 852, 854, 863, 864, 877], "appropi": 22, "string": [22, 31, 32, 47, 57, 58, 61, 74, 80, 84, 150, 151, 163, 170, 192, 193, 194, 195, 196, 198, 207, 214, 215, 219, 375, 376, 378, 418, 422, 430, 484, 495, 524, 543, 630, 631, 634, 636, 637, 649, 650, 651, 652, 654, 656, 658, 674, 771, 773, 777, 805, 806, 825, 826, 828, 829, 830, 833, 841, 849, 852], "simplest": [22, 819, 831, 844, 847], "interact": [22, 31, 46, 49, 818, 869, 870, 875], "submodul": [22, 31, 45, 47, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 818, 819, 820, 823, 826, 828, 830, 834, 837, 838, 844, 848, 849, 853, 857], "likewis": [22, 27, 31, 38, 812, 820, 827, 829, 832, 836, 837, 841, 847, 852, 863, 864, 876], "nativearrai": [22, 31, 32, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 131, 136, 137, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 175, 177, 179, 180, 186, 196, 197, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 317, 318, 322, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 523, 524, 525, 526, 534, 537, 538, 540, 541, 545, 546, 547, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 565, 568, 569, 571, 576, 577, 578, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 602, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 797, 824, 827, 831, 833, 836, 837, 838, 840, 841, 845, 846, 849, 851, 857], "alia": [22, 31, 335, 336, 372, 627, 818, 841, 862, 865], "lastli": [22, 31, 824], "subclass": [22, 31, 32, 838, 841, 847, 864], "dict": [22, 31, 32, 45, 49, 52, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 141, 143, 149, 153, 155, 166, 167, 168, 172, 173, 180, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 325, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 378, 398, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 484, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 624, 628, 630, 631, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 773, 774, 789, 792, 794, 801, 806, 824, 827, 852, 853, 857, 863, 864, 865], "recurs": [22, 31, 32, 45, 47, 52, 74, 75, 166, 167, 199, 200, 376, 448, 550, 551, 557, 630, 631, 634, 641, 718, 719, 722, 728, 729, 730, 771, 819, 823, 826, 827, 834, 837, 840, 853, 855], "fashion": [22, 778, 844, 864], "native_arrai": [22, 31, 32, 53, 54, 56, 76, 78, 79, 80, 81, 85, 92, 110, 113, 136, 139, 141, 143, 149, 152, 153, 154, 155, 163, 168, 175, 197, 206, 214, 230, 234, 239, 240, 241, 243, 247, 251, 259, 260, 268, 273, 276, 279, 282, 287, 335, 336, 363, 372, 377, 378, 458, 484, 490, 494, 534, 537, 564, 565, 568, 599, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 643, 644, 647, 648, 650, 651, 658, 666, 669, 673, 674, 679, 680, 684, 688, 689, 691, 694, 696, 698, 699, 706, 738, 747, 756, 762, 765, 767, 773, 783, 801, 816, 834, 842, 844], "data_class": [22, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 395, 396, 545, 549, 687, 712], "low": [22, 31, 34, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 827, 833, 840, 841, 847, 849, 866, 868, 870, 871, 872, 874, 876], "c": [22, 31, 37, 46, 47, 53, 57, 58, 59, 61, 64, 70, 76, 77, 79, 80, 81, 82, 84, 85, 87, 91, 93, 97, 98, 116, 127, 128, 138, 141, 165, 168, 223, 234, 240, 241, 261, 262, 264, 273, 276, 284, 291, 375, 376, 378, 381, 387, 389, 390, 391, 392, 403, 408, 424, 426, 428, 429, 431, 443, 462, 463, 464, 474, 492, 496, 501, 502, 503, 506, 524, 537, 545, 546, 547, 548, 556, 560, 561, 591, 600, 615, 616, 619, 621, 622, 623, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 644, 645, 647, 650, 651, 652, 653, 654, 655, 657, 672, 674, 676, 706, 710, 718, 721, 725, 726, 727, 729, 730, 735, 736, 747, 752, 758, 759, 764, 766, 795, 805, 806, 813, 819, 822, 825, 826, 827, 831, 837, 839, 848, 849, 850, 852, 855, 857, 858, 860, 861, 864, 866, 870, 874, 875, 877], "fundament": [22, 31, 828, 841, 847, 849, 859, 870], "signatur": [22, 31, 378, 387, 484, 522, 829, 830, 831, 832, 836, 840, 844, 845, 847, 860, 867, 876], "matmul": [22, 31, 32, 48, 62, 85, 376, 446, 614, 634, 637, 687, 825, 844, 845, 849], "to_n": [22, 31, 32, 43, 52, 75, 849], "jaxlib": [22, 28, 46, 801, 819, 824, 829, 830, 836, 845, 849, 851], "xla_extens": [22, 28, 801, 824, 829, 830, 836, 845, 849, 851], "arrayimpl": [22, 28, 801], "disabl": [22, 31, 57, 80, 378, 492, 794, 810, 826], "array_mod": [22, 31, 578, 602, 634, 846], "set_array_mod": [22, 31, 602, 634, 846], "ultim": [22, 31, 863], "sigmoid": [22, 31, 32, 43, 51, 57, 73, 80, 301, 367, 382, 508, 626, 788, 849, 852, 853], "z": [22, 31, 32, 44, 45, 53, 56, 57, 58, 62, 63, 66, 68, 70, 76, 79, 80, 81, 85, 86, 87, 89, 93, 102, 103, 137, 138, 140, 141, 201, 223, 224, 228, 230, 233, 235, 240, 251, 252, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 280, 289, 300, 301, 335, 336, 338, 367, 372, 377, 387, 453, 455, 456, 457, 458, 459, 465, 469, 480, 521, 522, 525, 532, 537, 549, 552, 553, 560, 561, 577, 590, 592, 593, 601, 614, 629, 631, 632, 634, 637, 638, 639, 641, 643, 644, 645, 647, 668, 677, 682, 683, 687, 694, 696, 697, 698, 699, 721, 725, 727, 735, 739, 740, 741, 744, 749, 759, 760, 762, 763, 764, 791, 812, 825, 827, 830, 831, 849, 851, 863], "divid": [22, 27, 31, 32, 48, 56, 57, 58, 64, 74, 79, 80, 87, 102, 103, 247, 381, 454, 501, 502, 503, 506, 592, 632, 634, 639, 708, 824, 827, 831, 835, 844], "exp": [22, 31, 32, 56, 57, 79, 80, 116, 118, 245, 265, 278, 301, 367, 375, 377, 403, 408, 457, 626, 632, 637, 685, 839, 841], "entir": [22, 31, 32, 34, 47, 57, 70, 71, 74, 80, 81, 93, 94, 213, 243, 245, 285, 286, 335, 336, 372, 375, 378, 387, 399, 400, 401, 484, 525, 558, 631, 632, 647, 648, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 818, 819, 820, 823, 824, 827, 829, 831, 833, 840, 841, 842, 844, 847, 849, 852, 853, 854, 855, 860, 861, 864, 870, 876, 877], "congratul": [22, 28], "independ": [22, 32, 57, 66, 80, 89, 223, 240, 273, 283, 381, 382, 506, 508, 632, 637, 643, 668, 686, 738, 812, 823, 829, 831, 838, 849, 854, 864, 868], "div": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 865], "sub": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 57, 62, 64, 74, 75, 79, 80, 81, 85, 87, 103, 272, 376, 378, 387, 430, 470, 479, 499, 528, 529, 557, 634, 637, 639, 640, 671, 691, 708, 715, 716, 717, 818, 820, 822, 827, 833, 841, 842, 844, 851, 852, 853, 865, 866], "with_numpi": 23, "reproduc": [23, 48, 61, 84, 636, 659, 776, 777, 778, 779, 784, 816, 823, 834], "x_": [23, 33, 98, 284, 632, 865], "66391283": 23, "12516928": 23, "38367081": 23, "03102401": 23, "76419425": 23, "52797794": 23, "90346956": 23, "61316347": 23, "27585283": 23, "66309303": 23, "ivy_repo": 23, "sever": [23, 24, 33, 34, 36, 37, 38, 57, 80, 97, 375, 376, 389, 390, 391, 392, 444, 776, 819, 820, 845, 855, 868, 874], "pro": [23, 24, 25, 33, 34, 35, 36, 37, 38], "pick": [24, 34, 791], "trigger": [24, 34, 794, 818, 835], "unif": [24, 26, 27, 34, 36, 813, 851, 860, 866, 876], "55563945": 24, "65538704": 24, "14150524": 24, "46951997": 24, "30220294": 24, "14739668": 24, "57017946": 24, "91962677": 24, "51029003": 24, "59644395": 24, "constitu": [24, 34, 74, 854], "5556394": 24, "655387": 24, "1415051": 24, "4695197": 24, "3022028": 24, "1473966": 24, "5701794": 24, "91962665": 24, "51028997": 24, "5964439": 24, "985": 24, "000": [24, 79, 274, 776, 816, 828, 834], "On": [24, 31, 32, 819, 829, 830, 835, 841, 844, 847, 850, 854], "hand": [24, 56, 376, 446, 776, 812, 823, 829, 830, 835, 837, 844, 855], "learnt": [25, 35], "ivy_norm": 25, "jax_norm": [25, 31, 32], "wider": [25, 35, 585, 608, 634, 829, 846, 876], "avoid": [25, 35, 37, 57, 64, 80, 240, 245, 247, 263, 273, 377, 378, 381, 454, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 501, 502, 503, 539, 555, 557, 580, 585, 608, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 779, 819, 820, 825, 826, 827, 828, 829, 833, 838, 841, 844, 845, 846, 847, 870], "act": [25, 35, 57, 80, 298, 363, 373, 820, 831, 846, 855, 877], "shorthand": [25, 35, 37, 844], "pair": [25, 35, 45, 57, 61, 80, 84, 228, 247, 320, 362, 369, 372, 375, 409, 418, 420, 422, 632, 636, 637, 649, 650, 651, 652, 654, 656, 658, 666, 668, 806], "93968587": 25, "26075466": 25, "22723222": 25, "06276492": 25, "47426987": 25, "72835908": 25, "71737559": 25, "50411096": 25, "65419174": 25, "15576624": 25, "implic": [25, 35, 36, 39, 827], "satisfi": [26, 27, 28, 29, 45, 47, 50, 57, 375, 376, 398, 430, 829, 831], "fw": [26, 27, 28, 29, 61, 84, 387, 522, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 773, 819, 844], "mxnet": [26, 27, 28, 29, 209, 631, 801, 818, 819, 860, 877], "einop": [26, 27, 28, 29, 45, 47, 50, 58, 81, 545, 546, 547, 634, 829, 860], "miniconda": [26, 27, 28, 29], "multienv": [26, 27, 28, 29], "site": [26, 27, 28, 29, 871], "psutil": [26, 27, 28, 29, 45, 47, 50], "termcolor": [26, 27, 28, 29, 45, 47, 50, 74, 103], "colorama": [26, 27, 28, 29, 45, 47], "535": [26, 27, 28, 29, 51, 73, 118, 626, 833], "diskcach": [26, 27, 28, 29, 45], "auth": [26, 27, 28, 29], "urllib3": [26, 27, 28, 29, 45], "pyvi": [26, 27, 28, 29, 31, 32], "dill": [26, 27, 28, 29, 45], "astunpars": [26, 27, 28, 29], "cloudpickl": [26, 27, 28, 29], "gast": [26, 27, 28, 29], "wheel": [26, 27, 28, 29, 45, 47, 50, 859], "six": [26, 27, 28, 29, 45, 50, 819, 847], "cachetool": [26, 27, 28, 29], "pyasn1": [26, 27, 28, 29], "rsa": [26, 27, 28, 29], "jinja2": [26, 27, 28, 29], "jsonpickl": [26, 27, 28, 29], "networkx": [26, 27, 28, 29, 50], "charset": [26, 27, 28, 29, 45], "idna": [26, 27, 28, 29, 45], "certifi": [26, 27, 28, 29, 45], "2017": [26, 27, 28, 29, 45, 636, 663], "jedi": [26, 27, 28, 29], "inlin": [26, 27, 28, 29, 826], "prompt": [26, 27, 28, 29, 818, 820], "toolkit": [26, 27, 28, 29, 870, 871, 877], "pygment": [26, 27, 28, 29], "traitlet": [26, 27, 28, 29], "exceptiongroup": [26, 27, 28, 29], "pexpect": [26, 27, 28, 29], "markupsaf": [26, 27, 28, 29], "parso": [26, 27, 28, 29], "ptyprocess": [26, 27, 28, 29], "wcwidth": [26, 27, 28, 29], "asttoken": [26, 27, 28, 29], "pure": [26, 27, 28, 29, 37, 47, 812, 832, 836, 841, 847, 851, 854, 855, 870, 876, 877], "lazili": [26, 27, 28, 31, 32, 36, 38, 49, 812, 863, 864, 865], "actual": [26, 36, 816, 820, 822, 828, 834, 837, 838, 840, 841, 842, 844, 847, 848, 853, 855, 871, 876], "occur": [26, 31, 32, 36, 49, 54, 56, 68, 77, 79, 91, 155, 274, 290, 630, 632, 644, 645, 744, 745, 749, 750, 751, 752, 823, 828, 830, 833, 846], "altern": [26, 36, 46, 57, 80, 85, 97, 98, 334, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 372, 818, 819, 826, 840, 852, 873], "assum": [26, 27, 36, 37, 38, 53, 56, 57, 58, 61, 62, 63, 79, 80, 81, 84, 85, 86, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 329, 335, 336, 338, 341, 359, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 444, 446, 484, 492, 496, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 805, 812, 819, 823, 825, 828, 829, 832, 842, 844, 847, 851, 852, 855], "201733": 26, "slowli": [26, 36], "norm": [26, 36, 37, 57, 58, 62, 80, 81, 85, 96, 97, 375, 376, 397, 398, 402, 403, 404, 407, 408, 409, 419, 420, 426, 430, 504, 505, 507, 540, 541, 562, 634, 637, 678, 694, 737, 792, 796, 845], "slow": [26, 36, 814, 819, 826], "34431235": [26, 27], "51129461": [26, 27], "06686894": [26, 27], "36452447": [26, 27], "98795534": [26, 27], "15493582": [26, 27], "91630631": [26, 27], "41939619": [26, 27], "78909753": [26, 27], "19475674": [26, 27], "norm_trac": 26, "norm_tran": [26, 36], "know": [26, 27, 36, 37, 38, 68, 645, 749, 750, 751, 752, 812, 814, 818, 820, 830, 838, 842, 844, 847, 861, 865, 871], "07": [27, 45, 47, 59, 63, 79, 82, 86, 89, 228, 261, 264, 265, 284, 375, 407, 605, 615, 616, 618, 619, 620, 621, 632, 634, 635, 638, 697, 698, 740, 793, 796, 853], "981554": 27, "happen": [27, 31, 32, 292, 632, 812, 819, 820, 821, 830, 840, 844, 852, 861, 863, 864], "wherea": [27, 38, 80, 375, 421, 820, 824, 827, 829, 830, 831, 836, 837, 844, 854, 867], "subtract": [27, 31, 32, 56, 79, 102, 103, 134, 378, 484, 629, 632, 824, 827, 831], "filelock": [28, 45], "extens": [28, 45, 56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 819, 820, 832, 834, 835, 844, 867, 870, 877], "sympi": [28, 860], "fsspec": [28, 45], "mpmath": 28, "often": [28, 57, 377, 452, 817, 823, 833, 836, 837, 841, 844, 855, 861, 871, 874, 877], "fortun": [28, 29, 823], "everyth": [28, 46, 805, 812, 818, 819, 820, 821, 822, 828, 831, 840, 841, 842, 844, 850, 855, 856, 861], "practic": [28, 820, 825, 828, 841, 843, 873], "everi": [28, 31, 32, 37, 45, 53, 57, 58, 80, 81, 135, 136, 301, 335, 336, 349, 367, 372, 375, 378, 412, 413, 414, 421, 498, 534, 629, 634, 818, 820, 823, 825, 826, 828, 829, 831, 835, 836, 837, 838, 840, 841, 842, 844, 849, 851, 853, 863, 864, 865, 870], "jax_kornia": [28, 31, 32, 812, 864], "though": [28, 817, 818, 820, 829, 830, 832, 837, 840, 841, 847, 852, 855], "000000000034": [28, 31, 32, 812, 864], "raw_img": [28, 31, 32, 812, 864], "sharp": [28, 31, 32, 812], "prefer": [28, 31, 32, 247, 632, 819, 827, 833, 834, 838, 841, 856, 870], "whole": [29, 57, 80, 378, 381, 491, 504, 505, 507, 820, 826, 835], "full": [29, 57, 62, 80, 84, 85, 97, 98, 100, 165, 252, 260, 323, 324, 325, 326, 327, 369, 376, 377, 378, 449, 450, 456, 457, 485, 488, 579, 588, 603, 611, 629, 630, 632, 634, 636, 637, 651, 653, 654, 655, 657, 680, 684, 686, 687, 777, 784, 812, 819, 820, 826, 829, 832, 833, 836, 837, 841, 844, 847, 849, 855, 860, 861, 868, 870, 876], "complex": [29, 31, 32, 45, 51, 56, 57, 62, 70, 73, 77, 79, 80, 85, 93, 110, 111, 112, 113, 114, 115, 116, 117, 118, 142, 143, 158, 172, 181, 187, 220, 221, 222, 223, 224, 225, 226, 229, 237, 238, 240, 241, 243, 245, 253, 254, 255, 256, 257, 261, 262, 263, 264, 273, 275, 276, 278, 280, 283, 284, 285, 286, 287, 290, 291, 295, 300, 301, 303, 338, 343, 344, 367, 372, 375, 376, 387, 398, 409, 419, 420, 424, 429, 430, 431, 442, 444, 530, 531, 592, 593, 626, 629, 630, 632, 634, 637, 644, 647, 672, 673, 674, 678, 685, 687, 689, 691, 694, 747, 762, 763, 765, 777, 788, 806, 815, 818, 821, 826, 829, 831, 838, 841, 844, 845, 847, 852, 853, 854, 855, 857, 864, 866, 868, 870, 872, 876, 877], "neccessari": 29, "set_random_se": [29, 48], "301436": 29, "_c": 29, "0x7f252c392390": 29, "flatten": [29, 31, 32, 45, 47, 50, 57, 58, 62, 64, 67, 68, 80, 81, 85, 87, 90, 91, 340, 356, 372, 376, 378, 387, 427, 473, 483, 487, 492, 493, 496, 498, 520, 527, 528, 529, 530, 531, 532, 545, 549, 634, 637, 639, 644, 645, 675, 682, 694, 700, 705, 707, 744, 745, 749, 750, 751, 752, 771, 773, 812, 840, 847], "keyword": [29, 31, 32, 47, 49, 52, 53, 57, 74, 80, 103, 139, 274, 375, 378, 387, 423, 484, 522, 536, 539, 572, 601, 629, 632, 634, 637, 641, 647, 688, 724, 765, 771, 773, 777, 793, 794, 805, 818, 824, 827, 829, 830, 838, 840, 841, 842, 844, 845, 847, 852, 863, 864, 865], "input_arrai": [29, 31, 32, 840], "torch_model": [29, 31, 32, 49], "159": [29, 73, 110, 626, 636, 660], "thank": [29, 852, 860], "fledg": [29, 819, 849, 850], "output_arrai": [29, 31, 32, 57, 454], "0893": 29, "1504": 29, "1372": 29, "0991": 29, "0867": 29, "0851": 29, "0911": 29, "0804": 29, "0926": 29, "0881": 29, "softmaxbackward0": 29, "furthermor": 29, "relat": [29, 247, 632, 812, 814, 817, 818, 819, 820, 826, 833, 841, 844, 845, 846, 847, 864, 873], "continu": [29, 31, 32, 47, 125, 287, 295, 367, 628, 632, 812, 817, 818, 819, 822, 823, 834, 840, 843, 844, 855, 860, 861, 870], "regress": [30, 870, 877], "checkout": [31, 46, 820, 823, 844], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 31, "theoret": 31, "aspect": [31, 32, 813, 839, 852, 870], "easiest": [31, 812, 814, 819, 856], "defer": [31, 32, 818, 824, 829, 830, 837, 840, 841, 844, 876], "similarli": [31, 44, 139, 147, 223, 328, 335, 336, 369, 372, 629, 632, 825, 829, 841, 847, 851, 876], "essenc": [31, 871, 876], "becom": [31, 57, 80, 97, 346, 372, 378, 464, 639, 699, 801, 820, 821, 827, 829, 831, 833, 840, 855, 859, 861, 863], "slide": [31, 57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 418, 422, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "regressor": [31, 32, 812], "input_dim": [31, 32, 46, 812], "output_dim": [31, 32, 46, 812], "linear0": [31, 32, 43, 812, 852, 853], "linear1": [31, 32, 43, 812, 852, 853], "instanti": [31, 32, 784, 832], "adam": [31, 32, 43, 47, 59, 82, 536, 615, 616, 621, 634, 635, 796, 812, 852, 853, 854, 870], "n_training_exampl": [31, 32, 812], "2000": [31, 32, 80, 314, 369, 812], "random_norm": [31, 32, 61, 62, 66, 84, 85, 89, 545, 634, 636, 637, 643, 651, 653, 654, 655, 657, 658, 662, 687, 812], "linspac": [31, 32, 53, 76, 126, 629, 812, 836, 847, 849, 877], "pred": [31, 32, 46, 47, 57, 63, 80, 86, 377, 453, 456, 638, 696, 697, 698, 812, 827, 837, 840], "gradient": [31, 32, 45, 47, 57, 80, 97, 213, 364, 372, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 631, 640, 715, 716, 717, 773, 784, 796, 812, 822, 845, 852, 853, 855, 870], "grad": [31, 32, 43, 47, 615, 635, 796, 812, 839, 852, 853, 854], "execute_with_gradi": [31, 32, 43, 47, 635, 812, 852, 853, 854, 855], "lambda": [31, 32, 48, 50, 80, 123, 125, 297, 307, 544, 557, 617, 618, 620, 625, 628, 634, 635, 637, 641, 673, 725, 726, 730, 812, 818, 837, 838, 839, 842, 847, 849, 852], "2d": [31, 32, 47, 57, 80, 97, 313, 369, 375, 376, 378, 387, 390, 391, 399, 400, 442, 449, 463, 473, 522, 792, 810, 812, 841, 847], "5f": [31, 32, 812], "nonetheless": [31, 32], "extract": [31, 32, 39, 46, 57, 80, 98, 378, 467, 493, 841, 843, 845, 866, 870, 871, 876], "gc": [31, 32, 557, 634], "decompos": [31, 32, 57, 80, 97, 100, 323, 324, 325, 326, 327, 348, 355, 369, 372, 376, 440, 445, 448, 451, 841, 854], "said": [31, 32, 778, 845, 861, 863], "otherwis": [31, 32, 49, 52, 53, 54, 56, 57, 58, 61, 62, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 128, 129, 134, 136, 137, 138, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 171, 175, 179, 180, 196, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 313, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 341, 342, 350, 351, 357, 359, 361, 362, 363, 367, 369, 372, 375, 376, 378, 381, 394, 395, 396, 399, 400, 401, 419, 432, 447, 449, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 521, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 617, 619, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 687, 691, 693, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 731, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 777, 792, 794, 795, 801, 812, 820, 824, 827, 829, 830, 831, 837, 838, 840, 844, 849, 856, 863, 864], "x0": [31, 32, 50, 81, 537, 634, 831], "normalize_trac": [31, 32], "html": [31, 32, 46, 56, 57, 79, 80, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 629, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832, 860], "fname": [31, 32, 48, 50, 794, 852], "anticip": [31, 32], "addition": [31, 32, 827, 840, 841, 876], "normalize_native_comp": [31, 32], "return_backend_compiled_fn": 31, "immedi": [31, 32, 810, 818, 819], "built": [31, 32, 37, 45, 47, 50, 126, 629, 792, 793, 794, 812, 819, 820, 826, 827, 844, 850, 856, 863, 869, 870, 874], "eager_graph": [31, 32, 812, 863, 864], "lazy_graph": [31, 32, 812, 863, 864], "thought": [31, 32, 819, 820, 836, 860, 868], "matter": [31, 32, 37, 831, 859], "haven": [31, 32, 37, 856, 870], "jax_out": [31, 32], "ideal": [31, 32, 828, 829, 841, 847, 852], "worth": [31, 32], "differenti": [31, 32, 295, 365, 366, 367, 374, 870], "chosen": [31, 32, 50, 100, 126, 228, 629, 632, 644, 748, 818, 828, 841], "plai": [31, 32, 377, 456, 812, 815, 819, 821, 824, 830, 834, 841, 844, 854, 870, 873], "role": [31, 32, 812, 815, 820, 821, 830, 841, 850, 871, 873, 877], "dl": [31, 32], "effortlessli": [31, 32], "previous": [31, 32, 603, 634, 801, 818, 819, 825, 837, 839, 844, 849], "default_devic": [31, 32, 206, 209, 210, 211, 217, 218, 631, 830, 833, 834], "as_n": [31, 32, 54, 55, 74, 77, 78, 158, 159, 160, 161, 162, 163, 169, 196, 197, 630, 631, 829], "certainli": [31, 32, 812, 860, 876], "upon": [31, 32, 49, 810, 820, 821, 831, 840, 844, 847, 855, 869, 870], "unnecessari": [31, 32, 841], "extend": [31, 32, 57, 80, 378, 387, 484, 525, 825, 826, 829, 832, 833, 836, 841, 845, 855, 867, 870, 876], "infrastructur": [31, 32, 866, 872, 873], "least": [31, 56, 57, 62, 79, 80, 240, 258, 273, 375, 378, 387, 403, 408, 462, 463, 464, 473, 475, 522, 632, 637, 644, 677, 747, 812, 820, 824, 828, 829, 830, 831, 837, 840, 844, 864], "coco": 31, "seamlessli": [32, 844], "therefor": [32, 37, 53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 477, 484, 485, 487, 492, 496, 497, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 823, 824, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 855, 859, 867, 870, 876], "wide": [32, 812, 820, 844, 868, 870], "plenti": 32, "resourc": [32, 813, 818, 819, 828], "visit": [32, 818, 819, 820, 828], "page": [32, 812, 818, 819, 820, 826, 828, 834, 850, 851, 854, 856, 865, 878], "newli": [33, 34, 46, 48, 54, 77, 152, 539, 630, 634, 820, 828, 840, 844], "randon": [33, 34, 36, 37, 38], "mean_": 33, "std_": 33, "detect": [33, 37, 56, 74, 79, 255, 632, 641, 718, 729, 818, 819, 825, 827, 828, 835, 844, 852, 853], "inspect": [33, 37, 535, 634], "__": [33, 34, 35, 36, 37, 38, 74, 831, 852], "script": [34, 812, 819, 820, 823, 828, 831, 849, 855, 870], "comp": 34, "low_level": 34, "chain": [34, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 640, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 720, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 797, 824, 827, 839, 841, 853, 854, 855, 870], "un": [34, 170, 630, 829, 849], "partial_comp": 34, "time_funct": 34, "express": [34, 56, 57, 79, 80, 98, 221, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 798, 806, 832, 841, 849, 854, 870, 871], "maxim": [34, 837, 840, 849, 867, 868, 872, 873, 874], "conclud": [35, 845], "collect": [35, 45, 47, 49, 50, 52, 74, 75, 626, 631, 634, 635, 636, 638, 641, 642, 643, 731, 788, 792, 793, 794, 795, 796, 819, 828, 833, 834, 838, 839, 842, 844, 868, 870, 873], "norm_comp": [36, 37], "global": [36, 37, 47, 58, 74, 81, 103, 158, 159, 160, 161, 162, 211, 212, 213, 582, 583, 586, 592, 593, 605, 606, 609, 630, 631, 634, 784, 795, 801, 819, 824, 825, 828, 829, 830, 833, 837, 841, 849, 870], "b": [37, 51, 56, 57, 58, 61, 62, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 127, 128, 129, 134, 135, 136, 138, 141, 143, 149, 152, 153, 154, 155, 163, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 382, 385, 387, 394, 395, 396, 397, 399, 400, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 425, 428, 430, 432, 436, 439, 443, 446, 451, 452, 453, 455, 456, 457, 458, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 490, 492, 493, 494, 495, 496, 499, 500, 505, 507, 509, 510, 512, 513, 515, 522, 523, 524, 525, 527, 529, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 599, 600, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 805, 806, 810, 812, 813, 816, 820, 822, 823, 825, 827, 828, 831, 834, 837, 839, 842, 848, 849, 850, 852, 853, 854, 858, 861, 863, 866], "option": [37, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 168, 170, 180, 192, 196, 208, 211, 212, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 601, 613, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 724, 725, 729, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 789, 791, 792, 794, 796, 797, 805, 810, 818, 819, 820, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 847, 849, 854, 855, 863, 864, 865, 870, 876], "prioriti": [37, 74, 801, 815, 818, 820, 821, 830, 840], "normalize_via_oper": 37, "determin": [37, 56, 57, 62, 64, 68, 71, 74, 79, 80, 81, 85, 92, 94, 97, 100, 102, 103, 132, 155, 157, 164, 170, 171, 172, 173, 175, 176, 177, 192, 202, 204, 205, 216, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 253, 254, 255, 256, 257, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 304, 308, 354, 359, 367, 372, 375, 376, 377, 378, 387, 411, 419, 430, 452, 453, 492, 496, 522, 534, 537, 558, 559, 563, 564, 565, 566, 567, 568, 595, 613, 629, 630, 631, 632, 634, 637, 639, 640, 645, 648, 667, 668, 669, 671, 675, 676, 677, 679, 680, 682, 683, 685, 686, 691, 693, 694, 700, 715, 716, 717, 749, 750, 751, 752, 753, 767, 768, 778, 784, 791, 795, 827, 829, 830, 832, 837, 841, 844, 846, 847, 859], "think": [37, 818, 820, 828, 831, 847, 871], "uniqu": [37, 47, 57, 58, 68, 80, 81, 91, 375, 376, 378, 423, 446, 483, 484, 498, 569, 634, 640, 641, 645, 715, 716, 717, 720, 724, 749, 750, 751, 752, 778, 812, 823, 827, 837, 841, 842, 843, 847, 855, 859, 873], "rule": [37, 54, 56, 57, 62, 77, 79, 80, 85, 152, 155, 178, 179, 180, 229, 240, 273, 275, 282, 284, 292, 294, 375, 378, 387, 419, 472, 522, 630, 632, 637, 639, 667, 668, 675, 679, 682, 686, 700, 778, 805, 823, 824, 827, 828, 829, 831, 835, 836, 837, 839, 844, 847, 871], "broadcast": [37, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 339, 340, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 444, 453, 454, 455, 456, 458, 459, 465, 469, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 528, 529, 530, 531, 532, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 805, 827, 829, 831, 832, 833, 844, 845, 849], "elementwis": [37, 57, 65, 80, 88, 300, 302, 362, 367, 637, 642, 692, 737, 837, 845, 849], "taken": [37, 57, 62, 80, 85, 341, 372, 375, 420, 637, 671, 691, 818, 828, 841, 845, 854, 871], "account": [37, 47, 49, 57, 64, 80, 87, 287, 378, 474, 632, 639, 706, 791, 805, 819, 828, 832, 841, 845, 863], "fact": [37, 97, 820, 823, 828, 841, 844, 849, 852], "consum": [37, 773, 827, 828, 836, 842, 844], "thrown": [37, 562, 634, 819, 824, 830, 833, 835, 855], "doesn": [37, 562, 580, 634, 771, 792, 818, 819, 825, 827, 828, 829, 830, 831, 834, 835, 837, 839, 844, 847, 849, 855, 863, 868], "consider": [37, 818, 831, 836, 847, 859, 867, 868], "standalon": [38, 818, 824, 844, 857, 866, 871, 876, 877], "static": [38, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 106, 107, 129, 319, 375, 396, 409, 414, 423, 445, 451, 490, 502, 595, 629, 636, 663, 682, 789, 794, 841, 846, 855, 869, 870, 871], "flow": [39, 827, 863, 870, 871], "statement": [39, 44, 828, 840, 844, 847, 855, 863, 864], "opposit": 39, "exclud": [39, 70, 80, 93, 126, 147, 328, 369, 523, 524, 629, 643, 741, 757, 776, 779, 801, 831, 849, 863], "todo": [40, 41, 42, 47, 50, 80, 524, 818, 829, 841], "aim": [43, 816, 820, 823, 834, 838, 841, 844, 848, 868, 870, 873], "interfac": [43, 76, 134, 629, 851, 854, 855, 857, 860, 866, 867, 868, 869, 870, 874, 877], "set_framework": [43, 50], "underneath": [43, 828, 868], "sai": [43, 818, 819, 834, 838, 851, 861, 878], "clip": [43, 56, 57, 64, 79, 80, 81, 87, 271, 272, 378, 467, 492, 493, 540, 541, 632, 634, 639, 827, 837, 839, 840, 852, 854, 867], "a_min": 43, "a_max": 43, "tensforflow": 43, "clip_by_valu": [43, 854, 867], "clip_value_min": 43, "clip_value_max": 43, "clamp": [43, 57, 80, 300, 367, 854], "49": [43, 47, 57, 66, 80, 84, 85, 287, 375, 376, 387, 397, 407, 418, 443, 523, 632, 647, 692, 740, 759], "devicearrai": [43, 824, 841, 849, 851], "accept": [43, 52, 53, 56, 57, 62, 75, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 342, 364, 369, 372, 374, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 851, 857, 868], "jax_concat": 43, "tf_concat": 43, "np_concat": 43, "torch_concat": 43, "85": [43, 51, 57, 66, 73, 79, 80, 82, 84, 89, 103, 112, 225, 234, 235, 279, 295, 296, 299, 367, 387, 523, 592, 619, 626, 632, 634, 635, 636, 643, 660, 739, 740, 741], "mymodel": [43, 852], "x_in": [43, 852, 853, 854], "reduce_mean": [43, 812, 852, 853, 854], "49040043354034424": 43, "48975786566734314": 43, "4892795979976654": 43, "48886892199516296": 43, "4884953498840332": 43, "4881443977355957": 43, "4878086447715759": 43, "48748287558555603": 43, "48716384172439575": 43, "48684927821159363": 43, "48653748631477356": 43, "48622724413871765": 43, "4859171509742737": 43, "48560672998428345": 43, "48529526591300964": 43, "4849821627140045": 43, "48466697335243225": 43, "4843493402004242": 43, "4840289056301117": 43, "4837053418159485": 43, "4833785891532898": 43, "4830484390258789": 43, "48271444439888": 43, "48237672448158264": 43, "48203518986701965": 43, "48168954253196716": 43, "4813397228717804": 43, "4809857904911041": 43, "48062753677368164": 43, "48026490211486816": 43, "479898065328598": 43, "47952669858932495": 43, "4791509211063385": 43, "4787706732749939": 43, "47838595509529114": 43, "4779967665672302": 43, "47760307788848877": 43, "4772048890590668": 43, "47680220007896423": 43, "47639501094818115": 43, "47598329186439514": 43, "4755673110485077": 43, "4751465618610382": 43, "4747215211391449": 43, "4742920398712158": 43, "47385817766189575": 43, "47341999411582947": 43, "47297725081443787": 43, "4725303053855896": 43, "47207894921302795": 43, "47162333130836487": 43, "47116345167160034": 43, "470699280500412": 43, "47023090720176697": 43, "54": [43, 54, 56, 61, 79, 80, 84, 89, 168, 237, 238, 243, 258, 287, 293, 314, 369, 375, 387, 397, 407, 523, 632, 636, 637, 647, 660, 679, 682, 739, 740, 741, 759, 828, 831], "4697583019733429": 43, "55": [43, 51, 80, 89, 118, 234, 293, 387, 523, 560, 632, 634, 637, 643, 647, 676, 682, 740, 741, 759, 823], "46928152441978455": 43, "46880054473876953": 43, "4683155119419098": 43, "4678264260292053": 43, "46733325719833374": 43, "46683603525161743": 43, "61": [43, 45, 56, 57, 62, 79, 80, 82, 86, 89, 226, 261, 263, 288, 397, 615, 632, 635, 636, 637, 658, 675, 741, 834], "4663347601890564": 43, "4658295214176178": 43, "465320348739624": 43, "4648073613643646": 43, "46429020166397095": 43, "4637692868709564": 43, "46324464678764343": 43, "4627160429954529": 43, "4621836841106415": 43, "4616474211215973": 43, "46110764145851135": 43, "72": [43, 57, 66, 80, 82, 245, 349, 372, 375, 397, 407, 619, 632, 635, 637, 647, 682, 740, 759], "460563987493515": 43, "4600166976451874": 43, "74": [43, 45, 56, 89, 235, 265, 632, 637, 679], "45946577191352844": 43, "45891112089157104": 43, "45835286378860474": 43, "4577910006046295": 43, "78": [43, 59, 284, 621, 632, 635, 637, 643, 647, 682, 740, 759], "45722562074661255": 43, "45665669441223145": 43, "80": [43, 57, 80, 349, 372, 376, 387, 443, 523, 637, 641, 647, 682, 729, 759, 860], "4560841917991638": 43, "81": [43, 47, 56, 62, 77, 79, 85, 89, 168, 238, 263, 264, 288, 387, 523, 630, 632, 637, 641, 643, 647, 675, 679, 692, 726, 741, 759, 844], "4555082619190216": 43, "45492875576019287": 43, "45434585213661194": 43, "45375964045524597": 43, "4531698524951935": 43, "4525766670703888": 43, "45198020339012146": 43, "4513803720474243": 43, "4507772624492645": 43, "4501707851886749": 43, "4495610296726227": 43, "4489481747150421": 43, "44833192229270935": 43, "4477125108242035": 43, "44708991050720215": 43, "44646409153938293": 43, "44583529233932495": 43, "4452032148838043": 43, "44456806778907776": 43, "4439": 43, "selectbackward0": 43, "ivy_compil": 44, "ic": 44, "numer": [44, 53, 54, 56, 57, 58, 62, 66, 67, 70, 77, 79, 80, 81, 85, 89, 90, 92, 102, 103, 139, 152, 220, 223, 236, 240, 245, 246, 247, 254, 255, 256, 259, 268, 269, 273, 275, 276, 277, 278, 282, 283, 284, 288, 289, 293, 294, 375, 377, 382, 387, 419, 454, 509, 522, 582, 583, 592, 593, 605, 606, 629, 630, 632, 634, 637, 643, 644, 647, 668, 675, 677, 682, 685, 687, 689, 691, 693, 739, 740, 741, 743, 744, 745, 747, 748, 753, 760, 763, 765, 776, 777, 778, 779, 791, 816, 829, 834, 839, 841, 842, 844, 845, 846, 847, 849, 853, 867, 870, 876], "anyth": [44, 57, 80, 387, 528, 529, 820, 833, 844, 845, 870, 871], "affect": [44, 50, 57, 377, 457, 828, 841], "variabl": [44, 46, 47, 49, 57, 58, 59, 65, 74, 80, 81, 82, 88, 122, 123, 125, 322, 369, 375, 376, 382, 387, 421, 447, 510, 521, 522, 538, 562, 563, 564, 565, 568, 595, 616, 617, 619, 621, 622, 623, 628, 634, 635, 637, 640, 642, 686, 715, 716, 717, 737, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 820, 825, 829, 832, 836, 839, 840, 844, 845, 849, 852, 853, 854, 855, 856, 863, 871], "original_fn": 44, "100000": 44, "var": [44, 70, 93, 95, 122, 123, 124, 125, 628, 640, 647, 715, 716, 798, 819, 831, 849, 867], "co": [44, 45, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 817, 829, 849, 860], "sin": [44, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 824, 849], "tan": [44, 56, 79, 536, 632, 634, 832, 836, 837, 840, 841, 849], "comp_fn": 44, "compile_graph": [44, 50], "expected_result": 44, "compiled_result": 44, "irrelev": [44, 828, 829, 831], "opeat": 44, "_layer": [44, 849], "net": [44, 49, 50, 849, 854, 860, 861], "compiled_net": 44, "latest": [45, 47, 56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 421, 492, 522, 630, 632, 637, 639, 647, 685, 686, 714, 764, 792, 812, 818, 819, 820, 823, 825, 828, 832, 834, 845, 855, 856, 864, 875], "pypi": [45, 47, 50, 818, 819, 845, 855], "pkg": [45, 47, 50], "public": [45, 47, 50, 542, 634, 828, 839, 851, 873], "revis": [45, 47, 820], "req": [45, 47], "tabqrujw": 45, "filter": [45, 47, 49, 57, 61, 80, 84, 317, 318, 369, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 812, 825, 828], "quiet": [45, 47], "commit": [45, 47, 815, 816, 818, 821, 823, 831, 843, 844], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 45, "metadata": [45, 47, 50, 840], "setup": [45, 47, 50, 819, 820, 826, 828, 834], "py3": [45, 47, 50], "whl": [45, 46, 47, 50], "cp39": [45, 47], "manylinux_2_12_x86_64": [45, 47], "manylinux2010_x86_64": [45, 47], "manylinux_2_17_x86_64": [45, 47, 819], "manylinux2014_x86_64": [45, 46, 47], "py2": [45, 47], "495": [45, 47], "nvidia_ml_pi": [45, 47], "pypars": [45, 47, 50], "ivy_cor": [45, 47, 50, 819], "1338326": 45, "sha256": [45, 47, 50], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 45, "store": [45, 47, 50, 54, 57, 58, 62, 64, 74, 77, 80, 81, 85, 87, 154, 375, 376, 420, 428, 432, 446, 450, 549, 634, 637, 639, 691, 708, 773, 774, 792, 793, 794, 814, 820, 824, 825, 827, 832, 838, 840, 841, 842, 849, 851, 852, 853, 857, 863], "ephem": [45, 47], "njrc_e6b": 45, "2e": [45, 47], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [45, 47], "4845": [45, 47], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 45, "b6": [45, 47], "0d": [45, 47], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [45, 47], "uninstal": [45, 47, 50], "vnd": [45, 47, 50], "json": [45, 47, 50, 74, 819, 834, 852], "psst": 45, "pickl": [45, 46, 74, 794, 827, 852], "imageio": 45, "urllib": [45, 50], "_src": 45, "back": [45, 57, 64, 80, 87, 378, 474, 495, 578, 602, 634, 636, 639, 663, 706, 791, 796, 806, 819, 824, 829, 830, 833, 838, 839, 846, 848, 855, 856, 860, 868, 872], "tf_cpp_min_log_level": 45, "mkdir": [45, 46, 47, 819, 828], "perceiv": [45, 46], "touch": 45, "io_processor": 45, "position_encod": 45, "jmp": 45, "tabul": 45, "29359": 45, "29k": 45, "67k": 45, "002": 45, "30179": 45, "47k": 45, "8107": 45, "9k": 45, "92k": 45, "itertool": 45, "preprocessor": 45, "vector": [45, 53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 139, 365, 366, 374, 375, 376, 378, 381, 382, 387, 398, 429, 434, 442, 444, 449, 484, 486, 488, 506, 510, 522, 541, 545, 562, 614, 629, 634, 636, 637, 660, 663, 668, 672, 673, 675, 677, 682, 687, 688, 692, 693, 694, 695, 776, 792, 870], "perceiverbackbon": 45, "input_preprocessor": 45, "_input_preprocessor": 45, "_encod": 45, "__call__": [45, 773, 792, 793, 794, 812, 864], "is_train": 45, "po": [45, 806], "input_mask": 45, "network_input_is_1d": 45, "_input_is_1d": 45, "queri": [45, 46, 61, 74, 84, 198, 212, 555, 581, 631, 634, 636, 663, 666, 792, 827, 829, 834, 851, 870], "decod": [45, 852], "cross": [45, 47, 62, 63, 85, 86, 98, 637, 638, 696, 697, 698, 812, 828, 829], "attend": [45, 636, 663], "encoder_queri": 45, "latent": [45, 640, 716, 717], "imagepreprocessor": 45, "deal": [45, 794, 816, 830, 837, 839, 841, 844, 855], "image_s": 45, "fourier_pos_config": 45, "position_encoding_typ": 45, "fourier": [45, 57, 80, 375, 398, 403, 404, 408, 409, 419, 420, 423, 549, 634], "fourier_position_encoding_kwarg": 45, "concat_po": 45, "max_resolut": 45, "num_band": [45, 58, 81, 549, 634], "sine_onli": 45, "prep_typ": 45, "spatial_downsampl": 45, "cross_attend_widening_factor": 45, "cross_attention_shape_for_attn": 45, "kv": 45, "dropout_prob": 45, "num_block": 45, "num_cross_attend_head": 45, "num_self_attend_head": 45, "num_self_attends_per_block": 45, "num_z_channel": 45, "self_attend_widening_factor": 45, "use_query_residu": 45, "z_index_dim": 45, "z_pos_enc_init_scal": 45, "perceiver_backbon": [45, 812], "perceiverencod": 45, "At": [45, 818, 819, 820, 823, 834, 844, 845, 860, 870], "publish": [45, 812, 855, 861, 864], "thankfulli": [45, 844], "perceiver_io": [45, 46], "imagenet_fourier_position_encod": 45, "pystat": 45, "imagenet_checkpoint": 45, "rb": 45, "ckpt": 45, "09": [45, 51, 56, 82, 89, 118, 278, 288, 615, 626, 632, 635, 740], "173": [45, 62, 637, 675], "194": 45, "125": [45, 57, 62, 85, 234, 346, 372, 377, 453, 632, 637, 692], "177": [45, 47], "193776248": 45, "185m": 45, "octet": 45, "184": 45, "80m": 45, "144mb": 45, "144": 45, "mean_rgb": 45, "stddev_rgb": 45, "im": 45, "denorm": 45, "resize_and_center_crop": 45, "crop": [45, 57, 80, 375, 404, 409, 420], "center": [45, 791], "image_height": [45, 47, 812], "image_width": [45, 812], "padded_center_crop_s": 45, "offset_height": 45, "offset_width": 45, "crop_window": 45, "inter_cub": 45, "ye": [45, 855], "dummy_input": [45, 812], "transpili": 45, "torch_perceiver_backbon": 45, "quicker": 45, "params_v": [45, 812, 864], "perceiverioclassifi": [45, 812], "max_pool": [45, 812], "Of": [45, 824, 840, 841, 852, 875, 876], "cours": [45, 819, 820, 823, 824, 831, 840, 841, 847, 852, 855, 875, 876], "468": 45, "huggingface_hub": 45, "multiprocess": [45, 74, 103, 634, 852, 855], "py39": 45, "132": [45, 80], "pyarrow": 45, "xxhash": 45, "212": [45, 57, 61, 80, 359, 372, 660], "pyyaml": 45, "2021": [45, 57, 80, 362, 372, 812], "aiohttp": 45, "async": 45, "timeout": [45, 74, 103, 586, 609, 634, 846], "0a3": 45, "async_timeout": 45, "frozenlist": 45, "manylinux_2_5_x86_64": [45, 50], "manylinux1_x86_64": [45, 50], "158": 45, "attr": [45, 829], "aiosign": 45, "multidict": 45, "114": [45, 375, 397, 407], "yarl": 45, "264": [45, 641, 718], "2022": [45, 46], "pytz": 45, "2020": [45, 823, 870], "dateutil": [45, 50], "wikiart": 45, "paint": [45, 812, 849, 859], "load_dataset": [45, 863, 864], "n_sampl": [45, 57, 80, 376, 378, 425, 433, 487], "10000": [45, 47, 53, 76, 138, 629], "huggan": 45, "split": [45, 46, 47, 51, 56, 57, 64, 73, 74, 79, 80, 87, 110, 111, 112, 113, 114, 115, 116, 117, 118, 211, 212, 213, 291, 295, 300, 301, 303, 348, 355, 367, 378, 470, 479, 499, 545, 572, 626, 631, 632, 634, 636, 639, 649, 656, 657, 711, 773, 788, 792, 812, 813, 820, 828, 848, 849, 855, 877], "wiki_art": 45, "gib": 45, "unknown": [45, 776], "huggan___parquet": 45, "36ee951979f9b56c": 45, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 45, "parquet": 45, "subsequ": [45, 801, 819, 824, 828, 829, 831, 836, 837, 840, 844, 853, 871], "reus": [45, 53, 76, 80, 87, 128, 462, 463, 470, 472, 474, 475, 476, 483, 499, 702, 703, 704, 706, 708, 709, 711, 713, 833, 844, 875], "curl": [45, 819], "2fwikiart": 45, "xferd": 45, "dload": 45, "upload": [45, 844], "spent": [45, 861], "25936": 45, "278k": 45, "abstract_expression": 45, "action_paint": 45, "analytical_cub": 45, "art_nouveau": 45, "baroqu": 45, "color_field_paint": 45, "contemporary_r": 45, "cubism": 45, "early_renaiss": 45, "expression": 45, "fauvism": 45, "high_renaiss": 45, "impression": 45, "mannerism_late_renaiss": 45, "minim": [45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 375, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 832, 840, 842, 847, 849, 863, 868, 876], "naive_art_primitiv": 45, "new_real": 45, "northern_renaiss": 45, "pointil": 45, "pop_art": 45, "post_impression": 45, "realism": 45, "rococo": 45, "romantic": 45, "symbol": [45, 805, 818, 819, 870, 871], "synthetic_cub": 45, "ukiyo_": 45, "custom": [45, 57, 80, 299, 311, 364, 367, 374, 776, 805, 814, 822, 828, 833, 838, 842, 844, 847, 853, 860, 870, 874, 875, 876], "hugginfac": 45, "customdataset": 45, "__len__": [45, 827], "__getitem__": [45, 74, 827], "idx": [45, 46, 47, 535, 634, 812, 830, 851], "random_split": 45, "224x224": 45, "val_siz": 45, "dataset_train": 45, "dataset_v": 45, "dataset_test": 45, "dataloader_train": 45, "dataloader_v": 45, "dataloader_test": 45, "batch": [45, 46, 47, 57, 58, 62, 74, 80, 81, 85, 211, 212, 375, 376, 377, 381, 389, 391, 392, 398, 411, 421, 438, 452, 454, 501, 502, 503, 506, 549, 552, 553, 614, 631, 634, 636, 637, 640, 642, 660, 661, 662, 663, 694, 715, 716, 717, 737, 776, 792, 795, 812, 827, 837, 842, 852, 868], "train_featur": 45, "train_label": 45, "imshow": [45, 46], "001": [45, 56, 57, 65, 77, 80, 82, 165, 263, 280, 338, 351, 372, 616, 630, 632, 635, 642, 737, 776, 852, 853], "train_step": 45, "running_loss": [45, 47, 812], "last_loss": 45, "training_load": 45, "intra": 45, "report": [45, 815, 818, 844], "zero_grad": 45, "999": [45, 59, 79, 82, 291, 615, 616, 621, 623, 632, 635, 796, 853], "epoch_numb": 45, "best_vloss": 45, "1_000_000": 45, "running_vloss": 45, "vdata": 45, "vinput": 45, "vlabel": 45, "voutput": 45, "vloss": 45, "avg_vloss": 45, "model_path": 45, "model_": 45, "state_dict": [45, 793, 794], "highest": [45, 57, 66, 80, 89, 319, 322, 369, 643, 739, 829], "energi": 45, "augment": 45, "mayb": [45, 46, 52, 812, 819, 828, 849, 851], "finetun": 45, "deploi": [45, 812, 828, 857, 864, 868, 869, 870, 872, 876], "percieverio": 46, "ai": [46, 828, 868, 872], "contribut": [46, 57, 80, 387, 525, 815, 817, 819, 820, 821, 826, 834, 835, 841, 842, 849, 856, 863, 874, 878], "invit": [46, 818, 821, 841, 847], "g4ar9q7dtn": 46, "step1": 46, "printf": 46, "8packag": 46, "share": [46, 74, 186, 630, 776, 777, 812, 825, 827, 831, 837, 839, 841, 842, 844, 847, 849, 860, 868, 869, 876], "googledr": 46, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 46, "file_id": 46, "drive": [46, 47], "uc": 46, "tee": [46, 819], "file_id_wget_cmd": 46, "perl": 46, "pe": 46, "g": [46, 48, 49, 57, 66, 68, 70, 72, 80, 89, 95, 97, 151, 180, 193, 240, 253, 273, 280, 283, 335, 336, 372, 375, 376, 378, 382, 387, 412, 414, 451, 492, 508, 509, 510, 511, 512, 523, 524, 630, 631, 632, 637, 641, 643, 645, 647, 673, 674, 678, 685, 687, 688, 694, 721, 725, 727, 730, 735, 739, 740, 741, 749, 750, 751, 752, 757, 758, 760, 762, 763, 765, 791, 810, 813, 818, 819, 822, 823, 825, 826, 827, 839, 841, 844, 849, 855, 857, 861, 866], "uuid": 46, "anywai": [46, 824, 838, 841], "bin": [46, 57, 80, 387, 520, 525, 819, 820, 823, 827], "bash": [46, 819, 820, 823], "step2": 46, "interpret": [46, 53, 57, 76, 80, 127, 128, 134, 140, 377, 387, 454, 522, 629, 828, 871], "sudo": [46, 819], "apt": [46, 819], "yf": 46, "step3": 46, "delet": [46, 820, 828], "xvzf": 46, "rm": [46, 48, 814, 820], "step4": 46, "symlink": 46, "unzip": [46, 47], "fr": 46, "l": [46, 57, 62, 79, 85, 267, 376, 377, 429, 452, 636, 637, 663, 667, 672, 673, 674, 677, 691, 820, 822], "ln": 46, "sf": 46, "la": 46, "step5": 46, "step6": 46, "ipkykernel": 46, "step7": 46, "engbjapanpython3": 46, "ipykernel": 46, "reconnect": 46, "sy": [46, 878], "oct": 46, "gcc": [46, 868, 875], "lf": 46, "upgrad": 46, "cuda11": 46, "cudnn805": 46, "cp38": [46, 50, 819], "helper": [46, 771, 773, 774, 780, 782, 783, 812, 816, 826, 829, 833, 834, 843, 852, 857], "feedforward": 46, "prenorm": 46, "perceiveriospec": 46, "fetch": [46, 557, 634, 819, 820, 823, 828], "ogbanugot": [46, 878], "xmartlab": 46, "caffeflow": 46, "fetch_class": 46, "class_label": 46, "ground_truth": 46, "127": [46, 54, 57, 62, 77, 80, 168, 359, 372, 630, 637, 675], "path_to_imag": 46, "get_imag": 46, "spine": 46, "set_vis": 46, "bottom": [46, 545, 634, 818, 819, 828, 834, 876], "tick_param": 46, "set_xticklabel": 46, "set_yticklabel": 46, "show_result": 46, "listdir": [46, 47], "endswith": 46, "this_dir": 46, "dirnam": 46, "join": [46, 47, 64, 74, 80, 87, 468, 469, 639, 700, 710, 812, 821], "add_subplot": 46, "xtick": 46, "ytick": 46, "green": [46, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 811, 818, 819, 820], "red": 46, "perceiver_io_img_classif": 46, "normalize_imag": 46, "batch_shap": [46, 61, 66, 76, 84, 89, 132, 141, 629, 636, 637, 643, 662, 666, 695, 738, 792, 847, 849, 851], "img_dim": 46, "queries_dim": 46, "learn_queri": 46, "load_weight": 46, "num_input_ax": 46, "network_depth": 46, "num_lat_att_per_lay": 46, "query_shap": 46, "num_fourier_freq_band": 46, "weight_fpath": 46, "pretrained_weight": 46, "isfil": 46, "noinspect": [46, 851], "pybroadexcept": 46, "from_disk_as_pickl": 46, "action": [46, 810, 817, 828, 831, 835, 844], "fail": [46, 771, 816, 819, 820, 823, 828, 829, 831, 835, 838, 840, 841, 842], "placehold": [46, 641, 725, 730, 735, 792, 820, 824, 836, 857], "pyunboundlocalvari": 46, "max_fourier_freq": 46, "random_uniform": [46, 50, 66, 89, 643, 812, 830, 833, 844, 849, 853], "817437": 46, "gpu_bfc_alloc": 46, "orig_valu": 46, "tf_force_gpu_allow_growth": 46, "autograd": [46, 855], "declar": [46, 820, 843], "_3r2_73j": 47, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 47, "1297564": 47, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 47, "le3bu3_v": 47, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 47, "third": [47, 97, 98, 378, 471, 498, 637, 645, 687, 749, 826, 829, 840, 855, 869, 870, 876], "parti": [47, 826, 829, 855, 860, 869, 870, 876], "mount": [47, 814, 820], "mydriv": 47, "chdir": 47, "kaggl": 47, "medium": 47, "articl": [47, 812, 835], "insert": [47, 57, 67, 80, 90, 378, 459, 469, 639, 641, 644, 646, 702, 722, 723, 744, 755, 828, 835], "www": [47, 335, 336, 372], "your_kaggle_usernam": 47, "competit": 47, "digit": 47, "zip": [47, 849], "readabl": [47, 824, 827, 833, 835, 836, 844, 845, 851, 852], "chmod": [47, 819, 828], "recent": [47, 809, 819, 820, 844, 859, 860], "forc": [47, 826, 828, 830], "archiv": [47, 819], "inflat": [47, 829], "sample_submiss": 47, "later": [47, 74, 539, 634, 818, 835, 840, 844, 845, 870], "my": [47, 828], "label_df": 47, "mod_train": 47, "data_valu": 47, "test_data_valu": 47, "correct_label": 47, "train_path": 47, "str": [47, 49, 52, 53, 57, 58, 61, 62, 63, 64, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 139, 141, 143, 149, 150, 153, 155, 157, 158, 159, 160, 164, 165, 168, 169, 170, 171, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 192, 193, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 375, 376, 377, 378, 381, 387, 390, 394, 395, 396, 398, 399, 400, 401, 403, 404, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 430, 445, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 474, 490, 492, 493, 494, 495, 496, 501, 502, 503, 504, 505, 507, 509, 511, 522, 523, 524, 525, 532, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 579, 580, 589, 591, 592, 593, 595, 597, 599, 600, 613, 617, 624, 628, 629, 630, 631, 634, 635, 636, 637, 638, 639, 640, 641, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 688, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 724, 725, 730, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 753, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 774, 776, 777, 782, 784, 792, 794, 795, 805, 806, 810, 829, 830, 833, 837, 840, 841, 845, 849, 854, 863, 864, 865], "makedir": 47, "valid_path": 47, "28x28": 47, "pic": 47, "int8": [47, 54, 66, 76, 77, 89, 134, 161, 166, 168, 169, 173, 629, 630, 739, 776, 777, 829, 844], "new_img": [47, 49], "builder": [47, 814], "batchwis": 47, "subset": [47, 778, 824, 828, 832, 836, 839, 841, 844, 849, 870], "goe": [47, 378, 467, 822, 835, 840, 847], "seed_valu": [47, 74, 643, 742], "randomize_dataset": 47, "create_dataset": 47, "num_examples_per_class": 47, "img_arrai": 47, "class_nam": [47, 773], "dir": [47, 852], "img_path": 47, "imread": [47, 49, 852], "imread_grayscal": 47, "generate_batch": [47, 812], "dataset_s": [47, 812], "ivyerror": [47, 807, 812, 833], "smaller": [47, 57, 64, 70, 80, 87, 302, 334, 351, 367, 372, 375, 377, 387, 404, 409, 420, 452, 522, 523, 524, 545, 634, 639, 647, 699, 707, 757, 758, 763, 765, 812, 820, 833, 849], "yield": [47, 67, 320, 321, 369, 378, 484, 644, 748, 812, 828], "x_batch_inst": 47, "form": [47, 49, 52, 53, 57, 62, 74, 76, 85, 96, 97, 98, 127, 128, 140, 145, 146, 312, 315, 329, 338, 369, 372, 376, 378, 429, 440, 471, 480, 484, 500, 535, 596, 598, 629, 634, 636, 637, 641, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 719, 730, 776, 791, 813, 818, 819, 837, 844, 847, 853, 854, 860, 870, 871, 876], "intialis": 47, "num_epoch": [47, 812], "inherit": [47, 824, 827, 833, 851, 855, 857], "creation": [47, 57, 74, 80, 103, 826, 829, 830, 836, 838, 841, 842, 844, 845, 849, 863, 870, 872, 876], "inform": [47, 49, 54, 57, 59, 77, 82, 165, 168, 319, 369, 535, 624, 630, 634, 635, 640, 717, 810, 812, 817, 818, 819, 820, 821, 823, 827, 828, 833, 837, 838, 840, 842, 844, 873], "insid": [47, 62, 85, 103, 378, 494, 637, 680, 774, 819, 820, 824, 827, 829, 830, 834, 837, 838, 844, 845, 863, 876], "ivynet": [47, 812], "h_w": [47, 812], "input_channel": [47, 792, 812, 849, 853], "output_channel": [47, 792, 812, 853], "gelu": [47, 48, 51, 73, 626, 788, 812], "image_widht": 47, "start_dim": [47, 57, 80, 378, 474, 812], "end_dim": [47, 57, 80, 378, 474, 812], "gpu_is_avail": [47, 631, 812], "120": [47, 70, 93, 103, 637, 682, 757, 812], "__name__": [47, 48, 50, 601, 634, 833], "heavi": [47, 778, 819, 841, 842, 847, 871], "lift": [47, 842, 871], "num_correct": [47, 812], "y_pred": 47, "epoch_loss": [47, 812], "field": [47, 62, 68, 85, 91, 376, 378, 429, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751, 828, 868, 876], "training_accuraci": [47, 812], "train_loss": 47, "train_correct": [47, 812], "train_loop": [47, 812], "leav": [47, 52, 57, 75, 77, 79, 80, 81, 84, 85, 87, 93, 103, 165, 168, 240, 297, 300, 301, 307, 378, 468, 469, 474, 486, 487, 488, 504, 505, 507, 523, 524, 529, 549, 597, 639, 641, 655, 666, 671, 687, 701, 705, 710, 712, 713, 718, 719, 728, 729, 730, 731, 757, 758, 805, 812, 818, 827, 828, 829, 831, 832, 836, 837, 840, 841, 844, 852, 853], "xbatch": [47, 812], "ybatch": [47, 812], "to_devic": [47, 55, 78, 196, 631, 794, 812], "entropi": [47, 63, 86, 638, 696, 697, 698, 812], "hot": [47, 53, 76, 141, 629, 812], "ybatch_encod": [47, 812], "one_hot": [47, 53, 76, 629, 812, 854], "loss_prob": [47, 812], "ret_grad_idx": [47, 617, 635, 773, 839], "xs_grad_idx": [47, 617, 635, 773, 839], "batch_loss": [47, 812], "set_descript": [47, 812], "set_postfix": [47, 812], "accuracy_percentag": [47, 812], "naverag": [47, 812], "6f": [47, 812], "_train_summari": 47, "writer": 47, "writerow": 47, "157it": 47, "06it": 47, "475401": 47, "11it": 47, "081436": 47, "13it": 47, "0187": 47, "029279": 47, "0324": 47, "008382": 47, "07it": 47, "00456": 47, "003816": 47, "82it": 47, "00277": 47, "002179": 47, "05it": 47, "00175": 47, "001569": 47, "00147": 47, "09it": 47, "00128": 47, "001005": 47, "106": 47, "10it": 47, "00112": 47, "000837": 47, "129": [47, 636, 655, 657], "12it": 47, "000989": 47, "000709": 47, "145": 47, "000873": 47, "000606": 47, "08it": 47, "000774": 47, "000524": 47, "000688": 47, "000455": 47, "000613": 47, "000398": 47, "000547": 47, "000350": 47, "205": 47, "000488": 47, "000308": 47, "218": 47, "000437": 47, "000273": 47, "000391": 47, "000243": 47, "238": [47, 247, 632], "98it": 47, "000351": 47, "000216": 47, "260": 47, "plot_summari": 47, "whitegrid": 47, "nrow": 47, "ncol": 47, "fontweight": 47, "bold": 47, "set_xlabel": 47, "set_ylabel": 47, "savefig": 47, "summary_plot": 47, "png": [47, 49, 50, 852], "save_weight": [47, 794], "model_param": 47, "ivynet_weight": 47, "hdf5": [47, 74, 794, 852], "deitimageprocessor": 48, "tfdeitforimageclassif": 48, "tfdeitforimageclassificationwithteach": 48, "distillation_classifi": 48, "cls_classifi": 48, "randomli": [48, 375, 399, 400, 401, 636, 659, 776, 777, 778, 779, 784, 792], "henc": [48, 68, 223, 338, 372, 632, 639, 645, 702, 749, 750, 751, 752, 801, 819, 827, 828, 829, 840, 844], "image_processor": [48, 863, 864], "distil": [48, 871], "patch16": 48, "outputs_from_original_model": 48, "bertforsequenceclassif": 48, "bertforpretrain": 48, "NOT": [48, 268, 632, 805, 818], "probabl": [48, 57, 61, 63, 66, 80, 84, 86, 89, 375, 377, 382, 387, 399, 400, 401, 454, 508, 522, 525, 529, 636, 638, 643, 659, 663, 666, 696, 738, 778, 791, 792, 812, 844, 856, 861], "ptarmigan": 48, "rf": [48, 820], "branch": [48, 228, 240, 243, 245, 273, 285, 286, 287, 290, 632, 819, 820, 823, 828, 835, 855, 863, 870], "moduleconvert": [48, 789, 794], "mc": 48, "from_keras_modul": [48, 789], "compiled_func": 48, "return_graph": [48, 50], "compiled_output": 48, "diverg": [48, 57, 80, 247, 377, 454, 632], "_all_funct": [48, 50], "convert_to_tensor_v2_with_dispatch": 48, "transpose_v2": 48, "convolution_v2": 48, "bias_add": 48, "binary_op_wrapp": 48, "cast": [48, 54, 56, 57, 62, 70, 77, 79, 85, 93, 152, 155, 180, 274, 387, 523, 524, 630, 632, 637, 647, 678, 694, 757, 758, 761, 763, 765, 777, 837, 842, 849, 867], "moments_v2": 48, "batch_norm": [48, 50, 57, 80, 381], "tensordot": [48, 62, 85, 637, 806, 829], "softmax_v2": 48, "_slice_help": 48, "save_to_disk": [48, 50, 794], "12265048989200113": 48, "11038777417100028": 48, "1167045795539998": 48, "ivy_api_kei": 49, "obj": [49, 127, 128, 557, 629, 634, 863, 864, 865], "combo": [49, 852], "permit": [49, 824, 836, 841, 844, 847], "usabl": [49, 836, 845], "neither": [49, 223, 240, 247, 273, 632, 637, 689, 828, 841, 847], "nor": [49, 223, 240, 247, 273, 632, 828, 841, 874], "specifc": 49, "invoc": 49, "externally_link": 49, "logo": 49, "patch": [49, 291, 632, 829, 870], "cv2_imshow": 49, "envrion": 49, "canni": 49, "original_img": 49, "fn_arg": 49, "dilate_edg": 49, "morphologi": 49, "hk_model": 49, "resnet18": [49, 50], "keras_model": 49, "odsc": 49, "talk": [49, 875], "228": 50, "352": [50, 84, 636, 660, 833], "nvidia_ml_py3": 50, "19190": 50, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 50, "b9": 50, "b1": [50, 637, 686], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 50, "cycler": 50, "fonttool": 50, "965": 50, "pillow": 50, "kiwisolv": 50, "show_graph": [50, 794], "to_ivy_modul": [50, 789, 854], "image_dim": 50, "v0": [50, 853], "urlerror": 50, "dev_str": 50, "comp_network": 50, "time_chronolog": 50, "ret0_nc": 50, "ret1_nc": 50, "ret0_c": 50, "ret1_c": 50, "pytorch_vision_v0": 50, "distribut": [50, 57, 63, 66, 80, 86, 89, 375, 376, 377, 382, 399, 400, 401, 434, 445, 451, 454, 456, 457, 459, 508, 509, 510, 511, 512, 638, 643, 696, 697, 698, 738, 739, 740, 741, 743, 791, 792, 818, 819, 828, 830, 855, 870, 873], "distributed_c10d": 50, "262": 50, "reduce_op": 50, "reduceop": 50, "004645566477999864": 50, "0044566806820000695": 50, "attribut": [50, 74, 165, 166, 167, 168, 199, 200, 208, 550, 551, 630, 631, 634, 774, 825, 826, 827, 832, 833, 837, 838, 840, 841, 847, 850, 851, 852, 853], "definit": [50, 56, 62, 79, 85, 292, 632, 637, 667, 812, 816, 820, 824, 829, 834, 837, 851, 864], "max_pool2d": [50, 57, 80, 375, 395], "__iadd__": 50, "adaptive_avg_pool2d": [50, 57, 80, 375], "_arraywithactiv": [51, 102], "abc": [51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 106, 548, 634, 641, 736, 791, 796, 805, 806, 851], "_abc_impl": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc_data": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "approxim": [51, 56, 57, 62, 73, 79, 80, 85, 97, 100, 110, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 247, 261, 262, 263, 264, 278, 285, 286, 290, 291, 292, 349, 359, 372, 377, 456, 457, 626, 632, 637, 680, 683, 788, 832, 841], "complex_mod": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "variant": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 683, 684, 685, 687, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 824, 831, 832, 847], "docstr": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 637, 639, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 818, 822, 826, 835, 836, 837, 838, 841, 843, 845], "liter": [51, 56, 57, 62, 73, 79, 80, 85, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 375, 376, 378, 381, 397, 407, 411, 419, 434, 440, 445, 448, 451, 484, 506, 626, 632, 637, 646, 678, 694, 755, 788, 847], "magnitud": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 220, 223, 240, 247, 273, 291, 295, 300, 301, 303, 367, 626, 632, 637, 687, 688, 788, 829], "handle_complex_input": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "element": [51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 98, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 129, 135, 136, 145, 146, 147, 163, 165, 168, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 342, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 387, 388, 399, 400, 401, 404, 409, 412, 413, 414, 418, 420, 421, 422, 428, 429, 430, 452, 462, 463, 464, 474, 475, 476, 478, 481, 491, 492, 494, 496, 498, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 537, 540, 541, 552, 553, 569, 571, 591, 592, 593, 595, 599, 600, 626, 629, 632, 634, 636, 637, 639, 641, 643, 644, 645, 646, 647, 648, 659, 668, 670, 672, 673, 677, 682, 684, 685, 687, 691, 699, 702, 703, 704, 705, 706, 707, 708, 709, 718, 721, 727, 738, 746, 747, 748, 749, 750, 751, 752, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 792, 806, 832, 842, 844, 847, 849, 874], "138": [51, 110, 626], "165": [51, 110, 626, 636, 660], "hardswish": [51, 57, 73, 80, 298, 367, 626, 788], "leaky_relu": [51, 73, 80, 295, 626, 777], "alpha": [51, 56, 57, 73, 79, 80, 107, 112, 223, 289, 295, 296, 304, 308, 314, 367, 369, 376, 381, 382, 430, 506, 509, 510, 511, 626, 632, 788, 836, 841, 842], "float": [51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 73, 76, 77, 79, 80, 81, 82, 84, 85, 86, 88, 89, 93, 97, 100, 102, 112, 118, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 142, 143, 148, 152, 156, 160, 165, 169, 173, 179, 180, 183, 189, 198, 207, 211, 212, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 251, 253, 254, 255, 256, 257, 259, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 302, 304, 307, 308, 310, 311, 312, 313, 314, 315, 317, 318, 319, 334, 335, 336, 337, 345, 346, 351, 353, 354, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 399, 400, 401, 418, 419, 426, 429, 430, 432, 445, 449, 451, 452, 453, 457, 458, 473, 491, 501, 502, 503, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 530, 531, 532, 539, 540, 541, 549, 558, 582, 583, 586, 592, 593, 613, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 640, 641, 642, 643, 644, 645, 647, 659, 661, 663, 666, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 696, 697, 698, 715, 716, 717, 724, 737, 740, 741, 747, 749, 750, 751, 752, 757, 758, 760, 761, 762, 763, 764, 765, 766, 773, 776, 777, 779, 788, 791, 792, 795, 796, 810, 816, 823, 827, 829, 832, 833, 834, 836, 837, 839, 840, 842, 844, 845, 847, 849, 851, 853], "slope": [51, 57, 73, 80, 112, 295, 296, 302, 304, 308, 367, 626, 788], "leaki": [51, 73, 112, 626, 788], "log_softmax": [51, 73, 626, 788], "0719": [51, 73, 113], "221": [51, 113], "mish": [51, 73, 626, 788], "30340147": [51, 114, 626], "86509842": [51, 73, 114, 626], "269": [51, 116], "881": [51, 56, 79, 116, 226, 239, 279, 632], "422": [51, 117, 626], "155": [51, 84, 117, 626, 636, 660], "softplu": [51, 73, 626, 788, 847], "beta": [51, 57, 65, 73, 80, 88, 118, 304, 308, 314, 317, 318, 367, 369, 376, 377, 381, 382, 430, 458, 506, 510, 511, 626, 642, 737, 788, 847], "threshold": [51, 56, 57, 73, 79, 80, 118, 271, 272, 311, 337, 367, 372, 377, 378, 453, 458, 491, 626, 632, 788, 847], "union": [51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 568, 569, 571, 572, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 791, 796, 797, 824, 827, 829, 830, 831, 833, 836, 837, 840, 845, 847, 849, 854, 863, 864, 865], "3461": [51, 73, 118, 626], "6491": [51, 73, 118, 626], "_array_to_new_backend": 52, "_to_ivi": 52, "_to_n": 52, "to_ignor": [52, 72, 95, 641, 729, 730], "_to_new_backend": 52, "args_to_ivi": 52, "include_deriv": [52, 75, 641, 719, 730, 773], "nest": [52, 74, 75, 103, 106, 243, 567, 597, 614, 617, 632, 634, 635, 640, 715, 716, 718, 719, 720, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 796, 824, 826, 827, 837, 839, 845, 852, 853, 855, 857, 870], "unchang": [52, 56, 375, 378, 420, 474, 636, 659], "deriv": [52, 53, 57, 59, 75, 76, 80, 82, 131, 136, 143, 149, 313, 317, 342, 369, 372, 615, 616, 619, 620, 621, 622, 623, 629, 635, 640, 641, 717, 719, 730, 794, 796, 797, 829, 830, 851, 853], "word": [52, 126, 378, 477, 629, 643, 741, 789, 792, 827, 840, 841, 857], "args_to_n": [52, 840], "cont_inplac": 52, "decid": [52, 74, 641, 729, 730, 812, 818, 819, 829, 847], "args_to_new_backend": 52, "shallow": [52, 641, 725, 726, 730, 735, 736], "nativevari": 52, "mutabl": [52, 641, 719, 725, 726, 730, 735, 736, 825], "to_ivi": [52, 75, 641, 731, 840], "leaf": [52, 74, 81, 93, 103, 548, 641, 728, 729, 731, 758, 827, 837, 852], "travers": [52, 75, 641, 722, 730, 827, 829, 833, 849], "lowest": [52, 57, 66, 75, 80, 89, 387, 525, 641, 643, 730, 739, 806, 837, 855, 857, 867, 871, 875], "search": [52, 57, 75, 80, 744, 745, 784, 817, 819, 827, 831, 834, 844, 845, 859], "to_new_backend": 52, "_arraywithcr": [53, 102], "boolean": [53, 54, 56, 57, 58, 64, 67, 70, 74, 76, 77, 79, 80, 81, 87, 90, 93, 102, 103, 123, 125, 127, 128, 129, 135, 152, 168, 170, 172, 173, 176, 192, 202, 210, 216, 230, 231, 232, 233, 234, 235, 267, 268, 269, 270, 335, 336, 351, 372, 376, 378, 434, 445, 451, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 492, 499, 534, 537, 548, 555, 558, 559, 563, 564, 565, 566, 567, 568, 569, 578, 581, 584, 585, 587, 588, 613, 628, 629, 630, 631, 632, 634, 636, 639, 640, 641, 644, 647, 663, 702, 703, 704, 706, 708, 709, 711, 713, 715, 716, 728, 746, 747, 748, 760, 762, 776, 777, 778, 779, 784, 795, 827, 829, 837, 841, 844, 847], "never": [53, 57, 64, 76, 80, 87, 128, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 820, 829, 840, 841, 844], "valueerror": [53, 57, 64, 76, 80, 87, 91, 128, 375, 377, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 499, 639, 702, 703, 704, 706, 708, 709, 711, 713, 752, 778, 807, 833], "buffer": [53, 76, 80, 87, 128, 134, 462, 463, 470, 472, 474, 475, 476, 483, 499, 629, 702, 703, 704, 706, 708, 709, 711, 713, 793, 794, 840, 855], "nativedtyp": [53, 54, 57, 61, 62, 66, 67, 70, 76, 80, 85, 89, 90, 93, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 151, 152, 157, 158, 159, 160, 161, 162, 163, 164, 169, 170, 174, 176, 178, 182, 192, 312, 313, 314, 315, 316, 317, 318, 333, 340, 356, 369, 372, 382, 387, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 629, 630, 636, 637, 643, 644, 646, 647, 659, 678, 694, 739, 740, 741, 744, 745, 755, 757, 758, 761, 763, 765, 791, 829, 830, 836, 845, 849], "datatyp": [53, 57, 74, 76, 80, 128, 136, 140, 157, 178, 182, 375, 423, 629, 630, 771, 845, 863], "nativedevic": [53, 55, 57, 66, 76, 78, 80, 89, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 194, 195, 196, 197, 198, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 312, 313, 328, 369, 382, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 791, 796, 797, 829, 830, 833, 836, 845], "39999998": [53, 127, 128, 629, 645, 750], "5999999": [53, 57, 80, 84, 127, 128, 297, 367, 376, 425, 629, 636, 659, 666], "0999999": [53, 70, 127, 128, 297, 307, 310, 353, 367, 372, 629, 761], "10000038": [53, 127, 128, 629], "90786433e": [53, 127, 128, 629], "310": [53, 127, 128, 629], "copy_arrai": [53, 76, 629], "to_ivy_arrai": [53, 76, 129, 629], "empty_lik": [53, 57, 76, 80, 264, 376, 428, 629, 632], "uniniti": [53, 130, 131, 629, 835], "from_dlpack": [53, 76, 629], "full_lik": [53, 76, 629, 845], "fill_valu": [53, 57, 67, 76, 80, 90, 135, 136, 252, 260, 378, 382, 492, 512, 629, 632, 644, 747, 829, 842, 845], "scalar": [53, 56, 57, 58, 62, 73, 76, 79, 80, 81, 85, 97, 112, 136, 141, 223, 244, 289, 295, 338, 339, 341, 346, 349, 351, 353, 358, 372, 375, 376, 377, 378, 423, 430, 452, 462, 463, 464, 473, 478, 600, 613, 629, 632, 634, 637, 694, 829, 839, 841, 855, 870], "fill": [53, 56, 57, 66, 67, 74, 76, 79, 80, 89, 90, 130, 135, 136, 138, 141, 142, 143, 148, 149, 274, 313, 369, 376, 378, 382, 434, 440, 445, 451, 473, 492, 493, 509, 511, 512, 629, 632, 643, 644, 739, 747, 791, 818, 842], "000123": [53, 136, 629], "stop": [53, 57, 59, 76, 80, 82, 126, 137, 138, 213, 376, 445, 451, 578, 616, 619, 621, 622, 623, 624, 629, 631, 634, 635, 640, 641, 715, 716, 717, 729, 796, 810, 836, 839, 847, 849, 855, 870], "num": [53, 76, 137, 138, 629, 776, 820, 836, 849], "endpoint": [53, 76, 137, 138, 629, 791, 836], "logspac": [53, 76, 629, 849], "sequenc": [53, 57, 61, 62, 64, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 132, 134, 136, 138, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 365, 366, 369, 372, 373, 374, 375, 376, 378, 382, 387, 388, 390, 391, 392, 399, 400, 401, 403, 404, 408, 409, 411, 418, 419, 420, 421, 422, 425, 433, 434, 435, 437, 443, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 469, 470, 471, 477, 479, 480, 482, 483, 485, 488, 490, 492, 493, 494, 496, 499, 500, 501, 503, 504, 505, 507, 509, 510, 522, 523, 524, 525, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 618, 619, 624, 629, 632, 634, 635, 636, 637, 639, 641, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 718, 725, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 797, 820, 828, 829, 830, 831, 833, 844, 845, 847, 849, 854, 873], "on_valu": [53, 76, 138, 141, 629], "off_valu": [53, 76, 138, 141, 629], "evenli": [53, 56, 57, 61, 64, 74, 76, 79, 80, 84, 87, 126, 137, 138, 292, 375, 418, 422, 629, 632, 636, 639, 649, 650, 651, 652, 654, 656, 658, 708], "hint": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 824, 832, 834, 836, 837, 840, 841, 845], "simplic": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 832, 847, 853], "nestabl": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 822, 831, 832, 840, 844, 857], "464": [53, 56, 89, 138, 227, 228, 632], "15888336": [53, 138], "2154": [53, 138], "43469003": [53, 138], "meshgrid": [53, 76, 629], "spars": [53, 57, 63, 76, 80, 86, 139, 316, 369, 376, 434, 445, 451, 629, 638, 698], "xy": [53, 76, 139, 629], "coordin": [53, 56, 67, 79, 80, 90, 139, 147, 228, 290, 320, 321, 328, 349, 369, 383, 513, 629, 632, 644, 747], "conserv": [53, 139, 629], "cartesian": [53, 139, 629], "matrix": [53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 102, 139, 145, 146, 147, 328, 329, 369, 376, 378, 387, 426, 429, 430, 433, 434, 435, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 482, 522, 534, 540, 629, 634, 636, 637, 660, 667, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 695, 776, 778, 791, 792, 806, 810, 818, 829, 841, 868, 870], "ij": [53, 70, 139, 629, 647, 759, 806], "rank": [53, 57, 62, 64, 71, 80, 85, 87, 94, 97, 98, 99, 100, 101, 106, 139, 323, 324, 325, 326, 327, 369, 376, 378, 387, 434, 435, 445, 448, 451, 484, 492, 496, 532, 629, 637, 639, 644, 648, 668, 670, 678, 680, 684, 686, 691, 693, 694, 701, 702, 710, 713, 714, 747, 767, 768, 813, 878], "ni": [53, 139, 629], "xi": [53, 139, 629], "scatter": [53, 58, 76, 81, 141, 576, 577, 629, 634, 826, 840, 847, 877], "j": [53, 56, 57, 58, 62, 70, 76, 79, 80, 85, 97, 125, 141, 221, 222, 223, 224, 226, 229, 238, 240, 243, 245, 253, 261, 263, 267, 273, 284, 286, 287, 290, 291, 338, 372, 375, 376, 387, 403, 404, 408, 419, 420, 424, 429, 431, 442, 448, 532, 537, 628, 629, 632, 634, 637, 647, 672, 691, 759, 806, 820, 822, 826, 863, 866], "unless": [53, 57, 62, 76, 80, 141, 273, 334, 351, 356, 372, 629, 632, 637, 680, 825, 830, 840, 855, 864, 865], "ones_lik": [53, 76, 629, 825, 854, 867], "tril": [53, 76, 629], "whose": [53, 56, 57, 58, 62, 64, 68, 70, 76, 79, 80, 81, 85, 87, 91, 93, 98, 100, 102, 136, 145, 146, 222, 226, 229, 237, 238, 239, 278, 279, 285, 286, 290, 291, 292, 329, 343, 344, 348, 352, 353, 355, 359, 369, 376, 378, 429, 450, 483, 492, 498, 539, 595, 629, 632, 634, 637, 639, 645, 647, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 694, 703, 707, 749, 750, 751, 758, 759, 778, 815, 832, 844], "innermost": [53, 57, 62, 85, 145, 146, 329, 369, 376, 429, 629, 637, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691], "mxn": [53, 57, 62, 85, 145, 146, 329, 369, 629, 637, 671, 678, 680, 681, 683, 684, 688, 691], "matric": [53, 57, 62, 80, 85, 97, 98, 102, 139, 145, 146, 329, 369, 376, 378, 429, 434, 435, 437, 443, 444, 449, 473, 629, 636, 637, 660, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 692, 778, 816, 834, 870], "diagon": [53, 57, 62, 80, 85, 98, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 430, 440, 446, 473, 629, 637, 670, 691], "triangular": [53, 57, 62, 85, 145, 146, 147, 328, 329, 369, 376, 446, 629, 637, 667, 673, 674, 680, 684], "triu": [53, 76, 629], "upper": [53, 57, 62, 66, 80, 85, 89, 132, 146, 147, 313, 329, 369, 376, 387, 446, 525, 629, 637, 643, 667, 673, 674, 684, 741, 829, 840, 844], "zeros_lik": [53, 57, 76, 152, 269, 378, 492, 615, 616, 619, 621, 622, 623, 629, 630, 632, 635, 637, 639, 684, 699, 841, 847], "data_typ": [54, 57, 77, 80, 182, 630, 826, 829, 844, 845], "_arraywithdatatyp": [54, 102], "irrespect": [54, 62, 77, 85, 152, 630, 637, 687, 827, 840, 851, 877], "promot": [54, 56, 57, 62, 77, 79, 80, 85, 92, 102, 103, 152, 155, 178, 179, 180, 186, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 346, 354, 359, 372, 375, 387, 419, 522, 585, 608, 630, 632, 634, 637, 639, 647, 667, 668, 675, 676, 677, 678, 679, 680, 682, 683, 685, 686, 693, 694, 700, 710, 753, 761, 764, 776, 777, 821, 823, 832, 833, 837, 846], "nan": [54, 56, 57, 58, 68, 70, 77, 79, 80, 81, 152, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 248, 249, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 279, 282, 283, 284, 285, 286, 287, 290, 291, 293, 300, 334, 335, 336, 347, 351, 356, 359, 367, 372, 378, 387, 492, 520, 521, 528, 529, 530, 531, 558, 613, 627, 630, 632, 634, 645, 647, 648, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 767, 768, 776, 779, 823, 829, 832, 839, 845, 846], "infin": [54, 56, 58, 62, 77, 79, 85, 152, 220, 221, 222, 223, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 282, 283, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 558, 627, 630, 632, 634, 637, 647, 648, 685, 694, 760, 762, 767, 768, 823, 832], "desir": [54, 55, 57, 67, 70, 74, 77, 78, 80, 90, 93, 97, 152, 154, 155, 214, 319, 360, 369, 372, 378, 387, 482, 528, 531, 532, 630, 631, 637, 644, 647, 689, 746, 761, 791, 792, 820, 825, 828, 829, 830, 841, 849, 859, 863, 870], "broadcast_arrai": [54, 77, 630], "mix": [54, 56, 77, 79, 80, 81, 86, 89, 102, 103, 153, 166, 167, 180, 199, 200, 230, 233, 234, 235, 240, 241, 247, 251, 259, 260, 270, 273, 276, 282, 377, 387, 458, 529, 548, 550, 551, 552, 553, 562, 597, 600, 630, 631, 632, 634, 636, 637, 638, 639, 642, 647, 650, 652, 655, 657, 658, 660, 666, 667, 689, 696, 698, 699, 737, 759, 761, 764, 777, 779, 818, 822, 829, 830, 831, 840, 847, 849, 857, 870, 874, 876], "broadcast_to": [54, 77, 630, 829], "can_cast": [54, 77, 630, 829, 837, 841], "accord": [54, 57, 58, 64, 70, 77, 87, 93, 155, 165, 223, 234, 240, 247, 273, 284, 319, 369, 375, 378, 420, 484, 552, 555, 576, 577, 630, 632, 634, 637, 639, 647, 693, 701, 714, 764, 766, 771, 778, 798, 805, 818, 819, 823, 829, 835, 837, 841, 844], "finfo": [54, 77, 630, 844], "resolut": [54, 77, 165, 630, 820], "4028235e": [54, 165, 630], "iinfo": [54, 77, 630], "integ": [54, 56, 57, 61, 62, 64, 66, 70, 71, 74, 79, 80, 81, 84, 85, 87, 89, 93, 94, 102, 103, 126, 135, 168, 169, 175, 179, 180, 184, 220, 230, 231, 232, 233, 234, 235, 236, 246, 247, 258, 270, 275, 278, 282, 283, 293, 294, 330, 331, 332, 335, 336, 340, 345, 346, 369, 372, 375, 378, 382, 385, 387, 403, 408, 418, 421, 422, 423, 470, 479, 484, 492, 496, 499, 508, 509, 510, 511, 512, 514, 515, 520, 522, 523, 524, 529, 532, 555, 571, 581, 614, 629, 630, 632, 634, 636, 637, 639, 643, 646, 647, 648, 649, 650, 651, 652, 654, 656, 658, 668, 670, 679, 693, 694, 708, 738, 739, 740, 741, 742, 743, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 784, 792, 806, 820, 827, 829, 839, 842, 844, 849, 851], "119": [54, 168], "1220": [54, 168], "int16": [54, 57, 66, 70, 77, 89, 155, 159, 161, 166, 168, 175, 190, 387, 523, 524, 630, 647, 739, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "32768": [54, 77, 168, 593, 634], "32767": [54, 77, 168], "is_bool_dtyp": [54, 77, 630], "is_float_dtyp": [54, 77, 630, 845], "is_int_dtyp": [54, 77, 630, 842, 845], "is_uint_dtyp": [54, 77, 630, 842, 845], "result_typ": [54, 77, 630, 829], "arrays_and_dtyp": [54, 77, 180, 630], "_arraywithdevic": [55, 102], "move": [55, 57, 78, 80, 147, 210, 214, 218, 328, 369, 378, 483, 629, 631, 794, 812, 820, 830, 845], "addit": [55, 57, 58, 65, 78, 80, 81, 88, 123, 125, 214, 223, 283, 377, 381, 387, 452, 506, 521, 526, 545, 546, 547, 614, 628, 631, 632, 634, 636, 640, 642, 663, 717, 737, 792, 806, 818, 819, 820, 825, 829, 831, 832, 835, 837, 839, 840, 841, 844, 845, 847, 851, 852, 854, 863, 870, 871, 872, 876], "__dlpack__": [55, 78, 133, 214, 629, 631], "caveat": [55, 78, 214, 377, 456, 631], "portabl": [55, 78, 214, 631, 812, 868], "_arraywithelementwis": [56, 102], "ab": [56, 62, 72, 79, 95, 102, 103, 278, 334, 351, 372, 378, 491, 632, 637, 641, 678, 688, 694, 726, 729, 773, 805, 806, 816, 824, 829, 834, 838, 841, 844, 867], "absolut": [56, 57, 62, 72, 74, 79, 80, 85, 102, 220, 284, 334, 351, 354, 360, 372, 376, 377, 430, 447, 453, 455, 632, 637, 678, 679, 680, 685, 771, 773, 776, 778, 779, 813, 819], "aco": [56, 79, 632], "invers": [56, 57, 62, 79, 80, 85, 221, 222, 225, 226, 227, 228, 229, 344, 372, 375, 385, 398, 407, 409, 419, 514, 632, 637, 676, 679, 683, 798, 829], "cosin": [56, 79, 221, 222, 237, 238, 312, 315, 369, 375, 397, 407, 632, 792], "acosh": [56, 79, 166, 167, 630, 632, 816, 834], "area": [56, 57, 79, 80, 84, 222, 226, 229, 375, 411, 418, 422, 632, 815, 840, 847, 860, 866], "hyperbol": [56, 79, 222, 226, 229, 238, 286, 290, 291, 304, 308, 367, 632], "sector": [56, 79, 222, 226, 229, 632, 860], "multipli": [56, 57, 61, 70, 79, 80, 84, 97, 223, 289, 352, 375, 376, 411, 442, 443, 523, 524, 632, 636, 647, 659, 757, 763, 820, 824, 825, 827, 831], "angl": [56, 79, 228, 238, 286, 291, 350, 372, 632], "deg": [56, 79, 224, 632], "radian": [56, 57, 79, 80, 221, 224, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 832], "degre": [56, 57, 70, 79, 80, 93, 224, 239, 279, 322, 369, 378, 490, 632, 647, 764, 766, 869], "1j": [56, 79, 80, 224, 225, 237, 238, 243, 245, 257, 280, 285, 286, 290, 338, 592, 632, 634], "2j": [56, 57, 79, 80, 224, 253, 338, 375, 403, 408, 593, 632, 634], "3j": [56, 57, 79, 80, 224, 257, 280, 338, 372, 632], "35619449": [56, 224, 632], "78539816": [56, 224, 632], "135": [56, 224, 540, 632, 634], "asin": [56, 79, 632], "sine": [56, 79, 225, 226, 285, 286, 632], "927": [56, 79, 225], "asinh": [56, 79, 225, 632], "atan": [56, 79, 632], "tangent": [56, 79, 227, 228, 229, 290, 291, 304, 308, 365, 367, 374, 632, 832], "785": [56, 79, 227, 228, 632], "atan2": [56, 79, 632], "quotient": [56, 79, 228, 240, 247, 632], "588": [56, 228, 632], "inf": [56, 57, 58, 62, 79, 80, 81, 85, 228, 245, 254, 255, 256, 257, 261, 262, 264, 274, 300, 344, 354, 367, 372, 376, 387, 426, 525, 558, 613, 627, 632, 634, 636, 637, 664, 678, 694, 776, 779, 816, 829, 834, 839], "719": [56, 228, 632], "atanh": [56, 79, 632], "549": [56, 79, 84, 229, 632, 636, 660], "bitwise_and": [56, 79, 632], "bitwise_invert": [56, 79, 632], "bitiwse_invert": [56, 231], "bitwise_left_shift": [56, 79, 632], "bitwise_or": [56, 79, 632], "bitwise_right_shift": [56, 79, 102, 632], "bitwise_xor": [56, 79, 102, 632], "ceil": [56, 57, 79, 80, 97, 100, 126, 375, 394, 395, 396, 412, 413, 414, 417, 629, 632, 792, 840], "416": [56, 237, 632], "540": [56, 237], "990": [56, 237], "cosh": [56, 79, 237, 632], "deg2rad": [56, 79, 632], "180": [56, 79, 239, 279, 632], "270": [56, 79, 239, 279, 632], "360": [56, 79, 239, 279, 632, 828], "dividend": [56, 79, 240, 247, 282, 294, 632], "divisor": [56, 57, 59, 70, 79, 80, 82, 93, 240, 247, 250, 251, 282, 294, 375, 378, 394, 395, 396, 470, 479, 499, 615, 616, 621, 632, 635, 647, 764, 766, 792, 796], "375": [56, 241, 276], "erf": [56, 79, 343, 372, 632], "exponenti": [56, 57, 79, 80, 242, 243, 245, 265, 278, 295, 305, 367, 376, 441, 632], "gauss": [56, 79, 242, 632], "328": [56, 242, 290, 632], "677": [56, 242], "842": [56, 242, 290, 632], "71828198": [56, 79, 243], "38905573": [56, 79, 243], "08553696": [56, 79, 243, 632], "exp2": [56, 79, 632], "expm1": [56, 79, 632, 829], "244": [56, 245, 812], "918": [56, 245], "147": [56, 245, 632], "floor": [56, 57, 79, 80, 97, 100, 234, 247, 375, 394, 395, 396, 398, 412, 413, 414, 417, 632, 792, 840], "floor_divid": [56, 79, 632, 784, 829], "fmin": [56, 79, 632, 829], "gcd": [56, 79, 632, 829], "greater": [56, 57, 61, 64, 66, 79, 80, 84, 89, 102, 103, 134, 221, 222, 225, 226, 228, 229, 232, 234, 240, 246, 247, 261, 263, 278, 282, 284, 286, 287, 291, 292, 293, 337, 372, 375, 398, 403, 408, 419, 629, 632, 636, 637, 639, 643, 666, 668, 679, 709, 741, 778, 792, 820, 821, 842, 867], "greater_equ": [56, 79, 102, 103, 265, 632, 867], "isfinit": [56, 79, 632, 841], "out_i": [56, 79, 254, 255, 256, 257, 280, 632], "self_i": [56, 79, 254, 255, 256, 257, 280], "finit": [56, 79, 220, 221, 222, 223, 226, 228, 229, 238, 240, 241, 243, 245, 247, 254, 255, 261, 263, 273, 274, 276, 278, 282, 286, 287, 291, 632], "isinf": [56, 79, 632], "detect_posit": [56, 79, 255, 632], "detect_neg": [56, 79, 255, 632], "isnan": [56, 79, 632], "isreal": [56, 79, 632], "5j": [56, 79, 80, 257, 280, 338, 372, 632], "6j": [56, 57, 79, 253, 257, 338, 632], "lcm": [56, 79, 632, 829], "less": [56, 57, 62, 66, 70, 79, 80, 85, 89, 102, 103, 221, 222, 225, 228, 229, 236, 240, 247, 261, 262, 263, 264, 278, 282, 284, 287, 358, 372, 375, 376, 387, 397, 398, 407, 419, 445, 451, 522, 525, 632, 637, 643, 647, 678, 679, 680, 683, 694, 741, 764, 766, 792, 819, 820, 827, 829, 831, 833, 836, 841, 844, 847, 848, 849, 860, 867, 870, 872], "less_equ": [56, 79, 102, 103, 632, 833, 867], "log10": [56, 57, 79, 319, 369, 632], "logarithm": [56, 79, 243, 261, 262, 263, 264, 265, 342, 354, 372, 632, 637, 685], "602": [56, 262, 632], "699": [56, 262, 632], "log1p": [56, 79, 632, 839], "693": [56, 79, 117, 226, 263, 626, 632], "0953": [56, 79, 261, 263, 632], "log2": [56, 79, 266, 632], "logaddexp": [56, 79, 632], "logaddexp2": [56, 79, 632, 816, 834], "169925": [56, 79, 266, 632], "logical_and": [56, 79, 632, 841, 847, 877], "logical_not": [56, 79, 632, 829], "logical_or": [56, 79, 632, 877], "conform": [56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 832, 835], "api_specif": [56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 419, 492, 630, 632, 639, 647, 714, 764, 832], "array_api": [56, 79, 155, 243, 253, 254, 269, 375, 378, 419, 492, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832], "logical_xor": [56, 79, 632], "use_wher": [56, 79, 271, 272, 632], "formula": [56, 57, 79, 240, 262, 264, 271, 272, 273, 319, 353, 369, 372, 381, 501, 503, 632, 810], "exce": [56, 57, 80, 272, 378, 494, 632], "product": [56, 57, 61, 62, 70, 79, 80, 84, 85, 93, 97, 98, 100, 273, 365, 366, 374, 376, 378, 387, 425, 428, 432, 435, 436, 437, 442, 443, 444, 496, 523, 524, 531, 632, 636, 637, 647, 663, 666, 668, 675, 677, 682, 689, 693, 757, 758, 759, 763, 764, 806, 818, 849, 870, 872], "nan_to_num": [56, 79, 632], "posinf": [56, 79, 274, 632], "neginf": [56, 79, 274, 632], "5e": [56, 59, 79, 80, 274, 357, 621, 632, 635], "not_equ": [56, 79, 102, 103, 632, 867], "pow": [56, 79, 102, 103, 632, 823, 867], "expon": [56, 57, 58, 80, 81, 278, 346, 348, 352, 372, 381, 506, 593, 632, 634, 637, 679], "rad2deg": [56, 79, 632], "286": [56, 80, 279], "458": [56, 279], "573": [56, 279, 632], "reciproc": [56, 79, 632], "333": [56, 79, 240, 281, 632], "remaind": [56, 57, 64, 74, 79, 80, 87, 249, 632, 639, 708, 823, 840], "modulu": [56, 79, 282, 632, 840], "x2_i": [56, 79, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "678": [56, 283, 284], "np_variant": [56, 79, 284, 632], "841": [56, 73, 79, 110, 285, 626, 632], "909": [56, 79, 81, 285, 632], "141": [56, 79, 152, 285, 630, 632], "sinh": [56, 79, 285, 632], "232": [56, 79, 286, 632], "sqrt": [56, 57, 79, 80, 375, 398, 403, 404, 408, 409, 419, 632, 791, 792, 812], "squar": [56, 57, 62, 79, 80, 85, 287, 376, 377, 381, 387, 429, 441, 453, 506, 522, 617, 618, 620, 625, 632, 635, 637, 641, 667, 669, 670, 672, 673, 674, 676, 679, 685, 686, 687, 692, 724, 812], "tanh": [56, 57, 79, 80, 290, 304, 308, 367, 632, 788, 849], "762": [56, 79, 291, 632], "964": [56, 79, 291, 632], "trapz": [56, 79, 632], "dx": [56, 79, 292, 632], "apart": [56, 79, 292, 632], "trapezoid": [56, 79, 292, 632], "trunc": [56, 79, 632], "025": [56, 293, 377, 458, 632, 640, 717], "trunc_divid": [56, 79, 632], "_arraywithactivationsexperiment": [57, 102], "celu": [57, 80, 367], "formul": [57, 73, 80, 98, 110, 295, 297, 367, 788], "elu": [57, 80, 299, 367, 788], "scaler": [57, 80, 296, 367, 776, 779, 844], "hardshrink": [57, 80, 367], "lambd": [57, 80, 297, 307, 367], "hardsilu": [57, 80, 367], "66666667": [57, 119, 298, 387, 522, 626], "hardtanh": [57, 80, 367], "max_val": [57, 80, 299, 367], "min_val": [57, 80, 299, 367], "region": [57, 80, 299, 307, 367, 819], "19722438": [57, 80, 300, 367], "38629448": [57, 80, 300, 367], "38629436": [57, 80, 300, 367], "logsigmoid": [57, 80, 367, 788], "31326175": [57, 73, 301, 367], "126928": [57, 80, 301], "01814993": [57, 301], "00004578": [57, 301], "57888985": [57, 301], "31326169": [57, 80, 301, 367], "69314718": [57, 62, 73, 80, 85, 301, 354, 367, 372, 637, 685], "01104775": [57, 301], "prelu": [57, 80, 367, 788], "unidirect": [57, 302, 367, 636, 661], "relu6": [57, 80, 367, 788], "rectifi": [57, 73, 80, 112, 114, 115, 303, 306, 311, 367, 626], "scaled_tanh": [57, 80, 308, 367], "7159": [57, 80, 304, 308, 367], "amplitud": [57, 80, 304, 308, 367], "65537548": [57, 80, 304], "49570239": [57, 80, 304], "77637792": [57, 304], "selu": [57, 80, 367, 788], "11133075": [57, 305, 367], "05070102": [57, 80, 305, 367], "10140204": [57, 305, 367], "15210295": [57, 305, 367], "20280409": [57, 305, 367], "25350523": [57, 305, 367], "30420589": [57, 305, 367], "35490704": [57, 305, 367], "silu": [57, 80, 367, 788], "26894143": [57, 306], "73105854": [57, 80, 306], "softshrink": [57, 80, 367], "bound": [57, 80, 307, 319, 367, 369, 378, 467, 492, 493, 776, 829, 833, 841, 844, 849, 876], "tanhshrink": [57, 80, 367], "23840582": [57, 80, 309, 367], "condit": [57, 67, 80, 90, 123, 310, 325, 326, 369, 376, 426, 628, 641, 644, 728, 729, 748, 778, 823, 829, 831, 833, 837, 838, 840, 844, 863], "met": [57, 80, 310, 833], "hreshold": [57, 310], "thresholded_relu": [57, 80, 367], "_arraywithconversionsexperiment": [57, 102], "_arraywithcreationexperiment": [57, 102], "blackman_window": [57, 80, 369], "period": [57, 80, 286, 290, 312, 314, 315, 317, 318, 369, 375, 410, 632, 820], "window": [57, 61, 80, 84, 312, 314, 315, 317, 318, 333, 369, 375, 381, 394, 395, 396, 398, 412, 413, 414, 415, 417, 418, 422, 423, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 814, 820, 826, 834, 875], "symmetr": [57, 62, 80, 85, 97, 98, 312, 314, 315, 317, 318, 369, 376, 378, 429, 484, 637, 667, 672, 673, 674, 695, 827], "38777878e": [57, 80, 312, 369], "40000000e": [57, 312, 369], "00000000e": [57, 62, 80, 81, 312, 343, 344, 369, 375, 397, 403, 407, 408, 637, 684, 816, 834], "30000000e": [57, 80, 312, 369], "eye_lik": [57, 80, 369], "elsewher": [57, 80, 132, 313, 369, 629, 644, 748, 819], "mel_weight_matrix": [57, 80, 369], "num_mel_bin": [57, 80, 319, 369], "dft_length": [57, 80, 319, 369, 375, 398], "sample_r": [57, 80, 319, 369], "lower_edge_hertz": [57, 80, 319, 369], "upper_edge_hertz": [57, 80, 319, 369], "3000": [57, 80, 319, 369], "melweightmatrix": [57, 80, 319, 369], "linearli": [57, 58, 81, 319, 369, 549, 634, 637, 686], "frequenc": [57, 58, 80, 81, 319, 369, 387, 522, 549, 634, 820], "spectra": [57, 319, 369], "dft": [57, 80, 319, 369, 375], "stft": [57, 80, 319, 369, 375], "mel": [57, 80, 319, 369], "hertz": [57, 319, 369], "2595": [57, 319, 369], "700": [57, 81, 319, 369, 553], "band": [57, 58, 80, 81, 319, 369, 549, 634], "spectrum": [57, 80, 319, 369], "n_fft": [57, 80, 319, 369, 375, 398], "8000": [57, 80, 314, 319, 369], "75694758": [57, 319, 369], "trilu": [57, 80, 369], "retain": [57, 147, 328, 329, 369, 617, 629, 635, 839, 843, 857], "unsorted_segment_mean": [57, 80, 369], "segment_id": [57, 80, 330, 331, 332, 369, 798], "num_seg": [57, 80, 330, 331, 332, 369, 798], "identifi": [57, 80, 330, 331, 332, 369, 818, 823, 828, 829, 844, 847], "th": [57, 80, 98, 330, 331, 332, 341, 369, 372, 376, 377, 387, 427, 434, 452, 532], "unsorted_segment_min": [57, 80, 369], "unsorted_segment_sum": [57, 80, 369], "polyv": [57, 80, 369], "coeff": [57, 80, 322, 369], "polynomi": [57, 80, 322, 369], "coeffici": [57, 80, 314, 322, 369, 376, 446, 637, 686, 796], "indetermin": [57, 80, 322, 369], "simplifi": [57, 80, 322, 369, 805, 806, 833, 841, 849, 850, 853, 860, 863, 866, 868, 869, 870, 873, 876, 877], "substitut": [57, 80, 322, 369], "_arraywithdata_typeexperiment": [57, 102], "_arraywithdeviceexperiment": [57, 102], "_arraywithelementwiseexperiment": [57, 102], "equal_nan": [57, 80, 334, 351, 372], "1e10": [57, 334, 351, 372], "00001e10": [57, 334, 351, 372], "00001e": [57, 334, 372], "amax": [57, 80, 372], "keepdim": [57, 62, 64, 67, 70, 71, 74, 80, 85, 87, 90, 93, 94, 335, 336, 340, 356, 363, 372, 373, 378, 387, 489, 527, 528, 529, 530, 531, 532, 637, 639, 644, 647, 648, 678, 694, 713, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 833, 841, 849], "singleton": [57, 62, 67, 70, 71, 80, 85, 90, 93, 94, 335, 336, 372, 637, 639, 644, 647, 648, 694, 702, 709, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 849], "amin": [57, 80, 372], "binar": [57, 80, 372], "conj": [57, 80, 238, 243, 245, 286, 287, 291, 372, 632], "conjug": [57, 62, 80, 85, 338, 372, 375, 376, 382, 398, 424, 430, 442, 444, 446, 510, 637, 677, 681, 689], "copysign": [57, 80, 372], "unsign": [57, 70, 80, 339, 372, 378, 387, 492, 523, 524, 647, 757, 758, 763, 765, 777, 829, 849], "count_nonzero": [57, 80, 372], "diff": [57, 74, 80, 372, 831, 840, 867], "prepend": [57, 80, 341, 372, 637, 639, 677, 702, 819], "differenc": [57, 80, 341, 372], "prior": [57, 80, 341, 372, 382, 510, 637, 689, 833, 845], "expand": [57, 58, 64, 80, 81, 341, 372, 378, 496, 549, 634, 639, 702, 812, 827, 843], "discret": [57, 80, 341, 372, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 638, 697, 792], "digamma": [57, 80, 372], "7549271": [57, 342, 372], "92278427": [57, 80, 342, 372], "9988394": [57, 342, 372], "erfc": [57, 80, 372], "complementari": [57, 80, 333, 343, 369, 372, 868, 876], "84270084e": [57, 343, 344], "80259693e": [57, 343, 344], "erfinv": [57, 80, 372], "float_pow": [57, 80, 372], "fmax": [57, 80, 372], "fmod": [57, 80, 632], "divis": [57, 58, 59, 80, 81, 82, 234, 240, 247, 249, 282, 284, 294, 378, 470, 583, 592, 606, 615, 616, 621, 632, 634, 635, 636, 649, 656, 657, 796, 837, 846], "frexp": [57, 80, 372], "edge_ord": [57, 80, 349, 372], "boundari": [57, 66, 80, 89, 100, 325, 326, 349, 369, 372, 375, 411, 643, 741, 870], "33333333": [57, 80, 281, 349, 372, 452, 632], "hypot": [57, 80, 372], "hypotenus": [57, 350, 372], "4031": [57, 350, 372], "8102": [57, 350, 372], "isclos": [57, 80, 372, 823], "ldexp": [57, 80, 372], "lerp": [57, 80, 372], "lgamma": [57, 80, 372], "45373654": [57, 354, 372], "6477685": [57, 354, 372], "modf": [57, 80, 372], "fraction": [57, 80, 355, 372, 387, 532, 636, 659], "nansum": [57, 80, 372], "accumul": [57, 80, 356, 372, 378, 489], "nextaft": [57, 80, 372], "0e": [57, 59, 80, 82, 357, 372, 621, 635], "4013e": [57, 80, 357, 372], "4028e": [57, 80, 357, 372], "signbit": [57, 80, 372], "637": [57, 80, 359, 372], "0909": [57, 80, 359, 372], "sparsify_tensor": [57, 80, 372], "sparsifi": [57, 80, 360, 372], "arang": [57, 62, 70, 80, 85, 137, 360, 372, 375, 376, 394, 395, 396, 403, 408, 412, 413, 414, 417, 426, 443, 476, 572, 614, 629, 634, 637, 640, 647, 678, 694, 716, 717, 759, 812, 829, 840, 877], "xlogi": [57, 80, 372], "0986": [57, 80, 361, 372], "3863": [57, 80, 361, 372], "0000": [57, 80, 314, 315, 318, 344, 361, 369, 372, 376, 378, 441, 478], "zeta": [57, 80, 372], "0369": [57, 80, 362, 372], "_arraywithgeneralexperiment": [57, 102], "init_valu": [57, 80, 84, 363, 373, 375, 418], "reduct": [57, 58, 63, 71, 74, 80, 81, 84, 86, 94, 363, 373, 375, 377, 378, 418, 452, 453, 454, 455, 456, 457, 458, 459, 489, 546, 576, 577, 634, 638, 648, 696, 697, 698, 767, 768, 793, 829, 837, 840, 844, 851], "_arraywithgradientsexperiment": [57, 102], "_arraywithimageexperiment": [57, 102], "_arraywithlayersexperiment": [57, 102], "adaptive_avg_pool1d": [57, 80, 375], "1d": [57, 80, 97, 98, 375, 376, 378, 387, 389, 397, 399, 401, 407, 442, 462, 467, 489, 493, 522, 776, 792], "adapt": [57, 80, 82, 375, 389, 390, 391, 392, 622, 635, 792, 796, 860], "plane": [57, 80, 240, 243, 245, 273, 285, 286, 287, 290, 375, 378, 389, 390, 391, 392, 490, 632], "l_in": [57, 80, 375, 389], "spatial": [57, 61, 80, 84, 375, 381, 389, 390, 391, 392, 411, 418, 422, 501, 502, 503, 506, 636, 649, 650, 651, 652, 654, 656, 658, 795], "Will": [57, 80, 375, 389, 390, 391, 392, 801, 855], "l_out": [57, 80, 375, 389], "nhwc": [57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792], "3d": [57, 62, 80, 375, 390, 392, 399, 400, 464, 637, 675, 792, 847], "4d": [57, 80, 375, 376, 381, 390, 400, 401, 450, 506], "s_0": [57, 80, 375, 390, 391], "s_1": [57, 80, 375, 390, 391], "adaptive_max_pool2d": [57, 80, 375], "h_in": [57, 80, 375, 391, 392], "w_in": [57, 80, 375, 391, 392], "adaptive_max_pool3d": [57, 80, 375], "avg_pool1d": [57, 80, 375], "kernel": [57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 636, 662, 849, 855, 870, 873, 874], "nwc": [57, 61, 80, 84, 375, 394, 399, 412, 415, 636, 649, 650, 651, 656, 657, 792], "count_include_pad": [57, 80, 375, 394, 395, 396, 792], "d_in": [57, 61, 80, 84, 375, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658], "algorithm": [57, 61, 73, 80, 84, 110, 375, 376, 394, 395, 396, 411, 412, 413, 414, 415, 445, 447, 451, 637, 650, 652, 653, 654, 655, 658, 685, 788, 792, 806, 829, 841, 847, 855, 870, 872, 874], "ncw": [57, 61, 80, 84, 375, 394, 399, 400, 412, 415, 636, 649, 650, 651, 656, 657, 792], "avg_pool2d": [57, 80, 375], "divisor_overrid": [57, 80, 375, 394, 395, 396, 792], "avg_pool3d": [57, 80, 375], "ndhwc": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "volum": [57, 61, 80, 84, 375, 396, 398, 403, 404, 408, 414, 636, 654, 655], "ncdhw": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "dct": [57, 80, 375, 792, 852], "truncat": [57, 80, 375, 376, 397, 403, 407, 408, 409, 420, 449, 579, 634, 792, 833, 852], "larger": [57, 64, 70, 80, 87, 93, 165, 375, 397, 404, 407, 409, 420, 630, 639, 647, 699, 707, 764, 766, 792, 844, 847, 877], "ortho": [57, 80, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 792], "onesid": [57, 80, 375, 398], "fft": [57, 80, 375, 398, 404, 419, 420, 423, 792, 818, 870], "symmetri": [57, 375, 398], "rfft": [57, 80, 375, 398, 420], "invok": [57, 375, 398, 812, 835, 863, 864], "batch_idx": [57, 375, 398], "signal_dim1": [57, 375, 398], "signal_dim2": [57, 375, 398], "signal_dimn": [57, 375, 398], "signal_dim": [57, 375, 398], "embed": [57, 80, 375, 377, 452, 636, 663, 778, 792, 870], "max_norm": [57, 58, 80, 81, 375, 402, 540, 541, 634, 792], "ifft": [57, 80, 375, 403, 409, 792], "pi": [57, 80, 286, 290, 375, 377, 403, 408, 457, 627, 632], "44509285e": [57, 80, 375, 403], "14423775e": [57, 80, 375, 403], "17j": [57, 80, 375, 403, 408], "11483250e": [57, 80, 375, 403], "16j": [57, 80, 375, 403, 408], "33486982e": [57, 80, 375, 403], "22464680e": [57, 80, 375, 403], "95799250e": [57, 80, 375, 403], "66951701e": [57, 80, 375, 403], "fft2": [57, 375], "20477401j": [57, 375, 404], "0614962j": [57, 375, 404], "idct": [57, 80, 375], "49862671": [57, 80, 375, 397, 407], "37691498": [57, 80, 375, 397, 407], "00390816": [57, 80, 375, 397, 407], "58938599": [57, 80, 375, 397, 407], "92713165": [57, 80, 375, 397, 407], "078475": [57, 80, 375, 397, 407], "19664812": [57, 80, 375, 397, 407], "95411837": [57, 80, 375, 397, 407], "30636606e": [57, 80, 375, 408], "43029718e": [57, 80, 375, 408], "18j": [57, 80, 375, 403, 408], "53080850e": [57, 80, 375, 408], "58689626e": [57, 80, 375, 408], "24474906e": [57, 80, 375, 408], "91858728e": [57, 80, 375, 408], "01435406e": [57, 80, 375, 408], "ifftn": [57, 80, 375], "24730653": [57, 80, 375, 409], "90832391j": [57, 80, 375, 409], "49495562": [57, 80, 375, 409], "9039565j": [57, 80, 375, 409], "98193269": [57, 80, 375, 409], "49560517j": [57, 80, 375, 409], "93280757": [57, 80, 375, 409], "48075343j": [57, 80, 375, 409], "28526384": [57, 80, 375, 409], "3351205j": [57, 80, 375, 409], "2343787": [57, 80, 375, 409], "83528011j": [57, 80, 375, 409], "18791352": [57, 80, 375, 409], "30690572j": [57, 80, 375, 409], "82115787": [57, 80, 375, 409], "96195183j": [57, 80, 375, 409], "44719226": [57, 80, 375, 409], "72654048j": [57, 80, 375, 409], "51476765": [57, 375, 409], "66160417j": [57, 375, 409], "04319742": [57, 375, 409], "05411636j": [57, 375, 409], "015561": [57, 375, 409], "04216015j": [57, 375, 409], "06310689": [57, 375, 409], "05347854j": [57, 375, 409], "13392983": [57, 375, 409], "16052352j": [57, 375, 409], "08371392": [57, 375, 409], "17252843j": [57, 375, 409], "0031429": [57, 375, 409], "05421245j": [57, 375, 409], "10446617": [57, 375, 409], "17747098j": [57, 375, 409], "05344324": [57, 375, 409], "07972424j": [57, 375, 409], "8344667": [57, 80, 375, 409], "98222595j": [57, 80, 375, 409], "48472244": [57, 80, 375, 409], "30233797j": [57, 80, 375, 409], "recompute_scale_factor": [57, 80, 375, 411, 847], "antialia": [57, 80, 375, 411, 847], "height": [57, 58, 61, 80, 81, 84, 375, 411, 545, 634, 636, 652, 653, 654, 655, 658, 821, 852], "width": [57, 58, 61, 80, 81, 84, 375, 376, 378, 381, 387, 411, 430, 484, 506, 525, 545, 634, 636, 650, 651, 652, 653, 654, 655, 658, 663], "trilinear": [57, 80, 375, 411, 847], "nearest_exact": [57, 80, 375, 411, 847], "tf_area": [57, 80, 375, 411, 847], "mitchellcub": [57, 80, 375, 411, 847], "lanczos3": [57, 80, 375, 411, 847], "lanczos5": [57, 80, 375, 411, 847], "gaussian": [57, 80, 110, 375, 411, 626, 847], "overwrit": [57, 74, 80, 213, 375, 411, 631, 820, 840, 841, 849], "thu": [57, 80, 234, 247, 282, 290, 291, 375, 376, 411, 429, 632, 637, 672, 673, 818, 828, 833, 838, 841, 845], "antialias": [57, 80, 411], "max_pool1d": [57, 80, 375], "dilaton": [57, 80, 412, 413, 414], "max_pool3d": [57, 80, 375], "max_unpool1d": [57, 80, 375], "unpool": [57, 80, 375, 415], "reduce_window": [57, 84, 375], "window_dimens": [57, 84, 375, 418], "window_strid": [57, 84, 375, 418], "base_dil": [57, 84, 375, 418], "window_dil": [57, 84, 375, 418], "trim": [57, 74, 80, 375, 378, 419, 495], "orthonorm": [57, 62, 80, 85, 375, 419, 637, 684, 687], "8660254j": [57, 80, 375, 419], "rfftn": [57, 80, 375], "sliding_window": [57, 80, 375], "window_s": [57, 80, 375, 422], "frame_length": [57, 80, 375, 423], "frame_step": [57, 80, 375, 423], "fft_length": [57, 80, 375, 423], "window_fn": [57, 80, 375, 423], "pad_end": [57, 80, 375, 423], "smallest": [57, 74, 80, 165, 168, 236, 375, 378, 423, 494, 630, 632, 637, 678, 776, 778, 779], "enclos": [57, 80, 375, 423, 871], "window_length": [57, 80, 312, 314, 317, 318, 333, 369, 375, 423], "li": [57, 80, 375, 376, 387, 423, 430, 532, 859], "past": [57, 80, 375, 423, 820, 823, 842, 844, 856, 870], "fft_unique_bin": [57, 80, 375, 423], "complex64": [57, 77, 80, 158, 172, 181, 187, 253, 280, 375, 419, 423, 630, 632, 637, 685, 687, 688, 777, 829, 834], "complex128": [57, 80, 81, 158, 159, 172, 181, 187, 375, 423, 571, 630, 634, 637, 673, 674, 678, 694, 776, 777, 816, 829, 834], "compon": [57, 80, 142, 143, 221, 222, 223, 226, 229, 238, 240, 241, 243, 245, 273, 275, 276, 283, 286, 287, 290, 291, 323, 327, 338, 369, 372, 375, 376, 381, 423, 434, 445, 506, 629, 632, 644, 747, 812, 843, 849, 860, 866, 871, 873], "linear_algebra": [57, 62, 80, 85, 637, 845], "_arraywithlinearalgebraexperiment": [57, 102], "adjoint": [57, 62, 80, 85, 376, 446, 637, 676, 686, 687, 776], "batched_out": [57, 80, 376], "j1": [57, 80, 376, 425], "jn": [57, 80, 376, 425], "k1": [57, 80, 376, 425], "km": [57, 80, 376, 425], "outer": [57, 62, 80, 85, 97, 376, 425, 637, 640, 715, 716, 717, 806, 818], "30000001": [57, 80, 376, 425, 545, 634, 645, 750], "40000001": [57, 61, 73, 80, 102, 103, 112, 115, 296, 367, 376, 425, 626, 636, 645, 666, 750], "60000002": [57, 80, 93, 103, 376, 381, 425, 505, 507, 541, 634, 761], "80000001": [57, 80, 376, 381, 425, 505, 507], "60000001": [57, 80, 376, 425], "90000004": [57, 80, 376, 425, 647, 761], "20000002": [57, 80, 376, 425, 541, 634], "20000005": [57, 59, 80, 296, 304, 307, 308, 367, 376, 425, 615], "00000012": [57, 80, 376, 425], "49999994": [57, 80, 376, 425], "00000006": [57, 80, 376, 425], "60000014": [57, 80, 376, 425], "19999993": [57, 80, 376, 425], "80000007": [57, 80, 376, 425, 541, 634], "20000017": [57, 80, 376, 425], "89999992": [57, 80, 376, 425], "60000008": [57, 80, 376, 425], "80000019": [57, 80, 353, 372, 376, 425], "4000001": [57, 80, 84, 376, 425, 636, 659, 666], "cond": [57, 80, 123, 376, 628, 855], "933034373659268": [57, 426], "diagflat": [57, 80, 376, 436, 441], "offset": [57, 62, 65, 76, 80, 85, 88, 134, 376, 381, 427, 501, 502, 503, 629, 637, 642, 671, 691, 737, 783], "padding_valu": [57, 80, 376, 427], "right_left": [57, 80, 376, 427], "num_row": [57, 80, 376, 427], "num_col": [57, 80, 376, 427], "dot": [57, 61, 80, 84, 97, 376, 377, 443, 452, 636, 637, 663, 666, 693, 806, 812, 819, 828], "eig": [57, 62, 80, 376, 637, 673, 674], "37228132": [57, 80, 376, 429, 431, 672], "82456484": [57, 429, 672], "41597356": [57, 429, 672], "56576746": [57, 429, 672], "90937671": [57, 429, 672], "eigh_tridiagon": [57, 80, 376], "eigvals_onli": [57, 80, 376, 430], "select_rang": [57, 80, 376, 430], "tol": [57, 80, 101, 376, 430, 445, 451], "eigenvalu": [57, 62, 80, 85, 97, 98, 376, 429, 430, 431, 637, 672, 673, 674, 680], "eigenvector": [57, 80, 376, 429, 430, 637, 672, 673], "interv": [57, 66, 71, 80, 89, 94, 126, 137, 138, 145, 376, 387, 430, 525, 629, 637, 639, 643, 648, 668, 693, 699, 702, 710, 739, 741, 767, 768], "converg": [57, 80, 376, 430, 861], "_2": [57, 80, 376, 430], "eig_val": [57, 80, 376, 430], "decreas": [57, 80, 376, 430, 778], "eig_vector": [57, 80, 376, 430], "38196": [57, 430], "61803": [57, 430], "eigval": [57, 80, 376], "general_inner_product": [57, 85, 376], "n_mode": [57, 85, 376, 432], "tradit": [57, 85, 376, 432], "inner": [57, 62, 76, 85, 106, 141, 376, 429, 432, 629, 637, 640, 672, 673, 677, 715, 716, 717, 806, 818, 840], "higher_order_mo": [57, 80, 376], "n_featur": [57, 80, 376, 433], "d1": [57, 80, 376, 433], "dn": [57, 80, 376, 433], "initialize_tuck": [57, 80, 376], "svd": [57, 62, 80, 85, 100, 376, 434, 440, 445, 447, 448, 449, 451, 637, 688], "truncated_svd": [57, 80, 376, 434, 445, 448, 451], "non_neg": [57, 80, 327, 369, 376, 434], "mask": [57, 61, 80, 84, 97, 375, 376, 378, 421, 434, 435, 445, 451, 491, 555, 634, 636, 659, 663, 666, 847], "svd_mask_repeat": [57, 80, 376, 434, 445, 451], "tuckertensor": [57, 80, 101, 327, 369, 376, 434, 445, 451], "scheme": [57, 80, 376, 434, 445, 823, 853, 870], "tucker": [57, 80, 327, 369, 376, 434, 445], "decomposit": [57, 62, 80, 85, 97, 98, 100, 323, 324, 325, 326, 327, 369, 376, 434, 438, 445, 448, 450, 451, 637, 667, 673, 684, 687, 818, 877], "miss": [57, 80, 376, 378, 434, 445, 451, 491, 796, 818, 819, 824, 827, 828, 831, 841, 844, 847], "everywher": [57, 80, 376, 434, 445, 451], "kron": [57, 80, 376, 441, 877], "make_svd_non_neg": [57, 80, 376, 449], "nntype": [57, 80, 376, 440], "nndsvd": [57, 80, 376, 440], "singular": [57, 62, 80, 85, 376, 434, 440, 447, 449, 637, 678, 680, 683, 687, 688, 776, 778, 829], "nndsvda": [57, 80, 376, 440], "boutsidi": [57, 80, 376, 440], "gallopoulo": [57, 80, 376, 440], "recognit": [57, 80, 376, 440, 815], "1350": [57, 80, 376, 440], "1362": [57, 80, 376, 440], "2008": [57, 80, 376, 440, 870], "matrix_exp": [57, 80, 376], "7183": [57, 80, 376, 441], "3891": [57, 80, 376, 441], "mode_dot": [57, 80, 96, 97, 101, 376], "matrix_or_vector": [57, 80, 97, 101, 376, 442], "i_1": [57, 80, 97, 98, 376, 442], "i_k": [57, 80, 97, 376, 442], "i_n": [57, 80, 97, 376, 442], "i_": [57, 80, 97, 376, 387, 442, 525], "multi_dot": [57, 80, 376], "148": [57, 79, 80, 243, 376, 443], "multi_mode_dot": [57, 80, 376], "mat_or_vec_list": [57, 80, 376, 444], "times_0": [57, 376, 444], "vec": [57, 376, 444], "times_1": [57, 376, 444], "cdot": [57, 273, 376, 444, 632], "times_n": [57, 376, 444], "partial_tuck": [57, 80, 376], "n_iter_max": [57, 80, 376, 445, 451], "verbos": [57, 80, 376, 445, 448, 451, 810, 844, 849], "return_error": [57, 80, 376, 445, 451], "variat": [57, 80, 376, 445, 451, 831, 841, 844], "reconstruct": [57, 62, 68, 80, 91, 100, 376, 378, 445, 451, 498, 637, 645, 687, 749, 751, 842], "return_erro": [57, 376, 445, 451], "svd_flip": [57, 80, 376], "u_based_decis": [57, 80, 376, 447], "basi": [57, 80, 376, 447, 820, 823, 852], "flip": [57, 64, 80, 87, 97, 231, 376, 378, 447, 475, 476, 632, 639, 840, 851, 852, 854], "decis": [57, 80, 376, 447, 812, 823, 829, 847, 849, 851, 870], "u_adjust": [57, 80, 376, 447], "v_adjust": [57, 80, 376, 447], "tensor_train": [57, 80, 376], "tt": [57, 80, 326, 369, 376, 448, 450], "kth": [57, 376, 448], "tttensor": [57, 100, 326, 369, 376, 448], "compute_uv": [57, 62, 80, 85, 376, 449, 637, 687], "n_eigenvec": [57, 80, 376, 449], "returnedv": [57, 449], "vh": [57, 62, 80, 85, 376, 449, 637, 687], "eigen": [57, 80, 376, 449], "namedtupl": [57, 62, 68, 80, 85, 91, 376, 378, 429, 449, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751], "tt_matrix_to_tensor": [57, 80, 376], "rank_k": [57, 80, 376, 450], "left_dim_k": [57, 80, 376, 450], "right_dim_k": [57, 80, 376, 450], "rank_": [57, 80, 376, 450], "49671414": [57, 80, 376, 450, 643, 740], "1382643": [57, 80, 376, 450, 643, 740], "64768857": [57, 80, 376, 450, 643, 740], "5230298": [57, 80, 376, 450, 643, 740], "23415337": [57, 80, 376, 450, 643, 740], "23413695": [57, 80, 376, 450, 643, 740], "57921278": [57, 80, 376, 450], "76743472": [57, 80, 376, 450], "1163073": [57, 80, 376, 450], "11629914": [57, 80, 376, 450], "03237505": [57, 80, 376, 450], "03237278": [57, 80, 376, 450], "78441733": [57, 80, 376, 450], "38119566": [57, 80, 376, 450], "21834874": [57, 80, 376, 450], "10610882": [57, 80, 376, 450], "15165846": [57, 80, 376, 450], "15164782": [57, 80, 376, 450], "35662258": [57, 80, 376, 450], "35659757": [57, 80, 376, 450], "02283812": [57, 80, 376, 450], "49705869": [57, 80, 376, 450], "40518808": [57, 80, 376, 450], "16882598": [57, 80, 376, 450], "fixed_factor": [57, 80, 376, 451], "tl": [57, 80, 376, 451], "kolda": [57, 80, 376, 451], "bader": [57, 80, 376, 451], "siam": [57, 80, 376, 448, 451], "review": [57, 80, 376, 451, 814, 815, 818, 820, 826, 828, 831, 841, 845], "vol": [57, 80, 376, 451], "pp": [57, 80, 376, 451], "455": [57, 80, 376, 451], "2009": [57, 80, 376, 451], "_arraywithlossesexperiment": [57, 102], "hinge_embedding_loss": [57, 80, 377], "margin": [57, 80, 377, 452, 459, 841], "measur": [57, 377, 452, 636, 663, 792], "semi": [57, 377, 452], "l_n": [57, 377, 452], "x_n": [57, 377, 452], "y_n": [57, 377, 452], "ell": [57, 377, 452], "operatornam": [57, 284, 286, 377, 452, 632, 637, 673], "l_1": [57, 377, 452], "hyperparamet": [57, 80, 377, 452], "aggreg": [57, 80, 377, 452, 645, 749, 828], "unreduc": [57, 80, 377, 452], "hing": [57, 80, 377, 452, 459], "target_tensor": [57, 377, 452, 457], "huber_loss": [57, 80, 377], "delta": [57, 59, 80, 82, 377, 453, 615, 635], "transit": [57, 80, 377, 453, 870], "huber": [57, 80, 377, 453], "kl_div": [57, 80, 377], "log_target": [57, 80, 377, 454], "contai": [57, 454], "batchmean": [57, 377, 454], "kullback": [57, 80, 377, 454], "leibler": [57, 80, 377, 454], "0916": [57, 454], "l1_loss": [57, 80, 377, 456], "l1": [57, 62, 80, 85, 377, 381, 453, 455, 456, 458, 504, 637, 694, 827, 852], "targetict": [57, 80, 377, 455, 456, 458, 459], "20000000000000004": [57, 455], "log_poisson_loss": [57, 80, 377], "compute_full_loss": [57, 80, 377, 456, 793], "favor": [57, 80, 377, 456], "likelihood": [57, 80, 377, 456, 457], "28402555": [57, 377, 456], "03402555": [57, 377, 456], "1573164": [57, 377, 456], "poisson_nll_loss": [57, 80, 377], "log_input": [57, 80, 377, 457], "poisson": [57, 80, 377, 382, 456, 457], "assumpt": [57, 377, 456, 457], "minu": [57, 377, 456, 457], "omiss": [57, 377, 457], "stirl": [57, 80, 377, 456, 457], "1977562": [57, 457], "smooth_l1_loss": [57, 80, 377], "smooth": [57, 63, 80, 86, 377, 453, 458, 638, 696, 697, 698, 839], "8125": [57, 458], "soft_margin_loss": [57, 80, 377], "soft": [57, 80, 307, 377, 378, 459, 491, 830], "35667497": [57, 459], "22314353": [57, 459], "60943791": [57, 459], "_arraywithmanipulationexperiment": [57, 102], "as_strid": [57, 80, 378], "nativeshap": [57, 61, 64, 66, 80, 87, 89, 127, 128, 130, 135, 142, 148, 378, 382, 460, 472, 477, 485, 488, 508, 509, 510, 511, 512, 577, 590, 596, 598, 629, 634, 636, 639, 643, 649, 651, 653, 655, 657, 706, 739, 740, 741, 836, 838], "byte": [57, 58, 76, 80, 81, 102, 134, 378, 460, 571, 629, 634, 875, 876], "associative_scan": [57, 80, 378], "revers": [57, 58, 62, 70, 80, 85, 93, 102, 103, 366, 374, 375, 376, 378, 387, 421, 437, 461, 475, 476, 523, 524, 544, 634, 637, 639, 647, 692, 703, 757, 758, 818, 827, 828, 829, 831, 832, 840, 841, 847, 854, 855], "scan": [57, 80, 378, 461, 855], "atleast_1d": [57, 80, 378], "ari": [57, 80, 378, 462, 463, 464, 470, 479, 499], "a1": [57, 81, 378, 462, 463, 464, 468, 537], "a2": [57, 81, 378, 462, 463, 464, 468, 537], "atleast_2d": [57, 80, 378], "atleast_3d": [57, 80, 378], "column_stack": [57, 80, 378], "concat_from_sequ": [57, 80, 378], "input_sequ": [57, 80, 378, 469], "new_axi": [57, 80, 378, 469, 854], "dsplit": [57, 80, 378], "indices_or_sect": [57, 80, 378, 470, 479, 499], "3rd": [57, 80, 378, 470], "dstack": [57, 80, 378], "fill_diagon": [57, 80, 378], "fill_diag": [57, 473], "fortran": [57, 64, 80, 87, 378, 474, 639, 706, 870, 874], "layout": [57, 64, 80, 87, 378, 474, 639, 706, 825, 840, 841, 847], "fliplr": [57, 80, 378, 840], "diag": [57, 62, 80, 85, 98, 378, 475, 476, 637, 673, 849], "flipud": [57, 80, 378, 840], "fold": [57, 80, 378, 485, 486, 828], "unfold": [57, 80, 97, 98, 100, 376, 378, 434, 477, 485, 487], "folded_tensor": [57, 378, 477], "heavisid": [57, 80, 378], "5000": [57, 378, 478, 637, 676, 806], "hsplit": [57, 80, 378], "horizont": [57, 80, 378, 468, 479, 545, 634], "hstack": [57, 80, 378, 468], "i0": [57, 80, 378, 387, 525], "bessel": [57, 70, 80, 93, 317, 369, 378, 481, 647, 764, 766], "kind": [57, 70, 80, 165, 168, 169, 387, 481, 523, 524, 529, 630, 647, 757, 758, 763, 765, 776, 777, 817, 841, 844, 847, 849, 855], "26606588": [57, 80, 378, 481], "2795853": [57, 80, 378, 481], "88079259": [57, 80, 378, 481], "row_mod": [57, 80, 378, 482], "column_mod": [57, 80, 378, 482], "ascend": [57, 69, 80, 92, 378, 385, 482, 515, 646, 753, 755, 821], "prod": [57, 58, 70, 81, 93, 376, 378, 435, 437, 482, 531, 546, 634, 647, 776, 806, 829, 831, 849, 867], "moveaxi": [57, 80, 378], "destin": [57, 80, 378, 483], "unstack": [57, 64, 74, 87, 483, 639, 827, 849, 852, 877], "reorder": [57, 64, 80, 87, 378, 483, 545, 634, 639, 703, 843], "stat_length": [57, 80, 378, 484], "constant_valu": [57, 80, 378, 484], "end_valu": [57, 80, 378, 484], "reflect_typ": [57, 80, 378, 484], "partial_fold": [57, 80, 378], "skip_begin": [57, 80, 378, 485, 486, 487, 488], "untouch": [57, 80, 378, 485, 486, 487, 488], "partial_tensor_to_vec": [57, 80, 378], "skip_end": [57, 80, 378, 486, 487], "vectoris": [57, 80, 97, 378, 486, 488], "partial_unfold": [57, 80, 378], "ravel_tensor": [57, 80, 378, 487], "n_1": [57, 80, 378, 487], "n_2": [57, 80, 378, 487], "n_i": [57, 80, 376, 378, 435, 487], "partial_vec_to_tensor": [57, 80, 378], "put_along_axi": [57, 80, 378], "rot90": [57, 80, 378, 840], "rotat": [57, 80, 378, 490], "soft_threshold": [57, 80, 378], "behav": [57, 80, 335, 336, 372, 376, 378, 429, 492, 637, 672, 823, 833, 838, 840, 841, 842, 851, 871], "invalid": [57, 71, 80, 94, 378, 492, 637, 639, 648, 693, 702, 767, 768, 776, 819, 829], "slice": [57, 70, 74, 80, 81, 93, 98, 147, 328, 369, 378, 467, 489, 492, 493, 552, 553, 555, 581, 629, 634, 641, 647, 727, 762, 844, 870], "inexact": [57, 80, 346, 372, 378, 492], "largest": [57, 74, 80, 165, 168, 376, 378, 447, 492, 494, 630, 637, 678, 687], "take_along_axi": [57, 80, 378], "arr": [57, 58, 77, 80, 173, 378, 467, 489, 493, 577, 630, 829, 830], "top_k": [57, 80, 378], "sort": [57, 68, 74, 80, 91, 103, 199, 292, 376, 378, 387, 429, 494, 515, 529, 631, 632, 637, 645, 672, 673, 687, 688, 749, 753, 754, 755, 778, 812, 817, 828, 843, 845], "trim_zero": [57, 80, 378], "fb": [57, 80, 378, 495], "front": [57, 80, 378, 495, 841, 848, 849, 852, 859, 868, 870], "unflatten": [57, 80, 378], "unfolded_tensor": [57, 378, 497], "unique_consecut": [57, 80, 378], "vsplit": [57, 80, 378], "vertic": [57, 80, 378, 499, 500, 545, 634, 820], "_arraywithnormsexperiment": [57, 102], "varianc": [57, 70, 80, 93, 381, 501, 503, 647, 766, 791, 795], "nsc": [57, 80, 381, 501, 502, 503, 795], "braodcast": [57, 80, 381, 501], "running_mean": [57, 80, 381, 501, 503, 795], "running_var": [57, 80, 381, 501, 503, 795], "nc": [57, 80, 381, 501, 502, 503, 795], "group_norm": [57, 80, 381], "num_group": [57, 80, 381, 502], "instance_norm": [57, 80, 381], "l1_normal": [57, 80, 381], "33333334": [57, 80, 298, 367, 381, 504, 507, 541, 617, 634, 635, 636, 637, 658, 694], "33333337": [57, 137, 381, 504, 617, 629, 635], "28571439": [57, 381, 504], "l2_normal": [57, 80, 381, 507], "l2": [57, 62, 85, 96, 97, 381, 505, 507, 637, 694, 792, 827], "44721359": [57, 80, 381, 505, 507], "89442718": [57, 80, 381, 505, 507, 541, 634], "lp_normal": [57, 80, 381], "lp": [57, 381, 507], "_arraywithrandomexperiment": [57, 102], "bernoulli": [57, 80, 375, 382, 399, 400, 401], "event": [57, 80, 382, 508, 844], "parameter": [57, 66, 80, 89, 382, 508, 509, 511, 512, 643, 738, 740, 741], "odd": [57, 80, 278, 378, 382, 484, 508, 632, 806, 817, 823], "drawn": [57, 66, 80, 89, 382, 508, 509, 510, 511, 512, 643, 738, 739, 740, 741, 776, 777, 778, 791, 844], "dirichlet": [57, 80, 382], "10598304": [57, 382, 510], "21537054": [57, 382, 510], "67864642": [57, 382, 510], "48006698": [57, 382, 510], "07472073": [57, 382, 510], "44521229": [57, 382, 510], "55479872": [57, 382, 510], "05426367": [57, 382, 510], "39093761": [57, 382, 510], "19531053": [57, 382, 510], "51675832": [57, 382, 510], "28793114": [57, 382, 510], "12315625": [57, 382, 510], "29823365": [57, 382, 510], "5786101": [57, 382, 510], "15564976": [57, 382, 510], "50542368": [57, 382, 510], "33892656": [57, 382, 510], "1325352": [57, 382, 510], "44439589": [57, 382, 510], "42306891": [57, 382, 510], "gamma": [57, 65, 80, 88, 342, 354, 372, 382, 387, 526, 642, 737], "lam": [57, 80, 382, 512], "_arraywithsearchingexperiment": [57, 102], "unravel_index": [57, 80, 383], "unravel": [57, 80, 383, 513], "_arraywithsetexperiment": [57, 102], "_arraywithsortingexperiment": [57, 102], "lexsort": [57, 80, 385], "indirectli": [57, 80, 385, 515], "statist": [57, 80, 95, 378, 484, 795, 810, 818, 829, 844, 845, 870], "_arraywithstatisticalexperiment": [57, 102], "bincount": [57, 80, 387], "minlength": [57, 80, 387, 520], "corrcoef": [57, 80, 387], "rowvar": [57, 80, 387, 521, 522], "relationship": [57, 80, 521, 791, 843], "cov": [57, 80, 387], "ddof": [57, 80, 387, 522], "fweight": [57, 80, 387, 522], "aweight": [57, 80, 387, 522], "overridden": [57, 80, 387, 522, 796, 824], "assign": [57, 80, 97, 387, 522, 818, 820, 825, 829, 840, 843, 851], "covari": [57, 80, 387, 522], "cummax": [57, 80, 387], "exclus": [57, 58, 70, 74, 80, 81, 93, 126, 376, 387, 445, 523, 524, 564, 565, 568, 629, 634, 643, 647, 739, 757, 758, 815, 827, 829, 837, 854, 874, 876], "cumul": [57, 70, 80, 93, 387, 523, 524, 647, 757, 758], "uint64": [57, 70, 162, 167, 169, 170, 180, 182, 185, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "uint16": [57, 70, 157, 162, 167, 168, 177, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "bit": [57, 70, 164, 165, 168, 231, 232, 234, 387, 523, 524, 630, 632, 647, 757, 758, 763, 765, 812, 817, 818, 819, 827, 828, 829, 831, 837, 849, 851, 876], "uint32": [57, 70, 162, 167, 168, 169, 191, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "cummin": [57, 80, 387], "histogram": [57, 80, 387], "extend_lower_interv": [57, 80, 387, 525], "extend_upper_interv": [57, 80, 387, 525], "densiti": [57, 80, 387, 525], "monoton": [57, 80, 387, 525], "rightmost": [57, 80, 387, 525], "c1": [57, 80, 387, 525, 827], "ff": [57, 80, 387, 525], "c_": [57, 80, 98, 387, 525], "igamma": [57, 80, 387], "incomplet": [57, 80, 387, 526, 820], "3614": [57, 80, 387, 526], "2085": [57, 80, 387, 526], "median": [57, 80, 378, 387, 484, 529], "nanmean": [57, 80, 387], "6666666666666665": [57, 80, 387, 528], "nanmedian": [57, 80, 387], "overwrite_input": [57, 80, 387, 529], "treat": [57, 74, 80, 103, 278, 356, 372, 378, 381, 387, 493, 506, 529, 531, 632, 773, 839, 844, 850, 854], "undefin": [57, 80, 378, 387, 388, 484, 529, 533, 829, 833, 839], "nanmin": [57, 80, 387], "nanprod": [57, 80, 387], "Not": [57, 80, 356, 372, 376, 387, 431, 531, 627, 825, 833, 842, 852, 853, 855], "quantil": [57, 80, 387, 867], "inclus": [57, 80, 126, 387, 532, 629, 643, 739, 813, 825, 840, 847], "midpoint": [57, 80, 387, 532], "surround": [57, 80, 387, 532, 847], "whichev": [57, 80, 387, 532], "_arraywithutilityexperiment": [57, 102], "optional_get_el": [57, 80, 388], "empti": [57, 58, 70, 74, 81, 93, 126, 378, 388, 484, 533, 540, 577, 629, 634, 637, 641, 647, 648, 691, 694, 732, 762, 763, 765, 767, 768, 818, 819, 824, 826, 829, 830, 840], "_arraywithgener": [58, 102], "all_equ": [58, 81, 634], "equality_matrix": [58, 81, 534, 634], "array_equ": [58, 81, 634], "assert_supports_inplac": [58, 81, 634], "ivybackendexcept": [58, 81, 538, 562, 634, 807, 824, 830, 833, 834], "clip_matrix_norm": [58, 81, 634], "894": [58, 81, 540, 541, 634, 642, 737], "clip_vector_norm": [58, 81, 634], "default_v": [58, 544, 634], "catch_except": [58, 544, 634], "rev": [58, 544, 634], "with_cal": [58, 544, 634], "catch": [58, 544, 634, 838, 844], "einops_rearrang": [58, 81, 634], "axes_length": [58, 81, 545, 546, 547, 634], "arrang": [58, 545, 634], "rearrang": [58, 81, 545, 547, 634, 843], "einops_reduc": [58, 81, 634, 829], "einops_repeat": [58, 81, 634], "fourier_encod": [58, 81, 634], "max_freq": [58, 81, 549, 634], "oppos": [58, 81, 549, 634, 829], "geometr": [58, 81, 549, 634, 637, 692], "0000000e": [58, 81, 549, 634], "2246468e": [58, 81, 549, 634], "4492936e": [58, 549, 634], "6739404e": [58, 81, 549, 634], "batch_dim": [58, 81, 552, 553, 634, 798], "gather_nd": [58, 81, 634], "get_num_dim": [58, 81, 634], "as_arrai": [58, 81, 556, 590, 634, 798], "has_nan": [58, 81, 634], "include_inf": [58, 81, 558, 613, 634], "inplace_decr": [58, 81, 634], "val": [58, 74, 79, 81, 253, 378, 473, 560, 561, 562, 581, 582, 583, 632, 634, 829, 840, 851], "decrement": [58, 81, 560, 634], "inplace_incr": [58, 81, 634], "increment": [58, 81, 561, 634, 820, 870], "inplace_upd": [58, 81, 580, 634, 789, 840], "ensure_in_backend": [58, 81, 562, 634, 840], "keep_input_dtyp": [58, 81, 562, 634, 840], "is_arrai": [58, 81, 634, 840, 841], "is_ivy_arrai": [58, 81, 634, 840, 851], "is_ivy_contain": [58, 634], "is_native_arrai": [58, 81, 176, 565, 630, 634, 851], "isin": [58, 81, 634, 867], "test_el": [58, 81, 569, 634], "assume_uniqu": [58, 81, 569, 634], "invert": [58, 81, 231, 569, 632, 634, 637, 679], "scatter_flat": [58, 81, 634], "occupi": [58, 165, 168, 576, 577, 630, 634], "scatter_nd": [58, 81, 634, 847, 851], "stable_divid": [58, 81, 634, 837], "denomin": [58, 65, 81, 88, 583, 592, 606, 634, 642, 737, 795, 837, 846, 855, 867], "min_denomin": [58, 81, 583, 592, 606, 634, 846], "_min_denomin": [58, 592, 634], "stable_pow": [58, 81, 634], "min_bas": [58, 81, 582, 593, 605, 634, 795, 846], "stabl": [58, 69, 81, 92, 147, 328, 335, 336, 369, 372, 385, 515, 582, 583, 592, 593, 605, 606, 629, 634, 646, 753, 756, 778, 819, 825, 829, 841, 846, 849, 855], "00004": [58, 81, 593, 634], "00008": [58, 81, 593, 634], "00004000e": [58, 593], "56002560e": [58, 593], "60001200e": [58, 593], "09602048e": [58, 593], "supports_inplace_upd": [58, 81, 634], "to_fil": 58, "fid": 58, "sep": 58, "format_": 58, "recov": [58, 833, 841], "to_scalar": [58, 81, 634], "value_is_nan": [58, 81, 634], "_arraywithgradi": [59, 102], "adam_step": [59, 82, 635], "mw": [59, 82, 615, 616, 635, 853], "vw": [59, 82, 615, 616, 635, 853], "beta1": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "beta2": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "epsilon": [59, 62, 63, 82, 85, 86, 536, 615, 616, 621, 634, 635, 637, 638, 680, 683, 696, 697, 698, 788, 793, 795, 796, 827, 837, 840, 853], "dc": [59, 82, 615, 616, 619, 621, 622, 623, 635], "dw": [59, 82, 615, 616, 619, 621, 622, 623, 635], "forget": [59, 82, 615, 616, 621, 635, 796, 812, 829], "dcdw": [59, 82, 615, 616, 619, 621, 622, 635], "adam_step_delta": [59, 82, 615, 635], "2020105": [59, 615, 635], "22187898": [59, 615, 635], "24144873": [59, 615, 635], "10000002": [59, 93, 296, 367, 615, 761], "00300002": [59, 615], "00800002": [59, 615], "adam_upd": [59, 82, 635, 853], "mw_tm1": [59, 82, 616, 621, 635], "vw_tm1": [59, 82, 616, 621, 635], "ws_new": [59, 82, 616, 621, 622, 623, 635], "updated_weight": [59, 82, 616, 635], "92558753": [59, 616], "92558873": [59, 616, 635], "92558718": [59, 616, 635], "00000063e": [59, 82, 616, 635], "00000016e": [59, 82, 616, 635], "00000086e": [59, 82, 616, 635], "gradient_descent_upd": [59, 82, 635, 640, 715, 716, 717], "descent": [59, 82, 619, 635, 796, 853, 870], "new_weight": [59, 82, 619, 621, 622, 635, 852], "lamb_upd": [59, 82, 635], "max_trust_ratio": [59, 82, 621, 635, 796], "decay_lambda": [59, 82, 621, 622, 635, 796], "trust": [59, 82, 621, 635, 796], "ratio": [59, 82, 621, 635, 796], "decai": [59, 82, 621, 622, 635, 796], "lamb": [59, 82, 621, 635, 796, 853], "784": [59, 621, 635], "lars_upd": [59, 82, 635], "lar": [59, 82, 622, 635, 796, 853], "34077978": [59, 622, 635], "78025991": [59, 622, 635], "56051969": [59, 622, 635], "78026009": [59, 622, 635], "56051981": [59, 622, 635], "12103939": [59, 622, 635], "optimizer_upd": [59, 82, 635], "effective_grad": [59, 82, 623, 635], "3e": [59, 82, 623, 635], "preserve_typ": [59, 82, 624, 635], "_arraywithimag": [60, 102], "_arraywithlay": [61, 102], "conv1d": [61, 84, 636, 792], "filter_format": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_last": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 776], "x_dilat": [61, 84, 636, 649, 650, 652, 653, 654, 656], "d_out": [61, 84, 375, 392, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_first": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "wio": [61, 636, 649, 650, 651, 656], "conv1d_transpos": [61, 84, 636], "output_shap": [61, 84, 636, 649, 651, 653, 655, 657, 792], "iow": [61, 84, 636, 651], "woi": [61, 84, 636, 651], "fh": [61, 84, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 730], "hwio": [61, 636, 649, 650, 652, 656], "conv2d_transpos": [61, 84, 636], "iohw": [61, 84, 636, 653], "hwoi": [61, 84, 636, 653], "conv3d": [61, 84, 636, 655, 792], "fd": [61, 84, 636, 649, 654, 655, 656, 657], "conv3d_transpos": [61, 84, 636, 657], "iodhw": [61, 84, 636, 655, 657], "dhwoi": [61, 84, 636, 655, 657], "depthwise_conv2d": [61, 84, 636], "randint": [61, 66, 68, 84, 89, 643, 645, 658, 662, 749, 812, 829, 863], "noise_shap": [61, 84, 636, 659], "42857146": [61, 636, 659], "85714293": [61, 636, 659], "28571415": [61, 84, 636, 659], "71428585": [61, 84, 636, 659], "14285755": [61, 84, 636, 659], "5714283": [61, 636, 659], "4285717": [61, 84, 636, 659], "8571434": [61, 84, 636, 659], "2857151": [61, 636, 659], "dropout1d": [61, 84, 375, 400], "dropout2d": [61, 84, 375], "dropout3d": [61, 84, 375], "outer_batch_shap": [61, 84, 636, 660], "inner_batch_shap": [61, 84, 636, 660], "lstm_updat": [61, 84, 636, 849], "init_h": [61, 84, 636, 662, 849], "init_c": [61, 84, 636, 662, 849], "recurrent_kernel": [61, 84, 636, 662, 849], "recurrent_bia": [61, 84, 636, 662, 849], "hidden": [61, 84, 636, 661, 662, 792, 826, 833, 849, 853], "recurr": [61, 80, 84, 375, 421, 636, 662, 849, 870, 874], "timestep": [61, 80, 84, 375, 421, 636, 661, 662, 663, 792, 849], "h_i": [61, 84, 662], "c_i": [61, 84, 662], "rc": [61, 84, 662], "multi_head_attent": [61, 84, 636, 840], "num_head": [61, 84, 636, 663, 792], "in_proj_weight": [61, 84, 636, 663], "q_proj_weight": [61, 84, 636, 663], "k_proj_weight": [61, 84, 636, 663], "v_proj_weight": [61, 84, 636, 663], "out_proj_weight": [61, 84, 636, 663], "in_proj_bia": [61, 84, 636, 663], "out_proj_bia": [61, 84, 636, 663], "is_caus": [61, 84, 636, 663, 666], "key_padding_mask": [61, 84, 636, 663], "bias_k": [61, 84, 636, 663], "bias_v": [61, 84, 636, 663], "static_k": [61, 84, 636, 663], "static_v": [61, 84, 636, 663], "add_zero_attn": [61, 84, 636, 663], "return_attention_weight": [61, 84, 636, 663], "average_attention_weight": [61, 84, 636, 663], "scaled_dot_product_attent": [61, 84, 636], "dropout_p": [61, 84, 636, 666], "num_queri": [61, 84, 636, 666], "feat_dim": [61, 84, 636, 666], "num_kei": [61, 84, 636, 666], "causal": [61, 84, 636, 663, 666], "attent": [61, 84, 636, 663, 666, 792, 820, 824, 860], "29999995": [61, 296, 297, 307, 367, 375, 419, 636, 645, 666, 750], "19994521": [61, 636, 666], "09994531": [61, 636, 666], "30000019": [61, 378, 468, 636, 666], "_arraywithlinearalgebra": [62, 102], "choleski": [62, 85, 637, 840], "625": [62, 80, 348, 637, 667], "vif": [62, 85, 668], "det": [62, 85, 637, 685, 828], "axis1": [62, 64, 85, 87, 637, 639, 671, 691, 711], "axis2": [62, 85, 637, 671, 691], "eigh": [62, 85, 376, 429, 637, 672], "uplo": [62, 85, 637, 673, 674], "eigvalsh": [62, 85, 637], "array_lik": [62, 85, 375, 377, 378, 420, 453, 454, 458, 459, 489, 637, 675, 682, 806], "203": [62, 79, 229, 637, 642, 675, 737], "233": [62, 637, 675], "inv": [62, 85, 637], "transpose_a": [62, 85, 637, 677], "transpose_b": [62, 85, 637, 677], "adjoint_a": [62, 85, 637, 677], "adjoint_b": [62, 85, 637, 677], "matrix_norm": [62, 85, 637], "ord": [62, 85, 637, 678, 694], "fro": [62, 85, 377, 453, 637, 678], "nuc": [62, 85, 637, 678], "performingth": [62, 678], "matrix_pow": [62, 85, 637], "matrix_rank": [62, 85, 637], "hermitian": [62, 85, 376, 429, 430, 637, 672, 673, 674, 680, 687], "largest_singular_valu": [62, 85, 637, 680, 683], "defici": [62, 637, 680], "matrix_transpos": [62, 85, 637, 851], "pinv": [62, 85, 637], "pseudo": [62, 85, 637, 683, 839], "99999988": [62, 85, 637, 683], "qr": [62, 85, 637, 842], "12309149": [62, 637, 684], "90453403": [62, 637, 684], "40824829": [62, 637, 684], "49236596": [62, 637, 684], "30151134": [62, 637, 684], "81649658": [62, 637, 684], "86164044": [62, 637, 684], "12403841e": [62, 637, 684], "60113630e": [62, 637, 684], "10782342e": [62, 637, 684], "04534034e": [62, 637, 684], "80906807e": [62, 637, 684], "88178420e": [62, 85, 637, 674, 684], "slogdet": [62, 85, 637], "logabsdet": [62, 85, 637, 685], "natur": [62, 85, 243, 261, 262, 263, 264, 283, 354, 372, 632, 637, 685, 824, 831, 833, 842, 860], "098611": [62, 637, 685], "solv": [62, 85, 376, 440, 637, 776, 812, 819, 823, 834, 841, 850, 872], "full_matric": [62, 85, 637, 687], "svf": [62, 687], "reconstructed_x": [62, 637, 687], "svdval": [62, 85, 637], "tensorsolv": [62, 85, 637], "vander": [62, 85, 637], "vandermond": [62, 85, 637, 692], "vecdot": [62, 85, 637], "vector_norm": [62, 85, 637], "mathemat": [62, 85, 223, 228, 240, 245, 247, 263, 273, 627, 632, 637, 678, 694, 829, 841, 847, 870, 876], "manhattan": [62, 85, 637, 694], "euclidean": [62, 85, 97, 98, 637, 694], "7416575": [62, 85, 637, 694], "vector_to_skew_symmetric_matrix": [62, 85, 637], "_arraywithloss": [63, 102], "binary_cross_entropi": [63, 86, 638, 828], "from_logit": [63, 86, 638, 696, 793], "pos_weight": [63, 86, 638, 696], "crossentropi": [63, 86, 638, 696], "26765382": [63, 638, 696], "34657359": [63, 638, 697], "sparse_cross_entropi": [63, 86, 638], "07438118": [63, 86, 698], "11889165": [63, 698], "_arraywithmanipul": [64, 102], "x_min": [64, 87, 639, 699, 854], "x_max": [64, 87, 639, 699, 854], "before_1": [64, 87, 378, 484, 639, 701, 714], "after_1": [64, 87, 378, 484, 639, 701, 714], "before_n": [64, 87, 378, 484, 639, 701, 714], "after_n": [64, 87, 378, 484, 639, 701, 714], "repetit": [64, 87, 639, 705, 712, 847], "flat": [64, 74, 87, 383, 513, 576, 634, 639, 705], "allowzero": [64, 87, 639, 706], "remain": [64, 67, 80, 87, 90, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 399, 400, 401, 420, 632, 639, 641, 644, 706, 724, 747, 806, 819, 820, 828, 831, 833, 837, 845, 847, 855], "roll": [64, 87, 639, 836, 867], "shift": [64, 76, 87, 103, 136, 147, 232, 234, 328, 369, 629, 632, 639, 707, 819, 820, 830, 831, 836, 843, 867], "restor": [64, 87, 639, 707, 835], "num_or_size_split": [64, 74, 87, 639, 708, 849], "with_remaind": [64, 74, 87, 639, 708], "squeezabl": [64, 639, 709], "swapax": [64, 87, 639], "axis0": [64, 87, 639, 711], "swap_ax": [64, 711], "swap": [64, 87, 639, 711, 801, 864], "tile": [64, 81, 87, 547, 639], "unpack": [64, 87, 639, 713, 842, 844], "zero_pad": [64, 87, 639], "_arraywithnorm": [65, 102], "layer_norm": [65, 88, 642], "normalized_idx": [65, 88, 642, 737], "new_std": [65, 88, 642, 737, 795], "learnabl": [65, 88, 636, 640, 642, 661, 717, 737, 792, 795, 854], "0976": [65, 642, 737], "3452": [65, 642, 737], "2740": [65, 642, 737], "1047": [65, 642, 737], "5886": [65, 642, 737], "2732": [65, 642, 737], "7696": [65, 642, 737, 776], "7024": [65, 642, 737], "2518": [65, 642, 737], "826": [65, 642, 737], "178": [65, 642, 737], "981": [65, 642, 737], "831": [65, 642, 737], "421": [65, 642, 737], "_arraywithrandom": [66, 102], "multinomi": [66, 89, 382, 510, 643], "population_s": [66, 89, 643, 738], "num_sampl": [66, 89, 643, 738], "unnorm": [66, 89, 643, 738, 844], "popul": [66, 70, 74, 89, 93, 643, 647, 738, 764, 766, 829, 830, 840, 844, 849, 876], "draw": [66, 89, 382, 508, 510, 512, 643, 738, 740, 741, 776, 777, 778, 779, 784, 791, 818, 823, 842, 844], "half": [66, 89, 126, 287, 629, 632, 643, 739, 741, 816, 834, 847], "235": [66, 740], "float16": [66, 77, 89, 134, 157, 159, 160, 165, 167, 346, 372, 629, 630, 637, 694, 740, 741, 776, 777, 816, 829, 834, 841, 844], "807": [66, 740], "_arraywithsearch": [67, 102], "select_last_index": [67, 90, 644, 744, 745], "occurr": [67, 378, 387, 498, 520, 644, 645, 744, 745, 749], "argmin": [67, 90, 644, 867], "output_dtyp": [67, 90, 644, 745], "argwher": [67, 90, 644], "nonzero": [67, 90, 98, 221, 222, 223, 226, 229, 238, 240, 243, 245, 247, 273, 286, 291, 632, 644], "as_tupl": [67, 90, 644, 747], "fewer": [67, 90, 644, 747], "_arraywithset": [68, 102], "unique_al": [68, 91, 645], "by_valu": [68, 91, 645, 749], "inverse_indic": [68, 91, 378, 498, 645, 749, 751], "unique_count": [68, 91, 645], "unique_invers": [68, 91, 645], "unique_valu": [68, 91, 645], "admonit": [68, 752], "dask": [68, 645, 749, 750, 751, 752, 860], "difficult": [68, 645, 749, 750, 751, 752, 820, 823, 829, 844, 855], "omit": [68, 283, 632, 645, 749, 750, 751, 752, 836, 840, 841], "x_i": [68, 70, 79, 98, 220, 221, 222, 225, 226, 227, 229, 231, 236, 237, 238, 243, 245, 246, 253, 254, 255, 256, 257, 261, 262, 263, 264, 268, 275, 280, 283, 284, 285, 286, 287, 288, 290, 291, 293, 335, 336, 338, 359, 372, 632, 645, 647, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 791, 832], "x_j": [68, 645, 749, 750, 751, 752], "typeerror": [68, 91, 645, 752, 851], "_arraywithsort": [69, 102], "stabil": [69, 92, 592, 593, 634, 646, 753, 756, 829, 839, 845, 847], "msort": [69, 92, 646], "searchsort": [69, 92, 646, 777], "sorter": [69, 92, 646, 755], "ret_dtyp": [69, 92, 646, 755], "_arraywithstatist": [70, 102], "cumprod": [70, 93, 647, 841, 854, 867], "cumsum": [70, 93, 647, 829, 867], "einsum": [70, 93, 647], "equat": [70, 80, 93, 314, 369, 376, 446, 637, 647, 686, 759, 776, 805, 828, 870], "operand": [70, 80, 84, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 363, 372, 373, 375, 418, 632, 637, 647, 685, 691, 759, 760, 762, 763, 765, 805, 806, 824, 827, 832, 841], "contract": [70, 637, 647, 689, 759, 806], "seq": [70, 647, 759, 776], "ii": [70, 93, 647, 759, 820], "jk": [70, 647, 759, 806], "ik": [70, 647, 759, 806], "126": [70, 110, 279, 626, 632, 637, 647, 679, 759], "510": [70, 647, 759], "special": [70, 85, 97, 98, 102, 103, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 632, 637, 647, 685, 691, 760, 761, 762, 763, 764, 765, 766, 776, 777, 778, 779, 784, 791, 818, 821, 823, 824, 826, 828, 831, 832, 833, 836, 840, 842, 843, 844, 845, 847, 870, 871, 872], "arithmet": [70, 93, 234, 240, 273, 632, 647, 761, 841], "propag": [70, 234, 335, 336, 372, 632, 647, 760, 761, 762, 764, 765, 766, 839], "overflow": [70, 93, 223, 240, 247, 632, 637, 647, 685, 761, 765, 817, 829], "04999995": [70, 761], "freedom": [70, 93, 647, 764, 766, 825], "constitut": [70, 93, 647, 764, 766, 837, 849, 871], "commonli": [70, 93, 647, 764, 766, 833, 837, 839], "81649661": [70, 647, 764], "6666665": [70, 766, 852], "667": [70, 81, 240, 541, 592, 632, 634, 766], "_arraywithutil": [71, 102], "logic": [71, 94, 204, 240, 241, 267, 268, 269, 273, 276, 631, 632, 648, 767, 768, 818, 824, 828, 829, 830, 833, 837, 838, 839, 840, 841, 843, 844, 847, 851, 864], "AND": [71, 94, 230, 241, 267, 632, 648, 767], "OR": [71, 94, 233, 269, 276, 632, 648, 768, 819, 820, 839], "_wrap_funct": [72, 95, 826, 837, 838], "function_nam": [72, 95, 818, 845], "new_funct": [72, 95, 826], "add_ivy_array_instance_method": 72, "cl": [72, 95], "moduletyp": [72, 95, 863, 864, 865], "toi": [72, 95], "arrayexampl": 72, "hasattr": [72, 95], "_containerwithactiv": [73, 103], "dict_in": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846, 852], "queue_load_s": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "container_combine_method": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "list_join": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue_timeout": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846], "print_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "key_length_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_ind": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_line_spac": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "ivyh": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "default_key_color": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "keyword_color_dict": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "rebuild_child_contain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "types_to_iteratively_nest": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "alphabetical_kei": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "dynamic_backend": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 793, 794, 825, 846], "build_cal": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "containerbas": [73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 827], "_static_gelu": 73, "key_chain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "to_appli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune_unappli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "map_sequ": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 732, 733, 734, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 774, 777, 828], "static_gelu": 73, "046": 73, "_static_hardswish": 73, "_static_leaky_relu": 73, "static_leaky_relu": 73, "38999999": [73, 80, 112, 295, 296, 367], "_static_log_softmax": 73, "static_log_softmax": 73, "371": [73, 113], "_static_mish": 73, "static_mish": 73, "30883577": [73, 114, 626], "28903052": [73, 114, 626], "10714479": [73, 114, 626], "_static_relu": 73, "static_relu": 73, "_static_sigmoid": 73, "static_sigmoid": 73, "2689414": [73, 116, 117, 626], "7310586": [73, 116, 117, 626], "88079703": [73, 116, 626], "62245935": [73, 116], "4750208": [73, 116], "_static_softmax": 73, "static_softmax": 73, "72844321": [73, 117], "19852395": [73, 117], "07303288": [73, 117], "_static_softplu": 73, "revert": [73, 118, 626], "static_softplu": 73, "53499615": 73, "42036411": 73, "948": [73, 118, 641, 718], "dictionari": [74, 91, 103, 212, 601, 617, 631, 634, 635, 752, 771, 773, 806, 824, 828, 829, 837, 841, 842, 852, 855], "asynchron": [74, 103, 870], "wait": [74, 103, 586, 634, 812, 818, 820, 828, 841], "arriv": [74, 103, 586, 634, 847], "cont_list_join": [74, 103], "whitespac": [74, 103], "indent": [74, 103, 852], "newlin": [74, 103, 832], "termin": [74, 103, 819, 820, 827, 834, 835, 849, 852], "constructor": [74, 103, 536, 634, 773, 789, 797, 829, 830, 832, 851], "kept": [74, 103, 640, 715, 716, 820, 840, 845], "encount": [74, 103, 792, 816, 818, 829, 833, 834, 844], "node": [74, 81, 103, 538, 548, 595, 641, 728, 729, 791, 800, 826, 827, 841, 860, 863, 864, 871], "alphabet": [74, 103], "__setitem__": [74, 378, 492, 824, 827, 851], "_cont_at_key_chains_input_as_dict": 74, "current_chain": 74, "ignore_key_error": 74, "_cont_at_key_chains_input_as_seq": 74, "_cont_call_static_method_with_flexible_arg": 74, "static_method": 74, "kw": 74, "self_idx": 74, "_cont_concat_unifi": 74, "_cont_get_dev": 74, "_cont_get_dtyp": 74, "_cont_get_shap": 74, "_cont_ivi": 74, "_cont_mean_unifi": 74, "_1": 74, "_cont_prune_key_chains_input_as_dict": 74, "return_cont": 74, "_cont_prune_key_chains_input_as_seq": 74, "_cont_slice_kei": 74, "key_slic": 74, "_cont_sum_unifi": 74, "_get_queue_item": 74, "cont_all_fals": 74, "assert_is_bool": 74, "cont_all_key_chain": 74, "include_empti": 74, "cont_all_tru": [74, 827, 852], "cont_as_bool": 74, "cont_assert_contains_sub_contain": 74, "sub_cont": 74, "screen": [74, 818, 819, 852], "cont_assert_contains_sub_structur": 74, "check_shap": [74, 798], "cont_assert_ident": 74, "check_typ": 74, "same_arrai": [74, 852], "arrays_equ": 74, "cont_assert_identical_structur": 74, "assert_and_assign": 74, "congruent": 74, "cont_at_key_chain": 74, "ignore_non": 74, "cont_at_kei": 74, "substr": 74, "cont_combin": 74, "duplic": [74, 378, 489, 557, 634, 641, 720, 825, 832, 838, 839, 842, 853, 876], "configur": [74, 212, 631, 641, 731, 819, 820, 826, 828, 829, 834, 835], "container_rightmost": 74, "cont_common_key_chain": 74, "cont_config": 74, "cont_contains_sub_contain": 74, "cont_contains_sub_structur": 74, "cont_copi": [74, 852], "cont_create_if_abs": 74, "noth": [74, 847, 876], "cont_cutoff_at_depth": 74, "depth_cutoff": 74, "cont_cutoff_at_height": 74, "height_cutoff": 74, "cont_deep_copi": [74, 852, 863], "cont_dev": 74, "cont_dev_str": 74, "cont_diff": [74, 852], "diff_kei": 74, "detect_key_diff": 74, "detect_value_diff": 74, "detect_shape_diff": 74, "container0": 74, "cont_dtyp": 74, "cont_duplicate_array_keychain": 74, "cont_find_sub_contain": 74, "sub_cont_to_find": 74, "cont_find_sub_structur": 74, "sub_struc_to_find": 74, "cont_flatten_key_chain": [74, 852], "above_height": [74, 852], "below_depth": [74, 852], "cont_format_key_chain": 74, "format_fn": 74, "cont_from_disk_as_hdf5": [74, 852], "h5_obj_or_filepath": 74, "slice_obj": 74, "disk": [74, 794, 852, 869], "h5py": 74, "filepath": [74, 648, 769, 770, 820, 823], "cont_from_disk_as_json": [74, 852], "json_filepath": 74, "cont_from_disk_as_pickl": [74, 852], "pickle_filepath": 74, "cont_from_flat_list": 74, "flat_list": 74, "hierarchi": [74, 810, 818, 843, 852, 866, 876], "cont_handle_inplac": 74, "prime": [74, 829], "overwritten": [74, 824, 825], "cont_has_kei": 74, "query_kei": 74, "somewher": [74, 828], "cont_has_key_chain": 74, "cont_ident": [74, 852], "cont_identical_array_shap": 74, "cont_identical_config": 74, "cont_identical_structur": 74, "cont_if_exist": 74, "cont_inplace_upd": 74, "cont_ivi": 74, "cont_key_chains_contain": 74, "sub_str": 74, "cont_list_stack": [74, 852], "cont_load": 74, "cont_map": [74, 827, 852], "func": [74, 97, 213, 364, 365, 366, 374, 539, 614, 617, 618, 620, 625, 631, 634, 635, 641, 731, 773, 818, 823, 824, 831, 833, 839], "cont_map_sub_cont": 74, "include_self": 74, "possibli": [74, 597, 634, 776, 844, 855], "cont_max_depth": 74, "cont_multi_map": 74, "map_nest": 74, "assert_ident": 74, "leftmost": [74, 641, 731], "cont_multi_map_in_funct": 74, "cont_num_arrai": 74, "cont_overwrite_at_key_chain": 74, "target_dict": 74, "return_dict": 74, "cont_prune_empti": 74, "keep_non": 74, "cont_prune_key_chain": 74, "key1": [74, 812, 853], "key2": [74, 812], "key3": 74, "cont_prune_key_from_key_chain": 74, "certain": [74, 126, 137, 138, 377, 454, 629, 818, 819, 820, 823, 829, 837, 843, 844, 847, 855, 863, 864, 865, 874], "cont_prune_kei": 74, "cont_prune_keys_from_key_chain": 74, "cont_reduc": 74, "cont_remove_key_length_limit": 74, "cont_remove_print_limit": 74, "cont_reshape_lik": 74, "leading_shap": 74, "cont_restructur": 74, "keep_orig": 74, "old": [74, 819, 825, 840], "cont_restructure_key_chain": 74, "keychain_map": 74, "cont_sav": 74, "cont_set_at_key_chain": 74, "cont_set_at_kei": 74, "cont_shap": [74, 636, 654], "cont_show": 74, "cont_show_sub_contain": 74, "sub_cont_or_keychain": 74, "cont_size_ordered_arrai": 74, "keychain": [74, 80, 298, 337, 462, 463, 464, 493], "cont_slice_kei": 74, "all_depth": 74, "cont_slice_via_kei": 74, "slice_kei": 74, "cont_sort_by_kei": 74, "cont_structural_diff": 74, "cont_to_dict": 74, "cont_to_disk_as_hdf5": [74, 852], "starting_index": 74, "max_batch_s": 74, "cont_to_disk_as_json": [74, 852], "cont_to_disk_as_pickl": [74, 852], "cont_to_flat_list": 74, "cont_to_iter": [74, 827], "leaf_keys_onli": 74, "cont_to_iterator_kei": 74, "cont_to_iterator_valu": 74, "cont_to_json": 74, "cont_to_nested_list": 74, "cont_to_raw": 74, "cont_trim_kei": 74, "cont_try_kc": 74, "cont_unifi": 74, "concatten": [74, 213, 631], "cont_unstack_cont": 74, "dim_siz": 74, "cont_update_config": 74, "cont_with_default_key_color": 74, "cont_with_entries_as_list": 74, "cont_with_ivy_backend": 74, "ivy_backend": [74, 842], "cont_with_key_length_limit": [74, 852], "cont_with_print_ind": [74, 852], "cont_with_print_limit": [74, 852], "cont_with_print_line_spac": 74, "h5_file_s": 74, "shuffle_h5_fil": 74, "split_cont": 74, "_is_json": 74, "_repr": 74, "_containerwithconvers": [75, 103], "_static_to_ivi": 75, "_static_to_n": 75, "_containerwithcr": [76, 103], "_static_arang": 76, "_static_asarrai": 76, "_static_copy_arrai": 76, "_static_empti": 76, "_static_empty_lik": 76, "_static_ey": 76, "n_row": [76, 80, 132, 147, 328, 369, 376, 437, 629], "n_col": [76, 80, 132, 147, 328, 369, 629], "_static_from_dlpack": 76, "_static_ful": 76, "_static_full_lik": 76, "static_full_lik": 76, "2324": [76, 136, 629], "234": [76, 79, 136, 159, 242, 293, 629, 630, 632, 636, 660, 776], "_static_linspac": 76, "_static_logspac": 76, "static_logspac": 76, "15443469": [76, 138], "64158883": [76, 138], "_static_meshgrid": 76, "_static_native_arrai": 76, "_static_one_hot": 76, "static_one_hot": 76, "_static_on": 76, "_static_ones_lik": 76, "_static_tril": 76, "_static_triu": 76, "_static_zero": 76, "_static_zeros_lik": 76, "frombuff": [76, 629], "expos": [76, 134, 542, 629, 634, 812, 828, 849, 853, 859], "x00": [76, 134, 629], "xf0": [76, 134, 629], "x01": [76, 134, 629], "x02": [76, 134, 629], "x03": [76, 134, 629], "x04": [76, 134, 629], "x05": [76, 134], "5443469": [76, 138, 629], "static_frombuff": 76, "static_triu_indic": 76, "triu_indic": [76, 629], "_containerwithdatatyp": [77, 103], "_static_astyp": 77, "718": [77, 79, 152, 269, 630], "618": [77, 79, 152, 269, 630], "static_astyp": 77, "_static_broadcast_arrai": 77, "static_broadcast_arrai": 77, "_static_broadcast_to": 77, "static_broadcast_to": 77, "_static_can_cast": 77, "from_": [77, 155, 630], "static_can_cast": 77, "_static_default_complex_dtyp": 77, "complex_dtyp": [77, 158, 181, 630], "_static_default_float_dtyp": 77, "float_dtyp": [77, 160, 183, 630], "_static_dtyp": 77, "_static_finfo": 77, "inquir": [77, 165, 168], "static_finfo": 77, "55040e": [77, 165, 630], "7976931348623157e": [77, 165, 630], "308": [77, 165, 630, 776, 844], "_static_function_supported_dtyp": 77, "_static_function_unsupported_dtyp": 77, "_static_iinfo": 77, "1800": [77, 168, 630], "1084": 77, "40000": 77, "static_iinfo": 77, "2147483648": [77, 80, 168, 378, 492, 630], "2147483647": [77, 168, 630], "_static_is_bool_dtyp": 77, "dtype_in": [77, 150, 151, 164, 170, 171, 172, 173, 174, 175, 176, 177, 192, 630], "_static_is_complex_dtyp": 77, "is_complex_dtyp": [77, 630, 845], "roughli": [77, 819, 823, 873], "static_is_complex_dtyp": 77, "_static_is_float_dtyp": 77, "static_is_float_dtyp": 77, "_static_is_int_dtyp": 77, "_static_is_uint_dtyp": 77, "_static_result_typ": 77, "static_result_typ": 77, "broadcats": [77, 153], "_containerwithdevic": [78, 103], "_static_dev": 78, "static_dev": 78, "_static_to_devic": 78, "static_to_devic": 78, "contaion": [78, 197], "_containerwithelementwis": [79, 103], "_static_ab": 79, "static_ab": 79, "_static_aco": 79, "static_aco": 79, "_static_acosh": 79, "static_acosh": 79, "_static_add": 79, "static_add": [79, 107], "_static_asin": 79, "static_asin": 79, "524": [79, 225, 632], "412": [79, 84, 225, 632, 641, 718], "_static_asinh": 79, "static_asinh": 79, "_static_atan": 79, "static_atan": 79, "_static_atan2": 79, "static_atan2": 79, "915": [79, 228, 632], "983": [79, 228, 632], "978": [79, 228, 632], "696": [79, 89, 228, 632, 740], "993": [79, 228, 632], "_static_atanh": 79, "static_atanh": 79, "_static_bitwise_and": 79, "static_bitwise_and": 79, "_static_bitwise_invert": 79, "static_bitwise_invert": 79, "_static_bitwise_left_shift": 79, "_static_bitwise_or": 79, "static_bitwise_or": 79, "_static_bitwise_right_shift": 79, "static_bitwise_right_shift": 79, "_static_bitwise_xor": 79, "static_bitwise_xor": 79, "_static_ceil": 79, "static_ceil": 79, "_static_co": 79, "static_co": 79, "_static_cosh": 79, "static_cosh": 79, "_static_deg2rad": 79, "static_deg2rad": 79, "0262": [79, 239, 279, 632], "873": [79, 239, 279, 632], "_static_divid": 79, "static_divid": 79, "_static_equ": 79, "static_equ": 79, "_static_erf": 79, "static_erf": 79, "27632612": [79, 242], "934008": [79, 242, 632], "99999928": [79, 242], "91903949": [79, 242], "_static_exp": 79, "static_exp": 79, "59814835": [79, 243, 632], "4131622": [79, 243], "_static_expm1": 79, "thefunct": [79, 242], "areal": 79, "static_expm1": 79, "71828175": [79, 243, 632], "38905621": [79, 243, 632], "59815216": 79, "_static_floor": 79, "static_floor": 79, "_static_floor_divid": 79, "static_floor_divid": 79, "_static_great": 79, "static_great": 79, "_static_greater_equ": 79, "static_greater_equ": 79, "_static_isfinit": 79, "999999999999": [79, 254, 632], "static_isfinit": 79, "_static_isinf": 79, "static_isinf": 79, "_static_isnan": 79, "static_isnan": 79, "_static_isr": 79, "0j": [79, 80, 142, 143, 221, 222, 223, 226, 229, 238, 243, 245, 257, 261, 263, 280, 284, 286, 287, 291, 338, 372, 629, 632, 637, 685], "23j": [79, 80], "9j": [79, 80], "static_isr": 79, "_static_lcm": 79, "1080": [79, 258], "1550": [79, 258], "130": [79, 258], "_static_less": 79, "static_less": 79, "_static_less_equ": 79, "static_less_equ": 79, "_static_log": 79, "static_log": 79, "_static_log10": 79, "static_log10": 79, "898": [79, 262, 632], "0414": [79, 262, 632], "_static_log1p": 79, "static_log1p": 79, "_static_log2": 79, "static_log2": 79, "_static_logaddexp": 79, "static_logaddexp": 79, "_static_logical_and": 79, "static_logical_and": 79, "_static_logical_not": 79, "static_logical_not": 79, "_static_logical_or": 79, "static_logical_or": 79, "_static_logical_xor": 79, "static_logical_xor": 79, "_static_maximum": 79, "static_maximum": 79, "_static_minimum": 79, "static_minimum": 79, "_static_multipli": 79, "static_multipli": 79, "_static_neg": 79, "static_neg": 79, "_static_not_equ": 79, "static_not_equ": 79, "_static_posit": 79, "static_posit": 79, "_static_pow": 79, "static_pow": 79, "_static_rad2deg": 79, "static_rad2deg": 79, "5160": 79, "10300": [79, 279, 632], "15500": 79, "20600": 79, "2860": [79, 279], "_static_reciproc": 79, "recirpoc": [79, 281], "static_reciproc": 79, "_static_remaind": 79, "static_remaind": 79, "_static_round": 79, "thevfunct": 79, "527": [79, 283, 632], "static_round": 79, "301": [79, 283, 632], "_static_sign": 79, "static_sign": 79, "_static_sin": 79, "static_sin": 79, "757": [79, 285, 632], "959": [79, 245, 285, 632], "279": [79, 285, 375, 397, 407, 540, 632, 634], "_static_sinh": 79, "static_sinh": 79, "835": [79, 286], "347": [79, 286], "721": [79, 286], "_static_sqrt": 79, "static_sqrt": 79, "_static_squar": 79, "static_squar": 79, "_static_subtract": 79, "static_subtract": 79, "_static_tan": 79, "static_tan": 79, "_static_tanh": 79, "static_tanh": 79, "995": [79, 291, 632], "9999": 79, "_static_trapz": 79, "static_trapz": 79, "_static_trunc": 79, "static_trunc": 79, "_static_trunc_divid": 79, "75j": [79, 224, 253], "01317055": [79, 224], "05634501": [79, 224], "115": [79, 224, 279, 632], "3461759": [79, 224], "524111": [79, 224], "644": [79, 225, 632, 853], "305": [79, 84, 225, 632], "351": [79, 239, 279], "00613": [79, 239], "0154": [79, 239], "403": [79, 243], "428772": [79, 243], "649": [79, 245], "220": [79, 245], "865": [79, 245], "metho": [79, 252, 264], "imaginari": [79, 102, 112, 115, 118, 142, 143, 221, 222, 223, 238, 240, 241, 243, 245, 253, 273, 275, 276, 283, 286, 287, 291, 338, 372, 375, 376, 419, 430, 626, 629, 632, 644, 747, 831], "4j": [79, 253, 375, 419, 593, 632, 634], "7j": [79, 80, 257, 280, 338, 372, 632], "956": [79, 263], "08746284": [79, 266], "32192809": [79, 266], "nuner": [79, 273], "413": [79, 279], "335": [79, 80, 280, 338], "345j": [79, 80, 280, 338], "static_angl": 79, "static_exp2": 79, "static_fmin": 79, "static_gcd": 79, "static_imag": 79, "static_logaddexp2": 79, "static_nan_to_num": 79, "static_r": 79, "_containerwithactivationexperiment": [80, 103], "_static_celu": 80, "formlat": 80, "static_celu": 80, "_static_elu": 80, "static_elu": 80, "_static_hardshrink": 80, "hard": [80, 297, 820, 851, 870], "shrinkag": [80, 297, 307, 378, 491], "_static_hardsilu": 80, "20833333": [80, 298, 367], "29166666": [80, 298, 367], "66666669": [80, 103, 298, 367, 381, 507, 617, 635], "66666663": [80, 137, 298, 367, 629], "_static_hardtanh": 80, "3899": 80, "_static_scaled_tanh": 80, "931": 80, "71587813": 80, "88367474": 80, "00376701": [80, 304], "2285642": 80, "99999881": 80, "49999905": 80, "_static_silu": 80, "static_silu": 80, "27777028": [80, 306], "23947507": [80, 306], "0900332": [80, 306], "_static_softshrink": 80, "_static_tanhshrink": 80, "36634541": [80, 309], "02005103": [80, 309], "00262468": [80, 309], "_static_threshold": 80, "389999": [80, 299], "19722462": [80, 300], "84729779": [80, 300], "31326163": [80, 301], "46328258": [80, 301], "51301527": [80, 301], "79813886": [80, 301], "simplywrap": [80, 304], "54939651": [80, 304], "09999998": [80, 304, 615, 635], "09999999": [80, 304], "08336546": [80, 304], "0379949": [80, 304], "22856998": [80, 305], "42028043": [80, 305], "31868932": [80, 305], "static_logit": 80, "static_logsigmoid": 80, "34115386": 80, "64439666": 80, "24115384": 80, "55435526": 80, "07888974": 80, "00741899": 80, "26328245": 80, "00012302": 80, "static_prelu": 80, "static_relu6": 80, "static_selu": 80, "static_thresholded_relu": 80, "_containerwithconversionexperiment": [80, 103], "_containerwithcreationexperiment": [80, 103], "_static_trilu": 80, "blackman": [80, 312, 369], "00770143e": [80, 312], "49229857e": [80, 312], "hamming_window": [80, 369], "ham": [80, 314, 369], "4180": [80, 314], "8180": [80, 314], "hann_window": [80, 369], "hann": [80, 315, 369], "7500": [80, 315], "3455": [80, 315], "9045": [80, 315], "kaiser_bessel_derived_window": [80, 369], "suitabl": [80, 317, 318, 369, 646, 755, 778, 819, 820, 827, 845, 870], "spectral": [80, 317, 318, 369], "analysi": [80, 317, 318, 369, 870, 871], "kaiser": [80, 312, 317, 318, 369], "70710677": [80, 317, 505, 507], "18493208": [80, 317, 369], "9827513": [80, 317, 369], "kaiser_window": [80, 369], "static_kaiser_window": [80, 318], "2049": [80, 318], "8712": [80, 318], "0367": [80, 318, 369], "7753": [80, 318], "static_blackman_window": 80, "static_eye_lik": 80, "static_hamming_window": 80, "static_hann_window": 80, "static_hann": 80, "static_kaiser_bessel_derived_window": 80, "static_mel_weight_matrix": 80, "static_polyv": 80, "static_tril_indic": 80, "static_unsorted_segment_mean": 80, "static_unsorted_segment_min": 80, "static_unsorted_segment_sum": 80, "static_vorbis_window": 80, "vorbis_window": [80, 369], "vorbi": [80, 333, 369], "38268343": [80, 333, 637, 673], "92387953": [80, 333], "14943586": [80, 333, 369], "51644717": [80, 333], "85631905": [80, 333], "98877142": [80, 333], "tril_indic": [80, 369], "_containerwithdata_typeexperiment": [80, 103], "_containerwithdeviceexperiment": [80, 103], "_containerwithelementwiseexperiment": [80, 103], "0003": [80, 334, 637, 676, 776, 779], "0006": [80, 334, 362], "2345j": [80, 338], "5772": [80, 342], "9635": [80, 342], "4228": [80, 342], "9228": [80, 342], "57299206e": [80, 343, 344], "67773480e": [80, 343, 344], "20904985e": [80, 343, 344], "84270084": [80, 343, 344, 372], "99532223": [80, 343, 344], "99997795": [80, 343, 344], "mantissa": [80, 348, 372, 829], "frist": [80, 349, 372], "coord": [80, 349], "6055": [80, 350], "160": [80, 352], "10240": [80, 352], "60000038": [80, 353, 372, 637, 693], "0707": [80, 359, 372], "0579": [80, 359, 372], "static_allclos": 80, "static_amax": 80, "static_amin": 80, "static_binar": 80, "static_conj": 80, "static_copysign": 80, "static_count_nonzero": 80, "static_diff": 80, "static_digamma": 80, "57721537": 80, "96351004": 80, "static_erfc": 80, "15729921": 80, "00467773": [80, 343, 372], "static_erfinv": 80, "static_fix": 80, "static_float_pow": 80, "static_fmax": 80, "static_fmod": 80, "static_frexp": 80, "static_gradi": 80, "static_hypot": 80, "static_isclos": 80, "static_ldexp": 80, "static_lerp": 80, "90000057": [80, 353, 372], "70000076": [80, 353, 372], "55000019": [80, 353, 372], "05000019": [80, 353, 372], "static_modf": 80, "static_nansum": 80, "static_nextaft": 80, "static_signbit": 80, "static_sinc": 80, "636": 80, "090": 80, "070": 80, "057": 80, "static_sparsify_tensor": 80, "static_xlogi": 80, "static_zeta": 80, "0244": [80, 362], "_containerwithgeneralexperiment": [80, 103], "_static_reduc": 80, "static_reduc": 80, "_containerwithgradientsexperiment": [80, 103], "_containerwithimageexperiment": [80, 103], "_containerwithlayersexperiment": [80, 103], "_static_fft": 80, "static_fft": 80, "_static_sliding_window": 80, "673": [80, 397], "0507": [80, 397], "79711437": [80, 375, 397, 407], "94867325": [80, 375, 397, 407], "74089146": [80, 375, 397, 407], "25980937": [80, 375, 397, 407], "64958102": [80, 375, 397, 407], "2442648": [80, 375, 397, 407], "247306": [80, 409], "908323j": [80, 409], "494955": [80, 409], "90395j": [80, 409], "static_adaptive_avg_pool1d": 80, "static_adaptive_avg_pool2d": 80, "static_adaptive_max_pool2d": 80, "static_adaptive_max_pool3d": 80, "static_avg_pool1d": 80, "static_avg_pool2d": 80, "static_avg_pool3d": 80, "static_dct": 80, "253": [80, 286, 632], "515": [80, 643, 740], "467": 80, "static_dft": 80, "static_embed": 80, "static_idct": 80, "93732834": [80, 375, 397], "75048852": [80, 375, 397], "29723358": [80, 375, 407], "6950531": 80, "93914509": 80, "88008738": 80, "18951225": 80, "06697273": [80, 375, 407], "57439804": 80, "68861485": [80, 375, 407], "41308832": [80, 375, 407], "0700836": 80, "2449036": 80, "6711426": 80, "514": 80, "501709": 80, "4924011": 80, "static_ifft": 80, "static_ifftn": 80, "static_interpol": 80, "static_max_pool1d": 80, "static_max_pool2d": 80, "max_pool2dd": 80, "static_max_pool3d": 80, "static_max_unpool1d": 80, "static_rfft": 80, "static_rfftn": 80, "static_rnn": 80, "step_funct": [80, 375, 421], "initial_st": [80, 375, 421, 636, 661], "go_backward": [80, 375, 421], "unrol": [80, 375, 421, 636, 662, 849, 852], "input_length": [80, 375, 421], "zero_output_for_mask": [80, 375, 421], "return_all_output": [80, 375, 421], "rnn": [80, 375, 870], "tempor": [80, 375, 421], "state_s": [80, 375, 421], "while_loop": [80, 375, 421, 628], "otput": [80, 375, 421], "funciton": [80, 375, 421], "static_stft": 80, "_containerwithlinearalgebraexperiment": [80, 103], "933034": [80, 376, 426], "eigenvealu": [80, 429, 672], "xx": [80, 429, 431, 672], "37228107": [80, 429, 672], "3722816": [80, 429, 672], "8245648": [80, 429, 672], "41597357": [80, 429, 672], "56576747": [80, 429, 672], "9093767": [80, 429, 672], "56155": [80, 430], "82842": [80, 430], "450": [80, 436], "static_adjoint": 80, "static_batched_out": 80, "static_cond": 80, "static_diagflat": 80, "static_dot": 80, "static_eig": 80, "static_eigh_tridiagon": 80, "static_eigv": 80, "static_higher_order_mo": 80, "static_initialize_tuck": 80, "static_kron": 80, "kroneck": [80, 376, 435, 436], "static_make_svd_non_neg": 80, "static_matrix_exp": 80, "static_mode_dot": 80, "static_multi_dot": 80, "static_multi_mode_dot": 80, "static_partial_tuck": 80, "static_svd_flip": 80, "static_tensor_train": 80, "static_truncated_svd": 80, "static_tt_matrix_to_tensor": 80, "tt_matrix": [80, 376, 450], "output_tensor": [80, 100, 376, 450], "static_tuck": 80, "_containerwithlossesexperiment": [80, 103], "_static_hinge_embedding_loss": 80, "_static_huber_loss": 80, "static_huber_loss": 80, "0575": [80, 453], "_static_kl_div": 80, "_static_l1_loss": 80, "static_l1_loss": 80, "_static_log_poisson_loss": 80, "static_log_poisson_loss": 80, "_static_poisson_nll_loss": 80, "06446016": 80, "55611551": 80, "30244565": [80, 457], "_static_smooth_l1_loss": 80, "static_smooth_l1_loss": 80, "_static_soft_margin_loss": 80, "3890561": [80, 456], "413159": [80, 456], "06429195": [80, 457], "43333333": [80, 458], "10666666": [80, 458], "_containerwithmanipulationexperiment": [80, 103], "_static_fill_diagon": 80, "_static_put_along_axi": 80, "_static_tak": 80, "69999981": [80, 307, 367, 378, 468, 492], "_static_trim_zero": 80, "_static_unflatten": 80, "_static_unique_consecut": 80, "ary1": [80, 378, 462, 463, 464], "ary2": [80, 378, 462, 463, 464], "broadcast_shap": [80, 106, 378, 776, 778], "static_concat_from_sequ": [80, 469], "30192195": [80, 481], "static_as_strid": 80, "static_atleast_1d": 80, "static_atleast_2d": 80, "static_atleast_3d": 80, "static_broadcast_shap": 80, "static_column_stack": 80, "static_dsplit": 80, "static_dstack": 80, "static_expand": 80, "static_flatten": 80, "static_fliplr": 80, "static_flipud": 80, "static_fold": 80, "static_heavisid": 80, "static_hsplit": 80, "static_hstack": 80, "static_i0": 80, "static_matric": 80, "static_moveaxi": 80, "static_pad": 80, "static_partial_fold": 80, "static_partial_tensor_to_vec": 80, "static_partial_unfold": 80, "static_partial_vec_to_tensor": 80, "static_rot90": 80, "static_soft_threshold": 80, "static_take_along_axi": 80, "static_top_k": 80, "static_unfold": 80, "static_vsplit": 80, "static_vstack": 80, "_containerwithnormsexperiment": [80, 103], "16903085": [80, 505, 507], "50709254": [80, 505, 507], "84515423": [80, 505, 507], "44183609": [80, 505, 507], "56807494": [80, 505, 507], "69431382": [80, 505, 507], "static_batch_norm": 80, "static_group_norm": 80, "static_instance_norm": 80, "static_l1_norm": 80, "static_l2_norm": 80, "static_lp_norm": 80, "12500000": 80, "37500000": 80, "62500000": 80, "27500000": 80, "35000000": 80, "42500000": 80, "0000000": 80, "5000000": 80, "2500000": 80, "_containerwithrandomexperiment": [80, 103], "43643127": [80, 510], "32325703": [80, 510], "24031169": [80, 510], "34251311": [80, 510], "31692529": [80, 510], "3405616": [80, 510], "5319725": [80, 510], "22458365": [80, 510], "24344385": [80, 510], "26588406": [80, 510], "61075421": [80, 510], "12336174": [80, 510], "51142915": [80, 510], "25041268": [80, 510], "23815817": [80, 510], "64042903": [80, 510], "25763214": [80, 510], "10193883": [80, 510], "31624692": [80, 510], "46567987": [80, 510], "21807321": [80, 510], "37677699": [80, 510], "39914594": [80, 510], "22407707": [80, 510], "static_bernoulli": 80, "static_beta": 80, "static_dirichlet": 80, "static_gamma": 80, "static_poisson": 80, "_containerwithsearchingexperiment": [80, 103], "static_unravel_index": 80, "_containerwithsetexperiment": [80, 103], "_containerwithsortingexperiment": [80, 103], "invert_permut": [80, 385], "static_invert_permut": 80, "static_lexsort": [80, 92], "_containerwithstatisticalexperiment": [80, 103], "_static_cummax": 80, "static_cummax": 80, "_static_cummin": 80, "static_cummin": 80, "_static_nanmin": 80, "static_nanmin": 80, "func_nam": [80, 525, 818, 831, 832, 837, 841], "static_bincount": 80, "static_corrcoef": 80, "static_cov": [80, 387, 522], "static_histogram": 80, "static_igamma": 80, "static_lgamma": 80, "static_median": 80, "static_nanmean": 80, "static_nanmedian": 80, "static_nanprod": 80, "static_quantil": 80, "_containerwithutilityexperiment": [80, 103], "static_optional_get_el": 80, "_containerwithgener": [81, 103], "_static_all_equ": 81, "static_all_equ": 81, "_static_array_equ": 81, "a0": [81, 378, 468], "static_array_equ": 81, "_static_assert_supports_inplac": 81, "_static_clip_matrix_norm": 81, "static_clip_matrix_norm": 81, "849": [81, 540, 634], "_static_clip_vector_norm": 81, "static_clip_vector_norm": 81, "_static_einops_rearrang": 81, "static_einops_rearrang": 81, "_static_einops_reduc": 81, "static_einops_reduc": 81, "29333329": [81, 546, 634], "53000069": [81, 546, 634], "39666676": [81, 546, 634], "20666695": [81, 546, 634], "_static_einops_repeat": 81, "static_einops_repeat": 81, "_static_exist": 81, "_static_fourier_encod": 81, "static_fourier_encod": 81, "classivi": [81, 645, 750], "89858720e": 81, "79717439e": 81, "_static_gath": 81, "static_gath": 81, "_static_gather_nd": 81, "static_gather_nd": 81, "_static_get_num_dim": 81, "static_get_num_dim": 81, "_static_has_nan": 81, "leafwis": 81, "static_has_nan": 81, "_static_inplace_decr": 81, "_static_inplace_incr": 81, "_static_inplace_upd": 81, "_static_is_arrai": 81, "static_is_arrai": 81, "_static_is_ivy_arrai": 81, "static_is_ivy_arrai": 81, "_static_is_native_arrai": 81, "static_is_native_arrai": 81, "_static_scatter_flat": 81, "_static_scatter_nd": 81, "static_scatter_nd": 81, "_static_s": 81, "static_s": 81, "_static_stable_divid": 81, "22222222": 81, "11111111": 81, "857": [81, 592, 634], "444": 81, "_static_stable_pow": 81, "00012": [81, 593, 634], "00016": [81, 82, 593, 621, 634, 635], "00001": [81, 593, 634, 776], "00032": [81, 593], "00256": [81, 593], "1679638": [81, 593], "395": [81, 593], "16777383": [81, 593], "_static_supports_inplace_upd": 81, "_static_to_list": 81, "static_to_list": 81, "_static_to_numpi": 81, "static_to_numpi": 81, "_static_to_scalar": 81, "static_to_scalar": 81, "_static_value_is_nan": 81, "452": 81, "static_value_is_nan": 81, "833": [81, 541], "items": [81, 102, 634], "static_isin": 81, "static_items": 81, "static_strid": 81, "425": [81, 613], "_containerwithgradi": [82, 103], "_static_stop_gradi": 82, "static_stop_gradi": 82, "976": [82, 291, 615, 632, 635], "49e": [82, 615, 635], "74e": [82, 615, 635], "95e": [82, 615, 635], "024": [82, 615, 635], "096": [82, 615, 635], "216": [82, 85, 615, 635, 692], "626": [82, 615, 635], "en": [82, 615, 616, 635, 828], "wikipedia": [82, 615, 616, 635], "wiki": [82, 615, 616, 635], "stochastic_gradient_desc": [82, 615, 616, 635], "01099": [82, 616], "01003": [82, 616, 635], "01015": [82, 616, 635], "99936122": [82, 616, 635], "99936116": [82, 616, 635], "99936128": [82, 616, 635], "99936104": [82, 616, 635], "w_new": [82, 619, 635], "708": [82, 621, 635], "445": [82, 621, 635], "6e": [82, 621, 635], "00036": [82, 621, 635], "00049": [82, 621, 635], "layerwis": [82, 622, 635], "01132035": [82, 622, 635], "22264051": [82, 622, 635], "2056601": [82, 622, 635], "1324538": [82, 622, 635], "56490755": [82, 622, 635], "96622658": [82, 622, 635], "90848625": [82, 622, 635], "93616199": [82, 622, 635], "77232409": [82, 622, 635], "_containerwithimag": [83, 103], "_containerwithlay": [84, 103], "_static_conv1d": 84, "static_conv1d": 84, "_static_conv1d_transpos": 84, "static_conv1d_transpos": 84, "112": [84, 637, 647, 651, 682, 759], "_static_conv2d": 84, "ey": [84, 629, 636, 652, 658, 847, 854], "static_conv2d": 84, "_static_conv2d_transpos": 84, "static_conv2d_transpos": 84, "_static_conv3d": 84, "fdfh": [84, 654], "static_conv3d": 84, "_static_conv3d_transpos": 84, "static_conv3d_transpos": 84, "_static_depthwise_conv2d": 84, "inp": [84, 636, 658], "static_depthwise_conv2d": 84, "_static_dropout": 84, "static_dropout": 84, "_static_dropout1d": 84, "static_dropout1d": 84, "_static_dropout2d": 84, "_static_dropout3d": 84, "_static_linear": 84, "278": [84, 636, 659, 660], "static_linear": 84, "195": 84, "_static_lstm_upd": 84, "_static_multi_head_attent": 84, "_static_reduce_window": 84, "_static_scaled_dot_product_attent": 84, "static_scaled_dot_product_attent": 84, "39999962": [84, 636, 659, 660], "19999695": [84, 660], "11600018": [84, 660], "88399887": [84, 660], "306": [84, 636, 660], "19999981": [84, 297, 310, 367, 375, 419, 636, 659, 666], "59249449": [84, 636, 666], "68226194": [84, 636, 666], "19603825": [84, 636, 666], "9960382": [84, 636, 666], "26894283": [84, 636, 666], "40236187": [84, 636, 666], "39999437": [84, 636, 666], "59999037": [84, 636, 666], "35046196": [84, 636, 666], "54282808": [84, 636, 666], "39989519": [84, 636, 666], "5998764": [84, 636, 666], "_containerwithlinearalgebra": [85, 103], "_static_choleski": 85, "static_choleski": 85, "577": [85, 637, 667], "707": [85, 637, 667], "static_rol": [85, 87], "_static_cross": 85, "static_cross": 85, "_static_det": 85, "_static_diag": 85, "_static_diagon": 85, "static_diagon": 85, "_static_eigh": 85, "_static_eigvalsh": 85, "static_eigvalsh": 85, "51572949": [85, 637, 674], "17091519": [85, 637, 674], "3448143": [85, 637, 674], "35898387e": [85, 637, 674], "46410179e": [85, 637, 674], "_static_inn": 85, "static_inn": 85, "_static_inv": 85, "static_inv": 85, "_static_matmul": 85, "matul": 85, "static_matmul": 85, "_static_matrix_norm": 85, "deimens": 85, "static_matrix_norm": 85, "_static_matrix_pow": 85, "_static_matrix_rank": 85, "static_matrix_rank": 85, "_static_matrix_transpos": 85, "static_matrix_transpos": 85, "_static_out": 85, "n1": [85, 139, 629], "n2": [85, 139, 629], "static_out": [85, 682], "_static_pinv": 85, "static_pinv": 85, "0426": 85, "0964": 85, "0605": 85, "1368": 85, "_static_qr": 85, "static_qr": 85, "31622777": [85, 637, 684], "9486833": [85, 637, 684], "4472136": [85, 637, 684], "89442719": [85, 637, 684], "16227766": [85, 637, 684], "42718872": [85, 637, 684], "63245553": [85, 637, 684], "47213595": [85, 637, 684], "81377674": [85, 637, 684], "_static_slogdet": 85, "static_slogdet": 85, "6931472": 85, "0986123": 85, "_static_solv": 85, "_static_svd": 85, "static_svd": 85, "au": 85, "aS": 85, "avh": 85, "bvh": 85, "_static_svdv": 85, "_static_tensordot": 85, "_static_tensorsolv": 85, "_static_trac": 85, "static_trac": 85, "_static_vand": 85, "static_vand": 85, "343": [85, 283, 632, 692], "729": [85, 692, 853], "_static_vecdot": 85, "_static_vector_norm": 85, "static_vector_norm": 85, "77359247": [85, 694], "_static_vector_to_skew_symmetric_matrix": 85, "09861231": [85, 637, 685], "static_general_inner_product": 85, "3475602": [85, 687], "93765765": [85, 687], "58776021": [85, 687], "10416126": [85, 687], "80644298": [85, 687], "87024701": [85, 687], "48127627": [85, 687], "79101127": [85, 687], "98288572": [85, 687], "68917423": [85, 687], "_containerwithloss": [86, 103], "_static_binary_cross_entropi": 86, "static_binary_cross_entropi": 86, "511": 86, "223": 86, "357": 86, "_static_cross_entropi": 86, "static_cross_entropi": 86, "20397282": 86, "83258148": 86, "60943794": [86, 637, 685], "_static_sparse_cross_entropi": 86, "static_sparse_cross_entropi": 86, "36354783": [86, 638, 696], "14733934": [86, 638, 696], "17027519": [86, 697], "53647931": [86, 697], "53647929": [86, 698], "1702752": [86, 698], "_containerwithmanipul": [87, 103], "_static_clip": 87, "static_clip": 87, "_static_concat": 87, "_static_constant_pad": 87, "static_constant_pad": 87, "_static_expand_dim": 87, "static_expand_dim": 87, "container_axi": [87, 639, 702], "_static_flip": 87, "static_flip": 87, "_static_permute_dim": 87, "static_permute_dim": 87, "_static_repeat": 87, "static_repeat": 87, "_static_reshap": 87, "static_reshap": 87, "_static_rol": 87, "positivclip": 87, "_static_split": 87, "static_split": 87, "_static_squeez": 87, "static_squeez": 87, "_static_stack": 87, "leavv": 87, "static_stack": 87, "_static_swapax": 87, "_static_til": 87, "static_til": 87, "_static_unstack": 87, "static_unstack": 87, "_static_zero_pad": 87, "repreat": [87, 705], "_containerwithnorm": [88, 103], "34198591": [88, 642, 737], "04274819": [88, 642, 737], "29923761": [88, 642, 737], "24053511": [88, 642, 737], "62221265": [88, 737], "20277636": [88, 737], "41943574": [88, 737], "83710337": [88, 737], "_containerwithrandom": [89, 103], "_static_multinomi": 89, "_static_randint": 89, "static_randint": 89, "_static_random_norm": 89, "static_random_norm": 89, "651": 89, "_static_random_uniform": 89, "static_random_uniform": 89, "481": 89, "0999": 89, "_static_shuffl": 89, "static_shuffl": 89, "431": [89, 740], "274": [89, 740], "_containerwithsearch": [90, 103], "_static_argmax": 90, "static_argmax": 90, "_static_argmin": 90, "static_argmin": 90, "_static_argwher": 90, "static_argwher": 90, "_static_nonzero": 90, "_static_wher": 90, "static_wher": 90, "_containerwithset": [91, 103], "_static_unique_al": 91, "static_unique_al": 91, "_static_unique_count": 91, "static_unique_count": 91, "_static_unique_invers": 91, "static_unique_invers": 91, "_static_unique_valu": 91, "_containerwithsort": [92, 103], "_static_argsort": 92, "static_argsort": 92, "_static_searchsort": 92, "_static_sort": 92, "static_sort": 92, "static_msort": 92, "_containerwithstatist": [93, 103], "_static_cumprod": 93, "static_cumprod": 93, "_static_cumsum": 93, "static_cumsum": 93, "_static_min": 93, "_static_prod": 93, "static_prod": 93, "11000001": [93, 763], "23100001": [93, 763], "30800003": [93, 647, 763], "_static_sum": 93, "_static_var": 93, "static_var": 93, "12666667": [93, 647, 766], "11555555": [93, 647, 766], "rtype": [93, 759, 805], "respectv": [93, 764], "81649649": [93, 764], "94280904": [93, 764], "509902": [93, 647, 764], "2472192": [93, 764], "44948983": [93, 764], "41421354": [93, 764], "6666667": [93, 766], "_containerwithutil": [94, 103], "_static_al": 94, "static_al": 94, "_static_ani": 94, "static_ani": 94, "add_ivy_container_instance_method": 95, "containerexampl": 95, "factorized_tensor": [96, 97, 98, 99, 100, 101], "factorizedtensor": [96, 97, 98, 99, 100, 101], "matrix_or_tensor": 96, "to_unfold": [96, 97, 98, 99, 100, 101], "to_vec": [96, 97, 98, 99, 100, 101], "cp_tensor": [97, 98], "cptensor": [97, 98, 323, 369], "cp_copi": 97, "cp_flip_sign": 97, "s_i": [97, 98], "normalisation_weight": [97, 98], "normalised_factor": [97, 98], "cp_lstsq_grad": 97, "return_loss": 97, "nabla": 97, "mathcal": 97, "mathbf": 97, "factor_matric": 97, "cp_gradient": 97, "quantiti": 97, "cp_mode_dot": 97, "keep_dim": [97, 101], "cp_multi_mode_dot": 97, "cp_n_param": 97, "tensor_shap": [97, 99, 100, 101], "n_param": [97, 98, 99, 100, 101], "cp_norm": 97, "cp_to_tensor": 97, "khatria": 97, "rao": [97, 376, 435], "khatri": [97, 376, 435], "cp_normal": 97, "normalis": [97, 98], "u_1": [97, 98], "u_n": [97, 98], "v_1": [97, 98], "v_n": [97, 98], "v_k": [97, 98], "u_k": [97, 98], "absorb": [97, 98], "refold": [97, 378, 477, 488], "cp_to_unfold": 97, "ie": 97, "s_u_i": 97, "exploit": [97, 873], "khatri_rao": [97, 376], "cp_to_vec": 97, "ravel": [97, 847], "unfolding_dot_khatri_rao": 97, "mttkrp": 97, "validate_cp_rank": 97, "percent": [97, 100], "validate_cp_tensor": 97, "parafac2_tensor": 98, "parafac2tensor": [98, 324, 369], "apply_parafac2_project": 98, "evolv": [98, 859, 870], "b_i": 98, "ijk": [98, 806], "sum_r": 98, "a_": 98, "ir": [98, 868, 871, 876], "jr": 98, "kr": 98, "coupl": [98, 819, 824, 851, 853, 870], "factoris": 98, "i1": [98, 387, 525], "classmethod": [98, 105, 106, 781], "from_cptensor": 98, "parafac2_tensor_ok": 98, "parafac2_normalis": 98, "normalised_project": 98, "parafac2_to_slic": 98, "slice_idx": 98, "frontal": 98, "a_i": 98, "j_i": 98, "b_": 98, "reformul": 98, "p_i": 98, "orthogon": [98, 323, 327, 369, 376, 429, 445, 451, 637, 672, 673], "sum_": 98, "ijr": 98, "constraint": [98, 806, 828, 829, 839], "projection_matric": 98, "parafac2_to_tensor": 98, "construct": [98, 639, 712, 792, 795, 796, 797, 843, 849, 853, 854, 868, 870, 877], "uneven": 98, "parafac2_to_unfold": 98, "parafac2_to_vec": 98, "validate_parafac2_tensor": 98, "cp": [98, 323, 369, 820], "tr_tensor": 99, "trtensor": [99, 325, 369], "tr_n_param": 99, "tr_to_tensor": 99, "tr_to_unfold": 99, "tr_to_vec": 99, "validate_tr_rank": 99, "validate_tr_tensor": 99, "tt_tensor": 100, "_tt_n_param": 100, "mp": [100, 326, 369], "index_upd": 100, "pad_tt_rank": 100, "factor_list": 100, "n_pad": 100, "pad_boundari": 100, "ring": 100, "bond": 100, "padded_factor_list": 100, "tt_to_tensor": 100, "assembl": [100, 376, 450], "tt_to_unfold": 100, "reassembl": 100, "tt_to_vec": 100, "validate_tt_rank": 100, "constant_rank": 100, "allow_overparametr": 100, "proport": [100, 791], "realiz": [100, 870], "validate_tt_tensor": 100, "tucker_tensor": 101, "tucker_copi": 101, "tucker_mode_dot": [101, 877], "tucker_n_param": 101, "tucker_norm": 101, "tucker_to_tensor": 101, "skip_factor": 101, "transpose_factor": 101, "tucker_to_unfold": 101, "tucker_to_vec": 101, "validate_tucker_rank": 101, "fixed_mod": 101, "validate_tucker_tensor": 101, "_bisection_root_find": 101, "fun": [101, 366, 374, 614, 634, 641, 729, 828], "max_it": 101, "__abs__": [102, 103], "__add__": [102, 103, 824, 827, 831, 832, 836, 841, 842, 851], "__eq__": [102, 103], "__ge__": [102, 103], "__gt__": [102, 103, 847], "__le__": [102, 103], "__lt__": [102, 103], "__ne__": [102, 103], "__pow__": [102, 103, 851], "69678056": 102, "59876156": 102, "82660675": 102, "__radd__": [102, 103, 831, 832, 841], "__rrshift__": [102, 103], "__rshift__": [102, 103], "__rsub__": [102, 103], "__sub__": [102, 103, 824, 827, 831, 836, 851], "__truediv__": [102, 103, 824, 827, 831], "__xor__": [102, 103], "referenc": [102, 833, 840], "resid": [102, 106, 639, 702, 841, 849, 853], "mt": [102, 851], "hopefulli": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861], "reach": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 869, 870], "eq": 103, "ge": 103, "le": 103, "ne": 103, "75979435": 103, "52153397": 103, "13532257": 103, "rshift": 103, "truediv": 103, "nested_arrai": [105, 106, 107, 826], "nestedarrai": 105, "nested_rank": [105, 106, 107], "inner_shap": [105, 106, 107], "nestedarraybas": [105, 106, 107], "from_row_length": 105, "row_length": 105, "from_row_split": 105, "row_split": 105, "ragged_map": 106, "ragged_multi_map": 106, "ragged_arrai": 106, "ragged_multi_map_in_funct": 106, "replace_ivy_arrai": 106, "unbind": 106, "nestedarrayelementwis": 107, "strictli": [112, 115, 118, 247, 626, 632, 836, 840], "24000001": [112, 626], "703": [113, 626], "683": [113, 626], "408": [113, 626], "313": [113, 626], "437": [113, 626], "40337825": [114, 626], "56114835": [114, 626], "20788449": [114, 626], "0768": [117, 626], "231": [117, 626], "\u03b2": [118, 626], "body_fn": [122, 123, 125, 628], "bodi": [122, 125, 628, 823, 844], "lst": [122, 628], "orelse_fn": [123, 628], "body1": [124, 628], "body2": [124, 628], "test_fn": [125, 628, 774, 812, 864, 865], "repeatedli": [125, 628, 641, 727, 828, 844], "ml_framework": [126, 629], "distanc": [126, 629], "adjac": [126, 629], "nestedsequ": [127, 128, 629], "typevar": [127, 128, 629], "supportsbufferprotocol": [127, 128, 629], "static_copy_arrai": [129, 629], "intdtyp": [132, 143, 149, 161, 172, 177, 184, 190, 629, 630], "pycapsul": [133, 144, 629], "interchang": [133, 144, 629, 639, 711], "plu": [134, 629], "x00b": [134, 629], "x00d": [134, 629], "x00e": [134, 629], "41588834": [138, 629], "7827941": [138, 629], "6227766": [138, 629], "23413252": [138, 629], "n3": [139, 629], "xv": [139, 629], "yv": [139, 629], "x_nativ": [140, 629, 840], "y_nativ": [140, 629], "z_nativ": [140, 629], "d_type": [142, 629], "col": [147, 328, 369, 629], "primari": [147, 166, 167, 199, 200, 328, 369, 385, 515, 550, 551, 629, 630, 631, 634, 777, 779, 818, 822, 825, 829, 838, 840, 841, 843, 844, 847, 855, 857], "upward": [147, 328, 369, 629], "downward": [147, 328, 369, 629], "2xn": [147, 328, 369, 629], "subarrai": [147, 328, 369, 629], "incompat": [154, 630], "closest": [157, 236, 246, 247, 283, 293, 630, 632, 844, 847], "xtype": [157, 630], "ytype": [157, 630], "native_uint16": [157, 630], "complexdtyp": [158, 172, 181, 630], "set_default_complex_dtyp": [158, 187, 630], "4294": [158, 160, 630], "967346": [158, 160, 630], "set_default_dtyp": [159, 188, 630, 829, 837], "floatdtyp": [160, 183, 630], "set_default_float_dtyp": [160, 169, 181, 189, 630, 829], "int_dtyp": [161, 184, 630], "set_default_int_dtyp": [161, 169, 190, 630, 829], "4294967346": [161, 162, 630], "uint_dtyp": [162, 185, 630], "uint": [162, 177, 185, 191, 630, 829, 842], "uintdtyp": [162, 177, 185, 191, 630], "set_default_uint_dtyp": [162, 169, 191, 630], "native_bool": [164, 630], "ieee": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "754": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "smallest_norm": [165, 630], "bfloat16": [166, 630, 776, 777, 829, 841, 844, 845], "unsupport": [167, 200, 551, 630, 631, 634, 771, 774, 816, 819, 834, 841], "encapsul": [168, 630, 828], "314": [168, 280, 338, 372, 630, 632], "9223372036854775808": [168, 630], "9223372036854775807": [168, 630], "65535": [168, 630], "4294967295": [168, 630], "native_uint8": [170, 630], "hashabl": [174, 630], "type1": [178, 630], "type2": [178, 630], "array_api_promot": [178, 179, 630, 776, 777], "unexpect": [179, 247, 630, 632, 829], "default_complex_dtyp": [181, 630], "default_dtype_stack": [182, 188, 630], "unset_default_dtyp": [182, 630], "native_uint64": [182, 630], "default_float_dtyp": [183, 630, 829], "default_int_dtyp": [184, 190, 630, 829], "default_uint_dtyp": [185, 191, 630], "ret1": [186, 630], "ret2": [186, 630], "reset": [187, 188, 189, 190, 191, 217, 218, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 630, 631, 634, 830], "default_complex_dtype_stack": [187, 630], "default_float_dtype_stack": [189, 630], "native_float16": [192, 630], "unmodifi": [194, 631, 825, 829], "aliv": [201, 206, 208, 554, 574, 575, 631, 634, 830], "139740789224448": [201, 631], "process_specif": [207, 219, 631], "percentag": [207, 631], "ram": [207, 215, 219, 631], "alon": [207, 219, 631, 812, 835, 844], "036902561555": [207, 631], "7024003467681645": [207, 631], "as_native_dev": [207, 631], "7095597456708771": [207, 631], "attr_onli": [208, 631], "soft_device_mod": [210, 218, 631], "chunk": [211, 212, 213, 631], "split_factor": [211, 631, 833], "max_chunk_s": [213, 631], "chunk_siz": [213, 631], "input_ax": [213, 631], "output_ax": [213, 631], "fed": [213, 631, 853], "fist": [213, 631], "gb": [215, 219, 631, 819, 834], "66700032": [215, 631], "589934592": [215, 631], "219563008": [219, 631], "902400346": [219, 631], "525205504": [219, 631], "na": [220, 632, 844], "noqa": [220, 287, 632, 792, 801, 842], "princip": [221, 225, 227, 359, 372, 632], "codomain": [221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832], "\u03c0": [221, 225, 227, 228, 627, 632], "3\u03c0": [221, 228, 632], "unspecifi": [221, 222, 226, 229, 238, 243, 245, 247, 282, 286, 287, 291, 376, 429, 632, 637, 639, 672, 673, 710, 840], "\u03c0j": [222, 226, 229, 261, 263, 632], "3\u03c0j": [222, 261, 263, 632], "x1_i": [223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "2019": [223, 240, 245, 263, 273, 632, 870, 873], "commut": [223, 632], "tabl": [223, 240, 273, 585, 608, 632, 634, 776, 777, 792, 841, 846, 870], "dj": [223, 240, 273, 632], "z1": [223, 632], "z2": [223, 632], "yj": [224, 632], "nanj": [226, 632], "809": [226, 632], "569": [226, 632], "733": [226, 632], "notat": [228, 632, 647, 759, 828], "denot": [228, 632, 794], "quadrant": [228, 632], "rai": [228, 632, 860], "bitwis": [230, 233, 235, 270, 632], "170": [234, 632], "243": [234, 632], "xor": [235, 270, 632], "654": [237, 632], "ci": [238, 243, 245, 286, 632, 823, 829, 835, 842, 844, 855], "368": [238, 632], "670": [238, 632], "202": [238, 632, 823], "548": [238, 632], "1490": [238, 632], "57079633": [239, 632], "14159265": [239, 632], "71238898": [239, 632], "28318531": [239, 632], "02617994": [239, 632], "87266463": [239, 632], "01919862": [239, 632], "03839725": [239, 632], "05759586": [239, 632], "07679449": [239, 632], "09599311": [239, 632], "11519173": [239, 632], "35081118": [239, 632], "88139129": [239, 632], "underflow": [240, 247, 632, 637, 685, 829], "textbook": [240, 273, 632], "frac": [240, 262, 264, 284, 286, 290, 375, 381, 403, 404, 408, 409, 501, 503, 632], "ac": [240, 273, 632, 805, 806], "bd": [240, 273, 632], "bc": [240, 273, 632, 805, 806], "versu": [240, 273, 632], "riemann": [240, 273, 632], "sphere": [240, 273, 632], "c99": [240, 273, 632], "infinit": [240, 273, 287, 632], "unlik": [240, 273, 632, 823, 828, 831, 860, 875, 877], "698": [240, 632], "truth": [241, 251, 252, 259, 260, 276, 377, 453, 632, 771, 773, 784, 816, 834, 841, 844], "32862675": [242, 632], "67780113": [242, 632], "11246294": [242, 632], "42839241": [242, 632], "52050018": [242, 632], "16799599": [242, 632], "30787992": [242, 632], "43796915": [242, 632], "98667163": [242, 632], "79690808": [242, 632], "88020504": [242, 632], "91031402": [242, 632], "95228523": [242, 632], "96610528": [242, 632], "cut": [243, 245, 285, 286, 287, 290, 632, 859, 876], "08553692": [243, 632], "567": [243, 632], "00344786": [243, 632], "76297021": [243, 632], "197948": [243, 632], "53253174": [243, 632], "fdlibm": [245, 263, 632], "compliant": [245, 263, 268, 269, 335, 336, 372, 632, 647, 760, 761, 762, 764], "potenti": [245, 263, 632, 812, 818, 819, 828, 829, 841, 848, 873], "632": [245, 632], "20e": [245, 632], "72e": [245, 632, 776], "greatest": [246, 247, 250, 632], "pep": [247, 632, 836], "disambigu": [247, 632, 839], "former": [247, 632, 819, 829, 832, 841], "latter": [247, 632, 819, 823, 825, 829, 832, 841], "overload": [247, 632, 844], "led": [247, 632, 823, 872], "subtl": [247, 632, 829, 876], "bug": [247, 632, 812, 818, 820, 826, 834, 835, 841, 844, 856], "ambigu": [247, 632], "semant": [247, 282, 378, 492, 632, 829, 849, 854, 859, 871], "ill": [247, 632, 778], "surpris": [247, 632, 855], "arrau": [253, 632], "log_": [262, 264, 632], "742": [263, 632], "negat": [275, 338, 372, 632], "52095687": [278, 632], "92457771": [278, 632], "49372482": [278, 632], "22738838": [278, 632], "156": [278, 632, 776], "5877228": [278, 632], "189": [279, 632, 641, 718], "252": [279, 632], "1150": [279, 632], "2890": [279, 632], "344": [279, 632], "355j": [280, 338, 372, 632], "55j": [280, 338, 372, 632], "primarili": [282, 632, 818, 827, 870], "counterpart": [283, 632, 827, 838], "deliber": [283, 632, 847], "imprecis": [283, 632], "5654": [283, 632], "034": [283, 632], "433": [283, 618, 620, 632, 635], "signum": [284, 632], "textrm": [284, 632], "932": [285, 632], "746": [285, 632], "657": [285, 632], "indistinguish": [287, 632], "infti": [287, 632], "32455532": [287, 632], "89897949": [287, 632], "169": [287, 632], "analyt": [290, 632, 870, 872, 876], "pole": [290, 632], "546": [290, 632, 636, 660], "916": [290, 632], "996": [290, 632], "histor": [291, 632], "stem": [291, 632, 840], "older": [291, 632], "advis": [291, 632, 841], "462": [291, 632], "604": [291, 632], "997": [291, 632], "0375": [293, 632], "032": [293, 632], "57258511": [296, 367], "69999999": [296, 367, 625, 635], "90928203": [296, 367], "98772264": [296, 367], "99591321": [296, 367], "99863964": [296, 367], "69880581": [296, 367], "18126924": [296, 367], "79999995": [297, 307, 310, 367], "70000005": [297, 310, 367], "1241": [298, 367], "4897": [298, 367], "4090": [298, 367], "31008321": [298, 367], "1147176": [298, 367], "40899992": [298, 367], "20141329": [301, 367], "40318608": [301, 367], "48683619": [301, 367], "46328247": [301, 367], "59813893": [301, 367], "43748799": [301, 367], "parametr": [302, 367, 823, 844, 870], "71589994": [304, 308, 367], "14324772": [304, 308, 367], "70648694": [304, 308, 367], "54488957": [304, 308, 367], "10740992": [304, 308, 367], "19514863": [304, 308, 367], "6705687": [305, 367], "52016652": [305, 367], "40560818": [305, 367], "45630932": [305, 367], "2689": [306, 367], "7310": [306, 367], "7615": [306, 367], "2784": [306, 367], "7168": [306, 367], "8708": [306, 367], "4374": [306, 367], "1379": [306, 367], "0089": [306, 367], "59999991": [307, 367], "03597236": [309, 367], "43827677": [309, 367], "80100036": [309, 367], "12954807": [309, 367], "76459098": [309, 367], "20044947": [309, 367], "60000372": [309, 367], "taper": [312, 315, 369], "summat": [312, 369, 647, 759, 805, 806], "leakag": [312, 369], "wors": [312, 369, 860], "y1": [313, 369], "0800": [314, 369], "3979": [314, 369], "9121": [314, 369], "5400": [314, 369], "han": [315, 369], "ith": [316, 369], "00726415": [317, 369], "9999736": [317, 369], "2773e": [318, 369], "0172e": [318, 369], "9294e": [318, 369], "4149": [318, 369], "9138": [318, 369], "5529": [318, 369], "multidimension": [320, 321, 369, 870], "normalise_factor": [323, 324, 369], "parafac2": [324, 369], "tr": [325, 369], "38268346": [333, 369], "38268352": [333, 369], "8563191": [333, 369], "14943568": [333, 369], "cn": [335, 336, 372], "zh": [335, 336, 372], "amax_cn": [335, 372], "sentinel": [335, 336, 372, 647, 760, 762], "amin_cn": [336, 372], "4769": [344, 372], "position": [346, 372], "triangl": [350, 372], "999999e": [351, 372], "65999985": [353, 372], "52000046": [353, 372], "1500001": [353, 372, 546, 634], "11259177": [354, 372], "3574118": [354, 372], "20097363": [354, 372], "suppli": [358, 372, 378, 484, 805, 824, 826, 844], "217234": [359, 372], "hurwitz": [362, 372], "custom_grad_func": [364, 374], "bind": [364, 374, 818, 839, 869, 870], "upstream": [364, 374, 819, 820, 823, 834, 839], "primal": [365, 366, 374], "jacobian": [365, 366, 374, 620, 635, 855, 870], "cotang": [366, 374], "stanh": 367, "ndenumer": 369, "ndindex": 369, "random_cp": 369, "random_parafac2": 369, "random_tr": 369, "random_tt": 369, "random_tuck": 369, "bind_custom_gradient_funct": [374, 839], "jvp": 374, "vjp": 374, "h_out": [375, 392, 636, 661], "w_out": [375, 392], "area_interpol": 375, "01823380e": [375, 397, 407], "15385818e": [375, 397, 407], "36371466e": [375, 397, 407], "38763905e": [375, 397, 407], "60722279e": [375, 397, 407], "80319249e": [375, 397, 407], "05617893e": [375, 397, 407], "21500000e": [375, 397, 407], "24000015e": [375, 397, 407], "90734863e": [375, 397, 407], "10000420e": [375, 397, 407], "15899994e": [375, 397, 407], "24000053e": [375, 397, 407], "81469727e": [375, 397, 407], "09999847e": [375, 397, 407], "4135742": [375, 397, 407], "6779785": [375, 397, 407], "3770599": [375, 397, 407], "8719864": [375, 397, 407], "72109985": [375, 397, 407], "52869415": [375, 397, 407], "79182434": [375, 397, 407], "72489166": [375, 397, 407], "container_n": [375, 397, 407], "container_typ": [375, 397, 407, 634], "container_norm": [375, 397, 407], "1580677": [375, 397], "89422607": [375, 397], "86190414": [375, 397], "00041008": [375, 397], "75149155": [375, 397], "97056389": [375, 397], "87819386": [375, 397], "89381361": [375, 397], "50000000e": [375, 397, 407, 776], "22044605e": [375, 397, 407], "ed": [375, 399, 400, 401], "rest": [375, 378, 399, 400, 401, 470, 819, 826, 828, 844, 854, 872], "5d": [375, 401, 792], "emb": [375, 402], "51285338": [375, 402], "87183261": [375, 402], "2308116": [375, 402], "02733949e": [375, 403], "00j": [375, 403], "49660576e": [375, 403], "68178638e": [375, 403], "01j": [375, 403, 408], "98912367e": [375, 403], "21802426e": [375, 403, 408], "04549134e": [375, 403, 408], "82842712e": [375, 403, 408], "86902654e": [375, 403, 408], "25501143e": [375, 403, 408], "32978028e": [375, 403, 408], "52068201e": [375, 403, 408], "71158374e": [375, 403, 408], "generate_einsum_equ": 375, "get_interpolate_kernel": 375, "27279224e": [375, 407], "44232273e": [375, 407], "70464332e": [375, 407], "73454881e": [375, 407], "00902849e": [375, 407], "10039906e": [375, 407], "07022366e": [375, 407], "69506073": [375, 407], "93914604": [375, 407], "88008881": [375, 407], "18951607": [375, 407], "57439613": [375, 407], "15318303e": [375, 408], "15148591e": [375, 408], "19j": [375, 408], "25000000e": [375, 408], "35378602e": [375, 408], "02j": [375, 408], "65404249e": [375, 408], "17611649e": [375, 408], "24320230e": [375, 408], "79344813e": [375, 408], "22374531e": [375, 408], "45929364e": [375, 408], "14208718e": [375, 408], "07177031e": [375, 408], "indexerror": [375, 409, 420, 639, 702, 807, 833], "interp": [375, 847], "xp": [375, 410, 823], "fp": [375, 410], "nd": [375, 411], "tf_bicub": [375, 411, 847], "nearest_interpol": 375, "window_shap": [375, 417], "pool_typ": [375, 417], "irfft": [375, 419], "silent": [375, 419], "discard": [375, 419, 828], "1400001": [375, 419], "3999999": [375, 419], "3999996": [375, 419], "99038106j": [375, 420], "33012702": [375, 420], "23205081j": [375, 420], "33012702j": [375, 420], "superdiagon": [376, 427, 637, 670], "subdiagon": [376, 427, 637, 670], "eigendecomposit": [376, 429, 637, 672, 673], "qlq\u1d40": [376, 429, 637, 672, 673], "tridiagon": [376, 430], "38196602": [376, 430], "61803389": [376, 430], "35048741": [376, 430], "56710052": [376, 430], "06693714": [376, 430], "74234426": [376, 430], "56155282": [376, 430], "56155276": [376, 430], "82842714": [376, 430], "82842731": [376, 430, 637, 673], "necessarili": [376, 431, 824, 827], "generalis": [376, 432], "skip_matrix": [376, 435, 437], "khatri_rao_product": [376, 435], "kronecker_product": [376, 437], "n_column": [376, 437], "lu_factor": 376, "pivot": [376, 438], "lu": [376, 438, 439], "lu_solv": 376, "nnmf": [376, 440], "hoi": [376, 445, 451], "solve_triangular": 376, "unit_diagon": [376, 446], "solut": [376, 446, 637, 686, 776, 812, 816, 818, 819, 820, 827, 829, 834, 842, 844, 847, 868, 872], "determinist": [376, 447, 844], "borrow": [376, 447, 822], "extmath": [376, 447], "ivan": [376, 448], "oseledet": [376, 448], "scientif": [376, 448, 870], "2295": [376, 448], "2317": [376, 448], "2011": [376, 448], "convention": [377, 454, 873], "explicit": [377, 378, 454, 492, 819, 827, 829, 839, 840, 841, 849, 855, 870], "555969": [377, 454], "223876": [377, 454], "111938": [377, 454], "42649534": [377, 454], "68651628": [377, 454], "51119184": [377, 454], "59967244": [377, 454], "mae": [377, 455], "666": [377, 455, 636, 637, 660, 678], "91097307": [377, 457], "3467": [377, 458], "0133": [377, 458], "0250": [377, 458], "0056": [377, 458], "0025": [377, 458], "0675": [377, 458], "6987": [377, 459], "1606": [377, 459], "3711": [377, 459], "4032": [377, 459], "6931": [377, 459], "whilst": [378, 462, 463, 464, 854, 857, 870], "ary3": [378, 464], "check_scalar": 378, "force_integ": [378, 466], "force_posit": [378, 466], "mod": [378, 467, 823], "tall": [378, 473], "horizot": [378, 480], "shortcut": [378, 484, 819], "linear_ramp": [378, 484], "reflect": [378, 484, 820, 824, 840, 844], "ramp": [378, 484], "mirror": [378, 484, 815, 818, 870], "padding_func": [378, 484], "iaxis_pad_width": [378, 484], "iaxi": [378, 484], "unalt": [378, 484], "put": [378, 489, 812, 818, 844, 855, 876], "mul": [378, 489, 840, 851], "conceptu": [378, 492, 866, 871], "concern": [378, 492, 820, 822, 827, 829, 831, 840, 847, 848, 876], "regard": [378, 492, 817, 827, 841, 842, 847, 860], "mutat": [378, 492], "elimin": [378, 498, 819], "consecut": [378, 498], "batch_mean": [381, 501, 503], "batch_var": [381, 501, 503], "running_vari": [381, 501, 503], "local_response_norm": 381, "neighbour": [381, 506], "42857143": [381, 507], "5714286": [381, 507], "multivari": [382, 510], "bayesian": [382, 510], "supposedli": [385, 514], "indirect": [385, 515], "secondari": [385, 515], "is_ivy_sparse_arrai": 386, "is_native_sparse_arrai": 386, "native_sparse_arrai": 386, "coo_indic": [386, 518], "crow_indic": [386, 518], "col_indic": [386, 518], "ccol_indic": [386, 518], "row_indic": [386, 518], "dense_shap": [386, 518], "native_sparse_array_to_indices_values_and_shap": 386, "nativesparsearrai": 386, "sparsearrai": 386, "linalg": [387, 522, 637, 685, 686, 818, 840, 842], "aw": [387, 522, 860], "48447205": [387, 522], "c0": [387, 525], "ck": [387, 525], "c2": [387, 525], "nearest_jax": [387, 532], "trace_on_next_step": [536, 634, 796, 853], "recalcul": [539, 634], "my_sum": [539, 634], "val1": [539, 634], "val2": [539, 634], "cached_sum": [539, 634], "line_eq": [539, 634], "slp": [539, 634], "itc": [539, 634], "cached_line_eq": [539, 634], "0353": [540, 634], "424": [540, 634], "339": [540, 634], "271": [540, 634], "391": [540, 634], "78885436": [541, 634], "41666666": [541, 634], "58333331": [541, 634], "06666667": [541, 634], "13333334": [541, 634], "40000004": [541, 634], "26666668": [541, 634], "13137734": [541, 634], "26275468": [541, 634], "39413199": [541, 634], "52550936": [541, 634], "6568867": [541, 634], "78826398": [541, 634], "84852815": [541, 634], "1313709": [541, 634], "41421366": [541, 634], "27279221": [541, 634], "69705628": [541, 634], "12132034": [541, 634], "default_str": [544, 634], "46999979": [545, 634], "66000009": [545, 634], "93000001": [545, 634], "29000092": [545, 634], "33999991": [545, 634], "6400001": [545, 634], "96000004": [545, 634], "36000013": [545, 634], "51999998": [545, 634], "67000008": [545, 634], "suppos": [545, 634, 829, 844], "960": [545, 634], "3600": [545, 634], "h1": [545, 634], "w1": [545, 634], "40499985": [546, 634], "61000061": [546, 634], "max_depth": [557, 634], "seen_set": [557, 634], "local_set": [557, 634], "referr": [557, 634], "redund": [557, 634, 812, 829, 833, 841, 863], "example_funct": [557, 634], "repr": [557, 634], "ivyexcept": [562, 595, 634, 807, 830, 833, 838, 840, 841, 845], "allow_dupl": [572, 634], "fork": [573, 634, 813, 823, 828, 834], "forkserv": [573, 634], "mp_default": [573, 634], "defaultcontext": [573, 634], "0x7f4e3193e520": [573, 634], "mp_fork": [573, 634], "forkcontext": [573, 634], "0x7f4e3193e580": [573, 634], "mp_spawn": [573, 634], "spawncontext": [573, 634], "0x7f4e3193e5e0": [573, 634], "mp_forkserv": [573, 634], "forkservercontext": [573, 634], "0x7f4e3193e640": [573, 634], "garbag": [575, 634], "collector": [575, 634], "get_all_arrays_in_memori": [575, 634], "exception_trace_mod": [579, 603, 634, 846], "lenient": [580, 604, 634], "inplace_mod": [580, 604, 634], "break": [580, 634, 812, 825, 829, 836, 845, 855], "infus": [581, 634], "unset": [582, 589, 634, 637, 685, 801, 825, 849], "unset_min_bas": [582, 634], "nestable_mod": [584, 607, 634, 846], "precise_mod": [585, 608, 634, 846], "shape_array_mod": [587, 610, 634, 846], "show_func_wrapper_trace_mod": [588, 611, 634, 846], "tmp_dr": [589, 634], "tmp_dir": [589, 612, 634, 846], "my_tmp": [589, 634], "unset_tmp_dir": [589, 634], "49999999999975": [592, 634], "5015015015010504": [592, 634], "000444502911705e": [592, 634], "9999999999995j": [592, 634], "00000262": [593, 634], "15605032": [593, 634], "01208451j": [593, 634], "00048": [593, 634], "1296": [593, 634], "00864": [593, 634], "isn": [595, 634, 815, 820, 838, 840, 844, 852, 855, 872], "100000023841858": [597, 634], "200000047683716": [597, 634], "299999952316284": [597, 634], "400000095367432": [597, 634], "599999904632568": [597, 634], "hemant": [601, 634], "unset_shape_array_mod": [602, 634], "set_exception_trace_mod": [603, 634, 833], "set_min_bas": [605, 634], "set_min_denomin": [606, 634], "set_nestable_mod": [607, 634], "set_precise_mod": [608, 634], "set_queue_timeout": [609, 634], "set_shape_array_mod": [610, 634], "set_show_func_wrapper_trace_mod": [611, 634, 833], "set_tmp_dir": [612, 634], "my_dir": [612, 634], "451": [613, 634], "in_ax": [614, 634], "out_ax": [614, 634], "thereof": [614, 634], "summaris": [614, 634], "99999998": [615, 635], "19999998": [615, 635], "00000001": [615, 635], "00300001": [615, 635], "00800001": [615, 635], "0125": [615, 635], "17294501": [615, 635], "15770318": [615, 635], "20863818": [615, 635], "90000075": [616, 635], "90000164": [616, 635], "9000032": [616, 635], "50000012e": [616, 635], "92558754": [616, 635], "92558694": [616, 635], "92558682": [616, 635], "92558861": [616, 635], "60000025e": [616, 635], "01024": [616, 635], "retain_grad": [617, 635], "func_ret": [617, 635, 839], "666666": [617, 635], "333332": [617, 635], "66666675": [617, 625, 635], "argnum": [618, 635], "933": [618, 620, 635], "jac_fn": [620, 635], "639": [621, 635], "361": [621, 635], "52565837": [622, 635], "8418861": [622, 635], "68377209": [622, 635], "value_grad": [625, 635], "42333412": [625, 635], "5333333": [625, 635], "93333334": [625, 635], "43333334": [625, 635], "0666666": [625, 635], "softsign": 626, "718281828459045": 627, "euler": 627, "141592653589793": 627, "cmp_i": 628, "cmp_isnot": 628, "for_loop": 628, "if_els": 628, "try_except": 628, "to_dlpack": 629, "as_ivy_dtyp": [630, 841], "as_native_dtyp": 630, "check_float": 630, "closest_valid_dtyp": 630, "default_dtyp": [630, 829, 837], "dtype_bit": 630, "function_supported_dtyp": [630, 829, 844], "function_unsupported_dtyp": [630, 829], "infer_default_dtyp": 630, "invalid_dtyp": [630, 829], "is_hashable_dtyp": 630, "is_native_dtyp": 630, "promote_typ": [630, 829], "promote_types_of_input": [630, 829, 840], "type_promote_arrai": [630, 829], "unset_default_complex_dtyp": 630, "unset_default_float_dtyp": 630, "unset_default_int_dtyp": 630, "unset_default_uint_dtyp": 630, "valid_dtyp": 630, "defaultcomplexdtyp": 630, "defaultdtyp": 630, "defaultfloatdtyp": 630, "defaultintdtyp": 630, "defaultuintdtyp": 630, "as_ivy_dev": [631, 851], "clear_cached_mem_on_dev": 631, "dev_util": [631, 830], "function_supported_devic": 631, "function_unsupported_devic": 631, "get_all_ivy_arrays_on_dev": [631, 830], "handle_soft_device_vari": [631, 830], "num_cpu_cor": [631, 830], "num_gpu": [631, 830, 844], "num_ivy_arrays_on_dev": 631, "percent_used_mem_on_dev": 631, "print_all_ivy_arrays_on_dev": 631, "set_split_factor": [631, 833], "split_func_cal": 631, "total_mem_on_dev": [631, 830], "tpu_is_avail": 631, "unset_default_devic": [631, 830], "unset_soft_device_mod": [631, 830], "used_mem_on_dev": 631, "defaultdevic": [631, 830], "profil": 631, "save_dir": 631, "arg_info": 634, "arg_nam": 634, "cache_fn": [634, 837], "current_backend_str": [634, 844, 849, 851], "function_supported_devices_and_dtyp": 634, "function_unsupported_devices_and_dtyp": 634, "get_item": [634, 840], "get_referrers_recurs": 634, "inplace_arrays_support": 634, "inplace_variables_support": 634, "is_ivy_nested_arrai": 634, "isscalar": 634, "match_kwarg": 634, "num_arrays_in_memori": 634, "print_all_arrays_in_memori": 634, "set_item": [634, 844], "to_ivy_shap": 634, "to_native_shap": 634, "try_else_non": 634, "unset_array_mod": [634, 846], "unset_exception_trace_mod": 634, "unset_inplace_mod": 634, "unset_min_denomin": 634, "unset_nestable_mod": 634, "unset_precise_mod": 634, "unset_queue_timeout": 634, "unset_show_func_wrapper_trace_mod": 634, "vmap": [634, 855, 870], "arraymod": 634, "precisemod": [634, 829], "jac": 635, "value_and_grad": [635, 839], "feature_group_count": [636, 649, 656, 657], "oiw": [636, 649, 650, 656], "oihw": [636, 649, 652, 656], "oidhw": [636, 649, 654, 656], "dhwio": [636, 649, 650, 654, 656], "conv_general_dil": [636, 841], "conv_general_transpos": 636, "depthwis": [636, 658, 778, 792], "1428566": [636, 659], "49000001": [636, 659], "55599999": [636, 659], "21000004": [636, 659], "incom": [636, 660], "4269": [636, 660], "911": [636, 660, 833], "157": [636, 660], "753": [636, 660], "545": [636, 643, 660, 741], "547": [636, 660, 830], "963": [636, 660], "98495483": [636, 660], "0293808": [636, 660], "0159359": [636, 660], "74752808": [636, 660], "20942307": [636, 660], "3205719": [636, 660], "all_weight": [636, 661], "num_lay": [636, 661, 792], "batch_first": [636, 661, 663], "weights_transpos": [636, 661], "has_ih_bia": [636, 661], "has_hh_bia": [636, 661], "multi": [636, 637, 661, 663, 668, 778, 792, 831, 848, 855, 866, 868, 870, 874], "long": [636, 661, 662, 819, 820, 828, 829, 831, 833, 834, 841, 849, 870], "seq_len": [636, 661], "input_s": [636, 661], "h_0": [636, 661], "c_0": [636, 661], "num_direct": [636, 661], "hidden_s": [636, 661], "four": [636, 661, 815, 824, 829, 831, 836, 837, 844, 847, 852], "w_ih": [636, 661], "w_hh": [636, 661], "b_ih": [636, 661], "b_hh": [636, 661], "pack": [636, 661], "c_out": [636, 661], "vaswani": [636, 663], "al": [636, 663], "num_attention_head": [636, 663], "key_dim": [636, 663, 792], "value_dim": [636, 663, 792], "attention_weight": [636, 663], "unbatch": [636, 663], "nm": 636, "box": [636, 664, 665, 819], "iou_threshold": [636, 664], "max_output_s": [636, 664], "score_threshold": [636, 664], "roi_align": 636, "spatial_scal": [636, 665], "sampling_ratio": [636, 665], "23333359": [636, 666], "03946018": [636, 666], "0280633": [636, 666], "29981947": [636, 666], "29981089": [636, 666], "06345534": [636, 666], "9634552": [636, 666], "19336844": [636, 666], "09336829": [636, 666], "axisa": [637, 668], "axisb": [637, 668], "axisc": [637, 668], "293": [637, 669], "46997": [637, 669], "17157288": [637, 673], "9238795": [637, 673], "78930789": [637, 673], "59803128": [637, 673], "19127655": [637, 673], "31213903": [637, 673], "63418275": [637, 673], "84632206": [637, 673], "70548367": [637, 673], "70223427": [637, 673], "09570674": [637, 673], "63116378": [637, 673], "56109613": [637, 673], "53554028": [637, 673], "32237405": [637, 673], "43822157": [637, 673], "83906901": [637, 673], "50766778": [637, 673], "71475857": [637, 673], "48103389": [637, 673], "3676433": [637, 673], "68466955": [637, 673], "62933773": [637, 673], "77917379": [637, 673], "14264561": [637, 673], "61036086": [637, 673], "45033181e": [637, 674], "02829754e": [637, 674], "54220343e": [637, 674], "12647155e": [637, 674], "38447177e": [637, 674], "56155300e": [637, 674], "26794919": [637, 674], "7320509": [637, 674], "0012": [637, 676], "00342": [637, 676], "000565": [637, 676], "0104": [637, 676], "000981": [637, 676], "00282": [637, 676], "000766": [637, 676], "0322": [637, 676], "00237": [637, 676], "000151": [637, 676], "00101": [637, 676], "00019": [637, 676], "0214": [637, 676], "00171": [637, 676], "0107": [637, 676], "0167": [637, 676], "0472": [637, 676], "0536": [637, 676], "0177": [637, 676], "000429": [637, 676], "00762": [637, 676], "frobeniu": [637, 678], "nuclear": [637, 678], "induc": [637, 678], "ranl": [637, 678], "47722558": [637, 678], "776": [637, 678], "6000004": [637, 678], "118": [637, 679], "moor": [637, 683], "penros": [637, 683], "31622776": [637, 684], "94868332": [637, 684], "1622777": [637, 684], "42718887": [637, 684], "deteremin": [637, 685], "logsabsdet": [637, 685], "subject": [637, 685], "unset_backend": [637, 685, 801, 825], "ordin": [637, 686], "b2": [637, 686], "usvh": [637, 687], "cetera": [637, 687], "driver": [637, 688, 855], "cusolv": [637, 688], "gesvd": [637, 688], "gesvdj": [637, 688], "gesvda": [637, 688], "86217213": [637, 688], "31816804": [637, 688], "615": [637, 688], "ss": [637, 688], "25994301": [637, 688], "16403675": [637, 688], "61529762": [637, 688], "51231241": [637, 688], "39777088": [637, 688], "15413129": [637, 688], "1029852": [637, 688], "01383495": [637, 688], "86647356": [637, 688], "7786541": [637, 688], "55970621": [637, 688], "16857576": [637, 688], "86412698": [637, 688], "37566757": [637, 688], "88477993": [637, 688], "95925522": [637, 688], "6444726": [637, 688], "54687881": [637, 688], "16134834": [637, 688], "35037804": [637, 688], "31025076": [637, 688], "35769391": [637, 688], "transposit": [637, 689], "0x": [637, 692], "Such": [637, 692, 837, 844], "alexandr": [637, 692], "theophil": [637, 692], "dot_product": [637, 693], "9000001": [637, 694], "64158917": [637, 694], "skew": [637, 695], "60309976": [638, 696], "6666193": [638, 696], "01348412": [638, 696], "05393649": [638, 696], "49992943": [638, 696], "83330965": [638, 696], "02136981": [638, 696], "32844672": [638, 696], "26561815": [638, 696], "22314337": [638, 696], "08916873": [638, 697, 698], "44832274": [638, 698], "75646281": [638, 698], "13862944": [638, 698], "57564628": [638, 698], "honor": [639, 706], "beyond": [639, 707, 812, 832, 841, 876], "famili": [639, 710], "intxx": [639, 710], "floatxx": [639, 710], "rep": [639, 712], "fomaml_step": 640, "inner_cost_fn": [640, 715, 716, 717], "outer_cost_fn": [640, 715, 716], "inner_grad_step": [640, 715, 716, 717], "inner_learning_r": [640, 715, 716, 717], "inner_optimization_step": [640, 715, 716, 717], "inner_batch_fn": [640, 715, 716], "outer_batch_fn": [640, 715, 716], "average_across_step": [640, 715, 716], "inner_v": [640, 715, 716], "keep_inner_v": [640, 715, 716], "outer_v": [640, 715, 716], "keep_outer_v": [640, 715, 716], "return_inner_v": [640, 715, 716, 717], "num_task": [640, 715, 716, 717], "maml": [640, 715, 716], "0x7f20b3979120": [640, 715, 716, 717], "maml_step": 640, "vanilla": [640, 716, 853, 870], "_variabl": [640, 716, 717], "sub_batch": [640, 716], "40069818": [640, 716], "13723135": [640, 716], "reptile_step": 640, "cost_fn": [640, 717], "reptil": [640, 717], "batch_in": [640, 717], "4485182": [640, 717], "139": [640, 717], "9569855": [640, 717], "9880483": [640, 717], "01766968": [640, 717], "02197957": [640, 717], "02197981": [640, 717], "all_nested_indic": 641, "include_nest": [641, 718], "_index": [641, 718, 729], "_base": [641, 718, 728, 729, 840], "themselv": [641, 718, 827, 829, 830, 832, 837, 841, 853, 867, 876], "863": [641, 718, 830], "672": [641, 718], "482": [641, 718], "674": [641, 718], "341": [641, 718], "copy_nest": 641, "to_mut": [641, 719, 730], "deepli": [641, 719, 821, 855, 870], "copied_nest": [641, 719], "1337": [641, 719, 730], "duplicate_array_index_chain": 641, "index_nest": [641, 837], "insert_into_nest_at_index": 641, "insert_into_nest_at_indic": 641, "special_squar": [641, 724], "6666666666666667": [641, 724], "special_pow": [641, 724], "linear_model": [641, 724], "map_nest_at_index": 641, "_result": [641, 725, 735], "hh": [641, 725, 730], "map_nest_at_indic": 641, "ub": [641, 726], "tb": [641, 726], "multi_index_nest": 641, "nested_ani": 641, "check_nest": [641, 728, 729], "nested_argwher": 641, "stop_after_n_found": [641, 729], "nested_indic": [641, 729], "nested_map": [641, 830, 837], "_tuple_check_fn": [641, 730], "_list_check_fn": [641, 730], "_dict_check_fn": [641, 730], "wherebi": [641, 730, 818, 867], "ah": [641, 730], "bh": [641, 730], "ch": [641, 730], "dh": [641, 730, 823], "eh": [641, 730], "gh": [641, 730, 819, 834], "ih": [641, 730], "1338": [641, 730], "nested_multi_map": 641, "index_chain": [641, 731], "nest0": [641, 731], "ivy_arrai": [641, 731, 824, 841], "unappli": [641, 731], "prune_empti": 641, "prune_nest_at_index": 641, "prune_nest_at_indic": 641, "set_nest_at_index": 641, "set_nest_at_indic": 641, "xyz": [641, 736], "pqr": [641, 736], "mini": [642, 737, 792, 795], "uniformli": [643, 739, 741], "22346112": [643, 740], "0922": [643, 740], "9213753": [643, 740], "12818667": [643, 740], "799": [643, 740], "469": [643, 740], "287": [643, 740], "0366": [643, 740], "26431865": [643, 741], "475": [643, 741], "878": [643, 741], "861": [643, 741], "929": [643, 741], "789": [643, 741], "519": [643, 741], "0435": [643, 741], "381": [643, 741], "4608004": [643, 741], "8458502": [643, 741], "67270088": [643, 741], "31128597": [643, 741], "394": [643, 743], "zeroel": [644, 747], "fourth": [645, 749], "1141": [645, 749], "8101": [645, 749], "9298": [645, 749], "8460": [645, 749], "2119": [645, 749], "3519": [645, 749], "6252": [645, 749], "4033": [645, 749], "7443": [645, 749], "2577": [645, 749], "3707": [645, 749], "0545": [645, 749], "3238": [645, 749], "5944": [645, 749], "0775": [645, 749], "4327": [645, 749], "62519997": [645, 749], "40329999": [645, 749], "59439999": [645, 749], "74430001": [645, 749], "81010002": [645, 749], "84600002": [645, 749], "92979997": [645, 749], "einstein": [647, 759, 805], "117": [647, 759], "intend": [647, 765, 774, 791, 823, 836, 839, 868, 870, 874, 875], "07472222": [647, 766], "00666667": [647, 766], "08966666": [647, 766], "simplicit": [648, 767, 768], "ivy_test": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 823, 826, 828, 834, 842], "test_ivi": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 826, 828, 834, 842, 844], "assert_all_clos": [771, 842], "ret_np": [771, 773, 842], "ret_from_gt_np": [771, 842], "ground_truth_backend": [771, 773, 774, 783, 784, 816, 834, 842], "mark": [771, 815, 818, 820, 823, 844, 849], "assert_same_typ": 771, "ret_from_target": 771, "ret_from_gt": 771, "backend_to_test": [771, 773, 816, 834, 842], "gt_backend": 771, "with_backend": [771, 801], "assert_same_type_and_shap": 771, "this_key_chain": 771, "check_unsupported_devic": 771, "input_devic": 771, "all_as_kwargs_np": [771, 773], "check_unsupported_device_and_dtyp": 771, "input_dtyp": [771, 773, 783, 816, 834, 842, 844], "check_unsupported_dtyp": 771, "test_unsupported_funct": 771, "value_test": 771, "ret_np_flat": 771, "ret_np_from_gt_flat": 771, "specific_tolerance_dict": 771, "ret_from_np_gt_flat": 771, "function_test": 773, "args_to_contain": 773, "array_arg": [773, 837], "args_to_frontend": 773, "frontend_array_fn": 773, "arrays_to_frontend": 773, "as_list": 773, "convtru": 773, "nativeclass": 773, "counter": [773, 853], "create_args_kwarg": 773, "args_np": 773, "arg_np_val": 773, "args_idx": 773, "kwargs_np": 773, "kwarg_np_val": 773, "kwargs_idx": 773, "test_flag": [773, 816, 834, 842, 844], "on_devic": [773, 783, 816, 834, 842], "flatten_and_to_np": 773, "flatten_frontend": 773, "flatten_frontend_fw_to_np": 773, "frontend_ret": [773, 842], "isscalar_func": 773, "is_native_array_func": 773, "to_numpy_func": 773, "flatten_frontend_to_np": 773, "get_frontend_ret": 773, "frontend_fn": 773, "frontend_array_funct": 773, "precision_mod": [773, 783, 784, 834], "test_trac": [773, 783, 784, 816, 823, 834], "test_trace_each": [773, 783, 784], "get_ret_and_flattened_np_arrai": 773, "gradient_incompatible_funct": 773, "gradient_test": [773, 844], "rtol_": [773, 816, 834], "atol_": [773, 816, 834, 842], "tolerance_dict": 773, "gradient_unsupported_dtyp": 773, "kwargs_to_args_n_kwarg": 773, "num_positional_arg": [773, 783, 784, 816, 834, 842, 844], "port": [773, 861], "test_frontend_funct": [773, 842], "fn_tree": [773, 774, 784, 816, 834, 841, 842, 844], "gt_fn_tree": [773, 784], "test_valu": [773, 842, 844], "frontend_function_flag": [773, 783], "functiontestflag": [773, 783, 816, 834], "with_out": [773, 783, 816, 834, 842, 844], "instance_method": [773, 783, 816, 834, 844], "as_vari": [773, 783, 816, 834, 842, 844], "namespac": [773, 818, 829, 838, 841, 842, 845, 849, 854], "arg_": 773, "test_frontend_method": [773, 842], "init_input_dtyp": [773, 842], "method_input_dtyp": [773, 842], "init_flag": [773, 842, 844], "method_flag": [773, 783, 842, 844], "init_all_as_kwargs_np": [773, 842], "method_all_as_kwargs_np": [773, 842], "frontend_method_data": [773, 842], "init_as_variable_flag": [773, 784], "dictat": [773, 824, 831, 836, 840], "init_num_positional_arg": [773, 784], "init_native_array_flag": 773, "with_v": 773, "ret_gt": 773, "test_funct": [773, 816, 819, 820, 828, 834, 842, 844], "fn_name": [773, 774, 784, 816, 825, 834, 842, 844], "return_flat_np_arrai": 773, "as_variable_flag": [773, 784, 844], "native_array_flag": [773, 784, 844], "container_flag": [773, 783, 784, 844], "test_function_backend_comput": 773, "test_function_ground_truth_comput": 773, "arg_np_arrai": 773, "arrays_args_indic": 773, "arrays_kwargs_indic": 773, "kwarg_np_arrai": 773, "test_gradient_backend_comput": 773, "test_gradient_ground_truth_comput": 773, "test_method": 773, "method_nam": [773, 782, 784, 842], "init_with_v": 773, "method_with_v": 773, "test_gradi": [773, 783, 784, 816, 834, 844], "method_as_variable_flag": [773, 784], "method_num_positional_arg": [773, 784], "method_native_array_flag": 773, "method_container_flag": [773, 784], "test_method_backend_comput": 773, "test_method_ground_truth_comput": 773, "org_con_data": 773, "args_np_method": 773, "met_arg_np_v": 773, "met_args_idx": 773, "kwargs_np_method": 773, "met_kwarg_np_v": 773, "met_kwargs_idx": 773, "v_np": 773, "traced_if_requir": 773, "wrap_frontend_function_arg": 773, "holder": 774, "current_frontend_config": 774, "0x7f20a7755f10": 774, "interruptedtest": 774, "test_interrupt": 774, "baseexcept": 774, "tri": [774, 829], "testdata": 774, "supported_device_dtyp": 774, "is_method": 774, "setup_api_test": 774, "test_data": 774, "setup_frontend_test": 774, "teardown_api_test": 774, "teardown_frontend_test": 774, "hypothesis_help": [776, 777, 778, 779], "array_help": 776, "array_and_broadcastable_shap": 776, "searchstrategi": [776, 777, 778, 779, 783, 784, 844], "array_bool": [776, 844], "min_valu": [776, 777, 778, 779, 816, 834, 842, 844], "max_valu": [776, 777, 778, 779, 842, 844], "ex": [776, 777, 778, 779, 784, 828, 864], "strategi": [776, 777, 778, 779, 783, 784, 818, 842], "array_helpers_dtype_info_help": 776, "kind_dtyp": [776, 778], "array_indices_axi": 776, "array_dtyp": [776, 777, 844], "indices_dtyp": 776, "get_dtyp": [776, 777, 816, 834, 842, 844], "abs_smallest_v": [776, 778, 779], "large_abs_safety_factor": [776, 778, 779, 816, 834, 842, 844], "small_abs_safety_factor": [776, 778, 779, 816, 834, 842], "safety_factor_scal": [776, 778, 779, 842, 844], "disable_random_axi": 776, "axis_zero": 776, "allow_inf": [776, 779, 842, 844], "min_num_dim": [776, 778, 842, 844], "max_num_dim": [776, 778, 842, 844], "min_dim_s": [776, 778, 842, 844], "max_dim_s": [776, 778, 842], "first_dimension_onli": 776, "indices_same_dim": 776, "valid_bound": 776, "safeti": [776, 778, 779, 870], "0002": [776, 779], "hypothesi": [776, 778, 784, 818, 820, 823, 828, 838], "65536": 776, "44758124e": [776, 844], "array_indices_put_along_axi": 776, "values_dtyp": 776, "array_valu": [776, 844], "allow_nan": [776, 779, 844], "allow_subnorm": [776, 779, 844], "exclude_min": [776, 779, 844], "exclude_max": [776, 779], "subnorm": [776, 779], "get_shap": [776, 778, 842, 844], "1806": 776, "36912": 776, "6955": 776, "59576": 776, "arrays_and_ax": 776, "available_dtyp": [776, 777, 816, 834, 842, 844], "allow_non": [776, 778, 842, 844], "return_dtyp": 776, "force_int_axi": 776, "26e": 776, "10e": 776, "24322108": 776, "26446279e": 776, "96046448e": 776, "008": 776, "17549435e": 776, "038": 776, "06541027e": 776, "13725760e": 776, "07143888": 776, "arrays_for_pool": 776, "min_dim": 776, "max_dim": 776, "min_sid": 776, "max_sid": 776, "explicit_or_str_pad": 776, "only_explicit_pad": 776, "return_dil": 776, "mixed_fn_compo": [776, 777, 778, 779, 844], "return_data_format": 776, "cond_data_gen_help": 776, "create_concatenable_arrays_dtyp": 776, "min_num_arrai": 776, "max_num_arrai": 776, "concat_dim": 776, "common_shap": [776, 844], "stackabl": 776, "given_common_shap": 776, "create_nested_input": 776, "leaf_valu": 776, "dtype_and_valu": [776, 816, 834, 842, 844], "num_arrai": [776, 777, 842, 844], "shared_dtyp": [776, 777, 842], "ret_shap": 776, "array_api_dtyp": [776, 777], "shape_kei": 776, "37915": 776, "6322": 776, "26765": 776, "12413": 776, "26986": 776, "34665": 776, "000e": 776, "711e": 776, "100e": 776, "955e": [776, 844], "40817": 776, "56193": 776, "29200": 776, "5851": 776, "9746": 776, "9604645e": 776, "103": 776, "41795": 776, "1170789994": 776, "44251": 776, "44209": 776, "433075925": 776, "24791": 776, "24691": 776, "24892": 776, "16711": 776, "972": 776, "15357": 776, "72057594037927936": 776, "dtype_array_queri": 776, "allow_mask": 776, "allow_neg_step": 776, "dtype_array_query_v": 776, "dtype_values_axi": [776, 844], "min_axi": 776, "max_axi": 776, "valid_axi": 776, "allow_neg_ax": 776, "min_axes_s": 776, "max_axes_s": 776, "force_tuple_axi": 776, "29788": 776, "62222885e": 776, "68281172e": 776, "257j": 776, "40129846e": 776, "90000000e": 776, "63426649e": 776, "91931887e": 776, "29488e": 776, "14361019e": 776, "12445": 776, "einsum_help": 776, "get_first_solve_batch_matrix": 776, "choose_adjoint": 776, "get_second_solve_batch_matrix": 776, "get_first_solve_matrix": 776, "allow_simplifi": 776, "choose_sid": 776, "xa": 776, "get_second_solve_matrix": 776, "list_of_s": 776, "sampled_from": [776, 842, 844], "min_siz": [776, 778, 784, 844], "max_siz": [776, 778, 784, 844], "size_bound": [776, 844], "999999999999999": 776, "9394938006792373": 776, "mutually_broadcastable_shap": 776, "num_shap": 776, "base_shap": 776, "dtype_help": 777, "univers": [777, 841, 859], "cast_filt": 777, "cast_filter_help": 777, "current_backend": [777, 801, 818, 825, 833, 837, 842, 845, 849], "get_castable_dtyp": 777, "castabl": 777, "prune_funct": 777, "intersect": [777, 828, 844], "signed_integ": 777, "real_and_complex": 777, "float_and_complex": 777, "general_help": 778, "broadcasterror": 778, "apply_safety_factor": 778, "dims_and_offset": 778, "ensure_dim_uniqu": 778, "embedding_help": 778, "general_helpers_dtype_info_help": 778, "get_axi": [778, 844], "allow_neg": 778, "sort_valu": 778, "force_tupl": 778, "force_int": 778, "assertionerror": [778, 816, 823, 833, 834, 842, 844], "get_bound": [778, 844], "get_mean_std": 778, "matrix_is_st": 778, "cond_limit": 778, "instabl": [778, 816, 829, 834], "computation": [778, 819], "prone": [778, 829], "thumb": 778, "gradual": 778, "collinear": 778, "reshape_shap": [778, 844], "sizes_": 778, "two_broadcastable_shap": 778, "x_and_filt": 778, "number_help": 779, "arbitrarili": [779, 852], "safety_factor": 779, "backend_proc": 780, "input_queu": 780, "output_queu": 780, "frontend_proc": 780, "pipeline_help": 781, "backendhandl": 781, "update_backend": [781, 842], "backendhandlermod": 781, "enum": 781, "setbackend": 781, "withbackend": 781, "withbackendcontext": 781, "get_frontend_config": 781, "frontendmethoddata": 782, "ivy_init_modul": 782, "framework_init_modul": 782, "init_nam": 782, "test_parameter_flag": 783, "dynamicflag": [783, 784], "frontendfunctiontestflag": [783, 834], "with_copi": 783, "generate_frontend_arrai": [783, 784, 834], "testflag": 783, "apply_flag": 783, "args_to_iter": 783, "frontendinittestflag": 783, "frontendmethodtestflag": 783, "test_cython_wrapp": [783, 784], "initmethodtestflag": 783, "methodtestflag": 783, "build_flag": 783, "frontend_init_flag": 783, "frontend_method_flag": 783, "function_flag": 783, "init_method_flag": 783, "testing_help": 784, "handle_exampl": [784, 844], "test_exampl": [784, 844], "test_frontend_exampl": [784, 844], "test_method_exampl": [784, 844], "test_frontend_method_exampl": [784, 844], "given_kwarg": 784, "handle_frontend_method": [784, 842, 844], "class_tre": [784, 842], "init_tre": [784, 842], "init_native_arrai": 784, "_as_varaible_strategi": 784, "method_native_arrai": 784, "test_inplac": [784, 844], "_given_kwarg": 784, "test_compil": 784, "handle_frontend_test": [784, 842, 844], "alias": [784, 818, 841, 842], "number_positional_arg": [784, 842], "test_with_out": [784, 842, 844], "test_with_copi": 784, "handle_method": [784, 844], "method_tre": [784, 842, 844], "_gradient_strategi": 784, "handle_test": [784, 816, 834, 844], "test_instance_method": [784, 844], "num_positional_args_help": 784, "num_positional_args_method": 784, "geglu": 788, "leakyrelu": 788, "logsoftmax": 788, "from_flax_modul": 789, "native_modul": 789, "params_fx": 789, "rng_seed": 789, "constructor_arg": 789, "constructor_kwarg": 789, "instance_arg": 789, "instance_kwarg": 789, "flax": [789, 854, 855, 861, 870], "from_haiku_modul": 789, "params_hk": 789, "from_paddle_modul": 789, "from_torch_modul": 789, "to_keras_modul": 789, "native_module_class": 789, "modulehelp": [790, 794], "create_vari": [791, 853], "var_shap": [791, 853], "fan_out": [791, 853], "fan_in": [791, 853], "rectangular": 791, "firstlayersiren": 791, "siren": 791, "glorotuniform": [791, 792, 853], "glorot": 791, "xavier": 791, "neuron": 791, "w_1x_1": 791, "w_2x_2": 791, "w_nx_n": 791, "w_i": 791, "vanish": 791, "explod": [791, 858, 859], "kaimingnorm": 791, "fan_mod": [791, 853], "kaim": 791, "he": 791, "negative_slop": 791, "fan": 791, "propog": 791, "fan_sum": [791, 853], "Ones": 791, "randomnorm": 791, "stddev": 791, "w0": 791, "wlim": 791, "predefin": 791, "fan_avg": 791, "adaptiveavgpool1d": 792, "avgpool1d": 792, "implicit": [792, 827, 832, 841, 844, 849, 870], "avgpool2d": 792, "avgpool3d": 792, "e501": 792, "filter_s": 792, "weight_initi": [792, 853], "bias_initi": [792, 853], "0x7f20b37d0730": 792, "0x7f20b37d06d0": 792, "conv1dtranspos": 792, "0x7f20b37d0670": 792, "0x7f20b37d0610": 792, "filter_shap": 792, "0x7f20b37d05b0": 792, "0x7f20b37d0550": 792, "0x7f20b37d04f0": 792, "0x7f20b37d0490": 792, "0x7f20b37d0370": 792, "0x7f20b37d0ca0": 792, "conv3dtranspos": 792, "0x7f20b37d0d00": 792, "0x7f20b37d1150": 792, "depthwiseconv2d": 792, "num_channel": 792, "0x7f20b37d0430": 792, "0x7f20b37d03d0": 792, "bernoul": 792, "num_embed": 792, "embedding_dim": 792, "padding_idx": 792, "lookup": 792, "num_embeddingss": 792, "renorm": 792, "insensit": 792, "return_st": 792, "0x7f20b37d1090": 792, "get_initial_st": 792, "0x7f20b37d1240": 792, "0x7f20b37d0790": 792, "maxpool1d": 792, "maxpool3d": 792, "multiheadattent": 792, "embed_dim": 792, "head_dim": 792, "dropout_r": 792, "use_proj_bia": 792, "attention_ax": 792, "build_mod": [792, 793, 794], "on_init": [792, 794], "parallel": [792, 826, 870, 874, 875], "binarycrossentropyloss": 793, "store_var": [793, 794], "with_partial_v": [793, 794], "logpoissonloss": 793, "modulemeta": 794, "temporarili": [794, 816, 823, 834], "from_cal": 794, "module_dict": 794, "register_buff": 794, "register_paramet": 794, "weights_path": 794, "randomness_factor": 794, "with_edge_label": 794, "with_arg_label": 794, "with_output_label": 794, "output_connected_onli": 794, "highlight_subgraph": 794, "trace_kwarg": 794, "_unified_ivy_graph": 794, "_call": 794, "num_featur": 795, "trail": 795, "layernorm": 795, "normalized_shap": 795, "elementwise_affin": 795, "set_stat": [796, 853], "adamw": 796, "weight_decai": 796, "init_on_first_step": 796, "fallback_to_non_trac": 796, "ignore_miss": 796, "privat": [796, 841, 844], "_step": [796, 853], "stochast": [796, 870], "sub_modul": 797, "check_al": 798, "check_all_or_any_fn": 798, "check_ani": 798, "check_dev_correct_format": 798, "check_dimens": 798, "check_elem_in_list": [798, 837, 840, 841], "elem": 798, "check_equ": [798, 841], "check_exist": 798, "check_fals": 798, "check_gather_input_valid": 798, "check_gather_nd_input_valid": 798, "check_great": 798, "allow_equ": [798, 833], "check_inplace_sizes_valid": [798, 840], "check_isinst": 798, "allowed_typ": 798, "check_kernel_padding_s": 798, "padding_s": 798, "check_less": [798, 833], "check_one_way_broadcast": 798, "check_same_dtyp": 798, "check_shapes_broadcast": 798, "check_tru": 798, "check_unsorted_segment_valid_param": 798, "ast_help": 800, "importtransform": 800, "nodetransform": 800, "impersonate_import": 800, "tree": [800, 829], "local_ivy_id": 800, "visit_import": 800, "visit_importfrom": 800, "ivyload": 800, "loader": [800, 852, 855], "exec_modul": 800, "ivypathfind": 800, "metapathfind": 800, "find_spec": 800, "fullnam": 800, "contextmanag": 801, "choose_random_backend": 801, "global_backend": 801, "dynamic_backend_convert": 801, "backend_stack": [801, 849], "prevent_access_loc": 801, "previous_backend": [801, 825], "Or": [801, 812, 814, 819, 840, 852], "set_backend_to_specific_vers": 801, "set_jax_backend": 801, "set_mxnet_backend": 801, "mx": 801, "set_numpy_backend": 801, "set_paddle_backend": 801, "set_tensorflow_backend": 801, "set_torch_backend": 801, "sub_backend_handl": 802, "clear_sub_backend": 802, "find_available_sub_backend": 802, "sub_backends_loc": 802, "fn_name_from_version_specific_fn_nam": 802, "fn_name_from_version_specific_fn_name_sub_backend": 802, "sub_backend_vers": 802, "backend_vers": [802, 816, 829, 834], "set_sub_backend": 802, "sub_backend_str": 802, "set_sub_backend_to_specific_vers": 802, "sub_backend": 802, "unset_sub_backend": 802, "check_for_binari": 803, "cleanup_and_fetch_binari": [803, 819], "clean": [803, 820, 845, 849, 850, 852], "dynamic_import": 804, "import_modul": [804, 849], "einsum_pars": 805, "convert_interleaved_input": 805, "interleav": 805, "convert_subscript": 805, "old_sub": 805, "symbol_map": 805, "subscript": [805, 806], "oe": 805, "ellipsi": [805, 806], "find_output_shap": 805, "find_output_str": 805, "canon": 805, "gen_unused_symbol": 805, "abd": [805, 806], "get_symbol": 805, "letter": 805, "resort": 805, "unicod": 805, "charact": [805, 841, 860], "chr": 805, "surrog": 805, "\u0155": 805, "20000": 805, "\u4eac": 805, "has_valid_einsum_chars_onli": 805, "einsum_str": 805, "abaz": 805, "\u00f6ver": 805, "is_valid_einsum_char": 805, "\u01f5": 805, "legalise_einsum_expr": 805, "reproduct": [805, 806], "pars": [805, 806, 826, 831, 855], "intak": 805, "contract_path": 805, "parse_einsum_input": [805, 806], "einsum_eqn": 805, "legalis": 805, "legalise_einsum_eqn": 805, "za": [805, 806], "xza": [805, 806], "xz": [805, 806], "possibly_convert_to_numpi": 805, "myshap": 805, "__main__": 805, "0x10f850710": 805, "einsum_path_help": 806, "can_dot": 806, "idx_remov": 806, "bla": 806, "benefici": 806, "movement": 806, "costli": 806, "gemm": 806, "ijj": 806, "ddot": 806, "ikj": 806, "compute_size_by_dict": 806, "idx_dict": 806, "abbc": 806, "find_contract": 806, "input_set": 806, "output_set": 806, "lh": 806, "rh": 806, "new_result": 806, "idx_contract": 806, "iset": 806, "oset": 806, "bdc": 806, "flop_count": 806, "num_term": 806, "size_dictionari": 806, "flop": [806, 810], "greedy_path": 806, "memory_limit": 806, "exhaust": [806, 840, 844, 867, 876], "indices_remov": 806, "priorit": [806, 818, 843, 847], "hadamard": 806, "cubic": 806, "greedi": 806, "idx_siz": 806, "optimal_path": 806, "siev": 806, "input_str": 806, "output_str": 806, "parse_possible_contract": 806, "path_cost": 806, "naive_cost": 806, "propos": [806, 820, 841, 847, 870], "intermediari": [806, 825], "unoptim": 806, "new_input_set": 806, "update_other_result": 806, "provision": 806, "_parse_possible_contract": 806, "mod_result": 806, "inplaceupdateexcept": 807, "include_backend": [807, 833], "ivyattributeerror": [807, 833], "attributeerror": [807, 833, 851], "ivybroadcastshapeerror": [807, 833], "ivydeviceerror": 807, "ivydtypepromotionerror": [807, 833], "ivyindexerror": [807, 833], "ivyinvalidbackendexcept": 807, "ivynotimplementedexcept": [807, 833], "notimplementederror": 807, "ivyvalueerror": [807, 833], "handle_except": [807, 836, 838], "add_array_spec": 808, "fn_array_spec": 808, "set_logging_mod": 809, "debug": [809, 815, 819, 820, 827, 828, 839, 844, 847, 852, 870, 878], "unset_logging_mod": 809, "print_stat": 810, "viz": 810, "snakeviz": 810, "bonu": 810, "cprofil": 810, "tensorflow_profile_start": 810, "logdir": 810, "host_tracer_level": 810, "python_tracer_level": 810, "device_tracer_level": 810, "delay_m": 810, "toggl": [810, 820], "timestamp": 810, "awai": [810, 812, 868, 870], "millisecond": 810, "guess": 810, "tensorflow_profile_stop": 810, "torch_profiler_init": 810, "schedul": [810, 828, 855, 870, 877], "on_trace_readi": 810, "record_shap": 810, "profile_memori": 810, "with_stack": 810, "with_flop": 810, "with_modul": 810, "experimental_config": 810, "profileract": 810, "record_and_sav": 810, "dealloc": 810, "record": [810, 819, 855, 871], "callstack": 810, "aten": 810, "torchscript": [810, 849, 857, 877], "_experimentalconfig": 810, "kineto": 810, "torch_profiler_start": 810, "torch_profiler_stop": 810, "cprint": [811, 849], "pilot": [812, 817, 856], "grow": [812, 815, 821, 870, 878], "peopl": [812, 817, 819, 820, 822, 870, 872], "brief": [812, 840, 844], "idea": [812, 818, 843, 845, 850, 861, 869], "docker": [812, 816, 817, 834], "challeng": [812, 818, 825, 876], "pull": [812, 813, 815, 818, 819, 823, 831, 835, 845, 847, 855, 856, 861], "jax_fn": 812, "jax_x": 812, "torch_x": 812, "torch_fn": 812, "shorter": [812, 851], "ensp": 812, "customiz": [812, 826], "15c235f": 812, "deepmind_perceiver_io": 812, "sm_framework": 812, "segmentation_model": 812, "sm": 812, "torch_sm": 812, "metric": [812, 855], "iou_scor": 812, "rax": 812, "torch_rax": 812, "poly1_softmax_loss": 812, "madmom": 812, "madmon": 812, "torch_madmom": 812, "freq": 812, "audio": 812, "hz2midi": 812, "torch_loss": 812, "maxpooling1d": 812, "pool_siz": 812, "tf_kornia": 812, "tf_rax": 812, "tf_madmom": 812, "tf_loss": 812, "_forward_classifi": [812, 864], "forward_classifi": [812, 864], "hk_eff_encod": 812, "dummy_x": 812, "jax_sm": 812, "jax_madmom": 812, "jax_loss": 812, "np_kornia": 812, "np_sm": 812, "np_rax": 812, "np_loss": 812, "yourself": [812, 818, 820, 835, 844, 847], "favourit": [812, 819], "hyperparam": 812, "instantli": [812, 864], "everyon": [812, 813, 818, 819, 820, 855, 861], "interoper": [812, 860, 867, 868, 870, 873], "handler": [812, 848, 850, 854, 857], "facilit": [812, 821], "mse_loss": 812, "jax_ms": 812, "tf_mse": 812, "np_mse": 812, "torch_ms": 812, "someth": [812, 816, 820, 825, 834, 835, 845, 852, 853, 855, 856, 876], "motiv": [812, 851, 860], "contextu": 812, "explos": [812, 858, 860], "adher": [812, 823, 829, 832, 836, 847, 849, 854, 859, 860, 866, 867, 876], "orient": 812, "contributor": [812, 813, 816, 818, 819, 820, 834, 841, 848, 870], "believ": [812, 820, 860], "feedback": [812, 818, 828], "appreci": [812, 821], "amaz": [812, 878], "journei": [812, 813, 821], "ambiti": 812, "season": 812, "fellow": 812, "twitter": 812, "sneak": 812, "peek": 812, "credit": 812, "accompani": 812, "lenton2021ivi": 812, "inter": 812, "author": [812, 818, 820, 868, 872], "lenton": 812, "daniel": 812, "pardo": 812, "fabio": 812, "falck": 812, "fabian": 812, "jame": 812, "stephen": 812, "clark": 812, "ronald": 812, "journal": 812, "arxiv": 812, "preprint": 812, "2102": 812, "02886": 812, "year": [812, 823, 855, 859, 861, 870], "strongli": [813, 819, 841, 876, 877], "engag": [813, 820, 821, 860], "skill": [813, 821, 872], "veteran": 813, "effort": [813, 818, 855, 860, 866, 870, 876], "board": [813, 826], "stage": [813, 820, 822, 823, 826, 844, 860, 870], "excit": [813, 822, 860], "reward": [813, 821], "badg": [813, 821, 828, 878], "program": [813, 840, 867, 868, 870, 873, 874, 877], "climb": [813, 817], "Be": [814, 826], "awar": [814, 826, 833, 835], "linux": [814, 819, 820, 826, 873, 875], "regularli": [814, 826, 828], "internet": [814, 826], "codespac": [814, 826, 834], "make_doc": 814, "sh": [814, 819, 820, 823, 828], "pwd": 814, "ssh": [814, 828], "make_docs_without_dock": [814, 826], "award": 815, "formal": 815, "dynamo": [815, 878], "earn": [815, 821], "thoroughli": [815, 823], "valuabl": [815, 818, 820], "merg": [815, 818, 820, 823, 828, 841, 870, 878], "meet": [815, 821, 841], "wizard": [815, 878], "inspector": [815, 878], "acknowledg": [815, 821], "honour": 815, "dilig": 815, "bronz": [815, 821, 878], "silver": [815, 821, 878], "gold": [815, 821, 855, 878], "expertis": [815, 821, 872], "assist": [816, 834], "runtimeerror": [816, 834], "logaddexp2_cpu": [816, 834], "falsifi": [816, 823, 834, 844], "test_logaddexp2": [816, 834], "backend_fw": [816, 834, 842], "dtype_and_x": [816, 834, 842, 844], "reproduce_failur": [816, 823, 834, 838, 844], "axicy2bkaamobaar2waaaacvaai": [816, 834], "decoartor": [816, 834], "with_unsupported_dtyp": [816, 829, 834, 841], "25830078125": [816, 834], "258544921875": [816, 834], "test_acosh": [816, 834], "axicy2baabyqwqgiaabdaai": [816, 834], "quit": [816, 820, 824, 831, 832, 834, 837, 838, 844, 847, 870, 876], "41421356": [816, 834], "41421356e": [816, 834], "34078079e": [816, 834], "154": [816, 834], "test_ab": [816, 819, 834, 844], "000j": [816, 834], "154j": [816, 834], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [816, 834], "thread": [816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 852, 870], "pycharm": [816, 842, 844], "steep": 817, "curv": 817, "realpython": 817, "pyn": 817, "exchang": [817, 860, 866, 868], "stuck": [817, 818], "spell": 817, "sound": [817, 828, 848], "frequent": [818, 820, 825, 870], "outlin": [818, 819, 820, 822, 827, 829, 832, 837, 840, 841, 844], "broad": [818, 872], "individu": [818, 820, 823, 825, 829, 837, 841, 870, 873, 876, 877], "clearli": [818, 820, 831, 842, 844, 860, 874], "straightforward": [818, 821, 852], "lie": 818, "urgent": 818, "encourag": [818, 821, 835, 855, 860], "tackl": [818, 821, 841], "categoris": [818, 823, 841], "comfort": [818, 819, 833], "linkag": 818, "pr": [818, 820, 821, 823, 835, 841, 842, 844], "confid": 818, "submit": [818, 835], "scipi": [818, 860, 872, 877], "mindspor": 818, "simpler": [818, 820, 835, 863, 871, 877], "member": [818, 820, 841, 856, 860], "comment": [818, 819, 820, 823, 829, 835, 841, 843, 847], "composition": 818, "feasibl": [818, 828, 844, 860, 863], "pend": 818, "helpfulli": [818, 847, 868], "problemat": [818, 819], "unimpl": 818, "issue_link": 818, "alias_nam": 818, "notic": [818, 824, 828, 834, 835, 844, 847, 863], "push": [818, 820, 821, 823, 842, 844, 876], "liner": 818, "meanwhil": [818, 828], "reselect": 818, "faithfulli": 818, "creation_routin": [818, 842], "indexing_routin": 818, "ma": 818, "manipulation_routin": 818, "mathematical_funct": [818, 841], "sorting_searching_count": 818, "ufunc": [818, 841], "matrix_and_vector_product": 818, "matrix_eigenvalu": 818, "norms_and_other_numb": 818, "solving_equations_and_inverting_matric": 818, "gleam": 818, "uncom": 818, "test_numpy_inn": 818, "test_frontend": [818, 828, 834, 842], "unsur": [818, 844], "statu": [818, 821, 828, 835, 861], "refrain": 818, "checkbox": [818, 819], "aforement": 818, "parent": [818, 828, 851], "arraywithelementwis": [818, 824, 851], "containerwithmanipul": 818, "thorough": [818, 832, 836, 844], "add_reformatting_checklist_": 818, "category_nam": [818, 829, 830, 832, 836, 837], "autom": [818, 828, 835, 844, 857, 872], "bot": [818, 835], "markdown": [818, 826], "patient": [818, 819], "elabor": 818, "struggl": 818, "assigne": 818, "status": 818, "central": [818, 835, 847, 860, 876], "relevant_submodul": 818, "roadmap": [818, 828], "deem": [818, 841], "subtask": 818, "clearer": [818, 833, 842, 852], "backend_nam": [818, 825, 829, 830, 832, 836, 837, 838], "rare": [818, 830, 855, 875], "button": [818, 819, 820, 834], "centr": 818, "predetermin": 818, "superset": [818, 822, 837, 840, 855], "happi": [819, 834, 855, 861], "your_usernam": [819, 834], "your_fold": [819, 834], "enter": [819, 820, 824, 829, 830, 834, 836, 838], "sync": [819, 823, 834], "remot": [819, 823, 834, 835], "nutshel": [819, 836], "hook": [819, 835, 843], "lint": [819, 822], "succe": [819, 863], "whatev": [819, 827, 855], "elig": [819, 821], "student": 819, "licens": [819, 873], "remind": 819, "expir": 819, "won": [819, 820, 827, 829, 854, 856, 860, 861, 863, 864, 865], "profession": 819, "trial": 819, "jetbrain": 819, "month": [819, 859], "bui": [819, 876], "paid": 819, "rapid": [819, 859, 860, 870], "pace": 819, "person": [819, 820], "perhap": [819, 851, 852, 853, 855, 876], "conda": [819, 860, 872], "ivy_dev": [819, 820], "icon": [819, 820, 834], "panel": 819, "vscode": [819, 834], "palett": 819, "ctrl": [819, 820], "mac": [819, 820], "intel": [819, 860, 868, 875], "m1": 819, "optional_apple_silicon_1": 819, "optional_apple_silicon_2": 819, "array_api_test": [819, 820, 823, 834], "test_array_api": [819, 820, 823, 834, 844], "suit": [819, 822, 823, 828, 834, 843, 844, 852, 860, 870, 876], "cmd": 819, "bat": [819, 820], "virtualenv": 819, "tick": [819, 820, 828], "nz2": 819, "openssl": 819, "libssl1": 819, "1_1": 819, "1f": 819, "1ubuntu2": 819, "20_amd64": 819, "deb": 819, "dpkg": 819, "mitig": [819, 876], "desktop": [819, 834], "powershel": 819, "admin": 819, "deploy": [819, 864, 869, 872, 873, 876, 877], "menu": [819, 834], "introspect": 819, "dialog": 819, "persist": 819, "earlier": [819, 820, 829, 845], "virtualis": 819, "bio": [819, 860], "dropdown": [819, 828], "dockerfil": 819, "ca": 819, "certif": 819, "gnupg": 819, "lsb": 819, "keyr": 819, "fssl": 819, "gpg": 819, "dearmor": 819, "echo": [819, 828, 856], "arch": 819, "lsb_releas": 819, "ce": 819, "cli": 819, "containerd": 819, "systemctl": 819, "softwar": [819, 820, 859, 860, 868, 873, 874, 875], "press": [819, 820, 852], "4a": 819, "socket": 819, "rwx": 819, "sock": 819, "pid": 819, "editor": 819, "pytest": [819, 820, 823, 828, 834, 838, 844], "keyboard": 819, "screenshot": 819, "pop": [819, 834, 860], "test_elementwis": 819, "shell": [819, 820, 823, 828], "setup_test": 819, "run_ivy_core_test": 819, "run_ivy_nn_test": 819, "run_ivy_stateful_test": 819, "run_test": [819, 828], "test_depend": 819, "test_ivy_cor": 819, "test_ivy_nn": 819, "test_ivy_st": 819, "unix": 819, "test_": [819, 842], "test_cor": [819, 820, 842], "offici": [819, 829, 849], "wish": [819, 841], "ivy_nn": 819, "ivy_st": 819, "header": [819, 820, 843], "arrow": 819, "test_stat": 819, "test_submodule_nam": 819, "test_function_nam": 819, "debugg": 819, "studio": [819, 834, 844], "afterward": [819, 852], "background": [819, 826, 834, 870, 872], "overlap": [819, 828, 834, 845, 847, 871], "test_file_path": [819, 834], "test_fn_nam": [819, 834], "engin": [819, 870, 872, 873], "devcontain": 819, "comma": 819, "postcreatecommand": 819, "post_create_command": 819, "poststartcommand": 819, "safe": [819, 841], "containerworkspacefold": 819, "reopen": 819, "test_fle_path": 819, "slash": 819, "isol": [819, 820, 871, 876], "container": 819, "intens": 819, "headach": 819, "arm": [819, 820], "vm": [819, 828], "azur": 819, "cloud": [819, 828, 872], "theme": [819, 826], "ipad": 819, "browser": [819, 826], "quota": 819, "requisit": 819, "pane": [819, 820, 828], "dockerfilegpu": 819, "ivv": 819, "multiv": 819, "multivers": [819, 845], "dockerfilemultivers": 819, "dockerhub": 819, "upto": [819, 820], "minut": [819, 828], "launch": 819, "kindli": [819, 843], "guidelin": 819, "colour": 819, "chanc": 819, "troubleshoot": 819, "ever": 819, "flask": [819, 834], "toolbar": [819, 820, 834], "_array_modul": [819, 823, 834], "refresh": [819, 834], "pytestarg": [819, 834], "unittesten": [819, 834], "pytesten": [819, 834], "autotestdiscoveronsaveen": [819, 834], "conftest": 819, "serv": [819, 820, 824, 827, 836, 837, 841, 842, 844, 847, 848, 857, 868], "aren": [819, 829], "available_config": 819, "cp310": 819, "x86": [819, 875], "newer": [819, 844], "_compil": 819, "meantim": 819, "suffici": [819, 831, 841, 844], "bear": [819, 824, 827, 829, 841], "tendenc": 820, "land": 820, "unrel": [820, 860], "fly": [820, 870], "internship": 820, "suspect": 820, "iii": 820, "issue_numb": 820, "12345": 820, "rememb": 820, "respond": 820, "dai": [820, 835], "freed": 820, "situat": [820, 828, 854], "obvious": [820, 828], "hypothet": 820, "frustrat": 820, "delai": [820, 863], "busi": 820, "inact": 820, "unfairli": 820, "investig": 820, "name_of_your_branch": 820, "date": [820, 823], "complic": [820, 842, 849], "merge_with_upstream": 820, "abort": 820, "tediou": [820, 831, 847], "stash": [820, 835], "reinstat": 820, "uncommit": 820, "unstag": [820, 835], "untrack": 820, "atlassian": 820, "wrote": 820, "piec": [820, 824, 837, 838, 849, 863, 866, 868], "blame": 820, "eg": 820, "week": [820, 861], "grep": 820, "commit_id": 820, "handi": 820, "histori": 820, "approv": 820, "someon": [820, 855], "hash": [820, 852], "cancel": 820, "speedup": 820, "unavail": 820, "tickbox": 820, "intent": [820, 840], "discourag": 820, "adopt": [820, 824, 836, 847, 860, 869, 870, 875], "philosophi": 820, "infrequ": 820, "earli": [820, 870], "wast": [820, 828], "spot": [820, 831, 837], "mistak": 820, "mountain": 820, "advoc": [820, 855], "session": [820, 870], "beauti": 820, "care": [820, 830, 841, 847, 854, 860], "undo": 820, "stress": 820, "nifti": 820, "reassur": 820, "local_path_to_ivi": 820, "subfold": [820, 842, 844, 845], "dep": 820, "fresh": 820, "arsen": 820, "exec": 820, "ivy_contain": 820, "test_imag": 820, "test_random_crop": 820, "test_creation_funct": 820, "test_arang": 820, "cursor": 820, "alt": 820, "breakpoint": 820, "gutter": 820, "caret": 820, "f8": 820, "f9": 820, "Into": 820, "f7": 820, "smart": 820, "fragment": [820, 866, 868, 872], "wherein": [820, 837, 844], "failur": [820, 828, 842, 844], "embark": 821, "innov": [821, 860], "door": [821, 855], "elev": 821, "mission": [821, 860, 872], "opportun": 821, "testament": [821, 843], "stone": 821, "gift": 821, "acquir": 821, "peak": 821, "privileg": [821, 872], "bounti": 821, "cash": 821, "delight": 821, "weed": [822, 848], "tour": 822, "formatt": [822, 835], "conjunct": 823, "establish": [823, 872], "unconnect": 823, "strang": [823, 851], "test_linalg": [823, 842], "test_set_funct": 823, "test_signatur": 823, "excess": [823, 825, 831], "array_modul": 823, "vv": 823, "test_manipulation_funct": 823, "test_concat": [823, 844], "nb": 823, "liber": 823, "______________________": 823, "test_remaind": 823, "_______________________": 823, "test_operators_and_elementwise_funct": 823, "1264": 823, "1277": 823, "binary_param_assert_against_refimpl": 823, "ctx": 823, "620": 823, "binary_assert_against_refimpl": 823, "324": 823, "scalar_o": 823, "17304064": 823, "binaryparamcontext": 823, "axic42baaowcnp": 823, "rumwmabaear0": 823, "make_binary_param": 823, "numeric_dtyp": 823, "left_strat": 823, "left_sym": 823, "right_strat": 823, "right_sym": 823, "right_is_scalar": 823, "binary_param_assert_dtyp": 823, "binary_param_assert_shap": 823, "recreat": 823, "unexpectedli": 823, "discrep": [823, 842], "test_asarray_arrai": 823, "test_floor_divid": 823, "health": 823, "test_iop": 823, "__imod__": 823, "isequ": 823, "test_matrix_norm": 823, "alter": 823, "tweak": 823, "array_api_methods_to_test": 823, "test_special_cas": 823, "__ipow__": 823, "is_integ": 823, "easier": [823, 824, 825, 829, 842, 845, 857, 870, 872], "revisit": [823, 836], "_data": [824, 840, 841, 851], "organiz": [824, 827, 841], "underpin": [824, 827, 849], "programmat": [824, 827, 871], "backup": [824, 826, 827], "accident": [824, 827, 841], "absent": [824, 827], "auto": [824, 826, 827, 835, 852], "__mul__": [824, 827, 831, 836, 847, 851], "throw": [824, 829, 830, 833, 834, 851, 870], "imposs": 824, "inputs_to_native_arrai": [824, 837, 838], "outputs_to_ivy_arrai": [824, 829, 830, 836, 837, 838], "secondli": [824, 829], "__ivy_array_function__": 824, "__torch_function__": 824, "myarrai": 824, "handled_funct": 824, "notimpl": 824, "issubclass": 824, "enough": [824, 828, 829, 830, 844, 851, 852, 853], "ivy_funct": 824, "my_ab": 824, "my_arrai": 824, "implicit_backend": [825, 849], "__dict__": [825, 840, 849], "ivy_original_dict": [825, 849], "fallback": 825, "live": [825, 826, 829, 860, 861, 866, 868], "dlpack": 825, "set_dynamic_backend": 825, "unset_dynamic_backend": 825, "dynamic_backend_a": 825, "set_": 825, "unset_": 825, "backend_handl": 825, "requires_grad": 825, "memory_format": 825, "preserve_format": 825, "weren": 825, "vast": [825, 829, 870], "minor": [825, 847, 855], "fn_name_v_1p12_and_abov": 825, "fn_name_v_1p01_to_1p1": 825, "heavili": [826, 838, 855], "conf": 826, "cleanup": 826, "readm": [826, 855], "maxdepth": 826, "caption": 826, "related_work": 826, "deep_div": 826, "faq": 826, "glossari": 826, "autosummari": 826, "top_functional_toc": 826, "restructuredtext": 826, "discov": [826, 829], "ivy_toctree_caption_map": 826, "unfortun": [826, 835], "linker": 826, "foo": 826, "discussion_channel_map": 826, "1000043690254946374": 826, "1000043749088436315": 826, "forum": [826, 856], "seri": [826, 829, 841, 844, 870, 872], "discussion_paragraph": 826, "discord_link": 826, "channel_link": 826, "gg": 826, "zvqdvbznqj": 826, "799879767196958751": 826, "channel_id": 826, "autoskippablemethod": 826, "skippable_method_attribut": 826, "__qualname__": 826, "autodoc": 826, "__doc__": 826, "autoivydata": 826, "mutual": [827, 837], "containerwithelementwis": 827, "__repr__": 827, "__getattr__": [827, 863], "__setattr__": [827, 863], "__contains__": 827, "__getstate__": 827, "__setstate__": 827, "unpickl": 827, "num_dim": [827, 854], "restrict": [827, 828, 841, 849, 863, 867], "enforc": [827, 851], "lefthand": 827, "righthand": 827, "handle_nest": [827, 836, 837, 838, 849], "absenc": [827, 836, 870], "implicitli": [827, 839, 844, 849], "log_pr": [827, 837, 840], "intuit": [827, 844, 852, 853, 866], "chronolog": 827, "concurr": [827, 828, 837, 870], "despit": [827, 829, 830, 842, 849, 860, 867, 870], "__list__": 827, "whatsoev": [827, 837, 857, 876], "children": 827, "shallowest": 827, "deepest": 827, "rollback": 828, "incorpor": [828, 842, 852, 870], "techniqu": 828, "triplet": 828, "test_torch": [828, 842], "test_tensor": [828, 842], "test_torch_instance_arctan_": 828, "12500": 828, "daili": 828, "huge": [828, 852, 858, 860, 870, 876], "shoot": 828, "_reduce_loss": [828, 837, 840], "test_nn": 828, "test_loss": 828, "test_binary_cross_entropy_with_logit": 828, "test_cross_entropi": 828, "test_binary_cross_entropi": 828, "test_sparse_cross_entropi": 828, "test_loss_funct": 828, "test_torch_binary_cross_entropi": 828, "test_torch_cross_entropi": 828, "binary_cross_entropy_with_logit": 828, "torch_binary_cross_entropi": 828, "torch_cross_entropi": 828, "readthedoc": 828, "pedagog": 828, "f_1": 828, "t_1": 828, "t_3": 828, "t_7": 828, "t_": 828, "f_m": 828, "cyclic": 828, "intellig": [828, 844, 872], "tests_fil": 828, "file_nam": [828, 844, 845], "tests_lin": 828, "correspondingli": 828, "tests_to_run": 828, "determine_tests_lin": 828, "mongodb": 828, "databas": [828, 844], "mechan": [828, 855], "secret": 828, "db": 828, "ssh_deploy_kei": 828, "suffic": [828, 838, 844], "massiv": 828, "yml": 828, "felicit": 828, "clone_map": 828, "deploy_kei": 828, "user_email": 828, "user_nam": 828, "target_branch": 828, "github_serv": 828, "deploy_key_fil": 828, "ssh_known_hosts_fil": 828, "known_host": 828, "keyscan": 828, "git_ssh_command": 828, "userknownhostsfil": 828, "email": [828, 860], "methodologi": 828, "master1": 828, "restructur": 828, "_map": 828, "t_2": 828, "t_n": 828, "index_map": 828, "test_map": 828, "snowbal": 828, "recalibr": 828, "workflow_dispatch": 828, "cron": 828, "saturdai": 828, "night": 828, "pm": 828, "gut": 828, "lesser": [828, 833], "lol": 828, "hour": [828, 861], "cater": [828, 843], "master2": 828, "master32": 828, "synchron": 828, "runner2": 828, "corrupt": 828, "decoupl": [828, 853], "150": 828, "cycl": [828, 844], "yellow": 828, "queu": 828, "redirect": 828, "book": 828, "onrend": 828, "jo": 828, "ran": 828, "clickabl": 828, "all_dtyp": 829, "all_numeric_dtyp": 829, "all_int_dtyp": 829, "all_float_dtyp": 829, "replic": [829, 839, 840, 841], "thirdli": 829, "native_float32": 829, "importantli": [829, 851, 854], "arguabl": [829, 830, 841], "jaxarrai": [829, 830, 833, 836, 840, 845, 849], "_handle_0_dim_output": 829, "subtli": [829, 840], "promote_types_frontend_nam": 829, "promote_types_of_frontend_name_input": 829, "frontend_nam": 829, "upcast": 829, "nearli": [829, 836, 838, 870], "downcast": 829, "footprint": 829, "concret": 829, "aris": [829, 835, 855, 860], "utterli": 829, "meant": [829, 831, 840], "twice": 829, "disadvantag": 829, "relax": 829, "f64": 829, "unwant": 829, "primaci": 829, "resembl": 829, "compound": 829, "infer_dtyp": [829, 830, 836, 838], "settabl": [829, 830], "handle_out_argu": [829, 830, 836, 837, 838, 840, 849], "infer_devic": [829, 830, 836, 838], "deleg": [829, 877], "shape_to_tupl": 829, "with_supported_dtyp": 829, "unment": 829, "_cast_for_unary_op": [829, 837, 840], "target_typ": 829, "syntax": [829, 859, 860, 870], "unsupported_dtyp": 829, "supported_dtypes_and_devic": 829, "with_unsupported_device_and_dtyp": 829, "globals_getter_func": 829, "f2": 829, "lack": [829, 840, 870, 877], "mandat": [829, 840, 844, 845, 860], "confus": [829, 833, 840, 847, 857, 861], "inconsist": [829, 833, 839], "is_nan": 829, "supported_dtyp": 829, "anytim": 829, "84530": 829, "unwarr": 829, "risk": [829, 876], "needlessli": 829, "bloat": 829, "undergo": [829, 855], "unsupported_devic": 829, "supported_devic": 829, "downsid": 829, "coverag": [829, 844], "undesir": 829, "accomplish": 829, "upcast_data_typ": 829, "downcast_data_typ": 829, "crosscast_data_typ": 829, "cast_data_typ": 829, "downcast_data_dtyp": 829, "vice": 829, "versa": 829, "till": 829, "crosscast": 829, "exmp1": 829, "watch": [829, 841], "handle_numpy_arrays_in_specific_backend": [829, 836], "cate": 829, "understood": 829, "consumpt": [829, 874], "dual": 830, "categor": [830, 837, 841], "210": 830, "_handle_except": [830, 833], "1013": 830, "_handle_nest": [830, 833], "905": 830, "_handle_out_argu": [830, 833], "441": 830, "_inputs_to_native_arrai": [830, 833], "new_arg": [830, 833], "new_kwarg": [830, 833], "_outputs_to_ivy_arrai": [830, 833], "358": 830, "_handle_array_funct": [830, 833], "_handle_device_shift": 830, "handle_device_shift": [830, 838], "device_shifting_dev": 830, "__enter__": 830, "__exit__": 830, "soft_devic": 830, "eight": [831, 848], "op_nam": 831, "__r": 831, "unsurprisingli": [831, 859], "recap": [831, 853], "combinatori": 831, "okai": [831, 847, 849], "spec": [831, 832], "my_func": [831, 845], "some_flag": 831, "another_flag": 831, "jointli": 831, "5574077": 831, "1850398": 831, "5463025": 831, "8422884": 831, "91601413": 831, "9647598": 831, "3738229": 831, "1597457": 831, "0963247": 831, "9955841": 831, "3278579": 831, "asid": 831, "14254655": 831, "1578213": 831, "380515": 831, "trivial": [831, 840], "failing_fn_nam": 831, "onlin": [831, 832], "minutest": 831, "fault": [831, 870], "contrast": [832, 836, 841, 876], "preview": 832, "incorrectli": [832, 863], "needless": [832, 842], "renam": [832, 841], "judgment": 832, "operator_nam": 832, "succinct": 832, "docst": 832, "native_error": 833, "_combine_messag": 833, "truli": [833, 851], "wrong": [833, 835, 838, 841, 847], "198": 833, "392": 833, "_handle_array_like_without_promot": 833, "805": 833, "432": 833, "349": 833, "other_test": 833, "523": 833, "_handle_numpy_out": 833, "396": [833, 853], "_outputs_to_numpy_arrai": 833, "_inputs_to_ivy_arrays_np": 833, "ivy_arg": 833, "ivy_kwarg": 833, "453": 833, "_from_zero_dim_arrays_to_scalar": 833, "truth_value_test": 833, "visibl": 833, "unwieldi": 833, "squash": 833, "hide": [833, 863], "cleaner": [833, 852], "caught": [833, 835], "rethrow": 833, "_print_traceback_histori": 833, "error_stack": 833, "axiserror": 833, "polici": [833, 838, 844, 846], "moreov": 833, "submoodul": 834, "test_jax_transpos": 834, "manipulaiton": 834, "test_jax": [834, 842], "test_numpi": [834, 842], "test_manipul": [834, 842, 844], "preconditionnotmet": 834, "densetensor": 834, "holder_": 834, "phi": 834, "dense_tensor_impl": 834, "array_and_ax": 834, "aaegbaegaqaaaaaaaaaaaaab": 834, "black": 835, "flake8": 835, "linter": 835, "autoflak": 835, "docformatt": 835, "pydocstyl": 835, "yaml": 835, "patch1687898304": 835, "8072": 835, "3516aed563": 835, "reformat": 835, "akshai": 835, "jain": 835, "gui": 835, "cryptic": 835, "garden": 835, "utc": 835, "didn": 835, "human": 835, "intervent": 835, "typo": 835, "ui": 835, "handle_array_like_without_promot": [836, 838], "to_native_arrays_and_back": [836, 838, 849], "handle_array_funct": [836, 838], "inputs_to_native_shap": [836, 838], "rational": [836, 840, 847], "__div__": [836, 847], "484": 836, "brittl": 836, "freeli": 836, "technic": [836, 840, 855, 870, 872], "original_typ": 836, "cumbersom": 836, "hinder": [836, 859], "venn": 837, "diagram": [837, 876], "light": [837, 845, 855, 857, 871, 876], "maximis": 837, "encompass": 837, "partial_mixed_handl": [837, 838, 847], "handle_partial_mixed_funct": [837, 838, 847], "fn_decor": 837, "mixed_backend_wrapp": [837, 840], "to_add": 837, "to_skip": 837, "inputs_to_ivy_arrai": [837, 838], "modif": [837, 870], "briefli": [837, 844, 852], "get_all_arrays_on_dev": 837, "outputs_to_ivy_shap": 838, "outputs_to_native_arrai": 838, "handle_view_index": [838, 840], "handle_view": [838, 840], "handle_rag": 838, "handle_backend_invalid": 838, "handle_nan": 838, "to_native_shapes_and_back": 838, "modern": [839, 859, 860, 875], "inter_func": 839, "custom_grad_fn": 839, "args1": 839, "speak": 840, "val_n": 840, "base_idx": 840, "_manipulation_stack": 840, "base_flat": 840, "_view_ref": 840, "_update_view": 840, "contigu": 840, "c_contigu": 840, "ascontiguousarrai": 840, "copyto": 840, "_is_vari": 840, "tensor_scatter_nd_upd": 840, "is_vari": 840, "_update_torch_view": 840, "predominantli": [840, 845], "support_native_out": [840, 849], "_scalar_output_to_0d_arrai": 840, "_wrap_fn": 840, "dim0": 840, "dim1": 840, "res_floor": 840, "extent": [840, 841], "to_out_fn": 840, "add_wrapp": 840, "paradigm": [840, 855, 870], "expans": 840, "weak": 840, "_torch_bas": 840, "_torch_view_ref": 840, "_torch_manipul": 840, "weakli": 840, "adequ": 840, "tf_frontend": 841, "lax": [841, 842, 847, 854, 855], "torch_frontend": [841, 842], "numpy_frontend": 841, "jax_frontend": 841, "to_ivy_arrays_and_back": [841, 842], "fidel": 841, "algebra": [841, 868, 869, 870, 873, 877], "dynamic": 841, "mimic": 841, "arithmetic_oper": 841, "handle_numpy_out": 841, "handle_numpy_dtyp": 841, "handle_numpy_cast": 841, "from_zero_dim_arrays_to_scalar": 841, "_add": 841, "same_kind": 841, "subok": [841, 842, 847], "promote_types_of_numpy_input": 841, "underscor": 841, "unhandl": 841, "trigonometric_funct": 841, "_tan": 841, "check_tensorflow_cast": 841, "raw_op": [841, 842], "map_raw_ops_alia": 841, "output_typ": 841, "kwargs_to_upd": 841, "pointwise_op": 841, "sensibl": 841, "ahead": [841, 845, 870], "reduce_logsumexp": 841, "logsumexp": 841, "trick": 841, "max_input_tensor": 841, "preferred_element_typ": 841, "languag": [841, 849, 857, 859, 861, 868, 871, 873, 874, 875, 876], "finer": 841, "logicaland": 841, "np_frontend": 841, "_ivy_arrai": 841, "radd": 841, "_init_data": 841, "_process_str_data": 841, "_dtype": [841, 842, 851], "_shape": [841, 851], "govern": 841, "promote_types_of_": 841, "_input": 841, "promote_types_of_torch_input": [841, 842], "handle_numpy_casting_speci": 841, "new_fn": 841, "equiv": 841, "unsaf": 841, "array_type_test": 841, "_isfinit": 841, "organis": 841, "youtub": 841, "knowledg": 842, "np_frontend_help": 842, "open_task": 842, "test_lax": 842, "test_oper": 842, "test_jax_tan": 842, "test_mathematical_funct": 842, "test_trigonometric_funct": 842, "dtypes_values_cast": 842, "dtypes_values_casting_dtyp": 842, "arr_func": 842, "get_num_positional_args_ufunc": 842, "test_numpy_tan": 842, "handle_where_and_array_bool": 842, "test_tensorflow": 842, "test_math": 842, "test_tensorflow_tan": 842, "test_pointwise_op": 842, "test_torch_tan": 842, "_fill_valu": 842, "test_glob": 842, "test_jax_ful": 842, "test_from_shape_or_valu": 842, "_input_fill_and_dtyp": 842, "dtype_and_input": 842, "dtype_to_cast": 842, "input_fill_dtyp": 842, "test_numpy_ful": 842, "test_raw_op": 842, "test_tensorflow_fil": 842, "test_creation_op": 842, "with_arrai": 842, "test_torch_ful": 842, "add_nois": 842, "all_clos": 842, "_get_dtype_and_matrix": 842, "test_torch_qr": 842, "frontend_q": 842, "frontend_r": 842, "walkthrough": 842, "comparison_op": 842, "test_comparison_op": 842, "test_torch_great": 842, "all_alias": 842, "test_ndarrai": 842, "test_numpy_instance_add__": 842, "test_tensorflow_instance_add": 842, "1e04": 842, "allow_infin": 842, "test_torch_instance_add": 842, "_arrays_idx_n_dtyp": 842, "surprisingli": 842, "closest_relevant_group": 842, "strive": [842, 844, 847, 855, 872], "craft": [843, 844], "tailor": 843, "clariti": [843, 844, 847, 870], "weav": 843, "thrill": 843, "brim": 843, "stand": [843, 844], "landscap": 843, "forese": 843, "refin": 843, "inquiri": 843, "fixtur": 844, "hit": [844, 849, 863], "eleg": [844, 870], "unexplor": 844, "artifact": 844, "bespok": 844, "_array_or_typ": 844, "rigor": [844, 859], "test_default_int_dtyp": 844, "print_hypothesis_exampl": 844, "custom_strategi": 844, "randomis": 844, "simplist": 844, "intricaci": 844, "glanc": 844, "one_of": 844, "datum": 844, "pipe": 844, "array_or_scal": 844, "len_of_arrai": 844, "test_add": 844, "test_gpu_is_avail": 844, "pretest": 844, "snippet": [844, 864], "frontend_test": 844, "frontend_method": 844, "criterion": 844, "valid_ax": 844, "hoc": 844, "11228": 844, "268": 844, "wherev": 844, "9622": 844, "28136": 844, "6375": 844, "12720": 844, "21354": 844, "900e": 844, "57384": 844, "25687": 844, "248": 844, "test_devic": 844, "array_shap": 844, "test_lay": 844, "some_sequ": 844, "arrays_valu": 844, "36418": 844, "213": 844, "21716926": 844, "none_or_list_of_float": 844, "get_prob": 844, "103515625e": 844, "099609375": 844, "probabilist": 844, "number_positional_argu": 844, "unreproduc": 844, "x_and_linear": 844, "is_torch_backend": 844, "x_shape": [844, 849], "weight_shap": 844, "bias_shap": 844, "ivy_np": 844, "valid_float_dtyp": 844, "test_demo": 844, "failing_test": 844, "traceback": 844, "shrink": 844, "prescrib": 844, "scratch": 844, "test_gelu": 844, "test_fil": 844, "notabl": [844, 870], "max_exampl": 844, "deadlin": 844, "weird": 844, "systemat": 844, "safeguard": 844, "inabl": 844, "test_result_typ": 844, "9090909090909091": 844, "judgement": 845, "some_namespac": 845, "some_backend": 845, "another_backend": 845, "refactor": 845, "ongo": 845, "check_fill_value_and_dtype_are_compat": 845, "_to_devic": 845, "shouldn": [845, 863], "pin": 845, "unpinn": 845, "culmin": 845, "unsett": 846, "array_significant_figur": 846, "array_decimal_valu": 846, "warning_level": 846, "nan_polici": 846, "stablest": 846, "constantli": [847, 859], "answer": [847, 851, 855], "contradict": 847, "entail": 847, "sacrif": 847, "jacfwd": 847, "jacrev": 847, "banner": 847, "expens": 847, "incredibli": [847, 852, 855, 873], "price": 847, "pai": 847, "intrus": 847, "x_beta": 847, "equip": 847, "simplif": 847, "allevi": 847, "ineffici": [847, 855, 870], "fuse": 847, "hybrid": 847, "workaround": 847, "slip": 847, "radar": 847, "stumbl": 847, "gone": [848, 860], "fulfil": 848, "syntact": [849, 854], "power_seq": 849, "_determine_backend_from_arg": 849, "importlib": 849, "_backend_dict": 849, "x_flat": 849, "wi": 849, "wi_x": 849, "wii_x": 849, "wif_x": 849, "wig_x": 849, "wio_x": 849, "wh": 849, "ht": 849, "ct": 849, "hts_list": 849, "wii_xt": 849, "wif_xt": 849, "wig_xt": 849, "wio_xt": 849, "htm1": 849, "ctm1": 849, "wh_htm1": 849, "whi_htm1": 849, "whf_htm1": 849, "whg_htm1": 849, "who_htm1": 849, "ft": 849, "ot": 849, "reliabl": 849, "sacrific": 849, "hear": 849, "virtu": [849, 867], "pure_ivi": 849, "pure_torch": 849, "unclean": 849, "wx": 849, "temp": 849, "ivy_func": 849, "emphas": 849, "example_input": 849, "static_argnum": [849, 863], "static_argnam": [849, 863], "primit": [850, 855, 868, 870], "hierarch": [850, 852, 853, 870], "arraywithactiv": 851, "arraywithcr": 851, "arraywithdatatyp": 851, "arraywithdevic": 851, "arraywithgener": 851, "arraywithgradi": 851, "arraywithimag": 851, "arraywithlay": 851, "arraywithlinearalgebra": 851, "arraywithloss": 851, "arraywithmanipul": 851, "arraywithnorm": 851, "arraywithrandom": 851, "arraywithsearch": 851, "arraywithset": 851, "arraywithsort": 851, "arraywithstatist": 851, "arraywithutil": 851, "_init": 851, "_size": 851, "_devic": 851, "_dev_str": 851, "_pre_repr": 851, "_post_repr": 851, "framework_str": 851, "pypep8nam": 851, "immut": 851, "claim": 851, "_native_wrapp": 851, "genuin": 851, "some_method": 851, "rewritten": 851, "littl": [851, 859, 872], "compartment": 851, "newshap": 851, "new_shap": 851, "tidi": 851, "crystal": 851, "ton": 852, "ado": [852, 853], "soup": 852, "walk": [852, 853], "cnt": 852, "3333335": 852, "autocomplet": 852, "midwai": 852, "agent": 852, "total_spe": 852, "total_height": 852, "total_width": 852, "ag": 852, "tot": 852, "total_": 852, "total_h": 852, "cnt0": 852, "cnt1": 852, "diff_0": 852, "diff_1": 852, "config0": 852, "config1": 852, "l0": 852, "decoder__l0": 852, "decoder__l1": 852, "encoder__l0": 852, "encoder__l1": 852, "l0__b": 852, "l0__w": 852, "l1__b": 852, "l1__w": 852, "printabl": 852, "foresight": 852, "untidili": 852, "update_ag": 852, "normalize_img": 852, "img_max": 852, "reduce_max": 852, "img_min": 852, "reduce_min": 852, "img_rang": 852, "agent_posit": 852, "agent_veloc": 852, "agent_cam_front_rgb": 852, "agent_cam_front_depth": 852, "agent_cam_rear_rgb": 852, "agent_cam_rear_depth": 852, "agent_cam_lidar": 852, "camera": 852, "front_rgb": 852, "front_depth": 852, "rear_rgb": 852, "rear_depth": 852, "lidar": 852, "rgb": 852, "rear": 852, "veloc": 852, "cam": 852, "cam_max": 852, "cam_min": 852, "cam_rang": 852, "allud": [852, 860], "perman": 852, "_cnt": 852, "img_": 852, "_dataset_s": 852, "_batch_siz": 852, "_count": [852, 853], "__next__": 852, "img_fnam": 852, "loaded_img": 852, "batch_slic": 852, "0145": 852, "addbackward0": 852, "_create_vari": 853, "_input_channel": 853, "_output_channel": 853, "_w_shape": 853, "_b_shape": 853, "_with_bia": 853, "764": 853, "872": 853, "211": 853, "439": 853, "nightmar": 853, "overcom": 853, "key0": 853, "linear3": 853, "preced": [853, 860], "_w_init": 853, "_b_init": 853, "misnom": 853, "saw": 853, "_beta1": 853, "_beta2": 853, "_epsilon": 853, "_mw": 853, "_vw": 853, "_first_pass": 853, "_should_trac": 853, "new_v": 853, "_lr": 853, "_inplac": 853, "_stop_gradi": 853, "sparse_funct": 854, "_linear": 854, "jax_graph": 854, "to_backend": 854, "thinli": 854, "to_haiku_modul": 854, "loss_fn_t": 854, "without_apply_rng": 854, "update_rul": 854, "tree_multimap": 854, "trax": [854, 861], "objax": [854, 861], "matur": [855, 860, 870], "doubt": 855, "grate": [855, 878], "probe": 855, "lock": 855, "dex": 855, "tricki": [855, 857], "tight": 855, "dispatch": [855, 870, 873], "ast": 855, "autodiff": 855, "shine": 855, "merci": 855, "compet": [855, 870], "parallelis": 855, "spmd": 855, "mixtur": 855, "expert": 855, "sophist": 855, "depart": 855, "hundr": 855, "broadli": [855, 876], "supplementari": 855, "reusabl": [855, 868, 870], "fanci": [855, 870], "fusion": [855, 874], "lose": 855, "pmap": 855, "eventu": 855, "supplement": 855, "backdoor": 855, "callback": 855, "somewhat": [855, 870], "outsourc": 855, "ivy_root": 856, "pem": 856, "api_kei": 856, "asap": 856, "nail": 857, "scientist": 857, "correl": 857, "collabor": [858, 859, 860], "consortium": [858, 860], "grown": 859, "rapidli": 859, "shareabl": 859, "outdat": 859, "newest": 859, "prototyp": [859, 870], "obsolet": [859, 861], "invent": 859, "simultan": [859, 861], "runner": 859, "principl": [859, 868, 870, 873], "2006": 859, "cloth": 859, "forgiven": 860, "eyebrow": 860, "somehow": 860, "funni": 860, "comic": 860, "charger": 860, "instant": 860, "contrari": 860, "bumpi": 860, "road": 860, "technologi": [860, 868, 872], "motherboard": 860, "raid": 860, "bluetooth": 860, "wireless": 860, "btx": 860, "sata": 860, "tcp": 860, "ip": 860, "smtp": 860, "send": [860, 875], "gmail": 860, "outlook": 860, "growth": [860, 873], "necess": 860, "2015": [860, 870], "aros": 860, "ourselv": [860, 876], "quansight": [860, 876], "compani": [860, 866], "apach": [860, 872, 876], "onnx": [860, 868, 876], "cupi": [860, 870, 877], "modin": 860, "spyder": 860, "octoml": [860, 876], "sponsor": 860, "lg": 860, "electron": 860, "shaw": 860, "pursuit": 860, "complianc": 860, "convinc": 860, "celebr": 860, "streamlin": [861, 873], "awesom": 861, "love": 861, "slew": 861, "inevit": [861, 871], "erron": 861, "poor": 861, "spin": 861, "sake": 861, "wouldn": 861, "frantic": 861, "lucid": 861, "honk": 861, "hasn": 861, "spend": [861, 870], "sonnet": 861, "trainer": [861, 877], "quo": 861, "dopamin": 861, "ignit": 861, "catalyst": 861, "lightn": 861, "fastai": 861, "publicli": [863, 864, 865], "logger": 863, "arg_stateful_idx": 863, "kwarg_stateful_idx": 863, "include_gener": 863, "array_cach": 863, "return_backend_traced_fn": 863, "lazygraph": [863, 864, 865], "sum_j": 863, "traced_fn": 863, "impos": 863, "comp_func": 863, "bake": 863, "cont": 863, "new_attribut": 863, "wip": 863, "resnet50": 863, "breed": 863, "resnetforimageclassif": [863, 864], "traced_graph": 863, "predicted_label": 863, "debug_mod": 864, "rough": 864, "transformed_with_st": 864, "bigger": 864, "hf": 864, "tf_model": 864, "transpile_kwarg": 865, "transpiled_func": 865, "unified_func": 865, "rwork": 866, "vendor": [866, 872], "complimentari": [866, 876], "acycl": [866, 871], "fillna": 867, "pct_chang": 867, "_____________": 867, "__________________________________________________________________": 867, "scaffold": [868, 876], "heart": 868, "toolchain": [868, 873], "assembli": [868, 875, 876], "idl": 868, "middl": 868, "emit": 868, "gnu": [868, 873], "broader": 868, "heterogen": 868, "aid": 868, "coprocessor": 868, "programm": [868, 875], "gate": 868, "onednn": 868, "sit": [868, 871, 876], "tandem": 868, "possess": 868, "khrono": [869, 875], "appl": 869, "coremltool": 869, "albeit": 869, "promin": 870, "abbrevi": 870, "laboratori": 870, "proprietari": [870, 874, 875], "mathwork": 870, "commerci": 870, "1984": 870, "toolbox": 870, "mupad": 870, "simulink": 870, "graphic": [870, 874, 875], "simul": 870, "million": [870, 873], "worldwid": 870, "scienc": [870, 872], "econom": 870, "2001": 870, "od": 870, "solver": 870, "cython": 870, "friendli": 870, "2002": 870, "lua": 870, "luajit": 870, "idiap": 870, "epfl": 870, "2005": 870, "numarrai": 870, "cpython": 870, "partli": 870, "2007": 870, "forest": 870, "boost": 870, "dbscan": 870, "inbuilt": 870, "esqu": 870, "aesara": 870, "2012": 870, "polymorph": 870, "mpi": 870, "openmp": 870, "glue": 870, "jaot": 870, "nasa": 870, "cern": 870, "climat": 870, "allianc": 870, "influenti": 870, "2014": 870, "scala": 870, "ship": 870, "forgiv": 870, "decemb": 870, "announc": 870, "mainten": 870, "meaning": 870, "2016": 870, "imper": 870, "amazon": 870, "traction": 870, "cognit": [870, 877], "grade": 870, "dnn": 870, "backpropag": 870, "succumb": 870, "came": 870, "monitor": 870, "hobbyist": 870, "tremend": 870, "gear": 870, "batteri": 870, "zygot": 870, "jl": 870, "workload": 870, "daggerflux": 870, "frontier": 870, "hessian": 870, "2018": 870, "lightweight": [870, 877], "shortcom": 870, "barrier": 870, "inexperienc": 870, "underdevelop": 870, "fanat": 870, "ounc": 870, "infanc": 870, "nich": 870, "mobil": 870, "lite": 870, "enterpris": 870, "reinvent": [870, 872], "inertia": 870, "creator": [870, 872], "paszk": 870, "hi": 870, "bulk": 870, "haskel": 870, "dataflow": 871, "trace_modul": 871, "scriptfunct": 871, "scriptmodul": 871, "fake": 871, "proxi": 871, "graphmodul": 871, "travi": 872, "oliph": 872, "leader": 872, "cornerston": 872, "numba": 872, "numfocu": 872, "pydata": 872, "confer": 872, "consult": 872, "devop": 872, "mlop": 872, "dashboard": 872, "startup": 872, "mlir": [872, 873, 876], "Their": 872, "held": 872, "presum": 872, "llvm": [872, 875], "founder": 872, "tvm": [872, 876], "sustain": 872, "empow": 872, "har": 872, "burden": 872, "precompil": 873, "executor": 873, "julia": [873, 876], "fsf": 873, "gpl": 873, "biggest": [873, 876], "throughput": 874, "autotun": 874, "gpgpu": 874, "classic": 875, "sycl": 875, "dpc": 875, "maco": 875, "oneapi": 875, "ia": 875, "aka": 875, "xeon": 875, "gen9": 875, "xe": 875, "arria": 875, "gx": 875, "fpga": 875, "lofti": 876, "ambit": 876, "realm": 876, "bedrock": 876, "flux": 876, "bite": 876, "chew": 876, "eagerpi": 876, "tensorli": 876, "thinc": 876, "neuropod": 876, "fx": 876, "retrain": 876, "closer": 876, "greatli": 876, "modular": 876, "anywher": 876, "theano": 877, "plaidml": 877, "partial_svd": 877, "subsystem": 877, "bhushan": 878, "srivastava": 878, "he11owther": 878, "og": 878, "edward": 878, "amimo": 878, "moblei": 878, "trent": 878, "ogban": 878, "ugot": 878, "fayad": 878, "alman": 878, "sarvesh": 878, "kesharwani": 878, "krishna": 878, "boppana": 878, "saptarshi": 878, "bandopadhyai": 878, "tugai": 878, "g\u00fcl": 878, "sondertg": 878, "vismai": 878, "suramwar": 878, "leacornelio": 878, "samund": 878, "singh": 878, "samthakur587": 878, "suraj": 878, "zheng": 878, "jai": 878, "choi": 878, "zjay07": 878, "ebenez": 878, "gadri": 878, "akrong": 878, "aibenstunn": 878, "nitesh": 878, "niteshk84": 878, "abdullah": 878, "sabri": 878, "abdullahsabri": 878, "muhammad": 878, "ishaqu": 878, "muhammadnizamani": 878, "moham": 878, "ibrahim": 878, "medo072": 878, "sheroz": 878, "khan": 878, "ksheroz": 878, "suyash": 878, "gupta": 878, "sgalpha01": 878, "alvin": 878, "vinod": 878, "david": 878, "adlai": 878, "nettei": 878, "mwape": 878, "bunda": 878, "teckno": 878, "ramya": 878, "manasa": 878, "amancherla": 878, "ramyamanasa": 878, "rohit": 878, "kumar": 878, "salla": 878, "rohitsalla": 878, "sanjai": 878, "suthar": 878, "sanjay8602": 878, "muzakkir": 878, "hussain": 878, "muzakkirhussain011": 878, "chaitanya": 878, "lakhchaura": 878, "zenithflux": 878, "kacper": 878, "ko\u017cdo\u0144": 878, "kozdon": 878, "zera": 878, "marveen": 878, "lyngkhoi": 878, "fleventi": 878, "jackson": 878, "mcclintock": 878, "jacksondm33": 878, "ayush": 878, "lokar": 878, "ayush111111": 878, "garima": 878, "saroj": 878, "androgari": 878, "lee": 878, "bissessar": 878, "leebissessar5": 878, "mostafa": 878, "gamal": 878, "mr": 878, "array22": 878, "rahul": 878, "prem": 878, "rp097": 878, "vaishnavi": 878, "mudaliar": 878, "vaishnavimudaliar": 878, "waqar": 878, "ahm": 878, "waqaarahm": 878, "aryan": 878, "pandei": 878, "aryan8912": 878, "dhruv": 878, "sharma": 878, "druvdub": 878, "mehmet": 878, "bilgehan": 878, "bezcioglu": 878, "bilgehanmehmet": 878, "omkar": 878, "khade": 878, "omickeye": 878, "puriti": 878, "nyagweth": 878, "stefan": 878, "sanchez": 878, "stefansan26": 878}, "objects": {"ivy.Array": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [544, 0, 1, "", "default"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [404, 0, 1, "", "fft2"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [566, 0, 1, "", "is_ivy_container"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [590, 0, 1, "", "shape"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy": [[634, 1, 1, "", "ArrayMode"], [630, 1, 1, "", "DefaultComplexDtype"], [631, 1, 1, "", "DefaultDevice"], [630, 1, 1, "", "DefaultDtype"], [630, 1, 1, "", "DefaultFloatDtype"], [630, 1, 1, "", "DefaultIntDtype"], [630, 1, 1, "", "DefaultUintDtype"], [386, 1, 1, "", "NativeSparseArray"], [629, 1, 1, "", "NestedSequence"], [634, 1, 1, "", "PreciseMode"], [631, 1, 1, "", "Profiler"], [386, 1, 1, "", "SparseArray"], [220, 2, 1, "", "abs"], [221, 2, 1, "", "acos"], [222, 2, 1, "", "acosh"], [635, 2, 1, "", "adam_step"], [635, 2, 1, "", "adam_update"], [389, 2, 1, "", "adaptive_avg_pool1d"], [390, 2, 1, "", "adaptive_avg_pool2d"], [391, 2, 1, "", "adaptive_max_pool2d"], [392, 2, 1, "", "adaptive_max_pool3d"], [223, 2, 1, "", "add"], [376, 2, 1, "", "adjoint"], [648, 2, 1, "", "all"], [634, 2, 1, "", "all_equal"], [641, 2, 1, "", "all_nested_indices"], [372, 2, 1, "", "allclose"], [372, 2, 1, "", "amax"], [372, 2, 1, "", "amin"], [224, 2, 1, "", "angle"], [648, 2, 1, "", "any"], [629, 2, 1, "", "arange"], [393, 2, 1, "", "area_interpolate"], [634, 2, 1, "", "arg_info"], [634, 2, 1, "", "arg_names"], [644, 2, 1, "", "argmax"], [644, 2, 1, "", "argmin"], [646, 2, 1, "", "argsort"], [644, 2, 1, "", "argwhere"], [629, 2, 1, "", "array"], [634, 2, 1, "", "array_equal"], [193, 2, 1, "", "as_ivy_dev"], [630, 2, 1, "", "as_ivy_dtype"], [194, 2, 1, "", "as_native_dev"], [630, 2, 1, "", "as_native_dtype"], [378, 2, 1, "", "as_strided"], [629, 2, 1, "", "asarray"], [225, 2, 1, "", "asin"], [226, 2, 1, "", "asinh"], [634, 2, 1, "", "assert_supports_inplace"], [378, 2, 1, "", "associative_scan"], [630, 2, 1, "", "astype"], [227, 2, 1, "", "atan"], [228, 2, 1, "", "atan2"], [229, 2, 1, "", "atanh"], [378, 2, 1, "", "atleast_1d"], [378, 2, 1, "", "atleast_2d"], [378, 2, 1, "", "atleast_3d"], [394, 2, 1, "", "avg_pool1d"], [395, 2, 1, "", "avg_pool2d"], [396, 2, 1, "", "avg_pool3d"], [381, 2, 1, "", "batch_norm"], [376, 2, 1, "", "batched_outer"], [382, 2, 1, "", "bernoulli"], [382, 2, 1, "", "beta"], [372, 2, 1, "", "binarizer"], [638, 2, 1, "", "binary_cross_entropy"], [387, 2, 1, "", "bincount"], [374, 2, 1, "", "bind_custom_gradient_function"], [230, 2, 1, "", "bitwise_and"], [231, 2, 1, "", "bitwise_invert"], [232, 2, 1, "", "bitwise_left_shift"], [233, 2, 1, "", "bitwise_or"], [234, 2, 1, "", "bitwise_right_shift"], [235, 2, 1, "", "bitwise_xor"], [312, 2, 1, "", "blackman_window"], [630, 2, 1, "", "broadcast_arrays"], [378, 2, 1, "", "broadcast_shapes"], [630, 2, 1, "", "broadcast_to"], [634, 2, 1, "", "cache_fn"], [630, 2, 1, "", "can_cast"], [236, 2, 1, "", "ceil"], [295, 2, 1, "", "celu"], [630, 2, 1, "", "check_float"], [378, 2, 1, "", "check_scalar"], [637, 2, 1, "", "cholesky"], [378, 2, 1, "", "choose"], [195, 2, 1, "", "clear_cached_mem_on_dev"], [639, 2, 1, "", "clip"], [634, 2, 1, "", "clip_matrix_norm"], [634, 2, 1, "", "clip_vector_norm"], [630, 2, 1, "", "closest_valid_dtype"], [628, 2, 1, "", "cmp_is"], [628, 2, 1, "", "cmp_isnot"], [378, 2, 1, "", "column_stack"], [639, 2, 1, "", "concat"], [378, 2, 1, "", "concat_from_sequence"], [376, 2, 1, "", "cond"], [372, 2, 1, "", "conj"], [639, 2, 1, "", "constant_pad"], [634, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [636, 2, 1, "", "conv1d_transpose"], [636, 2, 1, "", "conv2d"], [636, 2, 1, "", "conv2d_transpose"], [636, 2, 1, "", "conv3d"], [636, 2, 1, "", "conv3d_transpose"], [636, 2, 1, "", "conv_general_dilated"], [636, 2, 1, "", "conv_general_transpose"], [629, 2, 1, "", "copy_array"], [641, 2, 1, "", "copy_nest"], [372, 2, 1, "", "copysign"], [387, 2, 1, "", "corrcoef"], [237, 2, 1, "", "cos"], [238, 2, 1, "", "cosh"], [372, 2, 1, "", "count_nonzero"], [387, 2, 1, "", "cov"], [637, 2, 1, "", "cross"], [638, 2, 1, "", "cross_entropy"], [387, 2, 1, "", "cummax"], [387, 2, 1, "", "cummin"], [647, 2, 1, "", "cumprod"], [647, 2, 1, "", "cumsum"], [634, 2, 1, "", "current_backend_str"], [397, 2, 1, "", "dct"], [634, 2, 1, "", "default"], [630, 2, 1, "", "default_complex_dtype"], [196, 2, 1, "", "default_device"], [630, 2, 1, "", "default_dtype"], [630, 2, 1, "", "default_float_dtype"], [630, 2, 1, "", "default_int_dtype"], [630, 2, 1, "", "default_uint_dtype"], [239, 2, 1, "", "deg2rad"], [636, 2, 1, "", "depthwise_conv2d"], [637, 2, 1, "", "det"], [197, 2, 1, "", "dev"], [198, 2, 1, "", "dev_util"], [398, 2, 1, "", "dft"], [637, 2, 1, "", "diag"], [376, 2, 1, "", "diagflat"], [637, 2, 1, "", "diagonal"], [372, 2, 1, "", "diff"], [372, 2, 1, "", "digamma"], [382, 2, 1, "", "dirichlet"], [240, 2, 1, "", "divide"], [376, 2, 1, "", "dot"], [636, 2, 1, "", "dropout"], [399, 2, 1, "", "dropout1d"], [400, 2, 1, "", "dropout2d"], [401, 2, 1, "", "dropout3d"], [378, 2, 1, "", "dsplit"], [378, 2, 1, "", "dstack"], [630, 2, 1, "", "dtype"], [630, 2, 1, "", "dtype_bits"], [641, 2, 1, "", "duplicate_array_index_chains"], [627, 6, 1, "", "e"], [376, 2, 1, "", "eig"], [637, 2, 1, "", "eigh"], [376, 2, 1, "", "eigh_tridiagonal"], [376, 2, 1, "", "eigvals"], [637, 2, 1, "", "eigvalsh"], [634, 2, 1, "", "einops_rearrange"], [634, 2, 1, "", "einops_reduce"], [634, 2, 1, "", "einops_repeat"], [647, 2, 1, "", "einsum"], [296, 2, 1, "", "elu"], [402, 2, 1, "", "embedding"], [629, 2, 1, "", "empty"], [629, 2, 1, "", "empty_like"], [241, 2, 1, "", "equal"], [242, 2, 1, "", "erf"], [372, 2, 1, "", "erfc"], [372, 2, 1, "", "erfinv"], [635, 2, 1, "", "execute_with_gradients"], [634, 2, 1, "", "exists"], [243, 2, 1, "", "exp"], [244, 2, 1, "", "exp2"], [378, 2, 1, "", "expand"], [639, 2, 1, "", "expand_dims"], [245, 2, 1, "", "expm1"], [629, 2, 1, "", "eye"], [313, 2, 1, "", "eye_like"], [403, 2, 1, "", "fft"], [404, 2, 1, "", "fft2"], [378, 2, 1, "", "fill_diagonal"], [630, 2, 1, "", "finfo"], [372, 2, 1, "", "fix"], [378, 2, 1, "", "flatten"], [639, 2, 1, "", "flip"], [378, 2, 1, "", "fliplr"], [378, 2, 1, "", "flipud"], [372, 2, 1, "", "float_power"], [246, 2, 1, "", "floor"], [247, 2, 1, "", "floor_divide"], [372, 2, 1, "", "fmax"], [248, 2, 1, "", "fmin"], [249, 2, 1, "", "fmod"], [378, 2, 1, "", "fold"], [640, 2, 1, "", "fomaml_step"], [628, 2, 1, "", "for_loop"], [634, 2, 1, "", "fourier_encode"], [372, 2, 1, "", "frexp"], [629, 2, 1, "", "from_dlpack"], [629, 2, 1, "", "frombuffer"], [629, 2, 1, "", "full"], [629, 2, 1, "", "full_like"], [199, 2, 1, "", "function_supported_devices"], [634, 2, 1, "", "function_supported_devices_and_dtypes"], [630, 2, 1, "", "function_supported_dtypes"], [200, 2, 1, "", "function_unsupported_devices"], [634, 2, 1, "", "function_unsupported_devices_and_dtypes"], [630, 2, 1, "", "function_unsupported_dtypes"], [382, 2, 1, "", "gamma"], [634, 2, 1, "", "gather"], [634, 2, 1, "", "gather_nd"], [250, 2, 1, "", "gcd"], [626, 2, 1, "", "gelu"], [376, 2, 1, "", "general_inner_product"], [405, 2, 1, "", "generate_einsum_equation"], [634, 2, 1, "", "get_all_arrays_in_memory"], [201, 2, 1, "", "get_all_ivy_arrays_on_dev"], [406, 2, 1, "", "get_interpolate_kernel"], [634, 2, 1, "", "get_item"], [634, 2, 1, "", "get_num_dims"], [634, 2, 1, "", "get_referrers_recursive"], [202, 2, 1, "", "gpu_is_available"], [635, 2, 1, "", "grad"], [372, 2, 1, "", "gradient"], [635, 2, 1, "", "gradient_descent_update"], [251, 2, 1, "", "greater"], [252, 2, 1, "", "greater_equal"], [381, 2, 1, "", "group_norm"], [314, 2, 1, "", "hamming_window"], [203, 2, 1, "", "handle_soft_device_variable"], [315, 2, 1, "", "hann_window"], [297, 2, 1, "", "hardshrink"], [298, 2, 1, "", "hardsilu"], [626, 2, 1, "", "hardswish"], [299, 2, 1, "", "hardtanh"], [634, 2, 1, "", "has_nans"], [378, 2, 1, "", "heaviside"], [376, 2, 1, "", "higher_order_moment"], [377, 2, 1, "", "hinge_embedding_loss"], [387, 2, 1, "", "histogram"], [378, 2, 1, "", "hsplit"], [378, 2, 1, "", "hstack"], [377, 2, 1, "", "huber_loss"], [372, 2, 1, "", "hypot"], [378, 2, 1, "", "i0"], [407, 2, 1, "", "idct"], [628, 2, 1, "", "if_else"], [408, 2, 1, "", "ifft"], [409, 2, 1, "", "ifftn"], [387, 2, 1, "", "igamma"], [630, 2, 1, "", "iinfo"], [253, 2, 1, "", "imag"], [641, 2, 1, "", "index_nest"], [316, 2, 1, "", "indices"], [627, 6, 1, "", "inf"], [630, 2, 1, "", "infer_default_dtype"], [376, 2, 1, "", "initialize_tucker"], [637, 2, 1, "", "inner"], [634, 2, 1, "", "inplace_arrays_supported"], [634, 2, 1, "", "inplace_decrement"], [634, 2, 1, "", "inplace_increment"], [634, 2, 1, "", "inplace_update"], [634, 2, 1, "", "inplace_variables_supported"], [641, 2, 1, "", "insert_into_nest_at_index"], [641, 2, 1, "", "insert_into_nest_at_indices"], [381, 2, 1, "", "instance_norm"], [410, 2, 1, "", "interp"], [411, 2, 1, "", "interpolate"], [637, 2, 1, "", "inv"], [630, 2, 1, "", "invalid_dtype"], [385, 2, 1, "", "invert_permutation"], [634, 2, 1, "", "is_array"], [630, 2, 1, "", "is_bool_dtype"], [630, 2, 1, "", "is_complex_dtype"], [630, 2, 1, "", "is_float_dtype"], [630, 2, 1, "", "is_hashable_dtype"], [630, 2, 1, "", "is_int_dtype"], [634, 2, 1, "", "is_ivy_array"], [634, 2, 1, "", "is_ivy_container"], [634, 2, 1, "", "is_ivy_nested_array"], [386, 2, 1, "", "is_ivy_sparse_array"], [634, 2, 1, "", "is_native_array"], [630, 2, 1, "", "is_native_dtype"], [386, 2, 1, "", "is_native_sparse_array"], [630, 2, 1, "", "is_uint_dtype"], [372, 2, 1, "", "isclose"], [254, 2, 1, "", "isfinite"], [634, 2, 1, "", "isin"], [255, 2, 1, "", "isinf"], [256, 2, 1, "", "isnan"], [257, 2, 1, "", "isreal"], [634, 2, 1, "", "isscalar"], [634, 2, 1, "", "itemsize"], [635, 2, 1, "", "jac"], [374, 2, 1, "", "jvp"], [317, 2, 1, "", "kaiser_bessel_derived_window"], [318, 2, 1, "", "kaiser_window"], [376, 2, 1, "", "khatri_rao"], [377, 2, 1, "", "kl_div"], [376, 2, 1, "", "kron"], [376, 2, 1, "", "kronecker"], [377, 2, 1, "", "l1_loss"], [381, 2, 1, "", "l1_normalize"], [381, 2, 1, "", "l2_normalize"], [635, 2, 1, "", "lamb_update"], [635, 2, 1, "", "lars_update"], [642, 2, 1, "", "layer_norm"], [258, 2, 1, "", "lcm"], [372, 2, 1, "", "ldexp"], [626, 2, 1, "", "leaky_relu"], [372, 2, 1, "", "lerp"], [259, 2, 1, "", "less"], [260, 2, 1, "", "less_equal"], [385, 2, 1, "", "lexsort"], [372, 2, 1, "", "lgamma"], [636, 2, 1, "", "linear"], [629, 2, 1, "", "linspace"], [648, 2, 1, "", "load"], [381, 2, 1, "", "local_response_norm"], [261, 2, 1, "", "log"], [262, 2, 1, "", "log10"], [263, 2, 1, "", "log1p"], [264, 2, 1, "", "log2"], [377, 2, 1, "", "log_poisson_loss"], [626, 2, 1, "", "log_softmax"], [265, 2, 1, "", "logaddexp"], [266, 2, 1, "", "logaddexp2"], [267, 2, 1, "", "logical_and"], [268, 2, 1, "", "logical_not"], [269, 2, 1, "", "logical_or"], [270, 2, 1, "", "logical_xor"], [300, 2, 1, "", "logit"], [301, 2, 1, "", "logsigmoid"], [629, 2, 1, "", "logspace"], [381, 2, 1, "", "lp_normalize"], [636, 2, 1, "", "lstm"], [636, 2, 1, "", "lstm_update"], [376, 2, 1, "", "lu_factor"], [376, 2, 1, "", "lu_solve"], [376, 2, 1, "", "make_svd_non_negative"], [640, 2, 1, "", "maml_step"], [641, 2, 1, "", "map"], [641, 2, 1, "", "map_nest_at_index"], [641, 2, 1, "", "map_nest_at_indices"], [634, 2, 1, "", "match_kwargs"], [637, 2, 1, "", "matmul"], [378, 2, 1, "", "matricize"], [376, 2, 1, "", "matrix_exp"], [637, 2, 1, "", "matrix_norm"], [637, 2, 1, "", "matrix_power"], [637, 2, 1, "", "matrix_rank"], [637, 2, 1, "", "matrix_transpose"], [647, 2, 1, "", "max"], [412, 2, 1, "", "max_pool1d"], [413, 2, 1, "", "max_pool2d"], [375, 2, 1, "", "max_pool3d"], [375, 2, 1, "", "max_unpool1d"], [271, 2, 1, "", "maximum"], [647, 2, 1, "", "mean"], [387, 2, 1, "", "median"], [319, 2, 1, "", "mel_weight_matrix"], [629, 2, 1, "", "meshgrid"], [647, 2, 1, "", "min"], [272, 2, 1, "", "minimum"], [626, 2, 1, "", "mish"], [376, 2, 1, "", "mode_dot"], [372, 2, 1, "", "modf"], [378, 2, 1, "", "moveaxis"], [646, 2, 1, "", "msort"], [376, 2, 1, "", "multi_dot"], [636, 2, 1, "", "multi_head_attention"], [641, 2, 1, "", "multi_index_nest"], [376, 2, 1, "", "multi_mode_dot"], [643, 2, 1, "", "multinomial"], [273, 2, 1, "", "multiply"], [634, 2, 1, "", "multiprocessing"], [627, 6, 1, "", "nan"], [274, 2, 1, "", "nan_to_num"], [387, 2, 1, "", "nanmean"], [387, 2, 1, "", "nanmedian"], [387, 2, 1, "", "nanmin"], [387, 2, 1, "", "nanprod"], [372, 2, 1, "", "nansum"], [629, 2, 1, "", "native_array"], [386, 2, 1, "", "native_sparse_array"], [386, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [320, 2, 1, "", "ndenumerate"], [321, 2, 1, "", "ndindex"], [375, 2, 1, "", "nearest_interpolate"], [275, 2, 1, "", "negative"], [641, 2, 1, "", "nested_any"], [641, 2, 1, "", "nested_argwhere"], [641, 2, 1, "", "nested_map"], [641, 2, 1, "", "nested_multi_map"], [627, 6, 1, "", "newaxis"], [372, 2, 1, "", "nextafter"], [636, 2, 1, "", "nms"], [644, 2, 1, "", "nonzero"], [276, 2, 1, "", "not_equal"], [634, 2, 1, "", "num_arrays_in_memory"], [204, 2, 1, "", "num_cpu_cores"], [205, 2, 1, "", "num_gpus"], [206, 2, 1, "", "num_ivy_arrays_on_dev"], [629, 2, 1, "", "one_hot"], [629, 2, 1, "", "ones"], [629, 2, 1, "", "ones_like"], [635, 2, 1, "", "optimizer_update"], [388, 2, 1, "", "optional_get_element"], [637, 2, 1, "", "outer"], [378, 2, 1, "", "pad"], [378, 2, 1, "", "partial_fold"], [378, 2, 1, "", "partial_tensor_to_vec"], [376, 2, 1, "", "partial_tucker"], [378, 2, 1, "", "partial_unfold"], [378, 2, 1, "", "partial_vec_to_tensor"], [207, 2, 1, "", "percent_used_mem_on_dev"], [639, 2, 1, "", "permute_dims"], [627, 6, 1, "", "pi"], [637, 2, 1, "", "pinv"], [382, 2, 1, "", "poisson"], [377, 2, 1, "", "poisson_nll_loss"], [369, 2, 1, "", "polyval"], [375, 2, 1, "", "pool"], [277, 2, 1, "", "positive"], [278, 2, 1, "", "pow"], [302, 2, 1, "", "prelu"], [634, 2, 1, "", "print_all_arrays_in_memory"], [208, 2, 1, "", "print_all_ivy_arrays_on_dev"], [647, 2, 1, "", "prod"], [630, 2, 1, "", "promote_types"], [630, 2, 1, "", "promote_types_of_inputs"], [641, 2, 1, "", "prune_empty"], [641, 2, 1, "", "prune_nest_at_index"], [641, 2, 1, "", "prune_nest_at_indices"], [378, 2, 1, "", "put_along_axis"], [637, 2, 1, "", "qr"], [387, 2, 1, "", "quantile"], [279, 2, 1, "", "rad2deg"], [643, 2, 1, "", "randint"], [369, 2, 1, "", "random_cp"], [643, 2, 1, "", "random_normal"], [369, 2, 1, "", "random_parafac2"], [369, 2, 1, "", "random_tr"], [369, 2, 1, "", "random_tt"], [369, 2, 1, "", "random_tucker"], [643, 2, 1, "", "random_uniform"], [280, 2, 1, "", "real"], [281, 2, 1, "", "reciprocal"], [373, 2, 1, "", "reduce"], [375, 2, 1, "", "reduce_window"], [626, 2, 1, "", "relu"], [303, 2, 1, "", "relu6"], [282, 2, 1, "", "remainder"], [639, 2, 1, "", "repeat"], [640, 2, 1, "", "reptile_step"], [639, 2, 1, "", "reshape"], [630, 2, 1, "", "result_type"], [375, 2, 1, "", "rfft"], [375, 2, 1, "", "rfftn"], [375, 2, 1, "", "rnn"], [636, 2, 1, "", "roi_align"], [639, 2, 1, "", "roll"], [378, 2, 1, "", "rot90"], [283, 2, 1, "", "round"], [648, 2, 1, "", "save"], [636, 2, 1, "", "scaled_dot_product_attention"], [304, 2, 1, "", "scaled_tanh"], [634, 2, 1, "", "scatter_flat"], [634, 2, 1, "", "scatter_nd"], [646, 2, 1, "", "searchsorted"], [643, 2, 1, "", "seed"], [305, 2, 1, "", "selu"], [634, 2, 1, "", "set_array_mode"], [630, 2, 1, "", "set_default_complex_dtype"], [209, 2, 1, "", "set_default_device"], [630, 2, 1, "", "set_default_dtype"], [630, 2, 1, "", "set_default_float_dtype"], [184, 2, 1, "", "set_default_int_dtype"], [185, 2, 1, "", "set_default_uint_dtype"], [634, 2, 1, "", "set_exception_trace_mode"], [634, 2, 1, "", "set_inplace_mode"], [634, 2, 1, "", "set_item"], [634, 2, 1, "", "set_min_base"], [634, 2, 1, "", "set_min_denominator"], [641, 2, 1, "", "set_nest_at_index"], [641, 2, 1, "", "set_nest_at_indices"], [634, 2, 1, "", "set_nestable_mode"], [634, 2, 1, "", "set_precise_mode"], [634, 2, 1, "", "set_queue_timeout"], [634, 2, 1, "", "set_shape_array_mode"], [634, 2, 1, "", "set_show_func_wrapper_trace_mode"], [210, 2, 1, "", "set_soft_device_mode"], [211, 2, 1, "", "set_split_factor"], [634, 2, 1, "", "set_tmp_dir"], [634, 2, 1, "", "shape"], [643, 2, 1, "", "shuffle"], [626, 2, 1, "", "sigmoid"], [284, 2, 1, "", "sign"], [372, 2, 1, "", "signbit"], [306, 2, 1, "", "silu"], [285, 2, 1, "", "sin"], [372, 2, 1, "", "sinc"], [286, 2, 1, "", "sinh"], [634, 2, 1, "", "size"], [375, 2, 1, "", "sliding_window"], [637, 2, 1, "", "slogdet"], [377, 2, 1, "", "smooth_l1_loss"], [377, 2, 1, "", "soft_margin_loss"], [378, 2, 1, "", "soft_thresholding"], [626, 2, 1, "", "softmax"], [626, 2, 1, "", "softplus"], [307, 2, 1, "", "softshrink"], [626, 2, 1, "", "softsign"], [637, 2, 1, "", "solve"], [376, 2, 1, "", "solve_triangular"], [646, 2, 1, "", "sort"], [638, 2, 1, "", "sparse_cross_entropy"], [372, 2, 1, "", "sparsify_tensor"], [639, 2, 1, "", "split"], [212, 2, 1, "", "split_factor"], [213, 2, 1, "", "split_func_call"], [287, 2, 1, "", "sqrt"], [288, 2, 1, "", "square"], [639, 2, 1, "", "squeeze"], [634, 2, 1, "", "stable_divide"], [634, 2, 1, "", "stable_pow"], [639, 2, 1, "", "stack"], [308, 2, 1, "", "stanh"], [647, 2, 1, "", "std"], [375, 2, 1, "", "stft"], [635, 2, 1, "", "stop_gradient"], [634, 2, 1, "", "strides"], [289, 2, 1, "", "subtract"], [647, 2, 1, "", "sum"], [634, 2, 1, "", "supports_inplace_updates"], [637, 2, 1, "", "svd"], [376, 2, 1, "", "svd_flip"], [637, 2, 1, "", "svdvals"], [639, 2, 1, "", "swapaxes"], [378, 2, 1, "", "take"], [378, 2, 1, "", "take_along_axis"], [290, 2, 1, "", "tan"], [291, 2, 1, "", "tanh"], [309, 2, 1, "", "tanhshrink"], [376, 2, 1, "", "tensor_train"], [637, 2, 1, "", "tensordot"], [637, 2, 1, "", "tensorsolve"], [310, 2, 1, "", "threshold"], [311, 2, 1, "", "thresholded_relu"], [639, 2, 1, "", "tile"], [214, 2, 1, "", "to_device"], [629, 2, 1, "", "to_dlpack"], [634, 2, 1, "", "to_ivy_shape"], [634, 2, 1, "", "to_list"], [634, 2, 1, "", "to_native_shape"], [634, 2, 1, "", "to_numpy"], [634, 2, 1, "", "to_scalar"], [378, 2, 1, "", "top_k"], [215, 2, 1, "", "total_mem_on_dev"], [216, 2, 1, "", "tpu_is_available"], [637, 2, 1, "", "trace"], [863, 2, 1, "", "trace_graph"], [864, 2, 1, "", "transpile"], [292, 2, 1, "", "trapz"], [629, 2, 1, "", "tril"], [369, 2, 1, "", "tril_indices"], [369, 2, 1, "", "trilu"], [378, 2, 1, "", "trim_zeros"], [629, 2, 1, "", "triu"], [629, 2, 1, "", "triu_indices"], [293, 2, 1, "", "trunc"], [294, 2, 1, "", "trunc_divide"], [376, 2, 1, "", "truncated_svd"], [634, 2, 1, "", "try_else_none"], [628, 2, 1, "", "try_except"], [376, 2, 1, "", "tt_matrix_to_tensor"], [376, 2, 1, "", "tucker"], [186, 2, 1, "", "type_promote_arrays"], [378, 2, 1, "", "unflatten"], [378, 2, 1, "", "unfold"], [865, 2, 1, "", "unify"], [645, 2, 1, "", "unique_all"], [378, 2, 1, "", "unique_consecutive"], [645, 2, 1, "", "unique_counts"], [645, 2, 1, "", "unique_inverse"], [645, 2, 1, "", "unique_values"], [383, 2, 1, "", "unravel_index"], [634, 2, 1, "", "unset_array_mode"], [187, 2, 1, "", "unset_default_complex_dtype"], [217, 2, 1, "", "unset_default_device"], [188, 2, 1, "", "unset_default_dtype"], [189, 2, 1, "", "unset_default_float_dtype"], [190, 2, 1, "", "unset_default_int_dtype"], [191, 2, 1, "", "unset_default_uint_dtype"], [634, 2, 1, "", "unset_exception_trace_mode"], [634, 2, 1, "", "unset_inplace_mode"], [634, 2, 1, "", "unset_min_base"], [634, 2, 1, "", "unset_min_denominator"], [634, 2, 1, "", "unset_nestable_mode"], [634, 2, 1, "", "unset_precise_mode"], [634, 2, 1, "", "unset_queue_timeout"], [634, 2, 1, "", "unset_shape_array_mode"], [634, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [218, 2, 1, "", "unset_soft_device_mode"], [634, 2, 1, "", "unset_tmp_dir"], [369, 2, 1, "", "unsorted_segment_mean"], [369, 2, 1, "", "unsorted_segment_min"], [369, 2, 1, "", "unsorted_segment_sum"], [639, 2, 1, "", "unstack"], [219, 2, 1, "", "used_mem_on_dev"], [192, 2, 1, "", "valid_dtype"], [635, 2, 1, "", "value_and_grad"], [634, 2, 1, "", "value_is_nan"], [637, 2, 1, "", "vander"], [647, 2, 1, "", "var"], [637, 2, 1, "", "vecdot"], [637, 2, 1, "", "vector_norm"], [637, 2, 1, "", "vector_to_skew_symmetric_matrix"], [374, 2, 1, "", "vjp"], [634, 2, 1, "", "vmap"], [369, 2, 1, "", "vorbis_window"], [378, 2, 1, "", "vsplit"], [378, 2, 1, "", "vstack"], [644, 2, 1, "", "where"], [628, 2, 1, "", "while_loop"], [372, 2, 1, "", "xlogy"], [639, 2, 1, "", "zero_pad"], [629, 2, 1, "", "zeros"], [629, 2, 1, "", "zeros_like"], [372, 2, 1, "", "zeta"]], "ivy.Container": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [465, 0, 1, "", "broadcast_shapes"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [134, 0, 1, "", "frombuffer"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [314, 0, 1, "", "hamming_window"], [315, 0, 1, "", "hann_window"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [514, 0, 1, "", "invert_permutation"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [172, 0, 1, "", "is_complex_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [317, 0, 1, "", "kaiser_bessel_derived_window"], [318, 0, 1, "", "kaiser_window"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [322, 0, 1, "", "polyval"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [328, 0, 1, "", "tril_indices"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [147, 0, 1, "", "triu_indices"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [333, 0, 1, "", "vorbis_window"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[51, 3, 0, "-", "activations"], [102, 3, 0, "-", "array"], [52, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [54, 3, 0, "-", "data_type"], [55, 3, 0, "-", "device"], [56, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "experimental"], [58, 3, 0, "-", "general"], [59, 3, 0, "-", "gradients"], [60, 3, 0, "-", "image"], [61, 3, 0, "-", "layers"], [62, 3, 0, "-", "linear_algebra"], [63, 3, 0, "-", "losses"], [64, 3, 0, "-", "manipulation"], [65, 3, 0, "-", "norms"], [66, 3, 0, "-", "random"], [67, 3, 0, "-", "searching"], [68, 3, 0, "-", "set"], [69, 3, 0, "-", "sorting"], [70, 3, 0, "-", "statistical"], [71, 3, 0, "-", "utility"], [72, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[51, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "gelu"], [51, 0, 1, "", "hardswish"], [51, 0, 1, "", "leaky_relu"], [51, 0, 1, "", "log_softmax"], [51, 0, 1, "", "mish"], [51, 0, 1, "", "relu"], [51, 0, 1, "", "sigmoid"], [51, 0, 1, "", "softmax"], [51, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[102, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[102, 5, 1, "", "T"], [102, 0, 1, "", "__abs__"], [102, 0, 1, "", "__add__"], [102, 0, 1, "", "__eq__"], [102, 0, 1, "", "__ge__"], [102, 0, 1, "", "__gt__"], [102, 0, 1, "", "__init__"], [102, 0, 1, "", "__le__"], [102, 0, 1, "", "__lt__"], [102, 0, 1, "", "__ne__"], [102, 0, 1, "", "__pow__"], [102, 0, 1, "", "__radd__"], [102, 0, 1, "", "__rrshift__"], [102, 0, 1, "", "__rshift__"], [102, 0, 1, "", "__rsub__"], [102, 0, 1, "", "__sub__"], [102, 0, 1, "", "__truediv__"], [102, 0, 1, "", "__xor__"], [102, 5, 1, "", "backend"], [102, 5, 1, "", "base"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "dynamic_backend"], [102, 5, 1, "", "imag"], [102, 5, 1, "", "itemsize"], [102, 5, 1, "", "mT"], [102, 5, 1, "", "ndim"], [102, 5, 1, "", "real"], [102, 5, 1, "", "shape"], [102, 5, 1, "", "size"], [102, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[52, 2, 1, "", "_array_to_new_backend"], [52, 2, 1, "", "_to_ivy"], [52, 2, 1, "", "_to_native"], [52, 2, 1, "", "_to_new_backend"], [52, 2, 1, "", "args_to_ivy"], [52, 2, 1, "", "args_to_native"], [52, 2, 1, "", "args_to_new_backend"], [52, 2, 1, "", "to_ivy"], [52, 2, 1, "", "to_native"], [52, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[53, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "asarray"], [53, 0, 1, "", "copy_array"], [53, 0, 1, "", "empty_like"], [53, 0, 1, "", "from_dlpack"], [53, 0, 1, "", "full_like"], [53, 0, 1, "", "linspace"], [53, 0, 1, "", "logspace"], [53, 0, 1, "", "meshgrid"], [53, 0, 1, "", "native_array"], [53, 0, 1, "", "one_hot"], [53, 0, 1, "", "ones_like"], [53, 0, 1, "", "tril"], [53, 0, 1, "", "triu"], [53, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[54, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "astype"], [54, 0, 1, "", "broadcast_arrays"], [54, 0, 1, "", "broadcast_to"], [54, 0, 1, "", "can_cast"], [54, 0, 1, "", "dtype"], [54, 0, 1, "", "finfo"], [54, 0, 1, "", "iinfo"], [54, 0, 1, "", "is_bool_dtype"], [54, 0, 1, "", "is_float_dtype"], [54, 0, 1, "", "is_int_dtype"], [54, 0, 1, "", "is_uint_dtype"], [54, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[55, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "dev"], [55, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[56, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "abs"], [56, 0, 1, "", "acos"], [56, 0, 1, "", "acosh"], [56, 0, 1, "", "add"], [56, 0, 1, "", "angle"], [56, 0, 1, "", "asin"], [56, 0, 1, "", "asinh"], [56, 0, 1, "", "atan"], [56, 0, 1, "", "atan2"], [56, 0, 1, "", "atanh"], [56, 0, 1, "", "bitwise_and"], [56, 0, 1, "", "bitwise_invert"], [56, 0, 1, "", "bitwise_left_shift"], [56, 0, 1, "", "bitwise_or"], [56, 0, 1, "", "bitwise_right_shift"], [56, 0, 1, "", "bitwise_xor"], [56, 0, 1, "", "ceil"], [56, 0, 1, "", "cos"], [56, 0, 1, "", "cosh"], [56, 0, 1, "", "deg2rad"], [56, 0, 1, "", "divide"], [56, 0, 1, "", "equal"], [56, 0, 1, "", "erf"], [56, 0, 1, "", "exp"], [56, 0, 1, "", "exp2"], [56, 0, 1, "", "expm1"], [56, 0, 1, "", "floor"], [56, 0, 1, "", "floor_divide"], [56, 0, 1, "", "fmin"], [56, 0, 1, "", "gcd"], [56, 0, 1, "", "greater"], [56, 0, 1, "", "greater_equal"], [56, 0, 1, "", "isfinite"], [56, 0, 1, "", "isinf"], [56, 0, 1, "", "isnan"], [56, 0, 1, "", "isreal"], [56, 0, 1, "", "lcm"], [56, 0, 1, "", "less"], [56, 0, 1, "", "less_equal"], [56, 0, 1, "", "log"], [56, 0, 1, "", "log10"], [56, 0, 1, "", "log1p"], [56, 0, 1, "", "log2"], [56, 0, 1, "", "logaddexp"], [56, 0, 1, "", "logaddexp2"], [56, 0, 1, "", "logical_and"], [56, 0, 1, "", "logical_not"], [56, 0, 1, "", "logical_or"], [56, 0, 1, "", "logical_xor"], [56, 0, 1, "", "maximum"], [56, 0, 1, "", "minimum"], [56, 0, 1, "", "multiply"], [56, 0, 1, "", "nan_to_num"], [56, 0, 1, "", "negative"], [56, 0, 1, "", "not_equal"], [56, 0, 1, "", "positive"], [56, 0, 1, "", "pow"], [56, 0, 1, "", "rad2deg"], [56, 0, 1, "", "real"], [56, 0, 1, "", "reciprocal"], [56, 0, 1, "", "remainder"], [56, 0, 1, "", "round"], [56, 0, 1, "", "sign"], [56, 0, 1, "", "sin"], [56, 0, 1, "", "sinh"], [56, 0, 1, "", "sqrt"], [56, 0, 1, "", "square"], [56, 0, 1, "", "subtract"], [56, 0, 1, "", "tan"], [56, 0, 1, "", "tanh"], [56, 0, 1, "", "trapz"], [56, 0, 1, "", "trunc"], [56, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[57, 3, 0, "-", "activations"], [57, 3, 0, "-", "conversions"], [57, 3, 0, "-", "creation"], [57, 3, 0, "-", "data_type"], [57, 3, 0, "-", "device"], [57, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "general"], [57, 3, 0, "-", "gradients"], [57, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [57, 3, 0, "-", "losses"], [57, 3, 0, "-", "manipulation"], [57, 3, 0, "-", "norms"], [57, 3, 0, "-", "random"], [57, 3, 0, "-", "searching"], [57, 3, 0, "-", "set"], [57, 3, 0, "-", "sorting"], [57, 3, 0, "-", "statistical"], [57, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[57, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "celu"], [57, 0, 1, "", "elu"], [57, 0, 1, "", "hardshrink"], [57, 0, 1, "", "hardsilu"], [57, 0, 1, "", "hardtanh"], [57, 0, 1, "", "logit"], [57, 0, 1, "", "logsigmoid"], [57, 0, 1, "", "prelu"], [57, 0, 1, "", "relu6"], [57, 0, 1, "", "scaled_tanh"], [57, 0, 1, "", "selu"], [57, 0, 1, "", "silu"], [57, 0, 1, "", "softshrink"], [57, 0, 1, "", "tanhshrink"], [57, 0, 1, "", "threshold"], [57, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[57, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[57, 1, 1, "", "_ArrayWithCreationExperimental"], [57, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "blackman_window"], [57, 0, 1, "", "eye_like"], [57, 0, 1, "", "mel_weight_matrix"], [57, 0, 1, "", "trilu"], [57, 0, 1, "", "unsorted_segment_mean"], [57, 0, 1, "", "unsorted_segment_min"], [57, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[57, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[57, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[57, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "allclose"], [57, 0, 1, "", "amax"], [57, 0, 1, "", "amin"], [57, 0, 1, "", "binarizer"], [57, 0, 1, "", "conj"], [57, 0, 1, "", "copysign"], [57, 0, 1, "", "count_nonzero"], [57, 0, 1, "", "diff"], [57, 0, 1, "", "digamma"], [57, 0, 1, "", "erfc"], [57, 0, 1, "", "erfinv"], [57, 0, 1, "", "fix"], [57, 0, 1, "", "float_power"], [57, 0, 1, "", "fmax"], [57, 0, 1, "", "fmod"], [57, 0, 1, "", "frexp"], [57, 0, 1, "", "gradient"], [57, 0, 1, "", "hypot"], [57, 0, 1, "", "isclose"], [57, 0, 1, "", "ldexp"], [57, 0, 1, "", "lerp"], [57, 0, 1, "", "lgamma"], [57, 0, 1, "", "modf"], [57, 0, 1, "", "nansum"], [57, 0, 1, "", "nextafter"], [57, 0, 1, "", "signbit"], [57, 0, 1, "", "sinc"], [57, 0, 1, "", "sparsify_tensor"], [57, 0, 1, "", "xlogy"], [57, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[57, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[57, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[57, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[57, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adaptive_avg_pool1d"], [57, 0, 1, "", "adaptive_avg_pool2d"], [57, 0, 1, "", "adaptive_max_pool2d"], [57, 0, 1, "", "adaptive_max_pool3d"], [57, 0, 1, "", "avg_pool1d"], [57, 0, 1, "", "avg_pool2d"], [57, 0, 1, "", "avg_pool3d"], [57, 0, 1, "", "dct"], [57, 0, 1, "", "dft"], [57, 0, 1, "", "embedding"], [57, 0, 1, "", "fft"], [57, 0, 1, "", "fft2"], [57, 0, 1, "", "idct"], [57, 0, 1, "", "ifft"], [57, 0, 1, "", "ifftn"], [57, 0, 1, "", "interpolate"], [57, 0, 1, "", "max_pool1d"], [57, 0, 1, "", "max_pool2d"], [57, 0, 1, "", "max_pool3d"], [57, 0, 1, "", "max_unpool1d"], [57, 0, 1, "", "reduce_window"], [57, 0, 1, "", "rfft"], [57, 0, 1, "", "rfftn"], [57, 0, 1, "", "sliding_window"], [57, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adjoint"], [57, 0, 1, "", "batched_outer"], [57, 0, 1, "", "cond"], [57, 0, 1, "", "diagflat"], [57, 0, 1, "", "dot"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh_tridiagonal"], [57, 0, 1, "", "eigvals"], [57, 0, 1, "", "general_inner_product"], [57, 0, 1, "", "higher_order_moment"], [57, 0, 1, "", "initialize_tucker"], [57, 0, 1, "", "kron"], [57, 0, 1, "", "make_svd_non_negative"], [57, 0, 1, "", "matrix_exp"], [57, 0, 1, "", "mode_dot"], [57, 0, 1, "", "multi_dot"], [57, 0, 1, "", "multi_mode_dot"], [57, 0, 1, "", "partial_tucker"], [57, 0, 1, "", "svd_flip"], [57, 0, 1, "", "tensor_train"], [57, 0, 1, "", "truncated_svd"], [57, 0, 1, "", "tt_matrix_to_tensor"], [57, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[57, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "hinge_embedding_loss"], [57, 0, 1, "", "huber_loss"], [57, 0, 1, "", "kl_div"], [57, 0, 1, "", "l1_loss"], [57, 0, 1, "", "log_poisson_loss"], [57, 0, 1, "", "poisson_nll_loss"], [57, 0, 1, "", "smooth_l1_loss"], [57, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[57, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "as_strided"], [57, 0, 1, "", "associative_scan"], [57, 0, 1, "", "atleast_1d"], [57, 0, 1, "", "atleast_2d"], [57, 0, 1, "", "atleast_3d"], [57, 0, 1, "", "column_stack"], [57, 0, 1, "", "concat_from_sequence"], [57, 0, 1, "", "dsplit"], [57, 0, 1, "", "dstack"], [57, 0, 1, "", "expand"], [57, 0, 1, "", "fill_diagonal"], [57, 0, 1, "", "flatten"], [57, 0, 1, "", "fliplr"], [57, 0, 1, "", "flipud"], [57, 0, 1, "", "fold"], [57, 0, 1, "", "heaviside"], [57, 0, 1, "", "hsplit"], [57, 0, 1, "", "hstack"], [57, 0, 1, "", "i0"], [57, 0, 1, "", "matricize"], [57, 0, 1, "", "moveaxis"], [57, 0, 1, "", "pad"], [57, 0, 1, "", "partial_fold"], [57, 0, 1, "", "partial_tensor_to_vec"], [57, 0, 1, "", "partial_unfold"], [57, 0, 1, "", "partial_vec_to_tensor"], [57, 0, 1, "", "put_along_axis"], [57, 0, 1, "", "rot90"], [57, 0, 1, "", "soft_thresholding"], [57, 0, 1, "", "take"], [57, 0, 1, "", "take_along_axis"], [57, 0, 1, "", "top_k"], [57, 0, 1, "", "trim_zeros"], [57, 0, 1, "", "unflatten"], [57, 0, 1, "", "unfold"], [57, 0, 1, "", "unique_consecutive"], [57, 0, 1, "", "vsplit"], [57, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[57, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "batch_norm"], [57, 0, 1, "", "group_norm"], [57, 0, 1, "", "instance_norm"], [57, 0, 1, "", "l1_normalize"], [57, 0, 1, "", "l2_normalize"], [57, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[57, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bernoulli"], [57, 0, 1, "", "beta"], [57, 0, 1, "", "dirichlet"], [57, 0, 1, "", "gamma"], [57, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[57, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[57, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[57, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[57, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bincount"], [57, 0, 1, "", "corrcoef"], [57, 0, 1, "", "cov"], [57, 0, 1, "", "cummax"], [57, 0, 1, "", "cummin"], [57, 0, 1, "", "histogram"], [57, 0, 1, "", "igamma"], [57, 0, 1, "", "median"], [57, 0, 1, "", "nanmean"], [57, 0, 1, "", "nanmedian"], [57, 0, 1, "", "nanmin"], [57, 0, 1, "", "nanprod"], [57, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[57, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[58, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "all_equal"], [58, 0, 1, "", "array_equal"], [58, 0, 1, "", "assert_supports_inplace"], [58, 0, 1, "", "clip_matrix_norm"], [58, 0, 1, "", "clip_vector_norm"], [58, 0, 1, "", "default"], [58, 0, 1, "", "einops_rearrange"], [58, 0, 1, "", "einops_reduce"], [58, 0, 1, "", "einops_repeat"], [58, 0, 1, "", "exists"], [58, 0, 1, "", "fourier_encode"], [58, 0, 1, "", "gather"], [58, 0, 1, "", "gather_nd"], [58, 0, 1, "", "get_num_dims"], [58, 0, 1, "", "has_nans"], [58, 0, 1, "", "inplace_decrement"], [58, 0, 1, "", "inplace_increment"], [58, 0, 1, "", "inplace_update"], [58, 0, 1, "", "is_array"], [58, 0, 1, "", "is_ivy_array"], [58, 0, 1, "", "is_ivy_container"], [58, 0, 1, "", "is_native_array"], [58, 0, 1, "", "isin"], [58, 0, 1, "", "scatter_flat"], [58, 0, 1, "", "scatter_nd"], [58, 0, 1, "", "stable_divide"], [58, 0, 1, "", "stable_pow"], [58, 0, 1, "", "supports_inplace_updates"], [58, 0, 1, "", "to_file"], [58, 0, 1, "", "to_list"], [58, 0, 1, "", "to_numpy"], [58, 0, 1, "", "to_scalar"], [58, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[59, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "adam_step"], [59, 0, 1, "", "adam_update"], [59, 0, 1, "", "gradient_descent_update"], [59, 0, 1, "", "lamb_update"], [59, 0, 1, "", "lars_update"], [59, 0, 1, "", "optimizer_update"], [59, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[60, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[60, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[61, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "conv1d"], [61, 0, 1, "", "conv1d_transpose"], [61, 0, 1, "", "conv2d"], [61, 0, 1, "", "conv2d_transpose"], [61, 0, 1, "", "conv3d"], [61, 0, 1, "", "conv3d_transpose"], [61, 0, 1, "", "depthwise_conv2d"], [61, 0, 1, "", "dropout"], [61, 0, 1, "", "dropout1d"], [61, 0, 1, "", "dropout2d"], [61, 0, 1, "", "dropout3d"], [61, 0, 1, "", "linear"], [61, 0, 1, "", "lstm_update"], [61, 0, 1, "", "multi_head_attention"], [61, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[62, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "cholesky"], [62, 0, 1, "", "cross"], [62, 0, 1, "", "det"], [62, 0, 1, "", "diag"], [62, 0, 1, "", "diagonal"], [62, 0, 1, "", "eig"], [62, 0, 1, "", "eigh"], [62, 0, 1, "", "eigvalsh"], [62, 0, 1, "", "inner"], [62, 0, 1, "", "inv"], [62, 0, 1, "", "matmul"], [62, 0, 1, "", "matrix_norm"], [62, 0, 1, "", "matrix_power"], [62, 0, 1, "", "matrix_rank"], [62, 0, 1, "", "matrix_transpose"], [62, 0, 1, "", "outer"], [62, 0, 1, "", "pinv"], [62, 0, 1, "", "qr"], [62, 0, 1, "", "slogdet"], [62, 0, 1, "", "solve"], [62, 0, 1, "", "svd"], [62, 0, 1, "", "svdvals"], [62, 0, 1, "", "tensordot"], [62, 0, 1, "", "tensorsolve"], [62, 0, 1, "", "trace"], [62, 0, 1, "", "vander"], [62, 0, 1, "", "vecdot"], [62, 0, 1, "", "vector_norm"], [62, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[63, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "binary_cross_entropy"], [63, 0, 1, "", "cross_entropy"], [63, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[64, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "clip"], [64, 0, 1, "", "concat"], [64, 0, 1, "", "constant_pad"], [64, 0, 1, "", "expand_dims"], [64, 0, 1, "", "flip"], [64, 0, 1, "", "permute_dims"], [64, 0, 1, "", "repeat"], [64, 0, 1, "", "reshape"], [64, 0, 1, "", "roll"], [64, 0, 1, "", "split"], [64, 0, 1, "", "squeeze"], [64, 0, 1, "", "stack"], [64, 0, 1, "", "swapaxes"], [64, 0, 1, "", "tile"], [64, 0, 1, "", "unstack"], [64, 0, 1, "", "view"], [64, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[65, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[66, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "multinomial"], [66, 0, 1, "", "randint"], [66, 0, 1, "", "random_normal"], [66, 0, 1, "", "random_uniform"], [66, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[67, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "argmax"], [67, 0, 1, "", "argmin"], [67, 0, 1, "", "argwhere"], [67, 0, 1, "", "nonzero"], [67, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[68, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "unique_all"], [68, 0, 1, "", "unique_counts"], [68, 0, 1, "", "unique_inverse"], [68, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[69, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "argsort"], [69, 0, 1, "", "msort"], [69, 0, 1, "", "searchsorted"], [69, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[70, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "cumprod"], [70, 0, 1, "", "cumsum"], [70, 0, 1, "", "einsum"], [70, 0, 1, "", "max"], [70, 0, 1, "", "mean"], [70, 0, 1, "", "min"], [70, 0, 1, "", "prod"], [70, 0, 1, "", "std"], [70, 0, 1, "", "sum"], [70, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[71, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "all"], [71, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[72, 2, 1, "", "_wrap_function"], [72, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[73, 3, 0, "-", "activations"], [74, 3, 0, "-", "base"], [103, 3, 0, "-", "container"], [75, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [77, 3, 0, "-", "data_type"], [78, 3, 0, "-", "device"], [79, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "experimental"], [81, 3, 0, "-", "general"], [82, 3, 0, "-", "gradients"], [83, 3, 0, "-", "image"], [84, 3, 0, "-", "layers"], [85, 3, 0, "-", "linear_algebra"], [86, 3, 0, "-", "losses"], [87, 3, 0, "-", "manipulation"], [88, 3, 0, "-", "norms"], [89, 3, 0, "-", "random"], [90, 3, 0, "-", "searching"], [91, 3, 0, "-", "set"], [92, 3, 0, "-", "sorting"], [93, 3, 0, "-", "statistical"], [94, 3, 0, "-", "utility"], [95, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[73, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_gelu"], [73, 0, 1, "", "_static_hardswish"], [73, 0, 1, "", "_static_leaky_relu"], [73, 0, 1, "", "_static_log_softmax"], [73, 0, 1, "", "_static_mish"], [73, 0, 1, "", "_static_relu"], [73, 0, 1, "", "_static_sigmoid"], [73, 0, 1, "", "_static_softmax"], [73, 0, 1, "", "_static_softplus"], [73, 0, 1, "", "gelu"], [73, 0, 1, "", "hardswish"], [73, 0, 1, "", "leaky_relu"], [73, 0, 1, "", "log_softmax"], [73, 0, 1, "", "mish"], [73, 0, 1, "", "relu"], [73, 0, 1, "", "sigmoid"], [73, 0, 1, "", "softmax"], [73, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[74, 1, 1, "", "ContainerBase"], [74, 2, 1, "", "_is_jsonable"], [74, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[74, 0, 1, "", "__getitem__"], [74, 0, 1, "", "__init__"], [74, 0, 1, "", "__setitem__"], [74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [74, 0, 1, "", "_cont_concat_unify"], [74, 0, 1, "", "_cont_get_dev"], [74, 0, 1, "", "_cont_get_dtype"], [74, 0, 1, "", "_cont_get_shape"], [74, 0, 1, "", "_cont_get_shapes"], [74, 5, 1, "", "_cont_ivy"], [74, 0, 1, "", "_cont_mean_unify"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_slice_keys"], [74, 0, 1, "", "_cont_sum_unify"], [74, 0, 1, "", "_get_queue_item"], [74, 0, 1, "", "cont_all_false"], [74, 0, 1, "", "cont_all_key_chains"], [74, 0, 1, "", "cont_all_true"], [74, 0, 1, "", "cont_as_bools"], [74, 0, 1, "", "cont_assert_contains_sub_container"], [74, 0, 1, "", "cont_assert_contains_sub_structure"], [74, 0, 1, "", "cont_assert_identical"], [74, 0, 1, "", "cont_assert_identical_structure"], [74, 0, 1, "", "cont_at_key_chain"], [74, 0, 1, "", "cont_at_key_chains"], [74, 0, 1, "", "cont_at_keys"], [74, 0, 1, "", "cont_combine"], [74, 0, 1, "", "cont_common_key_chains"], [74, 5, 1, "", "cont_config"], [74, 0, 1, "", "cont_contains_sub_container"], [74, 0, 1, "", "cont_contains_sub_structure"], [74, 0, 1, "", "cont_copy"], [74, 0, 1, "", "cont_create_if_absent"], [74, 0, 1, "", "cont_cutoff_at_depth"], [74, 0, 1, "", "cont_cutoff_at_height"], [74, 0, 1, "", "cont_deep_copy"], [74, 5, 1, "", "cont_dev"], [74, 5, 1, "", "cont_dev_str"], [74, 0, 1, "", "cont_diff"], [74, 5, 1, "", "cont_dtype"], [74, 0, 1, "", "cont_duplicate_array_keychains"], [74, 0, 1, "", "cont_find_sub_container"], [74, 0, 1, "", "cont_find_sub_structure"], [74, 0, 1, "", "cont_flatten_key_chain"], [74, 0, 1, "", "cont_flatten_key_chains"], [74, 0, 1, "", "cont_format_key_chains"], [74, 0, 1, "", "cont_from_disk_as_hdf5"], [74, 0, 1, "", "cont_from_disk_as_json"], [74, 0, 1, "", "cont_from_disk_as_pickled"], [74, 0, 1, "", "cont_from_flat_list"], [74, 0, 1, "", "cont_handle_inplace"], [74, 0, 1, "", "cont_has_key"], [74, 0, 1, "", "cont_has_key_chain"], [74, 0, 1, "", "cont_identical"], [74, 0, 1, "", "cont_identical_array_shapes"], [74, 0, 1, "", "cont_identical_configs"], [74, 0, 1, "", "cont_identical_structure"], [74, 0, 1, "", "cont_if_exists"], [74, 0, 1, "", "cont_inplace_update"], [74, 5, 1, "", "cont_ivy"], [74, 0, 1, "", "cont_key_chains_containing"], [74, 0, 1, "", "cont_list_join"], [74, 0, 1, "", "cont_list_stack"], [74, 0, 1, "", "cont_load"], [74, 0, 1, "", "cont_map"], [74, 0, 1, "", "cont_map_sub_conts"], [74, 5, 1, "", "cont_max_depth"], [74, 0, 1, "", "cont_multi_map"], [74, 0, 1, "", "cont_multi_map_in_function"], [74, 0, 1, "", "cont_num_arrays"], [74, 0, 1, "", "cont_overwrite_at_key_chain"], [74, 0, 1, "", "cont_overwrite_at_key_chains"], [74, 0, 1, "", "cont_prune_empty"], [74, 0, 1, "", "cont_prune_key_chain"], [74, 0, 1, "", "cont_prune_key_chains"], [74, 0, 1, "", "cont_prune_key_from_key_chains"], [74, 0, 1, "", "cont_prune_keys"], [74, 0, 1, "", "cont_prune_keys_from_key_chains"], [74, 0, 1, "", "cont_reduce"], [74, 0, 1, "", "cont_remove_key_length_limit"], [74, 0, 1, "", "cont_remove_print_limit"], [74, 0, 1, "", "cont_reshape_like"], [74, 0, 1, "", "cont_restructure"], [74, 0, 1, "", "cont_restructure_key_chains"], [74, 0, 1, "", "cont_save"], [74, 0, 1, "", "cont_set_at_key_chain"], [74, 0, 1, "", "cont_set_at_key_chains"], [74, 0, 1, "", "cont_set_at_keys"], [74, 5, 1, "", "cont_shape"], [74, 5, 1, "", "cont_shapes"], [74, 0, 1, "", "cont_show"], [74, 0, 1, "", "cont_show_sub_container"], [74, 0, 1, "", "cont_size_ordered_arrays"], [74, 0, 1, "", "cont_slice_keys"], [74, 0, 1, "", "cont_slice_via_key"], [74, 0, 1, "", "cont_sort_by_key"], [74, 0, 1, "", "cont_structural_diff"], [74, 0, 1, "", "cont_to_dict"], [74, 0, 1, "", "cont_to_disk_as_hdf5"], [74, 0, 1, "", "cont_to_disk_as_json"], [74, 0, 1, "", "cont_to_disk_as_pickled"], [74, 0, 1, "", "cont_to_flat_list"], [74, 0, 1, "", "cont_to_iterator"], [74, 0, 1, "", "cont_to_iterator_keys"], [74, 0, 1, "", "cont_to_iterator_values"], [74, 0, 1, "", "cont_to_jsonable"], [74, 0, 1, "", "cont_to_nested_list"], [74, 0, 1, "", "cont_to_raw"], [74, 0, 1, "", "cont_trim_key"], [74, 0, 1, "", "cont_try_kc"], [74, 0, 1, "", "cont_unify"], [74, 0, 1, "", "cont_unstack_conts"], [74, 0, 1, "", "cont_update_config"], [74, 0, 1, "", "cont_with_default_key_color"], [74, 0, 1, "", "cont_with_entries_as_lists"], [74, 0, 1, "", "cont_with_ivy_backend"], [74, 0, 1, "", "cont_with_key_length_limit"], [74, 0, 1, "", "cont_with_print_indent"], [74, 0, 1, "", "cont_with_print_limit"], [74, 0, 1, "", "cont_with_print_line_spacing"], [74, 5, 1, "", "dynamic_backend"], [74, 0, 1, "", "h5_file_size"], [74, 0, 1, "", "shuffle_h5_file"], [74, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[103, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[103, 0, 1, "", "__abs__"], [103, 0, 1, "", "__add__"], [103, 0, 1, "", "__eq__"], [103, 0, 1, "", "__ge__"], [103, 0, 1, "", "__gt__"], [103, 0, 1, "", "__init__"], [103, 0, 1, "", "__le__"], [103, 0, 1, "", "__lt__"], [103, 0, 1, "", "__ne__"], [103, 0, 1, "", "__pow__"], [103, 0, 1, "", "__radd__"], [103, 0, 1, "", "__rrshift__"], [103, 0, 1, "", "__rshift__"], [103, 0, 1, "", "__rsub__"], [103, 0, 1, "", "__sub__"], [103, 0, 1, "", "__truediv__"], [103, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[75, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_to_ivy"], [75, 0, 1, "", "_static_to_native"], [75, 0, 1, "", "to_ivy"], [75, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[76, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_arange"], [76, 0, 1, "", "_static_asarray"], [76, 0, 1, "", "_static_copy_array"], [76, 0, 1, "", "_static_empty"], [76, 0, 1, "", "_static_empty_like"], [76, 0, 1, "", "_static_eye"], [76, 0, 1, "", "_static_from_dlpack"], [76, 0, 1, "", "_static_full"], [76, 0, 1, "", "_static_full_like"], [76, 0, 1, "", "_static_linspace"], [76, 0, 1, "", "_static_logspace"], [76, 0, 1, "", "_static_meshgrid"], [76, 0, 1, "", "_static_native_array"], [76, 0, 1, "", "_static_one_hot"], [76, 0, 1, "", "_static_ones"], [76, 0, 1, "", "_static_ones_like"], [76, 0, 1, "", "_static_tril"], [76, 0, 1, "", "_static_triu"], [76, 0, 1, "", "_static_zeros"], [76, 0, 1, "", "_static_zeros_like"], [76, 0, 1, "", "asarray"], [76, 0, 1, "", "copy_array"], [76, 0, 1, "", "empty_like"], [76, 0, 1, "", "from_dlpack"], [76, 0, 1, "", "frombuffer"], [76, 0, 1, "", "full_like"], [76, 0, 1, "", "linspace"], [76, 0, 1, "", "logspace"], [76, 0, 1, "", "meshgrid"], [76, 0, 1, "", "native_array"], [76, 0, 1, "", "one_hot"], [76, 0, 1, "", "ones_like"], [76, 0, 1, "", "static_frombuffer"], [76, 0, 1, "", "static_triu_indices"], [76, 0, 1, "", "tril"], [76, 0, 1, "", "triu"], [76, 0, 1, "", "triu_indices"], [76, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[77, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_astype"], [77, 0, 1, "", "_static_broadcast_arrays"], [77, 0, 1, "", "_static_broadcast_to"], [77, 0, 1, "", "_static_can_cast"], [77, 0, 1, "", "_static_default_complex_dtype"], [77, 0, 1, "", "_static_default_float_dtype"], [77, 0, 1, "", "_static_dtype"], [77, 0, 1, "", "_static_finfo"], [77, 0, 1, "", "_static_function_supported_dtypes"], [77, 0, 1, "", "_static_function_unsupported_dtypes"], [77, 0, 1, "", "_static_iinfo"], [77, 0, 1, "", "_static_is_bool_dtype"], [77, 0, 1, "", "_static_is_complex_dtype"], [77, 0, 1, "", "_static_is_float_dtype"], [77, 0, 1, "", "_static_is_int_dtype"], [77, 0, 1, "", "_static_is_uint_dtype"], [77, 0, 1, "", "_static_result_type"], [77, 0, 1, "", "astype"], [77, 0, 1, "", "broadcast_arrays"], [77, 0, 1, "", "broadcast_to"], [77, 0, 1, "", "can_cast"], [77, 0, 1, "", "dtype"], [77, 0, 1, "", "finfo"], [77, 0, 1, "", "iinfo"], [77, 0, 1, "", "is_bool_dtype"], [77, 0, 1, "", "is_complex_dtype"], [77, 0, 1, "", "is_float_dtype"], [77, 0, 1, "", "is_int_dtype"], [77, 0, 1, "", "is_uint_dtype"], [77, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[78, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_dev"], [78, 0, 1, "", "_static_to_device"], [78, 0, 1, "", "dev"], [78, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[79, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_abs"], [79, 0, 1, "", "_static_acos"], [79, 0, 1, "", "_static_acosh"], [79, 0, 1, "", "_static_add"], [79, 0, 1, "", "_static_asin"], [79, 0, 1, "", "_static_asinh"], [79, 0, 1, "", "_static_atan"], [79, 0, 1, "", "_static_atan2"], [79, 0, 1, "", "_static_atanh"], [79, 0, 1, "", "_static_bitwise_and"], [79, 0, 1, "", "_static_bitwise_invert"], [79, 0, 1, "", "_static_bitwise_left_shift"], [79, 0, 1, "", "_static_bitwise_or"], [79, 0, 1, "", "_static_bitwise_right_shift"], [79, 0, 1, "", "_static_bitwise_xor"], [79, 0, 1, "", "_static_ceil"], [79, 0, 1, "", "_static_cos"], [79, 0, 1, "", "_static_cosh"], [79, 0, 1, "", "_static_deg2rad"], [79, 0, 1, "", "_static_divide"], [79, 0, 1, "", "_static_equal"], [79, 0, 1, "", "_static_erf"], [79, 0, 1, "", "_static_exp"], [79, 0, 1, "", "_static_expm1"], [79, 0, 1, "", "_static_floor"], [79, 0, 1, "", "_static_floor_divide"], [79, 0, 1, "", "_static_greater"], [79, 0, 1, "", "_static_greater_equal"], [79, 0, 1, "", "_static_isfinite"], [79, 0, 1, "", "_static_isinf"], [79, 0, 1, "", "_static_isnan"], [79, 0, 1, "", "_static_isreal"], [79, 0, 1, "", "_static_lcm"], [79, 0, 1, "", "_static_less"], [79, 0, 1, "", "_static_less_equal"], [79, 0, 1, "", "_static_log"], [79, 0, 1, "", "_static_log10"], [79, 0, 1, "", "_static_log1p"], [79, 0, 1, "", "_static_log2"], [79, 0, 1, "", "_static_logaddexp"], [79, 0, 1, "", "_static_logical_and"], [79, 0, 1, "", "_static_logical_not"], [79, 0, 1, "", "_static_logical_or"], [79, 0, 1, "", "_static_logical_xor"], [79, 0, 1, "", "_static_maximum"], [79, 0, 1, "", "_static_minimum"], [79, 0, 1, "", "_static_multiply"], [79, 0, 1, "", "_static_negative"], [79, 0, 1, "", "_static_not_equal"], [79, 0, 1, "", "_static_positive"], [79, 0, 1, "", "_static_pow"], [79, 0, 1, "", "_static_rad2deg"], [79, 0, 1, "", "_static_reciprocal"], [79, 0, 1, "", "_static_remainder"], [79, 0, 1, "", "_static_round"], [79, 0, 1, "", "_static_sign"], [79, 0, 1, "", "_static_sin"], [79, 0, 1, "", "_static_sinh"], [79, 0, 1, "", "_static_sqrt"], [79, 0, 1, "", "_static_square"], [79, 0, 1, "", "_static_subtract"], [79, 0, 1, "", "_static_tan"], [79, 0, 1, "", "_static_tanh"], [79, 0, 1, "", "_static_trapz"], [79, 0, 1, "", "_static_trunc"], [79, 0, 1, "", "_static_trunc_divide"], [79, 0, 1, "", "abs"], [79, 0, 1, "", "acos"], [79, 0, 1, "", "acosh"], [79, 0, 1, "", "add"], [79, 0, 1, "", "angle"], [79, 0, 1, "", "asin"], [79, 0, 1, "", "asinh"], [79, 0, 1, "", "atan"], [79, 0, 1, "", "atan2"], [79, 0, 1, "", "atanh"], [79, 0, 1, "", "bitwise_and"], [79, 0, 1, "", "bitwise_invert"], [79, 0, 1, "", "bitwise_left_shift"], [79, 0, 1, "", "bitwise_or"], [79, 0, 1, "", "bitwise_right_shift"], [79, 0, 1, "", "bitwise_xor"], [79, 0, 1, "", "ceil"], [79, 0, 1, "", "cos"], [79, 0, 1, "", "cosh"], [79, 0, 1, "", "deg2rad"], [79, 0, 1, "", "divide"], [79, 0, 1, "", "equal"], [79, 0, 1, "", "erf"], [79, 0, 1, "", "exp"], [79, 0, 1, "", "exp2"], [79, 0, 1, "", "expm1"], [79, 0, 1, "", "floor"], [79, 0, 1, "", "floor_divide"], [79, 0, 1, "", "fmin"], [79, 0, 1, "", "gcd"], [79, 0, 1, "", "greater"], [79, 0, 1, "", "greater_equal"], [79, 0, 1, "", "imag"], [79, 0, 1, "", "isfinite"], [79, 0, 1, "", "isinf"], [79, 0, 1, "", "isnan"], [79, 0, 1, "", "isreal"], [79, 0, 1, "", "lcm"], [79, 0, 1, "", "less"], [79, 0, 1, "", "less_equal"], [79, 0, 1, "", "log"], [79, 0, 1, "", "log10"], [79, 0, 1, "", "log1p"], [79, 0, 1, "", "log2"], [79, 0, 1, "", "logaddexp"], [79, 0, 1, "", "logaddexp2"], [79, 0, 1, "", "logical_and"], [79, 0, 1, "", "logical_not"], [79, 0, 1, "", "logical_or"], [79, 0, 1, "", "logical_xor"], [79, 0, 1, "", "maximum"], [79, 0, 1, "", "minimum"], [79, 0, 1, "", "multiply"], [79, 0, 1, "", "nan_to_num"], [79, 0, 1, "", "negative"], [79, 0, 1, "", "not_equal"], [79, 0, 1, "", "positive"], [79, 0, 1, "", "pow"], [79, 0, 1, "", "rad2deg"], [79, 0, 1, "", "real"], [79, 0, 1, "", "reciprocal"], [79, 0, 1, "", "remainder"], [79, 0, 1, "", "round"], [79, 0, 1, "", "sign"], [79, 0, 1, "", "sin"], [79, 0, 1, "", "sinh"], [79, 0, 1, "", "sqrt"], [79, 0, 1, "", "square"], [79, 0, 1, "", "static_angle"], [79, 0, 1, "", "static_exp2"], [79, 0, 1, "", "static_fmin"], [79, 0, 1, "", "static_gcd"], [79, 0, 1, "", "static_imag"], [79, 0, 1, "", "static_logaddexp2"], [79, 0, 1, "", "static_nan_to_num"], [79, 0, 1, "", "static_real"], [79, 0, 1, "", "subtract"], [79, 0, 1, "", "tan"], [79, 0, 1, "", "tanh"], [79, 0, 1, "", "trapz"], [79, 0, 1, "", "trunc"], [79, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[80, 3, 0, "-", "activations"], [80, 3, 0, "-", "conversions"], [80, 3, 0, "-", "creation"], [80, 3, 0, "-", "data_type"], [80, 3, 0, "-", "device"], [80, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "general"], [80, 3, 0, "-", "gradients"], [80, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [80, 3, 0, "-", "losses"], [80, 3, 0, "-", "manipulation"], [80, 3, 0, "-", "norms"], [80, 3, 0, "-", "random"], [80, 3, 0, "-", "searching"], [80, 3, 0, "-", "set"], [80, 3, 0, "-", "sorting"], [80, 3, 0, "-", "statistical"], [80, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[80, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_celu"], [80, 0, 1, "", "_static_elu"], [80, 0, 1, "", "_static_hardshrink"], [80, 0, 1, "", "_static_hardsilu"], [80, 0, 1, "", "_static_hardtanh"], [80, 0, 1, "", "_static_scaled_tanh"], [80, 0, 1, "", "_static_silu"], [80, 0, 1, "", "_static_softshrink"], [80, 0, 1, "", "_static_tanhshrink"], [80, 0, 1, "", "_static_threshold"], [80, 0, 1, "", "celu"], [80, 0, 1, "", "elu"], [80, 0, 1, "", "hardshrink"], [80, 0, 1, "", "hardsilu"], [80, 0, 1, "", "hardtanh"], [80, 0, 1, "", "logit"], [80, 0, 1, "", "logsigmoid"], [80, 0, 1, "", "prelu"], [80, 0, 1, "", "relu6"], [80, 0, 1, "", "scaled_tanh"], [80, 0, 1, "", "selu"], [80, 0, 1, "", "silu"], [80, 0, 1, "", "softshrink"], [80, 0, 1, "", "static_logit"], [80, 0, 1, "", "static_logsigmoid"], [80, 0, 1, "", "static_prelu"], [80, 0, 1, "", "static_relu6"], [80, 0, 1, "", "static_selu"], [80, 0, 1, "", "static_thresholded_relu"], [80, 0, 1, "", "tanhshrink"], [80, 0, 1, "", "threshold"], [80, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[80, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[80, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_trilu"], [80, 0, 1, "", "blackman_window"], [80, 0, 1, "", "eye_like"], [80, 0, 1, "", "hamming_window"], [80, 0, 1, "", "hann_window"], [80, 0, 1, "", "kaiser_bessel_derived_window"], [80, 0, 1, "", "kaiser_window"], [80, 0, 1, "", "mel_weight_matrix"], [80, 0, 1, "", "polyval"], [80, 0, 1, "", "static_blackman_window"], [80, 0, 1, "", "static_eye_like"], [80, 0, 1, "", "static_hamming_window"], [80, 0, 1, "", "static_hann_window"], [80, 0, 1, "", "static_kaiser_bessel_derived_window"], [80, 0, 1, "", "static_kaiser_window"], [80, 0, 1, "", "static_mel_weight_matrix"], [80, 0, 1, "", "static_polyval"], [80, 0, 1, "", "static_tril_indices"], [80, 0, 1, "", "static_unsorted_segment_mean"], [80, 0, 1, "", "static_unsorted_segment_min"], [80, 0, 1, "", "static_unsorted_segment_sum"], [80, 0, 1, "", "static_vorbis_window"], [80, 0, 1, "", "tril_indices"], [80, 0, 1, "", "trilu"], [80, 0, 1, "", "unsorted_segment_mean"], [80, 0, 1, "", "unsorted_segment_min"], [80, 0, 1, "", "unsorted_segment_sum"], [80, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[80, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[80, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[80, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "allclose"], [80, 0, 1, "", "amax"], [80, 0, 1, "", "amin"], [80, 0, 1, "", "binarizer"], [80, 0, 1, "", "conj"], [80, 0, 1, "", "copysign"], [80, 0, 1, "", "count_nonzero"], [80, 0, 1, "", "diff"], [80, 0, 1, "", "digamma"], [80, 0, 1, "", "erfc"], [80, 0, 1, "", "erfinv"], [80, 0, 1, "", "fix"], [80, 0, 1, "", "float_power"], [80, 0, 1, "", "fmax"], [80, 0, 1, "", "fmod"], [80, 0, 1, "", "frexp"], [80, 0, 1, "", "gradient"], [80, 0, 1, "", "hypot"], [80, 0, 1, "", "isclose"], [80, 0, 1, "", "ldexp"], [80, 0, 1, "", "lerp"], [80, 0, 1, "", "modf"], [80, 0, 1, "", "nansum"], [80, 0, 1, "", "nextafter"], [80, 0, 1, "", "signbit"], [80, 0, 1, "", "sinc"], [80, 0, 1, "", "sparsify_tensor"], [80, 0, 1, "", "static_allclose"], [80, 0, 1, "", "static_amax"], [80, 0, 1, "", "static_amin"], [80, 0, 1, "", "static_binarizer"], [80, 0, 1, "", "static_conj"], [80, 0, 1, "", "static_copysign"], [80, 0, 1, "", "static_count_nonzero"], [80, 0, 1, "", "static_diff"], [80, 0, 1, "", "static_digamma"], [80, 0, 1, "", "static_erfc"], [80, 0, 1, "", "static_erfinv"], [80, 0, 1, "", "static_fix"], [80, 0, 1, "", "static_float_power"], [80, 0, 1, "", "static_fmax"], [80, 0, 1, "", "static_fmod"], [80, 0, 1, "", "static_frexp"], [80, 0, 1, "", "static_gradient"], [80, 0, 1, "", "static_hypot"], [80, 0, 1, "", "static_isclose"], [80, 0, 1, "", "static_ldexp"], [80, 0, 1, "", "static_lerp"], [80, 0, 1, "", "static_modf"], [80, 0, 1, "", "static_nansum"], [80, 0, 1, "", "static_nextafter"], [80, 0, 1, "", "static_signbit"], [80, 0, 1, "", "static_sinc"], [80, 0, 1, "", "static_sparsify_tensor"], [80, 0, 1, "", "static_xlogy"], [80, 0, 1, "", "static_zeta"], [80, 0, 1, "", "xlogy"], [80, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[80, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_reduce"], [80, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[80, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[80, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[80, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fft"], [80, 0, 1, "", "_static_sliding_window"], [80, 0, 1, "", "adaptive_avg_pool1d"], [80, 0, 1, "", "adaptive_avg_pool2d"], [80, 0, 1, "", "adaptive_max_pool2d"], [80, 0, 1, "", "adaptive_max_pool3d"], [80, 0, 1, "", "avg_pool1d"], [80, 0, 1, "", "avg_pool2d"], [80, 0, 1, "", "avg_pool3d"], [80, 0, 1, "", "dct"], [80, 0, 1, "", "dft"], [80, 0, 1, "", "embedding"], [80, 0, 1, "", "fft"], [80, 0, 1, "", "idct"], [80, 0, 1, "", "ifft"], [80, 0, 1, "", "ifftn"], [80, 0, 1, "", "interpolate"], [80, 0, 1, "", "max_pool1d"], [80, 0, 1, "", "max_pool2d"], [80, 0, 1, "", "max_pool3d"], [80, 0, 1, "", "max_unpool1d"], [80, 0, 1, "", "rfft"], [80, 0, 1, "", "rfftn"], [80, 0, 1, "", "sliding_window"], [80, 0, 1, "", "static_adaptive_avg_pool1d"], [80, 0, 1, "", "static_adaptive_avg_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool3d"], [80, 0, 1, "", "static_avg_pool1d"], [80, 0, 1, "", "static_avg_pool2d"], [80, 0, 1, "", "static_avg_pool3d"], [80, 0, 1, "", "static_dct"], [80, 0, 1, "", "static_dft"], [80, 0, 1, "", "static_embedding"], [80, 0, 1, "", "static_idct"], [80, 0, 1, "", "static_ifft"], [80, 0, 1, "", "static_ifftn"], [80, 0, 1, "", "static_interpolate"], [80, 0, 1, "", "static_max_pool1d"], [80, 0, 1, "", "static_max_pool2d"], [80, 0, 1, "", "static_max_pool3d"], [80, 0, 1, "", "static_max_unpool1d"], [80, 0, 1, "", "static_rfft"], [80, 0, 1, "", "static_rfftn"], [80, 0, 1, "", "static_rnn"], [80, 0, 1, "", "static_stft"], [80, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "adjoint"], [80, 0, 1, "", "batched_outer"], [80, 0, 1, "", "cond"], [80, 0, 1, "", "diagflat"], [80, 0, 1, "", "dot"], [80, 0, 1, "", "eig"], [80, 0, 1, "", "eigh_tridiagonal"], [80, 0, 1, "", "eigvals"], [80, 0, 1, "", "higher_order_moment"], [80, 0, 1, "", "initialize_tucker"], [80, 0, 1, "", "kron"], [80, 0, 1, "", "make_svd_non_negative"], [80, 0, 1, "", "matrix_exp"], [80, 0, 1, "", "mode_dot"], [80, 0, 1, "", "multi_dot"], [80, 0, 1, "", "multi_mode_dot"], [80, 0, 1, "", "partial_tucker"], [80, 0, 1, "", "static_adjoint"], [80, 0, 1, "", "static_batched_outer"], [80, 0, 1, "", "static_cond"], [80, 0, 1, "", "static_diagflat"], [80, 0, 1, "", "static_dot"], [80, 0, 1, "", "static_eig"], [80, 0, 1, "", "static_eigh_tridiagonal"], [80, 0, 1, "", "static_eigvals"], [80, 0, 1, "", "static_higher_order_moment"], [80, 0, 1, "", "static_initialize_tucker"], [80, 0, 1, "", "static_kron"], [80, 0, 1, "", "static_make_svd_non_negative"], [80, 0, 1, "", "static_matrix_exp"], [80, 0, 1, "", "static_mode_dot"], [80, 0, 1, "", "static_multi_dot"], [80, 0, 1, "", "static_multi_mode_dot"], [80, 0, 1, "", "static_partial_tucker"], [80, 0, 1, "", "static_svd_flip"], [80, 0, 1, "", "static_tensor_train"], [80, 0, 1, "", "static_truncated_svd"], [80, 0, 1, "", "static_tt_matrix_to_tensor"], [80, 0, 1, "", "static_tucker"], [80, 0, 1, "", "svd_flip"], [80, 0, 1, "", "tensor_train"], [80, 0, 1, "", "truncated_svd"], [80, 0, 1, "", "tt_matrix_to_tensor"], [80, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[80, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_hinge_embedding_loss"], [80, 0, 1, "", "_static_huber_loss"], [80, 0, 1, "", "_static_kl_div"], [80, 0, 1, "", "_static_l1_loss"], [80, 0, 1, "", "_static_log_poisson_loss"], [80, 0, 1, "", "_static_poisson_nll_loss"], [80, 0, 1, "", "_static_smooth_l1_loss"], [80, 0, 1, "", "_static_soft_margin_loss"], [80, 0, 1, "", "hinge_embedding_loss"], [80, 0, 1, "", "huber_loss"], [80, 0, 1, "", "kl_div"], [80, 0, 1, "", "l1_loss"], [80, 0, 1, "", "log_poisson_loss"], [80, 0, 1, "", "poisson_nll_loss"], [80, 0, 1, "", "smooth_l1_loss"], [80, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[80, 1, 1, "", "_ContainerWithManipulationExperimental"], [80, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fill_diagonal"], [80, 0, 1, "", "_static_put_along_axis"], [80, 0, 1, "", "_static_take"], [80, 0, 1, "", "_static_trim_zeros"], [80, 0, 1, "", "_static_unflatten"], [80, 0, 1, "", "_static_unique_consecutive"], [80, 0, 1, "", "as_strided"], [80, 0, 1, "", "associative_scan"], [80, 0, 1, "", "atleast_1d"], [80, 0, 1, "", "atleast_2d"], [80, 0, 1, "", "atleast_3d"], [80, 0, 1, "", "broadcast_shapes"], [80, 0, 1, "", "column_stack"], [80, 0, 1, "", "concat_from_sequence"], [80, 0, 1, "", "dsplit"], [80, 0, 1, "", "dstack"], [80, 0, 1, "", "expand"], [80, 0, 1, "", "fill_diagonal"], [80, 0, 1, "", "flatten"], [80, 0, 1, "", "fliplr"], [80, 0, 1, "", "flipud"], [80, 0, 1, "", "fold"], [80, 0, 1, "", "heaviside"], [80, 0, 1, "", "hsplit"], [80, 0, 1, "", "hstack"], [80, 0, 1, "", "i0"], [80, 0, 1, "", "matricize"], [80, 0, 1, "", "moveaxis"], [80, 0, 1, "", "pad"], [80, 0, 1, "", "partial_fold"], [80, 0, 1, "", "partial_tensor_to_vec"], [80, 0, 1, "", "partial_unfold"], [80, 0, 1, "", "partial_vec_to_tensor"], [80, 0, 1, "", "put_along_axis"], [80, 0, 1, "", "rot90"], [80, 0, 1, "", "soft_thresholding"], [80, 0, 1, "", "static_as_strided"], [80, 0, 1, "", "static_atleast_1d"], [80, 0, 1, "", "static_atleast_2d"], [80, 0, 1, "", "static_atleast_3d"], [80, 0, 1, "", "static_broadcast_shapes"], [80, 0, 1, "", "static_column_stack"], [80, 0, 1, "", "static_concat_from_sequence"], [80, 0, 1, "", "static_dsplit"], [80, 0, 1, "", "static_dstack"], [80, 0, 1, "", "static_expand"], [80, 0, 1, "", "static_flatten"], [80, 0, 1, "", "static_fliplr"], [80, 0, 1, "", "static_flipud"], [80, 0, 1, "", "static_fold"], [80, 0, 1, "", "static_heaviside"], [80, 0, 1, "", "static_hsplit"], [80, 0, 1, "", "static_hstack"], [80, 0, 1, "", "static_i0"], [80, 0, 1, "", "static_matricize"], [80, 0, 1, "", "static_moveaxis"], [80, 0, 1, "", "static_pad"], [80, 0, 1, "", "static_partial_fold"], [80, 0, 1, "", "static_partial_tensor_to_vec"], [80, 0, 1, "", "static_partial_unfold"], [80, 0, 1, "", "static_partial_vec_to_tensor"], [80, 0, 1, "", "static_rot90"], [80, 0, 1, "", "static_soft_thresholding"], [80, 0, 1, "", "static_take_along_axis"], [80, 0, 1, "", "static_top_k"], [80, 0, 1, "", "static_unfold"], [80, 0, 1, "", "static_vsplit"], [80, 0, 1, "", "static_vstack"], [80, 0, 1, "", "take"], [80, 0, 1, "", "take_along_axis"], [80, 0, 1, "", "top_k"], [80, 0, 1, "", "trim_zeros"], [80, 0, 1, "", "unflatten"], [80, 0, 1, "", "unfold"], [80, 0, 1, "", "unique_consecutive"], [80, 0, 1, "", "vsplit"], [80, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[80, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "batch_norm"], [80, 0, 1, "", "group_norm"], [80, 0, 1, "", "instance_norm"], [80, 0, 1, "", "l1_normalize"], [80, 0, 1, "", "l2_normalize"], [80, 0, 1, "", "lp_normalize"], [80, 0, 1, "", "static_batch_norm"], [80, 0, 1, "", "static_group_norm"], [80, 0, 1, "", "static_instance_norm"], [80, 0, 1, "", "static_l1_normalize"], [80, 0, 1, "", "static_l2_normalize"], [80, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[80, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "bernoulli"], [80, 0, 1, "", "beta"], [80, 0, 1, "", "dirichlet"], [80, 0, 1, "", "gamma"], [80, 0, 1, "", "poisson"], [80, 0, 1, "", "static_bernoulli"], [80, 0, 1, "", "static_beta"], [80, 0, 1, "", "static_dirichlet"], [80, 0, 1, "", "static_gamma"], [80, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[80, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "static_unravel_index"], [80, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[80, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[80, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "invert_permutation"], [80, 0, 1, "", "lexsort"], [80, 0, 1, "", "static_invert_permutation"], [80, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[80, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cummax"], [80, 0, 1, "", "_static_cummin"], [80, 0, 1, "", "_static_nanmin"], [80, 0, 1, "", "bincount"], [80, 0, 1, "", "corrcoef"], [80, 0, 1, "", "cov"], [80, 0, 1, "", "cummax"], [80, 0, 1, "", "cummin"], [80, 0, 1, "", "histogram"], [80, 0, 1, "", "igamma"], [80, 0, 1, "", "lgamma"], [80, 0, 1, "", "median"], [80, 0, 1, "", "nanmean"], [80, 0, 1, "", "nanmedian"], [80, 0, 1, "", "nanmin"], [80, 0, 1, "", "nanprod"], [80, 0, 1, "", "quantile"], [80, 0, 1, "", "static_bincount"], [80, 0, 1, "", "static_corrcoef"], [80, 0, 1, "", "static_cov"], [80, 0, 1, "", "static_histogram"], [80, 0, 1, "", "static_igamma"], [80, 0, 1, "", "static_lgamma"], [80, 0, 1, "", "static_median"], [80, 0, 1, "", "static_nanmean"], [80, 0, 1, "", "static_nanmedian"], [80, 0, 1, "", "static_nanprod"], [80, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[80, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "optional_get_element"], [80, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[81, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_all_equal"], [81, 0, 1, "", "_static_array_equal"], [81, 0, 1, "", "_static_assert_supports_inplace"], [81, 0, 1, "", "_static_clip_matrix_norm"], [81, 0, 1, "", "_static_clip_vector_norm"], [81, 0, 1, "", "_static_einops_rearrange"], [81, 0, 1, "", "_static_einops_reduce"], [81, 0, 1, "", "_static_einops_repeat"], [81, 0, 1, "", "_static_exists"], [81, 0, 1, "", "_static_fourier_encode"], [81, 0, 1, "", "_static_gather"], [81, 0, 1, "", "_static_gather_nd"], [81, 0, 1, "", "_static_get_num_dims"], [81, 0, 1, "", "_static_has_nans"], [81, 0, 1, "", "_static_inplace_decrement"], [81, 0, 1, "", "_static_inplace_increment"], [81, 0, 1, "", "_static_inplace_update"], [81, 0, 1, "", "_static_is_array"], [81, 0, 1, "", "_static_is_ivy_array"], [81, 0, 1, "", "_static_is_native_array"], [81, 0, 1, "", "_static_scatter_flat"], [81, 0, 1, "", "_static_scatter_nd"], [81, 0, 1, "", "_static_size"], [81, 0, 1, "", "_static_stable_divide"], [81, 0, 1, "", "_static_stable_pow"], [81, 0, 1, "", "_static_supports_inplace_updates"], [81, 0, 1, "", "_static_to_list"], [81, 0, 1, "", "_static_to_numpy"], [81, 0, 1, "", "_static_to_scalar"], [81, 0, 1, "", "_static_value_is_nan"], [81, 0, 1, "", "all_equal"], [81, 0, 1, "", "array_equal"], [81, 0, 1, "", "assert_supports_inplace"], [81, 0, 1, "", "clip_matrix_norm"], [81, 0, 1, "", "clip_vector_norm"], [81, 0, 1, "", "einops_rearrange"], [81, 0, 1, "", "einops_reduce"], [81, 0, 1, "", "einops_repeat"], [81, 0, 1, "", "exists"], [81, 0, 1, "", "fourier_encode"], [81, 0, 1, "", "gather"], [81, 0, 1, "", "gather_nd"], [81, 0, 1, "", "get_num_dims"], [81, 0, 1, "", "has_nans"], [81, 0, 1, "", "inplace_decrement"], [81, 0, 1, "", "inplace_increment"], [81, 0, 1, "", "inplace_update"], [81, 0, 1, "", "is_array"], [81, 0, 1, "", "is_ivy_array"], [81, 0, 1, "", "is_native_array"], [81, 0, 1, "", "isin"], [81, 0, 1, "", "itemsize"], [81, 0, 1, "", "scatter_flat"], [81, 0, 1, "", "scatter_nd"], [81, 0, 1, "", "size"], [81, 0, 1, "", "stable_divide"], [81, 0, 1, "", "stable_pow"], [81, 0, 1, "", "static_isin"], [81, 0, 1, "", "static_itemsize"], [81, 0, 1, "", "static_strides"], [81, 0, 1, "", "strides"], [81, 0, 1, "", "supports_inplace_updates"], [81, 0, 1, "", "to_list"], [81, 0, 1, "", "to_numpy"], [81, 0, 1, "", "to_scalar"], [81, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[82, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_stop_gradient"], [82, 0, 1, "", "adam_step"], [82, 0, 1, "", "adam_update"], [82, 0, 1, "", "gradient_descent_update"], [82, 0, 1, "", "lamb_update"], [82, 0, 1, "", "lars_update"], [82, 0, 1, "", "optimizer_update"], [82, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[83, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[83, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[84, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_conv1d"], [84, 0, 1, "", "_static_conv1d_transpose"], [84, 0, 1, "", "_static_conv2d"], [84, 0, 1, "", "_static_conv2d_transpose"], [84, 0, 1, "", "_static_conv3d"], [84, 0, 1, "", "_static_conv3d_transpose"], [84, 0, 1, "", "_static_depthwise_conv2d"], [84, 0, 1, "", "_static_dropout"], [84, 0, 1, "", "_static_dropout1d"], [84, 0, 1, "", "_static_dropout2d"], [84, 0, 1, "", "_static_dropout3d"], [84, 0, 1, "", "_static_linear"], [84, 0, 1, "", "_static_lstm_update"], [84, 0, 1, "", "_static_multi_head_attention"], [84, 0, 1, "", "_static_reduce_window"], [84, 0, 1, "", "_static_scaled_dot_product_attention"], [84, 0, 1, "", "conv1d"], [84, 0, 1, "", "conv1d_transpose"], [84, 0, 1, "", "conv2d"], [84, 0, 1, "", "conv2d_transpose"], [84, 0, 1, "", "conv3d"], [84, 0, 1, "", "conv3d_transpose"], [84, 0, 1, "", "depthwise_conv2d"], [84, 0, 1, "", "dropout"], [84, 0, 1, "", "dropout1d"], [84, 0, 1, "", "dropout2d"], [84, 0, 1, "", "dropout3d"], [84, 0, 1, "", "linear"], [84, 0, 1, "", "lstm_update"], [84, 0, 1, "", "multi_head_attention"], [84, 0, 1, "", "reduce_window"], [84, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[85, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_cholesky"], [85, 0, 1, "", "_static_cross"], [85, 0, 1, "", "_static_det"], [85, 0, 1, "", "_static_diag"], [85, 0, 1, "", "_static_diagonal"], [85, 0, 1, "", "_static_eigh"], [85, 0, 1, "", "_static_eigvalsh"], [85, 0, 1, "", "_static_inner"], [85, 0, 1, "", "_static_inv"], [85, 0, 1, "", "_static_matmul"], [85, 0, 1, "", "_static_matrix_norm"], [85, 0, 1, "", "_static_matrix_power"], [85, 0, 1, "", "_static_matrix_rank"], [85, 0, 1, "", "_static_matrix_transpose"], [85, 0, 1, "", "_static_outer"], [85, 0, 1, "", "_static_pinv"], [85, 0, 1, "", "_static_qr"], [85, 0, 1, "", "_static_slogdet"], [85, 0, 1, "", "_static_solve"], [85, 0, 1, "", "_static_svd"], [85, 0, 1, "", "_static_svdvals"], [85, 0, 1, "", "_static_tensordot"], [85, 0, 1, "", "_static_tensorsolve"], [85, 0, 1, "", "_static_trace"], [85, 0, 1, "", "_static_vander"], [85, 0, 1, "", "_static_vecdot"], [85, 0, 1, "", "_static_vector_norm"], [85, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [85, 0, 1, "", "cholesky"], [85, 0, 1, "", "cross"], [85, 0, 1, "", "det"], [85, 0, 1, "", "diag"], [85, 0, 1, "", "diagonal"], [85, 0, 1, "", "eigh"], [85, 0, 1, "", "eigvalsh"], [85, 0, 1, "", "general_inner_product"], [85, 0, 1, "", "inner"], [85, 0, 1, "", "inv"], [85, 0, 1, "", "matmul"], [85, 0, 1, "", "matrix_norm"], [85, 0, 1, "", "matrix_power"], [85, 0, 1, "", "matrix_rank"], [85, 0, 1, "", "matrix_transpose"], [85, 0, 1, "", "outer"], [85, 0, 1, "", "pinv"], [85, 0, 1, "", "qr"], [85, 0, 1, "", "slogdet"], [85, 0, 1, "", "solve"], [85, 0, 1, "", "static_general_inner_product"], [85, 0, 1, "", "svd"], [85, 0, 1, "", "svdvals"], [85, 0, 1, "", "tensordot"], [85, 0, 1, "", "tensorsolve"], [85, 0, 1, "", "trace"], [85, 0, 1, "", "vander"], [85, 0, 1, "", "vecdot"], [85, 0, 1, "", "vector_norm"], [85, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[86, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_binary_cross_entropy"], [86, 0, 1, "", "_static_cross_entropy"], [86, 0, 1, "", "_static_sparse_cross_entropy"], [86, 0, 1, "", "binary_cross_entropy"], [86, 0, 1, "", "cross_entropy"], [86, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[87, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_clip"], [87, 0, 1, "", "_static_concat"], [87, 0, 1, "", "_static_constant_pad"], [87, 0, 1, "", "_static_expand_dims"], [87, 0, 1, "", "_static_flip"], [87, 0, 1, "", "_static_permute_dims"], [87, 0, 1, "", "_static_repeat"], [87, 0, 1, "", "_static_reshape"], [87, 0, 1, "", "_static_roll"], [87, 0, 1, "", "_static_split"], [87, 0, 1, "", "_static_squeeze"], [87, 0, 1, "", "_static_stack"], [87, 0, 1, "", "_static_swapaxes"], [87, 0, 1, "", "_static_tile"], [87, 0, 1, "", "_static_unstack"], [87, 0, 1, "", "_static_zero_pad"], [87, 0, 1, "", "clip"], [87, 0, 1, "", "concat"], [87, 0, 1, "", "constant_pad"], [87, 0, 1, "", "expand_dims"], [87, 0, 1, "", "flip"], [87, 0, 1, "", "permute_dims"], [87, 0, 1, "", "repeat"], [87, 0, 1, "", "reshape"], [87, 0, 1, "", "roll"], [87, 0, 1, "", "split"], [87, 0, 1, "", "squeeze"], [87, 0, 1, "", "stack"], [87, 0, 1, "", "swapaxes"], [87, 0, 1, "", "tile"], [87, 0, 1, "", "unstack"], [87, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[88, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[89, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_multinomial"], [89, 0, 1, "", "_static_randint"], [89, 0, 1, "", "_static_random_normal"], [89, 0, 1, "", "_static_random_uniform"], [89, 0, 1, "", "_static_shuffle"], [89, 0, 1, "", "multinomial"], [89, 0, 1, "", "randint"], [89, 0, 1, "", "random_normal"], [89, 0, 1, "", "random_uniform"], [89, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[90, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_argmax"], [90, 0, 1, "", "_static_argmin"], [90, 0, 1, "", "_static_argwhere"], [90, 0, 1, "", "_static_nonzero"], [90, 0, 1, "", "_static_where"], [90, 0, 1, "", "argmax"], [90, 0, 1, "", "argmin"], [90, 0, 1, "", "argwhere"], [90, 0, 1, "", "nonzero"], [90, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[91, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "_static_unique_all"], [91, 0, 1, "", "_static_unique_counts"], [91, 0, 1, "", "_static_unique_inverse"], [91, 0, 1, "", "_static_unique_values"], [91, 0, 1, "", "unique_all"], [91, 0, 1, "", "unique_counts"], [91, 0, 1, "", "unique_inverse"], [91, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[92, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "_static_argsort"], [92, 0, 1, "", "_static_searchsorted"], [92, 0, 1, "", "_static_sort"], [92, 0, 1, "", "argsort"], [92, 0, 1, "", "msort"], [92, 0, 1, "", "searchsorted"], [92, 0, 1, "", "sort"], [92, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[93, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "_static_cumprod"], [93, 0, 1, "", "_static_cumsum"], [93, 0, 1, "", "_static_min"], [93, 0, 1, "", "_static_prod"], [93, 0, 1, "", "_static_sum"], [93, 0, 1, "", "_static_var"], [93, 0, 1, "", "cumprod"], [93, 0, 1, "", "cumsum"], [93, 0, 1, "", "einsum"], [93, 0, 1, "", "max"], [93, 0, 1, "", "mean"], [93, 0, 1, "", "min"], [93, 0, 1, "", "prod"], [93, 0, 1, "", "std"], [93, 0, 1, "", "sum"], [93, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[94, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "_static_all"], [94, 0, 1, "", "_static_any"], [94, 0, 1, "", "all"], [94, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[95, 2, 1, "", "_wrap_function"], [95, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[96, 3, 0, "-", "base"], [97, 3, 0, "-", "cp_tensor"], [98, 3, 0, "-", "parafac2_tensor"], [99, 3, 0, "-", "tr_tensor"], [100, 3, 0, "-", "tt_tensor"], [101, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[96, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 0, 1, "", "norm"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "cp_copy"], [97, 0, 1, "", "cp_flip_sign"], [97, 0, 1, "", "cp_lstsq_grad"], [97, 0, 1, "", "cp_mode_dot"], [97, 0, 1, "", "cp_n_param"], [97, 0, 1, "", "cp_norm"], [97, 0, 1, "", "cp_normalize"], [97, 0, 1, "", "cp_to_tensor"], [97, 0, 1, "", "cp_to_unfolded"], [97, 0, 1, "", "cp_to_vec"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "norm"], [97, 0, 1, "", "normalize"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "unfolding_dot_khatri_rao"], [97, 0, 1, "", "validate_cp_rank"], [97, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[98, 0, 1, "", "__init__"], [98, 4, 1, "", "_abc_impl"], [98, 0, 1, "", "apply_parafac2_projections"], [98, 0, 1, "", "from_CPTensor"], [98, 5, 1, "", "n_param"], [98, 0, 1, "", "parafac2_normalise"], [98, 0, 1, "", "parafac2_to_slice"], [98, 0, 1, "", "parafac2_to_slices"], [98, 0, 1, "", "parafac2_to_tensor"], [98, 0, 1, "", "parafac2_to_unfolded"], [98, 0, 1, "", "parafac2_to_vec"], [98, 0, 1, "", "to_tensor"], [98, 0, 1, "", "to_unfolded"], [98, 0, 1, "", "to_vec"], [98, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[99, 0, 1, "", "__init__"], [99, 4, 1, "", "_abc_impl"], [99, 5, 1, "", "n_param"], [99, 0, 1, "", "to_tensor"], [99, 0, 1, "", "to_unfolded"], [99, 0, 1, "", "to_vec"], [99, 0, 1, "", "tr_n_param"], [99, 0, 1, "", "tr_to_tensor"], [99, 0, 1, "", "tr_to_unfolded"], [99, 0, 1, "", "tr_to_vec"], [99, 0, 1, "", "validate_tr_rank"], [99, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[100, 0, 1, "", "__init__"], [100, 4, 1, "", "_abc_impl"], [100, 0, 1, "", "_tt_n_param"], [100, 0, 1, "", "index_update"], [100, 5, 1, "", "n_param"], [100, 0, 1, "", "pad_tt_rank"], [100, 0, 1, "", "to_tensor"], [100, 0, 1, "", "to_unfolding"], [100, 0, 1, "", "to_vec"], [100, 0, 1, "", "tt_to_tensor"], [100, 0, 1, "", "tt_to_unfolded"], [100, 0, 1, "", "tt_to_vec"], [100, 0, 1, "", "validate_tt_rank"], [100, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, 1, 1, "", "TuckerTensor"], [101, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "mode_dot"], [101, 5, 1, "", "n_param"], [101, 0, 1, "", "to_tensor"], [101, 0, 1, "", "to_unfolded"], [101, 0, 1, "", "to_vec"], [101, 0, 1, "", "tucker_copy"], [101, 0, 1, "", "tucker_mode_dot"], [101, 0, 1, "", "tucker_n_param"], [101, 0, 1, "", "tucker_normalize"], [101, 0, 1, "", "tucker_to_tensor"], [101, 0, 1, "", "tucker_to_unfolded"], [101, 0, 1, "", "tucker_to_vec"], [101, 0, 1, "", "validate_tucker_rank"], [101, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[106, 3, 0, "-", "base"], [107, 3, 0, "-", "elementwise"], [105, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[106, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[106, 0, 1, "", "__init__"], [106, 4, 1, "", "_abc_impl"], [106, 0, 1, "", "broadcast_shapes"], [106, 5, 1, "", "data"], [106, 5, 1, "", "device"], [106, 5, 1, "", "dtype"], [106, 5, 1, "", "inner_shape"], [106, 5, 1, "", "ndim"], [106, 0, 1, "", "nested_array"], [106, 5, 1, "", "nested_rank"], [106, 0, 1, "", "ragged_map"], [106, 0, 1, "", "ragged_multi_map"], [106, 0, 1, "", "ragged_multi_map_in_function"], [106, 0, 1, "", "replace_ivy_arrays"], [106, 5, 1, "", "shape"], [106, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[107, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[107, 4, 1, "", "_abc_impl"], [107, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[105, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[105, 0, 1, "", "__init__"], [105, 0, 1, "", "from_row_lengths"], [105, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[626, 3, 0, "-", "activations"], [627, 3, 0, "-", "constants"], [628, 3, 0, "-", "control_flow_ops"], [629, 3, 0, "-", "creation"], [630, 3, 0, "-", "data_type"], [631, 3, 0, "-", "device"], [632, 3, 0, "-", "elementwise"], [633, 3, 0, "-", "experimental"], [634, 3, 0, "-", "general"], [635, 3, 0, "-", "gradients"], [636, 3, 0, "-", "layers"], [637, 3, 0, "-", "linear_algebra"], [638, 3, 0, "-", "losses"], [639, 3, 0, "-", "manipulation"], [640, 3, 0, "-", "meta"], [641, 3, 0, "-", "nest"], [642, 3, 0, "-", "norms"], [643, 3, 0, "-", "random"], [644, 3, 0, "-", "searching"], [645, 3, 0, "-", "set"], [646, 3, 0, "-", "sorting"], [647, 3, 0, "-", "statistical"], [648, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[367, 3, 0, "-", "activations"], [368, 3, 0, "-", "constants"], [369, 3, 0, "-", "creation"], [370, 3, 0, "-", "data_type"], [371, 3, 0, "-", "device"], [372, 3, 0, "-", "elementwise"], [373, 3, 0, "-", "general"], [374, 3, 0, "-", "gradients"], [375, 3, 0, "-", "layers"], [376, 3, 0, "-", "linear_algebra"], [377, 3, 0, "-", "losses"], [378, 3, 0, "-", "manipulation"], [379, 3, 0, "-", "meta"], [380, 3, 0, "-", "nest"], [381, 3, 0, "-", "norms"], [382, 3, 0, "-", "random"], [383, 3, 0, "-", "searching"], [384, 3, 0, "-", "set"], [385, 3, 0, "-", "sorting"], [386, 3, 0, "-", "sparse_array"], [387, 3, 0, "-", "statistical"], [388, 3, 0, "-", "utility"]], "ivy.stateful": [[788, 3, 0, "-", "activations"], [789, 3, 0, "-", "converters"], [790, 3, 0, "-", "helpers"], [791, 3, 0, "-", "initializers"], [792, 3, 0, "-", "layers"], [793, 3, 0, "-", "losses"], [794, 3, 0, "-", "module"], [795, 3, 0, "-", "norms"], [796, 3, 0, "-", "optimizers"], [797, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[788, 1, 1, "", "ELU"], [788, 1, 1, "", "GEGLU"], [788, 1, 1, "", "GELU"], [788, 1, 1, "", "Hardswish"], [788, 1, 1, "", "LeakyReLU"], [788, 1, 1, "", "LogSigmoid"], [788, 1, 1, "", "LogSoftmax"], [788, 1, 1, "", "Logit"], [788, 1, 1, "", "Mish"], [788, 1, 1, "", "PReLU"], [788, 1, 1, "", "ReLU"], [788, 1, 1, "", "ReLU6"], [788, 1, 1, "", "SeLU"], [788, 1, 1, "", "SiLU"], [788, 1, 1, "", "Sigmoid"], [788, 1, 1, "", "Softmax"], [788, 1, 1, "", "Softplus"], [788, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[788, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[789, 1, 1, "", "ModuleConverters"], [789, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[789, 0, 1, "", "from_flax_module"], [789, 0, 1, "", "from_haiku_module"], [789, 0, 1, "", "from_keras_module"], [789, 0, 1, "", "from_paddle_module"], [789, 0, 1, "", "from_torch_module"], [789, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[790, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[791, 1, 1, "", "Constant"], [791, 1, 1, "", "FirstLayerSiren"], [791, 1, 1, "", "GlorotUniform"], [791, 1, 1, "", "Initializer"], [791, 1, 1, "", "KaimingNormal"], [791, 1, 1, "", "Ones"], [791, 1, 1, "", "RandomNormal"], [791, 1, 1, "", "Siren"], [791, 1, 1, "", "Uniform"], [791, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[791, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[792, 1, 1, "", "AdaptiveAvgPool1d"], [792, 1, 1, "", "AdaptiveAvgPool2d"], [792, 1, 1, "", "AvgPool1D"], [792, 1, 1, "", "AvgPool2D"], [792, 1, 1, "", "AvgPool3D"], [792, 1, 1, "", "Conv1D"], [792, 1, 1, "", "Conv1DTranspose"], [792, 1, 1, "", "Conv2D"], [792, 1, 1, "", "Conv2DTranspose"], [792, 1, 1, "", "Conv3D"], [792, 1, 1, "", "Conv3DTranspose"], [792, 1, 1, "", "Dct"], [792, 1, 1, "", "DepthwiseConv2D"], [792, 1, 1, "", "Dropout"], [792, 1, 1, "", "Embedding"], [792, 1, 1, "", "FFT"], [792, 1, 1, "", "IFFT"], [792, 1, 1, "", "Identity"], [792, 1, 1, "", "LSTM"], [792, 1, 1, "", "Linear"], [792, 1, 1, "", "MaxPool1D"], [792, 1, 1, "", "MaxPool2D"], [792, 1, 1, "", "MaxPool3D"], [792, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[792, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[793, 1, 1, "", "BinaryCrossEntropyLoss"], [793, 1, 1, "", "CrossEntropyLoss"], [793, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.module": [[794, 1, 1, "", "Module"], [794, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[794, 0, 1, "", "__call__"], [794, 0, 1, "", "__init__"], [794, 5, 1, "", "buffers"], [794, 0, 1, "", "build"], [794, 5, 1, "", "build_mode"], [794, 5, 1, "", "built"], [794, 5, 1, "", "device"], [794, 5, 1, "", "dtype"], [794, 0, 1, "", "eval"], [794, 0, 1, "", "load"], [794, 5, 1, "", "module_dict"], [794, 0, 1, "", "register_buffer"], [794, 0, 1, "", "register_parameter"], [794, 0, 1, "", "save"], [794, 0, 1, "", "save_weights"], [794, 0, 1, "", "show_graph"], [794, 5, 1, "", "state_dict"], [794, 0, 1, "", "to_device"], [794, 0, 1, "", "trace_graph"], [794, 0, 1, "", "train"], [794, 5, 1, "", "training"], [794, 5, 1, "", "v"]], "ivy.stateful.norms": [[795, 1, 1, "", "BatchNorm2D"], [795, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[795, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[795, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[796, 1, 1, "", "Adam"], [796, 1, 1, "", "AdamW"], [796, 1, 1, "", "LAMB"], [796, 1, 1, "", "LARS"], [796, 1, 1, "", "Optimizer"], [796, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[796, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.sequential": [[797, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[797, 0, 1, "", "__init__"]], "ivy.utils": [[798, 3, 0, "-", "assertions"], [799, 3, 0, "-", "backend"], [803, 3, 0, "-", "binaries"], [804, 3, 0, "-", "dynamic_import"], [805, 3, 0, "-", "einsum_parser"], [806, 3, 0, "-", "einsum_path_helpers"], [807, 3, 0, "-", "exceptions"], [808, 3, 0, "-", "inspection"], [809, 3, 0, "-", "logging"], [810, 3, 0, "-", "profiler"], [811, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[798, 2, 1, "", "check_all"], [798, 2, 1, "", "check_all_or_any_fn"], [798, 2, 1, "", "check_any"], [798, 2, 1, "", "check_dev_correct_formatting"], [798, 2, 1, "", "check_dimensions"], [798, 2, 1, "", "check_elem_in_list"], [798, 2, 1, "", "check_equal"], [798, 2, 1, "", "check_exists"], [798, 2, 1, "", "check_false"], [798, 2, 1, "", "check_gather_input_valid"], [798, 2, 1, "", "check_gather_nd_input_valid"], [798, 2, 1, "", "check_greater"], [798, 2, 1, "", "check_inplace_sizes_valid"], [798, 2, 1, "", "check_isinstance"], [798, 2, 1, "", "check_kernel_padding_size"], [798, 2, 1, "", "check_less"], [798, 2, 1, "", "check_one_way_broadcastable"], [798, 2, 1, "", "check_same_dtype"], [798, 2, 1, "", "check_shape"], [798, 2, 1, "", "check_shapes_broadcastable"], [798, 2, 1, "", "check_true"], [798, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[800, 3, 0, "-", "ast_helpers"], [801, 3, 0, "-", "handler"], [802, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[800, 1, 1, "", "ImportTransformer"], [800, 1, 1, "", "IvyLoader"], [800, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "impersonate_import"], [800, 0, 1, "", "visit_Import"], [800, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[800, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[801, 1, 1, "", "ContextManager"], [801, 2, 1, "", "choose_random_backend"], [801, 2, 1, "", "current_backend"], [801, 2, 1, "", "dynamic_backend_converter"], [801, 2, 1, "", "prevent_access_locally"], [801, 2, 1, "", "previous_backend"], [801, 2, 1, "", "set_backend"], [801, 2, 1, "", "set_backend_to_specific_version"], [801, 2, 1, "", "set_jax_backend"], [801, 2, 1, "", "set_mxnet_backend"], [801, 2, 1, "", "set_numpy_backend"], [801, 2, 1, "", "set_paddle_backend"], [801, 2, 1, "", "set_tensorflow_backend"], [801, 2, 1, "", "set_torch_backend"], [801, 2, 1, "", "unset_backend"], [801, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[801, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[802, 2, 1, "", "clear_sub_backends"], [802, 2, 1, "", "find_available_sub_backends"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [802, 2, 1, "", "set_sub_backend"], [802, 2, 1, "", "set_sub_backend_to_specific_version"], [802, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[803, 2, 1, "", "check_for_binaries"], [803, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[804, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[805, 2, 1, "", "convert_interleaved_input"], [805, 2, 1, "", "convert_subscripts"], [805, 2, 1, "", "find_output_shape"], [805, 2, 1, "", "find_output_str"], [805, 2, 1, "", "gen_unused_symbols"], [805, 2, 1, "", "get_symbol"], [805, 2, 1, "", "has_valid_einsum_chars_only"], [805, 2, 1, "", "is_valid_einsum_char"], [805, 2, 1, "", "legalise_einsum_expr"], [805, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[806, 2, 1, "", "can_dot"], [806, 2, 1, "", "compute_size_by_dict"], [806, 2, 1, "", "find_contraction"], [806, 2, 1, "", "flop_count"], [806, 2, 1, "", "greedy_path"], [806, 2, 1, "", "optimal_path"], [806, 2, 1, "", "parse_einsum_input"], [806, 2, 1, "", "parse_possible_contraction"], [806, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[807, 7, 1, "", "InplaceUpdateException"], [807, 7, 1, "", "IvyAttributeError"], [807, 7, 1, "", "IvyBackendException"], [807, 7, 1, "", "IvyBroadcastShapeError"], [807, 7, 1, "", "IvyDeviceError"], [807, 7, 1, "", "IvyDtypePromotionError"], [807, 7, 1, "", "IvyError"], [807, 7, 1, "", "IvyException"], [807, 7, 1, "", "IvyIndexError"], [807, 7, 1, "", "IvyInvalidBackendException"], [807, 7, 1, "", "IvyNotImplementedException"], [807, 7, 1, "", "IvyValueError"], [807, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[807, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[808, 2, 1, "", "add_array_specs"], [808, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[809, 2, 1, "", "set_logging_mode"], [809, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[810, 1, 1, "", "Profiler"], [810, 2, 1, "", "tensorflow_profile_start"], [810, 2, 1, "", "tensorflow_profile_stop"], [810, 2, 1, "", "torch_profiler_init"], [810, 2, 1, "", "torch_profiler_start"], [810, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[810, 0, 1, "", "__init__"], [810, 4, 1, "", "print_stats"], [810, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[811, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[771, 3, 0, "-", "assertions"], [772, 3, 0, "-", "available_frameworks"], [773, 3, 0, "-", "function_testing"], [774, 3, 0, "-", "globals"], [775, 3, 0, "-", "hypothesis_helpers"], [780, 3, 0, "-", "multiprocessing"], [781, 3, 0, "-", "pipeline_helper"], [782, 3, 0, "-", "structs"], [783, 3, 0, "-", "test_parameter_flags"], [784, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[771, 2, 1, "", "assert_all_close"], [771, 2, 1, "", "assert_same_type"], [771, 2, 1, "", "assert_same_type_and_shape"], [771, 2, 1, "", "check_unsupported_device"], [771, 2, 1, "", "check_unsupported_device_and_dtype"], [771, 2, 1, "", "check_unsupported_dtype"], [771, 2, 1, "", "test_unsupported_function"], [771, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, 2, 1, "", "args_to_container"], [773, 2, 1, "", "args_to_frontend"], [773, 2, 1, "", "arrays_to_frontend"], [773, 2, 1, "", "as_lists"], [773, 2, 1, "", "convtrue"], [773, 2, 1, "", "create_args_kwargs"], [773, 2, 1, "", "flatten"], [773, 2, 1, "", "flatten_and_to_np"], [773, 2, 1, "", "flatten_frontend"], [773, 2, 1, "", "flatten_frontend_fw_to_np"], [773, 2, 1, "", "flatten_frontend_to_np"], [773, 2, 1, "", "get_frontend_ret"], [773, 2, 1, "", "get_ret_and_flattened_np_array"], [773, 2, 1, "", "gradient_incompatible_function"], [773, 2, 1, "", "gradient_test"], [773, 2, 1, "", "gradient_unsupported_dtypes"], [773, 2, 1, "", "kwargs_to_args_n_kwargs"], [773, 2, 1, "", "test_frontend_function"], [773, 2, 1, "", "test_frontend_method"], [773, 2, 1, "", "test_function"], [773, 2, 1, "", "test_function_backend_computation"], [773, 2, 1, "", "test_function_ground_truth_computation"], [773, 2, 1, "", "test_gradient_backend_computation"], [773, 2, 1, "", "test_gradient_ground_truth_computation"], [773, 2, 1, "", "test_method"], [773, 2, 1, "", "test_method_backend_computation"], [773, 2, 1, "", "test_method_ground_truth_computation"], [773, 2, 1, "", "traced_if_required"], [773, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[774, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [774, 7, 1, "", "InterruptedTest"], [774, 1, 1, "", "TestData"], [774, 2, 1, "", "setup_api_test"], [774, 2, 1, "", "setup_frontend_test"], [774, 2, 1, "", "teardown_api_test"], [774, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[774, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[774, 0, 1, "", "__init__"], [774, 4, 1, "", "fn_name"], [774, 4, 1, "", "fn_tree"], [774, 4, 1, "", "is_method"], [774, 4, 1, "", "supported_device_dtypes"], [774, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[776, 3, 0, "-", "array_helpers"], [777, 3, 0, "-", "dtype_helpers"], [778, 3, 0, "-", "general_helpers"], [779, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, 2, 1, "", "array_and_broadcastable_shape"], [776, 2, 1, "", "array_bools"], [776, 2, 1, "", "array_helpers_dtype_info_helper"], [776, 2, 1, "", "array_indices_axis"], [776, 2, 1, "", "array_indices_put_along_axis"], [776, 2, 1, "", "array_values"], [776, 2, 1, "", "arrays_and_axes"], [776, 2, 1, "", "arrays_for_pooling"], [776, 2, 1, "", "broadcast_shapes"], [776, 2, 1, "", "cond_data_gen_helper"], [776, 2, 1, "", "create_concatenable_arrays_dtypes"], [776, 2, 1, "", "create_nested_input"], [776, 2, 1, "", "dtype_and_values"], [776, 2, 1, "", "dtype_array_query"], [776, 2, 1, "", "dtype_array_query_val"], [776, 2, 1, "", "dtype_values_axis"], [776, 2, 1, "", "einsum_helper"], [776, 2, 1, "", "get_first_solve_batch_matrix"], [776, 2, 1, "", "get_first_solve_matrix"], [776, 2, 1, "", "get_second_solve_batch_matrix"], [776, 2, 1, "", "get_second_solve_matrix"], [776, 2, 1, "", "list_of_size"], [776, 2, 1, "", "lists"], [776, 2, 1, "", "mutually_broadcastable_shapes"], [776, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, 2, 1, "", "array_dtypes"], [777, 2, 1, "", "cast_filter"], [777, 2, 1, "", "cast_filter_helper"], [777, 2, 1, "", "get_castable_dtype"], [777, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, 7, 1, "", "BroadcastError"], [778, 2, 1, "", "apply_safety_factor"], [778, 2, 1, "", "broadcast_shapes"], [778, 2, 1, "", "dims_and_offset"], [778, 2, 1, "", "embedding_helper"], [778, 2, 1, "", "general_helpers_dtype_info_helper"], [778, 2, 1, "", "get_axis"], [778, 2, 1, "", "get_bounds"], [778, 2, 1, "", "get_mean_std"], [778, 2, 1, "", "get_shape"], [778, 2, 1, "", "matrix_is_stable"], [778, 2, 1, "", "reshape_shapes"], [778, 2, 1, "", "sizes_"], [778, 2, 1, "", "subsets"], [778, 2, 1, "", "two_broadcastable_shapes"], [778, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, 2, 1, "", "floats"], [779, 2, 1, "", "ints"], [779, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, 2, 1, "", "backend_proc"], [780, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, 1, 1, "", "BackendHandler"], [781, 1, 1, "", "BackendHandlerMode"], [781, 1, 1, "", "WithBackendContext"], [781, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[781, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[781, 4, 1, "", "SetBackend"], [781, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[781, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[782, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[782, 0, 1, "", "__init__"], [782, 4, 1, "", "framework_init_module"], [782, 4, 1, "", "init_name"], [782, 4, 1, "", "ivy_init_module"], [782, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, 1, 1, "", "DynamicFlag"], [783, 1, 1, "", "FrontendFunctionTestFlags"], [783, 1, 1, "", "FrontendInitTestFlags"], [783, 1, 1, "", "FrontendMethodTestFlags"], [783, 1, 1, "", "FunctionTestFlags"], [783, 1, 1, "", "InitMethodTestFlags"], [783, 1, 1, "", "MethodTestFlags"], [783, 1, 1, "", "TestFlags"], [783, 2, 1, "", "build_flag"], [783, 2, 1, "", "frontend_function_flags"], [783, 2, 1, "", "frontend_init_flags"], [783, 2, 1, "", "frontend_method_flags"], [783, 2, 1, "", "function_flags"], [783, 2, 1, "", "init_method_flags"], [783, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[783, 0, 1, "", "__init__"], [783, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, 2, 1, "", "handle_example"], [784, 2, 1, "", "handle_frontend_method"], [784, 2, 1, "", "handle_frontend_test"], [784, 2, 1, "", "handle_method"], [784, 2, 1, "", "handle_test"], [784, 2, 1, "", "num_positional_args"], [784, 2, 1, "", "num_positional_args_helper"], [784, 2, 1, "", "num_positional_args_method"], [784, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"credit": 0, "card": 0, "fraud": 0, "detect": 0, "us": [0, 6, 8, 12, 19, 27, 30, 47, 49, 812, 814, 818, 819, 823, 839, 842, 852, 856, 863, 864], "ivi": [0, 4, 5, 8, 12, 19, 22, 30, 31, 32, 43, 44, 46, 47, 49, 812, 818, 820, 824, 826, 828, 831, 833, 839, 841, 842, 843, 844, 845, 846, 849, 850, 851, 852, 853, 854, 856, 863, 864, 865, 876], "framework": [0, 6, 31, 37, 43, 772, 785, 839, 842, 850, 870, 873, 876, 877], "librari": [0, 28, 31, 32, 47, 49, 864], "instal": [0, 4, 5, 12, 22, 43, 44, 46, 812, 856], "import": [0, 5, 8, 12, 14, 22, 43, 44, 47, 804], "configur": [0, 833, 842, 852], "environ": [0, 819], "load": [0, 8, 12, 14, 769, 852], "dataset": [0, 45, 47], "preview": 0, "inspect": [0, 808], "end": [0, 47], "inform": 0, "identifi": 0, "miss": 0, "valu": [0, 842], "transact": 0, "class": [0, 108, 785, 824, 833, 841, 851], "distribut": 0, "separ": 0, "data": [0, 4, 5, 8, 12, 14, 22, 31, 43, 54, 77, 108, 370, 630, 645, 749, 750, 751, 752, 829, 841, 844, 852, 855], "analysi": 0, "statist": [0, 70, 93, 387, 647], "measur": 0, "legitim": 0, "fraudul": 0, "compar": [0, 6, 7, 14], "metric": [0, 14, 47], "under": 0, "sampl": [0, 44], "balanc": [0, 847], "creat": [0, 1, 43, 44, 818], "split": [0, 708], "featur": [0, 844], "target": [0, 43], "train": [0, 14, 43, 45, 47], "test": [0, 14, 45, 773, 783, 784, 787, 818, 819, 820, 823, 828, 834, 842, 844], "set": [0, 6, 12, 39, 43, 44, 68, 91, 384, 645, 819, 825, 834, 846, 856], "convert": [0, 6, 7, 789, 854], "arrai": [0, 102, 105, 127, 386, 776, 823, 824, 828, 836, 851, 860, 863, 867], "displai": [0, 48], "dimens": 0, "prepar": [0, 4, 5, 8, 12], "function": [0, 8, 22, 31, 32, 43, 44, 45, 47, 49, 109, 773, 818, 827, 829, 830, 833, 836, 837, 838, 839, 841, 842, 844, 845, 846, 847, 849, 854, 855, 864], "process": 0, "enabl": 0, "soft": 0, "devic": [0, 55, 78, 371, 631, 830, 836, 841], "mode": [0, 39, 829, 833, 846], "xgboost": [0, 14], "classifi": [0, 12], "benchmark": 0, "model": [0, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 29, 30, 31, 32, 43, 44, 45, 46, 47, 49, 854, 855], "time": [0, 14], "base": [0, 74, 96, 106], "predict": 0, "perform": 0, "implement": [0, 4, 8, 828, 839, 841, 861], "ha": 0, "demonstr": 0, "faster": 0, "standard": [0, 847, 860, 867, 876], "classif": [0, 5], "report": 0, "evalu": [0, 14], "ivyclassifi": 0, "xgbclassifi": [0, 14], "visual": [0, 48], "comparison": [0, 14, 852], "demo": [1, 3, 4, 5, 20, 31, 45, 46], "notebook": 1, "TO": 2, "replac": 2, "titl": 2, "exampl": [3, 8, 12, 14, 20, 39, 831, 836, 839, 842, 844, 847, 863, 864, 865], "alexnet": 4, "infer": [4, 5, 8, 12, 838], "torch": [4, 5, 8, 12, 39, 46, 870, 871], "tensorflow": [4, 5, 6, 8, 14, 18, 39, 46, 47, 48, 870], "jax": [4, 5, 8, 11, 13, 14, 39, 46, 870], "appendix": [4, 8], "code": [4, 22, 23, 24, 25, 32, 43, 835, 843, 845], "bert": 5, "dependeci": 5, "modul": [5, 794, 829, 830, 853, 864], "sequenc": [5, 836], "your": [6, 8, 12, 820, 844], "pytorch": [6, 7, 13, 14, 16, 45, 870], "project": 6, "incompat": 6, "transpil": [6, 7, 16, 17, 18, 25, 26, 27, 28, 29, 31, 32, 35, 36, 37, 38, 39, 45, 49, 854, 856, 864], "about": [6, 7, 43], "up": [6, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 819, 834, 843, 856], "sourc": [6, 856], "from": [6, 7, 39, 46, 856], "result": [6, 7, 44], "fine": [6, 7], "tune": [6, 7], "conclus": [6, 7], "how": [7, 27, 818, 826, 834, 843, 844], "To": [7, 49, 820], "paddlepaddl": 7, "imag": [8, 12, 60, 83, 253, 814, 826], "segment": 8, "unet": 8, "custom": [8, 824, 826, 839, 843, 852, 855], "preprocess": 8, "visualis": [8, 12], "initi": [8, 12, 791, 853], "nativ": [8, 12, 824, 847], "pretrain": [8, 12], "weight": [8, 12, 852], "mask": 8, "backend": [8, 14, 22, 31, 43, 44, 46, 47, 799, 802, 818, 825, 829, 839, 845, 849, 855], "acceler": [11, 13, 14], "mmpretrain": 11, "resnet": [12, 50], "label": 12, "resnet34": 12, "resnet50": 12, "xgb_frontend": 14, "xgb": 14, "more": [14, 819, 847, 861], "exhaust": 14, "v": [14, 26, 36, 39, 835, 855, 860, 863], "number": [14, 779, 836], "boost": 14, "round": [14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 283, 843], "fraction": 14, "guid": [15, 20], "build": [16, 17, 18, 47, 814, 826, 849], "top": [16, 17, 18, 821, 828, 878], "haiku": 17, "develop": 19, "convolut": 19, "network": [19, 44, 47, 852, 854], "tutori": [20, 47], "And": 20, "learn": [20, 21, 870], "basic": [20, 21, 43, 44, 820, 841], "write": [22, 30, 841, 844], "content": [22, 45], "handler": [22, 31, 801, 802, 849], "structur": [22, 31, 826, 839, 855], "api": [22, 31, 32, 818, 823, 827, 828, 839, 845, 849, 851, 853, 854, 856, 860, 863, 864, 865, 867, 874, 876], "state": [22, 31, 32, 853, 855, 863], "unifi": [23, 26, 27, 33, 36, 37, 38, 43, 812, 851, 861, 865, 872, 876], "trace": [24, 26, 27, 32, 691, 833], "lazi": [26, 36, 863], "eager": [26, 36, 863], "decor": [27, 38, 833, 838, 844], "ani": [28, 29, 31, 32, 768], "odsc": 31, "graph": [31, 48, 871, 876], "tracer": [31, 849, 854, 856, 863, 871, 876], "quickstart": 32, "get": [32, 812, 820, 856], "familiar": 32, "0": [33, 34, 35, 36, 40, 41], "1": [34, 36, 37, 38, 39, 42, 49, 870], "compil": [34, 36, 37, 38, 44, 863, 868, 873, 875, 876], "2": [35, 38, 40, 49, 870], "select": 37, "As": 38, "3": [39, 41, 42, 49], "dynam": [39, 47, 804, 825, 855], "static": 39, "todo": [39, 820], "explain": 39, "via": 39, "why": [39, 844, 861], "i": [39, 826, 847], "true": 39, "default": [39, 544], "when": 39, "numpi": [39, 46, 841, 870], "fals": 39, "kornia": 40, "perceiv": 41, "stabl": 42, "diffus": 42, "oper": [43, 836, 846, 851, 855], "ml": [43, 859, 872, 876], "chang": 43, "one": 43, "line": [43, 820], "No": [43, 819, 861], "need": [43, 844], "worri": 43, "type": [43, 54, 77, 370, 630, 829, 837, 841, 855], "differ": 43, "them": 43, "all": [43, 767], "standalon": [43, 837], "defin": [43, 44, 45, 47], "optim": [43, 796, 853], "input": [43, 44, 836], "loss": [43, 63, 86, 377, 638, 793], "loop": [43, 47], "check": [44, 835, 855], "simpl": 44, "neural": 44, "deepmind": [45, 46], "": [45, 47, 818, 826, 843, 856], "perceiverio": [45, 46], "tabl": [45, 826, 829, 867], "construct": [45, 852], "some": 45, "helper": [45, 775, 776, 777, 778, 779, 781, 784, 790, 800, 806, 842, 844, 845], "pipelin": [45, 47, 781, 826, 828, 844, 855], "download": 45, "dataload": 45, "gpu": [46, 855], "introduct": [46, 49, 841, 842], "python3": 46, "8": 46, "setup": [46, 835], "kernel": 46, "clone": [46, 819, 828], "repo": [46, 819], "ivy_model": 46, "run": [46, 820, 823, 826, 834, 844], "let": 47, "we": [47, 844], "ar": 47, "mnist": 47, "thi": 47, "temporari": 47, "loader": 47, "util": [47, 71, 94, 388, 648, 786], "plot": 47, "save": [47, 770, 852], "huggingfac": 48, "deit": 48, "can": 48, "html": 48, "file": 48, "browser": [48, 820], "interfac": 49, "telemetri": 49, "18": 50, "activ": [51, 73, 367, 626, 788], "convers": [52, 75, 838], "creation": [53, 76, 369, 629], "elementwis": [56, 79, 107, 372, 632], "experiment": [57, 80, 633, 818], "gener": [58, 81, 373, 634, 778, 839, 844, 847, 863], "gradient": [59, 82, 349, 374, 635, 839], "layer": [61, 84, 375, 636, 792], "linear": [62, 85, 376, 637, 660], "algebra": [62, 85, 376, 637], "manipul": [64, 87, 378, 639], "norm": [65, 88, 381, 642, 795], "random": [66, 89, 382, 643], "search": [67, 90, 383, 644], "sort": [69, 92, 385, 646, 756], "wrap": [72, 95, 838], "cp": 97, "tensor": [97, 98, 99, 100, 101, 104], "parafac2": 98, "tr": 99, "tt": 100, "tucker": [101, 451], "contain": [103, 820, 827, 852], "factor": 104, "nest": [105, 380, 641], "gelu": 110, "hardswish": 111, "leaky_relu": 112, "log_softmax": 113, "mish": 114, "relu": 115, "sigmoid": 116, "softmax": 117, "softplu": 118, "softsign": 119, "cmp_i": 120, "cmp_isnot": 121, "for_loop": 122, "if_els": 123, "try_except": 124, "while_loop": 125, "arang": 126, "asarrai": 128, "copy_arrai": 129, "empti": 130, "empty_lik": 131, "ey": 132, "from_dlpack": 133, "note": [133, 144, 629], "frombuff": 134, "full": [135, 842], "full_lik": 136, "linspac": 137, "logspac": 138, "meshgrid": 139, "native_arrai": 140, "one_hot": 141, "ones": 142, "ones_lik": 143, "to_dlpack": 144, "tril": 145, "triu": 146, "triu_indic": 147, "zero": 148, "zeros_lik": 149, "as_ivy_dtyp": 150, "as_native_dtyp": 151, "astyp": 152, "broadcast_arrai": 153, "broadcast_to": 154, "can_cast": 155, "check_float": 156, "closest_valid_dtyp": 157, "default_complex_dtyp": 158, "default_dtyp": 159, "default_float_dtyp": 160, "default_int_dtyp": 161, "default_uint_dtyp": 162, "dtype": [163, 777, 836], "dtype_bit": 164, "finfo": 165, "function_supported_dtyp": 166, "function_unsupported_dtyp": 167, "iinfo": 168, "infer_default_dtyp": 169, "invalid_dtyp": 170, "is_bool_dtyp": 171, "is_complex_dtyp": 172, "is_float_dtyp": 173, "is_hashable_dtyp": 174, "is_int_dtyp": 175, "is_native_dtyp": 176, "is_uint_dtyp": 177, "promote_typ": 178, "promote_types_of_input": 179, "result_typ": 180, "set_default_complex_dtyp": 181, "set_default_dtyp": 182, "set_default_float_dtyp": 183, "set_default_int_dtyp": 184, "set_default_uint_dtyp": 185, "type_promote_arrai": 186, "unset_default_complex_dtyp": 187, "unset_default_dtyp": 188, "unset_default_float_dtyp": 189, "unset_default_int_dtyp": 190, "unset_default_uint_dtyp": 191, "valid_dtyp": 192, "as_ivy_dev": 193, "as_native_dev": 194, "clear_cached_mem_on_dev": 195, "default_devic": 196, "dev": 197, "dev_util": 198, "function_supported_devic": 199, "function_unsupported_devic": 200, "get_all_ivy_arrays_on_dev": 201, "gpu_is_avail": 202, "handle_soft_device_vari": 203, "num_cpu_cor": 204, "num_gpu": 205, "num_ivy_arrays_on_dev": 206, "percent_used_mem_on_dev": 207, "print_all_ivy_arrays_on_dev": 208, "set_default_devic": 209, "set_soft_device_mod": 210, "paramet": [210, 578, 579, 584, 585, 587, 588, 631, 634, 783, 788, 846], "set_split_factor": 211, "split_factor": 212, "split_func_cal": 213, "to_devic": 214, "total_mem_on_dev": 215, "tpu_is_avail": 216, "unset_default_devic": 217, "unset_soft_device_mod": 218, "used_mem_on_dev": 219, "ab": 220, "aco": 221, "acosh": 222, "add": [223, 831, 842, 876], "angl": 224, "asin": 225, "asinh": 226, "atan": 227, "atan2": 228, "atanh": 229, "bitwise_and": 230, "bitwise_invert": 231, "bitwise_left_shift": 232, "bitwise_or": 233, "bitwise_right_shift": 234, "bitwise_xor": 235, "ceil": 236, "co": 237, "cosh": 238, "deg2rad": 239, "divid": 240, "equal": 241, "erf": 242, "exp": 243, "exp2": 244, "expm1": 245, "floor": 246, "floor_divid": 247, "fmin": 248, "fmod": 249, "gcd": 250, "greater": 251, "greater_equ": 252, "isfinit": 254, "isinf": 255, "isnan": 256, "isreal": 257, "lcm": 258, "less": 259, "less_equ": 260, "log": [261, 809, 819], "log10": 262, "log1p": 263, "log2": 264, "logaddexp": 265, "logaddexp2": 266, "logical_and": 267, "logical_not": 268, "logical_or": 269, "logical_xor": 270, "maximum": 271, "minimum": 272, "multipli": 273, "nan_to_num": 274, "neg": 275, "not_equ": 276, "posit": [277, 836], "pow": 278, "rad2deg": 279, "real": 280, "reciproc": 281, "remaind": 282, "sign": 284, "sin": 285, "sinh": 286, "sqrt": 287, "squar": 288, "subtract": 289, "tan": [290, 831, 842], "tanh": 291, "trapz": 292, "trunc": 293, "trunc_divid": 294, "celu": 295, "elu": 296, "hardshrink": 297, "hardsilu": 298, "hardtanh": 299, "logit": 300, "logsigmoid": 301, "prelu": 302, "relu6": 303, "scaled_tanh": 304, "selu": 305, "silu": 306, "softshrink": 307, "stanh": 308, "tanhshrink": 309, "threshold": 310, "thresholded_relu": 311, "blackman_window": 312, "eye_lik": 313, "hamming_window": 314, "hann_window": 315, "indic": 316, "kaiser_bessel_derived_window": 317, "kaiser_window": 318, "mel_weight_matrix": 319, "ndenumer": 320, "ndindex": 321, "polyv": 322, "random_cp": 323, "random_parafac2": 324, "random_tr": 325, "random_tt": 326, "random_tuck": 327, "tril_indic": 328, "trilu": 329, "unsorted_segment_mean": 330, "unsorted_segment_min": 331, "unsorted_segment_sum": 332, "vorbis_window": 333, "allclos": 334, "amax": 335, "amin": 336, "binar": 337, "conj": 338, "copysign": 339, "count_nonzero": 340, "diff": 341, "digamma": 342, "erfc": 343, "erfinv": 344, "fix": [345, 818, 834], "float_pow": 346, "fmax": 347, "frexp": 348, "hypot": 350, "isclos": 351, "ldexp": 352, "lerp": 353, "lgamma": 354, "modf": 355, "nansum": 356, "nextaft": 357, "signbit": 358, "sinc": 359, "sparsify_tensor": 360, "xlogi": 361, "zeta": 362, "reduc": 363, "bind_custom_gradient_funct": 364, "jvp": 365, "vjp": 366, "constant": [368, 627], "meta": [379, 640], "spars": 386, "adaptive_avg_pool1d": 389, "adaptive_avg_pool2d": 390, "adaptive_max_pool2d": 391, "adaptive_max_pool3d": 392, "area_interpol": 393, "avg_pool1d": 394, "avg_pool2d": 395, "avg_pool3d": 396, "dct": 397, "dft": 398, "dropout1d": 399, "dropout2d": 400, "dropout3d": 401, "embed": 402, "fft": 403, "fft2": 404, "generate_einsum_equ": 405, "get_interpolate_kernel": 406, "idct": 407, "ifft": 408, "ifftn": 409, "interp": 410, "interpol": 411, "max_pool1d": 412, "max_pool2d": 413, "max_pool3d": 414, "max_unpool1d": 415, "nearest_interpol": 416, "pool": 417, "reduce_window": 418, "rfft": 419, "rfftn": 420, "rnn": 421, "sliding_window": 422, "stft": 423, "adjoint": 424, "batched_out": 425, "cond": 426, "diagflat": 427, "dot": 428, "eig": [429, 672], "eigh_tridiagon": 430, "eigval": 431, "general_inner_product": 432, "higher_order_mo": 433, "initialize_tuck": 434, "khatri_rao": 435, "kron": 436, "kroneck": 437, "lu_factor": 438, "lu_solv": 439, "make_svd_non_neg": 440, "matrix_exp": 441, "mode_dot": 442, "multi_dot": 443, "multi_mode_dot": 444, "partial_tuck": 445, "solve_triangular": 446, "svd_flip": 447, "tensor_train": 448, "truncated_svd": 449, "tt_matrix_to_tensor": 450, "hinge_embedding_loss": 452, "huber_loss": 453, "kl_div": 454, "l1_loss": 455, "log_poisson_loss": 456, "poisson_nll_loss": 457, "smooth_l1_loss": 458, "soft_margin_loss": 459, "as_strid": 460, "associative_scan": 461, "atleast_1d": 462, "atleast_2d": 463, "atleast_3d": 464, "broadcast_shap": 465, "check_scalar": 466, "choos": 467, "column_stack": 468, "concat_from_sequ": 469, "dsplit": 470, "dstack": 471, "expand": 472, "fill_diagon": 473, "flatten": 474, "fliplr": 475, "flipud": 476, "fold": 477, "heavisid": 478, "hsplit": 479, "hstack": 480, "i0": 481, "matric": 482, "moveaxi": 483, "pad": 484, "partial_fold": 485, "partial_tensor_to_vec": 486, "partial_unfold": 487, "partial_vec_to_tensor": 488, "put_along_axi": 489, "rot90": 490, "soft_threshold": 491, "take": 492, "take_along_axi": 493, "top_k": 494, "trim_zero": 495, "unflatten": 496, "unfold": 497, "unique_consecut": 498, "vsplit": 499, "vstack": 500, "batch_norm": 501, "group_norm": 502, "instance_norm": 503, "l1_normal": 504, "l2_normal": 505, "local_response_norm": 506, "lp_normal": 507, "bernoulli": 508, "beta": 509, "dirichlet": 510, "gamma": 511, "poisson": 512, "unravel_index": 513, "invert_permut": 514, "lexsort": 515, "is_ivy_sparse_arrai": 516, "is_native_sparse_arrai": 517, "native_sparse_arrai": 518, "native_sparse_array_to_indices_values_and_shap": 519, "bincount": 520, "corrcoef": 521, "cov": 522, "cummax": 523, "cummin": 524, "histogram": 525, "igamma": 526, "median": 527, "nanmean": 528, "nanmedian": 529, "nanmin": 530, "nanprod": 531, "quantil": 532, "optional_get_el": 533, "all_equ": 534, "arg_info": 535, "arg_nam": 536, "array_equ": 537, "assert_supports_inplac": 538, "cache_fn": 539, "clip_matrix_norm": 540, "clip_vector_norm": 541, "container_typ": 542, "current_backend_str": 543, "einops_rearrang": 545, "einops_reduc": 546, "einops_repeat": 547, "exist": [548, 814, 843], "fourier_encod": 549, "function_supported_devices_and_dtyp": 550, "function_unsupported_devices_and_dtyp": 551, "gather": 552, "gather_nd": 553, "get_all_arrays_in_memori": 554, "get_item": 555, "get_num_dim": 556, "get_referrers_recurs": 557, "has_nan": 558, "inplace_arrays_support": 559, "inplace_decr": 560, "inplace_incr": 561, "inplace_upd": 562, "inplace_variables_support": 563, "is_arrai": 564, "is_ivy_arrai": 565, "is_ivy_contain": 566, "is_ivy_nested_arrai": 567, "is_native_arrai": 568, "isin": 569, "isscalar": 570, "items": 571, "match_kwarg": 572, "multiprocess": [573, 780], "num_arrays_in_memori": 574, "print_all_arrays_in_memori": 575, "scatter_flat": 576, "scatter_nd": 577, "set_array_mod": 578, "set_exception_trace_mod": 579, "set_inplace_mod": 580, "set_item": 581, "set_min_bas": 582, "set_min_denomin": 583, "set_nestable_mod": 584, "set_precise_mod": 585, "set_queue_timeout": 586, "set_shape_array_mod": 587, "set_show_func_wrapper_trace_mod": 588, "set_tmp_dir": 589, "shape": [590, 645, 749, 750, 751, 752, 838, 855], "size": [591, 855], "stable_divid": 592, "stable_pow": 593, "stride": 594, "supports_inplace_upd": 595, "to_ivy_shap": 596, "to_list": 597, "to_native_shap": 598, "to_numpi": 599, "to_scalar": 600, "try_else_non": 601, "unset_array_mod": 602, "unset_exception_trace_mod": 603, "unset_inplace_mod": 604, "unset_min_bas": 605, "unset_min_denomin": 606, "unset_nestable_mod": 607, "unset_precise_mod": 608, "unset_queue_timeout": 609, "unset_shape_array_mod": 610, "unset_show_func_wrapper_trace_mod": 611, "unset_tmp_dir": 612, "value_is_nan": 613, "vmap": 614, "adam_step": 615, "adam_upd": 616, "execute_with_gradi": [617, 839], "grad": 618, "gradient_descent_upd": 619, "jac": 620, "lamb_upd": 621, "lars_upd": 622, "optimizer_upd": 623, "stop_gradi": 624, "value_and_grad": 625, "control": [628, 855], "flow": [628, 855], "op": 628, "depend": [645, 749, 750, 751, 752], "output": [645, 749, 750, 751, 752], "conv": 649, "conv1d": 650, "conv1d_transpos": 651, "conv2d": 652, "conv2d_transpos": 653, "conv3d": 654, "conv3d_transpos": 655, "conv_general_dil": 656, "conv_general_transpos": 657, "depthwise_conv2d": 658, "dropout": 659, "lstm": 661, "lstm_updat": 662, "multi_head_attent": 663, "nm": 664, "roi_align": 665, "scaled_dot_product_attent": 666, "choleski": 667, "cross": 668, "det": 669, "diag": 670, "diagon": 671, "eigh": 673, "eigvalsh": 674, "inner": 675, "inv": 676, "matmul": 677, "matrix_norm": 678, "matrix_pow": 679, "matrix_rank": 680, "matrix_transpos": 681, "outer": 682, "pinv": 683, "qr": 684, "slogdet": 685, "solv": 686, "svd": 687, "svdval": 688, "tensordot": 689, "tensorsolv": 690, "vander": 692, "vecdot": 693, "vector_norm": 694, "vector_to_skew_symmetric_matrix": 695, "binary_cross_entropi": 696, "cross_entropi": 697, "sparse_cross_entropi": 698, "clip": 699, "concat": 700, "constant_pad": 701, "expand_dim": 702, "flip": 703, "permute_dim": 704, "repeat": 705, "reshap": 706, "roll": [707, 831], "squeez": 709, "stack": [710, 833], "swapax": 711, "tile": 712, "unstack": 713, "zero_pad": 714, "fomaml_step": 715, "maml_step": 716, "reptile_step": 717, "all_nested_indic": 718, "copy_nest": 719, "duplicate_array_index_chain": 720, "index_nest": 721, "insert_into_nest_at_index": 722, "insert_into_nest_at_indic": 723, "map": [724, 828], "map_nest_at_index": 725, "map_nest_at_indic": 726, "multi_index_nest": 727, "nested_ani": 728, "nested_argwher": 729, "nested_map": 730, "nested_multi_map": 731, "prune_empti": 732, "prune_nest_at_index": 733, "prune_nest_at_indic": 734, "set_nest_at_index": 735, "set_nest_at_indic": 736, "layer_norm": 737, "multinomi": 738, "randint": 739, "random_norm": 740, "random_uniform": 741, "seed": 742, "shuffl": 743, "argmax": 744, "argmin": 745, "argwher": 746, "nonzero": 747, "where": [748, 818, 834], "unique_al": 749, "unique_count": 750, "unique_invers": 751, "unique_valu": 752, "argsort": 753, "msort": 754, "searchsort": 755, "cumprod": 757, "cumsum": 758, "einsum": [759, 805, 806], "max": 760, "mean": 761, "min": 762, "prod": 763, "std": 764, "sum": 765, "var": 766, "assert": [771, 798, 833], "avail": 772, "global": [774, 846], "hypothesi": [775, 819, 842, 844], "struct": 782, "flag": 783, "sequenti": 797, "ast": 800, "sub": 802, "binari": [803, 819], "parser": 805, "path": 806, "except": [807, 833, 838], "profil": 810, "verbos": 811, "statu": 812, "ai": 812, "start": [812, 856], "document": 812, "contribut": [812, 813, 818, 843], "commun": 812, "citat": 812, "doc": [814, 826], "docker": [814, 819, 820, 826, 856], "conveni": [814, 826, 837], "script": [814, 826], "hub": 814, "local": [814, 820, 835], "without": [814, 842], "contributor": [815, 821, 878], "reward": 815, "badg": 815, "tier": 815, "error": [816, 833, 834], "handl": [816, 824, 830, 833, 838, 855], "help": [817, 820, 834], "resourc": 817, "open": 818, "task": 818, "fail": [818, 834, 844], "frontend": [818, 825, 841, 842, 854], "place": 818, "checklist": 818, "format": [818, 835, 869, 876], "extend": [818, 844, 847], "an": [818, 839], "issu": [818, 820, 835, 856], "github": [818, 819], "templat": 818, "fork": [819, 820], "pre": [819, 835], "commit": [819, 820, 828, 835], "pycharm": [819, 820, 835], "virtual": 819, "miniconda": 819, "venv": 819, "interpret": 819, "window": 819, "maco": 819, "ubuntu": 819, "detail": 819, "free": 819, "wsl": 819, "codespac": 819, "The": [819, 820, 826, 839, 841, 851, 855, 860], "list": 820, "manag": 820, "who": 820, "ask": [820, 834], "With": 820, "command": 820, "pull": [820, 828], "request": [820, 828], "small": 820, "often": 820, "interact": 820, "most": 820, "out": [820, 836, 838, 840], "id": [820, 823], "program": 821, "core": [821, 878], "rise": [821, 878], "deep": 822, "dive": 822, "termin": 823, "regener": 823, "failur": 823, "skip": 823, "integr": [824, 828, 835, 843, 844], "version": [825, 845, 855], "support": [825, 829, 838, 841, 855], "builder": 826, "being": 826, "option": 826, "index": 826, "rst": 826, "partial_conf": 826, "py": 826, "prebuild": 826, "sh": 826, "extens": 826, "custom_autosummari": 826, "hide": 826, "discussion_link": 826, "skippable_funct": 826, "ivy_data": 826, "instanc": [827, 841, 842, 851], "method": [827, 841, 842, 851, 852], "special": [827, 829, 841], "nestabl": [827, 836, 837, 838], "continu": [828, 835], "push": 828, "pr": 828, "trigger": 828, "A": [828, 847], "down": 828, "view": [828, 838, 840], "store": 828, "retriev": 828, "repositori": 828, "nitti": 828, "gritti": 828, "storag": 828, "space": 828, "unifyai": 828, "determin": 828, "coverag": 828, "workflow": 828, "multipl": 828, "runner": 828, "race": 828, "condit": 828, "period": 828, "manual": 828, "dispatch": 828, "ci": 828, "dashboard": 828, "promot": [829, 841], "precis": 829, "non": [829, 847], "argument": [829, 830, 836, 838, 840, 841], "other": [829, 830], "unsupport": 829, "attribut": [829, 846], "case": [829, 852], "bug": 829, "cast": [829, 841], "superset": [829, 847], "docstr": [831, 832], "func_wrapp": 833, "prune": 833, "handle_except": 833, "consist": [833, 844], "prerequir": 834, "common": [834, 835], "lint": [835, 843], "keyword": 836, "integ": 836, "primari": 837, "composit": 837, "mix": [837, 838, 844], "partial": [837, 838, 844], "order": 838, "wrapper": [838, 876, 877], "miscellan": 838, "overview": [839, 843], "usag": [839, 843, 847, 865], "signatur": 839, "design": [839, 845, 848], "our": 839, "polici": [839, 841], "specif": [839, 874, 875, 876], "consider": 839, "inplac": 840, "updat": 840, "copi": 840, "short": 841, "unus": 841, "rule": 841, "duplic": [841, 847], "alia": 842, "formatt": 843, "functionorderingformatt": 843, "work": [843, 860, 866], "own": 844, "strategi": 844, "ad": 844, "explicit": 844, "do": [844, 860], "effect": 844, "bonu": 844, "self": 844, "test_array_funct": 844, "re": [844, 861], "navig": 845, "categor": 845, "submodul": 845, "unpin": 845, "properti": 846, "getter": 846, "setter": 846, "set_": 846, "unset_": 846, "behaviour": 847, "what": [847, 876], "effici": 847, "maxim": 847, "block": 849, "monkei": 851, "patch": 851, "represent": 852, "recurs": 852, "built": 852, "ins": 852, "access": 852, "compartment": 852, "role": 854, "faq": 855, "maintain": 855, "deploy": 855, "auto": 855, "differenti": 855, "replica": 855, "parallel": 855, "altern": 855, "pip": 856, "folder": 856, "kei": 856, "question": 856, "glossari": 857, "motiv": 858, "explos": 859, "skeptic": 860, "complimentari": 860, "competit": 860, "infinit": 861, "shelf": 861, "life": 861, "One": 862, "liner": 862, "trace_graph": 863, "cach": 863, "sharp": [863, 864, 865], "bit": [863, 864, 865], "relat": 866, "infrastructur": [868, 876], "llvm": 868, "mlir": 868, "oneapi": 868, "exchang": [869, 876], "onnx": 869, "nnef": 869, "coreml": 869, "matlab": 870, "scipi": 870, "scikit": 870, "theano": 870, "panda": 870, "julia": 870, "apach": [870, 873], "spark": 870, "mllib": 870, "caff": 870, "chainer": 870, "mxnet": 870, "cntk": 870, "flux": 870, "dex": 870, "languag": 870, "tf": 871, "jaxpr": 871, "jit": 871, "fx": 871, "compani": [872, 876], "quansight": 872, "modular": 872, "octoml": 872, "multi": [873, 876], "vendor": [873, 874, 875, 876], "tvm": 873, "xla": 873, "gcc": 873, "tensorrt": 874, "cuda": 874, "icc": 875, "icx": 875, "nvcc": 875, "doe": 876, "eagerpi": 877, "kera": 877, "thinc": 877, "tensorli": 877, "neuropod": 877, "leaderboard": 878}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"as_ivy_dtype": [[150, "as-ivy-dtype"]], "broadcast_to": [[154, "broadcast-to"]], "default_dtype": [[159, "default-dtype"]], "is_int_dtype": [[175, "is-int-dtype"]], "logspace": [[138, "logspace"]], "ones_like": [[143, "ones-like"]], "native_array": [[140, "native-array"]], "finfo": [[165, "finfo"]], "meshgrid": [[139, "meshgrid"]], "to_dlpack": [[144, "to-dlpack"]], "Note": [[144, null], [133, null], [629, null], [629, null]], "can_cast": [[155, "can-cast"]], "zeros": [[148, "zeros"]], "default_int_dtype": [[161, "default-int-dtype"]], "default_uint_dtype": [[162, "default-uint-dtype"]], "promote_types_of_inputs": [[179, "promote-types-of-inputs"]], "dtype": [[163, "dtype"]], "closest_valid_dtype": [[157, "closest-valid-dtype"]], "default_float_dtype": [[160, "default-float-dtype"]], "default_complex_dtype": [[158, "default-complex-dtype"]], "is_complex_dtype": [[172, "is-complex-dtype"]], "one_hot": [[141, "one-hot"]], "ones": [[142, "ones"]], "function_unsupported_dtypes": [[167, "function-unsupported-dtypes"]], "is_native_dtype": [[176, "is-native-dtype"]], "function_supported_dtypes": [[166, "function-supported-dtypes"]], "set_default_float_dtype": [[183, "set-default-float-dtype"]], "invalid_dtype": [[170, "invalid-dtype"]], "iinfo": [[168, "iinfo"]], "is_uint_dtype": [[177, "is-uint-dtype"]], "promote_types": [[178, "promote-types"]], "triu_indices": [[147, "triu-indices"]], "broadcast_arrays": [[153, "broadcast-arrays"]], "is_bool_dtype": [[171, "is-bool-dtype"]], "result_type": [[180, "result-type"]], "tril": [[145, "tril"]], "is_hashable_dtype": [[174, "is-hashable-dtype"]], "zeros_like": [[149, "zeros-like"]], "as_native_dtype": [[151, "as-native-dtype"]], "check_float": [[156, "check-float"]], "set_default_complex_dtype": [[181, "set-default-complex-dtype"]], "astype": [[152, "astype"]], "set_default_dtype": [[182, "set-default-dtype"]], "is_float_dtype": [[173, "is-float-dtype"]], "dtype_bits": [[164, "dtype-bits"]], "triu": [[146, "triu"]], "infer_default_dtype": [[169, "infer-default-dtype"]], "What does Ivy Add?": [[876, "what-does-ivy-add"]], "API Standards": [[876, "api-standards"], [867, "api-standards"]], "Wrapper Frameworks": [[876, "wrapper-frameworks"], [877, "wrapper-frameworks"]], "Frameworks": [[876, "frameworks"], [870, "frameworks"]], "Graph Tracers": [[876, "graph-tracers"], [871, "graph-tracers"]], "Exchange Formats": [[876, "exchange-formats"], [869, "exchange-formats"]], "Compiler Infrastructure": [[876, "compiler-infrastructure"], [868, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[876, "multi-vendor-compiler-frameworks"], [873, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[876, "vendor-specific-apis"], [874, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[876, "vendor-specific-compilers"], [875, "vendor-specific-compilers"]], "ML-Unifying Companies": [[876, "ml-unifying-companies"], [872, "ml-unifying-companies"]], "Contributor Leaderboard": [[878, "contributor-leaderboard"]], "Top Contributors": [[878, "top-contributors"]], "Rising Contributors": [[878, "rising-contributors"]], "Core Contributors": [[878, "core-contributors"]], "Contributors": [[878, "contributors"]], "TensorRT tensorrt": [[874, "tensorrt-tensorrt"]], "CUDA cuda": [[874, "cuda-cuda"]], "ICC": [[875, "id1"]], "ICX": [[875, "icx"]], "NVCC": [[875, "nvcc"]], "EagerPy eagerpy": [[877, "eagerpy-eagerpy"]], "Keras keras": [[877, "keras-keras"]], "Thinc thinc": [[877, "thinc-thinc"]], "TensorLy tensorly": [[877, "tensorly-tensorly"]], "NeuroPod": [[877, "id1"]], "Array API Standard": [[867, "id1"]], "Table:": [[867, "table"]], "Glossary": [[857, "glossary"]], "Ivy Frontends": [[841, "ivy-frontends"]], "Introduction": [[841, "introduction"], [842, "introduction"], [46, "Introduction"]], "The Frontend Basics": [[841, "the-frontend-basics"]], "Writing Frontend Functions": [[841, "writing-frontend-functions"]], "Short Frontend Implementations": [[841, "short-frontend-implementations"]], "Unused Arguments": [[841, "unused-arguments"]], "Supported Data Types and Devices": [[841, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[841, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[841, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[841, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[841, "frontends-duplicate-policy"]], "Data Types": [[829, "data-types"]], "Data Type Module": [[829, "data-type-module"]], "Data Type Promotion": [[829, "data-type-promotion"]], "Precise Mode": [[829, "precise-mode"]], "Precise Promotion Table": [[829, "precise-promotion-table"]], "Non-Precise Promotion Table": [[829, "non-precise-promotion-table"]], "Arguments in other Functions": [[829, "arguments-in-other-functions"], [830, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[829, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[829, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[829, "special-case"]], "Backend Data Type Bugs": [[829, "backend-data-type-bugs"]], "Data Type Casting Modes": [[829, "data-type-casting-modes"]], "Superset Data Type Support": [[829, "superset-data-type-support"]], "Function Arguments": [[836, "function-arguments"]], "Examples": [[836, "examples"], [865, "examples"], [863, "examples"], [864, "examples"]], "Positional and Keyword Arguments": [[836, "positional-and-keyword-arguments"]], "Input Arrays": [[836, "input-arrays"]], "out Argument": [[836, "out-argument"]], "dtype and device arguments": [[836, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[836, "numbers-in-operator-functions"]], "Integer Sequences": [[836, "integer-sequences"]], "Nestable Functions": [[836, "nestable-functions"], [837, "nestable-functions"], [827, "nestable-functions"]], "FAQ": [[855, "faq"]], "Maintaining Backend Versions": [[855, "maintaining-backend-versions"]], "Dynamic Sizes": [[855, "dynamic-sizes"]], "Type and Shape Checking": [[855, "type-and-shape-checking"]], "GPU handling": [[855, "gpu-handling"]], "Model Deployment": [[855, "model-deployment"]], "Dynamic Control Flow": [[855, "dynamic-control-flow"]], "Auto-Differentiation": [[855, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[855, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[855, "support-for-functions"]], "Alternative Data Structures": [[855, "alternative-data-structures"]], "Custom Operations": [[855, "custom-operations"]], "The Pipeline": [[855, "the-pipeline"]], "State": [[855, "state"]], "Inplace Updates": [[840, "inplace-updates"]], "out argument": [[840, "out-argument"]], "copy argument": [[840, "copy-argument"]], "Views": [[840, "views"]], "Devices": [[830, "devices"]], "Device Module": [[830, "device-module"]], "Device handling": [[830, "device-handling"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[843, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[843, "overview"], [839, "overview"]], "Existing Formatters": [[843, "existing-formatters"]], "FunctionOrderingFormatter": [[843, "functionorderingformatter"]], "How the Formatter Works:": [[843, "how-the-formatter-works"]], "Integration and Usage": [[843, "integration-and-usage"]], "Contribution": [[843, "contribution"]], "Round Up": [[843, "round-up"], [36, "Round-Up"], [18, "Round-Up"], [25, "Round-Up"], [26, "Round-Up"], [35, "Round-Up"], [23, "Round-Up"], [27, "Round-Up"], [28, "Round-Up"], [38, "Round-Up"], [34, "Round-Up"], [16, "Round-Up"], [24, "Round-Up"], [33, "Round-Up"], [37, "Round-Up"], [45, "Round-Up"], [22, "Round-Up"], [32, "Round-Up"]], "ONNX onnx": [[869, "onnx-onnx"]], "NNEF nnef": [[869, "nnef-nnef"]], "CoreML coreml": [[869, "coreml-coreml"]], "Why Unify?": [[861, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[861, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[861, "infinite-shelf-life"]], "tf.Graph": [[871, "tf-graph"]], "Jaxpr": [[871, "jaxpr"]], "torch.jit": [[871, "torch-jit"]], "torch.fx": [[871, "torch-fx"]], "Ivy Array": [[851, "ivy-array"], [824, "ivy-array"]], "The Array Class": [[851, "the-array-class"]], "Unifying Operators": [[851, "unifying-operators"]], "API Monkey Patching": [[851, "api-monkey-patching"]], "Instance Methods": [[851, "instance-methods"]], "Ivy Tests": [[844, "ivy-tests"], [828, "ivy-tests"]], "Testing Pipeline": [[844, "testing-pipeline"]], "Hypothesis": [[844, "id2"]], "Data Generation": [[844, "id3"]], "Writing your own strategy": [[844, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[844, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[844, "ivy-test-decorators"]], "Writing Ivy Tests": [[844, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[844, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[844, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[844, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[844, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[844, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[844, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[844, "self-consistent-and-explicit-testing"]], "test_array_function": [[844, "id5"]], "Running Ivy Tests": [[844, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[844, "re-running-failed-ivy-tests"]], "ivy.unify()": [[865, "ivy-unify"]], "Unify API": [[865, "unify-api"]], "Usage": [[865, "usage"]], "Sharp bits": [[865, "sharp-bits"], [863, "sharp-bits"], [864, "sharp-bits"]], "Ivy Stateful API": [[853, "ivy-stateful-api"], [31, "Ivy-Stateful-API"], [22, "Ivy-Stateful-API"]], "Modules": [[853, "modules"]], "Initializers": [[853, "initializers"], [791, "module-ivy.stateful.initializers"]], "Optimizers": [[853, "optimizers"], [796, "module-ivy.stateful.optimizers"]], "Formatting": [[835, "formatting"]], "Lint Checks": [[835, "lint-checks"], [835, "id2"]], "Setup Formatting Locally": [[835, "setup-formatting-locally"]], "Pre-commit": [[835, "pre-commit"]], "VS Code": [[835, "vs-code"]], "PyCharm": [[835, "pycharm"], [819, "pycharm"]], "Common Issues with Pre-Commit": [[835, "common-issues-with-pre-commit"]], "Continuous Integration": [[835, "continuous-integration"], [828, "continuous-integration"]], "Lint Formatting": [[835, "lint-formatting"]], "Standardization": [[860, "standardization"]], "Skepticism": [[860, "skepticism"]], "Complimentary vs Competitive": [[860, "complimentary-vs-competitive"]], "Do Standards Work?": [[860, "do-standards-work"]], "The Array API Standard": [[860, "the-array-api-standard"]], "Docstrings": [[832, "docstrings"]], "ivy.trace_graph()": [[863, "ivy-trace-graph"]], "Tracer API": [[863, "tracer-api"]], "Using the tracer": [[863, "using-the-tracer"]], "Eager vs lazy Compilation": [[863, "eager-vs-lazy-compilation"]], "Array caching": [[863, "array-caching"]], "Generators": [[863, "generators"]], "Stateful": [[863, "stateful"]], "Commit (Push/PR) Triggered Testing": [[828, "commit-push-pr-triggered-testing"]], "Implementation": [[828, "implementation"]], "A Top-Down View": [[828, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[828, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[828, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[828, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[828, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[828, "determine-test-coverage-workflow"]], "Multiple Runners": [[828, "multiple-runners"]], "Race Condition": [[828, "race-condition"]], "Array API Tests": [[828, "array-api-tests"], [823, "array-api-tests"]], "Periodic Testing": [[828, "periodic-testing"]], "Manually Dispatched Workflows": [[828, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[828, "ci-pipeline"]], "Push": [[828, "push"]], "Pull Request": [[828, "pull-request"]], "Dashboard": [[828, "dashboard"]], "Ivy as a Framework": [[850, "ivy-as-a-framework"], [31, "Ivy-as-a-Framework"]], "Gradients": [[839, "gradients"], [635, "gradients"], [374, "gradients"], [59, "module-ivy.data_classes.array.gradients"], [82, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[839, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[839, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[839, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[839, "custom-gradient-functions"]], "Design of the Gradient API": [[839, "design-of-the-gradient-api"]], "Our policy on gradients": [[839, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[839, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[839, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[839, "framework-specific-considerations"]], "Navigating the Code": [[845, "navigating-the-code"]], "Categorization": [[845, "categorization"]], "Submodule Design": [[845, "submodule-design"]], "Ivy API": [[845, "ivy-api"]], "Backend API": [[845, "backend-api"]], "Submodule Helper Functions": [[845, "submodule-helper-functions"]], "Version Unpinning": [[845, "version-unpinning"]], "Get Started": [[856, "get-started"]], "Installing using pip": [[856, "installing-using-pip"]], "Docker": [[856, "docker"]], "Installing from source": [[856, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[856, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[856, "ivy-folder"]], "Setting Up the API key": [[856, "setting-up-the-api-key"]], "Issues and Questions": [[856, "issues-and-questions"]], "Function Types": [[837, "function-types"]], "Primary Functions": [[837, "primary-functions"]], "Compositional Functions": [[837, "compositional-functions"]], "Mixed Functions": [[837, "mixed-functions"]], "Partial Mixed Functions": [[837, "partial-mixed-functions"]], "Standalone Functions": [[837, "standalone-functions"]], "Convenience Functions": [[837, "convenience-functions"]], "Ivy Container": [[852, "ivy-container"]], "Construction": [[852, "construction"]], "Representation": [[852, "representation"]], "Recursive Methods": [[852, "recursive-methods"]], "Built-ins": [[852, "built-ins"]], "Access": [[852, "access"]], "Saving and Loading": [[852, "saving-and-loading"]], "Comparisons": [[852, "comparisons"]], "Customized Representations": [[852, "customized-representations"]], "Use Cases": [[852, "use-cases"]], "Compartmentalization": [[852, "compartmentalization"]], "Configuration": [[852, "configuration"]], "Data loading": [[852, "data-loading"]], "Network weights": [[852, "network-weights"]], "Motivation": [[858, "motivation"]], "ivy.transpile()": [[864, "ivy-transpile"]], "Transpiler API": [[864, "transpiler-api"]], "Using the transpiler": [[864, "using-the-transpiler"]], "Transpiling functions": [[864, "transpiling-functions"]], "Transpiling Libraries": [[864, "transpiling-libraries"]], "Transpiling Modules": [[864, "transpiling-modules"]], "Ivy Frontend Tests": [[842, "ivy-frontend-tests"]], "Frontend Test Examples": [[842, "frontend-test-examples"]], "ivy.tan()": [[842, "ivy-tan"]], "ivy.full()": [[842, "ivy-full"]], "Testing Without Using Tests Values": [[842, "testing-without-using-tests-values"]], "Alias functions": [[842, "alias-functions"]], "Frontend Instance Method Tests": [[842, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[842, "frontend-instance-method-test-examples"]], "ivy.add()": [[842, "ivy-add"]], "Hypothesis Helpers": [[842, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[842, "frontend-framework-testing-configuration"]], "Design": [[848, "design"]], "Related Work": [[866, "related-work"]], "Docstring Examples": [[831, "docstring-examples"]], "ivy.tan": [[831, "ivy-tan"]], "ivy.roll": [[831, "ivy-roll"]], "ivy.add": [[831, "ivy-add"]], "LLVM": [[868, "id1"]], "MLIR": [[868, "id2"]], "OneAPI": [[868, "id3"]], "ML Explosion": [[859, "ml-explosion"]], "Building Blocks": [[849, "building-blocks"]], "Backend Functional APIs \u2705": [[849, "backend-functional-apis"]], "Ivy Functional API \u2705": [[849, "ivy-functional-api"]], "Backend Handler \u2705": [[849, "backend-handler"]], "Tracer \ud83d\udea7": [[849, "tracer"]], "Quansight": [[872, "id1"]], "Modular": [[872, "id2"]], "OctoML": [[872, "id3"]], "Fix Failing Tests:": [[834, "fix-failing-tests"]], "Prerequirement:": [[834, "prerequirement"]], "Setting Up": [[834, "setting-up"], [819, "setting-up"]], "How to run tests": [[834, "how-to-run-tests"]], "Common Errors": [[834, "common-errors"]], "Where to ask for Help": [[834, "where-to-ask-for-help"]], "Apache TVM": [[873, "apache-tvm"]], "XLA": [[873, "xla"]], "GCC": [[873, "gcc"]], "Function Wrapping": [[838, "function-wrapping"]], "Decorator order": [[838, "decorator-order"]], "Conversion Wrappers": [[838, "conversion-wrappers"]], "Inference Wrappers": [[838, "inference-wrappers"]], "Out Argument Support": [[838, "out-argument-support"]], "Nestable Support": [[838, "nestable-support"]], "Partial Mixed Function Support": [[838, "partial-mixed-function-support"]], "Shape Conversion": [[838, "shape-conversion"]], "View Handling": [[838, "view-handling"]], "Exception Handling": [[838, "exception-handling"], [833, "exception-handling"]], "Miscellaneous Wrappers": [[838, "miscellaneous-wrappers"]], "Ivy Exception Class": [[833, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[833, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[833, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[833, "handle-exceptions-decorator"]], "Consistency in Errors": [[833, "consistency-in-errors"]], "Assertion Function": [[833, "assertion-function"]], "Operating Modes": [[846, "operating-modes"]], "Global Parameter Properties": [[846, "global-parameter-properties"]], "Getter: ivy. attribute": [[846, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[846, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "MATLAB matlab": [[870, "matlab-matlab"]], "SciPy scipy": [[870, "scipy-scipy"]], "Torch torch": [[870, "torch-torch"]], "NumPy numpy": [[870, "numpy-numpy"]], "SciKit Learn scikit-learn": [[870, "scikit-learn-scikit-learn"]], "Theano theano": [[870, "theano-theano"]], "Pandas pandas": [[870, "pandas-pandas"]], "Julia julia": [[870, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[870, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[870, "caffe-caffe"]], "Chainer chainer": [[870, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[870, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[870, "mxnet-mxnet"]], "CNTK cntk": [[870, "cntk-cntk"]], "PyTorch pytorch": [[870, "pytorch-pytorch"]], "Flux flux": [[870, "flux-flux"]], "JAX jax": [[870, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[870, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[870, "dex-language-dex-language"]], "Superset Behaviour": [[847, "superset-behaviour"]], "Extending the Standard": [[847, "extending-the-standard"]], "What is the Superset?": [[847, "what-is-the-superset"]], "A Non-Duplicate Superset": [[847, "a-non-duplicate-superset"]], "What is not the Superset?": [[847, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[847, "balancing-generalization-with-efficiency"]], "More Examples": [[847, "more-examples"]], "Maximizing Usage of Native Functionality": [[847, "maximizing-usage-of-native-functionality"]], "One liners": [[862, "one-liners"]], "Ivy as a Transpiler": [[854, "ivy-as-a-transpiler"], [31, "Ivy-as-a-Transpiler"], [32, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[854, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[854, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[854, "converting-network-models"]], "arange": [[126, "arange"]], "log_softmax": [[113, "log-softmax"]], "Array": [[102, "array"]], "Elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"], [632, "elementwise"], [372, "elementwise"], [56, "module-ivy.data_classes.array.elementwise"], [79, "module-ivy.data_classes.container.elementwise"]], "while_loop": [[125, "while-loop"]], "empty_like": [[131, "empty-like"]], "from_dlpack": [[133, "from-dlpack"]], "asarray": [[128, "asarray"]], "linspace": [[137, "linspace"]], "Factorized tensor": [[104, "factorized-tensor"]], "leaky_relu": [[112, "leaky-relu"]], "hardswish": [[111, "hardswish"]], "array": [[127, "array"]], "Tt tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Data classes": [[108, "data-classes"]], "Tucker tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Base": [[106, "module-ivy.data_classes.nested_array.base"], [96, "module-ivy.data_classes.factorized_tensor.base"], [74, "module-ivy.data_classes.container.base"]], "empty": [[130, "empty"]], "Wrapping": [[95, "module-ivy.data_classes.container.wrapping"], [72, "module-ivy.data_classes.array.wrapping"]], "Functions": [[109, "functions"]], "Container": [[103, "container"]], "softsign": [[119, "softsign"]], "for_loop": [[122, "for-loop"]], "Cp tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "try_except": [[124, "try-except"]], "Tr tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Utility": [[94, "module-ivy.data_classes.container.utility"], [648, "utility"], [388, "utility"], [71, "module-ivy.data_classes.array.utility"]], "Nested array": [[105, "nested-array"]], "cmp_isnot": [[121, "cmp-isnot"]], "relu": [[115, "relu"]], "if_else": [[123, "if-else"]], "Parafac2 tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "eye": [[132, "eye"]], "softmax": [[117, "softmax"]], "Statistical": [[93, "module-ivy.data_classes.container.statistical"], [647, "statistical"], [387, "statistical"], [70, "module-ivy.data_classes.array.statistical"]], "gelu": [[110, "gelu"]], "full_like": [[136, "full-like"]], "softplus": [[118, "softplus"]], "copy_array": [[129, "copy-array"]], "sigmoid": [[116, "sigmoid"]], "full": [[135, "full"]], "Sorting": [[92, "module-ivy.data_classes.container.sorting"], [646, "sorting"], [385, "sorting"], [69, "module-ivy.data_classes.array.sorting"]], "mish": [[114, "mish"]], "cmp_is": [[120, "cmp-is"]], "frombuffer": [[134, "frombuffer"]], "Function testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "set_nest_at_indices": [[736, "set-nest-at-indices"]], "argwhere": [[746, "argwhere"]], "cumprod": [[757, "cumprod"]], "argmax": [[744, "argmax"]], "shuffle": [[743, "shuffle"]], "nonzero": [[747, "nonzero"]], "randint": [[739, "randint"]], "msort": [[754, "msort"]], "Number helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "max": [[760, "max"]], "layer_norm": [[737, "layer-norm"]], "mean": [[761, "mean"]], "einsum": [[759, "einsum"]], "Dtype helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "save": [[770, "save"]], "any": [[768, "any"]], "var": [[766, "var"]], "where": [[748, "where"]], "sum": [[765, "sum"]], "load": [[769, "load"]], "Assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"], [798, "module-ivy.utils.assertions"]], "prod": [[763, "prod"]], "random_uniform": [[741, "random-uniform"]], "std": [[764, "std"]], "cumsum": [[758, "cumsum"]], "Hypothesis helpers": [[775, "hypothesis-helpers"]], "random_normal": [[740, "random-normal"]], "min": [[762, "min"]], "unique_inverse": [[751, "unique-inverse"]], "Data-dependent output shape": [[751, null], [749, null], [752, null], [750, null], [645, null], [645, null], [645, null], [645, null]], "searchsorted": [[755, "searchsorted"]], "sort": [[756, "sort"]], "unique_all": [[749, "unique-all"]], "General helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Available frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "seed": [[742, "seed"]], "Array helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "all": [[767, "all"]], "unique_values": [[752, "unique-values"]], "Pipeline helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "argmin": [[745, "argmin"]], "unique_counts": [[750, "unique-counts"]], "multinomial": [[738, "multinomial"]], "argsort": [[753, "argsort"]], "Multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Containers": [[827, "containers"]], "Container Instance Methods": [[827, "container-instance-methods"]], "API Instance Methods": [[827, "api-instance-methods"]], "API Special Methods": [[827, "api-special-methods"]], "Sequential": [[797, "module-ivy.stateful.sequential"]], "Logging": [[809, "module-ivy.utils.logging"]], "Open Tasks": [[818, "open-tasks"]], "Fixing Failing Tests": [[818, "fixing-failing-tests"]], "How to Contribute": [[818, "how-to-contribute"]], "Frontend APIs": [[818, "frontend-apis"]], "Where to place a frontend function": [[818, "where-to-place-a-frontend-function"]], "Frontend checklist": [[818, "frontend-checklist"]], "Function Formatting": [[818, "function-formatting"]], "Formatting checklist": [[818, "formatting-checklist"]], "Ivy Experimental API": [[818, "ivy-experimental-api"]], "Extending the Ivy API": [[818, "extending-the-ivy-api"]], "Where to place a backend function": [[818, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[818, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Testing helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Backend": [[799, "backend"]], "Building the Docs": [[814, "building-the-docs"]], "Building the Docs using Docker": [[814, "building-the-docs-using-docker"]], "Using convenience script": [[814, "using-convenience-script"]], "Using existing image on Docker Hub": [[814, "using-existing-image-on-docker-hub"]], "Building the image locally": [[814, "building-the-image-locally"]], "Building the Docs without Docker": [[814, "building-the-docs-without-docker"]], "Helpful Resources": [[817, "helpful-resources"]], "Einsum path helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "Forking and cloning the repo": [[819, "forking-and-cloning-the-repo"]], "Pre-Commit": [[819, "pre-commit"]], "Virtual environments - No Docker": [[819, "virtual-environments-no-docker"]], "Using miniconda": [[819, "using-miniconda"]], "Using venv": [[819, "using-venv"]], "Docker Interpreter with PyCharm": [[819, "docker-interpreter-with-pycharm"]], "Windows": [[819, "windows"], [819, "id6"]], "MacOS": [[819, "macos"]], "Ubuntu": [[819, "ubuntu"], [819, "id8"]], "Setting Up Testing in PyCharm": [[819, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[819, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[819, "setting-up-for-free"]], "WSL": [[819, "wsl"]], "GitHub Codespaces": [[819, "github-codespaces"]], "The Binaries": [[819, "the-binaries"]], "Norms": [[795, "module-ivy.stateful.norms"], [642, "norms"], [381, "norms"], [65, "module-ivy.data_classes.array.norms"], [88, "module-ivy.data_classes.container.norms"]], "Exceptions": [[807, "module-ivy.utils.exceptions"]], "Ast helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "The Basics": [[820, "the-basics"]], "Getting Help": [[820, "getting-help"]], "ToDo List Issues": [[820, "todo-list-issues"]], "Managing Your Fork": [[820, "managing-your-fork"]], "Who To Ask": [[820, "who-to-ask"]], "With Command Line:": [[820, "with-command-line"]], "With Browser:": [[820, "with-browser"]], "Pull Requests": [[820, "pull-requests"]], "Small Commits Often": [[820, "small-commits-often"]], "Interactive Ivy Docker Container": [[820, "interactive-ivy-docker-container"]], "Running Tests Locally": [[820, "running-tests-locally"]], "With Docker": [[820, "with-docker"]], "Getting the most out of IDE": [[820, "getting-the-most-out-of-ide"]], "with PyCharm": [[820, "with-pycharm"]], "Deep Dive": [[822, "deep-dive"]], "Backend Setting": [[825, "backend-setting"]], "Dynamic Backend Setting": [[825, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[825, "backend-and-frontend-version-support"]], "Layers": [[792, "module-ivy.stateful.layers"], [636, "layers"], [375, "layers"], [61, "module-ivy.data_classes.array.layers"], [84, "module-ivy.data_classes.container.layers"]], "Utils": [[786, "utils"]], "Running the Tests": [[823, "running-the-tests"]], "Using Terminal": [[823, "using-terminal"]], "Using the IDE": [[823, "using-the-ide"]], "Regenerating Test Failures": [[823, "regenerating-test-failures"]], "Test Skipping": [[823, "test-skipping"]], "Helpers": [[790, "module-ivy.stateful.helpers"]], "Contributor Program": [[821, "contributor-program"]], "Contributor": [[821, "contributor"]], "Core Contributor": [[821, "core-contributor"]], "Rising Contributor": [[821, "rising-contributor"]], "Top Contributor": [[821, "top-contributor"]], "Dynamic import": [[804, "module-ivy.utils.dynamic_import"]], "Einsum parser": [[805, "module-ivy.utils.einsum_parser"]], "Verbosity": [[811, "module-ivy.utils.verbosity"]], "Framework classes": [[785, "framework-classes"]], "Status": [[812, "status"]], "Unified AI": [[812, "unified-ai"]], "Getting started": [[812, "getting-started"]], "Installing ivy": [[812, "installing-ivy"]], "Using Ivy": [[812, "using-ivy"]], "Documentation": [[812, "documentation"]], "Contributing": [[812, "contributing"], [813, "contributing"]], "Community": [[812, "community"]], "Citation": [[812, "citation"]], "Binaries": [[803, "module-ivy.utils.binaries"]], "Arrays": [[824, "arrays"]], "Native Array": [[824, "native-array"]], "Array Handling": [[824, "array-handling"]], "Integrating custom classes with Ivy": [[824, "integrating-custom-classes-with-ivy"]], "Sub backend handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "Losses": [[793, "module-ivy.stateful.losses"], [638, "losses"], [377, "losses"], [63, "module-ivy.data_classes.array.losses"], [86, "module-ivy.data_classes.container.losses"]], "Structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "Activations": [[788, "module-ivy.stateful.activations"], [626, "activations"], [367, "activations"], [51, "module-ivy.data_classes.array.activations"], [73, "module-ivy.data_classes.container.activations"]], "Parameter": [[788, "parameter"], [788, "id1"], [588, "parameter"], [584, "parameter"], [579, "parameter"], [578, "parameter"], [587, "parameter"], [585, "parameter"], [631, "parameter"], [634, "parameter"], [634, "id1"], [634, "id2"], [634, "id3"], [634, "id4"], [634, "id5"], [210, "parameter"]], "Contributor Rewards": [[815, "contributor-rewards"]], "Badges": [[815, "badges"]], "Badge Tiers": [[815, "badge-tiers"]], "Test parameter flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Testing": [[787, "testing"], [45, "Testing"]], "Module": [[794, "module-ivy.stateful.module"]], "Handler": [[801, "module-ivy.utils.backend.handler"]], "Profiler": [[810, "module-ivy.utils.profiler"]], "Inspection": [[808, "module-ivy.utils.inspection"]], "Building the Docs Pipeline": [[826, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[826, "how-the-doc-builder-is-being-run"]], "The convenience script": [[826, "the-convenience-script"]], "Options": [[826, "options"]], "The Docker image": [[826, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[826, "how-ivy-s-docs-is-structured"]], "index.rst": [[826, "index-rst"]], "partial_conf.py": [[826, "partial-conf-py"]], "prebuild.sh": [[826, "prebuild-sh"]], "Custom Extensions": [[826, "custom-extensions"]], "custom_autosummary": [[826, "custom-autosummary"]], ":hide-table:": [[826, "hide-table"]], "discussion_linker": [[826, "discussion-linker"]], "skippable_function": [[826, "skippable-function"]], "ivy_data": [[826, "ivy-data"]], "Converters": [[789, "module-ivy.stateful.converters"]], "Error Handling": [[816, "error-handling"]], "stack": [[710, "stack"]], "clip": [[699, "clip"]], "maml_step": [[716, "maml-step"]], "copy_nest": [[719, "copy-nest"]], "prune_nest_at_indices": [[734, "prune-nest-at-indices"]], "vector_norm": [[694, "vector-norm"]], "all_nested_indices": [[718, "all-nested-indices"]], "repeat": [[705, "repeat"]], "reshape": [[706, "reshape"]], "permute_dims": [[704, "permute-dims"]], "nested_any": [[728, "nested-any"]], "map": [[724, "map"]], "prune_empty": [[732, "prune-empty"]], "trace": [[691, "trace"]], "tile": [[712, "tile"]], "vector_to_skew_symmetric_matrix": [[695, "vector-to-skew-symmetric-matrix"]], "fomaml_step": [[715, "fomaml-step"]], "nested_argwhere": [[729, "nested-argwhere"]], "swapaxes": [[711, "swapaxes"]], "sparse_cross_entropy": [[698, "sparse-cross-entropy"]], "expand_dims": [[702, "expand-dims"]], "unstack": [[713, "unstack"]], "tensorsolve": [[690, "tensorsolve"]], "binary_cross_entropy": [[696, "binary-cross-entropy"]], "constant_pad": [[701, "constant-pad"]], "duplicate_array_index_chains": [[720, "duplicate-array-index-chains"]], "split": [[708, "split"]], "cross_entropy": [[697, "cross-entropy"]], "zero_pad": [[714, "zero-pad"]], "reptile_step": [[717, "reptile-step"]], "insert_into_nest_at_index": [[722, "insert-into-nest-at-index"]], "nested_map": [[730, "nested-map"]], "set_nest_at_index": [[735, "set-nest-at-index"]], "vander": [[692, "vander"]], "insert_into_nest_at_indices": [[723, "insert-into-nest-at-indices"]], "nested_multi_map": [[731, "nested-multi-map"]], "map_nest_at_indices": [[726, "map-nest-at-indices"]], "index_nest": [[721, "index-nest"]], "vecdot": [[693, "vecdot"]], "squeeze": [[709, "squeeze"]], "flip": [[703, "flip"]], "roll": [[707, "roll"]], "prune_nest_at_index": [[733, "prune-nest-at-index"]], "map_nest_at_index": [[725, "map-nest-at-index"]], "concat": [[700, "concat"]], "multi_index_nest": [[727, "multi-index-nest"]], "conv1d": [[650, "conv1d"]], "inv": [[676, "inv"]], "eig": [[672, "eig"], [429, "eig"]], "matmul": [[677, "matmul"]], "dropout": [[659, "dropout"]], "cross": [[668, "cross"]], "diagonal": [[671, "diagonal"]], "conv": [[649, "conv"]], "Searching": [[644, "searching"], [383, "searching"], [90, "module-ivy.data_classes.container.searching"], [67, "module-ivy.data_classes.array.searching"]], "matrix_power": [[679, "matrix-power"]], "tensordot": [[689, "tensordot"]], "conv2d": [[652, "conv2d"]], "matrix_transpose": [[681, "matrix-transpose"]], "roi_align": [[665, "roi-align"]], "diag": [[670, "diag"]], "cholesky": [[667, "cholesky"]], "solve": [[686, "solve"]], "conv_general_dilated": [[656, "conv-general-dilated"]], "nms": [[664, "nms"]], "lstm_update": [[662, "lstm-update"]], "lstm": [[661, "lstm"]], "conv3d_transpose": [[655, "conv3d-transpose"]], "slogdet": [[685, "slogdet"]], "pinv": [[683, "pinv"]], "svdvals": [[688, "svdvals"]], "conv_general_transpose": [[657, "conv-general-transpose"]], "multi_head_attention": [[663, "multi-head-attention"]], "linear": [[660, "linear"]], "conv2d_transpose": [[653, "conv2d-transpose"]], "qr": [[684, "qr"]], "scaled_dot_product_attention": [[666, "scaled-dot-product-attention"]], "svd": [[687, "svd"]], "eigvalsh": [[674, "eigvalsh"]], "matrix_rank": [[680, "matrix-rank"]], "depthwise_conv2d": [[658, "depthwise-conv2d"]], "outer": [[682, "outer"]], "inner": [[675, "inner"]], "eigh": [[673, "eigh"]], "conv3d": [[654, "conv3d"]], "det": [[669, "det"]], "conv1d_transpose": [[651, "conv1d-transpose"]], "Set": [[645, "set"], [384, "module-ivy.functional.ivy.experimental.set"], [68, "module-ivy.data_classes.array.set"], [91, "module-ivy.data_classes.container.set"]], "matrix_norm": [[678, "matrix-norm"]], "gather": [[552, "gather"]], "to_ivy_shape": [[596, "to-ivy-shape"]], "strides": [[594, "strides"]], "set_show_func_wrapper_trace_mode": [[588, "set-show-func-wrapper-trace-mode"]], "set_nestable_mode": [[584, "set-nestable-mode"]], "set_exception_trace_mode": [[579, "set-exception-trace-mode"]], "stable_divide": [[592, "stable-divide"]], "inplace_variables_supported": [[563, "inplace-variables-supported"]], "supports_inplace_updates": [[595, "supports-inplace-updates"]], "set_array_mode": [[578, "set-array-mode"]], "to_list": [[597, "to-list"]], "get_referrers_recursive": [[557, "get-referrers-recursive"]], "set_shape_array_mode": [[587, "set-shape-array-mode"]], "scatter_flat": [[576, "scatter-flat"]], "gather_nd": [[553, "gather-nd"]], "get_item": [[555, "get-item"]], "isin": [[569, "isin"]], "inplace_arrays_supported": [[559, "inplace-arrays-supported"]], "inplace_increment": [[561, "inplace-increment"]], "inplace_update": [[562, "inplace-update"]], "scatter_nd": [[577, "scatter-nd"]], "print_all_arrays_in_memory": [[575, "print-all-arrays-in-memory"]], "is_array": [[564, "is-array"]], "set_min_base": [[582, "set-min-base"]], "set_precise_mode": [[585, "set-precise-mode"]], "size": [[591, "size"]], "get_num_dims": [[556, "get-num-dims"]], "is_native_array": [[568, "is-native-array"]], "inplace_decrement": [[560, "inplace-decrement"]], "set_inplace_mode": [[580, "set-inplace-mode"]], "set_queue_timeout": [[586, "set-queue-timeout"]], "is_ivy_container": [[566, "is-ivy-container"]], "is_ivy_array": [[565, "is-ivy-array"]], "itemsize": [[571, "itemsize"]], "multiprocessing": [[573, "multiprocessing"]], "match_kwargs": [[572, "match-kwargs"]], "set_item": [[581, "set-item"]], "shape": [[590, "shape"]], "has_nans": [[558, "has-nans"]], "set_min_denominator": [[583, "set-min-denominator"]], "is_ivy_nested_array": [[567, "is-ivy-nested-array"]], "set_tmp_dir": [[589, "set-tmp-dir"]], "stable_pow": [[593, "stable-pow"]], "isscalar": [[570, "isscalar"]], "num_arrays_in_memory": [[574, "num-arrays-in-memory"]], "get_all_arrays_in_memory": [[554, "get-all-arrays-in-memory"]], "fourier_encode": [[549, "fourier-encode"]], "beta": [[509, "beta"]], "current_backend_str": [[543, "current-backend-str"]], "native_sparse_array_to_indices_values_and_shape": [[519, "native-sparse-array-to-indices-values-and-shape"]], "lexsort": [[515, "lexsort"]], "dirichlet": [[510, "dirichlet"]], "exists": [[548, "exists"]], "native_sparse_array": [[518, "native-sparse-array"]], "clip_vector_norm": [[541, "clip-vector-norm"]], "nanprod": [[531, "nanprod"]], "einops_reduce": [[546, "einops-reduce"]], "quantile": [[532, "quantile"]], "cummax": [[523, "cummax"]], "is_native_sparse_array": [[517, "is-native-sparse-array"]], "bernoulli": [[508, "bernoulli"]], "median": [[527, "median"]], "array_equal": [[537, "array-equal"]], "einops_rearrange": [[545, "einops-rearrange"]], "einops_repeat": [[547, "einops-repeat"]], "cov": [[522, "cov"]], "local_response_norm": [[506, "local-response-norm"]], "poisson": [[512, "poisson"]], "optional_get_element": [[533, "optional-get-element"]], "function_unsupported_devices_and_dtypes": [[551, "function-unsupported-devices-and-dtypes"]], "invert_permutation": [[514, "invert-permutation"]], "default": [[544, "default"]], "cummin": [[524, "cummin"]], "unravel_index": [[513, "unravel-index"]], "cache_fn": [[539, "cache-fn"]], "nanmean": [[528, "nanmean"]], "arg_names": [[536, "arg-names"]], "clip_matrix_norm": [[540, "clip-matrix-norm"]], "igamma": [[526, "igamma"]], "function_supported_devices_and_dtypes": [[550, "function-supported-devices-and-dtypes"]], "nanmin": [[530, "nanmin"]], "assert_supports_inplace": [[538, "assert-supports-inplace"]], "nanmedian": [[529, "nanmedian"]], "lp_normalize": [[507, "lp-normalize"]], "arg_info": [[535, "arg-info"]], "histogram": [[525, "histogram"]], "is_ivy_sparse_array": [[516, "is-ivy-sparse-array"]], "all_equal": [[534, "all-equal"]], "gamma": [[511, "gamma"]], "bincount": [[520, "bincount"]], "corrcoef": [[521, "corrcoef"]], "container_types": [[542, "container-types"]], "vsplit": [[499, "vsplit"]], "hsplit": [[479, "hsplit"]], "moveaxis": [[483, "moveaxis"]], "atleast_2d": [[463, "atleast-2d"]], "associative_scan": [[461, "associative-scan"]], "concat_from_sequence": [[469, "concat-from-sequence"]], "heaviside": [[478, "heaviside"]], "partial_fold": [[485, "partial-fold"]], "rot90": [[490, "rot90"]], "vstack": [[500, "vstack"]], "take_along_axis": [[493, "take-along-axis"]], "unflatten": [[496, "unflatten"]], "fold": [[477, "fold"]], "flatten": [[474, "flatten"]], "top_k": [[494, "top-k"]], "i0": [[481, "i0"]], "instance_norm": [[503, "instance-norm"]], "expand": [[472, "expand"]], "unfold": [[497, "unfold"]], "l1_normalize": [[504, "l1-normalize"]], "hstack": [[480, "hstack"]], "check_scalar": [[466, "check-scalar"]], "choose": [[467, "choose"]], "unique_consecutive": [[498, "unique-consecutive"]], "dsplit": [[470, "dsplit"]], "partial_tensor_to_vec": [[486, "partial-tensor-to-vec"]], "atleast_1d": [[462, "atleast-1d"]], "put_along_axis": [[489, "put-along-axis"]], "l2_normalize": [[505, "l2-normalize"]], "flipud": [[476, "flipud"]], "soft_thresholding": [[491, "soft-thresholding"]], "as_strided": [[460, "as-strided"]], "fill_diagonal": [[473, "fill-diagonal"]], "group_norm": [[502, "group-norm"]], "partial_unfold": [[487, "partial-unfold"]], "matricize": [[482, "matricize"]], "atleast_3d": [[464, "atleast-3d"]], "trim_zeros": [[495, "trim-zeros"]], "pad": [[484, "pad"]], "partial_vec_to_tensor": [[488, "partial-vec-to-tensor"]], "dstack": [[471, "dstack"]], "take": [[492, "take"]], "batch_norm": [[501, "batch-norm"]], "broadcast_shapes": [[465, "broadcast-shapes"]], "fliplr": [[475, "fliplr"]], "column_stack": [[468, "column-stack"]], "Constants": [[627, "module-ivy.functional.ivy.constants"], [368, "module-ivy.functional.ivy.experimental.constants"]], "try_else_none": [[601, "try-else-none"]], "unset_inplace_mode": [[604, "unset-inplace-mode"]], "unset_nestable_mode": [[607, "unset-nestable-mode"]], "optimizer_update": [[623, "optimizer-update"]], "Data type": [[630, "data-type"], [370, "module-ivy.functional.ivy.experimental.data_type"], [77, "module-ivy.data_classes.container.data_type"], [54, "module-ivy.data_classes.array.data_type"]], "lamb_update": [[621, "lamb-update"]], "Control flow ops": [[628, "control-flow-ops"]], "execute_with_gradients": [[617, "execute-with-gradients"]], "to_native_shape": [[598, "to-native-shape"]], "jac": [[620, "jac"]], "lars_update": [[622, "lars-update"]], "adam_step": [[615, "adam-step"]], "Random": [[643, "random"], [382, "random"], [66, "module-ivy.data_classes.array.random"], [89, "module-ivy.data_classes.container.random"]], "unset_exception_trace_mode": [[603, "unset-exception-trace-mode"]], "Meta": [[640, "meta"], [379, "module-ivy.functional.ivy.experimental.meta"]], "Creation": [[629, "creation"], [369, "creation"], [53, "module-ivy.data_classes.array.creation"], [76, "module-ivy.data_classes.container.creation"]], "gradient_descent_update": [[619, "gradient-descent-update"]], "Manipulation": [[639, "manipulation"], [378, "manipulation"], [87, "module-ivy.data_classes.container.manipulation"], [64, "module-ivy.data_classes.array.manipulation"]], "Nest": [[641, "nest"], [380, "module-ivy.functional.ivy.experimental.nest"]], "to_scalar": [[600, "to-scalar"]], "grad": [[618, "grad"]], "Linear algebra": [[637, "linear-algebra"], [376, "linear-algebra"], [85, "module-ivy.data_classes.container.linear_algebra"], [62, "module-ivy.data_classes.array.linear_algebra"]], "value_is_nan": [[613, "value-is-nan"]], "stop_gradient": [[624, "stop-gradient"]], "unset_tmp_dir": [[612, "unset-tmp-dir"]], "value_and_grad": [[625, "value-and-grad"]], "vmap": [[614, "vmap"]], "unset_min_base": [[605, "unset-min-base"]], "adam_update": [[616, "adam-update"]], "to_numpy": [[599, "to-numpy"]], "unset_array_mode": [[602, "unset-array-mode"]], "unset_min_denominator": [[606, "unset-min-denominator"]], "unset_show_func_wrapper_trace_mode": [[611, "unset-show-func-wrapper-trace-mode"]], "unset_precise_mode": [[608, "unset-precise-mode"]], "unset_queue_timeout": [[609, "unset-queue-timeout"]], "Device": [[631, "device"], [371, "module-ivy.functional.ivy.experimental.device"], [78, "module-ivy.data_classes.container.device"], [55, "module-ivy.data_classes.array.device"]], "General": [[634, "general"], [373, "general"], [58, "module-ivy.data_classes.array.general"], [81, "module-ivy.data_classes.container.general"]], "Experimental": [[633, "experimental"], [57, "module-ivy.data_classes.array.experimental"], [80, "module-ivy.data_classes.container.experimental"]], "unset_shape_array_mode": [[610, "unset-shape-array-mode"]], "huber_loss": [[453, "huber-loss"]], "rfft": [[419, "rfft"]], "multi_dot": [[443, "multi-dot"]], "partial_tucker": [[445, "partial-tucker"]], "diagflat": [[427, "diagflat"]], "higher_order_moment": [[433, "higher-order-moment"]], "solve_triangular": [[446, "solve-triangular"]], "truncated_svd": [[449, "truncated-svd"]], "l1_loss": [[455, "l1-loss"]], "rfftn": [[420, "rfftn"]], "batched_outer": [[425, "batched-outer"]], "soft_margin_loss": [[459, "soft-margin-loss"]], "sliding_window": [[422, "sliding-window"]], "multi_mode_dot": [[444, "multi-mode-dot"]], "stft": [[423, "stft"]], "svd_flip": [[447, "svd-flip"]], "hinge_embedding_loss": [[452, "hinge-embedding-loss"]], "reduce_window": [[418, "reduce-window"]], "cond": [[426, "cond"]], "make_svd_non_negative": [[440, "make-svd-non-negative"]], "kronecker": [[437, "kronecker"]], "eigh_tridiagonal": [[430, "eigh-tridiagonal"]], "khatri_rao": [[435, "khatri-rao"]], "kron": [[436, "kron"]], "eigvals": [[431, "eigvals"]], "tt_matrix_to_tensor": [[450, "tt-matrix-to-tensor"]], "max_unpool1d": [[415, "max-unpool1d"]], "general_inner_product": [[432, "general-inner-product"]], "lu_factor": [[438, "lu-factor"]], "initialize_tucker": [[434, "initialize-tucker"]], "nearest_interpolate": [[416, "nearest-interpolate"]], "dot": [[428, "dot"]], "rnn": [[421, "rnn"]], "kl_div": [[454, "kl-div"]], "lu_solve": [[439, "lu-solve"]], "tucker": [[451, "tucker"]], "pool": [[417, "pool"]], "smooth_l1_loss": [[458, "smooth-l1-loss"]], "mode_dot": [[442, "mode-dot"]], "poisson_nll_loss": [[457, "poisson-nll-loss"]], "max_pool3d": [[414, "max-pool3d"]], "log_poisson_loss": [[456, "log-poisson-loss"]], "tensor_train": [[448, "tensor-train"]], "adjoint": [[424, "adjoint"]], "matrix_exp": [[441, "matrix-exp"]], "hypot": [[350, "hypot"]], "amin": [[336, "amin"]], "zeta": [[362, "zeta"]], "fix": [[345, "fix"]], "diff": [[341, "diff"]], "sinc": [[359, "sinc"]], "nextafter": [[357, "nextafter"]], "bind_custom_gradient_function": [[364, "bind-custom-gradient-function"]], "vorbis_window": [[333, "vorbis-window"]], "erfc": [[343, "erfc"]], "unsorted_segment_sum": [[332, "unsorted-segment-sum"]], "frexp": [[348, "frexp"]], "random_parafac2": [[324, "random-parafac2"]], "tril_indices": [[328, "tril-indices"]], "erfinv": [[344, "erfinv"]], "jvp": [[365, "jvp"]], "unsorted_segment_mean": [[330, "unsorted-segment-mean"]], "random_tr": [[325, "random-tr"]], "fmax": [[347, "fmax"]], "random_tucker": [[327, "random-tucker"]], "lerp": [[353, "lerp"]], "trilu": [[329, "trilu"]], "digamma": [[342, "digamma"]], "modf": [[355, "modf"]], "amax": [[335, "amax"]], "nansum": [[356, "nansum"]], "copysign": [[339, "copysign"]], "signbit": [[358, "signbit"]], "allclose": [[334, "allclose"]], "random_tt": [[326, "random-tt"]], "sparsify_tensor": [[360, "sparsify-tensor"]], "random_cp": [[323, "random-cp"]], "gradient": [[349, "gradient"]], "lgamma": [[354, "lgamma"]], "binarizer": [[337, "binarizer"]], "xlogy": [[361, "xlogy"]], "conj": [[338, "conj"]], "ldexp": [[352, "ldexp"]], "vjp": [[366, "vjp"]], "float_power": [[346, "float-power"]], "reduce": [[363, "reduce"]], "polyval": [[322, "polyval"]], "unsorted_segment_min": [[331, "unsorted-segment-min"]], "count_nonzero": [[340, "count-nonzero"]], "isclose": [[351, "isclose"]], "avg_pool2d": [[395, "avg-pool2d"]], "avg_pool1d": [[394, "avg-pool1d"]], "dropout3d": [[401, "dropout3d"]], "generate_einsum_equation": [[405, "generate-einsum-equation"]], "max_pool1d": [[412, "max-pool1d"]], "dropout1d": [[399, "dropout1d"]], "embedding": [[402, "embedding"]], "adaptive_avg_pool1d": [[389, "adaptive-avg-pool1d"]], "adaptive_max_pool2d": [[391, "adaptive-max-pool2d"]], "area_interpolate": [[393, "area-interpolate"]], "fft2": [[404, "fft2"]], "max_pool2d": [[413, "max-pool2d"]], "Sparse array": [[386, "sparse-array"]], "interp": [[410, "interp"]], "avg_pool3d": [[396, "avg-pool3d"]], "ifft": [[408, "ifft"]], "ifftn": [[409, "ifftn"]], "fft": [[403, "fft"]], "dropout2d": [[400, "dropout2d"]], "dft": [[398, "dft"]], "adaptive_max_pool3d": [[392, "adaptive-max-pool3d"]], "idct": [[407, "idct"]], "adaptive_avg_pool2d": [[390, "adaptive-avg-pool2d"]], "get_interpolate_kernel": [[406, "get-interpolate-kernel"]], "dct": [[397, "dct"]], "interpolate": [[411, "interpolate"]], "logsigmoid": [[301, "logsigmoid"]], "pow": [[278, "pow"]], "hardtanh": [[299, "hardtanh"]], "softshrink": [[307, "softshrink"]], "silu": [[306, "silu"]], "threshold": [[310, "threshold"]], "indices": [[316, "indices"]], "rad2deg": [[279, "rad2deg"]], "scaled_tanh": [[304, "scaled-tanh"]], "not_equal": [[276, "not-equal"]], "square": [[288, "square"]], "hardshrink": [[297, "hardshrink"]], "logit": [[300, "logit"]], "kaiser_window": [[318, "kaiser-window"]], "eye_like": [[313, "eye-like"]], "sqrt": [[287, "sqrt"]], "trunc_divide": [[294, "trunc-divide"]], "hann_window": [[315, "hann-window"]], "hamming_window": [[314, "hamming-window"]], "trapz": [[292, "trapz"]], "ndindex": [[321, "ndindex"]], "relu6": [[303, "relu6"]], "celu": [[295, "celu"]], "blackman_window": [[312, "blackman-window"]], "tan": [[290, "tan"]], "mel_weight_matrix": [[319, "mel-weight-matrix"]], "kaiser_bessel_derived_window": [[317, "kaiser-bessel-derived-window"]], "trunc": [[293, "trunc"]], "selu": [[305, "selu"]], "tanhshrink": [[309, "tanhshrink"]], "positive": [[277, "positive"]], "thresholded_relu": [[311, "thresholded-relu"]], "real": [[280, "real"]], "remainder": [[282, "remainder"]], "ndenumerate": [[320, "ndenumerate"]], "sin": [[285, "sin"]], "sinh": [[286, "sinh"]], "round": [[283, "round"]], "elu": [[296, "elu"]], "sign": [[284, "sign"]], "reciprocal": [[281, "reciprocal"]], "hardsilu": [[298, "hardsilu"]], "subtract": [[289, "subtract"]], "stanh": [[308, "stanh"]], "prelu": [[302, "prelu"]], "tanh": [[291, "tanh"]], "equal": [[241, "equal"]], "isreal": [[257, "isreal"]], "logical_or": [[269, "logical-or"]], "minimum": [[272, "minimum"]], "divide": [[240, "divide"]], "erf": [[242, "erf"]], "multiply": [[273, "multiply"]], "bitwise_and": [[230, "bitwise-and"]], "isfinite": [[254, "isfinite"]], "logical_xor": [[270, "logical-xor"]], "exp2": [[244, "exp2"]], "bitwise_right_shift": [[234, "bitwise-right-shift"]], "greater": [[251, "greater"]], "floor_divide": [[247, "floor-divide"]], "less": [[259, "less"]], "nan_to_num": [[274, "nan-to-num"]], "fmin": [[248, "fmin"]], "floor": [[246, "floor"]], "exp": [[243, "exp"]], "cosh": [[238, "cosh"]], "bitwise_invert": [[231, "bitwise-invert"]], "deg2rad": [[239, "deg2rad"]], "ceil": [[236, "ceil"]], "bitwise_left_shift": [[232, "bitwise-left-shift"]], "expm1": [[245, "expm1"]], "log2": [[264, "log2"]], "log1p": [[263, "log1p"]], "logaddexp2": [[266, "logaddexp2"]], "less_equal": [[260, "less-equal"]], "lcm": [[258, "lcm"]], "negative": [[275, "negative"]], "bitwise_or": [[233, "bitwise-or"]], "imag": [[253, "imag"]], "gcd": [[250, "gcd"]], "bitwise_xor": [[235, "bitwise-xor"]], "isinf": [[255, "isinf"]], "cos": [[237, "cos"]], "fmod": [[249, "fmod"]], "log10": [[262, "log10"]], "logical_not": [[268, "logical-not"]], "logaddexp": [[265, "logaddexp"]], "isnan": [[256, "isnan"]], "log": [[261, "log"]], "greater_equal": [[252, "greater-equal"]], "logical_and": [[267, "logical-and"]], "maximum": [[271, "maximum"]], "split_func_call": [[213, "split-func-call"]], "tpu_is_available": [[216, "tpu-is-available"]], "unset_default_device": [[217, "unset-default-device"]], "dev_util": [[198, "dev-util"]], "set_soft_device_mode": [[210, "set-soft-device-mode"]], "unset_default_float_dtype": [[189, "unset-default-float-dtype"]], "abs": [[220, "abs"]], "acos": [[221, "acos"]], "unset_default_uint_dtype": [[191, "unset-default-uint-dtype"]], "valid_dtype": [[192, "valid-dtype"]], "used_mem_on_dev": [[219, "used-mem-on-dev"]], "set_split_factor": [[211, "set-split-factor"]], "set_default_device": [[209, "set-default-device"]], "asin": [[225, "asin"]], "type_promote_arrays": [[186, "type-promote-arrays"]], "total_mem_on_dev": [[215, "total-mem-on-dev"]], "function_supported_devices": [[199, "function-supported-devices"]], "percent_used_mem_on_dev": [[207, "percent-used-mem-on-dev"]], "unset_soft_device_mode": [[218, "unset-soft-device-mode"]], "angle": [[224, "angle"]], "default_device": [[196, "default-device"]], "as_ivy_dev": [[193, "as-ivy-dev"]], "clear_cached_mem_on_dev": [[195, "clear-cached-mem-on-dev"]], "atan": [[227, "atan"]], "dev": [[197, "dev"]], "unset_default_complex_dtype": [[187, "unset-default-complex-dtype"]], "print_all_ivy_arrays_on_dev": [[208, "print-all-ivy-arrays-on-dev"]], "unset_default_int_dtype": [[190, "unset-default-int-dtype"]], "set_default_uint_dtype": [[185, "set-default-uint-dtype"]], "num_gpus": [[205, "num-gpus"]], "asinh": [[226, "asinh"]], "atanh": [[229, "atanh"]], "unset_default_dtype": [[188, "unset-default-dtype"]], "gpu_is_available": [[202, "gpu-is-available"]], "set_default_int_dtype": [[184, "set-default-int-dtype"]], "to_device": [[214, "to-device"]], "add": [[223, "add"]], "num_ivy_arrays_on_dev": [[206, "num-ivy-arrays-on-dev"]], "num_cpu_cores": [[204, "num-cpu-cores"]], "acosh": [[222, "acosh"]], "as_native_dev": [[194, "as-native-dev"]], "get_all_ivy_arrays_on_dev": [[201, "get-all-ivy-arrays-on-dev"]], "function_unsupported_devices": [[200, "function-unsupported-devices"]], "split_factor": [[212, "split-factor"]], "handle_soft_device_variable": [[203, "handle-soft-device-variable"]], "atan2": [[228, "atan2"]], "Deepmind PerceiverIO on GPU": [[46, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[46, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[46, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[46, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[46, "Run-the-demo..."]], "\u2026with torch backend": [[46, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[46, "....with-tensorflow-backend"]], "\u2026with jax backend": [[46, "...with-jax-backend"]], "\u2026with numpy backend": [[46, "...with-numpy-backend"]], "Resnet 18": [[50, "Resnet-18"]], "Conversions": [[75, "module-ivy.data_classes.container.conversions"], [52, "module-ivy.data_classes.array.conversions"]], "HuggingFace Tensorflow DeiT": [[48, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[48, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Image": [[83, "module-ivy.data_classes.container.image"], [60, "module-ivy.data_classes.array.image"]], "Ivy as a Transpiler Introduction": [[49, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[49, "To-use-the-transpiler:"]], "Transpiler Interface": [[49, "Transpiler-Interface"]], "Telemetry": [[49, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[49, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[49, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[49, "3.-Transpile-Models-\ud83c\udf10"]], "End-to-End Training Pipeline in Ivy": [[47, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[47, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[47, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[47, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[47, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[47, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[47, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[47, "Plotting-the-training-metrics"]], "Save the trained Model": [[47, "Save-the-trained-Model"]], "1.0: Lazy vs Eager": [[36, "1.0:-Lazy-vs-Eager"]], "Unify": [[36, "Unify"], [26, "Unify"], [27, "Unify"], [38, "Unify"], [37, "Unify"]], "Compile": [[36, "Compile"], [38, "Compile"], [37, "Compile"]], "Transpile": [[36, "Transpile"], [26, "Transpile"], [27, "Transpile"], [38, "Transpile"], [37, "Transpile"]], "Transpiling a Tensorflow model to build on top": [[18, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "TO REPLACE: Title": [[2, "TO-REPLACE:-Title"]], "Accelerating MMPreTrain models with JAX": [[11, "Accelerating-MMPreTrain-models-with-JAX"]], "Developing a convolutional network using Ivy": [[19, "Developing-a-convolutional-network-using-Ivy"]], "Transpile code": [[25, "Transpile-code"]], "# Ivy Bert Demo": [[5, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[5, "Install-the-dependecies"]], "Import the modules": [[5, "Import-the-modules"]], "Data Preparation": [[5, "Data-Preparation"], [12, "Data-Preparation"], [8, "Data-Preparation"], [4, "Data-Preparation"]], "Ivy inference with Sequence Classification": [[5, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[5, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[5, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[5, "Ivy-model-inference-with-torch"]], "Learn the basics": [[21, "learn-the-basics"], [20, "learn-the-basics"]], "Transpile any model": [[29, "Transpile-any-model"]], "Round up": [[29, "Round-up"]], "1.3: Dynamic vs Static": [[39, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[39, "Dynamic"]], "Static": [[39, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[39, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Lazy vs Eager": [[26, "Lazy-vs-Eager"]], "Trace": [[26, "Trace"], [27, "Trace"]], "0.2: Transpile": [[35, "0.2:-Transpile"]], "Unify code": [[23, "Unify-code"]], "How to use decorators": [[27, "How-to-use-decorators"]], "Transpile any library": [[28, "Transpile-any-library"]], "Examples and Demos": [[3, "examples-and-demos"], [20, "examples-and-demos"]], "Credit Card Fraud Detection using Ivy Framework": [[0, "Credit-Card-Fraud-Detection-using-Ivy-Framework"]], "Library Installation": [[0, "Library-Installation"]], "Importing Libraries and Configuring the Environment": [[0, "Importing-Libraries-and-Configuring-the-Environment"]], "Loading the Dataset": [[0, "Loading-the-Dataset"]], "Previewing the Dataset": [[0, "Previewing-the-Dataset"]], "Inspecting the End of the Dataset": [[0, "Inspecting-the-End-of-the-Dataset"]], "Dataset Information": [[0, "Dataset-Information"]], "Identifying Missing Values": [[0, "Identifying-Missing-Values"]], "Transaction Class Distribution": [[0, "Transaction-Class-Distribution"]], "Importing Ivy": [[0, "Importing-Ivy"], [22, "Importing-Ivy"]], "Separating Data for Analysis": [[0, "Separating-Data-for-Analysis"]], "Statistical Measures of Legitimate Transactions": [[0, "Statistical-Measures-of-Legitimate-Transactions"]], "Statistical Measures of Fraudulent Transactions": [[0, "Statistical-Measures-of-Fraudulent-Transactions"]], "Comparing Transaction Metrics": [[0, "Comparing-Transaction-Metrics"]], "Under-Sampling for Balanced Dataset": [[0, "Under-Sampling-for-Balanced-Dataset"]], "Creating a Balanced Dataset": [[0, "Creating-a-Balanced-Dataset"]], "Splitting Data into Features and Targets": [[0, "Splitting-Data-into-Features-and-Targets"]], "Splitting Data into Training and Testing Sets": [[0, "Splitting-Data-into-Training-and-Testing-Sets"]], "Converting Data to Ivy Arrays": [[0, "Converting-Data-to-Ivy-Arrays"]], "Displaying Data Dimensions": [[0, "Displaying-Data-Dimensions"]], "Data Preparation Function": [[0, "Data-Preparation-Function"]], "Processing Training Data": [[0, "Processing-Training-Data"]], "Enabling Soft Device Mode in Ivy": [[0, "Enabling-Soft-Device-Mode-in-Ivy"]], "Configuring the XGBoost Classifier": [[0, "Configuring-the-XGBoost-Classifier"]], "Benchmarking XGBoost Model Training Time": [[0, "Benchmarking-XGBoost-Model-Training-Time"]], "Benchmarking Ivy-based XGBoost Model Training Time": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Training-Time"]], "Benchmarking XGBoost Model Prediction Time": [[0, "Benchmarking-XGBoost-Model-Prediction-Time"]], "Benchmarking Ivy-based XGBoost Model Prediction Performance": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Prediction-Performance"]], "Based on benchmark tests, the Ivy-based XGBoost implementation has demonstrated faster performance times compared to the standard XGBoost.": [[0, "Based-on-benchmark-tests,-the-Ivy-based-XGBoost-implementation-has-demonstrated-faster-performance-times-compared-to-the-standard-XGBoost."]], "Model Predictions and Classification Reports": [[0, "Model-Predictions-and-Classification-Reports"]], "Evaluation of Classifier Performance": [[0, "Evaluation-of-Classifier-Performance"]], "IvyClassifier Performance Metrics": [[0, "IvyClassifier-Performance-Metrics"]], "XGBClassifier Performance Metrics": [[0, "XGBClassifier-Performance-Metrics"]], "Visualization of Classification Reports": [[0, "Visualization-of-Classification-Reports"]], "Comparison of Ivy XGBoost and Standard XGBoost Classifiers": [[0, "Comparison-of-Ivy-XGBoost-and-Standard-XGBoost-Classifiers"]], "Ivy XGBoost Classifier:": [[0, "Ivy-XGBoost-Classifier:"]], "Standard XGBoost Classifier:": [[0, "Standard-XGBoost-Classifier:"]], "Using TensorFlow Models in your PyTorch Projects": [[6, "Using-TensorFlow-Models-in-your-PyTorch-Projects"]], "Framework Incompatibility": [[6, "Framework-Incompatibility"]], "Transpiling a TensorFlow model to PyTorch": [[6, "Transpiling-a-TensorFlow-model-to-PyTorch"]], "About the transpiled model": [[6, "About-the-transpiled-model"]], "Setting-up the source model": [[6, "Setting-up-the-source-model"]], "Converting the model from TensorFlow to PyTorch": [[6, "Converting-the-model-from-TensorFlow-to-PyTorch"]], "Comparing the results": [[6, "Comparing-the-results"], [7, "Comparing-the-results"]], "Fine-tuning the transpiled model": [[6, "Fine-tuning-the-transpiled-model"], [7, "Fine-tuning-the-transpiled-model"]], "Conclusion": [[6, "Conclusion"], [7, "Conclusion"]], "3.0: Perceiver": [[41, "3.0:-Perceiver"]], "Compilation of a Basic Function": [[44, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[44, "Installs-\ud83d\udcbe"], [43, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[44, "Imports-\ud83d\udec3"], [43, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[44, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[44, "Function-compilation-\ud83d\udee0"]], "Set backend": [[44, "Set-backend"]], "Sample input": [[44, "Sample-input"]], "Define function to compile": [[44, "Define-function-to-compile"]], "Compile the function": [[44, "Compile-the-function"]], "Check results": [[44, "Check-results"], [44, "id1"]], "Compiling simple neural network \ud83e\udde0": [[44, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[44, "Define-Model"], [43, "Define-Model"]], "Create model": [[44, "Create-model"]], "Define input": [[44, "Define-input"]], "Compile network": [[44, "Compile-network"]], "1.2: As a Decorator": [[38, "1.2:-As-a-Decorator"]], "0.1: Compile": [[34, "0.1:-Compile"]], "Using Ivy ResNet": [[12, "Using-Ivy-ResNet"]], "Installation": [[12, "Installation"], [4, "Installation"]], "Imports": [[12, "Imports"], [8, "Imports"], [14, "Imports"]], "Prepare the set of labels": [[12, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[12, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [8, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[12, "Visualise-image"], [8, "Visualise-image"]], "Model Inference ResNet34": [[12, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[12, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[12, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [12, "id1"]], "Model Inference ResNet50": [[12, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[12, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Image Segmentation with Ivy UNet": [[8, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[8, "Custom-Preprocessing"]], "Model Inference": [[8, "Model-Inference"]], "Initializing Native Torch UNet": [[8, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[8, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[8, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[8, "TensorFlow-backend"]], "JAX": [[8, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[8, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Basic Operations with Ivy": [[43, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[43, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[43, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[43, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[43, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[43, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[43, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[43, "Set-Backend-Framework"]], "Create Model": [[43, "Create-Model"]], "Create Optimizer": [[43, "Create-Optimizer"]], "Input and Target": [[43, "Input-and-Target"]], "Loss Function": [[43, "Loss-Function"]], "Training Loop": [[43, "Training-Loop"]], "Write a model using Ivy": [[30, "Write-a-model-using-Ivy"]], "How To Convert Models from PyTorch to PaddlePaddle": [[7, "How-To-Convert-Models-from-PyTorch-to-PaddlePaddle"]], "About the Model": [[7, "About-the-Model"]], "Transpiling the Model": [[7, "Transpiling-the-Model"]], "Transpiling a PyTorch model to build on top": [[16, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Tutorials And Examples": [[20, "tutorials-and-examples"]], "Guides": [[20, "guides"], [15, "guides"]], "Ivy AlexNet demo": [[4, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[4, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[4, "TensorFlow-inference"]], "JAX inference": [[4, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[4, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "3.1: Stable Diffusion": [[42, "3.1:-Stable-Diffusion"]], "Trace code": [[24, "Trace-code"]], "2.0: Kornia": [[40, "2.0:-Kornia"]], "Demos": [[1, "demos"]], "Creating a Notebook for Demo": [[1, "creating-a-notebook-for-demo"]], "Accelerating PyTorch models with JAX": [[13, "Accelerating-PyTorch-models-with-JAX"]], "0.0: Unify": [[33, "0.0:-Unify"]], "1.1: Framework Selection": [[37, "1.1:-Framework-Selection"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[45, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[45, "Table-of-Contents"]], "Defining the model": [[45, "Defining-the-model"]], "Model construction": [[45, "Model-construction"]], "Some helper functions": [[45, "Some-helper-functions"]], "Transpiling the model": [[45, "Transpiling-the-model"]], "PyTorch pipeline": [[45, "PyTorch-pipeline"]], "Dataset download": [[45, "Dataset-download"]], "DataLoader": [[45, "DataLoader"]], "Training": [[45, "Training"]], "Accelerating XGBoost with JAX": [[14, "Accelerating-XGBoost-with-JAX"]], "Tests": [[14, "Tests"]], "Loading the Data": [[14, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[14, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[14, "JAX-backend"]], "Tensorflow backend": [[14, "Tensorflow-backend"]], "PyTorch backend": [[14, "PyTorch-backend"]], "More exhaustive example": [[14, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[14, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[14, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[14, "Comparison-of-Metrics"]], "ODSC Ivy Demo": [[31, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[31, "Ivy-Backend-Handler"], [22, "Ivy-Backend-Handler"]], "Data Structures": [[31, "Data-Structures"], [22, "Data-Structures"]], "Ivy Functional API": [[31, "Ivy-Functional-API"], [22, "Ivy-Functional-API"]], "Graph Tracer": [[31, "Graph-Tracer"]], "Any function": [[31, "Any-function"], [32, "Any-function"]], "Any library": [[31, "Any-library"], [32, "Any-library"]], "Any model": [[31, "Any-model"], [32, "Any-model"]], "Write Ivy code": [[22, "Write-Ivy-code"]], "Contents": [[22, "Contents"]], "Installing Ivy": [[22, "Installing-Ivy"]], "Quickstart": [[32, "Quickstart"]], "Get familiar with Ivy": [[32, "Get-familiar-with-Ivy"]], "Functional API": [[32, "Functional-API"]], "Stateful API": [[32, "Stateful-API"]], "Tracing code": [[32, "Tracing-code"]], "Transpiling a haiku model to build on top": [[17, "Transpiling-a-haiku-model-to-build-on-top"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[51, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[51, "module-ivy.data_classes.array.activations"], [52, "module-ivy.data_classes.array.conversions"], [53, "module-ivy.data_classes.array.creation"], [54, "module-ivy.data_classes.array.data_type"], [55, "module-ivy.data_classes.array.device"], [56, "module-ivy.data_classes.array.elementwise"], [57, "module-ivy.data_classes.array.experimental"], [57, "module-ivy.data_classes.array.experimental.activations"], [57, "module-ivy.data_classes.array.experimental.conversions"], [57, "module-ivy.data_classes.array.experimental.creation"], [57, "module-ivy.data_classes.array.experimental.data_type"], [57, "module-ivy.data_classes.array.experimental.device"], [57, "module-ivy.data_classes.array.experimental.elementwise"], [57, "module-ivy.data_classes.array.experimental.general"], [57, "module-ivy.data_classes.array.experimental.gradients"], [57, "module-ivy.data_classes.array.experimental.image"], [57, "module-ivy.data_classes.array.experimental.layers"], [57, "module-ivy.data_classes.array.experimental.linear_algebra"], [57, "module-ivy.data_classes.array.experimental.losses"], [57, "module-ivy.data_classes.array.experimental.manipulation"], [57, "module-ivy.data_classes.array.experimental.norms"], [57, "module-ivy.data_classes.array.experimental.random"], [57, "module-ivy.data_classes.array.experimental.searching"], [57, "module-ivy.data_classes.array.experimental.set"], [57, "module-ivy.data_classes.array.experimental.sorting"], [57, "module-ivy.data_classes.array.experimental.statistical"], [57, "module-ivy.data_classes.array.experimental.utility"], [58, "module-ivy.data_classes.array.general"], [59, "module-ivy.data_classes.array.gradients"], [60, "module-ivy.data_classes.array.image"], [61, "module-ivy.data_classes.array.layers"], [62, "module-ivy.data_classes.array.linear_algebra"], [63, "module-ivy.data_classes.array.losses"], [64, "module-ivy.data_classes.array.manipulation"], [65, "module-ivy.data_classes.array.norms"], [66, "module-ivy.data_classes.array.random"], [67, "module-ivy.data_classes.array.searching"], [68, "module-ivy.data_classes.array.set"], [69, "module-ivy.data_classes.array.sorting"], [70, "module-ivy.data_classes.array.statistical"], [71, "module-ivy.data_classes.array.utility"], [72, "module-ivy.data_classes.array.wrapping"], [73, "module-ivy.data_classes.container.activations"], [74, "module-ivy.data_classes.container.base"], [75, "module-ivy.data_classes.container.conversions"], [76, "module-ivy.data_classes.container.creation"], [77, "module-ivy.data_classes.container.data_type"], [78, "module-ivy.data_classes.container.device"], [79, "module-ivy.data_classes.container.elementwise"], [80, "module-ivy.data_classes.container.experimental"], [80, "module-ivy.data_classes.container.experimental.activations"], [80, "module-ivy.data_classes.container.experimental.conversions"], [80, "module-ivy.data_classes.container.experimental.creation"], [80, "module-ivy.data_classes.container.experimental.data_type"], [80, "module-ivy.data_classes.container.experimental.device"], [80, "module-ivy.data_classes.container.experimental.elementwise"], [80, "module-ivy.data_classes.container.experimental.general"], [80, "module-ivy.data_classes.container.experimental.gradients"], [80, "module-ivy.data_classes.container.experimental.image"], [80, "module-ivy.data_classes.container.experimental.layers"], [80, "module-ivy.data_classes.container.experimental.linear_algebra"], [80, "module-ivy.data_classes.container.experimental.losses"], [80, "module-ivy.data_classes.container.experimental.manipulation"], [80, "module-ivy.data_classes.container.experimental.norms"], [80, "module-ivy.data_classes.container.experimental.random"], [80, "module-ivy.data_classes.container.experimental.searching"], [80, "module-ivy.data_classes.container.experimental.set"], [80, "module-ivy.data_classes.container.experimental.sorting"], [80, "module-ivy.data_classes.container.experimental.statistical"], [80, "module-ivy.data_classes.container.experimental.utility"], [81, "module-ivy.data_classes.container.general"], [82, "module-ivy.data_classes.container.gradients"], [83, "module-ivy.data_classes.container.image"], [84, "module-ivy.data_classes.container.layers"], [85, "module-ivy.data_classes.container.linear_algebra"], [86, "module-ivy.data_classes.container.losses"], [87, "module-ivy.data_classes.container.manipulation"], [88, "module-ivy.data_classes.container.norms"], [89, "module-ivy.data_classes.container.random"], [90, "module-ivy.data_classes.container.searching"], [91, "module-ivy.data_classes.container.set"], [92, "module-ivy.data_classes.container.sorting"], [93, "module-ivy.data_classes.container.statistical"], [94, "module-ivy.data_classes.container.utility"], [95, "module-ivy.data_classes.container.wrapping"], [96, "module-ivy.data_classes.factorized_tensor.base"], [97, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [99, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [100, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [102, "module-ivy.data_classes.array.array"], [103, "module-ivy.data_classes.container.container"], [105, "module-ivy.data_classes.nested_array.nested_array"], [106, "module-ivy.data_classes.nested_array.base"], [107, "module-ivy.data_classes.nested_array.elementwise"], [367, "module-ivy.functional.ivy.experimental.activations"], [368, "module-ivy.functional.ivy.experimental.constants"], [369, "module-ivy.functional.ivy.experimental.creation"], [370, "module-ivy.functional.ivy.experimental.data_type"], [371, "module-ivy.functional.ivy.experimental.device"], [372, "module-ivy.functional.ivy.experimental.elementwise"], [373, "module-ivy.functional.ivy.experimental.general"], [374, "module-ivy.functional.ivy.experimental.gradients"], [375, "module-ivy.functional.ivy.experimental.layers"], [376, "module-ivy.functional.ivy.experimental.linear_algebra"], [377, "module-ivy.functional.ivy.experimental.losses"], [378, "module-ivy.functional.ivy.experimental.manipulation"], [379, "module-ivy.functional.ivy.experimental.meta"], [380, "module-ivy.functional.ivy.experimental.nest"], [381, "module-ivy.functional.ivy.experimental.norms"], [382, "module-ivy.functional.ivy.experimental.random"], [383, "module-ivy.functional.ivy.experimental.searching"], [384, "module-ivy.functional.ivy.experimental.set"], [385, "module-ivy.functional.ivy.experimental.sorting"], [386, "module-ivy.functional.ivy.experimental.sparse_array"], [387, "module-ivy.functional.ivy.experimental.statistical"], [388, "module-ivy.functional.ivy.experimental.utility"], [626, "module-ivy.functional.ivy.activations"], [627, "module-ivy.functional.ivy.constants"], [628, "module-ivy.functional.ivy.control_flow_ops"], [629, "module-ivy.functional.ivy.creation"], [630, "module-ivy.functional.ivy.data_type"], [631, "module-ivy.functional.ivy.device"], [632, "module-ivy.functional.ivy.elementwise"], [633, "module-ivy.functional.ivy.experimental"], [634, "module-ivy.functional.ivy.general"], [635, "module-ivy.functional.ivy.gradients"], [636, "module-ivy.functional.ivy.layers"], [637, "module-ivy.functional.ivy.linear_algebra"], [638, "module-ivy.functional.ivy.losses"], [639, "module-ivy.functional.ivy.manipulation"], [640, "module-ivy.functional.ivy.meta"], [641, "module-ivy.functional.ivy.nest"], [642, "module-ivy.functional.ivy.norms"], [643, "module-ivy.functional.ivy.random"], [644, "module-ivy.functional.ivy.searching"], [645, "module-ivy.functional.ivy.set"], [646, "module-ivy.functional.ivy.sorting"], [647, "module-ivy.functional.ivy.statistical"], [648, "module-ivy.functional.ivy.utility"], [771, "module-ivy_tests.test_ivy.helpers.assertions"], [772, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [773, "module-ivy_tests.test_ivy.helpers.function_testing"], [774, "module-ivy_tests.test_ivy.helpers.globals"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [780, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [782, "module-ivy_tests.test_ivy.helpers.structs"], [783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [784, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [788, "module-ivy.stateful.activations"], [789, "module-ivy.stateful.converters"], [790, "module-ivy.stateful.helpers"], [791, "module-ivy.stateful.initializers"], [792, "module-ivy.stateful.layers"], [793, "module-ivy.stateful.losses"], [794, "module-ivy.stateful.module"], [795, "module-ivy.stateful.norms"], [796, "module-ivy.stateful.optimizers"], [797, "module-ivy.stateful.sequential"], [798, "module-ivy.utils.assertions"], [799, "module-ivy.utils.backend"], [800, "module-ivy.utils.backend.ast_helpers"], [801, "module-ivy.utils.backend.handler"], [802, "module-ivy.utils.backend.sub_backend_handler"], [803, "module-ivy.utils.binaries"], [804, "module-ivy.utils.dynamic_import"], [805, "module-ivy.utils.einsum_parser"], [806, "module-ivy.utils.einsum_path_helpers"], [807, "module-ivy.utils.exceptions"], [808, "module-ivy.utils.inspection"], [809, "module-ivy.utils.logging"], [810, "module-ivy.utils.profiler"], [811, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[52, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[53, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[54, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[55, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[55, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[55, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[56, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[57, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[57, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[57, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[57, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[57, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[57, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[57, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[57, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[57, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[57, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[57, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[57, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[57, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[57, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[57, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[57, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[57, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[57, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[57, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[57, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[58, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[59, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[60, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[60, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[60, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[61, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[62, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[63, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[64, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[65, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[66, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[66, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[66, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[67, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[68, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[68, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[68, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[69, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[70, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[71, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[72, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[73, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[74, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[74, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[75, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[76, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[77, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[78, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[78, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[79, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[80, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[80, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[80, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[80, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[80, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[80, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[80, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[80, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[80, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[80, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[80, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[80, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[80, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[80, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[80, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[80, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[80, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[80, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[80, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[80, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[81, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[82, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[83, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[83, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[83, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[84, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[85, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[86, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[87, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[88, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[89, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[89, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[90, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[91, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[91, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[91, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[92, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[93, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[94, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[95, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[96, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[102, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[102, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[103, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[103, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[105, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[106, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[110, "ivy.gelu"], [626, "ivy.gelu"]], "gelu() (ivy.array method)": [[110, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[110, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[111, "ivy.hardswish"], [626, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[111, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[111, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[112, "ivy.leaky_relu"], [626, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[112, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[112, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[113, "ivy.log_softmax"], [626, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[113, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[113, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[114, "ivy.mish"], [626, "ivy.mish"]], "mish() (ivy.array method)": [[114, "ivy.Array.mish"]], "mish() (ivy.container method)": [[114, "ivy.Container.mish"]], "relu() (in module ivy)": [[115, "ivy.relu"], [626, "ivy.relu"]], "relu() (ivy.array method)": [[115, "ivy.Array.relu"]], "relu() (ivy.container method)": [[115, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[116, "ivy.sigmoid"], [626, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[116, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[116, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[117, "ivy.softmax"], [626, "ivy.softmax"]], "softmax() (ivy.array method)": [[117, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[117, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[118, "ivy.softplus"], [626, "ivy.softplus"]], "softplus() (ivy.array method)": [[118, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[118, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[119, "ivy.softsign"], [626, "ivy.softsign"]], "cmp_is() (in module ivy)": [[120, "ivy.cmp_is"], [628, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[121, "ivy.cmp_isnot"], [628, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[122, "ivy.for_loop"], [628, "ivy.for_loop"]], "if_else() (in module ivy)": [[123, "ivy.if_else"], [628, "ivy.if_else"]], "try_except() (in module ivy)": [[124, "ivy.try_except"], [628, "ivy.try_except"]], "while_loop() (in module ivy)": [[125, "ivy.while_loop"], [628, "ivy.while_loop"]], "arange() (in module ivy)": [[126, "ivy.arange"], [629, "ivy.arange"]], "array() (in module ivy)": [[127, "ivy.array"], [629, "ivy.array"]], "asarray() (in module ivy)": [[128, "ivy.asarray"], [629, "ivy.asarray"]], "asarray() (ivy.array method)": [[128, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[128, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[129, "ivy.copy_array"], [629, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[129, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[129, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[130, "ivy.empty"], [629, "ivy.empty"]], "empty_like() (in module ivy)": [[131, "ivy.empty_like"], [629, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[131, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[131, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[132, "ivy.eye"], [629, "ivy.eye"]], "from_dlpack() (in module ivy)": [[133, "ivy.from_dlpack"], [629, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[133, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[133, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[134, "ivy.frombuffer"], [629, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[134, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[135, "ivy.full"], [629, "ivy.full"]], "full_like() (in module ivy)": [[136, "ivy.full_like"], [629, "ivy.full_like"]], "full_like() (ivy.array method)": [[136, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[136, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[137, "ivy.linspace"], [629, "ivy.linspace"]], "linspace() (ivy.array method)": [[137, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[137, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[138, "ivy.logspace"], [629, "ivy.logspace"]], "logspace() (ivy.array method)": [[138, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[138, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[139, "ivy.meshgrid"], [629, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[139, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[139, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[140, "ivy.native_array"], [629, "ivy.native_array"]], "native_array() (ivy.array method)": [[140, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[140, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[141, "ivy.one_hot"], [629, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[141, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[141, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[142, "ivy.ones"], [629, "ivy.ones"]], "ones_like() (in module ivy)": [[143, "ivy.ones_like"], [629, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[143, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[143, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[144, "ivy.to_dlpack"], [629, "ivy.to_dlpack"]], "tril() (in module ivy)": [[145, "ivy.tril"], [629, "ivy.tril"]], "tril() (ivy.array method)": [[145, "ivy.Array.tril"]], "tril() (ivy.container method)": [[145, "ivy.Container.tril"]], "triu() (in module ivy)": [[146, "ivy.triu"], [629, "ivy.triu"]], "triu() (ivy.array method)": [[146, "ivy.Array.triu"]], "triu() (ivy.container method)": [[146, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[147, "ivy.triu_indices"], [629, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[147, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[148, "ivy.zeros"], [629, "ivy.zeros"]], "zeros_like() (in module ivy)": [[149, "ivy.zeros_like"], [629, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[149, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[149, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[150, "ivy.as_ivy_dtype"], [630, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[151, "ivy.as_native_dtype"], [630, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[152, "ivy.astype"], [630, "ivy.astype"]], "astype() (ivy.array method)": [[152, "ivy.Array.astype"]], "astype() (ivy.container method)": [[152, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[153, "ivy.broadcast_arrays"], [630, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[153, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[153, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[154, "ivy.broadcast_to"], [630, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[154, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[154, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[155, "ivy.can_cast"], [630, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[155, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[155, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[156, "ivy.check_float"], [630, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[157, "ivy.closest_valid_dtype"], [630, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[158, "ivy.default_complex_dtype"], [630, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[159, "ivy.default_dtype"], [630, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[160, "ivy.default_float_dtype"], [630, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[161, "ivy.default_int_dtype"], [630, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[162, "ivy.default_uint_dtype"], [630, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[163, "ivy.dtype"], [630, "ivy.dtype"]], "dtype() (ivy.array method)": [[163, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[163, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[164, "ivy.dtype_bits"], [630, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[165, "ivy.finfo"], [630, "ivy.finfo"]], "finfo() (ivy.array method)": [[165, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[165, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[166, "ivy.function_supported_dtypes"], [630, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[167, "ivy.function_unsupported_dtypes"], [630, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[168, "ivy.iinfo"], [630, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[168, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[168, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[169, "ivy.infer_default_dtype"], [630, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[170, "ivy.invalid_dtype"], [630, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[171, "ivy.is_bool_dtype"], [630, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[171, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[171, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[172, "ivy.is_complex_dtype"], [630, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[172, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[173, "ivy.is_float_dtype"], [630, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[173, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[173, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[174, "ivy.is_hashable_dtype"], [630, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[175, "ivy.is_int_dtype"], [630, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[175, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[175, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[176, "ivy.is_native_dtype"], [630, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[177, "ivy.is_uint_dtype"], [630, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[177, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[177, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[178, "ivy.promote_types"], [630, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[179, "ivy.promote_types_of_inputs"], [630, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[180, "ivy.result_type"], [630, "ivy.result_type"]], "result_type() (ivy.array method)": [[180, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[180, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[181, "ivy.set_default_complex_dtype"], [630, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[182, "ivy.set_default_dtype"], [630, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[183, "ivy.set_default_float_dtype"], [630, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[184, "ivy.set_default_int_dtype"], [630, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[185, "ivy.set_default_uint_dtype"], [630, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[186, "ivy.type_promote_arrays"], [630, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[187, "ivy.unset_default_complex_dtype"], [630, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[188, "ivy.unset_default_dtype"], [630, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[189, "ivy.unset_default_float_dtype"], [630, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[190, "ivy.unset_default_int_dtype"], [630, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[191, "ivy.unset_default_uint_dtype"], [630, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[192, "ivy.valid_dtype"], [630, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[193, "ivy.as_ivy_dev"], [631, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[194, "ivy.as_native_dev"], [631, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[195, "ivy.clear_cached_mem_on_dev"], [631, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[196, "ivy.default_device"], [631, "ivy.default_device"]], "dev() (in module ivy)": [[197, "ivy.dev"], [631, "ivy.dev"]], "dev() (ivy.array method)": [[197, "ivy.Array.dev"]], "dev() (ivy.container method)": [[197, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[198, "ivy.dev_util"], [631, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[199, "ivy.function_supported_devices"], [631, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[200, "ivy.function_unsupported_devices"], [631, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.get_all_ivy_arrays_on_dev"], [631, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[202, "ivy.gpu_is_available"], [631, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[203, "ivy.handle_soft_device_variable"], [631, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[204, "ivy.num_cpu_cores"], [631, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[205, "ivy.num_gpus"], [631, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[206, "ivy.num_ivy_arrays_on_dev"], [631, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[207, "ivy.percent_used_mem_on_dev"], [631, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[208, "ivy.print_all_ivy_arrays_on_dev"], [631, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[209, "ivy.set_default_device"], [631, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[210, "ivy.set_soft_device_mode"], [631, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[211, "ivy.set_split_factor"], [631, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[212, "ivy.split_factor"], [631, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[213, "ivy.split_func_call"], [631, "ivy.split_func_call"]], "to_device() (in module ivy)": [[214, "ivy.to_device"], [631, "ivy.to_device"]], "to_device() (ivy.array method)": [[214, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[214, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[215, "ivy.total_mem_on_dev"], [631, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[216, "ivy.tpu_is_available"], [631, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[217, "ivy.unset_default_device"], [631, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[218, "ivy.unset_soft_device_mode"], [631, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[219, "ivy.used_mem_on_dev"], [631, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[220, "ivy.abs"], [632, "ivy.abs"]], "abs() (ivy.array method)": [[220, "ivy.Array.abs"]], "abs() (ivy.container method)": [[220, "ivy.Container.abs"]], "acos() (in module ivy)": [[221, "ivy.acos"], [632, "ivy.acos"]], "acos() (ivy.array method)": [[221, "ivy.Array.acos"]], "acos() (ivy.container method)": [[221, "ivy.Container.acos"]], "acosh() (in module ivy)": [[222, "ivy.acosh"], [632, "ivy.acosh"]], "acosh() (ivy.array method)": [[222, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[222, "ivy.Container.acosh"]], "add() (in module ivy)": [[223, "ivy.add"], [632, "ivy.add"]], "add() (ivy.array method)": [[223, "ivy.Array.add"]], "add() (ivy.container method)": [[223, "ivy.Container.add"]], "angle() (in module ivy)": [[224, "ivy.angle"], [632, "ivy.angle"]], "angle() (ivy.array method)": [[224, "ivy.Array.angle"]], "angle() (ivy.container method)": [[224, "ivy.Container.angle"]], "asin() (in module ivy)": [[225, "ivy.asin"], [632, "ivy.asin"]], "asin() (ivy.array method)": [[225, "ivy.Array.asin"]], "asin() (ivy.container method)": [[225, "ivy.Container.asin"]], "asinh() (in module ivy)": [[226, "ivy.asinh"], [632, "ivy.asinh"]], "asinh() (ivy.array method)": [[226, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[226, "ivy.Container.asinh"]], "atan() (in module ivy)": [[227, "ivy.atan"], [632, "ivy.atan"]], "atan() (ivy.array method)": [[227, "ivy.Array.atan"]], "atan() (ivy.container method)": [[227, "ivy.Container.atan"]], "atan2() (in module ivy)": [[228, "ivy.atan2"], [632, "ivy.atan2"]], "atan2() (ivy.array method)": [[228, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[228, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[229, "ivy.atanh"], [632, "ivy.atanh"]], "atanh() (ivy.array method)": [[229, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[229, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[230, "ivy.bitwise_and"], [632, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[230, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[230, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[231, "ivy.bitwise_invert"], [632, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[231, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[231, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[232, "ivy.bitwise_left_shift"], [632, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[232, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[232, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[233, "ivy.bitwise_or"], [632, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[233, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[233, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[234, "ivy.bitwise_right_shift"], [632, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[234, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[234, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[235, "ivy.bitwise_xor"], [632, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[235, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[235, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[236, "ivy.ceil"], [632, "ivy.ceil"]], "ceil() (ivy.array method)": [[236, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[236, "ivy.Container.ceil"]], "cos() (in module ivy)": [[237, "ivy.cos"], [632, "ivy.cos"]], "cos() (ivy.array method)": [[237, "ivy.Array.cos"]], "cos() (ivy.container method)": [[237, "ivy.Container.cos"]], "cosh() (in module ivy)": [[238, "ivy.cosh"], [632, "ivy.cosh"]], "cosh() (ivy.array method)": [[238, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[238, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[239, "ivy.deg2rad"], [632, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[239, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[239, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[240, "ivy.divide"], [632, "ivy.divide"]], "divide() (ivy.array method)": [[240, "ivy.Array.divide"]], "divide() (ivy.container method)": [[240, "ivy.Container.divide"]], "equal() (in module ivy)": [[241, "ivy.equal"], [632, "ivy.equal"]], "equal() (ivy.array method)": [[241, "ivy.Array.equal"]], "equal() (ivy.container method)": [[241, "ivy.Container.equal"]], "erf() (in module ivy)": [[242, "ivy.erf"], [632, "ivy.erf"]], "erf() (ivy.array method)": [[242, "ivy.Array.erf"]], "erf() (ivy.container method)": [[242, "ivy.Container.erf"]], "exp() (in module ivy)": [[243, "ivy.exp"], [632, "ivy.exp"]], "exp() (ivy.array method)": [[243, "ivy.Array.exp"]], "exp() (ivy.container method)": [[243, "ivy.Container.exp"]], "exp2() (in module ivy)": [[244, "ivy.exp2"], [632, "ivy.exp2"]], "exp2() (ivy.array method)": [[244, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[244, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[245, "ivy.expm1"], [632, "ivy.expm1"]], "expm1() (ivy.array method)": [[245, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[245, "ivy.Container.expm1"]], "floor() (in module ivy)": [[246, "ivy.floor"], [632, "ivy.floor"]], "floor() (ivy.array method)": [[246, "ivy.Array.floor"]], "floor() (ivy.container method)": [[246, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[247, "ivy.floor_divide"], [632, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[247, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[247, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[248, "ivy.fmin"], [632, "ivy.fmin"]], "fmin() (ivy.array method)": [[248, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[248, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[249, "ivy.fmod"], [632, "ivy.fmod"]], "fmod() (ivy.array method)": [[249, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[249, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[250, "ivy.gcd"], [632, "ivy.gcd"]], "gcd() (ivy.array method)": [[250, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[250, "ivy.Container.gcd"]], "greater() (in module ivy)": [[251, "ivy.greater"], [632, "ivy.greater"]], "greater() (ivy.array method)": [[251, "ivy.Array.greater"]], "greater() (ivy.container method)": [[251, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[252, "ivy.greater_equal"], [632, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[252, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[252, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[253, "ivy.imag"], [632, "ivy.imag"]], "imag() (ivy.array method)": [[253, "ivy.Array.imag"]], "imag() (ivy.container method)": [[253, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[254, "ivy.isfinite"], [632, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[254, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[254, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[255, "ivy.isinf"], [632, "ivy.isinf"]], "isinf() (ivy.array method)": [[255, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[255, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[256, "ivy.isnan"], [632, "ivy.isnan"]], "isnan() (ivy.array method)": [[256, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[256, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[257, "ivy.isreal"], [632, "ivy.isreal"]], "isreal() (ivy.array method)": [[257, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[257, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[258, "ivy.lcm"], [632, "ivy.lcm"]], "lcm() (ivy.array method)": [[258, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[258, "ivy.Container.lcm"]], "less() (in module ivy)": [[259, "ivy.less"], [632, "ivy.less"]], "less() (ivy.array method)": [[259, "ivy.Array.less"]], "less() (ivy.container method)": [[259, "ivy.Container.less"]], "less_equal() (in module ivy)": [[260, "ivy.less_equal"], [632, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[260, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[260, "ivy.Container.less_equal"]], "log() (in module ivy)": [[261, "ivy.log"], [632, "ivy.log"]], "log() (ivy.array method)": [[261, "ivy.Array.log"]], "log() (ivy.container method)": [[261, "ivy.Container.log"]], "log10() (in module ivy)": [[262, "ivy.log10"], [632, "ivy.log10"]], "log10() (ivy.array method)": [[262, "ivy.Array.log10"]], "log10() (ivy.container method)": [[262, "ivy.Container.log10"]], "log1p() (in module ivy)": [[263, "ivy.log1p"], [632, "ivy.log1p"]], "log1p() (ivy.array method)": [[263, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[263, "ivy.Container.log1p"]], "log2() (in module ivy)": [[264, "ivy.log2"], [632, "ivy.log2"]], "log2() (ivy.array method)": [[264, "ivy.Array.log2"]], "log2() (ivy.container method)": [[264, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[265, "ivy.logaddexp"], [632, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[265, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[265, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[266, "ivy.logaddexp2"], [632, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[266, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[266, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[267, "ivy.logical_and"], [632, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[267, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[267, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[268, "ivy.logical_not"], [632, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[268, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[268, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[269, "ivy.logical_or"], [632, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[269, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[269, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[270, "ivy.logical_xor"], [632, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[270, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[270, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[271, "ivy.maximum"], [632, "ivy.maximum"]], "maximum() (ivy.array method)": [[271, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[271, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[272, "ivy.minimum"], [632, "ivy.minimum"]], "minimum() (ivy.array method)": [[272, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[272, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[273, "ivy.multiply"], [632, "ivy.multiply"]], "multiply() (ivy.array method)": [[273, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[273, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[274, "ivy.nan_to_num"], [632, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[274, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[274, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[275, "ivy.negative"], [632, "ivy.negative"]], "negative() (ivy.array method)": [[275, "ivy.Array.negative"]], "negative() (ivy.container method)": [[275, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[276, "ivy.not_equal"], [632, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[276, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[276, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[277, "ivy.positive"], [632, "ivy.positive"]], "positive() (ivy.array method)": [[277, "ivy.Array.positive"]], "positive() (ivy.container method)": [[277, "ivy.Container.positive"]], "pow() (in module ivy)": [[278, "ivy.pow"], [632, "ivy.pow"]], "pow() (ivy.array method)": [[278, "ivy.Array.pow"]], "pow() (ivy.container method)": [[278, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[279, "ivy.rad2deg"], [632, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[279, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[279, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[280, "ivy.real"], [632, "ivy.real"]], "real() (ivy.array method)": [[280, "ivy.Array.real"]], "real() (ivy.container method)": [[280, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[281, "ivy.reciprocal"], [632, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[281, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[281, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[282, "ivy.remainder"], [632, "ivy.remainder"]], "remainder() (ivy.array method)": [[282, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[282, "ivy.Container.remainder"]], "round() (in module ivy)": [[283, "ivy.round"], [632, "ivy.round"]], "round() (ivy.array method)": [[283, "ivy.Array.round"]], "round() (ivy.container method)": [[283, "ivy.Container.round"]], "sign() (in module ivy)": [[284, "ivy.sign"], [632, "ivy.sign"]], "sign() (ivy.array method)": [[284, "ivy.Array.sign"]], "sign() (ivy.container method)": [[284, "ivy.Container.sign"]], "sin() (in module ivy)": [[285, "ivy.sin"], [632, "ivy.sin"]], "sin() (ivy.array method)": [[285, "ivy.Array.sin"]], "sin() (ivy.container method)": [[285, "ivy.Container.sin"]], "sinh() (in module ivy)": [[286, "ivy.sinh"], [632, "ivy.sinh"]], "sinh() (ivy.array method)": [[286, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[286, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[287, "ivy.sqrt"], [632, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[287, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[287, "ivy.Container.sqrt"]], "square() (in module ivy)": [[288, "ivy.square"], [632, "ivy.square"]], "square() (ivy.array method)": [[288, "ivy.Array.square"]], "square() (ivy.container method)": [[288, "ivy.Container.square"]], "subtract() (in module ivy)": [[289, "ivy.subtract"], [632, "ivy.subtract"]], "subtract() (ivy.array method)": [[289, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[289, "ivy.Container.subtract"]], "tan() (in module ivy)": [[290, "ivy.tan"], [632, "ivy.tan"]], "tan() (ivy.array method)": [[290, "ivy.Array.tan"]], "tan() (ivy.container method)": [[290, "ivy.Container.tan"]], "tanh() (in module ivy)": [[291, "ivy.tanh"], [632, "ivy.tanh"]], "tanh() (ivy.array method)": [[291, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[291, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[292, "ivy.trapz"], [632, "ivy.trapz"]], "trapz() (ivy.array method)": [[292, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[292, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[293, "ivy.trunc"], [632, "ivy.trunc"]], "trunc() (ivy.array method)": [[293, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[293, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[294, "ivy.trunc_divide"], [632, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[294, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[294, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[295, "ivy.celu"], [367, "ivy.celu"]], "celu() (ivy.array method)": [[295, "ivy.Array.celu"]], "celu() (ivy.container method)": [[295, "ivy.Container.celu"]], "elu() (in module ivy)": [[296, "ivy.elu"], [367, "ivy.elu"]], "elu() (ivy.array method)": [[296, "ivy.Array.elu"]], "elu() (ivy.container method)": [[296, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[297, "ivy.hardshrink"], [367, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[297, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[297, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[298, "ivy.hardsilu"], [367, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[298, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[298, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[299, "ivy.hardtanh"], [367, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[299, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[299, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[300, "ivy.logit"], [367, "ivy.logit"]], "logit() (ivy.array method)": [[300, "ivy.Array.logit"]], "logit() (ivy.container method)": [[300, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[301, "ivy.logsigmoid"], [367, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[301, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[301, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[302, "ivy.prelu"], [367, "ivy.prelu"]], "prelu() (ivy.array method)": [[302, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[302, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[303, "ivy.relu6"], [367, "ivy.relu6"]], "relu6() (ivy.array method)": [[303, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[303, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[304, "ivy.scaled_tanh"], [367, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[304, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[304, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[305, "ivy.selu"], [367, "ivy.selu"]], "selu() (ivy.array method)": [[305, "ivy.Array.selu"]], "selu() (ivy.container method)": [[305, "ivy.Container.selu"]], "silu() (in module ivy)": [[306, "ivy.silu"], [367, "ivy.silu"]], "silu() (ivy.array method)": [[306, "ivy.Array.silu"]], "silu() (ivy.container method)": [[306, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[307, "ivy.softshrink"], [367, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[307, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[307, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[308, "ivy.stanh"], [367, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[309, "ivy.tanhshrink"], [367, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[309, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[309, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[310, "ivy.threshold"], [367, "ivy.threshold"]], "threshold() (ivy.array method)": [[310, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[310, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[311, "ivy.thresholded_relu"], [367, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[311, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[311, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[312, "ivy.blackman_window"], [369, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[312, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[312, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[313, "ivy.eye_like"], [369, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[313, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[313, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[314, "ivy.hamming_window"], [369, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[314, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[315, "ivy.hann_window"], [369, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[315, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[316, "ivy.indices"], [369, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[317, "ivy.kaiser_bessel_derived_window"], [369, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[317, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[318, "ivy.kaiser_window"], [369, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[318, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[319, "ivy.mel_weight_matrix"], [369, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[319, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[319, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[320, "ivy.ndenumerate"], [369, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[321, "ivy.ndindex"], [369, "ivy.ndindex"]], "polyval() (in module ivy)": [[322, "ivy.polyval"], [369, "ivy.polyval"]], "polyval() (ivy.container method)": [[322, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[323, "ivy.random_cp"], [369, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[324, "ivy.random_parafac2"], [369, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[325, "ivy.random_tr"], [369, "ivy.random_tr"]], "random_tt() (in module ivy)": [[326, "ivy.random_tt"], [369, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[327, "ivy.random_tucker"], [369, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[328, "ivy.tril_indices"], [369, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[328, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[329, "ivy.trilu"], [369, "ivy.trilu"]], "trilu() (ivy.array method)": [[329, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[329, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[330, "ivy.unsorted_segment_mean"], [369, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[330, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[330, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[331, "ivy.unsorted_segment_min"], [369, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[331, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[331, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[332, "ivy.unsorted_segment_sum"], [369, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[332, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[332, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[333, "ivy.vorbis_window"], [369, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[333, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[334, "ivy.allclose"], [372, "ivy.allclose"]], "allclose() (ivy.array method)": [[334, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[334, "ivy.Container.allclose"]], "amax() (in module ivy)": [[335, "ivy.amax"], [372, "ivy.amax"]], "amax() (ivy.array method)": [[335, "ivy.Array.amax"]], "amax() (ivy.container method)": [[335, "ivy.Container.amax"]], "amin() (in module ivy)": [[336, "ivy.amin"], [372, "ivy.amin"]], "amin() (ivy.array method)": [[336, "ivy.Array.amin"]], "amin() (ivy.container method)": [[336, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[337, "ivy.binarizer"], [372, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[337, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[337, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[338, "ivy.conj"], [372, "ivy.conj"]], "conj() (ivy.array method)": [[338, "ivy.Array.conj"]], "conj() (ivy.container method)": [[338, "ivy.Container.conj"]], "copysign() (in module ivy)": [[339, "ivy.copysign"], [372, "ivy.copysign"]], "copysign() (ivy.array method)": [[339, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[339, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[340, "ivy.count_nonzero"], [372, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[340, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[340, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[341, "ivy.diff"], [372, "ivy.diff"]], "diff() (ivy.array method)": [[341, "ivy.Array.diff"]], "diff() (ivy.container method)": [[341, "ivy.Container.diff"]], "digamma() (in module ivy)": [[342, "ivy.digamma"], [372, "ivy.digamma"]], "digamma() (ivy.array method)": [[342, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[342, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[343, "ivy.erfc"], [372, "ivy.erfc"]], "erfc() (ivy.array method)": [[343, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[343, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[344, "ivy.erfinv"], [372, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[344, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[344, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[345, "ivy.fix"], [372, "ivy.fix"]], "fix() (ivy.array method)": [[345, "ivy.Array.fix"]], "fix() (ivy.container method)": [[345, "ivy.Container.fix"]], "float_power() (in module ivy)": [[346, "ivy.float_power"], [372, "ivy.float_power"]], "float_power() (ivy.array method)": [[346, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[346, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[347, "ivy.fmax"], [372, "ivy.fmax"]], "fmax() (ivy.array method)": [[347, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[347, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[348, "ivy.frexp"], [372, "ivy.frexp"]], "frexp() (ivy.array method)": [[348, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[348, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[349, "ivy.gradient"], [372, "ivy.gradient"]], "gradient() (ivy.array method)": [[349, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[349, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[350, "ivy.hypot"], [372, "ivy.hypot"]], "hypot() (ivy.array method)": [[350, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[350, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[351, "ivy.isclose"], [372, "ivy.isclose"]], "isclose() (ivy.array method)": [[351, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[351, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[352, "ivy.ldexp"], [372, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[352, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[352, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[353, "ivy.lerp"], [372, "ivy.lerp"]], "lerp() (ivy.array method)": [[353, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[353, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[354, "ivy.lgamma"], [372, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[354, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[354, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[355, "ivy.modf"], [372, "ivy.modf"]], "modf() (ivy.array method)": [[355, "ivy.Array.modf"]], "modf() (ivy.container method)": [[355, "ivy.Container.modf"]], "nansum() (in module ivy)": [[356, "ivy.nansum"], [372, "ivy.nansum"]], "nansum() (ivy.array method)": [[356, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[356, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[357, "ivy.nextafter"], [372, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[357, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[357, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[358, "ivy.signbit"], [372, "ivy.signbit"]], "signbit() (ivy.array method)": [[358, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[358, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[359, "ivy.sinc"], [372, "ivy.sinc"]], "sinc() (ivy.array method)": [[359, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[359, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[360, "ivy.sparsify_tensor"], [372, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[360, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[360, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[361, "ivy.xlogy"], [372, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[361, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[361, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[362, "ivy.zeta"], [372, "ivy.zeta"]], "zeta() (ivy.array method)": [[362, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[362, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[363, "ivy.reduce"], [373, "ivy.reduce"]], "reduce() (ivy.array method)": [[363, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[363, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[364, "ivy.bind_custom_gradient_function"], [374, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[365, "ivy.jvp"], [374, "ivy.jvp"]], "vjp() (in module ivy)": [[366, "ivy.vjp"], [374, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[367, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[368, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[369, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[370, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[371, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[372, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[373, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[374, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[375, "ivy.adaptive_avg_pool1d"], [389, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[375, "ivy.adaptive_avg_pool2d"], [390, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[375, "ivy.adaptive_max_pool2d"], [391, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[375, "ivy.adaptive_max_pool3d"], [392, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[375, "ivy.area_interpolate"], [393, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[375, "ivy.avg_pool1d"], [394, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[375, "ivy.avg_pool2d"], [395, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[375, "ivy.avg_pool3d"], [396, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[375, "ivy.dct"], [397, "ivy.dct"]], "dft() (in module ivy)": [[375, "ivy.dft"], [398, "ivy.dft"]], "dropout1d() (in module ivy)": [[375, "ivy.dropout1d"], [399, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[375, "ivy.dropout2d"], [400, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[375, "ivy.dropout3d"], [401, "ivy.dropout3d"]], "embedding() (in module ivy)": [[375, "ivy.embedding"], [402, "ivy.embedding"]], "fft() (in module ivy)": [[375, "ivy.fft"], [403, "ivy.fft"]], "fft2() (in module ivy)": [[375, "ivy.fft2"], [404, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[375, "ivy.generate_einsum_equation"], [405, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[375, "ivy.get_interpolate_kernel"], [406, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[375, "ivy.idct"], [407, "ivy.idct"]], "ifft() (in module ivy)": [[375, "ivy.ifft"], [408, "ivy.ifft"]], "ifftn() (in module ivy)": [[375, "ivy.ifftn"], [409, "ivy.ifftn"]], "interp() (in module ivy)": [[375, "ivy.interp"], [410, "ivy.interp"]], "interpolate() (in module ivy)": [[375, "ivy.interpolate"], [411, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[375, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[375, "ivy.max_pool1d"], [412, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[375, "ivy.max_pool2d"], [413, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[375, "ivy.max_pool3d"], [414, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[375, "ivy.max_unpool1d"], [415, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[375, "ivy.nearest_interpolate"], [416, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[375, "ivy.pool"], [417, "ivy.pool"]], "reduce_window() (in module ivy)": [[375, "ivy.reduce_window"], [418, "ivy.reduce_window"]], "rfft() (in module ivy)": [[375, "ivy.rfft"], [419, "ivy.rfft"]], "rfftn() (in module ivy)": [[375, "ivy.rfftn"], [420, "ivy.rfftn"]], "rnn() (in module ivy)": [[375, "ivy.rnn"], [421, "ivy.rnn"]], "sliding_window() (in module ivy)": [[375, "ivy.sliding_window"], [422, "ivy.sliding_window"]], "stft() (in module ivy)": [[375, "ivy.stft"], [423, "ivy.stft"]], "adjoint() (in module ivy)": [[376, "ivy.adjoint"], [424, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[376, "ivy.batched_outer"], [425, "ivy.batched_outer"]], "cond() (in module ivy)": [[376, "ivy.cond"], [426, "ivy.cond"]], "diagflat() (in module ivy)": [[376, "ivy.diagflat"], [427, "ivy.diagflat"]], "dot() (in module ivy)": [[376, "ivy.dot"], [428, "ivy.dot"]], "eig() (in module ivy)": [[376, "ivy.eig"], [429, "ivy.eig"], [637, "ivy.eig"], [672, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[376, "ivy.eigh_tridiagonal"], [430, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[376, "ivy.eigvals"], [431, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[376, "ivy.general_inner_product"], [432, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[376, "ivy.higher_order_moment"], [433, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[376, "ivy.initialize_tucker"], [434, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[376, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[376, "ivy.khatri_rao"], [435, "ivy.khatri_rao"]], "kron() (in module ivy)": [[376, "ivy.kron"], [436, "ivy.kron"]], "kronecker() (in module ivy)": [[376, "ivy.kronecker"], [437, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[376, "ivy.lu_factor"], [438, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[376, "ivy.lu_solve"], [439, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[376, "ivy.make_svd_non_negative"], [440, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[376, "ivy.matrix_exp"], [441, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[376, "ivy.mode_dot"], [442, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[376, "ivy.multi_dot"], [443, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[376, "ivy.multi_mode_dot"], [444, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[376, "ivy.partial_tucker"], [445, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[376, "ivy.solve_triangular"], [446, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[376, "ivy.svd_flip"], [447, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[376, "ivy.tensor_train"], [448, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[376, "ivy.truncated_svd"], [449, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[376, "ivy.tt_matrix_to_tensor"], [450, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[376, "ivy.tucker"], [451, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[377, "ivy.hinge_embedding_loss"], [452, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[377, "ivy.huber_loss"], [453, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[377, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[377, "ivy.kl_div"], [454, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[377, "ivy.l1_loss"], [455, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[377, "ivy.log_poisson_loss"], [456, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[377, "ivy.poisson_nll_loss"], [457, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[377, "ivy.smooth_l1_loss"], [458, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[377, "ivy.soft_margin_loss"], [459, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[378, "ivy.as_strided"], [460, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[378, "ivy.associative_scan"], [461, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[378, "ivy.atleast_1d"], [462, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[378, "ivy.atleast_2d"], [463, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[378, "ivy.atleast_3d"], [464, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[378, "ivy.broadcast_shapes"], [465, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[378, "ivy.check_scalar"], [466, "ivy.check_scalar"]], "choose() (in module ivy)": [[378, "ivy.choose"], [467, "ivy.choose"]], "column_stack() (in module ivy)": [[378, "ivy.column_stack"], [468, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[378, "ivy.concat_from_sequence"], [469, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[378, "ivy.dsplit"], [470, "ivy.dsplit"]], "dstack() (in module ivy)": [[378, "ivy.dstack"], [471, "ivy.dstack"]], "expand() (in module ivy)": [[378, "ivy.expand"], [472, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[378, "ivy.fill_diagonal"], [473, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[378, "ivy.flatten"], [474, "ivy.flatten"]], "fliplr() (in module ivy)": [[378, "ivy.fliplr"], [475, "ivy.fliplr"]], "flipud() (in module ivy)": [[378, "ivy.flipud"], [476, "ivy.flipud"]], "fold() (in module ivy)": [[378, "ivy.fold"], [477, "ivy.fold"]], "heaviside() (in module ivy)": [[378, "ivy.heaviside"], [478, "ivy.heaviside"]], "hsplit() (in module ivy)": [[378, "ivy.hsplit"], [479, "ivy.hsplit"]], "hstack() (in module ivy)": [[378, "ivy.hstack"], [480, "ivy.hstack"]], "i0() (in module ivy)": [[378, "ivy.i0"], [481, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[378, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[378, "ivy.matricize"], [482, "ivy.matricize"]], "moveaxis() (in module ivy)": [[378, "ivy.moveaxis"], [483, "ivy.moveaxis"]], "pad() (in module ivy)": [[378, "ivy.pad"], [484, "ivy.pad"]], "partial_fold() (in module ivy)": [[378, "ivy.partial_fold"], [485, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[378, "ivy.partial_tensor_to_vec"], [486, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[378, "ivy.partial_unfold"], [487, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[378, "ivy.partial_vec_to_tensor"], [488, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[378, "ivy.put_along_axis"], [489, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[378, "ivy.rot90"], [490, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[378, "ivy.soft_thresholding"], [491, "ivy.soft_thresholding"]], "take() (in module ivy)": [[378, "ivy.take"], [492, "ivy.take"]], "take_along_axis() (in module ivy)": [[378, "ivy.take_along_axis"], [493, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[378, "ivy.top_k"], [494, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[378, "ivy.trim_zeros"], [495, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[378, "ivy.unflatten"], [496, "ivy.unflatten"]], "unfold() (in module ivy)": [[378, "ivy.unfold"], [497, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[378, "ivy.unique_consecutive"], [498, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[378, "ivy.vsplit"], [499, "ivy.vsplit"]], "vstack() (in module ivy)": [[378, "ivy.vstack"], [500, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[379, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[380, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[381, "ivy.batch_norm"], [501, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[381, "ivy.group_norm"], [502, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[381, "ivy.instance_norm"], [503, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[381, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[381, "ivy.l1_normalize"], [504, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[381, "ivy.l2_normalize"], [505, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[381, "ivy.local_response_norm"], [506, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[381, "ivy.lp_normalize"], [507, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[382, "ivy.bernoulli"], [508, "ivy.bernoulli"]], "beta() (in module ivy)": [[382, "ivy.beta"], [509, "ivy.beta"]], "dirichlet() (in module ivy)": [[382, "ivy.dirichlet"], [510, "ivy.dirichlet"]], "gamma() (in module ivy)": [[382, "ivy.gamma"], [511, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[382, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[382, "ivy.poisson"], [512, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[383, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[383, "ivy.unravel_index"], [513, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[384, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[385, "ivy.invert_permutation"], [514, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[385, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[385, "ivy.lexsort"], [515, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[386, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[386, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[386, "ivy.is_ivy_sparse_array"], [516, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[386, "ivy.is_native_sparse_array"], [517, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[386, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[386, "ivy.native_sparse_array"], [518, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[386, "ivy.native_sparse_array_to_indices_values_and_shape"], [519, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[387, "ivy.bincount"], [520, "ivy.bincount"]], "corrcoef() (in module ivy)": [[387, "ivy.corrcoef"], [521, "ivy.corrcoef"]], "cov() (in module ivy)": [[387, "ivy.cov"], [522, "ivy.cov"]], "cummax() (in module ivy)": [[387, "ivy.cummax"], [523, "ivy.cummax"]], "cummin() (in module ivy)": [[387, "ivy.cummin"], [524, "ivy.cummin"]], "histogram() (in module ivy)": [[387, "ivy.histogram"], [525, "ivy.histogram"]], "igamma() (in module ivy)": [[387, "ivy.igamma"], [526, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[387, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[387, "ivy.median"], [527, "ivy.median"]], "nanmean() (in module ivy)": [[387, "ivy.nanmean"], [528, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[387, "ivy.nanmedian"], [529, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[387, "ivy.nanmin"], [530, "ivy.nanmin"]], "nanprod() (in module ivy)": [[387, "ivy.nanprod"], [531, "ivy.nanprod"]], "quantile() (in module ivy)": [[387, "ivy.quantile"], [532, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[388, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[388, "ivy.optional_get_element"], [533, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[389, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[389, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[390, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[390, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[391, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[391, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[392, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[392, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[394, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[394, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[395, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[395, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[396, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[396, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[397, "ivy.Array.dct"]], "dct() (ivy.container method)": [[397, "ivy.Container.dct"]], "dft() (ivy.array method)": [[398, "ivy.Array.dft"]], "dft() (ivy.container method)": [[398, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[399, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[399, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[400, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[400, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[401, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[401, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[402, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[402, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[403, "ivy.Array.fft"]], "fft() (ivy.container method)": [[403, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[404, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[407, "ivy.Array.idct"]], "idct() (ivy.container method)": [[407, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[408, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[408, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[409, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[409, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[411, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[411, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[412, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[412, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[413, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[413, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[414, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[414, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[415, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[415, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[418, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[418, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[419, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[419, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[420, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[420, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[422, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[422, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[423, "ivy.Array.stft"]], "stft() (ivy.container method)": [[423, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[424, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[424, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[425, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[425, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[426, "ivy.Array.cond"]], "cond() (ivy.container method)": [[426, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[427, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[427, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[428, "ivy.Array.dot"]], "dot() (ivy.container method)": [[428, "ivy.Container.dot"]], "eig() (ivy.array method)": [[429, "ivy.Array.eig"], [672, "ivy.Array.eig"]], "eig() (ivy.container method)": [[429, "ivy.Container.eig"], [672, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[430, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[430, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[431, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[431, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[432, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[432, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[433, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[433, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[434, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[434, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[436, "ivy.Array.kron"]], "kron() (ivy.container method)": [[436, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[440, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[440, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[441, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[441, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[442, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[442, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[443, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[443, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[444, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[444, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[445, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[445, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[447, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[447, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[448, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[448, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[449, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[449, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[450, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[450, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[451, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[451, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[452, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[452, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[453, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[453, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[454, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[454, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[455, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[455, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[456, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[456, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[457, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[457, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[458, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[458, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[459, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[459, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[460, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[460, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[461, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[461, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[462, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[462, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[463, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[463, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[464, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[464, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[465, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[468, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[468, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[469, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[469, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[470, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[470, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[471, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[471, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[472, "ivy.Array.expand"]], "expand() (ivy.container method)": [[472, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[473, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[473, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[474, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[474, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[475, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[475, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[476, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[476, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[477, "ivy.Array.fold"]], "fold() (ivy.container method)": [[477, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[478, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[478, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[479, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[479, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[480, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[480, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[481, "ivy.Array.i0"]], "i0() (ivy.container method)": [[481, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[482, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[482, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[483, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[483, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[484, "ivy.Array.pad"]], "pad() (ivy.container method)": [[484, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[485, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[485, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[486, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[486, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[487, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[487, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[488, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[488, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[489, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[489, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[490, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[490, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[491, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[491, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[492, "ivy.Array.take"]], "take() (ivy.container method)": [[492, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[493, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[493, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[494, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[494, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[495, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[495, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[496, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[496, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[497, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[497, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[498, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[498, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[499, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[499, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[500, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[500, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[501, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[501, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[502, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[502, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[503, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[503, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[504, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[504, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[505, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[505, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[507, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[507, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[508, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[508, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[509, "ivy.Array.beta"]], "beta() (ivy.container method)": [[509, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[510, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[510, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[511, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[511, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[512, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[512, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[513, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[513, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[514, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[515, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[515, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[520, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[520, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[521, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[521, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[522, "ivy.Array.cov"]], "cov() (ivy.container method)": [[522, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[523, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[523, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[524, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[524, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[525, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[525, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[526, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[526, "ivy.Container.igamma"]], "median() (ivy.array method)": [[527, "ivy.Array.median"]], "median() (ivy.container method)": [[527, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[528, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[528, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[529, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[529, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[530, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[530, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[531, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[531, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[532, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[532, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[533, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[533, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[534, "ivy.all_equal"], [634, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[534, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[534, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[535, "ivy.arg_info"], [634, "ivy.arg_info"]], "arg_names() (in module ivy)": [[536, "ivy.arg_names"], [634, "ivy.arg_names"]], "array_equal() (in module ivy)": [[537, "ivy.array_equal"], [634, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[537, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[537, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[538, "ivy.assert_supports_inplace"], [634, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[538, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[538, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[539, "ivy.cache_fn"], [634, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[540, "ivy.clip_matrix_norm"], [634, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[540, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[540, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[541, "ivy.clip_vector_norm"], [634, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[541, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[541, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[542, "ivy.container_types"], [634, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[543, "ivy.current_backend_str"], [634, "ivy.current_backend_str"]], "default() (in module ivy)": [[544, "ivy.default"], [634, "ivy.default"]], "default() (ivy.array method)": [[544, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[545, "ivy.einops_rearrange"], [634, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[545, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[545, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[546, "ivy.einops_reduce"], [634, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[546, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[546, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[547, "ivy.einops_repeat"], [634, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[547, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[547, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[548, "ivy.exists"], [634, "ivy.exists"]], "exists() (ivy.array method)": [[548, "ivy.Array.exists"]], "exists() (ivy.container method)": [[548, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[549, "ivy.fourier_encode"], [634, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[549, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[549, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[550, "ivy.function_supported_devices_and_dtypes"], [634, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[551, "ivy.function_unsupported_devices_and_dtypes"], [634, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[552, "ivy.gather"], [634, "ivy.gather"]], "gather() (ivy.array method)": [[552, "ivy.Array.gather"]], "gather() (ivy.container method)": [[552, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[553, "ivy.gather_nd"], [634, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[553, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[553, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[554, "ivy.get_all_arrays_in_memory"], [634, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[555, "ivy.get_item"], [634, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[556, "ivy.get_num_dims"], [634, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[556, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[556, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[557, "ivy.get_referrers_recursive"], [634, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[558, "ivy.has_nans"], [634, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[558, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[558, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[559, "ivy.inplace_arrays_supported"], [634, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[560, "ivy.inplace_decrement"], [634, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[560, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[560, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[561, "ivy.inplace_increment"], [634, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[561, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[561, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[562, "ivy.inplace_update"], [634, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[562, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[562, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[563, "ivy.inplace_variables_supported"], [634, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[564, "ivy.is_array"], [634, "ivy.is_array"]], "is_array() (ivy.array method)": [[564, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[564, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[565, "ivy.is_ivy_array"], [634, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[565, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[565, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[566, "ivy.is_ivy_container"], [634, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[566, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[567, "ivy.is_ivy_nested_array"], [634, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[568, "ivy.is_native_array"], [634, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[568, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[568, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[569, "ivy.isin"], [634, "ivy.isin"]], "isin() (ivy.array method)": [[569, "ivy.Array.isin"]], "isin() (ivy.container method)": [[569, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[570, "ivy.isscalar"], [634, "ivy.isscalar"]], "itemsize() (in module ivy)": [[571, "ivy.itemsize"], [634, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[571, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[571, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[572, "ivy.match_kwargs"], [634, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[573, "ivy.multiprocessing"], [634, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[574, "ivy.num_arrays_in_memory"], [634, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[575, "ivy.print_all_arrays_in_memory"], [634, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[576, "ivy.scatter_flat"], [634, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[576, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[576, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[577, "ivy.scatter_nd"], [634, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[577, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[577, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[578, "ivy.set_array_mode"], [634, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[579, "ivy.set_exception_trace_mode"], [634, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[580, "ivy.set_inplace_mode"], [634, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[581, "ivy.set_item"], [634, "ivy.set_item"]], "set_min_base() (in module ivy)": [[582, "ivy.set_min_base"], [634, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[583, "ivy.set_min_denominator"], [634, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[584, "ivy.set_nestable_mode"], [634, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[585, "ivy.set_precise_mode"], [634, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[586, "ivy.set_queue_timeout"], [634, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[587, "ivy.set_shape_array_mode"], [634, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[588, "ivy.set_show_func_wrapper_trace_mode"], [634, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[589, "ivy.set_tmp_dir"], [634, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[590, "ivy.shape"], [634, "ivy.shape"]], "shape() (ivy.array method)": [[590, "ivy.Array.shape"]], "size() (in module ivy)": [[591, "ivy.size"], [634, "ivy.size"]], "size() (ivy.array method)": [[591, "ivy.Array.size"]], "size() (ivy.container method)": [[591, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[592, "ivy.stable_divide"], [634, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[592, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[592, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[593, "ivy.stable_pow"], [634, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[593, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[593, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[594, "ivy.strides"], [634, "ivy.strides"]], "strides() (ivy.array method)": [[594, "ivy.Array.strides"]], "strides() (ivy.container method)": [[594, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[595, "ivy.supports_inplace_updates"], [634, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[595, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[595, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[596, "ivy.to_ivy_shape"], [634, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[597, "ivy.to_list"], [634, "ivy.to_list"]], "to_list() (ivy.array method)": [[597, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[597, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[598, "ivy.to_native_shape"], [634, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[599, "ivy.to_numpy"], [634, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[599, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[599, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[600, "ivy.to_scalar"], [634, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[600, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[600, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[601, "ivy.try_else_none"], [634, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[602, "ivy.unset_array_mode"], [634, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[603, "ivy.unset_exception_trace_mode"], [634, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[604, "ivy.unset_inplace_mode"], [634, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[605, "ivy.unset_min_base"], [634, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[606, "ivy.unset_min_denominator"], [634, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[607, "ivy.unset_nestable_mode"], [634, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[608, "ivy.unset_precise_mode"], [634, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[609, "ivy.unset_queue_timeout"], [634, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[610, "ivy.unset_shape_array_mode"], [634, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[611, "ivy.unset_show_func_wrapper_trace_mode"], [634, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[612, "ivy.unset_tmp_dir"], [634, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[613, "ivy.value_is_nan"], [634, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[613, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[613, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[614, "ivy.vmap"], [634, "ivy.vmap"]], "adam_step() (in module ivy)": [[615, "ivy.adam_step"], [635, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[615, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[615, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[616, "ivy.adam_update"], [635, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[616, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[616, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[617, "ivy.execute_with_gradients"], [635, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[618, "ivy.grad"], [635, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[619, "ivy.gradient_descent_update"], [635, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[619, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[619, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[620, "ivy.jac"], [635, "ivy.jac"]], "lamb_update() (in module ivy)": [[621, "ivy.lamb_update"], [635, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[621, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[621, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[622, "ivy.lars_update"], [635, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[622, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[622, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[623, "ivy.optimizer_update"], [635, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[623, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[623, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[624, "ivy.stop_gradient"], [635, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[624, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[624, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[625, "ivy.value_and_grad"], [635, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[626, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[627, "ivy.e"]], "inf (in module ivy)": [[627, "ivy.inf"]], "ivy.functional.ivy.constants": [[627, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[627, "ivy.nan"]], "newaxis (in module ivy)": [[627, "ivy.newaxis"]], "pi (in module ivy)": [[627, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[628, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[629, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[629, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[630, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[630, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[630, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[630, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[630, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[630, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[631, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[631, "ivy.Profiler"]], "ivy.functional.ivy.device": [[631, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[632, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[633, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[634, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[634, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[634, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[635, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[636, "ivy.conv"], [649, "ivy.conv"]], "conv1d() (in module ivy)": [[636, "ivy.conv1d"], [650, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[636, "ivy.conv1d_transpose"], [651, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[636, "ivy.conv2d"], [652, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[636, "ivy.conv2d_transpose"], [653, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[636, "ivy.conv3d"], [654, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[636, "ivy.conv3d_transpose"], [655, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[636, "ivy.conv_general_dilated"], [656, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[636, "ivy.conv_general_transpose"], [657, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[636, "ivy.depthwise_conv2d"], [658, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[636, "ivy.dropout"], [659, "ivy.dropout"]], "ivy.functional.ivy.layers": [[636, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[636, "ivy.linear"], [660, "ivy.linear"]], "lstm() (in module ivy)": [[636, "ivy.lstm"], [661, "ivy.lstm"]], "lstm_update() (in module ivy)": [[636, "ivy.lstm_update"], [662, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[636, "ivy.multi_head_attention"], [663, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[636, "ivy.nms"], [664, "ivy.nms"]], "roi_align() (in module ivy)": [[636, "ivy.roi_align"], [665, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[636, "ivy.scaled_dot_product_attention"], [666, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[637, "ivy.cholesky"], [667, "ivy.cholesky"]], "cross() (in module ivy)": [[637, "ivy.cross"], [668, "ivy.cross"]], "det() (in module ivy)": [[637, "ivy.det"], [669, "ivy.det"]], "diag() (in module ivy)": [[637, "ivy.diag"], [670, "ivy.diag"]], "diagonal() (in module ivy)": [[637, "ivy.diagonal"], [671, "ivy.diagonal"]], "eigh() (in module ivy)": [[637, "ivy.eigh"], [673, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[637, "ivy.eigvalsh"], [674, "ivy.eigvalsh"]], "inner() (in module ivy)": [[637, "ivy.inner"], [675, "ivy.inner"]], "inv() (in module ivy)": [[637, "ivy.inv"], [676, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[637, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[637, "ivy.matmul"], [677, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[637, "ivy.matrix_norm"], [678, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[637, "ivy.matrix_power"], [679, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[637, "ivy.matrix_rank"], [680, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[637, "ivy.matrix_transpose"], [681, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[637, "ivy.outer"], [682, "ivy.outer"]], "pinv() (in module ivy)": [[637, "ivy.pinv"], [683, "ivy.pinv"]], "qr() (in module ivy)": [[637, "ivy.qr"], [684, "ivy.qr"]], "slogdet() (in module ivy)": [[637, "ivy.slogdet"], [685, "ivy.slogdet"]], "solve() (in module ivy)": [[637, "ivy.solve"], [686, "ivy.solve"]], "svd() (in module ivy)": [[637, "ivy.svd"], [687, "ivy.svd"]], "svdvals() (in module ivy)": [[637, "ivy.svdvals"], [688, "ivy.svdvals"]], "tensordot() (in module ivy)": [[637, "ivy.tensordot"], [689, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[637, "ivy.tensorsolve"], [690, "ivy.tensorsolve"]], "trace() (in module ivy)": [[637, "ivy.trace"], [691, "ivy.trace"]], "vander() (in module ivy)": [[637, "ivy.vander"], [692, "ivy.vander"]], "vecdot() (in module ivy)": [[637, "ivy.vecdot"], [693, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[637, "ivy.vector_norm"], [694, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[637, "ivy.vector_to_skew_symmetric_matrix"], [695, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[638, "ivy.binary_cross_entropy"], [696, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[638, "ivy.cross_entropy"], [697, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[638, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[638, "ivy.sparse_cross_entropy"], [698, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[639, "ivy.clip"], [699, "ivy.clip"]], "concat() (in module ivy)": [[639, "ivy.concat"], [700, "ivy.concat"]], "constant_pad() (in module ivy)": [[639, "ivy.constant_pad"], [701, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[639, "ivy.expand_dims"], [702, "ivy.expand_dims"]], "flip() (in module ivy)": [[639, "ivy.flip"], [703, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[639, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[639, "ivy.permute_dims"], [704, "ivy.permute_dims"]], "repeat() (in module ivy)": [[639, "ivy.repeat"], [705, "ivy.repeat"]], "reshape() (in module ivy)": [[639, "ivy.reshape"], [706, "ivy.reshape"]], "roll() (in module ivy)": [[639, "ivy.roll"], [707, "ivy.roll"]], "split() (in module ivy)": [[639, "ivy.split"], [708, "ivy.split"]], "squeeze() (in module ivy)": [[639, "ivy.squeeze"], [709, "ivy.squeeze"]], "stack() (in module ivy)": [[639, "ivy.stack"], [710, "ivy.stack"]], "swapaxes() (in module ivy)": [[639, "ivy.swapaxes"], [711, "ivy.swapaxes"]], "tile() (in module ivy)": [[639, "ivy.tile"], [712, "ivy.tile"]], "unstack() (in module ivy)": [[639, "ivy.unstack"], [713, "ivy.unstack"]], "zero_pad() (in module ivy)": [[639, "ivy.zero_pad"], [714, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[640, "ivy.fomaml_step"], [715, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[640, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[640, "ivy.maml_step"], [716, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[640, "ivy.reptile_step"], [717, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[641, "ivy.all_nested_indices"], [718, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[641, "ivy.copy_nest"], [719, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[641, "ivy.duplicate_array_index_chains"], [720, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[641, "ivy.index_nest"], [721, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[641, "ivy.insert_into_nest_at_index"], [722, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[641, "ivy.insert_into_nest_at_indices"], [723, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[641, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[641, "ivy.map"], [724, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[641, "ivy.map_nest_at_index"], [725, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[641, "ivy.map_nest_at_indices"], [726, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[641, "ivy.multi_index_nest"], [727, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[641, "ivy.nested_any"], [728, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[641, "ivy.nested_argwhere"], [729, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[641, "ivy.nested_map"], [730, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[641, "ivy.nested_multi_map"], [731, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[641, "ivy.prune_empty"], [732, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[641, "ivy.prune_nest_at_index"], [733, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[641, "ivy.prune_nest_at_indices"], [734, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[641, "ivy.set_nest_at_index"], [735, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[641, "ivy.set_nest_at_indices"], [736, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[642, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[642, "ivy.layer_norm"], [737, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[643, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[643, "ivy.multinomial"], [738, "ivy.multinomial"]], "randint() (in module ivy)": [[643, "ivy.randint"], [739, "ivy.randint"]], "random_normal() (in module ivy)": [[643, "ivy.random_normal"], [740, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[643, "ivy.random_uniform"], [741, "ivy.random_uniform"]], "seed() (in module ivy)": [[643, "ivy.seed"], [742, "ivy.seed"]], "shuffle() (in module ivy)": [[643, "ivy.shuffle"], [743, "ivy.shuffle"]], "argmax() (in module ivy)": [[644, "ivy.argmax"], [744, "ivy.argmax"]], "argmin() (in module ivy)": [[644, "ivy.argmin"], [745, "ivy.argmin"]], "argwhere() (in module ivy)": [[644, "ivy.argwhere"], [746, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[644, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[644, "ivy.nonzero"], [747, "ivy.nonzero"]], "where() (in module ivy)": [[644, "ivy.where"], [748, "ivy.where"]], "ivy.functional.ivy.set": [[645, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[645, "ivy.unique_all"], [749, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[645, "ivy.unique_counts"], [750, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[645, "ivy.unique_inverse"], [751, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[645, "ivy.unique_values"], [752, "ivy.unique_values"]], "argsort() (in module ivy)": [[646, "ivy.argsort"], [753, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[646, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[646, "ivy.msort"], [754, "ivy.msort"]], "searchsorted() (in module ivy)": [[646, "ivy.searchsorted"], [755, "ivy.searchsorted"]], "sort() (in module ivy)": [[646, "ivy.sort"], [756, "ivy.sort"]], "cumprod() (in module ivy)": [[647, "ivy.cumprod"], [757, "ivy.cumprod"]], "cumsum() (in module ivy)": [[647, "ivy.cumsum"], [758, "ivy.cumsum"]], "einsum() (in module ivy)": [[647, "ivy.einsum"], [759, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[647, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[647, "ivy.max"], [760, "ivy.max"]], "mean() (in module ivy)": [[647, "ivy.mean"], [761, "ivy.mean"]], "min() (in module ivy)": [[647, "ivy.min"], [762, "ivy.min"]], "prod() (in module ivy)": [[647, "ivy.prod"], [763, "ivy.prod"]], "std() (in module ivy)": [[647, "ivy.std"], [764, "ivy.std"]], "sum() (in module ivy)": [[647, "ivy.sum"], [765, "ivy.sum"]], "var() (in module ivy)": [[647, "ivy.var"], [766, "ivy.var"]], "all() (in module ivy)": [[648, "ivy.all"], [767, "ivy.all"]], "any() (in module ivy)": [[648, "ivy.any"], [768, "ivy.any"]], "ivy.functional.ivy.utility": [[648, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[648, "ivy.load"], [769, "ivy.load"]], "save() (in module ivy)": [[648, "ivy.save"], [770, "ivy.save"]], "conv1d() (ivy.array method)": [[650, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[650, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[651, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[651, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[652, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[652, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[653, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[653, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[654, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[654, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[655, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[655, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[658, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[658, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[659, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[659, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[660, "ivy.Array.linear"]], "linear() (ivy.container method)": [[660, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[662, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[662, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[663, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[663, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[666, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[666, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[667, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[667, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[668, "ivy.Array.cross"]], "cross() (ivy.container method)": [[668, "ivy.Container.cross"]], "det() (ivy.array method)": [[669, "ivy.Array.det"]], "det() (ivy.container method)": [[669, "ivy.Container.det"]], "diag() (ivy.array method)": [[670, "ivy.Array.diag"]], "diag() (ivy.container method)": [[670, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[671, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[671, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[673, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[673, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[674, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[674, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[675, "ivy.Array.inner"]], "inner() (ivy.container method)": [[675, "ivy.Container.inner"]], "inv() (ivy.array method)": [[676, "ivy.Array.inv"]], "inv() (ivy.container method)": [[676, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[677, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[677, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[678, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[678, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[679, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[679, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[680, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[680, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[681, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[681, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[682, "ivy.Array.outer"]], "outer() (ivy.container method)": [[682, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[683, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[683, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[684, "ivy.Array.qr"]], "qr() (ivy.container method)": [[684, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[685, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[685, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[686, "ivy.Array.solve"]], "solve() (ivy.container method)": [[686, "ivy.Container.solve"]], "svd() (ivy.array method)": [[687, "ivy.Array.svd"]], "svd() (ivy.container method)": [[687, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[688, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[688, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[689, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[689, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[690, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[690, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[691, "ivy.Array.trace"]], "trace() (ivy.container method)": [[691, "ivy.Container.trace"]], "vander() (ivy.array method)": [[692, "ivy.Array.vander"]], "vander() (ivy.container method)": [[692, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[693, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[693, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[694, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[694, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[695, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[695, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[696, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[696, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[697, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[697, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[698, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[698, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[699, "ivy.Array.clip"]], "clip() (ivy.container method)": [[699, "ivy.Container.clip"]], "concat() (ivy.array method)": [[700, "ivy.Array.concat"]], "concat() (ivy.container method)": [[700, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[701, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[701, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[702, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[702, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[703, "ivy.Array.flip"]], "flip() (ivy.container method)": [[703, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[704, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[704, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[705, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[705, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[706, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[706, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[707, "ivy.Array.roll"]], "roll() (ivy.container method)": [[707, "ivy.Container.roll"]], "split() (ivy.array method)": [[708, "ivy.Array.split"]], "split() (ivy.container method)": [[708, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[709, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[709, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[710, "ivy.Array.stack"]], "stack() (ivy.container method)": [[710, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[711, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[711, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[712, "ivy.Array.tile"]], "tile() (ivy.container method)": [[712, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[713, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[713, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[714, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[714, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[737, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[737, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[738, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[738, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[739, "ivy.Array.randint"]], "randint() (ivy.container method)": [[739, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[740, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[740, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[741, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[741, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[743, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[743, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[744, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[744, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[745, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[745, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[746, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[746, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[747, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[747, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[748, "ivy.Array.where"]], "where() (ivy.container method)": [[748, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[749, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[749, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[750, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[750, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[751, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[751, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[752, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[752, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[753, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[753, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[754, "ivy.Array.msort"]], "msort() (ivy.container method)": [[754, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[755, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[755, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[756, "ivy.Array.sort"]], "sort() (ivy.container method)": [[756, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[757, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[757, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[758, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[758, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[759, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[759, "ivy.Container.einsum"]], "max() (ivy.array method)": [[760, "ivy.Array.max"]], "max() (ivy.container method)": [[760, "ivy.Container.max"]], "mean() (ivy.array method)": [[761, "ivy.Array.mean"]], "mean() (ivy.container method)": [[761, "ivy.Container.mean"]], "min() (ivy.array method)": [[762, "ivy.Array.min"]], "min() (ivy.container method)": [[762, "ivy.Container.min"]], "prod() (ivy.array method)": [[763, "ivy.Array.prod"]], "prod() (ivy.container method)": [[763, "ivy.Container.prod"]], "std() (ivy.array method)": [[764, "ivy.Array.std"]], "std() (ivy.container method)": [[764, "ivy.Container.std"]], "sum() (ivy.array method)": [[765, "ivy.Array.sum"]], "sum() (ivy.container method)": [[765, "ivy.Container.sum"]], "var() (ivy.array method)": [[766, "ivy.Array.var"]], "var() (ivy.container method)": [[766, "ivy.Container.var"]], "all() (ivy.array method)": [[767, "ivy.Array.all"]], "all() (ivy.container method)": [[767, "ivy.Container.all"]], "any() (ivy.array method)": [[768, "ivy.Array.any"]], "any() (ivy.container method)": [[768, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[788, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[788, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[788, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[788, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[788, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[788, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[788, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[788, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[788, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[788, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[788, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[788, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[788, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[788, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[788, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[788, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[788, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[788, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[788, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[789, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[789, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[789, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[789, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[790, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[790, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[791, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[791, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[791, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[791, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[791, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[791, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[791, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[792, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[792, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[792, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[792, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[792, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[792, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[792, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[792, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[792, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[792, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[792, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[792, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[792, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[792, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[792, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[792, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[792, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[792, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[792, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[792, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[792, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[792, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[793, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[793, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[793, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[794, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[794, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[794, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[794, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[795, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[795, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[795, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[796, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[796, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[796, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[796, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[796, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[796, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[797, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[797, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[797, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[798, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[799, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[801, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[801, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[803, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[804, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[804, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[805, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[807, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[807, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[807, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[807, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[807, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[807, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[807, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[807, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[807, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[807, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[807, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[807, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[807, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[807, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[807, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[807, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[807, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[807, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[807, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[807, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[807, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[807, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[807, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[807, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[808, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[809, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[810, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[810, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[810, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[811, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[811, "module-ivy.utils.verbosity"]], "automatic code conversions": [[857, "term-Automatic-Code-Conversions"]], "backend handler": [[857, "term-Backend-Handler"]], "compositional functions": [[857, "term-Compositional-Functions"]], "convenience functions": [[857, "term-Convenience-Functions"]], "framework": [[857, "term-Framework"]], "framework handler": [[857, "term-Framework-Handler"]], "graph compiler": [[857, "term-Graph-Compiler"]], "ivy array": [[857, "term-Ivy-Array"]], "ivy backends": [[857, "term-Ivy-Backends"]], "ivy compiler": [[857, "term-Ivy-Compiler"]], "ivy container": [[857, "term-Ivy-Container"]], "ivy frontends": [[857, "term-Ivy-Frontends"]], "ivy functional api": [[857, "term-Ivy-Functional-API"]], "ivy tracer": [[857, "term-Ivy-Tracer"]], "ivy transpiler": [[857, "term-Ivy-Transpiler"]], "mixed functions": [[857, "term-Mixed-Functions"]], "native array": [[857, "term-Native-Array"]], "nestable functions": [[857, "term-Nestable-Functions"]], "pipeline": [[857, "term-Pipeline"]], "primary functions": [[857, "term-Primary-Functions"]], "standalone functions": [[857, "term-Standalone-Functions"]], "submodule helper functions": [[857, "term-Submodule-Helper-Functions"]], "built-in function": [[863, "ivy.trace_graph"], [864, "ivy.transpile"], [865, "ivy.unify"]], "ivy.trace_graph()": [[863, "ivy.trace_graph"]], "ivy.transpile()": [[864, "ivy.transpile"]], "ivy.unify()": [[865, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection", "demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/convnext_to_torch", "demos/examples_and_demos/dinov2_to_paddle", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_tensorflow_to_torch", "demos/examples_and_demos/lstm_torch_to_tensorflow", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection.ipynb", "demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/convnext_to_torch.ipynb", "demos/examples_and_demos/dinov2_to_paddle.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_tensorflow_to_torch.ipynb", "demos/examples_and_demos/lstm_torch_to_tensorflow.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Credit Card Fraud Detection using Ivy Framework", "Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Using TensorFlow Models in your PyTorch Projects", "How To Convert Models from PyTorch to PaddlePaddle", "Image Segmentation with Ivy UNet", "<no title>", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 168, 171, 172, 173, 175, 179, 180, 194, 197, 207, 213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 580, 586, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 722, 724, 725, 730, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 779, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "notebook": [0, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 46, 794, 812], "i": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 180, 192, 194, 196, 197, 199, 200, 202, 204, 207, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313, 315, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 427, 428, 429, 430, 432, 433, 434, 435, 437, 438, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 482, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 572, 573, 576, 577, 578, 580, 586, 590, 591, 592, 593, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 798, 801, 802, 805, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "dedic": [0, 789, 821, 836, 847, 851, 853], "task": [0, 1, 6, 48, 640, 715, 716, 717, 812, 813, 815, 819, 820, 821, 841, 842, 870, 876, 877], "util": [0, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 45, 48, 57, 80, 198, 376, 447, 631, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 819, 826, 830, 833, 834, 837, 840, 844, 845, 849, 864, 868, 876, 877], "power": [0, 22, 31, 32, 56, 57, 58, 62, 79, 80, 81, 85, 102, 103, 234, 243, 244, 278, 333, 346, 369, 372, 375, 423, 582, 593, 605, 632, 634, 637, 641, 679, 692, 724, 791, 846, 851, 852, 853, 870, 872, 876], "we": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 57, 62, 63, 64, 72, 80, 85, 86, 95, 97, 98, 118, 364, 374, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 494, 499, 545, 555, 595, 617, 618, 620, 625, 626, 634, 635, 637, 638, 639, 680, 696, 702, 703, 704, 706, 708, 709, 711, 713, 788, 794, 801, 806, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 866, 870, 871, 875, 876, 878], "emploi": [0, 14, 876], "build": [0, 9, 15, 19, 20, 22, 29, 31, 32, 35, 36, 37, 38, 43, 45, 50, 68, 74, 103, 645, 749, 750, 751, 752, 792, 793, 794, 812, 813, 819, 822, 828, 829, 837, 839, 848, 850, 853, 854, 855, 857, 860, 864, 868, 870, 872, 875, 876, 877], "The": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 133, 134, 136, 138, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 166, 167, 168, 170, 172, 173, 174, 177, 178, 180, 181, 183, 184, 185, 186, 192, 193, 194, 195, 196, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 427, 428, 429, 430, 432, 434, 446, 447, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 471, 473, 474, 475, 476, 480, 483, 484, 489, 490, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 513, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 573, 576, 577, 580, 582, 583, 586, 589, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 801, 805, 806, 812, 813, 814, 816, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 844, 845, 847, 848, 849, 852, 853, 854, 856, 857, 858, 859, 861, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "goal": [0, 20, 45, 247, 632, 812, 818, 821, 860, 870, 876], "accur": [0, 6, 245, 263, 632, 637, 685, 838], "distinguish": 0, "between": [0, 6, 14, 20, 21, 26, 36, 37, 38, 43, 56, 57, 58, 61, 62, 63, 64, 68, 74, 79, 80, 84, 85, 86, 87, 103, 126, 165, 228, 241, 276, 292, 334, 351, 353, 372, 375, 376, 377, 378, 387, 399, 400, 401, 412, 413, 414, 422, 428, 432, 453, 454, 455, 456, 457, 458, 459, 484, 532, 629, 630, 632, 636, 638, 639, 641, 643, 645, 659, 682, 696, 697, 698, 702, 710, 724, 739, 750, 751, 752, 777, 784, 796, 812, 824, 825, 829, 831, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 854, 859, 863, 864, 866, 867, 869, 870, 871, 876], "activ": [0, 6, 16, 29, 31, 32, 57, 58, 61, 72, 80, 84, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 295, 296, 297, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 595, 636, 663, 666, 791, 792, 810, 812, 819, 820, 829, 835, 845, 846, 853, 864, 870, 873], "therebi": [0, 6, 844], "enhanc": [0, 28, 31, 32, 812, 843, 864], "secur": 0, "usag": [0, 7, 213, 631, 829, 837, 840, 844, 849, 855, 860, 873], "befor": [0, 4, 5, 6, 8, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 38, 45, 57, 61, 62, 64, 68, 70, 74, 80, 84, 85, 93, 210, 213, 218, 375, 378, 387, 403, 408, 418, 422, 468, 475, 476, 477, 484, 523, 524, 631, 636, 637, 639, 640, 641, 645, 647, 649, 650, 651, 652, 654, 656, 658, 662, 663, 666, 677, 678, 694, 700, 715, 716, 730, 749, 750, 751, 752, 757, 758, 761, 763, 765, 773, 792, 801, 805, 818, 819, 820, 823, 824, 826, 829, 830, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 849, 852, 855, 863, 864, 870], "dive": [0, 14, 20, 22, 31, 43, 812, 813, 814, 817, 818, 820, 823, 827, 829, 835, 842, 848, 851, 852, 855, 876], "need": [0, 1, 4, 7, 11, 13, 20, 22, 28, 29, 31, 32, 45, 46, 47, 57, 58, 64, 80, 81, 87, 375, 376, 387, 398, 403, 404, 408, 429, 529, 540, 541, 562, 634, 636, 637, 639, 641, 663, 672, 699, 702, 729, 777, 812, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 851, 852, 855, 856, 861, 863, 864, 866, 870, 871, 872, 876], "up": [0, 4, 7, 8, 11, 13, 14, 31, 57, 58, 80, 81, 375, 378, 398, 411, 468, 476, 557, 569, 634, 636, 659, 661, 812, 813, 816, 818, 820, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861, 863, 871, 876, 877], "our": [0, 4, 6, 7, 11, 13, 14, 16, 18, 20, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 49, 72, 95, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 778, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 831, 833, 834, 835, 838, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 859, 860, 863, 875, 876, 878], "necessari": [0, 6, 7, 37, 53, 57, 76, 80, 87, 128, 240, 273, 377, 378, 452, 462, 463, 464, 470, 472, 473, 474, 475, 476, 483, 499, 585, 608, 632, 634, 702, 703, 704, 706, 708, 709, 711, 713, 812, 818, 819, 824, 825, 827, 829, 831, 840, 841, 844, 846, 847, 863, 864], "follow": [0, 1, 6, 7, 14, 25, 26, 27, 29, 31, 32, 35, 36, 37, 43, 46, 47, 57, 58, 59, 61, 62, 68, 74, 80, 81, 82, 84, 85, 134, 165, 168, 213, 223, 240, 247, 273, 275, 282, 283, 319, 369, 375, 377, 378, 381, 398, 411, 419, 457, 472, 484, 501, 503, 560, 561, 562, 592, 593, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 637, 641, 645, 663, 666, 678, 684, 694, 724, 730, 749, 750, 751, 752, 792, 796, 812, 814, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 863, 867, 870, 873], "command": [0, 45, 47, 814, 819, 823, 826, 828, 834, 835, 856], "which": [0, 1, 4, 6, 7, 9, 10, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 153, 155, 157, 163, 165, 168, 170, 173, 180, 192, 197, 201, 206, 208, 211, 212, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 322, 325, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 348, 350, 351, 352, 353, 355, 356, 357, 359, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 418, 419, 420, 422, 427, 430, 442, 445, 446, 447, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 489, 490, 491, 492, 493, 494, 496, 501, 503, 504, 505, 507, 508, 509, 510, 511, 512, 514, 515, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 574, 575, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 693, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 723, 724, 725, 726, 731, 733, 734, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 788, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 808, 810, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "an": [0, 1, 3, 4, 6, 7, 9, 10, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 175, 179, 180, 210, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 316, 317, 318, 320, 321, 328, 329, 330, 331, 332, 333, 335, 336, 338, 341, 345, 350, 354, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 407, 409, 411, 412, 413, 414, 417, 418, 419, 420, 421, 422, 423, 424, 426, 429, 430, 431, 456, 457, 461, 462, 463, 464, 468, 469, 470, 472, 479, 483, 484, 490, 492, 496, 498, 499, 501, 502, 503, 506, 508, 509, 511, 514, 515, 520, 521, 522, 523, 524, 525, 526, 529, 530, 533, 538, 540, 541, 549, 552, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 577, 580, 581, 590, 591, 595, 599, 600, 601, 614, 617, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 724, 737, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 781, 784, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 876, 877], "machin": [0, 6, 7, 12, 13, 26, 27, 28, 29, 34, 35, 43, 49, 57, 62, 80, 85, 165, 168, 376, 430, 630, 637, 680, 683, 812, 819, 823, 837, 857, 860, 868, 870, 872, 873, 874, 875, 876], "learn": [0, 6, 7, 14, 16, 18, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 43, 45, 57, 59, 82, 376, 377, 447, 452, 545, 616, 619, 621, 622, 623, 634, 635, 640, 715, 716, 717, 796, 812, 813, 817, 818, 819, 822, 823, 829, 834, 835, 837, 839, 848, 857, 859, 860, 868, 872, 873, 874, 875, 876, 877], "other": [0, 4, 6, 7, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 54, 56, 57, 58, 64, 70, 74, 77, 79, 80, 81, 87, 93, 97, 102, 103, 126, 141, 153, 179, 240, 245, 247, 263, 272, 273, 337, 341, 372, 378, 468, 469, 477, 534, 535, 629, 630, 632, 634, 643, 647, 700, 710, 741, 764, 766, 773, 778, 812, 816, 818, 819, 820, 821, 823, 824, 827, 828, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 856, 857, 860, 863, 864, 866, 868, 869, 870, 876, 877], "essenti": [0, 812, 815, 818, 825, 827, 830, 831, 837, 840, 841, 842, 859, 860, 876], "panda": [0, 14, 45, 47, 860, 867], "matplotlib": [0, 6, 7, 14, 26, 27, 28, 29, 45, 46, 47, 50], "scikit": [0, 14, 376, 447, 860], "torch": [0, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 48, 49, 50, 53, 58, 62, 72, 81, 85, 129, 167, 194, 195, 199, 209, 211, 216, 283, 335, 336, 372, 378, 496, 538, 562, 595, 629, 630, 631, 632, 634, 637, 640, 687, 716, 717, 773, 784, 789, 801, 810, 812, 816, 819, 820, 823, 824, 825, 826, 828, 829, 830, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 863, 864, 865, 876], "cryptographi": [0, 14], "These": [0, 14, 38, 57, 80, 376, 378, 387, 429, 483, 522, 636, 637, 663, 672, 673, 812, 815, 817, 818, 819, 820, 823, 827, 829, 831, 832, 836, 837, 840, 841, 844, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 864, 870, 874, 876, 877], "tool": [0, 14, 22, 31, 32, 812, 819, 820, 831, 835, 850, 854, 855, 858, 861, 864, 868, 869, 870, 871, 873, 876, 877], "provid": [0, 6, 9, 20, 22, 26, 29, 31, 32, 36, 37, 43, 49, 53, 57, 58, 62, 64, 67, 70, 71, 74, 76, 80, 81, 85, 87, 90, 93, 94, 122, 139, 141, 158, 159, 160, 161, 162, 170, 180, 192, 196, 209, 292, 375, 376, 378, 381, 387, 411, 419, 423, 428, 432, 445, 446, 450, 451, 468, 470, 479, 499, 501, 503, 532, 544, 576, 577, 628, 629, 630, 631, 632, 634, 636, 637, 639, 641, 644, 647, 648, 663, 679, 682, 693, 702, 703, 710, 722, 744, 764, 766, 767, 768, 777, 792, 796, 801, 802, 812, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 844, 845, 847, 851, 853, 855, 859, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 877], "robust": 0, "foundat": [0, 22, 860, 873], "manipul": [0, 57, 80, 840, 841, 845, 847, 849, 854, 859, 870], "4": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 117, 118, 126, 127, 128, 129, 132, 134, 136, 137, 138, 139, 140, 141, 143, 147, 149, 153, 154, 155, 163, 165, 168, 173, 175, 180, 197, 198, 206, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 321, 328, 330, 335, 336, 338, 340, 341, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 359, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 440, 446, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 467, 468, 469, 470, 471, 474, 475, 476, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 558, 560, 561, 562, 569, 576, 577, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 796, 805, 806, 812, 816, 818, 819, 825, 826, 827, 828, 829, 831, 834, 839, 842, 844, 847, 849, 851, 852, 853, 854, 861, 863, 870, 876, 877], "pip": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 49, 50, 812, 816, 819, 826, 835], "q": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 45, 46, 47, 57, 61, 62, 80, 84, 85, 362, 372, 376, 387, 429, 532, 636, 637, 641, 663, 666, 672, 673, 684, 726, 819, 820, 822, 842, 855], "r": [0, 4, 12, 45, 46, 57, 62, 74, 80, 85, 97, 98, 349, 364, 372, 374, 617, 635, 637, 639, 684, 713, 819, 820, 822, 839, 842, 878], "requir": [0, 6, 7, 26, 27, 28, 29, 36, 45, 46, 47, 50, 56, 57, 74, 79, 80, 274, 287, 291, 376, 378, 429, 430, 484, 632, 637, 639, 672, 673, 674, 710, 776, 784, 789, 806, 814, 818, 819, 824, 826, 828, 829, 830, 831, 832, 833, 835, 836, 838, 841, 842, 843, 844, 845, 847, 849, 851, 855, 864, 870, 876], "txt": [0, 4, 6, 12, 46, 58, 819, 823, 826], "16": [0, 4, 7, 8, 9, 10, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 102, 103, 168, 234, 263, 283, 290, 346, 349, 353, 372, 375, 378, 387, 394, 395, 397, 403, 407, 408, 412, 413, 418, 422, 457, 474, 523, 529, 546, 549, 571, 592, 593, 625, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 647, 658, 660, 667, 671, 674, 675, 682, 684, 688, 713, 726, 739, 740, 741, 748, 758, 759, 776, 779, 812, 820, 829, 831, 852], "mb": [0, 6, 7, 9, 10, 12, 45, 47, 50, 828], "25": [0, 14, 43, 45, 46, 47, 56, 57, 58, 62, 63, 66, 70, 73, 79, 80, 81, 84, 85, 88, 89, 93, 102, 103, 118, 137, 223, 224, 234, 240, 242, 253, 258, 273, 278, 281, 283, 286, 287, 288, 293, 315, 369, 377, 387, 418, 453, 456, 523, 532, 560, 561, 577, 592, 629, 632, 634, 637, 638, 641, 642, 647, 650, 667, 671, 676, 692, 697, 719, 726, 730, 737, 739, 740, 741, 758, 759, 761, 766, 821, 827, 839], "1": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 149, 152, 153, 154, 155, 159, 163, 164, 165, 168, 173, 175, 180, 196, 197, 201, 205, 206, 208, 209, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 325, 326, 328, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 442, 445, 446, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 784, 788, 791, 792, 793, 794, 795, 796, 797, 801, 805, 806, 810, 812, 815, 816, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 854, 855, 860, 861, 863, 864, 865, 878], "": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 46, 48, 49, 50, 53, 57, 58, 59, 62, 70, 80, 82, 85, 93, 122, 139, 145, 146, 166, 167, 196, 199, 200, 212, 247, 282, 329, 334, 335, 336, 338, 349, 351, 357, 361, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 391, 398, 404, 409, 420, 428, 432, 440, 449, 454, 456, 457, 473, 475, 476, 484, 501, 502, 503, 512, 522, 532, 550, 551, 557, 571, 594, 595, 616, 618, 619, 620, 621, 623, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 663, 670, 678, 680, 687, 688, 694, 730, 764, 766, 777, 791, 792, 793, 794, 795, 796, 797, 801, 810, 812, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 857, 860, 861, 862, 863, 864, 865, 866, 869, 870, 871, 873, 874, 875, 876], "eta": [0, 7, 9, 10, 45, 47, 50], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 141, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 168, 169, 173, 175, 180, 193, 196, 198, 201, 206, 207, 208, 209, 211, 212, 213, 215, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 328, 329, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 394, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 418, 419, 420, 422, 425, 426, 427, 429, 430, 431, 434, 435, 437, 440, 441, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 467, 469, 470, 471, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 539, 540, 541, 544, 545, 546, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 574, 576, 577, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 609, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 788, 789, 791, 792, 793, 794, 795, 796, 797, 798, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 827, 828, 829, 830, 831, 832, 833, 834, 839, 840, 841, 842, 844, 845, 849, 851, 852, 853, 854, 855, 863, 864], "00": [0, 6, 7, 9, 10, 12, 14, 45, 47, 50, 57, 58, 62, 80, 81, 85, 245, 312, 343, 344, 369, 375, 397, 403, 407, 408, 549, 593, 632, 634, 637, 674, 684, 776, 835, 844], "44": [0, 6, 7, 9, 10, 43, 47, 56, 57, 66, 79, 80, 89, 226, 273, 283, 287, 288, 339, 372, 375, 396, 397, 632, 636, 637, 641, 644, 647, 659, 682, 726, 739, 740, 748, 759], "6": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 69, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 98, 102, 103, 110, 112, 117, 122, 127, 128, 135, 136, 139, 140, 143, 149, 153, 154, 155, 163, 165, 173, 219, 220, 222, 223, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 263, 264, 265, 266, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 294, 296, 297, 299, 301, 303, 305, 306, 307, 309, 310, 311, 312, 313, 319, 330, 335, 336, 338, 340, 349, 350, 352, 353, 354, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 385, 387, 397, 399, 402, 403, 407, 408, 412, 418, 419, 420, 422, 425, 428, 431, 432, 436, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 475, 479, 480, 483, 484, 489, 490, 492, 493, 496, 499, 500, 510, 512, 513, 515, 520, 522, 523, 524, 525, 527, 529, 531, 532, 538, 540, 541, 544, 545, 546, 552, 553, 560, 561, 562, 577, 591, 592, 593, 594, 595, 597, 601, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 729, 730, 736, 737, 738, 739, 740, 741, 743, 744, 745, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 776, 791, 812, 816, 819, 823, 825, 827, 828, 829, 831, 834, 839, 844, 847, 849, 851, 852, 853], "kb": [0, 6, 7, 9, 10, 12, 45, 47, 50], "3": [0, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 136, 137, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 194, 196, 197, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 392, 394, 395, 396, 397, 399, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 443, 446, 448, 451, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 576, 577, 590, 591, 592, 593, 597, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 779, 792, 805, 806, 810, 812, 816, 818, 819, 823, 824, 825, 827, 828, 829, 831, 833, 834, 837, 839, 842, 844, 849, 851, 852, 853, 854, 863, 864, 877], "45": [0, 7, 9, 10, 43, 45, 47, 56, 57, 70, 79, 80, 82, 84, 89, 103, 224, 228, 240, 283, 284, 343, 344, 357, 372, 375, 387, 397, 407, 418, 523, 529, 615, 621, 632, 635, 637, 639, 647, 682, 708, 740, 741, 759, 776], "5": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 23, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 126, 127, 128, 134, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 153, 154, 155, 159, 163, 165, 173, 175, 180, 197, 206, 211, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 330, 333, 335, 336, 338, 340, 342, 344, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 425, 428, 429, 431, 432, 434, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 478, 479, 480, 483, 484, 489, 490, 491, 492, 493, 494, 496, 499, 500, 505, 506, 507, 510, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 529, 532, 538, 539, 540, 541, 544, 545, 546, 547, 549, 552, 553, 555, 558, 560, 561, 562, 576, 577, 581, 592, 593, 594, 595, 597, 601, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 658, 659, 660, 662, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 687, 688, 689, 691, 692, 693, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 792, 805, 806, 812, 815, 818, 819, 820, 823, 825, 827, 828, 829, 831, 833, 834, 836, 839, 842, 844, 851, 852, 853, 864, 878], "143": [0, 7, 9, 10, 62, 79, 103, 290, 632, 637, 675, 831], "8": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 102, 103, 110, 125, 135, 136, 140, 143, 149, 158, 160, 161, 162, 165, 173, 198, 215, 223, 225, 226, 230, 231, 234, 235, 236, 238, 244, 247, 251, 252, 258, 259, 260, 264, 265, 268, 269, 271, 272, 273, 278, 279, 282, 283, 284, 287, 288, 291, 292, 293, 297, 303, 305, 306, 307, 309, 310, 312, 313, 330, 334, 346, 349, 351, 352, 353, 356, 363, 367, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 425, 428, 436, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 479, 480, 489, 490, 493, 494, 495, 496, 499, 500, 510, 512, 524, 527, 528, 532, 538, 539, 545, 546, 549, 552, 556, 560, 561, 562, 564, 565, 568, 571, 576, 577, 581, 591, 592, 593, 594, 595, 615, 618, 620, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 650, 654, 655, 657, 658, 659, 660, 663, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 703, 710, 711, 713, 719, 726, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 779, 792, 819, 827, 828, 831, 844, 848, 852], "7": [0, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 24, 26, 27, 28, 29, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 112, 113, 114, 115, 126, 127, 128, 137, 140, 141, 159, 165, 168, 198, 220, 223, 226, 230, 231, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 246, 247, 250, 251, 252, 257, 258, 259, 260, 261, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 283, 284, 285, 287, 290, 291, 293, 294, 296, 297, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 318, 319, 330, 334, 338, 340, 341, 349, 350, 351, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 417, 418, 419, 420, 422, 425, 428, 441, 453, 454, 455, 456, 458, 459, 462, 463, 464, 468, 470, 474, 479, 480, 483, 484, 489, 490, 492, 493, 495, 496, 499, 500, 510, 512, 513, 520, 523, 524, 526, 527, 532, 538, 540, 541, 545, 546, 549, 560, 561, 562, 569, 576, 577, 592, 595, 615, 616, 618, 619, 620, 621, 622, 623, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 655, 657, 658, 659, 660, 666, 668, 669, 670, 671, 673, 674, 675, 677, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 696, 697, 698, 699, 702, 703, 708, 710, 711, 713, 718, 719, 726, 730, 737, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 757, 758, 759, 761, 763, 765, 766, 776, 819, 820, 825, 827, 828, 831, 837, 840, 844], "9": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 73, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93, 102, 103, 110, 126, 127, 128, 140, 158, 159, 160, 161, 162, 165, 168, 221, 223, 225, 226, 229, 230, 231, 234, 235, 240, 241, 242, 247, 254, 260, 261, 262, 264, 268, 269, 271, 272, 273, 276, 278, 279, 283, 284, 287, 288, 289, 294, 300, 303, 304, 305, 342, 345, 349, 355, 356, 363, 367, 372, 373, 375, 377, 378, 385, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 436, 453, 455, 457, 458, 462, 463, 464, 470, 474, 479, 489, 490, 491, 492, 494, 496, 499, 510, 512, 515, 524, 541, 545, 546, 547, 549, 552, 560, 561, 564, 565, 568, 576, 577, 591, 592, 594, 615, 616, 617, 621, 622, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 646, 647, 650, 651, 652, 658, 659, 660, 668, 669, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 699, 703, 707, 708, 710, 711, 713, 718, 719, 724, 726, 729, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 796, 827, 829, 831, 839, 844, 852, 853, 866], "756": [0, 7, 9, 10], "21": [0, 4, 7, 9, 14, 43, 45, 47, 50, 56, 57, 58, 66, 76, 79, 80, 84, 85, 89, 93, 102, 138, 168, 223, 226, 228, 234, 258, 273, 304, 356, 375, 376, 377, 378, 387, 394, 397, 407, 412, 418, 420, 422, 426, 452, 467, 523, 577, 629, 630, 632, 634, 637, 641, 647, 671, 682, 686, 724, 739, 740, 757, 758, 759, 833, 839], "116": [0, 7, 9, 10], "23": [0, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 62, 66, 76, 79, 80, 81, 84, 89, 136, 235, 238, 255, 256, 257, 280, 282, 283, 284, 286, 293, 338, 339, 372, 375, 378, 387, 394, 395, 397, 407, 412, 413, 414, 418, 422, 467, 523, 529, 629, 632, 636, 637, 641, 644, 655, 657, 671, 675, 678, 686, 688, 689, 719, 726, 730, 739, 740, 741, 748, 812, 828, 844, 849], "29": [0, 6, 14, 43, 45, 47, 50, 62, 79, 81, 82, 84, 89, 228, 387, 418, 523, 545, 546, 617, 621, 632, 634, 635, 637, 675, 739, 740, 741], "823": 0, "46": [0, 6, 43, 45, 47, 57, 66, 80, 84, 89, 138, 263, 284, 314, 369, 375, 395, 413, 414, 629, 632, 641, 719, 739, 740], "14": [0, 4, 6, 8, 11, 12, 27, 43, 45, 46, 47, 54, 56, 57, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 152, 165, 168, 221, 226, 228, 235, 239, 265, 269, 273, 279, 286, 294, 345, 375, 376, 378, 387, 394, 395, 396, 397, 407, 412, 414, 417, 418, 419, 422, 426, 432, 433, 468, 470, 474, 479, 499, 523, 592, 615, 630, 632, 634, 635, 636, 637, 639, 641, 645, 647, 650, 651, 653, 655, 657, 659, 671, 673, 675, 682, 689, 691, 693, 713, 730, 739, 740, 741, 749, 758, 759, 827, 831, 844], "731": [0, 51, 116], "945": 0, "410": 0, "2": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 196, 197, 198, 201, 204, 206, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 319, 320, 321, 328, 330, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 391, 394, 395, 396, 397, 398, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 779, 788, 791, 792, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 826, 827, 828, 829, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 863, 864, 865, 876, 877], "121": 0, "56": [0, 12, 14, 43, 45, 56, 57, 61, 66, 79, 80, 84, 138, 273, 287, 290, 293, 375, 397, 407, 615, 629, 632, 635, 636, 637, 641, 647, 651, 653, 655, 657, 660, 682, 718, 740, 759, 831], "124": [0, 636, 660], "196": [0, 84, 636, 660], "166": [0, 73, 110, 626], "99": [0, 14, 43, 56, 57, 59, 77, 79, 89, 135, 222, 237, 360, 372, 592, 619, 629, 632, 634, 635, 641, 647, 722, 730, 740, 759], "11": [0, 4, 6, 7, 8, 12, 13, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 58, 61, 62, 66, 70, 79, 80, 81, 84, 85, 87, 89, 93, 103, 223, 227, 230, 235, 245, 282, 283, 289, 353, 372, 375, 376, 378, 394, 395, 407, 412, 413, 417, 418, 422, 431, 467, 468, 470, 474, 479, 481, 499, 523, 524, 539, 545, 546, 552, 561, 577, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 647, 650, 651, 659, 660, 671, 674, 675, 676, 677, 678, 682, 686, 687, 688, 689, 691, 693, 696, 703, 708, 709, 711, 713, 724, 726, 736, 739, 740, 741, 748, 749, 757, 758, 759, 766, 827, 828, 829, 831, 839], "71": [0, 43, 56, 79, 84, 239, 279, 418, 632], "To": [0, 1, 6, 12, 13, 14, 16, 18, 22, 26, 27, 28, 29, 31, 32, 43, 46, 47, 48, 98, 247, 377, 456, 586, 632, 634, 791, 812, 818, 819, 823, 824, 825, 826, 829, 831, 833, 834, 835, 837, 838, 841, 842, 843, 844, 845, 852, 853, 854, 856, 863, 864], "ensur": [0, 1, 12, 13, 16, 18, 26, 27, 28, 29, 57, 58, 80, 81, 375, 376, 412, 413, 414, 447, 562, 634, 771, 812, 815, 818, 819, 820, 824, 829, 830, 831, 833, 835, 836, 838, 840, 841, 842, 843, 844, 845, 856, 870], "begin": [0, 7, 27, 57, 80, 284, 377, 378, 452, 468, 484, 485, 486, 487, 488, 632, 641, 718, 729, 776, 819, 823, 828, 842], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 70, 79, 80, 81, 147, 176, 194, 199, 224, 284, 307, 328, 369, 387, 522, 529, 538, 562, 592, 595, 599, 629, 630, 631, 632, 634, 637, 647, 685, 759, 771, 773, 784, 801, 805, 806, 812, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 833, 834, 836, 840, 842, 844, 845, 847, 849, 851, 854, 856, 857, 859, 860, 863, 864, 865, 867, 872, 877], "handl": [0, 4, 8, 43, 45, 51, 55, 56, 57, 73, 74, 78, 79, 80, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 193, 194, 195, 196, 197, 201, 206, 207, 215, 219, 225, 237, 262, 264, 278, 284, 285, 290, 291, 295, 300, 301, 303, 367, 378, 467, 493, 626, 631, 632, 637, 647, 691, 763, 765, 788, 796, 813, 815, 822, 827, 828, 829, 835, 836, 837, 839, 840, 841, 842, 843, 844, 846, 847, 853, 867, 877], "its": [0, 1, 6, 13, 22, 24, 31, 32, 34, 37, 44, 45, 47, 52, 54, 57, 64, 74, 77, 80, 81, 87, 100, 112, 115, 118, 123, 153, 158, 159, 160, 161, 162, 213, 240, 273, 292, 302, 367, 375, 378, 387, 415, 423, 496, 498, 525, 549, 598, 626, 628, 630, 631, 632, 634, 637, 639, 641, 677, 702, 706, 707, 711, 724, 773, 806, 812, 818, 819, 824, 827, 828, 829, 830, 832, 833, 834, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 854, 855, 857, 863, 869, 870, 876], "backend": [0, 4, 6, 7, 9, 10, 13, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 37, 52, 53, 57, 58, 62, 74, 80, 81, 85, 102, 129, 166, 167, 170, 192, 199, 200, 202, 205, 216, 335, 336, 372, 376, 428, 430, 529, 538, 550, 551, 559, 562, 563, 573, 580, 595, 598, 629, 630, 631, 634, 637, 685, 687, 771, 773, 774, 776, 777, 778, 781, 783, 784, 789, 793, 794, 796, 800, 801, 812, 816, 817, 819, 820, 822, 823, 824, 828, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 848, 850, 851, 854, 857, 859, 863, 864, 865, 870, 873, 876, 877], "jax": [0, 3, 6, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 49, 51, 56, 57, 58, 68, 73, 79, 80, 81, 110, 111, 112, 113, 114, 115, 116, 117, 118, 209, 291, 295, 300, 301, 303, 349, 367, 372, 387, 532, 562, 595, 614, 626, 631, 632, 634, 645, 749, 750, 751, 752, 784, 788, 801, 812, 816, 817, 818, 819, 820, 823, 825, 829, 830, 833, 834, 836, 839, 840, 841, 842, 844, 845, 847, 849, 851, 854, 855, 860, 861, 863, 864, 865, 871, 873, 876, 877], "capabl": [0, 6, 20, 28, 32, 844, 847], "optim": [0, 6, 7, 11, 13, 14, 22, 26, 27, 29, 31, 32, 45, 47, 48, 50, 57, 59, 80, 82, 312, 369, 377, 456, 457, 536, 623, 634, 635, 640, 715, 716, 717, 791, 806, 812, 829, 840, 847, 850, 852, 854, 861, 864, 868, 869, 870, 871, 872, 873, 874, 877], "frontend": [0, 14, 579, 634, 773, 774, 777, 781, 784, 812, 817, 820, 822, 828, 829, 833, 834, 839, 843, 844, 847, 848, 850, 857, 864, 870], "xgb_frontend": 0, "access": [0, 1, 28, 31, 32, 74, 812, 818, 819, 820, 828, 829, 835, 840, 841, 856, 864, 870, 872, 874], "compat": [0, 6, 9, 23, 29, 33, 37, 43, 50, 56, 57, 62, 64, 67, 70, 71, 79, 80, 85, 87, 90, 93, 94, 102, 103, 154, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 294, 335, 336, 372, 630, 632, 637, 639, 644, 647, 648, 668, 680, 683, 686, 689, 693, 694, 706, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 819, 825, 836, 841, 842, 845, 849, 855, 860], "manner": [0, 24, 32, 34, 44, 52, 75, 641, 730, 819, 829, 830, 832, 837, 841, 845, 852, 855, 859, 866, 868, 876, 877], "sklearn": [0, 14], "model_select": [0, 14], "timeit": [0, 11, 13, 14, 24, 31, 32, 48, 50], "oper": [0, 6, 22, 23, 26, 27, 28, 29, 31, 32, 33, 37, 44, 47, 53, 54, 56, 57, 58, 61, 62, 70, 74, 76, 77, 79, 80, 81, 84, 85, 93, 103, 118, 137, 138, 180, 210, 218, 223, 225, 234, 237, 240, 247, 262, 264, 273, 274, 278, 282, 285, 290, 302, 310, 330, 331, 332, 364, 367, 369, 374, 375, 377, 378, 389, 390, 391, 392, 394, 395, 396, 402, 403, 404, 408, 412, 413, 414, 415, 417, 418, 420, 422, 423, 452, 489, 491, 538, 545, 546, 547, 595, 626, 629, 630, 631, 632, 634, 636, 637, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 663, 678, 689, 691, 761, 763, 765, 776, 779, 792, 806, 810, 812, 818, 819, 822, 823, 824, 827, 829, 830, 831, 832, 833, 837, 840, 841, 844, 847, 849, 852, 853, 857, 859, 863, 866, 867, 868, 869, 870, 871, 873, 874, 875, 876, 877], "xgb": 0, "functool": [0, 14, 45, 833, 841, 851], "higher": [0, 14, 57, 80, 376, 378, 387, 433, 445, 451, 462, 463, 464, 532, 791, 829, 840, 848, 849, 854, 855, 867, 870, 871, 874, 876, 877], "order": [0, 4, 25, 35, 37, 45, 48, 50, 53, 57, 58, 61, 62, 64, 68, 69, 74, 80, 84, 85, 87, 91, 92, 97, 102, 103, 127, 128, 139, 147, 228, 247, 290, 328, 349, 369, 372, 375, 376, 378, 381, 385, 421, 426, 429, 430, 431, 432, 433, 437, 443, 445, 448, 451, 474, 475, 476, 481, 482, 494, 501, 502, 503, 506, 515, 629, 632, 636, 637, 639, 640, 644, 645, 646, 650, 651, 652, 653, 654, 655, 658, 672, 673, 678, 687, 688, 692, 694, 703, 706, 715, 716, 747, 749, 750, 751, 752, 753, 755, 756, 773, 795, 797, 806, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 841, 842, 843, 844, 845, 846, 847, 852, 854, 855, 859, 866, 869, 870, 871, 873, 876], "callabl": [0, 12, 49, 57, 58, 72, 80, 81, 84, 95, 122, 123, 125, 166, 167, 199, 200, 213, 363, 365, 366, 373, 374, 375, 378, 418, 421, 423, 461, 484, 535, 539, 544, 546, 550, 551, 572, 601, 614, 618, 620, 625, 628, 630, 631, 634, 635, 640, 641, 715, 716, 717, 724, 725, 726, 728, 729, 730, 731, 771, 774, 784, 796, 807, 810, 827, 833, 839, 841, 849, 862, 863, 864, 865], "object": [0, 14, 22, 27, 29, 31, 45, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 106, 107, 129, 133, 134, 144, 156, 165, 168, 176, 179, 214, 272, 509, 557, 573, 617, 629, 630, 631, 634, 635, 641, 643, 721, 722, 723, 725, 726, 727, 733, 734, 735, 736, 743, 771, 773, 774, 781, 782, 783, 789, 790, 792, 793, 794, 801, 805, 812, 824, 825, 827, 828, 837, 838, 841, 842, 844, 847, 851, 854, 862, 863, 864, 865, 870, 876], "tqdm_notebook": [0, 14], "tqdm": [0, 6, 7, 14, 26, 27, 28, 29, 45, 47, 812], "progress": [0, 637, 692, 815, 819, 820, 854], "bar": [0, 819, 834], "jupyt": [0, 1, 860, 872], "lai": 0, "groundwork": 0, "preprocess": [0, 4, 12, 14, 31, 32, 45, 48, 863], "step": [0, 1, 2, 6, 7, 17, 18, 19, 30, 31, 32, 43, 45, 46, 47, 57, 59, 76, 80, 82, 126, 137, 375, 378, 421, 423, 478, 615, 616, 619, 621, 622, 623, 629, 635, 640, 715, 716, 717, 796, 810, 812, 818, 819, 820, 821, 824, 825, 827, 828, 829, 830, 831, 834, 839, 841, 844, 849, 852, 853, 854, 861, 870], "np": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 53, 57, 79, 80, 81, 127, 128, 129, 140, 176, 253, 257, 307, 375, 376, 403, 408, 424, 592, 629, 630, 632, 634, 641, 724, 773, 801, 805, 806, 812, 818, 824, 829, 830, 833, 836, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 857, 865], "pd": [0, 14, 47], "set_backend": [0, 4, 5, 8, 12, 14, 22, 23, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 44, 46, 47, 48, 56, 58, 72, 79, 81, 167, 176, 194, 195, 199, 209, 211, 216, 224, 538, 562, 630, 631, 634, 637, 640, 685, 716, 717, 801, 812, 823, 825, 829, 830, 837, 838, 839, 849, 851, 854, 863, 864, 865], "config": [0, 5, 6, 7, 8, 11, 13, 14, 25, 28, 31, 32, 45, 46, 48, 74, 641, 731, 812, 819, 823, 826, 828, 835, 842, 852, 863, 871], "updat": [0, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 45, 47, 52, 58, 59, 74, 81, 82, 97, 378, 489, 562, 576, 577, 580, 581, 604, 615, 616, 619, 621, 622, 623, 634, 635, 636, 640, 641, 659, 662, 715, 716, 717, 725, 726, 730, 735, 736, 784, 789, 795, 796, 801, 806, 812, 818, 819, 820, 822, 823, 824, 827, 828, 829, 831, 836, 838, 839, 841, 842, 844, 847, 849, 851, 852, 854, 855], "jax_enable_x64": [0, 5, 8, 11, 13, 14, 25, 28, 31, 32, 812], "true": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 25, 26, 28, 29, 31, 32, 36, 37, 38, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 163, 165, 166, 167, 168, 171, 172, 173, 174, 175, 176, 177, 180, 192, 196, 197, 199, 200, 204, 207, 208, 210, 214, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 471, 472, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 781, 792, 793, 794, 795, 796, 798, 801, 803, 805, 806, 810, 812, 816, 819, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "from": [0, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 94, 95, 97, 98, 100, 103, 126, 128, 131, 133, 134, 135, 136, 139, 140, 143, 147, 149, 155, 173, 179, 180, 196, 201, 206, 212, 213, 239, 247, 248, 275, 279, 280, 287, 291, 312, 313, 319, 322, 328, 330, 331, 332, 339, 342, 346, 347, 349, 350, 362, 366, 369, 372, 374, 375, 376, 377, 378, 382, 387, 399, 400, 401, 415, 420, 421, 440, 447, 452, 453, 457, 467, 470, 479, 484, 490, 492, 493, 495, 496, 498, 499, 508, 509, 510, 511, 512, 523, 524, 544, 552, 553, 555, 575, 586, 597, 614, 616, 617, 621, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 645, 647, 648, 650, 658, 659, 668, 671, 687, 691, 692, 693, 700, 703, 706, 709, 715, 716, 717, 719, 730, 731, 732, 738, 739, 740, 741, 745, 748, 749, 751, 757, 758, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 796, 801, 806, 810, 812, 813, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877], "classification_report": [0, 14], "train_test_split": [0, 14], "usr": [0, 7, 8, 9, 10, 11, 13, 45, 46, 47, 50, 819], "local": [0, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 45, 46, 47, 50, 381, 506, 557, 634, 813, 819, 823, 826, 834, 837, 842, 844], "lib": [0, 7, 8, 9, 10, 14, 26, 27, 28, 29, 45, 46, 47, 50], "python3": [0, 7, 8, 9, 10, 12, 26, 27, 28, 29, 31, 45, 47, 50, 819, 820], "10": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 47, 49, 50, 53, 56, 57, 58, 59, 61, 62, 66, 68, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 126, 136, 137, 138, 222, 230, 231, 234, 235, 238, 245, 250, 252, 258, 260, 262, 273, 279, 286, 287, 292, 301, 334, 335, 336, 339, 343, 344, 346, 348, 349, 351, 352, 353, 355, 356, 360, 363, 372, 375, 378, 387, 394, 395, 396, 397, 407, 412, 413, 417, 418, 419, 420, 422, 452, 464, 467, 470, 474, 479, 489, 490, 499, 520, 523, 524, 527, 529, 532, 545, 546, 547, 549, 552, 553, 555, 560, 561, 569, 577, 581, 586, 592, 594, 606, 609, 621, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 659, 669, 671, 675, 676, 677, 678, 679, 682, 687, 688, 689, 691, 693, 703, 708, 709, 710, 711, 713, 724, 726, 729, 737, 738, 739, 740, 741, 747, 749, 755, 757, 758, 759, 760, 762, 763, 765, 766, 776, 778, 796, 812, 816, 819, 823, 827, 828, 829, 831, 834, 839, 842, 844, 849, 851, 852, 860, 865, 875], "dist": [0, 7, 8, 9, 10, 45, 46, 47, 50], "packag": [0, 2, 4, 7, 8, 9, 10, 12, 13, 16, 26, 27, 28, 29, 32, 45, 46, 47, 50, 804, 816, 819, 828, 841, 855, 856, 870, 872], "except": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 50, 57, 58, 64, 66, 71, 74, 80, 81, 85, 89, 94, 154, 335, 336, 341, 360, 372, 378, 382, 387, 468, 492, 496, 509, 528, 529, 544, 562, 579, 595, 601, 630, 634, 637, 639, 643, 644, 648, 683, 700, 702, 710, 739, 740, 741, 747, 767, 768, 771, 774, 778, 812, 820, 821, 822, 823, 824, 828, 829, 830, 832, 834, 836, 840, 841, 845, 846, 847, 851, 855], "py": [0, 6, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 45, 47, 50, 93, 376, 447, 759, 801, 805, 812, 818, 819, 820, 823, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 841, 842, 844, 845, 849, 851, 853, 854], "383": [0, 7, 9, 10, 23], "userwarn": [0, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 50], "current": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 45, 46, 52, 57, 58, 74, 80, 103, 122, 166, 167, 170, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 206, 208, 376, 378, 428, 429, 484, 492, 550, 551, 554, 557, 559, 563, 574, 575, 595, 628, 630, 631, 634, 637, 641, 672, 718, 728, 729, 773, 777, 793, 794, 801, 802, 806, 809, 810, 812, 814, 818, 819, 820, 823, 825, 827, 828, 829, 830, 833, 834, 835, 837, 840, 841, 842, 843, 844, 847, 849, 854, 855, 861, 863, 870, 876, 877], "39": [0, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 26, 27, 28, 29, 43, 45, 46, 47, 48, 50, 51, 56, 57, 62, 66, 73, 79, 80, 82, 85, 89, 112, 226, 261, 263, 265, 295, 296, 299, 367, 375, 387, 395, 397, 414, 417, 523, 615, 626, 632, 635, 637, 647, 675, 682, 740, 759], "doe": [0, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 44, 46, 56, 57, 58, 64, 74, 79, 80, 87, 97, 147, 274, 276, 284, 328, 369, 376, 377, 387, 388, 429, 456, 457, 528, 529, 533, 562, 629, 632, 634, 637, 639, 672, 708, 771, 806, 816, 818, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 855, 857, 860, 863, 866, 870, 871, 877], "support": [0, 5, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 34, 46, 55, 57, 58, 62, 78, 80, 81, 85, 147, 166, 170, 192, 199, 214, 223, 240, 247, 268, 269, 273, 283, 302, 328, 349, 367, 369, 372, 376, 378, 411, 429, 438, 492, 538, 550, 559, 562, 563, 580, 595, 629, 630, 631, 632, 634, 636, 637, 660, 672, 673, 674, 678, 687, 694, 771, 777, 784, 796, 801, 802, 805, 810, 812, 814, 816, 818, 819, 820, 823, 824, 826, 830, 831, 832, 834, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 851, 852, 854, 856, 857, 859, 860, 861, 864, 867, 869, 870, 873, 875, 876, 877], "inplac": [0, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 52, 58, 74, 81, 97, 100, 536, 538, 559, 562, 563, 580, 581, 634, 641, 725, 726, 730, 735, 736, 783, 784, 789, 796, 822, 824, 831, 834, 836, 838, 841, 847, 851, 853], "nativ": [0, 4, 5, 6, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 52, 53, 54, 55, 58, 75, 78, 81, 102, 106, 140, 150, 151, 157, 158, 159, 160, 161, 162, 176, 179, 194, 195, 196, 197, 207, 215, 219, 562, 564, 568, 575, 580, 598, 629, 630, 631, 634, 773, 784, 789, 801, 812, 816, 818, 829, 830, 833, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 857, 863, 864, 865, 868, 877], "would": [0, 6, 7, 8, 9, 10, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 47, 53, 55, 57, 76, 78, 80, 87, 113, 117, 128, 214, 375, 378, 403, 408, 462, 463, 470, 472, 474, 475, 476, 483, 487, 499, 626, 631, 702, 703, 704, 706, 708, 709, 711, 713, 778, 788, 792, 812, 813, 816, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 831, 832, 834, 836, 838, 840, 841, 842, 844, 845, 847, 848, 849, 851, 853, 854, 855, 856, 860, 863, 870, 876], "quietli": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29], "new": [0, 1, 7, 9, 10, 11, 13, 15, 16, 18, 20, 23, 26, 27, 28, 29, 31, 32, 33, 47, 49, 52, 57, 58, 59, 64, 65, 74, 76, 80, 81, 82, 85, 87, 88, 130, 133, 135, 136, 141, 142, 143, 148, 149, 186, 209, 229, 275, 277, 281, 334, 339, 351, 356, 372, 375, 378, 387, 411, 460, 468, 469, 483, 489, 496, 529, 545, 546, 547, 549, 552, 553, 555, 576, 577, 580, 582, 589, 592, 593, 599, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 639, 641, 642, 663, 675, 682, 702, 706, 710, 723, 735, 736, 737, 789, 792, 795, 796, 801, 806, 812, 813, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 831, 832, 834, 835, 838, 840, 841, 842, 843, 844, 845, 847, 848, 851, 854, 856, 857, 859, 860, 861, 863, 868, 872, 876, 877], "when": [0, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 46, 48, 52, 53, 54, 56, 57, 62, 63, 66, 67, 70, 74, 76, 77, 79, 80, 85, 86, 89, 90, 93, 103, 141, 152, 223, 240, 245, 247, 263, 273, 291, 292, 300, 335, 336, 367, 372, 375, 376, 377, 381, 382, 387, 398, 411, 423, 430, 434, 445, 451, 452, 457, 501, 503, 509, 529, 532, 562, 578, 586, 593, 629, 630, 632, 634, 636, 637, 638, 639, 641, 643, 644, 647, 649, 661, 663, 680, 685, 696, 697, 698, 706, 729, 730, 739, 740, 741, 744, 745, 747, 748, 760, 762, 764, 766, 776, 779, 791, 792, 793, 794, 795, 801, 810, 812, 813, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 856, 859, 860, 863, 864, 868, 870, 873, 874, 875, 876], "lead": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 62, 74, 85, 103, 247, 376, 440, 580, 632, 634, 637, 684, 687, 778, 828, 829, 831, 843, 845, 855, 860, 861], "memori": [0, 4, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 53, 57, 64, 76, 80, 87, 128, 139, 195, 207, 213, 215, 219, 378, 387, 462, 463, 470, 472, 474, 475, 476, 483, 499, 529, 575, 580, 604, 629, 631, 634, 636, 639, 661, 662, 702, 703, 704, 706, 708, 709, 711, 713, 806, 810, 828, 829, 830, 840, 841, 847, 849, 855, 863, 870, 872, 873, 874], "overhead": [0, 7, 8, 9, 10, 13, 23, 24, 26, 27, 28, 29, 31, 32, 34, 855, 863, 873], "same": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 23, 24, 26, 27, 28, 29, 31, 34, 36, 38, 43, 44, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 93, 97, 98, 99, 100, 101, 102, 116, 126, 131, 136, 138, 139, 141, 143, 145, 146, 147, 149, 152, 153, 154, 165, 168, 213, 220, 221, 222, 223, 225, 227, 231, 233, 236, 240, 246, 247, 253, 273, 275, 277, 280, 282, 283, 284, 293, 301, 313, 327, 328, 329, 330, 331, 332, 335, 336, 338, 346, 362, 367, 369, 372, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 412, 413, 414, 415, 417, 418, 419, 420, 422, 429, 434, 435, 445, 446, 447, 448, 449, 451, 452, 454, 457, 467, 469, 484, 492, 493, 496, 501, 503, 513, 515, 520, 521, 522, 523, 524, 525, 526, 532, 569, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 663, 666, 667, 668, 669, 671, 672, 673, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 700, 703, 704, 706, 707, 709, 710, 715, 716, 731, 741, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 784, 792, 805, 812, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 859, 861, 863, 865, 867, 869, 876, 877], "appli": [0, 7, 9, 10, 11, 13, 23, 26, 27, 28, 29, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 411, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 630, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 691, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 724, 727, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 778, 779, 788, 792, 795, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 841, 844, 845, 847, 851, 852, 853, 854, 855, 863, 864, 871], "view": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 57, 64, 80, 102, 133, 144, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 496, 499, 555, 629, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 819, 820, 833, 870], "If": [0, 1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 46, 49, 50, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 180, 196, 212, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 328, 329, 331, 334, 335, 336, 337, 338, 340, 341, 342, 346, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 419, 420, 421, 423, 428, 430, 432, 434, 435, 442, 444, 446, 447, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 489, 490, 491, 492, 493, 494, 496, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 619, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 670, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 791, 792, 794, 795, 801, 806, 810, 812, 813, 814, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 859, 863, 864, 865], "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 57, 58, 80, 81, 97, 102, 103, 378, 387, 472, 529, 552, 553, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 663, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 870, 878], "want": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 44, 45, 47, 57, 72, 80, 95, 240, 273, 378, 472, 632, 794, 812, 813, 814, 818, 819, 820, 826, 828, 830, 833, 835, 837, 838, 839, 840, 844, 847, 852, 853, 854, 855, 856, 860, 864], "control": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 39, 57, 80, 147, 296, 328, 367, 369, 375, 378, 399, 400, 401, 467, 493, 580, 629, 634, 637, 670, 827, 829, 830, 839, 840, 841, 842, 847, 851, 852, 857, 863, 870, 876], "your": [0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 49, 812, 813, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 832, 834, 835, 839, 841, 843, 845, 847, 852, 853, 855, 856, 860, 861, 863, 864, 870, 878], "manag": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 580, 604, 634, 812, 813, 821, 825, 829, 830, 840, 843, 855, 861, 872, 874], "consid": [0, 6, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 36, 37, 57, 62, 68, 80, 85, 118, 147, 268, 269, 328, 334, 339, 351, 369, 372, 376, 387, 430, 434, 445, 522, 626, 629, 632, 637, 645, 670, 680, 749, 750, 751, 752, 778, 791, 824, 828, 829, 837, 839, 845, 847, 850, 851, 852, 859, 860, 863, 867, 871, 875, 877], "do": [0, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 43, 45, 47, 57, 58, 74, 80, 81, 240, 273, 282, 375, 377, 378, 387, 421, 457, 469, 529, 532, 562, 632, 634, 641, 718, 725, 728, 729, 730, 735, 778, 806, 812, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 851, 852, 853, 854, 855, 857, 861, 871, 876, 877], "set_inplace_mod": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 604, 634], "strict": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 580, 604, 634], "should": [0, 1, 5, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 48, 51, 53, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 79, 80, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 100, 102, 103, 113, 117, 125, 139, 141, 145, 146, 154, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 313, 329, 335, 336, 348, 352, 353, 354, 355, 359, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 382, 387, 390, 399, 400, 401, 403, 408, 419, 434, 445, 451, 458, 483, 484, 508, 509, 522, 523, 524, 539, 557, 562, 614, 616, 619, 621, 622, 623, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 691, 693, 694, 706, 722, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 757, 758, 759, 760, 761, 762, 763, 765, 766, 773, 774, 776, 778, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 858, 860, 864, 866, 867, 870, 872, 877], "rais": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 53, 57, 58, 66, 68, 71, 74, 76, 80, 81, 87, 89, 91, 94, 128, 154, 243, 278, 335, 336, 346, 372, 375, 377, 378, 382, 387, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 492, 499, 509, 528, 529, 538, 562, 580, 582, 593, 595, 601, 605, 630, 632, 634, 637, 639, 643, 644, 645, 647, 648, 677, 679, 693, 702, 703, 704, 706, 708, 709, 710, 711, 713, 739, 740, 741, 747, 752, 760, 762, 767, 768, 771, 778, 796, 812, 820, 823, 825, 829, 830, 833, 840, 841, 845, 846, 849, 851, 856, 860], "error": [0, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 37, 48, 50, 56, 57, 61, 74, 79, 80, 84, 110, 242, 290, 335, 336, 343, 344, 372, 376, 377, 378, 387, 388, 445, 451, 453, 455, 492, 529, 533, 580, 626, 632, 634, 636, 637, 647, 666, 685, 688, 760, 762, 778, 796, 809, 813, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 831, 835, 836, 841, 844, 845, 846, 851, 855, 861, 870], "whenev": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 792, 820, 825, 828, 829, 833, 840, 843, 844, 846, 852], "attempt": [0, 6, 7, 9, 10, 13, 23, 26, 27, 28, 29, 45, 47, 50, 819, 846, 855], "warn": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 45, 46, 47, 50, 809, 819, 820, 846, 863, 864, 865], "first": [0, 4, 5, 7, 8, 9, 12, 16, 22, 24, 25, 26, 28, 31, 32, 34, 35, 36, 45, 48, 49, 50, 53, 56, 57, 62, 64, 66, 67, 68, 70, 76, 79, 80, 81, 85, 87, 89, 91, 93, 97, 98, 102, 103, 122, 123, 137, 138, 147, 178, 186, 196, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 290, 302, 312, 313, 328, 330, 331, 332, 334, 347, 349, 350, 351, 357, 361, 362, 367, 369, 372, 375, 376, 377, 378, 385, 387, 398, 428, 429, 430, 432, 436, 458, 468, 470, 474, 481, 484, 486, 487, 490, 498, 509, 511, 515, 523, 524, 525, 532, 537, 628, 629, 630, 631, 632, 634, 636, 637, 639, 640, 641, 644, 645, 646, 647, 663, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 706, 707, 710, 711, 715, 716, 717, 718, 719, 728, 729, 731, 743, 744, 745, 749, 750, 751, 754, 755, 757, 758, 773, 791, 792, 793, 794, 796, 801, 812, 814, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 830, 831, 835, 836, 837, 838, 840, 841, 844, 847, 849, 851, 852, 854, 856, 859, 860, 863, 864, 868, 870, 871, 875], "datafram": [0, 870], "allow": [0, 6, 14, 29, 31, 32, 43, 57, 70, 80, 93, 137, 278, 376, 387, 448, 525, 529, 572, 629, 632, 634, 646, 647, 755, 762, 776, 777, 778, 779, 793, 794, 806, 810, 812, 818, 820, 821, 824, 825, 828, 829, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 849, 851, 855, 857, 860, 863, 864, 865, 868, 870, 874, 875], "u": [0, 4, 11, 45, 47, 49, 50, 57, 62, 76, 80, 85, 97, 98, 138, 376, 440, 447, 449, 637, 641, 667, 673, 674, 687, 726, 812, 813, 819, 820, 822, 827, 828, 835, 838, 840, 841, 842, 843, 844, 845, 847, 853, 855, 860], "leverag": [0, 28, 31, 32, 812, 819, 840, 864, 868, 870], "explor": [0, 6, 7, 14, 16, 18, 22, 26, 27, 28, 31, 32, 37, 38, 39, 818, 819, 820, 829, 834, 847, 850, 854, 870, 873], "expect": [0, 4, 8, 11, 13, 24, 28, 31, 32, 34, 47, 48, 50, 57, 62, 63, 80, 86, 179, 247, 291, 375, 377, 398, 420, 457, 536, 630, 632, 634, 636, 638, 661, 682, 696, 791, 792, 812, 819, 820, 823, 829, 830, 833, 835, 838, 840, 842, 844, 847, 855, 856, 861, 863, 864, 865], "contain": [0, 9, 22, 31, 32, 46, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 166, 167, 168, 171, 172, 173, 175, 177, 180, 197, 199, 200, 201, 206, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 367, 369, 372, 374, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 581, 584, 586, 591, 592, 593, 594, 595, 597, 599, 600, 607, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 783, 784, 792, 793, 794, 796, 797, 801, 805, 806, 810, 812, 814, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 831, 832, 834, 836, 837, 838, 839, 840, 842, 844, 846, 847, 848, 849, 850, 853, 855, 856, 857, 859, 863, 870, 871, 876], "variou": [0, 6, 14, 25, 35, 37, 43, 812, 815, 818, 819, 820, 823, 828, 829, 832, 833, 836, 838, 839, 841, 842, 843, 844, 856, 866, 868, 869, 870, 873, 876], "among": [0, 6, 74, 827, 828, 844, 847, 861, 870], "pattern": [0, 57, 58, 80, 81, 376, 440, 545, 546, 547, 634, 829, 832, 843, 861], "signal": [0, 57, 80, 319, 369, 375, 389, 390, 391, 392, 397, 398, 407, 423, 792, 869, 870], "credit_card_data": 0, "read_csv": [0, 14, 47], "creditcard": 0, "csv": [0, 14, 47], "get": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 45, 46, 48, 54, 55, 62, 74, 78, 85, 102, 163, 164, 165, 168, 196, 197, 198, 201, 207, 212, 215, 219, 378, 489, 536, 554, 575, 594, 630, 631, 634, 637, 641, 694, 720, 776, 791, 792, 805, 813, 815, 817, 818, 819, 821, 822, 823, 828, 829, 830, 834, 837, 838, 839, 840, 841, 842, 843, 844, 849, 850, 851, 852, 853, 857, 861, 864, 865, 870, 876], "sens": [0, 823, 829, 831, 841, 843, 851], "re": [0, 14, 20, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 48, 50, 57, 58, 67, 80, 90, 100, 213, 319, 369, 376, 378, 450, 485, 486, 545, 631, 634, 637, 639, 644, 689, 707, 746, 748, 813, 814, 818, 819, 820, 821, 822, 823, 826, 829, 834, 839, 840, 841, 842, 843, 845, 847, 851, 854, 855, 858, 859, 860, 870], "work": [0, 1, 6, 29, 31, 32, 43, 44, 46, 50, 52, 57, 80, 97, 387, 532, 637, 641, 688, 725, 726, 730, 735, 736, 812, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 845, 848, 849, 851, 853, 854, 856, 861, 863, 864, 865, 868, 870, 872, 874, 877], "help": [0, 1, 20, 47, 49, 54, 535, 580, 634, 647, 765, 791, 812, 813, 814, 818, 819, 821, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 840, 841, 844, 845, 851, 852, 853, 856, 857, 866, 870, 872, 876], "few": [0, 6, 7, 812, 817, 818, 820, 827, 829, 830, 836, 837, 839, 840, 842, 844, 847, 849, 850, 851, 852, 853, 861, 870, 872], "entri": [0, 57, 64, 74, 80, 87, 91, 98, 137, 376, 378, 382, 446, 473, 475, 476, 508, 629, 639, 641, 708, 731, 749, 819, 828, 844, 870], "can": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 50, 53, 54, 57, 58, 62, 64, 66, 68, 76, 77, 80, 81, 85, 87, 89, 91, 97, 98, 112, 115, 127, 128, 138, 140, 155, 194, 211, 212, 213, 302, 319, 367, 369, 375, 376, 377, 378, 381, 382, 385, 387, 398, 411, 435, 442, 444, 449, 457, 469, 496, 501, 509, 510, 515, 522, 569, 580, 614, 617, 626, 629, 630, 631, 634, 635, 636, 637, 639, 643, 663, 671, 677, 687, 691, 706, 710, 739, 740, 741, 749, 773, 776, 777, 778, 779, 784, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 874, 876, 877], "give": [0, 8, 23, 33, 43, 57, 61, 80, 84, 179, 365, 374, 375, 418, 422, 630, 636, 639, 649, 650, 651, 652, 654, 656, 658, 706, 791, 812, 819, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 844, 861, 870, 874], "insight": 0, "structur": [0, 14, 32, 74, 77, 103, 165, 168, 542, 634, 641, 722, 731, 812, 818, 820, 821, 824, 827, 837, 842, 843, 844, 845, 852, 853, 869, 870], "type": [0, 5, 11, 16, 18, 22, 28, 31, 32, 37, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 771, 773, 776, 777, 778, 779, 783, 784, 788, 791, 792, 793, 794, 798, 801, 805, 806, 807, 810, 818, 819, 820, 822, 823, 824, 827, 830, 831, 832, 833, 836, 838, 840, 842, 844, 845, 847, 849, 851, 852, 863, 864, 865, 870, 871, 874], "present": [0, 46, 57, 70, 74, 80, 93, 338, 372, 381, 501, 502, 503, 647, 762, 818, 819, 820, 827, 829, 830, 836, 840, 849, 859, 867, 868, 877], "initi": [0, 5, 6, 9, 31, 32, 48, 57, 61, 70, 74, 80, 84, 93, 103, 376, 387, 434, 445, 451, 530, 531, 636, 647, 661, 662, 762, 789, 792, 793, 794, 796, 797, 810, 812, 815, 820, 821, 825, 829, 830, 834, 842, 844, 849, 860, 863, 864, 865, 870, 876, 877], "qualiti": [0, 815, 820], "below": [0, 2, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 43, 46, 47, 48, 53, 57, 62, 80, 85, 93, 145, 146, 147, 247, 257, 280, 328, 329, 338, 369, 372, 378, 492, 629, 632, 637, 671, 691, 766, 813, 816, 818, 819, 822, 823, 827, 828, 829, 830, 831, 833, 834, 837, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 863, 864, 865, 866, 868, 873, 875], "head": [0, 6, 7, 48, 49, 636, 663, 792, 812, 817, 819, 828, 841, 867], "method": [0, 14, 22, 31, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 637, 638, 641, 644, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 784, 790, 791, 792, 793, 794, 818, 820, 823, 824, 828, 829, 830, 831, 832, 836, 844, 845, 849, 850, 853, 854, 855, 863, 864, 865, 871, 877], "five": [0, 852], "row": [0, 45, 57, 80, 98, 132, 147, 328, 369, 376, 378, 385, 387, 435, 447, 476, 482, 500, 515, 521, 522, 629, 637, 643, 644, 678, 686, 687, 692, 738, 747, 791], "v1": [0, 853], "v2": [0, 853], "v3": 0, "v4": 0, "v5": 0, "v6": 0, "v7": [0, 870], "v8": 0, "v9": 0, "v21": 0, "v22": 0, "v23": 0, "v24": 0, "v25": 0, "v26": 0, "v27": 0, "v28": 0, "amount": [0, 14, 63, 86, 215, 631, 638, 696, 697, 698, 806, 819, 828, 830, 842], "359807": 0, "072781": 0, "536347": 0, "378155": 0, "338321": 0, "462388": 0, "239599": 0, "098698": 0, "363787": 0, "018307": 0, "277838": 0, "110474": 0, "066928": 0, "128539": 0, "189115": 0, "133558": 0, "021053": 0, "149": [0, 62, 637, 675], "62": [0, 14, 43, 45, 51, 73, 79, 80, 89, 113, 258, 286, 632, 642, 643, 737, 739, 741], "191857": 0, "266151": 0, "166480": 0, "448154": 0, "060018": 0, "082361": 0, "078803": 0, "085102": 0, "255425": 0, "225775": 0, "638672": 0, "101288": 0, "339846": 0, "167170": 0, "125895": 0, "008983": 0, "014724": 0, "69": [0, 24, 43, 50, 56, 82, 89, 221, 263, 375, 397, 407, 619, 632, 635, 637, 678, 679, 740, 844, 852], "358354": 0, "340163": 0, "773209": 0, "379780": 0, "503198": 0, "800499": 0, "791461": 0, "247676": 0, "514654": 0, "247998": 0, "771679": 0, "909412": 0, "689281": 0, "327642": 0, "139097": 0, "055353": 0, "059752": 0, "378": [0, 279, 632], "66": [0, 26, 27, 28, 29, 43, 45, 47, 70, 80, 81, 82, 375, 407, 545, 546, 619, 634, 635, 637, 647, 682, 759], "966272": 0, "185226": 0, "792993": 0, "863291": 0, "010309": 0, "247203": 0, "237609": 0, "377436": 0, "387024": 0, "108300": 0, "005274": 0, "190321": 0, "175575": 0, "647376": 0, "221929": 0, "062723": 0, "061458": 0, "123": [0, 23, 76, 77, 80, 136, 168, 456, 548, 629, 634, 806, 844], "50": [0, 13, 14, 31, 32, 43, 47, 57, 70, 79, 80, 81, 239, 279, 357, 372, 375, 376, 378, 404, 428, 436, 489, 547, 553, 560, 561, 577, 592, 632, 634, 637, 641, 644, 647, 676, 682, 693, 719, 721, 747, 759, 776, 779, 839, 851, 863, 864], "158233": 0, "877737": 0, "548718": 0, "403034": 0, "407193": 0, "095921": 0, "592941": 0, "270533": 0, "817739": 0, "009431": 0, "798278": 0, "137458": 0, "141267": 0, "206010": 0, "502292": 0, "219422": 0, "215153": 0, "31": [0, 14, 26, 27, 28, 29, 43, 45, 46, 50, 51, 56, 57, 79, 80, 81, 84, 89, 113, 118, 138, 234, 265, 273, 375, 378, 387, 396, 397, 467, 523, 540, 626, 629, 632, 634, 740, 741, 852], "column": [0, 14, 47, 57, 62, 80, 85, 97, 98, 132, 147, 328, 369, 376, 378, 385, 387, 429, 435, 447, 468, 473, 475, 476, 480, 482, 515, 521, 522, 629, 637, 672, 673, 678, 684, 686, 687, 692, 776, 791], "It": [0, 1, 4, 7, 13, 14, 23, 26, 27, 28, 29, 31, 32, 33, 34, 43, 44, 45, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 443, 444, 452, 453, 454, 455, 456, 458, 459, 469, 472, 477, 485, 486, 487, 488, 490, 492, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 578, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 717, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 756, 757, 758, 761, 763, 764, 766, 767, 768, 791, 792, 812, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 838, 840, 841, 842, 843, 844, 845, 846, 847, 849, 851, 852, 853, 862, 865, 868, 870, 871, 873, 874, 875, 876, 877], "just": [0, 6, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 47, 57, 62, 70, 85, 97, 100, 147, 328, 369, 376, 444, 629, 637, 647, 680, 759, 784, 792, 812, 816, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 855, 860, 861, 864, 870, 871, 876], "verifi": [0, 6, 9, 10, 14, 28, 325, 326, 369, 818, 829, 830, 841, 844, 845], "consist": [0, 6, 7, 12, 13, 14, 26, 27, 28, 29, 31, 32, 70, 74, 240, 247, 273, 375, 376, 419, 429, 632, 637, 647, 672, 673, 759, 793, 794, 815, 823, 824, 828, 829, 835, 840, 849, 859, 871], "complet": [0, 62, 74, 85, 637, 684, 777, 818, 819, 820, 821, 823, 824, 827, 828, 831, 833, 837, 841, 842, 844, 847, 851, 852, 860, 868], "By": [0, 23, 43, 50, 57, 63, 64, 70, 71, 80, 86, 87, 93, 94, 287, 333, 335, 336, 349, 356, 369, 372, 375, 377, 378, 385, 387, 398, 456, 457, 492, 496, 515, 522, 525, 580, 632, 634, 637, 638, 639, 647, 648, 668, 693, 696, 705, 757, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 825, 829, 831, 833, 837, 839, 840, 841, 849, 853, 854, 863], "tail": [0, 867], "last": [0, 24, 29, 31, 34, 53, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 76, 80, 84, 85, 86, 87, 92, 93, 94, 98, 102, 137, 138, 141, 196, 313, 341, 369, 372, 375, 376, 377, 378, 385, 387, 404, 409, 419, 420, 421, 432, 456, 474, 484, 486, 492, 496, 515, 523, 524, 629, 631, 636, 637, 638, 639, 644, 646, 647, 648, 662, 663, 668, 671, 682, 691, 693, 697, 698, 700, 703, 706, 707, 708, 710, 744, 745, 753, 755, 756, 757, 758, 767, 768, 792, 801, 812, 820, 823, 825, 826, 829, 831, 840, 842, 844, 847, 849, 855, 861, 864, 870], "well": [0, 14, 31, 32, 45, 46, 47, 81, 377, 456, 558, 634, 637, 686, 778, 812, 814, 818, 820, 826, 828, 829, 833, 840, 841, 842, 844, 853, 854, 864, 869, 870, 871, 875], "readi": [0, 16, 18, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 818, 819], "284802": 0, "172786": 0, "881118": 0, "071785": 0, "834783": 0, "066656": 0, "364473": 0, "606837": 0, "918215": 0, "305334": 0, "914428": 0, "213454": 0, "111864": 0, "014480": 0, "509348": 0, "436807": 0, "250034": 0, "943651": 0, "823731": 0, "77": [0, 7, 14, 43, 47, 81, 593, 637, 647, 682, 759], "284803": 0, "172787": 0, "732789": 0, "055080": 0, "035030": 0, "738589": 0, "868229": 0, "058415": 0, "024330": 0, "294869": 0, "584800": 0, "214205": 0, "924384": 0, "012463": 0, "016226": 0, "606624": 0, "395255": 0, "068472": 0, "053527": 0, "24": [0, 6, 14, 24, 43, 45, 56, 57, 62, 70, 79, 80, 81, 84, 85, 89, 102, 235, 243, 258, 260, 273, 283, 284, 287, 349, 352, 372, 375, 387, 394, 396, 397, 407, 412, 413, 414, 418, 422, 523, 545, 546, 632, 634, 637, 641, 647, 650, 671, 678, 682, 719, 730, 739, 740, 741, 757, 759, 773, 833, 852], "79": [0, 43, 45, 57, 58, 80, 81, 84, 89, 102, 240, 375, 397, 407, 418, 540, 541, 632, 634, 741], "284804": 0, "172788": 0, "919565": 0, "301254": 0, "249640": 0, "557828": 0, "630515": 0, "031260": 0, "296827": 0, "708417": 0, "432454": 0, "232045": 0, "578229": 0, "037501": 0, "640134": 0, "265745": 0, "087371": 0, "004455": 0, "026561": 0, "67": [0, 14, 43, 56, 57, 58, 62, 79, 80, 81, 84, 89, 102, 238, 243, 283, 284, 286, 293, 304, 308, 367, 387, 418, 523, 545, 546, 592, 618, 620, 632, 634, 635, 637, 675, 741], "88": [0, 14, 43, 82, 89, 112, 387, 523, 619, 626, 635, 637, 643, 647, 682, 741, 759], "284805": 0, "240440": 0, "530483": 0, "702510": 0, "689799": 0, "377961": 0, "623708": 0, "686180": 0, "679145": 0, "392087": 0, "265245": 0, "800049": 0, "163298": 0, "123205": 0, "569159": 0, "546668": 0, "108821": 0, "104533": 0, "284806": 0, "172792": 0, "533413": 0, "189733": 0, "703337": 0, "506271": 0, "012546": 0, "649617": 0, "577006": 0, "414650": 0, "486180": 0, "261057": 0, "643078": 0, "376777": 0, "008797": 0, "473649": 0, "818267": 0, "002415": 0, "013649": 0, "217": [0, 45, 833], "understand": [0, 20, 21, 22, 26, 43, 49, 816, 817, 818, 819, 820, 822, 823, 826, 831, 832, 836, 842, 843, 848, 861, 866, 876], "composit": [0, 22, 31, 166, 167, 199, 200, 292, 376, 436, 550, 551, 630, 631, 632, 634, 777, 779, 818, 822, 824, 825, 827, 829, 830, 838, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 863, 871], "crucial": [0, 830, 839], "proce": [0, 14, 818, 819], "ani": [0, 1, 6, 7, 8, 12, 16, 18, 20, 21, 22, 23, 24, 33, 34, 37, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 57, 58, 62, 71, 72, 76, 78, 79, 80, 81, 94, 95, 97, 102, 103, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 156, 171, 175, 179, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 420, 421, 430, 435, 452, 473, 484, 492, 496, 501, 502, 503, 522, 525, 528, 529, 530, 534, 544, 545, 546, 547, 548, 552, 556, 558, 560, 564, 566, 567, 585, 591, 593, 600, 601, 608, 614, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 724, 725, 727, 728, 735, 737, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 771, 773, 774, 778, 788, 789, 791, 792, 794, 795, 796, 797, 801, 805, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 876, 877], "info": [0, 45, 809, 810, 812, 826, 832, 835], "concis": 0, "summari": [0, 74, 169, 542, 630, 634, 819, 820, 844], "includ": [0, 1, 6, 14, 20, 24, 34, 39, 53, 56, 57, 58, 62, 67, 70, 71, 74, 76, 79, 80, 81, 85, 90, 93, 94, 126, 127, 128, 137, 138, 140, 147, 220, 244, 248, 249, 250, 253, 255, 258, 266, 274, 287, 292, 314, 317, 318, 319, 322, 328, 331, 333, 335, 336, 340, 341, 342, 345, 346, 347, 348, 350, 352, 353, 355, 356, 357, 358, 361, 362, 369, 372, 375, 378, 387, 394, 395, 396, 426, 429, 431, 475, 476, 478, 481, 483, 485, 488, 510, 512, 513, 521, 525, 527, 528, 530, 531, 532, 558, 613, 629, 632, 634, 636, 637, 641, 643, 644, 647, 648, 661, 672, 692, 694, 718, 741, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 795, 808, 810, 812, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 860, 863, 864, 867, 868, 870, 872, 875, 876, 877], "number": [0, 45, 47, 48, 49, 50, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 97, 98, 100, 102, 103, 106, 126, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 147, 153, 158, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 175, 177, 180, 204, 205, 206, 220, 221, 222, 223, 224, 226, 228, 229, 236, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 257, 261, 263, 271, 272, 273, 274, 275, 276, 278, 280, 282, 283, 284, 286, 287, 291, 293, 319, 323, 324, 325, 326, 327, 328, 330, 331, 332, 334, 335, 336, 338, 339, 340, 341, 351, 356, 360, 369, 372, 375, 376, 377, 378, 381, 387, 409, 420, 423, 426, 429, 433, 434, 435, 445, 449, 451, 452, 462, 463, 464, 484, 485, 486, 487, 488, 490, 492, 494, 496, 498, 501, 502, 503, 520, 522, 523, 524, 525, 531, 549, 556, 574, 591, 592, 593, 600, 613, 614, 627, 629, 630, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 647, 648, 649, 656, 657, 659, 661, 663, 668, 672, 673, 674, 680, 685, 687, 691, 692, 693, 696, 699, 701, 702, 704, 705, 707, 708, 710, 712, 714, 715, 716, 717, 738, 742, 747, 749, 750, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 784, 791, 792, 795, 806, 810, 812, 819, 820, 827, 828, 829, 830, 831, 838, 839, 840, 844, 845, 846, 847, 849, 852, 858, 859, 863], "presenc": [0, 771, 827, 840], "null": [0, 819, 834], "each": [0, 11, 13, 14, 24, 25, 26, 31, 32, 34, 35, 36, 38, 45, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 74, 77, 79, 80, 81, 82, 84, 85, 87, 90, 91, 93, 97, 98, 100, 102, 103, 111, 112, 114, 115, 116, 118, 122, 139, 153, 165, 168, 213, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 297, 298, 303, 305, 306, 307, 309, 310, 311, 316, 327, 330, 331, 332, 338, 346, 350, 354, 359, 362, 367, 369, 372, 375, 376, 378, 381, 382, 385, 387, 394, 395, 396, 399, 400, 401, 404, 412, 413, 414, 415, 418, 420, 421, 422, 429, 430, 435, 444, 445, 449, 451, 462, 463, 464, 468, 469, 470, 475, 476, 478, 479, 481, 483, 484, 487, 489, 498, 499, 506, 508, 515, 520, 521, 522, 523, 524, 525, 534, 537, 545, 552, 553, 569, 594, 614, 616, 617, 619, 621, 622, 623, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 667, 668, 669, 672, 673, 674, 677, 679, 680, 681, 683, 685, 686, 687, 692, 701, 705, 707, 708, 710, 712, 714, 724, 731, 738, 747, 749, 750, 752, 758, 759, 766, 773, 776, 778, 784, 792, 795, 796, 797, 806, 810, 815, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 859, 860, 861, 863, 864, 866, 867, 871, 873, 876], "invalu": 0, "plan": [0, 812, 856], "right": [0, 46, 57, 62, 74, 80, 85, 103, 120, 121, 232, 234, 287, 350, 372, 375, 376, 378, 410, 440, 446, 447, 449, 475, 545, 628, 632, 634, 637, 646, 687, 692, 755, 776, 813, 818, 819, 820, 822, 823, 831, 834, 847, 852, 863], "format": [0, 1, 28, 29, 31, 32, 43, 45, 46, 47, 55, 58, 61, 70, 73, 74, 75, 78, 84, 100, 118, 163, 197, 375, 376, 386, 417, 450, 518, 545, 626, 630, 631, 634, 636, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 661, 759, 769, 770, 771, 788, 812, 819, 820, 822, 828, 829, 830, 831, 832, 833, 841, 843, 852, 864, 866, 868, 870, 871], "lt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 103], "core": [0, 6, 26, 27, 29, 45, 46, 47, 49, 50, 57, 80, 97, 100, 204, 376, 434, 445, 450, 451, 631, 819, 830, 834, 844, 854, 859, 868, 869, 870, 871, 875, 877], "frame": [0, 47, 57, 80, 319, 369, 375, 423, 860, 870], "gt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 50, 103, 842, 849], "rangeindex": 0, "284807": 0, "total": [0, 45, 47, 57, 70, 74, 80, 93, 103, 134, 215, 330, 331, 332, 340, 369, 372, 377, 452, 629, 631, 644, 647, 747, 764, 766, 806, 812, 813, 819, 820, 829, 830, 831, 844, 847, 852, 853, 855, 861], "non": [0, 7, 24, 34, 54, 56, 57, 62, 66, 67, 70, 71, 77, 79, 80, 85, 89, 90, 93, 94, 134, 152, 170, 179, 248, 268, 269, 274, 335, 336, 340, 347, 360, 372, 375, 376, 378, 387, 419, 430, 434, 440, 463, 464, 525, 528, 629, 630, 632, 637, 641, 643, 644, 647, 648, 668, 669, 678, 680, 687, 689, 693, 694, 731, 740, 744, 745, 746, 747, 760, 761, 762, 763, 764, 766, 767, 768, 776, 791, 793, 794, 796, 824, 827, 831, 849, 863, 864, 865, 870], "count": [0, 49, 57, 64, 68, 71, 76, 80, 87, 91, 94, 134, 206, 340, 372, 378, 387, 492, 496, 498, 520, 525, 629, 631, 637, 639, 645, 648, 668, 693, 700, 703, 749, 750, 767, 768, 826, 827, 831, 852], "dtype": [0, 4, 8, 12, 14, 18, 24, 26, 27, 28, 29, 43, 46, 53, 54, 57, 58, 61, 62, 66, 67, 70, 74, 76, 77, 79, 80, 81, 84, 85, 89, 90, 93, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 208, 235, 239, 271, 272, 274, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 333, 338, 340, 356, 369, 372, 375, 376, 377, 378, 382, 387, 397, 407, 419, 420, 423, 446, 452, 457, 468, 492, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 532, 549, 550, 551, 553, 562, 571, 599, 629, 630, 631, 632, 634, 636, 637, 640, 643, 644, 646, 647, 648, 652, 659, 678, 694, 716, 717, 739, 740, 741, 744, 745, 746, 755, 756, 757, 758, 761, 763, 765, 767, 768, 771, 773, 776, 778, 779, 791, 792, 793, 794, 795, 797, 812, 816, 823, 825, 829, 830, 831, 833, 834, 837, 838, 840, 841, 842, 844, 845, 849, 851, 864], "float64": [0, 26, 27, 54, 57, 66, 70, 76, 77, 79, 80, 81, 89, 93, 126, 134, 135, 152, 155, 159, 160, 165, 166, 169, 170, 175, 176, 180, 182, 183, 189, 192, 274, 346, 372, 377, 387, 452, 457, 522, 571, 629, 630, 634, 637, 643, 673, 674, 678, 694, 740, 741, 758, 773, 776, 777, 829, 842, 844], "v10": 0, "v11": 0, "12": [0, 4, 6, 7, 8, 11, 12, 14, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 54, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 88, 89, 93, 102, 103, 168, 223, 225, 230, 234, 235, 238, 240, 241, 242, 260, 273, 276, 283, 286, 293, 294, 317, 318, 349, 352, 353, 369, 372, 375, 378, 387, 394, 395, 396, 397, 399, 403, 404, 412, 413, 417, 418, 419, 420, 422, 467, 468, 470, 474, 479, 496, 499, 512, 523, 529, 530, 531, 541, 545, 546, 577, 583, 592, 606, 632, 634, 636, 637, 639, 641, 642, 643, 644, 645, 647, 650, 654, 659, 660, 671, 673, 675, 678, 682, 686, 688, 689, 691, 693, 703, 707, 709, 711, 713, 730, 737, 739, 740, 741, 748, 749, 757, 758, 759, 763, 765, 776, 819, 825, 827, 829, 831, 839], "v12": 0, "13": [0, 4, 6, 7, 8, 11, 12, 22, 26, 27, 28, 29, 43, 45, 47, 51, 56, 57, 61, 62, 66, 70, 79, 80, 81, 82, 84, 87, 89, 93, 102, 118, 168, 198, 223, 238, 247, 258, 278, 287, 349, 356, 363, 372, 375, 378, 396, 397, 407, 418, 422, 467, 468, 470, 474, 479, 499, 512, 523, 524, 540, 545, 546, 561, 583, 592, 615, 626, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 647, 650, 651, 659, 660, 671, 675, 682, 686, 688, 691, 713, 717, 730, 739, 740, 741, 748, 749, 757, 758, 759, 827, 829, 831, 841], "v13": 0, "v14": 0, "15": [0, 4, 6, 7, 8, 9, 12, 13, 14, 27, 43, 45, 46, 47, 50, 56, 57, 58, 62, 66, 70, 76, 77, 79, 80, 81, 84, 85, 87, 89, 93, 103, 136, 165, 223, 230, 234, 240, 242, 251, 258, 259, 264, 265, 273, 282, 283, 284, 349, 363, 372, 373, 375, 376, 378, 387, 394, 395, 412, 414, 417, 418, 422, 428, 470, 474, 479, 499, 523, 541, 545, 546, 549, 560, 561, 586, 592, 609, 629, 630, 632, 634, 636, 637, 639, 641, 643, 644, 645, 647, 650, 660, 671, 674, 675, 676, 682, 688, 689, 707, 713, 718, 739, 740, 747, 749, 758, 759, 773, 815, 819, 828, 831, 839, 873], "v15": 0, "v16": 0, "17": [0, 6, 8, 9, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 57, 62, 73, 79, 80, 81, 82, 84, 85, 89, 103, 112, 113, 138, 223, 240, 265, 273, 304, 312, 363, 369, 375, 378, 394, 395, 403, 404, 407, 408, 412, 413, 418, 422, 474, 546, 561, 615, 617, 626, 629, 632, 634, 635, 636, 637, 641, 643, 650, 659, 660, 671, 675, 726, 739, 740, 741, 743, 827], "v17": 0, "18": [0, 4, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 66, 79, 80, 81, 84, 85, 89, 93, 113, 235, 240, 282, 286, 295, 296, 349, 367, 372, 375, 378, 397, 403, 407, 408, 412, 418, 422, 474, 591, 626, 632, 637, 643, 647, 654, 671, 677, 682, 689, 739, 740, 741, 758, 759, 763, 827, 829, 831], "v18": 0, "19": [0, 4, 13, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 66, 79, 80, 84, 85, 89, 226, 235, 263, 273, 290, 375, 376, 378, 387, 396, 397, 408, 412, 418, 422, 428, 433, 474, 523, 632, 637, 641, 643, 646, 671, 678, 691, 729, 739, 740, 741, 756, 831], "v19": 0, "20": [0, 4, 9, 10, 14, 18, 43, 45, 46, 47, 50, 56, 57, 58, 61, 66, 70, 79, 80, 81, 84, 85, 89, 93, 235, 239, 243, 279, 283, 287, 304, 349, 351, 353, 372, 375, 378, 394, 396, 412, 418, 422, 467, 489, 545, 552, 553, 555, 577, 581, 592, 632, 634, 637, 643, 644, 647, 650, 651, 662, 671, 676, 678, 682, 689, 739, 747, 748, 757, 758, 759, 763, 765, 812, 828, 847, 851], "v20": 0, "22": [0, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 56, 57, 58, 66, 70, 73, 80, 81, 84, 89, 113, 118, 235, 243, 304, 308, 367, 375, 376, 377, 378, 383, 387, 394, 395, 397, 412, 413, 414, 418, 422, 428, 452, 467, 513, 523, 546, 577, 613, 626, 632, 636, 637, 641, 644, 647, 659, 660, 671, 676, 682, 686, 726, 736, 739, 740, 741, 748, 758, 759, 819, 827, 833], "26": [0, 26, 27, 28, 29, 43, 45, 47, 50, 56, 57, 65, 66, 80, 81, 82, 89, 235, 240, 286, 375, 376, 397, 433, 443, 560, 615, 632, 634, 635, 636, 637, 641, 642, 647, 658, 671, 682, 689, 719, 737, 739, 740, 759], "27": [0, 14, 43, 45, 50, 56, 57, 62, 66, 79, 80, 81, 84, 85, 89, 93, 234, 235, 238, 278, 286, 287, 346, 372, 375, 397, 407, 561, 591, 632, 634, 637, 641, 647, 677, 682, 692, 719, 726, 740, 759, 763, 776, 878], "28": [0, 14, 29, 31, 32, 43, 45, 47, 50, 56, 57, 61, 65, 79, 80, 81, 84, 85, 89, 93, 239, 242, 263, 279, 375, 376, 397, 407, 428, 529, 560, 615, 632, 634, 635, 636, 637, 642, 647, 651, 653, 655, 657, 658, 660, 682, 737, 739, 740, 741, 759, 763, 812], "30": [0, 14, 26, 27, 28, 29, 43, 45, 56, 57, 58, 80, 81, 89, 93, 103, 273, 304, 349, 357, 372, 375, 378, 397, 407, 418, 467, 489, 513, 545, 547, 552, 553, 560, 561, 577, 586, 592, 632, 634, 637, 641, 647, 676, 682, 727, 739, 740, 758, 759, 763, 778, 791, 806, 815, 828], "int64": [0, 8, 57, 66, 67, 69, 70, 77, 89, 90, 92, 93, 142, 155, 161, 164, 166, 168, 172, 173, 177, 184, 316, 369, 385, 387, 515, 523, 524, 629, 630, 644, 646, 647, 739, 744, 745, 746, 755, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "proceed": [0, 45], "within": [0, 7, 14, 16, 18, 22, 31, 32, 52, 57, 80, 126, 334, 351, 372, 375, 381, 412, 413, 414, 419, 422, 462, 463, 464, 506, 629, 643, 741, 806, 815, 818, 820, 821, 824, 828, 829, 841, 842, 843, 844, 853, 855, 864, 866, 867, 871], "significantli": [0, 9, 11, 13, 31, 57, 62, 80, 85, 376, 449, 637, 687, 828, 859, 868], "impact": [0, 815, 828, 844, 853, 872], "isnul": 0, "sum": [0, 6, 7, 45, 47, 56, 57, 58, 61, 62, 63, 70, 74, 79, 80, 81, 84, 85, 86, 93, 97, 102, 103, 213, 223, 265, 289, 332, 356, 369, 372, 376, 377, 378, 381, 387, 418, 428, 452, 453, 454, 455, 456, 457, 458, 459, 489, 506, 528, 529, 546, 576, 577, 631, 632, 634, 636, 637, 638, 647, 659, 666, 678, 687, 691, 694, 696, 758, 759, 791, 793, 805, 812, 827, 829, 837, 839, 840, 841, 849, 863, 864, 865, 867], "quickli": [0, 6, 819, 820, 828, 852, 853, 859, 861, 870, 877], "appropri": [0, 6, 11, 22, 26, 27, 29, 31, 32, 58, 67, 72, 90, 95, 223, 240, 247, 273, 334, 351, 372, 632, 644, 744, 812, 818, 819, 820, 833, 838, 844], "either": [0, 14, 26, 27, 36, 37, 38, 39, 43, 49, 56, 57, 58, 61, 70, 74, 79, 80, 81, 84, 85, 112, 115, 118, 123, 133, 134, 144, 220, 221, 222, 223, 228, 238, 240, 241, 243, 245, 247, 254, 255, 261, 262, 263, 264, 265, 273, 282, 284, 285, 287, 290, 291, 337, 359, 372, 375, 381, 387, 397, 407, 417, 418, 422, 506, 523, 524, 544, 564, 572, 573, 581, 601, 626, 628, 629, 632, 634, 636, 637, 640, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 677, 682, 685, 689, 715, 716, 717, 757, 758, 763, 765, 778, 792, 793, 794, 801, 814, 818, 819, 820, 825, 826, 827, 829, 830, 831, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 849, 852, 855, 856, 864, 870], "imput": [0, 57, 80, 376, 434, 445, 451], "remov": [0, 6, 9, 14, 20, 21, 24, 29, 31, 32, 34, 62, 74, 85, 637, 639, 640, 641, 671, 677, 691, 709, 715, 716, 732, 806, 809, 812, 818, 825, 826, 828, 829, 832, 837, 843, 844, 847, 854, 863, 864, 870], "maintain": [0, 69, 92, 646, 753, 756, 812, 819, 820, 823, 835, 840, 842, 843, 844, 859, 869], "integr": [0, 4, 5, 6, 16, 18, 25, 32, 35, 54, 56, 57, 77, 79, 80, 152, 292, 355, 372, 387, 525, 630, 632, 812, 817, 819, 821, 822, 838, 864, 868, 870, 872, 873, 874], "check": [0, 4, 5, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 48, 50, 52, 54, 58, 62, 74, 77, 81, 85, 118, 156, 157, 166, 167, 170, 172, 173, 174, 177, 192, 199, 200, 207, 219, 538, 548, 550, 551, 558, 564, 565, 566, 567, 568, 584, 595, 607, 613, 626, 630, 631, 634, 637, 641, 673, 674, 680, 718, 728, 729, 730, 771, 778, 805, 806, 812, 813, 814, 817, 818, 819, 820, 821, 823, 827, 828, 830, 831, 833, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 851, 852, 853, 856, 863], "A": [0, 6, 31, 32, 46, 53, 54, 57, 58, 64, 66, 70, 71, 74, 77, 79, 80, 81, 84, 85, 87, 89, 91, 94, 97, 98, 103, 122, 123, 125, 132, 140, 147, 153, 194, 213, 275, 277, 281, 313, 324, 328, 330, 331, 332, 334, 348, 351, 355, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 390, 404, 418, 421, 423, 430, 438, 443, 446, 454, 458, 469, 472, 490, 494, 495, 501, 502, 503, 504, 508, 509, 510, 511, 512, 520, 529, 532, 537, 539, 548, 557, 560, 561, 592, 593, 594, 597, 625, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 647, 648, 659, 663, 671, 673, 676, 681, 682, 686, 687, 699, 702, 704, 708, 710, 718, 721, 723, 725, 726, 727, 728, 729, 733, 734, 735, 736, 738, 739, 740, 741, 743, 749, 759, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 791, 806, 810, 812, 817, 818, 819, 822, 827, 829, 830, 833, 836, 837, 841, 842, 844, 849, 852, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 870, 871], "critic": [0, 6, 26, 27, 29, 31, 32, 810, 870, 876], "grasp": [0, 841], "imbal": 0, "common": [0, 22, 25, 31, 35, 56, 57, 74, 79, 179, 250, 258, 339, 346, 372, 630, 632, 813, 816, 818, 819, 826, 829, 830, 831, 837, 838, 841, 845, 847, 855, 859, 867, 870, 877], "scenario": [0, 28, 829, 839], "call": [0, 4, 6, 11, 16, 18, 22, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 38, 45, 49, 57, 72, 77, 80, 95, 97, 103, 122, 172, 173, 213, 376, 387, 443, 529, 580, 586, 601, 617, 618, 620, 628, 631, 634, 635, 637, 641, 685, 718, 724, 728, 729, 773, 784, 792, 793, 794, 796, 801, 806, 810, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 860, 863, 864, 865, 870, 871, 874], "value_count": 0, "see": [0, 4, 5, 6, 7, 9, 10, 11, 13, 14, 23, 24, 29, 31, 32, 33, 34, 38, 43, 44, 50, 51, 54, 56, 57, 62, 67, 68, 70, 71, 73, 79, 80, 85, 90, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 133, 137, 144, 147, 154, 173, 180, 223, 228, 230, 232, 233, 234, 235, 240, 241, 245, 247, 251, 252, 259, 260, 263, 265, 267, 269, 270, 273, 276, 278, 282, 289, 291, 294, 295, 300, 301, 303, 328, 335, 336, 367, 369, 372, 376, 377, 378, 426, 454, 492, 626, 629, 630, 632, 637, 644, 645, 647, 648, 668, 680, 683, 686, 693, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 788, 812, 813, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 841, 842, 844, 847, 849, 851, 852, 855, 859, 866, 878], "instanc": [0, 6, 14, 22, 28, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 587, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 784, 789, 810, 818, 819, 820, 823, 824, 825, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 844, 852, 853, 854, 857, 863, 871], "typic": [0, 6, 57, 80, 334, 351, 372, 387, 522, 646, 755, 792, 823, 837, 869, 877], "repres": [0, 53, 56, 57, 61, 62, 79, 80, 84, 85, 100, 125, 139, 141, 164, 222, 223, 226, 229, 238, 240, 247, 273, 286, 290, 291, 316, 330, 331, 332, 349, 366, 369, 372, 374, 375, 376, 377, 378, 381, 382, 385, 418, 422, 436, 450, 452, 457, 484, 495, 501, 502, 503, 508, 514, 521, 557, 628, 629, 630, 632, 634, 636, 637, 659, 660, 661, 675, 682, 685, 686, 778, 791, 795, 806, 819, 824, 829, 847, 851, 867, 868, 871], "ones": [0, 6, 22, 29, 31, 43, 49, 53, 57, 59, 61, 66, 74, 76, 80, 84, 89, 132, 136, 141, 143, 149, 199, 200, 236, 313, 369, 387, 531, 615, 629, 631, 632, 635, 636, 654, 655, 739, 740, 741, 777, 812, 818, 824, 828, 831, 836, 837, 843, 844, 851, 852, 870], "how": [0, 3, 4, 5, 6, 8, 11, 13, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 43, 46, 49, 50, 51, 56, 57, 73, 79, 80, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 240, 273, 291, 295, 300, 301, 303, 367, 377, 378, 452, 467, 492, 493, 626, 632, 788, 791, 792, 793, 794, 812, 813, 814, 816, 817, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, 859, 861, 866, 870], "approach": [0, 36, 816, 818, 819, 820, 824, 827, 829, 830, 834, 837, 841, 844, 845, 847, 851, 852, 855, 867, 874, 876], "legit": 0, "284315": 0, "492": 0, "name": [0, 1, 6, 9, 11, 31, 32, 43, 45, 46, 47, 57, 62, 68, 72, 80, 85, 91, 95, 247, 375, 376, 378, 423, 429, 438, 494, 498, 535, 536, 632, 634, 637, 645, 672, 673, 684, 685, 687, 688, 692, 749, 750, 751, 773, 777, 784, 794, 801, 802, 804, 810, 818, 819, 820, 825, 826, 827, 828, 831, 832, 833, 836, 841, 842, 844, 845, 846, 847, 849, 852, 854, 870, 878], "highli": [0, 46, 812, 818, 870], "imbalanc": 0, "normal": [0, 2, 4, 6, 7, 9, 12, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 57, 65, 66, 80, 88, 89, 97, 98, 359, 372, 375, 381, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 501, 502, 503, 504, 505, 506, 507, 522, 525, 639, 642, 643, 700, 710, 737, 738, 740, 791, 792, 795, 812, 818, 840, 841, 847, 852, 863, 865, 868], "unifi": [0, 20, 21, 22, 24, 25, 31, 34, 35, 39, 46, 74, 213, 631, 821, 822, 823, 824, 828, 829, 833, 838, 839, 841, 847, 849, 855, 858, 860, 862, 864, 866, 867, 868, 870, 874, 877], "write": [0, 20, 21, 31, 32, 43, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 350, 352, 353, 354, 355, 358, 359, 360, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 426, 427, 435, 436, 438, 441, 442, 443, 444, 450, 453, 454, 455, 456, 458, 459, 468, 469, 472, 473, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 774, 812, 817, 818, 820, 822, 823, 825, 826, 828, 829, 831, 832, 833, 837, 840, 842, 845, 849, 851, 854, 861, 870, 877], "code": [0, 1, 5, 6, 11, 12, 13, 20, 21, 28, 29, 31, 33, 34, 35, 36, 37, 38, 45, 46, 55, 56, 74, 78, 79, 103, 214, 260, 387, 529, 538, 546, 547, 562, 576, 580, 595, 631, 634, 636, 637, 639, 658, 679, 680, 681, 710, 810, 812, 815, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 875, 876, 877], "agnost": [0, 20, 21, 22, 23, 31, 32, 33, 37, 43, 812, 824, 829, 836, 849, 851, 854, 855, 876, 877], "underli": [0, 22, 31, 32, 43, 57, 64, 80, 87, 100, 230, 233, 235, 270, 377, 378, 457, 474, 632, 637, 639, 685, 706, 827, 840, 847, 863, 870], "deep": [0, 6, 22, 29, 31, 43, 74, 545, 634, 812, 813, 814, 817, 818, 820, 823, 826, 827, 829, 835, 839, 842, 848, 851, 852, 859, 868, 870, 873, 874, 876, 877], "develop": [0, 6, 7, 16, 30, 31, 32, 812, 813, 814, 815, 816, 817, 818, 819, 820, 823, 826, 828, 834, 843, 845, 855, 857, 859, 860, 861, 863, 864, 868, 869, 870, 871, 872, 875, 876, 877], "ar": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 49, 52, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 97, 98, 102, 103, 126, 136, 138, 141, 147, 201, 206, 208, 213, 237, 239, 240, 243, 247, 268, 269, 273, 278, 279, 283, 285, 290, 291, 292, 328, 330, 331, 332, 334, 337, 339, 340, 341, 345, 346, 351, 356, 359, 363, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 391, 392, 398, 399, 400, 401, 404, 409, 411, 419, 420, 429, 430, 434, 444, 445, 447, 451, 452, 453, 457, 458, 462, 463, 464, 474, 475, 476, 478, 484, 487, 491, 492, 501, 503, 508, 509, 510, 511, 512, 522, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 548, 554, 559, 563, 574, 575, 584, 595, 607, 617, 629, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 659, 660, 661, 663, 666, 668, 672, 673, 674, 677, 678, 680, 683, 684, 687, 688, 692, 693, 694, 699, 700, 703, 707, 709, 719, 724, 729, 730, 731, 739, 740, 741, 744, 745, 746, 747, 749, 751, 771, 773, 776, 777, 778, 779, 784, 791, 794, 797, 798, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 870, 871, 872, 873, 874, 875, 876, 877, 878], "tensorflow": [0, 3, 9, 10, 13, 15, 16, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 49, 56, 57, 58, 79, 80, 147, 194, 209, 224, 328, 369, 376, 430, 595, 629, 631, 634, 771, 784, 801, 812, 816, 817, 818, 819, 820, 823, 828, 829, 830, 834, 836, 840, 841, 842, 844, 845, 847, 849, 854, 855, 857, 860, 861, 864, 865, 867, 868, 871, 873, 874, 876, 877], "pytorch": [0, 3, 4, 5, 8, 9, 11, 12, 15, 17, 18, 20, 21, 29, 31, 32, 43, 50, 283, 335, 336, 372, 632, 796, 812, 817, 818, 824, 829, 830, 833, 836, 837, 840, 841, 842, 847, 849, 854, 855, 857, 860, 861, 863, 864, 867, 871, 873, 874, 876, 877], "flexibl": [0, 812, 827, 829, 836, 839, 845, 847, 870], "particularli": [0, 820, 852, 855, 863, 868], "research": [0, 6, 31, 32, 45, 812, 859, 864, 870, 877], "where": [0, 1, 11, 24, 28, 34, 35, 39, 47, 53, 56, 57, 58, 62, 64, 66, 67, 70, 71, 74, 76, 79, 80, 81, 85, 87, 89, 90, 93, 94, 97, 98, 135, 136, 139, 141, 147, 228, 238, 240, 243, 245, 247, 248, 257, 262, 263, 264, 271, 272, 273, 278, 280, 284, 286, 290, 300, 302, 328, 330, 331, 332, 347, 351, 358, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 389, 390, 391, 392, 398, 403, 404, 408, 423, 429, 430, 434, 435, 437, 438, 445, 451, 452, 453, 462, 463, 464, 478, 484, 501, 502, 503, 506, 508, 509, 511, 512, 522, 530, 531, 532, 562, 576, 614, 629, 632, 634, 636, 637, 639, 641, 643, 644, 647, 648, 661, 663, 668, 672, 673, 678, 680, 682, 683, 684, 687, 688, 691, 693, 699, 701, 702, 704, 710, 714, 722, 729, 738, 739, 740, 741, 746, 747, 762, 764, 766, 767, 768, 776, 791, 795, 806, 810, 812, 813, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 861, 863, 868, 877], "abil": [0, 819, 847, 850, 855, 870], "switch": [0, 31, 43, 784, 825, 833, 837, 838, 877], "differ": [0, 4, 5, 6, 9, 11, 13, 14, 16, 20, 21, 25, 26, 27, 31, 32, 35, 36, 37, 38, 56, 57, 58, 62, 70, 74, 80, 81, 93, 102, 103, 112, 115, 165, 223, 240, 247, 248, 273, 289, 334, 341, 346, 347, 351, 372, 375, 376, 378, 387, 409, 420, 445, 451, 468, 475, 476, 490, 523, 524, 532, 552, 553, 626, 630, 632, 634, 636, 637, 639, 647, 659, 660, 675, 685, 700, 710, 757, 758, 763, 765, 766, 771, 776, 784, 793, 794, 812, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 873, 876, 877], "without": [0, 1, 4, 14, 34, 43, 47, 50, 68, 74, 100, 586, 601, 634, 639, 641, 645, 706, 719, 749, 750, 751, 752, 776, 779, 805, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 836, 837, 841, 844, 845, 847, 851, 852, 853, 855, 863, 867, 870, 871, 872, 876], "chang": [0, 4, 5, 14, 22, 32, 45, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 632, 639, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 818, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 834, 835, 841, 842, 843, 844, 845, 846, 847, 849, 853, 855, 856, 861, 863, 873, 876], "codebas": [0, 6, 31, 32, 211, 212, 631, 813, 815, 822, 829, 835, 840, 841, 843, 844, 845, 848, 861], "signific": [0, 14, 57, 377, 457, 846, 855, 859, 860, 870], "advantag": [0, 6, 29, 31, 32, 812, 819, 820, 829, 840, 841, 856, 864, 870], "effect": [0, 6, 37, 53, 57, 59, 70, 80, 82, 93, 139, 377, 411, 456, 615, 623, 629, 635, 636, 647, 663, 764, 766, 776, 779, 818, 824, 827, 828, 832, 836, 840, 842, 847, 855, 860], "analyz": [0, 818, 857], "done": [0, 45, 47, 50, 637, 674, 817, 818, 819, 820, 823, 826, 828, 830, 831, 834, 835, 840, 841, 844, 852, 863, 864, 870], "two": [0, 25, 35, 37, 43, 53, 57, 62, 68, 80, 81, 85, 102, 103, 123, 126, 132, 139, 145, 146, 147, 178, 186, 234, 248, 249, 283, 328, 329, 334, 347, 348, 350, 351, 353, 355, 362, 369, 372, 375, 376, 377, 378, 387, 404, 427, 428, 429, 438, 443, 452, 454, 458, 463, 484, 490, 494, 522, 532, 537, 628, 629, 630, 632, 634, 636, 637, 639, 645, 661, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 711, 749, 750, 751, 752, 776, 778, 784, 792, 818, 819, 823, 824, 829, 830, 831, 832, 837, 841, 842, 844, 847, 848, 852, 854, 861, 867, 875], "distinct": [0, 57, 68, 80, 330, 331, 332, 369, 645, 749, 750, 751, 752, 815, 819, 827, 832, 839, 840, 841, 848, 860, 870], "one": [0, 4, 6, 11, 13, 16, 18, 20, 21, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 49, 53, 57, 58, 61, 62, 64, 67, 68, 70, 74, 76, 79, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 97, 126, 129, 139, 141, 142, 143, 153, 155, 213, 234, 240, 247, 248, 265, 271, 272, 273, 292, 302, 312, 315, 316, 334, 340, 343, 344, 347, 348, 351, 352, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 397, 399, 403, 404, 407, 408, 411, 419, 424, 426, 435, 444, 458, 462, 463, 464, 468, 474, 475, 476, 481, 483, 488, 491, 501, 502, 503, 508, 513, 523, 524, 527, 528, 529, 530, 531, 532, 534, 572, 576, 577, 579, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 647, 650, 651, 652, 653, 654, 655, 658, 675, 677, 678, 682, 684, 693, 694, 702, 703, 704, 707, 709, 713, 737, 744, 747, 749, 750, 751, 752, 757, 759, 776, 778, 795, 798, 801, 806, 809, 812, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 846, 847, 848, 851, 852, 854, 855, 856, 857, 860, 861, 864, 870, 871, 873, 876], "anoth": [0, 4, 22, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 133, 153, 155, 629, 630, 812, 818, 819, 820, 825, 827, 829, 830, 833, 835, 837, 840, 841, 844, 849, 851, 854, 857, 860, 862, 863, 864, 870, 876], "characterist": [0, 826], "clear": [0, 14, 195, 631, 818, 820, 825, 829, 830, 831, 841, 847, 849, 851, 859, 860, 861, 870], "print": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 18, 22, 23, 25, 29, 31, 32, 33, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 166, 167, 170, 172, 173, 175, 180, 192, 193, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 211, 212, 214, 215, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 305, 306, 307, 309, 310, 311, 313, 320, 321, 328, 330, 334, 335, 336, 338, 353, 354, 359, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 402, 404, 407, 409, 412, 413, 414, 417, 419, 420, 425, 428, 430, 432, 433, 443, 450, 453, 454, 455, 456, 457, 458, 459, 465, 467, 469, 480, 484, 489, 490, 492, 493, 494, 496, 500, 504, 505, 507, 522, 523, 524, 525, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 572, 573, 575, 576, 577, 581, 582, 583, 586, 589, 590, 591, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 805, 806, 810, 812, 819, 820, 827, 829, 831, 842, 844, 846, 849, 851, 852, 853, 863, 865], "shape": [0, 4, 5, 8, 9, 14, 16, 18, 24, 25, 26, 27, 31, 32, 37, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 101, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 208, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 360, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 424, 425, 426, 427, 429, 430, 431, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 465, 467, 469, 472, 477, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 540, 541, 545, 546, 547, 549, 552, 553, 556, 562, 569, 576, 577, 587, 596, 598, 610, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 776, 778, 791, 792, 795, 805, 810, 812, 820, 821, 827, 829, 830, 831, 832, 833, 834, 836, 840, 841, 842, 844, 845, 846, 849, 851, 852, 853, 854, 863, 864], "gain": [0, 14, 791, 820, 821, 823, 848, 853, 870], "descript": [0, 1, 2, 40, 41, 42, 47, 50, 53, 56, 57, 62, 79, 80, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 832, 839, 840], "describ": [0, 7, 57, 70, 80, 98, 223, 240, 241, 273, 276, 278, 377, 382, 385, 457, 512, 515, 632, 636, 647, 663, 759, 763, 765, 814, 815, 818, 819, 820, 826, 828, 840, 841, 844, 849, 854, 870], "obtain": [0, 31, 32, 50, 57, 80, 319, 369, 375, 415, 636, 663, 778, 841, 863], "mean": [0, 4, 6, 7, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 47, 57, 58, 61, 63, 64, 66, 70, 72, 74, 76, 80, 81, 84, 86, 87, 89, 93, 95, 97, 134, 213, 330, 340, 369, 372, 375, 376, 377, 378, 381, 382, 387, 404, 409, 427, 440, 452, 453, 454, 455, 456, 457, 458, 459, 469, 474, 484, 501, 503, 509, 528, 529, 546, 617, 618, 620, 625, 629, 631, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 651, 653, 654, 655, 657, 658, 659, 670, 696, 697, 698, 706, 715, 716, 717, 724, 739, 740, 776, 778, 779, 791, 792, 795, 812, 819, 820, 822, 823, 825, 827, 829, 830, 831, 837, 839, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 864, 865, 867, 870], "deviat": [0, 65, 66, 70, 88, 89, 93, 642, 643, 647, 737, 740, 764, 778, 791, 795, 823, 861], "minimum": [0, 45, 56, 57, 58, 64, 67, 70, 79, 80, 81, 87, 90, 93, 220, 248, 275, 299, 331, 335, 336, 346, 367, 369, 372, 378, 387, 484, 520, 524, 530, 582, 583, 592, 593, 605, 606, 632, 634, 639, 644, 647, 699, 745, 760, 762, 776, 778, 779, 784, 829, 846, 867, 873, 877], "maximum": [0, 56, 57, 58, 59, 64, 67, 70, 74, 79, 80, 81, 82, 87, 90, 93, 103, 213, 299, 335, 336, 347, 360, 367, 372, 375, 376, 378, 387, 391, 392, 402, 445, 448, 451, 484, 523, 525, 530, 540, 541, 549, 557, 621, 631, 632, 634, 635, 637, 639, 644, 647, 678, 699, 744, 745, 760, 762, 776, 778, 779, 784, 806, 820, 829, 831, 840, 852, 867, 877], "quartil": 0, "overview": [0, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 826, 828, 842, 844, 848], "instrument": 0, "unusu": 0, "might": [0, 6, 7, 12, 37, 58, 98, 179, 544, 630, 634, 816, 818, 819, 820, 828, 829, 831, 834, 835, 838, 841, 844, 845, 847, 849, 851, 852, 857], "indic": [0, 4, 12, 53, 57, 58, 61, 62, 64, 65, 67, 68, 69, 74, 76, 77, 80, 81, 84, 85, 87, 88, 90, 91, 92, 97, 100, 127, 128, 141, 145, 147, 168, 172, 173, 284, 328, 329, 330, 349, 369, 372, 375, 376, 377, 378, 383, 385, 394, 395, 396, 398, 402, 403, 404, 408, 409, 412, 413, 414, 415, 419, 420, 430, 451, 454, 462, 463, 464, 467, 470, 472, 474, 475, 476, 479, 483, 489, 490, 492, 493, 494, 496, 498, 499, 513, 514, 515, 537, 552, 553, 555, 576, 577, 581, 614, 617, 618, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 650, 652, 653, 654, 655, 658, 663, 680, 694, 702, 703, 704, 706, 707, 708, 709, 711, 713, 718, 721, 723, 725, 726, 727, 729, 733, 734, 735, 736, 737, 738, 744, 745, 746, 747, 749, 751, 753, 755, 756, 773, 774, 776, 778, 792, 798, 805, 806, 808, 819, 828, 836, 839, 841, 854, 863], "000000": 0, "291022": 0, "std": [0, 4, 6, 7, 11, 12, 13, 14, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 46, 61, 66, 70, 84, 89, 93, 382, 509, 636, 643, 647, 651, 653, 654, 655, 657, 658, 739, 740, 812, 831, 865, 867], "250": 0, "105092": 0, "min": [0, 43, 47, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 145, 147, 165, 168, 272, 328, 331, 336, 369, 372, 376, 378, 430, 489, 530, 546, 576, 577, 592, 629, 630, 632, 634, 637, 647, 678, 684, 687, 688, 694, 812, 867], "650000": 0, "75": [0, 4, 7, 8, 43, 56, 57, 79, 80, 81, 84, 89, 119, 137, 226, 228, 240, 242, 253, 315, 348, 349, 369, 372, 418, 532, 547, 560, 592, 626, 629, 632, 634, 637, 641, 643, 650, 676, 682, 726, 741], "050000": 0, "max": [0, 43, 45, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 165, 168, 271, 335, 372, 375, 376, 377, 378, 394, 395, 396, 412, 413, 414, 415, 417, 419, 430, 452, 489, 491, 492, 540, 541, 546, 562, 576, 577, 630, 632, 634, 637, 647, 678, 680, 683, 776, 792, 796, 828, 841, 867], "25691": 0, "160000": 0, "reveal": 0, "outlier": [0, 844], "receiv": [0, 6, 45, 49, 97, 536, 572, 634, 640, 715, 716, 717, 792, 810, 815, 819, 820, 829, 830, 844, 847], "anomali": 0, "financi": 0, "behavior": [0, 4, 8, 57, 68, 240, 247, 273, 282, 388, 533, 580, 604, 632, 634, 645, 749, 750, 751, 752, 818, 826, 827, 828, 829, 840, 841, 842, 844, 847, 849, 855, 867], "associ": [0, 12, 57, 62, 80, 85, 223, 273, 378, 387, 461, 525, 632, 637, 680, 683, 695, 773, 820, 829, 837, 838, 841, 842, 844, 855], "122": [0, 13, 54, 168, 238, 632], "211321": 0, "256": [0, 4, 8, 12, 56, 81, 283, 284, 593, 636, 651, 653, 776], "683288": 0, "250000": 0, "105": [0, 62, 84, 636, 637, 659, 660, 675, 682], "890000": 0, "2125": 0, "870000": 0, "deepen": 0, "averag": [0, 6, 7, 45, 47, 57, 59, 63, 80, 82, 86, 375, 377, 381, 387, 389, 390, 394, 395, 396, 454, 455, 456, 457, 458, 459, 506, 522, 615, 616, 621, 635, 636, 638, 640, 663, 696, 715, 716, 791, 792], "across": [0, 1, 12, 13, 14, 26, 27, 28, 29, 43, 57, 67, 74, 80, 81, 90, 102, 211, 212, 240, 247, 273, 291, 377, 381, 452, 503, 506, 537, 558, 594, 631, 632, 634, 636, 641, 644, 659, 663, 724, 744, 745, 792, 818, 823, 829, 831, 833, 836, 837, 839, 844, 847, 868, 870, 875], "all": [0, 1, 2, 4, 5, 6, 7, 8, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 44, 45, 47, 48, 50, 52, 53, 57, 58, 61, 62, 64, 66, 71, 72, 74, 75, 76, 79, 80, 81, 84, 85, 87, 89, 94, 95, 97, 98, 126, 134, 141, 145, 146, 147, 201, 208, 240, 244, 272, 273, 328, 329, 341, 360, 369, 372, 375, 376, 377, 378, 387, 409, 418, 420, 421, 422, 430, 435, 445, 446, 448, 451, 452, 473, 484, 492, 498, 528, 534, 537, 554, 574, 575, 592, 599, 600, 614, 617, 629, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 648, 659, 662, 663, 668, 680, 685, 686, 689, 694, 703, 707, 709, 715, 716, 717, 718, 719, 720, 729, 730, 731, 732, 738, 741, 746, 771, 773, 776, 777, 778, 779, 791, 792, 798, 801, 806, 808, 810, 812, 813, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 876, 877, 878], "group": [0, 6, 57, 80, 378, 381, 498, 502, 636, 641, 649, 656, 657, 720, 810, 821, 823, 827, 829, 837, 841, 842, 866, 869, 875], "calcul": [0, 4, 14, 45, 56, 57, 58, 63, 70, 74, 79, 80, 81, 85, 86, 93, 103, 220, 221, 222, 223, 224, 225, 226, 227, 228, 237, 238, 240, 243, 244, 245, 261, 262, 263, 264, 265, 266, 271, 272, 273, 278, 285, 286, 287, 289, 290, 291, 297, 307, 335, 336, 349, 359, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 430, 452, 457, 484, 501, 503, 529, 569, 632, 634, 637, 638, 647, 674, 682, 685, 696, 697, 698, 760, 761, 762, 763, 764, 765, 766, 776, 778, 791, 792, 795, 818, 832, 849, 860, 863], "pictur": [0, 47, 812, 818, 849, 859], "vital": [0, 854, 859], "select": [0, 22, 31, 36, 49, 57, 70, 80, 93, 376, 378, 387, 430, 443, 492, 493, 496, 523, 524, 647, 757, 758, 818, 819, 820, 828, 834, 840, 844, 849, 851, 854, 855, 870, 873, 874], "guid": [0, 16, 29, 812, 813, 818, 819, 820, 826, 835, 841, 843, 876], "recogn": [0, 47, 815, 821], "both": [0, 6, 9, 11, 12, 13, 14, 16, 18, 26, 28, 31, 32, 36, 37, 44, 46, 53, 56, 57, 58, 61, 62, 76, 79, 80, 81, 84, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 178, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 339, 341, 346, 351, 369, 372, 375, 376, 378, 382, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 478, 484, 492, 495, 496, 508, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 625, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 792, 812, 816, 818, 820, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 847, 849, 851, 852, 853, 854, 855, 863, 864, 870, 873, 875, 876, 877], "groupbi": 0, "94838": 0, "202258": 0, "008258": 0, "006271": 0, "012171": 0, "007860": 0, "005453": 0, "002419": 0, "009637": 0, "000987": 0, "004467": 0, "000644": 0, "001235": [0, 47], "000024": 0, "000070": 0, "000182": 0, "000072": 0, "000089": 0, "000295": 0, "000131": 0, "80746": 0, "806911": 0, "771948": 0, "623778": 0, "033281": 0, "542029": 0, "151225": 0, "397737": 0, "568731": 0, "570636": 0, "581123": 0, "372319": 0, "713588": 0, "014049": 0, "040308": 0, "105130": 0, "041449": 0, "051648": 0, "170575": 0, "075667": 0, "In": [0, 3, 4, 5, 6, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 50, 55, 57, 58, 64, 78, 80, 81, 87, 97, 98, 207, 214, 215, 219, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 378, 381, 399, 400, 401, 421, 462, 463, 464, 470, 472, 474, 475, 476, 477, 479, 483, 489, 490, 499, 501, 503, 535, 555, 562, 580, 631, 632, 634, 637, 639, 643, 685, 702, 703, 704, 706, 708, 709, 711, 713, 741, 812, 818, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 854, 855, 859, 861, 863, 864, 865, 866, 868, 870, 871, 873, 876], "outnumb": 0, "address": [0, 31, 32, 57, 58, 80, 378, 492, 599, 634, 818, 820, 823, 824, 836, 843, 849, 861, 866, 868, 870, 876], "fair": 0, "dure": [0, 11, 13, 24, 26, 31, 34, 36, 37, 55, 59, 70, 74, 78, 82, 93, 214, 375, 399, 400, 401, 580, 601, 615, 616, 621, 631, 634, 635, 636, 637, 640, 647, 659, 677, 715, 716, 717, 764, 766, 784, 795, 796, 810, 819, 827, 829, 830, 833, 837, 838, 840, 841, 842, 843, 844, 847, 855, 863, 870, 871, 876], "similar": [0, 1, 6, 22, 31, 32, 57, 282, 377, 452, 632, 636, 663, 792, 816, 818, 819, 827, 828, 829, 830, 833, 834, 835, 837, 838, 839, 841, 842, 844, 845, 852, 855, 859, 864, 866, 867, 868, 869, 876], "here": [0, 2, 4, 6, 7, 9, 14, 17, 19, 22, 27, 30, 31, 32, 43, 45, 46, 47, 48, 50, 80, 283, 459, 632, 812, 816, 817, 818, 819, 820, 823, 825, 826, 827, 828, 829, 831, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 849, 850, 851, 852, 853, 854, 855, 863, 864, 865, 870, 871, 878], "take": [0, 4, 6, 12, 22, 29, 31, 32, 37, 43, 45, 48, 57, 62, 64, 70, 80, 87, 97, 122, 123, 125, 141, 280, 287, 302, 367, 375, 376, 378, 395, 403, 408, 413, 423, 432, 446, 467, 474, 493, 523, 524, 628, 629, 632, 636, 637, 639, 640, 663, 677, 681, 706, 717, 757, 776, 784, 791, 792, 805, 810, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 837, 840, 841, 842, 844, 847, 849, 851, 853, 854, 855, 856, 861, 863, 864, 867, 868, 876], "random": [0, 6, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 45, 47, 48, 57, 61, 74, 80, 84, 323, 324, 325, 326, 327, 369, 376, 377, 434, 445, 451, 457, 508, 509, 510, 511, 512, 636, 659, 738, 739, 740, 741, 742, 743, 776, 778, 791, 805, 806, 812, 818, 830, 842, 844, 845, 854, 864, 865, 870], "match": [0, 1, 54, 57, 74, 77, 80, 152, 247, 282, 339, 341, 372, 375, 377, 378, 420, 452, 467, 489, 493, 572, 630, 632, 634, 637, 673, 674, 678, 694, 771, 816, 818, 824, 826, 827, 831, 834, 842, 871, 876], "prevent": [0, 57, 59, 70, 80, 82, 93, 377, 457, 557, 615, 616, 621, 634, 635, 636, 647, 659, 761, 765, 791, 796, 818, 820, 828, 829, 833, 840, 841, 845], "being": [0, 6, 7, 9, 31, 32, 43, 57, 74, 80, 95, 102, 106, 126, 376, 378, 440, 468, 484, 586, 629, 634, 636, 637, 661, 674, 773, 779, 791, 812, 819, 820, 823, 824, 825, 827, 829, 830, 831, 834, 836, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 860, 861, 866, 868, 869, 870, 871, 876, 877], "bias": [0, 636, 661], "toward": [0, 57, 64, 80, 87, 247, 294, 345, 357, 372, 378, 387, 490, 525, 632, 639, 707, 812, 816, 818, 819, 834, 849, 866, 870], "legit_sampl": 0, "n": [0, 14, 43, 46, 47, 48, 50, 53, 56, 57, 61, 62, 64, 66, 67, 70, 71, 79, 80, 84, 85, 87, 89, 90, 93, 94, 97, 102, 139, 145, 146, 147, 220, 290, 292, 328, 329, 341, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 397, 398, 403, 404, 407, 408, 409, 417, 418, 419, 420, 422, 430, 431, 438, 442, 444, 446, 451, 452, 464, 470, 473, 477, 479, 490, 499, 501, 502, 503, 506, 508, 509, 510, 511, 512, 515, 522, 532, 629, 632, 636, 637, 639, 641, 643, 644, 647, 648, 649, 650, 651, 652, 654, 656, 658, 663, 668, 671, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 688, 691, 692, 693, 694, 701, 702, 704, 710, 714, 726, 739, 740, 741, 747, 761, 763, 764, 765, 766, 767, 768, 792, 795, 805, 812, 822, 826, 828, 844, 856, 864], "after": [0, 4, 5, 8, 9, 11, 12, 13, 31, 32, 46, 57, 58, 59, 61, 65, 74, 80, 81, 82, 84, 88, 186, 287, 304, 308, 357, 367, 372, 375, 376, 378, 398, 399, 400, 401, 418, 422, 443, 473, 484, 562, 616, 619, 621, 622, 623, 630, 632, 634, 635, 636, 641, 642, 649, 650, 651, 652, 654, 656, 658, 659, 729, 737, 796, 801, 812, 818, 819, 820, 823, 825, 826, 828, 829, 831, 833, 836, 839, 842, 844, 848, 856, 863, 864, 870], "combin": [0, 14, 37, 57, 74, 80, 103, 375, 387, 409, 420, 522, 550, 551, 634, 637, 668, 677, 820, 824, 827, 828, 829, 831, 833, 837, 844, 854, 870], "them": [0, 3, 4, 11, 13, 16, 18, 20, 31, 32, 37, 376, 446, 539, 575, 634, 776, 792, 812, 814, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 833, 835, 838, 840, 841, 842, 844, 846, 849, 851, 852, 853, 855, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 868, 870, 872, 876], "achiev": [0, 11, 13, 14, 31, 812, 813, 815, 821, 828, 829, 837, 838, 844, 847, 852, 854, 857], "concaten": [0, 43, 57, 58, 64, 80, 85, 378, 469, 545, 549, 634, 636, 639, 663, 682, 700, 776, 842, 847, 849, 852], "along": [0, 46, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 92, 93, 94, 97, 98, 100, 113, 117, 122, 137, 138, 213, 287, 290, 292, 330, 331, 332, 335, 336, 340, 341, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 397, 403, 404, 407, 408, 409, 419, 420, 445, 456, 469, 470, 471, 473, 475, 476, 484, 489, 492, 494, 496, 504, 505, 506, 507, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 628, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 646, 647, 648, 668, 682, 691, 693, 694, 696, 697, 698, 700, 703, 704, 705, 707, 708, 710, 712, 713, 715, 716, 717, 743, 744, 745, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 792, 812, 818, 821, 822, 831, 840, 843, 845, 847, 849, 870], "axi": [0, 4, 6, 7, 8, 14, 46, 47, 48, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 113, 117, 137, 138, 141, 213, 287, 292, 335, 336, 340, 341, 349, 356, 372, 375, 377, 378, 381, 385, 387, 397, 398, 404, 407, 409, 419, 420, 456, 461, 469, 470, 471, 474, 475, 476, 479, 484, 489, 490, 492, 493, 494, 496, 498, 499, 504, 505, 507, 515, 520, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 614, 626, 629, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 646, 647, 648, 658, 668, 671, 678, 691, 693, 694, 696, 697, 698, 700, 701, 702, 703, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 743, 744, 745, 749, 751, 753, 754, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 793, 798, 827, 829, 831, 833, 836, 837, 840, 841, 844, 847, 849, 851, 854], "result": [0, 1, 4, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 31, 32, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 180, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 432, 433, 435, 436, 440, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 461, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 557, 562, 569, 576, 577, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 721, 724, 725, 727, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 778, 784, 798, 806, 810, 812, 816, 818, 820, 823, 824, 826, 827, 828, 829, 831, 832, 834, 836, 837, 839, 840, 841, 842, 844, 845, 849, 852, 855, 863, 864, 865, 871, 873], "new_dataset": 0, "now": [0, 1, 5, 6, 7, 9, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 47, 792, 793, 794, 812, 819, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 838, 841, 842, 844, 845, 847, 851, 852, 854, 855, 861, 863, 864, 865, 870], "equal": [0, 5, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 70, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 98, 102, 103, 132, 134, 135, 136, 142, 143, 152, 232, 234, 238, 243, 245, 254, 255, 276, 278, 283, 286, 287, 291, 330, 331, 332, 334, 351, 369, 372, 375, 376, 378, 381, 387, 398, 419, 446, 470, 479, 492, 496, 499, 504, 505, 507, 525, 534, 537, 614, 629, 630, 632, 634, 637, 638, 639, 643, 644, 645, 646, 647, 671, 679, 680, 683, 685, 691, 696, 699, 701, 706, 708, 714, 741, 747, 749, 750, 751, 752, 753, 756, 761, 763, 764, 765, 766, 784, 791, 792, 826, 827, 829, 831, 833, 842, 844, 867], "unbias": [0, 57, 70, 80, 93, 387, 522, 647, 766], "concat": [0, 8, 43, 48, 58, 64, 74, 87, 213, 549, 631, 634, 639, 714, 842, 847, 849, 863], "65908": 0, "51801": 0, "519205": 0, "852437": 0, "191664": 0, "749435": 0, "639186": 0, "666758": 0, "310037": 0, "116659": 0, "554879": 0, "207139": 0, "748058": 0, "229554": 0, "272256": 0, "304838": 0, "251128": 0, "131252": 0, "036799": 0, "195557": 0, "131120": 0, "102139": 0, "442451": 0, "887016": 0, "579461": 0, "325601": 0, "615304": 0, "621226": 0, "291374": 0, "236204": 0, "557458": 0, "159454": 0, "710631": 0, "429388": 0, "234335": 0, "787399": 0, "300106": 0, "108052": 0, "614": 0, "53744": 0, "46126": 0, "823696": 0, "028978": 0, "698815": 0, "498501": 0, "813862": 0, "788743": 0, "279106": 0, "488737": 0, "885320": 0, "300256": 0, "715811": 0, "186151": 0, "132502": 0, "385279": 0, "634010": 0, "231485": 0, "096003": 0, "98": [0, 43, 51, 57, 59, 66, 73, 79, 82, 89, 113, 238, 286, 360, 372, 619, 626, 635, 637, 641, 644, 647, 682, 719, 730, 739, 741, 748, 759, 878], "224892": 0, "144011": 0, "802980": 0, "264517": 0, "123151": 0, "302386": 0, "758015": 0, "307608": 0, "405042": 0, "111496": 0, "265297": 0, "260045": 0, "499437": 0, "056524": 0, "534144": 0, "206880": 0, "386490": 0, "001905": 0, "026937": 0, "172": [0, 279, 632], "03": [0, 6, 14, 27, 46, 53, 56, 58, 59, 79, 80, 82, 89, 138, 238, 263, 343, 344, 592, 593, 616, 621, 629, 632, 634, 635, 637, 676, 740], "55713": 0, "47085": 0, "738160": 0, "575518": 0, "551978": 0, "894729": 0, "839781": 0, "083335": 0, "779428": 0, "083990": 0, "568542": 0, "554234": 0, "707282": 0, "924631": 0, "076400": 0, "157681": 0, "914957": 0, "266566": 0, "168184": 0, "1025": [0, 776], "279863": 0, "169142": 0, "927883": 0, "125653": 0, "518331": 0, "749293": 0, "566487": 0, "010494": 0, "882850": 0, "697211": 0, "064945": 0, "778584": 0, "319189": 0, "639419": 0, "294885": 0, "537503": 0, "788395": 0, "292680": 0, "147968": 0, "390": [0, 13, 26, 27, 28, 29], "280143": 0, "169347": 0, "378559": 0, "289381": 0, "004247": 0, "411850": 0, "442581": 0, "326536": 0, "413170": 0, "248525": 0, "127396": 0, "370612": 0, "028234": 0, "145640": 0, "081049": 0, "521875": 0, "739467": 0, "389152": 0, "186637": 0, "76": [0, 14, 24, 43, 56, 57, 70, 77, 79, 80, 89, 168, 222, 238, 286, 322, 369, 407, 630, 632, 637, 641, 647, 689, 726, 740, 759], "280149": 0, "169351": 0, "676143": 0, "126366": 0, "213700": 0, "468308": 0, "120541": 0, "003346": 0, "234739": 0, "210158": 0, "652250": 0, "751826": 0, "834108": 0, "190944": 0, "032070": 0, "739695": 0, "471111": 0, "385107": 0, "194361": 0, "89": [0, 5, 14, 43, 56, 66, 77, 79, 80, 89, 103, 168, 235, 630, 637, 647, 689, 740, 741, 765], "281144": 0, "169966": 0, "113832": 0, "585864": 0, "399730": 0, "817092": 0, "840618": 0, "943548": 0, "208002": 0, "058733": 0, "632333": 0, "583276": 0, "269209": 0, "456108": 0, "183659": 0, "328168": 0, "606116": 0, "884876": 0, "253700": 0, "245": [0, 56, 84, 228, 636, 659, 660], "281674": 0, "170348": 0, "991976": 0, "158476": 0, "583441": 0, "408670": 0, "151147": 0, "096695": 0, "223050": 0, "068384": 0, "577829": 0, "164350": 0, "295135": 0, "072173": 0, "450261": 0, "313267": 0, "289617": 0, "002988": 0, "015309": 0, "42": [0, 11, 13, 14, 24, 25, 29, 31, 32, 43, 45, 46, 51, 66, 73, 82, 89, 118, 234, 375, 397, 407, 615, 619, 626, 632, 635, 637, 642, 643, 647, 678, 682, 737, 738, 739, 740, 741, 742, 759, 812, 849, 854, 864], "53": [0, 10, 14, 26, 43, 62, 66, 79, 84, 159, 215, 245, 418, 618, 620, 630, 631, 635, 637, 642, 675, 737, 741], "93007": 0, "762195": 0, "000285": 0, "013777": 0, "014009": 0, "039620": 0, "140964": 0, "011996": 0, "076337": 0, "031293": 0, "076897": 0, "029911": 0, "043784": 0, "053381": 0, "010626": 0, "066434": 0, "007150": 0, "021923": 0, "030825": 0, "041431": 0, "632297": 0, "final": [0, 9, 11, 13, 16, 18, 20, 28, 31, 32, 37, 43, 44, 53, 57, 58, 80, 81, 97, 125, 137, 138, 322, 369, 375, 420, 549, 628, 629, 634, 636, 661, 662, 663, 806, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 837, 839, 840, 841, 843, 847, 848, 852, 863, 864, 866, 876], "predictor": [0, 855], "label": [0, 6, 7, 14, 45, 46, 47, 57, 63, 80, 86, 377, 452, 453, 455, 456, 457, 458, 459, 638, 696, 697, 698, 812, 818, 823, 841, 848, 849, 850, 854, 856, 870], "whether": [0, 20, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 125, 127, 128, 134, 136, 141, 143, 149, 152, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 170, 171, 172, 173, 175, 176, 177, 178, 180, 192, 196, 197, 199, 200, 202, 204, 207, 208, 210, 213, 214, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 398, 399, 400, 401, 417, 419, 421, 423, 438, 440, 446, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 479, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 572, 576, 577, 578, 579, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 607, 608, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 648, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 686, 691, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 788, 789, 792, 793, 794, 795, 796, 805, 812, 813, 818, 819, 824, 827, 829, 831, 836, 840, 841, 844, 846, 847, 863, 864], "x": [0, 4, 8, 9, 10, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 172, 173, 175, 180, 196, 197, 199, 201, 206, 207, 208, 212, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 328, 329, 333, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 385, 386, 387, 388, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 422, 424, 426, 427, 429, 431, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 465, 466, 468, 469, 471, 472, 474, 477, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 494, 496, 497, 498, 500, 501, 502, 503, 504, 505, 506, 507, 514, 515, 516, 517, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 620, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 792, 795, 798, 801, 805, 810, 812, 816, 818, 822, 824, 825, 827, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "y": [0, 14, 31, 32, 43, 44, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 129, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 149, 152, 153, 154, 163, 165, 168, 180, 193, 197, 201, 206, 207, 208, 212, 214, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 334, 335, 336, 342, 350, 351, 352, 353, 354, 359, 361, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 395, 397, 399, 400, 404, 407, 409, 413, 419, 426, 430, 436, 443, 450, 452, 453, 455, 456, 457, 458, 459, 469, 471, 480, 484, 492, 493, 494, 496, 500, 504, 505, 507, 515, 521, 522, 523, 524, 525, 528, 530, 531, 532, 534, 537, 540, 541, 544, 545, 547, 548, 549, 552, 553, 554, 558, 560, 561, 562, 564, 565, 568, 569, 574, 581, 582, 583, 586, 589, 590, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 614, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 655, 657, 658, 659, 660, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 685, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 727, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 825, 827, 830, 831, 839, 841, 842, 844, 845, 847, 849, 851, 863], "upcom": [0, 850], "phase": [0, 844, 855, 870], "drop": [0, 14, 47, 57, 80, 331, 369, 377, 378, 456, 493, 791, 792, 819, 855], "015162": 0, "655442": 0, "367897": 0, "290904": 0, "902524": 0, "252967": 0, "226138": 0, "247968": 0, "306271": 0, "017652": 0, "984": [0, 291, 632], "length": [0, 6, 12, 45, 46, 53, 57, 63, 64, 74, 80, 86, 87, 97, 98, 103, 126, 134, 139, 314, 317, 318, 333, 341, 369, 372, 375, 376, 378, 382, 385, 397, 398, 403, 404, 407, 408, 409, 419, 420, 421, 423, 435, 444, 484, 493, 510, 515, 614, 629, 634, 636, 637, 638, 639, 645, 663, 687, 688, 696, 706, 749, 776, 792, 844, 852], "valid": [0, 8, 45, 47, 57, 61, 71, 80, 84, 94, 97, 98, 157, 375, 376, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 443, 451, 565, 630, 634, 636, 639, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 702, 710, 767, 768, 776, 777, 792, 805, 819, 825, 829, 831, 835, 839, 842, 844, 863, 871], "gener": [0, 1, 7, 8, 20, 24, 29, 31, 32, 34, 37, 45, 47, 49, 50, 53, 56, 57, 61, 66, 72, 76, 79, 80, 84, 89, 95, 98, 126, 137, 138, 147, 155, 240, 243, 253, 254, 269, 273, 282, 312, 315, 319, 320, 321, 323, 324, 325, 326, 327, 328, 335, 336, 369, 372, 375, 376, 378, 382, 387, 419, 425, 447, 492, 510, 522, 629, 630, 632, 636, 637, 639, 643, 647, 659, 685, 686, 689, 692, 714, 738, 739, 741, 742, 764, 776, 779, 784, 796, 805, 812, 818, 819, 820, 822, 823, 824, 826, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 857, 868, 869, 870, 871, 872, 873, 874, 875, 876], "partit": 0, "have": [0, 1, 2, 4, 5, 6, 7, 8, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 165, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 424, 426, 427, 429, 430, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 457, 458, 459, 463, 464, 469, 470, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 504, 505, 507, 508, 509, 511, 512, 513, 515, 522, 523, 524, 525, 529, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 580, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 865, 866, 867, 868, 869, 870, 872, 876, 877, 878], "stratifi": 0, "paramet": [0, 6, 7, 14, 18, 29, 31, 32, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 580, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 632, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 805, 806, 808, 810, 812, 818, 824, 832, 833, 836, 841, 842, 844, 845, 849, 851, 852, 863, 864, 865, 871], "test_siz": [0, 14, 45], "specifi": [0, 28, 29, 31, 32, 36, 37, 38, 49, 51, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 130, 135, 137, 142, 145, 146, 148, 152, 154, 201, 206, 208, 212, 213, 214, 282, 291, 295, 300, 301, 303, 329, 334, 351, 356, 367, 369, 372, 375, 376, 377, 378, 382, 387, 394, 395, 396, 398, 404, 409, 419, 420, 421, 422, 430, 442, 444, 449, 452, 456, 457, 458, 460, 474, 477, 486, 487, 489, 490, 492, 496, 509, 520, 522, 523, 524, 527, 528, 532, 535, 552, 553, 555, 557, 558, 571, 573, 581, 614, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 661, 663, 666, 668, 670, 671, 673, 674, 678, 686, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 707, 709, 710, 713, 714, 722, 723, 725, 726, 733, 734, 735, 736, 739, 740, 741, 743, 744, 745, 747, 750, 751, 752, 753, 757, 758, 759, 761, 763, 765, 767, 768, 776, 779, 788, 792, 793, 794, 806, 810, 819, 822, 826, 829, 830, 836, 837, 838, 840, 841, 842, 844, 849, 852, 853, 863, 864, 865, 876], "reserv": [0, 818], "x_train": [0, 14], "x_test": [0, 14], "y_train": [0, 14, 47], "y_test": [0, 14], "random_st": [0, 14, 376, 434], "With": [0, 4, 6, 24, 34, 43, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 168, 175, 180, 181, 182, 183, 184, 194, 197, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 335, 336, 338, 340, 343, 344, 348, 351, 352, 353, 355, 356, 359, 367, 369, 372, 375, 376, 377, 378, 387, 397, 399, 400, 407, 419, 426, 427, 428, 430, 431, 432, 443, 446, 458, 474, 475, 476, 478, 481, 483, 484, 490, 492, 494, 496, 498, 513, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 538, 539, 540, 541, 544, 545, 546, 547, 548, 552, 553, 556, 558, 560, 561, 562, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 684, 685, 686, 687, 688, 689, 691, 692, 693, 696, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 829, 831, 841, 844, 847, 849, 860, 861, 863, 870, 873], "next": [0, 1, 6, 7, 8, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 45, 47, 57, 80, 165, 348, 352, 357, 361, 372, 630, 791, 796, 812, 818, 819, 820, 825, 829, 831, 832, 834, 835, 838, 850, 851, 852, 861, 870, 872], "convers": [0, 56, 57, 80, 239, 279, 578, 588, 634, 793, 794, 818, 848, 850, 854, 855, 857, 861, 869, 876], "becaus": [0, 26, 34, 36, 46, 57, 375, 398, 771, 819, 820, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 847, 849, 853, 854, 855, 870, 873, 876], "own": [0, 6, 7, 10, 16, 18, 22, 31, 32, 37, 812, 819, 823, 828, 829, 832, 833, 840, 841, 845, 849, 855, 857, 860, 861, 866, 869, 870, 875, 876], "confirm": [0, 4, 46, 815, 818], "been": [0, 6, 7, 13, 16, 18, 26, 28, 31, 32, 57, 58, 66, 80, 81, 89, 196, 283, 378, 491, 545, 546, 547, 631, 632, 634, 643, 738, 805, 806, 818, 820, 823, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 844, 849, 851, 855, 856, 863, 870, 877], "correctli": [0, 1, 28, 31, 32, 45, 57, 62, 67, 80, 85, 90, 340, 372, 387, 528, 529, 530, 531, 532, 637, 644, 678, 744, 818, 819, 820, 824, 827, 829, 831, 833, 835, 836, 842, 844, 847, 853, 855, 863, 864], "size": [0, 8, 14, 16, 18, 23, 26, 27, 33, 34, 36, 37, 38, 45, 47, 50, 57, 58, 61, 62, 64, 66, 67, 74, 80, 81, 84, 85, 87, 89, 90, 97, 98, 102, 103, 134, 137, 211, 212, 213, 312, 315, 319, 330, 331, 332, 333, 340, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 393, 394, 395, 411, 412, 413, 415, 416, 422, 423, 430, 433, 445, 451, 452, 454, 468, 470, 482, 492, 494, 496, 502, 503, 506, 510, 515, 527, 528, 529, 530, 531, 532, 571, 576, 629, 631, 634, 636, 637, 639, 643, 644, 648, 661, 663, 666, 668, 671, 675, 678, 682, 684, 687, 693, 702, 707, 708, 709, 738, 744, 747, 767, 768, 776, 778, 779, 792, 806, 812, 840, 842, 844, 847, 852, 863, 865], "correct": [0, 11, 16, 18, 27, 37, 43, 45, 47, 70, 93, 186, 376, 447, 630, 639, 647, 699, 764, 766, 773, 776, 812, 816, 818, 820, 822, 827, 828, 829, 830, 833, 834, 836, 837, 840, 842, 844, 864], "787": 0, "197": [0, 56, 228, 632], "success": [0, 637, 647, 691, 763, 765, 815, 819, 828, 860], "prepare_data": [0, 14], "list": [0, 1, 5, 8, 11, 12, 14, 47, 52, 53, 54, 56, 57, 58, 61, 64, 65, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 134, 136, 139, 140, 141, 143, 149, 153, 155, 168, 172, 173, 180, 196, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 349, 350, 351, 357, 358, 359, 361, 362, 363, 372, 375, 376, 378, 385, 394, 395, 396, 398, 399, 400, 401, 412, 413, 414, 415, 419, 421, 425, 430, 434, 437, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 470, 479, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 514, 522, 523, 524, 525, 534, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 598, 599, 600, 601, 613, 614, 619, 624, 629, 630, 631, 632, 634, 636, 637, 639, 641, 642, 645, 646, 650, 651, 652, 653, 654, 655, 658, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 689, 691, 696, 697, 698, 699, 700, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 720, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 792, 798, 805, 806, 810, 812, 815, 817, 818, 819, 821, 823, 824, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 849, 852, 853, 854, 855, 863, 870, 871, 876, 878], "tupl": [0, 14, 49, 52, 53, 54, 56, 57, 58, 61, 62, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 127, 128, 134, 136, 140, 141, 143, 147, 149, 153, 154, 155, 166, 167, 168, 172, 173, 179, 180, 186, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 321, 325, 328, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 348, 349, 350, 351, 355, 356, 357, 358, 359, 361, 362, 363, 364, 369, 372, 374, 375, 376, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 403, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 429, 430, 434, 438, 440, 445, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 479, 484, 490, 492, 493, 494, 496, 498, 501, 503, 504, 505, 506, 507, 509, 510, 512, 513, 514, 522, 523, 524, 525, 527, 528, 529, 530, 531, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 581, 591, 592, 593, 594, 595, 597, 598, 599, 600, 613, 614, 615, 616, 617, 619, 621, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 689, 690, 691, 694, 696, 697, 698, 699, 700, 701, 703, 704, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 725, 726, 727, 729, 730, 733, 734, 735, 736, 738, 739, 740, 741, 743, 746, 747, 749, 750, 751, 752, 753, 754, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 791, 792, 794, 805, 806, 824, 829, 836, 837, 840, 842, 844, 849, 852, 853, 855, 863, 864, 865], "thei": [0, 1, 14, 38, 43, 48, 57, 62, 66, 68, 74, 85, 89, 91, 178, 292, 346, 372, 630, 632, 636, 637, 640, 643, 645, 661, 692, 715, 716, 738, 749, 771, 797, 812, 817, 818, 819, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 863, 867, 870, 872, 873, 876, 877], "dimension": [0, 53, 56, 57, 62, 64, 67, 70, 71, 74, 76, 79, 80, 85, 87, 93, 94, 102, 126, 132, 134, 139, 147, 292, 328, 335, 336, 369, 372, 375, 376, 378, 387, 403, 404, 408, 409, 419, 420, 427, 462, 463, 464, 468, 473, 474, 520, 532, 629, 632, 637, 639, 644, 647, 648, 668, 669, 675, 677, 680, 682, 683, 693, 694, 708, 744, 745, 747, 760, 761, 762, 763, 764, 765, 766, 767, 768, 837, 839, 844, 847, 849, 867, 870, 877], "reshap": [0, 4, 31, 32, 47, 48, 57, 61, 62, 64, 74, 80, 84, 85, 87, 360, 372, 375, 376, 378, 394, 395, 396, 399, 412, 413, 414, 417, 426, 443, 468, 474, 614, 634, 636, 637, 639, 652, 654, 658, 678, 694, 812, 840, 841, 844, 847, 849, 851, 854, 867], "float32": [0, 4, 8, 12, 14, 16, 18, 23, 24, 43, 45, 46, 47, 53, 54, 57, 58, 61, 76, 77, 80, 81, 84, 93, 138, 141, 143, 149, 150, 151, 155, 159, 160, 163, 164, 165, 166, 169, 172, 173, 175, 180, 183, 189, 239, 253, 280, 333, 346, 369, 372, 375, 376, 377, 387, 397, 407, 420, 446, 452, 457, 525, 562, 599, 629, 630, 632, 634, 636, 637, 640, 652, 654, 655, 658, 685, 687, 688, 694, 716, 717, 773, 776, 777, 812, 829, 831, 842, 844, 845, 864, 865], "def": [0, 4, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 56, 79, 122, 224, 539, 628, 634, 640, 641, 716, 717, 724, 805, 812, 816, 818, 819, 823, 824, 827, 829, 830, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "isinst": [0, 8, 14, 29, 31, 32, 833, 841, 844, 845, 853, 854], "rang": [0, 4, 6, 7, 9, 10, 14, 31, 32, 43, 44, 45, 47, 53, 57, 70, 76, 80, 126, 137, 138, 287, 299, 307, 319, 367, 369, 376, 378, 387, 430, 442, 477, 485, 487, 492, 497, 523, 524, 525, 545, 614, 629, 632, 634, 645, 647, 749, 757, 758, 763, 765, 776, 778, 779, 791, 812, 815, 818, 829, 833, 837, 844, 849, 852, 853, 854, 870, 876], "len": [0, 6, 7, 8, 14, 45, 47, 53, 57, 62, 80, 85, 139, 316, 325, 326, 369, 375, 376, 387, 409, 420, 432, 435, 445, 451, 532, 629, 637, 673, 692, 812, 827, 828, 833, 840, 841, 844, 851, 854, 863], "expand_dim": [0, 6, 14, 28, 31, 32, 47, 49, 64, 87, 636, 639, 658, 812, 841, 849, 852, 864], "astyp": [0, 14, 16, 18, 23, 45, 46, 47, 54, 61, 77, 84, 630, 636, 652, 654, 655, 658, 812, 829, 840, 841, 847, 865], "els": [0, 5, 6, 7, 8, 11, 14, 46, 47, 49, 50, 57, 58, 66, 79, 80, 89, 158, 159, 160, 161, 162, 174, 280, 284, 375, 376, 382, 421, 434, 445, 449, 451, 509, 544, 548, 630, 632, 634, 636, 641, 643, 662, 728, 731, 739, 740, 741, 771, 805, 806, 812, 818, 819, 820, 823, 825, 829, 830, 833, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 871], "return": [0, 4, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 783, 784, 789, 791, 792, 794, 796, 801, 802, 805, 806, 807, 808, 809, 810, 812, 819, 820, 824, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 865, 871], "defin": [0, 23, 29, 31, 32, 33, 53, 57, 58, 62, 76, 80, 81, 85, 100, 116, 141, 145, 146, 147, 223, 240, 247, 273, 274, 282, 284, 287, 300, 304, 308, 314, 317, 318, 319, 328, 329, 330, 331, 332, 335, 336, 338, 367, 369, 372, 375, 376, 378, 387, 411, 428, 484, 490, 525, 560, 561, 581, 626, 629, 632, 634, 636, 637, 647, 661, 668, 673, 674, 686, 760, 761, 762, 764, 812, 818, 819, 824, 825, 828, 829, 832, 836, 839, 841, 842, 844, 845, 851, 853, 855, 857, 865, 867, 868, 869, 870, 871, 874, 876, 877], "proper": [0, 812, 818, 841, 864], "adjust": [0, 45, 70, 93, 376, 447, 647, 764, 766, 801, 810], "comput": [0, 6, 28, 29, 31, 32, 38, 39, 44, 45, 47, 51, 56, 57, 58, 59, 61, 62, 63, 68, 70, 73, 74, 79, 80, 81, 82, 84, 85, 86, 93, 97, 98, 100, 113, 117, 213, 223, 230, 233, 235, 240, 241, 242, 247, 248, 249, 251, 252, 258, 259, 260, 267, 268, 269, 270, 272, 273, 276, 281, 282, 300, 304, 308, 314, 317, 318, 330, 331, 332, 335, 336, 338, 342, 344, 347, 349, 350, 354, 356, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 385, 387, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 423, 424, 426, 428, 429, 430, 431, 433, 434, 436, 438, 441, 443, 445, 448, 449, 451, 453, 454, 455, 456, 457, 458, 459, 478, 481, 494, 501, 503, 514, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 539, 540, 541, 585, 608, 615, 617, 618, 620, 624, 625, 631, 632, 634, 635, 636, 637, 638, 639, 641, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 667, 668, 672, 673, 674, 677, 678, 680, 682, 684, 686, 687, 689, 691, 693, 694, 696, 697, 698, 702, 724, 749, 750, 751, 752, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 773, 778, 792, 795, 806, 812, 819, 827, 828, 829, 837, 839, 841, 844, 846, 847, 849, 852, 855, 857, 860, 861, 863, 864, 866, 868, 870, 871, 873, 874, 876], "most": [0, 6, 14, 22, 31, 32, 74, 76, 97, 100, 141, 376, 429, 585, 608, 629, 634, 637, 672, 673, 809, 812, 817, 818, 819, 824, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 860, 870, 871, 873, 874, 876, 877], "avail": [0, 2, 4, 6, 8, 12, 26, 27, 29, 31, 32, 47, 58, 81, 196, 202, 204, 205, 216, 546, 631, 634, 637, 688, 777, 810, 812, 819, 820, 827, 828, 829, 830, 832, 833, 841, 844, 847, 855, 856, 859, 863, 864, 865, 875, 876], "cpu": [0, 6, 7, 8, 9, 10, 11, 13, 26, 27, 28, 29, 31, 45, 46, 47, 49, 50, 53, 55, 57, 66, 76, 78, 80, 89, 126, 132, 135, 137, 138, 141, 142, 143, 149, 193, 194, 196, 197, 198, 199, 204, 207, 209, 211, 214, 215, 217, 219, 376, 382, 438, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 773, 791, 792, 793, 794, 795, 796, 797, 810, 812, 816, 819, 820, 826, 829, 830, 834, 841, 844, 855, 868, 870, 873, 875], "gpu": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 45, 47, 49, 50, 196, 198, 199, 202, 205, 207, 209, 211, 212, 215, 217, 219, 631, 810, 812, 819, 820, 828, 830, 851, 856, 868, 870, 873, 874, 875], "tpu": [0, 45, 194, 200, 209, 211, 216, 631, 810, 830, 870, 873], "explicitli": [0, 637, 673, 674, 689, 773, 792, 793, 794, 816, 823, 824, 825, 827, 829, 832, 833, 834, 837, 838, 839, 840, 842, 844, 849, 855, 864, 870], "hardwar": [0, 4, 45, 102, 106, 819, 847, 860, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876], "mai": [0, 1, 6, 55, 56, 57, 62, 68, 69, 78, 79, 85, 92, 102, 103, 126, 133, 144, 214, 240, 241, 247, 252, 260, 268, 269, 273, 274, 276, 291, 335, 336, 372, 404, 544, 580, 629, 631, 632, 634, 637, 645, 646, 647, 685, 694, 749, 750, 751, 752, 753, 756, 760, 761, 762, 764, 776, 806, 817, 818, 819, 820, 823, 827, 828, 829, 833, 834, 837, 838, 839, 841, 842, 844, 847, 850, 851, 853, 861, 877], "vari": [0, 57, 68, 97, 98, 291, 404, 545, 632, 634, 637, 645, 684, 750, 751, 752, 806, 827, 831, 841, 844, 851], "known": [0, 57, 80, 284, 376, 448, 450, 632, 791, 823, 828, 829, 841, 844], "advanc": [0, 20, 43, 819, 821, 869], "set_soft_device_mod": [0, 4, 14, 18, 218, 631, 830], "section": [0, 1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 51, 57, 68, 80, 112, 375, 378, 409, 420, 470, 479, 499, 645, 749, 750, 751, 752, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 852, 853, 865, 866, 873, 876], "binari": [0, 6, 14, 26, 27, 29, 57, 58, 61, 63, 80, 84, 86, 230, 233, 235, 270, 290, 375, 377, 421, 456, 459, 632, 636, 638, 659, 663, 696], "logist": [0, 14], "gblinear": [0, 14], "booster": [0, 14], "linear": [0, 4, 12, 18, 30, 31, 32, 43, 44, 45, 47, 50, 57, 58, 61, 73, 80, 81, 84, 110, 112, 114, 115, 118, 295, 299, 303, 305, 306, 307, 311, 353, 367, 372, 375, 378, 387, 411, 446, 484, 532, 549, 572, 626, 634, 636, 641, 663, 686, 725, 776, 778, 779, 791, 792, 812, 827, 832, 837, 838, 840, 841, 844, 847, 849, 852, 853, 854, 864, 868, 869, 870, 873], "estim": [0, 57, 80, 349, 372, 387, 522, 810], "rate": [0, 57, 59, 80, 82, 375, 382, 417, 512, 616, 619, 621, 622, 623, 635, 636, 640, 661, 715, 716, 717, 796, 828], "fine": [0, 16, 18, 31, 32, 819, 820, 829, 831, 841, 851, 854, 876], "tune": [0, 16, 18, 31, 32, 875, 876], "regular": [0, 46, 80, 376, 387, 438, 443, 526, 819, 841, 870], "term": [0, 6, 57, 80, 312, 319, 322, 369, 377, 456, 457, 636, 661, 662, 792, 806, 812, 820, 827, 849, 857, 859, 870], "reg_lambda": [0, 14], "reg_alpha": [0, 14], "overfit": [0, 636, 659], "compil": [0, 6, 9, 10, 11, 12, 13, 14, 26, 27, 29, 31, 32, 35, 48, 50, 291, 632, 784, 819, 841, 845, 849, 855, 857, 864, 866, 869, 870, 871, 874, 877], "param": [0, 11, 13, 14, 31, 45, 46, 47, 49, 74, 80, 81, 103, 535, 552, 553, 634, 798, 812, 854, 864], "n_estim": [0, 14], "100": [0, 6, 7, 9, 11, 12, 13, 14, 43, 45, 47, 53, 56, 57, 76, 79, 80, 81, 84, 101, 138, 147, 234, 274, 287, 328, 351, 360, 369, 372, 375, 376, 378, 399, 400, 445, 451, 489, 553, 561, 577, 629, 632, 634, 637, 641, 676, 724, 812, 828, 829, 844, 852, 853, 854, 855, 860, 861, 863], "learning_r": [0, 7, 14], "base_margin": [0, 14], "none": [0, 4, 6, 8, 11, 13, 14, 31, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 101, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 170, 171, 172, 173, 175, 177, 180, 192, 195, 196, 208, 209, 210, 211, 212, 213, 214, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 518, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 578, 579, 580, 582, 583, 584, 585, 587, 588, 589, 591, 592, 593, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 729, 730, 731, 733, 734, 735, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 800, 801, 804, 806, 810, 812, 816, 819, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 863, 864, 865], "xgb_cl": [0, 14], "better": [0, 11, 14, 34, 43, 49, 50, 818, 822, 841, 842, 845, 847, 848, 851, 852, 853, 861, 873], "ivy_cl": [0, 14], "effici": [0, 8, 11, 12, 13, 20, 21, 23, 24, 31, 32, 33, 34, 57, 62, 80, 85, 376, 377, 440, 456, 585, 608, 634, 637, 680, 812, 819, 820, 827, 837, 838, 840, 844, 846, 849, 852, 855, 864, 870, 872, 873], "fit": [0, 14, 64, 87, 639, 705, 818, 841, 849, 866, 867, 870], "magic": [0, 828], "durat": 0, "70": [0, 14, 43, 45, 57, 80, 81, 375, 397, 407, 553, 577, 637, 647, 682, 759, 860], "m": [0, 11, 12, 13, 14, 31, 44, 46, 48, 50, 53, 57, 62, 66, 79, 80, 85, 89, 102, 139, 145, 146, 147, 267, 328, 329, 369, 375, 376, 377, 378, 382, 398, 429, 434, 435, 437, 438, 453, 464, 475, 476, 490, 508, 509, 510, 511, 512, 629, 637, 641, 643, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 726, 739, 740, 741, 812, 819, 820, 822, 828, 849], "per": [0, 11, 13, 14, 24, 45, 47, 57, 61, 80, 84, 319, 369, 375, 376, 378, 394, 395, 396, 412, 413, 414, 415, 444, 491, 636, 650, 652, 653, 654, 655, 658, 663, 792, 820, 828, 838, 841, 852], "loop": [0, 6, 7, 11, 13, 14, 24, 39, 72, 80, 95, 122, 125, 375, 421, 628, 640, 715, 716, 717, 812, 825, 855, 863], "dev": [0, 4, 11, 12, 13, 14, 24, 45, 47, 50, 55, 74, 78, 201, 208, 631, 819, 830, 834, 837, 851, 853], "run": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 45, 47, 48, 49, 57, 59, 80, 82, 381, 501, 503, 615, 616, 621, 635, 636, 640, 661, 715, 716, 717, 773, 774, 792, 793, 794, 795, 805, 812, 814, 818, 819, 822, 824, 825, 828, 830, 831, 833, 835, 836, 838, 841, 842, 849, 850, 851, 852, 853, 854, 855, 856, 863, 864, 865, 868, 870, 871, 872, 873, 875, 876, 877], "59": [0, 7, 43, 56, 235, 387, 523], "04": [0, 6, 45, 46, 53, 59, 73, 77, 80, 82, 112, 113, 138, 165, 245, 582, 615, 616, 621, 626, 629, 630, 632, 634, 635, 776, 819, 844], "slowest": [0, 34, 57, 64, 80, 87, 378, 474, 639, 706], "took": [0, 11, 79, 280], "87": [0, 14, 43, 82, 84, 234, 263, 387, 418, 523, 615, 632, 635, 776, 834], "longer": [0, 14, 819, 829, 840, 844, 870], "than": [0, 7, 9, 10, 14, 31, 32, 34, 37, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 74, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 102, 103, 126, 134, 165, 213, 221, 222, 225, 226, 228, 229, 232, 234, 236, 240, 246, 247, 261, 262, 263, 264, 271, 273, 278, 282, 284, 286, 287, 291, 292, 293, 302, 312, 334, 337, 351, 358, 369, 372, 375, 376, 377, 378, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 424, 426, 445, 451, 452, 475, 476, 523, 524, 525, 564, 565, 568, 585, 608, 629, 630, 631, 632, 634, 636, 637, 639, 643, 644, 645, 647, 661, 666, 668, 677, 678, 679, 680, 683, 694, 699, 703, 709, 741, 747, 750, 751, 752, 757, 758, 763, 764, 765, 766, 792, 806, 816, 818, 820, 823, 827, 828, 829, 831, 833, 834, 840, 841, 842, 844, 845, 846, 847, 849, 852, 853, 854, 855, 856, 860, 867, 868, 869, 870, 876, 877], "fastest": [0, 34, 57, 64, 80, 87, 376, 378, 443, 474, 639, 706], "could": [0, 6, 13, 31, 32, 37, 68, 645, 749, 750, 751, 752, 818, 819, 820, 823, 828, 829, 831, 838, 840, 841, 842, 844, 849, 851, 852, 853, 860, 861, 870, 875, 876], "intermedi": [0, 44, 868, 869, 870, 871, 876], "cach": [0, 7, 12, 13, 26, 27, 28, 29, 45, 47, 50, 195, 539, 631, 634, 781, 801, 835, 837, 840, 844], "400": [0, 14, 81, 84, 375, 399, 400, 553, 577, 634, 637, 676], "\u00b5": [0, 11, 13, 14, 24], "487": [0, 279, 632, 636, 660], "make": [0, 1, 4, 8, 11, 12, 13, 14, 23, 31, 32, 33, 45, 49, 57, 80, 375, 419, 801, 812, 815, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 856, 860, 861, 864, 868, 870, 871, 872, 873, 876, 877], "out": [0, 4, 6, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 163, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 425, 426, 427, 428, 429, 432, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 465, 467, 468, 469, 471, 472, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 536, 540, 541, 545, 546, 547, 549, 552, 553, 562, 572, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 784, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861, 863, 864, 870, 877], "respect": [0, 53, 56, 57, 59, 62, 79, 80, 82, 85, 97, 139, 220, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 282, 286, 289, 290, 300, 349, 364, 367, 372, 374, 376, 378, 381, 432, 449, 461, 501, 503, 557, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 629, 632, 634, 635, 636, 637, 640, 649, 656, 657, 663, 668, 684, 687, 715, 716, 717, 773, 776, 791, 806, 817, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 836, 837, 839, 840, 841, 844, 845, 846, 866, 876], "kei": [0, 6, 7, 11, 24, 25, 31, 32, 47, 49, 52, 57, 61, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 385, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 515, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 542, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 634, 636, 640, 641, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 721, 727, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 776, 777, 783, 789, 792, 796, 812, 815, 826, 827, 828, 837, 840, 841, 842, 844, 852, 864, 870, 873, 877], "precis": [0, 14, 57, 62, 80, 85, 165, 253, 273, 280, 287, 346, 372, 376, 387, 430, 522, 585, 608, 630, 632, 634, 637, 673, 674, 678, 685, 687, 688, 694, 784, 828, 841, 846, 847, 874], "recal": [0, 14], "f1": [0, 14, 829], "score": [0, 14, 61, 84, 377, 459, 636, 664, 666, 812], "ivy_pr": [0, 14], "xgb_pred": [0, 14], "nxgbclassifi": [0, 14], "86": [0, 14, 43, 66, 80, 89, 375, 387, 407, 523, 615, 635, 740, 741], "93": [0, 14, 43, 57, 79, 81, 89, 198, 287, 360, 372, 545, 546, 631, 634, 740, 741], "84": [0, 43, 61, 70, 79, 89, 168, 198, 263, 630, 631, 637, 642, 647, 660, 682, 737, 740, 741, 759], "91": [0, 43, 57, 84, 89, 360, 372, 418, 636, 637, 643, 647, 660, 682, 740, 759], "accuraci": [0, 6, 14, 45, 47, 50, 375, 419, 829], "92": [0, 14, 43, 47, 57, 58, 89, 360, 372, 613, 623, 635, 637, 669, 740, 741], "macro": [0, 14], "avg": [0, 14, 375, 394, 396, 417], "weight": [0, 4, 6, 14, 16, 18, 31, 32, 45, 46, 57, 59, 61, 63, 80, 82, 84, 86, 97, 98, 315, 319, 353, 369, 372, 375, 376, 387, 402, 435, 520, 522, 525, 615, 616, 619, 621, 622, 623, 635, 636, 638, 640, 660, 661, 662, 663, 666, 696, 717, 778, 791, 792, 794, 796, 810, 812, 827, 837, 844, 849, 853, 854, 869], "90": [0, 14, 43, 45, 47, 56, 57, 79, 80, 239, 279, 283, 360, 372, 378, 387, 490, 523, 632, 637, 647, 682, 759, 806, 860], "summar": [0, 31, 32, 97, 844], "perfect": [0, 812], "fals": [0, 6, 7, 8, 11, 12, 13, 18, 22, 23, 31, 34, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 196, 197, 202, 204, 207, 208, 210, 213, 214, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 417, 418, 419, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 728, 729, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 792, 793, 794, 796, 798, 801, 805, 806, 807, 810, 812, 816, 819, 823, 825, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "posit": [0, 47, 49, 52, 56, 57, 58, 62, 63, 64, 79, 80, 81, 85, 86, 87, 97, 132, 134, 147, 165, 220, 221, 222, 226, 229, 240, 247, 254, 255, 261, 263, 273, 274, 281, 282, 286, 287, 291, 313, 328, 334, 339, 351, 369, 372, 376, 378, 427, 447, 458, 483, 492, 539, 549, 614, 627, 629, 630, 632, 634, 637, 638, 639, 643, 644, 648, 667, 670, 691, 696, 702, 707, 742, 747, 767, 768, 773, 776, 784, 789, 793, 794, 806, 812, 818, 820, 823, 827, 841, 844, 845, 852, 863, 872], "excel": [0, 6, 877], "high": [0, 6, 22, 31, 32, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 585, 634, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 815, 818, 833, 839, 841, 852, 857, 861, 866, 867, 868, 869, 870, 874, 876, 877], "show": [0, 3, 4, 5, 6, 7, 12, 20, 26, 31, 32, 33, 34, 36, 43, 45, 47, 48, 579, 588, 611, 634, 812, 818, 819, 820, 826, 828, 831, 835, 840, 841, 844, 846, 855, 863, 870], "trade": [0, 863], "off": [0, 24, 34, 61, 62, 84, 85, 399, 400, 401, 636, 637, 659, 671, 691, 791, 792, 819, 834, 848, 861, 863, 876], "wa": [0, 9, 31, 32, 37, 46, 57, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 358, 359, 361, 362, 363, 369, 372, 376, 399, 400, 401, 419, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 619, 624, 632, 634, 641, 647, 648, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 812, 814, 820, 823, 825, 826, 828, 831, 837, 839, 841, 849, 851, 860, 863, 864, 869, 870, 872], "overal": [0, 636, 659, 806, 827, 829, 830, 832, 854, 863, 866, 868, 869, 870], "slightli": [0, 14, 312, 369, 827, 841, 844, 849, 853], "lower": [0, 14, 47, 53, 56, 57, 62, 66, 79, 80, 85, 89, 132, 145, 271, 307, 313, 319, 328, 329, 367, 369, 387, 525, 526, 532, 629, 632, 637, 643, 667, 673, 674, 680, 741, 778, 791, 820, 829, 831, 841, 844, 849, 855, 857, 866, 867, 868, 870, 871, 876, 877], "good": [0, 22, 31, 32, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 844, 845, 847, 849, 850, 853], "due": [0, 24, 31, 32, 34, 48, 50, 273, 283, 378, 492, 632, 819, 823, 828, 833, 840, 841, 860, 863, 864, 870], "97": [0, 12, 14, 43, 57, 59, 79, 82, 89, 226, 360, 372, 619, 632, 635, 740], "suggest": [0, 1, 6, 818, 819, 820, 826, 829, 835, 839, 841, 844, 845, 846, 856], "slight": [0, 31, 32, 829, 844, 853], "edg": [0, 49, 57, 64, 80, 87, 319, 369, 375, 378, 387, 411, 484, 525, 639, 699, 701, 714, 779, 823, 844, 864, 870, 872, 876], "ivy_report": 0, "output_dict": 0, "xgb_report": 0, "block": [0, 6, 11, 31, 32, 35, 36, 37, 38, 376, 436, 812, 820, 827, 829, 833, 837, 844, 848, 850, 854, 855, 857, 864, 875, 877], "design": [0, 1, 6, 14, 22, 31, 80, 247, 312, 317, 318, 369, 632, 812, 815, 822, 826, 828, 829, 840, 841, 842, 843, 847, 849, 851, 855, 859, 860, 866, 868, 870, 873, 874, 875], "heatmap": 0, "seaborn": [0, 47], "aesthet": 0, "appeal": 0, "eas": [0, 839, 870], "plot_classification_report": 0, "argument": [0, 6, 9, 26, 28, 29, 31, 32, 34, 36, 37, 38, 43, 45, 47, 49, 52, 53, 56, 57, 58, 62, 74, 75, 79, 80, 81, 97, 98, 103, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 180, 209, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 343, 344, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 419, 421, 423, 430, 484, 492, 496, 522, 525, 529, 535, 536, 538, 539, 544, 546, 547, 552, 556, 558, 560, 562, 572, 576, 577, 591, 595, 600, 601, 614, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 724, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 784, 789, 792, 793, 794, 801, 805, 808, 812, 818, 822, 823, 824, 825, 826, 827, 831, 832, 835, 837, 842, 844, 845, 847, 849, 851, 852, 857, 859, 863, 864, 865, 870], "plot": [0, 6, 7, 14, 46, 870], "color": [0, 46, 74, 103, 811], "represent": [0, 49, 57, 58, 74, 80, 81, 103, 150, 151, 165, 168, 193, 194, 220, 223, 230, 233, 235, 240, 247, 270, 273, 275, 290, 316, 348, 352, 357, 361, 369, 372, 535, 597, 627, 630, 631, 632, 634, 776, 778, 779, 792, 829, 868, 869, 871, 875, 876], "easi": [0, 1, 31, 32, 45, 819, 820, 824, 825, 827, 837, 839, 842, 844, 847, 860, 868, 870, 876, 877], "assess": [0, 24, 34, 818, 847], "side": [0, 69, 92, 350, 372, 376, 446, 646, 755, 776, 792, 805, 806, 819, 820, 826], "pyplot": [0, 6, 7, 14, 45, 46, 47, 50], "plt": [0, 6, 7, 14, 45, 46, 47, 50], "sn": 0, "model_nam": [0, 6, 47], "ax": [0, 46, 51, 57, 62, 64, 67, 70, 71, 73, 80, 85, 87, 90, 93, 94, 102, 106, 113, 117, 213, 335, 336, 340, 341, 356, 363, 372, 373, 375, 376, 378, 381, 387, 404, 409, 420, 446, 483, 484, 490, 504, 527, 528, 529, 530, 531, 532, 545, 614, 631, 634, 637, 639, 644, 647, 648, 668, 678, 686, 689, 690, 694, 701, 703, 704, 707, 709, 711, 714, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 792, 829, 831, 844, 845, 849, 851], "iloc": 0, "t": [0, 1, 5, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 47, 57, 61, 72, 80, 84, 95, 97, 98, 102, 349, 364, 372, 374, 376, 430, 562, 580, 595, 617, 634, 635, 636, 641, 660, 662, 726, 771, 792, 812, 814, 815, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 834, 835, 837, 838, 839, 840, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 860, 861, 863, 864, 865, 868, 870, 872], "annot": [0, 836], "fmt": 0, "2f": [0, 5, 11], "cmap": 0, "blue": 0, "set_titl": [0, 46, 47], "f": [0, 4, 5, 6, 7, 9, 10, 11, 12, 31, 32, 44, 45, 47, 57, 64, 80, 87, 302, 319, 367, 369, 378, 474, 495, 639, 641, 706, 721, 725, 726, 727, 730, 735, 736, 812, 813, 820, 822, 827, 828, 833, 845, 849, 851, 852, 861, 866], "figur": [0, 46, 846], "fig": [0, 46, 47], "ax1": [0, 47], "ax2": [0, 47], "subplot": [0, 46, 47], "figsiz": [0, 46, 47], "tight_layout": [0, 47], "observ": [0, 14, 57, 80, 387, 521, 522, 820, 829, 833, 849, 863, 872], "exhibit": [0, 34, 876], "strong": [0, 778, 855, 860, 870], "commend": 0, "impli": [0, 68, 645, 749, 750, 751, 752, 844], "neg": [0, 51, 56, 57, 62, 64, 66, 71, 73, 79, 80, 85, 87, 89, 94, 97, 112, 115, 118, 126, 132, 134, 147, 240, 247, 254, 255, 273, 274, 282, 287, 295, 313, 328, 331, 367, 369, 376, 377, 378, 382, 427, 434, 440, 457, 492, 496, 512, 626, 629, 632, 637, 639, 643, 648, 668, 670, 687, 691, 693, 694, 700, 702, 703, 707, 740, 767, 768, 776, 778, 788, 827, 840], "depend": [0, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 53, 54, 57, 58, 62, 68, 69, 77, 80, 85, 92, 93, 123, 129, 152, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 261, 262, 263, 264, 273, 275, 278, 285, 286, 290, 291, 359, 372, 375, 376, 421, 429, 447, 595, 628, 629, 630, 632, 634, 636, 637, 644, 646, 661, 672, 673, 684, 685, 686, 687, 748, 753, 756, 766, 814, 816, 818, 819, 820, 826, 829, 830, 832, 834, 838, 840, 841, 842, 843, 844, 847, 849, 855, 856, 860, 863, 868, 870, 871], "applic": [0, 6, 18, 20, 45, 47, 50, 57, 61, 80, 84, 100, 376, 451, 636, 637, 641, 647, 663, 666, 691, 724, 725, 726, 730, 731, 763, 765, 812, 819, 828, 829, 830, 838, 853, 867, 868, 870, 872, 874, 876], "conclus": 0, "appear": [0, 378, 475, 476, 614, 634, 819, 820, 823, 841, 847, 863], "outperform": [0, 14], "especi": [0, 7, 819, 825, 835, 859, 870], "increas": [0, 11, 13, 14, 24, 31, 34, 57, 62, 64, 80, 85, 87, 100, 378, 387, 484, 525, 637, 639, 692, 701, 714, 778, 829, 833, 841, 845, 847, 859, 863, 870], "context": [0, 325, 369, 573, 634, 818, 819, 820, 825, 829, 830, 831], "specif": [0, 6, 7, 22, 23, 28, 29, 31, 32, 33, 35, 37, 45, 55, 57, 58, 78, 80, 81, 180, 211, 214, 247, 268, 269, 278, 322, 335, 336, 369, 372, 378, 382, 492, 512, 545, 546, 547, 573, 630, 631, 632, 634, 637, 639, 640, 643, 646, 647, 673, 674, 689, 710, 715, 716, 717, 738, 755, 760, 761, 762, 764, 771, 773, 793, 794, 801, 802, 808, 810, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 833, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 857, 859, 863, 864, 865, 866, 868, 869, 871, 872, 873, 877], "problem": [0, 7, 812, 815, 818, 820, 823, 824, 830, 841, 851, 860, 866, 872, 876], "domain": [0, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832, 868, 870], "repo": [1, 16, 45, 817, 820, 823, 826, 828, 829, 834, 842, 844, 859], "hold": [1, 57, 58, 62, 70, 80, 85, 93, 97, 98, 334, 351, 356, 372, 387, 470, 499, 523, 524, 529, 576, 577, 634, 637, 647, 678, 758, 774, 821, 852, 871], "exampl": [1, 6, 7, 9, 11, 13, 22, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 784, 801, 805, 806, 810, 812, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 840, 841, 845, 849, 851, 852, 853, 854, 855, 861, 867, 868, 871, 873, 876, 877], "tab": [1, 818, 819, 828, 834, 852], "ivi": [1, 2, 3, 6, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 819, 822, 823, 825, 827, 829, 830, 832, 834, 835, 836, 837, 838, 840, 847, 848, 855, 857, 860, 861, 862, 866, 877, 878], "web": 1, "relev": [1, 53, 76, 138, 629, 796, 812, 818, 819, 820, 824, 827, 828, 829, 831, 834, 838, 839, 842, 843, 844, 852, 856, 860, 868, 875, 876], "link": [1, 22, 31, 32, 46, 812, 818, 819, 820, 826, 828, 829, 835, 841, 864, 866, 868], "open": [1, 4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 46, 47, 48, 58, 66, 89, 126, 629, 643, 739, 741, 812, 813, 814, 815, 819, 820, 821, 826, 829, 832, 834, 841, 842, 847, 856, 859, 860, 861, 863, 864, 868, 869, 870, 872, 873], "avil": 1, "discuss": [1, 818, 820, 826, 829, 830, 840, 841, 843, 844, 847, 850, 851, 852, 855, 861, 866, 871], "comprehens": [1, 20, 812, 820, 823, 843], "possibl": [1, 4, 37, 53, 57, 76, 80, 87, 97, 128, 247, 290, 312, 335, 336, 369, 372, 375, 377, 378, 398, 453, 462, 463, 464, 470, 472, 474, 475, 476, 483, 499, 572, 632, 634, 636, 647, 659, 702, 703, 704, 706, 708, 709, 711, 713, 760, 762, 776, 792, 806, 809, 812, 813, 816, 818, 819, 820, 823, 826, 827, 829, 831, 832, 834, 835, 837, 839, 840, 841, 842, 844, 847, 849, 852, 855, 860, 868, 870, 876], "us": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 95, 97, 98, 100, 103, 110, 138, 141, 152, 164, 166, 167, 178, 179, 199, 200, 202, 207, 211, 212, 213, 214, 216, 219, 225, 233, 261, 262, 264, 265, 267, 268, 269, 271, 272, 274, 283, 287, 292, 312, 314, 315, 317, 318, 319, 327, 349, 352, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 402, 404, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 428, 430, 434, 440, 442, 444, 445, 447, 448, 449, 451, 452, 457, 474, 478, 482, 484, 492, 496, 501, 503, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 529, 532, 550, 551, 560, 561, 572, 573, 580, 582, 583, 585, 592, 593, 605, 606, 608, 615, 616, 621, 622, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 647, 660, 661, 663, 666, 671, 673, 680, 684, 688, 691, 694, 696, 705, 706, 707, 711, 715, 716, 717, 718, 720, 721, 727, 728, 729, 731, 738, 739, 740, 741, 743, 744, 745, 746, 749, 751, 759, 761, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 801, 805, 806, 810, 813, 815, 817, 820, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 857, 861, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "attract": 1, "visual": [1, 6, 7, 14, 49, 810, 812, 819, 834, 841, 844, 855, 870, 872, 875], "graph": [1, 4, 6, 7, 8, 12, 14, 20, 21, 24, 26, 28, 29, 32, 38, 39, 44, 49, 50, 68, 645, 749, 750, 751, 752, 784, 812, 827, 837, 841, 843, 847, 849, 854, 855, 857, 861, 862, 863, 864, 865, 866, 870, 873], "nice": [1, 844, 861, 870], "etc": [1, 34, 39, 46, 53, 57, 66, 68, 72, 76, 80, 89, 95, 129, 137, 138, 141, 375, 382, 404, 409, 420, 508, 509, 511, 512, 629, 643, 645, 738, 739, 740, 741, 749, 750, 751, 752, 776, 779, 791, 792, 793, 794, 795, 796, 797, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 831, 833, 836, 841, 842, 844, 845, 849, 851, 852, 855, 857, 861, 863, 868, 870, 876], "tone": [1, 5], "feel": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863], "free": [1, 6, 7, 8, 45, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 817, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863, 871, 873], "emoji": [1, 818], "don": [1, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 72, 95, 812, 818, 819, 820, 828, 829, 830, 835, 839, 844, 847, 853, 855, 856, 861, 863], "keep": [1, 2, 16, 18, 22, 28, 29, 31, 57, 64, 74, 80, 87, 97, 100, 360, 376, 451, 639, 713, 817, 818, 819, 820, 823, 826, 827, 828, 833, 840, 841, 844, 845, 847, 852, 854, 856, 864], "thing": [1, 7, 29, 43, 45, 805, 817, 818, 819, 820, 825, 841, 844, 847, 851, 852, 859, 860, 861, 870], "super": [1, 4, 8, 16, 18, 31, 32, 45, 57, 80, 376, 430, 812, 833, 849, 852, 853, 854, 864], "seriou": 1, "given": [1, 4, 7, 22, 31, 44, 57, 58, 63, 64, 66, 74, 80, 81, 82, 86, 87, 89, 97, 98, 100, 102, 103, 126, 130, 137, 138, 158, 159, 160, 161, 162, 174, 179, 198, 207, 211, 212, 213, 215, 219, 292, 322, 331, 334, 340, 341, 349, 350, 351, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 397, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 420, 430, 435, 450, 454, 455, 456, 458, 459, 460, 461, 471, 472, 473, 480, 482, 494, 500, 504, 505, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 531, 553, 557, 576, 577, 587, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 695, 696, 697, 698, 699, 702, 703, 704, 705, 707, 708, 712, 713, 725, 726, 735, 736, 739, 740, 741, 743, 755, 756, 757, 758, 771, 776, 777, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 797, 798, 805, 806, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 850, 851, 853, 860, 861, 867, 872, 873, 876, 877], "intern": [1, 14, 74, 105, 106, 107, 641, 718, 728, 729, 791, 792, 793, 794, 795, 797, 821, 824, 827, 830, 832, 840, 842, 844, 846], "releas": [1, 6, 46, 818, 819, 829, 845, 847, 855, 861, 870, 876], "tracer": [1, 4, 8, 12, 13, 23, 26, 27, 28, 29, 32, 48, 50, 841, 848, 850, 855, 857, 864, 865, 866], "around": [1, 15, 16, 18, 20, 57, 74, 80, 103, 378, 484, 492, 818, 820, 823, 824, 826, 830, 836, 837, 841, 844, 845, 851, 855, 857, 863, 867, 868, 870, 877], "corner": [1, 57, 80, 375, 411, 819, 820, 834, 841], "anybodi": 1, "abl": [1, 4, 6, 7, 8, 33, 37, 48, 50, 74, 97, 819, 820, 821, 823, 829, 834, 837, 840, 841, 845, 849, 854, 863, 873, 876], "start": [1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 46, 47, 53, 57, 74, 76, 80, 84, 126, 134, 137, 138, 353, 363, 372, 373, 375, 378, 387, 418, 474, 477, 485, 487, 497, 531, 629, 778, 805, 810, 813, 818, 819, 820, 821, 822, 828, 829, 831, 832, 834, 835, 836, 841, 844, 847, 848, 849, 851, 852, 853, 855, 863, 864, 870, 876], "shortli": 1, "so": [1, 2, 7, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 375, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 641, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 729, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 859, 860, 863, 864, 865, 870, 871, 872, 874], "worri": [1, 31, 32, 818, 819, 835], "about": [1, 20, 21, 22, 25, 27, 29, 31, 32, 35, 46, 47, 54, 77, 165, 168, 630, 810, 812, 814, 817, 818, 819, 820, 821, 822, 823, 826, 828, 829, 830, 835, 836, 840, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 861, 865, 871, 872, 875], "transpil": [1, 9, 10, 11, 12, 13, 15, 20, 21, 23, 24, 34, 783, 784, 812, 818, 819, 833, 834, 841, 848, 849, 850, 857, 862, 863, 865, 870, 876, 877], "style": [1, 14, 45, 47, 378, 484, 644, 747, 820, 835, 870], "stori": 1, "anyon": [1, 812, 813, 820, 828, 855, 860, 876], "ha": [1, 4, 6, 8, 10, 12, 13, 14, 16, 18, 22, 24, 28, 31, 32, 34, 37, 39, 43, 50, 53, 57, 62, 64, 68, 70, 74, 77, 80, 81, 85, 87, 91, 93, 97, 139, 196, 220, 240, 243, 245, 247, 257, 273, 275, 280, 283, 285, 286, 290, 330, 331, 332, 369, 376, 377, 378, 387, 411, 446, 456, 467, 491, 493, 498, 521, 523, 524, 526, 558, 629, 631, 632, 636, 637, 639, 644, 645, 647, 662, 663, 677, 678, 686, 687, 689, 691, 694, 702, 709, 747, 750, 751, 752, 757, 758, 761, 763, 764, 765, 766, 773, 776, 779, 801, 818, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 859, 860, 861, 863, 865, 866, 869, 870, 872, 873, 876], "question": [1, 6, 7, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861], "ping": 1, "me": [1, 820], "guillermo": 1, "commun": [1, 6, 7, 46, 813, 818, 819, 820, 821, 855, 860, 869, 870, 872], "ux": 1, "team": [1, 812, 813, 815, 818, 819, 820, 821, 841, 856, 872], "discord": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "channel": [1, 29, 47, 57, 58, 61, 80, 81, 84, 102, 103, 375, 381, 399, 400, 401, 411, 501, 502, 503, 506, 545, 549, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 788, 789, 791, 792, 794, 795, 796, 797, 820, 826, 834, 843], "templat": [1, 812, 826, 832, 844], "locat": [1, 47, 141, 387, 523, 629, 641, 643, 646, 722, 738, 755, 806, 818, 820, 825, 826, 830, 841, 842, 844, 845, 856, 868], "asset": [1, 857], "01_templat": 1, "ipynb": 1, "pleas": [1, 37, 46, 50, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "copi": [1, 47, 50, 53, 54, 55, 56, 57, 58, 64, 74, 76, 77, 78, 79, 80, 81, 87, 97, 101, 127, 128, 129, 133, 144, 152, 214, 274, 378, 460, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 581, 592, 599, 600, 629, 630, 631, 632, 634, 639, 641, 646, 702, 703, 704, 706, 708, 709, 711, 713, 719, 754, 756, 784, 806, 819, 820, 823, 825, 828, 829, 832, 841, 842, 849, 855, 863, 864, 865], "firstli": [1, 23, 24, 27, 33, 34, 38, 43, 824, 829, 831, 832, 833, 837, 838, 840, 847, 852, 866, 876], "file": [1, 6, 7, 45, 46, 47, 58, 74, 589, 612, 634, 794, 810, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 832, 833, 834, 835, 837, 841, 842, 843, 844, 845, 849, 852, 856, 866, 869, 870, 871], "topic": [1, 20, 23, 24, 25, 33, 34, 35, 36, 37, 38, 838, 851, 870], "Then": [1, 50, 636, 663, 814, 818, 819, 820, 825, 826, 828, 834, 835, 838, 840, 844, 845, 855], "place": [1, 7, 12, 13, 26, 27, 28, 29, 45, 52, 53, 56, 57, 58, 62, 64, 74, 76, 78, 79, 80, 81, 85, 87, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 312, 313, 316, 328, 329, 334, 335, 336, 338, 341, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 474, 484, 489, 492, 496, 509, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 561, 562, 576, 580, 591, 595, 600, 604, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 812, 816, 817, 820, 822, 823, 826, 827, 828, 830, 831, 832, 834, 836, 837, 841, 842, 844, 845, 847, 854, 857, 872], "folder": [1, 12, 13, 26, 27, 28, 29, 47, 812, 819, 820, 823, 826, 828, 834, 837, 841, 844, 845, 846], "edit": [1, 818, 819, 820, 835], "titl": [1, 14, 17, 19, 30, 46, 49, 812, 818, 820, 826], "accordingli": [1, 57, 62, 67, 68, 70, 71, 80, 85, 90, 93, 94, 139, 240, 245, 247, 263, 273, 287, 335, 336, 372, 629, 632, 637, 644, 645, 647, 648, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 841, 849, 856], "render": [1, 826, 832], "webpag": [1, 20], "content": [1, 2, 17, 19, 30, 31, 46, 47, 57, 74, 80, 387, 529, 818, 820, 826, 830, 840, 843, 849, 852, 856], "behind": [1, 22, 31, 812, 822, 836, 844, 848, 850], "exist": [1, 22, 31, 32, 45, 46, 47, 50, 53, 57, 58, 74, 76, 80, 81, 87, 128, 378, 462, 463, 469, 470, 472, 474, 475, 476, 483, 499, 544, 580, 634, 639, 700, 702, 703, 704, 706, 708, 709, 711, 713, 796, 798, 810, 812, 818, 819, 823, 825, 830, 831, 832, 837, 838, 840, 841, 844, 847, 849, 855, 857, 859, 860, 868, 870, 873, 876], "cell": [1, 2, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 61, 84, 636, 661, 662, 792, 828, 849], "h2": [1, 2, 17, 19, 30], "tag": [1, 2, 17, 19, 30, 819, 820], "h3": [1, 2, 17, 19, 30], "subsect": [1, 2, 17, 19, 30, 818, 819, 820, 823, 828], "explan": [1, 2, 17, 19, 30, 818, 819, 820, 827, 832, 836, 841, 845, 851], "go": [1, 5, 6, 7, 16, 18, 22, 29, 32, 37, 52, 57, 80, 84, 375, 418, 422, 641, 729, 730, 812, 813, 816, 818, 819, 820, 822, 825, 826, 829, 831, 834, 835, 841, 842, 844, 845, 848, 852, 855, 866, 870, 871, 875, 877], "default": [1, 4, 6, 8, 31, 32, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 178, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 196, 197, 199, 200, 204, 207, 208, 209, 211, 212, 213, 214, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 390, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 572, 573, 576, 577, 580, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 805, 806, 810, 818, 819, 820, 825, 826, 829, 830, 831, 832, 833, 836, 837, 841, 844, 847, 849, 853, 857, 863, 870], "text": [1, 5, 6, 12, 14, 45, 57, 58, 376, 377, 444, 452, 818, 820, 826, 831, 832], "paragraph": [1, 2, 17, 19, 30, 826], "p": [1, 2, 17, 19, 30, 43, 57, 58, 62, 80, 81, 85, 98, 139, 244, 376, 381, 426, 439, 507, 540, 541, 629, 632, 634, 637, 641, 678, 694, 726, 792, 812, 819, 820, 822], "path": [1, 12, 13, 14, 26, 27, 28, 29, 46, 47, 773, 784, 800, 819, 826, 840, 841, 842, 856, 870], "correspond": [1, 4, 11, 13, 18, 31, 32, 46, 54, 56, 57, 58, 61, 64, 67, 68, 70, 74, 77, 79, 80, 84, 87, 93, 97, 100, 103, 153, 165, 168, 228, 278, 292, 331, 345, 346, 369, 372, 375, 376, 378, 381, 387, 398, 404, 415, 420, 426, 429, 430, 431, 450, 475, 476, 496, 501, 502, 503, 506, 523, 524, 592, 614, 630, 632, 634, 636, 637, 639, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 668, 672, 673, 678, 685, 686, 706, 707, 738, 744, 745, 749, 750, 751, 752, 757, 758, 763, 764, 765, 766, 773, 776, 778, 805, 810, 812, 818, 820, 824, 825, 827, 828, 829, 831, 832, 833, 836, 837, 839, 841, 844, 847, 849, 863, 864, 865, 870], "toctre": [1, 826], "index": [1, 45, 46, 47, 50, 53, 57, 58, 64, 67, 68, 69, 74, 76, 80, 81, 87, 90, 91, 92, 132, 139, 313, 320, 321, 330, 331, 332, 369, 375, 376, 378, 383, 385, 387, 398, 404, 435, 437, 444, 467, 474, 477, 485, 487, 489, 492, 493, 496, 497, 513, 514, 523, 532, 535, 553, 555, 576, 577, 581, 627, 629, 634, 639, 641, 644, 645, 646, 706, 710, 720, 721, 722, 725, 726, 727, 733, 735, 744, 745, 747, 749, 750, 751, 753, 755, 777, 792, 806, 808, 827, 828, 833, 837, 838, 839, 840, 842, 844, 851, 870], "rst": [1, 837], "left": [1, 24, 34, 45, 46, 57, 62, 67, 69, 80, 85, 90, 92, 120, 121, 232, 247, 340, 356, 363, 372, 373, 375, 376, 378, 387, 410, 429, 434, 440, 447, 449, 475, 485, 527, 528, 529, 530, 531, 532, 545, 628, 632, 634, 637, 644, 646, 672, 673, 678, 687, 692, 744, 755, 776, 819, 820, 823, 826, 828, 829, 831, 834], "add": [1, 24, 34, 47, 49, 56, 57, 65, 72, 74, 79, 80, 88, 95, 102, 103, 363, 373, 375, 377, 418, 457, 572, 601, 632, 634, 636, 637, 642, 647, 663, 691, 737, 765, 773, 784, 792, 795, 810, 812, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 840, 841, 844, 845, 847, 849, 851, 855, 856, 866, 867, 868, 870], "grid": [1, 47, 53, 139, 316, 369, 629, 831, 844], "item": [1, 5, 6, 7, 31, 32, 43, 45, 47, 52, 58, 72, 74, 76, 79, 80, 81, 134, 159, 196, 250, 266, 274, 341, 345, 358, 542, 552, 553, 557, 592, 593, 629, 630, 631, 634, 641, 648, 723, 724, 725, 726, 730, 735, 736, 770, 812, 818, 827, 829, 849, 851, 852, 854, 863], "card": [1, 57, 80, 360, 372, 875], "refer": [1, 8, 57, 64, 70, 71, 80, 82, 87, 93, 94, 132, 147, 245, 263, 313, 328, 358, 369, 372, 375, 376, 378, 404, 409, 420, 427, 451, 474, 615, 616, 629, 632, 635, 637, 639, 647, 648, 668, 670, 693, 706, 764, 766, 767, 768, 792, 812, 817, 818, 819, 820, 823, 824, 826, 828, 829, 836, 837, 838, 839, 840, 841, 842, 843, 844, 855, 856, 857, 870], "also": [1, 4, 5, 6, 7, 10, 11, 13, 14, 16, 18, 22, 24, 26, 27, 29, 31, 32, 34, 36, 37, 38, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 728, 729, 730, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 801, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "look": [1, 6, 7, 8, 22, 31, 32, 45, 47, 50, 812, 816, 818, 819, 820, 825, 826, 827, 829, 830, 831, 833, 834, 835, 836, 837, 841, 842, 844, 845, 846, 847, 849, 851, 853, 854, 856, 859, 863, 866, 870], "document": [1, 6, 7, 22, 31, 64, 247, 335, 336, 372, 614, 632, 634, 710, 813, 814, 817, 820, 826, 828, 829, 831, 840, 841, 842, 844, 852, 854], "sphinx": [1, 814, 826], "websit": [1, 49, 819, 823, 860], "alreadi": [2, 6, 13, 23, 26, 27, 28, 29, 31, 32, 37, 45, 47, 50, 57, 62, 74, 80, 85, 236, 246, 273, 283, 293, 378, 387, 463, 464, 484, 520, 529, 632, 637, 675, 682, 805, 806, 812, 818, 819, 820, 825, 827, 829, 830, 836, 840, 841, 847, 855, 856, 870, 872, 877], "instal": [2, 7, 8, 9, 10, 11, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 48, 49, 50, 814, 819, 820, 825, 826, 834, 835], "skip": [2, 5, 47, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 376, 378, 399, 400, 401, 419, 435, 437, 444, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 485, 488, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 777, 805, 826, 837, 844], "colab": [2, 5, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 45, 47, 49, 50], "manual": [2, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 641, 718, 728, 729, 818, 819, 820, 829, 835, 844, 853, 856], "mind": [2, 16, 18, 22, 28, 31, 35, 818, 819, 824, 827, 844, 856, 864], "click": [2, 4, 47, 818, 819, 820, 828, 832, 834, 835, 850], "runtim": [2, 4, 5, 8, 11, 12, 13, 24, 31, 34, 45, 46, 822, 837, 844, 847, 870], "restart": [2, 4, 5, 8, 12, 45, 46, 819, 834], "git": [2, 4, 5, 8, 12, 31, 45, 46, 47, 48, 812, 814, 817, 819, 820, 823, 826, 828, 834, 835, 844, 856], "clone": [2, 4, 8, 12, 31, 45, 47, 48, 812, 814, 820, 834, 856], "http": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 26, 27, 28, 29, 31, 32, 45, 46, 47, 48, 49, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 814, 819, 820, 823, 826, 828, 829, 832, 834, 856, 864], "github": [2, 4, 5, 8, 11, 12, 13, 31, 45, 46, 47, 48, 49, 812, 814, 815, 817, 820, 821, 823, 826, 828, 829, 831, 832, 834, 835, 843, 844, 856, 859, 878], "com": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 823, 826, 828, 829, 834, 856], "unifyai": [2, 4, 8, 12, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 826, 834, 856], "model": [2, 3, 4, 9, 14, 15, 20, 21, 22, 48, 50, 240, 273, 377, 453, 632, 789, 793, 794, 810, 812, 852, 853, 857, 863, 864, 868, 869, 870, 871, 872, 873, 874, 876, 877], "depth": [2, 4, 6, 8, 12, 46, 53, 57, 61, 76, 80, 84, 141, 375, 378, 411, 471, 545, 557, 629, 634, 636, 654, 655, 820, 828, 852, 853, 854, 856], "repositori": [2, 4, 8, 12, 814, 818, 819, 820, 822, 823, 826, 834, 843, 861], "cd": [2, 4, 8, 12, 31, 48, 812, 814, 819, 820, 834, 856], "resnet": [3, 6, 13, 20, 31, 863, 864], "imag": [3, 4, 6, 7, 11, 13, 16, 20, 28, 31, 32, 45, 46, 47, 48, 49, 50, 57, 61, 79, 80, 84, 102, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 283, 284, 286, 287, 291, 375, 394, 395, 411, 412, 413, 415, 545, 632, 634, 636, 649, 650, 651, 652, 653, 656, 657, 658, 792, 812, 819, 834, 847, 849, 850, 852, 854, 856, 863, 864, 870], "classif": [3, 4, 12, 14, 20, 45, 812, 870], "acceler": [3, 20, 812, 829, 841, 868, 872, 873, 874, 875], "convert": [3, 8, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 28, 29, 31, 32, 33, 35, 37, 45, 48, 50, 52, 53, 56, 74, 75, 76, 79, 97, 127, 128, 140, 150, 151, 193, 194, 195, 196, 207, 215, 219, 239, 279, 378, 383, 462, 463, 464, 513, 578, 596, 598, 599, 600, 602, 629, 630, 631, 632, 634, 637, 641, 695, 719, 730, 731, 773, 801, 805, 812, 818, 824, 825, 838, 839, 841, 844, 846, 849, 855, 857, 861, 864, 868, 869, 876], "faster": [3, 4, 9, 11, 13, 14, 20, 31, 32, 48, 50, 57, 62, 80, 85, 376, 449, 637, 687, 814, 817, 826, 857, 872, 875], "infer": [3, 6, 7, 9, 11, 13, 14, 20, 24, 34, 36, 37, 46, 48, 50, 53, 57, 58, 61, 64, 76, 80, 81, 84, 87, 126, 128, 131, 135, 136, 140, 143, 149, 158, 159, 160, 161, 162, 312, 313, 375, 378, 382, 411, 496, 510, 556, 590, 591, 629, 630, 634, 636, 639, 659, 706, 801, 802, 822, 825, 829, 830, 844, 849, 854, 864, 868, 869, 872, 874], "mmpretrain": [3, 20], "segment": [3, 20, 57, 80, 330, 331, 332, 369, 826, 831], "unet": [3, 20], "alexnet": [3, 20], "written": [3, 4, 5, 6, 20, 22, 31, 32, 45, 58, 378, 473, 819, 823, 824, 832, 835, 836, 840, 841, 845, 849, 851, 854, 855, 859, 864, 868, 870, 874, 876, 877], "xgboost": [3, 20], "paddlepaddl": [3, 20, 335, 336, 372, 819], "dinov2": [3, 7, 20], "project": [3, 12, 13, 20, 25, 26, 27, 28, 29, 31, 32, 35, 98, 636, 663, 792, 812, 814, 815, 818, 819, 820, 821, 824, 825, 826, 844, 853, 855, 859, 860, 861, 864, 866, 868, 870, 873, 877, 878], "convnext": [3, 6, 11, 20], "video": [4, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 813, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 856, 868], "tutori": [4, 6, 7, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 820, 841, 856], "three": [4, 5, 20, 26, 36, 37, 47, 57, 139, 312, 369, 378, 464, 629, 819, 820, 827, 828, 829, 831, 841, 844, 847, 848, 849, 871, 876], "major": [4, 5, 644, 747, 829, 830, 842, 844, 855, 860, 867, 870], "ml": [4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 50, 812, 813, 817, 841, 848, 849, 850, 852, 853, 854, 858, 860, 861, 864, 866, 867, 868, 869, 870, 873, 875, 877], "framework": [4, 5, 7, 9, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 38, 45, 47, 49, 52, 58, 170, 192, 202, 205, 216, 543, 559, 563, 595, 598, 630, 631, 634, 641, 720, 771, 773, 777, 784, 789, 796, 801, 802, 812, 815, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 844, 845, 847, 848, 849, 851, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 871, 874], "sinc": [4, 8, 12, 28, 29, 31, 32, 45, 47, 57, 80, 98, 372, 812, 814, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 833, 840, 841, 855, 860, 870, 876], "automat": [4, 8, 9, 12, 29, 31, 32, 37, 818, 819, 820, 822, 825, 826, 828, 829, 835, 837, 840, 844, 847, 848, 850, 853, 854, 856, 857, 861, 870, 873, 877], "sure": [4, 8, 11, 12, 13, 14, 31, 45, 815, 818, 819, 820, 823, 828, 833, 834, 841, 842, 844, 847, 856], "enabl": [4, 5, 6, 8, 11, 12, 13, 14, 26, 27, 29, 46, 57, 62, 74, 85, 103, 375, 377, 398, 456, 580, 634, 637, 680, 794, 810, 812, 819, 820, 821, 824, 827, 829, 837, 838, 839, 840, 841, 844, 845, 848, 850, 852, 854, 855, 857, 860, 863, 868, 869, 870, 871, 872, 873, 876, 877], "dm": [4, 5, 8, 11, 13, 31, 32, 43, 45], "haiku": [4, 5, 8, 11, 13, 29, 31, 32, 43, 45, 49, 789, 812, 854, 861, 864, 870], "exit": [4, 8, 12, 31, 32, 830], "download": [4, 6, 7, 12, 16, 18, 31, 32, 46, 47, 50, 814, 819, 826, 844, 863, 864], "imagenet": [4, 6, 18, 46, 48, 812], "class": [4, 6, 7, 8, 12, 14, 16, 18, 22, 31, 32, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 134, 143, 149, 165, 168, 181, 183, 184, 243, 280, 338, 360, 372, 386, 387, 395, 396, 429, 528, 529, 536, 545, 549, 562, 572, 595, 629, 630, 631, 632, 634, 636, 637, 638, 641, 642, 657, 662, 666, 672, 682, 686, 687, 689, 696, 712, 719, 730, 737, 752, 759, 763, 764, 773, 774, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 810, 812, 818, 825, 826, 827, 829, 830, 831, 832, 836, 838, 839, 842, 843, 844, 847, 849, 850, 852, 853, 854, 857, 863, 864, 868, 870, 871, 877], "wget": [4, 6, 8, 12, 45, 46, 49, 819], "raw": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 48, 49, 74, 812, 832, 864, 871], "githubusercont": [4, 6, 8, 12, 45, 49], "hub": [4, 6, 8, 12, 45, 48, 50], "master": [4, 8, 12, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 48, 49, 815, 828, 870, 878], "imagenet_class": [4, 12], "categori": [4, 6, 12, 818, 823, 824, 827, 829, 833, 841, 845, 848], "strip": [4, 12, 24, 34, 860], "readlin": [4, 12, 46], "cat": [4, 7, 12, 46, 842, 847, 849, 854, 863, 864], "jpg": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 47, 48, 812, 864], "filenam": [4, 8, 12, 31, 32, 45, 47, 50, 58, 794, 800, 852], "import": [4, 6, 7, 9, 10, 11, 13, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 48, 49, 50, 57, 68, 72, 76, 80, 95, 194, 195, 199, 211, 307, 387, 522, 557, 573, 631, 634, 640, 645, 716, 717, 752, 784, 801, 802, 812, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 835, 838, 839, 840, 841, 842, 843, 844, 845, 849, 851, 852, 854, 855, 856, 860, 863, 864, 865, 866, 868, 870, 873, 874, 876], "devic": [4, 6, 7, 8, 9, 11, 12, 13, 46, 47, 50, 53, 57, 66, 74, 76, 80, 89, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 219, 312, 313, 328, 329, 369, 382, 472, 508, 509, 511, 512, 536, 550, 551, 629, 634, 643, 738, 739, 740, 741, 771, 773, 774, 789, 791, 792, 793, 794, 795, 796, 797, 798, 810, 812, 820, 822, 825, 829, 833, 837, 838, 842, 844, 845, 847, 849, 854, 855, 856, 857, 860, 869, 870, 872, 873, 874, 875], "torchvis": [4, 6, 11, 12, 45, 861], "transform": [4, 5, 6, 7, 11, 12, 13, 28, 31, 32, 45, 46, 48, 57, 61, 80, 84, 375, 376, 397, 398, 403, 404, 407, 408, 409, 419, 420, 423, 440, 636, 660, 776, 779, 792, 812, 838, 844, 854, 857, 863, 864, 868, 870, 871, 872], "pil": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 46, 47, 48, 812, 864], "time": [4, 5, 6, 7, 9, 10, 11, 13, 29, 31, 32, 37, 45, 47, 48, 49, 57, 59, 62, 68, 80, 82, 91, 97, 98, 134, 341, 372, 375, 376, 378, 387, 404, 409, 421, 423, 444, 451, 484, 490, 522, 616, 621, 629, 635, 636, 637, 639, 640, 644, 645, 659, 662, 677, 712, 715, 716, 717, 744, 745, 749, 750, 792, 793, 794, 810, 818, 819, 820, 823, 825, 827, 828, 829, 831, 834, 836, 837, 838, 840, 841, 844, 845, 849, 852, 854, 855, 856, 859, 860, 861, 863, 864, 868, 870, 871, 874, 875, 876], "filterwarn": [4, 5], "ignor": [4, 5, 44, 52, 53, 57, 74, 80, 139, 375, 376, 378, 387, 399, 400, 401, 430, 438, 446, 486, 487, 491, 530, 629, 636, 641, 663, 729, 730, 796, 819, 826, 828, 831, 844, 855, 876], "compos": [4, 6, 7, 11, 12, 31, 32, 45, 57, 80, 375, 389, 390, 391, 392, 819, 827, 841, 844, 863, 865, 870, 877], "resiz": [4, 6, 7, 8, 11, 12, 45, 46, 57, 80, 375, 411, 847], "centercrop": [4, 12], "224": [4, 6, 7, 12, 16, 18, 31, 32, 45, 46, 48, 812, 864], "totensor": [4, 6, 7, 11, 12, 45], "485": [4, 12, 45], "456": [4, 12, 45, 844], "406": [4, 12, 45, 57, 80, 397, 540, 634], "229": [4, 12, 45, 279, 632], "225": [4, 12, 45, 47, 234, 632], "torch_img": [4, 8, 12], "unsqueez": [4, 8, 11, 12], "img": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 812, 852, 864], "ipython": [4, 8, 12, 26, 27, 28, 29, 31, 32, 50], "displai": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 50, 819, 826, 828, 833, 844, 852], "end": [4, 8, 45, 46, 57, 80, 126, 228, 284, 353, 372, 375, 377, 378, 423, 452, 474, 484, 486, 487, 629, 632, 806, 812, 819, 820, 825, 828, 834, 840, 845, 847, 848, 855, 868, 873], "set_default_devic": [4, 5, 6, 8, 11, 12, 13, 217, 631, 830], "ivy_model": [4, 5, 8, 12, 48], "ivy_alexnet": 4, "quick": [4, 20, 32, 820, 822, 842, 853], "trace_graph": [4, 5, 8, 12, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 39, 48, 794, 812, 849, 854, 862], "moment": [4, 57, 59, 80, 82, 376, 433, 615, 616, 621, 635, 796, 810, 818, 825, 855, 863, 864], "cost": [4, 59, 82, 615, 616, 619, 621, 622, 623, 635, 640, 715, 716, 717, 806, 829, 847, 868], "arg": [4, 6, 8, 9, 10, 11, 12, 16, 18, 26, 27, 29, 31, 32, 36, 37, 38, 49, 52, 74, 96, 106, 122, 203, 213, 601, 628, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 798, 801, 805, 810, 812, 824, 829, 830, 833, 839, 840, 841, 847, 849, 853, 863, 864, 865], "asarrai": [4, 5, 8, 11, 12, 46, 53, 57, 58, 69, 76, 80, 81, 92, 127, 385, 514, 515, 545, 556, 560, 561, 591, 592, 593, 629, 634, 636, 645, 646, 650, 750, 754, 833, 838, 841, 842], "cuda": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22, 31, 46, 47, 50, 53, 57, 66, 76, 80, 89, 137, 138, 141, 193, 194, 195, 211, 382, 508, 509, 511, 512, 629, 631, 637, 643, 688, 738, 739, 740, 741, 791, 792, 793, 794, 795, 796, 797, 810, 849, 855, 857, 875], "output": [4, 5, 7, 8, 9, 10, 12, 22, 28, 29, 31, 32, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 435, 436, 438, 441, 442, 443, 444, 446, 447, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 467, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 539, 540, 541, 545, 546, 547, 549, 553, 562, 569, 576, 577, 578, 602, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 791, 792, 805, 806, 812, 814, 819, 820, 822, 823, 824, 826, 827, 829, 830, 831, 832, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 849, 851, 853, 854, 855, 857, 863, 864, 871], "softmax": [4, 6, 7, 12, 16, 29, 31, 32, 47, 51, 61, 72, 73, 84, 377, 454, 626, 636, 663, 666, 788, 812], "pass": [4, 6, 7, 8, 11, 12, 13, 14, 16, 18, 22, 29, 31, 32, 38, 44, 45, 47, 49, 50, 56, 57, 72, 74, 79, 80, 95, 103, 122, 123, 125, 157, 179, 194, 213, 228, 274, 375, 377, 378, 381, 382, 387, 421, 454, 474, 501, 503, 508, 528, 529, 562, 628, 630, 631, 632, 634, 640, 715, 716, 771, 773, 777, 784, 789, 793, 794, 796, 797, 801, 805, 810, 812, 816, 818, 820, 823, 824, 825, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 855, 863, 864, 865, 868], "argsort": [4, 12, 69, 92, 646, 755, 841], "descend": [4, 12, 69, 92, 637, 646, 687, 688, 753, 756], "top": [4, 12, 15, 20, 29, 31, 32, 45, 46, 57, 64, 80, 319, 369, 377, 378, 452, 494, 545, 634, 700, 812, 819, 820, 829, 834, 841, 843, 844, 847, 852, 853, 870, 874], "logit": [4, 5, 6, 7, 8, 12, 45, 46, 47, 48, 57, 63, 80, 86, 367, 382, 508, 511, 638, 696, 698, 788, 812, 863], "gather": [4, 12, 45, 57, 58, 80, 81, 330, 331, 332, 369, 553, 555, 634, 877], "to_list": [4, 12, 58, 81, 634], "arrai": [4, 5, 6, 7, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 175, 177, 178, 179, 180, 186, 196, 197, 201, 206, 208, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 574, 575, 576, 577, 578, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 597, 598, 599, 600, 601, 602, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 778, 784, 791, 792, 793, 794, 797, 801, 805, 806, 808, 812, 816, 818, 819, 820, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 864, 865, 868, 869, 870, 872, 876, 877], "282": [4, 12], "281": [4, 12, 45, 47], "285": [4, 12, 80], "64773697": 4, "29496649": 4, "04526037": 4, "tiger": [4, 12], "tabbi": [4, 7, 12], "egyptian": [4, 12], "torch_alexnet": 4, "alexnet_weight": 4, "imagenet1k_v1": [4, 12], "dropout": [4, 61, 84, 375, 399, 400, 401, 636, 661, 663, 666, 792, 852], "torch_output": [4, 8, 9, 12], "dim": [4, 12, 47, 57, 74, 76, 80, 141, 313, 369, 375, 378, 393, 403, 404, 405, 408, 416, 474, 496, 629, 636, 649, 656, 657, 662, 778, 792, 812, 829, 841, 842, 847], "torch_class": [4, 12], "torch_logit": [4, 12], "tensor": [4, 5, 6, 9, 11, 12, 13, 16, 18, 22, 23, 26, 27, 29, 31, 32, 33, 37, 43, 45, 53, 56, 57, 58, 61, 62, 63, 64, 66, 70, 74, 76, 79, 80, 81, 84, 85, 86, 87, 89, 93, 96, 129, 137, 138, 141, 147, 163, 179, 271, 272, 302, 319, 323, 324, 325, 326, 327, 328, 337, 360, 367, 369, 372, 375, 376, 377, 378, 387, 388, 394, 395, 398, 402, 411, 412, 413, 414, 421, 423, 425, 432, 433, 434, 435, 438, 440, 442, 444, 445, 448, 450, 451, 452, 454, 457, 458, 474, 477, 482, 485, 486, 487, 488, 491, 496, 497, 528, 533, 576, 577, 629, 630, 632, 634, 636, 637, 638, 639, 643, 647, 659, 662, 663, 678, 689, 696, 706, 708, 738, 761, 792, 801, 806, 810, 812, 824, 825, 829, 830, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 859, 863, 864, 865, 867, 868, 871, 873, 874, 877], "6477": 4, "2950": 4, "0453": 4, "grad_fn": [4, 12, 29, 43, 618, 625, 635, 852], "takebackward0": [4, 12], "great": [4, 7, 8, 812, 820, 844, 849, 851, 860, 861, 876], "simpl": [4, 7, 16, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 43, 45, 47, 50, 57, 80, 387, 522, 778, 792, 806, 812, 818, 819, 820, 824, 826, 827, 829, 830, 831, 832, 837, 840, 841, 844, 845, 847, 851, 853, 854, 855, 857, 859, 863, 864, 869, 870, 871, 872], "let": [4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 48, 50, 58, 70, 81, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 284, 286, 287, 291, 552, 553, 632, 634, 637, 647, 691, 761, 763, 764, 765, 766, 812, 818, 821, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 861, 863, 864, 877], "ll": [4, 6, 7, 8, 9, 11, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 46, 812, 813, 815, 816, 818, 819, 820, 821, 826, 831, 834, 835, 839, 840, 852, 856, 861, 863, 864], "try": [4, 6, 7, 23, 33, 43, 46, 50, 74, 601, 634, 791, 801, 812, 818, 819, 820, 823, 824, 827, 828, 829, 833, 835, 840, 842, 849, 851, 855, 858, 860, 861, 865], "tf": [4, 6, 8, 9, 10, 13, 16, 18, 23, 26, 27, 29, 31, 32, 33, 34, 36, 38, 43, 48, 49, 789, 812, 824, 829, 830, 836, 840, 841, 844, 845, 847, 849, 854, 855, 857, 863, 864, 865, 870], "onc": [4, 6, 8, 31, 32, 43, 45, 62, 66, 85, 89, 213, 376, 429, 631, 637, 643, 672, 673, 674, 687, 738, 812, 818, 819, 820, 827, 828, 829, 830, 831, 834, 835, 840, 841, 844, 847, 849, 852, 855, 856, 861, 863], "set": [4, 7, 9, 16, 18, 24, 31, 32, 34, 37, 45, 46, 47, 48, 49, 52, 57, 58, 61, 62, 67, 69, 70, 74, 80, 81, 84, 85, 90, 92, 93, 115, 118, 125, 145, 147, 181, 182, 183, 184, 185, 196, 209, 210, 211, 212, 213, 228, 328, 340, 356, 358, 363, 369, 372, 373, 375, 376, 377, 378, 387, 398, 419, 423, 427, 431, 434, 452, 457, 458, 474, 484, 487, 494, 522, 527, 528, 529, 530, 531, 532, 534, 538, 545, 557, 562, 578, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 595, 603, 626, 628, 629, 630, 631, 632, 634, 636, 637, 641, 643, 644, 646, 647, 659, 666, 668, 678, 680, 683, 686, 687, 718, 725, 728, 729, 730, 735, 736, 742, 744, 745, 749, 751, 752, 753, 756, 764, 766, 773, 776, 777, 778, 779, 784, 791, 792, 794, 796, 801, 806, 809, 810, 812, 813, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 859, 862, 863, 864, 868, 869, 870, 871, 872, 874, 877], "post": [4, 6, 8, 45, 65, 88, 642, 737, 819, 834, 839, 854, 856], "process": [4, 6, 8, 26, 31, 32, 36, 45, 207, 219, 631, 813, 819, 820, 826, 827, 828, 834, 835, 837, 839, 841, 842, 843, 844, 847, 849, 854, 860, 861, 863, 868, 869, 870, 873, 874, 876, 877], "st": [4, 5, 11, 776, 823, 842, 844], "perf_count": [4, 9, 10, 11], "raw_logit": 4, "latenc": [4, 11], "nn": [4, 6, 7, 8, 10, 18, 29, 31, 32, 45, 49, 139, 629, 812, 837, 842, 847, 854, 864, 871], "direct": [4, 57, 80, 341, 348, 352, 357, 361, 372, 375, 378, 409, 420, 475, 476, 490, 646, 756, 818, 824, 826, 841, 847, 853, 854, 866, 870, 871, 874], "tolist": 4, "652289830999962": 4, "int32": [4, 43, 45, 54, 57, 58, 66, 67, 70, 77, 80, 81, 89, 90, 132, 137, 141, 143, 149, 152, 155, 157, 159, 161, 163, 166, 168, 169, 173, 176, 180, 184, 188, 190, 208, 235, 271, 272, 383, 387, 513, 523, 524, 525, 553, 562, 599, 629, 630, 631, 632, 634, 643, 644, 647, 739, 740, 741, 745, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "6477362": 4, "29496726": 4, "04526032": 4, "As": [4, 6, 7, 8, 11, 13, 14, 16, 18, 24, 28, 29, 31, 32, 34, 37, 43, 44, 68, 72, 95, 637, 645, 685, 749, 750, 751, 752, 812, 816, 818, 819, 820, 821, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 851, 852, 853, 855, 859, 863, 864, 865, 870, 875], "ident": [4, 6, 9, 14, 29, 46, 48, 62, 74, 132, 201, 555, 581, 629, 631, 634, 637, 641, 675, 679, 731, 792, 827, 837, 838, 841, 842, 845, 847, 851, 852, 855, 857, 859, 861], "had": [4, 827, 828, 840, 845, 849, 870, 871], "postprocess": 4, "routin": [4, 828, 840, 841, 847, 855, 870], "feed": [4, 213, 631, 863, 870, 871], "carefulli": [4, 278, 632, 791, 841, 868, 873], "rewrit": 4, "easili": [4, 28, 31, 32, 43, 812, 819, 824, 828, 834, 841, 844, 847, 852, 853, 854, 855, 860, 870, 876, 877], "quickest": 4, "particular": [4, 31, 32, 268, 632, 777, 819, 820, 823, 825, 828, 829, 831, 838, 840, 841, 844, 845, 866, 870, 876], "again": [4, 8, 25, 26, 34, 35, 36, 37, 637, 685, 820, 824, 825, 826, 827, 831, 833, 835, 840, 841, 844, 845, 847, 852, 854, 855, 860, 861, 875, 876], "speed": [4, 11, 13, 14, 31, 32, 45, 50, 58, 81, 569, 634, 844, 859, 873], "repeat": [4, 5, 25, 35, 57, 58, 64, 80, 81, 87, 375, 378, 387, 404, 409, 473, 522, 547, 634, 639, 640, 712, 716, 717, 805, 820, 824, 825, 831, 832, 840, 844], "previou": [4, 14, 24, 25, 26, 28, 34, 35, 36, 38, 59, 80, 82, 187, 188, 189, 190, 191, 364, 374, 375, 421, 602, 604, 605, 606, 607, 609, 610, 612, 616, 621, 630, 634, 635, 791, 809, 819, 820, 823, 825, 828, 830, 836, 841, 844, 847, 854, 855, 873], "trace": [4, 5, 6, 8, 11, 12, 13, 20, 21, 25, 28, 31, 34, 36, 37, 49, 58, 62, 74, 81, 85, 564, 565, 568, 579, 588, 603, 611, 634, 637, 773, 784, 794, 796, 810, 812, 823, 827, 829, 841, 846, 847, 849, 854, 855, 862, 863, 864, 871, 876], "026875037000081647": 4, "overrid": [4, 8, 37, 46, 53, 57, 76, 80, 141, 387, 522, 629, 824, 826], "prealloc": [4, 8], "temporari": [4, 8, 589, 612, 634, 806, 829, 846], "fix": [4, 8, 47, 57, 80, 97, 98, 372, 375, 376, 421, 451, 636, 663, 812, 816, 819, 820, 823, 829, 835, 844, 845], "until": [4, 8, 806, 820, 840, 849, 855, 860, 863, 877], "o": [4, 8, 44, 45, 46, 47, 49, 572, 634, 636, 663, 812, 819, 822, 828, 849, 856], "environ": [4, 8, 13, 26, 27, 28, 29, 46, 49, 812, 813, 820, 856, 870, 872], "xla_python_client_alloc": [4, 8], "platform": [4, 6, 8, 14, 26, 27, 29, 814, 817, 819, 826, 868, 872, 874], "jit": [4, 11, 13, 31, 34, 849, 855, 863, 870], "img_jax": [4, 8], "device_put": [4, 11], "warm": 4, "_": [4, 9, 10, 11, 13, 14, 31, 44, 45, 56, 57, 74, 79, 80, 82, 98, 155, 243, 245, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 448, 451, 492, 522, 545, 615, 616, 630, 632, 634, 635, 637, 639, 641, 647, 685, 686, 688, 714, 725, 764, 812, 820, 828, 829, 832, 840, 844, 852], "0022192720000475674": 4, "64773613": 4, "29496723": 4, "exact": [4, 57, 73, 74, 110, 375, 377, 411, 416, 456, 457, 645, 749, 751, 778, 788, 819, 820, 823, 831, 849], "note": [4, 6, 8, 14, 27, 31, 32, 37, 46, 47, 48, 57, 58, 62, 64, 68, 80, 85, 87, 97, 134, 147, 179, 247, 282, 283, 290, 328, 329, 349, 369, 372, 375, 376, 378, 398, 429, 434, 444, 445, 451, 474, 492, 630, 632, 636, 637, 639, 645, 647, 663, 672, 673, 684, 685, 687, 706, 710, 750, 752, 761, 792, 806, 810, 816, 818, 819, 820, 824, 829, 831, 832, 835, 840, 841, 842, 844, 845, 847], "were": [4, 8, 48, 74, 77, 168, 172, 173, 247, 632, 636, 663, 818, 819, 820, 829, 833, 835, 839, 840, 842, 844, 845, 847, 849, 863, 870, 871, 876], "function": [4, 6, 7, 9, 10, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 166, 167, 168, 171, 172, 173, 175, 179, 180, 197, 199, 200, 209, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 384, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 575, 576, 577, 580, 581, 584, 586, 588, 591, 592, 593, 594, 595, 597, 599, 600, 601, 607, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 722, 724, 725, 726, 728, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 774, 776, 777, 778, 779, 784, 788, 791, 794, 801, 802, 808, 810, 812, 816, 819, 820, 822, 823, 824, 825, 826, 828, 831, 832, 834, 840, 843, 848, 850, 851, 852, 853, 857, 859, 863, 865, 867, 868, 869, 870, 871, 876, 877], "dog": 4, "006431100999861883": 4, "258": [4, 636, 651, 653], "104": [4, 70, 637, 647, 682, 759], "259": 4, "72447652": 4, "13937832": 4, "05874982": 4, "samoi": 4, "wallabi": 4, "pomeranian": 4, "incorrect": [4, 828], "predict": [4, 6, 7, 8, 12, 14, 45, 46, 47, 48, 57, 63, 80, 86, 377, 453, 456, 459, 638, 696, 697, 698, 812, 829], "down": [4, 24, 34, 48, 57, 80, 375, 378, 411, 476, 812, 819, 844, 857, 870, 876], "itself": [4, 7, 26, 36, 56, 97, 274, 535, 601, 632, 634, 641, 730, 806, 816, 819, 820, 823, 826, 827, 828, 829, 830, 833, 834, 835, 840, 841, 853, 855, 859, 863, 869, 870, 871, 876], "version": [4, 6, 9, 14, 28, 29, 34, 45, 46, 47, 50, 51, 57, 80, 97, 110, 291, 340, 342, 372, 387, 527, 532, 614, 632, 634, 637, 673, 674, 773, 801, 802, 812, 819, 820, 826, 828, 829, 832, 840, 842, 849, 859, 860, 861, 864, 876, 877], "004749261999904775": 4, "7245": 4, "1394": 4, "0587": 4, "promis": [4, 7, 860], "sourc": [4, 7, 9, 10, 12, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 780, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 841, 843, 859, 860, 861, 862, 864, 865, 869, 870, 871, 872, 873], "modul": [4, 6, 8, 11, 13, 16, 18, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 37, 43, 44, 45, 47, 48, 49, 72, 74, 95, 103, 368, 370, 371, 379, 380, 384, 573, 634, 648, 769, 773, 788, 789, 790, 792, 793, 795, 797, 800, 801, 810, 812, 814, 819, 824, 825, 826, 833, 837, 840, 841, 843, 844, 849, 850, 852, 854, 855, 861, 863, 865, 870, 871, 873], "__init__": [4, 8, 16, 18, 31, 32, 43, 44, 45, 47, 74, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 774, 781, 782, 783, 788, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 807, 810, 812, 818, 824, 825, 829, 833, 841, 845, 849, 851, 852, 853, 854, 864], "self": [4, 6, 7, 8, 16, 18, 31, 32, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 805, 812, 820, 824, 827, 833, 841, 842, 849, 851, 852, 853, 854, 864], "num_class": [4, 16, 18, 31, 32, 45, 47, 49, 812, 854, 864], "1000": [4, 6, 9, 10, 11, 12, 16, 31, 32, 45, 46, 47, 48, 50, 53, 76, 138, 629, 812, 852, 864], "v": [4, 5, 8, 20, 21, 24, 31, 32, 34, 37, 38, 43, 46, 47, 57, 61, 69, 76, 80, 84, 92, 138, 238, 243, 245, 286, 376, 378, 430, 440, 447, 448, 473, 632, 636, 640, 646, 663, 666, 716, 717, 755, 773, 792, 793, 794, 795, 796, 797, 812, 814, 819, 820, 822, 826, 834, 849, 852, 853, 854, 878], "_build": [4, 8, 793, 794, 812], "kwarg": [4, 5, 7, 8, 13, 14, 31, 45, 49, 52, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 103, 106, 203, 378, 484, 572, 601, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 801, 810, 812, 824, 829, 830, 833, 837, 840, 841, 847, 849, 853, 863, 864, 865], "featur": [4, 7, 13, 14, 16, 18, 20, 22, 31, 32, 45, 49, 57, 80, 375, 389, 391, 392, 399, 400, 401, 791, 792, 810, 812, 818, 819, 820, 824, 825, 828, 829, 836, 845, 847, 852, 855, 864, 870, 871, 872, 876], "sequenti": [4, 8, 9, 12, 29, 31, 32, 47, 812, 826, 827, 853, 864], "conv2d": [4, 8, 12, 29, 31, 32, 47, 50, 61, 84, 636, 653, 792, 812], "64": [4, 8, 12, 43, 45, 46, 47, 50, 56, 57, 61, 79, 80, 81, 84, 85, 89, 93, 103, 164, 234, 244, 278, 287, 288, 346, 372, 375, 397, 407, 545, 546, 593, 621, 630, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 658, 679, 682, 692, 726, 730, 740, 759, 763, 819, 829, 852, 853, 867, 875], "data_format": [4, 47, 57, 61, 80, 84, 375, 381, 390, 394, 395, 396, 399, 400, 401, 412, 413, 414, 415, 417, 501, 502, 503, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 776, 792, 795, 812], "nchw": [4, 47, 57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792, 812], "relu": [4, 8, 12, 29, 31, 32, 43, 50, 51, 57, 72, 73, 80, 112, 302, 303, 311, 367, 626, 788, 812, 842, 852, 853], "maxpool2d": [4, 8, 12, 45, 792, 812], "192": [4, 47, 776, 805], "384": [4, 82, 615, 635, 641, 718], "avgpool": [4, 12], "adaptiveavgpool2d": [4, 12, 792], "classifi": [4, 7, 14, 16, 18, 31, 32, 45, 47, 48, 812, 818, 863, 864], "prob": [4, 6, 7, 47, 57, 61, 80, 84, 89, 375, 382, 399, 400, 401, 508, 636, 643, 659, 738, 792, 812], "4096": 4, "_forward": [4, 8, 11, 13, 31, 32, 43, 44, 47, 812, 832, 849, 852, 853], "bidirect": [5, 636, 661], "encod": [5, 16, 18, 31, 32, 45, 47, 58, 63, 81, 86, 549, 634, 638, 696, 812, 852, 860, 864], "mlm": 5, "googl": [5, 26, 27, 28, 29, 45, 46, 47, 49, 828, 860], "choos": [5, 45, 47, 55, 67, 68, 78, 214, 240, 247, 268, 269, 273, 335, 336, 372, 378, 631, 632, 644, 645, 647, 748, 749, 750, 751, 752, 760, 761, 762, 764, 776, 812, 818, 819, 820, 838, 844, 850, 854, 863], "librari": [5, 6, 7, 11, 13, 20, 21, 27, 29, 43, 45, 55, 68, 78, 214, 245, 247, 263, 268, 269, 291, 335, 336, 372, 631, 632, 637, 645, 647, 673, 674, 749, 750, 751, 752, 760, 761, 762, 764, 810, 812, 818, 819, 823, 829, 854, 855, 859, 860, 861, 863, 866, 867, 868, 870, 874, 877], "pretrain": [5, 11, 16, 17, 18, 31, 32, 50, 812, 864], "save": [5, 6, 12, 45, 57, 74, 80, 387, 529, 589, 612, 631, 634, 648, 794, 810, 819, 828, 835, 844, 855, 861, 869], "some": [5, 8, 9, 10, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 43, 47, 48, 74, 82, 245, 247, 263, 375, 399, 400, 401, 615, 616, 619, 621, 622, 623, 631, 632, 635, 641, 729, 792, 812, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 855, 856, 857, 860, 861, 863, 864, 866, 867, 869, 870, 871, 876, 877], "mohame54": 5, "automodel": [5, 13, 31], "autotoken": 5, "load": [5, 6, 7, 11, 13, 28, 31, 45, 46, 47, 48, 49, 50, 74, 376, 447, 648, 794, 812, 844, 855, 869, 876], "token": [5, 47, 821], "bert_bas": 5, "from_pretrain": [5, 7, 13, 31, 48, 863, 864], "base": [5, 7, 14, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 138, 147, 179, 243, 244, 261, 262, 263, 264, 278, 319, 328, 330, 337, 340, 346, 353, 369, 372, 375, 376, 377, 385, 418, 422, 447, 452, 514, 582, 593, 605, 629, 630, 632, 634, 637, 639, 645, 647, 678, 702, 749, 750, 751, 752, 759, 774, 777, 778, 781, 782, 783, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 806, 807, 810, 812, 819, 820, 821, 823, 827, 828, 829, 833, 836, 838, 839, 840, 842, 843, 844, 845, 846, 847, 849, 870, 875, 877, 878], "uncas": 5, "eval": [5, 6, 8, 12, 18, 26, 27, 28, 29, 636, 661, 794], "evalu": [5, 56, 57, 74, 79, 80, 243, 245, 261, 262, 263, 264, 268, 275, 277, 284, 288, 322, 354, 365, 366, 369, 374, 376, 377, 378, 443, 452, 457, 481, 625, 632, 635, 641, 648, 728, 729, 767, 768, 793, 794, 820, 827, 829, 837, 838, 870], "bert_token": 5, "sampl": [5, 6, 7, 11, 13, 16, 18, 28, 31, 32, 46, 53, 56, 57, 66, 70, 76, 79, 80, 89, 93, 137, 138, 292, 319, 369, 375, 377, 378, 382, 399, 400, 401, 411, 421, 423, 452, 457, 487, 508, 509, 510, 511, 512, 629, 632, 643, 647, 738, 739, 740, 741, 764, 766, 792, 842, 844], "test": [5, 7, 23, 24, 26, 27, 33, 34, 36, 37, 38, 46, 47, 56, 58, 71, 79, 81, 94, 125, 171, 175, 254, 255, 256, 257, 280, 375, 399, 400, 401, 569, 628, 630, 632, 634, 648, 767, 768, 771, 774, 777, 806, 812, 814, 816, 817, 822, 826, 829, 831, 833, 835, 838, 841, 843, 845, 855, 856, 861, 863, 864, 865, 870], "did": [5, 45, 818, 826, 854, 860, 876], "realli": [5, 43, 819, 827, 834, 855, 863, 875, 876], "like": [5, 6, 7, 11, 13, 23, 24, 25, 31, 33, 34, 35, 36, 37, 38, 48, 50, 53, 56, 57, 64, 76, 79, 80, 84, 87, 92, 138, 156, 179, 224, 244, 250, 253, 266, 284, 341, 346, 358, 372, 375, 376, 377, 378, 385, 387, 418, 420, 429, 454, 463, 464, 473, 474, 514, 515, 532, 629, 630, 632, 637, 639, 643, 646, 672, 706, 741, 754, 806, 812, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 860, 863, 864, 870, 875], "input": [5, 6, 7, 8, 9, 10, 13, 16, 18, 28, 29, 31, 36, 37, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 194, 196, 197, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 430, 431, 432, 434, 435, 436, 441, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 576, 577, 578, 584, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 602, 607, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 791, 792, 793, 794, 795, 805, 806, 810, 823, 824, 825, 827, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 871, 874], "pad": [5, 12, 45, 47, 57, 61, 64, 80, 84, 87, 98, 100, 375, 378, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 549, 634, 636, 639, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 701, 714, 778, 792, 812], "longest": 5, "return_tensor": [5, 7, 13, 31, 48, 863, 864], "pt": [5, 7, 13, 31, 863], "max_length": [5, 74], "512": [5, 8, 12, 45, 47, 85, 636, 651, 692, 812], "input_id": 5, "101": [5, 14, 46, 636, 637, 641, 660, 676, 724], "1045": 5, "2106": 5, "1005": 5, "1056": 5, "2428": 5, "2066": 5, "2115": 5, "4309": 5, "1012": 5, "102": [5, 14, 57, 80, 89, 397, 739], "token_type_id": 5, "attention_mask": [5, 61, 84, 636, 663], "pooler": 5, "compar": [5, 9, 10, 11, 13, 31, 44, 48, 50, 57, 58, 68, 69, 70, 74, 80, 81, 92, 93, 334, 351, 372, 387, 530, 534, 537, 634, 636, 645, 646, 647, 661, 749, 750, 751, 752, 753, 756, 762, 773, 812, 825, 831, 833, 842, 844, 847, 852, 866, 868, 870, 876, 877], "no_grad": [5, 45, 863], "bert_output": 5, "pooler_output": 5, "ivy_bert": 5, "bert_base_uncas": 5, "ivy_input": 5, "k": [5, 11, 44, 47, 53, 57, 58, 61, 62, 66, 76, 79, 80, 84, 85, 89, 97, 98, 122, 132, 145, 146, 147, 267, 313, 328, 329, 369, 376, 378, 382, 385, 387, 427, 442, 446, 448, 450, 490, 494, 508, 509, 510, 511, 512, 515, 525, 537, 628, 629, 634, 636, 637, 641, 643, 644, 663, 666, 670, 677, 678, 684, 686, 687, 688, 691, 726, 739, 740, 741, 747, 822, 823, 841, 842, 849, 863, 866, 870], "ivy_output": [5, 48], "logits_clos": 5, "allclos": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 48, 50, 57, 80, 372], "detach": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 839], "rtol": [5, 7, 16, 18, 57, 62, 80, 85, 334, 351, 372, 637, 680, 683, 771, 773, 816, 834, 842], "005": [5, 12, 57, 80, 334, 351, 372, 453], "atol": [5, 7, 9, 10, 11, 13, 31, 57, 62, 80, 85, 334, 351, 372, 637, 680, 771, 773, 816, 834, 842], "768": 5, "fn": [5, 48, 50, 57, 74, 77, 80, 106, 166, 167, 199, 200, 203, 378, 461, 535, 550, 551, 601, 630, 631, 634, 641, 724, 725, 726, 728, 729, 730, 771, 773, 798, 801, 807, 808, 810, 830, 833, 840, 841, 849, 863], "finish": [5, 7, 20, 31, 32, 43, 46, 812, 813, 818, 819, 822], "sec": 5, "43": [5, 14, 43, 45, 47, 57, 80, 89, 103, 234, 375, 376, 387, 396, 428, 523, 632, 643, 644, 740, 741, 748], "procedur": [5, 826, 828, 831, 842], "60": [5, 43, 47, 56, 70, 79, 81, 89, 93, 224, 258, 378, 489, 553, 561, 577, 592, 614, 632, 634, 637, 641, 647, 682, 721, 739, 757, 759, 763, 806, 828], "big": [5, 791, 813, 855, 870], "jnp": [5, 23, 28, 31, 32, 33, 34, 37, 43, 45, 49, 812, 829, 830, 833, 836, 840, 845, 849, 854, 864, 865], "ref": [5, 8, 11, 13, 81, 85, 259, 273, 276, 282, 289, 632, 639, 710, 819, 840], "fast": [5, 26, 36, 57, 375, 398, 870], "valu": [5, 14, 43, 44, 46, 47, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 100, 102, 103, 105, 118, 122, 123, 125, 126, 132, 135, 136, 137, 138, 141, 147, 152, 169, 173, 179, 212, 213, 220, 221, 222, 223, 225, 227, 228, 229, 236, 240, 241, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 302, 307, 310, 311, 313, 320, 322, 328, 330, 331, 332, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 351, 352, 354, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 386, 387, 398, 411, 418, 419, 421, 423, 427, 430, 434, 440, 445, 447, 449, 451, 452, 453, 455, 456, 457, 458, 467, 473, 478, 484, 489, 491, 492, 493, 494, 496, 498, 501, 503, 508, 509, 511, 512, 518, 520, 523, 524, 525, 528, 529, 530, 531, 532, 538, 540, 541, 542, 544, 549, 552, 553, 555, 560, 561, 562, 569, 576, 577, 581, 582, 583, 586, 595, 600, 605, 606, 609, 612, 613, 614, 615, 616, 617, 621, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 666, 670, 673, 674, 678, 679, 680, 683, 684, 685, 686, 687, 688, 691, 694, 699, 700, 701, 705, 706, 714, 715, 716, 720, 722, 723, 724, 725, 726, 731, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 779, 781, 783, 788, 791, 792, 793, 794, 795, 796, 810, 816, 819, 820, 823, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 846, 847, 849, 851, 855, 863, 870, 871], "emerg": [6, 870], "popular": [6, 7, 812, 823, 870], "Its": [6, 57, 377, 452, 870], "python": [6, 7, 12, 16, 22, 34, 39, 43, 45, 46, 47, 49, 50, 57, 66, 80, 89, 126, 207, 219, 247, 282, 375, 382, 421, 508, 509, 510, 511, 512, 614, 629, 631, 632, 634, 643, 738, 739, 740, 741, 743, 801, 805, 806, 810, 817, 819, 820, 823, 826, 827, 828, 833, 834, 841, 843, 844, 849, 851, 852, 855, 857, 858, 859, 860, 863, 867, 870, 871, 872, 876, 877], "superior": 6, "eager": [6, 20, 21, 24, 27, 29, 34, 37, 38, 49, 810, 827, 855, 870], "execut": [6, 11, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 39, 46, 48, 50, 123, 125, 601, 628, 631, 634, 819, 820, 826, 827, 828, 829, 830, 831, 833, 837, 838, 840, 844, 847, 849, 851, 854, 855, 857, 863, 866, 870, 871, 872, 873, 874, 876], "mode": [6, 7, 8, 37, 49, 57, 62, 74, 80, 85, 96, 97, 98, 99, 100, 101, 210, 213, 218, 223, 240, 273, 327, 365, 366, 369, 374, 375, 376, 378, 406, 411, 419, 420, 432, 434, 442, 444, 445, 451, 467, 477, 482, 484, 485, 487, 489, 492, 493, 497, 578, 579, 580, 584, 585, 587, 588, 602, 603, 607, 608, 610, 611, 631, 632, 634, 636, 637, 661, 684, 784, 792, 793, 794, 809, 810, 819, 820, 822, 827, 830, 831, 834, 847, 855, 870, 873], "made": [6, 11, 13, 31, 57, 64, 80, 376, 378, 436, 462, 463, 464, 710, 818, 820, 821, 823, 824, 827, 828, 833, 835, 837, 839, 840, 841, 845, 847, 849, 851, 860, 870], "favorit": [6, 812], "increasingli": [6, 831, 863], "span": [6, 820, 868, 876], "industri": [6, 860, 870, 872], "still": [6, 14, 25, 27, 28, 31, 32, 34, 35, 38, 62, 74, 85, 637, 687, 776, 818, 819, 820, 824, 825, 829, 832, 833, 835, 837, 840, 841, 844, 847, 853, 855, 860, 863, 864, 867, 870, 876], "practition": [6, 7, 870, 874, 875, 876], "larg": [6, 46, 56, 57, 79, 80, 223, 240, 247, 273, 274, 378, 387, 492, 522, 632, 637, 685, 814, 819, 820, 826, 828, 834, 852, 863, 870], "unabl": [6, 13, 820, 847], "rich": 6, "ecosystem": [6, 870], "state": [6, 19, 30, 45, 61, 80, 84, 100, 187, 188, 189, 190, 191, 273, 375, 421, 602, 604, 607, 609, 610, 630, 632, 634, 636, 661, 662, 774, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 812, 816, 819, 826, 829, 830, 832, 833, 834, 835, 836, 841, 844, 848, 849, 850, 852, 860, 864, 876, 877], "art": 6, "sota": [6, 7], "inaccur": 6, "dynam": [6, 9, 38, 639, 706, 794, 801, 822, 828, 829, 830, 840, 841, 846, 849, 863, 870, 874], "connect": [6, 12, 45, 792, 812, 814, 819, 826, 843, 853, 854, 860, 868], "layer": [6, 7, 9, 10, 16, 18, 22, 28, 29, 31, 32, 43, 48, 57, 65, 80, 88, 642, 661, 662, 663, 737, 789, 791, 793, 794, 795, 796, 797, 812, 832, 841, 845, 847, 849, 850, 853, 859, 864, 868, 870, 874, 877], "togeth": [6, 57, 74, 80, 334, 351, 372, 376, 430, 797, 812, 821, 824, 827, 829, 840, 841, 844, 845, 847, 853, 854, 855, 860, 868, 870, 871, 876], "For": [6, 11, 12, 13, 14, 22, 24, 31, 32, 34, 37, 39, 53, 57, 62, 68, 80, 85, 126, 139, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 275, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 330, 331, 332, 335, 336, 338, 359, 369, 372, 376, 378, 442, 444, 464, 484, 487, 629, 632, 637, 639, 645, 647, 685, 687, 691, 699, 710, 749, 750, 751, 752, 760, 762, 763, 765, 777, 789, 812, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 867, 868, 871, 876, 877], "user": [6, 7, 13, 20, 26, 27, 28, 29, 31, 46, 47, 49, 274, 291, 378, 484, 580, 632, 634, 792, 793, 794, 805, 812, 819, 820, 822, 824, 825, 827, 828, 829, 830, 833, 838, 839, 840, 841, 844, 846, 847, 848, 849, 855, 856, 859, 860, 868, 870, 876, 877], "seamless": [6, 812], "wai": [6, 14, 20, 21, 22, 25, 27, 31, 35, 37, 43, 97, 100, 812, 814, 817, 818, 819, 823, 824, 825, 826, 828, 829, 830, 840, 841, 842, 844, 847, 851, 852, 853, 854, 855, 856, 859, 860, 865, 872, 876, 877], "introduc": [6, 31, 32, 247, 632, 639, 645, 707, 749, 818, 827, 828, 829, 838, 842, 844, 847, 852, 859], "pipelin": [6, 7, 812, 814, 822, 823, 824, 842, 845, 854, 857, 859, 864, 870, 871, 876], "blog": [6, 7, 820], "through": [6, 7, 32, 37, 45, 57, 80, 100, 228, 387, 528, 529, 632, 641, 721, 727, 794, 805, 812, 813, 816, 817, 818, 820, 821, 822, 825, 826, 827, 828, 830, 831, 833, 834, 835, 837, 838, 840, 841, 842, 844, 846, 847, 848, 849, 852, 853, 854, 863, 868, 870, 871, 872], "train": [6, 7, 16, 18, 29, 31, 32, 48, 57, 59, 61, 80, 82, 84, 100, 375, 376, 381, 399, 400, 401, 448, 501, 503, 615, 616, 621, 635, 636, 659, 661, 663, 666, 791, 792, 793, 794, 795, 812, 827, 830, 837, 852, 853, 854, 855, 861, 864, 868, 869, 874, 876, 877], "illustr": [6, 24, 34, 825, 849], "workflow": [6, 25, 35, 46, 818, 820, 821, 825, 829, 839, 841, 852, 857, 861, 869, 876, 877], "pre": [6, 31, 32, 816, 818, 843, 844, 854, 855, 856, 870], "belong": [6, 74, 818, 823, 853], "convolut": [6, 29, 57, 61, 80, 84, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 810, 864, 868, 870], "neural": [6, 636, 788, 792, 812, 864, 866, 868, 869, 870, 874, 876, 877], "network": [6, 22, 29, 31, 32, 43, 45, 50, 636, 660, 788, 791, 792, 812, 827, 837, 849, 853, 860, 864, 866, 868, 869, 870, 874, 876, 877], "cnn": [6, 31, 32, 870], "architectur": [6, 48, 812, 819, 854, 855, 868, 869, 870, 873, 874, 875], "inspir": [6, 824], "vision": [6, 7, 31, 32, 50, 866, 876], "perform": [6, 8, 10, 14, 24, 26, 27, 28, 29, 31, 32, 34, 36, 43, 45, 53, 57, 61, 62, 70, 71, 76, 80, 81, 84, 85, 93, 94, 113, 117, 137, 138, 210, 218, 240, 273, 294, 341, 363, 372, 373, 375, 376, 378, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 417, 419, 445, 461, 515, 523, 524, 545, 546, 547, 560, 561, 562, 578, 588, 626, 629, 631, 632, 634, 636, 637, 640, 641, 647, 648, 659, 662, 678, 687, 689, 694, 715, 716, 717, 725, 726, 757, 758, 761, 767, 768, 771, 788, 792, 806, 810, 823, 824, 825, 827, 829, 830, 831, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 861, 863, 864, 867, 870, 871, 872, 873, 874, 875, 877], "strength": 6, "wise": [6, 31, 51, 56, 57, 62, 73, 79, 80, 85, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 239, 240, 241, 242, 244, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 276, 278, 279, 281, 282, 289, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 334, 337, 342, 345, 346, 347, 350, 351, 352, 353, 357, 358, 361, 362, 367, 372, 375, 376, 378, 399, 400, 401, 428, 435, 471, 478, 480, 481, 500, 626, 632, 639, 668, 699, 796, 847], "supervis": [6, 7, 57, 377, 452], "convent": [6, 287, 632, 637, 647, 677, 759, 820, 825, 836, 845, 859, 876], "demonstr": [6, 7, 14, 28, 31, 32, 46, 812, 821, 829, 831, 833, 851], "improv": [6, 11, 13, 14, 31, 34, 815, 820, 829, 836, 837, 847, 849, 857, 861, 863, 868, 870, 872, 873], "scalabl": [6, 849, 859, 875, 876], "sometim": [6, 818, 819, 820, 823, 829, 837, 841, 844, 847], "rival": 6, "even": [6, 11, 28, 31, 32, 57, 80, 97, 240, 273, 278, 283, 378, 387, 484, 522, 632, 819, 820, 821, 823, 825, 828, 829, 830, 832, 836, 837, 840, 841, 842, 847, 851, 852, 853, 854, 855, 860, 861, 876], "downsampl": [6, 12, 57, 80, 411], "detial": 6, "outsid": [6, 639, 699, 710, 829, 830, 837, 851, 875], "scope": [6, 825, 871, 875], "demo": [6, 7, 8, 11, 12, 13, 14, 32, 39, 43, 47, 812], "interest": [6, 7, 29, 31, 43, 240, 273, 632, 818, 820], "reader": [6, 7], "paper": [6, 636, 663, 812, 861], "mostli": [6, 830, 840, 844], "kera": [6, 9, 10, 15, 16, 18, 20, 21, 29, 31, 32, 48, 49, 789, 812, 861, 864, 876], "wrapper": [6, 20, 21, 24, 57, 80, 298, 784, 824, 826, 827, 829, 833, 837, 840, 841, 844, 851, 857, 866, 870], "prepar": [6, 32, 45, 47, 50, 812, 828], "data": [6, 7, 18, 26, 27, 28, 29, 32, 37, 45, 47, 50, 51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93, 94, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 154, 155, 157, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 186, 192, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 300, 301, 302, 303, 312, 313, 314, 315, 316, 317, 318, 329, 330, 331, 332, 333, 335, 336, 337, 354, 359, 367, 369, 372, 375, 376, 378, 382, 386, 387, 390, 399, 400, 401, 417, 419, 421, 427, 429, 449, 467, 489, 492, 493, 495, 496, 508, 509, 510, 511, 512, 518, 522, 523, 524, 528, 531, 532, 549, 562, 564, 565, 568, 595, 626, 629, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 700, 703, 704, 706, 707, 709, 710, 714, 722, 739, 740, 741, 743, 744, 745, 747, 748, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 791, 792, 793, 794, 798, 806, 810, 812, 819, 822, 823, 824, 825, 826, 827, 830, 832, 836, 837, 838, 840, 842, 845, 847, 849, 851, 857, 858, 860, 870, 871, 872, 874, 875, 876], "request": [6, 7, 11, 12, 13, 26, 27, 28, 29, 31, 32, 45, 48, 57, 204, 382, 512, 631, 810, 812, 813, 815, 818, 831, 835, 845, 847, 861, 864], "experiment": [6, 10, 810, 816, 820, 829, 841, 845, 849, 870], "set_memory_growth": 6, "list_physical_devic": 6, "manual_se": [6, 7, 29], "set_se": 6, "2024": 6, "51": [6, 14, 43, 47, 56, 57, 79, 80, 81, 89, 235, 273, 286, 376, 397, 451, 632, 741, 776], "38": [6, 13, 14, 27, 43, 45, 47, 50, 54, 57, 79, 80, 89, 165, 290, 357, 372, 375, 387, 395, 414, 417, 418, 523, 630, 632, 637, 679, 776, 831], "926817": 6, "e": [6, 13, 31, 48, 49, 53, 57, 62, 66, 68, 69, 70, 72, 79, 80, 85, 89, 92, 93, 95, 97, 98, 102, 129, 138, 139, 142, 143, 147, 151, 180, 193, 220, 221, 222, 226, 228, 229, 232, 234, 236, 240, 241, 243, 246, 247, 253, 254, 261, 262, 263, 264, 271, 272, 273, 274, 276, 280, 282, 283, 286, 287, 291, 301, 328, 335, 336, 369, 372, 375, 376, 377, 378, 382, 387, 388, 394, 395, 398, 412, 413, 414, 415, 419, 432, 435, 443, 457, 492, 496, 508, 509, 510, 511, 512, 523, 524, 533, 627, 629, 630, 631, 632, 636, 637, 639, 641, 643, 645, 646, 647, 663, 668, 673, 674, 677, 678, 680, 683, 686, 687, 688, 691, 694, 702, 710, 721, 725, 726, 727, 730, 735, 736, 739, 740, 741, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 792, 805, 806, 810, 812, 813, 816, 818, 819, 820, 822, 823, 825, 827, 829, 833, 834, 839, 841, 844, 849, 852, 855, 856, 857, 860, 861, 863, 866, 878], "extern": [6, 827, 836, 841, 844, 845], "local_xla": 6, "xla": [6, 13, 841, 855, 857, 870], "stream_executor": [6, 13], "cuda_dnn": [6, 13], "cc": [6, 13, 26, 27, 29, 46, 834], "9261": 6, "regist": [6, 13, 794, 820, 856, 863], "cudnn": [6, 13], "factori": [6, 13, 57, 377, 456, 457, 806], "plugin": [6, 13, 819], "926873": 6, "cuda_fft": [6, 13], "607": 6, "cufft": [6, 13], "928224": 6, "cuda_bla": [6, 13], "1515": 6, "cubla": [6, 13], "936743": 6, "cpu_feature_guard": [6, 26, 27, 29], "182": [6, 26, 27, 29, 80], "instruct": [6, 26, 27, 29, 74, 103, 812, 818, 819, 823, 833, 835, 842, 844, 856, 868, 871, 874, 876], "avx2": [6, 26, 27, 29], "fma": [6, 26, 27, 29], "rebuild": [6, 26, 27, 29, 74, 103], "flag": [6, 26, 27, 29, 74, 196, 377, 387, 454, 522, 631, 636, 663, 773, 784, 795, 820, 829, 830, 840, 841, 842, 844, 863, 864], "40": [6, 9, 14, 43, 45, 47, 57, 58, 79, 80, 81, 89, 93, 103, 234, 238, 258, 287, 349, 372, 375, 378, 395, 397, 407, 413, 489, 545, 547, 552, 553, 577, 592, 614, 617, 632, 634, 635, 637, 641, 647, 676, 682, 727, 740, 759, 763, 812, 828], "071672": 6, "w": [6, 8, 13, 46, 47, 57, 58, 59, 61, 74, 79, 80, 81, 82, 84, 97, 267, 349, 364, 372, 374, 375, 376, 381, 394, 395, 396, 398, 412, 413, 414, 415, 431, 451, 506, 521, 545, 547, 592, 615, 616, 617, 619, 621, 622, 623, 634, 635, 636, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 724, 822, 839, 849, 852, 853, 864, 878], "tf2tensorrt": [6, 13], "py_util": [6, 13], "trt": [6, 13], "find": [6, 13, 20, 46, 47, 50, 62, 68, 74, 85, 637, 641, 645, 680, 720, 749, 750, 751, 752, 805, 806, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 828, 834, 839, 844, 847, 849, 852, 856, 857, 859, 863], "tensorrt": [6, 13], "map": [6, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 372, 375, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 619, 624, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 725, 726, 730, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 806, 824, 827, 829, 836, 837, 841, 844, 845, 852, 855, 857, 864, 871], "dataset": [6, 7, 14, 31, 74, 812, 852, 863, 864], "gist": 6, "yrevar": 6, "942d3a0ac09ec9e5eb3a": 6, "238f720ff059c1f82f368259d1ca4ffa5dd8f9f5": 6, "imagenet1000_clsidx_to_label": 6, "idx2label": 6, "read": [6, 45, 47, 57, 64, 74, 76, 80, 87, 134, 378, 474, 629, 639, 706, 818, 819, 826, 828, 834, 844, 846, 847, 870], "resolv": [6, 12, 45, 47, 57, 70, 247, 387, 523, 524, 632, 639, 647, 702, 757, 758, 763, 765, 820, 826, 829, 835, 849], "185": [6, 12, 45, 73], "199": [6, 12, 45, 226, 632], "108": [6, 12, 14, 26, 27, 28, 29, 45, 636, 647, 660, 759], "133": [6, 12, 45, 61, 660], "109": [6, 12, 45, 62, 637, 675], "111": [6, 12, 45, 641, 736], "443": [6, 12, 45, 285, 632], "sent": [6, 12, 45], "await": [6, 12, 45], "respons": [6, 12, 45, 381, 506, 820, 828, 829], "200": [6, 12, 14, 45, 81, 84, 234, 375, 399, 400, 553, 577, 632, 634, 805, 852], "ok": [6, 12, 45, 819], "30564": 6, "30k": 6, "plain": [6, 12, 45], "imagenet1000_clsidx": 6, "85k": 6, "003": 6, "is_avail": [6, 14], "url": [6, 7, 11, 13, 28, 31, 32, 45, 48, 812, 864], "cocodataset": [6, 7, 11, 13, 28, 31, 32, 48, 812, 864], "org": [6, 7, 11, 12, 13, 28, 31, 32, 45, 47, 48, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 832, 864], "val2017": [6, 7, 11, 13, 31, 48], "000000039769": [6, 7, 11, 13, 31, 48], "stream": [6, 7, 11, 13, 28, 31, 32, 45, 48, 55, 78, 214, 631, 812, 864, 874], "initialis": [6, 823, 841, 844], "api": [6, 7, 19, 24, 29, 30, 34, 47, 49, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 178, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 819, 820, 822, 824, 826, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 842, 844, 847, 848, 850, 852, 855, 857, 858, 859, 866, 868, 870, 872, 875, 877], "convnextxlarg": 6, "while": [6, 7, 14, 31, 32, 39, 57, 61, 74, 80, 84, 97, 98, 103, 125, 141, 179, 247, 248, 268, 269, 347, 372, 375, 376, 378, 420, 421, 443, 486, 487, 521, 628, 629, 630, 632, 636, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 749, 761, 764, 774, 816, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 851, 853, 854, 855, 856, 859, 860, 863, 870, 876, 877], "arbitrari": [6, 24, 34, 53, 54, 57, 74, 77, 80, 139, 153, 180, 322, 377, 454, 462, 463, 464, 617, 629, 630, 635, 836, 837, 839, 840, 841, 844, 853, 855, 863, 865, 871, 876], "regardless": [6, 31, 32, 43, 74, 813, 829, 833, 851, 854, 861], "host": [6, 810, 814, 828, 855, 860, 875], "convnext_xlarg": 6, "include_top": [6, 18, 812], "include_preprocess": 6, "input_tensor": [6, 57, 80, 376, 377, 448, 452, 457, 841], "input_shap": [6, 11, 18, 29, 31, 32, 812], "pool": [6, 57, 80, 84, 375, 389, 390, 391, 392, 394, 395, 396, 412, 413, 414, 415, 418, 792, 819], "classifier_activ": 6, "936026": 6, "common_runtim": [6, 46], "gpu_devic": 6, "1929": 6, "creat": [6, 7, 8, 9, 10, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 49, 50, 53, 56, 57, 66, 74, 76, 79, 80, 85, 89, 98, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 274, 312, 313, 323, 325, 327, 328, 369, 375, 376, 378, 382, 394, 395, 396, 417, 434, 445, 451, 460, 468, 484, 489, 508, 509, 510, 511, 512, 580, 597, 614, 625, 629, 632, 634, 635, 643, 682, 738, 739, 740, 741, 743, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 813, 815, 819, 820, 821, 824, 825, 826, 828, 829, 830, 833, 837, 838, 840, 841, 842, 844, 847, 849, 850, 853, 856, 857, 860, 863, 864, 865, 870, 871, 876], "job": [6, 31, 32, 812, 826, 828, 864], "localhost": 6, "replica": 6, "14791": 6, "tesla": 6, "v100": [6, 11], "pcie": [6, 860], "16gb": 6, "pci": 6, "bu": [6, 85, 860], "id": [6, 14, 46, 57, 80, 196, 330, 331, 332, 369, 557, 631, 634, 812, 817, 819, 824, 826, 827, 835, 839, 844, 856, 878], "0001": [6, 56, 57, 80, 283, 284, 376, 445, 451, 776, 779, 796], "over": [6, 7, 9, 22, 29, 32, 34, 45, 57, 62, 70, 71, 72, 77, 80, 84, 85, 93, 94, 95, 97, 122, 320, 321, 335, 336, 349, 356, 369, 372, 375, 376, 377, 378, 385, 387, 389, 390, 391, 392, 395, 404, 409, 413, 417, 418, 419, 420, 421, 422, 444, 452, 461, 474, 489, 492, 493, 496, 515, 525, 531, 580, 614, 628, 634, 637, 642, 643, 647, 648, 668, 678, 689, 691, 693, 694, 737, 741, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 801, 805, 812, 819, 820, 825, 831, 832, 839, 840, 842, 845, 849, 851, 855, 859, 861, 868, 870], "wonder": [6, 851, 859, 861], "why": [6, 22, 812, 820, 840, 851, 858, 860], "One": [6, 7, 47, 57, 58, 64, 66, 80, 81, 87, 89, 100, 378, 462, 463, 464, 467, 484, 493, 496, 546, 634, 639, 643, 706, 739, 824, 827, 829, 831, 837, 842, 844, 849, 851, 852], "reason": [6, 282, 291, 632, 818, 820, 823, 824, 827, 828, 829, 831, 837, 840, 841, 844, 845, 847, 849, 851, 860, 876], "highlight": [6, 820, 828, 831, 841, 843], "directli": [6, 16, 18, 22, 25, 29, 31, 32, 35, 375, 376, 411, 435, 641, 730, 812, 818, 819, 820, 821, 823, 824, 827, 828, 829, 830, 832, 835, 837, 838, 840, 841, 842, 845, 846, 849, 851, 853, 854, 855, 856, 861, 863, 864, 865, 874, 875, 876], "much": [6, 11, 13, 14, 22, 23, 29, 31, 32, 33, 34, 45, 100, 334, 351, 372, 791, 818, 819, 820, 824, 827, 829, 837, 840, 841, 842, 845, 846, 847, 849, 851, 852, 860, 868, 870, 876, 877], "more": [6, 7, 16, 19, 20, 22, 23, 24, 27, 29, 31, 32, 33, 34, 43, 45, 46, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 153, 245, 247, 263, 278, 291, 295, 300, 301, 303, 363, 367, 373, 376, 377, 378, 424, 426, 438, 440, 443, 456, 462, 463, 464, 469, 490, 580, 626, 629, 630, 632, 634, 637, 639, 645, 671, 677, 680, 683, 685, 687, 694, 703, 710, 749, 750, 751, 752, 778, 788, 806, 812, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 864, 865, 868, 869, 870, 871, 872, 873, 876, 877], "There": [6, 22, 29, 32, 37, 97, 368, 370, 371, 379, 380, 384, 778, 818, 819, 820, 823, 824, 826, 827, 829, 830, 831, 833, 835, 837, 839, 841, 842, 846, 849, 852, 855, 859, 863, 871, 872, 876, 877], "deeper": [6, 20, 22, 32, 52, 641, 729, 730, 812, 820, 822, 844, 848, 859], "what": [6, 11, 13, 20, 25, 31, 32, 35, 36, 39, 44, 45, 375, 409, 420, 778, 806, 812, 818, 820, 822, 827, 828, 831, 832, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 860, 861, 866, 871, 872, 875], "offer": [6, 841, 853, 861, 870, 876, 877], "limit": [6, 74, 103, 165, 168, 540, 541, 557, 630, 634, 639, 699, 776, 778, 779, 791, 798, 806, 812, 819, 820, 826, 828, 831, 833, 841, 844, 847, 852, 855, 869, 870, 871], "soon": [6, 818, 820, 828, 829, 855, 863], "detail": [6, 7, 24, 34, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 81, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 133, 144, 291, 295, 300, 301, 303, 367, 376, 426, 469, 548, 626, 629, 632, 645, 671, 677, 683, 687, 710, 749, 750, 751, 752, 788, 812, 818, 820, 823, 825, 826, 827, 828, 835, 836, 837, 838, 841, 842, 843, 844, 845, 846, 849, 851, 852, 853, 872, 876], "comparison": [6, 10, 12, 57, 80, 241, 276, 337, 372, 377, 456, 457, 632, 637, 688, 771, 833], "separ": [6, 46, 57, 58, 80, 381, 502, 549, 634, 636, 663, 773, 784, 819, 820, 824, 827, 828, 831, 842, 843, 844, 849, 851, 852, 871, 875], "stai": [6, 812, 828], "origin": [6, 7, 9, 10, 11, 13, 14, 29, 31, 32, 33, 34, 35, 37, 44, 45, 46, 50, 57, 62, 64, 70, 74, 80, 85, 87, 93, 97, 100, 102, 103, 228, 253, 280, 319, 369, 375, 376, 378, 387, 419, 445, 477, 483, 485, 488, 523, 524, 528, 529, 530, 531, 532, 632, 637, 639, 647, 678, 706, 707, 758, 773, 778, 801, 802, 812, 814, 818, 819, 820, 825, 826, 828, 829, 834, 838, 840, 841, 842, 849, 861, 863, 864, 870, 871], "convert_to_tensor": 6, "tmp": [6, 45, 47, 589, 612, 634], "ipykernel_65585": 6, "3221769294": 6, "_eagertensorbas": 6, "op": [6, 16, 22, 43, 788, 801, 810, 845, 849, 855], "deprec": [6, 50], "futur": [6, 9, 22, 29, 31, 45, 637, 673, 674, 812, 819, 820, 821, 828, 829, 844, 845, 847, 851, 855, 859, 861, 876], "instead": [6, 13, 16, 18, 22, 26, 27, 28, 29, 31, 38, 45, 50, 56, 57, 62, 79, 80, 85, 98, 194, 282, 316, 369, 375, 387, 412, 413, 414, 522, 525, 631, 632, 637, 680, 776, 818, 819, 820, 823, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 863, 864, 865, 868, 870, 876, 877], "logits_np": [6, 7], "class_id": 6, "int": [6, 7, 8, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 106, 113, 117, 118, 127, 128, 132, 134, 135, 136, 137, 138, 141, 145, 146, 147, 154, 161, 164, 165, 168, 175, 190, 204, 205, 206, 213, 214, 223, 230, 231, 232, 233, 234, 235, 247, 250, 274, 278, 283, 289, 292, 300, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 335, 336, 340, 341, 345, 349, 356, 358, 360, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 426, 430, 432, 433, 434, 435, 437, 442, 444, 445, 448, 449, 451, 456, 460, 461, 465, 469, 470, 473, 474, 477, 479, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 496, 497, 498, 499, 502, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 535, 545, 546, 547, 549, 552, 553, 556, 557, 571, 574, 576, 591, 592, 593, 594, 598, 614, 615, 616, 617, 618, 621, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 668, 670, 671, 678, 679, 684, 689, 691, 692, 693, 694, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 724, 725, 727, 729, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 747, 749, 751, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 788, 791, 792, 805, 806, 810, 827, 829, 830, 831, 833, 836, 837, 840, 842, 844, 845, 847, 849, 854, 863], "argmax": [6, 7, 8, 46, 47, 48, 67, 90, 378, 489, 644, 812, 841, 863, 867], "57": [6, 12, 14, 43, 45, 56, 57, 79, 80, 198, 221, 222, 225, 226, 228, 238, 239, 279, 295, 296, 367, 631, 632], "342029": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 9, 45, 46, 47, 50, 57, 290, 462, 463, 464, 632, 820, 823, 825, 829, 841, 849, 854, 876], "spawn": [6, 573, 634], "child": 6, "No": [6, 31, 32, 45, 57, 63, 80, 86, 377, 454, 455, 456, 458, 459, 638, 696, 820, 828, 829, 870], "directori": [6, 45, 46, 47, 50, 589, 612, 631, 634, 810, 814, 818, 819, 820, 826, 828, 834, 841, 844, 856], "906376": 6, "454": 6, "8904": 6, "993553": 6, "58": [6, 7, 10, 43, 264, 540, 632, 634], "578886": 6, "servic": [6, 872], "168": [6, 47, 540, 634, 641, 718], "0x558ecdd86830": 6, "guarante": [6, 645, 749, 751, 810, 824, 829, 840, 855, 861], "578915": 6, "176": [6, 540, 634], "streamexecutor": 6, "log": [6, 53, 56, 57, 62, 76, 79, 80, 85, 118, 138, 263, 265, 278, 300, 301, 354, 361, 367, 372, 377, 382, 454, 456, 457, 508, 626, 629, 632, 685, 776, 778, 779, 788, 820, 827, 828, 831, 837, 840, 841, 842, 844, 846, 847, 849, 852], "messag": [6, 798, 807, 811, 819, 820, 828, 831, 833, 835, 841, 849, 851, 860], "absl": [6, 45], "initializelog": 6, "stderr": 6, "i0000": 6, "1710255118": 6, "868823": 6, "65585": 6, "device_compil": 6, "h": [6, 8, 57, 58, 61, 80, 81, 84, 375, 381, 395, 396, 413, 414, 506, 545, 547, 634, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 721, 725, 727, 730, 735, 813, 822, 826, 827, 828, 864, 866], "186": 6, "cluster": [6, 57, 80, 376, 430, 855, 870], "line": [6, 11, 13, 14, 20, 21, 24, 25, 28, 31, 32, 34, 35, 46, 47, 290, 632, 810, 812, 819, 823, 824, 828, 830, 831, 833, 841, 844, 847, 850, 851, 852, 853, 861, 864, 873], "lifetim": 6, "grei": 6, "fox": 6, "grai": 6, "urocyon": 6, "cinereoargenteu": 6, "eagerli": [6, 26, 27, 31, 32, 36, 37, 38, 45, 812, 863, 864, 865], "explain": [6, 7, 37, 57, 80, 375, 409, 420, 812, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 844, 845, 847, 849, 850, 851, 852, 853, 854, 866, 873, 876], "doc": [6, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 47, 80, 147, 328, 335, 336, 369, 372, 524, 629, 812, 813, 817, 818, 822, 831, 832, 835, 836, 844, 849, 852, 853, 863, 864, 865], "involv": [6, 16, 19, 20, 27, 29, 54, 77, 180, 223, 240, 247, 273, 278, 630, 632, 806, 813, 821, 822, 828, 829, 831, 842, 847, 854, 860, 870, 876], "dummi": [6, 26, 27, 36, 37, 38, 44, 820], "transpiled_model": [6, 7], "backend_compil": [6, 31, 32], "root": [6, 7, 9, 12, 13, 26, 27, 28, 29, 45, 46, 47, 50, 56, 79, 287, 632, 814, 818, 819, 820, 826, 834, 841, 852], "placement": [6, 13, 818], "case": [6, 16, 18, 24, 26, 31, 32, 34, 35, 36, 37, 45, 52, 53, 57, 58, 64, 70, 74, 76, 80, 81, 87, 97, 98, 103, 128, 139, 166, 167, 194, 199, 200, 207, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 347, 349, 359, 372, 375, 377, 378, 381, 382, 388, 399, 400, 401, 421, 452, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 489, 490, 496, 499, 501, 503, 510, 533, 550, 551, 555, 562, 576, 577, 578, 629, 630, 631, 632, 634, 637, 639, 641, 647, 685, 691, 702, 703, 704, 706, 708, 709, 711, 713, 721, 727, 760, 761, 762, 763, 764, 765, 766, 776, 777, 796, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 860, 863, 864, 865, 869, 873], "ad": [6, 12, 13, 14, 26, 27, 28, 29, 57, 64, 80, 87, 95, 240, 273, 334, 351, 372, 381, 501, 502, 503, 592, 593, 632, 634, 636, 637, 639, 663, 673, 674, 702, 792, 797, 812, 816, 817, 818, 819, 820, 823, 824, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 853, 855, 860, 863, 869, 870], "logits_transpil": 6, "logits_transpiled_np": 6, "class_id_transpil": 6, "But": [6, 7, 31, 32, 778, 827, 828, 832, 835, 838, 847, 854], "produc": [6, 7, 9, 44, 57, 58, 61, 80, 84, 302, 312, 315, 367, 369, 375, 423, 636, 666, 776, 806, 818, 829, 834, 835, 840, 842, 844, 845, 863, 871, 873], "granular": [6, 7], "level": [6, 7, 22, 31, 32, 34, 57, 80, 81, 376, 448, 537, 806, 810, 812, 813, 818, 819, 820, 821, 827, 829, 833, 837, 839, 840, 841, 843, 846, 847, 848, 849, 852, 853, 854, 855, 857, 861, 866, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878], "close": [6, 7, 47, 62, 245, 263, 283, 312, 369, 632, 637, 639, 687, 702, 815, 816, 818, 819, 820, 821, 829, 832, 834, 841, 847, 870], "inde": [6, 7, 836, 847, 855, 868], "benefit": [6, 7, 32, 812, 819, 824, 827, 840, 847, 851, 852, 855, 860, 861, 868, 872, 875], "trainabl": [6, 7, 16, 18, 22, 28, 29, 31, 32, 49, 789, 793, 794, 797, 812, 832, 850, 852, 853, 864, 865], "further": [6, 7, 22, 74, 103, 778, 812, 820, 823, 824, 828, 831, 833, 836, 837, 840, 841, 843, 844, 848, 849, 852, 853, 860, 861, 875, 876], "cifar": [6, 7], "dataload": [6, 7, 852], "cifar10": [6, 7], "batch_siz": [6, 7, 45, 47, 50, 57, 61, 66, 80, 84, 89, 375, 377, 394, 395, 396, 412, 413, 414, 415, 459, 636, 643, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 663, 738, 812, 852], "shuffl": [6, 7, 47, 57, 66, 74, 80, 89, 510, 643], "drop_last": [6, 7], "num_work": [6, 7], "opt": [6, 7, 26, 27, 28, 29, 49, 819, 825, 829, 840, 844, 847], "sgd": [6, 7, 45, 796, 870], "lr": [6, 45, 59, 82, 536, 616, 619, 621, 622, 623, 634, 635, 796, 852, 853], "1e": [6, 7, 9, 10, 11, 12, 13, 16, 18, 31, 43, 47, 54, 57, 59, 62, 63, 65, 77, 80, 82, 85, 86, 88, 101, 165, 334, 351, 372, 377, 381, 457, 501, 502, 503, 582, 583, 592, 605, 606, 615, 616, 621, 623, 630, 634, 635, 637, 638, 642, 687, 696, 697, 698, 737, 771, 773, 793, 795, 796, 812, 816, 827, 834, 837, 840, 842, 853, 854], "loss_fn": [6, 31, 32, 43, 45, 47, 812, 852, 853, 854], "crossentropyloss": [6, 45, 793], "epoch": [6, 7, 31, 32, 45, 47, 812], "loss_epoch_arr": [6, 7], "loss_arr": [6, 7], "enumer": [6, 7, 8, 45, 47, 781], "permut": [6, 8, 12, 45, 64, 87, 102, 385, 514, 639, 704, 711, 864], "loss": [6, 7, 31, 32, 45, 47, 57, 80, 97, 452, 453, 454, 455, 456, 457, 458, 459, 585, 608, 634, 696, 697, 698, 812, 828, 829, 837, 841, 845, 846, 852, 853, 854, 870, 877], "backward": [6, 7, 45, 57, 71, 80, 94, 282, 375, 398, 403, 404, 408, 409, 419, 420, 632, 637, 648, 668, 693, 767, 768, 792, 810, 845, 855], "append": [6, 7, 14, 46, 47, 57, 62, 74, 80, 232, 341, 372, 632, 637, 639, 671, 677, 702, 806, 812, 828, 844, 849, 852, 867], "avg_loss": [6, 7, 45], "02": [6, 12, 13, 45, 53, 58, 59, 65, 66, 79, 82, 89, 138, 225, 226, 265, 375, 397, 407, 408, 592, 593, 615, 616, 621, 629, 632, 634, 635, 642, 643, 737, 740, 741, 842], "94": [6, 14, 43, 56, 57, 59, 66, 79, 80, 82, 89, 207, 283, 284, 360, 372, 407, 619, 631, 635, 741], "ve": [6, 7, 8, 9, 14, 20, 29, 31, 66, 89, 643, 738, 818, 819, 820, 821, 834, 844, 847, 848, 851, 857], "And": [6, 7, 11, 13, 14, 16, 18, 23, 26, 31, 32, 33, 46, 77, 365, 366, 374, 812, 823, 826, 835, 837, 844, 863], "successfulli": [6, 7, 45, 47, 50, 794, 815, 819, 824], "plug": 6, "seen": [6, 16, 18, 23, 29, 31, 376, 382, 435, 510, 557, 634, 801, 828, 829, 831, 833, 841, 844, 849, 851, 852, 859, 860, 876], "d": [6, 7, 46, 57, 58, 61, 62, 64, 76, 80, 81, 84, 85, 87, 100, 116, 138, 147, 180, 223, 240, 241, 273, 276, 328, 369, 375, 376, 378, 381, 382, 385, 394, 395, 396, 403, 408, 412, 413, 414, 415, 417, 421, 427, 443, 464, 470, 472, 475, 479, 493, 495, 499, 506, 508, 514, 537, 548, 626, 629, 630, 632, 636, 637, 639, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 670, 671, 675, 678, 682, 691, 692, 708, 721, 725, 726, 727, 730, 735, 736, 777, 806, 812, 813, 819, 822, 825, 826, 827, 834, 839, 844, 847, 852, 860, 861, 866], "sign": [6, 7, 56, 57, 62, 68, 70, 79, 80, 85, 97, 126, 220, 221, 222, 223, 226, 228, 229, 234, 238, 240, 243, 245, 247, 273, 275, 282, 286, 287, 291, 339, 372, 376, 378, 387, 447, 491, 492, 523, 524, 629, 632, 637, 645, 647, 685, 749, 750, 751, 752, 757, 758, 763, 765, 812, 819, 821, 829, 849, 854, 860], "ask": [6, 7, 812, 818, 819, 831, 849, 851, 855, 856, 861], "server": [6, 7, 45, 812, 819, 820, 826, 834, 856, 870], "forward": [6, 7, 8, 12, 18, 31, 32, 45, 47, 57, 80, 365, 374, 375, 398, 403, 404, 408, 409, 419, 420, 789, 791, 792, 794, 796, 810, 812, 819, 825, 832, 839, 844, 845, 847, 854, 855, 863, 870, 871], "come": [7, 22, 45, 815, 818, 819, 820, 824, 828, 841, 846, 847, 853, 857, 870], "onto": [7, 641, 724, 730, 858, 859, 870], "scene": [7, 812, 822, 848, 850, 858, 859, 870], "almost": [7, 45, 817, 827, 842, 850, 852, 859], "alwai": [7, 53, 54, 57, 58, 64, 76, 77, 80, 87, 110, 128, 152, 223, 273, 346, 372, 376, 378, 447, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 562, 626, 630, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 812, 818, 819, 820, 824, 825, 827, 829, 832, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 855, 863], "huggingfac": [7, 45, 863, 864], "implement": [7, 14, 22, 23, 31, 33, 37, 45, 48, 54, 55, 57, 68, 69, 77, 78, 80, 85, 92, 97, 152, 166, 167, 180, 199, 200, 214, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 273, 275, 278, 282, 285, 286, 290, 291, 335, 336, 359, 372, 376, 387, 428, 429, 528, 529, 550, 551, 630, 631, 632, 634, 636, 637, 645, 646, 647, 663, 672, 673, 674, 682, 691, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 777, 779, 801, 812, 816, 818, 822, 823, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 867, 868, 869, 870, 873, 876, 877], "conveni": [7, 25, 35, 818, 829, 830, 836, 842, 850, 852, 853, 857, 876], "who": [7, 20, 812, 815, 821, 822, 833, 848, 855, 870, 872, 878], "must": [7, 37, 45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 325, 326, 329, 330, 331, 332, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 422, 424, 426, 427, 429, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 458, 459, 462, 463, 464, 469, 470, 472, 474, 475, 476, 477, 479, 483, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 499, 504, 505, 507, 508, 509, 511, 512, 515, 522, 523, 524, 525, 532, 540, 541, 545, 546, 547, 552, 553, 555, 562, 576, 577, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 791, 792, 796, 798, 817, 818, 819, 820, 823, 824, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 844, 845, 846, 847, 849, 853, 854, 859, 861, 864, 865, 871, 877], "reimplement": 7, "choic": [7, 14, 32, 49, 57, 70, 80, 93, 376, 378, 447, 467, 647, 764, 766, 812, 819, 828, 840, 841, 852, 861, 864, 870, 877], "veri": [7, 16, 24, 31, 32, 34, 56, 79, 274, 334, 351, 372, 632, 637, 685, 778, 817, 818, 819, 820, 826, 827, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 850, 852, 853, 854, 855, 859, 860, 866, 867, 868, 870, 871, 872, 875, 876, 877], "thousand": [7, 855], "china": 7, "howev": [7, 14, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 62, 85, 247, 290, 291, 378, 381, 492, 501, 503, 580, 632, 634, 637, 685, 687, 801, 818, 819, 823, 824, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 855, 860, 863, 869, 870, 876], "suffer": 7, "abov": [7, 22, 27, 31, 32, 37, 38, 53, 56, 57, 62, 66, 73, 79, 80, 85, 89, 98, 118, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 311, 313, 328, 329, 335, 336, 338, 341, 367, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 409, 412, 413, 414, 419, 420, 421, 429, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 562, 591, 600, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 870, 875], "second": [7, 9, 56, 57, 59, 62, 64, 68, 79, 80, 81, 82, 85, 87, 91, 98, 102, 103, 123, 147, 178, 186, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 319, 328, 334, 347, 349, 350, 351, 357, 361, 362, 369, 372, 376, 377, 378, 385, 387, 428, 429, 430, 432, 436, 458, 490, 498, 509, 511, 515, 522, 525, 537, 586, 609, 615, 616, 621, 628, 629, 630, 632, 634, 635, 637, 639, 640, 641, 645, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 710, 711, 716, 719, 749, 750, 751, 796, 819, 823, 826, 829, 831, 835, 840, 841, 844, 846, 851, 861, 875], "iter": [7, 45, 47, 52, 57, 58, 64, 72, 74, 80, 81, 87, 95, 100, 103, 122, 213, 320, 321, 369, 375, 376, 378, 421, 434, 445, 451, 468, 484, 534, 572, 628, 631, 634, 639, 641, 701, 705, 712, 714, 719, 720, 721, 722, 723, 724, 726, 727, 728, 729, 730, 733, 734, 736, 805, 806, 810, 823, 825, 827, 849, 852, 861, 863], "dino": 7, "meta": [7, 45, 715, 716, 717, 824, 845, 870], "vit": 7, "purpos": [7, 24, 31, 32, 34, 45, 47, 147, 245, 263, 328, 369, 629, 632, 637, 685, 820, 822, 824, 827, 828, 830, 831, 833, 836, 837, 838, 841, 843, 844, 847, 848, 851, 857, 869, 871, 874, 875, 876], "abund": [7, 861], "literatur": 7, "mainli": [7, 812, 818, 822, 839, 841, 844, 850, 852, 857, 870], "focus": [7, 812, 829, 845, 868, 869, 870, 876, 877], "rather": [7, 37, 58, 74, 81, 126, 213, 564, 565, 568, 629, 631, 634, 636, 661, 816, 820, 823, 827, 829, 832, 834, 841, 842, 844, 845, 854, 855, 860, 866, 869, 870], "65": [7, 14, 43, 45, 47, 50, 79, 82, 89, 234, 273, 560, 615, 632, 634, 635, 637, 647, 682, 740, 741, 759, 828], "749": 7, "env": [7, 26, 27, 28, 29], "flags_fraction_of_gpu_memory_to_us": 7, "auto_growth": 7, "paddl": [7, 26, 27, 28, 29, 209, 335, 336, 372, 631, 789, 801, 818, 819, 829, 834], "autoimageprocessor": [7, 863, 864], "automodelforimageclassif": 7, "device_count": 7, "seed": [7, 23, 26, 27, 47, 48, 57, 61, 66, 68, 74, 80, 84, 89, 323, 324, 325, 326, 327, 369, 376, 382, 434, 445, 451, 508, 509, 510, 511, 512, 636, 643, 645, 659, 738, 739, 740, 741, 743, 749, 784, 789, 791, 806, 838, 842, 844], "libpaddl": 7, "0x7c8738e15470": 7, "processor": [7, 875], "facebook": [7, 48], "imagenet1k": 7, "id2label": [7, 48, 863], "predicted_class_idx": [7, 48], "paddle_input": 7, "pixel_valu": 7, "to_tensor": [7, 96, 97, 98, 99, 100, 101], "stop_gradi": [7, 59, 82, 213, 536, 616, 619, 621, 622, 623, 631, 634, 635, 640, 715, 716, 717, 796, 853], "logits_np_transpil": 7, "4th": 7, "decim": [7, 56, 79, 283, 632, 846], "io": [7, 13, 26, 27, 28, 29, 46, 49, 819, 828], "to_rgb": 7, "cv2": [7, 45, 47, 49, 852], "tar": [7, 45, 46, 47, 50], "gz": [7, 45, 46, 47, 50], "found": [7, 45, 47, 48, 50, 62, 64, 68, 74, 80, 85, 87, 91, 103, 201, 387, 469, 523, 631, 641, 671, 677, 710, 729, 749, 806, 815, 818, 819, 820, 824, 825, 826, 827, 829, 830, 832, 835, 838, 840, 841, 856, 872], "bj": [7, 223, 240, 273, 338, 372, 632], "bcebo": 7, "41626": 7, "2m": 7, "cross_entropi": [7, 47, 63, 86, 638, 698, 812, 827, 837, 840], "01": [7, 12, 26, 27, 29, 47, 53, 57, 58, 59, 62, 80, 81, 82, 85, 89, 138, 265, 283, 284, 312, 318, 343, 344, 351, 369, 375, 397, 407, 408, 549, 592, 593, 615, 616, 621, 629, 632, 634, 635, 637, 640, 643, 674, 684, 716, 717, 740, 741, 776, 825, 854], "33": [7, 14, 43, 45, 46, 56, 66, 70, 79, 80, 81, 82, 84, 226, 227, 234, 283, 375, 376, 378, 387, 395, 417, 418, 448, 467, 523, 541, 592, 619, 632, 634, 635, 636, 637, 641, 647, 659, 660, 682, 736, 739, 759, 766, 776, 779], "bring": [7, 31, 32, 823, 843, 844, 849, 850, 857, 860], "hope": [7, 43, 855, 860, 876, 878], "milesi": 8, "blob": [8, 45, 47, 812], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 8, "data_load": 8, "l65": 8, "mask_valu": 8, "pil_img": 8, "scale": [8, 11, 45, 57, 61, 65, 80, 82, 84, 88, 112, 211, 212, 304, 305, 308, 319, 349, 367, 369, 372, 375, 376, 381, 393, 399, 400, 401, 409, 411, 416, 420, 436, 501, 502, 503, 622, 626, 631, 635, 636, 642, 659, 663, 666, 737, 776, 778, 779, 791, 792, 796, 806, 870, 872], "is_mask": 8, "neww": 8, "newh": 8, "assert": [8, 14, 46, 48, 50, 74, 538, 634, 784, 816, 822, 823, 834, 837, 840, 841, 842, 844, 845, 851, 852], "too": [8, 57, 80, 223, 240, 247, 273, 378, 492, 632, 791, 818, 819, 820, 823, 829, 833, 845, 855], "small": [8, 14, 47, 56, 57, 62, 65, 79, 80, 85, 88, 240, 247, 273, 274, 334, 351, 372, 376, 377, 381, 440, 457, 501, 502, 503, 632, 637, 642, 680, 683, 685, 737, 791, 795, 812, 819, 828, 831, 837, 842, 847, 849, 853, 855, 863, 864, 871], "pixel": [8, 45, 57, 80, 375, 411], "resampl": 8, "nearest": [8, 57, 80, 223, 240, 273, 283, 345, 372, 375, 387, 411, 532, 632, 847], "bicub": [8, 57, 80, 375, 411, 847], "zero": [8, 45, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 71, 76, 77, 79, 80, 82, 84, 85, 89, 90, 93, 94, 98, 112, 114, 115, 116, 118, 129, 130, 132, 134, 139, 141, 142, 143, 145, 146, 149, 152, 153, 221, 222, 223, 225, 226, 227, 228, 229, 232, 234, 235, 237, 238, 239, 240, 242, 245, 246, 247, 254, 255, 256, 257, 263, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 286, 287, 288, 290, 291, 293, 294, 296, 298, 299, 303, 305, 311, 313, 322, 329, 335, 336, 339, 340, 341, 345, 353, 356, 358, 359, 360, 361, 367, 369, 372, 375, 376, 378, 385, 387, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 418, 419, 420, 421, 422, 423, 428, 430, 438, 443, 446, 468, 478, 483, 484, 495, 496, 514, 523, 524, 541, 545, 552, 572, 577, 615, 616, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 663, 666, 667, 669, 673, 674, 676, 677, 678, 679, 680, 681, 683, 685, 691, 693, 694, 701, 702, 703, 704, 706, 707, 714, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 796, 810, 824, 827, 829, 830, 831, 836, 838, 839, 842, 849, 852, 853, 861, 869], "ndim": [8, 57, 62, 67, 80, 85, 90, 102, 106, 376, 378, 444, 445, 451, 462, 463, 464, 477, 485, 487, 497, 614, 634, 637, 644, 684, 687, 747, 827, 837, 844], "newaxi": [8, 627], "transpos": [8, 28, 31, 32, 49, 57, 61, 62, 74, 80, 84, 85, 102, 376, 424, 442, 444, 446, 521, 636, 637, 649, 651, 653, 655, 656, 657, 661, 677, 681, 683, 689, 778, 792, 812, 834, 840, 851, 854, 864], "255": [8, 28, 31, 32, 45, 46, 47, 49, 61, 80, 84, 234, 632, 658, 812, 864], "car": 8, "full_img": 8, "from_numpi": [8, 9, 852], "img_numpi": 8, "torch_unet": 8, "unet_carvana": 8, "ivy_unet": 8, "n_channel": 8, "n_class": 8, "l62": 8, "mask_to_imag": 8, "ndarrai": [8, 53, 57, 58, 76, 80, 98, 127, 128, 140, 375, 376, 378, 387, 420, 445, 489, 528, 529, 599, 629, 634, 801, 805, 818, 824, 829, 830, 833, 836, 840, 841, 842, 845, 847, 849, 851, 854, 857], "uint8": [8, 28, 31, 32, 47, 155, 162, 166, 177, 180, 185, 191, 630, 776, 777, 829, 844], "elif": [8, 11, 828, 833, 840, 841, 842], "bool": [8, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 182, 188, 192, 196, 197, 199, 200, 202, 204, 207, 208, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 394, 395, 396, 398, 399, 400, 401, 411, 412, 413, 414, 417, 419, 421, 423, 430, 434, 437, 438, 442, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 487, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 506, 507, 509, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 576, 577, 581, 590, 591, 592, 593, 595, 597, 599, 600, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 692, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 788, 792, 795, 796, 805, 806, 810, 829, 831, 833, 840, 841, 844, 845, 847, 849, 854, 863, 864], "fromarrai": [8, 28, 31, 32, 47], "interpol": [8, 45, 57, 80, 353, 372, 375, 387, 532, 636, 663, 847, 870], "bilinear": [8, 57, 80, 375, 411, 847], "torch_mask": 8, "squeez": [8, 45, 64, 87, 639, 870], "torch_result": 8, "to_numpi": [8, 14, 31, 32, 43, 46, 47, 50, 58, 81, 634, 812, 834, 842, 852, 867], "img_tf": 8, "math": [8, 48, 98, 290, 632, 829, 840, 841, 842, 854, 868], "lot": [8, 828, 829, 838, 844, 855, 860, 861, 869], "far": [8, 31, 32, 641, 718, 729, 806, 830, 831, 850, 875, 876], "space": [8, 53, 56, 57, 58, 76, 79, 80, 81, 126, 137, 138, 292, 349, 372, 377, 454, 545, 549, 629, 632, 634, 847, 860], "del": [8, 828], "empty_cach": 8, "permute_dim": [8, 64, 87, 639, 834], "func_wrapp": [8, 51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 830, 841, 846], "242": [8, 80], "mani": [8, 31, 32, 35, 64, 74, 87, 147, 328, 369, 629, 639, 708, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 859, 860, 861, 866, 870, 873, 876, 877], "factor": [8, 14, 57, 59, 61, 62, 80, 82, 84, 85, 96, 97, 98, 99, 100, 211, 212, 213, 375, 376, 381, 409, 420, 434, 435, 445, 448, 450, 451, 506, 615, 616, 621, 622, 631, 635, 636, 637, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 667, 776, 778, 779, 791, 792, 796, 833, 860], "inc": 8, "unetdoubleconv": 8, "down1": 8, "unetdown": 8, "128": [8, 12, 31, 32, 45, 54, 56, 61, 77, 79, 84, 103, 168, 244, 375, 397, 407, 545, 555, 630, 632, 634, 636, 637, 651, 653, 658, 682, 812], "down2": 8, "down3": 8, "down4": 8, "1024": [8, 12, 45, 46, 812], "up1": 8, "unetup": 8, "up2": 8, "up3": 8, "up4": 8, "outc": 8, "unetoutconv": 8, "x1": [8, 22, 31, 32, 50, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 92, 102, 103, 107, 153, 163, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 313, 334, 339, 346, 347, 348, 350, 352, 357, 361, 369, 372, 376, 378, 387, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 646, 668, 675, 677, 682, 686, 689, 690, 693, 748, 755, 773, 798, 812, 823, 829, 831, 833, 836, 840, 841, 864, 865], "x2": [8, 22, 31, 32, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 102, 103, 107, 153, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 334, 339, 346, 347, 348, 350, 352, 357, 361, 372, 376, 378, 387, 432, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 668, 675, 677, 682, 686, 689, 690, 693, 748, 773, 798, 823, 829, 831, 833, 836, 840, 841], "x3": [8, 54, 58, 153, 534, 630, 634], "x4": 8, "x5": 8, "in_channel": 8, "out_channel": 8, "mid_channel": 8, "double_conv": 8, "with_bia": [8, 792, 812, 853, 864], "batchnorm2d": [8, 12, 795], "downscal": [8, 58, 81, 540, 541, 562, 634], "maxpool": [8, 12], "doubl": 8, "conv": [8, 636, 792, 847], "maxpool_conv": 8, "upscal": 8, "scale_factor": [8, 57, 80, 375, 411, 847], "align_corn": [8, 57, 80, 375, 411, 847], "conv2dtranspos": [8, 792], "bhwc": 8, "diff_h": 8, "diff_w": 8, "pad_width": [8, 57, 64, 80, 87, 378, 484, 639, 701, 714], "constant_pad": [8, 64, 87, 639], "via": [9, 34, 37, 247, 376, 378, 445, 448, 451, 492, 632, 641, 728, 729, 820, 823, 827, 829, 830, 840, 845, 847, 849, 851, 852, 870], "alongsid": [9, 20, 21, 22, 23, 33, 636, 663, 860], "basic": [9, 16, 18, 22, 25, 29, 31, 32, 35, 38, 378, 491, 812, 813, 818, 831, 844], "singl": [9, 24, 34, 43, 48, 56, 66, 74, 79, 89, 98, 292, 351, 372, 376, 382, 443, 509, 600, 613, 617, 632, 634, 635, 636, 643, 645, 663, 739, 740, 741, 749, 776, 792, 810, 812, 818, 819, 820, 823, 828, 831, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 861], "lstm": [9, 10, 636, 662, 792, 849, 870], "sample_input": 9, "uniform": [9, 23, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 38, 45, 57, 66, 80, 89, 387, 525, 643, 738, 739, 741, 791, 812, 843, 853, 864, 865, 877], "tf_lstm": [9, 10], "torch_lstm": [9, 10], "physicaldevic": 9, "physical_devic": 9, "device_typ": 9, "alloc": [9, 53, 54, 57, 77, 145, 146, 152, 329, 369, 629, 630, 810, 818, 820, 855], "physic": [9, 204, 631], "modifi": [9, 47, 57, 74, 80, 97, 378, 387, 481, 484, 489, 529, 776, 806, 818, 819, 820, 823, 825, 826, 829, 830, 832, 834, 835, 837, 840, 842, 844, 845, 849], "164": 9, "state_upd": [9, 29], "properti": [9, 29, 74, 97, 98, 99, 100, 101, 102, 106, 794, 796, 823, 827, 837, 842, 844, 851, 852, 853, 876], "_transpil": [9, 29], "those": [9, 20, 44, 45, 62, 64, 74, 80, 85, 87, 126, 179, 240, 273, 493, 614, 629, 630, 632, 634, 637, 639, 641, 644, 684, 687, 699, 720, 747, 815, 818, 819, 820, 821, 824, 827, 828, 829, 838, 840, 841, 842, 844, 847, 859, 867], "torch_input": 9, "rand": [9, 10, 29, 31, 32, 47, 805, 806, 812, 863], "tf_input": [9, 864], "constant": [9, 10, 16, 18, 23, 26, 27, 33, 36, 38, 43, 57, 64, 65, 80, 87, 88, 97, 98, 322, 369, 375, 377, 378, 421, 456, 457, 484, 639, 641, 642, 701, 724, 737, 791, 795, 812, 837, 842, 845, 853, 854, 855, 863, 865], "tf_output": 9, "toler": [9, 10, 57, 62, 80, 85, 334, 351, 372, 376, 430, 445, 451, 637, 680, 683, 771, 773, 823, 842, 870], "benchmark": [9, 10, 872], "n_run": [9, 10], "tf_time": 9, "round": [9, 56, 57, 79, 80, 97, 99, 100, 101, 223, 236, 240, 246, 247, 273, 287, 293, 294, 345, 372, 632, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 867], "torch_tim": 9, "cpu_speedup": 9, "gpu_speedup": 9, "ntranspil": 9, "5017": 9, "1101": 9, "7519": 9, "901": 9, "607x": 9, "944x": 9, "32": [10, 14, 29, 31, 32, 43, 45, 46, 47, 56, 57, 66, 79, 80, 84, 85, 89, 102, 103, 112, 164, 222, 234, 235, 244, 258, 264, 280, 283, 284, 338, 372, 375, 376, 378, 387, 395, 396, 397, 407, 417, 418, 428, 432, 467, 523, 545, 561, 626, 630, 632, 634, 636, 637, 643, 644, 647, 651, 653, 654, 658, 660, 677, 682, 693, 739, 740, 741, 748, 759, 776, 779, 812, 828, 829, 839, 852, 875], "original_output": 10, "transpiled_output": 10, "original_torch_tim": 10, "autograph": 10, "do_not_convert": 10, "compiled_tf_lstm": 10, "transpiled_tf_tim": 10, "original_tf_lstm": 10, "time_major": [10, 80, 375, 421, 636, 662], "return_sequ": [10, 792], "original_tf_tim": 10, "slower": [10, 24, 841], "480074623755541x": 10, "362692848996253x": 10, "openmim": 11, "mim": 11, "0rc8": 11, "get_model": 11, "list_model": 11, "mmengin": 11, "configdict": 11, "saniti": [11, 13, 14, 31, 841], "checkpoint": [11, 12, 48, 855], "against": [11, 54, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 153, 272, 291, 334, 337, 340, 351, 372, 387, 528, 529, 530, 531, 532, 569, 630, 632, 634, 637, 644, 677, 678, 680, 683, 744, 844, 849, 855, 859, 870], "zoo": 11, "checkpoint_nam": [11, 13, 31], "tiny_32xb128": 11, "noema_in1k": 11, "openmmlab": 11, "get_scal": 11, "cfg": [11, 835], "_config": 11, "train_pipelin": 11, "tensor_imag": 11, "transpiled_graph": [11, 13, 31], "issu": [11, 13, 377, 454, 791, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 828, 829, 830, 831, 833, 834, 841, 844, 845, 847, 849, 853, 855, 861, 863], "107960": [11, 13], "export": [11, 13, 46, 828, 869, 876], "lc_all": [11, 13], "en_u": [11, 13], "utf": [11, 13], "ld_library_path": [11, 13], "lib64": [11, 13], "nvidia": [11, 13, 26, 27, 28, 29, 45, 47, 50, 874, 875], "library_path": [11, 13], "stub": [11, 13, 826], "ldconfig": [11, 13], "_f": [11, 13, 31], "comp_model": [11, 13, 31], "equival": [11, 13, 31, 62, 85, 97, 98, 126, 234, 247, 268, 269, 282, 283, 378, 468, 492, 498, 629, 632, 637, 680, 683, 686, 694, 801, 840, 841, 847, 852, 854, 856, 864], "np_imag": [11, 28, 31, 32], "jax_imag": 11, "hk": [11, 13, 31, 45, 49, 812, 854, 864], "rng_kei": [11, 13, 31, 812, 864], "prngkei": [11, 13, 24, 25, 31, 32, 45, 812, 854, 864], "jax_mlp_forward": 11, "init": [11, 13, 31, 45, 47, 57, 80, 376, 434, 445, 451, 812, 823, 854, 864], "rng": [11, 13, 31, 45, 812, 854, 864], "06": [11, 14, 26, 47, 54, 66, 79, 82, 101, 110, 165, 222, 238, 375, 397, 407, 621, 626, 630, 635, 741, 771, 773, 844, 852], "block_until_readi": 11, "08": [11, 57, 70, 80, 89, 226, 334, 351, 372, 375, 377, 397, 407, 457, 632, 740, 741, 766, 771, 776, 835], "3x": 11, "train2017": [11, 13, 28, 31, 32, 812, 864], "000000283921": [11, 13, 31], "out_torch": [11, 13, 31], "et": [11, 636, 637, 663, 687], "out_jax": [11, 13, 31], "66m": 11, "53m": 11, "That": [11, 13, 16, 18, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 45, 282, 377, 456, 632, 805, 819, 820, 824, 844, 851, 852, 853, 871], "pretti": [11, 13, 31, 32, 45, 816, 834, 852, 876], "solid": [11, 13, 31], "2023": [12, 13, 26, 27, 28, 29, 45], "52": [12, 14, 43, 56, 79, 81, 82, 89, 228, 238, 240, 387, 523, 545, 546, 561, 615, 632, 634, 635, 636, 637, 647, 660, 682, 741, 759, 805], "110": [12, 45], "10472": 12, "10k": 12, "tx": 12, "23k": 12, "634575": 12, "620k": 12, "jpeg": [12, 46, 47], "619": 12, "70k": 12, "113": 12, "resnet34_weight": 12, "torch_resnet_34": 12, "conv1": 12, "kernel_s": [12, 29, 31, 32, 47, 57, 80, 375, 394, 395, 396, 415, 422, 792, 798], "stride": [12, 57, 61, 80, 81, 84, 102, 375, 378, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 460, 634, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 840, 845, 870], "bia": [12, 57, 61, 80, 84, 88, 381, 387, 506, 522, 572, 634, 636, 642, 649, 650, 651, 652, 653, 654, 655, 656, 657, 660, 661, 662, 663, 737, 792, 837, 844, 849, 853], "bn1": 12, "ep": [12, 57, 62, 65, 80, 85, 88, 165, 300, 367, 376, 377, 381, 430, 457, 501, 502, 503, 630, 637, 642, 680, 683, 737, 788, 795], "05": [12, 14, 47, 53, 56, 57, 59, 65, 79, 80, 82, 88, 138, 265, 318, 334, 343, 344, 351, 369, 372, 381, 501, 502, 503, 560, 582, 605, 615, 616, 621, 629, 632, 634, 635, 637, 642, 678, 737, 771, 776, 791, 795, 842, 844], "momentum": [12, 45, 57, 80, 381, 501, 503, 795, 860], "affin": [12, 795], "track_running_stat": [12, 795], "dilat": [12, 49, 57, 61, 80, 84, 375, 378, 412, 413, 414, 417, 418, 422, 484, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "ceil_mod": [12, 57, 80, 375, 394, 395, 396, 412, 413, 414, 417, 792], "layer1": 12, "basicblock": 12, "conv2": 12, "bn2": 12, "layer2": 12, "layer3": 12, "layer4": 12, "output_s": [12, 57, 80, 375, 389, 390, 391, 392, 636, 665, 792, 812, 864], "fc": [12, 18, 45, 812, 853, 864], "in_featur": [12, 61, 84, 636, 660, 844], "out_featur": [12, 61, 84, 636, 660, 844], "resnet_34": 12, "ivy_resnet_34": 12, "34": [12, 14, 43, 45, 79, 80, 81, 89, 168, 238, 265, 286, 375, 387, 418, 529, 545, 546, 630, 632, 634, 636, 637, 643, 660, 679, 740, 741, 830], "333f7ec4": 12, "pth": 12, "83": [12, 14, 43, 62, 84, 89, 287, 375, 387, 397, 407, 418, 523, 632, 636, 637, 660, 675, 740], "3m": 12, "4mb": 12, "preserv": [12, 13, 26, 27, 28, 29, 57, 58, 59, 74, 80, 81, 82, 103, 375, 376, 378, 387, 411, 445, 462, 463, 464, 475, 476, 495, 529, 562, 624, 634, 635, 639, 703, 776, 843, 844, 854, 855, 864], "multipl": [12, 13, 22, 26, 27, 28, 29, 31, 56, 57, 62, 65, 70, 71, 74, 79, 80, 81, 82, 85, 87, 88, 93, 94, 134, 234, 258, 265, 271, 272, 273, 275, 335, 336, 372, 375, 376, 378, 381, 385, 397, 404, 407, 409, 443, 470, 479, 496, 499, 506, 515, 534, 541, 572, 615, 616, 619, 621, 622, 623, 624, 629, 632, 634, 635, 636, 637, 639, 642, 644, 647, 648, 651, 652, 653, 654, 667, 676, 677, 678, 691, 699, 702, 707, 708, 737, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 810, 812, 818, 820, 824, 825, 827, 831, 833, 835, 837, 840, 841, 842, 844, 847, 849, 855, 861, 863, 868, 869, 870, 877], "rel": [12, 13, 26, 27, 28, 29, 57, 59, 62, 64, 69, 76, 80, 82, 85, 87, 92, 102, 136, 334, 351, 372, 377, 387, 456, 457, 522, 616, 619, 621, 622, 623, 635, 637, 639, 646, 671, 680, 683, 691, 703, 707, 753, 756, 771, 773, 820, 828, 842, 847, 870, 872], "home": [12, 13, 26, 27, 28, 29, 828], "workspac": [12, 13, 23, 26, 27, 28, 29, 819, 834], "95": [12, 14, 43, 57, 59, 62, 66, 73, 82, 84, 89, 110, 360, 372, 418, 615, 619, 623, 626, 635, 637, 643, 675, 740, 741], "builtin": [12, 819, 851, 853], "track": [12, 22, 31, 32, 44, 45, 810, 819, 820, 823, 839, 840, 863, 870], "properli": [12, 819, 822, 833, 835, 841, 844], "_trace_graph": 12, "shown": [12, 29, 31, 72, 74, 95, 257, 280, 338, 372, 632, 818, 819, 820, 823, 826, 828, 829, 831, 833, 835, 836, 841, 842, 844, 845, 846, 849, 851, 855], "8507": 12, "1351": 12, "0069": 12, "85072625": 12, "13506091": 12, "00688289": 12, "resnet50_weight": 12, "torch_resnet_50": 12, "imagenet1k_v2": 12, "11ad3fa6": 12, "8m": 12, "8mb": 12, "bottleneck": [12, 859], "conv3": 12, "bn3": 12, "2048": [12, 593, 634], "resnet_50": 12, "ivy_resnet_50": 12, "3429": 12, "0408": 12, "0121": 12, "34288204": 12, "04077014": 12, "01212029": 12, "yet": [13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 47, 368, 370, 371, 379, 380, 384, 818, 819, 834, 855, 856, 863, 864, 865], "broken": [13, 26, 27, 28, 29, 866, 870], "permiss": [13, 26, 27, 28, 29, 819, 828], "conflict": [13, 26, 27, 28, 29, 37, 819, 820, 828, 841, 852], "behaviour": [13, 26, 27, 28, 29, 112, 115, 274, 626, 632, 817, 820, 822, 823, 824, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 844, 845, 851], "system": [13, 26, 27, 28, 29, 47, 376, 446, 637, 686, 776, 812, 819, 820, 821, 825, 828, 829, 855, 864, 868, 870, 873, 875, 877], "recommend": [13, 26, 27, 28, 29, 268, 269, 282, 377, 454, 632, 647, 761, 764, 814, 819, 825, 826, 835, 838, 839, 863], "virtual": [13, 26, 27, 28, 29, 820, 841, 860, 873, 874], "pypa": [13, 26, 27, 28, 29], "venv": [13, 26, 27, 28, 29], "autofeatureextractor": [13, 31], "extractor": [13, 16, 18, 31, 47, 812], "hug": [13, 31, 863], "face": [13, 31, 813, 819, 823, 834, 835, 839, 847, 849, 863, 870, 876], "arch_nam": [13, 31], "microsoft": [13, 31, 860, 863, 864, 870, 875, 877], "feature_extractor": [13, 31], "980130": 13, "9342": 13, "980177": 13, "609": 13, "980207": 13, "1518": 13, "351203": 13, "inputs_jax": [13, 31], "last_hidden_st": [13, 31], "jax_forward": [13, 31], "jit_appli": 13, "63": [13, 14, 43, 47, 56, 73, 79, 84, 85, 118, 279, 286, 287, 375, 387, 397, 407, 418, 523, 632, 637, 641, 647, 667, 682, 719, 730, 759], "134": [13, 61, 637, 660, 679], "2x": [13, 31], "ipytest": 14, "load_breast_canc": 14, "autoconfig": 14, "sole": [14, 43, 836, 845, 869, 870, 871], "test_jax_gpu": 14, "xla_bridg": [14, 45], "get_backend": [14, 837], "test_torch_gpu": 14, "test_xgboost_gpu": 14, "capsi": 14, "load_diabet": 14, "target": [14, 16, 18, 24, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 47, 57, 80, 195, 377, 452, 453, 454, 455, 456, 457, 458, 459, 631, 771, 792, 794, 800, 812, 816, 819, 822, 825, 834, 835, 842, 843, 848, 852, 853, 854, 864, 865, 866, 868, 869, 870, 873, 875, 876], "xgb_model": 14, "xgbregressor": 14, "tree_method": 14, "caus": [14, 377, 454, 819, 820, 823, 825, 827, 828, 829, 831, 840, 842, 844, 855], "consol": [14, 575, 634, 812, 820, 835, 844, 851, 856], "gpu_hist": 14, "captur": [14, 839, 844, 854, 871], "readouterr": 14, "err": 14, "tabular": 14, "pulsar": 14, "standard": [14, 56, 62, 65, 66, 70, 79, 88, 89, 93, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 376, 378, 387, 419, 449, 492, 496, 522, 614, 629, 630, 632, 634, 637, 639, 642, 643, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 737, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 778, 791, 795, 805, 806, 812, 815, 822, 823, 824, 827, 829, 832, 836, 840, 843, 844, 845, 855, 858, 864, 866, 868, 869, 872, 873, 875], "extra": [14, 32, 74, 103, 122, 614, 628, 634, 824, 829, 831, 838, 840, 841, 842, 847, 849, 863, 864, 867, 872], "dimens": [14, 53, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 100, 102, 103, 106, 113, 117, 141, 145, 146, 316, 327, 329, 330, 331, 332, 335, 336, 340, 341, 349, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 418, 419, 421, 422, 424, 426, 429, 438, 447, 452, 456, 462, 463, 464, 468, 474, 485, 486, 487, 488, 490, 492, 496, 501, 502, 503, 506, 510, 512, 515, 525, 527, 528, 529, 530, 531, 532, 545, 546, 547, 549, 556, 590, 594, 614, 626, 629, 634, 636, 637, 638, 639, 640, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 667, 668, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 694, 697, 698, 700, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 716, 717, 743, 744, 745, 747, 749, 750, 751, 752, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 795, 831, 833, 839, 841, 842, 844, 847, 849, 852], "load_data": 14, "standardscal": 14, "df": [14, 47], "delimit": [14, 852], "sc": 14, "fit_transform": 14, "117564": 14, "navig": [14, 816, 819, 820, 822, 834], "rerun": [14, 45], "436": 14, "48": [14, 43, 47, 56, 57, 79, 80, 81, 82, 89, 112, 222, 245, 287, 375, 395, 396, 397, 407, 413, 414, 417, 560, 615, 619, 626, 632, 634, 635, 637, 641, 647, 682, 719, 740, 759], "t4": 14, "tier": [14, 821], "reduc": [14, 57, 58, 62, 67, 70, 71, 74, 80, 81, 85, 90, 93, 94, 213, 335, 336, 356, 372, 373, 387, 527, 528, 529, 530, 531, 532, 546, 631, 634, 637, 644, 647, 648, 684, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 805, 806, 828, 833, 841, 847, 849, 851, 863, 868, 872, 873, 874], "although": [14, 637, 685, 814, 824, 826, 827, 841, 847, 868, 870], "experi": [14, 20, 47, 812, 819, 833, 844, 850, 852, 855], "substanti": [14, 815, 820, 824, 829, 844, 860, 870], "stuff": 14, "201": [14, 79, 80, 225, 397, 632], "20x": 14, "ivyclassifi": 14, "106597": 14, "10967": 14, "96": [14, 43, 57, 59, 79, 80, 81, 89, 237, 258, 290, 360, 372, 375, 397, 545, 546, 619, 632, 634, 635, 637, 647, 682, 741, 759], "73": [14, 43, 56, 85, 287, 387, 523, 637, 643, 667, 740, 844], "852": [14, 636, 660], "449": 14, "47": [14, 43, 47, 56, 57, 62, 66, 79, 80, 81, 82, 84, 89, 229, 287, 375, 387, 395, 413, 414, 523, 545, 546, 619, 632, 634, 635, 636, 637, 643, 660, 675, 740, 741], "82": [14, 43, 45, 50, 51, 56, 82, 89, 113, 226, 387, 523, 615, 635, 740, 741, 816, 834], "68": [14, 43, 47, 50, 56, 89, 113, 135, 228, 375, 397, 407, 626, 629, 632, 637, 642, 693, 737, 740, 741], "nevertheless": 14, "fall": [14, 45, 796, 818, 829, 848], "short": [14, 43, 57, 80, 423, 636, 661, 662, 818, 820, 829, 849, 853], "blaze": 14, "36": [14, 43, 47, 56, 57, 61, 70, 80, 81, 85, 228, 283, 284, 349, 372, 375, 376, 387, 397, 407, 433, 523, 545, 546, 593, 632, 634, 637, 641, 647, 660, 679, 682, 692, 729, 759], "35": [14, 43, 51, 61, 62, 73, 79, 80, 84, 85, 89, 113, 228, 287, 375, 397, 407, 632, 636, 637, 644, 647, 660, 668, 675, 740, 748, 759], "37": [14, 26, 27, 28, 29, 43, 51, 56, 57, 73, 79, 80, 84, 102, 113, 226, 234, 283, 286, 290, 383, 418, 513, 632, 636, 637, 641, 643, 660, 679, 726, 740, 828], "surpass": 14, "remark": [14, 855], "artifici": 14, "simpli": [14, 22, 31, 32, 34, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 632, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 812, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 832, 834, 836, 837, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 871, 876], "stack": [14, 24, 26, 27, 28, 29, 34, 43, 47, 57, 62, 64, 74, 80, 85, 87, 102, 145, 146, 329, 369, 376, 378, 429, 468, 469, 471, 480, 500, 579, 588, 611, 629, 634, 637, 639, 641, 669, 671, 672, 673, 674, 676, 677, 679, 680, 681, 683, 684, 685, 687, 688, 691, 718, 728, 729, 792, 812, 817, 823, 840, 849, 866, 868, 875, 876], "x_doubl": 14, "vstack": [14, 57, 80, 378, 480], "y_doubl": 14, "235128": 14, "41": [14, 26, 27, 28, 29, 43, 45, 50, 56, 57, 62, 79, 80, 81, 84, 85, 113, 227, 235, 242, 273, 287, 375, 376, 383, 387, 395, 413, 418, 440, 513, 523, 540, 626, 632, 634, 637, 647, 667, 675, 765], "315": [14, 279, 632], "879": 14, "380": 14, "seem": [14, 818, 819, 847, 853, 854, 855, 870], "examin": 14, "600": [14, 47, 81, 84, 375, 399, 400, 553, 828], "conduct": [14, 874], "num_boosting_round": 14, "300": [14, 79, 81, 84, 283, 375, 399, 400, 553, 577, 632, 634, 637, 676, 844], "500": [14, 57, 80, 81, 84, 375, 376, 399, 400, 451, 553, 634], "ivy_elapsed_tim": 14, "xgb_elapsed_tim": 14, "ivy_tim": 14, "partial": [14, 57, 74, 80, 166, 167, 199, 200, 349, 372, 375, 376, 378, 387, 423, 438, 445, 485, 486, 487, 488, 529, 550, 551, 620, 630, 631, 634, 635, 777, 779, 793, 794, 820, 826, 847], "xgb_time": 14, "fivethirtyeight": 14, "legend": [14, 47, 818], "loc": [14, 867], "best": [14, 45, 572, 634, 806, 810, 812, 813, 816, 817, 818, 819, 820, 822, 828, 829, 833, 834, 843, 844, 845, 856, 873, 874], "xlabel": 14, "ylabel": 14, "obviou": [14, 852, 870], "trend": 14, "gap": 14, "train_siz": [14, 45], "widen": 14, "impress": 14, "outcom": [14, 57, 80, 337, 349, 372, 806], "tend": 14, "95933": 14, "9874": 14, "105807": 14, "wrap": [14, 22, 24, 31, 32, 34, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 588, 591, 592, 593, 594, 595, 597, 599, 600, 611, 613, 615, 616, 619, 621, 622, 623, 624, 634, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 841, 844, 849, 851, 854, 855, 857, 863, 864, 866, 870, 871, 876, 877], "balanc": 14, "breast": 14, "cancer": 14, "return_x_i": 14, "171": [14, 62, 637, 675, 776], "perfectli": [14, 778, 861], "align": [14, 57, 74, 80, 375, 376, 411, 427, 636, 665, 806, 815, 819, 828, 841, 843, 849, 851, 857, 876], "timm": [15, 16, 20, 31, 32, 812, 864], "focu": [16, 29, 818, 839, 868, 869, 872, 877], "usual": [16, 18, 48, 240, 273, 632, 805, 819, 823, 829, 841, 844, 847], "mlp": 16, "mixer": 16, "onli": [16, 18, 31, 32, 37, 43, 45, 47, 49, 52, 53, 56, 57, 62, 64, 66, 74, 76, 79, 80, 85, 87, 89, 97, 100, 102, 118, 138, 178, 179, 208, 268, 269, 274, 280, 312, 342, 349, 369, 372, 375, 376, 378, 382, 387, 398, 411, 421, 430, 435, 449, 451, 462, 463, 464, 474, 508, 509, 525, 539, 626, 629, 630, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 663, 677, 684, 687, 688, 703, 706, 718, 719, 725, 726, 728, 729, 730, 735, 736, 739, 740, 741, 744, 745, 755, 761, 764, 774, 776, 777, 779, 792, 796, 805, 810, 812, 813, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 859, 863, 864, 869, 870, 871, 876, 877], "retriev": [16, 18, 22, 535, 557, 582, 634, 820, 841], "mlp_encod": [16, 31, 32, 812, 864], "create_model": [16, 31, 32, 812, 864], "mixer_b16_224": [16, 31, 32, 812, 864], "nois": [16, 18, 31, 32, 812, 863, 864], "randn": [16, 18, 31, 32, 378, 496, 812, 864], "tf_mlp_encod": [16, 31, 32], "output_torch": [16, 18], "output_tf": [16, 18], "output_dens": [16, 31, 32, 812], "dens": [16, 29, 31, 32, 316, 369, 792, 812], "unit": [16, 31, 32, 57, 73, 80, 97, 98, 110, 112, 113, 114, 115, 116, 117, 118, 295, 296, 299, 303, 305, 306, 309, 310, 311, 367, 504, 505, 626, 812, 819, 823, 829, 841, 842, 844, 855, 871, 874], "mention": [16, 18, 31, 32, 37, 818, 819, 820, 824, 831, 836, 837, 840, 841, 844, 847, 860, 865, 870], "fulli": [16, 18, 20, 21, 24, 29, 31, 32, 45, 57, 80, 387, 529, 792, 812, 824, 829, 836, 839, 847, 849, 850, 851, 852, 853, 854, 855, 861, 865, 868, 869, 870, 876, 877], "ground": [16, 18, 377, 453, 771, 773, 784, 816, 834, 841, 844, 859], "ret": [16, 18, 31, 32, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 431, 436, 438, 441, 443, 446, 449, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 789, 794, 796, 801, 806, 808, 812, 829, 830, 832, 833, 839, 840, 841, 842, 845, 849, 854, 864], "eagertensor": [16, 22, 43, 801, 842], "deepmind": [17, 861], "perceiverio": [17, 861], "backbon": [17, 45, 812, 849, 852], "TO": [17, 19, 30], "replac": [17, 19, 30, 46, 56, 57, 58, 64, 66, 74, 79, 80, 81, 87, 89, 132, 274, 310, 313, 367, 369, 378, 489, 492, 496, 576, 577, 581, 629, 632, 634, 639, 643, 699, 738, 776, 820, 826, 827, 829, 830, 838, 841, 844, 851, 854, 855, 860, 864, 877], "efficientnet": 18, "eff_encod": [18, 812], "efficientnet_v2": [18, 812], "efficientnetv2b0": [18, 812], "storag": [18, 45, 46, 852, 860], "googleapi": [18, 45, 46], "efficientnetv2": 18, "b0_notop": 18, "h5": [18, 74], "24274472": 18, "0u": 18, "torch_eff_encod": [18, 812], "modes_to_trac": 18, "1280": [18, 545, 634, 812], "welcom": [20, 46, 812, 813, 819, 820, 821, 843], "varieti": [20, 823, 828, 829, 830, 844, 846, 866, 868, 872, 873, 876, 877], "organ": [20, 824, 827, 837, 841, 843, 845, 857, 860], "main": [20, 32, 53, 57, 62, 80, 85, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 473, 629, 637, 670, 671, 691, 812, 815, 818, 819, 820, 821, 823, 826, 827, 834, 838, 840, 868, 870, 871, 876], "exactli": [20, 24, 34, 43, 44, 48, 290, 632, 818, 827, 828, 829, 830, 831, 833, 844, 847, 859, 861], "rush": [20, 861], "jump": [20, 842], "straight": [20, 812, 828, 841, 844, 851], "quickstart": [20, 812], "introduct": [20, 22, 29, 31, 32, 870], "point": [20, 29, 54, 56, 57, 62, 66, 68, 70, 77, 79, 80, 85, 89, 93, 126, 127, 128, 130, 132, 135, 142, 143, 148, 152, 165, 169, 173, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 256, 261, 262, 263, 264, 265, 273, 275, 276, 278, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 312, 313, 315, 335, 336, 353, 354, 357, 359, 369, 372, 375, 376, 377, 382, 387, 390, 399, 400, 401, 419, 429, 449, 453, 508, 509, 510, 511, 512, 522, 523, 524, 532, 627, 629, 630, 632, 637, 643, 644, 645, 646, 647, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 740, 741, 747, 749, 750, 751, 752, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 801, 802, 810, 816, 818, 819, 820, 823, 824, 826, 828, 829, 831, 832, 834, 836, 840, 841, 844, 845, 847, 849, 851, 852, 861, 863, 876], "showcas": [20, 812], "real": [20, 28, 56, 57, 70, 79, 80, 93, 102, 112, 115, 118, 142, 143, 220, 221, 222, 223, 225, 226, 227, 228, 229, 238, 240, 241, 243, 245, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 273, 275, 276, 278, 282, 283, 284, 286, 287, 288, 289, 290, 291, 293, 294, 335, 336, 342, 343, 344, 354, 372, 375, 376, 398, 419, 420, 429, 430, 626, 629, 632, 637, 644, 647, 672, 673, 674, 678, 685, 687, 688, 691, 694, 747, 760, 762, 763, 764, 765, 827, 872], "world": [20, 28, 820, 872], "beginn": [20, 813, 870], "got": [20, 43, 833], "cover": [20, 31, 57, 80, 375, 412, 413, 414, 818, 823, 824, 826, 829, 831, 832, 837, 838, 844, 847, 848], "familiar": [20, 21, 22, 818, 819], "concept": [20, 21, 22], "turn": [20, 21, 24, 34, 61, 84, 97, 98, 399, 400, 401, 636, 659, 792, 819, 826, 827, 830, 831, 841, 844, 861], "unus": [20, 21, 24, 831, 840], "part": [20, 21, 24, 53, 56, 57, 79, 80, 85, 102, 112, 115, 118, 145, 146, 147, 253, 257, 280, 328, 329, 355, 369, 372, 375, 376, 378, 387, 419, 430, 484, 532, 626, 629, 632, 637, 673, 674, 773, 812, 818, 819, 820, 821, 823, 826, 829, 835, 837, 840, 841, 844, 845, 847, 849, 850, 854, 855, 863, 864, 865, 868, 870, 875, 876, 877], "lazi": [20, 21, 24, 27, 34, 37, 38, 49], "decor": [20, 21, 26, 28, 29, 37, 49, 539, 634, 776, 778, 784, 816, 823, 824, 827, 829, 830, 834, 837, 840, 841, 842, 847], "kornia": [20, 21, 28, 31, 32, 45, 49, 812, 864], "roundup": 22, "indep": [22, 31], "proof": [22, 31], "delv": [22, 32, 812], "theori": [22, 814, 826], "esenti": [22, 31], "abstract": [22, 31, 32, 791, 796, 812, 827, 829, 840, 841, 844, 847, 853, 859, 868, 870, 872, 873, 877], "quirk": [22, 31], "perk": [22, 31, 812, 824, 827], "under": [22, 31, 32, 57, 377, 456, 457, 805, 812, 818, 819, 822, 823, 830, 831, 832, 835, 841, 842, 844, 847, 848, 849, 852, 854, 855, 863, 864, 870, 873, 877], "hood": [22, 31, 32, 812, 822, 830, 831, 835, 841, 844, 847, 848, 849, 852, 854, 863, 864, 877], "appropi": 22, "string": [22, 31, 32, 47, 57, 58, 61, 74, 80, 84, 150, 151, 163, 170, 192, 193, 194, 195, 196, 198, 207, 214, 215, 219, 375, 376, 378, 418, 422, 430, 484, 495, 524, 543, 630, 631, 634, 636, 637, 649, 650, 651, 652, 654, 656, 658, 674, 771, 773, 777, 805, 806, 825, 826, 828, 829, 830, 833, 841, 849, 852], "simplest": [22, 819, 831, 844, 847], "interact": [22, 31, 46, 49, 818, 869, 870, 875], "submodul": [22, 31, 45, 47, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 818, 819, 820, 823, 826, 828, 830, 834, 837, 838, 844, 848, 849, 853, 857], "likewis": [22, 27, 31, 38, 812, 820, 827, 829, 832, 836, 837, 841, 847, 852, 863, 864, 876], "nativearrai": [22, 31, 32, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 131, 136, 137, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 175, 177, 179, 180, 186, 196, 197, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 317, 318, 322, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 523, 524, 525, 526, 534, 537, 538, 540, 541, 545, 546, 547, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 565, 568, 569, 571, 576, 577, 578, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 602, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 797, 824, 827, 831, 833, 836, 837, 838, 840, 841, 845, 846, 849, 851, 857], "alia": [22, 31, 335, 336, 372, 627, 818, 841, 862, 865], "lastli": [22, 31, 824], "subclass": [22, 31, 32, 838, 841, 847, 864], "dict": [22, 31, 32, 45, 49, 52, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 141, 143, 149, 153, 155, 166, 167, 168, 172, 173, 180, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 325, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 378, 398, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 484, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 624, 628, 630, 631, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 773, 774, 789, 792, 794, 801, 806, 824, 827, 852, 853, 857, 863, 864, 865], "recurs": [22, 31, 32, 45, 47, 52, 74, 75, 166, 167, 199, 200, 376, 448, 550, 551, 557, 630, 631, 634, 641, 718, 719, 722, 728, 729, 730, 771, 819, 823, 826, 827, 834, 837, 840, 853, 855], "fashion": [22, 778, 844, 864], "native_arrai": [22, 31, 32, 53, 54, 56, 76, 78, 79, 80, 81, 85, 92, 110, 113, 136, 139, 141, 143, 149, 152, 153, 154, 155, 163, 168, 175, 197, 206, 214, 230, 234, 239, 240, 241, 243, 247, 251, 259, 260, 268, 273, 276, 279, 282, 287, 335, 336, 363, 372, 377, 378, 458, 484, 490, 494, 534, 537, 564, 565, 568, 599, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 643, 644, 647, 648, 650, 651, 658, 666, 669, 673, 674, 679, 680, 684, 688, 689, 691, 694, 696, 698, 699, 706, 738, 747, 756, 762, 765, 767, 773, 783, 801, 816, 834, 842, 844], "data_class": [22, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 395, 396, 545, 549, 687, 712], "low": [22, 31, 34, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 827, 833, 840, 841, 847, 849, 866, 868, 870, 871, 872, 874, 876], "c": [22, 31, 37, 46, 47, 53, 57, 58, 59, 61, 64, 70, 76, 77, 79, 80, 81, 82, 84, 85, 87, 91, 93, 97, 98, 116, 127, 128, 138, 141, 165, 168, 223, 234, 240, 241, 261, 262, 264, 273, 276, 284, 291, 375, 376, 378, 381, 387, 389, 390, 391, 392, 403, 408, 424, 426, 428, 429, 431, 443, 462, 463, 464, 474, 492, 496, 501, 502, 503, 506, 524, 537, 545, 546, 547, 548, 556, 560, 561, 591, 600, 615, 616, 619, 621, 622, 623, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 644, 645, 647, 650, 651, 652, 653, 654, 655, 657, 672, 674, 676, 706, 710, 718, 721, 725, 726, 727, 729, 730, 735, 736, 747, 752, 758, 759, 764, 766, 795, 805, 806, 813, 819, 822, 825, 826, 827, 831, 837, 839, 848, 849, 850, 852, 855, 857, 858, 860, 861, 864, 866, 870, 874, 875, 877], "fundament": [22, 31, 828, 841, 847, 849, 859, 870], "signatur": [22, 31, 378, 387, 484, 522, 829, 830, 831, 832, 836, 840, 844, 845, 847, 860, 867, 876], "matmul": [22, 31, 32, 48, 62, 85, 376, 446, 614, 634, 637, 687, 825, 844, 845, 849], "to_n": [22, 31, 32, 43, 52, 75, 849], "jaxlib": [22, 28, 46, 801, 819, 824, 829, 830, 836, 845, 849, 851], "xla_extens": [22, 28, 801, 824, 829, 830, 836, 845, 849, 851], "arrayimpl": [22, 28, 801], "disabl": [22, 31, 57, 80, 378, 492, 794, 810, 826], "array_mod": [22, 31, 578, 602, 634, 846], "set_array_mod": [22, 31, 602, 634, 846], "ultim": [22, 31, 863], "sigmoid": [22, 31, 32, 43, 51, 57, 73, 80, 301, 367, 382, 508, 626, 788, 849, 852, 853], "z": [22, 31, 32, 44, 45, 53, 56, 57, 58, 62, 63, 66, 68, 70, 76, 79, 80, 81, 85, 86, 87, 89, 93, 102, 103, 137, 138, 140, 141, 201, 223, 224, 228, 230, 233, 235, 240, 251, 252, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 280, 289, 300, 301, 335, 336, 338, 367, 372, 377, 387, 453, 455, 456, 457, 458, 459, 465, 469, 480, 521, 522, 525, 532, 537, 549, 552, 553, 560, 561, 577, 590, 592, 593, 601, 614, 629, 631, 632, 634, 637, 638, 639, 641, 643, 644, 645, 647, 668, 677, 682, 683, 687, 694, 696, 697, 698, 699, 721, 725, 727, 735, 739, 740, 741, 744, 749, 759, 760, 762, 763, 764, 791, 812, 825, 827, 830, 831, 849, 851, 863], "divid": [22, 27, 31, 32, 48, 56, 57, 58, 64, 74, 79, 80, 87, 102, 103, 247, 381, 454, 501, 502, 503, 506, 592, 632, 634, 639, 708, 824, 827, 831, 835, 844], "exp": [22, 31, 32, 56, 57, 79, 80, 116, 118, 245, 265, 278, 301, 367, 375, 377, 403, 408, 457, 626, 632, 637, 685, 839, 841], "entir": [22, 31, 32, 34, 47, 57, 70, 71, 74, 80, 81, 93, 94, 213, 243, 245, 285, 286, 335, 336, 372, 375, 378, 387, 399, 400, 401, 484, 525, 558, 631, 632, 647, 648, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 818, 819, 820, 823, 824, 827, 829, 831, 833, 840, 841, 842, 844, 847, 849, 852, 853, 854, 855, 860, 861, 864, 870, 876, 877], "congratul": [22, 28], "independ": [22, 32, 57, 66, 80, 89, 223, 240, 273, 283, 381, 382, 506, 508, 632, 637, 643, 668, 686, 738, 812, 823, 829, 831, 838, 849, 854, 864, 868], "div": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 865], "sub": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 57, 62, 64, 74, 75, 79, 80, 81, 85, 87, 103, 272, 376, 378, 387, 430, 470, 479, 499, 528, 529, 557, 634, 637, 639, 640, 671, 691, 708, 715, 716, 717, 818, 820, 822, 827, 833, 841, 842, 844, 851, 852, 853, 865, 866], "with_numpi": 23, "reproduc": [23, 48, 61, 84, 636, 659, 776, 777, 778, 779, 784, 816, 823, 834], "x_": [23, 33, 98, 284, 632, 865], "66391283": 23, "12516928": 23, "38367081": 23, "03102401": 23, "76419425": 23, "52797794": 23, "90346956": 23, "61316347": 23, "27585283": 23, "66309303": 23, "ivy_repo": 23, "sever": [23, 24, 33, 34, 36, 37, 38, 57, 80, 97, 375, 376, 389, 390, 391, 392, 444, 776, 819, 820, 845, 855, 868, 874], "pro": [23, 24, 25, 33, 34, 35, 36, 37, 38], "pick": [24, 34, 791], "trigger": [24, 34, 794, 818, 835], "unif": [24, 26, 27, 34, 36, 813, 851, 860, 866, 876], "55563945": 24, "65538704": 24, "14150524": 24, "46951997": 24, "30220294": 24, "14739668": 24, "57017946": 24, "91962677": 24, "51029003": 24, "59644395": 24, "constitu": [24, 34, 74, 854], "5556394": 24, "655387": 24, "1415051": 24, "4695197": 24, "3022028": 24, "1473966": 24, "5701794": 24, "91962665": 24, "51028997": 24, "5964439": 24, "985": 24, "000": [24, 79, 274, 776, 816, 828, 834], "On": [24, 31, 32, 819, 829, 830, 835, 841, 844, 847, 850, 854], "hand": [24, 56, 376, 446, 776, 812, 823, 829, 830, 835, 837, 844, 855], "learnt": [25, 35], "ivy_norm": 25, "jax_norm": [25, 31, 32], "wider": [25, 35, 585, 608, 634, 829, 846, 876], "avoid": [25, 35, 37, 57, 64, 80, 240, 245, 247, 263, 273, 377, 378, 381, 454, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 501, 502, 503, 539, 555, 557, 580, 585, 608, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 779, 819, 820, 825, 826, 827, 828, 829, 833, 838, 841, 844, 845, 846, 847, 870], "act": [25, 35, 57, 80, 298, 363, 373, 820, 831, 846, 855, 877], "shorthand": [25, 35, 37, 844], "pair": [25, 35, 45, 57, 61, 80, 84, 228, 247, 320, 362, 369, 372, 375, 409, 418, 420, 422, 632, 636, 637, 649, 650, 651, 652, 654, 656, 658, 666, 668, 806], "93968587": 25, "26075466": 25, "22723222": 25, "06276492": 25, "47426987": 25, "72835908": 25, "71737559": 25, "50411096": 25, "65419174": 25, "15576624": 25, "implic": [25, 35, 36, 39, 827], "satisfi": [26, 27, 28, 29, 45, 47, 50, 57, 375, 376, 398, 430, 829, 831], "fw": [26, 27, 28, 29, 61, 84, 387, 522, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 773, 819, 844], "mxnet": [26, 27, 28, 29, 209, 631, 801, 818, 819, 860, 877], "einop": [26, 27, 28, 29, 45, 47, 50, 58, 81, 545, 546, 547, 634, 829, 860], "miniconda": [26, 27, 28, 29], "multienv": [26, 27, 28, 29], "site": [26, 27, 28, 29, 871], "psutil": [26, 27, 28, 29, 45, 47, 50], "termcolor": [26, 27, 28, 29, 45, 47, 50, 74, 103], "colorama": [26, 27, 28, 29, 45, 47], "535": [26, 27, 28, 29, 51, 73, 118, 626, 833], "diskcach": [26, 27, 28, 29, 45], "auth": [26, 27, 28, 29], "urllib3": [26, 27, 28, 29, 45], "pyvi": [26, 27, 28, 29, 31, 32], "dill": [26, 27, 28, 29, 45], "astunpars": [26, 27, 28, 29], "cloudpickl": [26, 27, 28, 29], "gast": [26, 27, 28, 29], "wheel": [26, 27, 28, 29, 45, 47, 50, 859], "six": [26, 27, 28, 29, 45, 50, 819, 847], "cachetool": [26, 27, 28, 29], "pyasn1": [26, 27, 28, 29], "rsa": [26, 27, 28, 29], "jinja2": [26, 27, 28, 29], "jsonpickl": [26, 27, 28, 29], "networkx": [26, 27, 28, 29, 50], "charset": [26, 27, 28, 29, 45], "idna": [26, 27, 28, 29, 45], "certifi": [26, 27, 28, 29, 45], "2017": [26, 27, 28, 29, 45, 636, 663], "jedi": [26, 27, 28, 29], "inlin": [26, 27, 28, 29, 826], "prompt": [26, 27, 28, 29, 818, 820], "toolkit": [26, 27, 28, 29, 870, 871, 877], "pygment": [26, 27, 28, 29], "traitlet": [26, 27, 28, 29], "exceptiongroup": [26, 27, 28, 29], "pexpect": [26, 27, 28, 29], "markupsaf": [26, 27, 28, 29], "parso": [26, 27, 28, 29], "ptyprocess": [26, 27, 28, 29], "wcwidth": [26, 27, 28, 29], "asttoken": [26, 27, 28, 29], "pure": [26, 27, 28, 29, 37, 47, 812, 832, 836, 841, 847, 851, 854, 855, 870, 876, 877], "lazili": [26, 27, 28, 31, 32, 36, 38, 49, 812, 863, 864, 865], "actual": [26, 36, 816, 820, 822, 828, 834, 837, 838, 840, 841, 842, 844, 847, 848, 853, 855, 871, 876], "occur": [26, 31, 32, 36, 49, 54, 56, 68, 77, 79, 91, 155, 274, 290, 630, 632, 644, 645, 744, 745, 749, 750, 751, 752, 823, 828, 830, 833, 846], "altern": [26, 36, 46, 57, 80, 85, 97, 98, 334, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 372, 818, 819, 826, 840, 852, 873], "assum": [26, 27, 36, 37, 38, 53, 56, 57, 58, 61, 62, 63, 79, 80, 81, 84, 85, 86, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 329, 335, 336, 338, 341, 359, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 444, 446, 484, 492, 496, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 805, 812, 819, 823, 825, 828, 829, 832, 842, 844, 847, 851, 852, 855], "201733": 26, "slowli": [26, 36], "norm": [26, 36, 37, 57, 58, 62, 80, 81, 85, 96, 97, 375, 376, 397, 398, 402, 403, 404, 407, 408, 409, 419, 420, 426, 430, 504, 505, 507, 540, 541, 562, 634, 637, 678, 694, 737, 792, 796, 845], "slow": [26, 36, 814, 819, 826], "34431235": [26, 27], "51129461": [26, 27], "06686894": [26, 27], "36452447": [26, 27], "98795534": [26, 27], "15493582": [26, 27], "91630631": [26, 27], "41939619": [26, 27], "78909753": [26, 27], "19475674": [26, 27], "norm_trac": 26, "norm_tran": [26, 36], "know": [26, 27, 36, 37, 38, 68, 645, 749, 750, 751, 752, 812, 814, 818, 820, 830, 838, 842, 844, 847, 861, 865, 871], "07": [27, 45, 47, 59, 63, 79, 82, 86, 89, 228, 261, 264, 265, 284, 375, 407, 605, 615, 616, 618, 619, 620, 621, 632, 634, 635, 638, 697, 698, 740, 793, 796, 853], "981554": 27, "happen": [27, 31, 32, 292, 632, 812, 819, 820, 821, 830, 840, 844, 852, 861, 863, 864], "wherea": [27, 38, 80, 375, 421, 820, 824, 827, 829, 830, 831, 836, 837, 844, 854, 867], "subtract": [27, 31, 32, 56, 79, 102, 103, 134, 378, 484, 629, 632, 824, 827, 831], "filelock": [28, 45], "extens": [28, 45, 56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 819, 820, 832, 834, 835, 844, 867, 870, 877], "sympi": [28, 860], "fsspec": [28, 45], "mpmath": 28, "often": [28, 57, 377, 452, 817, 823, 833, 836, 837, 841, 844, 855, 861, 871, 874, 877], "fortun": [28, 29, 823], "everyth": [28, 46, 805, 812, 818, 819, 820, 821, 822, 828, 831, 840, 841, 842, 844, 850, 855, 856, 861], "practic": [28, 820, 825, 828, 841, 843, 873], "everi": [28, 31, 32, 37, 45, 53, 57, 58, 80, 81, 135, 136, 301, 335, 336, 349, 367, 372, 375, 378, 412, 413, 414, 421, 498, 534, 629, 634, 818, 820, 823, 825, 826, 828, 829, 831, 835, 836, 837, 838, 840, 841, 842, 844, 849, 851, 853, 863, 864, 865, 870], "jax_kornia": [28, 31, 32, 812, 864], "though": [28, 817, 818, 820, 829, 830, 832, 837, 840, 841, 847, 852, 855], "000000000034": [28, 31, 32, 812, 864], "raw_img": [28, 31, 32, 812, 864], "sharp": [28, 31, 32, 812], "prefer": [28, 31, 32, 247, 632, 819, 827, 833, 834, 838, 841, 856, 870], "whole": [29, 57, 80, 378, 381, 491, 504, 505, 507, 820, 826, 835], "full": [29, 57, 62, 80, 84, 85, 97, 98, 100, 165, 252, 260, 323, 324, 325, 326, 327, 369, 376, 377, 378, 449, 450, 456, 457, 485, 488, 579, 588, 603, 611, 629, 630, 632, 634, 636, 637, 651, 653, 654, 655, 657, 680, 684, 686, 687, 777, 784, 812, 819, 820, 826, 829, 832, 833, 836, 837, 841, 844, 847, 849, 855, 860, 861, 868, 870, 876], "complex": [29, 31, 32, 45, 51, 56, 57, 62, 70, 73, 77, 79, 80, 85, 93, 110, 111, 112, 113, 114, 115, 116, 117, 118, 142, 143, 158, 172, 181, 187, 220, 221, 222, 223, 224, 225, 226, 229, 237, 238, 240, 241, 243, 245, 253, 254, 255, 256, 257, 261, 262, 263, 264, 273, 275, 276, 278, 280, 283, 284, 285, 286, 287, 290, 291, 295, 300, 301, 303, 338, 343, 344, 367, 372, 375, 376, 387, 398, 409, 419, 420, 424, 429, 430, 431, 442, 444, 530, 531, 592, 593, 626, 629, 630, 632, 634, 637, 644, 647, 672, 673, 674, 678, 685, 687, 689, 691, 694, 747, 762, 763, 765, 777, 788, 806, 815, 818, 821, 826, 829, 831, 838, 841, 844, 845, 847, 852, 853, 854, 855, 857, 864, 866, 868, 870, 872, 876, 877], "neccessari": 29, "set_random_se": [29, 48], "301436": 29, "_c": 29, "0x7f252c392390": 29, "flatten": [29, 31, 32, 45, 47, 50, 57, 58, 62, 64, 67, 68, 80, 81, 85, 87, 90, 91, 340, 356, 372, 376, 378, 387, 427, 473, 483, 487, 492, 493, 496, 498, 520, 527, 528, 529, 530, 531, 532, 545, 549, 634, 637, 639, 644, 645, 675, 682, 694, 700, 705, 707, 744, 745, 749, 750, 751, 752, 771, 773, 812, 840, 847], "keyword": [29, 31, 32, 47, 49, 52, 53, 57, 74, 80, 103, 139, 274, 375, 378, 387, 423, 484, 522, 536, 539, 572, 601, 629, 632, 634, 637, 641, 647, 688, 724, 765, 771, 773, 777, 793, 794, 805, 818, 824, 827, 829, 830, 838, 840, 841, 842, 844, 845, 847, 852, 863, 864, 865], "input_arrai": [29, 31, 32, 840], "torch_model": [29, 31, 32, 49], "159": [29, 73, 110, 626, 636, 660], "thank": [29, 852, 860], "fledg": [29, 819, 849, 850], "output_arrai": [29, 31, 32, 57, 454], "0893": 29, "1504": 29, "1372": 29, "0991": 29, "0867": 29, "0851": 29, "0911": 29, "0804": 29, "0926": 29, "0881": 29, "softmaxbackward0": 29, "furthermor": 29, "relat": [29, 247, 632, 812, 814, 817, 818, 819, 820, 826, 833, 841, 844, 845, 846, 847, 864, 873], "continu": [29, 31, 32, 47, 125, 287, 295, 367, 628, 632, 812, 817, 818, 819, 822, 823, 834, 840, 843, 844, 855, 860, 861, 870], "regress": [30, 870, 877], "checkout": [31, 46, 820, 823, 844], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 31, "theoret": 31, "aspect": [31, 32, 813, 839, 852, 870], "easiest": [31, 812, 814, 819, 856], "defer": [31, 32, 818, 824, 829, 830, 837, 840, 841, 844, 876], "similarli": [31, 44, 139, 147, 223, 328, 335, 336, 369, 372, 629, 632, 825, 829, 841, 847, 851, 876], "essenc": [31, 871, 876], "becom": [31, 57, 80, 97, 346, 372, 378, 464, 639, 699, 801, 820, 821, 827, 829, 831, 833, 840, 855, 859, 861, 863], "slide": [31, 57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 418, 422, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "regressor": [31, 32, 812], "input_dim": [31, 32, 46, 812], "output_dim": [31, 32, 46, 812], "linear0": [31, 32, 43, 812, 852, 853], "linear1": [31, 32, 43, 812, 852, 853], "instanti": [31, 32, 784, 832], "adam": [31, 32, 43, 47, 59, 82, 536, 615, 616, 621, 634, 635, 796, 812, 852, 853, 854, 870], "n_training_exampl": [31, 32, 812], "2000": [31, 32, 80, 314, 369, 812], "random_norm": [31, 32, 61, 62, 66, 84, 85, 89, 545, 634, 636, 637, 643, 651, 653, 654, 655, 657, 658, 662, 687, 812], "linspac": [31, 32, 53, 76, 126, 629, 812, 836, 847, 849, 877], "pred": [31, 32, 46, 47, 57, 63, 80, 86, 377, 453, 456, 638, 696, 697, 698, 812, 827, 837, 840], "gradient": [31, 32, 45, 47, 57, 80, 97, 213, 364, 372, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 631, 640, 715, 716, 717, 773, 784, 796, 812, 822, 845, 852, 853, 855, 870], "grad": [31, 32, 43, 47, 615, 635, 796, 812, 839, 852, 853, 854], "execute_with_gradi": [31, 32, 43, 47, 635, 812, 852, 853, 854, 855], "lambda": [31, 32, 48, 50, 80, 123, 125, 297, 307, 544, 557, 617, 618, 620, 625, 628, 634, 635, 637, 641, 673, 725, 726, 730, 812, 818, 837, 838, 839, 842, 847, 849, 852], "2d": [31, 32, 47, 57, 80, 97, 313, 369, 375, 376, 378, 387, 390, 391, 399, 400, 442, 449, 463, 473, 522, 792, 810, 812, 841, 847], "5f": [31, 32, 812], "nonetheless": [31, 32], "extract": [31, 32, 39, 46, 57, 80, 98, 378, 467, 493, 841, 843, 845, 866, 870, 871, 876], "gc": [31, 32, 557, 634], "decompos": [31, 32, 57, 80, 97, 100, 323, 324, 325, 326, 327, 348, 355, 369, 372, 376, 440, 445, 448, 451, 841, 854], "said": [31, 32, 778, 845, 861, 863], "otherwis": [31, 32, 49, 52, 53, 54, 56, 57, 58, 61, 62, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 128, 129, 134, 136, 137, 138, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 171, 175, 179, 180, 196, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 313, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 341, 342, 350, 351, 357, 359, 361, 362, 363, 367, 369, 372, 375, 376, 378, 381, 394, 395, 396, 399, 400, 401, 419, 432, 447, 449, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 521, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 617, 619, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 687, 691, 693, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 731, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 777, 792, 794, 795, 801, 812, 820, 824, 827, 829, 830, 831, 837, 838, 840, 844, 849, 856, 863, 864], "x0": [31, 32, 50, 81, 537, 634, 831], "normalize_trac": [31, 32], "html": [31, 32, 46, 56, 57, 79, 80, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 629, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832, 860], "fname": [31, 32, 48, 50, 794, 852], "anticip": [31, 32], "addition": [31, 32, 827, 840, 841, 876], "normalize_native_comp": [31, 32], "return_backend_compiled_fn": 31, "immedi": [31, 32, 810, 818, 819], "built": [31, 32, 37, 45, 47, 50, 126, 629, 792, 793, 794, 812, 819, 820, 826, 827, 844, 850, 856, 863, 869, 870, 874], "eager_graph": [31, 32, 812, 863, 864], "lazy_graph": [31, 32, 812, 863, 864], "thought": [31, 32, 819, 820, 836, 860, 868], "matter": [31, 32, 37, 831, 859], "haven": [31, 32, 37, 856, 870], "jax_out": [31, 32], "ideal": [31, 32, 828, 829, 841, 847, 852], "worth": [31, 32], "differenti": [31, 32, 295, 365, 366, 367, 374, 870], "chosen": [31, 32, 50, 100, 126, 228, 629, 632, 644, 748, 818, 828, 841], "plai": [31, 32, 377, 456, 812, 815, 819, 821, 824, 830, 834, 841, 844, 854, 870, 873], "role": [31, 32, 812, 815, 820, 821, 830, 841, 850, 871, 873, 877], "dl": [31, 32], "effortlessli": [31, 32], "previous": [31, 32, 603, 634, 801, 818, 819, 825, 837, 839, 844, 849], "default_devic": [31, 32, 206, 209, 210, 211, 217, 218, 631, 830, 833, 834], "as_n": [31, 32, 54, 55, 74, 77, 78, 158, 159, 160, 161, 162, 163, 169, 196, 197, 630, 631, 829], "certainli": [31, 32, 812, 860, 876], "upon": [31, 32, 49, 810, 820, 821, 831, 840, 844, 847, 855, 869, 870], "unnecessari": [31, 32, 841], "extend": [31, 32, 57, 80, 378, 387, 484, 525, 825, 826, 829, 832, 833, 836, 841, 845, 855, 867, 870, 876], "infrastructur": [31, 32, 866, 872, 873], "least": [31, 56, 57, 62, 79, 80, 240, 258, 273, 375, 378, 387, 403, 408, 462, 463, 464, 473, 475, 522, 632, 637, 644, 677, 747, 812, 820, 824, 828, 829, 830, 831, 837, 840, 844, 864], "coco": 31, "seamlessli": [32, 844], "therefor": [32, 37, 53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 477, 484, 485, 487, 492, 496, 497, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 823, 824, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 855, 859, 867, 870, 876], "wide": [32, 812, 820, 844, 868, 870], "plenti": 32, "resourc": [32, 813, 818, 819, 828], "visit": [32, 818, 819, 820, 828], "page": [32, 812, 818, 819, 820, 826, 828, 834, 850, 851, 854, 856, 865, 878], "newli": [33, 34, 46, 48, 54, 77, 152, 539, 630, 634, 820, 828, 840, 844], "randon": [33, 34, 36, 37, 38], "mean_": 33, "std_": 33, "detect": [33, 37, 56, 74, 79, 255, 632, 641, 718, 729, 818, 819, 825, 827, 828, 835, 844, 852, 853], "inspect": [33, 37, 535, 634], "__": [33, 34, 35, 36, 37, 38, 74, 831, 852], "script": [34, 812, 819, 820, 823, 828, 831, 849, 855, 870], "comp": 34, "low_level": 34, "chain": [34, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 640, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 720, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 797, 824, 827, 839, 841, 853, 854, 855, 870], "un": [34, 170, 630, 829, 849], "partial_comp": 34, "time_funct": 34, "express": [34, 56, 57, 79, 80, 98, 221, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 798, 806, 832, 841, 849, 854, 870, 871], "maxim": [34, 837, 840, 849, 867, 868, 872, 873, 874], "conclud": [35, 845], "collect": [35, 45, 47, 49, 50, 52, 74, 75, 626, 631, 634, 635, 636, 638, 641, 642, 643, 731, 788, 792, 793, 794, 795, 796, 819, 828, 833, 834, 838, 839, 842, 844, 868, 870, 873], "norm_comp": [36, 37], "global": [36, 37, 47, 58, 74, 81, 103, 158, 159, 160, 161, 162, 211, 212, 213, 582, 583, 586, 592, 593, 605, 606, 609, 630, 631, 634, 784, 795, 801, 819, 824, 825, 828, 829, 830, 833, 837, 841, 849, 870], "b": [37, 51, 56, 57, 58, 61, 62, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 127, 128, 129, 134, 135, 136, 138, 141, 143, 149, 152, 153, 154, 155, 163, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 382, 385, 387, 394, 395, 396, 397, 399, 400, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 425, 428, 430, 432, 436, 439, 443, 446, 451, 452, 453, 455, 456, 457, 458, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 490, 492, 493, 494, 495, 496, 499, 500, 505, 507, 509, 510, 512, 513, 515, 522, 523, 524, 525, 527, 529, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 599, 600, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 805, 806, 810, 812, 813, 816, 820, 822, 823, 825, 827, 828, 831, 834, 837, 839, 842, 848, 849, 850, 852, 853, 854, 858, 861, 863, 866], "option": [37, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 168, 170, 180, 192, 196, 208, 211, 212, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 601, 613, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 724, 725, 729, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 789, 791, 792, 794, 796, 797, 805, 810, 818, 819, 820, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 847, 849, 854, 855, 863, 864, 865, 870, 876], "prioriti": [37, 74, 801, 815, 818, 820, 821, 830, 840], "normalize_via_oper": 37, "determin": [37, 56, 57, 62, 64, 68, 71, 74, 79, 80, 81, 85, 92, 94, 97, 100, 102, 103, 132, 155, 157, 164, 170, 171, 172, 173, 175, 176, 177, 192, 202, 204, 205, 216, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 253, 254, 255, 256, 257, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 304, 308, 354, 359, 367, 372, 375, 376, 377, 378, 387, 411, 419, 430, 452, 453, 492, 496, 522, 534, 537, 558, 559, 563, 564, 565, 566, 567, 568, 595, 613, 629, 630, 631, 632, 634, 637, 639, 640, 645, 648, 667, 668, 669, 671, 675, 676, 677, 679, 680, 682, 683, 685, 686, 691, 693, 694, 700, 715, 716, 717, 749, 750, 751, 752, 753, 767, 768, 778, 784, 791, 795, 827, 829, 830, 832, 837, 841, 844, 846, 847, 859], "think": [37, 818, 820, 828, 831, 847, 871], "uniqu": [37, 47, 57, 58, 68, 80, 81, 91, 375, 376, 378, 423, 446, 483, 484, 498, 569, 634, 640, 641, 645, 715, 716, 717, 720, 724, 749, 750, 751, 752, 778, 812, 823, 827, 837, 841, 842, 843, 847, 855, 859, 873], "rule": [37, 54, 56, 57, 62, 77, 79, 80, 85, 152, 155, 178, 179, 180, 229, 240, 273, 275, 282, 284, 292, 294, 375, 378, 387, 419, 472, 522, 630, 632, 637, 639, 667, 668, 675, 679, 682, 686, 700, 778, 805, 823, 824, 827, 828, 829, 831, 835, 836, 837, 839, 844, 847, 871], "broadcast": [37, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 339, 340, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 444, 453, 454, 455, 456, 458, 459, 465, 469, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 528, 529, 530, 531, 532, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 805, 827, 829, 831, 832, 833, 844, 845, 849], "elementwis": [37, 57, 65, 80, 88, 300, 302, 362, 367, 637, 642, 692, 737, 837, 845, 849], "taken": [37, 57, 62, 80, 85, 341, 372, 375, 420, 637, 671, 691, 818, 828, 841, 845, 854, 871], "account": [37, 47, 49, 57, 64, 80, 87, 287, 378, 474, 632, 639, 706, 791, 805, 819, 828, 832, 841, 845, 863], "fact": [37, 97, 820, 823, 828, 841, 844, 849, 852], "consum": [37, 773, 827, 828, 836, 842, 844], "thrown": [37, 562, 634, 819, 824, 830, 833, 835, 855], "doesn": [37, 562, 580, 634, 771, 792, 818, 819, 825, 827, 828, 829, 830, 831, 834, 835, 837, 839, 844, 847, 849, 855, 863, 868], "consider": [37, 818, 831, 836, 847, 859, 867, 868], "standalon": [38, 818, 824, 844, 857, 866, 871, 876, 877], "static": [38, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 106, 107, 129, 319, 375, 396, 409, 414, 423, 445, 451, 490, 502, 595, 629, 636, 663, 682, 789, 794, 841, 846, 855, 869, 870, 871], "flow": [39, 827, 863, 870, 871], "statement": [39, 44, 828, 840, 844, 847, 855, 863, 864], "opposit": 39, "exclud": [39, 70, 80, 93, 126, 147, 328, 369, 523, 524, 629, 643, 741, 757, 776, 779, 801, 831, 849, 863], "todo": [40, 41, 42, 47, 50, 80, 524, 818, 829, 841], "aim": [43, 816, 820, 823, 834, 838, 841, 844, 848, 868, 870, 873], "interfac": [43, 76, 134, 629, 851, 854, 855, 857, 860, 866, 867, 868, 869, 870, 874, 877], "set_framework": [43, 50], "underneath": [43, 828, 868], "sai": [43, 818, 819, 834, 838, 851, 861, 878], "clip": [43, 56, 57, 64, 79, 80, 81, 87, 271, 272, 378, 467, 492, 493, 540, 541, 632, 634, 639, 827, 837, 839, 840, 852, 854, 867], "a_min": 43, "a_max": 43, "tensforflow": 43, "clip_by_valu": [43, 854, 867], "clip_value_min": 43, "clip_value_max": 43, "clamp": [43, 57, 80, 300, 367, 854], "49": [43, 47, 57, 66, 80, 84, 85, 287, 375, 376, 387, 397, 407, 418, 443, 523, 632, 647, 692, 740, 759], "devicearrai": [43, 824, 841, 849, 851], "accept": [43, 52, 53, 56, 57, 62, 75, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 342, 364, 369, 372, 374, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 851, 857, 868], "jax_concat": 43, "tf_concat": 43, "np_concat": 43, "torch_concat": 43, "85": [43, 51, 57, 66, 73, 79, 80, 82, 84, 89, 103, 112, 225, 234, 235, 279, 295, 296, 299, 367, 387, 523, 592, 619, 626, 632, 634, 635, 636, 643, 660, 739, 740, 741], "mymodel": [43, 852], "x_in": [43, 852, 853, 854], "reduce_mean": [43, 812, 852, 853, 854], "49040043354034424": 43, "48975786566734314": 43, "4892795979976654": 43, "48886892199516296": 43, "4884953498840332": 43, "4881443977355957": 43, "4878086447715759": 43, "48748287558555603": 43, "48716384172439575": 43, "48684927821159363": 43, "48653748631477356": 43, "48622724413871765": 43, "4859171509742737": 43, "48560672998428345": 43, "48529526591300964": 43, "4849821627140045": 43, "48466697335243225": 43, "4843493402004242": 43, "4840289056301117": 43, "4837053418159485": 43, "4833785891532898": 43, "4830484390258789": 43, "48271444439888": 43, "48237672448158264": 43, "48203518986701965": 43, "48168954253196716": 43, "4813397228717804": 43, "4809857904911041": 43, "48062753677368164": 43, "48026490211486816": 43, "479898065328598": 43, "47952669858932495": 43, "4791509211063385": 43, "4787706732749939": 43, "47838595509529114": 43, "4779967665672302": 43, "47760307788848877": 43, "4772048890590668": 43, "47680220007896423": 43, "47639501094818115": 43, "47598329186439514": 43, "4755673110485077": 43, "4751465618610382": 43, "4747215211391449": 43, "4742920398712158": 43, "47385817766189575": 43, "47341999411582947": 43, "47297725081443787": 43, "4725303053855896": 43, "47207894921302795": 43, "47162333130836487": 43, "47116345167160034": 43, "470699280500412": 43, "47023090720176697": 43, "54": [43, 54, 56, 61, 79, 80, 84, 89, 168, 237, 238, 243, 258, 287, 293, 314, 369, 375, 387, 397, 407, 523, 632, 636, 637, 647, 660, 679, 682, 739, 740, 741, 759, 828, 831], "4697583019733429": 43, "55": [43, 51, 80, 89, 118, 234, 293, 387, 523, 560, 632, 634, 637, 643, 647, 676, 682, 740, 741, 759, 823], "46928152441978455": 43, "46880054473876953": 43, "4683155119419098": 43, "4678264260292053": 43, "46733325719833374": 43, "46683603525161743": 43, "61": [43, 45, 56, 57, 62, 79, 80, 82, 86, 89, 226, 261, 263, 288, 397, 615, 632, 635, 636, 637, 658, 675, 741, 834], "4663347601890564": 43, "4658295214176178": 43, "465320348739624": 43, "4648073613643646": 43, "46429020166397095": 43, "4637692868709564": 43, "46324464678764343": 43, "4627160429954529": 43, "4621836841106415": 43, "4616474211215973": 43, "46110764145851135": 43, "72": [43, 57, 66, 80, 82, 245, 349, 372, 375, 397, 407, 619, 632, 635, 637, 647, 682, 740, 759], "460563987493515": 43, "4600166976451874": 43, "74": [43, 45, 56, 89, 235, 265, 632, 637, 679], "45946577191352844": 43, "45891112089157104": 43, "45835286378860474": 43, "4577910006046295": 43, "78": [43, 59, 284, 621, 632, 635, 637, 643, 647, 682, 740, 759], "45722562074661255": 43, "45665669441223145": 43, "80": [43, 57, 80, 349, 372, 376, 387, 443, 523, 637, 641, 647, 682, 729, 759, 860], "4560841917991638": 43, "81": [43, 47, 56, 62, 77, 79, 85, 89, 168, 238, 263, 264, 288, 387, 523, 630, 632, 637, 641, 643, 647, 675, 679, 692, 726, 741, 759, 844], "4555082619190216": 43, "45492875576019287": 43, "45434585213661194": 43, "45375964045524597": 43, "4531698524951935": 43, "4525766670703888": 43, "45198020339012146": 43, "4513803720474243": 43, "4507772624492645": 43, "4501707851886749": 43, "4495610296726227": 43, "4489481747150421": 43, "44833192229270935": 43, "4477125108242035": 43, "44708991050720215": 43, "44646409153938293": 43, "44583529233932495": 43, "4452032148838043": 43, "44456806778907776": 43, "4439": 43, "selectbackward0": 43, "ivy_compil": 44, "ic": 44, "numer": [44, 53, 54, 56, 57, 58, 62, 66, 67, 70, 77, 79, 80, 81, 85, 89, 90, 92, 102, 103, 139, 152, 220, 223, 236, 240, 245, 246, 247, 254, 255, 256, 259, 268, 269, 273, 275, 276, 277, 278, 282, 283, 284, 288, 289, 293, 294, 375, 377, 382, 387, 419, 454, 509, 522, 582, 583, 592, 593, 605, 606, 629, 630, 632, 634, 637, 643, 644, 647, 668, 675, 677, 682, 685, 687, 689, 691, 693, 739, 740, 741, 743, 744, 745, 747, 748, 753, 760, 763, 765, 776, 777, 778, 779, 791, 816, 829, 834, 839, 841, 842, 844, 845, 846, 847, 849, 853, 867, 870, 876], "anyth": [44, 57, 80, 387, 528, 529, 820, 833, 844, 845, 870, 871], "affect": [44, 50, 57, 377, 457, 828, 841], "variabl": [44, 46, 47, 49, 57, 58, 59, 65, 74, 80, 81, 82, 88, 122, 123, 125, 322, 369, 375, 376, 382, 387, 421, 447, 510, 521, 522, 538, 562, 563, 564, 565, 568, 595, 616, 617, 619, 621, 622, 623, 628, 634, 635, 637, 640, 642, 686, 715, 716, 717, 737, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 820, 825, 829, 832, 836, 839, 840, 844, 845, 849, 852, 853, 854, 855, 856, 863, 871], "original_fn": 44, "100000": 44, "var": [44, 70, 93, 95, 122, 123, 124, 125, 628, 640, 647, 715, 716, 798, 819, 831, 849, 867], "co": [44, 45, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 817, 829, 849, 860], "sin": [44, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 824, 849], "tan": [44, 56, 79, 536, 632, 634, 832, 836, 837, 840, 841, 849], "comp_fn": 44, "compile_graph": [44, 50], "expected_result": 44, "compiled_result": 44, "irrelev": [44, 828, 829, 831], "opeat": 44, "_layer": [44, 849], "net": [44, 49, 50, 849, 854, 860, 861], "compiled_net": 44, "latest": [45, 47, 56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 421, 492, 522, 630, 632, 637, 639, 647, 685, 686, 714, 764, 792, 812, 818, 819, 820, 823, 825, 828, 832, 834, 845, 855, 856, 864, 875], "pypi": [45, 47, 50, 818, 819, 845, 855], "pkg": [45, 47, 50], "public": [45, 47, 50, 542, 634, 828, 839, 851, 873], "revis": [45, 47, 820], "req": [45, 47], "tabqrujw": 45, "filter": [45, 47, 49, 57, 61, 80, 84, 317, 318, 369, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 812, 825, 828], "quiet": [45, 47], "commit": [45, 47, 815, 816, 818, 821, 823, 831, 843, 844], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 45, "metadata": [45, 47, 50, 840], "setup": [45, 47, 50, 819, 820, 826, 828, 834], "py3": [45, 47, 50], "whl": [45, 46, 47, 50], "cp39": [45, 47], "manylinux_2_12_x86_64": [45, 47], "manylinux2010_x86_64": [45, 47], "manylinux_2_17_x86_64": [45, 47, 819], "manylinux2014_x86_64": [45, 46, 47], "py2": [45, 47], "495": [45, 47], "nvidia_ml_pi": [45, 47], "pypars": [45, 47, 50], "ivy_cor": [45, 47, 50, 819], "1338326": 45, "sha256": [45, 47, 50], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 45, "store": [45, 47, 50, 54, 57, 58, 62, 64, 74, 77, 80, 81, 85, 87, 154, 375, 376, 420, 428, 432, 446, 450, 549, 634, 637, 639, 691, 708, 773, 774, 792, 793, 794, 814, 820, 824, 825, 827, 832, 838, 840, 841, 842, 849, 851, 852, 853, 857, 863], "ephem": [45, 47], "njrc_e6b": 45, "2e": [45, 47], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [45, 47], "4845": [45, 47], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 45, "b6": [45, 47], "0d": [45, 47], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [45, 47], "uninstal": [45, 47, 50], "vnd": [45, 47, 50], "json": [45, 47, 50, 74, 819, 834, 852], "psst": 45, "pickl": [45, 46, 74, 794, 827, 852], "imageio": 45, "urllib": [45, 50], "_src": 45, "back": [45, 57, 64, 80, 87, 378, 474, 495, 578, 602, 634, 636, 639, 663, 706, 791, 796, 806, 819, 824, 829, 830, 833, 838, 839, 846, 848, 855, 856, 860, 868, 872], "tf_cpp_min_log_level": 45, "mkdir": [45, 46, 47, 819, 828], "perceiv": [45, 46], "touch": 45, "io_processor": 45, "position_encod": 45, "jmp": 45, "tabul": 45, "29359": 45, "29k": 45, "67k": 45, "002": 45, "30179": 45, "47k": 45, "8107": 45, "9k": 45, "92k": 45, "itertool": 45, "preprocessor": 45, "vector": [45, 53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 139, 365, 366, 374, 375, 376, 378, 381, 382, 387, 398, 429, 434, 442, 444, 449, 484, 486, 488, 506, 510, 522, 541, 545, 562, 614, 629, 634, 636, 637, 660, 663, 668, 672, 673, 675, 677, 682, 687, 688, 692, 693, 694, 695, 776, 792, 870], "perceiverbackbon": 45, "input_preprocessor": 45, "_input_preprocessor": 45, "_encod": 45, "__call__": [45, 773, 792, 793, 794, 812, 864], "is_train": 45, "po": [45, 806], "input_mask": 45, "network_input_is_1d": 45, "_input_is_1d": 45, "queri": [45, 46, 61, 74, 84, 198, 212, 555, 581, 631, 634, 636, 663, 666, 792, 827, 829, 834, 851, 870], "decod": [45, 852], "cross": [45, 47, 62, 63, 85, 86, 98, 637, 638, 696, 697, 698, 812, 828, 829], "attend": [45, 636, 663], "encoder_queri": 45, "latent": [45, 640, 716, 717], "imagepreprocessor": 45, "deal": [45, 794, 816, 830, 837, 839, 841, 844, 855], "image_s": 45, "fourier_pos_config": 45, "position_encoding_typ": 45, "fourier": [45, 57, 80, 375, 398, 403, 404, 408, 409, 419, 420, 423, 549, 634], "fourier_position_encoding_kwarg": 45, "concat_po": 45, "max_resolut": 45, "num_band": [45, 58, 81, 549, 634], "sine_onli": 45, "prep_typ": 45, "spatial_downsampl": 45, "cross_attend_widening_factor": 45, "cross_attention_shape_for_attn": 45, "kv": 45, "dropout_prob": 45, "num_block": 45, "num_cross_attend_head": 45, "num_self_attend_head": 45, "num_self_attends_per_block": 45, "num_z_channel": 45, "self_attend_widening_factor": 45, "use_query_residu": 45, "z_index_dim": 45, "z_pos_enc_init_scal": 45, "perceiver_backbon": [45, 812], "perceiverencod": 45, "At": [45, 818, 819, 820, 823, 834, 844, 845, 860, 870], "publish": [45, 812, 855, 861, 864], "thankfulli": [45, 844], "perceiver_io": [45, 46], "imagenet_fourier_position_encod": 45, "pystat": 45, "imagenet_checkpoint": 45, "rb": 45, "ckpt": 45, "09": [45, 51, 56, 82, 89, 118, 278, 288, 615, 626, 632, 635, 740], "173": [45, 62, 637, 675], "194": 45, "125": [45, 57, 62, 85, 234, 346, 372, 377, 453, 632, 637, 692], "177": [45, 47], "193776248": 45, "185m": 45, "octet": 45, "184": 45, "80m": 45, "144mb": 45, "144": 45, "mean_rgb": 45, "stddev_rgb": 45, "im": 45, "denorm": 45, "resize_and_center_crop": 45, "crop": [45, 57, 80, 375, 404, 409, 420], "center": [45, 791], "image_height": [45, 47, 812], "image_width": [45, 812], "padded_center_crop_s": 45, "offset_height": 45, "offset_width": 45, "crop_window": 45, "inter_cub": 45, "ye": [45, 855], "dummy_input": [45, 812], "transpili": 45, "torch_perceiver_backbon": 45, "quicker": 45, "params_v": [45, 812, 864], "perceiverioclassifi": [45, 812], "max_pool": [45, 812], "Of": [45, 824, 840, 841, 852, 875, 876], "cours": [45, 819, 820, 823, 824, 831, 840, 841, 847, 852, 855, 875, 876], "468": 45, "huggingface_hub": 45, "multiprocess": [45, 74, 103, 634, 852, 855], "py39": 45, "132": [45, 80], "pyarrow": 45, "xxhash": 45, "212": [45, 57, 61, 80, 359, 372, 660], "pyyaml": 45, "2021": [45, 57, 80, 362, 372, 812], "aiohttp": 45, "async": 45, "timeout": [45, 74, 103, 586, 609, 634, 846], "0a3": 45, "async_timeout": 45, "frozenlist": 45, "manylinux_2_5_x86_64": [45, 50], "manylinux1_x86_64": [45, 50], "158": 45, "attr": [45, 829], "aiosign": 45, "multidict": 45, "114": [45, 375, 397, 407], "yarl": 45, "264": [45, 641, 718], "2022": [45, 46], "pytz": 45, "2020": [45, 823, 870], "dateutil": [45, 50], "wikiart": 45, "paint": [45, 812, 849, 859], "load_dataset": [45, 863, 864], "n_sampl": [45, 57, 80, 376, 378, 425, 433, 487], "10000": [45, 47, 53, 76, 138, 629], "huggan": 45, "split": [45, 46, 47, 51, 56, 57, 64, 73, 74, 79, 80, 87, 110, 111, 112, 113, 114, 115, 116, 117, 118, 211, 212, 213, 291, 295, 300, 301, 303, 348, 355, 367, 378, 470, 479, 499, 545, 572, 626, 631, 632, 634, 636, 639, 649, 656, 657, 711, 773, 788, 792, 812, 813, 820, 828, 848, 849, 855, 877], "wiki_art": 45, "gib": 45, "unknown": [45, 776], "huggan___parquet": 45, "36ee951979f9b56c": 45, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 45, "parquet": 45, "subsequ": [45, 801, 819, 824, 828, 829, 831, 836, 837, 840, 844, 853, 871], "reus": [45, 53, 76, 80, 87, 128, 462, 463, 470, 472, 474, 475, 476, 483, 499, 702, 703, 704, 706, 708, 709, 711, 713, 833, 844, 875], "curl": [45, 819], "2fwikiart": 45, "xferd": 45, "dload": 45, "upload": [45, 844], "spent": [45, 861], "25936": 45, "278k": 45, "abstract_expression": 45, "action_paint": 45, "analytical_cub": 45, "art_nouveau": 45, "baroqu": 45, "color_field_paint": 45, "contemporary_r": 45, "cubism": 45, "early_renaiss": 45, "expression": 45, "fauvism": 45, "high_renaiss": 45, "impression": 45, "mannerism_late_renaiss": 45, "minim": [45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 375, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 832, 840, 842, 847, 849, 863, 868, 876], "naive_art_primitiv": 45, "new_real": 45, "northern_renaiss": 45, "pointil": 45, "pop_art": 45, "post_impression": 45, "realism": 45, "rococo": 45, "romantic": 45, "symbol": [45, 805, 818, 819, 870, 871], "synthetic_cub": 45, "ukiyo_": 45, "custom": [45, 57, 80, 299, 311, 364, 367, 374, 776, 805, 814, 822, 828, 833, 838, 842, 844, 847, 853, 860, 870, 874, 875, 876], "hugginfac": 45, "customdataset": 45, "__len__": [45, 827], "__getitem__": [45, 74, 827], "idx": [45, 46, 47, 535, 634, 812, 830, 851], "random_split": 45, "224x224": 45, "val_siz": 45, "dataset_train": 45, "dataset_v": 45, "dataset_test": 45, "dataloader_train": 45, "dataloader_v": 45, "dataloader_test": 45, "batch": [45, 46, 47, 57, 58, 62, 74, 80, 81, 85, 211, 212, 375, 376, 377, 381, 389, 391, 392, 398, 411, 421, 438, 452, 454, 501, 502, 503, 506, 549, 552, 553, 614, 631, 634, 636, 637, 640, 642, 660, 661, 662, 663, 694, 715, 716, 717, 737, 776, 792, 795, 812, 827, 837, 842, 852, 868], "train_featur": 45, "train_label": 45, "imshow": [45, 46], "001": [45, 56, 57, 65, 77, 80, 82, 165, 263, 280, 338, 351, 372, 616, 630, 632, 635, 642, 737, 776, 852, 853], "train_step": 45, "running_loss": [45, 47, 812], "last_loss": 45, "training_load": 45, "intra": 45, "report": [45, 815, 818, 844], "zero_grad": 45, "999": [45, 59, 79, 82, 291, 615, 616, 621, 623, 632, 635, 796, 853], "epoch_numb": 45, "best_vloss": 45, "1_000_000": 45, "running_vloss": 45, "vdata": 45, "vinput": 45, "vlabel": 45, "voutput": 45, "vloss": 45, "avg_vloss": 45, "model_path": 45, "model_": 45, "state_dict": [45, 793, 794], "highest": [45, 57, 66, 80, 89, 319, 322, 369, 643, 739, 829], "energi": 45, "augment": 45, "mayb": [45, 46, 52, 812, 819, 828, 849, 851], "finetun": 45, "deploi": [45, 812, 828, 857, 864, 868, 869, 870, 872, 876], "percieverio": 46, "ai": [46, 828, 868, 872], "contribut": [46, 57, 80, 387, 525, 815, 817, 819, 820, 821, 826, 834, 835, 841, 842, 849, 856, 863, 874, 878], "invit": [46, 818, 821, 841, 847], "g4ar9q7dtn": 46, "step1": 46, "printf": 46, "8packag": 46, "share": [46, 74, 186, 630, 776, 777, 812, 825, 827, 831, 837, 839, 841, 842, 844, 847, 849, 860, 868, 869, 876], "googledr": 46, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 46, "file_id": 46, "drive": [46, 47], "uc": 46, "tee": [46, 819], "file_id_wget_cmd": 46, "perl": 46, "pe": 46, "g": [46, 48, 49, 57, 66, 68, 70, 72, 80, 89, 95, 97, 151, 180, 193, 240, 253, 273, 280, 283, 335, 336, 372, 375, 376, 378, 382, 387, 412, 414, 451, 492, 508, 509, 510, 511, 512, 523, 524, 630, 631, 632, 637, 641, 643, 645, 647, 673, 674, 678, 685, 687, 688, 694, 721, 725, 727, 730, 735, 739, 740, 741, 749, 750, 751, 752, 757, 758, 760, 762, 763, 765, 791, 810, 813, 818, 819, 822, 823, 825, 826, 827, 839, 841, 844, 849, 855, 857, 861, 866], "uuid": 46, "anywai": [46, 824, 838, 841], "bin": [46, 57, 80, 387, 520, 525, 819, 820, 823, 827], "bash": [46, 819, 820, 823], "step2": 46, "interpret": [46, 53, 57, 76, 80, 127, 128, 134, 140, 377, 387, 454, 522, 629, 828, 871], "sudo": [46, 819], "apt": [46, 819], "yf": 46, "step3": 46, "delet": [46, 820, 828], "xvzf": 46, "rm": [46, 48, 814, 820], "step4": 46, "symlink": 46, "unzip": [46, 47], "fr": 46, "l": [46, 57, 62, 79, 85, 267, 376, 377, 429, 452, 636, 637, 663, 667, 672, 673, 674, 677, 691, 820, 822], "ln": 46, "sf": 46, "la": 46, "step5": 46, "step6": 46, "ipkykernel": 46, "step7": 46, "engbjapanpython3": 46, "ipykernel": 46, "reconnect": 46, "sy": [46, 878], "oct": 46, "gcc": [46, 868, 875], "lf": 46, "upgrad": 46, "cuda11": 46, "cudnn805": 46, "cp38": [46, 50, 819], "helper": [46, 771, 773, 774, 780, 782, 783, 812, 816, 826, 829, 833, 834, 843, 852, 857], "feedforward": 46, "prenorm": 46, "perceiveriospec": 46, "fetch": [46, 557, 634, 819, 820, 823, 828], "ogbanugot": [46, 878], "xmartlab": 46, "caffeflow": 46, "fetch_class": 46, "class_label": 46, "ground_truth": 46, "127": [46, 54, 57, 62, 77, 80, 168, 359, 372, 630, 637, 675], "path_to_imag": 46, "get_imag": 46, "spine": 46, "set_vis": 46, "bottom": [46, 545, 634, 818, 819, 828, 834, 876], "tick_param": 46, "set_xticklabel": 46, "set_yticklabel": 46, "show_result": 46, "listdir": [46, 47], "endswith": 46, "this_dir": 46, "dirnam": 46, "join": [46, 47, 64, 74, 80, 87, 468, 469, 639, 700, 710, 812, 821], "add_subplot": 46, "xtick": 46, "ytick": 46, "green": [46, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 811, 818, 819, 820], "red": 46, "perceiver_io_img_classif": 46, "normalize_imag": 46, "batch_shap": [46, 61, 66, 76, 84, 89, 132, 141, 629, 636, 637, 643, 662, 666, 695, 738, 792, 847, 849, 851], "img_dim": 46, "queries_dim": 46, "learn_queri": 46, "load_weight": 46, "num_input_ax": 46, "network_depth": 46, "num_lat_att_per_lay": 46, "query_shap": 46, "num_fourier_freq_band": 46, "weight_fpath": 46, "pretrained_weight": 46, "isfil": 46, "noinspect": [46, 851], "pybroadexcept": 46, "from_disk_as_pickl": 46, "action": [46, 810, 817, 828, 831, 835, 844], "fail": [46, 771, 816, 819, 820, 823, 828, 829, 831, 835, 838, 840, 841, 842], "placehold": [46, 641, 725, 730, 735, 792, 820, 824, 836, 857], "pyunboundlocalvari": 46, "max_fourier_freq": 46, "random_uniform": [46, 50, 66, 89, 643, 812, 830, 833, 844, 849, 853], "817437": 46, "gpu_bfc_alloc": 46, "orig_valu": 46, "tf_force_gpu_allow_growth": 46, "autograd": [46, 855], "declar": [46, 820, 843], "_3r2_73j": 47, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 47, "1297564": 47, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 47, "le3bu3_v": 47, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 47, "third": [47, 97, 98, 378, 471, 498, 637, 645, 687, 749, 826, 829, 840, 855, 869, 870, 876], "parti": [47, 826, 829, 855, 860, 869, 870, 876], "mount": [47, 814, 820], "mydriv": 47, "chdir": 47, "kaggl": 47, "medium": 47, "articl": [47, 812, 835], "insert": [47, 57, 67, 80, 90, 378, 459, 469, 639, 641, 644, 646, 702, 722, 723, 744, 755, 828, 835], "www": [47, 335, 336, 372], "your_kaggle_usernam": 47, "competit": 47, "digit": 47, "zip": [47, 849], "readabl": [47, 824, 827, 833, 835, 836, 844, 845, 851, 852], "chmod": [47, 819, 828], "recent": [47, 809, 819, 820, 844, 859, 860], "forc": [47, 826, 828, 830], "archiv": [47, 819], "inflat": [47, 829], "sample_submiss": 47, "later": [47, 74, 539, 634, 818, 835, 840, 844, 845, 870], "my": [47, 828], "label_df": 47, "mod_train": 47, "data_valu": 47, "test_data_valu": 47, "correct_label": 47, "train_path": 47, "str": [47, 49, 52, 53, 57, 58, 61, 62, 63, 64, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 139, 141, 143, 149, 150, 153, 155, 157, 158, 159, 160, 164, 165, 168, 169, 170, 171, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 192, 193, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 375, 376, 377, 378, 381, 387, 390, 394, 395, 396, 398, 399, 400, 401, 403, 404, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 430, 445, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 474, 490, 492, 493, 494, 495, 496, 501, 502, 503, 504, 505, 507, 509, 511, 522, 523, 524, 525, 532, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 579, 580, 589, 591, 592, 593, 595, 597, 599, 600, 613, 617, 624, 628, 629, 630, 631, 634, 635, 636, 637, 638, 639, 640, 641, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 688, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 724, 725, 730, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 753, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 774, 776, 777, 782, 784, 792, 794, 795, 805, 806, 810, 829, 830, 833, 837, 840, 841, 845, 849, 854, 863, 864, 865], "makedir": 47, "valid_path": 47, "28x28": 47, "pic": 47, "int8": [47, 54, 66, 76, 77, 89, 134, 161, 166, 168, 169, 173, 629, 630, 739, 776, 777, 829, 844], "new_img": [47, 49], "builder": [47, 814], "batchwis": 47, "subset": [47, 778, 824, 828, 832, 836, 839, 841, 844, 849, 870], "goe": [47, 378, 467, 822, 835, 840, 847], "seed_valu": [47, 74, 643, 742], "randomize_dataset": 47, "create_dataset": 47, "num_examples_per_class": 47, "img_arrai": 47, "class_nam": [47, 773], "dir": [47, 852], "img_path": 47, "imread": [47, 49, 852], "imread_grayscal": 47, "generate_batch": [47, 812], "dataset_s": [47, 812], "ivyerror": [47, 807, 812, 833], "smaller": [47, 57, 64, 70, 80, 87, 302, 334, 351, 367, 372, 375, 377, 387, 404, 409, 420, 452, 522, 523, 524, 545, 634, 639, 647, 699, 707, 757, 758, 763, 765, 812, 820, 833, 849], "yield": [47, 67, 320, 321, 369, 378, 484, 644, 748, 812, 828], "x_batch_inst": 47, "form": [47, 49, 52, 53, 57, 62, 74, 76, 85, 96, 97, 98, 127, 128, 140, 145, 146, 312, 315, 329, 338, 369, 372, 376, 378, 429, 440, 471, 480, 484, 500, 535, 596, 598, 629, 634, 636, 637, 641, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 719, 730, 776, 791, 813, 818, 819, 837, 844, 847, 853, 854, 860, 870, 871, 876], "intialis": 47, "num_epoch": [47, 812], "inherit": [47, 824, 827, 833, 851, 855, 857], "creation": [47, 57, 74, 80, 103, 826, 829, 830, 836, 838, 841, 842, 844, 845, 849, 863, 870, 872, 876], "inform": [47, 49, 54, 57, 59, 77, 82, 165, 168, 319, 369, 535, 624, 630, 634, 635, 640, 717, 810, 812, 817, 818, 819, 820, 821, 823, 827, 828, 833, 837, 838, 840, 842, 844, 873], "insid": [47, 62, 85, 103, 378, 494, 637, 680, 774, 819, 820, 824, 827, 829, 830, 834, 837, 838, 844, 845, 863, 876], "ivynet": [47, 812], "h_w": [47, 812], "input_channel": [47, 792, 812, 849, 853], "output_channel": [47, 792, 812, 853], "gelu": [47, 48, 51, 73, 626, 788, 812], "image_widht": 47, "start_dim": [47, 57, 80, 378, 474, 812], "end_dim": [47, 57, 80, 378, 474, 812], "gpu_is_avail": [47, 631, 812], "120": [47, 70, 93, 103, 637, 682, 757, 812], "__name__": [47, 48, 50, 601, 634, 833], "heavi": [47, 778, 819, 841, 842, 847, 871], "lift": [47, 842, 871], "num_correct": [47, 812], "y_pred": 47, "epoch_loss": [47, 812], "field": [47, 62, 68, 85, 91, 376, 378, 429, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751, 828, 868, 876], "training_accuraci": [47, 812], "train_loss": 47, "train_correct": [47, 812], "train_loop": [47, 812], "leav": [47, 52, 57, 75, 77, 79, 80, 81, 84, 85, 87, 93, 103, 165, 168, 240, 297, 300, 301, 307, 378, 468, 469, 474, 486, 487, 488, 504, 505, 507, 523, 524, 529, 549, 597, 639, 641, 655, 666, 671, 687, 701, 705, 710, 712, 713, 718, 719, 728, 729, 730, 731, 757, 758, 805, 812, 818, 827, 828, 829, 831, 832, 836, 837, 840, 841, 844, 852, 853], "xbatch": [47, 812], "ybatch": [47, 812], "to_devic": [47, 55, 78, 196, 631, 794, 812], "entropi": [47, 63, 86, 638, 696, 697, 698, 812], "hot": [47, 53, 76, 141, 629, 812], "ybatch_encod": [47, 812], "one_hot": [47, 53, 76, 629, 812, 854], "loss_prob": [47, 812], "ret_grad_idx": [47, 617, 635, 773, 839], "xs_grad_idx": [47, 617, 635, 773, 839], "batch_loss": [47, 812], "set_descript": [47, 812], "set_postfix": [47, 812], "accuracy_percentag": [47, 812], "naverag": [47, 812], "6f": [47, 812], "_train_summari": 47, "writer": 47, "writerow": 47, "157it": 47, "06it": 47, "475401": 47, "11it": 47, "081436": 47, "13it": 47, "0187": 47, "029279": 47, "0324": 47, "008382": 47, "07it": 47, "00456": 47, "003816": 47, "82it": 47, "00277": 47, "002179": 47, "05it": 47, "00175": 47, "001569": 47, "00147": 47, "09it": 47, "00128": 47, "001005": 47, "106": 47, "10it": 47, "00112": 47, "000837": 47, "129": [47, 636, 655, 657], "12it": 47, "000989": 47, "000709": 47, "145": 47, "000873": 47, "000606": 47, "08it": 47, "000774": 47, "000524": 47, "000688": 47, "000455": 47, "000613": 47, "000398": 47, "000547": 47, "000350": 47, "205": 47, "000488": 47, "000308": 47, "218": 47, "000437": 47, "000273": 47, "000391": 47, "000243": 47, "238": [47, 247, 632], "98it": 47, "000351": 47, "000216": 47, "260": 47, "plot_summari": 47, "whitegrid": 47, "nrow": 47, "ncol": 47, "fontweight": 47, "bold": 47, "set_xlabel": 47, "set_ylabel": 47, "savefig": 47, "summary_plot": 47, "png": [47, 49, 50, 852], "save_weight": [47, 794], "model_param": 47, "ivynet_weight": 47, "hdf5": [47, 74, 794, 852], "deitimageprocessor": 48, "tfdeitforimageclassif": 48, "tfdeitforimageclassificationwithteach": 48, "distillation_classifi": 48, "cls_classifi": 48, "randomli": [48, 375, 399, 400, 401, 636, 659, 776, 777, 778, 779, 784, 792], "henc": [48, 68, 223, 338, 372, 632, 639, 645, 702, 749, 750, 751, 752, 801, 819, 827, 828, 829, 840, 844], "image_processor": [48, 863, 864], "distil": [48, 871], "patch16": 48, "outputs_from_original_model": 48, "bertforsequenceclassif": 48, "bertforpretrain": 48, "NOT": [48, 268, 632, 805, 818], "probabl": [48, 57, 61, 63, 66, 80, 84, 86, 89, 375, 377, 382, 387, 399, 400, 401, 454, 508, 522, 525, 529, 636, 638, 643, 659, 663, 666, 696, 738, 778, 791, 792, 812, 844, 856, 861], "ptarmigan": 48, "rf": [48, 820], "branch": [48, 228, 240, 243, 245, 273, 285, 286, 287, 290, 632, 819, 820, 823, 828, 835, 855, 863, 870], "moduleconvert": [48, 789, 794], "mc": 48, "from_keras_modul": [48, 789], "compiled_func": 48, "return_graph": [48, 50], "compiled_output": 48, "diverg": [48, 57, 80, 247, 377, 454, 632], "_all_funct": [48, 50], "convert_to_tensor_v2_with_dispatch": 48, "transpose_v2": 48, "convolution_v2": 48, "bias_add": 48, "binary_op_wrapp": 48, "cast": [48, 54, 56, 57, 62, 70, 77, 79, 85, 93, 152, 155, 180, 274, 387, 523, 524, 630, 632, 637, 647, 678, 694, 757, 758, 761, 763, 765, 777, 837, 842, 849, 867], "moments_v2": 48, "batch_norm": [48, 50, 57, 80, 381], "tensordot": [48, 62, 85, 637, 806, 829], "softmax_v2": 48, "_slice_help": 48, "save_to_disk": [48, 50, 794], "12265048989200113": 48, "11038777417100028": 48, "1167045795539998": 48, "ivy_api_kei": 49, "obj": [49, 127, 128, 557, 629, 634, 863, 864, 865], "combo": [49, 852], "permit": [49, 824, 836, 841, 844, 847], "usabl": [49, 836, 845], "neither": [49, 223, 240, 247, 273, 632, 637, 689, 828, 841, 847], "nor": [49, 223, 240, 247, 273, 632, 828, 841, 874], "specifc": 49, "invoc": 49, "externally_link": 49, "logo": 49, "patch": [49, 291, 632, 829, 870], "cv2_imshow": 49, "envrion": 49, "canni": 49, "original_img": 49, "fn_arg": 49, "dilate_edg": 49, "morphologi": 49, "hk_model": 49, "resnet18": [49, 50], "keras_model": 49, "odsc": 49, "talk": [49, 875], "228": 50, "352": [50, 84, 636, 660, 833], "nvidia_ml_py3": 50, "19190": 50, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 50, "b9": 50, "b1": [50, 637, 686], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 50, "cycler": 50, "fonttool": 50, "965": 50, "pillow": 50, "kiwisolv": 50, "show_graph": [50, 794], "to_ivy_modul": [50, 789, 854], "image_dim": 50, "v0": [50, 853], "urlerror": 50, "dev_str": 50, "comp_network": 50, "time_chronolog": 50, "ret0_nc": 50, "ret1_nc": 50, "ret0_c": 50, "ret1_c": 50, "pytorch_vision_v0": 50, "distribut": [50, 57, 63, 66, 80, 86, 89, 375, 376, 377, 382, 399, 400, 401, 434, 445, 451, 454, 456, 457, 459, 508, 509, 510, 511, 512, 638, 643, 696, 697, 698, 738, 739, 740, 741, 743, 791, 792, 818, 819, 828, 830, 855, 870, 873], "distributed_c10d": 50, "262": 50, "reduce_op": 50, "reduceop": 50, "004645566477999864": 50, "0044566806820000695": 50, "attribut": [50, 74, 165, 166, 167, 168, 199, 200, 208, 550, 551, 630, 631, 634, 774, 825, 826, 827, 832, 833, 837, 838, 840, 841, 847, 850, 851, 852, 853], "definit": [50, 56, 62, 79, 85, 292, 632, 637, 667, 812, 816, 820, 824, 829, 834, 837, 851, 864], "max_pool2d": [50, 57, 80, 375, 395], "__iadd__": 50, "adaptive_avg_pool2d": [50, 57, 80, 375], "_arraywithactiv": [51, 102], "abc": [51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 106, 548, 634, 641, 736, 791, 796, 805, 806, 851], "_abc_impl": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc_data": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "approxim": [51, 56, 57, 62, 73, 79, 80, 85, 97, 100, 110, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 247, 261, 262, 263, 264, 278, 285, 286, 290, 291, 292, 349, 359, 372, 377, 456, 457, 626, 632, 637, 680, 683, 788, 832, 841], "complex_mod": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "variant": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 683, 684, 685, 687, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 824, 831, 832, 847], "docstr": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 637, 639, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 818, 822, 826, 835, 836, 837, 838, 841, 843, 845], "liter": [51, 56, 57, 62, 73, 79, 80, 85, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 375, 376, 378, 381, 397, 407, 411, 419, 434, 440, 445, 448, 451, 484, 506, 626, 632, 637, 646, 678, 694, 755, 788, 847], "magnitud": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 220, 223, 240, 247, 273, 291, 295, 300, 301, 303, 367, 626, 632, 637, 687, 688, 788, 829], "handle_complex_input": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "element": [51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 98, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 129, 135, 136, 145, 146, 147, 163, 165, 168, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 342, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 387, 388, 399, 400, 401, 404, 409, 412, 413, 414, 418, 420, 421, 422, 428, 429, 430, 452, 462, 463, 464, 474, 475, 476, 478, 481, 491, 492, 494, 496, 498, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 537, 540, 541, 552, 553, 569, 571, 591, 592, 593, 595, 599, 600, 626, 629, 632, 634, 636, 637, 639, 641, 643, 644, 645, 646, 647, 648, 659, 668, 670, 672, 673, 677, 682, 684, 685, 687, 691, 699, 702, 703, 704, 705, 706, 707, 708, 709, 718, 721, 727, 738, 746, 747, 748, 749, 750, 751, 752, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 792, 806, 832, 842, 844, 847, 849, 874], "138": [51, 110, 626], "165": [51, 110, 626, 636, 660], "hardswish": [51, 57, 73, 80, 298, 367, 626, 788], "leaky_relu": [51, 73, 80, 295, 626, 777], "alpha": [51, 56, 57, 73, 79, 80, 107, 112, 223, 289, 295, 296, 304, 308, 314, 367, 369, 376, 381, 382, 430, 506, 509, 510, 511, 626, 632, 788, 836, 841, 842], "float": [51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 73, 76, 77, 79, 80, 81, 82, 84, 85, 86, 88, 89, 93, 97, 100, 102, 112, 118, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 142, 143, 148, 152, 156, 160, 165, 169, 173, 179, 180, 183, 189, 198, 207, 211, 212, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 251, 253, 254, 255, 256, 257, 259, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 302, 304, 307, 308, 310, 311, 312, 313, 314, 315, 317, 318, 319, 334, 335, 336, 337, 345, 346, 351, 353, 354, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 399, 400, 401, 418, 419, 426, 429, 430, 432, 445, 449, 451, 452, 453, 457, 458, 473, 491, 501, 502, 503, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 530, 531, 532, 539, 540, 541, 549, 558, 582, 583, 586, 592, 593, 613, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 640, 641, 642, 643, 644, 645, 647, 659, 661, 663, 666, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 696, 697, 698, 715, 716, 717, 724, 737, 740, 741, 747, 749, 750, 751, 752, 757, 758, 760, 761, 762, 763, 764, 765, 766, 773, 776, 777, 779, 788, 791, 792, 795, 796, 810, 816, 823, 827, 829, 832, 833, 834, 836, 837, 839, 840, 842, 844, 845, 847, 849, 851, 853], "slope": [51, 57, 73, 80, 112, 295, 296, 302, 304, 308, 367, 626, 788], "leaki": [51, 73, 112, 626, 788], "log_softmax": [51, 73, 626, 788], "0719": [51, 73, 113], "221": [51, 113], "mish": [51, 73, 626, 788], "30340147": [51, 114, 626], "86509842": [51, 73, 114, 626], "269": [51, 116], "881": [51, 56, 79, 116, 226, 239, 279, 632], "422": [51, 117, 626], "155": [51, 84, 117, 626, 636, 660], "softplu": [51, 73, 626, 788, 847], "beta": [51, 57, 65, 73, 80, 88, 118, 304, 308, 314, 317, 318, 367, 369, 376, 377, 381, 382, 430, 458, 506, 510, 511, 626, 642, 737, 788, 847], "threshold": [51, 56, 57, 73, 79, 80, 118, 271, 272, 311, 337, 367, 372, 377, 378, 453, 458, 491, 626, 632, 788, 847], "union": [51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 568, 569, 571, 572, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 791, 796, 797, 824, 827, 829, 830, 831, 833, 836, 837, 840, 845, 847, 849, 854, 863, 864, 865], "3461": [51, 73, 118, 626], "6491": [51, 73, 118, 626], "_array_to_new_backend": 52, "_to_ivi": 52, "_to_n": 52, "to_ignor": [52, 72, 95, 641, 729, 730], "_to_new_backend": 52, "args_to_ivi": 52, "include_deriv": [52, 75, 641, 719, 730, 773], "nest": [52, 74, 75, 103, 106, 243, 567, 597, 614, 617, 632, 634, 635, 640, 715, 716, 718, 719, 720, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 796, 824, 826, 827, 837, 839, 845, 852, 853, 855, 857, 870], "unchang": [52, 56, 375, 378, 420, 474, 636, 659], "deriv": [52, 53, 57, 59, 75, 76, 80, 82, 131, 136, 143, 149, 313, 317, 342, 369, 372, 615, 616, 619, 620, 621, 622, 623, 629, 635, 640, 641, 717, 719, 730, 794, 796, 797, 829, 830, 851, 853], "word": [52, 126, 378, 477, 629, 643, 741, 789, 792, 827, 840, 841, 857], "args_to_n": [52, 840], "cont_inplac": 52, "decid": [52, 74, 641, 729, 730, 812, 818, 819, 829, 847], "args_to_new_backend": 52, "shallow": [52, 641, 725, 726, 730, 735, 736], "nativevari": 52, "mutabl": [52, 641, 719, 725, 726, 730, 735, 736, 825], "to_ivi": [52, 75, 641, 731, 840], "leaf": [52, 74, 81, 93, 103, 548, 641, 728, 729, 731, 758, 827, 837, 852], "travers": [52, 75, 641, 722, 730, 827, 829, 833, 849], "lowest": [52, 57, 66, 75, 80, 89, 387, 525, 641, 643, 730, 739, 806, 837, 855, 857, 867, 871, 875], "search": [52, 57, 75, 80, 744, 745, 784, 817, 819, 827, 831, 834, 844, 845, 859], "to_new_backend": 52, "_arraywithcr": [53, 102], "boolean": [53, 54, 56, 57, 58, 64, 67, 70, 74, 76, 77, 79, 80, 81, 87, 90, 93, 102, 103, 123, 125, 127, 128, 129, 135, 152, 168, 170, 172, 173, 176, 192, 202, 210, 216, 230, 231, 232, 233, 234, 235, 267, 268, 269, 270, 335, 336, 351, 372, 376, 378, 434, 445, 451, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 492, 499, 534, 537, 548, 555, 558, 559, 563, 564, 565, 566, 567, 568, 569, 578, 581, 584, 585, 587, 588, 613, 628, 629, 630, 631, 632, 634, 636, 639, 640, 641, 644, 647, 663, 702, 703, 704, 706, 708, 709, 711, 713, 715, 716, 728, 746, 747, 748, 760, 762, 776, 777, 778, 779, 784, 795, 827, 829, 837, 841, 844, 847], "never": [53, 57, 64, 76, 80, 87, 128, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 820, 829, 840, 841, 844], "valueerror": [53, 57, 64, 76, 80, 87, 91, 128, 375, 377, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 499, 639, 702, 703, 704, 706, 708, 709, 711, 713, 752, 778, 807, 833], "buffer": [53, 76, 80, 87, 128, 134, 462, 463, 470, 472, 474, 475, 476, 483, 499, 629, 702, 703, 704, 706, 708, 709, 711, 713, 793, 794, 840, 855], "nativedtyp": [53, 54, 57, 61, 62, 66, 67, 70, 76, 80, 85, 89, 90, 93, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 151, 152, 157, 158, 159, 160, 161, 162, 163, 164, 169, 170, 174, 176, 178, 182, 192, 312, 313, 314, 315, 316, 317, 318, 333, 340, 356, 369, 372, 382, 387, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 629, 630, 636, 637, 643, 644, 646, 647, 659, 678, 694, 739, 740, 741, 744, 745, 755, 757, 758, 761, 763, 765, 791, 829, 830, 836, 845, 849], "datatyp": [53, 57, 74, 76, 80, 128, 136, 140, 157, 178, 182, 375, 423, 629, 630, 771, 845, 863], "nativedevic": [53, 55, 57, 66, 76, 78, 80, 89, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 194, 195, 196, 197, 198, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 312, 313, 328, 369, 382, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 791, 796, 797, 829, 830, 833, 836, 845], "39999998": [53, 127, 128, 629, 645, 750], "5999999": [53, 57, 80, 84, 127, 128, 297, 367, 376, 425, 629, 636, 659, 666], "0999999": [53, 70, 127, 128, 297, 307, 310, 353, 367, 372, 629, 761], "10000038": [53, 127, 128, 629], "90786433e": [53, 127, 128, 629], "310": [53, 127, 128, 629], "copy_arrai": [53, 76, 629], "to_ivy_arrai": [53, 76, 129, 629], "empty_lik": [53, 57, 76, 80, 264, 376, 428, 629, 632], "uniniti": [53, 130, 131, 629, 835], "from_dlpack": [53, 76, 629], "full_lik": [53, 76, 629, 845], "fill_valu": [53, 57, 67, 76, 80, 90, 135, 136, 252, 260, 378, 382, 492, 512, 629, 632, 644, 747, 829, 842, 845], "scalar": [53, 56, 57, 58, 62, 73, 76, 79, 80, 81, 85, 97, 112, 136, 141, 223, 244, 289, 295, 338, 339, 341, 346, 349, 351, 353, 358, 372, 375, 376, 377, 378, 423, 430, 452, 462, 463, 464, 473, 478, 600, 613, 629, 632, 634, 637, 694, 829, 839, 841, 855, 870], "fill": [53, 56, 57, 66, 67, 74, 76, 79, 80, 89, 90, 130, 135, 136, 138, 141, 142, 143, 148, 149, 274, 313, 369, 376, 378, 382, 434, 440, 445, 451, 473, 492, 493, 509, 511, 512, 629, 632, 643, 644, 739, 747, 791, 818, 842], "000123": [53, 136, 629], "stop": [53, 57, 59, 76, 80, 82, 126, 137, 138, 213, 376, 445, 451, 578, 616, 619, 621, 622, 623, 624, 629, 631, 634, 635, 640, 641, 715, 716, 717, 729, 796, 810, 836, 839, 847, 849, 855, 870], "num": [53, 76, 137, 138, 629, 776, 820, 836, 849], "endpoint": [53, 76, 137, 138, 629, 791, 836], "logspac": [53, 76, 629, 849], "sequenc": [53, 57, 61, 62, 64, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 132, 134, 136, 138, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 365, 366, 369, 372, 373, 374, 375, 376, 378, 382, 387, 388, 390, 391, 392, 399, 400, 401, 403, 404, 408, 409, 411, 418, 419, 420, 421, 422, 425, 433, 434, 435, 437, 443, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 469, 470, 471, 477, 479, 480, 482, 483, 485, 488, 490, 492, 493, 494, 496, 499, 500, 501, 503, 504, 505, 507, 509, 510, 522, 523, 524, 525, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 618, 619, 624, 629, 632, 634, 635, 636, 637, 639, 641, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 718, 725, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 797, 820, 828, 829, 830, 831, 833, 844, 845, 847, 849, 854, 873], "on_valu": [53, 76, 138, 141, 629], "off_valu": [53, 76, 138, 141, 629], "evenli": [53, 56, 57, 61, 64, 74, 76, 79, 80, 84, 87, 126, 137, 138, 292, 375, 418, 422, 629, 632, 636, 639, 649, 650, 651, 652, 654, 656, 658, 708], "hint": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 824, 832, 834, 836, 837, 840, 841, 845], "simplic": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 832, 847, 853], "nestabl": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 822, 831, 832, 840, 844, 857], "464": [53, 56, 89, 138, 227, 228, 632], "15888336": [53, 138], "2154": [53, 138], "43469003": [53, 138], "meshgrid": [53, 76, 629], "spars": [53, 57, 63, 76, 80, 86, 139, 316, 369, 376, 434, 445, 451, 629, 638, 698], "xy": [53, 76, 139, 629], "coordin": [53, 56, 67, 79, 80, 90, 139, 147, 228, 290, 320, 321, 328, 349, 369, 383, 513, 629, 632, 644, 747], "conserv": [53, 139, 629], "cartesian": [53, 139, 629], "matrix": [53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 102, 139, 145, 146, 147, 328, 329, 369, 376, 378, 387, 426, 429, 430, 433, 434, 435, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 482, 522, 534, 540, 629, 634, 636, 637, 660, 667, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 695, 776, 778, 791, 792, 806, 810, 818, 829, 841, 868, 870], "ij": [53, 70, 139, 629, 647, 759, 806], "rank": [53, 57, 62, 64, 71, 80, 85, 87, 94, 97, 98, 99, 100, 101, 106, 139, 323, 324, 325, 326, 327, 369, 376, 378, 387, 434, 435, 445, 448, 451, 484, 492, 496, 532, 629, 637, 639, 644, 648, 668, 670, 678, 680, 684, 686, 691, 693, 694, 701, 702, 710, 713, 714, 747, 767, 768, 813, 878], "ni": [53, 139, 629], "xi": [53, 139, 629], "scatter": [53, 58, 76, 81, 141, 576, 577, 629, 634, 826, 840, 847, 877], "j": [53, 56, 57, 58, 62, 70, 76, 79, 80, 85, 97, 125, 141, 221, 222, 223, 224, 226, 229, 238, 240, 243, 245, 253, 261, 263, 267, 273, 284, 286, 287, 290, 291, 338, 372, 375, 376, 387, 403, 404, 408, 419, 420, 424, 429, 431, 442, 448, 532, 537, 628, 629, 632, 634, 637, 647, 672, 691, 759, 806, 820, 822, 826, 863, 866], "unless": [53, 57, 62, 76, 80, 141, 273, 334, 351, 356, 372, 629, 632, 637, 680, 825, 830, 840, 855, 864, 865], "ones_lik": [53, 76, 629, 825, 854, 867], "tril": [53, 76, 629], "whose": [53, 56, 57, 58, 62, 64, 68, 70, 76, 79, 80, 81, 85, 87, 91, 93, 98, 100, 102, 136, 145, 146, 222, 226, 229, 237, 238, 239, 278, 279, 285, 286, 290, 291, 292, 329, 343, 344, 348, 352, 353, 355, 359, 369, 376, 378, 429, 450, 483, 492, 498, 539, 595, 629, 632, 634, 637, 639, 645, 647, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 694, 703, 707, 749, 750, 751, 758, 759, 778, 815, 832, 844], "innermost": [53, 57, 62, 85, 145, 146, 329, 369, 376, 429, 629, 637, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691], "mxn": [53, 57, 62, 85, 145, 146, 329, 369, 629, 637, 671, 678, 680, 681, 683, 684, 688, 691], "matric": [53, 57, 62, 80, 85, 97, 98, 102, 139, 145, 146, 329, 369, 376, 378, 429, 434, 435, 437, 443, 444, 449, 473, 629, 636, 637, 660, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 692, 778, 816, 834, 870], "diagon": [53, 57, 62, 80, 85, 98, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 430, 440, 446, 473, 629, 637, 670, 691], "triangular": [53, 57, 62, 85, 145, 146, 147, 328, 329, 369, 376, 446, 629, 637, 667, 673, 674, 680, 684], "triu": [53, 76, 629], "upper": [53, 57, 62, 66, 80, 85, 89, 132, 146, 147, 313, 329, 369, 376, 387, 446, 525, 629, 637, 643, 667, 673, 674, 684, 741, 829, 840, 844], "zeros_lik": [53, 57, 76, 152, 269, 378, 492, 615, 616, 619, 621, 622, 623, 629, 630, 632, 635, 637, 639, 684, 699, 841, 847], "data_typ": [54, 57, 77, 80, 182, 630, 826, 829, 844, 845], "_arraywithdatatyp": [54, 102], "irrespect": [54, 62, 77, 85, 152, 630, 637, 687, 827, 840, 851, 877], "promot": [54, 56, 57, 62, 77, 79, 80, 85, 92, 102, 103, 152, 155, 178, 179, 180, 186, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 346, 354, 359, 372, 375, 387, 419, 522, 585, 608, 630, 632, 634, 637, 639, 647, 667, 668, 675, 676, 677, 678, 679, 680, 682, 683, 685, 686, 693, 694, 700, 710, 753, 761, 764, 776, 777, 821, 823, 832, 833, 837, 846], "nan": [54, 56, 57, 58, 68, 70, 77, 79, 80, 81, 152, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 248, 249, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 279, 282, 283, 284, 285, 286, 287, 290, 291, 293, 300, 334, 335, 336, 347, 351, 356, 359, 367, 372, 378, 387, 492, 520, 521, 528, 529, 530, 531, 558, 613, 627, 630, 632, 634, 645, 647, 648, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 767, 768, 776, 779, 823, 829, 832, 839, 845, 846], "infin": [54, 56, 58, 62, 77, 79, 85, 152, 220, 221, 222, 223, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 282, 283, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 558, 627, 630, 632, 634, 637, 647, 648, 685, 694, 760, 762, 767, 768, 823, 832], "desir": [54, 55, 57, 67, 70, 74, 77, 78, 80, 90, 93, 97, 152, 154, 155, 214, 319, 360, 369, 372, 378, 387, 482, 528, 531, 532, 630, 631, 637, 644, 647, 689, 746, 761, 791, 792, 820, 825, 828, 829, 830, 841, 849, 859, 863, 870], "broadcast_arrai": [54, 77, 630], "mix": [54, 56, 77, 79, 80, 81, 86, 89, 102, 103, 153, 166, 167, 180, 199, 200, 230, 233, 234, 235, 240, 241, 247, 251, 259, 260, 270, 273, 276, 282, 377, 387, 458, 529, 548, 550, 551, 552, 553, 562, 597, 600, 630, 631, 632, 634, 636, 637, 638, 639, 642, 647, 650, 652, 655, 657, 658, 660, 666, 667, 689, 696, 698, 699, 737, 759, 761, 764, 777, 779, 818, 822, 829, 830, 831, 840, 847, 849, 857, 870, 874, 876], "broadcast_to": [54, 77, 630, 829], "can_cast": [54, 77, 630, 829, 837, 841], "accord": [54, 57, 58, 64, 70, 77, 87, 93, 155, 165, 223, 234, 240, 247, 273, 284, 319, 369, 375, 378, 420, 484, 552, 555, 576, 577, 630, 632, 634, 637, 639, 647, 693, 701, 714, 764, 766, 771, 778, 798, 805, 818, 819, 823, 829, 835, 837, 841, 844], "finfo": [54, 77, 630, 844], "resolut": [54, 77, 165, 630, 820], "4028235e": [54, 165, 630], "iinfo": [54, 77, 630], "integ": [54, 56, 57, 61, 62, 64, 66, 70, 71, 74, 79, 80, 81, 84, 85, 87, 89, 93, 94, 102, 103, 126, 135, 168, 169, 175, 179, 180, 184, 220, 230, 231, 232, 233, 234, 235, 236, 246, 247, 258, 270, 275, 278, 282, 283, 293, 294, 330, 331, 332, 335, 336, 340, 345, 346, 369, 372, 375, 378, 382, 385, 387, 403, 408, 418, 421, 422, 423, 470, 479, 484, 492, 496, 499, 508, 509, 510, 511, 512, 514, 515, 520, 522, 523, 524, 529, 532, 555, 571, 581, 614, 629, 630, 632, 634, 636, 637, 639, 643, 646, 647, 648, 649, 650, 651, 652, 654, 656, 658, 668, 670, 679, 693, 694, 708, 738, 739, 740, 741, 742, 743, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 784, 792, 806, 820, 827, 829, 839, 842, 844, 849, 851], "119": [54, 168], "1220": [54, 168], "int16": [54, 57, 66, 70, 77, 89, 155, 159, 161, 166, 168, 175, 190, 387, 523, 524, 630, 647, 739, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "32768": [54, 77, 168, 593, 634], "32767": [54, 77, 168], "is_bool_dtyp": [54, 77, 630], "is_float_dtyp": [54, 77, 630, 845], "is_int_dtyp": [54, 77, 630, 842, 845], "is_uint_dtyp": [54, 77, 630, 842, 845], "result_typ": [54, 77, 630, 829], "arrays_and_dtyp": [54, 77, 180, 630], "_arraywithdevic": [55, 102], "move": [55, 57, 78, 80, 147, 210, 214, 218, 328, 369, 378, 483, 629, 631, 794, 812, 820, 830, 845], "addit": [55, 57, 58, 65, 78, 80, 81, 88, 123, 125, 214, 223, 283, 377, 381, 387, 452, 506, 521, 526, 545, 546, 547, 614, 628, 631, 632, 634, 636, 640, 642, 663, 717, 737, 792, 806, 818, 819, 820, 825, 829, 831, 832, 835, 837, 839, 840, 841, 844, 845, 847, 851, 852, 854, 863, 870, 871, 872, 876], "__dlpack__": [55, 78, 133, 214, 629, 631], "caveat": [55, 78, 214, 377, 456, 631], "portabl": [55, 78, 214, 631, 812, 868], "_arraywithelementwis": [56, 102], "ab": [56, 62, 72, 79, 95, 102, 103, 278, 334, 351, 372, 378, 491, 632, 637, 641, 678, 688, 694, 726, 729, 773, 805, 806, 816, 824, 829, 834, 838, 841, 844, 867], "absolut": [56, 57, 62, 72, 74, 79, 80, 85, 102, 220, 284, 334, 351, 354, 360, 372, 376, 377, 430, 447, 453, 455, 632, 637, 678, 679, 680, 685, 771, 773, 776, 778, 779, 813, 819], "aco": [56, 79, 632], "invers": [56, 57, 62, 79, 80, 85, 221, 222, 225, 226, 227, 228, 229, 344, 372, 375, 385, 398, 407, 409, 419, 514, 632, 637, 676, 679, 683, 798, 829], "cosin": [56, 79, 221, 222, 237, 238, 312, 315, 369, 375, 397, 407, 632, 792], "acosh": [56, 79, 166, 167, 630, 632, 816, 834], "area": [56, 57, 79, 80, 84, 222, 226, 229, 375, 411, 418, 422, 632, 815, 840, 847, 860, 866], "hyperbol": [56, 79, 222, 226, 229, 238, 286, 290, 291, 304, 308, 367, 632], "sector": [56, 79, 222, 226, 229, 632, 860], "multipli": [56, 57, 61, 70, 79, 80, 84, 97, 223, 289, 352, 375, 376, 411, 442, 443, 523, 524, 632, 636, 647, 659, 757, 763, 820, 824, 825, 827, 831], "angl": [56, 79, 228, 238, 286, 291, 350, 372, 632], "deg": [56, 79, 224, 632], "radian": [56, 57, 79, 80, 221, 224, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 832], "degre": [56, 57, 70, 79, 80, 93, 224, 239, 279, 322, 369, 378, 490, 632, 647, 764, 766, 869], "1j": [56, 79, 80, 224, 225, 237, 238, 243, 245, 257, 280, 285, 286, 290, 338, 592, 632, 634], "2j": [56, 57, 79, 80, 224, 253, 338, 375, 403, 408, 593, 632, 634], "3j": [56, 57, 79, 80, 224, 257, 280, 338, 372, 632], "35619449": [56, 224, 632], "78539816": [56, 224, 632], "135": [56, 224, 540, 632, 634], "asin": [56, 79, 632], "sine": [56, 79, 225, 226, 285, 286, 632], "927": [56, 79, 225], "asinh": [56, 79, 225, 632], "atan": [56, 79, 632], "tangent": [56, 79, 227, 228, 229, 290, 291, 304, 308, 365, 367, 374, 632, 832], "785": [56, 79, 227, 228, 632], "atan2": [56, 79, 632], "quotient": [56, 79, 228, 240, 247, 632], "588": [56, 228, 632], "inf": [56, 57, 58, 62, 79, 80, 81, 85, 228, 245, 254, 255, 256, 257, 261, 262, 264, 274, 300, 344, 354, 367, 372, 376, 387, 426, 525, 558, 613, 627, 632, 634, 636, 637, 664, 678, 694, 776, 779, 816, 829, 834, 839], "719": [56, 228, 632], "atanh": [56, 79, 632], "549": [56, 79, 84, 229, 632, 636, 660], "bitwise_and": [56, 79, 632], "bitwise_invert": [56, 79, 632], "bitiwse_invert": [56, 231], "bitwise_left_shift": [56, 79, 632], "bitwise_or": [56, 79, 632], "bitwise_right_shift": [56, 79, 102, 632], "bitwise_xor": [56, 79, 102, 632], "ceil": [56, 57, 79, 80, 97, 100, 126, 375, 394, 395, 396, 412, 413, 414, 417, 629, 632, 792, 840], "416": [56, 237, 632], "540": [56, 237], "990": [56, 237], "cosh": [56, 79, 237, 632], "deg2rad": [56, 79, 632], "180": [56, 79, 239, 279, 632], "270": [56, 79, 239, 279, 632], "360": [56, 79, 239, 279, 632, 828], "dividend": [56, 79, 240, 247, 282, 294, 632], "divisor": [56, 57, 59, 70, 79, 80, 82, 93, 240, 247, 250, 251, 282, 294, 375, 378, 394, 395, 396, 470, 479, 499, 615, 616, 621, 632, 635, 647, 764, 766, 792, 796], "375": [56, 241, 276], "erf": [56, 79, 343, 372, 632], "exponenti": [56, 57, 79, 80, 242, 243, 245, 265, 278, 295, 305, 367, 376, 441, 632], "gauss": [56, 79, 242, 632], "328": [56, 242, 290, 632], "677": [56, 242], "842": [56, 242, 290, 632], "71828198": [56, 79, 243], "38905573": [56, 79, 243], "08553696": [56, 79, 243, 632], "exp2": [56, 79, 632], "expm1": [56, 79, 632, 829], "244": [56, 245, 812], "918": [56, 245], "147": [56, 245, 632], "floor": [56, 57, 79, 80, 97, 100, 234, 247, 375, 394, 395, 396, 398, 412, 413, 414, 417, 632, 792, 840], "floor_divid": [56, 79, 632, 784, 829], "fmin": [56, 79, 632, 829], "gcd": [56, 79, 632, 829], "greater": [56, 57, 61, 64, 66, 79, 80, 84, 89, 102, 103, 134, 221, 222, 225, 226, 228, 229, 232, 234, 240, 246, 247, 261, 263, 278, 282, 284, 286, 287, 291, 292, 293, 337, 372, 375, 398, 403, 408, 419, 629, 632, 636, 637, 639, 643, 666, 668, 679, 709, 741, 778, 792, 820, 821, 842, 867], "greater_equ": [56, 79, 102, 103, 265, 632, 867], "isfinit": [56, 79, 632, 841], "out_i": [56, 79, 254, 255, 256, 257, 280, 632], "self_i": [56, 79, 254, 255, 256, 257, 280], "finit": [56, 79, 220, 221, 222, 223, 226, 228, 229, 238, 240, 241, 243, 245, 247, 254, 255, 261, 263, 273, 274, 276, 278, 282, 286, 287, 291, 632], "isinf": [56, 79, 632], "detect_posit": [56, 79, 255, 632], "detect_neg": [56, 79, 255, 632], "isnan": [56, 79, 632], "isreal": [56, 79, 632], "5j": [56, 79, 80, 257, 280, 338, 372, 632], "6j": [56, 57, 79, 253, 257, 338, 632], "lcm": [56, 79, 632, 829], "less": [56, 57, 62, 66, 70, 79, 80, 85, 89, 102, 103, 221, 222, 225, 228, 229, 236, 240, 247, 261, 262, 263, 264, 278, 282, 284, 287, 358, 372, 375, 376, 387, 397, 398, 407, 419, 445, 451, 522, 525, 632, 637, 643, 647, 678, 679, 680, 683, 694, 741, 764, 766, 792, 819, 820, 827, 829, 831, 833, 836, 841, 844, 847, 848, 849, 860, 867, 870, 872], "less_equ": [56, 79, 102, 103, 632, 833, 867], "log10": [56, 57, 79, 319, 369, 632], "logarithm": [56, 79, 243, 261, 262, 263, 264, 265, 342, 354, 372, 632, 637, 685], "602": [56, 262, 632], "699": [56, 262, 632], "log1p": [56, 79, 632, 839], "693": [56, 79, 117, 226, 263, 626, 632], "0953": [56, 79, 261, 263, 632], "log2": [56, 79, 266, 632], "logaddexp": [56, 79, 632], "logaddexp2": [56, 79, 632, 816, 834], "169925": [56, 79, 266, 632], "logical_and": [56, 79, 632, 841, 847, 877], "logical_not": [56, 79, 632, 829], "logical_or": [56, 79, 632, 877], "conform": [56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 832, 835], "api_specif": [56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 419, 492, 630, 632, 639, 647, 714, 764, 832], "array_api": [56, 79, 155, 243, 253, 254, 269, 375, 378, 419, 492, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832], "logical_xor": [56, 79, 632], "use_wher": [56, 79, 271, 272, 632], "formula": [56, 57, 79, 240, 262, 264, 271, 272, 273, 319, 353, 369, 372, 381, 501, 503, 632, 810], "exce": [56, 57, 80, 272, 378, 494, 632], "product": [56, 57, 61, 62, 70, 79, 80, 84, 85, 93, 97, 98, 100, 273, 365, 366, 374, 376, 378, 387, 425, 428, 432, 435, 436, 437, 442, 443, 444, 496, 523, 524, 531, 632, 636, 637, 647, 663, 666, 668, 675, 677, 682, 689, 693, 757, 758, 759, 763, 764, 806, 818, 849, 870, 872], "nan_to_num": [56, 79, 632], "posinf": [56, 79, 274, 632], "neginf": [56, 79, 274, 632], "5e": [56, 59, 79, 80, 274, 357, 621, 632, 635], "not_equ": [56, 79, 102, 103, 632, 867], "pow": [56, 79, 102, 103, 632, 823, 867], "expon": [56, 57, 58, 80, 81, 278, 346, 348, 352, 372, 381, 506, 593, 632, 634, 637, 679], "rad2deg": [56, 79, 632], "286": [56, 80, 279], "458": [56, 279], "573": [56, 279, 632], "reciproc": [56, 79, 632], "333": [56, 79, 240, 281, 632], "remaind": [56, 57, 64, 74, 79, 80, 87, 249, 632, 639, 708, 823, 840], "modulu": [56, 79, 282, 632, 840], "x2_i": [56, 79, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "678": [56, 283, 284], "np_variant": [56, 79, 284, 632], "841": [56, 73, 79, 110, 285, 626, 632], "909": [56, 79, 81, 285, 632], "141": [56, 79, 152, 285, 630, 632], "sinh": [56, 79, 285, 632], "232": [56, 79, 286, 632], "sqrt": [56, 57, 79, 80, 375, 398, 403, 404, 408, 409, 419, 632, 791, 792, 812], "squar": [56, 57, 62, 79, 80, 85, 287, 376, 377, 381, 387, 429, 441, 453, 506, 522, 617, 618, 620, 625, 632, 635, 637, 641, 667, 669, 670, 672, 673, 674, 676, 679, 685, 686, 687, 692, 724, 812], "tanh": [56, 57, 79, 80, 290, 304, 308, 367, 632, 788, 849], "762": [56, 79, 291, 632], "964": [56, 79, 291, 632], "trapz": [56, 79, 632], "dx": [56, 79, 292, 632], "apart": [56, 79, 292, 632], "trapezoid": [56, 79, 292, 632], "trunc": [56, 79, 632], "025": [56, 293, 377, 458, 632, 640, 717], "trunc_divid": [56, 79, 632], "_arraywithactivationsexperiment": [57, 102], "celu": [57, 80, 367], "formul": [57, 73, 80, 98, 110, 295, 297, 367, 788], "elu": [57, 80, 299, 367, 788], "scaler": [57, 80, 296, 367, 776, 779, 844], "hardshrink": [57, 80, 367], "lambd": [57, 80, 297, 307, 367], "hardsilu": [57, 80, 367], "66666667": [57, 119, 298, 387, 522, 626], "hardtanh": [57, 80, 367], "max_val": [57, 80, 299, 367], "min_val": [57, 80, 299, 367], "region": [57, 80, 299, 307, 367, 819], "19722438": [57, 80, 300, 367], "38629448": [57, 80, 300, 367], "38629436": [57, 80, 300, 367], "logsigmoid": [57, 80, 367, 788], "31326175": [57, 73, 301, 367], "126928": [57, 80, 301], "01814993": [57, 301], "00004578": [57, 301], "57888985": [57, 301], "31326169": [57, 80, 301, 367], "69314718": [57, 62, 73, 80, 85, 301, 354, 367, 372, 637, 685], "01104775": [57, 301], "prelu": [57, 80, 367, 788], "unidirect": [57, 302, 367, 636, 661], "relu6": [57, 80, 367, 788], "rectifi": [57, 73, 80, 112, 114, 115, 303, 306, 311, 367, 626], "scaled_tanh": [57, 80, 308, 367], "7159": [57, 80, 304, 308, 367], "amplitud": [57, 80, 304, 308, 367], "65537548": [57, 80, 304], "49570239": [57, 80, 304], "77637792": [57, 304], "selu": [57, 80, 367, 788], "11133075": [57, 305, 367], "05070102": [57, 80, 305, 367], "10140204": [57, 305, 367], "15210295": [57, 305, 367], "20280409": [57, 305, 367], "25350523": [57, 305, 367], "30420589": [57, 305, 367], "35490704": [57, 305, 367], "silu": [57, 80, 367, 788], "26894143": [57, 306], "73105854": [57, 80, 306], "softshrink": [57, 80, 367], "bound": [57, 80, 307, 319, 367, 369, 378, 467, 492, 493, 776, 829, 833, 841, 844, 849, 876], "tanhshrink": [57, 80, 367], "23840582": [57, 80, 309, 367], "condit": [57, 67, 80, 90, 123, 310, 325, 326, 369, 376, 426, 628, 641, 644, 728, 729, 748, 778, 823, 829, 831, 833, 837, 838, 840, 844, 863], "met": [57, 80, 310, 833], "hreshold": [57, 310], "thresholded_relu": [57, 80, 367], "_arraywithconversionsexperiment": [57, 102], "_arraywithcreationexperiment": [57, 102], "blackman_window": [57, 80, 369], "period": [57, 80, 286, 290, 312, 314, 315, 317, 318, 369, 375, 410, 632, 820], "window": [57, 61, 80, 84, 312, 314, 315, 317, 318, 333, 369, 375, 381, 394, 395, 396, 398, 412, 413, 414, 415, 417, 418, 422, 423, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 814, 820, 826, 834, 875], "symmetr": [57, 62, 80, 85, 97, 98, 312, 314, 315, 317, 318, 369, 376, 378, 429, 484, 637, 667, 672, 673, 674, 695, 827], "38777878e": [57, 80, 312, 369], "40000000e": [57, 312, 369], "00000000e": [57, 62, 80, 81, 312, 343, 344, 369, 375, 397, 403, 407, 408, 637, 684, 816, 834], "30000000e": [57, 80, 312, 369], "eye_lik": [57, 80, 369], "elsewher": [57, 80, 132, 313, 369, 629, 644, 748, 819], "mel_weight_matrix": [57, 80, 369], "num_mel_bin": [57, 80, 319, 369], "dft_length": [57, 80, 319, 369, 375, 398], "sample_r": [57, 80, 319, 369], "lower_edge_hertz": [57, 80, 319, 369], "upper_edge_hertz": [57, 80, 319, 369], "3000": [57, 80, 319, 369], "melweightmatrix": [57, 80, 319, 369], "linearli": [57, 58, 81, 319, 369, 549, 634, 637, 686], "frequenc": [57, 58, 80, 81, 319, 369, 387, 522, 549, 634, 820], "spectra": [57, 319, 369], "dft": [57, 80, 319, 369, 375], "stft": [57, 80, 319, 369, 375], "mel": [57, 80, 319, 369], "hertz": [57, 319, 369], "2595": [57, 319, 369], "700": [57, 81, 319, 369, 553], "band": [57, 58, 80, 81, 319, 369, 549, 634], "spectrum": [57, 80, 319, 369], "n_fft": [57, 80, 319, 369, 375, 398], "8000": [57, 80, 314, 319, 369], "75694758": [57, 319, 369], "trilu": [57, 80, 369], "retain": [57, 147, 328, 329, 369, 617, 629, 635, 839, 843, 857], "unsorted_segment_mean": [57, 80, 369], "segment_id": [57, 80, 330, 331, 332, 369, 798], "num_seg": [57, 80, 330, 331, 332, 369, 798], "identifi": [57, 80, 330, 331, 332, 369, 818, 823, 828, 829, 844, 847], "th": [57, 80, 98, 330, 331, 332, 341, 369, 372, 376, 377, 387, 427, 434, 452, 532], "unsorted_segment_min": [57, 80, 369], "unsorted_segment_sum": [57, 80, 369], "polyv": [57, 80, 369], "coeff": [57, 80, 322, 369], "polynomi": [57, 80, 322, 369], "coeffici": [57, 80, 314, 322, 369, 376, 446, 637, 686, 796], "indetermin": [57, 80, 322, 369], "simplifi": [57, 80, 322, 369, 805, 806, 833, 841, 849, 850, 853, 860, 863, 866, 868, 869, 870, 873, 876, 877], "substitut": [57, 80, 322, 369], "_arraywithdata_typeexperiment": [57, 102], "_arraywithdeviceexperiment": [57, 102], "_arraywithelementwiseexperiment": [57, 102], "equal_nan": [57, 80, 334, 351, 372], "1e10": [57, 334, 351, 372], "00001e10": [57, 334, 351, 372], "00001e": [57, 334, 372], "amax": [57, 80, 372], "keepdim": [57, 62, 64, 67, 70, 71, 74, 80, 85, 87, 90, 93, 94, 335, 336, 340, 356, 363, 372, 373, 378, 387, 489, 527, 528, 529, 530, 531, 532, 637, 639, 644, 647, 648, 678, 694, 713, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 833, 841, 849], "singleton": [57, 62, 67, 70, 71, 80, 85, 90, 93, 94, 335, 336, 372, 637, 639, 644, 647, 648, 694, 702, 709, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 849], "amin": [57, 80, 372], "binar": [57, 80, 372], "conj": [57, 80, 238, 243, 245, 286, 287, 291, 372, 632], "conjug": [57, 62, 80, 85, 338, 372, 375, 376, 382, 398, 424, 430, 442, 444, 446, 510, 637, 677, 681, 689], "copysign": [57, 80, 372], "unsign": [57, 70, 80, 339, 372, 378, 387, 492, 523, 524, 647, 757, 758, 763, 765, 777, 829, 849], "count_nonzero": [57, 80, 372], "diff": [57, 74, 80, 372, 831, 840, 867], "prepend": [57, 80, 341, 372, 637, 639, 677, 702, 819], "differenc": [57, 80, 341, 372], "prior": [57, 80, 341, 372, 382, 510, 637, 689, 833, 845], "expand": [57, 58, 64, 80, 81, 341, 372, 378, 496, 549, 634, 639, 702, 812, 827, 843], "discret": [57, 80, 341, 372, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 638, 697, 792], "digamma": [57, 80, 372], "7549271": [57, 342, 372], "92278427": [57, 80, 342, 372], "9988394": [57, 342, 372], "erfc": [57, 80, 372], "complementari": [57, 80, 333, 343, 369, 372, 868, 876], "84270084e": [57, 343, 344], "80259693e": [57, 343, 344], "erfinv": [57, 80, 372], "float_pow": [57, 80, 372], "fmax": [57, 80, 372], "fmod": [57, 80, 632], "divis": [57, 58, 59, 80, 81, 82, 234, 240, 247, 249, 282, 284, 294, 378, 470, 583, 592, 606, 615, 616, 621, 632, 634, 635, 636, 649, 656, 657, 796, 837, 846], "frexp": [57, 80, 372], "edge_ord": [57, 80, 349, 372], "boundari": [57, 66, 80, 89, 100, 325, 326, 349, 369, 372, 375, 411, 643, 741, 870], "33333333": [57, 80, 281, 349, 372, 452, 632], "hypot": [57, 80, 372], "hypotenus": [57, 350, 372], "4031": [57, 350, 372], "8102": [57, 350, 372], "isclos": [57, 80, 372, 823], "ldexp": [57, 80, 372], "lerp": [57, 80, 372], "lgamma": [57, 80, 372], "45373654": [57, 354, 372], "6477685": [57, 354, 372], "modf": [57, 80, 372], "fraction": [57, 80, 355, 372, 387, 532, 636, 659], "nansum": [57, 80, 372], "accumul": [57, 80, 356, 372, 378, 489], "nextaft": [57, 80, 372], "0e": [57, 59, 80, 82, 357, 372, 621, 635], "4013e": [57, 80, 357, 372], "4028e": [57, 80, 357, 372], "signbit": [57, 80, 372], "637": [57, 80, 359, 372], "0909": [57, 80, 359, 372], "sparsify_tensor": [57, 80, 372], "sparsifi": [57, 80, 360, 372], "arang": [57, 62, 70, 80, 85, 137, 360, 372, 375, 376, 394, 395, 396, 403, 408, 412, 413, 414, 417, 426, 443, 476, 572, 614, 629, 634, 637, 640, 647, 678, 694, 716, 717, 759, 812, 829, 840, 877], "xlogi": [57, 80, 372], "0986": [57, 80, 361, 372], "3863": [57, 80, 361, 372], "0000": [57, 80, 314, 315, 318, 344, 361, 369, 372, 376, 378, 441, 478], "zeta": [57, 80, 372], "0369": [57, 80, 362, 372], "_arraywithgeneralexperiment": [57, 102], "init_valu": [57, 80, 84, 363, 373, 375, 418], "reduct": [57, 58, 63, 71, 74, 80, 81, 84, 86, 94, 363, 373, 375, 377, 378, 418, 452, 453, 454, 455, 456, 457, 458, 459, 489, 546, 576, 577, 634, 638, 648, 696, 697, 698, 767, 768, 793, 829, 837, 840, 844, 851], "_arraywithgradientsexperiment": [57, 102], "_arraywithimageexperiment": [57, 102], "_arraywithlayersexperiment": [57, 102], "adaptive_avg_pool1d": [57, 80, 375], "1d": [57, 80, 97, 98, 375, 376, 378, 387, 389, 397, 399, 401, 407, 442, 462, 467, 489, 493, 522, 776, 792], "adapt": [57, 80, 82, 375, 389, 390, 391, 392, 622, 635, 792, 796, 860], "plane": [57, 80, 240, 243, 245, 273, 285, 286, 287, 290, 375, 378, 389, 390, 391, 392, 490, 632], "l_in": [57, 80, 375, 389], "spatial": [57, 61, 80, 84, 375, 381, 389, 390, 391, 392, 411, 418, 422, 501, 502, 503, 506, 636, 649, 650, 651, 652, 654, 656, 658, 795], "Will": [57, 80, 375, 389, 390, 391, 392, 801, 855], "l_out": [57, 80, 375, 389], "nhwc": [57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792], "3d": [57, 62, 80, 375, 390, 392, 399, 400, 464, 637, 675, 792, 847], "4d": [57, 80, 375, 376, 381, 390, 400, 401, 450, 506], "s_0": [57, 80, 375, 390, 391], "s_1": [57, 80, 375, 390, 391], "adaptive_max_pool2d": [57, 80, 375], "h_in": [57, 80, 375, 391, 392], "w_in": [57, 80, 375, 391, 392], "adaptive_max_pool3d": [57, 80, 375], "avg_pool1d": [57, 80, 375], "kernel": [57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 636, 662, 849, 855, 870, 873, 874], "nwc": [57, 61, 80, 84, 375, 394, 399, 412, 415, 636, 649, 650, 651, 656, 657, 792], "count_include_pad": [57, 80, 375, 394, 395, 396, 792], "d_in": [57, 61, 80, 84, 375, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658], "algorithm": [57, 61, 73, 80, 84, 110, 375, 376, 394, 395, 396, 411, 412, 413, 414, 415, 445, 447, 451, 637, 650, 652, 653, 654, 655, 658, 685, 788, 792, 806, 829, 841, 847, 855, 870, 872, 874], "ncw": [57, 61, 80, 84, 375, 394, 399, 400, 412, 415, 636, 649, 650, 651, 656, 657, 792], "avg_pool2d": [57, 80, 375], "divisor_overrid": [57, 80, 375, 394, 395, 396, 792], "avg_pool3d": [57, 80, 375], "ndhwc": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "volum": [57, 61, 80, 84, 375, 396, 398, 403, 404, 408, 414, 636, 654, 655], "ncdhw": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "dct": [57, 80, 375, 792, 852], "truncat": [57, 80, 375, 376, 397, 403, 407, 408, 409, 420, 449, 579, 634, 792, 833, 852], "larger": [57, 64, 70, 80, 87, 93, 165, 375, 397, 404, 407, 409, 420, 630, 639, 647, 699, 707, 764, 766, 792, 844, 847, 877], "ortho": [57, 80, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 792], "onesid": [57, 80, 375, 398], "fft": [57, 80, 375, 398, 404, 419, 420, 423, 792, 818, 870], "symmetri": [57, 375, 398], "rfft": [57, 80, 375, 398, 420], "invok": [57, 375, 398, 812, 835, 863, 864], "batch_idx": [57, 375, 398], "signal_dim1": [57, 375, 398], "signal_dim2": [57, 375, 398], "signal_dimn": [57, 375, 398], "signal_dim": [57, 375, 398], "embed": [57, 80, 375, 377, 452, 636, 663, 778, 792, 870], "max_norm": [57, 58, 80, 81, 375, 402, 540, 541, 634, 792], "ifft": [57, 80, 375, 403, 409, 792], "pi": [57, 80, 286, 290, 375, 377, 403, 408, 457, 627, 632], "44509285e": [57, 80, 375, 403], "14423775e": [57, 80, 375, 403], "17j": [57, 80, 375, 403, 408], "11483250e": [57, 80, 375, 403], "16j": [57, 80, 375, 403, 408], "33486982e": [57, 80, 375, 403], "22464680e": [57, 80, 375, 403], "95799250e": [57, 80, 375, 403], "66951701e": [57, 80, 375, 403], "fft2": [57, 375], "20477401j": [57, 375, 404], "0614962j": [57, 375, 404], "idct": [57, 80, 375], "49862671": [57, 80, 375, 397, 407], "37691498": [57, 80, 375, 397, 407], "00390816": [57, 80, 375, 397, 407], "58938599": [57, 80, 375, 397, 407], "92713165": [57, 80, 375, 397, 407], "078475": [57, 80, 375, 397, 407], "19664812": [57, 80, 375, 397, 407], "95411837": [57, 80, 375, 397, 407], "30636606e": [57, 80, 375, 408], "43029718e": [57, 80, 375, 408], "18j": [57, 80, 375, 403, 408], "53080850e": [57, 80, 375, 408], "58689626e": [57, 80, 375, 408], "24474906e": [57, 80, 375, 408], "91858728e": [57, 80, 375, 408], "01435406e": [57, 80, 375, 408], "ifftn": [57, 80, 375], "24730653": [57, 80, 375, 409], "90832391j": [57, 80, 375, 409], "49495562": [57, 80, 375, 409], "9039565j": [57, 80, 375, 409], "98193269": [57, 80, 375, 409], "49560517j": [57, 80, 375, 409], "93280757": [57, 80, 375, 409], "48075343j": [57, 80, 375, 409], "28526384": [57, 80, 375, 409], "3351205j": [57, 80, 375, 409], "2343787": [57, 80, 375, 409], "83528011j": [57, 80, 375, 409], "18791352": [57, 80, 375, 409], "30690572j": [57, 80, 375, 409], "82115787": [57, 80, 375, 409], "96195183j": [57, 80, 375, 409], "44719226": [57, 80, 375, 409], "72654048j": [57, 80, 375, 409], "51476765": [57, 375, 409], "66160417j": [57, 375, 409], "04319742": [57, 375, 409], "05411636j": [57, 375, 409], "015561": [57, 375, 409], "04216015j": [57, 375, 409], "06310689": [57, 375, 409], "05347854j": [57, 375, 409], "13392983": [57, 375, 409], "16052352j": [57, 375, 409], "08371392": [57, 375, 409], "17252843j": [57, 375, 409], "0031429": [57, 375, 409], "05421245j": [57, 375, 409], "10446617": [57, 375, 409], "17747098j": [57, 375, 409], "05344324": [57, 375, 409], "07972424j": [57, 375, 409], "8344667": [57, 80, 375, 409], "98222595j": [57, 80, 375, 409], "48472244": [57, 80, 375, 409], "30233797j": [57, 80, 375, 409], "recompute_scale_factor": [57, 80, 375, 411, 847], "antialia": [57, 80, 375, 411, 847], "height": [57, 58, 61, 80, 81, 84, 375, 411, 545, 634, 636, 652, 653, 654, 655, 658, 821, 852], "width": [57, 58, 61, 80, 81, 84, 375, 376, 378, 381, 387, 411, 430, 484, 506, 525, 545, 634, 636, 650, 651, 652, 653, 654, 655, 658, 663], "trilinear": [57, 80, 375, 411, 847], "nearest_exact": [57, 80, 375, 411, 847], "tf_area": [57, 80, 375, 411, 847], "mitchellcub": [57, 80, 375, 411, 847], "lanczos3": [57, 80, 375, 411, 847], "lanczos5": [57, 80, 375, 411, 847], "gaussian": [57, 80, 110, 375, 411, 626, 847], "overwrit": [57, 74, 80, 213, 375, 411, 631, 820, 840, 841, 849], "thu": [57, 80, 234, 247, 282, 290, 291, 375, 376, 411, 429, 632, 637, 672, 673, 818, 828, 833, 838, 841, 845], "antialias": [57, 80, 411], "max_pool1d": [57, 80, 375], "dilaton": [57, 80, 412, 413, 414], "max_pool3d": [57, 80, 375], "max_unpool1d": [57, 80, 375], "unpool": [57, 80, 375, 415], "reduce_window": [57, 84, 375], "window_dimens": [57, 84, 375, 418], "window_strid": [57, 84, 375, 418], "base_dil": [57, 84, 375, 418], "window_dil": [57, 84, 375, 418], "trim": [57, 74, 80, 375, 378, 419, 495], "orthonorm": [57, 62, 80, 85, 375, 419, 637, 684, 687], "8660254j": [57, 80, 375, 419], "rfftn": [57, 80, 375], "sliding_window": [57, 80, 375], "window_s": [57, 80, 375, 422], "frame_length": [57, 80, 375, 423], "frame_step": [57, 80, 375, 423], "fft_length": [57, 80, 375, 423], "window_fn": [57, 80, 375, 423], "pad_end": [57, 80, 375, 423], "smallest": [57, 74, 80, 165, 168, 236, 375, 378, 423, 494, 630, 632, 637, 678, 776, 778, 779], "enclos": [57, 80, 375, 423, 871], "window_length": [57, 80, 312, 314, 317, 318, 333, 369, 375, 423], "li": [57, 80, 375, 376, 387, 423, 430, 532, 859], "past": [57, 80, 375, 423, 820, 823, 842, 844, 856, 870], "fft_unique_bin": [57, 80, 375, 423], "complex64": [57, 77, 80, 158, 172, 181, 187, 253, 280, 375, 419, 423, 630, 632, 637, 685, 687, 688, 777, 829, 834], "complex128": [57, 80, 81, 158, 159, 172, 181, 187, 375, 423, 571, 630, 634, 637, 673, 674, 678, 694, 776, 777, 816, 829, 834], "compon": [57, 80, 142, 143, 221, 222, 223, 226, 229, 238, 240, 241, 243, 245, 273, 275, 276, 283, 286, 287, 290, 291, 323, 327, 338, 369, 372, 375, 376, 381, 423, 434, 445, 506, 629, 632, 644, 747, 812, 843, 849, 860, 866, 871, 873], "linear_algebra": [57, 62, 80, 85, 637, 845], "_arraywithlinearalgebraexperiment": [57, 102], "adjoint": [57, 62, 80, 85, 376, 446, 637, 676, 686, 687, 776], "batched_out": [57, 80, 376], "j1": [57, 80, 376, 425], "jn": [57, 80, 376, 425], "k1": [57, 80, 376, 425], "km": [57, 80, 376, 425], "outer": [57, 62, 80, 85, 97, 376, 425, 637, 640, 715, 716, 717, 806, 818], "30000001": [57, 80, 376, 425, 545, 634, 645, 750], "40000001": [57, 61, 73, 80, 102, 103, 112, 115, 296, 367, 376, 425, 626, 636, 645, 666, 750], "60000002": [57, 80, 93, 103, 376, 381, 425, 505, 507, 541, 634, 761], "80000001": [57, 80, 376, 381, 425, 505, 507], "60000001": [57, 80, 376, 425], "90000004": [57, 80, 376, 425, 647, 761], "20000002": [57, 80, 376, 425, 541, 634], "20000005": [57, 59, 80, 296, 304, 307, 308, 367, 376, 425, 615], "00000012": [57, 80, 376, 425], "49999994": [57, 80, 376, 425], "00000006": [57, 80, 376, 425], "60000014": [57, 80, 376, 425], "19999993": [57, 80, 376, 425], "80000007": [57, 80, 376, 425, 541, 634], "20000017": [57, 80, 376, 425], "89999992": [57, 80, 376, 425], "60000008": [57, 80, 376, 425], "80000019": [57, 80, 353, 372, 376, 425], "4000001": [57, 80, 84, 376, 425, 636, 659, 666], "cond": [57, 80, 123, 376, 628, 855], "933034373659268": [57, 426], "diagflat": [57, 80, 376, 436, 441], "offset": [57, 62, 65, 76, 80, 85, 88, 134, 376, 381, 427, 501, 502, 503, 629, 637, 642, 671, 691, 737, 783], "padding_valu": [57, 80, 376, 427], "right_left": [57, 80, 376, 427], "num_row": [57, 80, 376, 427], "num_col": [57, 80, 376, 427], "dot": [57, 61, 80, 84, 97, 376, 377, 443, 452, 636, 637, 663, 666, 693, 806, 812, 819, 828], "eig": [57, 62, 80, 376, 637, 673, 674], "37228132": [57, 80, 376, 429, 431, 672], "82456484": [57, 429, 672], "41597356": [57, 429, 672], "56576746": [57, 429, 672], "90937671": [57, 429, 672], "eigh_tridiagon": [57, 80, 376], "eigvals_onli": [57, 80, 376, 430], "select_rang": [57, 80, 376, 430], "tol": [57, 80, 101, 376, 430, 445, 451], "eigenvalu": [57, 62, 80, 85, 97, 98, 376, 429, 430, 431, 637, 672, 673, 674, 680], "eigenvector": [57, 80, 376, 429, 430, 637, 672, 673], "interv": [57, 66, 71, 80, 89, 94, 126, 137, 138, 145, 376, 387, 430, 525, 629, 637, 639, 643, 648, 668, 693, 699, 702, 710, 739, 741, 767, 768], "converg": [57, 80, 376, 430, 861], "_2": [57, 80, 376, 430], "eig_val": [57, 80, 376, 430], "decreas": [57, 80, 376, 430, 778], "eig_vector": [57, 80, 376, 430], "38196": [57, 430], "61803": [57, 430], "eigval": [57, 80, 376], "general_inner_product": [57, 85, 376], "n_mode": [57, 85, 376, 432], "tradit": [57, 85, 376, 432], "inner": [57, 62, 76, 85, 106, 141, 376, 429, 432, 629, 637, 640, 672, 673, 677, 715, 716, 717, 806, 818, 840], "higher_order_mo": [57, 80, 376], "n_featur": [57, 80, 376, 433], "d1": [57, 80, 376, 433], "dn": [57, 80, 376, 433], "initialize_tuck": [57, 80, 376], "svd": [57, 62, 80, 85, 100, 376, 434, 440, 445, 447, 448, 449, 451, 637, 688], "truncated_svd": [57, 80, 376, 434, 445, 448, 451], "non_neg": [57, 80, 327, 369, 376, 434], "mask": [57, 61, 80, 84, 97, 375, 376, 378, 421, 434, 435, 445, 451, 491, 555, 634, 636, 659, 663, 666, 847], "svd_mask_repeat": [57, 80, 376, 434, 445, 451], "tuckertensor": [57, 80, 101, 327, 369, 376, 434, 445, 451], "scheme": [57, 80, 376, 434, 445, 823, 853, 870], "tucker": [57, 80, 327, 369, 376, 434, 445], "decomposit": [57, 62, 80, 85, 97, 98, 100, 323, 324, 325, 326, 327, 369, 376, 434, 438, 445, 448, 450, 451, 637, 667, 673, 684, 687, 818, 877], "miss": [57, 80, 376, 378, 434, 445, 451, 491, 796, 818, 819, 824, 827, 828, 831, 841, 844, 847], "everywher": [57, 80, 376, 434, 445, 451], "kron": [57, 80, 376, 441, 877], "make_svd_non_neg": [57, 80, 376, 449], "nntype": [57, 80, 376, 440], "nndsvd": [57, 80, 376, 440], "singular": [57, 62, 80, 85, 376, 434, 440, 447, 449, 637, 678, 680, 683, 687, 688, 776, 778, 829], "nndsvda": [57, 80, 376, 440], "boutsidi": [57, 80, 376, 440], "gallopoulo": [57, 80, 376, 440], "recognit": [57, 80, 376, 440, 815], "1350": [57, 80, 376, 440], "1362": [57, 80, 376, 440], "2008": [57, 80, 376, 440, 870], "matrix_exp": [57, 80, 376], "7183": [57, 80, 376, 441], "3891": [57, 80, 376, 441], "mode_dot": [57, 80, 96, 97, 101, 376], "matrix_or_vector": [57, 80, 97, 101, 376, 442], "i_1": [57, 80, 97, 98, 376, 442], "i_k": [57, 80, 97, 376, 442], "i_n": [57, 80, 97, 376, 442], "i_": [57, 80, 97, 376, 387, 442, 525], "multi_dot": [57, 80, 376], "148": [57, 79, 80, 243, 376, 443], "multi_mode_dot": [57, 80, 376], "mat_or_vec_list": [57, 80, 376, 444], "times_0": [57, 376, 444], "vec": [57, 376, 444], "times_1": [57, 376, 444], "cdot": [57, 273, 376, 444, 632], "times_n": [57, 376, 444], "partial_tuck": [57, 80, 376], "n_iter_max": [57, 80, 376, 445, 451], "verbos": [57, 80, 376, 445, 448, 451, 810, 844, 849], "return_error": [57, 80, 376, 445, 451], "variat": [57, 80, 376, 445, 451, 831, 841, 844], "reconstruct": [57, 62, 68, 80, 91, 100, 376, 378, 445, 451, 498, 637, 645, 687, 749, 751, 842], "return_erro": [57, 376, 445, 451], "svd_flip": [57, 80, 376], "u_based_decis": [57, 80, 376, 447], "basi": [57, 80, 376, 447, 820, 823, 852], "flip": [57, 64, 80, 87, 97, 231, 376, 378, 447, 475, 476, 632, 639, 840, 851, 852, 854], "decis": [57, 80, 376, 447, 812, 823, 829, 847, 849, 851, 870], "u_adjust": [57, 80, 376, 447], "v_adjust": [57, 80, 376, 447], "tensor_train": [57, 80, 376], "tt": [57, 80, 326, 369, 376, 448, 450], "kth": [57, 376, 448], "tttensor": [57, 100, 326, 369, 376, 448], "compute_uv": [57, 62, 80, 85, 376, 449, 637, 687], "n_eigenvec": [57, 80, 376, 449], "returnedv": [57, 449], "vh": [57, 62, 80, 85, 376, 449, 637, 687], "eigen": [57, 80, 376, 449], "namedtupl": [57, 62, 68, 80, 85, 91, 376, 378, 429, 449, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751], "tt_matrix_to_tensor": [57, 80, 376], "rank_k": [57, 80, 376, 450], "left_dim_k": [57, 80, 376, 450], "right_dim_k": [57, 80, 376, 450], "rank_": [57, 80, 376, 450], "49671414": [57, 80, 376, 450, 643, 740], "1382643": [57, 80, 376, 450, 643, 740], "64768857": [57, 80, 376, 450, 643, 740], "5230298": [57, 80, 376, 450, 643, 740], "23415337": [57, 80, 376, 450, 643, 740], "23413695": [57, 80, 376, 450, 643, 740], "57921278": [57, 80, 376, 450], "76743472": [57, 80, 376, 450], "1163073": [57, 80, 376, 450], "11629914": [57, 80, 376, 450], "03237505": [57, 80, 376, 450], "03237278": [57, 80, 376, 450], "78441733": [57, 80, 376, 450], "38119566": [57, 80, 376, 450], "21834874": [57, 80, 376, 450], "10610882": [57, 80, 376, 450], "15165846": [57, 80, 376, 450], "15164782": [57, 80, 376, 450], "35662258": [57, 80, 376, 450], "35659757": [57, 80, 376, 450], "02283812": [57, 80, 376, 450], "49705869": [57, 80, 376, 450], "40518808": [57, 80, 376, 450], "16882598": [57, 80, 376, 450], "fixed_factor": [57, 80, 376, 451], "tl": [57, 80, 376, 451], "kolda": [57, 80, 376, 451], "bader": [57, 80, 376, 451], "siam": [57, 80, 376, 448, 451], "review": [57, 80, 376, 451, 814, 815, 818, 820, 826, 828, 831, 841, 845], "vol": [57, 80, 376, 451], "pp": [57, 80, 376, 451], "455": [57, 80, 376, 451], "2009": [57, 80, 376, 451], "_arraywithlossesexperiment": [57, 102], "hinge_embedding_loss": [57, 80, 377], "margin": [57, 80, 377, 452, 459, 841], "measur": [57, 377, 452, 636, 663, 792], "semi": [57, 377, 452], "l_n": [57, 377, 452], "x_n": [57, 377, 452], "y_n": [57, 377, 452], "ell": [57, 377, 452], "operatornam": [57, 284, 286, 377, 452, 632, 637, 673], "l_1": [57, 377, 452], "hyperparamet": [57, 80, 377, 452], "aggreg": [57, 80, 377, 452, 645, 749, 828], "unreduc": [57, 80, 377, 452], "hing": [57, 80, 377, 452, 459], "target_tensor": [57, 377, 452, 457], "huber_loss": [57, 80, 377], "delta": [57, 59, 80, 82, 377, 453, 615, 635], "transit": [57, 80, 377, 453, 870], "huber": [57, 80, 377, 453], "kl_div": [57, 80, 377], "log_target": [57, 80, 377, 454], "contai": [57, 454], "batchmean": [57, 377, 454], "kullback": [57, 80, 377, 454], "leibler": [57, 80, 377, 454], "0916": [57, 454], "l1_loss": [57, 80, 377, 456], "l1": [57, 62, 80, 85, 377, 381, 453, 455, 456, 458, 504, 637, 694, 827, 852], "targetict": [57, 80, 377, 455, 456, 458, 459], "20000000000000004": [57, 455], "log_poisson_loss": [57, 80, 377], "compute_full_loss": [57, 80, 377, 456, 793], "favor": [57, 80, 377, 456], "likelihood": [57, 80, 377, 456, 457], "28402555": [57, 377, 456], "03402555": [57, 377, 456], "1573164": [57, 377, 456], "poisson_nll_loss": [57, 80, 377], "log_input": [57, 80, 377, 457], "poisson": [57, 80, 377, 382, 456, 457], "assumpt": [57, 377, 456, 457], "minu": [57, 377, 456, 457], "omiss": [57, 377, 457], "stirl": [57, 80, 377, 456, 457], "1977562": [57, 457], "smooth_l1_loss": [57, 80, 377], "smooth": [57, 63, 80, 86, 377, 453, 458, 638, 696, 697, 698, 839], "8125": [57, 458], "soft_margin_loss": [57, 80, 377], "soft": [57, 80, 307, 377, 378, 459, 491, 830], "35667497": [57, 459], "22314353": [57, 459], "60943791": [57, 459], "_arraywithmanipulationexperiment": [57, 102], "as_strid": [57, 80, 378], "nativeshap": [57, 61, 64, 66, 80, 87, 89, 127, 128, 130, 135, 142, 148, 378, 382, 460, 472, 477, 485, 488, 508, 509, 510, 511, 512, 577, 590, 596, 598, 629, 634, 636, 639, 643, 649, 651, 653, 655, 657, 706, 739, 740, 741, 836, 838], "byte": [57, 58, 76, 80, 81, 102, 134, 378, 460, 571, 629, 634, 875, 876], "associative_scan": [57, 80, 378], "revers": [57, 58, 62, 70, 80, 85, 93, 102, 103, 366, 374, 375, 376, 378, 387, 421, 437, 461, 475, 476, 523, 524, 544, 634, 637, 639, 647, 692, 703, 757, 758, 818, 827, 828, 829, 831, 832, 840, 841, 847, 854, 855], "scan": [57, 80, 378, 461, 855], "atleast_1d": [57, 80, 378], "ari": [57, 80, 378, 462, 463, 464, 470, 479, 499], "a1": [57, 81, 378, 462, 463, 464, 468, 537], "a2": [57, 81, 378, 462, 463, 464, 468, 537], "atleast_2d": [57, 80, 378], "atleast_3d": [57, 80, 378], "column_stack": [57, 80, 378], "concat_from_sequ": [57, 80, 378], "input_sequ": [57, 80, 378, 469], "new_axi": [57, 80, 378, 469, 854], "dsplit": [57, 80, 378], "indices_or_sect": [57, 80, 378, 470, 479, 499], "3rd": [57, 80, 378, 470], "dstack": [57, 80, 378], "fill_diagon": [57, 80, 378], "fill_diag": [57, 473], "fortran": [57, 64, 80, 87, 378, 474, 639, 706, 870, 874], "layout": [57, 64, 80, 87, 378, 474, 639, 706, 825, 840, 841, 847], "fliplr": [57, 80, 378, 840], "diag": [57, 62, 80, 85, 98, 378, 475, 476, 637, 673, 849], "flipud": [57, 80, 378, 840], "fold": [57, 80, 378, 485, 486, 828], "unfold": [57, 80, 97, 98, 100, 376, 378, 434, 477, 485, 487], "folded_tensor": [57, 378, 477], "heavisid": [57, 80, 378], "5000": [57, 378, 478, 637, 676, 806], "hsplit": [57, 80, 378], "horizont": [57, 80, 378, 468, 479, 545, 634], "hstack": [57, 80, 378, 468], "i0": [57, 80, 378, 387, 525], "bessel": [57, 70, 80, 93, 317, 369, 378, 481, 647, 764, 766], "kind": [57, 70, 80, 165, 168, 169, 387, 481, 523, 524, 529, 630, 647, 757, 758, 763, 765, 776, 777, 817, 841, 844, 847, 849, 855], "26606588": [57, 80, 378, 481], "2795853": [57, 80, 378, 481], "88079259": [57, 80, 378, 481], "row_mod": [57, 80, 378, 482], "column_mod": [57, 80, 378, 482], "ascend": [57, 69, 80, 92, 378, 385, 482, 515, 646, 753, 755, 821], "prod": [57, 58, 70, 81, 93, 376, 378, 435, 437, 482, 531, 546, 634, 647, 776, 806, 829, 831, 849, 867], "moveaxi": [57, 80, 378], "destin": [57, 80, 378, 483], "unstack": [57, 64, 74, 87, 483, 639, 827, 849, 852, 877], "reorder": [57, 64, 80, 87, 378, 483, 545, 634, 639, 703, 843], "stat_length": [57, 80, 378, 484], "constant_valu": [57, 80, 378, 484], "end_valu": [57, 80, 378, 484], "reflect_typ": [57, 80, 378, 484], "partial_fold": [57, 80, 378], "skip_begin": [57, 80, 378, 485, 486, 487, 488], "untouch": [57, 80, 378, 485, 486, 487, 488], "partial_tensor_to_vec": [57, 80, 378], "skip_end": [57, 80, 378, 486, 487], "vectoris": [57, 80, 97, 378, 486, 488], "partial_unfold": [57, 80, 378], "ravel_tensor": [57, 80, 378, 487], "n_1": [57, 80, 378, 487], "n_2": [57, 80, 378, 487], "n_i": [57, 80, 376, 378, 435, 487], "partial_vec_to_tensor": [57, 80, 378], "put_along_axi": [57, 80, 378], "rot90": [57, 80, 378, 840], "rotat": [57, 80, 378, 490], "soft_threshold": [57, 80, 378], "behav": [57, 80, 335, 336, 372, 376, 378, 429, 492, 637, 672, 823, 833, 838, 840, 841, 842, 851, 871], "invalid": [57, 71, 80, 94, 378, 492, 637, 639, 648, 693, 702, 767, 768, 776, 819, 829], "slice": [57, 70, 74, 80, 81, 93, 98, 147, 328, 369, 378, 467, 489, 492, 493, 552, 553, 555, 581, 629, 634, 641, 647, 727, 762, 844, 870], "inexact": [57, 80, 346, 372, 378, 492], "largest": [57, 74, 80, 165, 168, 376, 378, 447, 492, 494, 630, 637, 678, 687], "take_along_axi": [57, 80, 378], "arr": [57, 58, 77, 80, 173, 378, 467, 489, 493, 577, 630, 829, 830], "top_k": [57, 80, 378], "sort": [57, 68, 74, 80, 91, 103, 199, 292, 376, 378, 387, 429, 494, 515, 529, 631, 632, 637, 645, 672, 673, 687, 688, 749, 753, 754, 755, 778, 812, 817, 828, 843, 845], "trim_zero": [57, 80, 378], "fb": [57, 80, 378, 495], "front": [57, 80, 378, 495, 841, 848, 849, 852, 859, 868, 870], "unflatten": [57, 80, 378], "unfolded_tensor": [57, 378, 497], "unique_consecut": [57, 80, 378], "vsplit": [57, 80, 378], "vertic": [57, 80, 378, 499, 500, 545, 634, 820], "_arraywithnormsexperiment": [57, 102], "varianc": [57, 70, 80, 93, 381, 501, 503, 647, 766, 791, 795], "nsc": [57, 80, 381, 501, 502, 503, 795], "braodcast": [57, 80, 381, 501], "running_mean": [57, 80, 381, 501, 503, 795], "running_var": [57, 80, 381, 501, 503, 795], "nc": [57, 80, 381, 501, 502, 503, 795], "group_norm": [57, 80, 381], "num_group": [57, 80, 381, 502], "instance_norm": [57, 80, 381], "l1_normal": [57, 80, 381], "33333334": [57, 80, 298, 367, 381, 504, 507, 541, 617, 634, 635, 636, 637, 658, 694], "33333337": [57, 137, 381, 504, 617, 629, 635], "28571439": [57, 381, 504], "l2_normal": [57, 80, 381, 507], "l2": [57, 62, 85, 96, 97, 381, 505, 507, 637, 694, 792, 827], "44721359": [57, 80, 381, 505, 507], "89442718": [57, 80, 381, 505, 507, 541, 634], "lp_normal": [57, 80, 381], "lp": [57, 381, 507], "_arraywithrandomexperiment": [57, 102], "bernoulli": [57, 80, 375, 382, 399, 400, 401], "event": [57, 80, 382, 508, 844], "parameter": [57, 66, 80, 89, 382, 508, 509, 511, 512, 643, 738, 740, 741], "odd": [57, 80, 278, 378, 382, 484, 508, 632, 806, 817, 823], "drawn": [57, 66, 80, 89, 382, 508, 509, 510, 511, 512, 643, 738, 739, 740, 741, 776, 777, 778, 791, 844], "dirichlet": [57, 80, 382], "10598304": [57, 382, 510], "21537054": [57, 382, 510], "67864642": [57, 382, 510], "48006698": [57, 382, 510], "07472073": [57, 382, 510], "44521229": [57, 382, 510], "55479872": [57, 382, 510], "05426367": [57, 382, 510], "39093761": [57, 382, 510], "19531053": [57, 382, 510], "51675832": [57, 382, 510], "28793114": [57, 382, 510], "12315625": [57, 382, 510], "29823365": [57, 382, 510], "5786101": [57, 382, 510], "15564976": [57, 382, 510], "50542368": [57, 382, 510], "33892656": [57, 382, 510], "1325352": [57, 382, 510], "44439589": [57, 382, 510], "42306891": [57, 382, 510], "gamma": [57, 65, 80, 88, 342, 354, 372, 382, 387, 526, 642, 737], "lam": [57, 80, 382, 512], "_arraywithsearchingexperiment": [57, 102], "unravel_index": [57, 80, 383], "unravel": [57, 80, 383, 513], "_arraywithsetexperiment": [57, 102], "_arraywithsortingexperiment": [57, 102], "lexsort": [57, 80, 385], "indirectli": [57, 80, 385, 515], "statist": [57, 80, 95, 378, 484, 795, 810, 818, 829, 844, 845, 870], "_arraywithstatisticalexperiment": [57, 102], "bincount": [57, 80, 387], "minlength": [57, 80, 387, 520], "corrcoef": [57, 80, 387], "rowvar": [57, 80, 387, 521, 522], "relationship": [57, 80, 521, 791, 843], "cov": [57, 80, 387], "ddof": [57, 80, 387, 522], "fweight": [57, 80, 387, 522], "aweight": [57, 80, 387, 522], "overridden": [57, 80, 387, 522, 796, 824], "assign": [57, 80, 97, 387, 522, 818, 820, 825, 829, 840, 843, 851], "covari": [57, 80, 387, 522], "cummax": [57, 80, 387], "exclus": [57, 58, 70, 74, 80, 81, 93, 126, 376, 387, 445, 523, 524, 564, 565, 568, 629, 634, 643, 647, 739, 757, 758, 815, 827, 829, 837, 854, 874, 876], "cumul": [57, 70, 80, 93, 387, 523, 524, 647, 757, 758], "uint64": [57, 70, 162, 167, 169, 170, 180, 182, 185, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "uint16": [57, 70, 157, 162, 167, 168, 177, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "bit": [57, 70, 164, 165, 168, 231, 232, 234, 387, 523, 524, 630, 632, 647, 757, 758, 763, 765, 812, 817, 818, 819, 827, 828, 829, 831, 837, 849, 851, 876], "uint32": [57, 70, 162, 167, 168, 169, 191, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "cummin": [57, 80, 387], "histogram": [57, 80, 387], "extend_lower_interv": [57, 80, 387, 525], "extend_upper_interv": [57, 80, 387, 525], "densiti": [57, 80, 387, 525], "monoton": [57, 80, 387, 525], "rightmost": [57, 80, 387, 525], "c1": [57, 80, 387, 525, 827], "ff": [57, 80, 387, 525], "c_": [57, 80, 98, 387, 525], "igamma": [57, 80, 387], "incomplet": [57, 80, 387, 526, 820], "3614": [57, 80, 387, 526], "2085": [57, 80, 387, 526], "median": [57, 80, 378, 387, 484, 529], "nanmean": [57, 80, 387], "6666666666666665": [57, 80, 387, 528], "nanmedian": [57, 80, 387], "overwrite_input": [57, 80, 387, 529], "treat": [57, 74, 80, 103, 278, 356, 372, 378, 381, 387, 493, 506, 529, 531, 632, 773, 839, 844, 850, 854], "undefin": [57, 80, 378, 387, 388, 484, 529, 533, 829, 833, 839], "nanmin": [57, 80, 387], "nanprod": [57, 80, 387], "Not": [57, 80, 356, 372, 376, 387, 431, 531, 627, 825, 833, 842, 852, 853, 855], "quantil": [57, 80, 387, 867], "inclus": [57, 80, 126, 387, 532, 629, 643, 739, 813, 825, 840, 847], "midpoint": [57, 80, 387, 532], "surround": [57, 80, 387, 532, 847], "whichev": [57, 80, 387, 532], "_arraywithutilityexperiment": [57, 102], "optional_get_el": [57, 80, 388], "empti": [57, 58, 70, 74, 81, 93, 126, 378, 388, 484, 533, 540, 577, 629, 634, 637, 641, 647, 648, 691, 694, 732, 762, 763, 765, 767, 768, 818, 819, 824, 826, 829, 830, 840], "_arraywithgener": [58, 102], "all_equ": [58, 81, 634], "equality_matrix": [58, 81, 534, 634], "array_equ": [58, 81, 634], "assert_supports_inplac": [58, 81, 634], "ivybackendexcept": [58, 81, 538, 562, 634, 807, 824, 830, 833, 834], "clip_matrix_norm": [58, 81, 634], "894": [58, 81, 540, 541, 634, 642, 737], "clip_vector_norm": [58, 81, 634], "default_v": [58, 544, 634], "catch_except": [58, 544, 634], "rev": [58, 544, 634], "with_cal": [58, 544, 634], "catch": [58, 544, 634, 838, 844], "einops_rearrang": [58, 81, 634], "axes_length": [58, 81, 545, 546, 547, 634], "arrang": [58, 545, 634], "rearrang": [58, 81, 545, 547, 634, 843], "einops_reduc": [58, 81, 634, 829], "einops_repeat": [58, 81, 634], "fourier_encod": [58, 81, 634], "max_freq": [58, 81, 549, 634], "oppos": [58, 81, 549, 634, 829], "geometr": [58, 81, 549, 634, 637, 692], "0000000e": [58, 81, 549, 634], "2246468e": [58, 81, 549, 634], "4492936e": [58, 549, 634], "6739404e": [58, 81, 549, 634], "batch_dim": [58, 81, 552, 553, 634, 798], "gather_nd": [58, 81, 634], "get_num_dim": [58, 81, 634], "as_arrai": [58, 81, 556, 590, 634, 798], "has_nan": [58, 81, 634], "include_inf": [58, 81, 558, 613, 634], "inplace_decr": [58, 81, 634], "val": [58, 74, 79, 81, 253, 378, 473, 560, 561, 562, 581, 582, 583, 632, 634, 829, 840, 851], "decrement": [58, 81, 560, 634], "inplace_incr": [58, 81, 634], "increment": [58, 81, 561, 634, 820, 870], "inplace_upd": [58, 81, 580, 634, 789, 840], "ensure_in_backend": [58, 81, 562, 634, 840], "keep_input_dtyp": [58, 81, 562, 634, 840], "is_arrai": [58, 81, 634, 840, 841], "is_ivy_arrai": [58, 81, 634, 840, 851], "is_ivy_contain": [58, 634], "is_native_arrai": [58, 81, 176, 565, 630, 634, 851], "isin": [58, 81, 634, 867], "test_el": [58, 81, 569, 634], "assume_uniqu": [58, 81, 569, 634], "invert": [58, 81, 231, 569, 632, 634, 637, 679], "scatter_flat": [58, 81, 634], "occupi": [58, 165, 168, 576, 577, 630, 634], "scatter_nd": [58, 81, 634, 847, 851], "stable_divid": [58, 81, 634, 837], "denomin": [58, 65, 81, 88, 583, 592, 606, 634, 642, 737, 795, 837, 846, 855, 867], "min_denomin": [58, 81, 583, 592, 606, 634, 846], "_min_denomin": [58, 592, 634], "stable_pow": [58, 81, 634], "min_bas": [58, 81, 582, 593, 605, 634, 795, 846], "stabl": [58, 69, 81, 92, 147, 328, 335, 336, 369, 372, 385, 515, 582, 583, 592, 593, 605, 606, 629, 634, 646, 753, 756, 778, 819, 825, 829, 841, 846, 849, 855], "00004": [58, 81, 593, 634], "00008": [58, 81, 593, 634], "00004000e": [58, 593], "56002560e": [58, 593], "60001200e": [58, 593], "09602048e": [58, 593], "supports_inplace_upd": [58, 81, 634], "to_fil": 58, "fid": 58, "sep": 58, "format_": 58, "recov": [58, 833, 841], "to_scalar": [58, 81, 634], "value_is_nan": [58, 81, 634], "_arraywithgradi": [59, 102], "adam_step": [59, 82, 635], "mw": [59, 82, 615, 616, 635, 853], "vw": [59, 82, 615, 616, 635, 853], "beta1": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "beta2": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "epsilon": [59, 62, 63, 82, 85, 86, 536, 615, 616, 621, 634, 635, 637, 638, 680, 683, 696, 697, 698, 788, 793, 795, 796, 827, 837, 840, 853], "dc": [59, 82, 615, 616, 619, 621, 622, 623, 635], "dw": [59, 82, 615, 616, 619, 621, 622, 623, 635], "forget": [59, 82, 615, 616, 621, 635, 796, 812, 829], "dcdw": [59, 82, 615, 616, 619, 621, 622, 635], "adam_step_delta": [59, 82, 615, 635], "2020105": [59, 615, 635], "22187898": [59, 615, 635], "24144873": [59, 615, 635], "10000002": [59, 93, 296, 367, 615, 761], "00300002": [59, 615], "00800002": [59, 615], "adam_upd": [59, 82, 635, 853], "mw_tm1": [59, 82, 616, 621, 635], "vw_tm1": [59, 82, 616, 621, 635], "ws_new": [59, 82, 616, 621, 622, 623, 635], "updated_weight": [59, 82, 616, 635], "92558753": [59, 616], "92558873": [59, 616, 635], "92558718": [59, 616, 635], "00000063e": [59, 82, 616, 635], "00000016e": [59, 82, 616, 635], "00000086e": [59, 82, 616, 635], "gradient_descent_upd": [59, 82, 635, 640, 715, 716, 717], "descent": [59, 82, 619, 635, 796, 853, 870], "new_weight": [59, 82, 619, 621, 622, 635, 852], "lamb_upd": [59, 82, 635], "max_trust_ratio": [59, 82, 621, 635, 796], "decay_lambda": [59, 82, 621, 622, 635, 796], "trust": [59, 82, 621, 635, 796], "ratio": [59, 82, 621, 635, 796], "decai": [59, 82, 621, 622, 635, 796], "lamb": [59, 82, 621, 635, 796, 853], "784": [59, 621, 635], "lars_upd": [59, 82, 635], "lar": [59, 82, 622, 635, 796, 853], "34077978": [59, 622, 635], "78025991": [59, 622, 635], "56051969": [59, 622, 635], "78026009": [59, 622, 635], "56051981": [59, 622, 635], "12103939": [59, 622, 635], "optimizer_upd": [59, 82, 635], "effective_grad": [59, 82, 623, 635], "3e": [59, 82, 623, 635], "preserve_typ": [59, 82, 624, 635], "_arraywithimag": [60, 102], "_arraywithlay": [61, 102], "conv1d": [61, 84, 636, 792], "filter_format": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_last": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 776], "x_dilat": [61, 84, 636, 649, 650, 652, 653, 654, 656], "d_out": [61, 84, 375, 392, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_first": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "wio": [61, 636, 649, 650, 651, 656], "conv1d_transpos": [61, 84, 636], "output_shap": [61, 84, 636, 649, 651, 653, 655, 657, 792], "iow": [61, 84, 636, 651], "woi": [61, 84, 636, 651], "fh": [61, 84, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 730], "hwio": [61, 636, 649, 650, 652, 656], "conv2d_transpos": [61, 84, 636], "iohw": [61, 84, 636, 653], "hwoi": [61, 84, 636, 653], "conv3d": [61, 84, 636, 655, 792], "fd": [61, 84, 636, 649, 654, 655, 656, 657], "conv3d_transpos": [61, 84, 636, 657], "iodhw": [61, 84, 636, 655, 657], "dhwoi": [61, 84, 636, 655, 657], "depthwise_conv2d": [61, 84, 636], "randint": [61, 66, 68, 84, 89, 643, 645, 658, 662, 749, 812, 829, 863], "noise_shap": [61, 84, 636, 659], "42857146": [61, 636, 659], "85714293": [61, 636, 659], "28571415": [61, 84, 636, 659], "71428585": [61, 84, 636, 659], "14285755": [61, 84, 636, 659], "5714283": [61, 636, 659], "4285717": [61, 84, 636, 659], "8571434": [61, 84, 636, 659], "2857151": [61, 636, 659], "dropout1d": [61, 84, 375, 400], "dropout2d": [61, 84, 375], "dropout3d": [61, 84, 375], "outer_batch_shap": [61, 84, 636, 660], "inner_batch_shap": [61, 84, 636, 660], "lstm_updat": [61, 84, 636, 849], "init_h": [61, 84, 636, 662, 849], "init_c": [61, 84, 636, 662, 849], "recurrent_kernel": [61, 84, 636, 662, 849], "recurrent_bia": [61, 84, 636, 662, 849], "hidden": [61, 84, 636, 661, 662, 792, 826, 833, 849, 853], "recurr": [61, 80, 84, 375, 421, 636, 662, 849, 870, 874], "timestep": [61, 80, 84, 375, 421, 636, 661, 662, 663, 792, 849], "h_i": [61, 84, 662], "c_i": [61, 84, 662], "rc": [61, 84, 662], "multi_head_attent": [61, 84, 636, 840], "num_head": [61, 84, 636, 663, 792], "in_proj_weight": [61, 84, 636, 663], "q_proj_weight": [61, 84, 636, 663], "k_proj_weight": [61, 84, 636, 663], "v_proj_weight": [61, 84, 636, 663], "out_proj_weight": [61, 84, 636, 663], "in_proj_bia": [61, 84, 636, 663], "out_proj_bia": [61, 84, 636, 663], "is_caus": [61, 84, 636, 663, 666], "key_padding_mask": [61, 84, 636, 663], "bias_k": [61, 84, 636, 663], "bias_v": [61, 84, 636, 663], "static_k": [61, 84, 636, 663], "static_v": [61, 84, 636, 663], "add_zero_attn": [61, 84, 636, 663], "return_attention_weight": [61, 84, 636, 663], "average_attention_weight": [61, 84, 636, 663], "scaled_dot_product_attent": [61, 84, 636], "dropout_p": [61, 84, 636, 666], "num_queri": [61, 84, 636, 666], "feat_dim": [61, 84, 636, 666], "num_kei": [61, 84, 636, 666], "causal": [61, 84, 636, 663, 666], "attent": [61, 84, 636, 663, 666, 792, 820, 824, 860], "29999995": [61, 296, 297, 307, 367, 375, 419, 636, 645, 666, 750], "19994521": [61, 636, 666], "09994531": [61, 636, 666], "30000019": [61, 378, 468, 636, 666], "_arraywithlinearalgebra": [62, 102], "choleski": [62, 85, 637, 840], "625": [62, 80, 348, 637, 667], "vif": [62, 85, 668], "det": [62, 85, 637, 685, 828], "axis1": [62, 64, 85, 87, 637, 639, 671, 691, 711], "axis2": [62, 85, 637, 671, 691], "eigh": [62, 85, 376, 429, 637, 672], "uplo": [62, 85, 637, 673, 674], "eigvalsh": [62, 85, 637], "array_lik": [62, 85, 375, 377, 378, 420, 453, 454, 458, 459, 489, 637, 675, 682, 806], "203": [62, 79, 229, 637, 642, 675, 737], "233": [62, 637, 675], "inv": [62, 85, 637], "transpose_a": [62, 85, 637, 677], "transpose_b": [62, 85, 637, 677], "adjoint_a": [62, 85, 637, 677], "adjoint_b": [62, 85, 637, 677], "matrix_norm": [62, 85, 637], "ord": [62, 85, 637, 678, 694], "fro": [62, 85, 377, 453, 637, 678], "nuc": [62, 85, 637, 678], "performingth": [62, 678], "matrix_pow": [62, 85, 637], "matrix_rank": [62, 85, 637], "hermitian": [62, 85, 376, 429, 430, 637, 672, 673, 674, 680, 687], "largest_singular_valu": [62, 85, 637, 680, 683], "defici": [62, 637, 680], "matrix_transpos": [62, 85, 637, 851], "pinv": [62, 85, 637], "pseudo": [62, 85, 637, 683, 839], "99999988": [62, 85, 637, 683], "qr": [62, 85, 637, 842], "12309149": [62, 637, 684], "90453403": [62, 637, 684], "40824829": [62, 637, 684], "49236596": [62, 637, 684], "30151134": [62, 637, 684], "81649658": [62, 637, 684], "86164044": [62, 637, 684], "12403841e": [62, 637, 684], "60113630e": [62, 637, 684], "10782342e": [62, 637, 684], "04534034e": [62, 637, 684], "80906807e": [62, 637, 684], "88178420e": [62, 85, 637, 674, 684], "slogdet": [62, 85, 637], "logabsdet": [62, 85, 637, 685], "natur": [62, 85, 243, 261, 262, 263, 264, 283, 354, 372, 632, 637, 685, 824, 831, 833, 842, 860], "098611": [62, 637, 685], "solv": [62, 85, 376, 440, 637, 776, 812, 819, 823, 834, 841, 850, 872], "full_matric": [62, 85, 637, 687], "svf": [62, 687], "reconstructed_x": [62, 637, 687], "svdval": [62, 85, 637], "tensorsolv": [62, 85, 637], "vander": [62, 85, 637], "vandermond": [62, 85, 637, 692], "vecdot": [62, 85, 637], "vector_norm": [62, 85, 637], "mathemat": [62, 85, 223, 228, 240, 245, 247, 263, 273, 627, 632, 637, 678, 694, 829, 841, 847, 870, 876], "manhattan": [62, 85, 637, 694], "euclidean": [62, 85, 97, 98, 637, 694], "7416575": [62, 85, 637, 694], "vector_to_skew_symmetric_matrix": [62, 85, 637], "_arraywithloss": [63, 102], "binary_cross_entropi": [63, 86, 638, 828], "from_logit": [63, 86, 638, 696, 793], "pos_weight": [63, 86, 638, 696], "crossentropi": [63, 86, 638, 696], "26765382": [63, 638, 696], "34657359": [63, 638, 697], "sparse_cross_entropi": [63, 86, 638], "07438118": [63, 86, 698], "11889165": [63, 698], "_arraywithmanipul": [64, 102], "x_min": [64, 87, 639, 699, 854], "x_max": [64, 87, 639, 699, 854], "before_1": [64, 87, 378, 484, 639, 701, 714], "after_1": [64, 87, 378, 484, 639, 701, 714], "before_n": [64, 87, 378, 484, 639, 701, 714], "after_n": [64, 87, 378, 484, 639, 701, 714], "repetit": [64, 87, 639, 705, 712, 847], "flat": [64, 74, 87, 383, 513, 576, 634, 639, 705], "allowzero": [64, 87, 639, 706], "remain": [64, 67, 80, 87, 90, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 399, 400, 401, 420, 632, 639, 641, 644, 706, 724, 747, 806, 819, 820, 828, 831, 833, 837, 845, 847, 855], "roll": [64, 87, 639, 836, 867], "shift": [64, 76, 87, 103, 136, 147, 232, 234, 328, 369, 629, 632, 639, 707, 819, 820, 830, 831, 836, 843, 867], "restor": [64, 87, 639, 707, 835], "num_or_size_split": [64, 74, 87, 639, 708, 849], "with_remaind": [64, 74, 87, 639, 708], "squeezabl": [64, 639, 709], "swapax": [64, 87, 639], "axis0": [64, 87, 639, 711], "swap_ax": [64, 711], "swap": [64, 87, 639, 711, 801, 864], "tile": [64, 81, 87, 547, 639], "unpack": [64, 87, 639, 713, 842, 844], "zero_pad": [64, 87, 639], "_arraywithnorm": [65, 102], "layer_norm": [65, 88, 642], "normalized_idx": [65, 88, 642, 737], "new_std": [65, 88, 642, 737, 795], "learnabl": [65, 88, 636, 640, 642, 661, 717, 737, 792, 795, 854], "0976": [65, 642, 737], "3452": [65, 642, 737], "2740": [65, 642, 737], "1047": [65, 642, 737], "5886": [65, 642, 737], "2732": [65, 642, 737], "7696": [65, 642, 737, 776], "7024": [65, 642, 737], "2518": [65, 642, 737], "826": [65, 642, 737], "178": [65, 642, 737], "981": [65, 642, 737], "831": [65, 642, 737], "421": [65, 642, 737], "_arraywithrandom": [66, 102], "multinomi": [66, 89, 382, 510, 643], "population_s": [66, 89, 643, 738], "num_sampl": [66, 89, 643, 738], "unnorm": [66, 89, 643, 738, 844], "popul": [66, 70, 74, 89, 93, 643, 647, 738, 764, 766, 829, 830, 840, 844, 849, 876], "draw": [66, 89, 382, 508, 510, 512, 643, 738, 740, 741, 776, 777, 778, 779, 784, 791, 818, 823, 842, 844], "half": [66, 89, 126, 287, 629, 632, 643, 739, 741, 816, 834, 847], "235": [66, 740], "float16": [66, 77, 89, 134, 157, 159, 160, 165, 167, 346, 372, 629, 630, 637, 694, 740, 741, 776, 777, 816, 829, 834, 841, 844], "807": [66, 740], "_arraywithsearch": [67, 102], "select_last_index": [67, 90, 644, 744, 745], "occurr": [67, 378, 387, 498, 520, 644, 645, 744, 745, 749], "argmin": [67, 90, 644, 867], "output_dtyp": [67, 90, 644, 745], "argwher": [67, 90, 644], "nonzero": [67, 90, 98, 221, 222, 223, 226, 229, 238, 240, 243, 245, 247, 273, 286, 291, 632, 644], "as_tupl": [67, 90, 644, 747], "fewer": [67, 90, 644, 747], "_arraywithset": [68, 102], "unique_al": [68, 91, 645], "by_valu": [68, 91, 645, 749], "inverse_indic": [68, 91, 378, 498, 645, 749, 751], "unique_count": [68, 91, 645], "unique_invers": [68, 91, 645], "unique_valu": [68, 91, 645], "admonit": [68, 752], "dask": [68, 645, 749, 750, 751, 752, 860], "difficult": [68, 645, 749, 750, 751, 752, 820, 823, 829, 844, 855], "omit": [68, 283, 632, 645, 749, 750, 751, 752, 836, 840, 841], "x_i": [68, 70, 79, 98, 220, 221, 222, 225, 226, 227, 229, 231, 236, 237, 238, 243, 245, 246, 253, 254, 255, 256, 257, 261, 262, 263, 264, 268, 275, 280, 283, 284, 285, 286, 287, 288, 290, 291, 293, 335, 336, 338, 359, 372, 632, 645, 647, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 791, 832], "x_j": [68, 645, 749, 750, 751, 752], "typeerror": [68, 91, 645, 752, 851], "_arraywithsort": [69, 102], "stabil": [69, 92, 592, 593, 634, 646, 753, 756, 829, 839, 845, 847], "msort": [69, 92, 646], "searchsort": [69, 92, 646, 777], "sorter": [69, 92, 646, 755], "ret_dtyp": [69, 92, 646, 755], "_arraywithstatist": [70, 102], "cumprod": [70, 93, 647, 841, 854, 867], "cumsum": [70, 93, 647, 829, 867], "einsum": [70, 93, 647], "equat": [70, 80, 93, 314, 369, 376, 446, 637, 647, 686, 759, 776, 805, 828, 870], "operand": [70, 80, 84, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 363, 372, 373, 375, 418, 632, 637, 647, 685, 691, 759, 760, 762, 763, 765, 805, 806, 824, 827, 832, 841], "contract": [70, 637, 647, 689, 759, 806], "seq": [70, 647, 759, 776], "ii": [70, 93, 647, 759, 820], "jk": [70, 647, 759, 806], "ik": [70, 647, 759, 806], "126": [70, 110, 279, 626, 632, 637, 647, 679, 759], "510": [70, 647, 759], "special": [70, 85, 97, 98, 102, 103, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 632, 637, 647, 685, 691, 760, 761, 762, 763, 764, 765, 766, 776, 777, 778, 779, 784, 791, 818, 821, 823, 824, 826, 828, 831, 832, 833, 836, 840, 842, 843, 844, 845, 847, 870, 871, 872], "arithmet": [70, 93, 234, 240, 273, 632, 647, 761, 841], "propag": [70, 234, 335, 336, 372, 632, 647, 760, 761, 762, 764, 765, 766, 839], "overflow": [70, 93, 223, 240, 247, 632, 637, 647, 685, 761, 765, 817, 829], "04999995": [70, 761], "freedom": [70, 93, 647, 764, 766, 825], "constitut": [70, 93, 647, 764, 766, 837, 849, 871], "commonli": [70, 93, 647, 764, 766, 833, 837, 839], "81649661": [70, 647, 764], "6666665": [70, 766, 852], "667": [70, 81, 240, 541, 592, 632, 634, 766], "_arraywithutil": [71, 102], "logic": [71, 94, 204, 240, 241, 267, 268, 269, 273, 276, 631, 632, 648, 767, 768, 818, 824, 828, 829, 830, 833, 837, 838, 839, 840, 841, 843, 844, 847, 851, 864], "AND": [71, 94, 230, 241, 267, 632, 648, 767], "OR": [71, 94, 233, 269, 276, 632, 648, 768, 819, 820, 839], "_wrap_funct": [72, 95, 826, 837, 838], "function_nam": [72, 95, 818, 845], "new_funct": [72, 95, 826], "add_ivy_array_instance_method": 72, "cl": [72, 95], "moduletyp": [72, 95, 863, 864, 865], "toi": [72, 95], "arrayexampl": 72, "hasattr": [72, 95], "_containerwithactiv": [73, 103], "dict_in": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846, 852], "queue_load_s": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "container_combine_method": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "list_join": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue_timeout": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846], "print_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "key_length_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_ind": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_line_spac": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "ivyh": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "default_key_color": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "keyword_color_dict": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "rebuild_child_contain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "types_to_iteratively_nest": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "alphabetical_kei": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "dynamic_backend": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 793, 794, 825, 846], "build_cal": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "containerbas": [73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 827], "_static_gelu": 73, "key_chain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "to_appli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune_unappli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "map_sequ": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 732, 733, 734, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 774, 777, 828], "static_gelu": 73, "046": 73, "_static_hardswish": 73, "_static_leaky_relu": 73, "static_leaky_relu": 73, "38999999": [73, 80, 112, 295, 296, 367], "_static_log_softmax": 73, "static_log_softmax": 73, "371": [73, 113], "_static_mish": 73, "static_mish": 73, "30883577": [73, 114, 626], "28903052": [73, 114, 626], "10714479": [73, 114, 626], "_static_relu": 73, "static_relu": 73, "_static_sigmoid": 73, "static_sigmoid": 73, "2689414": [73, 116, 117, 626], "7310586": [73, 116, 117, 626], "88079703": [73, 116, 626], "62245935": [73, 116], "4750208": [73, 116], "_static_softmax": 73, "static_softmax": 73, "72844321": [73, 117], "19852395": [73, 117], "07303288": [73, 117], "_static_softplu": 73, "revert": [73, 118, 626], "static_softplu": 73, "53499615": 73, "42036411": 73, "948": [73, 118, 641, 718], "dictionari": [74, 91, 103, 212, 601, 617, 631, 634, 635, 752, 771, 773, 806, 824, 828, 829, 837, 841, 842, 852, 855], "asynchron": [74, 103, 870], "wait": [74, 103, 586, 634, 812, 818, 820, 828, 841], "arriv": [74, 103, 586, 634, 847], "cont_list_join": [74, 103], "whitespac": [74, 103], "indent": [74, 103, 852], "newlin": [74, 103, 832], "termin": [74, 103, 819, 820, 827, 834, 835, 849, 852], "constructor": [74, 103, 536, 634, 773, 789, 797, 829, 830, 832, 851], "kept": [74, 103, 640, 715, 716, 820, 840, 845], "encount": [74, 103, 792, 816, 818, 829, 833, 834, 844], "node": [74, 81, 103, 538, 548, 595, 641, 728, 729, 791, 800, 826, 827, 841, 860, 863, 864, 871], "alphabet": [74, 103], "__setitem__": [74, 378, 492, 824, 827, 851], "_cont_at_key_chains_input_as_dict": 74, "current_chain": 74, "ignore_key_error": 74, "_cont_at_key_chains_input_as_seq": 74, "_cont_call_static_method_with_flexible_arg": 74, "static_method": 74, "kw": 74, "self_idx": 74, "_cont_concat_unifi": 74, "_cont_get_dev": 74, "_cont_get_dtyp": 74, "_cont_get_shap": 74, "_cont_ivi": 74, "_cont_mean_unifi": 74, "_1": 74, "_cont_prune_key_chains_input_as_dict": 74, "return_cont": 74, "_cont_prune_key_chains_input_as_seq": 74, "_cont_slice_kei": 74, "key_slic": 74, "_cont_sum_unifi": 74, "_get_queue_item": 74, "cont_all_fals": 74, "assert_is_bool": 74, "cont_all_key_chain": 74, "include_empti": 74, "cont_all_tru": [74, 827, 852], "cont_as_bool": 74, "cont_assert_contains_sub_contain": 74, "sub_cont": 74, "screen": [74, 818, 819, 852], "cont_assert_contains_sub_structur": 74, "check_shap": [74, 798], "cont_assert_ident": 74, "check_typ": 74, "same_arrai": [74, 852], "arrays_equ": 74, "cont_assert_identical_structur": 74, "assert_and_assign": 74, "congruent": 74, "cont_at_key_chain": 74, "ignore_non": 74, "cont_at_kei": 74, "substr": 74, "cont_combin": 74, "duplic": [74, 378, 489, 557, 634, 641, 720, 825, 832, 838, 839, 842, 853, 876], "configur": [74, 212, 631, 641, 731, 819, 820, 826, 828, 829, 834, 835], "container_rightmost": 74, "cont_common_key_chain": 74, "cont_config": 74, "cont_contains_sub_contain": 74, "cont_contains_sub_structur": 74, "cont_copi": [74, 852], "cont_create_if_abs": 74, "noth": [74, 847, 876], "cont_cutoff_at_depth": 74, "depth_cutoff": 74, "cont_cutoff_at_height": 74, "height_cutoff": 74, "cont_deep_copi": [74, 852, 863], "cont_dev": 74, "cont_dev_str": 74, "cont_diff": [74, 852], "diff_kei": 74, "detect_key_diff": 74, "detect_value_diff": 74, "detect_shape_diff": 74, "container0": 74, "cont_dtyp": 74, "cont_duplicate_array_keychain": 74, "cont_find_sub_contain": 74, "sub_cont_to_find": 74, "cont_find_sub_structur": 74, "sub_struc_to_find": 74, "cont_flatten_key_chain": [74, 852], "above_height": [74, 852], "below_depth": [74, 852], "cont_format_key_chain": 74, "format_fn": 74, "cont_from_disk_as_hdf5": [74, 852], "h5_obj_or_filepath": 74, "slice_obj": 74, "disk": [74, 794, 852, 869], "h5py": 74, "filepath": [74, 648, 769, 770, 820, 823], "cont_from_disk_as_json": [74, 852], "json_filepath": 74, "cont_from_disk_as_pickl": [74, 852], "pickle_filepath": 74, "cont_from_flat_list": 74, "flat_list": 74, "hierarchi": [74, 810, 818, 843, 852, 866, 876], "cont_handle_inplac": 74, "prime": [74, 829], "overwritten": [74, 824, 825], "cont_has_kei": 74, "query_kei": 74, "somewher": [74, 828], "cont_has_key_chain": 74, "cont_ident": [74, 852], "cont_identical_array_shap": 74, "cont_identical_config": 74, "cont_identical_structur": 74, "cont_if_exist": 74, "cont_inplace_upd": 74, "cont_ivi": 74, "cont_key_chains_contain": 74, "sub_str": 74, "cont_list_stack": [74, 852], "cont_load": 74, "cont_map": [74, 827, 852], "func": [74, 97, 213, 364, 365, 366, 374, 539, 614, 617, 618, 620, 625, 631, 634, 635, 641, 731, 773, 818, 823, 824, 831, 833, 839], "cont_map_sub_cont": 74, "include_self": 74, "possibli": [74, 597, 634, 776, 844, 855], "cont_max_depth": 74, "cont_multi_map": 74, "map_nest": 74, "assert_ident": 74, "leftmost": [74, 641, 731], "cont_multi_map_in_funct": 74, "cont_num_arrai": 74, "cont_overwrite_at_key_chain": 74, "target_dict": 74, "return_dict": 74, "cont_prune_empti": 74, "keep_non": 74, "cont_prune_key_chain": 74, "key1": [74, 812, 853], "key2": [74, 812], "key3": 74, "cont_prune_key_from_key_chain": 74, "certain": [74, 126, 137, 138, 377, 454, 629, 818, 819, 820, 823, 829, 837, 843, 844, 847, 855, 863, 864, 865, 874], "cont_prune_kei": 74, "cont_prune_keys_from_key_chain": 74, "cont_reduc": 74, "cont_remove_key_length_limit": 74, "cont_remove_print_limit": 74, "cont_reshape_lik": 74, "leading_shap": 74, "cont_restructur": 74, "keep_orig": 74, "old": [74, 819, 825, 840], "cont_restructure_key_chain": 74, "keychain_map": 74, "cont_sav": 74, "cont_set_at_key_chain": 74, "cont_set_at_kei": 74, "cont_shap": [74, 636, 654], "cont_show": 74, "cont_show_sub_contain": 74, "sub_cont_or_keychain": 74, "cont_size_ordered_arrai": 74, "keychain": [74, 80, 298, 337, 462, 463, 464, 493], "cont_slice_kei": 74, "all_depth": 74, "cont_slice_via_kei": 74, "slice_kei": 74, "cont_sort_by_kei": 74, "cont_structural_diff": 74, "cont_to_dict": 74, "cont_to_disk_as_hdf5": [74, 852], "starting_index": 74, "max_batch_s": 74, "cont_to_disk_as_json": [74, 852], "cont_to_disk_as_pickl": [74, 852], "cont_to_flat_list": 74, "cont_to_iter": [74, 827], "leaf_keys_onli": 74, "cont_to_iterator_kei": 74, "cont_to_iterator_valu": 74, "cont_to_json": 74, "cont_to_nested_list": 74, "cont_to_raw": 74, "cont_trim_kei": 74, "cont_try_kc": 74, "cont_unifi": 74, "concatten": [74, 213, 631], "cont_unstack_cont": 74, "dim_siz": 74, "cont_update_config": 74, "cont_with_default_key_color": 74, "cont_with_entries_as_list": 74, "cont_with_ivy_backend": 74, "ivy_backend": [74, 842], "cont_with_key_length_limit": [74, 852], "cont_with_print_ind": [74, 852], "cont_with_print_limit": [74, 852], "cont_with_print_line_spac": 74, "h5_file_s": 74, "shuffle_h5_fil": 74, "split_cont": 74, "_is_json": 74, "_repr": 74, "_containerwithconvers": [75, 103], "_static_to_ivi": 75, "_static_to_n": 75, "_containerwithcr": [76, 103], "_static_arang": 76, "_static_asarrai": 76, "_static_copy_arrai": 76, "_static_empti": 76, "_static_empty_lik": 76, "_static_ey": 76, "n_row": [76, 80, 132, 147, 328, 369, 376, 437, 629], "n_col": [76, 80, 132, 147, 328, 369, 629], "_static_from_dlpack": 76, "_static_ful": 76, "_static_full_lik": 76, "static_full_lik": 76, "2324": [76, 136, 629], "234": [76, 79, 136, 159, 242, 293, 629, 630, 632, 636, 660, 776], "_static_linspac": 76, "_static_logspac": 76, "static_logspac": 76, "15443469": [76, 138], "64158883": [76, 138], "_static_meshgrid": 76, "_static_native_arrai": 76, "_static_one_hot": 76, "static_one_hot": 76, "_static_on": 76, "_static_ones_lik": 76, "_static_tril": 76, "_static_triu": 76, "_static_zero": 76, "_static_zeros_lik": 76, "frombuff": [76, 629], "expos": [76, 134, 542, 629, 634, 812, 828, 849, 853, 859], "x00": [76, 134, 629], "xf0": [76, 134, 629], "x01": [76, 134, 629], "x02": [76, 134, 629], "x03": [76, 134, 629], "x04": [76, 134, 629], "x05": [76, 134], "5443469": [76, 138, 629], "static_frombuff": 76, "static_triu_indic": 76, "triu_indic": [76, 629], "_containerwithdatatyp": [77, 103], "_static_astyp": 77, "718": [77, 79, 152, 269, 630], "618": [77, 79, 152, 269, 630], "static_astyp": 77, "_static_broadcast_arrai": 77, "static_broadcast_arrai": 77, "_static_broadcast_to": 77, "static_broadcast_to": 77, "_static_can_cast": 77, "from_": [77, 155, 630], "static_can_cast": 77, "_static_default_complex_dtyp": 77, "complex_dtyp": [77, 158, 181, 630], "_static_default_float_dtyp": 77, "float_dtyp": [77, 160, 183, 630], "_static_dtyp": 77, "_static_finfo": 77, "inquir": [77, 165, 168], "static_finfo": 77, "55040e": [77, 165, 630], "7976931348623157e": [77, 165, 630], "308": [77, 165, 630, 776, 844], "_static_function_supported_dtyp": 77, "_static_function_unsupported_dtyp": 77, "_static_iinfo": 77, "1800": [77, 168, 630], "1084": 77, "40000": 77, "static_iinfo": 77, "2147483648": [77, 80, 168, 378, 492, 630], "2147483647": [77, 168, 630], "_static_is_bool_dtyp": 77, "dtype_in": [77, 150, 151, 164, 170, 171, 172, 173, 174, 175, 176, 177, 192, 630], "_static_is_complex_dtyp": 77, "is_complex_dtyp": [77, 630, 845], "roughli": [77, 819, 823, 873], "static_is_complex_dtyp": 77, "_static_is_float_dtyp": 77, "static_is_float_dtyp": 77, "_static_is_int_dtyp": 77, "_static_is_uint_dtyp": 77, "_static_result_typ": 77, "static_result_typ": 77, "broadcats": [77, 153], "_containerwithdevic": [78, 103], "_static_dev": 78, "static_dev": 78, "_static_to_devic": 78, "static_to_devic": 78, "contaion": [78, 197], "_containerwithelementwis": [79, 103], "_static_ab": 79, "static_ab": 79, "_static_aco": 79, "static_aco": 79, "_static_acosh": 79, "static_acosh": 79, "_static_add": 79, "static_add": [79, 107], "_static_asin": 79, "static_asin": 79, "524": [79, 225, 632], "412": [79, 84, 225, 632, 641, 718], "_static_asinh": 79, "static_asinh": 79, "_static_atan": 79, "static_atan": 79, "_static_atan2": 79, "static_atan2": 79, "915": [79, 228, 632], "983": [79, 228, 632], "978": [79, 228, 632], "696": [79, 89, 228, 632, 740], "993": [79, 228, 632], "_static_atanh": 79, "static_atanh": 79, "_static_bitwise_and": 79, "static_bitwise_and": 79, "_static_bitwise_invert": 79, "static_bitwise_invert": 79, "_static_bitwise_left_shift": 79, "_static_bitwise_or": 79, "static_bitwise_or": 79, "_static_bitwise_right_shift": 79, "static_bitwise_right_shift": 79, "_static_bitwise_xor": 79, "static_bitwise_xor": 79, "_static_ceil": 79, "static_ceil": 79, "_static_co": 79, "static_co": 79, "_static_cosh": 79, "static_cosh": 79, "_static_deg2rad": 79, "static_deg2rad": 79, "0262": [79, 239, 279, 632], "873": [79, 239, 279, 632], "_static_divid": 79, "static_divid": 79, "_static_equ": 79, "static_equ": 79, "_static_erf": 79, "static_erf": 79, "27632612": [79, 242], "934008": [79, 242, 632], "99999928": [79, 242], "91903949": [79, 242], "_static_exp": 79, "static_exp": 79, "59814835": [79, 243, 632], "4131622": [79, 243], "_static_expm1": 79, "thefunct": [79, 242], "areal": 79, "static_expm1": 79, "71828175": [79, 243, 632], "38905621": [79, 243, 632], "59815216": 79, "_static_floor": 79, "static_floor": 79, "_static_floor_divid": 79, "static_floor_divid": 79, "_static_great": 79, "static_great": 79, "_static_greater_equ": 79, "static_greater_equ": 79, "_static_isfinit": 79, "999999999999": [79, 254, 632], "static_isfinit": 79, "_static_isinf": 79, "static_isinf": 79, "_static_isnan": 79, "static_isnan": 79, "_static_isr": 79, "0j": [79, 80, 142, 143, 221, 222, 223, 226, 229, 238, 243, 245, 257, 261, 263, 280, 284, 286, 287, 291, 338, 372, 629, 632, 637, 685], "23j": [79, 80], "9j": [79, 80], "static_isr": 79, "_static_lcm": 79, "1080": [79, 258], "1550": [79, 258], "130": [79, 258], "_static_less": 79, "static_less": 79, "_static_less_equ": 79, "static_less_equ": 79, "_static_log": 79, "static_log": 79, "_static_log10": 79, "static_log10": 79, "898": [79, 262, 632], "0414": [79, 262, 632], "_static_log1p": 79, "static_log1p": 79, "_static_log2": 79, "static_log2": 79, "_static_logaddexp": 79, "static_logaddexp": 79, "_static_logical_and": 79, "static_logical_and": 79, "_static_logical_not": 79, "static_logical_not": 79, "_static_logical_or": 79, "static_logical_or": 79, "_static_logical_xor": 79, "static_logical_xor": 79, "_static_maximum": 79, "static_maximum": 79, "_static_minimum": 79, "static_minimum": 79, "_static_multipli": 79, "static_multipli": 79, "_static_neg": 79, "static_neg": 79, "_static_not_equ": 79, "static_not_equ": 79, "_static_posit": 79, "static_posit": 79, "_static_pow": 79, "static_pow": 79, "_static_rad2deg": 79, "static_rad2deg": 79, "5160": 79, "10300": [79, 279, 632], "15500": 79, "20600": 79, "2860": [79, 279], "_static_reciproc": 79, "recirpoc": [79, 281], "static_reciproc": 79, "_static_remaind": 79, "static_remaind": 79, "_static_round": 79, "thevfunct": 79, "527": [79, 283, 632], "static_round": 79, "301": [79, 283, 632], "_static_sign": 79, "static_sign": 79, "_static_sin": 79, "static_sin": 79, "757": [79, 285, 632], "959": [79, 245, 285, 632], "279": [79, 285, 375, 397, 407, 540, 632, 634], "_static_sinh": 79, "static_sinh": 79, "835": [79, 286], "347": [79, 286], "721": [79, 286], "_static_sqrt": 79, "static_sqrt": 79, "_static_squar": 79, "static_squar": 79, "_static_subtract": 79, "static_subtract": 79, "_static_tan": 79, "static_tan": 79, "_static_tanh": 79, "static_tanh": 79, "995": [79, 291, 632], "9999": 79, "_static_trapz": 79, "static_trapz": 79, "_static_trunc": 79, "static_trunc": 79, "_static_trunc_divid": 79, "75j": [79, 224, 253], "01317055": [79, 224], "05634501": [79, 224], "115": [79, 224, 279, 632], "3461759": [79, 224], "524111": [79, 224], "644": [79, 225, 632, 853], "305": [79, 84, 225, 632], "351": [79, 239, 279], "00613": [79, 239], "0154": [79, 239], "403": [79, 243], "428772": [79, 243], "649": [79, 245], "220": [79, 245], "865": [79, 245], "metho": [79, 252, 264], "imaginari": [79, 102, 112, 115, 118, 142, 143, 221, 222, 223, 238, 240, 241, 243, 245, 253, 273, 275, 276, 283, 286, 287, 291, 338, 372, 375, 376, 419, 430, 626, 629, 632, 644, 747, 831], "4j": [79, 253, 375, 419, 593, 632, 634], "7j": [79, 80, 257, 280, 338, 372, 632], "956": [79, 263], "08746284": [79, 266], "32192809": [79, 266], "nuner": [79, 273], "413": [79, 279], "335": [79, 80, 280, 338], "345j": [79, 80, 280, 338], "static_angl": 79, "static_exp2": 79, "static_fmin": 79, "static_gcd": 79, "static_imag": 79, "static_logaddexp2": 79, "static_nan_to_num": 79, "static_r": 79, "_containerwithactivationexperiment": [80, 103], "_static_celu": 80, "formlat": 80, "static_celu": 80, "_static_elu": 80, "static_elu": 80, "_static_hardshrink": 80, "hard": [80, 297, 820, 851, 870], "shrinkag": [80, 297, 307, 378, 491], "_static_hardsilu": 80, "20833333": [80, 298, 367], "29166666": [80, 298, 367], "66666669": [80, 103, 298, 367, 381, 507, 617, 635], "66666663": [80, 137, 298, 367, 629], "_static_hardtanh": 80, "3899": 80, "_static_scaled_tanh": 80, "931": 80, "71587813": 80, "88367474": 80, "00376701": [80, 304], "2285642": 80, "99999881": 80, "49999905": 80, "_static_silu": 80, "static_silu": 80, "27777028": [80, 306], "23947507": [80, 306], "0900332": [80, 306], "_static_softshrink": 80, "_static_tanhshrink": 80, "36634541": [80, 309], "02005103": [80, 309], "00262468": [80, 309], "_static_threshold": 80, "389999": [80, 299], "19722462": [80, 300], "84729779": [80, 300], "31326163": [80, 301], "46328258": [80, 301], "51301527": [80, 301], "79813886": [80, 301], "simplywrap": [80, 304], "54939651": [80, 304], "09999998": [80, 304, 615, 635], "09999999": [80, 304], "08336546": [80, 304], "0379949": [80, 304], "22856998": [80, 305], "42028043": [80, 305], "31868932": [80, 305], "static_logit": 80, "static_logsigmoid": 80, "34115386": 80, "64439666": 80, "24115384": 80, "55435526": 80, "07888974": 80, "00741899": 80, "26328245": 80, "00012302": 80, "static_prelu": 80, "static_relu6": 80, "static_selu": 80, "static_thresholded_relu": 80, "_containerwithconversionexperiment": [80, 103], "_containerwithcreationexperiment": [80, 103], "_static_trilu": 80, "blackman": [80, 312, 369], "00770143e": [80, 312], "49229857e": [80, 312], "hamming_window": [80, 369], "ham": [80, 314, 369], "4180": [80, 314], "8180": [80, 314], "hann_window": [80, 369], "hann": [80, 315, 369], "7500": [80, 315], "3455": [80, 315], "9045": [80, 315], "kaiser_bessel_derived_window": [80, 369], "suitabl": [80, 317, 318, 369, 646, 755, 778, 819, 820, 827, 845, 870], "spectral": [80, 317, 318, 369], "analysi": [80, 317, 318, 369, 870, 871], "kaiser": [80, 312, 317, 318, 369], "70710677": [80, 317, 505, 507], "18493208": [80, 317, 369], "9827513": [80, 317, 369], "kaiser_window": [80, 369], "static_kaiser_window": [80, 318], "2049": [80, 318], "8712": [80, 318], "0367": [80, 318, 369], "7753": [80, 318], "static_blackman_window": 80, "static_eye_lik": 80, "static_hamming_window": 80, "static_hann_window": 80, "static_hann": 80, "static_kaiser_bessel_derived_window": 80, "static_mel_weight_matrix": 80, "static_polyv": 80, "static_tril_indic": 80, "static_unsorted_segment_mean": 80, "static_unsorted_segment_min": 80, "static_unsorted_segment_sum": 80, "static_vorbis_window": 80, "vorbis_window": [80, 369], "vorbi": [80, 333, 369], "38268343": [80, 333, 637, 673], "92387953": [80, 333], "14943586": [80, 333, 369], "51644717": [80, 333], "85631905": [80, 333], "98877142": [80, 333], "tril_indic": [80, 369], "_containerwithdata_typeexperiment": [80, 103], "_containerwithdeviceexperiment": [80, 103], "_containerwithelementwiseexperiment": [80, 103], "0003": [80, 334, 637, 676, 776, 779], "0006": [80, 334, 362], "2345j": [80, 338], "5772": [80, 342], "9635": [80, 342], "4228": [80, 342], "9228": [80, 342], "57299206e": [80, 343, 344], "67773480e": [80, 343, 344], "20904985e": [80, 343, 344], "84270084": [80, 343, 344, 372], "99532223": [80, 343, 344], "99997795": [80, 343, 344], "mantissa": [80, 348, 372, 829], "frist": [80, 349, 372], "coord": [80, 349], "6055": [80, 350], "160": [80, 352], "10240": [80, 352], "60000038": [80, 353, 372, 637, 693], "0707": [80, 359, 372], "0579": [80, 359, 372], "static_allclos": 80, "static_amax": 80, "static_amin": 80, "static_binar": 80, "static_conj": 80, "static_copysign": 80, "static_count_nonzero": 80, "static_diff": 80, "static_digamma": 80, "57721537": 80, "96351004": 80, "static_erfc": 80, "15729921": 80, "00467773": [80, 343, 372], "static_erfinv": 80, "static_fix": 80, "static_float_pow": 80, "static_fmax": 80, "static_fmod": 80, "static_frexp": 80, "static_gradi": 80, "static_hypot": 80, "static_isclos": 80, "static_ldexp": 80, "static_lerp": 80, "90000057": [80, 353, 372], "70000076": [80, 353, 372], "55000019": [80, 353, 372], "05000019": [80, 353, 372], "static_modf": 80, "static_nansum": 80, "static_nextaft": 80, "static_signbit": 80, "static_sinc": 80, "636": 80, "090": 80, "070": 80, "057": 80, "static_sparsify_tensor": 80, "static_xlogi": 80, "static_zeta": 80, "0244": [80, 362], "_containerwithgeneralexperiment": [80, 103], "_static_reduc": 80, "static_reduc": 80, "_containerwithgradientsexperiment": [80, 103], "_containerwithimageexperiment": [80, 103], "_containerwithlayersexperiment": [80, 103], "_static_fft": 80, "static_fft": 80, "_static_sliding_window": 80, "673": [80, 397], "0507": [80, 397], "79711437": [80, 375, 397, 407], "94867325": [80, 375, 397, 407], "74089146": [80, 375, 397, 407], "25980937": [80, 375, 397, 407], "64958102": [80, 375, 397, 407], "2442648": [80, 375, 397, 407], "247306": [80, 409], "908323j": [80, 409], "494955": [80, 409], "90395j": [80, 409], "static_adaptive_avg_pool1d": 80, "static_adaptive_avg_pool2d": 80, "static_adaptive_max_pool2d": 80, "static_adaptive_max_pool3d": 80, "static_avg_pool1d": 80, "static_avg_pool2d": 80, "static_avg_pool3d": 80, "static_dct": 80, "253": [80, 286, 632], "515": [80, 643, 740], "467": 80, "static_dft": 80, "static_embed": 80, "static_idct": 80, "93732834": [80, 375, 397], "75048852": [80, 375, 397], "29723358": [80, 375, 407], "6950531": 80, "93914509": 80, "88008738": 80, "18951225": 80, "06697273": [80, 375, 407], "57439804": 80, "68861485": [80, 375, 407], "41308832": [80, 375, 407], "0700836": 80, "2449036": 80, "6711426": 80, "514": 80, "501709": 80, "4924011": 80, "static_ifft": 80, "static_ifftn": 80, "static_interpol": 80, "static_max_pool1d": 80, "static_max_pool2d": 80, "max_pool2dd": 80, "static_max_pool3d": 80, "static_max_unpool1d": 80, "static_rfft": 80, "static_rfftn": 80, "static_rnn": 80, "step_funct": [80, 375, 421], "initial_st": [80, 375, 421, 636, 661], "go_backward": [80, 375, 421], "unrol": [80, 375, 421, 636, 662, 849, 852], "input_length": [80, 375, 421], "zero_output_for_mask": [80, 375, 421], "return_all_output": [80, 375, 421], "rnn": [80, 375, 870], "tempor": [80, 375, 421], "state_s": [80, 375, 421], "while_loop": [80, 375, 421, 628], "otput": [80, 375, 421], "funciton": [80, 375, 421], "static_stft": 80, "_containerwithlinearalgebraexperiment": [80, 103], "933034": [80, 376, 426], "eigenvealu": [80, 429, 672], "xx": [80, 429, 431, 672], "37228107": [80, 429, 672], "3722816": [80, 429, 672], "8245648": [80, 429, 672], "41597357": [80, 429, 672], "56576747": [80, 429, 672], "9093767": [80, 429, 672], "56155": [80, 430], "82842": [80, 430], "450": [80, 436], "static_adjoint": 80, "static_batched_out": 80, "static_cond": 80, "static_diagflat": 80, "static_dot": 80, "static_eig": 80, "static_eigh_tridiagon": 80, "static_eigv": 80, "static_higher_order_mo": 80, "static_initialize_tuck": 80, "static_kron": 80, "kroneck": [80, 376, 435, 436], "static_make_svd_non_neg": 80, "static_matrix_exp": 80, "static_mode_dot": 80, "static_multi_dot": 80, "static_multi_mode_dot": 80, "static_partial_tuck": 80, "static_svd_flip": 80, "static_tensor_train": 80, "static_truncated_svd": 80, "static_tt_matrix_to_tensor": 80, "tt_matrix": [80, 376, 450], "output_tensor": [80, 100, 376, 450], "static_tuck": 80, "_containerwithlossesexperiment": [80, 103], "_static_hinge_embedding_loss": 80, "_static_huber_loss": 80, "static_huber_loss": 80, "0575": [80, 453], "_static_kl_div": 80, "_static_l1_loss": 80, "static_l1_loss": 80, "_static_log_poisson_loss": 80, "static_log_poisson_loss": 80, "_static_poisson_nll_loss": 80, "06446016": 80, "55611551": 80, "30244565": [80, 457], "_static_smooth_l1_loss": 80, "static_smooth_l1_loss": 80, "_static_soft_margin_loss": 80, "3890561": [80, 456], "413159": [80, 456], "06429195": [80, 457], "43333333": [80, 458], "10666666": [80, 458], "_containerwithmanipulationexperiment": [80, 103], "_static_fill_diagon": 80, "_static_put_along_axi": 80, "_static_tak": 80, "69999981": [80, 307, 367, 378, 468, 492], "_static_trim_zero": 80, "_static_unflatten": 80, "_static_unique_consecut": 80, "ary1": [80, 378, 462, 463, 464], "ary2": [80, 378, 462, 463, 464], "broadcast_shap": [80, 106, 378, 776, 778], "static_concat_from_sequ": [80, 469], "30192195": [80, 481], "static_as_strid": 80, "static_atleast_1d": 80, "static_atleast_2d": 80, "static_atleast_3d": 80, "static_broadcast_shap": 80, "static_column_stack": 80, "static_dsplit": 80, "static_dstack": 80, "static_expand": 80, "static_flatten": 80, "static_fliplr": 80, "static_flipud": 80, "static_fold": 80, "static_heavisid": 80, "static_hsplit": 80, "static_hstack": 80, "static_i0": 80, "static_matric": 80, "static_moveaxi": 80, "static_pad": 80, "static_partial_fold": 80, "static_partial_tensor_to_vec": 80, "static_partial_unfold": 80, "static_partial_vec_to_tensor": 80, "static_rot90": 80, "static_soft_threshold": 80, "static_take_along_axi": 80, "static_top_k": 80, "static_unfold": 80, "static_vsplit": 80, "static_vstack": 80, "_containerwithnormsexperiment": [80, 103], "16903085": [80, 505, 507], "50709254": [80, 505, 507], "84515423": [80, 505, 507], "44183609": [80, 505, 507], "56807494": [80, 505, 507], "69431382": [80, 505, 507], "static_batch_norm": 80, "static_group_norm": 80, "static_instance_norm": 80, "static_l1_norm": 80, "static_l2_norm": 80, "static_lp_norm": 80, "12500000": 80, "37500000": 80, "62500000": 80, "27500000": 80, "35000000": 80, "42500000": 80, "0000000": 80, "5000000": 80, "2500000": 80, "_containerwithrandomexperiment": [80, 103], "43643127": [80, 510], "32325703": [80, 510], "24031169": [80, 510], "34251311": [80, 510], "31692529": [80, 510], "3405616": [80, 510], "5319725": [80, 510], "22458365": [80, 510], "24344385": [80, 510], "26588406": [80, 510], "61075421": [80, 510], "12336174": [80, 510], "51142915": [80, 510], "25041268": [80, 510], "23815817": [80, 510], "64042903": [80, 510], "25763214": [80, 510], "10193883": [80, 510], "31624692": [80, 510], "46567987": [80, 510], "21807321": [80, 510], "37677699": [80, 510], "39914594": [80, 510], "22407707": [80, 510], "static_bernoulli": 80, "static_beta": 80, "static_dirichlet": 80, "static_gamma": 80, "static_poisson": 80, "_containerwithsearchingexperiment": [80, 103], "static_unravel_index": 80, "_containerwithsetexperiment": [80, 103], "_containerwithsortingexperiment": [80, 103], "invert_permut": [80, 385], "static_invert_permut": 80, "static_lexsort": [80, 92], "_containerwithstatisticalexperiment": [80, 103], "_static_cummax": 80, "static_cummax": 80, "_static_cummin": 80, "static_cummin": 80, "_static_nanmin": 80, "static_nanmin": 80, "func_nam": [80, 525, 818, 831, 832, 837, 841], "static_bincount": 80, "static_corrcoef": 80, "static_cov": [80, 387, 522], "static_histogram": 80, "static_igamma": 80, "static_lgamma": 80, "static_median": 80, "static_nanmean": 80, "static_nanmedian": 80, "static_nanprod": 80, "static_quantil": 80, "_containerwithutilityexperiment": [80, 103], "static_optional_get_el": 80, "_containerwithgener": [81, 103], "_static_all_equ": 81, "static_all_equ": 81, "_static_array_equ": 81, "a0": [81, 378, 468], "static_array_equ": 81, "_static_assert_supports_inplac": 81, "_static_clip_matrix_norm": 81, "static_clip_matrix_norm": 81, "849": [81, 540, 634], "_static_clip_vector_norm": 81, "static_clip_vector_norm": 81, "_static_einops_rearrang": 81, "static_einops_rearrang": 81, "_static_einops_reduc": 81, "static_einops_reduc": 81, "29333329": [81, 546, 634], "53000069": [81, 546, 634], "39666676": [81, 546, 634], "20666695": [81, 546, 634], "_static_einops_repeat": 81, "static_einops_repeat": 81, "_static_exist": 81, "_static_fourier_encod": 81, "static_fourier_encod": 81, "classivi": [81, 645, 750], "89858720e": 81, "79717439e": 81, "_static_gath": 81, "static_gath": 81, "_static_gather_nd": 81, "static_gather_nd": 81, "_static_get_num_dim": 81, "static_get_num_dim": 81, "_static_has_nan": 81, "leafwis": 81, "static_has_nan": 81, "_static_inplace_decr": 81, "_static_inplace_incr": 81, "_static_inplace_upd": 81, "_static_is_arrai": 81, "static_is_arrai": 81, "_static_is_ivy_arrai": 81, "static_is_ivy_arrai": 81, "_static_is_native_arrai": 81, "static_is_native_arrai": 81, "_static_scatter_flat": 81, "_static_scatter_nd": 81, "static_scatter_nd": 81, "_static_s": 81, "static_s": 81, "_static_stable_divid": 81, "22222222": 81, "11111111": 81, "857": [81, 592, 634], "444": 81, "_static_stable_pow": 81, "00012": [81, 593, 634], "00016": [81, 82, 593, 621, 634, 635], "00001": [81, 593, 634, 776], "00032": [81, 593], "00256": [81, 593], "1679638": [81, 593], "395": [81, 593], "16777383": [81, 593], "_static_supports_inplace_upd": 81, "_static_to_list": 81, "static_to_list": 81, "_static_to_numpi": 81, "static_to_numpi": 81, "_static_to_scalar": 81, "static_to_scalar": 81, "_static_value_is_nan": 81, "452": 81, "static_value_is_nan": 81, "833": [81, 541], "items": [81, 102, 634], "static_isin": 81, "static_items": 81, "static_strid": 81, "425": [81, 613], "_containerwithgradi": [82, 103], "_static_stop_gradi": 82, "static_stop_gradi": 82, "976": [82, 291, 615, 632, 635], "49e": [82, 615, 635], "74e": [82, 615, 635], "95e": [82, 615, 635], "024": [82, 615, 635], "096": [82, 615, 635], "216": [82, 85, 615, 635, 692], "626": [82, 615, 635], "en": [82, 615, 616, 635, 828], "wikipedia": [82, 615, 616, 635], "wiki": [82, 615, 616, 635], "stochastic_gradient_desc": [82, 615, 616, 635], "01099": [82, 616], "01003": [82, 616, 635], "01015": [82, 616, 635], "99936122": [82, 616, 635], "99936116": [82, 616, 635], "99936128": [82, 616, 635], "99936104": [82, 616, 635], "w_new": [82, 619, 635], "708": [82, 621, 635], "445": [82, 621, 635], "6e": [82, 621, 635], "00036": [82, 621, 635], "00049": [82, 621, 635], "layerwis": [82, 622, 635], "01132035": [82, 622, 635], "22264051": [82, 622, 635], "2056601": [82, 622, 635], "1324538": [82, 622, 635], "56490755": [82, 622, 635], "96622658": [82, 622, 635], "90848625": [82, 622, 635], "93616199": [82, 622, 635], "77232409": [82, 622, 635], "_containerwithimag": [83, 103], "_containerwithlay": [84, 103], "_static_conv1d": 84, "static_conv1d": 84, "_static_conv1d_transpos": 84, "static_conv1d_transpos": 84, "112": [84, 637, 647, 651, 682, 759], "_static_conv2d": 84, "ey": [84, 629, 636, 652, 658, 847, 854], "static_conv2d": 84, "_static_conv2d_transpos": 84, "static_conv2d_transpos": 84, "_static_conv3d": 84, "fdfh": [84, 654], "static_conv3d": 84, "_static_conv3d_transpos": 84, "static_conv3d_transpos": 84, "_static_depthwise_conv2d": 84, "inp": [84, 636, 658], "static_depthwise_conv2d": 84, "_static_dropout": 84, "static_dropout": 84, "_static_dropout1d": 84, "static_dropout1d": 84, "_static_dropout2d": 84, "_static_dropout3d": 84, "_static_linear": 84, "278": [84, 636, 659, 660], "static_linear": 84, "195": 84, "_static_lstm_upd": 84, "_static_multi_head_attent": 84, "_static_reduce_window": 84, "_static_scaled_dot_product_attent": 84, "static_scaled_dot_product_attent": 84, "39999962": [84, 636, 659, 660], "19999695": [84, 660], "11600018": [84, 660], "88399887": [84, 660], "306": [84, 636, 660], "19999981": [84, 297, 310, 367, 375, 419, 636, 659, 666], "59249449": [84, 636, 666], "68226194": [84, 636, 666], "19603825": [84, 636, 666], "9960382": [84, 636, 666], "26894283": [84, 636, 666], "40236187": [84, 636, 666], "39999437": [84, 636, 666], "59999037": [84, 636, 666], "35046196": [84, 636, 666], "54282808": [84, 636, 666], "39989519": [84, 636, 666], "5998764": [84, 636, 666], "_containerwithlinearalgebra": [85, 103], "_static_choleski": 85, "static_choleski": 85, "577": [85, 637, 667], "707": [85, 637, 667], "static_rol": [85, 87], "_static_cross": 85, "static_cross": 85, "_static_det": 85, "_static_diag": 85, "_static_diagon": 85, "static_diagon": 85, "_static_eigh": 85, "_static_eigvalsh": 85, "static_eigvalsh": 85, "51572949": [85, 637, 674], "17091519": [85, 637, 674], "3448143": [85, 637, 674], "35898387e": [85, 637, 674], "46410179e": [85, 637, 674], "_static_inn": 85, "static_inn": 85, "_static_inv": 85, "static_inv": 85, "_static_matmul": 85, "matul": 85, "static_matmul": 85, "_static_matrix_norm": 85, "deimens": 85, "static_matrix_norm": 85, "_static_matrix_pow": 85, "_static_matrix_rank": 85, "static_matrix_rank": 85, "_static_matrix_transpos": 85, "static_matrix_transpos": 85, "_static_out": 85, "n1": [85, 139, 629], "n2": [85, 139, 629], "static_out": [85, 682], "_static_pinv": 85, "static_pinv": 85, "0426": 85, "0964": 85, "0605": 85, "1368": 85, "_static_qr": 85, "static_qr": 85, "31622777": [85, 637, 684], "9486833": [85, 637, 684], "4472136": [85, 637, 684], "89442719": [85, 637, 684], "16227766": [85, 637, 684], "42718872": [85, 637, 684], "63245553": [85, 637, 684], "47213595": [85, 637, 684], "81377674": [85, 637, 684], "_static_slogdet": 85, "static_slogdet": 85, "6931472": 85, "0986123": 85, "_static_solv": 85, "_static_svd": 85, "static_svd": 85, "au": 85, "aS": 85, "avh": 85, "bvh": 85, "_static_svdv": 85, "_static_tensordot": 85, "_static_tensorsolv": 85, "_static_trac": 85, "static_trac": 85, "_static_vand": 85, "static_vand": 85, "343": [85, 283, 632, 692], "729": [85, 692, 853], "_static_vecdot": 85, "_static_vector_norm": 85, "static_vector_norm": 85, "77359247": [85, 694], "_static_vector_to_skew_symmetric_matrix": 85, "09861231": [85, 637, 685], "static_general_inner_product": 85, "3475602": [85, 687], "93765765": [85, 687], "58776021": [85, 687], "10416126": [85, 687], "80644298": [85, 687], "87024701": [85, 687], "48127627": [85, 687], "79101127": [85, 687], "98288572": [85, 687], "68917423": [85, 687], "_containerwithloss": [86, 103], "_static_binary_cross_entropi": 86, "static_binary_cross_entropi": 86, "511": 86, "223": 86, "357": 86, "_static_cross_entropi": 86, "static_cross_entropi": 86, "20397282": 86, "83258148": 86, "60943794": [86, 637, 685], "_static_sparse_cross_entropi": 86, "static_sparse_cross_entropi": 86, "36354783": [86, 638, 696], "14733934": [86, 638, 696], "17027519": [86, 697], "53647931": [86, 697], "53647929": [86, 698], "1702752": [86, 698], "_containerwithmanipul": [87, 103], "_static_clip": 87, "static_clip": 87, "_static_concat": 87, "_static_constant_pad": 87, "static_constant_pad": 87, "_static_expand_dim": 87, "static_expand_dim": 87, "container_axi": [87, 639, 702], "_static_flip": 87, "static_flip": 87, "_static_permute_dim": 87, "static_permute_dim": 87, "_static_repeat": 87, "static_repeat": 87, "_static_reshap": 87, "static_reshap": 87, "_static_rol": 87, "positivclip": 87, "_static_split": 87, "static_split": 87, "_static_squeez": 87, "static_squeez": 87, "_static_stack": 87, "leavv": 87, "static_stack": 87, "_static_swapax": 87, "_static_til": 87, "static_til": 87, "_static_unstack": 87, "static_unstack": 87, "_static_zero_pad": 87, "repreat": [87, 705], "_containerwithnorm": [88, 103], "34198591": [88, 642, 737], "04274819": [88, 642, 737], "29923761": [88, 642, 737], "24053511": [88, 642, 737], "62221265": [88, 737], "20277636": [88, 737], "41943574": [88, 737], "83710337": [88, 737], "_containerwithrandom": [89, 103], "_static_multinomi": 89, "_static_randint": 89, "static_randint": 89, "_static_random_norm": 89, "static_random_norm": 89, "651": 89, "_static_random_uniform": 89, "static_random_uniform": 89, "481": 89, "0999": 89, "_static_shuffl": 89, "static_shuffl": 89, "431": [89, 740], "274": [89, 740], "_containerwithsearch": [90, 103], "_static_argmax": 90, "static_argmax": 90, "_static_argmin": 90, "static_argmin": 90, "_static_argwher": 90, "static_argwher": 90, "_static_nonzero": 90, "_static_wher": 90, "static_wher": 90, "_containerwithset": [91, 103], "_static_unique_al": 91, "static_unique_al": 91, "_static_unique_count": 91, "static_unique_count": 91, "_static_unique_invers": 91, "static_unique_invers": 91, "_static_unique_valu": 91, "_containerwithsort": [92, 103], "_static_argsort": 92, "static_argsort": 92, "_static_searchsort": 92, "_static_sort": 92, "static_sort": 92, "static_msort": 92, "_containerwithstatist": [93, 103], "_static_cumprod": 93, "static_cumprod": 93, "_static_cumsum": 93, "static_cumsum": 93, "_static_min": 93, "_static_prod": 93, "static_prod": 93, "11000001": [93, 763], "23100001": [93, 763], "30800003": [93, 647, 763], "_static_sum": 93, "_static_var": 93, "static_var": 93, "12666667": [93, 647, 766], "11555555": [93, 647, 766], "rtype": [93, 759, 805], "respectv": [93, 764], "81649649": [93, 764], "94280904": [93, 764], "509902": [93, 647, 764], "2472192": [93, 764], "44948983": [93, 764], "41421354": [93, 764], "6666667": [93, 766], "_containerwithutil": [94, 103], "_static_al": 94, "static_al": 94, "_static_ani": 94, "static_ani": 94, "add_ivy_container_instance_method": 95, "containerexampl": 95, "factorized_tensor": [96, 97, 98, 99, 100, 101], "factorizedtensor": [96, 97, 98, 99, 100, 101], "matrix_or_tensor": 96, "to_unfold": [96, 97, 98, 99, 100, 101], "to_vec": [96, 97, 98, 99, 100, 101], "cp_tensor": [97, 98], "cptensor": [97, 98, 323, 369], "cp_copi": 97, "cp_flip_sign": 97, "s_i": [97, 98], "normalisation_weight": [97, 98], "normalised_factor": [97, 98], "cp_lstsq_grad": 97, "return_loss": 97, "nabla": 97, "mathcal": 97, "mathbf": 97, "factor_matric": 97, "cp_gradient": 97, "quantiti": 97, "cp_mode_dot": 97, "keep_dim": [97, 101], "cp_multi_mode_dot": 97, "cp_n_param": 97, "tensor_shap": [97, 99, 100, 101], "n_param": [97, 98, 99, 100, 101], "cp_norm": 97, "cp_to_tensor": 97, "khatria": 97, "rao": [97, 376, 435], "khatri": [97, 376, 435], "cp_normal": 97, "normalis": [97, 98], "u_1": [97, 98], "u_n": [97, 98], "v_1": [97, 98], "v_n": [97, 98], "v_k": [97, 98], "u_k": [97, 98], "absorb": [97, 98], "refold": [97, 378, 477, 488], "cp_to_unfold": 97, "ie": 97, "s_u_i": 97, "exploit": [97, 873], "khatri_rao": [97, 376], "cp_to_vec": 97, "ravel": [97, 847], "unfolding_dot_khatri_rao": 97, "mttkrp": 97, "validate_cp_rank": 97, "percent": [97, 100], "validate_cp_tensor": 97, "parafac2_tensor": 98, "parafac2tensor": [98, 324, 369], "apply_parafac2_project": 98, "evolv": [98, 859, 870], "b_i": 98, "ijk": [98, 806], "sum_r": 98, "a_": 98, "ir": [98, 868, 871, 876], "jr": 98, "kr": 98, "coupl": [98, 819, 824, 851, 853, 870], "factoris": 98, "i1": [98, 387, 525], "classmethod": [98, 105, 106, 781], "from_cptensor": 98, "parafac2_tensor_ok": 98, "parafac2_normalis": 98, "normalised_project": 98, "parafac2_to_slic": 98, "slice_idx": 98, "frontal": 98, "a_i": 98, "j_i": 98, "b_": 98, "reformul": 98, "p_i": 98, "orthogon": [98, 323, 327, 369, 376, 429, 445, 451, 637, 672, 673], "sum_": 98, "ijr": 98, "constraint": [98, 806, 828, 829, 839], "projection_matric": 98, "parafac2_to_tensor": 98, "construct": [98, 639, 712, 792, 795, 796, 797, 843, 849, 853, 854, 868, 870, 877], "uneven": 98, "parafac2_to_unfold": 98, "parafac2_to_vec": 98, "validate_parafac2_tensor": 98, "cp": [98, 323, 369, 820], "tr_tensor": 99, "trtensor": [99, 325, 369], "tr_n_param": 99, "tr_to_tensor": 99, "tr_to_unfold": 99, "tr_to_vec": 99, "validate_tr_rank": 99, "validate_tr_tensor": 99, "tt_tensor": 100, "_tt_n_param": 100, "mp": [100, 326, 369], "index_upd": 100, "pad_tt_rank": 100, "factor_list": 100, "n_pad": 100, "pad_boundari": 100, "ring": 100, "bond": 100, "padded_factor_list": 100, "tt_to_tensor": 100, "assembl": [100, 376, 450], "tt_to_unfold": 100, "reassembl": 100, "tt_to_vec": 100, "validate_tt_rank": 100, "constant_rank": 100, "allow_overparametr": 100, "proport": [100, 791], "realiz": [100, 870], "validate_tt_tensor": 100, "tucker_tensor": 101, "tucker_copi": 101, "tucker_mode_dot": [101, 877], "tucker_n_param": 101, "tucker_norm": 101, "tucker_to_tensor": 101, "skip_factor": 101, "transpose_factor": 101, "tucker_to_unfold": 101, "tucker_to_vec": 101, "validate_tucker_rank": 101, "fixed_mod": 101, "validate_tucker_tensor": 101, "_bisection_root_find": 101, "fun": [101, 366, 374, 614, 634, 641, 729, 828], "max_it": 101, "__abs__": [102, 103], "__add__": [102, 103, 824, 827, 831, 832, 836, 841, 842, 851], "__eq__": [102, 103], "__ge__": [102, 103], "__gt__": [102, 103, 847], "__le__": [102, 103], "__lt__": [102, 103], "__ne__": [102, 103], "__pow__": [102, 103, 851], "69678056": 102, "59876156": 102, "82660675": 102, "__radd__": [102, 103, 831, 832, 841], "__rrshift__": [102, 103], "__rshift__": [102, 103], "__rsub__": [102, 103], "__sub__": [102, 103, 824, 827, 831, 836, 851], "__truediv__": [102, 103, 824, 827, 831], "__xor__": [102, 103], "referenc": [102, 833, 840], "resid": [102, 106, 639, 702, 841, 849, 853], "mt": [102, 851], "hopefulli": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861], "reach": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 869, 870], "eq": 103, "ge": 103, "le": 103, "ne": 103, "75979435": 103, "52153397": 103, "13532257": 103, "rshift": 103, "truediv": 103, "nested_arrai": [105, 106, 107, 826], "nestedarrai": 105, "nested_rank": [105, 106, 107], "inner_shap": [105, 106, 107], "nestedarraybas": [105, 106, 107], "from_row_length": 105, "row_length": 105, "from_row_split": 105, "row_split": 105, "ragged_map": 106, "ragged_multi_map": 106, "ragged_arrai": 106, "ragged_multi_map_in_funct": 106, "replace_ivy_arrai": 106, "unbind": 106, "nestedarrayelementwis": 107, "strictli": [112, 115, 118, 247, 626, 632, 836, 840], "24000001": [112, 626], "703": [113, 626], "683": [113, 626], "408": [113, 626], "313": [113, 626], "437": [113, 626], "40337825": [114, 626], "56114835": [114, 626], "20788449": [114, 626], "0768": [117, 626], "231": [117, 626], "\u03b2": [118, 626], "body_fn": [122, 123, 125, 628], "bodi": [122, 125, 628, 823, 844], "lst": [122, 628], "orelse_fn": [123, 628], "body1": [124, 628], "body2": [124, 628], "test_fn": [125, 628, 774, 812, 864, 865], "repeatedli": [125, 628, 641, 727, 828, 844], "ml_framework": [126, 629], "distanc": [126, 629], "adjac": [126, 629], "nestedsequ": [127, 128, 629], "typevar": [127, 128, 629], "supportsbufferprotocol": [127, 128, 629], "static_copy_arrai": [129, 629], "intdtyp": [132, 143, 149, 161, 172, 177, 184, 190, 629, 630], "pycapsul": [133, 144, 629], "interchang": [133, 144, 629, 639, 711], "plu": [134, 629], "x00b": [134, 629], "x00d": [134, 629], "x00e": [134, 629], "41588834": [138, 629], "7827941": [138, 629], "6227766": [138, 629], "23413252": [138, 629], "n3": [139, 629], "xv": [139, 629], "yv": [139, 629], "x_nativ": [140, 629, 840], "y_nativ": [140, 629], "z_nativ": [140, 629], "d_type": [142, 629], "col": [147, 328, 369, 629], "primari": [147, 166, 167, 199, 200, 328, 369, 385, 515, 550, 551, 629, 630, 631, 634, 777, 779, 818, 822, 825, 829, 838, 840, 841, 843, 844, 847, 855, 857], "upward": [147, 328, 369, 629], "downward": [147, 328, 369, 629], "2xn": [147, 328, 369, 629], "subarrai": [147, 328, 369, 629], "incompat": [154, 630], "closest": [157, 236, 246, 247, 283, 293, 630, 632, 844, 847], "xtype": [157, 630], "ytype": [157, 630], "native_uint16": [157, 630], "complexdtyp": [158, 172, 181, 630], "set_default_complex_dtyp": [158, 187, 630], "4294": [158, 160, 630], "967346": [158, 160, 630], "set_default_dtyp": [159, 188, 630, 829, 837], "floatdtyp": [160, 183, 630], "set_default_float_dtyp": [160, 169, 181, 189, 630, 829], "int_dtyp": [161, 184, 630], "set_default_int_dtyp": [161, 169, 190, 630, 829], "4294967346": [161, 162, 630], "uint_dtyp": [162, 185, 630], "uint": [162, 177, 185, 191, 630, 829, 842], "uintdtyp": [162, 177, 185, 191, 630], "set_default_uint_dtyp": [162, 169, 191, 630], "native_bool": [164, 630], "ieee": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "754": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "smallest_norm": [165, 630], "bfloat16": [166, 630, 776, 777, 829, 841, 844, 845], "unsupport": [167, 200, 551, 630, 631, 634, 771, 774, 816, 819, 834, 841], "encapsul": [168, 630, 828], "314": [168, 280, 338, 372, 630, 632], "9223372036854775808": [168, 630], "9223372036854775807": [168, 630], "65535": [168, 630], "4294967295": [168, 630], "native_uint8": [170, 630], "hashabl": [174, 630], "type1": [178, 630], "type2": [178, 630], "array_api_promot": [178, 179, 630, 776, 777], "unexpect": [179, 247, 630, 632, 829], "default_complex_dtyp": [181, 630], "default_dtype_stack": [182, 188, 630], "unset_default_dtyp": [182, 630], "native_uint64": [182, 630], "default_float_dtyp": [183, 630, 829], "default_int_dtyp": [184, 190, 630, 829], "default_uint_dtyp": [185, 191, 630], "ret1": [186, 630], "ret2": [186, 630], "reset": [187, 188, 189, 190, 191, 217, 218, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 630, 631, 634, 830], "default_complex_dtype_stack": [187, 630], "default_float_dtype_stack": [189, 630], "native_float16": [192, 630], "unmodifi": [194, 631, 825, 829], "aliv": [201, 206, 208, 554, 574, 575, 631, 634, 830], "139740789224448": [201, 631], "process_specif": [207, 219, 631], "percentag": [207, 631], "ram": [207, 215, 219, 631], "alon": [207, 219, 631, 812, 835, 844], "036902561555": [207, 631], "7024003467681645": [207, 631], "as_native_dev": [207, 631], "7095597456708771": [207, 631], "attr_onli": [208, 631], "soft_device_mod": [210, 218, 631], "chunk": [211, 212, 213, 631], "split_factor": [211, 631, 833], "max_chunk_s": [213, 631], "chunk_siz": [213, 631], "input_ax": [213, 631], "output_ax": [213, 631], "fed": [213, 631, 853], "fist": [213, 631], "gb": [215, 219, 631, 819, 834], "66700032": [215, 631], "589934592": [215, 631], "219563008": [219, 631], "902400346": [219, 631], "525205504": [219, 631], "na": [220, 632, 844], "noqa": [220, 287, 632, 792, 801, 842], "princip": [221, 225, 227, 359, 372, 632], "codomain": [221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832], "\u03c0": [221, 225, 227, 228, 627, 632], "3\u03c0": [221, 228, 632], "unspecifi": [221, 222, 226, 229, 238, 243, 245, 247, 282, 286, 287, 291, 376, 429, 632, 637, 639, 672, 673, 710, 840], "\u03c0j": [222, 226, 229, 261, 263, 632], "3\u03c0j": [222, 261, 263, 632], "x1_i": [223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "2019": [223, 240, 245, 263, 273, 632, 870, 873], "commut": [223, 632], "tabl": [223, 240, 273, 585, 608, 632, 634, 776, 777, 792, 841, 846, 870], "dj": [223, 240, 273, 632], "z1": [223, 632], "z2": [223, 632], "yj": [224, 632], "nanj": [226, 632], "809": [226, 632], "569": [226, 632], "733": [226, 632], "notat": [228, 632, 647, 759, 828], "denot": [228, 632, 794], "quadrant": [228, 632], "rai": [228, 632, 860], "bitwis": [230, 233, 235, 270, 632], "170": [234, 632], "243": [234, 632], "xor": [235, 270, 632], "654": [237, 632], "ci": [238, 243, 245, 286, 632, 823, 829, 835, 842, 844, 855], "368": [238, 632], "670": [238, 632], "202": [238, 632, 823], "548": [238, 632], "1490": [238, 632], "57079633": [239, 632], "14159265": [239, 632], "71238898": [239, 632], "28318531": [239, 632], "02617994": [239, 632], "87266463": [239, 632], "01919862": [239, 632], "03839725": [239, 632], "05759586": [239, 632], "07679449": [239, 632], "09599311": [239, 632], "11519173": [239, 632], "35081118": [239, 632], "88139129": [239, 632], "underflow": [240, 247, 632, 637, 685, 829], "textbook": [240, 273, 632], "frac": [240, 262, 264, 284, 286, 290, 375, 381, 403, 404, 408, 409, 501, 503, 632], "ac": [240, 273, 632, 805, 806], "bd": [240, 273, 632], "bc": [240, 273, 632, 805, 806], "versu": [240, 273, 632], "riemann": [240, 273, 632], "sphere": [240, 273, 632], "c99": [240, 273, 632], "infinit": [240, 273, 287, 632], "unlik": [240, 273, 632, 823, 828, 831, 860, 875, 877], "698": [240, 632], "truth": [241, 251, 252, 259, 260, 276, 377, 453, 632, 771, 773, 784, 816, 834, 841, 844], "32862675": [242, 632], "67780113": [242, 632], "11246294": [242, 632], "42839241": [242, 632], "52050018": [242, 632], "16799599": [242, 632], "30787992": [242, 632], "43796915": [242, 632], "98667163": [242, 632], "79690808": [242, 632], "88020504": [242, 632], "91031402": [242, 632], "95228523": [242, 632], "96610528": [242, 632], "cut": [243, 245, 285, 286, 287, 290, 632, 859, 876], "08553692": [243, 632], "567": [243, 632], "00344786": [243, 632], "76297021": [243, 632], "197948": [243, 632], "53253174": [243, 632], "fdlibm": [245, 263, 632], "compliant": [245, 263, 268, 269, 335, 336, 372, 632, 647, 760, 761, 762, 764], "potenti": [245, 263, 632, 812, 818, 819, 828, 829, 841, 848, 873], "632": [245, 632], "20e": [245, 632], "72e": [245, 632, 776], "greatest": [246, 247, 250, 632], "pep": [247, 632, 836], "disambigu": [247, 632, 839], "former": [247, 632, 819, 829, 832, 841], "latter": [247, 632, 819, 823, 825, 829, 832, 841], "overload": [247, 632, 844], "led": [247, 632, 823, 872], "subtl": [247, 632, 829, 876], "bug": [247, 632, 812, 818, 820, 826, 834, 835, 841, 844, 856], "ambigu": [247, 632], "semant": [247, 282, 378, 492, 632, 829, 849, 854, 859, 871], "ill": [247, 632, 778], "surpris": [247, 632, 855], "arrau": [253, 632], "log_": [262, 264, 632], "742": [263, 632], "negat": [275, 338, 372, 632], "52095687": [278, 632], "92457771": [278, 632], "49372482": [278, 632], "22738838": [278, 632], "156": [278, 632, 776], "5877228": [278, 632], "189": [279, 632, 641, 718], "252": [279, 632], "1150": [279, 632], "2890": [279, 632], "344": [279, 632], "355j": [280, 338, 372, 632], "55j": [280, 338, 372, 632], "primarili": [282, 632, 818, 827, 870], "counterpart": [283, 632, 827, 838], "deliber": [283, 632, 847], "imprecis": [283, 632], "5654": [283, 632], "034": [283, 632], "433": [283, 618, 620, 632, 635], "signum": [284, 632], "textrm": [284, 632], "932": [285, 632], "746": [285, 632], "657": [285, 632], "indistinguish": [287, 632], "infti": [287, 632], "32455532": [287, 632], "89897949": [287, 632], "169": [287, 632], "analyt": [290, 632, 870, 872, 876], "pole": [290, 632], "546": [290, 632, 636, 660], "916": [290, 632], "996": [290, 632], "histor": [291, 632], "stem": [291, 632, 840], "older": [291, 632], "advis": [291, 632, 841], "462": [291, 632], "604": [291, 632], "997": [291, 632], "0375": [293, 632], "032": [293, 632], "57258511": [296, 367], "69999999": [296, 367, 625, 635], "90928203": [296, 367], "98772264": [296, 367], "99591321": [296, 367], "99863964": [296, 367], "69880581": [296, 367], "18126924": [296, 367], "79999995": [297, 307, 310, 367], "70000005": [297, 310, 367], "1241": [298, 367], "4897": [298, 367], "4090": [298, 367], "31008321": [298, 367], "1147176": [298, 367], "40899992": [298, 367], "20141329": [301, 367], "40318608": [301, 367], "48683619": [301, 367], "46328247": [301, 367], "59813893": [301, 367], "43748799": [301, 367], "parametr": [302, 367, 823, 844, 870], "71589994": [304, 308, 367], "14324772": [304, 308, 367], "70648694": [304, 308, 367], "54488957": [304, 308, 367], "10740992": [304, 308, 367], "19514863": [304, 308, 367], "6705687": [305, 367], "52016652": [305, 367], "40560818": [305, 367], "45630932": [305, 367], "2689": [306, 367], "7310": [306, 367], "7615": [306, 367], "2784": [306, 367], "7168": [306, 367], "8708": [306, 367], "4374": [306, 367], "1379": [306, 367], "0089": [306, 367], "59999991": [307, 367], "03597236": [309, 367], "43827677": [309, 367], "80100036": [309, 367], "12954807": [309, 367], "76459098": [309, 367], "20044947": [309, 367], "60000372": [309, 367], "taper": [312, 315, 369], "summat": [312, 369, 647, 759, 805, 806], "leakag": [312, 369], "wors": [312, 369, 860], "y1": [313, 369], "0800": [314, 369], "3979": [314, 369], "9121": [314, 369], "5400": [314, 369], "han": [315, 369], "ith": [316, 369], "00726415": [317, 369], "9999736": [317, 369], "2773e": [318, 369], "0172e": [318, 369], "9294e": [318, 369], "4149": [318, 369], "9138": [318, 369], "5529": [318, 369], "multidimension": [320, 321, 369, 870], "normalise_factor": [323, 324, 369], "parafac2": [324, 369], "tr": [325, 369], "38268346": [333, 369], "38268352": [333, 369], "8563191": [333, 369], "14943568": [333, 369], "cn": [335, 336, 372], "zh": [335, 336, 372], "amax_cn": [335, 372], "sentinel": [335, 336, 372, 647, 760, 762], "amin_cn": [336, 372], "4769": [344, 372], "position": [346, 372], "triangl": [350, 372], "999999e": [351, 372], "65999985": [353, 372], "52000046": [353, 372], "1500001": [353, 372, 546, 634], "11259177": [354, 372], "3574118": [354, 372], "20097363": [354, 372], "suppli": [358, 372, 378, 484, 805, 824, 826, 844], "217234": [359, 372], "hurwitz": [362, 372], "custom_grad_func": [364, 374], "bind": [364, 374, 818, 839, 869, 870], "upstream": [364, 374, 819, 820, 823, 834, 839], "primal": [365, 366, 374], "jacobian": [365, 366, 374, 620, 635, 855, 870], "cotang": [366, 374], "stanh": 367, "ndenumer": 369, "ndindex": 369, "random_cp": 369, "random_parafac2": 369, "random_tr": 369, "random_tt": 369, "random_tuck": 369, "bind_custom_gradient_funct": [374, 839], "jvp": 374, "vjp": 374, "h_out": [375, 392, 636, 661], "w_out": [375, 392], "area_interpol": 375, "01823380e": [375, 397, 407], "15385818e": [375, 397, 407], "36371466e": [375, 397, 407], "38763905e": [375, 397, 407], "60722279e": [375, 397, 407], "80319249e": [375, 397, 407], "05617893e": [375, 397, 407], "21500000e": [375, 397, 407], "24000015e": [375, 397, 407], "90734863e": [375, 397, 407], "10000420e": [375, 397, 407], "15899994e": [375, 397, 407], "24000053e": [375, 397, 407], "81469727e": [375, 397, 407], "09999847e": [375, 397, 407], "4135742": [375, 397, 407], "6779785": [375, 397, 407], "3770599": [375, 397, 407], "8719864": [375, 397, 407], "72109985": [375, 397, 407], "52869415": [375, 397, 407], "79182434": [375, 397, 407], "72489166": [375, 397, 407], "container_n": [375, 397, 407], "container_typ": [375, 397, 407, 634], "container_norm": [375, 397, 407], "1580677": [375, 397], "89422607": [375, 397], "86190414": [375, 397], "00041008": [375, 397], "75149155": [375, 397], "97056389": [375, 397], "87819386": [375, 397], "89381361": [375, 397], "50000000e": [375, 397, 407, 776], "22044605e": [375, 397, 407], "ed": [375, 399, 400, 401], "rest": [375, 378, 399, 400, 401, 470, 819, 826, 828, 844, 854, 872], "5d": [375, 401, 792], "emb": [375, 402], "51285338": [375, 402], "87183261": [375, 402], "2308116": [375, 402], "02733949e": [375, 403], "00j": [375, 403], "49660576e": [375, 403], "68178638e": [375, 403], "01j": [375, 403, 408], "98912367e": [375, 403], "21802426e": [375, 403, 408], "04549134e": [375, 403, 408], "82842712e": [375, 403, 408], "86902654e": [375, 403, 408], "25501143e": [375, 403, 408], "32978028e": [375, 403, 408], "52068201e": [375, 403, 408], "71158374e": [375, 403, 408], "generate_einsum_equ": 375, "get_interpolate_kernel": 375, "27279224e": [375, 407], "44232273e": [375, 407], "70464332e": [375, 407], "73454881e": [375, 407], "00902849e": [375, 407], "10039906e": [375, 407], "07022366e": [375, 407], "69506073": [375, 407], "93914604": [375, 407], "88008881": [375, 407], "18951607": [375, 407], "57439613": [375, 407], "15318303e": [375, 408], "15148591e": [375, 408], "19j": [375, 408], "25000000e": [375, 408], "35378602e": [375, 408], "02j": [375, 408], "65404249e": [375, 408], "17611649e": [375, 408], "24320230e": [375, 408], "79344813e": [375, 408], "22374531e": [375, 408], "45929364e": [375, 408], "14208718e": [375, 408], "07177031e": [375, 408], "indexerror": [375, 409, 420, 639, 702, 807, 833], "interp": [375, 847], "xp": [375, 410, 823], "fp": [375, 410], "nd": [375, 411], "tf_bicub": [375, 411, 847], "nearest_interpol": 375, "window_shap": [375, 417], "pool_typ": [375, 417], "irfft": [375, 419], "silent": [375, 419], "discard": [375, 419, 828], "1400001": [375, 419], "3999999": [375, 419], "3999996": [375, 419], "99038106j": [375, 420], "33012702": [375, 420], "23205081j": [375, 420], "33012702j": [375, 420], "superdiagon": [376, 427, 637, 670], "subdiagon": [376, 427, 637, 670], "eigendecomposit": [376, 429, 637, 672, 673], "qlq\u1d40": [376, 429, 637, 672, 673], "tridiagon": [376, 430], "38196602": [376, 430], "61803389": [376, 430], "35048741": [376, 430], "56710052": [376, 430], "06693714": [376, 430], "74234426": [376, 430], "56155282": [376, 430], "56155276": [376, 430], "82842714": [376, 430], "82842731": [376, 430, 637, 673], "necessarili": [376, 431, 824, 827], "generalis": [376, 432], "skip_matrix": [376, 435, 437], "khatri_rao_product": [376, 435], "kronecker_product": [376, 437], "n_column": [376, 437], "lu_factor": 376, "pivot": [376, 438], "lu": [376, 438, 439], "lu_solv": 376, "nnmf": [376, 440], "hoi": [376, 445, 451], "solve_triangular": 376, "unit_diagon": [376, 446], "solut": [376, 446, 637, 686, 776, 812, 816, 818, 819, 820, 827, 829, 834, 842, 844, 847, 868, 872], "determinist": [376, 447, 844], "borrow": [376, 447, 822], "extmath": [376, 447], "ivan": [376, 448], "oseledet": [376, 448], "scientif": [376, 448, 870], "2295": [376, 448], "2317": [376, 448], "2011": [376, 448], "convention": [377, 454, 873], "explicit": [377, 378, 454, 492, 819, 827, 829, 839, 840, 841, 849, 855, 870], "555969": [377, 454], "223876": [377, 454], "111938": [377, 454], "42649534": [377, 454], "68651628": [377, 454], "51119184": [377, 454], "59967244": [377, 454], "mae": [377, 455], "666": [377, 455, 636, 637, 660, 678], "91097307": [377, 457], "3467": [377, 458], "0133": [377, 458], "0250": [377, 458], "0056": [377, 458], "0025": [377, 458], "0675": [377, 458], "6987": [377, 459], "1606": [377, 459], "3711": [377, 459], "4032": [377, 459], "6931": [377, 459], "whilst": [378, 462, 463, 464, 854, 857, 870], "ary3": [378, 464], "check_scalar": 378, "force_integ": [378, 466], "force_posit": [378, 466], "mod": [378, 467, 823], "tall": [378, 473], "horizot": [378, 480], "shortcut": [378, 484, 819], "linear_ramp": [378, 484], "reflect": [378, 484, 820, 824, 840, 844], "ramp": [378, 484], "mirror": [378, 484, 815, 818, 870], "padding_func": [378, 484], "iaxis_pad_width": [378, 484], "iaxi": [378, 484], "unalt": [378, 484], "put": [378, 489, 812, 818, 844, 855, 876], "mul": [378, 489, 840, 851], "conceptu": [378, 492, 866, 871], "concern": [378, 492, 820, 822, 827, 829, 831, 840, 847, 848, 876], "regard": [378, 492, 817, 827, 841, 842, 847, 860], "mutat": [378, 492], "elimin": [378, 498, 819], "consecut": [378, 498], "batch_mean": [381, 501, 503], "batch_var": [381, 501, 503], "running_vari": [381, 501, 503], "local_response_norm": 381, "neighbour": [381, 506], "42857143": [381, 507], "5714286": [381, 507], "multivari": [382, 510], "bayesian": [382, 510], "supposedli": [385, 514], "indirect": [385, 515], "secondari": [385, 515], "is_ivy_sparse_arrai": 386, "is_native_sparse_arrai": 386, "native_sparse_arrai": 386, "coo_indic": [386, 518], "crow_indic": [386, 518], "col_indic": [386, 518], "ccol_indic": [386, 518], "row_indic": [386, 518], "dense_shap": [386, 518], "native_sparse_array_to_indices_values_and_shap": 386, "nativesparsearrai": 386, "sparsearrai": 386, "linalg": [387, 522, 637, 685, 686, 818, 840, 842], "aw": [387, 522, 860], "48447205": [387, 522], "c0": [387, 525], "ck": [387, 525], "c2": [387, 525], "nearest_jax": [387, 532], "trace_on_next_step": [536, 634, 796, 853], "recalcul": [539, 634], "my_sum": [539, 634], "val1": [539, 634], "val2": [539, 634], "cached_sum": [539, 634], "line_eq": [539, 634], "slp": [539, 634], "itc": [539, 634], "cached_line_eq": [539, 634], "0353": [540, 634], "424": [540, 634], "339": [540, 634], "271": [540, 634], "391": [540, 634], "78885436": [541, 634], "41666666": [541, 634], "58333331": [541, 634], "06666667": [541, 634], "13333334": [541, 634], "40000004": [541, 634], "26666668": [541, 634], "13137734": [541, 634], "26275468": [541, 634], "39413199": [541, 634], "52550936": [541, 634], "6568867": [541, 634], "78826398": [541, 634], "84852815": [541, 634], "1313709": [541, 634], "41421366": [541, 634], "27279221": [541, 634], "69705628": [541, 634], "12132034": [541, 634], "default_str": [544, 634], "46999979": [545, 634], "66000009": [545, 634], "93000001": [545, 634], "29000092": [545, 634], "33999991": [545, 634], "6400001": [545, 634], "96000004": [545, 634], "36000013": [545, 634], "51999998": [545, 634], "67000008": [545, 634], "suppos": [545, 634, 829, 844], "960": [545, 634], "3600": [545, 634], "h1": [545, 634], "w1": [545, 634], "40499985": [546, 634], "61000061": [546, 634], "max_depth": [557, 634], "seen_set": [557, 634], "local_set": [557, 634], "referr": [557, 634], "redund": [557, 634, 812, 829, 833, 841, 863], "example_funct": [557, 634], "repr": [557, 634], "ivyexcept": [562, 595, 634, 807, 830, 833, 838, 840, 841, 845], "allow_dupl": [572, 634], "fork": [573, 634, 813, 823, 828, 834], "forkserv": [573, 634], "mp_default": [573, 634], "defaultcontext": [573, 634], "0x7f4e3193e520": [573, 634], "mp_fork": [573, 634], "forkcontext": [573, 634], "0x7f4e3193e580": [573, 634], "mp_spawn": [573, 634], "spawncontext": [573, 634], "0x7f4e3193e5e0": [573, 634], "mp_forkserv": [573, 634], "forkservercontext": [573, 634], "0x7f4e3193e640": [573, 634], "garbag": [575, 634], "collector": [575, 634], "get_all_arrays_in_memori": [575, 634], "exception_trace_mod": [579, 603, 634, 846], "lenient": [580, 604, 634], "inplace_mod": [580, 604, 634], "break": [580, 634, 812, 825, 829, 836, 845, 855], "infus": [581, 634], "unset": [582, 589, 634, 637, 685, 801, 825, 849], "unset_min_bas": [582, 634], "nestable_mod": [584, 607, 634, 846], "precise_mod": [585, 608, 634, 846], "shape_array_mod": [587, 610, 634, 846], "show_func_wrapper_trace_mod": [588, 611, 634, 846], "tmp_dr": [589, 634], "tmp_dir": [589, 612, 634, 846], "my_tmp": [589, 634], "unset_tmp_dir": [589, 634], "49999999999975": [592, 634], "5015015015010504": [592, 634], "000444502911705e": [592, 634], "9999999999995j": [592, 634], "00000262": [593, 634], "15605032": [593, 634], "01208451j": [593, 634], "00048": [593, 634], "1296": [593, 634], "00864": [593, 634], "isn": [595, 634, 815, 820, 838, 840, 844, 852, 855, 872], "100000023841858": [597, 634], "200000047683716": [597, 634], "299999952316284": [597, 634], "400000095367432": [597, 634], "599999904632568": [597, 634], "hemant": [601, 634], "unset_shape_array_mod": [602, 634], "set_exception_trace_mod": [603, 634, 833], "set_min_bas": [605, 634], "set_min_denomin": [606, 634], "set_nestable_mod": [607, 634], "set_precise_mod": [608, 634], "set_queue_timeout": [609, 634], "set_shape_array_mod": [610, 634], "set_show_func_wrapper_trace_mod": [611, 634, 833], "set_tmp_dir": [612, 634], "my_dir": [612, 634], "451": [613, 634], "in_ax": [614, 634], "out_ax": [614, 634], "thereof": [614, 634], "summaris": [614, 634], "99999998": [615, 635], "19999998": [615, 635], "00000001": [615, 635], "00300001": [615, 635], "00800001": [615, 635], "0125": [615, 635], "17294501": [615, 635], "15770318": [615, 635], "20863818": [615, 635], "90000075": [616, 635], "90000164": [616, 635], "9000032": [616, 635], "50000012e": [616, 635], "92558754": [616, 635], "92558694": [616, 635], "92558682": [616, 635], "92558861": [616, 635], "60000025e": [616, 635], "01024": [616, 635], "retain_grad": [617, 635], "func_ret": [617, 635, 839], "666666": [617, 635], "333332": [617, 635], "66666675": [617, 625, 635], "argnum": [618, 635], "933": [618, 620, 635], "jac_fn": [620, 635], "639": [621, 635], "361": [621, 635], "52565837": [622, 635], "8418861": [622, 635], "68377209": [622, 635], "value_grad": [625, 635], "42333412": [625, 635], "5333333": [625, 635], "93333334": [625, 635], "43333334": [625, 635], "0666666": [625, 635], "softsign": 626, "718281828459045": 627, "euler": 627, "141592653589793": 627, "cmp_i": 628, "cmp_isnot": 628, "for_loop": 628, "if_els": 628, "try_except": 628, "to_dlpack": 629, "as_ivy_dtyp": [630, 841], "as_native_dtyp": 630, "check_float": 630, "closest_valid_dtyp": 630, "default_dtyp": [630, 829, 837], "dtype_bit": 630, "function_supported_dtyp": [630, 829, 844], "function_unsupported_dtyp": [630, 829], "infer_default_dtyp": 630, "invalid_dtyp": [630, 829], "is_hashable_dtyp": 630, "is_native_dtyp": 630, "promote_typ": [630, 829], "promote_types_of_input": [630, 829, 840], "type_promote_arrai": [630, 829], "unset_default_complex_dtyp": 630, "unset_default_float_dtyp": 630, "unset_default_int_dtyp": 630, "unset_default_uint_dtyp": 630, "valid_dtyp": 630, "defaultcomplexdtyp": 630, "defaultdtyp": 630, "defaultfloatdtyp": 630, "defaultintdtyp": 630, "defaultuintdtyp": 630, "as_ivy_dev": [631, 851], "clear_cached_mem_on_dev": 631, "dev_util": [631, 830], "function_supported_devic": 631, "function_unsupported_devic": 631, "get_all_ivy_arrays_on_dev": [631, 830], "handle_soft_device_vari": [631, 830], "num_cpu_cor": [631, 830], "num_gpu": [631, 830, 844], "num_ivy_arrays_on_dev": 631, "percent_used_mem_on_dev": 631, "print_all_ivy_arrays_on_dev": 631, "set_split_factor": [631, 833], "split_func_cal": 631, "total_mem_on_dev": [631, 830], "tpu_is_avail": 631, "unset_default_devic": [631, 830], "unset_soft_device_mod": [631, 830], "used_mem_on_dev": 631, "defaultdevic": [631, 830], "profil": 631, "save_dir": 631, "arg_info": 634, "arg_nam": 634, "cache_fn": [634, 837], "current_backend_str": [634, 844, 849, 851], "function_supported_devices_and_dtyp": 634, "function_unsupported_devices_and_dtyp": 634, "get_item": [634, 840], "get_referrers_recurs": 634, "inplace_arrays_support": 634, "inplace_variables_support": 634, "is_ivy_nested_arrai": 634, "isscalar": 634, "match_kwarg": 634, "num_arrays_in_memori": 634, "print_all_arrays_in_memori": 634, "set_item": [634, 844], "to_ivy_shap": 634, "to_native_shap": 634, "try_else_non": 634, "unset_array_mod": [634, 846], "unset_exception_trace_mod": 634, "unset_inplace_mod": 634, "unset_min_denomin": 634, "unset_nestable_mod": 634, "unset_precise_mod": 634, "unset_queue_timeout": 634, "unset_show_func_wrapper_trace_mod": 634, "vmap": [634, 855, 870], "arraymod": 634, "precisemod": [634, 829], "jac": 635, "value_and_grad": [635, 839], "feature_group_count": [636, 649, 656, 657], "oiw": [636, 649, 650, 656], "oihw": [636, 649, 652, 656], "oidhw": [636, 649, 654, 656], "dhwio": [636, 649, 650, 654, 656], "conv_general_dil": [636, 841], "conv_general_transpos": 636, "depthwis": [636, 658, 778, 792], "1428566": [636, 659], "49000001": [636, 659], "55599999": [636, 659], "21000004": [636, 659], "incom": [636, 660], "4269": [636, 660], "911": [636, 660, 833], "157": [636, 660], "753": [636, 660], "545": [636, 643, 660, 741], "547": [636, 660, 830], "963": [636, 660], "98495483": [636, 660], "0293808": [636, 660], "0159359": [636, 660], "74752808": [636, 660], "20942307": [636, 660], "3205719": [636, 660], "all_weight": [636, 661], "num_lay": [636, 661, 792], "batch_first": [636, 661, 663], "weights_transpos": [636, 661], "has_ih_bia": [636, 661], "has_hh_bia": [636, 661], "multi": [636, 637, 661, 663, 668, 778, 792, 831, 848, 855, 866, 868, 870, 874], "long": [636, 661, 662, 819, 820, 828, 829, 831, 833, 834, 841, 849, 870], "seq_len": [636, 661], "input_s": [636, 661], "h_0": [636, 661], "c_0": [636, 661], "num_direct": [636, 661], "hidden_s": [636, 661], "four": [636, 661, 815, 824, 829, 831, 836, 837, 844, 847, 852], "w_ih": [636, 661], "w_hh": [636, 661], "b_ih": [636, 661], "b_hh": [636, 661], "pack": [636, 661], "c_out": [636, 661], "vaswani": [636, 663], "al": [636, 663], "num_attention_head": [636, 663], "key_dim": [636, 663, 792], "value_dim": [636, 663, 792], "attention_weight": [636, 663], "unbatch": [636, 663], "nm": 636, "box": [636, 664, 665, 819], "iou_threshold": [636, 664], "max_output_s": [636, 664], "score_threshold": [636, 664], "roi_align": 636, "spatial_scal": [636, 665], "sampling_ratio": [636, 665], "23333359": [636, 666], "03946018": [636, 666], "0280633": [636, 666], "29981947": [636, 666], "29981089": [636, 666], "06345534": [636, 666], "9634552": [636, 666], "19336844": [636, 666], "09336829": [636, 666], "axisa": [637, 668], "axisb": [637, 668], "axisc": [637, 668], "293": [637, 669], "46997": [637, 669], "17157288": [637, 673], "9238795": [637, 673], "78930789": [637, 673], "59803128": [637, 673], "19127655": [637, 673], "31213903": [637, 673], "63418275": [637, 673], "84632206": [637, 673], "70548367": [637, 673], "70223427": [637, 673], "09570674": [637, 673], "63116378": [637, 673], "56109613": [637, 673], "53554028": [637, 673], "32237405": [637, 673], "43822157": [637, 673], "83906901": [637, 673], "50766778": [637, 673], "71475857": [637, 673], "48103389": [637, 673], "3676433": [637, 673], "68466955": [637, 673], "62933773": [637, 673], "77917379": [637, 673], "14264561": [637, 673], "61036086": [637, 673], "45033181e": [637, 674], "02829754e": [637, 674], "54220343e": [637, 674], "12647155e": [637, 674], "38447177e": [637, 674], "56155300e": [637, 674], "26794919": [637, 674], "7320509": [637, 674], "0012": [637, 676], "00342": [637, 676], "000565": [637, 676], "0104": [637, 676], "000981": [637, 676], "00282": [637, 676], "000766": [637, 676], "0322": [637, 676], "00237": [637, 676], "000151": [637, 676], "00101": [637, 676], "00019": [637, 676], "0214": [637, 676], "00171": [637, 676], "0107": [637, 676], "0167": [637, 676], "0472": [637, 676], "0536": [637, 676], "0177": [637, 676], "000429": [637, 676], "00762": [637, 676], "frobeniu": [637, 678], "nuclear": [637, 678], "induc": [637, 678], "ranl": [637, 678], "47722558": [637, 678], "776": [637, 678], "6000004": [637, 678], "118": [637, 679], "moor": [637, 683], "penros": [637, 683], "31622776": [637, 684], "94868332": [637, 684], "1622777": [637, 684], "42718887": [637, 684], "deteremin": [637, 685], "logsabsdet": [637, 685], "subject": [637, 685], "unset_backend": [637, 685, 801, 825], "ordin": [637, 686], "b2": [637, 686], "usvh": [637, 687], "cetera": [637, 687], "driver": [637, 688, 855], "cusolv": [637, 688], "gesvd": [637, 688], "gesvdj": [637, 688], "gesvda": [637, 688], "86217213": [637, 688], "31816804": [637, 688], "615": [637, 688], "ss": [637, 688], "25994301": [637, 688], "16403675": [637, 688], "61529762": [637, 688], "51231241": [637, 688], "39777088": [637, 688], "15413129": [637, 688], "1029852": [637, 688], "01383495": [637, 688], "86647356": [637, 688], "7786541": [637, 688], "55970621": [637, 688], "16857576": [637, 688], "86412698": [637, 688], "37566757": [637, 688], "88477993": [637, 688], "95925522": [637, 688], "6444726": [637, 688], "54687881": [637, 688], "16134834": [637, 688], "35037804": [637, 688], "31025076": [637, 688], "35769391": [637, 688], "transposit": [637, 689], "0x": [637, 692], "Such": [637, 692, 837, 844], "alexandr": [637, 692], "theophil": [637, 692], "dot_product": [637, 693], "9000001": [637, 694], "64158917": [637, 694], "skew": [637, 695], "60309976": [638, 696], "6666193": [638, 696], "01348412": [638, 696], "05393649": [638, 696], "49992943": [638, 696], "83330965": [638, 696], "02136981": [638, 696], "32844672": [638, 696], "26561815": [638, 696], "22314337": [638, 696], "08916873": [638, 697, 698], "44832274": [638, 698], "75646281": [638, 698], "13862944": [638, 698], "57564628": [638, 698], "honor": [639, 706], "beyond": [639, 707, 812, 832, 841, 876], "famili": [639, 710], "intxx": [639, 710], "floatxx": [639, 710], "rep": [639, 712], "fomaml_step": 640, "inner_cost_fn": [640, 715, 716, 717], "outer_cost_fn": [640, 715, 716], "inner_grad_step": [640, 715, 716, 717], "inner_learning_r": [640, 715, 716, 717], "inner_optimization_step": [640, 715, 716, 717], "inner_batch_fn": [640, 715, 716], "outer_batch_fn": [640, 715, 716], "average_across_step": [640, 715, 716], "inner_v": [640, 715, 716], "keep_inner_v": [640, 715, 716], "outer_v": [640, 715, 716], "keep_outer_v": [640, 715, 716], "return_inner_v": [640, 715, 716, 717], "num_task": [640, 715, 716, 717], "maml": [640, 715, 716], "0x7fdde1d61120": [640, 715, 716, 717], "maml_step": 640, "vanilla": [640, 716, 853, 870], "_variabl": [640, 716, 717], "sub_batch": [640, 716], "40069818": [640, 716], "13723135": [640, 716], "reptile_step": 640, "cost_fn": [640, 717], "reptil": [640, 717], "batch_in": [640, 717], "4485182": [640, 717], "139": [640, 717], "9569855": [640, 717], "9880483": [640, 717], "01766968": [640, 717], "02197957": [640, 717], "02197981": [640, 717], "all_nested_indic": 641, "include_nest": [641, 718], "_index": [641, 718, 729], "_base": [641, 718, 728, 729, 840], "themselv": [641, 718, 827, 829, 830, 832, 837, 841, 853, 867, 876], "863": [641, 718, 830], "672": [641, 718], "482": [641, 718], "674": [641, 718], "341": [641, 718], "copy_nest": 641, "to_mut": [641, 719, 730], "deepli": [641, 719, 821, 855, 870], "copied_nest": [641, 719], "1337": [641, 719, 730], "duplicate_array_index_chain": 641, "index_nest": [641, 837], "insert_into_nest_at_index": 641, "insert_into_nest_at_indic": 641, "special_squar": [641, 724], "6666666666666667": [641, 724], "special_pow": [641, 724], "linear_model": [641, 724], "map_nest_at_index": 641, "_result": [641, 725, 735], "hh": [641, 725, 730], "map_nest_at_indic": 641, "ub": [641, 726], "tb": [641, 726], "multi_index_nest": 641, "nested_ani": 641, "check_nest": [641, 728, 729], "nested_argwher": 641, "stop_after_n_found": [641, 729], "nested_indic": [641, 729], "nested_map": [641, 830, 837], "_tuple_check_fn": [641, 730], "_list_check_fn": [641, 730], "_dict_check_fn": [641, 730], "wherebi": [641, 730, 818, 867], "ah": [641, 730], "bh": [641, 730], "ch": [641, 730], "dh": [641, 730, 823], "eh": [641, 730], "gh": [641, 730, 819, 834], "ih": [641, 730], "1338": [641, 730], "nested_multi_map": 641, "index_chain": [641, 731], "nest0": [641, 731], "ivy_arrai": [641, 731, 824, 841], "unappli": [641, 731], "prune_empti": 641, "prune_nest_at_index": 641, "prune_nest_at_indic": 641, "set_nest_at_index": 641, "set_nest_at_indic": 641, "xyz": [641, 736], "pqr": [641, 736], "mini": [642, 737, 792, 795], "uniformli": [643, 739, 741], "22346112": [643, 740], "0922": [643, 740], "9213753": [643, 740], "12818667": [643, 740], "799": [643, 740], "469": [643, 740], "287": [643, 740], "0366": [643, 740], "26431865": [643, 741], "475": [643, 741], "878": [643, 741], "861": [643, 741], "929": [643, 741], "789": [643, 741], "519": [643, 741], "0435": [643, 741], "381": [643, 741], "4608004": [643, 741], "8458502": [643, 741], "67270088": [643, 741], "31128597": [643, 741], "394": [643, 743], "zeroel": [644, 747], "fourth": [645, 749], "1141": [645, 749], "8101": [645, 749], "9298": [645, 749], "8460": [645, 749], "2119": [645, 749], "3519": [645, 749], "6252": [645, 749], "4033": [645, 749], "7443": [645, 749], "2577": [645, 749], "3707": [645, 749], "0545": [645, 749], "3238": [645, 749], "5944": [645, 749], "0775": [645, 749], "4327": [645, 749], "62519997": [645, 749], "40329999": [645, 749], "59439999": [645, 749], "74430001": [645, 749], "81010002": [645, 749], "84600002": [645, 749], "92979997": [645, 749], "einstein": [647, 759, 805], "117": [647, 759], "intend": [647, 765, 774, 791, 823, 836, 839, 868, 870, 874, 875], "07472222": [647, 766], "00666667": [647, 766], "08966666": [647, 766], "simplicit": [648, 767, 768], "ivy_test": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 823, 826, 828, 834, 842], "test_ivi": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 826, 828, 834, 842, 844], "assert_all_clos": [771, 842], "ret_np": [771, 773, 842], "ret_from_gt_np": [771, 842], "ground_truth_backend": [771, 773, 774, 783, 784, 816, 834, 842], "mark": [771, 815, 818, 820, 823, 844, 849], "assert_same_typ": 771, "ret_from_target": 771, "ret_from_gt": 771, "backend_to_test": [771, 773, 816, 834, 842], "gt_backend": 771, "with_backend": [771, 801], "assert_same_type_and_shap": 771, "this_key_chain": 771, "check_unsupported_devic": 771, "input_devic": 771, "all_as_kwargs_np": [771, 773], "check_unsupported_device_and_dtyp": 771, "input_dtyp": [771, 773, 783, 816, 834, 842, 844], "check_unsupported_dtyp": 771, "test_unsupported_funct": 771, "value_test": 771, "ret_np_flat": 771, "ret_np_from_gt_flat": 771, "specific_tolerance_dict": 771, "ret_from_np_gt_flat": 771, "function_test": 773, "args_to_contain": 773, "array_arg": [773, 837], "args_to_frontend": 773, "frontend_array_fn": 773, "arrays_to_frontend": 773, "as_list": 773, "convtru": 773, "nativeclass": 773, "counter": [773, 853], "create_args_kwarg": 773, "args_np": 773, "arg_np_val": 773, "args_idx": 773, "kwargs_np": 773, "kwarg_np_val": 773, "kwargs_idx": 773, "test_flag": [773, 816, 834, 842, 844], "on_devic": [773, 783, 816, 834, 842], "flatten_and_to_np": 773, "flatten_frontend": 773, "flatten_frontend_fw_to_np": 773, "frontend_ret": [773, 842], "isscalar_func": 773, "is_native_array_func": 773, "to_numpy_func": 773, "flatten_frontend_to_np": 773, "get_frontend_ret": 773, "frontend_fn": 773, "frontend_array_funct": 773, "precision_mod": [773, 783, 784, 834], "test_trac": [773, 783, 784, 816, 823, 834], "test_trace_each": [773, 783, 784], "get_ret_and_flattened_np_arrai": 773, "gradient_incompatible_funct": 773, "gradient_test": [773, 844], "rtol_": [773, 816, 834], "atol_": [773, 816, 834, 842], "tolerance_dict": 773, "gradient_unsupported_dtyp": 773, "kwargs_to_args_n_kwarg": 773, "num_positional_arg": [773, 783, 784, 816, 834, 842, 844], "port": [773, 861], "test_frontend_funct": [773, 842], "fn_tree": [773, 774, 784, 816, 834, 841, 842, 844], "gt_fn_tree": [773, 784], "test_valu": [773, 842, 844], "frontend_function_flag": [773, 783], "functiontestflag": [773, 783, 816, 834], "with_out": [773, 783, 816, 834, 842, 844], "instance_method": [773, 783, 816, 834, 844], "as_vari": [773, 783, 816, 834, 842, 844], "namespac": [773, 818, 829, 838, 841, 842, 845, 849, 854], "arg_": 773, "test_frontend_method": [773, 842], "init_input_dtyp": [773, 842], "method_input_dtyp": [773, 842], "init_flag": [773, 842, 844], "method_flag": [773, 783, 842, 844], "init_all_as_kwargs_np": [773, 842], "method_all_as_kwargs_np": [773, 842], "frontend_method_data": [773, 842], "init_as_variable_flag": [773, 784], "dictat": [773, 824, 831, 836, 840], "init_num_positional_arg": [773, 784], "init_native_array_flag": 773, "with_v": 773, "ret_gt": 773, "test_funct": [773, 816, 819, 820, 828, 834, 842, 844], "fn_name": [773, 774, 784, 816, 825, 834, 842, 844], "return_flat_np_arrai": 773, "as_variable_flag": [773, 784, 844], "native_array_flag": [773, 784, 844], "container_flag": [773, 783, 784, 844], "test_function_backend_comput": 773, "test_function_ground_truth_comput": 773, "arg_np_arrai": 773, "arrays_args_indic": 773, "arrays_kwargs_indic": 773, "kwarg_np_arrai": 773, "test_gradient_backend_comput": 773, "test_gradient_ground_truth_comput": 773, "test_method": 773, "method_nam": [773, 782, 784, 842], "init_with_v": 773, "method_with_v": 773, "test_gradi": [773, 783, 784, 816, 834, 844], "method_as_variable_flag": [773, 784], "method_num_positional_arg": [773, 784], "method_native_array_flag": 773, "method_container_flag": [773, 784], "test_method_backend_comput": 773, "test_method_ground_truth_comput": 773, "org_con_data": 773, "args_np_method": 773, "met_arg_np_v": 773, "met_args_idx": 773, "kwargs_np_method": 773, "met_kwarg_np_v": 773, "met_kwargs_idx": 773, "v_np": 773, "traced_if_requir": 773, "wrap_frontend_function_arg": 773, "holder": 774, "current_frontend_config": 774, "0x7fddd5b45f00": 774, "interruptedtest": 774, "test_interrupt": 774, "baseexcept": 774, "tri": [774, 829], "testdata": 774, "supported_device_dtyp": 774, "is_method": 774, "setup_api_test": 774, "test_data": 774, "setup_frontend_test": 774, "teardown_api_test": 774, "teardown_frontend_test": 774, "hypothesis_help": [776, 777, 778, 779], "array_help": 776, "array_and_broadcastable_shap": 776, "searchstrategi": [776, 777, 778, 779, 783, 784, 844], "array_bool": [776, 844], "min_valu": [776, 777, 778, 779, 816, 834, 842, 844], "max_valu": [776, 777, 778, 779, 842, 844], "ex": [776, 777, 778, 779, 784, 828, 864], "strategi": [776, 777, 778, 779, 783, 784, 818, 842], "array_helpers_dtype_info_help": 776, "kind_dtyp": [776, 778], "array_indices_axi": 776, "array_dtyp": [776, 777, 844], "indices_dtyp": 776, "get_dtyp": [776, 777, 816, 834, 842, 844], "abs_smallest_v": [776, 778, 779], "large_abs_safety_factor": [776, 778, 779, 816, 834, 842, 844], "small_abs_safety_factor": [776, 778, 779, 816, 834, 842], "safety_factor_scal": [776, 778, 779, 842, 844], "disable_random_axi": 776, "axis_zero": 776, "allow_inf": [776, 779, 842, 844], "min_num_dim": [776, 778, 842, 844], "max_num_dim": [776, 778, 842, 844], "min_dim_s": [776, 778, 842, 844], "max_dim_s": [776, 778, 842], "first_dimension_onli": 776, "indices_same_dim": 776, "valid_bound": 776, "safeti": [776, 778, 779, 870], "0002": [776, 779], "hypothesi": [776, 778, 784, 818, 820, 823, 828, 838], "65536": 776, "44758124e": [776, 844], "array_indices_put_along_axi": 776, "values_dtyp": 776, "array_valu": [776, 844], "allow_nan": [776, 779, 844], "allow_subnorm": [776, 779, 844], "exclude_min": [776, 779, 844], "exclude_max": [776, 779], "subnorm": [776, 779], "get_shap": [776, 778, 842, 844], "1806": 776, "36912": 776, "6955": 776, "59576": 776, "arrays_and_ax": 776, "available_dtyp": [776, 777, 816, 834, 842, 844], "allow_non": [776, 778, 842, 844], "return_dtyp": 776, "force_int_axi": 776, "26e": 776, "10e": 776, "24322108": 776, "26446279e": 776, "96046448e": 776, "008": 776, "17549435e": 776, "038": 776, "06541027e": 776, "13725760e": 776, "07143888": 776, "arrays_for_pool": 776, "min_dim": 776, "max_dim": 776, "min_sid": 776, "max_sid": 776, "explicit_or_str_pad": 776, "only_explicit_pad": 776, "return_dil": 776, "mixed_fn_compo": [776, 777, 778, 779, 844], "return_data_format": 776, "cond_data_gen_help": 776, "create_concatenable_arrays_dtyp": 776, "min_num_arrai": 776, "max_num_arrai": 776, "concat_dim": 776, "common_shap": [776, 844], "stackabl": 776, "given_common_shap": 776, "create_nested_input": 776, "leaf_valu": 776, "dtype_and_valu": [776, 816, 834, 842, 844], "num_arrai": [776, 777, 842, 844], "shared_dtyp": [776, 777, 842], "ret_shap": 776, "array_api_dtyp": [776, 777], "shape_kei": 776, "37915": 776, "6322": 776, "26765": 776, "12413": 776, "26986": 776, "34665": 776, "000e": 776, "711e": 776, "100e": 776, "955e": [776, 844], "40817": 776, "56193": 776, "29200": 776, "5851": 776, "9746": 776, "9604645e": 776, "103": 776, "41795": 776, "1170789994": 776, "44251": 776, "44209": 776, "433075925": 776, "24791": 776, "24691": 776, "24892": 776, "16711": 776, "972": 776, "15357": 776, "72057594037927936": 776, "dtype_array_queri": 776, "allow_mask": 776, "allow_neg_step": 776, "dtype_array_query_v": 776, "dtype_values_axi": [776, 844], "min_axi": 776, "max_axi": 776, "valid_axi": 776, "allow_neg_ax": 776, "min_axes_s": 776, "max_axes_s": 776, "force_tuple_axi": 776, "29788": 776, "62222885e": 776, "68281172e": 776, "257j": 776, "40129846e": 776, "90000000e": 776, "63426649e": 776, "91931887e": 776, "29488e": 776, "14361019e": 776, "12445": 776, "einsum_help": 776, "get_first_solve_batch_matrix": 776, "choose_adjoint": 776, "get_second_solve_batch_matrix": 776, "get_first_solve_matrix": 776, "allow_simplifi": 776, "choose_sid": 776, "xa": 776, "get_second_solve_matrix": 776, "list_of_s": 776, "sampled_from": [776, 842, 844], "min_siz": [776, 778, 784, 844], "max_siz": [776, 778, 784, 844], "size_bound": [776, 844], "999999999999999": 776, "9394938006792373": 776, "mutually_broadcastable_shap": 776, "num_shap": 776, "base_shap": 776, "dtype_help": 777, "univers": [777, 841, 859], "cast_filt": 777, "cast_filter_help": 777, "current_backend": [777, 801, 818, 825, 833, 837, 842, 845, 849], "get_castable_dtyp": 777, "castabl": 777, "prune_funct": 777, "intersect": [777, 828, 844], "signed_integ": 777, "real_and_complex": 777, "float_and_complex": 777, "general_help": 778, "broadcasterror": 778, "apply_safety_factor": 778, "dims_and_offset": 778, "ensure_dim_uniqu": 778, "embedding_help": 778, "general_helpers_dtype_info_help": 778, "get_axi": [778, 844], "allow_neg": 778, "sort_valu": 778, "force_tupl": 778, "force_int": 778, "assertionerror": [778, 816, 823, 833, 834, 842, 844], "get_bound": [778, 844], "get_mean_std": 778, "matrix_is_st": 778, "cond_limit": 778, "instabl": [778, 816, 829, 834], "computation": [778, 819], "prone": [778, 829], "thumb": 778, "gradual": 778, "collinear": 778, "reshape_shap": [778, 844], "sizes_": 778, "two_broadcastable_shap": 778, "x_and_filt": 778, "number_help": 779, "arbitrarili": [779, 852], "safety_factor": 779, "backend_proc": 780, "input_queu": 780, "output_queu": 780, "frontend_proc": 780, "pipeline_help": 781, "backendhandl": 781, "update_backend": [781, 842], "backendhandlermod": 781, "enum": 781, "setbackend": 781, "withbackend": 781, "withbackendcontext": 781, "get_frontend_config": 781, "frontendmethoddata": 782, "ivy_init_modul": 782, "framework_init_modul": 782, "init_nam": 782, "test_parameter_flag": 783, "dynamicflag": [783, 784], "frontendfunctiontestflag": [783, 834], "with_copi": 783, "generate_frontend_arrai": [783, 784, 834], "testflag": 783, "apply_flag": 783, "args_to_iter": 783, "frontendinittestflag": 783, "frontendmethodtestflag": 783, "test_cython_wrapp": [783, 784], "initmethodtestflag": 783, "methodtestflag": 783, "build_flag": 783, "frontend_init_flag": 783, "frontend_method_flag": 783, "function_flag": 783, "init_method_flag": 783, "testing_help": 784, "handle_exampl": [784, 844], "test_exampl": [784, 844], "test_frontend_exampl": [784, 844], "test_method_exampl": [784, 844], "test_frontend_method_exampl": [784, 844], "given_kwarg": 784, "handle_frontend_method": [784, 842, 844], "class_tre": [784, 842], "init_tre": [784, 842], "init_native_arrai": 784, "_as_varaible_strategi": 784, "method_native_arrai": 784, "test_inplac": [784, 844], "_given_kwarg": 784, "test_compil": 784, "handle_frontend_test": [784, 842, 844], "alias": [784, 818, 841, 842], "number_positional_arg": [784, 842], "test_with_out": [784, 842, 844], "test_with_copi": 784, "handle_method": [784, 844], "method_tre": [784, 842, 844], "_gradient_strategi": 784, "handle_test": [784, 816, 834, 844], "test_instance_method": [784, 844], "num_positional_args_help": 784, "num_positional_args_method": 784, "geglu": 788, "leakyrelu": 788, "logsoftmax": 788, "from_flax_modul": 789, "native_modul": 789, "params_fx": 789, "rng_seed": 789, "constructor_arg": 789, "constructor_kwarg": 789, "instance_arg": 789, "instance_kwarg": 789, "flax": [789, 854, 855, 861, 870], "from_haiku_modul": 789, "params_hk": 789, "from_paddle_modul": 789, "from_torch_modul": 789, "to_keras_modul": 789, "native_module_class": 789, "modulehelp": [790, 794], "create_vari": [791, 853], "var_shap": [791, 853], "fan_out": [791, 853], "fan_in": [791, 853], "rectangular": 791, "firstlayersiren": 791, "siren": 791, "glorotuniform": [791, 792, 853], "glorot": 791, "xavier": 791, "neuron": 791, "w_1x_1": 791, "w_2x_2": 791, "w_nx_n": 791, "w_i": 791, "vanish": 791, "explod": [791, 858, 859], "kaimingnorm": 791, "fan_mod": [791, 853], "kaim": 791, "he": 791, "negative_slop": 791, "fan": 791, "propog": 791, "fan_sum": [791, 853], "Ones": 791, "randomnorm": 791, "stddev": 791, "w0": 791, "wlim": 791, "predefin": 791, "fan_avg": 791, "adaptiveavgpool1d": 792, "avgpool1d": 792, "implicit": [792, 827, 832, 841, 844, 849, 870], "avgpool2d": 792, "avgpool3d": 792, "e501": 792, "filter_s": 792, "weight_initi": [792, 853], "bias_initi": [792, 853], "0x7fdde198b6a0": 792, "0x7fdde198b640": 792, "conv1dtranspos": 792, "0x7fdde198b5e0": 792, "0x7fdde198b580": 792, "filter_shap": 792, "0x7fdde198b520": 792, "0x7fdde198b4c0": 792, "0x7fdde198b460": 792, "0x7fdde198b400": 792, "0x7fdde198b2e0": 792, "0x7fdde198b280": 792, "conv3dtranspos": 792, "0x7fdde198b220": 792, "0x7fdde198b1c0": 792, "depthwiseconv2d": 792, "num_channel": 792, "0x7fdde198b3a0": 792, "0x7fdde198b340": 792, "bernoul": 792, "num_embed": 792, "embedding_dim": 792, "padding_idx": 792, "lookup": 792, "num_embeddingss": 792, "renorm": 792, "insensit": 792, "return_st": 792, "0x7fdde198b160": 792, "get_initial_st": 792, "0x7fdde198b760": 792, "0x7fdde198b700": 792, "maxpool1d": 792, "maxpool3d": 792, "multiheadattent": 792, "embed_dim": 792, "head_dim": 792, "dropout_r": 792, "use_proj_bia": 792, "attention_ax": 792, "build_mod": [792, 793, 794], "on_init": [792, 794], "parallel": [792, 826, 870, 874, 875], "binarycrossentropyloss": 793, "store_var": [793, 794], "with_partial_v": [793, 794], "logpoissonloss": 793, "modulemeta": 794, "temporarili": [794, 816, 823, 834], "from_cal": 794, "module_dict": 794, "register_buff": 794, "register_paramet": 794, "weights_path": 794, "randomness_factor": 794, "with_edge_label": 794, "with_arg_label": 794, "with_output_label": 794, "output_connected_onli": 794, "highlight_subgraph": 794, "trace_kwarg": 794, "_unified_ivy_graph": 794, "_call": 794, "num_featur": 795, "trail": 795, "layernorm": 795, "normalized_shap": 795, "elementwise_affin": 795, "set_stat": [796, 853], "adamw": 796, "weight_decai": 796, "init_on_first_step": 796, "fallback_to_non_trac": 796, "ignore_miss": 796, "privat": [796, 841, 844], "_step": [796, 853], "stochast": [796, 870], "sub_modul": 797, "check_al": 798, "check_all_or_any_fn": 798, "check_ani": 798, "check_dev_correct_format": 798, "check_dimens": 798, "check_elem_in_list": [798, 837, 840, 841], "elem": 798, "check_equ": [798, 841], "check_exist": 798, "check_fals": 798, "check_gather_input_valid": 798, "check_gather_nd_input_valid": 798, "check_great": 798, "allow_equ": [798, 833], "check_inplace_sizes_valid": [798, 840], "check_isinst": 798, "allowed_typ": 798, "check_kernel_padding_s": 798, "padding_s": 798, "check_less": [798, 833], "check_one_way_broadcast": 798, "check_same_dtyp": 798, "check_shapes_broadcast": 798, "check_tru": 798, "check_unsorted_segment_valid_param": 798, "ast_help": 800, "importtransform": 800, "nodetransform": 800, "impersonate_import": 800, "tree": [800, 829], "local_ivy_id": 800, "visit_import": 800, "visit_importfrom": 800, "ivyload": 800, "loader": [800, 852, 855], "exec_modul": 800, "ivypathfind": 800, "metapathfind": 800, "find_spec": 800, "fullnam": 800, "contextmanag": 801, "choose_random_backend": 801, "global_backend": 801, "dynamic_backend_convert": 801, "backend_stack": [801, 849], "prevent_access_loc": 801, "previous_backend": [801, 825], "Or": [801, 812, 814, 819, 840, 852], "set_backend_to_specific_vers": 801, "set_jax_backend": 801, "set_mxnet_backend": 801, "mx": 801, "set_numpy_backend": 801, "set_paddle_backend": 801, "set_tensorflow_backend": 801, "set_torch_backend": 801, "sub_backend_handl": 802, "clear_sub_backend": 802, "find_available_sub_backend": 802, "sub_backends_loc": 802, "fn_name_from_version_specific_fn_nam": 802, "fn_name_from_version_specific_fn_name_sub_backend": 802, "sub_backend_vers": 802, "backend_vers": [802, 816, 829, 834], "set_sub_backend": 802, "sub_backend_str": 802, "set_sub_backend_to_specific_vers": 802, "sub_backend": 802, "unset_sub_backend": 802, "check_for_binari": 803, "cleanup_and_fetch_binari": [803, 819], "clean": [803, 820, 845, 849, 850, 852], "dynamic_import": 804, "import_modul": [804, 849], "einsum_pars": 805, "convert_interleaved_input": 805, "interleav": 805, "convert_subscript": 805, "old_sub": 805, "symbol_map": 805, "subscript": [805, 806], "oe": 805, "ellipsi": [805, 806], "find_output_shap": 805, "find_output_str": 805, "canon": 805, "gen_unused_symbol": 805, "abd": [805, 806], "get_symbol": 805, "letter": 805, "resort": 805, "unicod": 805, "charact": [805, 841, 860], "chr": 805, "surrog": 805, "\u0155": 805, "20000": 805, "\u4eac": 805, "has_valid_einsum_chars_onli": 805, "einsum_str": 805, "abaz": 805, "\u00f6ver": 805, "is_valid_einsum_char": 805, "\u01f5": 805, "legalise_einsum_expr": 805, "reproduct": [805, 806], "pars": [805, 806, 826, 831, 855], "intak": 805, "contract_path": 805, "parse_einsum_input": [805, 806], "einsum_eqn": 805, "legalis": 805, "legalise_einsum_eqn": 805, "za": [805, 806], "xza": [805, 806], "xz": [805, 806], "possibly_convert_to_numpi": 805, "myshap": 805, "__main__": 805, "0x10f850710": 805, "einsum_path_help": 806, "can_dot": 806, "idx_remov": 806, "bla": 806, "benefici": 806, "movement": 806, "costli": 806, "gemm": 806, "ijj": 806, "ddot": 806, "ikj": 806, "compute_size_by_dict": 806, "idx_dict": 806, "abbc": 806, "find_contract": 806, "input_set": 806, "output_set": 806, "lh": 806, "rh": 806, "new_result": 806, "idx_contract": 806, "iset": 806, "oset": 806, "bdc": 806, "flop_count": 806, "num_term": 806, "size_dictionari": 806, "flop": [806, 810], "greedy_path": 806, "memory_limit": 806, "exhaust": [806, 840, 844, 867, 876], "indices_remov": 806, "priorit": [806, 818, 843, 847], "hadamard": 806, "cubic": 806, "greedi": 806, "idx_siz": 806, "optimal_path": 806, "siev": 806, "input_str": 806, "output_str": 806, "parse_possible_contract": 806, "path_cost": 806, "naive_cost": 806, "propos": [806, 820, 841, 847, 870], "intermediari": [806, 825], "unoptim": 806, "new_input_set": 806, "update_other_result": 806, "provision": 806, "_parse_possible_contract": 806, "mod_result": 806, "inplaceupdateexcept": 807, "include_backend": [807, 833], "ivyattributeerror": [807, 833], "attributeerror": [807, 833, 851], "ivybroadcastshapeerror": [807, 833], "ivydeviceerror": 807, "ivydtypepromotionerror": [807, 833], "ivyindexerror": [807, 833], "ivyinvalidbackendexcept": 807, "ivynotimplementedexcept": [807, 833], "notimplementederror": 807, "ivyvalueerror": [807, 833], "handle_except": [807, 836, 838], "add_array_spec": 808, "fn_array_spec": 808, "set_logging_mod": 809, "debug": [809, 815, 819, 820, 827, 828, 839, 844, 847, 852, 870, 878], "unset_logging_mod": 809, "print_stat": 810, "viz": 810, "snakeviz": 810, "bonu": 810, "cprofil": 810, "tensorflow_profile_start": 810, "logdir": 810, "host_tracer_level": 810, "python_tracer_level": 810, "device_tracer_level": 810, "delay_m": 810, "toggl": [810, 820], "timestamp": 810, "awai": [810, 812, 868, 870], "millisecond": 810, "guess": 810, "tensorflow_profile_stop": 810, "torch_profiler_init": 810, "schedul": [810, 828, 855, 870, 877], "on_trace_readi": 810, "record_shap": 810, "profile_memori": 810, "with_stack": 810, "with_flop": 810, "with_modul": 810, "experimental_config": 810, "profileract": 810, "record_and_sav": 810, "dealloc": 810, "record": [810, 819, 855, 871], "callstack": 810, "aten": 810, "torchscript": [810, 849, 857, 877], "_experimentalconfig": 810, "kineto": 810, "torch_profiler_start": 810, "torch_profiler_stop": 810, "cprint": [811, 849], "pilot": [812, 817, 856], "grow": [812, 815, 821, 870, 878], "peopl": [812, 817, 819, 820, 822, 870, 872], "brief": [812, 840, 844], "idea": [812, 818, 843, 845, 850, 861, 869], "docker": [812, 816, 817, 834], "challeng": [812, 818, 825, 876], "pull": [812, 813, 815, 818, 819, 823, 831, 835, 845, 847, 855, 856, 861], "jax_fn": 812, "jax_x": 812, "torch_x": 812, "torch_fn": 812, "shorter": [812, 851], "ensp": 812, "customiz": [812, 826], "15c235f": 812, "deepmind_perceiver_io": 812, "sm_framework": 812, "segmentation_model": 812, "sm": 812, "torch_sm": 812, "metric": [812, 855], "iou_scor": 812, "rax": 812, "torch_rax": 812, "poly1_softmax_loss": 812, "madmom": 812, "madmon": 812, "torch_madmom": 812, "freq": 812, "audio": 812, "hz2midi": 812, "torch_loss": 812, "maxpooling1d": 812, "pool_siz": 812, "tf_kornia": 812, "tf_rax": 812, "tf_madmom": 812, "tf_loss": 812, "_forward_classifi": [812, 864], "forward_classifi": [812, 864], "hk_eff_encod": 812, "dummy_x": 812, "jax_sm": 812, "jax_madmom": 812, "jax_loss": 812, "np_kornia": 812, "np_sm": 812, "np_rax": 812, "np_loss": 812, "yourself": [812, 818, 820, 835, 844, 847], "favourit": [812, 819], "hyperparam": 812, "instantli": [812, 864], "everyon": [812, 813, 818, 819, 820, 855, 861], "interoper": [812, 860, 867, 868, 870, 873], "handler": [812, 848, 850, 854, 857], "facilit": [812, 821], "mse_loss": 812, "jax_ms": 812, "tf_mse": 812, "np_mse": 812, "torch_ms": 812, "someth": [812, 816, 820, 825, 834, 835, 845, 852, 853, 855, 856, 876], "motiv": [812, 851, 860], "contextu": 812, "explos": [812, 858, 860], "adher": [812, 823, 829, 832, 836, 847, 849, 854, 859, 860, 866, 867, 876], "orient": 812, "contributor": [812, 813, 816, 818, 819, 820, 834, 841, 848, 870], "believ": [812, 820, 860], "feedback": [812, 818, 828], "appreci": [812, 821], "amaz": [812, 878], "journei": [812, 813, 821], "ambiti": 812, "season": 812, "fellow": 812, "twitter": 812, "sneak": 812, "peek": 812, "credit": 812, "accompani": 812, "lenton2021ivi": 812, "inter": 812, "author": [812, 818, 820, 868, 872], "lenton": 812, "daniel": 812, "pardo": 812, "fabio": 812, "falck": 812, "fabian": 812, "jame": 812, "stephen": 812, "clark": 812, "ronald": 812, "journal": 812, "arxiv": 812, "preprint": 812, "2102": 812, "02886": 812, "year": [812, 823, 855, 859, 861, 870], "strongli": [813, 819, 841, 876, 877], "engag": [813, 820, 821, 860], "skill": [813, 821, 872], "veteran": 813, "effort": [813, 818, 855, 860, 866, 870, 876], "board": [813, 826], "stage": [813, 820, 822, 823, 826, 844, 860, 870], "excit": [813, 822, 860], "reward": [813, 821], "badg": [813, 821, 828, 878], "program": [813, 840, 867, 868, 870, 873, 874, 877], "climb": [813, 817], "Be": [814, 826], "awar": [814, 826, 833, 835], "linux": [814, 819, 820, 826, 873, 875], "regularli": [814, 826, 828], "internet": [814, 826], "codespac": [814, 826, 834], "make_doc": 814, "sh": [814, 819, 820, 823, 828], "pwd": 814, "ssh": [814, 828], "make_docs_without_dock": [814, 826], "award": 815, "formal": 815, "dynamo": [815, 878], "earn": [815, 821], "thoroughli": [815, 823], "valuabl": [815, 818, 820], "merg": [815, 818, 820, 823, 828, 841, 870, 878], "meet": [815, 821, 841], "wizard": [815, 878], "inspector": [815, 878], "acknowledg": [815, 821], "honour": 815, "dilig": 815, "bronz": [815, 821, 878], "silver": [815, 821, 878], "gold": [815, 821, 855, 878], "expertis": [815, 821, 872], "assist": [816, 834], "runtimeerror": [816, 834], "logaddexp2_cpu": [816, 834], "falsifi": [816, 823, 834, 844], "test_logaddexp2": [816, 834], "backend_fw": [816, 834, 842], "dtype_and_x": [816, 834, 842, 844], "reproduce_failur": [816, 823, 834, 838, 844], "axicy2bkaamobaar2waaaacvaai": [816, 834], "decoartor": [816, 834], "with_unsupported_dtyp": [816, 829, 834, 841], "25830078125": [816, 834], "258544921875": [816, 834], "test_acosh": [816, 834], "axicy2baabyqwqgiaabdaai": [816, 834], "quit": [816, 820, 824, 831, 832, 834, 837, 838, 844, 847, 870, 876], "41421356": [816, 834], "41421356e": [816, 834], "34078079e": [816, 834], "154": [816, 834], "test_ab": [816, 819, 834, 844], "000j": [816, 834], "154j": [816, 834], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [816, 834], "thread": [816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 852, 870], "pycharm": [816, 842, 844], "steep": 817, "curv": 817, "realpython": 817, "pyn": 817, "exchang": [817, 860, 866, 868], "stuck": [817, 818], "spell": 817, "sound": [817, 828, 848], "frequent": [818, 820, 825, 870], "outlin": [818, 819, 820, 822, 827, 829, 832, 837, 840, 841, 844], "broad": [818, 872], "individu": [818, 820, 823, 825, 829, 837, 841, 870, 873, 876, 877], "clearli": [818, 820, 831, 842, 844, 860, 874], "straightforward": [818, 821, 852], "lie": 818, "urgent": 818, "encourag": [818, 821, 835, 855, 860], "tackl": [818, 821, 841], "categoris": [818, 823, 841], "comfort": [818, 819, 833], "linkag": 818, "pr": [818, 820, 821, 823, 835, 841, 842, 844], "confid": 818, "submit": [818, 835], "scipi": [818, 860, 872, 877], "mindspor": 818, "simpler": [818, 820, 835, 863, 871, 877], "member": [818, 820, 841, 856, 860], "comment": [818, 819, 820, 823, 829, 835, 841, 843, 847], "composition": 818, "feasibl": [818, 828, 844, 860, 863], "pend": 818, "helpfulli": [818, 847, 868], "problemat": [818, 819], "unimpl": 818, "issue_link": 818, "alias_nam": 818, "notic": [818, 824, 828, 834, 835, 844, 847, 863], "push": [818, 820, 821, 823, 842, 844, 876], "liner": 818, "meanwhil": [818, 828], "reselect": 818, "faithfulli": 818, "creation_routin": [818, 842], "indexing_routin": 818, "ma": 818, "manipulation_routin": 818, "mathematical_funct": [818, 841], "sorting_searching_count": 818, "ufunc": [818, 841], "matrix_and_vector_product": 818, "matrix_eigenvalu": 818, "norms_and_other_numb": 818, "solving_equations_and_inverting_matric": 818, "gleam": 818, "uncom": 818, "test_numpy_inn": 818, "test_frontend": [818, 828, 834, 842], "unsur": [818, 844], "statu": [818, 821, 828, 835, 861], "refrain": 818, "checkbox": [818, 819], "aforement": 818, "parent": [818, 828, 851], "arraywithelementwis": [818, 824, 851], "containerwithmanipul": 818, "thorough": [818, 832, 836, 844], "add_reformatting_checklist_": 818, "category_nam": [818, 829, 830, 832, 836, 837], "autom": [818, 828, 835, 844, 857, 872], "bot": [818, 835], "markdown": [818, 826], "patient": [818, 819], "elabor": 818, "struggl": 818, "assigne": 818, "status": 818, "central": [818, 835, 847, 860, 876], "relevant_submodul": 818, "roadmap": [818, 828], "deem": [818, 841], "subtask": 818, "clearer": [818, 833, 842, 852], "backend_nam": [818, 825, 829, 830, 832, 836, 837, 838], "rare": [818, 830, 855, 875], "button": [818, 819, 820, 834], "centr": 818, "predetermin": 818, "superset": [818, 822, 837, 840, 855], "happi": [819, 834, 855, 861], "your_usernam": [819, 834], "your_fold": [819, 834], "enter": [819, 820, 824, 829, 830, 834, 836, 838], "sync": [819, 823, 834], "remot": [819, 823, 834, 835], "nutshel": [819, 836], "hook": [819, 835, 843], "lint": [819, 822], "succe": [819, 863], "whatev": [819, 827, 855], "elig": [819, 821], "student": 819, "licens": [819, 873], "remind": 819, "expir": 819, "won": [819, 820, 827, 829, 854, 856, 860, 861, 863, 864, 865], "profession": 819, "trial": 819, "jetbrain": 819, "month": [819, 859], "bui": [819, 876], "paid": 819, "rapid": [819, 859, 860, 870], "pace": 819, "person": [819, 820], "perhap": [819, 851, 852, 853, 855, 876], "conda": [819, 860, 872], "ivy_dev": [819, 820], "icon": [819, 820, 834], "panel": 819, "vscode": [819, 834], "palett": 819, "ctrl": [819, 820], "mac": [819, 820], "intel": [819, 860, 868, 875], "m1": 819, "optional_apple_silicon_1": 819, "optional_apple_silicon_2": 819, "array_api_test": [819, 820, 823, 834], "test_array_api": [819, 820, 823, 834, 844], "suit": [819, 822, 823, 828, 834, 843, 844, 852, 860, 870, 876], "cmd": 819, "bat": [819, 820], "virtualenv": 819, "tick": [819, 820, 828], "nz2": 819, "openssl": 819, "libssl1": 819, "1_1": 819, "1f": 819, "1ubuntu2": 819, "20_amd64": 819, "deb": 819, "dpkg": 819, "mitig": [819, 876], "desktop": [819, 834], "powershel": 819, "admin": 819, "deploy": [819, 864, 869, 872, 873, 876, 877], "menu": [819, 834], "introspect": 819, "dialog": 819, "persist": 819, "earlier": [819, 820, 829, 845], "virtualis": 819, "bio": [819, 860], "dropdown": [819, 828], "dockerfil": 819, "ca": 819, "certif": 819, "gnupg": 819, "lsb": 819, "keyr": 819, "fssl": 819, "gpg": 819, "dearmor": 819, "echo": [819, 828, 856], "arch": 819, "lsb_releas": 819, "ce": 819, "cli": 819, "containerd": 819, "systemctl": 819, "softwar": [819, 820, 859, 860, 868, 873, 874, 875], "press": [819, 820, 852], "4a": 819, "socket": 819, "rwx": 819, "sock": 819, "pid": 819, "editor": 819, "pytest": [819, 820, 823, 828, 834, 838, 844], "keyboard": 819, "screenshot": 819, "pop": [819, 834, 860], "test_elementwis": 819, "shell": [819, 820, 823, 828], "setup_test": 819, "run_ivy_core_test": 819, "run_ivy_nn_test": 819, "run_ivy_stateful_test": 819, "run_test": [819, 828], "test_depend": 819, "test_ivy_cor": 819, "test_ivy_nn": 819, "test_ivy_st": 819, "unix": 819, "test_": [819, 842], "test_cor": [819, 820, 842], "offici": [819, 829, 849], "wish": [819, 841], "ivy_nn": 819, "ivy_st": 819, "header": [819, 820, 843], "arrow": 819, "test_stat": 819, "test_submodule_nam": 819, "test_function_nam": 819, "debugg": 819, "studio": [819, 834, 844], "afterward": [819, 852], "background": [819, 826, 834, 870, 872], "overlap": [819, 828, 834, 845, 847, 871], "test_file_path": [819, 834], "test_fn_nam": [819, 834], "engin": [819, 870, 872, 873], "devcontain": 819, "comma": 819, "postcreatecommand": 819, "post_create_command": 819, "poststartcommand": 819, "safe": [819, 841], "containerworkspacefold": 819, "reopen": 819, "test_fle_path": 819, "slash": 819, "isol": [819, 820, 871, 876], "container": 819, "intens": 819, "headach": 819, "arm": [819, 820], "vm": [819, 828], "azur": 819, "cloud": [819, 828, 872], "theme": [819, 826], "ipad": 819, "browser": [819, 826], "quota": 819, "requisit": 819, "pane": [819, 820, 828], "dockerfilegpu": 819, "ivv": 819, "multiv": 819, "multivers": [819, 845], "dockerfilemultivers": 819, "dockerhub": 819, "upto": [819, 820], "minut": [819, 828], "launch": 819, "kindli": [819, 843], "guidelin": 819, "colour": 819, "chanc": 819, "troubleshoot": 819, "ever": 819, "flask": [819, 834], "toolbar": [819, 820, 834], "_array_modul": [819, 823, 834], "refresh": [819, 834], "pytestarg": [819, 834], "unittesten": [819, 834], "pytesten": [819, 834], "autotestdiscoveronsaveen": [819, 834], "conftest": 819, "serv": [819, 820, 824, 827, 836, 837, 841, 842, 844, 847, 848, 857, 868], "aren": [819, 829], "available_config": 819, "cp310": 819, "x86": [819, 875], "newer": [819, 844], "_compil": 819, "meantim": 819, "suffici": [819, 831, 841, 844], "bear": [819, 824, 827, 829, 841], "tendenc": 820, "land": 820, "unrel": [820, 860], "fly": [820, 870], "internship": 820, "suspect": 820, "iii": 820, "issue_numb": 820, "12345": 820, "rememb": 820, "respond": 820, "dai": [820, 835], "freed": 820, "situat": [820, 828, 854], "obvious": [820, 828], "hypothet": 820, "frustrat": 820, "delai": [820, 863], "busi": 820, "inact": 820, "unfairli": 820, "investig": 820, "name_of_your_branch": 820, "date": [820, 823], "complic": [820, 842, 849], "merge_with_upstream": 820, "abort": 820, "tediou": [820, 831, 847], "stash": [820, 835], "reinstat": 820, "uncommit": 820, "unstag": [820, 835], "untrack": 820, "atlassian": 820, "wrote": 820, "piec": [820, 824, 837, 838, 849, 863, 866, 868], "blame": 820, "eg": 820, "week": [820, 861], "grep": 820, "commit_id": 820, "handi": 820, "histori": 820, "approv": 820, "someon": [820, 855], "hash": [820, 852], "cancel": 820, "speedup": 820, "unavail": 820, "tickbox": 820, "intent": [820, 840], "discourag": 820, "adopt": [820, 824, 836, 847, 860, 869, 870, 875], "philosophi": 820, "infrequ": 820, "earli": [820, 870], "wast": [820, 828], "spot": [820, 831, 837], "mistak": 820, "mountain": 820, "advoc": [820, 855], "session": [820, 870], "beauti": 820, "care": [820, 830, 841, 847, 854, 860], "undo": 820, "stress": 820, "nifti": 820, "reassur": 820, "local_path_to_ivi": 820, "subfold": [820, 842, 844, 845], "dep": 820, "fresh": 820, "arsen": 820, "exec": 820, "ivy_contain": 820, "test_imag": 820, "test_random_crop": 820, "test_creation_funct": 820, "test_arang": 820, "cursor": 820, "alt": 820, "breakpoint": 820, "gutter": 820, "caret": 820, "f8": 820, "f9": 820, "Into": 820, "f7": 820, "smart": 820, "fragment": [820, 866, 868, 872], "wherein": [820, 837, 844], "failur": [820, 828, 842, 844], "embark": 821, "innov": [821, 860], "door": [821, 855], "elev": 821, "mission": [821, 860, 872], "opportun": 821, "testament": [821, 843], "stone": 821, "gift": 821, "acquir": 821, "peak": 821, "privileg": [821, 872], "bounti": 821, "cash": 821, "delight": 821, "weed": [822, 848], "tour": 822, "formatt": [822, 835], "conjunct": 823, "establish": [823, 872], "unconnect": 823, "strang": [823, 851], "test_linalg": [823, 842], "test_set_funct": 823, "test_signatur": 823, "excess": [823, 825, 831], "array_modul": 823, "vv": 823, "test_manipulation_funct": 823, "test_concat": [823, 844], "nb": 823, "liber": 823, "______________________": 823, "test_remaind": 823, "_______________________": 823, "test_operators_and_elementwise_funct": 823, "1264": 823, "1277": 823, "binary_param_assert_against_refimpl": 823, "ctx": 823, "620": 823, "binary_assert_against_refimpl": 823, "324": 823, "scalar_o": 823, "17304064": 823, "binaryparamcontext": 823, "axic42baaowcnp": 823, "rumwmabaear0": 823, "make_binary_param": 823, "numeric_dtyp": 823, "left_strat": 823, "left_sym": 823, "right_strat": 823, "right_sym": 823, "right_is_scalar": 823, "binary_param_assert_dtyp": 823, "binary_param_assert_shap": 823, "recreat": 823, "unexpectedli": 823, "discrep": [823, 842], "test_asarray_arrai": 823, "test_floor_divid": 823, "health": 823, "test_iop": 823, "__imod__": 823, "isequ": 823, "test_matrix_norm": 823, "alter": 823, "tweak": 823, "array_api_methods_to_test": 823, "test_special_cas": 823, "__ipow__": 823, "is_integ": 823, "easier": [823, 824, 825, 829, 842, 845, 857, 870, 872], "revisit": [823, 836], "_data": [824, 840, 841, 851], "organiz": [824, 827, 841], "underpin": [824, 827, 849], "programmat": [824, 827, 871], "backup": [824, 826, 827], "accident": [824, 827, 841], "absent": [824, 827], "auto": [824, 826, 827, 835, 852], "__mul__": [824, 827, 831, 836, 847, 851], "throw": [824, 829, 830, 833, 834, 851, 870], "imposs": 824, "inputs_to_native_arrai": [824, 837, 838], "outputs_to_ivy_arrai": [824, 829, 830, 836, 837, 838], "secondli": [824, 829], "__ivy_array_function__": 824, "__torch_function__": 824, "myarrai": 824, "handled_funct": 824, "notimpl": 824, "issubclass": 824, "enough": [824, 828, 829, 830, 844, 851, 852, 853], "ivy_funct": 824, "my_ab": 824, "my_arrai": 824, "implicit_backend": [825, 849], "__dict__": [825, 840, 849], "ivy_original_dict": [825, 849], "fallback": 825, "live": [825, 826, 829, 860, 861, 866, 868], "dlpack": 825, "set_dynamic_backend": 825, "unset_dynamic_backend": 825, "dynamic_backend_a": 825, "set_": 825, "unset_": 825, "backend_handl": 825, "requires_grad": 825, "memory_format": 825, "preserve_format": 825, "weren": 825, "vast": [825, 829, 870], "minor": [825, 847, 855], "fn_name_v_1p12_and_abov": 825, "fn_name_v_1p01_to_1p1": 825, "heavili": [826, 838, 855], "conf": 826, "cleanup": 826, "readm": [826, 855], "maxdepth": 826, "caption": 826, "related_work": 826, "deep_div": 826, "faq": 826, "glossari": 826, "autosummari": 826, "top_functional_toc": 826, "restructuredtext": 826, "discov": [826, 829], "ivy_toctree_caption_map": 826, "unfortun": [826, 835], "linker": 826, "foo": 826, "discussion_channel_map": 826, "1000043690254946374": 826, "1000043749088436315": 826, "forum": [826, 856], "seri": [826, 829, 841, 844, 870, 872], "discussion_paragraph": 826, "discord_link": 826, "channel_link": 826, "gg": 826, "zvqdvbznqj": 826, "799879767196958751": 826, "channel_id": 826, "autoskippablemethod": 826, "skippable_method_attribut": 826, "__qualname__": 826, "autodoc": 826, "__doc__": 826, "autoivydata": 826, "mutual": [827, 837], "containerwithelementwis": 827, "__repr__": 827, "__getattr__": [827, 863], "__setattr__": [827, 863], "__contains__": 827, "__getstate__": 827, "__setstate__": 827, "unpickl": 827, "num_dim": [827, 854], "restrict": [827, 828, 841, 849, 863, 867], "enforc": [827, 851], "lefthand": 827, "righthand": 827, "handle_nest": [827, 836, 837, 838, 849], "absenc": [827, 836, 870], "implicitli": [827, 839, 844, 849], "log_pr": [827, 837, 840], "intuit": [827, 844, 852, 853, 866], "chronolog": 827, "concurr": [827, 828, 837, 870], "despit": [827, 829, 830, 842, 849, 860, 867, 870], "__list__": 827, "whatsoev": [827, 837, 857, 876], "children": 827, "shallowest": 827, "deepest": 827, "rollback": 828, "incorpor": [828, 842, 852, 870], "techniqu": 828, "triplet": 828, "test_torch": [828, 842], "test_tensor": [828, 842], "test_torch_instance_arctan_": 828, "12500": 828, "daili": 828, "huge": [828, 852, 858, 860, 870, 876], "shoot": 828, "_reduce_loss": [828, 837, 840], "test_nn": 828, "test_loss": 828, "test_binary_cross_entropy_with_logit": 828, "test_cross_entropi": 828, "test_binary_cross_entropi": 828, "test_sparse_cross_entropi": 828, "test_loss_funct": 828, "test_torch_binary_cross_entropi": 828, "test_torch_cross_entropi": 828, "binary_cross_entropy_with_logit": 828, "torch_binary_cross_entropi": 828, "torch_cross_entropi": 828, "readthedoc": 828, "pedagog": 828, "f_1": 828, "t_1": 828, "t_3": 828, "t_7": 828, "t_": 828, "f_m": 828, "cyclic": 828, "intellig": [828, 844, 872], "tests_fil": 828, "file_nam": [828, 844, 845], "tests_lin": 828, "correspondingli": 828, "tests_to_run": 828, "determine_tests_lin": 828, "mongodb": 828, "databas": [828, 844], "mechan": [828, 855], "secret": 828, "db": 828, "ssh_deploy_kei": 828, "suffic": [828, 838, 844], "massiv": 828, "yml": 828, "felicit": 828, "clone_map": 828, "deploy_kei": 828, "user_email": 828, "user_nam": 828, "target_branch": 828, "github_serv": 828, "deploy_key_fil": 828, "ssh_known_hosts_fil": 828, "known_host": 828, "keyscan": 828, "git_ssh_command": 828, "userknownhostsfil": 828, "email": [828, 860], "methodologi": 828, "master1": 828, "restructur": 828, "_map": 828, "t_2": 828, "t_n": 828, "index_map": 828, "test_map": 828, "snowbal": 828, "recalibr": 828, "workflow_dispatch": 828, "cron": 828, "saturdai": 828, "night": 828, "pm": 828, "gut": 828, "lesser": [828, 833], "lol": 828, "hour": [828, 861], "cater": [828, 843], "master2": 828, "master32": 828, "synchron": 828, "runner2": 828, "corrupt": 828, "decoupl": [828, 853], "150": 828, "cycl": [828, 844], "yellow": 828, "queu": 828, "redirect": 828, "book": 828, "onrend": 828, "jo": 828, "ran": 828, "clickabl": 828, "all_dtyp": 829, "all_numeric_dtyp": 829, "all_int_dtyp": 829, "all_float_dtyp": 829, "replic": [829, 839, 840, 841], "thirdli": 829, "native_float32": 829, "importantli": [829, 851, 854], "arguabl": [829, 830, 841], "jaxarrai": [829, 830, 833, 836, 840, 845, 849], "_handle_0_dim_output": 829, "subtli": [829, 840], "promote_types_frontend_nam": 829, "promote_types_of_frontend_name_input": 829, "frontend_nam": 829, "upcast": 829, "nearli": [829, 836, 838, 870], "downcast": 829, "footprint": 829, "concret": 829, "aris": [829, 835, 855, 860], "utterli": 829, "meant": [829, 831, 840], "twice": 829, "disadvantag": 829, "relax": 829, "f64": 829, "unwant": 829, "primaci": 829, "resembl": 829, "compound": 829, "infer_dtyp": [829, 830, 836, 838], "settabl": [829, 830], "handle_out_argu": [829, 830, 836, 837, 838, 840, 849], "infer_devic": [829, 830, 836, 838], "deleg": [829, 877], "shape_to_tupl": 829, "with_supported_dtyp": 829, "unment": 829, "_cast_for_unary_op": [829, 837, 840], "target_typ": 829, "syntax": [829, 859, 860, 870], "unsupported_dtyp": 829, "supported_dtypes_and_devic": 829, "with_unsupported_device_and_dtyp": 829, "globals_getter_func": 829, "f2": 829, "lack": [829, 840, 870, 877], "mandat": [829, 840, 844, 845, 860], "confus": [829, 833, 840, 847, 857, 861], "inconsist": [829, 833, 839], "is_nan": 829, "supported_dtyp": 829, "anytim": 829, "84530": 829, "unwarr": 829, "risk": [829, 876], "needlessli": 829, "bloat": 829, "undergo": [829, 855], "unsupported_devic": 829, "supported_devic": 829, "downsid": 829, "coverag": [829, 844], "undesir": 829, "accomplish": 829, "upcast_data_typ": 829, "downcast_data_typ": 829, "crosscast_data_typ": 829, "cast_data_typ": 829, "downcast_data_dtyp": 829, "vice": 829, "versa": 829, "till": 829, "crosscast": 829, "exmp1": 829, "watch": [829, 841], "handle_numpy_arrays_in_specific_backend": [829, 836], "cate": 829, "understood": 829, "consumpt": [829, 874], "dual": 830, "categor": [830, 837, 841], "210": 830, "_handle_except": [830, 833], "1013": 830, "_handle_nest": [830, 833], "905": 830, "_handle_out_argu": [830, 833], "441": 830, "_inputs_to_native_arrai": [830, 833], "new_arg": [830, 833], "new_kwarg": [830, 833], "_outputs_to_ivy_arrai": [830, 833], "358": 830, "_handle_array_funct": [830, 833], "_handle_device_shift": 830, "handle_device_shift": [830, 838], "device_shifting_dev": 830, "__enter__": 830, "__exit__": 830, "soft_devic": 830, "eight": [831, 848], "op_nam": 831, "__r": 831, "unsurprisingli": [831, 859], "recap": [831, 853], "combinatori": 831, "okai": [831, 847, 849], "spec": [831, 832], "my_func": [831, 845], "some_flag": 831, "another_flag": 831, "jointli": 831, "5574077": 831, "1850398": 831, "5463025": 831, "8422884": 831, "91601413": 831, "9647598": 831, "3738229": 831, "1597457": 831, "0963247": 831, "9955841": 831, "3278579": 831, "asid": 831, "14254655": 831, "1578213": 831, "380515": 831, "trivial": [831, 840], "failing_fn_nam": 831, "onlin": [831, 832], "minutest": 831, "fault": [831, 870], "contrast": [832, 836, 841, 876], "preview": 832, "incorrectli": [832, 863], "needless": [832, 842], "renam": [832, 841], "judgment": 832, "operator_nam": 832, "succinct": 832, "docst": 832, "native_error": 833, "_combine_messag": 833, "truli": [833, 851], "wrong": [833, 835, 838, 841, 847], "198": 833, "392": 833, "_handle_array_like_without_promot": 833, "805": 833, "432": 833, "349": 833, "other_test": 833, "523": 833, "_handle_numpy_out": 833, "396": [833, 853], "_outputs_to_numpy_arrai": 833, "_inputs_to_ivy_arrays_np": 833, "ivy_arg": 833, "ivy_kwarg": 833, "453": 833, "_from_zero_dim_arrays_to_scalar": 833, "truth_value_test": 833, "visibl": 833, "unwieldi": 833, "squash": 833, "hide": [833, 863], "cleaner": [833, 852], "caught": [833, 835], "rethrow": 833, "_print_traceback_histori": 833, "error_stack": 833, "axiserror": 833, "polici": [833, 838, 844, 846], "moreov": 833, "submoodul": 834, "test_jax_transpos": 834, "manipulaiton": 834, "test_jax": [834, 842], "test_numpi": [834, 842], "test_manipul": [834, 842, 844], "preconditionnotmet": 834, "densetensor": 834, "holder_": 834, "phi": 834, "dense_tensor_impl": 834, "array_and_ax": 834, "aaegbaegaqaaaaaaaaaaaaab": 834, "black": 835, "flake8": 835, "linter": 835, "autoflak": 835, "docformatt": 835, "pydocstyl": 835, "yaml": 835, "patch1687898304": 835, "8072": 835, "3516aed563": 835, "reformat": 835, "akshai": 835, "jain": 835, "gui": 835, "cryptic": 835, "garden": 835, "utc": 835, "didn": 835, "human": 835, "intervent": 835, "typo": 835, "ui": 835, "handle_array_like_without_promot": [836, 838], "to_native_arrays_and_back": [836, 838, 849], "handle_array_funct": [836, 838], "inputs_to_native_shap": [836, 838], "rational": [836, 840, 847], "__div__": [836, 847], "484": 836, "brittl": 836, "freeli": 836, "technic": [836, 840, 855, 870, 872], "original_typ": 836, "cumbersom": 836, "hinder": [836, 859], "venn": 837, "diagram": [837, 876], "light": [837, 845, 855, 857, 871, 876], "maximis": 837, "encompass": 837, "partial_mixed_handl": [837, 838, 847], "handle_partial_mixed_funct": [837, 838, 847], "fn_decor": 837, "mixed_backend_wrapp": [837, 840], "to_add": 837, "to_skip": 837, "inputs_to_ivy_arrai": [837, 838], "modif": [837, 870], "briefli": [837, 844, 852], "get_all_arrays_on_dev": 837, "outputs_to_ivy_shap": 838, "outputs_to_native_arrai": 838, "handle_view_index": [838, 840], "handle_view": [838, 840], "handle_rag": 838, "handle_backend_invalid": 838, "handle_nan": 838, "to_native_shapes_and_back": 838, "modern": [839, 859, 860, 875], "inter_func": 839, "custom_grad_fn": 839, "args1": 839, "speak": 840, "val_n": 840, "base_idx": 840, "_manipulation_stack": 840, "base_flat": 840, "_view_ref": 840, "_update_view": 840, "contigu": 840, "c_contigu": 840, "ascontiguousarrai": 840, "copyto": 840, "_is_vari": 840, "tensor_scatter_nd_upd": 840, "is_vari": 840, "_update_torch_view": 840, "predominantli": [840, 845], "support_native_out": [840, 849], "_scalar_output_to_0d_arrai": 840, "_wrap_fn": 840, "dim0": 840, "dim1": 840, "res_floor": 840, "extent": [840, 841], "to_out_fn": 840, "add_wrapp": 840, "paradigm": [840, 855, 870], "expans": 840, "weak": 840, "_torch_bas": 840, "_torch_view_ref": 840, "_torch_manipul": 840, "weakli": 840, "adequ": 840, "tf_frontend": 841, "lax": [841, 842, 847, 854, 855], "torch_frontend": [841, 842], "numpy_frontend": 841, "jax_frontend": 841, "to_ivy_arrays_and_back": [841, 842], "fidel": 841, "algebra": [841, 868, 869, 870, 873, 877], "dynamic": 841, "mimic": 841, "arithmetic_oper": 841, "handle_numpy_out": 841, "handle_numpy_dtyp": 841, "handle_numpy_cast": 841, "from_zero_dim_arrays_to_scalar": 841, "_add": 841, "same_kind": 841, "subok": [841, 842, 847], "promote_types_of_numpy_input": 841, "underscor": 841, "unhandl": 841, "trigonometric_funct": 841, "_tan": 841, "check_tensorflow_cast": 841, "raw_op": [841, 842], "map_raw_ops_alia": 841, "output_typ": 841, "kwargs_to_upd": 841, "pointwise_op": 841, "sensibl": 841, "ahead": [841, 845, 870], "reduce_logsumexp": 841, "logsumexp": 841, "trick": 841, "max_input_tensor": 841, "preferred_element_typ": 841, "languag": [841, 849, 857, 859, 861, 868, 871, 873, 874, 875, 876], "finer": 841, "logicaland": 841, "np_frontend": 841, "_ivy_arrai": 841, "radd": 841, "_init_data": 841, "_process_str_data": 841, "_dtype": [841, 842, 851], "_shape": [841, 851], "govern": 841, "promote_types_of_": 841, "_input": 841, "promote_types_of_torch_input": [841, 842], "handle_numpy_casting_speci": 841, "new_fn": 841, "equiv": 841, "unsaf": 841, "array_type_test": 841, "_isfinit": 841, "organis": 841, "youtub": 841, "knowledg": 842, "np_frontend_help": 842, "open_task": 842, "test_lax": 842, "test_oper": 842, "test_jax_tan": 842, "test_mathematical_funct": 842, "test_trigonometric_funct": 842, "dtypes_values_cast": 842, "dtypes_values_casting_dtyp": 842, "arr_func": 842, "get_num_positional_args_ufunc": 842, "test_numpy_tan": 842, "handle_where_and_array_bool": 842, "test_tensorflow": 842, "test_math": 842, "test_tensorflow_tan": 842, "test_pointwise_op": 842, "test_torch_tan": 842, "_fill_valu": 842, "test_glob": 842, "test_jax_ful": 842, "test_from_shape_or_valu": 842, "_input_fill_and_dtyp": 842, "dtype_and_input": 842, "dtype_to_cast": 842, "input_fill_dtyp": 842, "test_numpy_ful": 842, "test_raw_op": 842, "test_tensorflow_fil": 842, "test_creation_op": 842, "with_arrai": 842, "test_torch_ful": 842, "add_nois": 842, "all_clos": 842, "_get_dtype_and_matrix": 842, "test_torch_qr": 842, "frontend_q": 842, "frontend_r": 842, "walkthrough": 842, "comparison_op": 842, "test_comparison_op": 842, "test_torch_great": 842, "all_alias": 842, "test_ndarrai": 842, "test_numpy_instance_add__": 842, "test_tensorflow_instance_add": 842, "1e04": 842, "allow_infin": 842, "test_torch_instance_add": 842, "_arrays_idx_n_dtyp": 842, "surprisingli": 842, "closest_relevant_group": 842, "strive": [842, 844, 847, 855, 872], "craft": [843, 844], "tailor": 843, "clariti": [843, 844, 847, 870], "weav": 843, "thrill": 843, "brim": 843, "stand": [843, 844], "landscap": 843, "forese": 843, "refin": 843, "inquiri": 843, "fixtur": 844, "hit": [844, 849, 863], "eleg": [844, 870], "unexplor": 844, "artifact": 844, "bespok": 844, "_array_or_typ": 844, "rigor": [844, 859], "test_default_int_dtyp": 844, "print_hypothesis_exampl": 844, "custom_strategi": 844, "randomis": 844, "simplist": 844, "intricaci": 844, "glanc": 844, "one_of": 844, "datum": 844, "pipe": 844, "array_or_scal": 844, "len_of_arrai": 844, "test_add": 844, "test_gpu_is_avail": 844, "pretest": 844, "snippet": [844, 864], "frontend_test": 844, "frontend_method": 844, "criterion": 844, "valid_ax": 844, "hoc": 844, "11228": 844, "268": 844, "wherev": 844, "9622": 844, "28136": 844, "6375": 844, "12720": 844, "21354": 844, "900e": 844, "57384": 844, "25687": 844, "248": 844, "test_devic": 844, "array_shap": 844, "test_lay": 844, "some_sequ": 844, "arrays_valu": 844, "36418": 844, "213": 844, "21716926": 844, "none_or_list_of_float": 844, "get_prob": 844, "103515625e": 844, "099609375": 844, "probabilist": 844, "number_positional_argu": 844, "unreproduc": 844, "x_and_linear": 844, "is_torch_backend": 844, "x_shape": [844, 849], "weight_shap": 844, "bias_shap": 844, "ivy_np": 844, "valid_float_dtyp": 844, "test_demo": 844, "failing_test": 844, "traceback": 844, "shrink": 844, "prescrib": 844, "scratch": 844, "test_gelu": 844, "test_fil": 844, "notabl": [844, 870], "max_exampl": 844, "deadlin": 844, "weird": 844, "systemat": 844, "safeguard": 844, "inabl": 844, "test_result_typ": 844, "9090909090909091": 844, "judgement": 845, "some_namespac": 845, "some_backend": 845, "another_backend": 845, "refactor": 845, "ongo": 845, "check_fill_value_and_dtype_are_compat": 845, "_to_devic": 845, "shouldn": [845, 863], "pin": 845, "unpinn": 845, "culmin": 845, "unsett": 846, "array_significant_figur": 846, "array_decimal_valu": 846, "warning_level": 846, "nan_polici": 846, "stablest": 846, "constantli": [847, 859], "answer": [847, 851, 855], "contradict": 847, "entail": 847, "sacrif": 847, "jacfwd": 847, "jacrev": 847, "banner": 847, "expens": 847, "incredibli": [847, 852, 855, 873], "price": 847, "pai": 847, "intrus": 847, "x_beta": 847, "equip": 847, "simplif": 847, "allevi": 847, "ineffici": [847, 855, 870], "fuse": 847, "hybrid": 847, "workaround": 847, "slip": 847, "radar": 847, "stumbl": 847, "gone": [848, 860], "fulfil": 848, "syntact": [849, 854], "power_seq": 849, "_determine_backend_from_arg": 849, "importlib": 849, "_backend_dict": 849, "x_flat": 849, "wi": 849, "wi_x": 849, "wii_x": 849, "wif_x": 849, "wig_x": 849, "wio_x": 849, "wh": 849, "ht": 849, "ct": 849, "hts_list": 849, "wii_xt": 849, "wif_xt": 849, "wig_xt": 849, "wio_xt": 849, "htm1": 849, "ctm1": 849, "wh_htm1": 849, "whi_htm1": 849, "whf_htm1": 849, "whg_htm1": 849, "who_htm1": 849, "ft": 849, "ot": 849, "reliabl": 849, "sacrific": 849, "hear": 849, "virtu": [849, 867], "pure_ivi": 849, "pure_torch": 849, "unclean": 849, "wx": 849, "temp": 849, "ivy_func": 849, "emphas": 849, "example_input": 849, "static_argnum": [849, 863], "static_argnam": [849, 863], "primit": [850, 855, 868, 870], "hierarch": [850, 852, 853, 870], "arraywithactiv": 851, "arraywithcr": 851, "arraywithdatatyp": 851, "arraywithdevic": 851, "arraywithgener": 851, "arraywithgradi": 851, "arraywithimag": 851, "arraywithlay": 851, "arraywithlinearalgebra": 851, "arraywithloss": 851, "arraywithmanipul": 851, "arraywithnorm": 851, "arraywithrandom": 851, "arraywithsearch": 851, "arraywithset": 851, "arraywithsort": 851, "arraywithstatist": 851, "arraywithutil": 851, "_init": 851, "_size": 851, "_devic": 851, "_dev_str": 851, "_pre_repr": 851, "_post_repr": 851, "framework_str": 851, "pypep8nam": 851, "immut": 851, "claim": 851, "_native_wrapp": 851, "genuin": 851, "some_method": 851, "rewritten": 851, "littl": [851, 859, 872], "compartment": 851, "newshap": 851, "new_shap": 851, "tidi": 851, "crystal": 851, "ton": 852, "ado": [852, 853], "soup": 852, "walk": [852, 853], "cnt": 852, "3333335": 852, "autocomplet": 852, "midwai": 852, "agent": 852, "total_spe": 852, "total_height": 852, "total_width": 852, "ag": 852, "tot": 852, "total_": 852, "total_h": 852, "cnt0": 852, "cnt1": 852, "diff_0": 852, "diff_1": 852, "config0": 852, "config1": 852, "l0": 852, "decoder__l0": 852, "decoder__l1": 852, "encoder__l0": 852, "encoder__l1": 852, "l0__b": 852, "l0__w": 852, "l1__b": 852, "l1__w": 852, "printabl": 852, "foresight": 852, "untidili": 852, "update_ag": 852, "normalize_img": 852, "img_max": 852, "reduce_max": 852, "img_min": 852, "reduce_min": 852, "img_rang": 852, "agent_posit": 852, "agent_veloc": 852, "agent_cam_front_rgb": 852, "agent_cam_front_depth": 852, "agent_cam_rear_rgb": 852, "agent_cam_rear_depth": 852, "agent_cam_lidar": 852, "camera": 852, "front_rgb": 852, "front_depth": 852, "rear_rgb": 852, "rear_depth": 852, "lidar": 852, "rgb": 852, "rear": 852, "veloc": 852, "cam": 852, "cam_max": 852, "cam_min": 852, "cam_rang": 852, "allud": [852, 860], "perman": 852, "_cnt": 852, "img_": 852, "_dataset_s": 852, "_batch_siz": 852, "_count": [852, 853], "__next__": 852, "img_fnam": 852, "loaded_img": 852, "batch_slic": 852, "0145": 852, "addbackward0": 852, "_create_vari": 853, "_input_channel": 853, "_output_channel": 853, "_w_shape": 853, "_b_shape": 853, "_with_bia": 853, "764": 853, "872": 853, "211": 853, "439": 853, "nightmar": 853, "overcom": 853, "key0": 853, "linear3": 853, "preced": [853, 860], "_w_init": 853, "_b_init": 853, "misnom": 853, "saw": 853, "_beta1": 853, "_beta2": 853, "_epsilon": 853, "_mw": 853, "_vw": 853, "_first_pass": 853, "_should_trac": 853, "new_v": 853, "_lr": 853, "_inplac": 853, "_stop_gradi": 853, "sparse_funct": 854, "_linear": 854, "jax_graph": 854, "to_backend": 854, "thinli": 854, "to_haiku_modul": 854, "loss_fn_t": 854, "without_apply_rng": 854, "update_rul": 854, "tree_multimap": 854, "trax": [854, 861], "objax": [854, 861], "matur": [855, 860, 870], "doubt": 855, "grate": [855, 878], "probe": 855, "lock": 855, "dex": 855, "tricki": [855, 857], "tight": 855, "dispatch": [855, 870, 873], "ast": 855, "autodiff": 855, "shine": 855, "merci": 855, "compet": [855, 870], "parallelis": 855, "spmd": 855, "mixtur": 855, "expert": 855, "sophist": 855, "depart": 855, "hundr": 855, "broadli": [855, 876], "supplementari": 855, "reusabl": [855, 868, 870], "fanci": [855, 870], "fusion": [855, 874], "lose": 855, "pmap": 855, "eventu": 855, "supplement": 855, "backdoor": 855, "callback": 855, "somewhat": [855, 870], "outsourc": 855, "ivy_root": 856, "pem": 856, "api_kei": 856, "asap": 856, "nail": 857, "scientist": 857, "correl": 857, "collabor": [858, 859, 860], "consortium": [858, 860], "grown": 859, "rapidli": 859, "shareabl": 859, "outdat": 859, "newest": 859, "prototyp": [859, 870], "obsolet": [859, 861], "invent": 859, "simultan": [859, 861], "runner": 859, "principl": [859, 868, 870, 873], "2006": 859, "cloth": 859, "forgiven": 860, "eyebrow": 860, "somehow": 860, "funni": 860, "comic": 860, "charger": 860, "instant": 860, "contrari": 860, "bumpi": 860, "road": 860, "technologi": [860, 868, 872], "motherboard": 860, "raid": 860, "bluetooth": 860, "wireless": 860, "btx": 860, "sata": 860, "tcp": 860, "ip": 860, "smtp": 860, "send": [860, 875], "gmail": 860, "outlook": 860, "growth": [860, 873], "necess": 860, "2015": [860, 870], "aros": 860, "ourselv": [860, 876], "quansight": [860, 876], "compani": [860, 866], "apach": [860, 872, 876], "onnx": [860, 868, 876], "cupi": [860, 870, 877], "modin": 860, "spyder": 860, "octoml": [860, 876], "sponsor": 860, "lg": 860, "electron": 860, "shaw": 860, "pursuit": 860, "complianc": 860, "convinc": 860, "celebr": 860, "streamlin": [861, 873], "awesom": 861, "love": 861, "slew": 861, "inevit": [861, 871], "erron": 861, "poor": 861, "spin": 861, "sake": 861, "wouldn": 861, "frantic": 861, "lucid": 861, "honk": 861, "hasn": 861, "spend": [861, 870], "sonnet": 861, "trainer": [861, 877], "quo": 861, "dopamin": 861, "ignit": 861, "catalyst": 861, "lightn": 861, "fastai": 861, "publicli": [863, 864, 865], "logger": 863, "arg_stateful_idx": 863, "kwarg_stateful_idx": 863, "include_gener": 863, "array_cach": 863, "return_backend_traced_fn": 863, "lazygraph": [863, 864, 865], "sum_j": 863, "traced_fn": 863, "impos": 863, "comp_func": 863, "bake": 863, "cont": 863, "new_attribut": 863, "wip": 863, "resnet50": 863, "breed": 863, "resnetforimageclassif": [863, 864], "traced_graph": 863, "predicted_label": 863, "debug_mod": 864, "rough": 864, "transformed_with_st": 864, "bigger": 864, "hf": 864, "tf_model": 864, "transpile_kwarg": 865, "transpiled_func": 865, "unified_func": 865, "rwork": 866, "vendor": [866, 872], "complimentari": [866, 876], "acycl": [866, 871], "fillna": 867, "pct_chang": 867, "_____________": 867, "__________________________________________________________________": 867, "scaffold": [868, 876], "heart": 868, "toolchain": [868, 873], "assembli": [868, 875, 876], "idl": 868, "middl": 868, "emit": 868, "gnu": [868, 873], "broader": 868, "heterogen": 868, "aid": 868, "coprocessor": 868, "programm": [868, 875], "gate": 868, "onednn": 868, "sit": [868, 871, 876], "tandem": 868, "possess": 868, "khrono": [869, 875], "appl": 869, "coremltool": 869, "albeit": 869, "promin": 870, "abbrevi": 870, "laboratori": 870, "proprietari": [870, 874, 875], "mathwork": 870, "commerci": 870, "1984": 870, "toolbox": 870, "mupad": 870, "simulink": 870, "graphic": [870, 874, 875], "simul": 870, "million": [870, 873], "worldwid": 870, "scienc": [870, 872], "econom": 870, "2001": 870, "od": 870, "solver": 870, "cython": 870, "friendli": 870, "2002": 870, "lua": 870, "luajit": 870, "idiap": 870, "epfl": 870, "2005": 870, "numarrai": 870, "cpython": 870, "partli": 870, "2007": 870, "forest": 870, "boost": 870, "dbscan": 870, "inbuilt": 870, "esqu": 870, "aesara": 870, "2012": 870, "polymorph": 870, "mpi": 870, "openmp": 870, "glue": 870, "jaot": 870, "nasa": 870, "cern": 870, "climat": 870, "allianc": 870, "influenti": 870, "2014": 870, "scala": 870, "ship": 870, "forgiv": 870, "decemb": 870, "announc": 870, "mainten": 870, "meaning": 870, "2016": 870, "imper": 870, "amazon": 870, "traction": 870, "cognit": [870, 877], "grade": 870, "dnn": 870, "backpropag": 870, "succumb": 870, "came": 870, "monitor": 870, "hobbyist": 870, "tremend": 870, "gear": 870, "batteri": 870, "zygot": 870, "jl": 870, "workload": 870, "daggerflux": 870, "frontier": 870, "hessian": 870, "2018": 870, "lightweight": [870, 877], "shortcom": 870, "barrier": 870, "inexperienc": 870, "underdevelop": 870, "fanat": 870, "ounc": 870, "infanc": 870, "nich": 870, "mobil": 870, "lite": 870, "enterpris": 870, "reinvent": [870, 872], "inertia": 870, "creator": [870, 872], "paszk": 870, "hi": 870, "bulk": 870, "haskel": 870, "dataflow": 871, "trace_modul": 871, "scriptfunct": 871, "scriptmodul": 871, "fake": 871, "proxi": 871, "graphmodul": 871, "travi": 872, "oliph": 872, "leader": 872, "cornerston": 872, "numba": 872, "numfocu": 872, "pydata": 872, "confer": 872, "consult": 872, "devop": 872, "mlop": 872, "dashboard": 872, "startup": 872, "mlir": [872, 873, 876], "Their": 872, "held": 872, "presum": 872, "llvm": [872, 875], "founder": 872, "tvm": [872, 876], "sustain": 872, "empow": 872, "har": 872, "burden": 872, "precompil": 873, "executor": 873, "julia": [873, 876], "fsf": 873, "gpl": 873, "biggest": [873, 876], "throughput": 874, "autotun": 874, "gpgpu": 874, "classic": 875, "sycl": 875, "dpc": 875, "maco": 875, "oneapi": 875, "ia": 875, "aka": 875, "xeon": 875, "gen9": 875, "xe": 875, "arria": 875, "gx": 875, "fpga": 875, "lofti": 876, "ambit": 876, "realm": 876, "bedrock": 876, "flux": 876, "bite": 876, "chew": 876, "eagerpi": 876, "tensorli": 876, "thinc": 876, "neuropod": 876, "fx": 876, "retrain": 876, "closer": 876, "greatli": 876, "modular": 876, "anywher": 876, "theano": 877, "plaidml": 877, "partial_svd": 877, "subsystem": 877, "bhushan": 878, "srivastava": 878, "he11owther": 878, "og": 878, "edward": 878, "amimo": 878, "moblei": 878, "trent": 878, "ogban": 878, "ugot": 878, "fayad": 878, "alman": 878, "sarvesh": 878, "kesharwani": 878, "krishna": 878, "boppana": 878, "saptarshi": 878, "bandopadhyai": 878, "tugai": 878, "g\u00fcl": 878, "sondertg": 878, "vismai": 878, "suramwar": 878, "leacornelio": 878, "samund": 878, "singh": 878, "samthakur587": 878, "suraj": 878, "zheng": 878, "jai": 878, "choi": 878, "zjay07": 878, "ebenez": 878, "gadri": 878, "akrong": 878, "aibenstunn": 878, "nitesh": 878, "niteshk84": 878, "abdullah": 878, "sabri": 878, "abdullahsabri": 878, "muhammad": 878, "ishaqu": 878, "muhammadnizamani": 878, "moham": 878, "ibrahim": 878, "medo072": 878, "sheroz": 878, "khan": 878, "ksheroz": 878, "suyash": 878, "gupta": 878, "sgalpha01": 878, "alvin": 878, "vinod": 878, "david": 878, "adlai": 878, "nettei": 878, "mwape": 878, "bunda": 878, "teckno": 878, "ramya": 878, "manasa": 878, "amancherla": 878, "ramyamanasa": 878, "rohit": 878, "kumar": 878, "salla": 878, "rohitsalla": 878, "sanjai": 878, "suthar": 878, "sanjay8602": 878, "muzakkir": 878, "hussain": 878, "muzakkirhussain011": 878, "chaitanya": 878, "lakhchaura": 878, "zenithflux": 878, "kacper": 878, "ko\u017cdo\u0144": 878, "kozdon": 878, "zera": 878, "marveen": 878, "lyngkhoi": 878, "fleventi": 878, "jackson": 878, "mcclintock": 878, "jacksondm33": 878, "ayush": 878, "lokar": 878, "ayush111111": 878, "garima": 878, "saroj": 878, "androgari": 878, "lee": 878, "bissessar": 878, "leebissessar5": 878, "mostafa": 878, "gamal": 878, "mr": 878, "array22": 878, "rahul": 878, "prem": 878, "rp097": 878, "vaishnavi": 878, "mudaliar": 878, "vaishnavimudaliar": 878, "waqar": 878, "ahm": 878, "waqaarahm": 878, "aryan": 878, "pandei": 878, "aryan8912": 878, "dhruv": 878, "sharma": 878, "druvdub": 878, "mehmet": 878, "bilgehan": 878, "bezcioglu": 878, "bilgehanmehmet": 878, "omkar": 878, "khade": 878, "omickeye": 878, "puriti": 878, "nyagweth": 878, "stefan": 878, "sanchez": 878, "stefansan26": 878}, "objects": {"ivy.Array": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [544, 0, 1, "", "default"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [404, 0, 1, "", "fft2"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [566, 0, 1, "", "is_ivy_container"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [590, 0, 1, "", "shape"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy": [[634, 1, 1, "", "ArrayMode"], [630, 1, 1, "", "DefaultComplexDtype"], [631, 1, 1, "", "DefaultDevice"], [630, 1, 1, "", "DefaultDtype"], [630, 1, 1, "", "DefaultFloatDtype"], [630, 1, 1, "", "DefaultIntDtype"], [630, 1, 1, "", "DefaultUintDtype"], [386, 1, 1, "", "NativeSparseArray"], [629, 1, 1, "", "NestedSequence"], [634, 1, 1, "", "PreciseMode"], [631, 1, 1, "", "Profiler"], [386, 1, 1, "", "SparseArray"], [220, 2, 1, "", "abs"], [221, 2, 1, "", "acos"], [222, 2, 1, "", "acosh"], [635, 2, 1, "", "adam_step"], [635, 2, 1, "", "adam_update"], [389, 2, 1, "", "adaptive_avg_pool1d"], [390, 2, 1, "", "adaptive_avg_pool2d"], [391, 2, 1, "", "adaptive_max_pool2d"], [392, 2, 1, "", "adaptive_max_pool3d"], [223, 2, 1, "", "add"], [376, 2, 1, "", "adjoint"], [648, 2, 1, "", "all"], [634, 2, 1, "", "all_equal"], [641, 2, 1, "", "all_nested_indices"], [372, 2, 1, "", "allclose"], [372, 2, 1, "", "amax"], [372, 2, 1, "", "amin"], [224, 2, 1, "", "angle"], [648, 2, 1, "", "any"], [629, 2, 1, "", "arange"], [393, 2, 1, "", "area_interpolate"], [634, 2, 1, "", "arg_info"], [634, 2, 1, "", "arg_names"], [644, 2, 1, "", "argmax"], [644, 2, 1, "", "argmin"], [646, 2, 1, "", "argsort"], [644, 2, 1, "", "argwhere"], [629, 2, 1, "", "array"], [634, 2, 1, "", "array_equal"], [193, 2, 1, "", "as_ivy_dev"], [630, 2, 1, "", "as_ivy_dtype"], [194, 2, 1, "", "as_native_dev"], [630, 2, 1, "", "as_native_dtype"], [378, 2, 1, "", "as_strided"], [629, 2, 1, "", "asarray"], [225, 2, 1, "", "asin"], [226, 2, 1, "", "asinh"], [634, 2, 1, "", "assert_supports_inplace"], [378, 2, 1, "", "associative_scan"], [630, 2, 1, "", "astype"], [227, 2, 1, "", "atan"], [228, 2, 1, "", "atan2"], [229, 2, 1, "", "atanh"], [378, 2, 1, "", "atleast_1d"], [378, 2, 1, "", "atleast_2d"], [378, 2, 1, "", "atleast_3d"], [394, 2, 1, "", "avg_pool1d"], [395, 2, 1, "", "avg_pool2d"], [396, 2, 1, "", "avg_pool3d"], [381, 2, 1, "", "batch_norm"], [376, 2, 1, "", "batched_outer"], [382, 2, 1, "", "bernoulli"], [382, 2, 1, "", "beta"], [372, 2, 1, "", "binarizer"], [638, 2, 1, "", "binary_cross_entropy"], [387, 2, 1, "", "bincount"], [374, 2, 1, "", "bind_custom_gradient_function"], [230, 2, 1, "", "bitwise_and"], [231, 2, 1, "", "bitwise_invert"], [232, 2, 1, "", "bitwise_left_shift"], [233, 2, 1, "", "bitwise_or"], [234, 2, 1, "", "bitwise_right_shift"], [235, 2, 1, "", "bitwise_xor"], [312, 2, 1, "", "blackman_window"], [630, 2, 1, "", "broadcast_arrays"], [378, 2, 1, "", "broadcast_shapes"], [630, 2, 1, "", "broadcast_to"], [634, 2, 1, "", "cache_fn"], [630, 2, 1, "", "can_cast"], [236, 2, 1, "", "ceil"], [295, 2, 1, "", "celu"], [630, 2, 1, "", "check_float"], [378, 2, 1, "", "check_scalar"], [637, 2, 1, "", "cholesky"], [378, 2, 1, "", "choose"], [195, 2, 1, "", "clear_cached_mem_on_dev"], [639, 2, 1, "", "clip"], [634, 2, 1, "", "clip_matrix_norm"], [634, 2, 1, "", "clip_vector_norm"], [630, 2, 1, "", "closest_valid_dtype"], [628, 2, 1, "", "cmp_is"], [628, 2, 1, "", "cmp_isnot"], [378, 2, 1, "", "column_stack"], [639, 2, 1, "", "concat"], [378, 2, 1, "", "concat_from_sequence"], [376, 2, 1, "", "cond"], [372, 2, 1, "", "conj"], [639, 2, 1, "", "constant_pad"], [634, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [636, 2, 1, "", "conv1d_transpose"], [636, 2, 1, "", "conv2d"], [636, 2, 1, "", "conv2d_transpose"], [636, 2, 1, "", "conv3d"], [636, 2, 1, "", "conv3d_transpose"], [636, 2, 1, "", "conv_general_dilated"], [636, 2, 1, "", "conv_general_transpose"], [629, 2, 1, "", "copy_array"], [641, 2, 1, "", "copy_nest"], [372, 2, 1, "", "copysign"], [387, 2, 1, "", "corrcoef"], [237, 2, 1, "", "cos"], [238, 2, 1, "", "cosh"], [372, 2, 1, "", "count_nonzero"], [387, 2, 1, "", "cov"], [637, 2, 1, "", "cross"], [638, 2, 1, "", "cross_entropy"], [387, 2, 1, "", "cummax"], [387, 2, 1, "", "cummin"], [647, 2, 1, "", "cumprod"], [647, 2, 1, "", "cumsum"], [634, 2, 1, "", "current_backend_str"], [397, 2, 1, "", "dct"], [634, 2, 1, "", "default"], [630, 2, 1, "", "default_complex_dtype"], [196, 2, 1, "", "default_device"], [630, 2, 1, "", "default_dtype"], [630, 2, 1, "", "default_float_dtype"], [630, 2, 1, "", "default_int_dtype"], [630, 2, 1, "", "default_uint_dtype"], [239, 2, 1, "", "deg2rad"], [636, 2, 1, "", "depthwise_conv2d"], [637, 2, 1, "", "det"], [197, 2, 1, "", "dev"], [198, 2, 1, "", "dev_util"], [398, 2, 1, "", "dft"], [637, 2, 1, "", "diag"], [376, 2, 1, "", "diagflat"], [637, 2, 1, "", "diagonal"], [372, 2, 1, "", "diff"], [372, 2, 1, "", "digamma"], [382, 2, 1, "", "dirichlet"], [240, 2, 1, "", "divide"], [376, 2, 1, "", "dot"], [636, 2, 1, "", "dropout"], [399, 2, 1, "", "dropout1d"], [400, 2, 1, "", "dropout2d"], [401, 2, 1, "", "dropout3d"], [378, 2, 1, "", "dsplit"], [378, 2, 1, "", "dstack"], [630, 2, 1, "", "dtype"], [630, 2, 1, "", "dtype_bits"], [641, 2, 1, "", "duplicate_array_index_chains"], [627, 6, 1, "", "e"], [376, 2, 1, "", "eig"], [637, 2, 1, "", "eigh"], [376, 2, 1, "", "eigh_tridiagonal"], [376, 2, 1, "", "eigvals"], [637, 2, 1, "", "eigvalsh"], [634, 2, 1, "", "einops_rearrange"], [634, 2, 1, "", "einops_reduce"], [634, 2, 1, "", "einops_repeat"], [647, 2, 1, "", "einsum"], [296, 2, 1, "", "elu"], [402, 2, 1, "", "embedding"], [629, 2, 1, "", "empty"], [629, 2, 1, "", "empty_like"], [241, 2, 1, "", "equal"], [242, 2, 1, "", "erf"], [372, 2, 1, "", "erfc"], [372, 2, 1, "", "erfinv"], [635, 2, 1, "", "execute_with_gradients"], [634, 2, 1, "", "exists"], [243, 2, 1, "", "exp"], [244, 2, 1, "", "exp2"], [378, 2, 1, "", "expand"], [639, 2, 1, "", "expand_dims"], [245, 2, 1, "", "expm1"], [629, 2, 1, "", "eye"], [313, 2, 1, "", "eye_like"], [403, 2, 1, "", "fft"], [404, 2, 1, "", "fft2"], [378, 2, 1, "", "fill_diagonal"], [630, 2, 1, "", "finfo"], [372, 2, 1, "", "fix"], [378, 2, 1, "", "flatten"], [639, 2, 1, "", "flip"], [378, 2, 1, "", "fliplr"], [378, 2, 1, "", "flipud"], [372, 2, 1, "", "float_power"], [246, 2, 1, "", "floor"], [247, 2, 1, "", "floor_divide"], [372, 2, 1, "", "fmax"], [248, 2, 1, "", "fmin"], [249, 2, 1, "", "fmod"], [378, 2, 1, "", "fold"], [640, 2, 1, "", "fomaml_step"], [628, 2, 1, "", "for_loop"], [634, 2, 1, "", "fourier_encode"], [372, 2, 1, "", "frexp"], [629, 2, 1, "", "from_dlpack"], [629, 2, 1, "", "frombuffer"], [629, 2, 1, "", "full"], [629, 2, 1, "", "full_like"], [199, 2, 1, "", "function_supported_devices"], [634, 2, 1, "", "function_supported_devices_and_dtypes"], [630, 2, 1, "", "function_supported_dtypes"], [200, 2, 1, "", "function_unsupported_devices"], [634, 2, 1, "", "function_unsupported_devices_and_dtypes"], [630, 2, 1, "", "function_unsupported_dtypes"], [382, 2, 1, "", "gamma"], [634, 2, 1, "", "gather"], [634, 2, 1, "", "gather_nd"], [250, 2, 1, "", "gcd"], [626, 2, 1, "", "gelu"], [376, 2, 1, "", "general_inner_product"], [405, 2, 1, "", "generate_einsum_equation"], [634, 2, 1, "", "get_all_arrays_in_memory"], [201, 2, 1, "", "get_all_ivy_arrays_on_dev"], [406, 2, 1, "", "get_interpolate_kernel"], [634, 2, 1, "", "get_item"], [634, 2, 1, "", "get_num_dims"], [634, 2, 1, "", "get_referrers_recursive"], [202, 2, 1, "", "gpu_is_available"], [635, 2, 1, "", "grad"], [372, 2, 1, "", "gradient"], [635, 2, 1, "", "gradient_descent_update"], [251, 2, 1, "", "greater"], [252, 2, 1, "", "greater_equal"], [381, 2, 1, "", "group_norm"], [314, 2, 1, "", "hamming_window"], [203, 2, 1, "", "handle_soft_device_variable"], [315, 2, 1, "", "hann_window"], [297, 2, 1, "", "hardshrink"], [298, 2, 1, "", "hardsilu"], [626, 2, 1, "", "hardswish"], [299, 2, 1, "", "hardtanh"], [634, 2, 1, "", "has_nans"], [378, 2, 1, "", "heaviside"], [376, 2, 1, "", "higher_order_moment"], [377, 2, 1, "", "hinge_embedding_loss"], [387, 2, 1, "", "histogram"], [378, 2, 1, "", "hsplit"], [378, 2, 1, "", "hstack"], [377, 2, 1, "", "huber_loss"], [372, 2, 1, "", "hypot"], [378, 2, 1, "", "i0"], [407, 2, 1, "", "idct"], [628, 2, 1, "", "if_else"], [408, 2, 1, "", "ifft"], [409, 2, 1, "", "ifftn"], [387, 2, 1, "", "igamma"], [630, 2, 1, "", "iinfo"], [253, 2, 1, "", "imag"], [641, 2, 1, "", "index_nest"], [316, 2, 1, "", "indices"], [627, 6, 1, "", "inf"], [630, 2, 1, "", "infer_default_dtype"], [376, 2, 1, "", "initialize_tucker"], [637, 2, 1, "", "inner"], [634, 2, 1, "", "inplace_arrays_supported"], [634, 2, 1, "", "inplace_decrement"], [634, 2, 1, "", "inplace_increment"], [634, 2, 1, "", "inplace_update"], [634, 2, 1, "", "inplace_variables_supported"], [641, 2, 1, "", "insert_into_nest_at_index"], [641, 2, 1, "", "insert_into_nest_at_indices"], [381, 2, 1, "", "instance_norm"], [410, 2, 1, "", "interp"], [411, 2, 1, "", "interpolate"], [637, 2, 1, "", "inv"], [630, 2, 1, "", "invalid_dtype"], [385, 2, 1, "", "invert_permutation"], [634, 2, 1, "", "is_array"], [630, 2, 1, "", "is_bool_dtype"], [630, 2, 1, "", "is_complex_dtype"], [630, 2, 1, "", "is_float_dtype"], [630, 2, 1, "", "is_hashable_dtype"], [630, 2, 1, "", "is_int_dtype"], [634, 2, 1, "", "is_ivy_array"], [634, 2, 1, "", "is_ivy_container"], [634, 2, 1, "", "is_ivy_nested_array"], [386, 2, 1, "", "is_ivy_sparse_array"], [634, 2, 1, "", "is_native_array"], [630, 2, 1, "", "is_native_dtype"], [386, 2, 1, "", "is_native_sparse_array"], [630, 2, 1, "", "is_uint_dtype"], [372, 2, 1, "", "isclose"], [254, 2, 1, "", "isfinite"], [634, 2, 1, "", "isin"], [255, 2, 1, "", "isinf"], [256, 2, 1, "", "isnan"], [257, 2, 1, "", "isreal"], [634, 2, 1, "", "isscalar"], [634, 2, 1, "", "itemsize"], [635, 2, 1, "", "jac"], [374, 2, 1, "", "jvp"], [317, 2, 1, "", "kaiser_bessel_derived_window"], [318, 2, 1, "", "kaiser_window"], [376, 2, 1, "", "khatri_rao"], [377, 2, 1, "", "kl_div"], [376, 2, 1, "", "kron"], [376, 2, 1, "", "kronecker"], [377, 2, 1, "", "l1_loss"], [381, 2, 1, "", "l1_normalize"], [381, 2, 1, "", "l2_normalize"], [635, 2, 1, "", "lamb_update"], [635, 2, 1, "", "lars_update"], [642, 2, 1, "", "layer_norm"], [258, 2, 1, "", "lcm"], [372, 2, 1, "", "ldexp"], [626, 2, 1, "", "leaky_relu"], [372, 2, 1, "", "lerp"], [259, 2, 1, "", "less"], [260, 2, 1, "", "less_equal"], [385, 2, 1, "", "lexsort"], [372, 2, 1, "", "lgamma"], [636, 2, 1, "", "linear"], [629, 2, 1, "", "linspace"], [648, 2, 1, "", "load"], [381, 2, 1, "", "local_response_norm"], [261, 2, 1, "", "log"], [262, 2, 1, "", "log10"], [263, 2, 1, "", "log1p"], [264, 2, 1, "", "log2"], [377, 2, 1, "", "log_poisson_loss"], [626, 2, 1, "", "log_softmax"], [265, 2, 1, "", "logaddexp"], [266, 2, 1, "", "logaddexp2"], [267, 2, 1, "", "logical_and"], [268, 2, 1, "", "logical_not"], [269, 2, 1, "", "logical_or"], [270, 2, 1, "", "logical_xor"], [300, 2, 1, "", "logit"], [301, 2, 1, "", "logsigmoid"], [629, 2, 1, "", "logspace"], [381, 2, 1, "", "lp_normalize"], [636, 2, 1, "", "lstm"], [636, 2, 1, "", "lstm_update"], [376, 2, 1, "", "lu_factor"], [376, 2, 1, "", "lu_solve"], [376, 2, 1, "", "make_svd_non_negative"], [640, 2, 1, "", "maml_step"], [641, 2, 1, "", "map"], [641, 2, 1, "", "map_nest_at_index"], [641, 2, 1, "", "map_nest_at_indices"], [634, 2, 1, "", "match_kwargs"], [637, 2, 1, "", "matmul"], [378, 2, 1, "", "matricize"], [376, 2, 1, "", "matrix_exp"], [637, 2, 1, "", "matrix_norm"], [637, 2, 1, "", "matrix_power"], [637, 2, 1, "", "matrix_rank"], [637, 2, 1, "", "matrix_transpose"], [647, 2, 1, "", "max"], [412, 2, 1, "", "max_pool1d"], [413, 2, 1, "", "max_pool2d"], [375, 2, 1, "", "max_pool3d"], [375, 2, 1, "", "max_unpool1d"], [271, 2, 1, "", "maximum"], [647, 2, 1, "", "mean"], [387, 2, 1, "", "median"], [319, 2, 1, "", "mel_weight_matrix"], [629, 2, 1, "", "meshgrid"], [647, 2, 1, "", "min"], [272, 2, 1, "", "minimum"], [626, 2, 1, "", "mish"], [376, 2, 1, "", "mode_dot"], [372, 2, 1, "", "modf"], [378, 2, 1, "", "moveaxis"], [646, 2, 1, "", "msort"], [376, 2, 1, "", "multi_dot"], [636, 2, 1, "", "multi_head_attention"], [641, 2, 1, "", "multi_index_nest"], [376, 2, 1, "", "multi_mode_dot"], [643, 2, 1, "", "multinomial"], [273, 2, 1, "", "multiply"], [634, 2, 1, "", "multiprocessing"], [627, 6, 1, "", "nan"], [274, 2, 1, "", "nan_to_num"], [387, 2, 1, "", "nanmean"], [387, 2, 1, "", "nanmedian"], [387, 2, 1, "", "nanmin"], [387, 2, 1, "", "nanprod"], [372, 2, 1, "", "nansum"], [629, 2, 1, "", "native_array"], [386, 2, 1, "", "native_sparse_array"], [386, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [320, 2, 1, "", "ndenumerate"], [321, 2, 1, "", "ndindex"], [375, 2, 1, "", "nearest_interpolate"], [275, 2, 1, "", "negative"], [641, 2, 1, "", "nested_any"], [641, 2, 1, "", "nested_argwhere"], [641, 2, 1, "", "nested_map"], [641, 2, 1, "", "nested_multi_map"], [627, 6, 1, "", "newaxis"], [372, 2, 1, "", "nextafter"], [636, 2, 1, "", "nms"], [644, 2, 1, "", "nonzero"], [276, 2, 1, "", "not_equal"], [634, 2, 1, "", "num_arrays_in_memory"], [204, 2, 1, "", "num_cpu_cores"], [205, 2, 1, "", "num_gpus"], [206, 2, 1, "", "num_ivy_arrays_on_dev"], [629, 2, 1, "", "one_hot"], [629, 2, 1, "", "ones"], [629, 2, 1, "", "ones_like"], [635, 2, 1, "", "optimizer_update"], [388, 2, 1, "", "optional_get_element"], [637, 2, 1, "", "outer"], [378, 2, 1, "", "pad"], [378, 2, 1, "", "partial_fold"], [378, 2, 1, "", "partial_tensor_to_vec"], [376, 2, 1, "", "partial_tucker"], [378, 2, 1, "", "partial_unfold"], [378, 2, 1, "", "partial_vec_to_tensor"], [207, 2, 1, "", "percent_used_mem_on_dev"], [639, 2, 1, "", "permute_dims"], [627, 6, 1, "", "pi"], [637, 2, 1, "", "pinv"], [382, 2, 1, "", "poisson"], [377, 2, 1, "", "poisson_nll_loss"], [369, 2, 1, "", "polyval"], [375, 2, 1, "", "pool"], [277, 2, 1, "", "positive"], [278, 2, 1, "", "pow"], [302, 2, 1, "", "prelu"], [634, 2, 1, "", "print_all_arrays_in_memory"], [208, 2, 1, "", "print_all_ivy_arrays_on_dev"], [647, 2, 1, "", "prod"], [630, 2, 1, "", "promote_types"], [630, 2, 1, "", "promote_types_of_inputs"], [641, 2, 1, "", "prune_empty"], [641, 2, 1, "", "prune_nest_at_index"], [641, 2, 1, "", "prune_nest_at_indices"], [378, 2, 1, "", "put_along_axis"], [637, 2, 1, "", "qr"], [387, 2, 1, "", "quantile"], [279, 2, 1, "", "rad2deg"], [643, 2, 1, "", "randint"], [369, 2, 1, "", "random_cp"], [643, 2, 1, "", "random_normal"], [369, 2, 1, "", "random_parafac2"], [369, 2, 1, "", "random_tr"], [369, 2, 1, "", "random_tt"], [369, 2, 1, "", "random_tucker"], [643, 2, 1, "", "random_uniform"], [280, 2, 1, "", "real"], [281, 2, 1, "", "reciprocal"], [373, 2, 1, "", "reduce"], [375, 2, 1, "", "reduce_window"], [626, 2, 1, "", "relu"], [303, 2, 1, "", "relu6"], [282, 2, 1, "", "remainder"], [639, 2, 1, "", "repeat"], [640, 2, 1, "", "reptile_step"], [639, 2, 1, "", "reshape"], [630, 2, 1, "", "result_type"], [375, 2, 1, "", "rfft"], [375, 2, 1, "", "rfftn"], [375, 2, 1, "", "rnn"], [636, 2, 1, "", "roi_align"], [639, 2, 1, "", "roll"], [378, 2, 1, "", "rot90"], [283, 2, 1, "", "round"], [648, 2, 1, "", "save"], [636, 2, 1, "", "scaled_dot_product_attention"], [304, 2, 1, "", "scaled_tanh"], [634, 2, 1, "", "scatter_flat"], [634, 2, 1, "", "scatter_nd"], [646, 2, 1, "", "searchsorted"], [643, 2, 1, "", "seed"], [305, 2, 1, "", "selu"], [634, 2, 1, "", "set_array_mode"], [630, 2, 1, "", "set_default_complex_dtype"], [209, 2, 1, "", "set_default_device"], [630, 2, 1, "", "set_default_dtype"], [630, 2, 1, "", "set_default_float_dtype"], [184, 2, 1, "", "set_default_int_dtype"], [185, 2, 1, "", "set_default_uint_dtype"], [634, 2, 1, "", "set_exception_trace_mode"], [634, 2, 1, "", "set_inplace_mode"], [634, 2, 1, "", "set_item"], [634, 2, 1, "", "set_min_base"], [634, 2, 1, "", "set_min_denominator"], [641, 2, 1, "", "set_nest_at_index"], [641, 2, 1, "", "set_nest_at_indices"], [634, 2, 1, "", "set_nestable_mode"], [634, 2, 1, "", "set_precise_mode"], [634, 2, 1, "", "set_queue_timeout"], [634, 2, 1, "", "set_shape_array_mode"], [634, 2, 1, "", "set_show_func_wrapper_trace_mode"], [210, 2, 1, "", "set_soft_device_mode"], [211, 2, 1, "", "set_split_factor"], [634, 2, 1, "", "set_tmp_dir"], [634, 2, 1, "", "shape"], [643, 2, 1, "", "shuffle"], [626, 2, 1, "", "sigmoid"], [284, 2, 1, "", "sign"], [372, 2, 1, "", "signbit"], [306, 2, 1, "", "silu"], [285, 2, 1, "", "sin"], [372, 2, 1, "", "sinc"], [286, 2, 1, "", "sinh"], [634, 2, 1, "", "size"], [375, 2, 1, "", "sliding_window"], [637, 2, 1, "", "slogdet"], [377, 2, 1, "", "smooth_l1_loss"], [377, 2, 1, "", "soft_margin_loss"], [378, 2, 1, "", "soft_thresholding"], [626, 2, 1, "", "softmax"], [626, 2, 1, "", "softplus"], [307, 2, 1, "", "softshrink"], [626, 2, 1, "", "softsign"], [637, 2, 1, "", "solve"], [376, 2, 1, "", "solve_triangular"], [646, 2, 1, "", "sort"], [638, 2, 1, "", "sparse_cross_entropy"], [372, 2, 1, "", "sparsify_tensor"], [639, 2, 1, "", "split"], [212, 2, 1, "", "split_factor"], [213, 2, 1, "", "split_func_call"], [287, 2, 1, "", "sqrt"], [288, 2, 1, "", "square"], [639, 2, 1, "", "squeeze"], [634, 2, 1, "", "stable_divide"], [634, 2, 1, "", "stable_pow"], [639, 2, 1, "", "stack"], [308, 2, 1, "", "stanh"], [647, 2, 1, "", "std"], [375, 2, 1, "", "stft"], [635, 2, 1, "", "stop_gradient"], [634, 2, 1, "", "strides"], [289, 2, 1, "", "subtract"], [647, 2, 1, "", "sum"], [634, 2, 1, "", "supports_inplace_updates"], [637, 2, 1, "", "svd"], [376, 2, 1, "", "svd_flip"], [637, 2, 1, "", "svdvals"], [639, 2, 1, "", "swapaxes"], [378, 2, 1, "", "take"], [378, 2, 1, "", "take_along_axis"], [290, 2, 1, "", "tan"], [291, 2, 1, "", "tanh"], [309, 2, 1, "", "tanhshrink"], [376, 2, 1, "", "tensor_train"], [637, 2, 1, "", "tensordot"], [637, 2, 1, "", "tensorsolve"], [310, 2, 1, "", "threshold"], [311, 2, 1, "", "thresholded_relu"], [639, 2, 1, "", "tile"], [214, 2, 1, "", "to_device"], [629, 2, 1, "", "to_dlpack"], [634, 2, 1, "", "to_ivy_shape"], [634, 2, 1, "", "to_list"], [634, 2, 1, "", "to_native_shape"], [634, 2, 1, "", "to_numpy"], [634, 2, 1, "", "to_scalar"], [378, 2, 1, "", "top_k"], [215, 2, 1, "", "total_mem_on_dev"], [216, 2, 1, "", "tpu_is_available"], [637, 2, 1, "", "trace"], [863, 2, 1, "", "trace_graph"], [864, 2, 1, "", "transpile"], [292, 2, 1, "", "trapz"], [629, 2, 1, "", "tril"], [369, 2, 1, "", "tril_indices"], [369, 2, 1, "", "trilu"], [378, 2, 1, "", "trim_zeros"], [629, 2, 1, "", "triu"], [629, 2, 1, "", "triu_indices"], [293, 2, 1, "", "trunc"], [294, 2, 1, "", "trunc_divide"], [376, 2, 1, "", "truncated_svd"], [634, 2, 1, "", "try_else_none"], [628, 2, 1, "", "try_except"], [376, 2, 1, "", "tt_matrix_to_tensor"], [376, 2, 1, "", "tucker"], [186, 2, 1, "", "type_promote_arrays"], [378, 2, 1, "", "unflatten"], [378, 2, 1, "", "unfold"], [865, 2, 1, "", "unify"], [645, 2, 1, "", "unique_all"], [378, 2, 1, "", "unique_consecutive"], [645, 2, 1, "", "unique_counts"], [645, 2, 1, "", "unique_inverse"], [645, 2, 1, "", "unique_values"], [383, 2, 1, "", "unravel_index"], [634, 2, 1, "", "unset_array_mode"], [187, 2, 1, "", "unset_default_complex_dtype"], [217, 2, 1, "", "unset_default_device"], [188, 2, 1, "", "unset_default_dtype"], [189, 2, 1, "", "unset_default_float_dtype"], [190, 2, 1, "", "unset_default_int_dtype"], [191, 2, 1, "", "unset_default_uint_dtype"], [634, 2, 1, "", "unset_exception_trace_mode"], [634, 2, 1, "", "unset_inplace_mode"], [634, 2, 1, "", "unset_min_base"], [634, 2, 1, "", "unset_min_denominator"], [634, 2, 1, "", "unset_nestable_mode"], [634, 2, 1, "", "unset_precise_mode"], [634, 2, 1, "", "unset_queue_timeout"], [634, 2, 1, "", "unset_shape_array_mode"], [634, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [218, 2, 1, "", "unset_soft_device_mode"], [634, 2, 1, "", "unset_tmp_dir"], [369, 2, 1, "", "unsorted_segment_mean"], [369, 2, 1, "", "unsorted_segment_min"], [369, 2, 1, "", "unsorted_segment_sum"], [639, 2, 1, "", "unstack"], [219, 2, 1, "", "used_mem_on_dev"], [192, 2, 1, "", "valid_dtype"], [635, 2, 1, "", "value_and_grad"], [634, 2, 1, "", "value_is_nan"], [637, 2, 1, "", "vander"], [647, 2, 1, "", "var"], [637, 2, 1, "", "vecdot"], [637, 2, 1, "", "vector_norm"], [637, 2, 1, "", "vector_to_skew_symmetric_matrix"], [374, 2, 1, "", "vjp"], [634, 2, 1, "", "vmap"], [369, 2, 1, "", "vorbis_window"], [378, 2, 1, "", "vsplit"], [378, 2, 1, "", "vstack"], [644, 2, 1, "", "where"], [628, 2, 1, "", "while_loop"], [372, 2, 1, "", "xlogy"], [639, 2, 1, "", "zero_pad"], [629, 2, 1, "", "zeros"], [629, 2, 1, "", "zeros_like"], [372, 2, 1, "", "zeta"]], "ivy.Container": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [465, 0, 1, "", "broadcast_shapes"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [134, 0, 1, "", "frombuffer"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [314, 0, 1, "", "hamming_window"], [315, 0, 1, "", "hann_window"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [514, 0, 1, "", "invert_permutation"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [172, 0, 1, "", "is_complex_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [317, 0, 1, "", "kaiser_bessel_derived_window"], [318, 0, 1, "", "kaiser_window"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [322, 0, 1, "", "polyval"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [328, 0, 1, "", "tril_indices"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [147, 0, 1, "", "triu_indices"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [333, 0, 1, "", "vorbis_window"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[51, 3, 0, "-", "activations"], [102, 3, 0, "-", "array"], [52, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [54, 3, 0, "-", "data_type"], [55, 3, 0, "-", "device"], [56, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "experimental"], [58, 3, 0, "-", "general"], [59, 3, 0, "-", "gradients"], [60, 3, 0, "-", "image"], [61, 3, 0, "-", "layers"], [62, 3, 0, "-", "linear_algebra"], [63, 3, 0, "-", "losses"], [64, 3, 0, "-", "manipulation"], [65, 3, 0, "-", "norms"], [66, 3, 0, "-", "random"], [67, 3, 0, "-", "searching"], [68, 3, 0, "-", "set"], [69, 3, 0, "-", "sorting"], [70, 3, 0, "-", "statistical"], [71, 3, 0, "-", "utility"], [72, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[51, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "gelu"], [51, 0, 1, "", "hardswish"], [51, 0, 1, "", "leaky_relu"], [51, 0, 1, "", "log_softmax"], [51, 0, 1, "", "mish"], [51, 0, 1, "", "relu"], [51, 0, 1, "", "sigmoid"], [51, 0, 1, "", "softmax"], [51, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[102, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[102, 5, 1, "", "T"], [102, 0, 1, "", "__abs__"], [102, 0, 1, "", "__add__"], [102, 0, 1, "", "__eq__"], [102, 0, 1, "", "__ge__"], [102, 0, 1, "", "__gt__"], [102, 0, 1, "", "__init__"], [102, 0, 1, "", "__le__"], [102, 0, 1, "", "__lt__"], [102, 0, 1, "", "__ne__"], [102, 0, 1, "", "__pow__"], [102, 0, 1, "", "__radd__"], [102, 0, 1, "", "__rrshift__"], [102, 0, 1, "", "__rshift__"], [102, 0, 1, "", "__rsub__"], [102, 0, 1, "", "__sub__"], [102, 0, 1, "", "__truediv__"], [102, 0, 1, "", "__xor__"], [102, 5, 1, "", "backend"], [102, 5, 1, "", "base"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "dynamic_backend"], [102, 5, 1, "", "imag"], [102, 5, 1, "", "itemsize"], [102, 5, 1, "", "mT"], [102, 5, 1, "", "ndim"], [102, 5, 1, "", "real"], [102, 5, 1, "", "shape"], [102, 5, 1, "", "size"], [102, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[52, 2, 1, "", "_array_to_new_backend"], [52, 2, 1, "", "_to_ivy"], [52, 2, 1, "", "_to_native"], [52, 2, 1, "", "_to_new_backend"], [52, 2, 1, "", "args_to_ivy"], [52, 2, 1, "", "args_to_native"], [52, 2, 1, "", "args_to_new_backend"], [52, 2, 1, "", "to_ivy"], [52, 2, 1, "", "to_native"], [52, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[53, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "asarray"], [53, 0, 1, "", "copy_array"], [53, 0, 1, "", "empty_like"], [53, 0, 1, "", "from_dlpack"], [53, 0, 1, "", "full_like"], [53, 0, 1, "", "linspace"], [53, 0, 1, "", "logspace"], [53, 0, 1, "", "meshgrid"], [53, 0, 1, "", "native_array"], [53, 0, 1, "", "one_hot"], [53, 0, 1, "", "ones_like"], [53, 0, 1, "", "tril"], [53, 0, 1, "", "triu"], [53, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[54, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "astype"], [54, 0, 1, "", "broadcast_arrays"], [54, 0, 1, "", "broadcast_to"], [54, 0, 1, "", "can_cast"], [54, 0, 1, "", "dtype"], [54, 0, 1, "", "finfo"], [54, 0, 1, "", "iinfo"], [54, 0, 1, "", "is_bool_dtype"], [54, 0, 1, "", "is_float_dtype"], [54, 0, 1, "", "is_int_dtype"], [54, 0, 1, "", "is_uint_dtype"], [54, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[55, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "dev"], [55, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[56, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "abs"], [56, 0, 1, "", "acos"], [56, 0, 1, "", "acosh"], [56, 0, 1, "", "add"], [56, 0, 1, "", "angle"], [56, 0, 1, "", "asin"], [56, 0, 1, "", "asinh"], [56, 0, 1, "", "atan"], [56, 0, 1, "", "atan2"], [56, 0, 1, "", "atanh"], [56, 0, 1, "", "bitwise_and"], [56, 0, 1, "", "bitwise_invert"], [56, 0, 1, "", "bitwise_left_shift"], [56, 0, 1, "", "bitwise_or"], [56, 0, 1, "", "bitwise_right_shift"], [56, 0, 1, "", "bitwise_xor"], [56, 0, 1, "", "ceil"], [56, 0, 1, "", "cos"], [56, 0, 1, "", "cosh"], [56, 0, 1, "", "deg2rad"], [56, 0, 1, "", "divide"], [56, 0, 1, "", "equal"], [56, 0, 1, "", "erf"], [56, 0, 1, "", "exp"], [56, 0, 1, "", "exp2"], [56, 0, 1, "", "expm1"], [56, 0, 1, "", "floor"], [56, 0, 1, "", "floor_divide"], [56, 0, 1, "", "fmin"], [56, 0, 1, "", "gcd"], [56, 0, 1, "", "greater"], [56, 0, 1, "", "greater_equal"], [56, 0, 1, "", "isfinite"], [56, 0, 1, "", "isinf"], [56, 0, 1, "", "isnan"], [56, 0, 1, "", "isreal"], [56, 0, 1, "", "lcm"], [56, 0, 1, "", "less"], [56, 0, 1, "", "less_equal"], [56, 0, 1, "", "log"], [56, 0, 1, "", "log10"], [56, 0, 1, "", "log1p"], [56, 0, 1, "", "log2"], [56, 0, 1, "", "logaddexp"], [56, 0, 1, "", "logaddexp2"], [56, 0, 1, "", "logical_and"], [56, 0, 1, "", "logical_not"], [56, 0, 1, "", "logical_or"], [56, 0, 1, "", "logical_xor"], [56, 0, 1, "", "maximum"], [56, 0, 1, "", "minimum"], [56, 0, 1, "", "multiply"], [56, 0, 1, "", "nan_to_num"], [56, 0, 1, "", "negative"], [56, 0, 1, "", "not_equal"], [56, 0, 1, "", "positive"], [56, 0, 1, "", "pow"], [56, 0, 1, "", "rad2deg"], [56, 0, 1, "", "real"], [56, 0, 1, "", "reciprocal"], [56, 0, 1, "", "remainder"], [56, 0, 1, "", "round"], [56, 0, 1, "", "sign"], [56, 0, 1, "", "sin"], [56, 0, 1, "", "sinh"], [56, 0, 1, "", "sqrt"], [56, 0, 1, "", "square"], [56, 0, 1, "", "subtract"], [56, 0, 1, "", "tan"], [56, 0, 1, "", "tanh"], [56, 0, 1, "", "trapz"], [56, 0, 1, "", "trunc"], [56, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[57, 3, 0, "-", "activations"], [57, 3, 0, "-", "conversions"], [57, 3, 0, "-", "creation"], [57, 3, 0, "-", "data_type"], [57, 3, 0, "-", "device"], [57, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "general"], [57, 3, 0, "-", "gradients"], [57, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [57, 3, 0, "-", "losses"], [57, 3, 0, "-", "manipulation"], [57, 3, 0, "-", "norms"], [57, 3, 0, "-", "random"], [57, 3, 0, "-", "searching"], [57, 3, 0, "-", "set"], [57, 3, 0, "-", "sorting"], [57, 3, 0, "-", "statistical"], [57, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[57, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "celu"], [57, 0, 1, "", "elu"], [57, 0, 1, "", "hardshrink"], [57, 0, 1, "", "hardsilu"], [57, 0, 1, "", "hardtanh"], [57, 0, 1, "", "logit"], [57, 0, 1, "", "logsigmoid"], [57, 0, 1, "", "prelu"], [57, 0, 1, "", "relu6"], [57, 0, 1, "", "scaled_tanh"], [57, 0, 1, "", "selu"], [57, 0, 1, "", "silu"], [57, 0, 1, "", "softshrink"], [57, 0, 1, "", "tanhshrink"], [57, 0, 1, "", "threshold"], [57, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[57, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[57, 1, 1, "", "_ArrayWithCreationExperimental"], [57, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "blackman_window"], [57, 0, 1, "", "eye_like"], [57, 0, 1, "", "mel_weight_matrix"], [57, 0, 1, "", "trilu"], [57, 0, 1, "", "unsorted_segment_mean"], [57, 0, 1, "", "unsorted_segment_min"], [57, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[57, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[57, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[57, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "allclose"], [57, 0, 1, "", "amax"], [57, 0, 1, "", "amin"], [57, 0, 1, "", "binarizer"], [57, 0, 1, "", "conj"], [57, 0, 1, "", "copysign"], [57, 0, 1, "", "count_nonzero"], [57, 0, 1, "", "diff"], [57, 0, 1, "", "digamma"], [57, 0, 1, "", "erfc"], [57, 0, 1, "", "erfinv"], [57, 0, 1, "", "fix"], [57, 0, 1, "", "float_power"], [57, 0, 1, "", "fmax"], [57, 0, 1, "", "fmod"], [57, 0, 1, "", "frexp"], [57, 0, 1, "", "gradient"], [57, 0, 1, "", "hypot"], [57, 0, 1, "", "isclose"], [57, 0, 1, "", "ldexp"], [57, 0, 1, "", "lerp"], [57, 0, 1, "", "lgamma"], [57, 0, 1, "", "modf"], [57, 0, 1, "", "nansum"], [57, 0, 1, "", "nextafter"], [57, 0, 1, "", "signbit"], [57, 0, 1, "", "sinc"], [57, 0, 1, "", "sparsify_tensor"], [57, 0, 1, "", "xlogy"], [57, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[57, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[57, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[57, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[57, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adaptive_avg_pool1d"], [57, 0, 1, "", "adaptive_avg_pool2d"], [57, 0, 1, "", "adaptive_max_pool2d"], [57, 0, 1, "", "adaptive_max_pool3d"], [57, 0, 1, "", "avg_pool1d"], [57, 0, 1, "", "avg_pool2d"], [57, 0, 1, "", "avg_pool3d"], [57, 0, 1, "", "dct"], [57, 0, 1, "", "dft"], [57, 0, 1, "", "embedding"], [57, 0, 1, "", "fft"], [57, 0, 1, "", "fft2"], [57, 0, 1, "", "idct"], [57, 0, 1, "", "ifft"], [57, 0, 1, "", "ifftn"], [57, 0, 1, "", "interpolate"], [57, 0, 1, "", "max_pool1d"], [57, 0, 1, "", "max_pool2d"], [57, 0, 1, "", "max_pool3d"], [57, 0, 1, "", "max_unpool1d"], [57, 0, 1, "", "reduce_window"], [57, 0, 1, "", "rfft"], [57, 0, 1, "", "rfftn"], [57, 0, 1, "", "sliding_window"], [57, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adjoint"], [57, 0, 1, "", "batched_outer"], [57, 0, 1, "", "cond"], [57, 0, 1, "", "diagflat"], [57, 0, 1, "", "dot"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh_tridiagonal"], [57, 0, 1, "", "eigvals"], [57, 0, 1, "", "general_inner_product"], [57, 0, 1, "", "higher_order_moment"], [57, 0, 1, "", "initialize_tucker"], [57, 0, 1, "", "kron"], [57, 0, 1, "", "make_svd_non_negative"], [57, 0, 1, "", "matrix_exp"], [57, 0, 1, "", "mode_dot"], [57, 0, 1, "", "multi_dot"], [57, 0, 1, "", "multi_mode_dot"], [57, 0, 1, "", "partial_tucker"], [57, 0, 1, "", "svd_flip"], [57, 0, 1, "", "tensor_train"], [57, 0, 1, "", "truncated_svd"], [57, 0, 1, "", "tt_matrix_to_tensor"], [57, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[57, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "hinge_embedding_loss"], [57, 0, 1, "", "huber_loss"], [57, 0, 1, "", "kl_div"], [57, 0, 1, "", "l1_loss"], [57, 0, 1, "", "log_poisson_loss"], [57, 0, 1, "", "poisson_nll_loss"], [57, 0, 1, "", "smooth_l1_loss"], [57, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[57, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "as_strided"], [57, 0, 1, "", "associative_scan"], [57, 0, 1, "", "atleast_1d"], [57, 0, 1, "", "atleast_2d"], [57, 0, 1, "", "atleast_3d"], [57, 0, 1, "", "column_stack"], [57, 0, 1, "", "concat_from_sequence"], [57, 0, 1, "", "dsplit"], [57, 0, 1, "", "dstack"], [57, 0, 1, "", "expand"], [57, 0, 1, "", "fill_diagonal"], [57, 0, 1, "", "flatten"], [57, 0, 1, "", "fliplr"], [57, 0, 1, "", "flipud"], [57, 0, 1, "", "fold"], [57, 0, 1, "", "heaviside"], [57, 0, 1, "", "hsplit"], [57, 0, 1, "", "hstack"], [57, 0, 1, "", "i0"], [57, 0, 1, "", "matricize"], [57, 0, 1, "", "moveaxis"], [57, 0, 1, "", "pad"], [57, 0, 1, "", "partial_fold"], [57, 0, 1, "", "partial_tensor_to_vec"], [57, 0, 1, "", "partial_unfold"], [57, 0, 1, "", "partial_vec_to_tensor"], [57, 0, 1, "", "put_along_axis"], [57, 0, 1, "", "rot90"], [57, 0, 1, "", "soft_thresholding"], [57, 0, 1, "", "take"], [57, 0, 1, "", "take_along_axis"], [57, 0, 1, "", "top_k"], [57, 0, 1, "", "trim_zeros"], [57, 0, 1, "", "unflatten"], [57, 0, 1, "", "unfold"], [57, 0, 1, "", "unique_consecutive"], [57, 0, 1, "", "vsplit"], [57, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[57, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "batch_norm"], [57, 0, 1, "", "group_norm"], [57, 0, 1, "", "instance_norm"], [57, 0, 1, "", "l1_normalize"], [57, 0, 1, "", "l2_normalize"], [57, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[57, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bernoulli"], [57, 0, 1, "", "beta"], [57, 0, 1, "", "dirichlet"], [57, 0, 1, "", "gamma"], [57, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[57, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[57, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[57, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[57, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bincount"], [57, 0, 1, "", "corrcoef"], [57, 0, 1, "", "cov"], [57, 0, 1, "", "cummax"], [57, 0, 1, "", "cummin"], [57, 0, 1, "", "histogram"], [57, 0, 1, "", "igamma"], [57, 0, 1, "", "median"], [57, 0, 1, "", "nanmean"], [57, 0, 1, "", "nanmedian"], [57, 0, 1, "", "nanmin"], [57, 0, 1, "", "nanprod"], [57, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[57, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[58, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "all_equal"], [58, 0, 1, "", "array_equal"], [58, 0, 1, "", "assert_supports_inplace"], [58, 0, 1, "", "clip_matrix_norm"], [58, 0, 1, "", "clip_vector_norm"], [58, 0, 1, "", "default"], [58, 0, 1, "", "einops_rearrange"], [58, 0, 1, "", "einops_reduce"], [58, 0, 1, "", "einops_repeat"], [58, 0, 1, "", "exists"], [58, 0, 1, "", "fourier_encode"], [58, 0, 1, "", "gather"], [58, 0, 1, "", "gather_nd"], [58, 0, 1, "", "get_num_dims"], [58, 0, 1, "", "has_nans"], [58, 0, 1, "", "inplace_decrement"], [58, 0, 1, "", "inplace_increment"], [58, 0, 1, "", "inplace_update"], [58, 0, 1, "", "is_array"], [58, 0, 1, "", "is_ivy_array"], [58, 0, 1, "", "is_ivy_container"], [58, 0, 1, "", "is_native_array"], [58, 0, 1, "", "isin"], [58, 0, 1, "", "scatter_flat"], [58, 0, 1, "", "scatter_nd"], [58, 0, 1, "", "stable_divide"], [58, 0, 1, "", "stable_pow"], [58, 0, 1, "", "supports_inplace_updates"], [58, 0, 1, "", "to_file"], [58, 0, 1, "", "to_list"], [58, 0, 1, "", "to_numpy"], [58, 0, 1, "", "to_scalar"], [58, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[59, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "adam_step"], [59, 0, 1, "", "adam_update"], [59, 0, 1, "", "gradient_descent_update"], [59, 0, 1, "", "lamb_update"], [59, 0, 1, "", "lars_update"], [59, 0, 1, "", "optimizer_update"], [59, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[60, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[60, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[61, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "conv1d"], [61, 0, 1, "", "conv1d_transpose"], [61, 0, 1, "", "conv2d"], [61, 0, 1, "", "conv2d_transpose"], [61, 0, 1, "", "conv3d"], [61, 0, 1, "", "conv3d_transpose"], [61, 0, 1, "", "depthwise_conv2d"], [61, 0, 1, "", "dropout"], [61, 0, 1, "", "dropout1d"], [61, 0, 1, "", "dropout2d"], [61, 0, 1, "", "dropout3d"], [61, 0, 1, "", "linear"], [61, 0, 1, "", "lstm_update"], [61, 0, 1, "", "multi_head_attention"], [61, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[62, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "cholesky"], [62, 0, 1, "", "cross"], [62, 0, 1, "", "det"], [62, 0, 1, "", "diag"], [62, 0, 1, "", "diagonal"], [62, 0, 1, "", "eig"], [62, 0, 1, "", "eigh"], [62, 0, 1, "", "eigvalsh"], [62, 0, 1, "", "inner"], [62, 0, 1, "", "inv"], [62, 0, 1, "", "matmul"], [62, 0, 1, "", "matrix_norm"], [62, 0, 1, "", "matrix_power"], [62, 0, 1, "", "matrix_rank"], [62, 0, 1, "", "matrix_transpose"], [62, 0, 1, "", "outer"], [62, 0, 1, "", "pinv"], [62, 0, 1, "", "qr"], [62, 0, 1, "", "slogdet"], [62, 0, 1, "", "solve"], [62, 0, 1, "", "svd"], [62, 0, 1, "", "svdvals"], [62, 0, 1, "", "tensordot"], [62, 0, 1, "", "tensorsolve"], [62, 0, 1, "", "trace"], [62, 0, 1, "", "vander"], [62, 0, 1, "", "vecdot"], [62, 0, 1, "", "vector_norm"], [62, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[63, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "binary_cross_entropy"], [63, 0, 1, "", "cross_entropy"], [63, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[64, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "clip"], [64, 0, 1, "", "concat"], [64, 0, 1, "", "constant_pad"], [64, 0, 1, "", "expand_dims"], [64, 0, 1, "", "flip"], [64, 0, 1, "", "permute_dims"], [64, 0, 1, "", "repeat"], [64, 0, 1, "", "reshape"], [64, 0, 1, "", "roll"], [64, 0, 1, "", "split"], [64, 0, 1, "", "squeeze"], [64, 0, 1, "", "stack"], [64, 0, 1, "", "swapaxes"], [64, 0, 1, "", "tile"], [64, 0, 1, "", "unstack"], [64, 0, 1, "", "view"], [64, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[65, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[66, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "multinomial"], [66, 0, 1, "", "randint"], [66, 0, 1, "", "random_normal"], [66, 0, 1, "", "random_uniform"], [66, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[67, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "argmax"], [67, 0, 1, "", "argmin"], [67, 0, 1, "", "argwhere"], [67, 0, 1, "", "nonzero"], [67, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[68, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "unique_all"], [68, 0, 1, "", "unique_counts"], [68, 0, 1, "", "unique_inverse"], [68, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[69, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "argsort"], [69, 0, 1, "", "msort"], [69, 0, 1, "", "searchsorted"], [69, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[70, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "cumprod"], [70, 0, 1, "", "cumsum"], [70, 0, 1, "", "einsum"], [70, 0, 1, "", "max"], [70, 0, 1, "", "mean"], [70, 0, 1, "", "min"], [70, 0, 1, "", "prod"], [70, 0, 1, "", "std"], [70, 0, 1, "", "sum"], [70, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[71, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "all"], [71, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[72, 2, 1, "", "_wrap_function"], [72, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[73, 3, 0, "-", "activations"], [74, 3, 0, "-", "base"], [103, 3, 0, "-", "container"], [75, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [77, 3, 0, "-", "data_type"], [78, 3, 0, "-", "device"], [79, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "experimental"], [81, 3, 0, "-", "general"], [82, 3, 0, "-", "gradients"], [83, 3, 0, "-", "image"], [84, 3, 0, "-", "layers"], [85, 3, 0, "-", "linear_algebra"], [86, 3, 0, "-", "losses"], [87, 3, 0, "-", "manipulation"], [88, 3, 0, "-", "norms"], [89, 3, 0, "-", "random"], [90, 3, 0, "-", "searching"], [91, 3, 0, "-", "set"], [92, 3, 0, "-", "sorting"], [93, 3, 0, "-", "statistical"], [94, 3, 0, "-", "utility"], [95, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[73, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_gelu"], [73, 0, 1, "", "_static_hardswish"], [73, 0, 1, "", "_static_leaky_relu"], [73, 0, 1, "", "_static_log_softmax"], [73, 0, 1, "", "_static_mish"], [73, 0, 1, "", "_static_relu"], [73, 0, 1, "", "_static_sigmoid"], [73, 0, 1, "", "_static_softmax"], [73, 0, 1, "", "_static_softplus"], [73, 0, 1, "", "gelu"], [73, 0, 1, "", "hardswish"], [73, 0, 1, "", "leaky_relu"], [73, 0, 1, "", "log_softmax"], [73, 0, 1, "", "mish"], [73, 0, 1, "", "relu"], [73, 0, 1, "", "sigmoid"], [73, 0, 1, "", "softmax"], [73, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[74, 1, 1, "", "ContainerBase"], [74, 2, 1, "", "_is_jsonable"], [74, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[74, 0, 1, "", "__getitem__"], [74, 0, 1, "", "__init__"], [74, 0, 1, "", "__setitem__"], [74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [74, 0, 1, "", "_cont_concat_unify"], [74, 0, 1, "", "_cont_get_dev"], [74, 0, 1, "", "_cont_get_dtype"], [74, 0, 1, "", "_cont_get_shape"], [74, 0, 1, "", "_cont_get_shapes"], [74, 5, 1, "", "_cont_ivy"], [74, 0, 1, "", "_cont_mean_unify"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_slice_keys"], [74, 0, 1, "", "_cont_sum_unify"], [74, 0, 1, "", "_get_queue_item"], [74, 0, 1, "", "cont_all_false"], [74, 0, 1, "", "cont_all_key_chains"], [74, 0, 1, "", "cont_all_true"], [74, 0, 1, "", "cont_as_bools"], [74, 0, 1, "", "cont_assert_contains_sub_container"], [74, 0, 1, "", "cont_assert_contains_sub_structure"], [74, 0, 1, "", "cont_assert_identical"], [74, 0, 1, "", "cont_assert_identical_structure"], [74, 0, 1, "", "cont_at_key_chain"], [74, 0, 1, "", "cont_at_key_chains"], [74, 0, 1, "", "cont_at_keys"], [74, 0, 1, "", "cont_combine"], [74, 0, 1, "", "cont_common_key_chains"], [74, 5, 1, "", "cont_config"], [74, 0, 1, "", "cont_contains_sub_container"], [74, 0, 1, "", "cont_contains_sub_structure"], [74, 0, 1, "", "cont_copy"], [74, 0, 1, "", "cont_create_if_absent"], [74, 0, 1, "", "cont_cutoff_at_depth"], [74, 0, 1, "", "cont_cutoff_at_height"], [74, 0, 1, "", "cont_deep_copy"], [74, 5, 1, "", "cont_dev"], [74, 5, 1, "", "cont_dev_str"], [74, 0, 1, "", "cont_diff"], [74, 5, 1, "", "cont_dtype"], [74, 0, 1, "", "cont_duplicate_array_keychains"], [74, 0, 1, "", "cont_find_sub_container"], [74, 0, 1, "", "cont_find_sub_structure"], [74, 0, 1, "", "cont_flatten_key_chain"], [74, 0, 1, "", "cont_flatten_key_chains"], [74, 0, 1, "", "cont_format_key_chains"], [74, 0, 1, "", "cont_from_disk_as_hdf5"], [74, 0, 1, "", "cont_from_disk_as_json"], [74, 0, 1, "", "cont_from_disk_as_pickled"], [74, 0, 1, "", "cont_from_flat_list"], [74, 0, 1, "", "cont_handle_inplace"], [74, 0, 1, "", "cont_has_key"], [74, 0, 1, "", "cont_has_key_chain"], [74, 0, 1, "", "cont_identical"], [74, 0, 1, "", "cont_identical_array_shapes"], [74, 0, 1, "", "cont_identical_configs"], [74, 0, 1, "", "cont_identical_structure"], [74, 0, 1, "", "cont_if_exists"], [74, 0, 1, "", "cont_inplace_update"], [74, 5, 1, "", "cont_ivy"], [74, 0, 1, "", "cont_key_chains_containing"], [74, 0, 1, "", "cont_list_join"], [74, 0, 1, "", "cont_list_stack"], [74, 0, 1, "", "cont_load"], [74, 0, 1, "", "cont_map"], [74, 0, 1, "", "cont_map_sub_conts"], [74, 5, 1, "", "cont_max_depth"], [74, 0, 1, "", "cont_multi_map"], [74, 0, 1, "", "cont_multi_map_in_function"], [74, 0, 1, "", "cont_num_arrays"], [74, 0, 1, "", "cont_overwrite_at_key_chain"], [74, 0, 1, "", "cont_overwrite_at_key_chains"], [74, 0, 1, "", "cont_prune_empty"], [74, 0, 1, "", "cont_prune_key_chain"], [74, 0, 1, "", "cont_prune_key_chains"], [74, 0, 1, "", "cont_prune_key_from_key_chains"], [74, 0, 1, "", "cont_prune_keys"], [74, 0, 1, "", "cont_prune_keys_from_key_chains"], [74, 0, 1, "", "cont_reduce"], [74, 0, 1, "", "cont_remove_key_length_limit"], [74, 0, 1, "", "cont_remove_print_limit"], [74, 0, 1, "", "cont_reshape_like"], [74, 0, 1, "", "cont_restructure"], [74, 0, 1, "", "cont_restructure_key_chains"], [74, 0, 1, "", "cont_save"], [74, 0, 1, "", "cont_set_at_key_chain"], [74, 0, 1, "", "cont_set_at_key_chains"], [74, 0, 1, "", "cont_set_at_keys"], [74, 5, 1, "", "cont_shape"], [74, 5, 1, "", "cont_shapes"], [74, 0, 1, "", "cont_show"], [74, 0, 1, "", "cont_show_sub_container"], [74, 0, 1, "", "cont_size_ordered_arrays"], [74, 0, 1, "", "cont_slice_keys"], [74, 0, 1, "", "cont_slice_via_key"], [74, 0, 1, "", "cont_sort_by_key"], [74, 0, 1, "", "cont_structural_diff"], [74, 0, 1, "", "cont_to_dict"], [74, 0, 1, "", "cont_to_disk_as_hdf5"], [74, 0, 1, "", "cont_to_disk_as_json"], [74, 0, 1, "", "cont_to_disk_as_pickled"], [74, 0, 1, "", "cont_to_flat_list"], [74, 0, 1, "", "cont_to_iterator"], [74, 0, 1, "", "cont_to_iterator_keys"], [74, 0, 1, "", "cont_to_iterator_values"], [74, 0, 1, "", "cont_to_jsonable"], [74, 0, 1, "", "cont_to_nested_list"], [74, 0, 1, "", "cont_to_raw"], [74, 0, 1, "", "cont_trim_key"], [74, 0, 1, "", "cont_try_kc"], [74, 0, 1, "", "cont_unify"], [74, 0, 1, "", "cont_unstack_conts"], [74, 0, 1, "", "cont_update_config"], [74, 0, 1, "", "cont_with_default_key_color"], [74, 0, 1, "", "cont_with_entries_as_lists"], [74, 0, 1, "", "cont_with_ivy_backend"], [74, 0, 1, "", "cont_with_key_length_limit"], [74, 0, 1, "", "cont_with_print_indent"], [74, 0, 1, "", "cont_with_print_limit"], [74, 0, 1, "", "cont_with_print_line_spacing"], [74, 5, 1, "", "dynamic_backend"], [74, 0, 1, "", "h5_file_size"], [74, 0, 1, "", "shuffle_h5_file"], [74, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[103, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[103, 0, 1, "", "__abs__"], [103, 0, 1, "", "__add__"], [103, 0, 1, "", "__eq__"], [103, 0, 1, "", "__ge__"], [103, 0, 1, "", "__gt__"], [103, 0, 1, "", "__init__"], [103, 0, 1, "", "__le__"], [103, 0, 1, "", "__lt__"], [103, 0, 1, "", "__ne__"], [103, 0, 1, "", "__pow__"], [103, 0, 1, "", "__radd__"], [103, 0, 1, "", "__rrshift__"], [103, 0, 1, "", "__rshift__"], [103, 0, 1, "", "__rsub__"], [103, 0, 1, "", "__sub__"], [103, 0, 1, "", "__truediv__"], [103, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[75, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_to_ivy"], [75, 0, 1, "", "_static_to_native"], [75, 0, 1, "", "to_ivy"], [75, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[76, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_arange"], [76, 0, 1, "", "_static_asarray"], [76, 0, 1, "", "_static_copy_array"], [76, 0, 1, "", "_static_empty"], [76, 0, 1, "", "_static_empty_like"], [76, 0, 1, "", "_static_eye"], [76, 0, 1, "", "_static_from_dlpack"], [76, 0, 1, "", "_static_full"], [76, 0, 1, "", "_static_full_like"], [76, 0, 1, "", "_static_linspace"], [76, 0, 1, "", "_static_logspace"], [76, 0, 1, "", "_static_meshgrid"], [76, 0, 1, "", "_static_native_array"], [76, 0, 1, "", "_static_one_hot"], [76, 0, 1, "", "_static_ones"], [76, 0, 1, "", "_static_ones_like"], [76, 0, 1, "", "_static_tril"], [76, 0, 1, "", "_static_triu"], [76, 0, 1, "", "_static_zeros"], [76, 0, 1, "", "_static_zeros_like"], [76, 0, 1, "", "asarray"], [76, 0, 1, "", "copy_array"], [76, 0, 1, "", "empty_like"], [76, 0, 1, "", "from_dlpack"], [76, 0, 1, "", "frombuffer"], [76, 0, 1, "", "full_like"], [76, 0, 1, "", "linspace"], [76, 0, 1, "", "logspace"], [76, 0, 1, "", "meshgrid"], [76, 0, 1, "", "native_array"], [76, 0, 1, "", "one_hot"], [76, 0, 1, "", "ones_like"], [76, 0, 1, "", "static_frombuffer"], [76, 0, 1, "", "static_triu_indices"], [76, 0, 1, "", "tril"], [76, 0, 1, "", "triu"], [76, 0, 1, "", "triu_indices"], [76, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[77, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_astype"], [77, 0, 1, "", "_static_broadcast_arrays"], [77, 0, 1, "", "_static_broadcast_to"], [77, 0, 1, "", "_static_can_cast"], [77, 0, 1, "", "_static_default_complex_dtype"], [77, 0, 1, "", "_static_default_float_dtype"], [77, 0, 1, "", "_static_dtype"], [77, 0, 1, "", "_static_finfo"], [77, 0, 1, "", "_static_function_supported_dtypes"], [77, 0, 1, "", "_static_function_unsupported_dtypes"], [77, 0, 1, "", "_static_iinfo"], [77, 0, 1, "", "_static_is_bool_dtype"], [77, 0, 1, "", "_static_is_complex_dtype"], [77, 0, 1, "", "_static_is_float_dtype"], [77, 0, 1, "", "_static_is_int_dtype"], [77, 0, 1, "", "_static_is_uint_dtype"], [77, 0, 1, "", "_static_result_type"], [77, 0, 1, "", "astype"], [77, 0, 1, "", "broadcast_arrays"], [77, 0, 1, "", "broadcast_to"], [77, 0, 1, "", "can_cast"], [77, 0, 1, "", "dtype"], [77, 0, 1, "", "finfo"], [77, 0, 1, "", "iinfo"], [77, 0, 1, "", "is_bool_dtype"], [77, 0, 1, "", "is_complex_dtype"], [77, 0, 1, "", "is_float_dtype"], [77, 0, 1, "", "is_int_dtype"], [77, 0, 1, "", "is_uint_dtype"], [77, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[78, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_dev"], [78, 0, 1, "", "_static_to_device"], [78, 0, 1, "", "dev"], [78, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[79, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_abs"], [79, 0, 1, "", "_static_acos"], [79, 0, 1, "", "_static_acosh"], [79, 0, 1, "", "_static_add"], [79, 0, 1, "", "_static_asin"], [79, 0, 1, "", "_static_asinh"], [79, 0, 1, "", "_static_atan"], [79, 0, 1, "", "_static_atan2"], [79, 0, 1, "", "_static_atanh"], [79, 0, 1, "", "_static_bitwise_and"], [79, 0, 1, "", "_static_bitwise_invert"], [79, 0, 1, "", "_static_bitwise_left_shift"], [79, 0, 1, "", "_static_bitwise_or"], [79, 0, 1, "", "_static_bitwise_right_shift"], [79, 0, 1, "", "_static_bitwise_xor"], [79, 0, 1, "", "_static_ceil"], [79, 0, 1, "", "_static_cos"], [79, 0, 1, "", "_static_cosh"], [79, 0, 1, "", "_static_deg2rad"], [79, 0, 1, "", "_static_divide"], [79, 0, 1, "", "_static_equal"], [79, 0, 1, "", "_static_erf"], [79, 0, 1, "", "_static_exp"], [79, 0, 1, "", "_static_expm1"], [79, 0, 1, "", "_static_floor"], [79, 0, 1, "", "_static_floor_divide"], [79, 0, 1, "", "_static_greater"], [79, 0, 1, "", "_static_greater_equal"], [79, 0, 1, "", "_static_isfinite"], [79, 0, 1, "", "_static_isinf"], [79, 0, 1, "", "_static_isnan"], [79, 0, 1, "", "_static_isreal"], [79, 0, 1, "", "_static_lcm"], [79, 0, 1, "", "_static_less"], [79, 0, 1, "", "_static_less_equal"], [79, 0, 1, "", "_static_log"], [79, 0, 1, "", "_static_log10"], [79, 0, 1, "", "_static_log1p"], [79, 0, 1, "", "_static_log2"], [79, 0, 1, "", "_static_logaddexp"], [79, 0, 1, "", "_static_logical_and"], [79, 0, 1, "", "_static_logical_not"], [79, 0, 1, "", "_static_logical_or"], [79, 0, 1, "", "_static_logical_xor"], [79, 0, 1, "", "_static_maximum"], [79, 0, 1, "", "_static_minimum"], [79, 0, 1, "", "_static_multiply"], [79, 0, 1, "", "_static_negative"], [79, 0, 1, "", "_static_not_equal"], [79, 0, 1, "", "_static_positive"], [79, 0, 1, "", "_static_pow"], [79, 0, 1, "", "_static_rad2deg"], [79, 0, 1, "", "_static_reciprocal"], [79, 0, 1, "", "_static_remainder"], [79, 0, 1, "", "_static_round"], [79, 0, 1, "", "_static_sign"], [79, 0, 1, "", "_static_sin"], [79, 0, 1, "", "_static_sinh"], [79, 0, 1, "", "_static_sqrt"], [79, 0, 1, "", "_static_square"], [79, 0, 1, "", "_static_subtract"], [79, 0, 1, "", "_static_tan"], [79, 0, 1, "", "_static_tanh"], [79, 0, 1, "", "_static_trapz"], [79, 0, 1, "", "_static_trunc"], [79, 0, 1, "", "_static_trunc_divide"], [79, 0, 1, "", "abs"], [79, 0, 1, "", "acos"], [79, 0, 1, "", "acosh"], [79, 0, 1, "", "add"], [79, 0, 1, "", "angle"], [79, 0, 1, "", "asin"], [79, 0, 1, "", "asinh"], [79, 0, 1, "", "atan"], [79, 0, 1, "", "atan2"], [79, 0, 1, "", "atanh"], [79, 0, 1, "", "bitwise_and"], [79, 0, 1, "", "bitwise_invert"], [79, 0, 1, "", "bitwise_left_shift"], [79, 0, 1, "", "bitwise_or"], [79, 0, 1, "", "bitwise_right_shift"], [79, 0, 1, "", "bitwise_xor"], [79, 0, 1, "", "ceil"], [79, 0, 1, "", "cos"], [79, 0, 1, "", "cosh"], [79, 0, 1, "", "deg2rad"], [79, 0, 1, "", "divide"], [79, 0, 1, "", "equal"], [79, 0, 1, "", "erf"], [79, 0, 1, "", "exp"], [79, 0, 1, "", "exp2"], [79, 0, 1, "", "expm1"], [79, 0, 1, "", "floor"], [79, 0, 1, "", "floor_divide"], [79, 0, 1, "", "fmin"], [79, 0, 1, "", "gcd"], [79, 0, 1, "", "greater"], [79, 0, 1, "", "greater_equal"], [79, 0, 1, "", "imag"], [79, 0, 1, "", "isfinite"], [79, 0, 1, "", "isinf"], [79, 0, 1, "", "isnan"], [79, 0, 1, "", "isreal"], [79, 0, 1, "", "lcm"], [79, 0, 1, "", "less"], [79, 0, 1, "", "less_equal"], [79, 0, 1, "", "log"], [79, 0, 1, "", "log10"], [79, 0, 1, "", "log1p"], [79, 0, 1, "", "log2"], [79, 0, 1, "", "logaddexp"], [79, 0, 1, "", "logaddexp2"], [79, 0, 1, "", "logical_and"], [79, 0, 1, "", "logical_not"], [79, 0, 1, "", "logical_or"], [79, 0, 1, "", "logical_xor"], [79, 0, 1, "", "maximum"], [79, 0, 1, "", "minimum"], [79, 0, 1, "", "multiply"], [79, 0, 1, "", "nan_to_num"], [79, 0, 1, "", "negative"], [79, 0, 1, "", "not_equal"], [79, 0, 1, "", "positive"], [79, 0, 1, "", "pow"], [79, 0, 1, "", "rad2deg"], [79, 0, 1, "", "real"], [79, 0, 1, "", "reciprocal"], [79, 0, 1, "", "remainder"], [79, 0, 1, "", "round"], [79, 0, 1, "", "sign"], [79, 0, 1, "", "sin"], [79, 0, 1, "", "sinh"], [79, 0, 1, "", "sqrt"], [79, 0, 1, "", "square"], [79, 0, 1, "", "static_angle"], [79, 0, 1, "", "static_exp2"], [79, 0, 1, "", "static_fmin"], [79, 0, 1, "", "static_gcd"], [79, 0, 1, "", "static_imag"], [79, 0, 1, "", "static_logaddexp2"], [79, 0, 1, "", "static_nan_to_num"], [79, 0, 1, "", "static_real"], [79, 0, 1, "", "subtract"], [79, 0, 1, "", "tan"], [79, 0, 1, "", "tanh"], [79, 0, 1, "", "trapz"], [79, 0, 1, "", "trunc"], [79, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[80, 3, 0, "-", "activations"], [80, 3, 0, "-", "conversions"], [80, 3, 0, "-", "creation"], [80, 3, 0, "-", "data_type"], [80, 3, 0, "-", "device"], [80, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "general"], [80, 3, 0, "-", "gradients"], [80, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [80, 3, 0, "-", "losses"], [80, 3, 0, "-", "manipulation"], [80, 3, 0, "-", "norms"], [80, 3, 0, "-", "random"], [80, 3, 0, "-", "searching"], [80, 3, 0, "-", "set"], [80, 3, 0, "-", "sorting"], [80, 3, 0, "-", "statistical"], [80, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[80, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_celu"], [80, 0, 1, "", "_static_elu"], [80, 0, 1, "", "_static_hardshrink"], [80, 0, 1, "", "_static_hardsilu"], [80, 0, 1, "", "_static_hardtanh"], [80, 0, 1, "", "_static_scaled_tanh"], [80, 0, 1, "", "_static_silu"], [80, 0, 1, "", "_static_softshrink"], [80, 0, 1, "", "_static_tanhshrink"], [80, 0, 1, "", "_static_threshold"], [80, 0, 1, "", "celu"], [80, 0, 1, "", "elu"], [80, 0, 1, "", "hardshrink"], [80, 0, 1, "", "hardsilu"], [80, 0, 1, "", "hardtanh"], [80, 0, 1, "", "logit"], [80, 0, 1, "", "logsigmoid"], [80, 0, 1, "", "prelu"], [80, 0, 1, "", "relu6"], [80, 0, 1, "", "scaled_tanh"], [80, 0, 1, "", "selu"], [80, 0, 1, "", "silu"], [80, 0, 1, "", "softshrink"], [80, 0, 1, "", "static_logit"], [80, 0, 1, "", "static_logsigmoid"], [80, 0, 1, "", "static_prelu"], [80, 0, 1, "", "static_relu6"], [80, 0, 1, "", "static_selu"], [80, 0, 1, "", "static_thresholded_relu"], [80, 0, 1, "", "tanhshrink"], [80, 0, 1, "", "threshold"], [80, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[80, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[80, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_trilu"], [80, 0, 1, "", "blackman_window"], [80, 0, 1, "", "eye_like"], [80, 0, 1, "", "hamming_window"], [80, 0, 1, "", "hann_window"], [80, 0, 1, "", "kaiser_bessel_derived_window"], [80, 0, 1, "", "kaiser_window"], [80, 0, 1, "", "mel_weight_matrix"], [80, 0, 1, "", "polyval"], [80, 0, 1, "", "static_blackman_window"], [80, 0, 1, "", "static_eye_like"], [80, 0, 1, "", "static_hamming_window"], [80, 0, 1, "", "static_hann_window"], [80, 0, 1, "", "static_kaiser_bessel_derived_window"], [80, 0, 1, "", "static_kaiser_window"], [80, 0, 1, "", "static_mel_weight_matrix"], [80, 0, 1, "", "static_polyval"], [80, 0, 1, "", "static_tril_indices"], [80, 0, 1, "", "static_unsorted_segment_mean"], [80, 0, 1, "", "static_unsorted_segment_min"], [80, 0, 1, "", "static_unsorted_segment_sum"], [80, 0, 1, "", "static_vorbis_window"], [80, 0, 1, "", "tril_indices"], [80, 0, 1, "", "trilu"], [80, 0, 1, "", "unsorted_segment_mean"], [80, 0, 1, "", "unsorted_segment_min"], [80, 0, 1, "", "unsorted_segment_sum"], [80, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[80, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[80, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[80, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "allclose"], [80, 0, 1, "", "amax"], [80, 0, 1, "", "amin"], [80, 0, 1, "", "binarizer"], [80, 0, 1, "", "conj"], [80, 0, 1, "", "copysign"], [80, 0, 1, "", "count_nonzero"], [80, 0, 1, "", "diff"], [80, 0, 1, "", "digamma"], [80, 0, 1, "", "erfc"], [80, 0, 1, "", "erfinv"], [80, 0, 1, "", "fix"], [80, 0, 1, "", "float_power"], [80, 0, 1, "", "fmax"], [80, 0, 1, "", "fmod"], [80, 0, 1, "", "frexp"], [80, 0, 1, "", "gradient"], [80, 0, 1, "", "hypot"], [80, 0, 1, "", "isclose"], [80, 0, 1, "", "ldexp"], [80, 0, 1, "", "lerp"], [80, 0, 1, "", "modf"], [80, 0, 1, "", "nansum"], [80, 0, 1, "", "nextafter"], [80, 0, 1, "", "signbit"], [80, 0, 1, "", "sinc"], [80, 0, 1, "", "sparsify_tensor"], [80, 0, 1, "", "static_allclose"], [80, 0, 1, "", "static_amax"], [80, 0, 1, "", "static_amin"], [80, 0, 1, "", "static_binarizer"], [80, 0, 1, "", "static_conj"], [80, 0, 1, "", "static_copysign"], [80, 0, 1, "", "static_count_nonzero"], [80, 0, 1, "", "static_diff"], [80, 0, 1, "", "static_digamma"], [80, 0, 1, "", "static_erfc"], [80, 0, 1, "", "static_erfinv"], [80, 0, 1, "", "static_fix"], [80, 0, 1, "", "static_float_power"], [80, 0, 1, "", "static_fmax"], [80, 0, 1, "", "static_fmod"], [80, 0, 1, "", "static_frexp"], [80, 0, 1, "", "static_gradient"], [80, 0, 1, "", "static_hypot"], [80, 0, 1, "", "static_isclose"], [80, 0, 1, "", "static_ldexp"], [80, 0, 1, "", "static_lerp"], [80, 0, 1, "", "static_modf"], [80, 0, 1, "", "static_nansum"], [80, 0, 1, "", "static_nextafter"], [80, 0, 1, "", "static_signbit"], [80, 0, 1, "", "static_sinc"], [80, 0, 1, "", "static_sparsify_tensor"], [80, 0, 1, "", "static_xlogy"], [80, 0, 1, "", "static_zeta"], [80, 0, 1, "", "xlogy"], [80, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[80, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_reduce"], [80, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[80, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[80, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[80, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fft"], [80, 0, 1, "", "_static_sliding_window"], [80, 0, 1, "", "adaptive_avg_pool1d"], [80, 0, 1, "", "adaptive_avg_pool2d"], [80, 0, 1, "", "adaptive_max_pool2d"], [80, 0, 1, "", "adaptive_max_pool3d"], [80, 0, 1, "", "avg_pool1d"], [80, 0, 1, "", "avg_pool2d"], [80, 0, 1, "", "avg_pool3d"], [80, 0, 1, "", "dct"], [80, 0, 1, "", "dft"], [80, 0, 1, "", "embedding"], [80, 0, 1, "", "fft"], [80, 0, 1, "", "idct"], [80, 0, 1, "", "ifft"], [80, 0, 1, "", "ifftn"], [80, 0, 1, "", "interpolate"], [80, 0, 1, "", "max_pool1d"], [80, 0, 1, "", "max_pool2d"], [80, 0, 1, "", "max_pool3d"], [80, 0, 1, "", "max_unpool1d"], [80, 0, 1, "", "rfft"], [80, 0, 1, "", "rfftn"], [80, 0, 1, "", "sliding_window"], [80, 0, 1, "", "static_adaptive_avg_pool1d"], [80, 0, 1, "", "static_adaptive_avg_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool3d"], [80, 0, 1, "", "static_avg_pool1d"], [80, 0, 1, "", "static_avg_pool2d"], [80, 0, 1, "", "static_avg_pool3d"], [80, 0, 1, "", "static_dct"], [80, 0, 1, "", "static_dft"], [80, 0, 1, "", "static_embedding"], [80, 0, 1, "", "static_idct"], [80, 0, 1, "", "static_ifft"], [80, 0, 1, "", "static_ifftn"], [80, 0, 1, "", "static_interpolate"], [80, 0, 1, "", "static_max_pool1d"], [80, 0, 1, "", "static_max_pool2d"], [80, 0, 1, "", "static_max_pool3d"], [80, 0, 1, "", "static_max_unpool1d"], [80, 0, 1, "", "static_rfft"], [80, 0, 1, "", "static_rfftn"], [80, 0, 1, "", "static_rnn"], [80, 0, 1, "", "static_stft"], [80, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "adjoint"], [80, 0, 1, "", "batched_outer"], [80, 0, 1, "", "cond"], [80, 0, 1, "", "diagflat"], [80, 0, 1, "", "dot"], [80, 0, 1, "", "eig"], [80, 0, 1, "", "eigh_tridiagonal"], [80, 0, 1, "", "eigvals"], [80, 0, 1, "", "higher_order_moment"], [80, 0, 1, "", "initialize_tucker"], [80, 0, 1, "", "kron"], [80, 0, 1, "", "make_svd_non_negative"], [80, 0, 1, "", "matrix_exp"], [80, 0, 1, "", "mode_dot"], [80, 0, 1, "", "multi_dot"], [80, 0, 1, "", "multi_mode_dot"], [80, 0, 1, "", "partial_tucker"], [80, 0, 1, "", "static_adjoint"], [80, 0, 1, "", "static_batched_outer"], [80, 0, 1, "", "static_cond"], [80, 0, 1, "", "static_diagflat"], [80, 0, 1, "", "static_dot"], [80, 0, 1, "", "static_eig"], [80, 0, 1, "", "static_eigh_tridiagonal"], [80, 0, 1, "", "static_eigvals"], [80, 0, 1, "", "static_higher_order_moment"], [80, 0, 1, "", "static_initialize_tucker"], [80, 0, 1, "", "static_kron"], [80, 0, 1, "", "static_make_svd_non_negative"], [80, 0, 1, "", "static_matrix_exp"], [80, 0, 1, "", "static_mode_dot"], [80, 0, 1, "", "static_multi_dot"], [80, 0, 1, "", "static_multi_mode_dot"], [80, 0, 1, "", "static_partial_tucker"], [80, 0, 1, "", "static_svd_flip"], [80, 0, 1, "", "static_tensor_train"], [80, 0, 1, "", "static_truncated_svd"], [80, 0, 1, "", "static_tt_matrix_to_tensor"], [80, 0, 1, "", "static_tucker"], [80, 0, 1, "", "svd_flip"], [80, 0, 1, "", "tensor_train"], [80, 0, 1, "", "truncated_svd"], [80, 0, 1, "", "tt_matrix_to_tensor"], [80, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[80, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_hinge_embedding_loss"], [80, 0, 1, "", "_static_huber_loss"], [80, 0, 1, "", "_static_kl_div"], [80, 0, 1, "", "_static_l1_loss"], [80, 0, 1, "", "_static_log_poisson_loss"], [80, 0, 1, "", "_static_poisson_nll_loss"], [80, 0, 1, "", "_static_smooth_l1_loss"], [80, 0, 1, "", "_static_soft_margin_loss"], [80, 0, 1, "", "hinge_embedding_loss"], [80, 0, 1, "", "huber_loss"], [80, 0, 1, "", "kl_div"], [80, 0, 1, "", "l1_loss"], [80, 0, 1, "", "log_poisson_loss"], [80, 0, 1, "", "poisson_nll_loss"], [80, 0, 1, "", "smooth_l1_loss"], [80, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[80, 1, 1, "", "_ContainerWithManipulationExperimental"], [80, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fill_diagonal"], [80, 0, 1, "", "_static_put_along_axis"], [80, 0, 1, "", "_static_take"], [80, 0, 1, "", "_static_trim_zeros"], [80, 0, 1, "", "_static_unflatten"], [80, 0, 1, "", "_static_unique_consecutive"], [80, 0, 1, "", "as_strided"], [80, 0, 1, "", "associative_scan"], [80, 0, 1, "", "atleast_1d"], [80, 0, 1, "", "atleast_2d"], [80, 0, 1, "", "atleast_3d"], [80, 0, 1, "", "broadcast_shapes"], [80, 0, 1, "", "column_stack"], [80, 0, 1, "", "concat_from_sequence"], [80, 0, 1, "", "dsplit"], [80, 0, 1, "", "dstack"], [80, 0, 1, "", "expand"], [80, 0, 1, "", "fill_diagonal"], [80, 0, 1, "", "flatten"], [80, 0, 1, "", "fliplr"], [80, 0, 1, "", "flipud"], [80, 0, 1, "", "fold"], [80, 0, 1, "", "heaviside"], [80, 0, 1, "", "hsplit"], [80, 0, 1, "", "hstack"], [80, 0, 1, "", "i0"], [80, 0, 1, "", "matricize"], [80, 0, 1, "", "moveaxis"], [80, 0, 1, "", "pad"], [80, 0, 1, "", "partial_fold"], [80, 0, 1, "", "partial_tensor_to_vec"], [80, 0, 1, "", "partial_unfold"], [80, 0, 1, "", "partial_vec_to_tensor"], [80, 0, 1, "", "put_along_axis"], [80, 0, 1, "", "rot90"], [80, 0, 1, "", "soft_thresholding"], [80, 0, 1, "", "static_as_strided"], [80, 0, 1, "", "static_atleast_1d"], [80, 0, 1, "", "static_atleast_2d"], [80, 0, 1, "", "static_atleast_3d"], [80, 0, 1, "", "static_broadcast_shapes"], [80, 0, 1, "", "static_column_stack"], [80, 0, 1, "", "static_concat_from_sequence"], [80, 0, 1, "", "static_dsplit"], [80, 0, 1, "", "static_dstack"], [80, 0, 1, "", "static_expand"], [80, 0, 1, "", "static_flatten"], [80, 0, 1, "", "static_fliplr"], [80, 0, 1, "", "static_flipud"], [80, 0, 1, "", "static_fold"], [80, 0, 1, "", "static_heaviside"], [80, 0, 1, "", "static_hsplit"], [80, 0, 1, "", "static_hstack"], [80, 0, 1, "", "static_i0"], [80, 0, 1, "", "static_matricize"], [80, 0, 1, "", "static_moveaxis"], [80, 0, 1, "", "static_pad"], [80, 0, 1, "", "static_partial_fold"], [80, 0, 1, "", "static_partial_tensor_to_vec"], [80, 0, 1, "", "static_partial_unfold"], [80, 0, 1, "", "static_partial_vec_to_tensor"], [80, 0, 1, "", "static_rot90"], [80, 0, 1, "", "static_soft_thresholding"], [80, 0, 1, "", "static_take_along_axis"], [80, 0, 1, "", "static_top_k"], [80, 0, 1, "", "static_unfold"], [80, 0, 1, "", "static_vsplit"], [80, 0, 1, "", "static_vstack"], [80, 0, 1, "", "take"], [80, 0, 1, "", "take_along_axis"], [80, 0, 1, "", "top_k"], [80, 0, 1, "", "trim_zeros"], [80, 0, 1, "", "unflatten"], [80, 0, 1, "", "unfold"], [80, 0, 1, "", "unique_consecutive"], [80, 0, 1, "", "vsplit"], [80, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[80, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "batch_norm"], [80, 0, 1, "", "group_norm"], [80, 0, 1, "", "instance_norm"], [80, 0, 1, "", "l1_normalize"], [80, 0, 1, "", "l2_normalize"], [80, 0, 1, "", "lp_normalize"], [80, 0, 1, "", "static_batch_norm"], [80, 0, 1, "", "static_group_norm"], [80, 0, 1, "", "static_instance_norm"], [80, 0, 1, "", "static_l1_normalize"], [80, 0, 1, "", "static_l2_normalize"], [80, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[80, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "bernoulli"], [80, 0, 1, "", "beta"], [80, 0, 1, "", "dirichlet"], [80, 0, 1, "", "gamma"], [80, 0, 1, "", "poisson"], [80, 0, 1, "", "static_bernoulli"], [80, 0, 1, "", "static_beta"], [80, 0, 1, "", "static_dirichlet"], [80, 0, 1, "", "static_gamma"], [80, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[80, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "static_unravel_index"], [80, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[80, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[80, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "invert_permutation"], [80, 0, 1, "", "lexsort"], [80, 0, 1, "", "static_invert_permutation"], [80, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[80, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cummax"], [80, 0, 1, "", "_static_cummin"], [80, 0, 1, "", "_static_nanmin"], [80, 0, 1, "", "bincount"], [80, 0, 1, "", "corrcoef"], [80, 0, 1, "", "cov"], [80, 0, 1, "", "cummax"], [80, 0, 1, "", "cummin"], [80, 0, 1, "", "histogram"], [80, 0, 1, "", "igamma"], [80, 0, 1, "", "lgamma"], [80, 0, 1, "", "median"], [80, 0, 1, "", "nanmean"], [80, 0, 1, "", "nanmedian"], [80, 0, 1, "", "nanmin"], [80, 0, 1, "", "nanprod"], [80, 0, 1, "", "quantile"], [80, 0, 1, "", "static_bincount"], [80, 0, 1, "", "static_corrcoef"], [80, 0, 1, "", "static_cov"], [80, 0, 1, "", "static_histogram"], [80, 0, 1, "", "static_igamma"], [80, 0, 1, "", "static_lgamma"], [80, 0, 1, "", "static_median"], [80, 0, 1, "", "static_nanmean"], [80, 0, 1, "", "static_nanmedian"], [80, 0, 1, "", "static_nanprod"], [80, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[80, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "optional_get_element"], [80, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[81, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_all_equal"], [81, 0, 1, "", "_static_array_equal"], [81, 0, 1, "", "_static_assert_supports_inplace"], [81, 0, 1, "", "_static_clip_matrix_norm"], [81, 0, 1, "", "_static_clip_vector_norm"], [81, 0, 1, "", "_static_einops_rearrange"], [81, 0, 1, "", "_static_einops_reduce"], [81, 0, 1, "", "_static_einops_repeat"], [81, 0, 1, "", "_static_exists"], [81, 0, 1, "", "_static_fourier_encode"], [81, 0, 1, "", "_static_gather"], [81, 0, 1, "", "_static_gather_nd"], [81, 0, 1, "", "_static_get_num_dims"], [81, 0, 1, "", "_static_has_nans"], [81, 0, 1, "", "_static_inplace_decrement"], [81, 0, 1, "", "_static_inplace_increment"], [81, 0, 1, "", "_static_inplace_update"], [81, 0, 1, "", "_static_is_array"], [81, 0, 1, "", "_static_is_ivy_array"], [81, 0, 1, "", "_static_is_native_array"], [81, 0, 1, "", "_static_scatter_flat"], [81, 0, 1, "", "_static_scatter_nd"], [81, 0, 1, "", "_static_size"], [81, 0, 1, "", "_static_stable_divide"], [81, 0, 1, "", "_static_stable_pow"], [81, 0, 1, "", "_static_supports_inplace_updates"], [81, 0, 1, "", "_static_to_list"], [81, 0, 1, "", "_static_to_numpy"], [81, 0, 1, "", "_static_to_scalar"], [81, 0, 1, "", "_static_value_is_nan"], [81, 0, 1, "", "all_equal"], [81, 0, 1, "", "array_equal"], [81, 0, 1, "", "assert_supports_inplace"], [81, 0, 1, "", "clip_matrix_norm"], [81, 0, 1, "", "clip_vector_norm"], [81, 0, 1, "", "einops_rearrange"], [81, 0, 1, "", "einops_reduce"], [81, 0, 1, "", "einops_repeat"], [81, 0, 1, "", "exists"], [81, 0, 1, "", "fourier_encode"], [81, 0, 1, "", "gather"], [81, 0, 1, "", "gather_nd"], [81, 0, 1, "", "get_num_dims"], [81, 0, 1, "", "has_nans"], [81, 0, 1, "", "inplace_decrement"], [81, 0, 1, "", "inplace_increment"], [81, 0, 1, "", "inplace_update"], [81, 0, 1, "", "is_array"], [81, 0, 1, "", "is_ivy_array"], [81, 0, 1, "", "is_native_array"], [81, 0, 1, "", "isin"], [81, 0, 1, "", "itemsize"], [81, 0, 1, "", "scatter_flat"], [81, 0, 1, "", "scatter_nd"], [81, 0, 1, "", "size"], [81, 0, 1, "", "stable_divide"], [81, 0, 1, "", "stable_pow"], [81, 0, 1, "", "static_isin"], [81, 0, 1, "", "static_itemsize"], [81, 0, 1, "", "static_strides"], [81, 0, 1, "", "strides"], [81, 0, 1, "", "supports_inplace_updates"], [81, 0, 1, "", "to_list"], [81, 0, 1, "", "to_numpy"], [81, 0, 1, "", "to_scalar"], [81, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[82, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_stop_gradient"], [82, 0, 1, "", "adam_step"], [82, 0, 1, "", "adam_update"], [82, 0, 1, "", "gradient_descent_update"], [82, 0, 1, "", "lamb_update"], [82, 0, 1, "", "lars_update"], [82, 0, 1, "", "optimizer_update"], [82, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[83, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[83, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[84, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_conv1d"], [84, 0, 1, "", "_static_conv1d_transpose"], [84, 0, 1, "", "_static_conv2d"], [84, 0, 1, "", "_static_conv2d_transpose"], [84, 0, 1, "", "_static_conv3d"], [84, 0, 1, "", "_static_conv3d_transpose"], [84, 0, 1, "", "_static_depthwise_conv2d"], [84, 0, 1, "", "_static_dropout"], [84, 0, 1, "", "_static_dropout1d"], [84, 0, 1, "", "_static_dropout2d"], [84, 0, 1, "", "_static_dropout3d"], [84, 0, 1, "", "_static_linear"], [84, 0, 1, "", "_static_lstm_update"], [84, 0, 1, "", "_static_multi_head_attention"], [84, 0, 1, "", "_static_reduce_window"], [84, 0, 1, "", "_static_scaled_dot_product_attention"], [84, 0, 1, "", "conv1d"], [84, 0, 1, "", "conv1d_transpose"], [84, 0, 1, "", "conv2d"], [84, 0, 1, "", "conv2d_transpose"], [84, 0, 1, "", "conv3d"], [84, 0, 1, "", "conv3d_transpose"], [84, 0, 1, "", "depthwise_conv2d"], [84, 0, 1, "", "dropout"], [84, 0, 1, "", "dropout1d"], [84, 0, 1, "", "dropout2d"], [84, 0, 1, "", "dropout3d"], [84, 0, 1, "", "linear"], [84, 0, 1, "", "lstm_update"], [84, 0, 1, "", "multi_head_attention"], [84, 0, 1, "", "reduce_window"], [84, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[85, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_cholesky"], [85, 0, 1, "", "_static_cross"], [85, 0, 1, "", "_static_det"], [85, 0, 1, "", "_static_diag"], [85, 0, 1, "", "_static_diagonal"], [85, 0, 1, "", "_static_eigh"], [85, 0, 1, "", "_static_eigvalsh"], [85, 0, 1, "", "_static_inner"], [85, 0, 1, "", "_static_inv"], [85, 0, 1, "", "_static_matmul"], [85, 0, 1, "", "_static_matrix_norm"], [85, 0, 1, "", "_static_matrix_power"], [85, 0, 1, "", "_static_matrix_rank"], [85, 0, 1, "", "_static_matrix_transpose"], [85, 0, 1, "", "_static_outer"], [85, 0, 1, "", "_static_pinv"], [85, 0, 1, "", "_static_qr"], [85, 0, 1, "", "_static_slogdet"], [85, 0, 1, "", "_static_solve"], [85, 0, 1, "", "_static_svd"], [85, 0, 1, "", "_static_svdvals"], [85, 0, 1, "", "_static_tensordot"], [85, 0, 1, "", "_static_tensorsolve"], [85, 0, 1, "", "_static_trace"], [85, 0, 1, "", "_static_vander"], [85, 0, 1, "", "_static_vecdot"], [85, 0, 1, "", "_static_vector_norm"], [85, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [85, 0, 1, "", "cholesky"], [85, 0, 1, "", "cross"], [85, 0, 1, "", "det"], [85, 0, 1, "", "diag"], [85, 0, 1, "", "diagonal"], [85, 0, 1, "", "eigh"], [85, 0, 1, "", "eigvalsh"], [85, 0, 1, "", "general_inner_product"], [85, 0, 1, "", "inner"], [85, 0, 1, "", "inv"], [85, 0, 1, "", "matmul"], [85, 0, 1, "", "matrix_norm"], [85, 0, 1, "", "matrix_power"], [85, 0, 1, "", "matrix_rank"], [85, 0, 1, "", "matrix_transpose"], [85, 0, 1, "", "outer"], [85, 0, 1, "", "pinv"], [85, 0, 1, "", "qr"], [85, 0, 1, "", "slogdet"], [85, 0, 1, "", "solve"], [85, 0, 1, "", "static_general_inner_product"], [85, 0, 1, "", "svd"], [85, 0, 1, "", "svdvals"], [85, 0, 1, "", "tensordot"], [85, 0, 1, "", "tensorsolve"], [85, 0, 1, "", "trace"], [85, 0, 1, "", "vander"], [85, 0, 1, "", "vecdot"], [85, 0, 1, "", "vector_norm"], [85, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[86, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_binary_cross_entropy"], [86, 0, 1, "", "_static_cross_entropy"], [86, 0, 1, "", "_static_sparse_cross_entropy"], [86, 0, 1, "", "binary_cross_entropy"], [86, 0, 1, "", "cross_entropy"], [86, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[87, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_clip"], [87, 0, 1, "", "_static_concat"], [87, 0, 1, "", "_static_constant_pad"], [87, 0, 1, "", "_static_expand_dims"], [87, 0, 1, "", "_static_flip"], [87, 0, 1, "", "_static_permute_dims"], [87, 0, 1, "", "_static_repeat"], [87, 0, 1, "", "_static_reshape"], [87, 0, 1, "", "_static_roll"], [87, 0, 1, "", "_static_split"], [87, 0, 1, "", "_static_squeeze"], [87, 0, 1, "", "_static_stack"], [87, 0, 1, "", "_static_swapaxes"], [87, 0, 1, "", "_static_tile"], [87, 0, 1, "", "_static_unstack"], [87, 0, 1, "", "_static_zero_pad"], [87, 0, 1, "", "clip"], [87, 0, 1, "", "concat"], [87, 0, 1, "", "constant_pad"], [87, 0, 1, "", "expand_dims"], [87, 0, 1, "", "flip"], [87, 0, 1, "", "permute_dims"], [87, 0, 1, "", "repeat"], [87, 0, 1, "", "reshape"], [87, 0, 1, "", "roll"], [87, 0, 1, "", "split"], [87, 0, 1, "", "squeeze"], [87, 0, 1, "", "stack"], [87, 0, 1, "", "swapaxes"], [87, 0, 1, "", "tile"], [87, 0, 1, "", "unstack"], [87, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[88, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[89, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_multinomial"], [89, 0, 1, "", "_static_randint"], [89, 0, 1, "", "_static_random_normal"], [89, 0, 1, "", "_static_random_uniform"], [89, 0, 1, "", "_static_shuffle"], [89, 0, 1, "", "multinomial"], [89, 0, 1, "", "randint"], [89, 0, 1, "", "random_normal"], [89, 0, 1, "", "random_uniform"], [89, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[90, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_argmax"], [90, 0, 1, "", "_static_argmin"], [90, 0, 1, "", "_static_argwhere"], [90, 0, 1, "", "_static_nonzero"], [90, 0, 1, "", "_static_where"], [90, 0, 1, "", "argmax"], [90, 0, 1, "", "argmin"], [90, 0, 1, "", "argwhere"], [90, 0, 1, "", "nonzero"], [90, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[91, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "_static_unique_all"], [91, 0, 1, "", "_static_unique_counts"], [91, 0, 1, "", "_static_unique_inverse"], [91, 0, 1, "", "_static_unique_values"], [91, 0, 1, "", "unique_all"], [91, 0, 1, "", "unique_counts"], [91, 0, 1, "", "unique_inverse"], [91, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[92, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "_static_argsort"], [92, 0, 1, "", "_static_searchsorted"], [92, 0, 1, "", "_static_sort"], [92, 0, 1, "", "argsort"], [92, 0, 1, "", "msort"], [92, 0, 1, "", "searchsorted"], [92, 0, 1, "", "sort"], [92, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[93, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "_static_cumprod"], [93, 0, 1, "", "_static_cumsum"], [93, 0, 1, "", "_static_min"], [93, 0, 1, "", "_static_prod"], [93, 0, 1, "", "_static_sum"], [93, 0, 1, "", "_static_var"], [93, 0, 1, "", "cumprod"], [93, 0, 1, "", "cumsum"], [93, 0, 1, "", "einsum"], [93, 0, 1, "", "max"], [93, 0, 1, "", "mean"], [93, 0, 1, "", "min"], [93, 0, 1, "", "prod"], [93, 0, 1, "", "std"], [93, 0, 1, "", "sum"], [93, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[94, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "_static_all"], [94, 0, 1, "", "_static_any"], [94, 0, 1, "", "all"], [94, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[95, 2, 1, "", "_wrap_function"], [95, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[96, 3, 0, "-", "base"], [97, 3, 0, "-", "cp_tensor"], [98, 3, 0, "-", "parafac2_tensor"], [99, 3, 0, "-", "tr_tensor"], [100, 3, 0, "-", "tt_tensor"], [101, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[96, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 0, 1, "", "norm"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "cp_copy"], [97, 0, 1, "", "cp_flip_sign"], [97, 0, 1, "", "cp_lstsq_grad"], [97, 0, 1, "", "cp_mode_dot"], [97, 0, 1, "", "cp_n_param"], [97, 0, 1, "", "cp_norm"], [97, 0, 1, "", "cp_normalize"], [97, 0, 1, "", "cp_to_tensor"], [97, 0, 1, "", "cp_to_unfolded"], [97, 0, 1, "", "cp_to_vec"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "norm"], [97, 0, 1, "", "normalize"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "unfolding_dot_khatri_rao"], [97, 0, 1, "", "validate_cp_rank"], [97, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[98, 0, 1, "", "__init__"], [98, 4, 1, "", "_abc_impl"], [98, 0, 1, "", "apply_parafac2_projections"], [98, 0, 1, "", "from_CPTensor"], [98, 5, 1, "", "n_param"], [98, 0, 1, "", "parafac2_normalise"], [98, 0, 1, "", "parafac2_to_slice"], [98, 0, 1, "", "parafac2_to_slices"], [98, 0, 1, "", "parafac2_to_tensor"], [98, 0, 1, "", "parafac2_to_unfolded"], [98, 0, 1, "", "parafac2_to_vec"], [98, 0, 1, "", "to_tensor"], [98, 0, 1, "", "to_unfolded"], [98, 0, 1, "", "to_vec"], [98, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[99, 0, 1, "", "__init__"], [99, 4, 1, "", "_abc_impl"], [99, 5, 1, "", "n_param"], [99, 0, 1, "", "to_tensor"], [99, 0, 1, "", "to_unfolded"], [99, 0, 1, "", "to_vec"], [99, 0, 1, "", "tr_n_param"], [99, 0, 1, "", "tr_to_tensor"], [99, 0, 1, "", "tr_to_unfolded"], [99, 0, 1, "", "tr_to_vec"], [99, 0, 1, "", "validate_tr_rank"], [99, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[100, 0, 1, "", "__init__"], [100, 4, 1, "", "_abc_impl"], [100, 0, 1, "", "_tt_n_param"], [100, 0, 1, "", "index_update"], [100, 5, 1, "", "n_param"], [100, 0, 1, "", "pad_tt_rank"], [100, 0, 1, "", "to_tensor"], [100, 0, 1, "", "to_unfolding"], [100, 0, 1, "", "to_vec"], [100, 0, 1, "", "tt_to_tensor"], [100, 0, 1, "", "tt_to_unfolded"], [100, 0, 1, "", "tt_to_vec"], [100, 0, 1, "", "validate_tt_rank"], [100, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, 1, 1, "", "TuckerTensor"], [101, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "mode_dot"], [101, 5, 1, "", "n_param"], [101, 0, 1, "", "to_tensor"], [101, 0, 1, "", "to_unfolded"], [101, 0, 1, "", "to_vec"], [101, 0, 1, "", "tucker_copy"], [101, 0, 1, "", "tucker_mode_dot"], [101, 0, 1, "", "tucker_n_param"], [101, 0, 1, "", "tucker_normalize"], [101, 0, 1, "", "tucker_to_tensor"], [101, 0, 1, "", "tucker_to_unfolded"], [101, 0, 1, "", "tucker_to_vec"], [101, 0, 1, "", "validate_tucker_rank"], [101, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[106, 3, 0, "-", "base"], [107, 3, 0, "-", "elementwise"], [105, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[106, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[106, 0, 1, "", "__init__"], [106, 4, 1, "", "_abc_impl"], [106, 0, 1, "", "broadcast_shapes"], [106, 5, 1, "", "data"], [106, 5, 1, "", "device"], [106, 5, 1, "", "dtype"], [106, 5, 1, "", "inner_shape"], [106, 5, 1, "", "ndim"], [106, 0, 1, "", "nested_array"], [106, 5, 1, "", "nested_rank"], [106, 0, 1, "", "ragged_map"], [106, 0, 1, "", "ragged_multi_map"], [106, 0, 1, "", "ragged_multi_map_in_function"], [106, 0, 1, "", "replace_ivy_arrays"], [106, 5, 1, "", "shape"], [106, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[107, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[107, 4, 1, "", "_abc_impl"], [107, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[105, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[105, 0, 1, "", "__init__"], [105, 0, 1, "", "from_row_lengths"], [105, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[626, 3, 0, "-", "activations"], [627, 3, 0, "-", "constants"], [628, 3, 0, "-", "control_flow_ops"], [629, 3, 0, "-", "creation"], [630, 3, 0, "-", "data_type"], [631, 3, 0, "-", "device"], [632, 3, 0, "-", "elementwise"], [633, 3, 0, "-", "experimental"], [634, 3, 0, "-", "general"], [635, 3, 0, "-", "gradients"], [636, 3, 0, "-", "layers"], [637, 3, 0, "-", "linear_algebra"], [638, 3, 0, "-", "losses"], [639, 3, 0, "-", "manipulation"], [640, 3, 0, "-", "meta"], [641, 3, 0, "-", "nest"], [642, 3, 0, "-", "norms"], [643, 3, 0, "-", "random"], [644, 3, 0, "-", "searching"], [645, 3, 0, "-", "set"], [646, 3, 0, "-", "sorting"], [647, 3, 0, "-", "statistical"], [648, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[367, 3, 0, "-", "activations"], [368, 3, 0, "-", "constants"], [369, 3, 0, "-", "creation"], [370, 3, 0, "-", "data_type"], [371, 3, 0, "-", "device"], [372, 3, 0, "-", "elementwise"], [373, 3, 0, "-", "general"], [374, 3, 0, "-", "gradients"], [375, 3, 0, "-", "layers"], [376, 3, 0, "-", "linear_algebra"], [377, 3, 0, "-", "losses"], [378, 3, 0, "-", "manipulation"], [379, 3, 0, "-", "meta"], [380, 3, 0, "-", "nest"], [381, 3, 0, "-", "norms"], [382, 3, 0, "-", "random"], [383, 3, 0, "-", "searching"], [384, 3, 0, "-", "set"], [385, 3, 0, "-", "sorting"], [386, 3, 0, "-", "sparse_array"], [387, 3, 0, "-", "statistical"], [388, 3, 0, "-", "utility"]], "ivy.stateful": [[788, 3, 0, "-", "activations"], [789, 3, 0, "-", "converters"], [790, 3, 0, "-", "helpers"], [791, 3, 0, "-", "initializers"], [792, 3, 0, "-", "layers"], [793, 3, 0, "-", "losses"], [794, 3, 0, "-", "module"], [795, 3, 0, "-", "norms"], [796, 3, 0, "-", "optimizers"], [797, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[788, 1, 1, "", "ELU"], [788, 1, 1, "", "GEGLU"], [788, 1, 1, "", "GELU"], [788, 1, 1, "", "Hardswish"], [788, 1, 1, "", "LeakyReLU"], [788, 1, 1, "", "LogSigmoid"], [788, 1, 1, "", "LogSoftmax"], [788, 1, 1, "", "Logit"], [788, 1, 1, "", "Mish"], [788, 1, 1, "", "PReLU"], [788, 1, 1, "", "ReLU"], [788, 1, 1, "", "ReLU6"], [788, 1, 1, "", "SeLU"], [788, 1, 1, "", "SiLU"], [788, 1, 1, "", "Sigmoid"], [788, 1, 1, "", "Softmax"], [788, 1, 1, "", "Softplus"], [788, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[788, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[789, 1, 1, "", "ModuleConverters"], [789, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[789, 0, 1, "", "from_flax_module"], [789, 0, 1, "", "from_haiku_module"], [789, 0, 1, "", "from_keras_module"], [789, 0, 1, "", "from_paddle_module"], [789, 0, 1, "", "from_torch_module"], [789, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[790, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[791, 1, 1, "", "Constant"], [791, 1, 1, "", "FirstLayerSiren"], [791, 1, 1, "", "GlorotUniform"], [791, 1, 1, "", "Initializer"], [791, 1, 1, "", "KaimingNormal"], [791, 1, 1, "", "Ones"], [791, 1, 1, "", "RandomNormal"], [791, 1, 1, "", "Siren"], [791, 1, 1, "", "Uniform"], [791, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[791, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[792, 1, 1, "", "AdaptiveAvgPool1d"], [792, 1, 1, "", "AdaptiveAvgPool2d"], [792, 1, 1, "", "AvgPool1D"], [792, 1, 1, "", "AvgPool2D"], [792, 1, 1, "", "AvgPool3D"], [792, 1, 1, "", "Conv1D"], [792, 1, 1, "", "Conv1DTranspose"], [792, 1, 1, "", "Conv2D"], [792, 1, 1, "", "Conv2DTranspose"], [792, 1, 1, "", "Conv3D"], [792, 1, 1, "", "Conv3DTranspose"], [792, 1, 1, "", "Dct"], [792, 1, 1, "", "DepthwiseConv2D"], [792, 1, 1, "", "Dropout"], [792, 1, 1, "", "Embedding"], [792, 1, 1, "", "FFT"], [792, 1, 1, "", "IFFT"], [792, 1, 1, "", "Identity"], [792, 1, 1, "", "LSTM"], [792, 1, 1, "", "Linear"], [792, 1, 1, "", "MaxPool1D"], [792, 1, 1, "", "MaxPool2D"], [792, 1, 1, "", "MaxPool3D"], [792, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[792, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[793, 1, 1, "", "BinaryCrossEntropyLoss"], [793, 1, 1, "", "CrossEntropyLoss"], [793, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.module": [[794, 1, 1, "", "Module"], [794, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[794, 0, 1, "", "__call__"], [794, 0, 1, "", "__init__"], [794, 5, 1, "", "buffers"], [794, 0, 1, "", "build"], [794, 5, 1, "", "build_mode"], [794, 5, 1, "", "built"], [794, 5, 1, "", "device"], [794, 5, 1, "", "dtype"], [794, 0, 1, "", "eval"], [794, 0, 1, "", "load"], [794, 5, 1, "", "module_dict"], [794, 0, 1, "", "register_buffer"], [794, 0, 1, "", "register_parameter"], [794, 0, 1, "", "save"], [794, 0, 1, "", "save_weights"], [794, 0, 1, "", "show_graph"], [794, 5, 1, "", "state_dict"], [794, 0, 1, "", "to_device"], [794, 0, 1, "", "trace_graph"], [794, 0, 1, "", "train"], [794, 5, 1, "", "training"], [794, 5, 1, "", "v"]], "ivy.stateful.norms": [[795, 1, 1, "", "BatchNorm2D"], [795, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[795, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[795, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[796, 1, 1, "", "Adam"], [796, 1, 1, "", "AdamW"], [796, 1, 1, "", "LAMB"], [796, 1, 1, "", "LARS"], [796, 1, 1, "", "Optimizer"], [796, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[796, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.sequential": [[797, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[797, 0, 1, "", "__init__"]], "ivy.utils": [[798, 3, 0, "-", "assertions"], [799, 3, 0, "-", "backend"], [803, 3, 0, "-", "binaries"], [804, 3, 0, "-", "dynamic_import"], [805, 3, 0, "-", "einsum_parser"], [806, 3, 0, "-", "einsum_path_helpers"], [807, 3, 0, "-", "exceptions"], [808, 3, 0, "-", "inspection"], [809, 3, 0, "-", "logging"], [810, 3, 0, "-", "profiler"], [811, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[798, 2, 1, "", "check_all"], [798, 2, 1, "", "check_all_or_any_fn"], [798, 2, 1, "", "check_any"], [798, 2, 1, "", "check_dev_correct_formatting"], [798, 2, 1, "", "check_dimensions"], [798, 2, 1, "", "check_elem_in_list"], [798, 2, 1, "", "check_equal"], [798, 2, 1, "", "check_exists"], [798, 2, 1, "", "check_false"], [798, 2, 1, "", "check_gather_input_valid"], [798, 2, 1, "", "check_gather_nd_input_valid"], [798, 2, 1, "", "check_greater"], [798, 2, 1, "", "check_inplace_sizes_valid"], [798, 2, 1, "", "check_isinstance"], [798, 2, 1, "", "check_kernel_padding_size"], [798, 2, 1, "", "check_less"], [798, 2, 1, "", "check_one_way_broadcastable"], [798, 2, 1, "", "check_same_dtype"], [798, 2, 1, "", "check_shape"], [798, 2, 1, "", "check_shapes_broadcastable"], [798, 2, 1, "", "check_true"], [798, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[800, 3, 0, "-", "ast_helpers"], [801, 3, 0, "-", "handler"], [802, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[800, 1, 1, "", "ImportTransformer"], [800, 1, 1, "", "IvyLoader"], [800, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "impersonate_import"], [800, 0, 1, "", "visit_Import"], [800, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[800, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[801, 1, 1, "", "ContextManager"], [801, 2, 1, "", "choose_random_backend"], [801, 2, 1, "", "current_backend"], [801, 2, 1, "", "dynamic_backend_converter"], [801, 2, 1, "", "prevent_access_locally"], [801, 2, 1, "", "previous_backend"], [801, 2, 1, "", "set_backend"], [801, 2, 1, "", "set_backend_to_specific_version"], [801, 2, 1, "", "set_jax_backend"], [801, 2, 1, "", "set_mxnet_backend"], [801, 2, 1, "", "set_numpy_backend"], [801, 2, 1, "", "set_paddle_backend"], [801, 2, 1, "", "set_tensorflow_backend"], [801, 2, 1, "", "set_torch_backend"], [801, 2, 1, "", "unset_backend"], [801, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[801, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[802, 2, 1, "", "clear_sub_backends"], [802, 2, 1, "", "find_available_sub_backends"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [802, 2, 1, "", "set_sub_backend"], [802, 2, 1, "", "set_sub_backend_to_specific_version"], [802, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[803, 2, 1, "", "check_for_binaries"], [803, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[804, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[805, 2, 1, "", "convert_interleaved_input"], [805, 2, 1, "", "convert_subscripts"], [805, 2, 1, "", "find_output_shape"], [805, 2, 1, "", "find_output_str"], [805, 2, 1, "", "gen_unused_symbols"], [805, 2, 1, "", "get_symbol"], [805, 2, 1, "", "has_valid_einsum_chars_only"], [805, 2, 1, "", "is_valid_einsum_char"], [805, 2, 1, "", "legalise_einsum_expr"], [805, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[806, 2, 1, "", "can_dot"], [806, 2, 1, "", "compute_size_by_dict"], [806, 2, 1, "", "find_contraction"], [806, 2, 1, "", "flop_count"], [806, 2, 1, "", "greedy_path"], [806, 2, 1, "", "optimal_path"], [806, 2, 1, "", "parse_einsum_input"], [806, 2, 1, "", "parse_possible_contraction"], [806, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[807, 7, 1, "", "InplaceUpdateException"], [807, 7, 1, "", "IvyAttributeError"], [807, 7, 1, "", "IvyBackendException"], [807, 7, 1, "", "IvyBroadcastShapeError"], [807, 7, 1, "", "IvyDeviceError"], [807, 7, 1, "", "IvyDtypePromotionError"], [807, 7, 1, "", "IvyError"], [807, 7, 1, "", "IvyException"], [807, 7, 1, "", "IvyIndexError"], [807, 7, 1, "", "IvyInvalidBackendException"], [807, 7, 1, "", "IvyNotImplementedException"], [807, 7, 1, "", "IvyValueError"], [807, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[807, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[808, 2, 1, "", "add_array_specs"], [808, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[809, 2, 1, "", "set_logging_mode"], [809, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[810, 1, 1, "", "Profiler"], [810, 2, 1, "", "tensorflow_profile_start"], [810, 2, 1, "", "tensorflow_profile_stop"], [810, 2, 1, "", "torch_profiler_init"], [810, 2, 1, "", "torch_profiler_start"], [810, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[810, 0, 1, "", "__init__"], [810, 4, 1, "", "print_stats"], [810, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[811, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[771, 3, 0, "-", "assertions"], [772, 3, 0, "-", "available_frameworks"], [773, 3, 0, "-", "function_testing"], [774, 3, 0, "-", "globals"], [775, 3, 0, "-", "hypothesis_helpers"], [780, 3, 0, "-", "multiprocessing"], [781, 3, 0, "-", "pipeline_helper"], [782, 3, 0, "-", "structs"], [783, 3, 0, "-", "test_parameter_flags"], [784, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[771, 2, 1, "", "assert_all_close"], [771, 2, 1, "", "assert_same_type"], [771, 2, 1, "", "assert_same_type_and_shape"], [771, 2, 1, "", "check_unsupported_device"], [771, 2, 1, "", "check_unsupported_device_and_dtype"], [771, 2, 1, "", "check_unsupported_dtype"], [771, 2, 1, "", "test_unsupported_function"], [771, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, 2, 1, "", "args_to_container"], [773, 2, 1, "", "args_to_frontend"], [773, 2, 1, "", "arrays_to_frontend"], [773, 2, 1, "", "as_lists"], [773, 2, 1, "", "convtrue"], [773, 2, 1, "", "create_args_kwargs"], [773, 2, 1, "", "flatten"], [773, 2, 1, "", "flatten_and_to_np"], [773, 2, 1, "", "flatten_frontend"], [773, 2, 1, "", "flatten_frontend_fw_to_np"], [773, 2, 1, "", "flatten_frontend_to_np"], [773, 2, 1, "", "get_frontend_ret"], [773, 2, 1, "", "get_ret_and_flattened_np_array"], [773, 2, 1, "", "gradient_incompatible_function"], [773, 2, 1, "", "gradient_test"], [773, 2, 1, "", "gradient_unsupported_dtypes"], [773, 2, 1, "", "kwargs_to_args_n_kwargs"], [773, 2, 1, "", "test_frontend_function"], [773, 2, 1, "", "test_frontend_method"], [773, 2, 1, "", "test_function"], [773, 2, 1, "", "test_function_backend_computation"], [773, 2, 1, "", "test_function_ground_truth_computation"], [773, 2, 1, "", "test_gradient_backend_computation"], [773, 2, 1, "", "test_gradient_ground_truth_computation"], [773, 2, 1, "", "test_method"], [773, 2, 1, "", "test_method_backend_computation"], [773, 2, 1, "", "test_method_ground_truth_computation"], [773, 2, 1, "", "traced_if_required"], [773, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[774, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [774, 7, 1, "", "InterruptedTest"], [774, 1, 1, "", "TestData"], [774, 2, 1, "", "setup_api_test"], [774, 2, 1, "", "setup_frontend_test"], [774, 2, 1, "", "teardown_api_test"], [774, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[774, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[774, 0, 1, "", "__init__"], [774, 4, 1, "", "fn_name"], [774, 4, 1, "", "fn_tree"], [774, 4, 1, "", "is_method"], [774, 4, 1, "", "supported_device_dtypes"], [774, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[776, 3, 0, "-", "array_helpers"], [777, 3, 0, "-", "dtype_helpers"], [778, 3, 0, "-", "general_helpers"], [779, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, 2, 1, "", "array_and_broadcastable_shape"], [776, 2, 1, "", "array_bools"], [776, 2, 1, "", "array_helpers_dtype_info_helper"], [776, 2, 1, "", "array_indices_axis"], [776, 2, 1, "", "array_indices_put_along_axis"], [776, 2, 1, "", "array_values"], [776, 2, 1, "", "arrays_and_axes"], [776, 2, 1, "", "arrays_for_pooling"], [776, 2, 1, "", "broadcast_shapes"], [776, 2, 1, "", "cond_data_gen_helper"], [776, 2, 1, "", "create_concatenable_arrays_dtypes"], [776, 2, 1, "", "create_nested_input"], [776, 2, 1, "", "dtype_and_values"], [776, 2, 1, "", "dtype_array_query"], [776, 2, 1, "", "dtype_array_query_val"], [776, 2, 1, "", "dtype_values_axis"], [776, 2, 1, "", "einsum_helper"], [776, 2, 1, "", "get_first_solve_batch_matrix"], [776, 2, 1, "", "get_first_solve_matrix"], [776, 2, 1, "", "get_second_solve_batch_matrix"], [776, 2, 1, "", "get_second_solve_matrix"], [776, 2, 1, "", "list_of_size"], [776, 2, 1, "", "lists"], [776, 2, 1, "", "mutually_broadcastable_shapes"], [776, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, 2, 1, "", "array_dtypes"], [777, 2, 1, "", "cast_filter"], [777, 2, 1, "", "cast_filter_helper"], [777, 2, 1, "", "get_castable_dtype"], [777, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, 7, 1, "", "BroadcastError"], [778, 2, 1, "", "apply_safety_factor"], [778, 2, 1, "", "broadcast_shapes"], [778, 2, 1, "", "dims_and_offset"], [778, 2, 1, "", "embedding_helper"], [778, 2, 1, "", "general_helpers_dtype_info_helper"], [778, 2, 1, "", "get_axis"], [778, 2, 1, "", "get_bounds"], [778, 2, 1, "", "get_mean_std"], [778, 2, 1, "", "get_shape"], [778, 2, 1, "", "matrix_is_stable"], [778, 2, 1, "", "reshape_shapes"], [778, 2, 1, "", "sizes_"], [778, 2, 1, "", "subsets"], [778, 2, 1, "", "two_broadcastable_shapes"], [778, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, 2, 1, "", "floats"], [779, 2, 1, "", "ints"], [779, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, 2, 1, "", "backend_proc"], [780, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, 1, 1, "", "BackendHandler"], [781, 1, 1, "", "BackendHandlerMode"], [781, 1, 1, "", "WithBackendContext"], [781, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[781, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[781, 4, 1, "", "SetBackend"], [781, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[781, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[782, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[782, 0, 1, "", "__init__"], [782, 4, 1, "", "framework_init_module"], [782, 4, 1, "", "init_name"], [782, 4, 1, "", "ivy_init_module"], [782, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, 1, 1, "", "DynamicFlag"], [783, 1, 1, "", "FrontendFunctionTestFlags"], [783, 1, 1, "", "FrontendInitTestFlags"], [783, 1, 1, "", "FrontendMethodTestFlags"], [783, 1, 1, "", "FunctionTestFlags"], [783, 1, 1, "", "InitMethodTestFlags"], [783, 1, 1, "", "MethodTestFlags"], [783, 1, 1, "", "TestFlags"], [783, 2, 1, "", "build_flag"], [783, 2, 1, "", "frontend_function_flags"], [783, 2, 1, "", "frontend_init_flags"], [783, 2, 1, "", "frontend_method_flags"], [783, 2, 1, "", "function_flags"], [783, 2, 1, "", "init_method_flags"], [783, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[783, 0, 1, "", "__init__"], [783, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, 2, 1, "", "handle_example"], [784, 2, 1, "", "handle_frontend_method"], [784, 2, 1, "", "handle_frontend_test"], [784, 2, 1, "", "handle_method"], [784, 2, 1, "", "handle_test"], [784, 2, 1, "", "num_positional_args"], [784, 2, 1, "", "num_positional_args_helper"], [784, 2, 1, "", "num_positional_args_method"], [784, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"credit": 0, "card": 0, "fraud": 0, "detect": 0, "us": [0, 6, 8, 12, 19, 27, 30, 47, 49, 812, 814, 818, 819, 823, 839, 842, 852, 856, 863, 864], "ivi": [0, 4, 5, 8, 12, 19, 22, 30, 31, 32, 43, 44, 46, 47, 49, 812, 818, 820, 824, 826, 828, 831, 833, 839, 841, 842, 843, 844, 845, 846, 849, 850, 851, 852, 853, 854, 856, 863, 864, 865, 876], "framework": [0, 6, 31, 37, 43, 772, 785, 839, 842, 850, 870, 873, 876, 877], "librari": [0, 28, 31, 32, 47, 49, 864], "instal": [0, 4, 5, 12, 22, 43, 44, 46, 812, 856], "import": [0, 5, 8, 12, 14, 22, 43, 44, 47, 804], "configur": [0, 833, 842, 852], "environ": [0, 819], "load": [0, 8, 12, 14, 769, 852], "dataset": [0, 45, 47], "preview": 0, "inspect": [0, 808], "end": [0, 47], "inform": 0, "identifi": 0, "miss": 0, "valu": [0, 842], "transact": 0, "class": [0, 108, 785, 824, 833, 841, 851], "distribut": 0, "separ": 0, "data": [0, 4, 5, 8, 12, 14, 22, 31, 43, 54, 77, 108, 370, 630, 645, 749, 750, 751, 752, 829, 841, 844, 852, 855], "analysi": 0, "statist": [0, 70, 93, 387, 647], "measur": 0, "legitim": 0, "fraudul": 0, "compar": [0, 6, 7, 14], "metric": [0, 14, 47], "under": 0, "sampl": [0, 44], "balanc": [0, 847], "creat": [0, 1, 43, 44, 818], "split": [0, 708], "featur": [0, 844], "target": [0, 43], "train": [0, 14, 43, 45, 47], "test": [0, 14, 45, 773, 783, 784, 787, 818, 819, 820, 823, 828, 834, 842, 844], "set": [0, 6, 12, 39, 43, 44, 68, 91, 384, 645, 819, 825, 834, 846, 856], "convert": [0, 6, 7, 789, 854], "arrai": [0, 102, 105, 127, 386, 776, 823, 824, 828, 836, 851, 860, 863, 867], "displai": [0, 48], "dimens": 0, "prepar": [0, 4, 5, 8, 12], "function": [0, 8, 22, 31, 32, 43, 44, 45, 47, 49, 109, 773, 818, 827, 829, 830, 833, 836, 837, 838, 839, 841, 842, 844, 845, 846, 847, 849, 854, 855, 864], "process": 0, "enabl": 0, "soft": 0, "devic": [0, 55, 78, 371, 631, 830, 836, 841], "mode": [0, 39, 829, 833, 846], "xgboost": [0, 14], "classifi": [0, 12], "benchmark": 0, "model": [0, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 29, 30, 31, 32, 43, 44, 45, 46, 47, 49, 854, 855], "time": [0, 14], "base": [0, 74, 96, 106], "predict": 0, "perform": 0, "implement": [0, 4, 8, 828, 839, 841, 861], "ha": 0, "demonstr": 0, "faster": 0, "standard": [0, 847, 860, 867, 876], "classif": [0, 5], "report": 0, "evalu": [0, 14], "ivyclassifi": 0, "xgbclassifi": [0, 14], "visual": [0, 48], "comparison": [0, 14, 852], "demo": [1, 3, 4, 5, 20, 31, 45, 46], "notebook": 1, "TO": 2, "replac": 2, "titl": 2, "exampl": [3, 8, 12, 14, 20, 39, 831, 836, 839, 842, 844, 847, 863, 864, 865], "alexnet": 4, "infer": [4, 5, 8, 12, 838], "torch": [4, 5, 8, 12, 39, 46, 870, 871], "tensorflow": [4, 5, 6, 8, 14, 18, 39, 46, 47, 48, 870], "jax": [4, 5, 8, 11, 13, 14, 39, 46, 870], "appendix": [4, 8], "code": [4, 22, 23, 24, 25, 32, 43, 835, 843, 845], "bert": 5, "dependeci": 5, "modul": [5, 794, 829, 830, 853, 864], "sequenc": [5, 836], "your": [6, 8, 12, 820, 844], "pytorch": [6, 7, 13, 14, 16, 45, 870], "project": 6, "incompat": 6, "transpil": [6, 7, 16, 17, 18, 25, 26, 27, 28, 29, 31, 32, 35, 36, 37, 38, 39, 45, 49, 854, 856, 864], "about": [6, 7, 43], "up": [6, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 819, 834, 843, 856], "sourc": [6, 856], "from": [6, 7, 39, 46, 856], "result": [6, 7, 44], "fine": [6, 7], "tune": [6, 7], "conclus": [6, 7], "how": [7, 27, 818, 826, 834, 843, 844], "To": [7, 49, 820], "paddlepaddl": 7, "imag": [8, 12, 60, 83, 253, 814, 826], "segment": 8, "unet": 8, "custom": [8, 824, 826, 839, 843, 852, 855], "preprocess": 8, "visualis": [8, 12], "initi": [8, 12, 791, 853], "nativ": [8, 12, 824, 847], "pretrain": [8, 12], "weight": [8, 12, 852], "mask": 8, "backend": [8, 14, 22, 31, 43, 44, 46, 47, 799, 802, 818, 825, 829, 839, 845, 849, 855], "acceler": [11, 13, 14], "mmpretrain": 11, "resnet": [12, 50], "label": 12, "resnet34": 12, "resnet50": 12, "xgb_frontend": 14, "xgb": 14, "more": [14, 819, 847, 861], "exhaust": 14, "v": [14, 26, 36, 39, 835, 855, 860, 863], "number": [14, 779, 836], "boost": 14, "round": [14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 283, 843], "fraction": 14, "guid": [15, 20], "build": [16, 17, 18, 47, 814, 826, 849], "top": [16, 17, 18, 821, 828, 878], "haiku": 17, "develop": 19, "convolut": 19, "network": [19, 44, 47, 852, 854], "tutori": [20, 47], "And": 20, "learn": [20, 21, 870], "basic": [20, 21, 43, 44, 820, 841], "write": [22, 30, 841, 844], "content": [22, 45], "handler": [22, 31, 801, 802, 849], "structur": [22, 31, 826, 839, 855], "api": [22, 31, 32, 818, 823, 827, 828, 839, 845, 849, 851, 853, 854, 856, 860, 863, 864, 865, 867, 874, 876], "state": [22, 31, 32, 853, 855, 863], "unifi": [23, 26, 27, 33, 36, 37, 38, 43, 812, 851, 861, 865, 872, 876], "trace": [24, 26, 27, 32, 691, 833], "lazi": [26, 36, 863], "eager": [26, 36, 863], "decor": [27, 38, 833, 838, 844], "ani": [28, 29, 31, 32, 768], "odsc": 31, "graph": [31, 48, 871, 876], "tracer": [31, 849, 854, 856, 863, 871, 876], "quickstart": 32, "get": [32, 812, 820, 856], "familiar": 32, "0": [33, 34, 35, 36, 40, 41], "1": [34, 36, 37, 38, 39, 42, 49, 870], "compil": [34, 36, 37, 38, 44, 863, 868, 873, 875, 876], "2": [35, 38, 40, 49, 870], "select": 37, "As": 38, "3": [39, 41, 42, 49], "dynam": [39, 47, 804, 825, 855], "static": 39, "todo": [39, 820], "explain": 39, "via": 39, "why": [39, 844, 861], "i": [39, 826, 847], "true": 39, "default": [39, 544], "when": 39, "numpi": [39, 46, 841, 870], "fals": 39, "kornia": 40, "perceiv": 41, "stabl": 42, "diffus": 42, "oper": [43, 836, 846, 851, 855], "ml": [43, 859, 872, 876], "chang": 43, "one": 43, "line": [43, 820], "No": [43, 819, 861], "need": [43, 844], "worri": 43, "type": [43, 54, 77, 370, 630, 829, 837, 841, 855], "differ": 43, "them": 43, "all": [43, 767], "standalon": [43, 837], "defin": [43, 44, 45, 47], "optim": [43, 796, 853], "input": [43, 44, 836], "loss": [43, 63, 86, 377, 638, 793], "loop": [43, 47], "check": [44, 835, 855], "simpl": 44, "neural": 44, "deepmind": [45, 46], "": [45, 47, 818, 826, 843, 856], "perceiverio": [45, 46], "tabl": [45, 826, 829, 867], "construct": [45, 852], "some": 45, "helper": [45, 775, 776, 777, 778, 779, 781, 784, 790, 800, 806, 842, 844, 845], "pipelin": [45, 47, 781, 826, 828, 844, 855], "download": 45, "dataload": 45, "gpu": [46, 855], "introduct": [46, 49, 841, 842], "python3": 46, "8": 46, "setup": [46, 835], "kernel": 46, "clone": [46, 819, 828], "repo": [46, 819], "ivy_model": 46, "run": [46, 820, 823, 826, 834, 844], "let": 47, "we": [47, 844], "ar": 47, "mnist": 47, "thi": 47, "temporari": 47, "loader": 47, "util": [47, 71, 94, 388, 648, 786], "plot": 47, "save": [47, 770, 852], "huggingfac": 48, "deit": 48, "can": 48, "html": 48, "file": 48, "browser": [48, 820], "interfac": 49, "telemetri": 49, "18": 50, "activ": [51, 73, 367, 626, 788], "convers": [52, 75, 838], "creation": [53, 76, 369, 629], "elementwis": [56, 79, 107, 372, 632], "experiment": [57, 80, 633, 818], "gener": [58, 81, 373, 634, 778, 839, 844, 847, 863], "gradient": [59, 82, 349, 374, 635, 839], "layer": [61, 84, 375, 636, 792], "linear": [62, 85, 376, 637, 660], "algebra": [62, 85, 376, 637], "manipul": [64, 87, 378, 639], "norm": [65, 88, 381, 642, 795], "random": [66, 89, 382, 643], "search": [67, 90, 383, 644], "sort": [69, 92, 385, 646, 756], "wrap": [72, 95, 838], "cp": 97, "tensor": [97, 98, 99, 100, 101, 104], "parafac2": 98, "tr": 99, "tt": 100, "tucker": [101, 451], "contain": [103, 820, 827, 852], "factor": 104, "nest": [105, 380, 641], "gelu": 110, "hardswish": 111, "leaky_relu": 112, "log_softmax": 113, "mish": 114, "relu": 115, "sigmoid": 116, "softmax": 117, "softplu": 118, "softsign": 119, "cmp_i": 120, "cmp_isnot": 121, "for_loop": 122, "if_els": 123, "try_except": 124, "while_loop": 125, "arang": 126, "asarrai": 128, "copy_arrai": 129, "empti": 130, "empty_lik": 131, "ey": 132, "from_dlpack": 133, "note": [133, 144, 629], "frombuff": 134, "full": [135, 842], "full_lik": 136, "linspac": 137, "logspac": 138, "meshgrid": 139, "native_arrai": 140, "one_hot": 141, "ones": 142, "ones_lik": 143, "to_dlpack": 144, "tril": 145, "triu": 146, "triu_indic": 147, "zero": 148, "zeros_lik": 149, "as_ivy_dtyp": 150, "as_native_dtyp": 151, "astyp": 152, "broadcast_arrai": 153, "broadcast_to": 154, "can_cast": 155, "check_float": 156, "closest_valid_dtyp": 157, "default_complex_dtyp": 158, "default_dtyp": 159, "default_float_dtyp": 160, "default_int_dtyp": 161, "default_uint_dtyp": 162, "dtype": [163, 777, 836], "dtype_bit": 164, "finfo": 165, "function_supported_dtyp": 166, "function_unsupported_dtyp": 167, "iinfo": 168, "infer_default_dtyp": 169, "invalid_dtyp": 170, "is_bool_dtyp": 171, "is_complex_dtyp": 172, "is_float_dtyp": 173, "is_hashable_dtyp": 174, "is_int_dtyp": 175, "is_native_dtyp": 176, "is_uint_dtyp": 177, "promote_typ": 178, "promote_types_of_input": 179, "result_typ": 180, "set_default_complex_dtyp": 181, "set_default_dtyp": 182, "set_default_float_dtyp": 183, "set_default_int_dtyp": 184, "set_default_uint_dtyp": 185, "type_promote_arrai": 186, "unset_default_complex_dtyp": 187, "unset_default_dtyp": 188, "unset_default_float_dtyp": 189, "unset_default_int_dtyp": 190, "unset_default_uint_dtyp": 191, "valid_dtyp": 192, "as_ivy_dev": 193, "as_native_dev": 194, "clear_cached_mem_on_dev": 195, "default_devic": 196, "dev": 197, "dev_util": 198, "function_supported_devic": 199, "function_unsupported_devic": 200, "get_all_ivy_arrays_on_dev": 201, "gpu_is_avail": 202, "handle_soft_device_vari": 203, "num_cpu_cor": 204, "num_gpu": 205, "num_ivy_arrays_on_dev": 206, "percent_used_mem_on_dev": 207, "print_all_ivy_arrays_on_dev": 208, "set_default_devic": 209, "set_soft_device_mod": 210, "paramet": [210, 578, 579, 584, 585, 587, 588, 631, 634, 783, 788, 846], "set_split_factor": 211, "split_factor": 212, "split_func_cal": 213, "to_devic": 214, "total_mem_on_dev": 215, "tpu_is_avail": 216, "unset_default_devic": 217, "unset_soft_device_mod": 218, "used_mem_on_dev": 219, "ab": 220, "aco": 221, "acosh": 222, "add": [223, 831, 842, 876], "angl": 224, "asin": 225, "asinh": 226, "atan": 227, "atan2": 228, "atanh": 229, "bitwise_and": 230, "bitwise_invert": 231, "bitwise_left_shift": 232, "bitwise_or": 233, "bitwise_right_shift": 234, "bitwise_xor": 235, "ceil": 236, "co": 237, "cosh": 238, "deg2rad": 239, "divid": 240, "equal": 241, "erf": 242, "exp": 243, "exp2": 244, "expm1": 245, "floor": 246, "floor_divid": 247, "fmin": 248, "fmod": 249, "gcd": 250, "greater": 251, "greater_equ": 252, "isfinit": 254, "isinf": 255, "isnan": 256, "isreal": 257, "lcm": 258, "less": 259, "less_equ": 260, "log": [261, 809, 819], "log10": 262, "log1p": 263, "log2": 264, "logaddexp": 265, "logaddexp2": 266, "logical_and": 267, "logical_not": 268, "logical_or": 269, "logical_xor": 270, "maximum": 271, "minimum": 272, "multipli": 273, "nan_to_num": 274, "neg": 275, "not_equ": 276, "posit": [277, 836], "pow": 278, "rad2deg": 279, "real": 280, "reciproc": 281, "remaind": 282, "sign": 284, "sin": 285, "sinh": 286, "sqrt": 287, "squar": 288, "subtract": 289, "tan": [290, 831, 842], "tanh": 291, "trapz": 292, "trunc": 293, "trunc_divid": 294, "celu": 295, "elu": 296, "hardshrink": 297, "hardsilu": 298, "hardtanh": 299, "logit": 300, "logsigmoid": 301, "prelu": 302, "relu6": 303, "scaled_tanh": 304, "selu": 305, "silu": 306, "softshrink": 307, "stanh": 308, "tanhshrink": 309, "threshold": 310, "thresholded_relu": 311, "blackman_window": 312, "eye_lik": 313, "hamming_window": 314, "hann_window": 315, "indic": 316, "kaiser_bessel_derived_window": 317, "kaiser_window": 318, "mel_weight_matrix": 319, "ndenumer": 320, "ndindex": 321, "polyv": 322, "random_cp": 323, "random_parafac2": 324, "random_tr": 325, "random_tt": 326, "random_tuck": 327, "tril_indic": 328, "trilu": 329, "unsorted_segment_mean": 330, "unsorted_segment_min": 331, "unsorted_segment_sum": 332, "vorbis_window": 333, "allclos": 334, "amax": 335, "amin": 336, "binar": 337, "conj": 338, "copysign": 339, "count_nonzero": 340, "diff": 341, "digamma": 342, "erfc": 343, "erfinv": 344, "fix": [345, 818, 834], "float_pow": 346, "fmax": 347, "frexp": 348, "hypot": 350, "isclos": 351, "ldexp": 352, "lerp": 353, "lgamma": 354, "modf": 355, "nansum": 356, "nextaft": 357, "signbit": 358, "sinc": 359, "sparsify_tensor": 360, "xlogi": 361, "zeta": 362, "reduc": 363, "bind_custom_gradient_funct": 364, "jvp": 365, "vjp": 366, "constant": [368, 627], "meta": [379, 640], "spars": 386, "adaptive_avg_pool1d": 389, "adaptive_avg_pool2d": 390, "adaptive_max_pool2d": 391, "adaptive_max_pool3d": 392, "area_interpol": 393, "avg_pool1d": 394, "avg_pool2d": 395, "avg_pool3d": 396, "dct": 397, "dft": 398, "dropout1d": 399, "dropout2d": 400, "dropout3d": 401, "embed": 402, "fft": 403, "fft2": 404, "generate_einsum_equ": 405, "get_interpolate_kernel": 406, "idct": 407, "ifft": 408, "ifftn": 409, "interp": 410, "interpol": 411, "max_pool1d": 412, "max_pool2d": 413, "max_pool3d": 414, "max_unpool1d": 415, "nearest_interpol": 416, "pool": 417, "reduce_window": 418, "rfft": 419, "rfftn": 420, "rnn": 421, "sliding_window": 422, "stft": 423, "adjoint": 424, "batched_out": 425, "cond": 426, "diagflat": 427, "dot": 428, "eig": [429, 672], "eigh_tridiagon": 430, "eigval": 431, "general_inner_product": 432, "higher_order_mo": 433, "initialize_tuck": 434, "khatri_rao": 435, "kron": 436, "kroneck": 437, "lu_factor": 438, "lu_solv": 439, "make_svd_non_neg": 440, "matrix_exp": 441, "mode_dot": 442, "multi_dot": 443, "multi_mode_dot": 444, "partial_tuck": 445, "solve_triangular": 446, "svd_flip": 447, "tensor_train": 448, "truncated_svd": 449, "tt_matrix_to_tensor": 450, "hinge_embedding_loss": 452, "huber_loss": 453, "kl_div": 454, "l1_loss": 455, "log_poisson_loss": 456, "poisson_nll_loss": 457, "smooth_l1_loss": 458, "soft_margin_loss": 459, "as_strid": 460, "associative_scan": 461, "atleast_1d": 462, "atleast_2d": 463, "atleast_3d": 464, "broadcast_shap": 465, "check_scalar": 466, "choos": 467, "column_stack": 468, "concat_from_sequ": 469, "dsplit": 470, "dstack": 471, "expand": 472, "fill_diagon": 473, "flatten": 474, "fliplr": 475, "flipud": 476, "fold": 477, "heavisid": 478, "hsplit": 479, "hstack": 480, "i0": 481, "matric": 482, "moveaxi": 483, "pad": 484, "partial_fold": 485, "partial_tensor_to_vec": 486, "partial_unfold": 487, "partial_vec_to_tensor": 488, "put_along_axi": 489, "rot90": 490, "soft_threshold": 491, "take": 492, "take_along_axi": 493, "top_k": 494, "trim_zero": 495, "unflatten": 496, "unfold": 497, "unique_consecut": 498, "vsplit": 499, "vstack": 500, "batch_norm": 501, "group_norm": 502, "instance_norm": 503, "l1_normal": 504, "l2_normal": 505, "local_response_norm": 506, "lp_normal": 507, "bernoulli": 508, "beta": 509, "dirichlet": 510, "gamma": 511, "poisson": 512, "unravel_index": 513, "invert_permut": 514, "lexsort": 515, "is_ivy_sparse_arrai": 516, "is_native_sparse_arrai": 517, "native_sparse_arrai": 518, "native_sparse_array_to_indices_values_and_shap": 519, "bincount": 520, "corrcoef": 521, "cov": 522, "cummax": 523, "cummin": 524, "histogram": 525, "igamma": 526, "median": 527, "nanmean": 528, "nanmedian": 529, "nanmin": 530, "nanprod": 531, "quantil": 532, "optional_get_el": 533, "all_equ": 534, "arg_info": 535, "arg_nam": 536, "array_equ": 537, "assert_supports_inplac": 538, "cache_fn": 539, "clip_matrix_norm": 540, "clip_vector_norm": 541, "container_typ": 542, "current_backend_str": 543, "einops_rearrang": 545, "einops_reduc": 546, "einops_repeat": 547, "exist": [548, 814, 843], "fourier_encod": 549, "function_supported_devices_and_dtyp": 550, "function_unsupported_devices_and_dtyp": 551, "gather": 552, "gather_nd": 553, "get_all_arrays_in_memori": 554, "get_item": 555, "get_num_dim": 556, "get_referrers_recurs": 557, "has_nan": 558, "inplace_arrays_support": 559, "inplace_decr": 560, "inplace_incr": 561, "inplace_upd": 562, "inplace_variables_support": 563, "is_arrai": 564, "is_ivy_arrai": 565, "is_ivy_contain": 566, "is_ivy_nested_arrai": 567, "is_native_arrai": 568, "isin": 569, "isscalar": 570, "items": 571, "match_kwarg": 572, "multiprocess": [573, 780], "num_arrays_in_memori": 574, "print_all_arrays_in_memori": 575, "scatter_flat": 576, "scatter_nd": 577, "set_array_mod": 578, "set_exception_trace_mod": 579, "set_inplace_mod": 580, "set_item": 581, "set_min_bas": 582, "set_min_denomin": 583, "set_nestable_mod": 584, "set_precise_mod": 585, "set_queue_timeout": 586, "set_shape_array_mod": 587, "set_show_func_wrapper_trace_mod": 588, "set_tmp_dir": 589, "shape": [590, 645, 749, 750, 751, 752, 838, 855], "size": [591, 855], "stable_divid": 592, "stable_pow": 593, "stride": 594, "supports_inplace_upd": 595, "to_ivy_shap": 596, "to_list": 597, "to_native_shap": 598, "to_numpi": 599, "to_scalar": 600, "try_else_non": 601, "unset_array_mod": 602, "unset_exception_trace_mod": 603, "unset_inplace_mod": 604, "unset_min_bas": 605, "unset_min_denomin": 606, "unset_nestable_mod": 607, "unset_precise_mod": 608, "unset_queue_timeout": 609, "unset_shape_array_mod": 610, "unset_show_func_wrapper_trace_mod": 611, "unset_tmp_dir": 612, "value_is_nan": 613, "vmap": 614, "adam_step": 615, "adam_upd": 616, "execute_with_gradi": [617, 839], "grad": 618, "gradient_descent_upd": 619, "jac": 620, "lamb_upd": 621, "lars_upd": 622, "optimizer_upd": 623, "stop_gradi": 624, "value_and_grad": 625, "control": [628, 855], "flow": [628, 855], "op": 628, "depend": [645, 749, 750, 751, 752], "output": [645, 749, 750, 751, 752], "conv": 649, "conv1d": 650, "conv1d_transpos": 651, "conv2d": 652, "conv2d_transpos": 653, "conv3d": 654, "conv3d_transpos": 655, "conv_general_dil": 656, "conv_general_transpos": 657, "depthwise_conv2d": 658, "dropout": 659, "lstm": 661, "lstm_updat": 662, "multi_head_attent": 663, "nm": 664, "roi_align": 665, "scaled_dot_product_attent": 666, "choleski": 667, "cross": 668, "det": 669, "diag": 670, "diagon": 671, "eigh": 673, "eigvalsh": 674, "inner": 675, "inv": 676, "matmul": 677, "matrix_norm": 678, "matrix_pow": 679, "matrix_rank": 680, "matrix_transpos": 681, "outer": 682, "pinv": 683, "qr": 684, "slogdet": 685, "solv": 686, "svd": 687, "svdval": 688, "tensordot": 689, "tensorsolv": 690, "vander": 692, "vecdot": 693, "vector_norm": 694, "vector_to_skew_symmetric_matrix": 695, "binary_cross_entropi": 696, "cross_entropi": 697, "sparse_cross_entropi": 698, "clip": 699, "concat": 700, "constant_pad": 701, "expand_dim": 702, "flip": 703, "permute_dim": 704, "repeat": 705, "reshap": 706, "roll": [707, 831], "squeez": 709, "stack": [710, 833], "swapax": 711, "tile": 712, "unstack": 713, "zero_pad": 714, "fomaml_step": 715, "maml_step": 716, "reptile_step": 717, "all_nested_indic": 718, "copy_nest": 719, "duplicate_array_index_chain": 720, "index_nest": 721, "insert_into_nest_at_index": 722, "insert_into_nest_at_indic": 723, "map": [724, 828], "map_nest_at_index": 725, "map_nest_at_indic": 726, "multi_index_nest": 727, "nested_ani": 728, "nested_argwher": 729, "nested_map": 730, "nested_multi_map": 731, "prune_empti": 732, "prune_nest_at_index": 733, "prune_nest_at_indic": 734, "set_nest_at_index": 735, "set_nest_at_indic": 736, "layer_norm": 737, "multinomi": 738, "randint": 739, "random_norm": 740, "random_uniform": 741, "seed": 742, "shuffl": 743, "argmax": 744, "argmin": 745, "argwher": 746, "nonzero": 747, "where": [748, 818, 834], "unique_al": 749, "unique_count": 750, "unique_invers": 751, "unique_valu": 752, "argsort": 753, "msort": 754, "searchsort": 755, "cumprod": 757, "cumsum": 758, "einsum": [759, 805, 806], "max": 760, "mean": 761, "min": 762, "prod": 763, "std": 764, "sum": 765, "var": 766, "assert": [771, 798, 833], "avail": 772, "global": [774, 846], "hypothesi": [775, 819, 842, 844], "struct": 782, "flag": 783, "sequenti": 797, "ast": 800, "sub": 802, "binari": [803, 819], "parser": 805, "path": 806, "except": [807, 833, 838], "profil": 810, "verbos": 811, "statu": 812, "ai": 812, "start": [812, 856], "document": 812, "contribut": [812, 813, 818, 843], "commun": 812, "citat": 812, "doc": [814, 826], "docker": [814, 819, 820, 826, 856], "conveni": [814, 826, 837], "script": [814, 826], "hub": 814, "local": [814, 820, 835], "without": [814, 842], "contributor": [815, 821, 878], "reward": 815, "badg": 815, "tier": 815, "error": [816, 833, 834], "handl": [816, 824, 830, 833, 838, 855], "help": [817, 820, 834], "resourc": 817, "open": 818, "task": 818, "fail": [818, 834, 844], "frontend": [818, 825, 841, 842, 854], "place": 818, "checklist": 818, "format": [818, 835, 869, 876], "extend": [818, 844, 847], "an": [818, 839], "issu": [818, 820, 835, 856], "github": [818, 819], "templat": 818, "fork": [819, 820], "pre": [819, 835], "commit": [819, 820, 828, 835], "pycharm": [819, 820, 835], "virtual": 819, "miniconda": 819, "venv": 819, "interpret": 819, "window": 819, "maco": 819, "ubuntu": 819, "detail": 819, "free": 819, "wsl": 819, "codespac": 819, "The": [819, 820, 826, 839, 841, 851, 855, 860], "list": 820, "manag": 820, "who": 820, "ask": [820, 834], "With": 820, "command": 820, "pull": [820, 828], "request": [820, 828], "small": 820, "often": 820, "interact": 820, "most": 820, "out": [820, 836, 838, 840], "id": [820, 823], "program": 821, "core": [821, 878], "rise": [821, 878], "deep": 822, "dive": 822, "termin": 823, "regener": 823, "failur": 823, "skip": 823, "integr": [824, 828, 835, 843, 844], "version": [825, 845, 855], "support": [825, 829, 838, 841, 855], "builder": 826, "being": 826, "option": 826, "index": 826, "rst": 826, "partial_conf": 826, "py": 826, "prebuild": 826, "sh": 826, "extens": 826, "custom_autosummari": 826, "hide": 826, "discussion_link": 826, "skippable_funct": 826, "ivy_data": 826, "instanc": [827, 841, 842, 851], "method": [827, 841, 842, 851, 852], "special": [827, 829, 841], "nestabl": [827, 836, 837, 838], "continu": [828, 835], "push": 828, "pr": 828, "trigger": 828, "A": [828, 847], "down": 828, "view": [828, 838, 840], "store": 828, "retriev": 828, "repositori": 828, "nitti": 828, "gritti": 828, "storag": 828, "space": 828, "unifyai": 828, "determin": 828, "coverag": 828, "workflow": 828, "multipl": 828, "runner": 828, "race": 828, "condit": 828, "period": 828, "manual": 828, "dispatch": 828, "ci": 828, "dashboard": 828, "promot": [829, 841], "precis": 829, "non": [829, 847], "argument": [829, 830, 836, 838, 840, 841], "other": [829, 830], "unsupport": 829, "attribut": [829, 846], "case": [829, 852], "bug": 829, "cast": [829, 841], "superset": [829, 847], "docstr": [831, 832], "func_wrapp": 833, "prune": 833, "handle_except": 833, "consist": [833, 844], "prerequir": 834, "common": [834, 835], "lint": [835, 843], "keyword": 836, "integ": 836, "primari": 837, "composit": 837, "mix": [837, 838, 844], "partial": [837, 838, 844], "order": 838, "wrapper": [838, 876, 877], "miscellan": 838, "overview": [839, 843], "usag": [839, 843, 847, 865], "signatur": 839, "design": [839, 845, 848], "our": 839, "polici": [839, 841], "specif": [839, 874, 875, 876], "consider": 839, "inplac": 840, "updat": 840, "copi": 840, "short": 841, "unus": 841, "rule": 841, "duplic": [841, 847], "alia": 842, "formatt": 843, "functionorderingformatt": 843, "work": [843, 860, 866], "own": 844, "strategi": 844, "ad": 844, "explicit": 844, "do": [844, 860], "effect": 844, "bonu": 844, "self": 844, "test_array_funct": 844, "re": [844, 861], "navig": 845, "categor": 845, "submodul": 845, "unpin": 845, "properti": 846, "getter": 846, "setter": 846, "set_": 846, "unset_": 846, "behaviour": 847, "what": [847, 876], "effici": 847, "maxim": 847, "block": 849, "monkei": 851, "patch": 851, "represent": 852, "recurs": 852, "built": 852, "ins": 852, "access": 852, "compartment": 852, "role": 854, "faq": 855, "maintain": 855, "deploy": 855, "auto": 855, "differenti": 855, "replica": 855, "parallel": 855, "altern": 855, "pip": 856, "folder": 856, "kei": 856, "question": 856, "glossari": 857, "motiv": 858, "explos": 859, "skeptic": 860, "complimentari": 860, "competit": 860, "infinit": 861, "shelf": 861, "life": 861, "One": 862, "liner": 862, "trace_graph": 863, "cach": 863, "sharp": [863, 864, 865], "bit": [863, 864, 865], "relat": 866, "infrastructur": [868, 876], "llvm": 868, "mlir": 868, "oneapi": 868, "exchang": [869, 876], "onnx": 869, "nnef": 869, "coreml": 869, "matlab": 870, "scipi": 870, "scikit": 870, "theano": 870, "panda": 870, "julia": 870, "apach": [870, 873], "spark": 870, "mllib": 870, "caff": 870, "chainer": 870, "mxnet": 870, "cntk": 870, "flux": 870, "dex": 870, "languag": 870, "tf": 871, "jaxpr": 871, "jit": 871, "fx": 871, "compani": [872, 876], "quansight": 872, "modular": 872, "octoml": 872, "multi": [873, 876], "vendor": [873, 874, 875, 876], "tvm": 873, "xla": 873, "gcc": 873, "tensorrt": 874, "cuda": 874, "icc": 875, "icx": 875, "nvcc": 875, "doe": 876, "eagerpi": 877, "kera": 877, "thinc": 877, "tensorli": 877, "neuropod": 877, "leaderboard": 878}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"can_cast": [[155, "can-cast"]], "set_default_complex_dtype": [[181, "set-default-complex-dtype"]], "default_dtype": [[159, "default-dtype"]], "is_uint_dtype": [[177, "is-uint-dtype"]], "zeros_like": [[149, "zeros-like"]], "broadcast_arrays": [[153, "broadcast-arrays"]], "broadcast_to": [[154, "broadcast-to"]], "logspace": [[138, "logspace"]], "set_default_float_dtype": [[183, "set-default-float-dtype"]], "is_hashable_dtype": [[174, "is-hashable-dtype"]], "check_float": [[156, "check-float"]], "ones": [[142, "ones"]], "default_float_dtype": [[160, "default-float-dtype"]], "is_float_dtype": [[173, "is-float-dtype"]], "dtype": [[163, "dtype"]], "is_bool_dtype": [[171, "is-bool-dtype"]], "to_dlpack": [[144, "to-dlpack"]], "Note": [[144, null], [133, null], [629, null], [629, null]], "as_native_dtype": [[151, "as-native-dtype"]], "default_int_dtype": [[161, "default-int-dtype"]], "is_int_dtype": [[175, "is-int-dtype"]], "function_supported_dtypes": [[166, "function-supported-dtypes"]], "is_native_dtype": [[176, "is-native-dtype"]], "infer_default_dtype": [[169, "infer-default-dtype"]], "native_array": [[140, "native-array"]], "one_hot": [[141, "one-hot"]], "zeros": [[148, "zeros"]], "promote_types": [[178, "promote-types"]], "set_default_dtype": [[182, "set-default-dtype"]], "meshgrid": [[139, "meshgrid"]], "promote_types_of_inputs": [[179, "promote-types-of-inputs"]], "default_complex_dtype": [[158, "default-complex-dtype"]], "default_uint_dtype": [[162, "default-uint-dtype"]], "tril": [[145, "tril"]], "function_unsupported_dtypes": [[167, "function-unsupported-dtypes"]], "is_complex_dtype": [[172, "is-complex-dtype"]], "triu": [[146, "triu"]], "ones_like": [[143, "ones-like"]], "triu_indices": [[147, "triu-indices"]], "astype": [[152, "astype"]], "as_ivy_dtype": [[150, "as-ivy-dtype"]], "iinfo": [[168, "iinfo"]], "invalid_dtype": [[170, "invalid-dtype"]], "dtype_bits": [[164, "dtype-bits"]], "result_type": [[180, "result-type"]], "closest_valid_dtype": [[157, "closest-valid-dtype"]], "finfo": [[165, "finfo"]], "Wrapper Frameworks": [[877, "wrapper-frameworks"], [876, "wrapper-frameworks"]], "EagerPy eagerpy": [[877, "eagerpy-eagerpy"]], "Keras keras": [[877, "keras-keras"]], "Thinc thinc": [[877, "thinc-thinc"]], "TensorLy tensorly": [[877, "tensorly-tensorly"]], "NeuroPod": [[877, "id1"]], "Contributor Leaderboard": [[878, "contributor-leaderboard"]], "Top Contributors": [[878, "top-contributors"]], "Rising Contributors": [[878, "rising-contributors"]], "Core Contributors": [[878, "core-contributors"]], "Contributors": [[878, "contributors"]], "Vendor-Specific Compilers": [[875, "vendor-specific-compilers"], [876, "vendor-specific-compilers"]], "ICC": [[875, "id1"]], "ICX": [[875, "icx"]], "NVCC": [[875, "nvcc"]], "What does Ivy Add?": [[876, "what-does-ivy-add"]], "API Standards": [[876, "api-standards"], [867, "api-standards"]], "Frameworks": [[876, "frameworks"], [870, "frameworks"]], "Graph Tracers": [[876, "graph-tracers"], [871, "graph-tracers"]], "Exchange Formats": [[876, "exchange-formats"], [869, "exchange-formats"]], "Compiler Infrastructure": [[876, "compiler-infrastructure"], [868, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[876, "multi-vendor-compiler-frameworks"], [873, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[876, "vendor-specific-apis"], [874, "vendor-specific-apis"]], "ML-Unifying Companies": [[876, "ml-unifying-companies"], [872, "ml-unifying-companies"]], "TensorRT tensorrt": [[874, "tensorrt-tensorrt"]], "CUDA cuda": [[874, "cuda-cuda"]], "Function Wrapping": [[838, "function-wrapping"]], "Decorator order": [[838, "decorator-order"]], "Conversion Wrappers": [[838, "conversion-wrappers"]], "Inference Wrappers": [[838, "inference-wrappers"]], "Out Argument Support": [[838, "out-argument-support"]], "Nestable Support": [[838, "nestable-support"]], "Partial Mixed Function Support": [[838, "partial-mixed-function-support"]], "Shape Conversion": [[838, "shape-conversion"]], "View Handling": [[838, "view-handling"]], "Exception Handling": [[838, "exception-handling"], [833, "exception-handling"]], "Miscellaneous Wrappers": [[838, "miscellaneous-wrappers"]], "Inplace Updates": [[840, "inplace-updates"]], "out argument": [[840, "out-argument"]], "copy argument": [[840, "copy-argument"]], "Views": [[840, "views"]], "Ivy Frontends": [[841, "ivy-frontends"]], "Introduction": [[841, "introduction"], [842, "introduction"], [46, "Introduction"]], "The Frontend Basics": [[841, "the-frontend-basics"]], "Writing Frontend Functions": [[841, "writing-frontend-functions"]], "Short Frontend Implementations": [[841, "short-frontend-implementations"]], "Unused Arguments": [[841, "unused-arguments"]], "Supported Data Types and Devices": [[841, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[841, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[841, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[841, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[841, "frontends-duplicate-policy"]], "Function Types": [[837, "function-types"]], "Primary Functions": [[837, "primary-functions"]], "Compositional Functions": [[837, "compositional-functions"]], "Mixed Functions": [[837, "mixed-functions"]], "Partial Mixed Functions": [[837, "partial-mixed-functions"]], "Standalone Functions": [[837, "standalone-functions"]], "Nestable Functions": [[837, "nestable-functions"], [836, "nestable-functions"], [827, "nestable-functions"]], "Convenience Functions": [[837, "convenience-functions"]], "Navigating the Code": [[845, "navigating-the-code"]], "Categorization": [[845, "categorization"]], "Submodule Design": [[845, "submodule-design"]], "Ivy API": [[845, "ivy-api"]], "Backend API": [[845, "backend-api"]], "Submodule Helper Functions": [[845, "submodule-helper-functions"]], "Version Unpinning": [[845, "version-unpinning"]], "Ivy as a Framework": [[850, "ivy-as-a-framework"], [31, "Ivy-as-a-Framework"]], "Function Arguments": [[836, "function-arguments"]], "Examples": [[836, "examples"], [863, "examples"], [865, "examples"], [864, "examples"]], "Positional and Keyword Arguments": [[836, "positional-and-keyword-arguments"]], "Input Arrays": [[836, "input-arrays"]], "out Argument": [[836, "out-argument"]], "dtype and device arguments": [[836, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[836, "numbers-in-operator-functions"]], "Integer Sequences": [[836, "integer-sequences"]], "Ivy as a Transpiler": [[854, "ivy-as-a-transpiler"], [31, "Ivy-as-a-Transpiler"], [32, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[854, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[854, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[854, "converting-network-models"]], "Ivy Stateful API": [[853, "ivy-stateful-api"], [22, "Ivy-Stateful-API"], [31, "Ivy-Stateful-API"]], "Modules": [[853, "modules"]], "Initializers": [[853, "initializers"], [791, "module-ivy.stateful.initializers"]], "Optimizers": [[853, "optimizers"], [796, "module-ivy.stateful.optimizers"]], "Operating Modes": [[846, "operating-modes"]], "Global Parameter Properties": [[846, "global-parameter-properties"]], "Getter: ivy. attribute": [[846, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[846, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "FAQ": [[855, "faq"]], "Maintaining Backend Versions": [[855, "maintaining-backend-versions"]], "Dynamic Sizes": [[855, "dynamic-sizes"]], "Type and Shape Checking": [[855, "type-and-shape-checking"]], "GPU handling": [[855, "gpu-handling"]], "Model Deployment": [[855, "model-deployment"]], "Dynamic Control Flow": [[855, "dynamic-control-flow"]], "Auto-Differentiation": [[855, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[855, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[855, "support-for-functions"]], "Alternative Data Structures": [[855, "alternative-data-structures"]], "Custom Operations": [[855, "custom-operations"]], "The Pipeline": [[855, "the-pipeline"]], "State": [[855, "state"]], "MATLAB matlab": [[870, "matlab-matlab"]], "SciPy scipy": [[870, "scipy-scipy"]], "Torch torch": [[870, "torch-torch"]], "NumPy numpy": [[870, "numpy-numpy"]], "SciKit Learn scikit-learn": [[870, "scikit-learn-scikit-learn"]], "Theano theano": [[870, "theano-theano"]], "Pandas pandas": [[870, "pandas-pandas"]], "Julia julia": [[870, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[870, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[870, "caffe-caffe"]], "Chainer chainer": [[870, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[870, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[870, "mxnet-mxnet"]], "CNTK cntk": [[870, "cntk-cntk"]], "PyTorch pytorch": [[870, "pytorch-pytorch"]], "Flux flux": [[870, "flux-flux"]], "JAX jax": [[870, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[870, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[870, "dex-language-dex-language"]], "tf.Graph": [[871, "tf-graph"]], "Jaxpr": [[871, "jaxpr"]], "torch.jit": [[871, "torch-jit"]], "torch.fx": [[871, "torch-fx"]], "Array API Standard": [[867, "id1"]], "Table:": [[867, "table"]], "Continuous Integration": [[828, "continuous-integration"], [835, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[828, "commit-push-pr-triggered-testing"]], "Ivy Tests": [[828, "ivy-tests"], [844, "ivy-tests"]], "Implementation": [[828, "implementation"]], "A Top-Down View": [[828, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[828, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[828, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[828, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[828, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[828, "determine-test-coverage-workflow"]], "Multiple Runners": [[828, "multiple-runners"]], "Race Condition": [[828, "race-condition"]], "Array API Tests": [[828, "array-api-tests"], [823, "array-api-tests"]], "Periodic Testing": [[828, "periodic-testing"]], "Manually Dispatched Workflows": [[828, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[828, "ci-pipeline"]], "Push": [[828, "push"]], "Pull Request": [[828, "pull-request"]], "Dashboard": [[828, "dashboard"]], "ONNX onnx": [[869, "onnx-onnx"]], "NNEF nnef": [[869, "nnef-nnef"]], "CoreML coreml": [[869, "coreml-coreml"]], "Gradients": [[839, "gradients"], [635, "gradients"], [374, "gradients"], [59, "module-ivy.data_classes.array.gradients"], [82, "module-ivy.data_classes.container.gradients"]], "Overview": [[839, "overview"], [843, "overview"]], "Example Usage of the Gradient API": [[839, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[839, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[839, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[839, "custom-gradient-functions"]], "Design of the Gradient API": [[839, "design-of-the-gradient-api"]], "Our policy on gradients": [[839, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[839, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[839, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[839, "framework-specific-considerations"]], "Related Work": [[866, "related-work"]], "ivy.trace_graph()": [[863, "ivy-trace-graph"]], "Tracer API": [[863, "tracer-api"]], "Using the tracer": [[863, "using-the-tracer"]], "Eager vs lazy Compilation": [[863, "eager-vs-lazy-compilation"]], "Array caching": [[863, "array-caching"]], "Generators": [[863, "generators"]], "Stateful": [[863, "stateful"]], "Sharp bits": [[863, "sharp-bits"], [865, "sharp-bits"], [864, "sharp-bits"]], "Data Types": [[829, "data-types"]], "Data Type Module": [[829, "data-type-module"]], "Data Type Promotion": [[829, "data-type-promotion"]], "Precise Mode": [[829, "precise-mode"]], "Precise Promotion Table": [[829, "precise-promotion-table"]], "Non-Precise Promotion Table": [[829, "non-precise-promotion-table"]], "Arguments in other Functions": [[829, "arguments-in-other-functions"], [830, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[829, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[829, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[829, "special-case"]], "Backend Data Type Bugs": [[829, "backend-data-type-bugs"]], "Data Type Casting Modes": [[829, "data-type-casting-modes"]], "Superset Data Type Support": [[829, "superset-data-type-support"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[843, "ivy-lint-ivy-s-custom-code-formatters"]], "Existing Formatters": [[843, "existing-formatters"]], "FunctionOrderingFormatter": [[843, "functionorderingformatter"]], "How the Formatter Works:": [[843, "how-the-formatter-works"]], "Integration and Usage": [[843, "integration-and-usage"]], "Contribution": [[843, "contribution"]], "Round Up": [[843, "round-up"], [36, "Round-Up"], [24, "Round-Up"], [22, "Round-Up"], [28, "Round-Up"], [25, "Round-Up"], [16, "Round-Up"], [37, "Round-Up"], [33, "Round-Up"], [35, "Round-Up"], [32, "Round-Up"], [45, "Round-Up"], [38, "Round-Up"], [26, "Round-Up"], [18, "Round-Up"], [34, "Round-Up"], [27, "Round-Up"], [23, "Round-Up"]], "Why Unify?": [[861, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[861, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[861, "infinite-shelf-life"]], "Fix Failing Tests:": [[834, "fix-failing-tests"]], "Prerequirement:": [[834, "prerequirement"]], "Setting Up": [[834, "setting-up"], [819, "setting-up"]], "How to run tests": [[834, "how-to-run-tests"]], "Common Errors": [[834, "common-errors"]], "Where to ask for Help": [[834, "where-to-ask-for-help"]], "LLVM": [[868, "id1"]], "MLIR": [[868, "id2"]], "OneAPI": [[868, "id3"]], "One liners": [[862, "one-liners"]], "Get Started": [[856, "get-started"]], "Installing using pip": [[856, "installing-using-pip"]], "Docker": [[856, "docker"]], "Installing from source": [[856, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[856, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[856, "ivy-folder"]], "Setting Up the API key": [[856, "setting-up-the-api-key"]], "Issues and Questions": [[856, "issues-and-questions"]], "Building Blocks": [[849, "building-blocks"]], "Backend Functional APIs \u2705": [[849, "backend-functional-apis"]], "Ivy Functional API \u2705": [[849, "ivy-functional-api"]], "Backend Handler \u2705": [[849, "backend-handler"]], "Tracer \ud83d\udea7": [[849, "tracer"]], "Superset Behaviour": [[847, "superset-behaviour"]], "Extending the Standard": [[847, "extending-the-standard"]], "What is the Superset?": [[847, "what-is-the-superset"]], "A Non-Duplicate Superset": [[847, "a-non-duplicate-superset"]], "What is not the Superset?": [[847, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[847, "balancing-generalization-with-efficiency"]], "More Examples": [[847, "more-examples"]], "Maximizing Usage of Native Functionality": [[847, "maximizing-usage-of-native-functionality"]], "Formatting": [[835, "formatting"]], "Lint Checks": [[835, "lint-checks"], [835, "id2"]], "Setup Formatting Locally": [[835, "setup-formatting-locally"]], "Pre-commit": [[835, "pre-commit"]], "VS Code": [[835, "vs-code"]], "PyCharm": [[835, "pycharm"], [819, "pycharm"]], "Common Issues with Pre-Commit": [[835, "common-issues-with-pre-commit"]], "Lint Formatting": [[835, "lint-formatting"]], "Testing Pipeline": [[844, "testing-pipeline"]], "Hypothesis": [[844, "id2"]], "Data Generation": [[844, "id3"]], "Writing your own strategy": [[844, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[844, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[844, "ivy-test-decorators"]], "Writing Ivy Tests": [[844, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[844, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[844, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[844, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[844, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[844, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[844, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[844, "self-consistent-and-explicit-testing"]], "test_array_function": [[844, "id5"]], "Running Ivy Tests": [[844, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[844, "re-running-failed-ivy-tests"]], "Ivy Array": [[851, "ivy-array"], [824, "ivy-array"]], "The Array Class": [[851, "the-array-class"]], "Unifying Operators": [[851, "unifying-operators"]], "API Monkey Patching": [[851, "api-monkey-patching"]], "Instance Methods": [[851, "instance-methods"]], "ivy.unify()": [[865, "ivy-unify"]], "Unify API": [[865, "unify-api"]], "Usage": [[865, "usage"]], "Ivy Container": [[852, "ivy-container"]], "Construction": [[852, "construction"]], "Representation": [[852, "representation"]], "Recursive Methods": [[852, "recursive-methods"]], "Built-ins": [[852, "built-ins"]], "Access": [[852, "access"]], "Saving and Loading": [[852, "saving-and-loading"]], "Comparisons": [[852, "comparisons"]], "Customized Representations": [[852, "customized-representations"]], "Use Cases": [[852, "use-cases"]], "Compartmentalization": [[852, "compartmentalization"]], "Configuration": [[852, "configuration"]], "Data loading": [[852, "data-loading"]], "Network weights": [[852, "network-weights"]], "Ivy Exception Class": [[833, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[833, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[833, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[833, "handle-exceptions-decorator"]], "Consistency in Errors": [[833, "consistency-in-errors"]], "Assertion Function": [[833, "assertion-function"]], "Quansight": [[872, "id1"]], "Modular": [[872, "id2"]], "OctoML": [[872, "id3"]], "ivy.transpile()": [[864, "ivy-transpile"]], "Transpiler API": [[864, "transpiler-api"]], "Using the transpiler": [[864, "using-the-transpiler"]], "Transpiling functions": [[864, "transpiling-functions"]], "Transpiling Libraries": [[864, "transpiling-libraries"]], "Transpiling Modules": [[864, "transpiling-modules"]], "Standardization": [[860, "standardization"]], "Skepticism": [[860, "skepticism"]], "Complimentary vs Competitive": [[860, "complimentary-vs-competitive"]], "Do Standards Work?": [[860, "do-standards-work"]], "The Array API Standard": [[860, "the-array-api-standard"]], "Design": [[848, "design"]], "Motivation": [[858, "motivation"]], "Apache TVM": [[873, "apache-tvm"]], "XLA": [[873, "xla"]], "GCC": [[873, "gcc"]], "Docstring Examples": [[831, "docstring-examples"]], "ivy.tan": [[831, "ivy-tan"]], "ivy.roll": [[831, "ivy-roll"]], "ivy.add": [[831, "ivy-add"]], "Devices": [[830, "devices"]], "Device Module": [[830, "device-module"]], "Device handling": [[830, "device-handling"]], "ML Explosion": [[859, "ml-explosion"]], "Docstrings": [[832, "docstrings"]], "Ivy Frontend Tests": [[842, "ivy-frontend-tests"]], "Frontend Test Examples": [[842, "frontend-test-examples"]], "ivy.tan()": [[842, "ivy-tan"]], "ivy.full()": [[842, "ivy-full"]], "Testing Without Using Tests Values": [[842, "testing-without-using-tests-values"]], "Alias functions": [[842, "alias-functions"]], "Frontend Instance Method Tests": [[842, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[842, "frontend-instance-method-test-examples"]], "ivy.add()": [[842, "ivy-add"]], "Hypothesis Helpers": [[842, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[842, "frontend-framework-testing-configuration"]], "Glossary": [[857, "glossary"]], "empty": [[130, "empty"]], "Elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"], [632, "elementwise"], [372, "elementwise"], [56, "module-ivy.data_classes.array.elementwise"], [79, "module-ivy.data_classes.container.elementwise"]], "sigmoid": [[116, "sigmoid"]], "mish": [[114, "mish"]], "log_softmax": [[113, "log-softmax"]], "Tr tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "eye": [[132, "eye"]], "Container": [[103, "container"]], "hardswish": [[111, "hardswish"]], "Parafac2 tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "cmp_is": [[120, "cmp-is"]], "array": [[127, "array"]], "Factorized tensor": [[104, "factorized-tensor"]], "Nested array": [[105, "nested-array"]], "gelu": [[110, "gelu"]], "empty_like": [[131, "empty-like"]], "Functions": [[109, "functions"]], "softsign": [[119, "softsign"]], "from_dlpack": [[133, "from-dlpack"]], "copy_array": [[129, "copy-array"]], "Statistical": [[93, "module-ivy.data_classes.container.statistical"], [647, "statistical"], [387, "statistical"], [70, "module-ivy.data_classes.array.statistical"]], "for_loop": [[122, "for-loop"]], "relu": [[115, "relu"]], "Cp tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "Wrapping": [[95, "module-ivy.data_classes.container.wrapping"], [72, "module-ivy.data_classes.array.wrapping"]], "softplus": [[118, "softplus"]], "cmp_isnot": [[121, "cmp-isnot"]], "full": [[135, "full"]], "frombuffer": [[134, "frombuffer"]], "Utility": [[94, "module-ivy.data_classes.container.utility"], [648, "utility"], [388, "utility"], [71, "module-ivy.data_classes.array.utility"]], "arange": [[126, "arange"]], "Sorting": [[92, "module-ivy.data_classes.container.sorting"], [646, "sorting"], [385, "sorting"], [69, "module-ivy.data_classes.array.sorting"]], "Base": [[106, "module-ivy.data_classes.nested_array.base"], [96, "module-ivy.data_classes.factorized_tensor.base"], [74, "module-ivy.data_classes.container.base"]], "full_like": [[136, "full-like"]], "while_loop": [[125, "while-loop"]], "Tt tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "if_else": [[123, "if-else"]], "leaky_relu": [[112, "leaky-relu"]], "try_except": [[124, "try-except"]], "asarray": [[128, "asarray"]], "Array": [[102, "array"]], "linspace": [[137, "linspace"]], "Data classes": [[108, "data-classes"]], "Tucker tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "softmax": [[117, "softmax"]], "random_uniform": [[741, "random-uniform"]], "std": [[764, "std"]], "multinomial": [[738, "multinomial"]], "einsum": [[759, "einsum"]], "Multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "nonzero": [[747, "nonzero"]], "shuffle": [[743, "shuffle"]], "max": [[760, "max"]], "cumsum": [[758, "cumsum"]], "Function testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "all": [[767, "all"]], "unique_values": [[752, "unique-values"]], "Data-dependent output shape": [[752, null], [751, null], [749, null], [750, null], [645, null], [645, null], [645, null], [645, null]], "unique_inverse": [[751, "unique-inverse"]], "Assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"], [798, "module-ivy.utils.assertions"]], "Array helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "min": [[762, "min"]], "randint": [[739, "randint"]], "msort": [[754, "msort"]], "unique_all": [[749, "unique-all"]], "cumprod": [[757, "cumprod"]], "searchsorted": [[755, "searchsorted"]], "mean": [[761, "mean"]], "argsort": [[753, "argsort"]], "any": [[768, "any"]], "Dtype helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "set_nest_at_indices": [[736, "set-nest-at-indices"]], "seed": [[742, "seed"]], "Globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "var": [[766, "var"]], "General helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "prod": [[763, "prod"]], "argwhere": [[746, "argwhere"]], "Number helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "where": [[748, "where"]], "save": [[770, "save"]], "unique_counts": [[750, "unique-counts"]], "Hypothesis helpers": [[775, "hypothesis-helpers"]], "sort": [[756, "sort"]], "load": [[769, "load"]], "argmax": [[744, "argmax"]], "sum": [[765, "sum"]], "layer_norm": [[737, "layer-norm"]], "argmin": [[745, "argmin"]], "random_normal": [[740, "random-normal"]], "Available frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Pipeline helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Framework classes": [[785, "framework-classes"]], "Testing": [[787, "testing"], [45, "Testing"]], "Verbosity": [[811, "module-ivy.utils.verbosity"]], "Dynamic import": [[804, "module-ivy.utils.dynamic_import"]], "Backend Setting": [[825, "backend-setting"]], "Dynamic Backend Setting": [[825, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[825, "backend-and-frontend-version-support"]], "Losses": [[793, "module-ivy.stateful.losses"], [638, "losses"], [377, "losses"], [86, "module-ivy.data_classes.container.losses"], [63, "module-ivy.data_classes.array.losses"]], "Backend": [[799, "backend"]], "Status": [[812, "status"]], "Unified AI": [[812, "unified-ai"]], "Getting started": [[812, "getting-started"]], "Installing ivy": [[812, "installing-ivy"]], "Using Ivy": [[812, "using-ivy"]], "Documentation": [[812, "documentation"]], "Contributing": [[812, "contributing"], [813, "contributing"]], "Community": [[812, "community"]], "Citation": [[812, "citation"]], "Helpers": [[790, "module-ivy.stateful.helpers"]], "Contributor Program": [[821, "contributor-program"]], "Contributor": [[821, "contributor"]], "Core Contributor": [[821, "core-contributor"]], "Rising Contributor": [[821, "rising-contributor"]], "Top Contributor": [[821, "top-contributor"]], "Contributor Rewards": [[815, "contributor-rewards"]], "Badges": [[815, "badges"]], "Badge Tiers": [[815, "badge-tiers"]], "Test parameter flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Arrays": [[824, "arrays"]], "Native Array": [[824, "native-array"]], "Array Handling": [[824, "array-handling"]], "Integrating custom classes with Ivy": [[824, "integrating-custom-classes-with-ivy"]], "Activations": [[788, "module-ivy.stateful.activations"], [626, "activations"], [367, "activations"], [73, "module-ivy.data_classes.container.activations"], [51, "module-ivy.data_classes.array.activations"]], "Parameter": [[788, "parameter"], [788, "id1"], [578, "parameter"], [584, "parameter"], [585, "parameter"], [587, "parameter"], [588, "parameter"], [579, "parameter"], [634, "parameter"], [634, "id1"], [634, "id2"], [634, "id3"], [634, "id4"], [634, "id5"], [631, "parameter"], [210, "parameter"]], "Profiler": [[810, "module-ivy.utils.profiler"]], "Binaries": [[803, "module-ivy.utils.binaries"]], "Handler": [[801, "module-ivy.utils.backend.handler"]], "Layers": [[792, "module-ivy.stateful.layers"], [636, "layers"], [375, "layers"], [84, "module-ivy.data_classes.container.layers"], [61, "module-ivy.data_classes.array.layers"]], "Helpful Resources": [[817, "helpful-resources"]], "Sequential": [[797, "module-ivy.stateful.sequential"]], "Structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "Logging": [[809, "module-ivy.utils.logging"]], "The Basics": [[820, "the-basics"]], "Getting Help": [[820, "getting-help"]], "ToDo List Issues": [[820, "todo-list-issues"]], "Managing Your Fork": [[820, "managing-your-fork"]], "Who To Ask": [[820, "who-to-ask"]], "With Command Line:": [[820, "with-command-line"]], "With Browser:": [[820, "with-browser"]], "Pull Requests": [[820, "pull-requests"]], "Small Commits Often": [[820, "small-commits-often"]], "Interactive Ivy Docker Container": [[820, "interactive-ivy-docker-container"]], "Running Tests Locally": [[820, "running-tests-locally"]], "With Docker": [[820, "with-docker"]], "Getting the most out of IDE": [[820, "getting-the-most-out-of-ide"]], "with PyCharm": [[820, "with-pycharm"]], "Running the Tests": [[823, "running-the-tests"]], "Using Terminal": [[823, "using-terminal"]], "Using the IDE": [[823, "using-the-ide"]], "Regenerating Test Failures": [[823, "regenerating-test-failures"]], "Test Skipping": [[823, "test-skipping"]], "Exceptions": [[807, "module-ivy.utils.exceptions"]], "Forking and cloning the repo": [[819, "forking-and-cloning-the-repo"]], "Pre-Commit": [[819, "pre-commit"]], "Virtual environments - No Docker": [[819, "virtual-environments-no-docker"]], "Using miniconda": [[819, "using-miniconda"]], "Using venv": [[819, "using-venv"]], "Docker Interpreter with PyCharm": [[819, "docker-interpreter-with-pycharm"]], "Windows": [[819, "windows"], [819, "id6"]], "MacOS": [[819, "macos"]], "Ubuntu": [[819, "ubuntu"], [819, "id8"]], "Setting Up Testing in PyCharm": [[819, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[819, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[819, "setting-up-for-free"]], "WSL": [[819, "wsl"]], "GitHub Codespaces": [[819, "github-codespaces"]], "The Binaries": [[819, "the-binaries"]], "Deep Dive": [[822, "deep-dive"]], "Einsum parser": [[805, "module-ivy.utils.einsum_parser"]], "Norms": [[795, "module-ivy.stateful.norms"], [642, "norms"], [381, "norms"], [88, "module-ivy.data_classes.container.norms"], [65, "module-ivy.data_classes.array.norms"]], "Building the Docs": [[814, "building-the-docs"]], "Building the Docs using Docker": [[814, "building-the-docs-using-docker"]], "Using convenience script": [[814, "using-convenience-script"]], "Using existing image on Docker Hub": [[814, "using-existing-image-on-docker-hub"]], "Building the image locally": [[814, "building-the-image-locally"]], "Building the Docs without Docker": [[814, "building-the-docs-without-docker"]], "Module": [[794, "module-ivy.stateful.module"]], "Einsum path helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "Containers": [[827, "containers"]], "Container Instance Methods": [[827, "container-instance-methods"]], "API Instance Methods": [[827, "api-instance-methods"]], "API Special Methods": [[827, "api-special-methods"]], "Error Handling": [[816, "error-handling"]], "Sub backend handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "Ast helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "Utils": [[786, "utils"]], "Converters": [[789, "module-ivy.stateful.converters"]], "Testing helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Inspection": [[808, "module-ivy.utils.inspection"]], "Building the Docs Pipeline": [[826, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[826, "how-the-doc-builder-is-being-run"]], "The convenience script": [[826, "the-convenience-script"]], "Options": [[826, "options"]], "The Docker image": [[826, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[826, "how-ivy-s-docs-is-structured"]], "index.rst": [[826, "index-rst"]], "partial_conf.py": [[826, "partial-conf-py"]], "prebuild.sh": [[826, "prebuild-sh"]], "Custom Extensions": [[826, "custom-extensions"]], "custom_autosummary": [[826, "custom-autosummary"]], ":hide-table:": [[826, "hide-table"]], "discussion_linker": [[826, "discussion-linker"]], "skippable_function": [[826, "skippable-function"]], "ivy_data": [[826, "ivy-data"]], "Open Tasks": [[818, "open-tasks"]], "Fixing Failing Tests": [[818, "fixing-failing-tests"]], "How to Contribute": [[818, "how-to-contribute"]], "Frontend APIs": [[818, "frontend-apis"]], "Where to place a frontend function": [[818, "where-to-place-a-frontend-function"]], "Frontend checklist": [[818, "frontend-checklist"]], "Function Formatting": [[818, "function-formatting"]], "Formatting checklist": [[818, "formatting-checklist"]], "Ivy Experimental API": [[818, "ivy-experimental-api"]], "Extending the Ivy API": [[818, "extending-the-ivy-api"]], "Where to place a backend function": [[818, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[818, "creating-an-issue-on-ivy-s-github-using-a-template"]], "zero_pad": [[714, "zero-pad"]], "clip": [[699, "clip"]], "concat": [[700, "concat"]], "index_nest": [[721, "index-nest"]], "constant_pad": [[701, "constant-pad"]], "multi_index_nest": [[727, "multi-index-nest"]], "fomaml_step": [[715, "fomaml-step"]], "repeat": [[705, "repeat"]], "vander": [[692, "vander"]], "vecdot": [[693, "vecdot"]], "tile": [[712, "tile"]], "map_nest_at_indices": [[726, "map-nest-at-indices"]], "nested_map": [[730, "nested-map"]], "unstack": [[713, "unstack"]], "insert_into_nest_at_index": [[722, "insert-into-nest-at-index"]], "expand_dims": [[702, "expand-dims"]], "stack": [[710, "stack"]], "maml_step": [[716, "maml-step"]], "nested_any": [[728, "nested-any"]], "duplicate_array_index_chains": [[720, "duplicate-array-index-chains"]], "nested_multi_map": [[731, "nested-multi-map"]], "squeeze": [[709, "squeeze"]], "flip": [[703, "flip"]], "map_nest_at_index": [[725, "map-nest-at-index"]], "nested_argwhere": [[729, "nested-argwhere"]], "map": [[724, "map"]], "tensorsolve": [[690, "tensorsolve"]], "all_nested_indices": [[718, "all-nested-indices"]], "insert_into_nest_at_indices": [[723, "insert-into-nest-at-indices"]], "reshape": [[706, "reshape"]], "binary_cross_entropy": [[696, "binary-cross-entropy"]], "split": [[708, "split"]], "sparse_cross_entropy": [[698, "sparse-cross-entropy"]], "prune_nest_at_index": [[733, "prune-nest-at-index"]], "prune_empty": [[732, "prune-empty"]], "permute_dims": [[704, "permute-dims"]], "trace": [[691, "trace"]], "prune_nest_at_indices": [[734, "prune-nest-at-indices"]], "reptile_step": [[717, "reptile-step"]], "vector_norm": [[694, "vector-norm"]], "copy_nest": [[719, "copy-nest"]], "roll": [[707, "roll"]], "vector_to_skew_symmetric_matrix": [[695, "vector-to-skew-symmetric-matrix"]], "cross_entropy": [[697, "cross-entropy"]], "set_nest_at_index": [[735, "set-nest-at-index"]], "swapaxes": [[711, "swapaxes"]], "slogdet": [[685, "slogdet"]], "inv": [[676, "inv"]], "lstm": [[661, "lstm"]], "conv1d": [[650, "conv1d"]], "pinv": [[683, "pinv"]], "cholesky": [[667, "cholesky"]], "lstm_update": [[662, "lstm-update"]], "nms": [[664, "nms"]], "det": [[669, "det"]], "conv": [[649, "conv"]], "cross": [[668, "cross"]], "matrix_rank": [[680, "matrix-rank"]], "Searching": [[644, "searching"], [383, "searching"], [67, "module-ivy.data_classes.array.searching"], [90, "module-ivy.data_classes.container.searching"]], "conv2d": [[652, "conv2d"]], "depthwise_conv2d": [[658, "depthwise-conv2d"]], "multi_head_attention": [[663, "multi-head-attention"]], "outer": [[682, "outer"]], "matmul": [[677, "matmul"]], "conv3d_transpose": [[655, "conv3d-transpose"]], "Set": [[645, "set"], [384, "module-ivy.functional.ivy.experimental.set"], [91, "module-ivy.data_classes.container.set"], [68, "module-ivy.data_classes.array.set"]], "linear": [[660, "linear"]], "eigvalsh": [[674, "eigvalsh"]], "matrix_norm": [[678, "matrix-norm"]], "matrix_power": [[679, "matrix-power"]], "diag": [[670, "diag"]], "conv1d_transpose": [[651, "conv1d-transpose"]], "conv3d": [[654, "conv3d"]], "matrix_transpose": [[681, "matrix-transpose"]], "dropout": [[659, "dropout"]], "conv2d_transpose": [[653, "conv2d-transpose"]], "inner": [[675, "inner"]], "conv_general_dilated": [[656, "conv-general-dilated"]], "roi_align": [[665, "roi-align"]], "qr": [[684, "qr"]], "eigh": [[673, "eigh"]], "svd": [[687, "svd"]], "svdvals": [[688, "svdvals"]], "scaled_dot_product_attention": [[666, "scaled-dot-product-attention"]], "eig": [[672, "eig"], [429, "eig"]], "diagonal": [[671, "diagonal"]], "tensordot": [[689, "tensordot"]], "conv_general_transpose": [[657, "conv-general-transpose"]], "solve": [[686, "solve"]], "multiprocessing": [[573, "multiprocessing"]], "get_item": [[555, "get-item"]], "set_array_mode": [[578, "set-array-mode"]], "has_nans": [[558, "has-nans"]], "is_ivy_array": [[565, "is-ivy-array"]], "itemsize": [[571, "itemsize"]], "set_min_denominator": [[583, "set-min-denominator"]], "set_nestable_mode": [[584, "set-nestable-mode"]], "set_precise_mode": [[585, "set-precise-mode"]], "get_referrers_recursive": [[557, "get-referrers-recursive"]], "isin": [[569, "isin"]], "set_shape_array_mode": [[587, "set-shape-array-mode"]], "shape": [[590, "shape"]], "strides": [[594, "strides"]], "print_all_arrays_in_memory": [[575, "print-all-arrays-in-memory"]], "gather_nd": [[553, "gather-nd"]], "is_ivy_nested_array": [[567, "is-ivy-nested-array"]], "match_kwargs": [[572, "match-kwargs"]], "set_item": [[581, "set-item"]], "set_tmp_dir": [[589, "set-tmp-dir"]], "supports_inplace_updates": [[595, "supports-inplace-updates"]], "set_min_base": [[582, "set-min-base"]], "set_show_func_wrapper_trace_mode": [[588, "set-show-func-wrapper-trace-mode"]], "set_inplace_mode": [[580, "set-inplace-mode"]], "to_ivy_shape": [[596, "to-ivy-shape"]], "inplace_update": [[562, "inplace-update"]], "stable_divide": [[592, "stable-divide"]], "size": [[591, "size"]], "is_ivy_container": [[566, "is-ivy-container"]], "num_arrays_in_memory": [[574, "num-arrays-in-memory"]], "inplace_increment": [[561, "inplace-increment"]], "scatter_nd": [[577, "scatter-nd"]], "inplace_arrays_supported": [[559, "inplace-arrays-supported"]], "is_native_array": [[568, "is-native-array"]], "get_all_arrays_in_memory": [[554, "get-all-arrays-in-memory"]], "is_array": [[564, "is-array"]], "stable_pow": [[593, "stable-pow"]], "inplace_decrement": [[560, "inplace-decrement"]], "set_queue_timeout": [[586, "set-queue-timeout"]], "get_num_dims": [[556, "get-num-dims"]], "inplace_variables_supported": [[563, "inplace-variables-supported"]], "gather": [[552, "gather"]], "isscalar": [[570, "isscalar"]], "to_list": [[597, "to-list"]], "set_exception_trace_mode": [[579, "set-exception-trace-mode"]], "scatter_flat": [[576, "scatter-flat"]], "histogram": [[525, "histogram"]], "quantile": [[532, "quantile"]], "array_equal": [[537, "array-equal"]], "invert_permutation": [[514, "invert-permutation"]], "function_unsupported_devices_and_dtypes": [[551, "function-unsupported-devices-and-dtypes"]], "cov": [[522, "cov"]], "dirichlet": [[510, "dirichlet"]], "local_response_norm": [[506, "local-response-norm"]], "exists": [[548, "exists"]], "native_sparse_array": [[518, "native-sparse-array"]], "arg_names": [[536, "arg-names"]], "gamma": [[511, "gamma"]], "nanprod": [[531, "nanprod"]], "cache_fn": [[539, "cache-fn"]], "cummin": [[524, "cummin"]], "cummax": [[523, "cummax"]], "function_supported_devices_and_dtypes": [[550, "function-supported-devices-and-dtypes"]], "all_equal": [[534, "all-equal"]], "lexsort": [[515, "lexsort"]], "nanmin": [[530, "nanmin"]], "nanmean": [[528, "nanmean"]], "poisson": [[512, "poisson"]], "unravel_index": [[513, "unravel-index"]], "current_backend_str": [[543, "current-backend-str"]], "lp_normalize": [[507, "lp-normalize"]], "clip_matrix_norm": [[540, "clip-matrix-norm"]], "beta": [[509, "beta"]], "median": [[527, "median"]], "arg_info": [[535, "arg-info"]], "einops_rearrange": [[545, "einops-rearrange"]], "fourier_encode": [[549, "fourier-encode"]], "is_ivy_sparse_array": [[516, "is-ivy-sparse-array"]], "corrcoef": [[521, "corrcoef"]], "assert_supports_inplace": [[538, "assert-supports-inplace"]], "is_native_sparse_array": [[517, "is-native-sparse-array"]], "native_sparse_array_to_indices_values_and_shape": [[519, "native-sparse-array-to-indices-values-and-shape"]], "nanmedian": [[529, "nanmedian"]], "bincount": [[520, "bincount"]], "container_types": [[542, "container-types"]], "igamma": [[526, "igamma"]], "default": [[544, "default"]], "einops_repeat": [[547, "einops-repeat"]], "einops_reduce": [[546, "einops-reduce"]], "optional_get_element": [[533, "optional-get-element"]], "bernoulli": [[508, "bernoulli"]], "clip_vector_norm": [[541, "clip-vector-norm"]], "moveaxis": [[483, "moveaxis"]], "take": [[492, "take"]], "atleast_2d": [[463, "atleast-2d"]], "flatten": [[474, "flatten"]], "vsplit": [[499, "vsplit"]], "unique_consecutive": [[498, "unique-consecutive"]], "column_stack": [[468, "column-stack"]], "choose": [[467, "choose"]], "matricize": [[482, "matricize"]], "group_norm": [[502, "group-norm"]], "l2_normalize": [[505, "l2-normalize"]], "put_along_axis": [[489, "put-along-axis"]], "partial_unfold": [[487, "partial-unfold"]], "partial_fold": [[485, "partial-fold"]], "top_k": [[494, "top-k"]], "dsplit": [[470, "dsplit"]], "dstack": [[471, "dstack"]], "broadcast_shapes": [[465, "broadcast-shapes"]], "hstack": [[480, "hstack"]], "pad": [[484, "pad"]], "concat_from_sequence": [[469, "concat-from-sequence"]], "check_scalar": [[466, "check-scalar"]], "partial_vec_to_tensor": [[488, "partial-vec-to-tensor"]], "fliplr": [[475, "fliplr"]], "unfold": [[497, "unfold"]], "as_strided": [[460, "as-strided"]], "instance_norm": [[503, "instance-norm"]], "l1_normalize": [[504, "l1-normalize"]], "flipud": [[476, "flipud"]], "fold": [[477, "fold"]], "associative_scan": [[461, "associative-scan"]], "batch_norm": [[501, "batch-norm"]], "unflatten": [[496, "unflatten"]], "soft_thresholding": [[491, "soft-thresholding"]], "i0": [[481, "i0"]], "heaviside": [[478, "heaviside"]], "hsplit": [[479, "hsplit"]], "vstack": [[500, "vstack"]], "partial_tensor_to_vec": [[486, "partial-tensor-to-vec"]], "fill_diagonal": [[473, "fill-diagonal"]], "rot90": [[490, "rot90"]], "trim_zeros": [[495, "trim-zeros"]], "take_along_axis": [[493, "take-along-axis"]], "expand": [[472, "expand"]], "atleast_1d": [[462, "atleast-1d"]], "atleast_3d": [[464, "atleast-3d"]], "jac": [[620, "jac"]], "to_numpy": [[599, "to-numpy"]], "unset_queue_timeout": [[609, "unset-queue-timeout"]], "Random": [[643, "random"], [382, "random"], [66, "module-ivy.data_classes.array.random"], [89, "module-ivy.data_classes.container.random"]], "adam_update": [[616, "adam-update"]], "unset_show_func_wrapper_trace_mode": [[611, "unset-show-func-wrapper-trace-mode"]], "unset_exception_trace_mode": [[603, "unset-exception-trace-mode"]], "unset_inplace_mode": [[604, "unset-inplace-mode"]], "unset_array_mode": [[602, "unset-array-mode"]], "Data type": [[630, "data-type"], [370, "module-ivy.functional.ivy.experimental.data_type"], [54, "module-ivy.data_classes.array.data_type"], [77, "module-ivy.data_classes.container.data_type"]], "unset_min_denominator": [[606, "unset-min-denominator"]], "General": [[634, "general"], [373, "general"], [81, "module-ivy.data_classes.container.general"], [58, "module-ivy.data_classes.array.general"]], "Nest": [[641, "nest"], [380, "module-ivy.functional.ivy.experimental.nest"]], "execute_with_gradients": [[617, "execute-with-gradients"]], "Manipulation": [[639, "manipulation"], [378, "manipulation"], [64, "module-ivy.data_classes.array.manipulation"], [87, "module-ivy.data_classes.container.manipulation"]], "unset_shape_array_mode": [[610, "unset-shape-array-mode"]], "try_else_none": [[601, "try-else-none"]], "Constants": [[627, "module-ivy.functional.ivy.constants"], [368, "module-ivy.functional.ivy.experimental.constants"]], "Linear algebra": [[637, "linear-algebra"], [376, "linear-algebra"], [62, "module-ivy.data_classes.array.linear_algebra"], [85, "module-ivy.data_classes.container.linear_algebra"]], "unset_nestable_mode": [[607, "unset-nestable-mode"]], "Meta": [[640, "meta"], [379, "module-ivy.functional.ivy.experimental.meta"]], "Experimental": [[633, "experimental"], [57, "module-ivy.data_classes.array.experimental"], [80, "module-ivy.data_classes.container.experimental"]], "Creation": [[629, "creation"], [369, "creation"], [76, "module-ivy.data_classes.container.creation"], [53, "module-ivy.data_classes.array.creation"]], "Device": [[631, "device"], [371, "module-ivy.functional.ivy.experimental.device"], [78, "module-ivy.data_classes.container.device"], [55, "module-ivy.data_classes.array.device"]], "adam_step": [[615, "adam-step"]], "lars_update": [[622, "lars-update"]], "value_and_grad": [[625, "value-and-grad"]], "unset_precise_mode": [[608, "unset-precise-mode"]], "value_is_nan": [[613, "value-is-nan"]], "gradient_descent_update": [[619, "gradient-descent-update"]], "vmap": [[614, "vmap"]], "to_native_shape": [[598, "to-native-shape"]], "grad": [[618, "grad"]], "unset_min_base": [[605, "unset-min-base"]], "Control flow ops": [[628, "control-flow-ops"]], "unset_tmp_dir": [[612, "unset-tmp-dir"]], "stop_gradient": [[624, "stop-gradient"]], "to_scalar": [[600, "to-scalar"]], "optimizer_update": [[623, "optimizer-update"]], "lamb_update": [[621, "lamb-update"]], "eigvals": [[431, "eigvals"]], "smooth_l1_loss": [[458, "smooth-l1-loss"]], "tucker": [[451, "tucker"]], "hinge_embedding_loss": [[452, "hinge-embedding-loss"]], "tensor_train": [[448, "tensor-train"]], "rfftn": [[420, "rfftn"]], "tt_matrix_to_tensor": [[450, "tt-matrix-to-tensor"]], "adjoint": [[424, "adjoint"]], "log_poisson_loss": [[456, "log-poisson-loss"]], "rfft": [[419, "rfft"]], "pool": [[417, "pool"]], "khatri_rao": [[435, "khatri-rao"]], "make_svd_non_negative": [[440, "make-svd-non-negative"]], "stft": [[423, "stft"]], "truncated_svd": [[449, "truncated-svd"]], "l1_loss": [[455, "l1-loss"]], "poisson_nll_loss": [[457, "poisson-nll-loss"]], "general_inner_product": [[432, "general-inner-product"]], "max_pool3d": [[414, "max-pool3d"]], "partial_tucker": [[445, "partial-tucker"]], "eigh_tridiagonal": [[430, "eigh-tridiagonal"]], "kron": [[436, "kron"]], "multi_mode_dot": [[444, "multi-mode-dot"]], "max_unpool1d": [[415, "max-unpool1d"]], "soft_margin_loss": [[459, "soft-margin-loss"]], "lu_factor": [[438, "lu-factor"]], "sliding_window": [[422, "sliding-window"]], "kronecker": [[437, "kronecker"]], "mode_dot": [[442, "mode-dot"]], "diagflat": [[427, "diagflat"]], "multi_dot": [[443, "multi-dot"]], "reduce_window": [[418, "reduce-window"]], "dot": [[428, "dot"]], "higher_order_moment": [[433, "higher-order-moment"]], "solve_triangular": [[446, "solve-triangular"]], "svd_flip": [[447, "svd-flip"]], "initialize_tucker": [[434, "initialize-tucker"]], "matrix_exp": [[441, "matrix-exp"]], "rnn": [[421, "rnn"]], "huber_loss": [[453, "huber-loss"]], "kl_div": [[454, "kl-div"]], "lu_solve": [[439, "lu-solve"]], "cond": [[426, "cond"]], "batched_outer": [[425, "batched-outer"]], "nearest_interpolate": [[416, "nearest-interpolate"]], "lerp": [[353, "lerp"]], "random_cp": [[323, "random-cp"]], "copysign": [[339, "copysign"]], "fix": [[345, "fix"]], "nansum": [[356, "nansum"]], "zeta": [[362, "zeta"]], "frexp": [[348, "frexp"]], "sparsify_tensor": [[360, "sparsify-tensor"]], "random_parafac2": [[324, "random-parafac2"]], "modf": [[355, "modf"]], "signbit": [[358, "signbit"]], "vorbis_window": [[333, "vorbis-window"]], "xlogy": [[361, "xlogy"]], "amin": [[336, "amin"]], "count_nonzero": [[340, "count-nonzero"]], "unsorted_segment_min": [[331, "unsorted-segment-min"]], "allclose": [[334, "allclose"]], "binarizer": [[337, "binarizer"]], "gradient": [[349, "gradient"]], "vjp": [[366, "vjp"]], "sinc": [[359, "sinc"]], "nextafter": [[357, "nextafter"]], "reduce": [[363, "reduce"]], "trilu": [[329, "trilu"]], "random_tr": [[325, "random-tr"]], "tril_indices": [[328, "tril-indices"]], "float_power": [[346, "float-power"]], "diff": [[341, "diff"]], "isclose": [[351, "isclose"]], "polyval": [[322, "polyval"]], "ldexp": [[352, "ldexp"]], "erfc": [[343, "erfc"]], "random_tucker": [[327, "random-tucker"]], "jvp": [[365, "jvp"]], "amax": [[335, "amax"]], "lgamma": [[354, "lgamma"]], "erfinv": [[344, "erfinv"]], "unsorted_segment_mean": [[330, "unsorted-segment-mean"]], "unsorted_segment_sum": [[332, "unsorted-segment-sum"]], "digamma": [[342, "digamma"]], "bind_custom_gradient_function": [[364, "bind-custom-gradient-function"]], "conj": [[338, "conj"]], "hypot": [[350, "hypot"]], "fmax": [[347, "fmax"]], "random_tt": [[326, "random-tt"]], "adaptive_avg_pool1d": [[389, "adaptive-avg-pool1d"]], "area_interpolate": [[393, "area-interpolate"]], "avg_pool1d": [[394, "avg-pool1d"]], "dropout3d": [[401, "dropout3d"]], "embedding": [[402, "embedding"]], "ifftn": [[409, "ifftn"]], "adaptive_avg_pool2d": [[390, "adaptive-avg-pool2d"]], "generate_einsum_equation": [[405, "generate-einsum-equation"]], "interp": [[410, "interp"]], "adaptive_max_pool3d": [[392, "adaptive-max-pool3d"]], "max_pool1d": [[412, "max-pool1d"]], "Sparse array": [[386, "sparse-array"]], "avg_pool3d": [[396, "avg-pool3d"]], "adaptive_max_pool2d": [[391, "adaptive-max-pool2d"]], "fft": [[403, "fft"]], "dft": [[398, "dft"]], "dropout2d": [[400, "dropout2d"]], "interpolate": [[411, "interpolate"]], "dropout1d": [[399, "dropout1d"]], "dct": [[397, "dct"]], "avg_pool2d": [[395, "avg-pool2d"]], "get_interpolate_kernel": [[406, "get-interpolate-kernel"]], "ifft": [[408, "ifft"]], "max_pool2d": [[413, "max-pool2d"]], "fft2": [[404, "fft2"]], "idct": [[407, "idct"]], "scaled_tanh": [[304, "scaled-tanh"]], "hardtanh": [[299, "hardtanh"]], "softshrink": [[307, "softshrink"]], "round": [[283, "round"]], "subtract": [[289, "subtract"]], "logsigmoid": [[301, "logsigmoid"]], "trunc_divide": [[294, "trunc-divide"]], "elu": [[296, "elu"]], "celu": [[295, "celu"]], "remainder": [[282, "remainder"]], "sinh": [[286, "sinh"]], "blackman_window": [[312, "blackman-window"]], "mel_weight_matrix": [[319, "mel-weight-matrix"]], "threshold": [[310, "threshold"]], "kaiser_bessel_derived_window": [[317, "kaiser-bessel-derived-window"]], "not_equal": [[276, "not-equal"]], "positive": [[277, "positive"]], "hann_window": [[315, "hann-window"]], "sign": [[284, "sign"]], "sin": [[285, "sin"]], "relu6": [[303, "relu6"]], "hamming_window": [[314, "hamming-window"]], "tanhshrink": [[309, "tanhshrink"]], "kaiser_window": [[318, "kaiser-window"]], "tanh": [[291, "tanh"]], "prelu": [[302, "prelu"]], "ndindex": [[321, "ndindex"]], "hardshrink": [[297, "hardshrink"]], "trunc": [[293, "trunc"]], "logit": [[300, "logit"]], "selu": [[305, "selu"]], "thresholded_relu": [[311, "thresholded-relu"]], "indices": [[316, "indices"]], "trapz": [[292, "trapz"]], "square": [[288, "square"]], "hardsilu": [[298, "hardsilu"]], "eye_like": [[313, "eye-like"]], "rad2deg": [[279, "rad2deg"]], "tan": [[290, "tan"]], "pow": [[278, "pow"]], "stanh": [[308, "stanh"]], "ndenumerate": [[320, "ndenumerate"]], "reciprocal": [[281, "reciprocal"]], "silu": [[306, "silu"]], "real": [[280, "real"]], "sqrt": [[287, "sqrt"]], "nan_to_num": [[274, "nan-to-num"]], "equal": [[241, "equal"]], "bitwise_right_shift": [[234, "bitwise-right-shift"]], "cos": [[237, "cos"]], "isinf": [[255, "isinf"]], "floor_divide": [[247, "floor-divide"]], "isfinite": [[254, "isfinite"]], "maximum": [[271, "maximum"]], "bitwise_xor": [[235, "bitwise-xor"]], "expm1": [[245, "expm1"]], "log1p": [[263, "log1p"]], "less_equal": [[260, "less-equal"]], "logaddexp2": [[266, "logaddexp2"]], "less": [[259, "less"]], "log": [[261, "log"]], "deg2rad": [[239, "deg2rad"]], "logaddexp": [[265, "logaddexp"]], "bitwise_or": [[233, "bitwise-or"]], "exp": [[243, "exp"]], "floor": [[246, "floor"]], "greater": [[251, "greater"]], "negative": [[275, "negative"]], "divide": [[240, "divide"]], "cosh": [[238, "cosh"]], "minimum": [[272, "minimum"]], "exp2": [[244, "exp2"]], "logical_or": [[269, "logical-or"]], "isreal": [[257, "isreal"]], "fmin": [[248, "fmin"]], "lcm": [[258, "lcm"]], "bitwise_left_shift": [[232, "bitwise-left-shift"]], "logical_xor": [[270, "logical-xor"]], "multiply": [[273, "multiply"]], "logical_not": [[268, "logical-not"]], "ceil": [[236, "ceil"]], "fmod": [[249, "fmod"]], "bitwise_and": [[230, "bitwise-and"]], "erf": [[242, "erf"]], "log10": [[262, "log10"]], "logical_and": [[267, "logical-and"]], "imag": [[253, "imag"]], "gcd": [[250, "gcd"]], "greater_equal": [[252, "greater-equal"]], "log2": [[264, "log2"]], "isnan": [[256, "isnan"]], "bitwise_invert": [[231, "bitwise-invert"]], "unset_default_uint_dtype": [[191, "unset-default-uint-dtype"]], "unset_default_int_dtype": [[190, "unset-default-int-dtype"]], "handle_soft_device_variable": [[203, "handle-soft-device-variable"]], "atanh": [[229, "atanh"]], "unset_soft_device_mode": [[218, "unset-soft-device-mode"]], "add": [[223, "add"]], "acosh": [[222, "acosh"]], "used_mem_on_dev": [[219, "used-mem-on-dev"]], "to_device": [[214, "to-device"]], "as_native_dev": [[194, "as-native-dev"]], "tpu_is_available": [[216, "tpu-is-available"]], "dev": [[197, "dev"]], "set_default_uint_dtype": [[185, "set-default-uint-dtype"]], "split_factor": [[212, "split-factor"]], "type_promote_arrays": [[186, "type-promote-arrays"]], "valid_dtype": [[192, "valid-dtype"]], "asinh": [[226, "asinh"]], "num_gpus": [[205, "num-gpus"]], "print_all_ivy_arrays_on_dev": [[208, "print-all-ivy-arrays-on-dev"]], "split_func_call": [[213, "split-func-call"]], "asin": [[225, "asin"]], "function_unsupported_devices": [[200, "function-unsupported-devices"]], "unset_default_device": [[217, "unset-default-device"]], "default_device": [[196, "default-device"]], "num_cpu_cores": [[204, "num-cpu-cores"]], "set_default_device": [[209, "set-default-device"]], "atan": [[227, "atan"]], "set_default_int_dtype": [[184, "set-default-int-dtype"]], "num_ivy_arrays_on_dev": [[206, "num-ivy-arrays-on-dev"]], "total_mem_on_dev": [[215, "total-mem-on-dev"]], "function_supported_devices": [[199, "function-supported-devices"]], "set_split_factor": [[211, "set-split-factor"]], "dev_util": [[198, "dev-util"]], "unset_default_complex_dtype": [[187, "unset-default-complex-dtype"]], "atan2": [[228, "atan2"]], "gpu_is_available": [[202, "gpu-is-available"]], "angle": [[224, "angle"]], "percent_used_mem_on_dev": [[207, "percent-used-mem-on-dev"]], "as_ivy_dev": [[193, "as-ivy-dev"]], "set_soft_device_mode": [[210, "set-soft-device-mode"]], "unset_default_float_dtype": [[189, "unset-default-float-dtype"]], "abs": [[220, "abs"]], "unset_default_dtype": [[188, "unset-default-dtype"]], "acos": [[221, "acos"]], "get_all_ivy_arrays_on_dev": [[201, "get-all-ivy-arrays-on-dev"]], "clear_cached_mem_on_dev": [[195, "clear-cached-mem-on-dev"]], "End-to-End Training Pipeline in Ivy": [[47, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[47, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[47, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[47, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[47, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[47, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[47, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[47, "Plotting-the-training-metrics"]], "Save the trained Model": [[47, "Save-the-trained-Model"]], "HuggingFace Tensorflow DeiT": [[48, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[48, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Deepmind PerceiverIO on GPU": [[46, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[46, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[46, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[46, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[46, "Run-the-demo..."]], "\u2026with torch backend": [[46, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[46, "....with-tensorflow-backend"]], "\u2026with jax backend": [[46, "...with-jax-backend"]], "\u2026with numpy backend": [[46, "...with-numpy-backend"]], "Conversions": [[75, "module-ivy.data_classes.container.conversions"], [52, "module-ivy.data_classes.array.conversions"]], "Ivy as a Transpiler Introduction": [[49, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[49, "To-use-the-transpiler:"]], "Transpiler Interface": [[49, "Transpiler-Interface"]], "Telemetry": [[49, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[49, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[49, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[49, "3.-Transpile-Models-\ud83c\udf10"]], "Image": [[83, "module-ivy.data_classes.container.image"], [60, "module-ivy.data_classes.array.image"]], "Resnet 18": [[50, "Resnet-18"]], "Write a model using Ivy": [[30, "Write-a-model-using-Ivy"]], "Demos": [[1, "demos"]], "Creating a Notebook for Demo": [[1, "creating-a-notebook-for-demo"]], "1.0: Lazy vs Eager": [[36, "1.0:-Lazy-vs-Eager"]], "Unify": [[36, "Unify"], [37, "Unify"], [38, "Unify"], [26, "Unify"], [27, "Unify"]], "Compile": [[36, "Compile"], [37, "Compile"], [38, "Compile"]], "Transpile": [[36, "Transpile"], [37, "Transpile"], [38, "Transpile"], [26, "Transpile"], [27, "Transpile"]], "Examples and Demos": [[3, "examples-and-demos"], [20, "examples-and-demos"]], "3.0: Perceiver": [[41, "3.0:-Perceiver"]], "Using TensorFlow Models in your PyTorch Projects": [[6, "Using-TensorFlow-Models-in-your-PyTorch-Projects"]], "Framework Incompatibility": [[6, "Framework-Incompatibility"]], "Transpiling a TensorFlow model to PyTorch": [[6, "Transpiling-a-TensorFlow-model-to-PyTorch"]], "About the transpiled model": [[6, "About-the-transpiled-model"]], "Setting-up the source model": [[6, "Setting-up-the-source-model"]], "Converting the model from TensorFlow to PyTorch": [[6, "Converting-the-model-from-TensorFlow-to-PyTorch"]], "Comparing the results": [[6, "Comparing-the-results"], [7, "Comparing-the-results"]], "Fine-tuning the transpiled model": [[6, "Fine-tuning-the-transpiled-model"], [7, "Fine-tuning-the-transpiled-model"]], "Conclusion": [[6, "Conclusion"], [7, "Conclusion"]], "Accelerating MMPreTrain models with JAX": [[11, "Accelerating-MMPreTrain-models-with-JAX"]], "Trace code": [[24, "Trace-code"]], "Write Ivy code": [[22, "Write-Ivy-code"]], "Contents": [[22, "Contents"]], "Installing Ivy": [[22, "Installing-Ivy"]], "Importing Ivy": [[22, "Importing-Ivy"], [0, "Importing-Ivy"]], "Ivy Backend Handler": [[22, "Ivy-Backend-Handler"], [31, "Ivy-Backend-Handler"]], "Data Structures": [[22, "Data-Structures"], [31, "Data-Structures"]], "Ivy Functional API": [[22, "Ivy-Functional-API"], [31, "Ivy-Functional-API"]], "Tutorials And Examples": [[20, "tutorials-and-examples"]], "Learn the basics": [[20, "learn-the-basics"], [21, "learn-the-basics"]], "Guides": [[20, "guides"], [15, "guides"]], "ODSC Ivy Demo": [[31, "ODSC-Ivy-Demo"]], "Graph Tracer": [[31, "Graph-Tracer"]], "Any function": [[31, "Any-function"], [32, "Any-function"]], "Any library": [[31, "Any-library"], [32, "Any-library"]], "Any model": [[31, "Any-model"], [32, "Any-model"]], "3.1: Stable Diffusion": [[42, "3.1:-Stable-Diffusion"]], "1.3: Dynamic vs Static": [[39, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[39, "Dynamic"]], "Static": [[39, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[39, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Transpile any library": [[28, "Transpile-any-library"]], "Basic Operations with Ivy": [[43, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[43, "Installs-\ud83d\udcbe"], [44, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[43, "Imports-\ud83d\udec3"], [44, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[43, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[43, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[43, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[43, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[43, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[43, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[43, "Set-Backend-Framework"]], "Define Model": [[43, "Define-Model"], [44, "Define-Model"]], "Create Model": [[43, "Create-Model"]], "Create Optimizer": [[43, "Create-Optimizer"]], "Input and Target": [[43, "Input-and-Target"]], "Loss Function": [[43, "Loss-Function"]], "Training Loop": [[43, "Training-Loop"]], "TO REPLACE: Title": [[2, "TO-REPLACE:-Title"]], "Transpile code": [[25, "Transpile-code"]], "Transpiling a PyTorch model to build on top": [[16, "Transpiling-a-PyTorch-model-to-build-on-top"]], "1.1: Framework Selection": [[37, "1.1:-Framework-Selection"]], "0.0: Unify": [[33, "0.0:-Unify"]], "Transpile any model": [[29, "Transpile-any-model"]], "Round up": [[29, "Round-up"]], "Accelerating PyTorch models with JAX": [[13, "Accelerating-PyTorch-models-with-JAX"]], "Compilation of a Basic Function": [[44, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[44, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[44, "Function-compilation-\ud83d\udee0"]], "Set backend": [[44, "Set-backend"]], "Sample input": [[44, "Sample-input"]], "Define function to compile": [[44, "Define-function-to-compile"]], "Compile the function": [[44, "Compile-the-function"]], "Check results": [[44, "Check-results"], [44, "id1"]], "Compiling simple neural network \ud83e\udde0": [[44, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[44, "Create-model"]], "Define input": [[44, "Define-input"]], "Compile network": [[44, "Compile-network"]], "Credit Card Fraud Detection using Ivy Framework": [[0, "Credit-Card-Fraud-Detection-using-Ivy-Framework"]], "Library Installation": [[0, "Library-Installation"]], "Importing Libraries and Configuring the Environment": [[0, "Importing-Libraries-and-Configuring-the-Environment"]], "Loading the Dataset": [[0, "Loading-the-Dataset"]], "Previewing the Dataset": [[0, "Previewing-the-Dataset"]], "Inspecting the End of the Dataset": [[0, "Inspecting-the-End-of-the-Dataset"]], "Dataset Information": [[0, "Dataset-Information"]], "Identifying Missing Values": [[0, "Identifying-Missing-Values"]], "Transaction Class Distribution": [[0, "Transaction-Class-Distribution"]], "Separating Data for Analysis": [[0, "Separating-Data-for-Analysis"]], "Statistical Measures of Legitimate Transactions": [[0, "Statistical-Measures-of-Legitimate-Transactions"]], "Statistical Measures of Fraudulent Transactions": [[0, "Statistical-Measures-of-Fraudulent-Transactions"]], "Comparing Transaction Metrics": [[0, "Comparing-Transaction-Metrics"]], "Under-Sampling for Balanced Dataset": [[0, "Under-Sampling-for-Balanced-Dataset"]], "Creating a Balanced Dataset": [[0, "Creating-a-Balanced-Dataset"]], "Splitting Data into Features and Targets": [[0, "Splitting-Data-into-Features-and-Targets"]], "Splitting Data into Training and Testing Sets": [[0, "Splitting-Data-into-Training-and-Testing-Sets"]], "Converting Data to Ivy Arrays": [[0, "Converting-Data-to-Ivy-Arrays"]], "Displaying Data Dimensions": [[0, "Displaying-Data-Dimensions"]], "Data Preparation Function": [[0, "Data-Preparation-Function"]], "Processing Training Data": [[0, "Processing-Training-Data"]], "Enabling Soft Device Mode in Ivy": [[0, "Enabling-Soft-Device-Mode-in-Ivy"]], "Configuring the XGBoost Classifier": [[0, "Configuring-the-XGBoost-Classifier"]], "Benchmarking XGBoost Model Training Time": [[0, "Benchmarking-XGBoost-Model-Training-Time"]], "Benchmarking Ivy-based XGBoost Model Training Time": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Training-Time"]], "Benchmarking XGBoost Model Prediction Time": [[0, "Benchmarking-XGBoost-Model-Prediction-Time"]], "Benchmarking Ivy-based XGBoost Model Prediction Performance": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Prediction-Performance"]], "Based on benchmark tests, the Ivy-based XGBoost implementation has demonstrated faster performance times compared to the standard XGBoost.": [[0, "Based-on-benchmark-tests,-the-Ivy-based-XGBoost-implementation-has-demonstrated-faster-performance-times-compared-to-the-standard-XGBoost."]], "Model Predictions and Classification Reports": [[0, "Model-Predictions-and-Classification-Reports"]], "Evaluation of Classifier Performance": [[0, "Evaluation-of-Classifier-Performance"]], "IvyClassifier Performance Metrics": [[0, "IvyClassifier-Performance-Metrics"]], "XGBClassifier Performance Metrics": [[0, "XGBClassifier-Performance-Metrics"]], "Visualization of Classification Reports": [[0, "Visualization-of-Classification-Reports"]], "Comparison of Ivy XGBoost and Standard XGBoost Classifiers": [[0, "Comparison-of-Ivy-XGBoost-and-Standard-XGBoost-Classifiers"]], "Ivy XGBoost Classifier:": [[0, "Ivy-XGBoost-Classifier:"]], "Standard XGBoost Classifier:": [[0, "Standard-XGBoost-Classifier:"]], "Accelerating XGBoost with JAX": [[14, "Accelerating-XGBoost-with-JAX"]], "Imports": [[14, "Imports"], [8, "Imports"], [12, "Imports"]], "Tests": [[14, "Tests"]], "Loading the Data": [[14, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[14, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[14, "JAX-backend"]], "Tensorflow backend": [[14, "Tensorflow-backend"]], "PyTorch backend": [[14, "PyTorch-backend"]], "More exhaustive example": [[14, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[14, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[14, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[14, "Comparison-of-Metrics"]], "0.2: Transpile": [[35, "0.2:-Transpile"]], "Ivy AlexNet demo": [[4, "Ivy-AlexNet-demo"]], "Installation": [[4, "Installation"], [12, "Installation"]], "Data Preparation": [[4, "Data-Preparation"], [5, "Data-Preparation"], [8, "Data-Preparation"], [12, "Data-Preparation"]], "Ivy AlexNet inference in Torch": [[4, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[4, "TensorFlow-inference"]], "JAX inference": [[4, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[4, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Quickstart": [[32, "Quickstart"]], "Get familiar with Ivy": [[32, "Get-familiar-with-Ivy"]], "Functional API": [[32, "Functional-API"]], "Stateful API": [[32, "Stateful-API"]], "Tracing code": [[32, "Tracing-code"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[45, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[45, "Table-of-Contents"]], "Defining the model": [[45, "Defining-the-model"]], "Model construction": [[45, "Model-construction"]], "Some helper functions": [[45, "Some-helper-functions"]], "Transpiling the model": [[45, "Transpiling-the-model"]], "PyTorch pipeline": [[45, "PyTorch-pipeline"]], "Dataset download": [[45, "Dataset-download"]], "DataLoader": [[45, "DataLoader"]], "Training": [[45, "Training"]], "Developing a convolutional network using Ivy": [[19, "Developing-a-convolutional-network-using-Ivy"]], "1.2: As a Decorator": [[38, "1.2:-As-a-Decorator"]], "Lazy vs Eager": [[26, "Lazy-vs-Eager"]], "Trace": [[26, "Trace"], [27, "Trace"]], "# Ivy Bert Demo": [[5, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[5, "Install-the-dependecies"]], "Import the modules": [[5, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[5, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[5, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[5, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[5, "Ivy-model-inference-with-torch"]], "Transpiling a Tensorflow model to build on top": [[18, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "2.0: Kornia": [[40, "2.0:-Kornia"]], "Image Segmentation with Ivy UNet": [[8, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[8, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[8, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [12, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[8, "Visualise-image"], [12, "Visualise-image"]], "Model Inference": [[8, "Model-Inference"]], "Initializing Native Torch UNet": [[8, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[8, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[8, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[8, "TensorFlow-backend"]], "JAX": [[8, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[8, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Using Ivy ResNet": [[12, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[12, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[12, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[12, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[12, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [12, "id1"]], "Model Inference ResNet50": [[12, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[12, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "0.1: Compile": [[34, "0.1:-Compile"]], "How to use decorators": [[27, "How-to-use-decorators"]], "Transpiling a haiku model to build on top": [[17, "Transpiling-a-haiku-model-to-build-on-top"]], "How To Convert Models from PyTorch to PaddlePaddle": [[7, "How-To-Convert-Models-from-PyTorch-to-PaddlePaddle"]], "About the Model": [[7, "About-the-Model"]], "Transpiling the Model": [[7, "Transpiling-the-Model"]], "Unify code": [[23, "Unify-code"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[51, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[51, "module-ivy.data_classes.array.activations"], [52, "module-ivy.data_classes.array.conversions"], [53, "module-ivy.data_classes.array.creation"], [54, "module-ivy.data_classes.array.data_type"], [55, "module-ivy.data_classes.array.device"], [56, "module-ivy.data_classes.array.elementwise"], [57, "module-ivy.data_classes.array.experimental"], [57, "module-ivy.data_classes.array.experimental.activations"], [57, "module-ivy.data_classes.array.experimental.conversions"], [57, "module-ivy.data_classes.array.experimental.creation"], [57, "module-ivy.data_classes.array.experimental.data_type"], [57, "module-ivy.data_classes.array.experimental.device"], [57, "module-ivy.data_classes.array.experimental.elementwise"], [57, "module-ivy.data_classes.array.experimental.general"], [57, "module-ivy.data_classes.array.experimental.gradients"], [57, "module-ivy.data_classes.array.experimental.image"], [57, "module-ivy.data_classes.array.experimental.layers"], [57, "module-ivy.data_classes.array.experimental.linear_algebra"], [57, "module-ivy.data_classes.array.experimental.losses"], [57, "module-ivy.data_classes.array.experimental.manipulation"], [57, "module-ivy.data_classes.array.experimental.norms"], [57, "module-ivy.data_classes.array.experimental.random"], [57, "module-ivy.data_classes.array.experimental.searching"], [57, "module-ivy.data_classes.array.experimental.set"], [57, "module-ivy.data_classes.array.experimental.sorting"], [57, "module-ivy.data_classes.array.experimental.statistical"], [57, "module-ivy.data_classes.array.experimental.utility"], [58, "module-ivy.data_classes.array.general"], [59, "module-ivy.data_classes.array.gradients"], [60, "module-ivy.data_classes.array.image"], [61, "module-ivy.data_classes.array.layers"], [62, "module-ivy.data_classes.array.linear_algebra"], [63, "module-ivy.data_classes.array.losses"], [64, "module-ivy.data_classes.array.manipulation"], [65, "module-ivy.data_classes.array.norms"], [66, "module-ivy.data_classes.array.random"], [67, "module-ivy.data_classes.array.searching"], [68, "module-ivy.data_classes.array.set"], [69, "module-ivy.data_classes.array.sorting"], [70, "module-ivy.data_classes.array.statistical"], [71, "module-ivy.data_classes.array.utility"], [72, "module-ivy.data_classes.array.wrapping"], [73, "module-ivy.data_classes.container.activations"], [74, "module-ivy.data_classes.container.base"], [75, "module-ivy.data_classes.container.conversions"], [76, "module-ivy.data_classes.container.creation"], [77, "module-ivy.data_classes.container.data_type"], [78, "module-ivy.data_classes.container.device"], [79, "module-ivy.data_classes.container.elementwise"], [80, "module-ivy.data_classes.container.experimental"], [80, "module-ivy.data_classes.container.experimental.activations"], [80, "module-ivy.data_classes.container.experimental.conversions"], [80, "module-ivy.data_classes.container.experimental.creation"], [80, "module-ivy.data_classes.container.experimental.data_type"], [80, "module-ivy.data_classes.container.experimental.device"], [80, "module-ivy.data_classes.container.experimental.elementwise"], [80, "module-ivy.data_classes.container.experimental.general"], [80, "module-ivy.data_classes.container.experimental.gradients"], [80, "module-ivy.data_classes.container.experimental.image"], [80, "module-ivy.data_classes.container.experimental.layers"], [80, "module-ivy.data_classes.container.experimental.linear_algebra"], [80, "module-ivy.data_classes.container.experimental.losses"], [80, "module-ivy.data_classes.container.experimental.manipulation"], [80, "module-ivy.data_classes.container.experimental.norms"], [80, "module-ivy.data_classes.container.experimental.random"], [80, "module-ivy.data_classes.container.experimental.searching"], [80, "module-ivy.data_classes.container.experimental.set"], [80, "module-ivy.data_classes.container.experimental.sorting"], [80, "module-ivy.data_classes.container.experimental.statistical"], [80, "module-ivy.data_classes.container.experimental.utility"], [81, "module-ivy.data_classes.container.general"], [82, "module-ivy.data_classes.container.gradients"], [83, "module-ivy.data_classes.container.image"], [84, "module-ivy.data_classes.container.layers"], [85, "module-ivy.data_classes.container.linear_algebra"], [86, "module-ivy.data_classes.container.losses"], [87, "module-ivy.data_classes.container.manipulation"], [88, "module-ivy.data_classes.container.norms"], [89, "module-ivy.data_classes.container.random"], [90, "module-ivy.data_classes.container.searching"], [91, "module-ivy.data_classes.container.set"], [92, "module-ivy.data_classes.container.sorting"], [93, "module-ivy.data_classes.container.statistical"], [94, "module-ivy.data_classes.container.utility"], [95, "module-ivy.data_classes.container.wrapping"], [96, "module-ivy.data_classes.factorized_tensor.base"], [97, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [99, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [100, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [102, "module-ivy.data_classes.array.array"], [103, "module-ivy.data_classes.container.container"], [105, "module-ivy.data_classes.nested_array.nested_array"], [106, "module-ivy.data_classes.nested_array.base"], [107, "module-ivy.data_classes.nested_array.elementwise"], [367, "module-ivy.functional.ivy.experimental.activations"], [368, "module-ivy.functional.ivy.experimental.constants"], [369, "module-ivy.functional.ivy.experimental.creation"], [370, "module-ivy.functional.ivy.experimental.data_type"], [371, "module-ivy.functional.ivy.experimental.device"], [372, "module-ivy.functional.ivy.experimental.elementwise"], [373, "module-ivy.functional.ivy.experimental.general"], [374, "module-ivy.functional.ivy.experimental.gradients"], [375, "module-ivy.functional.ivy.experimental.layers"], [376, "module-ivy.functional.ivy.experimental.linear_algebra"], [377, "module-ivy.functional.ivy.experimental.losses"], [378, "module-ivy.functional.ivy.experimental.manipulation"], [379, "module-ivy.functional.ivy.experimental.meta"], [380, "module-ivy.functional.ivy.experimental.nest"], [381, "module-ivy.functional.ivy.experimental.norms"], [382, "module-ivy.functional.ivy.experimental.random"], [383, "module-ivy.functional.ivy.experimental.searching"], [384, "module-ivy.functional.ivy.experimental.set"], [385, "module-ivy.functional.ivy.experimental.sorting"], [386, "module-ivy.functional.ivy.experimental.sparse_array"], [387, "module-ivy.functional.ivy.experimental.statistical"], [388, "module-ivy.functional.ivy.experimental.utility"], [626, "module-ivy.functional.ivy.activations"], [627, "module-ivy.functional.ivy.constants"], [628, "module-ivy.functional.ivy.control_flow_ops"], [629, "module-ivy.functional.ivy.creation"], [630, "module-ivy.functional.ivy.data_type"], [631, "module-ivy.functional.ivy.device"], [632, "module-ivy.functional.ivy.elementwise"], [633, "module-ivy.functional.ivy.experimental"], [634, "module-ivy.functional.ivy.general"], [635, "module-ivy.functional.ivy.gradients"], [636, "module-ivy.functional.ivy.layers"], [637, "module-ivy.functional.ivy.linear_algebra"], [638, "module-ivy.functional.ivy.losses"], [639, "module-ivy.functional.ivy.manipulation"], [640, "module-ivy.functional.ivy.meta"], [641, "module-ivy.functional.ivy.nest"], [642, "module-ivy.functional.ivy.norms"], [643, "module-ivy.functional.ivy.random"], [644, "module-ivy.functional.ivy.searching"], [645, "module-ivy.functional.ivy.set"], [646, "module-ivy.functional.ivy.sorting"], [647, "module-ivy.functional.ivy.statistical"], [648, "module-ivy.functional.ivy.utility"], [771, "module-ivy_tests.test_ivy.helpers.assertions"], [772, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [773, "module-ivy_tests.test_ivy.helpers.function_testing"], [774, "module-ivy_tests.test_ivy.helpers.globals"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [780, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [782, "module-ivy_tests.test_ivy.helpers.structs"], [783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [784, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [788, "module-ivy.stateful.activations"], [789, "module-ivy.stateful.converters"], [790, "module-ivy.stateful.helpers"], [791, "module-ivy.stateful.initializers"], [792, "module-ivy.stateful.layers"], [793, "module-ivy.stateful.losses"], [794, "module-ivy.stateful.module"], [795, "module-ivy.stateful.norms"], [796, "module-ivy.stateful.optimizers"], [797, "module-ivy.stateful.sequential"], [798, "module-ivy.utils.assertions"], [799, "module-ivy.utils.backend"], [800, "module-ivy.utils.backend.ast_helpers"], [801, "module-ivy.utils.backend.handler"], [802, "module-ivy.utils.backend.sub_backend_handler"], [803, "module-ivy.utils.binaries"], [804, "module-ivy.utils.dynamic_import"], [805, "module-ivy.utils.einsum_parser"], [806, "module-ivy.utils.einsum_path_helpers"], [807, "module-ivy.utils.exceptions"], [808, "module-ivy.utils.inspection"], [809, "module-ivy.utils.logging"], [810, "module-ivy.utils.profiler"], [811, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[52, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[53, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[54, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[55, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[55, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[55, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[56, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[57, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[57, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[57, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[57, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[57, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[57, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[57, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[57, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[57, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[57, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[57, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[57, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[57, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[57, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[57, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[57, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[57, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[57, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[57, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[57, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[58, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[59, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[60, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[60, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[60, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[61, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[62, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[63, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[64, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[65, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[66, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[66, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[66, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[67, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[68, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[68, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[68, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[69, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[70, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[71, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[72, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[73, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[74, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[74, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[75, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[76, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[77, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[78, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[78, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[79, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[80, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[80, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[80, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[80, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[80, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[80, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[80, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[80, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[80, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[80, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[80, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[80, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[80, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[80, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[80, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[80, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[80, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[80, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[80, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[80, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[81, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[82, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[83, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[83, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[83, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[84, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[85, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[86, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[87, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[88, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[89, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[89, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[90, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[91, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[91, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[91, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[92, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[93, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[94, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[95, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[96, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[102, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[102, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[103, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[103, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[105, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[106, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[110, "ivy.gelu"], [626, "ivy.gelu"]], "gelu() (ivy.array method)": [[110, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[110, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[111, "ivy.hardswish"], [626, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[111, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[111, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[112, "ivy.leaky_relu"], [626, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[112, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[112, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[113, "ivy.log_softmax"], [626, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[113, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[113, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[114, "ivy.mish"], [626, "ivy.mish"]], "mish() (ivy.array method)": [[114, "ivy.Array.mish"]], "mish() (ivy.container method)": [[114, "ivy.Container.mish"]], "relu() (in module ivy)": [[115, "ivy.relu"], [626, "ivy.relu"]], "relu() (ivy.array method)": [[115, "ivy.Array.relu"]], "relu() (ivy.container method)": [[115, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[116, "ivy.sigmoid"], [626, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[116, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[116, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[117, "ivy.softmax"], [626, "ivy.softmax"]], "softmax() (ivy.array method)": [[117, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[117, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[118, "ivy.softplus"], [626, "ivy.softplus"]], "softplus() (ivy.array method)": [[118, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[118, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[119, "ivy.softsign"], [626, "ivy.softsign"]], "cmp_is() (in module ivy)": [[120, "ivy.cmp_is"], [628, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[121, "ivy.cmp_isnot"], [628, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[122, "ivy.for_loop"], [628, "ivy.for_loop"]], "if_else() (in module ivy)": [[123, "ivy.if_else"], [628, "ivy.if_else"]], "try_except() (in module ivy)": [[124, "ivy.try_except"], [628, "ivy.try_except"]], "while_loop() (in module ivy)": [[125, "ivy.while_loop"], [628, "ivy.while_loop"]], "arange() (in module ivy)": [[126, "ivy.arange"], [629, "ivy.arange"]], "array() (in module ivy)": [[127, "ivy.array"], [629, "ivy.array"]], "asarray() (in module ivy)": [[128, "ivy.asarray"], [629, "ivy.asarray"]], "asarray() (ivy.array method)": [[128, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[128, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[129, "ivy.copy_array"], [629, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[129, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[129, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[130, "ivy.empty"], [629, "ivy.empty"]], "empty_like() (in module ivy)": [[131, "ivy.empty_like"], [629, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[131, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[131, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[132, "ivy.eye"], [629, "ivy.eye"]], "from_dlpack() (in module ivy)": [[133, "ivy.from_dlpack"], [629, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[133, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[133, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[134, "ivy.frombuffer"], [629, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[134, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[135, "ivy.full"], [629, "ivy.full"]], "full_like() (in module ivy)": [[136, "ivy.full_like"], [629, "ivy.full_like"]], "full_like() (ivy.array method)": [[136, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[136, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[137, "ivy.linspace"], [629, "ivy.linspace"]], "linspace() (ivy.array method)": [[137, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[137, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[138, "ivy.logspace"], [629, "ivy.logspace"]], "logspace() (ivy.array method)": [[138, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[138, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[139, "ivy.meshgrid"], [629, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[139, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[139, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[140, "ivy.native_array"], [629, "ivy.native_array"]], "native_array() (ivy.array method)": [[140, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[140, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[141, "ivy.one_hot"], [629, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[141, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[141, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[142, "ivy.ones"], [629, "ivy.ones"]], "ones_like() (in module ivy)": [[143, "ivy.ones_like"], [629, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[143, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[143, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[144, "ivy.to_dlpack"], [629, "ivy.to_dlpack"]], "tril() (in module ivy)": [[145, "ivy.tril"], [629, "ivy.tril"]], "tril() (ivy.array method)": [[145, "ivy.Array.tril"]], "tril() (ivy.container method)": [[145, "ivy.Container.tril"]], "triu() (in module ivy)": [[146, "ivy.triu"], [629, "ivy.triu"]], "triu() (ivy.array method)": [[146, "ivy.Array.triu"]], "triu() (ivy.container method)": [[146, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[147, "ivy.triu_indices"], [629, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[147, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[148, "ivy.zeros"], [629, "ivy.zeros"]], "zeros_like() (in module ivy)": [[149, "ivy.zeros_like"], [629, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[149, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[149, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[150, "ivy.as_ivy_dtype"], [630, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[151, "ivy.as_native_dtype"], [630, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[152, "ivy.astype"], [630, "ivy.astype"]], "astype() (ivy.array method)": [[152, "ivy.Array.astype"]], "astype() (ivy.container method)": [[152, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[153, "ivy.broadcast_arrays"], [630, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[153, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[153, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[154, "ivy.broadcast_to"], [630, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[154, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[154, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[155, "ivy.can_cast"], [630, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[155, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[155, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[156, "ivy.check_float"], [630, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[157, "ivy.closest_valid_dtype"], [630, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[158, "ivy.default_complex_dtype"], [630, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[159, "ivy.default_dtype"], [630, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[160, "ivy.default_float_dtype"], [630, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[161, "ivy.default_int_dtype"], [630, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[162, "ivy.default_uint_dtype"], [630, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[163, "ivy.dtype"], [630, "ivy.dtype"]], "dtype() (ivy.array method)": [[163, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[163, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[164, "ivy.dtype_bits"], [630, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[165, "ivy.finfo"], [630, "ivy.finfo"]], "finfo() (ivy.array method)": [[165, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[165, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[166, "ivy.function_supported_dtypes"], [630, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[167, "ivy.function_unsupported_dtypes"], [630, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[168, "ivy.iinfo"], [630, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[168, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[168, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[169, "ivy.infer_default_dtype"], [630, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[170, "ivy.invalid_dtype"], [630, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[171, "ivy.is_bool_dtype"], [630, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[171, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[171, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[172, "ivy.is_complex_dtype"], [630, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[172, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[173, "ivy.is_float_dtype"], [630, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[173, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[173, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[174, "ivy.is_hashable_dtype"], [630, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[175, "ivy.is_int_dtype"], [630, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[175, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[175, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[176, "ivy.is_native_dtype"], [630, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[177, "ivy.is_uint_dtype"], [630, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[177, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[177, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[178, "ivy.promote_types"], [630, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[179, "ivy.promote_types_of_inputs"], [630, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[180, "ivy.result_type"], [630, "ivy.result_type"]], "result_type() (ivy.array method)": [[180, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[180, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[181, "ivy.set_default_complex_dtype"], [630, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[182, "ivy.set_default_dtype"], [630, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[183, "ivy.set_default_float_dtype"], [630, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[184, "ivy.set_default_int_dtype"], [630, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[185, "ivy.set_default_uint_dtype"], [630, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[186, "ivy.type_promote_arrays"], [630, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[187, "ivy.unset_default_complex_dtype"], [630, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[188, "ivy.unset_default_dtype"], [630, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[189, "ivy.unset_default_float_dtype"], [630, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[190, "ivy.unset_default_int_dtype"], [630, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[191, "ivy.unset_default_uint_dtype"], [630, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[192, "ivy.valid_dtype"], [630, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[193, "ivy.as_ivy_dev"], [631, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[194, "ivy.as_native_dev"], [631, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[195, "ivy.clear_cached_mem_on_dev"], [631, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[196, "ivy.default_device"], [631, "ivy.default_device"]], "dev() (in module ivy)": [[197, "ivy.dev"], [631, "ivy.dev"]], "dev() (ivy.array method)": [[197, "ivy.Array.dev"]], "dev() (ivy.container method)": [[197, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[198, "ivy.dev_util"], [631, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[199, "ivy.function_supported_devices"], [631, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[200, "ivy.function_unsupported_devices"], [631, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.get_all_ivy_arrays_on_dev"], [631, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[202, "ivy.gpu_is_available"], [631, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[203, "ivy.handle_soft_device_variable"], [631, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[204, "ivy.num_cpu_cores"], [631, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[205, "ivy.num_gpus"], [631, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[206, "ivy.num_ivy_arrays_on_dev"], [631, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[207, "ivy.percent_used_mem_on_dev"], [631, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[208, "ivy.print_all_ivy_arrays_on_dev"], [631, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[209, "ivy.set_default_device"], [631, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[210, "ivy.set_soft_device_mode"], [631, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[211, "ivy.set_split_factor"], [631, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[212, "ivy.split_factor"], [631, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[213, "ivy.split_func_call"], [631, "ivy.split_func_call"]], "to_device() (in module ivy)": [[214, "ivy.to_device"], [631, "ivy.to_device"]], "to_device() (ivy.array method)": [[214, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[214, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[215, "ivy.total_mem_on_dev"], [631, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[216, "ivy.tpu_is_available"], [631, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[217, "ivy.unset_default_device"], [631, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[218, "ivy.unset_soft_device_mode"], [631, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[219, "ivy.used_mem_on_dev"], [631, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[220, "ivy.abs"], [632, "ivy.abs"]], "abs() (ivy.array method)": [[220, "ivy.Array.abs"]], "abs() (ivy.container method)": [[220, "ivy.Container.abs"]], "acos() (in module ivy)": [[221, "ivy.acos"], [632, "ivy.acos"]], "acos() (ivy.array method)": [[221, "ivy.Array.acos"]], "acos() (ivy.container method)": [[221, "ivy.Container.acos"]], "acosh() (in module ivy)": [[222, "ivy.acosh"], [632, "ivy.acosh"]], "acosh() (ivy.array method)": [[222, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[222, "ivy.Container.acosh"]], "add() (in module ivy)": [[223, "ivy.add"], [632, "ivy.add"]], "add() (ivy.array method)": [[223, "ivy.Array.add"]], "add() (ivy.container method)": [[223, "ivy.Container.add"]], "angle() (in module ivy)": [[224, "ivy.angle"], [632, "ivy.angle"]], "angle() (ivy.array method)": [[224, "ivy.Array.angle"]], "angle() (ivy.container method)": [[224, "ivy.Container.angle"]], "asin() (in module ivy)": [[225, "ivy.asin"], [632, "ivy.asin"]], "asin() (ivy.array method)": [[225, "ivy.Array.asin"]], "asin() (ivy.container method)": [[225, "ivy.Container.asin"]], "asinh() (in module ivy)": [[226, "ivy.asinh"], [632, "ivy.asinh"]], "asinh() (ivy.array method)": [[226, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[226, "ivy.Container.asinh"]], "atan() (in module ivy)": [[227, "ivy.atan"], [632, "ivy.atan"]], "atan() (ivy.array method)": [[227, "ivy.Array.atan"]], "atan() (ivy.container method)": [[227, "ivy.Container.atan"]], "atan2() (in module ivy)": [[228, "ivy.atan2"], [632, "ivy.atan2"]], "atan2() (ivy.array method)": [[228, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[228, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[229, "ivy.atanh"], [632, "ivy.atanh"]], "atanh() (ivy.array method)": [[229, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[229, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[230, "ivy.bitwise_and"], [632, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[230, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[230, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[231, "ivy.bitwise_invert"], [632, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[231, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[231, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[232, "ivy.bitwise_left_shift"], [632, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[232, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[232, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[233, "ivy.bitwise_or"], [632, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[233, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[233, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[234, "ivy.bitwise_right_shift"], [632, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[234, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[234, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[235, "ivy.bitwise_xor"], [632, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[235, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[235, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[236, "ivy.ceil"], [632, "ivy.ceil"]], "ceil() (ivy.array method)": [[236, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[236, "ivy.Container.ceil"]], "cos() (in module ivy)": [[237, "ivy.cos"], [632, "ivy.cos"]], "cos() (ivy.array method)": [[237, "ivy.Array.cos"]], "cos() (ivy.container method)": [[237, "ivy.Container.cos"]], "cosh() (in module ivy)": [[238, "ivy.cosh"], [632, "ivy.cosh"]], "cosh() (ivy.array method)": [[238, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[238, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[239, "ivy.deg2rad"], [632, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[239, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[239, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[240, "ivy.divide"], [632, "ivy.divide"]], "divide() (ivy.array method)": [[240, "ivy.Array.divide"]], "divide() (ivy.container method)": [[240, "ivy.Container.divide"]], "equal() (in module ivy)": [[241, "ivy.equal"], [632, "ivy.equal"]], "equal() (ivy.array method)": [[241, "ivy.Array.equal"]], "equal() (ivy.container method)": [[241, "ivy.Container.equal"]], "erf() (in module ivy)": [[242, "ivy.erf"], [632, "ivy.erf"]], "erf() (ivy.array method)": [[242, "ivy.Array.erf"]], "erf() (ivy.container method)": [[242, "ivy.Container.erf"]], "exp() (in module ivy)": [[243, "ivy.exp"], [632, "ivy.exp"]], "exp() (ivy.array method)": [[243, "ivy.Array.exp"]], "exp() (ivy.container method)": [[243, "ivy.Container.exp"]], "exp2() (in module ivy)": [[244, "ivy.exp2"], [632, "ivy.exp2"]], "exp2() (ivy.array method)": [[244, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[244, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[245, "ivy.expm1"], [632, "ivy.expm1"]], "expm1() (ivy.array method)": [[245, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[245, "ivy.Container.expm1"]], "floor() (in module ivy)": [[246, "ivy.floor"], [632, "ivy.floor"]], "floor() (ivy.array method)": [[246, "ivy.Array.floor"]], "floor() (ivy.container method)": [[246, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[247, "ivy.floor_divide"], [632, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[247, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[247, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[248, "ivy.fmin"], [632, "ivy.fmin"]], "fmin() (ivy.array method)": [[248, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[248, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[249, "ivy.fmod"], [632, "ivy.fmod"]], "fmod() (ivy.array method)": [[249, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[249, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[250, "ivy.gcd"], [632, "ivy.gcd"]], "gcd() (ivy.array method)": [[250, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[250, "ivy.Container.gcd"]], "greater() (in module ivy)": [[251, "ivy.greater"], [632, "ivy.greater"]], "greater() (ivy.array method)": [[251, "ivy.Array.greater"]], "greater() (ivy.container method)": [[251, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[252, "ivy.greater_equal"], [632, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[252, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[252, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[253, "ivy.imag"], [632, "ivy.imag"]], "imag() (ivy.array method)": [[253, "ivy.Array.imag"]], "imag() (ivy.container method)": [[253, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[254, "ivy.isfinite"], [632, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[254, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[254, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[255, "ivy.isinf"], [632, "ivy.isinf"]], "isinf() (ivy.array method)": [[255, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[255, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[256, "ivy.isnan"], [632, "ivy.isnan"]], "isnan() (ivy.array method)": [[256, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[256, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[257, "ivy.isreal"], [632, "ivy.isreal"]], "isreal() (ivy.array method)": [[257, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[257, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[258, "ivy.lcm"], [632, "ivy.lcm"]], "lcm() (ivy.array method)": [[258, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[258, "ivy.Container.lcm"]], "less() (in module ivy)": [[259, "ivy.less"], [632, "ivy.less"]], "less() (ivy.array method)": [[259, "ivy.Array.less"]], "less() (ivy.container method)": [[259, "ivy.Container.less"]], "less_equal() (in module ivy)": [[260, "ivy.less_equal"], [632, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[260, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[260, "ivy.Container.less_equal"]], "log() (in module ivy)": [[261, "ivy.log"], [632, "ivy.log"]], "log() (ivy.array method)": [[261, "ivy.Array.log"]], "log() (ivy.container method)": [[261, "ivy.Container.log"]], "log10() (in module ivy)": [[262, "ivy.log10"], [632, "ivy.log10"]], "log10() (ivy.array method)": [[262, "ivy.Array.log10"]], "log10() (ivy.container method)": [[262, "ivy.Container.log10"]], "log1p() (in module ivy)": [[263, "ivy.log1p"], [632, "ivy.log1p"]], "log1p() (ivy.array method)": [[263, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[263, "ivy.Container.log1p"]], "log2() (in module ivy)": [[264, "ivy.log2"], [632, "ivy.log2"]], "log2() (ivy.array method)": [[264, "ivy.Array.log2"]], "log2() (ivy.container method)": [[264, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[265, "ivy.logaddexp"], [632, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[265, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[265, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[266, "ivy.logaddexp2"], [632, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[266, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[266, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[267, "ivy.logical_and"], [632, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[267, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[267, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[268, "ivy.logical_not"], [632, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[268, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[268, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[269, "ivy.logical_or"], [632, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[269, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[269, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[270, "ivy.logical_xor"], [632, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[270, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[270, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[271, "ivy.maximum"], [632, "ivy.maximum"]], "maximum() (ivy.array method)": [[271, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[271, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[272, "ivy.minimum"], [632, "ivy.minimum"]], "minimum() (ivy.array method)": [[272, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[272, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[273, "ivy.multiply"], [632, "ivy.multiply"]], "multiply() (ivy.array method)": [[273, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[273, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[274, "ivy.nan_to_num"], [632, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[274, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[274, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[275, "ivy.negative"], [632, "ivy.negative"]], "negative() (ivy.array method)": [[275, "ivy.Array.negative"]], "negative() (ivy.container method)": [[275, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[276, "ivy.not_equal"], [632, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[276, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[276, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[277, "ivy.positive"], [632, "ivy.positive"]], "positive() (ivy.array method)": [[277, "ivy.Array.positive"]], "positive() (ivy.container method)": [[277, "ivy.Container.positive"]], "pow() (in module ivy)": [[278, "ivy.pow"], [632, "ivy.pow"]], "pow() (ivy.array method)": [[278, "ivy.Array.pow"]], "pow() (ivy.container method)": [[278, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[279, "ivy.rad2deg"], [632, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[279, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[279, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[280, "ivy.real"], [632, "ivy.real"]], "real() (ivy.array method)": [[280, "ivy.Array.real"]], "real() (ivy.container method)": [[280, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[281, "ivy.reciprocal"], [632, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[281, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[281, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[282, "ivy.remainder"], [632, "ivy.remainder"]], "remainder() (ivy.array method)": [[282, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[282, "ivy.Container.remainder"]], "round() (in module ivy)": [[283, "ivy.round"], [632, "ivy.round"]], "round() (ivy.array method)": [[283, "ivy.Array.round"]], "round() (ivy.container method)": [[283, "ivy.Container.round"]], "sign() (in module ivy)": [[284, "ivy.sign"], [632, "ivy.sign"]], "sign() (ivy.array method)": [[284, "ivy.Array.sign"]], "sign() (ivy.container method)": [[284, "ivy.Container.sign"]], "sin() (in module ivy)": [[285, "ivy.sin"], [632, "ivy.sin"]], "sin() (ivy.array method)": [[285, "ivy.Array.sin"]], "sin() (ivy.container method)": [[285, "ivy.Container.sin"]], "sinh() (in module ivy)": [[286, "ivy.sinh"], [632, "ivy.sinh"]], "sinh() (ivy.array method)": [[286, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[286, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[287, "ivy.sqrt"], [632, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[287, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[287, "ivy.Container.sqrt"]], "square() (in module ivy)": [[288, "ivy.square"], [632, "ivy.square"]], "square() (ivy.array method)": [[288, "ivy.Array.square"]], "square() (ivy.container method)": [[288, "ivy.Container.square"]], "subtract() (in module ivy)": [[289, "ivy.subtract"], [632, "ivy.subtract"]], "subtract() (ivy.array method)": [[289, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[289, "ivy.Container.subtract"]], "tan() (in module ivy)": [[290, "ivy.tan"], [632, "ivy.tan"]], "tan() (ivy.array method)": [[290, "ivy.Array.tan"]], "tan() (ivy.container method)": [[290, "ivy.Container.tan"]], "tanh() (in module ivy)": [[291, "ivy.tanh"], [632, "ivy.tanh"]], "tanh() (ivy.array method)": [[291, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[291, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[292, "ivy.trapz"], [632, "ivy.trapz"]], "trapz() (ivy.array method)": [[292, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[292, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[293, "ivy.trunc"], [632, "ivy.trunc"]], "trunc() (ivy.array method)": [[293, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[293, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[294, "ivy.trunc_divide"], [632, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[294, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[294, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[295, "ivy.celu"], [367, "ivy.celu"]], "celu() (ivy.array method)": [[295, "ivy.Array.celu"]], "celu() (ivy.container method)": [[295, "ivy.Container.celu"]], "elu() (in module ivy)": [[296, "ivy.elu"], [367, "ivy.elu"]], "elu() (ivy.array method)": [[296, "ivy.Array.elu"]], "elu() (ivy.container method)": [[296, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[297, "ivy.hardshrink"], [367, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[297, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[297, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[298, "ivy.hardsilu"], [367, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[298, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[298, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[299, "ivy.hardtanh"], [367, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[299, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[299, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[300, "ivy.logit"], [367, "ivy.logit"]], "logit() (ivy.array method)": [[300, "ivy.Array.logit"]], "logit() (ivy.container method)": [[300, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[301, "ivy.logsigmoid"], [367, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[301, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[301, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[302, "ivy.prelu"], [367, "ivy.prelu"]], "prelu() (ivy.array method)": [[302, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[302, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[303, "ivy.relu6"], [367, "ivy.relu6"]], "relu6() (ivy.array method)": [[303, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[303, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[304, "ivy.scaled_tanh"], [367, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[304, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[304, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[305, "ivy.selu"], [367, "ivy.selu"]], "selu() (ivy.array method)": [[305, "ivy.Array.selu"]], "selu() (ivy.container method)": [[305, "ivy.Container.selu"]], "silu() (in module ivy)": [[306, "ivy.silu"], [367, "ivy.silu"]], "silu() (ivy.array method)": [[306, "ivy.Array.silu"]], "silu() (ivy.container method)": [[306, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[307, "ivy.softshrink"], [367, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[307, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[307, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[308, "ivy.stanh"], [367, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[309, "ivy.tanhshrink"], [367, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[309, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[309, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[310, "ivy.threshold"], [367, "ivy.threshold"]], "threshold() (ivy.array method)": [[310, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[310, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[311, "ivy.thresholded_relu"], [367, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[311, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[311, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[312, "ivy.blackman_window"], [369, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[312, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[312, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[313, "ivy.eye_like"], [369, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[313, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[313, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[314, "ivy.hamming_window"], [369, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[314, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[315, "ivy.hann_window"], [369, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[315, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[316, "ivy.indices"], [369, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[317, "ivy.kaiser_bessel_derived_window"], [369, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[317, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[318, "ivy.kaiser_window"], [369, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[318, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[319, "ivy.mel_weight_matrix"], [369, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[319, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[319, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[320, "ivy.ndenumerate"], [369, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[321, "ivy.ndindex"], [369, "ivy.ndindex"]], "polyval() (in module ivy)": [[322, "ivy.polyval"], [369, "ivy.polyval"]], "polyval() (ivy.container method)": [[322, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[323, "ivy.random_cp"], [369, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[324, "ivy.random_parafac2"], [369, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[325, "ivy.random_tr"], [369, "ivy.random_tr"]], "random_tt() (in module ivy)": [[326, "ivy.random_tt"], [369, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[327, "ivy.random_tucker"], [369, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[328, "ivy.tril_indices"], [369, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[328, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[329, "ivy.trilu"], [369, "ivy.trilu"]], "trilu() (ivy.array method)": [[329, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[329, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[330, "ivy.unsorted_segment_mean"], [369, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[330, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[330, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[331, "ivy.unsorted_segment_min"], [369, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[331, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[331, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[332, "ivy.unsorted_segment_sum"], [369, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[332, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[332, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[333, "ivy.vorbis_window"], [369, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[333, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[334, "ivy.allclose"], [372, "ivy.allclose"]], "allclose() (ivy.array method)": [[334, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[334, "ivy.Container.allclose"]], "amax() (in module ivy)": [[335, "ivy.amax"], [372, "ivy.amax"]], "amax() (ivy.array method)": [[335, "ivy.Array.amax"]], "amax() (ivy.container method)": [[335, "ivy.Container.amax"]], "amin() (in module ivy)": [[336, "ivy.amin"], [372, "ivy.amin"]], "amin() (ivy.array method)": [[336, "ivy.Array.amin"]], "amin() (ivy.container method)": [[336, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[337, "ivy.binarizer"], [372, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[337, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[337, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[338, "ivy.conj"], [372, "ivy.conj"]], "conj() (ivy.array method)": [[338, "ivy.Array.conj"]], "conj() (ivy.container method)": [[338, "ivy.Container.conj"]], "copysign() (in module ivy)": [[339, "ivy.copysign"], [372, "ivy.copysign"]], "copysign() (ivy.array method)": [[339, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[339, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[340, "ivy.count_nonzero"], [372, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[340, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[340, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[341, "ivy.diff"], [372, "ivy.diff"]], "diff() (ivy.array method)": [[341, "ivy.Array.diff"]], "diff() (ivy.container method)": [[341, "ivy.Container.diff"]], "digamma() (in module ivy)": [[342, "ivy.digamma"], [372, "ivy.digamma"]], "digamma() (ivy.array method)": [[342, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[342, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[343, "ivy.erfc"], [372, "ivy.erfc"]], "erfc() (ivy.array method)": [[343, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[343, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[344, "ivy.erfinv"], [372, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[344, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[344, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[345, "ivy.fix"], [372, "ivy.fix"]], "fix() (ivy.array method)": [[345, "ivy.Array.fix"]], "fix() (ivy.container method)": [[345, "ivy.Container.fix"]], "float_power() (in module ivy)": [[346, "ivy.float_power"], [372, "ivy.float_power"]], "float_power() (ivy.array method)": [[346, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[346, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[347, "ivy.fmax"], [372, "ivy.fmax"]], "fmax() (ivy.array method)": [[347, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[347, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[348, "ivy.frexp"], [372, "ivy.frexp"]], "frexp() (ivy.array method)": [[348, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[348, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[349, "ivy.gradient"], [372, "ivy.gradient"]], "gradient() (ivy.array method)": [[349, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[349, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[350, "ivy.hypot"], [372, "ivy.hypot"]], "hypot() (ivy.array method)": [[350, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[350, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[351, "ivy.isclose"], [372, "ivy.isclose"]], "isclose() (ivy.array method)": [[351, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[351, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[352, "ivy.ldexp"], [372, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[352, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[352, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[353, "ivy.lerp"], [372, "ivy.lerp"]], "lerp() (ivy.array method)": [[353, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[353, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[354, "ivy.lgamma"], [372, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[354, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[354, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[355, "ivy.modf"], [372, "ivy.modf"]], "modf() (ivy.array method)": [[355, "ivy.Array.modf"]], "modf() (ivy.container method)": [[355, "ivy.Container.modf"]], "nansum() (in module ivy)": [[356, "ivy.nansum"], [372, "ivy.nansum"]], "nansum() (ivy.array method)": [[356, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[356, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[357, "ivy.nextafter"], [372, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[357, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[357, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[358, "ivy.signbit"], [372, "ivy.signbit"]], "signbit() (ivy.array method)": [[358, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[358, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[359, "ivy.sinc"], [372, "ivy.sinc"]], "sinc() (ivy.array method)": [[359, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[359, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[360, "ivy.sparsify_tensor"], [372, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[360, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[360, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[361, "ivy.xlogy"], [372, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[361, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[361, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[362, "ivy.zeta"], [372, "ivy.zeta"]], "zeta() (ivy.array method)": [[362, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[362, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[363, "ivy.reduce"], [373, "ivy.reduce"]], "reduce() (ivy.array method)": [[363, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[363, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[364, "ivy.bind_custom_gradient_function"], [374, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[365, "ivy.jvp"], [374, "ivy.jvp"]], "vjp() (in module ivy)": [[366, "ivy.vjp"], [374, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[367, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[368, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[369, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[370, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[371, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[372, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[373, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[374, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[375, "ivy.adaptive_avg_pool1d"], [389, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[375, "ivy.adaptive_avg_pool2d"], [390, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[375, "ivy.adaptive_max_pool2d"], [391, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[375, "ivy.adaptive_max_pool3d"], [392, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[375, "ivy.area_interpolate"], [393, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[375, "ivy.avg_pool1d"], [394, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[375, "ivy.avg_pool2d"], [395, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[375, "ivy.avg_pool3d"], [396, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[375, "ivy.dct"], [397, "ivy.dct"]], "dft() (in module ivy)": [[375, "ivy.dft"], [398, "ivy.dft"]], "dropout1d() (in module ivy)": [[375, "ivy.dropout1d"], [399, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[375, "ivy.dropout2d"], [400, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[375, "ivy.dropout3d"], [401, "ivy.dropout3d"]], "embedding() (in module ivy)": [[375, "ivy.embedding"], [402, "ivy.embedding"]], "fft() (in module ivy)": [[375, "ivy.fft"], [403, "ivy.fft"]], "fft2() (in module ivy)": [[375, "ivy.fft2"], [404, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[375, "ivy.generate_einsum_equation"], [405, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[375, "ivy.get_interpolate_kernel"], [406, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[375, "ivy.idct"], [407, "ivy.idct"]], "ifft() (in module ivy)": [[375, "ivy.ifft"], [408, "ivy.ifft"]], "ifftn() (in module ivy)": [[375, "ivy.ifftn"], [409, "ivy.ifftn"]], "interp() (in module ivy)": [[375, "ivy.interp"], [410, "ivy.interp"]], "interpolate() (in module ivy)": [[375, "ivy.interpolate"], [411, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[375, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[375, "ivy.max_pool1d"], [412, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[375, "ivy.max_pool2d"], [413, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[375, "ivy.max_pool3d"], [414, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[375, "ivy.max_unpool1d"], [415, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[375, "ivy.nearest_interpolate"], [416, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[375, "ivy.pool"], [417, "ivy.pool"]], "reduce_window() (in module ivy)": [[375, "ivy.reduce_window"], [418, "ivy.reduce_window"]], "rfft() (in module ivy)": [[375, "ivy.rfft"], [419, "ivy.rfft"]], "rfftn() (in module ivy)": [[375, "ivy.rfftn"], [420, "ivy.rfftn"]], "rnn() (in module ivy)": [[375, "ivy.rnn"], [421, "ivy.rnn"]], "sliding_window() (in module ivy)": [[375, "ivy.sliding_window"], [422, "ivy.sliding_window"]], "stft() (in module ivy)": [[375, "ivy.stft"], [423, "ivy.stft"]], "adjoint() (in module ivy)": [[376, "ivy.adjoint"], [424, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[376, "ivy.batched_outer"], [425, "ivy.batched_outer"]], "cond() (in module ivy)": [[376, "ivy.cond"], [426, "ivy.cond"]], "diagflat() (in module ivy)": [[376, "ivy.diagflat"], [427, "ivy.diagflat"]], "dot() (in module ivy)": [[376, "ivy.dot"], [428, "ivy.dot"]], "eig() (in module ivy)": [[376, "ivy.eig"], [429, "ivy.eig"], [637, "ivy.eig"], [672, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[376, "ivy.eigh_tridiagonal"], [430, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[376, "ivy.eigvals"], [431, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[376, "ivy.general_inner_product"], [432, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[376, "ivy.higher_order_moment"], [433, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[376, "ivy.initialize_tucker"], [434, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[376, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[376, "ivy.khatri_rao"], [435, "ivy.khatri_rao"]], "kron() (in module ivy)": [[376, "ivy.kron"], [436, "ivy.kron"]], "kronecker() (in module ivy)": [[376, "ivy.kronecker"], [437, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[376, "ivy.lu_factor"], [438, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[376, "ivy.lu_solve"], [439, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[376, "ivy.make_svd_non_negative"], [440, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[376, "ivy.matrix_exp"], [441, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[376, "ivy.mode_dot"], [442, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[376, "ivy.multi_dot"], [443, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[376, "ivy.multi_mode_dot"], [444, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[376, "ivy.partial_tucker"], [445, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[376, "ivy.solve_triangular"], [446, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[376, "ivy.svd_flip"], [447, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[376, "ivy.tensor_train"], [448, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[376, "ivy.truncated_svd"], [449, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[376, "ivy.tt_matrix_to_tensor"], [450, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[376, "ivy.tucker"], [451, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[377, "ivy.hinge_embedding_loss"], [452, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[377, "ivy.huber_loss"], [453, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[377, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[377, "ivy.kl_div"], [454, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[377, "ivy.l1_loss"], [455, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[377, "ivy.log_poisson_loss"], [456, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[377, "ivy.poisson_nll_loss"], [457, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[377, "ivy.smooth_l1_loss"], [458, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[377, "ivy.soft_margin_loss"], [459, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[378, "ivy.as_strided"], [460, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[378, "ivy.associative_scan"], [461, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[378, "ivy.atleast_1d"], [462, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[378, "ivy.atleast_2d"], [463, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[378, "ivy.atleast_3d"], [464, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[378, "ivy.broadcast_shapes"], [465, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[378, "ivy.check_scalar"], [466, "ivy.check_scalar"]], "choose() (in module ivy)": [[378, "ivy.choose"], [467, "ivy.choose"]], "column_stack() (in module ivy)": [[378, "ivy.column_stack"], [468, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[378, "ivy.concat_from_sequence"], [469, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[378, "ivy.dsplit"], [470, "ivy.dsplit"]], "dstack() (in module ivy)": [[378, "ivy.dstack"], [471, "ivy.dstack"]], "expand() (in module ivy)": [[378, "ivy.expand"], [472, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[378, "ivy.fill_diagonal"], [473, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[378, "ivy.flatten"], [474, "ivy.flatten"]], "fliplr() (in module ivy)": [[378, "ivy.fliplr"], [475, "ivy.fliplr"]], "flipud() (in module ivy)": [[378, "ivy.flipud"], [476, "ivy.flipud"]], "fold() (in module ivy)": [[378, "ivy.fold"], [477, "ivy.fold"]], "heaviside() (in module ivy)": [[378, "ivy.heaviside"], [478, "ivy.heaviside"]], "hsplit() (in module ivy)": [[378, "ivy.hsplit"], [479, "ivy.hsplit"]], "hstack() (in module ivy)": [[378, "ivy.hstack"], [480, "ivy.hstack"]], "i0() (in module ivy)": [[378, "ivy.i0"], [481, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[378, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[378, "ivy.matricize"], [482, "ivy.matricize"]], "moveaxis() (in module ivy)": [[378, "ivy.moveaxis"], [483, "ivy.moveaxis"]], "pad() (in module ivy)": [[378, "ivy.pad"], [484, "ivy.pad"]], "partial_fold() (in module ivy)": [[378, "ivy.partial_fold"], [485, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[378, "ivy.partial_tensor_to_vec"], [486, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[378, "ivy.partial_unfold"], [487, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[378, "ivy.partial_vec_to_tensor"], [488, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[378, "ivy.put_along_axis"], [489, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[378, "ivy.rot90"], [490, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[378, "ivy.soft_thresholding"], [491, "ivy.soft_thresholding"]], "take() (in module ivy)": [[378, "ivy.take"], [492, "ivy.take"]], "take_along_axis() (in module ivy)": [[378, "ivy.take_along_axis"], [493, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[378, "ivy.top_k"], [494, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[378, "ivy.trim_zeros"], [495, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[378, "ivy.unflatten"], [496, "ivy.unflatten"]], "unfold() (in module ivy)": [[378, "ivy.unfold"], [497, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[378, "ivy.unique_consecutive"], [498, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[378, "ivy.vsplit"], [499, "ivy.vsplit"]], "vstack() (in module ivy)": [[378, "ivy.vstack"], [500, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[379, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[380, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[381, "ivy.batch_norm"], [501, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[381, "ivy.group_norm"], [502, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[381, "ivy.instance_norm"], [503, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[381, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[381, "ivy.l1_normalize"], [504, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[381, "ivy.l2_normalize"], [505, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[381, "ivy.local_response_norm"], [506, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[381, "ivy.lp_normalize"], [507, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[382, "ivy.bernoulli"], [508, "ivy.bernoulli"]], "beta() (in module ivy)": [[382, "ivy.beta"], [509, "ivy.beta"]], "dirichlet() (in module ivy)": [[382, "ivy.dirichlet"], [510, "ivy.dirichlet"]], "gamma() (in module ivy)": [[382, "ivy.gamma"], [511, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[382, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[382, "ivy.poisson"], [512, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[383, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[383, "ivy.unravel_index"], [513, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[384, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[385, "ivy.invert_permutation"], [514, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[385, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[385, "ivy.lexsort"], [515, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[386, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[386, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[386, "ivy.is_ivy_sparse_array"], [516, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[386, "ivy.is_native_sparse_array"], [517, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[386, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[386, "ivy.native_sparse_array"], [518, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[386, "ivy.native_sparse_array_to_indices_values_and_shape"], [519, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[387, "ivy.bincount"], [520, "ivy.bincount"]], "corrcoef() (in module ivy)": [[387, "ivy.corrcoef"], [521, "ivy.corrcoef"]], "cov() (in module ivy)": [[387, "ivy.cov"], [522, "ivy.cov"]], "cummax() (in module ivy)": [[387, "ivy.cummax"], [523, "ivy.cummax"]], "cummin() (in module ivy)": [[387, "ivy.cummin"], [524, "ivy.cummin"]], "histogram() (in module ivy)": [[387, "ivy.histogram"], [525, "ivy.histogram"]], "igamma() (in module ivy)": [[387, "ivy.igamma"], [526, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[387, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[387, "ivy.median"], [527, "ivy.median"]], "nanmean() (in module ivy)": [[387, "ivy.nanmean"], [528, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[387, "ivy.nanmedian"], [529, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[387, "ivy.nanmin"], [530, "ivy.nanmin"]], "nanprod() (in module ivy)": [[387, "ivy.nanprod"], [531, "ivy.nanprod"]], "quantile() (in module ivy)": [[387, "ivy.quantile"], [532, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[388, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[388, "ivy.optional_get_element"], [533, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[389, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[389, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[390, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[390, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[391, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[391, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[392, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[392, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[394, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[394, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[395, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[395, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[396, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[396, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[397, "ivy.Array.dct"]], "dct() (ivy.container method)": [[397, "ivy.Container.dct"]], "dft() (ivy.array method)": [[398, "ivy.Array.dft"]], "dft() (ivy.container method)": [[398, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[399, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[399, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[400, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[400, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[401, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[401, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[402, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[402, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[403, "ivy.Array.fft"]], "fft() (ivy.container method)": [[403, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[404, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[407, "ivy.Array.idct"]], "idct() (ivy.container method)": [[407, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[408, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[408, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[409, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[409, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[411, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[411, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[412, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[412, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[413, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[413, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[414, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[414, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[415, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[415, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[418, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[418, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[419, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[419, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[420, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[420, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[422, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[422, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[423, "ivy.Array.stft"]], "stft() (ivy.container method)": [[423, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[424, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[424, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[425, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[425, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[426, "ivy.Array.cond"]], "cond() (ivy.container method)": [[426, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[427, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[427, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[428, "ivy.Array.dot"]], "dot() (ivy.container method)": [[428, "ivy.Container.dot"]], "eig() (ivy.array method)": [[429, "ivy.Array.eig"], [672, "ivy.Array.eig"]], "eig() (ivy.container method)": [[429, "ivy.Container.eig"], [672, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[430, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[430, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[431, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[431, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[432, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[432, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[433, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[433, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[434, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[434, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[436, "ivy.Array.kron"]], "kron() (ivy.container method)": [[436, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[440, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[440, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[441, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[441, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[442, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[442, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[443, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[443, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[444, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[444, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[445, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[445, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[447, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[447, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[448, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[448, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[449, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[449, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[450, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[450, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[451, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[451, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[452, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[452, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[453, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[453, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[454, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[454, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[455, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[455, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[456, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[456, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[457, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[457, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[458, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[458, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[459, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[459, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[460, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[460, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[461, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[461, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[462, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[462, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[463, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[463, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[464, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[464, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[465, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[468, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[468, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[469, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[469, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[470, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[470, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[471, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[471, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[472, "ivy.Array.expand"]], "expand() (ivy.container method)": [[472, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[473, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[473, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[474, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[474, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[475, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[475, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[476, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[476, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[477, "ivy.Array.fold"]], "fold() (ivy.container method)": [[477, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[478, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[478, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[479, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[479, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[480, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[480, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[481, "ivy.Array.i0"]], "i0() (ivy.container method)": [[481, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[482, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[482, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[483, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[483, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[484, "ivy.Array.pad"]], "pad() (ivy.container method)": [[484, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[485, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[485, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[486, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[486, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[487, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[487, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[488, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[488, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[489, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[489, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[490, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[490, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[491, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[491, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[492, "ivy.Array.take"]], "take() (ivy.container method)": [[492, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[493, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[493, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[494, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[494, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[495, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[495, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[496, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[496, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[497, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[497, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[498, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[498, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[499, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[499, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[500, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[500, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[501, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[501, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[502, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[502, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[503, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[503, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[504, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[504, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[505, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[505, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[507, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[507, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[508, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[508, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[509, "ivy.Array.beta"]], "beta() (ivy.container method)": [[509, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[510, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[510, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[511, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[511, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[512, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[512, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[513, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[513, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[514, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[515, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[515, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[520, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[520, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[521, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[521, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[522, "ivy.Array.cov"]], "cov() (ivy.container method)": [[522, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[523, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[523, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[524, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[524, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[525, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[525, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[526, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[526, "ivy.Container.igamma"]], "median() (ivy.array method)": [[527, "ivy.Array.median"]], "median() (ivy.container method)": [[527, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[528, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[528, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[529, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[529, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[530, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[530, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[531, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[531, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[532, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[532, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[533, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[533, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[534, "ivy.all_equal"], [634, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[534, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[534, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[535, "ivy.arg_info"], [634, "ivy.arg_info"]], "arg_names() (in module ivy)": [[536, "ivy.arg_names"], [634, "ivy.arg_names"]], "array_equal() (in module ivy)": [[537, "ivy.array_equal"], [634, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[537, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[537, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[538, "ivy.assert_supports_inplace"], [634, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[538, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[538, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[539, "ivy.cache_fn"], [634, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[540, "ivy.clip_matrix_norm"], [634, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[540, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[540, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[541, "ivy.clip_vector_norm"], [634, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[541, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[541, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[542, "ivy.container_types"], [634, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[543, "ivy.current_backend_str"], [634, "ivy.current_backend_str"]], "default() (in module ivy)": [[544, "ivy.default"], [634, "ivy.default"]], "default() (ivy.array method)": [[544, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[545, "ivy.einops_rearrange"], [634, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[545, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[545, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[546, "ivy.einops_reduce"], [634, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[546, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[546, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[547, "ivy.einops_repeat"], [634, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[547, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[547, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[548, "ivy.exists"], [634, "ivy.exists"]], "exists() (ivy.array method)": [[548, "ivy.Array.exists"]], "exists() (ivy.container method)": [[548, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[549, "ivy.fourier_encode"], [634, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[549, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[549, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[550, "ivy.function_supported_devices_and_dtypes"], [634, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[551, "ivy.function_unsupported_devices_and_dtypes"], [634, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[552, "ivy.gather"], [634, "ivy.gather"]], "gather() (ivy.array method)": [[552, "ivy.Array.gather"]], "gather() (ivy.container method)": [[552, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[553, "ivy.gather_nd"], [634, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[553, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[553, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[554, "ivy.get_all_arrays_in_memory"], [634, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[555, "ivy.get_item"], [634, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[556, "ivy.get_num_dims"], [634, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[556, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[556, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[557, "ivy.get_referrers_recursive"], [634, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[558, "ivy.has_nans"], [634, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[558, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[558, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[559, "ivy.inplace_arrays_supported"], [634, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[560, "ivy.inplace_decrement"], [634, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[560, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[560, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[561, "ivy.inplace_increment"], [634, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[561, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[561, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[562, "ivy.inplace_update"], [634, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[562, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[562, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[563, "ivy.inplace_variables_supported"], [634, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[564, "ivy.is_array"], [634, "ivy.is_array"]], "is_array() (ivy.array method)": [[564, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[564, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[565, "ivy.is_ivy_array"], [634, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[565, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[565, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[566, "ivy.is_ivy_container"], [634, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[566, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[567, "ivy.is_ivy_nested_array"], [634, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[568, "ivy.is_native_array"], [634, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[568, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[568, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[569, "ivy.isin"], [634, "ivy.isin"]], "isin() (ivy.array method)": [[569, "ivy.Array.isin"]], "isin() (ivy.container method)": [[569, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[570, "ivy.isscalar"], [634, "ivy.isscalar"]], "itemsize() (in module ivy)": [[571, "ivy.itemsize"], [634, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[571, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[571, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[572, "ivy.match_kwargs"], [634, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[573, "ivy.multiprocessing"], [634, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[574, "ivy.num_arrays_in_memory"], [634, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[575, "ivy.print_all_arrays_in_memory"], [634, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[576, "ivy.scatter_flat"], [634, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[576, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[576, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[577, "ivy.scatter_nd"], [634, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[577, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[577, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[578, "ivy.set_array_mode"], [634, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[579, "ivy.set_exception_trace_mode"], [634, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[580, "ivy.set_inplace_mode"], [634, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[581, "ivy.set_item"], [634, "ivy.set_item"]], "set_min_base() (in module ivy)": [[582, "ivy.set_min_base"], [634, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[583, "ivy.set_min_denominator"], [634, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[584, "ivy.set_nestable_mode"], [634, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[585, "ivy.set_precise_mode"], [634, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[586, "ivy.set_queue_timeout"], [634, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[587, "ivy.set_shape_array_mode"], [634, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[588, "ivy.set_show_func_wrapper_trace_mode"], [634, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[589, "ivy.set_tmp_dir"], [634, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[590, "ivy.shape"], [634, "ivy.shape"]], "shape() (ivy.array method)": [[590, "ivy.Array.shape"]], "size() (in module ivy)": [[591, "ivy.size"], [634, "ivy.size"]], "size() (ivy.array method)": [[591, "ivy.Array.size"]], "size() (ivy.container method)": [[591, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[592, "ivy.stable_divide"], [634, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[592, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[592, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[593, "ivy.stable_pow"], [634, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[593, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[593, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[594, "ivy.strides"], [634, "ivy.strides"]], "strides() (ivy.array method)": [[594, "ivy.Array.strides"]], "strides() (ivy.container method)": [[594, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[595, "ivy.supports_inplace_updates"], [634, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[595, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[595, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[596, "ivy.to_ivy_shape"], [634, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[597, "ivy.to_list"], [634, "ivy.to_list"]], "to_list() (ivy.array method)": [[597, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[597, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[598, "ivy.to_native_shape"], [634, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[599, "ivy.to_numpy"], [634, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[599, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[599, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[600, "ivy.to_scalar"], [634, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[600, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[600, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[601, "ivy.try_else_none"], [634, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[602, "ivy.unset_array_mode"], [634, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[603, "ivy.unset_exception_trace_mode"], [634, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[604, "ivy.unset_inplace_mode"], [634, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[605, "ivy.unset_min_base"], [634, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[606, "ivy.unset_min_denominator"], [634, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[607, "ivy.unset_nestable_mode"], [634, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[608, "ivy.unset_precise_mode"], [634, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[609, "ivy.unset_queue_timeout"], [634, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[610, "ivy.unset_shape_array_mode"], [634, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[611, "ivy.unset_show_func_wrapper_trace_mode"], [634, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[612, "ivy.unset_tmp_dir"], [634, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[613, "ivy.value_is_nan"], [634, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[613, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[613, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[614, "ivy.vmap"], [634, "ivy.vmap"]], "adam_step() (in module ivy)": [[615, "ivy.adam_step"], [635, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[615, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[615, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[616, "ivy.adam_update"], [635, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[616, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[616, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[617, "ivy.execute_with_gradients"], [635, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[618, "ivy.grad"], [635, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[619, "ivy.gradient_descent_update"], [635, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[619, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[619, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[620, "ivy.jac"], [635, "ivy.jac"]], "lamb_update() (in module ivy)": [[621, "ivy.lamb_update"], [635, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[621, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[621, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[622, "ivy.lars_update"], [635, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[622, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[622, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[623, "ivy.optimizer_update"], [635, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[623, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[623, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[624, "ivy.stop_gradient"], [635, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[624, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[624, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[625, "ivy.value_and_grad"], [635, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[626, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[627, "ivy.e"]], "inf (in module ivy)": [[627, "ivy.inf"]], "ivy.functional.ivy.constants": [[627, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[627, "ivy.nan"]], "newaxis (in module ivy)": [[627, "ivy.newaxis"]], "pi (in module ivy)": [[627, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[628, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[629, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[629, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[630, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[630, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[630, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[630, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[630, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[630, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[631, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[631, "ivy.Profiler"]], "ivy.functional.ivy.device": [[631, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[632, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[633, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[634, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[634, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[634, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[635, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[636, "ivy.conv"], [649, "ivy.conv"]], "conv1d() (in module ivy)": [[636, "ivy.conv1d"], [650, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[636, "ivy.conv1d_transpose"], [651, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[636, "ivy.conv2d"], [652, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[636, "ivy.conv2d_transpose"], [653, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[636, "ivy.conv3d"], [654, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[636, "ivy.conv3d_transpose"], [655, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[636, "ivy.conv_general_dilated"], [656, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[636, "ivy.conv_general_transpose"], [657, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[636, "ivy.depthwise_conv2d"], [658, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[636, "ivy.dropout"], [659, "ivy.dropout"]], "ivy.functional.ivy.layers": [[636, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[636, "ivy.linear"], [660, "ivy.linear"]], "lstm() (in module ivy)": [[636, "ivy.lstm"], [661, "ivy.lstm"]], "lstm_update() (in module ivy)": [[636, "ivy.lstm_update"], [662, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[636, "ivy.multi_head_attention"], [663, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[636, "ivy.nms"], [664, "ivy.nms"]], "roi_align() (in module ivy)": [[636, "ivy.roi_align"], [665, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[636, "ivy.scaled_dot_product_attention"], [666, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[637, "ivy.cholesky"], [667, "ivy.cholesky"]], "cross() (in module ivy)": [[637, "ivy.cross"], [668, "ivy.cross"]], "det() (in module ivy)": [[637, "ivy.det"], [669, "ivy.det"]], "diag() (in module ivy)": [[637, "ivy.diag"], [670, "ivy.diag"]], "diagonal() (in module ivy)": [[637, "ivy.diagonal"], [671, "ivy.diagonal"]], "eigh() (in module ivy)": [[637, "ivy.eigh"], [673, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[637, "ivy.eigvalsh"], [674, "ivy.eigvalsh"]], "inner() (in module ivy)": [[637, "ivy.inner"], [675, "ivy.inner"]], "inv() (in module ivy)": [[637, "ivy.inv"], [676, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[637, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[637, "ivy.matmul"], [677, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[637, "ivy.matrix_norm"], [678, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[637, "ivy.matrix_power"], [679, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[637, "ivy.matrix_rank"], [680, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[637, "ivy.matrix_transpose"], [681, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[637, "ivy.outer"], [682, "ivy.outer"]], "pinv() (in module ivy)": [[637, "ivy.pinv"], [683, "ivy.pinv"]], "qr() (in module ivy)": [[637, "ivy.qr"], [684, "ivy.qr"]], "slogdet() (in module ivy)": [[637, "ivy.slogdet"], [685, "ivy.slogdet"]], "solve() (in module ivy)": [[637, "ivy.solve"], [686, "ivy.solve"]], "svd() (in module ivy)": [[637, "ivy.svd"], [687, "ivy.svd"]], "svdvals() (in module ivy)": [[637, "ivy.svdvals"], [688, "ivy.svdvals"]], "tensordot() (in module ivy)": [[637, "ivy.tensordot"], [689, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[637, "ivy.tensorsolve"], [690, "ivy.tensorsolve"]], "trace() (in module ivy)": [[637, "ivy.trace"], [691, "ivy.trace"]], "vander() (in module ivy)": [[637, "ivy.vander"], [692, "ivy.vander"]], "vecdot() (in module ivy)": [[637, "ivy.vecdot"], [693, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[637, "ivy.vector_norm"], [694, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[637, "ivy.vector_to_skew_symmetric_matrix"], [695, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[638, "ivy.binary_cross_entropy"], [696, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[638, "ivy.cross_entropy"], [697, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[638, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[638, "ivy.sparse_cross_entropy"], [698, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[639, "ivy.clip"], [699, "ivy.clip"]], "concat() (in module ivy)": [[639, "ivy.concat"], [700, "ivy.concat"]], "constant_pad() (in module ivy)": [[639, "ivy.constant_pad"], [701, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[639, "ivy.expand_dims"], [702, "ivy.expand_dims"]], "flip() (in module ivy)": [[639, "ivy.flip"], [703, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[639, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[639, "ivy.permute_dims"], [704, "ivy.permute_dims"]], "repeat() (in module ivy)": [[639, "ivy.repeat"], [705, "ivy.repeat"]], "reshape() (in module ivy)": [[639, "ivy.reshape"], [706, "ivy.reshape"]], "roll() (in module ivy)": [[639, "ivy.roll"], [707, "ivy.roll"]], "split() (in module ivy)": [[639, "ivy.split"], [708, "ivy.split"]], "squeeze() (in module ivy)": [[639, "ivy.squeeze"], [709, "ivy.squeeze"]], "stack() (in module ivy)": [[639, "ivy.stack"], [710, "ivy.stack"]], "swapaxes() (in module ivy)": [[639, "ivy.swapaxes"], [711, "ivy.swapaxes"]], "tile() (in module ivy)": [[639, "ivy.tile"], [712, "ivy.tile"]], "unstack() (in module ivy)": [[639, "ivy.unstack"], [713, "ivy.unstack"]], "zero_pad() (in module ivy)": [[639, "ivy.zero_pad"], [714, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[640, "ivy.fomaml_step"], [715, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[640, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[640, "ivy.maml_step"], [716, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[640, "ivy.reptile_step"], [717, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[641, "ivy.all_nested_indices"], [718, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[641, "ivy.copy_nest"], [719, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[641, "ivy.duplicate_array_index_chains"], [720, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[641, "ivy.index_nest"], [721, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[641, "ivy.insert_into_nest_at_index"], [722, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[641, "ivy.insert_into_nest_at_indices"], [723, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[641, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[641, "ivy.map"], [724, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[641, "ivy.map_nest_at_index"], [725, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[641, "ivy.map_nest_at_indices"], [726, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[641, "ivy.multi_index_nest"], [727, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[641, "ivy.nested_any"], [728, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[641, "ivy.nested_argwhere"], [729, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[641, "ivy.nested_map"], [730, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[641, "ivy.nested_multi_map"], [731, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[641, "ivy.prune_empty"], [732, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[641, "ivy.prune_nest_at_index"], [733, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[641, "ivy.prune_nest_at_indices"], [734, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[641, "ivy.set_nest_at_index"], [735, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[641, "ivy.set_nest_at_indices"], [736, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[642, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[642, "ivy.layer_norm"], [737, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[643, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[643, "ivy.multinomial"], [738, "ivy.multinomial"]], "randint() (in module ivy)": [[643, "ivy.randint"], [739, "ivy.randint"]], "random_normal() (in module ivy)": [[643, "ivy.random_normal"], [740, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[643, "ivy.random_uniform"], [741, "ivy.random_uniform"]], "seed() (in module ivy)": [[643, "ivy.seed"], [742, "ivy.seed"]], "shuffle() (in module ivy)": [[643, "ivy.shuffle"], [743, "ivy.shuffle"]], "argmax() (in module ivy)": [[644, "ivy.argmax"], [744, "ivy.argmax"]], "argmin() (in module ivy)": [[644, "ivy.argmin"], [745, "ivy.argmin"]], "argwhere() (in module ivy)": [[644, "ivy.argwhere"], [746, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[644, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[644, "ivy.nonzero"], [747, "ivy.nonzero"]], "where() (in module ivy)": [[644, "ivy.where"], [748, "ivy.where"]], "ivy.functional.ivy.set": [[645, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[645, "ivy.unique_all"], [749, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[645, "ivy.unique_counts"], [750, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[645, "ivy.unique_inverse"], [751, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[645, "ivy.unique_values"], [752, "ivy.unique_values"]], "argsort() (in module ivy)": [[646, "ivy.argsort"], [753, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[646, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[646, "ivy.msort"], [754, "ivy.msort"]], "searchsorted() (in module ivy)": [[646, "ivy.searchsorted"], [755, "ivy.searchsorted"]], "sort() (in module ivy)": [[646, "ivy.sort"], [756, "ivy.sort"]], "cumprod() (in module ivy)": [[647, "ivy.cumprod"], [757, "ivy.cumprod"]], "cumsum() (in module ivy)": [[647, "ivy.cumsum"], [758, "ivy.cumsum"]], "einsum() (in module ivy)": [[647, "ivy.einsum"], [759, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[647, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[647, "ivy.max"], [760, "ivy.max"]], "mean() (in module ivy)": [[647, "ivy.mean"], [761, "ivy.mean"]], "min() (in module ivy)": [[647, "ivy.min"], [762, "ivy.min"]], "prod() (in module ivy)": [[647, "ivy.prod"], [763, "ivy.prod"]], "std() (in module ivy)": [[647, "ivy.std"], [764, "ivy.std"]], "sum() (in module ivy)": [[647, "ivy.sum"], [765, "ivy.sum"]], "var() (in module ivy)": [[647, "ivy.var"], [766, "ivy.var"]], "all() (in module ivy)": [[648, "ivy.all"], [767, "ivy.all"]], "any() (in module ivy)": [[648, "ivy.any"], [768, "ivy.any"]], "ivy.functional.ivy.utility": [[648, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[648, "ivy.load"], [769, "ivy.load"]], "save() (in module ivy)": [[648, "ivy.save"], [770, "ivy.save"]], "conv1d() (ivy.array method)": [[650, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[650, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[651, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[651, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[652, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[652, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[653, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[653, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[654, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[654, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[655, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[655, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[658, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[658, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[659, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[659, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[660, "ivy.Array.linear"]], "linear() (ivy.container method)": [[660, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[662, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[662, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[663, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[663, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[666, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[666, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[667, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[667, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[668, "ivy.Array.cross"]], "cross() (ivy.container method)": [[668, "ivy.Container.cross"]], "det() (ivy.array method)": [[669, "ivy.Array.det"]], "det() (ivy.container method)": [[669, "ivy.Container.det"]], "diag() (ivy.array method)": [[670, "ivy.Array.diag"]], "diag() (ivy.container method)": [[670, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[671, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[671, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[673, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[673, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[674, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[674, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[675, "ivy.Array.inner"]], "inner() (ivy.container method)": [[675, "ivy.Container.inner"]], "inv() (ivy.array method)": [[676, "ivy.Array.inv"]], "inv() (ivy.container method)": [[676, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[677, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[677, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[678, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[678, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[679, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[679, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[680, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[680, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[681, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[681, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[682, "ivy.Array.outer"]], "outer() (ivy.container method)": [[682, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[683, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[683, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[684, "ivy.Array.qr"]], "qr() (ivy.container method)": [[684, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[685, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[685, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[686, "ivy.Array.solve"]], "solve() (ivy.container method)": [[686, "ivy.Container.solve"]], "svd() (ivy.array method)": [[687, "ivy.Array.svd"]], "svd() (ivy.container method)": [[687, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[688, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[688, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[689, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[689, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[690, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[690, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[691, "ivy.Array.trace"]], "trace() (ivy.container method)": [[691, "ivy.Container.trace"]], "vander() (ivy.array method)": [[692, "ivy.Array.vander"]], "vander() (ivy.container method)": [[692, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[693, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[693, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[694, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[694, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[695, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[695, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[696, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[696, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[697, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[697, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[698, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[698, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[699, "ivy.Array.clip"]], "clip() (ivy.container method)": [[699, "ivy.Container.clip"]], "concat() (ivy.array method)": [[700, "ivy.Array.concat"]], "concat() (ivy.container method)": [[700, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[701, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[701, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[702, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[702, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[703, "ivy.Array.flip"]], "flip() (ivy.container method)": [[703, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[704, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[704, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[705, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[705, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[706, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[706, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[707, "ivy.Array.roll"]], "roll() (ivy.container method)": [[707, "ivy.Container.roll"]], "split() (ivy.array method)": [[708, "ivy.Array.split"]], "split() (ivy.container method)": [[708, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[709, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[709, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[710, "ivy.Array.stack"]], "stack() (ivy.container method)": [[710, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[711, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[711, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[712, "ivy.Array.tile"]], "tile() (ivy.container method)": [[712, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[713, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[713, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[714, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[714, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[737, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[737, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[738, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[738, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[739, "ivy.Array.randint"]], "randint() (ivy.container method)": [[739, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[740, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[740, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[741, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[741, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[743, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[743, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[744, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[744, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[745, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[745, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[746, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[746, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[747, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[747, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[748, "ivy.Array.where"]], "where() (ivy.container method)": [[748, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[749, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[749, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[750, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[750, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[751, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[751, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[752, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[752, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[753, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[753, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[754, "ivy.Array.msort"]], "msort() (ivy.container method)": [[754, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[755, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[755, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[756, "ivy.Array.sort"]], "sort() (ivy.container method)": [[756, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[757, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[757, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[758, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[758, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[759, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[759, "ivy.Container.einsum"]], "max() (ivy.array method)": [[760, "ivy.Array.max"]], "max() (ivy.container method)": [[760, "ivy.Container.max"]], "mean() (ivy.array method)": [[761, "ivy.Array.mean"]], "mean() (ivy.container method)": [[761, "ivy.Container.mean"]], "min() (ivy.array method)": [[762, "ivy.Array.min"]], "min() (ivy.container method)": [[762, "ivy.Container.min"]], "prod() (ivy.array method)": [[763, "ivy.Array.prod"]], "prod() (ivy.container method)": [[763, "ivy.Container.prod"]], "std() (ivy.array method)": [[764, "ivy.Array.std"]], "std() (ivy.container method)": [[764, "ivy.Container.std"]], "sum() (ivy.array method)": [[765, "ivy.Array.sum"]], "sum() (ivy.container method)": [[765, "ivy.Container.sum"]], "var() (ivy.array method)": [[766, "ivy.Array.var"]], "var() (ivy.container method)": [[766, "ivy.Container.var"]], "all() (ivy.array method)": [[767, "ivy.Array.all"]], "all() (ivy.container method)": [[767, "ivy.Container.all"]], "any() (ivy.array method)": [[768, "ivy.Array.any"]], "any() (ivy.container method)": [[768, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[788, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[788, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[788, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[788, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[788, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[788, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[788, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[788, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[788, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[788, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[788, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[788, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[788, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[788, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[788, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[788, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[788, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[788, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[788, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[789, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[789, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[789, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[789, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[790, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[790, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[791, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[791, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[791, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[791, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[791, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[791, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[791, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[792, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[792, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[792, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[792, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[792, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[792, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[792, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[792, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[792, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[792, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[792, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[792, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[792, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[792, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[792, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[792, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[792, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[792, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[792, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[792, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[792, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[792, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[793, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[793, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[793, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[794, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[794, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[794, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[794, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[795, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[795, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[795, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[796, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[796, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[796, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[796, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[796, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[796, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[797, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[797, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[797, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[798, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[799, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[801, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[801, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[803, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[804, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[804, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[805, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[807, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[807, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[807, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[807, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[807, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[807, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[807, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[807, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[807, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[807, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[807, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[807, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[807, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[807, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[807, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[807, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[807, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[807, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[807, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[807, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[807, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[807, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[807, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[807, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[808, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[809, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[810, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[810, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[810, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[811, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[811, "module-ivy.utils.verbosity"]], "automatic code conversions": [[857, "term-Automatic-Code-Conversions"]], "backend handler": [[857, "term-Backend-Handler"]], "compositional functions": [[857, "term-Compositional-Functions"]], "convenience functions": [[857, "term-Convenience-Functions"]], "framework": [[857, "term-Framework"]], "framework handler": [[857, "term-Framework-Handler"]], "graph compiler": [[857, "term-Graph-Compiler"]], "ivy array": [[857, "term-Ivy-Array"]], "ivy backends": [[857, "term-Ivy-Backends"]], "ivy compiler": [[857, "term-Ivy-Compiler"]], "ivy container": [[857, "term-Ivy-Container"]], "ivy frontends": [[857, "term-Ivy-Frontends"]], "ivy functional api": [[857, "term-Ivy-Functional-API"]], "ivy tracer": [[857, "term-Ivy-Tracer"]], "ivy transpiler": [[857, "term-Ivy-Transpiler"]], "mixed functions": [[857, "term-Mixed-Functions"]], "native array": [[857, "term-Native-Array"]], "nestable functions": [[857, "term-Nestable-Functions"]], "pipeline": [[857, "term-Pipeline"]], "primary functions": [[857, "term-Primary-Functions"]], "standalone functions": [[857, "term-Standalone-Functions"]], "submodule helper functions": [[857, "term-Submodule-Helper-Functions"]], "built-in function": [[863, "ivy.trace_graph"], [864, "ivy.transpile"], [865, "ivy.unify"]], "ivy.trace_graph()": [[863, "ivy.trace_graph"]], "ivy.transpile()": [[864, "ivy.transpile"]], "ivy.unify()": [[865, "ivy.unify"]]}}) \ No newline at end of file

    9Bz6}1(eUNEcp3`hEy8P{D_RC4E#}jsK(WwIlGswoT;pw+2hZwTRBr% zIdja)nO-fXe@RSl`k)xh2f)gJ+lx{WR8GYim!mWn`7n|5kx;XdAg)bJ7I8(bz!%xz{=N zSKa=qAwM6KsuX(Z3CG#LX!aA-2S(47B_hY!(LGb^_dFwyf<%6~u2t-p6W!I@w1vix zKk$muY3!~HmDtUnIb3rtvWQ882h}L*BjmsFQGn^{FU|7N@*Ob9n$Uh?c;|ExxTZy*gxnCwe1MM!L}pi7S@dwblqK3X7MdM(3N8Gz8!ID}lm&zqs|Is@ zh{!~z(6*tOs5eHysuf^LmdH`m$N7*z#!jG>oila-#h66wTzkaMrd>l3^W#U%NZ4oi zh(N+VO)EPm>=25u@@>!le2^W~w)F0>2kkc6JQTEa{Gip1ks0k9d|)7NU!#?s^Y&q$ zw?GsFecqn7U((j0v<4n-2`+?OU|6bKVZ7Ms3CZ zykF?grS&SOuh`@EJK8%Gx54=+n!3U*v=JqO)h zNyIY;Jv~0a%sT|{;X?tLdN-}?oT+`F3?_F5=G!B6B<&WOvzEn&lyOJkV|*kaQ6Ht1 zofEY`L{xpjTiXdJ*n>4hn}&jwiVv*1A+i_D@Bx8*4baNY`HFlUrJ)xr+bP#9uD7S_ z%d}-ET|F_=Wn8bgnhytL>r1q92eD;Xdi{|-TR)&Jne+Wq2&QRVT^HUP!9`#K!_s_5WyP=Tu>%E#;)Sj^bXQ zww@V&KuN?iGmLSxRX0TPwJRSG$k#5kvU9$$tTkjP>w1bkS|6wVngm&^?1iN21U?p! zs^e(o4xy?9)j?Wcc(y%NpP~Jl1XPv1kW_t|j|HS^6|L-?D(tjt=!AgA)@}A|eS>xl zWh=(ht|3PxVPE4T0tx#UTG=^a*b00>E|>n&9<86#cA;p+xB_3YLNfI;J`|9t|Du&U zg(cgWA}}fL_A~nIGHl8V{OQX0y6cF&SMIj71ocHXdU5!_GBHve-2~OPkD7M z##v$A5Sg>~;{yWu`XH_BJZE8N2kS3&izTfdd%_a5ZD@ZOm43e3MDs{{ z+CD}*h$gfZ@g2vBa7U8&Q9e45ypPbz&dI}8HR_iaG}wmhVaw2_p|Hics!=yY@-@H* z1oG8KD?8_F7L?h>QksU>m+kSon)VFEE5>?HV}3}wzQo4^(zTXWc1{;oxnj&sbBFl@ zd&vHiwho0X#%cn(Et0kW;KKr0`*&J7g0&_}U)HN^AyKcM`KL-vcL6rawA9-x3(mdre*3*wJB@xf`1Fx>APC!;8EodbK zBRr@QQ?IW0HVxex5a+*@l_RTfwyyvliXV7R#AOnXlDiH#Gyvt>C6xgm(zi;o8+ z<^!~{NPxRGD^X8?6>d8#0q)i~qC7J1t96%g(qFH#$+Dzll6D&H-cNz&!^vu#`Y+rR zzTkK{9{|Ylva)hy=8LX7-154z+NoL-7oneeIPqO-Psqi*!Qj?Be&~ZBBxHnO6g%}~`=p7QcM(F3ZzmdWQn+BG!!;CJIFw8D1CImJDEI3Qkk z(aO&8`q0FES$9v`OAcndY+_}QP32Z=ygI zOh!EzWlmf3?9rM_+lHnsVy=k~%DWr=kbuqM;{gFXlvZ{Qn6_;Y0a!MoQ(R$BSC;k+ zrE7T{Q$9u4m>CkSK|UA|t$teBIa+gp4sp;6)H{ob9>1WDbEvm6^TCMPJ1`EwuCr(D z8rnpZHGI3B=_JQPjJi=3EES9Odx1a(#p<3I~pIW zjki>!k+;d&)>DHiN+O=A!KygP8_y((VizAIh~nFwhobfv&UiVmVI4_hZ?-*qv-r;f zo&XBkz+PpsQNlKpj|zlsA6nUY-uoz?_r!{l2HbLc;Fi$_qTMY1q+An2I^m3jZYdub z2;E{@**SE`R(o{>V_tH**dDbDY1>fL;@N6%^g{x6J|7PV*txW_bHKEkFynQhYPTSr zP^Zv>q+iey+I{wv-9vkaQq~`54;nT_qIMS_6o}d#w6b&5kgfOXZ+AFb$mNS_)4kyL zW&Et#tMa|9#@tKx%&n(QM45|c>wP?TBz!OO(Sh(iPb)iz?_>DrO~M!G>}_|B^=x$; zB@xeTbtuk!XEH~kw-p~8h~5^oaz~?A7|v*EZ>~Lhb7&9IwAWtrlsOW;L;2u9^bV$# zoufxAkc{N=Jwd^I$}MZp+#qcp%3Q1qBn_@e*!uaXK-hd***R=lF&X1jB0OBy65BQQ zkX=cehC=4W(x-;qkZ`TzqXFT%j8=9Im-eb=BwTtutjFxBdX#nxrD|zxR2fRdKg@># z;`AV`>>MX#b6yU0Nt%tr;nwj-_FnXt);=85*OEu_suQ(K#0GtMxN;iCd!n@=k{ zhYh*X(lCkAM*U~lQ#MMwhEf*Km6irOWG)-w!vXOs(8>{bHBmCCUUjHaGo}d%hh^7x zZ(Kc|=M}v~adgO!th#o$J=S;9UkkiP1Jd#|tt=AXQ_V`$6JLed z&PsgKwZ!L-sNMg_toOcit>-82RTA;cPfo(KUO7rV<;lf5%y>t&btdHJA553g`p8LK|pdC9|j1?A+)kca|bmmQBQLfR68rp?a`R# zj!OHbQzwg68HmVS_i5#nWo@@rwAttg4+q+>gt}6NswKQA69mx1d>A0m`Lc3k)@x&V z$^9TeLO=U(?)w*eRQ{Rw7|eb6RY4k+kR1Y=ukZnZ&|FI^i!69mS)zTD2(8{x#4oSg zOQ)0RTtP3?_Ft;CmYL|sv}b50!jJg!c-8!nYbZbD;{oaVKCSGWF0EceBwZO#F9z}t zd$Rsc`-PH~fXDMqkfpqkRQ;8Y1*GcFv~uTAC3dksc%F5>+FMD)GfRw@svs+=+LMn3 zq-u9s**R6(8KS6M)e~gBe6ZTjYr6@bv`6a`v}tI~^Wc@4c z8A?{1N z$TyfGIr{}46v){#w6b%~z`ijR^!7I5wXUmcgRauQ2L8|ItcUjRQWBjvv@e+=@!FJ+ z1;lG3TG=^X;1X&o=u@TRy+*xzdtdLCI&xZmsbuX># zoGGnT&{5_y4BfryoL5W?W?@h2(w?s1bTRtR^v0u~5&KU#8 zS-o;A@%`sp&kWzEBsy=Q_hxb_ zN!1a2EFe{f)5^}N(oW___J?_Y)sTkOusv3J+AtI={A7L;Jz>cV$yJUI2IMMDD?8^3 z-0bPgd#OMjBGu6PXM421LVJdy73XG8%@0Y}wR}7vU02b{&glZPR{!WwPDks<_GtZ( zHVj28&a727LvrEG?i`YUZ2N>-e!?^Qb_TYu)m0onQ^ zt?ZmFFlVJxa-_BQ1=iETJ(WZ})517&R@n^6)$V*SAXn3AW#?Rhs|{&CuMglqVUN|x zv|nh#igR9A@a(<8lYy#|7m}(o`B*@zR@2JP zsRH*3vtCwK+WA*|uD(e-hH@3>USY)zN!Hi-Xh5>QN-H}j3p^5^^;Z?W-lEvm`EPr; zenFdt!WHL{_%TByU(fIXfqeaxR(8%8I5R9AT1!kgW}9W#?>xBltp))z4*p*dDA8(SD(6E6x#o$qPx<{(LMTRo%3*bE>qbE~9pK z3PWDL5cG~Fihk)i5p5wpWe=D~TZaOMS8nC^cr;riYp3&JfvlZID|ZZQMXwkn6SW)Z z8f#y)XYC8Lb(4a%Mq4Cn7x7_%tX)7WJ7*0%!Bu?)$diX`zH86f{j_Z;XK|k33Rxl< zyO$3MWbAHQx#JiUxA%W<&)9Ei+a?ubrc3<4=0gG*`xUM1oH6Z9!N~DhrE?g&x~_Ga z@4L`?YWZFz5zo|eFvj8|)nqp2i_B=-@^OK*ZA~jXr;Y114LAFbvIp%5+O|oQ(aab8 z59dPy89R(tcFq_&~2uC zmuR@)t^xNId*H66{X>Dv#ovQAcq6I1ijNJX?h0DjIdxnwDr*1?{Lmh@@6)!Su(e_C zX|4e9Jw7Cmu}5fS=ZqahWj1pmfWO*f_Gj8T6f^u)nkJTQE1hU$J%B&*QGulWfmU`- z8kfxsWdZiQ$a?a*yOM}!^4W%LX08q}oev3QY$~nnoH4L0Q+1qXED~_CJ!L1+#-Yh9 z&azAmrpS@m@qADqXUEdY&NB`wni((2C0oc2{dGLX2NXl3WbapN;XIe}l;qxKAK z8;V*R#%JcL0zc(L0vY=Wt=w^piQ)pAuCbm2Y@{SQb`D^!F|Yw263Ey)oyXXRs1=P~ zL#cre*+aHJ|3$#JVfxz8XPPSxbn`KRl_I!7whrwv+pzmo zvqg@~PUFJ@SzAIYJ7r;OVPFc&4b z-=4F3Y3ESR+OQK4S)1T)J}Qv3J85O-q;dJoRHERw_MH8i_6_B%4f!mhQo*nIm_W*2 zpp~6d#;s=<3KqQgV(Yo)wo0O7=bGla1zYnWfsAcQD|Z-UhVlhR*fVxGZ5x`%+OTG3 zu3~T)9}>veA+)k{#<)FAV=;rAJ!NUyIFzzB>}f{TGzj>hK+bw;W#^o6Hw4CR@@q>P z*V?0Y74030S{rT%jQJwhG_K&|0%^OPR(4JsH`_E9I{3alYu}@tLs@IXY%{Xn!6STB zAZZWL%FapS<^hJX2Y8%ZGX=P6& zWykU{fs`$vm7P<@^`Wc%qW)Iknf8#arfowZYeOGevP3erk`D=FtVk<6XAG=ZY)WBY zx2Nl?v|%V+aaJsj$Xz$_!GK)dKr1`v3aoc#NLtU>WA#(oFBGdd>z$di)lc|XK&qag zl_RL~2R7TKtLx0QGX}mmzpHE6+JVa}f2^zg@ukWiSC#*$O58AWO4q=q>c2IRKese$ zZbD+g4mF8Ctt?3lEIF>LYwxqymfG>o)UK}n`v?A^{#d5|i>r4vYYl9u z+Pr4h#)-!QKkMhc^iivZ{Ctp6FP(VlwdbuZwWJc_yDzbxTl^m-5zpLW5j?l(tAwf5 z_caAy{mARLuYI9+@y!Pz-n6VdaB{?loDoSy%c0O-vNZV8o$z{+i6Ar7h{s3l@%S+B zFL?0rQ?17%WPA6DW*z8C4H2;A9S}4t*z-g`p zs*lcU|NjO9M7R5&d+>6a^I@Q8U1~iroT((@ znUJ0UC%vE)qz1DLT;RJ8-*gb)y~@gyAldCb0S%#FcbJQ%_FOFH%>@(PlGbt&vOo}W z3LgYW$j51Ak>E~fR-&HZDx7v!f}7rm^g?gc&qojIE>|X5PJJ(>eMX0MC&47A%Ta16 z&JemF_+q~CAi)=wl_PUp8yDQP39Pgw^b-$fxd-goxR19N%yLUx%|^%sLCHOQ7$7Bg z(aIvv-BFfk-vnX8U)k95Qg5&R_|wa(t(NKLCE77G-QY{OV7dt#A(utg^MQa+y+|uN zhw6}tdaW@p3+W&gWcv~;gKR3dQd`O0;fvOMZKovS8L;E0g;>5CJ&~ww!^Z@owiT`H z95wB1x1l@qQr=K881WO{NMB+omrL)T(m0!E&)HnsIW&*qPb8w884Qt-&EW$AAv=^- z?nKBA&>>r44_TIWZW2LuKuSV3$Oi;M)=w*U5@hP-r*b9}kX>gF*)_CtlK`^1Ari7H z`G7#k*3rtH2-$2slRa(^*<-YGlL)fehD`P-9}o!H!?dz<$h1u-)0ix3DE6j3TW`>Y zp=_Pj@>PoZkW}Wa*ZDX=q+X+yI|wP!C+=~X^(=BXB@xdoGCrhC3hY*+fy`){|Mm0g;QHTKq@&PF`CIo0AjQct?WD(0T{_-wA>z} zWwcdjzZL^V#%#2dj{wAIF|F(zqZt!tBV}S%8y{V4&(VdnS13pL)d_U7I4D^l^U?Wy z2p~x3(#p<3n)nP=kS+T8pbDi|v&ZQk+A$QT)}NsY86ly%iw^{Z>JD1jIaCvG zqSQ7$#d(&O?3r3m8-_B~`W5fG4-%;t`8YtNo~M;N2r03NvfWzisoXY7BA%&Sd`Ou# zQMTga0Fl~)R_-9A#3ssId!**jhPlsDrcIPX`8YtN4yKizBemaz!}3zXAI=(&a%SzJ z8l){lp<34R#e%RCvh(ZbBLT7UX=UeFO}uE3mx~71*yD61Z54`B>lY154oHmF@ezO+ zT}CTA$7te3gOZ8*qQPVK96d^Vg>uyTMT4>h5~PRu5I~R~q?Mh6wEu+NT;n|uZ5iqf zd!k;aO+$&o>jk3AP>o(lv|i(50nvJeR(6ioM<+(B=oN!x!f+Er!)&*8*7Lq;N+O&B);{D+OAp8Jae>Iqr_@b6=K&^q&nZ_}&k?$m zL_BkZ*a0(*)83{rSOWs~H(I)XEPKFab}nG1E^;3}91yU*Xl3VsO?*?JH^F(93WDs(8?Wzl(>p>p*>RP(}uZ6%CvEGE*}So)Y-JM zbELFq&7ueLV>eQ?ar`~@VBJOAhJuB^Yd|i=j=3Q-)*XB_AYQl8%Fgkc_zY?_`5SIn zthXoYMcOfxtk$1F4H+S!dY%sigzA^HatA>rk4|j!CF@z?R!SnCSz&xo8Bb7b!3P3D zwHdAK9IA=Wch!ENhJzGy?5R4GwhT>Gtv}xtc0%T=gZW56tPZ4=onv(%y6GLdf}oAC z2JPYMr;S75O2)NP8uCLT=JWA@i1pCQ&Jlyx;%ggf;%3H`_JpmYeM1S0ZKloTGG=IgmEMdObF`o|vgz89I**R43vV`e=$EZD3BeZ2GRk1BgL|pSI z@R5L64bjTZv4S_J^I84U(9QNx-AEgTLKWNQwDLiAf7kPIfJl9rR(6gQ-2D}bVt4u} zd#0YG9YdLlt@|q(A))#a9|#E54`^lQP)&S2)<9F&Rn{Z*w`r?Tnp%H7){N2L_y|CZ z{z5B9VARB$m-S~eD^DLn66-eT+MuiSuYs%PcXchR{p1|JjILuHWPL9`H{Iv=s5dyPmZstm2)eoEKCrn{(bIh&6K1bkLmc{04Jso%zp zawqhzWcYE-q&+dqd6&T&l>xqU)D$rxPXs&5_^3d3meR^1IW8_swC}A=7&0$4kW<@o z+VJ@Jp$6Im_MqKITZe*{i94G$I3sbphmQ=z?Jio`Id15nqC1((>d%P1Y){!sv|}h` z#4>+#>8xakgljz?5D3?cw6b%!4nT8RD)9PxRc%!*jqPx?b$_{?l89#*-ye4xtC=Dp z+lCJcglsEX**RqT`fOx}nab&W&9mogE^Qc^z=-2w%_T79heT@*9}kGup|o=6pydbp zBP=WI(aO?>O&YY69}=xWJ{}OQep=Z%S|35XMrCDxqL>d#y+JPPrL`{dI(yEpq1{6{ z8;ZM&)XkC5UC9RrLbr}qb`Bl9e4%_D@zMp2wa4vQdyF;>Wi9sQi>fCQu}ArsK*S!V zm7OD|SFVd3jrFU%=I0Z+d`kU$CYSNWYT29ixV=Feh~id=JGB}7k?6h7#|NVK8m;Uc zy+hG1HOL0Vz)J_K{X}s%IVe`o_PEA++PRyOh-cclB5v@6I}*ETd~_goJJZU}v4dC8 z2J<=nfY2g)(oUouLsMMrD`+J{BwP#mfIzs8p_QG(bvT;SGTxw{D2${M*<3b}_4`zH z*b)7uqOMr;y21i2;w(FD?7(ezb_X#n#*`pxw-e1%h@Xt?V2$c&8wfOZf@8lKZSZW>3?up_s+KQ&2NSLiQ9N z6bRXqw6b%^^a4K7*=#sn3=EWQa;^2mV2YB6XJQchA)!po6^U6F9~Fq%+ntBm!SI-^ zY-sJrt96{S?OB_}e--dRS~m8Mv%wk(+)O?+5V(D4W#@Sf25!j9mli(Es~*ekfm=p< zhjyW{1J`Jc1a2uG8VKBCTDfz8tKN(?pN72H9=Ho>?sarz$L=25K@_`U+#RdQAPL`He1IT)chJht;nV9>xRD2aIHskt_# zxSBT-xvluvK;*Wdm7OC8FY#7?#d7U!u03sYXy4G}7W)!!-4+Sjp?p{%Xb02E9S52^ zZ=_nBLX%kWER<@}#)jg63 zuH$0_5xk66c8(ytB3JD_l)Z-YmXFz!_bBZhN?zRiA4*{C zHz0&N61yAu=s@hQr>Nb67p>J#??p2BOf#zF=bTN22!%A0LR`?`UP`=*>b8LK#bLPP@T+e!8=gh-ZG< z8+(UZo;FFqcH~0>0o$HdjsOgLRj~0f!TQ65mDl5%kZ|}O;dG7jT%q6>A|E1LV$b!d z^ru3z=t(%&^B=x7g7V(V-2|lr`JQ-dd+-D*pLeJ}kpBy~Lo{h73d%+4% zOIyuG$OJ*j8GINZC8M;m$a5oQiT1rQsGl+szq0N`bxo;1$oBaOKhxux}GPZ{Z^YvAda8c8;BXXJQ=ehI>@WegkaJ*~9iM zZ5#?4@thJ1+n65`v8VZXK*XM+m7OD|KR*(U*kC%53P!YCw)sC>=dw+dL_Bi@;!$T3 zuZkBEttosgAX;6tvU9Zbor7q!()*iI*FpAd&8A&LQ`hp=kHxAZh^iS9u33CAAY3zP zW#@3|*J{RrE7zA8$_0gjD#CB*Ad~i#EvM~6DI@9!lNl_nxgv2}#zzI>wv<-xAlz!G zWz%UBZkO8Qb}?$Y#uc&^_Bdr}vrwECw;ZRa zm9arS1`wrwTG=^D6Yox%$Me_OvvdvZ7Ru6+ma`PO5_TmY1PIeQTG=^F`U_gJtJBwd zv<~lad#WCzZ9}Q@T2Ix4D_@WD(SUe8Oe=Q)Ui#XOhS!_+c)dZ}<_<624LPcMosR~@ z>or>0IbIX*KQ^xBXmIUull4q+Hzg6zOtAI)kBwePw5IW~fN1SZD?3MP;*L>YyV2lU zWDnPgv~BJ(m+pqdYat&Eh}SW+as*yY99*rReXX2dY(m1}+1EWAr=`bx*(0$)y~02+EB%&ej4^XJ`j-UbIQt-;WVsv4ki#2;&Dv5Ze6Zi$Yrczz?r`hO_gl}^`J`lc5Xl3W{X$Q0?gs%pSQzXyedyhi{wPAXjolf_4xe6$sjFTG=^h+9{2RLCXi3#A-jE(=%LPk6SNo zABr1Z>dy+dF>fSvNj^3Zy5+R8bLg~!&J#j6ob6Q;PgRLROL14&Gj}=d9?Bg4W|j?e zW7bIIF6Bc5k-L~yc8=VU*lNbuNO?FLtQhta>UrmapByd*BYOAxh&_7`(Ke#&;V%W+ zv8Q_^A$)+35rptQTG=^-+QM;U-t!9T)@MFQ`Fe55KiEU}Ds3AI9e(b%8R+VsNXTC1 zV*(+2iB@(FnRdi`9LNf}WT4h_NBl$~>FIsz)SInmtUD=*cxJ5lW#Z;gYjj2ew*wy; z2;6qGvUA|ztX53>UZI%SU(agC+M~9Bwr!GRwJ}d5Wb^o#K*;9O${h#U0Xk$W?IA1D zwoNX`4oFGJR`4-_kY#D*j)QEr4%toikljGrHn||1ZGh}LJ|+;dYiMQXkfGzVo_x+r zB}*Mp z(Dsf!Y;V!Vp|Hifmk@SEg7zjK6$siJw6b&1w1T9OGf%asre4oT^yYJ!M8Q|fY}ur~ zy0-6Et!JMzltetUPy9{NW@euzcO-aw@X>+b?M5p*2X8-caW_>MN(V(Pw=Jm1s$$pTl&4++;o}f+VwG?)UJzWRUmZ2#u-T{8a4++<7J{}ORS+sIT!8NRp!FuiCO46219=L`L ztNqLQctE(8(aO%@(&`08kHKPr1gqcoMuLJmOQ!XT582c80PPw|SG>M$4)YWfVR(;i; zua{}dP`=_FbyfV3aJ|IG1H!eQR_-9U49luJ-C{jq+(AjiGhvJyF7vYLc6>Y_T-(sf z&f(e@+z<+8X}#hCd$8uwcA;4dFZnfoCO6_6ZkgX;PuO*|X((ZM`Qm1> zSIrR#*fo4aAYfP0%FY4%AlNYudHQO^6ZUL9PWy$jg+H3p3|qEbVPa^kF67ftT>M^W&#CNIN^+HSr{%eG?3p`@b`WK*J$bId z9*N!=e0U&wqqMSf^x!-;Ff8%%(-5iMC)f?wkPl<+C!AUVyu(a2!mvAyPgja#P3B~**SiParlMHm1yYg zaI5u1b~_~z&qQ{p9q5J4k=Sj+2M1!e6|L+XyLl{j6P9$DXOG`p+DA0=t!fW`(jvOzm&)OTbbtr4`?&df8BD>Jn`M5yXUZa(r!$ywQjMX~!_@?zNbvGpu&n&eqqqV4_ z9n<)*K-6}ol{*nNQM+T2J!&V?&Y@|oZK#<_cr4_@0#Q4LR(6ishq$E>!>Ql1>_Iz& z_6-HCza2{-=7Juhd{7`}Beb$}%+R{<)e*^95esdV_f~t>ZlTRXS&O$WyzYz~t=-H= z1_E~@t?V2)ajyZEp`)ZXqq)X*vo)y_gx0GVx%*)0BhY!+mTem?7^*Iuw@lf2(MoDbFx zys~mi*P3^E*<^oC{Z+@Geg5VAXHW#^EQ=h|ww#|^7%FWJ+! zp7sx=tu5!;!sbZqUgU!Vv3s6Yc8=XqTvu9icDyob>0_V^Uq8TvW3J*qmBzlMP;eqHKOe;G_ugM(P zP((wUTV(AC9Hfmz32bW)Y;Z|}*w04^g6PxA&Ot=W##MjhrXmp6*n@W^Z5#?-yk+CU zu1L_<@lk=GT}CTA2W>7l>JxPjv~2g7J#>%KCZf;{w`0U79FhP&%tr_U_#mz99Kgdl z0E^zBpYYPTY+u4q=JySI{9dOmMDZ)M13%3l3Eyjcd?0+U(8|u?BfHsRZYZHY0KeP6 zTF-H(DT#RIxNYfX%dSY!cIKl3LEDj5b`BbOqQp3tJ<*=Dg|u^Ma%;{GottE+nGY}B z$cF`@c0H}^95wW{$kO;%o0C3mPuNqmVJKnoz7|<>L*}q2`Dj3}encxf2MawxqD`zc z#-`k1Jqzek67kFe;ypp486$Cfn}%Wyh}++2W#_n|WqnOk%~|%4&5RAQc+2`m%rW=j z!vWFSi&l1y7J4{Iy}_1AtoHM{f|kUV+4HrOwhiql<2{^I_eAEe#e7U4WT()|&LKk& zk*leC+AFHVAsS;B+B0@O?HbBhyobogERl$v%ZCIab~df-95M89W#b~*J@$OvMO%jQ z74Q4EQLAHj@bQ3f-9{@rhwD&qyJL(#jEV`2(A&V$^4@oiXsm`CVPh)(%`=`D0z>k1tjJ zxT^d|RpN%3Q>rDb&$+3T44RNwutQDaPwM*RaL>S!gvCL;2-J_ z)tu9#{vsLm7gz5ZA+@0jbj|jv8%}z~L~lNqNfdn5F=vx{f4tJ3ru0J+~ zExXzke6vAdv$V1Rb^=spw49Y`jRU+Ba`{Z*s8vJ0TJ-R4L%Bxr`Kua$;kohUds+$pN=xjpjRC}Zr(Uzep>QgOFQ4K~& zs!rqs0jXL@D?6uZqH$$+djB#{UOHHkNCqqK4d zFm*sAQ@7hQbt~}Z z)Kj#wbEdQ-HF88%y=hvX@@Nyk&F``vsBfYq;u)wfZ*d1G%#d_V;e!F`>Y|l9hOYVq zNTcf@d%9-RwxMY&Cc5foNV;b6!GLtlq?Mi1rCm9T%v}w0Aq}vkJz&de=TN}#?ZMKD z+=T1n-PQEf;D=;v86OYG*iu^AIb+)W*+|C1QzH$rOYIT6m^KbY3_sLNAr`hn5_TaU z4oKMfv~uSV7Mdt&ggszS*nPBdt_cg-Aql&O4+kXdE?T*B2n$V{G{RoCC+sEKIM;-Q z?2v@5=feRBdy!U-AgqZKF!e(;l@0DDB;Z3dtv?wty>Tmik(W*7GLc6kcE8(t<~m(T z#4~d}37)y;%Ta1;*oM%nkkk)HOywI761-Dcc`_W1*k>XlLPrC_$7YVVXX9AjUhs6p z(pIw(GC@$XfDZ$tWFD<7^4#3AgtPMz@>kZ~qh4~z4X4wA)`6~8Ewwx!v6A)+?Lb=( z)R+yj<1F%FfIzLFm7N2%*M#}0$1i#sOJB8T=_cALl%-Q!o}5Y!NQ`daBLFeFj#hS# zk#=s&ke5>RHN*HCI3XofNQ1@>f}M>~d+g&!`Z$ubSi&*1|Bp*o9Jb`BMsv&M#|+6et_ zd$R7NZ9~b5EoY6nA#>L4d^8|lx6;ba@zPGjM|X*)@%pdq(RzWl3`J{M%g5{0?l5B5 z{v00(h}E;SvU9BVpK$(HHPbwL-})ZwiQtw>BA(HEA}+8Z2l1Qpv4Ci8LMun0)x<_$ zeXp>x-_wMI!@a`Y8wo$z_wvd9AlnzYU3j!T(?`)?3r&{z;zpqss5aU)8&IXCzG-*_ z9|DN-;brB?uxY4O;x#%G+A<688|LjH$?*<@`-b>=RSJ@j6#|zu9}I{~Kr4&P*ISlo z-|pc@fRt04Vh(5X-iV)01lg3oN}CaUMYY>S@kn4Tfr<{m>q?@6)!Sprv90t-%mU*!TE=K*AoOl_LmiVjxx@%T>DJ zCL|n=<)-S1wHP^y+xTAV+_|BWh-YSk7f~wsMKOMB3|e%>|Df?gi|kwpQn{Yw)L6f52`j>=AQ4+&Y`)-Z+-4DI3gzs-{vC%Df9ZJrC+x; z1%1UHt>4jhp=jaf6Y;!NwL$Xq8$Jw>r~jpuo%8h3iTlCog3*M@YsYU}C$H_5L_9M> z{9!Acut;MhbMN5;1DSg_t?ZmR?O_;GPg%9roXY0ggLWkC8k)-RgB&zyks0k{d^8|k zAElKe=xSohSf6!PrVUL`;N&pzva z(_liCnfm7FC?5t0^hjBGGR#1=14k#Dy$Maf!n4p@>`}Ry_ZXao5*rHjpfOZJb_i&0 z-QS@6qc33s#6y3yfZUU#C}(I$u0B@}&o^l8;*%h~8tv~y@a3h>!zJ$4kb z23O>0?nyo>khCAs%AH7BpkGp%a-TJ6T}mRJsYAO+3$l{5w`m^Gy{5m>%AH19*2`uD zX|wD}o7vH%Ra}vz?ZZa}=Cr+NW#^>Lf(Gy1JwY~^8_w!WZOiN#TS|L|_M3PqymBX4 znX-WWX3Y;t*J3^%kgii`uJdWnCIekHKO|k}^6`LlolPq{ zr%T@XdM*hj%hz8a@_F&yb+l7L4dW^$;Wrbww4n7o+soQ8}=S+e5-#Ck0Z;#cB zv|}h%#A=tXHzZj;9}P%W53SrOWTj1HU1?9&I@+n^Sp1wx^s6AN^(~eCBvMO#!vL5840m=Fft?ZmEa5uZO`s@p|Ubjc*#bxMWit(lYub0Lr-?f&iFl@oagOB243T{8$Oi=SwLPuu zoG)-BU$RrIK`gX~>loTGGZnwT*u*gFR&r*^{(&C}aaM?kH-uNY;MDhXu0s16sMmSgRca&{*qw zz zIIZlQHtkv6lk0w)@|kfn@_c*L&ZUh*QR|O?loquoc{U#u$k}ITW2h-l6 zNv#d@fiYhsZ3pskfwUb!D?6u+&TEE^r+$0ZeA+pbwf5vS^Zrv09~DSif>w4;8n;7G z+jh~GIo8>ub{TCQidq|X2x_*-tab?>7RcHfS~-HXCJOS@Yx-0Qu{0s!u%?ezN%mB= zuNo9b!wW5IOGR4NZPc|vSLt78t{vEPm#(gXC+sPIoc?Gi<#|kwuhGgP z?Y&Z#XkQT@ZR%hmDmPRrBkQFTeSR_Fr~QmC$`S1Gp!GC$Hzg6zG_?<2-^KAVc_KU5 zX?#o|X*<)(&PhAGans5~T6NNIGFKbaEwTshMA|~MyUWG^+&I=q?iTW)f!rNKD@SnG z#Hg%3u&Z>)O-SeiyCx*+t$1c-DPuJuQE$ah%M#weW@-p`=GqwpU!337wQTLc<&{6y zRsQ%=<&Ue%e^l)(wPLtu;POq?(C_5qy1Mp0du{2z|IXB|uKxQ6{-OR*GD{-PFLEu=3QPk*`Ld2y^O!M|Ng3H^`YX`%~JgP?Wc5A#@k;i zOSH%Pt9Om~z~zs!U1MG~e4>ZwPgHem;~i?@K0rHW{K^BjDxHR}v*yF&CCke9)Mf+K z2*p>uk8dNG_3kMvM}F)!zA3Sb>0^fmyWuha%c|9uwH06DEj5n$A!}f^QxdHh#Ye-6;|&kB2fvb0esKP|~W2N?3tAm3z=ntoc@IW-gKp950$ zpP;rVaGgCr*U*-s{In$hgoBs)=SsfuAW7?JW#=SKoPTEP`R8$aejcNZLiuS){+Vsa zKacWF2B~?NR(4L!#QA4-bpCnMo}V{p%TRt=l7GU%%lz{?-*}Lu*J$NQPEyJrD)z4o z3VxzAEfFK3J^tN#CbpZBh-W5dO_CnGBxxGoc#x!>X=Udm?P*@~sZMKC`P@)$Sg#Mh z$R3~*X{XRsw7_;MR*hM5vyg8y$jvddvU6@`Al!&WptJ1BIfM2JCFhtHkz-m18s%FJ zvNJ*}cLqD6+q%`Bom*(H+Rct>4u3P>YLJ~9Y30sfM@+t+wP)vP+N*Z6W14?G#kU${ z=Sf=GIXmOe+S6+P*UM|GKASvjJyxEgB;pw>ThH1nA7)zA zOk#LQ9U0I!EN0uIGmHNY;120=wqu=8+>)P}e7iw@_Mw%XXPw#O@{<`(7lTB<@1+u6 zv8WC|s?(5K4q9#x(lXjMwDUT}79^7alBlJ803cC|X=Ud`eQ;c&{y%qT0wzaQz5QXy z!oKe$ObAN?%!DNDdk9H@5C|kJD$rJXYG%6A%h263Nk9-}5wsP70b~&bQ4mCNLlMP= zeG}ymf*_)7f-Hh8iXwcstE;=J?zvTS-n!L&hmYrxQG)NBbMCLsJ$I>7CA()ZZKsxH z3O&VT5=vjvN9hZ2ytpVW&_yZWIc4bcxaCZS&VrSVGqiUkLuK)qXS*lWQ>>(FZ;}nB zE1}uxXZlF}1P&h;smRO!5%<5ES6QM0K?(a2?g*2x@59Q*37eoKtbS2ON=tv!XXphu zKwO6Qi<_3h?gaf6Hm5r05eosq%S7+dVR#04exDmv_r&F^qi znUp*XD;uX|Yh|V4yJI3PgI2j)yQ=LF60NCfXUDB-eg4vF<$v&~R++r~2Ua%Di`1&l zeUn^ul|%w(XMJ$GS_aNxaluhJP6^rpH=Ie(_OP;Xg0@j+oWKnd37r%4(fK4CC+_q# zCoVbxk0~?9;ubTRSqv*1XGVRKFY1bjgwPlC5&AqFHZDT3Z}LS2fD&~U?f{dhGhpQq zqGEJi^BT9++d0LM@Vfc@C~iX_&x(2nF)b^Gb*vEWnQDKF~hyark*t zJ}lJ(M`#~sl}gqM+B(kp$K9fzP0g-AV=_hCxJTpC>$Q!0#E}T?Bo^8pDo)G3=>Aaa zre@Vba%`s3uNanp!^7e}s9wvscj0I$M>hL{&PEpaQEgT5K8Os2Js z9f{EAKk@c(6A2y83Z+oYXRMr56CELJ(`+Po7#tyPGT0j>#OEh1eGb9xWHK@rRyNKE z%^xO8d?@;hMotz^F(7=TYz*NxGTA7@%EsB~B>AIWM5PMFQl4ax zZ|f8CEjUJ8LiR;7NWfFd$v1FInVftbRyNMbq%ckf3z=SliZs>yK_8U=gM-8cMRC9| zaw;i`cTelCQc`}0o602RVOZHXDRj0e_Yd~==H!=lSGiZa8tD)ct*KYx*~ayevhhE7 z1lflPuyP0+G4?LJ?T`9GDTai%3G*7figO+Dtf;TYwXAqZ#|p6tb8mY$VYWEPwg>X! z&C||>b}4OVhV0TIM|2hoo%0qR9oU&U9DdG}d9*sQ$Icha)0SlhruDeLIyKPv)tTam zyDszLht(ZrZ`b8uMx&{@Jrn& zc$*$e^#j=-H;^&buTC7dJES1`oaJ(z3s+S7i-nopdvuB=NN3ru3=VWw`t8o8cBx?J z0ulal%ObqJh_GW$SJRv>VNRE0PM0vJ%Qc6@{)_stKR2#~moU$+4`0}KLE;Y5q}jP* z!FGm2e4E1=An~&+U+l4S<<62lPz;RE_ggkTTTgZ@aYmwML2Yb2OS&9O$k2Q@Zd|?m za#LK1mJiL;#`EJFn3Ov(y`^H_8MInlf**BxtYt&AL-P^x4UlV5SIr`4@ah(kq56H? zID13&+qe?)P{pVjyt1R7M`K8MR@jasp&N#=XRdXQ8Z0+_IQ%JXyrC_S?Ih-`>^u?c}-Y)Q{|hxDp=Gn>!MrM8}<-wh%+$ zM4?mk?kN{by}9BtN9{%3AvGc;8jw{jf@HZ1uVK6_iLOB4{mJNWHkeuHhJ_P5*jh{CJ=fste zhako*?M?Lc2`7exXGMLYk0Ie%QD6VYknpUS6Sr=vSs`{g#*A<4Rg*R5)W1_(Yq1`f zZGV>x+|?sSxNjml%Z&WFLic03j*)@2yyEi7!*O}`9*GAWiO_A3(3v+*Eg60JWV7Ja z&alCH8y+mTwDE4Cya|U*U9mnZbOJ+EjeOtDH?q>#3;n*5LhNA5_`D`OY=Ya(AL(-lN_^5qnV)6){8Zprarrr%-dt$b9o-;5!gUJJNx11ufC{j(ae$^qOk9np zP(-m`%0SoY6Lbw6EG|JuBuh{~Md&Krb|yksz{}{ZD%6%ZCKejLehtxRl7k;G8N|wz2X*`l#8C#2kB36$haUKo!pY% z7Xg}){)l_P#OV*PvT>YdjJ!A02xg`ru3XFC>s|9f?FxG}A<>!&`?%zZst18WH5PY* z3DqjFvT>+(<3p9Rdn>7Of2LOkYfpW!c7r3wO;wTK{=xRI8&8)P2nyFs+z}>RJHyJx z;R-*NZl0z!Vp^0xx!J1^RT_>M7pll6Iq{$>mMBc0#vNe7bONkw9H!m*nW~iO>sP0$ zi}b1b3LH8vRVO4r2l^sG@%j?(2@|g`z{(4zf?{1nfa3Hs z+yf>~KY^8vDFTl#i0b(5E(wiik zKcv0H+eApTW{H>JF|P6=$%eS)OnlaZm5t-W$v^ZS$vl024uWH4BL4{2Y5tjoo6ZDi zKUmo~KvHjI)#hc7-8Z9T$s3myeTGhg!^LIj$mB|F*L#Xl0k@us(Nb91I7T~+ylU&o z3}t%c4lLK`Q*;#^EiOe16Qsy-oiBZ2AvzHH0e743dXX3LJtZW<~&IGo6AU|CK=xBX_j)H^5%|A&_ zU^U+D8?R9U&*#AwtTq%Cw-Rw2#1Ty zQi6L#uJ;t9Kj79gG5SAP**HeiN6t%bAXBPk{%XI~F0;o9iPn_a$0nDU0x_USt%Cc& zM5+T;HjdOzBO{e5_ht&2ioEf-n?6l5;dpUV(^1LM)Nr4Iv@>o#6QnL!**Hjym0L!< z(IxL3rS&QLG#o50MG3Cl9N#HIC*Za-5&9&o{P94jKwfA2iatVLf`erQA>lhk=nJ^* zOoToUD;r0Maf+5Hi%MI*PxK3YhJFS|i_1`gr)YKODMUZPjb}piBUsruM2sVlTw4BE z%HQ<~`WqZ7E4!%b%bv^K1493aNqAhjqe*Z2qNV>Ann7&i?i_%?_a01DH7xC2a>_J);>!^D}) ziha^~+DZBp72r^DDN1rOEA~-*mg1H(@#%+^jpM^u*5`_S(|48tx=J6QE8t*p0ZMRL z@Ays;`YLWa6QPS?<&O(O@}-am^%1%c4wfN=6xTxT#%*UJ^cz^&I6|C~y4WXosrk1) zLGQw`;u4f(NiAHbIq09b=}dtB0V^8^sB7e74w1^Oo*r>UOPb2I{hjv0Y-=IWnuXb- z?b+pyPAN6Va0~|6gO)Z$}l&v2A5BGqH)9+wq<2W&H zLFTRHnf#!9wl?cFjMV)VcNKQR&))+k0Z^)cERABgdp zg1FaPuyVuaR>zj?-oa94I7`1^l_W-W?%kT7uU{ zgy$5WwQBl#1fmO(LnFPtsC2VqB6E+|~91Kw;{~9bm#_!^*~CVwBk>J8xwQJ>+%l zEA(0VDjYB_O9__QP5&uM7vuIbQMwRTHjWbGc4VnINIqF}pFT!+!@=TWl;G`1$9Ia* zZ*be02>lXPHjWVEYFjzeCx624U44T73CD^{P=Z(6YOYg&{(+m$1n4zbSqA9hl{!}H zsQr~)&-o;2_PF^S9aGO3K6Q9X_QMGs9sRdwKN3Gq7|xy;_6O;(Ke&8Sh}6mxJ36Y2 zrJ8sFTdIz>{y*)d+Ezkh)GyV9=ai!@am$$;Z3ZjL9JL)ERw5!_qdh{OpTpo-8A(J1 zMI-D(aMPIp&4rae766?@KDPE5eSlWLu`&UWaGhqLA>4E(KxJ6jI6#b-_sgPtaY;T# z`?fwp--4sXMJU0S_v_A6h`xav&xGjfu(EN87$+a)!6lWFm6k8l{y`t3|AXVj#VEm( zkB0jcq~GD@GeLS7RyGb2qnxInR$t{Y?Q*(9NR0Y&TKQ%5|G|S?W#aQ6SlKu}jB;88 zQT{6S&iedxwTzzx*Y!2mY5v&(H=PO4_OP;XfEas=Vip@XSz6Gapij^z;b3uRu>|)P z9p5QJ$Ktj#5n2o@e>@NxETkobzMzlL=iy)(K}h&c5jqREor%yHu(EN47_G1?B@sq- zE9{@>lk_7vW?YgIY=!L)0R`&&xC>06z6&cG2WqSEH?gfHa#O4q^!fQK93n11bM)W6 z79LYv{)}79#N}yN**Gqp5xCILdan1l_VR0OA<>%U*W3hnQGU;J4cufVFymomb?euj&JHF&rc=FiB*Xn$HxO3vrv7$ea%=8%HLpilKKh z?$#&fH*k!WJ0C@*9D5;vI%%+FzE&r#3d$)98>d|=9t%T zo0-VG0xKIwCMw6!gQ~6mpuJMsQb>&6m6Gy=YBStqCNLYr%Ep0-$}u8(ayP}p^ocnH z4pKXFOwDJSW9H&EGm)7ME01<$e=7_!N=(*M&Z=y!0m zxCA9|Cot$dh3H}2cqT*-z{X)h3+4a85#xfC!0V$l z02HSG;0`ch`WLKh9H#BU4;UJ;B%L+8^dZ_oNVI0Pb(sDsgXcJfXM5amCOq4~%EsY| z=&0F<@7SnU-fzUGaMo=FA1EKEAQewja$sb~p_z+vL%m_zgzR<73+n_Y3M znb^#Lm5pPwbp$qTwa2ejpGurS`uHSl&|A#`A6;5 z(q=+p)UK9lF4O$7F>W#wm)1?XN5Pf3i!a?F@m?SEgn$HxO*|^P2 zWDbCpM>8_Lxgt5Y9MVUo33 zoCF$~_+6&}eGNCA3DD)RvT=YS>YCm>X-N7zeQ+LzW5fj~fnDI5%M_RgaFdz9+zTrk z2PR^f-Itbkfd8k@%YWbyad}B#nJqk~xcm#Zn2F0fu(EMnA`T7uO133Fz9<#KJ3OVm zblP4>v}Wm)z@dTbHN|Ed+-fE^lVD}z*hKW#as#OR(%P~5@GORd#mzSf^w$dbP7yj1 zx1EX5;jprCgd!@NOx}_|X>^u8IcLBz;*yg* z&-Pa2qss5=L-SoYPF!dX)jz6ixJ|*i2{)Sw&JD1#ad0BG`ZD6(X!-2v&-&Cn4F`!! zO#)kej?WaCCvlsZ$UF`!k8WfNmi!@*HJ;WkipL9y))d8wAR~OH$c({lW+JmPtZW>a zhX&eQbUXM~aJ00`FUTj#GGU!wqM`b1STD9GnOnTgE0 zu<~d}WgH<<}c7FIS6%(mgj2I6_MdV0iVSt-waU7wn-!GYpZGhhGQpy@Y7=W^U` zCOVhG%Er-&T0J$;ku%Q2`s_RaM~cf%604`C;}o8Ial@JL+yyHehbN-Fhk#NjP{yp8zIq}HC2N62+t`# zlW@zK_)LVAjpGwNbvfCGys)rXpPnP(NO6--GEJ<@Gzz>+8OH% zeR@uVL&c>h!Q7+ljCBfbITN4du(EM{BJLFDt>u~gpnS0TU43+Jg2Ti`CxJV~uGci{ z+<;rn#O9l@@~Fl}-0q{;Jgtw-lW>^YiA~*Wip}G=)l6(2g_VtC6LBpxKbWgz268K; z?Va&|)~=Gr2#MBI$q8HwZMaRrSs6E*3C>3!KX4*SWO3UqRVk(lWTx6xADtQa7>v&p z#EUouD>r;@b!^G*9V}&rv(MhQN=J2dtB~$5ia*NR!_@>zWY2L5&ota{COkXA%A+~! z6zo2$k{OaOqc71%Ck4leJ6k1?bsBC{aE`~#W`gqxSlKu@5yuf?S3`Lr=X`x~s&JsV zGJey&f>ZE&2pb(p8^?yah}x!{>62dv|Cc^7@4zwQ5|cn}Q*)UD^A>J06PPz( zW#hm^EV)I?38|>r<}cdor%6JhHS4DYmfXT)ipxaYVkRzIz{hp3q z9HX}8mxAJBKl5>unZO(jE01bmP9h(4K20B(Q{Wi26Byw#%`nSxlbOH_!pg>hiD*w! z7GG>B$;Xv9=_7Lk93?I?3A87vJ58baCT=tnnrmTY@U}fX*j68KI+7wsy={XM$6_=jmrY?22;&X7znfROuD;vkB zE4=N1`v^AQ!k1qmzfB*aTj79lAzGy0et`H-Gtm!m`7(>K z9I*DITK|w_IhkxAu-z5W9l0_YvGnN@mU>KHjYok z4dn9Rl1j-+%N+?0&}U~~I8NLIl)w$-hTAmn?1h`n1ZQ_x**G{6$DtL{O+ByAOco9i zmze~PLxsl_mpxi8v0eltlQ{U-O;xy!P^GqL66K@+pDiP`~RGpe=CInE-7H zD~AANXU9+M=s0zFO7?=e9UUhOXD_P%xVZk~()y3foFA^lHC?N8WXFmBSN8AXHT=OP zF(l?~(vbL@BVp-S@qoS+_v%p^#RGjkDD^fR*&c@rpwcMtcsON z=d5zsmi|Y&Sg45C4D8ah%+QK%|G(GW{G-}`YZ@77*3f^uOVSG)H!#S=<@wd7M6V;! zo>91bQpiv{!?Rg%`#Wr~&W8uf4cnOJ(^G}RrX26=DMBYOMAcbQTiw2q?GE>q4Dxxn zwaj#Qj-wnp_ESP1!5B|q^w>-9kNU>GJ7q0Nr!x70T;P$tO_*L@5+eb66x@o(RoPXA zQV{uK4vPYx*Mx^3;&wB6xCK^rjq@g^n;nVvfwM#CgVddJ4~;}u9+7UP+WaM9rzSto z!_neqk%ih>L~@?iSbxEdXF~K0tZW=2>EJbxeLRQ?sun#Pyr9j|xgz%+E7Cevi0y%Nd$$M19%K(?(sp2(@l*IQQ$8cr14q~yuu3Is1>F^J{&9Ct z-LAk&Q?VKF_3j_XZsM71o42j=IBpv=!#(OKhYoNXSNxmHVel<^{d;p`UeqqI zR~8aU6xejA_XLO9=OY>Pk6Je9AHd3FT6@3FP1u%f;`>1x6FNi^l$P)_^vRgkGBReO zWC;Igsk0MqA2Sh5g_Vsnu_a+b6p8h@Q6eLyPsZ_Ze7MsCoHLqUQa(O`Tgl|(7+5)k zj~ErCSA^E5s~8eqDf~#>Rq`Z{fBwNB<32nM`-DIufB7A@LGfy71~eFx@$8glmp_C;yFtzqlvh&OjNdjl|xX8QBZg_Nj+V~knk#_U&m$M zv!XsdYFTlOjuoOZ>Td5QVdo)3D>|)mr`5T*WEIK-nVenfJfu)56?+EL6>+mDuzgsB zpE~7)TAkcu=ZocO%Q6GCJ;Ib#PFX2&Vb}frDe>MoHot1v^pQguq1)_X@GEvT+CUgQptZp)Saj{GM`Y!S7yZpbNOifk& z;GP#9+$3ifC$t*|3ARhUmbCl*y_N-bqsiVc?-GxX`^!mKzoQ@4Z^xDJGUd18N_d&F zKDb($@*KyC#4%WHv7NK?cBQl;@KF6({5Gt#RHiP)L$&&3?>CYGe>!fcy(INyTnTT$ zTNLUorgwYOM(12{{kt|}lsn(NdidHv@K^d=AZ1BhUHEu3>>1 zR8h!(CN4Q1d@CG@&_X`6$cR(NM<4XB=bh@P2IgA+z+Aji$4VWwzp{b%ZoKWytKqn* zOPVhWoxm7Xr_&9L`jNjoq`ou%hLa?vT!~x9+_AXKQ4SsKHg0WhK?d8m-RIxfd`Os# zRiAD=z0tlOkEe2DlaBV@@M!zIB;$S$ZYOix?}U|IoTcb4?5s4up(tQgX`Z}za~jhr`3AWZ(Ezitv;oau04P6OlV%W#fqWUjOo~F1zzKX$JkiJ|pkJ@!>KOzPab) zUOm6oT&0k_jho7Z*A&=BtrFmolZYmR!Lt$m(kc8xsaz$PUpRUiysc?9>jA-N$;VDJr zWZY6FBFkXqQHuy!0pF~T$c=D#+JT5_`FlNXDHD>B4yIK7TUXkJMCuyLlE6t~&%l1#xWtw^OyB4MWN+RM!Ya{unDg~6KmTnUGb zn>7~GePAX&5dolu)MdB>OrkDZ2dq-rj?7B$>!b7@95yaW+F3~z07}%`xC2b0-h`En6Sbo< zD>3G`?OxNK-zEzQY#qTR>9Dx-o62!YP$zCUlb{K(vT=f>?A3Nn$H3rQ)U+67BiVS6jnCQj5_P6(zk@p>H6rL3Wtk}PVB6sa-0%$GHy7N zpk=Uf2thG+^Slkg`Zhrf32&9SPuvOEv!cE;rDesII#!5n$?5IgmK<|P-s%f}Rp3GR zF;hMx$@EgqIOYYmy%d|0_r+z{+myW9kqF(V3f+82ep6EFrAi0r4S0auC)V4Od=(Cu za*VT237x>;ME6p4MpIf5*8OuW^mZg)#w}zfycZp1e54cKW|CT|I)U)*(fRiyH+@~Z z;ND0`BvEkFA&+dO8am`YPs!k~kK4)|{B>YuGTW^gSHhcT>IiDhGta@#hwF%EMLp$d zS@9bkE5vM<8q?P9I%_Vl3YmeyoOu0D>V=sWgNp6gDidOLVG>7idB2r`^s1QqJ{=cF zZ|*z6k-#%z@^jzj!5xXv;W`H%E|-393Oo~zn{vdnC7}}-qpIR{FmHq1Kep0L81R%x(+jvALZ728x;+rn~6XPwycI>$&Al!@xR(ViIL5SQQXM*7Kn;>x` zZaEW)>tSWrIBz+2og)!iHz!_AO$|>S-f=@NGazj$JR{811n4O^Slmn!`KettK<=?! zS~yQP7M{S3XEO8{tZbYiX=^H&e;Q#d7Sfj7@M-lov?&@VB$BAlX&O2zYC{~R$Z?-? zv?^{slcSYjW#b%8=j0;MTeo5rDyacWzP7!)K25v8LF4A6;}WK+83fAIbleFhQ{Aw# zai(@=Fl8?vunIk?o=m;f^NLg^qxJVtFBvQT@P@+!6eP9yxDOlM!QJjjYmsU&{ z=%e&yI9Obi60MkO&QpfIh#Svj=v-LYI76J7Zon?(2P?KJE#0Bd((Q22xGW_))A@ry znffX21e2*B!^*~);#A=!d%z}D_^bLfy$pwoOH-m%c-?)<(TlkGOpcy|m5p;GUAk1R z=1O+C-x{!`YH8DdXfNkB5)!Rh&Miu^T5|oTB(0Cz&m?IbSlKv9oJy%w%;hAE=ICQ| zARH`iK1#GwsyR;?+8;Nb$L8C zo=H&#RyIx%XHF}hG-%r=%X8Y*`W#&e$BWBRqH~(-KPBlh+zNeY2`d|?sEaeJEwcu!<+i*f`My3#@4*4%f)x2W z3VLQzb^}0JdK-6u$F;Rdz*u(pE}H+r6p1Seq;)TC-S7w92kIPZ{dOjb}16 z0aiB75T`yGtR1|Od2NwCMhoG1ann(v^^xm8C20X}Ka-?GVP)eaab~uY?NU*3etWt; zN~gjBJLI80n>4o!rbkh@2Z;bt?r`8}*`oSUdBT3kbJUbm5Q z&bYU7{1}=Nk$ZgiYb1nr(MM=HJ_^jc*heIhfPB7F zg1T|rnFQ?!D;v*3Q5BEkPLZXL&WUi4xN}z`6_5HZ(Wh{unamsqD;sAfYUc7^pOMne zm-X5CA{;C(JBjT7_?@SD=Um))CPQb#%ElRrs+yH|hHlrV=cjO(xb!4aHHY05`Y~=c zlbavF%Eq~gdh<+uN9bjJa9)Jt#06)564g%V-Js`iyP4!X3o9EZC#up>+zHy~pW5rJ z^@T)h)>(;EI_kSX>)=K+nOPH7HqOk}5$h|}9iRjCq1hjf5;xZzl0>cvx%;yZZZ(sd zJz-_z)I`lu>N`J0eQt7aoVeU1GDn5p^~vCNGs)?Nm5q}VnQs(lp;zj2a~T{ZE;q^K z8};3uOK_{1)LaBB8>eR5s98#Vr{{isaPENv#RVs_MIZN0PxxJ)J8{FA?EDH=HqK5| zRjjzf^PWC8Z^J?2a+63^tiHSRCT=v7nb%=u z>P*1xW|FfxtZbZ|sF|v9MMc^*UZ{`G0yt3IjFZSr)o`5d7$1ro&SYmEtQ^8ljIMNE zW4n4os~8eq_o9>IHm~ulsCQMh!2hB{7mx>%5w8u614u*`MOpG1J_S9p%t5Zez#1Eyx)A8pin><-IIS*6efk zA|6lWqvtZW<|>9tY?I+?NzP;yHQl$#BF7w@;a<+92M!v+=q&~ewqBP_L`|vNVI0nbU^H!5?Z%R zz>Q_XvN^159G39BqO4aI>a(%{4pQs$N?4t8C~hkgm3gpo2r4ml>Aj8q`fgwh3GcY! z2XQx+JS*z^&RSMnsAGjVZn&ns->w^Xv^Z4HR8|C!9N=e5`CwFMk8tE*l}gr%X_=uF z-91*tN~LpFxonraoqyat=o%K-(^eff#O2p_+~7!rZbgS~G`8ZnVOA|B$7U-1s)4x! z9vJso^&L0B;Zlxm_C}!-7#h`aLtrGkQ^YsdI^S^vZXGkt{n$|s9pknhH^_1DZNvwT z8-&Ta#|?Nq)yEA&Cpg-Q<@>AJ43|5qOgKu zu@7z`6N^1zf@zbK6PHw_ zm@3%IQcFbNIlCZ#@97qJh}MN_Kg&utrEI1%s6sB=d@cBkDI1#sv ziNU8}W#bsE+Xz)Xhe}D|0(}y`49A2^!VH9juqon;xOq$%&V`kY!>~~k1}}|DMBJfI z#O-ikxJ2v@5#jkrbHq<^8<|-A7*;lp#dzi7;Z=PSUWQ}AC1D2+31Mr87jd(ggZ~_? zY<%$75K&Uj4V(U3d+D%|kZ8@)p^G{GVbj9;xMfTP)`69cBd~4_0WVuhGr}Bw4i1E4 z!p#G$8X@Q&oecKJ&11r_53C#lLyYZbZwI@+g&9M_+ebeu?xsl13bBLz(3rNqJv#O< zYlYY&4s2eZ1#_%~uzH}*ZH`>suE4gaV&D3VxZHUA)~7iVq5IaMdy~mu=2+J|$5jl= z_3*H`kBGNneH|Pv<;Z3)5;}pAsfI2_>*MIV%HewE+UDKlxCXb4nOm-MltTx&jW; zft8KZqRt~TifFu(EMJ=!!R&DcDv?Dm`A;hvV;XaJX>5 zE8e<`bY}S*ZX%P67hq-MWK1NLN3LASrv?W^BLewVg3bS{y?oh3NVI1868ai;SY_(- zlQOa)ZYPtG^aE1m(l9iR$@qam(i|>d(`b&QNJCfWyL8vR){Nc568L^7vp-y z$`d;}s;eDkmkV~KbNU{EOL4!1pETuTQr)1(&KJwmmSqN}iBG+XUz8HRC~%ibam(%J zae?%1x!o35!lUWdxDxKw#&PZKR5kXnVy!z=U=&|XXcYCXHrDMLY0zJe8*XpVUvwlw zZ@z_IZEEe+Mmj8Of1q74uOTFosF?pFLKYaAh^vi`BmS$6bbg08OX4OL-b+vH@ZY6Wjr@_jkJlV;S z2z~xz%$=7{>gbqy#_*}bQ?egU=;-LbJ^PXPal&xcnNFO4R_dtzmA!bbgXN|5AD1~lTu;4=^5?_B;&QWZ=mpsjZUQb-V5+#KOkmD~m5l>K z(@c555}&<@Of$cX;)aLI&*4yUae>o}%3(^)ZMeZqYHo#wl}W~D`M9npkFZiu$}|IoQy`Gn{-M6-Ox1!{c7 zl6#ym7+X)c9DA#;RUL`Y;ykqaN`CdVkvEZs4Nw<6KxER~0S=jRjI)~woxt#fw?p%d zsBazS_tCY|Ta0awTggm)+c?Uh zMjUycw}gQsaeJ8z91bhH#(5LZd`BWQJ0!j~^IfX)JviNcc5YBQt2#?qrb)^faD2Eq zV!!yL)Lf-C(rLJ z%f#gdSlKu(TdQ%&+1An(sS?dBf7a*aX*fz;UP9MkBhNve!xWe&af6w_JPs=x2gdhC ziGLEx75h@VhXbLAz1>)rwx$QT&0kta8sF(91klS zha_aVT+a06iy8TK*9-MIIUf!Ymy=oXCmz>Zib@r?mWj%Fu=1!yMOmZ#QXiF{!y#%1 zDs^uuD!1X*GEun|RyK}`@AT4N($>n^f!ttOs%Kx*XXO<*MqE}7)JQ9?yA+m}aC4ck zJP#{}z!Kx=#ykC~ZwJSa@U{Xc#a+mGR@4t6w5(W3#|m+ObHDc9`&&hPHaKwQX!noM zrK0k=sP3=R&rp0Edc*7DZwp8skWaz`;`-@b z&^Q(jm2yn8bA?XutZ8akt`j5ZJ7cQ()y1~-xk$jY#?aX{4hW5~)4+H(HbL!Xab;Q(>@!1G7lM~cS`+(srI z(_rNgJYuXiy#;H%(v2bERX>NvO@y8m^>vh%72P^kh-LHASg$?CS;#rBXsmsh)9Rwr z%JtbxN>*S6eJ1>9DW8k#p*kz*dY_6^!@j_(O>u$q^td#8i|JDxiO@w?Xn7rH45Htk z@h!UQ!!%1VO5cJ<$$fskW%W1UpeYABd!f(?3{W-nm@_!6z7=-RQP)&&t^IY}RAwIh znxh;#>}_0Y`)*wYqTySY`d8h*6NYQ9t{%pts$6wb01ghTkaz(2TqYQ#`Lbbm2tmzTR-6cOlIDJ zm5npwI{=rMslA>lomB0xk~T2g3yCDwVKmEx-qmAf8Ru;~O3OC5!Ax2v!OF&I@vX^% zwDj0=lh$MPSy>DRh?`tOPc@mW2zMzdN8;u(NjV%=HcpCfdq*NAWA#aCv7) zz#T6nT2tWa&O|kTDJx@edzq}P3@aOFC3Gedu@k%U}IN=phim`Tg=u(EMlLhBZBC@ht^ z7wWTeJ{%w}E4p=yaF>!&#m!}savrQ~oD|cjGLI7VDpLSKqx zuA%E5Q(kVvEoSm^E39msmu6*y2_Xb#mp01(hL+@|Eb zgqzJI=XqG!I62#mK+ZsM87X8oTSa@Nw6TzA%}Qy0GUzydQ+77M?PjvGF05>vosqJR z_)7IsDeKJDM`t!1s5WPvn%k6|18}pM>);A-k5c}wp<`lS2|jt`fV(5?{7 zmG?;{%E>#pwMmI7v}n&nb(bkIH{d2S ziTNh1Y@8Th=gnY^E527+E|$bsC?#f|)@SBPI80n-bl);*I!&p095sghXqqUfpvhpWBq2m2tC~E3^+drWyb9=Dju%O_yv zQOt{-rlrjJ`n*)(7`2TT$79ONdAP+)Ue1A)jq?&(#|+u&O0lH6FY|MKXl{c8#f3(< zj`6uo$+;Cbn@P?OVP)gw>=|})?S`;YOqG|~%TnbP`MfPIA*ECGyGYV%>J@#OUV?+i zrRhY?z2Ff-K?!>vcZEsVUtr}B!eaD<@!HDNTT8@{@S59P9{2Tf&x(3q6D=!F*0Dk~ zw|Td{-z6M#NZ#tR13hha8H+AQl}}A|mQGKbjAK@yQ;MRM&2(WZw(ND;^;+3fvI+dWkY8aeVuFSez}%;9czxn zEn_CP!yRRObQ5nrvY9lvzOF6)Mm1*$do_EGoQ4NexvZzd9NMZ)Im|u}$$+1N+sGX7 z<*>4AoHvgQ#+C5qkveu-^T>RCE9$9D%ZeR!tPr!=oc4A&U+o~PVs%zl3Dy&)j2vdT8}U-<(L*oo{CxR{}92|Vv5KdWuvCBE9=EEZ!^4wM`JfCq=n zY_GuqQ;u);X`vGsoa(M&Gh1^seY2bAA4zzx;1)6y-b;>h=t#G*C!6mqz8MMMB;cRs zHXDaNkYvm^77|$L#~t(iV~x4bQ!@G+;I=YHe_dGFHO`yv)^a35>)gaEA>Y+O4->0g z%Z$ngx(0_B2y_+TrS7WW#V!vtZWsC4Ok4`{( zGlgDxzS(}fc0Id|kZ8@SCng|{pA?WuxSdQuCc?_26OfDokj46d90`Y~#Tmr$lLB%$ zZYL9v`LMEaKzuiiy-FlgPAw@Gb1BtSbA~=Br@>+3f)e`rWpp_b@RtH}3T`hGnB}mt zabUJl)g&T-y}6=QQ4;fAePV8cs1t#X=*zYdI<#F6xCN7V{%EoaCo00~@cp1N%c5ypKNVKN7jXx!M{!(C8 z#_eSS^U=o-7~lJKUJX;S%Y(U!bLuH=sO+kb%M3jH%8L&4)GxFxK=gd%^OnLg4Y!sF z%TBOzNOp;FQ^33OP(O!^A>o}wJr5s}x{i2O)X%-OthiIh3UTFOm2n*%p~tbI$82#9 z-kq=0gi?K^_2JaG zEPGcUPIe^PGXf)hn{IX^I>%-z{mrx(xc=}Bc%WS9y^DQchl8dZ>+JbLCwTo~U%G3k z7}f4nh@Y;d-bKH!;g&L!;N^~T=%}~x8pNcKX!tG&_^(1dEDYB?EJvM|UdVIIX7M!3}5P^A@aZ9G@8@;UnK8kZSSmSJwt<8zGUz(v7B|W0C<$4gp1K z67B*Msfn<%aiqeg^yY)<#gkmCSgeoJk#NMgdFiO6aZ+8gI2<>hiPC&n**Ho&jFg=k z_YkD4bcQ}gr@_(UVsv;i7&Tm{+2|D9bS6T}VP)e8?LHDhJ$A2E+h|G`^8-11x%vb| zpQoGP&~bVCR5Cm%<3QoM0r!Im*EeBh<8bZDh0Ax=B&DjS_0f6~4jdP)Pb7<$FA5Z_ z$8j&1U_A;e8wYFq5y4ViA{)Pkb}c?eNVKLFS9~}E+756Rbs?9^R>tjS!t>Gphw!K_ znC+?$&kTGJn0rYH!4q=fY#MGi6P}%5W#gG=?~yW3?_eQa$rKBz^5DQgu~e~p>Lru> zQpFN|pi*%7xD#6{nTahl7Ib<$9`}U_*(YFSV`7&96T z3fg(NH%!pZft8JeHewy6x=QHs)q+yu2au>|D{0L5uv+yN#|d%?=a zaT@X5PCTArH+Tp1Vamf1~~ppVkMaKN}I9huA==kuO|bQf+t6Qp0m z%Em$J3FTfoZ35!x;+<9Kl-SKyA+$LDZ3Qrx_w=!B2t9lzTY zo%y)gOmq&0m5rmbbr?F0dtXwibDBOjr@&F-Vx#C`hG5fhnIf|sH<^jdAgpX0nXST* zQMG}%NuQS+;1F?nQM_}D@Dg%K>ly>cjFl9HKVC5^^czQQTf8 zERVp-qZby{@#&bgwd>!Ng+y!WU(L)Ca%}n$Jfu}7EFZwi#$gFPa~B(^pZ^Vi?`c4C-^;1u9gE))f-1S!o@jcf9HInu4)^V zJJQ6E@cNKk8n+jPXGOgml9mx$V{H*kl=UH-r5Ld@ z;1P45Wv@NfX>j0_gPzR`oxmVfBacLa!z*3P3p(tY?Dfey1vi zSy4|^vrSF9znHVjOIJum*OS6lO^_akBgV}t$0h}m`?_@_2DAiw6!(G2(<895ah`UJ zn36o6O2xALlI)muwP9LWNF-6g)2tME2_MNy4VY>Hpd@_+k2m}91Xeaq(o_yfJ+}Of zsTuklO=}rPk@xRoa3tKP6zznY&&)?tVP)eKNv9}Mebi{Bk+J%uxh?&U2PRKv z!pg>ZV&x?})7LMtbeld)x5CllvXpdQs`*bj`XO#VlcQT;W#b&N@{)+-kd-UTEWM=9 z((`b{xGW`|ml`pkJpBdtfyvV|u(ENUSnIb;L42w}N=zH9r@ek#S4ez3)^AP#C`oJ8 z9k_Vqj+HuUe`Uu{?C3akcuMwyxg8xR3}-K@|G2pRRx@U?t-Jn#VWG3c8o12e;g=RzsCJwa&-r+Y@913 zTa~QBQYl-#qmR{FaL~9|wJ2NF!a%8d19yW-)vK_wajJF$=D>=GXL+Dlwk5PCt*^c2 znCYO8Ow!2>>PO zVB7&FNpoOj<0P@R$_MBM!YTS7Er+AU1u5yR@|ypYqe0w$CPyV$**Hhi+feHI{3Ll_ z^9Fs2z6r;QOHpLwtQd3LNhQkAwYc?6hOUN{jWZ;5U{fSNHBz~l8TI#vKA~dU4%>ZNgIX($tA6j@TzZw&`|m=z+Gd~_hnewIDJxcy5R0Y<7Isb zueL|EB4 zIgw`@ijEM&`rupuM~MqgQfC|LP7q(l?PhZGMOfK5H=R){deQ;n*ZS1l0mq0-P2{%) zfs=Su=ZD*ItC`IF6jnCQOyq~Q)Eyt*&#OS5h@jNN0zQaKoA8tPd+2Cugsyxyt>1jq(&xT6rC;57Znu zdfa4`PH0a$Djswdb|CH#le7I{W#gPho{iDYA%prjmEa(8aZ2iJOxZD{h?~u%CI>4U zrzW~8Qg#ZtR-c@!;XrZ8NvtXg>kx7!ZaR~m%V1^W^lTqBw>6t$NE6v3`uscuhl*x=bg#}rI(|&X4QG+rDoLtZbZ}$hybZ!a}NhZqWzm zW;j?}fRd_veD2e_=SJLoCPml7%El?$H){PgLVF5{tY`GedI}C8m#p4|wiibT38n1` z+$AP$kHN|zwAsK%DqV?dx>o7PjuW4@%r0N2R>a1Tn72toV$hMWbgVc|--@GktQcI9 z-FCc)#-jNh9aGO3u6^+H!wDT7{kLa75GHH5t74_nIjdZ@rT>vG7AjUoyt*|lGqj@H z|L=7-|ERm%G_kt6RS;cCN(C!#5BJ~hQuM;c4Ft9oW@AesSK`&C#MX{Pdq&{$Ng>1R z49zCNoT?tE`S3uw9*=20HwVK(Q;v0ZccBv)pz6L+*|IsR(k(#GPcpo7a7&p<@IXg7 zbkwJWK6o*nyXaAuPEVTA=uTNn(y2^-AQyO02ZiC~B{7noH~u9&s^c>S@wugfl^Z^{ zI<{o@4wf>*it(SPHU2)22?<5qW+n+aSlKnsn}{-wMEj7DK1bt2#y!QfN_}~2xm0Ie zE3DKc=V~}s+{_VqFJQ#X(VYr7POGUaal@JTTm~zDJn+dBBzzvx$LAq9RtE6N6evFT z$gjC&+8BL0eT;f78jt%(_1M2IIdHK-os62BJ?(_Y#bqJ z4~imGC>Bn(OGPOKP2EC!2HQ?ZU<(E=L6IBae1crhDL|8P%b5Um!pg=0l8*l=K&k|E zj6Ob#;81b#iM+$l$0sEFEX3_*!m|KYHV%(;hu?!oSvH@kPtECYjJVVsq_^OzJ4|!U zskp&RTuz3SM>j5{Ouj`Qmz&`jwGkIpd3+;oFcX*SVP)gENN<(}vWsd~dPX0Zr{E}Y zftjnFUqU9NCvcOQ$UFus8%HK|3s7AKufC;r89Yu%w5AN6qeo0=`MWA^F%y`TU}fXL zY!z}+(5*@^yX)h!3mhVDf|;#{OGtK^j@!$Gr5jcbfhEStr+0W-KfQ<{;q6)PA9vTl zv!Z@-re(!eI#!6o(-+3J_waOH$?D12g-SVaCi6M?2~$2E$sC^cHBAhh%_$B~KO2{2 z@9^|9jzs7&TIi8Toa5{0V>IdTR6S7Nga^ufdcDK5YvG_N$2xm~&I7|owi6ObtlbjN zKuw=1G?Q_gnb35?%EqCQ-h7py85|I|;^ec_WAw3E1P6+ncOo0fjGT8IZ0cT9a2DcL zGr?H^D;oz#`WUANP9w;v9=n_t%afE6qBHd&Ivoxg7oy0oyEgm_pS&9Xh7fMD4nHoRDZu-5hy&tT8i% z&t0O0|DR;OL&h9lEajzx5cnxm zJ|fjwBfLdsl}gqM`UaWvkGpFh#V8L4_SRL0A930B9ey|xq1)i0Tbjuqeyo$4Rg1{6 znMyw$lyAa=;y$ImLk~Du%5lwJAanu)Q|+SXzrIoImi=-q^Br>FmNAptm5y@g=(h2Y zV>2lVzODYi;f63+b8q?~Jeumm4WSbp=iQ-k_IXG~{C?a<=7`?|E7R%BkqCYA6F)&;=4c}2+K6-cpr`rHw)~6(cw8stDX07Bbj)-4J(J>5u-@(>Wq3?iXq{v zcH%nXS@9W1Ld%L3I#!5kXSeoNJL6}UY^#zf76Lav=52*ORmw-AdXP@RlWtfRNV$rd z=OAG%wgPqu_G+G4jzs9J7@GN#uX)z@QlD~YvhdKj&U$4}9~>{`=w^=*I)SmN&J0U< zjj{AqK27gj`@G_(2e*%z>nuk(beP*%{PUD0!fcyL;L;q#mQs&Tq5mt7M^Cp;c9f{Cf(8?;P$%s{U;wx|PS`ppciNU0!sLm!e?;Sg~l*)I+xo~x9TmvK{> zoV*Atk4jGL{6J+zDwkO*U&`2`Q#+Y#DkQLqtficIu2N1m!cApzvOcVAoRdyPKIttL z^QoTPfR$b<%{m9`gE9w>5f_yG<0KTHuauMnaa)<=p&CuO3Fl)+q1l~4xtIVr&r z;&KwJg6(a1N+~JgmNF^H!OF%dnV_IVd`YV;l8HR)T&oYs)o_5gkn9sDnKT@wj9iHu z%4Fm+Sb20ZQtVSP@`yeo55WOyEhDa@l#%;!Lz#@+11pb8M)G#Kzps?(k&2QJ^ci^{ z4p2)OX*fz5c@H;~$;jKVvT;TxDdw7j*xDYlm8;>YleAYk+X;!*ta1*BGvD}~rL0WG zjb*aZ2`d|CMYa1{EZC|3Vns?P$LM3S2#yaooy6K%bN!@*EX3_(60!hRHcp6YeIp`Q zR;_Q&)Mw;$I6_=TVy$nQo>EFq#Vuu0ax$!JoD$y^mgWw9rIg7@N#quNKyHSE!v!St zl0wuGPR&Wm#*Mggj&mZYDnWz{iEKq_yEjke{g_nwZ? zXKE1~Gj58C{BA8TMak|{m=@yZGhtc)D}O9t@_hwZ+Jih(AEwjcn6(=wpZgT1Q*rZ| zFr5r5k9L^sOrbbXPKmd(L>W=&lP_}Jq7T!}aLn2Wlk7f)=|pik{}0 z(d-!{R|22WC+R6TU|f=p(65^UzEg~zz-?z@^cbxCvB79Syv-`jZmVyjU4D-f60Iq} zlfK+;%2LE5XXfG1_i~Y_vR6u9PKycGu@;7dTSfG<0wRX~=P!f-@aAnh8!f ztZW>d5w_%di{jJKqCpiQ^cUVv>RBwDioJ5;~^X}C?{Ssyo>3C}vP zvT=CiHvf%>(>;`Q&(1`rdvWnNFS`9pMbI35iVlQ>#!W-f->7MLI=fh?SQ&8*t=7>} zzRf`Vr#S78+t0*lA6PjqP8YAyu~J9vuTzJoWIvqH(b0c<_9OA*gyC#@en-dDGluCO zM1LZU$yKJH=BlL6RS}M!0j`?fJQJi#U}fVVjZiFQ%F6drAJRwYemGWKgc2y08g5f~?!nDw!gD9A zY#g2umTMx4nIUzXulMxQ~LBg0SAmrPXbqm0=`p>9>Z;CV)T1h**HccO#TI*G}v={N;wCERc(Kp%em0NP`O$xC{P$o*iXe3-V2K2Fo|QDMFl`^f|*w2&}R zxVmvSm~ia~D;v*F^4BA!(z;R4al4uL`~X%qj?W0&ibGaz&`vo!wFN2vysS^q zi*UTS1SN3H;dh-v^c-$F6QXBfW#bS{QWw@%NPCctrf4t7))x}3S&(UTm1+7*aajkq zmx;@ou(EMnCWqkSHN}up&4K#B><@>Dn`-97Uvl{xpipG?!7XMYvnQ-<9GQ@VR7>6X zLc*u0k53K`85bXogVYf3DM}gKdL~M}u(ENKLRMRHzYB?>EA<(=42~6-A&u3R>^6nx z65MPiJQu;rqZ%Gxe+vno`}N_u2aZ*{;PJUl;kgqxn+eaaVCB&YPqPbwx}C>+`tZCB z$EpqR$Zk`3-o(vj!t*+;Y#g3#)kSkNii-9flc#F0vpR)DYt~uw;+M?fJ?zThPaxBA*Wr9+Hm5qZE(oG@QkwPkmZ`23odN@*CU^KcZ1f8Z6({;GfOmMD& zm5qZFl3|qXH=fW3<}o-zTwpXZOjz5E-{ZzILHRALY#fx3!-Zzs2`Ra(x`TGnyONM- zP0_1yxX|>M=9LfOL9H@z`7f+&9G8$A%Kjb`5;4>DiRo?`F&a0N{Vr2zcEn9)LNf(c zHV#dvy4-E_m5_irQ6HF3!7<`aM+e4VS2x_HupEb*%Y@}k=GvKp*x9F~w(l!#tf*Ngr2f!PO+6F0|btfKrbQ)u?Y zO=d!~8?0;`nvhpuL~-f?7X7!z&-k)+zH2s3yMw! z>`4w(16P91V%En;{sbCtNJ`{a&-qr`^O*l?mU^FTizsnSw*Kw1X(EJ@%HV)0! z>S?GELDCneb0_Up(gY#VnpM(4@ppnfhbb_d;|4Q<*#uTL4opbhqL_{r=%aEd93O6W z(WqN$u2M+m;ifVnIS5uZ4oS$>%|P!LX;pNxJ}t}OKyhi&xPuq)nPOAHZDwL~60B?- zo3P2K+3rPR=6Zc*u7jh*WkzQ*YC24Txdu0w3CvZnvTWzG**;+n2iIM@uI#vuW$$oyUh{mF@Pfs2f@&{A0Cx-k<_-8Cv7ICkRbHDpJeD-kd zQqD}m zkVs;UMf1qMcphVzMo)Y#fsv6_~J^#C}R2nd9Jaar27eP;-Pr zqnq6v_GsK{CO${O%Es~8hT>2vZd93Czw zd*U^W>m|kGPq>v#JpKqP8^=R20X5s5)>3z&PyWE_Iy-AGh}IMmt*LcmOhB@`6qwa; zbD6-5g_Vs1Gl^C#%?K)b0`H?w%bswMxLIX?JgWqJrKs$N+sZ^`CagTFQBm{(&gi4k z3kRtksHpq@rg2-DsC*h$Hjc{XimamQ{dD+I(<^Efdj=QMR8Ymq;x|3 zrN~@`+sj1e3RrnGBh&0xDm&19I8bdsrs*$5=0V(ECNlTI%EpmVERGvbow7IY zhx)wy7mgB_ml%uVptBT~f8)k7VR;u;HV%uTW)XcOoh&Y;l^thjFMp;8iPkKCV$>`R zHz^?7;$|`d*&0?h4v1p)BO({pgZDUnNREbM#LXo!RzH4MDJVzbrZPb}0#-H-isIbZ zjb5_>sgzO9)`#VDaGbcX#5gyW-KD^M7B`m(%x7R_Wv|(LGerV|UG&+GXr&LZUTgY>W!U?<&n8V{ucNpsWHb8wX_~%^;2Fk-oZn>SMAS z93gHV*$2-fo}(0!nYf`$NOp#mjYFci%_e$lEy>xbp3IPFC??ggz51M_;UIB2iE*1P z;44Mt)3~inR8D}EjiaKl&_?6pz2*RxxEbH%^nv)@$@BxeAUEmy#G8Y<^cMC|BU7GC}z& ztQ-PLj0SIBkGOgZrx+4mE1#?4wtDfbs5cAKvf?xyD@2dD=ftU^yQALvc> z8vJA_AB*atBeaNXp4ZYgam_#K7B2$V>Dh%S|$KH!^&jZ>vAMQ^Frdy z1$R)B;(n4NFB)rP3dMZJ%1M<{udq|I*I*ismU2qSQflVMOcvcK>NhQ$K8@SWpG?AZ@B49ie7+~jZ+jogO&RSdwa=o)#kftS3jEwiPkKYv}Z8a zXUffnxXny%)`OLeb0d9V_9$mhp*y@{o~O^uL2#6~DM#@(ByXMN^Oy263%8fa%YLx3 zabDDG^4fe)E98nkD<{Db;~19#dwnz%6Dn^Ho^cI5XQSD`7W+>I(R``p`TG2Z{?# z(1cdL_u(cpsks|gHcpLtMp9S2|JBFk-*AMuxWt~3LMz>Oaa)<3{1a9V;Uvb1qIW1+ zKdOi!;T?^x5_hTRSy4Y7)3W0ExMy@VE5y<0U8}}98jZ0H?|eOLlVeMnirr~-=8HXc zu5+-QDfD$7GPELaR62L};NtT2gPpIV{iFWlt@@9*>p$Lgekh-l>hvBvUo20{*;c8L zs`T5bC002jzOS|Oo~dOuGg4N{F(c)eQF|>~eIi<2tz`GwCA*Ne-S2(P78d%~t|MDm zXSljvx|koZ(v{SJRkHd@)> zWW+hRbkL^Sh1HBi%UDju3u*@rh$-NA}sSCTa8Sv^4ZFsEp&nh)DtGB zT_d`zu7YbsmoTEM7X3#3>V^3tCq~}Kx<)yeZbJ>-gbXmO8mBz^N&WX(yMXF@ZdVn zkqDj9v%f2JbWE*%E8Zg)e$}yJ-Dejn z!`Z9E@2-v$|Fx8{%flxOPdU80O;{|ZmF#jsEX-i}(<3JGT6n^J7RNM01$%j=_J43fCH{T8 zx~6DOnHv-zm=cwMGZxuf#pq;zTKn72YJdBA?QeI~{`RZd-+oj3+g;*sc6EH-THa$1 zRQiVx{Yd;(9hbHSYM~jfs-B?gs(rcQlHv2JWBW5bJ$7OE-0E8H?{@#edDZda^{ypi zv!Q2rz9`WunToKfSjepq|F6|c)-sP6=YKYSUG@QC&S3V&NgW;Yr)6&vKdO6A>o4Z* zX{EtJ!7fc(RxB;8-3WL7Q@=u9TW(LIPhNLPyq8yB9DS=M>ieGZ$bh?ZfR{S!&zM%~ zJV(b0kvcy&uAMtvYtO8$jTYLaw4E7})a0HxwRO?V`W9AM{Fj|m1I^zW zDDD;Oq1WQZ)XSc)#Fg+S#h2nrxRc@y?Opcne6+J&x!5k0i>0}_;M@Odl+owNQ6$J$uEmHn_IH- zb}gTE9#U|&Q!AMznOvq4Tq^IKOt`Z<2%SI}tD8@5TF@n1Kx*JU^dr1$TnX<%o8d@= zE}vuX*-mXNv+7%qz9*x;zh5afo{7M6A-3kzJ|n!gmc0I3rRPlS0~7 zjK(!B8;va|dp0;jQnw*&IIfBtOAq-g;!3o9IHt`O<-T2V&P8euNIfU@mWugKFE4b4 z+Q7EUyc1mD?zn0JdyIbq@CfLlB znAy^H%K6PB4ejM|gX#_KrH(}CZb|40J?>+rJ`VgvGGWbrN9Y8CR*gCi{F#3EeiB#0 zdoq3$SHerq^+D81&cixZh&}Dkw)gp5yMAp`T-2n`=)1y|1U7RTmwo6nI^DgkDNZkV z&*?wo2G@H||KUjB&uQ$PwDF>>sffd!;5uicy%ULTc2%JxKd8-LNUEsy#lNjtL9gRT zgvKxVeXz9;DTvk;xm<0*A}|fiBD=OMit9}Fer;Fn*OFMy(2wP`xDsB{+o?VrN$+>9 zbx3}oSl?ffV}4xAV!rm|=5JMp{OGvx@*e-A;!3nUB^wk8w!N}s+NU* z-O07z+vWScB(+w5NL=}`dk1OgUuaqA*K3+oyFkVfbCnRmE@BtO-|&D&fEywxky7!sZpYsMwUv!cGf(6ZvSxT_p@ zi|5_;E+IEwJScA5i9UMe&RL>#Y1}XUf6RS%U>wEuza`7Pl){ zO)uw@w6bn2>BOC6V*-REq!A@3iPH!PY2Q@RdqOHCAt60qk^l)cp@!Ze!0&zL?e5#z z-8-G;ZvFk~k2m`4&AfU0-t5fmo3}GYH-1WOns(n9j*rT9wK|s!7)ZLowpmISvQD$u zhi^L*PsKNldU=e$X*AThvo>l}=Mf+Ct#MMLem&PKF>b|?v9P^*eLA)*45tt zaO3aH6?I^WYq<)vq(uX}MKaACwJseaUZK`R+ z$DBRzyL7flahXzeWN2GZy;A4fD%EzGZ9uQwNr@@7La*G~>b1JcmWA{=$FpH-?T0Sw zl~akSz5=h@4qKf`57BDNB5}13YWzLuEkEAh&G z*;Z?!_%GVBNL=w_Pr|l6DIKw5F1`FEF{O`d)Rm^)N+V`AiLAgMTA1dqKfWf@(3pu6kMVlq6sSAW3SPH0p|pbk zvhw!b_bX#pb?r&Dxhp%yJoJFX)H$w^Doy*9M)Ww3YOZoxKiigtwBs3?Magz-J5?P6 zg?Hqd3)zAhC9y6seUH`p_UeqNd$p~uq}iTe%OY`gkAk{&46D(&+Y?jvXsv9nF`{b6 zR!^epW?L3vRa zH+MLxwYj!7`3ArX{lB3$ExYd^cE*IhabJ!Dim38Tt6#a{V~7dJ{(^0Tl{WubTNYyH zPusFUYa?&l-hJzBo3^~^(3PpRd%CinxfX2lhGqC%i_wSuy+)QkL@XWJQB6w4vS?YolKEAn`Gj);F@zt1mJ@JXgK;p0;Hn z56cspMa`!^!($rptP^T8X^(1oM59|>M9KS8omI{+r`obeP|1sw-nOu1TYhbRWy-mv zy93|v?8;^7e|Iyf-R*l)?jx-yMX6jdRdnd{^*p^#_d2O&`q^pA()XUJ-R%x7aJz3> z`ZL75-iu0qzH2-v$7>U+!0DgvZcV(4qCPI&D6r18IX=zr8?}AA&ar*_UUy$7+Dd}H zL+TjJzD~S0wOKDsZRWjmAQko7EQ6NZkYNC!d2^!Rn&&wop>+;VXtjxc9mIm*0P-Gl zNUE7O6>u%Ho?r~pvWV( zZ>QfAlC`eMsF>T)V5Xq)`}s!uub(yQ2RZFN$Z2|z>3@EZ)AS&x-3M83Es)L?)6`tB zy#^lSbTj?T4>DzSy8MkH=s`vvtgY+s-SwlVp>EHIq^aF`jC8xJn3FUT&5jJv6kWJK zhRjrD&wG?Di*V077@N66h`f356vcvtNbv{TaoU}czG(I4VeNjK>U+NEVU71-{KS0- z2eBVt+$p?$OXGtemM%LIUkkG9k9I2DLp!Cj8^xGj#k_*tXxnCFPWpY#qU4;k=5wX^ z*wedfqha-X;$tYS?1zK@s9t@y+p>`7<*&9Z{D_2U3+1v*qrC$q`sfm(km@%#Z0X z3q6GLetpdzFk zrA~y#IBsha$89aGC~k{I4g_vBfl+lkQL^=_dicgyBLzKtAKbT2oEfWe-bv~-+7?pp z*Xr(~KrvLt6!Idvs~W_w_BDzhN5=+d@_xnsPO$^JZ_c+>u?&^xXci?O)6yYTw(gs8 z?nj`-)RWi0@5hF2uc(b~RVVQ=dbmFN43fWiEv9v?5ii3Vs@LQtwk%}S?A0u4K0O)B z-+)5nAAO6V@lR5PHE7K-8XxC=cnXD6r4faH+*VuCbU$j#qGE+xkK_j+^inT>b?(u%uxNm5>x$>MwWMd}WEem-*?qnm@It1~+&G}T9Lr(>{GHGwx0zE5wW6oB5FWj@I zn|9KF^7{9D-mue%RY`SK2Q_Zary&lUEn1wk7AFmH(pnsPOh}xFks3%QtBIC8CUv$f z5;xNF5=Qb{a|+9feA1g9%)f5fYe{1ET2abgzGUfuWEk+j9yQ%Twt5%SEwE*gxap?r zZ`79zy}vp?&}$U=WILaV}Et=SHYi8LSa9~WvHedc`Rvc%fPfifQvX)q=6 zrJ{>dh1nr$>S{;Vwf0CHy$2D@LX|6P)@EdKlB~AJJwk(oYxISGo zPT}_@sBo^dl)~?})s`syAGRzKSNKF%;iu7AI-R*oLpvM|TbjbT98vtj>J@*0EsMlk{J2x| z#iGB%k)icd64UzlM%0@2HaCh+P&U}=OFEf#wk(oYIV~vX^akgr=JV!piCqb*+^aRM zYmKz>owoWCmABin2&>#;>Mw5(JTtXmAyV+$g9Qtbg4Y5pScnv7+WMRz1ugpAWp#|Y z?OMd7ZKtKqShwZWRcqF*Ol`yIaYkqIjoP$qZ|8?>k%E4TdL`1K<05H`umKl%zG~Y# zrGejI%R-F$1zQ%bQP1ADD|zFo*WkF5=>EHR)ySmoVcX%YKb9^#%wJ}%aG&fuZIvq~ z{<~&T^1Zg^>q+t9F0a)_wdyhAW3Jwn+b8>#>ect6Eem-xeZqd2#70wMmcB#9~5V4yF35e05o-S(JV*69|D>M^#D)Ovzpt&gY;ovZ-GUC-DH(Wp zM5aBz8;92R7U|O`rzKAT9r;4Be4$d&iV%x;wptn$>!?6yj}S-xkTAHN(|NGR1t1rJ zYzJuuX$5HmX(tkn9~#^)PwpAEM^_Xr6uyf<+|VYH#Hz_lFUC#2s$MKzjTF?29kg$Q z_73)D8(411dM7yYSFBjyZ0^lS;$=EdRrFq6tfYldWzpzjTH10U%hVw z=J#KYZ*~1elGIi@UP^_qLxmW4dBFR=1!-8YWF z*^s%AQ=>64C6CmnL888hqb^02TFoq^fzGjIk+_;ic{2dhd$c|=MUVE+ZH`g(8e2Vy zs!z0Kk+`bkNBdl2nl9&gXtULlD7wX#MOe`mL$!?d-1S?q5Gnp<+Xq4l8tt3+t>#^nl*qkJ~m6X<;ALEJ_aR z`^Yu;v)brYeU12-1ADm#^vBh!?}xT5u8 zf4|CpmEh|7OLRZAn28V4wPQ5Cn2GrFwrZ9q_8HA$pFgp^rgLJ(x|--$jU+yX()<@_ zsxUH5oJP5;oF-1TWg$=OL|Yc}#Ig~qdSainZA$Kt`oC5~s_jbZ0^>yDEqk`*3oY$s zk0U;vv|NiP*d1%V%@*iW^Hy^DcIJyq`3q0-17rUQqY=hDxtnc`E>G?$wk)LSZLnqG z8hypS^?lCc7fk)VBtEdoQm`vNqV$7gf?f9IH8QyC@5EkbE&BadSD(qZ(O0_sDW$(z zQi)K=YM^xc|8$?m%Lev>laPkyX68diP8$57qC-%nm!y(T|o%R(NXy_!YMC$*)& zpZqCRSc6V1M&kp0KlvkDZAsJpfh~)~6+W3iSk(tu@G~BYYP~-(z0>Z&`j}RnmP()J zY5!RvI#apFR(GQQf7-IBSpC*tjLh&la0;M-2DpQ#4|zXf_-lu+Ppb9LZ1f~>ZJ;Hf zFGEOz$gFWFiBaXOafoKI4}0-3_%fuKPo_0=dSGHY9jm_w@#>6dv9WqBrfgYAi=M-V zsI@12>{h)MS1N~yZA0H16Vvy&My@o?l|~f4-d0=Eg{-kkmPO*mn6ie)F?|H0rw+pm*Cb|!sotWHJ_gaR zJYs-8TkVMf-f7DsaRZE7)9$qFOwke8v{|Ql9^y9=)BJeaet>FCd$mSX{#9FjiOO%V zWf4}ng{wroEj)T#un;K*cyq9xNiE<<53xbT90h$lwC_PL?UzbP4{bHDlRmxuoH?nw zH?an>(0vq1m^2GRyB3pI;f%58&wDTRdIuo_G+OkMo?Pcap z?@mnV4UM_h<5j~pcs#aXAyV*+$%2JQ!M<|~79vHDtrN{% zFga}BE|@H(0jo9FlUkE4v?AKHx0Md)?cqq%6deyk(?o36;>V#HeaxR~)7<+`A8>8$_qJ_b9-CV=i+wnOoN_8}SDkV4PaBm-`u)eN*XyIUEaVYFpQ-vT1)uP_~Hq zCXs+uPEW_%vPj%~lTXcOTRju4rH%CH+h^nPIWjTxOrf0`blutnUfmJ(A7-mN>6Mn- zvPfM0)3y|xT{&lWISZVZm<6UcO7-Q9aJH=m#R%JMStM?R`P6-PV{rF-D*6ztO?O&e zt26>660^qv*#6j+#O;?_vHd7@pJ`8$$n$ZjtzN}6yKPw{ZkoyNZPW1HmM?ThNB2)8 zW{fF~ZrwDxOWhImf6P{QqW)`bStPFhnHyVaxTbH4@n~$y74^*btZYZGV|vGLO3Vtg z8UrGvT@li*2oYoa)K-&Xj33#uNZc56b+Bz#f9{rA(?Q#m&}o%LemBVFyNpr$fy4|l zk3VW*G16L$v>`^sDEHfHRE%CbqOqz7Bq&rxNimQ3uFy zs=CT4>rh)3iK~3}R;N3Q!yl+mLKmH)-Z{0ZE8DTBm@~VjLlU#V917C#gwR8CnuJLE zLPVZ{#kSg%XW&3v7Ks~VsXi03NC%nHg4re~TkNH^Ow6E8b#~-vvqRcJiB3YKy?(gU zFl}^NVm4aFXH~LXX-_W9r$jC~*exJe#B8V9>RimW(U!&ko!PYCsJDYg{?cYE{2!Q2 z zv1n^IoklFvw_Fzm9jJ$l+8+w_`!*=vc}W^to05KrYGP}&nHuzhbaI?;Z`R?A|j z7j0Q2Zm6`c7oKNpL(!PS8_a4$IW)VX=Zd1FO>50RIjMJ_rdVrvQn9sIs?kcW#NEv!_oDipGNOcSk5%tV+RcvA2aMb8sSk#?nsm}Hf$ zKIJJo-j+q;CYedz5!yvoyU_IO>e?KwffdPPW7=a!V)mdAYhMJmM?i##F$9xghi%4n_~dAb(8EAoCkNLDCQ;&4TE&Lg?F^ct_{&Y_%$e`Hd}$#0_&m zAWT88MxJxh>U_RPVM%cQDM`(X7dHk4N_+Ov0!jC#1&SDI zGD%hClz5^oi^L7JBB&R1XKC7ffc!F*n(XMrOm?VgGGDa88Se;N&C64Es4a`cjkm-w zo@p|gL$&63H8k>^U67d34mOQuK4&6QI{ryJ*H+VFtg~!cRBSBkuc(eOtmU`o(4!_w zN^NlpI<$furA9aT#>C8btZ6=9#?Uh-GNywvMtaW6Y>grI+@o2P44JKYz~jbN!B@|YA4(Q^!6Bfi!2_izZ?)X_Job~-N`k;!yWJ1xQzr?zad$0?+`#g?fa z8uyC&L*gtwr1+>95ukjKBt=xa4^5L{^Xn6{`MVnREz^n4Y5$hfe9L++~U_2zFS;ZeG~eKEeq)qK4{BAJ`>=E zT-9d+3B@QM!qYN&sND!W{-7bnUW4llwfxPgP95S9t%u)**MHoa6h%n{HhR1EyD;9cG zvnV+>)PC2h`P3K6{RNdByTCl@)TCZ#C=@m*Nl??J7n#SCI90yKjIm`Q&%{X0qUPiF zd>SsuiWu{qft5gvmLoh zBi&}10j?#nX0oW!kSEx4vOJ~7w(Yi-md0|SEsKiHWIeX6bOU&bGzF)zjruunLae`= zqF_2Y{9R_rfx*vQFnU{JraQ)q?jaFjH%ySd7hMuA?TP4Llzu5@jr=XPrVwjhsafp9 zad3LjDsp!#jW?FhCT4*BG5W=5cV+bT;nUS?_Y<}(rU1Rm}EUn*W59vc<0x zvjv6vx=&KWJfcWob;FH1Aah0 zn#8Gc{yoB$g_yfRv#9y}djx-TVUEGeYGVL3oA{U?mydM6@rW5v)3!R29%hLxi^SDD zY#V%$Ml0W%n39J#a%~as$`)Jwh>ADavPfLT6T{zp8`|ELn6@WHKKPDKXNtC36UBGi zvZz?`7E}L4s($Vedc-Ao-%$ETw9?hJ^M?#s{HDE^?_H!`pEG30g?qWwOzMT{z&Y9o z#OZ2nGTy!oE}w8s_ZpS$o4b8`>0;Zr?^RPsAhqcPI@)w3{f9aq+o0=wf|I8>d4`kc zbkeK7NFr`lU($30I6!n7B=zkL({C__Oy%!v5{X#mhQ1NJp{e?Y%-l7l8(Qmo|y^{zlai>6$*M^_?A*(X^@M33)%8Z0jk0 zYeS1^|DoIHYCokJLlc+SZIo|!4P1E(tW@b^8>voO>TlUe&rGzR`D^uB{EICM>1Y1P zhN$&x(|+41z%*ZI>&Wkp)%t%E)B0o@P`#>4EB_^1%}En}-j+q;%Aeq!s^Yc1;De%J@L}6 zc#)>mW!ny1D(S(FiYRl0Vz&hYde_f7He&gxho0!EG__BzZd|6;AElb2a z@3qyfnCCsVED|@*RC5`_`|>w9+I=@MgG>vpP$5_mn zaQE06NNoI1&0_E>wq2`@KOlMNX|tTOzD#%A83 zWDPTXCNVS2(-9JG*GHcRx?+s|E+T7)jCg+9IHtpMHmkoghEV&iETx1}~S?dYJqw9ykQ4YBBpkXDB`2V}9* zVX-1c8%?rRIUgTk%OY$vi^;V6%IcJx374FHS--N5KD{^BvXf>*1#|oIqibX6zKMJo z!^KjIF&B$@D?P&22J-A3s#%nLD=ocFXRXGmC((;UTedUTk;@i1=7<`x@#vge8;ziIcmKSI+j8=duUxgs`Bd+Q#qX{>sA`C@Q>JPOZtTm+Oh~M z+_HODI`D%ZAqy5F#g>H3PAdm3Sk}SdYdmSUCTMoIQa$2FpR-$RZ6;>_g)NJU6>dFl zOvVh1J`B!^*Vx>fg8_&GJs9a2dy(1plb5@}U0@%p6iT1b^J}AJV)m z#%0^VW9+J~Jt_ZC-k^7B{OPrs$VNxwag9`I+OIS+aEzgvtDL5ev}GX;dYEQWaz1IR z@G($$2OlkEbRf$U)Av}dZ?DdXx|?iuCH=?2wk#4?_b8~l6MN?v%HEckvPWxWbBz&I zpKhxsQT1k97GYIe46m{v!u^y53y~tB5juYT>n(}ddsL$ip-9KAe_d&7D>3)wwk*Pm zwy>3$n_m|#ScnwMY)47=t-onRxrOS=qdeVb(&d^f$2Ebs;3aEmDNPo@F_T>DINh6a zU9I<%i*Io##;maMG^4+|xi;;$Zyq}vcIUd6wo<*FRBwj%8sR!Kx%_}D;y<%( zkJ6-ntXb^CInJbQvnNi(OZuF|w+vSuPkQ=D}DyN!twk(oY z{wBl4%dB>&3^zv4(Ic%7}* zMDZW7Wl^!>t-W_TmWB@gO||BCcXiOAyvD5d=Lu>aK|EA(+OIgG`JdRTO*DU_X0Z>a zvZHZZ_{cW2LGyiyX>yE?N^+}==aS2)X85@wN^P%ef|GiMUTL@@-#dedR~;6o=56$^HE=Dq%Q@(_+1g5mfYWVRgcWUJE7ys2e>o>s&0pycq0GI5qOtwh&ZuP4l$j~>~s#pyD z18w2AXYNJ{8W8!0|tZz6S@rc?Y!{TqN*W9mdS;!;uOUNF8eHaZo zp%Y-fNj24CWRFuZ*A^LUzGkZ*X`ElSWs$gwON{G(O-#*Y$MwJ1>Pb}nM_U$&t2%yM zeGZr_51NU_8AM%;1zfpQL<(osmZA*d4?_15sK z=`?40c@KTszx>RabdP-p@W>vs@h|O=RN;61O(aW|lk|gaS%`HPX%;mfnx?y-*z3rc zRtFy(IxRWJ3=!B?8*8W&iH|uSppD@96Mwxb9IQVwe4TEqLwVFU+p#4e7u&L^Sozj&#PWMBT$`BgE7@z|L$+!Y&F|GL zO1@ImyiZwzk7fL?w)rc|teXl~4=2`E7U;I3BQ<5W z2W~L|St5<(0bBFPb9%om3uzH&o`=+$4 z+?&$iH!gR%Ub}Dos!iTX2rr@Y20MC7ZEja|sBLp^u0x-s+mr7$npA6TnpEF`{CeiC zp&#mRibyiiqH0fDM$0nb;(6A#O-Qr4NVC{?lcabr%2l;dtSS;8^G&Oq7v)XWtM3Y1 z7V=cS!Ip(gaM*|z54K2gel=3i4vAl|ih!_nqKsM5v}|SSlzgEpXYLhzBi%*~{L6iM z*Tv#ee5$n~!yoUGcYyw1mf6X*8qF+bP2~Hw3YBN`JGLyutlzX{;dag)hs3v@Tev(s1RNUUL0X_b@NdRrFq5WUU@sCgJy zdH>77i7C7i|H~pJeD4~=6kUm#VxB&a zOgnb97~YW`X-|xZQFhvDR2qA`EsMmBGQmBsxk#J2Vl*?X@ZQ9%Fwr|Fy6Di}h^RNB z_V?K8Ow|4^TNYupTTGs1{>?p|1q+cPsWE24CjA-mMsFuw!}>o>(E7UGwA351{*P=; zC)WRgX0Z=Pn7JFfay>a5#t!enW;&65m&5xbM<=KEB&J;QKLx}{vlzTTa$3)kBf9=) z^}4>pmW8zOzp=S$J?b15)P`PMhZ1=Gg+}8Zd`ITArp|V9JKB4Ssrzntdw47wdQMVv z+rv#$(OZnR5c}0dxU?%=+7&Khz#$}Il@sAt|Gzchba&p?nJw!V(LBeNX1B|S_;}g&H zKJ87N;S|H(@aJn|@4f{kz2OC?NIvh%j)i*0);eO~CpC+G_I``KGYR96kw@KjXSWmX!Fu+@CYyn>48VSIGumG zdYym5mW8zbkFnWm{U%mw;F6?1j6^a!euw@apg2i|wLmGFa7A!;x9?~pWh!pH^w_qVsJZ9_lcNbJ% zY}lt8X^vgiw0tEUOcULLaM}4ad1vzW*usY-%QE`IGJNCJ+>xhKjp@pA+A)LER-8Y$>ouMuUx11&YJuy!X+-H_jnXrx{WPxAMhH688mpgXF;l2IR>%hj1LE{*Pp zcSNQ=zdO^D&yWzZ>1}bq&wt)(t7;jc-mF=ad}?d|`A^KQx1X<#e$|JFkNM1&-1YW< zs@L47Y+1+yd%b2+^PVwgXS`dfrW!QiSQVGp8SfTb{Yc~dg)NK3Ra|0cyvGw$bJ?Bo z9<|kzsQMvW7Ky7mew?3lK~fF6+&Dj;YOQjbG{%-iSkV@Pw2brI?OU)ADc)$?V%*7i z-YUAuHWp;DxiLd~Hn+3a-5aOeo(vmn)6DwZt?s=&8CHb$WYFSNxGlqa+Xf^L`x;vo zV*L|sS-94Jo7ETn*0a17nB{HD4m+*?IwgNur+_Me)s$dehCEMEC;V?Cv zs=c*s2QgbGw&uF>yQp2{Gu>K<0VjV2TMI}#$ZHn+aPl`{Rdc?#M@O4#3m7{7Ky7ra zt|C6>G;m_0u2)C1aJ>jGR*#RsQ#==2}b;qspJ=@6}Jf ziE<|Rwypl8L4U)RMe-(q8z@`A2T1q`rr;ENJ3@yQ-+dX}HCw;!xiSJmA-srW&tTDeaAc(ey2$E(&B8GXzR;yx| z7j0Q2ZkW+DDz|jd!BY7y!vym$OsY>BLkG3^RYsIOm+Gx@mOsmuMOfJuQ*@c-^Z0JT zLZs-hZ8h#Z?_#T2zV$qBv_9pCjxK98cOp2qHciR)%R-)vZd(@ee6kU%dOo*Q zBSmj>Z{LKTd`qUQw=?5(^%Ss2`Q>{Tsjtx6*(nWbB|W^S)TU}V;sT%G-|~EMK41I{=e&!5yM-_Q18Ar^ka_-#e>)cChN`Fe z#-2h_ul~eYE@7URFtbnb#aB7YYh2*l$TD0_#BamYr#Z_ABxBS_Btun^(M??6iHwFK z8L2KqGD2OA-|EyHFdL;dbI#W}c@`HN)OV3{y!tRMPEid|&oFflgcz#sMlxAtIp?`t z!!#syY6mWkRzCz9rzWD@NOe893{}_Q;&AmUm-{G^I`wm09I5U=mSO5nBqP-flpC$? z1=>%Yz`xDL#o_98lpC-9jB+E?zwujxx)&Emsc&)4qmb08`?-ddoMksBhk#3i`Zxb} zH@MWPAbuwSPiBOp^%K&Zrrzk#3?a$~NoLq^E4QdJ}zd^a7>Wj?fOPsuia}HbVK3{x>lNUI7nUhyI`2q9%Eu-Ia@*ckUI+Eckhl}-U zKd7}{EkX?wl*6_E3|S_ro4LTRIJtwl9L>owT>NWX;L|{L>I0nffB3iM{M$pEjN@|O zWb{TxA47pU)dV3%sbd&TMwUADRwVW6x6nkrng%pfoq}Y9I+C;e9>0xJ+qk~(AsMEg zKvJiEh-9cb4LRqj*N_ZTLs8K}^%5!?tuDaDq3Q$3xu5zkk`-zUvec;ykY%WPFOuo% zFUUDUUBnkZf}G>kbx4M*d7Pyg$xQWkMLe6bhFD0Mw@&QNbg@zLrBxHwdeK{7!tM}e_wEl`7c zg_Dh({EjvF9~5s;Hz283PvWeU5YZVO-B z##w%Yi}h*>qgOcT<1ByU0@Jwo-#KR|C%1F8LmB;o%l(I+fW2J2$i@G_=pfGW7~j|j z`QnE;S;0501a2qGtXahaz6id4(B|CFQz$ZM>0(PnX`PJYS-TKTu@ zxxf)zAjQ9ZihuhbB*WDE`QopUj8Vh6K%TSAXLCFVRIeKN;zzl_Nu2XYMsMKXe#pr` z_~Jh~=|)no{)f?t%xnWE4gA|M{_W4K!CB0DE0TKkT}~e3oIhanYp&>VzW4-^q3Y|* zv_^2M!uaVi(z&KH+5m%noIXHIV8 zK5=d=9Vcko-idLF1=En(Fi#s%KM z1s-8E49QS+85bYT7vI9@t(+|5;?MDKr|`uGSft}PIf;Lp%E@0?h^JWGS$y$lTqqlR?%oi7N(#pwy@!L@K0P}p6bAFhA`w>vRn#2NL%NPHblfyZwy;_IgMyQ$m+j`D<7H9bpCpU8PUSwIW-ppCH0But#BvaIU zB=zb}2slZN=PV!Mi@!xOTwMq*bJcl#@fIMO79wYzY6BXp-VHQU-G(f4mEtT@_>TSp zbgG&PRIly=s#n7}%Pvkv^F_tAk7e{Q*Vlt&jJg6BN2tg7;tgExM?ekg8BV72#mgD} zjFYSR;u=P)QA2}z11D=Z`7i(W45PoYsZM6}QxvaPf5XLkHJ5Xq%D;`}?{{%tvudNr9ZZscSX=X{>a&0wByWONHx^fIHjaPkNRf>P><=?u1>eVVP-o&*pJlXNY9jwu&pf}y6|Lu-r!jhzlQWP^SHI!{ ze}oF^)pX8zB^Uo1k~;O2TL8b+sedBpa8=K0Jrfs4sI&OD@1ekWbsy_lae;Frp#wkVE;m z&oi?eZXL_|u%_%lz9rIVo^~UQYha$<3Veo1EoXzW5L)@8XNU z;4E+BX0%vmny-U0(F9HoWG)ABQe@Wu;Uvu$Kgs2$a)IOcw;ywI5C3)r zP`w%gRIgSu`WhG5jHF(DpV7Ox+%KF7R`{cq?bw#uuOFi@#&^K1LtqEN63l z=W+5e&T>BUoXHoLae>!3`2!~x@^3%poPXnThw^WW8GV|Q=}?ZCpXKD2sNpL0Cj2&9oq&sr)l3v0rPkr% z6m=;so~qsfG(x=_zum4*1)8c(!fzwh9H4sjWBfK$4I$w-?X6Sq$JIvlOI#hPeuZST z8iqUjkh&FUgla)DOl6U?K{fHkhal4kbr3F&Qy;{|QEEAop(=w48`VAdZH)RP7r&3u zZ}HoH>UT)$)Cl}GTs;nEW7Y9MBh*g(mQv5*;!w2?7bmEpC_Z0(4(K?w5CV=<{{kAL z{)z$(>Ifv0)a^*tskh^|1?oPaaq4C;t5d%~Qm_7ni^J5Z$Wo`?4Ayn(^SC%lJebaKFibV` zZ$IJU|I1lcAj?E`7?Oo5i{HkoM_B3>pb^SJGFmmEzz~%~GFIKs#YdvtF!dp18Kxe< z#gS?m=e!md>-7mLBufX-cy%a}2@2oC&~GDvFw)VOh1+T}HT?7+*-s33qkTcQ^Nd+(*Pw(}*{&-+DP+ z`W?t0K>h^s7m(XP{swY8$eken1i71tqdrO^qWl9_(WQq#9wFkWqulzY@1;vKKxPqf zw0{}-x8qVXNUOg7v@6HV>yZ^?Hpm>1xghgEQXum|4ghHcSpc#S;FyTS2xFakL*A*{;K-kLgQG+`FIlMY=Q{ zWPgwuATvQ`fy@S(12Pw69!LsgKF9$ejUWp^7J?iIauCQOki{TNKn?~ugovZyS%x@I z-b|OC0(lzb8IWf|o&$Lv<@*2qNAVYpZqzeH@14tGj+#7zE4>Dn`a#|c@;;FFgX{(Q0LTYHJ_Pb%B93!9 z>;}06WDgNXoiU8nd&C~PbR@`8AV-6&B;u%cx2^o)3cB=1kUxR^nTVr~aDP1PD!Ozy z$Ppk%5^)q9laTETZ=*|J1o;xk4MZIEYq#R&chIF4kX8@}qzz;TNIOUlM1kxi;;4t* zO7DGyF5L%mKM_a$+^z4skJ6>@fqWn22OvKLxe???AU_8A3CK@Deg^V$kefhm2KfcZ zFF}3v@=kcU7X26+VJQIP+DJO=VO z$P*w>f;h2l*#)v20$lE~P4)P9= zcY<6E@-C1*kavT;hlr#7Zm`bx#?{mF0P+KnAA;Nn@*|KRgZu>KryxHA`8miwF{9_sn~B)W7v$Q>Yeg8T#IpCEUE+zoOM$h{!1bGPLVUR~a9tHUi$YUUngFFH9B*;@BPlG%I@+`=6 zAkTxm0P-TpOCT?UyaMuHkXJ!o19_bYbp~!fbo*?&bO*?tL}(OrySC5Gp-Z0!`2xrn zLB0fX1IU*_z5?=9kgtJ!9poDz-vs#<$hSeh1M*#v?}21i6ujqkW@L)Reh& zX)4Gxkm(@%gUkS#2{H?0Hpm>1xkMc8R7LsoQgrEjkPARA1i1(#1F{_?3(^eI0@4cN zfV6?^0BHxwfhdrjARQo`AYCANkZzERi8$Jw3jvlbq)W>|R)8D|au~?rAV+{4333$3 z(I6{9jsZCqWCO@Xkduix3Z7)hbJQVp>1dFZ zAjg0l3vwLD@gOIFoCvZCWHrbdkhLJ|K-Pnt1hN5SBgn}hr+}OavI%4}$Y~&3Ku!la z17s`6Hjpzx&H_0b7P}TM z7U@zCNH54Pkli4cfb0Re6yyycmw{Xkas|j6L9PUO6UduE-a^Dt@XA7nhpwVa4}&}c z@+ioEKpq2m9OMa*CqbS9c^c#ykY_=j19=|g1&|j(UIKX;;AUiuH_|zdV8S zKL!BrJk)*>;2AZLS|19C3Nc_8P5TmW(*$VDI-knJE@kYn8qLwc+OAbTGn^=^>& zfLuewQCJqhj}yK~mnMQt0@)8_GRPE=sUXupri1JcG6Q5L$Sfj`UPJ(=2fsp>9s+q7 z2DyngWO5PQE<`W$74>U zOUDs$v}X>N&Rav5E&#a*WIISRNGnJiNIMayw{K!wuEQzf^SpwiH(JqgvT!tALwxEf z?bjYBL2x|@f(s1jW=i|DFH8`eVuIkL0y;(Wgttl%+*X3%{sQ_FrTy9uCI}8OL2$GI zeTUM1?Qs(X*P9^t-~_=LCkS3SL2%Crf}c(h9Cm`>xf28zo*+1qfbOKUUwf1U!L=j^ zJ|;nMHVJ~)Nf6vmg5ZY|1c#I$c%}rsY#{im$teilPC;;c3WEPr5FDX` z;1LxB*Qg-)NCm-JDhOUvL2#c6f*(~79IArgSrr5qt04GV1;Obm2u@d^m6Y~t@2eoV zVFke-D+rERLGaKDf`=C9?UeRwSFIrUErIT!v|l?g1;LXk2rf-QaPb1wQQEJ4y@KHM z6$J0EAh>}A!5=ILj$uLY5DS81g5W$B1TV56xRV9JuPg`-WlSosiyB@jVa3lW4x5kXiT5rkzDL0B&lgoP79SV0klr4&I} z3IUo&X}?|*5roANL0Babgyj-JSS|tj0j2$V-9!);Py}HmMG#g}faX!!ua{H=VQoba z7Fh&g9R+9;rTuzAMG#h21YwCq5Y}1*VbMhpR$l~R8AcG+V+3JgMi3T!fc8?_uUCEq zVF^eO)`A4V(F63@arIOV9v?w){Rn~&ND!Psg5VVr1ox02_=yC;VI&BiBSG*S0X0zC zuU$xj;7bw&r;;FemjuDhBnX~Wpmmh?YZt2^_*w2*SFDAS{3g z!b*rBEQtuh+K3=5k_f_Ti6AVS2*Ub_AS|Q^!itI@EUgH_8jBz-wg|#v3s57a{d(0! z5SCvAVI4*g7GwlrWkwK|Xar%cMi3Tl1Yz|?5SDQSVLe9>7Ip+-g+~yUdIVw3M-Uc& z1Ys3O5SD`kVO>ZN7Kj94rAQE#j09orNDvm01YtEv5SEn$VSPyu7McWM#YqsBo&;eH zN)Q&K1YuQ55SFI|VVz147OVted1Yvbc5SF6_yl3CPY@RU1Yz}05S9T2VL2V> zeU$d=b#*~lU>Agyc0pKj7lgHUL0E(rgw=RKSe6%r^?5;9s27A4dqG&b7lbu@L0HTe zgjIb(Sl$=ov*Aaxc9YF}-5rjw{ zK?vy)gxDTI2=WnxXdgic`w@irA3+EN5`>5#K?n^Jgcu<~2o@5As3AcJ9}5;K?t1^gcvG82&NK*s477S zuM&hfD?tdj5`@SrK?uPTgjg&=2+9(K=qy19(-MSuEkOv}5`+jYK?vm%gqSWt2<{Su zC@(<>_Y#D-FF^5K|`z!F7TVWhV&Xc7hOhCkO#}f)I%(2qAfb5Su3m zL3)A^ttSX!dx8+ZCkTOjf)LRs2%&v~5aTBZ!G3}e^(P47e}WJPC;rTsdJSrEdR1tFpm=q5`0b!ep^#8?VKu%#eGT?#_@r69y%3PM1p zAVg*gLWrgy#A*sc(54_nZwf*fry#_03PNC~AcRi>-Ark}j-wQWfJ#A#VFmg$rTsdX zRS=?D1tGju5aL_~A>dUIB3}g|1Xd7YVFe*5RuH0N1tCmU5aMM8A#hd@B4`C6lvWU8 zY6T&i~41`4n$X9&4h45RxtkvFU;kq%H{2>Vgmw2Xq0Y{W>;I z5Q5|cAzDrl!sY}aeohbq=>#F7P7p%t1R=&w5Q6OlA?i*L!tVqj4o?sQ@&q9=PY^=% z1R-h)=tN5Ub@-GZ#8C-CK$RdwRtZ9gl_11g2}017AVgmYLKv1H#A69UV3r_6XbD27 zmLSAz2}1CeAVhHqLO7Qo#B~WmfR`XddI>_vmmoy@0j;LAUx)n(Lj0c~1Of^|M4%vq z1`0xqpdbVb3PRMNAcPMJLL8wW1QZHFWT7C07z#qHp&$eu3PSXuAcP?bLOh}%1SSeX zgrXpXDhfi(q96n>3PKd4AcQjtLR_OD1UL#pq@y522?DLBv|mRF0)0m#gbNBn+@K&t zNCG|kew0I~q#(ph3PSLtAVg6LLO7)$#8nDHfTbWrS_(qQr69y!3PKR3AVgydLRh9C z#AgaZpr#;1Yzji?rXa*{3PLcaAVhTvLU^Yj#CZxrz^5QYehNYes363G3PMn*AVh}> zLYSx^#ES|-;HV%(kP1R5sUXCZ3PMmM(4Q%#7&rqVOj3SByrdumP6|Q zf)M5|2=VTM5cn<#5%7W#3NHws5&(UQ(taH#4)k$~1t%>L6@RNO%rjXC~WQuz_oAVue z)n~^H8PYd=E2H=CUHm2;=vYQ?nS+u#W)X9WPcm3^!5#H>Fx$gwINGi0DOUzqBhchrb5&vy0lqs2JIWAZ~nBx zY29?k<9nRW?v88^9VAr9b{6T%SntZJ!Vbb}i!OS)rdlcL4Eq0_YAaFtyyQ%s&|MFM z;)3_AuA_So+{%dXuH6^zU9_lgc#-VXLHp3pY{_!aX(`gGm z)cBl&@R$Z3{`C+aM{hk&_rmfVOeUstG260qW{N)2w!^t3)7rDA+ljlcIpAEf1m9>@ zZ))yWFwbLNlIbKcHF9~39^ubRTv6xcikaSA7l~U+Jk80-W$69@zX1rCwUDX zjdI=N5p!Gno3|xpynC84LVpI= zXUbiMOBnnXhky0>#oX~+^NzzMz5D+1u;6{qm25rvxO<)muE9)(eDj09c(R4=RX^+c zT4_E3y}4pgtugng_2yrX;pgbX2+$95=P|P*zoXclZHaBEx)1a+822^DyISI&0)3#D z( z#XQ?w6?{@>(HE$#9n_uejC-ucL0NtdW{_2H4KkRYEoQoCO1!JggRXTR%I7irPLNrn z_xO~Z@#uadlG9^&v(fbClIF@X)1y%^6Z3H&vH8JYJiUi37#NL$xeY!GgTHuuV(b?h zje@0^pQH8*D(v94-mVtB7-fpR-QD>@551-7CLP<)>6vWF5}pD-66`affQrl;%I7f~ zMO!TT)8d7>t~RIO&%EVP4b6)5GZB;5WBM*ufor3=u6$X{vf^5?HgPZ$^YKg^{KYd( zX%h!?8+;Z9fARPXY~o-k=I7{Rh-AVsgGQ!Idp`D^YYZMx_jf~@*}+25K2-Ny`X*yb zr$VJ;ZbLtW{&ka!qYezVq3L?69A_Eb{p(*@_^kS4aO9oWP3P(6dz=hr5V0*<--nUQ zV>B!Hm^20_FD09uzNJV`kKrfymfTh|lis7-cNB81akr&sfnEl~EOWf8UIPg=w7@LT z%W0IK?_KrE`xcN9E;I}DN-!Ts<%1etZ0IhNZ==q#ySFD+*LrLzk>69&{Giqk^7`l& zI;*toEA|XM4TyUo_ZWXB*q|18jLW|nYeht}dMxiU3_6WYE9;0erk)()M=s~ue}my-#TZXF0RMWEl&2lFg1Sxn-FR~g$&(i~o?G5g z|1$JCi~85n?hZZc@^cuH&-E{RDhzcXdaC7j>|BSz;eZH-m>bapuzy{@8foW@r~PBi zITqAH9Y<@fCBB!|18^{tA<@F%FWznWm5X*mbE9A>PcEFUCj;mHgKQ*cn4m+RV7eAosep<44EIws)EpzyAYdr;t6GiJJkjK!bdoH&Wj_OoT zI=D@h;<6y{Lz(A852C)_n*xPcCP%#*Y+?&rI`Tz_ypsdyTK5Gpc|CREfXYCFYb)E} z^sk1BW=esmasmx5T5_&Y(!cSN4KBdJQQy`LPM@bq3nZV`CRZak8OceJlbdvlqP>!F zn`$U0mvO=ylI!y{>9@_C^L0+1 z+SkyX%@y|cEx;yGJ!x8V@doi@uzP|ZP<@;+ ziAYOZB$-B@Os{jje`YEE%}npr7hR?Ylwj%~bPmSstnkiY_n3c++3{BH?#}IMC12dl z2~Gy3oBB74aW{)`JpXnwixFG{Th-e`OP@Wtmed+LoS8`1F51YR-ocA|`{wmHh0e5} zBaIwH0y!G6YPwgijXeN;O1uI;OlG=FNCN(`G>cK|X?4-roiFUfmi)L6xe%&tlK)F;L$<56!=V;B%`B4keh3wv zu$p{LPFJfGoT3Z5mrE5Je-fHFDZ8_qHcq4JChJoADk<2#8mep5#$9_-x^MOFh%Ti0 zLMZE4WOZdA-A~fok=wr(SHQ10P{6+yDliT;_`MV@diqt!#keBt3$)lt3L~kch+GU6 z*$=gNt%Tassx2G$_D%Pzl3&vJB~*Ac3U5P?LJFSX7jmzJGLLsNcNGnb(A6{*@UDgm zP1uyX#A)>fq&vB^=Ge{J!|2(Pt;5&i&AH!Z8riV=5Uh&T;Qdm%wvk(M-42B& z(1Q0ktpp#3?q<@KLasAg5QWqI@MGZqP`ZvOTYKoi$#&3eJSgG}U7!3`n!(Jiz0L0O z`v#|@o0h^o+maC64f#3JoFj&rqi*8iTh{oeQ?Nl#tRGGH-1=9qbA3T~k`y7}j#A56 zA|9F$8j_*NjUvr5n&^E8zR4_nbWKi&(@B8_yK_ZS@iH!x&e52(C|IJ>yDPysmF=My zp61>jhr~R&T5e6gWQM>O(lbNjS|;1dZmnu%W_B_mJEdy5ML-tZQ7^eokX1gTnA_2r zkN3)HU#a`Maoe+lh3KAjV-l$YzS6kTsZeRZHx~{eU#Y>xQFVI4LCed!(M;>i6=^CL z4X@FDDEw&1KEux*6+GaFijmmcvSRW^LJ)o_ry9 zDMI3$u42AG({T5{y?uw4>d(rR3U+BHZaZU}=31^3E5nRBh{GcfTABP!UVVmAH)hDA zlk3T3JdGNCb0zGg{U2{7PLn5rA=fE>*A>&LRwP!iCq2PZGOuGdMBC7n=|+T}tzhI^ zr*XUov2@4T$>j=QNOdx;-*PLhfh8^V<%?iQb}C)&CHGWEs}n!oRAf#+ig1;k&H_Rh z(w#&<>~dOaptNJH1*7^6na-eo#g1=VVGlm7;P`$t`5{pc+0IttgPqwBydt$>5N1#^vjSFR!dk`U= z7K4e*Atfg=EnXaTlmFk|zJp6mVEjCR+`);<(K6{O^ZFITg$BH)h~8rIN!XcT&{Y|l z6BJ9#RLZiEDasLptDoj3y2^+gt*!f94peE#abhOpTwI+P(FtT(J(4<5V_1qE&c2oc zHAbW;HHj^IOVTt3uZta2qanp=Zz>x*YF8-7k%MlcJb^bPp|(LGx$%?w3gsBQK2T#s zihXVs`qm>N1w~fvV_l#|Ll@M0b?0|iC&u7=FI}Y}2er`xIew}WWbkd2>og=;N0JnZ z?YXupo5;#RKQMl^hCFLYo*IaA^x(yDYc-^Sor=B9``k{tPD2uExm61?_?8=$gW5|^ zq1S26?W#^GgKsZ>wPC$nk}p&z%i#5*t7JJGHP2nPWS`=!_H3cGNbdGn$D&?0^>Y|^ zGS|QC4O}7bTp--Y&uVZuz`yKqSmVt(WrPid8~H`NyE)Ih8$F#}S#mlXeZ_!3hOVyg zy>myGn%oXtHaOKi6`x{)v5luLBoxhlD{)~v$mI}NcGJ4M$W2Fokn zr+4N>M#3pefB+zqeB`L4Rts=paSNJIW@gK@(SV1jAUh1gPi?pXZL3~>zeZnFL-CIPJ2?Q09TW{(o5mBqldUzp z6Hij(M#LuG&j~%$wX}&ZYUx|yhLVg?YJ4j!s&Omr!RF<8N|U*nvufMIJYkL7X$js= z<<4Cx#Ve0n%!x?&SvkG7cM^8}o<*&$maWPkA!;yi`=S|YKZh=R_NYzc@nzmry{-eo z8B%YhA8OV{e1R)*R+n#Y_&7A&COUlodZ=t|)E#c&=T)!uQUbFHC`O9kKlo*8|CY|~ zOfL2dDg9Le|I9_R>f0RL!9}NMOMRlKL#y73CqHnV$a|h#}j7Q+)vM)6i@sl^1==xVh4B}s3 z&e3zx0y*(IoUR=`?eUX^iYiEjCdwy88h1r(n!*wpnmpV8wbb<}q6y`Lkab~qiSKk~wl#$C?vv(v4G+!lezs7Sdv!E!Oqicn;fly}t2 zMkLp49V%IVQya-*$UaZ5d!1(J4)mu)`dX9ZHFz}2b&p5P-Gnx^kushQmT*6m;eLqw zv6+bXqA0d5%{cV&w*L6l%fMW+YBYZ$;KsPk(G9TlwgWn5ERe^zuT0tKppd7Z-x+Omc1yl{4@bGi=|;CZ$zn(}Pp*3cg>EZgbIEJ) zXq4+7kC>YZ*<8wa_q4zmbec*IIxU_nuSpNeMT#BGcI@p-m-4a2=MN4xr(}G2&(8I< zZ$&&Rvn@CD#PX$KCmPujo3p88rG|3LhVu@RvEihOy442BtwcC)bB5y8a%9BE zSPinONQB0g$Ott^j!hvc4V`BLKNfpCy+&=g)&^N$mj{I@#KE#lDd1s_ug!lOg44wHhycA#0$?&;YTeW&?vS zWc8Yij0C3@dulWD@rA5jlO&R9?V3N{HIOkhlR2$c!%+?O=#M{+T4=nWwo&{=M?T-J z$IrMIR4)UYA*))vR~~jX6w0|8@S|bA8Gd%}y;D3*0art$9PKUPdNioq8t-LF%7$DG zQr=OMy%*|1f2!2d?FT~);!`Cl6?|Pg(OV@h_jVRtr}mlAJ6bfFuuT3YuRcTlgZ)&= zuij@TDzD^IrD*whzu+K0Rf@7T-V&oO%Sseg;?-~iRfhNe*!g88d_`lGe5w?^wI){p z!;stPVp~V9JLCJ7!t;oVMB~>Mk+70)N8%;)g)ziDlQMS{dx{rh-;MaO#Y)aKk!eIF zY@kVz#t?KX{Y1VP+L_bcJ+LO~tRz?|UY(vShLC4a-obs-6lETHD~@`8Dph4%jK*mY zk)ku~pO$cww0~$IhoL__G;Tb`rIiL;RG>lohsGBsA|@>s4r;MDQ89gC3^C6_or7K> zu0YV}gsjpQ84$-1^>h}s@@3%)q_iAld`S!eH+s*z{d42b6)neQPXa@(L4BtiqcnQO z7|eINQ4URUoy@xGdKh0*(J1DM8d{`ZIoW@XYhXUhcIAs;*l*BZG)FBUlLJf1;(HH^ zFPh8AW;xQ9>M#cPMRPg9D*2*0T0SmVWIM;=(D^c$q-1usXK9-g`VfWpEUd|VWwYJ1 zs+3?xQ2?S4>1$Lukts}cExn@W*pFp#1v12yPhWij>>uv%oTid!BEMSy)vGBe za4_o6Q9He*RsD|ZewG@uw~%-Qche?e-PD%$_AQ~FpN=Mq2ED{&Hr{A6;E`!_w_(%T z3HlGrEsCPd=#6$oq`gJ6HJQ~IM%sq2u!sk}pt+|U(M}wsY}(l^!@Ybo_^1N0qV37& z-{k47Y2d0^R7Z7q#?cNF9TCvo(HoVF6yiq&AcJwMa}X!s7o(>=wBoHDAiR+8ENfq9RBqtuY`9WZ9%`$EDql4ir;K~960$om_b(U2r`(~*4t5f7is+H z6>Bi`Hye=!&An~3J$|Igkp{IBNwOF^Xq4+^v=CbJmolCne&fZi=!eaHe9As-y*)XK z9@?|FZ}Gs-nwK~DsI4)V-OprpQD&$haVRM$Z7@Kw5S9oZwkbPvBiN2Rq$jM)OC5a4Oil|-j{-p{lNJ7-EJ%*?! zRjW;Z)*YP@Rd|<8VfCGqtx|2Zkjc}NqizUxZ~IfQIh~Lg*G1{rSN@q*oK;`;eCic< zDYTVVj~>1&=u*7AWxABD%&xL7#pO3Zm*VCM^#E=~M%${eODW5+;x45uml9pdd488d zhe(p9ywRgna1ARn{>~%MYIHIv&%*%1^1PCQ=(JRZPW_OSqLVGOw1ZKJt)nWeEh2Z> zkd$&7@VmpHXom1-d-|@qvdgZTRwgv%GK4+FRex2D!taTq?$`?L(-hYVHg;C6L0__{ zU#U{bv=D~QwggRI8^zgMHYkfB<%ZfRFY3jvRC$oWkm_vrsjuF&;n&hCRLJ3P0Yf`# zNQGmX5%=Dl#YVR!$FykP;FxyYX4&C(H8CnTnngI#Xcm1PjpPb`bAc)h%dD^by9?ZB zn3ueW9TSgTb*6>k#M!LME6yxKo(uIAvv}|d4GSIp9-(r* z#))Ozz}W?-y8}nY&|n-qm%Mthqw}l^#EuAK2)m{x9iUB@tSdHTS=-yyOh=qqb~XM( zV>4KB%`A8r>z;P zZEyi-G2(?g@k*BNqimW2vKV&VMqQ6{Nv5}(ChwI7c}3YrUM`}m6cs5lD2yTIpdxEx z)_Zl}@JpFs<3h5{WCT!oyGYs)wt?ml_J;2fGm=|i5}-}!#Cs?(bw z>QI&09Zq)Vo{azLO^AV>WJ(r8XY=H`r>oGUIj}{8NvdI5ed<{{E5Vp3Tlcw3IX+% z+)KRr`XWaj99HJYgEG}EuITn6M;lOWC66|!y0*v>2B@vnPUzLwMx2e7azxqXo-*|v zT#+tgjwGP_D|sYAnffZTUF7Hi)RvewBS#ESZ6%KwsQTU_M+wkVSNbS{GSyY~lt+&Y zpte%x$bd2xR@PQxjs`e-prZlGRN7Qg1C2id;HUwP04P&!Gz2-4nS3VR0R!P@vCLNg z5jOIQRiS>PTj^5^D!rwDnF=dwLDBlip8g*C-gL-#wJcL-W%l&h8=9s2EWJg4nK~=G z&%jpv?v7`NH@l}^FB-TJ21oiz>T_8e_qPHIUW1)h95k?OdLhlMsl;+}REYuSP9-&g zuTj%sC6|lK)>X+k!JLiS4lT7DT(+_b%-f_H8+9Gmx~D7KNeAy*wvuRwM?}b`P!&e~ zE9eyK9Z9qn@HJ{WBG=<|7U|^F!PZtukLK|bbAG*|#KL&Q4#9`J zlBXcD@V%no(6R0nw6nq11ipsm4lT9%R`#YUkgO@Xy0*fmO;n;k@HOu0@FIO+*6I`o ztHMfpVwW}7=cvOCzr##AQNGwsORsvI3%#Q2Ph`9dhP-pUtKRUq3a_y;)CWG1@p2mF z=X+PZ^8VYj@Cbb(w1iTUPyC`3XCK7I zKb1U8)oN6PGBld`f5g3cl%&aV9|lPvMDc(~0@KrX_w?*syE}!Q*}Sfd4(dsktizHcBfrQmewmS9ebv>V=a1>`FC!u&A|oTO$jG{G>1;B7!SZk+ z8;DOS(z_mukn2VK0rNjl7cLlAkZsQ7dYrW>}xcavsW{WmfSGNTtH?{*~MFXj=jNr273s{)*ke0+z&i=xtIGuEcU3d}X_ z$l*ufJH1g;C*3ZqUoE2@li50Q*Jh5#N5jI*-NVljDHzbpdkX_}5{Xz)c#aO37iUAcie z#jJi@_WoH(Yscf`uay&@qfhIH1m_8ET@J!*Y9z6u#Db^Fk=sfh1QTm$MJ59hX}Sbw<)oh?B3l`vU{HP}jNd$IMWVbW_!?Y;e96s2SSj zQ!X8gD;6iQ3}5cH#ln0^#lY4pg*y{HH^$t>w*?rBs|MCSUQFqBCJkN7XzH1T7^*8o zHpr6hxlpK|H#Vd~VB?hmMH$RW&h6BH`@XZLWf)qhq0*{>wdW2-bd*`9Pg-`h1nOx| zFVaqReZa)0>yLd}Cb({PoIYT(06PnH{G?`J>{C)K{co9OTd3p56$4vu#HIa%`^)Ri z9lLf_b1%yQF#1{owsh;dW&YW@Vd`2AdJ6-w2U#jyn~&UXjKmE zeZoWJQiFG`h}`2sodjwHhQ0(v5cV zZh3R%J9KvT)zh+1K`y6dIu#_InG!%j1MNW(_s&!fPFv;AIRG3eU4QtJ>Fxz+2NR{m`+Pd4L?4fzVqlw58t-Cs=)QW>I?pRpNy+N7>y0R=A1@DkTn0n z7T?wYQnCWab5j{;R9Kl7M`hpT|74x&-uHE2B~%8ie5PhJl=4!W@93P3skT{nsvo0T zVDFW|VL5o4j?C3Ekh8a*jkz{oub9hK3aouT2gMrX#p>CZ{A4!^n_oS!`)LFI?55YY zyV$Nso$i)>`l~z}(Jd^)=GoNe0yyS(A3vkBY6Y!*lt&sScQ$UG>c&k|jjz6}zFCgZ z*iAm)!A%}MJQ>dp%jt01mjiM>8j-)=dGzu5&T}pi?NaZ0`fk5EB)~4*Zr5V|V_u!) zb-&o6#(C&I_Y3z*gG*@cx4b}i#^X^syT}>Uy!wg#w)xvU^qPI<378#1>-z06+H^b^ z*A3p;VCQi_0(@zC{ns{`@(DtH*$YLHzLXq%+Akgq&$S_3^!{1fv2F;>8nAwVtkW(G z4gX_$+wi=F_`dTK0+|GHKJUfJOtsIdM6#u}@oku=Ww*#tPCv-D#gZEMS4@O)$* zGh{zsS*980ateZdr3SClh7XU)Go9xE=JKka*`f^Ifcfud)wAn4e|Nc5Ux*n4w!c)D zy7-wsZL3WDi+$(heA-SB=GmT4lj09~J!impJ%{iE6f^F2gwE4kKDUgyBx-fsfdIAU zy|JA8{NNlkuQ&t7zu<#>zYc!WT_iqp2L-Nx;RB8@7)~g1csd^4D`|6lHaMhLCMXfe zgY&eQr6y%+P?3P1f1|vy zOz+6>2SR+_#VPj32Yr__=REtxQnP){6tMf*#lkA**)7d=+-1Ep`yb{87`%IQIy9I95~+8NGaD` z_j7JS$JexoI$-k^G^tV_OEug_7b$>;viheW!NummMr{UDsV!{~Wm9tk0$7NHSvmy^i$;1oS88kAj*C!Pg7C5E&YB zG^c0;wwq?)qq*=s;is(r1<15U_ZZ9$Dz;RYgEX5ODHTQ8l7+n+VFzX#AtGA>DrNNt zWrv$hV_UyjnhZcB24DQpKp@K{UBc+8K%D8!w~dAdI#+aw&@n_?cUBU<_cWHLS5|)- zT4?2{EKJArjoekJ5cpUN;HeyJp>;=z@wPNx;IC;CJ~$5Fdk$Lo{VCvg&BZKG;HA|R z?49az;CfRdrHm_!vaoj}?7(Kjeq>QVg)T{fMO~1$)T0jW!y4p~^V&153UJD`8VLv} zlDB!T-QYGF2?BOm{cGWLnbRG=&aC&<&w9FpMD*!Sy#dSsOU+oI3hK!VP6+|M-T?MY zL0h~vC};+IFdWT{93czL?4Ua0cEPh7K<_D@fY~prf^%3*L#4#?f*Zepu6eFmL)P7L z!m-bLkBpl5h$Ym$6zeH#!1|l6oH;&Mdv-Y*&nj`RVac;vRzvTH{fvpmBYL3BU3@Ow zjRHOuOVmv*&M`{{tS4Gj-|>y_de>Lpsh!=*v@~MohzgHIu29gfL$J={9ZsR|j>dP2 z5k=~#7q4^55m@bYUV8qm*I$3}GjH}^di}GXdGp23ywHFCv!8kCP!05PHYtA|S#Y%h3(rx!hz}g*9Q6501~y(n9u9*M=;Ri$A5?Zzn@;r(`6U(|XinZ*^!YtOOW% z!Iy=bM2^WbaM2b;DQ#oa1gv~~Ru+@}@%`gv)X~L@B=rCrbTO!AV_BuNT?`VX*p+#P z%Bqy%n!WmkdqtWpk4%6UKvV`|tO{`J0w~7XR9N#DKmog~{unHPUhFWjF!luL1izdV zqk5J~bB-6z6yO$<(PQ;{KRy{3`)<1X;$$+Wyfh0Q$40b!5jkBInehqj7f*|Wa`v$A z6S{ToTJyC-4ga~8zCWKp&)^SC=*#CB5)vtnxL+X^mqRBn9iVEuEs1>tz9 zxoqHHR3){?f=kVa053KjQ^4xy-4gVUyY;x#syM2Pm|bw6CnCVidbWUF&I#c5E&GxH zuFJY`eghN3Z5Qn46JUmgF<|*Er{Sezq9gqfzYA_nMFf~%c#VZ;4PW-B*L|9%`#qlX z?S)Hv@t8T#^Y>3mmggKI5+hxavX>nAku_lZb$8}I?VqonU7F1$yq#wW*nERtaHFB| zoSj5lzLgGruI33C-JjhbpZl?UY7n1aPQy7SL6k2(;HW~st9{OzUofgUQa}$l^Gui3 z|0L6Tb|ovhBT3$8Y|ilOZOOF&o~}XOOUkZuPbPR<8qZjTL}y+Nep&rV;CG$QlkOju zlQaN^`v12$4g>%iX-mFx4;DU~ohq*1pVtW_;9rujf^W#cXP4o7#79~E6*;@(^Q3wi z)S9@?=v&99G?$z-tEu|Z(apu|JffmkIG;Nhjf>?R2vVnJY1`$QDSi(UbE`meqHPEwT@|nC(y;Bf_O1-g<+Ob|n=f zl45QHX6P(UM~q@b6os<-E`92yemYVzlw#jc*A&a@KdY6)-sRadZPvW==$W%@&WN6W1RV8B zE;7Nl4}~p&R@VY}s!TPoI4Ho|(s+jIqJgEsFRLE|b0RO3#?Fy7FuSf$#JmOOv`Pbm zq+!*I9Kz(}slFIk-cTs1upC1ZMxv0kwH|+W5Z4fxqnpBaHwpzBW%aj#_Y2cgGsQV? zK2jNQy(+*d%PRUJ#@bX^fvKjqN6{AnyR5zyJk;i>cu2!ucpf0qG#f|*0(|c@-(~D( z?KVuPc(4W*Xk2c-3k^e@8^QC7bS+GEGX98#Wq|HM-=%!v~PDA4F06p2!!hEYxwz=6_LC=yDBc##tYG-;t9 z^)9SpCt5#)**Zll?iIrkM_C+9=$P{Uc=9&waer{W8#NJmB34vA9|&;Wv(Y8X`pNL5 zq??JQ1cN-fHJ^hRN6!LZ__$Ab{z+=)Q90SY-sQ+SB1lHic3Kia_pnB2;xC?_&}~3> zFNE{3*KM3zIkywu^^*A0RATXyEi>nKNkGr#;n#uNwo6R&1@9@YfZb230_S|n2eY4#7Efyh zuHxrzyY`usY%^T8?Qh2lOzGHR9ett!x4eF_;a#kMgX?rQ98G(a3+m2zI-EUx=h3<^bqn)eTpyfi;Na#>s7d9;(T8bQ<}L*eK> z>%hP?kll|V{luto3D)TzBV3Cr{m*J zjk#yZg)~5_56+VcaT}Rj@Lkeo2pmaNRv+?KU$N1zrTw>_2EFrWHR-rg#0FnfKjj~W ze^ch}OmS0F4C)Rc>UA%}#*k9ok#4>^-aj3cpY#v?tp>JDr-xT4dALEA~IHO({3$ti1cMb@n-rHq1SjVp7-v zMZWn`of`C|I$83Y6h7zLIT|7sQ7|=h+qBb^ILiib`;}#yJzGU%1h13-T13)bmZohI zKj;INxNFW?*Da={MufM{PXxs*w8Cp5^~=Y@+4$zP}zxOq*nc^3Tzs!c;LJi84vvcB_^cTR_+ zeO}}ea};W3(qwZ4uHW= zohNT?4;`AC)0KO+%IaVFvO4vs&2D9Nke%gz+8uiJF38D8Cuf6!nTR7Qk zHjWil@=yGRhefYPBtVrg7(P1^N`3g;MvtafBd*c%?exfVy+gb8V1h~K5iF;qU zZ#GiSwe|{Z39f&lv+}oE=ttVW)scU#em*EO+t#sYbAR)bbh~wWe>gqtWd~Rk8^gOtINxk7=>?` zE|J_#-k&iMkfobH^OXlN^8SngZ3(Ww+SwW8{h6Zy{CD$bTyy0+7euUqw~;_*T16y{CCqoR~^{T>)*lUxF2>M_*%Fp8fW3&Ro#Vqg0s1Q zVxeKq#L>%t@3QQRuL9LvtUS-o*oLjcDr1EvpDWJ)y?-0M+2nj*1NgtAVI!& zJGhAZvifIoLxvZSb;OzuAf$VbbdR*8942+#kBT1*WqQ$g^|cx!^42~?P*A8zIr<&H z_5>Hy@HEFFx_jj_vKD6u87zpyU@x5kq)gBh-RLPoRZrX-eyw{IJ1xBQh!T+gKx~p3 z-WpfOp>7$ds3GfcmhYs;UFbd$-A}yVuQlz2H1e@VDx~J%l~Gh%jvNT~VH0Y6l5Ewb zb#iy>Qs?*ts(fZPp3r*?Voa3caF~r%6(ACk`$k+{N(riZHma(tIxX|FNI_+>T+>-6 zHFl88QSw!l)t4b`&FJ%YTs-Q~g|Mc5K9uP`|FnN5(mhBe<+;|Ea%v9V*YV9EUwbJb zP|$Y`MwG+D6lu`vLPx-;9kP}Q(uzyVt^!MGi6Kbc>c%)m6!)r&e z-P89B4#)I_Zoj_hRFlXy9O{f@{y@HZlQM|@p~2~7Qj*tSxLTg!m`&Y_XhMb0NmzMZ zVV^D$P&mGoXgJ%-F7=;X*vnD}CO&#HDepO{ivhiiIPH(d1NXi}cbz|#=fEZn)qmK* z49BO_#kH=+hS=6(qEO}2lx<}3+O#i1yQ3`afgV)!302Uajr-G+axgp?4*Kr>ZF+aQ zyN=zdXr`6t)By~A$N^WygTu}@bI7q6AK{cQh{l7(tN>dMvhYGHv}daq3ys^|9gla_^Rp3}ZS z6)Js}o>xALL8%E>Y*0WEDtqQWUFloAMb(5Wu1gd2Rh8Ahgc(HU(vZ7Op1m~W3-zqw zsps~K6FS%{pSwr*Ova;I*-d=D^*xpORyfGhpU!Z9h1Lr9Zp~+%FJ(s7 zJ809-YAI*;-1@g)XtV$c6kRG# z%C>`o4jO_wxg9!mG0QYlsA0aoAn0+9EwxzoI0^JxNpU&4mZ@9;ULX8YkBwN)Pq=x(GR(9RAo-dp0 z>n}bWC=IR^^p!1>%cP(W*VH)jz6&gOparI+5E%eQIoga{nZwRcxjyS)>H&E@5n zyRgYgqT&{In84?g^ZF&%6&S_yy1HXJ5S!C$FYnVP6{V?|t5l3M6v8z&aGZ}cjIbK@ zVx(aNW^;b|l{emebuQPYjvXd&JXgnDSG$fKh|TGf>c?yeSJYcruX)Q11+fG`m4nQUQ5rPV4FTE zpaa#pJ}ICzhG_bv0N2iahjFcq`)Fp`m3uuoZR0*SKNa0~n9Q|tAI;~wa<8X!ZQSQ( zb+=wU9nFTHEQ|f;X0%^7qwU|hKEbXhp#!$`k$GO&;3M=0K0b;1UoS<7tgEcPnS;!$ zFGHw69Z2p&1p?7&`PEY=elemrM1NAor(hO<-p#uCMnKHztszZ51EXu3B1+vA7|`_d z@xmr<(-ARV*aS}W^}`($HKx70BTC@zw){**DF7|VHQKK`%BiTqAr;|3*%Y}QzmP|h zlVIcr$_T4b3l5YKSfr48v+b7K)nz+K{C9-kRD)e40^@@jCJ0^RCV%ol9Kq}&)LjY+ zIH9AshlwdgfPP&J^shVpeW6nmpreXNe*viG9aW6hQ9EC-TjAO(&%OHbPRwWR$58;@ zJJ}D{8(dM=ejJ$1c{lsPYO?mj)dYhCY3A7v*U-g&d>wAN3-qZ4UVmfR7I^&)pxLnn zsNOCu@cJ9ewScasr3I*(v$g=$(5(er9Z3s3`B`zkotgocGO9ZUGSC+J&_fHgX%L)d zTd;Pkd@v}n&94Stn+kDgGb;?FLBdRuD_oh& zja)cxY&1nZA^@D{H#QKd;TtzL5Xx?kr-IVj+QW%9zb_J0rjI;1XOwgFRTs(HFxSxZ zkh1z|2oCG=b}!|uIvvn!16|(k6<9r``QDf6JISx|1={Wp%GSil0NP#>t)W61sHPS$ zjhCaDb?$<8o?O$OAElGe#qn)(`a;O!%xm{L%Vlf2vKAJL*=#brb2=+YX`enDmnJ`; z%1`rU+PQD!c4V_HNkpCmJ%B-1iX9KY8fRAGBEL8}4?VtkHa$8l#R;(as&@_Z-x^Jq1WGLWRjiqrXpM$E^3i%vcNzc z2u*KqQXsx-;ZBwEYADlK4JoMTSubfhDv!vE^hZPELFL-08#zduDoU#PUdyM6L1j|@ z)zhMz_3^P>Mj+atq1_>E+8?N8p(iGd=Wi@2csi4#&t#y2n*W1hG|l>#MjNE1HvX9k zkpC{v|J`CnuYgf&oSe@3_lnUleZ0kzMMa4>Jk%VgB%$JuLd6sjzi8bmJTO-`QibZD zs;i%rw8l-}jJAa3eY;G<-Su>!itqMSkX)l;Q1<=%g57n?L0XyW44P1N-Ia&a;W5p% zj|bf>r>!eDq@bc&#<$DKaXI23Q}-^f6Sb4`Xp_;P302?p>K##Jc&ED5g{Q<`91$R1 zTj!YG0J&dKu&z9b?cOHoR9l;MnpC0sy8Wg!1@vzOcdE0k{TfnGQQcSVms+h((B@s> zWmVptrArg#;O+Wx(lcmLU7ASRjBBIVeBCr4TWuh;!t2&#Z3g0q0P&Z+WHhg$r2pl9 ze_Gz9VYBv~)Db94b~m&9Fime0Mc2*JO5L+lR(Ix2*~$k43LVK!*;J_>*H&KkZtE?6 zE9ONZ0axuB)LsT!Q~X%8NUepQOQczvKGUdbE|$F@{q~pdJ)}b}zl^M(x98m*?`JjD z1W?P89A(YNZ^TeW-BzJ3!TU&pkNc|wFE)*$CbLK~0o77uE>yKsXyj1S&2|)9k`*V3 zblx`(i<7c$5EXqN(KVp8JRK~|tg;a)V__ziE!BHTsu$?m&_JZ&gM7<8G?bPi3B#I$ z+;Fe%YM|m&RW{eIEnb*CJSktBjE~07SIlb*3tCIjsVxj5jWpS|FtBW?zLBJ=<>1pS zOOd`@bDo@LWzia5vp$5$+uVJNe^P3!ETl_Y-4Z~S)&;Z*UuQSIy-%h-szKt2PZ)0d#o}WLGIc1rI z8o|`S--(61l%E;TUOqaZ)ig~&%KaCm(c#W1R*}P4Sjr5c4pL??Z7H4geZCl-ic`&6 zp90ddbh5q%w_!hPeGRb9@iYEHb-&SjZVKN((Bj>8Bnd5<`~8g1r1+Qp=H2gv;|~aO zse2nO2TzaO?36a~Fm}TN&>H;Mz+V8SWjd{w=_30*n)K2#^fa5hpwyL-XnMM!i+Wkg zFya2NfK5;DOb3(UNq)N}u37s$v*v~*RQaKUA?+Ygbh6tNXB$H)1LyxhXI(>< zvS*;IZi35$bRZ#q%Dt*frxiLKNK~dB-HneIl$ql*gp-d&Wr}2+n5~V!(!;9(9ki6s z)|TKk!w>IxBeS{!d+53Lio3$#B*=w`2>%!+<@pH6z1XDN!n#nm=#^LbWwo3#JO;HU#&Y}5^@D1l3*z17q3HM7ymc4};53@R zSZ)9cwBj20boHES@U))~iVY{U&!%x)R3#806kl zLeBTyO1>-cHqMz4(0;tUS0AJ0_3lsJsYCIGYQ|_B9iV(`G%oz1Q=YP;H5@b@tE~b@ z4lD4A>+cWUb-!-SijiNac|{KDd3I9XrNclvP4gY2YbU@MI;<-q3H5zA6o$7MyH<(e z?U^bARjBpxDXjpy*3;Hbjt)@1?Y{Kym&3b<^%OsE5W&=NphQVDJ*era=^^EsyE`dP z4!cUy=13Z9Q7tY+Z6UL3ttC){T0TH?F7FGvih|LBsIou|>bNzVxP#1v6xP;*6gjBp z2`U)+D2@(I-{!!W5YX=NCpx6;>H^vZZ=nS>T)WqmG)}*;1?~aO8?W*d=GAgm%$>&I zq!g$+d{4KmcHs4eD;`cK&kRc+N-`r4);@a7!>MzB3rx?xo*op({r&O$ZGxs68alWK zM0*kqK(D3=I{Mzh_=pzj{-C{o=OOnv?hHn-l)*LCdfSZ(EwvgI01MyE>v!6yAj6=C zEAnZy?CRBNxB=i7^NKiB{Xxo`c|r@Y)BMBd22GM#A05eZQ)#*(3)Ovy0v^i!hqRS6 z^S-mQj;*Z`RiB~@6@Hk*m+A87;x$^k6{QUILeHaeX$k(i_c23+Jl=cE0zNPlEen4iuV{Q@ZRof5Qm$F{gW36?hiP>d*2a zclA}jN_+x**Ui*-Nn$J7*pmcV{gC1E$;5}Xfoos(l1sQb=_{&P4YZIX%TP_y0?7G2 zu{vmy&$7EI?iIt4i%U5NzFe$r?Eu^OYN;0({NlkehXMELg{LD)E!gB5tV?q~x`hK$ zp^E_T!fF=|fa$Um(^}bQ6W|NyD1hb$gn6DXbTqx-Y^=H~3LSJE)dh@vAu2pe(n;0t zq&JfxynH6+toniB7k$XIs`G5R`%pLblG;2oWpy2VoiR_7ZcO#8Nv&=Deq zGQH_?UAeg9ImvugZPW%Tq{XPGmyiZcXO2@l5o-1V440~SOj(F_AnS|1uMUssZtZk@ z?3QfwJ86WQJ+c2*+6`A9Pg}ngvzOKny86UD3dEfCy+W7b?7J7`OxFxNeOi~$eW;_Q z`1;;u_;R%aZ?|8*_wW_k30laSRh+qLghCQ(`Yt;tpp`&lCu*wLieX#rN6QE0puSzz zLHWXeQ@uLzYOh{Z1k!(y^!ysF1zw^P(}i@c4%jm_H)Ns4@8wB|%Uj$@;)Y5iwK1$g z=hPzk)t9Tzb5T~m&(B3q;RFf}-NV*reRQ2qn4kc(Pk#DUUiLrlkKTE^elVgy*xlhV z?s_!%!6rfJ$!G19zHrR!DqO1kk()9vcud=r4OwZ@Q*LN+ZE~pq7^Udhf zCZ7Xe3+hYP3v4}4+nidN3pHZcdgh5omv-+()d4S0Qz5Ban-grQ7!^=g$Bkmu)q$F? zsI2}Ih!ls%AOd-JR!A9e>g+DNzP0e206?_6x=F5u2pwm$`Dskz9uF0Dp-VK$lt4#G z6qm_$z-=5o4>Ik*nSph{_j)LxWHNM1Y`@&sPQ>K8shJ1XIW@<1fXvUlG@MLld~W{6 zke-0ZZU1UMNVUAnX4e}LgxbC*p2Tz_(TK}CJe_cCec%4XXgnFu-Z~z-B}hkE@$5${ zq6g$a(qy`3a}5LOnXd#oqlSbf3Qv->T zdpvfZ*7%KNyy-C?!Itpji`k3K0q-q!;2^FGbny5h;|iYSgOZsHP=31GXyWS+^C?`u zq*d7Zd~&fd14C+{l9~`mlH9hil`cF4Sum!YV)d*T*r_a;fbE#q(v+wMUg|Ne3^ z?&?BXY=X&vCOg`MuRrLq#U>as(qdWtT8JaO?WeJPx}D2yGb^Vq(L%F@daIfHcE!_QB^Yz3MGG<( zRSpck8Z+pcWC`{@wgh{wYGCfAnz^Nw=7#tMmFDXNc3!C2SyDxAezzbqiDq7*Q13pS zQq#JTw#`TVVsbY<7429FS^Gy9V9BT%wDg7nP^M))4lDXV`Wjm`|M3`WEBU0$N{jgE>d1pe0oxbWH3``(841aC{@ z1>PE5mOFe`^_JDk!0+l{d^{-90gO2QCgzxnf#(f{l5+iRit7}22XO<34d?H7_~E;| zc1P@q75y*oe%HIc^3L^&RlVs>aUS$(d1kWD>T5teiK6}w*qFCcG zps4HTytR08TLbO1P-iFAQ$@0vU+UUU!3dEr$UK*IzB(ySD4$W{VZ`KoG3aMQ zp|qNufxCmaL3>$~(=^KJlVC5a_h`v)WMUHDeKGQ`P+EC6aCZ=QKJS`FS#4rhzgG^d z5ZAyv7e~A|DDAwbxI3yk!tKDjqES}=81%j}8yc$<;+);8D+IpR0(i=`a;pj6mc}zU zj@)X4Usk_H_q!`c#R)s6e&HSjq01cgrhL?4F1ik5zi24*o6ghGHCTeT`VPz0 zfC!0S2YOti2%Z@wX0Zr-vty<%2W@U@q*S5b?(n>Wv#@s~Y(uRV9EI>5c_^!2;A4xt z3wnYk8kE}6UGS#so1~Ch!{q}@Bu=Q2#Sj&J8Qjwr-A8qApHo`EbgD%b$4*YcfU0&? z0W&13X}k>!>(!-zfy!g5K&S-uG?dm*Z3@X#E34O_@h@hZ{+BpPTnc=wHwdX5tOqYg zin$G#2Ji1f-W7$idQ)5dM(c?4t&U89@XQz0pYjb_PZR1sL0LB~6VcsN{du>WDb(BVu zJF;T#>~*=vmRXfXN?ToZb_;tq!Zuny>g+(Jto{=8#g&7$*|aMJ-q!+n%D8g-3Eq~* zGgyw?euH0DE800-j$FCzlvn`?q%`5rXxqIcwmZ3dpE6&j`*YNi+>;_WA$FvRUC3C} zFZO+?R%KEBWtcT=`Ny%R<57K+E*iqv4Ja6BkX=DO3qt4`D&Xyq@V$lavYLXMyEvuc#as~if!UP; zXX_0@+Ln4?PB6CtGceoq$9Q0FD3sNo!B(95OF7+I(E=&qcZ z{*e0*mjWm24MJ=GNinwp(_lX8KZ-(G-PW5a*Ag4Z4HG=Dnb2OSqWb-s@HTB=xRq&k zn}%Ck0|}Y`3rBuhz*AIW-{nr>*0M%^1p^x1RRz-2k;$l$UjYM^$5eq(F?1e{{0hla zE32<*1juDq(p4xDNu_@iH15X;J#k0ydJ;&$za(D;KWL%RPISy87^0Z(u6<*3WVJS>cT4t5bKd5c*S=ghxiqE& zt4)oRdIL2NuK@vjH^Mf=i00uyrL0~RBW7kU43F=zMk3G7D?%!Rx>p4_<(gflSAUE} zhcvzl!ZNsJdBb;lQmC%8tiHYW*v#n4XgV{;Am09Ug`U--`dRVQjOR|b?%gua6y5J<^@%!m+)f z&Apwy_c0-V~Q@)0rCrouABjC@4EE~{_#oL0WS45;&24dzeY zsZa#`r6Ax%9tSN%UOaFq2)W)Mq++VYcZ#_Un1-m);z3a;t2gQa$Voacmyu zFdqsAB-m92VqbYHRlq>yF;yT`44EP;RY;y%S-oDj$D?v{(3DbJ3=S!1vx&MKkS=B`V%z0Xk5E?s1crVd8E?0bjJJ)Eu|`P^ zKN=Y$Tpk%4T*FL^kx^)r)lUNNd;7G&J-qKy$htmnOTqMFKv3S5xKxZd>I%Fa!QXl@ z2GF|^mkK>YTHb~X-!pW}>Pyh)ulgX3!?K`wuo>-do5`DK70TPD7BKQ_K?u*04%D`( zg#~nPS`b1v$lT0{q763-+tV+r??cZ`Nw4i#47PqQ1Uo+5r7i~E_XgD8p5E`%t`)~$CT&$ z2nHmC2g;0kYA@q84<1UC`scu%t&S+pvPe^ZlL_(I>WiWB4TX}Li|Pml?hfKUpGMb3 z9YND5t8bAEH$0VCr^KHm+cZrpN8IxuF95**mV6Zhjohr-#}G)sza(D;-;g3&>BoC*%9} z7{S(}fk3uPxb(9l4KBEeXB4I88+L%itBLt}}2`_Ow<_J>9K;3`=kFLzua z@Ua%a(?(L;0}0-i#xwYiwg(z~y2vjslzR*h9k;p;9U2hi;Gsj8X4)niIy45*MRGmF&!^uY8btcS)&z%d(n@1jph)%R;bHC z(u+qq6rL?{DIje7wU&Q6(5i}ikOl(um0Wdfpsr99whJAXS0+!luS}jcRwgw{YTjyC z81TFU*yNQ-gKIQnf@v`-Mnjq(<6HO!0hL&ow^+4TcwZmHk74Nzn{;= zh~kslW>I`GpirQkxk<#vL}dWHa#R-STkbLryFviJkl9W0w4<%0m7IduP+cL?p3Y2l zGHoi0fNec`;M0(xj=R7GN-bk)kb$YpQ!cCb$k5je`M0|c`5F*7)7^#&moOYKXfnA?D92oUW{ zC<}GK%o&uJDb+Tn@bk37m1GGyfVD6-I$DrwA3BmHTwu3 z3Iqrt@NUrN`@d?c@;z=h_^aWuFt7L;G*u!m$-Li;a5fqoLw!7V2;W0}W%VD4qvVQL zXq9Cy1-YZTLTK-`0G@KHCgTa7TRw(IAOcs-PFge>Z}7|N6VNj+Oz)X(>pTBF^c1TC zoHDBpbqEM#+*DWwtI?rOz%Hu~fo9jJ#4WU~-o(R1U7pk(kW#MIAZlUn>M9A_;655e zfl68ZGO*v?l!i#UwnJC1`p#va4qSX-%kHgDn%IH_vfi3YK2-oGq4B+;4IAotwhgky zgFf#1X;5LSGJJhy^@l)z7s!mQ)@NI#GT?GmfK#EBt;SfJ3M;VMbgRf#19n;cHL%rn zxB7M21uS;i0|@}|%uDQmmNKq3g-rZQ^0lQEqD>*e5RLzJkYmG#&S&llvK|8jNU|M1 z3oFr%36DnJ@B%1M*bAS9g3%rv6&1es0*Xj;;-&Ee(Di{H*KkD@&F6UnVS{_pMfGE# zsEgTK5j@ayDTue;Af)ZA2Kp3p8!&_LjgdwJy`oT7-|IV66S{PX4_U|?(Y-`>1K%=O zCK$nq8b0X>R{!dRHpkc9dzr&oX->=8>;*v3-(5Elqwl)Vv4YbZ&?+LoCyii2>Kmj% zJS*<)%VRp5umoaO1VEaF(YEBP7+qwxss{=r;9rujf^W1>)B^>>( zI|%^rvn5}Jmq;enP67$|m*lJ92cDaL6t$CJh#YTtIlSdxaW+W{I(pOUcuYSF3YWGd zVuxkGdZI=3`!vxIbjhz}Wbz@0mW0Iuv%@s;@|6AkcAtBv;M30>Kay5^o#3_1V47s zmhs@Q|Mq=%2w_p(#gm@E9m1wO}YF-c^L#xzxG-;Tgj%qh$Cd!TzWZ7pnod|)nYij zCJY8Or=GGZ^^ia(MSdK-Q`kWT+~gWa)V-$L?6!m8_bJ^OSpPmfc}aJ_T(Ai#J~wdr z2O{SnN_D?g&s%w1ly=RL596W+6mox7liRMdnKzC&T3)acG?0+_A+R}mHbI-3W&S)m zA(*FC+t+0*lU9!$4i8D*st_J%UBfb=6)dHhIkEkR?-a|g#qc!CY71oDspl^H!+SLH zSfcU(0#Lx+9ux_4k)Y}p4S)lst577Af;f$s(JdN46DfZb#*CHROqb_0t`Im`3*f0I zP;;6DZ%gADj7M{t2EVNSQ<#J8)vkUZAu?9OaL0%NK@J&RkW4C*+PAmqmDTUi9qp>i zmsq&5YR&-925td+HjC;m7-Q%)!(&Qpdqm-tmfSoa5!()sAo$g!Sj;IhOg1I#fi}g* zvlNYX=BxtYd+3J|<+A#5X!K3m-=kg0+{}gzuK@vhcbe}RLD^Wmpbae0xZHdf8bO4n z?{SNU?`|`(X4%uCa78_y1g+J^Qjd!Eu?BlDQFDyo$rsfLsO%D%E3Nrx?UP@q^QRwFrwKY0yC2te(6R4CMf&KioG8!3Eui*_xGDD(y>)Gg(@POn*^IRsJY zWr;?sw*{toP5Nzt8UTc*#hgM*9gN-8AfKtL855d}4sM)xI~#^tDbq7mA;Y5%w{MYPK5F=(6M9rw$w-Z4Oeguy$8Vo`f! z@`iT|C_pjv^H3}l4Y4!cF`#ltorYE8+Yfk5O-x-D>c8mWw@==`l`;O?mE>^{YPGpG+} zl+}l|D_tK>Y4jS|VHLHj^8h0H&w`6tqlLtX;%_Y3d9$W22jMq0QtDaMW{rit8({}I z8=n$w)&P~V`WspSkGsWQ`C#C3Rg914Eb{!)I)fkz`rojF$>e|@i!-(4*QE6f!U2J* zE+y!xzElU(&_L&kE)lCUG#7O+jpgZ;)$gq3YmRX?4#@(>cPE9pNy3{^0YbQXcH-_c zgwMiK)DhHXQ~(7Ed*QQCFocRWqXLRZ^k0cdGgIqdJ*7mvnLMA|B?JIC*^;lqNF<6H z{RI;6FUeQIHw1}Bf58wr{-hk84Qc&QK@_5n}l$4b1S2-ji2;kBL zM7YB5!`j7gLwu)%QuiqZsf<2!R&&oK+UawS&)LHhd&Bz)7q-w5-&bB#uYoyV7>v#9 z$Q-voWuOiUdJbt4xM>@os^S)6tWAX#w9{ZlaSH*vto|-=xb&`C7Y&@{^Gi=Ow2d%=}@Syv}A<4(@X zj%G}(5Cc{e@Xg?Qei92##4t#8Cq*M;okuB`q2-~oOsQ&_$vigf4!7BCcwhrivf&UGK zlCrNlpnBAgxzT`>vahsX1A^?%dunV$fJpm5 zrL6t}N^ml!6}&zFWeMtX;9*lEwMt-N??%}3B>*avhXDFBUF4n=_sWrbpTJI3%^C$L zkY*2xq-RDmK%Q0bH%jZT>H|twp-3nh@Lg<;fDq7 zwjAFzg9n(M7!cHPB`y_{%A0760rYOfr9#h8R%D_vrl(8KpMcliJs6)(hIC9@9uL~0 zr4bBxyo_bSVI;AN4ncUJbq&jemLY8v9fEiw>wA57tQW3yEa!rtJ1txdSWmR5z6O1K zeK4L(2IKO8d5zYWO@aP_xA1VKV~{Tt1lrl6H-3gx@FTZ@mm6P=6`|B-9O+@Qd={dwVTq_22of;?3te znS`;OVd;klARF8ZP*nfKE8mlT&Y;_;!;bnHiN4Qz!#j-GXt1Z`7qWU|al+|Igg%!Ch9_W2B2(+P4Qg@{WdINU{aSc^O1HGnER^I@;ukDuy1-)ow zwI{EX>T=+oQi3)}Df?=z2iRrx%fZ?2gh4g;;viE3DBz=+W&{E$H)@TOr*svHTC6Nu z;{clHt*pKYG~7r@mrKow5K8HwGExQt-K0z?HBxFyh5_ZIY$%r1uYDO3qt4`iiolwTG-O+zaI3lai^Rdk55OV zq1Ch4?FR_pa65b!wjyzr+Yg{XVK00Z3Wi{j+Ycxr%~LRl`6Xwa(?6sFi+o+P^ZA$)k^BFy`)+fLzkW2nR~B@@#Ka?+dB_t0 z;qCWM=@6fC4l1;?!>S=qAOWB9@gTk-Q#9lWhRE`1u}EfUWmddxx*uLXyF#dcEr6%I ztL1Zox25q6o}=Y+gI`wvhb*6&-_2q+Dhqn9$Ic+jJTxG{`%d#+EF!WnwpH&l8d#ul zx%nkUI*xNO3*wvifORm~#8kliH)xqhs1>&Acz|*A!J#8vw zyc!zlT+t;h(nZFru|&Q;wAt>-sf*wrAK&fgCLBC`A{g*?8OwybsQuLTA;JT#Ygi_< zjCPE+4-rpf{T#IAE>6!EUSMD zWZf3xIZ4^+Y9NsFk}i=}h+0(Ht%e3VS9FQcF(i!aR%1z9-T}M4I2)hz&4(^HT8K-5 zll2B6Z7>xrlw#67PN|A84d&U`hVMN^p{%Y0*Q@*OQyE_jd~Ya}lyNncF>rSfH?Y|3 zU`10IO{1*#W8QNEIFEDtJif=g2b4LyJ2=24-ZgF)-WwY9+#U3Wy*ra}u|IHAd)|LF z7gnr`7!Y{65tp`DbhP-3F+E*cfWTB~^{^4zn(F#u;AumlwCdQv-9g;>I@UDG>i-2D zUpOgDm&)O-R0dqH3UJCY&wBh^F2>qaSO&AaED7Ix0h?Y21xt3B4JpjOe=r#z^`{iU zL`P@lGL`+f1q`yd^pQ5XR5-P9WMKi_n-)Zi#YG!O7PhBfR)5&HTvgA{56i*ZeY#OCqQt!WV&q++wDNA?QUFqztq|^f-ZhP~dKP%!q{Lr7nT+X`{9aA~ z0U358)Km_&7-?XE#^vUFi&;gBkp{=pqO*RGX@{PMpB3b+vN1U90s#uR+JhotEb2+> z^a8+v5?$JiS+Sce+Sdm(k@A0pfnn1LhYS_Qc*e6BMBMcv37BjYf>F&nKuN{qF$j z-#>hcX+~azb9fJ*0&XtWps5GplQ1t(gtO7$7%a2D4BvZ#TUL)lAKIXI_3lxkKRXW* z+gpGDj<>^S(Ocf$0w_?}3!jBTV7HmbMfMg@MB_gV($LcKgr427w9ccBF9t4XX&F#b z?WZFMjcI~tbPmfey@F5?2D0ih0@BqflDVqi)}q<8kA8FEIq7>{Bp=G zjA&hAH3O`Q02(96a??=&49Z&Gq8@Uq?@ zq(-YYDO1dCz%;mzHYpW_vbqhuZIh0qj{5HDS#z6==MD`B@W0c17ez)*qUH__EYP^z zd>0yqIMLjp!I74D24uSA4*lnxbFhXYINSEbWEkBXf4er)5+Ibua#AR;{4c*L5rvbbM;4tUl_eSH6E-s0wpM!@^LR7pADb zL%biWfKKFH!aLiu^V(hjKp9)|mHAJ{citQ1@sUpAeFcDjNxlmH^XYL9?+=IX5goc# zV5w$|l< zwBxy`4;U;|o(ljJ5ZJAYDEje$+QFj07KmU#Vr5#|Ne|g=xk3P6n;xDX9E{8pYL>Gu z_ef>6E{4RtY^&HW<~ltE16A*;0+uxGZoEV3yPEG8TIDde5|Jc?BDhjkScFzmdEWXsHDp=Sq`f(pt1 zUX!HFYe%x+By>4~JgCQjLhgsfqSy^Q=KYT8n)ZuX!S~zVd2~7No*F3a47Ta`(_Qb~ zclYD0e#I+L4dnT&$GS^YQeU6UQs523`LK2uB; zU2h%Idxkm9@yKVu0VPngg^a7RG0e6gnoC?Ie}idZ{&epoyM z7KmLI0QVqGmLqni2_z7DOo~riDY1h{L4nl8EFZi*$)$j>$)EanhIZmRo=uN#t&byu!hdW#X3559Ry|zxvj+tnL{s`#mO@J&HJS-6fJ$wO?9V%?^@6s*} z6cV5ug-7EVWh>9+H)R3<1q5zDQGa~krYNVjAK-(M3_K9sqQh^x2+mAd;}(xT3I>p$ zaFZJ8H*;-{9Yhub2y9lg@v^ZO276Z7vfncqz&W4nM2cnN7PMBOsu#Qy0EP4Q{i+BWVofX_VEk)vIN?J?d@t%@$AL*qVue&-I>|* z&e-HNAX$2|8V~@`!15XXxc23s&4`9h3O^OKn^?^3U)40ClB{y;;MGIm?@~jQF_A zl;aX1`#BlS;ai@=&pKIL@r1qw2l%6B zl+@F0k(c8MfB*m*FY;;cnOnnRA}sO+2+)^*Ad@vC4`k{ml`UrcW{}@4*Ra5o+IYxH z6>U5)91!XL`Z^1+=p$Cr>D;r<;jvP)(P{u-&LzP(%fr%jt(W*23XllqD;hxCR12&-NTBTg9$hd9ZC|A8qE{JOqQ<&--z( zS|`iC_*|1&^l9?YBK3-F!B?_t^eY_~bnGn*SWqx;dO2Uh`=z;4!m#NDkU)r4dNL^o zLwai`M~By~jwKBUWR`zmvDVU6R}EkKpJRePcFzC?zP{d1lGj|H?X~(E`C>N5ET6S- zDG1g5J!g|Nbx_qmeNN7UmWy&yaKQK(Bd<1yW6BSN8CnDYPZ>Z%MA=XTp}3g>-={6YM$zSa&Y_B z9764r11xY?>q`56i>{(e4!lxprNdx9J4W=AJ< zugc6f!JQ1CfY)u>m8bWN`5e-`C(RQ?4Fu>b_l}Aas~tJ2%@qRp>T@n0=~a5NAlcw& zPZEj&YyCApvoP`aXh8vZ%(B{r{pvbw(hOg6Hv7(_ZJM@ZE-WyB9$FrAyD9E#xlg+( z`|cr0O9yPrDJaOcF`!!xOv|FcN(m5v*xNs)yOxxKrhazbF+u?}gTsQdEm*WT%C`*( z$ZvXbPDqOwM}0IPfJ%>g@|y&7fI-6%5$IFe9fq|i@rhU#0|?U|f=M{1|9TH0ivz?j zWDJ?ZnPWS?OdsZp#uMiR5^B8?73V}@7i+)*u{~b1)`pO4Ii7{bfIw!mw(R2Ayne$? z-+%z>CHX$Nd;hSUn4>;VR3bPaBK4EFmci)y2?S90YPw#&3<1_a3YH>m*&#I7X(ISb(vJQErSh9zGsZ?NPGkU)qRqDsgdUtu8{ z!Fpn4b;q$tmTTptp?Qd2}^D6ab(e5>{NIZ_8Z$9V{vY?YWy!Q>CEB=PU^@<(xjTVRO@BPuK<=yhmqeX!v44+2YjZ53={;ct}(*fb5g8Kj@!~@7qH07*}I65THxl6d__JG}d)H7(n)E z+#mF3R6-BjPt6g=PxM`?c?Ae$E{6K;H=!TD9@5F2c!+324{b4 zPVM||X?aXfP7?$mZh6G4L~IWV29Ph3A=t@mSrJ?c2&?z#7NypG)dg;I`R($4fBNv~s3c<^)GyLn&BCdP=HU5C%If>|bl`k; zI*aNjV1R4ebRt=3SZmpIVgNmuQF_Fq;%G$qO-pks&e~KkpiO#nq6L-hGC%<0HchtO zWH4JTyEzRc3VvTbm7BZxqD4nZ$%km6=YmFC7GD6!swt`i(0JQqEUYG5Cu0qi*8K)w zX3c4y)fXT@eM?=$JyMnJ-90b_HT$fD1LZ4a4%?|p3pr`bG+dg^b9-@ z?Up#8W_W8<9NlTDm91XEKuv@^p*u8LmTTky1IT;s5w;_GrDf7Wfd|E5wgWaC_UXz;}#)J2XAv1H*9i%S7vt(ay}cr>od0cn%B&a-&Dlh}X&>c#BlA2Z0M zfUwD*`lF%!_!-yLfB@=+@}b$I{9OGZ&SADVf&KpIB=fG49|l~Kdk+IOZ93#TlvuzX z`;S`r4Rwmk;eZA{%pE4oEBX(VUEO1Gqu}-*8{r z8z4X+BF(t+=EW@+AOLZNW@mW|afJ!^sik(7hrmw(eA|6#J8k2Mhz0`mi`mqM+@HA= z5H|T!R)O4A8W2F;`V8&;m-}zjk4z*-o$Rg=#^aaOUx2-(wp3yJb3MEbDUVs#@Jkf7ZglLvOcR0hE7^r25r`k99Aw_|DmKzlOWB@aR3HOFR` z<|HC{6d>ITaI^*6Ty1A{n8f)YxD5%&KOvU^oZ0YDI&En;KF!Ty0O7s6C)A%QaQj{{ z9Jv5QtL=Dx6$1j9n};+ra_bY9S=$={rKXq+a}@bdxCIA@?@+3${($%#jOl>EVvubf zpn$--DCn3Xao%8IM|iXg8B!A+u*SHV#DPqRCg>? z0|J@tc_es1(?EcJsV+G^9*|45r)GTA9>D<-7u@Ijj3q-D>-|up$C16+m{#j^oH*+s z288J0RuTXcZ!U_Qjrb`i@<^8rPKNSj$12&10tI*__6K< zZjWSI!LA5E0Q=%=lQE^QE++{h`ynayIAvAI#tKKEo_PagJM4?F`qETlEcJ6PEUXtm zf$zQWStvZ8=I-MtgYZ43R95eow7e|MQu_kC@uos56NgWDnG`Tc^_VJXk&E4XBbP#w zcKT^)C*EhPchAfPemN@LCfj|A(SPUBmHdI4hSPoiLUG3&#(17YWgy>5F|ad<^X%Rg z0{BJu#XL{)`vI;L5H1w^=9hYTK0pIshss z=E(=o!4V8dJSJtMlBRLf!{LERhDZAp6i97KxjiuR5~l$H)GP9RLPwr0Y_PX6V1Zar z=>wY)P$|Ix^2(sJml$k-t`NX4WI7x7hPba$x@fzrdD?MLqf792Z)bLmd9$J}2ZmPj z*F<I?R#|8&i+~@PrzRfw0md(_&`E>Y-B?4e5NKbd zFGsg5Ry^mf6cH#(jBON*z@>n&&7UZo>R#qy8lEd^AV6O^pcEh$e=LtHjKRmI7pTF< z=v^<|9hlIpS}FtDYj@o?v%USu)>M}R5TpV$F!vs~Tlr!@xiA`-`D(d! zs0@HtC|brGIFK_w*>cWjj=s067a33EO6EnmjZQ0F#CHz zha;%4}4*5)-Pw6V@DLZx_rO5@NnL@OAmHy|I| zyUzY3tge7y0NF9kHQPQ*n65zpHPqWS2nzXl5L`Q=(6Xab(|p-i)a6j)8hNvJBwr3l z>l`qCGRg;v2>_sNQvY;sJJJ4&We2R71_V&okITD!hF~H3jiDL<&^D-T@*R#1FF*j| zI)w=h-I+zUJ^=u<3lzCzVQ@F4G61IB-21m_Heexed)4KDw32gZ>~dTofN#31K<@g! z?FCuo4G5raOv)p=9FvKAVci7?K%^I)PVGL&-h@j5fv(oxHQhSP4(E(Q98K>KJd2viCPbQ}Ixs|$W7 z!rymT=4`*H{)S)rds63dzp|*lL3R^(pJd6)ftP$pg1TFnZk6zg&To}yXi)YQUBZn- zbi$@clS`gAinM%DFtXHiu;aDTb`>P7V}z=LDh>YCj5U7=^asQynK(znco>Y|##Ic(dm z8ackUWD3@IbtD5aAxg7qTv7*lEU3-q!R(5rBhUu0oMe3d2i7jYBxX_a2~$y8f`ZS%1hx zOQ|!Z8gV&U6k;lwI%Eo5aHl=otb>uh7SsBKJkG)ukeK>2M9hebcst!?gemGScB%C}^M7(+Fo6f@Cjj)Y|Vx5HVJ)lxne@yI> znc1BljmLDmdUT7No4wn|r!@!$@?6F;QE_CEeAw>ALU^Ec4azk&e0UU_YhB7 z?B5YvWLZ~dr-Qfc&1N3gd@=B|p-|GM;(c~6lYzT~xPjM31`de`-+P)ySv?Q!boG$Z z6S^b>cglTw@$7E4wOG#q~~?zL(N! z93DFjSm5ir0U#=lOq2r+y?h1|P<_$>5UN4O#z1*N9=`VsWKX@U{w4I+wPL>-Q#_m{ zJ&z1^Iq!1K{OXCH$8l&R* zLHN$@LHPZne*CRiS1TvM!{Q@o1ZGA3BfHpA_bsc+7bNA|$qC>9Ms&XpRc)w?>4%x zp{!m(`N)w??zlI^bB#Mkt4>G zmiu9l`&#{u4c$wk)E4gXtNl~^AdJ0?2@M?6TMhhpjzKVOW94N`G@#rwL0S|Nc^MO3 zwDMW#wVSlJO7n>E=xMXdvj1*CfXkicyRa6uJzJ5uR;dPPP;x%`E;Nkx=2cVpPEJ&C zM5Z5s@nrX;n9S(G>b_dyMPo2~H3UPxuuOQ1m zHWy$#yK;rV&sqRayQZ35C3ssJ&)_{89UJ_zdJFp5Zk^_kZnN|=sX3Syf`JT|u}m}? zwUDw&ga=yJuuNzf5=J(Oc+xh%31p>oI}iG&$Ih$VGQA3~{xuNrc1f2AXOWa@^{=6U z4(02N*r2vIB#c)78cXE+L6C2c@2?%vLuK?lPwNO810sKMX+~Dn=VAS*%xdM8*+uqP*Wd#UP)?b79%DTJxmh%;S_9g%z z)Rue|aU#{Qg85rdAOYXqV{WRodkpu!pr(jUS$zcMa3j+J#(C2A6N;uS!FLY*vF zs6YvV^jY(f>zd zcl(P~5pm8MHDE!K>jr@6HL^XmH)|jP)h7)Ap=wAT?adm<(q`YR9VZR0lnTzxXz3yt zrTLv$THpz74Cu)f)ey#u_i%@P<)0gCjtp2eE&rg$M7%%zv0iuAt_ zIx;O&$s!(5e25u}QZG{l1h}JRs(jA~3d>Z11sb$WmG43$h|mlt$ud=NM5c+JPF- zVA`v1k6d&v6O7y)pZxk_;A2Cfq@7cp{2I7Bh->iAdI;ZpnnqdO^1S;w@jA_Tvw0xd zy9j`1zo^~^%}MwB>}Yjf#=1ffdo6&cLaSwLg14pdo=>l2vo{OhdkubBy$t;B+;K1Z z(H3tu9VriZ00k24L6O){WQS_n0N_CBDijH&AVkwGqiF-6d5UHAOLWh?a!k2z+>-!w zLRd~t#x!>|uVOHp2COGqRR5%QVNFB|-PxL$4vd@I6^e+z@t0F9%31(#ZSDkbOXC?D ziJH5?FRQhBEav(*C|BG*WhWb$JoBU|K#0)4O8hocSa&JgT0<%Y00bv{RcNX3YV;LI zz^CV_5#LZkH2MmLr&CrxA=5LKg{0q!2I5cpmT z;3?P28zy*L8qeT3>K+Y#S^XUuxY#N#9!xS55)K35Qs8*KK}cCvVIV2yHeeb|M`0j} zLRozZv`pD(DAnfh;9*M$2vdvTK$6FzLh-+mC+DLSKZlGEfZFw_P^cMl@`5FN??s57 zYFWMNC9b%cF4azo#4accka?Sv1&-i6v7%Z9^{vnbiFt9Djnox_XlnsHZE z@zoGskhdAtA|q|^Y2QMIY?j`I-5*l|1gl^1iDg|5TyJWmlyP=Ob+dZvfV~@G8|+6X zmcRo|I-r~F+#65s(9NVddldi${9J{i7UPPh3V`M*metRJb}v4lxE1p%D!TwK1zy%0 zgjBD}1*DkUfNAJ7asi4$S$!Hbx>B?y8E}Qb^I8B;Syncj;B9F(=fvqb_FNU#S*VgZq}QqxWV2TE6=NGKV?MYaTJo?==30caJM8f!e^ z0E+Ui+W_ikT8S5$7BFyn!-5coBhmRhz;|d13+UdoAcU@=h$xEG!WMn}8Su30lqzjN zD_wK)&5J7m0RFb*tMC-bswR&D3HX=ftKb_lMUzLt5IO!$XxEK9!(+;FNT$maqa`j+ z2?GRhvK>APE0HMN<9)LQP@u3EJ_`jy7`FTHy%$hKns>nCt;?lEOBiky0RT?6n_a5E-Gts)pA$9wAQynaT1uQFFPJfo*Fk5p9u4+!sWbengNdGL3I zz%-4$HF&GzOz^feo*`)DI2-)3`e(rJ#&P*zRvcuKxUlI32;h7>d=`C2?WIgFfC2@2 z-%nRf3NQqTOfR5#N@exG!!SUPjk!Y$%kX$@_=-G zO{1)C)GhJo-6zFx^3J2DX^uv(mfHE=)Vm5jef{*&ZI5-+h2l#h*kaUkf703`JjMV> z^>snEbIMNDa%a^Qg1#C(T_~Wyu;4K)pzBA=_ecU0jL?4*r9dQ8NOU0>YNN zKSz6TIX&l38T*%R+N0FtFYr zr0z^DA5u)0l)Y|B!Ze&&w0uw$%IY_JU*^}-vMo5v&u8kD^sLU5S5$u;W_HX=mjv;Y zt=PZW3`)4-c$1PA_Z&s`Xe?=t{{r~hqU+i80CM)7FjlaF0j_pcfiM*fn!M`u^ECww zR31|WLd9sT=su)E63Ko$Oa$m9yMz3$g)0Ou)&h8HWopHj;8D~@U5#yH(Zr>}FRLwy zw(z?a!)bQv&$||NIdHwHky6Ihu7!oY8(|w-k9IA9N?FZ7<7;$q@R0JFSdN_~sLMfu zU5#X`FyaBIP%2=s=Zm9U-ZOSDTnhECHwdZzlzT}rw*k}8UF2RAg|a#Y&8<*E$owSR z6#~y|0X$_{*=mBfrSS}gBU^3o%j(!`*}KCXadz4Jt891xyn(xexJElilXy*|te%Dbv`R*hc~+5m_r=J<TmQz}-RI`Mhfy^gs#d{aU*5 zQrc;~cx*ADL9)k95E-+gkx$)!FwuZ=&jb<5h8m*#4<@>=fzpeEuSxgZGKXjOo*MxJ z=jooCkW1UXZO<*Ho9?+Ox`smL?YRZ|W%a8;A2jf1yC;uYbva1AsgY7a)wpY6??%{$ zIMJ8~RLbf-+8cj>wy*a4gHy_3La%vH#wqtIeP342)?mzmYOPpaSbC%$I+Tmus4Rl) zcwHeV$;EDX@Ki%;m`d_)(QzDw*zU2j?aLvUUf41@M$*rR4-~OXC>~N5fl#PuC!|`GvKSdEUk= zOPL7N(WgcA-dbSUD0-&rM$u7mJUpQoN&ggJy}vYfrwFk8R#6k7;vSuv(n4v!G?&J# z!UjZC|K_ixXqCN!E~5{I{csZ=WAIoYoJhS^kiRP74^wt?u*d zHx>aFz!%3TIo4|wSBxmMX_`sO>}POX3@AJF63hR`-J8W)a-`{D96{2IA8Z+hxHgL{ zb~n4Ldzxps^uAY+YSg;>0_>YK;<%@{S6OkE_RmJ;IK%I=``~Lrr zh(99!h+qMV#mQ>vpU&|C4pKn@53|z`blrxJ8Xr^Z?~v&s7PCC}uCQ>R;N&y)kI&D|3_-tosRqiP_TgdXKtEYW3 z=8u?HPeW3AWSM%o32n;xa&RUp1!SaSIcFu^b?v=?kFP+>1d#3iwf|yFzOGK+An{}J z_|(P^?KZ3s+|42qz;qIci(S`2rH_*cmAC4Np$t?bfCHlI+r zv+AUTg6NK9|I@R)*|Cq1{0a8U0kYhqveH2z53;w7z56s`shNF+40Iu5wHWhvGkrAq zK&+EM)-R9+H1~PDb*U7P@u6l5<6W4?vgk79>eGEm&;Bj9<%FJl^xvD#_lDi1So>Lf zFC{+PSz3FkGozO(XaA3MZLczi={G|CJQfu~#&-J_J8DN;hzDIfnW5eY9X!UoIi55oXyou8e-Ul@ww+h||H8Yv?Y&vx?xTdOiIVu-D+YYUHK;&t>58Rvz>gvtt`t2lj& z7FVkomj9>ZxXSZANv}|@nIAy!6|+n7ny#VX!AG97pvnuL1bp0c*O!d5w4O{*>Nh+I zWU0@)YkbyOT2E$CdO7>8dNGO%;)`^QsW^0sNvz0N2}N^h9xwfk{6f@xmdEH`w= z`BQ=ZN}b*uuahd#EzG|{M`iVk1hQIURayN4fUFkp`=|bky!hmrz5&Ghr~Yg8L}Gob9&bTkm~K{U zI_v0Pi{uj-l>%y!8U1oFGg@Mh8U0c)Gg?CUg1UX!=a%z~Dg{8jzu}%rE)e6oNzo_M z58eYbyiaByq3rsOv>n}zT(M(m{5>qTTA+Z+hTi=!eUx34CY^<{D%ZPpP0A@AwENvbA~{C`S^~F zkp?oWd*J+*&Rd`Cb)Lc1DwWl5>yXtlc9qp{?U2d%x%>?L)g^>HJg5yItf1N4pJW<^UBd1;Ex0^pwOz& zyxQFiUqF!=OpoL%>`eu>1u$maNxjbCvl+hM;Y%!xrkwq&;I68Huchhf5g82cas4|7 z;`*fAyAu(IIxUp(CH=cB!{dQ+PU`oO&LcVfF{v4@(axjTWA$)acL**azRoEKsieT? zi|XeVI=oqHIx34~^IyoI2*E}ToIZ8846To0##S~eDY8*NhqF;xB%7a0dy89ktgjIb zZ#6Q5*=l0WY?QOtrQA8vXTA)$6&SIj?7d=wO1 zQfk~v~%KGs1fJkdMS@VPSu|Di7YG5!ziJgy(v+1UDtX$tm_F)RYkx<-Tgmx z=xB_}VQTt`qdDyjQ!GTwv0{$iN(Zg;k@6-zJ5~Aja`cc<-!YRJ^=-L8JQDjPO1PbOKpwgpPD( zQF=N1YeEt;?zaT5iBHS3YEp);iP!15&r;0(Z|N-Y7NXWoTBeK=x3yZMZtbtLy3N3t zGB%W5wI`n>P;qy_a|;7`8u-O@wl z@uhTsawzi2WgP=f@qpW!b|XGdS}5$ICjko}tfw$z{&M_wOfkJ8`r22~b8IFOSq^|W ze}yx8ixUzf(uK*K!r0GOOE%5<+U;9>V&No%QXXl`&u0}z0+F+vz1yjioKP?voqgX$ zEQshVbtm~>$pN1mdvMei)w`>{Si8s!*5RVsg+N#WdfA+WVP8$ zR;4#&gJ+WoAlv4}z7s~@An`+!Jso58PW1Q=jri#dpZW?wf3`igQva zAS1imvSG@@0gBI%g#lzwJ^7?30kZFq>5)(O)OP4eabGTOJ~DyGR?hyRbSQ*-Cg&o4 zpSW!+Tdn9fE`S^EnXU%ls}+4+#$or&E~}jVnjEODNttxyLMCN8Eg;mBGM#|S+Vw`; z9DX@%sweoa!{2FArXfk~ek6x|E{Ul9@`vO$vCE7by4cCEw~HS&a(Pt89TfHZNaZeP zA4{aX&;EAk`uV(KTbvYOeo`K7ircro6}X6QPn#!yL_Yb^ z*wAGHFyGK;C4{-qlBBPAKB&+)D7pW0UcAoOm(O{oln>Hy_aAuDAsWuw4lmgbbuBR|Ll>FwR-Qy z*VcGft5QIH{T^oHb*tl1o!%SdMf833MCxC@A>tDPcU)uwkU{t7+Bx_>FTe5vQaw!0 z3wx+p3*1Q*p9TMN_Mn{P@Vrs6fe*<*!q%ak5`nBAHFBvTTyL0KL%Ygd&K?4!GQh&` zgmHVXgBmO+Nd{PG*T`C7bptG{5@djdF2TdYA7CL%DrbMwTtof!P(Ni`?rz`udZ2T{ z64z7N{}EPCdj-nTj2|C`aJA2u0)%5{BnB&>!&pu!9w}P4d>NUf{oW^-iM8l&gvxPA zuUp){Rg3*8wmKp&$nae)$y3*oT!JK}75bN}QPXq6zXP?zA5pWg~) zN#*Q2z$Pk;_#qiC>gu2K7W%itMjthDdGOk;Uk06)vo#=9A!GjL4--t;=IS9rO)z!y zwM6fkU|MCU38pT?L&jSFmlI4`Ryq4_ZM(edO&QW#%)SJj-c7YI~p^ zm9yu;WFH{55rN|mtK=>NLkBFCl;M9V=f2#YBICIqR^i{R^*M3i=gfQoI#(S+Is2Z( z%jfF#QJKT>Ps`P2LCd;zUw^ps=E=>O`J?;=B)Uw0<6Tqa($z`8G9EqItoG~ntU3u~ zeVpR|X+@fzoNTI?cYcrx3V4iOwP#uR6L`MH%r8YS6It1x4asgKg6vPuSG1r_SH5o7 z?3{Tc2|nU@(n4X6&4mmPP%#pT?B(o#ue(fcGQq?Bg6$3l5BEHEJ>36Iu+iYXZuUG~ z8FT(iq&KbfD{QZij*Tpi$|-*{xar9|KFs(MgUGwRnG>_+-N+ef!Ygb;*stCXt$x)1R5<$CIIZ`1H&a77bd$OT!{1(1J{}y>ip&G9l%R3nk)(yyX3taj>}7>09`+(er_-rW93gJg%ZA~ewHP8 zh*)bbDvPv}e+F#WMHJoE(h6`b``&an%LRPg38 zKoh+bZoEJ4`wr6QcWsz+D5e%V^tXJD=*KnO3pAg6d zfaIL~RRXc7819=)3HhIpzsmd`B9{9mb4VUv0(l-A;DJ^Y>%_4^3(NqhY|;Oq9*702~BTQa~2 zv1P%=q*|v1Nq`A$&WTp1U#W8;8?6qWtK&HzgPb1FR;x2g zC}+PRP|tWtac5jEm-BP1bLOHttbE25n6@~H9>PY<@V=HQ&3{gYQ z!^UTnP|g-0>+pvVg|Vu46J5wg6KAOa@i{Y}2e9n|sQl&Z|AOvP&jY$WJ$OMhx+m4# zz%0h)#8-UyKrym&0Kc!rSFR=;Lb?d@H5?E#YCY@Pu|BduLnB!5Y+D@vy5`~S7GFgf7q2Pif?16w?R zqQ+r+o}X`HnE4f2tpID*g5{L6o1laEt33n{dEtj_29~d7@Q^7%k59;7W&XoFWDZdd zEpGykhv^BVXQ!n%1f92^`a7U_)Xd~6gUfu?nB=I`9m_Xi`tm`*twW{-6C*n?xS*-v;PEa|9*Nnv=J$NL!>fsD^fexqedpl9qElBCQQ;F8A5L`=kQ&{c z2U%U=8M7Ik7RvaN{=G%%mg}bTh_cGre+s$}e<+#v6SShBALF(92-BUg`#D-s(D^(D zV7n74e>wY$h?lNW@=BktfUu7svxil3SKvMgFYv(jQ~!elV#S6& zB3_le6)#H#`Oca74&&AN=@HW!uMSptlnx)Vv&wXvP@|peBofE1KTDwskL%y1japV> z*tt#%Wqe8hF3a#Rvg};v5oMLLe=PODfj!u`zREo+{uNL>qBFRvFgz+Z=VOr51Kskd zj1tP(e=B<&j{3=?YImKkuNrUo{ZQM}${!HQS7<$Hfzbs|0x4iiNyh0#PbMh!8=eHR zR1bISN*PaPslUG=+dY>AopJU)T~wcO-U6nFWMWry#%M~3AlIWtE)Q~Rj8eJF*$>gu z=%J~l_XIb$H2xLpeMDz)@fw!q=6notdN5m-W|UCQ{t2LdjGp3NZ4Pbhn~8wK6XqAG ze#@wgjeRpUl=GzdMV8|sW^L@7xkP#8>@R`+kdWyK+-m2Yo$y@=nE>#dlfOzV7AM0m zmMJ0s6Y^J?-^0c7?`00j-!d5g3OF9o8C?1IxUp(CH=cB!$ZgN zQFIoqL2_V^rX?5gTT7mGPJjAwB~J zx~ot{LAz=&_AWemAIH2N^nAQlzmLo^%GqOpoob7nq; zOfTYEW30|!&i+H_RUW3xu+((K@|49KMtldIXeYU z?E&hCygnNDYS>4p{b7~d1#U>($#>4o=YecVT<0%mk3cJBE(g2WZrn09=_G)id6s5Y zmjQZ~by_Hcd6rfg9yZq4r1OZfXuJihf2i83MOw>6TlS;#lf8qi@1IY+OToe` zo-6?ELo%@o*6;%;5#)N*$mM}*`2i|-IlB&$Ra5(UdAy^mH5(R8`Pd-6ADt8sebxOg zM;mLj;*oK}-E{LnnZNFSmt}fL^Y~@;`^e2J$}VUB63F13Y&vZ#EJhkYc;5IRp;>f| z6&52gl=5ZcgDgc6(L;u{!eV5S%zg^Y9^scEt>-s+nO3Xk-iAy7XwJ!BB@~O0;cdv2 zkpBt!tIY4AVtE@fhve}MXirK*6ie-+!u?Mv4N3!Ol!jzxx1D)3WS62eWR&8e)u16& zS~+_GG(^Xes^(b{QCB3?%~oj~cl=h^;Y3C--}YQ^+vsP_?S%Fl=lE?#4<$&*1&zGA9!dN5maO{0Wz_J06s)#pgHS=}e} zIkwJKpCdE7JPgZ`J(pdI>T`@zJe(}caY`#^Pl4q;P%R4Yq8)F;>?6qZVU^q^Ve~mp zzH??i4{WQ?(fP~SUxD8L{*#Hf?Q%<}Z-Dk8nb-wuSh}6-Q6rZJs%7aacR9NsddJ7> zxqtIQJ1+@R0s1e(r-l~G*V%;o1j(VKufQi+l82iWH4oWDiRJ7^&@vt%3u~Uuv5$b{ zVU^rfiD5rZKGpz5HI&Z-+_E2?znuLo!24jerErJF{)c}B#I*S-Gq{kA{>RNpJIqE- z4`{3ZF-jtoYK_wD4pv~7X zb!+LoMKq+Bh5t<87ll7X2hpbUa?I|RAO`FK7<#Z^Qx!-4yT$q8)RsK5lD{T97f#_p zdJ)BcT7?gz{Hs(y&+v%O;A-74V>jnxkkg}M%Z!Z@%GnixT8QR?kfSLX^6b1y+L7>C2Ok&c8wleenb;MDF)rA-9yM}##9)mJDmO(_$R4OxomvaDya=H> zz4muOi0zR=WpMGDs&jHa201;LZPn=#%GtkVs_u#Xmd*|=%EfrKWLE7HH80FcCzbU# zWOv3z@C6Ex6HUWc4p)In0g8J}{me7E;@}uW|D}>b313t{%Mv_du{N(%7Ew|;d&6w- zj~Cl<{m@8*V7O&KDk+x##+30FckBI_-dZWnifZ1}UGRl6JE1J@?|`A*-vEa<3HkAIe!-ty3gMrdGJR~jrdOcH$8;l( zfBBX#T$+hwF@M)Y_#_*A#uUE1SkW`}1$)%TyD`rV$CFkT`fr=q&e1zI)wFqF<4xO0 zBMbTWK+6vn6f)=C!4TaE`zms(?nGs9b!~PhPR_@4RepWj-H9%toV{m`z>iRP?D%B8 z_X<($eANjg=?~28Ppvm>&@Sk?0`YVU^s~k>Mvh`Oca7JT21llXZUD^)Mx@E(addAiQ6% zSDPL6|I~oVo$)G-FSp7Yg?*W%Se`bU0DIojaP&m^J}Gg()R$Nm`!CF5Db_-Gj?D#f zL0~dj)Za6UdYoD6ggRz=J;=|TcXE(Q7W9!R(JzM)RuDwiU-Alj&K&g$fRbD zXTH|N5!(r6aepLYx@zB(TF`h;?;`n%;T^S1AhZ8flkij6WGAb|dS2dW9`blc-I7OE z@+33^J{j^ZLa51*T7}S)A+?-fwFGkrBumDed@`hRdfI|L1nLsX*?(q==8H7^g?W2+ zLMenFi6&4t?gxwIiGPMEguuRvoXQVS8Qd|(6oQlUF znu+Y!(Zngpsc2c?;0H0sRNq#Mh^EF)-3cpz^Rv?n=NM80~!L z%zPdh*xr`PPd9;^LiqI)>a>HsS#A%FIix`TW3z&0SO*X1N_rR?8h-U07~LN5z)j@BNBM`4qeNt1Y3p z7g{d~epiY2XH?F4c#5;FAbO_rP+fZF%8HhT@$v7|O5qFRF$tPZzAVOLZcgo}u_WzW zeeVEU%r`PB1vD4O^aLu+X8S<-b}ST8Bj6yZP**p+R8*ya=J|1PG#OXqS)9KRMecmD zqvxoO_PdgdqvCt^J4 zCi`D>p%4TL*t}V@SuH1IL;GcQEP{2SK-+g}{^bh(E}VCeR3#v}Dv+=Tj#D+jPJ+?^0NzIe-kPoeD{~AoZ+1~?I~u_M z;UWC}hMG6h!na48y7_G9Y*Uwp_`#cxt{J5Ix{&IYR>2Yt8l8GVRX>2c#9Zj{r~7hW zj+xKc!;^?bg%ty;mxOynZo_dg--^u9UrY$^FD2{6Qa6WK=eximR>^I?0B2xGXQ$(LjI>duGY=cu69vq z8UA7g%-WAf|V@nCQ!bB8>D9)F0pr9pvV~0H`n2P?yKmNsswT z5W!_0JJ}=WxMXM4x_L|&P!F5 zfaHq!nV()CSI4yexTR4pzI7;6U52)aRXrelO(5LwR>uU7Ef1}C>iwOTrG8xe){Evp z>tcXdJK(D&s8XDk>|VH`C1_O-2*sRaT9#{a6MC6kmpO^57cgDqTBW7F9vxleo`b9r zaEMWq1shOH?SZAsa8=g|cwQDL=|Sgs3$lmME*->_Y6d{h3qWikvWIxS+o93%JzK!? zp1`uF*h^Z-t^+37pf0vV;w7eft;=2THQ@lvS2dZ#yqRWQO|H#L zaoQznF~&ywQkVY8g9HGJ>E$s?##-KZUTyn0SzQ(}v2sB778hrI+=_PQ=fxz!9JmWe z!~h_LuX9Qbh=$Dg_M-;NF1}7(E8r2UEA-h8?XtlUah3XV)^=eBWnneqCu0BF&R>x9%^Xq6)Y-Yx@<0|TJG&)c$2qkNJ6 zM)30vJ);K*z!kGQnz~a+%68X5qN-hYGErGCU=p2m-4BlUYa01FbcYI9mwpf{2XtcY zNvh~Eq3JUBq#6N-7&P>nq}rw|B^I`z3qCaGV?s&G+uRDh0v-_DY z#-^$VXu^r*->8zwwf@aCazB{&7rK4`C+71Mh@HT%>N1~aH3J}F{EI@|AsXf9DHH2r z{8S_05Q9Jcs;0$#x~?vRKhzD_M3+i8ri;bK9^FJ2D_8XbCeZ--6;|U;+Dp*@RrLVv z1Kt4CH;POh%hN^u+hUjQ%nJn|U*eG2fi2_EZMVkIrL)i#11hoQvZAXvu5T!$1p-haeu--ZTXcB16TtJz$?095mZ(#*1JAapvc%eZf!=*fJR z)ZJx+!>S$diJr$w(MQ2uwutQN0ijqI)=Bt8UHddWWZ7k1xDf|n7Cn$k+ee;VdLUgf zpb~Q*{c)U5lwATynt=dn;Y)1F=|07(OPBp~Q8$1R-Q%WQP~XG@59a0agw77ktA&2B zHr#(!y?K}Ju>l3(6)V-Uxkcr`i zK6j6~QabK3ycjhDF5y%dUwcKtD2QF03O@)yDD$Mmktwl=R5u!y)X zv4GnHOqX#>R0?S77I<2}Kih3m)Tsqhm4HNyNL%_@tr74ezdhPuml4SY04U$!&i%If ztfZU#rzLp;{pXZj)`>j`0H<&`^+}H&QtaYz>WTrCaNWemv#RL1Gu34o2BsI z6pfE=_C(gH@6t5`E-|7@KZEX(VL?0b>a-Vxy389b5CBtbH?m9a`W;a2vfWtM3V6gk zn}6vOMxZ>PF7mQ!Z^zdyb|4i#CuBf$#|DGW0RswRm+sgF08$ha1WJ@5N}$UG!K@mP ziSC3x)6(9ikoN|58(+J0Cq~VHOE|j5SJu__@zc6Ex_0$|P+6Xo9Nm07-*?&V?rV7# z06?kq%UX`QXLC^f%9;U}*o-9sFKKQ{-U-{OiXSbM*2R&8x_#Jq7zBexkuN=T*a@3iH((RaB)`=}UR%jm&R6sLV%u&VSeNA? zKL|i8LMC`ZI;OIzO1jo~%X_pw+U~N)=*0k7#kk7T(T>*mi0rbgABgED(=OwxT|FQ) zq{(!iXo0%3G;IukRV;RKI%08}BI^5{RO+(W<#~5hUC%z}QorK5< zu30(2dVPDkKc=gx#&wGR$RcHC)eqoa5SPcY#j-wKb)=tXR0?Rm&#p+7-ZGbydDHQM zi~qiHC_uq19IAb8yeZe4*!rG4SRX4@R8-D>Pu^Jh0lR7NLgNjJJn&_7La&uq)Q@h} zWsB~$hIUGEhvJN%`u@q7Uvv8&-HP^-EUN7mMXM~jUg?_-J1fn|Qw2!%6?JQ#r+Ww} z3@+?*XVw8FG~C2&GwFCQxE{# z)zx}O(GZ`Nn`8jp6~zGAk8B)(^0n=5wH`~e^bV>4b!h#%>&5}uM*u?LD`!6um+@Yh z@xK1o8~b`T>hi6#5kG2Q(P6M#Uq5_fu1ak7_%Dv1m!+{@|9N(Hp9*a2^xf*I-*5AJ zWW^(YU7((;ZN0x+b3>6Z2DHr#4nS)d34TeV0EuZrTZ44T`5~Y2Kpp382eNIleW0un z0t3l@sJ?Bvg?ddtT*5Z$wmCyEYJm)3(=Eb6*6gwau@{>dd0Qx3C~^%Bz<(gYheW6z zsLQdFwwd{XvXq^0TmV_gn|}(4$vRM%gFA)1H8=qOzLNLN)UC2@6aRn&w6t$xP|_z7 zE|1Hc&S~O)=)B8;svKdrU8{VcECt&@2h#q9g1@gHK5AYGJ5ZN{yY1BRfwDAif(3v- zHUZ}_ZPzIc?oa_W#|F?plF(_1hb{1=Ht$!Rd0RYk39SM6>g28kUPJQ(Ur>1J$)-AV z{7zY8~ z17PL4(tN&tB`4kJp2BtIxB#+pUHPXR2A#rn)!+d9YekZ2nF{Q1*CoOS^co7_qo|!k z^DhO_UEK+XsL>!wJu&Fn$daJcXaMCKhDV(U<{zB9?^o_)f4BNfR191I_$vEwMB7mZ zZ>B!f*(MRIMgu5cKPHDiMYC5R`z#$PFo5xjbdnS4{Z`wi@&RRxBo+%{8b@6Tu@^$0 zXMRPxy?28QB^Hq3o2GA@3T2;R-oyh)UnBo2fsd_}-DlXTp#Z+umH(GYjD6a)0s|O7 zu2(2^x6~7>y|&tCS;4^u&_Ag^Gxv{fdZ5_;&3db(J;a20MA`m2rgtKu>itXb`%Dl%JBNM35ElZy;dJb zN(HWu-PKS4-z#TT=|Auntdcan3Bv)%t}wSfrQg!W>LeC{u$+Ac5r1_I-w)0^d+|bu z<-A-_aQF3!-k-nqwWfeSH?28ucwUEJzo?5lJZ&)Qrdfk~$j_ zS3yS$tA}L~20-;PLv`mZi-7=KmkOE?r|BGeNQ*E4s+Sq6XVbvy(GD317uTKFBH=^Ikw0%3eYA%&)*F#c- z0VMV6v^;s1&Zws8wVPHt4maBx24H(-TAk5DFKM7Pts?|L<0t^x%jKv0h9}RX&Az*T zz(D}6m&%R*&bw$--TiceU}3t^wpnyg{gGYi>n~)DCs~w=-#6HSX9FRY;V**juZC$O*^6oyF@yFPdj#WK-?Vx zE>~N6)s}ALOVf=s?SLPKC~<%kU#@5YAkhfby(i%yY+TD!%Mg8V5eUHbO0^|T`%h*> zH;C>YkU#;*UYbu9X-uqp|3MG{)1`U2P2~1>AJrKKKy`)vlCsu>)s+c2p3l(f3_bk%cCWzcif|87(iOD(J!=hKz?l+O?Kaz zQa}LT74>r>+4X3fQc@_v*9l=Yq3g`=f|XSR3P@35Ts9msjqXRfuTx2k1O+fMO>;S> zn#lChbd3ZMDkf_G;g&^bBLQ*e4qKyL;$043OWeG{w0qun8D|?J|FSaXt6H zt{2@rx_jjk2cWw`Zs(ZYMx9Er-P?vn0thcJ%M*(9Zg~G_K>0}=fbKQwY*IRS-A6eE z1n^y6ueR0QAU%l#(7m*7cvL4^t=+v(f&iFar4{jKX-PVb*V4V8t6>1POX+5W-Df!r z1E9LHDJRu>vm#d|jnKOHAsPuFq)6fgUH3+h5v2jxy_G5;fbZqaYM*NNy!*_8g8*EY zw$;fUkI-Nk0M$#hkd#J`-Fpp!0GLQpsX}bJw@ik?LiK5?XonuC2m_#cg~G0jO`=uG z?kigY1t7b;-5>2X#UxS8MR#9K;sA6nQS8l~wtIpAm@ct+pfsSmTbL7*^fD=N{aG4V z-TPAx0;EN__DlbBCD9&FA6x_ia9!oN?vmX!6N^Au&i(?N53K{YJyG6ts;$1)by}X$ zN$lJ5zHj#uZzri4<9!kDS$%;Q))wMzmqroZ-*#fq?L^kqtD+WA%;mQD?x5lzy4&?e zgUV=#?S5O{l18%jwzZ(boy)~s=PIZibtxL50U4@mm}r_y-^eNwf^EBoNmS-lvI46x z0pu6^NmQNHZo5*r4IO<0Jg+L4Jw&Hab+tkTLSQRrf0-X1zi{xj=elpbLFXVVcKn0p zFU_|-dlJ_@1HV)HJB@cryBR5(o~GXXm^wWt@a+S~O$>OD(d?H#)MrmF>at%nvbJ?n z?FgyMdc*0m+Orr3N*dsR8J)ECW_@ddj_#Mqi8S87^GDX^KbVG8`bF1yDR*r+IU3T$LCT+#+OQg-}#z}P8pR88?y z;Hcu=DKIyOZ^o>M$Xg(9-+C@$IYi|$4dGqA7V^AyBG*3x>j1R}&9Vavb`{QT`1oi}7ZcI#Pvh&fr`{gH(LrQ-3K!I4hjOt%gJQ*(9h|Pib0g%Sx1X(7^P6XN%vSSj&n>+ljg{YwQb%2*gu&g1 zZ^gI|Q@WgGyt}!kjosSqa5r{6fOR(0fp}j#5HHAbdw3A45)zC1%1Ik4!-wz!k@DiB zFFl!gG#OWm^}O+M=hC!71?x~P;6?;31O*rEIucy<&qk@f-q3$0!fzCNoFKk84W;uE z`)HgOKIbAB#VY!6`Jm#UK~L@yUzAs6zuZll!9 zXtr%*qx3~_N#A>P=U)$98x@hlgJfr9F|^(Q2UH(BON^=sj3CIxjw;?Y2i|Q_(C~aR zUv2%t7oOfRs#5LB1#SC8l|7QkK}AJD2T?*j?5O%Qm!M_RsIo^4wap{kTZ^hIGY`vC zJ3gwG#fCkdo>?gwT8x5@nxVy+S!OaBER3NB9wmEd>`)-NIZ$@AvJ5R>A_qRR2?gu# z#>>@`-9?*OLE{krI!a)4^S=Qfm=)9Nxb=pH1X{{qaSS!^m`*g2fbyEWe zHU-_P)EYBF2|td#fDD@EW2E}tBSFRw+lPCaM_E#yX(JtEM+;*>5f zD(FR$)%EP7X3$z;BpVGLSQW?jq-VxZ+dNjmd!kXI(?*t|H$JBMIq*0--q3lgkVvehnPh z9L*11n{s#Rg~J9W6z8?c-Sji`VGK3!n9PT8C^Psj0yl6esDr)-y?llmcueTRh=|>o zsLo%HkQsC$a08d)WqD&)9MipinTM7Ps}~A7Fq*O%KV7_?nNNluxdskw*b55x;2eyh z1|IY6x}adJ)+Syd1K$ zP$xGwd^`}OjQGyTIC7sas0P^Nc`F(4hRvN{Zp!Jt;aqLAqT6Mphv2K};0v5m{PFPz zavDXktTFKiI-6;xM*P7`^~7@9$53S%q45U_m8l3>hzUf>t5f_za4lf6L9@o-qFuA) zs;@%{!g{A_QJhfN$j%ZghLi-952_6ciwG#xRW9#(j*DrrW|!HGi?b72wqDJj30@!#s8x?RL9?WQ5=S1u zpb(eQv-cXKXK}SxGotluuA_T~kp|qLBbng2dqqbYFfjTkbMtvKq=ye`KB}4f@nT_zVYnV-NAO3Zvc`TJsRIBY$6UM3(Hnsb1|~eE6kU9 z4HrcPebyuaDXmS0=^t{LYm`l}q%8SbAH8}Mb<7b(5>g$kTm~I0j<2I(A+su`vlY2# z!ERZ!EOqbxanNE+bOp4u$ti%+R!7Bda!TjiSNn)imUyvhcJu)3%@IF`I++*SZMhwJ z_8a3X7y%LBcuWUe!q@+z<*KQLEkZ|EK<7V}xSTVaR>jFNO%sMN$Dji(9TX-xfUe4E zczA1komy2v0lV=Pj0isRq3b<{P*N^F1RwZp*mWgix-f%jZ?$ZHKL+O5(Ppoeb&{#e zu(<%!ioVia3$0I-rXrZD$FC^>uj_R*%D7rm@XnZC0ir;VK{}FoCN+8q0q6ZGSuK%W zZRkOv@q#Yi8D=D(Wn%211AHlpke(1L=5)AryxUK%g$Jp|cX_&*o@Qd}kO8j8*EXy0 zIbV-nDA(xD@B^dki{e^2-kwd_iPf=u#BPXDBv%Xd5(3V1aRJu23_o|&$5eyDT;nSk zX%@h4Ml;27JdkUX%U_cmfY~+vM&(e{a?SY^3E;LCKTF<2G{7=b7m7@fC530Rv0}i1 zA{R?!0xV~&J3XFP!AG0o8^0b1bG1Op0hrNF3_BMwMGF%fa88gR}AtyAlci#aYsG+m})K$)k6pPo(|`h1|4LNm*Ge-kgWJ} za$GFyimiS{#C|p0pd}@$@oDS`?K<;Y0 zrMYP~y9qkO8$`iEi(Dj+<$Qh*aIw(>mtwnEt#+s5oQ4&)ix|)%5G(MQu!l6r722Fs z_kw-dXeAf!4t!T^5Qpt9)9vildQW>gbSwVtTlHO>K?f=!r|BAetOtkJjMB{^BJv26 zSrxenLGff}9%Hy_LL?=~U4|-hPdTzKa36yF#K;O7T#2gK(o3wgiBbknXCf=s!&uPX zLS*S9jUUvtq7B{Eq#_%p6F>CqQt*5lfI(O^%VN75hle;u*00&+ z(VfEY=M^6Mcz5!$LL!yE!b2kOPF~iLj%$p@o7I9|VEA-jF2m2NN21WJEolELvUC=^;V=QN<#fBAhu^vqS-)l%6d@2< z`bc26`3z!_nfNg5$cMJ1itzZMNC{@vkH8Lm=EoJyc4EUfI@1c;X^SkKuEjJc0J~!r z6-CRZp(_HBHEVSR?FL7dKB~b3qmu1f%!BX!iL6o+%F><$c9+jSzu%jU&mLp(CdUyE zA$HbI(1J*0=_7_5baQ%I7H8F#<|WzNPnOx1f)A|9(|dS?71(V)_wERL%KcT~Q&dl9 zH@BdrtJwBaJqrh%9|1(F3QW zb&-Dn3c3&}mJR_2Cf8)l!yuzjmRX?50J!bs7a19_8lRQHcREH&R-0iJvhNdF`p8QK z*e+y}{c;dp2E9Stm8ReT{FF9Hhw(8Ekw6C0CQt#ki}ij-C&gBDtZ$IMGmkcb1Mr(} zR=e-zAGU)oi;c965r+sStNkrbhlcM^DpdXX<-~Xu&HRbYcXceFXi_mv+SB^{J`s!M!JDk zoU-`*3O=wZ2l7F(tkHOUk5Bi@iZ&6(v>3lFCwsO%nY|x8&f!M7JWy|E_wY)Gz;5%o zcUL;jV5KAe`r74cv!L+MnCojr7Bd9IxW4uZE3ZfF2QQq0K7y{V<%x}G52td_bL{oC z2TO;*j-YtBgGDxka{Q8?JExOcn?-1sa9FVlCNTJjLiJdFeoQli?F7Z%9wuO-wD3QBPvAFDTKI+O-|g}@ zP)hvqhYdEgg}qwD9X6=*n8S&2*x*fGVvq4e6d!unK%_QC6t{jUolb`h0?LO$CFrn0 zK%ou8%7+w|zg+F-^D4Aw2&hYsE6LC+m>~T3jv^jIi2@#U6;wcpBZd$#e>kl+)#P+u z2H%AcP)!DjE0}=({ixT@qL2q&co|UQh(iR_AJif3S!_JW?F+$OgOtd5=liXg(C#f= z8#ZBQapK+}(b>!{*m#5FEm>}lURYH^9dVGRRR*Ik_5zXe;@$BiGLSpC7U-0Nw%me? zZs?ki_sdOjR?g`H6?*hB)O3Su)m=tVh*5C4BY-WH!;Sej;*5EB`xb4hPWSUN=y<}m z#4C|5>r)ADmAhW1yCb8$7_!bn7{FYiS}6-|sP9D^YD>vroIzKmw*qwylB+N3$u2r7 zzT-Vn%#&R*li3d$Pj`Q39zm=*g}ckEv1@0;o0i$*!OpK)pfp#h_wcHFL}S za9-YE`Gb2LA(D0>>E0&DB@Dw~1C~shYdLz^5NnejJZ6bhb~w9 z@N2l@I4#QE>1s-v3EE+ZDtjc6gNn+@YO|TF%HU^uqw3VHGy@-r9Qb@PSp}b}?nou* z66>h4>9EBau$WBt3%aK}xW|k!Y^{@^9q&jY9Jk9Q{DzmP`m%GW@P@PFQ|jGU^cZ09 znt4Y$8TvB?9ko+MO~5i!~nt8a%V`~gJu%T0z#d258gCixP%v+B* z89W+^T=I#ZB~yq9oyoiz_pr6hWKKMcS@JugOw-GcynUgrAas^oCpUa_4+JSAKGBGs zB?r|26O5o)a!|1i6N_p^?~SsHsmCYfZd|`qAKD^=D%PeO6lfMy=E#RysHU7<{?+^L z`{?$C3o~xV_0pSXB2CdvJGuj~+>D9|g*fq>L@0pdsiyg}KfP(aua2LWWxiMKPA}?W z+bq{xE*b4los~Lo%28vbV5{%8O^PE61`~ayFU$tZ9J8bPw5CCZIp2FNG8VNcPurur zeji!l$b<;ermGhP_|sxD-CnP@r&$=dF$-N8D4e(d;Jf$z%6;t5v~0SbMDU@zJg(gw zZ*r-`?eDr0(m+8m$BGEubj9Moo94Tb^`5tl%Y8U2vP5NE>;|zKDNs=jWRc6f(lrnU z(GNbGDWwC?AOiR!X++zKj{8-94>nTWjsdx`Y>_1@1FBIrP{`N@5>gN-fx<*-fj+M1 zdw-;Sq|h8SxNFssC2BR)FoDF?WTTr}!*v5rV-Yh^m z`{ur}$OHQC^xz`EP+v5iXN61_ky`Qx;>H*V>iNy5%PKXQ{m9ukvWo-7h{-oK})cuENflLVO`leW~ zc?i^3+It$6(Clb_IA%YODF~1j!|I2pmghx5=NlNwf~c1n9Y`|5;z972i|Ld-Ei&dj zDEyG7=;d%Zw@8Y<4I{eo7WOb*pQ)C244&P zLF1_6&x{MB_2a*85Mw}Q(o8=kyrX;Jn@EAyX^cU%>){e~k& z%Dpf%6)D@hT59Jbt7R%`?sZ$KsA(o(i*x>a?$Jf@bFW2D%FiBBIJ@lr!a(d8571pj zdrb{5C?t}qUT}0{z7kb2;v|6Al70%?MoHA6yDS~4oDXAoqb5Lxn>+TH6t+Mf4!!vruwu($pn(sO|WUNv#r86umcg$@ryy$tp*s4 zG!tOBP}=cw5AH` z(`PVWpKMBg5Uu4&>q9wBWBC|kEuODS?`tY`F=Qug2X?%~Y$Nd?0uyO{()xfX0_paEd^BI8V0v~_MkO)b?Bn}xIsUnZfEBrco{XK61{1`n1Jq0Zx5kpO)2TqIAVnKHdoD8M3 zV5cR98FB!Av(sWZm_@Px#L=|a730aA-bpXF?1kgDjz6SJF$e&&-@H~-+j28LDyb%V zw6@&P%MH_^^cXyuh|yykBj7%-Qx4SAWa&wP0zNT1is>g04c=I;*rFKOy;Te>d| zUh9Zar$Yl+9l@Cr{3N4In|y$<+<@5ArtoG*(}Zn#vM872 zUpC$U*T1WEm}i+Y)SC1X0}=dQW6FlJmKh|l%BXu+0@f+cMgeU1{;Njsbpa4BumCxf zovk)U)i(1?Sy+<%kdUG)NK()?lZt;DBTYN9DwPsd+&pkd>8Ex{pSI;-}cPf*$ zitPm@<;eHLu5~y_9aS4_^aZcVM^)i&^>GuaALQ^{u+SvM@{DF5w{O*tW`)~_$Y&bI z2bOX06n!m&7eZ#?z8Ka@$hHXw3m62wR^R-HN56W&6oSX{DaU(|M1v7TU%gOY#YPwiA2{3#uB`~99@lT zHoRM;*KX&N`D*LGW~ZSUL|3jo+u&7~=sHG{38=6tnl4&O&n@`iM+a`i!sZp{yhhil zb(WQvwP3KM*L;diMRzR4IC4G6Wo&VZ3TloFZ#EFQjGALCfY)NOTHmBo0{(YO(zmvZ zJ&9xj{OC0)dLD~j*lxZ6EIrBKh1=*BKw%;V9bj5bt7HGWS?LL8v{1$Zc+ICRj{>Eq z7Ccdm*Ii8n*j44`cyjOeD~tv3x<6I3|oEWb(!2`IR9#>IuHqn*pK|DD0 zG`fxvkpNcf}GR%kNtDd;y4XpMz64Kh9Z`+k7O*67j>GS1J9qa0AAPVCBVoHu;`9iyIL82 zNWlZREtlnuU2(h{%-71eVxp)3!#P`3IEuSasE7J8_L4ObU{`JFm2V*$K& z+jT)lQ;%o<|Md-Y2?LeQLq{S&h$qPu!t0VHSvD<_* z&iCq&J;telZ0?2kJ3-c3hF8Z*hFOib83!LL>ClLUJ^R<@r9sn7H}ev`%{ae7GfrU8 zvdfaI-JiEEOY#EJf2MBUu=+hL^JQp2ZfD~LazI}ic>Wds;SJnb@0YQ+gDm^oe1qfu zI&0at2_W^Ge=or1o4*5db_V2$iXk=#Y`PgY=0sIv&vt>ly(;^zfz3Af_NvatZ0{k+ z^H76rCD@dM&qH;m+_14A+i?E<1)FpJHtg&+XtKFC9qt5KYYRf2YaL)G!e$$MuC=>4 zJNpvS!IX>o!@61d=fsj1cvw=$1MFE0uVZ%yL;6^QY-HGk^ZQu7Z4Ig60d_ZR!ueaV zyVoIm==@tAHrxEek+T6J$>!e&8J?`ODIw&VPJD>mQ!otCrHA`jYI`xC<&ckn^`&JLzU4@_K+$v5a- zi<`p|&p#$}Qb1Rl_h;p<7?y2*^JbiY>}&v~sw1o!!+%^g(lLkJ`cuR*ZvC1X;|CJI zL$1btUWOk?JSmsurkLNpRUc&xK9MLhnrF~H#4~6wiL!g1KdUREvuAIFF5lN#taE1` zIAHB39nPEu*92$Hg72scF23Q6*+yPPyD6vpNz_TR;HsUAUxI^hf~!#X&? zA2rp6gP)uZ=Y(9koj8~4Aanf{>CQ=_95AWcsMR7vMjK3)chT!g9WHU|UeeB#{X62e1=x{GR zuY^qEwa|{8XRyq{0RpBl>CmYM)dD8)UQz-Ls*k>GU|!s$Cko;(8>sV{%C{~XxXerL zseMrmsXzF#0g=Pfzl#M7pvz?gf%Sk11RsnKEZj8$acW$S=*P!VaruF@I)izzs}fj& z8p;Vj=;?+eww=={$WB+32SRW-2G1h{D^MJf3ea5^(_+1&JG{rm*$ExkTFsxC#>^)J zq3F=);Mn27l1Cl_2N*tkuQPlW&oyZsQp6(H;XTVx6KK$(Oz_;jszXfx7?uMyzYjt^ zgy80{%%+%)kJZMMeliJpj2K16$=!PgB2mOSE+K@)Uk1)a#FE6s~t)PiSVjhajHsgVI37?sj@$vj0!J_c&s zem?h_k0SZlK8pPPUh`2jZqUyO`+dJ0U{V_V@>yWx9GS?0(|B{w_0J43aQKA%a*y@T z95S$|a8)F$3l_Zf8fssN9eBwQC(pV_4vu#8OK^x&FxC3_sk=@UMmtaEe#dBAeZHe@ z*_VD!Xlpv{+Lr0^41I%ZThjsBTLC2VTCL4C_&S8xChcE3vPlkO$+<~d?baqajNRrY zX)Q9%Yje#st+wqn`Mg2HhgPU)<(X*@M$2;RHZ@(fyfcKm5FDfv*|#VXpt(g&G1o$m zt-9n>a|6GhSf<&;R}?srTcKva%} zxfY~sg1N>*XL(8v8QE5;Y-YKJ40p{+dY+qQmgP5_ST2W};CoGRyBo%%&Si=WKM zvOJ8`rfBlrIFkd9^!;({QI2`FEQ`&!n4gqKo8tDZA4P`zTKUcJ&kAFIFY}r%ii-M1 zfdXoZ1`S`cg`9R&XcI)RlU;}CU=&kmwGb;Bd@{3JT@9h5pBB^EioC@rXSb7#^&V+> zXl190CS|;*h`B;a^3`ovvq1ZBM&{`|C`ma+EvAzPEn6{`w6`hG$i}r`wlvqxI+%O zFRyJ@ag)GKI?&x$?va-90fxW3D6W;`?b(#QxHevvCj~pFGNgv7zMCWdKJR2+Y`5i> zxdXd`1i2ZNH`e8*VlA$ik2-4DOAutRTNKoR-xyPELlO_ZIju8s$qLwRXr@?>2X;Gh z`&N<@Fx@Wp^IbJG)!g$vMGCmy5I;*f3~9%U+zps(Q8Gi;^!5Q8o9@8Cl$$j&1J=J= zuR0Gm#kbcibCXAcK>p9y-(Y$?fVtZu*k-nRA59R13`!elF~H^@9)j4(B^uTIouvVJ zv%H*5-vQMJ-z?v8;I64lhM;wM+3PUlx2^QtE{kMtEh0$LG(Ecm>K=$RkpoTtg<2T& z`_Kyvw%X5z>FaE!APza`QKErX9c(EKH0ad?f&5>pZNW2FzXJ{8<}l{qAqztJi?vXk zDf}G}$@O7G;!p*FNRMEkMGL!q4CE0wOBjE-wgc}({|?x~Zw_M%UbCIx7|2_c48a0^PfBONg%H~Sa&J=D6hQ#L4_~E>?tm5KUgh-i z^ojx(7CyhCK%O89*(3Zd|(xyH$tRWV@|)I2W`HG`sMS1)<27 zu?E}nw0nr$@kO$E@GV`SzLCAg0F6P#Smxd#lAM6)*}z?(VtXy~9KqxTjITpCFrq9cnJ4|3yHchm*=p9lpQQmYW#}XPB-R;)dNw`;rFA372Xi`{5$eu*;BgktsJWZ zs^d8o8`b8+U^w1OcrO=Lfx2GSM+h{zQ`GlI6sR^7;qZXcSi*`1&|FKJ*XCn-FLel= zh96Rhq$nr=y-y{*`7?v5F!)Y;W>XZOWt|VKJ&W1A9 z@YtMKrWP4LWl48ApWpkGZ8AVvU+}$Ht#+s50j)VaMmSQ(Tc84Tl~He3$7~Y4IjKGe zMs1S;$}8W1l%qFRK4tLh*rDB&j{$HjPt_Qdm09=^&_I*bxPecRZ_HF$dN+7x8_2~o zNFHVEP85;gXFfvB%{LleqlfgekAjL)_&qRzy0OuNwOzAEh^%cWIX4?UaI0`I$jU6a z`-#|r*EPG(&&n*h&TRCO8($#!A#MLfJ(ssAmeqPsrw}VTG;!+(BKuRJ{Tt*q7YmNj ze}2uV#q^>(Jh5a}Nec(TC-BXDmUrKTPD++9B7EB6WOau+VL>5yg{ebD4T}qZR!&`x zD{|nw9Qf;i#aUtaw2J`-YE{kLfFbDm&q*Py_jI6szM{u_iW^nb+DZy31h1)fs7y%# zDS{Z3$G@ZVQ!$-n2Rx1m1W#i-RHn!?VnF%NNX=8E&0_pnxmgXa_26CeUc?nWp#Qs) z{(i|$rqd3~&}t73K<&d`vAg{TkKgwz_pv{7@cIi{3e~6ka!m30+j6pxJv7(>q0Kp_Y;613a(O$;{QH;)g@W+ewk# z_SKvvctO1zTVw^CKP`6ive@p%ahK_Jz%i6=6(2v(xcl_(exBCNdP<*hSL)sUJgp0X zuODqz#dN|fcY9i_%j~1{Fm2Ul1vb2$tmga0k_}FiYq`f|#W$-TW-<^XThb`JjC<|7mqiE1b9bnPo&0y00r$mpyPj83_iuE-q5I?D-OUcQj06{(-=G$p znIGeV{OFE_BJT344w4;6e}W6}+rh+nu#PDBh++p}j(`%d9cm(^I^5vvQ9AJyvpQh7 zVBz8Os2guOR6UTr3N9|c{cv-ato;q+x5ta*t{t!D!?6oq&+cF&BgO=Dw?3u!QmZY^ zJqPP&vM#zRI>2&q`Z*f$1s9v&=V!z}<^DJDtE#65Gtc0ivM%kfdK!4G`B8}p-HJ9C zy{xTI(E*mL#pO}$fFOd@mV<;tZio9mGe>q_IsIxmhXr3c!JOTcQa>kxtHJse3iCI$Ky_?)j9yu zZu%hF25P{5j~kPN8F^l9!+tXGoo`mV?+xch1V3xj!G=bh3b4DuqgHmOn{suId>J6vdW-KZkihTW`s@fj(lUF-3pG)$JT`T$g+fH{x^EG*E z6H1wV{WvtHJ&F~WwQSL9CunFT57D9(IiUXAwM69p(9q0-uY>B*gG+8e{6o1*7Fl__03uazTpAnw?r-tqfX=h4%ZHNQwDw;2AM6`24{mkmhat~XI zX4d(eMG8!KK1j!`cxH`^al7JAhr4M&QOr6m)qFsUYwD4Qxl%yU%(}j$=m5*bFe9p> znDwlQXAHgR-W4!d2bA?<43`(`br`2%7`=MjgvBua!BG4hkKnz=AdKaCap%?fE(wAog#tdAJt0m2E=pKUHbb{}+3sU(AU<0F)uIprF6!XX^;fHKyC36P3KY(&&@!S&{|^NwV9s zKpVQBX0?ca7O2i=P8Y0af!^dL_na??YGR%R5;?3HgNsE5x#VmVY*5blsN5A|J(`mJ-Ca3c<>MpOq z>N09X!3H*;oD_>iUX{F)S|uDZusEu(yw7S{!OH}Jx*pY_fyqX?qB)zrs6*RY@LpFa zGn)iZT&S;k`U0C>@WeZsoz*i)-KmzA!yIjPxpb#UfbQ5@$*!7=v-KJ_y$@4&9wq^x zwywWq>`H8M!MFZITBg;paBuQ^u}ja}ve-=6LqoT3eK&IXS!XqU%1>|!`Yl<0Pq$K4 zMxJHxP@^(g&ZQR=n8~#cOVUxbftMM)&Jk5bgRd!%y6u;n;;fvHtL3!35z~i7fpBg` z4?gM^RgFB=45UD#OZb$Jui7RHz6&yrDA14$dE0+3zU}XB-+DH>)$e4jd?xm`-QIV- zTly|$Yi?WaoYoBx0PVO_yFO3@wB@%#hq8mf-S*4X{GDhuuPBzDb@25I#KA8FQRF?( zXm;-(TIv=_`l?)%LTY~_Sb8Fht$G&@sGr_~Ihu^C#d?1JLh_ox41(R!TF8fqxaPpy z->O=km7CpoU2Yb8=C-Y(-aZJfUe6#Ko3^=Z4xqN_yrfHrHc?aY;L0_z;N_9v zvPU&=U?UH6xul~;rO*c8jKIOcfZ;T2r`lx%#O2H>t2S-#J9y?4&DPQ_@0{yL*nSWk zk;36_X|h$!Z{PZU>{!g&d!5)Bk zs}VZyaMvxinubnXz1B6^(>h(8Hy#VY=?{X>@)))nCRFuGk)Q=y1GPV1T0yV2u8UfX0ufZgKLeX-nC z^Qb30deF=0JxeCQPoC;3J%|2?Mhe?1KRR}$srtATgkx}O!ACk!8C9Mt5&kd zot1=#@M?!A?D26W;UQez;R$;jUwOF}8cjIzi zF3Px_ieLbG))9PvOK{mE9}7^OeALC4Fs9uHLvr>QgCBAVu0qbSe4GUNa`x~1>V5Zp zbo;`E8E^bw3kaN=7dOidUBz(W@J@W4)NJ4vao_ziFD$H0i_)kSf4gNHL?p7>t*8a` zeK~B$yrnp3k3a1OsiD!mH?I8;y4K_DnL{f#Z5Zu=^u?|?0T4*CK(ON-#b|HWtL>o` znHbowCxNY@0RfQq!I!LJV5g9__4pJ>``M|cbfA-pft^CyCbVX0AACA126hT*Td!S# zw4b|srENk3X)6NLa=kmfUTsTSUs|3ewer5^VnYK0@5|n0x>>DP`$ItzG4}HFo}EgK z2;hET!A;tEUrGb`8C*fPAt$wsM3Ajc(1x6}8%YG&>PgffGq09(-X~#i-M8BlfWV4B zlvX_7?iSsREQxH&>7FiRx=sg>R@W2S%;laM09*ilA)#+6T(_K#rz?uPr%k*4WS2!3Z4==T zU9`ajVwZaR;wm=bM;)av5CEz-#cxU6K!xw6UidT?K+5IUYiv>Y`pC~3Nx1w>U$sXg zQ~3JG&&1-&uh&4Q@b!_OHLP*@ncnA}mY<0Qsrttqo3hWh zeYO6vmrtvZbzL!0AV6jkTbd50CpN2(k=W8S-k#X3_Is(fJE|1gwO8@@pRXAnUW#V= zvyQF6fC1L_uFr!@0rb_5Kz(=s@$2BRrGWZEN2mYmKm3#C zI{K51>*&R1Q`{VhYbkkJ2y+Ab@P#wb{sU(+ZD8Sv>DZ#uxv5+_N}Ly zdJunlvnzQOx8hzDd%LXIwm!vME_E(#eu;tD+L<#d1^v9+*4=m^G#3mVP}|y55X^=y zNiEqFM_X^hiv?}(+_f#)1Ol)3@CYHudMuZ0ipeSu_STE>wb?bRP%WJ?hyeZ*6Z~lw z$zO5$!bn{L`cr_f&1QONn>R?wPE#8!uPK!d7xMvS%@eo%=Hq16V6ENzq9R41o7Rn&UzXD7Qe5Cb)*W4Mt? zN$EQVLJCyW@Hi`Cy5W&Q1n|lw%;k-za|vx{T+4m6%`-A4lsiELxgW`< zJuOe3-4uBS#jDBY5;aPoprgI2vub)MWFx3UbS%Fu+AF9;)y2}eLjnl|lxtYh*@QeT zH=S$9F#>$mbj!`b+ipVoZb$g(nl2%1fPQ10#eqr){l*%gYoocbUObZpd_tpP82#{% z=c`O3ZaVlJBfvkA-6sDu7L7WK5?b%H4rxxR=P{uI88rr+Y)XoG%j2Y`8v|;TK;cyC zqy9L~*Ok7TY%l|?KxZQ9R9kwWusRrr7&HVq{c7u-x>2SjVFC%&LshhrlV@Z|*Tgx- zCirwVG)vn~37;?meB~8YTWZyLyoz*QkpKwM9K6*l#8@5kPd7FbLV&Jj1oLux zx9=@5hyY%#TCgt}`_Xi(78)oJ(FU|S$!m&XC1tN}l-TlkHQYZGZubREl{ovJNpT}29 zH+!p5f;Kb-n(W*I6a-43pk{15T5dhRnPt#UH)E49{Uny<3Ej$emS-(B9SI2&NT>mj zIK@RAgb5^+3%)*hkgwYkMmiUq5CU}7C()+Jv$XAyr9G$X zR%?_%L5)*KteTLit4+|n=T;) z=*s$8Kw=i`>8#(0nN-6SSiEa=k>R~#eA-hjVfPVRd6gc0DY9p>GJKHVET%qCPI z^LncDA?grY+d<5rsl>=W5OOuyK@bJ9?UI^6kan=y8w_Qdu0+9XyAmoKCXV~B)7o>A zHm6V~(71J$Mg!b8FC zKkqdYCBGeJzXoc_usB2J8q%C_8*;{^A)eBI#;1U_V>qZ-}Y*H*EWG9?GqDkr93I2 zq}g`=W>~l2I~wt3!oXw&we6y}K&b8+h&R#&>?)xB{T=tP!|SOIIVhC<+mU^$;q_EO zKPfR<#}}>=#>DPz|F+IB!Fcor{gUW#g_30gt8`9Nypiq{MM9kJv5EK1GYDy&ll}{# zCN{8wtH%MaWCrbBDBsDL{5@38QHAi??}ln;CMz_W9`50 z4d6h=SF1&lCR#xWxWBbBOn~xjd1NH5U|;SXmMU=p+Bec2VNpWuKMuHORtRURvnok( z+J{r#On4|o0qyUXdQPFdp6c|8g4y5SvyYoxO?J#gf$ZPnopUAc>SG#d+kF2O6^#s9 z{p%ERn-*#U-CHL`-XM&LPKYSw_wSiFD3B$`ndT@$Vw`yP<0?VF>*gg46G-zN`X%Av z4kgk4_XH|nfcIVXb7I*hX!}x{-d%226*3= zXEyFO=}KIH_VrX}NR(Xrd*k+@k+)JF7Ew6+_p`p!Ay<=K3!#AapEWW}p!Ik4k&v`j z+P}}z$N=#>>hMQe!2Npx1q|@Mk?u5#GKBs!NcZ^3)nvy`B+Nhf)A#+#eeCa6f5UYS zoV=bqX0LyDWrysMNK;4brI6$jL$|JOQym?Vicg_$`>e>D3D1Zqoc)(HJ%>W%1rh0@ zU+r7_`|ricOZ%Nz*pKTk$+nMe?ER;@214j)CG=#wiP@k#dy5~{oKkHu+Q|D4#u}hk z=E?TNY~;zz#n~a7)|6;YFP8e!ES=c|`X73AaDoOT4L!q4;udA2p>YBY*?5yV%{GB# zhUB==Z_874Nd&LPrv8f*5*G;ibqd{13$(xAM34aERTf^J7G!_F$q9LXBi*?@rS$%e zy?aoPaHcw-mlUUcBJX|kcw1WS_ji~~Y{FK{+24WJ`9dDqqGL~ImenhQfRz^k8A}M9Q?>uP-zX1Y^hV|v~)}1Ee9+ws3zww z%(l}YK_#kNh6PBFxVpZBtv!d_D-=|t!=cTS2`bU#AaDYWHxtTVbyRILyfDxnfxnYh z&zl)Q?li30)5n>7euG!Sv8^e{|>w$S|>AmB;y6q7kD9U9g%nnQIyj1f~ZJf zydWw{2BQghLA0S5=v$gz5N*iY(3AX#l6$)kld!`_zy0{E6J6JuaYWUDFrFv76o~tv zh?Rw^RA4D*#jl!=PhJRkd~!)|c+!aY)x*zDij=11{RAJJyuylVGd^la^^=#pEV93E zI%2odSR)^=0tEj`*u#>%LSJEEi*2u~HGqn8 z_FNYZrt$MO(}1eng1{`Ao)xYIsy=^heV4 zU~V%KUMb+Xv@MIxO>crGy8;w(^GMkJ36~uofpyleU{sN%| z|Ex(Fhe~N^$*)fK3%Yi&)nE@5t$TO(sbxo1evYFW1_2C6`7v9V`7#B0Pb z0IHXo4va;E>LDrXeAuOQO|iSA7zUKoc9*Ds=q@ROU|~wtG4#M>^$IVY6`MQV_6UNI zQ#t#0VcK2~raw6E3?SNnpRcytlIBqLbjx**ouuZtdl4s5mw91r!>(N#jk>NQW+$?y zKB5*djmvFgZcuSB;<{s6P#F#5t-9~`s9F}Ao8!rb#569KyUl8SXxUJx$14D5p{?!m zm6meU@|q7GNLk(Zn2SN%W?KjYzy;8i4z}xJvn}sh9r)k@5xM{;sS&A}S=(NJo9umf z0P*Xf6>n!5)Vj1s(6)2f1{Ht+#&>;kPXV>7RDE~^;&S#3bn+qVWGsk*mS+Rj$wW%C zi?`OvUS>sw_3*r`1M6fwjn%#JDnLDf>tv0ELFeAKPS#k0-L;pq@t-i4p?;%rlB;cd zQ7o(VeonL9)$;bOdf%^Yz=aH^PF}-d_cf#7Fx8kPlZMjz2DUCYi~X+5sgRTgX2JzRs@ZSK zHN6vjz-tM#1IM;fHhTdSNT^tZO}RZS)`#x&@5-Vr79p@q)k12dKtr{T&1!z=QJ28_ z98IJgLl{gTpq|&+uIE)QTWWh=Cr~O%3mhjcPc>8^qMG%tI(RX8V1-$mHG>HRRGZi{rz)E{rR-j7 zq(DO%)Mw>pmC-RwX;2a>5P37<97C<(w8g9iTII-@RJ@&ZGNG`xMX3j4b!QJBWSBK5 z%qa$56CYT_FARq}QD?7!w_R%&Dr^HD;C?gVJU{_XVabl;|AFa2rxtMv+c5EgjNeY` z*()ihXoDVCo(@{4bm0};wkX$7EB5*9ZzlBB71$IO>^SFdrF6;_)V6C3Lgngu;qRpN zz7^UOR^W5D-%9BhDYQvs>-g30ZqxeH3U1qOMX)LO9OyR_I?f7hiZJcr4El6x)G%IKS00IM>LwCtbs$;FU<*p@k7t@(LBtO6%lDEoT*v1Ie zNBbde=q}V`?Nw0WFkH8W?j9%z_B!0q-2=HBb~fITYwG)DMQbAC;^5j8iNPi5Oj)0A zSwHudpjK@(5Rlya7SIVj$h$kVYT&KO!P<60(p!R!RbT4J zYIn0`6vA{k3SHc6ikt6MyVG|>F>Rv|l;a(RAcYZ$TNe(3ZykjW6m(z|I*_|z6#7Zi zuydd|9rxoNxH^z^L{)-Neo`#`5qAd)>V;u>Q(!1({}BA2LkA^ zrw?~vj_T5(${%p<`gn6(t!{XZzgF|~Y#mSX)BZwlI@k$9XNQWlYJvL?+2N_~A|C~a z+^7Mn{)zlxoGgzM{WB4@d&K{O0-%M{!R*}VWY+*ZHGwR?)7j|179ayrI8^w3W)oda z{u^O+dPM#cG{p|m4$(PQB6ydx{~p5e4jowMhf68y{lJ0sI+@v_8VA-dvoo@-XNHBT zh*GEzZE8;Xb-GJ=kln$+|_WsDA zKvQZOQk$B7T_xanzW%XaCluQos!F|B`l+cS7OTxmx%6vX9kE#L>!!*5ss%h(_!|J@)3TV3i`|Znfzfe*J~DDwVcUWE z>Ia1HZs{m~Ns-EQZ9Y2~x}WUQAa%DC+L5;55Qxj!-{pSa>{nq;=b-ynA9_6G{)uEw z?%%<~jx{@;uFd`92~6L_tvAH|^A{85{`vDZxPMoCXTI7@*k8JKE*eePpK;`?A58cq zIO^30TGLTsdCu&jT;RJbutLRv>5A`6S08AxQuEa>o6$dmOLY#dOcj$|b;i#z(H!c) z%9NSbY)QtI9T#-Uqj8sO$GAcsVw4GNHt@vPp(9YZgRe_~6w75$r<$T{_ zD~HjkMf9di0uB~2Vi-Vdubmc~>6YA7|D~&elyx`IU1|yl;JY#}i)%N>n`E+UYH^2U zr;z|c_LSjxyE@*rU*U1Ed@V!wY;2$!Mg|nXcxjPL!QE|-VL(*rwAvjN!vLsWrS~Ql ztEz2g8=*`08iG(=)-Wt=DebHWHUR^$U1n`yJ>UEH`U6?(MsTrV3G<-r=^876L!c{X zKL)?@i;bsz1w`7my?yJ616NpC(IU?oS68)1si-<=+`G`gkZ&Acls?H@R$V_nJkB`< zz_`}5A>rg|7{`8G?-aLh1v;f^%{~{(TW*%yJAfBq6TM|fZ2{4=fZ=43AUv@nKf^uq zZa}^hD-B;zh?Gdn4!yEG!JL+0J_(vRpEbgJ4QDeUX!OE3XjkLzBd@Y)w1xPx$TCrryWW}fb()$r4(aN zEfW|(_Zt1sHkAw0PBJYsG=T37`h^CL*6C&}#-3W1hydr6YPl?1*S#ZKbI;y}!vTbs z$q`7{8}_tA0t4t?Ulco9rA`R2X;vI&EhB*kFuqN{ZK@m1S7dkVblfvpG379z5)`0) zr~W_>qb4;>_f$g{xEvMWmC~i1egDz-m}+!~lt#J?6rlY@E#06%gvh4vp52V0E)7B< z1Kd|=BR8oz^z5fN96Hy}sZZ-`K)@B=U7Q#0Nqvkf%!xU2g|-% z{{N}_?m#)J>i^I~@4ZWJ3j{$FMA8W)A*9h+_U+sE-fs5oE?ZJSnhGWoiWo#ekS0x} zcaV-Cy>~%6h+qW)1%Bs#X6DYl_neuXE&1s;e@y1h-p@Iodu}_odxR{OlWCrtPKc)& z<>daiWUXHnvrIngEtc^O%mj)?|?STISt<|l~p!L_aIfFD-Sj}hCo~zWw zTHw%#G0F{7i0Aj7A8qs{TQ50egE=G<2ib!`XF;^IE&9X$FXzRt9R&r(1^*NQe z6K&m)rj@@FT6q+Sno5!qtm4*M$=XpHk#rbifKIEhtR8!!twUZCW?7%_i%THEO$Fa; z9FwUj)5a9g*hq#o3*U2@gp{YYB|%JrC+@LMRBf9LT*tWPAoj-@~~Kr4}Yzf zJGWkxmzb1cy=<}DE1M~$l?gj%7B$fk&n(byu^QdmovaqMG&7zOl-qpz@}<5mBwl-b zpxow@|8Meva*NM|d@bEmE*H~XO1G%qczn89BrJXt>8HM8IaBWz!Kl7uQ-THyi{W@; zn5Q$1yJW!jY6+8r#ZIMfql@&~PT!D(#cv-vzNt~HqwVj!B8wVriBDXEg2ydaSj^hh z>(53Dz9DVp@J}_-Di+M&Cdx;YLYrR9So?&NQAs=*K_+=Ke2J?N&N&W5tFsbla-1*O zf>6u5;WIQXNQ&@s4h>H3i1Bt>(85l`;49r*kfu-a5S$@eEvT-&%BDki18$Y<6t$p~ zMPVB2SG6EbN5Q3OWfy&Nbr>qbcWOa3i%8tb)w&=?Wp5!Oj%$?;QY3J3#G0v-2u$co zN(A(*6etGddvkpmRkdczgOy@#c1#1+NlXsvN=!tqR&bIKS0iOGwW4&0 zj#8x0+)2vtiM$r1=|aL?YE3)ZwQfNXE8E?n%{}i*VC}v}i8d#cOX*spQo%K^UeV}& zeS26}vQZ>oD>GGD^yp~0g&o1eyBk5y*ovagc+q{R|9-~fT`YZ2H@V_Xx>}vkk2|P4 zd7Ef)w5+e)6biC%o0RUjDK1SbGWyhU3T0H!U2jO@P91M4Q4Eq+M6|y}5sB~Sb&|Kb z<8PT1tw@+9BsUPaD_TUyA6 zDWSJ?K-jV9QZGq!?aV26d0BRy8vfda?vQ58r}|p4uF1(_J1OW`bewxNQ$9T33e$j( z#d1RQh+7M?!`Tf!wAF%`6!()SbjLr|ChUwKcZer+$BpU|Kkhe8qxPbU{*va|SqH-+ zW#z{M=%?;FMw)VGHIvKBVm+OHHJpp?mH5ua%WPH_Js^ z=$?5y&cz`qi|-V}HRvAOxI^=sdo2bfk87@QiM707$H?tvVHIvK9-#xln~%~v5Ob)0 zl08&E9xECXY&DDGLu2-FO{C4l8QHXyTZwsavcdc0(ydYaxC>H}i;Nh~*LQ3No4=Z5 z#^egwh|~0#QHTj6SvY#SKQHC0=tr0U9PzKjzR4gMD85yN<6yk zt+9=TdU_yYgJD-95jQ>1Mh0{CAL=>4xP6FSiAUTVU>os}wkhiJ5xp_2D^clk`QW=5 zwPO>ttFbH5=(1zuZh8!}R?Ozdu0*8USxeX(nGakWy&-YoH7Wad*Rj!zt+qtB|HiJx zg%_nRxBmubD^j`wh~9D8l?>PA3V?6O)SZHujhS7ENtZhX!oJNgD$)Bl|0kouw|D9? zW9+E>KT~E5&Q_T@HmKQ}Y_eQ<5gqJqeb*!&R^$&1hIYFbJ3alx4+Uu_o2LSX7Vqg@ z9(2~EJ`NaK z`FL7)2Zp59 zyw+K#OEn-Lt)AM|QEJV%OEsW7EWN)szPk{z$oTGL5s#mhCl2w4{YvHP;6fnYrT(%( z(qez8|3jAtm~}?!(rB2;(&8Ujzq=#Jntpe!&xVdOe!TR^>q5vtU0RmlGPP1+dY8wB zwf(zPFY>|QY26(J)`Yv{Yq3$^Dcv0H)okO|Q?=k3I>WmMbbVM?6OLQK*aBf`9Cvz` z$8R;~F6Ci9U|aV${EB`{_i7SPOSr(fr#nq)9C@p9ncCIyXq_xwa$(#7=mY3OE%4J6t=w^lF)X_fxOd3`Fi2YLr+0bGSlhfyl@1>y z-oM*}!YznB&~d1X)+$V5Mq?;PP5d6 zxEIS@VY8t_h8((J%Pk8Bow)dr;GU7#lU-_b;c0dtU+PbEvP&4+TrTdM>@p<~8Fwp5 zn8CHoCMUb-aL$rpt6;sk2~3=sicUd;Ni(G)&8hU)dXWj8G)^tj;nGL zaQ6M749Hm)wutBD8)5%9i04ZdaeV*^MQYYSt}34$*a`JGm#8J1gPukHuwaU+R4yHv ztICJJb;3Qa?MTkuXJ=8@CmbvsqsR4elN09_pXlZNCT&Ag4WYvvw`;hmn3PZw!LSP@ zQ2RWcGjxjFq^=b;%`t96Q6ekyl-{>nWlEFe$11l_G*eO`n$VrXqZ!8SyKQbp!-l!S zTh^|%B*)72S2MkNx=@@hb-{@9 z^_p|mge;y@@VQZ;O`*-4j;1QY_9Sk&w5gbsLCNB(b3?i}SIbf%O?R7j+trl035FNx8f% z*3+yCqL~iu=$YiTII!d)%S}=d}sO|kuKr^+!9o`}^(ihY`!2^|)=EEY=JP2Z> zSRmg@`Mu({>)X5qQC9l%1Av?2BXYs$ObyVOED#gFFe5~rpdJIJ^PiyFHd3}+nd4m> z&?%*;bMNCQh1zXaxxq?(PP&+%A-gS2tsfey9af=si`BTkYI!i-TdZWVad+;;#5bfB zbt6R#IAy4}c#Z9A6pLLkRy+AzE4Mg}p=szE8LH#-i@GHv&QO7Fhf%rzzsJbeZ8I9o z)du>j`MAr|Vxk#lrgm%;=(ZT`U84GaX0AK+!FO7(zf-1ui`nRMDVH9Iy&Wx)soJSG zebpA9vGlR_Un_H3xy5M&-5(WqCu|}EMR^!8;FQwKm^3~f|uJEGefo&b>fraCC{<@Y0^S6p}!gyHI4;yJ8t~AzLjU4BSF?r;T?aE3s3*`>a zc#5p#m>B1iB@}3RW^u!bzTsqA5&oH;GssYrnmeKqabbE=s_vqp*shyruPC~~#8|+~ zva6n@foHT3h{w&+G_i9)T-~tdF|(-aqv$iWTCQ3T&JkCq(p8F44n({5k2{J!VKiix zR+RJ>;%qTr@h|j??)bGEm$)@K$>QSDi;0A>!a=Op|I3ju=*f}DiduiU8SX~-#8%9eY(o8#lwGRB%f6Sv7(5zrRz z&(vwTL|1c4=N9)!S%kII;Qf{^$vwJ+Y0Gj+=T3v>Wzp8_Qu=fCbg4l@8~MTR=I_|S z^+fKDNzEdEaFELfGPQImQ|d19xK+`~@^?VXBCV%Cecy)WlBi!bNRwS%&E&DupNY)Q z_{B#fU;5vUhURBQLsyhRY?Dof#Tk&5-OejYo17H^T?Xh>WH|m^%|)G;fq<4pTGu-2 zkms3kW6$l@mz~!-CN+z^K6Q#hm}6C4HGJHuQ^_hHhn*D#ZU0&}Q?HYI&{yoTH`clR zO==c-y#_Q0(dDK#Zt-d|(}%b$x2qQKLMG9~EaLi%8~>^?JqF^hdg!i?6L&6D!i?kHh{kAI zkvb^I`Smi5mq%Q%-ELJMyEG=Qq1OEnpOr;fx2yCc`NfqvUCln7x2pjyi?r^9(63Yp z(NdbOvhKVSqIp@gb#p|!1sl0ETCQem`(tw_bHO@qj!bG6`3c<_CDv;I+aJx=L>8Q} z;gCg!sDI`hz`orY7uHncRvO2q4=pH{2Z9e?7z4nXZ~IPF1T8BgOm&A+J1Tpcbo*6> z%ST{qjG6vVur>JDZ1vD$H^y$eU|W}u#dbgaYsZ7MnriIQ;Mi8qA``*0k@kyJFmDYQAVIWl}a{D$EMouT_k;(3uul)v8 z6R|8e$sB*|4#oESYbF#CJ3V2xTrUfHd-5KoE8L@qjlo68o>QTe) zn6-1hnvlhJauA&^3}0&FwqFm~Y%HeZ$-D1-oKkaaKc5CXEOwLVYj*}DHN*DHy2-_2 zIfZ`d+Q_3O+I~OUp<{8~D_?86OEk8x5H4}#i?5Ql+=_$6YJ9$)8|-)(PMfZSTBO*}&(eTVhgFOxC#-4OAJ{M$S;jml_@Nv1j!U=w zn%iMzQ9jWBu|`XKX**^|8P#RnzH4EVvIy_f4W>G`?%B2n?9;Hg9kNh{^EKJ_*8xWH zve@rKZ<0B# z-BA(O6x(+-OfDYFT;Ye-0T2EjMB#KP^eIxlo3LR1W>M?p?QrJ!_-^4|#j)OiTHN}0 zOAf7#-+@&ZRtRHvp)cG@hB0w#;+qJv*1|{aZPEVIa5eJ2f4)B8(}-9DKUz;Fh?$}p zC7l^s=c5%{1{w>EF^k$0Gm6^Z7HuIzwZ&;l#H>JP7UPY1lc>?2PI1w^#dW+p8PFL? zUQ0G3>FO8Q8H4}-6?TSxi`~fHTwkV9l-K7qiFfEz^35|%pebLi#bvx6%~$BCMeI!^ zhoo9hM_0eaZk+x#a^fQ~wW!^((dE=q9>FVeqT~MuFE+6;B4%PEF`=kEaxsSD3&!`h zrw%$Re|&nNNn}#Cb}Q{h#7tZ?5gX?7)@>wARE*a11D%g8s_$$Tdu*_G{s)Q zz;@(BKw>tn=PFaTWt%aGj_(ymMW0<;`PEpssw>-FD{+3b0m@KF{k~!Qy?PD^8#SLb<(r7%BA9v>lat^8R zv{(r-K5kSqkvMB?leh4RWJHW`>b3HNG_*q}0}SSyp7Y_QiWqOU;yiApPmCPBC&6H4 z+4O*5D}@r0Z@OtTMirwRH;Ei0M^pA0S#c2n3Y8M(rJi>r%u3io^ey#*(tFdp-vh3_qe-!An&zVCg! z%=_zD@4t_||4#Kne&YSL!29b{@2^cf+)urauX>91_x}2t_um#?kRN$~9`ECw-e1pn ze+~13eBJvm062rM!@3@8gMH$RqGqqcMNcLT$m(3$`rmpILm!(F^7;<@rRA6d4*3&;k?41@MS+d*T$FM;MZq})x5$ncwZXN zlkw{*cpiZ8SK<3cc%O*(AK-Zco;TuoAAVg0?>`52X}V`=Ug0Esc@keX$MXqQZ z!Y1#;mfOdK8P=`;C*wvzlHbR5&rLB{x>|I#ILjQeKx{efG=O**DvwB0l%(< z?-$~^6rMxztl@btuzTWtF+9JE=a2AxeMp#y_pk8$C%)W-Fh9eW#S!a2LgQ=noLk5s z%z+5A2A=)+avR=PLik?-dn&$sfnU$Y^B#P83BSIK=h_JWI^Ms7=X&_^6~aG-@NeV$ z>-cg#-gm|GO?>$l-e=*tEwFFn`)k1Nf$w|c%e{!jzwqTVJQqQj`S^7nzC4LAf5-O? z@%W8| z&++^>p0^^*BY1xd&r|T_D?Ib~vI=atC1mFCyc@sXhvx%$zJ!q9#B(=1uSUoV@qPxv z{0i?o;`@7eE{`wQ;r&>=pM#JoXxt6&tK!!a@O%VuTm$d>;Q0+aAH(;lkZ?1ef5G!M zJoiPIFY#Oql0SpwL-6Gcg!vDi%i`BV@avE9d>Ua6!~4$><`;Nwh%Y^OzJM?<;`=3d z-ww}T<9U%69+ICx_#^Or8+_Rk&ztb2f#)v~=6gWhiZ9FJxg$c3!u!AR9Eazli2I*` zx&qI?;`{!Puou3phcExc`|)^QkLUOCTm+I2LHJ4dG8NB<@MSf;{~OQwcs`HsYXJ2E z-Usn~5n2|*`~3*{XK-79_Zq%Gj`uC_{1CtX6z@O7a~LGtjOPb<9*O69`1L;s{{zT* z9bdk}m)#L&0=}<|_jmE@!}#^Dc)t?Q`S^7iyf2UEig-@J_sMww1af|l=fU`X0KRXF zFWcccfag>Abvf8!c|7kz$Xu% zo5IX3j76AlApBAIejA>z;L9KItl;@8Jom(}d*Qh_zAS;~Q?SXpkTwO+oACS)zut=X z-vjj#zWfExYw&yp*!vM?Wqer*Z0F*AI-c|J%puI$ct01?p1|`od|4mQa}efye7_ja zetf?i@7v+Mg7>ZPz6o^A0cumcAC32O@#|;c_7{ZT6<^-Pudm|$O*}8b^D2CQ0O5a+ z=Nx>WgztaGa}>U;hxY^VJPndJ#B&0E{hIeHzD&WF)$u$WU$)1u&*AwLp3maBEq+}K z{ExtwKA_IS`@?vD49~xU+ad_R0)9Ob&wt|kjrjfv-nWLduj9*62=gbrFM;QG@nspj ze;@BB;JE`(ALIKz`0@_)ejCrR_`W)xPeaS!@O@o;xf|jCg)eEm?}zsv;@N{QTjJS^ z=YR119mx3t??1!$-{O5`FgXifp22fxJQu<9UWC~OdKbl)UVQl-p6depM|{5+&#m$O zX*_?9=gRoL6+-?C9ERch*YUg@zwQS4+at_-_;L@v?13<=;QdB?e-Q7Z@qHbc+SLg89WP+vmD;vhlDzw$KcCHc)tSgzs37M@LUsLj>h}l zc>V}qM$-G-!U)Jb3eS;v{s&?Hf%oSS$G!1>7f{dR%LWKD9^aS4^96iAjl#?={1_qk z#rHE1@-aMLN0@2!eQx1&{CYT^ui@9P;r(S`UxA!&;e7+xzBx5xJ#@mv*O#^Jd%!hC|~+W2xT-XDbI&+-0!JpTmj-guvY=URAf;7P-; zf5rPgcz+2JZo&KG2zesj7a+`%h|8yV{|wK!5PmDXzl--X@%{&3FT?W!d|4mZI^GNT z-oSea@5Aw)g03C#+!^1W#rtab^*B72#P^r!``p6c@O~$r%i*~Kp8v$Njxa0Y{kwS1 zg0$Iqu7od(;{AF^9)mCY;{5|WC*%15zCVH3t%>*JfVvvbzj-0?{SOGUC}KJdU#8=E zGeW+BUx(t?L-GAEdd@AZiC@>k^L9L+gv=p$mhk)ro)tWI#d8yc+z8S};>!(?`At0E z!I#@1e>lEegD*3I`T@QS$NLZQ{sG<}2g45$avGi=(Q|I$TKu{^LLPwU=J@p&cz+Y9 zP4NCUz0WOdgJ0Lc^ErIq8qfC;vWo9B@MU{Ei+Emz=a$eli1)uB{C5!kYl!Ji_u*ukrl_ydRJEzvI{6;C&vRRr+;qp@A@O<9Q##T!&wG$Cvl;JPBX!$FC>i z`8zz{$FE1@`31ggjF2ya?O}M|49`vR{20$K5q?F)Vg)?cqc3v{8{qr72r~d_>)_W- z@%<0pcf8NS`_g#sNzb{3ZSj2+zO0Dn=D==&XN{!IE&LfWx5Jn75q@=q{5F2Q1Hb+e z-;crj5WJ7T`_%|J5zkxjJPF@V#rt&#xgWmVgD(%`eJY-R$CpR(emdUI#{2$29fapO z_;N7b*THiKg!~fE$MHNA-|xWld4%5y-?zg1g?O%s*nI%|Uy3iAA^eqi|2D#JgD)fS zel5PQg7=wte+j=1#rrq$elecEgUsXc{X6)w4x#22M&rwo_%avoC*%8gypP5A_33?X z;SOjSLJa2?eu7_rhc6Ex{1RaPFur8*%pgn(zrF|UTj0x2@#~IwrXl~2_WM!-oU#W z5S@$hPzq09=3+E-9tK0_7B0n?_bL3`!ew|r7SE6AIj?XkX`Ea51YZ{5{ZqVe0{K71 z7c~Gnx3E9nzedk_g)JcMM+n)2?|0(;8N3g}uV2SAgYRn8b8aDv_Z*%ngv{glCZ0nP z{!IM(4!-Pw=UMo28GbF|eJ4ECI44;ZVaoV&BElS@-W$O%X5nQT&J0I7x17J6T7Fav z?wpywdaXh?uFp=-;6XQSb#GWDNxw zSuWK{XRa#4Zs0I**SFL7Iza6GCd6FOz(GW8hn{A{MA%LowvvjExn^yFN$$@QIheq+ zngo1kewaeP#nXu#USH2Bp}nUcz@ZPj0XJcP$F|Mm(0o7 zki$3xWr zfYrj30A;2|c;I-#NJaVXS~Fd7*$hP4RFjKI0h9oLZ*B2 zb-VlzlSm-~efd(KUHo>I!Wt2<5VvM20vGWr$%z2RT*5KytGpJt*THpHIX|n~@!3`4 zxS@q_l>F7yvV`3v39v|>S!53>tYHxgv0jEO@&g__$08i_LykddAUbpyeUL+~tbn?G zxWo=+FJFo(>!YGEwRBIpTog*rSP27$UdE=KBOJNpRIP*kNfLDC6#Mw>@~o-&!VJ;CF+9R`j(JV{A_oh+wKIaUbW;qi21&5*>5y0>K@$xWT;^~!# zS~{YFKTyKhd7C3Y9Z!+_5ogHrb_Dihjs?#OU8h{G=h7M-4fVv zT7k5LMm<)|)o8&t6k486kAy(>@-nr6`$Z2~<)^&-z>^3|d=&EM9Eo)HCU9Q5}s@OJ(%{RIOa4wf_Bq zklZaKWUU-VhswPTV&V;3@f|}rJ8)9OFfIF=hu;*j%rr zZBwo-ZqaW-ZEl>l;9BA~nZ#?6jJ7pb5VtruUcsRH*|O4hTzvahszs&64qOZ07nL-N zu{i9+rFReq??6Cqsa?31&Ex6`C8tJb3(}qtzrgK%1=SUM_bxu9F#YVshj{fwY-R~X zxMe#0#S%V&gxmE++$JKFAdh0Sd|q!L8k3YJR&Pv7W{@~-ezDHdg(+34CQQ>!Q9A9} zfqlEFu+|u~^iAjb;`Rz9G^ZcIK{`*?jNE}-S#0GP=70p&WTrfXYwKRrTsx*0rm~rt zs%6I>t}M1SOJqkWH|DsaxHBn}KAZnQf&`i7Sb% zsuQKoU@l{qr6ahOE=0vCuywAa^Qf?bI*V)RJSw%iU9ldyP?R{e>Cp>AiCg-Q<4WS3 z`9?io%-3~~;HI0Xf&P+27!7osBk#kV3V50zbP?q|BzELu(zSc4pwSDI+? z+bKFsF(|>%vlMrOx}cKY4t_pXUuf&CK662%HqRwu`=uWPE z1LeS%?Ho8P0X~&hlG4F=aFAjU_o^xrZudEE3vNIvmFexZ5C5TY63P}O>ZN;YH1v22 z6umAf+Jdp~%Vg{2DxGQGo37_dd%AhPGHAah`3dw;TAoK(h zYL`KN8c{;IsWe$4Ur(nk1#^`G+dt*q^~4%7J#;KNO(9t-PEsmZDQ`a>w3(4E<}B+z zAq;g2j|cCqC5?yLS8PS$$6R{*R-$DTULLYkEZ{159hEc!q@qEyKE>W}d;wNElPmd7 z!o1G%X^NE4*`Zb>&f@a7O&~v8aV+x0)l{HPx2u$$TM?8RIms?fka&hF>{g4$hb6d) zH9IYo6(vajnUZc7r6k6c#JlAP^3PWCSvg9Q%LNtmDO;}S77Pl`~KM3Tm$l&)l| z8C~B%!R1^*`{``fW|00HF1`J9_Re5Xw|)2{15j~wH&w6-6DqFbDw0%~axx1QCY0RB zm9$x=m0qjDg#25${5Gp3F{9qj#kZM{q+EKZl0KBWf0bO7IwaoU;J4bUrc*4F-ovT4 zX?Zz^-rqI(a`t?X%Wtz5iprZ0a}B)1k*F3DGUj7kIKQ|&k#Nruq5gvM+0ruxGBjVbsZ;HG6B56trlDG|H1XDNK|sU2HJc``+U6XO@hW1 zDo)`l5>@_Og%p7wE9q|K-=>i&8Jdi%TjdEcSiob@W=gZV4f43?)W84EYyx`H8B3 z9*MB}7qaVRTuq|tKVFScV_(4)?U2A@uQ#$YXnT?^aFa)<3D|>X`-~Z)f6PMe57#JBtXk3K3mCG!||S(We_V4e3=XMj8%GA)6ijz-0^;B+MCCS zukUIpMouLTEfbU$w-WEra;zSKrb#?LNyf8cQb>gO=2R{;9mq8$8FYvR!kU{?$p16AuF0*oKz4;2wya+EG&@&Fz7kiNWbig7dag>L zVLXB>ZM}M=J>E5MP9a?_)65y|uoO!UFmUG$*spMn!({kcm}Ti%lA?H{RlY( zM*ID>IG}e{js<^Q`4d(ny=ij^si~HXr<4r0DcL%Km^59oQw!I!AwJJ?2PdH@S~IAZ z#X-~yT+~*HSmlmzB)#0Or2d>E>D9I+8H@f9yVtp-Z4$-KUO)(0Z*f`4ELC*l_io#g z-1z;eT}dUE(}!GAvMfb+-#N+mS1u}<(P@2?n?3)*Wu+1&V6|Es$oIMS`h<(yE}1w< z+Gku^!id%yJ&w`-!(}D2KNs~C7nRIr^=c#6o1f`0Ta?%F$(YS9R~=DHv?r=3Lmjh{ zUi*g9I20{{vm}QvXEs^{{}42DIWr_J+pZ+F2idCQSCAwnsUv!GGmW`euv%G?wPk|5 zYV8PzsMRDRqvcqW-y;kOZHz=5}L&R`N53dpACBJNRpD2qkKI#STok+LE8F~ zw9OLOZP0G7HRrptCc=Q^X)@D@jz6=rMzD zD@jUHLDXn@RBw1F1ZZt93FFRIxVc2X1qE@jUy{E!pT_?Ue~;IG8fKgwFfuqrz!G(; zno6*Izg<{nij_tqGL{1ef~WHdiZ;ZWttG^s!Nu}v-ezn~#|~0|)(xqqlLx71cSWkv zz(eY}T= zhO5B}OXNywxsTP>@M#`PkoAWlmCXWx@v3|^(O6bDS|Y7KO!-)tS*4y|F<0uZ59k$r z(6a{D!>0f&(bgZLo?3;r0^4fV=4$xBjwRW2{d2cb8h(p9n+Vb(C zV6vp39gCY?8c3cdNp4bCiFw_OTu>E4!vRWzy>`AG)A;hu!E%T{Sc(9j)-~y2A2chh z)l7dswH1Szibel0PQRVv6i8P$m@^$2u7fYRPacCn2ko6^JJn&cUapT%xhBw;s}$8q za#S-q$2&tyKiASuapR?-pagfLmS~iEXoA8@?mhxl(-=&3pusHvT!a zNW;iMF>_u|J#s!X5{V(>Qdt)PO!8?ylOE~WI?h&vgpsNf@m!2%B1 zghQ5Bkbz9Kw?+xBk52@n1rj414C*mrs4FfYTEFKJUel%};~wES#J-rz%$Sp|y5>4l zB8M|;J#rkj$i2kwCSDxYve`udZ{-v=f!&I=3w4YHRA{#S)_DW5+&4Vj`COux#{9& ztZd9lj}xn-)PSY!r?{*H)G-{j9Bf5lE5(L(n_;ZWBw9!f-&hXlQguqrdptGPu#2E7 zPo^%wKHxA-%sk=%#IBHtEu*w#2P^5kj>Y18Qq6mv6d3iQ7q}E2bAs?UO5wq!kEWH1 z<+66T5d0P?I8r*_m(CT#Ru-XemqMd((k)5p-0WC!3 zGqu#O8+}|XbB}aE%hJk_8FP#PVegm1BBGfZ5B;DN+9+raW<#}D;(lHUJ6T#nJ;+fo zs9Lb)`FVk#gJ?V~5i?pA4m;)7#BC(cpH9mX0UX1DFmP_L5}q&yW{*kC5EX>wR~9`f z0gR{!u*)baTXRNER3d=eao|!aujJ;~x#}5-7n)Oy-Ut^QJue}Q=2XBvbvZ@lo1Br; zoJJvc=SY}Zh3{$f(QN@%u6ao!=va+Iw^RqmeabyIMPMsGQ$AOb^vp5cwVv)}Ns!+GeGS{0DHKXNlK^r_w%y!{zlhbmDuy1l0 zBBTx-SACXrrcOOe>mH~Jm#22&=~+=8c`-AGhBeINGOqb6-GB6CLjV}Xjl&lG4@GO^ zJZq?(j1vLelmk(S233c-R36NSle8QEjrhGF@iPjMfGa#r1aIU9bP7=v@)nLngFp>U zFWr9-WC^f)Sz>222oC1CcZk^s{mgVugCLiMxLnInC+gUc)Z4`IC(-sy}?nwPt_0gc+1f|Yg;2R_*sTN6HzcA)y(~kwc#W7AxjCJBIR;$jVAG_u zj=mADa{|-1C8pe@Hgd+RM6`$Nl1(aLa~$jS9PR5sHv9o)%PlKH{cDt8svyj(9`^Wv zxNX6c%qhPTYHN-{`L!;20HKr1EDLVfC0 zD-!T`?-RRKdCb>w25E#lI{;mSLp@i(xIzTvc9h7WKJv*KfZ}IF>MJf8h|*nLxKeV!AXEX^PrafoM@&{qSOhQ!4* zOBj9~)t7pmS1ztu9K>530kfEw5rE2UiHczs6R?8v0`K8*bj-pa_j3r$V%%8(E=NgR z46_*FuY8KAT*1@cF^h}1iX%KG;l&1Ea!fNOVfZosCMIk0y3A$bAlBgsFfndF0F&dJ zFfqgbjhOs^+uC8`B7VpbU}CtO3r?guczhEkM)<4#KuiwcS zj7b>&bLC;|$Yba-aS&hU2oxW>ZCKAqfy!iwir1!QX6il{f=-iysyzmDb^x8!oKjD< zz9BV`E7FOvHM(QFMhC~5hbF$MoX(nOCG%#wT@p$01**OTU4lnb*=v@-{kxJ1welx{3hy3i>#|&HK^GJpD=FBk zGX;o?weJS1z9*?ti;UWfi@AUd@=uWDt5sMDEZDM2vkpwN{D4NU* zBMKq{^%No^?;`chFFQC=+R8FI*9MUvlACJf|@d1Q4- zyjmZaIFGyH(|xm4k#eH3mZV3W>eRj-u4G+FNlUisr)jUiPPDE{Pr@K6Hju>c-AWvk zc#?{w_U%TiP)ikirX9*Q?pzsdugTM5MVh};*A>&vnLV`RA*e*GqOqx@OfAJuoI2`~ z3n)`9lqGu$N%q*bWSb2i+HJdlZ!Kw3>vt2!!mBk@_C+O9N(lG4^AsY{N(T{}|WcO-qSM^fuc6v+{i z(r>hESt0+8mL%`frsSqMWG_kEq;|C>GTlCs%9b1&+}%#M#r096aYQ3u4X2CIL`;+v zv{bWt_uKi-scsrj`B~+8KS`6?wG~yf_7}@NnWCq^O?`FBq-k30R@LWQz@WEC`u6L@piEzy zqG_4*c1dR!;^>)^S8#Vq`o?tLbahmZW7slZrRmFBxi~XNz2SOxfOejf zzdhSB>;01IxG{vLS;ti^D1A^;+L1G&l+xL=swQd@;fE#NQ#wgkrdx>dW0Ka6noBhe zlP>qsg~j1TwkVuWN~+X_6;YklrYUO8_&~=ql8%lNaIjHt&@A{I$(ghpu;(S+aU-Ek z<7cjpLG)gdRJ7=Xdo`Nl+~4?Ta>94Do%gz-&V2}*X8dL%9S+_tK0hB91V zzDVOFK@9>;dq|pEbeJMFIkhDe4)3}`Rf1LY;75Rq6~j@ILUj^S3nj{qp;Cx1cA|}y z6va&)3R#UB)YeSI`g zVny&wNneK%%nkPBdTDoAzf;l>!LuZVIPgUc+6e2Tn&(G4X2Z&#(OqgVI7ed8V$pLn z5(Dbh8eM59I!{v6V%01u>QVDXb}772QWZCAoXDzm8n(=o(#G;i#Oq>7S&Qv}6fbL( z2bwOEGeP)ZEwlozC6)75)93g@ z&9#!6xb+taatEFGNOg&w3vZD0Oz$i@^;zXu{|ynmSyJ5MaE@!o+1>&QI45>AZSv-586xo;-;S+F?9MH&Y({#$pJyg zd{|oCw`+2ODLp;FL_a2pj*ELGU&+xxVa{okd(<+?J?&+ZaWfc>nA8X_?t9UoeKGXn zA$6o${BBJg#x;KNf>YiljlmRrU}fkT!x!1dIk@qPCX{=1lK|=Cx)=*3JT)a(_l;)7 zV!YDBjzxrQ8DzY=Tya);_pul-H(97!CCF<@N0Y5PyIY?@mX?tw^9_>l@jyD*X9Yw4vhHGr-YY$R9U( z?2AZ^@fS=?$khkRz2>Amq+Y3{T4gIP;?Y8xT_OD%k26&J^XPG{X^eQiE}Le!^5jo? zX7JaML)Z067t8l?OVwl4L5aCC04i=0Rm3?!aVp3=i;BywqN2FAHAa!QoXJ|}fY|(2 zR1&vL9`pC=E_o73P6sUt4OcDybScWC3n-%(zPun6m+kfhk4KyfnMhHT&7S7E z;<~V+uBl>E{2a4Z%MFtjoQk6VBBvj>Zds(?)5sTl;n`UZ*ego3+kN0Rus5hx`-oE6eO?*@~o2Xg74)dOi(d<`*lcDfpRqLX0?geZ3?)ZozegXvX;_ zNpQ0QWLkxWdueH7Ew8p=(bTiK(H3UERZ`HbCTOC-85)J2-!2S2LQ32v>1o!fH{)X- z^a$qnN)p$i-dsxEl#rt{WK$X1RW}nm-E?VOX9X&a|Dd96j0db21xk$`KP|{l0DhwC z1Z!Aovp6hs9U$a0CBz=p+aOZP*wJGh4*y{swunc|EWY9_){l|nkXW?f8e;QUu*_iz zCB?Rc8h#WLFtwL^hXjl{lo8pcxdfTbvaPTguWpT)oO8^wLJMrP1ewjsoXsYYF&kg* zpJLxN0OPF2=xm!ngv@8nR{7Xx|AWsuE%Nb1$b8o4e4rs57QBDymN+H z0kTyNC{X~U)}^BhcF(|`BZ^r4r$H-N5N_rj;1Z?uv?ne(H`72Clbk=p zgWJ+FL5NAwjC7-zqZwRD$VlZuTHc)MmxZQ`k)u{F462UxY-i37?8Yd;wqJwGVTD*R zhMwesOnyc~5xIS_Zrb6lp~q*yY?sNF#0)m0o*=-dds zKOB+O$(n^Kzvv|gsOQGfHoyb|(jlacWG7Vss2L-FoV{Fub zP(+?ErO2%2b5?4VV-k6>Hb0fi-7s1%uPRPw(X`za%UFQR@jHX_uzg2MkW@ANj4`o& zM@fLp9)tJGD2b28@&jDu(gM}*90WzJ_^sm2&pEmz9n(H^kHYK+IG zF;H3mnq0rwdW;S>XIeR89mYUxJv3P6us-J?=7lk1rdrxJV%o*LKrmVFCS0#Q&*^8T zajxRcnPS^vG;p%!t+-};vNVv;OK0Tf!`oz$?AtQ!q7O38$I1-0=M2QSkDoGif@Sn! zOuHC&g_AY!%r)EIvLAOyP+Kj0?^*4;q~rPg#j>!(u3VH@rH-flOBuZ_9MIiZG{kDa zL&_1^gKHOy&V|vb|0~*&#BJ3d_n?}w!;0zLOP!jCC5r;SLJp%q_ zj<;)LTfg^LnlAFT?RlFN5xYXP1yytXbQBeBRkQDT2d6tYC%fi}5T*COS;=%amlkKC znsMC|*xbkQ_K2~~M&Z-5a{2y&aF;0LJiz6|<^9?~c~+VZS+D3hXGnRdMJdV=R`9?GSpCfX-ve>@3aDtQm!v`AUpk`PdfoFEnGl+}`q{u0992XOrBAytQBHvdc+!Tqi#^foMHBM~B8k48U)|khm5n~OKB3olV z7ZYO*C5Bn!RLL5)pJwFGeS^YondEe465BD61ju$dgGb2jf{3DIumIoN^JD5}C-5!ZOMwN`hN# z?53bbm!GJCgmB@*&6`qFa4;c_rohgjA%+fh5#fg^#a6p*X9-aPvn7~hxD~KUs!`7u zrCUU2r-=TeHhp*jE+FOIjcHud3g{C`pSvy#Gse*Z(sUkqrbH(x>a{=+^|T}^mP>e1 zD+D|z2~c-Uq$0SGJ4#m^Rjauyo$#WTv((kjv!LKZ=8KX{hG!}|W4=qNoNs{2}MoBt?&bPHhydjA|VTlq!hZcri5k%;1Nk$xvKDvZQ z_rW3JJxK(5X%RH~GjwxBm8_z!2cTYTUXKhw-UpIAtU!vFM@KhDiTp?siQ*k45*I(} z!DsOLn~Q)dE$u zsmwe98ZrG`5{RC1L`-RAq3)1C!WWW+xHK%&S!J{6tayE1s(D%?L=I8@y<0`aSqnD| zTLUeSvzR0&F2`FZRYJs)k_e1BN7x43=Y zuAk~Uza&zopp%2_#9UDly>eI~`zPWBb<^Nt)E1pU!>UG8ihhJg#1BpPK-b+95%(HP z$n|N(k%2VKDj-wi2GyNNnE6&!e|RVzWNpM&K^YcFB#t%Dkh=+A6*Yp{!;B&4naU5U z8^LM6D~-y~JH;X}AXIG5RqWoXikVbl)YG1cEa6*m;d^!>d8ED<5_biOJ^s3ihs*?}@GmrB#RDOz{y z9w`ZVXDE4Y%Yv2gqJ>h~2Kky)Vfx&Ij1O5qlVk~5EMV8`9i|q@B0tvOoMTBnTaqf2 zgg|PgnwzN@X0qz=({!<{rjqm_XCQj6Boe)0InqjGzTBWj%sT_r;&;9z%xIh4R95|9 zNzO%*9Bf09Nf~m~6}u|u=lk;6H0^IvzPrWo5=nMUDl6Fq+R-HOyj+qc6#5`Nl&rzo zrHEMnrVVLyVnT(yB_S=YmZV{+Q?w2JtxA%(>m+e8Sx-fkCh5typwozFi41R)L^iRW zx8X@5c#9-WXl#PCAipOf9d4H-VI)Sj+$=h8RgB=Bk|3ct(6QP9KJC*Bvg`|^srp@< zDsH3t6?_*#LMmINWix5x7wyeK=u)aRaBI8ayp=Ho1mwK-B{MUVFXE;PBZ#eI8A-=J z33Yh4eX6rs2ZMqfmTc!PP{e3?N!$Ki)MgsfN}!b_%|eT97)skxbGk>|});|KSLu+(*U zJ(7eIq|#@MM+6`gl#;rgl$<8I6NENY20sOf0Y-Brd02MmMI&g!Z6|)%A{3c^yBB2C zB{oQP2B-tzc$W}SQ0r6N;)>BsPrH997 zJk=dD>4sVBMmk9AmpXxlzaYz`tWnEW^ObPa3Bn4JFrzKDg~6+(WwdIz$m)zk)}SQI zsQ+VR)wQ<^Nfk*_WEANNfpnwPsFAg5a|U~in?xb3CJ8f!oNQWZ#iS=C$a)YmQxal$ zleUln+R2PjrnLV(J3zT2T`q;LAEeHaq#7QAEtT%hU_vdD-)%`;G1pHce&mq*T5_{1 zb}AeziHpp;`bz(#+ZbTF*WGU{^N~DQc-%7@J3NGDkTA# z%F;C|y=C2RuR$?dTvO=GIkb}4yE)#vdkkXM6X_Wv3~`cVW*c&5W~mCS zR8yl(BfLJHY`U+B+|1fBR+h|eGtMp|ZHZlQXWNv4OeM#Sx1~rhB5g%+GRJK=N384e zYfmfIqiCceD{xDR+{}hAN{q~DN6snIZlmgRD!ED2r75f8!0q;Rkz1tQ1aUIQZ*Y!g zyJtn1v-+0EDzZ>PfXw6DoQE+}X_qKD>+dOYF6`^%l*n;3Ogoz! zXN*WFG6#fGWJcpSqsTgETnR2&Y*jH{q-VBDP9#NFJqbL#Q|o5a~sxbSOn;bTDTm7b$N{hz`5;TT#0?K1_*mdxl0U zPIJXH9%{C}@9jse_yg1{H(GJ5^YLoY5RjsoVLF9XUEZx^XuS~dkkqX=OlpXs(V9?7 z;E_Yfqmq!7Ll>Y}?(a7ialE}XF~6H8l?~>GN-&z3<`l`3`Ou{=~K z8Pw;M7JkhBnE2-*Lpq7}}O zLRMADa!Y{GBE(B8>*aG0){ul5d{ptbY zu{9PQQmD=r(s6Z#7_RCd2{$`O1Wzupyo8C(k<^)@jRCo8B=R(lTpA43z66U~L*j|@S6^>a(@tH|ulVMc?W6hQbtrQx|hTL~BF`QR58NIuEXZ+(5Ty;dbe9qbeT{>V5;LipqtRfsO~6XKV9!*7D!9~E|h-Q71#2Q2I9%~VKOqu8|&kcnpKcpLtU5R61dnxn`+*HI}T*OdSHD!x=-P+!}GFADn&JuFO3Sli~09D*7wTP|fYdbARBUYFmd zpK-}f=3QcJelZY|A0YOEdsuS`(RA(!MNBO=AXqx1{vf>;{xS)V zF}Dajv(gokgr&R`)b2FwbCnblnSC%*iQ#yyghLm{!7*+(NJupLgX)|m&mKG>Z1b@c^%+##V%H55Hd&D|0J(ec%Iv2tPeNidYkO0_{- znsS4ca8M1*9*_{QxQB?&PY+2*ILr*mQtMF(i~OOM3r6dFLc(DSdT`xgrkFy@Mr%&9 z1ICE`hI6Q<`;ph&c-Itorv#yPU|?PHZas!zFA}V<*5$zs%UNUAWjD>q>-L9;eg(x^s0jS30?(BK8_qX%+6>4yY9xOT-ljXww*VR*0rG;TX)TI<%q+;AB$0!y`~eY=%;DOG;YrP)d5T2Sv0(_Ad?b-OFTxx)IR|uM1W3hWST8pN z$o*I%=h#pJ_x^}z&gDiBY#0eYiNm!Gchchypt(Sz>DVxYtak#D+m%Zf@}UFTEdr!$ zxKor3&y>hHHk80$9!)f#;;AOsFcSVOhhun75l+*ZP`Xd1NL~ISc_g+)&x#~%LFJNn zjs%8vdxIlyu>vy8p-9E^B$#2SDDVnLk)bZ>T2W$Xz8- zMSkxW!LMuW@q%esfe4n2zcA2aKIB>ua&r>_fjqA)3m&~UvE7__#33~=)Kg) z5uq*;O{k@59=NwbCs@elxmgl{sbGJQAc3IMP9-xv!VAFG%7GiH$Ayz{f~d#2DD;$R z$0Z#IFhl$Cm?PXy>M9yNWfyc+oybn+3F7pWMc6bB!*CGhPJ#jgRy#)amg&A zG@HwIhJ!ffD2_qC>dk4t7i@Nt*dSkdiEMY-*al#~)kzPjl$@@_FNk=gk*hw!JF@+f z^fCd5oJ^*LPmPIpxSXn>Jy$lo%9l6pK%z4yZM>OtX(f#&CCR$Oz?1Kggv!?v4O@n1hf2-bx6*h-0F}%kW_Y-1f&4xgk6e z93LhMxfn;n4u1Gbd6tu__LC?gILe!UEEi|$foX8+lQXpYlEb#C2epKg`-P?n914lkJ_F7Z_}-FG5i8v9;C* zkT)cV;TlN5lP)EDEWvH=xCW8Xp&W|UhYC>5_2uaFBH9*C$7MF?l$@}B0^heKzOabe zU0$MD0V@Z-Cj~dWd>8cl1r)Uvd6GF^z6e`|!;sR!F^hgm*BTXdmO?oCig5k*ZA zzWj_)lYEB?Z)GSV|X@ zl%h=|Bpu;M)u>?8B_$MkPkz3ZvCm&bOrPaUvG&Bs*fHoAI2v6Cb%LxFv85%7M%Tdv zobWT^^=&TM={hjTo*d#A5;fEuUh#&yU^$797o3`7^Qc+`Ur`EfmMI4`{HGL$O*kR9 zOi8fKISgfrI+b*G(2QA`YQNn&t|E~`uEA6UjrgnM`HW=@h|=m33bmo~Fi@>T`7>)t zP;`O4oqgDry|iel_;VmQy{$qSS>1` z6Q$|?7~QP|dBjWg(2oOY3L+7xt*WmcU -f)U|JomZf@k#bbm~a zhG{ICyGuA^6GaopRYj%wcOVK9V!Qq`bj9iI}6g7*wmYzF2wd)}eQ> z@j()KqzFOics09@I#dd6q=&^;de;D3vZ*CeZe_8en%v9NR16rVIZuBE>tKt zip6}u@a2msQblQc*cb?7sNM&O-bGvoOc-V<8FvZCq1x>+u9pL?vP8?Mc1^&#za>U1 zbIDG%%OI<92nc2Ocs0=)s#S%}T9BTgrC*@#D&cpP&Y$DkxvyvuK`EHztVWRzqF^ZQ$f)7xCWQ<5drdmIHl zjZ&3P2rYW+`vY!ET}s*gSc#j_aEiziZY73);kulLGaCDMjzuLvb7X3dhPNS-I_TkP z;1|v(vdc7>;m6g6BzKsP)H2B9ZeYP*r`jz-zkg$Je!ipZQQNkzYgjtQ{Ns{H&iiu-v|aAOd`1wC*tB~L%E;+#PQ5mw+Z z5K|XeWy`s~AW=ZURnU5m706sBk%8;vld&MT-9UV<;?m(b8+p1K07t0Y!N6U$KNUqQsa#dSDMtc?3M z$H82AtMvo1Yb9bv3fhpj?;}Luj382{=1WJQBS^}uYL_z6>CX{T*^U6h9mrHjj z37`!)2n`6$vJK`OPB%-Oj0VKPEUy~=mw75U4Tyw#m7|ca5SH2MHi?&!uNZ1sRd*iB zWA5ZD8Fx6xArV#Ruy`O5?~sTY`O1ducQdhilE>UhL;>^+2L*|!R&-m{`P~vHI}uIH z>&l}%lgsCc$WUi-6j~X&Ly)e$4EK7&RQE}=jONb;_56l-jp7=dRz`%4zdJVIH+dw(h6L~b8<%Utn{Wubxh)fNewfz}fJtkz?;|hr_&ZqU+ z#>+VAZeqR<&m1@>KJ+V^FoBebT#Dx&X6WKp!wNYp?~dYbBU5 zgBk@+-%in7iW79!SjNJa;qZ{KaH<*z-;ji`0N&{LMEFXsQ6d}#zlOt6hO@!sbXuM4 zY!5BoEb&DtcCHSi6BX={`P(EU+LPW~Uxqf;TiNywDYVg^IGFSACvzOj#{Pt3ZJy>qOR(w#NqL&c9Td+KxvnUl3_Fiw;X~!D%Yi}gA&H>jL)nmD zT|>-{;T_J9Q}4vWU*vGlo^`q-iOzfp4{iX}LnNxEJsE7$`$V!w?d!CUHFWJM z19Kc`(F=EigI+ozy%2Wb!$j{)O5+m>0 zzZ&(XsM6QXI>;U&k%jpKve5#Td4WjJ=H_>LfN>lk;wUZx$wKDCIO(=OMfCi8S z?-8W~BFb)PB>{9W2f;g|Blp#D9rlJ}q~FmJGsBA%kr%y91b5)N9Pca|yA#L4{a4HG zXun8c2rxWOVraPk4rcX7h}-kL^f|*x66z(6LV~KZP>Z?;15)3YNEzAQhP?G6aXO7> z7blMipr3G%rqr=1Yu>u_`*a!$w{I2GJVIGpjRJCF7RmIHcVG zuSHLlh#A?*hE(1pR;zI7PTC2e)j7zgWY%u5)#*(snUK>}!{5sjgHd9jeh$Kp%lr;j zEpUcJ2V+KFW(tFU`Z`hhl1qg-!`jmUEW#~=jD)SUSz}cWjPo;zjggTUs{e5!wHPPm zWF#54B*!76=oVh{Im6r{>~;>rWU6tzH_Uae#0lp0 z63+-f@p+`ZRIdnQL-jgN)!Ir7Xz{<{^y)08-E-@BNElSu@HS{NP z-4UjamNAdZ@JvmY180imQh%Bi{NG5#O;d}|v!5i!8*^>0siVQ0axfN}Rm=5n+I9HV z5<_F5nT0s~9U}HEp5suiB&O)bLYHUYAM!inr27lJesFCR1 zRde%CZUbbQkY_ypUmOpgs-Br)_YQBAXc|712{`8=VsIN6V5MsN($ zhXyAH)9S=)ySctoA_cF>%Xb{Mp0e2}9&2YvC;~W^1JMvu1uXQv?vdCTehxz&_eUc4 zCvF1A&yjH-avZ!D%DHXX!yyG64eiQ33L{1HWBa<7XVAnpj+#k_p*Xxi{iNlrgz_xU?w;y;pL-X{T>^g&Klq zrQk;I)dl_JFBGMFc{z4^uOjSs9EPTl0^5@mVAdxwGnzt%I(h`nKR$mXoA`2?LK*iG z$Dwf5t8-}G81@#Gv}Xu@d5IrtCz@ZS)n*yobIUe_79|*_8$4LkJ-KB`fZs+cy}{-* zrnxEsk<^}MaieWR0>RG=K~Y<6XG>V5hKG&bYXsC?daC^LjL_zh) z#%{U&fds~my#SnW)9nu>LCA=nAZgp}k0cB#Gi+u^W21#0;z!;+S%Mfft_1w>TU5LT zc`0mB9ryx$(Hf6|g{o4@3nY;`zhB9&vN21A8YorHh(7!6tyg{OgEba9JqQKu&)_k4Y z#93Pr3xA8lQ5~zhuyrA_3dYS6Tf^xVk#`R#s*iGAj?*2DeS%}rw0qUD+RnyG@NE)N z*d|zY=3l~-$=35TvDZ=879W0__@3hFG_T=7m)n7>KD)YvRD*9`oxp37_QDI-1eftF zp;oAA2MZzAQT!I~&D1jsygPm{O;ypGp%G|(HxLRhZKw#+1fez(L(%$mE7T@#C~wC_ zZk9Rp3wfKnAu-;}<4so<(^N>28h=^@8|YemPm2E4WIH4JNM{#Mi)PIYrlU6^+?}M^ zz#)w%(xD}}-YL%F76e~LmA56bMOu>P8*yuMDWIRgblMv<=|#Foh;i9CFC^{5+lo={}qtVmIo`eP1YuU+)5;2#S;bM zh6fr*u%bL1(z=^b&AS3s zrA9r5kwIFNOf=LY>LBO_sw8eNl|;A=IP8>KQ@Xx6#JslzVa}9_14?g}76w<-S+!HA zSDiMSF00e6w8rDsAoTu{Ml=q+USU!QS~ecgoV*-?UYAs&{WQd1u_T53r4$l_N)$4! zuCNOPZ=mYHWhFM2XTjIA2LcXSkpwIz3BZVakWOi;mE1+_frwL2FM9hmz}CvQ7px|O?PX$pR?6dc7s1&_4L zPgTSGZwZThN@rqt-MyNaPj6p^(Az|sCp<|oQvV9ekc0;${TRA19RoYJudzG<-0I0e%JKaZKa(L9-?J5^9CBe|TU{=V1Jfu9A-$*1;HTw{C za2qY?*5$3DZ1S*#3Wio~Q*5j1nvJ9ISfW92lhXvA`=9qm3hTlzE*_DvPvUT6EZ&6Z}vU6syK zuIY8#r)_EJ(<$9=pH*Y)QZ{LWZvzoFR6StS#+QTg;bK!YtjcrK<$mS+)VS|{+cJCM zIHF6@&R*0d+I14a>~4c$m)s>P6==|Fj1@A}wA++Dx(Aqn~9r;3!dgH4^u&IrJ z=L}t>I=x_JKwbAYqP*Z(OT~mLW`$Uj|4tN7*(kXEa)mJ7+3Y>~^jVu&Y?qp~x1OOd zf97VY8T;yQ(x*)u)6SjU(J9(;?9^B2>(y*u^M1d~C|P`iKAvv-m~BX;8~E?j^z9io ziMeitda!&_{(!!mWHW>Im$QObv1h+VUv6i^XVuabi@@B^{U?2TyzSGrsIzM2^}BZX zq-wF3Y@+hFG-VE3cca(o+g)sYd2Hry>F$P}!SnTJiR5=S_AK>?mL=qYx9QWL*tmB- z4U>1gqip9j+o!Cx(Ol3s5Bx8Exu#9OY!IVr{U#hE{;4XskBu*nW1X*Mc7^5sM>JDx z2rPE796scC{)hDGO14jV#40vMij`tB7&LzR9DV*ro9?)2R9f%Aj@DOtzB=MtZDH?+ zAJMlv+QeY9FE&UiL723(YL#&*wV(9BTEt?o6l2!?RLTWl!G3!iQLvk_xk|g(@K2{+X&j57S&Pp zp1M9n{aw}cGd7U~MWq@HGl&11C?2(8bcJG!&^he)77?6mBM=bUV6o7CG)OED4pHTzB5jNi3)!OOaOTn80wMmSN#)x zevIvN?jBmQ;=3QCFZZ&^&03_vaZ0`rbf&%kN?&hn`{EAd=gtSb(*ci9)Y$7Z6vbuw0#|hrZTnW;V*Z3Uv4Bc-&_sH0t{p0?Sf`6j8q=`WwT z;G{LDU$__%pCti#9moJw=U9UpUil`~@LpL%TU$_ep?ozM*e3szs2-A3?7?X`rUz52 zr7&^BzfK{kPO+td;}x;?5d$Q9cMl@F6yH%c&hk14FGoW559;$)MF|+@0bv18w+X17 z*s>8`@O2XLF+^h55S}A)l0J!~+}0J^kD&HdJGX^;tx8rExOSHHOq;CifmOx2-Gx6r z$Mz}DQtAbjfQb$(QL_e*6fn(?Z8R)cyREF0_wG-+Sm`kGU@|KTuUv<^aMMmkTCP%k zBwW;B@h-55$F|oIPb2u$E+p0dsAgVq(WEj-4n&f6_&^^9OG_-x#Wrc!?S|3>6vJO3 zan?lMyl5)Lku+-~4Uf(BO7I;^bE!=lu55!giRp@%t-UX|5pg$bSHVtt*uGSkw@@w~ z0K&RN5Wj=O?GUMHwD=V^0ksxyXaqa&Mq-U4XQRb|WHyp;sGH4CuTnqkb}D{9{$*R@ zP3}}}g&8!DO(T)EME<-Z9cs!(wKY;P4qvdKU7)J|#4*eEnoTyX^I9o?FiaAD8#|!U zdEK<%MOtpkTs4fgS-dxF;%QB(6Z|DhQXPVvjiv;W!;ysJUX?CH-3b$I`Ib!}MrgOC zNwm*?B-F1NqQk zdvVwZIdFTal~GEMKqp-@%~ozkxGunQf6OK~JGr*pPU=;@MN;pKnA~Ea)Y0_2B0YP) z8Dm-Ma+!KINcPLZe%vN3d(|2B@Kp@{bTQkfnpf2c*4mq@ayvG>;Z=d;E+k=>q&}oH zXojYjut~(3i`|I)A>5?Q`yWWp$^UUNfg#W)*sEPOh&p?Q%9+ zt?NZ{`2Mb>y%MUz=z6_*RFMZa7$;1bMK1>i>%J`X3O1p|{E19RkUgPHc5gH}m_Jzw z_eDZ(4Rv%Qqm4f-+{!lLv@z5qI_n!G+9X6U#!xHS0!YSY#Y?py+2?JNakSm;@IbYs zn#OzvG1x7J9o!nRjG$v3FHWa9H7+vl1E zD~F;J-MTz?D#Q z#?pk7bTX211jXyCv>rjP_lyU-r!3`$HYv4O-ObZ!db8WBt{4jUl{Udp%hyv=RGvdy%;m?Rn6k>vY0a_3GH zx-bjTVo1cUXp9yP3YkKAxRB>Hgc2>02HodILi>|VKo0M_@t~W*D@xqYAhMC-GfD<# zu`IIS0d=fJ@9t$le3N}CVZMAMpE zl3aZdk(7|T(cBiIDiZOWithA-y8dF5Nt;s{G{0B<`UGqdV@_qG`W{koRcJq)7M6>Y zcDjP%Jz^72o0__aPv4p3+z}Ctsc9tnG$dz%yTVrJC^YEvu^s}uh>zHv1U?lJ4S^%c ze}v>b)HTZ0D&1T)8ih^rNt?J@m|`cbPbFa|A(}DvM-VT7#H?FBms+MbQs^OS(Cy!B z!fM9gBL3DsB<}NwXy`VQ{6!?^K1HkevuUBC>ovFeF+nY3Tc`yvU z$>E75khif3fHXfw8lLjfQEhs+QiWuNQMFV<$IHX>udKNtn|#`oHDO zXUCZG_U5q^@?aN&lwknO;;(NLUkfjy7(84i>6b^%8R11w7AqnPyYP+h^bZTaVZXv_ z3^GS4;Zbe9gg05Nh%C6TjaTc#bkj!e0kYJa*rYb1ax3*xGf3ojFtXse7u~DKk-H9d zGq?L5ef+c%&b*1L&Am*blPg5D8a9V9_p*|$fn>a*mZd$~ZjWZ6p0x?3t*Ge))x$}k zw~#Z}Aq=>IY?BWDoCAXyYi*xl1(sC0>n5(fzNykwI| zTUP<9-Kr$k5MmhXDt5Z{k*>SDG+l`Gs!c4d)pFHJK(N^{B+(Q_Al;gwC?MGgN!Ye? z)!J9i@km2!FI zP?x|KF`R>&b}6Lg*31`2f^*8Oynorm(^^v}SZ6j#bv<%6S`$caLK2SG^71KCmgnC# zd9*o@LG!tzNu<>jjWjSL!n0AWfmEy_x)Bf@gkzCDu!*FpNGEvXP?G0wSYJa$K=K@t z@XVDyq`NA@p#EzUN1M4yk{6F4ffmN98Z%c5(V|Gi8>u5j>BT464i2zeYp+Xa-+!+_ z!d&j?LZK5kDXu^Yj{E461LY8)6SaopT)-v~TSP}9q^r#$$*#mk;Mh--%t3h-QnD?L zm_y#eHqkU&(h06SmSoxyTfwj;Aen|F98!_u(TXd$(rxMh^YxeJ@Z2&s|g zZlqyn-aWA>toxHTku+y+5`DZzQf-RrH=MbZYzrh~MUBm_gjHl#Z-0nYHT<@P=p!Uz{m|B!9Qs$X38d*qCpf!E;yiwmY_g z5ro_6_Ch-L04nCC%b~(ku3?i*^8g0TzSBvrSF!Gf2e4871F6`e=t72!l-9C|q*;_s zu%^<}j#yvAqJU%?l5lf0Xo;;+9GPvr&cKbhu1zi;+S>tvgZA(-67kPidEUYbgMujP zhmo3{=PX+74sJZLjO*EC)SRcFxIirce2Baa=ZQ2QAq_X>A=>eH7H0#SI9gNc1PiIi z;AZ4(G$oMy9!c0aw9hYhjeW;+iTh(VaWv;3N&c@+B>SVG7|y{$bRZJ(mLtuX^O;Vd}FL$tOTzr?DL?~ zl8u0)LMG5wa-UH5tk$;OTM9ncuSD(gJNo<$+vY?&XrcRv+bERK~DG!efp7&dB=%|GB5HZeOk5YniZlpWn^0}qAvHnZxe$RqB151m(`Ac zoW4EK$y|LZnXi8z5nO8%oX6|nQI@V2SGbG5AGLkY{XY1fRH--Ajt>#pqBgm{*sF)p zx|K`{dGAk&*O_WrcVP;JT9l)so%C_do}4<#3%hmU_2GA@+fQHa+HQ79cJ9L^dZ&~w zLK*AH7u`X?d)eyFy`(U^kSP_zS7FY0ls@0cR%iCvW7#q#12FF~TyQTDU1`H$E2Y#> zrc_U>yRdU@6zzFUC9iKL&981KE@cynlV;7xQm&7BW|%Id7id49?hlSrOUh;SN0kX2 zYy;%LsKY|iyspgb_cj_1jmiWzQyrV`9(L(A(Lr|--GMebRtMder8~-nx^}PV71aZ> zwhFR3NE<{HEUx@ZIglr9{CnDEkhrfa>o0ynyb5HOnmO6-A&T)srZT$YVq&qcWYKd7 zvZUYP=;8^Q>1v{^(W`rOPFZ)W!y&;VvUl`UN_W@}HZOS)eoAubsT6rzlJ5gel`J^W zr?l3T445+HWyjTt3jHSB!zYs>Hz69>kFisRk4K+)AyIB&+cc7t>MoqZ3@P{jIZ;07 zPZ?e;{Df-uU2T-?ROt>~)^>&NWOW~LTU#Z0Btfk#c{UMT*OMTu(iYbe!7SU*BM`!x zocA*#xYJe>4r%h?<$)uwp)V^o*6lCDn^T)yMPF`Z`;v#Ke7#zu+e6_k$XlN?FV-tnVzT5RflY3ir;BVR>1VLzXORMJlfem4(mz%a<3g@$+ zFOUS9$M5ZD#SL*jA9W|mq_J41mo&EP;`~z7o^tfDB>)fup?-J#CpVIIZj+MqWWX26 zJNL(bq+Gy3fIby ztL6l>)8xHEuFaKCmb=8pY4TnizKk5A@I#l%f!kK9b^60MIBbg?Z1~+VAf)E-?;)gi z)!)J4QREPXABH6yMDC8%z3>eVdm#r7LfebDj+pWWY&1So7Ovkq2yaG03tFgT4oD9r zUuHD21I-{j0tqc>p+Y#C{Szw0fo2fii-a5?wl%2*NgN6vjI!}`I#i)a(L@TJzY#!h zi(i}k4T>F*LfezEhuxz{W9-S;>82wcVuh{AA^TU6#*Sss?S^!S6}BaZ`?sT=+OZ6} zyO2)9vQHK6M;ZgmPWNY|)9gWuw0WBGG+L)&4<^O4NWsx<+n(ubIXO8O)vSFElZ1=# zb7N}*NG?GV9YK?y=N5DDa}&WNnTsSG9JH&9Q<8sR6L52fofv8Ui8LG#buch<4$n^Z zL&=O|G_HBg0Z6Gi!S1MJ%x%7fZErY12VoWoEofm6<%!WLD53++AUqujweDumI(VpB z{gWYs(cSEHM<5-WQ@h=)84JIIB*qaME7|c#rgdyH+2KBF?Nipr=-4L3eh!LuO>8L= zw?hhJi`zyu6{)oT3dt1@!_STW3M5A&iDqq%oQz{gWLTSna0U`;)@D!WxE;2oVQqH0 zsYs`JB1{IkFn(`%BBWUqX|(oHhZeds4Nf9?I(}}n50IRRB$_3gxhMY*zcwt{q__|% zL=D1?GR|1J3w{nYFi5_JBszkb=<+x;5fi~AnS&(S9=s(#=4wd5MjsA37NRwfhy`o+ zd23?LC9vv-_p*{Lg=AWr(~e}tI@+gtf_mE~qq!Acq;?RGfOn_n1{1a)o0o!fvOgOq4lEK9@N3PN}kW_0MI18~U zer~i4kZge@nssSA^n8S32){P0%cNKzDYOyAaq!}KBr--62jPoIsP#(gsf{5t9HUoS z$<{|Q14-`&eBk3P46ZClK=uxjX_igrKa8^?@1YJ1%SM|2AdS{ajx#39BazWc4#E|Y zP^%FhPNH-J4{p?*G!UykVHq&PCW4`oH~AP_?w1F(n1o=(j13(KE#R}mgXS*2njVb)zvJg zd9KH1HP9S{Hz6V0P-lD?qg1YA)lzU!i;n_LM;arZ4UPnL$9bkJBb|1!J)p52Bl;vZ zfpM`tl6-L_*G{QM9sSt{W#*;X&>*9z_d{yU<5~|7ZHl5A9@k2?1(F$w3L?%PU4>#A z-P?5r=_I6FOKpvW>hV5Z)I?UstvvTBqdz!k+g2QX(&!+hH4@`R)8~+0^QhgIhs>vx z-dFD=$Qiq#au?-?NXcEjUDqy^Joe z@H=Fn`NS@9_)Z5u2ekzf89vcLxD^s=+c8}t*IQB-V^1`;V|sD86ggNdN_%94U!-~l zsT>w%Qa+EA+6W5oS^XW=V~n6c@)DA05xe;e)-O;VBVsoxeuWfz4a~>0W}-M|4NQ_l zkc4Gw+dn-g0&i}uffUAinT={Kq|#ObDA`gmA0!~)*Sg9`z+EHkTNa`k5^0epKJ#@p z>eq-gk>)(4(b}Bu#dc!@ejaQA^e;x6n-mKph0Z@rLCKGbO~o3U{0)k)AcbaAbnqhB z`rxO?PQ=d*n*x&WBZ=M$@PgT^s8O>OfaV`aqha97XJ12^3=E{%6KS+H2Iq@ux1wmq z8iSMcb|lr>1|D4dDGF$`4Uqf{Nd$uNPTL#!IUpD$Zy||hzvlC9YooOr_G?lMIVjp5 z%l0VTekhUQv20WaAQjIB1de?9iJz0(2<0>4J@->|nRjTD+?!TWwo;pc{B0m(8*qQ$a~X8}LL1~g(> z2jTpPrt8aiQ*cH6+SHdpu?kXXmPLzc#!G~Yp_Lexg)~bbje!x|>f;v--$7+rFeJ@; zNTavA`SRh`D3aOkCdqb4!cw(83f0>3VB-3yU1O!iPPZY_={DBI3L+SOY;jQ}GHuLG z_(>$x<|`zj^`*vTQ6I*9#YMS1Qd;n62fypn_?^ecQA!7%N%<5~N^RO+i98L7P@6Ww zGmy|yJ8cffPfXr{RF2x2lz&7@?(=QCq$3{slau^F={+gZ2MC7a)XL__e7egW^!6(Cbhcr3<~CYaEl7B!tzl&So8eW(}m# zTS7ZF^5Dk_;z1P2YzdR(AtcdjL7xXL@#Z1~aRYvD)&gj5MjE{qw2RYK)U3q_;!XVA ztc6MPHj?PIpwEM_;MpYzVj0w{Sqq?94rvUGKvNsePZ-ltCJTn7DI*PM7Ues-xl&d= zggKN|_fTvJ8zcS+o6l3ui z>UMGY4rQ{#xlFNK3$A=H!e11^qS+=T+8w56)H>JUzZ@H7RNGc%fJfT8DKy7u-J*Tj zK7JkeIKs?g=&2auF@)GYb_Gg>?2OqW{{Uk=i5NS?$Dl0kYS)&+n{F>;kiQ{F{FW%2 zYI-h7?s|d-mi-0fzD;Ze8EHKj;N?UCEZTn!0k(}_0|Ka(TCzL8fe0>FldD$7>D6C) zNH<_{&b#DlvczKgB{y_aPPp8RMot}HIWLYO3o|prl%ApxzDLMR^GYr=`7rOlT0EFw zO~DeWsB6T`Y}CeVU56q~W);54C-_ab@tfky&r##Djp>jFQ_8mAP^vU*U9&MKaeIZs{{buX9>ohgKWex3{tTEU}Zr`j)O%b#uf4okjhe;td1(<}vtZ8|*l`osqe( zq`1q8jcbI;MTo9aH_N-d%zbh)+zaJebGAsQ!`xRx?tBqA!U!x4IW$tI6l3{Pjr^!k z%^Ju)POFZz)JrK^Dj=49Eo8n$j3%Y~|8%uE7fh0v_qqx3rfgimd%a|Mm+AD_C_Tt3 z6utrS-a3X(+D^z~jTpS7H;zwHiQO&Qn2Ox_%#fwm^H0s$wV-=EzA(A{=IO%sZ|G2EK&<(U9kR{r z-o!5m;h5n}Vko`8%MC^HME}p+4^iB~|GS(;G(xrk+BjUXmjl4mI2sumu2-}993ixO zo>b9Mh~f&xqiYbNG=r@FtfpfT!DV#O2sv7wRn_Qr73O{%a(B6oXzqDvfH_IAro8nd zQYUkhVqFB*Cn0OsDnPVC=%JQj%AA!!#hi=~u2q1Z5OiRK64xWfX^0WeE~y%H$JT;y z1|q~(RLc%=HbS^&>d}g#Gu^Zck^vJv4*^zm`G~?eWf<)CojabV8SeI{3V-XGl(pCP zb!UsLb|hBP)4Jx%4sPgUS;T3IFZfv3tiZ*aeis$rMRAp`wO?^*64XW$jK7AAUCR!Z ze1I!$NsV&r@uE>&a%tpR%SgVwLV$*Hg<8E) zv|StKf4AZMbL*-N8*5!t)e*?Zf3 z_kg^1X@cwU3WDt97@+(?g|I*LhGxsf!d;CBPPunxbR){fxdcvdj%zRs9 z9^W$QY;|}tpV{w_H2dIyJ+t2l*$>dT+TnWUzB6)KS5Jgc!hn;3Pd`?2Z`m zV`t0pc?Q`l4G`_jJcI0mAOmU3I4RE<`ys~Q+A?Pv2OvoNk<&OA&$Y-T3Lp=}Gr%wc z#2+)wgYb+{K!o^>jmO^^V+=9k*TOvZ&ImIQA-)fx{vhu>GDHO-;#b1V8_5UY%$vwOeqS)MMKZul1c*OK&^eZ1Bb>P(g52YqDdvY{jKdKlz7auMNQO8HA>zjY zA|oWTKNi`?Zv#CWBy&FwxyQFpbNzP?G9N_r@HjtwObrhU6S9X zYAUJp~u0ClqDamnH_*?8~nrYzl^r8AQ3x|CkVP_qnklla<_}oMbK+on1C$bU>;JQa*^+-dtYH9X(xD3g)nyi?bw{~3@Z3Wxl zSho;zHR7jvx?O#mDBz^|pB?Dd3m*#C4O1Ykp(Gc+&MRQ{26K43wG=E&fL-^TrN+eJ za#sJkQeDmig!;hXI127m)Ow&OFK6Ka<51BCRuy?g9@;qx(byYHJ$Y3?De5&R_Jmp^_my;39Y59VA$;@ z2-fiEQxP_Wb{;NPvh^ZeEEER)6~sJ0(oCVPNBkd>@+7}_ea=o zBwt~IrL*z^_&@~qn*H==U?asK-42`eL5S)#6X+9_?-J4$xZy@}h@L_lkC+a7WP)JB zEY+;*BEovbe0}P=PEnh%tPS)VP#48+jJurqGp2g}St@LlHIwcUi*W;Rpmyp}ys6UXF)HBWw!wrE^>6^!eKe zoIkSN1BG4{w`vt(3@1qMYq+2|2P4WQ)p#6`yzvY?;)($dQpF#no`A3cC!&m zOIA?pN220CKnYTCBeQ5bFUVZRj`I}6O+n#@6q+*FI~`%y_KCVi3zb6MSQ9#vcxh`m z)B50}O|*Avb9PR$&ruSK^_#sC19D8Rf2<&3?PmAnVC#i^E6hZ|_HY3quLYd+#_7Zw4QKOQ3eDryeZ0XOO?0`niCk&rXbcZ`UevQ0L2dxn))i7) z&T~k>Mbp$Y#nq{$D?v+N^RXrtH44O`ovW|Q!od=9VMK@YiW`Lr5g1qs>N-#wEe zSkbhR=hFl;)%YTUd4*d(YNSQtrrceA1<}01VK1}_%|~hTH%qD6I}aOh+r5sMiTTa$ zFkuXjZ%zQD;Wyu&07%1czKf7vM^bzmQz^Dpu|yv4BdFK%w-0E0UXz(wtmLaRg$;d( zsEIk7y4fW^La@ZTqym#&a{dz`l=GU&`zW+gDylKUrqP8EHZhGhn#NeM2!gpX(22Pg zzQn6v@l$kD-oX{mfGrppUMO~eRjbG+qPkxlZ;QPT8O0tucJY-5 z0hUK>uifPsHjpo7M@MKd6%DW=;(Kio#lbhWYF3#z=t5D3wW}iZXi8>B&|?`on5eX0 ztr#noUqCt1>U|^!ouQKpDPKhRQc7y*tk+WFS6a8t)avwHkTH>32ZfoQk}zY`CL~3* zo~M7yRdsMvbc!#bC}Sy!La7Ft#cYYr*<_k6dYnXhrYR^$TApb}y(+_qjSxF6<0xlm z6f%wRygL6v4_S(sOgK*#LIW%#r^3X#^J(WJxuZP!4FrY#${d!Z;^2dZMYD9cE( z52E{RuT<3&f5Ox4N367okl*$Sv(cv_{DX7mbAS?8%zXS7GJC@~raBn~2vZ%e>x6XL zSiOQ6K3KR5)NN>tCdGwJu!fpZG(xGv*gk%1RzBdZVTxk_vVf4gc{vFW$QkqqK~WxK z978y-Jw+e&me$AW%|JY_136xJ^hRN=T5L2Z9s#{pQUvaTR@6I4rVSm8z<#R~9u3+k zSF6pjj7`x^giTD*>hdkQ)%s}BqUf0jyq=E%m$Q{(twl3kdO%Qg!b6Cm=GnX!s&!_X z57<@1aC*7JRRx5X^BNKQgmiekqZBxJJg@0xzXD_%nTDF;7UbZ3EViFlgwQ{Hqna!7 zq#;8$=VhB8heD*IgC;$mN)P%N8wYbH7~a@Km^;Dn#)iU42=6s%>DK~s)l#cmAtTh@ zrQ>%W_8H~ zLbv3Aa~VQ=MJj!3yjqgLKS$tHM*6WrcAU~-=jDF*FA+VJ#vVi8^6LqM2H$cuLVHES z{Wf-SJ<+qSL)cWBn%5d~v@R^rZ$NafIc&d`E?373*;z$7hrJoWz0TJ53tr30-t~LL zO(lxxF8Ga@-TMzHK(XJ6h{xPvs4GBs&8?alFUb1|ccLU-$$9#3g7(^Hi=Ig|eBGZ= zgjAJ5Do}5ZTUOleMM=_8MvLC*ELG{)19XW8Pz0|FGX1tkz1rMN`k}udve$BazsNj8 z53)6x=K~)>DN-46o3ukD9N}XK?6m^kZ}kF zMk*Q@$AIsR34?}!?=6J(x?fYN*2^-Gd51V@>wsSOYnY2Ri0`JjI#>SQQ?iPcKd-g$ zo*<63zW*pVSnKn;Al4g_4^Gk6d|jq>`X4q&LV%-`PrZhK^UbA7$}1{fE4aODSgg>> z5v|xD=7NanwQbWIlUCZ*M||`{bncI(2RX$7`SJ81+wF+8Tnr(-_ABeO&Qq0!xCF7% zdb8JlWt)xGo%dwE&i=fV5?AzRul-677)Os@Mgc;PP7IVb3@g=EsZ>1mw4El+H%a~J zC+wHQ*6}*a>r>xh^9t|^2$onq^Tm2GH&!ah^Ia<=qStwBpXy=4g3lwG*I?j-*4Zx< z4rF!2Th}K@Y0$~&oZ841+}0#+TJQ4GQ@}~5p{BEKHi5SBx(3!LG~ED> z_SoFo9$rZSR4z`_e!ndBGR;dbZ9cl_?O&Yw*#`9E6`FJejs|k*X?v@lyga8LY^g9y zeJHGTM+GWlurGOOv`O2uji!2lOz@i~TgOlOke9Bw@K-AiE!hntAnBPL+6pVX}I&qb9WylCTi`Xe>+mb3UKOw;70`2e0{nb$f_FDSu z&%P)d6y%ehj>svrGb2N-%ZQyqJ1cC%xN8WUj=I&w6yZ4=h@67wJh+vuG>av<$~TVC zUQrOO7t#?BncZnN@zSDruPCU)M;mj#-sbEaUk_6fiwNE;3i1MSjH^c~NQmCO7Q_8u ztCTiH-P_8H7U(g`b`oY`A;(}dt>g%ajHFek4^g8mccy3=*8#^4sn!^sJXKv;nAr-% zOg6yg(V`$f)H8ElS#btE_s^ZuH_InInfvDzcNtc0*|*@?dObVa!hCgP{+0fj(;4u3 zGt+3*Y7`SUXd+iDWy3RGT#Gdk$TbafHs?@|PSkWS8t7}TjIefM2(+u(tk%VXCnF3Y z!lr#ID_^JFOdOEVv4E8#h@0XG9)_wCGskZ7xx?@1c8tHDD(E2vWzkj*u#vfhC z6nwWwzWsZfHs4Hm=bBZrBeMQ--zrhVL8VouqkrM%5_6x1+&Al+`xqUmR=GfhN_Iic zu4i%G{-xu%GWi0%>7w6!W#PY;Bm~VwEf9MmME?fatwpOw?_x-U{5taQU;o8MhKCcO z|8F4Y{_Tc1lQmele-pX)?;tzeY2&y__w|e}^({o$rfs2!nsN z$vkrHU+r`+fDXyl=_;k+cSn)?7JbXyBzhP5s9XZ!zH>8TpZWVeX?T8$UcVX zZT8wL<;=T=yj_z9x34jyrA)iKO0U*Hr2ZogIv_>|v85vzPl$1e##G@4W+UVNJq$@q z!$&Qcrm@x!L(csVdc;}1ADNZo>5<5~|6W8HBw>|{Ko9%ILQF-B7kd;H&W|E-BJoE8aed_ zng#5A1dCUjQnoy71NbmGfO^9Q@DT#I&JA@HqTd+~+e0lVl-0XBHkA2~hgNrnctHz? zH&7VkEog#{KZZ zRSM=>Q(U22uIS+0PI%T8>y-D%4IO)$sNYZ|rB=aRM3!P^bsVvhHFOPYj>KzNN9H?6 z@r63N;w%?$iV(-ctBTBcu3{`bjw>*a=BkoKR2ntykuK(c67r8Db$G*(xt@$%<48Rv z?~wX5YWKleG*&ig}`-0~T|(x_kHXN+GXhU*-POMDd?Qz98kuhh*#=D@ldu~v80M_$q$pw5K$rn-mlGw5s;q?=1Gb0u z5+S$8x`?pDU>%)qv6534)mRTfTq{eS9i)?%OW!Ty>TG~WI}cnPl^amJXUI?+BUCb# zqDVTp`o&0_A(AVrQ-A7%pq=5iM7RMBTjbwmjI9x4KsQh`EqgnJaIHUhYVF`)d5!BZ z6#-n!1D*g4dZNo5T)u)R1GYw^S_&_haZSF87z4T)EomPk?1l(~>S{c%C%0vkJrHHU z0I7WiSxd~xIC~?`fL*_hgDtZ!A`RI3)aS!93|yQ25o5q1V4QB&gd0%|a$xcxg`C+g z2O-FS?P57I!PUtj(t(4GGaV$gl0Ty`Gt-z|E*I!7Zmx4MM2x2+i0)kQ;zV#=>JR=y z3trdLEJr&S=3MZyr;rn@Zc-B_ar(Dbi{c9lUQWw*@aE^tXJ>M1Ntqth(+U#prEh(O0J4dZK3)65p6%Wp6CM^0~g#l*bT2=GGQAe>vHBQ2%bJx)5 z#lNbOh6#j|5y3TRc_PsEF>T3cDOFfmry-7OTI7RM;QU+SEDXb(fiQzKh@JP2%2=k?A+R3jADVW$X z|4Wd+E5`Pzg2+9<0GA=aAUbMLiiJX$Ux^`pjt~RYK~G}90KY^4*FfN7aTLS26d8kh`mEM02OtZ`42{+VoLm?(!7T%u(*gk@fOU0}iGs zJAOo_`!-EAwQ1s-ZZcuClF7SjzA7e#t|$B;jR2Y`i}k+Z2%dEVU+IQAX}9Q(QnwA5 z?T0wAb~zA~G)U#us)RQ)nC(Z%)-`}S+0r^Uy^bE(BlDdf7lis2mk)Xd=X9CvLdbR{ zmuB1961qzK{)=QX*;9qdxbC?*Qxgbgd159_$Jr^`qUdJW{lz@k$zqNw&R{~Wf!`_Z z5P3K~c>?pEu6X+m&2GkJU|UAEPVd&OdvH#4ug))R=b?CqN&H#p8gh4?LvafYGB=Rx z=Uv7Wra$P~z+*3wLCquzX}z0W?~{eShYEY?A!x#+}LkIOOjfQNxC`H}8-ZXt3~ekh!zF z^k!ZN69X{!xyXG0(Ze`~nV*Er0@tr})}ATnLqF?!6bXKQpCAUHsE;7n?hzft6?wTWwypi4WHQUA+~ zv?@9ML?W|#P6g461VwY2ryhOkT-UTKV3^J4GbC{P79iavCoinhPtqpeST!GnT@3Jo z4d4q<+u+9EP?m%oryF{dJGN^(*B(rjK2BB|M;t4Qq0IK(yM*dm$+iyWbCi_AF!7{K zpZw8Kxf*j75*R9`rRy7wN5UMXc__7n-cC}0GHSyVpmEX0vh{p}4p|4M$+(UuBP1r$ zhzm*26wR1TSLlsuo`#rv`&pUWM26IhJe2f{o-!NFs6^u0Sj-hY13{B($+D@|v(rQa zg`S6Km>)N8BQ}booj-4G>twoMJ2k1YB?H!C5^6Z?GLfwtWjs>xLGAi^v%l9-{>| z*UnfGCB+v)Gt6}y&03Yxm7L6s0-e?xqbwGjY)L)A(x8JGxnK>MA*)ywJPjQmkDl@q zOFayWuUa!%LyoW)U?QHkhOZN zQt<2S-$Tf#crym1+24PFh_M>KQ7Y2(o;;dt{8Ny9tbRf3re^|1l!;>FxsYoAp+(0mm-mf`oWC zGQ-tsNt(>X$UACQY3T!Px!dUsJ1V5-n_I&?GKr*7T$xML1Ee>jTe)T{+)ih}%MlQd zW_h%IyM~lAi88BdX~!Ak3dD$7cj%$T0E32fTaB(nG~ABysF4;E30uAj`S%$cv~5D; zFOBXR1i*D?-wH_9zfFd9u3Dx8{<0h1h^+C{d2gwSb-7y6Mkt~C-yuk!Q9A3M{uwC- zi_~nRw<^x&2p%;{b6IJpicy{XcC5v~NcO&P7b5i;?{xGP-rits-Hm+XcnwNeNcjXa z#gR;QxIvynwDo<6fxE*UZ5Qf8&h}_Et0M%U;$%v(As`+^h*;GKAjZ^G-ep>@F+6xb27~BYtA4ZS8UDB5XT1*W96lV(x0+1k7Jej;z;oL0bAuWs0}=) z(A#42Fz0#RCUVqjp34~XEqX7WZlS0tr%Inp;Zl3jEj08Z)+1^)&jmI@&)-CZ8m}ab zV)sC=BTAfMq4P3jI4%fP6xM$JG6a!>=i7)9t19XpI_Kd3ZbBe+I{TY1HfE@G zoU#1KMnYfjrvNg&Q4Nw5a&P<)LGZRv@7_3~*Q8d=&7gcTqB0*LPMp~b<0v!B=ou)v zCi7!5x;O}9bkLg?n~YrMjIaCgCKYjuy>ybLF`UE8L^b9j-71Q$8P!B>Ex88PaFL@si`S04a1B<)8pLS;<%u%W ztKqpcX8r|a-sd`&vM_dYYE?YE3&z~Ph}`1@XQgUZy6JV0Z=6OgXM;<^Ebf<(Z5;PT zY=clqcG)Qi5T_~WEQVzQvXNqLnq(~Y^Z-PW@)bzsY>KkSvG;bOIHjUu1$J2g_PfMzvn?V;okegt2s@Ij)D8&M=VCYa;`V}m zpU7Q0f|5a$I19#|Bme|3L#~VtBmX!(o%mbVy9>xZj(619yC%S6h!iI@Xwcid zqTkIxzHuB09lvmU_6lOe3GYn|*~Je=kT@+Jf=KpFWFKdJ3wPaTD#m6Q631Ow=2eH- zc*ioEv1*W2fF04{sE#<^p+S6u*bjH)jzW|;Q?>@>pwCq6l$(pv;aXyxV-Y6K*yGsx zJ`TCZiIUsg$BS85Wtf8iu`Hi%#ASwgT~v68xyU|FG}CpU^u8c09-o8|ah6~xi5MK4 zIvH8Vk)ByQR`gCw90Jz!&OnGb-A${7Z8h&~M2RyP6N-H;?>yum$54qsO(g1Bdeu)D z>iNh%&QPYYS6xjG0~aAi%!cSzAtNs!vv<7&QDQ1eS(18GNhsgoW_IHFgnqB1Y`Ws42N~9{48&iW9tZW!keq+8Q;_8{CT^ zu{GwJYCeD%apuliMO1p@3?-|~nM=@rL8v|h%KYp~woKQ_Y)$`&;%?3u`iz&xHsV+0 zGAc9{p6aoIMek$~%5)$E_a~8ipB|QT84>#MkFuT_(a`kB>`2I6a7Z(q0iCXkag*1wsws-%EfCejO&WqJD9Jhu6=voX!YWc zH(I$G8z`i{u1$ENbuM43&@DV2&X619o%X21+kNA;UkL3QIYVxSkWriOevp=`ZHYKh z4$T|KQl+gCYSoDDz-Ps1^f>C1yrj3DKe!sl2N-I~bT5W-`J=-T(51 zX&><^Q4kZPC1tqP5H8Y*d0OE}E6g~?IBOtI)FzX6wFn2BYApndx`XTsMsc8u0%d!x zn-W%a6tUJz2dhk}l}GF0-Ft4Z4G=5p-lMM$Z7*#z-o}WRggdNK=ss2rw!9c>GlWXQ z<_Rj8A2QCCh?9iPD;%`>tr0AVO40N;NFB(P+AcMmAV~@1Ohud|MiG^cQnu1p5GaXJ zgn_V`zKUp3>(srvm2I@&4I!e|E_*>ZM)^IGMR5$edn3vqgRW~7+!tX6QJI1nru@3$ zBQb2!`yeOezz?fj~K#cdM1PwvZz>F_ese{F8MAWd7;TlO9!pxsSK{<6^I&@1Hr$BA!;+oK+cF)B4Sj;=Z~19yb`LK z-Q^HQy9&|vPeiNTT`;=NTca#18F8nMp|3&cZzKvmLPyZ)(kEEbZxJ|ZGUu;hgt{>; zD7xA=BJJjP2=%Q*)Y;vEpd(VX8Yir7>s0!jTM_=CWZ`LhI7)!qQGjGxwFs)d3!$Qx z^ZgBowt`d&3X9F&jgZNBKZ103(fbfJDlukX6?OH_2N5$Fk4rUG$A7VtK7@#gHD}8X z`6xn0r4{j4EFI#diy#~YCq1d56g&2d4T;UjL8JV9!w5Yw1-Zcu* zj1l>HM2ZS2dm~v#;ujGmY8uuX1r7a`q#F=q#vsefiKU$NMV-)y;EMA-7WoRrALe_JKFTe5F#FOn zk1)!W3Pq|mvJE{T=+r{HwxR{DLZGPA08#of>u?RSj@uM=*?)@wQ3rYor9znwyHVcr zzzCndlZbEoAfjZ{SQwT#)xmtadaq3^LPT|YFaBtlT#d3q0>g}2`}0KWE=CLo zQys>u;Y)N;qe7oxxo`)F(He*rwbIx>T96Tm;l>dzK~3g^E8z?_8^IFPWFx#b&uE7s zT7sG+G^xoW5iY^X(F+z`cgB@F2GJ6%9HC7SaNkKAPU`Y_go}DDp}$TrTx8dnq3kT8 zjwd4Mz7eB*JWzg7E?AS}ru;tQelv00QemW-X^a&|B=!#xJ8H%sug>9-c&_iMhR}QS2K)&EMjbrr6R8 zG1xCs1)CLQLSe99Ay|TnoK-8YFWT)lX~NN@-f$?_B3#t+aDQgWaCE5^jPrU#O|JKi za%#}vDg!s-O$fM8Vk1QdFoV6~7KDvjlI~Bt#RjdS(LGFIKDQxaa@Ja;P*wKCJJN-# z7_sUf5iU6=T5OQv1g8SoZ0My2HbW znV>qWL0V>3=U)*lxt>7pq^-Z6=y*@04JSvXrx7keW2uhHN!zoC7PZmUpC2P#(ld(% zW7z#WLM9hp6QoKt4->bSCIYk)p4(K4r-( zmc!>}S+oC26_5sB6Y$>%nA~{Jx%6tKAV(`#@q;uGD}_V;g9o-@*3 z^59B-5;2oA8%ong>6a)&lBnk52$@_2P_MR(Rlg+>F1aC@ULlmrwo4;gau#YXfPWUj zlB}As{{6XB(GIT5h0B!?Ex9>GgBD7{XLGnCOh&xqoEbe2)U4CP(xM-%hKR|Tin*Pz z27)DLDg-8%_t!$S-%EfFRGjTu{>TO&vUb*YSo*|pd`ZHF)kG>kc* zOhuFgDg!&IUqP4zDr365uOdnUm4Thp-O_@Q#=Hl@3_e=8c1rg~u)zo4E|_J9bYH|9 zJo4@0Id(?(N6e_xd45i)i)qa34@9iN=k;AI*G}j`2%4P5n2QKG1RK0d!_Majq73fQ z&C#idAPH2(-03VKO4PYHKl8Kga8?m0>Y|<}5N;mT5od6Bi+eXMgc;lf%$>|xsel+u zsfQxS;C4pqwQ`O42t-MsSzv$k=rmw(U-a7uGx#*dxgYvnL>s(?M#{!9wi6I#aEl(z z$+J)2Ly*DUjcrT!2M9Fy)X%+@dkVr0-bBT6R<6vQjwn&5>-~JFb))!9L>j!i;s)_K z>A;v9!#_rt!N(rUhVTW5Gk6y=H-axlkikt2Hh?chl)=MN$HwpFh?Riaj1Au_5M*$R z#*N-9(}Iy3yjLMi0!CnN>|TQ?gCDlHZ|MFOp%SpS?%uJCMQ%i_!Dl3{P2=CC31)5< z--=*~Xpy(WjmhNgh?Sfc&3WBj2sU`!VA~YFI~5?yX7GIoH27F<-2{FRkp?#k8e%ha ziHIIn6AQNwA=covvTig#ib#X|Ci@2S;|Mi)rK}svPa)FaBcZvW{0xE&-j{3}$1~+fVHuWorHMr5)x2Io6sKMhE+?IY5VFqs_*p7Z1Q3khbbJyTq1WBSQ z#-8H)si2tK&L1Mm;4>D>cJoJwGx$PA_kJVn9?g%Lwg(RxI%u%sv`~s*uz0cvf(`D3 zIyE!bP(FcJiD?m*96p6$gCET4R4kYY$ngBrDMC8Jmd_w$Vk(6JYgq&vJe;r|?N}a> z26wyW{^p7ZGPv7?qa3Rs%HYEx9^qIu9T@ZI#upG~aJTC`vhhVkTO;av%dA>~UXY@j z{o#Fw*Jjea{#WLTd;J@D@))8MN5ye|+#opR!TesA{Gzh7k#`Sd()k%l1GWv2rfLM; z8482GNuV-+z;KLuc;RAR0hZuxB?06WD5NJv$KB=%r66}E3-YcKMCQcEr!Ivl#QP}3 zjMRk~%hvOaF?zN)co%>b@*&DnoETY(M$>#WuO!hOFY9Ff?}3q&QrAg?&Ii-edmzk0 zC`|hOreQYDA}B@rCflfvG%Y6kiFqN5Y8Q(vpF&xtr*10EG0LViRxJhljBK@^Mo|t- zO%!mfpF#A<%mdn3)%V~wWIEJk5j>Y#)g6v>d6XfWt_)@$U2&o%0AIBVN)VMeb)X1m zNbNoZ$GW)(tcvjInE}DmnoqeJKBvMmd;w)hPX)EQ*%Q7vk?;zAV-abtgYfBvSFREB zODIHoj<8|2z?2C^H+{fHh@M^-aE#BJq73OpEaAF};S9DwDbgF6Ln&-NVJj3Rb%mg7 z*mfRBfgWN9lp;kB(WEJOE(3jZClsQV+F0GOjUZ^FARpZJ&L~iN-PRGx?us&`w@eUd zLku6gqX_9uMgtML4RYFYljfVG{-(ct=7N*foX+FN#W#8XQa>AeV~ z@iP`#Pgpey}-ma=235HAbgk_nI zT+F0<%;EiT?vyi72JgvcKQa_%7sSI`3|>KS|DM#bFAuXD8q1dHyz;26{s*H7>Y?Nz zPQ#olWgCq`V~BcflkR{Q>O*3l)ldD$vK6cTn~3i{e)fYuBTIR9>zQFno>QQw9B4Uw zoSe1AAZDUKsdS5uKo$uOK?%HLyna+tCPmCFa0bS5mY!~!CEVfRC`Dwx%a|^4s8%h_ z9yhj1jzVnjfV&?JbUag(e>fIJNySHXM6tSw<4^|gSSE%#BD}>Mlw>3gZ_&|)%W2F- zF=nPHhPUrH3FR6~UoMLaIT;1<-gby#G0~pnG!!P4QLbY&HivQsiZGgD!>E`1%ohWB zz&{)1NM*F^sDd76YCjFtD2%Ed=}fs0CjDc9&O?E!DJlj93a?SIJm=42c^ct~T$bk| zlqby|JzlL3)0-WZ9(@T467`Z->^RM7x|g8<`=wziN&q=c_&Fk{GW?-&n!V+hC`l^T zfRY&9FHpx~!0#12tfmZkYf-#&oIEL?Z;sDr5UhZErI#~XwiF`(>Jg~pMSCH z(>qk`UyN+2lq*%k=Xcn2A5l`sMJexH*BBzuEh^Ctk4-SVF|a&|@G08CaIuoD7wI); zp@P4m3@Nq%t!+&g@XsN9iZ+<5)@JJ$KG+6dKoPvBEB)JGjNxu?;Tw9uZDbal$J@eLIH1}1Su+j5|{)z>R179A-s3c-@gI~p0YZL z`oDt$cyChlFTjYg1oK<9_4>AIicj{bvEq-X;p=78|O35KuAqk!{$ABIEk z*fd5P)C*yL9qs}PB7TbAc$6+;7HOeGbb^ne2q~&yY<4ZoVa_V}IO3=128#`hi55c% zQq(|6&sWbHSOW1=?1H62JxCY9@Jmf7e7TyJ!{9OqpW-M$cf8C={&FZlia}weFsqpz zX&PR51(YGhPM{((%FHL+z{)5=ibhD+b7d^>d4%^~1?%4tH)`2>qc}1<(=4bpWTA-F zCsva7!7J-rZB3LU#Q>qRsGc=P=(XpK6voVL2&M4eGmT*%?N+f*;MPY`(r*@+$8CsG zq}gHG3b9V-HbF@$zKd(Io5nq>+Z@G7zj83djmSQ(@#{;aH_+5<**O<&TOJy$hUIA zi^<%BzK@OPeMQM%01NOB5!m}wP&d$%>2^*fj+)(gp9%`NnU>SpYG^oZ=SQjz!gjp- zeP5ss`#DR&gZ-@Q+xJv1G-(XyN)1M)Y|?ukb279yO>uW>?*Bk@`}QSvFEEG3F0^XQ z`y5p%JG)SqM)wn`GVgO#ZB|A#c47WbrTr9?=6&?Y6V9QwpIO!B?I*p#J8o)ZM6T=q zLcz-eKi!#2+=Mdh@9V_8?ZIvaw@e_kq50b;5ZX}q9SH4x2iRBP`SA5n zj*tF05txR*y9Y57cl3qwa3QZeo!B_MACVK+u<70ZjF^#+w&{U~Z>tu~W_@@fK+T%| z6+yj&RPUM+Xz)}rTksQzn)t|Ftk7uyy4IC#%7F4|#7^8rc1H+fq#m^#k z;&DK?-Y__R4#B-og!kF%uE2986d^6A*Bt?j_;d2aOJF#?)h1p7!|APo5+uH2*0Dlo zP`Vb%kd_C4*mPaQPOBGUh`Jtvr#0f#D>6FX0HM>;d826zIU6H(;*$^n-3&oD_Ff94 zv|ZVHCR-XU4A_>T`RP>}TEyDeRBU7KBabmvGMsJZ#wZC|wPjwm_zDW+?^)yNgpO~^_3y8u z4Bp3a|pkMaHm}(g#wNN6%YMpWzX3ABS)=9L~fhdyq zVXl}W(fh2;VzxvV`7_N{ZiaDl>mU>;ZD%s0UX>w34rQQy&{W&0oSjj~G{*DlVtvMZ zgO!)gM^Gs5Q_L}2s-5RCQ!p;s7EzM4eJveREo4kbS3)_`jtltBUl62*w)8hK@`SMIC{n zcwaq>>0>&gSc9pfQJl10URN9=ruz0glf(?IzKfEKPmBdeMp!4HSZTY!PE*+et?!{U zvnNJLz2dDOpk&^;Xb0 zWn#!j5#IZ9nyL#uDwNs2`>N2s#pc*9{G)DqLzzxiVxvI| zxzG+zO`srMAu6R33i1pJ;=d!(r$!p(YPC6*u{F%|C`M`xqaF>Vn58~iv^30%D2R6= z8($0U=_p=7A^cBCcs9zI-9fyL(EE5#x;>#Sj^Ry&^}c)Qt9F~+y^Xm3X8}E{O9=wp zj^N!15FpY4ypIATJ|aYP{0|X6@dk+O@E@T78~PeNJq}o`wP@>~9&8lh)%-sY;g$C} zBb}i!((S5Y>EoTiU5IdHsO251#(;K&U5h9oAnZCgj#52!5RCaFMH=I*JO7_hLdom8 z-V=*hs_8@_wN{f(QB~;`#q6x23?J7Rp%`rSaZp8BChu!L34uw&ogzT#FVfWt%OJVtL1Ham30t zD6XbcH3hluv?7Y(J->=4Mx&Z5lEbCj=#8B5D%mP1Ou9O0mI~QMGh-aGUUeRcVVt!7 z!aNegIBxw#6eCp&8Ln5e`J8H&##pvyEPJej!ldeQbJbF-Tv0R9+zjDWzJ!8!?;pkK zH{?cg*=A;>UMz(gjatdbl)ce}ivZ2C=>&^FC#tf>0oE;0 z1n;vBaT>xMGHr#Dc%Q(FC5dJ9-4%)R7+BT zol$^PCl+Ic?0B(3(S~rEyP_1S8p9a+sNE-A1n^ONp$Og+_Bh5+Tu(H@J_w(xDe&fE zjt&V6DfUAtyqD?XD4|>(FTe!u02IP|H9L+FwXE!w8N^RDn(3Yz7%|<$Fbb0DbiXS| zcTcmL8866ZFA6A;_c5k;P18R3N^?k4Ib$fwgeZqp;@Fa(ffA*w9QPVX1x4|`5*w$T z>ec3E(w`lS5~RA?z>AU1v3j8~MwVjcI%-a|G@X1J_SyZ+c_fW}UVX^CmByG}A3krT zF=p9Ep)}rSlH&BE&gy35Wcyf@$@>i805Un}+{d9j-bZc+lBdVidk)H#>Wr_`c9t3V z+<7Gl1i2^88%Zql@sm-KR0qpW>)4i}PeV~A!cZ)8;xp!*B*xVEY?Q?NMBf0N8lt@O zP>xiWIXh-zpD3S?!c2srSmw(Y%_~X3qg;ZLq&jcyG>|cSz6_<92s5!yqJNIUc%MQY zpzm1c(!WGmQr)}hG>&fY3YF@?jE;8HAqdyO zj5|@JiDa|2It^nxz4SK}Bh@(5eroAClp@uwGK!8v?@719XqFa>d~jpUDp?@QmvQesla!L zpLSzu*S*L>SeK= z`agv&Psb(BfQjkaJuKeSa){ z=qV29kEajaZfC6ZVhHWMU+$;yPH^wA@+Bq;-(l=aA-?wz)K~r8Hopvt;2oy*C4$rR zmzyvNTs>fg36sFp5mrVCyf5?C>A+xBdhgE@J8fw6zRcTZWeit)GJogbxVjQu436HH zc|GAA!{eF?7>38h!Rgj)rP?Z$io##7jSaT9Zvf(3?P2o;*C7N=yt?^fy_g#-6=X8V z^%2?o`4Zpij%LecnOJy3MD-55d{H}B;Y8zZg1FxEcwgM^z+|$_+o5aGFrx8bODDdvJ z0XJhb*sF`;91wOJ_1gFmOpfm3wqtRyF8_=Pr1?J3)dN3HOefCxTS6m9inocTf=T1)TnyX1G|%Ra-`${^KW9 zgj}^=&s7T}!uy?wA{-c_!+RQNt}0VVeIL>N{axR^)Y2_}IN<^qR(L83kfNU&BmZ0- zt!L$u(~nSw6kDN)Gq*k_1Z7Ck5G`ZEPf>t$o1s>(%4>i>LkUtGl@4xYE6rj_UdQ|eir{@vsefDSge=za z@mKRg66-Me8t~eaC8b@%N)7-pgf_zKW8) z%oekVKNCM~itoK#*5PH$9=_g2a8B(XR?>^9z4vmNH=tum|5pVKQ+n^CiT?1_npz^G z*Ox{M%}k+GfH&Trz$Wy*>g+E@r-%2H=4q7X^AXd?(L$wA50{DZpC|K~c80K_O?#6Y zX0wxp=`O@nn#y)@`JzRz*k4l!U=cgVN9m|MOUVx@x09iyJr$Z8?^6ID`ms{Rjku*AaImR@dM6LHlXh72I}-n z*MTwOH&a8Tt0c{8T^v|r#BZg6SSVJiwMM2+8-28+IU2?uN|fNYz9YH8D~1;M4i#`v(1ret6roO@07`n9{&@TSw_6U>ouBf z(gUIbr-nF#JFzxSCd`V)Dr_KB)Cpie6{>Nv(kfHJ*zl||qm3h4)YhjT+8CwKq-ax` z#%x5|b6^wf_{U7XkgJO*fGc-cnvk?)ZGk)zAqVdO-CDM4d3q8@80ImEH+cIM8yV#y zgD94j`5i!KMB<%fthb#N>#O&OcVsfaT8_({>;aEV^QEskpm@)+(%2$z5Y+itPA1M`$y5N7N6wZZwxZOA|Vd?8|9 zatGqXuZLwm@<-$!-`UvbA@?9e{IJ0}|F|DfwvFB3)_KRD5h4D7(~ZRK^NokofU?gs z{)$lX4Y^w@%lzUA#EIWN)_KL#h!Ee-ob!oi5hZ>k#iPGt9`Sbs`f_Z8ro_-P$ao34 z56~RVLb+ka@vkC6{O0J+NMQc+4@B8MwwAgm#=PgBh!MXfKu`Zd?(xT6_dMs{2s419 z?DLxs5F>tA*;$|m%l$8c#P5Jz5Ssx{IukYl;(NvpQ2RX?IX7DXakhzX!u;Tj1XvgW z;;-|2O*a=s#Q0URO*21<0P)?Ib$YotBE%1j?9<965hA{abWSIiMwHc}%&VTw7Ymhe zIsS($(1zg)KN7o!Tlz3Ccc`q4Una(K=P=Uwb$PgWR>Kh7G?jjCWxokd5Pti0B!E^5n^A^HHI>eqeV;C92G0-~*6m_Gws}uA6 z*_{Fbx?j+$dm~3S*IBv}N_-DN2diBvTOPIn{U>>#dcy|vKLmuwg~h!^aR;w5IRc@Son5F0gY(aBraC`IM>@1KJsbC=HY&XfvV1|E5)lV? zq6Xi#OjfQ~Zx;Dw#UJV&HFQN{bo?k~M;Z@bg=3)C@VHCV9+*E$rb+wujas!4?13@f z8;F-gt->t$jPe$uBvGp=c}K0@LA)et6=u`tTD^xTNz`fsSFQe&JYK#~YmUtwgxsNU8>(yGd73`m|8s|Hi`j(6tqK3OZV2r-CU}`{y;y#udkYRxzN1#FN zyi}~v8J})E!VR<-qC}0SJ`GfAG|R@&%}`4qRMaJJAEf$Y>p9^M#QMa z%s7a}Y>*|3AwP?d3AZQRQyx`!ak}9)!+s876Rv5YI65XES3<~yYf6x`T;GtelMyyy z%Pm&uI*_R9YKWPz)ox6+&S})EL*H74d*G1&0 ze97^V>8PpEw(B8uI+doSwBQL2uJi_o9F-w3ex+d*kKs2)_=GzWE!r5$-V8Alc2hO8 zCvAz4QO7G|X!&62EVf3#s9cFL02`(1s5#Vaho}j+W}{jf57vR%f~F#7!fvrK9^|87 z#IGP?(z+ebt1(CT#jhf2RQA{yE!uu_os$Be?vOk;MrT%bcYxz43mVdw{;G*Ne1`siTR$xja9BB%BKlb;++dPWc{>acwu zRWnC`A|geuxck>i%{WARl@KbS_OecHstA`*&0tbfN2r8qW}VEm5H50M-@nZ|m!jxG zJ56S~Yy6@SXCZb%y#Oarhay%&y}%6jjzFZyjTwK9S|&_KBUnNK5WlKwnJ9f55fcia zJBTSL(0O?b{kw1ipQfINWx3~T=ija^8HRo6tAW~AzXqj7GjA#ih zx!dPdmm*$5-b|lM=~Jl75iub{#i`R3h?UUjXPGixnI0HUm99dtgxbwDMY;wN3(0i) zex^phMJXarPSU1JAy~cG@KriF`D1xnbmOQxFtxeWf-En9^P-Vk-)^qBFUBHYY&|g= zx$qE$(Q&er)H7S3o#8ne<+f?kv9e%OjA1WTu<}q@Wbg67bc0=vV1rh$L2tdQQ+a9< zYOUZEh#BdMA}ZKZnO7oK$K}XC6eGKuERB!u*7nRZ`OvJ_Yd=hb!G^Bb#&$Ymae?!EmxqH72S}!!lvbA7` zh9RFr$Rr!HUM&SX$c*;_;zez?^;^Y8jdHz;&iOI|CaKfL!L35!5UJDG5His^>JMwP zQr|$ps7Rr2rOwROva`aVkul#w%p?s*&+^WA?;u{1?buQ;HRpoucZPfqA(K=q-7~9# zPyY{MMxC+sZAz7dM|6w-Ax_k4fj170j`N)cF>?}zLTAP8qvC>y7qvj|TQk>a_%Vb_ zqQPJk{5awyp+@KEw;19jVIY=KZwW+-TIuv{FxzOi6hbA@STM>hgE&zus=igi(QP>d zNV=`;k3+LP%6tW_zFXzAyFQQ36@28Q?BtNZA%!h z9k_Fp99EbnkFoxUSW*6|uX@d-w*i6`7)HAX(V|?hKU$?)QGt-Kjr$QSYUJ__=O|fykCCk{8-G56lZXL(dOMmX@gshG=|aI zEZq(a7N8ksQ=GCyyK)Z2AThpJUSn2Rn*PQ`Ey*N`-D&gTW3zk3OlE+%SpU|3qXo=P_toG%JXC!a~BQv~N#&ks01_cWC@Ms;oM z6qauMKPug_sF&^>mS!KN(ho#^ZwX6(@DD28YfPv8Ff3i+eJXuVlztSJ9`y{Bo+P9i zxge1F>er}rQ$c%pSi0z2RC=N){asjk+`ClzXHj}zSo-W=sPs-zqsPM1VWo|2gf{*g zmY(^=`6f-je1=}%u1j^n#R2Z(^HXV6aK14ty?iSw z{ZUD$UF9bM?X6o<>2acTgRpe>)v2@~H2M9o^xD;^^qZpe%&>IU5S88|O8*s>mKUJX z?+BUy9hQD&Cn{Z0Xyfyj1TtT;ES1g`+9-ylk4~l11qJQ#Vd-ZT?Jx3qS9N0 zCW~R|)TOC3Cu;PAu=GB>EAy@=lpnBdhOCwy6h~y^sTUT z!ELDYmxA`4uypDwRC=?Z{U|K`-M>hxg~oNx(|#35^|{rF_EWR<(%Zw*Ro9`?!$s*k zzYb_mUXe;q7r5_*rC}U+T}#j| z8J6Dp3eh$N?b2cCt)C{^$7kxCKO2_bwgQ#T5u864mR`7+l3CEM6qa83CgI*Ia3_bQ zlmAJj4~f$IuL-nqK!Z3BA1QE~e6bMd_|#>2}|v(kG74Iqx2p?szVhJ|b}U3QMn6rB8{{eZtazokFEkMd^)U z>4R5L=?g-t-)W^cQt6#X>r&ksmfrVmD&14ae0x~>6GeNQpuH;mVWF~Dm_e;J`|Sz;x|;fr{Mf(SbE`HDt%DY=<%?0rs908 z;QU%x`hl{Xb4BSJVd({DQR%NlEBxe!!0ML!FU`8|Jx$m1!(r(;?^0=2l+Jf!K)cV% z^xvh=&}nxFOCMjDN}H$arALOPcRWv=w?9=cJvl60X-g`-^?1GXmYV|HM|P&to95`H zw;83kh|qhCtqVzqZ z^a@eB!0%*zuMwqnqx2Ie>h=ArQM#WfUGNsk`4CZhiBbBFDE*^Ry2M-^_hqAWO;P%u zQM#chUEudpsxOPuC5_T)qI3_VbhaoxC@ejFh(MO332Zn^eIqPgXNYX_mGA1M%iJ1B zwY};K(?wsH9G0H)9?>2vdf8Z5dh#TqT~yG%7?ytUAELcp(EcwhowF&G9w++IuD1nJ z{ct7v?;@iA9uSs3{|BPomC~Js^*uB!J)}jYw+mgJ6_)P!5tY6zr20)*`u!KFG%Nc4 z{bA{2FHz}CQM$k%0+}y+hf4PloRDILWTE-awYwGi#Q~dXpg}QEJ8{0$M0InPkEwGm{}RS&)HF zO?UN7om6))Dwx^H#TGr!-Qu6vemKi}EUdAm>j?_Ee;lacf8Pr9OzNj{sn@d8#%`*W$E$)tY5r^*wm`!asxbHD4Tl2;@6bcpvG=YGbex-0*E>V-a4E(qr3_&)W` zK2`4e;I)Z9HT^vY*&Pq_sXygYWs@uqtN7IV@4K>Ye~(Yy=Tl{UpF352>LWf?7V)^4 z>r;Qqr^>`PS2bMff_gb_rn&2!h4kDm-cjY;==}}Ok^1=F{1oHUb-2y=I3Iez{!v7j zd}tYQ6V*&#T{U^$Ij`ue*SrZ6N>}UOcYPK-ofE`AE{I7DHkZ_4hcnkc=*fT<~Fw8SG_jTgu z)eC{f7FXYak957B!CCACpxo9 z4oQ0VuBpysZ`bs~>?A8qqrD3YKfCbKx|}TI$4;NNlb<#XqB)L3bCb=TsFXYGM_+yA zZU|(x`wo6WB74V!PGf->Uk~m8_V9SX?jV1Ta^Xb%6g-UtK=bS|qLJr-^T^&$WDJ1p zxno3z?ey~vTV|p^C6*)!N)_v_bX_M8*Kf zDwvyv>X3PJvq=WwEkwuw2$ybd7HHl6FwoyA=H?=S+TH z5q8Y4{br?m+_XMCW=3`2G`F13NmVgODWV@9XN8bP{= zNErZWbIeG+Sw;|VC1M6Ze0a&8Fa%uJA4iQnh{>q;(MFBkctbg`bWS_7&50A8c`;G^ zuHkoIz2X6OO6;fnVkX+;?PEcuQNSGkmo~>|jRmS$qG3p5P?u0G3_yB?+8j#ByTdH1 z%ZQ2rP*td2c~su&vgocPItDXsHj+UuRcaIqXAg8-%&|HJ!@XrH}vbz zf^D4#(7nF-0|sub4qiisNqt(I)LqpiAq595_C^aHz;E%Kh?yaT)2iK`VQ!MPLV>EvT zV4zxU3uKn5+B#k{rJ6*?0O%&h$ycU&XHcFXN(MlAppvzT+{EOLh9dk!8lISijs>0y z)`y!~r`j0LJtTE~zEjg*ef9Apv_2of-zIBC>vM33QX_)({Z(b_%fJ=ub1@o=`YJsE zgG#z_Q0w!ZqgEs$FZC7CjmuC~P~BErs|7#$>dvEd!MIJg4Hqnbz(xfZOb}WHgbWq@ zlU6|m7i>Xl={u^`9##ql6^+$UEZ}u#Qsf|_QG1Dm0gzO1Vi_KMJr5A=BO(Tr|B|aX z0oDVk|47?$dadBy0dv8c%|c)O%X5v{ENHV?pjB2g8v(B&!)(s|oJgXY*=UOC$w|J3 ztsbDD8B{hK58j!LMe-aXVNls@Jd%vrSVYewA_i5>W`Sm7p*|kc7qbz)R_H7fCN2)1 zYE3qE$Bz*;6VX?l37FCPOq~9-WoT9vhQ4|98Y9eWi#D$cy@fnz>zy3C8kcHQK@7l2 zbLqW>D7vggIGKr9RfmWf0P)gCp&?$ekfS*?n`tVdLYDx9`$71b z=j#vq7by0O0fhz*d$?NLLxsV!C!78zAYENUMKA!-w=LPT3&eT|_bN)>$b~wtC=coQ ziHjE`X1wq-2O#{lL5%ru-Na{(3vFK!7j*G;S{D_(j*#p5aSG8y3m)}4cH0<0bQLBn zBdBy^;1e`ss!xOrfUv?Gn1?I6B5&Re_(X&BjYP@-Nbjy@dm=n-fOhCWg{d29hT1}$ zQN*X4ryBE(iTN{g&DdIyOWfJ$O@OP3DdrR&8@(DLY7)^`KldQpj7%IqeHpeH`=eIr za4e1hjT4sn&Dt{K=CVZKy4x9&FC3~D(rYjPH}}Ofw*-9kMi1`$`ZA+M9cLB!gnOaLjZkDJnlTe$VX8B}*0XeC`ijV*(c82}Co7suNUy7w zc|HWE`WkB_1F&_pnqEV!qFNo{v`Ze<9%?rx(|B7qvP^^8scq@M*q6JY(UULt16;;e z&K8ZRuZRIUyIbolK0mQ&u%`Zb9#oGtj{#_pH$qE9BI`d!K*EeVNmLAgD&7}e8Ycyono;onzfjV`>uc^}2@c4!TIaaE3Y4xq~pd zO@;U%%9N)MIaH;NI~)N)8b1v3dDzeB=|&iUvxmmbSuhn+g8uD9 z&j9E<%YxpUa0va!gDJaa~^!%MVRF_V`%ERv~X{2foWCh?l^Q4^BrkBTtsai z_eVU5dtlaQ;(||bpglewJ2qNm-Hq9>)v5Y%qGkZp_m0JW=R2Y8Iz(;St+ya!GL@Ro$;Rvi z-LnW7A2ojTRqrm?>T35bKP4Y+G(J!q(LII;H6GaKBicUW)3QqdEVgMeX)J1iT4DeW zDz(rSZq6ocv_W^8=okQ9r5?D2>(F^yv`Gf#3y6{dP)6657AeU(;2+gm7lTkQp#9M* zoGDc5RZX5~PChg--R?Au`SH6Z-`Kpv73Fo3#YCAeU4V8NpHd!`$t-e>5T^KQZHm<_ zBnw+xqmR?L)Gtz948TfsT5s{3)J0xLjfg~s>VHsaT996Jl|1BRyMy;c<|lAE;a;2y~gLiMwLdKxV|DG(C_zY{Z{H}l?gyviXwiE zTYW$K>Bd5PeqypSGuLjO4otzM z)J%#shF3fX#&A(Q(Zy%M(I6_d3#CM2GZDyvNxV~=M5W$uDHf^x(Nv9JJ&k6;0F0if zU=~pvbrTCWu65*0gS@LBplMir*eqsB3FK6Af|efdA54rjhVR=CW7v?5bl;wcO0ydU zBKnGGq4f7^rB`a23(zylHZya?r@oWEo<K{}_}ku)T6aR6kCgTCsXDR`U3kQE8ha z)m-AOUY~RiJ-*dznB-!0L*$98D+kuX`cMRcrFBK1dU=8pzAK(wNLrf=f>$W`J001h3$f@Me=8%fvRp#bJ%nfS`x3 zG=_;11@EdShCi;=KNkCUG`r4t0k_7h{*kI@0OlSXLxp#kz2Xt&)J|U2FH-GR=2`hx zn$fa6E;u5DeXCqXTeW|M4g8i!ii@1^P^kEOstncRgy9^JZr6WPYrZvp6d6AsFeI4O zGuWat0Ds5EpnH$NE1z*r`{Y;s2DNWRpObQ>ky6lr>sjJE4@1f4>o&*!1*^ALlCvE} zU?UsA!)<>~Yp>FRktbaowI^SFmi3bX2(Q+?w1kUI=oMqr9Fr0CM?}N`h$_u4W_j_G z03otJAuOb9@oz~OY@(WAN9MPYzKkQ#1sZ{+P5)B?o`9EW*{tl|>BOqVBld50!>Dva~8S)nOz}G8jSXFe<-p)wS3}XJ7y(N zpheT69!E1^0H)_E_?c2Xb(?b3lVCa{MosD*NMeXS#v>)XhcnQOf^=s{7jVz><(7$B zB#Td-2vYTsr$=L|G&N!|M__AnB7rcc_1c_XFcxzv^5F(C1L)~1(xMK~q!@tp`Ei(3 zk($7$f<$jtLdQCqmD5~Ae$-8+=C0+MJNeaDS2Wn%=@0uCNGdgV4v7X2RbQf2U8%S0 zph|NWkgr}s^)Ue9m72RO3fl|;q>$f`7V0<#`MzL;ia zbPnK^<_=&_&F+L9s!A7BS3Jho>`+qDC9jX0A_uJNf?Q@sqJ-YOH~8H`Y@ zU~(EIYw8=QQ7cw2#%j9kO&sfV+8Ua!&b=CAtS&F$`N$2eOeDX9VywK?bQwZ39S5L= zF27|Qy39k@x(s8{IRHNO1QL=gW45ibyYb?)M* zGlpG6{~4lZ0QBEp&8!39V$|~OOj_i8KTSGfN0nAWVMiw#y%UXN?Pj(YU}LRWU%-uQ zn_Qv6 z7Nyg;;GCw$POH^LVr7-<%>P1-G5|MK>yU$8^ja>-p#3+ZWdO8QZP>wfXfqzmB^%WLNz@F0 zy2=s0P<>*)K;$e}Wcz$tZoy`%4a%~o@T}eHBWBJ^apGYkOg9tFnDHLr%fZt&d;yTd zKfOfTa8;8E57RmI=J3Kdaj<_ryH^aL*D6Q&a?nM!xg&gn@5R(^Or})_qkfBkRWD<# za{pC!+CjNNqzp!VF?yz|gHaDntCeV>)>NytstsqM+rg-h?JMF_uVhta0EViL7Cdlg zN3Kuh(+uMOLBtGzxawfk19yls{>i5s z9la6*NVUq`SO#|8d>u8y5{as}h%Pf3DaJ~p-3+ve&NR9|a|>p#he^{~t#zi+Q(_uU zadYF?C1uGjMHBCVlGsXTPzDgIiGudut+iii(R%=%q8$YMiD1-IX%P&-?o5U8QVA6~ z+c*mRyd1`BM*T4D#HwfPO6WFwJVxMlQt59olD>Kyw*;*VqwJRypaoP~@XI0B2%+_# z)>^OR)^e~#(?OiZrCv|%G5{-;CLaROuHDcLR*+(lejkxC0MbhBWB}SB^^H}KY7oDf zh#3HJm19o<E~DQa;13cNI_r5F8k%@ zKPe3LG1?84W%CthxhoA&LdbqG7_rWJ%u?_Lyu*HTF+t)SaXK>uR%zZSN)*OOAOY6# zDQz8<#@ta11*-^HS2xm6FaUE^=8X!Nb5;=I{B=L1j!ypPl{XT7l>M2vgZM!-ro86PG=BZuXCfB7e#v08^I9BMdFTzb3%*MbHFxa76vF)orz#-MG!W)V{iUn%$SQGx-X2#pfHMnth|$or71XIxa<1 zr2d_zIM^I+SuD<$m6Lkh9|5}6;S%5&^{Mj>9MRr4E|wmzIJJg=oZ6mVVxy-{G|)D6 zn)*h<#*}^}iLo`t%1w-j?W>QnqHQiFq+9Ms=7gD(eJ9T(yQij}LBo5}Vi0QZs8Lse zXcVq5rtl7U=vr^SF+0`hPN6LnN;hO9(+z0!lEW?&a6DsCI8JpNb92~=Io)l{G^L?1 zh_*yhAQPQE+3T|d}hvVdxB5R5N$d7?3Uyjh#>bY~izz7xf4D#WLoZZ}zzy(TM=m355b25aj&rV1gX-h6jq za(lF-=M`G+&w=5Ky|^N*sY% zeV6sU;^N7-kGfAIvRQ1Waqps}l1FR>W36H7E%&X9qGP6w101dCGp*U<(m80%wzyy* z61XUym|k>Xf9+mVNYtPU!7{d+Hju*Bo)0H(61d4{7?79h3^iuR`q46XS&w`Af;#JE zIMtQ(_a)Bw$)iGtVI(n)8k$^DjOy z$v8%}OZYE%!*3duLhJC7j3ZRH5Ny=-m5djPwqR>h67zcMsYEcy!98sFPFZ!7Zk{Qd<|DCK!Xu*e3 z>AEA#kmw8mU)m9k3rY{!+h@#NN&AdJVkS|-1Urec|BRVLL1rMlX;FIB1645|Jy2bJ zu({Cf9O_IFmTL-)7x#8($TAsf5sNJACO@sDJ{9CqH$am-RyD`kRMHDCYq*Nwjfo|X zm>-zbpd8dmLSJnSkzy#BBqEEzQzi=3p;cdan@ag+}ybZ;&TD?Sux^bZ#byRBmj^PO(3-E2%XyT>{h>h;z0n(%1o+{csI_PLZ~e^3zAUpWw^1`S{K zPSA?nI|t_8G2fX(uhQW{(;<{?D#WLoj&$bGmkhE}l7pdlTRq)v4N7SQTVqM-)_bHt z0ZlO78<%po8RKH}WGA1HZr+2q0)np_%tu5*>oalb`n+Vm!P!`j;(AapDcFSi0h-t# z_1{9u<#OLD^@z}j`_o*OZnVt^$_3@{KF%=nJN9~VT07Wf&F=^7uAuHhUUVap0nFk>?s zWM0uZ)5MeS)TRM{VJjP(UbrtC0TzPk#gPy-aM}4BM#iURYh3#>m^S94(~Y|mc+A>u z$e7&6jKKA*Me4JMc7qNS6NI&H6Y6Z913=O+ggwe&6g&(Sx{2f(GqJ=$^8}-$P305BdJtI`KbT3?!xS>%nOSS zHx=U3O)^7?tjRqlE6^?0*Kl5${f((s=xcJZ>4o=D{Ae3YHXvHGui+ zls#`jG<*#+a&_E0(8bCSO9ZVBo83*_YuFMj*3xGhvkQ$jhI~^k82daf z_MURqWEs73aHjOi0|rQPn*-wPNLrC#ZDAxsnrzkPT64`dEZz94bzxMxWzW9kkjapI z@$K*Y+W&kltJ5uutmbr*2L5^SJ3Wssj-Z~lXi)7o+J@&Zz(5Sh^>YhBT)O@cK9hS) z7NA&cqdkRlfM(dD8*LwvuDQ)60`j-HF556^OD|aW!Y~Es`%KbEs86srH=tX!e=&I2 z)k$ukn0L)}(blpN<_4E!%z3()tWR zMtU~iJi3$`Xj*lrCh?sb^;rUr^4w;P=o9<|zVUL9 zddRk(!`ZM0p#G7NBdz{o>Y=pbT*?Z4#=j77tc_oUG;A|2fW6oIcacV{LBC^kE!$=~ z@ojlxHEh~)_1{D^yutP}ena&;*-C6%ZJT2456}H$pekvpcaF}LG|U>}DnfKkw4X5@ zN+VlhjI@H*S*;_iLYusZ7R9%|nz)Swm~DrH$Ys(zUlC zIXNPS)6lSA8|#&10b<`OpkVIe0O&!HXrCxsWQW68o9Rp~w9)4xjC4~WKHYSir6)O{ zvjW9ahEo-w(1(L$azLKP zEM%fdu+a`G3Dbv=WLC<8a8%ajc`btx7EUc`toh{h5{t|+k{pqOz#AQj|-)lmBO=#93H43F+v2@ocL?^pFq7f^OYzfCq3?65*X1zWWm#&vB;OI2%VHSW5 z7EVj+m_B$ z=_O9>R1?nC`ih6&)iWf5gPgCL?qZWj^k08tZykEkILN)%7 zG#X1)-%fA^$L{y-420uoO9G#+o=1>_+;^-?8OSnl%bxoThGWDq%t6PxmjM>%cfDiH z`DQguG($b`t%I!#cB}8v7Ec*C-=tu7iugu$tp}>(P4Zq<&60$rILaZGXZ&H}eWdCV zRlzg*o!3#zGj7kzF7ZxLog~Bo4seK7JAIH!abc_{#`md*34D;7iw(d6d$ay4Al;aT zsn{ES1_{TsI^2ht* z1*EPQET}hV)HX8Rpa}^2zuz*1j2*6qMte_!rE2df-Y+h)h7HwIm{!FSq@dksm~+wT zM#G+qf!wZ*RZtBZPsNDNG(7dARDGzTXp5C8>e?9+q<)G3iXwjM01BLRqyA5zet=Mi z`oCz+&(i9oBH~jYBHWn7qDvV(YmC0%?D2`_=>}&IjiuY@nvL$On`!i0TmhewZn@27 zPi{9**fR)rP6Y18X3Zef&`~Qs3F=Yw=BW8bi|U2r2G(_jz*VwrjL($6cH(RVNr{g* z%i(o9?Y059ngHcH<pSD>)&uwTz^sTW+^dl4siNAUawtUHJ^cz9Mw+`!&sPbZQ`8RH~&*s!g^VJxD=_ z-O3u3PfEA$!*a;&j^aI10OUqj4_)aDxjQiJI^88E990Q*WShNUw`+6`)6dfGiC8WzO;0bSY*=){ z?hQR;ih_jT?231@B_xR1G`;Y9IAD+cR}Czz7|~olC`)?9x9Ma!Z)2c6%*|T}AST$+ zJ(L(Iq1WnRd*L#v6Vr>J6+QM_FfXPa!4{icRxdYWWYBJj zq@-JR+w5+3sLWwIu{gV|yQoA&=k%@qj?SQ@j>ZOY4v>cpi$ODBG?4^#O#KsqmsP3Q z{JjI?p+g0}0^Q0Ea*xw*%>3lYwo zJ&XI$ds0}z)M|n+vFzwZgXz}kiRng*9rX!Wfsz&pu{9HGH=^AAooJ9Y7ZcJgdt0ZI zy&8nxj8bPkx-sTLquBb2u+bb{3*u2Sx?3Syat9`7xYp9@%0@s9D7`Qjn{LFEbdXKR z3l7tJUB;1Mij5=N+QOVcur`QE*B;i%$-Q%AJ33()hkK%P3OftAgDE59O@;V$(=$7# zxD^gr%`zb{1qXD8alqZ5@QT(DMU@+}k?98R|LlaWH#%D%XXO;8>9JF+Q)~1dlE(Q& zvu&kyQ9Lod=zbO=TPP$x=$R};&LZxlfETa1olcC6YN6D%dek*i2lhs-GB#CG1f4Y? z3-@}$joH#jmd^WEWP-$+k@|YV%b8DXx}``TEF^0VQiIek0*u;TJzjD@0ik5UO6~ZdgUHnQT7Rtgg_EXhS3llD2c9B6)3T%63|T! z_QQ#wmU8sqiBUh4HLcdv%|?VcA9r)VV4l$#njGO`-#*U3+nA3|H;U=+bp%i_v7xmG zRrfzNRCRz}B3G0Bd6-zOtdou;tdXiiAo+?I+tcCE(_5n=`G_P_2i5%qIk2`3;WTe_ z>N&z`wu1QsF;PxW_OK(#)-5$b0AaNnQrcD_v3WHqrGv^8>+5=P*tSB~BV7dwEFCAz z;gu!YCOfNPZyKJAr*|+i%+(Y15K#=+HyWFi3b+tk@!!VidITD?-soV|u7FLr*i;7mcS8JDk+91%ecGqD}T>x81zJ>Js;iCTkXXrz4+gzI_pb zmD?Rfre;AUZ(o-U$dT$qk)tl2_~IbsnTsG~c46iiHW0`{6Lu1CvdPW6Sh-#~I8%D% zK@Eg+K6e`+ZZ<|XLPS@*O3YZ?1NIB`xczPx%X>!rn~MqQ=6&=fP0akc%&+WYDdchI z@Lzn|sRZpTc9qN2q)oSYw?tCXEeB2ZET6G~zlG;(t9w#5P@7n=`d<315-$>);g7&} zwO&Jf6Cq~me{7m30>@Wru`^Tk3lzVN@JFiL(a}qxZsV;)R@$&$s~;eaLTw%q9&4$s z9omxAy98do`o<1HMC2m%GG6tx#D9d)htyCxJtbFg23>-pEKI$VbxK>WEJ?;Z)q9C< zcnyq>#)}wD9ZPbRPrZ*=qO~o$HfD(oY~I!)H`iqu_!)vOsZYT%{fMAs=Tf$rHk+AV z-$w1f&{ARc`K1@`H4OU=vhm)wm5W2rSA>XW`S(C9JZyY&t56IxTdkQ!SFbFv@dM97 z+U8MiY z6D*G#^U>+X1I)NI{^lB36F@g44^+$ZlCos%#?l3o2=4eOzNkes47lkJ=UQ>IoJqAz zZi}X++YY-TS$5+?$|6czTM7sl(;5wKb)9i@We&FkkHa^Ruzd@m_ z%KG*%sIKZW^aGJ98rx!T)u1Z?-ieTE7P=Oiz4}A(TG4tHTg1sh&D5C!>^~uFT=)>w ztE?Pi`y6u^#Fz_^zd*>bx-tUIrXD15$X^ng2h@n@a5`h1b#L$m!vBikOHDsIK+M9n zR$qYpw}f2MMhtA(#K1WCbhc_$U}~`X2ZH8Oj?1yv)p2=KQF~$W+02Nwpba3$oh()(I8#;C(Zyl1++|904N7Lu?$LiKV7_7 z4&#<;5kb>BR@aVwtKku(hzV^o_lZ(JE6L;JHft;J~KBg27JGtbY(Q1HzgA1+?Kk8fXlqpz(&XccWx*T`*OlAaYzGOeFvJOSv$;4-1cf3t-6}POFd6? ztuk*vb?aPmpmz{-)XfYW;X0~~@5psma!9Txk`cVfXqJq983X4T z94B-P!6qUR{4T;Qx`@$i#d(K3)LRI(WNT7%y1$^zOjXaD;!_EJK&Ais*yJKEXEEI?n}NC=s1YckpF0!0tOR*jKynboJd( zIyFVy(cOVrNMX*wO;Eu-g=cQ$wdn{ExurS%Msi#1!Ox7vI(w| zPB>&Y+~|7hiAM)E4h(0bft@URRRZEg|91dSM#^8mm?CLy_pIH8od|+~d{Fk$uD;_{ zOlxuhcQVX)6R^U@U_xZPy*xv@eUB8zJyW`_WJin9enS>HPUJwP1I+NU0XfpkZj<6= zh8G<`Wbt}9`FLbd&#DWR7Ci#Mpd2~SGa)`|B7wcP( z+=o}MiqtP3lqJ3V4l8iJLPY)p03hN1;kJ6biQB0#`Q&c-CmHq}svPjbgGsgQ&12Ri zp1ice>67o!NU^EeJS{-d%^6qs7*mo*3Wi2-Y)%3W5cYRqyCcSfau1&+{+i(#(`)wH z7bhGrcDh4gAnJ+M3-9u?LRM|Py8ES#NgZV)lx-?v>)@`K+sI_fA7lB9xA%_~#qb+X z1V<70W(%EHfE&2eggcrizi%MJ@WqMrjO!1UyVnO}-c=lpQY2)l-uci#(i(ZcIh;-- zommpKc)uGPMp)VR>e{0^ui->uOjLD=bg*xYb+|kN?KG`lwDEz`PZGlr_Zb_pSWvw> zTw~M$YF$1|_=B8eY~84j>DZR)29Pqu+LS%ALS`bQoZW#wffoT{HCw4&5vJJ9mr0)eRy6O5Nu zbORBZ9K29~9a*?#Lm$TDfWpP})j1ErkT+x_(+&G@@?)$N6fZGvEHEGgZ}QIKUE zT`(yCbkVuDBDzz!Se64EhcXy72-eF6<9jEnRv%r5k>W^C(?mH(zfe7fmg$?A4m36|)wx*`@c z4+ccMjzDh%2sT|=taiSsJYQ;OtFe528!t^c!W*_^7l=OoE>r~%L=Dn~90kL+W$vhJ z&2l{r>#j4+`4b(!B_|ef#lSr26>Ne(QHmO%MaLyf-0P^Jdj z3H!5L3*d-SPv496)J`_qIFV)WT{}X~^jb;{;F9|_IINHGi?O}rJ`D~=7M+|gqp;C# z;kmV-xeyI*%tzyHUSbKadlXpkUNt0FdX=-FTwl)DvFL4* zW$X{cm$&ODj+i@r;y@~^*}YsPBf=89=VvN*k6+qC7v?bd|z$IB$#Fo zK*M-rdj%pSXZn)%%4!m(E`?hz^YgKdm{H)FzNLV@ieL+U%c0#2UDN7TSVE~?)H6;- zT}#jdd~kF+rsyvz660mX0jnnxZr1k>?c5o93Cj3Z4eRR&E9Y`!_rS-bY0O9t=Wz~7 zuVpf}mxSI{?Ie;By=iR9J%(I7X5b$+J2w+k%y-@%nM00&bqcj^({vp(ruY`n5guf-*%X zYr+QUMe)S+qJ6%QjEQBF57~?_dW2Si`lK)Tmfftvn}4K|al!kD{2a;Dx}61Hc#hj! z1mJ4-ovyxzN#>rL*bTl`7;F)x0@k^626e@(#Igq3BlWHZs#);>`@-t=#TUPMPz8H} ztq#GC0EgSAY5LVXp=Z|f2h~no>!s^Qk<8NsR8}2g8wedm<%TXIR*w+!V3RMKOQXft zK?#U2U9oZ{cJLQHvVGdbP_d~Hk0)KtfY&}q#u{C^lIAhUr60nYzVu_QAGVAP z;TA&{Al%Z&E@@5|>U~BsH~}H0<7`ieU9CF99bbG;6Pp4W@R_*TM#$S0+ z;TxN-Fp!tFM@8hm_hZM}g8Nd7yO5qg z0p?L?+&7GzKfPgJ&>CXX+F@-U0L{BUI_!FRN~62gfZW%{9q2H#YBf)D)dlb5n%!DG zUR5Ui7(HAwJY#yzZUKhr3JuK7TkwJ_4Gf03yR3Qf;yZN$Zyq@_x+q3|8*wogG;rNp}eJV70he%Uge~IX&IPO8Utr z@1GLNZXCTpdZYBHKqG-C`TCQDz(*4v#VFpg>{PE7-mq-x)kid-B!0$d@Oq=y<*^Rd zm_wm8PjhPo)H>aiE!4KAUpqq1^a-~TTs@G}^{_GxFxhJXLQth+AWvDZ*`BVUhp2C& z#O@vR>RdfA;xP(+!bo}3Cmbe7G|vX4bO&5*F!CI^L3y%4jt1q){d6lS!kK?uxH4h; zO9VB7%fqFJ@)mL4?QAY4q?_;2nX`^0x|KLvM{v8B1;;xFq2D~Z%LipiFTbZ*v$%Oz zCaUYc(3izFxjG7D(oHn0Wu|_F-JCTU0A&leQmoDpwZ=W4X5joJ;Y52C*V}G%u8Xa~ zc_(22y`O+`-3tHKe0C{NgODXTy*E(LZnEC04-!tSb5S+t!LRnxfZT8hxNqsc|A01TDol0ss5B0pIB%bF-Z__90w!LwRO^nIh!&f zFkbD8L_BhBILngpM}JL_@wP6uBix&SZ^PtjU9?hp z(0@nJ!&NYFd2gzF2aVov@cjji8%<2 z=OJ+qhko-x2-sXqNH^byDNoFGCHK0_P?I};6!fzq*y=t`Y~EKAbptH8v`)l&H6E0! z67`(%O7&Aa2{~fMu|qL2piT?u)_4n6Hxq2sW@FAS2ADp{S(bVV;f0nO+vXnwV=OWN zRVS#tZN{3D7&y4WQ$S%VH_+S|_M-QjCk{*c$3I}`?1fw2A=W-(Db{uba zj^R8dj{i5XX%Lq^V%srzn8y^6A@uS=S#X$10C3o^0dS+S1pq>#dyJ!mH0Oz)t`m0! z%bbLJ8PHI2#qmLT(yQ-~WLYHH`7H*>)BXE`Y}B3?n@)<6!{VMCPZD>EgG9Wch=)Qg zp>~9AMfQ{>mQJ5`IA8%lCIU9FR0PaB1#=MZaf7{BRn2i%ci-{^ry*HAhlU=rz}O(d zfzSq6*A|jEBjUDDYXf5KszLC>Y$ev8FQ764dhkIC!-?m?2LnB8lue=>#U`dBWAi*( zt8(nkJeYN40 z@IYH4De0EO_8Hq-Efm(9=w%PKd={aG4p;OrI7QLu3~szAE>7l<1s+hkuKI$r?v$bT z;*!+#Vm+rv$H^`5`o=#L1M+Ckxdi#C6Af%}z+5&~x@{JNdRsJ&&n-0OlU7foHG-3A z;;8?%K(q4N(WvpYS+~(RkNeWn^z_o*310~Jrx*?!8p!%$NU-e9cIIR3Us{@uSs)_< z6fKJ3aLnD7hyl$I&fie?=7_5q5a??)Ftd#n2iy^cS#z=88%EBb-f*i0ZI;;D2DH9s z{dNx;VvFvEC?R>Kg8`nMH!*Z=$VR3c4j_|T+n{0=Bb1rO>DEl^VM;|7in%_7yF{>j z;1)QrGi=@oW#s(n4F?=(e-X+-0quJ58Z?Cxagjxt)NNFfb2aJ=onDD+iA|zdK)$A6 zCxLMdVr5y^puU6f2e^UQj{gV_nz^mcHu)J^uj)IAqP)V#nn?>H;G&Ua>N?N6iO)7j zUP&YaYjx}tjRg|mv7FdiX|q^vUQI-U>+ZqPbndEQlC8G7Zsn`3dMyzzszSy#yIOVv zj#=%3y@T`->h(lctbikO=IfHbjY8Kw*Qf_|PrXq%TTHFGJoJtn(Mfx42X~L}qm916 ze5DuM=B6UH#ftS6^P|=M8IXY*dvTyWg2o+fdd$dd>I0-T0GZk7#(cYuEwtKfh$oKW zp^k_2(PSG}({X*Z{}mj_<$*TP<_XMCY`Pd-)BP%&cB1Q}PO^1%83~ zO4l9f;wXPN`TKXgRr4IE0h*^l zq$YA|omDt9Ju@0QJS{qXh8=@TO1kA*LDeQb>-rCZ_4F_Fdsn4K~Oz;fmw;%F?}!x8>&0AYAjAwJ!dJ2xiG7W~a1 zqtI6Etxf$kjX7&(VV8L*2Xz<%PR+u6?bEj;Uj046#!MpYVGajwb)Mv`LH(1|!MOIr z2R??Qp!?N|#|%@bc=fNuQKsi`F?u)>t4e=#TBP(J#1K_#W_UdaK6jNjTDZ2(`4Sh? zSLf)dfnFbHvvgyynr;cp-87O>|0DBYc^)Es( zx5fK7*<q1nmVa&LB)HxqGru&t6|iH3xhB3sA_&*`h;$8m&pHvD6}!MC&Lb;rhAxt=+-xne@TJ!Inr0M*Nap=12FN?7%&88<*vYuRt`q ztsYFzAYB(mrR(?vgv|gnhn8j(`fx?-VeCoETAsyv*?=7BW%?Wwizit-m8M{c_JS*V zc;8CXlCZ`{q-*Z&;cj(F1k;)A#-r<13vzyjb^&3SgHu{*hS`~-G{YsNO_ zqtlHCbw=zy))|2^oKqS}mC|=`_%$xI5zar-q>S1;I&eH;;+?$kp)Mlq^?Sku&^>Ao z!h_CMG(-4y0*^TR@Tk;iVsY-=x9)UW>PljWJN9rR!DvXl3)ix_hQPDVJY4A?4QS}c z)pdjz`0((?meIgzCoTTinzknPMuIMJ*Q53}y*jnW2t2i_5q{o5-<2QH4r|)X6{O-^ zvnFFImb!^}hWOycs}|mtm(5uBtDa0OS-%@@^&CwXQManK@y&!^>R=b|7ND8DZ&lw) z97Tt^c())skF(aao3INWbkttIw>b>6Lr!rBm5y z{hpg9A28#XqoUhsyT>h%gt>Nue@i4Kz2qKbx3^^<$xh7==oja3!rNl=o9wr;ol+QX zvu#=5UY;SnYL6?N*#0a04GKHv%ey?D4nL9W<22*ybu>UZuMx3}a3^8bS$a7B%9{M5 zfvjSPdes|=Wduc*`kDYAHD#58Xt!RXF};%s7BDx zMZR`TH=ZxeA^!H&OS`D3=kjNI?%v(cVny6s$f~oU#=Q^NkYi^d$Br3HesLy?^9E+= zqh_{S!o~#46$A66R~+yl?7Itz+5Rh|>Z^-br_RhaX7Ch54-JV$vmqOqZn#ZnN)AgV zkRRL}Vr9X13uV5;ylZx%Ir)%GdkE#1lqIK^@M2o&X`82vY(b#8sz~qgxrN~IF@e24 z6PK>PIUlI6T$Dkyt$chaQGLx+dIji>9U9cC*NBxgvlb z^ues^Fhtd^sfk6p?r7 zAF}n}@JpbE==B@3da;#!RNb zRpE|Z*?Ev;-I@AXmLBS~F3W&5bqS9*Ie(=-OgKd+t@8Ws*e)H zAXl_KLj^pJcQG2mFA_q*_gtANChi5N5}Ys5ML)r!QAcx4rnu$Z_?X1|81-ueQR-2$ zV4@B~Q}UYvrp$Ht+h8bA>j!l8meDP$w`P$$oNe{ikbj4e7vmDH&9H7Nyi{!4K{2&Q z{XRjLSABmQ45<#PbRsn8YrXnIf*V%3ugXxTtFKww^YvQ&2|>jxa@L->^q8%~>I*De zsJUA*c!Nr-zQp{##$M;EI8FmhAZK^JIVHUod~>kQ@4njpa`ax-g;D7`oDbm8T{58Z zZ!ZOxEs1iJ?NwrE3rMzJ5Zqf0A;h9oT#||nF0L4FteXgOZKO7?*WSeSI{Lc(A?|c zj$RSe^YMedA5?y!ep@S+2IG-varn=2MSvx76(~Sb$8TKg6I2Pc6&78n3BH933wzTD z>{O^z+X2F)duaB^Ct36ARKr)r8q{BP-FMHNRhIe_idq)75vFd^Gus18)=**QMZA4+1%|`5usk!;?gUO=ndH zNM#0e(EH@;7$;@OAnxCP_SIe7JG(ZBN!K25xk=%ro_z4>Nlf zvqq)vBb_-E!Bu5G|E`(#1W(6zcyv{h-Ii-)B%-fodFA{1nJ_M0e_%h(5129}K4=36 zK-R#($%C2`f1^oBq54c)Zi5I&Q4?gWKtM3o3Shy}%uY4BQ|54maF>hgtKF{$gB$bF z>Bhs^!eld;_8W{vLj|WT&1rDS&ESGNdJi=*n>;C_K%s1H5R{=Lti~}^i7m*F8#cMELT#}kz%z>QVnaGCI+5(Nh@1`xs zT(@}K6#^8oIziiw8J0g6JqV`Py=Y9$5?szC{2cxONEuC2m5i{e)UdmRJyhp@AK?IO zxWLScqnA+KIPxLlI7u8O3ieB)10b_AulEtMZL&xV^oI$3fF7R|bGW;3C)!BbDamL5OMN-8aKaA!)plo zt+Ax^$}hh7ZTn1_FTVKulfzPMKZ@C1|9-3(Lt2O2aPl47dSNTXqrRKk%!%Bu3`b$i zb}&W;??us>9q9u2^#nYMocxMg6dO3Uq9Dg!P9>pH< z$!m9IA@X-##vVlwgJrSVW@3_IUO|r{3#PAF7Iyf<+75k>!sn~wr-dci)w@IkSroxY z!WZ2oJyfBW10MO}lhAV~`s&gbv9ZlZr<)P8Q!?@a@wpTFU58)_E(Tpg0~J_YP5D=3x^wE*gkoZBrp04>!r9CG=G$E5HZ+ zl_>Zo-Wu+*oo+WC=1$xhtYMnDXd!)jd4_cR?JP{U&cf16+rq#cxV<~!WN+?)ldbt$_CZX#_6~W^dY;Ju7R*scNra=9%@RiDtKE0H`mjwJ zfhJ5(cIRrxTHFJtX$oS{t};21T|DyyO+ZR(7%Zk_fI3&-`dp&y{9tR8XDaFKY%h+gy3XTSrNK?jisyIzR+`FE;haJ zh|6a8PX#9}OMz!xy+LDG-WE+uw`H0FTLiq6HU~P7h}KfgslZ@jURb&)o|s-_Ipfr> zFSG=V?bfj_cCvHDu87emW-;z}g@7^WXO@aIWCQCP`jt_^w>6f82PBQ=$RE~^?Y^>L z5wa9l;OsR^YlE1)`wtGOmICw@NGL9A0!FMxzJ_Rtt3P5Rz<{=2;>fhQ_=Z4#-*6+F z0TQMDp0%3&FArW%e(cOnz8O1j`)-b%eMGvB7AT2>dioAlUl9Uae+^W? z{D+~Ig4*M2)II{6q&cj#em+>fi85i{!VoCu>yPyOdwb|$v!fdC^*XY51P(MOv5g z+Ji{>n^``q5xuNvfx?q}N2WU!*AyD}x}dvuLg|MEga$d{*x2=`5Y82!Z0d zO^ni-QxopQx`{BeoF9B4>cRRSk-x_~NZl0yKy(BJ1ew#=RDiHC6R6kUJ~r`fN|Mxv)2%#_M#C$PoA@HIp* z_FTOl%6^Kcr<8c$sxYeU57vCt96H||1P)Di8B0N70I|!Z}xDKIeF4ZvtEs>ia z+YNv$Qo>_Il$n|)v_N3N@xKfRJ%DR=CopT)ZMeN5($%$TIFA~p_0=t$^SY!gIlW|$ zOq5{q1Cx&dP+CB+_%$jW8Xv6kw6@B!>SF1Mu_E>7d78bup8 z>Bku`C^m;fC{d?qa|4y{8n%(Jwc97L36ok=FC=KEG~crw3C>Krg)K4y=OqHi>dWu% z8VL?sLeyIW>E(nJC@VPqkO9^_J&F5VjyEUtt6|!Y+eq_p9z55<7obXQD#WLoZa3x4 zQ+eXhgJIB6TpBcL&s#t+3_jSTGqmiE&g|^z8UsV%8Xu9ax%=S32NFqKEZEuECT^=k zV8Qx`bj`tox9?3P5n#VL-U{!sg33sB63Yx&A=iHl=ndIO9&GD2v2JcM0mUVzmRXSI zc{i&QlZ>@^tw*P_xN7{dhJn(>t#uk)7MprAttzVX5}UVhtRS#pFncAQz? z)$yNw^`d!Hnzcbpx^}P2O_h z#2s_HkL=%lYhp41craf!2zYO@HHRaH3=QaYVN|;A@MP=InM7w89W3VdCr{u}E`%0r z7==5bn1q);m|=9VvkNnzRzeFlj7rxXT$lm1Is?E4`v!&x;UPRG)^0Ysc*1V7}O%h$rlCzBdQpyMGY+M>OThQhHPZI;fQ47^g8lVXd?ojW6!>a zJB#?o0?$UK8xBb-?zfRlqiaMhv|EjugjOSARJ!g?W=M1ffW2#^nu5EQup))^XY6-= zs5XPWs>jgH&PN%9*A-J@nbYfb3xwn_fhGs`11S3S1)!tzKH0#z5nPLb(DEKe;kY@I zaB!O$0Jf}2%zB9(aM)b)t(m_D^u~O2x^a)rnAnU!F`~iaCevQ0%WdwpoA7R)|1ik5 zhjG~q>GmU%pNDFaoA63WPS z4(;UTMG!F6JdHK++2aeCg2S;g|6vIT|x5_laqXE*bY4V8v zYXSYC05T2kXd;v5GkHY*STKJgBGb()p*%C*P4UNA!{E}OlNwaMNrwA>Ke4y zjG^Pb{}gA@vythBJGcQZIiiaZe%UN~0ltQa;p9OOih^Y$zCytr^V4>Np3t<~eW&=j zQz#-OWwYo-fKc%qroIH)`T8S0|4xYnoU*ytA{=R1YN~~yvcOv7BU1f)CleRPtPDk` z(H}C*+HWw+pF5ERfOe)|h%#IEtkUdEzoa>ZMs!y))1P6q9>Jgvh^^g`w}ld)k%b49 zNrYxl9VV!Z9{oCB#`9#M1S(Yb6NJ~FKe#cVyq2X?oq7&oWOX(gH&!R2E;XUKv5`VPQev3e@N> z71}Kxnyf5L&UX&%C$K9_Cp!?b96ks&VDey;AJftRMflrShKmtLiyZVk1?nVitX$## zCh!sPJl|qo-jTGO9qOuE)|o{#7y zz_Ky-ND@BXZWt8j@@IPP1N(QghE)Q3d~(tP<NM%LsCYBkww zW76*Z@qx@RG1Wu#<`u5;Bgj*&`4dK9 zMg*5b1d0KOd;N+bZs$bf*yIFHrx`M@BAE<8=9^a#ncQ99n#3F3$0=4r>@_5o0f>G3 z$|JUiRisHV1KuGb72ye_m;osMz7|%)M@cn<9}^^+!OAE4Bxk$C zsE?6o1|a(TSEhYry+@M-GXTMFTd@Rtt2jY=8LV7-o4A6_dAWy3F9Xm!rje#^ZKc~X zXv7|5&5hcF6ujAMtap~gG61n}S((N#gPnwi+UJv62CwWd+^}MW>za;vlFMM_3O8sn zPLWy$E7xv&^R^50Fo|Wbf{Aq=;e{lY!OA7pw`VUVu?#@$bH*~l^NxpCkhx*gfZ^15 zCUzI*TkY1ozLHU&V;(fIYjXG1hdzW+-hV*=>8g7*gz-)61|(@j7~MVoFGSYknb-{w z3>w+lY}qEl#2OJijzfJ0Fof|;>{_fiWw2!8!cm-P>O7Lk0A!A5gghQH?Zj>yGtffl zDiX?Ig%Uc8vlT+wMPOsnV$6J1^G0^JQblFvvey zhIdZz*Mz;o#_<2A;9oHS=Wlv!=xR(&O<;`RojVQz!yU~|HYeN*zM`uykX8nu_1`=it-(qW>RZeZ6(7w)#WmbQmYv7&{NTWu-FT6{y5qNDx-XrE>7I8h zV9;!zyQ~yylrZ6I|3bt+bkVFp`J&`e7%~>XY1#Q`Ep#K9mqRj&0pv1tcGtsLisqI| z>COpQd24=R!jSwblFR@k|G=`Uvgj)c5{L^o?8}G&zM3>MSixdOPr5lV)xlD=ko+2w z%m5_6b%ly~w$sHFw2=EclFMKPTg80G)Eh%{pENT7%|mCP3#Rv|xQU&hd0|$r^v4KY zB>hHG%>Yynofm!Vs6N@m?lK|xEhLx$2!8I6#&F5>*4aWCgxTh1c^ZJpIb%zUY!zL( zzWVL=p=tbHbP{kl5sxm&QA)Ot$CjnGJH#YdBS#}y*Nx=R{?wB6l0i9&Gxr51=WH`6 zQhEcVq!>UvLl?LnD_VnwQiy&NiDm$zm&d($c|}M51wrie1+0L>rc$VWE2(Axs+XsE z_e3n6YQUK6@X`XI`R$~c0cak&;9QW(D2{wgG*7o%a}#_k)DZqo63zgGzkB(s{nF|n zt)|_Z?>(RQ45Jkik-v+SGXUj7m&zYYk^63y(ET3L%>Z=&&`Os0>;zwXL-$I^{xOox z0A#P|TB*B)Li10MW(J^nMb}EwEU$|jVZV=rGg#?_2OV0G_ysu_UlmD?}LxxkN*Xa*p9<@%DW|N9teW&oO(XV5c_ z7Cvx(A1A>KRMrtHG>sRb>8iLl2kJQ)ho9zQuKMBBHau?_wr2sjl-xj4)3=} zG6RtO(<`=x(K9AI3XJ)*iHA-!=DV$lZlhzo_V17h24LbxS1c1J(Ivsjs^$cghzr?q zsgX1}zenO3fcPIjD~QjGUGKTgq zuYV&a48Y0qjGA5hpd~1a(j#p6$rrQV1`0UwX7!(Bf&rNLrL#yK zZX9iy%Uanv9FQ^qTfOBNkmk_V?YAAn4H@4p&-R7+?$QRQu3TST_BQmVo(p?O*Bt3u zW+24n*}mWq>!B!-V<`G2JrrG@?F$){qYOfQf%&fWWFn;pS#=mdJj=68;8BmbrtS+^ zT7zMx5Isqv8Gz{JnJ4iyR3O?9DuwE4Qq2HVFVEt}IH-1`6QQ|9ni;HUNe9idP~9fg z3_$hr%({<5(wW9s=Yy{&x*`A1nzp0 z0H#-Dg!q?`cm^PTc~)e`O?;+v@-mXo0OT*rij1Qk4-4CVVrlPjnYz34OYH92a((p+ zA47NdJ8<+2-Q9W121K?@-Cc`VcXx>#-QAyC*6wbIa-{CAD=VOkp4p?odHN+!L?FImm#!J{ccjt08}s22xANa z_alsqBm7Yk&j7?P(+FeC#Ao`0?qTKFf8@;dDk^B?XVBM_jyUDRpu8aAHvHB znr~TtDZ3e`0DfntY+vp84U9CNj`Nau*+`%UqmAihS$N41php}e0waz;(<6>$>RJ|L zHo}rsmR9{`txY7io5xKVz}kM|(Gk~3qooY9A>F}9L>Rb@3@`u#KY4aA;729G!5!p) z!C9jMe?&qUxRVSp00ZwmD^%cm{6hZ$($CN2CxeBDXOjm8;9+_8!erZ{F{nWE zkaI{!$p-`Qu{>Lsmx+(8Uz#8r48X?Eo*lJXt0OolC3ba;j4(Lc7|HwDCK+J>Mm}^l zX{6|GPmmP`U}br>DlbzV$#~s|$OQv%@!_*VA%4)R>xy0)lWHGKE^-42ewO>-6-m#T|G=E(sAaL`$f-ENsGQrBO0{5o)C`)$L_ zqcApXbh{0G39bCl-5l>pEg(u>4s0SgzsqLSkhAtjpX7nQEStGnT^bX5wW4 zypzl8zNY5S%wg+{pxs8a41jiKnbDq^ZOq{H*Q{+_LIM~pzm{7w4Q#6rwl5=A2Ee+^ z%~Wf?In%?<-UjoP#LNJgA6#C6&)AVfLYxeiU&gajEnJT$GTuR~43-~jx7omR34-;B z#L56zm$@GGPBdISx{+uZEI+e>F+GV`835}tH^4ny*E7|`0cw%*E+S?C#7`SCWf5-> z>fz{m{g<$??k5MHx#)V~p6r%Ye)rW^=e`5e4{Lk`uJyIAdvhA%>D4f4_?U`#01N=! z;ytLNOb9QC$|pyDY3%B?+$+ui1T0kJr#L+kK^wd#@8%6CX7#-!gu!D%h#m?EA#Wfd z3_!^Iqb(6VuOM{1iF7b{Ea=el3_{0SNe6?+gbo=c2_0`I9SlIn$wyl+_Pqq52T0Tfx7(6B_GSd-4$%jb^15om) zTWv_lM@R^R$HG>Ec@mMz$4Cr=$3iM*-b4ubI0<0@LiQ}Sv+6oPb@$8kyY6SFHQSwh zV9`~gxbc(|>pr$-*E;L(K}U9TF(KW&*S#HO*Yv>W-tkb=*=oGCEza&KIsI4T5 z0f_pp$BZbsX0MBdjCOPO`1}csbA`BzNgM+Z_o~O9xZWJzc(t@`Cv6Ns+rGuRwNO=c z{b4L$GydJIjfE=l!eJr^!4{wJ2vdi@URTK7SIwV?!PJ`|%{^Rqco|62h){3euIue9 zmI23*+9PlKX$eTJ(evWM|F?pF#Q=JL?aH7m*ex$4ej7<-0204vrI6_N!wZdjNFxK# z_{J4NbOB5Jyjx|gIf0I9EDA*AXh6CrOO$zuTWhCZPi*6L9`#Nb9R zR#kS|wG|<7KM7<20*5}u`DhWS7h#0HyGb7d(D%J7M8B=sSsa}*Q`|!3J*1Ms3bI1I z+#uxLOY#_iyrD06KT1jt(U`jY0Lf&qf^==j)O$oln9m`V3_#`UR)|G*8^@2MPe0R` zGopMRiDUpGSBeL>L@u=FTLGyJlF9(24!tZYw3=mfk$F<_qHOTIvzWmY$z}ku-@H=H zpgGrW;BjX(3VLv1Tgl@jmH~)eDPBJGpNjM`0DUW^nOvAXhMmZ!KFyFo1|V?QK!1@o zYF+{rqssQ*$Jw80wwp7}+4)o0Yd!F^Z%F*kpip03^JWY%ZpKtmy6$!lj4OrTK1TBo zQ0jxdM2q3ZC%+`JANsOzNdFKAkwZ0P)Dh;^NM!I4L>m!3nNw;EAekRtKFL%jH+)G` zbo)&toB;@b_ev%lPuS06vkZ1P8j(MZlrsS3jUmJRr5Q-QsOM-^_{NCb3SD$gx^aw9 zn`}3FJ#HNMqfc?tEfbfnzYSRun+2R*KO$@m4t3_Uy3UMHtWMMpmyo0W0HupW+@zsR zFU-ml5{VDt3)>6*PR(eq`~OF?Qt;OoycUr!QE4=h%< zsfG&mc`}tne;~%uE=(M^PQuJOv%MIHLGsSy&Gv$@%pZOAT|WYD&y(Ng4|p`&HY_=s z$E6_A@F9f1(n5IF*r=!CJO}DZPN6XX_4khziJs~VP$fjg0H~fbR#a|XBIIlb(J`Q2 zA~v*GwbTPvzC!!b${&Z^PBgkxJ+#>;#J=2DU%mGSS*3hL_#22T+q8qM8)2e@&Hbyk zxym}qK$nKh#c0;luh64205grMCgFgK6lv$$1YNvA`fEhW07#qTN9v6+kN7u;m;n&q zQ_&(F?7I79*!vgpeLfb*o?Vs8cC+!&nTf9Tfbv=6C!F;!!9>>vG3G;Zv)gEvu9of- zv&c0@Sm~-Siy+O}w{d|NGxZoXHuW=2XpRB+F+G>5A#-|R`;V=M8l|5ZvrryB@DF*R< zM9ct)%}J#3@)}rff$L`zIRhZSzpCka=ykAp)ES9bk-CV+OH*?3z*)Ifp0Pav{^+Y8 zd<%P;^4t6YlFB_zi$ueRXO}(cUvawV$XM099pQ zl0oI|Ef?7O=Rm!RU3~_izOrd$kZ98iP`#R{7ywme)5@UorWK%j4bd^6UMiXv!PW!V zw}@#;1fZK;1WR|*z1H!WPHRfqTl2fGzKm(Tbd~+|zku+rs%91-)QDhdd$grhHi7`Q z7@Orl7*fw*g=YXZD)&G0sI?NT{^&>wEGh9vNOza0gfpq^kk!oD9#0Gc+@XF(VOSGF=u@M@R`VyNd20&JM zY-3?NWZoD>a3VNn1UE&fa5`0q&E~`8jDH7 z_s%+#`%@_7QZ8Xr{l0w=;=TUJCz*ltmUIAkrn2u6rB1-iz^+$Oc zF~(c93ixI_^HSrq%J9`!Qy+v5*Z2te4g5?b$K%$dAweUCGGC#U8J`Xs1FJHxC=zw- zs;^O{48Y)XV@|UgUaM7)@a0r2h3o}8M(dr%jU??(XHHa$j~YMv>is`OXX?J?r{tqv z?;D?9L-ZOe)cQKD)_6;}B=Lr5q?XzUjZ?jhN@W1qx`l~TG+ zr14Jgl6Y-RPc++R%S>y!#@~JQj*mm1tL!I#NhWGD-X2#)tx-amZ_~;gqdUqlh?#%O zi!iC)$H{&MVC~ssQ>DRCZ%rT7g44*}N=1gk9HY(7ch5{TPfs@IwA;mJO@H>)M`fKV zh)LJ_+|;Q#xt5y%S&~jYV7ds68)|)zR%?7EXAFp>mU`S8ulfZlmjQU37@KlE8a$tO z1_~Cb8s^cb zCk~l@7}~tRe7PS$b6dPMT^t$>9~%3p)>wSeZ?UxNWihg%;j3-b3+hs@1Pj=0+|6U4{0Zp4Z?mx`zJUS6B0{;8ph1{{pJpD~R5s(kLMO z&uHPtm-|K&zK1G4$xWMLVo)O1&O*PZUFPFM9TL3Tv~#cCm-qM!&Lf+CNw|*?js$SQIhkp!S5NZ(G{Yg#eTm*7$-2yoi7# z0L*Bw7X*yMZv^yGf|3CAn!?E~W{Zs-R?&vjEH4f-|HMF)2#JHDME%lQS?%kBVfi&Q z?|KF67d>$Qp-qYUC4x}q2)XZT$d$;^5l=~Qp6F(VlVc`yh;vcis07Tn93J&u>QvBmv z7!)NMAgz5i2=^iSUh_MMzC&yOhaQR#aiUtYzQ#X2Ur)?Jy=C#3b`K0a}py`g2kN&T8T=C5Iffw7SM>6w}qm^p*iCn ztc2nlhKU2fmS}^h=C3&|b|_B{?LV-;usnO^4Bu~4 z-)o5J^R9^Fx}Rgc27om{1+>u{m3qvuJKL2>6!hrjuvf4CIk*1-|-yFgf1W zb0_q7)CMf++X!-K2m}v2Qaw?R@Snto!!a~XIN7Evga7#Uq|cY0`-X!Fk< z49z|GChXzSvG)^d*`52+GckE8RmV}&K2Z>OS8CvusK$J@lJwmP)x?~=0H=^Z`VvhZ z$2AHA?RB`*7VMz}BLP^6PLAUmfyFWBE?K~b6OaUek1iZ?j%nTfu-qTRc#A_JQz^dD z9hyMk`Pp8p-{6l%vyV+Y=J8PpyZWxxpW*qLW`D+>ADT~m2f=qD9vQhLXVZ+>_X)R< zi-@G~h{`8wREAp!ML0`f1`MHy<}pj~A_>$9&eu>?=L~1F5xknq0B7xlDrt0({Hj$*E?nNjP#ze5OH9eG~>vwb(R>^-=zP#$O^X02Hn_CL-~Mc1IVn*xy6*`EMZbHoL?47huBUXVbtadj#9B zXt0Gd^fVkL(44d)yt#c5E+B!(;nvvH02*LPm~Rn=1Tf(QIyFojSV^ew5{d*+!D)cJ zNcAM&Xa6gLDe^U#7cBe=FZs~sGCd>pCchYT>;EFCj!vF*$M!MSpW)7+J~k$ij=(D* z!tB?fAozwG%hU6Xf~~vaq!!i8HdZ+#04tbiMwAe+IPlVt41@%h?VH)-v z!jb?sI6gQXsstp*2U*3sNHH&ET-tDPSAbWdltGR4P8;hwwN)fJ z>rS{Q8KL3P!n`_rA}A(8^!GGG!|kF1jQto*=x2VHRTByH2=@ny!X=_K3Ho~kB>`wF z*!C+5IufTz;6ETR34nEzy;Li3O57+?lQ6GgsM^T!10_7gJQ1_kYT0*N@ndLazl*p$ zlqWG>DgU62{g&3W>NwWQ6_NKAjl6vQ^>KcR^u z?F+VbdP|reSk?g|`+I0+KF_v}JB)up^nz_24@TL;&hJq>7i{Zz9M#mSh;lbyW|WgK z%8M1RG=LUnXB4rK`6^*Z08=mvr(xpan}qrrp-2E#tgU1D)suYR%_xd|4d!8g^jgie zxutezG1T6OE@Bz!qTBUFe-6#_{u{xBb&|X=jD7$pJkS{N$_u0jh^LQhJcWCmQ?s?r z43S!NFk4u~lVm!(C z7ZM;Yyqvkr0|-R|sM6u(K_$a0f}15A3E;|xSGyzO74iO36ka$5{$)%5o~72B)`kc$ zIT)Ic{U<`~@aWk4Nri&7OMX{HfQo}a`=$n3xX)RDvCCwhHs+&jjgV9j0g(n4$cCE_ z_X)z00504QEUH%`V!=r+ikMHc1w#Vy!y^v`VYFqI1p6Gp zNB|a|rYi^*2V4^Hiv%PAU~rmlI=p(4`+qUoqDTNlcqK(njJU+wh`#W@5NL<#f%^}T z@JRZ!AVWj;2(it#i*-tslUQ_Cpq}{VA6ei@Ab6?VnS{{b@`3)DKqLSv6~{@SIIw)M zZxDB+|nf91hLZ zw?yBboQv^iRouC8QWwj~u%Fa-V)lu%|r;D&W2>`OP;xqsnNFy*m zCkzQ-vYLIE5VQ+$F;Sq|-s>Q$xh48w!hF4MV#~h_LwEpnbG2f+2NFaDt zE}6n&+NodzEClv_f{_3$t4^E}Y$Vze+WiLsNdWkmVgaZ8qL@ptKmB%uoec;t0J6FO zlT>SWcDL5-HUu`x?5Ux-?^h9f$E41>6Igp8PcpNGmpV+2J`Y^c5PlDaeqfnZnN6dQ zm*JeSqLXPe{g41Ct1CDyP$JVM;g$(U0=TS>z_f59F_?tx5|RXv!6kdSofAc265wox zp^Xhc6pCiR-Oc57yMW3DoSqq)U0?AspgkEC0DBBAi)O$WSfLPt7ikC<&44jSKLc7x zMIFNdN>_!oe}vpHmuA4mZZYu9P4WfYsKc-oN& zQAYWj)0f~05{R9VQHwy>!49fyf$mEn5&&fc^z=Y+lsP|$Tg?3lMgp*K_aHYG2RJ-6 z9(y~oTI6-G&lqu-%zq^cDfu32gkzYAQqVwrzf`g z0Shz<*k?2}rV!Z1DTBxd`A>q70HkoNCUuAd$Orl{fk*%pe0d^AQ5Jr6pX<#G9qZpR z8fe#+B1DtFoP^R7c(vr42&1F?n}(@FfM*QPPWF+{m-$ff5L>GnTZM~unz6)ye^Qam zaZB(G3AD&)DowA27jOZ{6A4KI$ne^k9P!}um5PK#C=NgWveooXge3uNa97VMQ87uL zjuX?p9Wj{<7NBJeaOJQoZV}}u+R!Zj1fh7S{I>tV{QRP|F!^Z6kuO5-=@1?aGlpoU zke059B{n~$;Yq-}aJB2C^+PK%iupMqNC1)1ikwn@FO*`KJ93JNgmw@1H1nZgk5T7O z^R(L$GV0W9;rW%k9zK*8{-BzCL{Bfz&aJPku61=4i~T(`TbRQ(yTkYw05dADLVyZ{ zNO~c30`H80rb4{M?@j|z$ZVq1NdT46%q|Y4t@|Y45d{0XsV2`fA zkQPi)5Pz?NMqr)Ms41j}R4<+`=6jrpApuavkVavkDEK1NnI9641aKMkbYZwe=*5sf zA|weQ!*iR{A~Nt|{=dz*b0GnY(qY%adx$pd^ykpr=d%nudldZuSn05f!4w5y_oj-% zE@mxR&)3Dgmrfyp4yD5`1*Bn@fcs0rkpQlA*rnj&uuDLGfRH4BEE{&pxSrtuMhQE6 z3K*qpK(`c)E6>a~xv23FS%fAO02y7{{DsE?D09TwyEV=-+EP>Vl^~0RH{YQBNg#UZ z3~EL9T5U1VHwi=npp1S_Fht)#dvbQ&X^;df_JN_E6-N& zV`!fBZwRMD<+uF@`7?T((}O5~MAXMLqDp6A3L5psVhzm6ORzo(q%YknOn_+4@}TZc zC=x)GPLK&GFRUWpm>S_o=$BxZU^=(dJykw>JG%yQ0^G~zDZ7SF7BrsB7tIdgPo)4T zpQjXHXviE<^(Dv;zUA|jxA-p--h73lN+f_NpQk(s8&X{SM@7s(5r_mp<@1yWobcuiYm32&Z>>Ocq}N@pe?LW3y=`V|6^0H}0k@`2)Diot%3U?c!5o0-719&_F* z!Ng;*4lhbr@3)uR{e7VUQhRCEEoGI3jc@)31`&TM1>;8r2SoET9vU)5@SLu}6V7n? z`Dx#st1!ve+`tAZ2}BLIBBy1oyS+yMk0SsH0KyHuDFNajiA-*uNDvZ$1mBa*hf$9? zo+iP;W3Vh9939<3yV=<{H2=*dF^BM{QZOza9LiXkA~?=28yr?pW|T-+Gt06^0#S7lEK-WZ=HD2;BqaE zm11By0j~2J!Aq^>Rjg%ZW!LCq1HRrYX@e=jUcy&3dMzx|>vnXl{YrO!eYrK0>w%&9 zXDo*{JtXPDmJ1?2EI|(|h_5VR`kU1Boq~L5@f;ef@_bdHF}K|1=jKGC-K={^pvlHa z&}*)=8vT8%PJ(@ufCLik-4Gi@5;U;uRin4mjAZ#`%0dEJcJE(V=9XG>yRc12Z+&$Y z3ou&qjrrDYY$Iv?@^nf<0!f~6U?dUi%zK`C7G)xVOzRsilPAcpQV$*^C+^KJ9bl^uE0$wl1O9_o#d-%`Fa}?zvfjqZtoNpGEn|(yA72;S5K>{H*urymCq%nf1 z?clrD;-eEN4hh8Bz|!o*NtK?HC=CgudG>~TC@Ra1g*`0Vk&*5~u}C0R{#N8jM#Z}T zQ)S?^krFc9jWUsJtm783F}QPDW37c1>=H)zpfn_q=D8c^I7$N{B&w~o&;#hKx=-SX zZ1TqBCx$ep;R(ngE&NdOO-A<=$B#I&IX#d{RRBRK#jjKrH@!V4)Q31rMa2;>TUqSHEN;Bw@CDH(|(dI<#~fgrbSaJ;D? z!BU}~yqv<3K)4qk7~v-P@iCN;1QKpw|Fge_Z!^s|+6!p@+_K(YtV zYwIlp1!rvk0&$O9}NoeCjol?$$_F)Pfw3ETn|fR=};Du4e*70_P-6Gk=pmV+}>Q;x7zJ5wR$L> zwmBm6K=J7rdwOV2;Z6-F1g;EDxIE%gbGJh)yRIuoGbd*1OQDcx4tzzM1G)uSA$Ii` zA(BuOGXDVHSqi+bgc-*zAc=*E)Ronx(GlyE$y0HY*bL1x{t0cf7op8LIQjxEI*W9N zck++DkK&Y7P9=k9zoDM}+<`RonC|1K=9m?P9V18S5to1LT*Lacxh6I);3%hE3?lY_ zDI5MIF!~1$Zbf%?yUQ4r6t!MPwMd}W7Y=TMN)!2~_>q!L6$O z)@h@;x9uGHThxvO+I{x_5A86vh!twx&Z4j9?@&(?==s5eTTi!>p%lc|P%jeb_2GkB zub#|fHTSk$Xug)JksR~|uh+nr;u@>SpIjEB8T9qkjs)6$=REg^)QtqX zed1u%4WmL>PKi;9#$v0JtP=i+`jJ4tFCDb{@yqlrE^wN||Bkd=q(#$!Ro-Yo(T;t*rOg@s8ZS(72%MBYlC2l0eb-9IT$xEpx^ZQuy^ep4%Ikc-nUpmrn&vvzF8Me|EyIP1HMsT~Qld;i8&Bh~tj z+6hNj&@Q7^B+zQ(DwBj#bvcT%>ezg{friIeWNWRtY(qTndc8ohOEDUnBYuDi<@vDr z;MmI)BvKw;cM9z(z2-uzzpt^-oa;v_zJw~0K*bH56{udt$br$Uhq!P^{YaqS z1`d>0uit!oMJMCB3kz5~W+U|FRFC9fcVBB|XKQ{QGjUNnLEQJ7)Q<%E{lfvxb|v#m zDj-4&8${t(QDG7&yn(Islz7r1nr;+?K4=-%RaDpxps(=9f#795n9XEf0yww^Az-XtjX@ z8PylI-uh0oP+WfeGpa=bwKj0>t$MZkd%788$Kt*}r=BFxa|7q~tJia{?p+{*QO=3) zrg9`u?ztN_ket%3ZjYlb@PzL1Uv6AGqqC0o>st8%fFz%xdCrf}|Nji^J~-xTfrxa6 zBl5r8Iod^>a!5ZZm-hZC8+!jw(BA)nHTHCAIHk=3w)kYa5@Ua!kxl{wZ{U1HN~Gyq zb14RRqtI#eC2B+hjSgZjse;x^U#3nZ(CIlFmXDG)uIph`BF7ij{I4{vtS|T5n8cfF z^?K+KOJ8jAt0$?ahURPdCY|{RH-S6$sw79g4Sa6y+?ZmlWuMGZ_LsEm_scLF*Rf7x zyA2j-9joETx%V3hl*+$rL7MS|@|M0mdV9Vyr<$<_N03237uDS_90+1y%ZX8&pep zXK0zzZ=&Nx(9w{h9Pj%n8Xf|282#Y>G68ZP8h%CpQ%A-9z)r`~A`#%o}$hmv7##9H!eQ#Di64 z$lU|Y-6nU5^O%gw+3q&y9^JPc$pPpB!}ZKIBvl`TwkV-2y*J17SUALnC1I6! zQ5q6RlfS7^UK+c>lxLUsQW6qKl6%_$D+oSlCS^aXH0R&OL$<(JZE}BaEJA8v>&nHv z871`S(EP?`q?aLb=3wjfc*Ca_@vaGP=9>I_e1{;k(MT91o>yz)$-g2Zi{rQ~6ntiW zAAH%Kqf%Dsm$SAYfr|Ot9zo_4qCWVHCy5gGd6BV(sfzb%ibn$RhPm_l{ueLp;NPd5B#`svzesZG3KZX@ucN3W z5cSs%oT#iB(%yapMI(V|`8T|*+}jD!(w=@3Wh8-&zy1qiKD*Ay_wt)5CJDs6?ZAnt zwQkzaZ>4Y~5bmYFFv6uh{b!Vt1X8~27e~s`68+~Clmvq2?@Lx!Z0tsiX)nK|aqt5{Q_8G^{euG7*ML@CPXv2?TrL#@j9+SlYWE zri3Jr@Fl+(5{~-!V-%7ELgwGkyfXiWefvoYMFOFoxAB%s36=Ki-%>gfNcVyRFWsn5 zKSKdYAYlF>w90&%&cdIkI3y6~05ta^aRP0WFHtlSh?aj&y)sMfTyHPWONZO`g}zLA zNFdJvY%?`nXGjMFtZ-kYa3m1!08|C8qoyM|eoOOf6pZA+1Xv`P=8c5S{)M8EK(zd$ zf|UhW(2uuMCKAYW02*toIqmMV2~&NGVv#_sryZ!Ynvm$bl!ycp<^F_R$ai&~92o}7 zGftL&nwJpqBKm0t@Vuvn<{sB#?C$@paGLjeilk_wYRylx{Uct(eaJY(U43XZa(WABToM9R+3c4uoC?-B_e@D(^W=3L`jKg zYAerMC=Utb$-lm$8eeHDwSxR91tEbT`Db{l5yZ2{J17PT#F(yGRl+}5X@s5XdToB4 z1@9T^Hw+|z-$ijqAkMR<%9quO6TP-0QoWZ_ksN5L5)t&5l!^pWEpL>qdM$nkL#*-v z;*$VB_bhTMfTa?F>!N%-Ay=QFdSZR#EM5@kw-(lyWu7>iFr1lN=GS7eSnyVj8quGpGJa!L^*vW?Nfsc?g=UQ(K z&8;-%W_LK)e7#nq6zudooRkA3Jzgcfuah(b-Nl7IXO5%rKImf<)Wrao|Hc7<7ed>+ z<(+!nV%w4gVm`Ji-rh)s_~|DEApyvvD*;(- zEk-K*l-x(@OlDFeHGvq9T|`hdUZDCjoQ2QGdRIl39ut;p4OlhY^JYC|6ga z!V*4a(A(4QE!l87oCqX9xT#u%v@%B$ilj1SmRrqT`_|&JaSRbiDpMvxNGo$Zp-2FA zO(k|)?k@J)i!0qW>V7GNTM0n|h{sh7kyhu<#3HFwo$f+^rHPFOMV*rgK~kwY3XxXl z?!+PiRyFwx-f5$MBbwC6odn#g$zQ@ft;A`BApuM^`D-OE_xB-l5-_hOf021wh5HeO zq%uFOdd2;LmB<|LK*fy~n?TtF0(>Qrb)O_GbroTNGxz&x$OWkewX%9WMW zO37O9(d178{x?*~Kds1B1R|+UkwkrWE%}pFr%1T6+fE=709{p$#Q?Oryv`0jdu=xo zfCKWJc0;FoHyneIenz}p4oCM6Psq)A?twMt+BtY3FJ@ASBg1Xn4wk8jD zlpmCnUEHlz|DDR7eX@f)*0^|&VRvf{OM0`r_VF!4^A-%InDa44HP~`d^dx)H_a7H4 zF$Z0gOD^cw_qAU?wpo>Ylmq(ln1gps*KWrrtfUulNR0#%&gYjfH_R*s=~p-%w6~!W zSlmmAO9I^1e#2dAws);3fv+Gi$$kaih3)L{ameocI%i5GCaxqf34rZK5yNF6_K^%U z=5?rAdbK%^m++Fv*ASUxzp9Ka(YTwsukv*SCIRr={%~@?+Xz_t2Evj6_Sya8^dh+QJ#m3h2oG5QMm$6aIm<;aU zG&DCo2IkuV=MIj#!h4!Fw4>PJlIwHPJWft9RUcUu?2V%Lo4?%%1t>eSBg0w^=5+F4y(k_LRHs~%wk^u7hiXibR)wOPaz0<}A zx>l@e9paDx=SlkmC#~2m1SA3A*aqelUh{6XYW0ai0+g{;jQ6NE3duc$ zC8^MByPEA4OiXs*Gkz^c0`gYkkW}ck1Wwv(PbDA;0LQk=JR?oAXA&@@kUxXKBmf>e z*ER)k7hlG*hI}^JlT_$1vQOLZIm96W&e&%A6l$ztV}Bb`cZl+PsUK)s9|b52I<_X8NS8Em>z8c1yS z-e+8ri5ctDXz~7yws^<7Dt;{4*0txG^UYN(t7tWMFY+U!XJIB#MEh%wDUnQa)wKLQ zR|(KZ2}A;*3KiMr6!`@ClT@q7w)wOopCS+mfG*DG$goFJp7=ERl7R2nKG-BrIKFAY zKSuzPY6Oog|3&g8sYdWoi~nB&kW?f1*)C+hLcS!`2!8fRsQeQFNC1#GnFO-PEC)NH z68m*BB>~g1g9#JjM46_8Yf zBo){_3iI!gDMKy+#}0ayZ?yXNh+}Ww)u#A+U`Fg3`qrck4ouJ$&{o5 z%ZwJ$pOZUDCEO#+Si9eG7r2vDVE41L?S2?xNC0zQi7IJ+4x?aFP!A_Z5^%h%9LIE! z97)zBB`rSRTJ0}kxf#D)xjQPQ$B;WoNsFhrrqnIcjdm>UeaMmoEXOYToe&pfnHKkcS?6Ra$} zxig^c#PT}}eb>4=hae;XDbw8K&a6#rJt|gt1eub6X_@AxGELj%JaQ)i_cAF7Ye5s; z+6%~+1boY+q=;`?@QVpRQjOqI{dF1nl2jx3XhZYS1R$wK@Ti$~75S1>Blu`b?OFnm zlm+1S(@QN3h+wBBq^vIHt0dC56MzH&V`s)Dlu_9=IRTIko*Rio0;Ds>3|lEsUH@4r z(_=~F3woC?Q)LfQ$>pIr_Kp~&>T-sA)0KJ(f{h=fiWuwD7^FJq+oI3->=r$i8WPd- zJKLS++P*mqB=+DLG-CEG(wG4o{Pj9>qH{~+W4l}c(e><_L4mb z*pHp4qyel4lOqFqKFvO@##4wx0-Ui6vnJqR75Qqn-RpHbo=2WW<|JS~c2aUG=4ln4 zNfZ*Gj4do;k-B1K#Prz0qQkhEg+(t9%^S}{VR`v73(HlyJ_mx0Ei5r(eHw-3N-ZpT z~SvP;PGn~=wlK$fw!bSz7<1SXim1#|c~c>~`95^Y~a?j%)lXX_>6{%Ue30r#;n znostf>kA89qobn#KADq%`PhbjUgp>x#j<`KS(AYE*e322thp`<%{j698_1ueI?>Vn z5!P=aYZ9;?+o8xO`h075d(MgdX7VPfMr`@Ut`+;OWK9CrmyW9f@`>Hr&7}cikUt}5 zl4>~P6D}@F{+ygizlP8~ru+TG+7yg#)Nx;5>f`Fmc zxmLnHpCJGV04hlJ0BECYAg2F3S(AWu1=Xvt#_A-?{Y&Id0`6mnVDcG$w`KcfvLylA zOG;-;>|N2cjK508Bw#$QMW*7`^`Ct<-EbN^LdI1(*}WIJIy4_R7wxgO zu-|)}x)E1>7Ok;g`L^gXb^s!JD%oz*(>t5}xh4K&KVAg7jW!~IG-IPZFJG@&EC2%n zkO1JqTq5g09@|drVx_~% z_$A8mEkkqdy%9hy^u`BUu8E#x6y1NESz`{mIGJ1!O2co9a%1yP^3kMQylWVtfLlbm zB@P&nK&or=OEs3Y=NrM;MGO*PjBQ7FB91Hz_O4NUehJ47Q3^m_33wBup&L-5zb+WJ5rd>M zCjcYugaJWFDsuusJSV(}03-ky+n&x@l%w0Mm0n8zB;Y@Gm16W@U~RT{E&7>u$IA#r z0-&)2%MpjXKxv=6f=DDlsv?I+0>Lq@Rcp83A_xgU#`eOar^l<)TSTKt;`VpQnFO4# zsi2wz=d>?gLkJQ;RFMM-k@muCi9rI4Dgsw9yn^w1@+SfRaj(n8_OHi3t*Jxpow1Fo zUh9^1PM0)w$2M)$C)d2jw+zjnpN>Y=6CvYZ%l7EWiH)k5gEp$j1&ykYXrpRus!u+e zZ25TC;-6N=C)1cDFy`3889ymQ#EBtU@0#~B&dOqqCXq-cxGm;TkAIG_==oYwWVblk zNlkvuav#05KBl)udQj=>L$h}l-ufg&8*I5CdW_yWJr8ev9)9|)`pNcTCkR9XrX`u3 zTWZbiYGCZy%JjFi83|;u?k~l*(Otv$#P>B8(6bk%KSKZ#0F;-zgXIsx_VZ**0=71) zipz~*l*U|lZLKwjF9M>khKWlVJP@QW5s3syc4(pmQhTM<=`m)k9$zMR5^%SvtT^}9 za%%+*mBum#7%l&=l0OOf+cAm~{BK$3fUcP3Yh+9U#B7~<_p|w?F=t9diT@&Zk}8zItNWeSa)VnIAUTLG7UsVRLjo8(#8uo@c#+r@g#RU9 z67Ve@M|l0Ov8TDOv2zVmCv#2M3GXah1@3?WBSTV!7kc=lV8c!-i5CtbcM@@S3-0s4-7c|ci#32DrY5(E_j!yog$d?3s?Mu$Zf{3E_&(d|f~tOF$9;>P80Hc=fn>W1}S0e7RpZiP}#fOFJ(59P-K`+#}Z=4mMwC zKXeUY?lqCk(C~3IfsXi&h<~~aZl=Yz%9WT#e+gyAKz-vxJQr%@IX$nva>mIVgFiU@4hjtM_CmbK7*C>05$vfKL? zcDmOV$>pTk-KY?;kX4*#<+&f_A%Q&h(>IOll19ux`Ab||Mjgq0Yw>1}S5hUg3ArylIV(i-QVyvR=ywL8%o;Zi_B!FMv zK=@fo(dezV=4>=Rf`X7hkW0r^GUKx}s?Rv%kEsdlb_n?kp?*zdO{!LJj7S*Fy1Za- z8k*PN8CB2#Z(m_+CG5+vjL3&xkC@iL9;os})id)QvC-6ZsmCjj(cD$MbJTC`#TLY! z<|2!$DDon{OGW}6R!ZoQ8`mqVBEU;200{(`x{x^4+;m&eWf-98;&sl3Zg0`B4z>Ef zjPN9YZ|x`j*D(x&)?*U*6$B;$@YHRMe0tl@SUX^h$JmVwt?s`?5lA4y^8V2sI|%Ql z?#;P5bix|TU9Qo@fRniXcZg2{{Du98-|nuX6JlG&iu@WPlK{E7e~>xAo&jhXf`8@YKzc{1#Z* z+Zi$b9}${l|3c$4L#r4NNCexT5Sj$gOZzX_?8c8t?6(n{1laqjh||@0DFt2Sg=MV% zOX9zs_$2$+?7H=268fElCIR%^{xLfS2u1?!J%l9z?9TlIyQke>O4<1@h)M#~^QLTK z*@9KK|80^OY2oyzRi?MT(@ELz3vXr!odo3A_XFWKrcC<0)^W)QdsUpAxR+Q(>GQ~tqn%)c2|l- z0+DWY>&QhX}ePP>d@SU-QH)Rh8Y}wp*snMPMyqE zpG96>`HtAYE^!>`pZkJ%>B*he8A1$}HsqB{h-`)WRn~nZ5XUZ$nVL6pZ)bfK)9m<+ zbPMaE(-_Ys1_>~95pWhnJtf_!$ujhJy)_+N3=c*m?-`nHzXYc&;yuH`F&FPcGHlP) z?ARpaJR|IyBoD3l$OjJErw+O%?}J{=mg1^XM8jbsr{PPHB#=!%1(3F3l1bejI+ez2 zn=xVD!u%ya{n=c@%95~A6SoY_C+e{2JZ5wTM_(cj^Mk{9n4>)R4O=F`K`lxyu;{bZ zqL0t{oM+G^Puq3Jgf(7sLa^?}tdz`>TX`2b4MhSWGiKqF43i@!$!iV_iKaKV)?Vc@ z0+41Yo-Oacr@vtGF)jr~@)G(xk$Uo}!&3osj(E8;9mz z7a;}yGvpndc!^7a{Uv|4b!I}u#oRO^$OxGcUKX^>m6s!e$mu+nQEZY5;h$KMF80s$OGDWlrsKo@73YPyN zG6|3?EfDLg*o~&u=*o({wN?*X)S%`QZGT2g5@4Pi?C}JYjkBJYYI3Ba^D`W{cMhBF zWiKUeMc0Ss`P-21PK3OJEtkZnA^hoic~=3d5lP^@nwK3fA;!j zzm%*=z`9(%h*_t_zk(Pfz$ll-+a2kDrjwxc#FfM$0nU?31!e|LTCr;gNK#s{4vO^3 zD&8W&GKdyjWLqUxvFnIKQd+SLoU~#$5Re3b*aSA8PCLig58sKIAp#ybE|uqtRSj!y6A29ySxnJ_gAQ zNp?heJd!OS?*iuQV&0bZC&`*5(;YDbd?Lk}bd1UBVePS1;3D2Y3H!oc9GZW*KOFH_ zczI;7`AU6&Ubxppmii=I@bmA8Di=?D!n3~4E$-+=r@bE-(3j0dP?|*1 zHo234`-SD?#bWhaE!SmoB>~rrtRKmg43p?|^do*lSOo5pH3?W>T})ta^^irON!Bn3 zB?xOoAOS)~A1)FuL--&<7n=hJz&Zg)0FaR$Cj!W~Z{1y(nrS=f_mVjYm=_EeUELHh z_ighOawn-w^j<%*%hSl51kA&eo=&E^`(Z6QT3j>A9+qwF?BbP*ec>z+T^^cG-2rK! z!Kuz8ZgdYZ51bZ`x#&qU)~AsO?madUB%bjyL41C0bqxj93Ny#~OcF?;TZ*LzETaeO z(XVVpjz3e{*C=N_FVh=q?ndyrtH%eGavv*x z$qISUvN`oI-@V8mTkme?_R^Hm~C!bON#bl&QbH}uBG^2UT;?t5kzWqo(MwdYJ<3Mtk8 ziJ|$>CY0?-@pN)FJLQ0Ke+z^_M4TD~=10fl2o+GX8nnfEVW=~Au4DUPlz;{X`Z3Wq zr^68L>IAj zkJjv?5aOBwLbSMBgk;$jyc{&s?a-%CYG!F2JF$spPgQZo-Z?l`1#>rH=?>V{x*cny z+T~ye5igrc#Drsn<4p7-iHLUcm^%h1C)}n2xyK>ORmDYtiFz|!jEz++)?U_DwS+*S z`v$dySO}qB&9d_1>EXdLJz6B|4o^xL@l+7Ak3~IP{w^)d+lD=0qS9lYPM{nmTyz?{m{LtKOGpdjiLzf08UgRpW z?pp0SWyDl6I~}fKpdxu4G{fT$neOq^b~fi1x$;yb-DHmjn=aJTU|280aHiju?f-@A zk;2uU8XPICYuC#S;Qz?5hdrA)GsjgwES4~_`2)H&%c2j;k6`r|YnV5Zsb`6YOv$I_ z8Ns}n%+k7_lVMw#_R#gwsKcbKC8uU&oL5@!Z^Ek`gJV)>2gh8(IqBNve2uY$mQgpUwQJn1A zp&4K^y20_I7Y4^)t}IZL+|5uvt4$WfQ|{3JuT}qy%4+18m1R{2gzve4cO z_s%Tf)fxWpw`4Oek!fr2+F}nA^D4vy9(mr*H%c}^wBb>-` zg5x?9Um2VbnIJw1tcT~bgA;GY-#kyiP7GZdoOr1`k+4cF))PX%@D)>s1X z8p1Vtq?S-HCn9?OGgyz?TI2S87$agd*#lcCJxQC==O$jV$Ru?7}Gb2%IXSipa7p>0sntbEnUL(KT5+eOF0j2Y@`J&c#p+r18k*P~KwKxZxFO%VD;=O1hGYP%%Nm5dQ`9~t; z%&8fzA>Zb%iip#P!hD@D8R_%E6SZ*#s}|=ija+j(`DP``95E6~cq;L?$vHD4PG*gA zSM!r0-D-vYp0H-(38lV=PBcf9*d&1wDCYei1+E$ zja>d=Dv`{^R0742N;GptsU(@X%ugxBgR?Tx*PijpvAHO#35tn%=F!Ibs!rY5nUi(Q zF23YpY=YVwW^jfZOUvE08&=0PL6ba{5t^X){&(rKW_7ibPo0MN-=ztDer9gD+i^AD zT5GjyWjkf;J%dwF$CCvtJzujdB#eXw@^em`U>6v)OIKDnDXKQ{&J4C(i_08r$7S%G z$*8|l+O6*6J4)E_Oc-u1XfYrtMSnY1F^|1@@Osj)m-45F$y_rro8qyPl zdrY`%P`gpt)O593uu86KT+&QYLyPP%Py&x>Vfv33RD zc2q_(JXQ02n=?%IVBV&?2i+766L&b+e3QKZ?H-UXOjeq6UB~D!Js2EzRdeo|?F`$j zu5-#n>pSsw&AJt5lRX-2xy)%vU8|G}JgXr6p@Z2%(^kUc#Ly+|J7UeWzREU5?NUAfPi2i1rQq8054G$M;m<_m zY6j(Rj*6=#gA zdTeZ68LkY)xaR(3Jh9fCEU{NTD&tv^I9XAi5pF4Y5-0Mm*+w3I^?1QV2DZ*iS81JY z&CL?fMdqR8oU8uJ7+dyamRhJ5*J!GLod}`YZn7%9BeKM#f21 zNl6=DNZxs>ugT7HRh1gx$z<$TTKAdgJg>eokLKfXWp&?)5Bv3$*~zE9I_kWMk6Xjl zkTThqwlz!AR@ag1uQnBq?Wg48Q<; zg7w;V6^W#FIUJh)1K3&e&J4C(&s49MQH5lU*C%-@BXpKt2f@ZvJjtg{b1U08H(_Nt zDsgUblw0a{Id1{yhh|i1DbD@we0PR}#X8J}s#7#QZsh#nxa+$YcWYPTRvjXfar3OP z=@g3W>dIE&K1>L4(0G@{IU#UmaKcsG1eT@p@wlBs#=EFdPOt4*>T-l0^C%W$i+5(Q z<))=>?fP!*0$c{qtQJN}ey)9xJ|eoBuvQ06GBMNfqZbAz+=QDkcd-K1=3%c+t4^e> zCPoMeuR!kMo-PV(wgbC$ ztlW0mIE;yJ3`eHZ3US65}2 z2Pa*p59y2=Iu5!AEkMu8X9|f9*WeMTBmGl@BPCugj#hzPkdLiPFHmu2rHlN)WklVD znfAO3{=1F4WpFo_kieiu1~o9Kbr)(^Tztv2AF3B|nbf$L9yfUBpgT3hYr+ zfvxf5Vv7m33U@-_%HV|Sv=h=9|OGaOx_tDeOO-Z@LGWN z-N-uRzk9`zGT&;gVgs+;Ey)5rn&HvV+=N{l2S>yw21i_si?xe+5ryf_87%Zc6zMYo zj{8oDREUu3{8ful%q-Dtj9yi&>le6FkHy5XbR3Tsk4J)bg1uocN-AAX}DYnTrb2{xd0q(0qn`a(aN7H z*p|09K|7xPS_`{Jw$^kZ4vi%X2G_AL(qf%F=8nP1*LjbN`DF2+JU)$*0^HlxUR^~# zc1k8s4vwaGYTMmSU>^@bW$IX$h~$C;x1xpyG!K&^8i>ufjhD?bY8k=Yl+jwsJd#Yq z@f3Fsve}AH!O#ySa{+kpV_WwKwq4dUTjaU87>Ad7lb;@seG=nW&Z7J3)(9*7D7*mfIdSBZ-_6v>~Ll3a*oRUYiG72zJdCzEUdF zoYF#Yt4!^=p&4R_@4>O@(}QC#)KAsaw(G;0ErbAwGDY#c4JsfYyw-ng*T8e9*?qld z($c7qch0&zxbww!kMn@gSB4652;6~koY}3SoWU!*{65l5Z+(@Y<+SEHJ=eX1)15dR zjgA(5->58W+bv5NC{$ynM0B57ttA|1p35K!`6_OTXPP|PM%_ZCSig|0$65BWKv~O@ znig!m37A(DI4`BBK4vzV*nv%wqC8Wn3NH>3WFbJ?6c~ z?7c{k*VLzRv)^t9Rga)e(A(aj`T-@uf(QX3CvWxAE`)w@6L_{oLHJjD**!1av zJHri+7iMuI@VuAha%+QyHX_kX5BpGyK1cee2GP+hZUBb2qBJ*#ZIsDEY}PU^I*%W{ zFgX4qX~AKwH@7U3n}K>sf#PVHH`n`Jd;nvmx#o;{Lg324o^1HH1K1lq%&qPc`a5_B z58sQj7Tw~V85~uQk7R1Kh(+hyJt!eHHnP6Fgf6~2e)Ph?JJ+x`7qqB!il~?O?vB8o z5V$gkPd3~e2@D`_o-?;anFX-dHkJVk+~LvjfIk~@39RFHzw>Y&-7=t-tR~IxvZhYH zZ;rf{tPZaZH4ZXs!#eVn+o8Z!W68QlG&Fxe*^k5{zqi)*Fy0cs$ASCIg)r>t0>#IkZrKaiMKz<#h;!*FomlM#riX1-NV)?^0q{{ zR*477b0Ob+v(zB0HEzCHL)^TRP|4aPo~Fym)z%rVhKP8-m%KyuN2oiOU0v00zS-3j zs2d{ge?{);TH{gEMX4reybu)C0qTGck$1R;n6ez)e6wQs`94zNqlC$*5T=aUn{W2h zeT48yB8=1o@r!CXJsf9yo7p3PzY|N1T$dVrI$zv;bClepJRZS(PAoNg195^qv+T@> zQeabg#QjU;p2+aQF($NtbQz5f2gQd&^R0`~+u7os8Em;Ix|>3t8fsX?_e)DoxS;oP z zmPlcBFg}}TggBd?5V$fp;c9z(&AlHk1FxYGuoy>XFvWkCx7h;Ur(-9cUyO@uhzC}P zStlk;V~!)w3BC@En0OeRSjgbMmE1F(8k!ME@wHB?C565V*=D&fG`#L{b^eLo)^^rC zg-kO%)zs}RT@$jo%*>uz6kw+jo)xc-MYWPqq-1 z5#<2<3kXjF`0oCLkK!*N!iy;a2}Ibzw%nN&TE0GN@iQ6ci8uprRgr~HWa;o9zkh_T z=h7|&^M4o-m(!jIArwqH%DjK9Q?r;_8WqKjQ^pV2*ox*$ zgd_o^{gQgM`guX>!G4*rB!IoPn(!p|x^K<%7?L(h0CQ6{2HlNuaJ#X&{v4VQJ`v%# z$sR>Ns9DvJiiL>0S|jp_RRc(r_XS8k(wr=w(i!vq+#%RiT-Lv!UsO-jkpt0Ie!Clb~K``oO0Wm;}HTg{H8_ z{^blC^`F_Hp{b`TwJUbIZ*;KDii=MiV?+1pbBevqw+K%H_=?)7A^1cvJF8d= ze3v4SK!hh%lWb!(8P>qt;p@DM!EFOA3a#5JszVhTUkC2(YVG0ooYA{nYtJ=Sn)tWZ zk9xdc$9ra?duH^Wp?QA?CE=bbIbXvI-{$V%r-*}KEHUj3Q%l80DSC>Qq8Dr!va1pp zSDCgDqnbN(5o;tc&985)fKerqL(D@cCJDrR`NoPlQc@>abQ47-fvC@|vh-%*MkTu6 z-63%g>Pp!TTg)^T&8;lxwj52+aO%#FzLfjlIGezuQSHv9}LpxkRTFc+Y zvS5R6G|Dm>R+GdSjr>%|Kdp<9KRS8R9!K)Q2=;?j(+2qn{Ll~((fvw|?u?D6Kr zDuJd*W(%_)36#hfswoDhfgFN7nvf)bESR?vY@;S(9J-0?R@37MO9I%(7K+&f*SZ{e zK}yG&S1?F5T>S7Ts3!I?TI=D1=_Bb`FQn7+1KUi`!E5exl2?iJoF&@OPznU_|0$K8 zv)D^|4qa4S^DZVP5;(bFdJb`qLQJDNbc+?>y%c~10u)ToA?}d?ag2vHXHQo#8c0#Qb|N89Qa$9$=0!Qb*VJ$v&jvk2nghNXdrJ7*0qILOAyCen6K~?q9o8DobZdo*fboO%={C< zNC0L(Q(T3)R3|raFV0d6ny(X(g#HQT-KmwUd$xN!!%o8h{Ht(Mw=>t&!AF!e{2Utd zIE30JdldZu+?5r?LJ2sy96Zx=+)(ePxRr^gV>HAVgS0}07|$KHLYq~jnHqbHs>Yr15i%P z;Ka~8_wfkFqY~%hLq5ZVdtD`=nGi#f5ul&b01Y>4%4sUiRI9D1BHEfC(Tya~EIc4o z9ySWuNNH8r{Dj~n01vk*%7eq3armYM_$dV-fdEgeB8VdZhO!*&@QnRgMsyTkE}$x? zE3kVwCLQro`--lB(qp{VzJgUIf8RhIwgX_BBZ~rAzeXUN+C$% z_0B1xxs)w55~vj(!I&zhJbf_p~;s)FQ$Pcz`dKBBY!9Gb&r?U6kiY_dO~X9az%7*25zxyNhdR?x?anM=%C z!9^c)IQ>NeJu1j=DJV^+3BV%>NCLnL+A=A?I5rcY#}JeRpym5m%DSFFIF5nn#YA|p zf2w8+wy#-guIg$``+I19ynuwd*&W8epx9OA>p~Awp%8~Pjl&9RT93O8L{U(Y%x}|2 zBv7S-iYX1|LeYo(T|$xovVs~S4e1A?5BqzBB>`-3MP`vOK{)yt_hdXqaRQ(Unv`qZ zx?_%Sq_xPszPo*deLfT^HK>0lHA5qPFXU=>;2X~0grNG@8KAJHQu(4dMy_hD?{ zMJ6*pAs7k3sz|v$m=|&};70mTU~Bz%`3l#W_1aH zc9~M*_GC z5^EAJ4mcn3?Sv!&#~2VtRpGLK};*@yr{72d+;xvg8ZvhC?_3`Xo^W$O;( zUx2KjvbB7fQ56c|ca?@;1v$v$t^w#PWegoeQc+BJ){9p{I>U(_%?cq&09iq0o7T?@ z#Du1+ge3uN`O4O!)|0AT$#9I~1VB|}!9KQ>lG+xdpL5s}`!{ZuEGP$vefbZlDzc!1 zQV@jUj_R_Yq^r6F@c#dT`qbM*_GivS0$v3qB9>MnaMRvVtr~ z&UG&s%o8;W3L+pX=qdL0G*_E@?RU`K!O;BnDnjq@=-B%S*zn@H>1r?!R?!fHyEF!? z2n~9? zhOrjrK1>xP(4d0KKLMk;&;z?4!AJmBK?fuO7Kfb&_&@@Z&_AV{gJfLyxbI`AX&8Wi z1#Q7~PB_}i*Zv-w_dJY&S7=mLP%ZoHB`nopuR zI$Tq5lnC?`Qv`D;Qw9mdz9Q(BoEUZGjTdPmE1B2P8P-&hajux&I7x5t$ok^CCVX*3 zd_sRmP>(7JH8cc(7v8E~C=g0X(b-y#&M0^D1bTo39=K#`4@BJR{N=1qvCUg(eKAgC zkc>9!I2U6Uh;0#JA*I}&upW30U${LgaV|QHU@x5B4{6w;Arf5iUUfxATXiZ;WRTob zPch8b=@1e)r$np+3Ge@kwRbpkTdWV$p)_v5j^SiC7JLpb017AZCXd9OL-X1dCcF5A z{+3(mvT(A?52XO`)MwOF;bfPepExK|M!B0G&@UtqIGF76@yDXc)qUy@%lOlDf*2<< zNO$@eo?pixJQfzW8q%t#qg#6$b4%FeObb_ZgMRLTC9Jh~MsFCJJ8?Yyl(F}Cmjf8| zV|caDSi3}s0hWv+l?<-^in_M9A1uRUI!+Fi!R%xJkU-OwsSD;ffO>RshnhjkX=^WD zmJ$D10seu368k7%F*+eU>O9s78Y{d-3a&;54~OPHTrR%FJ7W)`P(6Qoha}+?10MdS zdN^FsPbEM68Dl7a^8+^GNnoPOruJUU4j;Zixp4)U<}tU^FKVO6EaBy46STnhdiyB2 zc=ek%Hkv#Dm~{%TqSRtT1YVtK@&H${#T*wu-xcLN;|6yvz?uP5$lzl{Re|8p|4@gn z6p4^A{3Sc9wjqtg9Ogn6RuU+)78tUp2$LZs?! z5;dMO{Lkx{JYp;AZsTroS4RXE1`s*ik1G<@mUYMn_gX^~ZP^=an zHW(WmPB`sYS^>>-=n4{uch1zV08ex#9j_xGTcm4vtag%wfkX`c=>&Y;JWPB1=mj~K zWWj_Re%*h1QP2wqFr09bIw3q^Fg;%>HP9v{xuBV+(Lp3oUNlp<1Y(_;B!&R?Avx+G_Pf#d;*RG`0w*&XOJYl!`_qeRPER`8u0T(Od@(50?C3^9dN_kaY~#WK(=FZ^cfh*|SD+`7gi{PS z>7nYR0uAFNLn&_YDdlgTOvjKw=IMJPF}u3{MEld3$2^3-ur_jL3D3In+05ZNhq1P} zXQ{QO^ZI%YV+VQ;y0FqaHhtQiLFd%o2rVy}z7PdOP)NAv0(DP;8a==@;Ug!rC}*BU zN0C5<;GQpJm)D4~w~`>|(`D9-38NJ+J;;VM2AhO0q&5=By&Q2n z&iN=h?@l$M=P5>kYA7TIy5>NIk8V;Q6{v;(D2*0-jWFEr z4sk)9%#C!OHD}Ux1xABc@s+?c!a zDhxceQ$1Cn_nqP>PV&wvg82yjLjtjbv#4}IW|H&x)#W#~w4&84^Cq35rizVIpzW?O zlq5MQCg;<=vD>+k)rp}?_N?FB#P}H%pT2_15DA;Q>JC;b>bC-I_YBUS{}P5!MDs!V zkp${Y-*yjRI)4%@F~&s&%`!c!Mjkb16-q~4mJvs458`yr-kub`XwUnC$wM$rfm(IM zHcqsmp%5sed)3$BMJYMTkLORvJM8UPb@Pw(Hwlz#Ox?T>>J;?22f2qnSCfZKTcACL zZvgw8>`*t(rpt7l%bbrNy&&h3ELffkjIabn85#n^!_QU^7f4+}zT(}HD~e{eauqNM z6q$a6WrS-TX96QERLne!9;I1FO&Fe&_#^8BVJ}=R? z-f81yD16`wuj^7K^JUtLWIDgvDO(uda-8d~clwy}5vE@yQxY(pA_Pa6w(-?#Y$j^C zevMp7N{YI>xxCKVDG~Kw$dm+3XLH9(pXtqVcr|0hIrR~_ozleznO*kM--x+iL6mI9 z2gP`4IM}@1{(@}z!!Bm53=uJJ)riSo#9|&UXHh8SXU5<{R`T zwq0`9Mjm5jhz#i#}IbckR1uw<*qM04W+JJ?sC6V z;ddSRk(A-rYwkt^Nci1Aek9)$M=F>8n!z+z>l7oX(e<`_TRh4a4ab?pwQC z(l37u%_VyfF^9@;`wxfxO{C;2M6`0#!{}S zFDRb*RVD)x7`8+T^f^aeZ$A`cyIbJr5|{+QB~oAzI31oN;Lj&G3BZe|Kp$ID;5Ka9 z?bW7qs5v7_f&T3bo)RhW>^KFUjTCswueub7BP}ZU0f-VQP$85zqVk;5DbUL7QlOLD zJcPa=fxIPBpvOLry9neQf{*~DL<;mkk}(zmJ%T_a04kmW&(;(eaeY{n0&xnQOQgWF zLn-j=L<;=bQ(X#7oYxfSKVLEh`m8hs5*fjES?Ls*W*wzK|H9A^&wPrt76}YnA_e-K z11ZqIY=J*bU=jeANP#}*2sj;{eqIu-KSyv9fEQ1JKDMO5vy&-Mpe~J4pnp4qC%mgm zuJ&hRvDIm`T2SrdggW#IJsbrmgXEK8EsspFI(V0 zBrpkp3)X09&Ji$tX@}j?w^;B$A~*@ai`8gp#`Wj~UVoSPvQWDi&2c=rivYf&SdpH` z2dlg5y4Jz|9-5c@8lrZyJB)t;CcN5aV(sL?D0_tFQ#3TgOOvPJs1d1(D0lOCW*ZWS zyuG|-WTIz{<7&<*Vk5JIFeLPRH85VZB{XUfiUd#>7s{Vj^m89`P>@9 z=1`s-+J9hOaNf?bR;~z`S8Bi%4RR+b6M{%6(wc|Syd;#gP~jxAy2tSqG_4u|Jc|Y( zm^Ri|=h01x>^q~!L$hlgWDAMY%A;3)sZPUKpB>vAMi8c+H+}BzcwSFlULT zQXpL4rr}z!znH~d!YOo7am`!kUJ@8RyhF;wrcsEy7(H&rgl@3{{3!(>fdID@O8_D6 zkpOXQhiF7O$`Y~qevQ?F3EK(D_=p5GbMyfT#5}i9q5-dZ%v3^C~v= zNg#Oeb;OC`5pl$qkno16XCw0odVz+DjngYu%6nM#i+u{_yZFpD*3Yib@x??x$LkF< zxM9ZL;OF`mzX%>XW$Zofau|bty>b7DJ~WgLuKuFBde8oW5$}&Pqsn1E%77q&#!uak zqG&58hd`g8KqL_8nfp+tB<`w7d0_oqxU z4z96G2$z6XM3k0))zXsD5Kb_d5<*H!q>*T7u3`N|0gP|OU5%4m4Zc_uUb$hxW>l}X#&Fi^R_b@$h{{a`? zduIAjb#MxVIQ@~vY4~N`;`}v8W0lN0eMJIgswxyt83D85=|S!#Bncoh`fSDB#rB~W zm>%p?2ulLk;HN8!S+(v3i1|;(qm2^4WHi5~)o#9J2fz6W-EGo9$0;<>Ndc45P%Q|f z5D3A;{!?sKQHgR&&_R@26fui*3JKJxsK)VuH27jTLpTz^RTS+$TpV~YmI_1j6MwwU{qCt0n+W*_caN|1ANu}C2TWB$KFpsSJY;7+-X-uL`a^dAz4+z@U@d{ zn9$Jt1D!?!ttx6W`dWFFvOBGcntvoP34kkVGdhHfFpd3c{+Zw;0I#Oa=&&VRJ)~0^ zvT+yzucB(Y)z;#O|3h=-ixI4c@TXG1R8&n{7==J|Zqw+jsG4?4Ffb!U%xCBw5~xv8 zA@_l_nvUTLDX7iiQ~R82eflAK~~%p2(y5@=FUHJyNp0?(Sy{4oJZ09a8q zod8UPo&$XgK}qPZN~&pMGWZfMy#F9hMtDzhiuoAK&y(XX8k!oHKp!TjhweY%DjM2};1mdP z+R!+yXlN(mFA<|!h)U)~Oe-W%rlLZT1k>#4L%x)dB!H}FXeS97=T9H@WrQUGY&AnW z!X2N5hyuhsnek|&1TYn~8L?rL4Mn^Se^;(5Is~WCW+VknMQuh4qYwzej)q`mCCVy+ zHY4R0Ma&FS1qsxssK&8sc)2l#dl2DB09RSG$9nmJ=QKQ7Q~(@&J=&MQKejA~6&iF+0$h ztaZIp4LINc~D6-Npw>!H# zb+a?8nccgSKm^Nxg-#}@`7mJd14NSHGe#IJ3^q9!e^5Ci8oq_pPd~ z>gl=b>#+LnkN3K(XP@V(x8Ap^y1Tj?RmS^QeTBO11W$80xoS(K-6((y>JLc&_D#1Xv|NJOW)?pWeLZX>ApRQkM_{#}Y=m)JH08 zp2HrU2Gy&#M~{f39zCG{Bhu4=zTO@^qMwTLK*IAWfd&$4?a|5MV>}?dA?(qmymsIF zM?1qX_l1f1Jl{rfnC;oqa#s{Qi4JKO)!O}dHcC?^2>thH=+_$p5mgxf{($nE$FiTJ zL2cKYtL=1;pB3^r3Za3J%NiCkl@nPpr%((H#4Od>`+Fjv9lpdi$W2TU8=rA7*3<># zK~6j6k*&nM;91CseRaqEk9ya1_07{M5d!`b8t^q;ee?JdVnLP6d)d3upfWXGkBG^% zXAdd=o|H78tZAYeQ>Kv{(teP%G@z~L>YJdqLynI#E^U;6rluQctL}mlHxlz>zA$o= zY}@}pRnrYLN2M%?!&@{CYr3rC;3W*x+L%+=HZ-V7O*haYDhyS zU_g30Nom+#wRD&SZwCzj%J|dJ07p%o)1`VF;!@m$crBj|xdXPufZ~jL1|g+Td<5OM zH0WwdAFH2NELo|7Npbjp;Snn}rhWjaX+WL({l2}vVqo#xG0#sJqds;( zR@1z2G8$~xC%|PZG5^jt6YZ-z?tjqL)b)BgB|>;^`lbW>65Q0Z&2-cNRwi0Y0UlH>zHVO@@QPW*FTMdbH z8+^`h<|fk7fUd4+59$>Jo~L{-DQQ4i&s|wmu$_AFP7FDT2N2ZNU2I?A+84QK1SW1L z=4J-o{%$wj0&RV9?r4<`L3m#c!n%g(pkg)<)5@9mv#DrMrMfz%451Imfc8VAr2%bS z!*qr=3e14|qok$*bxp&xGBZE}p8GIJee8g&ruM|M)A%qGo-dV9^?Ql=2p8vXP7A_q z(ARXv;qkTKBq>7n1P$4mPB$YC>C}9QR?~c&jYv~p{CEoSD>Fp{*Oy!B?~v)E65K*Aae}SBRr)l2fy7thqOWn0)d)ZMp z6LZ522-yAXp5FjT{uj0OibT;7nSZE}nLl6HD@X~%P`f#7jJBYG=KS>9djbu*h~@~= z(10fYV%6T$qyZLD-Gx*%pvrxJTw$hmg!@=Vl51*U=bu9q2JZ}YcBmY!A?Aorel>f) zw7_lSr#zWICHG>^-V!PeqUvmos)~*7s=>}il~b)$#aw(TT7m}R^QSm_D?XSVX33sG zG8&NO4^yScvO$*CZk~iRAUr*<7uy>?8){fO;+%JubX;jI!IHm{p$HAW`HRnYbtEw- zo&K=1(pwpg^>qqM_y98ww)9}DKWyp2#9aGE#N*v&9+yM8xQy1Pm5$ckh*eDp-b*xi z^Osgs^@zms3>B)te36Y$gPIP?HvSBXHayN(*$iO#D$dCqT5QfXndQHj(ZQyf>HqSh z1wi|2JzX@%#^+9A_Dv8B2l##2l;5$j^FJS2upJzka-ebh+PL|rCwmF1Bc832GMG(l zJQ^s^eeKX*aA;$tE;7q(8T!dPC;v>mAjfch1@H8>@7ALCQGoZZ^CeqXzXdIFa8xF{ z9rrhEnbWGIp##!+GWpOtYuY;HJ9M}v1okcD3bkhD4jjj6P>cMN{xU91C&g@{4CTJ0 zqyc6AnPgeYU>KREJ%F?{pv_%oyO*pQlc*ct7w;m)OcZ zl4S;m5AU4g>JalV_D3|R=5mF>B!@vm!5^4Q8_IJ35u<`FlIJ7(z4SP;+?{lW_!yp? z5Mrmroy7cuj3a)3*8%Q#mBtYVqOD2}wCbN~tCk)|LQrW&SD>{p2eaL1;HJ_iH4anU zl=e=p*izk*R5YN0hHa0M?^^I??VaP?zUV38N zAFd9%^F24Qovg2}%9qHshI-IVZ2iH+tiOR1Tl>e;$NixxT*heWiS6#hswTwjbsDp! zC$_sIkr_|n9zycxl9xczx6J>bhaX&IbUx_`_Sr1Xe`w`d%co`vM1M*)!5LaJk8rFDQTp0-jzm?md4R@V>~__stA+ z7i4ijRgUofFfYP=X<~l;`Y^)N1F4|2td0oxXlxIqM}+@PO%WcUM-lFiD5v>bwlPf| z5$?f#ki`-1k6ZG;BRNeS5$?e~c{-H42=~9S0zNM7g@S@M-iSL1$*gJ zM_0ArP5-vYz1iP<{{KU4ADSuk1;KmX^S`aU7hPN`0;`_Eije-8hIHx6k9qaOb=A07 z+00AXoHTG~WU_&^6%p?zrFGiZ|JI{KQ8S*v?e_@s>ZHm{WO+=^iek^M2xwcKp$l zfK%4eCntLluHq2*|Du7vqcH~sS&&ypagsTh*HLIt<<*J-lEacli$6FQ_*pgF%-C_Q zHLE?!&lx8=Db}c&=&4I$Zsmpg1Nv^CoBF#-=hO~_WXge-{;IZg>2vB3R0nG(Rcc|r z$|R?$6t_R-CA>l)c88^xisazgAcF`5*+KtP zOM8cUedm$GjrInwSz>$BplaP}?Hw|wO|GTBBN5UAQPr6at}=WNyKA^_6}P&UxfZ{L zmy7R+7LSTqg3H?JAG4)TFFgZ}v9y&*j8?vjwsMu>DAXCYa9Exg@|k~P>(Zb)`EREw z)_aA}p3)D3;ZaNcFC?Y`arq07(|*jJTgJbz16?fm-1dlHd2S zAF%CDbSE*rzd*>~1j6nIn;F!TD8qk#vF$>xD4Xj>!jE0ya z1VialdAuQJez~)4M|ZrW%P^#%r3Hx@awf}{HO()(GP`U4rqZc=mR$J|c4ukWl|Gfv z0!!$Hh00{Mv5{!t!l#t%2SQlB?qq&>&iO{%XU=46sSn+ODj_Hz^TapT=6e(L{Q4z; zOj%-Hb1mBKj@jbr5(p_hAI+d^2To!%;Dy?NrRSqL*xH8cgSCEId9A3q9h;E`)yaKX zbb%>MhEYF{I>mGW+j7dUpe;QO=K4bEuW()%ExN`5J-fhlv~Ha?3&nmg~Ha+`Ov&1q1-`I4!d2j51aor`ByRkO-w zo&iAr=Q_Idnw-^ff0(~eTh5E*@Qfw+KX?@);_kcog*`ZP8Tff+Pe^w!Ix$p+7#V3_ zu-*)f#K~+Ws={2zXrV#0l)djWo1`s=5H+(FT z8*_a2aW=av&$GSfdc@^{L5bhtV@{~!6RNsaNfSdRMC4T(k(Kkz)&-Z@k4>wmEaoHZ zY-pgr^qEGA>H|YhYtjRj?&GAR0bS+b59&1?hkWvkel(vXB@HOgEIIh5^+;pT6Z{Dy z(8Yxfh4Q@!madEMIxC|E`|cM$(Z(mIS}aP;5|^AGI*CiAAoxqhW9cF;kh^8hUOIv95!U&Y_{9kWur7gYNu|LkTKVhE_P_?wW$={+d1D`UF(mAd?zMW ztw#at54Pl>4c#j_wBHSX+{!&JhjMZ0mP#?_`7&Y?LrnR`t{ zQ2be5eLTSL%cg&3w)7o`kSsCeK$Cr3o2>jCm+o*ia9slnl);SHL^N->gVIa8Sc8yU`OrH5 zq^(nF1{ebSWO9YdWS+-XqCqXnE_eznp)CcHIdQ0E`5c>zPV|+f*UFznTA+pAa0IIE z+DKpb>RKr%$HIHwJ31ookd%s|@DCvD>?*@I9US0kH%Sp_)h}tQmR^eFJea|c8aFtm zl{XJ$8`Gd_&!{l|Woi~Q^)%-f+2Ztio`1`qvjLCmV7Oj9o+-LgJ4Nig0*!t+8$CWC zWidqMZrm|=L5U$fn)^H2+@){x(S1|s;hBz9bM`c_Qi4qryG}kjqLnqrGR9~SV{;W^ zEW*|Zb46}QW~I%y8DDJR*gS`KG-o4a!NVYyD$Wk#N^{C7UKhjRfy7XP z*}@Q}fhViXDMM(DU|Zq>SlE8fSduwq_5H5hKZoHfl)s%0-%364rR%-*UT3Yp z(!=)z{6tntTedVY58w+~q$iFKX!1r7m3!g{O=Fn!h~a~OCe2!@L!3hQ!)|m$t89M5 zXre)jR_PEUYz-$V!s)L%-trxU8qV-(={vQ|+{tox)h-0}1KiO#(2@huCB>6oiKad> z_m~tID?4l8+}18sg+ZS(w3{S>$rJc}UgyQIpq`>xU}HfM6X{wv!oT5EGM zqmBliEqjkRk6QyzNHfc;W1|M5Kw~5O>mzakac4|U>Pg2KY@)cF4?~~=xjt)Nw z*V!@duCC$+W6pI+{;0(twd{|g>ytO~l<_F2M~>{~ck&ZBY&IYBW3I`{B!*g%D-Y0I zS!|Ll%o}mh?7VqiqdL+Y+KubQGv@isCmOWG6&0qnyK7~aTcaJgC5f1tbCH+1!bzW* zV;Js?tvv=#*@qDJgdJv}NIG^p152+WCi&XRDqhi*p3!3;FL%Rzoh{cPuMT2fxgyzf zf52=xwMyUw#7c(5_ybLhN~drEuAeg4GUYK7h8Yd2ko!LWg2Rw@bizYeXrNw)2O z05AQpgj>;#tAW5pQ=X$uS^8lK2dL>JOT>w6-bf$QKyCSpc+M3J6Wfj{#al>01B&w9 zTu2eDI!I~WN*Wsay==4quAR20c`9Q?8x^SKyEMK0w$R_+cWVoz1f4WX5|g|Z!E=aS zrE`UDA03kX2m;EtepY}|BCfV-T$Nvfl10`43rm&DyqfJpgNl^DLJz>c+8T% zhNLtgEq_uM0(;UR2*cx+_;nciBud&|ftN zfa-%IipZ4i`=p}*UHJ=1)AgE)#gy{DNJ#_A(#xsd2U8FZ`V;$gtWk^GiTOC6(B2;nCA-{`AF+8#52gW;5};*n(3UAZmR9>Jv4as_2Y{EqPgX}m+@EKm^y5;FclT>~ zi{*)V{5ueXN8}x{r7;j=Gymi*6jFy=m4@iONuxLazDV7y65lxvR5fOeQ9%PYY|o2| zI`yJzL(=oRL0%( zZx}TBi^|KpD}dKgh$;{*AJ%9YHS7WQQBf7e3+5M$4;s{XeFG%uxowV+UsDJTgw)-= zWLz&PlXjyyVs1Bq7#fIKsyAx_E$spB7%)SEurwcHnoI>_{u0J07{}e=!f0iWJ+A)j z*sZc>Jp;#NQ!^bq$toWRH-&|BCV-Z-Mo%X zPlL+lpCZ*&SqVeUhpdPB*VjOUw)ZihXxl5N<jq<5l_b6^%tP{oQW51p)bY87ovd5TL{e=|g`m-mQIl5O7IQyBbP`&A+o@X_|i9PzC#f-5OGP(vlPqJju{U@Yez9wV9c8Iy5sp}yc=$hXPf?) z$F2{@-R->rZYwPGcFO2wOK@)tC3vyx-y-Y}i3|O{{uwXJ6bMUCT1B1;LOR?_)1kmM ziCTCiH6mxJ67!!74H`J%IeR`asZWe1OP-`3QW6a$UAd8x()7ub^&`rnfvijSm_(Hw z)wUXVW6ejhxhM0=g>xFd`F9zk9(;n&M;6L0{T)8dw7oaRGhe;&%K94K1#ZU^Ep7$H ziTT1`BFFBObHo*fD9pCy0wJDefGW%744Yw5sZBwcOZUYfsO+2vB8~A@#LOoDZ!8N zhId^S5taoXpqWUy`)b6>2apo(J0Z~_{}~G{RVD24i!@%qU5j{pkQ73ZK&NQ}U45H4 z5H|yIoU7VQo0ku1;G*a6xv#C$L+Lk3w5{wDfmYb5j6V0#muzER)377$7c@dzO;P`y z5 z4SaQVv*DT3=FwM1wCQ}1(t+lw4AR{+Z=*eCj$jE=EpJ6JXu3DD$ILtAN;}!uY_!Lm zAwChI2+T`1pvRn{L83C}m})bB#G#l5A^FD*hGdR{ww7Uiob=nDc8a|65B>JcPEa{dh!2b&eF;wDf*feAO3$#->ih$t)Hbq&3WwKY2fw`Zfr8`PF;SY z;X!IHP}LBfvvG|i94`13tBg{!%uKYQx>tc$r*t`H%6(XBsI*X*sF_;k~BeU1Z#;fmWi{*IYbd78s5+sC|(O zqjky9GtZ2eC5oYem;!4q@eo?|$l&eY^a@Qzkf9(N2+Cc?Uu$TzGwc&)RT`?$&|tdE zkH+KqQEySkDz}rE&+xqS0KXq>LQaF};utAMRUloiY&=~;T1gjIpc>3$7!Wk5eS_)Z zSfw%21q!a%iaCj5XdtG+baAX+Oqwq4kQHSO-?N`?AzZi>!E=W<`-}l@%+ieWk6ic?M4lXi(io zJ0|sXmc``?)eSKSST<}FI#ypL-`T+uhY11GW0yDjs-#e&D+@KG^lrx z8|{_rEfRFv6gGr;JB83dNRvZS#upYltZlo9*h*{k8*-a&DYR~wQN!6$LU`kU9Y@o7-+hEpPt zkfwxd2=hh?p@EQwQz8%&OpAi3FmIt48i;8&CGdscs6F29Q$l00z*?xXqr@`K&__%7 zkc>=<{9a;S_ckQP=CmN(hC_<10V>%^cuq=EA;^&TYlbu!o)NEf+P*|pn1?eWXyAY% zt4Qi_Krnh_<+Le>26Bol)~HQRnlM>OkESFVNE$RYjCj_z-?AwA70gNYh12P&MPf{89fE@UdEuU_DJV{9(J)0ADJ28jI69#T~*Zyt`QX0JY z6-ZGD$cz8fyl8Na8L&!XxVnlH%;z~}ph4C1-$hi*wfd|GO^sN}|D_ZfNNI3>mz9zx zM=a;dltTkK%Z*K@EGOP)$S|l+%^JYXt7>mtLxK_ub1?egvh1-ew8lO+*fF`@?797#+gv&`$3CN4z(Y$DO zKy|DxF;XX(gfT#asy92~ibVL-2&BA%QfMHh*$G!9B}$G!&Z{Vg267smaFLVg5pds) z`QhUe0vhZ$FJ12r*ZKqfnt|I%%+~*n6gj}}2b+-7;F1x?sBLm;gD9+ z#1*I~%t?#}8q~hQj@z;NnT;ljE4E@zrWhKCX>iGiWA$RvRB?x_pi?P`27;PfGU7kaRcI(M`CLcL_t!4lAyJJW4m3F)qaS5Lg=?!{(t)e)_9cbY|%N|I~ zTRx8TIWqTHS{!2WHlx||o%gzAt3ssK!!@-EJT6=pwWOExOymObnt27M>@@I5foD8x zm8I#n8*#6qI2wp6@H9`Y;?nfnjlkPM-)- zb3@_Txe;IBb3fg|pwmM?FpwO?UQ6~8^Kb7);%!a~WLtmA6g#CBLZw0WJVCSPoLW#N zF?_|8!~89~RvL)Eutu8kxQoxbI4@eVzatq9$nu}j-Rq`_S6gKXKR`kn5T2eFt$V}Q z20FrzQDN(I3WJZqkOsh+rF}SF!W#O;kp|p&3D0~ijuLb2-*cYSb^Ed@zhktWTnCwQ zAlS~;V0%g(pc-qoO3GmF%dUe4%FBMT9*&UOx3R%z4xEe3)7TXBlXp(}+y}_8yJEjA zLD$P(Vm{1=#Wtq}vaLU@mir;0(x5q>Q8o8NRNo#!Rm=;R9W+(4!?9?Kgzz2B4)+7P zsC-Ap{v_;?x$pYqd-F9H2g%rKi|k&SmZz2v>WDZoBtz?L)7B~dnI};jRLEcTw3>y- zoX!@af$z$9m>J)BD*gOcM0genX+W62I=M)XnM0UPE`pk?H_cN>N(0if%l6VKCn6DT z=6h;3m@$k+4Use`@~@N@so-S7SFpHGETGGgFDz)+Eyr5!7`kyemYAzQh$y{lcgA6N zWD2xe+RPTJf)L4@@><&J20WT)KTg77Gzd|18B@i^ssEAx4Fr{*;>>sF zmwTN>U9llMtwmfyzmCgd5AgeT6Tho8#Ri8O>YSv^152I>7dk z6$Eu~*i!!`sc9+)b%5=u)A3Y-I{1mDe+TJlss?ocZG&1%Tu`%R&Fj;k4t~!#dV1;3 z(LF-bS-Wi2o|5`nx1=mFS8^fn9kazjiT*K#oL-|4B}P2osPWvX5nIDKuDtS@A={J& z)j7Z9>4Nu_dIpco*(a6oG6VYAQoVx>nmRUhWB#jwi}aA|<1sGnceZxtxApkyk2U=i z`@EL7YDRkArTFTo=`IL zEn+)H{y5v*Hw55I&q8|r;b?V&PhPPC!zI1%t%dlsnJrArt-P*#*i^YIO8>snEF@2i zaw91IMT4UB)H)Abnl5`l8O{CKdNgov>24&8?WY17FWJME`T?Y-0d?uAbr#!G`@!Sb z>`yHHgGo;V`U^|OZ5Fz%1^oJ26jbJBhO&*U;2@|=U##@p3+wZlfM!Wz{_|sq=0o&n zh;k`(`_Lf!5b(sZox_v>r9=>aLxZ^V{Avn0j^MO<<{CC44JuMSX9(;AC=7xWkNO}eE~^n zY6;nhG$&*O;;TqZQ%A@WHwf8)=0|bJ%8^PDvlEX+>-WWbvYD7S@|&mo**(7jlE;Nh3zuGlu{c^E_j}_`4==P^(4oZ^wX`TP?|47L>d;K7FR*{f z`R0?#HrccYWkt9huHjaCUOf#h%@r3bn>n660S)R>`b<4W_HnKqUwqKgo=936(3YOy z#>k#F4a@ikmil3&rUCW2CBriYZrfelN0o@OM29h6T@1NHAbnx!kXawj^CK4SR#R`G zv(VcvZ%E~akJI1nmYz9LddlaN?3RJ; ztkRJxM`@~D-MmYA@uiSH)n?w!UXTV3c|qAQE7IU?r^?@_?BQ*qwz=)QMZ*R+zstDv zt-f1dvo)*xc714XpcV+&;J3LU+vls{e&1EOwTGXlzw89Rbk30%3R~BpqUF0k*G#+T z(7{z@UUX?$^w% z0?W)pt}4P*4I=Mh8hQB(H=6N@u5IxZ7r&U-ts%x};D-WF3Do6>V1gX9g-Ut@CDB0A zmARSOoPW|;%ap7)Qx*+m?fI)+bvOzuU*s}>8ph_KOu9_?KCf9HO-A#5B;@v9XEJYJ z)PNN^uCT?z#2oMyIlIx)yAFXGZDuTTszjh?e@9gn&T z^PCAzmb-2ZrZ3bFabdyWKL5&dwyE-<$o@SAH+s(IH3WiHAF}Rwnstqyv*ihpxnlN! zsxlYxjDrTAY4oHh%kSrnY0zhXVkKToi8PSdQeN+jWD1wEH(kcOK(2ziZO z1j7?N^V@j-HR#%ft1RGU3lt>gW1mM794tR_Wp>y84TFEsjl` zf<9EFYRq#OO*HVvdV{CfA$41J$2*gwb7CK!2F66R~pnk_qo5CF1={g5fK6R zpD`3%BY?lzZe%oAU%@@!H7tXdPIz7laF+oEiFx9ur5g#$5T(K2G~bN`WEvvWgb;bd zMsyG+VKWIV@MZxA5n#lXEdDeu5}j2qm|ACuQ9>84%-dO zfff(6+=0X#$f5j5coTn=Ip&IEELLEx(UD_D1yn0?^PQTT*W4B&Y>rO5Sk;+z4*4|j z(zUmlK)pVyjhbmaX>hZXGHD?56}OqpFo$P)^qG`O1F5--QEKaDrX}!!G2{iF&PLK8 zvu!%rw!V?cZBr-XWoT`5cC|2B#e3(ZGt^DIXW?efuI!%QfRILKSE&$Hfb{&3re~wG ztCUs}GW3CY0t1Eyb>GosY-dDh(nV69NGUXsQs8Bzsw8dgDG{vE3aUSAK3Ch*1&9vEOKp zO*YC2yb$MVE{-ra^AZ;gs^91}+@SiBBS?i*%4aBrhH=p3nFuKHFuIFD^FStn24d4~vE1u!?@#c&n4FyX zy~O3QL^Yb1o>k{ll!Dx7Yi=|e6A`maseFmL#O%wnQyMs-(doV?_NUF7 zD!$wbI)H*`AgIwrqMq0bN|VMPv!V{7C>n?wHkdh{x9zvAf=4okg7}4yMtjxe^sc0C zCT8{PoNC!UzX2hQo{6MFQ~@&QiJCc$o{6Ninl|DNRbcMOXrMven@!)e5z^&5VRM)} zQ3?&DGovSM@>!OxYU-L^gG!5$8=+*UrT*Kc>_zfk{KtiLZKY@fa?7fWJb3~wljNI2j z*K}pSe|+0>E;7^^a!prVKD{yDzg*8Y{9a;~xIBJyS`cnSRHO0eS($<=1(~p2GojJ` zIAWG@!I!8Gb2|nl4V=*E*@h?flY31MUv35MLqRkU)acoUC-#EUWbwzWsQoC42BMlg z+wibtXq&U`*2e&$mg3(6HBhd$dE)cB>#o& zHI4MH!aO7Pl{VYhXVRd`jdoQby{1GeVn`7*5YcEa5sF9?Ar*2dh0s9A)&_F`jO~>5 zT1LJ^A7~q0$gtWSul4cibzWqaF~b(L^s4g_|BN&^I4bkI@;96rHu_9!R$yYN2^n&| zW=NxxpDekIBVnPcF!FlI16hqejFu}aOs6SnkDxRf zNNe(8v``rmOmyJM6}hFtKr*jqs<{aFA>HWP)0`$O=9=JpZEK?rzL*sypB`zgjaoR8 znD2Z8S$JprXRY|4FYiQf%*%#5PHoeORVR6riv+z<6SUEn8q9X34r)0X)t%;Oo=(%i zQ7>Crtk|n4mIh)sVhoNnq&bda9e~3OGM|aY;OI}8F3pa?>ua6vU^HCn_$#EV>uW73 zYOyFWul}5j!Eq@%r|2&!wAnE@qSJ(?G9>g@Hew8(qSs80iq%)<-V8Px_@vn}IAZrH zVaMR;pp|wXN~3|aX2+6<-AfCyHTr>-_j{B_19_J>IR;1MZGl8$E-MC1@grLfRBU10juGgN%iwX%mWhG{w+B%wmJtBAo4z`TNWa8N5Y$&X)$xxu(f3Zc2b39yH;mj$460p+Fi4eCcf?Fipf+BL9aXX&~}B4JPFj zf14$kT?UzA{q`$nt0YEz6bc(%E3($zrfXNYk(lc~iTvCo+x9;QX!MB@CqTK8cnAMl z+NIIOn~qd+Ev>ov0Ph^rpw^8pnTiBxMg=lHOc^wg(dc@eNJg4Bfs~I?3Jv3+!Bin- zJK#MCQIJMpqYDejnmxZ_S#*N+`EMgJ?wBpslHiXyXf-jwWh_LMR7C`*XUR}OI)0A(*mDDfiw{KtcG(hV3#z^ zoNF<{%-xxjk^{l78$a1v8?AP9ojtZ%c+u=5*&?)MRTm z*?rY{S5P!4zj+jAFf^!mqbFOw;*#YyohZu+c`Sv{KuDt}Td|NJbpkPuqZk^9S!yz2 z$k~RXIq!!DFgF;K8jQ`h3EqR!xx61s)QgUX2T<*)*;CksS3QJk;n3 znrCGwsT8EtX_``vo*YEXl2N`yb(n9nzomf_8odMJi8J}+%dMdAQV6MI2v zHu+;#)b}Zh2BMl=%fUtvx<*JJ9S)nryoyq2Af?eK2{QhOQYH1w zb(BK`IZZwrscM)cDffBI5Eq`{e}0oEtLwu)-sInb8z#N^b$(Y^dJ!#d1;vTE=2J+U zJLMd4g&_*(cjJv0t}2mQi<(-Ep6Ji;9V2}DkSa6Z;WaE8_@~iTozn{Z@StZ-(?75h zzekBQka+FJH=%S>VOnMb)XMw;Wzsk?1f)Hag60 zPhZZUn~C`xUu(Ia-SZm|(&#Xk3Q+~f#q|vs=2BXTpU?;9%ZwBn)V!|A~{4M-2T-M)w5!F(V9=^?Km z@EZ`)aC$f)iJ=0d#~*JeTX9*Kve@yg^lPCpjchx2QFdCNF=!)G0jm0umZ zwYxUI+~Kw)h3vMto0yM$1&MKBP-1uF*PPeQH7P~;krvl#S`=73RiWPWPU;HfHecf8 zp9Xa;aBfzSUejPo#8)YT1|kYv!L2AFO@JvOU#Acn2$|pGJgc0Jwy@4=gh>FJmofe| z3Vq|0W0DVilC`K2U0FCBF%yHpcQf$h0xTV11VKoHeC)d0L<$o2hyLg^DQt< z+M68g4>9QALw;!*xDuNQcl#nT;gGm6-S_#>sdr3pd|p;!C=;sk)RjL-ORjgK}sfr(f$p5wW%1o=X)5 zhWRU|iVssCmNm~F1}6w|ci`T#G&n)hL<$mfGjrwOsEoVm-!OqMsW($Xcy?u~0*Ueg zO_TzQ0`?{_vUHLsVWIMycQF`fP~)1XFCm-nyfsV0LsrO56hZ?b1@8J*_C=Z_Ibz;R zF*Fdf=S2Z!wX_E(Xl?{yY2MESnF_|b^J7aI>(VrXEn$9qg|n)IqcZNMf73*M1n`<4 zRDt~XOf&hBq0{^b3KK(qb0i~yrh)tj*s}Q%9I`_0N+C227>rNP?W~u2!`>L5{>eGjwui7lsx$2Jc1mZm++DTHnnx`y zYe`vRKK`gXa1mRkm?hC4Q^@Hx3Q=ODz?U@z^5Nl4VRJxa#D;|fAVsl!+?T$T&I-ODrq0%7G zex`wTPA#Y|(!#2ko7ol6K>UUE(fC-4$ZjDS4ahF8k1UF|i0}&}qygdS<-<)eCEgiR4DuDpK*A4Vrjo-1t=w= zaR1+k1Iu?0S!9jGuvEFs5j)XdG^oha%C=XCiv@(2&546J&v0%u`=LfTzAGJ*>sYga zr}4+*?q!{ok^Rbu6t<+W#lpl~@)HbEhfS5+qTuh@kY|)_$UHI1jkdg#wq>_YaB0pg zt1_C~Z%2#Lphg#!Y|$(Fo)d>#w!_)3>fnqw^RH4BnCB>YZ|8h(mG^Nv zYvV4i(PbLhA8yHE+uX1EF`E1C0?^9+g+18u2Lp75zMpa4!vp{Hp@h zeZ!f+Z1*LGD$LJ0BcMTjN0kC3uevT&{4qRc$p&;$BNFb(sL^(s*%TEMraxRA^Q5YX*Rf~@hPUC_K5EsX2T;xAHQ#dZN@If~b9!d;Z&94~; zG^p1lmEs@-ckOS>T(b+~@3Yy}-BX?|Jr&Y;U+E7!Te}mtf{zV~q85u1bM>P!kRPhe z>`QGy$NeRn_es^7*FkC1k`+yRqBd>CkuHP|n$;C+9nFh4`=UWz&a2d<4%js(_UFXG zmT3!{Qe7H(F#k4X;Rq(}LT@<2|J}8bo(rVy797F3?yr%%cg{a(%SBoEM{rB&Q^+*V z0z_?TNDt3cV!9og&CppLmWR7>-_fDq!$SwAao`V0zfi(HrIKl8U2dPX}sT*ukjG48Ie z_VAALylVh>$<>Y)f7Y@;i>?Jcg6DSkb@8&BU)mp`BC}Z;NBN5vYO7RYs2DM|t}&JW z=u>TUL07Zeii;|9D|;Rq_#yX!lUj78aW~q5m+Yfu=UfD2t|HJ?W{pv(ExgCZD}9w% zXMAfbtDS{@cs_!X7D^J+ISKvJAsT0{(C&BapD}t$UnQOrpp*!d=W3vozDhiW9K?iE zF4Z$1<8*@t6)Ag_IAU`x4VpPRR_kP*!xmLvhQ2$uY!AM@JHX7MKf!&{p$slk(CSZc zGkTbq?{f-ya8zb@?ccEBPOFPt`Ot1xYrB=c;xSb#4i#acG8w~Gqd_f7-{%f-#f2o( zn@!;%OSwWy8c>#=6^6K;GQH =5crq@@AvQ%hd=2w~f@GlwYPEp{6z=0%K74VNH3 zO5cFozS3RQpu|REdR!2(iG_*%50&}D(!poJ6&FGGDh;~Q-H=x+!R8g4XVdjGR9n{d zfNM+5#S7+@bhNqxs59=xj=Kx}-f%7Vp^qhZ@YwD`ccn8~>#3)?*WzAc-ughedvjW# z+w#-hbk`0yclnDu7?Ua$THuY^0y9P;_s4sIEZw!Qpz@ghWoQo?cy7iu$I?{1`;%7A z5)Md61Hu{S{bdQ$oX^&BL{b`%o}C+Yd&$`*1J=>_*f4Kk5K4gfps3z->#GahHN8kJ zp{M(adDf3GSv@E$(!GxT0jfD;71UnTGbL9-#N=OVOwO1>l)_GREYuB{+qUE{)@yMz#b-d?q@kXzKL_3rW(u|Tb%~g&3`(=;a8NQXG;z&Bi4%9K`}HC zb462u!l`>YYVBUo=*Zs)-2BJ=_ z;w9774<_RO#GJr&%=>UtEx;dN1GoYs)W4&lUTFg71hWafX!AZ!GiV_BaTPi)AhuJ~ zZ`1YS55QLH2nOAitzl2aecwCX`grtC2Zcqt7qoFDmu1KkLqasikF_}}&3QA}(%S@O z%4NR89HN0AE1enz(9+|l*IjVIBJQ1Kw=sYSDEt$$Zc+? z9RnNC{D{#hVG{&O#V8$5;wT+Ye3ULdNTW0@BDwzqj+GUo)MM%RNJ2#E9eyj0tQe&c zwvAF>mKbuG3D2czsz<4Z_5q_~U+6F;-A+=P>QOpP8b+x-$QD#M)T2m~dD{0QH} zHGC^|KzRfb!`TDMYQD@4hz2#=R(H*WSfhCc{ntoO1NusH{VcvurZldzKd~P81|`ry z!o?Nl16laCFG$0j4Q&o%n5WSegjS`FYr+?Jy9uULpC$gHLt;KCH{IgGU57+}#-6#- z*j>|AsTT>>mB)oPkgvQcSJp-TA_f%~A+n2wHF;!ly72E;Q~ zdQ_=v8qIm+pCvgB$j`43$`N*(d+DVTThHHR5KjkBrK{(9H>o>ZkT4c!OHm6&634i( z!Ml%#W=d^A$NeRvc*dghV!odiqRa^6<1~ybjY`w-6320|GMcSyQX14L|H+gxRdV<0 z;4y7k%XTbVRoxqTGyl|%GwRHn!@78l*mgW$i`TB?Z_)$2Zcqu4mv6Q12)^k zbBCZk6Dc^_r>*Uie-CiaIMNVHy}`NynwQf3G|+ZRNo|6;+#N4WcJwF97C0d=4S=6e z1$fZwZo8~AP9?vB$TUFCKi@CthQVm5!*71Abaz_OuOc)JpeuQJC3VDg#H6W;8MxrJ z#H0ac>CmN@CjF(AQ6Cp;8M@|r!qQZRjlB9M!qNaX|N3vi24iEb4%YEWU6FeOacSzn zg(rARpKf>?acO}2n7mPD_j21|2cU?LWVe&;3i6kFw8vQ)EvyfEt=;`D zF*o5URdZJ?1KhRw@$RqL{XDd2CPti!htB6b?R@^A6pC~cc<@HF-JR6NQ z7VlofqXFKd%j3zq4iR`10colM_J@mB;n4)70pLj$6!v!L7j{ME{Rv6~(00L4^-bIM zTUKIDz~oPs^Mh|~JQ{Qs2UsvUTGdzu0Sj9!Y@skQoBohzqEqF&4tu=*^eF!HDE<^R z+MB?bB3CX1ZC``7@K9mJ#Wi7#=ds?8-}7c2%sbgh&_HMY6JkZ3ltK?jxD_Jk?JxYC`r={_%Z;V_Umz?EV9RBu_HcuN1^f~LX#n`R(ow&-J{W|p^i`tL0JZpZ zBHKy>ygL#ubxrkkg3?q29W8~R-y$eYCD0XozIQ#LUW;cZ=CRkzH?W|p9Up&aY7WWeK0lo}qb6T)#^T{}PlpKWQ!Y9lTfx=?`^d6l* z6}|u#q38r^(!qGrSxD8I1NdM+4fGX0Imkt}{a*-v5W#5xUbz3u0}lirN=zDH7Cu*+ z#@sp{briqX{y(gUj{(g(&duMFJWSoLzJ#GflA2TkNh6 z*6=x~mDNFSXGC!nDQG}ZxF?!T5k~gWgr=$H9;aSBA8Efo31~o2_}q84_C6PO23hm~ z!qWgg|E**>r`EIK*R%K!CO!@DOZKZ25K2CdkTifSJoV3!OfPh{_Sam>Zy_#CHK~iZ zI_Glzp@gIXWd6fNg}m!-7j-7t^{IrW0d$4Y z4G*N|b%;+QIt|bZU#y!>A)rrpSZ5NO2G|ukEMPBp@mc`Bl_zw}lL=1)_zD9v;Im!T zIYg!ba)lWXkaK20=MkI+;8mg!%LlW%FC;WgHRx4bvl!ud9CnMYW0@l~4WRR1XH}?U ziJ&{9MZS`4-S@j4lF)#p!qjEln{fOO#t{@E! zXex9iF-3$mG*d)yCq`S!DWyY@R-i=lMO z-h(O{u20?fcKfojg>UmHz35uSt-Y1r8thn=Kb=fnX+hnb&*L6RTpHl!udB@Ki(=e)tWz7~GSB=nPWe`PD;>O~8uhWt z?@9(5Fcj~HVg?(uL`7^^;JXu;2EgsT4+Ocyn995t(P)5H{1QM`=Jw9|8n4zfEX+}a zqyc2{!6b&vJE@jmVDc*@N0WpGB*h2D86+4|(o^b)=KiFi0Zs9FQB1SMH`L=+9wJKb zJ5Az9c>pVfh)V<9vaw0rrByB|~$w1VDokVaN zfES;ROoN9Zi8Ycg=uaj*4dBb>6SYrP2mQ6qBGz_}?1*PhB{U773*U^>y8ERkIj~P6 zEDd0b&-^kDQMG(qBEFyF`rR?NK^JrU7!E)8(YcHcP9U&M+%mw!D%(g5-y1#c~@rgkLlK9~fD6Y7WW9acK;)lud52^Y_R z3-=DaL2m``KfrSoI{6Rw@#WBJ863T3 zy%hs2#hT}`g=o-1g*%*F$oY}OypotSz$|=bF$)tAJL*bEYcMP14NgThK$TUDMd|`Zd$m9OfaxDHYNI?UNTH1A| zSO32WO#|pkUFCd_=icIxzal0LFe~-wY47_^Lef;0IpU*&BJk&;(v7J5rt z@U*CfeGg%209$zVPF_4L^tbnUJ|SY?M^qZ1RvLb=Os?x1>iqW%TZk?8yo zA!#Z@?! zt8WpP2Dp{_t3GCTu5?d@NE$#^iYYvSf5P$BtG^*A zO&y?a$htir=%WE>wWb;^xgl#4F=>EV_+Cz4rlR)Ug#`?T)&u(!mt&rTu1;yZe*trW@_9y)T@q zNdw4Av5S+iEjSsouqP0f2C$Vn;b2&Q2r+4ZSt-EyRY6==MyF=gKAgxjK&})BkOh`u-D1-ajNJ4KOQ3R(g%`@r0zQF4JFPd;&3P zDq~*iuYWy}m^8qwGzXpF?0)R}mNSS-1Jp{r>|}i_KYHe_rJYS&8sJuHsPr1^Qwd2^ z)v17V*LTh(CJitv1wQJ&dbv&03kXV69Tay-E$Gt;N(0bJ=lE-5-g=GB@h>4Z4X}&8 zRVbJ>wu5b}b{lUrW$yqL@3MAcX#u|KIK;hIxgCv(s4qy&%kG7nO$SG1yAD1j{0Zvu zh@vZwLL9x{M10(DI_UPY04?_;K{<=ALL7YSAS>7$2)HSk>&NUW{Kg{t$vSa}-Nviq zeuHO3_jkLy_CK{Z?2R#Czyl{1^*{iufT;YDTKU3{ga;T$2X`Gs-t6Ufg-(htvf5&=m5aS;)dYV$?ib9*I?C_No-U zYF^9Lt27A9!qcoN(D4!;`QTG=f_XhLX@FT?C@_auD~f9!0{SL`(g3vZG;>-g-U1WV z{|3U+0JiY`pDEbM1b4&S(|dgKXmud(#}MUjBLz(r7t0#a&LXbU3g+91NdwHnV@_7~ z{Gh+uS?S^(1Uoy!(HLiqf_)>gX)0rH?{VQ%i2W{N(*V2hHH9hNcvli8$^4kBKFcJs zZz41epbM|gnSx#)k1@D)w&IO3J-l*tvW9EJ0{>pZ(*VBkv?&X3*SJ{7zb7P36-W2_ zL%jG5ue#)OEb`VQk^4bn(*V2h=$@79u@~04c36NvLSUL&fLC$(-2#7{z%&3Z{N9Tx z#XI{GK6oZlKS@LyAQnE|%OWn0*2jH>8s1JJ>jMS(Q$(f#^2H?vb6N2+dx5gNWmcXs za8>y%328vssZ5x&Sb3WApGiqmr9E)9WSQr(;7D=t$0 zowzi>Ej^%7>$ry}uE#xmn*dik*2fdM>Lu>@CMjsDxC0OW@`I>O_IHR$1I*IRXvbZ* zMBcB+x6SxHa?pUI@a?^<%N@r;5AT`biI4^V0l{hN0PhcD@c$+_4ZutHWKOyJx`edl zPl!wdc+xrok2GE6{ z{F(|Bxwt2Rx0!e}z^f1u6I_Gsx&h{3V$xK?L?1oD*HLVX-I16yz$_hQm}Ji{ced^5 zj+b1AcPHY~0Jn5g=?xTIh{pZf{t%bW#kF@PG!38&KcSLsDh?|%hQqrNp9c7apC8HM zrw@?KV7UibXsS3K;jxDG9e9m}pJ(2ixHP~me6=>K-r@Rb$bE=P1Ju$zG#?oeZ*=ro z6lu-hBQgz;OOK31?(LlK;mbdG#E_SRdm+c~lY<5vrMo z{QNM2(*V3u8?N&17M2eO*pDPOO;zD|%ilU)L4qsDqjfiPdKAHF0A9MgqF3-X8NBgn zDuEtLd>Y_iQ1;wO@$r^&p0#y$;GP05BTpyN09bl74@Sw;iAMvx(w7@-OuHK(k}_uzm|ZE#H0ac=}Qy9jHaWD1f>CJ z>7bi5Ao(*>)bwpX#iZhtJg;br+Ui)v1x!^dUB`OyP0r|$U*~_!VjcmCt=Ex zGvyc)od)QoCu549nINnanFh#(pV7?MP2}k*!cG#uzM|c{*7kpDgcjvhYH((SWUV|DbH~bm2t= zrU7v2aY8@5CKm(TU8ie^O9R}}vxe;}U94S|VfZD)qXAy&URQdsV6J*CL1_S5dJ1NP zJAnOPgrx!O!wNp@Yh$l%|F^Y1g3ArU4f*a7M`h##m;a6OH1YN;FSS(`rvMypM-ad|7WO6p!UFfdh_FNCKL`-uX z-^We^amAA1@@n6w!k+MmAKQnv1ka+izK=Uy|KmO z3g=V~+zIFj1n^G?NCUvaF_a6)%N_Xg3tseYp|2)1O+~F+oYp@jAWcQBTNb9YzLd~3 z6}6t|v?c_ksi^hDX|1myG!38&p9JJIS;x*8a3u-Xzj-rGBH~qqrvZH7lbGGXXXD~J z63|p|%>u4fFUxBTm>fPrUQ1{iKo=e5DBif9h%`Vfn{fCd64u{X_r8gM zGyp8yAq*yKSSTR+ZXg^D;0j*>%hZ@~eq<5Uw-J>FsAWS;?ml&vd)nU-%7!8PP+oX%MkD5{(9Eg|GNz(8i-aURNgHYZc6Q5t9a(g>QUkFnP6y@9M|H zJ9rudi==S-CgX^kNJ9gfqOTiLmbU(9UGOUog27-_`1XN@CaS*F+dA&*NGQ?TvPFsc z^j$F3KU9C{OLrZ5hWzX(_p`lfN%_-|R9P@mKJX5*cDwjUGzFz2=JE&+t!~5hJE}J= z&NyhGvhW#ij%#>kF+U#h30uKEp13r?EuMV&k{5coI4Yfsk z7-4AuTh+gW9S!+>lR!U`&@?spq1ShUA4OD}8vFoMJUSv`A4^!88vFoQOmX?v5rKXj zp=khJHO~4&EMc{{rx2H>2LIySJQnpdqS64h@afcyIKvVK^!FC{bOO@=xbRueY~XYO zvN-uHqSFAq_}G-6bar_&ZvA*)KZWo#^@+#47$2Av@lPW<4baand`7Wb@xk;;D9$GZ z4JfJxA?88eF&7b+2DnwbrPVYFFD5JvU<+U6n-MIRx`cTKL1_S5_!9pN&^!Tr%;Ax0Ap$bpZF~Q$IhG zz%(`ZIeM5wV(-~RrvdsU6}vi%zJ^<<+j=`Xlgn1{n)q>l-aemVTi|(Qqygi}1uw$K zA=%blKdaR&dH^P+c@y5^*O@S7?Ahx~vYD7qd{?eB=^m!;x&h(EuQPd2MZ@fQMQ6{& zM@0`Iv*xW>j)bqH%M2G!G~kQlyaP_9W+zWnXz1F)jTyt|;XaeNG{7w@8y^N9;|_Qp z{Idy91Ng${SE9O&FBYQBZ1o3>fS{2I=l4o?*k4`8r)ki{cU2?0K1x#7gHyHm!LG2 zy@9o8E4;ZBDE>adX#ifW1;;&oN=qE^UxcLrY~gMq*U5NEKiBKo#``gGX(~H-JmRa% zMeI)rN(0csQ?6XG^2T+G`g5YvRCWR0_t5KcrMam66>({*t6h^1-V5q)iAn?1@|~Kj zAKcMh?e1icDZqE&SWE-pYAJ#5emEcOOHi81zQwwTzzYWum!`58_!;b=(>aL1GypF8 zK7ug9+To7%>@ztQO$`!-@3>>)q}Tblk(iI%6C=O1oWHmh%e!p+HLTr#oXMq;i%gv}}2yEdK0qP=NO2c|e^&cD{?EPT1p z0Z4Q5Wdba~HE{n8d+IaSvD2a1n^ujW=P@%CY*lJrOGFwV7GBQ~Aug=r^A?zjxE11j z%hJxy{4yTTLYF48uO|r&ND8l@iAWTbMHcc+grosv;WcX+NO`#cKDUC^umHv_270@< z(=yyZ1{yFFUY}Bg0pE*qj(Hn7Xuwf;vKn#7qAzjs+lfU3tio4rvRJvExRJ;-KrTE1 z+#Pb@fp-y`2H1s%(HNUAyVI5n1N$Zd(*U?!%#j5d*d5|jPCWcxLec=T@Ek4D>LABU zJMj2624}(jd*aemm6`^_2MI}2+O1Zq-iu6uKSE#{02dysA|I^cZA`sRZ)J7O`Ss(( zqyc8R_)<*LWV85_#HImu;VWV}dIRhrdOt;U8lacUIrr32R`+L#OjFt?8RS6qKNFh< z*hL3j*1t_-WA>dg=$^#_pcH-u5nqR*mvdw*G4J>)Qo-N}4B_a(F3-`V`h@%y0Ua$1a#H9gl;SnewcYWAjl=uCJ3%*8R8UPnwuaW_t z^tif6;J!gPnhGABEUzyv@}y7@zfD9MAQrvGr~2CZpT+q;gF6Vses1!HFNix%*I*pS zvjX?J7QFb5yW!7{)t?=Ux9@gVN29@s3-(Ij&X(>b=BH1=wEaN*z?I03{WY^9{{ni* zQb~*|KnCrzkF38~X}IomQR)t5H*b6<8j=R}oos*rc{E^J##<E-p>wFCezGVGjlu_mEt?tn1JhF~Kxu|8x9oRDUOE5O30bM@Nz&XzCZrShE} zzYDKCqlpG`1bPjfI*=K6(#*KDX+j-|!fJ{q%q@%snx?`sthJuM^KB{;l*1b6wh7zmhVN4hsu%; z2{#gRsC0d@y=#;F2h!TRK1Zs2NQNgg)b%+c%>iFSb3VI18q}`#K|dn35uZ|DL~0tw zRqcW9T9e5Z#CJ-6G3ja8u62hsXxb7q5=Z6~>GY)lY@H@5tILTSJ>Z$!S1d`w4MO9tW|j z{evig1_CZ>Ac}_)#*Xc2jAI*DAbfi5tvs}0JOtyPbr8h+jIpT}gy%OzsALG=1r6W& zGt^d$QN$Wa<;>GLveKYx=hfYKLo}UdnrFj_FF{rNHH*ohk4xH1;jGgZ`Dy2~&PQV& znkn@K!MMJ)?k1iVml&!+Ymc+AkBtjG2BcK4|6qh;nEk zr}mTan9<8gd$#xoR?@AML<31HHD^go*tWar43vRlhD;t8yFsYdJ_Vhu*(oSD67!_9 zkTaWP+x`a+)IJ4uq{@e^c(!Im?Pq|FNOQs0&`j9AG^kzeQ_zT1r=a3cajw};Y8p`2 zJ_U`agBVY1ei`X$*sgU)HfY*GRj*(WYcPSW$jNr}l-ZtdYDGWC3wO*27a=9b?RH|m z@I(ak{%$wjD(L-)p@JY4f=ItcBfZF7ow~Rs_?-vDA?A^c0vfoX$O(VFQskn3Ea*`b zL<2$3D=;?JDkx2qSkz-FiUy)^ZEJpVTzZR@v2a{`0kRHF?O4GsW{{6w$S5*CR?@MR zF9OG6EqUxxQpuLI?1Pvu*@}cZBrf#(`e(eDS7gFhuh7I$8dB`fHN~!MI*g`W#i@2w zs+!F6IO(Q=W3IYwWa&7RC+?3ajt1hcxoyOy379AFg%n5wfzNC>4I}=x-J7#vEdgd; z&75=zkOq8_Q}Idx4=3q8YHlRv<}PPyvTgr^dzPDSKPN)@k!)|(WNSR#9kC2%sRzss z1_upl-}s;!iO`G+q+CuZG>p@YY6#~K{fGxIJKESVS5OWOQt3db$YLou2*KP~Zsu9`rZOx{}&&+c@XHzS3sVXz?VMNiu zLodE9Jfv3+<#JtCyOsDpN~D3rYi~1&Q99;%^8J)a1DVfjc%aI9iix^B7e%}zhxr!M zRx%_y2#JkfDu*P#NXwuy`I>Cm}5!LOrW8VKIi@c5al!+oKKk1HTO@T{1=&e}S36XJ6>8FY2iK3>KUkEF#L zBw<%Z{OY!ZgO<0Xyrt!ddBPmJfg|z`xzY%T^W(ku?>)yr?IwoX%jw$LpUN&}&d_fk1Bd>@sjea^3}S075TG!XkI4JUn$inf;F z<{PtW&Zd>sb_5gN=Fn8Oys+sI=nwmActRiF;O?xg&u{CE)vvy^rKO2E>Jp^-;pxxa zfw0U%FwGmkn35_9gsV&>`O%u>jrW$hDkR0Hj;Jc^{XmD;+yY&1Ni8^F2F^{+aNwPUD2)7|@Lvq#&Q#r_)Gc;#5Bt|^DPn^It z=I4wN8aM+VCTMi=sc!`dlu*U#jFzC4HX>vO>z&2!{Mtxo)r0kx?j`2#e4uA@TEK1l zQ;x%phm2?A96{wEWX|89kcrqOWPFKgG2dgz(7+j!hC{}4w+HKUt`Ve#%y|+s{s$X! zVgok$z=q7;5Fz$!8)Gh#JizaBQ-AmW6ZhT$k{tE*xZremI%N>SL>~tKz{q=80t^gb zn;?k;fn*5;5-X49c4v2|ZgyrhGkZZIh>XmUTVMd6y<1^jWz4hLw>U}D8BB|_mfLSn+3%Nip`$R6;N3KPpW-?;vuq>p7sb!D&MiH-6t^kmIq!}wZA>j@R(<~!I*fn zCCc#Eq4lc@Ax!!YHSrjaE?M~$+Z=Wa_3vD{!|M=vf=;nJJe%>Ieb#S23}?s*BLwxM zB&f5``pfVpl5KGb8}*0mLugPQ*>BmcAtduWf56asC~47vR`#`Ek6s&{l@fb6snLL1 z?sXE+3~@*v^IE%F+UiP%p3%3JboS-v)&3$r0b_0|<<6YGqw`NW6+F)E%O=m;l2KYn zs!-&DD0`YjS^iEuED?4?mW?n`KW7t81HELwPv2rYA)ELz91W#oC}El{3HoaJ1U+Aw z);7|j0j=EQSzAyIZp>??YT>9qW>jeR_>%X^yP)Db{3WVx$hWTT(uZ||*|x;8 z&z4KX3Pm~ytUr~&%D%u-LYLl4f8IbhIOL*kK*7*JFxl^;8mD7ot3v8VBt-*K+3(~X zCly3jh1g9=j0VJVuPr!U4ZURoOjp_q7+@l5E95PzI~(&dQq*C_B#E`JbH)E;%@((L zm{gO13)j-?u{Rs!zE&h4YxH(_Pz`CrVALTl~k7yTyf4GsN-Y{%?^S3wk-+!|eL|Ef@ysZ*-iN zPh}sKy@SvzzR7r-3jUv@vp+#pM_M={Vm~Ai zoBau*Iubf&s|SRcx(7#XG$^6m&%IPBG<1S~@TF9x>Vwps)N7>@voAn!-JjpL)iKMZ ze)-t#B9(TW+t-`=ye(OP2uT%+T%f2=iK4PEK!o6;BvVAfMBSSTqJe_4FF=fuk)fGQ zHkAH=lxRRH`>LbGu4(1%Aw%naq(uW-xfdWTbORf>`l`R!OyQ_cGPbB>C*SM~#iMp_ z*dHL0@tsOtN|J!490`TG_8i34iKR5VEC0h7TgyGRu96g9h_mY?&a#h9s|0kcg^9vQ z-GZY88k9=*wd)Yy30z_>JY=Zdn$&1OE&E(8#CO#E2rE2n=-r0&Xh839=J8bs-;f=4 zbWZT<%Zx*#dN1?r4d@7;gya`w7kNERg3+e%%66f4oQG&U$(^PXgMI!R<1za^gN}hE zD%22=-Q-ms4`kchO!rAtB=mwGgXMT3ILKEkV~Wn!|1+*Kq;19DH#-in3<>Y_3{ zE;Xv2K!P+NnEUN*rNV2tJ$(h*(D@z%(+7YReE#-q)HK)Q@Rej~F(f`mbCNzc>d#4f zp>EBWmYz1MImFblj2N-muQSx((g7ihxc#NXZT3~N2|OfvYsy9!rn(bVNQ0uv{%pq4 zD4Ix~Nc2n+r2*0Gcf=fxXwcVABzsqqr2*Nib9cGpEE=N`9t$&^$xS=Hc)gbd%Nw(6pAbmt|xETPjqLWaf`dIuL#RR?WBBY zPzKpA2v&%gI5f{6u~5|Uq(cKb`A2H5N_5K=L|aJdBvPUQrEcy3)4+{V4V?s)gi4)e zGT9#v+ry1tm90> z$(tmkg&%_JRuWv(Oe&KAYYEjAr7%)App0lx8q-WF(~*)eI|{WMks1xCO*05fN6m-a zQRv;2^k_iuij4y>njIc`MnK?3EgKQ@O|N`)ONOJ!-=85TfL~{dZe()=*Z1Ld20kRY zYXb2n{7}yED?Y{SI5N|GEjofsp~wKC_S+I_)7;Gx0Ve_GibK#U2hi=+Q~Al{y~wcbkiy z1G;Z3og?NbPs`4ByCi&oC|g`?ylL z)9!N11=b@o5-1dbA?^o?xR*0xX?0t_G_HCI`+FKxZt^}QENB17NtwVOlK>3}OfyN{ zR1;by;1ymb@pO`)0SVk@x6!kwvv6p1&#(!i~Evz1>=uFe{gg(4?}#KjU4(_9mdFBu9HrBHTRGg0@W zJZMk?(@d1pkdfYC0;RJ_i3XIWxpa_*QV>7&CAF8dXh3Uk2#;wHkR&^n)d&*L|YxnLXi`q zZ6#B*)q(1ssCqz{sAp3{G&!QJis=^WB-*Nn4W)vVXmUhb71L4j(N;ah(0V>;(PW6W zDrCbX;F-oQMr$%jr*hP?4zlX`)Nk_se7M^0k5-ytw=PL@cHE{0XCc5&uB6%o`=2B? z%|}o-)jo}rD>NH~)^6|Y@^%O(v8>B@8TB*l|RY=^6yQHs`Qp~ouqH@%ebZ=EX zpZc9*=DjdzFfX-3{gBE(Q)#ifS`7L{M3wX~%e-YZ-`dJT z37I*YR;YV)podec$u_0wPGm9VXq!wqSsdx(NeT*iohW3A(Q2B);Sx}Vj}(ylSE_{u z#jx?yz|m}+W^Az-8n2~tOl6g-CTANmlIN9-L`H)`J@#PGh9JR-8QYoL5FsNJppdua zZ$pgxfi`RrsF$+?p~>5Zj0R2*4*GAxHbja&s|Mut{#FARhOa&`)Brw|XdASVev3)Y zeq^M{2nA^1{ac^`aX-|6DFXH2$3O!#nKdx-8nDpsD``L%`xIB@XKtK=8_KK>%&l90 z`6y`Nq;jI&4<0d|;<{}Da)lxt=;C9di=16+P$Z!?f?`qMU>iXLef0B01XIaYn!B+8HQ!`n@U$NAqg6g_@hj+U)OrKh+m`5 zjn)7<#e&`D1-{NFR`pYI?PY$eskz#2$+N5W$lOql%<)K}UjA4Fz>Vt<`t+vxC!HNz z?ku{oEJ|n+Fr})(@Y!2W z&!cz$XN+Eje{lb^|mhm8We@ zXqf6`*EA_~9le{A9u4SC@c?4taywe!I*PXn<3EJWM zsvc*K1tty@s(Dpy(DGOfaVBqB&>G^x5kY&}RtBvBuMb)lgDyFBQ+5?JTNbn-u?a!z z>D`?4Xtpe9LwZLET2Jv-q)4+>K?~@*p!JMySRb@J0UWa|cOB>t_H~BMgP4x?59(-@ zlsQQ$)M@(>rYDsX?Y{XplFPE(HAYV8AR>Q5A~MTz*BGh}#Zs#9P(S2_5*idhmL|0X zs%xh_nJXPPq<%zFG$7T_ForB)He_$!DnZLd-G(|gnz2X7X5+C%yW8fJ?Ocfn!a%P~=5{1Q12R)Qd7O-l?;9$FZcjoqAfz@7oLD}M3i=+#jF&1n zOtB<3Gl|vKA>Ev`uz?Hpk4BgrtGCS$;HS7{G!|Zv5gNZIp)tipy;w-ymV2+&_gLvP z@OX-KxHRw*4zB3c4@rUsB&JxJPeLLH15e~fBtpab&lds!Yy@?1Z%SX}2i&Z(H}lTc zDkn;R)D_udoACId+ZlTWKrreA8M1%y7RWxFX*;jgHdZtZJkBcn5Z=h%7QNa*5;P!@ zRrUdiQ1*_2k$ zWQ;_IDe*ueh=+NJhm2Y%;p)D?rATq8)2Rg-6u=bsV$IqXJ6JcWmnpSNH+1%p4h`r` zaj`TV9UmxFN@tJ~4Jd8=+L~xajVk^l88?Ay^C}hPpmZH^19zr9o_&ViHa~#R*k@RH zK}L-1&)#QPNF5&DYjr2Cm(alDjIC7(UV%TD&1%31mI?zP%re?4i7uaa^2MK6zY?_q53$tA8dk7#tF4Wl+LIdwJPN>Id*sv&(c`3=zfK0{-^%xnb(S=8e&?`uY288lW zs4X9aNeTThL&ZxqcMYxMMgx2W6QiuY=`N7MkIga#pK#_S%99rQVWQc$|Hj!z#u>22 zwpbEJB!xJ-TH+|HW~#*_>zF~R6p=cKg9{oI#uRsl%sRRlD-2l|&@+_MF+=NA(xL&a zDek;TODhbp@e(_Y)M!9$pZXX10e6bK!)A@e#m;hTb+u)bueS?zi^oCyJI$fO zZ-GiXXI(fdLIF|mDv5%uGIXdW5Q0Kbx8cZ~2Ch$WfiOia`1@FF1?c)vw<8rAP|3KM z5DKDvfv`;H_M}4tIx89DLe~aDBdnEc868faAds$KY-8J zFIad%Mnt?dd%s{IbvSsh)fdLOs2WVA#e@v4Ec9$<0~Az(5NuV&F3p15>=mITBF^fOA;A znyWB0a5rNB8h16g^Z=g1Uy=e1C}do%3n_Tfdm67N4I0q6ESuti*YKF1rq;FQ0GhG$ zTk7^(BfR+Upt;JY_wn*e>=$b75QKk1m}K_kA2>_TDa$f7p@V?<4+)5j4PmuV*enNW z!bH8EqXHTfL&i&N0k9sM`aU8!Vko_llxRRH<0@DH>?j3+8I#yp{M2VQad^1iamTWxp}WI}J79~4H$$%KU$WQ5HRC2TT| zBQ2zKB+hGfKaLn^SpE6d6iV=>EAb@GCJ7pl$l0FSS})J1b-im1sJ$dY!}`zHn}A0n zK>Y#LFY*I!&Q^QSJ|yo`TH;or-n$IpZXFMF0^SVNDzZ z6$A>*IH+A7v=%$KA6*N=?iA|yHH5-(Za>&WNo2eVZV^dGSRf`&m6*sV$q-hn(k2K8 zbyp4xXyARu(VRtf(J6g{O*UliPBJtglktkCMRjC+h}c7h&^<|r288lm1-GCLyJ65z zVXSzmfhMxUTNOF#-*o z&KRI&0umM>jeC&>4QOQSGs-l4K!j9&pHyf-C10PR5gQ@yt#zLvDS*y6g6ItWlSpQ} zP~YUG>791hZ-Gk2)vthxP(V2Bk#NX3eh*M}Kv=JJA*lDUIi$&}#VQF2iZYeIClwk{ z$#`|HO2r38na+nvhX!==U7a(SjWYHe!^7zl1Tyv#-9ill}H5A_e7pYA~dZ3Y;$VzXwXRgs|Qi{B0u2f z6oJ2Sr)%yGIbC0(HhV{Qm<`a#c!^p-WExF;1i&LD05UEncu)y}z<>3BZ189@>(3Xz zzx-fIT(Kb3&q#y@L^96hD`gRcLRc!lBpDiz$#;obxHL+|a0vq<&|=1(V70#}H?eY~ zP%q>w%8%9C<_FGa>M-zLt1q(cqk+d6dx8?Y^aKHk>qvqIBr^5{ zB@$l#0gB&P8+$hu?*ryz;x6KdWGtM(CydWbYu9b+$IK;G&CLFBS>V9k(Y2b0zfHVc} zr`o>g)!8IL0}>fK(oz|OA>c}5FNx5w{6j?uinfsbi%jCz%1kSzeD&$Jw81*9NkuL73yVt#q4(3vA>{@@%o>mAmE6v4@i7v zjBbaiyQ9E$^?y_Z4V=z+{jW?wMrI+6pOFR)Xk;8BmTCBC390;&RA@jY-}OI@*a&go z&u}nG1a!vH*cI)OJiyJ3LT%^Gwa4mh^8@&dqcICF$k6|%MgJK`V-`}&-+Qgz!Mdh_ z#~DXsC3q2kK;qpbK?4#QM`I-tUitx%_mKz<>pxrXK)^HvaC^Y#bUT#Oo+k5BGlj;? zz2C!)MQ+dBgI5(UHW${1BYch8-iX^=TJJ6JJL-DK!!zdOj5&M8oIRsZpW|CRZgupN z;=7@FUwe6=i&TJ2Lj%{+?>>VVv;gx>=1=7K`EaZ@Y`?$SK9Y+wZvn);b& zs+|>0H`&fn^)0qkG;ni1i#~wW@OVFEMeEW9V5aIkprktSTc{86QI>7o6q~O)4Xi+- zI(HtYpXJI_oz_V<1kO?Q`>alyY}E;@hR53hA2(C3WNSNvR(B6~aj$H9(BVfhkkCR$ za-hY|M7}p0>=$Z&h^jmxOgeJHef&SLU--j~V`q~T1QykKL#fV7k|XGdTxj!4rSwp> zS%)<6=i)qQ9&CkRGyuCS579bb9-ZgZqg|1I$0lh^asRs*AKoM4G&aqgHRl z_;@)HX@L01JU(KTse`BFw1XqU(d4T}z~S1?YQM8+Fb@)wCZCII1FzI82uG6-j%dGY zyn8g^XaF}wKefqLMaTSbq1A0KHUrgMMNk@mW@>1LzC@ouG@6WPJ_esmG#a2~YH5c3 zrBSJ+xtf?Xz|0hd!=U<(5RN9Fi$p8A_)KEb0JE8=p&6|V+QXH8*9QJ`2uTCTDINx% zB{Uo);v;ASt|2lFkRP$(Xmu07jc`;UP3jFew5g6Su8J>VEE!NUBN^b}M#S}Qdu}7D z?w<~D*Q>ZgRG0bGLaatv+-FNE#%mdif=f}k`2 zO)!wG0qs>v^?HaqMFYeH9rPF?R!cey?V%~uV~Iusw0>G)>H*097Cu8bXzptdF)C;- zVj6Y;?XCSVCgViyBn28!NYHDKIczADFpnoD4KSy;GkVhjvkGSqwmZu!qvmRBG~k=_ zw67--mj<{wF9sWT??y}-U|tYEbT)&&h843xxj!cmlXs(ocAAGCY<^b zFa6R$83_iLwTSw)l^X3UM5D=x#?C~eeT`@|Kua)0sPhe1uH~bm2J)MPq{-(XmPPOd zM(yCYh(-gnOmgv`6Vr&_B_a(Fr?^3Cvr)+ND<7WHus8#T`VW0a}7ZyIL3J{iYgj7vX3Cm#LAlx8s=N zJdubr`5ZJa#nTR+LO2@0WeRuqnlTM{Ljuy|^Uu7_NyFWka5R9+)Wyq7bTrzp5se0D znOYb7juMS`3*yn_^A4kKyplwt-I{1L`Mk5w-D|wt5RV3UnT9aI1Irrnc7&t>WTtR% zkAG^w+Y^u`Uk%D5cN*=EM56)P6n9&B8QBMkL^^W>rU7uKX4^c(q5b?F!qMa_ zRk?LuqurTkG(d~L<{ETKjbPiv;MH8tsLsb87C);scUbG`pxG|e*?)$q;7+@HWal|@ z%Ri@p4^9dxP?-LGRHlCk78pZ^sAGFCIDJz8${M4AC+A1c+6`307L+bG^%2%oSY!!? ze|D@OSH|65q29`x+T|0D>^jHZk)CK>$>lB6bpoQkJ}>n(#bX2;wI!we^<;g6o43h8 zUB`-~K}9CG9zIS&-bfnaldoVrvbz-?p2r z1IzgGOuu^u?)af|>H(}W8aTBDxMy122N9PhFD_QGw7(AbA;hKG8r(ZufB%rUG{8+T z#jVyaE+XK%7v8^wE4BI}w65HT5|jp@2}Unf(5jXmPB@yZaIPvZAskIsI9G$05{?FN z4^7(I=(VKu|~GV?Z1l;3OERSM&iK+-RW%zfK?;08R1k zhK&Yf6(AYhj@r$3hi`3cwl81Tw+0Y~q8}>_Wic#qch)V<9^sO~rG(ayR5DkD5Tv@1;sH}Fl8&!3zzl4Z1 zSzH_V=Idnyq5)9)=8HhK`FbUhXn>Ty4! z!did<{UJeV0GeVHGXb=3@qR=+nyh%Z)!+E{W8%>OFU2IH-akHC(8L|TEZlyNH^l22 z{VBm|0G=;k0FHa`u?DI!e?d$dVD=J>wd)-=mj*D2!Ap~xYXdyf#%YCSaJ|QY0Sy>* zvoTmfkpsFvz(Xv})jn@~Hu%R9p9c6U8-AzP8FgCS&K2#Zy_H>izmw=RK+n@Lu#w!q z!pB&egI3=-eLP`l0GqG1+CS)H2%-HviGVZ!Oz`lZ8EYVp!Oh5k z1`P5^Ssuu0>JM^j$8SkknyjUb`#{>wMb|I=IzedwnorKF>)lZ&K>ZD((f~EZDpP%9 zEvOZTf0NKOS)uXl6kEx16L|+h(*QbOpR8kvopP(UyxwiuSU#QLGyu;R%Z#X{ZU;}Q zX-V%PC=Eap+@~_3v6NRo!{rw5n%2N)5SRwQ`G(J<0p16P%S(%FNeuE`h)e_Ie4~Jo zeW0^B>bpC1wC8stJ`M0wOmXW&tJL*32uTCTjo$&d;d*rmu_1Nt=6O=Rcg19^ZVH&< zs&^lc2%D?kdK2~fPJPu|_AmjK4LF3c$H$2wF11p4};YJ?qh_b0bGjZ>N4DZJmK9rU_ARIp=bb=;C3WBVdOy} zch3mj`V6sXfR&<+tzh+euR>=y#E2y*%g+&%CJU$q>~*^#=)V$_2B0ZgnX;$D)qa1p z(kvJ57YIp{#ZSIa2hYe4mOG`w{W3vm0GeP?O}p6;4H6(9yGqCf;_1afpV#n9ww7L|YF%>b6_B2*OKP8g!nZG+O}5 z3t1YpNl=`h5eM1 z9>#0f6~fX0Ho#IFPEne?qV0(n60qhiSvfpS>S?_0` zqxa_0058`V;y#FWZ^3$fIpJwC7W3k8t;^RM>S7)dkR~f&P{0QXNRtr|Ya4iViSh6X z0@465!Ij|J8eQsOnBo_sb;&-OxHP~`aDlcS7o9C;p~lmzh)9#MXgSI5Vs5Wpd;$S! zG6SyLx_mMLX#kjDx=>%H`ZavozpDvH1Gog&6KdgB+N}efAw~_ROpg$gCS#edge|}` z2}qL_FlYguLqHk;CU~Zywp2U6V~X<{g3)BGLcOB8fGZOQ^G}FL1I!%5YIZuS{R8dR zp^hCDypWJIfJ|@`X>FOVwQLx^m}oRW%QXhEE163^9A8RU8o(x4;+o*3SwPjFdgChB zfi|A~*3H2yh))Cj1gj)R#b56Qj=ze)G+W>}+zr?EwBvt4e43n&ua9s$MjyAa1hRe| zfoTAo;A(koi4Xdtd)U_EuZTwjyaX?fs>RbYe)slOeLt}-f4D-ld)1q{k5hY(!YavG{DO>_s6_{wRuH*(6|`Fs^jIu1gFX9?SXKh z^iKq&$qE<@ls-m48US7r{gi1~x{YwhGzib+g5cPC+<^q^arQfPQ@(&}Re#RzT3q~4 zAHWLekz*gs1eC!8({U*j^T(Rtf61EQ1LKRA-$R>7JwY+{aKo{Fyn4!F>Szt5FTbJ zJt$sm4oW~!Oh1)kN-#oqdF!QTeLp2`DH*H^lzKg{AJDMrNa%@1TORb+*Fv;65{(9E z2|Av#Z+Kh?FLPgLhk$P;APoQ$j0?+vxctKeeXp4*&c7iZO%}W}$MF7^cr?IEFu|($ z*T=#x-uXXVW1kup>pKZclf_MuOjxY%As!9z&W&z?wU-TTO||`mU78Q+1Xt%so`~wPtTh@q75|h1iGRdy^57+)<5pl4^WFbdLhc zD9c*f30lNqA4`o^{IXrBmmh)jcbY@Rk)0Qs11PBkuS^Oc1q!8gcPXs|m&StJwd6a! z1MR`6iH{Giu8+*a-ta;FH5hke zfQ5CHVA)^42o1|;gFy>#pBj#CD+zNtp->0eMxIzoJ96TMST!HEcgrd8H^JRBRT{-L zJCC{EG5pgMAfU5EKnWiGsA7qVhD}szGdw2Vt0%Mhq=BbXdKj(f8IVkkCtMhu0M`?&&;FJke3!M6MRwoU7%7nPk9}E`yZM+?o<*HszL>eHb=oEduxM*JJ1e08V+10Vm6 zkTm(ql#ouQ?;;*e)-vVe!bYU;B_Is|Gc{{?uTyW->Eb%GuEh@!kp_tIFSiXEnnti~ zur6k=SnZJ#%+zq%5qC_=DBNrp>Sce*nVQ`_vh!hb66drDW@-VXK%oPCv~++8uGR;+ z>&~x_w^H&s`sQ+b)HE**7FhKbzTSfde#K9p3~qD`N}3pwZP3xq!V9MtS-b%%Uv_y$ju%oMlxCm~!Yl7kkWDq48#RuvS> z*_KG?yXK?rMv>5Zl^Jg+_+aUA6Gg`<5dp(#1rV9X(1_m1Ru$?Hnt7#s@1(Pxx596gRK6_6al@!H(s zSjN?3C|g)~n$y4Qntar!C@h++;pk!Ad|%d%ClmW;5~Il)jy1$;!qJ~45>uZiIhvf| z=uv}kM56SLR_^MR<#6=>wKd^*=SuGgd>xK_9`OWxrqTzVi&Px)sZNqeMQP^i9c{q~ zVIhZbe9KmaqbaCT@8~%RAN61gi)Ks0F{D)P9mj~BPhvD%5{?0}qlBZCn7WYUXtp98 z?;Q4yC?^R=$K}oS;V9}}Pd?1AywqPtsz{tGz3Kls{6@v8crR=@U6R7LPcsCkxZ1kO z@qP`-LXi{V?*kHlhqt6;bnsQ!2orT5PIzcg0+*+r@Khihtcm$jx$ELk@27ZlJ(UiE z(iFF_Z?aO{ml;Ge!5YI2UkJ4vAFMj)9XlrjnJHH1V#pMV44{pVi#DdXei{QOBP3TG zg09|9JoJ0EsO`Gcrw_@84p567$6?Lm^mJTNvSPu>%Th0`(bHv#zROz z1|+7^9gQnVgC=J@1T@Cu!BKe(snBGM2TsN9dYA+LLMa}Q3F_ zrvdmyiHA5qX?UccQnOk?fJ!gcB_mdT3E^&U)?&pb0AT@`UaSHrU=ZsGC+H_Z(u>tN zM&-~K?VS2ORvQgmOE1;{QWh;e@O=nO1K{*x4S)l&IX42{Z945F zU!ilKfs^*te-!Thcs}&VE_b*Hx8d^?H~MU{CA82aQYgYh$~PA&Pw~R72sCMZExur@ zMOH8koSot;w6X9;+!YebBtZib$(OHO-MVRTAoL0mMItmHvM+VpY_S@Sk*R~5QTl-f z0iG)W%&fyO;AsE9*>YQOB!t@_k}Cj&h`=KNek*SP1e2|b>*@ilavC_BD*yucQUKWU zR}Ufy8j#2p00D`y0B}SeLLxLEk|_W%-K^HZ9l`(r7l7vq05i=n3^=_17*`@~03adU z29aC=AVdTn0dV)c0T9ftDz2;dbIFYc&gKe$0KOCew*1uxNrDC>as@y@Vk`h0k$)f& z8W7180GMA^>)>u-0Dud?lLvr%|G4f4-Cm*o_(co=pAc??Nb&%1NHPQ>JObdHOaV|r z(?cMaBCe~CvdU@TZ1MnbU~cpw0pQXNiBFIO4M-#p00-ts_yBOn43STh2n~p&4giPM za9alTY#jhT72wGytoZJs_FsQ!@h1Gb-8OED1z_?Cs{t$&!65OAMB>ROtkyA3Seyq1J{yISVKq=vzxL5qBVu9{*2HxEZD?TKO$2(7Hg5xk=g{>lTt5zPWsfi){{LrC*L8T^WPyq=M~V{ zuT4De4~>1o98OH}KGMxe#PXgOYiCVlhpE zZrB6!rpWN?zA?}8QkPS9u7axt%R%Sk(idduBhlu=^G1lH@CKqe`%U`)<(2T8;6a?a zqxwL2--`W|J;+b-1o~zrIEj3r$Pxm4v=^9YMgLI#tOS%R~q)T_Shw90!K$kce_q5 z>@R?)c)P>qI%)?jkkIe7qTear9XTVC6R>epeT(ZRG;lEatk*fHVZDSc_;(3T1MuW` zvX;TiBDMs6Kms%%u<_epW+-zlV~h4m>e%QCfayEf-l#oT6D8}-LcNBQqa8Bl!douQ z2E9!^WR|Q6E~rrRTSU$6d{83iz*n`GQy3cfIG?&p)j$nXh`Mamn^~tpxuzdQXwW|1 z7~c+RR`25#k9aTNkrRZFB$fA22+J2AJc0W&T2L*t6Z0NBr1a%SnBO17z zd?7l3lR5we)0+9hkb+PblL!rnB!6?qEzo@T$Gdv z3duVd`z+QO@}wPh-P<7kn-AC>AEfA=;5PZ>cjA`G;2r@mKwNxW;v#wfR)*6pp-&QY z^+>jcG${P!PilCyN>KO%hQ=R}1`TK=e^SGvIT}7B{6RydMJhC)lKM#v4~7pln1|o^ zl}!pkeT)G?Jq8lY77ym8381;>zi-T?coz@6W5$t@TNkp$gODi{86Y0Mm^mJT8%Att z^F9%xt7ox2q{$f%0RibG#%Mg3G-z_hLqKCZ9$bk$k5p(f#shAhK@s?8vvpN`p%f1y z!3mc#yY1C>Z*;ITY}dXw$RFO*>*GC0SUr}PAYxBnC+HSx`5&SFT|Pl?%c-1GPI&W^ z&v{e80tcyoN2EUClJJbV>z3X*Dp=~!<57(?aAv~1A_h)$Tm`+7pfuD@{je_v)T_1% z{1^h$0Qkb%Va*J<_yhq~gSC20p?;eZrD(iR9v187T7TH#*N}8yWp@g7+kb*Sk8}IM zCS08GMS|&lwD}TLuprK#i8v>$YRs0o)}}=hB=vY!77aX^Fd2ye6J=H)pF~I+Ku%ao ziGcLFtiV2%urz?Jf9KlfQ5zMEpHh=vC_tL<#hcAQ9W-h@Sg4QuD}=aht$z?Vn9u^? zoOsP^0LdK6JK;qA1jK~z0c@T)uWXX5Ca*4h0&0N<)DwiOlno)Q)GW|N1fl^@f++Gp zp};KI#RQ`P*x8Xy9?A-`vN<1*+HiF};ae-y*U6x@c;;eTJ`G{E3-!={fv9%cUB3li zqSYG!3J?T#a}ikda3aWCw`|q}?U4F?RtXKb`$lC1-e~_+n^i>vf1-z0K6kftBb}^2AWo_k!qNbC!aV|;Xokl93}tD{*g)?m zG!3BZzxFc=G9+5Txf_KV$_ID}!h994GhM{{OfmGo?VxS;3iaC`gjjd^gm4?c37X&l zSm2=4b3~~Lnv@`S(@vILQ@_u#I1QYM?<;M&jmfkOdS8Ol05p0+?CQpWh9WHkpG9CA z0ACQ@fSSA^(K5=}RA`_XfJKkt@lDE}EZ*xabf)ixFt^K&{RPn8=(f`W2?WG=k%%#V z$ZK;JA#zVJ)HYTN4IGH?c}g&*oeaQs5R3+3@m)a)ED&A*xQl=^0IdHI?TI1s!&*vLLKG zeiXvmh9oSY&;lTO0mT4F=1|p0R2AL$TH+k(k*g-J{){D01M1NWC?SNElm+^80?_~{ zx_JzNLP1%umlKQzV6h7*z=E7?&O@rn)^&n*s<)zhd;qKz>YE&=L8{m`Kj5FBoe~hq zABuWHvUbX_Hm|CK>a9>% zHt)xqb_xl|JziRu59A)*AvOwi)fct2xD9FXhc3j9vzQU}EBQlO&q*aMld*Jxq^mtp zPvHEF2JGXd6@nOPd8j87iUv^e(h8vhX?eJ-2}i?viIog3FnewTU=NI!m<1CQi0q{zviR=G`=MK~z!!BJRtHU*+P6MvJzJ?U zQJhk@BODFjqOY4tHPp-`!`f1}CnOCZ>p$#1{fJ&NhU5a5{+yz-k^n}0b*=9k4O-^) zb3?O(cHw=H-f?a}*ra38@(Vx(3j+Kr5n%i zKt?b5*-ELCVj1={!qNaX_G+p{ZP*Q|H}wVz(hCJh(UXBuOC|&OE!3&{YAQF6Y@-E0 z^kl#QNaj%9yG41?lL3>j79F{2@@g-e1R79}4%ZMuq~?LnB@hjOqN6AT@?EP3JC9&A z0E?XrAlHV^`CU|$t?TF!8}gOO05=Nts84Xjrnk)x_(zY}EQsU}MSV;Z6+I}h8Cyvi z57a*}vT49Rdc;-&aiX$NA0ZSCprS`?C8(0DEZoNlN5guF9I+9N!m@dPl**FINAB_A zK4`67p<7|}pleqYYVorW*LK;lzW|C}c-1+|jDQf(*B3-z(F?CGXAzipL*10|O#=tw z8xvPj91bA6jbJqzvbx^7LmQK+@Q=a5iun;*dMt1t8*%V>B(hOUo4N#D#lp`KGhO3gd3 z)m>T7H1PQH{2ps~(Y!Bub$61W0g3f3BH`5^5V|gOt(^XszT^g-4aC9JwGC?jW&naI1iIBkZ|InW*ci2O5;Yqqmfb^ao>v zzDhzgAoRE`CFH|pjMO(siUy>5*`mh7HvFckr`t1zLIHzG#+FRucg%3f?iA|Zd12}} zw;ybR&Qj*uGIWFm0_biMKp7iT>!@x{*r?kC;h;|EY61G2Scd}nLQ*!12VZI z*(!r&QVAOzGNp3{3DJO%${REQm5}l1zsrE}QU!<1;o_D!Sue8qc8*V|}!H3#)QJ}^xK?=y!>iH7fK0x~}&85)qu94;j?7o7+W83*az{&Gidr_o#ZB!XVol$|5n@O%}3<5_%z!3zG&mII0QwKrdx_T9>oCZ#341zKN34)Nu zUyue3Xk-k6G7TRDA(hvW3Js{_3j&RZCmqeDUV z=VYSuw09#QP6(6ip8f}3#LgI>6>5bd9fZiUB}6h#h%3lCP=YjJqQ1uYCk=|>vH2!J z0dQq-6&x{?zDY_np!9^TrQ`!>oYuEUiw3kV&o(y+a2v8cFEZ7_QO{yb88JKgPPkhk z#e{iihgjUeH@rTBSUOg3n;#TL#*60`UXT$se=cE@@#49Klz4Got6#DerD64FRHZF& ze>Kq;y}CXZS7|^ZXL}lw2x7vQ#&!~+Vg2U|1^_k!_g_Nwi~N9_Q}%YLd#IO|kJInN z(c6G$65Y-y0s~(tB186X$S-^AF?Hv?R()194Lr^%`w(76QvrzqNzi~qPT7Yf0@)*3 zYC^4(2o38$pX>pMry3pV>qYiV0B*)X?XbTz3NEGlUAWJ;OdKDily*QXE zASm7?L6LEET?UpO!4;A4Q2)na0S(F^9J zNab6c@|+re)6~;D8APFg!6fIn-%mzl8uHYCuvt>3p+Ljo*+`R`gnZg!OL99ncwDPdXd4o_@DbXMCKkXOL3b0j-R! zr$-enkPEc%`RuJ{8CVO#CrO#8w{cWWgEGk2dV1W-?9(4Gg#M0%Xh0}q>*;YFA>VrX zgND?*NQwre^0l5GRzF20QZ@`er&~{d1_vS;hl8V)L3_B;@5)6ow^yiJ{sRJOmrn?{ zK`G;uz+p-hkqDyb8xlns2c;!k2_joKQXFcT>YzaZT$yiDGEPJWATHg|QKUlyIvH1# z9Bf?xRZ3`;lxRSyn{C+c7&Y9MDUz= zFD2>!XRPVTbtoe-d9AmjQzU@TJ8`aP@$2QoA^gp+Tu!y|tyHqrVb#rqB$z z6G@H+NJJ~)#xNR#av?Z_$#f|)lP3Y?08I)>vvxE zF~r5ml~k8t0~zHr#Vzb92o{Qr5Gl8nNSWeNc?wu9*K%;8A@Z6-&tr6rTdZXLS3J)4cciA6@CkaG2yL+ z;f)-dubqH|fJ2n`7Ew-d8$}eJR)Y0ZJFZS+M@s{DH@<>8Gde!7tBYPdR`+6+yD|s# zvvZ7k_P6lG#X)mldx(1$n)rqUK3lgK#;2SxCnwCA6I{#nd9H2V@~G$7!}S;(z>aGv@-s6um`9_~kc0C^ za(J7I=-M}`tb271Bg}|*vO2T$f`)ytrXndWu)f2qZzq)#?S9Y&Oz|>~&9_Hm0XVHcXnL%omEqJgxstfSOZ8IymB)Zdd74M_F#>0L0Lz)KV!NYSv`Not`k`!IxjgYg48t(*n>f-I{lwPb}F zM7>W$J;imO&4*GgvKIE(5#ggQrH*J&7+Kci#(>>QgDew{9XG@-BQY8fo8lru%Chp2 zH;LQ=$pZn)F#`Yn*iGLZ{N2skA0D3L&xiClnZs$Um^V5={% zm7syUIVN%j9n~J9UdbwVWe(`*cNFjIj1FSj)@+%ts+s*c>=){d|Hp_AliVKvft~Dm z^;3xH-}_%7AfTw)r%2UKkkZWg>#7Ve1yB9IC!#uO;L?PFa2%w$Zstqd0RJC>X#hN7 zz!C@SJG^nPe@1W`fIqyptD6bCVUXsvNVJO7lXYViQUGQvm3TV618wuI8UryWNrigw zG25^-TS;{ZO>-K^T#%lOphL{h6EP=KR^TreJ#DduKCAPegvzCXZxb5G&DU-PxUA|D z{Dp+40sMrqN;Leqwo4Q)A_W>yxHOTx1;8u31b7WaZnYLjD_LN7+e@S7aHX>(FOspU zX7Zd)F4W#1q0PQw%@LQ_^trGFzbKXNeYP@8BNJ%k zfun(+6UK>22$bVsjK(`jg9bDvEO;cLF&+G@!DSC?-6Jj|-;Fi&RZryn?}D zg;~+y#i=ydmk$?P`S%Bfdgr$g5XT28Zl{UED2C|IY@581od}~ zYxQF!ldL}-=w+|*7G0;?CjISShJsJC3Jwps)Mk(oHU02Zq6_jBagz+h{eBU5vYx$y zQ)wK@HHEV7gEI_~SCR+~h)lRcBMp)9NEj#cYLcM= znUzE#5uo_k(21^f*ERA!Mv2vERgKAJsfQ}k2OZWQVsKZaiM2?lJNAAmd{6^P^yXx7RH6hlN_d4#L{TO|bwtClP>T4pn_$R2AKzf@M$%hP-+$L!AcHAC`!E z(2u)PQg0v-4S=F2A7x+gwU$n=J-{oXtyga%7!AN;zaEHO8$RdnQBAtWk#&4K)gQ_W zqyT`g$o=N`bvwmvD3(6}iEpP2h~y7N{W4WMWipm_igdLHYQ$)!0sHuNDg-g@l!rP< zC>lV;w^Jch&`x={D+ou!dWmhPkS&E}OYIlZPB8(wUl<#Ui|yqz2Q7J?)od5)tp9?* zcG_LP1;FTrF#r@GDDC7^^y53xA_(%QH;dhTC^63LYTZ%;rP07kE< zR{_27%Aj{7C=Ea#5~)3tbEAxK5^AfYiRh6`@ToWZk+;tGAi*7G&uze`=#P$jutE_9 z`n#3rFS=v%S&RJi7wiN@Db@=Oe28v>DnLejA>1nAXaE;I397&a(hDKi2uTCTb7PgK zGj0g5DZyJ(cUBU>h#u;+@kw(Taq6u?{rpQ1-FDfrzW~}B+sHZ~fq>$ETND@Fe7l^r z-~u<)pKxqL0|%l9Qe_yCTL|_-g3$mhx@j$gd9j6nFD4)j0AoLBsq<}wxt~s@865y1 zy3cD5mh_k!zlB=;2}HJyn_>YFJsB_nk~!pcPmx!Agc#ynX?En*F}!?71M1OjrlGF& zYlLM>No^w#4S?b`9QYE5%7N`57!AN;Cj)S*;mfN*Iq4cl*70IGv?gLYv{tCY-_~Nn zCIDao5HBVHkjx>b2c{B}A+E(_$*cRa*PsFQcrgVKMobRqECSI0C|*nfP#`7;_5gy> z04!Qeht?XbTV2^|uZRiz$U1sviG0trYC5w}fA#~&=~yOWW~qMw51E}a>T?wirD+~7w!qKo^BF9)nqp)n= zkD#(#t;hErht^ilu-aNZqflSq<$&z~#E$)i8}Xwn3nUQG*NW&XespDXwgR(msBd!o zK?4U;G$y8`{1sg(CS7LgTLhy4Sp4X!dfc>0MSBQ z>h{gmC%sjuyMBj4lO6jDplG2vAc26;4ki+s%UKI8a6_HTfTw{2(LyW3NLvtkB1h1q%W`QZGs>vjkE+r@`tou zkxW{KJqKmp1NCiI08JWc1t3;hwy@Oq2t|`dS^-ojEeH2Q!qFs=R(}!Fa(TbpNK0xx zdJ$xKL6n8xLS6cEv{~D@DHimj7eNewWDZsRwWun3uxg1@RF1s51J|BtKs|a9B!m!2 zd7#q?L<6Ac;baKp1?9o^5R3+3v5O$cwc&Gq6V;?^99c(C^OpI-MBEs_dkf8Wp?<(g z#7?{Gw*VNgUJoch5ZL=fV9}jb=!_PbU`h_nhA zh^_=WPf!|w#$E$8m<{u5%JIDvpi>86qOY-;{G0yjhe??;S0--u3kdS0a-!Rpe`ALl zJ){~VQYb=0qMsCrM&HIhhM-4prBuOGXR-yMfn%N6@qGzE2fJTxDIGK5cO^Itz*qBt zj|te+qb_lEcM_lhfk#FT^-2y}G0&IaK0!@efq6ki4+A@^tz{{0Y!vFHKjRF8iI`#N zAGjAi!>}NdKg9ZF5o>ff*o?JCHC^q2x-~0@2JE97?GlJIqXE=y2t`93#0s$l<@Fc9 z-HvcHtd~gHG22Fv_m`+KSL@M3oz8Hn)9aXbBG{cmz2-k4vE$r+unCvWjV{3eRInho z?}^-^$5fWIYoBa_AgO=kk^>DqiSBc3-VV%2&p2oxKT1d%Kt{LyV~~La%dnpyEDd1K zkCmaxx?$msYu}|Dy-3N8z7mmT{Hpy<_T2P6>C;4egj(c@v4 zv$T11NHEk}Stm4bAc53fNx28vf-+NYCm0RDqQ|ObpF+`j@7_T`8UV(wMr%CC&FB7e zYR%{X011TFYst!8XNavrJ^Pm;H0}_HzW_=gGy^0M5ZXzn>iabl2+ibdghs~N4RtpA zAR0K3KxiS1ZR0%HUV_m8EP>EMuuy0o@LU4Y05D!?$QMHMxu1yI3F<$71T@6t$~>8& zHw$%Rt`hI)$e!DvH}RdT1rrpg?Utgp1cL>ewUHZl1x3AxGe#Qt5I@8U3M^>Z0=SnD zjs|cEdhwE9q2vO{ml2W%kg<1XO2tETLH@U(>Z~My5xq##U0BuQ68skG>Hh=4ZR4g` z07NhG834%~Iy+r-7Tqvg;+$PN^6IZx{xqN-E#(kG+A|OI*94*gP;}E70(oJ1u(uM7 z24JyEe8{!obG{?>q-z{mN6$gKc=xTS2^)p_=rWJNd8b%LlhO= z0^5vryQS%B57enFeHyTjo`aS^jHp~;snZBW1E}Z*vIG^#%ER4+a5Su!$iY9+8bPVu zgUWKX9v>peURFz-!0eLU!@dET9ZzVJB0GL-w zqp6>9)J%h_ik=?U0D38wV1G$i8o);1bx;FamSqY0`V=P(pkv=~;gPjO-HIG5Qayl5 z)%r2`0F3Wf`?4C>?PD?S>i^XJDmKy9!U7<^Uljn!9AbQgh%vrjHNs)XKCKN8|rvY(`XXaxG5=r)j^6$ zmzg?=U^D=WZ@1}%Q*udQwvyDT1f&6A>?Bk>LXo-Lmnbu%0{|ounmqSF6x(;ZzRc8*2u71iXdbLAG*e0H z#{{HFB(yaxG@JXn6Iz-lA|Nk$B7z%*`e$BsJyvg!ISH0P&mbrbK-&ohh7})6Vk`mQg}^ibz93$ak~d{pLU}H=8E6JzDMqD&;aWhm zTc{gw#pHNL0?&tqI{=TL%323CxFABMFBg@j7!rlPm1K%|r+;b(YmNr~#7|{Q{^-GF zMW_~b7h!1t8$XpDhpmySg+7tcG=P3+Dy`}^w4@yMGOD$rm=q09XQ9<~uSkbFxi7Cs z{~9MECxl6EFWD>7P41RJp$H1izDYD2y|Q1)-%e1h(}JgN#2%0ab(o@|v)PZgul9%m zzA1re0NhE?!rJT|a7noKr~$t@!D#><`|`P(=@e5cU8aVBfI_|RO{`v%e@VUcK|85F&lZR#rFuh1*XUYj z4e-Aam?ouqL*Q}sdau7oaGHebMebg`9_l?M^)elpDTWHVJk67rR=j*8=EXlWLj|5N zhZNoLo3ja?VyF;+3nGO32@!6Jp+b;-Nw?NN^&D0p4g5(lRHy=$RqJ4{AuJ7GQw$ZV zu;ZF_(0@W`8bC*{dP^gVmo|IFI-rkJupBEGa+FN6))uc0)!mB~tbWDl_Wu{QwoLM^ zt$EjIvewoRC=@{<+Ak$;ZB70q)zSxzr#`?+q(PY`8!Lp6W!-w<4-uFKz{$o6A@I0z zJ@`KooCe^j#tO*YYu7`4vDDf!9hlK;)T^ySoz-=@AHr-Gs{K`{cBkF-TL6r{NE84H z5S02|QEK$^QINM*sr5iRq&~ydLK?Uc-I7LYfYFN+RY0%GGU&e&lm?)& zPpFuj8)by=P>4<)fQc6&ZnbtIl1Eda)g&;tq(MELVmBJ_ES z2t$X|W7uHOz>RnjR-lXsOMs6fAPoTHMOXn0L|6iSB0*^Y8ZAP}xnb*H3q$=(L}*X} z6Mcntb-g?4taT6TPTcMk>b>m2k8}IMCP1U___z5IRIs4L6K|kzf{h+Yhnb5Mjf;Y$ zKE_(2fhW-`3S(eKjAh7A5|Rdx(SzGD$Uu%|*v}A_2C%Vr{9Dw9-7uwj0&1_FA4kNzl|Y z*q70yP>au97bcf!MWX(Ifqgb%X#g8N74o?|ST9q5&_EZ2rUCRtk*lUY^9DBOp^bS; z$spaFa;1O*%|y4Mz4mfz)Hz_jBx`mG^}6q}4Ydc0U=waex1ly)X+wzxncgu`8yaRV zA}x8PE@R6=15cvc&@nJ0&@$u#A!z^^-G+`q2I4HkE)kXnu(55ZMQzv((TMsj-G;hE zAnmVR{atL0TFuenwf3DD#!KtHg;A&9!=nV;bqDth+oR@Ud#Q!a0H5Z=HvdJ3A&$(M zBXc-1r;ilsE+^y5kvFbCsME)@V_RDvH;%`QB!v#Nd=JrbKTlDx$Z88p@YVlvIh+QL zcIuj>7(W|8#@mRbj^2n-8Ap&8XC&GwoMkf^jTaKDzg00?2NzlN>#Ry5%AT*dZZ;KKa)O4j7+=oyL zx(4hC_BeBim@abg=EhbyYSoBN4*IBVUcPb~L~*mpCzxYS z8bQ`1UB6T@Q_~XUEHg4vgG|;$CJ9^M3Q~<&f-?$59_ntC3=N#VJXxa>;EV}JA9D?g zCef#Uq_QSeNYr4ztjzMzwk(lgY`b4x1y6uFI6_slRYDlX_gfq8*ZgcCHld zBn+(*PK|Qh@j{VBgaqsRl=!W;B5-s2QoA`bvlz`m4U0a@*fx)VEm8gQ?DJH;kStI--_jq1Q*)Ql}F^+MK5rHm%52TtKmPcNT`H6tlf zIp5rl$~g&@6C`rK>Hm#Ybk59Ge^BGDsaH974 zhH2```=F~!c1?|GlxtaIvQ6+;u#ZO}nAze%cj!lLR%)qJ#qV1-XOF6ipv3{x7o zxKi7S&WPX8xbvnk=UGMbs3Ri?dam9`K}c=Xm-&S5aU(|d(t}ivZffl{2T3Z_1t&rX zCs$Hk0)>Q@oYh|cVBm(;K2AX}QQPm7+Mduu&fps>xr`@R>N8_8wG*R^u7B~%PP8eNnT;k%rZmPMwimJ8Qzl_<_Ap03dAjnJ?u5K9m_WRi$;+2G; z0mQv#Y7USWbYdxgh}y65kIatdnc=0`ch9~{q}HTlrlYSJQ(XDTBs@bIK{#$dzf3wLa=wtO+Q~5JakdI0i9gB?ne=ORWuz%(0?t%l(p1+ z#eKn3w_=6Uz?(%7L z$JMSJpW|`Uhs@dIh58g1%x`hDQ|!@N09OBui%T2O7HUw!$)bb_Yvvm@1{WVvuJeuMt82TIDoE;UtX~>9G21#{Dc1(} zu)xC>ASgifYpg<+V!702oc%E$G%_;Nz|I_ZFyG#Vsyfc?>rH(gD`>{qUkD`#sGHkK z-OM=q3$t|9;yqCBXN}NMRx?GMMUct}vc4^=fhFXMrT+2I4SN}8fll1q%@vNjaHMX` z^*ntyZ~eg|H?GZ&wH8stwe$)_BB;VUNfpkx&|J&cEuz#O6=d~ORxS;ktG`WVqh`G} zcd6<6VHG`Adsy?6%X!9fSZfa!+PIl}eK@}0ZjR0ISZTri9XCXn-gMGocchvr#Lp%9+4$Y2siaA;jK&i|)G~0l7p-2sKIZNa+QyaA^ZK%b z8Pyl+CMQ8LH>^3L6EQiECr>07>ZATqrwu#4dP;&1S)4DjsDBh_#>}-E#&HEx{U=30 z1E1z+8ZC@xUAf2K6q+t$bsp=R1zl675pIW5xYhome=;bXyYT?7QS!Ek8-YP-UZ;=g zlcf7`Xzptah@=Sq#cyL`ftUFW-l zaBRZ8&NCxp451%Es?ri7>dx${XaL=sS#H(LMQ}{@lR#hD>Jn;>H9l5YjO5uaW7g%? z@TII(rY<9Jxx8mwe9~}h-Oi}F)LIys*V7$FeX99?IzHp# zQympShMreN&k+rF$kGjotC)hPc2Z3=@MgBfr)tJVNi5WPTU5GKRhM3IUx3XXam`y3j0aNcZ< zK#*xe!}{8yE9xL?OG+;&t{GQDj9+*(759{M5n)krPmqeMf0TdYZc2(X%sH$(n=VeOe`58~z?Iqu+c%5nY7juY zyT=x%dOT}U%Cua951y?A@d5_nrW+Q#e?j)}v>ETl+vO9uZBAu{-7f*0fS{_LAyqZw zT-5P$ZKF#O1od=Q4-JUV7|1S52cj>5?Q!V_>RE)M0o05go6FKc`KQ+1F$4Ep!qEV3 z?@aB6%dx>XD1^1Io=&Zmt9@pdMtI+B<^I7@ABm-Pj30AJ>(sGylN9`aL|?6Q53*t* z7mCOb;-85SXY8x%veu18^?=~1U$XLOP6Sb61gMI9ocx++2E)Qeb|QnrEjEXY~w zv~rP3t93MX@$Z4Wx9rrhbe)vy;vaG^WhHe=WYp=aGs!hG+8L*flc*Jn zEKtpVE!8~Z7U$E8X z6ao!|(2fv7HG3-srrYir?YmyKq0{P}RKrmUd&U8N-SvmD>kj{TEEI4`HCa+Boy?2_ z{2CgVF##5p{SQ*vGY;@;a+X>yUw9ETbv3J(2Gv{pCRB;gquiiU!E128+ELRn^h;$qW`)pqgnOXhBM=RM>ceS9AV046VD}*y z4Zvc*V24~AKIczUSh~iMb^Ua4Gkz@ejhe7gsC|5G!?7)Hn;(GGKh`k=h~y7N{f8*3 zex^7>#v&=_f!fQ`rvdx=nc~bKA}SAcE}>`uRX+ru6)KRGhdYmOG_04p4r-HV4PDo| z-qlyAEUA3t9v|*ty`qO6#8|<#IrcN#Wyk&ksJ>6xq#qhcAfT@wioWXCFK5Zw3Cy^m z9?PDD1`fnGCa$D-kwI1@f-+N&Cm0RD>ifx=eJYF0diNv((f}~_MFNv&BU`WwlLrh}c9U2@8Pu4p9IkbI9v@r|BC}<0Hfn*R^iRt92GW4XDR= zh#`cuT@L6FfoK2}ui*eF5S0VFl3+9di|!B?7aOcwUD@gw)P}3;_&Vt=n>(Oe+`>zI zcvsGL*|ERyA->hJKmq|-ohq`5Z?$aB(rS4()NR;%&?KqxGK`2T0J|N*XaE-9YL&nO zfdzoKCm;;~qgyTJ+Xy6}PNB?<4ge58@)~w}(rjS^H}vu<%dstPn;(G0kGu?slV;kGw*tKwcj1p9x39dWju*AzM87 zZ|fZ|fzTr_CLs6tHVhe=kr%hHw!s&iY$xCfz7{OM0E%zJERaAzUwcxuVK!%J!@L{n z?W_kHI1t}!m0_I3Oqr>75R3+3@oiWMtSmAM_-+Ey05G}@Bc7I-&3#VVFkPAeh;PG2 zEz^c!qfm!idME0aSb&7D5H`@^Jr6I2zVVY#WAb8@jHg)b1s17{QQxd>e+0g588*Gyscl!%ARfky*f- z5s(Ie(QO#B)pCIN@!-8f)EheBNGZuT+pL2 z?}l1tz|*7>S^(pOX39({g3+WBng=Tj%>u3xkS3AP&{+m$cZn0)3WbI@w6s_I!#f@9 ztYNFYhEM%0HuYl!_?E<=)8ErsJKWoMTYG3OIK&66@vu>$F8vUsb&LC(|DHRaPl@oq z_nya7&N=^Kg+IDGIJ&#v+s&h(@taf85GY7YiNwyF>c4J_Cldz!#dZCm0>k#iyE(w^Jj9`xF{*-V$v|F_qi zeg4tUK4MSY?M~c{Y4diO^bKIfn>*EKzGIEtSsP}gTesb=b*pcNv@+F@ z5SwVZ{$K-e-DDlLl@Z*7#GS59dcX#drZJkLy%6Xt3B9>i2CwouszlJdlv)h|dMtrT zEy`D}x|ZGMT{g(h#7w1CkW8PzOmB>g*w|FgK-L?H*|r9C@h$*QA;2vFpc|ID^8j<^ zlpcifE!jVf*`H?lhsQTjFy$DQjGtL5nDQCO8qfZ?Iz+?FZ+PjSK?`3*>@7FfI&1B2 zr`N{ka`?=&89?C_en3wDm^0_>nRA^UpP??)S$D%g>b7Uesr-4UJ@tH(DNo&tQ^T`% z+p~7tvvzlSyLlE1VivZ-1mmnXp(v0E7CUBexwFa_g`r61x}ALkyr+XN1Jf>^wzuZc z5udu-{{zr*)7T8?-S+7A|37!<9$?)ypZ~Z7sgzRp>kviN`$iI!w@OJOLLx{|w;uaF zXV1)@_uO*!IrF}6+%FAb2r-Eejr%R`m%0{JcXcnNv?xj`rL@YA*6;bOz4qQ~pL1sB z%$z;hYu6u-H#29>{yb}~z1DZ#<30OFQCkVG20Ke^)3yeC@@6Wp_YK_fr)}|2nHM;H+=6+#f`$B#+!jN(g6_cD!BBVJgxYCM+IG58thH|n@f9ELS?mqu zRwvvHM~VcZK(VJWb^C|9e{=f%Pd)Rj$-g-({hKv?d_j*`FppR;A78MKSkNQnFp3wl zk1LPV-QR(cVMsX$208%Q@)JI{4tIl2)ZC*R7+UOzGX`#TR`%JGoX?(A{Onr(u?71v z(`MO^E!eLVum%Zt0IYqb<|Q{JO0VpmZa6&H8yv8ZH#o`tz23k*_qV@a%YJ1_hkmt? z{%Yr`msSq#Ua!B$6l;z}jE0BJJ{PWKOJBHKrB%e9(>D36QqO+n0v}6?uKmh|^a!$; zTIE4IO1*x&H#GGD@8d9~*S^O=)J#cl`hZP8w3hweq+|Le3+b1LO%v}s$k{kpO*%;C zD>=fTr_Pbh*Xx}*{@c^dZ`aH(a+0vMko-az58M{TzPx={$V_E*h^liHwghJ7Ei_L~ zBe7}qf6whvWL36P1Dp46<(;Or&FXFE_wxGa?LEa*&70JfdDWcNl?lXqfw-gU=Wjjn z1@R_dFuk&U`1U9dx>ca5Whbk^VlBJ!0r<9EcRpx)Tv?@=;V?L0E6ucqOVaB@@XTB# z-g|o-XF`wHUwW91pQ_0?CkE@AMRO=;*l=KI7hX(i6;^EPc#>Jx_J>kP7=E^TXnLkC`#$0twLsu8*_Sr$ujr&Tz z0aua^(lKiNo*Y(apZ#9lC3ooe@!wSmre~CV?yUTC#o=H+LOv;M&pxtH_=qy=c1~H| z0&RVTC#y(b={lxJyJK=&{OK|3G-@@z2{?0K`;u>5yWUyTf6Ffvyl1tAO|E^!Zf-@e z<-;@kq+~dtVz7_CPM$P-lr;8tYtD~JG5cdZ*6oOH`B<~?b2w1QW3ue1v$7woIsewT zYD0Y%>}~a}$L-BaMjj#W`N@mdUuK_kV|^sEwdda2-fV*C}a zexHMw_}2b@O}}zdB>9yP^ru2_8n+E|W}kkOylBI$q-pSC{GDC7qTUS~Q zKXo|$piBAe_@~j(}XKhii?>37s70ditNr_I1 zW%8h#@Ssi0?ya2HM+b!}vTYo97aJob|Gnq9yR5H#=2vP@j(U*!06$3oy`X>V4Y<+9 z-;(^TT7)}`MIXIsZYz7UV3Sdy^wC8C=mhKAFwL{^w{ZNIT`$2=n&C8%a06>qoqzS(y|2e zmV6&T#3MlMNzY5)4*^63_-s#7P=Nh52U(jW{4s=x2$Li3=5Il@KW)6tn%ZQ~7e#0l zn-+V;Ge!~4r`K0r^m9cKflRMm{lxrR=8qzrhY;8#4^kBI$TFgcu`f5vVBNg3;gb8Y zB#L0FxEmg9q^olh`zxh)~X{0wuXI($cIzgNWt{ zmC#J&RR<(QNRPR^k%GZeOcBcSs}Bw$oX1y%Q^>OzB1A+_sf=hM-&VmwgjH^3w?P-e zeH9B?b{G=mY3rlgt{uL-lZYC~+;eN+vB!dgR8fL}naHXqK!k{Bu6EGLf_=`vt?{Xi zj+Q|8nqwVkw`MEQn1O+Y)j! zxDatYtx~RLuW#=Gv1qpd4XGSWD};uJ8|~8CXiu*+)mU%dXtn!V%x&3j z0~;c?YTtpyk#5yV2HrZtMmm(qK>3RuyA(<4iQ|nb*(nXG?shnCYnUMD_n@Us(mxX z6}xZd-5^6m_M}R)Q%m+V#B7r59zY>JKxt&zK-~){L{QbXm*<3oULg}t1`QF~>1D*5 z`_gLGdY_CY2XmDb6L$^|_mfLHHlHKPKD)m1wX4YI@FGRFN1deUsRh1)(AHjKP>5y= z|FLOkn>`>I*Wn?GZC{eaw)2e=6ux?+!IS($d34LqaHpX>WBQ;>uOMLh< zu9f&!Z4eygMy6$L&N$QtPLsP&fe#Vid=YQ{=pE;-R>J9a0ES-;+qtkIVw*3nEP<`% z6uk2QLwo?!27|>kH`f3|d;p6au=4>!1UBD0t4C9ySk?$Y-j^^)9Tvv>Dm6Och65#1ff;mP} zldn#qJHB4g-G`ItZoYy0{ChVH?GpD+OPg3)F)r^dmn(=IKCvW++az&gIm2`+Oo*7~ zo3Gn(>S#mr>Uxqwr$K{Mm_nLTNUT_;~>r zz#)R0Z>6C7)cN4d0pW)3v(O=;o3F7il}@V!4c-^PLp;h^P7*e7Ujh#CDD9H-Z4KU6 zz(YJLc-mQS6Yp!#As!{3Ip{LU+pmL%c$9cLY|JL!KSPIjlz5`knR}+>eFr?mFTAu; z`5t(P@a9|ATUwpBKQec@G_kTsc@n$k(cy1^Lp(}4b2p4hx+|V1Iz)8y4VISnI=8~5;|D=n zhaU+bBEb2EBFh7eR-=~s*(L$61|K3mPlEsOY@IM*@vaUYB0NuC4Q)8JaMu71@d)lv z-@;uBI7D!sRC(c{ei|NL2Rg)~Vt1(DId1*J2OM#QBlutPdR!k)#2-#gcVz9_jle^M zcYz;~g28LF+&bo_P$K>m#l=q63tfN?5uGPh%u+LLK8^tn5u7LO+Y(EVIoQRtAGZb& z5#aOuD1jER;kF~c4<;ha`Q|K3Ylfqk^X`UeLwtJ(5fOUQ5JwseN!z+(!9#q)>t>@N z$AgCm&yz4KiuIzTam=0IL&WDvCDU$p>^poH;1I!i5-POASj&P;4f99PA)@o7#|~Yg zdbvA{h)3DmTe1mwPv8*2c~Y~qdrQaN!Q!0+9^w~X8b_Z39wIznUXI>U8b{w3Iz)7y z%*-iobBR~bzIpBT(5dnG<^LMn6 zE$X**CV+WaLI@ENdQvqiq&7z>WZAq7BjQggcEcsR&)THo0SFNhdeR1}J}ktCT@Vp} z5>fa5L^{AE?S7sOAtFLgIw<|#LHnKzfkOo6NnNNBeqFDThS&!IL}>JJ`OqPv^JL^L)&$}pZP+e= z4-uayQD8jUuOn2OX_x6j2oVu_@@nME%q|8F@u%=57jBwY;}Yl)(RorOD`)%X*f;l5 z@DQKybn>>vdntH`@I0A49O{y`W^wlL6;L9goa@jcXXa*~^KY9NQA$n9j28!1?(4%9rn}eFyKC?X{y%c7LH%IK5P= zoud@Bu%BCk#|{P7XkwOT$GNL|>I;KH!~J?x0s zU+H_gGhLv7(t!U1;7A>cyTG&ajt%`kLXXrT+55>!(gyq+fFpGPhx^X9ynG9AMBuOU zy`aY$GYWMxY(W3mr2D^sj|kuU#x%}brGJGRsReglr~ez=h`7CPO=Fz|9=omSzeA7I zfu2%cp#Kl(5z%`e^$wSHbi;D5t;LMyMg33U5y8LN_j)FSS7qZ=^8bwoL>?;WDLIGj zIz1)lr&D@L{{u2oO__1vwnm=lDIM_)!6Sm7b1#(Bhun1Ux%;{F_&1l_9>F^$rLO`k zBG?MLM>E1sr14Q;BNY`8o1j~y@!tJyo$%Vx{PaQ1$}l%*DwU&wM+E<}%fC{YHO<4r zp*?NVP+t>jMAQ|8T(eSl!gk|eX!iVd0-Z~#3ug@ewZTV(UqvlAV~OD;&9o?!BA~Z94;|(*yw~TayF@c11uo2@Wwh>V6TO7aAO=GHFFTN9L6}f84eIR zcyfh#(C@VmuQGdXsBQrjBC1O+f2!;lEvE|4em13@ybZXBa4Q&D$8EH-N#Q#HiU_oV3OYH;$xU8E?t)IF?Fk?w)gU`FLJqg{Qy1R8c6S9C5po5+ zF$ZpISlH`~2fllrEi-{b5JM{)WrH zq1@gJ+SDq#VWZpYa-O_R{0CwHsY9V@MT^>}X%hY{xDj!`+V_NSMN2`a6Ik?zf{xT7 z$#n{ZmeH6be>mKTxL@Ual8aksH(ByWL5_&Lg7K>Dy`_uU=)M8PKjsB} z8t{nVy{{DMhUzd?Tc1AzbfgX?U0agUUd6NEM#NpgeAV`%7G2n=OX?R7H-;heS2pRN zg9Stuybrt%X(6KaWt-yuJiw7Ul$mqFVcLVf2yR5&&%gY8qDx^n9B8XUzJ%ZYWXjO_ zi$Fz$`ch9(Cx*;l3^XF>OMQhNgslV{b_!y*OxTV>Jf&2;23$nA z71S6r<4%-}*8z?Qe9mL=+~r4`UGd<4F6snJp_9huzo(?{Tfjtw`4^Xe0p1dGB3<7O zFe2azCS2RW;c(y<-sA^UQuaN7A_A>o!gU7FiL`wm$cT_Dh)8Ea4q8EQbYx zi|CF^2X+1$c%(+~$EWZg0v@RWyvF}b%4hH&1siwM@!#xd;d z4_mFMs}p?;^4CB{{7v7*EPcNYEF#z!`dO<9R);N`r2S`T5r1i;{6+f?w1~&Fc}e&l zw1{Xc=1#_~ql!>?<5wR5u#gT9${uYXOm_=?^gBGbM zm7{JL3>rauDcnB@oB_nP`Gx)Yl;N&xz>SEzf~`mi-gdYrM!&9w14Is9UqQ^g?Udge zv{rgiw!r2(@FU`XYc2Tq2gByFcDD6K`NZ<|ae>H16=RUw&jl^eP6v~21Uw@63Klu< z;3a59!P25aSsTgT6a$D1RItEoCkC>0S_`lvwPDvjTAS|2z>bLhFKhAcvIn@K?X(o2 zUN_r!cx#LxGE$F9R7SLIQg_Rkp@`py9})k1YLO9kM!gYrHP_zI5z3nEO<(8R;|7tN zch$npvWk^#^aeU*xzXvd;o0WQv3Nn`1%R5+;X5p1<|IwlaAs7G(qoHVULeVw$jns(?O zfD1$}>JdNO5*L0eadnjQi^BK#^Ae)ZxwEG+yoKbSHS z_DDbxfmSiMy*22>&{qRwM938!;HYyPwo2Q*%No}W8`-3MgTJv=&3@<+(N{73HVge| zzxp!{a|kmc<`-2^$Irlgpv|%SHjS6zMZ{adI?-85Nc%W9fe!$T2)KfsSTh0lSi%^^ zvHB%W(da^s_)DHrciU~3{A|b(kykN8G((||JH6g;xlt@DL%0!tQ=C(4)vyniqC#0Y z2stA13YJUg?8T@*((rNA>pF8q?vJN5kdFfz5p)HCh)XvE^h9I%MDP*eS1`o6UHl+! z#EjF1X-xYR_!03}5SeeEKkhXnbG>6jM}4RLi*s>-)Fc;%?J$UkjconRdGI6k;?LIN ztig}ei$7bJb3Xit_$wH7+U{G>?6pUouHIywcxywl3vhtQK?MWi+jr1y2E)eUpx4n+ zre}}BZnh`wLYyFSQo*d_cAd21emmPud@<}uUD%xxbP4Q8J=hgW1ld&krLZGnuVCbU zyJcoEQm8yOSNc*cAhJ-wJkYi+D9+P>lC6DS0X$NVvcvFdJKcu?5cV&J!DFpGxp)1Wz==D<8SeR)GIrb2@?~TpTP=Jlk6A`wI02v?FdfA^m#lW@=(FKS=%jAgWmA2 zX@mAf&=H|mu*zk-=w`$`yR$3b$NOb$AhJ<|0D7p^Yqm-LD&&aBD_9q@-3)+y@&))O zOd$1m0fxPPBOP%2Cg_OJYcTMyLH|yJ1I*K)=-cok;;%smOwCwf#NoT(Bf_u2C}E)$ z{yyx8*x&AdP&DdB8lY`xXG=m3Q z*6j^C?%F5w-&1CGe*q>U%nDYCY>7EBm-{P#5dl|le&5!>W{aFwt`E}d#{L&##8={_ zL2uM|iLbCGVnoChtWnrHjiaun)ifLBLSGqZM9>wiDcc%aD_HoD*j8@1b!eeG@tG9u&(4xN}KmG|c-0^bB$#NPyNMT4lh+z!*7e>Vpi5po6RWXzJl z?n(N$1Q!u*1wqg(xOV-fEx^AAFj7tW#yW7K$?|TeO3QvWrB?d`a1r5FFt(qeZG}5g zx9tTS5qJgj{j-CQx`SX<7d`7%?J&LI`8ePa!JmKm_h932SV-^Tl!EbxAR-Aor0bu6iU_rW0DdOaiS#`YXhhHz#6Gh@x5Gnx(ALBE z1{tXcd8kFU@i1x@4(wOgDE;Y_qH!9?h>)wO(sDSrcF2F~B2N^NGk`|~U%`N)ld?0w z>kdw;bWuK!+YJ& z>@`2$>t^Ua_do1|-hbYek61hUWasjvbv?2>*APc~?-{o>b#x$GJKVDYo&Dtc%0+wS z_l7SJ%T-TFZcPK@K4oDf4_JQh%I&UyBuRR>tS>%hb7Rg6RKSlTS$B4I9AbM-4ZNBSbtt!YMD2x0QP%;Ap(1Dgi0FC5^LnL z-wxPcXj1RCKq7*CMs<))?LkTp=SgPt4c#9=hj>7zWw*oLz)pl4y1mdLqI*(xY1axD zgHc-}Wd`avppa^lER4Fne%u&n0zpCwWpv5yk0#;%5H!RSw0_9Z z!v<|1Xo%3BSYfJZ6Uk63CJoac!-RD4hU_C|w9=Lc!aw2n@+Y<~h9Qf+!I1w$R! zYMD-i2@z9;je5e=V6U*r#(RT>24v<_mZa0uK>hg_TB{dZWHNMQNq+VAzmq z%UcvDH$vO;_NP!GqN?!y6qPzN1+qs#hKQ`f$kCE%J@!y1Y-ZK%pFxL+?z{@$Q!0<- zQdTg@LxHRA;nE0AtJlqJj2O$6mws3G;?C$b}-+oKL}cpuD*!(&M<!>Cdd`AIbCz zBDZr!Lg_b~q~B<8JNr-)Egp=9%bNJNdDaN_Hycr>ufbcBBR>HS@c}Mq1v-Ci80xTj z1NSrF5W&sa*UJ)sLc61sGjM5##o+xMJVbc&O%vw%vtzvUE7T*6n|eKMqiR#~m!Kj( zq+~nj>@VW|8a%`gyg^*V`we)A@Sam~rLvcK$&Sv#859|>_;fKMVtiKBj9P2dZ=@yC z7QrI{Lvb$M+jH5qx5RE8HYFciUwPgy6f-^LLY1ehoE97o2QdZel#&>duUCn>G$~Q5C4KKk zt?LGNyP)r!NyBQZoXc#0)&N2TG~bZN zyg*#1(~bMRSp8#zc0OoG#c9PE&<5xNfRKvQ>iE_~T3rYlQgK>w-n2=pivdC^POB3p z)9Mn?kP6XSVSl)MFpABgBdb{nyA(7;X!8vs@BD3S4SIduP;B$@r4S(^s;UyTL|L8n z3Yd`UnX;UFHB3nLOxZhl8BBNM*_ZKAymJVbcUt0th@%c!R=iqj>Q>5aP+nC}1+5$37$ zM9fJd?o0m9roni?`q=r>p?K-}48e2Z57t*MI6_{JQtx2x8mF0GEd=eQaQ`46m_DOq zw&ZaNsz06t)${el$F8N@WNc{clX=H2`9Rn8-kmByC$fJ zP%kPuuQu$c6bg_tuvO0g#9w=bNW2A5vG!Tgn?liTGDG^UEAedfp6D#J^0}4fi%VZviCY zU#1Ik*;3vLO2ofR7o{c_-;2vNi!t^XM>F3qey`V%yIp2I` z>D9p5>HBmtjEETLJE*X9#<<;E%7fAS0E+lmGUHyG(~r#ybU!c=VR{zWn=9)Lg zJ{(L$n4ZOZt2$vdYmOcTC*mPz*v!l5qv1sSE2D*7r6%*6z#@WugI~dug=J~$f$(4> zKHTYqx=NvGckbHKyNCfq1|Bxo=x$*oYG2aOX2Yk+tFqC^>YPg@lIzlE80|G5TwnQr zztU2P_i992OC^#Y$^4v4B{GKO>oux-jT@K)3g%oYk$vxmBaq1_oKf7wQsVOc4BjJh zIOiQGao8k{wF9|jK*-h6vl+B?RZ z#`Q6{kP4G6);(!VZ8J!mCEJBZA8~~v_+OHKpM(<;=X~=;Ci(Uyskp&gduXmYw{R2C z*7b+`@%5GS?xI@cT&+=DJNopX8}&!p2F2u_Y@c2#Rq`m+C<{rAGT&ZI*TiN^!wa9w zYZv#&HVw{Wu_hwt^YwGxFQ1dmt#wRJtwD*1a=w|iGATJq!zSbT03rfBztjS>QPWW{ zGChm;YE7B8`B}sZKtzN%Uq8I?=uKv=3ZL5;Q5);Dirw5kX)^mlKoNn?7n2tN<^IWKQTpeIHdu62Y`rI zWpTtkRZY!58OC?RhkgRt-1^FMZziu-yI4K1Bk#|Je)Dgg$^eotS6}P?Nnb0TtBJ|JcB2S9 z`9L1mn*X*2uP%cth;nqkMZP=3aC=ZD#jgPnBB1%!ucRr%Ah0`x!gz`b=mbCddbL9-l*Q<;_vWyYR{ChVl zV%WqF%?|$7s182^S)+`A(Ugn@cwkFPckFO@cK5Ln_R| zczLwA$XPXpXg@@Vh~^rtO;T!K@_+Wr$7`_p4im}m{o1-B%|5%na?VI~=|^<{_u5fs zrZ==voz8cdNcI56DU*k&Mja$I>U@WZ6ux?+N;UsbUaw|9v!*}6(c_5R&Uctd_RX7( z%H|)Mg5=h*CPzL693r^+j@ZecOS#x!A8-DlX>h?{$=oty$UX}h;tLrEzZtSGK!%8H zzFB}gIp#^TgE}!)6^UW{5^RXr=G$*v0$aD&rGI46z5*H|wE3EY642Z<`x;<~z|NRw z@;&3)m;K9npHlHH&ef;kcEDNcUsa0t{*7whpJ^s=?Mi2AzlKbnRK}x|FIH{)^rW`! zl<}n-*BfK^HCkIgXOMRabl7{DsthPZaOCEEiT$(&b zf`bU>#QEx4?o{x*8+?6aM?rC_xst1F0H&Ub|3JTPvpWO85$EJRrIoy<8GmLfa; z-WH1$pb$aL8KmbWV#B6mqm0|zagaJ7Awrrn4xR@oi5uVwb<&5)!9HY&$mSdGn=1#M zw2C1@L^RjomlkNB{r`-lE%$1`H1iZ(}3ZN>@U9Ea)t zv2!4%$)U%AhzN1M`9Jq5l$9MLHg&k}fQ$7E;1dBv1h`ga$(ai<9_eOL!}k>U5P$e| z+f2@PE_{gi<{UwB3fEj2Y{n@};++Q^BDiPxk-5n&poVS@I>e)-V<5%Aoev!1PtrMW z?FG;w{v=&IOskX&fkQlk%j%PhfkXU(Tjfx3Q|K-M4iVg$bM?0Jx@4czaM;I84IAd` zg{7BZZXLzgPp+?A_Fsx%9;lx8+EpK%Tv5vS&wRZw2P1iaBA3sV(F=3Fc%z0b{YV}d z*q>OdXED-%$mM*!u=Girv=Zq@CScrNn8|^Mf`tfczC{G-Gk1h#28ayM!vR7n2I^|N zhXHyNK!||m>QmSR+GqcNqgS9mS4(|x5cIWqdufIt*z}|8D~~#;ck!DVW?sA6L+#)5 zGM-u*N%9E2jo(b(#`#7eQ*h&PgFra@OoM+l7DwG?aV{V4+yRac*JAIy3Absq<^dB2$^p;B)viq1O?;g&6 zwKq@-ubM3`o8RUz^)J>}-gUML;koj?cJ+Ja-$Xe)YpZgYed9Lpk_W0t{xB($TW(j_ z$wMX^i|ktp$<@eyOpnq@NSiF@Q6>}{wkI*f*4r_r!E(F6?<+LjwAb{8$`M#GG25iX?qB-668LXt(G zAwt`7y~3_0S$;dFd8^uhAp$F>rP*1j-)lyjbd5vfK&TUrmUYp(?t}04N5e)C>&S$r z7DE}}9>9ozUsP%(uvz46OlA3E{%cd$^I9qQ6xZ<3}#Okp?#AtJ)_sxJ(x zD0Mlhj?^}Aj{y!5+?FSX?SAqZxZz=JX{?mP!%#E)VSwx3yhG8&-%Y?Mwaw z@DSl`xr%N#Ye!T05K}DbXz8?Rc@cDo=(b!0d%4i%L8VQ=7lVihvC_yPOTgh^l&0Uy zfJ6L%iyQlUJq`{x4f893Lj+gO$jJ`t!X)M5I2@SRkREj0h)4VLd237j8i)~ZiDPAc zb2wsKs!8M5L5zra%X6f5{{>3YIBMz0*+?A-3;9MM5kX#3W$^75gbY%hoMM{31zbe9 zTP}Ow{WNttx;8!E4j>}HO1oQ0dOCpVtN%_25fN^=Lg{i!!j$bjupwTsHG3T$)||f1 z?}H5y+m>g|?s~e3t<&o|A+Ifee+?xf%1TEZP5F~7a&wxg4?hGNBDCjMUe(wfn%>xa z6ja1N)bSee6QCkOt+WekGn~WBO?H0@FhpS0H-F7R80gs6Xi*!fVl{yl^0Po9f_zT( zWpXs^EsBrxL9}ae5L_5h$XEgRZ zkRc)~XI;=dy{guzukjjcJ+q^fSRt8`vFZ3dXc5tFdCAePr{iLz^U0@m{C)r?;uq$4 zJNzRs5n)yz9xm!e2wiKH$A>o0e*z`qM`Dgsru~4Qfr`Sk!>>vNzfhhXESID?Uw#h!=>@Rv#&7XJcVx^G?tqe$b8D!$?=urn!3;=n&CWU+bAe`Jq!J?HoE_%HbbD ziiouOdZnvXIA+8tErfRm4-sDV0bx(4q8=P*8BSrHvVEiP2`VDgiz{#GrlY3GdJ?RN zSSwvzXA-F@B6}th_U)fsxihiqfZAC5oGnl$~mMN ze8{6Qo1_nb77=arl~G2UCgz#oA;PPE!Ap+Un4X#s0T&T&_4E0Iur+F?y_JW7h6t_t zx^fV9R9%_@?{?T-(r$=$)QQp|u}8v+h_(8;4$Imf=sueQW&=z_nAIy)^7$UIh+eB@`n--{b zfkXsZ{m9)oWSYlkLy3s8`qw3=O!ylkD&5^VbPzH`WYxEOg+b$UKtqJ)!Hc`x z(`})q8~8ZD5P?J4_drJP}MpnAHzw$I&@qqc>>jI-ypv+xiqZ5ph-@ z$WH9NITt)cc-0R+C3ve*;7p{Q2O%Ot4{ASMFwoe4*x_4)4-sGW9n>_G3EG;)&lWqK z4L*HvJ$D!P1+XDrq@Q7%Sp9GzjEHZH&f15IVMN4OeZB3ZV{zrfC14`LtiE$1 z%<**(mjZ|gu=@H&fEr{R1jAn1@Vyj1M10i;)(#(aVj2>@0!YM{!k8vvBfUS$#5%7A z6Y(Xld7lHFyX~p+f5F&mM znsp%n<{PL!03jm6>Ib*Xi8HNmG0?OrZ--dhSyT5npdv!8e(uzuYSYgk3S(BsQVFKn z{t-wKkyhU*8&WO2Y3x_=47=$9h>rt__>-LE_>_V6zl9VLY4ziBCOMN~c5N@nw|#vE zO2nT`pPUT%JdlVWtDj$SlCrJAoJQOan)$k`FT#q5wbHSY*5Pi@(Xm*?_vg#tA;PP) z7rlI^#$u$^(2P3SHv6lvAyp?`ygXXe31SV)Xz~6DJVbbvMv1X@GbLw4q*eDfK|_Rg z&gHvUqY=f8v55cM&>*6TFK3!T*iSo|-vt8^##Wbn%)C~3ADby`fq10$KIBJumUF>} zK)9UC$m;KTWg^_9nbTStrT(e+kqS3fcTrt&WMa2}T2UC9G=(CF=MWDXiFXTQqW zLpD3e(EVt-23CujbOfOD8=EY5;OZ|#<)NHYubgL0zb8i@NKQiKOw=r2Hw1Mr_%Jzn z0?3GvUs1}N8>YQz|)2L3Q<}H-R~Cl>PYn%5RQU zJ$=;ERZm~-#Po+sjR%%al{`u{^xcyhx}4EqbB09fTd)0IZQTeO&32%pmE!#T=e^nI z#;Uy3a*_^5D;-u4r9e4d=-S zwZTP%TT)$?CfK|Qo8rc1eYEAhF1(0%OKPD@=H(=fWNzFd-vDGp$mOg^ExSb6g~+Br z+!$KK+XObWcAcF;z8T1fkjv@&m!80f)A#Kbup(kD=PcN=S(EMDZH-uHtCLCJTfvNo z`30pnKbywx>ASg6D(YHHO6q zR$7Ml0F3wx+*@*i?*K63EpR7{mzM@yQ)UYB2>>GkF6VlrvWr9#tryz4I|Gdf+Rsp; zr=i&8o|d_rM7}G$hS+6O*C&Lt#a{OIBF-YmSVS?55UwIH-tF{Tjld_u#(% zkAf5tX-U%+X+LJpF_E!A{Lz3S{(%+)@Ft*$cc5c|_adN(K>dmdrv%&)u!vy&YNm>T zb{kGaoPNFe<1uRwQbeSFMcL^<$9SzefEW?6U*k!ZSV8tkr*P;#yR0uWf*BEWIjhLZ z3R|2W!66_KA0gA8z+-?!1nF0GH6`004=f^BzoONN4#1N@MTGj`GH#wt3+TS|A2ukO zoZowVDFdu#vW>%*XPkD-KEJ+l{!#M&vWqnDc+^RnvRg1mHY*(-R6bbpFwHz(l*~Mq zv-Uspvekl%{DZ~eWqyup^QAY~uY7GbfJ>Vn4FK3==7s`wa{62sYpMiCh|6=-9{x!gefZyV40a+Y%n=EM3 zaRvRpwux(>oJsVwwfqn!5Se(J_a?NtX}XP%VgvEH@I+4G`2@g-fM4lrx@#pkH!BwE zl}`bV2;AHDU*OZK^v}YMi2YR_C;DV<{sqVpk$W4tDAhUj%dOPE1UKS&F&~YCe+6(v z;4k;JsOS(bb|^Zn{@1`pgk8?yU5Tx}fxIdeEK6m5g$R_Sm-B! zA_DcUt1>MH`We88fW51`Hi&(G4l^QV??#%$JQ?%+5@JNe-qp5KVx3>Zi+Ea$Ct{r6 z0E`H@oXrm_ zYH!hN&eItGRZdENq!c)#WS-?>r`c-2(S#`&-vc66-C!6=@! zzI6U#edQY;SEadh0UPH}&cCU=jq}dKsLqoIs`~tCnH%TF9C*igTsP2tpb?cEw)F81%eY`Cre-1WM5A3vzJRNLA*st}w%HAKD;HaTX zh;5ob6L>`MudfGu#3?#9dRlol{D}D9To3+sxHxRY%h6)$;kkG~5}=V9By}%N+ozX9jflFObtAj>inhX~;|E-HYs$#007nE~&I*Rz1CLg96S(Dm zE!>E>J?{;LXODvPm3%$eh_F3>CBwm@P3t!Sjnn}8knYko1^cZ)BQ+=>hx(o4EcRc5 zjrfnPsllv)d>7b=urKpFL^RmCRK}@H-U~e__~k78+co?s)*2373}O@h!;m8)_q_RuG}MyT^UwtGv*-N9o2BiKkiu+wPv8(<^C_Wh;oEv19a-+~$ubvegV?^^q= zG7_{}Vb*>47tj%*dp=wx^r)#j9Pa{dSKh~Pc%1$BZ$QD>A!EdL2OQUh>xB69Hm1{@K%=l!3KcC|LFOHJS9!#QN335c_o_B=$TyAcl zuL3k8XwU0IjprY)aeWJZ6yS)!J#Rq=VKeFvdJ11G`_Zr?V)y*@9E2TRGOugg*DpNb zh$|ey|B`}pO*|m-;Ca_*&>LmT6s`?6B5cq57;&_euEV)5)QG4(uUhhzS~mb1sY6m{ z3$<%ToSUi`1b%7 z@i=X}OYOATz8AQN#|1YJL{Ekm@i=jvtpfJ}7x6f8^N`|x&>|iuuCq1Z{@@~huHpkuH?>VX3hc{5wxeBkrcYH1>m7@BjWaSNGau>So;5P*b%Xpb1X>djdRML zO(Z=EW<<=MPCus1lS};{4Ll-v&)>{^_NxgrB4|$oPG@QVBD9ETJ&on_=r{rv@i=Mo zrTlGZ5z&@&>{02}MR5s#4`4*Vw1~&W*4aq#BybUbaor6BPX!kduBVevQ#KAf4Qj;S z61>>S&Ifn~w1{Xut;v>}>Bh8Y0gDLM(`LB17vnhqBLenxD1O==jOT%k_*;adPLM8b zxCmNAwB;O^SbD58wo~K<5F;Y?G}>`@h`b0~#An=mXUL1eMTF~V>|59o@-lc4@p@VX z=Q}}O2`nO5PvbLZ2gqxnMMUfAFwex!kJrJBcw8K^9UpH577?tcHJQ89<1OGKe&eP) zJl+m2B3xfzwtQ#DJE28H>*-N-<2yRu12Q6HU+af-6H40Wd>_n+m^~dyo!ou$*FYow zL+86rJ_I!4b?Gqse6mS`kHU=jpV0X@`zL@#1np_RuDHA8Qvf3#0~dCcd=_9tz@GMz z#&(l@0b)eNo>tB3a&QiEH`{ddC72O^Q+aIX%U2*qMC@ssJ-*}RYak>3Ci2)$m#;&N zh}hE(UcSTSpMgaL>uFtF+}ZLSfDr+E8YDZ%KYR~bM6{k(YZLo#egHEfW=|`LeBVv7 z-R4IiBSQAHU+QkN`3bm)zh&6jUh^|(5z%^DpXI9=e-13-bJAvO_kRg3;xTQ$jpop8#An=mE90%fMTF~V zcr;}TXS{b%5m)vn>nlGz zsEf3Iu%?T&jy~D_g;M6hyF!>eQdeo+`X)z`{%_osr)+wcmg94;wwp(*I@qVzjrSHW zf69L|CB=TC6k9>$;9d1{;9kCEa{p&|LFDDVb@O6lu4dRC*~0vD>>#r9o|@Xp-TV?a zh}?Xzrf!ylK`UM!MBM{6i++tMM5aDaXH!vD>VAVIq~?~A$jQ_TSA3Q%A+q#0HO-}1 zM?!_IhU4l;Tp@B**V-=5%iYzmgUC)@>xa0vI4sl;SH~1mV^b8lf~jj@3X!S5uIcME zT-L?i%e}T%*PANhT6jX_>1{Rh^b)JXE+oE)cnRcgB40W`aske^72U5dVMLsmK+UZ4UC46hlAT`XC z{vfZvejgu54Sita&bDyf9v_H&)U5+L8807;8$@pE*2Kqo;W{20NF8nDZONUmfyhSP z+W3hu|1Ow8WTtLiv3#yCYgGOSJBaMmEx^z16x)`&;|Zy67P(E#J+Xt-*N)rLoP-@j zc52ts3^nTBY&cc)DY!x8=A$(WF75l1^^Y~?ON<0*4%`ERDotvw6}Nc9CQ=Nz9M%zxuL zn3!98Bwi4CDd_+H8!w2w{AIN<*!H}1$BNbvBZ!Pt z987M<$ble=!$D)e?)D7Z4P6Qot*Uu1yfg=KhR9issx#}XVC5XFAhJ^N0Kj%KsiUkp z7)DFW!$v0<4x&T0B6u8j5ZQT4eO{h^uYGuxo0Cj!_C!n|GEwm;#&+_=HkQ-dnWx|h zk*A9LUpw$L*4&(n8AN6(?z8N`%+yxrJS-uy^jGzHacr4e4#pdwHT)p*^Xc08nV}6j zAA^VtzQ3*p3r*1lI6~y8;>Auoc&j#QkuJm)B3CsEP3?n9y#h z?-Mmc-8FAo+DkBm$WV2&7-O%%7$Rf!tI$__gZ)ul>?XY$M~ED~qdsMDN#{QC_RP14oD))o7?>T6OkrtRS-T zx@s$dRxk`2!^8b>Y%o6i`IM=I4}gydzv6Ml409IziOGb&!3ZKFCEez|(+QncxT)FitK8BDw7P3~fxM+R+5FdzqR2;N#KVw?alBU%IYvspSLF$+#x(!ShmYa9w zr}#kRqvElY?PrO6=nhirny9Pdr-CpBwV+E;Wp0r!}i}E`dL1d(M-QRXNNMHEh z#RpPHADvz+4T7(S4@5p{7jfwn$$Sj{hB!gwq;?}--SE&bSR7`7%1tnX$V~03E;_%u zZQV8}H^&N6$2Uc1b*FukTjB$ekBX-jw;!v-{XqL;77sUuA0wy=ZL*p4&eyM!G?cIq0%6$XA+FoeiZ zT?ZA$$A3F`LgcBgm0WQcxQ`>G#&3}`8XRK>k)4Y7)a^L%nLa4IiZevc>Kf7=(%H3# z?I8DI{2(4v4hA??Uqcq`SJveATmqUuL^jD|YcG-ia4t1d)-K zS3Bdu&8p*j$IQ=M1GcGt3D}6R-%tbWiFAKC1`rvjc+*}xIIJTv$4XD~!zn5MTEG#3 zSG;L&M(~NWe?1luS*W-%o7sYG1r`_6#WHWg1R@g^2jAN@5x1k(#4&$w#SbDs6)(z~ z)lbk0`nswyYy_)IT0GusAD6CH{!7dtH8yj6YUW*-L2775>tjsLWMy=FQc%f-}D}I+RNR8<8wEqX_ z5z$vX3@~f0qiw;%^zgNR1RoK8O?nbhS9=F^jA1ZL2a~>m2}CAp5=Eq8T^4YE3lB*B zJY-SCzu*C>pNA}p_*Xn2@=)>d`Ln*yl%-L((0%(iTp)5$lNMo+*Qx&wJtF#=)Tz*? zb?SeBj|jiw*`8U8(9{8q|HKC(9~Cb)nAwNjD6`?X#((1pslTVJ+WmicLh9=&Z4NU} z|AQx_{+_a?<%sj;36ZCYH#%dNSA}ckCgYB$9 z-Wxm`4@mtyWaA;%!~-G^6;IP|^F<#Y7P&S~5ILzy_t2IoXMo|lm_X`hB9Do0fC)q< zYSJ%BbHWLYZ;T5>E-F4dW}9!ux48|CL- z-3M2QTvgq??<|*eluEjg=YE($WTxVsc00_XRun8PYEsdbx%*=Xk)f)4Dm%-aR(3e# z1Mz~?){8ENwfS-uUJ!Yy_!_hw7BnuoZRkoW3S6(7-4Xjxj3F{s&q`aybmeV&6W_z} zgUHXvD_)ecvlnPt8Krxpdjnk=-RShVkk1yvN8t^Tw~BW}?ywL>-DnsEZQZBP7>=3; zvcni3jWa~f>e(nA81&LkLK8EH%zUzzMX(bb2pjQgi)#rQ-Eb*jwYDvUi?~DNuHy4M zc323Li@qC*$*rXbONcDhGm6mR17Ra?dD|F5WT>8fi_WM$j2uTj93gV_p?bbk#?e?t z4X}mO)|O5^rA9AS=Ob((wY6nO6pJ0gL)b!O>l3vsgx1!ye&J&|_=7vTw! zr_a|p(>Ci}z5tVmOxAOV!`3Mioy-^E43V>1$0B20m>1&B8gU7nUrcV^<9 zxI*Nro@2vfRmgiVgvihbYZ*pPsXN|>DWtY#Z(61C*SJFDs-Cs|#YDf%#GFAhJ{Sv1GkC4kwN!Ge4ZN4DC~ZBLaU@#nr)V;1lc4K8poJ7OHM|X0>3O znq?gY5;n5!FO9bTe*MCWj<~`R{4cq&`wQ4ZWUuNaLEE)A+OIVX##G|vOL#%#rRv3- z+w^jv-DpMW-Q!=u2O=L8A7e@C&hWbLZP+5$KF-aMuVDm{k*a5kw`-)w;c-zMYmI_a z#J-Lrq<)T4H{EvIb@b0TLgc9GC0g6eqqx)S4VN3mGWQ+)Aoa_kxVK3EXRs6%%G~#G zgve3Fw_MFy9ZYR`l1lmqxIyHm>WvyRmbc~chUQ0jK;+@|^$2SU4a`sAN5o(8IlZ%% zsNzfhGYlXyQ1xcy84HnaG?><){2V7peVlC2ko*!Sh@8|U`kLB+{2CufeR5=jhT}Il zLFA<3?TMYB8}&!pi4gU=V_TWrUrp&k9{C)ZKxCrguDnY+qlt;`B9eO;0=+tihDBicpGZzwVgA# z7LE`(s(8kDE=Pl?(>Ny_^wONV4!#iis(9VdJibO<_HAh}+Gf}Fv4zN1#ml|svlX2^ z3c24V4x1xq;s1^Bhsa;W-O!!*3u29cX!}!`PRZRAKZyKPJZ!i#KXI=anVlJpxEZ9S zZ~<3HO>=434ug2u$j%5k20uu>{bUD)+!{Yfz5QgTh5SB#kb1sF`v<+C)uhD5%RxU( zo2c943X!WC1{2L*d(`PN;@do6Tc=}jgve3F3+r}L+o?Iyl8VOSpx0@{p&F=ecBj|z zI78&D;`x!CIBUiIc9ib$yc1rKx_WU+++Fa3)YFSPx`>}=WbnGDYEM&`Wqxk^5Aa(WPG@57P1(BDEhv;|m!bEql{L9#yOV6`^j1S>sPvJzLFA_5)hj!3(+|>0xq%TxMrzni zOSdj8=FQB093gU4!^wx#QMyF8*H{gk_8khbhR9mQd-8Tx>XL&FH0+ya*D{`vdS{n1 zsWHBs{{YsInr7FuIifC}5P7Qj?Btyk!9j0$*R+8>8!L#c)Nm5T%!dz`2VuOdw<*66 zZ-_0Vrnc-wFynI#2eF0J+t&Et{5jY{{!iG-#^@i1E#&`%t!$|NiP%D9tKtoIJE{Hb zx`qu#?4N=;MCK~qhCGM4DFgTCVhoY7iqC48%h-nF_vc{{k--{{t=eK)7{*`25>j(Z z&cMX^SVC%TsW7O20hSP1s$qvDUFTI82)__dNUgJ}Fdlv}mXO+8%7(=+!4e`%6>ln@ zqfU4F!IxqPk)ax{rLnKl_#pX9afQ^nD5?5WT}QTGq&tyBj=Z4 z2dVX|G(Ld-23#R>Rq?3Z!qStFvk8@SVR6#WZtx)_7C6?k;58J zW7*7eN2mV=M~EC%e0JI#)%`|;)E~heB6l_1Mq~4fohFmpXg-cNq}F9|*y}gam9Kw` zBSensJHAw?5}P^n4dDh`iKr zQ|hR@!S2TI;|r;09u?ZsAL0e6s~4vc{V`q;d3mu%UH45kB>fa*M943%7P;FSbjFVY zG(VeijKeR$Muc7Qkux)4PaNFvD-0kq@WvXX`(ASmkM39-bnFtz|HT1P7Y9p&-l*?7 zxWaSg0Fi@=4>Xyr5Jg>ehqal|HF0H3ATm+$0a&w{(9uhL&|Iu&i_%r`fYipr@e>|? z3lB(bJS6Xen-9N@2Sgq!UTZ&FS+b);6Lr(?U<9d|k%=nmcQJy;i>Gwj9)F%U4 z(I9Frx5M;6iQ}+<$inODkpW9Vr<3Nu9l=M0UvZyw*79S|-n2#N4>5qqK*e(avl>VP zz_C|(A5IWCskmpiZ710q{l}O>#44RzoJr*ftKc5mTod!N4{E9oN8Rjhb6Cu+X7(ryD;wAmtGh*M3 zQFjomhV4ewZH0$y6Y?NDA@Wr5K|R~^G|kL|F@wlV#l!h=IGiYB!znMvBS1!k{Mu@3 z+AWbMUWh*f9ufSjD~9iB`Ql`?l>Br`y0<__gkEvLq2-pdp--g$5+)FtsQBQJ*-b>< z)o?Iu^us}C#D?ZxdbsEcZV7Od&E= zaW7-rri$4U;{@@bgi-Y4Vbl!TgIC$Hr&eWxi~@U z>Lh#R*KvZ#N$pzAWyJ}-r9qIc<9R-2kUC~dx~sBUtWb7q>d%55P!WECrC|8SbxwDCiEOc6ti!oA83jOT|0cw*TUrzi2kbqT{z>38}HAu^{;`v4qG{)kA*U zjxKF3<+1X+aD&KA)iWwPbu%8Gy%$f2JXL)B&W_)sLX`G?3?Vf(R0!5Sh#{oLh6*v; zhcSf6Q0>OiY^6{P-9CmRM2_lOF^orWpTrYV?_6@ipHJfmk)yhX3}aEy=dgsxQpHo6 zx*kz?Hys`uTem-*GBxn`pd&)BcuI3-^oc2ff4~GH6BTbZp4~*R&opMxZY+hvM%WHJ zVKzYfkN834r{a^eXZK^PcjTVbEx{gE$Vy{zID?he6a02ggRM zhxfXl+nfDruUnq?x&L7YhkvkkU1udlRjsWdqCVsTydl;j&gdO+Do$%B^PyK>gek0iOzEBgV*Y;AU|4k{+W zX-a|>L~zgZ2F|TnOirBvCL+vBJi@duTc8WIb@iaibyBb%1TG@nzwi)uFbED8fFBGn zBH(gXGP&>NPRnREO-se3Whe2d-`9GLSc~BL?SN|@P2u=c;1R*U%)iub>I%1pIrZ?6 z-AZbx9|1MuF}02)8|pkcHgMUr{xhf%KdHm0+v~@TfmXU|)$USSLIS7}QJ1r}u+-w6 zQMX1}p>BbUc#hl;1I=ff61@a6BIJwxdk@1ynv2slzJ_%LRz$2X@sD+}HyT9YprOlb zd)&-tm^&~dex~nIFkB9GRi$C=!-|O2!v;HHZE%aL!HvO1gnOxf#euF#chqULqE1?X zS0P43{6hbTmxH*WF_e_{Ftmth%Q^U@)C$x27Nm$sJ?dpoA3yvTU=hJS+n>rRirL&~I)48OA>vu_ z9EP1ZAA9>ZC=tJkXF8hcjKBUnq=-n@{mJo^G#hvQ4>%FON~V+N{|O-?LXY|&)5cl< z8&t%zOdlU#{eN&G;`C_v#4ciUYNh`H6cMOLm3#_XtelQ`fnX8AdK8UV*jQH>wZe3a z`bw}OVtuYh)l&iTDnKHF^k_ZZ7Q_EXL5=v8w8dfnqk%*O=~3@#Y`FiLP$HuAsM9SRNY5-|#l4+Z+h_mZ29p!(*&km{6*CB0k(TYpvo5kvKfk{6 z+?&Ywcb~6i_D7wP{ZxtYpz^_zhiR$(cao*{=a>J8O&8mz_Qsdnr$4ue@qH!63Zhgf zscB80V6tbkwbt1O8`<8CgVAtV$CKFnZ3O$9ji}StI(CzDKLi#LY&mEA=g(rp#(c0@ z3#%(#)9&}qcOuy0|13M?Ynk_M}?9GyFr4Qx81VhY87fr|*YoLzQl z<|P%(T!kY2DlO%Uo2s+y8UdTqzW^QaF{Rr?*D>|2)CqVhvk)H z_QQ2FqA@5kUxA(uBIc5I>XgT79;gc2$5zVzKuXJw;yd$p8CHR=RQ z;f%qA`Rw}2SATdV&4{imkT~*G{+iu-_b(SFd58jtBNohFy{DA>^_w+zNrDtxW!L!o zWqbvZ>t}g@midQDNrrZCI2_Cx*CrocUwQopR2ILj z{j+OVInDe%h4GA%d6LJdG#;Il#&b*l{>_S`O_gGKEV%zJTZj=kFJ~&IK0vYi%ZBIzk_7{L6o~G>ylWF@akP#1&TVa2=d@zbb>fP0> z1phC{h>*(}Dw48zX(n+&A_sXy${<3Bz;Ht19{<3Cu z!f(Nfh}E}7x2u&>!2(+BVw&fMpc0BB4-Bd&SJJ2GcEoc8^d9-a{kvcz!Y*ewRC(BgkX5XWgSt?O4KRlHdhjCRE$6bX@_5M1bY24VnLSnT$mL1WH7d5q>$RQ|?~b zvG}b}qoM}>y1*lXFXvE=-G`5YB};z;=#l!AecijW#DUJ%!Hsc%)F=JJXldEf-wb-B zKIt!dErE?w2e-fhA_q08d!nw+l(rdgEASEF*QD;zWxy8xHozl-e|vd=0pkLDf?7;*g6K}0eCJdrO4V?^?y$5%|1yZ}L(9(qiwmhAH2}CB| zQLC(Q7GRh{b!VI)a#E98RTIToX}T-;i12F?6!r6J^={B3qJK?2iqY9=dv*`l5wX9a z9_(?ux0J`z_rd^DpOPQ<+N)YQWnSEq!AFE&lXxOt)rubje;?qH8Wo<^7SX6Ra6b$n zGVrE)lzz>q$Gw53eXWK2V*!zcn#4qj1@|p@ASMu*s7dps7MR2N&3kYb_=xap5?8MV z-B#B8J`{eWM*Lwje+M28KT@A}pl~FeDMXLL1R@h3sYhL8O|TL7KzOhbAMSKQZ5?mg z>rL$2@o0=8GWIIJjWvtoq)o^Xk(V?Jvs>e&O=o;`5o|=*<(zi8Yu)5Lj*Eas1YOQ4 z1G@*EkB7FQM*J_^W8Jj(4HcoYqd1)nXWFh zmH8oTAhO|kmFN!JJ_c+=*q&F3`MAR4fkp)V3crg?VVL$wa3kXOyiYqhJo{AO5y5*t z6lLMvVcDlakJKjVo#EJL0FMaX^NDqv^y9;@&%yyB2cFlC?(pk#z($1adFaA+5zL5~%Q-=1*O-gLtS~ID-Erqhv3G9;rduFN_ku5^zM|p08CKA02)T=!nog55*=&g?&$B^;YR!~v-F?AL&e2)m@6)TLoh<9!{xh=<7>_k#haY%qf| zmdtMi8xeL%yPM`t=1oe)TfjwxThi{PxpAi@>)YW(JWAG0O2Iq9MTA?H~+LF z9gb_jKLa=-@N)X%y9(ax>P~2j{&~<5p_jANa+lGS`Z_VUA85IsN&7Ei0Fi-mmO1UF zf$&gYYn*fgb4RQF4F8wmM`}^%7xO~@Rlt#2l$?Gz=xA-XoAUpJ0YnD;e`^O}a!aHs zG~War5qdd`yLYqD55jmk=xbe~VgEMlNG%Hdpx4$$9|Qhfz!8C$vt(>H6Fu&?qqLI$ zKIBL(ic5U-t9(JR+b5Xc0;{OXU zBH(h4G~N|pH(I~Kg+fMz?C)Etr`<^F$>{v5a3fw9Y9}iHEr1cP zOURUH{I>x|1n%$KSct-Z2V_LZ<*fDDjY3_FzJC{H#Ong>MBUc|7!mNLyE3@9*?dwV zLpC0E+v`T#H-s4Rx>yvW?3=)h_?^m5taNjT5fPWO?5L2}TO1Zt`0Qroq8L@*5@Dg7H2r%3BVL!~VibK_m=Ui_##r?H2S6i&epDGN6xP|3yLP!Ta(Mxo`5mlykdN{{5T1F!oc$ zHzxU^b$=e$)gsF8a@O(8P3FEeCWqEwM8sIm{S75B+UZMk9&NYRi8zGL(4G%1BHD5; zaVd|MZ;HAa&o-nNK#GX8oP|c^lJ+{LX3A3bLU5L)34AfYh=)ZX zULGwjGTduOFM$*hX*mZ{&!4oDuhykdBBCs(`JA7UZ^&P%mqLh$u$)y|ODB@9;7hj#rAVfr1$_lb1CHE!&XW!59Af=q!-ecX7)Lf3bOEbnz z+2_|+{_sX}{eCS4Upwl|^jnCY%DL@5dk|pB!xTWRBmvai!q=4gB!xy*eVz-b%H}S zc|Qg*;yZDq8?j6pe-dIu#N~`@=Sf#)8XsH^2Z{p>^QU1(#9Yqw!7ea&dtHWoEb`|- zMuc2WRJaSsZW{j`z=(j$=^&H{TzKdH9#X_t((GOP2S^c-mb0q3+%$Fb{~uvR#9GeH zXeF{1->q+eiU_rwFtJ2bH%-3J1h-5f(9HyY?vY%euU+X(-9RAYr3#NS#625Y=x3|3V4X{*1W(gmcaYMhj^2Gg_3tVc!==s zS5B)uRC}DZ28G5?(<))77avRIIEeO-hP^?<{zR9sMZ<+=Fla3-4uVl@K_^p&O}5P) z+cdvx@Vkcjo&LuDZg12-+}(dn@`*isVvqU6p6nBQMzO|D_Nad5H=XccZ=glX-#kT4 z^06nHFWz$^e|B#ky62?yi|wDCsz1|j?4PB7vA|y}n7>%a{$jyAXhDC$Z|q+vO&_v5 zo)Zsh`d^(i{RejEF~_tc-NrUJyeDFvV>{W%Xw&aHr`g|~>i%vm{qaKK$4ZH3>=I(s z>GuXhayfyG!g!AceD|o7Ek;YD0lyh8hkL^AYBcC|JKD)@9h`7#_NR%L^iNM5`_q%1 zKV8fJY9afp1wC-V`KtvzaKZg6`Cr*3|LtC&(e1<|F^GBjObP$p)0|(OWPi2x|G9e) zFsq8>joXL`6tiNw3JNMiG>(y|CzcE!y5^kI z8ZgII*H!nc>bL4W=f=6C@c+K&^YIx@|GH0Ab#?AO=Uk`JMyF!mlm%qp)M<4y>+9r) zy^EQ+%81-pwtMV(Fg;hgRQCX+bW|JGFN*u7DJUu~wmww`Gb@i0` z=GaC1s1$2%ry;2n!z{%Z%$Tz2$c#m1EK-b~v4D(@9~-QRV^UR|=2uOqZ^k$#!<6}V z?NM?j&}^v&=whI1U^-PcogfnvWO5Qn1|}?^3?v<;42NcKholRXp{pgEgmoy>6>IYX zvZlFCzWX3mQ>uVg*D9%a(rwo?%xvumP0x|jCA)Upu+(isliO0Y zr@1AYz9ZvzXg8AFk;%E^|AjnH)QQuK25HZ2%5$7O;kKL{l+JT>wr)afamhTP^XQm#WIAboPig~3OExc6Y;B$@wm%gpHBffi7Rc}{vwUghRoq@R-q5t^zdik-37(244F+0d`kot4<> zbsMR#v&QtX&x`2?r_+zJ^w}gS`aeyY@uYD|>Pe+o9Gi^$Tj=B@>pZ@;IrM#snQt<>L(Ub4D_I zann1=T*OmE(+4IgvZ+Yeor)Brr!Jrh7A=)U1f~m3ja3t8G{#w&HJH_-p|Xx(g2A33 z8{;ymxD4aO;-&>;@ziNewRM=)vL$FP%;42VB=KH}V>i{3O-1Q&5!*xbwRWrrE+BL3 z8f(VKA)>iy;&jvYxecBQ@PXq#I`Gqyo2OnIxl0WOGDC zWi&~qzR@R?vlmb{YV#KDv-Tg~)YLp3bM^X(_4;#5v4>qRwNQ`CyFGU3A5+HZI8tWQ ziQ=-&5@F7cL{cUTYS0*8*H}AgO3k#%+EzU$S|$xT%|bsZQ%%|C#-PzZo!;}Kj&G>) zdQ>$^(`UP-lV&_uF=W~y{I%E@$YR;6$AJ5atkiSx3UB+hsV%af!FWLi*B38%6v z@5#ok2brE)o!%-Z*DSTFlKCHz5|PchyJVTC9Fo3UYX18R$}h2^%P2+%RZW+7J!bY~`*=HO=SUCllS1arb0o@}--#?jD!iLr2`B7EmQXN1oJv+pyN{A{klalVw`eGNF-u zZJ(KSM`xZ?Slr`7mff?P-IGOfo%vYr(2OnW92FT)E?GTj0cEvL_w|q=*&(Sl{kb*P zYGRi`IcYs>k~ZBov#Dgd7m_5)q?1XO7T7-V%-O~BA)7&1)niazSE_4bT{;uV_CRi$ zbPm#61PdxB(iK#e6KSEX<|HRgshr3|(F4(kdW>t+d^`a;8cGN8;pl9{zGxczVoJRklWAX{}+kTt{ z&z5zkG?1Kw>u{YKS@M|rsQGP)Oi^$?o#FX(Y&og*YMg--oKJ@v)zCkB+*~`q^I_-A z(N^8f(Cywh(1lyo&Qiz96X&-bGHtT+gbdo;Zk5V&!0;{u=LvwwV3^{ zm9@Xj0qKuZu`070%%D*3ygiNY)9$DI(?uRzEN9SKQ)~1<8^Xeh^ml( zTo`^(!&*5Ote@Yd9o;08KtJxw)UV;QRg zc4`$?Q#bv8?6m0M`R#RdGf8#98IErr+6HvaF;Q4k{nF;cpXu}4^5oPH6)t2m6bImmf8}YPUfnhV~mUs9K&Q z(+Fi5XBjZb;ySIUfIumSdr%G=A*Y2FRm)1)ZIO8%Z3%a4R*Ng|Wy7(p*&10n% z%iE$-C*oHd9LL9!BW?*7Y$4fOp-4=2g+V4IZh8z66N`nadm zp@=eu;sZ3A)9!6i2HBGFXOQtN+j4W~+*7(}WqWzcE;+f&<_5*Owz)zV<5j6m19!zh z%tb!kBu};J!?g0kbL}Kky>_}3a#D?osj`}YWx@oy zd`AK?t6!VUnl8_JH%*(^&~%{KVpf?kD~*bAgLC7uDXfP_$cXx*x=o5h&8z~A9d_!s zM+#;&oU3E+HtDFDI<-!|@;Ixio7Vc;CV6^U-+1xrpSvL0(6Zg5AMeuA;9cH0^6$#> zhDg z#w^@9&f&^*e|dNM0E4%=<@Y7!6uDO3_J>576Qh+BL^B4D8l-NN7PEE5hIf{Nk!L`n zcv;lTdylSpg&~D8S%XohCl`HXI^F#2YAekh?qY$&v8{sPZd4m`CjBPcYt@1E(+w6|}EBUr0 zoq`$MSq*M2X;xEZVyb+5Qv$`r!SlgH=~v9QHA~vIlcdRNbaA6JTCCY|K3HQNbgW=; zQd8VlsYy+7H^l^EQ|WT(N7|220f*7Lsm3I-SBUru2A_h_oqaK|_yyPH3m1 zy_+aVBUW!(vI9@4h;2QmSws5LD!oLjFFn>If(r-b=#OPpY|;7buu7~gYGk95<^61V6f0(ab$RLrPr%9- zRdN$#lQ?;@E;mk$DYLvOWlVgeX{xA?n^gG)r7!we5t(rtj?zclcthfD8_whgb975K zomTdllC(B{$Zm|M731YImbxEOY=&LR_?q!eGcW`4Y{-2L4j^$PQTC?VB+buSZF>v)5kbQ;e}}*BDtQNj4Q5&1#MU5|e7$?jki+hBPf+ zePb&+M?PEDG(}z!+d0SG7S~)Tr8CdvmmtES6G1I?jH&B>{FnZd24 z%chf*tb}FO1EngV@Y)9HclCkXSm&0OqH&T<2eiki+yT}28eLLtP%o1X);bDV$*24B zP_3g2I`ni^K!;wocP_omFUWf}J5`aG+b>2ZgzeRe^1Wy2^>U#)FLtR0(zE6JL|*{R z={CbaRo}M$a8MhHCU%6yD-p84qv~&^!z(>+D$IY<(?zX09ThYVRgJB6XnVCGk7@*Z zvZyllWawa0?k{ls2sPu6bWYp1$u#SgqGjH}zz?I;fYM#i&TUYW>U+wS^&YCRqTZ$S z0;90Rg?J}|jP0Xp^174S(jBUNPq1lbADtggt(h>P!B2-K$EvnF;;7%Kr;s6!z91;J@I#6zst#19SqShs!BF16L zZql}kdumBg6Uj&RBFbj1FLCH^FOOU_SpQYCL2&J=%npL(>$_Fo7%O_-cGfwsKot| zOedo$=|)vNU1jZVt2P^$Zhg^|bi>PUh5MB3Q}TqQ~~&!?|{;1j!;-(qw-7F?>1;*#g00>?#3Q0 zoDj8e(wdV(TJcVmdnr|YqZH4ZJYSd2*2$_cU5AS&7Tudvt~Xz)-`kAxG&XB`rKX=w-vJIRh!^W^AtI}jG;ioY&DrAPlbR!GW z>89prIh>Xc3dJO{<(r7YCa`X7#w22JnGU-$gJF-109T1SL|~a+(aHqce!uLH#EdS1 zO@4WqnpdKwOwU)Lmcm{BsIJmo{?Vm-wh9fXozXm9R;PL#$WK~Xo>v-xI6YfW;nD-Rq{_wwv8_ch855InF=Fb7 zKW(Z#EY~a#1!xm6+m^Gh5)fw-l0m}xqCIvq$+3rPAJ(K_iyFdX{_Jv*=v$%5!T+Bx zCV4qxy8IGr{TyADH_8)NGi8k)_Xks5!`egAsdhms>>{FL$Vrev0z4PNZo$6;Tx7p6 zI!+f70~kst>L^E~#gmC8Kt-oI#t>D~w9^&OIiZg7SVKl8YGw|FjwL=pq*CqVmj5OE&%$$y5Kd zWPdtAo*k5>hc*~%-?`5v=vPcqZM~;IgoE3(t(3eCjX${~7N6Xa!5z{|roWb@PxksG zq4e%WYn?%LOyG4xx+3{HRXm863}%vige&8WZHRX0txQ--9|l!mi+vPI3o!gmRi@_@ zrRSloN-jJ@j4EzY6-CbwcPTmVY*iQfn)nz|G6{%trEr_-D>+NpJI8(-(xLcXRa|Vi{}YbPuzmDI0X(7B{o&zv*FRn#tSuA_pD^ob zHLKhZYaa{wBi@p+wZh>Kwmh%4v~AEF`p5l}jFue!V8+X8Mv2jJn?J6P!(w<{75J!V zuP^@*|8h7)w^MGEN)01#tM)%K!tGgl{GKw!tH18)N=|K|UQ=6J*HCA_!jL5Lo!$5} zSM}%96mLrOgqXP>n9fFnB5Z899gcn z?-G~myOk{T0s+&LfY-PA?i#FWr&rZgf4+P~sJ)9R5 z+xoUietaxSHcMjmIi1Ow*tE&9h5I6K?7+$%_8-(1eJbSK%{u!be^Swtn99P&X&ZF3SOMX*a-iXc7t@D&U; zHefHUSuZ^Ys>0rdoQ~-uQdFMJNt8QLVj{87e=DfS_yn!#4kyRLq~GbgNvnGrvD~)E zu{-IX{C=tFrS>&)ZcX)LeK)CKZ^M5=ucAB_Y#7)>$g_*=7{pv{RIp=E`i`t7&Yd%P z;-Y&7^PvuJ+N*pWmiSV2Sfb{49i}xo)w5U~R=aW%6|2LraDLR`O?&;hI_&rVfjYct zuL|mL&o=cW6M9>rFIq2`ZLM{spA<-S3HF4L^aAphWitB+E9sP{=zODh$!S(vtUX4Z znk6PKPFgtb)?CkRrxE6Zx()`qtHuwKlnP73m0_uIB2+id7BGJ40E zOxQr>mmlK?RHUf2t&5nOjZ|9&TNkB|3)98Ok=u7EqK+P_BN@JvLy6MsuC&lNN~d0r zK%9?@p^r*0J09;)k-O5vT<&f}p2E#kVXK`KrULe1$MR!P;Rb|jY;_YN`nOsQ`cq@& z@QOTCu<|cGilHj+qK36`@cT1$!pE7=zf7IL=rMol1Qiahs7^rjpQ;l+Y)CI+v!;TL zsaPj=Dpx05NHS~{IU6c-&>ZKdIg9Jg=@qg+PoA^FkIUn6gJh-JC1*pxALNRyycxrB z+zrS{=1-C5thj9}pv(*Bg@(2SwLzA&hlqn@C@8)4oxV4B1Hd1ffyrp2%w9NHJzuf$ zWtMC9?V|KlJjcrx50^##YYr3lu9f3n|2TWxl!<=LiRXvG(|apr99n2oOHi%i&|~4y zO-fH$3U5xHc!;KRjLsRY`?N`7{M`>2m0eta4^Ez+uz#hv%e?+y#5x^8{V8yr4Vc)D zLsMKQ0`mI5p*X5XB+B-0li_@hNI%IhKUprnb}naqJtSb=to#&J`~-!NTxw?dS7qdY zJV!##mwhN9hbG_a$LH!2^*PDnM<-N$4%OvCnVlg?uRoKOuEtVXle5fN^2jK3XJ zHM6-#RpX2)@_wOiXT?I-#xt!+KCLVJTCtor^B-%Gh`0-^DfCCB;@!LO?)b}U8n+wn z&Zch6{k^e_sLkL;-3ap=Gj^k7ugrrtMY30zCwcE6{9vEEcS(77-J@>*At6g>k| zWi*@7TBcHiy|d`wraEq&h5a-Kzn~m_>`&8Lr2l3tpQaVAik*vxO0Or<4$2(_EhaVk zsq%1)j()8VG4Xx>qA!BwXq1C_{FqUceUi%N7$J6-{7g>I94V;n6y!1*v$7bog*?q-E9nMqb`F-{lC6^RA(vr?PPw0gz)XwX)$7ZyY zd+GIij%=T&dG`xzFIB{a|eDK+wx- zBlcc4lkR21wQ9tl=rKz_J&PbRoWA7RawnRxC2X+0OrhIZDBEs_m_i51yM4=3p;ZaU#H&5_4!6jq3^(qpHbg1p-O)0 zX?oMtmT>j}$;8GoJf&{&xk&L_a#G9dZvLiBOs&tjMFsjPS5+XH_4j3v%?fe=tHfI$ z!CU^Bn2H5-j#a#BhUag|IKo$rp4yVdWkxQ=veD^cC~Fvg!vilmOP;;ED4yr&)bODe zWZJWp_{u&_Q9(|tV;(b}$MBh|%gNndc{N8~w@QjxYR;sZ`pGlO)SMWPg?VAU*+bvD zO25J=A2lp@Lrz-pL`;h%dL?zHRoh#FS|oMm->5SqbBngj{dq-O&akK>{GgsrXTA08 z>1k% zWynW)JWH+ED4v6=&_PR}&6(?JOE!j1!n2O16iK3)hZ7Rk|E$E7z zPOG0@7hm$LZJOXOgGU%2@>kdr7TZd)xa{tlG=B9jQUmdcj|jx%o^8|w(URqDk!9bZ z%+GU4OQrjh@kBp85^Y>^fQPfmrP$SG57<$+Zf?aM3Lda?Zl$p+UN!;h2JI|-@4Dg~ zVD}_fQS$q5(36B+&44yKy0hfMH(F)3*eEalPcxsbD3(|C$6F{>J6cp$X~t;AspQXh zc`MGJE->YXY^TkrojyZOOik%>x}zq)PD`APB$Fbd%(vSrR;Ic1x0__dt(jVH`c}|P z4xZ5%H~u81--sdd$!^VK0y7FltG{#FCawCbb#)VGq;5Nv#EFupvi{Vgp8S=@j*#SU#>ryKzwJRLm2H(de zV{Kj9_p(!>pO=-wXbIQps|icX>e`6~XkcmI7fOaW@%^c-`M&Vpl<%WWZT5Xyq^^f+ z>&*8mE}Rm5AM?qqmGpg%sHEOUK`jNoFFo_wggYVm{*N1yUIt(4Z$vCBwxwwb(BRT@ zzv7x&f{K>%xDe%0dKfHzf2vHPjit(@B^Utv@!L2ctAzL z`F7yoUo|as`DSC~<4gLSoIE)xTYR-m^3Gh-v}S8-5~o}65+}a#I5{TSTiV>p@)ffp zk&)}xx;~1Tx=E^2=~+lwE1*x>;!Bb*5mUOuC@aR>WHi38P5x1-Ru>=@)gaY2ORuKN z+nTB!QF5wcpmX#{U@OG4i!juYEa*kihuDsF<@2k925sJ)`>zz_ElQtf+`;m&Q zu#In?n(Ndw&K}!PKYm)xG~ctQv9eVH##Z&tVNM{D&Hd|OS+V@97dx(0`}GF0m!oNQNE$zsF0#!hKd2W+GDCj?i;&UJ3|5ZOku7&)SfdComH zD?O=f#hR9&TBW2{M@id*I&H|6ZOG-CCAo#mi%|TR-_q#qO#aIgFD} z!rJHbO>^9njWP19B|fxod$Kk1Yq*&NiVYhTx1sp9cFb4XwzW4XA-`bvI?AqW_qv=z zl3g}zQb)0E*`)S!&tl&8J+_qSO827u7%^Y${?lrvPSQt-YxUe9THAhy$fV~~mPJq> z`_*78MHWk4q+w)riLuCHlt}R??3czGk)p@7%;=UaWvmX=?qD~zUz%mxOOQLAYV3L? z%3nqK*p6&3qmmqDHIyFwGiBshzZ#vllu7}}>NPqbwPY5ug9wwyDwFN!_InFZq4;Jbij=I+R5VKY5vXF1hj-5N6477^sY?Ok`oY%{n>}) zCJbJ3gT)G@JUiu{yH%{07r6-Umfc;y`mB8TWaKzYV*!qf7~ zMU4*(1!~;Oe#{un|`?WwCxoQRO@A zb*;lLD#$8)6jQp#_CCKrM6$sUC6ro%&xSZRu8{H4{xVNn0&7Kd%zA z=7*Uop>#F3zB(l=so&@%H49;mN-0vOZO}^H?v*)p^PzfkK@~2%)#@%PX6!J+k@432 z8r!A71Cn2icllK{9IFya^{<6CXgBE|urfF?+935ZiI7sTt~r%+y)~x>hEw#;{2sPb zf$@4{s>X%6dRuN6Yu$26Te4J+1$36)V~eWMaVh9K*ay~6?b&N=d_r8;PU9Pzq>~oX z3&)?fLg>|_SG9b=Qw}>@!i@v9tB%C>?_(gtO?-b)sv^;lC;j)GVxl;1Q)_q?-JDwY zMypCSCEG7;r3Ces)6XgLe7iq< z)vHJEYU#HlY6;uv)@1w01{gz7emet6#Fu`wQ=tk-m7;h8MbTOn$+s}+*P?Z$3d6oe z(W+5W9KEZhwWo3%9#=QUY^U?tO7YUp)K-I97@jF86yIGdWnA*qdQvQXx|d36>}e6Q@2JJNN`6FN|tas{RObPTVdN|r!d$7C{(zkUN zXoVP)cT5^#Mq$obTF+GHREgG>pem%uK1GqGJGV;i_mi1uXyM6Bx`9?C&KuL2i!ZeB zLi%5{FS~^I8OfDY&~*K(NP4OsM1xcN`uThOZS-TR=0?e-YOX!f)Ow|;)Lq-n<7{i3o^9(JVaU(hQetGB$@YFm2pDgFleMNxSL!loF#b$nyAeDvL- zTf*1+B=u@Bo|}JFBN>mVWM5Fe#O=3A#>zCgGS)z;G~8vo##u>vu+DRK87ba;V+IPF zuW$9Y(NU}xQ7mgjPTfe4V{NcERZ*hwR2|8yFaG>c8*NXf2vL5ic5EN`sZ_YMW|=9l z?#OrBy#mC#6FNvCmaiqLIY}k%^7gHn2rH`eq_Y~I*Ez+?2N-jizKY3BP>9#(I#um0| zKOL%E9?L&UWYOnTg6h)aW$|qC7vtn<$tX8f1M+G^nPI+!?4%J#(WM&kHpxP%m7qR=aM(g+CJnaq(3hWod2-zrBT>%QDu)FomC1g$y@Ik& zj#g1VVSAO8DkPCsdVDXiD`}z8uz@Npr-k~Ls*0G_ckG1Ojj}IVtB(`v_DsDW3-<2O zx4OzA^|?YswuDc%m3F#Hj2(zuHCDGI>ucp$P$M!Hp|fX;Q2&%Ju##3loix}zBvT@z z%t%~PMrX@}nZAS>C%?_*S0cDf8!Ih1$0hCD1%4q?fA|Ag?mWF|LQ}PT9cXHUerkPY zeT{!9NItPPX*P>QH-)O|rCen5TAoFd2mj^0LW!=MSR+5XEJ^F+T|--&>87uwk=G9J z6P)rDim9@FE5Z1=g6{GWg6S@3qP!$oxuoR1-6&4JFw(>P{J^NDfqx($qvlsW2LI`N zWRV5=Vn{5Cj1+}`d#O1iMUkd_02N#n66K7X%;f$B^pH`N$ccY&ZH3s{UG^11Jk`|Pv#(@pYTdNjI{9dvKkVOEb4J(_e&0eew``;%JZTF+CINX_ET;h? zC5wk4i>ZOE_-)myJd#b9e@eT6Cb^XMN^1v3i2m0#v0OG0` z*Anj5xyZ^fa%8-*YM|dJ$G6IL{viT02^S}%cg8Ew4n5+Fi;(aXMDMdS0d}hYhVtwzXnP`9QTFSX!dYu%W39u9!#+9MuK`YbVt-$}jYClcZUv zicO7maw;x=o&fv5bDFMO%+j0zX4{oBM9 zRH@F5P4amZ@sUhj|4z`KFqSTl{T6;#HP-2y%@IU-R_-a91>O_88&jqY z<|fTe`qZSg8XfmJ;<8~<-IOY6hwF;3Prlh~UR5jR>>|-w#^|RgreyR+(JwcOet(j; z5^u_xJ=%$M0*w=D8nmwFHL9#Ps`c5ZQi-Kq(HmmAB+hC&>@y_kv}rM&SSsnnQhz2%Kc24k*KWB%Cam^wW!T{nDK%pcvL{d(12ZUnTK zKFWJv+FQXWl~)CQ=nFTi#>&Svdte%;0L2fOKT>j7?8eWgdQidrj%Eq|y@`>$}9 ziY*wdDw2j_BuCnPQCj}kl-issUA`tQZ%_&ksl=kgP(@PX_=7#Z)c6w~i&Be?I2HAx zI@Baj9ij$4sUi!1z>-M@mheoJ=c5Zplk`jury_A>I<{$|oc6)H{+y(3#iUZ{ za-#;Hz)OvkS$*SfodNNPB??2b{&DG=jGgHey0oZ~X_PE(b4Jtjv0zGXY3o{oYL~U^ zqTS+tPWpJeA_4g;*q9j(W-|ShVXnyFmVN}FLOtm0jL|LScd| zH9jIw#Cb9fKw3@f!9uTVpc{&>Coh^0(9 zO-1{WX(rD_$DsUzmL?G;JGWVhEfVNiSxdt@IU9~;+R2s-#ZqJ~lHH81nf-P#$A37r za0M1u)J-R98D$e=1ZC$mE-IXr%*kV75aH z>rdpxM51SOn|+Q<>KwhfJ{ECf-Hd6eZ@qqV;gw#ayC8S1q|GMDG7u@te-+7ZyGD^> zY};$0RS;W6MxV5{ifp?QjH|wugc1zU{=Qp#8?RxwDxZSZy-IA)^{v8I0^VJS*`E?5WEgQlP1eYAQMAw4u(&!G_}q zgm16H3)}E6m3s=7%WzR{9DuU!s;uIHqYX8{N-H&DgkGwvU;)<#nYQps%iJW&%pVro zAk*wjjR#?iw4EFUQp@7jYO2>9`=+|JsjXFPu^xYTYVI(hu5RiS`DS)$exOJnCekH64}6CVZ?U9&6+>%I zk~BG#m83F2`FpL}hTMQ6=E4eDFHMtt%WdiH%QClh#u05iZSoH^$LuUWO3!F@!Iylg z8BE6>GSQTNT(O*{SoG=^{o1-!s;Fv(fx1DS8RINpF>@=AEE*{rHo`NwiJfe7 z{<5f?R@ob1P0M#FKk<|2)ilp_Z2FL+oL2v>oT>Fw>+~$qvf0sp5QjYLC_^MJtyGQf zYwBumLeqhb`g38fW?(+gb~Kb>Qc=^p(l##QRJX$Oo0TJ4>LZQBC zV(RUmD|0wSMRI3*iivmDeA1YfXxHF^+3!y5Ve)K79@|MYkLnDMhjx2$E#s8vP;)AHZ?ZXjIV2GZaJi-TbT2zq|-l>?mo699HpV7 zJ#>PG^iPaCMML^0hECVeyy5Z!<6OCtThDY5qtEtGxS=LS|ApXYfb$4$12~_+BwnOo z(q5wCV!09(mpOj+HZ4GNyzT~ypCSEAw;2T{ds9ts^G z;O_(-0q!JN5#VkDlX#zkWA_jh_sf;2c*sFi@rZ}Qsu1uPK_`I63DyF5lE5TBt>DRB zMa466B`ThG5LLYBq3|d?{W5{2e@($H`-y;VBw5$p}H48eW?9SBTfM+Hq|MaA-R zB`Q{O5LK+=q0j&Us}VE-bRsYTYbofzr$}5|u0-Ox4x+@)9t!J1!1@H1zMFzuhlzj< zoVk-wx#Wo%ahrq_|2rPYn z1zkpqfB|wP0tP#X0(SIJ_!<`ML}2NMDfnIezKdLmfL$F#0V6#Wnqk3cf|&rj6U+wK zlfWeIqhRVTqGDgU5*6bdL>1#b6wZT<69_HnsCh$;^7 zP`DfdnhCA~m_cwYz<~rNagKuKokhh#awRGbbr4k??x8RP0*)k@1#mRMK>)`lK(0jM z2?{1@cXcAb$qu55Q#}+Ogn-itEPacDJ!(b3nQ|o(&v6h1oa>=*K8otE1eX3n1;_3! z0xps(5pb!4DByArg{>gqN&-uNje@g=ihyh7N(5Z*APTtAL*Xc7;bsC$f185tyNQ6? zmUkv-a}zK_~1nXOaF?3okog)SLI3syx|}Uc*{fKRao#2!5aYY5xfoX0f9;UNI~^@ zQSq@{iHc7hL=~TVD4Yr#za+5q-zd0CYs$BBB?5kM5C#0`p>Qz-{7i5ez%K+>0{lu~ z691>*vN57!q1U5|MdhCeqKd^m6c&bnB?v72(hAz?sI!b*iH*xThypr#C=7#u6$mW- z$_m!35do{nl?YhfK@_lthr$sMuol750P7GO2e2-IN$jFvlFpOXmn%`x%|TSLk%z)k z5YU~#()U#Gn%dY)u0%jz2T{PL9ttNxz~%&&zFI*$oj+_PS0Z3r2T{QG9t!WHF7+q) z5MUs|Cjf&9OyUp)le8dqk}FX$%t2H!+(Thk*tjdfD1ea!CSZ($Q?!-uE>|LPF9%WL zJ{}5B!=(KPo&y+1@FKu?0+U#$pq+N66Xi-&)H{eOCVME{3jtFIEd5jk^Ry#5K(0i< zbO%wuOb>;hAYc~3F9350egim|z$6}~pq*OLk^;fM?4e`gO?s7u=GzTXs1iEC*?{6JnbL~c-BK)+@0kkLR z0ML=ZRIEr~LRTR$p{o;^&@~m@t7fhxS7JxTK{Rtc4~5Q%-hiMhz(xcc1N0#13DAe2 zFTiF5n*&r6Yz43_!FB-s2?hWRCfEUBCxV>;b|J8w?Mh&I8AV`u*`2`hvKN8nWnTiz z%QyndOD%!rWg>y)rJlg@(m-H&X;LtAf)vVBxspO@b`T3?hKIsTM9(Ie18@kzp#Vn^ z90_m?!La}*5S$2bGJzR!8iA=jgTU0DMPO?GLSSnDN?>X)RIp#2Wc4DslB{0pAZGP) z4}~ibeKo-~0DmL69^fW|n*nYkFco(Yn9#ckOz3?CCiFo96Z(jP(`Sj@kII$U{kVf@ z_mdt9|3vgN1kVDzK=2~KD+I3syg~3Lz&ix*0(?O5FMy8;J^}cQ;B$bl2)+jRj^KNM z9|?W}_=VuV0KXIb4`7iu-5HC@l{ljv!4d#V6D$L;EWvUBD-f7NS0*qQu0~)kT!X+| zxHf^ga9sj(VHW~(VOIik;YI}J!YTrDVJ`x6VP67s;bsKp!Yv8Rg)eFomEI-~fVY05b??0?a0u18@kzp#Vn^SXPfFu*@AtV3|9Sz%q9-fo1MA0?XVP z1eUq82rP4dA+XH-mB2E0A%SJ?5(3NIor748*Lx`3faseE zZUMNR;O_u;5tzh#2~5TV1SaEQ0+aEWf<9{1KjccRdeT9(>M0L}rxE=e!Setw5xflW z8i7fClfY!WLtrxAComZwDmeEnvFana607Dph*o{(A&>r2!4juQ`md1wTL&@y_Z|vA zAo?eQp8@_$@GHRo2o`!PTCk}60~Lz_EJ3g&z%m48#IgjYc6kC*yApw^U6sJpb|Nsf zYY~{*jDq1uN#56$EAdqq2Qlv(cqnv5^hN|51N0#13DAe2FTiF5n*&r6n9gkoOw0BJ zrey$uX&FplT80pqmZ1tZKVEV+Os*tnBOJt>?dG8{647G_b_dvtU~ho^2*v`8C#VIO zNU%RZAeao$NYDf@ji4D|CV|;Ko4{^4n7}MOjKC~ClE5rIhQKU6p1>?UiNGv9g}@9u zUBQ}7;?TKrB@R8)L3HTZ9t!6m`aFWa0$fON5x}JcmjPT!a23F{1lIxFKyV|#Ed;j$ z{GGteyoL&uT;}-(6<2M4cW1+V_ zXJ*Hu1ZGD&0<&W&0<)vNf`94)y@OndcRD(V-dVvzVMRo*La-`8CxSHq)+Sg7U_FA) z02>f=1=xsSV}Kq6JpuX<^aa?AU~_evkB$^971p?z!3yT0vtndEWil_mXR!hnSLsPnLd}mOh1#rOh1RfOh1pnOuvA@ zOuv}GOuvl4Ouv%AOut6K_#kC)tz1bNT<;*3!HpgYHzE2~g4+P@Ah;9Y9s-kiKY_`3 zh`?k#N?4@GpRm z2|fY%jNo&CuL!;d_>SOvfFB7gBmW^V(|;u})Bi_crZ4i2JHt$0oWM+9lE6$~hQLf; zmcUG3p1@3BiNH)>Rl#FAtzAv7qzu+@5X)dK4~4Z6y)MCe0P7QM0I(s!MgUa=Jpg(W z^a0qEU^9R%3913MA=nn6A3=YBK?H*Vh7efJh7wp_h7(v`b|bL7j3%(W>_K38*_*)f zvLAuvrG~)rGJ(MIvOj_4B@kF%rYN}h2q~pTxsp;kz(FjfW)Fqwh(3^D7QjIS2Ll{N za5%tG1V;lLM{qpANd#GdQwhwfxddj%nFMCXIRs|Mc?4$11q5ct#RO)@Wdvr&l?v`W zLA-O7T#0wCbr8MtHxGsD5q%TE%>cI%+zxOj!Ce6N65I#yAi+Zbj}klv@C3n=08bM< z1Mob-3ji+@yaMn#!5aW?6TAcPKEVe79}#>E@F~G(0ACV(1@J9_`R@k;^Vm-W=CNN0 z%wxY1n8y}+*9*lwwkUyltQ~=QY$*csSbGBV*m4Bsu@wl+V=EJw$5taSkF7yq9$TBh zJhm=@d8`Y8d915~d#6Z^>n2xH<2H5>Yh0CwLJvguCg=mODZyp{TM|?QY(uauKtF>1 z0D}n3h#d(`?al+dII(KBT!~c&JBU^t>Y;ELqK_mv3gB3R;{Z-1 zI0@hsf>QzJ5}W~W7Qxv7=MtDz=M$J67ZI2pmlBvAR}h#TR}+{W*AbW=1!D%dG2=|4mIFCE16UwbHg zgXr%GegOE1;AepU68sAAKLS&+$a}8Sgf32CLYE{kq011M&}9`YbBfr#oLoshS8x#R zUdcmYWkjz=usXn+1Zx3g2-XGYLa;tSH-ZfTx)W3Z^djgDunEDY09z1j39vQ6HUQfb z^aB`3FbH5r0?Yf(1eV)f2rRd|5?F3W5m;__C$QY^MPRwzm%ws6j=*wTOJKR3NMO0G zC$QW$5Lj-T2rReL6fB{=ZL?fSNzZf;OL~@v!fZqzOmGOm;RHtj98F*nk0US{ClZ*9 zlL<`5X$tD6idCn}l~~o{AX;^nhr-#2K9}G;fC~sN1h|C2BwkKnGOi*p8P^h+jO!H~ zIZdp(L9WEAn;k@}ZuL;O4bgWH+zD_G!My+v5IhL*2*INOj}trr@D#z*0M8LT5AYJf z%K)ztybkad!P@}u5xfuZA;Cug^9U^OpA%Sazap^QeoJ7v{ei%8`xAlX_7?)n?QaB@ z+lAiuGO*k(N?^HdM_{>KiokN)p1^Xu9D(I_1qG`gBPG3}TuDi<;vkmvY90!!BYI7O zwE!{%>jHEkSRbGp!G-|c390~k5%dPwgutxYoWSg;CNMj;Auv0(Conq(5SSf<3CxZm z1ZKxj1*e=N-WeuW;++u=qIY)lkVlVJu(Qq%#vuKk4r2PfJ>=2*DQMI^gRw|I-a$-1 z!9yOszk+^eNcu@gKiNS{KgC0#5zz+_OaqufFcV-l!5n}?2u#J{1Sa$-0uy>HfeAf< zz=UQMymX}4eX?AMA5U`-?VjtQa0a5!A~+l1TmlntK7rkG5rN%useHmiGH#&&vZ}w2Q1<|(?{2kyfg1Z6kBe);nA%cei9wYb%z>@_3 z1bBwvS%4P^9>&9XFAEh6D|MpP$5z+r4_yyoMg5Loa{=g+JB3B}Dae{ULOA#y$(1BoCfaM9^ z7$0S!I*93OJQT(wx{hEXKs`YKm_lF@rxKWqW&)EjQ$b(t zEe@0`F?x=JXvD!D3Wp&2aDpQMjwUz;;CO-)0I~$8;#2|?I+wtNo=IRr&rz_89s&JD zuEfm0I*4Xo;Gu9KqAwx16yOSiD*>({xEA1g0#k7lfeF2pz=Zytz=YnV;Lzz}=G}57 zX5Qx@n)!f-!h?u@gy2zt#|fSQc#7a@faeIF2Y89#Wq{WRUI%!K;BA2S2;K+ykl-VL zc?6#Vd_nLfz&8Zn0{lSmZ-Ac({sZtU!EXQy{mb38uw03|79&_3U`c|d0NN9D0O&|y zE?<$roV*HwIeB#gbMl%5=Hzt<%*pE!n3LBhFei5-Feh(JU{3BqU{3B$U{2nIz?{4} zfjPOFz?{4dfjN150(0^J0(0_U0(0^Z0(0_E1w#*%YCKG?q+CWgh}C#E4~3D49z(D@ zz+MD<1MEjI7GOL>bL-9# zK8)aSfTIYG1~`u3cz}}#OvNb#CiHXy6WT&xLeEyvqSNPdyrJVMX~;4y-(0FM)F1n?w56~I#jy#Sse=nL>1!Daw25LiZDR;v#I!B~KK1mgidBd7!Tf?yKBR|Jy* zz9DD?_>SO!2xfE(KM+kvnjZ-c1o)X?4!|!2hXDLaa5%v41m@C(KNKJT{qN%A-;rW5 z2hqpvJQNm2AuUO;7{Jm5O8~SdSQ=nif(`&32|5C-Kww6!tYG!q#Hu$Z#FAglLA0uq zhr&CEUX$Q`fVBxsz`6={cupi9IWbD?;vh=gz(e5}M0X=N9$+JalK{FCoC45;;Bqu4!nLbQ8p2hr|rJrvGF^!5bj0Q4s~4`3j{1ptEy zE(X|<;4*-n2(APeN^lLpE(CuA7(s9&z-|P$0E{BI9bgQ>odA0f+yk%|!TkXH5Ih91 zAHkyl;|LxH7*Fs|fC&W808Au!9$*r|O8|l3Re%NpE2Sm{lP;BFd#*MX+cXEU*rt0Z zyol(T1g`+hB6uBO4#8Uh2NS#ta45kC0EZKN1aKt5JbCe_ zEWu9zrx5%Ca2mmH0CNcznh?FyLSXJXTS2G4ivRY-E$2Fj{`;$k!Z<`vt@B+a_051_-3h)ZS6#%ahTn+FB!F2#{5tw)0RnYkER(pAqZ?@CCszfUgKf0DMC*65u<6F#tah>;fB?-)-%P4sB5%F+)xssXjat@-0m-kS3wk}4m zNbmx{$^qh2v9}vAAp_&zXJ3o_#Z%Df<@rrO$inU*qmTVfGr7@0oaOQS%7T_mIv65U?qTl z1gioJAm{`zh+r*%9SAZ2LkKzp>`br$z%YUh0frNF2iTRMC%{Mot50JTEPA0-u-)ZK zD%f5QVg=jBL*Z0(nfnpU1sF$gCct=ta{wj~oCh$G-~xb21Q!DYg3ACJ2(AQZB)A4( zD#70XrV-o-FrDBQfSClh1I!}06JQR(Jpcz2+z)Ul!9xIt6PQDfQc!)Rc=%|!5)U8e zAbR)&4|#M}!Eu`YWTZdMK};Z5) z!QKFO5bOtV7eNicJp>Z~?jzVA-~oaF@DRZifJX?-fB#Uh?q9^AeNZi)bPyf-l!wBm zh<=7(3xMYcwgPy8z$Ct`;EjKZidW=H>ecHGqKY>?m ziGmZZlJxVC{&NR0{g)mJYoStoO^^ZjmY_4h_XH;KM+MhiA}W58E6Kty4x)-*Jro{; z4}K?j0$`z!UBFWSix8N^#T6|4u&8J!SE6Dm2T{c`9tyYC#pn(Me+O8O;4XmW2~6Tj z3idlsRIDslqGB}%QAH;Yg^{pvO@c81YZL4VkRdRMofTYiuBhlDSE8b;gQ#Ld4}~ER zura|GHR)T#1U!97Gjccqkl?!mK7Z31Dl2QvkLlFp2#Xe5{S4 zzg&rmK@Osd9Xu4agN;K7`UC7tFbH56fk_;p;G}0o#jbKCDn>boD#myy%$gXZ_aHb3 zU@wA00rnvqO#-7mgJu0+874x)euJrq`gfQJbz{bLGV(_;LGT#0}u9Yg_7c_=IiCq6@9 z>7Q4yjxHZwkSh`JvV$n#RS$)SV8QDIj{>|&@HoKR1Sau41*cpqD&ChXQSqUJsN!P} zh3#SEJc0oLpAifO_=3PBey!jxeH!N*xe^uMJBTX&?V(VGUg0MKOaF_4L05}_|H_pJ z_}xJiu+S$S-4zxrLa-6QVgywH?FdZbQVK4pz*GX0 z*sLJDC@QAQm8dw-K~yo@L*W)=@*slS0S+O!6W}lclX#?pS3VXMN6D3_IMzW_alD7Z zy!~VJi3FbmWC^|kIEBC@o~~fdZ=zzZT#1S^9YhspdnojQ8~#GDDZqIITL7F-U=lA< z@a6NO;$pcH6_+`PDz5NQxDal*ir^A}YX~j}xQ@Ui-k_kzSEAxZxe^t(IEX54^H3O$ z`to-IOMjPws#iq7-Et)Y?sE_YJm8`57A$y(;9Y=62tELKjKCy5q2R<{M8%VGB`ThF z5LGNNJONLCP4E=Jw*=1ud{1B!e^hY5%c9~Zxe^t>IEX5K z^-y>Lp8lQSWq^g|xq#OI79lW+i!12=lc;DXSE6Dm2T{c`9t!VGiqRbi{spic!N&m0 z6PU!66znojRIDslqGB}%QAH;Ygqv+)qTsIJpuPwGN_+IuC{KVB`J-{|2Zh_!(d_fk|vs z@YtuKqDihq#WV*|#dHsaj+0{aOo9~wW)Z9cFo(b-9-^S(KceDLxe^seIEX5a@=*A7 zQj9)^;C}$e5iEiZe#l;>9-=KTAl;C@S%L#r2xRSsmUZY@xmqf+2awRIRcMw(F=pp&M zWQ@L<-~oVJ2_6QxoxmjCso+x`lJ1f#QE{(>sN#MPg^wZNL4r>K9wzt#;86mT__%^2 zKNA&C$d#yg%0X1|jE6#}Niq64g0%o%Ajkl`L|_tMRnSSNFt5p#sCd&sRPnZl!aJz- z?-INZ@IJwZ0RJK|i61LiR)?fdf`yRJxSoO= z-WC;|LVYf=vLnAux&CE9jofZ79^NXQ!B?5*!hyr%? zQ1}cMj3lu1V-);L$K7VQVNVB9z}_ATGZDQn!EAuB1P24u5F7?jOK>DW9l;2_%F>>-bysi5XHN&gGl#cT&L{XrfIzajb%f`wqg zVFZf;96`_y;3$Hn0FEJO4{#j8asVd~tN?Hl!O8$96RZYsD#026rxUCVa0bD;0A~_( z0XUnWE5Kg}HUc=0pbFr8f?fa@67&VQm|!!2O9{3FxSU{XfGY{M1Gt)?KftvFg8=?U zup__?1Um!VM6e6MEd;v)+(uw^;SL3->8frdn#tV`V&%BkLtzY}?=40A3|H1mJZ7bH-Z= z*3`M$+j1p+%zF-^cRuitM}MT?@b@MCsqpta2QmF;9tv|2{RP390ACTD1Mm&Oc>v!L zTmbL`!NmYS5?luGGr^SrzYtsl@GHUJ0DdR95n!RuJZHB6EJAQQz+wb<0<H;ID-b*buoA)Z0ILwZ1h5*xs{ow{-T+vWz{+tQ1-E}8 z1-k{R%6blB!FKUb*b31b5Nr$3ji4XEMg#)^x)baG(1XBq_ExaecVfgzNU@27XvAh7 z3a21?3xd-DstH;Ewk9|mU|WK70k$VNAD}L~tFzP=Xr( zb|JVKUj2{k-U66F zU=sIN@PV#b9>-uB97Gij9t!_NbR)qt083UD~VaDXETb^|z?U^Kw71bYA+Phe)Aq~I?bE-b6J$?hS&PMbV1m^-= zMQ}dAH3Sy{Tt{#z!1V-I0NhA$HNedT*8$v0a09^Y1UCcRL2w(uT?BUk+(U3Tz4IHwfkdyhZRiz&iwA0lY_GmE&Iu)*d0X<*F&M4u9+*)|Po53fCg~GlJ^@ zz96^>;46Y#0lp#lJHU4YcLDrBa4*1*1P=iGOz<$kF9c@yZwfjsBpLZ#u4Epw@aG0% zMi%vuN4Hb3*APj+gj`Abr5(id?LFkt%PE+n@;f5^iVkA>l|AIqt10NTtfc=Qu3y7J zOuv?g!rF2r>enS$4`6+QA0ePC!G8cYB={9zV}kzyR1qu^qL!Wniv#o~SQ4Nw!7>1w z5-ba_Il=M(TN11Uuoc0o0NW6B0@#jVEr5Om8Gr!`Jf&z(|6v07esR3$QyuKY%?61_JC&umixp1UmtYB^U-!LofoMmS7}6 z9l;oY{R#F2s3+J5U^2m2fGGr4Nv9H6Eo@eBlQxs>(eP$Eh}C$Ohr$3v&mkBLa4^9T zfI|s}0vt{-9NcM+Tla1X&;fcpr}1bBep9Ds)i z&I5Ra-~xch2rdSAoZvEmCkd?Bo>uTdCn?8=QRkm?5XJRc9}v6)@FBtb03Q>42r!S}6M)YMJ_GoI;7fq72)+UM zhTwaE?+AVb_<`U*06!A^3h*<*{{Vg=SY&b>b$%sS9N>3?B>@)t!b@oxfJF$F1z3z= zd4P5VD*-G?uqwdP1f2ld6RZWWEI|gKBSB|?6$mx}SczamfK>>(1FS~S6QC18AAmIp zHU(IlU<-f@!Bzn45o`<4g`gk61_T2Ex)JOEuo1yd0Nn|O0rVgk0nm$JBtRd6F#wwo zSo_*s!E%d8gKI+9TJ0bxK!QU71``|sup@yPv9p3} zw-u|-Zisbq7YEU*5grQXB6>H1^8rQ?Tm&$N;8K7+2(AFwi{NU2eF&}t*pJ`_fN=yj z1B@rQ4PXMn9RL#v?gp4da34S*co3k0;1PgEf`0%^C3q5G8o|>5(+Qpfm`U&=z$}7S z0Ok<94sbBRTL6a=ybEwRffd_P3Lf5C%JEpFIMzWd$KyQ|PC)dD1X+MA!KnbJ5X=QQ zjlfi#p6Py5WBS9A6W`a`zZY7uta67@70Cy0a18^6?c>wniTmWz% z!NmX%5L^cE5W$rIj}Ta){6oPVU8I!uMv5mL#8P_7Lt#HeKSNLh@Em~&cu~Qu9wPB+ zqJ^=Wb;G+oSLkaVU<{`~z z1fK(ZLGTs8R|MYzd_(X9z;^^c0sKJl3&4*AzXAMAuuwznWPc%86yR5ab^yN3KLf(-!HAlMLKErRX<>k#w=SeKv=KxcwY0oEtj0-!6wRsb6kSVp=lxN=p= zSr${Vo(^KpdV46Gis-%sa{)FbI1^xVf^z`2BsdRXD}oCEwjsC}U^{}#0QwPJ2{3@* z8h}9re*@To;6{KU1h)X}OmI8EFoHV)h7;Tauq(m+03!*^e`6H9Hb@-0*pygR_H+;( zy0?eI5{TZHU}=D{1RVfs2s#4P608VNN3aUO{sgN7)DxIh4GLD%az7FoX>t(FJitTY z7(_P{91k#qzy!=v&}U(hxIbo82RVom5Aje4h(3(K(jTedscI200nPRp2T{Or9t!&- z`UHXia1y~3fRhQP0-Q?F3~)NZOn@^8W&@l_a4^8x1cw3qh2Thl^9U>>7bsYFfaL67 zNO7@)n6pbg6h21u{RFE6JV>x6z{3RV06a>t9>6~c)(3ckpc}wH2{s0J znxF^3vjn{Xo+sD@;6;MX0bVAk26&ZV8-Ujdwg-5VU;x0|1cL$IB^UzmKEY6ce-R7^ z_=sRPfKLcU1AI!b2f*h9djot)uphwJ1XhmUDVVpb6zo5y#9r&)4r0OnI5?Y)*zS#uol5V0P7GO3a~DL+1*9KvwAQv7F}Ui z2QecXdMMN)dSe1h-$TKzI(_LWS2BI+;~)yy#6w|IL~lW`CBW7M+W>4&&<|iB!61Mg z35Ea+B^U-Uf?!vGQ3Ph@?gVDoUIb>?z6562I07@QmcR^~NMMH56PRHQ1ZG&1f=Anl z|E9{7_^;VP^xq5*dGss=_iZETXCwW=4r2O4JroW@^pONd0US$k9KeYLCjp#7a4NuD z0@Hcs|HIW?hih4FT?3~Z=@5_*ltw^6O1euV1u1D3U4nEsh=7QcbV~_HNtbjJOxJbAJ_?K`MaD#9YaGP)k zaG&r1@R;xf@SN}h@S5-j@SYIvEYf|u)o?FS3E^I15W>C0CWL$WfDrB_0U_K=VnVo= zWQ1@pDG1?SJ|cvBNlOU#l3wAbFXXF~K_+<@WHj(!rOdXuEOf5LJ2@=LK#4LLIpr&LKVQ*gld4Agj#?)gt~zGga&}`2#o>F2+aYl2oBJe z&<@a%5FTh3LU@GT2;mX-AcRNQn-CshKSFqf0}0^~4k3g`IGhk}ZWJLr!XF9YZpRVA zBm9{V9^oWHc!X03;Q>u2gaqXql9CC6NHn1Gla8%3xsg*mkHr+uM)!D z-XMg#y+sIjdzTRI_5mT>?PEf?+h>Guw=W6dZr>2X-M%M;yN&d~zK-E;qY}d1#!!f& zKi^}@Bwy(`2L3Dkfo(1xUQS3z1V~Cq21r3j2}n%{73l~eGy@@oW+a5rEQAo6U7@!A z4LFBPa^1NM{B?hBo4uS*VPtkW{{_w$H1OvO+vdK+%f$%A0i_6~0p$qg0hI`q0aXd1 zvpONP)FOnII)u=F5JCqLLg-M13HlE~hRGz?J<`Bm_h{SP7`*%wVI1IRLI{{d2!CV> zA^ef)3f-zn=WjAe=PU!?Imb3P7cVa$ECehe{0>-7SOHi?SPfW9SO?fh_zSRwuobX_ zuoJL{@Hb#T;Q-(;;RxV3;UB;$!fC)cLUyZs03Q+U8Cmpfuq$pe*4WpgbWYR#MpU ztyEN&Nh+!u_=;+_xr7L)K}Z6qMMw_#h7c0JRp?hwD(cB36%7r1#do&3R0wE7NCRj_ z_!!WF5E7lj%{EfeS|+JzXW%P3*ye5`pcCOXpbOz1;Cn(y{6S$`JE`a)lT`FJ@D+V+ za}nD6m-`bU0|pYJ0R|I7;xL6(Eu><&Oj0q*z*mg1&CSC#jwLJvj3X=oOdy2BUljVZ zmx@U;NyQWcUop)#7Yo<;8zC-WCLumxHX$U=Q^?jzD(1^16^jgf#S+`xdR*gD!e4;p zge`!TgpjyeVQFotSR<2EtTXTx8*FnI@K5^wB3uS+CR_z@n~a zdu?+!5wM?d8*q?t4{(?e5|1eit0NW1Ws-`M2EO97ZSENY&Jtb%&J*4ME)qiG6@@bm zrQ%qkuSskQh%PhJFmjmq{uT8Tg7M zwz(JxNJfYa_>k}cASEFrrdD{-Tq@GYBo!YU_=*g+xv2>Fl<*rM6JZu03n3(CSBR#c zQ8{Fiid+W1;&a>FGX&%%yaaqfcmpUv2#JLiI<%CEFJ+R7Vg|mVgl%p)0!k770F)uD z0hA+z#EJ@M8cRhbnWW+?17GpAZO$Q}I-xC~CZPkMHX$U|RhZaFD!!FTDjFF0ibl4% zst9OIs19gKs0CUj z?^4L4pB}qql7PJiK48CXZUO=h62kc-3Uk^@z)_hb;2#4YaMCvS2mz-F;ruy;r21`n zUM2~+WZ(m?*yb7|;3^@UzoGD{{=B;>lLXv0@Bw#ibC2+4yiW+{A1QR#pJtC`l7MFh zKH!CIt^}^&6(O8|t1wX?;yalnAmZZyJ|MDfZW02b62kcy3Q6^M{+KdJKpX=f@PTb^ z2m<00!udoB)tX8`Vwof$nSl@Z&^Ffx0VxULd}@Uk`aPdUCJFf1zz1Zo&E-VEr-X1m zvqCBTUdSSo1Y|ex0iW6CA|N0aA)L>nuu8ud^2#Iu`3-zPLEBsd1QaHO^F=-AGbkpL z1e7%J0i|to0}xP_5YAUnsH-1J6=jluDh58Fs%CJCrx-~+z3 z%{50reL^_jNTGuMM)I9Z642DZ2Q;_M?Lk0GLO9=A;imqQ+(sq|Xm8*HI@%`xzoGk= zI}^hB?-erW2TC`YB%p_Z59no^yM%x~gmAvULP7ocG(aW^7;NAJhT7&53b$N|_$ z$OYI$2o+luDi4#+Z8AycP6OY$+cwu60e=%(0rnBv01gn^0}c^70ge#50*(>71O6fO z1e_%F0h}iE2b?8@8@Zq`VTjz>MVaKzt{C_`yK0-Ogn;XWuK+g*)d05$H34@Bq2j(m z>2A{bKql#YY~VYe+U7dqE%2NW&c9OlqO%0NmPrEM8Tfz*PweGF2#7=|0*FE=4v0nw zi7^$L43vskGD$^T178u(HkT4NnShWQkcf~Dkc1EtlPgr~Ar&9WBo(O)d_`*8+%#Nc zTEYy#$AsB{41|!FQK9JwsmLUgRAe>q71?cbgK>?Y5rzSB5k>+&Cxpa&3aJK5#TPP3 zML`2!QP?(@7Xd{G`2ocUg#aZ8A+fZ=yWUb!Mkc8!Z{RB`+U5@7F;pfT1$;&L2ktlCPbaCEB$HH3G4K`B zY;#{A;5R}zKTDx?R|%LclLX8&@Bs^Kb9E4~h)@r(gwPPMln@eEDD2fQ=1Q5QVzq&< z_|rDG0s-p?s{k7ae**p@gv2ch8NZi`tujf)4g+7Y%Qn{p0ecAH{62*uqaQDl;e=mx$brfseT0%8*!ATFUTARZwkCRCU|Kq?Z+Bo#>wd_{8GTmn4l z6okZpRD@)J)P#_jP9ermQt`1&Qt^p_ugGYdJCA_OgiC;|gnt3q2_Z43LZz`%kxM42 z$YbCu^4aE&As|2D1fU?{G@vjcBoWZLHHTaiVzapD14|Nvu$OPiVg<8qLXbdJFc+{At&H_!smeQgpk-%p@jZi?n6XF8q5<=nvg(lslVxde@vBbbvEVa$`#a%2X z3;?Vo3aP4{fof~nWW;hfv-4gn=6fg^MrDMi-d}R%Y=}4 zRbhty*t{l_RNOT16}N12Gw~Si5as~x5#|FP5JKW(g>O1a#S@vN;<uO|~q#~MuuZUrrdx~p}MR);-LwF7NfDjTBC?p>v6$xdM ziX;ZUBAIP&H3B{)tOcYbYyf;j2#IMGj%!6anWQ3vfv@<~Hn$l8nF!keSqM7;*$5%= zGld=cQ!l4XQt`QgugGhgyMcf&2)6(Q2zLR62qCeE!or18QB)?WC}H3$O4;V(ck(Zn zAtVBnBP0b>AcVxq3RR~_MHQK(;%ft6QQbCIzoUP-CZQ3aHlYci4k0AgQy4#2D(cH5 z6^#shMPu9CIRrE%g!3&FqE3*2mNH2|YXcw9);1Rf0qqIld?$sG3nZYkOcLl8V6wzGA3tE+4LOI3b)LrSP}jl~?=Dw9R zr+$-)oia(q9s^&o*EaVP0`?Oo01gs<0URcT#A6C&^&9uNOj2>uz*n5M&Bejn=`10f zzo76`zh^GWBmq|pe85%P+$CJWb;7@Zn}q9tTZE8!S7GqaQgKfvsd#AMD<0eCk|N+K z;X}Z4LMp&ZLP&h05J$h5Z)K8-2+srfib%G(WeA8uSP6(m2mvuYOqIk~GD%`w1D_br zHrE0H2?*hQVuh3XJ&;5u2}o|>15()Ljv^ox;U7S1!YM#nLP$)nFjzkdGRPzq84Y|z zX4_mr1Y{+A3CK<;2KbB+5_2mwTO<{q%On-~417g?+gu8~zX}q<`7afUPn3WnGD$#j z10PV*HkTGxP@0e)P?qp1pgbWYR#IrEU#iM7NkvryUs26A*BSve2;qEfh3VrZ;2W7F z;9CP9P~SEe0RasO;e2C-Df;$nB9jC(H_!n2UoL2AyIX?@M+kqSt-`&@646d3iRftH zuc5PTt_}ja62kfJ3fC4(zz;G>KraIy(8o5H4PU8#gwFs22)O}+2qAH(!n)Z~F-#_@ z7-`@uM%(6g;2M7<><0Wq*b5j>2#FIFTIdg_Uu2Ss$p*e+s%>r>UYTD_f%>2p$|My_41C2>+uSm|ypoU!&t(-M1pG+|e`LKvV*TLXAd^&VGVm2!Y;(hL z(c1{&{7!|#`j*}$lLY*2-~;yA=Gr6R03n<|tWb5j1RRk`0*)K_fD^X4{s=fl2o0V%Ws-^y417g=+uS=O zCM1OONfe6zDgjAll7J5ld_YRuTq?YrhENKL=?Ebp10np8j0!9DYn@4^ArpR%EdMQC z{eLd2z2dvF+valkb1oNQFuFb`Aj#z;gg;V1A@?-tDkziO&X)$hqNr`IGZKpv!ue7P zv-NqDmPrE28Tfz-wz+Z$s6?m;s6q$ z0o!DffSm?DV7G1V6$1VyyantdMCj}T4iG}(VTGo9q~eH7QgPhCSDdiT%|yT{!W_UE z!hFCvLP)%*kn%67xFnNQ{A=JVuG!{3K)?+`0>FQS#DLp`ka$mF=yIvJFOyU}GVm2o zY;z9J?gKs{ zJOX4Sgv2ZgXO>DuR+*$Chk>uiX`8EwfZT*{0C@-@;0uMH|CGf1GD%_~1E2V%ZEgnw ziV}7MiWBw%N)ke18HKi6q@t`$Qc=OcS5&gi6~sHR3L%{TTA}PV38*HM1k^O}0kv&& z)eunU{{iRgDSWq50_p=A8Tf$4wz&bgg{FjXzJXKTS-=y*1;8^xNPMXfTfg;Q$s`qT4SdCW+gx2-W5ic>zCIu_p%EY|Atc67 z_agFf_M*s;4#{r26Au*Z4W&IJETqdbVY2Yh9vdv9EKpMg? zfOLe(fb@ir_^CqU-=!j>Oj41>z*l6m%@s#L4niqFPC{8gZbC@RtFU0VROFLMDhe3* zibA%zU+|>ABuoYrB}@YpCxpaO3a8gdMQNF&qMU)Rs9>90k87+%_zO^lumw<+5E82^ zjNc>`HDr>C+6KO&j&1H^T;sQdaK3@UcKvzOP$mgzY~TZ$+UADf3Yrtb`Bn<4_4fcL zlLWLi@B!^@a}^QLkx&KDnea8BD(ZB~xvdu-o6-*{X2TUcz z0!$}_#F+|d|CWkbGD*c;179)UHn$i73kgdBiwP?LzY{{@a)p8VNxniRsaR#;E7sWN z+96;qA)Mc!P+b2ivr#4q*lgefw%X>N;W=(6g!8);X6}@L-7-nQUIQPn-!|6^S8$Nf z7jT#m0*)y>)o+pGGD+e|1D|->Huot4&Jr>M&J(f$E)qiG6@@#yq~c$hq~f}PuefQO z8;yWlgt34-gzX1& zM46-_ih-|)W}EAduU!m6Pe3d}A3z*JNQ|ejVzX4lmq{uT8Tg7Mwz-_R#$<%g0Ur|b z0a6k|VrqqM`k|XfCaL(?z*l6j&8@*Teo6@EGb^;x-z>ApBmvnCe86Y6xq1l5MF{8f zDAYSE0eNMTfcyqNprCDTW*7f*VZt0h5yE^xF+xZzsSx9$RFslQD#{x8it@I(V+g27 zI02|kI1TuU5E82?RQ*pXs>>u5wG4d4H@3NkUH!{-35@~u2+aTu2qE!1g*yABqOnX; z(agYCw6M+X#n-wO;Q*jD;V_^rAtZKCh;vISI?5y!T?~B1_qMrKxW?{;Hh><4_JCf5 zkl0rt@(HQvCzDhRH1HLJZF6<;q=ypf1BMeqz$k@XrzCN-Op-X(z$cEg&GkjV1VT9f zi$c^x5->?737BHw1E$&L-r%wQMhNF;DU?4b0kdV2fO!T!V1aG!5dszwo&uH-UI3O7 zLgEUASbCEyWs-{32EO7?+gw-NY z6$4*!)izfXZ_w+6ZvZz5-vVwCLgHP8IoG7(o=j5l(7;zbw#{Wnz*9m_z;nXqfR}`j z_(mbgeyMmXlT<`_6TnwQvdtaG`y~qDBp@2$3?K#}B*s>_dRi*t$Rri<417fb+uUe8 z=|qIFfFy+RfMkS_m_lLfd8tS#lT@TO@D*uobDI(HF<~1Z17RoNQ$k40tWfEKRAiA! zDzY2+iqC9we&3%W* z(16es(1_3i(3lVsn<>1wEEUaVl8ROazM{2l?ll7165avY6C&a+Iub%+7lju3QQcK0 zspxLtD|*=GA|SCBAu^y3AsV0`AtVk|IH!Ma7$lQa3^ni-!)*rX6AgUDB->nTT;pUyJHS*zN5FJKNSvvV=$KT@l1VD&8u*I&wz=F0 zSV+hVSWL(d_?-|Emn+=7Diteal8RLZzG97SEA%Iha;ea!Q zka%8U$`Pr!Ad^&FHt-ey+U8Ot;2I$v;07TB;6Fl0yraVeiNh%%~_=-oixi9df zpAZTHo)NwTydZ?c*9wL8yZenyQt{rvS44bkFF(XJMkYJ~L?t{2L??vASPIkjN=0m$ zq~ZeuUlHFnw*}u=2?^T)i3z&^NeLnGLxoc}q#}h(Qt^?2uSjE?tBA*tj!*@Vp71r` z6GBMLq;N>T^)kyO71<1YMGo6sVLXPMgrb1lgc5)}gpl}!LMpwB{4z;JAp>9WrERV_ zuCXYg6rebvETAMIB$iR=cS$PB$|MyP417f;+uRLYV->0tf?^Lj8xQ; zNh<0X_=<0BbH5;QeJ3>fosxbP1R5X)GDq0%&3TKmrj>bTjZ3KiK9jAfPAVGN3o%DxfbRBo0u>rk}I}Ws-^^2EJmLZSF&S zF-H(m0Y(wh0LBnP;!g@Y^smU{WRi-X4SdBfwz>0o(!UZe0j3cC1xzD^#2E_d4@<>N znWSQlfv=cnn~Q~j1%$YOMTGc(C4`W;OdsaP(PRQzG!D^}a)79-$K!cxFG!V16! zLP*@Ca9k@k%On-s41C27+uUjd>>{iM>>+Fb>?MT60}2=QK^>GyDvlWViet99#0dC@ zkPL8=kOFX;5E9QR>@FNh{?}?`l8Q?PzT%2)Za@$J@>N1Oe?wvXeYwV)GD*N~10QhL zHn#OQA5aFE#oB>24gv6){ zwUS6hG?}C#rh%`BZJSHf-M<`{5YER}Xz)ZHLjsv3AhCfDNNSsl_`QEQIU$@+sWADm z1f-Hl0@4`xfONLGmv~C)3E}*w3U4$Zqf8Qz#lQz-v(3FlKn_AUpG#rnm+}m9%OnAL z4Sc{Cwz&~_hy@7Yd|`#%Z{-TUlt}`L8Tfz_wz*&N3`!Bg`LYU)Q^^&SlSu+98u)<9 zwzep#veD@2rqtzl>dEl7MaoKHvx2+*4dZPeM4~ zN1aiv19NAiXELnf(MW8f>++U9QK3$dPX53rH&5U`0561OURmq6}fn@m!%)4*5k zw#}XF=3oAs5YF#c$gJP82V|0f!v;R!sBLZtp5t*sIDb-MVIc`PC6ff4HShuFZF5}^ zaFNgraGB5p@Gl`GURTJaKOk<%Bo(&|e8nBx+(ta5dxUWQp~BOWa*dBXEcrO(#vPwlnnWQ3$fv<>Wo9m1>OANyIfLMed0C5N*F`hyJ zy^HuVNkt+9Uy;N%cLCR!jBpw7A>k?@B_SlHR@kcF`DtX5ijNI^MF!j4UIctfH~`2* zI1I=_2#MJhGV5nU4wG;1;T7VCBi&F6~aP5Rl*WLHA1+NnhI<6SBPZzX#d8*-&tMT zTnfBgkMI$o0U<4*5g|RGG2v4{Q$px$p%A5*TtrKmPJ%C|^eSi^! zgMd+lBY-i4!bgAugtUM|g!F(Tgiis-2$=!@ z5V8SI5LZ8LKp=|M)(o%Az>UKCE;hlM}+Y0lvW|- zC-T9WPA2*O%3$EXzdp6iWyH%_2np~Vn~jhdkb{s6kdu%Ckel!kAP*reARi$;AV1+# zKtV!gKw&~QKoP=cfMSH)fD(kffKr6~fHH(afO3Q)fC_}-fJ%f?fGUKtfU1NFfNF%w zfEt9VfLes=fNu!30Cfp<0QCs<01XHY0gVWa0gVaG08I(u&C!Ao-VRP7eKvXfw3bQU zKJ5(r+oywVt{)OR5e5Rf5QYH0CkzL4CyWC0Ap8jEMHmO@L--lck1z=^fG`Cxh%g;6 zgfJ5@j4%fW{?BEm_)62ck4Qo?z_a>6CRO2WT@RfOw+HH7~FYYBG% z>k0P(8wrm9n+Q(=z+X$}#I|%Opy9g2SJLw)m6u@3WbijT>EWklRT)<&Me85pc zBEWG%Qosqqhk#RrRDd&tG=Ou2j{z45p8zfqG6Aj-vI4FWasaLqash4<@&IlTz5v`I z6a?HOdAdL2?YR?2!#QY2}J=@2_*p238euu2;~5?2o(Wy2vq>{ z2wwvh5NZGx5o!aL5b6S!66yn%6B+?l5}E*35t;+m5LyA&650UP6WRkd5;_4k5xN4l z5V`}l5qbi45c&Xi5&8r65C#GE5{3fy6Gi|I5=H|K6UG9L62=3L6D9&q5W>%a(}eIL zeNN%M{%kofll*MCWZ-{NT(Qkf!#}FIN|*t-PM8h2Ntg$?MOX;9Ls$a1M_2}UKv)TQ zL|6@YLRbrUM%Vy&K?ryDT4C00`JwnmCb`x32L4tfMzWU&;~(}%CJX~aC5!|_CyW8a zB>V)3O_%_POZWv4k1!dKfG`b^h%f_?gfJVBj4%)IAz>jPC1DBRBf>I38p29II>Kr| zdcs=3Cxq}oGbtQQDsQIDGRYIpX5gQ24%=LIe2H=rasqM_J_qC>m2a&hg2&=b&<&zr}5Z()|753%X(?DU($6G4K`rY;zaz@i>5R88C=& z6)=Qw12Bwm3owFk7ch$O05FE|7%-Ob3^0!H5-@@A1~8HE9x#az3D0{nAu3=hAqHSN zAvRzJAv~_x3On>a<1j}id4BT^{PSCAn;V6I#e^RLzZ1p*mJveYN`={RrQ#2nq+*SM zuUKoFn}+*bPnZGNNSF=SM3@KILRbjcMpy#aL0AUZMOX>gLs$*iOIQooPuKuBNZ158 zOxOxIO4tE7PS_1NLD&m8MK}OBLpTgLM>qz!KnPFxvcd}e&y8G>Ngnw%1OLcx*yfJl z+v-0;IDbbW-9rhuE0Y8~Fz^A7Y;&g&@Pu#{@QiQ)@Pcp|@QQF1@P=>$@Qx5JB4T8@ zs%KxzJ1LS(a#c|c{8dG_&CTuU|MgEy!U8~S!eT&NLP(6SFsr6iB#=oe5*zr6q_(+} z2uMyi14uzQ4@gA_iD?unHIa(6GD$^x17GopZEj>Qe-{}E;d~Z_y_F;&t4tD*!@vjR zw9S2oE67a<=kqEYtSbTeWRida20oyWZ7wCQ;7dYkKv6LZ}a@N(hP76&jb5iW)LWMQsCLQO7p-2?D+)WCGMDWCb)Ngv7=Q zlNw4z6PcuwB$HJ9 zZs04H+2*<-UXPc{xFXjb8 zRlp@eb-)!uNW7-duDVoQmq{xAGw>C+ZFB1oaF?(VaG$Ul@Q@G^pD3&-B^6I)l8P4w zzT%Z_?lJxu>>I)}z&pZAK!hm&lNec{p#D6HB9l}^H}DlPZF5s_jj;*S0dWa40r3bS zF`+`4dQy={CaFkj;46~b=03w0GX)_xAQd4mAT=Q*rc+4UKq@|#Nh&@u@D&+tb7c{b znNR_cl~5Uwoe&apDrBoH6}e=RiaZ9sBA;!p86HD^LO5SYAxjMjC@hl%6gBVx#cgxj z5m1t_3s9QyH=rybBvw$!|BX~slu0V882E~+wz-!Gs746qYbvDB&-z+2NkAO~AMmYh z?luDI6TN}Yvps9fmXl|S9jK|!P5YD$&7^9E5jZ6~I-oOWRw9U1`6?7)F z0dys_2XrHZ#2yOg^v%*!CaLIS;4Avs=Dx-?4j|M33?kG93?YQX;R=)W3o$|_sTghG zD}J=iy~Q>DM2LXI@r1~Lp9vvxl0riL1?X3qq++Upub6I|OMrkGgv5YZgk*p@gpfF2 z;kv$K7swCT|c@1O6kV1KcKr#Crg&j|ehF9-txuLvRWtwL)39qXM;QV}s~0ACT=Huo6)d{|A{QF{Q#Stw;q(W8f>&+2#@;AUz>5 z;1fbJKt@7H%%bp0e<#l>lXT`V@D(|2a}Du+$xUbs$U|rb$VUi?1r*jal8S;dNyV22 zzM`mYt`!1`6WRbu650bw6GCD+g>CwdDld~%R5I`tRcv!Z@ffNSMgXc2MgwXPLSk)& zi4~;c8=0iyTLWKF-!@kg0SyUd0N)YH1DX&*VsnK)Ri&bZOj6+td_^1E+)oH-N072nGw6+amGik`N)xA-NkHz5KN`w}7p`V&IpAcY3Cq++m4QZdZH zSB$XDT}Hqt!d1W+!VSP!LP#91FsFx9Opr+`elhSBzuM;Z_x6A1pF%hUm_`TzGZfl4 zmBg7cN#Yy>pE%DpHyQ811%z;Zu|k1X60k%j30P*}16J7P&LH3qLO8!hp>H<{_){hc zSa0A1HrnQ9;}$j%!uhQVZ3jufHkl+~r-2XHZJVpy$3K+63E}*Hg~h!j;DAgLaM-{H z9JS5ez!e-Pg!3mAF6%9vl1T#28u)HTxJXz8xJ(EER~5E@FNxP=lEj+^KJk`q z?pFldAxs6_Bm4$h6-f+yMKar5GF;<_gcN|3 zgpU9p5kg{Gg+#5TBArZ9k-@-Md}^C}gm-u*!c#yNLI}vNFs_{>=8#Dea~b%=&uw$* zaMyVW8311pG6D(^LSkWs_PwRzOPQpin1Qb-VVk>;fKr4y%y zlT>_V;48ki%|%8)bwV^iO+rjSZ9+(_t5BuARD3IwR5UQ~6^(3jSrO2fkOR<^kPFb9 z5E5G{6c`{CP9~{nYv3!|+vYyQ+oK~PH=r{iFQ6+SBz9LgqMxxp$RriL417f&+uU@# zU-}Vd0tOJ~00t34;!uSY`kgjRCaD-{;44Pk=HlWp{78ro_=%7RFrE++Cn{w7K`MTc zNh&5A_=>5vxwQzGPS^mLLD&SCMF@#=6;k$>ig_|g#XbC)*ASV^|rb5xWrQ)GXQt`yVS3I-LmBeFsK_~-wMJNw= zLkNlQ6}GmJiU`qtMP&Iu9(+Yq+uSZZhUkR90Wk^t0kH`o@dJfe9i$?jOmY_q4SYpn z+gx5ehNOi2faHWifE0v~_>sa>{ftU2lT@TL@D=H8a|Q4iJ|PqaWF!;?WF~~fYzjB^ zyF0r~QjycZSLC+MZNoL@A?yU?BkTd>Cxpa83ZLt@USXM}qNstdC~liOhJccU6M)i$ z(}1#skXS)sss1~$iZV$>6$4*U)iyU4U(9NR@qikHiGW&!kXT0{tA2Oal}Re<8~BQb zwz-$M#_tGk08I$*0nG>@v8BQk{gt|vOj6Otz*n@h&0WAXb|72^bRt{@bRmSqZVKg_ zOGS5?q@t&Rujp-?TZw?agw=rlgtdTygpfEy;c7>z7%G!gj4<#Oqil1P@fgMssshFm zssqLmLgLQ~wVhN~@)?VwZuh*khY}iGaO?H-P2mR6I8D6;ExG zPXPaS$>)S{{*^*p{k{9OOcL5r3WGD$#810N9EHdhn@ zaS7pke1&?QB_M%J5|G%y2PC!4HA6shLQ6mjLTf-OLOVceLPtPaLKnctgl>QggdTuT z3B3WC2>k$A2m=Ax2txol2*Uw638MhH2|ohz5XJ%W5q<{bCxqu$Na5f@d7!`c^I!BL z2L6E-v&~*EsZi`UIbTX9`2v(R@aN0h=3eymaTN)#0hI~w0ACRz;tIYdL;+MML_NAr+trAq}7z;bTAx!Y6=MgiL_egsgzJgdBkO zgj|4*ggk)Ggf9SH3E_*zd%2&&?zwWlHqH+;@aG5HW-kv@ zC^1^j50^>a1)~i7`7yS+i})lNOSl3UN4N%9Sz!E|nz*0gyz;Z%Dz)C_Az$!v=z#2kIz*<6T zz87UMjB3Bo+S|_=?-M zxpD}&OQ;CAPpATTNcbA?m{0@olu#S+oKP3=l29M;n$QUFme2(7p3oc+F{a&FD?nsI z8$eV-dq8wTCqPU>S3qn+cR*Z1Pe43EA3y>^e?TI_AV3nrP(U)m2*8Jg(SVeMv4D>V z;{j<169MT6zXH+|rUE`8{07KKm<7m8m> zKovrCKvhC4Ks7>KKn+5CKrKQdz&C`XfVzYa0rd!}01XIf0F4MA0~!-P0W>9K0yHON z1+*mO060P}KpR3HKs&-0fDVL$fKG()rSIzDFL^I~FO$3%elYOwg`T##eF*4HI0)!V zI0EQTI1U&{I0+a`I0G0;I1d<3xC9tU2$wlV;gJ5@sUKyM>mFy|uX}=Rt`>f}P9)R; zOd`|+OeQo0OeHi1OeZu0%pkM`%p$Y~%ptS`%p-IJEFg3NEFyFREFts&EG6^?EGP5> ztRxHstRf5ntRV~stR;*BtS9^k*hm-$*hKglu!S%Qu#GSUu!Ariu!}Ggu!k@Qu$M3& zu%EC9aFFmj;4oo1;3(k_z;VJFzzM=Sz$wB;z!}13z&XM;zy-oiz$L;Sz!kziz*WLQ zz;!}+U;n2tPrpHT;9KF2fq$dlv&~+9sPM}gIo}B9pBVV_&up`oUn->9DCb|vB;QDH z4gC4{wz;KvUYl9yi$qDTNDF~easR&&GsR`WyX$he-y+ZT_auFG1l8eY_;4dPxZLTi@vJ%4i z916=;OF%W;XD$OD@VRaFaz2IGqvZS-GD%@U1Ao4-ZSEhudx{WF0g4eqKuLvedJCmw zlEktGKC!%QZU}CnB4Ie7GGP?pE5eU}uL!Y}O_qnzOD1_3eGUA>=x>`_jo0HJA@R1t^d(YpM<%JbZ{RB) z+UEA)IX))r13V=h1Ux5%#8(P^|CEZ?GD*cd178s#w!PdA*BFV=5fFvY1rUu85@RZS zu}Ugp$s`qV4SYpB+guR@Bp?(ABqEdoBq4;v`| zx$SsM79s2c6eIi%C_xB`r4>d@m5MSlNkw@BUs2IEcK`vE35Nk+5sm@ACWOQq3Q6^E z$~9$@if;^jMP1w6IlLw75iSB65Uv0k5kg`Ug(K^wqNz+$(Zax2w6e`j#*=PMmA{lLU+~@ByQ2b2AYzhA;;(mM|YMjt~-mR;aU1DkjP#6~7wziYd0aAqbd87!LT2 zFbXh}5EADo44N(#b7hi>1qQxik!|ia-aShQ_W(-?4*|;wA@L7|h5DshC6iSAY2Yi? z+2+dQOSORz&TmpUtG`fgmPrD(8Tf!5wz*ok$z6mxfIWnIfW3r}ctGK?{)jv%lT;ir z@D;~wbKl|`{~-Bo%QDd__FlT=jweE)o!G0TL1F0Fn?wVseEVr={XU znWQ3>fv-qyn=6Wdw1g6Xj|rs#83-XUqr#5!Qjtj}smN;JE3(_>en7xygkFGLguZ~! z2_Z3`LZx$3@r6uMQP99w6t>MZLqHKiOF%I~Yd{G?NGz?8ZI@J(kx44b8~BQfwz;DC zVpb-U0DMI#4fvW65^E^z*eVq@Ws-_-417gh+gxM>)FVU#G$6zTG$Mq=CJOELOGQ(e zq@sm^uV`hP8;^k2go%K*gkJ&e2_dnQLY4zk(OD*`_};)*bhph-LqHG03_vf!Y(O7E zNbIk0Q@<7iWRi-(2EJmbZLT~5h7&3QMiRaPj3$J{u?qbzNX1VwNyP*MUop`(HxTca zNrWMQ$%Ns6sf3XDn?l-?QZYj&shDlxE9Tnf(jj0zAp>9`AtPWhAtWwU=(kNOmdPX) zD-C?bD%)IKJcc!d_<*&9M1b{#kocEEeEp2tB$HHZHSiVNZFA*ujXMdI0J{la0sbb0 z#Qh4r4ok%WnWW;dfv-4foBJErc$}~waDs3MaEcHT&nh%MArl@JnRD0J8<6)|O!iZ}+o;se`UUIfG^z*l6m&0R)7 z4#HJHPQnd9ZbC@Rt8h-gyYtB;6$K1@MIqZABkKd9i5gq}m5S{|65<+5ig@gL0ts#?C)Hd)Hb!?OWT&@2NR32gxn2_f-` zLYaT0;;Bqh@xs7Yyt2*3#AA3vhy!>>hzE%9!T%&iR+zI}Dx%0F710fRMNHdVbzEa? zLM=dCLLERnLP$)gFzJ+3B$7!gk{bAmgapptE_Bd(wdp$niYAp}%cxU1hKHDr>+ z+6F$cj%{um0=^~e1k@*lfJO?9_DJG)GD%`n1E1L3Hdh}3EeVYPj?e_qh7c0lE8No0 zh7K}GMP~zF(bYEh9iC%1LO9<;;femZ>M4^1^fB-O{cLmRaRmbi;rw8Q6)z=Vh)fbN z+`tEnw9P#mf#c=~)al$rt0Rg87mjP!8R{`e;A@QO@ffrJ7NhYcI*T7d?v&~(>W4J-M2KbL~ z6L6al67MN=y(|^?Ws-_V2EO8nZEgv!@fl$m;00kN;1wYxzE$|-fmFPcNh%`73*ajv z+vd998lw`r0iqLn0AdnCVjP9ix1=JjOi~fwz*i)+&1FD9VnRkhQbHC$azaQ+lx|>RVJy(Vc;ur+U6$VN#`a^0puY} z2jnA!!~zO!Ur9wlnWW-N17A_pHWvXO55)Vy&@HZWs-_v2EJm1ZEg#$aTH-YU<_dwU@Rddj#oJHSSlvSBo)6H_=;a` zbMtVGQwR$I(+EodzY#*>EQP1~F*sW$shDTrD;C)1?jT?h;XYsq;SpddAtbI)sQ*?f zR>~w5s||d`pSHP7c-OBZWCd&>GD*cT17GovZ7w&i@gyNH;4~pW;4C2|UQn3%Mk+4KBo$W-e8pAU zTxtYdC!_=1BxC^GB80@d3Jd?0ihD9i#X|#M@z^%E7jMa@gad%*gu{TBgpl|~A(wt% zyp>5RBE%2iDo^IAu)wQ68+XoDU(#BHt-c`ZF5uce)*X28z2K=7T{AtNX)D-`iWFzkx44D8~BRP zY;(&Ikc;pK;B&$nKwd&f%&&0Zrc@M=Nh%5(_=+O7x%dbuMo0uGK}ZTHMF@#y6>8p) zigGeZMMVQ&QQ0>424Bpt2=4)36C$CaIw2(1QW*Z9RMeJ9D(V{eih8!W6bNWQ_z2L5 zkQUIG5E7dyWPU9b&1I5`RtCPJwQVjI-Y;zlaRKcK@c|tPA+d|Xuh*rbt4vbS-N0A$ zu+2TfbLmBR3g|<40q92vi31h>(a)$sGD*cy179)RHdh$eIFe8lFq%*T@FO84j#G%J zf4>+nlT=JJ@D-D6b2;#&Clhi3rV{c1rV~QqOoascrky2|RLnK-74vO#(GakZ5EHPN z5C`x(AtWwWxTat36*5W1Dg$4!#x|E2k6|q#8DKpj1z;l~ByLvd{ah-x$Rrip4SdB; z+uSK!<8H!Pz~6)mfPI9Jcu=9vBdItflT;iv@D;~xbK?+jg77oo6k!tJ3?U?*SBUyd zDlW(*6_*Ws#lN<>9SFEa*bTTr*bDfN5EAbwG`lJlcV&`_2L`_4k!|ic-t|uiCjrk0 zX8Wb5 zo>XL(Nh-1#_=+61xkk9goP;KT+=S+UJcN+=g+iVW|SvhHdUMJcC(; zaDJ}B&8QMEPbLXiXy5}D+va}375q*J=a(z=ODX{?WRieY20mboZLT)1U@ak>-=I(} zjs$F!Ndh(-_<*gpxy!hM?SycCm%@^060ln)3D|4k1NPhIenY@P!YsgH!d$>nLP-2a zA+^5QPsk({rwx3?S=(G}+~j#eIDbi@ZafLNERzIWHSht~ZF7+kaFYGAijYQNNAgDf?G&T2ZhP>T@G*HP%FA31epl7RXKKA@p(t`S~tLiil_)Qk`US`xw^X|1qP zzgybKBo*xqd__mwTy!LMCWQ0fE9})DkKJUFfF1@upqFj#cidzjLO9=Fp@Tl=0WwLz zU;`g8)Hb&d0mBL5{3wNN`nft)C;D}=Y&8A1`jIYM#31wu%?tk770(YYd%R9rLg6*p{iawy&=U}w5E4I7h@c;i@nn*_NNC_I65Hm|;V~p7WB?>5WCWxj zgv5^&j_UVyYMG=Woq?}NZ<{-WYy5<86p)ed4@ zv86)&-BQs?CaL(p+U^I=rfUEH_~c4LNRkkeBx#HxBuPk;BuSEt`D^BwIWwI(<6n{_ zp%c?I>9uMc7^<01UXRW=? z-fQo(DceJ^iLg(Fa+Mtc@&$u{!GdAHeS#6d1A>(K8B|a5; zS=q~gR|PA8*9EJ9Hw9~ew*~8fcLf`O_XV4P4+Dr*NX^YoPPsCrAR5gL7l&SLTRQGH zWM8r$QenyCbk!&7e!=mLBu=nCuJV6M^ z7i0s20xI=pImkGuKjRfO?D+MtiK`;SmCMX122#SEK1;s!c!DQe%!4#mqU@CBf zU^?K2>nRJLmNDZOog9qcEDyo>&GxC#U}et%h6&~Z_Y39$BL(w;hXf0NF@lA_IKd(y zCRhwi6f6OX1WSQQf@Q!I!E#`lU12qIyfQtlG zfx3cfz$Jp}Km$Py;BrANps}Df&_qxdNEFlqt`gJ-S_v8e*9aN{Z3T^h>jjO0j)HjL zMnMA5MUV*GB4`eD7qkFw7qkL;30ebp3EBXC1#N*OK|3Ht&>lz^bObU5oq&OY&Olhu z1-Mtx6^IJD0fPnIfnkCk!2N=rz(_$a;2}Y8V2q#-Fiy}Hhza@u69xT&B0&l;NstCi z5o7?<1ew4LK?rzSkPXZhgaLPCyw}3VUCg0!g-S#{1c%B&J{4N6>>cq!EoR` z!3bcZU?lLNU=*-LFdFzoFb3Ez7z=zZ7!T|c#DISYCIEW{g}^t0BH)0a82G1PGH_Th z1^7`g75GIk9f%tr92sW-Wdt*Uvjww&3WC`{CBYn^ieN5qzF;0uT`(W0DOdp17AyoV z7AyiT6D$TA36=l}f~7z+!7|`#!E&IDUA%Z=? zeS*Ef2*Ez!LBW1twBP{nh~OYFUT_F_OmG+|6dVDb5F7<23yuNP1;>G>1Sf!5g1Bn_ zm^D{W3V2>n8hBAq23Ra83oH|q16~tU09Fbr0&fZ`18W3TfOiB{f%SrF!25#gz$QTr z;3GjTV5^`u@Ts6KutQJ}_(D)0*ez%Pd?jcI>=QHsz7;eE4hrId?*$3K5kVsGlb|_p zT+jmeRnQ73^=NRkYz>?#XakfLv;`^(+5zVZ+5=Su9f1o3oq!sG&cH>2EYXF4ul0GfO`cafv8{= z25b;42R;z205%I&0v`)j0ow$tfzJeMfSrQ1z?Xt`z#hSR;A_DKV837^@SR{2a7eHj zI4alz{4CfCoDggS&WHsE*zG`R!4BXo!A_u@U>9(XU^j4{U=L7Duot*cun(vu*bmeZ z902MG4g!}74gpsP4g>LmBS2HZQJ|&Z7|>d99B3yv0dx?=UEtRrodl(Tu7c9Qt%5Q@ z4?$Vr4naAfx1a)Wx1b`>Pf!_17E}S!1XY0nf@(lWP#wq-)By4XwSasg5_AP_5_AK)3c3Tg3VHxN z1U-Q}1igUXg5JR0f<8b$L0=$Q&<{ux^alnAQh<;k4agB>0C|E;AYTvy1_`o(p@J|l zT#yGmAcz2?1W~}vxWN`0$D3Or`yL6V;4lxt6ddkTp>LHv0yrob34AXY1soBK27VHZ z0gemC0>28z1EqAQH3pn1m;kuAAGgrK{vZ+3P5ELEK}RP0R47N;Q-D0dRKPXx7Yk1u zHAC}|engt-A!u=yPld)Pdp0mmFb9YU<^mH1^ME43d|;Ab0Wd|d5SS)d1k4aD2A&oy z0cH!90?!GS0rLdQffocTfQ5pUz)ONvz!Je~z>VMA7K-A`E;?I7zRp81pzD1qR6*Gr zfJ%amKo!9z;C#Vmpt@iSP*boKs4dtATrAiQ)EDdkE)(no8VPm*R|<9m34%R9Gr?Y< zg7Sj4fGe30a68Jfeb-8z|EF(EF81H)W50;R@p-^eX96WXoa$?0&fVa0jmYofwu)U zfOUdefZJvr3*%auAjarGRL?^YM17wMjZ=05ASP%COcXQ%iUf^;NrHG_iXZ`)CP)Nk z2$};=3t9lP1+9SR1g(L2f;PYlg0{dyK|A0jL3?0{pd;{#pcAlM&>47L&;@WKe2az0 zYn#JHS^XH@-9s?sJ$x!uUfDf?ih^Fixq{w+Yw>OiyWcW<^_HUGEZEOOu!;UY73!|+ z6ySD28qiCS0o*0X1o{d>K$0LEND+hq7uCHMh837F*Jwo<^$>(P$frW@D0>L7UN8)J zUoaflBp3mFBp3;76^sHt6^sU4RF7Eb^s5Q;dwq+>dkDge`BdnLvL^sP2?~MZf+FBo zK`~HDM~lh8nSv>R3u2mu316A0lJyJv3=ct6Gkq$QrtDe30Kse^B$xx_2<8HLf_Xr` zU_Ri2_?v}odree>Rbr8cAgaYa6&j}OCBXfHrNBtRGTa$t;L1u#yq5{L;_0TTtQ zfg-^gV3J@hFh#Hqm?l^cxURl$Vcrj>@3(2MZt@WHeX~!6dMbMhaHn7^&_}QhxJR%Z zaGUtt!aak{Hg{_F?(z_9bGJ{0zEt)eV2@xg;2QYG!qR(9i(^#cfQO*PgFY1+r|d&O zOmG;OC^!NX3627j1jm3Wg5$t6!3ki7AnrmR=F@^wz-&Qj;5k7VV4k2X@PeQmuuxC| zcu7zZSR$wlydtOqEEiM-UKdmYRtc&DZpdp|*k%7ZQ(rw^T-!si59<0DC|&;}SUXbU_h zXa^Ju+5=ArIs%ggoq#_JIs?-MU4W+qU4dDGZospG?!a6@58!!0Phf$d7x1E>H?UaH z2Y6Y~7g#3f2fQZe53CfV0B;J?fHi^);2l9GuwD=X-WOy8n*?FtBS9XpRS*F_6-0p@ zfYo6d zDJTTW3W|X8f?}YeU@~y7UJ5ff^EQH!FFJnU;+6m$b>3%Uar3wi+c1wDbw1igSpg5JQDf<8ckpfAu& z&<|)K=nq^iNCDai(tzs(89;kMCUAow1auZ;12+r8KsP}iaGM|k^b|yaI|YM)K7t{@ zJ%V9Cf5C7dRWJg`5R3$}1fzg#!Dt{?Fb0SS#sUR`@xTy447g7)0T>}D1RfL=0d5*k zvM}*%bI)m(yPe=6nAcN%D)g+frvq~ZGl1s>Gl2zyS-^{e*}!7K9N=ZaTws}C9`KrA zKCn`-0C-cd5LhEv1iT|y46GL{0p1rZ1vUwm0UrsL16u_vfKLT0fgOTXz!!qmz;3}B z;48seV4q+e@U37ya8R%T_+GFPI3m~t{3O^692aZ>eidv5NGPR|M{hF6 z$+>z!cBhA6KJD_U(DTaP4J;7s0bUgB1r`hT0WS;o1Iq*l02jnREquP#L^VKn91nX4 zqB`PJp^&nV0y%e~p2v{m;47@6c2UZ9YfHwq*z-mEr;B7$*V4a{9@SdPGuu;$k_)yRm*dk~Ld?IKM zY!`F{J{NQXb_qHI{}6Nm_6oWJ-w3(^2L#=Le+qg4hXp->9|gUDV}jnmFM>Wm+!Mip zqA&0#K|i33pg(Z7AO)x(NCPSfGJq;&Es z>;l#cb_4GV_5hm%dx4Jx`+%*2{lKS!1HcZ!LEsC)Az-)QFz}V&2(V9Z6!=zf3^*t_ z4ty^-0UQy;)$;3)p9H0V~2z zpkNpf77X_=X+d^e@L%X&<&5w-p{QUaFjz1O7$z7E+%Fgdj1-Io9ukZP#t34-IKc!U zCMX0Z3W|UtK`}5%Fd3L4m;y`_Oa*2LrUOq4W&pDVGlAy>vw(Sm*}w~eIlw}}T;L_a zJYb1nKJbcQ0r0wDA+SoY2v{pv47@8?0(>A?3TzfE13nfk2et`T0G|m~0y_n(fG-8B zfjxpXz}JGcz<$9x;5)&3;E-Sg@Pl9@a8$4f_*t+SI3d^qoG~Fdv~C4T3$_7g3AO{} z1UrCp1UrGsf?dFQg55wh!5-j3!Cs)2U>{INupg)=H~?HKI0!Tp90INo90uYAM}Ve+ zqd;@PF`%X3IM7;f0=QNXcacAdwiA>BItWSwodjion*?Qnu7YyFt%3?b4?#uX4nbw0 zx1b7ex1cJ}Pf!g=7E}k)1T}yGf?7aGP#ee*)CKYc^?-aqePEEF0Weh15Ew3K1Uw*U z42%-Q17igVz@vghV1l4I@VKA_@T8y>FjdeRm?>xjJR@ie{8i8nm@jA#{7ujiSS08K z{9Vu)SSsiOyejAltPpeq-Vk&LRttInZwqjb@k_XNFxje3-X1c;j$9AJk5 ze-aD_$_PdPXA4FG6$GPzN`lcq6~P$be8E_tx?ns|QxF4c3nl;;3kreyf+FBDK{3!s zFd4W~Fa<~uOa+<=rUNYmGk~iFGlA;_vw-%3*}x5gIY4K@T;OKGJfNFkK5(000nk&h z5V%vY2h)5upRibU;;||>;o1E_5&{p4giY<2Z5Ibhk#{*!@z5TBfv_*QQ%F%F<_10IIv!D0(f5# zSKF^YHVH}r9|=kWTLoo+PX%Rx9fESe7lI1FZb3!hD?w#opP&lxt)MD!P*4r{UQiu4 zBB%lUB&Y=(7t{uR71RaJEDVmx^?1E8XyA#kps5l~go7`Q+X57ZDO02c`o zfx3d`z$JnfKm$Q5;BrB0ps}D0&_vJ{NEEaKt`f8dS_wJ=*9bZRZ3Ufy>jhnaj)Jbh zje>4K7eRO67C{f7yPzjG%J zYr!&LzhF7=onQrUNU#z(Dp&>lELaVk5Uc^tcsw`+uLVjA)&XY;)&u1P8-Q~J8-dD# zO~84A%|JE57T`j`R-l$(8&F5E9k^7m186AN30xuA1;h(>15E{cfaZd|Kuf_sptWE> zaIN3~&`xj==pZ-*bP^l}x(bc}w+fB|Jp{*qI|Rppy9FnJeuB6GQO zo)pvrrV8oqash}0`s-QKn zLeK_yL(mpjEocY4Eocv{6LbXL6LbPL3OWN@1YLkn1YLpcf^NX)g6@F(vFmmVY4yyL zfH%3nP3j@|^{cl}g}N%c4{)oXFVI8K54c0nALuPe0qz#00sRCSK(ZhcNE3vB0fKBG zBnSgJf;=Ek5CQT9QDBf@5HM6Q1Q;$D20S1b4vZ3v03H^M1jY(R0gnns0}}*efX4-6 zfnvdU;7LIYm@1e6{6$a*%oG#>&j^ZvIfBW+UjZ?-vu*)rGi<& ztAg3U3c(!U4Z&PswO}6bwqQQ6POt!YPp}Z!C|Cr1C|C?^5i9{d5iA9^3zh+&3zh@B z1S^1l2v!1n1*?E>1gn7qf;GTD1#5xBf_1=;g7v^L!3N+L!A2lX|GLU1;7@|hKpDXn z;B3KGpn_lIs3O<_oG;i3xI@&J79OuBfnbMw%NVo2JnNR z7I0Kh8~9mJ7dRoP2b`g23+n@=1r30+1Py_5f=0kOg2q5)K|FAtAOWZ*NCYkvGzV%4 zS^#wft$=!h*1)BLHb6r`Ti^;oJ0M=r9%w4)2s9UT0$K_>1FZ#JfNKR^fp&s!KnFp0 zpp&2naFd`X;3n9e7IG??Z)X{O5BhirW?WyN3Z1R&en165f1r{e1*jrO1I`y@0M!MV zKutjis4d6_E*6A=`hq;*GC>4rB!~i63I+iQf+0XN!7!kOU^sBKUwy;q8-T@vjlj!-O~5k2 zX22a9KDN;O8*_GgO6RX_9)e@VcApB(QuYquS;0=cv%z7&)N_6W)WUkfS#`vnz&?*x^BLxL*64}z+|Q9(7}XF+w~grEj+hW@FO zT0m(*ZQv|HU7(zx9&nDJK2TZE060(35U3_-1Y9U+4Ac_D19b!mKs`YsaH*g<&`{6< zxI)kha1-nr3$Ogc%(&Y%Ky5t)Gp?Oag?cHwJ#d$xBhXjS32-gmWZ~!L=EOZl3-7KT zf=zVusn9rOcL!pE9>7FFPoPN93z#J64NMXA0j3H10y6~tfTsohf!Tr-;5k7WFi(&H zxUObdXj#MbeT5EH*&c$vhkYvahO+a3)q)7{wjc_u6AS|06AS@13Wfn63Wft)1S5b? z1S5g%f>FTdg3-V(!5F}Gb)1EH-A;PG89*1oOyCy5EWmZ-SqnRFG<$W9`DFg*cYpN|^z3<`3e8vc-++aJ zmw?5Bmw}~%SApe%*MXISH-XiHw}G{ScY*bS_koRq4}r~skAba%Pl4@%&w-tSFM-{H zuYkRRZ-D)R?|_4X?}5XDAAzHSpMm3oUxB!K!9MttdDBiQEjSA(D<}_C5L5yx3(f23tvr0W8>Np}n2CS7;HO}g6wH|cr-ZqnTaxJlO+aFZ?xaFZ?taFZ?_aFZ?*aFcEz z;3i!daFgy{z)iX+;3nN*z)iYgfSYvp18&ld1l**12yl~b4B#f+IKWN17~m$|M8HkD zBEU_$Nr0PlQvf&VrU7o!%>dk_dm3<)ZZ_a1-E)AObn`4c+|nHPo;RP&ac_Z#;JCNY zr$R3(doke3zYMq%%PhRn-n96ts;ux3w7AlzeD<3bX0$TpSF8Nn9)j}k_>|9HZ=uVr zru=& zxXu0qxXm61+-85Z(C!Y?_qa=Rgfwpf1bsi#r$S|veKt@|a1KyWa4t|qa6V8?a3N4b za1l^ja53Pbst>q0E(2T~jQ|(Nm4J&Q0dR3N16&*}02jyA78+e`MyIv;Wajd<9)i)i z&Zk1{l-&X7D7X>mEVvoyD!3KsF1Q`&DYz5pEw~%#D@X!dm??k@EFExxWdbg+fq)Av z47kAV1zccJzy&rKaDff8FuJc9zx&K5GkzmH1mic-r$P@Zdo=K{U@S0B5Ca|)6atS6 ziUGIHCjqyWses$cUjVn2nSk5MGl1L591B18GCh0Fd@?+RQo>+OEP_4Yf!_4W|pdiw+5dV3Ubz5N+*y*&ZA-kwq4?>5)l(tzvjS%B+pISV6O zn>}6Ld@_5wqK9BlSN18NeV&Cg?=t19s{92Wg7O#oRH%lsF9K={E(YoeE(ID0E(aP3 zt_0!*O@TzgRX_{D)j(^(wLn|J^+0>U4L~QsO+XjHEkHNHZGan$o`CEAoq+3pAHa40 z9>8_KKj6Bb3b^iP0IvI4fa`uX;JTj+xX>ej>wW>?x<3SP-M`O5{~OG%A8tOGsq%n_ zVAntBQ$BmNg<7|m@(-*0SPwz@@jexLRM``NiGm{F3BhFGNx@WLnqUU-lwcO{j9?D% zoM0aCykG(FH^Cy{CBYKF_3RbE^<_EW`tmy9`mzdeeR&ITeOU{*zPt;#zH9(oUp@d_ zUp51-FCPQ0FWW3MXlM4)r{vdrc?imX?NgzB%KjE` zllf#iR0eS6&jwtH z3KoiPH!Yr{DwRD1EmrX+l)qNx+j$7exA&<~2W58xZWMF@ zZWeR{ZWZ(ZZWr_d?iBO^?iTa|k_0J$3o{*Xfn@?Nuz`RJEDX57?gd<6QNRT@7;u3N z16*MDTgbe}jNb_J$&B}d9)j_E$frW1mHi0d%8v(JiN`F=wPUOFk7^ ztn8P8rGi(1<$~9Nm4Y_`w}~}?YxEt!HM$;fjlK`KMmJe_@@^CNhvt*nTU$H?ac}jh z&?m~?4tyrq349^g4g5o}7jT>S25^lY09>R01YDzs0oUk{7B*aG;y!9VnYe%U5XAk9 zPlZk>`-}#^DPJ0JCC;)?)}F`9nop+1@*aW~&+(~HMP;80xbjs2SKs7yO-o3%(EFg1-lF!S@Fgd?*!gp=SUt^en)I zo(;Irb1ii4ZuUZ+`DErnzK38h6!=tVkg|sY!vyyOBLoiuqXZ8FV+7-X@q)*I34+Ig zBEckJvf$5vi+eiYB7F*Qkn0QuZ}K8^Luz zJ3$Aaqu@rsZK4a{8odQ@jdllIqqhUD(Owq5YHQ-Y(|j^<_wf+K-Pfl=_b9tRkSs_8 z(gm4-YjGgp+6V)#je7ytM%2Q)_UfX*d@@lD@eo8c%%^@GLM# z@K<1-;00iT;6-4O;P1c^!7IQr!E3+@!5hFT!CSx@!8^b@!F#|4!3TgFoy~w7kB&u&f`ce>j_>8!?o8w|< zM$;oX`Nj7aH;k3d%gRg7&I+d&hbBykiwo6BwSVh1Rv~N9(7GwfsRPr)Y56Ye3}u~T zvoa#N;b@7xa>_e9Ba)nxJ~%fr(A7DV5;RxQ)`>=v!})nx+369Nd0vSIQ%!rxCJdi< zR*5)Lb8|{oE3K@G10u1Xxzr6u zINcOV$^LzTS}JgU(1UPRdN}p>Wxi7s6~d;&gVO6JMSx>GF6k%SIOP|l z;?dPy^EQi(}>U^D?u-L*fgfS=q(0%AL$q3Y+P6 zM>y-=j#;VE;wOqPf3Ub=D5qLn+(h$!&)a{BD~w&1mY$QFpENitFDWfOJufFKoR(y^ zmzr)Oj%4K~B_<>##OH+v6q|!q_J3A0F{!DqnfssBY<_Z^;s2~=i<8@|<7(c}()P2( z$$pyeWl}UZDR_&RFI84}K$8EOCuN0`%sxqK*5YIcU0g%o53&u_KiN=bMw0oG=jTQ; zvU3NU;me99wLDpExT`i|kF9pa$!fO!t!%pLDf1nE!WfVXW54 z+L849aC$VUX{)5B%}#FYGgsU`7g!kUt>PWbK_iltV!m<_6P?}79U|#zCdv-Uk+h^v zk>rB3q>ky)^x(_>FY{U^p4`+|Zd3NbmcrPTYB+sJa!y`$y6Ke}Tv2j%`VbqbO(nH5 z^+S2VEZTcY{rG>cezU7iHn7$;V4t5Tj5RxL1NN&KP9GArJKGFFYGzW?5|jDu|GJfC zB?jY!YsEf`P#9}^+E~)E!nuPIZ6tZgY38U|a-#flN*js)ejAA;=F1PR5&P&sVXXaW z8wm~;N%`pma?;Hi#U4J*cR!jLO!|UgV%grgUG@F{Rih;%J^X*x=+!4D<)QzpMw^v5 z_8j@YYP5O6$-~l7*Qos^|6hH5-1pq>$fTw=D7Q~`y88C#-NM-Ezdl0-q~zx2yRTn! zbF}cs;?Mu92ChEYz!(2b16MUW*}$&VFH z1@?S=;Z5cmp{ac-XJ0P0FD>oMwf3cheQ9l9&ap4&*_T@OrJjAc)xN~rmv;80lYQxG zUn<*|v+T75Q39#H!>*vIbogRxm@qz_4oW<_m-CgXxrGwjyw@+HVS|J1ykd>qA;qB?+tUZPKzLc2O}Xz1VEKO1K~=B|T#LoMyh7*}16$&7?BRl(<+W?JaXs z%uG*CGnXRcVwLPCyC6#rr)K6x@{7&o*ty>FvkL|!*`>bO*x8xUob05WbTi39=7*HH z*m)VbxzTWLG+kf%;L4zQY^<`m+Dgl}OWGu}wk?RJ7vH=#c8*zI=bMe2m2z<9ai?vd zqCvCIva@os%=Mp%(VWsvvvz#4GKQM%4jX0oHZT{F!`zYpt+Z2x)Q` zq?kRE;-;z{H*>l$T{BZGxH53-+$QGu)#Q&Z4C1r$hK5s$Lw0rT)?h)|e`9g&tJ?K+ ztX^=K466QqIqgf@C3NialO<2Pg7y{csyTMy$qFo*eF3{pj@_XG<{NhEGP#MC$#v~A zxo)sbuFEpn<^ACj+Ba?=DUa1w<944#^P40zHJ1uzg>3e%FJ;%y?y{iC@0ZU_N-m#$ z75hB3JF)yx74t3A`QDeeE96*$0{MeYm;=tK3uIrjajWP*+HiJ$G^gYxmtWWy$6B6ttEa2;?`|!)aIhQVO7DN(+VAW5A+pbV z{);`5lam)oHyQBqf@G7CT9&SNIIpOee^8W zSfk*#*6cUcq8X>wu@9H|1C+1R+#KfzrDx~bMTEHy*Y_aGg^-WZKB47S*iC-By0qOK z95H8#;L6D!X?-pGT$0~azps^;R1mhOlae*;b4RDI5p>X;S4-Bg&lR0MvgQoQskQ90 zL+*n85BhVJIggn$+#s_UF!z%pzB~58o!C_x^WS%;MN+0Y0h(!4ke_Y_H8nSqY-U!z zuWT3Sr>}gP^|`NXAC&QX?)O`6Ricx2aevB0u}{SKW5VyNUhVc=vMQO_?L06i6~ATs zfK2Rs^*JXiKeb72T7Ig}w9jqCswwl{f-JL~i6%#)KG!~T;J-um+?kM+QjnD$ENQg% zF_NG;;H%h&3jA(4U6rP0_Xl@*eI@(cfd2-auF}bG6qD0F9N;I8t!7S3TrinL!XM88 z`_p`^xw`xZwVEbzQ`jt+vvoho2Wo#FFB#}>wwS0}VN4xg&Hg$a)4h;jaqydJ&63iF zngw@Os-3T92bep`zNY;JIo9B0u!-)v&n$bIn0p&Z19KzctYlx>{(fAtbTiF~{3hn+ z+Q}QCzO?=Ixa6)XQM#!O!>;AhvNAHvjLHrBO7D!^=76OZ{7r9P&0crLEy-3o%mp>6OTb4~eQ-+>LiYigUu>~fLD{=K`f zzN%e6QuRN&6YE>B3rbq}*LP!m6}!YVRbpjNj^h8n`?9ADyIp^p-Dww?Hs+7)=%4;Z zQOSj768Bj{A8XX@lGC(hSCX{#pWJfgW~pz`t}SWlzq#4z8?viS8v0+{@Z{#4Z}@4` zbJOK#^k!FVCS@03Z0+FmLwIZ{F;2+`QQXw0W~f zUh`&;rRL2ZAr8J+5mH%X6{!s)L)#j(==$mFjk3D$pu5q ztqrsOZ<3jtlinm!5H`QaHnG3wHZiM*;7?j^YJQX8l;0%Ye2zxa&1uIsP+X7_|Nj8m CvY7S& literal 5666346 zcmc${37{m`Ssp4``)C_!v|3whtYt>l^j+u9j8@B9Y+0+d*p?-^UAMcsyYB7oYISwr znJa0)Y{rJR;XxC!kQYJ{@{;!;VF{ZdAqh)J!V(DN0RbKl0s%ru$YV)DLcZ_(=Tx2Q zK6R_Q`?g-*vzXg;&VRQ5{QLi(PhId07oBtNIsAXatD|l+=$tA0ot>Z;cG`ZYKN=o< z{~&199=Cq_`q9xZ8J!&+8J_2LyQ61^2Wnxp-}C)i&>Ib}(J%)6pjEDPy?(P5Y>tK( zS6=M*p2uIKuSdsomqx?$n_=4@4KM5sIvpP!&p#dZwnxMBf}Pz_^NQj502+;k7i@C$ z(eRS89wZv|M=zjT)T?s5<|Rj(2bz~QFKb@jyaNB3H3+<%gZo@H(qcBj`5=n_Ucx4Z1-- zRP^*J{oSsQL+sLbkI*9sVTa6G6+HJ45i!~&lYe9q-+_VbUNH|vKXglb3z0Hwn8hb&b zNrYWpUR^$h|E%3xdbtzS@%cjRPBX;BF3>+*)bm@u7vV6@tNA;l;T3(q-EDb&KT;^G z4*x(U{&6(CveN9gTlO!5B_i;WpzjiqcL|G8|10m{1}y>am%6(cx3gAWSzd~QzJILi zRkwL=_`p?H^a=HwK0wKTU00htNAVAmYYu?4D0)c5*9HCfO_75QZ} z{K#B$pFpdn81Q}BfO+Oi>NcafqB9x^O=o|2g_?F1XI&3kKyF^aEAZ!%U|<>l8(BBE#52d&))pX~Jg z-hC^}%lEG0e{1+(&ucLM)AiT|BiUdB+(r)30xc)6O|Rx-2U2oZ=#W=?MMHJ9KR=VsTfn@c0DK3wEuUBmz(|6q)-rV%Pn%`5`GOBF)^|0qx zYQ3;q3r}}OPt}IkgY<-*8g6tY!hPf1fTeA9#V#g+Io1co^M>cQ!bYf;aB0xS&w!|| z+9%D%54x?;t3}76s8v4gZ`NDkX|?wo>udGRwUzp+U*A}**4I|o>)z(cs<*Upe0_DT zx?1&D>KiNdnzz2Pv3dN|YPG_VDg$2IanpE_Cd?QxHtZekN;^z*sn>OKjA$;7;1G#FkS9~zJL za($E)(Ee)Ekd=$KB2dLa4`lsrGj#)ENnHrtEh60j8i7O)hL?C9ueFP-tFZl$pmQbu zu@ZnEUiN`wAAbJ$`yYR4W8-5V97O|-p!yV5$9LUx53%A(xja0{W8~5!FES(~=(j*Z zt^x%uJr-66dqHO@ zXg8L~QhQiXYggDqjZ2kd2G83qcRP)Td*0~>`@I1sbB*C+ZNI$<)D3$;V9dvBb(`Ri z*c1<&d81*B6}>s!OR$YjWAxeK4e`g$pxp&~iNAejcx(JE=u}&SnqLVzLBE3Q*JL~N zzI~zvsLc*I!`_Xeu3rtjR?_G*!#iR~gUGLVwRVW1$R%+N!B;&n9MCv>L`S<$2%dyS zckKnN=hyw7->IsWpba84R0s}J@1gtEsUN}az4qucW54z&I-qT`x!}9tvj7_@v4Zos zHU`Aj6|WV5i$)LvlU`oG-vhQ{<_ei243r#+mL;^vqou4Tv}EA5N{`FFfXM5AMI#XS zLz69{QSKi3W51lO3>D96;$A z9}K^ihHyj1SKav*nRiAbS>~;Kw$XrYPgbxeu*13SG{A$;fx&qFaBN4e8vj|E`@$=AV@v%YrveFyw+)NH{vx@l!ij5*NzeEhNN%YLNM|(!$Zk8;g4B| zU-t$r3cVMA<+mYD-Vg=2U|=Jf1LJOjQjrsX)`o|>2#O5~1r)w65tJ*y`*ybvdG8D) z%JUz3=%EtCR_nWeMv)KTX&EfS?}QlodLunodj1=OpyxwepaL`+o&y2i5|gV(NyD!`wYIi)a(VsaiM8WvCr_-dA72MozGI>rh_#?F zD75~UbU(Rzg8f%dp4?bpT|Iv4B)Z?q?)CWUmHDR!2_3{v?Gwg51W{>ud3|mD)biTu zsnz2vCr>SB^rVOyK!PUwuzDU}-8hNf$2U$cb4<0;u`w}KULG8t)o)|<#Ho#ym9^um zt6b_$j=5HQ{={$_ruSU_>q#^^(|XpS%U_$yoOn>a{q5|jM4$Q zN-YXIzkC9toY+u(TzlX1I<>H!nj7~0_{ozi$B%DtZmxqCRe}PQwWd|#--&fx=#wM^ z*EuE#u{_lS6InB%EV&8c^To)^%a1n_(Xw7hKZDaie zkaz_|GGja%rl>pGy+Af_rB;B)98YaL2k^ngvPdG%YW38K^|e#j6ZBE%8}|W8gJ2J? zVxJY%%~L0ipTq{Pt#JF)S;bu_heCi1-W=<+vbK6+8I;pyh>ur`3ipR61g2m~6efs_o;uTDW9N4B-qwc{s2@s>}VTH|S^*GxsXJu&^& z6DLldSU!bQSwAt+B?6lSF~PF!IW3<>nTcyemv_j|>(L?2q ze>(nk6nVoERTA4q2jRf42WMhQ1_JJ-yWyZe*z{wTez4}Z!)OU&Ky@3()q@mq>8bW^ z{dnKse*Z^b9u1F31K25goeGrx%BB}V<6Bx@!Mvb_inGRs`sEm!9!<)<5`4edqb-uqR7d{WdDi z@N}gQ!vMrTXzQVpN+EJxS|9ke!IO_av%UGs9{o>P6ZSe(M8QyK#=Lav#4Fp+x7sJ4 zufx`GENlFeWBqZFXsW$*u=YaGSbb{X@nDWh@5X@EWS*nhBv7}ChuOn6Q!zbHzXY@K z)9<$eyN%n3oepq| zOxMPTS03Lz<}dGt4VY67#$vgD#;<}NKuPHMpwF<4#GfGV!}2ux*pHld&N&Cl<S8FU`p_n6q%?P)t1ysj%|9ihBAU_U=J*L4;@fD z^8w|4D6l0CW0B1L|G&knRdqn(`%CJdOSEq-$wVLKzaNx;-=&-}sinVlXDO(wqe3${ zm&z8&f7Lp)*GqSvy^>UAMad}c7b$TsU=2~Qd<>mLMhc$E4(2s(yY1sSWzm$&s)%%8@<0mHHeZS`F? zef6ifv;Ftm5I4Gme#L_hJQ@s!SNPq*W+ml0X@2M|OlQq!`Cs@iU<(D(()NhSs4cii z%QUdDzbGEa(w&(5g=mJefsgG8Ai4VKf<7I1uywq||EqpFK+)tFE^-yr`M}c@#XAjt z84TYY6V=2FVs973w!Ys`{+r=i)bv)5ZybBXU;W6NOY8pgwI>G~AK!g)>G;P#5WUjb zd~bXCL#^l9Pd&fY-}ux7-%b~xbR*C@j^ROdEi zX*f$NV!%H4Jy_U|*BapXfCtU>=JDZqxU{2ZzjD+(**vxNML2l;dw3OgnT|yujd3V8 zzW`q~&Q`VEXr9>mQr-3BF0?kF<|9lvh?;tVW-WCv~9h z!6nsG_VnQeN=8pcy_mC7pSHdU+ZcDcJPHRr$f41o4$)fS=lM#qA0EUo@C_(}QR9T+ zTq(EV0=XDubX$3{h8LED?rsNR1_!qWaJgb|+RZn^aC!yVrxI=|oJH4OkotPtSy~3- zb%$*L!c(#Vw*W>PbRz6?4`IsGz6CgKA%0lre3=3yo^>EgJliX}yGj_0;MfJb!&=RS zxw;89rCf(G#)8b~jY(#3Rnjb>8wPyyf#!oTz$=Z1zOsoJ4&0z*tjo83znjDi#M5i8 zHrEWS;dR(lg`l|ZZTM%jW(STC4{-qMWyOc81L-iiv+7sef%LCetE~fdhtAor)LR~c z6_Qf~8-cJ4SF7If;k&xK$)YdoAb$1(Op`4>&~HT*P-O;vB)?wDU#mdg9&F4Bi~~?6F(@nwHZ{I9!Ws477%0D6 z0^@4y=L)Ulbc>$%#$$eRg4fthG!+rQ|0RY7D|67hwmjG?E>@usV(fujf&+!0L6J8< zAz8Nw{#Ov3(u8>c%CFJ^nqdoGQTxtauJ}K-1x5Xv$D3bJc%ptbZ0ZB=yI93}oijY2 zzbm4CK($ao2cxY+@4`XyKkR#T^2G{bh(GI&%7xrK9{+r)>Lo;B1iosZ$ppM;g z4#;L3)-&E=D7yz*uJ7J?2Gmd%$S;Ggh4OKS2yzTo{$uv-l&R5zrIdFYkFHV6#O;+& zQ01XyjGjvPw5(WBeuOoUe~2KRY`L_cp+;E$XX3*+sDQ&bQtbsQDrW3NDss6N%(Jn$u3PewYbp>zI+0}}t(0ru%{+NDWsRY745kQ=A32kqFr1??PuK8B; zZS!vvJ_XS501AdDA0_;1oV8t|h5|yvlr*nIvL#@@eZ$qS9OZk7+DnTlR^YFFFnle%QXohR?>mCQ?pM#8L@GAez^|;F&;x!$(i96bi_16c|1KoUN-|F5g=rK9C-4Zz*X~0 z^n_&hZjk9w&XO?!LEUq$VxzIR!D6*uPugU&#C%ODuT zoe#kW)cXs=Tdbxa=+I#xq{3th2Z3&JjnzV%5E1Q#u7|7-5!|O$*h8R})qay?x-EbBvF<1Zo4N{RO}A_?hkzi4i(ldP`X>U^g7}IIg3=d8KDT!^&vIhVN7H z5T&>H+gWYUQw>V}umlvv#<6MKPNsd<04_cH;)^A-VWqHM>HrRA7@7vsS=Jnt-g@l0 zXI@kbKU;b!p3x`8j`&F!m-HiI<_eXgM47z4tM;}P?D!?jR2>&gK1cK}nn7sc1O%C*nL$mK z9vh_;{4zXEz1uK8FGYtkIY) zRwL^el{M&5OjM2%t9g`Er_;YzOS+=h z9yreTUVSj~CHa*b^EgRMx-n@AM>izpQBV{>qLrI8X; z6VPSV*m=+eK}2pQ(c;zDlhc!xKM@Xa5*o*nkBzWz9e_f>)W>AQt#2|SH}3;sUvSYH zlPGZ{X<{xB&luOB98q>Ta`$VUyN}vCt#Axb2(_&KI3k-bJIT%CAxX2h-!9n`mp}DX zZJ_LxUcSIA)0}XGLnYAJHnpU3cMvs?Sl!cYIUAvAvI9}+uDk5P#^*u!)*%UWwVYR1 zUr&RcKpXbu|C{JPxdfrB(!7+~CB3&W^+z8CGg8avq1e>nXz4EdPAVieu()7#I@&ZB z9kFkq?r9Do)sql#UI{MUp8ORz)QjdQw>v1{_;%)Og#~SlIO3GlDri|ca1vb)*9xO;O2c#0zr><@v7*nUTh1?(RaY?N0h|uM9A_dWGaeS@H z5i(+q?2w7#KbWfG^7d@WpY+wj?Xh=d3pQ1`XL6$@G?r>?ct3e&UxDo5bn{*mQ-OUG6O z`%@Bu)e^$MsQG=(?;pfUhPWhTtw{Ya#^(!^@j1~|Bx!_Uln|p~E{kBSN>l>T=)?j? zTbZ_#58qWTB_L!Zt#ZV+mPDn|YK!tv+cq7e4#^aZ%7Q2hCC!T|Nvm84k%8tZ5oXFjD>^WeP;VtTqpCJw~fcdI}&kO=va<@8J{@lbsr3T>@kf z)*knQJyd1fiPk*4KX%I3I!LOZ;<3|HPTx+qjm!kq_I+zhesp{ZM|Z5+GRKi0>Qr!)fjX}*W#;mExtbT<90DPFe12g5)(q~#auOB%=k37 zUZ4*CqOFKuXC&^0Jo9+zfybYD9;h#0s6`K}zs`hpYZFQzXJKf+*m3DzCx|%SRPuZ+2Tx9jB{&lkwCKl3po2AaREXtecWA#sq8Q#zZ6KF$EdyG36QOk!;Tu z2_)LUV+^=4`JGO2x`!k;FX?)f-306&`191cGPLyxF_u19i8*`g3o}sZ6nN@_iB8B& zfh`m4M84dRjHJIL8!~*?CvG=5PFAlsEZt6JFpOoRuL06yzMy% z99XB18O8=|Y6}pYBoq1aXOIZ(x4?ICLQz60t~P@>D8oVXZSta-FYbFC&pg?d;l;*j ztMBTy21Ex7M0k48LX6(P-0&OBR~1YFT#j?dG@5XTzS&#q$hf>0-SgnFFFO3*PbT#J za@9&pWN2|dvTV*IpAV_e^k2ua3&k4aY~d8u7}^Dx5^GGO180zV%_u)aZ6{r?tRfLI z9poE>y_#9ikRLKWAFML39Y*$Te;3!LrcQl$5h6z5t>h}zzrs3J1G%le28^lC_RgunzwZa35bIU z2s9+UcLJeV0YpFj{raS@1Xvgz^x1eJHzrNmjNV1eRuUj!HpSXA6rt$KZ58jaX<|)N zBBZo;*?hk;8AqIX!;8siK8OQL)_POYh>8m17C>I;S_aWcmThf*+)Uy;Ao7|4uS;O5 zwL@J~0?P2pr9sqN+C*Y>GhiA@(#6`Y7_RiWD(+)GB)v+>KtNShWCL_fWm_W{I)r;R z*=-~w>X3&w=~gRiI^IXVV@&ti|dSe25}99S$pR-M~9Qxj7Z;gJ3!?hL}P$AA~8|75lstZ6!VC})(+zG)Lv}87uJYG zf>YCPZ2>PTw;??^Go8RZhmRpwfSYquV0@0^DB}DpH6=L%H*G)N&flScENdEbq z&F_jqe0S3LAH;(UuTO3^=a$fbxb^VXj3zh{C9%dW8Cqb7@YbiHd&e`~`bzv2TOhYS zlltqkslUDoe_ud@~ibP=r(!-+n!)*x-P!bPD1Nkd>cDPALcsKh0b z6R}lTi;(a9nU~+lc2=C2?4@ZCwV*YS?n0C@4CM;74@xyxxzjeUQJ;)9D@H>V$&_5b z;kBxbk_TA^352M_)UK!gSv*P4uMX-%1}m2n72iDGUxGm{Omn@Bu$eD5{x*ez;Ea8OLojnm9)UHY=9G5S1y(lt_|DbkZJDT^g~8CWdou3`e$I2^t9>ioY6Lls1_rl{$$3 zG}=J(I0IM1@O;RYR!naKU;JY_AaZ!Ydigla0WsCOF&+sV52e~7+_|{z@%80y(st{4 zZp4S}-AK|9Cj!lr2?QM`{KzyQbG>?J^!j}XmR=W6036+Fxb^Att!=l~4Zj|0`iTf< z-;3rCB&2q$&sh%mALE}%=7Z2s80U3`lSEd(A)bh7V2Q*A%AvRsDjBvnJ0Nvx4(5BZ zoiM22)DZ?QVP^J?Iz;i%ZUDP!|Pee)Xj$LX04XGg_$WA!@3Lh(}d~r_=y0c1p-rL^w%_>(~hp9>QQDxP9Mx z3lvaNOU|Ax#s5a2PhE9Uu#hrcQbudi(0fa;c0hqE)qTH(KsI0bVPWm6HtEnsJP`g* zuk