From 7b43a406e99660d0751c4ddb784bc3d91d86ea6a Mon Sep 17 00:00:00 2001 From: ivy-dev-bot Date: Thu, 6 Jun 2024 03:17:21 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20Transpile-AI?= =?UTF-8?q?/ivy@bbebaea92aa0965fdda08abb5cc470e044f26100=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5666346 -> 5666346 bytes ivy/.doctrees/index.doctree | Bin 927130 -> 927130 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 9501e0a7c90046826592e8f0f4b4abf2f0d36232..54d885085d6f307abd284ec283fb7a30946cba80 100644 GIT binary patch delta 138 zcmbRCl6Bfk)(zK8*i%ysQVlFjCvDobdAg|x6O2Fou0Ep$jI;TpIY$+YvuV>g9I8aN f2A9KBP1QjJqBCvDobdAg|x6O2Fou0Ep$jI;TpIY$+YvuV>g9I8aN f2A9KBP1+=32vZOfb&mAQKB1d-Ft-+F$^BF%M_} delta 47 qcmeC1z|=Q^X+xPIySbS~s&T62=32vZOfb&mAQKB1d-Ft-+F$@~Tn`8U diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree index 25f03dec94f5007296a302a86f4594ac76e77979..9aae88d740278a6f94d6ead16ead5b55915c1199 100644 GIT binary patch delta 47 qcmeyfi0RKFrVa6i?5QaRsRkCNo6`(WGr>5MElez6?9JsStg!%|8xNHL delta 47 qcmeyfi0RKFrVa6i?B-?`sm7_6o6`(WGr>5MElez6?9JsStg!%+Mh`Ur diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index 3a5203df494818a00064338b22a60c0de08f3a52..a08317b6bc864714d77d04785fc7e64b8f9352e6 100644 GIT binary patch delta 47 qcmdmgiE;lW#tmVr?5QaRsRkCNn`2c|nPHsCCp9c!?9CjS<_-XlQV$9M delta 47 qcmdmgiE;lW#tmVr?B-?`sm7_6n`2c|nPHsCCp9c!?9CjS<_-XZeGaMs diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index b1dec3adac188cd2c7352fa726bef47724a38370..767229082548a6a7c2de715b687ea37ddc30e41d 100644 GIT binary patch delta 35 jcmX@o&UB=mX+s|eduob-VXCR==BXUYjBw6=PSz>_+FlD! delta 35 jcmX@o&UB=mX+s|eySbT#k#TCu=BXUYjBw6=PSz>_(vk}U diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index ec9af2c3c3caf602dbe7ff670ffeb52b06d85a11..65d6a9b6ec3fbc8d5c3e19a4f922a7d8b2bd6579 100644 GIT binary patch delta 859 zcmY+?ze~eF6bEqbG6{l|f;cJq7c|Du90={;(p69pTyj5Bq&hit5Zpv?a48ZOTP^+~ zT`UE!Yr#R#sap{poRt>coIHBX{TSa%9-n;QOTU%vx3Ul2!4#u8NhrS&pa~L< ziTH65C`0s2gGBs!3H&L9pfR#RG(wPt5X7t0L_CR{M+V~Ah{uyMm{SO*61md|rWS%J zuihI7&QFj;Bcf*}!Fisvz;rR)O(@q@`qD_~TS(~h%C~`_h>MF9)P<0}D)G2J0?R4| zlB*&)sP2L6RUyQWT&VAXCab#jpt^_XnJJLRyDKoWlcvD#cvahVjbPVGfn9#sFpyCG zS8?M?Bcf*_AwF(5Vcc#yFR2sAlgwN@DokLXB%s{Aan?)e1d|i9Lp{Ol2}XG^a&&w) VIpWrjqvDI6`DHB6E5AGI4do>Ie9e6y}R*!FURNJdl`1}!%qI8A5X1#KDTWadc8rsiJ*)M zO}qwWZ}05_PVFc+LI?HJ_b2s*9qqR8DwMs;k5Vx!IjIlglW2b)y+ULNoQSgp1O#^{ zMD)0blp!32=f!LO>uAn(UoCLYk5XVFu zQM=a=N>ii_h|F|^Qqk_9=~6bEAQ@Nr3y^>qNI*pOTSEd@$c+@$h5~a`^0+ZZj_QIW zqoOue`yl412p2~M4ErGIsBV|B+K0^aE{HGsF3#;_T~Kc_s_h0K)HAxEo;Yl32u=R0 zsCfm5%yfj>$K4i=x-IJ^b4aq1nQIH0F;_wyQMj?z%jpenCpTtC>V}N;m&sE2V+-03 V(OQ=>FY8##TFalTwIs`uY~7ak|KmkOMgozQ z37{}L63K34#EXa*FWwz5KKr7tzT~{~&*T4w*T&su*g0DcI=f*n>a>GSe>6P&$RKRh zA9sHGs?o8}8J!y)9bQoFc1O<*57nbuzZV4cus0fBuVD=OVXIu}R{PCXxH%eLTKPb~ z_X7Sl`YLohe`z$luo<<3(eUElpwkJ^@xn7vZ)Y^TAl%&>HLn_82%zz3c+np|jCfAk`{#l0HGYhHG=d8m1L^NQw`&8zT#SIgI0)Mx+rt`?&-E}y3nHz;H4=`~Io=7o-Rfp5s5Ay0wNBtF>5Sd3)T{lf zT{m{B-wQX(yV#Rx6krj9Znqc2apg?4*9kjY+?nAe-Cnc}w1Hlp0=*0`;~IP6R+9v~ zy1cr49RFIouk@i#*udwDft_ZAiCv_BxTF`ff@+M-xS$^Fj)qtDgLb!7?FX?US+)6x zD)z_G@ajsl-)_0T43UMeT0X!Eua%kwY>Qb^+Er&4B{dB<@%HVJ%tEB^CK)H2m;f zbDtoqB@6ieY{1;}C3Tw7T=5xAgr;*ayh=^GhP`ftEf6=4;8pnRl2Bk7f8;5>wA%}# zUfACoJzKgU{=(7lL(P7_8{faQ)By3s<*g{%!tQp%80WLSgkJA%RNG-|@4=@!{h)XM z%JTAktN3RP|MY^bL95!k?*#t5fqzcopHukf^zt%>YCa<)1j8%U)V7nE4X@memv*Y% zYPlMgw>dAh5N>R|z_GwYI}x9y~Y4<1=Bu*5t{#N)dtc z!!^?9c!+~>oac)qpnt4%**^x$>hn-s83)x~t$AFZ_3H4pW>BpMJ#{SO%4X1rdO@Y$ zi@NpbOlS0TeRvaCPt>X7L|0;*H_i=I+Ez#GQZkt1eQ><$@WNKK6{#g$9=7o_AgZJG z34{1Sw-r_E@$oormCpp5jaGC<;eKO%t+Bbb(pU`|8>_X(+Uk0vx_PQrUD`OYzPeUh ztpzKMjg>~dy1ufpdE)eHt-_Hi10LIQybBI~NCw0lAsjkpylNZ={rLD+E84885!LBZ zRFgaI#>w>)wdKwAQ`Pm8^~U=0=~MN<9ryT|CXgVbUr3Cr^CSc&6RU=!!SGVMY24Z? z^;TBE`)f_ZRxaI+!4(HRu=RV))D4Iwbs%)Nn0y0d1QtCQURLc?TYEUVirTLea<14P zD^7scgHa_~~C?046)w`%VzUAI~NflSi;o(jmr<5L5W5YtiehVz* z8gS6kV^M8Dc@K_3F>!^W;6`?8;KR8g`b# z_SOIMZfEP=z3Q0<`@I1sbG?yc?V!C0(v5l`V9cl5>NX)C zfs`tcd5aN@6^$I?5@MsXHF|S+v;Ei^w7U>5_S+|iZ?oURPOUYl2bHiB_A5AkO}0bt zJ11Iz+w4Lz?B6Kv2DPx-N*aA~c$bAVh=WSC-i|O7r6i6aPLwCYJ2p_v0r;s9ndyGF61ucEWpM}t>8Rv zuz=XQQf-BhqA`@fq*t}y?}1t|b45%s21>R>>k?Y!(OT9MS~IA&N{u(dAa38Ui3W4iQyqv_Y(VMR z00O_BhH!JnSKaw`nRiAbS?1gJZKDC*nXF)6U`KM>X@G~Hhk&W}qcMzJGybzQ4~Dl` zY$uktF1HDy_m;LaT+R})wU(9o0Gn_g;3-thu0@M2!d?J%fd9w`BQ_Jh8POhC;J9Tn({lq$?@?8_%z^sLY z!J+k^r2DDWlkC5G>eR;i>gtKpr_lXv?B1|Pugt$zp`nA>DLi4^>!2zvFR!nypI%;D zJ-vEj<<#lrjGk0cLuk+xA5PB`s~e}#`^3hnWsa#eTw$#@fmW^t;6~9PEU! zmhN=&#PaIOsnw0u)zj$Y!zZi^O4TzVObussr&doapF-!2wbPvD9iHKWvp9R963H#y zbrrj~x{h9}>)4W&(;Mh|ySJ-j#5RAsI()0A(N+LX2U+UQ>cr{OC!wN22PSAA^0s=_ zdZ_FWr{C$-m5sHvlc1|*;=zZ!R&@`msyo=}jgzNOonG01B2J9o>6s!A7BtdoYb)67 zRh`bj!RqPtRUC?ymDQ{fBOatwr*)p9^;0J{)=7#!q_?Y`unT)&jEdKnPpz(>0#$9C zKCyzXH+d%84q(J4NLgQ5M&r}V>+2gQh!kI!P7o`-U7xb`l{Hu(%WIhBD)E1_XOs@u zRccYd{PIbRa&klU@!`H#?bM@oYHq;$iBqRmPMp}_+f%%={l6-_1N4@^|I49Rv)=#aR0^WH%dE`XIK7hubtQ-dj3>u<=oD9&fO+gsEuTEKc4}q)cQD^ z52pwcB5^d~C_)FTP!A1Z3o9;g4mLzZ=_8$LJE&Af!@DYHdeyG=N|oQ$ieOvB50yK? z8T;!ft`18yNn9Ttl!KrVp0%0`6x_@AqCtPK8Ca2ixE{2lcnNAiZ3o-cgBEf5>GodZ zL_gSh`RXvU-@XbU#GQ7zgMjVrc>k9PV@2b_^S`EpV?=M>+IBtA@6O+ zjgLI~((_NO?AD(_$9uA-c%ss(zP4A{jVl4X2(areKU>{hfAXcq?hDTYCrerVHY&~N zOr;OU0MtKN>ygq*p>kc`7zFjfQ;$Epv-#3K{ZBd*u6AgMLZHx%dHMFqmv&xgwNJg! zfUn_r*7&E!`r{zcReSkh?Zt3w_31&C8*@y0Zw=^8<~|xEfxA_zm_2+m71Q&~2jMn; z=8^iVF9Kh8r+cbBQRvk@8@Ai>`?eZSeE8uL&je3dN-(A*Y_2+xL$ZUvv=j8zUoguL zejsRm_|=yxo9*S%@Ey{^)2Z4D&N{swe(8PBy|nkl<_phYXHIAK68B6TY+3Jt*uW&; z0l;DW*TPpnwDQ!c?Ux3Cls>%D^2=a)bG{QEvQ2%qepd=(Cudo#yxw{aSQ=@6&L zblrOY%Hw;-gXO(w3+|M|RxJl7zv#K{29Ix`w99!JWr#K{`dvwop-2QF1-O8 zr&9_$rAH(9<=-g5LvjE8C3-~;9V+2}@2ZxX-~taGF`khc+m(TM<%82cNaZLI$B6Nh zXc|v^B(J|-g14CAja3>8NA+LGrtT|&DFhEb2iNbhH(-mma8i#R5mX$xuXF_etQ;$y zJ9nf64zm^XA3RdoY*jluM;=mhRP%%jri55Yk%@{^ZAq=<_-3`frJP_I*t?dh4;@mN zd9MmT6hMi`StN7+|8MbXRUNSS{*wCR68&3CGSPSQ&kxF)Y4ynM=5NmtwJ*d zm&y*yf7#izS4!_VM?6hXOmn>y_xD=CgGUfT*$O-G$aU{8m6uQSg7yPP9{Ml?9;FXL z*7P6{-?h|S7kp2^2^+ARgVLF>-fup5+N90wBgA9Y*04PqE}K}SgVT}!fB{kP5DLx->r@SkHVfaXKv$Mg+NoQH6> zbrfz5vP}g8>88B^2E8)54}~3?7thi>N0Ig5Eorg+xo$lir);^;%0UA#K!T5gVhhewzM9+P=9K$@v*(9mQH-^z41$( z&3Cq!-`9G+{qzgl{f&=)?DYHIxAX9WkSMhttUH_&oFc^js-38_*Nz4p{CefMhUwgf zE{$MGMI6}Yza0zPt+oc(KF~pPy?J7I0S@ixxi1x* z=BE&=#@?#78_kp3pR3zmqMi4n=BG^m=KakF%%6uBAz)lZFx!3|UZ#GjG}`^qbGF%~ zVA)#(=tCg5pfj?+U#=8V=sTg95tqo{<5AT%xmorKT9rUhaWhH|_?uquMN$7;`E~Q{ z-0SdVolC%%ATa3Of_;rc3XS(QXl6=f5&M^pvP*OuE`4~L^O63sEftm39;?xtc2bAh zRfME^%AY>GNa^UwsF!k9>eKeu0gblPm2ouaK@W`w4XDI{;FN0K@C=y;nx4AWB!;=|(ERp6tV66HRbCG5(S?xk9@rD^N57 zXZLTe*6Y^XpidMAQ4?AO*o>X|VYU(Dt-{@Pzg>&CP9@q@G>fjiF!lA0$*+}|y0i?$ z;||{dl&1s%w*y8Sd?M--hj3-;*aCvKP(Pe~zCr<#$U2C{&i1PAo>B&51a=|ruvT+m zu5Ch0snDUNSg;w5m}CamB+U}OVZb-v)qKzbyxK(QE1SsSzzIsmx^gE7x=GG}onCXb zxn^JuZv;{mf#SHg5ueeP9VCJs;t0hr^r~`M0&DpOsT2&+~ zB)bSP0%aMYR*muDTe^G6qOa&6fd(j3k@3-U&+)_^mft}0CMo3{zTm?Za8#-M4;5QX zrgbTt2oR_{d!sj1yQ}oywcx?J)X&$af5skfK`iQz7mK8DHuO3zJ0LIcCs-9-2+gO@ zH(1=>=0Ve;Z3woEdqQq(i{hkpf~E%Z$$tb}w0P#Nn3BXUN)hC;Ivyb1y| zQY-0qx%#MQnxOblzZF-&m6`OB{CYWmt$}!Z@G&Pa4#AkjpztWT-1zbsd(?k*pyF-` zjBA~rEA)~xEPBDKj|IsNUhg*1Ttwpjml+IuEJk&sY-`%>`}5_hmoSA9uNO=v}Sma5MzQlcgdi$(_w0ZZ6ni(!L=b1x8LEe z?^4wr#=8F9XaKS>mDn{pW@sFlVN|e`ZSVZ5Cl2y92`jdP%&r@e5$I$V^KHA%#Ro11 z1ldOPjCU9c_Q1>a*}K4i8p;CsWzcm<-gbzg$6)0@>7GuR8a-Ibcz5aOdbLcPUik!5 z9!AFK=|oP;iWTQaS_9>WDAEbar3D=|BKkjRH{-AZ4(CX%7pkn7u^o}`(ALFohkUK{ zj$Nbr(>q4L2t6rKJ(1QGzQ$lz%TA&BaPtw%zpqvbVV?vb!MKFCH$U9`h-ue+z4?au zvq_%pum97Kr>YMyI;rh(afviX$#^ZT1G+CM+qe9ZiLD02n7 z?^Va=I=n#!fNE74bP>Y}pfxBpQVZASZu5)-WpOUBSzyrMGs zMqS?dexsUw^2w-;!wbuOD2R3pStVzNQ_vCD4E6E!{CM09ghYXm`ElUMZvt1%FR>F6 z?AT&boD!( z&rGaQ7K~{~>5Kgx-r_WZLjc*Ux&=SF1F#*%PG4p1sJ?eQeU&ul1jEiiMa!TVBb*P# z2i*Hp!`q#vVCb-6prpcOiU5IbalO+*yAYA>g|62*A7X@0Yw(A_EUSmRWvdpJ;PQio z+!SQqmmJKy~ocfEe@=&?6m{`e~&|M)9QTlbaj`S{20y8E7E50sXcN_X8|Y6ozDm%vs^ zXCRG(67&%WnYspc2(F2xd+$9|y0`SA!g5^FyuDuHo|YO&FDO+@&w+=P(TWY2jYL#vm8O5%){A7JQeb2laBw z>aSejQD%DqnZ%~Fsj9icDlVWkHjQoTV9JRC=l9eY5*Ip-3L01TP7P7FMt zc6+JxDD>A&XPWVXIZz3`$-4TR{(?AvJWrS?!n3 z01vw5A*>86X3$b?Iwi#3H&tszL2&kC-HK%4P7A=kx#{YY0wg^<_w+dwIAER5Z1Ea7 z+o-%jk7A;-l~~QAL)`0$Zo?RoRI7j|E`YW z1LCF!3LlF~XM&Ql+e_H$5{JR!l5y}&v#z*AtR8vt@fROIZhUm{k$0=TCuE?JQ|2Tw zi#zZ1&Dd@Hq)c12b(di0rczh}y#k(9@G4qMU~o)7Qqut?!ak>Wjl(JMJPBqa3?_IK z1QQqzAxtnH#q#d?jHCCI-s#;<{Cv-`qvd;#-E&NV1uwylYUY>&FU3~5q2r`-Yy!Hh z8kh%P5JDs}Nfs}^lI)(W{E29QozOIveB6rq&ITv~Onpoc?tGIGiM;nleW68XOp?UW zq=`91++!Sra!lRj=sh3r+;hyuw4yOUA=I+^%TYnTV3Nq=CP}k5-YB^fm%r+%x$Bei^Pipw32mF{-Wq#|Miiwjn}qg`|HQTGJu zo@NtLJqZE(mC(|i$=_^4y=abdr-uWMqcaB;4zw}mh+R^vpl9jmvC@MNK3KZvo@t@W z>9$(epjkW9gtEXcA@+Pt`uw8@1O8Cag8v11QhqfD$8 z`k;8>!LhP#Q|1r@Mk-#UT!BcK)$ZZ#$LN(wPXUak3CjlQJ)A<~vQtB>OM(p2+HEiR zL)DEtv6_bu*r0s9gG&`OJa&63=-cVGaWg@+eb3rb5T97W)*WxRTgPjhBrozu=&IwlJZ_A->xv<2K0u#Y5QDjerEzyMJ{3{9?`ejuZf#M zYyo;Xt%K?&(+rVOcvF}+g!obfo9>n;KJ?5prRN@g_VLoY9)I@Xr=EGw!;d}o;^QCq zz(XTDg&UIII>OZtaCKpL{WA|g_udaZ{9bf@=9%}j!gAExa=KlCA%e3wYzPp-QoOWV zhch0(fGUZMtL3v*@whE295uXz32DYRx#|c^wg&Ca=*`re*yb$!G4SBa@3%+~EZtj%&#{ zE9Lt&@?8at^#Lc%U&>eR**L}oE`&U4 zfEii`HmwCHPI43Z%4cyAI%q-eVu#{{Ra|QZ@o`)WSUGkMBm_+HZl(HCHFpf{4>X+cY-|}o4VTd;U&lzL9~*qRDX&ZSPl3V5o?rLF!<}qUbUugK7)NNZg;hm62si0-cwO>A5u>_fs=poGuI^UlxD+1f z7J4?jPUx6UH7E^n(}@n>DL3m?Lhztt@0qFVWI9K}hWv+j>BdEudPKL^S{qppB0+Ej z@Wza}v1a%52Apf~n4r~#j?}3mmY`#>$V@U{RIK$n`&ZKt>eh4HpAGgxt>pUTGngP9 z`zpwMQP4RKc4C{|oHWzJnfUJT{FS8HRY^0I0_7cNXOr&#I+ANZ zA^E)*2;B-``swdCC4D8q!pNXE?LuxznzWg{i=3?_LBJrz!5NBBbmg>4^w>0UrYRXx zI=XDWU!9C2!Mx$66f{p_!;-b$nlz%J!n_5r7lxL>bdqH|$hXZT&jTv28SusgmRdW^ zHKm{ouU;C&y`@cDjBbX!hLUt~&}HFDpKEL%^C9U~N(KU{sv;ZUYwET&lA$AnXA^AW zLc*@lXp$tr+#B_yBF}3mCeuw2-QC@TY}5ip*_Wz?KV+7Cr$S(CRBN#euYMKk8jndb z1#1Ew*56cqlgczo`dy*FDP@n@+YyQ)B!=4c?q{F1b`1>}r3})FqF;~qL{+M$ImOM- zYJRr)^YA9N$FeKZ$0o6$S35i#AY;HVVB6AUcO`17ZF8%E28a^0NqCzh&yt(($f<;d z-38A{SyE~hoRz)y3UQRo&5n1M8PB!@+qNo8MQk(}I83*(o$ToBWUqB2U~E=;^CVOW zx&bMQKPF9YG);BI7UZo!-|snVeXD5^cHotRu4qx?DhIciR*?Mwfmo%z=9}>Ln@kBF zt;6a(xy1NF$P)|_=8b7!f>=qD2^ebM9RqFxMt4tA?h+VR+hJ_Q714KbYgmt8BTvU2 zghc0`99Y-iFy>a$KrRK*XrK~mRCxqiHE^YX@IoB!>PHxeEcXnoItg_=FM zyg^z6W7g4mEzuDqHX|~2-40Rt2iX{qjkuVo+lZwFHi~(~QEL}@c?uWX?}RrZ(cskn zYTaGs+fzl53>WM2X?~8~>gMO#uFcO&e*OI9k6(~9_`>AZFG~LS$>fi3CV%|mq}!L+ zUx(M*N(Z#bwWgTRaC2yzHor8P?w2>e!W^0AmnCq&&HAdE-r6S9Xx$P07jT+!7vOTMyrs(F8l9G*;V^sRf1!Z+{_dZ#&cNFT&rf2Xgz9slUCM z`r8-dZ;8Wi`%BV)9j5>KrTFXim+@cP=|^{|`Sb9GB$%Y#j7knB&{1IwsV`vT)iWS2 zWc4WTfukB;uS!};LMKy%EA-Dh->+2Pw;Jv74>zh0$e?4jDhg6v3GB-g)^?q0VuWqH zhgmRj((KppCiNYhl}=7%pBr)P41ZWPfwokUv@~*qqs%bxvzFRL%5{l9z~h9NKeCC2 z7c}@KNeUDIOp6rL(9LO-@f)lK0$W5I#0a8~oHa-rZE#Vkz@;IGoRq8)94d8*>_mJO z&LZSHf9Bygx}B3JCb%>W;ufq1@?EG>Mxb1!@Ssd{b$8m8HR_YGX2of!GMSR&H@rc$ zQTiauAb}Bec(v>4pSA;Bt6Ic^O>o6N)GgM2a0ZdB#AiqqotOgC@BG*C53fvEFgGhO z+)fsgkTiL0` zZ|{h}XT?$&VlpK+C6Y@d`qCb*x@=h&jfHcAg(GNJibf)b>{sK9(k|1aQU~duP8(Pr zXAx=`UI^XN$>~ktOMFZxL=G=nFQ0%rz;dly>`0J!DAg9@%-Oal)|b0U+wB*Ki1)kL zNUkAHB$_7^2s^y+Bh!G+_3}I7SME=!^hP@YNOY&+_7`60pxs$F;(Dm*Cn}tKE}B1( zu-ffDXF1@%OnfGp4^l(noYxgj5?%dfI}y{sQHc$d>ue)bGHh>l!0OZ-%=ZMHaHwF{ zkp?blX6}i)j_RSg7q0Yrl`LmzLust$I}H}n7)}Ihu9)>~znzP_%iWB(xnRw8^9q$7 zrGgo4DFwals_ff83xnRy;x-qYX!YN?j*27e1(_JI5EY$5dNn!Wfc* zx+pO7J0EN!#Rz&hvxS;fWKA`Z@u-UMl(s;Nof2*Qci2~(ECd8cEEruHG-gpM7BW1Vd3qnH5t%FJ`n!XE4|E# z!ngLy(br$se^fH@+__`SMB>;lrw50N5h+zIcF=z`9qvr%{0bM=Xn4Dc^y#0=TU$#X z`|$hgyPK~)_x|@e-CT&H;X~uype-!vCh^kA)2C0Nh{VQ8lvp`^0<{rVa2L`52j-oBeubdO6)Z&gJs5r)DsgFqIaqfw_V3Esyp$DMwI!RGKvi3Fn8PsA6`>XH{9q z`OM@xq%^6*ZtwSj;$g_ZChzvtt2e)t!YJj>!c=6)Y`B9~$k{L0vsD~_lKpYL9^^JuHh^<%S1MYsu z&0b_)q0SPVQMf(lMLgU=2weIg$rp=3Sck033L6v5Ouj*RLS4y81g7xePRKWm+ZfAF zR#yhIW1$eZ2|Kv?Nu_i*Kr!AUYDgNt zZudE9-tO}N*|Jc`J|lNL-p0~3%W{|Iv@P>6Ky+G>h{6Z@<_T;X7UR_=S&GcT;cmHe zaN3q3K6$t|a~C-sfmZ9tBc%#j-QB8m;R#;FiC0dx39jw1pCz6gT~sM|6;9i-y48;; zSm8P*kNeh}y+nQNus^#ibzN2k6?sO(=M)^ba^6zvFUV9QgHqM>)Qa4%NC-;4mg$oo z4L{+VSc^N}cUljmINRJSKC{^so3P<#t?hj(6@LPTO)7&d<^CF&}(gtIr2ce}W*ubsc1H zI@=m zZl~R-zB(E{;+vU~eZEuI|DbQmYOVR~9LL7Q>X^L3)EUFoy@#nFSQKzU%8wQgUbdA+m~Z9j7Ugb;A~3@b z`_`JmXG@h6^#OF7;S8zry{#3PqAUdT9v|R>t8FkdZJ~!u?ejq!M?Ga6z2sZCi>jsR zFp39H;N%yizFn$_kwpndf~yO8hjdQa+H<4f`_v5F!#TqtmPw9=tG?xUc!+cC@GM2n z3|#$ll9RY!%MMpVHGbb@Qn+=cb1u!gjlsW|luRcR3p;rQurn7g?4;x|8L+LY$n8R6 zG%a`aAC~N+zS|AEh`*pX2tv)ksM)wN=9WITzH!qn$||dIGz~E|trVZVy zhum|o_p9KUHhQk+VY(P1QL`)w_QZ&U3qEZ)!uc)_a<$?m zj@N8x8$dbP>OlxaXWs1&dPtc(?ZY?(f)CC3xr}^K_?A`i7socj`#f;z)GN$tUOI!D zv9O8oI1dN}FDXDx$ycSEqv#vjJufK>o)=aK1o6@-ow@P;Tmn&uuN>H5N?B%L5%=>LUT?bD8h06p+wqLh%80kuYxP zvGxrZB2K}JJ_4KKgl~rGae|6^I}M4>AwApq=7p;>v9#t9Rb z=%d4=N5hZ$db#Iq$-Z-uOWd|)d3zV?fY;D3xCKTzboOD9C$Xt&8!Yy;4`9O5ZR(YS zQ?My0snEZ1tdWyn#7j>p=M5XXyIfYSV6#)j(Rn*`pi;@d#&Qe1F&D?`zE1(0Ry}i) zOEWs20f(;&&a44JUcc`Y2!dyhzAmBc>~lL24^VS;+m|Pr=+H>f=(uK@qaicsC&KA2 z{&5pK3Gn73&23CK8?G@^oj{FA^@;>allt|e)QCB(p)5O-Ayx|>V}!;X_m^{+MYV8| zo%TrV%T!IQ_&|J59o^N)L{Do`ipTK3W>h^`1-GXDu3S8Xuspbw~tp0414F4E~@ zV&1|l6I~`{1Y2_tN@_j#XyvgEM;^M)C8%c+&Q&);9gzKAU7+CZAfJie9C$|f;^jP! zUAdL5#?FXG<*mmtT5$(BL;@5qUg`jGq70C%zXxy6YRq(V(o|AKCd~n^J zNIU&ZgdZ+Pa9y0WWgpdf)CZ}S18-nPu*cxtHy!h>jF>%MID#1}Dgq<2qP?m=K>P!KWYIyOnAH+Exf*RcjJ9K;eJOt6W^m3|6;bvVk5l@p4-j|0=r6U#?*4t zp45#vrq%ND>Mk?6yspoDk5amY$u1Rp$7_GsW9UPf{a8k}8MN?z0P|P!KgJ{!BUwHO z{2i&vcqK|I%@#@FF-OJ+FSUuLVObPs)e$End>-4g9^{yto`ZH-9nAN(eQr7 zS&E-=)=jdhtoaUsSy><>|B?~ubw=e$0Y?Et)L^xUj_Mwc-2HSL!xe;=$@$j#X!vm- zpDrS~^~1Nwb05oNmUq;sA7ZnLiUAx=NN(og>r8EzA*9W`LX1Oompr(9Z&fx6NgWC8 zcBuEFE-q@&sL4;R&D-`Yb?_{R0Q%-!Ca*EZ-)`j@3Qg!#U&f(2b&zcMnu`20wn=wG z#<8-Gy=hy$V%Pxq1j(y=_1Jg6hS?K7M1BKp#f!N4)2~1%(ASZR|ec1|4%Pc#XoQ z-g%y8#4X!s7k&WmM`FT!rH`MoX#&Ato-LeUNAJIQ8N1Q1?$VLhHF& z1hoJd5hk{40?+v@-l#La{cur>}I!)C*pCBb$Na zJLq-sDk>Sh*N2l0SH6^cQOHs>TVR=9om5nNA9m!6(fuiLRaD0>xf~tF2P<{FOhRCO za3jqn^8u$aVo*sLWm9m~CFIL~%68r_j>;?6`t5COm%8V5d1yWe^5i@A+KF5Q!vp!}B)V2UPmyRuw#M=X(2UGvTi(l=b% z2its8*D7#8{UPPNo0>Ihx_tEvuaYo<$R;^?In_Q(HLK%2bpPD~orU3Bi~a<1W>rM5 zlff+4*WG->Jvm7EdJA>IuyYAFqu-3@tQRk#oFhYk2c69v_n8pm&o$2s_GH?`&&p2j|bL8X3y;;n{pELnSseo3G(z z3$xU|X~~9Cw_&Z>3bKfE8r3b@LP{+Lfz!rsF9tYaqSB1#)oA;wY>l8bA2(12QG-75fbpggI1XAWnGgGLKm-}=~w$z zRsGMmTq{S*Zu)@^TfUqt>uWWKy&=S6EFTd39@z+C}-(E!O-Hq;)d z*|}|CQ{!r#zIT)14Roi!WTszyopRzTH83x)04qR00qplK-)cjtRp9GDuBHfnGv+kK z@rT8Ox?KL4Lhc@lg@uwK4PN+S@ra6H0U0{`e)u=vMDx+a<<(dA4JojKoD!HtLR)6c z;`D(09;tf~2kM<;mL4;EIwp||kcMOnaXqT+95Z`I!;dZCxZ+I$@%ngAtB6S-60`sv zlbl|AtiW=~n}9D>0=CF;b|#g8Wt!|s>v^`~KD;qrOKA$m(5u#0>jC20 z2a>9-X~XdOv4gVTDKy_0C66^z@G5~*tc|(;MxN)ZX8Ra8DKatE4z9b3!82>Z4o?Xy zs%E4#y5_9!RJh;yt|dHz88*x`DARX=BE<2%K{po_vy0h2zP90aKF zwoiy`jWt&w+9k(H_}(lB7#d>{^*L{+9e-UacTw4RD2IX_^Cp4hYBT)^&q$}7CG+yo zEqdcQq5Mdz6FkhN0;eq!C{(_Z_aapRfov={l)*$fl)NP_W(}^Ou!<_ z*L=j^8bI-6b?L&_vmFiLfa3Hf@&p407qW8l-Df3i+^bb(3cfgZ1lOyROGR$uvaVF( z{>FGCbVfd91+Bh?SBq3?MBK!K${BJzZ-q`2SUm=npUCXWvfLH9jU~US27X|+dW>bc zjeU^a?`7newNYOfZakDZ_j?(w0qz54Kf)#9+UIV;qdV00(%&)R3LP#?ky^5jL*oR!9c&1Uwy9?Nu-xq3YWL=W`ja9^l4?*-tgyLD7a@Sm{+kt6o*S0LAc9Dk#Q=EHh|t3aJynni+`N zS5F>`!KmjQ3n+E249P{H+Zgpuu}7=EJ>t+8-NoMLszZZf2+mvAsKAD@@B(Xj z!#vB+WOcN)T--Tr!K!+_S`?sohTn^x7dln>NFM`)xT~H}M){CtHQX7n$asLZUa4vsrVsn} zBiwFL*Jfb32}eA(y$}z><95W7s?0BU6x3yjnN3v|a7Wo+RmjGZDu*&rbVawpb?~}P zjzT^khtu>99U1Yl)bn|)7XfEQJ z_P`M4JFO1pCZjDO>rG`qvw#xy9^3(E`0t?a?wVjKJ@vJGMv$35kRneV3u$8RytA?y z;OT2DgFlakXVoY(83;TVl8HH4?qbsTK(!AQkWUPXBLItSWV_tk|pCAN#Nb9Bo?4C zapW+ViFZOH{8yN!*L&)2lW)fE_c9znVANMT=YjD-FjOBK^H>8kWHPek^xYGAAwzAu zegP`S`d8;@{*WS=a@gi&4atBQQ*hmF^C8LoF3t%_2~CP!Th5_stK&s5JjAUMk)f@M z2hBUMrGMY3_9F@pnR?FpaO6i0vxQ}9F*HuFs#K^MJKIVxnf6Ja8uSjnIfA!~ zS+?}mL5ODxd0UEA#j*^*vs-wx9rq8!2Fwr2WXpb+z)WT5ZiEL1<;Y=8chn7$9bO0qf5O$ddxTU~xx0Bs1paH3h}TIIDYbmZsA;5y8lK|FbF ziYd;M&Kohl@&`TCv2Ti%-3A(085gfi8{eLqZ_GD>?VDL#FE^#ejde@o3?G;oao^b> zhf?XZ-aPEoo_Wk7_d9ds7g_s=1{+H2W?XkEK&rTiO1FK6U0nb`Vx7ueKCiFBYMnl; z+mGsEo4Q_TO8}hm5oGo`(e_P;xf9n}yEdujkaE(lBFA&Hhl?bLTCBoPyA$;~Aqw)$ zEB|qMA}deZB@G`c-0vWrDhl2yvAJ09cNe!0P2T35(k^UQX$yK$Sb&)5PUF>e$$q)d zxA~p}r&QJq3U)O-AI9D9W!5h@h!~T8xeO?6!WtIjl_2ge`{v|+XFdc>5p}D`>r!+Z z=L6H1_A?T`MX&ThkuM-g){pRdo*etk2f+DUhVMYV67g~0{-)NGebU`#x|%97ka_LJ zR-C&{fgewEf^N5^&Xg~8!@9>atYdXL^6wCbQbWueN^>XfLzMen3J05d2V)fJHk|n} zID};pzMeIGys11@c<$a`>uTS!1V|UB|4~;a@W%Nq1N7m^ek`AXHv&B8Kc+&<1n$BXX6r}G&;2t5C6 z;<)#TmE{TKtySuKc&r%}Saxv_lb2#}zss+YI;qsY!Bfj~W@2`Awk>dVLZ>{kcZRMU z@XgTuUdD7`fNCk_<%R`hok@r`)sFHrxAXLR2g#{?^%gJPW~qp{eG~FsZ{MO5&1}1h ztxf7ZrUI>|3=|yTs2wboO$I!XUg5W|cMyVsX%*Nk6k9@c!Koo6z_QhoeH{>KH%NvA z%R{e|Q)~*v=f^3hlVGM0G(Gd)RGIWbe0!E|0a**L%TcQer#4QxWq47HH^%tD515p< z>{KC}sg0*gw_r?U%)G#f;Cbb)I~Nqa2H3tNWPoVWkpwzfRW|WZsdT?i7N=jN5JpLT zoGvdPDJX0t?-zz3c5solLKBSozI5|dqqToUM_Np_hk3U0E?yw!gS z5pU4$GWR^cuy!7k$l}4cT7f-2m@}=eV0ld}M|AplgYy~6GOG{2!*Yfsq)D|IUIFBr zn6$TyiMvwUH=O%j)e~0v{azfn;?)Pr{mz_bA;YGj)S*dkkW=Y$!OTl z9VU&?+y$kZmsN09aTCPz;1jtn(S1=nq67J~a%%qY0v$xyW(mE|NOle%%D5&pQzZ0E zlQtP1!GXT`YA&+fOI*3Ab{jkSKkm;NG2J4ngH(ZG62@3n9X$DNo}wJfLtIG|AH40- zGIyWmJbefXqX?5EjLe!`q2AF;y#*>^n{i);HvCkDC1lMlPI|qjQiJDtso7X?NxdFH z5)>A%$2fg3eZ-Y+f%ouGbplB6%Eesooqc^n~2FSVBMZq4%@O%5K7N$mV+Om+c zx+A5N#Ktq2mX=Rf&h)_CaeYo*oWm7CN=Z=aA}f3_xe7

xgof;-gvjdzlV8W8aLO zodR@651yett{yLfTQ7w&YRpwXCPCqd@JUTPj|B-f>rEn|myF17J~5?Rl$r6LVI&q= zy|_P(hgtjz*(c8CEU8U#+a)*YO&HP3NHX(1)dz_+=@id<5>v{#;I_ih59+WW9MWij zP9vxQUTwtDkG&M+`qzW4RRkuA6!EcfKrc+!9cNoYXY5sXkvFCa6^w>g$huy9{Ncx* zeLRD1rISFEvdd;m|ktU$r`ipWj#V~d0Zh{btXoPv{ zQi{E}jmzP3hEk*Elpm`nw=veA>p7dtJLB;BtR2j|9ByuwQJIqnvaPJ0pTxZnjioTD z+v&^+!}?RZnflAVK{k87GE|N!j!-8;VRN~@e?|%60{O0!_ZLZtQ`~k$;t?)&Czl;1 zXf!6j_KiJ>`_L_a;$?*U!jN~$*d!IfDqI?F!k}}w_HxBO&$o%!sCRH%zp|n($EurP z$xA|>U;u=x-?dV#R&Wh3=r9{%G`vb}D3xyI&MJ}}=^pr8Ht#k@W$bPR@hZP}J~P`w zrxD6_;tep=t)u^0k}Hmiw3yV{)@^9Y_%dd{6T#cW`JN1i&E%rRXrY5e^@?L0f&uJ@E4 z094z6ci$9JaQD_r;Zw{{?oTF}r^&kk8QBn1z&2}F9;n;Z;>Z2LQkal>aPmNlt1%ZT z#^W9z-|na6huavHWO}@$1H)e4m-d=@`$#4ujC9>5Z|HvteDM+obOUc$XCf}+#SQ(b ztSVLJr)(KpJr`A`A)}Y+vd$_O(wj+A09jfuYer`(lvFSqan%M=ObTg=j`oW0q`3Py zbNXOIo&S9J)7^cG+Y!p3Raz_h=9@R}keYw?v3Hx9#5ve0eHbY|amVL-!0VMKw3CZA zH+Gdv0B&Pn6~qkrIt9h!aay>GyexeRC^$D+4(VdKV$2#VQl-+Ih+NE>hP=VAj5bN? z@g5m>zo)#V1X{*}^ihlP?8V7m@M!f)gi*G~^vhgBjP^>}zvy*l7hoN=L9Yj;#=h%} zq>qeH@*GGdLg%M!Okg#my5Snz4jthDS-{d877FwV%{L%1c>lxgQT6lXU zfapVh7&95Yx}0GpKAvN~sYjqTQN}1UoIC~1RdH)G<5VflY}%{peLOA{oUI{w9%-G4 zKW;3wVR>Bf_GThXv5Zc@KrMY*Uh(3X1U}3-cpi1G#dbe89 zrYe`3JP?m7)2XL)Oj0^k1}|?ea4yA^w>9uK7mRClGsLSG6qqY{6&{4Bg<$Ez{=Le5v11DCL%A?~?@n&w21kI~YuG~ZbL1atM_T$OpD9@tqYN7i!f-u?SDJb1 zbQ-t&%$_JH)7u#$(MSs4)Xg_udBkj4f5NL1x%=&d<9;v4XR6)mS-N4p5%&UzA~=hz z67i zOq=i^cd9ZTV|9sVN=I6qPZ_^miLdbpg}E>sw!7-3X0NWCy+87WnJuXNtHW&(vwr8@ z9wsVgKq;_22r4O!T1qc_15;KM`3|c6h?~VhjnBWF3E=>@KQA^-5?RSnEmY<`6J+5T z_sa5Iv(S*8$!}(uO=UTNk>&epr}38|GQj3qDHR$@>D;Nm?3=WpT1sM!&`_#t>M#4k z(P5)ckD|fouvc@ltMO5p{m25NOpVaDRPs5$E8TpMU0#u{sfUrI!VqSB&|#dOgmJue zwd`7b)3qO2oyjKuq^geIVf~6)(;rKm$lw)@qsuq2^BK>nMZn2(J|({Z$DwrX1@KVz zaO(kof-gT-?zw!k$(e+2j;XzL+9G7tQH2eYuvrq_Ub6O224Ut=ko%qN9Sk)ii^y)C zZ}RpdA6^1`00)w@?X}6K5Z@?t$%=#CyI}>ki*z<7y+3`ALWxgF+YhFIpkdZp2j90; zOCxGmQB5C?e7NtsK8kgTX3n=s!VZ!r6=$#X2U2@-aWswVM@Yn;-yhA)X(X0Zls|fI z4>=20XV;yT8}D$ZZZr309`0u@d+~_Gm8ik2>jBMRXgZ=PUcPX%&5S1;s(=zf$3IH%Uc6g39 z6`=Fpq$uRPsOV8$7lyYi*}kdb8P&2RJF0NPcpn)Wyj*4##N~0@hqfXNxoT1`f#)9t zu4O_-e#0F54a*LE?Vza$P%~6`hh6ztoAbHctoG_Ll8{lr!|Ujog72CvhE{;kRNM?X zJujP(>YKiq$rp*6@ogB^$oEQ>TZcBh62CcK{chEX;*a!;p8jIE+*1&jde zw9lZW0vJMNlBi3^L>KSU8&NtZ8CVya*Y)MD$9GcP@2Cm03oe;a1veXKj{7+yeRDtA zX}+1{UuBnP7zG7s8YT=9>r}b=3?nvQO-;8zj;)G0+EXul`G{-`mnh+*tg8YE@|ky$Qgo{cFotJ~ zBHQG=cojp(cjud`^BK=fL%s3>nF4oPHCQzH94QZ?6W>o2F@^h4U6i=X(M|$B7q}ZN z8E2Nx*FKP`-7^jKgR7N3IAeZbB%2+jfNRn) z6-1efkRNJwR-8L~r>!a;xG@^$KdnAZR0rxT>{%4>W~Zzx2=XGOZ?ak{q4d(hR(a7` z7~8o9?CcJyesu?yMJvLQ#=~`Rz~w6svkz8RnjRk;QYBhUVa;_0>w;FqcY2`eL%H8& zy*m|%gtlMgnx>&|-|nPn)iksRK|6Z$i@~HBZ0LY>`Vhpq~ZwIBHWX^P%f^g>J9*{i0CYgfXn~eK7gpCil%|B%D;R5?3@MjuteXHnuOj8|h=ZBj6*_HI zPMlGL7B>o`F>w?1hT(QU=!Z`2)7e?^dh^7N4==W!1>OPO(vM6$>m&cPMDT%1w_urH zM5pOOI;!B2=}G~9^(Xy6N~Md3HWRnpLE}b00!u~Fn}wC9s5{ARs6PqU0d8Z7O2IOR zcu-&&my&QV0=0YbNiHkQXeH`bg}iA=1^6hV?|x^^y}s@A2pmAL3e#kngHvNsQA%+* z(C*yNQqi3I-M$GFSQ4CB+I?`1g1|YGIr08XhNnE2slZQe%<+87!KiRPYEQ9D)3A*4 ztf;UO;DKb2Lw*!ub}?eBMIX#ztszJp#5>S{`@YR`7dvO_Lz`v*io3%A!o#oj#@$@` zZ8m^xvih=*p!MggJ$2hLBS*r&u1Q|RB*=+uTs2kKxd-%Pmq=2!3{yx&%US%h6P)c=8>&3<^P-eJN{+$GnNbg7o+a@g#d~>Szw{^qnx!Xt z)j_@VSkRX$`1)Ig-zw@`#eOT2*E9Q>#vI#~*Mc5z&F3c!X9q@8yQrh2I@!<5FdVzb zN3zc6G8Dj_J%qNH*76}A!$@oUK5*$4IPO^XSvMKrUaLE%`0Fk%Zejo8E^gj6@a|f* zOK+h!8_Y5}-}v?;p1edP5w+%0*|K%ts$7gNIr#9wciWbowq;#@OK!vDTQt+{FRJ%- zB9u%H{f;a6P*@@!1y6z|D$k>2tiN4iDnORiu~k{sT=Nd6!-B&Y?t;Z!buOiyY)ADfQdBG(a*L+-*SzDrkJ)Z&E)vHr5zF4djf6vY(#^(tsn zY$|Jez=nUP@3eR%JaeowE{JmOQ>$}fqY|{32GH^X-PZCdNNJwvqr-FyRcATsP-D=3hsgr;MNE|0WmPZgpI*)gI$OKTw-Eagi5IxO zVYC*nt&=xB_dDWpx_I6q)ow+-(gYmZRKbX>?y7jkxDGxxBkm#f|$OBp6(5aLWfhaLKyO1GrigyEd%nrKld` z!8vajyZ~O{3+m__flZ`6772srG0rSiwGqO|&6gmK+{s0k(^g$uf}Tt1drZ*7mu!8N za90yIo=IFY5g6Z1bq|M6?U{p*(a?7hKY}^}93$LHham{YoBOw~^~sOe|HME2;ar-V zPNmXuFylVYmcIKMJ(}P~L;c>tB%@wZ=9`oWP(BS1pt|T{MjqRV0>L+N-?Jg#EcYI3 zXN$Zv^4p==>(upH04nlt(!_MY1!dXY5T}L?bIODP7)! zY|S>`PS}q&T8>J*PTW{~LGxYvd8Z@>$zkO;Z&x>nt zp6+Xi0V=|wJ~CO^POzLI;PMWkBbut}w$g@Ws3|@ug*Ua|$iCF>zWBXnJB}B%vaPsR zeC0(gf=(xs(LE-)3S)l!Ce5s;6pk|#PTe`fBa$f!Fkeo-Q|HYM^G4dZWU@{lwD9U- z`>}NM4TTkSRQ3+9_>=eliu!&XEjIVCIBm;KTz1mA+1~80BDYmL+X393u7$;LDcK5z;xSV zw|8fD%X^E^fcakT&B;tKS%!+~e(2Hy-MQLCj?v&T-5=oS**I&rk=_Z}f+B`kKPmv2 zeou1o_h!!8IgqBuGAEi%0B)H9)1|sU&79rB=gMPR(P_}c+bo*Ok;Xc8F8EtKRv_`tmuV08hYw12Y$2h98Az4HmxXb;Q}K$zH3_+F3Hs?a|)1hgu-g=G`7Y&mNgG8-J(N3Bf2^rrRH~n|6@08-+A%$U19I;3)`%nJb|^haVw9Xo2l-oV49#Ta8z? zWwl6f8}%Qu9v;7L*bQj=!wjdPWae}pyB-n5uxqoSYd%2)vjr9V{tpi+}_@h!{gGF>j@Bs9Tib+Hd*nNGjUah&b) zjg#;yd+aad{PmIKSo@c3H-lYELS0W*J=V+nhP~79>$@s06Tt zRZI~-yz8X&&YJ1@Dtq3Y^jy^iV!|L^TCFTscA{Pa9{Fe~;bXZoa5;sxdB)K(rBx&h!=_ z|4J6Yr1+F~i4EN!r1h_|^=Spz{g~5L*%SicP6CjsqEi5{O1l9015$lnR^h|~ChAxV zu+Qa;#A2FaM%Hl+_lm&zkK|@@?J^tAzFuZG&p>TshwGdRBvn+Mts}Gi9ny@%>1Ldz zwH4JAzns_;kMfN0R5$weWP(p~f)e$a6`;BsEzrJ_(B{IRW9JFTf5;V!vw6k|ro2Q7 zi}w=dTxnU_CYC8)MovA~rX(JJHNT%F8uJd^zO=237n$7;&%MJsF0ZDx%`+kiL^E#3 zSOh>peT^G37Zr+gOji7@oa0<1<2oJ%<~xe;zg? zn~UL_>Lmj2Ax=+9RA=vnmDkGe=eBb)@h8OHpKx#Tj!7ZVus5_g`3lnFflPNol>P}Z zE2Z1q6{dBeLeou))JKS6sq8W*T-7}hty{!J9;+-gVTl|GL43!7VR%B+{v0tZNwjlf zVp8O`iRA-H$xDgeA0ajlWb?*E@NW>XAIOYTBK}K=hyxKsX;J_Age&D^vd{5^RXr*4Cz{|@ zEhC>-i4v(6a=>HMy4rIm2mEt6&{mG;Vq&I67K3M_tLO-inR+BfhP!`Z>+1JX1HFTr zv=9U$7vEjcIj$&J1OlZDZfdaKCOek$iP>b~`d}tE%KhpP+;0%F6fHUs$P-G-|KI?3 zD?Ay8w`5=1w5BS;J@Bq6ZU1qy@eNOFwV(um>M@}){~gC#FW4L06&wlWPGsZ;_tP6+ z=j6slCTDi@`vt^%NP9(Vo}`uB|1!8;_H|isH&u;=X``il;Y!wLU%VCy4CABRi_t z-K46bc%Ia@zJ=YF3gVepT7;JWbeeADEz<1{;&-{=XpZ{!$~61pYH06b$D+hAri8tp zds;3yS*vILC^1u%a8s((_j9gA&)bBy^lzs*Fe!!TCrNtZLK&l7hlBb~t@F9Oh5M1R z$8YCEyy?YG`#f;A?5@E4EF#r=jc5v(2>j}coC5Us2vkg?+1JhLQ7mbL+-!l`n0`8B9&3VD`@~VLQ63)(B32h2Q>SBok@gEV3b3=47_!iDljGx)}g?qw#IWoz= z=OhmTB&$pb$nPRZF?_~mIWGNuv_9TO7i$pED@1^J1P%@~>OcteU*^QU7n#Q=RcPWU z{eTBnqpkq|aq<#z3>?JN^_@q7{b!uGHwAd6i6>913;1ge7W|neZaz4e`C4wOH#gF# zdR}y+L~|b*q^L>7LK`yE=LyQ2qh1h{jlzCCxr;aVxfmqLf0bFilgMcBCx+C-Y z+Du7N7~bZffj7nk+|^vBl<^ur$(knjrB|d~=)8+h5&hnaiN)pxKVAMa6+oSpn`g7d0t*0stbEJQ- zvTu9kf;6|g65q-@h(Yg}FAOyS_LW?<_`AngTR~u(y{KBRRgt%*4!%BQ9nNtcWF}zy zks$MCBGW5T3(geJ&f?h-;}!T1oT1l*Cf_X7v=Iazr6UcSWR^lkL;n+Y%+ONFZDRA%Q zj3uZxAKbwh;D1L(>=l7U(VLvrn2Yzy=V@S7@Fb8vrJv6;Fwf)~xa_Hq=U;H4-fBw) zCui{PKJCo4>$(1KoU6Cy+O+T|Z!8N9+(cVq9&CgOHnuq1d3XUpAvxVpt8=yXj|1mKzk6-~z54-Ads$QpDK{7~}W0dv(`n+5PK-2F& z3EVFr+sZ!j`&6Bi*FP)IOy0$K29+ z=AItGA(mg}+~*UGc*>vi z%zJ&hMT&(W77m88E1Q8=Vq^^5-OaP*Serb~jP}OEdxqO86NRFtyjT*MSFoFGDggx5YB*oCkV)|B<3xdfHHRGGYNIJ^Q~?R!{Q#qp7Z@zgge^?b@8Oj zzSMLrVf!`kJWRNXfNZ|((sLwGzXehRq)SX~-q=?;W^d(TosH@_PyMhi!s(HYq+CFN zekWn>EKw<|Uy(dZncWX?$=;|@E|(g6@>k$}E+^;p0q4S_!(1&uApO+rc~YHLE+ z{1ORfwvFg}+0XA0;B4fQ)-2p*SGXa5<2rA51*o42e`WT4_MYrpxI13<=w$Bs)B@*o zxw@&@<8Kp_UOm8Ro(m22l!bH-b8=pyo)Vl+n)$B>ve>$g#hu99ifLxYC+}pn-^|&~ zjXYEV6L5D?*P9!80H=|+av*z))LEI{M-K#h0Jkde+6O`_fTx%H4>&)sfSzJ^&C~9v zIwrIH6GHVmv1fn^Hz8^*3E)e(e6K1w1K{K(dIA2~1ny;!GXOW@?+=Lzugy3E&|bLJ zWG%n2q49AWsr8_?@2r{g4F_>VQItiS7XO1Nn3wrlZrM4I$)T3LZ2F^|oYyR#Vt?wv z)@rY+iT~#a(JQ#8ff(+FMkRZl0Ow_Ks_?BW`D(JvdG{meHT01r3C<1etj?hOyo1h$dVjSXmYf{WWs?Es1 z`asBB&(#RlpE^hcSjD(<5V8h$Wy1DAvy3A|>Acblf;xdXIta0#3Tby+`rhd~ImvlR z6iPWx-uk z(NzxH{z1?rj2F~E)J*+{xij;sdx?zwnS(grJ-h*ka5dPGtomUBop-ByK^p}=@ve}- z{4s`-=GA_B(ZI0Fm$)_!lJC`S*XU-okP= zQ<`R`ZY72joTxXA!!0tAOQ^mY4c8I${3PJky8Kdt^v4ONLBM2Phu*5^0VcH|ew+u&ulP?hL#Ika^I(psTR-CGDAngD`?1OrFL9!N*)+}4k!~Od{sqFD z|G=lJQQUkml!@Dxc!XK9i)6C@gn;MgdJ_dOo*~@%k&r5l@ufs;)mH)}#Y}Q)C%A1> zlC@^*GCan~e_~++*>NJWg{_5+lf30Bd;PZ@E?Devp{Z^0r#!2R9V}5VH@RV(3tJgI zPx^5G7-?{ETZWNR^*p|pTei4`;XNC(U%#?g6mp;q&2qS==E641dF5Wl`%fHiacl!` z0qZNle?*dB;6V0l{Urxl91$`HDpqem3j)7yu|!A{L`T1WX|W6AK<>g0k>(o>i6Ho~T)9d*@;%^be*o|6yxVs~}^xIrZzNS6>E{WNQiv%*x zw{bQ3oPOqUOdVYr?K3#q0$0`75rUsy^f+4S{klb+TfIwCL|1V4&pB3Y0X%{=VA2&= z&f`#0BidZ-k!rU~uE<-Oo+vn!)(Jn0Thv;>a*(bb_4<(Yaj?}6aM`0Bm?Yo(xvrg0 z%a|r5>wCD&Ps@<83E2Jx8SWy4$!^r!#BC{8n7o}B%~v=a-*2wY;j}H|)|V=AA}8RJ z94z0AZ~#m+^>?mqLvdeA3itA2$ncX5Km1oULEn|OfpO_Euc)!gfv8iY5KG8T7& z!`KmzKfl;jwO|41&DtedEKZQLf}S4e+ZW3#S`PnvVzFlmN%fkkhl^bk()X+;__d^n z#i})+zCEflW^E`xi@r$iC9j>hm~IzL_#Bt59)AKCJFO%5q|{ z2l*^wDLP>^TrAPQX2bGdPc*)qtEA~%j$F0f=6nS8K}~yqev?D&<`01s$`EE@oIi+Z zS%w~6uha%{AGM5)BuO4VSBXb&5R>^Pv*|s}=-a!R8y;KS7`xkgjNj!L`7A?HS#nXR zGhV9oYL{uXD71k$+EMmxMSK4LOECsD=V+^Xv|pu;v9Ps4X;N!5qx~NX#iSW+&0vzF zQ^-XTtE4c@4%Av+6;{mQ`QG=K*dV?%uQG=MB`Nu?;|6;M5 zMKc|`>NPD0-^V2!ICOJu`4P@NpQ}wd_g>VE27SW=n%wCHjbS$WZenRcW0-yZp+(>- zXm18}L?3j<|MxF~mKtWaKaV))|ui(H9e zjLT&3`MD3%Z3@vf=(xJ%4|14;*6uo}GKgp4-19D!_Qf3Spm`;iBj7LM#^if0r^8uK zSxc$-O`TMB(97sqhVoa7U?>Ey8OjSp(?M%Ly^e;yOX&G-uIV-*ZiSTRsa^OQ4s_7F z5ciE-|3{?N{0K?Nmku_xtjtp?TDMzzN-ES zUD7zlj}Vdh`G51R6mc$XbhS8K0gYy^W!A&$Rs+_TVD=JXwg8u#Z%E_5zNR2gooh6t z49VJ#6P@`9So7^36O<~*Lm*nCj!Czq-m2~lh|LfC1zLLOMu@S$YB0Vh{&xnx) zuoE6j`U^R;6>9E&rqWk>gdKl<&e>W_g6xBST1T-2si#FlGUQsVRgwKPI@Fh?rQz? zXSv)(%lJMrELFNUtH!ut%s=9)3pn5AQXXBwzRdv($XN9(eZI9Juh%zWtiiiz{IGZ` z*OdLbif6Wfhi1Cr2Afcol0p8O=d*yzY^p(a@a|HmbENKIhKlzck+jcmssUOn&JzAR zmrx)yHQfk!(7YRkaSZvGVC!2+0S7&l8K%P*UNK2I)9c**0?vV{Ru#9SsNbxl(D&CI z=%Cl6s(H7oy{*ti-?3sR*1g7`dyL%1eDE@+?GT8M}Mg3q}B zsQK}e3twj+&y&DyXq>sve!2!Uj@_>!(d6^qIS{K?Xq>z&i{8oPdC$06wQu}=AJ>_$ zL(INTc$n~JC$G*LwdF$;s`;6U^9&h9u}*3^T}(%sW3Z?-Xm@Zb?E~F^UrZyMXUI+s z`K;a))$T1x_Vqf82C4kVi&oObqA^cebFm}u(stN|0NGazU4Ig4mLuF z!n6bJJBZDEzvLWa!UYQLQugj=7QJ^g8Cu#-xqZ=l$H4|#BAzZL?dQOwy>|U;L}Gr{ z`s_nBgX%7d44d-k^+n^c>74F&E`G3tWqtuSEngR$9h2d*(EYD*pha$(vgB&;n96wn zH?f#+QO&-vcC;Iy%&OL@zmpW1pO-)Ta9vaT|IfLwMd}U4*U~V@?W+%+cm8?&-}bvW zcE0a>o>gi;Pr$2?G|P7bozDDkDBSaX-}8?>z%$RLzQdo9YCjzd#xlp95G9(o3tjMl z&xu8d=q7ah3&e7MCj9JJ?nV96nkD=t&rH5=Y4)*{sc0*9*i^KD(nV?skPY7&WK;f4I0s3KE=uS794* zfs0hOU4C;P8En2YeRg^obV8Udc!;qR2Q^e;GohhhBvu!>%3Vjp`PiaSy6f047jm%t z`x~mtVXlWpY9Xrh4aB#4y3Y7zMBc#;v4tYfU1x|5t|C7@aGF&h>lDS4@XTkjkblaB zIQYD8m$Yd3YSGm3e3n7;Cck4%Y4= z*7EbfrTRuL9qS65aM*XEL8}$Y&inz#$WP{)c8tEhr+q&69 zp9ehM5}do1|A8pVk2y>SU%TmL6E3CNm+y|S1y6JL+O{kYI=$*HN*y^RfqtHQl5ZyI z!ln6Rp?(SVEO}6`f~RoXgT9m1-Y7=J(+<}P&a#Uj@W)94yAUld>2GOUvHy80ysLOqf=`RTD(OF^jwjh-nI&t>Hb4?4NI@PwR@cG@u=@T<~&-^_W=ioRMEG3!c0GnsEAsHbO~WDS8SliZcq zw>NOzbAg1Pwhza20`i}5mflAe3eXwU1jHf|_3;pjoAY0IHblQe_gT z_syFE%cs1elp)FQkzb;&XFKZYLN?bE^sF3HUFhxyTG_mmpx!$pbrBSb5+gaHt%>#H z1UIXcAh=%82*8edJnywZFSg$14{~c}U2_wuc+jKtB)8|;87;cZ&RF6U0$SoMpP3Pz z26R0@t=Z)E(690w%?lHzrwj9kh=N&}ikau2i|4pBQyCDT_ikzdYBvCPQNOdgiMN3h z?jmUYCZb^0&4=$r9U}qt6WpO$30}K#9B{W%`JYui(BP~{ml^(7E_PO7u0ireCooKB zqEB&yW>q=>RXbE1h<`vU>)o@`x_$ET)p-s!Qlgz?#jl?W6nJ86b3wj^=$e&GkXKS` zR(8%H<5;ttqa>4Au`kcw;+auAnr$P}-^vMkpDHYH;K;PqPELvz65oer+|+IlccS-^ zTXz!ptVqR1BPFhf`z=PrdV<^i_>6Nk;EcGwlfY)>h7?63{pO|ZxF*~?BV2qfg;2)TW9dc#_ zhsP5l{I?22OqlF_T<@$xl~BoHDXW}q`E0_RXIt$V5{}^G;$~m}n{Z zWmS{FHQcWE%*sBPmM{4HbHbTb4ki+(%*D-WfNEOAJtv!h`ZJu?%-m6E+dk+0O9VEn zD?l#6Xi4}YA^m^UT?c#=MHdGI7Nmpp-g`ptp!8m(DE&yeBzL5dLaz!4%LxYr5orPn z0!mR-q$ns&5EN07E=mzTlp;t~zWKj5SJ~tWiFe13U-tjzm3jN7-t6qG*WIGi0+NoW zpwjeWnD%yf!NVaup|h3i6?8n_-m@?lEq=pu4H<{8hHlSA`+FzW5hgpE3msC`gMnjiagqo=kRd}2&31-sty?QP7Vn{0wCCjR z-7TJU#^B>O4rcq}*0p~=xMx;uOo+EuAujeuxOwgV*gc!vw6XQZR+sXiRkqX`I8#4w zjyXYM^-OL)c^yI2>>=DTVtIY}GJ>W#-nwZ9zguF(mQTws*yE`#l(}Wl@|JV1r}L{` zxU*mFo-SUNm!TU!onQ5z@as1G(yU=_#Y;Tw7mr89L;rAtSSqr-e7^+MR1#WH3+YT zbDqgHrEoytHli>9$YO-ElFql5Y_X zNBL=<73J7Q-RK!CCwe(f+b*PEwX-|4_rvsSdhynJcRST}GLK_1LavSn>v?i2N-CWqFf!bB7H)q0*3sM}<8fs906Oa-l2M34 z`t%cQ*)GEM(yukp<4o?^%&?k19p*^!i_)@>YbA;-# z`B=sf8ywi=%cy6Xb98$ZcT9@sf?{3GdJxC~biSHhnn#BD_$9k-e@W>RRNK*|MPcyi zBfu{cieq-I8x+r=PCb2TCFpHCefPnn<^-Cndn5lnSbX~1P882k^p+ENR;QDfw!@0%r`m^jcHg5y;zLGT-mGYnKBZ%O{iSsJ z#8NzjvEBJ>*wpOcJ-TxoqhaenenSVMxjH3=m=Mh#317vGh>Hn{iMD@gf(W+K8tu}w z<78zz3RiQFeVSH8<3;H0+!>BoX+EmL14*shLV6H(Xak597x`i-_ut1;y}LBc;Y;si zkF9)+yVL9g)3g$v93L%SO%>07_|Z4LxvdL}5-*L&HI?F+fNCxcrfHZBL4^Ig4F5D| z@-EEKyFg;6pxA~WjEMy*L{BeY>l}lk&>W(?v1$-|CfVDuD3c~yH7-rN*5`)7@Jn-Q z<4RxaE|(&9nj0lNv1YrwTd=3O*(Ys#;td@GN8hgEox!boUO$i%_8iB`$>3r5q`B&w zrcV|#36Z13dl_;gh~iz9mA0&f_^)?ivY4T0S&ijJjneE3)4adekF%dS=%bZbQ}5tP*aT6JJ@utd7UUOK?uJ z(z|KR&a-F~fo6RWjaT~?lf(%#biA0DOR+;a;E-m0aBYN+*N_ALd$6O~Ex5KrXVF+5 z->*xxg1R=u=Zx@;eE~a~4+zsZyGF85Ic>+)lt%5;4iO)wqZw;?&Q6TY&PLQE&F;Vr zkGOh3(9)7~r8-EvV@??2IK7F2(;UCVubZ?EUa?~bg^3NW)}stwgGJ3>({?JFF|%a| zi{g{J>|(a`Fv#EVWrJa;8`^E!=7K8^t-aS3Sko?753K1eM|ado7w0U!;lk7_o%_z& z%C=AHy`lT&5|iYfw&&8tnx&cyOAl+}rAV$LB~a-!e>10XEQaMI3~Tqg@Tsg==Jt0` zB{Y8`xZz85oMj8)RV*iXYbH?~OvaH}hd4K)-*!>@XtC&*h^8Vw&x4of@fTbBgCt9Q zmIFUP#knAIps0$7aBu34_Q(*itq3pvM2Hi6^rPYuhD$r`5EI@+;)WgTi}di%`c_|k z+(~_R?<6uhF4X#o#TroM>fuKAQDfr8w^#IuVu!6IF0?=NV_0eKt^=BHCZ0na+%^$! zh}Yw}mvn;*^bm@~?J$VpBWhqScs5Gf^h=bZhNy>K%EpKe@gdMlW?C4N#`Oc8Koi$iG+`foj;(;pl?xQH;0|IcDz+4|=Yg?y-xje&#Y6o)A4uEvLo53Cgz-=atuY0!@f79EM$9S|xETOxTA zkt|{r2-oZJ+N@=^RS4WdcHBhk&ebwt<+rjTLPl^AUPNzG%$kmaUPRAl`{g(q9u>Cn zv0EU-a@tKWm_@D3m^e#M$+llYo;J4lNUwPFQfvU1741*3Z8w{sr#<01%-dLh2F#bT znja}X5fz)H7ah1*ezHvM@}gqbw942=EI2gT5KZ5>7t<*n3YpEG#4Xp>R5Z#Lg=F1V74T|`E_&~LEB=6f1^w0*F}Uo=|rf{6UZJ(oH!tBSQs z2J@^ZB;FvW`}~#@oGG1}v<&u42vyM#l8sU)Z;|h>0UW5SCGA}PI?I%n75gHa@*0Y$ z1$2^|^d}hIlC8$rZV`fp*yOlmoYs+~7eTRgj+IbETGqwUJR$Z+#Fc~pWi;H7$9J)_ zZQ*QnEh$m4MK2)=Tt7M_CSL6OW(8BK`CAmE;CTpYS+04}kSK0Y961(ZTO(k@pCckwoef*1`Q0MhM5QK-*GW~}x&T2x6saTRZ1NzR25#zE zyCK#ck31W@scZT9q7(fut5-p+Z57WpSO<&!A7bB_7}>28yMmClMZ->3*o_Sr!=hoV zT~{|8cV+A9?8HY!jnU!3lzgBX2SHo!Z<`SW+wDAk%h8&nkeGp5kEVSI0nxN(mt{Fr zNZYO0&oY8BHd$^+HsNKpZrz6-dgqL`+h-3(+0LNAZa)mZ{ZqxQk$GRdFyaN}IxirieQViM9T0 z$&GtxmWmoZVjn3wCo$KtM#9<8%E&lK+k(`^PY6SV_yr`QFYoRmB2nKxElbu?bp!%q zn`b%P>8L2Nfh9an99l>1I9#qI=Y&cv?c6Nq+c@9XL=l-}Q+~`MagHwztdAF`Q>IKv zsb+jlcyDYVZru2-kTNy|`WtDDfLa4J2Ffe)H8ufy0dh@&>H#$a`UP^$fxZB00rUu{ zCD3E&wgP${=y{+qKraA&3M;LFp2eRw_|qI|ZGk#Lt{qSv{ArIrA+X#5s6OO60=)** z3Fsj-Is^SA=7YvAK<_}KD^LY+y8*=jbq6{E)C1@etn>uB3e*dzBy?W{3Ipm5^c7Ga zpf4fU7bp|{^uwPA$oD0n{{g)W^fL134>S^J08l2Nfk4@T1_2eqpTYR^1}qN&$_nmK zpkI)tqcr>(hCc=2O9;>sa6^Hf1quTi0Td4OGLRl9J5U7BH$ag<`(Pys=r^PpfIbE? z0{s9q9H=}{G|=zxDhB8kq{RYV!2QMn#ey3TbQYFJ0L_710#H|^B?8R@N&Mfp!6n0WuJ1bP;_ zZvvG;+9IGPKyLxf0(UXcRG=k5^}t;U^a{{2pk_eJfht4pZJ-HATLE+mUabWB8E6&I zKS1vQwTFN20zE?7YM=<{t^s-h_TB^f6Wp~x@!+llI*YXRK(~?hK2SBF4}j_eZ2+o` zJT?MNL)s>wz0lnZR0Vl_2=oEaM?g1$wg8od?#DnwfIb0g0rV-*i?Fv9=u2pP2J{)Y z+klRPyB%mBa@zq^5otStCPCwKpx=PL0E&n1E}(0W+YK}eX z0m=#V2Q;1q`W|VyfT{uI25JOu9-y;8d4c{yZux*dK_2;mO2OR%KyN^wn%FUbQq`=&^Vyyf%3t>7l0JlYYp@& zblU)B2Wks+5~v-}e4zF~wV}}gs2S{a1gZ;roq*niTxX!~A=d?{E9ANYwFkEwP$Ib9 zfyzL)2hjh(?FsY_G8(pnOOh1hgM$Fpv%!Lx3tkZYWR+(sV#Ikv0q{2^t|lg}@C3It6YR(04%L zBnPe@XcsghfW8Kb1ZoWw1@sl#i~(o>G>kxhz{+r-$KXa&8c+<-P3Xn~eGZK{pxlUQ zJWzG$jsR)}ZURsRa1(((gl-bhGmuLLN&p%OGz@4IPzcaypo&0afK0GA7APC+jRRT( zd*gxXfI9)GA<`xS6#|+B^g7UFpr0W(1*kvLUIE&JJYEHg0-6eR82393XaLft1N8!W z4X7A&X8Wz9nccUtp|D+=zX9}Kpy~2g4_n6W=Puz^a;{70sRdRHUm`z_d}o=Kpz49f;-;= zR0J9y1APbd2~Z=*eF{_>Xe-cPK%W8ShTJxw9zffHW+Jy8Kqrv46DSL!_Bl{1q6q3AOq4404;*X*Ffih4g$Rh z?jfL8fxZE12<~AZ1FReYdK=ttfldH@2Q(hsqd?Vxz6bgR=orwSu<`@Y54evXf!2Zh z6LEo#1I>io&p^$Qb^>TT@;C{!6x>rlU66Jfs14H207XILEKn72&jIZO_ZOhgfX)L= z1o{$X>jWT zeF)upKz|{vK2Qsw20#blb3>q8&}{@%4l!*E^ewnefbPOdQy@K1GoS}R&4E?|wE(&R zD=mS}Bdrxs3euhjs)c-C0QwHx)<6TnZ3C1Qs4Y-VaN7YjLRx#Eje}6?u$TspwSzs64Lqr zy#=|xK#zd>0iA^0OF&s5_cG93r1b~d4m1F0H#7zU{QCpe>M#1X_!Ie^9j4F(zq)E64#fs9C-02GY0i9kOfk4Zo~!JQ103^WC3 zHMp+;?S;mxKqV39sX#Ztod(ny8qfP+6e4K)ZqF0qupA`GlaG0<;Zi0Z=V)-vF8nv=Ar=x^Dsv z1X=`C6<)msR32zCPyuKx0s0GQDNqo&%YeQ{+H#)gjpfA8Z40IYAM}RJZ`z=sEpznZY zLGCEfHKctHbPyWHfHH&o0}zhCGyVv40CGP8-GSV3pb1F(8E7uh383xZo&;J0bPDJK z?41TG0=Y9lgOGL>=o6%!0~!vEUw|$Eod^05++TrkaFy{lpo7r80E82wj2D4cK;sgS z3XRJ^`B5If14V&*1*jg-RUk9a|A1CP;~LNcr2PSu1$q1lG!E!G&qDd_aehmLEugk1-fN~(MGSGWKRe;ukTNUUFplU#+VYxccM%b$X zlnZG!f!>5}EuhzcY6E2h3IYm)m0+MNKy`rX0M!Lr2z&K_`T*4jdJd=o&@iBeKqX+W z5zs=Q#z1#qr3nyTt}!+RS_h40Kvf~v9H<@SS^(7tw|2;0()U4il=tsBt0 zkn0Xq5z*}dR0?_Y1nL60UO;nzUIc0ajov`DpwR~?8r;4>H^A)&)D~7=0$Pr=mw|R5 ztv^r==neon2i<`{ddLj|Dgf?ap!47k0SW;c3iK+F4yX^%Frb^z4FM_y6be)ZC=3W& zWR2lKqoJV(3I>V*dI@roKz{;70nGr{0F)O#8-cLv)HoanTS<-4K>t8425292V}bGm z#R264Hy#MPGL0jE=E7bAP)BeRfo1|F0W|`_WP0u+c)4?y0FYd%JhKvkJ z3`;P?i=3V@6>{Q={hU!LU9*@9JEg~uNs2=LS)a%s8x4hmvs>cDPmvr|OK4Eim3Hp?oCPju!?9(yjkeh}Rv1!MYHzZl?;W31Z z!f*TdJ*24rov%DV7NFa zL~M1{g@lKTeca;ky_6ZI-0@;NKE98pOHPPRF%^qSN{UZx791>+6N5McL2(I@!6~M^ zkfblFitqml-5#dg2@zp-x>YQ?*e#6Bal^$s5(a%z1Q`(9kbOh7lo%sk9vG1vC$|5JFyhSX#FQZ^ z#)-m(sAr5{h|5e+ml(Y3f*2SSo;51w@vyk>XvJXz>Mwq?9h1 z&fm$FY|4Sdov@vsc3-U$ZAVqMuF%~HE|Hy{Bdf}(FNYH~O|&&tnIAlks2)T`zZp){ zi$s}=O(trdXm_d-^zV40)|1W6yCxC!0#PB2jYRb)z3cNv6E&Ntm!=FPstrkAuFAY( zWV6vQwz-t3&eg||WC^0`HVGwa4q3UEiSxsAc~vR!>M-JUBgv2ALWug7Bp;5PK-3E2 z4eUOWsGo?J^~bS9RVH4q8+^B0$g}X4OyPODs$7~BLy~w_t}4H7V=JL#dyZfwqF%knC5>nKsuFXRV_k!-T;Y32 zBwl3kc(PKAs6(Gc5rrr9s&Z!tm%}8=FH7gt#K0WavQ5cz3Wo54vqA-6^l@Hp#PZY*hRjKmH zyF_8cQTqpET_VKebChO0`h9BYZfm@V{je?S!G6{_-9 z;WvoFoJLh5`p+N=Bd@CLE6;JkEJ9VX4CVX7%tTdM3|T;un186sYnhf1h54GQUcFTyGMZBx=e7BQGuj0rR#QT@1ENeLTsYGq~nOjv8%1@oheNQu@u7q%JQ<)?? zuj3vC`>s@_{w%)t_LSeEa?3e)l6>%(`;bM%t2B^fHi2w@c#zxs??f%DwwUy~lVsMf zz96b6QP)atA?g*9ER!jgsP8F!{H*_PrO1@Vm#l`M`SapJp1`J>5ch=BVUiG ziz@f?Wk|AULAE)CDC7D4lmmXBs>;bWCI80wj^F*lmsRJ8hhNI7Qmsi=;^8;Es+3*x zKjPu{xvCTi`->>7Sg6Xe^81LwFL715xH&WFVf8^(X8iUu@qQ($bd7^VH5tj;^Ei3s+ia3B_7s2RON>u$BBm( z1yz~!>P@1sPNFJp!hRqMYa6PPslj=ou)3fsA!i>Fg>?#534i|@QCP`PmG)m;AqwjT zf_gCz<%hKhRY^Sc5ApCTUsVdODn&f3Y^X}B3)hKH4(ZtIccA6-xHi+>d zsx;|gWk*#y{(g*jSkF)uC1)1mVLe1u&W?IOymdqk@5#JFq*q{XS(5yMY~DEeD@i_J z-kaYLg>@5EiQfB|D6EdCO53bl(pc3ICARt^@vxqwDxGg%CJL)Is*=C#pF~X|YNKus zQCK?>z3_;9lzUF%?LG1%@v!owDv{Su5QUWpRmnOe7fE8}K~-{;D?k)}p^N#_qB2Bb z?Lbv}EGO{6A3M?_Z)<=o@zJQ*1SR+@JMu$5SwUVg) z$N6rt`Y*=6BQ=S)ns`SZwI>Q|@TxLAsvS{7iCR0U5mCoUuc-1eQCL4$m4QDnHJzws z`}z_O&kajGWI!jc=KlpC3`Y&bz1$q+?Yw}{Ad~FC(SZ^1RXc0yfo+7Bq>NA~)!qW;> zDb}wUQTs^m(9u>z;mL!loLknBD6Hv=TE0R@6rK*KO5Mf-i5fz@m1j8ztn`bTrGyd> z&pAXb|MCT*mJ+Y)g~3FPC0>t0e77rzS1P_P@$hsJc6h%i8p&W*E8(zSC!X`urGLaCwlL=)+C8%S7Oe7ZY)uFekJC@ zd&d)XkR;za7e!P*;%!e3CkoG=L?80}>qOz%pJ`V{>NZi`x^f-7L)49#F~qw_ zRzA4S`Rc-Xh0D&6M2OH_HXx#TwcvX`hCO*w~TvJxK6 zWwev1&yFl7J?x*r9GY!nkB3;7dc=1-g6^U9SiXn7q&I6dmo0XAh*&RvpR8byhN_$x z$@e~rc%{4VA|7^LsLJf*Lf+I^w&hq|9Ly{uxCV7Mt;tobt2xoEi;joO_X0)a#o@q5ihhm z`-$C9s*?A>71CQqyh@iI6V;jYM#g3)J?yy>W9syC#LG%lg338`CCNXw=O9V!s}jG* z9$Y2Ks$}!*k6DO^omQ%{`-^MDd!KldKYc`0VX|_0#J@ysB;K$x{}8pEcqM25O4JtO zUF!XSs9(t!RsE5u2%Zuiq!CDe;P4$WFf8CEm}Se<9u;q7EKCNfdUr zsmg+~-w}nKU1B}tFLT${h}Wd+J)(A#XXRU6ASyFa2O54)6n4;wakI!? zqJAgd(JyZirDrP*a*}7*sU?2*zrz&vu8CiY+kYp?EyOF)vp8h`L3&@5$4QsGg)Z_gWF6u-{VL`>fJLwIHh9^u|QZC%vYF zN)VMo)S|CC5LJ+<Vc0sDjC+{~Q3cDUvrS;b>i29BsJFo0S)Q?Ox z31W(DKAcpSDC}eu^Q^6%iCRxopIOz2s!MwM&r1@uoT#i5`xB)n>W`(*6P1&wcV6#9 z)JmeZ-fBbCDx#WoC{NURqNWXLPt;!&iAIeZ5w(?a?>(~=QFn+pHLfaArHR^~qZU!v z?I~t?4Vn|xk9ftiaC9$_mHcWu;x!_wWKut(YLaCBEOm&gMO5RDIug~CBu^EtP1I)c zb77zAM1_-Nj-tUtbt2yT&lV%rxS1GBId=D-kn}sh?hWAyZsZ1N+#;= z))7SArThwq#uJ5iO~o4EG%klKWHU5~>q~pmTN}nRIqd%uZS2%E(kn$)zFHkiR3D;V z?Zg!Js)=8;+c<~5#QU?>RFW)9RB)vTy1&On^?GRn@upFJS*~+C`jn`|$82*5>vf1E zz0E{jjpmt7ZK7`8C`-Jaq*rCu6tamua$?5WCV?pI*;AEUXIT&L=!$Xr*iPa_lGh1K z#u0U!tlYnTo2d7QckepKdM!~+2gea_6y<)p<|Lx^r?D=!f5QK{F7dPKZN<2drwh&rO(153^q}P4CiKqoct&f>c)P17%&sa}XHL?=3Z!S@Xh`RC3Y@)E& zUsaaYnn_f3qN?0~pQw^#WyYHmh^kGzg+s>?gEvQPVOtXkGl4OT_%ZR#0ROg&ah`LXDU3*L<>Kmd4{QDMB z4an=C4y`3Bn)I%88cozL;*Fm=lBjs%{c>PBQ5%S=e{u~`cr!s&#@Aj&R3_3pcYYdC ziz&Z+=M#y-`wFV^O_tR})gj*BKXTg~Nj9ggjVIo6;+aRiNt8l1BRh{F3U8OF%C^3- zM71QI@)bwoC(}6;XHI`jM!6BpEU5C!#hI??|hUh#F7S`r52FiKx}_TZwms z^6S;=6j2?Bcd*JiqTVK(kIq~s>P4dF_y3Kk+$4Fm$Wfv)k(HuDKP3upTdB&w{f`s% z2}yq1c^gqZh`LdOy*{Ha5_OKKHB){i>RqDl^!tP;16fJ9%aLeA zyjMQ{hIq}0YTf@cq7q0lrp{fW4$wWUJ+y_Wk;I$Q@HA0>k=|ncw?tJZ$+Khls-4WuniTcY!Da@h+{oL{w?gyR`f;Q4NW=^Agwj3B>zl zWA1zSH8GK>S=(|Em4|FDj4Vdf>qJ#f_>-*cB+0xJauRP1*^G+h9&;U06W_j1lFf-) z`uGu1cwbaiq9$^$IFqc*E&q^s9VmyzH42eU6Y*MpK81J>h?jp^LE?2G>dZ%3h{C&M zsk~~`PELq7+Hg^P#csfZJvj;{A13A)7x_4zIP~Ry>S&>xPdaDQAChY~uRapY)1;%3il5-qlt4NOC+`*_-Jx+1x|a*`qAkh9pmI$x4#T$V$s@ zTu{+oQFtd>Rg(K~*}hLUvxm1P zUPtm}@}}-Y4IsVsxw(e4CdoOu`ECyoZ(si&B>61y_9)GX`i`u;aX%YTczar`=yono z)Q2Sb;^HbqwIk}}wi-lTC92>ror%J`y{dBhd{d&j6K}}WZbaeTUGdz0VH={VQ+}qX z3Pf!s$&QEFvt{JxrhyHJcZwt{tl;S4O<`4;*}nzxdXb*8z9msNiOTnF8KQO()jf{e zCf@iKYipe<6YnzR5VgM{QD2kf%=_H>@%FN+%>BC&@jfNV$|vd)^#}1b^(akL3*v1Z z-atPHOgL#sITZAru?rCQFtp_RlY0JgebgoEuO3O4R`udCdY*X0 zpN%5P$;4|^kIVK|qK1^=Shpt0v)_i2~X3J*8>q@-G^Is(DAEJiU$<1j_FBKA*$4#YDAqRDqG(UMAf7mK3q70sN$6SYg+~rg%csfQ?K1G z6IF_M8>?_>enphA;85c2C+cYC;Y1ap99}VuCF*}fZLd0jsKP}3{sGssSfU1`aJ?Q! zzSOwFb-o!<=SOrQz1oyR#{_QS?MZLVn|+BF#<{l&C+d5mUT)ZnsQ;0bUzXM+3g=^p zXD|D?m%2{8JkeZ}Um=^vD{vh=MOLEkaI6~W8Dqv!99DJe9pJNcm0a z&A$9WRO6Lwr5Z{0Y{`+(5v8nPUvf|mjXoMiHgSH9czXN-*B6}2B6bGcOCnw(>4lGD zueTAEsZk{H?oob2zT~*%C!0ZU#1iif;&tD_Hg6E`V2gO-H6$w!FC-B4KJj`UiJBw#b!{N(jSBpn>kYE;B|l#|MRe4mzN{n|C2*B`XvA93kFU z#2c4`*8smEo1H6gTX~)&D@5>qsWC)tdCWV&o~0b-4=zNxe@l8PgCzf8OVi+a=D;&e<^F~+VTy+`Ed&>XyPG=!+2Z@JFn zJWDaF%s!p;!iYEgrABmr?+|tR`^{wK7ou+e!R_x;%CATjg?U6x{)c~0k02^&VJEU# zkEnSMKPQ{@i5ggDH0c#2o0HzlPLdVqj%HpvL_D0YDfYMSSwOs(iTBEdZA4unE7h*? zvyg|x%UWta>3vDO``39T@d)wGT>2mJT2p?pFLCaViMRRz@9t|(de;t>B+0)?a#;CU zR4P}A_w~tqbPpwocWG!PqUum-t{>Hv^qwWjl&^RO_!?0aQ)YsfY|0%jz5y@3TO1oE zPPR=ki{CoetnV45fZ-+Iu)=N`Q1a}VZ;%8gQ}qE&h5XmPHa zIO(3sxQ3RXt(G}f2zP3YnGP=WZB2N=!{+GDeR9%II)o=^lh`u1g_f9r)ID zf8a1hN&m*M!gUBT*n^+^pe9!Kc@(y|9vw5bD&mb&7mYE4D+1nP^{oe?K5vfUKKCF} zHU(b}47q$Bg~qNu$k^uC+t>X;tRK{aORh^HgZrc}eO(N{`av{3)8t;aV>M;TbdOkW{NH5WE-|5bTB8mOg}i*3=?S-g@IcY503 zBxa`XCi#aa|H^(yGxGmwOr}atTr3FLHw80&=nH|=TzIsVleN~kC{KKz(~y{C5C>$T zl9}nVV6fjRSbX?CI4TY`F)1!CIxHkCN*~;dPEQN2A5^zaP~8T>qZ>5{jy8k_^O0gm z6`u-^A4Ao(wpK-o5EUaX!7x_TZt;29#JGfDtD{ZalNSf7g$OJ4q&_=cSw^y+dp431 z?6gfDI%=k`av?;Pa&xNtD1?N#XkA2f+$dcf9k?dqI!n6fZn!t+Ag&<1ji{#&L&^(B_cmWmCYL{(8Hw$Fz!m(|s3lU4RaS zlI{g~%bNmRlvX?VFS-OA*yqze>08$kaAc$8bn!7!Bl|z0|kcFd8gvnd#HbK5bP~WL2uDHKXBv zB_SkMoOn+6Ue<29kMq3cepEY&s#7(Pt zvFyQ7W8&kIqV$P|M4crmQXi{N2#L1P4%(To9R;^h@}FJ@6#D#F4AdDbxPA{2-F8=`TVyDlOjBt}0fE@8O5 z`)u;=Ew|?Ev*U`E_6n;El9Q;XYh`_8L-4&PhvZyMb5-Bglw!q!`xHe}8SMhM38e93 z+$v7J(PM{WBe{KlEq>(6{C!#A zgJh%sPhvoo*ggiPbciF3o}LY2hS(&10)}p}s2!3dJ7SzIjjEqUbG7^JoLV1YFXG8B z@fzNjLwherG4x0B%^MoRq`RrjA0ngULPIQLHV)hNbzim6Z^o-o57!o4Pa<9XC{Ynkit86Vl6N(mgi6|ntx(aLbCX-5%m;a3>K-V&~KfH1o5LnyjhqS?67Oc#gv*< z@%%JKFM4zFd@>}Gz3bs+e`x>n)WMOuX~)r0<*4JdF0GdEo9b{{Hjy@I--gDVB{o@n zr7OW_^Ku_;Lz(PWs^aTrM5?^2w|4gpOdk+?k@Kq30 z*fbuE*-sCwvjR&uC0DHMetLSg?D?GEjQ#7RC%%frAz2$-RC=w2H%pB`DI|*Lp5j?` zYBGJM?X>WLC(R>$Tg5_|wPg;RMs3%e1KQ@m_6@@_ ztJIiL+liU!E5iu2M>8%neMZ@LW6zs1WNF-_{jb?nB5N<=BC>X(X8H`Y{k=OCnA1)^ z?e(_wnYd4p<6mi>9|b#kf*lInpgxxUjprlQlLO_`t-O2D<9P1$lf!JfO#VzQJf4R- z%*Nq_csi2WSg$dS)p}TxF3&DZ=`p1?)3@8v6x^Csq;I#mO;%}N&OdL+_JZyyvBE{552vKuYo;EKp4o)5>NJYMkfH>p@Ow*I0#FEc9c zkdfFU7#b%Y*U8PZ#bq!pLg+{J5y{cPF>&F^(Y*EE^0dUtbJ{j&rmxbYMq2L4DrpxH zlZz({))AG%x7?|hb&9s7G|coRdE_m}QhLN@n<9x1D~r!L({xE^KV5P;p)woabt5zu zGu9i%TSSJCXtBpTfmauv2yAr77z;18y`W}e7pJnb+P5nf*LhoNyH(rn*%dx7hp<^> zIKJYy7CtJ?6}^qOl~5lO4=YrY)9;z7**H~3HW;ZY>bx8+w!yDvA47DFw%dfmPO{R`HrY{UMcph#fq&ix{&Bd zeP}`mwR20Cud!gGA#GW8b^68sq@>w+M!KZ=V3yY*VnSjK@yXG)b160VW!l_-Lf*2D z>Ew>HoY^>A4ljP;48D?!=HeI5;3K_o#?qFYLTOve87s@vrQpl5o%_Y@6_y2WnSwao zo^6I?vQ%w{hG46Ec9NE%(Ls`Hv`xxv9Or*+vZy~bgTb<%q*9^8Lu%@w%*M;^);zPc z=tsTa(X?;U*1SslQ_-xH&iGLv7x-Vf@s z?tc-zEnV_KCwj;KqH$5yFCRo>pscPw$a;|fwUitFHz~X9ySmZXcUe!6S!d9O6w6B# zj^9tU{ovJ)7AHp;aD2LW-A`*jOFQ57U;BMmD!2Wwc`WhmWaWS?3_to6m(6$eV~lJS zKAL%7^WB~2@?F;DWzbWZoXWSiXnUV!wOM1q&|b{Ndx&)SGB<7(M} z-7w&8wen~+bGQ59%aHv0`Z)i+?&qHY)u({_)h9!uzu5i!GvMx@b3gYCx% zG9daNxS#t|*YgeT=anHP{hW{6SuG#m|Jy#U={MYuzneAPqsinp_p{HC>KEjG@w<8Z zp8OUlDIf5JiH_ww%Fdxn(!?{aCzH?c48<9ff>$N4AwwC?TnY3@~hT=T2> zIR6pu4|y5T>+N;F>@%d_>EP45pX}qiALY}#4|2ceKlQ}=2lso}45;Nfd|b|7yPtms z+`C2p_<~7&ElrJ9>+mTPljVVCnk~sbAG0xs zY)1auO}r(8>0P_2Dl39zPeNLuv7Rhu(hPqpJ)lj?5`Kq%Q=`zV8fIfB_s6IV86`IP zv|D-fR7E>9&^o1M?iY3jbV{Amy{J7}Wy=z1rIpqFAtXbZX4iBtFHe>Qf0Rp80W;!P z^=ace5oqCh->2a!?9;lv(fxbRke0n&-hIHdtt~zd*sroH_TNcrg!IsI{8?JlOuIJ^ zw10u7GSRftGaLW*X$xxV{@9oSGnu=A)_(R#hb`*{u6`icm9*(Ut5LuEeIt9x{W_l^ z{q`R+LIKlnr^tY5u5+c*%h5^|`668{RY}v#~`0)~xvfShG?B z(C32EXFnZ$z7D{~dN2S7pKk-u=kEfrZu}UCJ_lg8HZTBvULSxy*A2k>yj=S1r$e4T z07IJ7zeBn*07JSe0DV3mfIj~ffIp75%8|mGpM$2STUogifZ-|~fIgR#%dUa6veHk+ z*_&!9P7e;i=}#l+v!6~SY6f7%uN8nkHx0n5yEy>I>hJ)p8=V3$&L0M#&vygR=LZ4k z^Rxi$>#_!*&kX{wulq;VXE)9o$dJ7XndPL}SNTu(@%_ikI+MzA-n1n!X-qtQ!r5$0 zNLxBGAtc-&4m#zJv%B~lv!ieot%vvgl9Gd<*_bSSaHGUBVw0!r7u?7_L+a~Z`P9Yo zbqJ>&y;|qXR*_XKwPTs%5)<`QVrFA|pT;(iY>TPXMTdG|%8=-m@^R_*@p1mOeB2xL zmG|#f4alJWrL6S9~d^?B0A? zT(@PFvD96shM5 zFDJE+{J`;Q(uW}JI^=Lfi%w^VH6-bDT%kJ3TXw6@veY__H@WP;yJ)h+&q2<%RoY(G zY`o`*2N^Uei%7c+h3n#A8~MZ2Y#i<5rqV+8S*Z+3w!?|c#`^NcT#ue+<0IJ-r80Dc zge4h9QdcA^eqQN@yKe+VTYm|f+&MJKPTZ5DnQUriV+C1I7JaAo?9eQp{Ap`ylKP^7 zE7cZSsYxPEy>Z2bw2K1d~M=xm!MU}Y}_wvOW?(Jx~#X}d2Ti?cq)Bg z)~fq{-(ssd)%(C{v4;ZI^C1E2d3EWz+x^#nJ_3~t*uJ8+jICuOiNgrQE9V+RrrYbr zPyJc5?*exGdBdr_IYc(KIf8ZM{V&G$0&>>q-3aN+5iXmIty>dJYfR0?a8E}@tFEWz zVQC?$lzOz)u-SP1sfxjD+~K63N|rvHM3!{&FmQ%@ReJ7eMJp?pQ~h_yTJ6+51x}gF zeyZAJHeLzXA;lQ5Wp*uKJ-`1{wau4<_;}>HmDfA04puc~`*xREZDRm~W7t z`|oVvz8n+%*TYP*-fEshZTmT;@niKr|9N9JE_UjA{clQs$L|Zgj^D>{q-@rn{y13f zbZ3Dx^;QCQ@VMtR>G!`D+48AkYc~G$RJF=%oGJ6yJWo;Mpns=5CML`Ih-uYkXB|(D zMRd|N8&Aj^4j6~C$VGvGak!%F;N017V84OIr1|owZIE_Yin3QU8)wKY113g)%VzVR z#mIWBokJI<(Lfyo`-^NXmibd!&D3F!wAt7y&>GskK)lhMuTi(1-er)xBFr%}v}mphb9zm(AO3+!SbC?~j)hC2RV}H3@-%_xbx2zSo`UzvFV>bR0XyZe}K&8?XCaFMnPp$eLj3lhRrkdE(`W171!6&Bl>|RssJCvxHUPHYu)}nzHrSAf5>iTM+H5@~rMYwdJ)!~LR!k#{eogi=2Gd+{rnJFh6*(+Dbf;F?zb4*G#@_Pcep)|u67@-ZbUZ+j3{3PvfrbD7qi~ zzO1{+j@6xR%jqGa**L(1$Rz4R62hVkv5{Qtg`7I{wCak+rc2AH=%n_fq}f2s-OA7I z=h&ZqUjY4OBrQkbq*Va6CGEdIW%fu9-HCjxK2c7S+W39sm&qFC&iIxX zACi!$*U^t%o)1KM(z2~B&6Mt=^k;q_=f~1RPlt1_AAFdNkL5Hrl{1~3e$JYzrM|G? zENbakQ=1+*A2j&6ym{Yy@|EAj|mm&vX*U^>WCeiQU_vV{ap z=z0ZO?{!l;?E4{Tm*03&!Ec7;%YoK)eC=5w7L-3E?GKx_?p1L2C*!q1>m)u6v{L=U zZ+;55@bYKMQ%pfx$t-=}L&gPKz4=N`Bm!pmz8h#=$<07>ILU8XQ)r+~)t>R2X?gO0 z-3xoUAbBj%iuhrm_3(fAO`Y5tV4+*^Y^Kba@Xz?X-^6gT-*nEe`i&>8{ibx@_3XD* z20o-~>o+k;^qZL6_M4a_`Atj?`%O#~zllj#zlq5|e&fj$zbT!6{U#>){ALkyzTb?+ z@AysWr1(ut^7&2Mso*!Iqw|~6dDCw^$?i9vobVe@6u{8Rs{BY%{;{q_*F*;`W}^lXTg`5au^` z|GnRM@;|?+n|0;*@9uMK=a(Sd+&bXNu4bn!#8&|QCR(q^_T%nn;8XcNx$Rg2&ps4? z%5N%gBk75|fv6yNLpi;w=kUt8XR$cza}Pf7(1UcY48Qp{`>*Bp40mflI^X?5zv&b9 z%Ra&KT7N2g`|R4h>rkZeYM{-I**MX+RiK9~10Pj^?>)>u{rjMgd>j8`9tOa5y|bKt zl1d#Ol@JmiZ#@R%Cl9kv|M;)+(1Uaiz#0#;PyYZsP?1(cFM;e0dAn0Z611% z&Xw?J4H~c0L4P}M&eUZHHH!+Fv8&7n;t)_o@_!B<;`^#az z4M1^O6MQssmhf%%M|~Uox-xs;cTJ!8wj6%+Z8>!I?cK-9yHDfC;S&c$wDN44Wj1z| z_gE$M)14faqRqx`Qo~X^9acp6plgS7w0};k5N(H;hlV8T>9atV6Vx2++T@&0q|79( zHxJjx#3crgGQ$k03ug=Jj1o1aP@RIbp(2(#*eNdz!DJnTsq*kuqzH;Ms z;(v;%XK1n^Iy^WiJT5FLL9b5?jtxzW7sr~84koiYVOFP)4c8^b@g*U|5Gz)Dbn%9G zJx(Xp8De#Ykz;iA8|mr<#m7dbn3}omPgq=Zh@(4Z&SAKYt9QdC@QaQ&dVb%N?P2p-+2L2$Go zG&r7;ks2JE922TfNaQ2qcFF2x8B!gp0aq_WOo%8)@d+ujaZXyd!_w*RqFH8|hKqI) zZ!BwQ8Y|cK$1P`1mkQm|jS3wVp-a-oiX%oNqT@#C!u5tEUE}nrz9Z#5yx@ix;d*_1 zj6t-mczr^c-Y`<1V2IPzYhZE2dlU6^b-5{eZ=%lAd(lXGVK#1XT@Rw|4mW*6Rv|Zb)1VgLdOaVR?5hO4Qado80ulY^))j zE@Jm!Uq{b}^a(V46ZTsIyh*Jr^#In>#%5YHwff| z<>-CuCnH^XCci^qJ!a6AyxoK~J!Ua(=WBPqx2cJn)#Az1@ZGK(cGcP4T}@7H((SBl zLz&wuw%*6>nk)KfF=0qFh@PQRP94~pUGqeG3435hktCr5`Qi5w|I%PD@Y zDwy3+<#yF~7$4j|48h@4CCjPJuH3VqBb$vUWe=v=opMwh`=)dl=gr2ma(qf-0Cy^G zaSW-4W2WY0!Zy%bKVK3fBhW~zP1@ug>V`w$y*#Mg6E(ZW?8zQN=c=#SWKy|B`&!(> zgV1PnS(*(em254&xhJqJ!a!>4}X}YNBh$pcWlwK>-)^c%kue9Ij!QdjF9ph4`z8U zC8R8Bbz-o7beKLK(+HlpxY<34Pf*LCYtFcB-fHx?Zf7yq2f=r-=Q6GwRZceaL@P^&x+XU6d)Rhd{MZ)-Z$H`z`)NJEv{e)9%7zR3 zPLl@ljW7@Eh~;BP4iizE9~l$mv9g+2K1bw`IhXE}?Zj-1^zhzX)Ln=1&ulbG>uD^* z*!P4FWkI^?JgqB-?k`kim1`i~ZI3GI=xDVEk2XT1%oW%RnaSjW?k4vC46){9j(Hyj>PIKxu~$-@_|BiMu60E`UCh<5C)bvi=k ztB$5F>0r(BOvG$lA`7^qt!V1%lA`cnG0_m_O(A#k&XQ(9XZOqMmsgf+3BJ>4@x91c zyO;$fBqpVp@-s6s*$}QzF@{_4!4aH4;&1k$)cl@-B;TLeYkk0*)}90T-PBX zBspByPM@R?!=zi67O%0bSNc@evOz8~f3lkD=m(ZAQ6Cwjk4>TlL$Qk>DT=lUB%_Gy zHMKl!%LwZY>R29sW`yvd58RPi&yx^;9AbxRhnzt1d2NI&iRC_fr_>RY_? zypfEK42=`pMYy|bARa*T6MHZEI|oY*8>E}1`srn0JEfX&6~)!~3}2>E9WeIb%Zq%ONB3r2&mu4Ir9bm#^Q8?Z7Gue! zd?~?~IV^I7eli-napJd}xPqyln5xXw7B+T<6^c?>8ADkloG+0qnTx5$eCf@4vCO-~ ziC=Q!ubeoKsU1u$V5$;d5?G-IQ;AF!CvpPo)fEZVs*Z} z#d^Vf8P6ianJUNB3|9Y#^P9!gBlE3lg0w-SLOFZk9VZFLc@16nOBD|rP)|CQ|I_% zV#%u<-RD?+9bXPH?+ccEz|=y%ROQP?mVA?`D=ayMFCQ~6CsW&)y1~>Art&j&lP|AP zVl`7vv7Fw!ed~7J+lxWr9GgDRmwl{Ph!u+S|1jx&{+FWXsUF7v)*Y9G7wI#U-| zvIvVD$LS&I+gb@*(q9u;gjJe8Pzrn3}~l*D&=WQ(y2UiW5JR`ElZKPQ1;R zJAApwA_G}u5MOSv6PKCSm@gCf(vJ1^Gj*FKm$2RePRz!aF)VqFsa$+1&xwCAwVL&I zb7Eh z;x@hnF|Q<-k&&tLO#ROHUY;fQ@+Fx?cJievOIG8{2+me3{R@6uuPX%hxPxLtaj-z#_f) zvY&a=nYVy1_xVzdMGo<02w$r6r6h~gX6ie(@&;1{INNMYg|p;!PTawll6+D5QkFxv zniXbq;uW@OB61Q}Ik~kP2)i6Z00c-W^V?!_-KYT+WojlJ{7o zB~w2!ZzfYGn99OlS7h}WeEFM2eqoVTe7VPo8<`rZh10#(tjQ#9!D-L*||1%m11C4)7?d?)^x5C-fq?iVBEy zD~d|*MT%gJo6RQKVY3^ygz|~K6MO9avvw9jQJ9loqhDCtA?8c@MEFx_AEHl)z=_hvU&z6U==*pIB*mNBG46vyeyY0%R zWo$Z1pn*+)vS~7lRh-P#EM~IhR_wD6n_gwN zsT}ozY}t`bJF@9b4sbY|yex*W<+tqfQZ{vC)4Ob{VV|e5WtdHSCBm_o&u$~xbOd{O zip6NQyo|lnu(+Qs|4j&1{t-4k$)=mx=LC-BKz19&md~=OfK6-I3*QKDtzgTsEWTpF z*M(ct*ukg~gq0xt2|@v$%@Ibu2PD_? zThF2&Tb8rP;{bdZkHv@LSW$L+fW_||u08uak4@jRX;=1gGn;Bzl(QE;r@=a$P2Jh8 z2aA{4awv;?*zz?tO=44sP5Usz6tWj3OL+L>~;x@iR_lcrV`uKuc3&C{duWCV?#GKy60aT8@jNQb0V8Y zi{^2ZuXA(#7c1sv@h4mQ*mO0E4_MsG;XYuoki{?-!&!7-pWCtSUvp&h*z_5D*}$eJ z*z_WsMsc`**|ZnC{mPbKv8gAUct#~L4Pu>SyTu!dBmRirTUqW6F7hskHl9KA4S021 z7>>0rB2N~&J=TRlhfqWo-YeGKu)|x#LPy!Eg2R3Af^LR|F0r*52z@haDSlpu5j|P! z4WMPP!w0E_u9k%!f%Q2M-d+~o;ubnX7P_6*yNLNc{Gg*_{RlgB$*o&pL?_1j2S0=G zGaNtYr&vEB#GXKSd0KzL_%hHd_(8ACemh!k0HL>Qp}%0E+hq-e=fU_Xf^jI&Ttrm{ zBYOGPkNCkrkaZY-&}X;M-?Z?Gx9VVrZ)~d%e()J%p~GWg*vwiAS9ByTe4tn-;s>v2 z3w;y|qgmDhpi|*+I)2azvCx;Z&=0X+v(^$A_k-~mpkwiaK`84o{G3R}GaI_lQ3JjO zK|d|c;v)*m?alR#%jglH&4mFv-GCh2j(N5Im=`M$6Vp*^X*#MQt1{q=HJ;PhGB35P z(VmwgaRTW0CB# z&mzJBc4AYMP2E^vUW$}Bio;=EicH6|=~MQyki#9xmL+VN&zApX5oXcAUW!=EVxJ?~ z?I|`bW)tS6i0A;e{FVcZVYdxz8o+Kxv*iJ7*_(xj#jEV4n7v?LisJm5P1~~<%uA8w z4Q#rI19W9CC$p$xw@29YA)7ESMd3VbxebdiIrvvBFfT=37IT1`*b?(nWQlnx5*Kl} z!7PqoFALb@VbjSR9P?5XU^$zPVz+--9M5784mX0u4s3~rkiw1QaLd^e%^_JXW1nBJ zn8ubfSRBiiXluylt8BR~i*MKs^HSu7c_|VXv(JxNU|xzWF)u};j>GllaA=LlvXp(I zMIzIKY}tpsbYV-hQRH?ZTVh^{OfRvi9S1nL)c?^qE_IW+Kjb&3d zn`X0@7ufO_7K_;JBNllqK4tM4i-S2F=A}r9o!EqVDKeeUrV5ViMiz&&rH@S~aV*2x zvIm>qVYeYHFfT=s1=;jIiw5?Ic`0)1#KCW5@dCR&%0B;O)A=m=vbc?XUcja=*(cgy zitKK7%V*OAZ2F!}53#8|n|@$%l5N?LzbG83^o8T07`4s)8nR)GHcl(aZpfumF5)qN zv~fyKJZjHa5zU9p{S3$0k)!I)0y9?RrI5W`&XyC{bR3JbINUYtHkmCkV@2VPXH$C? zn6V;D%vg~)g)MjC;CFLyKZ}Ri4Kr5c^9(j&#)?d{*))g6#~ffsHtoTtF&rmmtSG?W z?B-?h414(xd%=tqdD)sxn6V;LkbSme@h*$gIUHuJ$O~S*B$l$$QAw!D^2*Rwc`1v(ZK9GxW+c*&Evp9S9WWE#d^?&JXIaF8Wl z{Up%sA%Tt$3CviLK<9@9dL<D$EYJZXFX$wYIFwEQu=s<+UCJhO(8$Y` zY&w+#pqoaPTd{bMy`05vPp}CyR^;V0HhscAyRet%*>WzMFk?kNF=IsnGgc&4u-ldF z^BorVu;nLgTF!A^$EN++^eBrOw!A;V$CeA&@@E#mu=td{9K>D@W`P+iQsQ%V+nvQS z7GpWwN;YA}ihN$e;hts7Y!*w{=QnIBWU(zHvPt?r&xT!mIttDJ)0WY^f*Vh z6$^af5c?Nw^0Vo74uBaea=VL7lUYn-ff*}udxr!3$iZi@8@`apZEqImuv;UG4lJHy zpO~>CpO~>Cv4$;QO9=LP5R02w3}v^=S@>Dxv-mHIt5|%<;wM%DpOVDz3!8eez>F1H z&Sldl>}59=1K4tB7JIVg9UNyRTTW!t3KqYy_>;v693YFuE*#)*cEgMn(VoaAeAbaE z!XnP%Hx7pxD{|YBeU4){%vh1-*6d|Ai=Ela95!vk;$IdgaJYL}9Lkn=u)tR-MK*)o zFk?j~%vh1Yhd7C9j{0Zzay^@FV6ljU+Y{HBc z1wW5XWlWpRrb_nt9a}!cq9+S{P*XU}SdqAv1KNv$&Amy0GaI zHr>v_-)0kLtSH<%w#1ATnRaEj_gP%SBEVjDW77y05w?7m8S2^e6T9_i%fnc7Wy>{e zI*xq?*wl;Nc4ZUBn@EWxSroI+(^x#rme;Y*8(Hkd0y9<=?iBVio&z+n=}$IIW`P+i z@`)KM5;NIyEB4ukO_;GFx2YWUfo$24O*^vbO%8B4o4hQBu;sVx^HMf-W7E5As$rj} zv1OP|dnLlLn9pt_*>nVZd5Xnow!DnJ)UddpE&ojjR{jw-VaAG*ax?p!z_A?2Zll=p zSvD20X$^b9j1`4j!IooLe8mDIi{v(qO&AU%Q-2P3A6s6=alXx#n6V-+GuiD27LT#O zj1{?k&H;*GcMD!h-j%A;3vzOgiyvO1e79X>~j1`4DpTn)>a7VJ+bhdnj z#hq-qmQAm-xQfMfEHXLxd^Wwwq63Fp&!Qh&mb1v?0GP2NB`{+}BFb(Lu=t(BwP&B_ zvFUp@?aE$mW>YPTa`u85D~jxJHg#vW9xPsF%b_gpVawOpG>J_iHtoX@$Z&J&RjeoX1`;V@2v-z@|IcZ52nhn#I{HFk?kN-(a5y zv%riMS?NY`K)Z zRI|xqff+0EQp=|O*b8Q?$PzPFBp&6+ve?U$Y+A)W_hri^EHGn50ba7*+8XrPcdJ%| zKJ94G=Ms);BFB-#rV=*IV-qH&DB{1E+sguzQe^34)730KU~w;p`+&tl7Q$MZlziHx$Ie8ReD1I|+fd+*@s3bd zp&>IsBXNf|Hstz(-e{C831^4AwT$vA<8>{D3W_-5uY#X=LvGAl4X0*(;}!OFiM4^4 zSaa(if;A6X|B@hO+w~@8ODg?U-gq!ZisJaAgq~I|xmjK4hjg^^NFsX*NK&{W79}j& zv*=)pxYdcI)tP>X{shW*fxcrPno(Zkjn;T8g8pPW^r5IUI!u>!DDjdGbUJ7<`XNgC z{bl+dbaEI`Hx&b&bL>r88Y7jeoJ|#8D2-B-Mw|{sO_mjtmHao+6Dsg`G_%58Bj+h~ z*iY7>h>ipIEyyUh%fWaYDwX8(<+@N32-SOofy!k0zfehkx=ddjqCMdC^c>pf&KQY5 zQprAA&iT%PP?bN@>QQi)|8k`k-Q;JW49`GQKDafwK&io{vIh23NL!AB$!fthO8y=) ze=)s~;?yFBXa=5MJN)M2H^K@f`x$Z_ETS#7_WQ{7I(k$|j;Vd20m`DJ2aOc3Qj$)U z^BbgbgLIve^d&i)OX?zF+&7U?j(j#t`78Ho3GuBZFC)w9pua?LkFboCZ|}b!Ci9GTe#F836m1Rzyh-i*h9&U)iJ^| z*QvSd(^k);uTlxD%@LI7)lwhhp^ewbU6k5X$ThNu`EX{GhpW&Y*TrMz!!b&!N~Nqy z=jPIB^9h-*)S_B`Lb3zYHwYVTo3BjJ zbD(2$)80llWO;PmzNnlH+3v5)G9_y_nYFl8(;72hslAo#Sbi+@v$i%zcs5cA1}K#| zN`B&L-FdX8IufWfp1(bm#8`GM892Mn?+a7~e4bG=Cz*|Hxv9h^4}{wz&`o3ZGzh&=ZVb9Rl^a9dJ=_mvY8Wv! zw5rKW!{GrI3s}^$2-_kt9KMhYq{)$T5p|ds@z&8Da~?Vhver+_au=8?97Qp;9t}@d zg%Y`>y0$u_(leE|>-ZxTVLF}Cct#qOdgRN6(qUeWH|D7f`=g#o^-DaXDl7LjRJc&7 z!hdBIN+*Ttg4FHy%&nu{DUQy;wI=^&tFK{MuY!3sOFVN!fvP2DmfUZuWZg<;s-U;C zSi#~h7Wdd9Q98em9tI&Dc)PZ*5 zp#+{(y6(tPHfxny%#t6I($Tn#6)KFj&mcE);R7ZA$Q0^88!g0oCG}Hs(o4q2L-ql+ zo;j|e!#|bui{+FTPVmP(vtwQi85+5syREM7VH=b1;x3&*jWf-WP_a+5Cx=^q8g)|g zAF$D^x2KkKgS3e*;te)WMjLavr8J2-sQGroe*KNy*)gFV=71YI9)7sP@8O5j-V_>Z zZD^)wp7u@Q8E(kJ9R-ck8*&m8!)4eBG6)V*cu zoU#6BpgLsGE?3feHcGn##hzF|(t71cAzF|)dLfRM=Hi4lc1u&rElt8-Q!8T)B0uRg zFxIXVV7j%N{cA5yxqzUiX?azy?Cr-b_SJYp)qW2@aAsfpHc~*-)hU*1dOn`EQIUvu ziBa4SDVediR(R1BO`A#`ygC{KrGw}V^5>M~U#F1l2@!8)fR;&_8UDJGdHapla=Ur! zf{!2C0U3_dS4Sx3ryJ9762FlFA1l?sCT1b`izx%@YS6^`oUgU-mFzdjnb2{%w?0tK zy&SqYg!1_|qZ)Ko zs&KNbLeVTg-Qw!6^vt7y0E2vcC3%%x3+%SXe!CjXLzT>r$jP>I-tJ>Gf8!V`?4wlS zLpkvU&7Zku6EsChje`h;XFqfNsQr!P&R24JB?ZhnX3ErDEI2iWRqh2u=2glKo4$5$Z5IPM>=;V(l62uc0=P*8CbJbCgnr zuToHfx*&W7qh})Bd4(>op+bXF1sr=JR7lS>T8Q!&&TVi^NRC?qr~uh~;ulWJUZz zbJgrP3fuaFJYCYG;jn5bw1>G#2pDcz5e@_9aU05i)n_OmD@mrM4%jMk8olCc!2OQ1n14`Zt zynjm-uAlp_KW3Ool6sMwPD9{L7$TMW0|**j)z`A+ml^A-Z~{W4*nE!yl6U2u+k8; zdq?OpB{_~8703%{RD*Uwx^^XMcaQ3>PM8+WioYPEJ9C~-yUT(xL;6m zKPYE+7OJ;F`lgb!k6gF1s-54>pDIbaq>#(La2;i{yAk+A`Mq01#dlRkVYy2ZqCyg{CvtOXGshg#+D{yf4X#&h#%aGkQlQXFK^h z%1zcx4_ERYEAy6(_xfVtNMI?wACvS*_ETzbX9{&2DR(Ugnx-VaB3rCp+3w19kdk$n z%6L@#z-akPIA(7X~Mk18#G@U zla;)1;{ti4La9IxIpLZ0UUPKnQ6=X)IpV`qGCf{fLF3)Yy4tIh^h0F&tXjXlN{tw;`#xwkxk~b(PHhWPGT~BDR{-k7mUuG?}S69*lMMv#LowYinudWN!AlK?r zbo($&g&jK19(J*kA9r2}rJY5`otmE%J(Q%KiFsPogTcT*qNsNJKK{Ey1DyZKw44pE9bHfc{+(*G$Zzoe;hnLqvY%>a~6z>M*TE-6b_l4+_;kZwp{U1&aQPe+s7(dFOUckC8dM*hlBk8C5tFjsBCJ&w7JWjk|NjQtmKuNnMz>g+&9=q}`Hxlq%%QIguN! zp}E4K*_uA7Z zSWVJe@V%*<^(mQY9Qbnh1C0Z>moue+&SD68=6IuyGjjf>7+Q}3 zr%U~VOkLD`Mvk+`R?tsJep0UZ0Onv_tYaN;S0(NHaywfviPp~f?Q=hjUc~lF>JMe= z`~z?XQPjCYbEuN}89A@Zns*?2lC3D)N2x(axvJ%l_515QW9d|OBiE-WnY+u(g`=pj z`HTazD=}ZmjVoh?uY%l(N#>UPO5Q@brWMTg+sA6qiBCp$N0ii;%h_Gr+@#X@l{wIG zl#+ddobXZ}6UJ^X_nzMdCI4|Uf3Cf|(UI;8mAq%k4|vDsmOLEs%#4I-)0jEQbgfc{ zYvhv8nTiQ6^BKESNjq82^6csKQDm|{rewvX&cc(ON10rO4W!2NwOUDhyqw(J+4eqB zGr?~udE3jpMUz5-7){^PDiKE+f376QZP`L@7tEpa8)%_!z-OlWXC*am=oYBUnh!|B z84}n}ZiiY8rM$Aes|q~1eL zFm=~yB^aI9e8M(fd;j(QjXMT?J1A)fr;y_2?W$&BZ=<9R%2ho# z(UUY9mz|Zo?PT7fdK%}$Ht^;pm*=+2*eU~m%NltH!=9!Vn{Dj*U0J(gT6A0+$IWGx z0mt|2R8uQ!6q#w%c?^qjEGDp+WQ)Y8^As}BsPpM^6Oc>SL&aJybmiPQkb<`!a!!}` zS-FE*?4ubyI%kI_e(D?(=2c4eT=^krk7*~|(3W%tB&t+ksa)ut+>>8^b6eigN+sr{ z&;n5z_`K%3{xl_RXSvFCp*`y~CP)k3>5ewKIfXhr5!y~=v9;J zUEp6tze{TAn=2CVWt7u-#F2nmBG)N(>MCbVR#h-yj?~_zBt1l~21QljT5m1wOQlD` zB!65<{<&NVg*5Gpi^%Xm8a3cWCHI+f!n5gYamOWOZ!1|}mRY;hMdBf<{l?6<auXG&UP^zT8R!(hhl)mQt zOU+!~TFHC8%$pspqvKzUr>Vb^^)Q(=%jaync2knRA(w0?T9U+%65i&?mXM55Dsi{m zh86H`U{@11Q%QYd3e;`1+=nWu@0Y1dHuCzml=R)@F5EViajNCieW9k*-n?lSKVBtt z#yPF#FslC|r9Q*tnpns?W~1StV`}?&CHI{vJbIC^W3$m&O47kHDXkeZdkdE-ITy&B z#St7Hi!-KNeU+P(?C;9#9qiq!&GpRnyx*r(;XPS}Zpk_it~)!PRx0wb{QZ`XonG#5 zw^x+RKg#V+7pixT-jgc>-dCzoBtP#RQ2co5Br1jTY4}E|!XB~;dC^7QI`3k~JjEYM z;+R|ui~Nh}mMUCu?i{hm*;&__dqyt*9BKpnj<42^O4@T|+HChQiATx0T4pV5s%6fN zy91TnOXO1SMQ>4>2SIy>Ph@D)yi(Wky)r_n&7pEm6eU_d_kpn!l;r=&glaBzaqR!-b>{)cXGG0j#3XPl~^h#ew&TdL07B)AEiE5%9+xo0xOs4 z=%0;reot1aajN`iW=8AH4L|3aoSSX@`VBct+C10xdQ&IsQZm!%_2n$CWN{UXYiyAi zy}phNGqKf1si?C+%{o-3y}Gvt_B+eyjUULK*yrA8XfgptX+ zD|z3LAD%K);-S<#=c_ZrQM2nXR;j@|vId!zjwWM&CFcscgtNmmhib0EJxs}ZrCg!2 z-QztAl&tT_tVO|S3|pM-Yn+YhwOC1hkDSrPJT*q&{^3QA3_n51{)wFQvL^QAmHTX^ z2FvBY4O6u$6#AgRW&g)5TRyLo`svPPtTuIA z2)eCOjf3PGS5`^m_%*m@2ge?U>W7(MvxAfx94u?lTmhTcgf%S%+e=CQz1%;_jnZk{ z&OXvaCGY2Q>F03I&}dQTDrt95k#@LQ#1%@~Wio9heJvYF4J$dv$`7{PvS4jyzA^4}V^%$TxBZY!ju6v@iijJvI6m zp_5$c+RV1zX>Ta?DU|iG8&}7R>=PyJwsLtCQZ~?Q9IKnn7WM~|d$SD*|0HKcwtK=N zYp~g=`h&Ei!Qc%n{$}wni>=7-p^b^b;7l^mVDPnaYe4f=bwOItmr+h9+XZlY_6vYZu#w7`JcEPGtdcsNc}a?g^vbLrCQK&4|L z$vH~iFXbk?1Pcr7;&;C>u29mim5V*6n$CN2jA7oQq#Y#FcCc$(9W}!C2e9jn@PJZ< z!LkZHnp>f!HX!+na-~w0L*%+wVz)=3IIfm)E+=|bNq>t>pBISvYooNw+<4|bR1)7R z6PMaUF>Rcb`mK_`ll<&;wX?jb_yg2KN%9KVpwwe$IUhRPPXnFoP37;$)gU1+ZPqhN zBX5YV^LT~)K;#9Y_?~clICoYOe=iq9hvqjReOM*Ae|$To3J=ICl(dvUh4T``!Akl; zas?>hR@n6cv$vAEr#wYl(wzD3ZpS1gy(OoduHUBaPsr<7t$u)#d0RQ*JJ>}YtqIev zx2kxEHoPs0cBA)1S3;dqgKgzUp?6(`Ryz_owv`BN z<1(c>Ps{4$+r@-8l+hlZs$`DKRkO6YgOFsF`Fth+!!mz|X8u6P7xCB9JcW@3S1VQM zD?cM$6VC{(y-d`FBwz1$DD~(k>wyV(Urk2&0y>4qaT3rYO7?~Fi!m!e$G96=|ALbA z=@d$z>wVLBj;n|Krc#CRa=MF~$JOWnCbRB+s$@S}&H(-(#gc3OCUoV%k4haD$vKdR zkF#LFu`l;uCGjA+!e_a<<3&St9l%%RrnaTQsq`mnaJnm1$dd~_-~JMEwe~wInV*xH zOPcCgWuTtM0gT6exRQPwxu&(ZA9wq8o1}@|PpQDwa^dIGkYK=96Lc(Fn`Sa^wjuPl zWQ}%f>IO9(mXOFDd%%P)Hlyn`FwTuz2l*3K+t+`~TG52{a4rFmKi$iUZ z7;`Tt1C6<7%8zP3bzW=zH2-D3B5Emu){C&yW!_${Gc6;BMh+QOcd1g18{~2-N|Xy7 z+~ru!agvgJuAB!s$bHA#xlu`bs!Ur#H#LRpsNN;niFKut{>2m;t9U3vcaKm9-99_Q zDDhjB^m%fX&#ep7Sb<~B%!5kai{xZ?Z~bx9cAbA#sYzeC{ELIwfN5Vr;v6@7P02n{ z&WHBR<0SO0O4l8l6DS`k6}Vk~MPRX9#phR^_&pR&QxN1d$X ze@z~n%1P4AnWv=fD_8ikmUk_B8lh^ly{S}cuue{RuHD6Rbnq4`d2g0e-rXDJ?Z>XE zbK?OxQmIL2x#}evou(zrt`(!pl`7mOXGXry>#Lz*s4BCceSwnsK{@f6zOcDF?HVQL zU2}%*_!rYKli88`OiBBjoZ>uRI1=%N{Z&ST@{^MIDVaDo=wIx*<}G8m zuJ`nXoX`1m_i88{4+aB9ii?%Z2goVTx1Z=hsLH$@yoZu`y`1J8y5HCNjoepB+bAcv zOPCHS!VV8CPo@XkA9T-Q?4nfTak(Y6Q|~p;u^gqO-Abm-s_@6mZ-ePd(m`^TcMgVW z1|Opm(Kgw5P^#wqlKv*e@r)Kjv{!=UOd##gdA89xLSY zdfXq(aiwOr%a7oI7R~6i;id(-Dd={rQn!KfXik0&y?NZ%B%PsTzDv#(^sBLI-Drw0 zQSwffd5eQX+Zw&O!DQcT1{%cvNB+X0v#5jdT0A$dldzwoNLmkMr_271{M_c--xWURNZRX4<{#yzs+7)Q z#$6M*EW0WkH1qvqCI5_6%ACfKdF83e{k@WVPdV3f=p+i~$q0WdY4?_Ci<`6DmEi@u z=&IT|a)GxzWR86*U6tI8GIu`JF`7uH4W~wfx4n|NgUnnU9M)EYH&n^~oLtFslcjne zCGYccqt>mtrtyAu8Z4*jd>S}4vVV$Fk(Xpe+SkRYRrdzNA^N8G(uba*z z7!L(#X}`VGI7%B|u)NIB!LQWeHCcx&*W(`1lFAjoU0{fj&ZCr+2g#H<_3pE$84emGaGnnGm{Ns&S%tz1UKi&|{%R%ne`W5nn0Eo?d|R#BTS^VCk~PSwbU$gID``KJ zX$xti5be~!>Az+}{AWdst6gJr7p{@$|S-AgVwC%ep6`3oiznJD*d<*FN z#JwwIw37W3x!UE#!Zgioo{Td?NxPd&TUZ?l#}kV?j0`_S$vr^M@SGZVgBDQI?wkT` zl5gL7CGDPaPUqn9ikqLk$0=#=kelxkx~rPL_mdt!bf%KNQqJsrI(Mj^7L+@t?=Mv{ zPm~j0MzhIbUm&r!gdS@1GxSEK1}kI@@@m8Ne%JTUy-MQWWa8{dIJT$xCGeDz^-q~K z3q2&G4S88fdO`|MRgL>y`JR$CD+StmH|^I-+Fj(Q3CG{i;UBarAQGlNS=7Ef*0CV% zccmJC%O%}`2K6z;)zztoX>7TaMH!2Z zEIQjFF}B>53^cZUqMSLs5}A|2K_EL&q^-xA)77R9o<%sDCdiN&iiO)K%% zEF-O7C~5DNX*(yX*hV&V{-V_4P&vo5r_-JdGwtnm*Y!E>kXZ}R#3mU0~_FGnKT}^2?*hTj@=H6#t=0@}K2eRydAV72+UeBjJ{k`+7Oyof1u2 z^EnN!E$WMuO5BjT5^bNQb-YrEMRF^XX?e{_^|O?m-^#T;Z%l;lz;mt=zf4Jdi=5*{ z)4U-XxTKXFPV$?S3@`G~#$ThUd0(l(Uvk>%bOOwVG>sq_^xr7y`^of0;}+Al3_28& zj^{FOO!`AfK0(g>ZvMqsvO;ssivlq^1g0qy%tFZ7L)VS_T~>s8G&ngn$p=bDC3%%x z1o>12vD(40N5rFKUMwfOd*U@`&;7PN#yL=_$=>p7CTA866@<-$phhTZhs#-?JAqGE zH=eo)O5VTZH(cQ;TFhQ=zh=z3K1a!2B4>4%8d}amkDR}@!e5D{Ep!e}IBKflHPzT` zquSfab+W`>_=2O)-FIHaOtq{4nQ2IS0gGA|VHOK*kr>jBl7WV_XUg>1k*cbgIc|Ck z1#Ufboi6Lj6zW6M_DfpoWz@yfmE0%F^`Rgbr%4vC&v`E8#Y*aPW$N}#*GtouXPUPS zo5M8MD;4-71qGtD;V|Aj*f!vL3hq`a&`+*z1&JJRru_*e^$Rj}w_1CZ7v1BBMRv47 zAmpdBDxJ$mUs5V^sH_MbP8GmPeHtXBH8FAD0>`1n?q?o-J#`J=8oA+X*`<-B;M*(t&y&+!8Vyo@ z;~lt&&f5tuG8*4rO8zpr1Cr@{@OM&jX3J^LstbqBuKw;y(n`5{mqh$HPbO(Tk5$rt zC+BnFf*LP9TC{)CYi`orU&;ND%uPpJF2*h-WV>Vk*I`Qbo-%trhOXQ%*9A)EQ)T8( zxT=ZfUT~BZ-QiLf#{EUc1GZSH#5VG9aqa?pMVNWY!wE{>YvqTmxOrnr#OpZ3>})0b z>2lVW**CY^ZxcFIg$A_DrLLDNHTY6)*s~Ty9H%_otR%JMOwUR361iVV`;AQ7B}R3; zsRxeQWsR@)*m*!&V1Xt24R{Be?56);aPdY6K>9%@dPvya@4l+=eK z6<8jeWWeJqCH=`VeI6ae=A%BE`62k5lK5A-zICCwF8i)b>?Np1mxVywoN>z9OPBp0 z$Tcmq-ZC50G9~9eGG`IZZDS`zU3ihBh3Ty%|6R`atSWkG8jZ^UCFyN)iVNs4QJPMq zQxVL}-a|=!giP(BlWgfj$QP%1eNv!lN}F#Ya;+;Fr&Q=DS)pti_X@_15}2iAeNleS za|2QLV_vT09WSRgC+I%oGN`1zB86JM)VX+PiIQ}GnKU;Vs18*G%-a=Q?s`yS?`fEI@vqRdEDazN;Rg- zYUEZXIS+lMlJ`Qn$Z-RN^A-K7lD3PS+$^s%k3UqBULvQp`HdAbALnnC)VIscNLG*r z=ZyzygOc=ZIlXkzL~sf15;A!6_SW^ky2)Mc?3yKYj&%l|m8|RJEY9KCFC($rDQQ2D zTP>=|j=tAmCF!nm$+owz?+8@Ug83xl;Cm|-cwbf^KjdE=^H$N6lab$(l+4%2%q30T z&Lr~?2Po+SaxKfEsXp_)>{F8NCZ`!=-tUt+xUSeMmVlP(02~9?wyF*FeU(WAL ztKNJ|KBDA2Oy+Fg)S%FLhhAEvH_S-%3rYpL%6XpG^!;iOzo{f%Bd0u{KBK)6>>D+h zKUFdxCs%H|pfO|)O#Y}O4amvOUQF{@ON^xct7Pq!Lh1U#bxZIOX%H8U)b+x4m6Mxn zr)qbTcC!utE|c>ii^lxTM{8$O8EacI)8KC(7CW%$%c8$65`(`3$UuX?N6Ms`&WVOS zDQN4#-*h>P<+|N6f#q0;G+xPln#`R$mky2(#LP-QTgm&doX`1{k#HTYC3j5O9j;`) zPOjxicNf$ud2f_?JJWV5+I3$~%f6Z?EFEVeFI8%>m#jshx89zicP)B5Ny(ipf918g zceGK-eTrP)%4pG>x9v4=S1L6aFF$EHyxz`e)NfVNHpmH2wn_OxCGDSbYO`rD(y?RX zStaXanKiT0XAac7rsQ0e!sk3vYLx0nO48LbX|kPJ-zjNlrjWn09oH5ArR3a7uD~sC zM@MU!zmM+C+(%At8;4hQQ8K?O7jUb$MRSYoNPi!t7E@DrTg;Bp=96eFKqrzKReXq& z`@j_Pel{&s_F-F`!8}sQ+)+;T#?Gahtfb#Dg@h-%Mvmg1r(}Lpe$?9DX&|3u$LL- znQuotrsJ4uqBW5~$h@WGdnNT6 zxvu5ag`;#FhT|5uzm>#A@|byEG+q&l&^a(h%`Vta*P^VDGn*DD)BaI|wX2eKtjwC_ z^E*~WZ?7c%N+!*vhSRltb*Pf}Wx3JL#`$73Mi%d*WSu6bwxsFpo#bUbMM>X9uF$15 zUR;iz{A`c;O8)-xlblI;Ze+P%$$6ig<+)V9sNFO-Ttt+-m&uKFc7&d$-Hg;8rDT0u z&f$VknBK?u);7Oy8qAyf3&y>aevmcDiY|

ss@xpdm~uu8un<5|EwgvSI*`FT6IP1pK8Ma^Z16XM(KJz>r+W@!0|>d zQIhU0r?;ra8=~{glDv<5D#`be$?4K8M~eF?Ny9Q}rn6S+@^J=`2%BXXH;UP-mSPJDzn^}!UIiTdMklRH&v93y7uO!ZtD-`X0 zqc0@fY*_ESUGO+1dtA=y_7y>|Z$Yg$dBbt0Qh~K{zGu@3_>QW5sgiYroa_R-YP-h( zZd6jQm&==$AUoFN-m4_NFNO5t49p~B9#1K$_m$IIga(s3Jah!LV~FczlYFy{=^icT zMN_QhQ~T?P*HR(iFxb+(mkklJy+<9h6PS$Arz`F3(%=hDhNSEAom@|Me)-ID0V zjtcgLlKcXhJhR$o4*L9}&P*li)^buiH`lBPFUoL#ogJ#w;z?PHLS%Tdj+Uk5UYQDa(>JrD>0G4b?kGQ3 zc}cGdIbKQpwM?8Hh&pdIKTFBlS!OM2u58ZN)MZNYkW8LQAE!nOc9W9xKXMC}lVqUr zJ|*o4nU;UE{Y{R*4%k?kQTVb}N`2!^mbn|(CF=MGG~v({fd?TDsMbU*+LsLsHKT5sWX@DPNNuG59+3?%6qaZJ)Nq= z+tB48r7pL~x|GroAdY6Gqo;jgx*^7>BGpR%k7fQ2F;L?SWN*DU5cF0A&EkkDRd_Bd zBg5LzDBnpLHJ&$pQ) z$0*e~Uv4w9y{>7^)0M0%<;J1_!@-g>%NR2NVdq>Q1- z^-4{q%URzk>PMT<)Iuc5j=Pmgydo>nbPaTi8m>0#38fZy%7xOKR;N@3X~Ktz1UsF(I_C$(Yhx8#S{&?0l3?q!-OH(VX;@@VSnxUWuauT){aoDo@Q zv5j>1NJ2mJTO--TQ zl?ttw73%HmZTZ5rbwNK}1L*Gjja91CPcE*lo$4em1aK>}zfzfUSs5H^Exqy%Q>u|C zKf{^Mcl`n-=hpJ~V5yh-86o?UU3Xt&v66p#nLo?x+^2Ygk~AupcQ>=N+xYA_TdBwc zvLeN8H`tde*?-R#+o+y({)o@MbtE3e!tPo>eFG)ybKb1frM+DDv%Jnh#ru_{=cSMV zz91d5gFyjb%|6vOiFA-keHGL)DJY+x1G; z+EiGncVZ4P{;6aw&lVrCd}`9^dzy}!G;%q2ysks|Qpf#pK>>Bk%jc_3Jla85=R5%G5>p}TEHcw);W;eMWpO@>3vH1Ye!rLu zH2gkAE}1sYRJ?&AXg%7VF7s5GIq6x)_b7Sal#9QOW8R)rGH1xlea3|<2gbq!NqFYq z%5y4j&&)ubKNtx4J%NyCQoXqzW{py(=X1o0m*fz#ca^N8W!B_p{C%Y)eoU@(*^_84 z*&LhvP04!3rY1LQg6^R)sO4=Nmw&%onbu~RwH&UqZZ5>GcfRg)QnLEjwe5I1Lvs?tpUTv=`X?KznTQqJl z4UGnHBeUbwi4T?JZ^`8O$&dd2R>}NcuGqR1(jnCJ=8V!B5OdsSgOa;I=FXh$I9xw( zqOQAEE9Z3E#oSp*UMwd#*?mLXDQO>=$^3}?G$lP#yiUoxgPh{F&+T8PB>zq>?KYdtQ?=ak zBh}`>+WAWE12vg`wUT_PT+=r8h~1&2ua?u^#u(lsN@h!DPWH}tK}owou4u`=Xx~)Q z*2<|Zm>Z%idp$nq>b6f!>diK8yq{e2+E1nV;*cj+pt zzGL%8sK*;x;=!6vb540rr4Fm)>fd?zprIo?^c70W(>-J9>aRGy6^xu1uhe2+xe$iT zr8&jw#E|273^`6iW<)Whza$)wcxEn{6Q;|PJToI<%kPVs59w^Bf=grthfO4%=7c@` zITdSCuPPF*ZPqOo_ROTU7ePP&8hLoQQpE!KNiNts6!ygM2<>A~*D9%Bk}FX*S}wCp zmMU2hd%16gM;|Ot7;%U=nM*Q~V z6hF~X&!RxA#xr@;e4|(zm3rmK8B{VHO!{ylLaH`ADhM zpK_sfr!j_r&ohI@3+>yL5}G)tmcLVK;*+zdb5r%9%V4O35DZjAyb*JP`!A&ySIb)L zOcNviU>IvFs1EyRKrtMoCTGm(k+QpD;Qcj>eMr5aubh=^#Hn9fsoFIMus!2?}EzE$oOG zWl^bAVLQ2(P%Ruu~&rqM!(kB+`D+R~ewG{aDBxl*;ycJ@-}jn)CEfV4RX%(Z=&b- zP>naRAkIDPjdr81QEK*toH1Rw3VRdUG{1F>0$QQe<3%}#3MhwY;f||t9#vA0k{gno z32{0z+U(n}Qquk_r?|9_-EfSiQ@`jjag3g=Q}XX6mwa2_+@C3_f0c8*L(}&Zbq&$y zaejdRq*UQ6IrYVDzc@0c=z4xVx^`^-wBMAQwW%p%}m&g*7c>n{vTuc={@JI7!xFfY~$~-*FploOjXb7H^>Q zoI}<2pjXsB1mh~S8Gq3c7*-}w7di#QIstX5572a=Awc^BjRZOy$(syx6GF@b+7GA_ zXg>Tc1Uen)NTAVhT@KU@VJ`r>6zCeD9zZLA&OnGqfnG#EWEIdN;Cczr6L7r&=p(q^19Ud*o&$X7OB9@Ur zW8iNx&<5De0~!E-l|V|O`j z9w9yk>IB#Cfo_1^-#`~3mV)i*rz=8q1v(jMd!Q=#8w&IY?Dhfr5O!05K1JTo2lBwx z53~(X1n5h|d=$`EKn*}UK!Xc`79*Bxfo_89oj^On^)aCSK&yc+LVRxl4F>uF=m>=P z2WSE83j5HH2X@_nPDac-0R0X9_5fNAyKz8A!QU*Pe}Kw?jt2???Sc4~0F3}T5oiav zo&)q0;=2N99OAnLXgORT0J;!%D}k0F?5jXu0DTBF4X)n;%>dc}bSzx+wx^$05KCvE zSK+!H(6&H>fxdyiy@B4$qMu1XZv!0wbTPvEfIbGQ1NsE6%YZ%uIu)o6@tqIU8}VHY zG!%As0F@%_BS2+9F91CV*EfOsAjGFYUEum7(2qd>0$m8#q8;dG0Lra9&`Yq}5vUzv z84h$T(0)L7BJ4DvE3)b5AfRDD)j+-B8Us28=op|ceq-`Y7POzH{ zR06wsKKqrCY8ld5DT>;bsc8>zRlS4nNfQA6A z1L_5~&wzrk`w8fMpp3rs(}1wWKwo9iPY<9@h`BG&jX=8qy#RlsfF4EI=|F$N?qHzv zfog#I0>y!D%cY-Vfi8gE89-km>?J_Q0Nns|cP{Tx$+NjdAn`KBYKmy8Uw&U$Xd`#d=#LrrW>7ZM1G*6CEW~#$ z&^7RPC(vZLJ_b~lM?b59j)&b_K<$A(2YLl;KLfo5v{irlIR&mIK)WF3oSJbO`)C4)i%(Uj#Z6 zc5ef{4D-Y(4MT|If$l^sX8{ccx(sLm&`m(^0^JAn9?;W3A0uC00s0X!zYkP|_`U(! z1LzN+7((RiOh3=SUq_&GfIL8}fd&FCfxi(zhr(_G&_6(Pfc`*yUZ6{17Xn%eyZ-=P z3A>YlPDL!|0=)sd>w&fcx*O<0gm?nzEckl~=n2@p1N011^d-<~u=^G06NJqiNIzW= zqCL>_aP0*&7j`=VwMU-r4)g|M84L6d(EdOx;O{V?D-m{q?FzIQ=pMM90Q3p$&IVcz z-phfmgWb(Q`@`;jphtn80jh!PTA=$8%LhQu!*xB-0=WJO^fOTIAo}?Qs1wkq2(c~D zK?pGj=wP6|fWC+J6M;U5zqvrW162Sm0}2C;MSMp9t%ThvKtChwc|eySzN>(qh3oA= z*+35iEkW4lfxdy=8$g9Xp8#zO*B^j>f?d{N`neYIl>t2t*WN&LfCd0P4YUVP8A6N$ zx)^8{P$!^rph-YMpo0)%3DC>1I}vCW&^bU~g6#^RweWWf&>)}(fCdAt1UdvEUIn@Z z=tH1efxZRmgjhBJ?F_rTA@p+v!gdDw9g`E%R z3*>X1ZHKVSfSv|A6)27n=L0Vv<*V+2Xr<3O#^xh=y0G+#8L~iJ^U>Nx&f{y z0nLS7BhaZpR|36=m~REjL)Zs_E`r^&Kz-rwHK2*G`v~ZE#P=Q0U$FZN=rH)pA4Wfy z!LAF?B>3wC)DEsgfU}r7gu!{rTj#!Qb8i;&81L!W;T>>;2=mwx^Ko0@^ zgFJW+=pDrJI?#`Z`D36N@b^8?o^bseXm6l`UFhc=`0EPP2(&#=2cV%q&mrtSK+l6? z3eZbH^MTgD)erO0wcf&L5h7SL5d zp96ge^fS;;(0;33>E}MgTmtk9?0N$A0_q3kLH_LuG#7TGfj&Wq89=)M9Rf4}t^uH( zf$D+wgzIrYcYyayph~!23N#URHv+8yx)Gs4fu;iehWHKydK%?X1+*i=MuEn`-_bzDi1{?2 ztr6lPpxHpz0qu+scLB|T-Qz&p0KEwGFVNdSCm_BrfbIqQ1?W(?w%eV4?f@zU8VIyC z&<089G#vx<9?(pnYG`mM(9Z~A0bLKfML;(I9S^h!F`otWEy7*~bPHT> z0{Q{yKA?Spo(4Ju@x21HAMD--`U`g70QCd<184$VbM~O0-+?*;Rl(H*v>0{+f%b+5 zBY=j(bpp^|&}9x#30%EE+aW{@XeQ7xKr7+zbf6RA?_!{HfvyMo1L$s`ehBdd& z0UZkT4p4ufFM)a@#IHaDVVAil{j32;d!X}R*9)i&n(hRY4ZGceDiL-p(06d%ALt>V z!+?4MEdV+dXfe<>D8Uneu0w$vs_b1R}u*)4mKXtI{1avFVwm^S?V-QdV{OtvFG2)vD^b1_)0u6y(1yDW0hJh}J z-4Q^!2zv_9?+9@o&`8)_1@t=n-41jL>>dVM2fH;u?T`oW0`)=6UjdyA^c&Ex2$8iH z{d|BBWkCA?^#=MKt^gWVoLM*xijItpkO(2Iz#9B4f3f=K~;fldS}g6laz z83=I&&|0ME7NC3J`T)>$pp`%u!r!YvU10Yi&?T_@7U*`wyaDKK*yZg_Ki!bt&Oqzn zx*gC5;1~?FEBx&Z^ghreplg5*016<44`?^o)d7tFS_Tw>>#0D`LYMP_>S1>^&`PgBs1fKCgt!uDJYu;Or~!5l0{scQXMrXI zy#}-jIr$OLYM}3cX2SI^psf%#e;@kk1G_Fjufks+psCPc2+)CW9SPJCc9Vg2gxx%# zHxWxE(BZIK2;>Di5@-lqmjiu^uonPb3cG87y1{M*(7UjE6sQJaR{@;{*L6T)*nI}H z7ySJM^es@vzVtI6{)&M{!mbC<5eU&2=qaFGfJVc06wqY|F&(G|=wP7x;aUUqFHqb@ z$c>YM9)aDtKu^N%zd$!5>}^03!0`~!f$;Yn&?vaR4)iSSJ_ag)-Sx!-Q@P|8ut@~hyD}AkfVTb#5t)pRw%WU~ZT3j(}je;w#eYLJZ ze7J?x8Us6AjcP?aG9sI8g{r|)5?V%F1@s-zz+9MT7LuKQb_9< zxZmS(R0!7Qd1re7TTIWD3Tr_B14OiU#XEnkOxA9q}2#c%ntnJ{6%j&FhxZ>tG z>jEI$=Vs*q;gU6L9S|-(vvPrO{h0L@5UvEX1|SyP(Pec<%(ytqvTwh_WmeYKu)~E? z){{WE-pN`Cgv*w!j)(=fA6Z`m;YK2>GZ3x^vO++(w8#1nIB<`SH3A5i+gJk;3oe?m z#=#$Mf3bY9!<8)7D?qp;#rhf{aAk>Q-#dbPM6B;%hf6)IV-a>B(Ax-st1b9`ifKUa z!4CI2ShoP-h6U?mAY61{*|!zojsfd@#D{bLt(Axm$M9Q6!r%2k)8TqI&?`VV58k>H zt~iR_S_?ZIg>JnL^d-<$KsXfKx(+CF9DWdUd!YHS>jm^C&`v-dvgv1cp!Gmwf%?I9 zf1q-p!+`P-%K{+#)ZN8E_W8Fb07c>NY@i2#E(iKOn|^KvYLBq@1DyxEXMnzk-CCes z5#j@&n_;&es21o?pz>_`$sJEW_MwoSfDVVodUE^4*gsLGzG3V08ItD2k1@sdlD!EXbsTwIrQ@`&}g8qfF47L z-+<15UDgEpITNT1Xm^C|4U_{k0H_{l51?Ct#sQs&5VL^nLu$%_E`VJS=nnW>0<R+QiQM9kx(f`ymAO zEb_)f>>sr3O@P?SXFUowY^k%d5CS{gtS4cIeP-4wgvDMjYhSoxQk=UBudyb=A9l1@Ik3ADs04P{-(k&z9d=t-_Ld23Y_R?UFLoGMULY*% zx9qj~SXOWOV27pc*402*M{a!pgcaM?y@(G>rL7Nuux{B}2!y4>)-WKfuGD-@Yb)PG+I{^2rV8& zJJmw8$1d8~P=;gU>3V_kI&Z{VO{XZ+H004~-u?(}H)uS$A&1!Gkw9a^=t|0`!A+-PdV_-l z^-Bi(a4R(}v4>$$i`yU=o7@J)!sV5$S3`j}F`Yv3 zrB_UeH0RRIT(of}*vKh8k>W`&?~)d`6{UEL;%X@AgHmnQzcDcr94C)VeO&s~9is~Z zb>&gsK7u>sD`-Ld$%&YcXpZ^lv|~q_NMyP8_JHYaS(CaPoI zZ3pB^7=zQ)^?j)YoS>HS=34=F?mZX_vqz6u`#Yl~N<=j<)67w2LP31fE9$xvqbmc3ved zUF$81$0(PE4tBF*sPArCzDS=w#ir%cv|~=>P0K_4(WXX$hnTaM>yfG{c|xNFE#)}@ z9j3G^@+LPW9dS`#jW=3@gAkG(u|II?=4nr+D%z7kv{}Uz+mxM1>-1i~u9sb3JBsv+ zVzaj?R78&CJKB|*X%~^JU7414ekE^L_NI8ucBPBmuDFumZd)d&uR@A#%Y?LJcC{^I zH#LfuwuS4Hs%_a`qXo4s)3?yV*H>4f2 zs~x#^Q=@2UN4OTL+L04AT2MQ(|CVh>dYE^dwRyeX50tFU(WcB&v?-)&({;1uwxTIE zFW+uzk+d`~U)xdq4>T{`+sFh*OVepuy2a&cY04;y^tyS;Tbc}t$82e~wp*Gu65?)j zO43&(#YU$v?U-GSPTrelrrQOl2)TdoGu4W~gc4j4SRw^hS zvsvL$7DIh^V^WtseTt1qZQ3!r8WYQoV#}3v=TVV}cgY|l%N!+s6{(co)95PkE7H!G zR7<>@{US+{2zR+(n!XY#mit9%$NYa@?%nCg$r#;q<&SK%?APeaes$WJlWN&>C!&pn zxXb_f^c6|5{8y$Oa~tKq2|a+8P6WR|HX(|ZG2Y3Wnvg^%;wH>3Z@ErHNAt_YeSvA| z^mLo9q;;=BGrHQklgk>;OA%f4?OTw+qYTCxhJ}=n^!h_dt6Rf(#W;wqTtYXa$|h+}LYtcLEzQXSJBt5- z=A^h)!W|7sW7@^yYDmsXJExMCtaUWSW0Xomd%K(3N_lq^a(epYDK;U?(~jBIgq*yo zQM5E6T!&OmNR37dYC`63*@4xPK&Z{D)z?x|Hb*0(8scE}QXJw~v#FWi(u}OOqxc_a zMoJSU!%25EB)_IzG_Ho^r?m4bc|-CM#bY)ki4hK?x|9Ql8j5%9cfzKnruN@ zliMKHEuorGU6b@ihLO6;kDI}E6m2#mTX3Ybq;=9A&B*+;%f;1<%uPG5k~bq`DITL- z8hEC+wf61~$*lC*Q*1?Mq#d)X6`5*BvE{}|JMj=>>l|~G_X(s?dT(@Bc^{j0zNA{- zU0V&4woZe))Q?JEhZIZwh_qw=KQHxeErW}#bInomEA%CQTiSV(YRUJsOFnrz+@*hW z`g){T`ZuH^Mf}K#2C$(9%RAqWs{OAevy2;sU^|!Me?;BMVnoTE%$!m zVlp$p(adz3nQk$;UNB`8MS7jDq$O=-P&{Ubg6H9qm107PmamhN^p!}ljVVk!W>*`N zx2aLIv@u+#RBg-`n_9CIZA`ZP6xHZyv>fWC*q*G| z)ZA}rPj0iLXtO=pg2NtIAl8z0M|1LK+GXQvPF_npvywL_Pfryd6ccIXb595_c>RYe|H=-2Y9x zbQ)4D_rKDP`TxA!%>`mD+2$zwVfwNk{Qs@&lPnNxNr=1rcTQiC6wAMV+A+6L{+rMP zXz4`o3uF_bXc_#tc~dKL;=`oJmhD6o$0C7vMmgPb7w|c*5nGsc#ZCH-Y1s5>6X@2g zn(>-SGHnvt)Ed;%e^_8g@xRc2C~2K^M}yLscDcA-CTFFcS4oT3I-24!$|W&v(pr0W zD{^}J>?yV)%hQh8)ry>KN3rF453L5!Tj!di%pWJM((BH<%KVYE^Cs0YcMhPpPKUen zA53456iffUv}10g^f%!J(DDx9Mr0GBXnBX!Y-&Oh?~pUL?9_Wv#2>W>&Rv_VGiIe* zZIjkH)j~j4&OS7z(P*oZyhHxp)QoR=hx};4bsY>8p@pnNLVN=Ku3D@7gk5-FCSz)0g|ww6iAFa_`}ob#IjnciAsW zUyT&YK9+XOZIt~cyzpE44E)mAgeY4248Lvat1HoGu&+wpavPJfsFN5pR_Q&Ic5O{s z)fz@7n*(cFiI;4Oy~%Bmt&;IBO43ERe^V<=OBdlDJBt5>E6B-w`jJy zH;_+JY>vL4yL?OS@@>)G{VK>wpF71;&P+Sz|MOCA-_i|8Qqp_sOM17o^CZ0PEU8! z%Or!cFM_rYgux9(Q9*G*1jGe!VNu+9?#k0AZYVA&?}tyH3;$D9_ulHdRd?prxwr1* z@8`Ylkj#AR)c2e^=Tz0Hs({))RvXzz+lZ*m13wD|2nZhd@5eePJMeFfcfpwi{<;wO z4{DpK(#FCC{`#0}19hyy@W5Z85Qj?OuX_UjZQ6RUM+Cne_8r+8(DG^H&Tf42>f3CJ_(Y9Tn2bTn~$LS^#p!}mLJt`JD`@opp884S{4Jp zSJN+s*Ype8oCMXhBJeA;{k(qr0k!=HZDb#9Bce7B{45k8Ab8*}VLM_6{%^;-OEA4$ zDGiota6*r46I6v1;Kbd!u1RTaq3(>g#j~XoqK{%3;5d+2Zwh2v5zhv?D1>h|5MRic zA#~l773|ekjone673|jLN~zuadcYC%V&54rh%cuH=jt~f(3Nc0MwVR37AypJCCrXO zxss#9NCB0vcf>n~SmeAg(~_>%%jHs~X7$=du%cgi8}v&rXO;Q=7kD>zN>Qrv>o3imNLQHVpp$G9q!Xz=)(&uXho@;47^^QP2#{!YLV zbktZ%7cCs?le!}Np8NGh3Fv$7)kc~hSa%QFY3{tow=CMDs~yR=%m)a)yie_0 zS^-D&Eo@#S$}c;VIr{AfbSN{mktK&RgF?iYxXxu81tMo2ou36V>5WK9=Nq+|399o2 zP1_w}FJ#TH)0ZNk=1r<(~WZLP6h zH8*jJs8nkq&cAh0$(Ue*u`1SAXMwPKdA4mm+>LZl2wyi6yh2+ik_$Om zn<=GQ^D6*H&`N{t$#L0b?{R{D+X21DvD(Oz_efEQ_@c#3HXGr5d34qS!OAt`w`?QhAUE_24EQE9B(fTdnwSJQ}GeNb^=AWuw$eMqPz7zp9 z|0Zo@AI&4eJkJzZxIjSg*~c_&N9@_hPbb9sIK*uC#xuWXroICm(sNl#%WG^?r3~&C zi7IDs|IvNRTjQ;%Z)5eqlZS6m2;bx(zNq3T$^X5n7qyinTdb=^ZGIb^e=zVMwa}`@30Wuzc7mm~L(VQ2;(KymJ3mbH+_BfC~)EZ%oZ9uQ z2OQD$B*e|yCKGhDD*2#u^@R!OgSKlUOFn1|7J~aAW@Djz(9vO}03Xy7?{@7%vFfZP zUFsvZos{b}Po)TSD~e1f%+tL>9TN!Z$SIh$Vy)yBtV(#ga}$L)1f0(T9}+x{=d;@C zk{r*2+N`M^&z*oHXsE$1Rr2YGJh8f8Uyy)K=U#1O$?1F?3&EWZv#n50=PhBR0H@O% zuhW_1POSV3MW9Df_?s{{N;_G(R<#IL6WrIlKp_qRU*o80w2G1Qb=4&KnfU;rml~@5 zOe^4seuiD#r_!P=1fN{Z(HA11kC~~BEcuujSP1T8m`#Q9G0$Tyn@9mZra#`TX>q!R2@k+JN>YMgtK-4w#ti^RCQ(@Oj7Nl-4;)`jFaF3~1Q z?KpCPBPgWNPG?3;Rg$YXpxNg%x&v$4ekGq~b`5uUBH2*NXuD_>EN>E+1N)Jy5WPSgqz5oIB z{Vi=|AAKX@H%|drKtMq7{hM>K9kEk@De+D-=DE|1Y-zAuunwv&f}i^uT{oq)yT*LQftx{qwenIoS-j8KwopLHnQYvQdkJ?YnWYy@-@@KNCDH0m&faC+6txqYB`e? zOUe#HC-ib4rMWfMs+@~cHm2GhcK)r)6-%&I#gwCt<(qqx3Wf0XCNWMq+MRCO9^}@R zmcv@e|1KTLw=RWEzT31FBe{}yXcMN?ZT^jbBPgdajZQzDF36e6t@(IZM3X4LtnEkj+YhMiFK8o=yS8WZG~P$! zFNW9n3);K{)i|s6kozEO{ds*E0&4va+Q>dyM}&8tA+T71fZ(%{61F4uY-DG=b?0rR zBHZmUP^t-Qk|(}a*Fh<5t)X0#bh3a^GXxNeN+rY~MS^e~NE&jw(M2H+g#=-;-D^*{ z*sHA#DO~KR8?#F z8W1LAQgEd`;+1IeUCORLG{h# z>-?koA_Ua=hqaM?bdCt;JR@Mi0Rh1?f}^n=u`_~Vyjzr=J(W_XH=C)#o7$O5B{M9R zT>Tk(qvxiSHrLpqT0C&;$5pw3`;T3&gpPnhNK#}8f5fVQFC#ohAr6HsVWzkHo^)Z> z1-crt2M)jcs{VC-DKUH6jfZBh#HuAV@e=!fkV_3jocnipD^Apqp zmeGlVe_v!P=+~DepcV9LBl}nZA~E2(1q&$%2%cL!iw$gcZtGK-;1 zA?MuwCoDaDOxuQ)2G|HwVrfgsgbcXvc{kRic#3fsh44)=;)^$qnwkml1eM z_S@q_j?>nNbUxQxg zIVq*Jsc+hH7cWO&*#ya$U_vlbtZ04(OF7RF9;Xn8LWa=pbla04{83vY_5k54na^qS zq*QAD$ABZ~#IA>OB$xfhv-&Lu^c%m@Mwa}>GZZ4e{J^e!F-J$XZ{kFGE1B zpQerMqjf}J=eYq35eNvL8+-}ttnA$2=6F{RCP7vJ4;=}K!FAfks!6Dz!pmg zL5j5CYOLAtwBQN~aVVq(ZLHHC*KxPDHl$#2mo`gEh30Ps96=+EDRkAqR+imv-Cb<_ zfPT9H-NpN~ktKKW9tsg(N-&+xxRpBo0m!14ic32Ft~Mh7P8JS;2z02eQWhrLC7nK#l*OHnNY#5pkTS0xT>b zAb2WpDYheaD)4Z;%LEh1%9fA_tkX7BrB4a*<}npX2sw%*;B@W5U>gii0$xQSe3O9q zqQoT9V^0QPX{$ks4n5iwDK(it7jOi1G$y$e)vN4!oOS@IFD!9s8!!K@~f zk9b8GDPXhl)_A826X^}of|K|l^gu6nQJPlcH1s|rlSwd3g_pPk%QW{Aw^N8iz)Q5! zE_>X>SF{x&xrxWMIa2B}e?Q;|`mir^VVbg=<@1Cu={FnDPkde*S@IJPVIjDmV0IJA zPuvzp3h)z0#_K1hllKR6MJRk?@9|taa^;9~>UUB)8i#SF%3%atUVuleK)QgXPKSfQ zddaqJMBH<tf~|0RdmuZO|JIivpkw(jZDh%@{Fp+-mrOJr%JDMi(f!PeLMIh7 z075U}4yt?ap&V~tWGk4eFH1lxn5>QLV+DxVz{3l3DhLQ3UOtO8XCej6P1nRbH=X5P zNa!;`Jy+X;mFCyj8e)R#Twxb{mbx8lPCUSDp%A_SCO&WDsK|GwTGLjM6ksma=1ZyN z{6&Bx1{ijkfUH4Vgu1&wUep&Mpl{i)jV$?=0W1XfEzF)m`IfW7NCCd38gJ@4QC{x4 zA9|oS$yVB#`fj0s%U!`9#l9EIHTNJNrx3m#B*t~FR@!GzZt??dT}W=@yV@iv)tP@3 za74Gk?mK6yl3c}8`ppJ(72niGmR!ZxC`5eW!M^WYrQyRfx}#0fa0@_0k$uVzgk$v=yh~GQ~U;zOE z!KW7=!5XeTy_g?w3NX#Rw4x;J9l^?-nZ@-S1nR9 zWA$a~1^B}#dtgWR=sGZ^4K{X%Sfd1C9a$Yw16I_m0_pXpShjufykZ4~@XagY3pR^< zY4CWS?b<4nV$K$A-jrI;p9(l)j5c%0F^|UE zv!ONK3J`jERZxw4?+9@EAZvYsz6=4iewa40kJb@UohJq?L?9setmGQ3`P#FRzs5T& znb;>i;=EbgR+WYpYEzR*B?KTvQm_eYG(0I-PazJ4q@b1d+2c0~+PaV;MNXR}r8@KH z1CF2&``iyxmECOJt$*m#Z#JN-$Z8`?uHqsJ5nnoBZ)&PE{7w)hWG?VFZ9;--xOr34 zN6)wDHy%*WH)$h}yPlgiHC4L)a(G=orcFvvU3)h*ef0fBeE|aM`w?wqAAKX@H%|dr zKtMq76yOYON9+{fnt0a+rqJ!{mUK_9CSDORu~*kMDQ&H>F~m9~m5qre1Rq5<@G=lr zFG05Lhi3yXQO)^g1Mvlnsl4Bwj9`_vQtV#xdjwZ#6Q$H^em39;N@>iXD~()sc?Pju zzwLnTW0^LxuNOf0N19(&bDg(_hJy2W-R)Mf7zc zk*+enY$*)D$-Av$wN%-;J0Yy?-VhDx`60j&2l>oojkZ{+rJO%FI&A| zli7N2CPhAEwm*WTs)_9nVIl5|Q{@+VlS_U4RIq&z6SxprT8fwMTnfo4mg)h z0%81|pRey*g>`;2_d?oQwknBDmCT?;QfV>LToa8kHCCx3%>mYWx{tRmcuYlzxe{wB z+}JLo5WXx&A7a`zX8Ntlj$tuR{9rWP=5GNUfwe|Q(jpC(hg0^qJZA3*Pvh-a2tHbF zqY%DkjkW4YTdYc^Dzg0*Xexr7Nx}BiG2hLxhDwEcv1VD7bR|=Sj84c76gicJH4koK zJrp9woT_7Yshnt{SIk?lkA~Cy0l*R1gTq?2QaP37dacS{@!IfwUWJ9=W94!R5qWYo zYiF*SEB5!Z`gB@39bG!V!_3CkHHmARxFDX>3RA z9GAgt68X3(#y7`GL&)tfal5m}**3l*rFvnd2_A4+~+O{C1y(+#8LN zJ|#IC*$pgHoa`I05XQ-#b|xwMNbIg;vfeG)`;75DJxNPVQZ>6($-X~<<%?7PF)V~} z$~!h5%noFV{Z?XAsWO=HR4abp80(!$%WgQ;XE!Vn{~auAocM2JA&e6bOBt*RAhEd! z1HM|T)U&mEMSNNEZ^rna4|y59dHCb;kpTEH03sGkKk{@&#`)~rzr`%*eWQk`R}<9KSDyt1?JzUNRh9mOv{$a z!)oGRmJ_qPvAeG{bOrI#A=`%PA%EsyLekd6{6Db}|A1d)`Zq-R#Pi^MiMUp{!Wh+) zlH@dtn;~%HUJgw*XUk)2*B&3-xR+reycF};5>yIRJwNkV`dE1`&iz=UIg3(}FU1?D z+V>6&Cuk-lF700!jX5=zxFKq=RLc!zYPnLe`@q0(n&v+~3;Nu|F2LFcH?i{>uYMJ) z(brNg+g?g+BU_+5tyFHXT(C$yq8+a${`}r|eMksRmqo*Keh_fP(6lI7ETsm?hA8}> zM-HbTfD`@t@I)WPLh!*;rx1}xs3pI+;@z+&lqH+~RM;LUE*vCzlH9Rh+& zu?O1`+m|*b#k*a)p_GMHM>3_{crZgoz8Io^4Bd&qwi+v3pUTsIa(JCKowl5&1$W?N z{&_y+e}H9|TiSOiM2tCpE9?Y!!LFq+X8#@yule5sjzC(Yjhqxuk@lp_{;%QL`yVU> zA0dCH5Rp5~HbQfyR452MFV06|zY3lwQ=Vyq6448w)sR`{Tr7lfqNzQT%7*6WsZTe? zGqY#Xo<#GjupDu3@Cq!1mu5uJ;BklfBm@MP;wkLFwBydyc;ilh#mocIm{j9vH}nXV zI)eq4&qL^=_b{{dOu?5b0#FTWFWlrVrVud(pvmXfGsSAIe?VMedV4hd=C1=Bfj03( zE)U)#;kkP&7J?6y|DX_&ho9DMrQUiWQxUx4=b)_!vL_#kkC#2-r?LES^LzjcVVvSg z=VWW8ZCeF~e`=KB6J&;ef~AKu{6j2+mtjP};4z1}Ap``MqKNH?9dmZJ#yZ!Tv96vg z^pdI0xkQe2{K%%XLf z?0&c`D6y$t%#!7@Oo3ijBrR2(6b;MyBLPPsvN1o|!(>SHxiSbF_B;+9AD-cEECe4s z$54pK^;1~QsJvo*yD`dJldNJ?X8JZPO`Pd>U?IFr zBceP{6j(GtKyWFhVmo3d3a^fNgUP4x?+4MCQ6u5z2*QlCsmf1?ZHgq}yI4ZGaXm#L zVoVZRx2@g1b?rLwT7$nvLuvlkfFqFBn4W|}=0c_?#lGYL`aj`0{4*AU4~;)kh{)4` zNxQN+@6{*^3ekjpnd_;^YBmR@4fIoHdM-2^GNqk`g)qdQ(*~I?)(63+>8H%}>##I&reA}FFwXQe@E%)oHFCK^ zr6`*ARmKQkNSw(2TrE`~trB12{)bHe4T=S z!K2`yHfcLmC2gk$3(z(!#d-fqR>%|(DP*45hJ`S$kV)$^eNen5>|PvaOb1hwS<+mJ ze#%UDVQJ!~e>4`tIMZ$G2Qs-Lth@5GDM-mRtk_J=ux6JpsSh6_Z+p!SF`JTq^ z$=_5c9Y`D}l77G#=?m?<^829G)N%G@dh9=B`fFJ3IQMY1{eRt(wUDyNvNZ zH92^&Xw_2mQ)c?@SeiJ~BUlLIOix_DefJiT=tqnZ4bKu3Yx`5=L#Fw2SdKW&pT)!;7Yp!}eq!w3Z?t zGR-Z}Y{&%gUxzHs6V6_HzR2=X##nAk<}(LV@c%N$$?zN}un@*gxj7X%ULHd87Yx$hYaL7#>{e6F{~=p{4$B>< zzYh!Hr5~}S%6Dbi_8kI(OYu$Y?v=eO`*^(NThpDYmc;Jivgeq}2cxmB#u4t$EI+2= z)Dxv^v{_-7QL#092i82eh22geV%(bT+)>F5W-7dJNIV4ecr@(h?*|-#zQ)XCnYHZJ z3@Og+eknYopT|P*(ee<5h6;2;*v)u`PGd;`NIn{p}@F^mil&NxP%b-U^L}%!wypA&k>LZ%3w5%R#m1X!NIy z(LX;4E7YX@)R<~mgXNH0|4J-`aW%|lcexfyMYsXbE}s>Lzz$~RI0jfF6-fSKDZV4v_)<;vpEm;1z3U0zecvXOycJP@C%We@6T#DPUd4xT4IT&v}>69~JeI8tF z1zuJb_N2ZQjafBjyVI6_c+1ss9F#vHf}!)ZK48&8qOrDMsz56|mwu@HQW{F*{UK3|yx7e>IF zYy#z-B^-xkkb96WEJR=>pr7$v0!OKSam72U33kLI0d-sCkHso|w^>leUSrBw zOs|=!+82|jKnC(hM+QkFyRmd~jhss%V)W_l^vGJN0PlDSq#iIv>J&<9A8S(Luoj-f zi?I;gs*6kwQNJ8Lcb8SGk?6UnoPc^ya!fO^-x?N(f0r@h=OwGG`Bc43%1y}$O?cwd zeFKpn(tJCXL2k$+SP0`vn7z4Lt-}j7#G{-Ge;|v0;(YrNV=90whBi)J$;EEt(kS>G zmOZY3Ph%mx3P4O2_O2rdQ7lo1eIiYKs1p*`!F)E4h?`*Yw4Y`8-Z zd=1=<;n}b`?BYmL#)j%T;gZvCdXTm&Wbul5(7&-}$}RmL6v8)V`exxexyh}QS`KR= z|I5F$q@`uwNd9F@VTQ8k%tEOL7Eoa!72X=JLDl1q3L&88y&L?9Xc*6T0FJkxA`u>&9}jy2=YDjQtkY` z>`Qgwc0GR*{KEG9$@H_8AP@oTJ**4uiA;?>n<`EuSSNHmlluBd*)WzQVL1X=OF{Qi zPT=Q4NS1LLl{VDP)33xra5sAj<1D(w%P}F6c}XTT1g%wj{7k5m7zQwxR-4hK^p|Zj zn#0UU_~{5ui3sYL(nOlM2o^nhKW34B)Qf^_!mr=h+>?2%C!U`-)R*>zv%xQBV5~zX zhQ-Ti63mAM9~v;ZBSVFD-2GcFo-|;pR41VZOc@K|9WXjf*&X585p(DW2rk8ZY)7~h zEQ*Jc;&0eo!p_moi>;={Cuq$eBh_7DShZRhrOz~t(tL_Ur-4 z)@YM#TMfCACFB3XOj=~MIW$rZ+ko$ESAXnnK|{Y%3$ zdkGeTkFWzwIexZ{@TAmX3M$x|>#1Za-UW#d#H0c^eQdWb8Tb3J{Bh%c4;I3>3T8Er z0(v{GXASPl#uPAH7z3~hS10cZNc2C3<&M+;MJ$Auenf!aF@||K1O%62j2MF*hwZxt zGL>?oC+B(7_eEp6pOUPSCR4OYN#!qK^~F{GJQl(@*=@=vH0D=L#qi1Se6sy!heY%o zXf_}F3-Dg*?V;``WXojoc4Q@nTMx1R%LxNPn!B!fGmF{H*Uw_1!( zlE<7HZ^Ie`AGl{z2;V#~|2mkPHCk(>Y^`EhBe#r*OX~Klj4U|tAJSMIZ%l&i3G&Kf zJ`Hj-TH%j0CD}K!YI|dWf)cWB05vz)jcgxlS%LhB5`jG!cHM~8n3^kQ3-w;BFGnIF zw3#0UDe|u;AD6<1)o2^c9PG8qwSkedUxNQNTC{o`?=a`B3De5VEv%t zQ#AiO5Fi4hR%l>J(s@L+n#vVZREW{0+P}fF$xZv0SP0_^nPHCsdgnK+IS8X*YR!}m zI-F79wkwT;$K(zJ zHbi4jO&JvrRDHZj!Qm=m)mp4saLYQ4Lc|!Wrfkg>Yl-y(miOtA-e@?@?*bfwxW?2Z zOe1P=Eg5Z78lRc)EMAC(;3MM#3gH{4(5vh7q28iiPH;m`Y%OKs=!jVB`bKCyiXbJE zzkqD>Lzyc#>lC~ILj{mDaSfJ6ZqHXT8smF2xP1pa(wi*}4(7yn#Xe+=(J63SfZL?R z;RnNWcn21OTl4Kq4N%n=I ziV3?I|3I!b0L8Obiu|?5r!B6ViV{oV{4bFrWmn}BDWH7T-_0!mQ9>rwbFmPCRe}!M zbKxvDB%SqAy_(outXch}f*cmXn)hx`H>QkvJFCc^K4U&DVJk8<3{@i zEQFVKL_pv%g$*491eb!v6a)m9g3TZi5L}8^VnejODsXgc<)U=$Z`NjbToB$$$RwQF z0?(1nFGpkEjbzh0Hho1Cb|uo8YC4mKO&RC#t1#D9ED}71wN-BJU!)K*`sgK_DiDEG zPig-7z3=*v;7WcI4cGba1CBstV?h#5eN!piMOC;W35q-wH5|VTPx8;P5PTf{ltTEf zAz(Aac{@vRB~Pi3o|FZX&%#=_q=(5v(d34*9%dyg(0;1aM~}+V?MTH<2$P`wkO|@8 zSP0`9SW55afzxbI$p^QblO0NWny^rn6>*F)MJ!~O^iVNUaQitCgY5oT1;vP1jU|)2 zoujZ2UVR{f6OV7q`5_><6pvtswjJNDh<9&x=BC`i#HLIRR!#d8yWw1R^;E&-_C{l2 zjU$`Fn^jKt=7y~9zTCldA8R^YBTbK4l99n$2{*J0DMXC%Z3axRE7ryJT*VrMq6CrN zYoehyUj-a7qRk*HhfVFux$%|Z$-E2;!N<$%DMaLPtR0rZsSDjB-j(zrXfBGyZ<%nY z0%T3XMGrFBAH*`nE%y#AgmJPv&VqMPYNZ4e)g;(JZeG0jnlZ{dlLPP+O0ATFhT#%& z;z6Wki?3i=kzh;YPlhK4fw2Rtg5LNc91tDG^e}kNNynC>awhopHa2+@-xr>Fb zO+R&DU^wkmwr+1)s%iQWxF!)Exvcc&E@7&J64?CZtm%A#$WbI8W%#i2SHj=ZlGprI z@TW%mx=eO|f2C9}_KxJQhQGNXe+_(IpTCy=`8xRA(vp88{g3P6b06f%P~qxS%jT;9 zY8Saq(=2l39cU_YO%uEx#2I@&Y?-n{4cpVhNC8EzOXD53lQvjn*-n@|-3(obAlYop zXqr6HM#dVhH)6Tt!?i&nVjZq`K$Cp9F7tG{yQiKj^ujbX-2+7>`>S-c23j>G!@Bv_ zByoAQkKEuxmNx*957`HaET17CpMwu+$U52%HeB;{0`v%c*u!)U8>Ytxtwo2sq`exNkKKu-NMn*0S#cU^(>;4Bbzo;t#Chn=iJ7_`@v=90lK@y~}fk|+o z18Gf~{k|4UF(00Lu@GF*hA8$s-+YBJo<~35d?}VGPWB~O2;*d{&o_U-7}cYlZ+;(^ zB~J8vun=CN5x$4JFP1$ZAh;CYq3#PgMTN}sd+}D0bZk5bMXyD8A(9nIiA%LlM`KQn zqud!&#VTar<&88w-fG!xr&*!Y*t={$!deM8wC__0M1qK|TbOvx_U)dxX8#clt@-Bw z$D13Lip7H|@*xMGzlCS-MJxm#ATLmeD6>df4mEN6_Klmw8)26YM-$&wG{YI~z7+Y8 zXgDjfC4-l|sZAd1mY;Z%UBvCDs=*RWY=`Ga8!n*8`3~UZW#P?y<{|c2il} zt~3pLTX;5a!9wuyaubD!JQB^M3qqu7iCwzy-T!_VnvG)GDKkHdtqeiaDR%EZX<8!x zvsmW1DL;sXFi!p~@`lQ`QW4%Ufou3{*#RI!nDqa*G4^LC$pb2Id-X)pCHnsh z%N?ix$5;sC^mow5vdG(w+pO9^saNzlFT2E)<#)1YvY_D>YR^#wiknmxClB zv;GsY5L~avVIge2{yydu@XSi47v6gHT!`2gkyaNsrGQRpFC1dDTO3QHSuB^_UtB~X zVodqk&Ka^QLpke!5c95!hR=K*a0J#Glih7@InTH{JbzbUA^3>6ltTC>dFXAwBkcPn z6Lep}IhW$tv$P#}H;55M(kH86xpVO(Jc9~*4$cV`$IjK;gm+dd*6cv)pNil&WV_{V7{JWD~Nn{8VyH^{Mn7AoXvL z{U*?=#)N|vSR87+tUNr@Xe|%Z!&^|raUXj!=mGZiApKIj6+}7)Gjev&&%HJ~L24~B zwR%O|$6_q#slDK43mcYT@m1+gN|ZS65E1os19 zWQ<0)t!Nu%=h|YzzWLRD1X-}q!(LCueRvCPqd4~KLXlW#{%K$YYoDZB^&S%@cT6%< z1Z$&L>DmuF``e!!bpDOC6mD$)z(N=_Hs%QytglyV@B*kP+H8woY;yRZ;mRp?l%?ZEhai$yvF1ed~87P64lc8-~TWR01` zBDi{xIR9XI$3<9$^5MCULd2L;&pW4HNt8>4Ty{7CH`F+$FD`9dZH(agNqBEO#oC9B zJ$L9SM%)$Q*}W7C!EOB#rl9B|EpvX0T(1X9d{tuc?mE7xio1-d0v^}2XOHv%J~83*l7_A~)da1q)~h2rdOnFAxx1 z3bs^*fZ$T>!zRx5;^UFA72VT$b&%`Lj(tNU%QlVGij_!yy;-{XdNW~xO|j6N0+B*4 zG_Ro$F{V(<*)@KNRXgg{f$kkUSHqn}x&D4QFxpG6cJOY}?TCi<{ON!r@Yy(m9udyf zQe}_??)HQC)@(uOF>NA<JKBir{aSjIT%H(?=+lRjf@Vt1*W z+E6-BOq}Q482PL*);p3JI167+^+LNTx*;REl?Sn$aoX?4LKvt0$X&Hk1-xlu6&yZJ zR4nqo&k+3gYI=RwwoJL~_4)s0Oc%){teO#FQXor;%R+DR8ni``)bnF3w_H6xz(N>T z&x-YhQjw^KXom!4@@Kd?0xGu>JFPMtItRwYy1bW+>F20qmPtePLjp6=72G62>c}cw z8c9X}#PZ8k^mi;oU=^Wv7?+9R0;byAbG6zqtp386_W{r4mzs*#2~Yfh+Xst84p@k? z<&gBU41@`pqAsQoF{Y@?h{J;Y)5NYaTrHSbMbB7fa^1G865n25XN>Ko)K`&x+$xbH zWs8yWbyKH@=lWGx2tEd0!PFJ?nqOjrRkJFC@N_(#Ccv%xP~Je4v=>gr_Z3QFnS*6a zD@VX0w=D?GTw!s736dh`Sg0V5hO_^~My@ znH;nmCO2!r5}#rf{8}t)ocOD-5XOn0zLR(-Sf%UDNq4b-)EMnElH|TsvLt6WD_Q%8 zv5axj@5DlQNk=SV@pUj3cn}a=3PUsX8LX6_6gbQC^`98iJV>@w!a8K8!o2-o#(3{cmhFc9SEl|C%Ni&Cf3Xn8iC?lUQ>>FG zni3mwkPJaRJ**ZwfnN+biOWo7ze|&YwiKyeR|+@kE27U55G7>pyATTzSS9E=$;|be z6FYKc3ohlg62G|pj^{sfqc9xS8&ky8WHy&7+fB=BSZ824<0IkK6e7kc#{@F*7U;_w zqiht(EW z_$ROsUaAq=;tFTGh6o5Q#Y*gIo4rFk8+Ggm9qpz;$x(TLysrX}O^6xCAEPm*rW-qj zn=zoys60U4SD_6HTbPP1;pedS!Agk61jgucLdhpq)M%i z)XtR^L9iWK4VkmGVj=k8m_Q*S-{75icIIHYBCvd{F_tGK^RzX|3#PFAa1&jFg)mO> zWLP@R4s_)`4;Ah*Mss_TwwNLuN_^2Dj$hJ`RrbsM9)@1S7NL&lf}w?TB9f(9j` zt5}ve(Pb=zmuN&-=8>H_e*^@V;#b%ZWJmV9xUvovh4|bp3-x^_e5h+ zO*dchx7CYo+i7S!O`rA^f|Vk~e-vvd+}1u!Az}>i)7NL<)lS%Xw=W)VKDhm@X!y-P z0yqM9jTy)X4u&f!BPGN8jYf?OQyXu zS#=stu@fP(!~7GLHEzVe$3hq@R9^EaXWU zt1{Z5!@XE0xiWTRA&e`d^E_CFfagFGdx}s#N9wl(XLG4B9n4HZxdUk#>QS7QrLcMl zmN!oQ0W5@++dl3xn!bLf#X%excz=K^yVK29DzKzim%sc zH^thOM(uYf6`@XPe;W(I$ICY;MC8fvEGU$*Jr}cV?=tS+pxr3);l}|-q<%IWG;!Ka zQQIbMOZ2};J06Pu7qAe<>7Ti|*av5P$aQekuXx#CbfqcwXTg1NcGIJfKOfo;nJCY} zLKr81_Br($-2T~LCvUqZcGb(}QbpVZJgF zj4PmHJM21VdSD{1B0pn{{LW<2ZrGpr3$d(m;xE8L7$<(|jtsmG4)yZeatEPg$jxn3 zYPiOj8kQx?OpMeZ5yPFd_$%c~ETdd0mti4{E2U%CK&DJ9SM7i-q(C1srUqD-A`O$; zRi|Oe4Sf*H8Ylh^EQE35r;$@{iL>CK4|z#lVEt>xSf8FGXWmlqvIJ{YqWmjZzBuKN zViNj|563?Y-xb}WQf35c~0zFfj4(+CJI#mBHy7<;*7UcA@V&Lm6y zn<}MZ4eq*86yu*2jd>|I58?29y3cO9nq~$0!pu{#VzLoyCw#oGqYyE!m`vSVtW{ti zi{5W1M6H2n*v;<+9D%vUG?+CuH7W%yD?E=qSO`8?(iFmXtpr`|HdnA{xNw`^!6=r! zy&2k$V!cG>ejeNb#0C^QVP{_fsaP_(9!nv&=4%;+aok)ONtx=eV|n7H`Xm;@ zIMvJT^H7PsaJ4e5_rOiqq@0HQZ8dRTrT|6vg5Um&F%=|}Bo0F3^m<~l^i(IJu;Xf} zAts9C&HsdDmMiD?SP0|FnX$Hz%T(Q)qeV^3zS@)*hr@!TU3alV;l4Ye@sN4%bS#9I zc0|(3^IjH25D;97F+w@^PN$`AB=l&D1`59!Z)|Y4hWilWqNx(Nx^l- z*tM&(dVA%Z;Og-7U4ez*Mt&(4g8M(F#6!{l%{*(kT!PZtYOb1KRZC+0`;;-g&q@xs zO{ZA3l41nihb5nnpif{SxCs~vKC4_e=Uy*M!w$&}VLQGr*I#G1%L>WikBq5gHFtFU zmRToXgk6Cqfut1i`&gE_qP~NL@G1&1(D+zo%QpxJF2(8CT-RQsyFT7Ex~V(aOVjkm z0KwEcu8Ac3ZOn1+bZtJmHzF)4DHh|VLGvN=-*yV&A3pb2TUu6MIdbX9s{Bh!T3Ysv zCCk?Tgb zH&!V*>bC1)U?J1K_L==Oe}%1?(QeOAxlc}Y3qK_unIw$|eRZ7tY)UO?wlrAI6|4%} z&`Z}|~( zB$2#2rqk`ia>)aEmO}VC-BpoKS~|!|8p)cR3s;0Fc0)A0<_`jn5V9Jb?rNIpb(K0-_EBG0_7ir<{~g<1?3Zxx!&XDsp8#Oin!I@g@p*rGI~8^#)eES zlVHz?NO#$N+bGv3$XtH|OBCn&s}v$e53yh`T)|2_#4tP&lpr@;Lxz%pGneAcz0Vut za$)iSlORPTNRhj)T?wSg)E~k#{5vcJx8~n4B}KjOG~ZDL_Z^DG)|uCu@*oRbO*Ab) zu-GUmVg^WoN^iKSPsKtQSH!H%P@6#_CmesZk6eh0KPMT}!EEWDwIQ^Z@IB?V;l7GH2@@KjO0J1{A4Te2f-Z=F;u@J_oUj-F27R-Wa-66ciwTs09 znA|0xtfiDtYvlFDG_smh(>MZ==eO+800O0mK&ep_br8!kS5zGfVO&v1tnKY3QJXwz zpUdWI?$!^zfuGK2ny*T@-I#`!Ct)%VlE7vUlf>Qip||f-NhJ4m8$9LxaL6i%neVTRDQHb{pmczY5-L&3n{=g`C6b2F zGgzLvs(yxrFs`a)?y`mQ6pok=v|eW_Ax`jB4COH##kSl85GG_^d>9tOxLS@{S1Q)4 zr#6k9UtIA{h&-f(nH-X`=)3ZwcGeivPBPg;#AzNkmMu!E&k;o$H!HF1@^Nz{7Q(9_ z#L_Nb9cC*92na5Pp|!6gcUgtL6ztQ&-Z_{?jXn_MCMx#O7J}ewj2X#_WR(a5d$hJN z^nD;VS0S@oNM7Wnob#|c=4P@B3t?PAvq-no^h*A8pM7_NppQ2g(+63lJV~Z|7|Ru> zdk70*obFEYz6nXz)w8Gf8Y6pVl5Ag*-~}>U4}DaI(bVw;ESFpz4`U&`>Oce+9-r7=7XpGyaS?W@)-D(M{6yG@ z^*f;9yXAx4jG#xlpkO)!=eq2g1i`ERUoSnh7IvrF>GrgS<}O=oy5#F(3z|BJN| zZf5_FLiqD*pn_!b8$qFN1u9AV7N+@6O z7p%eBzTlZj7+-)b7H;1FH6rj{X|Z3N4Xp<*BiR0JENQYutDNqIWeZxCVmB#l#w+T_ z&cLdakN#INVe;2CVFU7!QI=`Mxpo=O=5>K3)B=FSBvlm(=hbEQeeT z-^M~1SHsjZckD^Hcgi&Hk^RjW_tTR7<@zXhsl13~ixd6=7Q#5;9otI1Rskw0%7xM} zxkpYg_(j*7@;30yD`^#|qf%Q={2VNVm-t%`Z#k@m{4a86KihHkup|pt zQxp=LyssXgW=sonT%S*7VbFL={nGI(u{3f`oPve$Y9e|CtgXW?--aCQFv3liaIKtF zs+cjTfDCE8*VDK(6fVTF#}#k^7Q(m!R_+8RkjrMO$It*wi$;g43FevLrayQg6rQ83 z4hpX68e=+H2}^=Z9vY8(p@uazR828|1vmb=;z(M$5=$}H(q&i(<64?yU#^(wgDZ}m z8yCgt!H10LWG-A0Pp>ykLF=Q{NPG~>A6LO0SP0`PShThPZ`2pTK@Gv%AEdS#D!}0W zq4n(4T~RLVLn2?x$cd7yY2v>Y;B zZO1|wCw$^AvfwU6;1i57Jt;|-_vMY~W3l{jn@(XNyc8qW%lY;jTjN7Oa4Gt*b4q)C zHWBak+bY;zPi=)IzEjB_FH|N~6Sn&#FS8{!l`4ao8blV+hwhKY#u|&>YMImBb(``Ek)=tR{y~2=vb2N13F995J{dTf@W?LS$*N5ltS}X(~ zFIQ0r-`OL2<6+jugHT9Cmd<@__#S9DiX~f_^x1G1Fl(En#m@MVGJ%g`$>a9>VMd;$N{V^d~Hd+|qxKh4AVD5!`uxz{VQ_ zf=e-mzr*fL&DqS4{Ltl^J=ILVm>4GBWXj>q6%HK1ZVg-mNm`d&-VzWYWG=oC3t?OZ zQ|U@^uBR?7RIWG1{50~|5!5f(jY@={fn|%2yjNo(j1%6rvs8zj!98Wc)RjbDW#E$G%79Hmq@Q`+5h3h;g#xf0O*@qv19GaljELJY(G?|4?`yKZAwfBji&Q z!gtbxO#)_-n}ov1h0hqHRm@=x12&xEVi3)r2!$Ql#aFfgB;Tv40=3%2>K<0G{3Bqha%4xnPk> z3dNSdN@EIH29IEY7%5jBIgc392stvmQjWkv7#|@Wd*JLL94B#JM-<1!*~Zk+nXJ=> z-Ioy+qv1>}Yuq($z(N=&-gyZTxThPGq^u6kTtN1`!5YeCJ^Pe{#uRacvtbM;>*+2f zsjsWD4Sib>X+-3)ta8QlVa<1+?h4sag5ojpR*=6NQ^+EBtW;CIjtHqT z6G0jyf5kG%mGM7V2(K~_D=mDnhE3@a5L}8|u^GI*So6EqSkDv9gmO37jkaoub=E*; zCl7+$ zpq7o@D=yG{ZZtIK&j1{O!^S+=JSA77K=Ub5*aIae^jdQ{(rpjV?G`KqA3tYNh{%_6 z=In*LzZ39`233J=c;Y2kHE21C#T;1&bKnxJOf8kGG7Z?R%Nn>COCR^6MJ$AI4a{Gg z*j_58ctCSJk1!D4ZcGUal9^Ny1mNM!@jtR6MzAb$MZ6UYVO$XloS{%G)kYZ(pEIZl zXE=ZaV+@H;V`=1?cmNAwTobF-W#Dz^EQt*4_UJXcAUDCXLkjLm4JME@HWDCJ$gFh<7Q(A2#N>w0k67-EfZ$TB!djd? zKYA|a`O(IMS*uLfs?LJM8478|v(gttV{pp(k>xa}RxxHe3bUxNhxJ%eWA!3{# z(TmPG&2#}*aIvqChU0u5a0CJy?4om*=M-JHmD9n4;aRO?A^6CtP>9H9Mn^!I6?;0a zr(n_3i1g?iOjEP_6T2&!tXTDSJ4g}5EJ;?za#DNcNPOWY6Uc9kWb*eV=$lm!u&)Q{SECIw+5S4IQY3Ea zBtY3tuYuamUZNs$!&6RF$~M>lfQP$0o|N@WC$==&;8+7WC|DS|zA>o+_heOaBZ^VJ zz<$`gn1xG@Gi6wGf@OaufMidf#~K5-r-!f*M(xSRVrHH}V~dq`ouIf&_K#+}S!mmh z{5xY?PyV}rgtMK$Q9_yRwDZ?61p6jGQ|&QfJ&Ti!AxOmSOaPX|omVkrhx8&97V+d7 zH=q}=5C#p1u|Ef51-rsFI}C3zBsNwmCC^c&HUD8MKFlTY!D$^HUPxK2b!iN*1Q9}} z+ecy{jH_VgTG-yM(1g^P1_=XUn=$@pCCSb@ZQ7mi$o79WmN{_E2XIxE^@-3v-=s~2jy)Oqy9Pk7>(z4*!R5fvlDwb2+_1N-`@kjX2i zLRVp}h#TVN6e7l{Q2W|)CJTE+yU*Ju4C*_h;W|G8I0A2tDaj0NGF2NIln3+s!*lpv zECe4$@1_uuPkatPf9qO-SI*RL1o{k=hY z`?Fb@-rr)m;q?9*3*n^~5l46^Vtxn#!KHWuwj*{ZI*7Wt7Jb@yo*R8Oi|3wpU{z z_&7P0LPQ>GCT!cfd8gnF`=FsHf{mJA#T&d?EIHg8UWA1(&hMmiiq_g4n+1k%Fv{== zvISph zNSIopbTh9iQ{OER$Rr{a6U&%2)!2dwQV2o@~^xyE}bvw7togK9-V`Jwyt!VZ-k6 z9Q|h7w_y3?DtQwY!njI0>8(OmC9%u8xDJJ#o@D5LV``YmZWMx@@2cCf6btUf^2VwE zI2OV<^)t7_bCVfT;^L(GVhH|$G45w2i+0oQwwb~eeHY6dC;urdgqM88%#TkV*~9_? z!KL^NHife%k4MG3Z`MJobf8{}zSNfRE<;RzYa|JF1NCH_FeOr~RZaonLgw3T6e7ln zWGmd5FC821iiYL<62K8iYqXIkJk)1{j}Fh?Dl7yaEh{KQEm#QSgtwmqb;eNf?xnkCjP5DP5^qu>`(i9poa`bN z!b>(HobZUmJQM44L`na5xq4zldj*8Fz+%fc*k!8zy4lipI& zbzXQ9ca2V>Z$v~m^QJ*SEPCLf{7dk)Z-iBgk1-bBpiQyO79B0EWZVpEv!%59ysV`T za%QA?Aj_&6(r!GlT}3&Dd5v!hV%d8p9NelT z;5EWR=8|E%^qby9AQ1Z z3|YeweD7Z(QsuF(DtoPJuD{p~Q|5H0n$D#ADw#ox?gx;+f@9mZ6k}=nPgst*rhiW% z5KBnd;XVc3~lmlis=0%GN7Y@*?{-t2R*T z71O!B#(19zyxT3O2JMz5>UU##|9)$?w84#7TZT7Q#5mGk3u~MP9tWSk|dw81? z-9N{2#p(Vj7Q#5)3)$oEP}J3%5YrZs{Ykf)%3BsCv-N7NMC!_VQ(_9Es6sv*iL~Hv zwi;u7j_q$ejZ2PaGnPHBfK6Bk;|iDtvr=}KCOHWzFkdpp{B(YUCv8=tynyA4Q=Y>@ z7^i$Hec;MTE1DO(Z#KsGv?P7X%4t+0{6;KWobUz~!Z_hGwp%r_$dou><@yIa8w{T^ z#(4*v=b`PUoOUJJ@56G&Y5xQk!b>}1<(e;kv(+>N1efBs*fl+S-E=={@f%%QG6VJ} zY4x)G@`2zw{}_!?H5E^jckqU2okO=%HtjSlEcq#x#h=4k2sg54DMXBmrR}@+liSp@ zx$2-m?6kK| zy_MmRflNW{D4+U~w^D=zNb6OCClmNf0RTIF;v zc=2wM{-^1q&m%(IQ{)RD#hL}TtPfL&81sb=ms0XF1)RbavW9O(Lu~#Lz!BJMbh3FB zA(lKuK^m4q)z`!G`6L#CkC7)Rgm3PE&Vy%h=H2I-1@iv_4M(xnDw99EiG25cW|{v# zVaen6{Ch^8U!isMtWMnlyO}vyh6HOCZMpO9rs$lOgza+DD1A~z=5ac-95M%8x_Y$j^f}$=~UqoK?45EtN##FI5 zNgnldEPPCLoQvg>JB{sF2(LO2xe-sV*pNd&a4Fib9pO?i2O3I>F#;I2N@%h3m_5D! zssu-cDn2*=+-S@;m%ysRCC8 z(5?SHMR>?(rug;1Jt=NDUwpBSV}GBe4oJ5%Qf^d3gH_oqt7|I zgYceMTdP%aJ@uMrbM!mLRB&t{6{Ip;E=e2T4zG=GAhm&YOH+51As2(2S;;=MkgdF6 zjOl5~Dr=N(Mav1`^Wkay0~Uh2o!?<0cr;?l3>A&O8eR%Ez(Ywfh6~0T-`sWZk|MnB zlW_fQVqLvo^tq{bn3{*ogV&{L^W4LxdPwuqxLyM?gq)GA#6oa`G^B)ioP6*BHBt#j zCWE3Db{Nyb{HDn@RHl&j>AX;(hHY35d9XVh3t?Oh3n41P-4<4@X)xG8%PpNXvNprZ#U%HRnGEID)Dg?eu;UrbIh_ zJ`6v^n*Ex7v!mWj@|cVK6>Vgjn8}4)wU!2Q25o8{$0AMXsTT@X4elnY)&yhXE+wdW z=3jI>_I{)|`G3-1%>QcwkRRVV@|2AQi|p$kfMs1FT+Mu^n7)loh0@|0d#Ga}Q{gmy z6y2(_ttRI`$d$%$=O5kCBu=NR`A55&|Fz3%5>+r_$KT|+<<0={n=`+$#kY;0o9I*u z5sxlLcP(?tmD5%)-E{WT*Gby?vOD}!*L089=1i&b{1Jd7=%=xkI+;M4?egiX&h%u{IjG4IhHM(-Zr(@>Z1da%UZ+p0^6hll1h#}W zfu>$d#_$?_xdR%*dD_Ufa6BaJq7c68agke1(#L9`E)Xi_(wW{~PnOaE0Ye(j4casX z^&MNo8xHTdGacfA;yQi716t12+Q>eZgUClnGQm zbG0|eJ6D?kw;9(3_xwZXfZixm4w1%s)l?0pMt1pcm1a?%*;>;-cTvHF_^imEzK3O- z=THAhAr6HwI*D}IU%^`y7cLvojmt77^N9ea5P|HiTk;h%j z9q#orDoyVWujzBOISH!iSya=a{Ia&U>$e|J+gr4eeYA~;-8}rWP=J8oNyxXb&WT6? z;s5e@OL!;4)p5O5SXCJia)4X3ZB=P#jk7}L09-mD@F)_2o3IAN6M?r-h(jR}nBw-^ z6D=Op){7J^?$;(tsoMPe0Y^|uV>CQIC@#Qr0Jh)lM+^s_jY|D0_we08`($ih#1e)1QsX|5IjwI6V`z3G~wUzrU`A;QeUlH zsEb7#=V;rj(!n&&44Eak!U^$6ktA%znh#GBHdBa0AxUU=y6y2I6>Y6Zk)x!|lTxwy z3js&a30&kz_Rbv1W!F*AZ#kgr$Y~=>uA`4a#Frv;uoS^z%cJM_f;1sBgm-Im5>(G@ zJ}JsCYx|x0?FZEM+q99#UE6SlkbP~eJ3c%b|3-L?e^r~8pcm9_q5eHj93 z{V{E1AFU%|J5LW-h(JK_^k5UVBX)XlP0Z=RUU>Se?7i1;%DZ(Pl+xB3TgNEP$U5Uj zuFG)$sq26vp%9N0IYJvqt(QUDHpFv;i4@{c$Pqfyq~B?0m&M~xy0jH!ca`rg9Iefk zQpfp)fFo$8aRT)xLM?`@%`UNjvaeaCFJC}kvqBqL@-@pTM11+gk+7wnhWv|PP@aZM zcH#P;td+K}8unPo1t4L_9OHa#o`PD)nSm^1>^{p@vqxX%fL60p8`;Nd5aESKDCVFL z5IjP?4BHVqLY)%tEmu=^k)jf){?9_KYV%cf?}C2lS-8?X8|Oq3q-X(%Eu`QL6>;kA zSOxGnH9{eLf6t+D(4<=4u0e%6ddwSyI6IoHlJredq5696?2@;z1s; znl#(x-&b4Ohux}}PwPt?&=EaAk$rU^WAR|pmyf1Oy5=GKEQqc*WF;&3l|HY^`a#(W z6!n9eR?yUI$sV53mph<6{7f6!7LJF6rzwQ5*ND7+@aRzthmN;wI$Ixv8xp*AgtOlh z+JHI%LT{E3)Qy}wT2>RtjdYO*=}85p-FrE|nXWH=Kr@=6jXdsVv?h=lRqKPE+<0wx zD>_Y^t)N!4BT_4Z&dWyhN`2u28qq1*$m4EAE5|mX!CcW}LB;SEv|pR5pcb?(ItzlH z%jPqnFL^-ov9yuL-F#M!Z9a-Pc3XJ+d51PvLG5RIboN8KE*sFT`l1IkpqsUk$K8Me z_#ZifJsIA9p3tT$sQpCff0W_tQGLk+n$H)sk^lc-K0}#`Cw#pa-h5urrfM9_2YN1h zpXc=@4`@Dr&_*72^BH9dubzP|zdiH}Y#Bh9nSpH%AGv&IUW@gm4rn$Dw2{Z%Y?k|H zJwTuwug(c?HCwe=3hHpqio|M^p=z_f&;gBRlQ#09Y%~_^W=YfZH-tBuVQrRTG#b`v zIY15R3mwpCs@lloZZymMJeaD73oRl%ciNMjQ z*ZJ1yiyY8$R%#>rSWbKfGm4|B*1Y?i`@-AHYqco~8kiz*G|*!?F74HqIH0-g)diqTw@%f6q~mpGug z+@p=`V=joYPF@+x%EAy3ybS1**h(TU1uIMpCB<9ANCEdSoEmR^>Wm$5Uu<6{dwim1 z6|1F+P^0>?_vua;l*6Qv9iv7S+OL%=xl7=lOD2VUphEhQE^^T=5#0V2pI6yI_+6QJO>00S);mDpG{?rs;qoPjjFEl z-G0jn_-1{%16si*ZDc7#uBQ;b9wPD@)%jj?QQnC929PSGwG3->ql^)G*;*7ATk2bj z+il5d4CxCV&|Iq8$m4D0Rrs#_w(0JOkk;mP57J7^a!oM_r)nZq}DNpsC!bjXdtA zvf5)RL$D+W7du*fV@nyIo(OL|k7|<@)Oaq4Ag%G^LH0af(C3`|3Bw!m?RT_ubMePwu@BL=9Oa^jdu$l_h1e zs!zwM+U=_x^7iV>8c^rEwUMQecP@qS9sQA)k2g*T38w0Q|?99X~Mc2*85KhqaBpm{v4jXdt=F}K+~oK-K6 zfpmT_bYPhd5PDg7Py-2ch(XRTyGC8)o1!mnKoe=xMjm$)>1;L;d3o=&@YeB4ZBl|- z$E%UC1*}84q<4zGqyY`%ByHqzH;g&lFe+&~8hc#F{_w^zpiN9r<5-I|4!5^*aIy5I z4QL=e+Q{Q>AoH3H#Er-v6M08?6S-BJnxH1K9&aLUe`O=NSzq3OMslMz^0*tx0*{gS zBq2|PHLL0{N_=J7jio`AFL&d}4D#QN;)PTid>SHgUAAwNkcLv8<7N8~i8n?5QMm>D}z>IQDe{`#On!HKyi@ z*+RY7>dO_Z>d3y4RgL2nT&VmfTpX1ff;Z>jVv3Q*u>pSxoGv_6SFFLWygc}?2)=xz z(H-DqAF8fl~gHqvVi!AaGTz_eKfYtSmz4!{BFk;VxD8?g?StxAsk z9z12+=nD8-{Z`SckY5O@o&HLuHwTS?c7k@lkQufr@bf1Hl&O#_TA4~ZQ|PyPDjAJ- zO4TYDXkf+$GsRrFUa<9lbU^9gMQo5M=ua1|YHg%(Oh9aME?$FJn925*27~La3bbYi za>f3U#+rZ9>bv23})IT)6TN%8SdM#JT)rLo`Ml0B1CC7Zy_WZKDT3W6f z*`80>-$&Tr%kA%^{e7hUy~6%J%Klzyf3LE?SKHrf?C+!P?_=!ml>Oahe|Ov8$J*b= z+26<8-zV7LC)(d9(Qm8K1{d%5TIJfn$k{K!{~8ne3#Fcs?TyxKrc7KX{IR`~Il%i` z&!2QeOUw5B$@H@o9C^M2u=G|R?3{xq3@osON*Ml(4R1sWNEqH6Ztag4 zWEAPb7COLau*eoN#4&XX|KYy=D_^GQ{!^D@>OyL(m~9lW>gRbyjzak773cd*1~GHK z(I5SuBfherQqs-ZN|I(CH)>O+Obhdu0gj-a#w+9vB1xm3$G)9D+EPC3KJ?wtmonfi zqTs?P}+gvm~cilWZ9|p1YhNqrl77uu}K)%V0e$^ z#f@L;OB~Q-ey)vt$eT=Y*kdwtKNQ+zW&wm=J{G6R6o+M#>Cl%rpvg?rMjm&QS)@!s zx@7ONKD?=%p-oRvQ&Cj91@$h_Q`tmbtuJXn6FF5I`H(dc$(xkJo5-LxJ#mhaSNF@!nN%$G8P4j8{rznK)G%mixd@Ap^C!PA4wuU8^(59_A=N+UCLy1f?kbo)Z+hThb}wkqya=1~ZJrxN{IVB7B9iqq|9XlqLH zD6iILNvZ7oF@Pg_lwhaZ9d&lO9kfN{Yk#Neix|-HyqqHY>Nm!+`5w?~_#>>~y=NYPYX)u<6y8HK5Kj+Q?F{xsXD{mr~5+#^E0MZe9z1JIE8# zHb%5r3F-!d)pjdv!|kf%5Z_0xQFK$2+c}N?1+)ZSjYa+Q~uXQk8FO%EFJOSn};cetk+SCNK5ygg*qV!+3 zk>>u&M)G@oc>@~BZ?%!f-AFoIBXKT|Xbv$;?+zVe76F7_J|5IMg58oKTZhw8DZtFv z7d4<^%+W?3cf;TTrksI?FKeoELtDa|$64CU1T_zAfNAQk>^nBC|ot4d_qAzSf^C)Q}kGpyB{KGxb3)PVx3%N7Ag}h&z znxGbf%|Dv^D;vps_2ms{B=6Qn9(N<@Z1y4Y`Q`6~H;->?lM>WC6dTNe(o--G1p32G(5Zpr|YpciJl zTW?+7KFh{(g}%%Ijpb5p|!yOf)y%+l45okDWG=cw=vhQtcRMk3>=WH2#4JN ztv$|^gQW3_F;1{vC$hcm^eZegyM|aKd^So>r(zkAx5cN81?XbelFBJYMgt| zFM*#Yr`^vPgA})@dbFc_!cq9MqCo7)kmKQz2nRhFf+O1Ooc`7*gv+|;>bFG!M{SNB zx<5M-Jo`j`B;)eo_Ll&lB1;VLH|hf(R2&I<|sOx8_e{BF-M|X=emKNQ3&R} ziy#^a?TZQ`u@&(agGjVtUqcW{U!6M&A~CzB3k=STLc8>KgGh##d-Xvi9!0npArkrO z_EGmnB;Nf%B~vbwn;xwE$t*~2&oBQdyM7^Qe;;Xoudu(5vcFf_->dBJ)%N!q`}=77 z`xyH>Wq)_s-`)22vG(_I_V@Aj_X+m*iT3wN_V>y5_si|?Q|PyqKL$KfZdGrkKzj*!J~=hLoaG*TjE(wLtHI70T<=pO9|yqhj{ z@t)aJ6khzgM_;yp^QWB@d6Xp5PqmSsWuE2sA1XpKJ=JvDvp0Axh#FGISLySpEPj=B z{BlhlJAITFS1#9=F`%yBpp7iem4_*W?|3(C6urHYQQQXtg*1v!XwwpO;A4z}^iej7 zkLk-8&?xTKMjm&gnAz+ptcxX^`0wyG@n71k1hompfe0P~_@BI8luhEt`XUB2i63Yq zA6h2SZ%HOG^<$yk#AJYoV#`mC9SD;kU6f5?lD>!mP2zBEhsSzM$qWI(gn zr;R-BW+CJg1vz-!65c3o(q<*7Q6Pc`>7r~BZ_yVqph>(*8~G433E5A4F}z7UqRom) zlTZea&*_U8&?G*sjeKaCL{atSE&O=sX~#T(Ff;8ytWMBA%0@9;U&eq&(W#9*?nWUbnQ%S0yk>P~c&pf;%}Y>E zfk-l0CuOr(t1o0gvp7u~dECunUh~|eQmGE)`sB2t7Tz*0)}|(?WxP^<`r-CdHjbjc zoB@qvzc%u?8^>J1IMlXrM|j(~U7MMpws9)LHtcT7rg59Tm;p`W9oop_ZW>}Zsn&a> zB;#A*4dd(DyaY82OgN#Pl+EHveIWyy#S_}d<8Bs0>Z!7de}uP+ziHDF)G83Er;ky* zs4rtcqj*6ZdEAXc$T4b_y49N-lHA3rdqU4iRse*VISC@iaQi8HjOF@r1~iUk+Q{Q> z9D>I<2ru_}C#!qH8^%s;S`2y&+DF+a&e4}KpiykqM)olZLD?v*nvt$F<9|k5Q<69NnKnyGW#_*MIHEUE)QZV> z3%Tm-ayuwFo~QLi4Cr`%M3H^<8|P*GPWRml>OFyD%DuXSQc`srKtz#n%Bl`@8NaM* zx36+yI#FNNfI5GfHnJ3KUSehw+hMht+&J7D>YMYsQ^MQEN!qLgbpwH}k5bu&+f~US z9Ir2IK;!7vMm~g$14zu4%H9_>t?ZC;|O$(w!%2x5G$CC3o1XiKKk*CSXu}frjP$K-Gi;zOL_^$OR zW)46!XB4xoJpVEm9!U$jGq^M2utLKJzv@3aMkIy*ieWqk_#J7Okr1s+v0v zrkjeC#sOsH*rg%0s$RUDZ2FAwc~K>MeH6%{!Ro`JRjvE0ie!LpFH$5KGVU{Z zR)um8-D0Freo97;T`03cLQ%Knf6HDY|02f)s}a+ARZlh%XTbcEZY)wB{~#mBE{~aY zdDMn~p>B1D?^%y!wgrghjAcxp$kcpQbH_rutw?b!AS1^vj%jsq)JA^6=P}3GE8`e) zOt5*wbR1K2l*eAI3t3G!6)B9v$;hz_qeBQo9p9d9uZ#a9hXkt&&C4*TNmTvd_Jedg zk)qg0Mvh$+qSL64^g^}d+xE)%COIxxWtesvb!XLL@(sGNNO^pXj690uQ6J-ly*^8!14i8o|sDlYL`6cYLDwgxj0~t9&IR@{+h*xR+b@c`i z;1rX|mVRkuI$KCaR?^u5QwWhr zeEnD@lDAFsvS$S(lHauUE#k?`owC!J$~vWzTar>q8p7F#mjky^&yWira5^N(P?H+^ zOsN&AA;ln~Q$ur3HQh^fK6tXLdX}l0iRpPbjnhL)HDMcIVtu z+3ijG<_8X}yAZ;D-q7mIC;9iM`1eKZn|v_bS@543)d+Eq`$Dj~$4|4d0`BpJt-Z&` zvMoWRoBMm|m=n2hI#0sSXV57(Xl6imTcg!6O}UJFFqFrH$(plTLQ6+f#Igs&*FfGl8u* zm(K#Win90Mv}Ea1?d)GG*#yq~_4j^}ItJ-qhGmPL^=ow-)X(^}y2GWjeXZ=NpXqCr zMRjNS{thaX*Bbqve?P*%|G>Zh$iE-u-;eR{Kk@I!`S%n2`_KIQN&fv5|9+Z(Kf}MD z<=@Zo@8|jVU-e^> zwto!akcK(cF7+V?ySEbl=Mpv&;P%{J-<+qNZVz$@K87I=(=kO++3@38+nMi)K|CdkOjgv!ngBJvJyIPD!i?fPSyd%+mmh()=T z9dbypxAM*y`ng}K2u`Kjg%rX2$;hKf1ezmmK5Z|8Pm)8@Xc6d-V*Ui(E~E%PPDYMh z1XF97KywW9kL)#Y8#y9a4eW$V1fE-J9{2&>ETjZ(BqNU=322U8{+qo7{z8sOgC(Fp zYWZ2ZSx5;yMMfS)5>St{ntPLVJ1`p{n$y`Mvw;3+urxSSl3MoU0@RPv>Cvyc+Fgp53TB%nDa`2l+g+((W`gC(Fp8u@Oz zSx5=oMMjQY0`(~(-Lc63w%5QL&hF~?`wYvD|CRIpk|Ahi&AwDB2q(~wfwKt_&T3Zgvd4zT@} zy%4S?#{??`YSnMn$s;JdxW}gYLBo9-8Q5c-hTIqp`H2@I{a1t3gb_q4#f1GXC6eGyj(@SI|5N{$Ft0H}%Lx?73} zE}`P(e~^gNe&10)<+EkeV-Ki52IU!q<<9|Id=Ma;#XR} zGws1=LxulT4fo>F%{4yCicJlcHpb~70+#A~R>{@&NuOhIbT z+JZE&LzZs$(ZH`0%rI%k4b4VlubPTiY&7;VgBT6lW{mS(4y|vQdz*DTI~yPx(aw$m z9Ep$W1U8IiL@5bt2K}nYgw;VtRua}^2GP2mG5B*U4ZkbE63cBdmXhP4yX;W82SPAMx7(d|Pfn)?}YB*%*)NpARVSzCspkcikM;cc+kvP1X} zJ)GKwtt#F7s}C|pq`U5@T43I!8;a!pbuzM2U|wYqtrN%=ia?y6R5CqKkSDx%zTH|M zivXe#BLr0+nlr-?`l$P`OQ8<*BzvVC zPmU6{a4a{;Bw>fujB+g9V5DGTqB-s9K_>DD zda7iPadcaeBH4_L9J@%AenVNRwXeN8_9n*#n>>vA4gJ!sJ?KUvWw9$6Id)kr2_SnB43C|6vawWTF1A<6Mda{c zRbo_Rf}Scx=0duyNReDXMvh%1^H$4q<%y!Rb}bxbH{cXPx#UiJmHdz#AFN6aG|45x zRW*~`N;efLlAFoMv5Q2RDyv1Vk}an-QhCWkl0L!P5;@{G=TRYlV??k%dxUSr%OK+y^#UuCPpzBcm+}8C55T*y^P2vXUrHqZ^GB$|+>z*o7iz zl!1J&o9xY(LmA~_d!<}N4h>c*wi%`7vzk#Zq}z-X$^~TP*o87n$|$*H!6`cO{v&tV ztK^5|xL{SHnZO~{otnc+Ho28bI%)5;2arGUq(NS4qoMvCM>GIH!93FQ=jQYe)# z42G0awpYsO`mCwLKvT zJ!UVVKac~3mC*4GmJnav#CZ}6Uw%jT04bthlaV7tWUz)#EW`7c-xxrM#ekc!=Oe9K zela)MlPCzFvC z!TM4$P@52}zc|nULJ0P0ST9H8l{?~D0qaIDYj5d(itVNJ+JSspK9}}5vb?pKwYrk6 z7_Gf@UTb#Rau3xSwtUlJk4X z$Pt_y)O67n_{G5hLbL^kn>xbVf~Q;C7EH>z&bq<2WYNu5q?bvi-9=4MTD4UVwQLQT zeZF~8DbjQYQ@~`Sj!bk16B)#4=nf_e$3qRm9%N?tts)wPUCEKslAGBYa3of${>J>m zb~T4|)31%pAv=+gl^n7IgJ@lkFvBmhB3>b`PXl`_+k{idQNeOOJJ2Qw4^+lardxny z{6sQx?2OM5Wmd#2#QKHytY1Km43_mRLd}BkLS_DAbSsd|e}s%2!Ms7S7yW`?E({<< zztC>#2=5o3Y3=K$ll|AcJDpMmUo7vm9cy;C#h}3yQt26&# z-)`n8_{CxG!2dEw!#}Og9K$}3Wq)4D?6uJQ+1~7vy)OE+ALx?~uZNSz(T{55-_xDs zi<{MCN!#y$B{Xd-E!TgUGnCWUw6{m*QNWQzUfqW!x<7)O2dU}$-*g+1>G}f~9+;tsSKsGa%@?vnuahbYqdccao8n zGCiL`w5}x&?g5(UE9M8_@z923*3GRg_lGw`Ist66%nNJC5yA>Z^LR+ohV(B%p@f}Q z1#>jrXry3{BqPTznEBe+l?vH(Ijom+?e%gNIY3ywXx`G5BqIIGFg~ktIg@TPQZ8qZ zkt5_{(8G&ifM4AVAjB}h?{y3ygcW{YY5*auxQpBX@Nn|M$a7;_`b=|TUnQGuOJ>vS zvbO?T-Fn|yp!p}?-7Vi)W<67DwOwQ)l zwk1pXzVd*xQJT`ZfUH@q;Hrn|dIZAKCor&XpH!AKy~4*#RU~?ak1&YQ&?`&{cpl0p z-y(CP)R1e*q0-WuxfF0DTB_4nJ_#7F=8>!E7f0ritH{Vo9=Vc1w60&6$schForl=| zBN#;M))lsYPYw%~ZGUNu;)2TgZ|EiGzuTJkF#yqsPEozf zw+wX+0XJ0cH=&z>1A7&#;WFO`bhO&u}nuWzQCqFaefI;Sz@ zNWNQm68+ZNSR|75okN40rCtnXTlNtb(POIJR99tw8LKDKLs}&B0dExzTu8SUseuc~ z$lN%Q@;}BPBC|uopX}}sA(m1Z=4(@MqRCn>XNH=PJHbdx(fp7cDr~wq)Iv0}*J{sl zE8S|ObZ#ai$1a^+hL=vsb&9EePd&=shcDUd=da{=VfCZgbPAnxxPF4Jt0H=yZaPv# z&ybO07tyvOh)7L7Ti#=xd^QJ&MvQ>eily0(mnDM3kXmArJMySK6!POXN6V)nZYGf-b9~xr}ZyQZ%0@BgZb9dHUR< zNi7fAi{*ZDe6V8CoLGcSEuO2YNbaSZiWJGu$jGsaBr3D`<7-_V`j5R>-XzBfD;Ar~ z5^z}+&FgfNk)nB(j2s~vgSmY1IKZDDG=LCuL#LPy?}QcpthALC2iRBvTe$2tuC)&( zQUisyWV$3jl(?5VhSc64)uVLl7`)_J%x9B*Sy%#}FO;-v9z%bV04qHsrI~Ntg9$L4 zHge@!4m_A(5Rntrt($rr@B19;tI}j@xQAlVV;?z4T6QzX1CB&UbrKt{ajy7v0}mJI z*F~nV)5yq53OmIVB9J^7gkAEmu>z7uM|(??$3*X~j-Ee!>!4Jkx=5epUjDpIPN7!N=s|zX26kH;X6DC z+tvQ(XY^|$lgCfU$V&3KgF&>eGz8xF7cmR*{U+E%y9X7%UnfTf%Xj#Ff8mA7{Ht^; zkj%eKMvh>-tTwUJrn7&5YwRaToq zh-Bg`$SRp6Y^;D}a$9RhvSYlLFr+MUDL6nYfm(f4571^2R2%A+(Y4Lo6cPMZh ztlAFmGk7yuty-yBOjvuCal@plqv-;^Z>k>A1$>u5jD{{?vT!`q3;dDHiBcRWF>)IUbj$0^=A1MYb!d%Q_zMadqolS8E? zHuDVNNVM?nfda;>Ey%0%iz740%VcCFgS^NfT2~?X_CSGvh1lNi0qQ-du)PgHG-AA= zvK`zWDByz1`POt3ketsWBgf8pV0)lI&_cW)YtQ>pUR0XJ0ckD!}@AVyPvrg9ODz$yk2*$A|*PK*VILp?x& zOoCD!2FMZ8@|gJm;7Dv#$FqeE9!vb9qW)*-7e(fWwPa)^KlGYHi2UGd#wtH7x3L1I z7&mS0g6DSK7Ub81547e*tF7uv-GG6xp0Q?|q)$z@xXv`@B3oR;AR@Cx3+ERnaIZrt z<5y%(l$7xca+tKVW_|=X5+!`tP@_vp8xPPgj7%H%k&%_OaW{i#T{+;x20hE~fHAZ? zPht7LLs{sd)LY;hfgC1=CkTna&r}XSltcWj6AaupZ&rVLSznKJyx0HdK)Vsb9}kA z)4F5Tr@UMKqA_XXKwa8EP3-zMNz&9bWSfJXMwLQji&+d}6l9Bb=5i=i96%;QNfrB% zW28?NI|7cxM|C1g6+Tn^vbWb)knTgjEHY2*Nk&%k#BQb#B2W0bvC0$EZLEMiv3qOt z#F(XC!yi11=0o5>Bf5(w4o@aJxm16?m~#f)Ax#1qG^Ic!ko63LoNxufGFeJ0xtts=eJc3`;K->&b7qu&z?o2dR5H({bSsgW=Msh-Np%Y+_O}X$A(2d` zbLnz287d(6fyuO6RAK#YdOWqSG^wmFWd$TSOOrsdUUye*Q17Cfi=_WfGO|*5e#jtN z_kdtaRVUhG#ohqBEM@W2J*dbvNs<- zO04Ub)llgRWkviFuj2yd8HdpdVE?*o7)tsa4HF6|5G+2#j zPEWul6VFvuABWLRMe1V}898=+%v1DH&hts?kVww77s(mq_+Uk1QE}@2s!G{Fw->3D zG8s8`r7X}XrIPE*XM2_N2d}l)%GKluVYRZtyom*^)I3(zauwZTq*|^dBgd|mEp%#G z@1{aY<@feN`3*TZSfLzjB@}R0)yTtiW04wph>RSe5rY{rG0El+xD6o0Vu_1Qn{i=< zKf_~XMajkrnCe^5+J}jg+<`(FHm1s^*U2+}+dNEd|Fw6A#lBR`GT$(13Q04$w>20` z8)$G1i^;ut3}Q6Q_)Hd#hmzh3GAG_^ObNszlv_6Y6_qFMc6&Bmc8kEeAHFug2{v0Jhfm9Q<|PQ4#2DXfCg4FWue=O@ z>RkbkITMImi22+?qbH4=dA0USYd$Wi4 zoC&z0a{oTM8A$F=AR|X`FM5HI6C%$XlX~FD61NOv+)`PpBy_Bdkm7F*6Iteb7K%(q zYhN1aSmoxt>eAWoW(#gnJ`VN@Fo~vMt^BGR+44kw1+SZcM-`=VDdBx4z4t}6tgR|2pEGby3hRH`Sl0T$lR1tvS4{ZO5~R&Kz2ld3%0aTmNmD zci`(3_}7-LgPyvyn0Ir^t^DHO7U$&%COmIssmGucq(dKpZj-S>)EUL*$w zE0$v|#iDUvt#~ic%||NcIWltWikZ<<%PYxJzf*8aA-T-^wY6Nf0EkA6YSi3vl%-t4 zzN=c9L$@8Nm6>GZ*tIgfH$6~F!n8p$-`7`i!^@fuwU^3Da!|0DWwoVLLawVySw=S< zsg#4s$gwMBhC9&X_V%W8Yk9X8$|~#arBWhC1uGTXtP=KJ)k=YGJ5nnHWaQYj(iQ6K zlfC7^f(t9L`|^76eAQk&UnYkME1uIV^UR3BP}THBx-&>MeSwS|yP77hg;Bq=F&*w> zerYe72g%XEie{CyXndblZTy^WGg2G(kdb58#$-<$J^4zmH>{5T*{kC%ay+o=IJ5!k z@V!>`@h`g7NPYa1j2yc@rh57qaGhMTRPGIREIa+idK|O^Ks09@ba(?4QuABY$hLI5 zks4V@Mvh%0lRS;Ek#a~NC)x|-IC40!Dddm_2!uJUs^b{C(MWZyCL_nLju`_^xtQLV zggNd~+3CrK_Zj_&y-3a`M+GYq+i_3WcU3F@N4FiRl@F4UW7o>GqRVb6{k+?E?UnLv za!jyFv7OVGJy&(|O}gbsoqU6g9J@}&mtfboQuv+Z$L;m;C^;5beX!R#ES~xJ9;>=| zgl;iX7r!MV$F7SBrAiM>!iI-3lYVR6sE!AS<}|7+E&CAevZ{=+bd!&o;a^L|2;=SeO{j zEv~&_ddMNc3g!q)!AOp)DoN4}N2=rlWaJ2y7_4pb7AE=25dEbt1`uL-)Fq~mzxnd0 zZ;SS7%by+y;_sdIHB_Xce)Ws-v35Mj-B@{mce=GP8!y64$J+*-&u3N z03aGMhEebKd5rrAM^yf|q8ozbe=Zq0f`5aeFZu?*fEYlCzTq-cA@jarxzVy}gQUiC z*Q_P$opjb4Rdx0iVN1jf`Qkdcc{q(MUv1vu%>!bwv{SPv8L&vIQJUuA6jS+#=HX;h z2*Le{rVyO_v90YH$E7L*rOJS`gJ-otbg$5D^b3y>%J2?DI^|@wJ)`(_f}1uH@8_FF zT=0G#gBT4><9OfcQ15U(nGvO1yp9|t?LC~i3~(eys*_m#;AHXZikAKw`gM`z;_GB& zrCfZKLA0(-oa%R2T89aKa67fcl4_xnf^5yId-OJh<-}T_JrSC zvpo(V8qpD|ceKA}L)Zhg72J$&0g~}HGI9jt27R1p1^u#M03q6eb4{ho+krK$eRF?I zp_uQLnt?;eLe=IJ{pLP|W`G$c6&_6sxWZI6q7_)mAVxzgFwS#1)CjC2v%&8RF>TaO zj**to%!z;_@ll{WE)}e?pE4mg$*{Y1w|Y{NF*pK9cR*$;c6G z8`N%5{{2#503pi%L8gxI@_)b4Opx&tq)Az4&@Hwl*`~(9Lp{bkLd{EBsZ|fqO$m5c zE9oW!*e?>yCf_8f-e~IoCSWG5CFZ&j_5W?g*l4K#lZE4l$OxU zOu&&?;hXyj+ts|WkbZ4s-dI3JR`SMH45D?t0N>nC#4E)0abS;SM{o=|Dp;1Zf(B zADW6qGzPaah|$m(j0KNF`Qm9Z2TDiqXL5+NG-iGQI1(Mz@oY5V(Znw*rUm{)zbG<2 z{E>{Tq=(-#h}N|Nll*A`mECE7u`H=8CVJ|(cB#R~+S z;@W|qL{v$esv_%caf1}XF9MrK+E>O?b&{V92G3v;l%+_jK4;= z0Ll0(WaJ3O4eGdP1^lvL03lj|lBpxS6?m$(tw6iCkA6B=mPY^Y`6D$mX@#bLv1G(8 z{c9FUMMu*H>;+cRhCf^~q7B%cL5zkrU;_6#)Catu%mnvQ^Z_T4!=xoMvkGt|N~)9D zD6vKtzp!Woj;CK3nJkVaBP+?`CBZmdcw|^jm;)2Tg^>h=EoL@&qj^Ny&l8a`*FAfF} zq8V6h>IiQJ#<#W^m{fb&)XBfy(%SbPJG-zn6?0JL7?60wQK1 z)=#%*Jx7iVmi6#50pW$p{5rZ7Nap*=$PvsN6nD`d_~pU?Li7iJGc8)YKX|sa{lS#w z-mcf$lX|{GR;^ZY)%C1HK)gOnza+;>tA)%RfFm~;)Ln)pj^Xi=@LEk*57MnhrmLTmk(G3H4})l3Ycj<< z#3|`-uoS9KZI4-ZCI2G_1S=5g9v{G2fFP@wQNg9j$bX_e$<{~*fxJGn4zR{vb|bPB*z7tRP5BE z`mUbjDo~K%5RJfAjClGYSR+R2U5?qb|BTB%jeE;i+Sm(>)m8^Yo%FTs-I*sK1U9dmeR~`0Y{>QKYOjw#V;(L zy*^F9FfwKQnT)KYj6X4m)(vL(vsXRKbN*yKoS6v_jp$QVmV?h;Be|YNzdVxbDP-i> zxeh#g)$_f~p6`RnVZq+j;b*UroF70p0m=D(WaJ3W4eGgQ3H;(<03lj}ADSjA-V(gO zwY#)TVJj@ObF1f&C9Bn23+Gn-nKta)>W57wCz^>5F^JL7OlU}%7UN`Zc^Bb;42g6;*%}cBb&PWb-3??yyPS-yB(zHzMC%%s zDSjw>^7(9d2>dHB#qyc(FUSGGDuz1ys#6SeTGht`bfb~_xQ~n+yFM05fgABG+IQ?V z^Ivk1u$uWm1F{S+G-@DJ9sQf`2vSFHkdb58(JWs_X;=ZCg43HcC(`cnxOKYO5g-~d zI#LT1bzWAwYj}YQ`mU;Fd%EpNwRDk@V^_-pSuKSMoadX(!|CZ7-Mr6UHz$xIgiSf` zYe34W=|+x%s-QJ=FOUj4nv5K~f~NWkTJK~lZn&{I&t5U-k|Tmu40YXsF4Op4s|q=b zZZ%RNXOfX)SIBf0IVeRid~!A_BDuj{B;O$i1uGKj*-jdf2**{Oe2Z>4QYY7vkz?11 z-?@~MefeUt0K+7BwLCPm{bxJSe0I~eP1?NwWo9ja5Al?7Pr4gO>Fh>Ej$JxksiNzYT{spmmxAvc zTkFKz8SQG8we~vdC5H*Cqf_m4G*T$kH001-L2Bt#GIH!%n$5M8b4z8nH<`}CFf-KO z4B4ya)8xQl)pK+s)Dv`G)ypU8#v}Fe2{Ll*dYR!bCi6y3+QIdY?ZxsVa#XNlv1@R` zo~uf^jcz$oDL)`1$F7u_JYMWo2sl`_7~XaA@Agvp8#ydksjRljD~ju?R{laa9jTRP z$;h#5WpgE9UUmu9p{@RGJ$9N45X~7o9otyFclOj1JSe+bZl~*LURgL87 zW+OF{B_qeKkp8@>OkYVM=kk5tXwWaQXYv$Yqs zlFKGUM@&5bwHMF7$sxju$8H(tuwhU&^akAxq=sH2Bgd|xEtKGCQ_qf1T92T%2Z-j3 zppLUnJNVXb_}UMt@shX|_`yN+epFsK^3mhJ{pLsyfLW7m-GccG-|6Mr)2=Q*^py|5~{N2h)<6#}in#0@Lc07CN z%%Me@x97LD_1~6x2fj`jihR$?_z2v|{t+{!d=Z|eOM5QNdy3k7Yn54DrrmP^t`~LY zjsL5JWSI2&oo3U8Ex=e>m(S%R-jkfeARbO*mR4X)@8e#Ib0LwB(Gvg40EcE#%Bk}HorYV~m| zRxeL3J8JdHLsv;u{D(}1(k8q~4w{zD%=3UF5mbHea3d4WX(Gx?Zl_pj{W{%FWO8|x zjI1P=ml;H4Lt)ak58pd>9GWY;#bTuZ?fh}DL{?J8qNk}hsG^GP0D{(NV^y&SMipW2 z6g6x^w-2d?tr>D;28iUi;lqP1LqSL+VHI?`oJ@vV$7Ai;K8haA@o-|ATg<^~u#Z>A z72Uo{F+HTo0s9-UU3XONFpi)bilqHeGP05cR+>VH4#O9pRfo~?R5aepKg;2LAt?ua z0)jzn5|kYDadJGdIcOJ*D(h}3$>*bV!;mUGhapEMpB7F|%&fUzzZ*ko=SF*izekTF zGVSa|A-L|Lns2VBTZm-(Ix@17Z?0hwtt&{=>XPWoC3DVzE8Xx~azPMHxmE z$-bP_UtD4@kBiAM!ODYHP-^Zea=3_YAW{w&l940iU@$fn!&`rNV*nv0&_@{FHhdOl zTFEU}3Q4DsX8XW~20_2D7v%$FX0W2%9h0+U_tX*4eRT7XlDwOYtVpueVwmkmtFH(T z_FQ<=+`ExOiukX+BK}Pd3|0~Q;1wbHsLJ9Ex{XL#yhcWjT^2LTu2byIZ^%WZi5;J{ z9t>>{5X~73q2@{y4^>HY(Je$uqLYjqyCmk;118-_p=5D_y)M>}V}nf=`(cuW-c3~; zN7KzjisMK!a)dYx+7i*(_|J_EAVg>L3)9Dtd}+Yc)~+ZV=M>itI2)xN{j+2}YsFYy zqFqY}NjB9VwVJT@OW4$ynI%1n)~pryjHztIT7ge7h|w@vKi+pblwE#6W`o}uVh!Pq z*n33`YZ3W96t-TSkAgX zMUDuTV}G4!(0a8nJVC!YlIh3D$gwj$L#(vZvOVKDYqmQ8q7i+hdPmP@cXZeTmGQ}R z3y_RYAR|XGZcxWXE8v#}0|?OyR86JJTY=BDc9q~}18I4#?ijL8wJ9ay9LKU#hIjwc zDJQ$wt08@rT&kST!%~!l_pfloZtd3z&n~I#Xc~dlrlJvzz~KyHG&BNZ!Q)UDP$qN1 zZwk=`oK6mrmd?y+fFsdS9nW%xM-#uOXaREciz3s+Ix@17Ci)pf>so+Gei2pKy%G$u ztp8skhXc#*RK{-Ibd}@F=$A%v{CP5R>>PK9(y8+NkUh`$lS6{#**~LGGGFETUi#&c zT>p%W9Kp3g%@$?fF9HS-qU;}H>Ig6UJ>y#XPT`o68+w;;%JbB0q?K58U)}h>2z$Hc z2XrOh{|&rk1LjEeMN{r4f{C>Lmy1P|`*sEqS?*g`6~=iUhsyn~WD2-{qTF|rL!@Of zGY@biI;s;`L0~-btBQKR6aA{l{ICNVS;-IEnnH;D;H$|jY<<03EXnJ`^56@tanXvbdVnrfz+*aHo`4@Ge4FYfN&3{Ji>ztLMY>2ch{$x& z!Zp3qWamSf<1=JNl+5uda}-KS9^>q{rbopay}VZ$sy-4h}Kny zIez0U$1KG89bgmfE>t+bog5h~=UW7Z53(03^S98gKr(+5898?5w-l|o9JdhrFWR&J z0y#QZ_UAM9qdZX+@EqL|qynBMBS$E}p!kda!7n2Q5Mq4MXX*$aU!2z7((%P+ursps zcyZ^yP_va*Y}V6?o?TLT(lic>z*fs~#&!&1G&Bxl!Q)WwSWV_asT_xsL!_lMvmf9{ zbnt0Kk0yRmG0ZrGeo_?>~QTYvhn%c@9r2YPtRj{qjhzuOK5waBWbtMcMa@fB}Rk``eg0 z!pnZDwbKUU{KEmH%KtpLK+8v3kyTe{XA8s=L+z}A_;rGtCRH0v@qflN;$qg|Nd_?* zivM`u=}`Tj_yUy?es_p@#&&?9wMbf0GjBksBu4n+B2E^+u4n^U4%de0_f@Rqs zF-qpEGe9rVFOTHdV_Pwd?;1p!{mTzDb3^nMT^$phQc`!u*Mz@W=ZkRw(TIjrEhWS5 zrBHiOsn#PTY96Xe*o_LtOHapOiQ1eh#!me}+ zkxJ+$Bgd|US*fDyl-(q2Db{W9zCslvWv_|T$Z^4Hf>tq9UsZLSLbnyEj+4pAv8!W3 zU)CwZzDyxWTx2ha3(3L2N@CcJcd6<&$!jLy8%@sn5 z_@TWbZY75Ws|ea?RB=_+#?5q7k=pn^898=s%%}w{V#M)RducpRjtW*9w9#nTQ&kzy z&@DwO<4H1d?8?|G9Is^G25t7({6*^l$Si`;dAi+5)qIwWJPK4(bb8Znt_*K4r}6^@*ypGx>n3ZX#E@$4w^z-*1HA| z@iG}Xc1_H$2dk0`oK;aCEV$tb)$Lxg9_?%c5X~9w96~ETwHrZoTGh+ebfb}anMX#B zT`ybsbM4-6m`%OslG@4lW9_wa6gfE9Y%=T#E=o3ua9GvJ5p;u*Iysb#9J@|n*K_aS zmfDb~7S&K^@?m?Ke25$ytW0R*V!gkrN(SlnB2}`Uj2yd4=Eza=&k74^CjSuN$QQoTxno74Gsh~+@QFNF4$y4TZymws;c9?bX$??cn=vlc6H3(P;?6Fa{%`6C{&Yj_A*&V4iHu*wC9V% zIIZfXpKdf#FD@B5LN5l}35XpD{Fl=WAjFOYCz!sp$af^zvb7r(ZMNPiN}CXTi!5!e zF0HpK_Uw}0c-L%4aIL9m#C8N%GlCt2gxDQ(wVs(a3nhT zcEuh|{GwvG^K<$|k!j){GP05;e##(Px0L|ju2^OFe_)8^9s+NX!+~WtxLvW9BWaQX64s2Jf^1Rb4);#Y35RDjvsCRLAyJ9WZ+tM$OIUpKME!$>e7WB(rAtY~rbX&s zCvwc0+J8J^+t6n!I?*aTTAtT2wiSd4#42?0KvlqqFhgDhpnQkyr7JnimN65mU84>-A zU!4pfL_c$ysUy6f*|oL(%$Nb!kxz5q?jO`-rxj&&ndN57%rL3`X(lqZ0b^ zNVaAWqoE@i=eZopGKY}a;0}s@WCb}!T0%2>0*=H7Kj4)S#jh%+GM3V>icA#;k&%^D zu|I=oT~jgH-=tW>Zv`x|Y%Pl9cwqVM@LG$6uw5+(dHS`HEN98cv9ml)?5?a~`YZNK zUqOxumTCXMRoQ-(?aS%cN3wk>899P&gW4_1zh4RrAVm3}XX*$q|MSPU_P7P_1+RRu zEX`v)2|mzrl2&Hb1GOChTn%)9j~8%^@ZMnmzRz?lfu z|1qypx!^a3sQ;S)1g%HX(wTV$VkJ?+k6EZmh+kN=0B@7|sUp+Gf5^y6x_HxPzGWvb z@naVBEbnH|a-wN02aj2ZNrRF=^ZkBuSg?0>_?U%A&QGG7 zfaLsmGI9jx2DMzY1AcKZfDrA#Bc_Rpw*%SM&IXL#(C-#qsTuepS*lu{RS(uS1Flm{ z^+&Y>wO=NDtEAeaX$QVwDjLxae2zhkhIXKx`5bBn?j&=;Zwt{3{E!?ZEuER`07oLE zI*|<)eX96nMJsSC{j$hZaWffNNfqB`5UraHnBtG9bqv1*rqEh%h2g)F1A=9ET3|XL zg6HSy7f15^3>i6go~MiPw2td7U$f?VbAV_>Yp>qTvl!PQ2h zzeNk+7X$+c(E<#a3YWJ4PqelL=s2>HEvMlK#*|wsg%4VKA6c^6+)~{KyTV~0WQp%6UO9<6bSta~$xBrdU!_}# zl*E_G$Ptn-C>WyV_zB1WLe!k2O&#Gir`p=J^c_XmyFWkBmaOE`efi>mGywez_(IdQ zR+ReZ(f);XlhOWf68=}+Fe%Sz>d&*Lffx1XDF!hb>d!RU`A`L#^iL`;N(CAZ5RGVG z{{fLlcr_3(o`;@W%v?&$HU<%yCl<9XQH%wTLwRCHG8amo*q$6BEuER!fFset z-`VwOQqn{h{i4V;(Md*D(!_iQ(K=rFJG&~oCx9WeQM|(L8ge+W>;~W24RQS0_O?yh zy#Hm|7r@8SbQ_RlA4x`zo$SENyDH)5+7o^jIV4!Z!!PfKNcXuulYV(5*JqHCBe*sw z-lG2d)xZEkj1c~3S^uwXZT%lpa@NbMTYf@Tsa9gfBLrrURBAMp{|-~Rh{}IEgNUsB ztt$}YJdZ<_|5-8#N^N+G93m}`nTG*KqJxhR7*G7FVubJn{i?_e@faCd$q;`qg%BCS zSB+JMxW&c_7$Mx>;wKSDrweX2opbpM{?c^9wr@~-7_G?gPrnP?82*C(h(m;hV4&p? zVF81POcc>WghiQC4{vMR@$8{9hZbetp5NBie_Q4q_&Q}MlZyJqb_*l^i%p@|s!m<% zZ~A@+JRHip@@7k`$W$mPV>vlkS~fF#0FIn8hCLM^#Azbrq>^Kn(9J~Vm;)JdB-O2} z30uoCNK^{FPT8$(^cgA^r-Rj&1Bo0xq}pxTRpt*J?lJf9%!j;I$C>NsRwISbPexXX zjcW=aij6Nvt77wBW<{iM8=s;u*1nT771l+cUUA!!>z!=HElHz{$H?N= zDzm!3ZjDpPE$h}d!H*NZNi~b42{6qgj6awvM?Av#9fOE0lPw$rc1XU5lFd70KKMN% z-qHOpIapdsGk*gdiI}SY+*2}N%^&}!Umlr1-XJ3@`QtSP(YoQ=Y=2d>6tWQGyS!;# zUUmeCM)bid<8#@vSd9}Z@7vRjK=R&2Mvk5LEySAW;kbXFJ@+S&gM+=>=P~Xh98vjS zLpKD;|IuXR2>uOkd-ij<~%_^hdZMECF+1~DqS2mWS)?|Z10+(u?a=^lPS4wjbK z%+-J+5yQI&$$T}7+(^GXGK+kVjI3ml>lsALy9X&`A;$j#CRq+npCtzd%XqMRkepC? ze~NAdlJ_Ub$g%St=pLl7g}9&nZ)@&n07N4?NA+$GcMp;yD*qjHLy-JWCL>4iZ&3P0 z_uv;00|?PQe9BbFynFauYrBWdoUGh397mR`HqTV|(@ixXUZ?Wxkt&j=RXD~}ETUCd z%^*fYt1uQk4yB9@WDb-Dp-c{umc~p9a3nhTTM`~k{Gwv1UmnTzy=3GFt_^CnDEEF5Fn|!{{%})Ac)8!9wdH=|l2XZqy}9!_`2oYUx2QQu zE41qF*gd}-VTV*+G}V3z*hcGqxmHBApU5CaL$#mbJD!C5Et$&ZOX1ff_8=3%ofS_O zb|uG4%VlP3z>&DA?lasocfn{P?4#N#bkl7_W|p1E$Vz6}fkCvcQ>ba8`)W1&L&--%-?Yp}jgTAjb!* zjwQ5=q48GL$;ar{B6ac+GIH!X*)rAdrq;pMWu;1?0Ox7Ay~$p8eL5A+A-CGA1Y#S9fmQ#8)73X<-wLC+P6ILz5zJG&Ii||_2 z&69Mik-B-Dj2ydew$SKCBbHhJv2IVM0|c$b$BJdxCBnmt#dB3v$W*$iNQF!yBgd|g zt;%kxEES)=N-pIMFGDk$OYAjrAUQl(jU0?@QX-vIRq|fCu}GD?hm0J%N+z=vjcjA! zkSuccvRFrs2UZrlA!Q-FQ+3c!w+^WTmy8^t1B2-=F@xq$tQbIu8MJoO!pLXPu5a!3 zB4Y=Xqx8N-R!W@lo4e46Ig12whd~wDEodXFn|zc|1?uac-eoUwJ+yx zHsEZO-mKZ~f7E=Wm6-m`no`**r%UB@%E{_puL=A*;n^h>8%^=w25hCZ!CW+=_;1Z1 zMnmx*3m%7R{~=^9xPPMduONp=OJ`(f8Cgja`!k5v zm43clR%N#WhFDhqA~_sbc7w}hwH)W^mqv1&B_qeqabUTu%JWz3dA@=i5-iW*<+56? zFQ;D~$@QgVt2}gF0E?;yq_n)IA$A|R<}$lKAK+OaZ>_BFYqXXi0lPgS2AX6 z0uX8q#=K1>hu=7&HP{3oXx)>R-^?ozHi@08|Kg>_3AI&tn@n33nOgosMpjbGo2C#V zwfLH{N-dArSOMGp+}PUZh%*iuEac1mZYf>j+mOp?Wf@tyTG{dU@cP|s!7Y}&R1$SS zZ-3n$z7u(A#DT@Z9?mx!=i83YS^&3GdpVyf7hQKKGamlc z+m!tL?bvSQpYXpf^uIpke|?&LRVSx&scfa!?Mr7Nm7g-SsJb5e)`A)%T0|30vFHqn z__prCY?Yt5@Wz&Tyw=URMJFpRy`g27&Q%6_++zL8ZnfRbm5XVg^wpU(NbkI%)tLYMjv8uB*M&U+L@1%DZe|3_diX&C+gx=D+r? zYqb2|Bx)8(1zgi!U1S<*kr6Ls5RnoJ^vff;{v#PVcCKdzo>^%5p7xG4-%|jBR_w5R&tZ49;)2TgM7jw`&fCez z5u6)Ta?uR<#lZkVWSI+0#mlE)Zf)&2X}nWhyP@AL%H6bSb$`G1VWn z?4tHd=;gU#QU%g91xJ`lM>GY8GKkU86ilqS9jX^aG9ya8$dluwB{g#@;7FWQr?C7{ zvs_IZS^AZcX(LTWR?|9D=uUuFAJ`t^}) zUqVKXo$XnoszxyWfIZ{)k>i48eDhFeQ1d}${cgGqNY?KnBS)}qP}fCk;Fkyk2+ zG&5pHngfxThf=ay6bQNl=qWwe`=r_2NDVfp|$Oju1Mw3>)?P1VNx=%yjHaRM2c$L;uf z+QEEP{q^S>QbMa$qKwE?mzzddq@+vzSdW6E z87HKiT(UPGUjF|Ra@3W4atAp~TH-R_1{{eJsm5psOmLUfJaRkTBxD}Bg^aA^k((Gq z-VGoa>p4N(P-3@)Y5fOCTfldu#gEQ6Q9Cfd!X$lyhCWUw;WBT!bfGSK*^YT^aD zeMn6_M@Eia6Epf?MOHEe=N1;BRaUp1n74_w9<~4oS_6;O!{QP25cW;g!W_D7NG;4H zBgd|V$$i;;0klxbg|ot;_9|FOjt5o+JC3A+x>qXy%ji}i`9GM996SG0*1|%d-a*zI zg@&Q)?FCRG2LvmCokkEqz%5k)1-e;C1q_gpV^_e`Jgm!sBXD#Q_^Q1GzD$k?RsuVZ zAc3G?ss_GDw+pF(FOZRA*T5{8E-Sf7-e0A2&@qOR!7uHV@E|!ZSS7GMhxk;Zu18e8 zQ}yt3x^+lB+(Sl=T@Um8h!ygsQo1MW4$~|C&t4aAk>i8a#l9nCh-fcWef*1VB~l;% zBqPVJk2#e>uLFZhZz*;$S#(R4Y`GN57&~ohJ&M=?Aeu9Z7->|g^H0^pwsiZDnpj9i zj?jd`ETcC?=+D;s6IcciVxsaA)8R3nsGQc?hhr0uD!94M9?ja7dh%ze!yDt?1bG*+nnevm-OzYLe@#Sola-X$Vn|{^A*b4eivZU!=qYS!n)Qzti7fXLe`Ecgt)nUa!2LOHS5szgPkij!rRX20eCgj z$$I^Sba!3aL><8U)!lC3;$B;!Ht3g_G9YfRiy1`Z?G-)pF}=TLuh{5yXWp0xrb;@! zD2D@kOVa{7r^~Hfy&JCH?S)wz*_-SmdxI&2xWm5Vlhf$lVWHC4^*E_@Udvod>XObM zYZ@KfsC^x`WSF+@52kSyqW_&KM3@?b%q5baf9n}Q2rEYDEKKjwJ(m?-*f|bvQ76}V zXsJ|jJM-`l>j$4Y>(Wx^s&x5~N>68{#Qp$gE(V|}4-K>@jcHc4X44F(CYg4H)osi5P*KFjuWtSLm8J_7{^5&1J$1`xuE(@Y0B zo)z#`|36wgAvw7|w-au6mo-Lo)!Eu9$%tJ{#CY>yQ$dKtbO3{hti~DYE+!+d$*qoq zM?TQs3}udmYs))ZM9s~@PD5UDNLC6%uJ?k2W?On_f*nZuNg>s zf9@?+g+H!NSnj%o&gJR#?of5N{&Klc+HdjVN-o_um~hgI*@9NM-xt>rd*RPv8Q*$0 z(O(|O4rf$gTG=x_!l?E6EUf-<;XzKJn1^>J1{may_3PE=_`q;6Z4Iw46x|I@v3FR9 zy&ZJ=Dp~IlQNB|2HUaYt*;bG37K?z|4@Wk7lf>|suDa_?CIiG}vff9|`zU!I74Kt% z_c7>wd=Ng=jY#SnkW}S+itkWzesx@by0_QO4Sl>ih3|F4e{gS!L4wY^;Dx`my2Gpf|o1AGZef zhpotSq+bUY8Zbv%9SaL8-KZ^PMb7-HX~aa%{IV&8sDNK&5DlM7n0P#-th5U=(el9Y zzQ)8jb0gr$Pj)7Cd07%J+3jeCi+7twN(B2ZQwVghjVJy)R{3SA6Sg(>&M%e5FfTSO z8S8&9jCbj=Fjg|=b2TdWG9`Fgv@&g0VmXzfpa#ho!JrSZ^yP~4) zD^24hLj5IEh^B{n{Iaxn;sb0c8PxSXO^ft|u2k)UN}zvg8YL0vADcobfgX0=By$=x zSA>ycX07-4Uh|#lhmTW+s$&j;!7F@~+-x5V(w)qi?B|&e!x!80GjkUF)9TDQ@Oggb zT=@KW<|FK%KMJ3Rw`I;_|MD^TJY^{JcW~R`!{c^;c)VzY;V~O*1%|`CTs7D2MXRf` z>f>@~f|Iod*qhLp*6R-BON&phq*LqI&%MbD9+yR#x533s+c=n%2*s#6@i=%WwA7zA zLdNTS2wP?|0OK*6%3_vz&ASHMJEK+6nB)5lFZdT>?V>#WHQE2&+Df{YPx;LCf8uU* zV3OJ``KQTyL6aiY0e)qsdml4(;TpS~{TGx-%@L8>Jg!L1tm|eVUrw+0bCxF?G4)z> zy@v|DNpCJlipVxzFt*hNW8zYHjJ381Z|?ODQ6jQ~h{(dYBGOTh2Uhm@o_)ueTwr*d{_l)vaqkh}dW!?oywmMXNI#n3JnB8~OJj`wrfp1l9}&%KS;-6JuMthss2l zqbj)UeSN9n{Umtbh&gPZ0Y(Sg(%awN31+Bj7nLSoHE$+-0t~U7tok^EXwAgmcCg?4 zj@|}n(4ft4YwN!)!`G<#OY5E9-lW6M9q8*gV>4b+vITR*Jpnba3pG~ z+XY^G6Z|DY9;pNKZ_+J7zRvUwGBOXB7~6b}K{Rp_a(DrB^yLElhu&>_9E_pea|->B zl0$-}ze`WQ{OvYQd?Bro@K<^Acr;4wSP%?8*TYBKX5?UcEkK3%zeP^2-~>A-}!^r z8iowW&n6qH?l25k8XiQXoh)qq=D{r-<}b6(;K+XilPEBqH!RLTzPAEr5LG*exmFHd z`xqe#Z0{Cs_HfZExu;iPJsVJQeA2`vD!+dNRaqG=Iw9c}Vhgwe0V<(EJ@6eESo;^EJQr=7^oz zwB_om?oZepnXr3H4N9-Oo*hl=O(W}!g{_dhw}D~tueaZcZ;e>JDneQh(+1dcyx^~1 z)f*+=d1Ib$r7;So%DfrbGW!EvwCh)cef!zchUhSPX&Ckf$gTDNM2A-YlVt7bOeA;y zgb2JtNvznd4~fxpdy7g(|Bg$S7EW9_YG-!z?4rN0VXQ|E@eF$KpC!sFoJ3gXpO zv5r|>+|y1vSIJjOZ~}1Ig*DIYF|uc?&KvlBZyKtMZ>LTsu+ZAWfQ8*q|F}%LHE~ha zeD}yac_07vKHl~|+Q!4jrryUG?_-?zG2Z)_ z=zUD~KBjsf)4Y!v-p4HOV~+PR*ZbJg`wdo)npYlH{DYGeaXgZ~CGu&lm**0!p?_uE(j)pv{5R^LfW0{v;Q z{vHbCG@|~Zd*cxX2P-|Xm@Iu4HF+6>h^)!ct4mGBTEkB=Znolx$9LUPXhkbr#-Z83*U8REp^#4VV529#LG@T~bNCh;9;+ z)CE%_rJxKMv%#cSzda1h~m0q@)XwB=^0MVQ_beQy_I;N(Vd33{&1aCn` zR?^EHQwWh>e3`ww(#ymn@@v<^8O0%hj3Wtmy^g5#pai7qsv^t9VNjWPd5mu zzhfElC`d4~h5u0*=A-t^o*^20P?>|0C=!!h>@Uqadqvc%DZkm2dmB+OYXedI*t8WthiAl22+*`3Bu4B&}Z~BP%)OE2a=4r}*M} zcjc6^M=Nu<&qE|E2SCq|gNe;0!?Y;ACrUDTl5Pu9b&oUTQIJfgG1sHA$@IzAd`<<3 z=Cqu{v?#JuYC4%jHwsDYcrvn*PR5!-h;-u1>)n-3#wgk3FbITYHd#fEB{rK3)0r?w zlw`7;ZVFO!OBnJfNG2Vg=TW(&Y|rND^bp#2CX!ETD#_7pLejd9jI5-Rep3jMN_=s> zyHd$mkF&j{$&+tEBrJ2uwd7!8bICBBiSLP$Os=Nef>hmA40#kJlWENLsBH3kdp>_d zk0COf4AYs&PO0hSVY*RBVjm(SE9vBZQwWhxe0jaQ(#e=L;k7E$rdVf_DFD%&zId3< zggK%llZkXwkeX{}$fF>cba}VM=%yewmtn}GB9(yWQK{sM_H2HE z9>NBslAup2t)HXYgrs$djI5-RPn$xBRN{;4-IYq(b&K472eGisCch?!6PryIMlXe` z`JyD0U(&5XD(^vtJPH!Z4DNhXPHCHJ&FTN>QAFmHokrxe?v|QX-lCg@B==urWF@Wq z(-cCa6<=cSwzQ&I*tV~|1osAr=8SiSODj>U+V-GZgH+zG40%+fmC(Yk(2};4J*TJ9 zqu7A75^_sTE2q%SLXvwj8CgjyCz?WtwBk$b-IZ3xuL0T$+0ap*mqRct+m%bn@x-<( z+YD3MYR)MA$|ZDjklMSLA&-K@GP6cyy|RZg%iZ>@-bD{1GPCSFGOKmJ)YNh(-7X}( zKO`e7spVEv2$5QRk-fW8%b4SwocyNpI}ixVwDMnaEU{^2m^l^Zh>}wNO*aLpxi=W{ zC`c(Cp6B)3E|gAo?678Ydw^(8^Eu4)tmKoLO1kJaA!+R-BP*$7zA1!ACBC>CkV*_7 zgcbh2aRw0L1c8HXHk5%~0q-Bv(j#Zu4{@{JzOK^a?=tX7%ZS=^hTGhFgxvs7H`SKd z4KT+bMnU45awOY2TNm=rkweb!Lb0xTh#V;`YngKaN8S}Mv|R?@mpmbRqg0|#)9pc~ ztWT1Wm6Y`fQwWhPd|6o~i*+_uK(d(B+T%thu5ruW7Py_q7o>dgJ8+{B`9ka>96TOy zG2ccSc4!`wbg9|T``4xc71`pK3?edHMDHDHuw5KGhicwRIHAFds*~%5gBtQV@1Nnc z&Ca4*$V+j4qcL&LJPSBdBw^oA*tFU+q8p6p=0u z{(X#)iANXRZtsxi&?|LYOlyeDHQ}GsRe(!+r#!(csB4k1K6(-flV!EQf# za9O`o9FT;*f72p8zN;{pV%Jl`ysv4DM40zBg+PbdWM@$(>dq6=#d5{TcDlLs>0&-N z;O%za+1ZMY+byoEMDs)T(Ht~|5Gr5q6LQkw5eGD$8ug1* z)Gz$Z?T39mNK1&`;uFy5L^k$FCw0^sDTmFP-mLC( zT-Sh;%9qs2I~^`**?3Mhg=l(+#~t5O$(1WojQ43;jN7{^{^b-M?`aw#kp*@$g$M`P zAi;|o;pZX)2w}wtHNtd+JzvaQbROrH*c3)Or!5eDO;f;vEXCntH0S~?e9 z9#W>P3SpdP3ej{*79E){x}D2iIN&Sm_I4gJSjfX{Ln&SAgbhPVoe}Ju-!yi1>>2=r zx_h}n-Tifgy0c)=utc3_8f8J$xuy_kqKx~inYEjzQs{(9qRy2?*Oijybxk8>R`8aA zYj^i~*H$vc?S*_;EYOn)U{XBf<2=Pc9ZL`^uUaC{mM$#-Q6^9LfMN=A;O_IXgWpT>gRp~ z2w_E&`qs(E!Be26>6}wchq&);8uwGWyr(`rwTmjWJEoio+D|ow2nXDNGeNumoX-G4 zSn;6gBP`Dfczk4xHmF&-Y*67(MY7AC+=CTViLKvwups?7B&Q zUFpfA<{9p#rt%O9yM#fsrkxx9^uVoP`rkY3ot;8k%(~8cw-^4oP$`Gjt=&OpfZv*8 z0m$v-!08u&d=qdalB&D2Ww07D6OrzzwfYvidC2u3H<6Kf?8L2n1A}PfqvYXrF{>81 zQl+PqDy9qNQb-Ulfla6>}aVy3ka<^Tk(O~wkrf1^()1jQ{?2Q%qrA$2f~j2ycTrb_`U7egvo zX|IB1`Iut)`e=oBoImjU$$4k7s>I!D!^YUtV;yKAC>tp z(CtAo|2Z;p?99*acS_0iPBz_}=m&t(TgQh3l_3O^?Y2rGp>BgYKGIH+pl z9=d@@ZTyss9J@B=q&3nAiQ+ALQT&S>8LTM$^Nn=*LFbvOhJVs6L#p8)WaRkOkagEW zo+!DsMB#2Mgxkg)W?2s&wgrgh3?8D@pz};s!$P`cNHr`VBgd|WtqS>4DczGDOxC6r z%K2ojGEfLtjpOVkaSS;;*aQ(h(-i5Rs*BZh^N_kYoQxcy3xj!QF?H=vZyG>|`L2si zCrbF#^{UpsdDO9_Sab$EmmGa4Tfief2)mdpXssHn+vH)Uc7592u(;QC3(4N}dUvto zT{r0z(n)X0PHDs!kS;P6h?u;-kU{0X zbQS$8vsaD$2=g0e9y}t+v@d{{VZUP^(r=lD)O5w!RDU7*ac&Wo;yYRCA^ESH7S0a7 z7#)^C``Ahp)K4=OdlF!e5IvTy;V~QVicz)S==<*d(%-?8Q%%|334o^+fy_(fY zubIY6WQ12tA;KXyC>f&a_&1ROgs|e;<`BQ-u`Wz7xkZPq?DP^?=So;tSSf~{nr}Co z+6-$8g(i`0)m03bz?OG*_ti{L?!s-r4q8XeA%rBhHic+98B5+Pq|3K0&u!7U{2LccpOfDl$(V46;N?{{u%d%yNW;GN`b zXu-l+jgeAyZ+L5`w3tmu1QsmxIPfZBu2=m@qMzF$^)Z@73}>2(MdU zAxDv4V91fowr&-|7IF-t_EdTh?6q8q@N;@FwOh2Q6bEMvhNrmho;qW258XT@*FPmA zb0La+{bN%IQ8j$USyheCF)Lc9&COH&`8>>R79r#22a=rH&}8?xIo8VD3?OLD7&iIr zI!yA>I;ZNgjcy!Lm;W;rmC$9Y6)`ET9Zso*-9aFznhI*u-ER2N$7%L@IE5S@Y;FiX9S!Rt(m_=jC({i? zD&s^la_q{O3vb=SJ`ClglY)08O37?K$_;sSDPu(H@~n3AFQPSwQ6=++@M z@ewj|?3$S2MJ=7LlxpcB)Ii*7uZEk+QNgMqxSlGUB*K2FI`}@_E~E~=OGb`e2UFnX z>j()vZ!dvo$N|AhVEbVbLck@J{U_-rA=!VNj2t`r3j?7_!ejAL!A+(6pof45ex-Ci z7fK4VHn$#COb3YOj4JlSDMII_s*^ z8()OnQdRI?x>-mSyoZb&y9#D{;TqVOi>wzpdmXGJhXt#HT}H?bl4Gh8`ss!tmEe+* zM~4#F3aW^VaGAXlK2Huyqm&>yrYhmHbiM^898<>%=IExc5|hCu`iq75TS?H?e*{~IW|~53^&W5 z_fFNs%XI6Ins||n9J?l1&rr@6Q~eQg*k-Qvh+=DiXwHaYq@F=?OjW`>x?xBqY(Ykj zT?rkPoOcKDEE^hE9%ZkBBgi4aCWYWToc~YVm%zzURqGFsJ(GQdkc0^#BrG$5u!wAu zm4uKGNLU3rota9eJ3ZY)cTW}+Sria#Kyh#b7Zgzu1wlYi{_yajhz~^(;eq&26hs#F z>GSDR;eYDh+kNXU)j8+hp6Us|pBW^{SLdAXtM8n;b*oBm5=v600#?$4LMmW68M)~S z7#qIyHAVpM^%uYnaz(HL;2$UA&*ta?h~{MSzm*;nlK&DJIfj3STi^2TIp2xn03q*{ zZgaieD)wA`WO$;V1)3CY3@K(d_JQ}ett}Qd7t`t+`oB$9vQ>tad9^+Foz)}4uE7Oc z3psc>YY-Guz2e}?z8=elt8cj~MQ*sdhe5<{%W3?VKSoEYtZbBgzA@F!J`Ola;VP|j zYIQDHp2mOHzlu-0LdcWlrwpQzTTR&8;m0ot-#Hpr^S9ujv`tP{MO$h<0cy@Z?@>FY zObh*oYt^KD|Kr^~^nz8u?wUHv~DIeu8Br&)%99j>yF%G$~x9EJgx zr||0UzMinCE8Sa$rx6!z-MqF?$Q|0H3=5wn*Il@m+<<)(xnB0(_aVShxT)~_*BXBv zW9n~*NYmkp+qFz*WOc$>s!TWmRKv6VZ6p^ItHfFM_9sTQrKa#w^iYt( zJC`93g2`rbjmJ21xz3-`3cZfViH5I)8xu{H(ppX?w^z|)LUMZr8QCzE_q#$!Q{f8R zHBDuqYATOGH9Sq_QF1{WVk(e`F}XZK4+SZ_hZyo8GL?l(YbT&KvHZ6`rGKE;u@R;c z$;ssQb$U!lZeJxM8>aHID}*!^uCQIxR1Q;3<)FR2O=Uhn49v`2cT#~w3{#m)4+SZ_ zeHro~GL^$(P33fdN>8KLu@R;c$;ssQ6nacZZcip78>X_-6+)T{SJvm`g{Q}yO0Fi>W8$Y4+seusdK^f}tzyW7z*^YU z5?O-K9OZrfWWI-9MDM93l8|X6+vx!zS?wbu8%9!eg^)(VwY6&*37c9LE|qQm^8QQv zFY4!SfxZuF;^`>gB$pNIDDhKEG#z7V`35~8qzJ#xkOzUau&E_dgt)2YSN`<=l3q=u z$HY%9w#-bkd7d5_lILg1$cEWG?Fu2yhO2GYG8;CvXsfr=XL@_gG=LbG(K&u2j$B>Z?BRR?yLK+Fz z)~;nFY-%|yW@@e*3&Ueh*(N=u$TXA3=@B7${XQAlFq40Gg^*^#)wOGx$;f3r8-uPc{d;mF_wlxqVE{2OQ?q@y ztxUu)ls)L7Acfb$kOzUGOs=J0I{~#hGO}SR z^IRdMsc?nuTBfqc^5yH5wUivx!E-vvkV}c3PV8$bVG4$kY@!E&6k8`l9t1`*77~xM zkdOJ(_)&TVkrrZKONnM<^7&zUG)O+LAtM{+akVRiG!L$-UCTU%tkm7($504Q_xKNT zEwS#gmvtCsIT-fw19}ulxqXiz4+8rb7iJ#kAAk2J@~`v~BK>3ESR!lbmz-O!%)_`LP$g5`r5S& zWys0v)~{B~2V>|@Ddq0MhyQ?c*(&=N9@WFFw;b#p;VKJ_yzD zY-g8~3yN)L_M3My5yMU{qlbbN-o*@g5ZKA&TKaL0a+g1)chKvIbQJr|J2NNKRBoro zgyi-sWMsosZgqu_rot7rYnqC-i}5w6hNr3gj$F`&n2PPu^WV}#K??8J40#ZlO5|Z} z?XqXezTT8h1c-r|IqRBABq!5U#?fO!a@$HqHcVxtD}*!^uCQIxRJ6xJ*FZHqO=T6i zpbaq<+moRy=%HAJcf*L5-CDwbJ}BfPzn!s+9byob_h#vm!`$Eh@wJgUgvhURhlE29(9qX1-3Y zEY@aX8l9PuU|W93<*W3VkW&0ILmmV+Gt*=??h@&Ff0Cc27Zm9?hgfg$)=ADZo~P-- zA=&;Z8QCzNAG<UsS{DoFp9p7*^`DQ`a#m6YYN4l zlH!;9&!PII)$A&5b-p*2XGc{&X=VA`*c^z2c6}jgDMzL@1`+FJ@i!tH|K*?2i__)K z?y%n4#q~;Z!9|+#Lu1Rym9lb{JpynPRx10b-o=RPh-M;Uk&S5yJr<-@oxqS|$xQAJ zz|=?q;yO|Zg7q9bdg+z4b|jNk{!#MUZAF9CT2f{w>Y)dPq&G`O7TS~UyV(^&_5dz2 zuO4t5iy~HzjklJO?6Z-fwJ1)0JH+8B!LN`DiZvE(*Bh6h%)_viTj`M?b@v5MSM$Fi zHo2C5?fla&tAFm#=u`AMB27ix_NFmfOUbm9C+Q&}seOWsY*@e5?JH+;CH660_HP}% z)k7*{lx4V`1z~s&w|g^)*m)?);nrU2rQ}kJ(@##ei^yfNvXwmqa1=@^{JC_MwT_x% zjQ(>xJrJZx9m9|vXl(d~xyjY^LB^SUnQfO-FAnn%tLI3ug;`0HqXlhb5V7-Q!)4G~lfl-^g~~*EBShj!|0l@xz@E@;>{2z3{xB7T_8aKI zAZfpzjNEkEC)H?Au?@4Sls0`n=Fk44@ERz<*Ue>x5dNnyfS^s~SUvEa{F*<-)!%t4qPm$&|tA^q7z`IE{?lbQw(5WMFF% zAN1G3<>bm>bzr?-u_a{+;WBzqNFiKIMsB(gbU!GSjn;6FzYgvq7Y3^Xj30zKnKHP8 z9uraqx08`$WZ*D)%HefyHmf*5$l-NQ*KsF|0@f@)kn9cl;p@u9zRt3`>hc$|dacr{ zEMQBP-9fH5D6&P%R5>V>OC8~_sm#_L9pbk-N+Jkl#musZ`6pME$UF3JGKkpKuh^@O z#@|JoxV%`%!$j7#Iw*G+x|XKPX=U+a+Wy{`8V_|H%`^*9yFH~1l8Yc{&lRuZ=@qpuc$%cY%Z>C}u4Y3y zh8`=D{iDdpMngG*LBu*j!(}qxB9l$UbWgCYP~5_o$a)H0eL3|zuz85mQ!!h}wX*ts z)>O>Nj*79TZJ0+lJ#eIa0y1*b<)s)kH% zpa+YT$@OI9rpshsn@pgWv-(;5UoQVmt`Jr(iyh?>P1cagAL!vCrSdu%IYufDSG4k?n9tD;5b~mUv}+&$NM&A~E%RYJfL9ptgDcm5 zmh1B4ARyXxrVy&UExh!qQOm|~uJh>eAf4+RhU~y*!!N2PRnxCsg=$ya*FdPA*H2f| z>u9~=HhJZDb?ft5OU%5yzLFjolHd=Jk&V`LDT7Gv@_O%@5;}_koG7WS>0&0mF&C6H zMLYn3c`D*Qa(S?4`r(K(y+cpXRK_>y0V0+04Ki|!G8}rn92d9&IY7vv#BFNf}+}4SHBeDgK@_*!(9grfWs0 zS+?dpGv|AgJRKltqZpRt!|){6@-vNR8a+NF+mp%2hVe{rg^HMeUS&zKW)g<_$6 zdOovBf2QjUsEDWStRoi{t4Qs!LS^bzQ!-3vEj=it3|BMc*wHt(pEP{(-BT$+?Ud9k z=MsN{FQV5HIsP76$8zl1nTB&AJvt=Q+sMd<;gnq=q~UPA?OKL2IjfZP**D{_ltJ0Ys`2J-0?0PzlIr8g$cEz_ z%^;E+f7{fm=}Tf-Pbxulo`Xj(xklK*lLraleiJOuG zL=zYOhMbZQ)H{5)`^)hwWIC{N)ZWpg%)u-ZqX*qej|C~ZFEHfT9+aHjj0-c5>pVaA zr}HU#36Y(r-fW>HWtz#8^q`QuK0!t{%;a%b2x%r7(=UK zIYuE4%|!MiZb%LgO&o5An)k9l>o3Qf$b4Ys$Y1MX-*UrKF*?vE>A@gn_c4YX+kuj^ zoAE65nmKD%&p+@d^n3IgB0J9kb^Jxm$~2Vk(xXB$`!E^VFq8*fA*7*jeeGI?GTe5b zdiR68JKWpka$+q-`?RVu`&5%LOy!^SaFEjbJ422&l?2Dyi6Z+rUpd&H)dK)xV6IrS zZ>8E;t>tAp%l`DZko3+WBOA`r#vqdGF4LuDB#U8KOK_j+pb5g?+)4)r%Rbm)ftB$OzqKDTdTAcwg$zm znPA(3PIyg9F|!d~V3yy!pxhm#Hu9q?k3d?)g zrP6w0P!98KTLEv)QTC_IYfN3UQvpY*TxHCh&HSM4;rn<@2iecRjm zu!4_YUszgbJ2_J-x2-Id`n3D7C&58!1E*EYmZDFXQ!aEB+H-K=_6$F;(Uebgt(p|@ zQdfupFZ{&S>3n)~DD|@oeZ{ur@QxEj?>z%n`bl$o#G%`Fz@gh=)B6@v^;y@-$>MKz zg+LeI{`%!0h7uwbr+7^}6s(*OEsy=$ow(dfExzL`5LmE=Q#L$f*k~Bp)2DDEQ6+tL4Nw+u+dco&3;XBKg29>DT;AdYdbR6!4cgD`%~0 zX*uB1{)_tOXWyFH($f9y?A!3;ynctL9+-Z|u-Y#!7PggwqFVN+2CVF3c-c4dqnZ_e z(zRSt#80?F=oNPuMddWhPbCKk8N~p#>oIHla=EtCf(xKiYi}*wy?vm1_1HPRaMbo< z^{9q>z3s}HB>tbS5CdNFN$X&%bdLF4rd(<}WfQ!!Q1Q9B16KISb4uZ{nbEq|;U$s9bZ0rUHE3J8bw}IMLg$vC2z=zrX)u2EYeOprjEmWG z;1ey?K-%GT6YcQ!5C{awsRm*Yv&^-s^1N8=3V|lZd4`&DT3#ww?l9kQe&kf1BD?E?uUm;DG^C z!Hn8U2*l7H#?THiK-+20bXg|s`&{{ur`9(aL~^HAYk1+%wsyyo?zHyx&gTZKs$y*J z-O1`D}+3`e&PxtPcBYo15Pdn2pI)mvvh!vwRp>CSss?6pG$Trdcxwq zOs*^J#G!RS-%wYiXLU5>!k{wGz9PL*96S{+O+y1I^()J(mWAoPAt29rbx#Hn>l^V4 z)6Vuh%P4YNUn#7)rB5H_18?)K24!*aK?FvK)!w(ev6i+z-9v0Ya; z_B@?c7AEVhK|T}YJA<}TXED>OzLDC$#=l~(3ID#e8@GHkQMH1m8&=wB7;e~{yO+7VW!kDcJgS9CUNNl5e(v@2& zk0)FqbYdL1mGa=Ti35a;Vv1`bVH7ZcUX|>tdWS747SlV_sdMy##!Q`i)uzs_Am~kX z!7|{2G(Vg&8d>Jd5fFmsoH>+1ILw)@qfhIaG+XIp6;*ocL5(SBb~@lFm4gisd3Mlt zR#&r&&iAk5TvrHrPVCDd8g7{*!!>2I+H2rwjoA5MR(n+VJVsopSGm?nn&1johygG4 zSXSn?6>z&4ZrN^D)P2E#)qC6=ChPX@>S2w+B=1@=S@bQg5CdNHIpO`2%|$rDVSexI zgAd#Fv~}jvrBc9WgYce;!bJaoF|i-Jg(6~U=drYlSlYw!AiS+&+RsN^Yb)uw))hjh z$Dyms!GJdt2M8I(?yiZ5!Qk-WiEfe{w>S;=$Y6KKI=;hB5!!z=Mrf6NEfc~B3AaC)5VY9E{fe= zEw*8>uliT_WmgD!?!3ex8a_bmS1o_I3#$61n6@+EqZJugC|TFn+gm8A3s>U~Y0PY4 zax!;Ll?w=_eUtdWVms_44ufegiC_$ZS|K9ONqM9zgieryKT3<`C!qs`jN-elN)r}) z&#*)-c6fOAU7w~-Y>dJx`-E5S3!p25!Y zyWqaZvFN|FHJ!yTWnJVCabt7uJj3yAlM{x#X0_}L?V=Ecu~_}MFdULbxJ z#m|!XS!O?j?8N|l(%bM)_A>alHQ7tpuUE3e^<|Hk-2(sZNcJmR`aK{1nv<_fN9CuV zm!lr<69ueh1qnOq$%W0~#(ZU1y$Nz?zRf5xDj8RQrPRz^D!@F@2AIud>HXwGO{R^9DMF(5RIIV>+?UkFRxcjQ^4yG5$&Wi z6!0p!E?5Q3W$#r{6<}s$YT#vhL`V(1L`II$fP>r1hQSTS0YWPAqppdF5&XeqZ+}b< zNAR}V{Lsedhv+TXgASz%*{VYPfN7s-My2ze-Gw6iAhM;q%!eqQrUltu<}wI}?&7j9 zr@p<67Rw{cVVYA~`5H1AhO4Y1SIWv~_GrLS`^vGQtHfMwb=X+#h^8q5odI_N`Mv)Y z^gxkjvy34-Fx~JuVrrxUaj!Sn4$*pcl0JGVt*pbCn5wFEaPv!`#*OSPe7N4{s+Gpuu zBSrf(=Q{3_i3wgE?-yH-n&WF%OCuI~>tQHB&?Z2v9@aHZ54HTwj<-8KexxwoCQHt6 zvww1JHE@q^{Q-Dhyn@oby}2EHol_Ih5&j}tNGAa~D4o$j5k*R1>SzHy1*DD+CL_n_ z$f2dluE=f90iuaraY|LrEAyGMy(8xR#k+;f57q&fJBwFM*yx7c^pKHa4H)uZxW=p9 zSXXLM>javKeZpS{H_(fUG_g|}qk~%Rrh8paj~yw9>&VE4dsP@j>@?l*)qy!y+vtec zzb2kXAwbWu`Vn%OuqJX^gTxa_-_*}T^zf1T`3@O5Mn4X%OLjkQYYq@i?0(a#GF~0P z^Bi6F{`Z!@bpJtS2rJzc&eGLWHag(n=s_a|`#%hMFm%9uV+2s^1DcJ^Kg`?4<^sgP zTn(PuC@s{oH(hLBdh|$9>_bL2TxZy*WTMu@g?HzbbmIzidB5<_0U<#dO&kOTb3=`yf4B zq)0Dk$b+H#%`ix>IlpFG-}2}G9(qBM*M6(~`LE?|y479uxRFA*gN$sr)$I%-xsJDw zshEh>Yohrr1n1f7eoZbB)-={MKs1rmP2Kz#J#?gQenCc#(Tzikl3kA5m;*!;yWFI3 zp-aE;iEb&Hb-1@=_Xdc8neUg9C2LF9=yZG114asU3PT5Lvu&!0n7$^QJ_ygV-xbM4!uGqh4G~Tx zc~d(Ddhkf?pLtB!ajoX(4L=!vPNc-Ko ziXJ9Xlt(b+*lw1bJx!~nUuSDUw?E?ny_CpKM&F-gP1&@h zjr5R_?5D`ch9#Zr3L!0tYj7Yfso|SqTG?BK*#=Opcis&3@Vqko47sG(LHii8Dakxd zUEWBK6RFEjkdX~t?&P6^hAU#PP2y!SsZG_FOR&cnHF^BVUmias7Y8d3`VNzrq)n|n zMh_aPl}E|QP1nklTG=wNNNwFl{tthh{Eb`~tWM~w)0Tuyjr1T_ErTpY{mYyM6V2MD?3x3BBdn_(32 z2C`o#`$4Bk;m0kDnT>trLJ>apx-DJoQXl<(ldNy6I4cL#UY#3$#gZKnUVOHo_J0b+ zR8bsWc}~P{Fk#A`k4acMnu>wNYZiFj@JV}N!h(<1%vLcUWMQ&T4ftS!K@8LOgz$)F! zE8SjZ$27{_;aV$M?t@$*^m04cnsi2f!Z<+4D1PgD+6rg9F4!^XdlWXPhfbdPfC zR>c5`*4t7hoBP*gvzC%M7T-w^2}$eM$jCx-(splS5RL4$_1^_Dp79^P zZj;%WCV-b98czYdNUjO?be>mV0JWS<1-w9y38{eR$jD7sz$mVOu(K&vKK>|g?#BQG zZG6RYKW8W0vuq4QA4QJ`$@_3Jat!YdGn*Xycw2FRkp6QC6L75mG=7E{8p`iXMR_az zmA9PC2UdBr>MHL{(`=T|LqUq}1cn?tMZ}WW@F9XVkuz&8S8F0Ae>!{VHAGGk^_z&y zslV@rR#@^0|H-oNN63rx9(r&{g0o~~!&NrBLP%HPGTXIWWyr~kRxege<#s59=P2_P zaxJl@5`SgF@-Q0Nt@KEclKTQfj`fs=F16L4Ovi<($9c-n{n>nqUPGj(#9x^xDVeR} zNqR^~TAv^z8&2{#gGjKcuwvDwc&(}I@lNm4xdk8wW;%^;Dr!!q0{%tj3A;=C|H#Nq zSHLJkf@y&JMhx zI6&yLg9C(&f^QRdfRIsaaNW!pMgb2;%^3lkW#Yb=7;CI9Tg>=FJ0}-PCGDY|yU1sc zRr;0Lb+-TK_+gd3=9aDhcesjEZvDTVLBy6ceshLPP3!N@n7TNVPZxJADMIqg;0dup z?~bti%KZ5>x%lFAln(>^lw33`f7yQn9EG5Ywi?1o?1;(A@US1#<3f7ae=y`&j$==o zhHvVdZLdY#fciGX?Kz?RlU`Ko(w9m0;p)XkU9xKln)Axv=>Z~H|0@~U=v;qxg^)di zYtO4^{D4IftJ20B(fGO+bkwolsyqT98gbcVs#3db5~?)vG0bNnJtCwG7ck^OU_N{6 zRj8en+J(_Ze}Yr=aw2V~!)iORshNgzEB4Z}IZ6+#*g*W0dTIAc#PY+hT) zluCuXG4b38CGl*6pCDHiJMn0Dm4)4C*%)SX13ez31g~evgTQR|Qfm-rHIMp}`v|?5 zNUPEA=vc|EC1x7UL-fFqEPscLY#7b`t`O2_xYinAG!76l3V!|O03ol*zv46H!8Q51 zWFO0)w61Ss+s1U~mLT8N)}79G<$|JejX3@|s$*L1uCkb2p!bzCxe|LgpZ!~hII{U) zI!b*TQ{s11)wq-kM9UTY7>JcN2?{C8EBH|iBG&WbuizVgc{jN;7o>}+NF7SrXmuEw z8j-HNd_RO-F)O>-eE>&cr}9oVS}82sIPEaAG|jJ_9wpNJ4kRNR<~NT)#9mM}To*Gp zW%6CA^wxAHm)@8Q>Iq~6gyuQzoJTGYRv_#>YaKfmNS$;|rJO?#7pasp$;eGt%Dhea zR6gAkq~P_IJ*lnm=9Nq#pDOhRotaIU&Xo9F%~Y=O*UZ)AQeid2KEZ&|3?^|?Jy+5L zN2=!oWaOr+=P;CdqV}UH=>dNw-A67PR!L_e+Y`A6rmDV4PXei`Z;+9juBr*_2D+T> zG|jx?ubJPFi-Oh6kx0#GDVmD-6+J|xB7R9mZn`4oYUN6m3$jOvrlqN5^6}nt%>;m; zT`FKza*~@$Y-yXy8A}fvshrVd_9HR<{H5Ium!!ODmAmp;la93jtqkv_Z^~o;FOkdoW$#uaSUE9jtLEF+oXQ^#% zrZ>oC^6ERFE+H%2D$h!L?RBzULC~A(%4`i5urIJc2q_356|UZ-daEHQm-?24n2TIx zBNt*WWDpJuF)nv7+4hvS6@_iA+>mQKOFk&JWlC)ugOG<}UtU=k`&?rxpS=!nlyX*P z&*?5~Ylot@M*?Zjl-gM!?O`C|B$KbW`Lut*Kb3gFr>+NW!yAjY2Kh{o?+n^XoyAOV zSt;|w16Jl~bHWlw4&N>gZxr`I|KdJSzqpNDJz`oO9zGvX$gA6ZUL3Gmj+j#r$1{re zf`9RzbA^!h|BNeyY(ktuuO@UKi=yFVj}Oly=n-2&zv@YER$IilcTtCBYm2ZL)dY41 zfl0xE+xdYF`di`Xv^iTq$WAcQ6++U_3-7?4q@UZP1B8s?tv?F0LKG@z-EU9fPEz0~B{L#vo4I65IYQu(p{(3rg4`#%ymX?e9 z=VyOAk0HLof4s_nyvBdL!G82*kC@%kvL<^Z`*k?{z3lnq0%A|>QFB&x$G~eY4q0{WpXl1YFeZc`jMln#mdcu;vQn}F6wrqPj z$cOji)DitpLSgvEfaQMToKAM+_COxlP{5n6^vRz58iR1?$u8qhjAu{esixBK8J<#K zPY*l?p`6E)Pl(v|)D0WVKi)}aHUVQPom8bXny10(Sn~0WvwAdxh~+eaF5G%_ zccv?7FNZrGj#julKFa0z4I83=uz@TdL#`s0#nE$QYNjV2MLw><-Vv@4(hV27LP$^M z8uIew5iE)X)Hb0jQvy$5+a+Mh6)tZT$!&u;YE$2o4I7L<-9X)y$(6_IZsHsnce}{a zFpmq!hd1PxcZHDhON{u5r7fA>Ubd~O`o&L$`CFpQL*p?2cmt`wnOrz5^^@k*0&lP7 zX>k7;^6?GsZ*+xd0{0_e=_1vYE~gd7e-dT96)xn(A8H`aKOz?i%k#+a7Gpch$zb<~ z;TR5^cITc{>r}AKLxiv;o>O;t3wb@e`S9CKUD5cbqBfL z@bi8#X$9Lm196uq=1;%@VRLGjd0gVT!sg9zH#RQu-eO@>CVYaSGRqn*Y$w`SC}qk! z`h#pY=U`3t1fc$k{x#V};^$)VbBXx5RQy~fel8b3PZU2_h@UIP&y(2CAbT+!;H0ubuwSoahqWx{9tMBSNyO5GxQM+>Xp&D9U_$#RyH8@&lJNF%v8;bpvIJ?+ zcD`GCYTd6&vRlXe&^t4zUe~J1b(J0l5o=KK52kpos|cHmE{Ts{UFhn|1u>=n7`gPq zjO9})A0?N|%3k&|z)`5F9KbeR)n0@pDeN$EGA5=E)1yM}vbu&LJ8lh5qb*c_vAWZZQ&TAP@;L7N_mAICsHZDAtMh~rNEk6 zx@1?%^u^vvnFbKFS!$q^63x?8%4B++NTp05BR5?sbM2neo9=>#lI>DC(O)V{$%Vp7 zi&$W7NuO#dktik;ndsg(VtasjzcSgBC^Pc%qS&lg2qSsQ3?_Sea0$W_AXgg;b|xqRu+vNTn4BRxu_NuMz>Q-wdHhlEt&PsqrI z3OWA{5|S$9%Qg-WQiWO9p+AfQmgJ5~_P)TVb-@LFK|b6wsoWgcYYBC%w~DXsl3Yn1 zT3Pq8+%uR8;m|G-ggoSu+$07OyKEEd8;xI)i>vvuhj);OpJn~7WBkA!V4dXC|OsBKqi*Qq9{$00ktoEui zE3vi2%$Bf$9vG70^T^0XOE||BLbe31Gq09#h<_B^yu6|q?-KT<~Yt)tTU&hA1nd^b~?N97}TSB}>C++}ZY8)W$+>-rWFk)B3Z)_IdQ8TIXGp?IYMiKa%ZQhGyS5haMr4 z_A|-IM&DTP3L*Oj7oS((IFLmVE7QhbSx;EGb;qJ|xtQ752ToKh7Su-pJ_+%7>hfdc z!eU)0I>AI;$jHbrppVjHLMrjYoIvtNhZ=4`GYn#DXQt*o-}UGCVR}80-g8Kd_vjqg zk~3}RL3(gVvL7HL8@6+wD}=NiF1cOHb|!&37xTAr+sB`OLR~zK=kMgwVvUFIvNIc^ zB`3pr{z{Jusm4DuL63OUtmHedvK9H93PJ4+856ryff!YA32@L8th$ zeKNhMNDGRedg^6pTG2{+gh<+#laUQ8TH*>Jt%!?n*RrA!pi|R)J_yC|oOdoK*AqMM z%!=)ZJQ2fgE~AHn)ZN7lc@Wr5xQxfLk29FN{29H2UPh$B#NR(qb22UEc6v-mYQI88 zHZ0{9M~S5Wr(|TqnttpGA+3pvaM!b@HHGrZp59#00}nw4UG__^$t%3AX#zkD z%wQgGO>wCi)-;wL98#O38S)^prkHxvPFl^Hj`wH%7$mr!VU^&ANCu|)-c;vgmMnwI30cLbFYLb5yF6+*C^c4F7%fiFhy=tZS+ zTlIzIQErzth})yBFCZ5$ZjZd|UHlh#>3dneKz%2SFLtf9Wc*zWB6f;N@@d}*aJ3At zpaMh`bIC6ElhTpsfpm^!@e8o!67?G ziXl62?BJPm;k%^b`v{iT15a=2iMUHY8_Wiwxg?eD7I@^ngc_H9wn0Y ztH{VglhVwuU=Xp7**07s`m+YynF0P5xlnVS_xiKDgI-AF^m{0l-CB00(`=SO2c7nJ32zs!O_#fuXJA98`qHCc`%Ch_$h=@B8NH=sz4B7hGWyUj=z$@n_@4|pwhtv| zJK^KElG%<;KyWJj?xNOy>911>8OQp3__K9eO^yy)a<~d<%6`U#{)6pj7B9cEYz< zqc<7O1Y&7T-D-c8dG;Gf;e8D_c&b=CxUy<(dFAkWSEb223a7e4NRHRILI{rElk5wn z$E^=aWw=9Uy^r+%22uPDb{|RHsS58KrOI&BQb+h}__2@<@muUaKrrZ=NSC-4TT*@z zgNSWu@i&niPOJJ?%j0Xe=+oiWORbgNO6EdXvAl)!1#-2lXKeO*z)?=d3j0VUlGF}0 zO|zYSjvgkmoqd{&Y_zjaF^J>_ojpah;1i~>6BnkOo}k=a=+eaT6huYyVnZBHl52w% z$Kr6#A&Nsw*A&SU^l*_Pd7O;gbdgNeMG_jTCXtqty(RK5a%Hd*Il)IFVX~$`{*N9k zQXv0JMsB)5#tDH~&7<9483zJHBQBE6&cbe26U~EXX-Z-qJxZh`_9G)VT@qu2BrH~O zj=vzzBo_p074LAc3cEwBr^kqt!>MHCrpsYUzON_MTY!7d@XDxkE|o5BE@>U)N`F~= zfLs`?EZ#+tg(X+hEiR?Uij>Fu$jD8X#|%r!#8sN6l5hH}H1`-Hj%B)1YerB({So)(M6tU4SvoeM7ae7opA@q}xn=XXv*`ME`(f_zV z{of~-151DXvp>JXB>ms%u^>tRH!^b5NuR~f{;ptas*=wToEku(KkbzXFf}(zwd_KVEbSAPj>Pw_(eW&@`w_KPW=` z@9it6wuUcO)#kvVr+CkSy930)%z+*CT7a3FDT%kq#8r@z_$L{;>5`bKNCI}v#j9eW zzbY0Cm@1-=s~PPPCJhwkBVQ_~^PT$ac)!0E?j=_RtA)C&M=~W-0(a9xLQ3FHGIG-; zAbepBR5?Xt-M*} zf|9r3_Tbm?W4%ZO{ZO4ITZ3iYFm0oYGd^S^68Dn z6Imzt>)<$Yfv|2+_sYSVohgi?>CqvD@eVR_(}f}Cgi^XENOgrD*wuPNkG~qSrR zPw%R)-4QWN#-#mCdN4@ZUn3(oo%Xrh4f^sWc;j;b@0|%Yho4E}D@kzqSWNfm zmkhH{^}b}71rP&s$q;=buwe^zvowXWH$6(EQ1&Dv#|Xt?Te{rY&i6n&K**i#OI>$Z ziJk2;l6^tQu+@dGzFeTZ`eg%I&Q@=#%x3Qefn~RH0IzysFO;wTpN<}WSY->fWncSw zuCkE(+RtGS4*S|0|H4dLvENTFwh+GD(|!rLNLIeG1;9}VsqD>`8#K~7gk(e;IQFuahbrAhxbQz!t)8Kly;f;H3-ymi~4Q!Dq7!;X|lOr9X4wTnWq0G zdO%28Zy_TarhhYoNbWHO$$usfFY?y;e-6U&3xYl2>+&8ZWAc71Js2eK?<6BPo%e~N z!^2b$3*o7*Os6{E75vH1k*k6wpMMQH=A@5iWO#mt9urano5;vb*T9}a1I1u7JYoos z8Sw=X%?57rSHdUBwZSUkpn8kDT3)6je2g9!QVky^BR5?Qd+TaoH+=*1iIN}q3*vj^ z@?ZtQA32M$hMFL1shOJiELP~AO_~DfWLbp#s#8DnL3zB4+^P+ z>15=l>tIq<2i=8jsm;Z7Z?`rato2vHYI0eyE>L$3xKvBY)WAvfkdPWUk&N7Q4OH&} zu(Qd$P`Jon0T+^s(ijDVTXc9rqR4Vn$2NLMNClM1$W2#3^;)r9NbxmP%>-`qm%x|E zRl!PNZoMmnT1KV^+(M5Cseqfw$W2$kWYGu8#qb$pTO)YJUjsiQ*9EJAy6XjzoJI@+?+&nROy=Jr^Mif$$Un%)O=o_b zJpW<8RDQE^W9U$S>N^IE`ntQn81-Q~qQJ8MA4CrbdEU<_BR8G>5rX}#3hn3n)BbL9 zEwGM1vtHNVYVv&+JrX3}r<0Lm_;%QzFSq#ft;7xxa*O{qwskGJJ*T6%>Q)Ekw4%F@ z`|GZs%n4R^{DsK&g$I_2;WQti$AVPewPa*Nd7N_x*+}K_2N4_~r1H*m-83m4E?JQ9 zXA_pdS1n;e(l^TfoGe_c>MAp9-xlr)f?l|Q-5MIL|;G3c9UgW_!>Xf$SefduF z^EjyitNx@pd2#6WO|?TC6UDi%m6OFk+Z94DzC+)aqXTa<4iGYmCtO`rj1IY>@NVLD zt6EwPxU~PG{`uLrX126+e>?j&{5Y>a)>&Pip=8!Nd~v#S3w#h;9e5j~r^*cWU@H4m z4|^(=f3#<#IHJ<-EMr5zt0bhVKEfd4%ekdgtFtJuC^vgU^oAk3wPZ)YyP`uLemjp5 z@CyI&D*y2s|M3R@aS{Ca^ZMskj;@!sS%{8wsVu&TSn97FN&L(F`?JOV%3|VQEcIgMV9-y@dUGCHrfA*&}AR zz<)cE{W?5+%l6k918G7Tg}ca;l9T9lQeNv5Mc>Bk?#Z5%ty|&4EQMlADi7agQO?X? zLL$-U9v29x)r31~*!=*3 z_$)(=J;&$AdS=6)SsoLqhjznik29&fiL{63GO!;CHWl;owE#|Z%G`PRto&!+fTAgk zRmQXRt4IdbC96NcALR%C7n!^I3)FwDA^#s4S(ImF_>Gbjl&D7(=zkefa-2_ER4k@< zM9&0``Gtn{aVFWS#6s%deZq!Z(lAQ zUdr0$jOg!oh!}Z@O4F)cG{_!xldGhpBYl!n5qAxi;6O1pn!46k9wGB%_{&4&T3IR1 zejRWWUMdrqzeJ-qZRI=kqa$tQeloIQEB7*p;XON4 zqf^?GWo$UhRX%cTIGsTZhINRMB5Tb@-bZG|=pgSQm&r{&K zR^JNv6eL44EvxP-C)m~)!Xw-6ON9TugNG%fQu>o+Zg|qQ>~d~+f1f3GQ0TH5-^SAkMsbLM)C$3*)WpdyFy4K;ac)ClE;0b zfbCQlCVQ82aw&kTkdS!r68K*x-xX|Eu1JnJr!i*2_u$D*Q=x|}2oD@EANP@~WcQC-0Y_n^GMWt}f-G@d zdCTLQ^y4B;;~QjT!!*9mAd;Iq$MRbqR*qkRSZL>+!SQd%6~S`Mcfv%YH`~Ln=toB~ z{Yx@()0v*Qr21f~urck7p8RfawkH4tZGytGJ%ydodIl!rW9bnf86QnXj$z!Po6CWK zw*?0Xxmada|tEbNZDB|lu9ir_>yI@(7Qvq%2-F1u2pxHm9_yP z2Zs$xw$Xt9P6rQ=$5#taX-Jk4VXdp2Z`P>HspbVNm-sh~$QrdA!l@q==d- zQV^u){Bkb2R9ICU$mUm6TBbJ6riX>p#u;SfrfcIM+4^bvsQBySDss87`rx0^K&NJE z7 z3OmbF=*LE~Jduptbe6}<-fCfbg+J5F$Th(-J&7@`#%~S)i|NNlvi&YHatzxJ-CGU- zycIY=$N}IHS91~rz`4opv}oN_=t=kFU|pjesDr?jWVu?kRyo!>2*69Atpfo3_YNKs zk4Wh^mj3?%SKY||e<_2A?f=O&i7}DHwJG2>G8smf_!7BNRz9;I1001F@ouX~@TPIx zLO(dtIBq5*8^-Y&R|shwTti;Q@jjm@V2jo($u5nKX4^dZzE9->;#J6_5f>20*nFez zW=|Fo+wR$~2-IR5FS{07+Qv%^Vi4FytIS(-jn?z2R2Z%?5+E8eTmB8IrI1qLv!#sP zG>u{OVGc08ZE96(loe&yiDUoR~?IKcq5E(g!Z--7UhXLLY93bS< z!(!JzxaWQT#Ny~VyfZ0W4`?H zFouOGYu-^I^I>?$Rpc63Da~#N9EA^YTaytbjw-J&uAmB; z7Jl!CNNDGq!SB7~dSLmD-qy6Ud^i2rNS5y;BR8Gp$Zbsv(=Yoo{Svt*Sf=&cns&Bd zq#qy2_6ua>7`7d{w;TX?D{z32*A^RG6A{-IpHFrG7`8PHZ=onED~)qEP%X)-vdSvk zwS>Bkh*)V90V<8hG6?JoL3>_O?86`i!yqt%C#{VFE6BVUtzsFuN>*yKhXannh41j}*sA@Vq;3-qHSna+`s zo6dCPA#y9*pZ90`v*fB^+14K-k7N8MdIU(uKS@T8Vcemk%b|d`1qTQ@6wGi>r_23M18_fRiPTD~E!&$n0Rh0s zCTrCyv<7@(ry8BofGi`yr(ESDM}m(th`}%tj1*aGGr_}TR>UbHXMzXGWwH{Ry&Z5A zO2ij-s&t71%c0-_`hk(gaUU7kFph6Bh~!oZ#20q#EWZK4&?a(&<=>M_f@L}Sg`HTg zU!fl!$@Oo@$W7-u@`W8c-_tjG^F0k98ZqgcXSM!?omkE%(?dXVK7ouJ!?{COmxBRs z4h|4Aq7CXpAvXYwZ1{{SDu}_&(B@QbGg01w!A`PQN zMm7wimq8>q5RBnleQgYX1w!#02W}-71j}%ApK=V(U!Wfx$@AyP$W7-tvQOE@_0Rpe zeu`WaEZ6!zdelqsE5 zPqK=v0h3o7Ovs25N0mdsLi$mWX0d>bY?#Ht3?jK9Kx`(o@EbrRo-@Ekay_v8MmH1MSx(W9 zjb!;;GIG;dj%+5hFnzs0)7Oz}f@NCYOlW7jLO(u|?W@ShF>E_@Z#e+)R^R|32Y^=B zM8p8_OtSk1CZ}`of|T%Sq40Bg@WgtiGbkww13!U;Xa;4~TxE%EVW93~N)VcetQMHk zek|j_k6f!S$AKR*h}dx;xt{2BfRJMn*PV<#(kOIve}Gsr|3&asYMC%bbj1{~En#puQPZDByT*R);l zT536ST*n{=gJIOt)(qoYWFid1xQARPyJ6e{I5xwmg>D+gUGzgE4dV_nvSApvyFy6A z;QH}0jEYYbU>Nr&YZzned@SpKA(cj$hV_%YJN;M|3k?00tiQOHU7E+A7(}djB=|7& zI3;(@L8b>(RtyK31`xE-%8 zVFr+61n(pc5OVqRP1k-FMge2QULz9y823J1eX!dIKF1C3YDyQ2X;`#iZ|#JSadxLO zd37c9ZnCDWf~>42uU^!mnN)i19TB5j$ce*L7yqtAy5meom&# zXg^PpOJ`*~`v~ADG*xCZ3#ylm=|fM_qe1qeC&?kEhcu>aqK-~h;Z@e!tcLtPhiH_Fj4f_65hAC}=t4@;ZN@Q(Shq>= zf@Vx4bIo0jA~R&T%Ms*KSxL_B2RI5X;;r?O;7v1GNIy8zOcs!l4Kq2IK_u5!Ch_Zl zNWnC=0|?0TQf4E$ELgVrMt&m&lk*fk1SIF@l98Lv`80VU6VLng{=8pDE)ACV>DpyX zBn^}M3Ox)Y_g9gTW4L$d{Bn5UO~U~~Uc0oqCL*p~?oN2`X0edVsarK50h&u$rPhGG zn=CY?Cs{^?AGy|BjtW0y5QAY<7#60ib&bD}`7maLKap!>r8N5@;3#~Ey_<|Eaa6f? z^G*6uk!JB48QCz4-!X{fh6Ay8)57oU&D8VF;CB{4(8gsfztO#$c9!?19~;T?o@C^v zvmDvGX<>SeKhvwoHNi5i@7=Vsy@GyxB-_i#$T4g?bZH`ofpU$c8W6;tC;sfosOg7e3$<1*|G= zN!Ay}6ocOIWx$pXU;Y6yX~Y%6aW;pjyPrzLgxgZ}x@*CuRlLd|27y(Kjb^TS#>8$a z9foI&1BgZpkZ(b~RL|gV35!N=nnx@B=t%PzNk%rzW0)(1G!L#KFY|cWRm)oD`#rALBp=EtTCJlMQwzGEV4OB{TU++Ox*fpVJUL83><4*`Ij!Tia`tl7vZ!- zve%rXOs2(fk_*V?vQHly07s#w!rws0gcZrabdx+i0;HR4AtM`Z((MW%-Gr;j%S~4J zL;<77FOzkXJ#F8?G9EFz8Xwb;r;2$?p@3k6AA z8OI=EZ6(326QinWYgTd;nHR%Kjv&{`ZYBExj>1W03|l6tMsB*tLi&-B?y-Q3Y`Dk4 z3?jKTuM&jCb3>*)s18_6}n^2}Gv)%Z=eQ}p8_**=$y+;p}l%k2^|j9>51 z_;uvEU>WC6qnkOHtXJqUAX&ePj2y$dLwlDK0&fux5b{1rt7{@+N#nnheO7ELtb1#p z;x#ToegY}c?8>SaO}bKRJt5q9HTBke&kAkoD_b@AYvzlVMn*QQ<#(~TU1fC*jk=bj8 zat4_e!%)_d%Vjr|#ekzwBUVcd{zL@w#_d{q1V}eoO-44{n`V$>lj3=mn6B8QB7Mjk#CWC zF-+tha-HlZatq)noQRc-YUJi9au@x`Nb|UZjBJ?4?F=Hh5mc;XRI8=&{9A~IcK#VW z|C(GAEYH!EjB5NQ+y6yBK9cQUkdd3tc4Q@^S}~3BiCerG9|sV$X$s4@zLHVR!DPLa z9s`o~k!0i;)*ZUL91wVmaDb3285LLgij|CVvbR%PgYCWW@$Z&YSEfgOHvLqxWUYFu zoa}wOgNMi?RCm{IJ@P>MagnAmkBn@X#(oSUxgkM( z8{EqAc@T@|d~goAB3O>2-v*Ck`b_%KkxZ{ABR8Gt$hX0*Y+voq_LbzSVA*?z!LNU87_4awNe<;2g^kBu~q&ytZ1)40hM zLYf9wke6w^*Cz_tsk9^68<8{N-Pl2~96lyqhKH|0^5F&A?EiNK+Z7vm1u|>IRmDkU z8{sjs5TiS+AwEUG7FYR=D;v^Pe#IaLfvfBtTL#T!M&+qQ874CvAQ~}>{uPR+a8#Ma zp3I6(#q^vZ^iYtVvl|)N@SL|?^(8%r>&we?e(4hhc+Ppr4l1qUS@NK#x2#SoE6K{W z_O{BgWQ*ZX9rK73!CFjZxvOrZsVrd-gTPeAL=x9*Bu6I0u#pV8QdT~*X914FirDKA z3Eni0P4t5!jiZx{Y#7G|R|shwTti;Qae_}2U>t8HYaF#J9R2BxuR>$9@bVxdpIs{EZBDmd}G=XwBMS`5baduq^ZMM=If)P2x=Y;gMXgCnGnV z>q+um40gV+_UHRba#^r^^Ifz?3MS_tpof6u{8BP<4CfAAT@D7kIXFPb`z1qM6A7b$ z!Qj)$UQJAf0kHmx=MNwunp0V2SFwJ7I9zIty>SAe5m!3D=URL@AAFZV#LfrFwU0?g z`r4rII++-wg}h3xmzCS>vw))x3fxkR6iiEbnH~btQeGk>8%%VB|W-3VJX|?^#AhHoRxCD}?kOt}!p~+1Dou z@SdBK9cQL)%;eKW`0g?L2zE;<$d`+SUiJRUHIPyx1{&)dC~}2TDJa=S8vZ*SJU|{_ zEj&fZmUWM-U0ING&6Nxy)^8GA_YfSZCD5GaPBKS^(|nCwGrQB=1UL#mmA#nLScx<& z<~Dj1NQ?Or8QHLyTNp%gBkc^nq+qL@#{UZt8SNZ3_MG z@G~-U(^b$W7a9;s7@VYw^qns zJP)H&T3B_&sK7mlO+hipcLx30;j`dP=gTz(?L2Uo|sDsvL@?@Swy2Epsa!^d?M3P&`WwY{~JqvIYro^|-LI%aDdJg;%&Q&-4 zpmlvDT|*AY$f7JGbD0vn__ZALh{9}SNXd;Dqj_64nf^2c5}hcp!p^>@R+UeYtAZtY zY-FOaQvGrIp^;SglaYlEKU%9x(j1SI4cFxPaR|$k=kJqCg5{atSX06`PwRiDA0El| zzmbt+xR$*gdm2?nZ|uwEf^sS}2&FU7v9eNnC%9(x7xovk&m_A%F?wA&U4{Z=I-zr1 z-hXNTMWPg=id5BFC0AK!+lrCdx}#%LU%s=PDdf|+j`07&tn4R47(|^JU`wf`<$$mp^RsWyWTVns@T2?N*~u`JREC!eo#kQxGs+0~zu_O+ zc?^}-OujSM*A;AnZ%3B;&+DIWf08#+3EQeoGpU{+oo_%W836GOg|p;al~Ng~_6BJLKU>qq{-82ET+GaH zEw9NQ0;kj!{cEy^ik}O`&%?ye!^O`d#Lpwe&v%HQM~R>BWIuz-2oOORd}+12|D?C! zpURNUxx&W&HI?C=Y54qVArJpLs+is;W9Z8sF}tN@P4-CkE4z4@4Op<|d)BJj$t=!d zaZaBf_ZyvYzcClUg)gX3yNA9oQk;?6P`@6+@Eie7WtpTYelr3d9tw(Ju>Bvb!25|d z^%XPy*}VWq@mH~fs%j<1OuvSHU}W=OMMgH7f71MpfHHx>Y4lzSiFnfcK5{Lr?bbr? zXg107xXsb-J@n%u+1*Y?Za%xbeQE4|-JjjBl50U@SF~N@-2F2BxJY)tNJeftyYNl< z?HaYu`&0WYxe!=ttKXF0Zl1MI(+`T|^`~Uyrt>;1obxndN0huBc_={8E;6vhj%1F^ zrc>jL-JO0^B(rbtddv>($>_u$;ZN*BdWn&flsIGIg2CW*0sWvzUJoWCH~)+cFNd@< zcB4PBDRL!fXDqvjGnhS>epDp0XOoee&g@XQMAeAB&Y#!{xe!=l`57BtR~x)uML#H# z*DJ`#gMe4#qUSsQyxvbP1d&%*>M(e{mwr$ruXmG?o6jpO1W$IjS zRaV9NvK#U)1|FZXnr69MF&AQ{T}TM|$h#H$GKe~ND-v7a9L{pqEMpa!6_KI5lf8mm zBrCDmcL0t;h=Q;8kO&ix=^ym8Xw?ikF!vJpx z4iIt}*vB;yF${b=*=M*$1ewiS)45W&G7tO)lA!sLRcMvfwp-2Qd7u`e(t#`^!LM9v zFGqr3GKj%25{#;*txW~P`>5QAGeu4XLjZy{I$7z>{uzp;a3a3nS&iJhn%IqgWTb(- z<;uN0b^pP+Pi*KD-|wteOXK-)f1VGeSKGQIYw{fZerGj)lkE=r@sVsFL`F8+Mbd0X zzTa7`n8tY8pYij_b-|w5`u97lIhd@!n;rv_^|Q#xF|0ducsV5S7U2LPo#uI0vl2tX zN0NQ&VF-||4hWwkOVz5giv7{bOg=~#Q|a91U}G_D+heDW5FIQ$r4d<%gHOAPM-B&{ zVi1F2I2abDtl7tR$($I2!NcSlS!vDQ0XPaD6@GJ;5hac)_nkgSKPu8N9v~wdhH)Q* zNN%;Dl|R>D;rEXa32i7h_R=81c7_GY{d}pNU|#hd#nr8 z?{J<=R;krYDhJvY32cut!10x)VrlYcyNW|L`7;_#qDR4eKEIakV zCiftFG%vxL>?Kh8aI5>J;^$@J=lj{uAiEs?AltN_JrVwGO?CzQbtU`jmR;&4_-je- zQg4-vKfTNs6;zKAhcGJwSp&uJ*=2w%E4Kq)g<#D1?{Or+) zei-ucB>F*eNvyV-HHqdAB`V>YTt7fRJd*4C$jD9Sdb}u>usV(GH~h)|J-H@WviX>% z#&5Fy3jO#+vI z@GFAWFLWS|oGYZ^kyh8gT}p2aqGS0*Q1);vf1mhyvG{oj`$-ee{DOdHp6Cx#_$P3*Ad2_V@n8zCx}9mRNpogL$sO>~H8tMKb#Sy+zKeAse;kmK}PSBZ*o z`kG`{xQBEW@>`XCaA%OkY4r^I;%+Xz1J+M%10?^Q4i=6w8(7Bbb*^HOWA$1F5j$2V zckgppn6c&$JIEA>lR<8G+e$8xmBnlTI0_x&t~TSz@P`ups7Qb4B_kXD(Bldr{ei2- z%O6(zL;;r&ze)DNnLS_`P_c(^LHx9F(<-b6z5FwbPLZd@E$(rxxO9uV7(}dFB=~;u zp^&lW7SEFzG2G%=a*3>@X1@K)aMViG=$;gIT{Fp%`*9OF^Jxz8; z?4X`+2D?K6q7k#A$!_%3o>q=`rym;0@!Pu|$B|cinmixj&+|fhv8`L5O`i2vds?|( zKtDW^>x0S2G3T>G=a$W%HvtC-d2w)ut7yf=!PI2;zz*w4mwWoumwA@SI<>Zn$|~Ce zv%1ICdYPc?lkE@zDm}+C0$kuKAUOi$8N^^10pMkZAuHMx@NqIPMxW>>SIJ6k_WgjP zFjCrZN6Cf5vYk*9FVC{`71$2b1+L(PKceehV2nhINMyFNXx)A{-#(kTB0R5ium3 zp6trO9{HY zs~GnlDgnk2&!dH9|$D7SCAa%D?oC6$~QQGZMVD zI8tP-8OH@=W(?!Vlgnf`j`ILVp+tOeq)L}z9$V-KMw&-A8QCz8fI%eJ6voxQ9vGf| z8q1%7U})!`!Sapdl3-cpx1W^o%|`JF`r(mW-#|ugI@gor%AEbI{-HnLkCDrQ<$J2O zxEOnWKS~b)$@wE>-*ps(hy=ofo=Rj1R zqr;ix+F*I#J91Z2&!fNZhCNz#YYG2hpW=*s7IZy5AfyaVB_lUo1~Zn_ZdB?e)TD5w zzZ5<|t`AlU`)E^zo{MP)m(pWFs^EQOMbz`nV0RKg(1vO(yV32; zR*uKh4~^t_3>mrU97nb@n>;V^=lKM3Nw7TY+nKFgA4fktlIx?%$T3_ybZ*)Fc@uDe zkj?)=S7Q>*|E^?jN)9db!AGo>^@PjFGPP=~K_3C)@hKh0G5}ocDjzujyq7@?h5=wW z%UK%%zDQ=pXcC_%7s*O&_9K9!5F$PT#HkX8l|#U1>4!y{#!X~o!!$n0Ad(vb#7BT^ z4F42Dp^e=J!#^e$1j}&rBS0}c{|EixNS=Q{Ms7OKk&gh`xPIH8>wl7qg5_HO2v7{) zf2Rk4CEW^Mt5Hsy!NXSPH14l84K`{)loV8&fO=iVt73Y(SWF zBH3Y}HCHP4w50layV7NKCip){gyv0Fu~klR+P55rRgFq%JeEn|e_cy1CxO2(h`}%k zjEQ8f%>y$prZOVV5&3eY=>S0+nyjQ|M*@yQONDofNbu%;f@$=FBi&;%8QE};2@E2+ zsbCV{VGt>p#`Z}N5bgXk*glb57A)I*pPG?^$@x-x2uRKsk&&Cu`82tmAfESa{=ApT zrNQz(UE4_zNyFs+0(uxo?(<~i815Zfy_^VW<|?OJ#|7oxC%CtxK%62>rBPYthr39)Efn@(cGIGp0?=S+$DT22S2M9Sue9cwHVv6`pvTF_#xNzg1bSRRwYi%)=(;GQS zlxq)VC|%1kO%z;JC8voTgBT3c#6;mSwe+01-_V@*_>DQI&@r0wJxjbD#u&Li=DlX1%eVWDZR=vM;ruk(yqLO zZsZ&>pFzaV5y>@`(Y3TS7de$ohDcK0(pW>Tla)eIumI}&_5%W#&nW*m2uSuu>`PI8f~#AZJWI0_+RZxp9W99Hg)`WpSPNYl8D zjBJ?3ml#BHjX`XbwlVx7ghD&-42EAI7X-_2bZ=A)&(F~hj^z0nGIG;-j_i%HaXscT zZ>~oH1Z`Zxa;@);is5@WJpd%%L&(T6d^>beJ-CzHi$Ra)f`+XaN>lgp)A6iSz|wEdN?LXmBMIfJOv_6O#p%ZqHas3mT@ z;amI7j&yNzPkMWQ#TO%!@2@QJi(^}NPz?Gji#<^Ch5Us2tyP3Sk?p=_GC%bo$YhiWlY&~|tJq&hl zrym!|?pMgjO=ou$oCD04G=BffpWk1QtAXWr4BPKkjof7TKj}wCGW>Hga?=?eDSDSi zaO?ZMPvDUN(TL&RJb_yo!PTZ~oWaBB2S)O{2N}8P{0_IBzVGyB_egRnu&3`R#x9?R z3~mpj9~Q~&A!OtjZXK?+@Q3SMA*4TW)p+?s!6yp1aO_U@?#{?^kS`UAU4^n@63;;vv?~m& zyeeyKm;K~7@XHt#sal-l8Q1Dd=lB_eh;@zx@A8bU<*oV0zsT$u{_%h0LRksUzWV>E z`w}p@imL4oSOem?%)D#V&y1 z0Oflv+yFNJy(gv;TSfs$&zDc5_ zzz;aYN~FNx?EF}d(J_%$3B7fbL;O)?*QfHg`ogc+Lg@g|CI0939iRTk7dtT(j9hzP zxRs|7+=j?L&8>`t%0A6)^7nT6dk6o8_h)|1{%2|K&ooO`jK=;jGXoRYq_IE9JxRVn zb2-D&9wzxArD{6Kfz=Mp1Ngv>h5bGlnH2W4`EBA4jlu5!m>&t*{SXd?wX6n|U9kcv zo^`_Qd-$-9-2Mkft~~7zkxfDHbmdN3EywY#u(kBhzzW)O+Q$~_z!#&M~U(8bBL9Q@q-s;GV4_?@SGof zHanB)xGngc{T$I392xfqZE=6F_PiLVA#*aBaOhD*qg31o^C6!LwV;0;93d;E!KDmG zV8-?#5DQs^+n1Rg3ANlya5P-G6^AjZmQ#kG z$47Q#_!$_v?hKDnYj1?*aVIBcc{GC<2suZeU?JzC)>EcO;G;V--2@}YFzwN?Rnr&c z-vdH5{qOmvtZe#A)7_dIC0^0Zw6c2^mTJ3md&9|Utta6=1JeHGo5b8ot@BuPz#hK2 zq;$Y;9HJ3)fV}#P^J55tBFvC{W|SZ(z@f5|9307TG+N}nlu_E`;A)Ad6Cd2Mn&e?* zQcV_fi1d_!yq7W(FoW%jnL!C9!i8{HT-lD^OBr#2c98RN6C61|7e=l-=aG9UBSABG ze<(Tce}F^d%DZ_lWyB52{qJxy9J#+2Mvmd$qxCEGAex2;gi;S*^>sw5hxgJ|5B%HN zo5X%Qd*pY~l4Z@i1mDiy1o?LMaAq#1tz{M|-LM*mXawEBznvX*-zY0BFgMa!B_7s? z<7K5cn89##@u0q)9rb`#l=-*?jumBX7@1U*H8@0i3L^6D>}b>s-Vb9|C6o~d!?AJY zJ$i#wTcLYd)DO!30k|EG?C%F7*PZ>y4N_+0j0`v>c?O&W$Hz4T%p0UkUuYJbfZO7j z1;@k4FZh!}w0g8Q&g`i!0;eDs$=sWqljm21nMnf{|lb_vr9SB#0K_0ii^~oxa6N ziiB6vJtjP*tGBbvE}HDfW!d^ew#?3mm-7Yv%E=SqiBa;$y0f$IWM$8gz*cLg1|HqkSn5-xKKMKdkm47iCjrWB%nul>)9JAm-7`g6Q zFjuu^hfK(vnm7|ag=6HJ32X97uyTKBHvA8_$1xi|gpp&i!9z1B*&$ku2ZWLxNBcS= zWyhiE9+Dj2p6e-hd?R1VWm?e7rW`^kjttf}%7C2UvLttc5Q4Zt~ z>8T94<6%b4;Qb6{RYHXk!m)AXJ-Xvz`a#)06}Q8Y{gYwjy0ahI@h~H2WWepoGvF3D zKCT&H?s%BK&@8wSx5Y6Fu7i8gs_Da`IdQNKv( zW9A4}ysUXQu%|G&m0JI@Xp8^)QlPZO`y8SXv_l9+ zBN&cGi+&1|(lV}S!5yo~WEh!LlL;ImJw>6P!nClxkQszMkA&@A;jp-}Z8?Q$ z=X__}1V_$yfRXFYIX#7G;eB~>-h1KDxbhxz3e(Pg5jVq;`vQy{!@WoASL#7D4G##V z9^Ub7T~a-~Jv5Vv?OL(LY`(`kg#1;(rc!5NNqbJeTa#SLg>s9dK9l8GO z|39uLs-=HB-P5`!F&o6yM_z=?Q@`LI_wnzL(jO zaKYeiI3lhbi+BE`*3*`72R^zZ)3?INb!U3Qj)m@Wmd$>OEmpSQPR{n5a8z8`7H?IV z9#F<#$1QMV{2wrK4C5XhT!{eD7Ca!72nc)~ks@I8I*5QxbP=#1L<^HO&k~3LW{}o$ zEFxe7W+XNRk_n?kzO$K)$kpr*!MqJ5(S2#o?$br?E$A%Ud^L>;N`DiFDFp@!Fipff9 z@IMwOjgD|QUo@`JBnMSOU^qUgW3gBbMkd8#2!}{d2#gf-Y0Bnd zVGQk@AKsDcRv0;kYmd&Y zn!jiQ9uTVe|IN1*$>zUPx_2t@o0>L`y{YMEaLQWq&GWs5%2L|K$W2W@_01xs1Af9G z8bJr}o0_8T8=~Mrm>beI9)ROzr8l^d;pn13-P9EIfL4_Ia0?tO$~`bLsVH}Hi1ZXf zwU-wNIB_NLA5RD)ph6|^S;&C#}gM22`TEdBNl&n++ zMTVm>BKH*}S)^Tj3m@09P#gy%lR|Mche%H>$ioFzj;~|3B$NnO!x3@iIJ&P8$Mmo9 z(H)uoC5&8mrX%|bR<>VC&i3vz?jN z_Iziy@`dh``YInw44T*{4TEQyOIV4rW?hUdaCz;ZYG2JftqoaZ!Bf60C|U3XhlrI0 z>Gcjykr@F)C42@`Bp)B85-N7-cdc<~<%VLdo^1Vt!K^3fG=rO`C9I{MY{^VcIL+9cL&VmT z6yI+iR&m)VAYX?$AqC_JI7apYvIoP__>j{KPLv!~O*0O~M|CV12f@gsV0?{3q}M9s zG{eI0_n9SF4=4P74~~Z`ztL%io#pT1V>`0^9T>UpEJvmp7N&1a&h$-iOk9~Zrx|v( zugAxCWcwNzIfiYI4z5IiXayb+YMQaBuOo7rv0Az!psBrB=qdE-SDk#se86gwHO<1W zSkE!{H?OE#q_rAL>;J$v(rPO4E{AA@*553>HoE_;Gf^f;cbLu~Fok3#GZ@ZrG)m;v zCRMuRz)Ap2!3TCM787A)QY^-Ci1Y-2yxPRh@@~u+?0F+Be-#diE6dTVO=7v;5g*=> z>+N9Vx^o@5+QiQHvgCZ1;IO#zZC-5>%XtrOf+Oc$Fmep%9-Ul?0nr>hAe0z*+qXqY zF|Z=tGtJYCHODghI((_8P|9hm1UJChYfZgyp_e+)R;!eOT4%C|g=>9NN{NN5I7F;i zNUxW0nrbU{wHO%E;VGCV(o~*+gJxwqxR2pz1cl!|iaaG>^c@q|!X( z3sHH-#X7#otVEUO$|P2>wa0&@JMCD#)Ryhcv9~AM3*}5}PqEP6+s6Kb{i{<`&qC#q zH4Vdky$X)7v|?!0&WM>>R$I!>BxX7$zGZ%?vNN7T#Fm{DmnY|}EEGod*%IcARG-b^ z*jZ^0)?qjrPvJbid%iMn=>Es1xHXP7Xd@Vz)Swm)kzNN{OPrcmSpqbsftjs5x6P5 z({Z~Tv*R=vIVL+iM2FHXqBVIys2S22Uq>odFx@gTUERVje>6T(^*D0@D{a>7^L#&} zqM?~VT7$C)kw<;wtc1wJ9HJ3~2*3PsWAomp4`3dM6f>4}TT<&T8pHP1$$HNx>+27yU(SB|6aXUNBrFg+U|-I3`T zFmm0Qj=Y~C;$=vKeL%L)Y09jUsr++9^$}C2sP=@z<4U{vqDCC`yW^s@TOl!A(F!Kx}aX)IQ(k?AG&EAEe~U#5h3p=TuAXcgTO7$2vrCHEo(_q4Do1PtxiCtF!zeJzE1 z_iU&1^%^*OR=$HDGaQYuP@KR~4pa-Djxe!99Pz-)0GD41!aB&ZiOTBO)zo{^GXKv zA0k;bMlR~@?97#0E5$?WAvji`67gi;T;7t0B6v651%}m19oZgzzjYsG2v)4DIcGnO zWDzKp*?*wNA;WCMa1`Cn8~bHdC6sd@Y(E4rsKBYbM|ut``3eG{$#*E zMAXDtFq%dQ=0QFis%iAVL9$XAv@#rxkZ^?9(%@9dVHG!B_^^)kB7l)ey;#B_(&Kit z?5veg84O>-Ou?Qs!th0KKwKFf7u}?=^Lzn5xFgT!!N@T@d(`quAr?|s6bKIp)ed&? zbwsvdlaIP|8TX`5ca%mG$5)hNH0*&gJ!H zWvohLRG;|-H^#C4d;}wt`tyM=gsMLx#}d__za+7O?RVXi?h4n;QjQ(V$t`co^;DLb zGOgtzuSQ*kc3q@y52vy<55v7Zs}HkNnJKJnrDc&cVJAs_2O9N>p^d zoWu%NbiS5u(V4!aQgrwVbum|Df~S~k>n)b@%k+|S8S`o&1kYZcC5Kt5jEvZ*rL(2t zT;j`ysyG*Mhz6)Q6{>7OFbdA^V5&&LxfhO_z2IESa5RR(S-jxHI6@cS?#2yqtT%VS z$fVxf>IFWY+7mwZVYrKPK- zpbTM#CX_IrbH-u|N{UNwBdTs2C1gI#1}PzH!*Q~gkVy(vz{T)<0J8?`>V)V0;F!4bEZ&mW?WY}LZ+v`5w)cRM>(2Hh zwJ{gN_zB4wKOT;YE8|o7lTCe~tRIWp;K=$47&(S@kEX74foKsP5Nh%DlZ3ipe7bva zqxs@TxvQsg`&v=c2KT@@YfZRt2TyHKndmdaxLsN+vdDuwebYzHH*Vt)vGO3j-cg~X z>bM~g{ti<@8pmJZNLg789%VQhE1}rDi5O4o#|!x2j`ibN7@5?Mr+gt){SY~nsD9j> z#0oaA_))s`V}{(QVY7?cHcoF(JG;iQq!p7j&qF1THSPS@PQ`vwscL0w)krOeEtO?1 zGd$tMV>X9~tt=@{JZfy2VKC~11yG+ z!Gy`AbcM+*zQL01WYN|t<_)B(lM;jmfx4&Guo8bwl>#Cbxi z&L_Afj#cL)7@1U^4}2k1)e+g1sOtPBi50Bs?3QlTnNrziVQ(q1x219=c6!aW=dwMV z!q)r?clTUZVM~nJgSJE6c$?3`egr z)2bUWghgqDn))1x8{t@B4ug?NfjQV0LKPU1Q;7=9my=k*3e2JD?&D76>$OMq=6czA z*>b)sXWnaj8S`f#)Xc7))upoj$IYu*r)952#$4jdfRZs6afk+}Efson_l?T(JD46) zS?-17Wv?vPG8~PYP+W^iT%f|`ZrlXNx^f4MOzO(5z7VReh{jy zER`!K@7XPsJx2v5$F!jXyHE(VgH%m)aOCcG;Oid_KKIg2(7LpW~YDWn|Dvlc^ zWIoIYDIsgak+PSNNeoA0rTQ+nB2A91G|3wH*p9Vhbr_k{j#(Tcy=iatCGJ|h46YAg z_F&zdaJ?TK6<4mcm$+*l&~C9eZh<4?d%(zbXFU26cP(ZH>n9{<{dhPsuB?-nxNBZe z=8wg#aAbZ3j2y$fN0V1NL9`1G2(_&GNkW~lU%EP>sZ=iJ+l|fLd*FPvCR@0T@0>&0 zq_rZ8K)BO4Y1B;PHV)AU0-;$lVbqSl!(5P#@mDxZRyu=68IDGY{F+8Jh2+3W8oYoH z>{u?Ig^@|Qc#1=$Ck^D+H0&&ozaX(L7{eeiwd~4r^lKWiT#v+ucjS6Fj9hoFBVW_7 z^Sw=SzPEzI;>x%AHH}!#zl@vU$oZFGMmZ=tGK!IlmFneMy$ zW6A}&-$CzmIS$TQYr=&)da8nQf$wt&!?ZqRkp@TmCXkW_-{26j(jdLg!AMb_8}i^1 zm=yV-sQuH6;80n44MK*a(GrTwMWfc!Da8f&=#DkyJQ$hOkUn1sRYOD;C8{CiBv!B* z@_4#i8pD=k%N;rW?D>n#1#I2Jnq%SCp0z`oq@|~&YCPu~X;n3z<`A(}BgGZR;lgR7 zU<~;Y$^L;fx4@C{ z{bA%7#yxttk^!PEctEJB#9w@il$=Vmq$>j^@RJQa>>iAKiS0x3i)~KotK5+&E=Kzi zoVM1S3wQC91eI-ZX`S1xJ3sVIBqa{c;SjOnAieHUAxHDxPziU!WAV`)i^vKXnG}&_93nlbI!P{c#PfX>vj}?% z3Ex-3adG8aT*g9upsfD_x51J1D`4chvp!9|^%;Fuj3@oMxtS6Z-Se>$_T=-SbO%c;Jtsz-N!k>L(uSCM1I7F;S zNUwv8H=H+G$p2t!F?e< zs+x#gN>ok$n8XUUBQh!71DjL%!en(fB+tHfV!07#iyse6Raxj+RVquAax29BHk{3v z(Fx}tn{bE*C@oWL5ish@;V?<0z8nIF%wAu1WjK0$5ig0^yr4zqK->z)BC|h?Op44t zz7VR&h^$IfWHwA<1uHTeq$^n_^P?PHmFm)->n^bWkS!PV1D-!(9u0(W@x276avFfy zrP-&YutmK5(3b@zUe4hV4Nze!6qx}q3e24_MWn#o21m?ZV1CJPGF) zjc}|lH^9iGzFg}Iq3VmssYLbVtRz;j`f^FS$2x}ROYCd$omsu4e9D{{h?3&HQd%`i z%T!Ap`JZpJRUP?|Lo`4gVV^P)R2ao$?!_n>q=P+H|nj;t0+ zXW%0{R*b1IGN~Aod?8fD5ZRNcV!Y>@!xbx7#dtg2Y0re(y?kwj?s7KYZM<*N%7Qu& zwZr#tsl1X-8K)(zrG^~tn+2+d9Ks=DYeOQJ^Fc~S4;(0KO9)yS zjz&s2hVSLoOs93D3m@9CZUitgsT)f;M0y=!yijbla2ZTr!py;*Ji_!va8O*C7Q42F z1C;Lza049qJ`YB&JKvKd2Wt5}6RfHkoIjkL^9SL;xNKM}XXk^OJM$T94DbbTcpMC4o2Nh(^#0BdTs2732+=4WboZ zgX3f+G{v7Y1|yT2@gj#vPbbKiiK@{uc%F7C`qUAgCo>34 zKfCfAeVM3gKV^FYKE5N{V`1dFvmJSvs2VYY@tu=1z5^T=SH{hkiK;$O*0;rNaAf@} zFmep*9!*{80?{HoAe1h+%ePobT`(`*1%Zx(X7#5G>k&@ zGnhQmdVUIr&&q#rHp9^+#@c-2qCbylS^5cXkz-lov$))24dRc`<5e{JqzO;zn1&5Z}e5gd5J^BR-6=9 zI~g~c_eOhTMaEn&}o|Eq3%sD;9 ze0P~?iOxEXCh>zSuXtl+d`4L&OS=^rkkm;^Sa6 zpZj6Lh~)S!95^fI!8Hs=mmI6};uG%+tv+|*wm4Rw+hJr`cqUYTa(Uv_oXt^=0<55YuSBSg&B$oa+x=(tbE29Yk;yc zqUyC#MAn7LAVp*?I80VPgNY1BqeO1LR4u0^V;(-TW678UBa@Ob(-%UO43RyFO2)?t zOGaH`Vv{v}eou>m-X=LuvdPzxVN_&OpNKJG|YM@*>ch;MPMN^!6e!_mkI#fQF$3$(6mi<{tBSH1!xle)46he%ITOxL?{9P>qHRzg`(fP>@8 z{H*AfifoTHM=1ZDxFL@G=V9c!^FN#R<67v9r~l&QIdCByAlDq2Yi_Ibp9kmT#yIA| zxiE4}9(afYr7uKd@qkeJV!E#*QeUi_?g6r?d}*`Pk?pCT)UbT2^9AM;R?4h782a8H zTUj{cCW;*uw_{?@`Vyg5EuP{Ku{tBYmNUf`0i)Keas^5fQ5v7YA+z!vyvcBMr6H!V zHZN$i`53ptvB>-vMkYn(eP0MwWJFdaDl$(bv4ZWN%ulz-jPA;o+d49>OTUpVF45m$ z*$&QHYsz`Q^~x=)8m8r}W$LmuGdAJWWlIjx03~Hi)N`Yhw85m1Qu1{;R90Sty%~;1 zi+t%dYCSC>N8qD7mXJeXWKu#7@`X?(L}XE-60&&`D_99RD%~q$hvwP0GPISCOPK=$ zAxgILUHPaOq@|{%VqEMSWhFu`0g=1td71uBvjgPRI z&v1C=$Whguuy^63I+lprVPsMwZs8E=>B~{o!kFZ3ipZu!HRXULRd*$S&^8>bt3TGfyzJV@)^j)d*>s zFigu=ODVa-H|(mE+{z(hOG%1zi!o8xjXLr&%nGR^FTt_05*s|ia5P@37yXKq62!^T z)m-Cwe00Ye@(hejYRHouBE7C5@8DVq-{XFcK81wu(F|fBlqlspdIwk32iiGC;5In2 z-UK7po%P5aT+yf*Px{u$ncotQjq8(c-oX|1gR;LlZigfLo5IL3?0YnQr5i-+@PJTr zk(+#rmz;}yE8V%sL_Qbk&Xvm9MV+>rHI9X|*P43XXR#_`wrZZ+9_b3-R8kUR8Hb3K z5b5=m3O%~}Msc|qriZkZ3*mTK84gZkIJ%4wN3nl5iAX1h3L12Uc^BkMV&W>&1UzWKu8Q z=Md@jh_Pay!_IO`a+cR;5Cbvope#>_Y<0wPJs%(5k?XZ#R@4d>Ms*BJ&8dKgwi8V@;R$yR>@TUk*|9z31FvvJZ^|1 z?PFl%7}`CWx9b0*CwM@p{(q)#{>uLU=X7tIQLlWq=WMTh9tdZzwa9ocGgi+#DC@LV zWRV8@`(~1o2K#V`Mvw**iT{R9SON1x`p7akU{;EQ9K+GbF<$vp6iO46Xei+(IM$UO z7@5?SE)J2NXfR&+tcA^B{t9MRLIrUd92{5XZLfUR9HH~dOK?LR`M(H8t~>vhS3YZ@ zGjibZyt93a;mh2(h zL%JnnO!dq|dwyBoID%bfu3)0anrGooo*R|Iv{q@EmZ_Gh$Wgw5SH+{7L&O%36t^qK zYQ7sK#vg%vL@`V!2*s z!z<<$|8p=L!u&mq$ z+cF$oLWoyFb^B>8*%Ke%v6k!(Ba>RPi!X$#B_fj&)sl6SSi$BZKTUUgq`5s`%(r!P z=JfNDXE86L;^%;kGMOX#f`i1*A>!vS@pAR+Bx1-BW2;Sy6PA&+Xc(2|CYU|xbWthWr~CSq7)Ma;jJ?stFr^#gWo$ zFXM&YuSLyZ{Z(cT_RPu>dS5LzFT=5MC0u-K&TxRz{t|A0Bkj+_$TB+5)uNL&-;(t(Dvth( znjyLejuoghJk>Xox8|V;o=I0>Y*zhpX^C~xlDZeO@}5S%yFK5QV;>(|mhJ4V{4z0+ z5tmbHw^QxUEXPWlHAlnm^(#k&kwV1xD@vk&xkY{hHTvJRvZK<{Md@M1LFu2?5UTase$v@Wa5SwM6f9ym8gt>MT*`nB(hAsv z8|YX8yI^Ee0Rvx%O34w0Pvl~v!nb=8E7;U()pSpuH+N^dyK?RMtbWtp4a|#ysAY@# zuVrQS&FE4&-^Qj{{mrk~N_h3}vPxF9Tg!Ayjk?yC5mlqE;t&lnovQh5l%J$9)20~6# zrlV7+ngf*Y&tX6^fE=CoG2`#e+fmCrISW1BqM)JdBe9R+8vwXuY35w@+gK&`-5 z1jB;p3haXD#HN2a!RLBn8r8x+md?EoTRw#GdkkAQAa+2IU#lAT{u+sI`TJ$qtOzM<0~Z*<7xeP8z0=U ze!K}Illt*Ghe)q)Ox(V5#3P#L2HR_1g+76V?YRtMAf_vnZE@!Uae;C^8#lp`^BFL5 z-8rACwo4)pioyFn$$8%s4vp(mK7&8yRyQd3yW?g!a=#0V9K*dwvsZdSGz||3HEDU! zw{Xcx%K_<5T834osK&=d&VcjPnrvaKO)2P;6t#?LlMd0p+hQ(x#(scA%}PSwq*5~C zR1VPyGGe%3%BU^Z!d#J_aupmUE8W458IGJRp=%IN3LKrBL`@xf5c2mC>4GP2ga50 z=v#1_6O{LJa3dUfKMO{#JMWRV;IyzA-2Xl~_xHoWapm583r=%{^8Z`h5J&#+f{|nR z_h|k~KZpk60ipE64!({^{qV<>-=gpBE@qeII{7Km+;VMeqUjp6YFX1RbU0&`%NE-@ z^4&}NUv8-W%@%2Rip+ zu&l%fQy7j$j8qqz`LxQcg%9soW#+-iq{__U5UHyREo27c2QiZps*A6|fpKL#sxCAq zDDV5?MmX}m7mQqY-XrQl3!B0Hcan4eZ8$it+?(n`bAfjS4y-mXUcv` z5Ay3Gc9thzn^-uEV-T3Gc4ayGb&*)EN8`ggay-<=gza zNG#`D;wCt9zB!B>!?{O~S295~2M-7(6K?e_RB{pGf^-)lrdN(=TVHV1)+3IG)7P4N z;ZgkxheW5eEiWavw&&5$d9x~t*4dcGngsYw-7&ukx6CwugHPau0N0; zX^%$C;CrLwe76i5-_eh>M}45IuaDc{*iYue$aQBu@{#sv)C}g2OwRmaaBQrFJ)lpz z`H}XhAC&!raXTE@KLAFKVc$avC^aEkhX;h3-aO@7yyWy|*L0^hBf27Af^`9*2lk59v)+*!6^x8R5K9 zRqlqVA^PDCI9gVAgDV-1#!M(KGB6yV<>Xe}0LOB26O2sC$@RVvs+@>iN>onzl32ke zCs(KYE@|Y*XL~QZqBHt7>F3Oqfta26e)ynveu!J9C9I{CeBv8;RZ2eM5V55s#fgYI z@>%iSs3dD#kMcq)$?6PZAZ8+C7>-7adE}E*Cx=(NDzot69qY(+7@5?ODI6lbzF{8u zv@pImGYNYV3FCXffwA`v%6RlphW^MB-gm=|aOC}~Fml~_j~vR-!e%_}$0p}~1soh# z?#)9Pnj=&{EW-_PPz z^*$WS7DK<=EI0e6oDv*2aEMsJkzx59S4>BBGb%-8hae~&M zr*I=2YtR!gGO0n2`9i1~ByuWI4Z1do6>JW3WV#zH!}3eAU0qpi?lSuZR54joZ4lpY zmqu%OY?;=~V2)r)T_%;PGE+H3Y?VoIS~FZYZB&-+V6I4I*&2?LmF{2zhNCeOiuc$~ZS(#1IL7;M3mh3g6Go0<+@s4Yp&;6V2ZWleO!9R^PF8-L z?qp>`TW6k~#aNbWD;L=IN#(SICK{e*?qEgAnsebUzPl&PJZYUUPHROLaqt)4_$zVn zIEQEialqM$x^KvYPhfWBQ=<-feFVqLN^tNR!_l}2MNz5bSJVSK`}hF2z_F;j3nP=F z@-~M^PcTdqSIU@CGk9O`M)av9ysyI`FcIy_yV#Dm`$5@X6Su>W{kbr5-PxbDV|Bl@ zrJoEqFnI>-568zf16DV#%Q1bSS+Eaoi(?k-2_wg3frlzk!a}qZ4+teJ9`!9|QdsPk z?k;Lmdv0;Iw^RRM<2i8FT2n6E##2pHZPFT*MMRwCn>0#9oWUU)K}0l5uZekODj1oRiz_)qdXhoDf@Wv=6=n>k-wDfq zgG1uVa`Y9nSgv2hhj--qIT$&HYmd6FT7xJQ9uTTEguaf*)-WX9#p&UT^4)EP-fq1& ztaTHbsn#?Lv$oz4y;5~S{TW_(L>n>+n7iHU)=J;25%SCOy z`X%NOR;{dw7w&FT5iY0wg@siETT9G7tuGhH-MbQ8l4Q17v zQHqFg$S?>@U|CrX{>{Rsu@j0@GcwPjPSE=DDNLK|%Y*-ekx6~|&=*407m-tm>dTW! ztYD{R7N)yqHFj~Kx0tWIMwDX{ly?2-{|<24T5~Sk*|V}p+p4B%X=^De+rp2C%pp}& zzQQ45i%N=zWX9>v8wDi?GeZi>A~;%Ba)W&tj>b$V6sm4NttGAa_>NlTa2T1?l0!H| zdOc){(DQoC49?GDHer39aDE0H8CTAyM?MardqJ5GaVs2|KNUuB{TsUo%mwC6KT#@E7hd~U)3}rOK(HN1ZZzWlB zT(vVc6Cc;Hm`sC_NimtsA!465kH>B8c`*+te-7p8TPw$VFyzkqbq)=El-P5<@#mk|UuS;dwS9H6V=t~Z_!dYugIq$=_wO3cG#%Z0%q782H z%_F4^uICVqpbaLN?i(uMd6*s2L7su*WhFTH1H;j{k%wyLlc7-2z5w#j~>1?{h;g*#qDrpe-#+H?(9bn-%7tIIZD0(@0jsLjS}U{2jFN9!DVfp3AsRtuG)u3I8go9(7Eu@H!eO!! z9-PE*G)m<0+$vpiV6_NwHa@UpLHPlUObW{PIYfG*LLSexv-~?|Ou|)&d*P6{vK&30 z8_V_G`0$Qg-vJ}no$JUKBJ6y>o1E{r;jp;!ZGIslmh(4p6C62z9Y&7f+@sqo!62H0 z2ZRy~UA~S;!Ej}|3lY<^rBbfQ4pxR3b0GKQ3vwAmpKR9ewx`XW* zjz&=^E=h}{QyQWK#oo9fjs<5A7?~8D-8e*gf?{=XJR&A|Mi!jFj7ummj)z0!ngwe_ z&Pl|$LuaeU;^sK!!U`C z0VBucgom0?ftXRl5}Ou#r$&1y(Dijcd)u4}c$y(E#S8N6@9tiqm3!uwWmY+QMdZjF$~SK6T@=a+Fi z9NGU8j9hp2BU>Y8J8=DjsSEaks(cG48>&RtV7wg9}e+lQUHR-}_Jy$lkRTZPOUS(Oz_?d6sC>`-r z4iT#((rYRss$LsKR3S5 zfssi8S(8Jg*CIxW#ZJoZ;mnYPQ;kF5aJaHNCbF<;<@i8+Xh)9shmq^f@mRHpNqIgs zInO705NmOW z*ea6Z45EqqY?P2aVSY#n*&Pm&y@YJRa5O@~5nN>os^qY07O@LHtYi7u2}UO6V|xyf zUW*tlW)U`qk7lM|J)1E64LBgK43CS;9DQ@HXXUVz#DI646 zuEqDJ4F{+!_z7-+Bi}!Ukz@Gw=;=xph=$++p=J~Fd>xUqiN)#4f{FR=W&G@APp;V2 zTh5mA1$}SgRpt*?qO3U=w)HC#O6=%ozI#c(Dnb6e7GZg7)NrjuSv14TzT~Kx$4eZd z5j4Xj8URB;G~b1CN7~CU27#$8EB(RyENmJ(p}0$v`arABs<;h~RVM=@ldAKn$cKaD z?qtDlaasAb5_43Mrm-{l-z+)*o4^rr<$oTR7c29IX2OQJHIA9^MHo3I6Fi!S>OZ2m zctEKB^Sp0~ll|v|bho!gWIH?AjfY3|W;?ZAu3k8Gt$F9an$_7Utxs`rx*@UzVE^faOC@T7`g6zPgXrP?&*FfIp_a| z1LMlMxE0yr1m*o-xDk%L{}V=z;oYOTD}5jug$IPv2c5o-NPVzHy7SXvx#js%xuj`> zjqXM(lr`1Dt!-0Mhn+5IlGcMP!k~qjiA|kk$|zy5K8I)oVK7`cZS;z-!Ay`|u`e7Y zE1AJ|3`b)`-c=~clH;l+>b>xB9ZSVR7@3rcT{%R0l0e>7Xyy3Z%$9_D;G1wnTse;3 zRT#(gG5F|?OfQF#>&|rKu0ku@ze&#aui&V-vTfc~7{~a}aSI$7zZ^!6VcesKD;Xf# zf(L|>0rM@6oHHb|N~ZD;yJPsEjrh+Y;^#2&a|Hj99!Wj$VY=%D!`lkQVp}1%SW^UV zGHKXfLp2?Awau|V+>{wlzU}REVhH{AXl!N?yTMW-zGi$KtlJLAG91~Zb zqn~f9+E1sHo8#jmKc2DG1RbJRp>U_`7eTlEUG>bcI7xXKs0A=UCGXzksvVnrh*}wv`0!1RT1#UA0zg zO%}Oug>O13xo{bWXau>?EWI{r%0nKCk4wIGW;AV!SQ6g_6tkNY1R$}3I_`r^Z zTSqqh;pa{Vqoyd&3d!^m~#I&vGKo$qyi zo0#u48N@)$0q9e0-bNV9`CQxtN6u%%$T6IIba^EdM04@O8T5F4gRKO0)D{HmBWRVJsd=pAZg;oyH2vT8W&2K|2oC5PC9~-r_ za1tCSE7d`n;b^4Dg9Ad3vd}zmVay*Po%E_@DB0aev4=U8cWiWjMGbf>7xE2nI zE7Q?~3N;5P-&f%VIP!fZj9hoVBL@{~Au~AtTXN1{gahNsxp`2b<^<*aIot?G-k*k% zV|e%I`ARm3M&SXWWW(XUj!4;XV7luI&HT08eD~slCL8A6ixw$sws~LeQ+dae8>KZO zi#nLY48^px%p0W+W^#yFb&y`;sJtT0y*8@HPB0nLN2Lw6hr?v$GuV*fXq3ophpOeY zWNd?v>{v3kf{{td__8mADj6bs5|xZ;NvvS6atob#F zUuu;`YsqV=C*ShrLe-PwI7DncN%8gE;lgR7oLm8OMas!#aFncc2WK%HjS+eJNs=YU zRm+l>;NvN$W%icyo%!;Le&5rTf3Kx# ze8u*f=~}b0$cL{mcM?uVw%`zrARlV{MMGeSiA6Afq|vm(F|(#XuouJ8_z9=;cQvg< zN-LDKI2^aavHTnYBa`xTAcsg#TFer!D%m1u@P7ugETPZ{;rO`nFYd06_l3?@PsMF< z%z~3)Vm|BgbTehn`T9M6?&t~&yLg{NG=lix zYZuw&M!T7FKgyMSZq!ofOa_5TG%MY~2!^9E5?Q-oWXW-rz?g=Q>sU-C!^otVOyCgd z35>|v1>txhvjuw|3CFv_5pm_%T)VI_y)!<#Bhx#;$aQDhSi2x>FHg>PFB}zDwry({ zHpYv%1&)jtVB{FaJ-WOS3ZgA|Kq#T`j&F04LSdD3g~HH9xpG#M2{*xsYR$56|9)30 z(34cmP^}SJq`~#RX{4mVH5{T5q`|NXH-<2H24;sejVIw4SqTn)$8a=0!e&1E;29-H zRkGmE_^6Jh<4-U$DII_05b4Q+QDUxc;kW5`iABLs1~CxAkMcW~^Q&y9;%^mvY)6(q z`~Q#SacW(`!t|!encfJG_V9dnnH`{I*Lj^14lCvs_ZIVgmM2-fe5cz_*>1tdcVv5g z7&+#d_UPqG4v1FZ0ioo;Z+z2M%7K=2w=yPo7TPNN7{y$vr_fzu-$Lsy6uUHiP=fQ; z+CIXs_p1*oLznv9$KZdfh1*>-+wHTfJ-$h%#6lN`h!qRzbreCI9sol+oC_02q{G>8 z#H`#0ComjcI*7xWHWrDJ_yKN&W7YXSj7+M|_k1B#)e$+BsOkhstY9atUQ2fpGMwEn z+0C{sb6TN!f;oY$k64p!5O0mBnXTorWm@u>FCVJXJi;MjD@}^0twvPcHtNfNVZKOx zc^{6GmGa>43`gTc9^b55PNmE{_{fe$<=-$eDJuWs5a~4&d22*9S_aQ+KY%`$gy%IF z#6V0@D9_PbBdYdOwpYi;cVv4Oj9hoNBezCWBW5tZUvkFxhU4P;WSh4}RDGbV?}6Lk z$og(Dat!MpU0(?Y(IPw`)O6(`-(n@FE4g&1E9))p?QW}_y~?zfdV6}<{SmqLOlx~? zS-ve-%Cxf28nJ&Xujnzp#dao~&(>tLf1}mmhRUkd%IK=i6_cwLYYogIDo*!JIwdMj z;}Ef;BE62Yu2V>ivUEL6BWXm}z%jIDLU0Mg(fA6#z}L#0+@h80H@I1jmFib8GO1KQ z_k~cEO5|OlN_9#SE7%n0>U3WwS-+YInbzKJq*lGl{2Yi`(2=&~7Nk~1%=W2PZ~OA4 zs@0nuq5-N^t?fj)v;@VdS5tnEQc3F7Lt z!^os!jqrs~6-(q^qKfsp?-L-k)fb0nGI;XO5AaXi44IS3gv}l7X79q1Vpd=NJ%Gh> zAnMT~TRqb6SL@X^SF3XIp`E8V) zH z0Fn_S9@0J zk^`$5Nee!(V?kLTMkWPiK8Hw8ILNC#?JQ@RF$rbEk#I;{S&m-q8O!xy`0$Qg9}FYc zo$JWeo_4-ZPtNyga9CXVHm~-K<@^-f1V_$Kf{|l5_vrRYFo@>h0iguLa9>BHVAwrf z!7#dWBXQm=+nGOFKMV3O^CViLuGxft|KvLHbA$M~N&MWxf2{cy9@6is19a$YBYx0K zn5#9Xs$K}2*%`}RG1uLe>kFFLvP$rv!Abv~h~x^#w-vg2vTfzoo@_D8mSuW6B;o@c zu@O|nn9fK*3@Pyr%%JqUiQQ(9E3yNtB7Xmd<7dr;;5mk)Q5K3}*$#i&b0=v9uCp0=1I4unSoXK+97LG-4DwCuDBhJ?C%UC$FQ%&LjRA4fCxt}VpnOii(e{5MC&IwR-lscKF?wnEa#yJ z_DolJjLeohbJ-HRx@RMOwc>PU4wk;w+;h0Krz_i?@9FJiJ06AZewQnvf4N24UNK$k zXH^LjsP1)|Z=$I-b&4Qp|Am>%df)Clu5W(u+3ZZF)_HzXL*MnpJ#A6$3?RoY= z0=_>rN;z({n`>a!NYVKX94RaD!9@&5V)DMVC1?pK1DU;Sk_1WUt-pWGl+o@ zl=KM~w{h9LpvEc3_igw`vp|r$Fz9}rV#AicOJvK4At#9t{YvZ z3ucaVnE;NJmHglkhNJN!*Da#f(>k*RAKkIew8O}x&SW`6dYVEmSVSXc@O=TZD50u2 z4~~l~-_Zq&s1KC&KHLUJ*3X2I>&|*)!6F(pgZT%NGk+f(8&~Gd1&gR3l>K{fI~>`+ z6Go0<-$NKEZ6R8R2ZYiV+xt2qwZ(JkzV6c8l`R+ZZRY04u!qoUWlgxSeGqkpvRrFk z7E!S(^9B>&|!N zP-ZP;2InUx=lol6U|cyj4`tSzpu8W48{x?N(J*oh?;ibMNeIy>JRp>W_%xw}cqiSf zHpa5k1Lb_>il1KgEwoO3yW_WT+FEli%nzcFkoH&2*BX~aP2A<1XG%@n&LJ8>O^nl> zH;T?HFndH&{0)wlH35P@F&vGVP~6L)+fVDwi}?7C_2xMknbe!7IYfH8Vv5)}&|_wB zKH=fS;$kd=!1T5&=VBq;<^^Sb6mEqh^UW}F-I<@EHV;<% zXa;P7TjH1jo59F28Q>ull-3Y!!~;TUjaz(+m|U*dJMCi?><*3+Td`=*={n<^aNb&z zZg7uPlxn7Hoy?*!j`7Ver7@Osh(^#Dqp~%}jb8H;m^Gp=ehf#-N__BrhNH1kJyub( zoz|Bh;bS}2mmk8&q`sWPA=1+p)ngU4co|&(k=c`Q(c=H$sJL>i9jmB$KpFo%Zh<4? z_ru6_XFPhWq82lQ^^cRY{$DsUuB?+|6*Vs?^Y7zUI5PhZj2y$fhY(O&LbMAH2&E-@ zeI1cnVvBUQK8Ce*6bdE%rI0QEh!!bpt~p!~n&3QzFk5R@774LAa|N4($+S`uVp9$g zDMr}C)CQEv#Harf6gJk79*p1<6gjBz1B)F2}s$;VU;o~}1ldr+Zq?+vO z3!$os$ecvgWTPZju-mx4l5RB_EhnRyR%6IgTR@4W|`m4ANj;y~7BiEhv$RVw0)C}gQ zKa!aFDGUM=T&~QUhqR)8Q1&O{b~v&>4n~e)-$NKEZ6R8R2ZWlbob8*&a;9>2x;w1u zWwMR+RnLRrthJ`x;I4X#7vWl&>01A?=!ye;^GoT9{WwG;=!)9QWE-~|wdNR@HPU64 z!;!KQA1q-w8Y|URPeqy>Tg_d1@v$B2OA$sU^`*ce($f^xRnJ`AC7E{CJy z%C)xYS@VE)luL0792vhDMy@;K(N)h{%na6_NY46WaAaIrC##+{FDUbm;8r*?{}7BE z!@P$OP+CH?3l9jTCHD4pL~4n?bhSh?JEXRGH0T&ZL)W{c}?|P*&Q5H5raZiahXLGo6-}jqsrz zOG^ukOiIi893nj#Ft6LNp2w2qhs#`Z^*d#DsJu z#OThA<1W>ElzD;`Dr?3K^rdYx?^Q|9Y!XV1tQLqnjJioTaSKz-@43eJYGxch)1D8_}p4%5>Dh{fuAW13Q+KD_~?& zQZC~V>B$IrtG}J)=a?~=x+g3@4Tr>)<>;;cv0VQJAKsDc$6@5Ua~-+W-_CdQV~P15 z#vlelG18~nywyLJ^Hp&Z968Ux$T6II^m`>4M04>#|&%wxzKvoW0gk6ZWL=>bdZPxxu~A+LuL9?ChI&N>S{8Xv``kUM< z%YYv;(-LZrbKn5EX24vY0V{Ea=D}IGF^+j~28>+yJeWt{PG4Cr+@CxbehUZ5H5b;3 zc}ZP!h~~pxxIvEja660~lMfyeL#Y(ea6BNCO4-)e5vfuhNmr$e>*;0J|7SZ3-AmZd z@_b2CCqo}c>zOqH2lrx}-mO~}R4>NS?57219zMQf!I=XilY%poL!>7}su$yEF*7*-8nY>( z0@)Xij4S8b#W`RK(sTHFlwznz@@Z^F@WWuIJ(qj^Fz;27Kz z#|&5wBgbTbhf+{tL$nbO2qiW?PAE1WO?MY%VsCf;sNP(rwXM)y%C+^D^UL%%+wX?+ z*P47`*C4Kj2p=>Tw9aPH9C!HUo6;P&a)?II9Fu4Oj4Jdp%p%bpFToMBCPMHC!_n9Y z#U4KOf!3eraT^@#&oeMGsXtG0i1f6_jOy9X$^#rteuMjQe@?7FMl%RZp}TS~I#8S^ zGy_K9mN;fW6O3H<449*qKj_nAWWm@kF{>WGJ}-<5)Optr-`#4x;#Qy7^*-Z%Qe-v5Z4Bg4`HZ zaoH#@7sE^ufpH-mBP-d#X$(gf7|p!AaH8a>>J-QM_^6I$z_~g`U5y7u1t%&yLJ01 z+wbDzJF@*Yj2y$ZM_*UcK(qo62qg_lzK&F-LAtMw49Rb(?Sg#y3A7wpGb}t}5QPCV zS!+Xe-~fC~$MUfsj7-YM-W(!5NiagRRl@Bl%#MVD;3PO2uH261+*U2844;6H?8xx( zFml})9;4bRVflvSEME&p#Fb_7u235E-&4OuYt zFDP5`$x*Uk5`(~mla=sbRfeN6BJbaoWXW-rG#HPM>sU_4z{sSWjN}mMNrN$>!CE=q ziP?fZk%Z&z;fT0$EE-4DdfGU)!AEywdMg;Y?o3ZmP1efxQOVivhNI%jwz#d#^nfzH z6t}>U@eUX{hH;NRucU%#3my2Ce~#;$AAB}Dlj*oE_?-P5!T$B&g_+EH z-|i!S5*!)#2W@eGu=czds3CJQnXqv4Bx+n9eDx5AP6mtf==<~rI4bA7_0eitV1k> z*^-_r8L=xIEGyx`<_t$8CKNXqY35TUu`@orV|Cd9Mkdu|TMm()l9()y2FS;gXS>1p za%NIOG0_VL#+7k#jk3iF%6kzv!jbm^j9ho#r>k86?Qt=b{OhRgp_qRZJ)q7PAW?${odAse_%w&v!4; zl*QkfJ6Pqire4_Dud?vJ1GD0S?t#|QEL!8Qz9cEF@dAfv1g$ZV_-|C8rl(O3iQX8> zATV)eO@rWF7B!8WP~4zLT%fgQ72E{J+Vh!jHmIlmW04K1tx-)E?V5zmV1Co&%x{E; zeR#gRoGY@4LEkCiuwrg;Z!zCzVP5o}7)L1oEw~|${I3rqlirgy|Ff0$=r0Gd$#dXH zI6$sXzqqq(CC<=1I1D$&F%J%gkz?|}LqI4EA{vVagsMi*`W7^)L7LOmAR`xL%WWN& zWsOVV)V1bacu>FM16kJK*1D}}T;!WkN@rZaAsRtvj8cvpZRTE>Cn7NJh9hOAI=G7A z=mJB$&!=ps73B_mY{!anD~wDk%1s<1z10l4FQVdQaQ!y32b&NOuHS^C;>vY&UqpF8 z8GjwOz>)EPz{quHJhCsMVrH;D`N{xVbN)yr9fa#jS8;eiDov!@Ni9 zSL#8u3l9jT9?tVkVW}Q2O;PQ5ZQU2Rsym5*?zMct9x8vA?e)QgmFFuIL!n zPTw1y_AFYntO+-$FM~+4wJv7aADPTt!L+(eDT~mjC=HXB^5+l z@PJTKVXUtsQY!p4U8yj#%#KB7T93{Z3;M@5{>=Qqs*^R@2K8l-itW;LtwUKf!=HR< zQJUe89HJ34!zksrp&LGgS(A^E(hcvyk+KpWyv%SkR^&S%%62*x`42v}V|{rGMke*; z4Gxi>c944=DqaTHYdwcPp@i#s3<6Wqu3Sg=I+O>L@j18!j*QQQk?YQQWUoWT%wT=r z8^BzJ#X$jFTJRp>o_&?vGCAGx6t7S5={VKMQ z&G&d`k-wU_YEM>wq4WoEu38f#baF^`R! zavjVQ=_FUfA+k~(T+DDZI>O<6J+nfS98@he{2CwBv4s2*MkXcXXB;B-Df4*9R{mn} zNU`Kk*?ox_f+=~z?(=XsT-hBHxxUiM@iX|)jvPM;BiEhdv1*5c@;v(a#5|8+5CfqH z=~FCT+|taa&vO$#yd&2`VdNODJ^Hzl1fmIeKqyJ@UEidYlHlfaucaEls94Chw`EK0 zEsj!0wkM}AGVB4TthKI$O9xRP)I6vFJ1Bsz{rWGq}HyS(Z>(oDavx zmHX9=ZE({Ung!?Lwm4?N*)VcU7I?G{)qO-!@qkd>XGdR0WcPVL-3ck%2QO#amTIpI zKFeIdlGd7WgS-#U&DM&UrO`a)%Z6$+PjHAvXf$jeyyCP`Vm^b}BJJg4I7(K+gV!03 z#z<`+oRcNTRg=^I;^R7&llNg{Qcm9C5a~6Q+CI32;}q@+}sow8I|+?ns`ENW8WJUCUYc{Zq0L7J^KCW}<)^Gz!y70%=k4IveT(}q;I z6=sXHk(=NsSqTrWU^p5hQYuKYovE){g~us@u< z);bgR4C2zZbfn@3bEE2o*10TNVjthUQ(9tA4$%l&VyZO;hO}4)b4l7x2@aYy9fCy+ zMj?Iz;o~LEIq6e0Tsx zj>!iPiJ?@AXgD4aN~P@X>xfh-2c)~8F}kfI*S3`Hy0>LJv$`}H`x08rtl1YX8ANHq zt*;udH9U(V8O0pJRKCnHrAV4NM64o7uPKd*dTvynjbY-XpXzk~0ytDw?t?iDN24Va z)8DA|w9IUPkM3Az)`O8rnOVmdLX{bjMTyGHuq0OWE(-ph?g5`+jxvW&~AoShZ++IzFspEjbNFCbi@g4v}8h7%lJnsARRl@IA~F>}ezn-w6lAmEm!b zF{+#PDM6LS0jvEQY`c`l|ViW^TofSrOBFW1AK!jx7O_j)h{py5>7nU za2mnZf!mle7LaI5MuR zn{O2>FDUar#jS8;{wFYU4D%kXU#SPtE<7NVdRWWX5vd;5Pj?}6SO>k#?4Qg9tVmgN zZBS2UNwc+PWm#f))t3#m#PBkQXaor{TsUnMmr;L1*&_0xnL%Je%Sw3gUluBj5qUC8 zk|oDgiwwi?aUILasxUGsCm9Zro^+6hxUC#-!EC{vNW$@Ea70`=j-JelV|o*ObVsH) zgpupcbmU}~mF>mJ*=~cQ;>xypGAoYpuj3XtGJXV%9K*OrpI1^rv;_|cB^6%sZB9}u zY>={4=YmLbw6)yEnDYn_k-Ai{a{NBCC81P!2abp<$5E*e z$MnDP(H)uo7mQqYrXy0p%Jv#BCuVzf1~CxgpFYv1RET4I7H)wfPo4wMY?+u!z$bsjeJ_?{a$F@9zKM_PSWb?Ckx4mO&LL8l3RaG< zVYVcc3crCP;>vMUD#*u@F#RihbVsIt4kOo{>4;RYvi(AGwx5Ng;>xxu72+6w3b(+K z@h4#97{)#Nypjr{EqFjEsc^8bBT_0{lkOGiV;1K-*~?z-`RtNH<+ITz^?keVxW1ri z4twit_TSM0WzDy+V-SxzR?Jt{YkkV19A+?&FtIJOOeu${9HJ4F!&uFCLqKc?b04+ zI54h^Pm3Id)SRHaFTss)n6t~>A3)rmqaYzFriBND0Mt+cnc^Y54#j z+Of2}3nP=#@-~M^Pg0B*lA;zagX#5NL7z^-^g0XzQ`@dgi_`Xo1C;MIaRVIro(m(_ zo$tv?O2lz~U~jw3z^@s<;0j+si6vbJ-xuz7w862V! z6vYJ7eWTsn3^PdD%?)t8tVt03l;LRH$g9>(4`|)F7Pr8$?py^Ule%*yhe%IfOcU+d zjGDpwE6gfv5!TK;h?mKXek~LN_&L9=`6L!wdrb);a!Dgx$N@1 z{&kmq;k30@ov>{XS1)RYYwgS;HTLpNEhRM;a)?Hd8Y8N18-=C}Ge%m?QE;5Bqz7MT zI2tG6Xx?h7meaD*jgRbDR+hrZq^xvsi1ehzI3X>n(K2}c39}}lr1&u$6IY%mMkGbm ze#-Wb@bMkl{vnK9ceW>~Ie#@`2IGHB&iMbqadBmQs`wPK;X#fI8a#pr*a)ybM@gL;3Iuv%+S7SS+*d4j2K znN&(NG;xSV5DiV-XQQrc2y-PpREH?O2nWeZcQA|LXoSf7qXboQSak^V3;3{(rDRXI7E7KLEax_WB3SWN#)1hNJgK#qfL(KDZ;#UxShB&U57cC>z(`OV0Io z;h?y3ZQdUh!}oV^104DOHjEs@w?}_h5nsVBvTAYv_|m_?^NaFp=!auecga z*-qz^6Y;SfSsn)?*PZ2YY8Ao4^jDKJy(1hGSEj|9k#0X_dpmr5N4B?ykz?5Q=<7-v zh*sbMp`^jxzQsvOgOgHzjkAM(;rApsQLR}vsIPHKv$b|)kq0OErj?Qh$8(5AkO%B? zD9iUie-5)n8p!2vl&pjYeGErqq;@%!{VSlC;^R7&lZ#{SX6)J1qg@r-ff)H+SFO(Bn+p-9W|M_yIgv5s&q7j6IWKs`- zAuHy-jxs5qG9@c!GYCw4S(70c#c(u!LUH%Kl}KrY5*agaD;x{aR2Z2QqDdSgJ&`d> zEc@FcXYju#vkZHZ3IDsp@p0u}oUV`eg)VaMg4^Pl1v|mWbsOZ@@8f&4e|LLy|UsXf~8_dmOXjC>S{=8$6VS5+|b7ct9v|@}6(Qlj7vlbWcM} z=W?;CBO_(gnu}3M} zxgfu6Ma$ye?zVEiawS$vc8h!p z$F~)_da`ZhR`#vy?2=-(r$b)Obsa~Hl_BZ%B0*UsCPoK(0j5m4-qe{dSNM<)KMRM@ zN`3HqhNH12U+*N;$|w3k_V)#ePvI74~R7d!>@W) zpK?JO*IMGXX=z+7K7mTu**u8ZU^w%w621QIl{v36bB5pnroe-NwdcjqT%|^H-l#G= z!qiAt->5x=+riPYvKuU5I2tpdINWKnN9xPgxB-s!WlI=Y8mFG*&3z#%PqL_=B9{`? zlc`CpVD;qWbmh!!DQ9xa+j2b>Igx2C7qe~b3JaoaPGFu5L~YsEv$lx#S2I-Dxe|>N zDKp3WlA_AYu^a-g^aEaIX2r+Bs5qCygprDKDI7R^#W|DV=oLrItmA#D&ZShZxEQy^ zvG`mFBa`BDzAuC-J|e>s6`vJJtYF2bC*6hK=AE+T?A-DSL&W@@c`*=$W(cSPTO`|Pq72iyFz_J=LmQY#B$YrBZp?zSM;{&K%aLdsUbwoe2m3|g1~ zV^Oh?ZEwr62@9Xzm--R~N}-htec_G?>|(b`wN}jPvkP;_aJO~j+LpF1?kr>(&|XQ* z=`56TEJ(|;o%!}Ecl#s&WT~0$?JT!emJ&L1%d3#P4gjP~(cla+P234*p}}u zSK;;?0Jz==-gZgw#DlbRQi#??`7(Qil9;kM&ps*F7k({)Db;nd)>3azPoY@O$&6)| z9XJrMOu`W0BrfNL%SjTJA>@j!)wGpQK$3?k->p6BiJ(fYiwXsHBYyH~oiCXMW48o^ zGPD7Ez!_FYmaTv+>daLgwXWwn7H$R?d9;&sT!y4~+=Ns{OHLA~9=6k8DCf8eV-Mzj z33$|?S__L==z4l9b;!D=<;XxWSE}?Uk+Vsv5!*YcJ(xzfOVUxIu=2@D62mB*_E02g z@=?%8I$M_m9BGL{MpH3K@vLy%T1}#=3{27~#2mL;jSbS1SgHd{+LI)w4yX~IB%5^D z2=)6Xc+7RsDEUdA^JtsPg-yBcaxpKaOnU_*{_EPtoS->LFnf7h448_3@;%HJ0GyFmVKD1SGSzZ=WnP2}&U{5Ka4 z@5(N3XN!*=eY=0o{t1UJ=`1Yj+be8p%kmXT_8&(Sv)@o$^afvI3-NmeoALk8KLqr# zm{rGZw+#3q+?ePj*jRS!VSZuD7i8J3i$O#WH1)qNVqbQ9mxV=J(+I^G+Nkw(p)J5i zcU)*&0wa@!wzQdM_d08m$sqfp0ooH^7naJ{Y;~d=F>KEKC6y zG(VV}<_F+dxY9h5A59W=Q+Dse$8}`)9vHdq>`qW?azfe}Jb##+=l9^KxbiGc#G4*a z#{Yv`;K=w}Fml})AEV+`E*NaD^=9HuJ&!>QW~Yu?Pnn*BkM79yOc*&mrq9V_R>@TU zq33P*L5vaA<#L1WeUsC@7aSJXhg)2)TeX~0y$~PSk?LJxP4ei1C!?<@n%^Jom!Lb?13<8{KI#`2JOLzJCq}#+7gJMIeh4l=sVVBOH0Z z6h^K)?^CU-Wd`$4C1?H#I5e)z&)}Ne>IUWhG29GC?jM1X>(2eyYS8$Cros7YZzWc2 zLm0&1C^qrYV9k8W_2)1np(EFyz{qvydU7>bk+o)n@r{!+zF^Q87xmrZ1m%4L+z3bB z*MpJk&ilk_$ZDGb2J5ZKSw9>Oi)(G4qSf}A3zYLia1$IkKM+Q)JLi+CoU6SWgY+;t z>8HYRaV1@RB!T)sSw9)K!IAY7VdT2A-el|Iw!EHH4EnISwNkkd9VaG#xW1tVdT2!K@&fC zY%qR7a>mbtL*dG}sPp2yG^z7__^^)Lo(Ut@o!iNl6X6Ea4(_rMfb3K8*$Dti0H|X9gIo%84sJK4b;uw?Z0cCtw z+yY0&cZQMc&iFVMulP-pW0Lc|9FB=A-{Rviy8V>xUVMB-w-PxYVqNTq;W<20O zPfqyda9CUk7yBc`1nFp(abAD>Mh5 z$4zm}foEXky63>eXy9yTn#R48ShbI45QC%R#EhJ{Ksg_Qo8ZWK6O3GU&ZkEM7Qgtm zb#msngoESy)QkQe;|S${bKDR|{x^k@>(2kwXxQSGW`gAGFM&hj%D#9D#p(v-z8yEi zk^3x+TzBrLMT4ehzlO{^FFE;raBN)3pUI`Y-4DwCnYbN}?4J%J*PZ>zmP?=v>hDWV z{XKACT&Wl5B`i)*-tWYXaOC|q7`g7ei`&rc7ql7t|0g;BZ@~d_dpiMy@;mGxV^z)ClBe#GWs_(Jn zq(1@&#Fccht{*X;^864!xFgShfRXFY^TeIRX9so^Ume(qzw&ufU*$V);&V`+CujQ; zI4rJg3yo)UK?YX6wfYfmgd^)8z{quH{r^#SCU9~U)&8FVnPjpjWPw1~G#UhkO`_}s z!XisR5M>KZr>AG8J3ZZ#?w%|Nq9};iD9V5+KHftG0YMN%5JYi7@!>;J1W^!K1X)x> zQ4oaxxmDGD@2#qyIlro&zVqkvk%~;_SEtUm>eRXS)-p}G%*4IpKfF`=?MY&6QhK?{ zDrURE`E7XZOwMnCl@sSYTlwmc;JyBb_tiaTvex=Z_xfQZUB?^nXq!=v}Y-I9Zyea=J3ARANP&0Pq?_{ z4hX}3gZK5g1x()8!pco}J6u;6-gqbPLUWJ^Fa7+T>y2#c`rdMTZ@k-_F39f5(NXpt z^pd%f5q}sOq}wjy*Z95!_g-t)v)`jqH=$y?oUQT0?)snVhNhIAvGe3DcjW!mwQGfU zvyMz|xdZRh+qcxhhH9t-Ea?43EzA&FLGjuS{HhNvcA1~tQJ1f7|1=?LL)ZEd|j{)ZVt0A z>k`B4sz;nkO&ipD_y&>N*w;x+0oH-?rIv)mN+~%iHla=ETTbseeT9J!9v zx^jAOFk9|ORmjq1ErMa>B%#vsH zx%Rg(&*%{nI4cKKi|Lxg?Sqe+OY(0l>geddBmX89D~I!f;af-dhc+2q00UH`ElfVn zhaG6`1NjZ46N6QIdt~9mh>Vp@VM_9G+$Lst`WUQigr|?VN`&D__BgNbl=iV=XjT61 zP1+isW*kWm>*?|~=|W$2RXH7duK5`?1zFZ-_)^v?rkzPWy%4c+7;c)GUmJES` zbah~eU|O$ShdUanm2>M;#Zq}-xMsa_-Boh1v@Y;pOU*2&i>rrg$G6IlLCYx}Emj6g zm29i}O=+kaw7WF}WKeXRLtE0|HDuM1Em5izN_`^OwPvJMN`RsLI*uc`8NRsKhnZ>aK3Rd)PK);~d&8>w<*Rc@lniK^^WJtODyNAun_oo@KKxDkC!e7|t;qL?e`kdohVpyR1L%tUQt|IeL2mgZnMaQU zZTpHprJhb|PqKTE`Pf5%@g%z&NwnhS+V99Ev4?`1x)8RW2pi9Y9Ik4I!yDwfVlk8rwa^hsCkdMTB zQ;qJRKivV?8(g|FCf6-D3Fq;enS}db<-`e35^u6Ky#M8o_Y1HqxOmkCUg8D35tl!Q zSIcBO3@azjb|SqW*2w;^KiQwaj^L7&^KI}_+u-^myiz9D@59Q8bDb=|@@Q!P<&X9s zurIi1r;4W_^>xai`!~E^Cf&cl%8ApR9{K8~A%5$t-r4fDBr!JGvOGv4V!Szux56uD za^3<~PMq@$BGdT~z%87HHqsByI)qn>3YyPmWhP}dtEw`8JEigy+mAC~= z;$MQ56DK}Ntmn`$|HdEluVGhkG0UeXxeUb^&A-H}WwQM_teiO8&R}_shIZn=y%VsF zNMdXfF!@$XEDAEnz6txk#w7bXteiO6P1ck(uDkhj-FeKoP7=>fv_Q+Cx+7jElj`=c za^h6G)WS0jZOR|*DX=rR(Ri9bTVF9}@I4W)n92A3uyW#jCyBLe8r_;d-A}--;L??I ztz3d-yAq5z-G^7pWZMHPC(d@V+-;%3{enN-&%wUn!j)eP)h-c(?l4|2 zlkR6=<#9k)?0(Vc{=}c|k6>SbbmgucgYNh7dYN>;3o9p1cY0(ul7{#n{)qnuJA{i^ zT`UmUN@Z~V3tl;s^YgHB;+(e~Ws8``e%sf*GwiKMVr(+(w~7pVlm?mk*cP}!%>J+$ ztlXqOI2?r$o~9vBS8$LB5BvF{*aepc4p~qQQHTA!ZBkoL)95^sc35RAu~RfogL|$u z9NIMC+Q!f0BWh?_x`!F0Kj)eMU4i~SgRH`o_@jw;U;CA^PxorKi3eWdek zj@E+t#blG`p3={XW+8#WI;!#|(uoa~+U6pd+gf2p@K57bFe7*kRyHDdyUEXt4GRtV z52!t!$iD}>go}KRKpr#SWc?kydM4{{!^(-Xo^Oj@8uGvTBYy$*3>Uc^<+fIsUYo8mf`u8Hy`l zKUsn1_a&Ve6Ls=L-EuQ#9D&!&j2VZ)%0|pMSV*+*Y>`>=;N!ZtG|nF)Ydlkf55hj- za^6&=266jM+UxQ9nY4#s<-}>v4G%kRLi}s~#IJ_^!X++`>NeY8Qoj?7qVSBX|HDM#DIw7`QE1~V5^uXUi%fq5g=1t3Q%C~Ks;qqT zuad`NU}|y}iQ8|+lSz2}%y_a1tZc-S39b@hJdr)gE1o>=+MiWC*|NQdzb{aSzYpY! z!DV*E68#}fXYIwp%8}&RR)iJnd6tZ)4tcmaSr)S})`2aNE z<^nCilweFofGNN}vj>=yNhijqwos(0c9P1B@D%qPZU!^X^uo$UoXNOKgmFgpE3Y_n zkdGB~Y~yk5jWe^Nab{Jz62DF2>(rQ51ek*zUu%TjQkWL&xt7TCHCNwzS3F%BY& z1S29#&~`1P+z*2>Ldt!xv+N<|PSS~iQ8|mo&WI)V;`K9Q$vv>L5lilNl?Y>r>`7j+ z3M0uB zAu$djiNumpP1gd+?l2Z3kn95c${t9zCY>0Un*6#Z14*5n5l42yt7pcMcfiU<9C^E| zL>Nb8Kk|wrlYFe8IP$*s<|MOAgVo$X?)2cEE6erWWok_;k`n8I>dcoZ4GZfA#yYMg zpp;w@gaM@>B$@`4CGC5kGDmN|7E~^V2^m4Ma;^;t ztf1Ut>-Odro2_A3&K7T9`5+kGw zV{=2@K{hu8ZMLnj4gPy~x==_3f5`Tva>brphE_q>_JUP1v?^D~G`R_FL=$?31`D}N zx|&U;%jNWjz>e(tRHi?jE0QsL!^X(p52|c(AJ&N0P^H;&m5c~Jf|Eun9sD1%sL7Q~ zE@INn?}S@6kREKZ_IX4r=-2e7SRdpO5!r-gcoT*S)to{c)aL>?_&w^c=_0KJKLEC% z{@dlgb^X~gUD}2BFeM>y;4Y~Dw(x||*avRJV0oyRO=SlLtKk z8m60!uf?loGX5&8oH*mHMoPRi?2r0m|1InxF7|E3qvc4gF?+&8xHZh4@Bplwcu$xX zrpy}mDHFVh`y`UUo~F3mXA172?Iz_-@Vc3lC&0>yQ{JNKqm2grUH;JD3A=|2eJcgM z*;ATwbGU3~SKJh4ALxda6Ym3yn)HDnS=M?%kAE*n!w%y1f^A0X1tRk|`oXEVG0c8& zGOV0v^zp;#@Z+7sa2XHOk-hr+f$O z7B1!aVpJPVFqz+mo4{m#3#^CLys`e1+72g3f~ z4siLL7TRu7-XE`z-0yC^Xb%f7B(|DO}WZMJ(4EVDc{D1~7T&VCBSl z*GDx?;~MJ!_DB6i*dJWfu~AL7o0LC~*UhAS39OtrT~ zjrZF&_D;p$LK0(>ip%FOOCwC~+u%kpxi5m16X(9baGB-F`#4AP7jM)tp(FSwA0CTy z4D2KBkeB;Vt?e;8!BMyw%uaAPteki!*i>6}l3lM2{SP~KfC%?9VYhI(%NK4&6HMl( z<0defuY;8nXFgAJm}S^s?@#?&*fCt{GT>VpVRHW}ZUmG2S77BP+#MEBhikCqI$Z~e za1Hii*YEvm4fdODUW09%kMjcDSFIhb$?N>jhiew;jqW=fs*M2903Xd4XKWZfOj;?vNIP;#T)lO3$~uge8z z-BXVXcv-h8jA~U69obJedAoL&LavximxpU^gQZZZ4m8;$GOFRh?>2UryU~>|d;7C# z+O1NhOWvxvQgOKUZl`fy9H8A$`#Jq;xs*$#3%Ne3`@K#Al}x%oJ8pVP)zo0Q)H9R` z_Knor6WL=?ra&6(v8brBs>&f%u2tnaRjya%234M}$`7jY3{{?~$`7gXELDD3l^;>% z*{b}gDB-;oS^Bkh?ycwyMwXTYUO_fsv#iQ^!uLd%i)Q%mrdUZjvDsH8fno+SlEBOG zTA4}UrLeM*1h$*(IwdR)DTa$_rkugCSiG#t-Q)k+HJlFxCgJ7N%wA8IdQsk zq?f`RL>t4e`Ez~+_6nD?{FbM;z$E@MZUK|{OR#d{#Km~tO&`xoCVG$O#U#;+2lkQ1 zGv#hZwB8P{mq~YPSUGXJVmwEmDYWr?yg%n-VXxrhIobk~_|dopOyWnv%83&f<9T;| zJfH2)`7GEMT+ZSAOi!)Gcs>KKmq~X6teiMqF`lDO=h}F_!JqSWuvfU8!}&Sd0+aYP zxCKn&SHa4O6Q3XCGmUp2>OG1^{Skla55u0}QkNH7*;-+ee-O8VN&Z)`a^mDSi}|ea z)=OjG)#;t7b&|x`WNPwoG7mTCh?tM<;011srShm=!`$;(_m+CK~EE_;_ENMl?%hqrz`P_nS4)zl@sSXS-$Ys z@LuST_X5}#T)Z+fS05@2y65BdGU zRwmhR!pe!0ogVpIrU8D=AMi7MDG3YN|{{u zhLscNI<>JpK%=|HpKcL$2bZoq>#bqB$#^whHIs2ateiOGtwvhGp<%z=ANysnhq&0~ zS#Kk?#_S1~;?^*G!o{$1lb+zPwlrLxDwi)hNQ8^n4|e?|tCpwU+TP`<^VDTW!H(4Q zssdg8I#B9~-=6j;+>5PUuy(j@!4&&?#=3#hzSv?K%Tm_gx^|~)!Nf)JKExj?WO`@ zL99<&BE~*s75122Bj63x46LKtBcS!l21Z6j7jh`8Vtv#S6|Zx3co-G0 z5fURr#kNI`sf~7Pf#a7j4>dl*mEu2#9c4wD|1Rmopw#5!dBb!wZu|_dni)5K3M(6N zxyqRxL5?FG`WiB6%ER8U^zYRBn$^9*`aue zKiH|g`9asA^*#Nu^k6mIVXeKbwu|k_!190;Y(*C*3ygZ7Tfb{Z3DbeBkQgBy7@Hl! z)|;Ig4YxfhHGbHg?nw`%=%OsTGR%6jQ{!(kWYk5#_T7U_q3rr>W{56%TbHZ$ry9RA z+=62xj z)C*Pl8C8B(l^3aUSd|y6@)A{kPL-Fc^7EpEHO0 z{9iPjPCB;dg@);79&s&RH8YR+Dy(ee5$$F?T{uccWsUNq)EZC9zl9xQoyqeiWx3cU zV!X-uA-r-X=LcZr#5r$fpENb(Q>J($pF|R^cvLWv%f;>Xc9`@x!R=tup8zW-PTzJ$ z)VusyzZ3QZcX*F>hvEY1lbj*jtK4?M)hDj_gx$ zLzw(ehLscNKarjgG}fQ-XZU z=X(e25H4S}2s-lAX>h&`ubj#G7Fc;aaBe(TYn-3==lmzwAt>jD@#c8`BVIX^^AoUg z;+*H`uRS!_n@#o3yyua`*ks;vd!gO}llUCm0w(d9uyW$WXU1MlX}Aye$9*8|67JZZ zBl5AB`6lcA@#>kZ_kooYXFV(a?ofkW_J>`9eZqyksem1~-=tl@>u1u=!OBf&JA60` zzrD$?G7b{qx3^WUFNM^%x1-y;@R^p84Xo;@ztNAb&iMx1U9El1>swJI`yKV8+}B-u zQ20^qYeHg#k8*8WqccL@{{YNIjg)Ye&i$~ftZ4Ihkxu-rJ0tJE53igVL+*u@jTmx| zkZ9jJolWI3mqPpW5tKGR=Ol5$#;4ZL&7FoiUm#48XnB8e(dD zTbBT2X<1vkU|miif7C4uip@lpMZ9^}?h+;leL@0vwS%V@)7AnjPJy5^Xt6d`TnIxj z5`zn17g;&x&mf%`4t3D8;G}8|-}s)7*UF3#ABUBV2=Osji7-OQUgH%ZdVH*)#UhVy z($)wuvs&KJk;)b-w2`t{D#kZb{+!x^Ehw;dvYLG@+vvf9Y!jwQ%VOQs5;cD2>iIBg z{8UJcgQyW;37f8kkC$L9M)>$E>?X~umSysEuvvG2XeZ8z~wJqn8Kj}_aQnZGemK)IBK?mB>HjY9uUCph{N|7U-L^1`s z%q5jcXZq*d@1;->Jt$o+r#Dm@ z+^lyCjcR1y;7}@8Nu}4O>Bb{E9bmY2jFVygwCwO@#HeJq1Nw;oZ92!Vv z$h=IcoFxcu-69a7Hq!4~kB=DDKf&(@!&P&(+n5{7mgUO!iZxg!|2!AxiMl|m;-6gQkRe=*dwm-EOn7+jQ`Gv z14t*9yQ(7?Lfg#;sSEMCnGaGIz{cDFQtrEQX2EG z_%pu(_79i&)`EHSwwS%(a@-bXFSra=PP`Xv)$p9<)uh%B?)UEp_rV_G_5*na@kp&P zd&0fAHO!uH53HPcPuQaA3uUbvyy4#sUW47k?FL(kaL}|VW*>M3H-*^;UWSzu?*nu6 zZvYzl9cFrG?@LHxY_fN`wMK7&NqjMG0h9Q4uyW$W7me_>MuUHXKm6li2XV*!He%e5 z&=|8H9E%&n><34~%8B=bnXyl78u@el$)63ogiBt&p^KSsvOWv1p2_+QSUGXlQ|ezr zHOx2pW4;0Q1{bq@wyRri621SUGXR3j#kG->Nm-kNM+%1a=J`(hS*dtupvt?|LSZ|Vk2Ctn-`YBjB zaniFD>H1PrZD=o??VZanAc?Wb<>gfrS_4epb8!Qhyl2D8iSrJwmyt_jHPVOrlU@$H zgFCDn*UL!LO~%Xcs+o-UgOw9!Jf~WUFWc5oSN&11fxW^-E$3^!1t#$#ZUK|{YFK$3 z5Z4yiYs9bcCw@8X6_B{r0+aY6}g_Mq@Y zkUNCL2q%KH??BQ>%e9Q)DVU2IDdB;nkHfCAqRsz;bYfU)j0>WEk5|r&A-{u_jTrJ9 zA<^^-mq)9qg+3bG|~){{kw59nC$m}m7B14nDE1#K~5SD5@F78n`_`wIm18Ndx-he zgA3UKx@&b^t`a{h>`b`RT6A^Z7F+zGUHkSxn z&q0bb-F9kNN7*8SgIKP(He0SXIit-% zuaKn^%qso4UedIlgyf(ZoLFVO8rwmuoa^gv7}zQz>jMjYyKE*KoWAE9<3x1wHlcWCxyNW^zg^_8>fD!oaqS&vWz z{H%mhYEbyPC^wMq8?ISTO$3a}ReE#9T(t#bJx6&24O8Eck*gGgM8bMDAk;3x)`HMe z$PD=R=0dhY8LaQ*9H`VgkMGDRl&J6cq9T!9cWI4G3qmtlL!tRF&n%5p(mg$5uJGnn zmm;%#^ByuQN2hnnOte*E#Zn7W#=2#}Ow=mFM0V#Jw+GVea|1&(dcB1xKnfw>SUW)H zP3Hy+8~j57g~${wzNC$Z{xd)^+b7QE_8&XcpX%|+*Hwe1N-j7s+&>2xEUokJ0+dwm zM#;7ROduyE-^fzVW^#k&5(NZ*XyxocI#=uo5**+8pj;XX9+Z6(n@X;a5&+*BPP`lO zH>DM?Mk;H9=Y8Ldrb5qBWf~B^L#r~hs#>N~sr_9n-uU>sSiY(8?RwOr!PEVFaJ5W( z7yO^7giQU3Dsp=B74#N2IKBBxs{FDlzoN=3Re6;vzpBcsRe6mnuT|yORC%2$uUF;Q zRe6IdZ&c+sRC$vsZ&u|uRe6glzop7sRe75#zpcvKRe6UhzoW`KRry_2eovKmsq*`( z{DCTesLCIy@@`fBSd~9fKBvm(MG2ptJxssW&eO9e(q{ne8{>gr zE?i}{4_+zri{hTJvhhW+-CR4<^zKswTk;26fIVUTl$STbc8MK*fz>A299}DvY%i>w zIN3>okNP#VU-U=&dDsr`%Si&;MFqOUIZ&A&UPZb-_XeZ)Sv8+VMlPus%T8# zU5#k`L%dQZ*Slcl#JNsN2Va#nvj6la`*+wCT(WA+ijUz2+ZXX_nQZ?ID<{sjGfj`P z8rrwa^G>0*A&Id`q0~$pJcJu$7vZ%s$u5MI6DK<h3W^EpK;<+i%j| z0k5A)dkL(ZIPJN0Z-q-?HR7lG6F(XD3paerGbGJ6nAA_eZD3MA9#&4A`n0;oN@b1q zC;e%k2m6Cdd!~3%8QN}AJ_oOxN%?G8IdRJK>Yj=$BiC@>=8yXp*fCt(o5gTP8eww3 z2{(et{RUV$aqf*wjn;x`y#MIW`w7?~T;B0aEm+8=Tp4~tdtB4Gg-e4?}=B+ z+8 z6Zutro#Q9E^d%QHfKlaD_L)aHwyi+A!xi`(Adlz0WlkT0ca^iF+ ziG5{pxEF8KF`*;)C;xYU$}hq`;Zl|#C*;031M;8oYMGFqgOwA9Jdw7-#u4YY*~~jz zUPKaOlP$}nD%ihka9xO3%H+BLRvrgj*AHr3kMiewIP3`Sh*ex^OSQrEP`pwm*X6Ks z;#@m}4dWWv)BVA&gFV3oE0blh&D|hd#cO4fT>~p8PIi*m#IK?Ksz2JVz^>q;RkN%( zd%$3O1zs(a?d7m?@@&PC2pZc5{Mp_Qy8>e?4}>t--iKGqWP2~HoH*MV(c>;O#1l66 zPNm*}J;FsSuOo_DZ_d51;k7eKzXB^KPP#KVibNya?N4|Ik{Fw0SLJ(KmruyW$8JA;$QG{iF(dS}klNMbDWDsf(# zF^aqJTA5@!VdcchPN|;;r_tTVpYEQpH@E{>UK~=l+#I`0@tT>0cZZb|Cp<}<(x>6g z`Qz<{UBSgG-&)DT1&z_0!K-DmJq=bK4{YgNFpcdc{%kLTU4gOeL$W{&PqAk2L<%J|MmYK3RuGS#C0I!uvb}p=(IN538 zVZ0jO!~OXl3j2dQaOLKc&~|hDF30O;QeFltCr)`H9d4`PUFVOt3Oj;}SH)#I+u0bs zYw${$T#K-B;#?;Y*Ijqf$bQA2>=m#pxMby1kTBb1dpTY$lkH`&^7vq@ucf-*pY46H zD{!`!)l~Q5)iT-M11l%awvz^czMAR{f3&Z`p5UUD-~9rs%~AUbUMrLA%dm3dWT%pk zZy~3aE z<*+ljY~^!s{VH06?`3$!Oum=G%8B#sw5*oB&mZo+uqU{1<(Fb{J+MLc9=uj2*}Gxo z#K}$zFF)1>?`!^iUxEF>q9mH}Kp1kJVh|)*n)iT*02`eYgwllcI zT|;}eKiackPjJ!7`Bz*$Z;(9$ua!x51FW1l*@@;&gg5wuy$*H+7p#0DvR*`Z4PGge z>s7FF;#_IO8ut)B;t%#=*b`i^^$}aN9P9ibUMrLAuVCeIKz2=8U!v2sjdvQ=NfKj| zMk%snwV6R}jMvH}+W{*lPIhu-%}~0m-}$@LpY86jFSw&t?h2K5n{;=<>t)j2306*= z?v%>Vs%kl%(Z_DapYLg~H@JM|H=?@bCgGKM%}l~4!ODpfo@m|=d!awv3t&fZ;mTaf zdOhsZRPIeLnEoh_MdvYm}r z%VawPR!*GljB1&jl(JrcvfLl>GT0;B;VV!5jaqM#-Vd*xNqTQsxe4iPe)3iw9cK4!2oiQ*tj846%uJTD~49(ubxD9 z9Ct)V$Mzo?4qEZXqK=OKJMwQ*L5(?~$q$y~Pi^v(e5TnCHlh~S<_;Ar*=k2BR~#&) zGue*RK&dA?e9mxCx%A0L;ZAGqakcmKlroi_dueb~bERUsuybzhhMoJe#cWyrxjXz( zH~pwv{is_QShr7_SDTV9X8KFzVtODu+<%9{7%o8guxn?!|G9ckI8#XAARIU>-nI$s z2%uQ|wTa^@7?5(<^NrSi8FrYJasIQU6N6KeR}Nbk8qod+w}Ba3{tH%C#)YH$3$7Aj zY>_?6E4G~OV+F;QYm$jAgTcq>iY>PMks4H4g#=4$zw?YO%06CfdBT-J7+W3_65}Vf zMBA^$mdV?pfQ;BOktAA?l>URf);zXE+hFD`8{sxEW6PVa-64!Eue(Zwu|@VMuh{a4 zj};VK)^)ZuZ`nAX&cxD`L*brk4<-9q(-c|@m&+Ebl^|&`5|#Q7y91kIUDT4BEQh!nyR+9PmlTM6AO}6e0eyNn0bt}(4Ymf(=78xiY? zmbh@0t9Qe=@MR&(n4v;pxOSk| z?<)t`CrAA+O@1@mpj(Vxr?+^JvrTT~H^-@nR6L{1;fSsN#mq@@pfC&M~ zB%9wuPA)6*|3{PBxx*{+_o?#ds{Dm2?^oq7RrxDbKA_59tMWlrKBUUusPbV|{#KR0 zQ{^M7d{mXcSLI`>{DUeVSLG9`d{UK9i87mCMGZOpP5LLFp+Bw2_lSRIMe~O8d(gYT z75Sy&-{KAQUG!^|D>Zx1+w#|oljR(&W$}~Wf@VoZ7C(_BTJhL_8#yGFJJsaE9+f*7 ziTp-*z05@ZO@Rh^S!E>h?WQ|Pq$L{MJ^bPBhC6w3u2{{|8~eiWc{SQI)jL$q4d+d` z@`6Kw$s8#at-ja{(zr`{lNt+M{sDnIf9?W>t<5^1FW1l<%#slM8iA( zt={SLrX(>o>9c$Z9=zun zC(d|E{VR%w_+S2r{{ef0i&$<@t6Odo{u^F1lki_)<#9k*edE#yzjd*9D!na9j7=)7 z2-m;PDJO=DO18plW)j{4R!*L9{R^Z<_`UvwSHRxD#&F$oa||DW*UTh*7_6K);Th5I z!y4re`BVNN>=7(#?E7KmaY1%SBU|$)`w7?+Fxeq<%$|$a z$|U z3A=)eSgz`jYj}RCfi40<;2-e3)d-YfH!@+cM3g=B*rF%mfs6Q+szR?9j}{7 zc?ztYIOQ2DvXyGK=eX>ep=^u0il7p&Zb zwZmS;aJ!@23g;jZZo2#**X7=U6|{u^`t}~SFzu*xF*i6=Ft}4x{WH@cH73q=+C<|h1}q9?NFOrqknI7ol-HA zrrlIWwL+;vXY*B4gK63*cBHpncKu+w*h7b54baXYe~0x7hxs>iFk2oNs%Dj4{s79^ zLE36OTszF$VP)E-mmZ|eg8t4bmxA4ohj^P*87$;l(l$DZH=8}3+SUS_s$zqw^++jb z=v3CF2h;0=jc@)AujUHWIR8FChb6VDc|p1-#&Tps-Ipm`1{>-WX zd5tQsRpr-Id7Ub+SLN4Ld4no%ROL5Rd6OvN4RM#yueEbSTxSrKwZ#5DvH?3ZK;<;y z30wDyW+0o#tdns5Q=}7{Q)}|mhnP!@H18g~R%V)aH>_-=dF>`UIV0vtjqPjH5Kp$R zz`o$Jm0KO9-R1+^%Xqy^x-Y@XiPN1yUTWkn8sjBPycsVhiB>$Ao8wo$T#H(7lHLxl zok@CYSUGXh(<51>2Ksn^(8t0K;SOfGFh63v$@yr!awg{^Vdca*cLwRc2Ka1$z-Pgp z-~v`lwu6Th<-G6{*BN-NOtKqb<;2O(h(3U6gm3UCd>!l&E@2s~qt=_Gufc0)lD-O7 zPMq{)`Dm;$e#D>g!>}*7jAhQH9_fv7{2*R0lkTrz<;3ZBsn-=6-mdMv)2&XD7@KrU z-EFMivlx6g#w%v>?SPdN=i3>)L((l~K9=hS=bH zK3*}C@5f=~#Q9DVuZK0dcly)49d-qmt{S`It+v7TR=ip!+i$|kiL;$j{~)2^ea;{6 zGq5+fc-2jO^-n1V;ivGLnS>vQl@ll28GI(v=q`ANcfvfEB*rFTmN}L9xMh%?jn~Q~ zI|EiuoNSl+aHqjt?hkhv>i=)AJKfGcl-@Rew#Q9FCe@)c@uki<5guTH9 zEMs%sa`SD~YP@D9;eJ@T31Np-T;W16xj4u{B3uZz*7akUS_t;H_AUh5l9b2z> zBiuo)y{oo^Z7qpy0a#!_>?5^h;n(%9-6LH1b*+$S`@%2l;pzj_X6r&N`tRMnrGfN7 zAw>&HX}#B8HZP9&>ycl!9uqy{FVl<6VD6TcN0xy+K+X%6f&5yP4~i0Ap79gOpl#=EmjQqEsMIx#x6&BW#%(a++IFyqT*xDm|waw)8A#FvX*CBpb3`;=FF z8S=4$)*PQQv8@-DO-c8p2RdY;9^G#C2WkeE*IK)q{Z^;G`sIbThnL0=y93kI^UElA zFF)$)^e~+KR!B4rCrjEFPo_57twoWIcSM;OQKW+;T9JkRmAn;?A~FkYm~O_7|GD0!%d^JkUAs+~99$wKMo13E=91H+Z7$K-vLN=A!wLSLSz7*9%^m ze_xe9P~{I*`6E@{ElT)R`pxuf?cC`&S@uLN-+73vz@9dY%=Q7%5dXL6Un8AZL{V4& zsS%{=4fj~wkJrnb?(Tz?jp?r4bf-!$QB=?XZ?cm&;0Ywribod{uzYlBm~N&tZ@?tD zk1nsl%84_cQV-G^;$8g_caIrjxgw!%xk-2jyk_PoUIHs8PPj`=nHu0z{Q;j0JHwhQ z=FKrI*A&&~dLv4ofLF}qdpxY1INxbu{-PoNq(9>GV1IBC%frM%+s#pY4qi8t^4YL* z@|44TQlosEKjm9se_)hD+fB+h;dL`9-vBE&q3rN>Abi0fA2uB%!WRq|xuzBB1;gv@ z{RlCmQY{U3r0Q?}W3Lzf1$S0!PqQD9Q?IdNdx&oQusbj>v@Z5^V0qv057%B4zHj)O zkQm{8L)%_d&y2NQ3nUA>y|elSB+-hjzLRufU}|&3YwDQ!W-OVDSI>+kvteZ;mdp?m z?fdXFPrlQSxlAK|D4FE>puQY-jCDZgP2%z;wWSdz_hq;dOz!)^%87H|Jb1q=KTeFq zzUt3@4eT5)`z^(2Z_*Hxe-Sr?$$vGh+=RbF0ubg9asqLX2y=+PxK3j#hgj0q9OB|l zIwo`k|J0@(yq?a=pmkEzrwg%E;%2x5TYDe-Oj0^^Cp08BIa#uX8(sTNm^EB4B${Ro z`LX#(VLh-j+H_lP75#a4I#bQ96-UU@7YgetwCGh%>oJ%z9QMCRV0HHglz7 zD-7#NSJSELhTx=4>+zqEVLjQkIXWWReqJi1lr3a~!LlwFd?c}+Bnio>6@#sCSR(^( zg~JNz4cRjF3F}8SsD*U9W;R_;r3-!8Rb|?A;t#V>s#JpWK&_|DLbgQ@B5iWMD5fX2 z)mYCdg>>iwDEe4tJ%kn0DV2j`ef?ctrZa*|1Fh(#73vI`{#>zd*uL5gYF{PW?ATjO zrc|y9i~M_3WiVZ?WK-#2!BQ*24aMeau2RiqXm)NvxEZ32M!D*S;m9Y`hiD!QKAHYT zl@F`(x2pV|Dj!khqpJM9Dj!qjA5{6cDxXm0ld615m48&_)2e(%m48y@v#NYfmCvj4 z1yRDEZ2y;j4SQr(8D^Ls%1ps4J-pV(3i{%FXnWVNY?fW0&Cv1N9jSG>YJd2yDZZ9v zo1M|eTYH9RT@lfk&1@M=eKP+@1|r4xm`QI^0iBGa9EMVLP>6cWwz$F{w6s>9NJ zpuLMY2!^G`LAa>?0N80(-uazLCkCjtg?Juq!cy50E+W_$w}bgOx)-c$JdVE0RU(Wx zvS)e4n*}~rP`r7iz42yRfo9E))X*R${qc)j&ZdT7uh6W0&Ynv(!pO)mCNQpUTddz& z9!$@2b$l3D&JYq!14|p%)=!VLTni^x!d#4S@+H_+R6jNVG2r*k~{p`~LGO zs^4?Y|0L`MF49Q?DOs%C7Cs!Fhu6tudJe3dIMa=b>0%7(9sW>ngWbS|I$1ysOg5+9&mlwCyaK&CJ`? zI|$Dq2`ug4l9j8->t-8tXW|tz=}v={o6vR0m&24>CSwi~VamOSYd2LX_xkp}rrTT{ zuOlwN?2sS1I#L6ro_I3&KDg6bdz}6IF8hcbVWhNCnixw8EwAq0>)NZrS9dFfMAQ7d zeaYNr@_-uM2ioKPIvA81N8vYtD(o~X>wJcEVt~{)0ed^lsbmdq2Q%0dVPzxOtaggiEk`@R<_Otp+cy#UlkS0`0LEuRX(c9 z->dR5QNqh1{*QjGojcg4NBW93`}~be!3MK2`}{?;#(x|8-J}zredJ-V5#!A%=Xtzx z=9Kd%SlO6z+ReF34QP$=R=asK-hw1r@%&;kmd`KsNTggCzDe2)ub9bq9;}==-gGkW-#FCPOPB*J%!*SjW<>Yd{5?fr~D z>Ch~l^Qi4To4q@lHd^~vt=slQXZeWV*o8C7gZ>P%3(G}SCkY?)rwWPj@u1ImmzpjV zQrR^_!9(``HfM4q%6%#N{8JjPS>HA=6^iMBV9$^BbpcC)He}RWvck0`wC|`~O;v^l z2WiJhg<3UONC(@>TwRk%XZo|LUfM5b-J-*2SB9>#PYtB2<=lGlHpEkDZ8lS-Qw4+f zDoyquacrt@kQUqb2%2@5B1dSbT&BHtsa5IB>TI!xPPZ-(*Y5%PzOp?jxoxwOqL+oKo?tI1nR%+OJbhA-1Gq^Au72!G zSNpTnL0zMq{QXps-X>aiT{2MgWvjH&vLL^D1@S30kR2$MX(yU%gbEaM)htB=>pNDa zO~s*sR8KD0is%}813Svu-Yf+KT8v+&-AUz2Zmmb??N3)ywA6%5a&@+f{&i zdJI?96??Love;$pFO@4cq+G{$-72*^!+t6*(7LthaxT59kgbFR-MxS2C^*QymahGi z6euICtGLd?N`-dQ%dCnVbkIn@Qa2g~#^tx4#2br>P5R%u@EEd<%cGRJn-Rf1{FH3HE#Z|N(w zki#`%2Ria3>LAUimMM2vimt;xP^`yCu@1($g9|0Ei8fFepecV!*9JEhgV>4X)fa_2ZYIIJ2 zkO`;OmD7WCB2KKEx<35|c2?<7`<@)Zw0^4Q!0b;4hq1WMAToNpKI^DH)RSAA3!X8Y zqmk^2gQa!u50dm0N;Y^Tj{5rpwYQWMT|;%XByt$h72O*~Dg}BJbe|kaKxG@s64%*2 z5E>d7q~{jbhbdC1ryQS&yJ$JI$PoPIR1%q}M9_ zBTYxHBTH&GCM4IWw>DiE%F;zG!E?O(ytH;8Js4epwFkYR4;El8Rpq->`EFJ2smi@n zxwk6!QRTj>+)tJJtMULq=!sys-Q%T;->Di2ZRp{hJgmG4pI;i^1Bl}D=bC{?ad z<{n$@m3dXJR%Jnz1F9^lvZTsERjyHGS(O!4R#iEq%C)Lor^@xJ z+@Q+SRrx_xo}tP!Rrw)Ro~6nUtMVhNJX@6?RprN2d5$RIg?&rt*V?(TZ))SqkoI}` z2{OcUS>I!#E&j{;wjrJPvOab1V&kKh@qzgfylUnL=7(Wr;{$WM8Bd{iCF0YahIr;X zy%A3%3G7R%^$Ty_L@X~asatL?{^`PNW)kj%l@ljCHSm-8w5lQA#~<;YusgVj)hMo; zZZckqSIuO+JFJ{I8DChhs_reb0QkF}wBgUJYGkE1p&Zoi3iF4jOZC{?C zF~7v0`9-jExXk6jx5dDp$x0F(D}+yEx; zWw3JMyywwMCVi2k#(bSW^D68ZE^~Q}kfjkO_cgc?OzuTkIdSe?YCWpP`YZmduYjGw zWi2;n)ECk!7ls=qFUKop^1TdJPMq(Y#v+Ix-l4okh0 z@+BlOHc7e0T5KIKBKcyxdM4}bVCBSFPnH`bG{`6TLp~n%1$RJC70=pgV~0WaSiD{) z-J@aU#Ocn8Z(q?UpW{#YY}hAU%5t-N+mEL*DC;JOg`&i+qs?>CIYV z_JGrHOPD=iC9Iry513Nl&#V!@$e;Lyus68Ga= zM)@v(%6GyZ;ZmO67}s^{P13jHwKGZI3M(g0dh>v^<2Hw%8B=bDYSQ6q;?wgC3|{j@QX=eEHn7JLYh(Isf7)lkUg6S~>mBtLn8eS( zEnpJg04pa>e4g@G^rS)!`VIcjuY(=Kg)UdFTN+_iz% zIdRgnwX>%+*mwHFz8!W77q-m1v<8^GZ^aE@^8O~QoH+0Kwj;td=+F5>e+Kpp7y9Pn z^{A~CCi$muE12XThm{j2zh(2|+%^6S_V&)h=aR(O|HB_JY~CEzDjp16EGF z7tE+1ogW;)uW?`Q&wUx}5$?E`Gker}lk|Rg?M%{p!^(-1o>uo&QNM_DjX&oi><=#I znPPm0wwsh!<8?DB_ruDGQ=S!^!Y@9Ah;zWT5q-Ho>C0fBa7oK=+;RI&+Lz+>GihH8 zD<@8SVc;#>S?wD4d;PiJ1AB+dU9Meg))KP^+>Kkp>;XT3l@sp)a{|BB7Y78F!)WAR z@hAT>>=iC~`9(}`fl2%&+yW-?zrxCi6Q3gdMenUN(u?=;&eFFdiLuGj<@?mS0w}h1wCp;tYQ~ibujq!`!2Z8C)4Gv*>W*m7(TDo zNjqBUKJ{VC%_j1DimeqU`JHepnB?C9DoCid&Eh&Ma&-Y0a!Wl9x*-W5$Xau4gLlG@Xv=G!i6vIM2Q%0a{f48Ig|6pVCBR) zPZIH7BYe9*;ag!>a0yS5!&}_7tK1i^Ui>CrEtBmxVCBTwb_O>JYiOVGNBb1)2`*Z> zE>+xvY><5%ua!ym_pox}WM{^1d)5%o-OoESpG^{DlbOrYbz|n65qbt*J(KlRSUGXl z)0DI5N^TAGGJnwf!T#WmW%cblyiVL0(R<@{Gbz6tR!*F9m%21vLtOMnyc%`}7qPtU zpnluC!M7i;n8`N_D<{r(VY55!HQ<-|1HTmZ4i~uk+AWWMtu#K}$|DIXW*om5w}jaP zJ_{=+-UDV-OR3!24e|wxM*SXt>UYB);Zm1h#-i4nqpf$kc zy(Mk{llSJZa^k$F1nwFd7~G&m?W6rc9|?PdJD}yNmAd67;rHM*GYKC8D<@8PD*1_) z=@!yu4e=TNh&RCQ;3Af1TQ^KM8L!2wW-_k8%84_cSuJl!Web&Ts#q%Ouf?wM=X@3H z5-w-?&Ln2O$@PVa?lO_JaSwtZK|&@NZZ-@m?@jdTxX@<-7RP z-)YR~FA$%$%r=c7WrU{e1b zteiM?HQHlKcs1;^mw6}iGe}}=lKJRpk2S*NJ{32D$$c`coH+N*WPluHCGvj$==X+w z!yWNkM5cJX9VY#E<90CV?*S_(PXDcS`pwtwYC&MNe^2O#{lx7FZ;$na=4~>2MHaV- z*(+AT%8B=inX*^dS0rER-vKU$UBc}E^6hQRe3SKO@#>kZKMgA<&U(h$bYUo)5{J<0 z=c?ZAkNO9&N4TivN{OiTCh70twKGY72Ubp;bm!WE^q>~aU-BpXSJ)F=!g7UjV6{p1 z1-w=!*=J$p#L0FoE0@z7j-o?7hR+%P$ncrN`AJ)KbmX@_&^uq>k|f3^UzgugL&KF5 z!`%g&<5e>W&xe&0Cp`6-ayFBzWDUkg`ZInH><;b#mivRErW=$G!7FD{J_uHBLOGkC zOrz<{;U)R$OFKGN4(DgeVzw+cmBlC0CJGnxFIoFNTl7Y7+RHo zeG`fW#~snpv3(F4mgL`9)X~v@NB&JJs4*ur`N5L>sZD;8&oukNM&zg3)Mc4!Zf&}n zD-|oTaP&#It6KY6ZMU9Mrm}PIP?72>(KgkcX`yHEzwYoqbqD`99kHV}C0)$)muOe( zKz6wQ4x<~M=h|8Bf38mY93j!v(M$5HD-8t7_lm^aAXra$frR)SEkBw5{>tGcwS#Ql zh%|i^&vf@?3q!-T!#q{`)8(GZx?H7yxb_}TsX{irdIR008<=&tuU4rqRVnpW2h!_@ zy*)J`n&<0p*|0-A8&=8n4U}>{!!>WAx_1uswTOfU3qzIRS}T;OeZ}Eyeh=BnSLAP? z!FBHNiu{eL{DvxTQsvF6{H7{zQRTN(d8;aK6J<8Pii8h;lm5wP=ua#1J>uV4QQc5} zk8L~XzbzI27MawS=+`KcHj9-Gp>i>aTjQ~ap`F2~)Kc~P$cD-)hiTyXMu@ssGy{>a zM&SGxNGBFiYcf?AvBZe2_u#cMr}(>JWn+qOH`%F;NU7m{joRXg_Z8S3T)Z+_ZWmDLc}1v3tlsm@J_Ju z_#hm-?$HQm{0W~1djlsdUQ`)`SK>7@37-TjHzDlsNh18JA>Va7NQBw@*{;v^ffe*F zZboNYziQ0y&lUT!9jWZVs%%dW{kbDmC{^MgIKHHH+1$IuQ_N~v49KD+i#4LK_P1Kb z_9`~JelT0k4P=W|`r;8(ovqkj?MMGwxBP3}!t~H`X?X1YUHywlt&7h4%$BpoOjdnE z{%@_njov2N-)gfnrGY{E4v`v6m(zXa^kBbI{Gw1C;X6s&-m*%jnq#yu^b?q=YX77{ zj!sdfLsaE=z#qYWwDyhsH%KRjt|rf6wK7&i|7Q9fX~p+(D@KeOl(3o9!>bp?la zq{vqT%2Rg;rS`pR-%_kWunrQfFZ`1%i@u`ej)nXK4LAKAb`!T7$jyw++fska6Ly9d zaa)+3;m@$L>Zva@9M$e#u+2dwimbU}w#?}XZ#mezCu~C!(dUcNI}^7jyhSX69l1Sb zZ&-xe!|V+UVdW;hAMcb1ASQ&$ZY3bZ*r2r{wx2iMAno%8dq{rf24iu`ty+M2t} zSe343`m;S9snQV5NwGy48L|kAY1VF7D~z7A(BMj!Q|Urqc2zk&dhQbY>)omess*tb zu%5i+!_an`YnKZrw3QN7vvo5|+BZSXjI~{xlg@?tslgS_NgsusW$gm_GU>#?)Z}XH znE7Vl`7mBRGw_@VD;t65bRp3`*7M{99&?#S{AMx<8?grQ8)3(AiOXGBmPVM|ug8sG za=#WBZKEpux)8+iLF{J-tY8$d(zeM8sd~mX^k5D@z)& zC0UQ<=&B=yX~gD2Vm!R-S_4epm*564d0zx8H{tCtr-x~QoDdu&!n9z%YeQ68@RK%g2pLFM z%enRR?PUF6EIIfcwF3)H*1lHDjh-CDUM8UL9;E%k{MZC#$ryg)iYCk$ek~-%L&h*I zY`B&-yaAI_Ln(ag@EYtXEByR(q!Xi3lj~SR+szpB3SKue#=HzG8!_f3A<@3vVUC=B zLw{+kcQ_Osr3ULIB!T78T-NgVPQ3*t@x{0WOyb+Y%83)7A5Owesh{9a{dm|jTzwx`D1Y_nB3bLxpOt zBQ-$BX>_D|O4Zmi%d6CwRy?x|jB$_=jSy`RO^EesOQiXyE2A*d{9Q;ijWliiU@8eV z8n4BhEe}Hp8u4axl4wOfJDGH1WNPw=Vhx_EKYaH&AFrPobT);Rji572NVIQanXj_{ zVAM8a{vNUk8?^@WLtxL?=NOZ@%w}z^FsGY?a4VSP4}g^uC%-WA1TYf)wf^)guy?rh zZ>nJC7NCJ;8{##Owh(;+8PS{`RnPlOEuZ z9fS#noJJfZ!UW?w*RHG*j3w<|mo-Jb(a_&ztbx0&b(R_P7pC%YIIuo8mswt86kU5* z7^YSWiSdwSOl`DV3pc|sHzUFL4D2W?`uvAUCk92mF>RP`#+OgwRWswuCt+nHzMLl{ z+Lv3*jz0EN57$V4pUm-mZ}DB&DO}QWL66n|llL9C0ZiVv!ODsAo~J+Po6P^>&-{7V zFK04=jZT!^noeoE1mbLTMs-wTK@LbikIvcblXiC_U*koqOFy29}!=BPq z-wQL0w+o5!kYOwcfEqr~=AdI>o~p&+TCbyEr&+s1ejn0_0jkN{{jAL}Bhulx8O(@u zD6DKmq~$`QeVNB1HE}a~z?o#4XBKig>>zFr*hcI+8lf>}KUjww!|VrDSUK^2ux(^A zXY_?@{rkdKVJC6>!dtZ+Xw10q72F_Zf4BlxZqgqd(u^=ukrR%CM3||()wLliQ(4*G zOl3~4n5*W}h1}_suT+OJtF>M4&r)-+h-U4AwZSpYQNm`_TM?W7EcwaPuAsvF581xWc}Q@4DJ>;U zm-}+`zQi~&@JhG`Tf1M4)_9s%B1Mk^1WybM%vM(OmUn!~wS$Fe$A1fn@sM`R(VMT$ zJ@>%WjJfA-*k4xg`EQa=JnN7-kf zwwS$OOWYP_FW4MbZqf@JvV}0=kW-3-M3``V(X~6Pgky{Lt|gtF&GperQrd6dlS}sn zwBQL7Wd5PIz>GZ~!YyFNo)5yxM(kNHB-);T=w8#fe}k;@%s;*k`-aOs znt$l+FzJ5{w}VOlYFIgO`jPxY_ng)Pe(&D{eh2%9+XM9cLvM@O3x0#!!t4dVhLxN2 z0*B-w%s=Fm;vf;`A1AmrMCBhlwfBX`#soc2Xn3ZZ@xYA=^*hN;{`5j3oo>xp3UsHnar78`#!|sJw$_yj# zf|ZRh@=hVqzEonWd<9_A9UwzIvxhwF4lZ4J&O*am&t&}>Sh)#nhdDh=3*;o=AQ7eob6p#v(t=;K_Xxn5bO}(f z9>cmA<6&wG7MQHPtv1$2YN$4FS7JQqiYUw$ekCNvL$)w0-gqr>cpWCFhEe$(i`-=F?*uy?rh^&PMAmY6-@7~B$O4>$@| zZqfrBl7%qekkg2RM3`^X!GeJji_J}o51MSc-)ycTV4gNYe)%`LFEtkCmcA)Oc*b!1oE zely10gxAlEF*m@mNVGk_i2F=q{ztM2dnz!PKLLA&%RHK2#9LvKe+;*RN&XR7 zIdSrl{37l*jsBdYz3I;+iB@En=7`txi+D@S9xx5JgxLeSVC5z~z#%yZ^9wnRI7o!~ zMa{JsV- z26mAZcm6ceiDwh?Ge>|)RT_TgDB_he!^mn_*$5;3LZW>sg!;^3(!GKV@yr`8huy)Y z8~w~-WqcW4HIwnBuyW#zBcC};&iDCqz87{0m$Uwv!^-*|ym}_(3Ku>$uZO5u!vP4b6G8$_itDVx~ z7$QxsTO8}XmS9qF1ri36oRDZ5Oxk$Ez|2_NwXpJ8n3oY&J`Fp|iah@z(usjlSF*>< zH=i_Wc=gQq@(Ebkh%e^~iT2GL>Pq&Q%QWKOBa^TZY7qYp>=-Wb=#}iTMwr~cjT^z_ z{w-KJaqf{T*<)_g*uUV<{#n>LT=x2v?6HQJ{GY}RVe)?xR&K)IAt?y+3ORu|NQ6%$ zy{-*WPb7bB?~BT*tNVk?S36SWbSd@`bcgq%AT(Hj!B}j3v}0&&QR; zLZWGg(Y{G%TG(za-mHMZ8FS4Mu%oQ(^Lvp_42rsXHMHFfF^A!GGegY5u(A#2E})iRd6BiF)lP2llM7iK8XW7v zmauZZD~|BN<>Nx4X;^9FgUgI))3wNQBTUPPEZ4)nvI5V4k#u5QYO}@bkf`-$Y`GS% zof%uc3M(72eKW{hxtSvBF^%`5WDzzx4c@YIgID@GtclSl$fwz%ZwMq+zAO!}MPb};ErfR&rjcSr`pd_qng4ie!b%g0>1 zv3g|LqP_V2vJqQO6B6yqCuXU+Sb0n1{CTp* zGncpo_6e7>+yNA~-<(MTB zgO#=4aTaSri!zkqF}q_kmgVilM${H84_Cb`%p%?te4Azw?VDoeSsb9vGfQA}s=48k zjm5CXtn~A9Nhe09Ccm^<8exW=?QkQQVP|Vt*$6vZx=Ms$NA@YNu=BcS*x7n=TbG1S zT1~s#dva@IFF^aqlUQ10?Q6B;M}KI6E^l645T?euuO+zjxORjvxTJ+d)8Nv^SD%w* zqqTr?K1|36C?AKtWQCkxOFA(kwW;C(MZr?_hL0y7!|P?nkdMI1Mhy9okZ9lBF+-;J zR>rrIE!ZeD7=IJ?2$!*Zu^qMEoGreA*UlvUbyzuZ(sRPJ-b(u^f7*}3Ug6S~r(^0Z zFp2*jw}46fcd&93;trF0m>(!=gfoec(rn2M?+fbuCA50briSdv-%!oE!%ODPc=^3-jL9nl^ z9U#9O>BP9G&!$o9%~*2)UOO|^>yFhkF)u(A<){^=?ah923Qyh6`|K332Q&}Z9wy5}aV%cb}e%`&*7T6TGJ6Y&rV*x%Z$UeQCTn4(2c~6&l{D-lEAad=q!Z(z_Q48J zs@Cug=&5+E%usSNtZamm6NE(jCXZ?A9iqwiGh_)i_Zxga1^a``cV=Xvr=9XA@w%Cm z&x4f{r#vh2?$9LtU4PPdz&_!UmdkMB_M7R!ZFv1m+PA>UO=vsJ?O}Q#rve9w@X6%e zt_@L7Ci(Wh`Rue@!2Ta<0v3|2y{wiU;{-vO9-ERZDZ;;9iG&X!{}K}8Aw`%h8?7Y? z+q@qoW=tZBNCHcwtkCn*NGC=_eJEA1RJ~!Eun@188B!L&%0@_;Dnt> zE!e0u7#|LMgv&Vkp|lz4L-E>~q?g0WiIa|eD7Df)-JkY4*ehJx`iIhH#H+XkOyX-` zB0-`O&8`@#f|Co9+S3}R!j6h@!>S~HuKwX*R}S$ zT6wI~hu{|Vpe59hdOKn>mnE0@mTSKYbBUXU#CXUh=2cA(XoEMsY(%182#NM(8C%Gg5f;a3^t(RbopN-NL@Uxtlm1qb zcN3PTn0;Vl+!SUX=zx_I?*m(hkNOtpY5icSe?QnAb`duUY$y7`h|Mwk!Y;Tu%)YP_ ztlXq8IHVO}W+EpU2Z=BmB1%q;7j` zezT+>W!KIXrXM9CF&@&7F4bx+*jx%TGg6L=VK-T^=RZa|F(kEVBG}Y%sfxpw8K1=~ zW`>nd!^%cjsR@bpr5Q72nqjAWHyPvkHsc4dOSqKf3DGh0%_-!2c=b%y-+`4AXT51S z|Jr%Kdym^R4C!9gNS8w#!sQE9`^+M71a zsFsI{8QO%}(~+vIjh~RU>j`L#vUa#yVT`kfMiWE}ViT4nhv=qOVNYbLr-eDh4nkr) zo?X2llup8BbeOR!^(+skDT=zbDPHg>;CM&20Mq# zUO($M))15b)wm%{{#U}vP53(`31OZgClCjTFwa=x+7OjzytBP`2+SEQ=1RqMVdvc14LfJo4`$1`fo!o#{~@S4 zTM7Pqclg)3gZ~@-Yu)m%bt|(2tEJJgS{kqpQ?)#Ee z*l0Dl?*;pY%Uy0ZvbV#WYTkw0!KD9ASUGX}TZXSOM(F{0{~pi>`-j^Dw$|Qf=xs53 zK@V;Vvlpac?14i{B5KYZUU3} z!?1D_<_>dym^R4C!9gNS8%}X;h)Np<+xvQ9UVpByKT9X(mC8LqF;EIVFT|3FZBIr+ zm9^iE`92WY64{V?J7Tk!C85}g+J@!fs@sJL#TG(hJR}r~Wy}Lwa;wI zD>vy24p~K*n8-=SK_W~{Hgj!=N=&}q-o#{1q14xrQeV6*3oRa{=3ueR+5ua>(1Oga zTg_W&@mp6eVG8n)kQfgsNI)&td@b^HoPttQqbbZk{sa5V3O@e=>BRF7xgB0_ff;Q6 zja$GBHvfW^jbQT+A<@3%LoKw>y{2*B$)Ec>NCHdMx!j`*E%bJn^xux#!KD9ISUGX} zk%bnz=d>Phl7A2Q0PG)b56~A{=xs53!TWGqn7!b=uyT`L;E*kZ35T3g93;Yo;{n%T zrV@@<+k3#~)c&DW!5a``N$2O`o@?!PwG&&sq*K_-%P}r-?NecnagmT14>`uPu;E&a z`3_9V$S%GOd&&wse>LgEvkUnxKD6D8Dc{2DX2z78VPzwx+$bd4msiY@3m-#&X{?_m zd$9c9VEr`g6)tO;N$M>yi9d;3z$E?$SUGXx^A9S~!gjhmrQF?=`uvsN)HfxGR^*Z9 z2;W>=t{Jw%BtHwcf=PZltlWgW!{i_44|2M2kO=dK3thXg${#w~y8vTBUzWOVnl^>x ziu4D1cTq0&3}xcqQjUlFuQlY(K#FToDt_JD0f4;Y~_=EU^hxG~Ir@I_cT@qVyvn38b%!Y}>%!p~tR zar?qswd};&AhSRG3^$0`AASleH|Y-!Sw@(s$O*?mB1}|{bZv-AR4!}pQ5l<5s=e{7 zWcI0O46}B++Hs?2CD2{%!qC{9W=T3`knvbPuewo~bW9Zz<00wj44SOXFzBRWCfhxhIC>))D98>O4S;s6y12O%+Rp|tZamiB|@ToDTUfWV&R)6OFT1(Q(=E_ z`9^n;*eRck*UhAS0<4@k<;cbn3+Ye!ll~;^6E10ed;jPu0d$TdD46nYC9YGe^kxev;poF0_ z(=*dIJ>5fhPZlr;A_&r;=pc(Ah$6@)in0iTAc!EmD2i+%xFaekilQKVb*rkox|U9# zr)v7%`SJ%B$jnox&adj6bL-ZvtEDE#8p0XAV@g#Er*VnNP%X?*9XASw>tIq=D)}1h zDJSgcLZ+ipsfs&IWxKr;`Bl7aVodomtZc=U%eh2yHG|wAq5NgAev;XP74R18pTl0E zvTocTp?Y8w|0!+(k@$~c<lhPNEaRws(v`dwfJ}PFtFkTzNj)3wNUo0x1e2Ggm4JZqfizw4;-8RC?gD^EKtlSU#$q7EXndxXu zsxx_5sabBvmV5D*iLvEwSlNm#cXEm32+t9FifZ06IRA@TgUwEh^FLspP&td|T)O=> z?Z4se6KTH)E2mC-U9}CW3GugNf{AazBqrj%!=Bme8#|wBeXyx7z-=H>-xyYILfs?z ztNKBt2oDK$*YQQ);VbVtx{}?M-93=Y3=QTp`i7@|c(^*FOWVtby75}7a+D9p`wlNv zJ}lu9lcId6b=ycQXTa2~v~n8kCnxx*#B?+!vV5pnZikjr@Ro_8Wi_m9g_aY!MB?Q` z&07ZNo0v6$<-?7zPpF(5%ZHl%Htp;2_KCEwft6FI-B3Q%JZ2DoE}Zx?uwSUe&GMnv z2b=m+xD7<=kHgAMsC(poRXℑUS^QhY$O9M3xV)Cc8OmYH85eE4|rLG&niO*@W+v z=7wr1$x$Y3!i>jiY&ncnnXn<3m<(k?XWV5Ykn9W7ksVZ9qV|S;i*lyD8`JwuzJnVdc~* zH|&*mkiI0G^hK~wsHDxk(r((H$J-~;{v52_gtkX6SLJ|61s)Qr99Yk{BeERWGuhRI zo@J$CA=|$!Thg9JJk5H6MJ4Azs}8sMX@s&~OH7VJ;R#b&f<%fb<^#ejaTueiP7a1SlNm$FZ)WU=px2XP;_}T z#0vJT^XCaa>&%a_kCzwo%d=W^*|UFQqD#A_#U@!CLk1ee`ehXU_HcI6V2Ah=Ag z_1cIn$HUO9*s=t6lRLH?#&k3!a;>svxgAuSW@jNWe2mRY@t6p9(65XUoX4Fz|p!lVq8_{_7_J+GyRpm z(M%~bRLYDFOT~-0V$%qd;BJb}*bzo}xfiA<``eYzRpL{MWH0ZA{pK76(G5&TLnRkG zI72ywZ)86sXx)joy2ki&OI`VPSXug|C!Z@<`j~GzVs2dXaKru!-Zl~T3$U_u%pdEHNt$xQnumk*<^#c`H)RrywN>jtNF{Bq zdAMnBgtt$my*{kmgtp52t(_yIL+{eDd_G(0i-UxgA8@Tm4ZhF&j^9JLE21Zpy*-KZ zP_D3Ct0InPmSC~TIot@R@HbQjXcZ9~ttF>g9TBONw8VFGsoe8nL1pow9Ua@AI=*^* zVf4nP9Ua5BM{lyr684`*H~E|BxMqLR-|R28-oo8Tv^J}Ts@;N=Q8Szdv$FEYDX^EE zxT7M|(TG%g`ErLGVX|FCXEoj~F{+#hD_c=z1(!&U?kur)(aHEmW(zhSEymZw9-%Ux z%NaLXU%T~Gq_4qSCz8GjR!*JtJhkuAN&A^_+E2k=q0$!b_?bPhi9e28KqUS%Sh)#t zk1QXjXmPV6(t?MCDil8C+YwnPtliCSk(=eErh#jrM_%ITXUbr1rB)?ul0~DEbC6Y! zZQEKyY_XP*93{ertQS~mEr*jT5!T}pO;IFRB1~gFHtK`DVM(&%-XEau&x0Y3AFkKZiF@Wc?Xfxe05JY_19dkpw&> zR6($gZ%1T7uvN0Je$QH7EG^BIJNj1S3IoLzT5a$I>k1Z^oP(`;e9PLPzm&~Xa>YW+ z<%8M}E)r(ftkx2eqds`d7mBJ69_12~p+1D>1bf8 zBF1Ru+cD-9ym?}bc^Ou=V$4fiBDtDjLluxUw;9wI4x%&FqP{hgz)EN;^-YX-{IrhP z{I|pnA@bi0R&K)IBSEMfBLazsgvv3G_zq;5W6n%A$8=}%`F{58Hhu5R5Ikm`1Fo8B znO%I>r|V{GQOuEE27CvWN-r5MF&Wa!^jf!#81pHZmlb0^3H!;3JX+3lG$wM}OwDpT zsC)u%nHW?~g_W(Kax#}lE~&^90&3neIN!po!Kyxs^S5B1P&qfg;#afZru_}PeIo4} zVCB?lH@xCk^O!;Wx8cNp1^b0c+A5$z^*t06R8IY%Dhynx!hC;cY1W`50j zZoHPb9L2=utV38KE(e<`CN|{~lcAWX6Kr&W5q=JY30etfKiFr^K@jc0bTmFyaWJA2 zq_jeoSp9u6 zIZBRS_!3Yh$CF&5X~~gX-kHWaY$TYqhfzRsrl>XXH(?Js8AmTN9gT*3dLC1fjjDR$ zb-Ynx?D#jVY{ia$`bwzSA;wHl?D%C$p-2s;AGUaU8P_b~6`5={e2g8Ol1HuT(xECVn#E3#x@S2@8)M=~7^ zOLYz}SQ?DCBg}DlGw@M5m>%+=c z5LuT?Bv&-ZcY_^#4`-HO^U&gZ2<#6k-^O=?-INc)+a^-pA68DCa>Kj94$>!vlU@P) zgi6|cH`q@urC(<)^T+6;gieE1^P)7(YQF<;D;z*y`m+lMN}GFJ9Z~(zhPosC zY{2@472a|Ls_-+POH6|Bv)LM5VT7c;V5n9|dKc_F=eUUehv{gXs$22}&oy?(4pZ;M z%^`-Vond7wOzq$+p~93HXF*|VUWgSeOnofbFg2}G%H_wjShSk;0J|4+jyb|3TD<5H z)@mc!5phoRWuPL?3NFz!;w1P)rHl932rZYxjI7XdDeNRC=BUbaG$7UKJhTW@vRSnt zaxva4F@#(ID_bFCoJ%BE&CV2$AY6nWW~N}X&?5XG><}tp@wBYLcso_xk2g-_d@rn= zI_J6Sk%No%f5KV+3w8>X^}5DZt|s&PAGiTT-hYFYoACC?>#8&m3Bf}`Es9ipJ0cfF z{x8`#(YkVF`$e?fmZ4$EInD^LIs0zCs9CM$BuA033+qYXZOM*YVlos7J+jwEnQ$yj z%Ss~0z;1E^j}B%!8j|V^9$0F)WW%aZI0|o=7*H0&%2q%*l1n64D9jeQ)=l{=W=vqI za0cuWDrNB+yJo&!ES!cnPh@=xteiUQbyTt7=6!QG@0(z^PO zD>q^8k?mE%Ad-WJgen-e^X-T%7!FK!Euk|%lo=VxXp0H2ur6S+$vM#4c(AH8TFXt2 za^YoP7HUo5B`z@;%7t#xX`@=$Adj+=^G0p`p3fw(qRNRon#y!EBJyBW2}`!CiiLT2 zyTo8J8&EwS*@ibM|lwW4l7k23~`CcP#*NiUKZnD8b6__)fkz)@IvNuB$f1TyHmr(-PvH#{1Ij01Wh=r6-^N~YS=D)>FATs|I ztlWgTN48f5gGde@5~^Sr@a>2!7-l5<$YJV0Zg5bm7Pc**k;ysC+PIRyP1f>~qg2?2 zbpxxd<$zM9!d6^jGL#CPahHuc;V_t!?4YU>-UIu{i8^{G)6sayl>`n-wyKJR1Myag zL1aHz*$N`><`T&j334UD!FLt2B(OqQ4*P@3w{a!GO}UJ>O{6>uE2mDmVI{#q`m5oj zzYP0?O4?jWaMQjVZ=Xo}QdqeOZI7(33ImY}JS0?Mu(@wXWMR;e?B>Op@ix_tKK9~L zu0LDWDumy$o?wy5IoJqW68zq8s2i>2Bu9<#YhNU)MtGJ>Ookd^Rt&7xb)#13E~3Qb zBvQ4)G$w)7Q%>m7KbXTbE>-c+y3u-juhZIi>%{o-rtcU~Gy8Qh1`_+K?*?jfSfker z<~xTo-vRe}cdk&$mI|5t_?gwtQg(2xlpA+2-`KGyzBYDk`tQK)Aku$3tZZc$LEj@a zsO%zwh=+t4gTL?{#xlG7bZVks2Awuo%C6Lp3aG&2)fr%_$F+Qe*LP#QuvrUUj-+ye z?~qbSrNAX7LsIGDeKsP?1u!Wqn~cLwa>9;IV>%iT`R<%RC7V^Zp6B7s5(CM(u(B0M z&gK%y-FnJ*=UjyEWu{;io<;a>*dbKHjqlDi;e03FIFa-1uyX308{VCBvHn{)>lb0C zP+6Pr&NbovC)@xc@8@CVCcHheyDAVwLhz7K1;R4lj>rPx=498U>!0#y_!!GbPCxTw zyHPYsIfq>`A7hD)*D{r(bogJ^A?zMY4mMRf{12Cy45dSzVEtn(%mqdzu^1+3<(VU4 zpE(CXv^Uey_%!<%OAJz4p$dz`aVv-c=nz=h3P1;OiR224W*=j*`Jcip3#>C%!~UW2 zU*pGEoTK1G+!o>}SOF`iJ_^?KF&29yTpvCXu7Q0-9SJQz#^M|eSK;;$N5fZOf0k(og9&Db<#DEv)|PF zGwTBu%$(z|joa*MR%?0AQHT7|mxiiCe$OQ)Lmkp1du@~+vrj;2$#Jii#Ah%GtXy*f zk6vTG(vZk)b~RkGVO4GP;0+TaODC*sMV2XCBDrcqZnJY!-h&x~%}I;$Zm>(JlpD9% zHD$dE-aL`@j<9m-tQ)r3xq0Wpc@M&Fq4GAj*)?U}kDEYbemtz)gtastv){@1 zRc1?It?&x$5h~-xH~X8Bei?6_NctsMId#$vZ}vNBZ(Rzey(N>Fi2C22(dL`|&4_P? zTR0W&>45xC=oshbCNSgEhu~f_K_2HRAxFF54j(o zgOaVP0^wA=Rbmi18CJG}$VprxxdK7%$9M4k7PBOkX*sG?b+8eaXj&a4mqKb^SgKTv z3SmDOmF%Rd5Z(>@$w@nU2h-7*=wDc3#AMT|OxP1|nix`chn206va7Fz3Mpdz1cj9K zL#$w*F1az;!$PL!vn72G_QzQVuo}lXyxMrL!A;git|OX!%$I|TCLiSzO`}PIpD*c* zyKF>~D`8GnB)J0ikrQ=v9@Eiy$a@VA$_gTv;jI#b$R)6{6+|xL63HbBd9UH%`zW&n zn}-(PM__+Y`8M8bxG6t`w@sw{0IZxk<%W9=2kAG%Nxu&Jgi6}H*KpJRH{L#x_CI0e zCbT`Wx+)ArD)5j{_Zq8wJ0kBjo=)~&qieL7U$vaQ!`HYDxmN{^NzP$b{cy|ov+%cm zYxZi1$Wa))i}fM!HshUKVlos4J+jwEZIFRES-Iml*iBB<(cw%-Ln1de)o{s%)jh^X z@P>(@qLm|oJm^b8-C5qx zB_=}x>EeAh(#Kz6Qdau-3+yB(?C2LvM*|{X?iHx4+x! z-0LE|=@>c}Ey5cy39OEy5^j9Cw+ZL<@y3aq*M*f+=iKmeuZ#5|;j9mWokC@8zTDe{ z_x`v6MBe+r%1wBCWOr2{h=kxFp$de1eFKy%5S~nS;kmPv9T@A+YPXkX!6Vf<%&H%1 zd3!mOEo4iX{5x{XS1lSGEA&@#MRs1zqWC}AnIzd#ZX{c%u>T={Zjm%r%S4XS;0)iv zq)LO+xWr^A4Z20AjoRQkn30t^z6N{Ai8;EE>1agcE?5amwyW+ezlyg@3?g5Km8~Fh zIhRPTIFP$wos6GkwqTXI#rWs2N2rV&cfmFz{ZqVkBIzH)%BhoX*ahpP-MKuN_7o;D z5w)N_qs?8g&4_p477&U5ccO@UWOr2{h_v7#p$ddkd^;iwgy)hy9*pgR&8*bQg9G4! z>WnFEd@{{V)>4wANZ1!1sxpMAB4KYXF&T;kwhK11(kKyzVNO>1$ihByqK-bmbTl6I zU9fCy$yQZ?uoQ2V7)1JDWh-qQ%O#R45bC>NExzY7O9IP-&%*wo@@;%F&8MS9`O|pY zM9NiIId#enPo^C+`JQmncfmfPk~W`AyJ_Enw@;*f8?4-fwntW1g@H%~9ulfB*u%FY zvM|^=*(cL;%A=W5IXAefqpy-Jl#3;;NLXtH8l0TttvcLt4Z-(~+M4+_>$Uvks2ASw z#iQzl*SN%Fs2AoMy*EmSx4`t|oKo9kw_p+zaW685>1b%GVy)8XfL%o_zzrZqoQ+{+ zE8=XxC6cQm*59X8%B)&sIL)B`K4w&4L2(4^8t1f+Z0Z~FW2&9qu-PAqn?YoMFsz(9 z`;FBZoSf9_50nI7Bk>kWdxJtG+2s zRvgbJTXFOhvMVc@L3XIUR%(0~9=6UgS6$k+QbXCTWim&R@g3ixrHYJOxWr^AGJ5O% zHWJNqFfpsVcm{Tq6MFOz)6t;Fw{PmE+kxdNylG-!c^p=@0?W_1L~@12T#=FM?lMTv zTp3(aOlJ}kQApaPMImW)z~}1C}fxu1vOom{rOY28ttW!D6g`nNdZof=8`$ z$PtbV#rM<;vujps>B><xe2(_;OHDbbi zF6E$PtLky-t9Yx#Ao2>VYz2{*xkPdaLq0Bb@O|4VbRJrK7cz;7xD~PaHa;$OQ{EbH zn@D*}SUGjd4UbD5q>m0K{Xy6#)R}BPE_Ks>Ki)o(_IqLFCbT`Wx+)ArD)5j{_a2Y> z1}Ay%u}iY|9#i{^g-BbsyZ|1i&N0@;!hoBsB_c;*Fz!2`RAF!)mzWfVLEL4dF!&D4 z$x0lzz&>)Kj=sutG#;`r;GkrysxbH#-YPMOd;?atg2)YABJsk&!S@f$60AVC`2H65 z2bFJQVc@3xE4*zY>7_Ju#T{TqZFQC7?Z%&BDMzvSz>f zxL|C(mZltK!;!wjO_dFYbBW1NHq;qvJ}~NtKWu z6&9no8N?to0xMfVDB=>y6&9O{2Z&DB86)7!%(TEt<8s(R)Df_G!v-s7XYA$cOL1d} zGbSx`(bZi@cGh$)%=BE6Uoo}$q@a@sM>=P2z zu1c}LQp#q>qi*(}@ekc6KInPBxVXOZS)Gw9^ykM0vV*yNwmiOMd?8`Yr@<{PU$1ZY z*+u=?{Mb0*27D=ZtYX4>0IE_PIV+o)s;!{daLmVCXH zFAn9{iQw(S!5S#%hDM6Hfp&Idw8Tf%ac$!r>+dpN9cWtv<^D`QJJ2V1FKJ&h+)r)P z=X0Wc!>L>xtkhyzVBiyUXjl;>t8>}X|p{E#=UUZjfkU+ES%J$K?ZM?cyn+Z ztZdyJBu#dj4R)OMA`t9(up^vBxdUuBzaeyTJr{43$n|VkId!fxRQ+kp+q=W@-U<7I zidQ^kQnuT(_jbH(BIR3Q<lTYEA8x@s^2%e+Mg1 z4#IJnW)R-^qrpLX115p3LEwaW0V|!TGVpx7Wg_8uuyX2zyZF7Yf%o8Wya&LppyHj* zC$P9>x7hBBH%nx@H>{jG+Zk%v!2moK4!8vSg9=z=VP(4=ql{qINwuXe^B{~%30ZNQ(ld?O{9DxteiUKF8+ke0DNOO;Ok*mPyvg|Sv;7tX7Dw5 zvqZL6!OE$#ouM8s8i1b(2mBQ54=P|WgO%;}41OGMn@IU*uyX2@d+X0#4an0^4lb~| zm_&ODtXaIks+(>zo{Be3WV{xvoI2xqbw|l(>jvsw!%^=9dxbim#Rmh-9@xaU$1NZd zUj!>RA?~r?Q*9X)+XX!&)Rxgs-^V9%%jgfMCHl!hwu?d@vZEi&ap<=nux!` zQah%l)bh2JvhS!;J4i>lMAIFl$!#y`t#{jqEEmD3JC8@?>|RPs0~Fk9=pQ90ZKle6;5w_s;E;YVL)IvN;xzNcoseJk<}ym?}zxdB$T zBF(j2BDo4;zIahybD2T>x6CB0s<(*$3U&;YxHvl6(FvRTFL5J?+@FS(Q|G>+dNF=Y z?B|{m%zhS=n20LUp6#3PmFp%QvHADnh7kF8!^%zgdz1&N!Vn3>Lqb&;XZsFhSz&CO z?5gIJXt}-saU?ukopGjmbjz}0sFWGVvG>x-E#I@Q|Ky_BS}k8W3W>vghmtBJ4&f3_ z3yI`%%QV(uBbSt6Kvpgpg+1hC9Q83BjYd_xPZd*=jjC0L5xh}i?1*4xD|QU|N~qW& z#!OJ`I4HylwtRV9vaw@M?THBcU}9!4)4zjufAUS%8LZ}U4l=^$i@cwU)a}*=u_L5> z-4~1sDc5m{Nf1)z%0~>f&Ku$7F&LW_ULJ+L#7BU zCdAJRCw?yM7b@}fjYW=HA8hJp<2Defp9w2Bq3)6ORpB5~golJ$-{|%2h+N1Z&|B}fkyHK- z6SH#4Utvc%p-0a$9Sw^7wrbsUJFxr(Z<-ibUVxRY!14z!kzDa0zpYw#mqB{-kE3(b zBE2b-z^Z8~>BeuX);nPH-Uv5<$a{TQId$F*-&U==%wT?aIP*hb$55G@-&U=6!sdPu zZUmA0{;+Zr?jG4+6%Zm(cu1%M;(p(NB@2ktlHH>@wagBw)oO<-JXW0pjd0ejZ|%TM z)-sf%Y&gqzK&i6f3@$Ml%7)Ik%SKH3I?Tz+BiF$`a-xpDz;rYo@Fmj$>#Ts+_b0Q?GtHtz{*W%dt`N07>HEhA)yL`(|m`mEDUnV zt}IMj$xgIdrBwz8!{gK$PTKhLhOk*nMUK+o0N){{N`rm5#AGN9x_F%E}$X zu#=pyqYp714TyYsL!gq)s^TDvH%km8OJQXzko0khh0K(|>fn6XAymSR zFK;yA{8_wlBIi%T%Bgd1czMIc`o3`1_rOk}vNm7dXu|t0+yEl)J7DD|ygjnJDiB0M z@Q_di!rs0ekp;r03GZ3xFOIHaUkTB_csTVFXk2m*G{Og3d{+~g}1`IWGB@-<8Oiew``GB-{of^_8%46Y3sWUlk4_MR-W4!r`^R!eQrRR~9-C%dEmQInt^JwR|n3)prT=!Z%swu=VGy zgr8cz+ai8!QDz|iT+{MwUuOAG-)OOz-=2Nms_l*J(9TBKhpBi^5@}>d)|0-LV;f{r z%4Yib2ckxc`Aj7{UOi@_TWEmYF74R;?b43D{{9K}$v{8*a^r-H4l>c!ucTq)W1v(V zEsj;#QQ17=j23tKgXGVV1j)Ts}{zqADn2} z_&b5@-O~@ZMYm1qrIvx?2sP0upr+l9^itD~W7J0`*x|AESfO1NRw0{VA1Bpj<-||N z*m%mPtg&oX$_|Y6XZu#<*eRDQCf?{$TV{K#%4YjSmkXr=6K(xDVa&nhd@jz7ZS!!s z!g8efncC;s-BSFS+CR$c3-bCWdHu7z{zYD2l-HN!^{?{!H+g+oUjHty|B%;LKbt$>ag%7QY3;?j*SLz=`rcOFZg=H#EWxqw;ELP!cQKvDrTx}A z&gF*a5#}OorJyP{(>i)mTiN;v`xRltJ8>h{xU%&`U3q6%S-PnwpNpe=B|9P=mHrsm zVZayzBc5X*I+XpQ@O%XOClEiYBIMek!asx?LBu}*D@)`0>mEvvd#yOKxL?eS^O^e% z+%JF~BMD{?Y~nBC77&U5306*>_zbo3Z?N9tjNrh&fJwBco)a70 zmF+g=jq$dLlsABtCl6&SeIF4{`B2y&)ETW)c2#Q!<83=BpTD?ct&aH5nUa;N+7E!6 zm^`?xtbI~A?v=1V{BXOH^%&l^6Sqyd1S_Xbc^X?EH)8hH;drlv9YMt_PU(vm^`-07 zP1hB8qeQNk!OD|>>!8W?v2d=B!j1sBvSmPv>mzuhM6M6P%Bgehtv|UnX6@Ra46d}^ zgxx`kAdCcHIH4j)lqoUM8=C@<@6cXH~pXus9<~e zNrAD|HrZ$JR*7Vvf|XMzyHT@EZU*f+X9gG4GnqttimgpK?Pfi(N5FL465`!@i-;_KhWfS3hj}yW(~b>F)$9r%t~!-V$oCj>1_F!JeS9 z7LlEAWR=cSIeP$al}I)ND^CKlb}@EAIN5R76Chbx~*AzC*CZP?d`B~>TJ8kYf1*(zlFnn5%vWYZm)nV_SIW-|Aem{Twrg^B-&G8i(_sYjJK<*4e-W^oae*JsdJuD+ZMOIxyS3! zaLfn8{-Dleu{l85Zc{!0Z<|PYUs!qaP_`aTtPH0-2K&R0vg_GI32&Q7xdtsf1el(o(Bd|xPoagfDtI>KpYCnXx zP9*&RteiUO`Holn4B&5u1AiTM3>CO|@5a#yoBO|UBZ%Dp2`i`0y)%B>(g6MTPX!m< z+cJsv6y0K_i@zf(ou^j1w!vE^lHCecPMz#*?TuFh@iF0ukAhu7oy+rh@Yc+?XYpdZ zc_Qm0Vdd0Wcg8OY8;H*cM|>LW2`XYSi}_2_)+{~+Zlk3ujI&pbQ0x|+@;+EZPLlQ?zzZQ5OU`$XDPVdd0mcg6=(7>suhXS^%y3F zhGUo^fw|!**d0{5;w8Si>Gtj6V!UZ0<0E0^)EUp-uUM#La_r39MKN&+pJH)nV-{y58MhO`Q2dUCgeSmzp5WZy6})t^}`*$ zK}*&T=OkM{bbYXrW2Y_apN>8i99Rz0}oarv#j?=&W@(~^>70pVod;iF20leokh zN`*Ck$|-s_KF^u{a3T6V`}rl5uW(2gwET9H{JBL%_UWc#A(QWm--(r<-5k$Ez3dRm zCG70=D_J+sVE?@x`|m^EWPhUV*}okT?ZE%JBmb$fXlJ$nenhkj|0n-+)`h}5i7le6 z=jw)$Ouxx&!b)5#nSPyj3wbK!9O=<#n2t6^t0JtrdSQpv>u@WGVfAaUvK3YZd5@T= z!m5~B9ug|7uJrAQ46ENwc6GK#o{YuztT*12{f+ek8?nyeHsRk&Qr2pN*b!)7^yQ!e z?Vq^B8Uk%%L8f-}n)O!1y62*ttjIE#NlZkU-obP~Do33Qpa8LPt8_ujyD|B5 zi^O{o4fkI^VIA|h|GHQBBeBw`TNrL+%U?1p0<-1Qyd&XvTz4=XZ5&p`84l9nG9IZN zXiwnn5`*Pqu(A~_1znFwr-G%JFdh;rSboK~BQjWClWef8e}Sx{ul^8>y$RlUzqRS7 z(edgIoo)N}b#2L**{uy`$DP+ktS{INg&bxosIJc?)(}(^3omtcF*^BSZX?#b8)hf_ zt9DfG3A@aRKYBaU(eRibj#HhmtF+y5BZz@#S6JB!JUelT5XZm(tepB7*i7Brv>pc+hmV5`U>8xx!Is9OGe>vq zu`rICLmUg|!OBg>f=3mh3K5ZHJS0>hvaWAOWFhjdWDAjA_Q5IV9-JpxKd>O?9C;JI z2dCi!Sz20iR2@I}MWL#WpK^)GP<1r_s@dx>DXZA{H|!}V?C5!>qfwE2a2lY=w$;te zKk>GSG3D>DvK3SQ$|aJkG2|W`_WCQ*gszFYg-qXey*^5yn1ZgS{Tf+Sv}A` z`Ft@`VJomJ+B@$Cd2l+eecdQ!SB|!GVh@!v138wY$E)q@#PF)oB5R<16E0VlS*U$| z$PaK3?Mrj{Y>9zx-;B<;JtmD52Uu8bUk?hILV0YYovFHzU0KNtR^pJ+zQG!&(WN;y zAKEvT%DDo|4#RDWO6Ac^shk^J)mO+SM-hrE7QUhkCGyX5tI@_M(t-XpKym)Cpc^*(w1fxO-?uRoO62julZ zdHs>RJ|wRX%j^Hi>m%~|V|o3Fygn+gKb6;?$?IeMnngFtU&nrJY-!V*M2~yKH6KPZ zy>@G1tarS@?7-HZtyQkqcvr%=YJ7$1Xg7`3nf$>?&2oE<<5j$6;u^;*u(Gwrku>4X z46B_Cx^Fu#nC?O*F%fH+HeGStP;9kLc5A#HY%t29>U;scM$n zbN5NSWg_99!^)`>o~^B+8klE%Hn_OzVG`{ruEaS%n)x>CPP};{>nX5u>a08CWo!fS zZsCY`fjvQ;$s$hk#dj-C?})cbB)c7~oI2Sa`2fLyI~WePA9e;6?hJnGTYK_h@jV`I zn8i|-B6|+rDv|7`VCB@wc8lj`2HWq2v;8jY z3o2XjdXaqIXVLu*-Y${uEwFOxbf>XrmIm6tgrj`{b_5lzJOPzGXtlWh0dJJZ^|!Ec z>Re|Is)xk}-;F*OTr;oFB-&Fmi%%5pyCy)RyE6Q!e78!CKA37R!*I87vCUc;QhaFyg!0nLB%U(uh`dQ zMdlyk%@Wz(2P>z}wny&GGU&b*PWM&V8C1GrEu*%n%;NhB-Y}8x%dm3le7pF@ID_uO z@!+a?YbMd2s#(lkv7gUkyCvQ%k?m%%a_Ve5<2{K6+7E`KeLw68>ckcGGT%vQk$o@T zDv|7AuyX2TyTxu$gYCz|*?tW61(mH>r;@u^ExI4Y+a=On1uLgcw=>>}Yq0%#INR%B zPf*#4dCT_?TV%h6w@M`YRaiN7vfW}2w88cl;cTCTeL-a_=B?bjZPEQX-Y${uPhsWM z>Gsz5pBsRC&JV7qI+;X!>M60is&2Y{uR8^An#i~VR!*I9kKF!m5Z)!6@Q$!Es8d+n z57pjVu;%b~c*8`#{|hUp&bKpu_rieN9}f3;*b`K^BKPt)Ml7;R@K%XrKMX6UPIj*G z){6o8GvScWft^ByEKXcDI$%fYPvHg-d4CdCPMvobfAz?q{M~TM-+^60r7Tu9#2ZuA zT)qWwmdN&7uyX2bJL9*$474wVqx}Qy2`X9g7psj?N9XnLedaxW~-Gkb4@m&0Iavajmg z*Z08ga&nK}$#gU{RdGC**#o;kI1smh7;5%|m90?oZeIx%YQ$&?3N@RDSi#<~Juul1 zrFDuRqn*!mHtPcRj;(W?RX^DB1#~RFNK>_;>xe36`Vvr4<#aAF38G53=(7<^Zh!$< zvE*9VNlwPm#Y{&7BG0RrtYo|Db;_&pc8L+>N?6&7AXoTGs0boPPEZ8-c!(7&f>gbV z6^}Rg`6+Lm`)8Nu`t<_kFRTX>5kL-V89-Vc@HQZf(?+NxWW3<(auqWE;47i3)Zh9_ z$SUKhP39m^rwmtwzCm%=*A`bR90yG;u6Ut{&~;bd1EY z2h7Jx9J|3zawm?3Oh*G!70VZ5P+56n7ra?w-q;aVw(`byTp~HPGsPMGF2Xrx3Kn`T z!h^6wsD#Ca^#9j5ouZCNkaxR!*JqY?VoE z&hHQB{9f24RL3wQs)q>E}q~zfE%i19!DW?uJ15Xg}~WdVlos0opG0qO5j^C9V=IS1NM;< zaCAA-(RftF<8Ka1wyH{j8}L?%q2pRu*$N$3bBW|iff?%N+Ti;uW(ih>TYP^B`-94N zcEgtk-ISlk+a^+e0#;6)@*I^-9W!~>MZu(dnZ!g?efCUV$N09On|3$eK9Tk`Sh)#p zk6fr9yEmpU;gG$}v=$9mrmtXoClGrCk4T zKFgMTT0dOE43-~OIBJ4jJX*|^%f&+D+4Lu{!4scNUy|3dyjJ9Oj9=li-3QpOC3&`c zZ+-L_HOd*xkiZ({G~So+!`+W%I$AiW%2R~v17GF^RfwK~H%&}ht6^m;X(i3LbE&<< z_9oViK)g4?o^Ym&$i^#fF=DIj)rsrzR*7VugATfx?L1E4IUEec5#2-AS7=WkMw$o z?7OLO%3@ZipFV!-`0DYfYXMugUImX%=g_L|-?B(=wWF{c-$G2!6#9pYr9x&TJMOqo zT<$w+)O}*vS3)5l^_7sw*Yes&>i@Z5b~s}P`(k4;zr%pW{>lkre@sjE*rq~eZ_V6R z1L6u_6ly?R#wFIUaB%dY9Ua@oGiG7*#-<$|!?#CovdfZjk2$#JPjk&s9XE2w4`EU= zTB>(k?t?w$oaoWFn2tuJD%O~l?RE)x58gI0jobw*TWRDDE|J`mgn8mgg7TNa`W0qR z;LY62uve(8#rsTV4{YKu;T8~y{~1B6=j`Wg9nUq<3^aBRa#yTyUZC1 zqDz>LHifGj@WkW7D2-4L39iA7Am*K`U}Y=se1%ISS7UB0Dl~`V4EoP7!vc%Vr(pL` z=`U#5yyEDJU3)x^n?f7|KZBK19|N1Is?*^-V;oGsBzPQjF^P#NKkX>6rBQx5x?_)p zskk}Bv9K1b++-|x6p^Y96-mZJLKPyP@Ez2$5IJmGq8nd(7gsWsT)C3#&*ZgrtoOi! z*BODThqWv}T9u;Z1`D-J<|sxF^c_a3(AbYltfA0o&z_e|OFuREq2t#0z2V%B+HsOe@@3*9r2$wLg8(R4z9=#di*5$!pPF z2XB{1cMhyPIq2pJ2HgY0>Fx*nf;w>(T~-oWbl;7)OQgFeteiUC-uf+*0k|9vcocRA z6|mSJTsPfjJc2h(WE{cDsWa{tcdQ2B%fkU*3j2ZzSj=E~r)|yPi}7}ebT5FF)2Ay| z3k%TPyvgT=bGjA489s~nMn9bSh)#dk6j3ABZGK|?IEEy zGQ8V&Ax>^&IL2#3t@jH#J&UuMQvYzSFr;l`_zOHrokMH_cGQ;Z_Gu4E9Ge(k@Et;G z6T=_4M8caGD9=!9PH6pTzV?%g#tNm(@@$@ct7jm)ay%3Dp1wAFQRs+h?q%_l!A!Ir z`|m^EWPhUV*}okT?ZE%JBmb$fXy+|D*#Fyw|C7I*H zWvI=quzfv4gY27klwDoA<55ln#RMA3=7z?r#WwqlH8R{+Ddl3{6$@KSzoq*?2yWwz<(&| z^0^bUeU-8PW$~QOwYkY8}(S zr*=n0)>OHeU!HCMgd52$%l4I*5A+p^g}y>|h;3$%n{D?%9Er!_%D(K%(e^uYq&Sde z8%NoUZubZo8Ov94qN$NKk9*OS>RP+o8_ksBU{#M)?apz0_{T{uQy3b{XA+om@gx|` z=h%Q;)@F8u2QkJbC@Bynaqz$K~~WdHuY+ULda*%Iih)da=BIL0&K6S9rU1h5cHRi#9#-uEIM+!co3dDx)6BOQ<^F^>Ph|Z(teiUQ&UhujK)m4cV8k0UiHX=-k?rk@o2JUxjlCez*{B~-WOI*o$xev-($dC z84h<0b_5l!{0JPoS+izt32&6hwFoPx&y}sn8CcnDU-8DIE5Vus^7<#W~r^cAN6`c-utE*TBlDQ|^qPY8!l? z3+MX`>UZkp< zZqME>ylEoisjzbTjO$xC492^MGu{<;2XzVy#&y$e#yjCn6B%z0E2qwQdTsBFfp{n! z@c`@%Dq^vwU9;RKoWWZr5u3?-hfH8v)ZnkZZn>bH%(+b4^~c{@f>}R zssZ}oaL@<9KB3O#b@&pPZof@?U%Y)H?Y&{;^l9rmgbmtb;j~MzPcYiL{Wk3)-ae6b z9#&4B_B?Zcw!!;~aNd`}UZL_9&#BEG*u*cvEg%xV2v$y=`1IQTc!TsK;iMmey+I`{ zYOZE6D z?}QkrxBW_R1-=cFXio($c5iFu+pM?3nM2@R3skrQ#?%&BFKs{5|j(bq=uV(XC%P%&f|m%B>HQ z;6JuVS*yJ_<~S_nF5dyA4okU%ORV9rl*B#&-&^mu5lemtbCT0WegFN}u%n!)qn|Jx z4N6r!G_9L%CyQtCritO?7qGGwPM+iv$$gr0uJ|-(-CYLhc~=IPgtM8%M3jU!>2-Pa zZ*;)sJp(s@$h!wtPM!CB^%>4)%=Zpwz6b0W>g*Opp`#Nv_uX(Kh}?I9m78$)$oZ;l z5Q)M=LX{1-`35XmHayXl=qER49G)rUM%kedl^i=^=JfGX$5)R>{Aj|H;W6tRaMiwthP?1ogLduX=$mL8R(Ba zS02ucX4z3>t5!`PBGx+}L`dvWkhjQ#B3N6IOT{?tc`%d?r4IhHGrYooJ9Gi>m- zGkw)IW(@La()v_Re}~mtsy#|9_ASr$Qw~E6Z*r`VT=!U~`Wg;rYkk&ZK=;Nf?1<@N zVW>|G#MYnJ_HV0Htn9`nZtL^({F^8j2P=J*;Zn9d%m!opt%SBFh6+2JbG#b0aq`A3 zBnGHb9PMKTXghCv*bU=I--+2$kp;bWCR8?Elc;cNQK9wep8jKctdL`cdLKJ3tDNm0 z6UV={v!Ys_K#{Oq6bTLIL0-WYNaFJ#zbvm`k=HBb^{euFmAqapuV0hbYvlD>dA&|v zub0;wfo$`8@ zynat!@0QnlygtaU@VS%cvtLW{+{qbg)yQ~;@g}n* z@KD0nd1u0po;-)?XlsI1@qUQ1-CoB2H{LdJ8T+5GvbBtzH061jvc6_#uzvejgIRCO zBqri{mCai0J~ew_6W<26fJl5RSUGj#GcxscQ-k#};jE8>{o#CU5ZSEdysq1BQ(la> zO{9DztUP%r?_i!cdPX?q(_nx2QD!Ud(vfQK(kXb`M9QmS<;g>NN0ahR;goNL{ozNM zJ@2q6Uyrvp(8oI3GYjZe)C z+B2^TuE?e{iS|@v;{Aa}>uu6qcE*kC*q&UgU!2$iv%#|_roq%(NyMAFB>%BhoHk1hIH&+851 zFR||{#@J&BKfmn<$}5Q-wFGI%34Hlx!*%NP~BnO zj<-vsdn>Fw8R*74Rt&l?hSU8M>b_^upbGh`w;94oG#nbYSDcFZ7D}n0;TI- z-&l>eOQd@uteiUCsk!Zpd3$3x+3R6HP|0@jHE8zAh&5-g!P_KKy$V)Nooa9Wr56M4 zGvRQbg55!dE3$6gber+xc+*72KZBK1XUxv+7H=FGh^Jo@Tv&B6iS`s$wR5}WyHeIH zo{G0jB)k@^oI2rY>}@Xt?yli*cY+;3oxkFH!tpC=7T4|ZMu}V(!OE#~omG4F&2iT| z5Dqv4dxQ#DJo9g~-X?t<-a3)=M_}dDNv~h?mG+XOF{jT9M}98s8Y*(}^%Q3}Z1!j4 zW)Rt*2`i`0eooD4;=M8h`kmp>Z-;$Cg)UCy*X_4y--@?Sr2TDJId$6gnXbL>Ye4@~ zIP~XX*HEGBGhOS3&Hi_|8ASHKhLuxiKW9{X@!EjC!L`Bl_VkNmg_Yc^kmw@M`Y zd007hvU80CHw?%Rg+qP-b_x};IB3`CfIX9cfEz&M{e4(Db>3b4%oBt1zr!j26Ltla zvdGNhs1|E3{~d3Z$o8+Wa_VensKaIqz}s9GTwia+B-&G7i+9qM?e+}b9B-RQc~e+9 zb;`Z)Iz=8B_WCaMIVnexZ_HpWiCmeXyxth1)=+{uNj`b?V*XoH2v+ zQ{ki^hkZdME#|a5A5A(?t&02%Z(RJ?tTMKWO zNcWA2qU-UE3H6x@@qq#l3H6zZG2esATmWJYcJ^NsP?e0ldw|=3zf3=iHZZ^A?l1C)k9hy3fk%u74d+}Z z_JhZ!j1TJj6z}$xQ26)sm5}%|UicUK^6%cSl(oN5Qko$A?+M3WGp`l>qOac-{XCaQ z{OcsG54i7_PH6eXklGI}TAF7sR%+l)+9)U&eYg!SV&2d7$DaWywn2PZCRfgu`j%$P9&e^FkS&ajWJ{R}8@}xz z&%m=bnDy-tA1&rrEzjh~tH-usSe4ipKG=s*`bWpB?Fda$p6!vz3}*UwXloxT?6Vtf zbWw$U(WM>JOu9&ZVwP}rJ3ju|!fL*+9-Uf$gVe8uG0K->aOtr^xmc>OSXa&tjbsZf zQe@)~VzvId!$dTdORA;v*hqVZ*YaX%X|7yL6b+}3f1VXU@#*6i$m@mjdXc;(EZnu(Gw{rz7w`p&Iw@;+K09H<&_RQf-{r1p6{ef`Q?}HseozipoqnHNcZO%vFjT1Q^ z3M;41xkuK)2IEu18J`S0gUVQ(Z&WMbr3=+ln3M2^iF{YW%Bk~Ru%?9)1Nsf&(65C( zM1{TupV({ajXl$^#;qZagezg?)JMW>Z2`+b|8zL|Ct#OQ(Th{-H1loNkKxS|Sw9LZ zr_OpEYbDX(-Tn38a%~!uXivE&cBETfu$ixon?Pj#=Kp`pXErSB8nkx~r@aI2>h4^j zk}Vb3Qtg@5&Qf-8tdtvf+=PjWt-*Mk^E>dyiJadKE2loUd*tf6!FXvn<389K)Cevr zw%TI>=|WYp9g82SVP*clk#+LIZJ?^$@mM80Rh%Bl11tv_Qj z2;UJ-_%_%bRKjAna@}-0M&FD#O=Nr%teiUIxyFM&gY+N6N&g;p3YD~2{Wdya^ZpHP z0Fn1|uyX3WYje6%GDxp?V{o0l4wGn4ovqDj_PE%J+jH=yiHv8$%9Dq2#bCT&IOBK2 z?x4BR>gt2^G00)iv{N)+_Pm ziLA$9-V{_X8;bXhJS5cHW;x$Ibn-JL(Cw5gq5uflJr=Z#%7B_e6w!`6W@eMOvDX=O4-4n|9@r7ioE$ad8pl_Q>w$QqM6Ub6%1yX>lxwQu6B*w_LREa< z@(nz);(Kvgq7~o#%s^(e!d^`7V6XG8?C2XU7V|p}XlG5F4G&i5NF%(gn$N7tmRi>r z;>Q-%ERPMZ*{$UyM^$*H?=VwU;ptpr4OL-c#Y3H4g9nU2a|6syPOC#tXT@t*T*h7t zyUd9{x|r!`c&Z!llEH=13OrZiMi2wfm9VlEc&^|QP4C7gylC8bpHeBa$~FEC`cE^% z0t?0`VE0hzFW~f>cEwIUkKv{e$H1eoa_VDXGj=XeC6g;;ON4RIeN*r_n8qX~qKveo zfVgp3V|VPaur_WEaV)$!QDecQicp1!NHQK0su20OZ%1Sya%r+lPraGtL(cN!Ab9XP zBT)62mdh$&`LTS6T6OFXk5(C9RMoK$mzWGy#|#EacHBre5ll*UQxzLSu&11`qobIP zUTlc-ik0nlOc}u2CdQNutZe0%0 z2~|Jr<=YWiKWvcfLPpnOcH|H{k4{^$IfgSfJ=& z7Grg`96qX4_%8>yhEkzDkFEM!`bheq^$U7DO#8{^iJ%q zzR_MSOgVD(Wxj(-po3Qt&0aO_wl7@$b zDkCoP9mMkHemL2$AWS==SQ^pyq#g$kSLax(9@z4>wbiYCf!n5KB}cLF5#OPsiiM-O z#2Si)_T1QisHKOv2U_0N^PgI@G*jsx?u-9@ygISUL#5)_s8nu!s5@eFj(_5$KP$ys zKS@Hw^V@UTOg?uaJL-OdwRdRLZhaIwWOuPYlkY2K%cJZIFl};;z$skQu-W(HY$C+# zGpEVxC*<{Xc|Aj3KPj(g@+-WKGsb=`$@8dZsJUU(WM5#G1lD91^3H^>-;6LFE!I`V zlQm_#osiGR+a@OD&%(-9LQb5ric<#VAF|E_QoaxNhchci%_u9|ZOZrHZ4)Wq1uLgc zdA61_4A8HHgMJxy2^F+>^-D9~X8jW0JdyREVdd0W&uUEJ2I?(u4xZDSF^P$|tFq^` zIHjS{dYkkncqOEA!pf!tIsBKx?YzB2YaJWQQqta?z( zb)Qx%V|ihmcDv|U8vC8^;89CszvdE&FO9X{^CDc(a&1if*rH*!MJU^s9a)+kV4o)( z>Wlw3WlacdWo#+?ETz!?U`xoD_A>UN%iQwu>QNJ{%ZgNCaNk4=7vtT`xpKK!Xj2O{ z^+G-`TUau|eJGCo#v;5)*Nc_b=uiE!Vu@o&ls+UNrU$X!g;?B_J=b^M>cP<8mnx#DIbBiO{9D%teiUKZjrDI!l#B4 zJ{k4}m2fYAyFn&e=|HuI?j*cjBHfj+a_V$@WJ)yf-Vl!WTG$y>ymF7EtamKFSK|#6 z`CbVtr_Og?-l*OT&`*bheggIi6|{Iu$?Sn0uOGuLAQFERR!*O|SxpG4V}T-F}<)JMi|2wBHUZ zr$4{VdrgD)(s15=uvf5%ZuYPWHR; zWj3$9fHmbdv`}`Az-o5FBT=Q%_L}M1Aa}%}4%Qv4XqSUc#i9Rl%#$Dv#Q+^XFrv^l zFhDB`Z3R2cIR>J6Oh*G$-B?B;S3m4}Xmi{SVhq|8R<>f$M!pg%28ods6odW~7=vC+ zHU`y?ChX{|pX;=}eyn7c`4xL=;v9VKJ65uGRuHpW8{CfQv($HtsOZzjC7MQ`g~^pc zb#^g2e$vzS14isQ6J}?{p3`BMIq^porla98kCjxNumjJ>aU+O<=VP$46?i_%C6eQA z9xJIFXVCvPGYp%#7X5F+?xE6m9xJK3Vvm8Z4>SMrltfX?DF%EtmJ`SFR zT|^xRO^=mS-Lc2QFK}~+W8q0yxye}Ys3KG$B9e@Ugj$$6*0&>aVdiMB4RRi5=<@F? zOg%hX$!PaITYLu%Ud|C$J)q@%PpjQ=Be7{(>T*;T3z)fq_ca^)N+{?X_)19VdnQ|b zPR$MUS2XH}PZ0IREvbXYjl_nw8Uu&;dS6wS2XTqXP+fM$Y>Y%Q3e&L)iV@gH&S@PT z%XBmz)gFE;%SV)KRV|)Hc&o&GF$61H`C@=eBv(JqkjHY^d@p5|1Qv`J!~UT16&t3M z?RHgg0p2!|@;I!VI^{VHhj7@W9}FjbKkO4KY4JE#x8J6HFWx?p_T8{@6WSgHoT>pu zD)5j{<-q>F9g*e0N0WUxr;ZliL0^LExgCv5&Y?y)v;nIMYPTrNTrC$l>cdXfg~0l7 z3YVA+wL$%8@g2+sr?2>)XxZ~ej4l< zD)nYZi@V65f?Gi(zZzCjku zs}b;`ukY0e_!F0y3{~PZ)?;G1a5r;ybA^CaX%A zg*Qsf6}_;sl`FcrL~?auuULbz>F&b}!NRRYcQ4o-RJybH@?hO`oAJBwriqN-2`i`0 zc(z)7u{jsQIWL13O7~zi6r15p~`^geN&Mv1HS0> z{BWUf@i$}fXr@%oZk~xhxv4!;x*i^_&Y@O4yk$Mm>Oo?eo7g8z)N+rb7`(=JAgNN| zDlV~xQlLHO&=y)cs?iZGkKAbd;YGP}AMvq0$pxs$q7(O1(hn+$l58?|vb_b+W)ick};wBJ@e;QU!op^6E*7t?8 zz6W*(m9_Y`R-@?_<-734iInevm77rZSguej9^zitLqe^1e8snnl`9^@$*y?x43vta z#j%R6!I3>QBKs+I!s4{QWcBkb<^!KVGF!zVmMg7g%1yX?l|$p zUN$IewG8Db8@}s1pj6rL9WF5`%7%Ksjll97n3GjDJO?|1a@7*-$s#4kypx zO%ub(Q?RlXP9EnHiI)v^cNwJT+!b6l%w!T+B~2yWST@u9haQDdhs%#L6!b3up4Y&9PELk?ZnQYmx z*|JQooGo?qEzPnIndCeA2C^mgRD7VLZv}fyTwI|Q6CX8(@#?)hI+lz_9}|~T#pN_{ zIh|jeW3XCm`OLe&l;wx_wcJHe`@uz`AF>;@Uer3FrL$U%QSB*Z2eYMYp+7qwbuH-V zh*lYcuyy~$Ags>qFOH06`YU~GML9E6%8U+6#pPUaGE^Q5*5n`~Tzv`VEd9`x&sEql zjCtAnFT(zGj+f|crlTROZozMF*VLt2@H&V6uAut`+?q88ukpI_g|M>pS5H1yW=C{Y zvLn)C=X0gxYL$iRZgEY{G{(n|nU#$zAJlmg-B5Sg!?4S!L*s3HXwdp)50VFQyNHA2 zepp#%xF6J=CPs%!PgK8GdzX&o^XyQ&c(`ei3D=60Ic47-{fGZz^yX9+a~B`l(Xs8R zRGQq#FaQ->#b!r3&|VU>7-Y zMw>Am4TpS#AjTvcRb2iTZ{s&gJ;>BCJMAMn%u_t%yEtlFGrurR z%QlYW|A4Q@Rr3Dqy-NNRStaLH%Q5H z;QPt00$CY@~#PD$itZapk%eX{xrGeZ|S9g~|`Uz$Z zR+C$#AA_AjCEfU3yxswu_oKK0MBb0U%Bk~icrIRdnZbP8J;BV^W)c%o5!$ocd@f$^ zgw6d;m`;_*{dHKm33rbiugV0GC_E%oneZ{+j>t0Mx`cP(XIHUr$>np)^o4`{;Q{N6 zFx8JZ%Y>Dq?BRR-)F6|8NA1D3a|xm02N%_Ta1pau7_22JN9C{&JZ0pVQkBDATw*d* z4%2JhHbTn~Ov*|p1F)Z*u%pFHM`Kc*$)8cyEVtuH25*@dPmY6?t$6YgE|FZ_Fh|^! z*SuwL9%t4BmJR2@KB00JCm!qe+qBQc+b7aK8&*!8_PXk(yb1BU!-?Ms`-Mt;ePj1Q ztq(T!+i@F+)Nh5An^5;i_^M_QDZ)cS)eP_Q?TD-y4)Qvu(tCr!IwSE0x)s^n&@lS| z#fBm=TW&MRAIZ!L ztS}CTo#UMNkxhORo^P6T#O8kpZU~Y8L9lY_{5MslMyoNfI(!VA2s?;61~xZp4y!Zv zI9P!jLmUScSh>kK@TeSA@gWk6hlDCV{^gtAWbtuKvfCV{m5O5p{qq`kz=PH~;;Q>Q z%MJQ22Vt3(u^i>ZZN39Xl@m8}iOEn-bn!kLiR4+BhgCxS0(O!UY4jteqXDT-=RriE zlFh0u4o~9E62ryMVPz{^{FF;1S2oNP+15pP#=XI%LJyOeh$7J@EKZYYFy2lJop|F! z&QoCJ)H%;p<$;U!ZsDwVft^B~&Ek2L(E*$Hj<^9t-rK>-O?Z3ca8(9~gy12e%7B}E z1C%TS_DS}+#q?6PKQ~$`_Oq9;P9Klos}TD>SHh#!In=7}39SW`d0PH)6a-_wLr4__ zB`z@;3W6Dmi%}JP0VX47irV>jA?zt9+~|``N24M?t)*?tSlXg{W-QK^a>&j#b|$nrkCabjdS0#>#n%b~s!Dzb<%6ckzB z7Geea_QLdpZ$v7Y!f<)Glq)RLZbUxMx`CBI&S6&VZy8wFc^tXr{1lOL%S}`bKf9>G zaBUnrqRZ!enW*UU87|Q@x+M5k_6*f=Bf8uMGqa-0&9JAO*rO|%jz&e^qA1(#;Bph* zHZi!|2rFB`<$5lWToRGDD9T?3>)$hbu=#1R{tfIED(l8u6x9Qp_;a`gMB>lD%Bd4? zxJ6MuGpMiggJ9}&m;_d7QK_4^D5@7W`I)#CMDo*N9#m@g2hQ z7Ujpu?yBk@EtYffm%6kv;{EV|b&j^`LC!LQ{%o^uoR*XvrNVoChmR^14&xG&p;VY& z>$VX_#$YN|@+iT6a)OOAOh;oPH(l2(w?jt}ZWdq>AL1IgZLxi#29Pf31$SI^sWTI_*>TNY)86x)VL#t-Cz7v{GU> z@>-oR>wYv+IR{;EolrMU%Snzpp_dtqmC@4cs!r(U5|g4%sCCx7!+b_{tN-ZC+UEQFP<7_v2&NW4y{dCTB@9J3~{PWTAy6DsG%I-zF2 zP5WrPeIo4-!pf=BZm1J#9y5ra9ZvjA*e_J#W}Q&$gH8Q(+y)}`kHgAMsCy)NRVRoP z;US^wglWDVk>$ZRlYJgBtx_5*^lP=jgRBQwbaD=~;Qi6UGA#)?3WNK7{jCavd%479 zC=9xIpN-h@7np}t6}$jD$%!<2lIdtb=!fWxvk0%xB(VCJO1N=$mCIe_g0ykO9Mvn5}G~WTG%7at5#AGNBI^!-I)xpgar?qw%Qr z@VBQpDA}qi4!(@HN(>^G!^&0=xs*#JR~*a`?;kn%{+wBYRpS=lpThp2@}1rAnzftq zkMXvNlpltbQ>Q#fy?NvyJ>`L5(j81Va?nft8!k_Q>k0 zFc7K0LqZh>t9?5n3xgMuEeyKYnXtM3Y+0)f_Jv2PGoVyI+_E;Po#NKAFsS|DqME&0 zB61W4d&5&j4k%R^?7=0P76!>>j~>}+qcq6En5@*X6!wynbo4%^qYk zgFd`rV%|6wR<-7ecIHapdr1E0S5_i;T`Mv35QZfC6cQ}H&pkCn%fNOM=`Uo)NfH=3_FKPU7Q}*q$4)}BXL8B z{11nfoACEY5Gu!rK;j{x?t1?lm}AyUcGKMK;mpWLt}x_GGUvlX*E#O0nKmRDY4;jG z@ZIqF)X(~kFO_9J%_Sy7mYJh>-Uv9i!qlvQ^KIB$PVmuJn2w%i#Oj)Eza3}3iMLOT zGhc_5tvGWXmq;$pY^1`o?l*(`@0eYIiRRa^cc|Pq<%=NAdSZ`&XK_o2Bj6XXa+49@ zktS585y8YmLS>q&Z%1M)*xk&w$-c%lg)NF`Ya(y?5jtL-gDv>$+p%3*kaFClY{6^| zyh&NWB_>1qn8tc+#Eyet7FN#KA9j%wXS5^J(QwGGZ^xKqqiXSVAG}dwnAi(ew!*}_ zxI}V^LVkVQrdwf#1ZIX4V0TdIHhz8E$+&4raXjVl5vcok=<2+AQFOy zgu2z(&9@`+R^#bpR~V-kitMv{*%QW$qwn8f-M}J~bEs7hc0R_U9~H&Slh$eJ$59Ww z=IeM>54_4HCPO{YTkp4#F}8RZLU zUNhz=g){$u)O~q?Tt)Tu1hSGqNC-!ef`Fp%13^U)6j5YX1VKSilpREIgRfq_>aJJIo4Kc|=e_>?!-&AC zTlbv4_f)-l^;W})p>n>N_BgUJ36u9hJP0E1Wf(bzcZVh~eL~nM93Z4mc-ysI37_zX zWY1?$sP>h!mA+Cz{aW7buwboft1Y+Mgl4=4D&tmqmBm2Z>MAX1Aa3RmEny%U^VZtR z(=cO3TX_;rl$G@SFBpzOiZBq3(9Oc~TYP9@VR;NjHVVtb93pW8(MXrZ^m@PcHW1?& zL^G_S$#m2}G$vs3JsJ;y$oD81Id#4x2BMKNjq~08Io}0N4E5Ko8;HgvOy1|?K@fSL z3nRzy?$G_Efe0Ig1B5gXH@OxpVIY|1JjYPIP z3}0zo7C%vORhsk@1013i{KV7_;kg9n&#)C2!TGXEAb%FaQMjpvUqH}jU{;+k z;Smt4&KF>0qw0K)LnP-eHVaqxde$`Ff5xKn+@<&_oEs|dTSP9P(C1;Y{}Vh8BKtpr zkyB@XhTN>sGp8xwEq?{P4(ErefUUGW3w@0r*ADhVX8W=fsmLqpmS(yHgKhxL4IiWJG-%({} z`&xW_BHLHP$T4g?^lsVy!&cw`A>03K*NKSs|C40f|G09ddqH=$SJ`fOmCXUGNmiNF z4)t^Z_1KiAV=)0Qx#nD&fEPJLE0}-@V%C}unDP+HiTHs?AFu&~z`T-`*8Klit`thd z$>};>Vqj?nCgKAV%f@&Z*(e)hI7D(*U~;%~U}t$h77X^wGg#gmP6?Ie@O>L4d~=1k z2R=NJ>s?{w)VbbB?i1MgUg6JoADk8{-M8eh~(@*@=9DV;GEEWdOf5!(W^85yjoI1~u_aAJ(<{cjP=6YKO(F}WU{+jjo zA7c348V`WT_e>Z$hHr-+E^R>A5F8++4Yqlm;d4_Xg*2M2fZX%owr^-rv zevsiPwA8|m5((aP4rkzl6D!PVFtSl$PUR5EIfsqHm3Sm!8r%QJ0`l|^--pveWjkD4 z8dESi|1KT^k@Fj1TK!bUCZNOS#P>XqB=`&HK0k4@~Ju7Nf8g3l{U(LN?MU z%-|5MU=+p%Q`UOMAutM1T z4w0NS5XTKH{FYfHo}Qot=Yz^`^tgeYwnWoI1;q;|3O{FZXBqQaC46ruE|n zcD66U$0xFV5sVzewnOih?LTY<4iK{aPj{V&X#X!K`=aFNivDWDGi(A_L9%LW1izKZ zLslA*#TY#0%7ZipPjHBqFb2VtHDfU9QIsd~i;>3QT{uTps`IZf9EFeiImAF)VpM4i z{)3N7EF$l~$VL%)n?odS3@rT4_2>6}3<5L9RDPqzfd3o~mUqO*CbGO8jGQ{l5o2Is z`Xl~Kp8)5C%Cv3_>}(&4k56R#C>S}0ZHKNdjX~H793Z4Ic-*x(31e_;vQHY;E0lUG zx!(R#PQ60mE3jCtN~?8^*mH(R;7U`nn1nC8ic6Y=wH%@qOu{5Nam_0H2B8kh~EVXTC6WF<78WjG2S^?ihZC^4$sN2uVV5=+GZjBJ#O zeh!hGEvUcGX!3hCi^S6qTnXoc%CEAIU}gF1_}E02zXl_x&T@1g!DRYTf2JRTb3$d> z*hjFk{Qy2bk?s3oqJER-zV99gh_pwV$u5P(W#H4g~_Tl z!j~Po*wd_Pu2h_tTe)U#&tS1D_=`+oZt$1c$kE2R^?z_~5H$6>qm$V@FykzgB^|;f z4$%q@Vg1O=HKVXA%$Jy_+(lRbr^-rsertxK8inwzVkCIeFU-RSC)SoZFtSlwW^;(- z{6gg1S|n*2` z1>)%mu7lG-WjFc}ax2Hz;6oERz6wT8o#V(y$W5M~^ym4va7w5=>mMPva{U-SJdx{% zVdNOD9lE(R1Yr|!fRKjZ7}tpiL-5mNzYI8rohrzw_vTLjEn1GO8Y65lXV{MNO1{Nh z8Fr63^3Toeu-$qUMm7q`&Kx2+V<4{1u`!%up?F$@9ylRXhND;K#PHmO z4^HIyBp5k$o+DT1*tovPpX)EdNuhGBU!4=f_ZRR0h(p{9GdnKpU2q*u$p8Q*+{{ zVGx)_rt%wolwfChD|~Ds%QIl))LD)^O0fKrkMd{wNH`}{ru9b&cD5Je;}h9l1S7|= z?az3`r1?1=Eu!!Ys+5%OVz5gT4uza zCp5xV8j@xI;CxqMNrP}6hiCXDm9 z;YNI9Vo~`vjBFH@Z*hp^jKYTD`(gELX*@s6qQOkN!Sge4PN+PGEkupqWcw+6d?MRV zz{shyJx#vd7Q^@kzw>5%B7>&I*W=1}3{- zV}W?OfUm&mpt2i1X<+5}%lOblj@QD-sdF4TX<+hvzdz4Ehf_l3SwCrD<@z3ccp}$# z!N@UOJM?VX_QNLN03qA{Lf46iw!b{t8*}-70Y7IN-7lE%BwCTIG8^Ij0v@)~i!9b) zESn1EmW8mSHCUHJw1PF@`vsO$&2wPB#3bcIh1qbPtd!?BV>k*Yk^KVudFJi$k%>iR z7L05Zm39u1oJol67g%`yFpI|1DI5pqgvztNUtnkZXncGk+e=~O)Y;bd3oMME?a%lb za9*g4+x83Wte=L*KxF+?7&(S@hpsP;L)ao5Af$0SeZrj_q7{6?2GOZ&dkHVX>=<6* z1vpn$g7c3t9EF$K6utu)jo#c;cn%+(SWEr@BOA5k_Z%WQzc4M_pO0ot<9p+$&|jm$ z_f!Ufd1xx%VFxkiV6r|LkAcYgBp5k$);E*S8HQl~Ab;lfhjT+^ehckcLv$V{`}^Q= z5ZT`oMvh_Mq4`Vy5Vj5n2mdBcXw3z@DJ{TcgpI;X?Zwd$_6+-e~r zx8%&L-;y)zs}A*laBe+t>Xka5bXAyi79Zyjt>7%CXtURv%~ddOMzgsBPM4MX{1+IG zYA(Xl(%J;fT5}m50I}A56-G8{&BYudIe)Qf*qgPaX{pK$E^d$eR(^)`a9Q-(1s9n7+Au@{>Mwloux zlICJ}4$%tcVjQ2d)?7}4nKGKoGB`jzWldoie0K3@cARoQMxgEF{On$VMSK zhC?K0B*g2KHikdPLh-Z@pM?`bWjOjeWem@s!3QVud?t*XI?s{UDQ#Te?$7nDa8jsT z>#tMB@O?8L0Fm#TVB{FS9lE7$& zRVJ&{M)3PU{D^KCxYC&{R^cD6oJgzi7KdmBtH5qzX79Q1iEDmg#?vTg;x{DELQH26 zn5nYTo*&O}6jsFdfn@CF>SGgpY+`ZQ2u3!F%Z3~xInyA%4 z2;boltzZ$@?F+p{t#mvAvtcxh$Kf1V3C-Wba1=fo-v?p}5~Iq!gh%jEiKXH}7}+Ql zzv2+d*@DLH3kJVqo-qxkm-3N#x)^ z-~b_g!1b=O6+Ym$gf|o_rJicIJXPGl$*@?h&0_>N6e58u-O1t>imu|4Zeaz7Xa%=0 zNlskz3~OP|j8<|1oGB~q`O_GV!iv~Xkg=Q2;e32-VsSYSMmCDeIUFK6=O8u|WWF@6 z?_%+IZYca1&I*<5=!SxvfywwCcmzboZ-bFjXFRf@Aaka%{;EIgFTt6ivaW9^$XS@o zzlcXcWc~#hIfi)$7a)y9*e)C(q><=zoro|J`zO1hFe$jwvnx|*>&z6p6)Vy42enlF z?m)h@c`E$l>F|#~gnvBC|F9~qcDVJ3B>jE{5g?CG=}mRVP@7QB_GHW1VpmpNN3|0R zJ-V_QKJ-vbwJBYt{sDI9bmu^(oarrR2Kofz4ji!+e8l>Zd}w9nD3~!Z?Qw-%HCxUU z#AJ_z(`RKqzYoJv7^{U3yCXBGmze$7KN?;owiq9L$P#l%19=gQEYdTfkgHTXS&I5a zf)3?K$+?P+!qbJ3ylKpz&H{?s3aa4qosH~#63z~l^iB8yIb#YY^&iJWAX2{?Mi$*= zRUpG(+_`jGxE!n+_Y0GofRk=#Gt+SBrskU`i`f@$$w$@ZW9{Xb% z`^ytz{!ad5aet#L?r&_jwSAEMI_w(HTAis#0<=am<&P*+;>RQ#%?1ntGiO$^^Z#RM zQ`o76FZ)?Y6fsEFCgL#=tIc>A*{C*SI7D)+Z!X?l2!EyV-0#QY!hWR&_j|+Hp>n@v z#AHwuum>IqQ31Qc$f+w}X5>YT;Z(4~Uj=<|hNvpoT7MVAn2qT?vUoH^B`k-LW0c_F z7J^nEE~vux;s7BH#|y4aP8g0ek~JLbW>*g=TN&5Enzahf`>M$xE~RBz48=9BqLGH; zDh|;Kn-yc&j5P=G0L+EaMec`FWTi9z1BRo}QU9nVqe%=ZEyK_8L5XGJ9vImu6L)cl z7cS3y=pS}DHKsR|nlyjKJ3Q;n^R^74 z8S4P^SFB$(Y2|ure0U<)GhyTyt{r-|Z2MsoaDb3){|Z;pinf1XvX3%?k6O-G8-EWh zQ)?}$E%e-22qRN^jivQ>xe7BBu z5c%m!CL*IXoPiHZEElK2$VRz1l|v-g{^h4D4Tk@Zh2m)dz7Hpa%5d~u%kU>@@cdnT za3aq)z{sid9C_E$_G|u=Ki7YRlS1WMf7ddG@2Bwqh-bf&wTnZ58C zT|WRRXJImb2_6NJ`HNuW80H;%y|fEqyKsPzc44~fM1);9IN4o;(OsoVpJEiAVH3bg zlvQcoZ&dQYlxAeH2v50YTUvxCI7BO0gt5VtwbC)_PbeFPId~V&k(JQ=D-1{BL%dPR zi4vpA2L}JaM?uVpw2C*mtq^~lYY!>#zp#L{syjBJ#Sn>a*rc0hcEs-7*4=fAON zFavJz{1-SURGy<>p{mDkvi&?hK9TKbVdT`=j(mlxo-vK_O`rE>d>Vsjh6yx(+4@(g z>T@tzpMu9gWPJk|IfiwI-Y)Gy*diPtq&>L6RldR={5{#-0e+@nXT=*F2W!<@TAFgE zVCP|v6CUj<9BB-ea)?$i2K-FH&RXqQ1M^{Yi+u80Y)5ha&Str& z;KLHj#Q=w(guVL!2v?rfF-UI5jLQj>@LBiV(=ZQ zYN@TWIM}bafvGQ`waF?r?^6XVKo%blPw7CGy@JUsWXvfG5lKrhi9@u4B?y=i6W4sf zt}ruVnsT>b0h}o-x%sUbj>3vKRUl(G&A~i;Y+@0a10x$nWHyIL&K!tS1u|b6*UMQv zo(`cC&I*<5=&1rZ1C#NO;t>!T|1gZ4I^&U31u|zE>!0^$y#{B7%DR54K+eKs{#-l? zBJ*d%$T7@2bbDzS!gk>RAq~R>*NF(j@IbQr2IIQ3y$i}2^+u&%vpHZ@$||ai&;$zl|K>6&wC6z<~?tzZ-;h*@hjrl{2&-PhI5CWE^R^B92_8|Ex6aU zPzhTwF4=vAb+hFjW&7Z>uu!ck^S_yZ#ijHfiyiokt7xPhIFm!Pf*lycn9!`i4KNo* zlei8}k(JK;B@9QQqkc01qe%=ZZNN47pu{q96^v|@i7PlnayFoTGl9YGlPnO-d>ick z7ETA1UFBv18^@2~LlZfE7)DN=(yFRYKuKL z1w@Dlm8##fe`t>9Y&7f-@yb(9}zYX2MFmS z_H~_z@Dcw@)<=x)%H~w}u+EEUt+I;E|6Ro(Fr_zHOv8Jw*_Ni^zZ{|!OvBiK3$1!= z2eV;#g>4u_Gu9qc7>>e6{awX?C^4$sLf8r)l~^ifz{p0an9d=Rvk3Kf6-|DRVv%?{ zgCpU5Sbwm2lV9asMJvmT@v(_4FM^R%XF2+=qRI59{F(j)oD(Y3#=DAEw%6d}6WLw~ zBge4q(7R>(4_ko)glzx+a&1VW{hyxj(}O~ndie0iuu82G^L}~|#HBPFOY^_ORW!2s z-^L+Yq4|$tGuC?lvoIIpM4C}f-u^uA0jGre zE7qSLSh?O6AD+nd0vI`lYlogK+kV&t93W)dzs0pMiMIc4va9}e+3RD01Rt`iY$fAaXYw%9HdTda0; z_(~uD7~dH4tiW!6L(7p>W8PN}gpnz|#?t!V&!WW^JVH3K_3z9fVw0ZWrxC~TIcv@T z!!RFWhO+q|2Per&Y5ov~qYxrKXAn{)hL!FAXna^=xmXG#8|7jNhlu?}IsBl8{_Lf= zdcel;*(?-K18@eM5Gupbs|R9uJ`Eq7$n&W%a_T%st{$*){e6F~zY8aY%C&y=Kn&kE z-~kZ%z79r?;oG5yOB)b21P2Id13FwMB5c5ylKq(Bn4UtZR94piZ?YL+Mail%ZyOLs zrgR;P4S3Bp-_i!W%pqFB2Jks+HelnIP(H*@L)w6;3+`SumK@eVpwSd zCgZ~r%f%!Z*(etiI7H$$z{c=FEEMb)XE3}!oDeF*Q5z7$^FH|CM4tDAkyGb6Vgqbk zm;AXdz)7KUt=oVYzH@j0M811qn)?GVpb2SjK}-?12hZ@WrI8i8+dh*mHH?B3{r56uZY3^QW%iC@E6vXYwr z5yMd!sZHd^hXq+;TxkVu*?!;4-fZv4Ae!Or&0lnQvy?sq^I_k1cmzbow}Fvk z7SJ;8I$?gh_>t`P==-2Kd%)?r>mKE>&h3c^>?Z;vWdR@gM z4M8`DXaz$sLCjin1fPRB5kC;QH}F|FO;%d-YZ#6~iMU^=PL~*1T7u8u0~5=}nJ}_Z zHcsad$yow%zmT2f+gUK4p5RtEB~+Hf=f|O=iRJoce0U<)H^IoMa~-)~$jI05g?CGX+{=*FpI^E8E2s)=?~gDL@W4%^&>OaJi;QF8!=Dm z5e|h@Wu-U2E5lJ}sfD}Ck>Jhc#liUC#5!^SjBM1AeK|yOK4GJ<(MA%cvAvQ7>!Z2T)^{)8ji+Gd}=_SCgI=HK12t*!5l{Cn(=Wow&$=CHn<5GG4wd4WI6^G1wi zWji5`>pA%FM6PGU$fpcWC<3H-t^Y0YdtQ3tdGle8a`b`i6CTyVNfqod}E7T4B6zEC}LK z`jN#Z9PcU`X%mj&5UpSn#;_S{_TW^Q3!`D20;kAIXFkVp6gtF>1p!TBP-zQR;e!&( zL={Fh%EZYWA~{(?Ml7dSii=e->AdY={ZUje*_Z99ap? zZ^v*HKE(CJoG3A>Z2j-YM z&RlV2wyeIUa6T+stLAD;Jk5fLu^yt*oGgyvJXbAA$8ZjZXa&cxp*nf3ncM_3WHgf- z;cQt+&VP;JD9qHtrH2~7SyR4^k58;A--3~in(|E!k(_tfBy7EE&NR-SVKHGA-r)Qx zI5Skvr$??lP-kH>{{$Wdk@?4Al$F#2B{W&_7?(!GYZas)=ELY8c{oW{O7kCPI0_;4dy=_`#IW+oLoYro zv0QY+$VR!yaERorLj9iPAXOT}UtytmI)pF73869^y&y6CNg6z_#Rn(yd;yG{I?s^{ z5^cZcpZjxt51bS#*ZKvCF?`>J2SDWe$1rjX-wr)o+JLYjI6z1naG>i%gbjFKvac|X z?;k8wa|4AniW3<77Fw6ALaQC-xu4JoPU$@sGq5fT7<0-(KGF=dafnth1MAhNt#ymp zFe_q`^3lWgaGtEh<~L?I3MaMo`HG?*xw(Rvg^x@u9qll(Q98Ed5Xo7B4a41odbTv4 zk7Lnzx`LzOoKSfV_lnf`O}3Zf;}h9l0wbr+_B6R;5X1Nx{*0dn=Y`7nrrKUXeGVq; zr{XaXSw96vj$z%Qw@Z5vwg?9ZX%GJAX%D6+do$ALLbg&-tij!|RINJmKAXq`Q(BP4 z7ToD78)*xE$RS$67K{z1thI_4U^Wa(@En{YE1~&^8IHn-IGf0c5~Io;f<<@9)p_ zK5$N`OzUS8?QHLfk56QKHyAmFZHL}1+ke;!93W)-|AA|961xL46aJWDu97SEDEO4mt64IkmCnY|mghx3+ea z=c9xAi54EQ2v})O7PqiFn*_F068e&EVHXb33T~lJTF6eeTDS=h zhp2@cVdNMsIM@g2K*A>D03jX7eAkHx2lCTo9mvFB$EmF|{CxLWYlEw1^W$c=wdMc8 z=7AM4tMY1#Jncphp9oKBV-}b3mTT&z%Xpnbw1Uf+Bqy$wmFfRLnGrt~X)ZQl5SSmc zlA9mHa1>T*;nuZ`-K-%S;bRkP$c8YoQA5_}5XpIpsiCKk`O>&Pl*NPn3JtCghO)~r=<{(d2huaj^A^LJb|B>lqm9HKS+ zLSy1u4|yDB#^@oBz?rg=o4uOIA-{r=jT-U`4w1ZHXyi-ddYylI z`-S)5tWddD{6b>}CgcCbBOo&VFBmy>#-o0rku#0;dH$@=VGzw&5tzSl!!I;uVKP4( zkAlej_Aqh`^A62k`h~DvI6z3haILF^gWB3Wou!Dt9+zY=;IKrU=`M@Pg^S^7r?9-M&W!oPgY{{r!pLc6Y&~EJ#w>joQIE0 zEFI^-$VTZni$f%56U1u}^=xT8|CmMNxv6jmoD(X~(bpjA@tbVlhL2BV`xY2Eb+#j~ zLDVy*G5(T2<1fN_p)#(&22r1b$@&X;3`EwSgOOuccj)cX9)vBz0Ych?tm{OCJ$NZu zdoU(fDQ1d_H`wVNv^rUZ)`WAAL1ao3vKWIMShSdL7Q&InU|SB+3dVq)gJg5oYR3|o z4>3dexZ!X(Nmfepdomn_kj6R4fGRPpJiTxjJ}j|ZEQFDba&aJsNX`;8&Ow?CpTa`% z^aHElgisk)&p}#wuHu6ec|I9NPMv4v9HhzhHU3;*1t*2dwRsNG%J&s`07SkogOOwS zcIe^K280d40YchnADOx43?}>w-n!vRA2hNoRym+%e6 zWPQWBT_yDrg>S%OwJOc~!;V2*NCE56a1=VkhaCf&#GrE9;7)u{Vww0MjBJ#NA8?4|whhFG9Zh!MWPxDD++g=LI2}}W zqaSv(a{MwrG?C-K!pNy}9Qm-L$@5nK_U3s8gJ_1yH-E+YhaIh4PsfKRa=i(R9K*Fk z&z5aJYyu7tvh82uDq7L@Kc4K}ietNTD|6lIk%EuGI<*#)+996rD~QmPZewZwA90nA zZ2l*3h*oI+LFL{6_Cmw6ole zk4E16DrgCU5a+LFTlqqvVA^`9K*Il@0RU9Yy}Pwvi(nS zorq}v9m&3uxPDKeR4TW13X2~-J@6Yg6Ra{>#a27Qb5npvSPxL?KNdgmsB8MAA9#pE zw1OYlAUbu;7yJumNBm%kY`eM=ZQb=EhN3+^G9KiZ%9 zrEqSj%x|IHgcO~J$^H^N4kG)9!^ko0J2ZdkAHvq*03rRu1FpqO_=iK1Jwz}%*PrQC z4jq0GmaA23-rEN}Fr_V7?84_=Wh3oEjYG78T^JioS!)}&z-$<8<9l$9tc2#TU^ogN zV*7v-B}SFo2j9U*C6==On~<=^9D z6IuQpjGQ{lk?jKu)06+_&GaM&(F_A<{*v|W13TLj@bQUkkA;zA*mmgMvi*mxzyU(G z|8resE82fovfBrv3#Hx#O8fsHEK_SW@oxV-Fs0pC+W!%*vXSlo1013y+J7)*t^J=2 zvthJ{BAg>Dq4{MDN8zLXC8j_@VpQ4wSKy-(OGO`yY?O*Dhe*8rTll?|I(l7`{0~VnbzCCo$Y(^@ri8T4I{^}?a;er z`wv@z1B7hsONKodTdJ5v6z5yEMCkN z3-L%3Fq%WOf(e))X07>v4ww@$NBOj1Cpb-3TJzHxjzURo65m6t(qLYtcq!R4g%ib_ zq;0`P!qFoIKV$R23Y1lC-uE2W-*hG1NAOeE)Ju2p6AsY|?x22E1mi_B2!Dl{5kD1a z5dI8j%1UnjafYKBgm57lAx(@eJ;I;xv57V0k1(=PL!Rak$$13vT?Cmgjq6R`Lw|(^ z*Bdbi%rjHDj^1-DXJB@X4eG&qhhS4y-0q4j{X#N6*qwvvq2Z1R_j4Exx<@l(? zQgJDaY?O*iI7D)`pz#iZ!S5q163mtx{5}ZhgUWC8DFXjF8Z7?`ADhVXFJR=6wW^Jn_Ma89U9>rWBvZ2t=%pUCz&z5Y8?ay7x?o|lYOQG(7zXhv-N)hv_GU3-OCzBo=?3=T5Ut<_8W$L{nQNvX z19KzhDR&G$2B*qOZ+;2GQE1UFFbrrDgG+Dl5qxlB9XSC;HtNW+93nYypj}{SvVA@a z$kQU62d9O~w(SB#E9d9nArLt~3r0?zbIS#WChvFn^L`tg8Y=H`7Z_T(zXcD2$o=WQZZAQ8~kPXcjofg zcxYi{N`I=`hT4R3wkKQ87Q3?I%hCVTC>TEIP)oHbU8VkkOjosYAXCotmNNr=0`c!0 zG1g2Z*JDDuWJ)wYvDGM)E-~|QOa$3-rXc1!gW*K|*YFv%(w?8da1_#N;SK9LvEsKp zk^ST0$G@lJ0SsAarZ$i_fssXuCKPg&Y9~umzev(Xu1FJ?4;Bj9YG(kb2uv29;S(-W zwy-g=Hyl-;KZ4IA|5UQap4QDQS8qqj5a);2r%=>3lQceiY7>$@ZW9{Xb%`^&^G-X6ndtksb-VJ?Im=dgb<`~{y5r^sGH z1{jV)hqyU4pvfp3pTq|xmW_|Y$i@$JHHS!!S8;Qy$?i=o5bT#`uzMq%4l29Rn^UbE ze;Xf~$nm#ekt+s&Rb4Zn-ln?cI%tiu3a@sQ%?)&C zs+rDUNbB08{x|3HQ0tKffr>blc4Tn}o3q$4_bjv}-NB|Dq6HQl(_@mL8HNL3x{Q{x zFPt?i|x}VMg7# z98Q~+^ZfY?N3ARLe=y)H_MQBX!P2+aQ33(D&(VG1v`aLuHIZ&s0aVXA7xD)Ju~*{CA#xI)M(66(mS ziag;H1*;-|O16qjtp)`oS7B#6R%UXA%<_V|Ryr8gtW|LKFHa0xNLX+zwn%7-W-Ybk z0QmPIWF%|Jz8s?pwGapC@0|&5G%?u z7}=;OC%Qt&iV~{HtD@}X69ua%zZl)thRb=!{KsM*ALP5@{>C~p+uCX~>(5);I@!`_ zaA2TRu4cP~U76sCtZGxf$)?r}oAM#+nrOI3!1X|*aW=wK1Wt_u zGuv%#e-xBgDYIolt2+0=lo?g$UO093s&g~LQD~}d%~wT3@+zX4*w`n%8;^!qf$oHn zjSBQbR|r{wLX~+{pi6zCU=`@g$(~mo!**GVeacyraig14XcpQEO}3Ej&lanzauw^Q zZ{%;!4I@)TYpE@xS+tnT7s8RXWfX^qtt|;Y0v^ZbtW}YnU_Oj0vICqXdllJ);V6XE z*5g$qq{=84+v39#%f;3(vQaK(a){&}1Fs)m7hz-gcoquQ+6{(}ffGVyctg%`BzV)9 zeh43&$nytbiFb3ezTF^8HCX03zQXhmm9WcIe^K280d4 z0YW|we%I3m{5;v?r|VTq^;L)B1%3*v)he~xel{;K{FX*ZEHQ>X2=)_K-AEVkBM#9D zE?{D{K5xwl{26A$=o5c}6J;ed{|LiToj`bCs1dqZHU5YXO{^ME!^lR}c#=aT=LV*P z4YiRjjp>cXcsqg(83bmGsZ57mLYsie_xgAMM84O9kyGb;W7$;WI6uIj^L^pOP&wa> zyFkk%Oy2jxgCO$0JB%E|yF+W2?jURw4iM5E-0oVif+*M~!6%b_@G+e~K4mY2uqPko za%K&C0#Yh+zo3|fPr(AVs?Yw0>#$}acpS$<6cMrj1Me`barlI*q@;0J!y#ggLvlT3 zQ)>#e&hibIB*Q~o4(H6ubN+mWqk4$&B{=Ie%sO)^9tN?_TmmB-b><>h2w7)BU3t}+ zl|E6hI`hF~HzTL1M^eL|yi#JGWfQ`7O03eW9pPtY6Hh-vmtwYY>Ib~EQ-R+e{R(#S_QU}U4RyyFTXD@&*- zugda-PZX@OJd$i>*;qe$YMyjI7}l=6w0zK7TG&<~e9}FPQ4z7_0muRH4@O8zR+xP` zL<>}ykS1AUf_DS764L|IWR#dLIAd0(^G7ipg`HZsN>Wd_hb)R9CN>_Wo`eTMbT7+b zWTVEM=n5fgOsFZZ8nc&A6s*R4KiO5%%szHkLm}JNSt<4KH*1139BrK|Gv%CdRP38< zYR&L5ORdFbxWgP_pgd0DV`P+ype^O*8?L0ta&tL{Xn}IG%$@_S z-s}X^WYn7-;H25>%_a;-A*dF9DA_&_v(#*h$3ZMLTf@jkshQ~tAxllDEU!}Yu4k$F zO~R!{-KU9ri!aA=+YFOqKe0+%QAL;gk$1inJzEM+kE<+X!Rg`xkAW75-Q27klgJP1uG=iBwI)}4t5mVItR+7{!*3w zkMMD}@`$Npd~?c)&pvPvWj)AxjEaCQmSravx91vZ2M*B!m4(x!B|s}LOJSOf^0EZZ zn7zF0!*CRK#6GZ%MG?fr#y;@jco4)Ia~O&@tUwc1Jku!k4HePDA&TsMn$>W6+%{&P)%MHlua z*_bu~Wy2^NQy2v1-t1+gjp3+eV?yH%J+oA7fR9Qn6%%1(qg0IN5Xl{%6yKDx@OvPO z1pBoa{O$+mgUWC8n^L?^h_R)`+#4U8$nqXAa_THczA0s4y6DgJ3OFZJruA=1+1c*H z$0xF#g^^>}cIe%*{fDi<0YVk*P`BwNI$LGuj{!DJbI{LuMaX%gkvGDvHMm7r1J+2V4@PzvEDm+*DM8OKr)MQVzwGWi}1+BEwGkHDK zC0V6db34<BCp%mOqA4~AHPX2Zxv0ovXbLKdJw^f@2dDo#FO;RC$W<6dhY0DlcFmd#Em+6d7gaSU6?&GP983DD>2(^PL_mk0OeRjpHgu;ZYDP%#kp%QDGLlLdXges>-Xv z%<+kWRhaR~9#>hH307H1eVN7I3>UM9Q#lEuQRHc<9&24QES<^)93r-QB=|si44bi5 zEpCSyFsj9^aEk2J;%bJY&>=qi8PH@Dhnw+1iN)b27}+QeH*$#No&t!^ewyt5g$08B zz6^Gshtol2H~QI6E62~`LlZfE21ZVu?Aiw~cBG{v*C+ zBQJKdlD+{R2a)uNFmep(4lP@D{jeK2K*(px=ew#mh=O(f8RHZE^2Fo}yTq-SspeL) zQ}6-jXRQssejR=e^=MeRR@v3uzKE5nh`@MUO7pRJfu*hjl3rj5hluq8$+ZkdN@VJq zDOd@UVziA4oGUA@`Q;2p;YCytC4AE!4B*2Pt4KeLY*dlFD}<~fp^m(&$l*Rwuqv`` zvQ=bsrjk<+rryFPfSDVs#A@CLQ-i=1jaq8Q_gu3rYsYsuL~QLya2+u=;6kezPrz&# zHREwOM^-}f_b?oVkD54`8W1H$o!HoBcmyAnSSlWbk&ROED-MxdTc{sQHTfO0KKg4j z_+5uVG{a(={3-`itt`I>b3wgl@4ql|>MTbOrkYGI@Mn77h%s#(OtrE-2OppKo1P6L z$FS|tyJh%*VV>hNWxmATj5{Xa_Tbx2Ec+ z5$Ip?F1qSU`hyi5BGw-y*F-k8ra0u?cnMRc!ivqF`%{+mkIe>&L%Q`zV`9GZq~OIz6#~-ll!XHR-aX zJisAZprmXNow-&?{sB{BRFb#gRM{)Za|}nVBvbeU&uH{!0eKxComfC#fsu^@@;6rq zSwKP+c@>cReWG9mlWsAPEqAeRPqJ_AR)UZ0_GkO;-?7+rgXWZz#ZKi!M9G5; zVx)e_VgZX9TgVAn$;vX1L$p9;nI4k_t;n1J6J->cW8tjXi_AiXqZXMNyvW2%#H=?* z;einA&50uB*dPZHf6WmDFw$L%m1M)kNA&XK)(T+MJ4KI)sJ0a0SqiH*(CoAFVJ zrQ#+S*(en^a){*Cwe`(Wli$CvNU&dmF<7imDR_WE;mK!`u5hSwQSn4V(X%Cigh**1&To0KZlLXB$tb~a& z8cGGunw9JPa)zTChH$wNGZE864B&wf>rFq5Y}A{)D}<~!p|-s0&EY;#uzK@)vdfJz z!E&QdImdMin*rv4tZJ(*v~6TWt^phNmM|WfqF2j;<9n|8mKEhY93r-&B)H%h$Jx*d z$P+LhMge&oPLh?<{5=duA*8k*->(QoB!-nsjz{oeiRI!!7}+Qnzv2+dwTtz`PhZ;@ z9@di-&f%Q5c$3WMvmdzp@&Nw5H%z!JxoG1M$=d)6 z!+Ww&uwR_P@NRHIs0=GMz|Qmg@xh5a?+hcS&U4fTSh()-=ei3{3YBZa2H5#N2@inC z_c9nchHr-+E^R>A5F8++4fvyLTM{;)Gug986WEO|>@|mKuAo?fZ^B}=Dy_D!?K}V* zGS`*09R&#g&Rq6K7?RR*EFRz+uBwq9;BpQT>j9E$6YJGyt+{~vU@D9raW9-EE1UV7 z8ID3pZGFCnSdZL%9B?;2GO=LX2_qW?R%Y{?FdVghgdQ^zyjeoF#Rn&rkgZ{4qlC$+ zn@%$-hxPPwxF#85wGsq}ybp1oYw~3QxtBwt;DTlPBgB*Rhb zNVw;rO~5QCFX90Z%gGBcvQbW+bA^!QB-D~uIl0>>3RX@wPqv%{7aX;9R!Tj=r+N5Z z1iRv))UBO~nAV({;`XVG;O?RzKoMUUo+4k1GuerS?75)XfkU)FVcEo%0j;_$g()(s z%Mv(c_Uf_^!%^rFpUSY!!Yna|<53Vx%waIHQDPRlLdX&ms>-XxZ0i#RD=`lzyTsY3 zTB>H)SD0gOj`=*BPctmbA=b^3;Wk)#bckoExu#!wmUB5o3zU|r`s}r`@;#UuqpW-f zPM5u`T*h$Jva&JXaMfpEmXz!92#6)+S{T_VDObBf$dVGO$*ZKC?GptnDf5#pDPw|L zo7J~A-(WLnMiH^Ddyp44cw~xDE%xM9*L=$w@)C!Lts#lNwHeG=s~podM)@!*#}o#E zc{qFJXk$1EA@u_roGLNw#Kt+14e()!() zgisk)4s6(Y-WwmB$nzdBa_T%s4{TVtF8Xu50!|8*YvaI%o$o$803zR67&(S-haN6% zK-dr*Amo9K7hT&@5CyXV|Cj9M#iZbKJh_!?%y04B0PEE%w%YzqOA7Wy7Zw%iLp;~H zN=F)jYdA!#5lF6AFgoh<*37^|Fdas#cmPh6mC^hU8IEcO!b`a2Ij-`Ff>n;klU+beWlvmL>0sp}voez_WR`1hflb~7^)^+Ez5~XEL_Yf3mM5OGJ!+1Kotq7QD(2zk_9j|MlG2Kr_0K2ekQ|FsHufp z68a3xiZTa}fLKvx!^lQO+1?dGR+LapUKM4mPZX@8EK1gk%;*^`c2#qwB72%LI51Eu zSA*;8!bd9V*^ZOh#ISXfReiN1oxDjsOc`Y(NJYw)DpPc2L{^y<9HIrPOoJ{n4_duh z3)5xPn+xE?SsBlt#&8spYFqIw&>=V#u}p02Zk&(DLaaRJ!N^ACImZ=3R-RB{UX`cM zCkj@1iphGJi3hT}vyy$3v{Y0J&7*7{(L!^

1u;*5kPt^OV2Hl*^el{7^{r|DMbL@41;saEf;81*SHkobAb$v&F8g_>k&D zTK{0WfDPC=kSS++%b9^bf%pJN#LLc(`HvmZ);2r%#_NvxceiY7>$@ZW z9{Yo3u`BLxY`1mHzp>6t_Tk`-JNZpw$LFejakRYy(k+PwLQa=?h!$lWY4uvRQ%+hXPDtvbKk_H9I_t0)IffXBgc}S;0F0t)?Cc(%q;Kf z%=Hhbuba%;6#dnToQ`4tVwlr*_P?Ubf#H8ZROSzMWyp8CbFX;Y4r+-AxQyJmW`g+a}re27Jcm3c!jAB59H70iC_f(fQtUpdKoaReSJ zQ7a#SkwqR4WB+3K!%JEuTiZp_mnnBwR^=-CGr3Q)Ks}Z6aX3j-rFfK<#(Yh=tj6Od z%4HBnPF*hB*yX}*Twk%KvuswDZ~N=zTX2@BdRgdRS>%LG!F&@Bm?)TUz{sf!W>$<~ zO1=C5^>*R^f?sptZG#~GUahc{Xtb; zZbGiZqQ%x7f_UlL-{ZfAR(LwGVP`P!&iX@SZAHH$OpKVSd>pYIoGmN2`DqMCVWu`O zt^(GXoU6{wEO*=Bu@TGNRxq+ioUAW1I7D*K9NO8f{rm(ce{|cKD^}RmcU@Wba$L2q z)UEf%V_9^byU9nvIif0K|6!Fe^juA)9ErzDRLWu)IYucCZA5mWupl`=NWK2owZjKd zuugPDvPZTiEM!lx+pB8^)VJN&!n(GKQk?yCY(@NE` zTWjGww$Tj9d1R&r`%mGq64`$OMm8GF;~XNkA~gNHROE3&;|DW0Qwb`gW>h!W+*>6R z83bnQsg+?Lr^+BEYI>3Jc%VdyjDe9;m&o?EO0v9M%5--zp>%RDt9#eI{l&5eoGGeU z4s{cYK4nujyW$}eWwQWAPF*&U!w|Bv$Q)KnT7BvBmrNGU5>+y>TY*D&q3Co?xh%)S zCCa4}MowKWGi_C-D^u(Yii{?e3;m_?ML0uLsl-0n9$G5(shTqRJRT}hCN&s2b(w5o zlL@~cTGPng{u;RxP7hThd%Ja@@E&Zzfn3h~5Ra26kRQOvttpV6T(L**H?R2%=UMdyB>;AP?v&dg4hr(&1R+89b-$UCGWxl3h4#wjp3g!S9Id#EoYx5*5 zfjxy%hTW=a*-KgJub2v)C#qs%4}K4;n8<`p$qe8D6D89RBd0DI>*AP6hV6-31#_jp zV7?A#i7FV!#c_1Hrd+;;hf9>pS77AS~C z)}Kc0V4r&;g3m4nfhkYaEyo=WVZmZcR-s>c+~FV&5&IB4_Tgspk2_3}&fG@K3YZu% zS9$iX4^Eer+x+niN1>)RKW>juFc~@OP@kKKPVNk5@#u(UZaGJerJVK%@{tP3>$il%xN*fyXDhCKzvpQWTBBKahkyjM^`$WOa@Ds^ioHpUG za;7_%EmqYdrh9FPmRjo%qPAohJKR+&Rx`O`wrpOV*7#d<*)3)wM8$nsjPdR)Y)@mn z3x|j`O|dPp`NnwD&V%dO39d@B6SWK`O8k1IJw6dmnw9JPB8H<7RNL3I#}-!S#?4bi zDy{PIc%;N4cnn95Wj#Twymd@AB33eLm_Ne;_w+<(;#svCW|RNJy!emI*igdhc+5m4 zd=f@B+Tq7JL~NyKx_O=#D;f6gQZ?7rS*ex=I_p(bb5A$3U_AwN6Pz+?0Xf=JK(_gt z-s(m?exjJZ4I`&6rde@f%5-P?nUb;tnt-157tk|sny3QutU!%9o1%FNkC`Z%Ct&2% zMYG+Iq8S`uPXUZq6=r(Zorw$rb9+?TEb^;6TsGmXP2r5kqb3Sx42+z*aOTGer{1mD z#q5#|5aJ~p9Dly?SW^D@R^LW%m;nZN{)P=KC zTnj4=RCE2gQ?g~ddhYgD&z*3#sOtHkU+>bVZc6Bfc<4k4{QyQzT|zs=Noc5r`)mIC zc^OU>RX<1g=|`EjDW1RLaTCS!XBas~JPywgmpJ{5$=S0MKRwe z3idFhZK#JKP2H5`A10Y~NU^)4TIyhbv>#Ju&n4ImUF}PA1K9$5MA4orwl7+#o*LR~ zD|8WS{Q=cFy0iVI%Dh#%fqB_tcW1TK$^Q@`bPk9R*wN$QYNBD!2kp+n!WPCt#qxa6 zF0K$#g7Y~JUhT`a*X7y1ian-k&$J(tEmlfp_M*Y6 z_T`zb6->&?QM=PdjGy<ENMtu+Tc{p>+hIb!0kZXdU&?4Ej!W&Ap`W6jz85 zr*F>j+4f91+djy?58d0oQV5YOFfE?dK3mFb6oQ&e>1aP zAx4~%O^(j2WK`7Y$ac3cDRpPn#(&g^ak1&FV0g(xw!0%7-XP&f*9=M$7P~^|Bsi>y zgGDu4&fcHwEz@H@SSt6czpGC+hs)ZcW}NFQ^6-=;mgP*}$6a}o)UW0cv8TIYm#ED@ z)3=ej(`OQN1x%3mt;q9ym%$0MZc5}o$8Z#KYVatzKV4~& zy5O8yna&@@a1?%OmUl#DyR37nxunJ{jaGRQ9w)K>E#t_slqYDEv<_HLM#Moxz0wz0 z+@2lqb9hp%Udbfi@^Mu%`H}e=GWaYWF;NDefsu_icqWI4tr1OkOxj@ysTXnBKU2;W zd-c=CKVm_8%I0=BRn(es_)x}an3^${9m(hKc!bk7E!3@e*hKBz3?rwmogMA%MJBPr zZ%Wr(_uu@*^A|W*RPhXX(uORaaNeeRp2y=Rs^?i4Id%2CZy5D-l?K*?SM6&8+H@Q5 z>NAZ&U@ng;pdpX?Q3WKYzIO1!QEj8zg8$^F&1C;2&qYkZ=Rg$G1~78!V%mNfF|nt< zRsE)eh5kA^5Y7};M?;=er|O8$+AKr+;ZYNnvp0;Kx^jjqLp+DvZiV-#$zU` z=0X@bb=AxnMm0U#ID>8ReMfc*d6IFCKjGVfP zv{&>F78{+7MOY8}OtmJTcl_n^Hk>G`d_K?=`LIcwx_J{1ny8!CVC2+wqrGTl)s4;e zY&Xk$^|cLy7@5`Al4gmA&)ihdR(Rw@1A-^~>SiYxIrXYD-16$slD~MC!P%m=uBNQt8#6Z*bRr%(Q9;MU$f+x6xXQ!cBhz;dKj$x=&%%kKil-@+ zCz!OUo6q1u6LoVYjQszDZU(hA*X{ngxfM=S(z+Qmb#pTwG*LG~61; zZgu|RFP!J$Oi_i?lrtK9)~0fv#iJ%F=NT9|b>$3qMuX?jW_G4+=e@|9!XQRwk=2wl z8glBUhBm-MCu(RSjGVfL;ts}VtcO$&^cT*4aE_>T$MQ8%`oVZHUsEl6~e*+Z#_u<;hIV;S~J^vjR>NRWOJ8>P7X%SKWU=5&tEk6!g->K#_Qx@WX`5)?#5##s^(4@ zId#>=EjTxJYnSn=4RLpc3Id#Qo-%e|I;QH|Ny+FX_WagLJYb?;Dll@(>ZN{sNvki{ z`s?LtI7x}gFLl zXrgW&fRR(zP2A2eJ11Z{m$mK=-oCeuL5z&=_1gIr^EK7-KbX@RQ7!+5kyBSo+&Zao zszfU>JNxUUW5o30wN7fx*i_6;c*I1->;NODu9&!!SmG)fxkI5TXPLipPK2{XZBAY% zv5c9U3OXK-oT#8v7F<()n7I@!wI6wX2_dQyBhB|A6zO{*+-?a<>T4MXq3sC zI=KlCmZ*~(VdPfUiGFVHd4HWe3nwTkomkH6J%a~J)X7sYa_TyXTW=51j;8GBy?EMy zL5$4e$!onGowQkBCgMR8bu%7DPF*)~PbcM3HO&a`=dYT*;WSaJjMvjiIb~Bbd*C4x zHM1*>9HSYBORVKR*x{YH4iNG-?h{>aHIz|=moa-qv6oL2>^AP7jAQrq9eqSw+w9ZV zp1O9&{JUGWwe{VRe~)Mp9}xMtiO)hfx}$I&9D2M z$G)jKH~8LMXICLpsbnj2`TspP$HP+YcedQWeYUH1<@ZU>;1J1VeCV%MOzu3eT+XZs z45~@W^)M;oS1K>wz7|fFmDl{m3`ZfR)?q#`jj%XZpO=VCUQT&69vQK?UCEJgcAI{4 z@^mc;kt?U8S8V@=#p`)j@}qb%tuJeuH17`49GRg(_(OP%M8Y3{k&SM4zbl07BcbfP z`pDP)qX-NLr zBi6dTIdUw`34TXnhDmdz{6`yHk;UxU;8x%XwKh1D@O>Q!kId7cz7LO-NPQMY7QxBo z(sB+FyP{~i1F~tv{yNoHS!A9Xxfsq5wJ2CVG81~;A&SD>*w?5o#N#9?I&J) zQbpwZMA|mcef}c37fumXB>TA(5;;|K`{!;vRH9DqgppfPC-NO4O($>r>*P&1MI)*c zIaO09ui>E*b@DQdoVrfhE%hYw+K?ucZFchRI$JRa%(_#BV)+v2@LeY|S5ql7@K}jT znGPeTu9TTJrNq4Ia-_db7Q-2$>cq*x4)Kc1B0N%}N)CmQQ&-8B7M0ZB_RxySC;UaS z22K!FB>T9yllnx>O0p6Ul&FykjNFTh*ub>uhx8hI2>(1>cJK2fudJcI{I)W`!ca_Sn{+R|&HZ*gckS@(V3=CzGMjEs4; z9MK!zyhbN$YUO`0qvV$mVC2-bV%u4>zpk>gzf3wtOeRh{Yq77X?1aZjtR_3a$f+yD zw!Ue+u%VTbW&RpD5zY{`$+GgA-;d!a#Ka%la#cdHsj%7E&lT8s%%(DRj^eO^&)?-K=cJG+lb^d+USM`eoL zrGCZk{GCk!`%PJY5VeDR4t1BqxRkbP@jGw0rd#@*S2;v%M~tm{&G$PS$|n;RS~l%K zX%RnEX?UhF2+SQ?na!`ua1>^0^Wrv#LLMWIN6gGd$5L4}cX}Y@P~P0cVI>3}PQQ#T0|+JWcDR&bes=q!ihO@_xUU2 zUN}cog~UFL97-Xjelb&1CwJqK5_NJXjGVeoA_rhpoeUOpJ?0YoZGWM>2`7mvl-S1# z!w5x8)l|xBc&J3BybL3!t`xJ|RQlLwEecs}7iOEe-fmA6S&)mIhxv-fyYSH z#&j4tMjH-$7jpX}Tqrp}NY6acRpc^?a6Rr7#Y?Wc0znjP6J~6(n=o5^V6eA0SL{7B z)0J&MCR?nO$~}eBs`iE1+%d||Oh5cPv)0ktjP7iIsWNX>ZeU(tPiM6;VrO?YR~_~> z`n;=H<(^9~hlpL0H*w9iW1e5eGyAY|W}vUVD^qM=o^4;5s|;oexl^*;?aU~(cjqbt z!R9Obt4h0)@Xzst=Ob_8i`#-Y=;*#`e?j@@*9wAytA%RgPdX|12TnR^ZGPHJwyVeY zVaBun6#QgdiLyPd@mD?LE0d zw!OqAR4%QmWXnn*Vc^J*$f}h5C)kMUPS1X`cq%(sDm#{EJ7g+5SSmXjsqDy9I)d4E z1W|UB*gq?x6opGZ>-sF8R3?vPhUZht=`*envT&X03Ly(uC~73V78R@IQukn2HCHMsY5iw&(whG>!%=_b>(5dKHGZ^z z_fO;-u8DNmc;k88eo>KKW?U$=FI`jZD;3{AcMo3uE7|JcKzp?>+rA=OE@st&zUjQC z2-lL~9ax5WI30~}cm?I*bg*zbL^ww7r?HqYt1KX-h^M$h$bz{6hiGD_4%^z+2N&3( zVonFUzm5~c{_N;4b!Q8e_HuThr2GQ*8ZmyhnZ+aFOau`G-AzW)!6PxK+1)j-lA2vy zAx4~<+4bK~gqTi2Oz=W9CoRZ}dU|Tvh*7jt<0lj$NJP{TM8wGpBQmHu(KXMKs^eWD zbgCRYgR~uC9d&?^QM?+K;uB)-#&qsnlaCrKa#aLv`?=GuR(`s*5!1znv)H(t`(WI; zbLW~%`Ey;VlkA_(Asmc=YyaAqWpEX{!m__~`KzOl2W>+U3cv5IO}8U0OE!u;DmB$SA@_?*JjA2-m+35HgBiyDlDs zDA+E?jmhqEj9pv`uFqB)?T4GAYrivcg)lB<=5<9EF+qGjbu1ku!2)W`?&~iN{8K09E10 zu>{BOYB@Nmp$U#Wa}3iEIX@OXBX>267~4`bsJ;?Ur}d1SNpf9~>JF;iaC*;Qu6urnL%ln$)X9#22Yg7lQiLvX67 zRl)K_^zaIgIH}ksY%Xvgzyl_#=6)DCb=5>pMv0m-lw8{8d&}j2aE_>Qi9Hz=Cl_U= zrcVBiM@rPmKVjt5bz)YR%0Q-E$qrdvI{f9b6NA8(C{($?)x|bpQ#Cu_0TWfTEsPwa z8iy5%T;zmy$N@rj#sOFP%P2zE?G?pRpD5T;>!PtPuOm6MeQxe29F?sUv(@(bdnk*o z)$lLO`tzu5B%dCa`9Pg)AjP9wR!@Vjf|RSLvMYpCQ^^%VESV>acj3`x`NoMHcUYEv z5HzDcOTDT|G#>2pURkdQY&hDla80Hxf)nmd*9KiRk1Jqr33vi0$gf966Tb1lP@57#v3ymC=Rs z8!Tkc)zGVWKCKI9lkM17hho`|%+lcfB|J_d?=Qm0hD~{aL&R1AhaNg~5s2KeEPg0+ z*#CCcO=7&&#Byw7Yk!3Rdm)y~S`z(A>7t#sy! z>_l~!{+`Hcf5{BO>7q(z5o|Qr$A_%5Hsw>sqbACy1S6*|pKVR~bQN*~o&6bhTjXln zEid2n*UdNJJW+LX5Uv}2x~5<*$HOHG=295BWd*Y`+riN z%&+ipiGukBjGVe)ENh|eY)^*Wrl1+!_xyG8UpPHfoy0ywjQ22NmZm)Zg-1!0$3I}? z)a7AmKv{Op#z3XBoDE!Hu~#=PbKdX0Aezk}MrJ|e(17&mnu6IL50@yISuk?yf{DB_ zUtbqBGRWS`(be){f3+M3Cy82BV!wA5UsaU3no>C$kCiBur7&_!OJyLN(Hqd&{!%#u zPErz53Fc}_^soVqx+F&D`_rNMHJU4xn}cCokNG?Dz#UnEb%S)z(0_A^ECB2g!6iseZ> zSfW^d3nQm47E2}R&9GNU%bG~m-^JU;uE!uo#>P5Sl5moyIL6^Y62&nZMowKEmghcU z-a3ojnm+dO*T?Q~f~ZBr;n84Yo~A^0!Q&)KWIl|Xx3Q#FN>!9yhqOzTp53eqizD%XFm?`QaS?e#73*h`v zMY0#ZWnZ7BDUkE=Fo^;=4@OR1AlsR?RXhr0cT07Zv;FLZzSeZ^@>j}_;Y3lDaxktG zW4@+j?!eSRr^Y>Wp>6w6c?Id!pEJWH<9$xr)eo#+GpGC2g! z54Ef~c$WG!O@SPQhe;I3{xEXt0CDpoT&_R51+QNH0XmdoKhQN`l$+*qHkDVR&~aEXGs1V&C>FtaSH zp4r!JSxY;wsJwVLu@e~tVL z&J9%~ySZp2S2Tt34?IMoFy4ZZQx}HCp;Wpu)hc@!*i$gh6wKbud$qGYgBY3Bj)Oyq zPSq63EId@AP}*VS)P)lHgj9Whww^uXVb5{?GC3N~5Vel%gVzx`QBx#K@j!_pSpp-c zE)vUWHg*y5@{*#JP8OWuuanc@BvEzZaGFh-t0|RJ@mPscIR!>eT`IPE5=v#D zv`X_O-}TqY4RD62I&rBdjft8fxegDMD3WVnl$K~ zraVUDQ4-}b3Px^Gc@)@5Sxp|h`^#e&LV7M7)i$av_)lK>UJtddxalOAuBnsxgmASe zi8`4JBd4wt%Yz>F1LL;?YeMPv7fJ@s4^>hDAgV$fPC_>3X-ecgJWirS&Vi9rmxyJjZDpn~nC)awKG-QYt&aTI zUnO_IIijk>VW%xRRZ}Rp;h_?Ratn+cBNT_b^5k`U;ayG+5b~O~J6x{?l2L@WhIvKt zRi7x>rGFPYUHa#8Z5h8TZsH*YelBoTu98*m{hP1{YWJ!zr_JoZpP$DD>1~ zeRhP=$mMa-If^Ld1#;WtQ4&kvERGz@cY+tlMJ|7e60RC9%&TX)5V6W%64*R-#NEgOO90NnE?> z*56=VZ%^-bGmb%ECY~x1pLWyTZAxS`9w|{GqhRFJB@$OjioM2Tq}}~RvJ0Fbsz`h) zNibJaCiC%Fi87fBBd0EtI9F0J&RKT*t0V*GhpG}ESHh-hisWN>s6>%`1V&C>ByqKb zWlnb`7x=5>d^kZ=mH5<>V6LW2&ckCR%H$jvIdz%D)sm|Dpuk@xcfk3fs>G+3u&J6N zxeX7MD3V)XWev(Aih%Ks35u^a@aiCR+* zi92FB{H{r4#%5*NACH(QnSEg7)FrdM^*J83n+3;i>+Ce^h0;Q@)yo8;4D#v6Z<7qdao*#O~L#O511&JpTfwg3nubmA)8>z zx!yi|$@!PRa{d9Qi>jO@{v{_eb5lZZ;gJ(1^g4{3x`c)?$g7Q_v;E%QtEpKGVq{iR zO)$u8#-?Q2@ra3%*%C%hT{1D-cwO0?{$0eQ{k5_b&JVTBcx>YZQ#D1h1P_%clEY!- z)I}2W1ll~za+<$JPKDD$)riLvXzN*)Q}9TM5?KW!r!JAWI#R0WJ9szvYvejOKU9tQ z)DbpSvyNPYhe{O5RWNeuB8fR=+nw!QP|oP5S)TOQ$#3BlQFRh~9n|m(A~9Q2Dv#mO z5~cDmjGVeuB9|{jS3}lII>zne?P5nWh>>xzu{WF&l)`T$F@-V;50)sDcmMwrO3Wih z+n2p}@z=?GJoUtL`yS7Z_*_ky%*A6R%H(}8a_aRY#=>UHJ=*Sn#$O~KgVRH8J02F6 z&D500NAO6A5;*}zZdr+}9?&FmzQ07ygVU3QL{<-&5;+Htlqiw2VC2*#60^$5t{%{j zv)tjYk=x+>P&MMQ$_b`wisTkNRH8_}2P3C0k~l}QdZ2&4R!Ls;SIG--f~YF-aU{W9 zO_@B0$4ZpRA7JEGl}S&bWNg!Kys!5HXDWjjnFWrAO!!<)nM}rGCCX$HjGVemBKNLG z7s5Ps_B$&N@>k3LaGt0| zL}E7Vd&}$t=f?Lwe&H{ZpTQ}j%EV*CUd+~%%1`lViBkCqjGVeuA|F4D`V^78PTPL$ zKl}yr7Mv)mU=DLPD$1Nq*}RU&Oq9(lFmmd$iQG9Cl})bFlPl(oZ`sY-&wC-%&LBo+ zAr$*bq2ZtO)Te8TWlKCe&5^Z{k<*hCPjGVem;%scGS3lqOg1<_hgY!dGiI0tCQ#EVJAMj9#BKbXx zoVrLNpHPi%*|Rd7>F#Fd1GTm@^#Jb$&twKMG7BD$+wvRpHRUo1kC!Ny2{3Z%a*12@ z)a9aAmi_(pvJadkYGv_R^)x1I3T96{V4`4lgOO7gOw26??Dv*qUn{d*^HuOyOb$*H zRWTm77(`}lN~Q;om?)Vp7`fFYQ!MG%G+p8^nTy~wB`6s-V^cC;!XqY1<_j=#>XM0X zOT5Y$XRv?fub7|0S)wY&uPuoQn}YcX9xzcbKZ21{7tAni$-G?WEq}$l4yTE#m?pF( z>*YGH;1Lrg^EVhdb;-mWpX|@9&h-!K4-eZ9^j;@z$sk5%o#b(RQq0z@E}P@g5~Z>! zjNGzPVW;3ssVwoA%HeQ|sFlS>D&cHRsT_t!OO(n&7&&#R#2lIIA1qXJ1BEr(_RA^$ zT3H3>h^iHjBa`*%nqsNq;S$AiGK`$MSYm80I~~>;emGr|%QgOTxeCq_RW2SjS5DXz z%oTXRM8RAJBd0EynCeo@_GYTNm03+LkNL~xVK_%rxp-8U`gBdP{2C9JD3)Ks$f=7Z z=1~CKeXt&A8Fi4i#eEk}5>+i8j{+L=HRbXjJYJ$)-hq)*mrG1-87Nh9mfAAcUoG!r z5F@i7@~AEK>6&8M5f7IrmhE8V)Ws5W_-UZDO6x%%@z==-aC)d!#pBd1o2e<0WAR9d z5;+P+PF*4~`z!1&$p!3|MNKB>_{-!hI7L*Mcr2R5Y)z?r8jqGJl~2LQsY@m1WQ*lh zk6Zk8@;x{|RGoO7Yzd}nisU%m4=P#8%z*(Y7 z#bdE7Cu|Dl_jtfW!Tb(JPF*lD>z{JAKa(qV8#g3OKG=KxGl@ZrjHC5f|1{=n%4Gr` zFHtUIVdT{15_4F)TpBb!UAK?FRQ7}uL@g~Ihqd`!O_}V5$4ZpR`(fnNWfJ36D*unX zHvyBYD%brx%m_ym8H7V15QacZLlQh#-pcmn#QF(Rf!4-L-3dYgfN-t-Wh?-@nguPp(E^ z*7xpTeQT|6O+jB?>wp4#N_uI3P)aPuDwR+rBx$~>AS7qf%FZE)m>#RE5Hv=vv1jBe z+8&eVeIsu6aRc4Y`_@;u8yi6-Qha}>vjMB0puc$8xPMvQ($=O;-Bs0me zxGJL-tOR9CzOf)Eo6*Y7L5W!5DGl|Mi(Xpag}u-ol?Aj%XhyME;Ta8A!ZM$4E(ps! zTG=@)5kuIrrw?J5+jCN;?Lj%Q7{aPZB_hlCmV$`nX=Ue#L=0h-ar(1zH`z0CBkd2$ zh{X`L5~_sc2EM5vB-hc(&LN2?tEnDmaFsS0e!`xT$7q94N-WB1)mSAaKjPa8V)8Jp zJaI7@%BM9<*4Sh67Hv>RFj28eOy1<%3S#mGt?V3=hzA$SMP;4&!G)QJS6)*567@_#8SMhBGv)&a|<;agcBl4Hl#t*Ia$KKXt zMR&^UNvDF`V7BR(`Jifbsi%z;*ZAxY@Rl0iRF$9Iu&WOG?4ei%0Qd2&1p&C5R<1X$ z(cyf%D$zMob}*AtDyy?1YOv%FYvbzIRQoJxd6jkvO%jF;Fd!|Bc;ztZ6~4V7FE7)| z&Uu;9k{5L#t=6|{)J#3xnwqVZL>%L5nPZM@vuo*2)u|baTC%ex-)fMZ&1hxk>}+jh zN9LG?_OvXZ-9dBA{_WDD;*@;M=i3SLF^^Vu&c`$(A7j5REvGEEr=(1Kgi_M>xMeI_ z$;vXmwIC~bS~-H1Hs;!m>3VJW+=fJB^mJ*v9crT$wHcdLD{?liP}B7vuiw$>`i2YC z0hGYcmrG6ag74A4FXNA6|U|xt(3F%>VMqbH`cVK>7Zepm z)mzx8zdX;k5KMT_Rh1*ZbO&eZp_Q+(FCCh^hD&IhEU+F#Z>%KZ7(~l&9=Y;0_6s(B z^H8MX>u<=n75w_^(aNH`Te~U|nGs?y=!DKmHZburUQW$HeEq)O161QI=ji*<7NNa=m0sE;6cxiD8t6y5tEkkXm9V7w z)`GB{Nh>>tWtO2E9vgD0N=_-QMujOOIM>*Na}{kE3eGWY4M3tImk?dSw;Y7%Qd-$L zM8=Gh^>RICa2~V==KjB3T7jnxiAF8?8M^vZ52VqGT0zmO72mOGg{mb#+Syw2MxpnFnySfH)4ws}4`k%n zajMB<>;1B#JoZ=Je%8;ana%Q`B+l=3P;3lQh^od3cV|3$})wY9$W39KgQE9$|Z!MS(Z?7sxe)|qq znx{v8`%o1&TyK6sHQlm|_&o2cabuXI;3zr8Cn*R;EqHj2Z#T%pGqiHOagC1Ysj5U| z)`-3Kyh{sk>N{Y(9{rK*O^&pNXJaK1$2eTVW2g_&@H8TqqpJ=1mV@}LM=LwWN82$L z%EMzDsJwJR=jQ->e)gliLc5^%$B=wR`B9-ufcEB_4gxfnR(1~1u0Z}#F6zfg1ABsc zX|qs*j*XWf!}-!Q-*yn8Gihb#2q9fqCZm-FuCWK`D%vU(pg6m*Oh#s)EBKa!_*_aW zJI4p1!?dz^_ zpp~7&v=5%Cia}q$IaMvTr|KlyIy6-+iJz*F6B4fz_((v!j-{2I<3$YCSBPYFfjw5| z)0UxFB`{c54oIBN;UfTXI*V3zjuTMAO#6ZUMB5$q9NkWPg>n>Q39}Nq1n5@2=^#K~ zrj?xo1T5pqog~lO^Ya{S70OSH%ecmkB+s;J`PE%rQ@Seu8Zcd_IRbL@RI7i4QQ0|1 zNFtION;W>)di1@al1OIs9cLm^q02@VlqBQLmO3`sKQdA9ILUbnI zco3o`w6b%EfOTD8z4D|FtFN+W=nC2_l%W{+mQ-Vx2wlpz9YpA2TG=^5z_{8k_G(?( z1NH#jM_Yvg6yvyBMK1BVn{PRY&$nsiNrBG_{gR?r?eTeqw#o%QD+VP#FY_%2@p+L} zc8(9yfvp(K&DQeI*2h>+$F@`w$xO%M?7%9qON2J#+YTc1PFi^~Ak>>Jh!XVzdxYlG zW}!JKMue)dON8d}Z3huLkXCk%&>rK@#i}-%9}p_rleCQX3?=F0_-15b3nWl^J_Hb` zrL?khpnw`tU(r`r^69JmH`=pw18o<|Qj9gCdh`;b>-g4#7=4mfc8<~P@$*vM$dqZC z|Cl{YKcY=TVLBzg#MI=0MCxHa1`w(5)5^|~de8Vs1*P5~ABgKh-?FFaP1-M%rW4|$ zX*7HZ(i?p9L6H7JD?0}Xn7IY&XqR3&n(=!?e+xSN?U~z6yp+zid^FJWxnMgK3}Ajo#O-S zD9ZXJ{gR{S?D=_y_6p@E#vMhK&?P`m@l6K-`Wdb493bFWNX13t9Dl=Ot;f^rDT!pp z(=i?kX&4}3TAL35gsF>Gb`BHLnHBo9&TMacissT*p~)!D&aBWU@!5lKIf&0JTG=^1 zz_dPF=$pNV22k1_pfhQ+P=I2blT~Av2rc2;4kC0atvp!}(l>=%VUN(Iv{{Z2GHeUE zm~T6X(1o=CXx8}494eK2 znT#(sr@dlN(aW@9C`F6nTjv;yU!wFP-+mCK-_Xj=Q34LaDl3Dumo?m4v*mHt)3eQ# zL^9K}7!SgR9FRD@laBzz>Fu=gWWp(5&~Fx*Z;#VF+A=gZC4iH1K;m>D9|4Hd{_Zm_56I@&UnrUY`6 z@y>@&@)3YIT}>-H#|hX4ne$czxgmXR?ML<~Jxtq$q7>sU$a?fLD}A4DJ&4iwXyr+P zk=n2(F?!P;qc>=~Twqj-USjkYzV#qRf2Nh4V+8Dc%nfDB!C-c!R@~m{cnl=u6*axko)-9Nz|q+@Bn(1a8tNTcCPkdEe?4}x?g zt?V2mph&4Ez{X|&bL>evi#7};DaIn@So{*Dm3;d_l!j?#=O_W4+hCy-7;@6B_9T6o z_6sE`#+)=7z69xueDgt&K2Iw<2MO3dGFVuy4UnF(XXq)~DwLrZw~wgEB|bmnTMpv$ zIIZj)A7IL_F2o`ZnU!VoCFNBi+;`v@)>a)`%HV5me7Ww z9b1gU?6LSIN~iMe2T?kOR(6gOusgC?7|QE6KVE8&(Z#e`C`K{vj;zKm5xS6XJBZLn zXl3UJ0bAQjL0?|$)b6$?=-aecC_yo9ZL5SX0s1E2bP%Ag)5^{P0%mCH+_lEf%l7=d zNLz*S6XOg`MK1CA4c~GQpI_6;&hdfrk9duCvqjd^vv(?qWTt1a=AXRb{_D5%O$Pzm zh*q8y04)=btB#kk-x8omVSYQFg( zNLSLz&Ori()ADKchwT~qK5Z4sP>jQA1piPjUc?UY0^6S5dfiq+U9Lfi0d z2NBweR-POP4dv4sLdV)8bTn-inuKCSNX0G@I+AZYh|uA*vU7xh8?ehoWuy59?6d4i zT1k6`k`&_&*kKDKP{Vu(AW$V***Q?#MIXTSdi1-nzHHCW7io)7eh#xga;+kkxO|>( zF^J1&X=UfQOlyIQeAe?RdtQD7$r$+Y|Fm+9Z^iIC4xSW|?EY&bJvv=Bu=_ zb7WfO7`agOqCGLcp*=#0i6h4tSEzo?HyH%xm$b5TU|QuE<(__t;yX{ao+-UuNle_C zQYB`YV>aU33?j1utvu0@(YvJs?UC7^HVI8Kadb-x8AG?UFW+VmnZ0Ob=g73!M$r?L zmj@-^a695sdvN+`t59%a*hUeGTxJ}fZ#jrh53TGRpB8%pM@o^jWoQI0;rSEaa1fq9(8|u?X>pO} zsE5U%uiu=CwmZdo2DXioNM;5W!$q0~2P95g@ezPHZ9ywL#|ao*%llZ5w#Vp5+A1^| z#W=V&-otu0-*OP2LuqB___Qb)ru{&_KVzjmH^a0?C^s>b3@ahad{g3^3<5JqD?10K z#Y(x{jPpf%UOrD-gz^%@O1W__&S&`+gSdQ}R(6g{tNcD9uY+4J%^?GegL9Qj3s zEc45we3L<7en=}j2WEQo+)CXHHb>o&rEOL3T5LTe{ugZ%%FL1W6RUdE5}SYUtp>6A z8?Eddn;lwU6AT9#eM`7YRb!UOoXEEsMCN!}**P*ThQEHXSL>QCve27+_(71@#1;1&J%hzd(I*H2)!`r4`(a^-8JXT}L9AQuZ;#Brv`J`^i2<2v%o3Ts_%?&c%%PQ?Bh%s{ld65@li&UJ z&NmqZ zW`tID4or(_c3)br0DsS(m-}gpP+nq~W~+!LF8A^+266cgt?V3^7K;XbMc*rn%lrRq zkIbKFn^0t8STv|dEwT9n-)az>-_gp>v1xI?R^34318duyYCVhEN=YO$i;CfLq^8&< zLR;`{2N8M~t?V4379*P==jksQ9cfR_;j~9++KFLgQwdoDb12_r5SW8$W#_=`7`;## zlzP=`y=8r=a@Zc4673TT%|iR7%F(bTID>q%L2z=kvU6}+l==d7Hd2T9ZxZv^A*RPP3jp?V==- znLWi&tx*w6Tz2GJ4C1mqt?V3^7IUVoU(zoCJ;k1v6KRjo3=_kgsS>gT=6JrzATaNz zm7N3A;=E~aL6T^ASM&J^j5Ah8L;rSq~>>Qp}ol`+C(0tvVny=Cp zq143DITZ}`nXm9I266ckt?V3^7Srr(p>Osc+Gyt2_Q3p-HVFkLhG}*+W|?7r!M7Pi z=I6BXL`P;&LuRAXtp~sxD2ZeSz%e0X*yy<~-)0b*wPYI2{UpE+wTcVTV z+YO>~I<4#+omR7_QFQc-bEQ2ym(xz6?8Gs98Vg*)Gr~6JQ1^vFYKiT8+2ihtJ_^8MwKELBz z4&w7$TG=^1t-G#j_7MjbwpwC6z1l)aBs0B=r|YT*F5!6>-*6C~chJht;Q_iXc{A4G z_VgS|Tje147;nZpm~T0V&--X)=lHbPQ=Icw1i2x7VY6h9&LC|QicSoBitAC!tdrwg z4PrAuD^F-_)b2is&1dbg`7~`)C$XtTEwT9&-)az>PteNFv1zd_G&htj2ZPy_T6yPD zdv1P6`-E~6!?w`Tuq8M@;F}GC^WU_xb8uP=k=1UuRJoAKi=OHq_UQbLb_zu&h9Pnz za0$=<@(l;!`9HL>b9h>0oxI=Ym4jh@Gx{!PSkJC@R1(R|u42eKqhU*Mw&$A-g0n5H z>>QjH%Mq%oVcd{&qCGjs(?+35Cx+#SvA88V@8{bMqH`3j>>QmIIcKm?3Jf{tJbQ9J zMEiu26GP4!4O@cqLB81_I4fvn=is#1$Te74u8oerYR}A9Xp2y0V%W%~B9^#(iElB8 z%NJ;6=eV?}->6Gu=csE{HDrEikIXMte@ zLCShKysnZ+W;h(f&YVif5}394CWFBId-4I(Vgg?D)4^b|pccusRI`^oHgouIutAVl zH(}(}7rkg?y`tYcR18)R+;qg+T_bPv^6CD9`m3D3dL)Jkcq4EL&+dG~L3rLnD?86N zE#^^0Kj#JcjJUd_$DW-OZ4}x~#W0T=i(8^|I^S*(oe$8;&e3VHQN36g%IlXTU2c!f z2yGIIO$@t^t1(MtKE}5hMCPNkvU6lwjBQFmpMD(tUVCD`Lwkf06T{f160!v5TYQs2 zV7@^sI|ru4lv`anp$%&OV9(3%Xp2x@VwiHPh$Sw+KD zJ!4?a)UK}ndj|fk{#delV5jZ7x^_Kpwfu{6W6tZaHX=OpbO5MJ9%ON@_t%Xa@L3gV6NR%Fdx_agTMWtX8|z>MTQFR!8U4 z_UL?y_6kKOhI_2Tp-X^1!8aWQXf>_u9H16kit8>Kp6U3ZJwHF7twQ;U;WSJra*5A> z^DPJQ`7c^|65wOF4gGKS`1~(zRp;?BUyA;J_?CnC{C~8vb9`E?G}M2C@^17UJ?pvE z_DUj|xm64+4UNEM?%9@aI0(;w(#p=^8Ncf?+*f?OJw5NIt?GR4F<)DJ6yI_XpCf2x z=lINuzJH+p6C68^ub(CVkUc~nqzywMT4a9@frwvbq7{7mL6nAQpV)0_$5kT;M)(P^f_ADIZESqYKA>Kzp#hs=d@KQMDfkX%v*PU%C{WE=O?tX zb9`ECMJ^5Xl#5P-ULJ9GbG{<#gI3w10|Wb*mDx1m**L zlR;okrj?xo(_(Lz>XimpX~W_XdtyFDn}iY*!``lH%o3T8@@)o@`7o_Kv5^_dr!{20 zV~@0Gd`itt0 zx%KAz!$I0#eZlI=rn=g${aNavt~>S+ccc*a1~ zud0n7RqGGDwQfUq%Iis|g4|%X=@y`EsXxfuX*{PTKlOg(rw+v^KKcs2 zmEcDoqLu57Yjh~Zszm4L*h0{ulAtzz{)%doB^h6$ok5epT$T(KpB(CZfo~tk#OG*b z=S*xPm{2z>)%r$_j9=K3@pIZAlngp&j72H=_$l8?kdL3x$`O3DF^+8vg=^ha8xoDo zbws;?G+HsUDq+=%88)p@L*aLA(9xmrv?GUCPV-9BylE#Ey?kjf$oj=;N9N1LLS`sk z4hs3EE_!-~O~l6E%El@iad}{l(rGerWXtI%7G|k`{4Dj4 zpB4Vci!sW<_U68?wYhN)F{-n=&6)}Ji@lyU$4e(>?B>%O|L|Gr=TrZO3tP{$w{=Oo z5{*oGYP%AROj-N5R+;j>)mFrg!GTS~-|3vY@ zFK^fC##DWzU5UmAPsr;3oZa2%Hl`h}s+g4?qcrWc&#eAjllgZhX8tzQXLrvU`|Zsd zYs0K+8^q_hqg^i>pX2s+C6fOfbHbnF=%A^~ZFDM)eyKL1YeS;ZimlrXq|ypCf`59wj*j3rT2whrS5gP+)Lld2 ziuPPTmL6|pflWobx?i{6xTdkFVL-o!YOv*iepXc?azGzB*l1@w-@59#d839A^?^>N zKT!R5+bDQ0qAfFzY7S94O`m5ZvUm~tqM-tJI7X3Oj^kSi7B7yeDo1|r4pzChGk)(- z894mYJXbZF8;puCe>U%_vD7WU{Gm|=&2hhcC|be5D!#oS1IuaUdgB@?zg(4w%nq?H ziA2DX9?Gd3?DWf|Zc~l3gyk06A~a3RYaf<+v~nnI6su+{-kYQaiSrtpmg zL0L2TK>1H|Mo}+LX^U%n+EX%{Hy#|Nys!Oqq9T=ubn`6*5t&IVJI^Jd1=!HQzB}iO z^A?^xBWKY5pqb=A3r19^5|Y#SrhffcoE-H z5RnULW#@=QSM9hFU@3WrRY^o%Znb_DMVw(PL!nYJeWMf)+q9QWv z6}4H-A@+zIMBCGWETSTnS>yn|r63~v(aI5sw6Rv#SnjLU|J#sg)P5JXJA-euqPFT} z)r#G0TA>ylPwVWWxjf{%*Uf1fK=t z@9#EiPJ@O|bOim0>ftszyu)b6j9+lJbw>7SmHlepQ|s~S5sIvL2;W99>m5{8 zj{Mji++DM+>0^hwf^er-RIRq`^a{MC#!gRucEf&&#yF?NXAi|H0Lb#K1px?X<$B{9 z)2rU9MC3R)_R-O9W>Ttqm(r=+P_`W83%NkN68Ra`PD^U8r`rZs z&9g%BN?um+?FD&RPAfa-#XKjkq;ok!zRjMMTWE(+R$3OKTXj$MSS2Sn^KAt=xrtVG z&WU#Mdp)nzd^L}VpS7puY1${0mX?=zk4H<3k?@mzi$P|dpp~67vy*W)RcFRL0$zW> zdIY?Vl1OF*-0~)G0Gh~=?-ahtAT?_yA2sG4$vooS(;k=Ey!T+0xa}S(a-`eMw-w}M zCaoNiUD{YtY%Gn|mMYqiXjG~XXt!X{Xhm&x%&HaJ*t9||jqcXjjX)b8wqnpP2034C z%4xoS;2in~X6%7Sju>ZwwB?1m>V?=w>zWqe49lZuwM%kid30q}qKy@^_}53bZyfWQ zr|#t$R+mJmyLlo%*XQWZRsR_`7E3=v`)B;(1D7eCrf)TJf?O=EU9=nizTN5tq0uly zHxon!UvGY6>(KRl^T8B(ZB@AqDq>$9n>j8Np@qiqqUw)T2$suZkMRB)yGx13>G9(c zvO$3I5FZE#%7e7B=u01{N_1|$b;kHarTy%XR<8cLYNaJkf2F-bv&|_9;8gKI)(Kwc zV*p8djaGI}(k|nZBthDFsWnK`l|&q~KAD$JP5>k$N7MKaK#r!;%Fa0&zwhtv_llWP ze=*1})$-CJdz_A=9Ygcdk_2#SI3cssF?=K-RSRil=TyCC{OnZqG7x>;x%Nz*P5Xs1 zby`wPDIX+JtN1uTqL$OjlZ7b5qlLHG6LkyimusTTFB#s<#{m*`6Rqr=s9nd;QR?CN zK;ORhtUXRo(`KPKElwaoRZWoD=}A5akfkSRW#=pbqbOx#Dd@`;0{x)=`dRBi`8rA> znL&9Hqo{@xlBy|uBp_95CLdKmh8ir&S>B%ZK+Wbq16X}ZB12V8kSulcL4YjHq?Mg# zD1fC3N_%TlJkOq`GibA1_I6bhBul69L4YhRrj?zuwEOrYr;@r~+s~v7!|}`PiMoWg z3?=G}1jbJxDer;gJ{RlER{sPpy7n1>Ht0xkgEM?W#?4Q8h>0~?l1bK z{z6tSLKW3RP$jWrWy}c4RKN!UGSy2fJ7;Q7f+;oOGnAvQw@2$*+BX!fbOIB; zF|_J_NW!k+;{ge~idK#wtc`8Cjh(%WJTHn4wW_RPc398aqIL!Z#m;_{UY{$Q_`OP$anlG{Tn9&d2Zu z(0|+0@lW1fumq2FrxYC_8w4kR=K}#b`75m~lHKd=N;HyPjn>JP>_YD(9a{9Oo82S# zy6>B}p2hB^B$AoM9u4*1>3WReG-nE1useruILPkqRprPW*TLJuLRD823!$HOIK%bW zQ<37$1v4DBl@z2RWPsq~bUp--j}OqwBDbAfmFQe=xkqEFU<9cr>!p|GynJeTpe|rs zuB|j)u3Brk$$f{E`T_%=hx-}!@{NQ7JARtyBrInpy6p`m=KP%NvGV#)8T93W2_-WNR79;t(A=gx-&Jo*-Mohd;IA~8;jy4V@%uARs(+h?Jd^8|neYEoA157@){Aqi@K1CZh zK>#y8+x-bX8W6D6v~mPsZPY#+<*_FfMYT~Et(ft|yNl


f?M1K^z~Yl?9F+Uo_mV(WB1y%3i9xa?p<~q^~__J>c(B63Gns z4Yv*(_{fX~8LFh41FwIZ#&Y4m=+8R>g7c56a%3sJa|O^)rOIeZsFEBmrO&eGVzuJlZGtN{ck<1(syZ(qn zYSaf=Y1o>N10-roTG=^Kp-ozmMCCkv#rha~nikStq5T(jG?t`Ec_2wzz{dcRG@n+U z93+W#pH=oGEvLP5OOk1|r_9FylC+Fgc1}|0xLH(A>Iw2*F<9jnwar;K+v9W-Z5WDE z5+kQEBV=~Ekq-o9>IPcbIa5GCrw%3zXgED-kJA&hS13+N^m7#tBuS6)F@Plfh*ow^ z5-hcO2R^9ek%~TS}OzqBu3gp~iyvYp7)(k!vkgc6)W#?=G{az;M?bVPv%^s=6 zv{z`RN}}JZcpynSiH`v!=>%HYIY~e@GZXZAxtyoLbdfzw7tnU0FrAt}eyZCbc{-mD z1LWx(TG=^IKxXoby=e`mJMCe*gZ2uADT&Nf@j#MvJ0Al`(yg?zbCPx&fBd9e4D!Po zOE1{7^gQhr%F+iCNK7>sBu&rpQGhf(Ln}L{Df9qN)M&g{9O2reWIeUpSV<%^2FFe< zb7OF2f#hgIJ_L}X^=M`19EC2kjpQg>@XD#d!g5i^Jiwl({b1_H{+|N~|^jf6yMK2WYcUl&}rzWG`1SL9%oo9|XwK z-L$fEmVot@zM_{2)E-L>r`POpdX@GI#VLvPl~ErgQLpfEfJD7aD?29&$WHw$2Man* zQ_I$Kx~-K&GIP2lvQyOr$9tXuHtlltdN0ZiD1$ zJ|70i(>z+a6;D^M-8H4F@~>UbTYdKG83Svkc6IgNGw^Tq$CA~tpZx`rR5l}rP|NMH zD$}l^SS699swPONmhnM=P~~amR#0_>C7?u*^^5vw{3d&pZlt|JQA(mjQ1L*LbORp) zNYZt*vU8GvrIoB{&G!j=mL8+sLRm^;X{F|Zr0GX|6d+9x)5^|i0`gL>kkL1ztg&b5 zE!r!Tr6lrF#REywn|ur)NpH}~&Pf9DQr^qUTYzQ`S|lG$I{BqnF0z0l`Y~u z;vM)4?1?&`whJXHi9$i$2FcSod>9~4XVJ>ec>=~xr68|wm%GCrrrT++P?(Y!J5@Z8 zB;Cr#0Fv}&TG=^CbI0EbS%9=0BuZ>S`a8JZ_i$*h_nSz3<|0%U1zTG=^EK(DvT zFY6}`_OnN6Z`vy~K_$`aRXmU+&E;bNN!o)}jv%RxTb>#hMb&QlX+r|O;Whqy@1{07 z-vxf&FM8R?Ydwqh6c_04gi^c^+MeE53o&#-lqu*s8;vVHvwX8baD%GyM7SI(w9VY$ zN$5tT@WoKq+aqx;?=5&S)QRyS5ei?xaSa~;2**{lvdC&zR3$ohAynuFMH59uKQolp zuY!6+wbAzSIoc^SuN)sEM78K;zxW{EdXS(8Xypik+UV38{bDW2wISiKUkqJ%y`a9k zuN2ucuC?5n;D6I!3MCl3@OpIXUMbu+8Uq&z@Sl9sL45ySRgUZ(JD1i%Q%EBXq5dJ< zJ-)}Di(Qq3%PAzxMaTj{$j*EaAR*IfWs%^fwJXs`a5YXRSAzS`#=!r`oYxn9H>|Jx zvFx6EXp7P0b~w~M2bBOriA@G9kWKMT29Z6zsyqRb+DqJF3GH%w7Djku!SVia z@vsmIT~P5czVRRxAElK=BKvT=5{*PwV{>vPve3=_M|&&%V)QWWVP%kICi_0^F`CJ+ zoBOlX2t%pN5VD~5dwiooYVWTqN9M8)-fbP4cuGq`Kk0Bb`-?pff99$`RsR9iOvo3L(k?K5b`qKU^y7}Q{Hf&IwD`l&ejj2ZnwfZy=`9MIh4yBbR z3s~yrfojGQV6C(VYnXP;Ay^F~WX3A-fq-BQ(#n$!thsu|`l3BppQl}$0AS5EWUSBf zfq-CrnpSoWR;Z9_8e>Hbt$t?D)8n*RC{K%^x&t({8jD}%r$_nrgBbmgR-PmniT_oodAUMa<$`c)&ULBkZ?ZNp7?UDm< zdJW*5$2S}V=R>rzb8tf2kPR8f&-M73Opx!>cC>%f9-pt%UZMEJSMMGRUuK`L^34Y! z`UZlMTaXQLp58U{#^ z?&SjjLHZ7@>>Q-lYhR;l(_&lEpY1vN6KxjCQGC_rM*I?^Kk)4bG5Q^?JV`JTYhT-Z z(0UHGm6Awi4i-N~rnRpv`1XSsy^B_!Bp8XcuOsa-I-EAkT{beUeI3fTAH?WjTG=^9 zp=-qqqoYbvAIckd%MROvRHE%dK{_e6no!sQ*|81s5r8P=Xl3Upg&x{4pj10Nomw8` zGlk_^eev`5EPa;t3uOs=?G71gH(4NI`ZON`2-Bx%W#=%pu2C0dwdiqsh90GDLK%v$ z&{&CFqVq$(BX8okT~tg#{lBAJ+15SObM9h329V_otI8AM&~~`9jB+M) zd^vn}`)+$mzRf!fp56Aa@&Qdr$P2;CH~DBlUcOE%i`@6sszm3GazkKwnSp{@zSC+6 zFRP|nUJ~&lZ5Wz>R7mP31>N=BpmBobLBCslt$aony1J zt>Jp7l1OHV?@`+0MAaS~yj|0T%N?Lhx;N%DTnWl&Bar!=O zmUEnx4-%*E@o|7S-A^k!$7%1-mfy(iq-^X@m5Zt-@AVb(URLY=-mquuFSK(gTm4CO zf4V6Wv_JDffuQ|~R(1{=RBBM34tv>>#@7xXvYriYrzDb@4JKA#A+*A z**RAGBl)ZToJlIktCw3+gT;b+T|pniA8QZU(X@SN63Zo(#Ei~J@WY6^a@4e{+SLFAAt<*#ozdHV*}EX;Q!$e37^f^KpT=m1t$>xb1`B7UY9+ z;AMkVeyTi_UMikD{<1x6U!<)=VGELiO}HXa`#c{Nh}vgqW#_0tMb)Lng1)coDSNtp zM!SX5l~_@=VuS?haXt_bs7GmK=RiTDvz)ioPnCuD8k zC6UY&AhFSz(HV){zi2Q>RA! zp{zBOEe8g&F19D@LfSHvti<+sS+gY)vS0Hdfsp-@ zR(1{~tVrcw;k zhG0wW3G1hALkUZ4Lv)iP5;32T2t=%hR(6gUv?^IHr|Pwyav@dw{c50n(jK&{Y4cFf z5?hrt_#$z;l8+0-?Q&Y#Id0)gNTRz;(^BO3?FsuH?H5Ye8Hsh4RVyS^_w%8EP~A%_ zM?lraIoifi+}a_^HY6M##SOodTqu?N=$De$*t7f={h3gf!IzS&5r(H$GUPfKjYGF@ z@{IXxq^IvIOfZ0iH}w$gc8O zJ`xbEqiJR5XoXJ|8PFQ)QQHm;K%H+7)H$?SC{W<-rU+1D@k@-(;@b~mw31eKj?qq` z#UY8&(rhXd3~M>*c6)?wrHw)nIySbPREu5W^JTv6AU z{ek#M(p->8t<6UPBGpAJPjIA0amr`2CZzVZM`|u@8Je8pLrQl+BDDt}1&GuvTG=^L z;j@b}OO?(Nd{K%Ge&h5`lN(gqB;n>~;?E#YGTaXOV&c8*i)POntxt*p`% z`vPO9cZEGrm(rG@K*g7#bQdI27xPhoNL@%PMu{AlUdw6AP`nb# zUSnQJu*!TaAXv+2VBZd$4YzEt?o%nO;J?k&gug>jqkRQh_DjLwwR6tS4y8 zCI(ohw-F!XV*$bX5v}YTtl7YLD_zJAV&3(`|QVm*{!Lz{-8g&luo$68@G zWOw)$9}NiCo3yfXxI+8lBM0;9dTe#@BGp?glcu8+e0=}NhC90#4b?c zA(O61*k`l>kZUyn~2N9U$E!udD=CUE9}NCw&!cIL*n%u9}bAuGqkdE zypWZ{%8M-OFsn8#+~fl5Y2n67BAF38b}1zdR?P^B)P{T@AX4km%FdBO2I-X>M6yMV zr~~YY+K;viO;yPZ(rZ3Qp!VkD0D+oID^D7rhV(_~z#gbx+AjA%4H@1dOY?DnK%Ge| zI|nLsxGQ>0Rmkc%U1N{aRkT?sPT1B!y2n#4$n10l9|Z{0rL?khn1D@b-Tl5d9F){H z8Lh{A(4MFVXva{ZlG%MVW`)G+K0Xu>tGj7s=U5@5sD4wa^EG>>UZw3qnM!69Rr5gt z^$H&c2-M58@+1MuQ0koeQR|7`)=DCoiC$7bnM<8p@^OGbZAL3Q2Wl5!SvlB4>+u%a z!?b|53e8T~c^!5P73?81(|kS#5TtpuvU8A-5mfbBwX}MFN8@R^Jx^uYF_fodMo?o` zNUWCep@3NBX=UeFg-#Vl&hm1FVc%O3==Z|hWKY$Nv|%V!*u5}pmKt?JLUjWl2?*77 zw6b%kW&oYupr=<3p0MZXG1@DXr^V1odX^_;f<);@d=MZ?57WxdQ9`!mjox40E2~j! z?3sFtHVtJenQeJtHzZtd^3i~By+JEGhwHsio~pkWP``P*kQ(;W+W2bbh1Qe58A>9V z$=^Uinaf~{#BC=&ED*OHXl3WPg>K@D9BYmKdWZ6cY_`~*vy*7s&}^1Yl(U*260j5a zctF68rInon#^f`V#ZpoCZ(m@~+4;14C}+v$vnE?4Zs+h}fw-MTD?7&x%4b96l$R~! z`%;D(zva+Xj&Yw|+^b}Jtb2-uftW#@o}o&t{SFpGuqetP}%d3&y&quq+; z>gqXNQ@Seu8hM+SPxlv!c`xU$9yv9U4zucq!Lf8&d+$NU>AiDbt7*n4zrwL(}TF&R)$)E14ZM6&EB-bNMJhnD(HRox>D*K{K*1tk@Vm+Um9EDoy)_a)mt*#%3(d z5Q*5Cd_W*#OK4^1h#|wRa$zu~pMAc{9;_>9w@|Q>8D&*%kT_k+hXLYrF|F(zC**P& zbuCsdwaPCR^u@&o?3uccwhUz|nagDwUP!R+=3@cD`ZlfX94urjgsK-B59GXR&($lm zV<=b2Y=s!JLSpqY9}0-oi?p(HtdPy5#Tc1C$wt@`1YQBc(3?DEaB3axkpV1{c`FHJ`Q)O;~-2l(3{HGIP!2V*)`tkXCjM z8j`t&P21qh_HZqu?Ly&7CUez%kU-`6I6$D5(#n$rD8n}R8|{I*fws#vQ08s$*YR=#k%FDCVNyRDIT-gnL#U0Y=-)Zg`q(c zLuc4CbQ=3i9fXT6KS@38PEwF}jGh3&jX~ z?q>YntjPdL(gl0~AW7%b%Fam&E&EB5)Pr&rx4o=9Rd|;@NO#h1p&((;IFAofIDW~| z9en#ij&7%wCpbrQA~|}=o}(9Nw>r*ID1OP&^L+b3j-I2HCpbs7p^+&cZF-6IG;I?l zk<2tLwtN(dUvjiD-+qvz4Qb^Fj@l>~HEK?^GC~^?4r@-^G-^&Ks2gnyxyXkIkFp2& z2>LUjiSP($l31)p7^*rMLau|+C_5d-HyWh&kgD=TC_9B7sh5_7iZ9{1(~vz6Mc!KQ z*})Uy;vp2gAfv!HA0#77D~o&YJXf?{i7b}x?8T@HL$+=Uk!YQ_6kiZ@j)~ezU&mQ=bH~g zbS5T0qYvU7M^526PPL8(;GZ{R=K9-l?DQ)vFd7H@$`Rd+pj3D9wT z<3WIqp_L;5YGXd%C<)Z2cx^~HED3DaNP>%eubA#v$4eut0+-tZJVJjd6ksg>l}3XM z6$Z?K*9mFV20q3&9mMyeRpp6L8wi~fHM$a-A&1KY-?0bdTfDnqc>udF4F)4*fk5ON zd=MZaU!#>phP$mQ(YYc)=+Kp!rJ;P$8}_rQAfNG9Xmh>asm5B?3VuslhNc?qwHlnL zCL?6O`9FLhAXUGjl_RKXqtk2jo3-@UhJ?d@bE|N_S&r;6x4YCD<872gGBbulpczBS zFE{m-&B2NkxE0@A5Y{cK%8|Wf=Mr0}aJ9&9vLn{u zP`=?H4+qoAB6+>9U5Q5Ws!=()lGoHw@+zpy6I%@V&sPpv_QU7UCZqlELJZwnh~Xq= z2wH%97T;_T+?7@3$V4`ybD1pkB)}r+N$6)C&StmTBk^V4TQHkpyY@;55~1(~9AD%E z0O9yNtt_(IXR8tuhN7&$qT;tUz<)+H(lW6;MO%d?7OWVLQB)6K4(or$Hy>o^aauWo zp*Fg;M$cGFb8SdC9M*3i>KV&kIVhEbw3m$>-fw!DHN=}JiDZWNAjFL@!#!l}k4@cFQGAH5VjJH}Fw_ zG+jq4JEsY#Wahnm&KEd6VUN>ev|T7p*uCo9V7zXF)2OBMk{^ zjXhCs(T1T!B{6;)GeR=;CLajM)El(2bEbgtQ^iU#!<%`9^$c%@l9)U*yqXJ=rk(gG zK$>=-m7UXs^>~BDg8l^fVtbrUqU}QSQ$jsn#RkdK349nJPsh^A&Upe>?v@RC`Eroe zZ%@C#9;owazfho(Sh*YZK@xQi9|uU(S+sHlQEhBnY3zKdZCz+X!r{)B(4Nqf6um)t zWq7G)b$DCDckM~OhyG3|$=IGy^}InP#LxndDd;*IjU!-p@y!Ooy|b!35q7(T*8L2g zgtmBuk@&qm5-;)If;(NXJ)sa1q3{J9FYp0?a6C^di>&rsRibk{TtaUInkXs^mV-jx z%clDLa>~#8IbZB_+5F?ySW*ZWXR;(PT5YvW4qZPwdi8gLIs}+OJAActO>oa!HBZp-Q>C)~Quk5ALS+7*`wSVIki{8rJgW;9k;r~u|^*`<&J3+a+ z>E+k{dqnPC(k{b)++y@?igms&0wB^Rn zTX;u}BP{vN4{Gb1haweU|7O0e;Mc#2R<1X$k>YQxN_1{86}q>xfr(e_lbfcVRV}lm zzM&u@PteK}7ZFh>U;j#LMAlIfag3{FBC$ZkwApD2-%t>d zHIomKZ4JW;HPGr?-tQOnV&$Ipkj&=22YZ_X+s-4^P-Q0R=9>y)GLu$zo=J>jl6)aw zc^X^W?d{o9at3V>+S|OZJxc14N=Q!QTM9z5m{xWUN$B;u#)!m}NG`KSxy0t4d6Sx%-x> zYLO~cE~N7Q@>GwPUh3!dT?GH6KT-Xc+o;t1oi@$*l?Q&WbecZU$bM1jFZ4~-9KBMZ z)1s8U<6rq!g30f7T3IB&*Qyeoo3C$Ju}jr7wc*mPS6R=zc2*K`%)BHFGa(piammj= zoo^TT`KQs!&OiUg)nAJ`k~hE{eC!8^5- zspWzX+mmoEZ3;@lT$qGL$0u<(n{OY8!zx%$25sesSj#!6pBZ$QmTG=@k8yF`K``DAPC+!8A8+JoTh?+ah z=9>k6{BBy=`N!W#xn%4cGWOr!qwPSy|19wPM|BHl@GS!oIE_|zj=(!A2sE;#)+2n} zo`cJ1Pf!k^F+y{AvNO1ZZypH4MYM7R3~iL38x`zY39}7}Mjid}c57nwJ%(@VYz2F5 zbxnFx<@#|NVk3d$R<2bcv+MI}*XfT_|CKaq*00fa8Nctq^Gc_=W<6W>G)-T!TgFyzUE>tT zt9b*MJc}fmV7(G z@4gwWEIO8VRwW{{KpWe;TPJ~?4S-ayNJyuK^1-qpKjme!+Sp^EYNO@u!UeQbXl9sC zXNK;S2w09r=JO2(p_xZ3JBMc1aiOW+SzFS$S#HlwnKldMW`Q*~wU{M3%lI~f=;Uc- z=jiMPVBZ0nTc9T6jH_~pQ>>OduPCaM|&kcN|L3pmCm7T*ge%=}OvO~U}cb>3k z=P}wWlpXuLQ;S)m^CP~^AUY4z%FfZ*R_2|^@y!~0Uf!Y|LU}Q4jUR6;+z3=c@+RL< z5Rx}&W#^D=9|?(ZJTvne>v8Z5C6UaW$#5168HSB&G83+!1rpEe0)rTx4THBLE)Z!3t( zS+sHlDs5Eh8-@N_HLwkdMxp;@x>Q*Yq|u66-Px)YKd@^%_m-V`~`@1i4HA5R3+LdPRG9jv14;5IxnsE%BoGJ zg?!|fd!7Dr^&diLQG&M6`0)pxS31p$5{BEc#|Y>Sf97s)EYgy;QW4=nJ&Mrc1s?^N zG+(JIx4}p3wQ0zjP^G_VJ>wJBWAm+*L@Z--0ZO{nc*_cukQ)M-E%|srWHzIf>y2yl zaPO>2bZ*^aE|Pl2RtD03c1SB`FH{Y-T?C9H*B#^Orw6b%? z=1`1D#FpD5R;FD;5%ZHr%t+WWJ|d8?Jgw}Uu>B~)`n_VN)L#tpOSN2flRaoR(&nL{ zWs?W3VT{aZH}HXhyj@2tJLhd5p0_~soKM)(_84s)O4~q(Xj8UG)_%l?1+w-qtvm@? zD|`8VEwin$XYDQ8x(UWw#TLohn|xRxYj4oX&RKgemDft@EqFhZGT=7zlh%`h8A>9V zS!XW!)E06^61Ni{8A#j?w6b&JxcO&E_M(gJQ9FsY4b5yFn15C*k&KZEHD)g3(vx5ulNjsl54<)Swvx9~)lDBjCz(C&4qLn8ZZXbKdr)Ms4N(qF?GSWc9n5p0~&CIodlEx24IC*~Wa4v^~Se1=98u zt?Zn(nGkJ;m4c10wVo7gs3ek^6r7P9VCEHq_4rUgrq-sFoinBFhBq(%cFUE4{p^w2 zn|2G$Sxb^b%D5shmyZM_Y7bi3IZ?BrEY&D@YxS~Td$7{9X((8kV>50Wj+>=suyWx z=Tu>%E#+h>=*txXz4Wm4r>tj&TPlfUW`+rlwi<>=zBc0n0{MC;t?ZmHENcxGqoR*C|U_t z;44;0rXJ=)0h#(ftvp$nlC`Y2?3sF#wre6VWvpYp!G{7e^%q*%IaAoIu(7Q~>j-CD zXFV(2Nl8q)Sz*HvnX`7_0|NQlj#hTg7q)k>eoo6&(mKhWuoGz8(A<^a-odaXlCfj? zkU++crj?yDhV89s7-}wXoo^4?Ika~uXbJAE5xz*;&f?<&Xw4+&)Ki?s6OV$4+hdd{A)XK33d4rBEi*wyQFP3fxqYhbf&)&FVS zNbwXO8wlIaXl3WHfyJ=0y6q&LGE^)!yxw{au%41gW)6^KF|6T;>@wHpBLWHQqLrN! zb|AE%T_1>y?eSH|)+)baZN|B`J#BMo2hq&7EV+F-5$;Ix_TZxf$(uzhJ0}k-Z!}IZ zXt1U2VLOvH4TUYiMel|olCLFvKpH+5^gLV<}C;>k50kE~Py~@k;RGr!hYy zT^IB5fOK6*D?6tPyTW43O>>8NpFL!E)7GJoC3uB}Zi{5?+k99cYu}`mBUo$W4$Q_i znzh^U+K^~mb@p=Yg1yB@b#?7}-s-bg&lp%UwX3WDo`HX>KbEL}dq%|H45Xv}qV*du z+BJ)Z7OF2Sw7O>Tul9VuPJb?xZ~U4?wH0#MFP2oK`ZbFY9@L3xOln`_qX2P!wW=I> z&0^WzS1^3b;R|3>7Yd^H;x4vce1Ii}LyB$xaokr8&iST?lU5``$g`2_`953Pn069LcsvMd5 zI`}%Cw!PNGMd+sC*)k-;0=O&*)QhRJ<%79tXK4Vhl;^!!#%|Kjv|7PkP(8F zv-wa!R#wr%oOH8lC)hvX=<2N`*;ZW?v+52k~)%z#Tvo8Yqmw= zb}b(kh}$)^vUA+D&5*5e8><#+to_)YwMS^{P}ceq8K8~*1jjs)pgqLL1cLS;t?V4M zBk-|Wt5T6h-rw!X`z!4wO5Tbj$!lejMDcY#ND#%>Xl3UpYOmt7%6Uz7B#phDKWjZL zovtL3nU)3}V6Rqel(0?XqXJ=@N-H~u?R|LO6BQ*5xJCBB9Y-68COiCXxi*G$!WjwO zF??hobPH)^=g=Wb?e!6ix#V`PJ!)suwxOscv((<~hXiaD9}fuFa$4CrVA|y{t-4UP zT98etU1&ktFKG$wHhao$p}j*X>rb)=4VxlSyO|FPMC~S8**R*+(tG{4JCrXKiez9;$UK=_`Zm7T+PFg|*d@C7=1>)&WS zV^~K?Br{_eOfuh@%#r9#;e!LwTl4=f^h!fHE$!`TkKSzl>ww2qI*Xn%N21rw2M3}z zlU8<~^@sw=aG}@}l+3%_JbUKOpv^MtBwQEq(SUGWKr1_kOM6~35-$Bdtb6RKx{G!TrRvngs50CY zeswvB1!$qAdBXdYq@+d;H>Xlm;aY{nVp0en;- zZ2Qs5&S682v@}hkv{8S-p0X_M8cJC*M_QWfkhv`2!vXQ?rIjP_YU9eF#;rrOJ7e0A zaCq(7^ycdEe6Q@K$}0!`!&VHc(}9&03U!f7_)?iK*<<|$`fH(BpA1hsGNXZN_YRp2 zsMFH8a_w_`2q4OzsVYZaJk+@>VzdhujK+lS+X*xBQ+q~!!W#@$a`AJ@6eA%k1T8=2 zg8^xIgjN=b@1b@j8i}vQ?Bq&()3n6r53AMx$gH=~=dI@_8z_ln<|oJDS+5$Up7Lbq zg5Y)e#)AZ}RaKq<`A)0D%@?kOe&OL{x0gK{b9i^bWQW(`G8h^m69go?^I?FHyoXj6 zX>QkcB^qh2hU(->b2~Msxx=!4WlVR9x&|UL*X5N{mUp`?rOif1csS60E!5>IR4w5} znIM4f=fePj_N&T~S+9fFOYRN<68hPPbKfWJQMsD;7|eb6Q9&A&kR1Y=EBSyxXfCIf zMHU>XN_1`#q1|^B@yqM>ve|UDP|`1I`@U+eWhVL_?HQVh@GZVPUZZ}<8p{2AJRn{7 z(#p>1((Y@Bq$}s?mx27no~%F9exYQg;PHGLWGOEsRe$1R0jc@}tvq?C602C--DI7w zwowwv%o3BOD#%N!w&G&}soH{8c21SHhbSsn^#pmZ7_9P(+G@hl_GleRn}#N=Bu83f zhDg2+=K})yI+Rv+&KKAhs#hciG_+RQqcu$Xg`$;Y)~a|RsVecYfK(0A%Fd|*$M5OF z;7awlwtkr4i}qxFp7snSE6MTus2`H9&+_qrbbXpuc23t`SnVNQ7*YqN@`b$W77JSP z`k6gqkJHAXh~ek+_Lavc zC|CF)CO%=++>m6Q$43K_^&wi>IaxEYk$kVXmHV6aSbd$g3&je5qmIW)Ss|JFDjy2S z)K_R_=S*og1RZAHy3pO5EqLYBU}3qanf}I}tzXl&p={wdzPG_v!xG8ZFZqx_#(qI7 zJ7)|WXZ6Yz#J7LZdS5qO>koW5 zAX~qqm7TK%=B#W+jI3*A z?XfzX_6to|NzMx^UP!7A0^(k7}Ia%ON_`JWO?Ddw#s?Ou~ za6L+!hQgKPPWUlHBws(|0|NQ_0j=zuFK}j9*{|Fa=rxCb+0*q8+A@@`BxifFlH9=+ zvP3fW6+R@8u`kiela4WQX#dytjQx_fZ9*|-I=lZ1J|vK_pVP|D8PlE;j2xfUI)||n z>sqI|(U+}f02?TYWM%+M6TEYzp3KI4kr{1WJ}!{9wPB(B;SKJc_XPC;bQ}-`xve4oI0)-H5~oF-yXJmY1>fP zIxzP%-vIC(J|vK_Z_&!m8QYu6Z03sq{$!8YA86-L%<#u(+9=!BI?>4c0Di|u1(Nn# zTG=^iTsAXY3$WEK)|1aIlteO<&kkfW^X&ld;zI%%dk3xToH6h=rusO|cuBzF_LLn; z8;2&dByVGCGDVKe4(5XbIeQKK!X`kXF1Bv?tt?ZmQZhU6APT)~{ z)P6|YhN9Mi@tOHnfgkW8fsFk(tvu-%6PFA8!=ACf(Y8$}#!Pn%{4XC8$k_j(m7O!T zCsontHC#2Y%U7%?nma0qWG0$@9q2R7Hx6vi#{^QgEv@XFGH&&0^q{>qI6KiEwBu>( z&}`O$)u&NgrOA=^BFb>_Phw?HdYO2Qpg3Z3G|WV*)8#K`T3_ zj9UpXUrO**d(OT>JBM=Cft7&By9vI;M+K7h1zOoTXx>z$FWAeT zu{rz)0bd{O0AuD`40h*30vUS`t?WFHaci2!%M5z#DNE7Dq1|N%)-XYV<>_^|hM+cJkAGES_^0->sifo~8rN-N# z_PiZT`-Y~s4%E`Bo=D2x$HxRx_Fh`qIb~cQy2>x>Zv_t8Lzbg$Lm}%xA6l_QGB&`6 z1Txk~D?4Wlys_An!ai+J*QaR1P`Z-5u{a`keS!}L+IDt20ngxSJ#r&16S4lxVrYoCu)COTm7Rh z@!NN=-8Hbj`dKbEL} zdq%|H45Xv}VyErRS_5mTHjixIJn>lI=l!CWJ#59GUkq~Ur4ui^`hwM!mefLA`>WP- zi!LRR%-rGxcy7^G3sbw_*A#sHBfq%C=ok7IjoJtZ@jt4{1B)U)pt*6kgp*<;nn>L(xx>HSV$dUhvd^8|k$J5Hr>Dq1FPORHV z)rIy{eS~%krRoC-q^p_>lBV_!F@w`#bfjUKnZ~*9<>t5T_}LWM-!ChqGT$2~vYu1}^ZO$~PUvck8P11ju^3 zjzdG}*B$2K7<(=j^5%kxZgIR^ge(w*EZ~Cx37JnTiv%~XU5Q45t8qHH65OuJi z`o-w+-A9#4mUG|_(>|l)yW?Pzv(+fI6lVxs5PUA*c#z<;tICl%u7i~~Z6+&i3H`*w zS?+80Y~04%3ud`f<7Ojdf}rFUJ`9kOn`vc{=WeP>bZ(|F?yqdD&eYqhzXJ6u)mF=N z^DONcnr`q~E|_k@M#%ce(|jNxR8P{%&Y{|Gyk2X}%ThMT1o^(y@*tlnEZ0i9Z~K}x zU+XK0WCrZ`wjq|UW=|w)>+msws7;}jouj60@-}pbUd9_N2g82K8}3UD77E$f8I7}j z>^a+$b`H&B_*;o6X9hzgWV88zK*+jj<;e)y938TZJ!Bs3+ysJbPDVm@1|JXz*=e-$ zWP(gR0aeXp0tHdrYCH^z^5M56@ZaF^bj8g2-JhLvU8xu z@7m=0;NR_0`YY`eic%336zF1cP_aPfqg8weAV|w;W#=G`zlSQwm;K^kA?ua(V~e-h<8%w{ z7>ZN;d#FN2NT_b+0|BABiB@(F)%c4jql=zmKg+ZBOg&8-hB6g@#k=8yMCwUC4iKp) zXyr+SlvqSr{~OkW@O6|#GK28skTNZzOyT1Iky`WrGE!m@WlwvgX7ir{+>o9eQl>?e zZaxkWshPC0^DMRdxWn>F!XL^Tw{m*+P@O?rhIV~RVlNhiosga1X?!FgR*Pw6=U9zj zdn(GJ!DaS1T|!%h;uL?;pyGhU=psG>5TgrdW#<@;Uo@zgs22_HvFGS6+AEZ!_=^Tr z3nWN)@*#jA-9alm2Wj@W-CXlI5UmXLdwZf@qD@1I!Y>X)%TUc;NVHzyV*$~6o>q2_ z*89dstL&A7bjolNM8jjR zP|2+m>wL?4&^|>;Br|AF4l3ggiZ%47M_+_`i&l0H)%g3nMt`7&jTE!(sp?LQs`&SJ zg`JSOY9=2En5$;c%FeOc3tjXM9YN4WSZCP7bsB9P+7G6as+5NOkcchj;{g#niB@)w z7+i}VT~HGzGcK_w>>}DXl(57qSq(cRU>ES=fPkG(D^EVaL@oXuL)uE85OIcM({EeP z95+!C$;=$%zmD5ri0mde<^uvD+mKdv4jEkQGMwl*$R4f(Xvfg}l~`HAe6V9bJ`fP9 zy=i6VP{Cyh)A^39Jyij18A?@RWr>Jm9=&`dAXaHw**RA5;&d^u9~!#W9;$0-!%(Oa zTbx!t$nNhdJ`ND6D`;isNWtA-sVr8fAF^laLE15tsl>X!iV+g32lzlhsP3bcokKPL z@mK>*uiMk~8f_IyQ~bwc%^1DPM*w2<3auQ0Q5$bwHlEF_J$=}Qgu|E7b(({`?-l1| z`~04w7x_N$d+xHHckZerl9_iBM=Gnqro39TdS?;oL>-+Mw^+MtVEt{ox(0UUV*$CI zUR9n5k7??MaHHG_JtrA{Q}bkdVixf(gIAaY_<~Ve#DqK%>>S5O1+sGttt@il!m32) zp4fyT^D+YkwHl|bN`6>1*YcIkb7|AiPL_BDu|3G@p2*SL*?deOVykFn=ZNj2Eq+Jl zu^z9S?)NjP!jQU#v9X z%AT@kX~$5?i0XcO>8xUigzITOAP}x6X=Ued%|UZnCh+=t)s?DR8hhJ!tozILl|(Yb z`2M8R*r+KIvUT{NK**-h%FZFv%d(LjW~QL?wU0etd(wuX35?h!)?NZren_-t^YMUa zb<@g|2Q5F)-(Jbsqvg?tO&GM49}=xI_;^6HPNS8bqxD|2YgAVDr^>~k(i;@=URLWO zKW@+2Wwd)JXM;(1k-9k&x=Z-rK#I+h|)HcbY3$$B=O7g5rX&yw6b&j^kZ_7qq&@?rl>1Y z{)$0u&hQy~=B}rGLzx>$p1Dz5Bxu+2VS%7sLn}K64PGh86*7KGR&sxAkJ%%%Yba)k zuM~`$A|ZQ-4+@0rL0Z{4Wcs~5(b;S$TMi7A{oS6jztXm$lqJ4NC^zbg#O!rGDiE{R zXl3V^?F*0Ds)mmKc(smm=XhbFhgforx#0(T4_8VKA%T6yvSS3eMI-VJ%KJ#c5!-c1Qxi zfm=>1I|uGSv`ekK+Oz{u>sW8I$L;{s88f>w5p+J0o78{HzPrMUI)wVpey zqa>1}XK^I?IY z&7_r`=Qb8JwckcdYo0x5XVAW(y=bREQ?^LZPUFJ@L0e2KI|pqZ*@-GgTkWvC%$~YS zXcJNDmUpN#)jg63Uc|=;B6tC<>>NS31YGYul)Z-imiO3`cNgs)N?zg>xn^r5aCh>d zfxz8CD?0~nKAH0jy9>3>_V@Piy+r$n!ndkJY0qGj1n~tvOc2E9X=Udi9zudBb{lFK zZhoKjRCZG(k<3(fMTamHCP@f4;e!Mr+?ZB&4k25yGwjSf#Gbo@XyefI*Qtt~d4uKw zd|V)E`_anIQ9GQ>cg9_aTFxujvzMivMAbI@+wNKl#_ayBg%3h~-95)#x;d_D)5QOhBTG=^#>}qbgoT``d%7s)d32F$g zbHDX$V~UbUX139()m(#362vt$F7N~2w6b#$;mfE;I~db-IrRZl#4n?6az^4d zlaCC{doyTd=eWVQ0E~{GwJdjrJ!z-WuAv=m;Iqy2J}627e@a&-3wt=sia(J4bI1bR(4U z%FRt5u%4f8q9l@;pY|r+p;o6&60nW=kU+pTq?IE8YvVD&#(RXd*W=odaQGhKG>!8@ zspOX;A0j-;p6es%PlaaD<8ZF4QR+9H%FyeOG+rJ&jBh+h@F7*@iSY8^ZsQRVdR{O5 z|)F0&g{FI;T z@iQ6q|4n7pe^ndBeNHvr^2Nc=&=#WkhnPBG`KP5bvU|Orj|{}_T3XpTcKVr#7T68- zs4M#ou>Hgywja~Rp|BCpDY3AP`5_T|gpUVA>>*m&Ib!e}_ctozBGl|(Z0&okp6i`7RE zbu%Pf)A?XPxTev{&f(IJ)wF=C(3cu41f`O?gx}CXo@`IqBHBJQgAw-!lNl_lxgv2p zj*kk&?HF2l65%$AT0WaK;r3yB+|H%#bB~+uip1?~J}MBmRkX5m-1L3D(b=t(D-_E8 zDRU3{HG9}@qs>EMBOZq%b6c|~617|Sm_XES29&R!(lw>4@~?qU9NyKnWc9$c)jymw zhxe$ZLT_brTd^-N_Nc$Ir|wz6$7cIb>XPeGbyp;JPxDcM+&xJvJI765g_kJ~D5bsa zd)8Bg^_4_2Qv^TuDT2uniP<`QL?C8UXl3V^=`WERFdHisX|;`g?BUvzHVn;Ur^OG~ zm=6-E*?b%zQr)z&bEI}1cWud7D$Cg8K@uQlqxTNs>UsW z-Ni=(;&msjJPGj9i#!@$f3(Nz_q1*9@Y3CoqpFwqXh6JPpp~8DHU2_mb6H1&>)j7p z&jdGD63NU2<6nqu_ClhyDIW`n)+V&FbF{|q81>qX2G?Qsa2-P1<}P#TZb-Zi;-dla zI)GM=z^jcNtc^{uwT+BzNI2XCyL0oj^cXK63=U=0o8yIicP)XST^6*$w}M4-Z7|$F#C@^t3(NR93I%71SPWZ$+T*(O&Dnt=aoG zZ6V4Ye$uY3R9F9LHv1#t`zIeC2;bjnW#{l|JGIA!uk0=LwRE?;J#z0+63NV9@nv%x zA-a=aQcuDhI=Q_xde+_P#;eh_Z)28ED6z?vaG>YkZ6#gtyVk z&LPwa$B}u@E2-n3#USJBw@m)l9=iXbZ9}2MH{iAdUBeRz*{}GRK**k@m7PPT?e%T} zS*ef?R6TdtPnFW1-nYKv`_?no|48}md$whtc@2-%*r@}z@ojt<#?J!E~fZ4(Q!IT;CAhK~t^ z%%hbj9b|KL$Ub2Y*=pLh|4ZGufXPu+d3*vPfdKLlNC*T5LP7#$@p{L=gl*6hT;66hROKVQ*D+ zcU9ketLOadRL!07`!=&0_|G}#{_5OwA9ZSYK{i(d*~Pd|M940Lm5oD2t4xXt5obsm2I)jR!Gac zYrEacUVZK&B$8Qu(mzfbW%a3xjtbrc+&dz8JHpDw!JA3k+|87G^Vy1&+fL-8b{rfs zYHp)FAM-W_^iE|Aft|}a|;R2Tv4;8Kw?hg^JBCI@O;Ih~B zS_OHv`87UV*TEqh9&mZ_P~o};_lF4ARj{&gxTLROgw|tCw*sZv@z;FD9)=@FWh|HI zrOBqSsHi=NyG2CpepuN!YSfG1`gK7DVgB9~KTA$^kbsiirDq8gR2~jpCxBk9)kyz4qyXUhiTw`&6 zh;WUDm5sx-FY!PqJ4>1s58;D#ARI1g)}pt4iBfZAXQ@!_kNZM|YBsEF94czX)nkdf z`|0dDx#C*MXDb6ojmlQC6;~r9Dq??&9sXX{QlUR1W|U(bocmI#K5)kfSI zB38G<%EqyxUNP*oN|mgYPdWQLQswnmK3^}xfur)3>=nacR8-Jj#JwVd_B^a?95iY_ zpn6EfJLBbIDOD+^`s}ns+%EUC7m*W$L^6xWWcvYW!=s|NBkmp%z3pLTai7X=BrumI6iX=;LuUC+^R%Rx|`#o!gdty7ZJ93u(EO3&^#xyo0H_cbSLGxDxbL$ z96>5`LzCy4!lR;B#N8vJmxq;&qesqjt@@o^$7k*uICNCz63%l?aZzEr3ipc$+ZC{~ zaoC96RXa+>%E9tp?ZbS=9)u%CWvnyNxzr7Ziq`$OJ4CeZg_Vt?MQt+WcBig%m+W%4 zsMoTEmD2S2E+4bE;pkB@OSZ|B5*ih`H*wd9$h{6Lj~wJGqU}mL<+rqvkemJs_R4gs zkVs}_nlN&5XjJ4THBN-Oc5mB+~TyG#|Vt;TTfEt0cNs4GEAs$v%!dNW||^SlKv!hhg{yyOc=i zjeCH-m>4T0l37gj4h4F_;HcP*#+@T#HwsoZj@>aRc7t|uIgpRv{%{Hs$0C$Us+6Gv8q@kwm`En;8wT*D(h81dItzT}(-6EoP8?0;`HR>UL zZKlw-<#?IT+KX`LsH`P>h~FF+bqakR_lpSIv#_#p*uZK{+oWT{gX~r6jzS`tRqBvb zYhk@Qw#VHfqP7jJJQ7h;T6QepqjnS=Ici!PGSqaPJLchT5m7q~RyK~>{@7NC=CW^z z4_Xn98x^$fq1gJ+_wmT%P7yK7!pg=mqqc*uRV0nx71A#6HGI~tf`dn8E!lSPa%9wM z?F!s8B5;?%%Eo~Mt2J$Nj|cg*-492OO52c3pEQY{odN^xLZWjUWJv7qegAcP@622#vfCE$zFd>781#q50w{^H>kCPBVzXmtZW>+1=v(tk8G>< zA!8q6uNX!PiDXs`YlmW9)kaALaTM+)5ybaK9*ES&4vh)LYnY^MCbB=Dz}fiNY@RJt z>{7wX4{YckQ?k3NrR+fNnaeh9>mO$o(%nVzS3UMXf3l4owBb?F>%iS3qPH)sJW_LD zQ|}CEZDH{VTmc7?ItLGF4s42&3gU9yOCpHNU}fVVQoF^~9&%mphYR`OT>uA;3SP3^ z;(}38LEC_PMFj19SlKve^RcQ=X?GxHyN!J4ZijMNF=ky9g=C*jfx7|Hn>+r(6)k=je`c>DABHEkK&Uy4~`r)xedvU5-%(& zYKP%&5m7rBRvu}n_36G$ROF+Uha)$vQ1il~qL#(oBBIs>D~~+XG?$mI;-hv29JyhJ zn*Q?AWw={J)GmRQjiW~WNTgH$N^8>l`GnmI2aHNsvLA_bqM_!ndvI@vVBG~P8wZPe zgG5?bNsPV8XY6%2c2vfay+I-cM#b$_+%Y0EyHqSoNo+BnuSIa!s7Wl@%SnDr)ckbkWu+c_M6IKyJOem{t)517FIS6*P+DYrfMO3R@F|Wi-oeCu2!;r@~ZN2K4_1^ z;iH09O!TNpjg6Yo9>IMhLiZ4?Y#cgjM$_)aj(&t)^^Xz~$yEKxX0)(P*!N%r`iXG8 z11papxHP-3v-xm!j99qz+phcK{t)4s1}lfaW#=~Et*veSz_i@O$F{YdIgq==`*ErF z<8trE74DCk#GfZ@+LjwD{;gc~9w!+@kXSgrF7bl6%3AHrEjzKTZTdL_jven!YHRD> zn0sIR5az51`-^ngUrgB}L~0XZa{o?Z8cti4R9C6klPcR{VlJfR`8dZXc_lnP)cN>? zX!EhoZFQ>6;ARtnwP0lh*g;U47CS4uHy3y(7fU_m1#5b3vFTwKD&k7^`2!BJ-m`Ey zADRI;MpS4{CPPzjoRoGJRmW>%^W0AL$M|C0bRswxy2`mFA&>jCp-Uap2f?8uWp$=g z*`D5JFz)7qaVH*K;(G(j;sqlR0tJzcxD!M~ZikhX+;W>MF?1|RUxrtnu#QfvlI~79 zPouQ!^;cnOxzoa@?adlSHmd zsHQ-uR2_voLZoUQtZbaB!RpG6{A`yeE1z8_FUqQXs7i3es8B7B8LD6$RHll!A4I0| zu<{6CYECFq*YTOU29B69rUG$LnYs%1gUHksu<{6C$}6RGdFo+4QxC!sGsaXP4k}ak z<9-mCx))Y9&XjbeMy;r7Z<_i`9%KtytS)594<%fGZ+zps{z4lGe`2- zI2;cz@pi;V<7Oie1cj1Aa5spQ90)5bd2WAK!r1)?^(pJ<6kRck)qFlHO`tu(Qs(`L z92_s|1R6h3jWDPa=StiSB2XDv**H*p51OAk?TRI_^yOA8UAkG@s5a+6xfXY2{Yy8O z!!e^mwKVoD<%B}zX#n?t$kWBJvT>fI3tXB6mC2T}>F&H;k)Zl{E2wBJ{S=NDm8JL- zR3i*3P<#JJeoqCVovJ0o(ghVo{H2OVd;wr7976cWhU2rFeFin7!jl(3JT5G1c z`blj_Ies#qsuSU`Q4$V&6N5{nx;7a1fQ%maKxx& z(Qlc;Wa&!tD((mosuHYh94d0oYLuo@h5ijbSzm+0MkOn;oYjbinzOFMy&>Xt4XkV& zFX?K0_>`!t*MG}L>(_9|sA!!Td%a$p4nxZJhjCAcSUm_U8^>z)pzFU{F!j~@CXcbJ z_xItTQNc+SLc3MvH%X_#xZ{BFb}I<>7F8D7EC(Mka7}7Cb<-`H*zt z5hflW(l4$;kOV@Z;F7|fA>#5eSXs$@A8{py?ile9LdvNxF{_1=)o15Z*+Rx%BdrMj zQ`pTsRQwM(deqr<6?t~WAgk3IO>t4z2K~5SMBY9RD;wucT6*g9SW`eH(0C;JyxVQL7zX6XE6=`}m zrLtX7>bGX6m8tkO+-xGae{+>XE4QJWV5MsnOYEkQ1nQJv$+qX??Adg8A(2d7e;SbF z1|cHgzQV??xC2Bsc7~Oeq_$I32|uZMgpRDFwuh9|isEa~EtaRtMU0N82oaP|!pcgvTkA>;-JB`CO}RvU(mJw*KD$&&iB^L>)rwWgDwj2G6*e<-&&_b; zsJX|EKlf-NqAnD^jeA6-?3=K%amomJD{rrHo^ELg`V1efr{Hi=(W2i^r01<#7*w8~ zz}+D7^cbvcoTtMFp9gCjMuR4=t$xQ&URwx>Wa@wV7p~}pg$71tZVc`ik-1G_W#i0A zUx?Aol(o?6Q`y0M&<=p3Mone(iySa$p&4y1?hTQyS+H^lT@jXy{;JbkHbjsxxRo|V zN~})3SFU8!Rz7q~t;FZL2#*()Yha4@U6og#{@*kOp~j4VIGV@ZAOf9rm50L$RJw4q zL?4^L@+-Isy^4>@6?lw^t5D!T!FQU5N+28xG?(EH5uv#RR#vj$MXrRo)u)yz3Ox#Glb>Mcw00qp%p!Fta+((vm9$B?S47e# z!pg=;n?)+#J36z4bg^2Hx7rr-8CwL$jGE2pJ@MR0&|9()=goRNRJu;U{UOq|5LO;3 zbft@>Qo3k&NgKKA`E;#=V>TSeg6Yc=iU!K2B2(AG%Ep-@=6~%f@^L;^kHQh7Vg>Bh`p*#*4VA1%aBqlY zJp?O{B(juRe)N;^h@Jqw47iWdC~5BP>@EgULa&*1J5*?J0AHqI8Y zl6QltNnG3ip1n-mMo1*HOiZ$pZv;f;Yb)F#B41m;%EtL3R`O0bl|6`ge7FvSBSuYK zN$x>-(NM`c825%q)&a1xakA*MVsELKk@n;Be6+G~$f#%~JS#fkP}%Cj-667-hLw%8 zMLeTEt7;W0*}VMSSlKvT2hwgp)Go@^5B{YL zb}t{Yd*IMfAJ;3TEiT0=1i^)ksBALY`@P@AMH*xjjM?@uTBJL59u<@|6 zal#IQX3oZGo0QHL@i{vIjvY0f0jj5{WnnTPEK5P35iDcHDL$Drb#6_iT8txa7wkfc( zaoXU#ra5?8&Sz~I9J%3@*YxL4OL4D=q@4;Y8z&7rA*dg_NZTA6_^6!^hmMNc5S$Ry z!=h%jb8)wbtbH0*4q+`qLmt1UkJpGLf`q}IK2j&yrQ%#QTUi_2Xc-7LX}OyZ_nq)q zQQ@X{lC64fO8dk*=WCq!eS9|J<`W^l-BlhAeSD<%Ej4ioG_48Z@iHHe7xDNKd-%{h z$&&F1gh2u2dE5~qD9^&mO168(l^D9-J<^InM^v%b=^kt4Q!DLC%Ff$8w$g=Q!XMbH z(;bCGGAo9aj5^Xm4vPejtTft8JuHm~`tN=I64t*;BNRLd>k19uc0Lh5u^ zNC3DNp;5V;hr34P?l4$6gu4jEm|xF%6LJIzxt@z4;al;G%bbiALBhA<=dOg6+kCgS zw)F$kau*-l)^_GV?h^0ErQVOry&qS&KWgE0tf+S8wjSHo7Fw5tP9oECD^6@{n|{uK z^DEz*)YjI$G55asA%1f@>@PME7WR)h$y#fd%1wpmMeviTeT@1~$Q0A%nHj5MrP6t; zT(+hEk}ei1R<>Z5W@h`=b_D;qj>cbgA@gR@xZn=QWtFzy*PFk^*8 z996su%(0Pysg+J*mJlwh#nNcpWFj@AU}fXfNH39SsYz8zR-xQmEX()&59IT+KO8dZ zJhM0+ethRul4j$^6G`fTm5q}$c>b9q=bsFp9}5l?m7iGh&m2wuS%I5Oq-Hs+Y@C|G z^Us`&{|HK(0vGf7xeyK+m7iGhPtbWa|6G6@Pb6srtZba5!Sl~tIse?r=Vv1vC@Md( zHhm6WkEcqwsyqbTW$BieF^en7A%t^}F zy_N3O*|ME-mL*ChG~tizmDr9#BAJyKn1aAa4cOr+*jSlKu=`?Rcd z^5sfTs@f~A49Eu-Q~$(XW=$3n$t<%@+aT`*~K}+}`Er!EJ%|WMeLDB_4C2A4w0FkH@U}fV(?bnj1lAWoh?bPaQ zAyZr}p>#GMrS)*Us3kVP)eC9omwiviQ2Qok?Yim6Y=WSv6e= z%}zJ*k-8BM9~G&Vm;YPb|7u)iX%z^Sup4kkh=g4aD;pq;1Qt}9_Y@Cw4TTl{u7C-h`c4<9YNF-BQAIIaxcUsLaqi~~%`9-&zCkl7Ae1M zg@Pu_EKqkA(6~dXZE#zOoNNUv8|S25ySA>yPPvAeWvY;;VS;@mO8Y)(FYw9d+Es>QjSb2D}qAZTC z;47ZlZ$|bO}aaQ!JXzg8_`}v^U3kQe_O5{~^*d3dDa8rqt+yyHe zr({oUr4qPfA}xd7T}ULe96Bi~I6B8wf+pdH6A79KD;pd`nOs6rv7pF!4I7FY3V;P zj{b2gYX&y8DAP2M`&m?u{RVPBaV0`~iiI|ciqgEVb*HEuo99{GAiWF^Qti3*JIK8V zhfF)pxyOZ0)9~~k+-hR2ji}T@uI^*aO20GU^SG77)c35b96H`Z*h6l2?RW#8Hi_Bj0iv*K*_o-YN`igWF4FU@KTznf|tLB|@`9>}}+xhrm*M``pUs zQ?~f9Kwc`NjuK`vdk@ZogGEgkE#Ise1RL3JwR$=Xx0{I1!LYJ%e574~THbBk-L^_4 zYpoWbA|IeU94;zAEnkBm0_1zHB9z4~CnD4ZD;q~h`u2;0kZ2WLs-()*-ri!VQch(H zy?HAwzv*`sAEzte&{1*vNaO;>e~|Q1P|>;!_kxJlC9tw_v}U!Q+|v1MZ>qP--g2rWx*>>Oyes9|Zt`E))pxs)NM_L%LuQiQS7Dlj zn@@ykBCKp2rWviLxkfadmy)G9ZZV&vMR35VY3USx-PGi}iqQ$U?L>?g!pb8Cqh8yR z+tID(W3&zqm|zwUo6>DZ7v^X5@M7aXvtg!V#ka)Uu%}4WMS{ zRgfORjVFTi5Ugw*q(L&!N~_Xs%U#AszrZf3M+u2!O6nLgkms}t&U^6i_7lN*2Ua!? z&LD>&UJO$Oxv%_eK06(Wu@l2#NW*UxpM7z=iTF%|m5t*gHHDHZALsL`g=$YKlkJh~ zpA~$9mc#L)PG2YUmtjHIRfv}1rV}Ar3M(6jNb2e=L)2}RQw8yPCaHkFfDh0HI961E zPT&JncUy($eB5jzJm5}d<&$sg_x(yB*m7*nliWL7WK{)@g*L(RK-2=yq%25pYDCoKh(OtOdM2PNym5oCreJVrF zNA*Z5d)Tk@5qcGl78RkEZ)LCa-su`-ap60z0`v-QI1!+iU}fU~NpEE<0A<(7XRq!5 z%U+sI5)#QQ&02n-hlq}FS%qdIZZZ*?@vyRSXa>1~CSI!P%-iDNqc5wR+%MwOa{?SN zYT}9E23nKvDn<)&+ld$*11lTHXt2r4!>CvJrph`#L#yFvQ5lM3@@hD)0#v~bCjxX9 ztZW>hgIb?|$S)Dqz8WSUrrp5D>3TSJRGdD_UzUZ1L51sD+zldJSHsH2;gb4H%au{3 zn97T*jnby$qkNVgfkQ=QspaQ(X~j{^YZaY`aI1;vJOC>jM`w@?YY{|oF{F2`#LlRf z*oF0baIC28#IR3YcUy($9o%dpJa56u#^D*{R+@;SSls57@1}O}>DgCEB(p4w;Z|D1 zZxx?uxZOm2rohU^@fl=WvCqm^?UcJuEr0cLIiH|qaJ;DbCx&gspzA6`OL5bQ5SOwq&#{^BHU&oHeZC5hdnl$b{+TdvAGKl)KFrh zZ_{xHZZi>^AHvGUv5~%DSU=6uw&!@2&&w-tgs8k6$w)J9FA_Dsyo4J|1my)-**GX6 z-4vQTQb^_Sr2k{Dr6vlAWY$uQZVJs#tKf{sjV6M#1FUQuoRAEoZNG5>ADD%3goYr) zgtgr`1~--n%6wSaI4B{93yroDQgT_%XQcuMiOLG&aG~L^npe)k?Iq$;fR&Bo5^_U1 z*keK>=6XIc*TQk462rKm9CTTQ=4#wzA~aXR%EqCQKEzxvck6v6Bw!xl1M?6ZBPuXQ zMK5^k?y9gnfSXH%^;M4G1#b*j`HxZvbVP)g^getZW>XkP4>W=|j^e zr;86v8jcec7)AvXbXkSwg)`5|s95t8r2%EloHxw_fZ`$gLA zeT7fUOK_m5v@ou2HuqC~iNI_JD;ozUwINftyc+=`~o{I7}gV zM|6tPbmp7(Dtj?CMMxyGm}2Cenzw4+*%P;xh|2D;vT;;GPMSpUbe;H?@>w|*juAD_ zFix84?y9hyf}2Z((qRw-`^S8O1C^9 zlm5=Gy(bEZIBM@Lgih12^iNmU{EZRpX!c1N!11_M#FVy!s~kG6(?TDk2v1S#aUI_j zgN~HdDUKd`dh<<>+(Kb)xidoI+N_cLj=^KOdA1-vkyWtr1A$NEsUtj>Ji-C*l(C+V z+eaMhBVgs4asI?{s4FpaP)uxwqFTtFCE5y$eyLKWQxSGCxi|}sjy9X;R4(?XbKyIv z)-?s(Kq45cU}fWAOwxjpE>;T_bk*-99g;tdPiq|cPDm6`2xuEfx-s3*vLWDD7f0>@p#DkdCvz_Fp`0Zq-*Dh~)a zJRemueu&#hB;)(AvT-t$%ptaxwVC4;J{&K>;i1BTXO4!ODjzT4W)k^$4puhK$9O4o zXg6plzRpe@RHs`%f^;%nV$`D3OF`OF*x2aU?iVzd$&%y~7-%*Tx^^A{ zdxsCoTX2A=pd1#d9;!L2GV%s)D3OuZU}fWs>>kQUWo@r~Y&q>8?3LCOA(6~Vt7Tt^ z&~)Nb;<&1EvL|jTk(1qF<>AXox!Y1WS<2_+R5(P`Y!aOl*Hx91Q*cv>oSXzJ8|S1w zET6c+lgr$5`Jj9nju91ZaQFAe( z)a~E{_(08t!$wU1~+Fa)Qs%D-uaa)O`d=yqTPKtIXrd;jO7Cjg7LHQyaA}T1+R@e|%2c@DRfNXegIW#g1g4xz-qMBRyNMeOae3F60kn~O!+5!O|_?xNM=oSGGj7p(Br$VaJ)NSTiIhp6;1lu~9G^r9srjiA@*CVvA|bzmm5mcJRg*(R7VyXUyqpP#i#iFN5T#6U zpi$jc`S~brHj$q*VCCV@PuQ-@7y0~r0S?#D@zZcy<>zy_*+hOm11lTnM?X9D%CA!Y zkWb6^;owkdLEl8F%}%{*RW|+yH-52Ag%1NY?0NG)cnLptM6Pft~tZbZ_y>#_VwNmU7z&Nko_g1XMURub9R8CEvVhSW{eW24$D zUUzo3Ox$k|ItPVbgI+0_oWdvOBsgN!WU?p{F=3vo8RmH0aw0{?!pg=e+FMhdbY%;f zmZw3VjeTQ8Zw+V@4%Hn9Vl;X0=&A;K%?I&{cFId?)H`;7dEcG;fyh6%0v-sG| zNDP~3*+%wQrDh-8Vj?wr!^*>xno_YxeB7kG%K6Aicc$w@5;bS?sre`zsbuFU*<+QO zGjNNE)SLz@4}WTMIL|%RmD-TOvx~)P+d=@EN=*?Sc`PHNC-es?#J|HBLSwThO zrP*DTmo0H~iM(tMD;wuU_ZDNfD1XJNf;1f+!3X6~I6l4u|37&*Y@8C^J8F&C)y}oGAGrA$ADN%P;i4iF=^Zt_+XK~0 zH)$Ky=KLqO!*1da|Ki<`ar=oN{Rmbz4w7#3*N>>UFCpF+mCp=b<1_R(I8s!GB5nRE z9;@l+|8R?m)ch~3Y@C{DnhhC0hK*xhX}a3|-|Usru0kT2mD0i}`!O1yRdRO5Z6=bl z6Rd2U9Bp~il@cEwE?49{a}uAI9rEa z!&>P5>h`O+jYKZK0xKKmVjoSN;&;{;uco=}EwY7`Qabq!pOs(1(W0_)e3VK>>$OVH zFLA4h^!x%=HcpSOR&frDQn_MQKBR7Yk6qjT8;%f_m`Jrs!&8-#f8mxADfuU?Y@8D5 zGg(efagP(WK-&l^MUu- ztC}r^L^9=SG)n58s+nYS+)^SXo59M)DbekmG$;`_;Zj}ILb{SwE^8mkC*~kHTGYG} zY3D@iwMx&2aI1;*%z>4S)1zAx7sQvN-52iVlBJuEj17l~icF+6vG1zNNhfY9k&_gx zY@8F_HI`zZU0PidpN@9A6E?OjrKQlNd}jU=4i}Y~NY_~OZmazK2W~czpMF@`I6wPo z_V@LHl#|X+_yGMFju#c66Qk_#hxn}$^dsDEB0)cZm5meBt|6$mR4v#kyQjAzU*Y~6 zpPK)JV??E9UKDBqzN)1BFK#Q5l)u2r#!1n&(e7CsNb{D;uXsxBhO#QpV=L_}F|E4iOcbNb7IkRh5&k;HDBe z`7*3*oDkVs|?6=|O)#BY_Ly>PpU1nmJU8z)HD+^!bM-cr`Ra;L&`1|Oc&;80Ps zO{C^_s>>=jAI424a&t1QY@8e2=j%(h`)aJnH>>3LNIt_S<{UUkRAM51zCP%z%F3s3 zV~MPM0#-K8if%7hgs)PnrYqHwjLLuWQTYxWBPuG9_JRYxs-%1ix0OiBH(+Jsr0C8q z1JU!3E#rCdbd@6eutY)lE}s;u(EMBbf*SoyVB}5#6f&cJ_HAfnpGm58psZ-%*??JCNeV< zRyNLzu8W5pLU}5(`OtL2k)lEqsf&l=u}Vz}x0p!H$6#gS)adG6KZY_d|HBns)lJa?2**Gb>_mkW;bkjQpKjstiBRDoxLLz-)%k!}oe*b-fAK+FJ z+4vr;Y@7{kE!%DN+T|uV{*MpG|H8qc!Vzib-|MfYW{$t$W)kW6GpsyJ=_sz2?(^=v zDSM@}laLrrE1mA*YL$%-;zknL*cMhc&W3JJzbwMmc)8Ka7VMHl%CUS>j)p@;%_EWa z^i`KtZjQuFCUSE)tZbYcUH7?icAcFnmNK?DkJZ0sQs#rx3&)BIPNeR08lP2idT^VG zMU} zSxeK}{g-@HegQ{`ib|xn?wh<-Y56&BEs>U=!pg>J(e9%ZOO;gTS`91z;jP?=|$t;W_y+b1Ts}i#Z zZZDCT-C$+o#OOMDREmO>w0u+UG(IUGhT}ucE0I1gQu9+Kh}4gF(Ec2~8O9mp+xZPT{?aaJMST@-)SV-NI4T15wZRY{qN+e##5KUmp#R?*#% z3q;S^bCLIQJNdYz;6PF5qDVL7WQSE|K871iWacBVvTdea*wtvJ2<_B<$sK7*>mFm8#q@Vk(WQh%Eo!o zy)!QYShD21Q9F%cuZlh>B$8PbMY=iXxvBE8Ep8@}kF8;4<9tlg^i-&nvOSt3#iRLz z90>=Ann@0e(p91EsLIIUxS>Qw4uO@8GosBQC2{JUmTt}U@(JmI!$Tz`S`KmDRQbr^ zW)k^W2`d}tW1=R9R14WIxv%9{_;`F7jt&)%NH_OgFI74&$E_sNF#szYr$cwksakM9 zTjhQlPhJlHf=|iM;V4lliFC`U$y=3{pW@aMX}KF#9-g$g-(q!O5uXW{rksEBY54~n zrDSOddaKg%cidVcEq{fTjnks*kgz%{nmlFfE=zoa!>M8gH+f}af3LCZ)y^J5BAL}r zqz(ysw^e?2!_6l0vkR%Tps3(PIw6uBR+(9Y8%$)T z3M(6DCN$$XGgXTYh2P?X^9?v!RB)na9NBA?p0D9n6Y04QRyIzLt^*Gy?L^Abp^m!`a zu*%H)@W}QPnRyphHqMN$mu}#>%ZqoWQ{`SOoh`^K@;Q8TW+sMCq+YrqeyarShucjg zXgaKHoFM6BDYI7GTFa*Eb#YVIjuao6kHG<=PEqJPu(G4If$;mfd;~X@NXhB2vT;hJ zH;=kMl1#B$jL3RvT;tNQ|fYWK3mZqF#Uzk$e-cxP#Hl_ zsRM4ReEbnNlgP)@uyP0=HvZkZKToKCx9;QOPJFd9g2ckcr|-^mC34G7Y-^i-&Vcj% zy!R%xwRLaIy)S-<&*-fP`-^ngUrgB}L~0Z9slEOWq_X8y{jQ^wymsG$z3AFiNF=l9 znlb1Fo1kYZi#y|%5n0>`R#sRXY6`}tN_MaOvdKyO;XfV@1vM{C9ens5m(+1T7B`7F z?nlGQA>$q)f%rM-NPZ4F+?9y%1y9F{YG*DxR(!*ANmxD#OKsC4Xtis|yqj8(Bx>AY1g+tPm#cL6GH-?o|JtfeFP&vi8Zs>9i& zuu7@AolS2~b#JV};IGRzMCIw_o$3?P`L4v!j795tW|vgsQq~#bK-?R$`I-^?4m@JD z!1c;^%#M)X7H*u(ENU z_HCJu>ai>p%kpiTIeeIACI-`Kal_;UKqYBE+yP={nhq-)Cuur`q>L?}gs1o%eGCp3 zwbVH^W{!mWDn%c`%_mZHI;?D*qJ2mdWi9!Dv!9RA=iz8kFIEt6K^U{{z5BMy74~`g>rMT;)dJI&azKi=n7=iaRek{;M4Q5x1Yn(bKT9agIoNNyJe!B`M1+eQ-6UqZ}M8Do1gz--P=rMJsXhi4M_Ir1Se2ftTy=k$57Omuyr>{8jd=y< zML=a~0QZ2%(#5c{ah7HiSt@1Mqzc7SkCd5y&IjtJaL}kgeKdZc>S0i+x*K^B095rBS1Vs3`v)JZzr#_ZVzoROtlT)LT>TaIgUHp(u(ENkkZe`53ag}SwZ~TM z#ocZ~BALZqLfOg*gG$vdxEn;OCcw(ZsX742RuvJ?a&NILU(!FBkJgEBH2 zxU)1@x*x`^Co=RPtZba285D-f`Ql3TKFTIrv+MBp;eb&=Iz48PY9UZF(!00|M4H}) zm5tLxs*%dYe4ku+&*ZbTpO8pqO&52K3~XDsDDxk1&(_#Ax% z4i+^h#eK#i+*c_&9XFpy(GpnMI7PJCtuN!;A&^#WpXZbGSvX)+l476Tyb!1~ork+X zr0Hx}**HxzDYa6?E|iOW)lwq}Dp9xKP7sN@305{v6lo{i z3#P7W`ZJ%YKf*zyG8OkucpwZaRZrt?5UF|+RyIx*sR|d{zG=A%-}VFS72VcCVq{d| zZU9u0#^DYSNg4|)8z+f$N2SjaeH-Onro;It9RkOTnwsLiqvAzCW$8fN10qZN!^$Is zB|EK_PB}hHE8%zsD;sBtR5$h6Y4J&1-F>Ia`9KZ8L8Af{cij{S zgG$xKxEn;OE`*hhQ?-DyzN>{(e4VYl%3hr+ukGovMYH{MN?cSF_sXPQgrD+ByBiK9 zm9#?4tG+=(qtbUL?i!K4jj*zD`lhy`FQiYw-}!j`6^;}YuTx^etM0qX&&#;&M1Ed` zm5uW=xg|fEz685%!(Q#}A|#So?VS`CJov6sr|ukqQr4vrL+ow(|py69?7^DrDG zDm!uI9eqE62XVWJ+}sZ<8|S8F-l@MsFXf&0`Ru$4M~cc$TzRMNyP9|2#%(9^^Cqlp zoS(U^>YbIg=o?_=Q|{~YsoqjCQ%%b^0QTFKz22HGB$8QgeJrN+mNpP7SyORGh-6KM zm5r0ta^)MCB%~ zmAm%6k+X5LiPWrzm5o!gSF4#!+i~K%d~j}o<3t5#QA|@;Sf`1baLbA8+z2ZhXQ$=8 zZ0`t6cjEd-K0r^y!J+~b*S+k3`)bAWByK*DqQ_xn;}o@g1F{xIT}O$nw_}&kgsc%gNef*=Uy_Z56HLqm+RoMnx&ER=9Eu)bwQGJ`j0Y0V^BlspZ06*D7Lw z57EVNn5YoNwXhFq5pf}IIFXzSU}fXvv^?a{w1&8w56+!%l&Ijub;zM_39%8ko5;=W zu(EM(+FLE{l~xdc#zwz zBAIpA$uWTw+VWvX+;k#6+r!Gn>1kQx=w4bpj?c~lI84-}6IYEB(&FJL+;Ac}^I&D; za_7tS7AlmA0lUYSlKvdEf2}m79!X2 zak>T$5*4So4#~8wL$1QjCQ@?+tZbZ`)>VOMI|S;swk{g$o;tKM0)Op zm5tN0cdNOr(H%pY$lm4i^EMnRDnD_3zP91KI%~a&8&4$Yby(RrK`l=-0=+OKhNgdz zy)v6BB$8Q~#dXjca9^cpGHyPRqIOu>I7Ka2XSx<3r}Oz)0*8s3gW_79g|z-yj2liQ zXA!JyoSc@IgtRR`&f}wVHXJ7^I&obR3TyST9=Dvx&N^6mn6sm6@o@{Eotxk|4LLg@ ztvznUEhn;b1FUSEotAY^pqGVI_dLx9=t($ORDj~DdjjsObaLi!7Y7N6O514MB_eI3VC4|n?A+$NwY9Aun3lWv*tWJa z2XdEqKQ8rtT<-n2!u?T``16EK+j3*Yzm@yi7S51GkXSgrE^(bJVR5WDpKryv94o4w zxr;Xw(O7a~Tif(=2Ao*FH>s_ydt>f>@k4}kS;${Z%dH6cn_N2VFE$Zz@84pHZI#m9 z*}}?!^9P*Y=ncnG_#xEh=Ke*QV!AvtV^yqFI&YQBw)9`p#X`l(ig&qYX8YE51pm2? z#$R=m8z%OTvkIa;NvUA<*aO`gYZN`VQyqa*qq6*RL*f)yVrWKS${r!Z><-QN=A5b@ zs5S6F)q=KJS4Sb1dNlPySP`n!C5-iBjk0H16@#pg}ja3Vgh z!^+0-k=`xRW}nsFc1do2J$*-Z{+TKy;#lXYl}pRhTPXjyuB!-5#!V+8)D9~fM@ZU( zQV}W?3+wDsQA$Cl^9fo42aB45T5f>T395On0<;*noCwe&SlKv0((%6vkS+n8$H(Vv zI8;=8THfKO;}ep7*5h^);aLYO8;3`_!|%hREt_xQQ*#p>BPun=@D^O2!)mU%5jU8K z%MGyd@Ww?clb`0}@+2IiA;d*j9zTv7OvL3;SlKu((wk*X*+n-ijoXP`7LOGY$&|&% zvhz#GgftpAnTX6NSlKu-p<96ZGWb9~G5fwMIWC*KP1K~Oo42MfQwz)fn zPSeoz&sGy((@1uxzSXSrPro0;ts|zn`(5SGF&@I>(Or}{1da)VHyGX(CNqz>-p1pp zJs4F-`%rka170fQ{w8iGaok^rm6hr3RaYW33&ehYt^q`BYdHB(+C82=o(;%UArZ$y zO9kX$9FUrq>h8^C+)5%I?Xa?OJa$&|M~?=M)A?{LfrCSxD-OiraD7zKSd809L}L-G zY#fbt6%B8r-QmN|Na^D|J|SnrF`^Q31WriMRTY%=xT!=?*1^igL7AWdMV()6;RA9L z92+Vi2SflwxTu10BW@xQj2mF(5HKRFNc}~vSNTSe@R!#2MlGUzE4(!p%ZjgatPo4< zDMNcNd8s^FI9HsR*q0=-z{h@2G;Ft!M+f829QjEXmo`Bm)%zrz& z%ArF(glq0VVH6BTU`ZNWcpoS1W-h!J;6c?cyw$@~esA(P5vd&<(3^e!Kpx8XQZ zvC+IyMXz51KC9HciQ7!1=5<)vI5lAvOqW{0Oy8MZ!Aunr$*gr)6^!Go%E@HhSRyCw zu(EMZ!e*sjyVO&y*t+y`I-i#%aG8lUa&eqhIe8p6mdMGYu(EMZb_-b- zm3#A9dFy4|M0SZgR!AgM;?CzRq+M@SQbyy}5=j{aD;p;zZ2l>qRkiJP^89lkpOyXL z7*Uf7YyPSEtI{$Xx0gsu2dr$Ime9OXvC^xg2`Iy7#eyS5Wrdel9B)-pR^ZkWNm&jn z8z*Ituo-Bz)oZP>_tnzXJZZMIT4Y0CtUcxHdN;WS~ zLU;06*$4-S$_lHpb(~c>xg9r_$jNQ6vT;tr>Xm9ioS7(d(93*OUW8*rMTJ$b)cjRx zc^-L7=(9^@aS^!ObQAa@_#x9iA^oQeauc}GiCBHx zw((a^yW)nCO&3lz7lOYSm1qA#@E2T((A%M*m;K_u5WI79^MSCz`Yt?JwP)CW`}P(% zY})b8T_bdwhNxe&*w>D%)T%h>Yt35!X7Ek8wZwFIqpKV`_Ct6xSo+*iARd9svcb#2 zPYctT_dTD)z;c?tn z0;kryw^B@rp72r)K5kbwKVyYN95uMgPs>mC5&3CyUahf4GW`f^|l#Jmhoa`LCih8@Hc`QU|PT93`ns zTQDDK^H7G*j|E4G%8%w27s`+4v+%VA~X&`6&wmY~t*os0S0TnGn>%1sRQ zPb1%|=v;u?O+;q{tQ>+)gjKb_F!!qR2onDGzztCgIo}FzUC6THa~vz2?SaulyFD;J zEhc#PJ>llh0r?#?L zY3Hlb=D_K~O6KO$5;#`W9MbZOB1C!uuB-LcV%&5hK#O2y;{Zup13G}Ztx~4EI$Q3R zC_0Z%(b;gos1&u_8o(%O_^+b09=D%}(mGh#I7;D@dSjOo4h zES=VBn+apd4}c2Ojkp6um~McTjl(pvdCO9lm-5AxsdBNaqJFXOX+BL)!Xcy5v@}MV z{0OKxJ&t=o#OYC3**H#wI;lsU;l}O8u9L0U*t^ zb|4?1{oz{9IqYL41nZU^NUd8AF+8R$u3exSk`9zRzgO!bgBz+SyxK7h-Jig3_=S4V1RCro`vyHaQ zcU)G1c^)^J2+XsvvT(SbL}wdV z**H2=!zV3&Url0X0iT_t;7Cz3&Pn{~%6D9aXC7`i5uU?fW#jNjU%n3Jo$!ss5}%$T z94ab3EkB%2o38?%tN7$`%Zd18VP)g^w5W458;95Mxw#6C5tW-5>Ky%s;T5>aL|`t1 zm4`DhnvKE-`M}%{$7l$F(Qgpmi5-&=Df|H`OD`&aV6I3iOoqe_)Vv#{t9=)!&Rf-zmtC_95?NV=WY@@O=Hxr>5b&SHc1mw>5kH zTlpJtdx<&mc2_xc_=oUTzBES$0}{BP9=w+Svap?bvHC?ku-dowRS;V47ZE`S_^lxE zJZ?D=iDzNunsNRF^^7YKnmb~@m_I!{bu@0nYCiKdVGlMyI|_+7igOj9mapxT0jk~2 z*MIhFd)#;;L)*a0#u<{X3^nJUdKh(|09(MP=qNZ`)cL6889hu<$S1+(;pP)LIt*4e z&e3d2E)qSXLOu^x;?q=wgGQxkS*wL#1ezK_(42?hP7s;O!pg>(nnhqL@EI-XRQ4J^ zQdhw-qat-ioJa*?pb~Wj?gNpi%V1^WL{Tax&1c0P4HH}^U~|M6GWz7g_VsnMXAEIpCg;PCwnb7 zSx6+amW#Ct5Boe>J8nLaqe-x`agL-b*V@&b{!?X3_#iEY<3&wNEnl=o3-HiSmo38W zCz5mmtZbYlN~NUvjM>?IjMl@!qGA+lrKJC?**e^KB15ZTW#bGxmRy4=Wp|h%%??KY#WlpQFd&cu_fubxsTY9NMF}{X~); zft8JuM9N2+&(e&Y%r3G=3yEZk?0EB${!?kAaO;T_y*KhGlDZk`XEpt2)Ar|sG#eiZ z;?Zr(4m9w@7Wx^r4%`7EOZ&pg#xoM7%GP{R&Ej*k0uB~+VvDuP)_-DcIc_|Wp=GeL zafT@Mk^XaQ7xFQ>0FDI1^9-zP zoEhouq^8PRTqjLi6)EfNxEFh2w!M%@W?|OybpbLpA$O0q!ObRevlXmtoSRlvwBV+3 z-A1D4C_X*&;9ya6PApY)(0O&fIt(|S$k4&CvT=r_=8a9cCvd+;La4|`C=bVqiqI)> z+%XFHt`d~RZ6^}c1uGjTs8z+Ixl?o%ADt`UAW_kYrQ*@wCAthZn#jy0u(EMxTFqR+ z>oZc?xu4I@y>PIo?8Gv21)W#(&ONyCM27Bym5nphs%qBW8G4gX&+BlQsPx2AHHY05 zdKEXD$jvLTvT<%&y?Lg;BQ$vmd%4vvB$8Qfwd|2bU2cWm4Vr}8O(bU`tZbZ|R+WzC zPS9dLHjCgOQS(hKm5%-{&gaudsB z6?*CCdfaXzIoHC<#>r`!cr=%N9_MrOC>$j!H}T{f{Ux7AaI1;bJOnEnr$*`^+&o?B zFZYa|%C3$_35jH?5Sk*!xXXn*APozj7r)o2-TQ$%?eMb7%drFzTbQ!pOqWn08v>v ziph#_S0&|o+*~3l*TTxiN!cxwl&rN>NByJEr0OT3Jp#;#jN35jHiU2fe{_gQ7;J$Piv2Nkfgab`kiB0DRmm)U$= zIugT$I}-_aRZ{lF%_U}+X|S?!QbK1U5xQt8j>@;BeR8uEQ!Vuiyp~X?Y1&Hcm_EPH?Zf_-@~ay`GvRB$8QAanB?j ze^pi{;`S0*84oKPXJyy0+375KOK%aMloR0iP}9nM=F0o5lFG?K+*%?h$H2;y&qSWfDlzZiCKHKy3syEx%;c~dw_+E{#Zsmy-|6k( zGqbOdNM=#Qeaocbv`Wo1+-M>-Q($G|)P(N%dI8i`G0XYfEQ13@%{AN|-+#$18xwyeZT0RXc8>c1o{zIQt$S9k; zxAAeg6^;=V7w-KB&tsLBn{kVYynGv09>%=bX|ON~gTLNYV=YFg{HO!@;AbpcTx$;6Xy65_SOY3X!n6uyP1t5qiS- zZDqXH5)mZ)<~FaueJ^T`_*Qs*O;}d^l4FHvZnJW;A#HB6#WA9vOnYT*uiezw=5z4F zr+sqz7Y)+aMtsJmVu|)OCAGIr*7 zTLosE7HEz~VVOg6T&5us1R%El2oa4>{2 zc9&JnS5oO>PjB8{lgenyrQ7&C-3o_}%G2_Ac+$o}h3jVA4)xZgy7T*#ftl2+tT;dHBQAl`VA1mG@zMcn*d`Ma@Go!Q=X^!gBy_HxZt>u(EM@ z4jnA>bX5!KO14-?m8-qI#Ztx2c=MXPGmzy2)dh!-3REhdi7hl1Dr9Ng7b0XIhn0;( zb~qU_@v)fJm|e!l>=HPDRLrcHF;k-r? z>>S`}cElgyqx29QFe*wPj%SVwc&~!=0B$`Ir2AlH;~=$%fuy}6_a2{}ciYFNhca-NTU4U1__O&&$nlh^V}1ns_3-gj^E& zHf}EwmT$t!!xt9a<&bCiusj8aXoz45xfJpQZZ8p*$6)2*3ybdfbgS9y`gaQiLh)6D;tL;^vqpspoSio9?Xa4060|C48uHgZ}MBMVdmm?6XBT!D;tL= zbkQw>*y?z+i_cFQjuw?4=Av76T}9~QxamZM&V-eXBNX~ZtcYXaG*DVUUBU?ZF22DYLISN?pdPR39I&rG|#T44ojLASe;Sn^;=-2 zT#3+TNTH2w;%|YqZJ?E)IxHLDVW~Z+e($UE;b>_`HdhfkO(WAkQ_X$BaqLh$tJ&sv zyE+%QjhNv+?J9>3@DO&pnka`M(DW(T=IT~qF|*Cp&3HJqZLZXzJ{TP8fRD#juT^B;R-tDO}(#1T;6Z28MB&j_=aa6APEhnfctK;iIQR12Oba1)7S zJO(QpCnNZ64tHYc@WPgAd>T}$lee17W@HN?5l5Y@CXgeeG2%O`(lQ1&mPpH{u(EMl z^m$~CoJS7kGjaeNoJ8};9L-mu=Hez2$(RKz8z)1bN9JVwM@z~hU3^B;aG0o!M9L#U zXVpCNaokuUEoZ{Y#%a;#k-2gnxrEQiMR0Jaj6|wO=4$fD7jYAbWPAZuHco~sk*wm9J~^eL6eD|}jBg2R*; zEwZyJEid545@~r3RyIzHx<`^J6??@O?WNLW;{NO<&Uhh_%o687bcs{*QDtKX+(sfB z+ri4l*$94z-CGCO;-+kpEacO13>+V73W0af8eXb=%*U-H@^J*LJbd|3rkDz!kF((T zB+Z9z{ae7TB=WHeRvx~5D2tkF`Fvar$0un%bnBWcaVv>@d%axu~wO4$dL;lprJA6Fef+Ix5 z<509R4fv@t@&;}vk&)M6W#f$OtuWFfx-?`{-L{oUSrzeVXs3&)luM?4h`o%NA|#So z#%Nx;Z+WWUp>tTJW>4H;A~n0i%EqagsZdi+TY0C)Y_XE+Efq7>wD=ND2t7;r^qdNZ zjGAgRceq>A)5>v`qEm3gi4>g#D~C`N;U<}X8O^)45<$Yh68FidN8P>^-t8!s6(8eR zA+E%|GkQqB5jp0hV!14Rckrw5bEbVr`cD|-N}SjZ9sC24dC$J43s{<~abJl_v41u0 z%dSM|&8g6;YdD0A9eYB?9mqtgK9Xe{v;4^Fr)b=H}{2seL-5Gh47qYg6fxNSG;6eT#F1wNm*# z@c=eHV<+qAY%buVuvWEX1KTQDCLTU%x0U}Y`!OF&o+OH*1tx#IXN9hD6zAWE&wV~1>6B5 zQLA8O<3#PN%}Rv%?OHxbSHt0=lBC%npp{2D$5n!^#0@7B^d(r?I6-@932K#u9^#|( z030VOIt!xCXH6cf%-n}tOl0O~u(EMx^jSxjzNM=A9X>j5!QrB!6FKYX99Ic?12>#V z&}*=A2tg5c^ZX4#Z<`>3gugBM{iq8~-wJPMie<&+94o}OWY5sPsXK0IA=|aKJzdP$ z1HlcDV-IXz!M<`_TiclfxxaZo{_g#F-TU!|`$PMn^zW6idy3_md2!rbNL9M+RHs$W zrpq&D%}G_A-z=_bir?I{tySN2?BAkfciAPokhTYMV|Np~wMPr1f@|Wzjq*_K-_B`y zWQh|GQ6yU{OIB}pP4P%qF?4q-&Mk*cga`ebpIWRIGVM!yn}XdPPq1@Kg-%l_`?r|v z{=ymJ7uKHIGsHjRMbmbDw{n{c!`2T>%Tc45ThWl{j408+MLt`uq_P#er#29&s7hOQ zR`Yqgl5zx_2GxIx$&Q`haP07i=H&X_e=&FDm?1q}*!Cpn`Dz!>SG)IoHQ{xguqn8i zIe0wu&+<n0sIR5P4};x$zgZ z|E2c#J2+3>*h(>7DcK^8&{^*vBXWh<-5bdLxA@)tW1Wq@tT?|pb70!Z{nPZ3m^o{9 zYIR9aoyzvrGTUbdPA2BSmjC2j=Uu9_bFp1yOXr^qwP63+TUXh9;Gf<*%-#>B^47Yw zsXnohX|1$NuJp{XfB1k@cX4&9QcP9FMnlF<7fV*9D7rj2_JsaR2L|l13Twr4+F26Y zr|!QrBkVUFB>hW0!tK2HSM2_+vW0ZMD!#EU{Bs8*cfS~(+yl-ZzjXe1*!klT=a1hw zfBe?@<8kqa-M@K{wZ^?QKXAhP;y?Xk(^ju@bwXG_dS$-YIq>=ZG2Pir#x4wO=-;~b zduso~=leG=RC_wbY?K)|QRLW4wjzFiv5;RY{;hE(YqgI@HTR)C+S*Q>nL9xI=s$R7 zcd^HwS*jKac4_A7VriArn!^1*@6b*=J$95D$?ONh_9%0nn~A(c?>#)Me0T-N3Q^Ux zZ9b&=aO+c!S#osy@qKICj}h^0N``F*#gh!T@!0LjmeVtfnR0s2EcoxJA@sB0zg&sX zY9;(EEy~HMTd!>I#Lz0YTkXe|tRCCpw<((K@kBGXjnHYXTs}Bi{OTE2d4@H^|J6zj zGfDh=k)94es1sd@2tkc-?BvGugHBA3veK(;Q3)Pr6*75|c!Ra~k%Bu>_Bf|mW9pvE5iOF9rhP)__sO6s#xtyDkX6Psw%o;HHAK%Sm?K% z?EKytf#0iy{o_$%=EHnuREfmH?q-r>Yu`M#^6m2%AKw)D&n6amFO&GcdWQ3>mEfNj zHFAFN&yFgQc<{G%QqGc!xK!L#RYU*H#6rKFn{VpBSReSWM~#{v`2UJ3k$B*@TIg&x zw4de_@6Ad6!Nh{T^n1S@g>tW0tuzn+JBbayH^;k$Q{ZkO30y(kmUV&!pl<;Bz!Bpc_M;@Z-uvbk09Y&@z1DR2(?}5(L=in^MP3%a}IH8 zA8!I|O4whEhw1+5-ZsqYZ12ojsm^LPpUD%Y;&F9$wwoT+e+y^gI6j)-J*t*?4W=TV&Dkk&`q!Hm zYtliV%zs4*{&b+g{^Zh}` zcB(LkSwBy9B}`}CRG>FBmmZO(skM@H51)2}z0tn}N? zu|lNZdm^RZ=$i$N5~PFGZE`pIC1YSx@X5juqmGeK68}o2UiT zj&nO^AL8t%cjoQ(W3pXc)v|MsAh>3KLO2x1BU`(<;jC}wrrd>kS^Ph*34K-_NSu7{pPqPc4HT__uv`Zd?FpKfd7Jnv-xagZPOz+ zC7y8Sb`UyEPgDQI$qfr;$QCGReNTRbcaJLJKWMwU5}_Lok!zLd^;*SwF09~_;U=f{ zO0oV-G>y%1!kie=p=NCMnH;c4To&=4)fuiuGb+UywWm~_f)_*$w4W4@@&Y|{haeN@ zcZ#;9?p@DHeQPbF*){G?EabaPc1@TeuA9#AP4L34#@Ob^xHGDR|2(9;VT$`Q$u3Lm zN<};hGpfDrh?K>okhV3WaY16EvFl{t26sq28^VTTL)2LM$e$loBJtsvd9;`i?UFMh z?r?ZHsjF1%31+I09QB>VhG^Dg-!6BEyv*d-70g$yGS#=D#@rvaZ$yM`EL~$K-$^#2M!AQKRY)%wMBQ$O98$73?phy;>rIgm1+lbzjsK?>Ldb#JziE znLGKgr0TjYot#lja@v`pt&F%B?fu!blvo}Qa`lsA&8k`)As73^$#GGf*i zgf5_?Cej@Pt5vr|RfB)E_|0*wmDS+y)U;N1mTw_LaAnl^`9OauszmZb(5Uy^0jSq| zLH_Sfa0nW|y>+#DXVm!lL$EQbMB+n$Rh!QxHX2c?%|Atrsy{G)h$@lzz=YL#V-HU% zC$+BgMvLFetn)@im5_rSp-A)VJa2xFAmLkaYE)`!XD8!Y-u|P%8C{#OYpM@NI(dt{ z|Ge2T&cR1hL3ms|Z1!*EovECYy*lUknk1pAkyEkUF zpIofioyFp+_O4<{eMz=Eo{;9w5IW8E-=xXunh|2JzECq_hA_gto1ob}=7+g6s)YaO zrJ_ps3BVg{RsxvEu|gb@Up2Ik>V(LHSpOQ!!M#{T<%Z>l~De zn}vR(nc3p7ysQ51a;n_0p$SXPdHGkO2HStWzwAncKHu>lly0Wp_PZ;d@aAq7I!z(# zA2ZqeZOZ!X4u0f*7*)c5WWVo9#GXUPI_0}~o2zLC`m^|5F)*wN^5*X5wDbFvF#j=X zjC??!jw+FOn761elbZuQ=7^*MJ+84d)`WUf@oSk?Xj@c?#6zurhhTbQk#6-4!PKZx z@|m6-RYDGQgsIw}?Y-0=LBhA<@~97ItuQ|>(zb5YeXYIcr_*9?6&-<`1EfWZ7ME=C z2#ae{J>G?>)!9mS`w8=xHRVk!9?1H`FG%(D^pO~#=56pF5HCSwms}EUm{N6OiUyNyt+x_}3a1nA=s<-i5o5~YS zMfZiMG4)6Gb5SMyk^M|miQ341Akt$UdA+^UX;pEtFl&iBkMl*lngz8xh)qNMgP4YR zOK*s?g^WG;bNaogar8&?yRO6#*5|F;^gR(z7<2atou+4@f4j+U|4nzpxz-<0DJLJ} z$MZK)CH$x3SFS|tRr{EQ)oey;_4BUyRdE#UYPiQvUg`ZhCCG0_jgSxRn^7gmL5`d& zwy$Rg@fu6U-BfDcsM~#BQW5{)O7-=gDoo9C=nXD_(G}Sfz^FNHMH4r_-6Swyjx1()nL%FJjh1 z=HDlGIxOa%@P1Y9XyIyZf%C^g=a1vXA9n8d;xA7em3vD3I63#U`1A9*KZrj!>#y6bZ3A-55xn+?~XKZenIXH9IGJra#I8e z-wJQWi6G%WythPs{%iHa8ADnbZaK%P3{NbU3R$bEW~hoGjUoH?2g<@ZwcetlOY6)z zsadI2-fwN13N>Y6DJookPA*23@P{=YRiZYmj}7hD3_I%kGtO$S{u)4+^MZ`K-g909 zaGNo-7e!a%qV%?1OhZ4_ONCxyn>ovEk?VGv5H_W(RHe&%Uuw`5-_=n=?*nk9D-k{| z#C`2tzh`rIJc0dx=B@)ij^gUua_#p#@NPmj+3;qZhX>-JIRG4 zgieYA3Q=ewg@j&0NJ!`q2qlmZl0YD|P(u<(At51+^1c7O-F-W^cc;_bt-tv9^Beu= zX5PGgZ`#hhol)N*K1QqYKVvL(jQIVPtM49L7Sew1v}GZkGaIp@&iS%Rq@W#|4@!M_ zT>bq5eJtRTw6k@!)2=&Gql^AGJxn#aX!oFi@N{E7T}ZsOmCkNQL+-JezHh5rX{PVl zvXFZAu4Ym77nI?vT4^?yrqeL;_s6ClToo&*!NkXG)FWz*LPIYrlPQPQtVpN^wQy*?+^>R#}H4{G(7 zv_=n9ADJ0u=z~dJG2*@$^jDn42pJ_|t5Gq^NwzE^H_8t3)g)QMyL2V!5qVx@rWju< zg^MM^Z|`T@YEKOCXPuAqO^#dmYf|rvz$n#iDz}M zU-nf)^*2PO`dw;SqPR#Duiq9YiQ#bEmB!(EBY9lMqI|zzOBtcS9Rg_hMj&InVoj7U7d+T9GniM#ffWi;t(gU z#i3?G;)IO!xUGhznLKLCB61@wEMg?THpg(@9AC+*2lLwud;KLcdo3zvFJH2FKr#&Y zw}nmjM_av%>Hc8LB68DB)XwotH%7>FtOC05s z8L0eF3mQd2R5*hjZp$Ly43_VweEkd$cNQ!}iXLWv){~Jr{$zx967uC$QCuZvLOTxc0@eLrAxt~uH`XXt%>3vwq+5$;#ak{(b=1DZ(X0vZgkp>j{Q#&Dqa_?om<_4LyCXf zR%@d8-`TQ=T=650$mDV{?+#Bx>!X)NHK`q0i&Eo$sUek*prR|B$_}+<5xvUw_gi?Q zI3knh!M8X<>cyo&~dz7AWeQ@uOq^M;T9_9l2F!GgWyRx)zF-{$%) z_q_SjZd-Gu@}H(z6n!D8`bI=yPt{ASqhWPE@iDi3N_}12UAg+cXv;#{%Z0Wqq}8$! zD{8f^l}JIJs#jaJTH6mycU$gkcG8(Pj7CXX)NkFKNq4|&k1i4?2U1$W-4vt4N$J=8 z&D*EwIjgYU)ydx!&G($mcPF1!Pa^U)heU8>EqfdHr?%>smi)La3#p2a+OlxF?pLiU zfpynCpWZ$iQ|+;3$!sIG);jQ!Sv#L8Bj%S)H)ERk-zrsvqqtM2(@Wd4sd{`I>)ypt zLO56O1O!iL!4tmVJ?{Ab%hpIzRsNw_6z%k@zvI8d5vlrYk~Vn^598n%yW{ezv`aOV z_?RQW_*%Dcx~e1KQyrQ~PNJL@PTt4cvXCY?R0OpDG7s3z=^}Tir{u z*xQyxgJOg;Y*|EZgqhTRw_$L1o52cNbR&-r+Fp!#wK6!M zTo;)=X2FxpmBj6r8sW)-^OHSELha*fTfK^DuCiqjxoO6^k4?ino!r%N=^o!4iWV$2ogo{5#W`!MV z10uv-5#p{0A!EF4t4T4&?`&B_Zj9;rOX#FN*fO>(O}AUqjgUEhH^~2%Z}f_&CRH=| z_&OFNuEmHOVuXw`f@G<1`a9H?MdU^qA=BUd1%btp*?>Hbwf`%%$~a05seFO0zN8(* zZCOOF@~P|GPbsNS!tlV~($E6Uwp_|Q24+KK7MMo<5BxnRnE*oYmouIaA%m>5)utF^ zjV+7F4KjZnzFf++ry6LH>_{h>>!6zsFoQb6*_fhz<7B%N3-n#4jkZN*qXo4Ax#FH& zm`{mZaYL?<**4qiT+EiUW%2)KHob1tk*1NqxY@4!e=wWK)q~kCx7E3r?GjrSk(+Ir zf2~K*I@IoHCeUEEtp_4A()7Spc7Y~Dt&F7zwWND(^(iK~%a%ptCLx#9MkgCzhg*{| zQ^ra6OOxqjYXiBVdoOOmSIE~RGtBHfS@gK%$x{3!@)cX%ig{kLWf8e~cGSK^Fif(v zSq2;u)vS3c`!iv}mL#`Ht{TP7QA2`MIA#9$f7Tpx*HJ6cciHmvE!9e2Y8*oMMd)dR zcs!YX+1$u%Gq2Vch^KN8DDDXq@Px{RC)#r=H`FX!7Lm7`xUZLhp{Tb{>8m@np&Xj^ zQM)2%VAEQMM`o?Mg4Xh+Vr#KfaV=G7BwA^!Z|Uk**s_S+WHdSOuO-&+M%1+6p}!=X zO>Q$y)Eb$IFgfs~;1)&giKK|TQiM#h$yT3Yl4e^Lk(*=+t&X&%lX?kFn`C*4_P}tz zscDZdMrMy4YefXMM?i#-F)p;#q!{D#wk#qy#$;`Qz?n#eJw0!a%obBZr!tlB`n=6n zk79~%+p>t<6qD9uGYt+eDSO?w9%qc*;pZZ=#AMq1@&v&9q#o6D^9T>~&)8~F4DkzF z7LgkwwxTszuisnNWt!T_(PeY0fj_apSy}n3n*WK+ATw({LE;c3&VuOAE^t~_!G+F$ z+Gf7x zvsHK4{2ZM{M%^DBmtOCUV6k>uG0E+w=NP_5e5<95a{yz_bo3BBlgZ_k4l^T8P03ul zla0|4W1cNz?KJM?$a}tp_DCrOEkeMVioeMxk7~Ek)EPE^JTjYqzE(dn9gY+CA34sC ztmiWRBm0%WeB?Mivi8dN9y!jB91lElTt70MxxEPBD}ELV3QRvI}l7?-!ZU$rUyzNl??pH<|aYT;qG# zvXC~hh>ce5!$xM(sM!nCoD!jF3`xo}&55>pmG0^|TNe4Iu^6Icl;b98!9t|yq0_Ye zbaCemsa!`gojN_#ZI&3|z7Sb8nOkef6YM!zp5kNM=WH!4mE{6k7G;~sdTiU*b>PX- z6r9F3>gT)(vHos~oYv?ZEtw?;20wGd=sS^_Za>evheU+kFhTZSbV<0lC!!xI{ZfHF z@>^_8A=bQ6v)GQ~;KZO+m?*{1y__MbM+_y~u1quD))IEKuF|4ZqL5YpYGE?tijnk#7)-VM<0iZgdtbL<%11 zELeyX{6(<^3z6b)w%;{F3Oa${j#3vH7N3J#4-m0cEy;}zIn`|RFNN^Wi;o>cH)t8X z&|a&m^5WCE4}Wf6;PNc;;NIvYashGt;|CHQbQnR8AC~V?+xIWg(4dwPsOtHPX7Wm%bkBbSkwPABTq(Ue5Jc zTWr-PU3ojJZQbF0`pi44`%~R>)ko9%^l83FeM|w}vs+Z5wr>GDEbGX%XIf&kuGHrH zHy9np6_M$5d@UCqHwzEVSuU+yuidsRq(*;{O;hbT%XECzuGhPDzZr8oR5}Oul6(Jh z=S7Ao?u*P6GxW#xdJS5O5qHI)18`Z4kWuco)u>eVJ8W4*Zj@2(yJ*gdX>}M@cr`LB zjP~Avb55Mg4XOQQTb+s8U$AA7uXc-BmQ2*Rr?X%oQbaYzjNaeJW zn9=SMzmyxY{%|V1!kN(!&0;&wjHa(@rLX$1&;-wy)wJ5QnZEDKWE+~plhgT;DVOe5 z42ThDG5AWwxSk`2biG^Ux}ImtLhATVY_4jLI=ct8q1Tk41b%Ix(U`Vs>7eSy*s)G( zV>4aW^ZLyfp7^!T6xlGx@loEEwnm1`S7S__Y3^{bNBVV$XG7wlYhYHJ*6mIrATMc?jQ-!DuoPBgLviOso0jwLXvUx7Azg{`8c&0eZm z6m7HBU-KX2D%w!*ebrH~x|#SGO6we4>y;Pk@$Rl%dw1Bfkj8SmW>NLNabST;{3;by zg-TpN%Y*p%s)q1v?`2yJNfmv;mPLe0o~vr6_vzEwus*XqvoCF%&`0z1{psdZ(%V9z zThp7j#oQ*XU(jQz9KD~n<28MKw!^`lyp2v%vLj6^U(HTyj8>NDK-HA~xRui2$cm;c zZH^fYrQZ=Sp_(((-=gEaITmL?Ye!3)c}@FJogt}r@;Zl{da6!w>Z#po2gpB&4mY7| z-qYP`FhT72{b?n(`qW=I_$vqRaqtfvbf`V3^wnxlO$Sjv1*xdt)+!mGCGU;UbXa^t zvyow1p3pjlC$t(%zgAD){dSAddG(%U4oRkIO(g=;3~i@#6f)VSbY_e3sPlu5I`Y(0 zC0Rtz+iUyuQ^~D{$V-AE4?6W!`aL39`8Qi*&vXvVI!$!M zdv}5U>%m&xkZI#lH{>`qWN#BP7pI0CcN=mX>ss+tj+V9BvATtZjH|5OhD=GF)_9;H zBMqDo(U9Z1>1n9z^KNmfcOD~M@5<&Rl|-{60~GjHrw^H_!WXs=tJU-N#%As~Ei+P{ zqFAty{=eJyLEP8IMca2qI`rs{6urN-C$pye)VXfUE5EZY*Z?|5^DOi$IbF@L8%_&vn& zk*RY;EfreAJzzuSdR%AALhA7vHbu3^i(ycBp_@EE8JWI^YkhlVhN|s0TU|-D-E7Mu za&-@Zy0zbf(Mf+jGG!0d%H|S7s=m@zPonC}ZCT{2+G13dftmX$3l<_pL<4i-?Wdnb zX75tlPd~A>m6-d-wk+}$ZDA`hH@_uXun;LeVLPF8U-lQ5dfBi3hRC!f4Gj*>Flf&y za5x+M4P*Jf8Ut5XWy04vr|9QXTQ}C@)INQAXOEvs^&@dAoCWr=Wg+JNP}ke4Z=e+X zrfObw44}pnA9J~Ywt+3HBzcC9Uo$kjYxJ&toSM$983Q}RIa|3Yb@(Q=ioeniEG z*s_RR#iR4D%`~)~iA>vLLU(3{6`!`%nkYVH%c5+>Tf9iR`-4N>;}fW3Hx=_T3@(?uro&fyozqV}wRpBF?$1E<5_^56pKJ_?SmJ?h3O>+y z{Xk~wsy|0>CK?6T(hGFu{)rT{d{W#bdgmsrj!@Thk=A#zR~w$#+f~v+I@x5~@4L=n zG;t~D+WSk_z!h#_6j1tbIGfUGsq9W1(&AHLD zwC*`nqv+zw|C_DmqzeDVmPO>sAGKy1e^2Jsz2M5$q@$`bVJ}eMN7uUL7FYXtD!jt! z`B+;Pk*j^;k(sPR&Nj_S`h*-G^|{{+8w2Eik*R+YeJ+`G$Vb2{-*XoTPjU9P)uGh> zJ#1Ozo1r(uo!f`Xt2qxN7A!=Hh~Cxq^bS3wc@{03%X#MH%~=;)-O*A{XTFlhy*`m1 zZ`o@z9j%S#TZf9QuI%NX$w(6dPdt6*a-77Avv_d4_r#04;)O=Bjkfhbs#2pZi^z?L zEvG!o(ItxdyFz_ICvHPATK5+sv)F837BQ1A3oNB&37O|}wz?JbTwu#0a`TKgPlEF< zPYjNB--*m16Y>su^GXky;1*l`i3x7BWsz?Ji=NV5fgC%C=I_O(>qS?(EM8ODWpnJp zx&`~jj!2%q4c_l7=l~^iyYr>$*tK(RQRnvsi8PfC&v!?cZmf+Ja7TLH)<$CHXElqW zTCV;&?|@@k>2i9b2m7EpidF9rA46rG1LCY9o>$hMbQao+j2f8EttO46~ zgdcfqmOk{*N3Dds$i7;g%H)miX(yR&4Sw3TU}0hlN>8LVZ=7P zsc4sK7DY$*q9c#>9BMFKI!4R&d0SccRY$k#X5wRLjlM{v ztLVa#WLkgy1UKp6d&SFk;t_Tv>>_|m=?D%a(6wk)K(d4|nV?S)Nv&4f-y3qr*8QGS!df zD|G|qhSa{yR%cTE54L3yx!T84i}$ZFF7WY4Dl*NF)1K8meL&J=t2t4AgDs25l|LHF zFZvNlXJo1$qgC$}T=+wh&)RBD6o0-gi^vsU_$}_%$P`}cE$(JpEs3IUuw{|2Xp2`c z*^c5Vss#&?;&$6INyg~LLOM9b>spPG z^u6lT@y>a&bljj1G}6T78DPT5zAHzC4QimqK6NZLrmysDGU;i?Y>ky@EB_>%jG0xT!RE@Kh1MVbuOl zMrMU6{^#BLYFbwUG=*=3o5D6*MT#vpYZlwF7az8c&Lb$~CU#|HIvrk1Wfpf4yS#EO zUSi8aYV?=b5Y=AY8on-xvn^w(*0v7w9E}Ge(>HxDuM3THp`jl9UR!NRwY|%hMdS*f zvfOE+liU4|d~wv3+nX9)$m@}*f5%!D!T;nJ2k>|zgpBcuttQ17FWIt)+!#A7 zvKOQK=eA_Bo9LC|I&)HWY-AN;j@uNm+rq-cSr`hmFf_j+VM6s}y{(a@Z#-JF*pBn7 z;qLfzByBRMjS*){WcnT9jW}FrNRRE6>+v*O7E;q&*%VcuVJ*u#bR(msftW#@3z&JDEtmv7LhA_lsAiVdrPBN zc{MVfkM<`}Ub&%;zI^q~SPoTPqOEk#>Q zcVx!I!5mv$$DD+p|8GtN4en3@5burR&5|Y=C;Y$T3s?e6Y@(A_1=w@Ycy%g zLK@O3nnl&OPR8m91FE@yIhj$fKS#w@V*@3u`*A!Q$IA{CU2KYYfvx6b=see!MfA$o zFCw(=MtgT~ZlYaUL;1HvsC->Ct+xe=4%Pe{Z8ay#zs{CLOtul_Qq zx%Tt($n-y<7Ny6zbbkf3z-c#6+UieC@PsXkd=pqq1Y|D3gNg+Uk>Wu8AXV=I#|H=d z!oA?f5mtmi>7_ct4{WU{72)5uEFw3-XzyT#wp5!#e&y!bxwDRmY783VpUmJF9O?vT zQ0W!EQ%tpGQMTf(=ewifTZ^ks8Z%p3({#hUF#xTIQ1foValhb@=9k*4O{)Asn#FdU z$_~Y2;SjI9?{b~UG&xMWDZ536bXZ@x4imO4r1qY~W~la>=3weO^)UoSrTt7~svhE> zH4t8UIL}r~Qd!ToWf8fe2jMI}nyDLlz9}+257uY@p}bIizTQ?xqULLCS>&tPVlpH1 zA?}$hScnu6&4&tmK)(=~wM%(GKWA$zG50gJEb#b6!)E1r3T94@?y(y&= zzK3AohN{e^ihn`6d!pU@{=2*{Nc)jQ70$2vXck3B`Jx)O^*1ftLUyW-YSnn+V=hyb zY9Y0it1o8DLR!c)TNctGvJovBnMm=WZBuvK>3>TtHdnnC&GVWmR^O7b=45J92XD{9 z8B5;}93!{=_Dq{G?4ClZuEL6(=cd20Bh~28^}~z&c1z-rr@j^^(W1BKjoMhiP5(q& z>q{?voGlBn{xP;JT4X*oU;p>G&v1dQw#DY>+OiOvpJmI!wfWDiTD|%CajMm-Y zls6)O&sM2o+V5x<|KB6>v(-_ndW85GePGG!#him#E9N$uz^zH>Z#4em)No>Tlv=Wb-gkqF;$j(Yxy7PJEI0>Ss@+c%Dch6TDQp37)rQA(j7GTNX0O;EGVuBqO3> z2=;N8NPH`C#i0}Ya+xe{voIzIBaf@f1fjr?G+Wmdy&^`RjJlPWYfM0vP$d~g0$I%g zrJWA8Wg(R$BJ)fwYM#TATMfG`jLa_6irWQ3gbY$=t4%S;uC^>9H^}s&2GOruhDp{( zW|A4jO~PV?jB>QCM#U(rZCT_S#iAc{mlO9ZxrAK)O-inMT(0kL-$jtIE4J$I;^|WD z)<*pXW={G)Tb*jtIjPtySdWV%=i6FZD$6;VMe(Um1dAh=QIWDZ;x5$|cmbvFf$2*k zzSa}#BE@e2n|xf?^n|AQ#5_5g%0;m`Zvkh?(cAre|xD%3p6TVzuE&`eF;PfXp# zrTM(Lv|m|^OJRKk7Mi{Rrj;!;af`6%`=t9kvl1z2q3P|C-Dk145$m_R5hbqCpeL!u zGSkl7z``4Ed-V1e4O`Vpm-nn@QMAje{z6`%TQsVpSM?6@F&B)A-=a~u=H9nuAx+~w z&7$h7bOZE;qA{zRaeP&(Zb21uX`#v6R4US{_mRpu*_K7*DlT?|Mr3L(eS?OrosU)rI}4oX9j?%CD;4R!gGjge{AFMOzHYvbMwBz6A@B;%VFd&wYW}ar?f&j9*EY ztC9;9XY zYImt-@&7x{-&Y;|s+)3u^RH4#RhXg{RB@4U{$*SJ zNacLNmPO<$E;7#dJ0U7HmmKH&P_Y$GsXqLlRdwNUey7MZU22@Ktz6MDTNe3s+G3EF zah|(<3l<_pw{4Aa$N2?=x9jQVqmS{NW@Bre+-h2s3Z5EqN_DDJXL$>C#voN-TtCsa zj!4&eoMy2d$MxZ^3rKiF_KfQ2R<#fxLvx*UtTrEH&V`0vH9t|g9=F=EkcQHsSyX+L zAH*IP=2Z16Dytgfd|20my(7%Sdt_g;)sa-!uh_CETg}!Bf2G|z9*#`m<+yb`Xsb5S z{Qa86cI+r7v!jZmeZ}xGIi2K_PS!hVvnIb8nPR8Zx)Nw_F_Hi$`nVE=x{%i@*YIy_ zSxDV}k&RSrQQOveaymW)*LKi5I5BtEfQ~V}JPQ^gMGu3z^=LDRPkCD9xeU3J)y2CT)!_KZs=?%1KI_RBAkMR8 z5+GC`HrN_d>ccwCVmppLvsSgH+EdiLPRA#7t7+o6*@>;sWE+|bYkFH`ny#hEtB4Y3 zQQ}&Z5<1^pxz2O8ETs0gvDvCU9_<~}i1zFEDj$3C(YUR>5}d}^u}*4Zb9*lK`pp;Q zk5pGiX0m-ulacq7Zz*=|69MC{fN@vAP~*AW)(X;iF0o}1xgmEshDI;{bS!;c1Uu|* zi*3tvWO-o2omW?!Y4mFkL}t2OYe^(IGD}|{;ffT8NId4@LM##~WUPB_H7&-v%a%pH zu`Gry8Tq)swO}DqZ0C`0j|D~z`Ez77q}a$u0)*@+d+UwT=gwFIp^>i)sKVo$PJp%Y7UO(;9_e2hxb=Eagu{MIF5h25J7*nlp`l0WsUkO zXPAPZpSp;X{H(uDc?AFV6lcGRGd#;l<}kV)%=)XBk)cLSB#$i$>N!Ir2OF8oFh+ZE z_O+a^m4ADSe|v}{U+2h+8QseTeHo}m&F07~GW1isaAb~oPU7HiEX${v%lrH&=Q5Yy za=z1;%Nd9qs74}kfEt3xVd|UwTLwWt)yZ6jbFh|E9)RC=P!9tQR$GAvtATj-{%Qjv zhp0azLtnLwnf(`NsM;03^;c&ia-iD4Nv3lULoiT1!%0RU$pAGLJo~D5fQG5rNHR|C zfXD&r2B1Oe3S=0jCL+mj^%(?xRTF+2tL|s?8c<*LTWDgWiXn2ant@=L`UA2LR&OI1 zq~`E5Y()mDM2H-scH+o+2>PijkZ-7(&#XU*BqP-(paCidG(vp_*=y8?tohF~vrpr< z{^}zR&PC8q?Tvin)V>JDs5yunsUBwgtzfA?kH|sla_0Fdq#Uh&&-spI)<^MgXCrcw z`Xw^dsAo9)Oa!ykAMsm%^=q&mt6oGfPJIO_`>QuNcoUHW)LRJpt2Smm9r=c-guzg^CeyRzz@0;*9p%=2snebx6kCELU4n`s6 z7n$ZHRh+ zGyI2BUdqAF{M)UZ;WCc=1E)L-L5=!8e(S4-aOB;b@?D^Q>RzCsYBbPr^;ZOa)dh$g zqFw>Be(E&@HR@63GLDl>MleVHgvA|(B;(ZA5jjj93N%oigJ7)sBJvGT*WkBB>M%qO zP-CEiq3T?qL25LD$?BJ2Hd4KSV4(Uer`#Rc`>F49u?~WM>OTB7L%oia)F%T?RJGta zNUZ}JtkxqKrQYCtI{^(*dvo?>;8~+~L53;nL;TiPB@ql$k8*}jAjwd*8^Q-LO{ z`9K3ynlscOpq`zB3z4tC`Y}Z6uLdDyjXE8_)u>~Uy}ugINj||DCNesSW%(Va?BbNa z;K*s5&aC(5?CnU>Up>mKzr?|loN^myKbg@-9Q>Q}eU;Ja%^Y!esxL?0 z!x_HFzdZyrKs^eP2B}bX#qj$Z;vyx z87$z{{M!p$UO&z-n}553e>;YmeU5{larVKS@(Sj;Gyk@d(RVoC2aHbP-@eBAR^hjP zs)i%`BdAe_bB15B3U=m{&ojE2(RfaBEAzaE(d~?0XJ$__o$`!JXN z`L{3eZ`~Y><=}Bn`2=%$ii4kX^zRAJ2ICzbN_gIKK zk-eY#2cu~m#Q6D+0jg1NatV8Kuq!9oje~tS@;2t#$dM}u ze2Cv_R9_TZqt0j4hTj&dEGOyU;Gf7>qaJ}?rmLNp=L-I91ZSVhN!D?&8#7za<;_5_ zgZh|%I}iEBsXGwVsFOMJHclBwFkBtQtfw&R*HCPY`VE)9kxTzOk{qF~=YnqFU<)(* zGg3}bw;*zi`YUHRh?AVetPchnq&{FY7eQZjC@1+BXJ|s?K(&=4_Xq1iYB3_$s}E4Z zFg22;p2Zo~aPSy@>#xpdS-#9k{>{N$PVy5DPUc`92Rm|-IHR94mrEFpVL1l?)u={J z`4>disC)Uh9Xa?MN6z57bS-DUkR$)VJQYX&k%ND8zMpciJF`ynZ$D(z#^~E_2IkU- zfBOpO`v*rZV6+)2Yt+{n4dRsl;v@$E)u?CjTaEfG|MonmtYN8Zk-eY#443ylCwY}K z9LOpE#gVsi}!H2?N9&UXl-Z*a<^IT+57eYk|DS)?Cu=X-^NYdBwulkCZn`*M&)!B7K$7B%prkWk$_NIaqxGkwa7ls7CFF-)hvKImvPOt*<(O(I=6lzj_!!U$vAY zzlJ1(R5OD9>MoA_7(qYvF$;e`NB)S>&7AU3W_CRPwuB>p3{<0rGWt0u8O~MXyBxWk zgSQdXs9%6*jXDyjpPGP_{nR|pcPA(L8kg`QN4~;BtYI#H<=}@L%;JK6#~B{y$Ukz1 zJ2>)BjP?iWrw-)E3ni+|5ne;`f-vDj(nOU|I6r4uGEYUVss{>b2wPS zk=Jm(WsGu+{?4eK(UXh@F*=;lha8;6ksmP{#Si@@F5zm9>}E8IQ_kYZ1V>)R!9Wh4 z=U@;AFL1CcXPC^{r*jEY8U2WZ$2b_r8Q$SwJO`~De1f^`%R!totl-}o82yricR0yH zF6b|e&PK`_^&%(P69J8Q9Nfae8yq|iQ`M+TIp1Sk!WsPAYDCtkUvlt0j(nQYvmAVj zgX=ix$Hg88M9VN7IhOPNiG#Tunc!eBmp2u{)2bgoLymvDn}dIGzR{fW5=QSb+5<`Y ztD70MaFF06@9~43%4jlvt5H)p_ytEUM9^RTfFpm!k*gTB0u5IOqJ)0xa72z$M<5uW zevRLTsXhpXs3%y6r3mJ!A0i38%>#{5UHsc#NJ(pl2&jifFjRdT!9aBhlF+&ao_)5u z4Cn}T8-5$4ehOwo)sqM=RTp#V^Pbpf5LQuyrv^+li&>VB}HuR2r#uLe zL)10|1JzJu=%b#(Z#C*l1OwDc{MJ_u%=7P)v*#%@*kljGyAax+~K^A~41X%>K7-V;l zJ%~7ZWf?Nfx{0D{L1u%@0oe&;XOOud^FVe1*%f3rkT^&k$b66mAPYejfh-2u9b^xX zJwf&Y*_()?m#k6t7jCDh3qdXd=_2B&nFCqb&m!tMkY9s55Ap)Yiy$w7ybSUikXJxn z1$hnRb&xke-URtA$Xg)41NlA3A3)v)d54IjuqqCj-u)3p{gsHL&UPia=w}qw1@c9Z zi$T5w(oMwC%d*Is`iPHv1Nj6IN3Yo;!$$)s zs?R_oqd>-hj02ekG8<$u$Q~ejf$RgaAIJe9M}V9Nk^E7TR_;MV$tc1<8T56LHjCuBPrjm!j?gxfkRS05o9XJG?3{aGeBY>GeKs7)Pl?gnFF#D$j%^h zLFR$%0J~e&RI*|1s$AD}AITqwNkmEs4067ulB#@IqP60`PoC=Zz zsRwBQX(Zw(EE}PmY=4T%fwY5kfNTcY08RWTY97TN-2ikQYH-0(lwaHz2QoybAIf z$m<|)fV>IvTadRveh2b$72YCbJO(Kq74ut^U+L@xR2Dt|0T9E5N zt_QgR;cgW5Ajm@? zKLU9eya4hd$V(tEgZu{M6_8g!UITd@Ud!xMZE~}63ELSzX5rLh@%&Lk!+8}6tySFULbpe>;tkd z$bKOEgB$>IAjm-=2ZJmDSqicYWI4zRkV8NY1z8EQ3gj@5!$FP!ITBo1UU)hWRO!p5+J97Bthyy8bBIB9FQiEjUde+DG&v+ z2_y~D0@4bS0cis{4I~Sa18E280ND((1!OD8HjvXnJ^}JckWYb}0rF{(GeOP*IUD30 zkaI!KBjV_Fcv$Dwr4;oYklR4M3-UdX+d;k$@&k}NK<*^sC@jKi!+wII_5|4rWN(mt zK=uXM4`hFk13(T0ISAxnkR>2XL6(6m2U$VHQCO7)_urpOQGWn=8{{33KZ5)TI+&c>Y6WL2*iRhjfcOu5C99sc%r+yDDmAO_ki3Bav#Y3AP<22 z5adCShd_P=@-WCFAdiAP2J&N&$3dO|`3cBRL7oKp8OT#0KL_~*$S*;j26+bLS413z z6=_Iz+T|3L1<8T5gLDva6c(hBqUB18Y6Z!Fw1J!kk_E|uw1aejYzEl^vK3?-5l63S zlS;;X9V)@fHrSp;NSzIG4#>G6=YgCLaskL^Kt2odIgrnTbb@>VT268#b6(C;$xf0~7AYTLdI>!>|8%4bi@&*w{O>!;2^X(Khmx!aV zL4l-af1jex0XY}sJdpE2E&%xq5o%>__ThI>)CiD~AfrG=gNy+g3o?#~qp)uQ=D)a? zqJ9bTG{`eVXqGx(N~=71uiU9T||7YqOeP^SP8L0Dx1dXT~{z1$=S>rR5O03`@3QG&1}B?xO% zg0M&>2&+|suxup=>sNxXkR=E!T7s~&B?xO=g0R>n2&-O#u>2(m>tKSgASMVaV}h_m zCJ0N0KqDyZ(rbr;u!txKtBHcJtSAWUi-NGwC3ZKbeFueb`r(yJh>!3x5{G|*rQsn;+Nma649tXT`f z;7xFD>L3&KLVAgq`R!qT}Q ztf33SV!9x#stdyMx*#kH1Ffa7ORo+K!ZNWStQQNyvMkVr6n5$LSwUE+6@(RAL0GyK zgf(12Sj-iKRb4??-W7y(UO`wU1=^LuF1=nV2n(lzu!1TGOR0jerYZ=FtAen~DhSK1 zg0Su?2n(=+u=WeIfx<4m2rLMz!Gf?XEC}nvg0N652rI^duyia4YsiAIm@Ej3!9dqi z*riv61z~wu5SI3VzTY1yvBnSd;{$2Nz)@K7&x^wPe_j-J1M;GDeThgzk;w3EC?&Yg0M6!2y4WGuvjbz ztHy$`d@Km-$bzt-EC?&hg0RFa2y4xPu;?rZtIvY43@r%j(SoorEeI>rg0NIA2y51Y zuy`#9tJs3D0SNToJE&*a2^54aK|$CX6ogGeLD(%6gl$7X*gq76jYL7%Q51x&MM2nO z6ok!2LD+Q^gzZN`*oPE^4M{=RnG}RAN~^92)m$yupKH0`=WxdK`ID4rGl_!DhPY0g0P7y2)n6*u&pWx`>TSm(JBZ# zu7a@jDhL~PKnGLUrFZTGVGBXWe8#WLHVJA@#wiE?nZ&46783kdtQ4qEr1!4bD5H=zOVMkIBwk8E# zHI7jygaT4(?E9_=xzhuW1xEtbf1ClH_!tH`k{dyG|)o^ z`jLSiHqavmdelIV8R*9bdfY%y80aSk`l*4iO)UDvezBmZ41^tI`3+mig0QD72%F1- zo-q)%o8`A>4fLFWer=%V4fKM6UNq24271{*zcJ7&271*%uNmld1HECOHx2Y#1HEOS z-x=ul2Ks}6-Zs!X2EyJjH24sOU3!yP5O#|NVcS>`_KyW&BUuo3lm%gHSrGP^1!1#U z5O$pfVf$GS_Mrt~Ls}4arUhY(S`hZC1!2=#5O%KxVH;Zz_Ok_HV_VQ3iy6fzq*ZJK z?PZ|74YZGe_BGIc2HM|12N>u;107_bgAKIAKuZm@%s|Txw8B7#80b&~tu)Xo1080d z!wrNDc<7Tgc%*?=8wh*zk`kNrg0NdJ2;268uzxQI8~K8cG0+AB9c!TD40ODKPB74k z20F<=CmZM#10@V}s)3RQsy9%Bff^0u7^ulW8x7QKpp=1>fi@Wk4ho{r76Y{!2)+xF z5>5<);LRWiZViIq-yjH%4uU!iwAnyg47Ali+YEHNfj(iNPa5b`20Ft)pEl5$20F_? zXB+4o1D$K2^9%$xIXwI66w)4nf#5hNzrlk}5M1d5!KY3Toa+R^%T5s7?F7N^P7oaM z1i@ht=wu4JwCA88xDX10FQFhf6$*lPp&+;!3WC3(AUGZhf(N1?xFQOIPof|=Ckld> zq9C{{3WDFFAUH4zf+wROxRCWCg)tRuDXA1;K?@5L{@1G8A@cUs^$MsucuZJ)jFIq+_z8lmpCI`B34-&VAb0@^f;*rf_yr1rgPhg5ZlR2u{g@;GHZ8Zpwn-uPg|T%Yxv+EC{a5g5c9E z2+qxd;N>g`?#_bX_bdnw(1PHe478fUF73Vu^ayz?c4`BnZw* zg5b3z2<}UQ;Kw8g4o!mK*(3-qPJ-a;BnVDVg5dom2yRe<;14ATPJlpHQ`n`w0R_P= zP!RkB1;J5J5IhD2!F5m&dnNSeC3I)NvP!RkK1;OD^5IheB!39wed=Uk~DNzu- z69vIdQ4stU1;KGq5Ih(K!Ie=Ed>RG8xls_j90kGMQ4std1;GJQ5F9mu?xnCx`>X-| z^fn+kuL*(|n;eISwZlX6$GbQLGYdx1UFhi@TV07$67(~uoVPXTS4%-6$Iy7LGZ#A z1b19P@XHkh2VFt%)D;AmT|w~O6$B?}ND4hw<{u^{*o3xZRzAb1xGf}61* z_!|p?>91G6A_G7ExBvmp333xbogAb2|q zg4?qo_&*DRBeWoRL<@pzv>^CM3xcz>Ab3p+g8Q@}_)!ajL$x4yRttiQwIKLf3xdaT4%Ru)S2#(|^VH$;9YIg&{WgWlWMq!usT^9r=c0urF7X-If5pNJPD47G<%`f)cMfXIG_)pLD2v)-CK!!M<<>gEG@tDpl4xj7r5m$O zYxl|Bog)&-)=cX%iRq~C9F(b7PD4A+l~CvP#UU0QokJR$ldT&ax;9xq${-g8lMHT1 zwX-1f%x*@?=SJ$&EJk>UJo}pv)6vF(T-K38Z=w`%YCdUO0J0sP)nXcAtEM7ra^}$pgqYIglYlG>n`exol z5?U`LkFIIKM26yL27mGNo@c=cV!>c)gU_7cFCHJ?PGY|);N{2H1#>Y!N1w~@n{Q4E z_dEM-pr`?LEh~`LQ`#i1`P^^Jq}t||T$JHB2%4A9WA@chGpf&I(mmNSmylG3?$C_n zCr^2KMlhR^BsVyr8Ocu`CtuxShHx{IY|PP7Q;esaPS-DV(D_M?sRk#fIp_7)x}F6S z8IsKj{!&7)y!sK$<;iuCQU9l9og9XMVk3ZVj)63WRI$Jho=|yu*FA%ds|zGHxXcdx z;BhIS^T}q_4`lM54A)Ii&39Y&1bX;%Ax#ekBm8JcG1*T}zvex}NaWy$2<4j=%vV6{ zv8LFPpFZ<7Y6#@*C?#)4NM26v$tKm)l-JA$dHsB4$?N8K)Kf+m+?LI>WZE5Fa|+gI z-31$|_yLmYs$g%jYg0#SLwhRIn#gsuwPmvHG_}>;NyaJvz>UfNrbq}Mz zwvw65&^Bf``7FYEpCt9fOmFbo+5D|Um7i+X9Wx*Ebkv-nGH249sI0CzFP*2j+j*#V zo6ywLooptTNT)UxoE_?FCP|EkoFVbv1LifV9Yk4@*5FYq@g9!?6;>Zu7A)c7ppes%02u({1M8d4(DL}N)? zM|;6GqDQA9={@F+LFRM3C(Wq}`8k=d zquvTu?KutUOwOT)?%~x*xAFpMnQ2lzWK@S8$u`A@2)zp7r!XFOx*zR5XP(}4oAoON zmtk<272@D)L^P$J#*atE2y$}N>qga>(vWOTpk@@R-MW!_2@FZ5d9g(vCD2H{lt%uU zUaXhj7g!!7uaSB=n2)0_Hmov<9-+vZ&QMex{@IXW$3T{F3)QbDY>WbVXP9{lNUxid zA8(ZJsC$D`mo{92$)a2=jOW$eY9P*g z>iNtou-`RhNk=>Fa<-=$V#_j(4w2T)bY?xR9Ob$@XS6%nmbjlHjub=!Df(lBw3~Lp z=r9UcV&XD-!^`ASSb9pPV~4n_P{eDh=4JdGm!H*Jlv~)0*M+pEoYn>>$YhGkge2e} zi?bMV2yG-fTQb>AIDH?_ArX0{jq!hptxUEyrX8xw6U;1e?}xmsqn6T6q0`zZ8F$bb z-RNT3Mji@Fk+NIb=!`TfZk*1gV@bhoY+hMIR&CxE(}RxpL=+L{h`gl3k<^uebU#LO zM`}N=PzJx?Kn6c9FT)6w;P+|Won!qXB(hMJL$b7gMhYXTB#T7mWf_Z7yjnu_X~~*Z zw0Y+jCBMY+OJ3%o$V^wDH$cIo{7i04UgD8%Vtrq_ScGEZl);P5%QWi9)K;g_7m%Kb zt*@htSIyz8_4b%&OSTTj6*lMC)%1pmec)hGtOoCw;-w8Z#7)VVK6r!NLKc%p zHn@f)$a5n{O8|BB5`|^Vji5+?LIkhK7U7PFz>GTvm)L+lEB4z9EsKRXuW+DEH}#FpeeLX&a@! zqun7f537`0oiCXo@X6GWXs}Bp8+j&Msm#nyUP%tGSZ)!J1$Wfvx&FE;pOAIZ#kaKZ zqw&C#{p9qhx(O`#nr?W%aC;~MOLeF_@W+K4N>ze#9D{u2vzF*swgQ-W$5&%mgLr| zR9RolTh~S(`B3a47k78=Q|$ev=e)spnIrJ^5E!r5<&=7X>5(zL%q$6YGCk(1GbJ#p z+%XAy^GvlT5(WF~-m;eWf$&mUZ+X>uk{R+I>#v{{SljDu5ytCRc#*8P?25d9wbFt` zdRxM;U(_|>6FBTiq)FyHbPb^!*Rl7P*!wblM?+|`1>$O=7 zAr1N0w`#MrRHH7DS!s))9be?Fs@wpsV1~3!eidrXWLxN~s2qEk<}VlbRzabc`Sq2{ z9~RYk6vzLaK3vSD=~J2NRG$2%u&#eh}gvYIif~gO`G_l7Jn2T6r(Xpl^=yg zH6EooSiL&PH$C0x6rTN6+*USJw}yGb8jsTue4NcrLo{YNy1Gw7avBe@fofefYn4Aj zRAJ!uMKdHmj-ow#R7d5$%;6=k-d03>@$Cs`NWG4Js9GKI1r9I1*a)0oC(_zMoxZS_ z*-Fd1mjGDO0o57dac*5-Ded0hXaSFdf9NxQkhyr2-odOQBl+5!{FjTg(HxtqV zf(0g_2iVC~XySR8-#=Etl9u}NMKJVrM4%U}f^6lyT!*z@v@1TeS6y+Ku~h&4?TpFg z8yZ_n#ke-MS6F_>8us4_j}GC-BOhE(6hp-INZQNELYRB#t!AmE4g$mw>Y; z)e80l|GY7?ah-1pcpS<;d`EjKooe6K-8rw=d?uVWIEz_kI%FKf>`E=5hWODl?Hy|N zp;UQZ32s4##aEY_GnC2DSZ)mWMrCp-vdXx@+on&Z`7Dh5##1KyP`4TGjmqTYdvuUQ zhAu_aR`z%O9}=~7n<46{VJz!q0`=+ zqWz2Z?UW>55A!Kw)23H1O>~}(e$naf?9EG)pDWni9K3$L)k~AdtlXC-FMXX?o>Aj^ z{n8X-C$q+~UYbJrtMk$nVr%q%WlbJJEQ)k}>k{ql-bAw8Sy+g7sNXB=T_D7!E+C6x z*Y$KF6df|r(MC>dg=CbwBth?sxguUQl3D&*=F92#vU~Qfe44iDB13Y}rzVBHd!%&vt2%O^ zNJEZ;6A9nh65W`-nGH|UkIqAJ>ZeW1jU6x-b@bR26)3OaLbJL>`^8oHp~ zt1YvoGBJAJd+8z#IjD|i@wr+>`sjTfqW7Z}tgpi%ho zbzTndIgSdhcTOVTZo0ZcbIaRH;nVl@&zv=>&Nk-2y;tF&>%@P0xw`@3M-OSx zzR~!?gv9LaB50&y`ob7uZa|sh4qH8om$L{OeqPkbfH;PzNAqvxFM@{Ihpb-CB50V6 zD`oy7=qj(h+iTHZ!Ll5eJqZlO^=e}({ItE@mQ@f) z+i?}lXIZa&5e)nFdUq^r0hzv7N>;e{u<#)*C7b0)Tdc$A-QHL!!OGbi3+IP(YknVb zD(~;mW+EmjiA~K(IwOsiYWNW2s?1kb+fA#A31(D9+2^6h?S->pSUI7txSV~SFdNx6 zaRoBOm3|7&#m^Snlc82ud{3rCapkr0@ZJm6l@fa|B?>IBt`yi~ z*{7#HmJ)@A_v%B5X}PcPUdrCsy(qD@6XGQE(2@g2F39oUoKAvpjqH>`_4Im98SS9OoL?`Zt9%Qc5EHUPuyL28LGU%6XHnLn z`vl6UXT2>6e2tP8(-rP*y*5-ClGSO(Mp=t&>O?vE17D-0J#w@T(dguQtHN@6VwW|S z=cqq=TeV_W;IVbzc>DMLZE$}0eL&t^lO$+Apcc^7Ll6U;Ml zTTqzrSF$~3FEH6zm1=EuvWa4YOOGsr5`{O9ddyCrHTlIG7F$|m2=9?&P#~MS6B^>z z1dA;ARuoL2r{wv)TrBT|yzpj7k1UL9VGK>Ja`R$YyudKpBj=#PY%CZk-jHi$Ho0*l z9oE^B*dlt-J_Y802_n5g(N;jlB#*6Prx2GzQEq_(srt{1f#SoO-)L4C< zpmge|c>_l86`C(}_@u`2^;$?Q;{lG%I&EoOCr5*E@Gj@d#SWh}T!z>oVGLoHRiy*8 z>5_H9hAhiFTI=a+Ps^^xZ!|W86_?D?IO;`X2D*3A4W01DcY6n2XD6p)?Nw}(r>C63 z+3CvlnyJ+X-$8L`q8jc`dJv>8ShiuTqf5?Nd&5?yujOn>8X7jlD?F23S868PD=~v7 zX&oAxX!nLyk@@Y>R9kxEOIKVKRa2=akzx8Zt`A#*LAN(r2#&wuo~<{W3i`XO^<5|m zb|}5!FY2t&?!HKdKGz2vDyk@JIY;{zuR=vn3OkCuEUGAIIj(D^1t{2YLt6p2xZtm;g;<+w#rqTKi@gBvhFHRK129Z+#h@AVp~Gn`Lc(vt?5nEtuw_l zL_gL0jgP1<+q<Jv`t_zd;`;&`;@5l6-D_`HFC$-uus%3D z%C9`(yS{8HPoRG`9^qt9lHMF+>*Xm!`opWzY`MQS1aFiR*tk#Xg=<+aBv{Dp)x z9-}Eg1^ahZza5lw40v(9hzpvL#(0!t=yv)XU$v0PX2?^KZnJN6_%^NJ*IMRMLJyUh zX8gUMuoM=Ag>}?dyrcE>X2N9pkftS*;#anym{jsG7~lQfc+{!EOq3>XS78kD@vcIl z+_Aje1@;!kgM%M$%HXIsj3=0yc9NU6CH%`;^BzKPaYz#5Ic7+_SL5;?We0f_No(+^ zm3WVbFSyJ*CYcW;c|5DUX}qv5;Uqp}7cY9>%WA(Jty0N{vjNOZ3 z1>`TQh8ww&(*Qv^^CdDgd943yu8q#dtfIK#*L*`l0~8dO1@bEYTVCbo>yn!~(&x{mEsV%Ic*JuAJqa%DRr(mFk{CWmC5lUfc|&$~%?SEyz&g>Qd`a zWimAORl^_9mC2>Z>eC7SsjS(JP^M>VWACEOB0^iND^WXaILXPZER~^C|Gw9plgu_W zL+T=Tr`XCJesM07lP`BrG(-4fJ$+YQ+2O^sUJFf{G=x1oS%pgBuh56To-J2ER}4e8 zRV@{3(3dQ{4_K~bS_ng~H9^x?)S7(p>@6FV#gKAk^^_OhT_{(1kin4ZSbmXDRBqb* z6@dy=h^yTjSR@wKQ45U|HuwV}ZR)&ndMNro{+Y8T)hP2l1hcLBj;5vp?|d`{>Gu#x zV(6+?;=Nk7%o{>wE}QobA$hz<858^(YHE9STf*7e;I#2LkoP!R97*Cm(mg?KOu*Ep zkS?^N8GiJ#)p`>Hc2L{sq&te{!;i+(Pxh0OhVy1OT1=kZgz`-b<}0ADJO?$&@2Cl; z<*=U1`@Dsu)-p&EL-rXG?^!PI2?B4BlGfl+EAbwW0#B1?eaXYT9QC)L^(UvA5>DE^ zvM8D_({1EyUPvQ)&KgK#JWed|gZDgnItk2K1BneTvjabP zTncCu6xPqfqWxUhV=< zk+w2BtJnHI2`_=Chi?RxH?gSghd_P$S1;otuSMv0 zo%uxOGL=TdMr;g<+ zE_AL0P7v?aK0ptm+1u0?#Lyb{&%HyZy|Kx7GcNPV#jNG*pBH?{qI>)}0i*nLUkdUT z@xrU9Wj>*Co`a*No6|0*rLBEi(S<%e?UE#h1!hRRXMnsZMqt_{X$>B=67TUSFh=D~ zyCe_ua@1MwGj$Hk(Lz_+>F%7?0tds^OiL+?BAA5WxG391ja#Xqjbbs9Vi?n>zbW3-ASFR zYu?tDX>WFNsa(Q~+USt0bTaMX?#|^hI#$5O9W%A!MlQ`}l8p_?T>FY_HbbJq>%g9O zT^_q&Q3<}VJeO>8sQz+O&{_^oNbHNImqpx;YtO*FP~DKvs2(R3{0yUN(yy*e`h4LG z(NCn$*m8+vYhxnQ)Rc3=@3!`8BfVp>(4IkEo@|ETCpj(kPGcjEvEf!x-5OJ&&hv#c zL~qG!z6t#i2sw2(Wg>YN?RIV5xzzP2t?_W{H#+T! z^_h;=#wrVowfzc(Ww8u#kAt`^PO_Dj$;18y_T^DKJ*;wpJ;4l-kAcYAt-ZRf6WhD? z4@@=MmC6wIq!yfnwUv%M!ahWOI=n7mUnJ?c!X71GI79RkvX0g=>$=Ldxx#_p6wMHO zEj|Ly@wwJj>nSkzw>K2|#y})P%yo1;1`Ul>Rx6g>E0L3BG6ZdG-;zoA!#%2SBo$&q zWs(;Y(s-2P|BtsfkFqsM?!rd$2uaq0Ml-MW?bYkIb@#i|{knTLNi);a+w@FtGu=JI ztXKC{eN}b8S5>#>-m13@>p2)<@IyAoEn^#O0X878K>{Oe79EU_B?PiDi)9X2ASA#b zA8bpOgd`5gj*R>wGk%$o-~Db?jov@E-j@-P5s{IRTV&)to|Nni_m61~e7@e}<7eX^ zIP*+b_4mp47EhknPY#D)I;kk(^U0xMH{=a?lM|po{7oog@$(%+4xHe{Ob@_;(iJEY zO2*=4nY5x}!~jjCe6~5x_&&F^YOeBdP*us02X_X;eKy3M@!+7kI~w1fP*~IS)ryJ8 zi-tk{HK6N-t&@YviO&?Qod_w}pD}SU=ww-;84B*0H+*9D?z2`c^Th(}hvxu9V>_q&k{xRA2W`0-p z2lweRSJ>rB^vyg(5a4}1eitK5*5PW4A;JQUOYytVFr-Pg7$T0RRn@-;GF^}tSrcLS z1c1tbg9QQ38-N3;d;_FdD+22`lo^SMT)1U#ah0;BxC0jlcpTFU(rZ8`|6;`!rn-*4FQsaBA`;$ zUk4JbG#*hN6;8~BZ9js595NgTYA%Yh{Q`|k@q2gMk2s#6s{W@U6T9$dPPhH!*Q?ED z)LRceGTogUdss+B?+1Nq;Eojis`yMpKU6`6HsiVs(EVvv!xXgcn{JbgqSM_>g_}lO zMrmN2rV!$G#zhWtt9SxtKd%bTVY2}$C7x$ohPj#P(^_(?e zoi|08<8!s=88<~x+m2<=l4rH5{}1sEJk~EBjt;+EjeS~ZZPMbgn{p6zMI+^IPI+t# zdn3V~?y-SNRew%qS7-5V-us-mMx`R=>|X%gUbXV-sYg*l%f)aQN8bU%vHFw$=R z8Fyb(IcD^XfZjBOW(`>1LDr8>X!Ce~M4S5OEyQm)dt-jl#5*FVLq|a8={3)8?Z6ta{@LL1 z&tYQ@G)C@b#(i2qFJ^D!slXSvMl@P+NCq7Sox`*d>L%9RrQ{iA%7E@3kIt9_t>50F z6q?6wH|}tYeh+#6$TTL+4Cp-V=L=_&Wg4d-*cTeXn)_kHL-I`LDT+%9b^2!UqG;ZL z`Oo_4sGDJ&zq>qBUq~4Pwm;XD@)DKyc*l9{>uFU+9bv`;bL93Es_9#W3J0Cqyi#gMztc^(!=Q~r#^B2VBbvSiH*zAD_l>d*~qT-?M zE88SzS~RwD2?7l=(DQGU*U#E0pm5J02=S@?A$5__4!xe*q{`9zB&W3p8V1fZ+t*A1 zyRW*Eb6u6V==0NxNpCX~H^AWT!O8InZIa)&c1F&X@iSR@E0-Y9E8*bnoD9R=6Fs%U z^|{_R$Tc3G;IHY+keP!ggXEJU4FqCd)Fq6bZ~gJZ+)uk%Q%^$!oy)pJ=sc6(+*=|o zsH19)<>^)R!>|*mQ>K^Hx4S>OHQ1-qX?3-J8m!*ed;Xa>Kl#b$UU{Sc{3l<1<&EcF zdA9$|tFJu&;tP}$uuJ1N)swE>bCOdk?iK0+ZT|Wf59vf=d~!rrz~7*tVxN_L8s!uT zL`?3k%t$L99J;LRGa_gARoHOf;{Zi~qB|p-E1ECFC{m_g$5F%0dCugYI zmij|GhkbgN#6JNsMb=(mKwrywViq2n+E5Mj@pxSQ8nWPO0~Vg9Ks|pCoYQWeN)J!X zqK8l)u<`2T0|-KXmNw6zm+Ho~4=WrKt^Bpa8m) zBZ~ANvSis9GeutNv5$Aq3RVIPJnPHoMk{$m+H-JBo`MUPk!cFAG`=}ep(bGEBgd4S zV|#S>@GR=+;zhE0fQ=VIF|c|HrM$m`QtZk+Lsk9FFdbQNktBnBrAby00$m38Ko|~m zX;AXXM-u3g;Buf##5E=yMxcw(sOsM*Qw<)GE)*hkIGl*efa?VT&RJIBL@Cya!ZMiU zL)P$}9-?XLtm<1$_#QJlH>sM`FnW4ID(2WTSLj(C)PDlvr8b(NlHuVUip#w-LDa$`~%NVOoqxhSeJ zQ>+z*6&fv07Lvvc*j2p+t+L>EbF$7WUB(v!zsm|GXIXU_19u&94aSo$qiIz2@5D$0 z3XwDyO2jBk4do% zEN9`%y_PgHUs5r!^%C!WGv88v7RFp=q!}2al`m8ctbJrKp^Lk-?9Lc1*fu3d!Fy66 zvO$(~$34t>7QM{GhExb_ywsd)u^HXI>weC{&`b@LR}HK^y|Yj2s45S_?P>|s)7mD} zSvxiL0TUl@KJpa_>i>uSSsgu&&%n-19Y3oX82gwMpGW_ispF>=16!}BrTv||&U>9r zZ*3QNO3fHo1;PO^`dY^5nYnby8oC-o&#oR={1~5B$SP_)!;RroC)5*WYT~qFV2dwD z5;y+Vknf}P;?yB6InDe;T~$I%wq1@)W#X%aWi}F)=^gE1bx61U54T1KN0dv=-PjV6 zXYqKmvE0fAu>8WVz|ORM7Li!#H1#2+wk;V`@E+6(480kOPUwg=?86-2Kbj$!DXov# zYm2>3!6SP)55Vjv{7~jR507kz{j-m4ZF@x-qlNl`$=CeujdXCKaTaTw$pzWf1Bi*G!!RY6XTq2SxIhHLV&BC|-!X z&ge|DnYO?QQ9`0TSqU|-YHLn_@$W>&cgOCozI&Jccu(V;Ma69g_fxnpu>&G_-3Kpa zNPHIVXV-ljC&0MZeE=^Bdlv3z*Zov>K!oSme9rD3+}ojD=L_CF_&R}^&nRZjy9>63 z+S*3!8MOESroX6}{z{lYTi|Ca=Ot!<{g;l%^y=hxpOSNqt1q1l$HsT$2#1^>Vs#2k-ENvI>oxNIi-LXf8;$ZP87qqWA1Rv9muK zoGl0kc_i((%>k!!M{7RE5VYK@bWykaj?2_4h{YKLg-}F#89HI`6CR-R;M0Z0vuV*Y zB)#S_u|aAK#P%*DD%Hm`u(w{C>QJy^&xCHY0^(KOU%5^*(5P{_b8i&Nneh<(!z7 zOM&~Ph>-Kn2?jmyIp!K*8hpRgHCg!HQxvNDCxvVFS^AZt(y+ui1?jMa?s>WVi112L zR~+q+o|74=qnR~$M~bA^wmDM5GrfyWPXg0K-c<>$@O)TSospaOwanO3ZlF%jPE|jE zVUIHjPzG;0GNemKW~veHTrPh=1Ow47VHs;Ww={L+iSR({DwYYYU}Le*BuAczC$j#Z z{5IZ8T_#~6^ejACN|Kya~=(kD!PtVHS>o~oioMJo%7j`_@44nva9`S zjL-Cx`es6q+MsP4A%X5;jiCR}oE*^=Fn1Y%yKiH59oa|-r|)&O1w6O2*h8*>Rw&UWHZtmt~T~1C8X;@t3W#84Fd*13?qr6{w_T7`9WZX^K_-uVl3GQZ_@i%d}-&(i15G3Z;Z1;f*J;(T0?i01lL{K#@=~ z2H-?WK$EuoeIVrpNr?inXG!44#uoL%^=;tHLRd{x>=V z_zWhKieBd%9n!wRqaMC(-#~%GnD4(+7KHu&*8a!{uq%0wNRU+67N;5kDGJ2#94iBj zKiiZ}DAc^~j?}W=_7z|yR0gcPlCr|*yt8GNjbf92+Kzl8py($s6{`jIUfSBLwrq+#3+nyN^FkuxbV7KFDJUlRF(Zk9FfFR^zL$>hFhD;Cy_YE^+C+ z?*cCZ@;J8?5puV#_FZz!HNZ4nd$RAMC{*=-EY6*om@92|`6Z!xiI2hQ@u&C}XfmRz z{W%8(jkK!q42F~axrkrYKLb;s3x(Kt9yX~AYF!ZET)%4AOtDrJmceQ=YzAz4zQc3s z*V=TS@3`+0K=cPL$c3{LW%fzVnCBq|tQTZZ|6sF#=b`wi4nuLi-}}~sC#Mg|1{x2| zgZk^C0Tw5F^e&;1Ae?034br9@8e&Bw<&D8A^_z?q_C|tjG)l5T3RJ54FF;3KqV3bT zahdehZ*)7B0su0s%2#g1TnIK{FN8n>{zdsJ_=XsKQ8au{_^9fiZCXNJP+3yu&^tLE z?oWERhKGaku%c<$Vr=uY%+I;vD>F~{fyX5k68y|m6B^Xomz}Dx)?Q9XbkHAC+T?HB zqSxvV-CZc!0;LyED6zr}6}lN^R$-B#uehrJk~IG390!+kmHF`eKE6mg>T;>kH(?*bjWN5(Xsd(dm=BdrB^cn=-k9T5+dWxQmphHRwr zYf~x>WTCqE?$RC1?fYydv(Nje$ zQ!2GJ>;pHIDg*R#@=*QrzWiuJ$2%?>bc;5zPGevGjdt&u3=?SBu&M!eKHTiCx(BGn z6htwhr?~Qy;j*}7YE$}|Re@)rs=tMOef@L(=XbIbtAA4FZtTlea$iQtc8)6Uk#9X% z&Rm!()t>9-V0+t#3ilm$QO1Z)qCFIwI)3jZlt7=4(Y5ITr;c*9l=@I4MwM)ul>i;l z*H3|J8reAnqG=(zv3F}U86Mw%>p?Sas_`TiYQT@r>iJQMY3x^oz zV=}9(Mh;@(&8Bg9BK zSKBMFCAjuNXXUT9&`-4gct`%V`meN-x4FOZQM#W!xjUTfb+aGtqGlTeLeLKH=_E(M zjkfeiQJ4T+km#jqaQprztFBg6mM9Q9g+u|ji$np~mZ6?GRW zflTl1)JhRK3iW7*s#>J-Z%3bpRQL)t`gr@;5NixgO)*^{9u62|o9n@MRX&ccVeVs~=_D?3=I`zeJ zqcn7&Ri5hBD#Ai&7T)u)o27xZ+vVCDgTszf-E#kMG(d`Oy_>5J5|n$lgG;!l*U5b7 z;x)g3guQ^EhVYPw-V4Y|^}_MS%cJd+{pzFs{q0fh-@Cv>D zURd}xt6IHK4_h|07e#Mxuc>u!vZuoUn)?sYmJuz#-GK|G|J$!9qLFUEn5n_jeH%xM z1v~E*|c7LCMxo0!C#>1lyJ4Q{-)~1~+3N=TPQ004hmvnS;?4D+@qXH~} zNLFiOl55N;LWNI3@o|1BrcfOZzLshedQjQ>T+;oM!;=X$U-^@4aVlZI8)YoQHH ze1LNLWju71m={Er#1>JkcE8#s$>TnAb?>ON4Hc`kh(fg=YW92YyKQCe$u7MFC12{S z@Sv;?Jj+bg(ozj!uPwvgL{WjLEWq5ePP@CWK{D?c?6hU z&MB1wRjBj>j;A9!CZqGsnQcpreyJtrWTDy*x^hb0MS)dxY<_q4s#|)mO&Y4__B|er zUA%|7L8D`DY_lc5F-6rt6)Js-LI+P{P->o@cr`&^RaO69 ze}wo)Uj=GnNvc{=W?*3brR+~0h*o%<)w#{Cng z4YJd}9kueSv8_nFOFf3v2Kc-k_=f zgce@OrN(%&=1Gy4YN;U*ff~xEguq@vjxB(vgf_G-6}Ll&4p3}|#QH-mZS9~ z-Mhu%otw`_EnL%&P|VT}ipcEkppZMXgMtnkf;zb!I&|e?J0$%$)Y8@tx)T@Mq11!9 z9iBLkc2Gn>C!P9(LhjHG3OZ;A>fC&Gt9WJ}dbSUpmtd);yAdK#dSu#+!_^er5uUq5 zk~WvUXRD**J&Kj7d}o+C`kJkq5CQI|>OMh^l9;|IfwrZ(^6YqYMEl88rQu7D>7dXc zgB0(c+6GOHp&dB7ut3`8`r31py=Z%z@`6m|+nfUhbl`mI94Meg&6~4`0B3W*`TX;5 zOy%3OcR~b?r`o%#Dd^d>cY?6Fy!2uhHaU?;+I9{T_kX-Q9MO#I;I1$IlcPg zHtkhWu;)~zV*H~JZm@yl$EI>Dbq21@6_T)KbAIWi*WY+~D%Ylt9VT!*RmWUc;MUZ! z1F<=M${lVD4~NG?3R36xE)8;64W86C8s};py=Gg3UfnJcR z$hNO9=*RTlo^YTAHC%gnaF5s0(@MB zePEhTGx!MoflpDA{@2S966>n!kHI+@Tw)8Y zz#udJN(p)bI;f`{WR~H@zJ@_&8DOH0=0xl2ON0B>_!W|%)Xq$Z_{RaulMl$ieR;r2 zup;j`U?pG)=T-dFs&l>e zI!8xP<&*x%KyY{p!&3m`I6{C(M0T%<+6_uj)l&&TS9MzEXOV)+Qn@C_oz&PtE=S2% zRn`9vIPWfx%T6e1`4%NH?ee&+z-piH;pdx#{4ZC>d!y~{FP=8UsO{RGx@@3&c`cyb z7p2cMv&B;WiZZ#_H$O;Se|G%D{Wb%~r+3DbqUP>se47oq@1sguldH9`sNYHb`02Pb z`2kga+$|cWKjPYv&9-DBWfGKEx8VU;`-GF3i_TAv&z(+>2`9kj%YF`aZaQpBQQV?K z#f4{&uC0Q5fEcGRe{0r^bbEbFUO~q=*&x~(+@PH{f;uejPHE!Q^D#bE7rKp8rUaTT zUr#e}W1r>`(BwZ48xo2a92L-SdBvUKMUh%s(p6w<^YKq|#_E|&2Dey% zBTWq?DsQnA@uOt8#ZpADCH%;2_M#<-9K5$|E*hcTS{|NdT;YYW?f94sX!nV3KGxSC zcCL6Iprs01pO4NqX5e-@v|U38Bq?8fvQT3K;dZ(OYfJMTvss789(33;4mYq@n7?}Y3ZHwk3hXQLNpuC$t#!;7- zHb-J5YO_fy$;tR?s``guiSS-8I4h;JCg${$lpKf_x^%6pPcL=u(!$|AQDrkBYK1=k ztPib!o=Dn&Wfg(^fjKDYxM)_Is*g(EqE6Lpv?e=pddw18a%VH+v4R z(VCD_)a=sf>KSOmhU=M_6m~$7Z^(wu^UafcZ&2&Fc20cGEDENEesNZbi);Y5UpPy% z7psUy@X2#y+ct^s92_0(-}hZ}$_|;?9Xg2c=J|=Bn1xn&P1tymR!`?+FKxR&t(pK9 zfXmOEhphnlXeY0nR>?rmwvo>(wV%aCpsL6^@7+0-c6GsKWA_x3p!H7*_{+QveLmLl z!fDl=Faex??mX-xsUWKPwR2+GwvjI?^`FH?itN9BUhFGILHjSA?|9R;HEa8ibhrcV z-aM0Sq@<%&d~9a5rnGE(_zgo`xv10xAwYV@S;sT8@@g;u z9De#Nc3=>XYJKS(Sha28vr65kv4vK)Up)`D6@#GdkDaG2v>kYv9wDh5ID7ppc90N` zHt^9|m6=eo+y7Hay{Bpaq>{*P+ev2^jTYw&&z{dLq3sbflfO_cwDoIe)L)<)H8=C@ zHqa>Q?4!3%hWnHqoK|Yw$T})xMz8sSSilwLjg{b-h?RV6jT;~-ch_t z7odwVoRKK)Bw-+DEOK|C4?vOSK+Xg!I%Yh~O~CBo^>Mek%;GhJYdj@P@MAT2AeMmf zMl%xxX>RZ*A1G;Plf~blz`G+#F?9Hn`?h#e>#Z)C**wEy@S27HVt|JZQCG?N)hDP-2^34ZOw*F{I3_Fpvfb zADa&7WIe#aGu4vTYlfw8oCJ| zJrw>kF7|y5xje5S<%p%DpM*T<@=^dnPNxzIOAWi>Oy6kjd}d#G&O zS5%9y;z*7t1uGm-58-G#AAZpS*vqQ}oxjQ{QU`Yi!+jSbd=7lMrQUR%^jhi#20ue@ z@=%V#s!uEG1Ib$#6WKMT**3&<4oHP=cWydhuM-Erbkzw(EBkZ;eEJ*((AMqK3&~;K5F!Jf7(8@M=I_6yH#q7*k^#jAt`A{X*e^19AM@mlb>RD}`nW}!n zN09wvA3AmgJfFQsvE?(_@-+%`k3s=x@AkyYoaCD>K)6J>gkBoxBR=&*43LXOO}6hy z4Yd1l_6W2Kd9S&e#LA_H45M2Mr40u(+=^oeC%Ei_*-NVhre5OGy}|JI$$4<)_L)1$ zjk!6W^FY|E6;&17b`b|x}aiU%r~RI7IQ1QqN;u$M7gf} zmhe%op{q`+FP*qN27`Uf=x+gNS9Rm{fLL-;ku-6Rv)NeGi*!Ig<=L!>8$A)uW=-I1 zHv0?*2VZNRY=Afa{J0^hn1=^P?gedl^Us9Ps(R966`R^3KpNwPzg5-)deYbr!}1fJ zo$y4eds~zhixO7Q`cpqUk(FxR=UzNK+8=CHZys&acHDD90xp(E!o32trud7aN6V0u~P$sFtFTG9H;qDMUF`%J_B^Taq~^$#^u_-Wp7fU*8)X zNrP}lHia>uwLBdx%&ansRIo4;%a-b!NvdZlG5VHB!#Rp9X*86UBFiv01vzrBvQcA$ zsH$wPU0XbReE+C=jaG{z=PR1dQEUqfT1(NXEes-2nqpfRShiGOM^ZI%@VSzuNMEiw z&(4*KXpz^V4`K2)ci-r^i(Q!a8_lW$jOH@iGjBzWobm=?E3D1!Hxail9&T6n8in$( zZqZRdn%`_#Z^w-c7cDSWWOKa49P@iBsSktqCa|l#cxYp2S)Q3bk~w9WgrZ<-BdQY% zWhq}79lv;Rv|k<2e6HG7HdP#HN*FUsSs>Iw$^xb>rL(?I4fapOsTQqI0clw}SzpAB z>=&&s0^1xv>GwSQv1vH<5Wu#$MQ0Q`<2*uV^U9JK z*=;phsPV&mTH;>s>0oY}N|f5ze}^uhvHanTtIl&#)j#65j(;O;Gu%}Exh;N{t|3Qf z{djcNU2(MMejyA;125=cc3`ZGnP{s%@{Os(y6Zmg|7RamK|hS5>Ng^rKsQ z)zr*%)J(!6BAF&9@$tiE{7$bWHZ-6`-xEIfN8|qBknV*acB({eELxRBYEYd> za#(zgFcO<4$>Dt<{UI;Oc6EmyU8GkZx9CEJ%Q1C)OkJ^)NNU?Ma?$9`CJPKa(J(Ni z)wX*JF!wH2WAXV-p|Q3DDX8cvUr|NtdP;!Urw3Z|;m4{<%}g`-G%={Gk)Mus2HmWW z-zg{v#8iO%yBk^Vkr3S!rnbX!DVPjY(D1)A*q`K+8%s-V{4*6G|81WCU7Ed8x)XlC z+P~D>$>P)sJCh|R2^D`3DyC`DtaYnJL#b}03e`W>R6nk0ty_E(I1;ALthQ$2_ojJv zJsqgx+kF)zmpg9iPbkQ^c?G$XZuynAf*l$(q3Wh9(`xyUPCXB|x>-(JSB|8hqDDqK zfvx>jsi03s1c*1*IXbNRcL(?Tx8!`rg~WA| ztj#)2s!)B?eiIkww(U+YI@Q_MevuSZ)R=GUTkg@=sS~t$7p4N_>G5PYXmbHQr#rJ2 z)y`VvLi3yug~}TPp_I_w)YoPpjtCHc-b+RiRSmT|=Pnbm zmAYrAs#jnMZU<@mC3Yc5yD8KYw#zSb)K)1B!efv%EYUPG#&!75O^g<3i#BfD6VClU z+i?*mZcgC)CqOvRN^9U7g6C9&rv)|KxOK9#!vSn%p>>!&4;LZk1Vv~_0sTk#MsQaJ zaX&0lr(4ZH`!Rppn3$kP47;(<&ZMmZx8sI=f+e7A$=xcLCIRjXJW3N-I(qI(oF`cY z?mZ>Y&m-()yAp5XoCyK#hpRiy%(H{tvkxlp?dSmI$MO001nf!X0+z;Lf!MYNXP~ZDPVaW8?wMx7# zQK&Ldg<2n;4DR@m=!}No=m6!L?o0n}HQe2679kyK;MG*Y)HFS)>9NTkJ?XtW9vtm; z)mWP&iPVx>+%2S;%&xVTKn-enH$@nFU(i()yqANGABaI6k5l$Sn)}bBu(lqg$U!}i zP{Gh|d~|5~HV4LpfOd~R(Y(H^3uqg>g%;Fs^-fpPco7*};11Bd{xVNtUapP@Q>QVQ zH5#Zod{4Kk-_4t2^}auouK6V*BhhMelJnMsJkhEY@myY?b;bgFN1^cTQNrh{%8Y;O%dFu%QaXq@Ny-2lwN=>Vm`PZ$&B(8B{3X z{+R5G&bET@U38Sf_ncZ){{uO@XXe)EWcPq#6RB4p?FeOEgSqfwAXOKeh)3R`5iVGyb)*#;qC9eK$$CWPzO)V>w+<3UPd{;Mc*Ae%b zT)*#fwTACde^p-q+rKiQ8PBBZZ@EjoeOd;)TfLS-7933r805NcL5L+J7R9dHOKD*N z-5VB!&<&Et&ciFX@V$las{W1O>mF}hD9s5bx2wDT$^8TJo8uuxDGcbxv=tsSr{IA! zPfh_A!4ie>Qz~9zQwTt9@0$WFwFPxWHS&}>e3y};q#IvrRnLQk&F$Re#?1X76iOcSZ+;1NT&IlN`Ys#ubcb zeo+52?PFHhudtV4?Itu>jtC+o{sZtT^EBTwc7I86U++ZWQqbH|L=ZJa@p<;)RhMI~ z0j8lmcCO*OuDh!Lme$_oqwxuCyiRqm^G*Zp_`N zhPSHmg0xYGi3vsgs{X^k@4_8=G{iWXkO9FL1JBC}CFfcV2nOyt;u@SM1A?Ye)!zeV zw?N)vdsH6Gd~w2iL}}-p;Q)7CRY$lTcvm#4`j3L%7bkRmtTGNTNbx+8Ys!Ix6^)d$ zuO@O9_C|tj2#`$VfJ#+=A4o7iIocnZ%I8kcrNI4CM96tpoj%8015AVOq|+-3RsBWa zdTy)D#k)e_c`<7{FWmYKFI}@eH<;z8djqug3H1r(+im2Il1PYh9P3 zGSBRwzO9kg#_n#Z%Yagt#PN8lfrQLI&}23b+_UJ7i8+74&5&3E53MPnko$+4+|_Kp zQ}R6ArY5uy{>QNVU-~jVl2lsyf1}fs0C@an*I-q?ig_hQ%5CKPxV0ucE86t_2eCFUnWJ4?2ymAknp8csf;m?2S~0Y05oz(^*$EQr^yLjbdSMB-lnGyk^S11tW{{$iFKZ8dqtKEi_s{3xEjUuiAM#u`D!g)wlNWZ}=(K>LMXp;A;=~eH zs5Uw+ETDVCf)Kh!!zCM?7PhBf)xW#(|MAG`!sL#5TELSlDih8wj_8PLL4b4nB; zD5O{`3d>-hEjN7c1#DWeHLdsH?MH*5%ZTC6_I$z^$#*{3@449xd9q^)LZEd4<&9}> zn)23V3tSU3#iA{4og7e>O;Z=VZ_t#ZKIr4*#60TryZ&5^C>5D)3yLoW6q^5i5`WFLuu6ngWl;JtKLvV}1bF%1+_*MNsh~6J{zOG4=XFHpUQZB7}Z)7?d zD%Z}14vL4gEook%p{~jDL=Zq-Z@zDhP7aML3WUx66QFD)t;y2BKUj zOi(>=ywl@NHbm$p-HuIG$J=@E5FuuP$FQ%e{yojy$D?ggc16o8aV@UUOE9Sa3AnQh z)S?y|i$Y}}_ksZDy-AJSDHfe!`6>v@=u64S9k8o<4!ZsVotx6y+hUf7NnZ^7E-RFr zWwjbJaMuynU_4okX&P1i*ToHR>nv^Ujp%;CZF9xI?pFYS|5f=a?z8NE1rqQt%2&ZR zq)6PaV0b!J{bsYcVlgfp+F?6vEL7%^2KBed4MN6Rq{)~Yd#sl8hbg`sSa;LCfRwi# z8%>xfIzYhQNU#mLlZ8ryAY%VraX2i&<`(sz$G7`*x_LOE>$m0+BAY`B2wb_SmYhs3 z97nZy;Zh8scRej_X=YwJJR=bvE|LQ{5xIW?G+vJS*c;;C3k@OTZ-VZL}Q z;5TX9p#gFo5n8!sFu+^`%;{V!3RV3R!1e0>~!zOA8w z4sBm2Y*1qx;w8~<8cXE+C(v@64ajsqmI9jmA(`ADl^<)RcRei?-5D|`ek{clx&J*s z$*I|WFONqQ535B6Ee5sd2*8itFZVOjJNhE;`prxm&!Bc3B5|-q4ZpNfx;&Xy9qoK^TnVK zMzJ>u0!p$^u+$c$$#W(FfSMK$M~Ch>$!aW~Z8YV8G+&Gc<@V)Lk5JWrS)10J^C?zU zesWKR9&J$Xfk7?%Tb@Cu8AzFQAAL z{=E3jsS7f9H2$s)0zA_w+H#9X5;CacV6=iXzoV15BQc&aF!!ZXu~+C zVv)l4P+wKw1`}Ovd@Id)&470HVhRQnv!M#a%o0OY!@L3pDi5gwp%NI60wu$|LK5x& z0!YTw`6s$g=QSX3$J2RTDl8^~s$p=8rrjC?=<#%3mkK>YTE+d6HGAV0b!J{ZGZ+aPPU|kKp&J0Y&m3 zlW%glXe^mH)Z79F{;pdP!fPU{I)SmUfbINSb`*R?-c&OHkQjIroFu8O6o#Fv9aD;g=6MsJxI*c%D9 zAw{}nqN!B%KZ8E%uCmY$12=ghfIrmYV&LChWf7E|eYIQX;Q-fNWl^}#$VNvTB$C}a zO{1#coAdreJMT~6!4vb|piJdG!DZefZa3bAMpgf2;Qa!fMOaGbEgLEWtt|*}&a&FF zNwHQGmceYYWfQQg`dJu_coe?bbrjZsAOnxWx>USO*=xDB*BC&LM`2wm^bAoGuVvG% z>c0vtw6IT?DD9I+?is!qcv@B{c~hyLVc@PKt|3LzGc=8={sr($b4Rk5pY&;-@47qovPRSCt={38;ET1O|7O)p*Q2!`2 z;hdYFSiOwZ;0jR<0lZZW86Ho(TFfs|L&UG@uK|7+x9Kt-?L%5D^KjCX1J^4WDQ8>_ zCl>Zbf^D>7GMoUFs=n`?g z#%S4~5uN|)5uNU@ z$M4cjlTn9#YiP-)8lZ70r(wv%4k~s!McRbkjy!Vd8)}mlU8NVMa^x?)hCKRdbZNMKWnWx0QCA~Fe2q5f@RIKP?1!C&xvOIXcS*^~PN~EXMq@LOfYnq&kY;#MlfO(YP5xi* zuyG}pb@Fzw0V_m5t9udWMW8?>3ROC$FOaM{{{w*+;6^hGr?-0|uoW-4Y z(E-HMXnN0jf|{FvcF{JCOF50uoUsq3E;^xA)t>~J7AJJZw`~VP`6a$D2WdzV5h)i% z&B+=-z^3O-0oxEFnUevPs{R@6@Yg87-q}tZIg*(ekK-Ch8u#yjTU_u-Vy%Yd`GYS8 zL6#Ltt_3xJFmTrq*U&+-9?~?bx~DCD)7kG44HItbtuzcVxfD=T@or7-VR3~`XKy@( zJ$`a$FChr|&x6UWIp5&2q_?Ku(LkW}i@HPx6ZW046R6{D4GnZI>k^@3v;)uN!}p%X z^7N|uPl9|)!{h3}%sWd5Ievg`0DzxWK+Ek(53m;g#S}mAoaiNd?+J#;@u$2Tet^Bm zJHNCPq3gshCzRDQ_>?b!^TY=AyL2zT;@Z2*;KA<80v585Y922;gQlo&N}hH&qTc}} ztg`szfy00mqJL1^KTVKmV!LnejWiP^4qTvR{bn;lZOQJR#SwSM6wuRa$jG3G zWOBPu``|Xcs{RYQDd?=x>+IIRjv!;lrGZ4u9+-LK{R-<9-njEViy%O-weVSbUDA8i z*>L~`3Y+1xPzW|1Z9O?V4k(^dRWD0)AkT`|8r`vtS`Efp(LlhFo87umD5B>LrJRz6 z20GH{K*ta+aY{M8s;;56miFj%?L&$iv}9wW769O9RlbU%lcrKmNgx6LqI?y6LzZOL zFBqNigp6m10 za~VaH`op@4CD(>-=wZ$iWwI#>fS{j%DR0Phqa6FkW{F^+!%J8uDoh%L$D*b|V08$z zuG+MM+M`F}xl;JvLp)Ejs(%P%4U7&Cx5oVTq@^^TE(^H;30z*uiVH&Xh5`z0Qw-C@ zP%IRKh*5OjW(nVe=mAxvzp6X?72nxulgM|z;@p-S$^!Oe2lX{g)`eGY?e%Zpb)h?! zI@#50AR+T5STW4GhX^cu-hOw5&;pAAJRcg=DMW@x8!s`PYEWTRE!%qdPMuupt?D24 zw&dq?yh;!&n7T^PfFl0$ApV-{{_W6thNT8Sk7%|C9T2GFVuqfpMU9vm8t7csB`p@1 zjF=kB)2r&=rqvbFD)N%Qq_41j;O=+_NKx2bP}m|ZLd^$eXj#BZ?WP>WThU0lhSXBq z!rn-*gPBD0NtW6`h1QucNt!FIYJ8j-J+%S6F9z_Oab@ui3h-7np22cr@e#kO|5uoa z2k*IEb@iSB5;zLpGZc%ZB}0bcJp&3*4Bj&o3q?cVg7*xlo^n-xoi^Ylw^D5#W(B~b z59+@LLyv4(Z4d9z29edl+4vf>_fR0>CKQQyiNbi6?uQ!y2TE6q zuk|+Es4?KoOQkN()`noBu>Z2Lws?xOOuNy;t-XEw!U`{n0)&Y8)Y#q744*~3L{Vx{ z6hMK(X80@=3%)RCKy*j=8Mb00D|w3!g{h@)Q)K;@w$a44kmN#F8(F6#4Y=#7 zI9^xk!Up$NI6mf2TE6vmF+KgT@4SPZLWQLSDBx`qiiEealmHHtu0WAcnl2@viIiUlPH6FH zM7x7_m@m)ansVT0MI+@?AvK4yus0HHLylw)2UM#1KW%0O+)QfsV4CmY8FSoh(BNLY zL46ereQlr8ol$@*-Ep#WmU5@lK%l0JxoH9z={sP2nM$>+#MVo3@k!CD)?eh z*0Ms$wWLM`19u&94ZS3zf~HZ`|2g=}O_$EK-=s1RaodSHm|hA9@?1_!#o&{U!^Y0v zdMO6byPlQ`Jww_w?lcj|)2-?kVUDu6UF{4g52e*;J_yj416OoCJ0j)HraWi^D0P1| z*vk^7lj7VXR^`0&C;(9Vs(ck)B)a7lg4eA;0{%t$D)@#jlTC2J5INrN2(F14+S@IdP- zmI*CGb;-6W;)w!(T(;uZ|BD!gw*D z+4BgFuE*V9s=XGohkjucbc?C(LFExI{&As-k!j;0*A zTG2>(vnj`6VQ(bZhA7F@3#e4}e+?~n-M^|S0f{b*iet`LQ;Fy25w-vi5S`9V>Y3cVm^+)qtx+ooI9->+v!OIrha!_|5&ULr;Wz_T@||01aE!q%vqJ&DRd z7z&gQd5{u)sM|Iv){4S1q~?wkzEfV8rp~JVvs%z)I&z`&)B}6+%+&`75%s5G2%j&` z_&B7POF`VFh>-Vx6;hmIQk;TJE(tRT7n_}QK;%2;QArDlH$_A`WL_GJlS4B z@+2S!1$ij5tVzmdkuM2E7IR!ryQ=>s7}Tp`1{IAMaQDV~5)s$5r0iV{os#@E&k}0cTNE`f*AjjfpO~HL4K!6l$;d7xeRG$c- zKw&d{77B(eNuLNP(jK4k?ctXYE~^PmKX%OgBy3g!;L!*5{{_lepk%Ra`?0$rvFRo=#O)S~>5P?AEeCam}A6ew(l z&qBdy!em?tD4r5c@L^zZtMpQ4ZCR!3+K;a2Gy+mIm{=YdL9 zf2@%p9^8W3VfXAi&dl{4N|NX2Cu}*(nQ#YjuUP^Mtno1_y?0fql+1O-Yt~{YG|NyS(k`<4B-+B)L0_lUjv6j zZ%!B6iYH-BIdHS0k#d35B+SCzNU#ktl1Ug)p-lBKmX44gE!*QrGU=26 z4bnYqf{4-+o8)*~{?;?mfU*rDlnp)b^XlQdjV|r_zkpUYj!xXwoYCQKe?VKBmOA{P z31GnOC4)rX*m}?`)4FQY3ZliyPC95BG^_e=f(<_uUIC$n@)o_7VduZ#ewKrR%vbYr zX`ZCvnNQ#FIS$Z#Brg}5hWyDke2y#a{o|m6xzY&9yBn?$cv=kLd5fyujSP>Th;L?K zglBM{>~2K-s{V2CtM3{(!gCu+`wP#8$6$YUs{bqG-M9{$_a8F<& z?+T@rcMk`+bdcfbwb*sSyQWdqkAp3TS&^O55N1V^RWO|u#q5Mhzcpq>35_r-iZp`G zV_OtvMMA5pzZYa$r{~X(2ZxmWrxd`&qb5LshBu)|6rBjibDO3^==y*X-B3wcu{(1T zx(8^UB5liol$R!>9ZI#c=N?fcM^Q)xz@vKxi9BY-1&NtQFL8zf6d%rtg`&~8$t{`; zRiyuVkbdPB-xe%2Fxzbe0q)l0cVR1OT4lEp7HC|G--U)DT4J{mM`ZfLAk)R;!EN_| zSKCB_=j90;aQ0AADC{L7s$0zo0#Lh_6bdy%*yL7of+!OI7a;M%cDvX2#lX?BLTUA! z2JSlI8bTzVQ`4yGp90=jXzSph?;aB{XMAjd5d>sdkKaY1N%JTRjIcoCQv5D740#d@ zj5yLBKM#8V7mfzzUI^!hr83}PL4fmS;FYKM6e-qi4nM zD4cEUcAqX;7t-jkacLk=hMon4&NqKNI_jIxK5(=bmx72(5h1q<744N{QXVm>iZBgj z@PHV;_Y{Syeh+ZHvO6A~_^U9M9k9cWAi)26{4VX1w77EE5f*4%irDq zPphgQ!7jSjK7jgS;A2^#vfmQo_5YLHq1rOAF5ToS0)}aE&K8TrMk=R^B}v$jz>?sjd_6nnqRsX_&aI z?+htO(B*?Jz4pO_FhBt}n@}XioOB4aJOXf_bOnlpl3`ZK@(9p8#j4&0>sqDXThCbyH`EPT-pY1mV z1kNs}rNUs+c)YdE-&~+LR1EZ7=sc7PJ);Se=~Id+a{n2Sd+A_wrz&l#@|KhU0AKWO zvO>$7P{q&)B;eC)RETfL!&{u;drvS#j$Z;f=EtMs_nW(LJYsSwaIh2+a`x4TnPaX2 zW?(Q5G0BLjC{*>o0hO%%iKfs0?pa;~5Mm8=Voqs(%N1 z<-IujO*m$+?2CbC8V&V?Iq3&58pesTY=9xI!Fe*G==!Vr?a2F`$cV+eFGk)KO0IFm zyMap^pjz(fylWa&{UrEW_mTo76zcDcM+f~01*p?qHPdc*c4Gm9T<(z#n_MoX3f;7@ zfbI-Ar(f0o#`l{Tszk@5n4HAwMrhXySU7{t7+`ld5 z^zd6l2q(n8%k$@nJ?g9Mnkk)CTt<;9jvAAA@b;s@aQxPTw)Z8s2gd`xt=;;*WQ1y- z{$o|FQQU;fyTNgXmR8yDHIV1+?2+-+D(_!E3npm~-cq#yZMo*2qh2svrM{i>CfTUmm znXY|NObTt(P-2=P#g3LV$1@@W7KmMKZW7a5W(P-fF`!J2*Yzee5L_3KB40ck1}Gpv z52NuVXs?|zKP;XB3&bu7fXnt+6o)%p1_^{XQ*m3TWyef3LVpBwmC?4y z1rJL^K@VR*WSt7z`@6JDghB!ouzfH(rl%Q7nN*knKmmd4P}Cpokhm0%V)_AI(-+`@ z=qep?Qfdlj${M$L^ieQ?{D_-|NxzwDbL=3B7(kdaQ3~N=oB8us#R5YDq3gQ7Ddx;N zE5HNMs~RYnoTWV;CrxM|cuj*u^RX!M?tu*sBriKFbFXT#$(3hC?9>ccAa=vgP^Cep zwlw?e791dc83Bu}&72yrK#XFPv~s4jI9p^90|;M7u+~;*Ln^=n(T5SJz2!MjtAqe# zSJl{J*%0?>1p~;N&-y9XGky;Eth0@cYg_xYr$kw(T~rrc(C4-=0D;nS17MS2m#rZH zccUqJ-pz__0^IvEFrc#56u)>_put{00Rjr^P2ro=;5HjPlBQ6eMpchxDbK5`>vZF3 zd+4&*(Caf>?zf!In{B874;(&P0OE$v*YqkGMgbA1KUM$|>d#1iu($=5B*Q2W5DlGx zhSta`>G2{Shs|wRwi*ot++Nfr!eX-Rq@t8HG|;)MON5RgY7(Wau|&RK@*7cpef*^F zzOyFt=Vz>@qxvcb^$$w`?QeCv8`mkx>&brgZ5)p&bLhc-&t2m44~|k)%x-mSJb3HD zH4l43U+}X*^`^lRU5ubd=Wd%XWBGM&0{}{%-=gRabMnH=5iSLU3x#KyIe>!70J!@@ zq1-iRf1sVwy1x0#z;pBO2xQ*bWAe{S~l#?xl@Gy1Z<^9K-Ivp%4Ip%sf5AX7kPs!li)F{i$D8(YwB6wl+r~ ze`ySqXMNn9>CaC_`*t8Y^UtMF%Z14u^YE4pipl_Zkv=#pw=9b9Z8YV8wCp2J=-pTg zjn5wg1R$>Z&qayY9uy29&-0^~R*kF(E(L^zI}}Q6H$8V2U!0&+TLrN^3Ks*)D#fPI z8&Jh~TtC~3Fo67cgG^iCliStZ{^b6_K}C^lTYYcSmb4rqGX>9AQq@=F%!|h&I{GV* zMKl;xleZphw2VO>M2|gJC~M$ge81151*P#jrstN;afnYxEMQQ_`cyi+Mh7S$aHUBZ z3lNqPnI8*SH1`}#j3~&*y&q@G#)E+X06VMlm08GVgX*kSAOW9`MnbiOZ%l%cvs$E6 z)!(F#S~mO?iMmDK%?mBXFiQyLSsK(UdM-sbT--{JGP2NYy7eVAUWA*_Lilw}cq4+A zo(p3h5ll!ust=}H{=A9o$#j1ZE`>tp~o$21|Ex2Ku@nZpt+ou z7VJXBD5Mxbj}yUUY}s~_#3|Mr8FB& zMt{o$*`jk$kbHTI91YX5DDV&zAONwqeR8xvq$5~);fIrl_qX;2bT7f8#S`~7Bp|=y z$vGh{VthUjK>(G~tW8|THd^YEvmpZX7`s!Go!XrDPKp>n_(lP2NY5-?(gXsDR1W-2{x?T|l0<3`)5Xh_^ zjZY4%esyqkY^s2#LJ9_uFZ%*lL95|&lNzu<>}m#3vJf94&3vn>9W)ROZ!@*>7IwrH zsVd~L;*o^k4^_n_zF15*dL^))tE&G0^q4tU8qIlW>k2*Ep#B{)t(iU{9Ned;;M*sJ z9z?tNIf^7Pm$S@?D+IMtX3)bsc19SUZ~J0E+4SE!EDKXWAj37==@LTCG0lOW1UP~> zw>#FX0rQ&eD~X|Ix&GJ88(8Kiy4I`#p=KA$bca&V(FO&jLD?SCm3{k(Wr=0VfPvgK zAQx8Omh<5WjSUVYH@B;!) zz8FyE_9w??4lTBJR|w#%?n}!AlKrEC0pu&*Ia4t0Hu)f0B$raUa^qRRK<>iffjRi| zxJ_jMygVKaX`6DmYija7ooh?zwPUeQr7D-oiZ3w%U+9`KtbJy(9A* zyUiJvbCuymJgXhqsruKh^rk3Vg3baHS(TE0|XV?-#e>E*%pfTA^zD|05qS_%*#<0^kH9}960RWN{j zt-9yZMpXT~!{a?(V7tR6vzM_yw84R7*MYqmC%z&lTo>wrnFfVD1(gBAtNVk4TT@+J zgh`Rd6y2zyr~Z?I!rs3u|=+-iSjmAVEilCJ*d7 zs0@IY=tG~f?wF@ryvHg4fcB^ys^&RdEtYv3tc(JrV}e(jGsHMapCHyE4u`yyXD~wo z@{hP=&~Bg0g?#%Ep_X>z4WA+g5Z>H9I&p{igF6G7HRI@lajdG+fZ!t00jh=ToLhaj<0Mk0sv@N-PcYE zXP0I|1HtR`!h#PbnRM%W1$ZEOBR+87iC0#A3l0!}NQY?ocD0O|w_$ToAm!gncgb2B z`=FVc>6iU^3)#CiCI<}U_`z_#_1oVWxKlNYFE(7qmj(nfYr4cD!Kc<52+%J!B`1el zI04wKp=C)ua?lqTPo!S zwt#`$H4l**fklv~$Tm2Tym&Ib-*Iata6n|Gi6DEHy<8S=$F2xK0DJzm@rbVNR^tqj z{g9M;oT}cHLs>t^Q_BfU53Ng%jTE_cj;DZu|A$lovtY07k~yA263Ko+X0N=uyW*E^ z=K8sL1HtX|y!GI6d3~qh^laau+ME2BODNvsqOzdZfJ@-@y;PVc=g?m>D2y=8{&D_`V^r;ZQ z=N%Thi6t~5tzVTcfrA$t7qn706F`eD_>Jwm}iZ5vYHA0D#sdDeZVKr;sawH+Fq7pv)Iv zqGBWGQb4#+jm`Ix*ac8o0({ThnDW5)@N905QXHDyjWy&7f%ZIoIe6SMd(XKmMFa}c zw~c}kxD*i9_!Au;l$6S|D-8tbb327sd{`b=n1YW?FVKLG(7RsP-7=wBwNwVQ7k9@M zZ8e#*Otz+`9FQnq4kMKxE92P$Kmmcd;lW_nY9N-#6$1Fua6(rDhxU#b&o2Z3(B>&W z$f0SH+^k%hBG4lh7GDhll>)-Ta6+0eXUE*Fd@-P0*xxdbOSpBY41nh-sM&NRtS46p z;Pi6WWKwPvzq=kl0QJKD$ZQbL)(G2Uo`4^Jtf(h01?r4o_IFmSLr8i&eJb~OR|xc% z=?hIjsNY*m@k%2=0OCscY}V#ACbY56RYIj8n*Dy;5UpUK-hg~)2ax)0-lhVA0c6KC z*KGSNVY&eU)KG8RASmS1L2!{Cq#7QanC8pAqA7?2qkS`kf;+qb z0GfNz#$|(}9Sh42STPX9x5& z0RXfM6oqba$la960Ca#+aBRymxk3QHK*NS53@e$+0GMdoOO1y1 zAY*_*TXcuS=QWToX0GKid zwFsT9W?b0%(U&di++bV^^a+7>o>~y76cE-JVcLXD19|kS{yrToOX=_3u3Ga#bicHd z$IG4^)RP?4f7~E>GJs4s@Ln&*A~V&iftAS@0hMHKd9O*tUZ)5#PaTf}3>6hQ!Wz8Jm7 z=E|jju)?4E`$IdO7S|O)0QEw3-`p%_UqfX8yviAvw)c+;Z*B3cLBRm>iYvHvvO|d` zEZsAc5d=`@cIW|C3yGbUD+KUm_ob)}cI*KH5SJ*vh%O}9$)(tJ2|$82+MR;d03aGY zh`qNv9-50Ku1x>{ZLK+`ESeUt{WK7uFODcYbkCmku`xI0fHX%R%j*DF2;j@^OM3$Z z2t;%{_C@pJmJ1MoI7b(D$`;}ZGw_q5K@s=~fRlG0(rMn|b}3SnRjz>meZH8*oBK1D z0>TP^Dk_k>N(2Ga)mJD0tJ;3O$&!}shV#Z7!g&0u{*$sN&O66fy(2c=^}*nf(vwo? zBD?HnkNJjiWflOn+n(E^1gFIYaD^b1ixj2%0u};$d0z}D^e`a5jX*(f_AMK3GYtgj ztF)GLcXYOgc8ngoIt2sBb1pxs#jN*NsdQ`pf%vLe8MCT^ptgl^bwtCbRUa$I7X!+o zd(~lJXBhJ{b6*ZfbK_Bq7j}gJKF>#U7FTTbTnY$_G?}cbFPp;=Gu4y>(tOM_m|Q9L zwdkyheAcrxxjQ%-+_T-8pPn`VP|sZHrCn}PR|w#XG&>6k5EI5&mZlt#mRz4MnJcp< z03NNXe-65A+f5<5(nz=4TW$(5fbOF7KG4D7V80l`=Lh=;1ESEgl`W|3$O8l*u93Am zZ5FHLzMz3b7a!8I-X(jSh-q9y#QcO% zMSccQ(934{%st9J9ZVuW1B$5V!(c9tw0L;(i*%24-=)90+aDcK0O-Rl6Y~^Uo6*A7 z!4U<*Sbo5}ZY~B{mpuw?Tv%9aJOKg_mv-n9Fm0uqzLz_Y007$JaEBw>tlGG(SclVryml$Q#2;xzz`d@=7o;gNx6T&B1gxoCIpq_U5Bzpi3 z;#`3uq4bOdAjh;Q9QGEzTNJDMnwPSkItQV#x1twPD7u$+gdViaK>&~~b5OsaeZ_gk z3=isGmOduYqajq*G84bgS_r45=ut$@8wjFD128lXMURGpmc~gU3lx$V;EovJ)VOh( zRkg>BM=0$t-a)CBD9MudHZGWtaxHz0n_A)k`>jXA9F7w{91TJIchZJy4#~^g^fcw2 zbXrpYr4pbze^}jhdBbyXb{I{mXzm`Eo8P$M`Ip}xC~nH=_!~D}Q{bL7J+ceI{B0q% zv`?}u(AOw7|;@J0MnZ3&~%Wjr=}c`);$-^Q>|8~;ln+E z0s6VQ{IEiZGW z)m#*N>p|19)*?$_bh9nHnAYL}IuD@%0z_FFjCX0JyJIH*@58$qAH!;30`Q_1mVf%&$p8`A(r5wf-!rk97ccWPY0sv^6 zZqeGL3@P3(;+Vk{&>%Ar*X%cd{YpxAh8z~@=Sr4Uj z`^}`mE(M?p1WGGyB;cTcz(PfXg?$f+XTiQ0P&Rf(C*vVCAZ5ERMD(&7Logum-g1z= zJ2m!cZOtBgU2o<{|8kcIec-*qh6>*wDx^U!jn-F4mJvJxRkq_pr3-X$N;mc`nyg!2 z3@FR~Ti-s#V|NuG0P$go{%4ou9FB_;9*xa|Voq0CLIAQ$4vOMS%)yF%jsO7Kn)~X) z<4e0#yja#ifPUSTj4RrZAJa8+`iuJTq;MqclQG)xKy-=H9n(l)C-PuX1OU(;mNTzL zvB7$*W@W{e5P<9@f!eO<_{gmmEP6bP&LC|r_6q;`S2&K;!(>a)-uZf=!W7sh4~DfbKGOyOJ;*StQue zr+`4_a#Kpj4=%wC+mc0zM=S#th^d^}MM6A=5~1R8%bbhyvRL4mq$`9vN&D)CaIy?) zwC@2DH1Zu2%8g{z-r=M`_~czkmcJ#;#z3UZWTSra<0+}T)Z5#gt0MORl zSBmeV396l%(zl2L0(8y;zbpX;ayOkKXHEb6keeG$LxgHp9dt|9IbK&P7(kvc z9*+4#B_|&sP!N{wd;NX^6#_VI-g4WQ3-r70>z<9T1=>&SxgXc0$|_@=w} zdlkMM>U%g{VK=iElZy8qe)b=hKE0`{Z|74`XZI=)3VAkMi!+h2c)w- zb=4$!IAt!%Q)do2{iS=!UgS3&+s6=gDk&f+?F03MT$9wCsk?M^9${SNPNTo9f8wA?Ax zaC+Z*ZnxSm2WGiKkY;&rFy5ZfMMd*&BdZ}m03zK~8Qi{4TOM|8Jb*?JKy_Cb_zFGU zHn1$4m8f6(KKL|jMRtkpab*e*)0r6G+&CU5%eERar9xXLphRa*kHXSbQ(mA?)M~Ua77O=4N zb6<9kLs$^puK8&zuNJvq^(-u)d&7bdy3fe&d^{XaUIVqTJ^iZQlp|&qVEvX`#M5pE zr_r}8k|&b@1)Od|k+8^OM)p)B0DuFfD^Mhq3}KT<06-HdUjr%U$2&X6=0*xn$+;AG zS&9gGLvkPW4Vh!E0j9w{?`eeZJw>6a|Ejo3Zkv_nSp%MB2oz@Yvf zIizL^8@wIFI~gu1p`{q!%|Nh3FwO$(HXH(pyp>t7MnM1%w60=3qU@lMs3>08gzr7X z6J`Ah$~rk1jVKe{{^LbA<#%oX4EVcbkZ6?^;epmwEbA^S;)$%+po=bhg%p~UEh9hx zS8L(3FqBw2cR1aUR0mLK(nm|xww<#JOPeoHs_GvDX|5j7`{R9jdV>yg4=DpMod*?; zMmTcDga#fTHbDv!^On8zZG#V>OkLIh5z0a0XvqA0Mfh%``x>hH3!oJ`PoZ0bl!o-n z6jpgcr^4p3TXUY0KmyNKY(lwV^HAY6k)Z%ZIzdV*Y|#MgH)2jx-BKHkw@2+oK@vyc)G=+ggptv6E z5fI3*qOc6MdFmFvN9?Npn=sMXI2w#yzijE0JkB5(aB>OD3Zken72$!_RV)))L6B&V z$(V|G(klNEw93YW-uZSD|GRV}$G(p2$5a3V{w^6La@V6|MR=ff70bHIig+UHJ0v!Y zjp~97X~|I_$1jGl>sswCP=Iq$lm(_(D+F8~gdu0WAcGE|bRUI0y+@&9S!n7LtA zZtuB?cz--F!|He$5J5yye+evs&T8*bI!mWXJ6V5oRvUppxQiKjZX~>4=*Jrk4Rq+$ zk61&Cj(F?}x}zyZ#1a)PgM3RcnNN&}w*~|N_*s>&!b{Tf>)f~Iexcp>dS`|s^;F$ps?3!d^B?T{h75yBDP2a))O7n>poSl^z7U2tpGER zD~CAwVi0Uuq2x`?#^Tjt;I1QX5Iw4d2mA27r)gC69|d>4<{y)DPd3<*5dM&-I-Jnu z4F&=^E@tStG|F%_G|;)MOT<`$1W~fYa5a{vSJmIG8=U5Z^fsWI98r8C-H9|O#Lb)# z0X?}v{WCC<&)pu6%zX}aq^=OeS`6U1TG+2Njhy1GYCJ;?+;777UaYsOYiQnu@-l!; z(-#BJ%L*muTA8MSyN3H~RLV4ag|khi5UW&80><_DlanoTGY9VacPCK3P+l&(OL zPzrKH`I3nQpox@E!gOi#XhacWZbQOlI4EpX2GF~nmI^&X z=wt<&Vv5}R&{N%;MrNJ__KL0$_*o3#xmhZ&nBlEzyl3)F`ot?n{Hp%%p`8{7+x4jJ z=1Wr!T(4-PoN?8kENsd{8>=L2gZ-pG0hOvg0*znZqcuMTyN$+_Ac;0>OR=-uBMexO z?3w`}CX$$(@{I-(P<_+@5UPgsiElKJJ@u;oQ=o}WcbF$;+S=z*K;ZUrS}Lq23Q&D6 z#Q=KO(^8>lh@SMh6jS8>6_|;v?48`ArY}j%{V0L}Z|m{9aFs~OK8nBfA}r9j6u%1% zL$c)XBI1ZlZ-ah$RbJlWN5JJhB&MHC(0Nzaga$6@LV$nDD<_!uV704jq5ocw-W8}+^<$uMIv8}1wU74gN9b6K5d`F*gF!&eMNxe#!U7FC z7))sx0wsMb;&@tBeaHJrzXNn(d}yv)c&m!aJkp^4UQoo6J7FoMOYso_4FCwR3TU|s z)Usb70so?WZRt5PK`ulbBEjJk{w#-Ikj};(1tyRI)K+-f#I=@Fm8 z^7N|u@5rKv$JP0rv4qej{*%2OmjWkC5g}Kl@^(4q8ekgAOuU_I zdn3U%#7X)yP^s$w1p3E<%d25eaM}C&V&H#Sq2%lI$yOs1b2_79Jt=lNW{3oKw{uP zrK%TTbw9s%|H!@(z>bznq5h?akgH8O+8lEYFb%#FN2@5%ehRcSC15V)mEvyci-B)? zdnBObjH_;G;5H$1EdyNAEj5j*{zovhQMYVaBDq4~o4REKo^uV|GQp#68SxBdXWdfp ztNJOhQhFGc(pe67?ze<%aLXldAjLyTp{O!hxbkw-FI*D@pmr@O6l#W;e7G6D_Yy=; zwW@y-BwjwO?i~+y3U8#bCkhb2*IM{293}Fxp1gbk6ew(l&q5*a9ye_G062W_1r(9y zk7&0l$sJV`Pcj_vh}tZ3b?nZd9zv&^qcFVk+}0I>D2oBS)o?RB7hmYBA-o`Els+-s zh+oz3fo60O3^l7U5txSqSBU%u@K$~^JQu;>tLemV#INcP0Ke`AJZ`NWRQ3x!+)Yeq zkmz9(L<}o2O?6Ugq58zxCh=YT}dq%FNcO zQw{g@73T*xJ=P7E$3*sH2Kznt-y%|TFPf(#^!}&4-QulBT?FMxwQSEMhRyrP0+6GXo^T3i`WYv`45PROdpXXt11^Pn+(UJ= zKrUU0X2~K5pw3gq1Y6@=7ndS}gMW{uKt|wFKv<<@Px}19>@EcWbh0X6MIDJ^dFtY)e*y{k7v-zq8|q9>>jcBop-XD81+Yv94TCXV z9WD2h00Eq=h0nrDB8r;H22h}|89oaILzrYH8&E`=-wu7&J-k>x^>>B90qrI?;CY8t zE2j)^RpS{dZW~>|?kTI9`efIm^n&HrVF&>5PSaq8mb0&HUmyXW@@FHyAw**Pg5l}Vy0y{1OdQ?4p-vOW{lR@o z$NScU8y)A24ZNQ&#;BCb^!y7wr9*d926tTiYU$n>TfG4*`gr5FP|QkB?4~*B+Qe># z=}VL7A}vV09A1_)sFLLp?16`~^MSRr%t!JH59RNNH;?IynXm=Ye*+mw_l z*FEas-rci!R28`PYAoA3k^2+$YzQq{jlWO~g_;@;hL26{p-FbbBS$Y@;8qJIa8!|j5n`E=dVz1Rb-PcX_zH+!$6awc>7_e7P=*a|%`idt(i^{B% zfu77#dEW;~sEE78Ni@XyPw3wzFl$c3a1uH#u>7q4U6!HjuF*;8Jd)ENmrL;64ujV> z>K09xua)yc)7x9Qd5h}}OW>Y&3M&9h|eBXEj4n!;-c zJrTkacirnQxTt;JK6&YF-7;#_TluW?e8SDxxmRb1pXcSUVm8h246)mwMJ;;Wz{kc| zCaBqj?|N%iar~F?R2;;G?E`EqJ^=>Y3eIz^Pkd zc%3n`!UCk)UhM;E?xy~I5w?jTTk6bOF?&hGvZA<{(S0$yT_fQgT<|=scql9wyGN6u{7JOJv|G0RK;hH@S z^q7&$gVh?Ysodr4ugh(0!YUaHU-!wI4*Lk*488c>IJPtfvQEBpW_AJ#}Vj#aHCmGj5zlTW)srNK!?+jl#!iW+u~@JW7k=e9wfh>G7e8OaL;W5zb~a zS(V-moAn4sB!FxWPFCJi>U?2^zCq%LCwn>>=RF+G!#nZW&Eg*ssx10k0yn@+N(K71n9BV0H4@S>#48oVn#Jd5}YwLC&GZqq(Z?iuUvkcpiUX|9TM zQYj!KJCD+Es)GX*pCJnaxZbS1i^mcm`wp2Nr8Tc5%}F*NSCT4Wkr~x1C_cmCPF1A< z^NGEYrmipNdlf>)`XLw}gF0}fBe(p08Kgk2M_;OJ$(eWeG67`k@_-13n)afMC<1Su z_c7*!J4^=fQ*Q#U6&Zgc7AMgCnq{6n<@!`!K(4!Vd0{b^3YW7l$j+YUmFt84fq@u? ziakkkcvA~rt`F*wlC>h^t`Axz$n`;8f+yhjuMf(S%GuwR!$%&vd?U2`Ulhw~P4`c; zHCJ^?<*SDlZXuW1^*>h7qw>_ar=>SkvO!FEv44YiYszn3$n0}S2(R&1iP5<)SL z6+3!?k8V|4K<%R+N_G{ghA#H+IkgmxawZMWcXK8x1!Sc6D$dH{X60?=b&MktK(+_hg;z0rBthRG z@#8YuXwnXEm}Vl#u3zD)A6Hn7&r0uNEI-02%aKnW@YGPCdSz(8Y(fMP>TDRz7x>JL zUwq)Cgn}O0(aUYVyu8`5kC6OH_R9gXJV>$9K_Q>ot=40&o9Ar#SIF=fg#n8(JL2WF zb>5rmB#`yfWC6`SkGC$B0x~|_Y+>Amc`S<_5U;538B+(dEhn@i?aV7#erm%_inX7$ zdnxhR&eH0o&I~VA&OYiioz9riQOF&g4GEo2*I9UQSIi0-EA!~GF6QuI<_VpP5RqlQ ziSS@#sdAW6<&#Hq>WC@mY`GPa8?coQMEz)as~pcOf5YLPS0;dL=TGV8w18*BFc}na z?zC98LFenTMjFWcNXxxey!W@RwBm!A(e;A%S8c{e<(3Zhj_E3XGV5uJ^v<(Bt}PQ_ zdZJEw;EqyA1qFO|L8xxf4A`lBNyX>QxF>W{LP6)2({j0Al$(b4lDKG%G?4ibx(tlI zdFNThq_X&qnarzetT_sv32v&XhX?Xnpztdi>x^k9Lao|&-f)n+)A~T^u0CjNXY_{E zkP#QkyWiJQ*WCR|H*Wti_e}B(Ij^nY1?Ia&t)aMv3%&SY$+?+=5`z(Uzhszhq=$)y z;58C?#y6rD(pk*TpugKnYugJux-An2-JM&`{-Io*;p)`u(Q^IWKW~8R(K;(&%1Y{G_6PL%%b#i_Ag8O;gV2$q5T37b1wBkRBPfy?S*dK znQ!cKkn7@B8EP-IF2h64+UH=GMc0u@?eg#__`n3aDTl8bh8~!Z8O-+ZIl7a*+|WhL zFRGTX1Q&f-&3V57eEn!*t3*SEL;WG|q zA}jmTA=!;Yke!}LqFGP6k!8DPgSbW#+?#sRLSc{3g$xf+F%pUFbZQEmK=6K1_E1t8 zb8cUxH?8IiZ0`Xb^<5m5Qwmv68XsTcj?9-BM9}R8C+^N4Hl6^rf@3}aH(&g$d(hZd zd3ZhPk86oynzxo+S~O8)q^uEJT>0zs}|oBg+90=dW@Jy~zb6n&pMboVEwhAc0L(e(BC_J{EA2K`D>6<>&K)Mgozu zoSjOO;|@md3GsJ8+~n(X+Exc4_k`3L-R9!%39(9$dqQ*xo~FZ9s(zPe#$`$6>_390 z-ua@M$5mk2&~+MYR8r8zXVlNK1ch3AN{fxkB6ais)ok=#Rjo7DKGO`I=Kg!XLl+-> zvu#4Wg~*p#15gB8K`L(YxB{>EK{~YOgU?rc>6?@-PyDb<>{^-OlpkX7(9*{UAY_WK_!I}KBIn?Vo;DZ6{|g{ETW`x z_HRmG#WfMXyv4JflZ##wh@}r6j0t_nl)&Uk`K!$DA!6NlCv!+17iCb#0p(a4;st%x zSvisr1x1?ipwlf{-2949!PLnKl)vnJmIZsb^Bbwv?;|Ix6v9uSS<%*ly?>Wcy|sY8 z0;WfG2G<;obDumJpY??x}#TUVkVl0v3BU=MbW`6<&qi-Vi6~YCh zlK`nF^zV|C)j|!y=(JGAXZ7#045d%4XG<_Tj}***3GMXJ^=ez~8g@(Y<#d? zN+cE=!{5l1kpD^ftIY3VV)+}HL-P2?<;5jj!;fzFN4pK(y3Px{1A`K!dy z%tNMx{7=eXW&XoFWDd#W-vt|^CC|P8Vp*|2hkXSE^t7JL;I=lyW$lNM)kPXDvK~?Q*}IU9DF>Dc5T7&ic>r5e4my81`=10};SS<9V-&N$Ap#DO zIsA_EV)iOXDP_L}m)jR$D@KdSS@&E+HfeVcLHkMDAH&go5%Z}w8~x1{zI^>sNE>V>@QmpL-;!a z!td#a2VAm7^M@A*cuop`<&y=JQ)xr@Bv$h`N}$K1KsldYuIP?88Y6fE1}<`y0u=SQ z`dJFz^1nt1u989tpHV-{5z0a#^%wk-V%xOR@f$ug%n<3w;Ij6uQU^ zE_TCr@nn#bLKh>a!l%V<`7Wb`a`yMZ<92>kF=RTvUE`S-|rD#lRg3l_N>LJtleT@*bGYr`Pj1-DxU|nWivW|Ir{)TVSk4`9n4SZZm%{|NBLKkFv^ zs(kECHYLj+@cQ|0G~g5O#(}P$l)uXS9uC%&kjx=@?9i^)s~e4WP2ZsQhh<_{=!RX} zxgIledEi=ht#X&MBj~BQ#8q>)njxROVoY@lu48g?e&Satv37|&`MJbZwM5)Q!6R{9 zPC5Hy&_2bC5*?B~Yd9OqmxcH|Qk@8N@TB>rffL6gtjJ6a<0|+HkJ$T@XZw^J?hoKLZlsZ@ZvQTA zML2JKXrN|{7mdVF%IAy^vJ_8yvEo)ElPIm6{VAz24(@YD)sEfgKAxAy>=KL0f2S(< zz;04N_(k`-1ZvqLp9-$soKroN`D@K(ddTxFBI@^%n^(%aZ(#;PXsb#L>sxSQv zCl}bmGO_CrtEUa^SFk7D4D50GFYqCG#sM(mgn6d{=y${cDub`6v3N~gov$`YuM;U2esvyb^da; z1syzEZI7#EwexQG;nAi{0JzV|UmIGo5#P&{kpD^ftIY4=U`3lUhm`yO4sz!$p!wnk zQrlDNwhwN6yak91uIQ~6fH`>!P&qxoJuRRvp`7hN`j62Sm~1O19e4IQ8g2nP2}tk> z{kxQ*(`Q zko6NMG=oZ~L#HSpjoW};h$6?YLPTY>v%EdbQ7HhDP%G~AbPs;Tq5#cnhDDw!1 ze+9IU>I^Pk!@s*ZABUVC>018XD50GFix5G6>Uh3ddAFi+)ch-=))`t+yEz|+oQF{x zC6u#&6|CanYO9uUtSE+W02ZGC_ot04E^uQ5uqW>mnAZcH_hjn#ky%DLy8{w`gzj~z z7XI#(_dfM^K>wJT$%W5tRQNw%?(18ts|MYu(#qLi0%i}MOuP{r@3ZI| zFnL%eb{QCbmYwS{BbNuU)f1@Pq2vvG!z(S^_ZA>o%)QYe9)sKydJM6CT#DvKzIVq;)) zUQV8fYbSh^xMVOHp!zI+lfi)%Jo8b9AcyIpEH$@ez#&0-XjVir#4FPQG(y zJ`ZNAo$LJN>~V}x=@QhXcihOWg?|OaH1#4gxR4ENadSQnIX$2)YcWbFXODrDKQ9}? zhF{#)IMK_!geNU9y5LD5&B1Ek#>sq7CMfkQo&>T~4|nTiz9+LNo%R!eBpzd`Z5~K- z8`4Pt;S>6I3CyBv%*E)mP{wEV@3IUJIcqLP=aHQLs>P{ZpYVq(f|E)Dc-RapU)rd% zx+ZFJQfZ+KHp6O_5x`01k(_=Nyz-;V@`Rry=3=tOC)~fu1c2q7{8dWV(vacbWJ<{Y zr2JLp_b{>io6I43`~%?escK78X+9FQzo4&xfc%Bb;3@HxgmU&E zpgt$tlMFvC1#lcj8epJ;2btOBVMM@9rKqJTqZAJ(D*|>(D`!h!MlVcxyBi(>(>Gx9 zuuSYSFd|?(*JDO54`M3j7?! z&&@K*+4lhZL&r4u^%*_y)!9eD{fJ8LqBeSUC*L_Up9itktLyyb?5p5G#k7jKeZ(?& zE;~M%V(nt#(^gNKU!>=-JP-F8{I`*r8szYK^NTFU!^_&mV&)R%m9rPY>L02Wg?9>& z>w|p+9FM5vt@?2Coip=!a9jG&`ODb^^zjgNDc;pW5f#!$#H*6G;$^8I9~Z~n)85C%Gp1F7WYA>W8o#U;TyilFI z)rwduz)oIB=kuVptX}6YXa5W6K=rz9`%ENhN&_fVuPZaVBs{&YU5e^;jZ!?68hTw- zS~>gE!vE+^H1v2iJ@PR=W*hEkFO7GlhX*KDIzh6S{r9rL{p8Qmu9^pnqvmd$zDd#W z#1G5Fu1Jh-+|Kowk;@|js~cCj%h|UC(iyM&OLU`exubi$j|&>G(``KT|GQgj??OCZ zGiyjM#qf8{!oQ4(_pPP#sgb4(viN_?EdB{vupUp=d%9ttZfNxRHZBB6B@6m{WLX z$!h*3*&ey>K1HwD`nUD-*qwhBIWGuckLnDrsTr}moAYtV=`lAeb~j2WXMa`p^&Iu5 zX{UjZg->JL;8hAh|G4_O!HshaB7{*%p@h$?lcnM)qi1t^QvuD;mK>qxljJZWX2 ze@wJQVPcg128f{ z>C>JeVJdckX(#yjC zNwCj{3ON^NX=7xqx^w?vNFdEWJ zVf?Qkj88F?-d)QgoMm4{&RQIg>I|+t%y8Dp`8eeCn6Dkq>JrM?H-(wiAReTpZC`Wa zE{47V;)i8o7q8)B>|Bo-xja}c7o&31J${yamnZ(AjgT+<3TPiKR0bEXDPJe&)=i1aDM@^b>2gnCGYSzq}v@%h%a)B=&d1Bohb##q57G2axCJGTe$rj7S4BAkY)zL?&i;K61sZSLIuGTG36UW!ZXrxfOo z`AyE{cErcxBO20FXS7614|m+T{Uwq3tL*;V18Kz#-Fjm1`7!q)?^L_fXLXV1;oj&2 zWzy}l-#J|K$Xk)Lw-0}hrWLP_i=)Z7q8R`Dg{}pjrzd|m)zN-e60GOCmNHUE0N|w) z<64DwLHp_I-KszA42@v`RIl=rtaOl2UGR|xt-I6|5Wshp!m8`H=$RRPTS6MZ=R3s9vEn)r(an zBG+VH{(5I!)-Wt=6ewh~vjl7c24K6w<{;PeI;ct(+_T*USK|=q%Gr)m`E9hZI31!i zg>j8pM^q&U<(XnB4rmRDVR=hh-rtt9uRLys7Yex*%L%=Sd=-48A8vwNrmBl>5x z9!qt2!?GCI_LE6(q(S##1bM$+Op66^D8+SEw)w|ER}YM(iCX~zoNw}<_iHk6vE3;P z(o0FwH6Q_2Wev0xu@!6PnQ_0Bgj*V`1rIp9IWHDR<9kcq1|%Enh60|cA3Ca!l)g+^^aRKTd=XG+*Q@or689)iVk zx!Npffvlb}bZ4UMlx9!*40df-Sy62fomG~1Cdx`<^`5*6&{6A5R6t?SW4bd@0VOo_ zlrPVVTV(D`z6ZKTt^yxX9qK*PVlj=`M;d`Nljp!b>W95OvA(7~VTXWd5mha?wwZ`Z zY+A{SXeH0r1%?@lERk%*4ZK~HmK0@OU@_OiVl7#7Ly=%N?qXIjvsf@FV4eg~l z)b}64YKK>sTg>S|StA4nl6_x&+wwK|19pF)rt>!HHn(}8ER9+q1K48;d$L;BJNYvs zZ|kE%k!x@O{yho4T&#Eg!CbH{IudUS210RjTmV_gn|~V5tLwS#JBPeAH~{~ylJ~9L zsM`h*!P35^_VDqwx{oB>V>&!Ap3c|Bc_bVBYOK1(iS10!@@EV#Q_@dmNo@^Sn zV{~`lIV3Kj0q{baN_}RbkKX>Z4CZ3O0|F{iSuM-)X??|EKG%{XQmK&vY~>E=quA__ z4|5K8$Y23rm0_mL z7%4D-@v4lCbIH-&Jrdq_Bo+%{p7>k|F$tkBAipZ3-FrcX5(~)i4Kt+8g)$}dGw}e@ zS1GK@5Lzo`r}Q>86u|eI3j1=2F{Mo_Fo5yHdLdi8r9`aulxoUsf`bj9e^h^_FqO`h zEvMBa`-mlF;>m*!;J=(9>Q|=Qwt915)@tO0`3zZVc%KUy#`AAv)U`sG;+sr7pxtXa zLQZT@3TH~xq0tDG+Lq*axIW@# z&|2JAoXHvEyRj3G7Ym|)u5I8Bg0$|Q!cW%(fQONZs%QWQwt-R_2HJy2}fUzqV#i5J^Oq6Z7r z%i`{m@WIU9k>@2n*7N#5Lprl7e z^?>W58WyFZ>SE`ra=`SG90#RBYC4V7W>vCo3sKt`?4b0uop(ay8*{xR$2oUHMzU^@ z(aYwTCKZ(%`yCYW$gCfbz1TLUI#{k&UKhXV8$(@G!Rv z*NxN}5`Ux~p{kBZFfzZSBg|CEbm`x8?Lt%K>@PqBb|}8(JKPS&w<47pdl~WV)kAv| zg-UoCE%7b?Zp1mfSTw)G@s_s`h_ssGTW`*W80$H``>#dk-V(K=XtF+UHqU;;Z^H?X z`pA%HzoC#mZFQTj7I$vf_TcU`gk+|szpJC{H+Uh3hccov(sk2$bdkVNwkR32{lZ~w zHxvW*j75^&H7A7)p4D{h)(ntG`=G^%32bg9O)UslIWJA_SZcg#?WsL3NA09DrvsGi-P z(o#%)Nu0eF8we*>V|A4R2R*YVHnN|IfBx+#|1n=}x3mG_kpHNYHTaJ!ypY5GLzL3u zKSTmUaiU}pc!2+CC??2%G~{jYA6Jj6WwE(6p3rJMy+O6yZD>DiOXF=QU0bHRJ|k?X zA>+tbKZxsMHfT*Pxd|Fn44AIcmb1;ayn9mf)h}DqU*vJt>>ra?#PWldhmQE3l*@8c z%nu&%mFdieWE}CmD2h4UlIn7(DK#DOty36nsV*Ee5pcw}u^?zpO&wrk?uG{SBD?z; z-f@P5s-iJ87OLA(JRVgs2<CMgYK+kSGnIkbVmJv z?)mzf`IZbM&{uQ4C=FcGrBclf!>S&z{W^Q{ zI}Ok`qdgd_6Hr{*PUy;O>Xnb@sbNdJRhe}Is+Z)K)Q+%eA+}j%x@JIhnfAod+jr(G zvz>#N`1lSg2V5`JpVq4zX|~isQbHnBGa!1)9<0`vnk4qt?y39(ox-RI2cUhPp0GQv zS|@cIZAEuG@guLgS_jLVqV+UIcEZA{1uQQRKnna?r#J%y6W{mAdI8Og^eZ(?xsu=KGqW4AiC3_XZc(lFS^i{mqH0u_q%GqCnCF4V{Ka_JGr_!DOv@!C)>knpH zb1u_(`Qb%f+~N65qdc0^Y%*3Ol`*erR0Qg{dU&DnV1Y2l*%X5xETv(t^P=$_t;b9b z7OOo?)7;|0B1YmjsjI)hR3JUU^Vr#VX*L}f{Vs8Q)#FY zG^iiU;u}RT!$VSOs1jtQpQlom)gIX%l)pCj1k17`-OKQ(&|Q-j!9vTrWIoxM1}i~Y z#sj3aZK;>V{BdrC5)*7oKO$D!)@3HGwwG!K!*zP+55D`rFFe5h%zp7Tk zdvZ!dz6Xn-CF33ID^sIxp!7;0`pMwr*3-04AYA>c4Iq3+BHUCbr&)#S9+-<2ssRZwt5$V0msrzV z6+r=vmnLQF-r9o-%hByI41nq)MOb+nc=y1?4)W+kN$YE4!$`__F_m|DuT0C6r|G`y zJkn~KEIi1K7G*gM(BjL}>a40Cbx-yvO_SsS&^QV}cKOg2j)SFYv+o`#a1em&V!1ia zqsi`ePY^6jH~m*?2f9fusRT?n*MR9#d2_9vb-i2RC&K`!F4HfIr}F48!KxSt#6^#P zr?Kz>w24DauEltw1OI5?$0D7 zd64Bu;sA7)*-~7l9;&-1;UH{W?Q_}(`D&4+;35!!>*Z=oO``4SMg*|#5s*Lu$S%$& z{!7fGO{}~BAP9iz(!AVe3j4czT805o(Nn%`@BGL6Tzc$2Hr7Z0;YE7NH&4`&pv%<> zV7g40p88rIRNY%72jSw%6wjvNvLaf7deTHpC$I?^fb9xD5WAkYot=w_z}wpt`y# zC)IkhqEID|(7O8&jRX+BO6L>`x^^M=~BMkN!=}sVE|N@Nr~&9<&jl) zf677Fxc1A*-N!{B0N1tMhJLz7R?|!@0%bY-ci`ridIz`X<|uV4iZ&IT(IwM&Zr87# zy0=F;NzF}d&*CeUFYvKi+e^_Zln1r&3oZKHQkaj?zXjYfmYXxQZa zmVEb#WbL)-pu(M(*xcYMs2ugEBcTBqs)uE0m`mTtDl&p~ua<}dt1toN7tnIJlas;d<$5Yj9Bb+{M1`F&$CNg!YRZhPO@PHFmtXY{RdbcfiqqJz(^ z?;BfXkw^GO)A2=FoN@F+RRM<4`o6JMp|3FT22DMi5|pom248Sly;$$HkPv9fKDyyj z06<``81K`kBXcb`fY``@0NCDvu zaK_}so!eh+dJVy!-t_ygU@Z7z*x^5Kxzq=^ChtvYg@#6@ps=^Y;zL6e%>_f>(Dr6! zP-zYQgn9z9>40FQG@R(sb$yW~syNagDI= zpzW=$pa)9j=)V9-=)6KmM9luGE$ z?1ZeNflHf+an7+96}_LGk%1U=?vx^?hX8%^U;(^T*ojm9~Ns^B-D zNWFL9y9ZWJq|Y%Ai}n%<{WzQFF`+^Xr22riQ=6&U$kzw>4t1VNeZYCjUKH|nHiZCI z(8xs6k!LS^Ve)!5CK4u)P))q~sA#HDP}_oKx%0@ zu$#)@jcl=l!U-m%=H=*f>#5mPBKhX!45aN;=xkRn9yLD|LJCxL-_U*rH&rPa`vwIR zh&bkT?@#+m^RlOX)#$D5L~p7>@{Qhn2Yxk$mV>|d5CzYJ+2E06G*5Kyy;|csuuEv;P$~` z<&)YD5U0Y==T?2^i&bx}&(Zc`MEQDa4HV2sHEDI;wih1xnzX_RG}N%D`FwDyLFF6O zxyOgqu&D7EaVq+J!y@ODvGPQHZQIM|iR@i_hTIztCErVOU*g6q4Zi8@@;wCJKH9A2 zP+N{Tr^3%Shw3>2t%3-70=XBznJ+4pFu`rArrX!9&wNeS-t?)gpFZ@nX)>S7WDr5_ zs=I1Few}Lk`MN9jbhZJ%>6G@p1m8ZytyY-L1Ju1V-+U{~CR8w`*K(Z?QKt&sd*vdP z={zWPE!#m51=2m!6%EqfZ1#G-6CVnudwX#gnCLuSYkF`hvS@u9Zw8H9XE|PPet@bo z$_%n}9;CX)o_@;G^p(mpSf(AOzTW&m)!mdP!9>fv*7#smXP6nJX-5vPGn9Fbi72IK zuuTREJUhpkC$!0o6Sb~h4a#-!L!nKN9-B^jyeB_oJmH~Wr;j@j9azPO@|!*xk=K8v zPdT{=fq{CtE7O?`C3pAbu1L3|o<*|`X^bT!*hr*6q`;JDu zG0k@*LP2$3N{sbj0u{9U*YllyP(ah;9rv)qYq<_ND3s~#$UfEZTGK84k$TEG_9952 z?`!l!=I}PXtusu3@^$)U;eW@gvn(@MrE{9%^?au&lwGFdbdOEEYo0;K8=Rz1gqqmE z3a&N2`_O!rLoyI^nTJYk|NHNEfj9Vz(<9M8yWtm*UK01mCS zS`_~4&N~}Iy0tP)fbuPQWF)U(FDGwHmAC-y>-mnbD638PukM)@!kO!=N>-fq;gmNr z9!gO_)8kUlDU{c8ojy@8)4i&F+~iueV9SNM@YYxP+kJbK??*38eXB`X%Gx4kgj_djb_O z!27oPIkRjtw0$W_l<+%*IP19+CFAs&NCO&3Sz)Ff#d-Z!KFkCSFf+?&d(EwL%$mhA ze6PDHDc^&0)KZxC9QB(y&xR;VP9Jyq4uibe_WE0AbI5?zbL!(Qd5j`&b4wq^NL<*~ zC=73V9j>!*)7zRx28iF1Cp_*o`AS@X_Q&MhGM+e5?JT`lR=@!7Tk_1ty(V3W3(&rn z>kNsKYkD+p9~yZx=V1|rGu?OjPKR7;e0{F7A4nfHI=$-dg)%u-l<2D%(NRlt0b4W zW9wSuYj=0iKQT<`XR~BYZUE3l*K+BiGr#FVLY#%(M&-RD+^Vr zw7FmXl?NX9;Lhy7{U!F#g$uLye(x6_xc%h=rpNoj?T#(7+__!90{qnmd6;QUBYa*P z;hVc+SBc`<-u4xWG0G!zY~pXEGHlYQ2y}7vuwfo75KOe`!M%f}G#KkEll@}7S^3}G za^&J?tcQE<+joIQjA|GlyqD?6?S9c>#RpkyXid+^A1s1FBNT|Ntd{oxGJyh+U8ME1 zJOXQaLjJJ82m)Zbv?v=Qxj^gCT5NhkJ^&P908|%gQSq)zszOYc@-@Zol42N8Qrlf7 z|Ipp02!e$vmt#o4WO;>)XT|1jTNFVMaw=y(g`T(h@oYVJ%4QzQJGZ~s6!+OF&0hBz zd_?s!E2^!}waW57o^7SEUN+@bfKjwQo*hsa^tA3H)d3~gy=*yqkcUAs{;5Nn@1J*K z8eRB?&LgiDcW&1jbHg7esi}u&Q4eqM!on0GDke>Q>mWKy6`~f<#g(?m$7bLy4z%G$ z7C~j$`nWLrkcFY|%b9P!DPp-=RK?uea)T;y-pFfPmlHzv5?1g08K^*}?@HLLkZO5o zM^{T#4&=7sd`meBa*YV!s#}^w0psOrv&bsvwwba}(5pp_3!tl8nri6#WpzyGGulYo zKtBR|4Gh35GufW*kB{eNM%1ZhQX>MmuNvl_09B2j-62v?D;^mz0N-V%jFq~>Y+IoZ0O@Nmm(v@Hg4b2U&@#%|mmzrj zwFA>8v<6yksztfnv3ZkvlEn=i#Bd7|*P#QSocVS{Eu&(xtIlY4WwqQ=z|a&ix-~*Z zGjMrdPuo1J%YM;d))vLIS41(5dm~|c7GtWT0S+|AleTatwI+y!+_!2|i*E>$ib*-& zdmVCWg?c>izMPd>_K2Yd)qK=H4fnphWEwV$lha}|-JWi$<@KI*;=Z(-Oh#h|&6NE2 zs&^}U&l%6;VMNGXK8-7asdegB(-R+O-SCJV9`KJc@{w^L6i+RC#9@PGPUt7vn73F} zZ8KSB&uI2jhx-Dpn;u$^#txj0)|>u4TMyddu#pKP@~xiTS`SP(Y+!P_rIo94Iv&6Y ze30L%8Q_6cvF+c`dWZxVYKuqzeN7)c?0)8CyE@+8ud#r}4!SvEP3C^(q_G310Qb!yrpr7xT z+tp@A(ZIGmVH42f1Dkz1sYlJO7a{RLC>t+yV0Yb3(z0hSK@h6pix&NZsziQ=htdYE#!v{ebj?SVbQ$ zA5=A(m7N_)dL$MpvZEU^wnn81gk!&=0U{xI7mysDmZS!b7a+)KU z>7m^p)A$^C935{6YR}C+XucxSz8Gv^Ql8L-fEA4;dnVIEBqNanpQF=T>xL_j^Mz$S zXokZECevy=#Ne`r9=`?-Y>wvB`?AGw*uaGLd2RY``aSqCh8lQG=0gOOJ;W{oH*hJ) zLEnc_K0^&WCUo~y#A-~G^VeZm4>}RJfy?o-ytylmcfH49JoM*Q?{Y0q6{ z4<5M&4s6&P-S^=bjG+b|^Xkb0K21`vUF`OrCpiHT>N=Uukl?J zWxm*bS+}l$7Jb|+{F+G^3qBqQQbv4bWE{E9R|9IV0Ty}OSHHUgZ&=*<>870SC&5cQ zVGPuMmTMtXIzeTQ1Wqab`27cR7)8f9WA-2DY^IqS`wuSG1IulSp~^Bs_a7)!rYXrn zOdwKTo%SCD*8(OR_8?-GVpio!2-1Qt6(_&30>dSF)c0$wEtNByG zheiTw)q}pEQBpvOBM)Fuh|B2d`;F1lINPfk(R?=7(S5^618&ffOz`#lMMoMiF#4e9 z=Hp(H?&*?(nvZJce*8U|R(AYW8&UG_$&j++|2nqux2Kcfd7S_?Yrh+G@+P3f5dj2? zd3$<%uOmK2#P64jqmni|%uGN{8hg;RQb36#11K=~K*ldUh56a~NsZHw|6Y$%Bz`+ik-y*Taf-$X z@~3l@DVHUcxSuoDVEF@FffD? zGoM)go|q&Kn^>M#%d*&vi}^`;v?=b~{%*t!vz6DJl`QmB^A%phv!a5O$w@#;layil zhg{}lWfLqZOFrp0kDQD~k%UwSQLi{tBPn9;0?>1@?>ZLV*a5G_mX=06OXckjTg zrT|J?9TmIDDIIuU?IZTI#8q`A^5;&!|p8^ z)6E%7d#h!`1^AgA;z>^~!{!1^EBZ>8E^LR;USA%+rU1Nd)Eh9y)slAcjM@7*`-oZM zXz!)l+`K0>dI3kzH-3^xp;Dz!QEnAl?aR#kw1e+lN>SMSd71EU*@;(9sWo=w@&)$y`Cp^Mng!e<5( zDE8Gty@Y`CT-<~;rU}|19B$Bl*Z8(D(ky`8j7Ey(c%aaxuXs&z0A|ub!X zNC3CB_*wEE!Y<36TqrU@mbB5F^%Vnl6n(KoCctvW-0AVW8pONw)dD34U`A_4?0^8p zuS3#V>h*mJm&PVxv7_09X>%Ey{YwZ`7k3KwpHeEp$${OC#SSXQ;yX>nlW9H6+Sy~xLWODgI?WWwU^sg z>5qJfQ6;DQBN`F+#w2XvK7@(F3HX0Ym zgZAx*m`@E7kkjdXwxhe+ZfR`Vo81H*<_)4?p+zo|$8tWu54hN9flIMntX8|zai4}2 zwu%_gA`mO^n6MW$Xg|p2q`DvM%SJ1?@NnQeVu3hpb(yYduhx57)8Uuy*OzhzovehM zW@zxCURi$CC_N!SFsq_4A!uWnnaAj^nh;3|@{pm5TvLv$3&Mw>I5Dz4j>K+W z7Teu8e6M3<{hD1rx>NZ5yu$ZD-kZFvy^%^^;d>+ROMIzy7j^-u61EZ3yTFiql0E(=#XZsV_T|WE!v^_CC zd)$jRIgWS{v9or9CPX4jA2H;ho72;>IIFfaF6q7f^fKB~@PSo%dLQ?&0=v!U{_SB; zdAtgIit1~-a; z6|(LVS^CIJ1=ucRlKpZJT?Rcy+?A%_0Q{6TNr&-!93p`Xq)ng#Y!~bOj!ufL=vdz% zzOx@~0tetX-K=)s?Z4X&x-~Y^HbxveuvznE9QBrV#9bbdb!)o}+5;C^`pBUHEGIkK zSKNDO(#uGNAqOr?_REkBENItTtiCJ~z;L=-t;hXO?Do>aICNlB(Q4OX%-&(@KaT8W z)kNb5UZ>R44K(A_OU$p}1FLeN7^IguTuGD9mo!!SX9Rj<}=l-4PID?sv_C!A}U$iXT7yO{TO@~DfFoD4bv{jGg=f^aAu$`d2w}%OsC@uU? z-xv4|loozr`uDp04U`gp{9%I)En%+~aW`n!dCcy_IBf6+FEOD%5ygidHV~uL+ zN~hCdgMjj(Qwch35Kw4CxAH!1%U`bc^LZ8O83O9k{Yp0U3ML5uoui0XQKEncT?G|T z;)o#x%i6m`?Y-D|P}moO zy9OzdbLacbn62Ggx;AXW&f>&9MxwKsF4%aCrRlAI!Ek?oRjsUh)4mak1CeE05 zcW%?N>U2LZgN`R`OS}^4iawR_X1Pl;-5nY2vmx^=gaOPIs+F?fhWbvlp|+F^#u;>H zdMi-ZAi4UY-tMBK;ydn%V&3kOnM^-qyxsMtC^JQsq6AWB(A!-#9#f?*1W;@2+g(95 zfO><*i$TS@YUY;t{=B@&@&|hyA(D0>X>Su05{BWgfl38%BdrfKg`I_>k^QdP?y3oU zWbRurzQ)LC8teOp&(TRz3|5yyMjIwOoyF9N{?&vdWydv7Ysg2FakW^_&tC}gcDl^N zHGvU_bvZG`HyCqyL@!>h_TkrX872|HNj*syw89Wo_DCWJ6_u0KW;0op!SD4()u~%) z4}2tY;PcUB6@03?BbA`rtfR`N!xm@2Vlvq;=)&$`j~QdwS|>p(-jPH&ZkJ2=4KGpk z_0FZj8_teT$-A%URlwjm^Nw_S@Mj7-YNv`CfOn+RgQW@F$YoK|@sQvn6!#7nfg89? z=?(8i**lq_T@+D*8r8so%`yLR0Oj=1ZWMH2#NLKq+>c&O;07+t*4TBbJ$E<#*ct;4 zZ0OWwvD{Vj;2mR8=B<029wHivT=Iz@CDRrWI+J-T?uBca$sBkXqvRipGR-JI@+H~2 zg3wWNo!khQJrJaf_&_6elpIt83^0O5$w9?73@oY@Jv_=TrXHV^yK((weQ1jes#u$D z&_=VMGDkktLN(>=@BGpO4}5Uv!i5>P;|m8S>(qqco!eh*A35ukro}#E43*{l@?kqw zWsz}yqhXAy(ij%`rmO<&@a4k;-qymv?$Q*Kgj7K-KEU7pSHMyKu|yE1gfqcFuj;bOyBE- z$dFMv`@6qv`j{^t@G-QH@{AtjCO=CX)V|d2Wz4jupLuD_UkPAGL6+r>@e!T7FY9CW z%k!eh^9{U=BFWu+=Wr@&&6`be%c=`>@g4S&O5*kr2jI&g07U6f<@Y%reYtmBtxan$ zhHyr@0;u@cEkShP{B$5^L$v_m2jnES-9n!)Lgw^R0`7^9qErSjQAEI-tL$(Xu@%$XpKo%jn9g*m-yc6O%Xp{Sozm)RTi^!ekRSb;BV9-_ata4aB6r@r zMsc7Z2-n=s>_F~@Q0>R;W+YldqIV_v-v44g_xAkmI8<_t5YYmUe`@<3Y0q-3k2n{#FuMaDHf=JJriwuSi4tZ38toib(WZETjgv4 zlL*Z_ezZDDVAn&S$sdB&ogTq6%#t5Mb4X#FX}fs-FVkuGh{Y<#|d^| z&#F2?XXFmoN4==KL~}Ts)wTMOfq^Zwtt&0&Sj2vO{xqZ%@t5)u#HJlIm%(nQl)v)zW{&ITH>idb{4@=9BD5 zMR}SS==kSAyc*c3-8)S(2^eV;t!C16TI+PsmOKn;Mhi&)mee#|fIO!+YX;}-zT%c! z*#&7S2m1$yr;>@x?k;FAIApRS&WviQF2K8s|TTQv! zwc-V|PkWES)L_TG<02PDC+IrqJJ?dB+6h?4+bOZsVB(LI@! zf9qGKnl-upTAgMB46F5KFmKtP<~RxD#b|wN7+2XJFHQn@t&9MD75Bp6hHg*6lCZRc&mmK<{0O&9%pFQ!@f1{?j#8 zHPojWN+ytA!vvf5y0=;Q26i9<+GaDzyww1`k!Au67fQRms#Ou}Z*@=+0e(C6^AOgn zX!f_DVDph|yDgv7fKzYJja@!BGq)_CKdUj{G3ad<@4AI zyDgu`*5WRobCYR)d6p`ucNxNR=VVjz{T6p_H@-Z3D5q&GAL3q%=j+l_O{Fe|?8H4s zbO4@hBpyUyBCRjarq>155j+x;S_&ZJ8V0v~_UH)r3D8qG0czy@SB|$%fT#?9c39!i(N6E%;`Dfa?2hfZFBq~F2x`K z%zl2osJ7*1d{k0R^tNQVsm>@c8>sOG4<=&t*v1IB&+C)}k?qBk0tH~VUXVU-l-0@U zZp@zt^WUYCZd=-y2G4cGsMDbVERWZ#`7PQm+j~FZUaOEUxls)s7|9trs}Jdmpgq11 zo}r7;VI8?q8H#T3IJg5{WCWydD$>38qoOA5 zl-$QWGBjM54$%Gm`g>bfG?d0~^bt-3@B@MT3^VlGeO zOa{Ph%DzM`p+uHaC(`T0}4`;e1Y$~u}7-;T=4GJx}*z}4&N*SA*Rl1F7bVYOMEY| zxn@>=;u@c-j28La8=@QhoyufI!Cp{Oj(k1rdWVD5QMJKBU+}DaR2A-0A2*Tu-h9uE z`%O|T&uH{<=XU+JP4I#HsmNy<$9tA>@D!<*!3!a?a3A(*C1l%#g9QwN9+eKc#|9e+ zFY;hLU<$!~xsdL`!W)br`s#)H#>^YEpmXPT?A{SGvuO@fG=~@GB^&X*Lv($(X4}L_~F=8xiUU9)|be#k7vL+0c^yo&hsptaFm_ROpT#qeI zQ9;d-;mrmj*P}%;7QkyUS*>r;DFOd;0{L58kDf#_0e^_bZGA@VZXF z(8X^9F$Jb3GAbR8oi0j$=?^Hs4MuU9t)>&1ij5_Mpw z$pFjh_!ALXG8Q(khL=t9yT~5B|1r&d0k7Hdh6XVMxsl-cpAPoOXaKVXy{|Q`Xq-I| zxgH}g$prY#PH(MOLy_xIbDRb+n^)T*2j4wLBsCFWH=EP5$)A80$7ujFdMs%(6tNzC zBx8ZR$Z388B7epLcwMIlyCN6Bq8+miwR(&p1rOl1T$VR?#qn;iSgXew6Ga6W&e^QO zQQU<>3F_<7OV&hyUA3hLatG?Ud-NrY1@PK!*9E;Cb4-u1lxzpsKoo;F7ergg$RY%6 z^U>;nrz<_?{|Z&H4U$hl?*c* zZ!-=)R??vn3w!p@%}X8ANVn%HdYf_o2F*A@>y<7`&USy&T$bbor2kaiykYixSmw*n z4Y{3-8^{5DY2f|O@DFd`&V0YzdppRqzs)yz-(P1f`xXJDe*0ewu=)1yz?_uKJ>Hu(0c&c04otT+u(Dp-ObrqmyiLboYWsS%<6wkEO|kMC3QT& zn#J%sc2_WDj5WwYhE2Ht7|XY;AvHX}>V{3Y|5og-bx050|B{Ezw*T(PSpbn_`(Fnc zo~*MfBID;F7DsHl{m0Lqr4l)-rIs0n?UDMQ)l$TuOOif%kYyBG(f#{q-=d0a$NjIZ z*nInUTFy#~JZNvNPYi3^!3XU-2bdN;Fmc%@-=u5VZw*Vl|2~>6k;``cuSuT>3RN#t$UcH_L_}NIWT*<))b5xm_P+3_g)4 zGn!}6-p4a&7e(1G8jl>GzrgQGJYOx(ht9><717zV*CVr7=gvHEz}inboH?t(9j*z^ zng!oc7hHV98MBSNigr^@_milTX2DfE7rz8=!U?WI-9syAfY#`ihyJLkHXQuqbT}vE z((S~#oCn#)pE%c9%@%B(IKNnLZ{4Q0VOdVhiF1X}Ze6l46BO7)mlNkvwLxnR?zp0= za9cDtk^10xxPz}2#R(lV{sxUf_wzE?y^Cz7X}pWh{W2@p)IbN<&MP64cs10q^9+_b zI6%M@CLNr5P%U5r?_?#=p!(>`2Ij@Bazm~m_OgLGpQ(K7vVkkSDN1EJ`x(ZPF%14|xx z2pnMe^!?88X*}1Ybx0?*8<1b|^VQ1g2)G(re&e#&k5`Sfgx zz45Wyn9@(rhSwXPucOcSa60Lw-&P~l;8%M>4UGVUg?%{fC-RUC{@@!A{K5n5FZ=%)!#$5r30~u&jOp%+ zep`5c4z?aXVjQAwlZkE$=8%C!h0`OwhG4;Ku%Y&a*nyYa>*Sdr>4T%a4JLT6Q!v%~9I88E6-K)s z=YH2{TRz{>w)CZ+5ZanfyS8Pze!9NFwXNv@?X3XP^Q5iKHuzqI*e30tL$XN@W66D! zwA!srau~bqo1`_{G_TFIr(v~ir`g918a}i_MXR5Y_F%NEux?Y+Rnt2|gbTsDbs~L> zA_1CP)D-)g=&@CoeQ0jr_Y>=BbTJq)d#tgPjQbjL*vzsI1x*5=Gx_|TG2JpmiwnNQ zFS5lMG=Qe;>10UL&*YJ<#=d$w&7zg${T;JNk_|D7{Ct1MESd#qQa&)uKKD8IWE*Vu z4HC8AF?j${*%$UTA!QTnt1on>r(~DW+bosMtgkM^owJgW=VsZ<^qWnruYj81drfh> z8z!Re%M=-YAV!0*-yeysyWv}Y=hd<-HsfM`QXXxJJGXxrx%bz~ zZ|(!Fa1-zqUemLpqSWo6fSR_2hR@kTPJ4T36GX6+U59PLD5lVAVbf^v5zTIOHS8h% zxR}mX6fH&tyPagL*GR+nSazz2b|Z31pwt^j#cpy+&mXV$k$1Fq6Srm?e1%Q7ibg;T zI4|k4xwtKQo#d^lhKEg^Dx$|ymbimzGp&k~V_MW7(tLvt&39C&gZZXsDYFW&OwAkRs$Gch0$mRyjKc=r| z#e6#?;l6vAniBB*%~R5Fxf!oEQ~K{>#hzRolJh2bJ6orwGxE>_{y(pl)vhY$bewv; z+fV4hpdr}@UwqKf#2s?LeR+MeiW>xW(t&ngefPAC4>0`gMRC0xZ_lRe>9z5)JSo_L zl_51u_1zlrhkE(3@p8+;fn7m@+>A=&Sox@->zq!ha2MCbC!LRM}k29&(_~ycszi)+alQZZ1p~xAPBiBZJ@~jn}7Hg z#7-g6sOIlX4ah6z(IN zV-6m&Ae7&)h2jk1?}A8f3?mYUDhNbI1OrW4*zIGWh`^b`_~&Xn@DB9vf-U@f7+dht z1$&S;mkv6;VOvGt6L?Db-pLLbEy~g3T`-4%qD9FNEZ}#fbOxLVu??W_MGBiD2;leN ztCZ1Qu!6p4IlVl+qQHrTPp&ACCx}9N1vc${Jgri30>hP>=x7iNo zrnZ4b7ap=86!}EfU`w91hv<8Mk!&7(Nf)SZq}LdrF{nM3eXkHnPQdhRU>B&^UhjE~ zVDbXSH^2=Hso=it8HfSr-}JQgA({8x(Rt_r|Mg%#OxbtvLk8VCjgep^S@JE^@mJ@r zw%fAH)wv>{xn^J6NRD_+7J|uFegs2X;Y+-;Wknc*C~m z-;y`Xp3;SHYiC2A<*PbQQsfYMzx^`hi@p2C9G%w z&9$U?eLkj#Q-{!L_#uTzih=^r`&iPOKQ)*NgDtZ)Tc84T zl~He3$7~S2IjKGYMs1S;$}3-o)Q2}#F=g;G*`aRA#{f8%r>YO?m09=^&_I*bxPed6 zU!SS8^mg#bHjs;_lRWCtohTx~?|p=to3A&#PA}^9-U}*9;rGA<>c&P7)^^?QA$n~? z*}2*1fm?;0L9fiRho6WYcwM)Bey_~3>&!+kx$y~tAJFn2J&zQA#(GgKtM#5vAy#x~ z;`aAN_OFKeH^^;H793;z{Hjrl8AW$^YssvVCJus6;G6lZ=)MV^lq{b___)K#>JD|n zghKEPQ-_KgCKrBJ4qc8b3gEjO`0IehnPK?2ivb2|RgK($A?W(gNFl8EbfA8|qE~#1 zn^n}@N)9OmX(Oi2MLf*4f9zoYY0F;21r9>)ZNhp`y;#1%cD|J#!Oe#uUz(+bPbY7gFkn!;YO1M+`PldnGBmt)$Nzbz;G*t3Ei zfH}q=ycxMeWy<*XOPeN$d&4v6&8(BOHE4z-LlAK-bTpy|0u#m|I} zx09lGlUGBP;Cb|JY>^dk{M4E3-K2N# z^R(^(zHzi!71If`-0f+xE_?5shiR)eE3o11WHsL}maKD{T<^O(R(yL6zf4BJ_2<;* z(l)j6@n*FcZ%gWhmvOIsCs}mxHtr6!umk@NGvL0MZrAfF>e`JCIJ7?wUexSR%Sdps z`3-8pJ@aE+kRM&GP{iF?)j_fY=}&M0emfX159Wx1PbPK{<_IVO+o8rk%HamziqeUv z7|a2~1=|%qkGkllL)8P>tKj1D+YdK(>DAvbetWz>?)vd+J{-H?Y3vR*GGa_Xck5Gn zFSXjz*mE#H)9YNTq5~`!r=Or6UvRPceR6vIQyzZtdXj8nEBXBs6P3WW*DE)W4fKi#xppC*Z5JO*$TT zI;7SCkPg!a(Kb*6_Iq599L&i3)ix|61K;^(wfpXHVMOq2HXUqe#Hj$gn|!m%?sQXb zPpR!jK2YBQgSO*d7ZM#>!1}lAV~2Xdsc$nD6%Iwden(X;5BkZg6`4;YdBv`keE-W% zcSZ9xd210$nSK4a|Fx*QN#0tSk_YYWrJSLSKlq@12j?p9E3`R66Oh-jm}@*k3nBPA zmINV~{6GNm$}Zo6&(MMhzOpMx5C;~v9gG`GElbyb?_PTuQmzt~P81Wq`#pTM{?> zJiyjQ6h!j7R?1;k&}>=sx}xM|2tu&!0@j{}_J%{+1rP<1{H&JRAZt&yIrO@QZW05^ z@{(j{b`05xmp531fL) zTy=H6%R~*`J9W8BzScv){QjvT|QEo+j^b zRTr;>Wc6yOtat|N8Yc$`G|)+hTe*U2fqS@uuSpCly5Z)n34iUEo~Yj}Vti{*m3n9B zyIFNH(wI>#C!5uNeV=jBn1Rc2wWRS4-9ykfo#3nNf>b^N*ubcyTRK@8#XRzeS5U>; z)`G8m4JvnJqPF-veP8l1P+NRN)4AXDW1t2;AB*{cv33^u9h^M{5quae%=R1xUV_?# z+^+;R10cAo`GZgCpJVVaCrXJx0%&e)nx?1epJnjOLljGsgP)|~e(qb61_wV$!zbOh zBn=LdWVhFVHgrGDYH{awJ<15a=C{sg4i~J~fZpIGCyp0HH8HONi5%95!Nnq_*7-G{ zz|J z(`mJ-Ca3c<>MpOq>Uz|Of(>jwIw=;5epT}0+$!OafyGgM(|xa|6+BH4sOwP;8klTk zDB5SU7jBy)Sg<_IDzupLJF< zru+z}px>0`Cx(@(GKwsNyBd|r3NF2%z)Y@pn39gF4Wi88d5)+m8e&a()NQ}q6ldjp zTrH>N%@`jR1;V)%J@}|wR5kKcGmrv}F5y#ueAO~p@LiB`M1h86$lLzcO=km7CpoU2Yb87PhUT-aZJfUXLS!Z@>#Ko0hq34xqN_yrfHr zHc>Wh|7^vuiCVu@8FSB zG+Rrz+&R~8uZ2I|#^G*huvN_O-2Pr{U(DKjo!NBKQ_D%~WT}o?mqgAwyuIjbwx82q zOlV*>t1eDkmm5|iIPdV#Ew-8lC$1jpn(S$wE-o66h2Z#u;Ill2t%eCzy;3A-fmVTX z71w9oFO;jLpYpO;ESR+yZLW-N>Uu=bV<4cYp!TZhIrjv5JzA#Vf!yYw5N?78a$A)2%x=$7%n+?k@BnUe z)~}a?kqh2Q6>a#Vnh3C4@*f9OUXMOSQ2~b6+0UPZ9zpN`Zp=25Gg2F_sBO7?`alJF2w?eK&>F|H&$M5sGFVNc*IFPGtARp0Ti&A7)|+1jRSTF{E6 z^Wxw74~lKl{W~v33}_pg?mwEeNe`lFC$^Namki8??WOvUy(BNG=Wcr^_7r_ryIb*l zCuBx*SOh5xhUgSDuMy%QAhCoEx~1vd@Mk9@=+IG!kBg+49Qtz41UNdxC%MO z@^KR6%h^Bi%MU#8!JP{iX1wu#DPZH&ytq|v=qiQ_hgah3q-Fzu7T4Xc@WR5{v?z^Q z@wZx*K|~^}-HKX3-&ev`%v*|s_W0}FAT>0)cgA)6LDzbmJ#}d2rVXRrk-pd!CjbIT z76^8{qdnT&^=f-)MkWUKYgu4xXg~m@eefl#7}z>Q#gZeL(Xa&nIKzE(1x7Vjbwssc@ovh%&R4x z_sQt3Q{A2b1XldMwBq@8w;1o&(_)viH-9{4?;4O8oCXj{zZw9Vwa=|3Y5Dt60;P$hG?`cHF@KNpX2`9{tq2@0Z3q2ZOHy2Hcr7I85w#t? zBFL`Z%-SF_kuc!-NtD%cwcd_5G`B|UPbYb;DxHK44@i6@%}J$Vvp!kXaJ8#5jhBa(2Mr1rz#dD> zW?Ofb`^9)#E%Ms;tI2M~ga+V$D#4!?+c9lP%nQ8jS(8@fsfHTFHu2MY^Lza6mw{foePEfq&M{DZLFy zSO8ji9r{Xk+5_-(uVX?3@JFfvGp9pu*wVAAY+RF7@Ym9tFQNkqO8zukL5rW8F?*LT zEB^?#P4&;9pg+*Yy|}Hy_Rb_ zSRrg%)@e1UkpTrT{;qwZ9r~sYXGJJXYwR$PMprH>&s>OY^wtJOy>cWKmihb z17|Mtw4v_Pl86S7zMNtHG=mI16Q-}K3CTR->)vlFARxJG=CorTh~0;2CKf<>Mb0ti zLHKOvRw8i#x*yAlt2}d@$`HE;q7EQGUNu>mN37|16(GR-hNP2W)=~+#yB|U{fb@!- z2h1bT?sh710J>}DWM3YH-P^i}1yH_8U$RX&Ds^`sK3i}A>!oUY@UFDh_(dP}Zre22 zTEvK909041UAah}eN&=Ku)-P#pt~mL4U=bM6~gXTXkr1BSLK()X;+2u`ObZgMgj;g z<na9a=9~}S~z;xVYi-**-`?BQFaX>8_D;qu zv-k>Z_f2O_xB&etG+moKU9Z4)muw9Kuw9`a)92+Cxb9uK!~y7DrC+IcN}YgL@VXCf z6%fF8&7988(-(CQHB2l5WjXu%zi4ie|4ic+c|M~&qDR2)+SJ13p(O&Z zwwo|01N?e009_M^;Mw|j{)~mcS2+m6z0{{6%Lpn19M9FC_#;aV7tl16ssn{@$4aBF z4UkBQaPuEZBBC;Zqn!N(IEeDa##Tlrh<62DO0XFn72ER8?JqPnH7lXn-oEp^EaW*V zqpiJRA=K!;>WCYYjG$-`@(W{jDH$8~jmKWgZ!1YF{JT*IMn4-(y$buv-Ym*UMYu$tf8|W^!oj0&5>=j@pRY_5r&2MhBsQ5P#B|d|Q5;VEt_ybz*@N62LtbxG7ee%bhQx z)1ezJcBiy4jh0{7{-a`Z;`fnlTGp~}+vw6rAqW((d81~tTGGb4F?BV^hxU!Ql{?!m z+5%@cdu=x)76kzyz9b;B6@_Ve=v5-OcrDWJNBTtGvg&F9(Io@X?$-LyDTOvnZSys5 zzFJfq6RWrh)%LWwJE(ZYfaXxX2`0pM-UbJx@2k(4(un zTh!0Tx^Qk$R3#v}CXleFR&q7KPJ+?^0Nw`z-g>iNmVIDMiw9Sz`r{}BGP zuBL59qXT@qx2c=Yc3#nyNz}y;-h6b;Al27|RJU{hCsU`<$rGyj0o)~iuP+TB+1@;g zq!S{ESX9h4>xu!@Mc(>Z*l=9T8wPSLi5|B!#brN;>&UQPz;s1@)8S)+wAv=6JdMFq zIiPzKbtxRRgkD9Aqi(Aacay)(zNR zG`^>x`d*iQh6`*9ctkHVS+Q4vJG5xq-nzi5D+gF_b1~7E#cF9pw(%Bb18iHCZ89_m z20(qGhPphiP7=l|k+XtErGVxw`5|v-)3(dGS!})@?-1Gq=cl|$GFk-!&^}ko_Tc#) zS0Z|*BXV4-sstog#m{v6$d1D3W192a9)2dH4ON$}jgDwT^?>kIfpEWD9TPk@Jw*3` z$2VW4(zZoQml!=SO*5|(tR3*x5>zQp%j)DbWkR--1g+`;p%{})%W_R&LXydK8I!1b z0n@Wwt~Aw`;OHXP9Au4vL-eAAgT*EZSh{pqb*+HsvOrlKA9{4&HC1PZwu^(9Qq2J9 zc>#z`L?(!*?T$8=iD-0FXY%tMfn~p@i4x{8_=+g&)WwoWf>UU_M63~C6AqByHIDh1 z?!l(}!}5&R+V(Uwfpr12p;WzAf=H84Dgb~|#ByvODqW4PgSmK+Ibt~n20*RVZbMB8 z)H?~(0RSjp6UIqbr@`7{yg*g&+9fJJw(AFswbC~$b_>wq-sKCFaYXLgyzjO>uPeHF1}9}Y}1! zb^y9{>EOA`Bqml4=-%YwJS~<}S`@AioTLk~3rNHOAVsXhjzm$H8IMl2@h-7WT`S-b zvn%x%v8^EiRhQWns2i|}s9w#a#pANQO_$JFRS(d_WU%^HM?qcJU2U9QM!bG309tr) zosilK&2n_;4sE<$T%!X6puWr7vQDF7k#r+yI~n16E8!VEKme{7-OQ5ofvzjZ3^fz_O$l|h)zSV$;ri>YI%|%thVzPuJ(nE zc`<;@gg<24?#Hv$!83GjJx)l|#n@E!08Iq3{2Muk$@O^I**+z5J(&9oT|a;mY}(QCL0sx zJ-S%AsuwVc1}L6O=%hW{$U8yf&y(4ze2+H(1&!k0@$r5+33$6Kz)y5>XI>~EP4=df zxLKCZA*GmJ7iYn)v=tQtDzW6UIx9CfHngP$HvA?u*DfKQ9|WKki{t);DFSV~mcTU_ z(SbFf0KCE#i%n(aV!cZl0!8k<47kJshqc))LET*zIIP+MpYS|ZiWCKRS>Uj% z2ZUl?SSR5Fbsf_r$g<14a3c=DEIg1(nRS8H$w?}8ga)n`Cx;?vkKqv;jc9ImOc9~3b>IaOX zRp>M+=(@BDqh`P*mbJMTNf_RBS=Q!t0v56FOHAMsLQy~0s%0^awFaJk$6D4%W`8~E8r31Z2l!>8-Z%1UF2oe-j1)^-ho{BoGk;w z9UBZfZx~PzySQT)07y{`5GYZOT>@PO2xirQOt=&JOjCQCg5E4l@W5T%iBU7)5`nJq zmASfvVXu=6uU}a+;1Y|mB;X~D zO({BID^&^5x-74a=#=EOs?~l^b{A?C6I)=ec0AhwrQFC6YYFS z&|xQRX5D~I1e5$$lWBQe&;lQ`d_p-->Y%zz5BWg=TCrt7Q0ITR%c{dNUi$Hx`z^bNSu+0&ryAR%&qYgP`hUfZ7TkLhZvah)Q*kFk+O z%FL=Cz`d}gQ#*8$j-vAvR~;GW8I=N>@3H5+WVFoXv^+0v4?KV1I5b@d^pyiiMrPqq z?bqp<_q7=JMb!8CgY~geMMdST`epNu(x(D$Ph>uz*w8JUC*{$mxO4k!hwo9evY0n2 zUK>9zM_}*JU1?W%;m?Y)!|qqa!b#w5gEdS%YN;GF@zb!|{lZI!TmRbb)C(`N;Wofi zc_ZEAbTu!x*AMMu39r!Er1^G><%JikUS*VkK@;Rf#l`89&1!qdHH25{aCtK`7lsyy zOeB%%|4-d}2S`$s@8gHS!I9G;NsydJxC6-&F2KPhE)$2@+1cHho1K}Pncdq1L82UT zAmAZ_AV^XKK@bEK$smeE$vF$6L`f3-z4df=bydA@_w?+{en0;1kG|fXdfxY`x6)fV z*QkHpLNwxzqDn4SCkb)2BBAdA@62Z!byAY6V~G)W9$0d*VJwKO6%AcRR5WNbrqP)# z$#t@*w7HA~gstf4R8f1&8#L=JM5WECqR3j&(5XVd&lj)nIc=^0 zz}AY0?iBRX(HukB)VH});L(kUN-jI3#ird+0bMI9y3F+Fva}BB|6lzZgR>Q>?*%oR zAAnYu)aK@B>GFbJTJKh+IV{ha9=htgx4rdUgLqhxKPVX5ZC~v4BEh(OUXs^6seqxy zdsdqVoi*tL+LIQbXEC19R_9Xlja#qLgpu9hy8^A6b!%q@8;ux zp_MCUws&B--F9Xp!3PBcs{gxo4j5W??(#2Nr85p_$Tv;5#B|aT_CpYfL)ue+h;*$O z&1&=Dwaz+issZ_E^^CTTb!fhAssY`xjoIG#?hs^=xV`C3)PWv9D^DEi5Bs%u+*wFAwt4Z8-jvejsw&KWJmCKB_jz{ZcX_E`%4nWVL5A7Xz z){NVg`Gt|@gY|fA`|^$E-KGV8nxd6E4mE~lhk$#V8~}r)#ePkSmp|6 zE^RIx-zLGr@fs}~&-T#Hk;RL)ZoFnZ3~eqK-`8HTJv|VaY^k`GNvp);4z$$aoCV@q zot4znk}VEzDAZaL9(SfkLrD=!!4C`O9Oxc$IySUH7Hp`6P0+_xxecZ1r4k-F%fc4% zhQ|pvR5gUe^Y*<7X~W|4d+4;6w%a_;C2D90)8?ROS^e;Ue5qVIGFL6PoqJq+mz=xL z&Z2&3Kz(S89@ocBPMlkOa+?aKZk^+H1U4orlteIWLkVmnL#N11CD!dpb-b#_dmSOj0UDliF;?xD#+1Gc;_NE8IHVbUrqVbUtuua*9?C)!}w*8s&D_ z;Y^2PxAflCYG#4jn>O7O6X$AJa>&Wpj=5x3h!hiU)neo09E%2mEN6mm8Et@$a3ID| z*;2+7TY?56!_(gQ2@VaQDPOH+oV|NnXY%c4lP3kG7LWbBtgFaG+=kR3cA;VT{@Di5 zl&RZdwO8xL*|BNkD4iaQTwznId*J)~yYcO^UJQFPrF^B2E^5lt#Z!y6iZ7;CV6&`_ z3yaevLtx_qYf7Y28&zD)U`Ek3by1PAkr$yyq4z%jGz`#ruWYl^YZNui6w_Q zn4f@^SV&6ou*|1UBBF~MV=9{@*3%6nKZ&RbZeU`un?~$t1eeY|u0-6{kyw0aKYkZl zVj(G$kHz%B+(3oaGt$9&z4B_{#5zKvynC8hNXnpN@!Y@be1`2Z__b3w!N%>SPe*0I;MR_Y= zV!0u?R_a2!qisp?a)_#Hsibi_SRiK87R zYfH9ML@aKTYx6Ue%s{Sf6*KSgCyrw(;9@b{zfMQjv@7GaQYI7+i`gXq2(@;RYo#{v zsaX8>@6YGtLkbfoNto?gv7F*zF`KN0^V;dRw36!rE*`^N;a%%Qnp9-pp8OsE5_RcT6fJA(`l%;V?X1nuH#{FFkv&Xo(~5@PJX*|U z<}RQU?}jKP;x>;q7mtvr6%oC8l(zJzYvrzb<0uyQ5*dvpL)^;BL=wYf@M&6+nA)~RO?y&t6XD4ivsP@TZWY?n z{%WdmPG2&rnwVwPSz+zpUczyUr;-s4nOTfy8?}6UDaWnfNk}t4AFYt zWi8FrwzV*AWXYP8>FsPvG|{+?Gs)6kYCER4({E}gSD}%Zp}4lKanNMrc4Z_qtkoLi z3I|zJ@!v`?pk~giE?(q!Z?|RZ0m25*0+`*^N%oN1q=eJ*vSjM8@-bRDsMBLL^;#9p zoMgjlX8dAATbkx>g3$#Xe?{LhEVL&SEdDVbH^Facdb`k44XF_w0>yIbq z%6kt76I<~cw2E&O(ZoAV|6g>?wI)b-sc1%2 z#N5b%!NJ{PE^9_Xxb{A3vs*Gt%14P$jy_6!a3rIa;3p-?E~uOsb#(aP_(g5MOvukY zDtuDpQQ?E5$0rt>k&{wvtRiz@aPap3PCg76Sv)7w!PRY~*kURZ8H?Q{`XFEX*i7n# zCAq~^R%|SO2hx}5t0@P^vBlaZU}W)}9DQu};7GPu+wfz$sqv97lN=ns7W1KdEcX;T z{5R^B$UzZ2d!u1X3{(FWMeXQMSTB0Sti+z-pHv)q9`~RaFXEl>X5^#{QWo2p{twaT zZ#SbREb82iZAMN&m*3zRSU2*#?Pk=3blYQHcE0vOzIEfz*B%^YK3La`oWR1GnUyOh zN1vzNjFQm4Emm0k{On1Q=VuR&V2e!?J1_fyi1V@s$Bu7iY(`GXIUjp!-1*qe2oBSi zFYjzdPD(ltdvf%7*v-feIkuPw`T5rqqYj219KRMDP4^(^sc{EE4~}80sVp4)JWZdf z+(tLJ#jdTUWYvi?j5Czm$hF0m#~@{~og96z^Wf6H#nQtMa-I@%kn`Xuw&=?V2RBcl z(|Dr}ZvMaF$Pa3sVVr^dzmqQwQdYj~X>h)A8)I-7TQS{ClBF6D^&o;M>*;K{w^Gavq&tVCSRBmi<0cB3P70B$6|I6B zt*&A@Qy-#8&1q|-45n6;^nuz#lQMj;W>6`EHqC6MH0`c@sjK~EyFIkQ&9ZhS$Ut3v zB|6}vTuRsaDixeC>*b>M*SCkaB^yQZwW3#L(WCj|p^o4Y?TsL3Y(-ILy!`)g#sfEt zwqAXkucbT6<>C<4S#hgxlQ$_AM=KiIO`#w|+oZI|O>t>jk-d% z%XsmkO&Y8r_JWy%9lIE7hw*FNSiCxp}cs3a9C#F20E(;%T&U=KkKdv|ijIX3vCtqK^KK=M(C-n87}y z{-4`tRHwxP_8HX~a{Pa7A5*u*4E7oQ|J**K1^bNtKeUgj+p^F8ow-WAhfbT#kpofc zZ!IS^o3mZr7PGxOtK|x<(`qFvMO_FMRn&Zy7LPIh$JQ#LW@|&OROHfHG7XZ8Q|1G^ zv{twV$;ByOdwHvCTgfWTwi2F3D|N;dYxUlAUxmC1c@8*X0}*v!SyZky)LMKd(-P-; zKHZbcbfzoQA*NpF`QM)W{Nqw%BoD)ZdJ>jeOa1-ZUjofm#k)BoGsK5K6xgvI%Qt~Bxkc?IYO za#mt^TC7Bx80QZr5@-2^eCcT-84>=W9!>Aamon7_X>7wvQ&y+OqtPW5p3OxAuxbCe z(exNOdX`zDXIWX_&OB5xh&#V9NenDr7ImElwMwR{90|4e?0+x~BzjgvW=W|eR+x#h zY}f_i)lnh=DT$B8cuKo$t;Ztxn#W{REg}}jS(4rVFRd!^@fha{z3AK*_QHPQ!mwr4 zy'y#H>)O-6;KydZaZfBn@9xu^GWf%o5X9^fJGxAVRK_Va!l?)|lr_t$LiuP4y9 z6u$6eX1xFY<9*C}e_iVR_mcPDjUMhL@4tE8f1|wrMtlFQ=7rqIQ}nhcY_|8;8(xsl zy}$1C{(8{+Yi|$tU+=Hoyx%_dKK{e|YhCZJ?Yw9%=Y2dG|Mm4P`dXp3_~^x36lQ0Z z8g}&JMay`tpZZofiFQdHFsyIUQnZhy#|*S$Pll?Dd42wsDhhrH5jdr=B%UXc!cz*9 z@jMXEvq;-1g)8yvUU<&I_tWv*2Vd4gm<#Y+2hShk*9XZKrxYgQ%R~6`bG$!+_f7GB zJtRDjkYA^Go>J(*ubp^yBh2!6-wDrY2w%eYH}K_7e0c?5&cgdGct0EOo8VbR$gS{R z!~0rzegM7SL->#Jej?sq$FK7c{uq2&313Fw%f)z>@mz#oSHN=`!t8f;0e}(6Xc!zu#Y0- zV+gq+p8rJ1ry%WFJb#KXuj2U{zPy2F1>x66`0eq&GQzBi=O6H8WBj@%zI=e^x%jd* z?C=oYzlM;<;@je~D-j6RI;W;1QU%_)(JYUE2 z4LlD)_~pT2E4;6S_jB;x0SUjt^9X#&;{9Y`N8`&ncz+Jxx5M)rkWj??i+C>4b(_a8oqoT?}y_1-|^)Pyg!2HH}LDlc%F?fm*f4H zcpi@DllXoEu;0h?W<1x1-ck7Vw+Q(yJm=#1Jf1J$`6_sR0MrTyzcZe7{CY3G{|L_q z@LYiJhvEGzJU>JD3-Ep<-hYnwA0XtDcwYj~Kj7Ch>HEUMop`?&+E2s#YY4L@P=CRf znRs6Xad{FUpTqMyeE&JZJcsA+@Z~kUp9(p@!25xCzYWhGe7V_^k1uoa<==RIgy-w{ z^J=X_&e}r z2A=oexhj7BDV}TKIRVdu@#`aapN8jKknlHrPvQA3JP*aMzsB=wJl8y6YoF3^Fg4NMVRyOzB#_{hxgwg{1w3KJkLM&jzXG@C5b^_{rr`T7__8~mKf?FLc&>)$ zpAqISz&?cM!}#*J_e7Y3@w^hx?eYCWJac%C!1H1}FTwL=JU@iSn}GTV@87`lo8Uha z@2}z4Z{xW&zHEc%F8FdS|)2|B)zr_0$c+Lmv9q{=zzPyj;o_HP#X?x-Q3%qZE=f3#zDV|;UGJyBp zA#F6id;z^H(U*mVjqvMKJpY96-$%%^@#|-J-vYnhkLO`{Zi(l*_;p*nKMd@T@xCgw zERFY0gn1WVZozY1dM+&d0Ph>X8kZyF>G<*%Nlkm{0NR9(aEO-%r8&(|G?HxNQv7LOegluP@=(@8J0< zzFdR%@8bDAJRd~(@p!)oVGhJ|1$-HXU;hT}zr&Zwc%F;zYvTQUy#EHMXYsxk_&kj- zF9EwFzQ2g)Wq9WC>$mBBVPRK%sp89hklBy-5Al6Vd^sG?uj9+Zcs~JQ@_7FSzVC?l zqw#(Wo+~2EX?Xq-Uw(lwzru4jJeMZ63k#><*YOCs2=D*F`~Gvg zWAXe4o{vDzB)qSQFk2%0P5AON$axlDUPQ>L`2IdU7Zz^E`$j_v`zIQ;vlK8a`U;c(KpX2>s^nGFBCcN*7FvsHk1U&b~ zm&*`-4Bl&a|2I%|ygz{N%i#S0ynl)3arp8T-d9G9egv79;>%*ZuZ%Do;Y%7{euC$4 zJfFsM89blCb88B@u&_2z>qF*xc)ttJKjFDLLcWdXNIXk;9tG^K(6uc>j>GpXy)P_0 ziZ5^D*X<$sUA!NUFwf%GZ{zs_p1;QPRXqO;YoCMge?s_U@O?7AJc{RU@#SxLe*(`- z@cadyO9C|q?@!^m8p8hz&n@sJjpwomxgHp9f@clie~;&<2)_!#{21@=;eAK^dKKP# z@l4~_55fEhyswS#>)`nazHE=@@9^buyidS;3Gd&5%meUcBA!p-`!ISgEc^w(?t|y; z`1OZ)KLgL55OO#|_TzaqzWkVeU04`_c>M$+uf_MjLc#-ho`vV?6lP)JNrX8B&yhfF z1qsjK%L@p(9G<=Sz9Qc5fXu%m?q}dVkMC#V{Z?Q%#rwPX{w_iugfBb!Eoq8jD{{O+(r`UokA`w+=chQg2|rvvH(vt47#xJ5G0?EU-!fJ;doz( z-cKpa#=9E-T!`V%g@p{Hslm^Mg)H7L#q%XRZ$$W)@SKO|C_G2wxf;T31TAXBb75gN z-rvBlpX2>byg!Kdy(#=Dh5zDxH+=sXU;csjbsHtZnK zaBuY9hped}V~m+apNiO#+UcLIf|S(P_tW>)4iygkHv>%PVNPluP%N>lVM^62Dbd zXpf(R8FMgE+nO6;q)kmir8sI?pH~~r||7Hq*D|zIZYymjN_4u0{>Ulb~|#7>)Xi`3*VW;VU`d?M=Y3@ zJVPRDv=|cbm<$nJ$Tc~IBNBQlhoZgJyNgVMKavOvb*V~<88SlpuH`MD{T11kg14QWj)I6=|!rpx|R_98{wUsXU1O^j(zJx_18eqA; z3ndJg1{h=Si516-B_tZ)0IBzYSh&k1911XxqVnX?x>5>@B=d@zg}Czw z${EM-Bu3Q~Rs$S!9LJ!7M#ywWzHXQQt0hv1fVcO{jO?{iSR(=!VosJKa1kftM1W&1 z;h1lzycW3E>;wiYC9jt_ZeZbs0|U%h-Y7|cMZDc+X4v0LVGWB|i2NL~$m%?Hjzu_T zO^!inpaTtZ)pU?Ut*n5${f`nmls!6CH=?ZH9*r?K)>$^cOTvJmm$7LxQ@ABBK;Au- ztZ_YWuGdv*6=v{g?2R0YHj)t5hPpr@OmeS8)oHV$1U!-^#xh(g}A) zn@4~yGn2Hv&EvQpvriQG9S%lSNK|RbPEV$zm=h}dze;S;EE7(yJs*-FMzbsdM=E3H zxiOt)ITBjrP?RGAM0#zHN<6*tU~adwGR)%=#?ITkY3P_lkz2&g&+~Q!_J8PhnTIvwZ)yCkWiZ&rQxZRjz6qy!laV`7;po9e^#p19om)=4gyyGRgrPk+KHj7ILC8tIwRc7?K-4*9kUD2Ig zYFJ^`PnR0z)f2IqB^2SNXZTBynh;(f;dXryx4Ruh)uR|KpVu4E)T=bHdShxbgT!g` z>yK<-ui8Ro#jc`s+Oq>w+NrSC*K6skaeZ;yP7<2ak6>@UWGU?WFb5>CCNt#% zuC0AhbM5%up;XqNsakgY9#0C=2qT&?TGr5x1qrwX6Vy>n2sMP9q#d^+= zC~@-Fc|)PZE&Ug8C2`JtAKhD-uj?McF_%*Vy>zG5K*u@qKHRB*X9_}>C82i19OuZ# z%H<6*XfLlcum(9UuQbr&w^Ny-_Ftf9C8fu1gxjE`WT(NZTuIzP?C~*iW3WbBg*(i@ z&V_FrQZC%EX3?I4S`?l~$6{!FX^`=R({Os!X`u=eUF815&9> zXD6lzbt^{WB$O>m*<9LNqoK!JpeQRT+MKcP%4F;1YW_&tDeqm+k?P3QbPxX2hsXj0 z&&ZXipAgsqLXT1oyw#cJSIQ)mn@W=<^7VAuQg96KA@EY3SVN{G zo6ggLO>w7-djr=4|UI*6@`VrMwM04trwmGBc|novR)YFLptgUjD0L0QUH9E&_~4Hc-LP_<+f zs2!UTlo~VDE=`d5Q&rJfrHKzq@Yrj1S|}?@kp44XjV3X!B;GAYkpFWfpOvE|xm-{| zpR#m5Ly&qc$W% ze%DSFtiptfo4JZ46{eibLWKz>w{RtcEYnJFIc-#!kbfJOKgcRc%&2#A@q^4qQZBtm zNne(_f0bO7IwaoU;I4zJrc*4F-p8pA((-Z+y}xbpCd9Mz07%Ie3z*T5$QNY|JX!?cHWOv5-;XKW&a$P3q`jyhfT&6=4WaN0$rKks7T!4lf$whUb z+D<@+yXoE~^#7X2m5=^69oH^eJ&<-CTRm+BxTzAy;bGT8QawTJ>kg|g-o z(x2s#PvRF#;@u__@?TK$S(BNh*C42HS`H|9St)Q^jzLC&l{jd4jhiTmwZjFw}=!$zbyl zRSi}Z2l*d!`AIq@LL_vxM!%Vz5~%r%t4UI2H&A1@L{RhvSCpvUq|2AdOU^L$%3HW_f~+ z9e4}|nbNFogZ!Pi{6QvyZeEPpRH)dMt4P$o@I3m+_h(&zfTP_Y+Rk*N9? z_(O$T{X@wZu4J(33?)W84Ef`^{6y71k3?Ag3)yu7SCgpvk5?nq*b}*;?GkwG^}g&} z+MZ+!{QOpG0#46aO+cb*!W5R8fxqmg0Fuun$#zqa$nufGS(5-Qi;o0&WuCTC0tXY8Y?=>*)=beT+WrW8XZr+Ih6}dS8z>91|8xI=V=nN-Bny0Uzyuf zw)2Tdx$hdTEXmA7!;A0?T>U$)r}p~|atMqr+(vOg@2ngP{+9A5tp3_2jU}XJSTg>p zWVlVqRtdzU=}MGZxRwp^d6zpl2}RMGLA@*vqCViFwoJq-H_wsu(O@NY=Nw6&4qB42 z=nt{`oJ-m|QS9smgplhmbqSK>nPRnpf$+A?XJl_$u z92b?$=(N7c&7LcAS*b(`SgqE2@?EaIR^j5dO(sr~wmO%VFru}-4##L~a#_jj&qb}x zMJ2OYz1o-S%=bIY*5l%mF&ijX9Z?$$PE-e-#FZ=QwQnem8!1t4eae?J8!du=2%5Q^ z8Im>~tR%Gu*{b8WkR&B3*`2w5V=fk~ww7dVksz;HJHjC$%>Vu^tc7c9NuRn!s+oc6+_6BqvGy=&Uon#1V}4 z7_6jfF5I08Nqb3>lH>_GJENkf`XOqJBq~Ytn8C+Ol9E&qHCi6k8J-FUS`#E;+}YAw z9>T5vK|x&cO7i!nQd4dCd%X4&1cXPpSfZw@R^RgdzRfaItTY;tu^c!MoW*^KL5MY5 zONc#)i{*>S8?iMVJ4ijW9a2pv4^q=@k!m#XklMke?$mU8+0Gy2=D6JEEo(Z0klNE0 zsjdy?wnM7vAcAX&OKm>OTFxTG&f{X6PcYkYgxorp%NOi6DhkYrgy{KP^e#>3G1onX zsb&D@uH$ zSpZ9<^@k}R3p1Kj5VK zu#aV$Trt;6H;2!snU5gjYcBIM#`XB~xBi~9Y zD7-NXu-soLJ$B~%yjN4f$LJ#mO&x&j#vv;zNKdBPS)&Bk$0vf(6A~jF4C*mrsEf}d zS`&GMzi!i#aZ@-Bu`lK_a~GtmuDPC;$l=Udj~s_>pj_j}d2v|FW)}f`iUV=>Bwcfo zu9ds$#(_mJ-g6Q^<4jKhckVqz@H4K*Iny%=`2|NJr}et&`l3Y5$Y~~EDdme!<&vG8 z#vs!<1Y}q`zS4k<33x+QL;LW2;*epGaU8O|N_5&8-&+oEc|p3pF7d&6v0lD%Fxfka z()~QLNa?U7N~i}p%3~$urZ*e0vN5+lK&*OrVRu;xsJR@q0&GQLE5$zDBEnd2OSF(0 zzOfw8;Xfr_vv_K(X%|6No=jbU9mHXpn0dqjh`l2bTTW@o_Eyq)9g8csp_+HTbgu^L zMK5qEJmv)9kCeiLOBYQm70YGqa3T27QgEbnzAK$8hOI0@A1j4M;iOxV(z$_buA&d( z1mJ{7!2BLM;Fk0Gz65}6XlH7vTQ~Z+bL461Hl`8EkQsA~0AZh#!Xl!X8V~)V6xt|g z4(6i2Qr0<`XHF+eOQ^#*3IdKaCKSj}6vYTM`fP#~8B7nm=5QV5$b(l-#-h4Pod(Za7?{=x?Hwuw} z`Mf*SWbM8v7~7qKNnibtt`YNE(dzXNf3slSR~l ze)1tP{VmsqWsIR0E9(XLcN~m5tdKTq z3h3dYb1r)C-|)1<-RG zq$!1G%7W5b2`Gh-Q=cYEU+2;VN)Bip4niGI?C1C7s=Ad2sdXh%Mjh{h4*xIFn#t3_ zspCc191cUKDwRv>cDtZ3gV*{JFC$Yqn8%+ZTKn;cJDEyC9l%j=?YONrlsKU>_wtm5 zxatF9bRjQsXxhUp#W5Fi415}@4(9dc(#C_m#qlHZZJ942^nOME>@1BKb0JnVfn#8v7c@B3t_ix)3T?4ZC$9I$t7c z)XOsTn7O>orc-2dNz-QiiiZ;tj}8pCC@}^6JTH*#*!C90W@Cf&ZYiQv*siM=Lw{8n2lV-?i_(EZC)S%Dtky& zj4W*ec2M=wsXUHOmS&LCIm9zd=&OOtUJ@76EMfQ~-XJQk@^b5%#X-Em5ipB+83Cw_ zk*FAEF#)rmBrc!v+~}BvLB8M+n8moW09?jPTnw`q;YWT%RPNyBcFf`;?&b)ONqDgV zm`rHIBn-c+Dny@ibGu9(^vCdTatU^1}*6C?aB?-G+bkD415kC7FG5If->o9QWvZO+-{7Im~yGPo(EZ17l1qG`~3ifMF0peoqyMd~ak}9>xXmD{c7mz{zT9SOV z3M+wpWKq*pdQF5sfD8@mN*cCHrUCsAFtPH``jW_R#fj|CKPAa;Dia3s#XPdTBwno#Oq|DE@#(Jlsz^D}*g?{xPIVf*9ZWP0z)rNTN>9QdDRz~_@83)ulz5Vgr1tGbt58c7d!`-A_Gn!hZLi7GVnv$2 zQ}>k9&6(;V?w}H}ipE}&GPM*taq6f`E}%@cP?qd5lI(p4CEINH&~DoWe7vMdt=~-? z3$NBt*%y^aDJ@hZ6C^E7XPGc*N)V8h@`LiNNRnFB6+x^bf=~*E9Ae7B>8|rN^Y1#IwfsW2dgcS>AEGA zO*u5UyPa-}>!LT1hj19)o8%xTlcO`ee+KW)n78RI68O^=x}dHjTZ18xv|r5Y(% z3cHKEb>X8D2%bRhc(vMBp$&sGj0Ot=uT}y_c&iCjMdL|TTf!RAb)>Q_VGw^UAK8fO z`}mejDVk%AlPe(WdL_%+84%~*yP{-%H*$V)PBIhPRZ7$G6WX^2&)>tO>ow3J0?h}z?!Li&A)Zg%2T(Cg5z8XW`kO|nj0v(zX~zV424 zIc!m&X{My}wO2bJmKjM^oL`tsRSli)%s{xJ1KK(zZLKF_Ev>dYR4B(9 z!31caZHS|1PF}%%PtrG`l{k8fHlzY_yriq8 zdK|-+`6^9c*2=~H9QB6l*&f>6PX6|QW!94<)p2784YQ7`T2Q)BQreO;qLk9vv#KU) z5aClL-P2o1SEgHt@#&J*mYPd74U;Z+(S^m~MYbrMXG*Hng%weq)rKi*&G2uqvvKh*7UHKx7lLR#gH0>;DYSLkf)a2BbP`F#$6{-@fq6a?$ zT&x&=M^dOxLTaK!*)dcK@x@NGy(L9)Q-?y_(PTz+ zbw;_;Q21L(VUsS2tB?*I^*Scyt}YrVu_E|8NneW*%=LEUI%#)Vw^Py(!J8$8IPgUc z+6e2T8s|qknZwGT(OqgVxJ6>nWYKdp5(Dbh8eM59x=m8lWYsJw>QM7Wb}775QWZCA zoXDzm8n(=o(#G;i#OoeOS(EL66fbL(2b%7aG_{yJJx_{`AfR}u%GoLo_e%;}tkbGF zM9k?pBYqD`>eP)ZO|$~8C6)75)91HC%_EYUxb+taatEFGNOg&w3m=p8%xWz<_4(yk z{|ym*Qc~RHaE@!o0dD~XoD(~m&q&(hR)7fREcH<(S#?{~f%m9IJ&NYR3|}s8LZG4G zR2Qvf4O0p7kCEotnsnxE`YGB;tW5+R$4NR`i;1T)D6PPKCm+MJgW5A+xO!f z+;~Nk%ALANfb_@P7z-slH9c4Njb_E-DW!)UixxLJ)Houk+4*{pr0iKySu<8MB#%++ zP6xDK39G%ptQO~CxiR6w*)%e=ysWg?DId4?!BwNYHeJGKpr*Ju~?0$f0XbrHkeJxTWeb>Y&7282}agh$`Y7pg0xe zokhiEoTw9kKff?S_3yYbXU4cI zP3rbWTX^=nnQM(JoUvLbP&Ff)^%iEQ6pROJ|3^Qxs|3AM%nUyt~0I{mvzP#@&}m}m*Ym4jmiP}^dj>~~hGTX%s(IizNTkjbjpSWrM#LA-V_dM4Z=L?DY;%xU4 zvt3-LEQxs8Zm;rq#JP}(6h+zW4X!J$3oGiHAvVQtF>5v5FloW5DEj~8^yAhoi}XAC z^2JVgc9sM7t`hC`V47|fbRS7?0O4);2a=|yOTN|w51VWGNYc`Dl4vdD4^!t#aEL#Z z^u+bB#6*cP*XNRgrkfbA9}*RbuOuCD_O( ztsY3D;%kVZv(wek6P?VP>8*sr`H=celFG7wBP$ECoeUEcG3eM>($T2Oj?983!mL#r4y}6XSDIrH^$fh#1tF9kA-E?W3 zvn-Xy3)EWia6DkWC{SwL#F;^U0`MZWgWu}#ZyJYXt^8F>^p8>hr{KJ z!{+g5nZ*^H#W!N)I3%uOBsPl$%N(xZ9Mtfmn1HGM+&d&-%;EH^d5MoW;{{DHICI5K7v%iYuMy9QvKTN#~g5{Qub+|eu_`|N-4xw}a|o(P%G zpE#fBQbhL2>qZAu{=%q4mm;8L77uV1(WPjTaZv_HJj_T$mm&q0IsA=th_=L3mS>+} zB%&<=w9MjZ&LY|pjKp({M6@LoSmy8|=MZfPCFa{!?fwcQ5p4;eWfre<7SWcN?p7gh zG7{02P+*zE+f8xEJJr}b&2S*F%;9~`;hT}wk5qmAo6*>^5ng8UNmEROit9hkFo~n(X=HUc1zPb+JifOZ}Q-drp}q+!EIrgAjG6-M!K(B53FWpmOykp@*F^_nPk4IJg?l6I>ApQ6TOtRiK*fz~VG&hFCPa{P1j+F|gmbgq z4~yHr#d5V=pK0IF0A`0XX6n?s2xgWTnOBDMvWtPmYeJZ@f(!{(os5+lhKXQh2ua1J zXE)~-W3vM?`Cb}Qm`rzCggfQHuE5yE*vt|m+pL%Kvg;(vX12iC2v@jZ+rza4PodqG zRw~q3JY&qI&~o(pISae-w^&T00nBo*VD$xzjT#V&$P=a%nbmhWE49ioiM&{we~-)E zAX+Z3DvoE-wA~fUSb)p%JBjnKeMd`>R5dJQOl;p#5+HLqm2-)y|9md-W%+b2GRDjY z)1@1B-aeB>F2>A&%TZg*d8}?FH!e%kx=&r3TFr{xTHE!b7e2LjXQo2Kk-5G5yQk8g z_U-jSmXJ_m4R%UU%7w5vKw7_&X1AS5IE}J7Ef^H1QJpfU?{ZFdcO$TqZ=bP2&4n0! zk8!bU92YEeIKDX!qihZ*HN|1nSee7Z<~WSDIh@)QhtUxnPUjrfk+PfWIBjneIFk{u zhb8@l@Q|_v7IW<}GG@@NP&Jw=(aV;RAI@Pk?4eDIh87|7Igj&+w1$%!7_)xa1LT# z7(af7rTqb>UCavvll4B#_1g2CerB5BD*hW&Y&(nwPS*Sc*KALg1`;~yjNE*9n=F$3 zX{KHDK_>WEnZa|Mff)CR(`QVwjQ%3iF2-HqWX-Q|&9=Af#~l*XRtw*IR{JjLcs_rz zEG+Rl7bRAy6KVfaMsEuT^i38Gu^RA@azx(d+Qp(XDKh}a)Nb$JVFbjYqrozV_nYJ3 zRAm2dibGUG`$=;goVM*hO>u~7-oE4wGrJHB}SnM zOp2U3OE&ECl<5`^-Q~GsH#Ja53h6NMpH7FVo zGer%LS_6jmAYU;~5{nH)PUGXYPJ83YjO8_x@!HmIvt$`EqdAxwlPxMuD!hQ{%CZNx`3Ue*63KNYu8>D zlGtX|tuA_VH$*H{BJ8egybM(hJ2Fn?GHmDC6`Ye@^F)Z!``@f&x{6DSvrx^r?g?zJ;dpz**k+^f>G`>QcTc!W6mqWP za^muSt*1OcO^2*k^qe!K+|Z;H<%sd*x=BfKi?ZE9*s-F?J)s2rfs={LJoRcOn-k)6 zD;E=2j7Us)Ngj-H2Nw`mK|%n{f>_z)ZpkFJr*E62--7>1g4^>F7JO2!p0Nb{MG3Il ziPfyuR^6Dc>*F0arUq#la#@T9$ySEov~`~j@Ke(cp*IQWa?E+Mvou4qW)xypw2{FBHJtxfpv;(x5bbUp=k??4HapwhLfG zWs~f~^+y&z(jSpi#&Ic;i3}+$qwJ?7xW&e93Tkxui5f@<7d~t;hMIzN328J1b`A|O zbf}96KVK=f+HE^ah!U7B!Q?`21+0?ltLKZ-Eux1`BKo_N-(b*(7vKU?-rbnSHLZZ| z37;j{!sd7AFk>7oAWi3yXG(OEqFxIGQTs@uV!4DDwL-u+Nr1X*A{D`f+)=vXs9Mcs z>4X=xoTaXIo&^OTGWU~YB6mi~%=hL>HS?lY$T>ig1BWR>POg~irLj<4dT244EJ=c| z8zpHToo{Q2I8YLS!V)Ed4lNA3B8booNk$xvF1mzA_rW1zwj=_*v)+V z15htEuSW(T?_fzDRv^X8qobRnL>?xIMDdOiiHjfg;4^p~Aql~{ga{$Trl`6(-XVQF zqFG5`T&B#^Ic92=Vb)H7E=f)tFCSv zjg@2xSu9}J=^dsP$Ra=1-<)Gf-B*$-l!QQPrJCzk3^Q4E_-VRWR#Qp(kTVe7UlNJl zupDV6GGFeaM$9_{)Z#Zu5@xi`ZYryOuq0=yBnR7&WKxD4b;YjA`T4GVHck7Rl<#hF zoG!_ZNo6IwKs%Zwp0gxbLZJ`RL&@qLC`H8jpg~BZ6B8=rEeUCHs3Z+bouX~%Z&i}S zr6qAOSx-fkCh5typwo!wiwrv?kqxZpZFrIh<|JuCV-utW`8^To&?8C0NQ`W``E=f@ z7{R%cAfY(WvDyJX?b8dg>;`*K_1j^)LW1uiNJwRiv}`7A{Gz=%2+b*<$gS=6=BP}-I%7aHF!x$`8s6OzTqksDVp!g_T{*G|cFd1Wao7V{;^n9B0YlUfjy4_DHx zLuXVL4x>H6hRb1=8b7!{gr%;->yRX5)UIMTgB#-!0SE=9q;4lAr-|+ap$(P6PeEdU zQKuvi%kI2r1WmZ@#NVz46fYqQ7?CmR5*wsC1JnU!lZncg9cA%5}xXge!5}Sx{(gj){^Qp!(WhPQr4(ttNBVe>I7ly zO2Uk`*cJw_mX^_~;UcRu4q59bZYO^GY!x@p9Z9CBYvZlGeP!gi9l$jnPyA!_*!y7nu`#pDLUH?k;>mSh@Z z5<14zpga4IuU3^(Ph_PeAX8boMy0c?yYrARSE@v?Nz5t6Ap@xye-0&DFC zgq9?s#=xIM4uy$~rB+~=D=8sxo+Qxd^@#$DgQ@w_5G?q%iuk6;$@Yq8@YJxZDJ+nd= zy5`0WWNAl+(G!E5U#ljKUGB9*=yEg^$HoO9_cuzeJt}9kxTetl1+UvUe^TUPwgPr!g1=-w z&u~7ba~6P6A}7!=?Ep8<^CF?h91u#88NI|AMb&`?*FdPIJXH9%{C}7YwIX{0G$d8{I;z^YLoY5RjsoVLF9XUEZx^ zXuS|{n&dqgCN;#+XiX?3@W>(L3`xkUp$kwfcXu0$IIi4|m|s9EJPqcCN~dl}IWgm{A*kzy{9#2BL*v@3!xxefc`+igPBziv~H*@}k4aHqzmSe26=H8y2T8b1x(N5v63a`N*c?NhDcTs2 zt41P!#*rhyQ0+^wxD80$5F4MHi8%OhVzm>O4O1Je7-m9VhWJ@|A%5ms-5?WWF^q(>m^5MrY3p-o7zf9&ISs+7t*vQt^VHtfAWG#gh{mZ> zl&~h$i&C6`^D8PIWmeMB{D<*qC}Mps0{%uc>(eFH7<%_ui^$`94J&N1K&bLp z3TrVFut}E4&F7NgbQvZ!bO3TBhoA<_mP^@;9<2nOttC1}rD{ViKbQzD!=*blm;hRi zgP?_is)e0(wI(wtIUtsjh^=YZNdRtk5YhXH*Fe zO3V9t)$l#D*G>{CBTXgX)w7A*%RFJ6G>wG5#-S(+)m$a#l!aX-dPZ5WA?p>1*z4Q` zPFWB@Z!%Ed7K@fwS=+xv-O6NpNUTtSdzG<+S+7jAM(`>h*)l8x5^4pGLguQLi+cS% zGS^-bB_ng0fR~iNdKruHA}4b($S*krj%uw^4A1Zfn=uj_!%?*mJsm`+m&RgS4} z43exyJ7RK2YS$Tz#!HNhBy%uVWr$Oj%XgAYLUnPJXQes~rd!!)g2c(Rl8Jaq9c9nZGy+s-x3HJluwiUTphf3U5RM}7t zpO(U--lxi2B_3DNAwduqb#w`xm`fwRG(bXUM1*;Mk72~^7Rgryw=DG?fDDQ)!rvx^ z$EJowuiq2O` zoT2Tq6A3n&v>7mTeO(ys7N$LrRAFdWZtW^TQ;jvMkxyfUv}ZoSj}s2U+W| zrKqm^QnF#t5$z98K1SeS^M!t~;e1o4&43(#Dv|iHXJlLq>F?ZioNobiZUo2+nx?fV z_A#>{x1>Z4spAibfE)*}{avDY2Y0KHLZQbJr5o_OIb7Q?JgFHphf6da8-|cq&LVQ3 zMwr7U=YT$s0I7J4>f~ksxe*dM$A%L4cc&4}>$yh3hLP|aIb7Rtv>tZ=%@rh?jtxV| zcNP)3i@0iqU!I8IE0U72{q~cl<%rI0Gc=9P^r~w{R$565Gqc|Mi zeW!gUE_kjh@ie@92ea&%MDHao-|_Ax)TE!M z&>b9vhNM`l>*)*-+E5|{XF~-|d&~Z;re_lg0V{bGwtyS)J&MO$ys~vh=Aw}Qrk{>{KU8)46PCIEZ6raSZZRXHNUQVDoK>4f2(j$VT|bl}mL$my1d> zOiLH>AV;9C>C9*JfhnM}i$nz-D4&V}n0N+pd4gvKXZ*+10m#!Fg8ZWbs(YZVl-gY) zWaJ+g^n_~bJGllY|A??|4num;QH}wp;)Ued|Mz=>vu>o95q_IV6u##ubcak&-AOMO zF_$BdUg}WEfC|!UAIUsMdYOQ0`p7ihJSRBm#UKR^L3&X@T02;?35}Bo8R_MMK2(M4 zFs{K#FA;VGhoQXZOXQAOX4+3;Wt4Xdap7@9X?dO(obt{wD{&0+Pd@A!BGC?z*ckc8 z2>+)6;&L{Rr;~qN#7{T^?hY+Gpw`eb&18v;;qKUw6BZDk3%PX1-4Q?+a}W~1TM5Az zaU3Y|GJF^Tx7-hi-0?gS93LhMc@js$4u1GbdA^gYW=Ir~aedz6UC|A7_u1|aymyMclc3a9Uag- zSfXk4Sfaqk9ZOul;_{tdrG)w+M|ty)E;aqX9C)&zVPDHsf-g2FOKh$q`<9^>-?t z!D@lZ5*stUY|LRt5u+Qqd^f!W)bBY8vGx|Iy2~4@5-+5Im!}!(trLjZHat&Ym_N+g zGVWU(hbG%QH7_vOH%F5{xx$fx|7kSYHsqc2h}EIDzI8v zVr7_%q0$!-u?x5k$6PY*B96oSgxXQ9CLuFw1#yk0qtd;(-f~rUNZr7A1MWgy;X49c5JQn0c0%+Vz>qpuyj7zqr~IoxCW8Xc^rz>hYC>5b>-;vBH9*C z$7S}>DLG;N1itG^d|?r_ySzlR0#*)OUkYw``7Y?mpHtMX<@_8kUxZ!HVMyuVm_Wj_*~`xV9X8&y`?FaaFa0rB{6 za=gVkUy?X)o{%#`Z+{taewLd#g0qZ&f#Z=Of|%OFlt`SdB*GXrw2f>-`z|H6k8o|s z6x_lB_%ROl=jXkHJN32MbWn?wskW7Pqp;AS3CNCCUfNCyZWI<5w8oDqg5TsEox&o* zHs&x?R1}!JHi6t|iJVbUNx*egY5oP*{(nRS{WatmlRN&VJY23Qi?W>kaUD2RilDUcb8D;J^A@s#(s1$F};m5#o7}iW5=NH zt9^5({*5w_c+8aBx zK28d5mMI6c)dduX0Zzy*Qxfbb4nvuuP9>ckG)?viY~CXGq9mUbf6>vk)))ed7Emwi)J>h95h3M7!`*EeCQXH z3ZHXxIu%DG^eYZUo(%wwM><=gh?>SLhaC2^9}&SNxfUctSOg=0!#NOHQmwT?`dOP( zk?03Y6w#6?klq2T78THm(sX}}?p6YRm;^@*6+CEq8SDrNhQbDz>;Gn@;9l+^ExqJp zcVxoD!9lD`f}qM(8We;sye!lI8QQ^R<*U4eg!iM6s;0&nbSzFq38zg#$5>|7=|c=w zmS9>Pt#0nirRn~d91YW0G^-L0*+kLAaaB=i-X}r5dlvwu;}g~LrSyEd`iU0yN2UFM zBnCqYib1`%LcJ2(v`0w@Z@|Jl>lz7oj1<-!urLwn#Z+uo4PL@cTH5!AhaV{|&%ag{f(PZGh9Ow<>(7<+QxV9HL<_8ita~Q|QJgkUK z=JHYYjH*^Z9mr8$mFaows+IH{dC&K^8|Tv`npiR5r*i`#qs}4TDb4_s@&@lDVz%dE zP_5GXV&$z{hu*=)XGr9cA_Sr1)$BUzM^b1bMI6k(en~MK!84?jA`)r^jzZDF3B>9w zstWB_%UP2=y*JQER{FT8k*p#uUsiW|6zS%!pa=lcAwdkkLjt~c9mQ-B=jiwykmI=9Y>AO!D2Dp^RYYr7o*0gyWZWJc zhqkXf)7z^r;sdXrNW6@;&qC~SD{~m8E_vF)~WBgL(8? z;&cp;uTzpG)NvdIJ$&gM1pUZz)xvn5lK^60+~NaWZ*jaWGu*Xsx>>3ONZlZ z@Zq4NIY?6qN7O*+F9|4xkhAV0N?lyKK*<5+IS8rHL*8GRZVT2^S77yk#L8%58LIO> zB6ca);WV)_?iU;fbLFkp55yjph#4tpL$R(rQRGZ0n}rnp!Bx} zlx)a~Hxs32xpaq;0D6Ig(D2hNTW`+c^n}F8Xh0myNxvsj?{fK010tb5;3(uPgk`pR zTHad%PmC#rd>8+jtp!|ACl)#`WX!iqNlUzywmh;8HyIFhdu&8dt3%8DE!Zqsmgp zC;4ZKS%WQry(z(r8Pq87mnxb|@_gp3v5bWe=kSoQa2^{7znz4z0De<>3)gXrN`#}} zH*h%0a5k8nPOFoh?V-hYB)%xc&edUbqJlj#|GtDod(xTf%FxDoE8G5C3T?C}4(8I| zkvVSR@j(L68TI9gS{0W;X~!D z%Yi{~m^5x|_)s=vFV*?nHKKfnwV(jngM;9Hbd~$)exNEHDVTL9JeQQH!ISXPScV>W z6H$DG8^BpI6a#*YgSS+p6~Q?J;YuNz*i^^RdqWhshSshmhD$Nn+LA@b(*)~|8c7== zNyDHnE!(47hGuEBFM8T#YXU?rLU95?fTe2x>N7O!bfwsXU{s_kwj;{gaKuuxX-@{b z;4eh-E^Zdro-*)W4z%cnJHbKkkc9L?SocFjZ^=5dVFWz~IGh75df_nupm%sedLitn zCyCxXt|fw=1FUl((n?=H?F}mG5(|A`vYOFW`EBu2<7kP7+G=SXp1X1ed(j7_ysK7z+&gjT}bzFzN;TY++Kw@Tiks@-N*NEVHJd-%ySu}P7 zj)nWLmfg{Qk-!jO_+5#i;r=_ApFTp|Hsp42hLa@JCLDzXRcE0Vbq@xlz9*3~vb_zt z`~~9lD3|Uer~rDLgEXZ+JC7ZofKmvlyh@Z-7)dFWqbTDS*Wu`FrzK;`?>D)RnXV}I#fLR=XjD)SUSz}cWjI&r`V`LKg#Oosw$$pN8qIM7>C2i%mR%0ljF75@tV2w72F4!j%oCNgK&XaT&;1 z0slT4fDfy5nE4WkI2>V{xD9f{c2N#0~ze zmr*0pA3jAqPvSN}mI-;r;}>!~e5!h8uH8GlPNHe}R3_jlWx>hZ8jerJAO~^?jIIJk zWxg9EUdA4<2<+Tvh~l|C^3EQxIQ01(jqFF4L#6fEAV}hyB#uV*vk=F=M9ludWjooA zWB$c4NFN%U>`ki^ukGgg4-zSOO31GdyG^AugroKg#I(RxUN(_|aAQaUO>~u8m*}_u%snT*wXz>!2 z!>)OnsQr*f+$pLNz_U0I^t!9%K5x4~;JAR^^ak`eYDYI= zr*}J%X#FmSLB$`IoKmtCe7BSt-old7~ z5DC47Lp_qCB1j(Eh@=2~QB}@g=jL!pMnTu%P|q=-`vLr^Epv@BCRcwf&Df#$O71u9 z^bN02L-2E@;70G&1?}-AMd>H%unfZY^{ow;I>;~rj(_`Sd@Bow=_hYNnT zMj&72NTgA2KzYu&^!$9iCrvB)JM(lZk?tIU>@Go6%=Le@FbXGjNg**OJq$~0uiaA$st7+%QB0Ana4FXl)znQD!6FAe%v zC7PWQO=M}W9}opT?!S~vuH)(JtgVQJ-@xIhj@4b*x)50fqg!HYINc(0c#6z=8aIyP zbVp;);8-;6UUjUtv#}Cfkch%I!KyR=5}r)9p6|zAM_pT-w-51sSXI=+$Ab!~7N&(dmzns%@d;tCa|r8+b9j4vG1R297$8iB5I z1EKKJhKe9f5b7E+6s=#kLS5&E@^)P0=9@#mkavR{664K0-gIR#O@$Px@ux+wfvzjJ zq3G91f)RbBvx}!iv*rfVn>Hfc69X0wX*`(@Ey;CGcNVuG_=bw;(%B*{N%M`kmAMqq zPhdLj4VqF7Bo#iR^jcV7eB9ziQbMbw!m{NcrXRjd1@JiP^cyinMWOsue-$zLtMslG zI|ry^S6q@71fE31mkli9b4Qssv3(3Yund7OlfWo~N{_k{p|>2|?52}t_hkwBYYB;w zWzYW#NN3Bv71}225MPcY{7I5vc%Xpwlej0LZ;TaF_lDKVe{*PtPR)M$8hD#GUe7nUB5&z<+7kcN^6B<;A z){Yt}sA+=q!y@aTM%rsds(Fv4=F+IgFfvGsl8J^|L>&aZWh7;3WRxHDnKZ`Sy~ueO=s0kolbSyY`UyYx6&FrRwnckl14NRonB#52wFBC(0oQ! zlUGP8(S91@FJGQQ{!I#rK_v>AR#(^sg0EkVf^RFau{;aDo;?t7?3yHCwj=-}@#mGGBoW3k6r+xO}&Y<^H?K@Ax zAbk{u2_dr0;|UI0|xnVs$;FF8DF?q|xG zxK`4L)&;Xd4&)W(_Pi@WP&NAyb#NOk=+@g75u z-r<$Z&y*SVjx<9(qDV|rC9zM^2E*H)g-vv+TN`i>6fF)Qcz8Hm~sNfMT@20aA4A5s;#*pS}X+}6@>j%vE5h_>&1-1Y6@$r za(=WV7fyLczOE8hopTdNpEQgRQzZoahydZ8UKD^Xc%O2_!V?8g9#wJxD(0xstM%l& z^hVP!UnJm9P7r|JjIhrytWh8TiU7My^w4JrG*#&aD@WCYj|lmDiKAtTfl${+pAzDq z5(3#Gn+yG&Ro|qb!=<3emqu>C_A?6ku@ur1YGn3*y+T26myF}@+3g->497nII)#2y z3XS=G`$Wm!|4`szk{OYQtm6j8{e!}8A~8nXa#cNia_$=x@&k#27ji(~ihc7-6!Kyz zB&|A_nYI5~^r{b&$DKoq&}n}D!{AP903ZU{GodzhV>-JQ)`%&|!TkwXzA9AZEa z1d&q?6+uuA1wj-AK@dbi`N|Ij6%<855cF4FGxNS({dB+6^UnKj@<%@VnSQID>gww1 z>Z>~Feyu;yw>R6qZP%_k8g##7-=j~b*_xRnOJbYN=c&JTyWk&GcRj@>a$6hS?*o7> zl$X21CQEzMqB^SHQ`d*6?bV=hUQdcjH5g{LdW|UdixP@4Lg#S5YNB7*2!v4DU~$V| ziQ;%01@}!#EmkbI0`vO266kRE*VJ{iujju?U+-%Bn!8#%-Fqo`Q(y&UkeAy&=O&=e zqt0N{9IxAE>!_jQ_cn#LCyxbs97j89_vyFj^Ji@Q*(6Bs(%zSOl)k_Cbju*m>}%CV zQD>ihh(6!h_BnSCEm`p~zo9R8u*uCjr@?VXz7TY#_a39Ke_-RwMz8ycEuNrHpR;|+ z8dO=nY4w=Qva7+*KS%`AYy_+ldio_xsRcvd{N?-U`zf~Xxnt8wvoIq2`2+OrnznCQ z?uPar@PogjPv_ed!m88a*tPDXFJHACX6i5vW5~j<=+k%H_$P$fD0fjRzTNgIJL3jr zF{%e6!m~<*H*F%YSu|S1Djj{$hu8QCeZG&4H`h%Irnme#eR+!QORk$9AAkEP`gAFq z!nhqsfZB=OHvazO^zBb=Y&+l5q`dp>ZxBqFGlHco|&$>bFF4kWCa`7%^sb zKmYFolS}FNNiGAOldHV-0G!zdF^oP4Bj#>_Yi!FtGi23!=JL%E=y_hGTj# zwOR@jH$3)P`t&MW8aQ4NYacN{vP&{VcHGI-CFD^J<1DX(FpGrjAJpfqiV`r)1HuAc zV-rw2v1KE?{2&tX>-f|&yN2)_k(2aVBxU=k(0&B9uiCjS)N56;s=&3gtk>IQWe=<> z*6l9*>5aBed6rTys02)OSc#f7c%*=7Zn4p@VC}ZDQl4@k>0%*Ph*z#dUASq#jI>;( z`bfB_!Qy?}CLY^fM?8&SXqcor6>Wi6Tr{ank~5H`9X`;9!O{{-bDK>XcDtc80maZB zB+iGhqP%D-#gR12APtYr^-Ay^OLK=!8m?@EHi_wqn616PZzJMv)~q6C;y^MBNjTKa=Etkl54)X;-;aOY zmUxppRa;>OP4g%cX=UWkJJO-1Y*ecu731&)3)%&$>Q5ZAY;V|P(>kw}vc5Y>I0c)- z=)7*)sYuIBnX87;HjDSBO+2kBb%O65Nm6|nHDEL)kbD$LIPO*HLe!lw(Ux!91Y(4C zTbe}mED1G%2s~7TjcFyDk7V47wTEk2N$=WZ3IoR>?fc^oAaTw_?X#6=;)FAHrZ^iZ zcrY%|>Mp%kM6N<+R$;N;Z@b0BV_jQSF5=pLB;#?2XdDxaB+nu_cTXas^DjX#!*YJW zCa2at4Vur+Ch=ZJ{zmt-QN4jw98z{-bQ-`bbmEdGv^3O8vs=O@BL|jkT}E=qA4?MN zjK*YK%I?i$Ch}lcF-B%Uf>-M_v8E@t^w(8c!%Nwu=e_^7^bz#ak0#mIMO+T#Lxb(b zVFTpA?WI;mDLn$6bj>tdxjEsw0L%Sho80W=+HyOo|Gf`My$`lFw^%53H2o~3XU{ih zEK6N3Q_lv;ep%R$+Jt4VI;S4Kiou^QZ~Ij9sye}ehf!6YKv4{@3M5Y<3A-fqA*Dex zG`*5dBL2SAGWO-U2CLe>XRl4)i-*$r^EGUrbJr`YJKgk}Io&d=&}(yYeT`|?w$W-` zFOtLd$`E!&RTy2bH;~XCM3xItYXdO5e4Q?R>GB# zkXu6?-Nvygow_%P zwl!j~TMRq8oo-vCV=c75Hmk#`+tenY7JJ)Cm)MJ>To=)d*gJxF10-fqyBSC<&U5n~ zqS{GcnMI=35zP=ag1CjmZ20UIRIoy6k7?zlF2cGQHeuVVpX3`f4JaspZebc4T9HZU) z_DvTf#b=ZZ%;Ifi!2{}8i{9PKfXF4A$l8F4WH%f`f^LnS*BDS8gxew^H}@Qs#xgi- z%-XElMAMpEl1v;zV%>!;XEe8k=w2k^IThXM2X)nLGHG)vgXTH43Ueq{*_cz=sAeM- zSB3V&X<@lYX{ReFUdtw)HZ^q-zp7>`l zE{2GPz>(x1L~_-<%EdjHH4My7p zpg<&~STIh!U&TIXYyu$7-;joYjZD?XkvtjzK00L+{;RKHktOqKyogUbc6}*pN08IPhmoWMxBJ2jhsOkgXAbAVRuiDq0%KPN*o~6^D&!5 z+PVr*J%1XBwW-?2le_uGx{94{bENC;E{zMZR%Y$9nY(h0tqBYD1r4$x2$kX(!; zJaeTF>8^?}sA)EFw3(|Uspd(buOfG2=4v7O8WQnF>PS&~@sHc&VYk*^m(afdxEi;v zN50&?p%XVLZbS->`{s^jqX?*bb{Zq3Mw%H& z!_K^WVo_N4Cv75W&fFwgPmOu&qPH`gxs_}KBx6O5&98-9`K+i<*`(4GB`BU#^T!FS zw4o@ZnU6H=CyNaX=ytG4r1?pMX0JIU)0=1*hM%-iy^U0?rILPcg0-}>O(soCg5u>< zNTS8D1q>}A&5}sNeU0vy29t6YXQoXYt*_|>Uu=*x1=PRM*MMXUN!V|f#ADtp&K@># zG`}rL7AuiJQ;@siw=G0dk%;v}TVrzQ-`ggTrXQW)&+|x}n~}4jA0YV_lCXa07Kb)} zV*TuA6GzjJB)Rhh5@;53H}qp6IuMC?w5k;5HM1ky4K$YO0Gm`=5Drw2%q79DKnx=Y zx6@sPbnF3C%uAO;g{M5&CYj~|44RY6B-irD-|zr7s+Ew6Es8E=$Vllhn@E~P=>(UZ zPV#Jxec7-mAlVj4xH%fM#MUT|%r{DJnMq4?4wB@O7LlBa+zsboAvyzzc*~LI%=t{N zMXBp36GVd}FL$tOTzr zETL|BRc!eG9kkGW%)pIK`!#*LmhD>>ow_J_ z!*aD4?7@HINg{aNrWIyR34KEi?)MyhTd*KyaNEQ5 zZOJAFGgqHV=GXq12)4En@OT|O%F@;1!|I~u*KFT&zYo4ARq74(xnB_3jW)84d-brK znH2IcwdM2+we2D^N>1y^sgu00TNhp*eu5Z{ukyWac1a%QhD-ELDP4pz){`%ImVl48 zH3WC6!u&#}R19B*Ipjz5`G;(EW}iKlEmJZ8^B%)BKO>^KHX^oCN)2U7wT`-32A~_@Lyo zQLpaNIc43g4u=G9c7!*;NF$%F99WGot&o=TCoCHX$k!BP+o^eL@1B?G1m zdD#hdqC&q3*Ze*y@(VT_wNr+VM_;a5@m5=4CMnfjIE5KfZhAgZzF~`@?3Cff!moUX zC^xW4%TAT<&}D5`=(bVTGHer-ojq#h6(!+&HVFkmSf!QkCW5cq1QP^dO%A_}2sXD7 za7dF6FAu!pzj~=^?g{$UtUAs z?{3@1*ZGHaoT6go7i?PO?}O82-H!B_lIOQJdAO$9jlGo@(3d~4apr)7z6{PboP7>` zdY|o6K9kb!%apmcK(DV*raqOeN59eg?e7u!={A}8Oo2*#sNLDj(4qKBAvp7~oa$U> z+K5@qqSngC+(n;W;{H^t{MRl~BH0Xr!yMXE2`?;8Q^r%Veamy3w&-2`e?@hZ5!=T+ zhG_NdQrvnwQOvYS&1T>2`k~4FN;TXsZLJ{)LYuq&D@1U$O{Sq*3MhyG% zv*Lz0pN|@$T5Bve?In%vx;VcSb%2bkYzY9wK&amxpRTNCp_HU21HMS!xj+6Z<+pAY z3|i9`aL)hke6pLnPD_$7B(9V5%T2Qcj|DwPE_t{7m`h2F1+r0k4xtUYGo4e1M7!4b z?iIx4kCKZmi?~oHrJL;1pQUW=N=e@{7*GdsG#QptJz`s_jGnf^Yc@1GtLJUH!rY^r z`CXC`hk*NY{+L750#kt(j0DBQL?JUu?AXgPb@ZX$+{d4%IY2vOIlBdyB#(e3+w>(# z6yNbb1~T-F`e@qMEH;`dDN$EbM_f+2y}QqbRw;Rl&7gfQIG1=lOP)+~0@`WvULn`H zN;~pkgmId@7l#XwLll1KQaNzDooe4FzQN&64i0Z4hba6o zEa4z>8fwp_|1Q44;p51GgV6ROt|O+Lf=c5vW#KBRgK#PmTF^ozb3l46is(Qy2yZ|_ z3tFfUj%H^dkps;j+zJUfKx}JL3z9e#J_$8p?AV(WryzyS-w2>@LupL@2E`pnq3y}o z!|o@Mh9^IvA=v4jMmod_Ta!cfz1mAa`c(@%mO-~K(jivZmK^TCguT*^WzfBXbQ+d@ zs_;A1g@I+K`#+@9>_LmPd7AMvl+3UPlj2dN;OMq(&-AsNoIDWuIZP5RL+OpJ4IsG! zNi>1fgrPe!^4#Kc*k4QpljJNU;ozWMWt@_nfZua-hvttoO{C#~sDpu-b9i>L2iDy< zM&p{-?2VL~6YP!(#@yyt*qDYBbP)a;2`y-059Nu`b*K^tnnCytB-FZ_J?r45YV}VJ z*+zG>(_M~qY)OrK^`YR+?d>%hH`YVvUfFzo=IdU?79El8Ta}W+8p=NFNgpN~@#;`U!-Qq~6 zc_K^(xek7Bcp{`(A8EAqQHK_~{*;qQo{VN=v=5Mc21ztaHgiw@4Ly}%$tJ}=kV4cT z+$iIWmG5DNp#}!Y6s&=cU?#e}vp0fCau&({hp_>THV2ZAB8k@bFahY# zQ6i)7A~nA1|QW-N37v(cZsd)oBa1h)@<>NGe!p{wF z03@#>iH=~N!r2s+Y$BK>nz;7Cw+oM*c0kWRbU9?;m15#55M#>MtX@^2%#c1kts z=+AN38oV?c23k?nS)|rHuJ!QHGAOFyajj$@K{6vzLB!dk6Oq{H-mWu9AH)i7qP9jt z^?08ydIh6X<5r&glu-jKz_e{Ejy`F$64Dxp@uKNhMS9Jnc3&PcpHezRJ)I$E?1su+ zl!qfFclCB%yHu8kn9fm8Ge}6oL?VdKa}Y~Z$4gF^p_TB-v(QSq$PNZqAOp=Oc8SAx zI`}!Log9inRD*C=B-FNJx@fMqr0zvc8QU?vINXOEEEc6bGQuxX{SB!c7G+ZY11Yr; z6yCF15K zYje66+l>wQd9Z(By^S_EDgKQVI{z>QB|j>5Eq-nCHz;mE3eBeI;6OBvZEyS>5Db$2kVLaz^Le*2>e#SflcMIJXnQQ%qi|cHM25$* zQEh`%JR1-=^5rLfPVRr$zl?a#{S@8%v2I%Hz;kr#pom860Ll6el6I}Euh>0`6*3}s zE7{{nru9&K0Pi-eyU|0D<_@G07<8Mn>y7#0yqEBMz%XfEK^kr3vOKuA9TFHLmxX9Y zB+`0~`BLA<@N1*jm=r4_g=SgszTY?SbHlQLn%^Rgff3y5;};CSh2L8+B+Yk_MsIiX<-?CV z+(Q_3Q8j`9fgej8LK2p$?NR7+%Y%uhp>~ax7CYT%kxsX<8QKeqUNRDo$@cEWp* zP@Auigw~fDzlc=Ee8ok%5GgHqw1eOEY5dOP0jLuPo=JHyQc7*wUWxoA5}`J2gug;U zOYO8d96vFcLn=q@Ov(|YGMx0=yItHn99Lv*|yCa2(W1-p$ zsn{iV>eDJUi#6j>%qx+^7`Ztaxk>hQB-8AI#z)(Gntwp!HSEGc_#zT&^)ep|;Kw+h zMFEX^S;>BnWZIZPx7WJ;>bj-qQShhHuNh;8N%0$`&^#f%K`JlEJ)s^e{{qq&p3qKr zF4AdrF<+)1#;=XKm=p!1(8djT&;A|!+=v%|iE4`2cTICY4n!Rj*UFH zG(o(GYBgKJBzYN0^jgs8K}$?ofgtumiOgC6&Av#Z*MfF&x}9&zk_7QR6v?cGNpd%m z=(V8FgRtP=sx3A|iOgC6&BjP$U<8_4QT6UqQ6>w9q&Wj=II}3<(an{z>LJXbth$F{ zOW5$jiUfO1TTDG+!!~O7BAUfehKG{b#pc*9xn^;KFWCi`Uzzdoim`YMb=SCjhcemW zT&7sA1y?>8A*T?Q%r+^}?l3*0)=4|RLu`~$Z6}riMz9Iv*MW~C%q@nViXn;!F*9}r zN`>s4`6B-SW0VkMxA+*8#a->%Qh3wtg$z~%O|Dv*pjUtCA>Dw*D;JWhIr}`iUUmIF-INn9 zH=~hL$5+maW5~kX%rK>=D1`43GSdab6q5Jw{;S1<3Dy)Wk&3!T%*@WWG26_cNRwHG zZ}JI#7uxvE@a5;I@kKVKLmo^i+kQi-(ya9*HildD!O&9k%WOQi?uVzN_E*>#^X1YW z?QN;}RW@FHy|XtjOP#N=vGdU*iB@q`_j(&o-kZ0HXe4@>zOjlcJ}-Km)A~BJ+Q>fB z#_kMaCx`XzU9IZohyyx{dZywH1Nx_8@Xt2badbN)b3a>gmy-h52$hQvU8Qc8cYB%p zf@HWC%C+WvkxqxXpO4)6B5;HeSQ>I@q)sWu@}(O2QK6a(k$s$29cihTQnXY+Ec->s ze7hJ;O85WiYI81_Br)$x65>tSxPbR%$?z`I>9J9IkX0!B3go?044t%{ki{CWLjG~O z5j_l<84K4CS>@Lt>o~STtQ%-6*CX>!#?Xs;dPC^@#>DsrXEj+Fw;}VeVHTcbDsk=AMTJxGE{ul(&9F>g1ZFSQmly^~l<_3J|Rj zdZ=ZXGG}E_F*hQFYZag;1RWTm#Px`A3u45xOR5Ilv9%z48xdkFs%3|`4Ix}J^=L)W znQqzz$$*L8fdFf`d_-Y_G7NV6&dxdVw>z98{H<$J)?VA!oh`E3nOI3r>zXe+xS@|_ z5oapC;A3600vB)kT~vGz#Z|`E{fbMIpf;Ldyf-p-Ejw890j|6aHOjGPiAHhBrIBkb zvwNwaUgV;6yP&0+>G8x=Hjm5Hd-BDGVuYMRfQE8~TD?)UT^r^&Sip#cLZh%)N!&2M}K0n_>3z zko^F{Yx^?H{Uqc*fbja346{EaY4*}6Peb;ub@tvi-#s9&U7FxJd=^3WbPQ1bAo8XJ z<9r@*_8k}puQo8&7ZA%8{`l7^ywJcH=OV^_1J}oL|AE0SK(N6rK|8dV1iKfW6j zw-T8Bwa7kx(`r`|nE4HfG7s+~F!P&`d3?Lk?;L=r<0S`(4OAzGZ5c0hsx{$UMGVFm3@bzF4g5`%}n0exQY??HS`4#27$5;Zb{L{wy+&Z<%zqIy{-r?0=s$``~~*v;PCK zAE0ry!}ZMlMdTiTO#;r;GsMdXF@XKRNqWZkGh)P#oh`@b8RWGzK(sUS4DvdH45TgN zq&#E1ff$2p%baPvi6HSuPUBoW*W&F&0px*r26z_%;*Xi;L3l>^A0otWY&`zX81FwD zmh9r!!aVlQ2p>R%_&$XCgS_*|5KACL{7RU4BN<^SM2J5EX-OlQ`G=8t{Jvmhi)4V0 zB0&5>g3hr78{y1-dE_47Off$sW2}T2@r?-5LNdgv2oXOH5E&tv{Tj$VejDi7AesBx z$UVM&n(M#oA@e~*50CS+=o===T}uJU+&4z<@gsMc{E_)@iu~id9y949BW#Wc@tf9M z9iM^B<2Nlam#f!XA@}%QN+fz@&1{n_do9N!v)>Nc$6x)hrG#XZ9T82KV5PgG zdEPi}N8Ug?n%bG1%{}OCmp7Q#O_J9^ee%-wIkj6HySpU+rrL`YhkuSv91u4{xuUl! zXxI!rJb8FM(Iz9`u8`$6>0!ykYBx_9^-e@RCV5oM#>wD!A^1@#foo|78T#HygVy~Y zL*Iwcvy-p2nve$Ptr+(K#7&{83D>xo!r%`fcnXykX+9bE;Yq<2sXrO_5yU+<`9`)R z0%i2a5IqGKre_Cb*e50j*6hnqA#4hUjTuC_&d*E=xN;&g6Dfl~i{L4YltH#n5nlWr zv4@kl@BrILRLa%=1B&1kRml;gUPMEjTYPO&$K#y(SgsJilRMq-(8n8^)=!*Fj}oAyQZ79#9Tt zy2B~Sp@Jrb)&8md)G^C!Y(NUqgVis=&FH%U7;_gxol1>4|Qw-EBf#7`R{X8ANx zz)ABzyV0!|J`}DSra=0rl3WZAUIDW=n8VvGuV7(laNTp38WV@hS^XH~x0 zD7aHmtAe7uoP`IBLq%&?Rpb?UXy+tEW3MgsZDniH_QA?y*!SD0Ywth@l;6M?;E zKm8flNHIva!)Cn?qI%5)`b6csgtP^2xRF_iod#YCsu;>{HbQC13TpjGRQyDgAO$xv zkGAuI%w_C2KaIF4DE!1iQwDpdBJ9U~qOQ?GrBFB4gw7yd+8WN@eelsH+IzM+J15y^ zDv8DV%^`^aIVRU?1fgL`6zAvW+^rM_@6FaY|6B8Zo6M2W@3J`J4_hE<8LPc z((s$Vn*>P1Z~h-bdL2peX-uWqR>cx|{67TsTK@I{ZO>~mbBmRHb*`|XKO$;k&Zcg5 z$v+`jVqH>!$u9XSqIu2aeH7X#71bDF)9Bw2HZhGhn#Nf14+L{%pc8W~$^l%+)-&1C zXkoZ6S0esJEVb1GKa~k~`s{)Wc4@;nCmH`%wGc}QUPpsuC45jFbB_Ngd{|dF&MOA( zyXHgL{CJg;GKy~aUu?&GO7O$kW^Rm5YE|i_54q&_zH?*Fefrk{ZEVXqz+#B)wYwa{ z2J*%1=m-s_q5(dL_+DE?aqx|;nh#ALbfGB2+GP-WG$pem=&=kPOjO#hR*V(PkDwfB z^*)k=&d|w)l#d~NDJ3;@)@v#8E3MmRYIS-p$e2j2h{BAgB+MAK2}x0{=js1)RUONNdn&(&7HLYoJ8amW|sTP!z8NRWV$YWu({{(fzhp zs_Kb9;pt`)D{Ug=x4pt_^r;B{;GFsFp~Mw4AHRjn-Y|}-&fW?TraE5N3F)-4dId3j zuy8-9+t3(IiVK-w4K<@^gi`mz_VHV@@&RuRQyc@32O#ABUQWUTat=L0P?X0Q4@Nkz zJw+e&mbSp^9fo*b2Xegd=#9c!wb*D-JOX+>B1PaXXhpq)WZKZt2<*2?;nARta<$qV z%h(is9Kt51Xm$CP+-iNaXi;<)fv5Wza5-Bk)><^vr3VB>C(IK=&9iweRO`$%A23V9 zaC*5>RRQ7UyhemRAsrrXT!Dkf^O|1vD?ql9X{ae~K@QGkY(K9Ep?~;BHCNSVt#XBoP`|K4eI~gBtg?;U3=z$ zTmCGB_F6IMSK%W?8mg^}d*`48UW+$?fQ?uUN`(Nk&cG4w58oiu3hEnh=uuV}d6#x715 zJ?mnW+1h@=YgyU5ZbsZxqKNK- z--y}0zl8!6`<;k*%pHch0(95hs+oy`yr1wLl*B7JPybEOUi)m(Gl_<;`!0%*sxn9g z>dkS>ire>4l5~{OqIWt=RXX+nUE*#O!RvxdzwJ@4Hn)|2=m&`GwH)6sGSAS1Y)$6* z!23~(R7Tt;?GOn^_#gs%t$_DieFf}l{GXr6%9;a z!1tR;gNA_bIfVAQUsI{p%QBF8o;YdifL`}&n2R=u@2|KzSN>j5vWk^IueI==Ada=Z zmlPbV^?6+o>kY{Vr)X=wF4H=_g3XZ-;3(x&uOZ-H5YTG{w|5PT66&u9-D`I+W z+w{hym3H+JAN>%W`|s&N&Tv5fGd;+5J7O*0LP)Ru$~vv{RHY%lL#(vk?6qInW}|iI zgPE_hKfkBM75&+3ztRK7(W9rFXY0|4fzpOyrP?Z$iVH8=bISXssDJti`>6_D-UjnJ z%j;9$Ve<;`;s};lJ@dtSF*jB!$n#xGBBIxMY@h03!h)p{&1*35LF?=n3J0<*;%(*= zq%`PcbWUw#3vSC1H?4Ph=_%l(b+ALa+?{=F1tquWV_vHZ-e8WNwz7hSvD0g%)*rf6 zsb?n&B|82{`8$MuSHsrY$gj1eO|L22X%|l(qJ^5ywpj<-#_JkbqtJ8%IND=Sb>)y|nr0qPKr>>Sq(sk5_2Y5jYyip{LEPdh+s|ez2v&JoTZl*69jV z4h)-nX|ze(vyG;DfK2e)Qnrqt^dT=@apAAdR@xd`$*-G-ta}4GT5DTtYkAGuC^qft z&I6v(_Hiybq2}$e*;0VcRqOR!wIK86?1a!>*Sq?wb*?H8BkhW)Uh7hQqP8e^opk5B zPa3ds9CI%OPQkdxs1sKySB8wh_eJa!v~5Whxc{U8mkYGNEB99qLSV0@zy9otvOz&U z=|d4Yg?46SsP$~bPNAI@wqe{yA#ghCRu@x*=R6jXQ}CQ8w6c|Eu_Radjz?&(D2Ubz z=?I9-?vx{5S`_aU1$FpnW6oi1&d%|5L`f_nc&{kP3&=6978N8!?_P`Hey~+ao1*S* zWkw717-c&Nv#^j7Hq)ApkjO|{b=wy7n%C=}7cJvD;MgJ68l#h^sw)dKdxMzC2KZF8 zD98`>%$(m;oI%h1bEovp@<~tT{Yq8C0k1bRjaIEj zF>!+?aIW7Caf@1BkFq z-^$7tMzXC^FmqtWOCaO^MK2U9)mkG%&p}XI(}{aw{7WIij(v+BAm|CvxB?$elzpub zUc_bgA4T?`>|c61ve69oI+*YB$akl{`Hoau^&;Idpks}6H%(}LCFI|~+;roQE@TS6 zt0Le2y-k~MCcJaaDp>#}K{E zUVEjSdGCq5U6Tg4uQ8*gOuM^EueJ{&^&fH20Wms=EgiwEgcz4-Ocj3MKxEv%harh+ z_^1WbG}ihd$hrSPk2tIMBeQZmJses0--{@N1RYCZ7Z9w6u;51`_qAQUsGGvItJ7cZ zLDQfk=wW1Sg6eu8Dl$#0V0g58X<5ugon5ahkUkj-f6ET%GR1N&Shr?zk5k-XIus9q zQgfE+>PjKF;>`$Id@0)LtV3aUQFEZ##pc+a!Eel7j*|?KM*!CzZ=}|Tx}_9SG;-<< zGz-`$g2k&%DO(=40gNXHP;b}($_U^(H`G;#erGsr54E6BR`2TAP-=+c4Do^%4sRxh zD6~vl%X9@19ixE|t2?@?$V`06H0q`kG{x1r>84SHT6f}P#9b+v(R?*m7Tt5}et6+3 z1#>-FafNQVhJ$lE;aOL#<_xOZ(UfIStKU#0rB=cHM3!P^bsVvhHFOPYj>KzNN9LPV ze4&o6ILpPGBE*UCsvpW#ub=Hb5+SADvg@txq6-SO0a{O1@sLQ7$&o z{pKUvemhNvtzp|IC&t)N#Agy?Y*@(Y$hcp-YiAY_3jQ2&bp@ENb}KcSWn<`KlRgVs z&+N~A4z=_C&?UEghOad07x)?D9K>*)Lve|(LSsrKL+O>eS;!n%=ONYxuKI{{TU~{} zv>}Zp7hfU<6j#XYmjp&|zLYr2@x^uW(T_O}H(Y_s6$}hFdw6L=A0SyporIV}xv^@g z(3lfUei-RWg(SxxrvV9tyJ6~D3Ju2iI%2pMSv<9t56>1d!nKItir{<^D084_`5O>o z!1gfjFLO<9LYM({rKMqHgl{6kfVxuI7KN^EMTh}))k&l%VQxp50d1EPC5o!ti5LU6 zhxQU7x5r(Gu-jlAoo=y`Qy0~^7eQPrOP(F1la@>0E#vCkhe-PjTpg7gP`qczP!Awf zGL@o8I=K49NDm>BE2~p~>Vu%2;T}e~0S#N^-(`$P5Mw|$P%|z2F@$ifKX_{GgkX7% z>+l2uxRwVz0UGo~mpQmRg(w5IMx$B^FPCvmoRKDn>9yI{EG;RXV0$^Sm2*{>Q}N)8X2POhsW4!o>RMIv!BI!CL^ZyyAf$=7hDI;` zRh2YMAY6+Gu0hKafwqrnOGZnn!pgbv1dM4ASuRf`0sqYjQgxxMEI5 z3;DZZY@aHK+ye}7F9HmrqXwl|D1`Zy7~(#J7^n_<5(5T!00CSBftQlzW^37bVFG8y zcnC2DX=wdmI`e-R`47?#Ep_`o7tC@Q;t_-xqzV(oLh$?(^M4Ha57G=OMGE-XClJH6 z(aPxpx&y(En^IhMI}PUAMx<+_l?k;Gcz-?D1v9!+MFn0PtyW$**fQ6<6jvB*T?aqy zoOy*_oIqyQ_hK01if7w5q`P{Xx*6&1eyKNCJlm$!6nC)5E5NKC1kJhPSqC@N9rOK( zRd=pX%f*}bN-EVdy-*+&@H14OYiG{ITK%p))WkwRifmocaTMEXxs!rI$ox1mcWspP zU`~m1MzlmFEc%nkyVQNrO~g ztx9+^gV`>PY+VDWlP#@t)9dJgJu=^Ak#FDP@Q0P!u(#->~Q!WWETwuInTml9=e*kd(G<`dz?36{K$%w6MN z=SF$gqs(5N+|*rX3OD5%_neo}1+#mJnRHLCanH#Q-4cs=pW+N|$u%c&bJt=g=KFx+ zD_v0xrj=l;hM7KuOxJRZ9&_v28l46R4p1$>3bo1UM6bmnu0?__?NCPjl^JPOa{7rx zX7xEG$`V1*+0BKgEnMK5b_EQx`Fw^1Zr=i=yX54BRr*QVkacjHjO+Msgv3M|aUtoM zqB-;F3cXRy{~+d}epco-ksKS;0?OMpTZ-Hsu&?4}<$Qc(N zqXjnC&R7u}D83MyVXot7)~b}Q-h1|7`E1#8F*ISs3Vr=jEH z(Nlh+sXvZzNA_irL+UbJGedWfO5NC~9rS1BQglt(DGKw7D%*ovJ`~79h#VEcV_)bZ z^O>WJ+9wO9!Iau=s&nER)Y zJ5KLBWoPcPU3WnC{q{w+D6&FfFFPx~OVAn*ooS+6fUbF|hu|s$rNv%mqTo@}BBw#t z>a9w_ue0xgkWukw3`n!T?~RDD8oyC0()6A@nr!_2kbSIvLF=cM7CK;X?y57>DJhln zgT_5!UHa$RkGrE;)w!-an2FxQM z9?kM-`*sZ}XA)&r)zXeL#wcP$tpxPYVt_$Ix~)dzh=$uS9yQWpB4NvAvhm-cl3ma$4C8cZWOLF4Tvd?a^vhM+iX0$&_M4K%9dRv8oY3jHw&ZvKr?hMx2p5 zUntaQ%rM&Fi^#ms$uPICIfGcJ*qWUojt?Tn%1aBSf7!-7j#cK1Bf;YbY?WU@ZQwbD z-WHRGInP&ZB1f&}xr{O2qW9wI7K)m3s`SYeF107!LPKA}dPJ?}xxhx~`J0GP>lVkM2RyjbY7+m#|5FVZy-o4g|(l*3_;}Jc{8HKs)~At&N=vhD2N59702hSyg85I7 zd7MxwVBYb&mZhPeAyS;)9U_rwQ;;cL$fF2?7Xf?si4er@bRS2USWPmLp#@Sc#W~yR zlgK0dF4Fx*u{EQbsI4W}z#1-cbZ7C}kr%GPb6A5o4WK+xX1p4n zOJnBGBlAAjv6O|en^UXe;axE1{sMB36P%T*S?Q)2vq6t{@gk(t&06FG2Fa^NKt1ITn@sHBrEkELiM@W&Aqt2pkFB0 z!Y7EhMW$R#mL*RD#+f}E`vpQ-QxPK0?Ad^jT3Q@2;>^233=Z=`2QDhKB!b1U;s8um zWohIdXB9N$o{6fQQD3zQKDwKcCrFO z#hKT2plWrxW@$lL8ByXa7FR631Ow z=2ctTc*ioEv1*W2fF04+sE#<^p+S6u*bjH)wndaUQ?>@>pwCq6l$(pv;aXyx?GYx< z*yGsx-U+$KiIUsgCyH5EW!Mz~Vp%@jY0C`rx~T9FyCeHJ(M;EY())t2c)S-v#94x& zBw}!EYF}g>M|x)MSkc=*aR^w?I|w1-bT_RQw$;2t5hc!GOeprXyxGVvf91x%od20pf(ve5kbZ8fQC(u9gh{a1tWLS&?BRl~%D>pr`X1 zZ2VGZryx)qN5nw1keV5$b;3gU;2OJ#(-0$eWz>}1IS>3S0>ug5xialpAZ?AB=M6rO zAh9*(nreOlG2+afwTh_p#u-XhnKPH5&qb&{1IqmTO14bb$!tx3f#Pn?82XHt#D z3tAe8Aq2<{gn_dY!==gPDAsY{VFW)d@YchvK4)&cTz*06Eab%S2V z-|41dO-3YF+W17>Xe9wvmJ|I(>y@j~wUDRj_Mmn*B+A8WER5@lGabx-qpl{3>mpJ8 z!izuNXys}=r;z%(HsOiZxqPWYxA1g0Lq3o9E~5@__l?(nA+&4c4EX{=Ms2?PL0YQz z65gEh8iD@;G=My5IDUyow&>u)6f70jncxCfoPat#M(! zQNvRY&S1LQ6Y;jn%I9~4K9s9NmPr0#1b>3EsJPTi&Wm#njZ|z46_`< zMBV@Lg=ru0DNzs;q$Opz6%a1ciFsP#NGr@Z#yBe@PShroceMxyn`$)#i@JmC3r2CE ziUMVOt(g*5briAINe8P;sg+0T;oW;~u=Nou>fWQT4s9=OGu}psmxMd4Qs_Qb4Ys@( zY7>M?!sZDom>)9EW{8u7%_|(V`RNFjM5So@8>9~8N^O}MPLQO8akfUBBt{XHj#9SL zwg{BOD8fM4Oxq(`)H-#qZe<(ocS4A$waZ=*j!}NsWKkT0?(T>($e`;Q1@}UjK~$z- zhAF>p_(%+!^uCBPNDQmSSTwNx5hQAfrB~})$Gn3Q#;}cbhbD_*9ph#r#vne^Ikp{z zID>S0+n9DNLJVSC_A%yo1Q}#N>&%TDy(NcWg9O6erGt90MMvyt|Iiq$M-VP*Q><6N zfpN14{9Dr&42U2{%n~3h7{r>X26jzV5oZu*=@=;Mh_ZgfQba!6%x3gUMHg>MOKERW zt`==QE$Y-~z`&Sb??#Ldr34K@(7=q}QAuFLYDCnq)RQ-^M=;8J3I*09qNXw)NZl2Q z254&vz7KqukIG#d3)Uot>vU2%m!*T&@>B*_aw?)m zD6fR7W_LM+(UwHCqY}|-cNdJV^VTTKN=DqNW9X$3`iMlKN9YJTUHSw|S{8w$CUgE8 zMyTb|f}*Q^BhqeGK&ayqQD=7tf{sYlYMijTtyAf9Rz~>alZB`4;V1!CLjjU$)gq{R zO@xYC&i6MU+6q!BC@eO+4nij5{RqiE)HJL&3L5%ONkiZ$v}@83=zVubh`}7a+w1OyP=i@? zq_^D{(FTjA3C-nY_eZS3dXLk)9)w5(H$TswVpwk5H+KLv~AAzDy14QY|tiwUbI&M?gWj_=Fq7L*FN`*2VcB8!K zfe~J_7a8GPVxuiUM9HYJFf4I*2lEq^jA9WYs@r?}cWJF@PGZ8L9P3D6u;S6>*f+eWQMtE(W(H0#+ADe(Gsj2q0JC*7o`m+b$JQGMZK2LUndwYvTMvxb{0{` z%Mf&S#3&yRlwXt!*5tS;uRz?R6UQwTMw*$%SaC#RUxnCFGyZsW4v)lheXl{xV-l}# zUFBu7RQP%XPu{ZT88yBUL6dV0xk7j-g7td~q9y0j&Ee|X2$o>gs^QBmT(#Q}EovR5 zKXc6&MrYK+Bqj`a2LeVNJn9p$I6;Yhgb(^Y;w9(S3n#R~*NnM(_aIzyrc$T}+4>ml zhpB?i3o@ZF*pCn_K}F81mA4S>_Tx0+Xi{%Dl%FD8)benDX321LsTGX#=ZKnI?;GXR zputrJZp2?8;Ngjl6dk|}_KII3Y}Ar;f7&fJXcdj_VG8s46(S~Qtwjn|Wl#Kdx^NXE zR{br)CFewo4KkeIR3Mwp?+`CJuU5(hiP{0kBkP$hqkML$u`LHHBvB4u3?< z1l3s$(lWC;|Ab)4^#pn+ZHwum$<+}vIkTZOZIphAG9-y=u7!}vMF90`%UJbW7vYi{lIayfxoo=uq9tdc<^uRM z1WU4N#`^ciQ$;(WE*CC`5G}bmMS~Vf!e?{1BW!_q$vHE69;jKThowb7_yi&*XDa4) z!Y2_dIa47pxxD`=L`$xVlO}5?3Qg{iE*!mEF5q@Xxa1aRC?jMgXIq?^iKtO`F8qRh zdZk5FZ4U&AIvV8(Vy-FgjVMtE+Wk?a74C;H324mN@;m@R5~xdMG|aBW?&)BJNuXiO z0p&16NuV;YlX?WgBv2XC8XmS=~E+RA#Z164(JD(GXGPp-K zN2mD+l0a3=oz9aHCF)$9pZVE#I6s3xQ5W?*fpGKabi^6l-QwQO=MZLa6EJr&&q@Wv zSV}zyK?b)oTCbIB#OEPO0?h*ZqhCw|2KPl5BFx~^80UWIml19778)rV$JoAtD1%${ zXilDe`YM79?rv;bx?e+}!KZ%it=y{-Ztx~5ma}qY?m9$?I$iJQL#-Rd-$10nyDM%G z-<%GNxiS1Lgc*G7v1|x`2XO}PLgq&BcM)W8Q-clQ?;*MV;PG)idcisNL-u7kEaP{ zZWcd@V2Nmvx5JIeh*=V^94h#2UO-){W*@5NUAVWZz)^3qlQEDeK1aUlD2Wkw{yTyU-j{3}$^S&4 z!3QZgh4&Vs3~t_zZR&RrYjC5pZ%@C6P=m)SxGg>995{6|cpJfX^i)I{+^)@CgT)af ziK-ZTic6+~Vs1MxjVOc9SS;Jk%OcL;3mM(}jj(&P9HI>#GIY>j#c72U!C>)ZWds}C z33X~_uA!`kScz#7mK@eZu)z=JbSf6i1Y~%=PKuC@uw{LOOiZOPU~Pn8gNGB=qaB+d z(%^2_+~3>`K?ZlbaFk;@q6|J9;t`H5(}6LMZfuP(gS%blk&SH;ZKJ5`E%RyxdO?bA z_J{W!p1+vx^*?%^xYxg>CyyaIaa5e(#|?s09?b7?$uBBP8+rFYCY_&=G+>tiX?KmF zd$fc>pCnM3KVUdUJ-l!+uK-K%w2}bw3KY_lqT_CJg;J0^lLh&W5=7?2$fquaDa3Oq z#GKTH7|Yi4jWK$*H+UC-74kgFQk)!Fibm7Cu&5-_9WU$TC6uI;x=tE&KA4`~17Ti4 zVbbq64YP6nf>NY!vW@CU(_*rJT@4jIW z5py{dB0WdgFk4`SNkun(z{-f8UKenT&#R#f=|wEzx{Bcp)-1cTDPbTjHrDi}YRu z()byRF*AdwV4aIV+pCI*B$D2(+b^zT5ojkR0W1Pd_w9Jymso@PLd%5a|U}174^PiFsB(^&iVttoomg_}=4ZKlpR9lxMe|8K&ep1$xSX zmcu8=Sz8R^C=@7_ZqX6QBEhjJfp?78k4nmM?rl=ScD7;3+@_cp?%hL!?Cs<6L84yriXEppP4`?B;K(#AMF}9M2^S!8D#ITdr`cP+gp#CU z4Je7xO)g$kf|&i|QWPYWXxZH{E=LKr@U_d}tr-#dUP&CaHI>M$FnZJ*a5JW4yLI0g zbuI;bUDZJ>sCdu8`T}(<23)J)VKrsQTZ`h=8+MyFNEJq=oe(N?KOEy!-c6u9Z@(1r ze2fm~P}?`HYV%&w)9#lF^Sf2*&bu-iKf?fbZ$Abzn`XdzwFK(zphfR#PT#-|ecox+ zr+28>zZlt4DOak7&+oA5-le3Fi&EaZt}#TQTU4SQ?ww?KV_>-t;ZwAO;bJ9QFVbty zLIn??3@Nq%t!<49_=gZaMH|djYxDIBA8dmUqX^#9mHuroN7)venM$>yp4Aqrcm(B0 zu_f}wkstv&tKl((_YN-lS3|xyO3S2Kp@1h)f)o`%2~2_SAx2{-Wm3np`7K-Y6+Ebsw@_g)3--w`)z*?OZmGC$KSs5NAvh$SXh zlJ>zX>s)OqlqAIfp|hx-HAmvV2al%(RjxE8x<+_SnhP@MFe2PSuGqZHn2>9Lh!o8zsAf~2nwnCfkaQlvQL z@3=C{jBjI}D}1ew(5Y-rLvlg>cOOHb-I7w-1;G&R8^37_-5xPzvw!AMqOo zCWYIe80ouq>)dcVlq7wH;1qF36eE3SYMUwUf`X*451cUWhGL}OXJOvB=c14TrjPre z6zPvFmRaO1lq3BB)jpX#5JgG9yV&NGhoB(o+bK*f4@W7yPbJ0n>QOVyBT=CAy~sSe zh8ev7#_K-Epcv`5&WVMl+=IxV6e%vgp%#V_KgGp2sD1(AH}{=9jTY$4x^cF6jQDA% zJ0hQl(vK!|co|#kd$tjr+v;BPq2ZHSz>hE4B&2VzD(+NK8{zO7m`oAvvX0czIt9t8Cc zQoUbVuelv(6z2?QwEejLhQs{WOsxxM#>*gBDCQme>#cKhKu|; zLVI79_cbx4@K(hVocsd86Yt4&vs3*NK@;y(3RHHgUm>dZl8djNBSO(%BfR%Ytv7t< zSVxbD^tX#p6ri`d@np&7$E!57h_$h4*v8&R9%HIxINQvPQ4+Lj%e-vyaTLbiv&Pd29p9Gg-$N*a z_pzmz3dt96)NXPT|t9OLHJOcW?>XELW=l_A3(CoevX zth{u-Hwxu_iaBOWwevh?3dSYd{ZNv$eJveREo4kbcL2(fc3i-3{(>L}qafw9?WI*} z7O6v9)Ndg^jIhcmR@yGG(^R%VtA^6d zpByFiinkglnRhPQ!FpJ9*foK2O_CFW=xaWTa?<29Uhg36WRxxKaJggVj#%t7D9|K% zY-{XsI*OC_#ILI#4v5SU@pC9o+L64F$Eu{W7MV~HaoRa3)Fc^_n)Qs7iZY4Hc_>cW zQ{_&>wNqHoQUX0;Ag0P+M3E*bcI3x~={Qqf%@Bo53sI&?8t9so9-5y4$TX|Av>#ta z$^2}SDtrZnNqfd>wd${;9Nv$a#vJ{f=KM93CG7@s+ws*XOxoSOmjPdgB6(lu zi`!Ocx!*u3{BMX<)pIPuU))UWv`rlU8zRig+`Qo*ox3*QQlg7p8~=mDesGR$n(ruJ z*rxF}ZeQ?@zZs*0%Y{sEGM(lqZGqMQ0pk0w6!wc>RhMOojRq~` zLOa|)iGp;6sFX@5$b%?||BgtX8flcP)#g~n)-XRoF;Z(7^=K%?EcMZ%rD1-Cf_Nvg z@wL#Nj^a@i!vBEoTieMMD9gj(LAY7A&c*!34B1cY5D#8IlJ4uUa%q)20&b?5)D*v#G& zi&(1ZL?N|SlTJ}p=@rH7yrK*T|BfPgk9mWL)TAwDVKx6mLA;lI1`?!REN4{qc&V4S zP#o_qgh9k)*+w&C9I{?~5s6`( zv|e%%iD4YKUK+(n)k22r)oebenx!$8tr^Q6%c3x;y4+l~)GAlhj5Ie#c$MW)5byn? zIQ@p)NG{vVjMS@TdW@bNOT|dJvjPg_y*3d?pnRiNGBRbaJn14pv#d7BBG8GdtZ{&K zO%%cVtV5iJaEDCmpd{WW@M1|~8GYAB8B#S%wf|I-dCNCi1R}KLD7y)Y;5|u-)e_Z` z6kszHAk~S*SRp%6Y*4fzoaS_tB2{A;Lm#!}q>BJPYHJk1d%_;a7>d(HBW#QCshR?B zF6QWvu#jSVl)`(NE{+n))rkU3;C4bGyjQd12vN(*Ub!pcry9+4PYsNi?qPQnB-QDD zSCHV?J_S&EtKX!c}F)5)h{pWPp|h@`R4tB+l@(iqe0 z;}@+o#wx)Jb%Y3|rlB7CVc3Q`_6g>|`nG8d*%!yB0bdnfT<5N%)?-P9kbZUt5 zPD43TUFPhViG8B{Srle648<~E{`{hn1U$+YP?A*Vt(^ukX3yuM6q8{l_DS>wD2(?h z)B*aAbuRrSlqJ=@n@;nXQ|gORjLC>ux)WM(E0>}?^U~Z%57g4R$H~t)s%fM-!M+>? zOLbOj2xggQUx^Y;rmEc2?XRO?sV>uWRE1OBYf%vIOE3fU_vjh#4JcHq2Qxa_QHLO0 z2QzL$ktU~EAGxiw9hKZ#UWbnqv$MlFEGck+21QzI5zA3?v)=jXCI;5LiMuP zPW^+zmdE%K1|F?fTQvlJ5rMrAOZ(NhSfPlIPCFs?%ZTlL%fb(vZXBo&ImeaI_n*^; zp5cIgEq&;AJ7cY1M`-W;azBN4f_sORzcE?(4r6~4@x6zjzUuF``L|I7?=Y<|5uB#~ z?xacJ>H+_oGznZC;r(9%ck6wbw@wEJtI~UafY@n6qxWUrHY;PeI+*!82gfCp=wfj6 zzRc?h=NKNBQot}gCJs)wW-HZJsZf+k+we6e24jg<;A z8RYVa?EQR+Z*@nr<+4mHyb_{%2VTCYovU!7aaToL?|Hm0Zg*g^TGtvVfOinow*ba7 z!D}OST9vok+IlE}cRKPuD~~3(A%c6KrR)>jW_cSU{1(1$r9t_*bLu9su;opOqc#+H z_u7D)F&Z4wMR5)Yo2xpA0l_<_>kHH|EX+{wFf4fQ(Dx@orx&*>_3T8Ulqpv7g?U2# zTVaEGADQn@6t@i9pbQ`PH!3+0Y)8B_bMjs)XcU@YNKK~+?WiOcCglCTUr!*1+3cbq z!E847)>D=C$BeGGo7B}oeeyE()kbjYY){ac_mI(Ov+fP((A_>(-FY9s_J=Q4CJOat zrdFtzTk4#mamjj?l0z<9c*jTnLX-;g)W@QmABf1_3-A8O9dFY^3x}XA-UE2wve=Yy zI0~?(x9zKDZ8VEHBTxI0#8dM-{>>WlGtE0JarUWWR852*@^{`Ldp}@D-^wTvz%P04 zKC;QQ_30}{$I5ao3diMOHjE8BNrD&&_X>+dkV>{vHUt?%LA)1m`fr-yVkK8?8F~8W zOsWXEYQ3JT7Dj~ktDp$S#^~^#2AZqN6jCQ3y1&2cyO&zJMRU>xFsyJc3Xr0o8YBN) z9j#~OlGBMOLyE0X#F^WtCslwF3UKPA3Q#UkRuh?+;tUkPdnvbnXQaGg!I0oglpsYz zWC=hEXQK=$8lq)PSbzeg+YGgORbB%;A0gdEAEiXeM{MSa}3Sl2Iu0T<|PwL0E5zEMN)uNEYGJssO zDCDq=BiExGDTetSJGBibH=-cv+p2w3xdla;6rF%?|27JezGJnz_}fqt@8vQ|Uq#7Y z=8IXx9mG$Y;(ITbb$A)Ghr`+k&Z+(PmGok2@4Z~+4d|HC-=m;mO7DF%(I38AQ%hv@ z`qF5jnJJVC@W$H@u?fAeI{S;!>ES)4`4LL9Zp1Wlv`{J3!)2mhzc_Wu`1FOshPLTV zZkWxU7N%PgQ)w!@#^s9^!D4T%5Wph#iI37zd6tqNQf?;868?cD@B{ zdjyL*NY-god#eOl9kZ19nbv_Dty+y%VjHyYQY&S{{8g;eoe((6rT78oC>v1sbpv(! zrR%^Lao5xk=_*OHS{Db_7;*PB5DUdhwbsbgX`_#JG)IHDo)Py##Qg`hod7Z4G8%E; zRN-oc@Qqfk-Tnx-=is%YG@s4j=qlqJgg8-Wbo^{{q}r+%DaAWwa-+xpgk>Izc!Sq# zG~1*HLIC%9aZ!2Zltr7b4~* z-$b1F^{~uGZbkm_osE4SayvrA4;!5Gk2?`%m)H$%op;=Y2=ND;ZX|A>Z`_*(lzpCY zA40`9YP|xnaifPas14=IG8yVE*$IqRfn~r7nsw?|B9>;jxtkcUk5g~qHWS>^PjS%rYq;op?E~2a-WnT4czF4S)%kg`! zLA!=OJ5%f$Ztugu+@Z2Eev}x?ox@1y*X7~jjk|{|{^JS-b`K+0je8>nU7B)G(P2;4 zT6ZGPs81?Xxr;bh<+AxKJw?+j1kb%Q%+m-H=@5I?jA3L5$3VY9pr{+YU7eWk&+Zur z(EWl|-5WWwxz5s+P~vk4I#}&W+48Ur==tP<>J1yv3kVdsniQx@KI0pzQ5_p7Q}|W4 zp}mA?k+YVbXmqsMVehXX)Y=h_qFBy`Tc?+gl9!n{M|hb}^ddIAz}~=cJ~5QuWyd%? z(W|hyCoAsYRo00>C}rmt>cQZAjTEuWGL>>sR0=l_!1EHcWdHX<>Tcu_(LmANX8Gg1^zaY$*Zz5*Y$u}R&dO>Xh zWaiS<|8PH)!QMu&s3WF6U~2cSkk90+bO)L)eYA4)l(2fA7ApEKVn;3NL}6P-uKywT zsI`OM+#SCC{W!TBq!vck{QzSPHohQVZvZ^x@=iB1fW+B2H9P z8)aLz5omd2A2)pLus24Yl@bRq%y!kp0St>;0|DaNt7U{)8@WfVJVmvyYh+muA)*ew zL_zc%Q8q-Zs72u@EcZyVF@nS$D!oULO%ZeBsM#CG5|lrEv@l!`vUq)ENt*s$eX*DW zMn)}yi#coK!d)x~*Aar85=I8+-XJ(bQa$dbj7 z-$lrT+mr4okE**k-Ef;>zlX31*R)U^9TSjuBV@ugB}iJXZ%Ei5AZ)^xTddG^AW_x( z5i?=SrA#~m@j*n4T0@Rux%6%ijY$IZCkPsK?lK-|y*N)?KVkFz86rpJOOB6BM@@~k zeH5Y7sWdI61y68rr5{J+s0@MeD-El74F4p;C)|-}(Z*2r(}T={E=&b-Xf$ zmQRq*;yDD2%9R)cuu-axnnT_5h?;O~HmaqGU>%q(=mo?~*ey0Df_xN=_!1%}t=oyb z8gqnSd<9XXvd6|~(e`W8v>GFD|AM#)yQVg7yJat0e#-l%sDI;sx^%HA)5clhe?<`z zHY;*Y;Z;4x{5xVMJoZgcB5K1k{WE>gLe6a9w-7Yp2DY4+W*xtS$mL|G9UWwKq+?ED zZl*E6TrSX|n_TD8t1$HUP@1T_EPZq^>*Qz3mtpb~Ij#4f{N!NLGZnF-4%_!pHFE@5 z9FZbd-2H2%W*nlumPDw8+RHk*SsLLIsu@gbmPM$9YG$3xEQfHBEBpR!*0~f#7usnu z(_P~ijkp40C)5jY0<|(?CDaSdaBnq4irkp-*QjN}v?hWj6aew7s+Nh;I*6E10Np{v z3DWuqnQSFtVzdz=CbY89sib{Ev9S0B9tETMLDO_2^o#6mKizMrYl zY?LDM$ACq$`T3U{7UUgIJOK*%4Uo3SEyNaVykQc{d`~MiKr%f7QG@@497e>WZ6QBKl+0 znFXDP(JNQ?QNwX zWgm?i2l~dVRw#vxK->lqqgH=oAW~iFQb#QttaY<;w?o{hSx~>Yg?Tkv1r-UZ7B@sd<;`-K;k(k4vA#r50`ag#KpdO^>%z=(SyV$|Hd-v+H08e`d7utUR; z`ygbJjajdjf*oYWn}v8$n{EA8u~DO3ucC7vh=57zv~fbKP&iTQ^bmwhw2u12+N{*W z5ilxJ=v%3Cv$gEJFlc1VBM~!6!_l+6Gu|}=s1Q*Nf-*96}OLya}Y0Tf!?=fuF6jDja1 zP7-Q#j($zVOTs`bquyLZidyOPZ7|ztcOpV1(O59beHwA1R#bhfgrnQ32$Y2GY@^y4 z2$e{k!0n!iKv7dRZ{^uWv9l2?34?&qYXRaU(N4Be>wJVtLVecJ>O#bdx~R;LxOa!4 zbJwOzyRXqrXKm>z>Y}pq1$e>mb#--GT-lAf(&6NZ(^(ex4aFU%vr&1(+z5O=UmSE~ zh&S=>chqtoZH;L!vVUTXbb6}1{JnL=5=5KYSU5NsS)KvczoVA(BDkVnS>!XV7r>)> zNF+vQX@GB3RI24-codq^&Q@r0g&^t%st=UJCTgL@7p7WfqcQ4qK7vK< z$@Br%suV}G^z&S`3lVKl4K~JFBO~F(m0c%zu)6F0^UKpnay0FQXv0ZVcAbEM z;r$NjJ~}QKAE!21#IO=&?>%{=8)Wgb3I&FjsL|U4spAZ@^-=AORffys&QWq$VVXR~ z8bz!q|I}B#=F-~$!3qqcjU!r=>-9&gR4XbF61GuBu&9yC9}MeNL#U|SbG@M~R?$cU z!?1=4#E9}(UiCn2%}10d=i3{_*7_$SNYohB8wBg|8H89fBB-Nh>AUv%{6dNcZ#qvn z#p%(c;0`6TZxS=<2tU;?KXiU9=B|1hv`jsK1|nm@g8+W29YQO|x^?K&?ti&Auy z3cJ&ph4~A=q>3J*YZ_BV7Mn75_t@QMHy56^aQrm&^>a_Dn;YM_oJvP?dg&u!=_%Jy z=?C(9>C0j1s*3hlLHm!e^qj}2be_On;qn0Y(Qi@dC4zG^EdA)$sPrnq`OdI(t*fc@ zDN*{@uyoTKsB|sCd9$wuxc~V9m7Z77Ycww`z5jM9{iC4$Us$@#O;mcIDBb6Zfb+8t zQ0a4m^RZ#+eRosoY*BhmSh~)oR60Y{XuYcf&TG9xrHdDJnfDA!t4~wuD?-ovgr$`~ zQ|XFhI_>>o>B}!r=?$ZL>APX+!T+Vw-30Fc!qPAPj!F*@v?E^+Wd7l^R60YHemX4u z<`YzUqmcQ&uyo$*RC&sdSlf zy>wn!dca0hx}T8h*|7ASRj9NkXup1KfP4RTidNv>8YkGK&r3o`u-{7kDsXHJ{y+KnogzH&DTr+5tiPxDU~)w>A%9#@2yLvPtVh7 z{}-0N@fVWnw3c4F_jdxRc3y^PPo1lmJ`|QN_!yPGBuf8vTR{7xAu3%cr22PQy7rb- z`lKjb^7erC#3iY8Z^3!#u=Lo)sPvr)U8-fn(r4eK8f_*@mkUd)?^5YmqI89@^t_FT z^9DkymBZ2>ZbGF;iqh4>(jBHy>GuWaHN(>Vm!Q&ZM2*%7OMkotmEJ2jKYnMRjWtiA z(w}}>ukXs=3rY{Wg-U;Ms$RN!SbCZ&eL|G(8J5;AqtaVGqtosamcDy2m5z(jSz+ll z7f|U3Md^WI={@IB>8q#coDT_0AGwuES3XTIJv=OZ?6XvQu%Nv+EG=D0rLPIx`@+(< z?x4~U!TEu(^xSKy^Z=oahr-h7cTwp=LHlr6`m4LC^kz}|NLX6_E|ty_rH_TB$6QLK z3xv#1gr)CZL8X5brB8*WXMKfAuN0-vgr&>fPNmxl+-Jkmd+wpqyF}@$Vd)WTkz?y^py*#^lXai!^r%7_Xf1nH pVv!w z3rnwFg-RC)&YuZOcg|7i4(I5!7lx%PZ$qWWo~4)G|APScym2bMLC`*El-?vtm;Irn zeNmLIYLvbvN_RI(KfFMf>OiA(B~f~`QM$G${k>6ohA4f_C_P`4{@W5N+GE1f zshd&h{i5`wu(bL`Dy<1!eI+bi^6ykS0QFBtQeLquYAtwqI8|G^e?Lun^y&HGb}yqA4I#NkokgNIH=P#zxM@1{_ zV3a;CN`GpUZhOAoMo${0yNc5NACb6Miqa#E(i=o+-YC6Ql+J!savr-tmulQ7ohwRP zM(L@d^i-qtY*D)BFC^|-U(|8m|ClVjS(MH)N?#JC7d$R$pSe)y{Bxu91C%&69AW=! zlx`|YKl)3_c{@?Mx>35DDE*{SdZZ}*j!}AtDE)C*%1@|HU#QFc%oBlB{Az@HIwY*o z)F*?|Amx8p`r)vY69lW|_+ja#VJYYOP-zpx(gnW?I0x6m!qRVrrF=+MT~-N8KSj%n zoi)bbd{0=qcUa2%`|6}hSbB0;%A0s#R#?gl-)dJQC~b{@jxy8iJEgT?YMtIu zRcoWOvucer{Jqi4tKSzaMcIr;)k6<-ew2Rbd^c^uVw8!hyl{NA++tJCTsZ!#FVTY1 z>g~Vx{WaC;z2Wfp|F-|;-xt@u|Dg8$U$yW5rhUJx_Weh+@26_NFQ)xIMf?4I+V5{^ z{Qs@-Ut0Tq8SVQewckIa{r-22&p$Li|I~i}m-hRM+V3xEzpttBUrXcviuV1VwC|VG zzWuSHRto^=<_WNHn{;z8MSJ1v+QTzTK?fd^|->a|DUtod(W+-!Esn&OP_}KihfEe(vcHq?>z7r(28XcegvdDSMD^n>mi1 z6+M06>S(ufo)htRVBY@yKkXidshHP1$SG(`KD9d)||MT{V`DQI7xSN zzk@#kSHayZMZ#$mxZ8JEcDInMxSP$;80yV52orE$!QCuXQ5L;gyPM56VBbbCCIGA8 zZkDP8^X_IJ8Njy^kO=@+?rxT7-Tq;yzf0WBWdh@&mDiy~1i-V{V9@P0E{I?{qb3;x zbW}%)+ zC?Ljf{8LrjKsd6UdxQfbq)VHPjQR-SN1azy_gx*ZM zbw>B7iBRLOfx7VoRKDJ4=)a{Xt8_)%I!Fx!3;eORzysAR;OIItXpTi3^*q{w2?VHC z+X9_ssE^d>HMB2?ig>3HH6Iu|$K*>aWE%u0T~qbz5z17W^?#AGx0)7`N%R5rX9(h*2Q~lY}+_DZ>Q+rcF>G z1Y43?`;Ke%+f+Q0iq2{{7V^3?DS8mqsE-kZ2|y|Yv5XA9o(Dj`OCToH|B9`RI}fqV$mH>-e}`?xp{Q3njL8_# znDERm)1Dc3mlYD%-OiAGkx;#wmSX~G9*kLT1$gyF58?al1q?8#TrHP+77bX?V0>gd zKB$?#%ve$9SwsHn12E(k7&4R1oSE=tnlrxEvvOtzir}#5J=&tP72PG|*Hz2B9D=F- zg?42Eu})O8YlteQ)fvvZlu_-Ybz?e>w{>IdG^m~0m%jC7Fz4lsp8RruK+5>a*~CBt zMFiOFK5eu3{KUj$P5tvSsN-y}nSl3rBeX&gS^qH#5@FOsgkl1ycwcm7P`*XTz`cZU zOaS-%O1?*R!Q}$29ig9D^Mii8i5pX#lif~ZZWi?Qx`yr!x=g)rhB?#!!?lU6h5R7P zyw4bNv`QU!7y&~X9}f9)?U3=_eHDq>xaW~Is=AA&WCF>~Ok1*GDx?Jd8H8s7_|B@p zdlxQY;aOyX30Qbp1!vBaue%Jh+-4k2y^J32y)AI9O5Gg?H`DJ(+u<^5ecT`M$_BeT znY`d9-l^Q(akLEs8WVoKp#8d1cPCF=Tr14fXzI1JCKFh*QfnO2_D!*b-tduu{d&SO z0qm*i__47f>u$`4txeVI3C#r14@|{>`<>8t9Z;Ko>pjT0Or_>?wy`+F@GJ_(j~agr z)F-*Pw9fsOKcyUfG(J!qGdzZX8VCOQsP@nJwCoB9i*H&ajiO#aD=~otm0D;^H|LW! z+rS+r923A*>VaFj4$k|cePkey5|RlZqiahOYO)UcC$!bYA=FpV|L7IY6)N?rW=}U~ z&&)|*_Cy6EeKQIY6SeIt#g73o!1DMHS+JNTYRe+E}qv~XEGyN)`1==_@G z+p*yXUJ5(zFt21Dx!jNt?HZr|8dn=}<_3z4z`oz6?OUm*Ri*%GDT??STYWjJCliP` zSD~4Rpw~^_39U*uZluiWTj>DS0(o6m(!*SHzOmfy&&+lfmfFqpfh(9NHS@$e!)@FK ze0BVx%g>UdLsV)PN}0sO8rXqLyi2=8rQUBTid6pSQ;n~#r&}jvDGG4Z6>gKm53if@U|D0T(zdm z>Zj-e)&hB5R~nO9PH^dI#0`*Zo#5ez;RM@EaV!(t2QCk5jD`dwe5El=l&OIt3o!o& zwfU#w|Bh$Z882XKTy>77X9D3KoQ`uXtMjaWE6r$G8J8UsBEB^) zv#r@b#YM*LktZ&5##5o;@2@gck25w<MohqXweF>5Tzo>W7@Ovpf~Z##hzWoy%`RqT@sj`{*sBS~1YifMcpinS zhm`-2-eqh)6_w4LZ1weOfWXxFbD*x8gKKRFa?B4Y&3F;tLNw;sQ0O{fjRsHqEA463 zt>Z}R_&_CU#zijmURs9<j+_Oq7xy==V&OcL7fe-O4Wb9wK%V*v*oXWdhsl) zzy4wW1xTgp??5zp80BB4Q2iZMu}8qZ`VN|c2^gl-U*1tifr&;FF^JbE~HwwqsTU1zt2C>N6Z{GJ()b72-@O zPTf8^;aM=95o0EG2{bXn9@EhhzK1i^je_USk@h_VN4miZQHvDuPiKOsddSnGGgX=z zvB(kH+MUQC+-Z|`r>~ldI~C<{gP0-w;KUtxQI|5ZFoEd(X}DC8o4~1phu*D(kBxLI zXSs;}Xq!sSUCT9h^4CDMIGu5s{$c+GNTue^foSqD^|jj6m3q65sx)^2`)VuA#{`U5 zYVNWSy15I1b`XdOfGWk?ERb*RLa=KH#spwhnmeIc&rqhD8JmN6rMUz6Q?ol`hpN&A z)fJEVH9J(6{DHdUD4cDFypnrlaNc8QTfi3Z^OTjMK5mlFEtr`cJ9+YHE_rUwX1d>= ziAodV1ttcHurT$V+SHXM#0%7okpsaso_agY%LL}FG9jKpgkc5AS(KuwFQ!GUTD=;p z*|IltveRj6YPvf2YRs{={54kO&8a8DNKJPf2n$<&`7~^qr><=o<_;9` z)Q{1YOdwFDiN=h2T<^rRG7;dPATSdESDNLE0|%{61pKE7&II5uuFxgQVAosN*G)fi zE-V^;wszqR7l5s_GZVPQbz3-WZprrJGjQasg?wgZ-={lQ+L@Urs6Cqa@aPw6kFM%o z5s5LN$|DaHQPmRr7fc{orN!YqedpR456kdoSm==jCSc*^)toFtUi{4DI9C&)UqDxj z8n@E!L8zdxcGlAydu+(Of~N?sgr{Ye43QDONiRE6WjvH6r+tjb@Ua(bAFEoc3UX=> z3$n31$PN8}%?QE-GF9thW>n<7%LUFN^xqMh381TW?&8oH$1cME1L2tf{w3AiIv_4i zEx(;hi=H2%OGo^u(n=`&=yaoZx^c4I%=Q9ou664#=P9RcaO>Oy=H*Dxxht)N7AR`} zCJXTIQ`*0)x|)?E6kEG^_Q^mISA8{Y%>=?#SqUx3Cg!$~&f&A3ibuj9;2w3wn#~Jr9jLX4jkST*v{~9Ax)xoHzX3Pp$ zm^IaAt?I*B>UJ>db74~8sc)c3nLwbbqXkdg`H|~W`DX?=B`^~JR~?Lc;tn_ypZs$J z{zif`0eHp1sHZJ%%%3hqiH2WKC+1X!FG=sI}TtvsB(mt;J zZO&%8-}<%6E?i(j!@`B%J_Q#pP!|`@Z6savr#Pi^(;f#f;nbYUp0(!5cWsevL3@Q#mY@2E89jv^GiA`o4@nQ?*%gsU=dR6x#o zL5TTVG(L4+)NiFOQAjbEuq*@)d1k}LB^2LHxl1&JS**?LG2I_% zmzY{S4fuDBNC_XB2lZOI2NSqQl`c^UO3q1yKQ|1b64WQ?D>P4;5$@U3Ios@>Z8gvB z={E6=80>RA*Xf?wbGErS*XhpmmYTDz`PS@AW2vQwJo-V+KB)1*K%M25=&Pd7(yJa6 zTD4<_RjNzQ3#ATS5G$tf`j6l{vraz(Ta%Jux*@l9OM zkq*$+U(lCIjrp7jK&(cSN9|vaYW1kk5o5hmJyrgt6A-2@lSi3af`3bbmx-cD?8un* zW2@V0H@k74cTWfE-|6@}b6S(-X?cB+?tC!k{rfCw^7ADt;YXvQ9(-QcgJ-RT$gbAh zore7<@Xz!K2lwqGODm){i!V@#GM>=FpQQF;QX99zIF(9dT|7HGYsg(Hf2Wroc~G;L zlvEQ(z`SS573zvFH^MXr$MZW!uTXW|6U~wOZ@S`ecX;}wm@TU(^#y+n>ehxUpkvIZ zE;Dq*dS5arKi+U^JqbCpJ*UJ+&z)|dZR#}jjf9Ok{gEW*)|e|dF(P-Mo^^^n&EkV} z`$H(4uyAtl?1g0S+}v~Ncu$)IP?JZEx(Q6<<@zKq??QyG_4zc| zn*?FLCIX1B{ zUl-I#0^IY*l^~2+i32TY{@DZ^D|&tTxX8KqVTMDjw(7Y=D;*B)T`7VU z&qN2ck1)e~jbAY?RuE`JjX@Mr_Y$W(}SEF7ZO_#P-TN0qlLV3&NR_Qs7Y#I zHilX0#uu_cq6#QSE4JDH#MF*^lS0#_iKbGDj zq<6XYy2+@C6JZ*M9%ZS$QmAPsBek+%Ta?$jmYo-BU$8X4mNd=05WI0!w*NOH*Cwhi=$g`dH@?yV!-c|b>*R93)2+3ejk#v`WCugNfjT#j zh=$I6{4v`;_ar$Kya?`Z915vPBbL1jyrT5(p`~~AJ4@(QIxI9D!r9hBe!BH|X9<1D zpeQvtoO-v_)7{qKEe)_E_9)$Pzr0X@38s7FTJAPuQf!;;vKHpta}d{dZtC#Slx58)9HEnDHG) zJ}!s~FNiau)Ac?hUC%i<(v}sTV8&)V%Dkd;p@~nv)0&3-m91=UdgZ}v21E#^7smo> z;Ii{2jEv7M*0}a%khbKr(=B@wM9kVfD40CRg1~ywg!b&A-CzL41Yxb)ggKjM`Llnz zSzExQp10_&W0XvvbWD>=ZU?=@)4Ky5x@L0N5CogYCu9@1vo2aT>3hOsN7(E(mpZ)` zaM9Nji{Cb0;q4YGf^gF`p{hlbe4Hjm`GGNvx8tvL*tKYv+JJrQMGPNRn z-aM*UdUMv78tvo=2_^ShLg4MtgqoxoF-X7~DW)#_80@-K}Vc4u*^04&F(@ApW0?5L0gNJU-HT6WUL+AT9Aw^mnQdEQc~B^5^GY) zLzWcS3&s^=nN&vksQ!}n ztG3iyYPR9&CSGj}v(oMR4kkxUf#lQQ`L2KbnK!aJJ$=Gz&LC;%Un+m6momhW)Uzih z)o!D0c*Qat#E{&yv>fE6n~vgVa=$48h)EmmIh+GD!xr6W`;2t`J?pU`&bE=a#4 z$@V+cUlMCumW8>#LdDLW0?LI9UGh zEV@f%_0%MP+S6yh@NJmi*bwBT8}7m5?~pyDNbA)>V{!O(i@I|zz`myBa|Eujqa&s&g$^afm#Ri z6xhdPt|~=j5j#F{Xqohhdo2lcG!r3_9B?F{ihIZKB6kO8jZ-nf{f#y9o2f=m8mlb& zIrdsl>6Sd;ulY>wv92ydnER*1Uaiqb*B46>+&vupp!xqQk>e@)5L^qRZ%Yu*mY z-Fyw8tR`WJ&@WMn}XjSX*NB6oqs0gBr{!09b%i5YeQm9Z;VC~wgu{bQi?`@zls-g z0MAq60;5)hdXOZ`;=EtNh*CB2kUSbsRWBjALSXm%c81b%yd^*%2H_+TMg{0t_cB0nan}ddTx?eJgc%uu?;h@5@LPS4wnWMx_$CFvQ^XrPv>vXG zo8+UaS|kfA36vu|&&0#T$4J#BR3S3@o!3#%Ghxr`F7ZK8oh8K~0dRy@JA05z31O@! zCibaENPJkBiw(d6f3xu`VBNTeso1Y1z=%lplxTB`b(Pts=@;w22kIw#=oDWuXMUzv z+++SiIJ|iT5&bgy!ao3xP(I!tFMzsUut0Ct&^9yOtQiRUzh6Frja{yWMte_!QnmLK z?-v(E!-ncPOsirEQed|j;aqmQ#fax}ptoCN6;#v4r((ornx6W8nm#m9w8hH2>e?AH zq<)kHiYk8Q5DuJnqw!CuzMoV_#=mII&+_WDBI;8=O}a6SMVB&o));-i#ZxoQ^9{}* z8c(;`HJd$9f8B!9Z+9>FC+YTkZ1H5jp~9X)uyY~^H@0X7P*X>(_%OJ~t9M1+H~Okx zIBsBFR~WoPmW}Z<#`! z7maWQ4(m?;N!BvzH)!_~OVnbnTBL0iCYn^gLxQ0aqrJ2^6|X<_agxbsZUSzc($ps$ zH%4Faz-igZxiQ+A`(Gy$8Lq$polyS+28d5&xFQ^HYbtQl&w(4f5{)G84R0$0uRcp5 za=}K2h_!ZKEKrqjN3q!p zcDqKGF#Rm;o~Y%z(&y=Q)D2&qv3o<0npeR>aCXIq*%B7SZJJ*BJshyd{;LKSR*Y(H z7*-^G;`8)l1aIS@JEuzT~;qQV`N~rN1mkH_uAracBm|1JGD5!th=m4ROjri{(-@uq>jc0 zagLCu4Ua)HU@VaYbxi#miI-KW*!;aC1a7;f=9$2E-(Fwyi z-P4_O*jdOOOc@<-E##+LpWivht#Bx6mI;9r9MByl0e62QDq2SrQ*O>?rklC{vlE8i z=xlvllyjJ-$4;?MtV&q_YlW={|*YW4<(&r}O?5nIN%lq@GH8IroW8w-otB@bClrUc3gVV{K7-fojo3tCkx#LFXkqUb>X{^5?gPa}`3?4PThYxTKr-U+3-ym5G;^u~RoyzlcRAc>sqb3yNn8PKJKnT!9AlhG&#n_ zzkQyewyc>8d!vI* z0&41Lyxt7%@oIE#)Iw)p-R0*Tg~N63Hx7;lGrup42AC)}yW|iEhT>S`$0QXFFkis_ zu(?2Ft&C)3ximS-^CUt_mIGg?No5rk?+nLTlY4-{2{zE9%@&C_W%ANZ2YFR65Tpo{ zISKjBa^Hz*$!GG?P59~9ruP6R>F!KBf7+G9i zIEf7eve1N`1e|Pg^Db7eHx4h9-grb4;hfKXhKQSuk&O`16|WLEmhgc6LOpK3Tg397 zQUA8$gLK_Q;cT`w>$-D`#xr zZ|V8k>OLtOm`yxbeG6k&Nfe3A@JDF7TCXX7J1J)Be{7m3LdREW@iSBP3mm_L^v9~) z(a}qxZsS{tth8ahR_`Q6p*D|6kG0g+4(&-pE=;|XbxK>WEK9~c)ejMFbPbG-#*2uijwQLur`|`DXl;wGjaeoGpSQKh z&2?D;euAV+>Qit`KcXnvxs+|D&1Rcs&J6e*%v z{(Ufu2pgZ=D!hi7t=2-Lt5+7-_(5i2ZCmj{y6vbgoQ){aRUIo>u#F6Z9baR^2rhWI zu^|3f-`3-sW~(8I+R=Tw5$uK5d7J{X53Gz^^4aN@!z{Qm`IZ`36F@g4PgLvk+Oo&k zjip~qBG~a!e9?+%7;w`c&b8uZIrG#Cc~$gTdet%aN><$Xkg^DAYfAxelGbQ=tLvPb zD|5K@sKv&%fXB6-$U~X@w)t5R{S69bRo1tEL3LHX$2btFqOmRZ)(pA=;5!jg&BD+^ zw^yH(s1>bOu|=F5)l8i!(Ed}>#)S_-y~^q#w$Cw#AkJK%{3%k7)s-=LHuWHhQ~s>* zJfucMhtnDFtb2zqF#b0rU+VhN0b-W6_4)$kzbECAHezVYCJx5Ir}I^70#k$4Ka(_< za$Jc6u8t$p504SD;_D_d&3k$YS>`i;?Nw-pwpmF3Al+s`l81OH4hsV;zS?4S6oTOs z#~_Uc>B>Kq25ER)3E$l17R_oH$~CdHEKF|6XLFm9SzSwXK`=Oc=$wHOop*a&$CZ3J z-Yrl&Vvo`tVgh+V>x3@=a(EESK+5;iC5q(`w@03&+j0LUmM#$VGI+xq+zehg9`u{G zMaHY5&(f>z3&xB|uu(g{;1sj`E?Y@*h+7N!>DD85kP;vb9~@@ni#Mt{+?z&}N^gqC zn-xlrPn#~uA%2`lq;nbf-CD>`w;p3r9^|)0;Z4J*05a0Edme1%5wmX2W~Q4TM4`+E zo(bI5tqA8)CfP6)pDm9%&O)m<+ibTRi%rbJ;yT!s^mD_BKbG zOl?NwDv5(bn+i(?J4v(gNdlSLL9(&fHFRw5i2B%+NS+H@>RJ*mi&8@yAxGSWp*-yy zNV_B;4Q=%uX^v*?FgJ1AtLe1rW)d%rJkhnvy#Lf~aLJM0MbgnQGjxROxHhpP*Imhh zJcS@*M3M0%kwC#Sz&0vqw|S~a5(^na=NX(N3=F|0B2oMv(kzCE@qEQahdkA%lWNJ< zr08^i!I+tuyfg=&1>_A*wg@kB zF%Y+mE|}h8=HQbDNG$2h%aur08@vOCOdT7kkX__~yAhk`o3l6-s8>HNQ}{}~F?X%k zI)!h&%9Z3|g*zvIF@5@R+%N^O-3DxitE4jy?DjicPd)K)5aaM@F&fy(qE{uLUi5#5 z$Yiwq)Ja}RYkL>%F6=}AhRQ+RN4xq?R&lM_W!%ZI;9bBf8-oea@y_xB>CS!fGVYnu zbtOAmjP@I{;5d;3lMZpi>xYy`ufIoLFLS);03wUuS?<=BI_(yAgrZaLo*B`vEqk0^ zd*5;wD@1%T!PX@IB6J=dP`DDJbNh?+tw-s@t5-$qHw-J1-f*u~IKM(f`2zxA;i1vK zda8-rsWAEEZuuu0_8h7l@WKa^YT28|tV=v&WiO}CxL1Q>Q?vQB09iL@T;0c*k~}B` z8Y8ed4LCyB-+}Fp7!S%le3toJMi)$PIbgpy;fS%*9TEdmPqtBbkDnE?X6x16U)q_} z2{uC6rXscu?p|{nnaukq`F%+0=DuG5RGP2U>d~_&ljeOi3&8N}MBAJ>z?#6}@R`6)5b-c9~k{C5k`d1*oeiF>eUe%qXAIc@)6P>79?XM7f;;&B{$XQ!kY$o zB>_f-!TX0gg$ZK#QbQ1o@)58Qj5Pe$5`N|3YPr@1i*XI z9nX>Xc7+pAhBNM1@S7U+1_nE3WCtj^+7_cd+rhQ@?oBQB=4@svzul0OmTp2X0&qWAF*x(c7aZ5n( z6O^N!*rKo;2w7p#jq9~$;cWu2BlalW!BLPE99=MZ0dUc|w<6p*TrA50j)M$F4T5_8 zkP_+j59!xE19s^^rpJSiR{4%ik%!*t4nBhEILP-Jwe&ZQD3#uHjAT3~*_(9B*Nlt& zEH5tiux4!Qjn)6wLVmjS0V(QsS_w+@SX~jt%!2`l*AeJ#0Kuj!i)!ba%FCs8wi?UV z_wdq`Q@4{8^fv91&kfUJOw#*%MtwpYt6S9tCFXu6Q-87<9nqX@hzT9GOA=+!UWhOOySr0iHvmRR=;9TbN z5=OJ=2bl4&;pX}wCDQAyc5o=uzK(rU92Jv?*zT^3!Rq*hk*f*X8d3eGv>6BUaXGeM zHb*RsoZ@rpW299Gsj-f2mK29Fmaim?rt0@du`GDTrYf_9O;q&6b8%DsA?c5ZkN(S6 zB~`L6LC=FkL!dy%fjdlLJQl%2Oi*{I#^@UEs4mAt$ zmxLHAkonI`l|h>LBq%n9C7Bqe{)%uTBUNmjAgeIvTTZy(ZloYcslOxOm_cZ?QYEtB z>Q&sMhwIC1{6XL_SLB!)_>ZF0aiYvjBcbWc{kT16h24w2uC-` zfi|rEokr~uq-#o^rq>*>&E9b=w`VR{8Qu8~(5Z3Wh@#>ARVn<|2CquFUA_Pi zAOD42?i|T^TxDu#%55p~JKaE{{8Lknev6^Z4D=KBXSo)@5v88K7w@T^ZM1PB%i!HQ zM#=P6Y7OL)hcr2?kMI|Bd&z^E9GomVIbX(Mqus*i)`I3jEVw0~jk|eSFql#T&nD#{I(_m`F01*yTqPsQ z62IrqRQw))X%C$!tew8F#0x`le80xCs}KeiR=3I$PVJ(e2{P(dk{%L+qth|PcuAF*C@TS2J(+Z~ zv3F$W&hSf8Cbnu?Uqo8DkQ=)PKBi6MMshfhb5MFMlexVljJ9ewLB@=xu_^Z$xJ1k# zK5B99B2p}N?vKnN$H+Q^+OTQ5ju}_{Qlg9z8V^qcH1Ab)f=>|fCh;;I)3hp|L!4}+ z8@CSoP?ltZoVuGdOM=>clPb%_C$SBKP9&bG1B9F?QkBl&@Gz&W`@(T*{2?0yaQ<8` zz4NH7Jyb7o{gH1#clEaM3a3v#2%?8Tw4UIvr}PrDCeJhM_Po6b|4CUtz%n>cghp4k z1K|;SqnmfZ*NlB(m({&~GcDVgQrg9Hgqr7ZH4|)6RK$+hqjbl9^FmI>=&sWY%eD_C zJAi>`PT6wXuqb|Kd4Y820kak5KJGKd%LnvvV7v@~VUX+_S@fN$8xo9XPFnC zrBe*j4|2_g{2Hk9uR)W*M%4_%a^G!=ZaSo$9WhM;q5b>8379Wkv2t(h;$Mu&_R}VY zi>-xxeA3kncF_hZM}f_Fo!D))1T4j%oh@ zY2N+OVb{xZ8r`i1a9sxpzs*x{DZ1=Cyh3NcJqXku>O zf)`wAVsOO0WzCCM-?`KH24bgnu31}bV&PDC!NWNxagCct6-$$cPG3moI?1_aLPDl5 z@5fxvW#x|E*^yO}bcetXR*Rdpy!Y3d^Ycxtq@Qi_{wd+?j`3ee?~oo9cqH*8Uw@L2 z_;|{r8YNnmo$A%f8&xd5`M4&O#LpNFUvKobJlVk-bEvfDd2Wq>S?8Owh1%BiTgNDw zKIv|fs|R{|3cO4cOb%FrP*mv{$aB_fw&!c;A?lkbv3m!-I#&;jdW=DzG*;R4NykVM z&9fmX-2qn{j6TP1P@ZAH(V#qIknSKyIP;GSS7vN~iKNB|dAJl&zD1l5JKKs6(rx$a z!r4F)-AbITBe>nmlH;9&ux}pjhG9k08}4t`EH>}TM0GtF#8WvzfO|zw!dr^&TyG+n|-sd+vYsZ zZxLsr20gZ46I9LIsBWS$-Da9!+m`$0R~!4I#2v4(E}KR+3LMqEYP{bi-dJsM?EV}t zpA6${OPP1HOiQV8|A4rYwXd;nEqVqhwFC)s??vGz0P*!dChRz^XW2rzR<1OM^~B5h z6j;`@blIj;{TUITTxc3GNf2)whXd!@I%&k5PZ<@MsP<_BkKO7Gui~VfZ{M^XKSz|Z z_HTF`}Voh$AEi;Wz`!u0nLA?LBU$3n{%jd> zuYuywNwDzUJFB}w34SfgJTyzT+0%59z+k<%zkj zqM+q<4L(HQO`NAR6n(wlp}5&I}{Tm>a2in zjrU-67s*C_HWut+gc*~ZXQ?kGz0gx*+x%l>j7J8f>Liu-%~*31Bj?4{PUi>Wy6URu zkopMsi-qSHm~pTq=XvUGV#Hl7T7f%qIUHlMe78*kvdfcit)Sbu^%V%lTk_fI7JXwQ zy9|dBgJsAZJ)Gj+^dOoj0`LhijCv5A%Za?V>r}gQ66Yy#{J()sgShMw+m0baA5%nz z(Hn*p!C@vLz+t~8z>UV102qnxF^)3Q>=T}$6L$s6oP_%_pyA|+r-qeDZ@yO^%Oc6{ zFE>P<7*DteBHC-S>jG{u!wIc;zOa9Q9Hu6D*MtEzMVe%SRew3%miX! zsR+os1v$v~*bpyPRddqS-Ea8>r(s#Wl#U+rz}O(dkjUELszLIj zd?nVOFF+XuJ^V10;nef+!-1VOWRsBN_{4lr42t*)^9vP|r&dfwo7Uq}z|#&)D8=sj%KeFMF`> zX8|>JgrY|vDPE1v;KpCY#mOA9AOcF)RbOz{oiqGiQ}Q&uM$hRnaB>U0zVQ#Q0X*7s zE&)Gxx`8bYn9IgWw=H6zuZlk7=N20Mq}9`~MsYGt9F4!0XjWgl8Z~}x)@?M-V_#SL zJiTsj!Y_pTQw+xp4-|b87OZ%SoqkOG>q?(v7RaaouNKvCEEaA{)PQCP=Wl3xbHvpQ z2=uiYnAygP1MUdJthspa?PHfuZ@=4;HcM=6Lt5XnzTcCE+M>H5N?2a#V1Q@mO$=X~ zvzh7U!zkp|HfWehl(Nt`-&$xrLaoR`G1rH1mk5>*+yV!7hV`9N#x9@Ue%O)r7oi*x z(yj-uNmD725Lwho-DV}ZP@^s|=#_+)*d&T2T5`UNEnFi_>W-F z&24qIkDsgUs{RKd$}4=VnY1JVDH=(puJgQ`#B2ldI)V(X)v;4FmPmkOC9$>A7O~R2 zo0_XQx~4 zHZLc4%gYRUPs%eLL(mi<#4l(eG7~)IY~fRr=rsfZQ7))4>|JXoN^D1rUr@mPHG}j9 zJ85#j?2g0fBDt96)9-jKSI-XBfP`^;H{`O%$O%NZO+e8!moDabVM+iW5WBry+iw5JT)3 z#;YiGD}^y(K>D{xy3}&H8lA5|b!{eX9nI=TNiT1;%-pOn2ytf`y_p7XBET4)o82T3 z(X(-Qr-5^6CVQaP^Yg&s*|{hBr~;1gG;k>07Ke{yCNPGeY0{|rp9ar(FPv#Bc}n}il+0Z6y>o^;8kW;$y5M19`s1ilp zW{GQ(ko)hn+?mnRcz8wg19~MB;EdiDek^UBJ*1NCsx!h)Iv<4E#mVRn62v1o(2oX9y?->(jAE9m`LLb zn4K~&K;+Cp#PLM7ha>#m03z_#LVmh6cWz9CEySB)PNBWpdz<=OI&;>|!Y=bj3F>eJ zoSKFE+E3q-dG${u8*_=UhdG+KwRw{B2K8@J2jkWcKkzXcg5g&i9y3g#;njZ7Ot&xvBc#J)FlJNlg;o4ZY|Qq2Kssz>&jeidgcAuV!*q1Mf%y*#l4+aM8aU&9heu$ZN&#z{X2- zn)nqG0bK7h()H{;>xYo6*aa>L9$8H`X7RZuOZ{^5E4_TL&IaAgy(Hr^-owNqLO(aZ zwL7>ylQCE%*dBR;5x*3d`O!nBIIzcV3wsWt5gB1ow*g7~tYXW07li$q^3ju6}A&tA`at^#H zlb3Fi9r@PBfi!lHCF`_{%|1KS*qz)ubs9UuwP0KF+3A)ex*&ER>wT1&7v@d)BzQ^rBc+%O5W*FZ|;*nq<9+etTEiRn< z)}291-AIIZU=KGEj0fUFxYo@rB%TfC;Y$B_M8i0)ZX?AYhKDz{j7LrfX^F?ywKcPM zkaS779=EsY&8Z_s5UEv-^z#Awh4~TfsHV+aK`OyD>oTTdsXK`?A_h-xT0~o3He%SgX8z)l_(V3~YuRbN4jVnCfdEXdB|tT*i??Lq_{x7Y9e z$V5pO6Sa2slX@&(9vrv9$Lc}9iF*NNFtl*Ja+|4lZr%7Mbj-K1W1h*!SODYwW9EIk z-72$YG|c*zmIWRt;-H7#hfIi^nfuQsA+$^HZ9_E>#;>qH(<`u*#NPKdb`zFo6Zie# z;zV`~apqPyp*J^||Kdp*93L>4y9KW5C=qW()~Yq?xoCdb<)u zQaw6W)WC(A$&yHAiPFAxYXdQfxRTf%7!Kh~9LLZ3fSpIAo4l5=|bM|xkr%-CU~*%0C+)$Qf=+Edm8UQ$PO z`WEnw7l#ZqvM=tk_h96v@=>3J-|I@Br#Bw3mriA;^?Pobe8`Mrj*D)m?LKaSN0@6j z_}e2-(rfQWaeG_#@$A(6kbZFv6VVo%-(}ycF|T?HQN}Q2X{-tGXenzH zWV`hejr4XR4K>_27~Ui}sVL(M*~?|suA#n*P-9r=YG1qN8?TV&5dRL;D>>Ew1pb*m z;lSP(u_A6O6xGF0YIzGa~BpH3-}a74-JWh*__QxH{YWRCC8)?*bi9+nvM&PWrXs(mmX?E$j|uHfnY?ter=3;~U zQoD13V|k9RP!IZG)^r#m@N!svzpo7M&-P>w zuHNt3Za3Sl-hz?l$zzsIpK`w;`!unx%oCjL$(G%=Y=gCQ!BnvNWtqa(g(bNGI{SHd zk@@QQ!}RK7`XydT;Z~2u^MgxGEI^};jjLvlkO-{@?fCqVtp_&@E0W%@*Avk92OqPa z8W6}`MJLe{VrD@Id-5&Nw&H_yo1P#u%Ry2Yii*?-u3z~(9CVGyE9R=U#5SgmmOpOoi4f6MO$dEj{kK@^`nfPHtOAxDHMb%+_5V=50Y#+Q$NYKM+U9y zGh|I&!pECjyiz|)I>jL6FYqAK3_#+D=5uN`%t&Nazd#bhLeb6)7l=4M#Aph?LJEc0 zb7ST;2`@O6;9`k>^+S9$8fb3Gyl!PTF(&abM*Sv9ltz>+nP|Y!ocxZEDGMF`HW(_@ z#sOWuWps<`twrPxXIs5B<&Tr{Bq8C}jOeDqOU1Sw6jOWDCrG-y>igSZ$aPSq6X7{u z>(wVoZdB#IDZ`zvzGi99*K75sBo(j7S%2cvW3~>fPx0MC&E1~C4JxhrEX(^Edz-J~ zI1Mm^lHGoDPI@i)&A~c<57eJ_(0kb!W~Cc(K7d1aDS*nqvy_y69le^XK9%p)%$ zQdux|w{W~*c%jzA#_(Aj2^3n_lsv@-7xx-(jmBncM0E0)P&7k;S0rJ8k)nvWUi89&uxtDO?Zm+VjF-UGe{te{I=;JMes9lfHcSKtr!eo*;^`>R^9 zXK)_LmVo~v_XE1@VH^N`!*0fSrygAM>ca8;KsO})O zocG0rHLiurx5R_sc;Z2tshS8|?qnqv^v;s=FLfsgmU>e#pu*XnUa!&BJE824f%^S7 zBfhS4zteU1nsRjcYl3JLysqCuSUm!86!SeGONS?k1WgxJhskAzbkO_c*D=n@kU_$~ z|A|Ylxp#I$kdtmW>`Ifv>pX|Pl%7K3yWsI5&7*G+eL2kRS!4~R9weVRh~TO+Uw+R* zdxoduJ3P9o*>1}1ooUH&JMES%rgtyYFz94PvyTb# zvuJn)=!rwi;A;&bi3A-`W>^wnCfLO}f*D+mWz~&ujbkm^aImfTAl-gX#~q*Q$z7dt znkm?|FanGNG`$y*4X4F5h}V=nO|RiVPVY=)!)bkiPT+UbmLu0Kj=MsDDpsfIyD`V| z=c0$v^tKm^sYQ~@xrCp?A3`Z(X_}H5)|8rdm$XOP-0veCf`$vstU7uL&5a`;qK>n~ zC^4{K5*UjfG%a+(OD!W+OEJSjLcS@z1V#SZ3&cxeYd?2IbhlqzhxWx~?+LrSDK zAL(Ek2**(FFTC#N!-HFIOS!AB8>Q;0bEK98GU=Mgmoen;$4dgG^G^^Sw)oln2& zJCbAa+9AAVcm4aZVhpqnz2W3Lw)MhSh@-xV*37BguM9_NEOszPhU`VvnH}ju_{}6d zj-LFATNDivTUAhEuPD8nUa;OmtkJp&dK8_-Chv&G%A@!re)8H~S%{qJu}2Z)U|DRj znV83Lub@YfB{NWb7k>C|?T5Zc;mg(Wr==yu)%S`8vJk;Y!oRvldZ@xL2R!nNpM+jI zJy6g87B;r|>~tG)c1uBiKz!-6{;oqX1s9{PsX>e%(P9Ks<+0+sbjMjQrVAe%f}C{2 zalJHxaL*{e$47@KG4o*)G%lKm5p8QBA0KX#kCrf2nW7*c^jD(foA}mnm+f@B@d$U~ zE?^DQ%tZ_9JIf2CJNNTthIPIy&9r?P$U)ePBI~wtwqdrj3)<#vX1ZCojJ6P{j?%rk z2Tr!;YuyJq>4tmdd)9qE2C-m{I?5sfy=;~+I$!60r|XW{M`Q4W>B;U=?PQC4;51J` z4%$^dPUP_zJoz)XLTa7+ovz!jKV>hXjZtC3dY~Coe{u5COC$j!<$hV$2mZy$Y&ClL zVMF4FS$pHv%+KEDwQUdZpmjB5-Y-EQTUEZujXMkPOKp(BV^~YnPm@ZtUii*cftGl@ z^XfvCP#+-C;lBTra!z$O!g{p$gZd>>Ec*HoeFaXfN&KqlE9>5VzO^8u^JM+@Z}9Dm zPY=Ns=hgnI-~NbTXWe)Rw)0s1_QwP}^xa@aFUz>z7!d}1oikAX!Fy%oFahjuG9~=e z$@Om?>Vw`>8Es7s;r^e&87e|>vZ?G9hJ20E)nQ-wxiXiVUU}RVv-_ulla{5#GojwV z7?H1vK1;94GzIn*$Wq!I=rW>O%QdG0gNb<&>FW5y^lB>^r*{2ID?n_wPIj@Aohx=l zME@|0c*wm3#Gs#9s?tyltZ(SAj0)b4*du&E(pZl2Vg1wcd!{CQ|g~stJ(kZ!m{E5=aGzx~QVekJV#nM_*);JicEst4W*K+@F5-zU| z6HxZPt|@=vr}LCEUO&Q8APk|` zbY+6cuz-LcJF}B-#?JrB$xk_>sx#7!^g#K0SWn;48Yogg=&ykbxc?|yu zFteOD^W!6%GI{By`}I3Aw@IhE-uLkH)kzX9(VHLJ4WTSr!pDfH zGc`|Yfx?30e;E>b0N3o!VAibLaC<|ft81U(JZkuCpzeAj{O;Pa$LY2EWTFI`(nE(HJWPI8M(i%50}#7wkY0ND(82px zPVDKP7{2&(`F)E`Gx>FsadImdu7A&{Q`^CmGP6^>nlf8zs5$)Uq;af)lYX25gJE+R z!ihRZpBrj?*RYL+)^4B0CQMpQeKkotqxqigSacTJEo_kyI5P1LS7&kYe2s}=aJ|n+*WY*K$cqzsI4Rl1#U^g6Lt@GLjCB2x zBl`~|@(^UdEZz$5v5LxQbr#DESRvQ{7}A@wnLOCmZDQTr6avJxrj}Wf=JRgWCgw5L z;OH*#~Oxe7q`}Fa#=L>R(e&`<|RIF=~zWz!C>)x@+i|swF=aCk>+J$Es4PK zN?0I76C{r^wS>M$2#I|p+Kov_t2%j9|7(f8m&C3x)*!iHK%P+@LY}^RNLL;IbD%!U zYsNMNIq8N2t~6=hR^mSX6*hF55UR+}gD1QdY!ev9$wH&wZk(*?e+)C5vzfSKZtw9! zd+$z6ArKGd%Z3r}&9;_s#E_{Wy)n#6Hy)d99lem~0^^g#-2Uuoe3T2RB^zepPAERY zmp)ive6own3*c5#OE%0(Hy&AD0JpjT$OiicMkwJ7J|@;~HoEwP-E7PKFd#d_yljDV zClvI;RzEq!m#HWJG8h=s#8@qAU}0DPV?Z}&GtT#xt5K8GS|rR$H@<)c5?ugfUpQ7x!CgyOk;3{j_B)@cEnu(e zNp!RGSqAX7;*(h6^tQc1Avs2($>BpFihg~8==ieFHgIkP*J2>GvWHnXZq7$IxXl6} zTh=6Iqr@%*Y_9p%%)f^8mV9=)WuGpX*n)r<)8TQGX|L1eHuu_{_->y6VZe5VdD#N# z&f`*^hiZ~L@s*O`G}i6 z$8iKa1i@gMdzcbb<9rSO8**3JpXn7Z*!$vy4?t>iKe;P(1B^?A*U(RL1u}keSLi2q zO~Alh^E}qX7f&r?3J%B0{13}On3pY(?!0IJi<3j3F{;^bkQ>bX?ACHQ(&gk*6Ew@yDN2uu5n^gRj zA44QUOPffWErPjr*V6nrX>NvmzIi6;(OTCnEaa4y){^@K$z5R@;qeIR)--uk|7!_- zQV5v_cRZCz^O-y<|5!4ADk{^>E2%s`-c9zNh$$vEc8N5qi8QLoqs0c$(*G3c?})US zRZ+CWFQb(YfKkkUHa0Fu^dkMT_v+O0?ZuiBlK z>fe*<=1luGp0LtRp_;N)v&8;cgw^dBsrV(gGM8rC1WA!v8vjljmr27lp1w@;1DDec zmnHOHqA%M>jmHj~o#aubmdgJx>`0qL5+$>Rf%(wdz-t?hz!&@_yKlx|s)N5j^^l3p*QGmQwjE}O}dooq8$;lqi0J%p4TvtbM! z@6W%Iv*_8(bo0I30GAxsuaSP)EP8>yrikI>5ip7u%SL>K7kBmN?FK#JX`TC>;?Lc} z5jiQFMK2PBiI*_-CDbm{Khn!yAeo?3HWyo@BP~l!wJ=l`TI+pAs{h{2hm#2_L(zHk zhm5fHH-zP%yYUDF?M%NgWw!2FquH5$dFBinv0cebe@4)H1VJ4ZU%NN&3neilOAjWK z3@xBKMp79&`gOicZPQSwb^*mSeuBs)QpzKX2MXx zr{yy2;9!fa;9)-izD0Od zP2gkTyuw*V6s#VVYLKy)-+eL$J=rA!%V=t^BDK(3B|WI9FV;J-%R<|bdJRckexEbd ziIRz#h2?g?HFFlu8!ZCQ&te`f&6$${Y(r_{cEjvxs=lYRIxWV+NnUiiXo#*3v z39xL;J(h;gw;KlH3H&pC!ix{>WeuxD^wjLECCWe3C)~SlABjH2R@=a=Qfp*Qu3%PE zyf!84J`^9wj8aoQgfHh-eLEe0EH^6)Fe5y}jp}b zSSdN@0_r_N&UnBhdvIF1w}%%w%*?hMJzPDR{lTj;WSWv+6WAS=+wC6h#vCJ$vg<}z zwrld+g(FH2)C0ecNsdeAA>9?nGzB{4(P^`!fe;CP4w3`l8>S7gYqYSt5mJpJ&$are zjlzryo&XgnCSdN(YlgYqGmVq8Gd!JU*u0!KUKJ=>@h+SRX} zj@>8_E|8gRw8w4k{Tl=I{qI1Ne`*#@{zjhZGnCluA72gjG$5M(KhRD8x2^`r(B|I@ znePJlCq^v_YEev}jqh5MjD}qTvE%|-W&)Pqy+&C!-Gf;yLv=f7Y=!Y9GR_2yfA5-S zytj;Tr|{h)-%P;wyVf?}3#~=N^jR{^1WbST+GaX%kqhLS$=X-7_m4-(G?TT@^jXe! ziBo?KnPvi}zhiCsM>cwVEg5D4hTpMf8TMZBTJpKibeLeYQ0)D47()6vZ zbX$gv*n^_EQG4(N-|RKs`+73V1kAo|Z92mOb`lzH-#~7eyl$|3`=19d&;$6kh}BVG59p~2AkqN#JGp%6Q-`HblJHB(0z z7N4xZyJz^**>0JmD=ur$*=}TBU#sty=} ztPav^+P!}76})E{t&phv2go@Sa6WRW{P9$|?^X%lKTN)vfbZ{F%Nk#t;n&{Ky%M(H zN4A-O?KNF1b(c_hem{9;0-o1&tt8L#b#bHYpCaQ-);i-shgLNHvt*nJ7=Q0tcJ55C zR#^Xevd#pouieIy%|HjoVbHY|u78PKGXd9Yw_lPAfgdE(Ou+QojV0Om_aXAk1U#?K zpl2E_d=UITOoo}PX@AZ~zK@V=CTp7OeAxRaxn=^c*KS{=81p_(zL|jU)tUU8hErz( z-tUuTCSdu;)@%!-XH0k$81rc}XHGZz-PTOE(J@i`4=Dr_2=V=ER*19clHg=ja|TAl zh3vT0NSd5KCi6_d{109f%x6aOe@gb5fc;aeF&X4szCPPh3o5_>+So#}7~rCXnMp7m*xT#BX1a(YaJ| z?DSL3S@V@X5$uO47!wHgGZ&Fy{Kzp{n@pW~A7xxUVI>gt0iUKi#KtF#m3WV-uuifGo;YFUGr94b7Rs&giaC?vl z^z#&m$we$sCL;V21!4k$e(56hIKQMSHu@k%VgiwV?jjXQCZ$B04^bK>kmh3QAE4%B z9PPuDg9+sLsf)-ekR#_`AE6{nAj#^CnqB*#H7JYHV{G`zzh-|MDv-px)ki4=6A1CE z7m+#KINA!A^|FssEG7`Ew;BV|9BkeGwqv*vTkY;fw{!>5M62mPr}Kym5% z<6SEZl(;(E7aXu2iV_?{(Qns7(bd_$kbxX$5b9s(cWopSE&UOFj0x1UI?DteddxL- z|AOT;7-kC7e?q32fa%qlC-FQ~VA>BVh3h{f*G$0m>MU+dgKIZB5uQIqo|&v^O$W`h zaQzu_%>-Pp&aC@1G@WUTh3~&2-%P;w>dd-NiEn9oh2_5`%S^!X>TFt=3d`M@tY7~< z*=7Q^S7!sjl-SO@_CJwvCSZJZ*3qZOxbJF;tNbfjX9CvOZq%murf(@+{|C8d0-PpQYUO0T=)CF zYao0-m3%V+->cL$m;&FeMSK}xW_gLr@FoK6CgV)N_$rMrrog!Chl#T9B+pFNw393~ za3Ha78dl-^OUO49@V$1cWYBpOuAfP+nXGBocH<)Kk}(ZR;9h`?+ml{CQ-Y2^e3c5ymuhEsXmShOoYmtTO@YYq(Yl>oSBEt`CrFCg6IN zMi^62xF2C;0^vb2&jie`(g35+=Y;xl5k zRq9$6bT-D4RhC!%%X*t=?oH5~Vghgb;m1Z@V~v(F!iIbYBM}i`KmnLQfFHRy1n{F0 zk>D+qfXPK;0)Iq81b7<-U;+Vt=%O%z>+uW!-$DMFTr@5ebdW@XcTxf-kl=k6g#}!X zns@h$4BtZ;m_UYAYPK^$W!!0n%uAU_WINZw{(HzilZ(d$S~7hySY-Hq%D@CNtj=DT zY`caC(1Y-Q;#ZjxZIf8>y;#WUTL6}@@g5=}u zPf`#j5ag#XCW{oq?axpYCJ<$Hwkoeu9mz!94^Rpwkm6@A3WNATtF9}0X-ulgFH#sL z5at6Hr7)SH#jj8tCJ<-M_RMEawtD(J!c4b=<8Skv#m1%TVvt{>1WX`7XEk=aWvWPB z|FYxPp(ESpjdG8|*s#&1BKQnD^<_S58^e#5j2KXGLWr zudW-yWXU5fMIeFt8%~!n0q-*_=e;;64WM@Gzi|-|m8Sk*LNWnlb9EtS@By(NFOw7C ze5P31k(mH_)x9hP-br94kA#URdi3DfzSV(;ypLn*-1RDLYi$a*_bnE-W_`yg}8vvS5#qw^B*TVI9qT{b1DwEYm?KT_uT!NrJ zkEl$5y2|yace>%~(LTa5S$$yxXF5PsCO}=~2DpdodghuqKrLE6NMI%ae)fndi+FdZ z9*(XzeHIJresbXX6W0s($!=NYcfST|^ABSBVZG15wZ8W2-kgSbPBkP=A5#%8h5#Tp zc?5Nw3F8G-`NxsJG`c#*F%=Uquv|@^;`BrWHu##nn>V1E)q`Y&$>YL^9tsE}Ur9!o zfRX-Vtr0!1Abgx4A50z(KJ+|;@G(O^m^?0g$S6tpI7vR3fRD3}wO#D@5`>c`Ibrg6 zXhhFT2p^}(2b0Hz4{w<>q-;Ma|ko%$P5!ObN(@B#?841FOQHHCXb7W%yfis^3~*o2{?Joy*6az zRb+(8h3So?|O)x)@*n3#S>SF z;>J@>toz)WUF&@0qv*(PD?UiK9dO@{vTJ&f^T2dC87ShSgZoGYy_f|$7 zC;~xyZ_wJCJYp8)C@45nBJv}USp9hu6@dw)dv#^$ii3p+yfJ}(qRru#gs2_$X)?tG zOnt-S#*|#M*Tq6cySaF(e;VUlVeYeJjtQ9i`p2KS-V(m?YI*x>^2P+b9h@|*g{G?O zAI9^w;NSFF)W$-U`07zA2+0;d;SoL^{q?#+>4Ey?55Qp_g2?{Eb;nkLB@Kjn`<>7N zwEK0dfH9)>$hZBp2Bg;Ld2x~dC6He+0cUSq8=M8Z<%PwUkwqq8@tfBQi+(@6@c1x! zWC9-FvPO73+3hsuW*fc!jLa>frVFdHWR(e6ef=6?RWF$cd-G(E3D_I?3Ei+(j~gL| zH+r$EvfHk$2!ky$$OH_I{1oS7#h_k<5&qibj|uqumNjDE*5V?LPMIlg;j%+6nXDl% z)XNRRUYG1K0ed6A;QbgGIfOBFd6{f7SwprqZ0bFtqRjK;k_otc(;D%}ZsXJ`^ywEG zOGcGnMJAbm$+Z%}EtAXbek)-0m1LC(SRHv;ROmIU7$Wnm;)}Au=bgn3UQM={fbF-g z6*p)uwHx@jGa3awxUj9{Ysf4UFuPWwd>B7pNB)?AzqQg#E-#+MPGnP`zL5+v0fVCk z`V;!7`4Xr&Rkr^=&HhZY-CSrc_RnFj_0ZG4A@jR~mj>#Vw_<>C7w%n3H}3buxKj9% zDY}0EsSoxN7Q>AXe^zuq^2@>@|04oK4r;`xBP^{!WbhGW8x=i+_fs)}X5PJenyJig z_$5uT?X$=@6EOaswahp^Vc*AQ8SHR0Dt|UPX9CU}BZm7cbC7z`&e5vyB@w+9y6BvA z;~1ef+ivuF+&FNaCjmBP^3qNBph#kiK(eQdNn4Xco%usuXU2G~PH2ZE?5ID$+eIes z)YRse7v&QYjkZ)W|8qB`m3dlI0@AH}4>uavGQB~%{(yVv<+9I9Noqon>o2riPZLWI zeXVYv8ZOkIQ>ZNb;h02wFmc>E3peX5_F@tSk9VJHwwFa@{xMJ+ehboGDu0`QAfwr~ zVcF3#t^`EWhZ6oqE8#^`Zw(JWo9 zJSJwrH6pz9iqDB6&DpnUkry}hh#F1(ZWESc0(s1q%BccsM=ij9g0M^gduqxyWc~22 zT7do|LNfvM0~LMM6R*pkC$w*f>!{0N#=Of^jy&zoshM79zQ52oFTnu6Yv%Vrz4b%z z*o|S9{IW05XYZ@5>?{Ks6i$1Mc3N|OvVsp~>1(g`c^Xgs2aU)CB2|ubd7b(I8$2<< z|3zRX05&I)rYmdUxdo{|PjDsxf2gYKdg^tEdBQn~c#*oA&P!Kv`M|8)Dlgcc0RI@M zOR?maUMhc^e*jXsr)fbneYoar+BGZpG%aEANiTsqOtUbdS*q5r42X`N0n|}KF#%NN zSdxMAeiy(UBODXjrJ}=;Y(1d;Bzl-OKB!lAE!TwW#`|-abxALkzs)}sp{j8#$Uu=k zTmVE`pVZ>0ay9LZ>w+?XCHHpk_Y^2fM=l^nU^Hg;m`w0MtP6w0+vsDmy_y zTb#{GAOfimv%)ih7?t~2n>vU;G_$Lj7m}K=T&>t2?0w94G?83Gbhl6MEX(2@T(Zqnh(D4-<${ z-3fD0#tAckrwPaefYqHa2N*bE2J{R;nENa`4yDJB4`Jhrj4 z9hi4UQJg4JJxE9TyklOE@_Fo=;)U^O00_Ep+s@rs=%Fd>MTPK&DX)U7le6UY@EzE?o31L*{HCaP4A(0wSj&4SYVN#M8EnL*s!#Fw z2@?qTvRKfphHI_r0bfhQQpsMiQ}o_>+(^>ybe6=l_)+7JfqKuo8BE=8`BTc#t`APn zt|7ceg<0RE%^GhBSESw$Mrx_e(3t8H8kGs8d+F4SYC-DwJSzoZbY8E=oPLTgAE^BvllQw&EL0WtG$Wf39O z!FiaH2}JwKshQGX)LZi>wBj__+iA#9nN#%He)qym^ZaacNrzqhtm&Tvb>KH)%?&}0 z{4k|yQ*&}HHvzIDn`YV2*f8sRwOQjUIa2_VTI#ViuBy?vOd#XT)Qsz4@cFz8FtBLd zK)#12rmk%^pr>f%bEjK4K<*;2{4_E6x86%D2RY`43mQ|ja+ZyOA~vl2<5RbC7D%k@ zvox-{fzg=BRITh`>hh#`Pw8EY`pr_B12Ff*Thqy4G<{g?7qrFVi++>xu9w9qil(myv#srjq zo(8b$0ri7bw355D_KuH1_3qMI8G+Nj`=$UfP$Uk$e^~21zNj&#-Ywg1HBwVo{ds7e z3B9F))a@F#%k3O=c49)w8sJ_jBwV**pNmXT--s;P)ni^WXewPk;Y9H!p4oa`X>fn)N)s z2Dk#)fg%?C?bDD9ge$m0P97O(IuSLFdM<6l1W+a8gK=CT0;Mafe_#ObCLj|4mh{(G z2Yuh|!Lw1h{~8RpUG`69BBdeG!WFknTTG??x{mU7`95 z)tPqdjP6s(&l-OY)SVw^^$&8)4=G)-`e$J^7Hsi(ZHo%kKTFsfL^CZislhy~!UU?T zQ2irNy88PES}^q%0x|($h3fC=xPny@V@^^_*n4vryB&2kJAN#@fgtHcS7SF$Ew` z1!d)+H5|-vjW$Dk<#DWjM2@ml_#jUsslzl26NphV#k&#>y5Yp`BIHp*G67`Ctj0)$~Yl7Ml;W3XKpUPA<>?U+%s$K$5FES0HIu zyUGcKz@m`^h%hU(0tAgDlmm)r6$pY>?@Z53-<|0mP4{dNS%686Y;a?6;DNzlV`GzS zYzzj2!CaMP;on_zrIMbERchWsK)~$IoqUCL& z=x}KMij!HJ;~R#F1HhJOgT`D5t5^ui`)W{@sDzS?qnK0`70298WZ?2G=I$D*@Jj;X#auz1?AZ* zXZU`r`o6>fRU|Q!gGee;n=@#75=vaWU_y1g$L4Hd&Y-!~AmCe~n@*l_GmuBN75Mr0 z!{m5h&z;cUQ5&$NZzIT|ArL%pj(VU>J(p0$xxuzuh+@9UHESfWS&5;5q|Lm_zzLvA znQs%01aM_)AIDY-1mV1r?ygzL?-7y&kXMz8HnE$8oNM}t3D0KWNmxXoP-0|ssom+J zU82oDcQ7<>`g6qIAH-<4mroP?tWPAS1{h< zP{>q@Z*+$y5O{t|uhnnxN2A%tCLVM6sDxd8*Xqyk{7kbyW6uxGcYcB3I~I?OT#~bC zM%hCjMMP3~MCB7TD#I;=BAg{K1BOsUb6y)>B!Pv4^YznW)`4}i7z;y3_?57)c>>)^ zBZtfx9+KhLOoMBqA!GGVk$sIf#c@Y zap5X?Dwdi`BDEC39IyaKkwETnQ+0X}n@G}72NH^eF%fKRO%LUzku=-}!jS+@_iIe$ z_}pl9@in3^a=&SP4FRVy5V<|tYD%UQ9{7tz)M5^kdP#R437^M z)Grx?Y1p3-mIScD@xkd(B_KII$ST%Fig_vH(uRw>0=yEX3~H=(+E~}AtvVHQ#-19Q zAAcY5c|_{0JK>&WgoZ~8^Xlx0pqL2J*Jy}_+eHN!`!Sl(&%BwgBY_^_{yF?+3+eYX`q zhUQ*hLtGxjlNhg*f6&H$OKVzn9Bbu@$a{-MUcsd6*h##JXd!6U%+@&YLW;^`wA zPvKtY)NE}tL!=fR%%>LM0g_B-7X{%mO5a@OvxFi6RJaB#1{DWa0`A`lM*_Iun!2gb zuwv7*+K0b}_;T(C|I*>r*4HQr(#A`aFZ!$tFB~ZlegLR+cqxz~AiO>YMZmUncv<;% zS|irM97iXR03@7Crtm@n#D$kLm$^HkNB~tjygaC6ctvn05{?9LWy7o8k?@LmfA(uG zywvMu-Lq@4wW_rt0!$9@lJ)-}#14s$y`NMlSi9tRRRpLw2(+(5B`^;6ISVj$natD1 zT*umkq=E>DG_XK6+_y^55AGbBFOSfQ4J9(}O7pqV6Xeb>YU+^n4{2oaCa2xp)B{ zA%Xbek%xjX+A>RmT}ChxfQ6^&3WCJ}mjt|mfFuA6PSZ_?S5I>P@z>Z&bLRjNUP+M? zBQCKvqTl#E1lqxR;Qj+7Jd!>w$k32ILTuxmVx3auBo>_&s3*SpeRga~Ab6?VnS{{b z@_}AOAQAwTisK|u99TZsYY0XHu;BYk(|7}~k)d`|f0zw-BBZR(!93i5#0+A%9p2x9 z{{F3Ntwz%>B+|nf91hKa|Auhd?45B3yqj&aa92Gym?9ve?gkyeE~`zMS9XR{td4Rw zr?Ehj03a(XP6MEUGy?M=!jJ$atJyaVOdLidP+JH^0;r2aLlC(fP*=W~b#|^c$1{|y zznzP-O8F#RX1i;hzAhh7pcy?gG;jMPqU!MENq5|^H$k)T2*qU8Vqk?rc->dStEl&5 zj#3+1fB5Q{FK}9n1cGPfk|`{voeDO`Ds7I4Zh zin#>)QyF$PAiMy`>HnHI1<2Rbp)n`8;QXr}5cEGAaP}7+Mz1fHAN_ zAp|chmjPpreg?FXiaO@bMYx9qf)~wzDVRk3CBVKxFcN?j&44Mek?2bRev5!404$gR zm0uKl3HBG<>19BBg-GEsiS8=a)r1Fd^%4gmd-y56Q2QI}*S?FW+vpDCUjPcv=8#2x zAO%3IT?b{rGo#o{#nX;Nh%(CGyp*0G0YpYdEdpT&JE*b+dKrO80F)8X(*wm(=KLUT zF|QyP3BbbLgWOmg;PBLV?41a$$m?LAG2$?p|8f*k@@r_`^)m$2!Fu5S10W-9O#z^+ z5lT%64~~V)K`b&WPETxeGKZB&z&@j)F@?Z3P8mc#$bAVy0+7P7n$#fPBNPvk-}WDvpI5XN zCLaws@55ol^I#T#5=dLP+I7tu4}d+U0z+CbMM3<%5*mSZMx&;X9#Xw{x|nZr)QJQ@8ABR{fui7xOlQ7L zI1<2R)YFCG5}_AEevgnOfDF%VPK(IEi~0XPx?ytqG(yhV-h~_L0>P3Vi0aWP(nSk=bD)NoFgK#ADOR!5Yom=XjD*t#VB1@eQ?&b58 zT|*}e8gKckP4bkS0Qb^)s@JzK;q(z$$N!Ld3a5~#NC8kfPgwwEj;Q)^MS02z zF5_QLc=PT>Se^u;m(Ei@goYH2B33f*B@hXKO6MsbC=RF??EM5I0a)2Q1+Mj&^N;Ri zp5ifBmk%b}A(U=soxQ;W`BNzX$_JAI3=Nqhm^OS}Y*Mgam?E%W5{v|3rGsg0xgI&&91L$nzAhb1JDa-29sXky z@Y@U~{#05;Fj)X)j$k^zqF{1@)6#nRu-0!cwflQQ1EluS7PpjD7BDh1<52M0v+GsbsP z!4$!Bss>Lu!{z6veRrnk>KDlSQZbCj_#n{?Ccquk8#JN1Nl=a7#9x?WvomQ9A}md4lAhC z9Zp!YnTebPq81MhpS1=@1aLS3NB~egI6MF^I3kdv2topo!oktOHzgvDTQxXv43-xc zE#OPtrnZdv1Ivehfbcj-e%pUw9-a=)5zUUd@tTB)4rpQA4BtT_B{^b$)WvM#=wrb@`Zt~DrsQHPz)?mip1ta zG%!gC1Cw3d<9VeRSWbZJoJR0sYiR{*nOWI2`q+T4w}rI9lwdF6s~Wu)mg#jny4HTV zJGZvfn#uLR(A@i{sBbp3;o8mTM|@a<&MJtnEMfYa)byQ#d}#3;8msbrRiQDv)aB>q zM59g6$dEvj^^u_0Ty8b`dsdtThfx9&NU(cdY!FG%z^+$~-eNP7`d@s4ZR;-`yNl{23%HrM?MHV|tNw?T15t{_q=Sbx>RT9LPfLuPb3`6N{ ziXyqQ*Ov-N~vT!+O)9_;Th^WF>d(xB!$$z?yTJ;+kBSr5_ub&VRwYcSF@YIO>wM z&MYg&8p9ntY1(s2Nu=yy)?I4WrUv6pmDfF*Cne9lDGv$cSzSkYdf4MwY zvGTVfM=~nj1(+%Wr;U`5=`6}bvc8U6z{cRtX^qtuRZ-M0xHyy3mQ@_YS1HI&IX#d{*fBiRQgjKrH@!Y5Nk63Cc;5XcqyM5lGkz~#vOQZf=nv`Ilo zAjk{WIo?!|V5v|~&QUlL2zST65pIGX7bqbKBwWY-XMYvnW}0iX=h6JRb*;V1t$iiq z8p=ZgdDgKO-?iFYiQ9!y*m<3=WeP?D!Sovlxs-RP&E7pUU&Fh^=8rM4IM{fpa^R@XLyN#FGYs~;LkD}hMVO51VK^0M*H%~A zGL0G%=(x|f7pyXW%BfNk=&`W3M8H=vTC1yTD;Tk-Z!Pqn6Pg6j`G@kHS`+$L?zR;4 zmIhkr?S7+SWq1o^Ab||G>@D@F^IWsvw3vTEOcG$W_cmr);lCm{3BdD@y*q2>G`drG z%Y3KN!LYVf{BMX&vR>Hz)t1BlTVj&{+w66tw|fm&?@G$}JED^SJ^$oDQLCq?#~QAO zC9?cIWg%G?FEA7u^B4~k?0+CO39#q)mKU&5(;5Z^R@!#nN09%K$Rt4Cv3HT9MC;|c zePJ$3Y1@R0idLJ3G9!C84{-K+q0``?DpNbP%F zZf`E`S?Tr{TRoIc+Z>U3p!oERJv}tn@zVy!1g;E@xh&#RbGJh)yRIuoGbd*1OQDcx z4tznI1G)uSA$Ii`A(BuOGM@+UECt?O!i?hdNZU=!kX7zeY&QR+4>|Jc5Y^=q?D zY+S%mPP-UH?0+2#Ith&a_xrb^+q>N*j7o}HH&87SsP*anTP>SXv`v7<@O;-g*sA(C zs!9S?KfHgdYQJ^bXzp%1M?R6-kwCjo{QsdH#ul+ct=n1f^?Wk*B!Qmq-@o;AI~htr zY*H^0==H(NfTTxiZwHIn_l;Po2#Qe0yN`IF0HG=nZsI}&L3q5aiyQN5>i zp7WfcZY0p{pY~VXFe-%Qlo+LGEVMewDq)%WkwCxC?zj5!%k(WSaGJ&cj4c#TNnau1awfpY)+|BZ4DIM6EiR4Pca|9elP(r=GFgUXRWxex5G-qS6Yl6AxF zREz|Q?Y9kTS?AQoKt!Y0UE0~g9A$rYv9a9juePxxloY?`Qcn`-`O*E=foVMx8a|&I zl0d`#c8r1=_FB@G$#mt5s3-{({n-BO%7mf`U*16#Nuc6>+x_Dj=SFwF(QDs^SsW>a zFQHx}(CcsaSJ&CK+oI5r3X$y3g>HGRzlL|@_Jqa-T_5S?RFnjYzH5K=oNk#Tj{9Be zLjrxClXpgAbcnUg;4*gN_lLQ)gk%hWujA;xHel^AW6l?CMh&wi!DeXQgKveIt+4mt z@Qe6X+ddlIPe?`OR5Fb2*ZxalVI8yWh%Dn)gG{op9qSjKD6?YjhcU)U5aa7Om|v}4 zoTg~Zx0kR2#j5oPszm~|)^UV;uc;L^$i-=oqIM+vvvzF8Me|EyIP1G}sT~Qld*Aw1 zBh~tj+6hNj(9Wk;B+zR8DwBj#bvcT%>ezg{j)uorWNWp#WJ5gfdc8ohOEDUnKmQk0 zD1X8iWskg6K_cbhg{Q4wY^5aAN`=y)QrW7N$~tDLfHYH9D`^hVpgEQRc9Da{@PEeL z3`tYA_-Jn$60~uRg4@M&3cFn z-$wmNpx-(Ulvl6cTzgq3^HXa zRU|ZvM6>r%GZJXFj&sIodzY^y=rL{!-jGdFMYj)7HxlT!juQfVM>o3yOceVN6(fOS z`*pRa1F8)y7S(lbHYh(r{YaqSe%&rxZHe2GmHJ1i9SOAC$Ibk5Ns@!cJ-p>1G5K+7 zMFOqXaUi4m!q!{cjuwi`kDs7gBv5M|=iaJUtG}z8F?KBO`!w|=fu8F)uV1~MyLImZ z8H{pH{2Y}dfpX7Zw}Ir8ZgqPcb%7^zkNC$jYn|W;U$#f;gemY+YC4qt0 zaXum?()6vl6a&0b=rnp3H6npV`>~f)LF=XGP$v@T^y}-EkCHa7>tR$P#~0T8uQV;M zE%n=&#G7sPdgu^KUu^QLC#k1~X7T$-9j}Lp21j0%^)^fD*KV49z7;8|GIfAOML6v`()&R3{ zL6yGU2Gt_o8Cv4>o9Os4dXog+%)eBV85O_JymX|ExX$N#iV5aM#)Il z(}A8CSa#NL?ZyDIIPeRUh6K{&-`=jIokpecHUJQ@{tv|>fmr!pi!3P?2f(7t4l~LA z6C%!6C=Ln4$(`F%($w9tOPCXqY5r|Ode{_c7Tcn;P)}|s*t>`3!28_=U*Oz^+dvxCd-L69PcqH^NB=Asg{m{L*6*11H7$gwm znd>M7UAd4qql6yChs4f6dif)$H8}2iyx~)ec-MqCb4~s|zC#e&Xe100&#N`@?_VjxwBMD^utzQxI*>y&~m)}P* zNg(D6_MMno>!$tu0SZR~;a>VHBV5|kAEJ~bkn&}}I#Q07=#NlP5(t{VFIio&u^Ta_ zz5G#%MFOz~`@nu_vC{tiIOQXOe82IlAm6BGKS2>mAY%T}u*y8kL>Ml?pQd0W5bTci zw_QN6w0A#82}vN~OMW#Z9QE(#DI^Jm%)g&`W&REO_KOsX1VX)V{VkUgD(%-VQ#ukz z_u_po-KbB$N&!hAVE!Sr%6yv6!e6I2BoJpGH1{HL0&SFUQZy2XmVZvYGD~e=YcI`7 zhuijrzD;>ZAkRK*Gc{aiNCyL~aNnbFBoJ;NR0Xc1rXxCjOY?^mjAY*gSR|O{jfBm9 zLeWSdTK-YN$^tCt$DdIq63Da<8f&aM?e4P)Q~i=+kwC1c@2j+$kmxQ;kcb2l<^F_R z$ai&~92o}7GftL&nwJpqBKm0t@Vuvn=A~C)?C#f=In8^$a*S3vzzX@-4g|ze<`}X2 z%CytG0cMj1>pZ2l==^S@wY#~zvV{3d(Xj>{4awBu=CjT*;^g0MB}rurE72*Ghy)T% zR~h*bB_*P%tvvUmJS31O|N4q*e5I+>3i1F7LIOeZ&+t?uh-Z%nQw$P_F%WB1mUfU6=wo)pReJxcYf*wYxNFdeHdfBSi z;)gKADvuyO3Gj2zBBugaDiOFY%EuFO^=Yan)<3Ya_QK>BYHE0JLDVUh2tXO}13C zz(>fLbFH_A=EjFWsEzJ$u=0OjgRR9M8v40^lTy+s>NZzTc=5N@g#A+5|`5{jfUWtLja9eY;evhmkMAgN55 z2qCS^I|)SssB0>*+fsL-*Iroewo&&>A$&I>NC5G;iXqbKyq8!cm8#R7?=Ls8(V(dF zenOB`s*XaW)%hT?NPtyM{(^Vf=--GYA0~GaaIYqR3HP)T|4bMXz*LjJmg92&zsZ~g z%&W;?WS&;xUx`9enIBfX;{GXeC#lR2!ac3TX9+`6nIAkI{+-N8D)R%Gr&ah5qL5VP z2ckUOmWMBqJ4t1J5bkLu{*y2ymHD9;R~>hfIZ0)HAoH{e-yjM}bt<%@Cds$RoTNGx zz&x$OcZos*lq)N#m6EmI56GVc{BNj|e_D|r6NscbMH2PhPsyL8Iz_^j-7g440-&p^ zu^50>me$b0m-_Ai0{{{L+*m0<+9wARi3CX1RC)bo$2D~~kU0sMS5xJYd0K@{L?Hpn zR_TFH>=)F%&a^dou%rBtob2Lmt@`g|_Uw}#+_A>Rdki~Ut60*T-L;Qz8JgQMm|~uW z*^a^H3!^95i+S+}?C^2O?%Wz@N+c#; zKwuI8+m9lK%R=lU8EDMwP_^_*a}F=zC6Nb2CfTbhV@ovdrtYi!8w4f+@a*1ja=+UM zSo)=eB?0WU6~F=oPDrZuGGdSbV_YVRomr26j>!@ij*~aM+iqOk?e(E~_K`?Jha>F{ zHeS|RT0!n&2D*Pv-ugV!&p^}9*gm5#QzBH|1&xTLXh*SHAc0g59FxcGQ}yK2BZ`f! z=Q&Z{ZZ2V?m@ygLziDW$xj)Qz(7tQ131VjF|8uFTP4oE+o zOtFcph$INmK@VIcy#|sR6391pXe7bJ&Tz)jlep?2yb4{gt|Jx+ux_bXoh`Ha@t&Q{ z)iyuegBF)y-at$eV2*8ZB{UeX-#otqvDDmypum^b@!?uQdK{5RfYhi+yA)E|pid+u z2_Ubp2oj%CUG4VQI&FNQYuT#yWa5wj=Sh15C#_hMfFuAM+rXT{Yu>F^tvRBQ0A*|y z<2|YkxkR!`T=fpJLUMtyBo%sXN3*?*iOCLp#;@f_KpNtZROqz?PTFhB1SA3A*mjv` zq)GNn0%jEQ6#|n0cwJp`cn>6B?0c(@s%lX{e*uz`ICVE*zuKV`KJx| zTmq2*Xzbk86hO%Y|9m2l0AcLh)$|ByWnM%m5+-`( z$e#rKs|p0+pSInQKqLTq=$NLj@1?qbU=v!nd1_w>4mVG=xg(uQZIsU>>Oj3bG%vab zTE8poJZ!j98c1yS-fvuzi5ctDXz_mZ8s{wFcT=E z_1JkJndGWz`FpMspq&IF0npf(n+|BJQ)CbMlT@q7*15DIPbClufG*1C$goFJo_GfN zl7R2nKG-A!IlgJZZzljrHG)T$e=hlwR3rGP#h*_Al4=A$(}m27$d{xV!Ot8Cl{*MP z0)V{9B#=e6aIhmPu`eN05-=S*m@pwulxaFhhU89C33t3z-|1ngD2DAM3A~)#Nx*$< zgD#is5%;tbze^aB3hW+*`76nkqyo!~#`vqroum@(k!7siUrX*J71(|2T*N(X_tz7K zqyoD~rSuJCN>YJkMvLeh$(^JU?vZ7z-QPs+Bo)~G%xt^Al`tfLIk!ZWG&hS;Fe#{i zNsc7ocxgF~=^*)QvL-2M@wwJYe-X>g_~pu-Q7L^Vxs#N%c#3;kiFXr*1TYtrvCnFE zrOOXZi`Cytt|Z_(w%a}-JqnOejdm>Uzmg>hSdLxvJ0UK}GA-_>$eRSb z$Ih2b;yu^u^xJ*xpd+FDS+XSo+cM4lwq=_Z``^i*q@0Ftr*+9jG!Rti+te^$!$Skm}{-sQ_w*@IMad1&7IC{EF0{vCr(dyd zdc-$HpYho(dMq_0qUX1_JI&QSvlvM1!82&Y>{-H3E8jI-BtQb$o-npvEdt`XNUU)k z(MW(cz9}{yEkl_b$esl3$4*qz0M>)akpVrQW}jB$al|13&e(-n6L7GKe5Kp&^|~F; zBTpoA5-=Y-DLEDMvW8* zV^^!au*fgli0p4A0tpZ*$OpZ}?ykndYI6mP%!U77l0QjB{MmE#1L?2Hp9K8JHhJ<{ z2n#(EdEuR8PXhK86a);l&bAWvc{c$_08l}y2S6KL12O%3$(jVLE2v(DHC88C?(Zje z5^x_o1e4G3J1yG}k}V0?UR*j`V(*HkW&B|>CIRDdEix6iuK(<_>4wwT5i+jQ$?m<# z)uDOVDQJ&vL}zMn@YTGZ6YTdLr*6bmpG9lzIocWFv$_>>_`%A1?xJ zW*3hH(u|GvynMZ8u>c%S01^O<9f2MTAYDt|VZ}a*TuH!nY!1lBH7)e9WKRP2_Z!pk z74CJRVF!5`c^?7E^)f7^naoLjV#0jBVLY0kF$@;dt^Usn9~Z(r!3`AS3{(B8rxp%iFE| z_ati)u&yGC$T}_lNyH$j$VP&Zj-vYzgajZ}M3I7cQFJN+NGfvzJERhz_a|$T%A9~V zF&er7CHm`v@jzmbROSR=q@6HB5R%HAKoHLf4Mc@jCS1>Lke-iK? z_qtqc|9bq>nmW|p8QZApwQgPGbV*ZpY|}=4a?NXe%g~&5AsSV`0~rUKw?$7*Y*fV@ zv{6MaXjFaZo1*L3RG)k_84}*L_@|Ze_i0QL7;|jljGvSt;>3`wcg_15XJxU*tB6E0 z!EG^zdi-;YMbFccBD=-OPHOUN3-{4m<@DA_4=R0qXl}j=-Z~pSy20l2qsQp2Q}giF z=i#SMd{dOOeb@;C(ST`5w#+WJW_L6&_H1Q(G`pH4kj1*c6x&9372gxz)0jukUX;Fo z03-k?FLwvaAB642WJ?0JHmZutjbW6=Y%Tw|s&52%qao0k$(CjZ_7`NS7 zS?f12(#_4k1my`tApweQ_Y^mcMd{21fSyDk5&+q*ObH-)ofWH6M2B0*ngp!vLgM1A zVWK4tCiXC9&`X$VmM|oMDP6eQ_S-jtGTDKeHBwDvrX6u?<`vdx&$Jr!V5ioQm|ns zmBb6HJUL#`?Ft&3h#qBPPdqMN;CJqU3O8XZdaCGuNg?vfC_eo{5 z(ORe1#lA0djb3X3b&SnO2v=<8>jLWO1SA2VZe);cuX^0Pu~8CgzC0i-w*3UMwBw@B zA;11c?vd*b2OBT2AG(Gx_nF9MX!tmqK%4$s#6MLAH`C%<=5+@m51B*oNCIwdES%TG zvwV>I`*z3cjJ96j#-X|Xay0sWiuNeB&Bdnx+_n(V*AB{Oh(B2Xu!rG8PmfP3a95fJC zL}0UaO!%p>tc4DwR3wnWA=yc#7Nf}5WLvOugXzgyzMq30)`8kGSkU)$bdtHnbw4LYM zo!Aq{6P^U{YwHNVg;F$nE3H`@jVDkL5(sk1xJqVxmPYj%XZ$fW!Ohd^s$UaXm8#Vn zBa*zk#br)=)6o3J@u-3xfi=C@S_%6yEFtot*P}{+Do<2BGyg3%nz}Ca6&S5{+*Q1D z)Nk#^7Q~(A0*k9C@+huQCV>viC3FbXHDO$@tcn2VQUDSNFm)ku5N=K{=rRn@bn!Z8 zL$|kRSch8u&nG+y;9Gl1|1}JQp!JvpzKFmi0G_(7kxy^?8EXfO@ff?2q1F9Tia-Jp zmiCVB*g<$Fb#Knjq7&9w>T-=H2Ast8k0Cw@@aOj)e!IJdPKa$8EAmxDCINDD?;vx4 zJqda(K}i5Qbw1ALaSybCwM@*x?fLd>1N&EUgv{D~8wDYOAbTn1DTu+Ak4X#MNMI5G zPu(oZZ-M3Aoe|?dp3o$F7aE@#TET!oBG_&wGzp*=_g=8sjUSWP4Pui3doLAnx*9K~ zpsPH;gw=mZ{O!ai*}G=fttXSvEkct3dUo%a9Rma-fwo9k62NZXJFvUj{l%1>cMz2X zsOL`E#IgmeZvWdPG19{6PpeFCZM&1Q;TPV_CRX5qp}F@tXl`w1kN?0H&P-GH_{IvBInOV&X2P@F66o>=@y=0#X6mHu{Vd+yy5(xQ>^%YWUgHgNf zqDUkV>BcE@v&YR9$~w-Cq`@3%^6U(2@cqU1=nI#&D`l?^&4~vf4?hXp>JJXNz@3Cb zCr{?8&mylbYhJZW97l#VeL=kREL2`Fd})+(EJ@&th^SXH8|p;JxGS_ z*_s`jgq){^U6bUY6(9M)L3`9e*W`WBtJzXqRf=dhOyqn$%K-^w(@z1UZJ1O<+*>@G6@c9QF4Jr zpRE>se9q@QgC=>}t~(~I@tPBYbth(}WR~2@dji{kBoH!V7Cy-^IbxE$=D?6>db6wT z6)qzXtK5?)BtWrC_0ld(avFysZ42xp!>N8d1t}mW5rhOF8If2Jq>n)_fw&JLNUE^b zLaWnQ>#X%SPq=4!dl%o%RFqSRLIRYGiTM1AaQ_TtZ@J%}+)2RwiDkoU5#K71_7cCWY)cnEPw zfK$43Vz;f z-t61c7tOtb}6vG=+Cy!Oo+Ico2El@L^^zxro(MhJsnDl9{<^9r!m*X;w+JR z2PyvWys?{PwVJBNhp;o?N9`(o%5Q#@5fG-P4Fj0>q4=?qV)eM4NzGOhBn% zc_xubfLv*TSX;qvG_6KgR_v{|df1`{HJ@nvY+{lC^Xy=cC!lPc^}JM*BNd&O;lSOq z*laI*DRC>hJ~Ss^gnaiWY({UsI6e*GPtC(ypGS6khi12oK1d9hF8LAU7Q3oXO&dL6 z1^hF%pGhECR+SaAN)?RwLKwrFmJ@5dnP4OUyCRPj{4DK(?c9TvzpL%-NS&?K)h?=E zVgEL=CjtAc=0waTTbDHZv>Ik#`V)1OQpN zIG-YEfV3*_A`%IZ%7hqHaqAVO+3maKJ;WdZMwt)`Vx$#%AHhffmeD7UtUca0`p&+u z$Op)q1iZ6)D*4>v@lGr7A%c*U_K2+QT*3OCE;E*|$VZ4lQraT{jI=@@B^U|7?EBdx zb#Okb`6_&zTuH#STq+T+X`w$s_9S4RH3*PXXm^_}+n*+95^&DyiMmI|2WS+>Y2iOd z2ogYCS}M(Q<QUUF0!o>tJv3xLsD9?44kxL-y|Rj0Luj&{I!;- z)4xsDBw$@G;9}Nk@xMn55@3|bB|3Z9h`fP@t29e~NcJRPA70HJKT?l>+NVP;$c)x0 zdevB)!DKIu!DZQ$P2Nn@wnuz@XkNJit&S(9YCBW8e4 zq&Sm~F}=m=xz@;) z1Y9$+e)QBNuJIefBJe3>O#;?e7c;Q8ddNyaldNJ8N)YZx1QH-*^x-B6A4KS4a{vK& z00Bqa2ALz56y!&A`J{t7YsJt=pJGoI3*l&(UY18_%ss1 zea9w(#4}zdh|kZitfIhLVP4MKi3C#UmSXA7QuJUw`jxH7(Wgs0TMPjg_xZi~zdQ)< zcWtmogALpCH1IaZH|t$c?jfq&@$sco_)WETYi_35w!AibX9k;Z(95;+FQ+9>^d7`? z6W`aKkyvZtEnJc0$n@#Kk(cU?HFqQU+{5F8O1X~}zhs3xXxSW*Iy*Sx^60i2Zv&I# zJSJ;+3DtjoQ+#5u=>}e`U9L}^;5~(L$2B&(n>unX3LKt1IXL{H#7)4xyT?HWQ#o`6 z1S|SsiF1R)F64NtyCo&|YYYiSDf5eY_o(-d(I*m4(g!Z*10(LTvc!(jo39dC z5-vi_qVradyrDNfmNzE+a{tr2DC;}htzD=4Qb?)xPYlgBMYy$^qs6RtSNJ zI5`N+kB-L?DxhX1Xp3{hP^WKS!}h@_0SyfFW1?+V``7O549?E*?9j|?fkH=*UKkvG zfn`y{%{3G`+3)bd)8Hw0D0`bKd&M*lpE4rTjAjtXjaSgEH`=`zVCCrhpJF?iL|gb{Q`R&2&5T zDU_O7T*FRm;@Oi`oUwNfPFBI(O<1}EcC~KD+NgFJ*g?cgrxG#Y7~wb*y+|UWojB%> z!HEgCsX*>=h;mhNQDCCp3>RZ#6^pf(wN))4Q0TrvEg=>{s8_SBym)$KuuP8@$-2Xn z5=J}~#Oz^F50}473iGyM516R*m}d|uM+rGEFRDaaEfC=njpo_J8(Rz>Gab@s$f|y| zs05hj5i@6mUyv6);kjgVzU(}#n&6+R{360nh~~=*!7^Z?=u5cuH;9=lR4>RVM^XKQ zg`2CbUCq@wtw6lmwd<4-Q^}U;a1{d;$?KsR9)H+$ zkDs!=Ik&)-ry}VFdo*{kClXFI*25uJ+X6P+?uWUTy&YbHX0>Z05`y zSN*V9!o=ovbZeGHACe!z>MzzXe@dpFB_1{;8xg+sd?uu8&3?CT%S_ zH6!D^(t1A)8%GR|NSz%VaWUtlYnSmoUfu@#J|H&+wl@P)gwo$?D4iMBHz{0Q4)yhw zNHFs*Y8wzHt4+pzFXq>l;OSm>Z56Lpiq7^dijzG%H1k)mO*VRAaP(!$0!7K)4CS-h zWI;UT4*mZ@_0OoRMxL$PGl)qCEpnO<&-!~UeWdtohrdno|@029-?cH$i%sgJ5;s1V1HscbRjtgEJ9CwL4 zQoBSSsa-FRK+dyr$$1L4-k<4rXQD)aEpY_y=+O%>a(7p)->pSCwMB!RnGXo>+h8iI zgHeT*HZq}r9G*NmIQ$ZOQ|>GPoz zwQ&Wj7UwOETyrP+W+loTF%n96D)BeTIWr?pW{q-J^OGUnYK8ueux8>3rM`zxG)I)! zB!Lkq=KTZm&Q5U|eOS+hBat(bkkmduAyB^bwQZtCF8?rlFVG@ z=ak~1S()fd&-|USxhSg%iivsV(Zn0! zlRT9XnxOanw)9!Ey4uO7PC@+d&;&m>GrQF7xSDUZwbHe+-D~VUgL|QlCkt45u4Y+C z7zqpH=bSddE-+}9E-!OZRBhs&8En25mpRyu%iuYaQGcbhTiL^Rl(6BMFx==42OF>5 zbD>-StBdln+Sy+1V;A0;RtLYj9kxe$Go5ZUq$da`O}J}NyHVNHd^WY2+SOfeKrd^! zA*GxSwJu{C8P&!dzF{OH9GN~nI8ujO;~Vq)M0sK48J}KKpLl05J0t_lav40c#(J4Ryrc*Z<5fi&9-VQ{QJ{NIx@~api)3iAb~)d6R7Ns9Rr7qCGfZ}2-ln??-4qQI zcR1L1lf3}#9+WRkmYcI($LL@^7#w_6bM~5T4BM=(bIL?(+wpeIniXe*JsNDdK~ICv zh53ZBY>`x?Z^^RV?xYO;YvXSk{MxoC8A)%GCB5D8jeK=JVV1in!E^Z77S{93%`EO& z;Y%UCb`Qh!3%yafPRo7&;Iym2x^|IeUArt|UAq#jQ_^O2tx_)Vtb+814rU8YTM3V2 zLzl4ch&9vN3fmO5OZWghl{He7f@{w`+_FEAKNFFco5dqy7LOSE;gXZXt{yfS7ab4e z&%uE=ZM%{>WQ{GPbg(^wS$ycTw}Ne_T`@R%^upk1+n&ELz8OGU^Fnj4L{GuGlhJ!DUQKd2*@3$T+DgDQV*i$U9HwXiR=hau{F?>9(tnNSYVZWX-+xfItN1Z$Iacj65QYQP-wq{A%>N;|rTnAk~5scMI z%~e0OxcaHF`e7ZB#J!QYQ&lV(olY-0JbhV3#C3{!0@1RnkW(k>7A0;oPev|pXAC=d z64|a$I%OL}HsKsSGf^6(;#x92n-2MnB;~A*0T^IUuwL7)B9YWCheLC>2eY%}of&Mt zo~d3hqYB9yuTSz+M(8ZP9)gXjc#=<@;#RhCZoejBrtvW;|t=6)+*!@m6!YFP7E;=7bZ@3R zkHKs!{;{D;$T@sK%+&7pYS+jEfV(7L*h)pmZ3lMhSh?-AaTpWd7>-P*72>%22HK6& zTR7zF)&g(19Mzv$v=%R^K{ih5ce+_`}q`rX2eMpx{sIz`evuQ6&~$7&*#&@<{AkB!w|b{?^e z{#5E4r@G6{Sq_E@^iT4T;-*U;ue^ENWg$gz`c zhh)mZ_$a-azY^Oe)9PgD7^0YU&?L!>TDKN_r${F;JCZ{)W*$7Hg{@7Mj^lgCaWrdA zX2#rzWdMG{G=DG5MzUl^8_bhTvY=?peCH)d^FgxA%7+=fAdj(^3OUYf`#v(G2%bnl zQ3f-gCgVwoYH}VBiCsRDI@|mkIgezf^Dhx(@mhq6|c zHxh6IL_23ngUCpI%t0ZJ!k7Fwf*+qB9CaZ(T`90fPX)HhkBcoN*ecvHfh&V!u9Mr- zkY`T?iFcawA)Q$ba{VBW14DTEPZhJ6n!IaqG%na~$M8GJSe*Dwq4dUTjaU87>Ad7lf;@se{ ztL2uOh`?-k+IR{05^#dwruf8Q6UQlFC!8Nw6{8+b~Cq< zMZhze<+g{-NFt{MZ3ro?f@@@+*XF?%f?ackuawF(r?e2Lg`$cw-^MKG-h6-{B z+<|hO*{!0S!7ID`KGIBYZH1rZwB|ZB*S&*Noj4qgjuw62s4Q#SEK3+DRAZ(@be~zR zB^+m-&mal;DsGBrnmpP@-9n{U-$B;nEPH97tYt|}3pk_JtWj$TqneizFSp6A3c5A@ zMsj1Nz0%?km&U%m9KD)6<1XXVHs_)kBwrWBKu9mXBlUtE26cP2Yb|#c4sVjdv-ntn z6cy#<)ml!r70^lE;Xs2E!p_JWgIHRH^)=hEkLtn-);w0kDzXJhl7pR z*b7k3TVa)(FU5z!_(rt6qiF$-8aa=#WGIBN!L9oCGwtcUlARlpu0%C~_4okBDykkf z<5*pr?W4_y{WwIwdyTzka4)(VwKW#Tk_El&v4B|K;7M+=WFLeXY!YN;*c6`_=x-K6 zDjjUNxYu2y-2{?l7uy;4+gOT;h?vJ}Hj8m&`t-n^;fBZaTW}-ryqD#2YlDS0BGF6_ z`%sHb5A{zCqN6Ri0T|wj(%cxfQ6>wqSfhz-hvfGu6zLxHQt zl68-0XkJI;Tou(t)8QjshbkLIeFIU))JO4a9J%c4>KkL;zM7;l&yhHUzs5_TkUDa>7#nlw38zS!SCHHi#@#yKIR1-8_2#V?e zb-)M6J6uCdSq^TwMKSz*AF1$H7gz(Qq7^w;37u9llIL`Jqvqu0Q z7fX#?ml}LJU)*v_l-#2{9>IK4EH!!qae_Uw?97N#U{iU-{j=nr$ne22CbWQb8I2AH z#fMn%eFJ(so4qrG%@;;@Q^=D;4U71GX~_u}^j;4AuJrPQO@ibjGD#^j<5>HT9m=?~ z(Q*sh|pG`DEoK24jTp1j5wY|OO z-Vc|7*U$)9j3YCc;y=sVY=-aCu@lcP#>F+n11rR=6BDK}N0H|QUx!9aJPb}OWN<%@ z+%ugTnh{9xwN9%gg+767v)mUNUiY{<|3q(VJL}$yOfx*y)a@-@6SBF)@7bQtu?~DJ zwz;&>+P>P9Pu#|LY{4B{l6P!jP10TMb(id%r*}Lwr_Liy9O|D+9-+|Puvf%TXylfM zzyd(AA0v-dsYY4a!`Ds}Hm~Sl`%V%7@7OEq$rhqAq8xz#J;IX!zPtC}qxcJm@V_Vm z2}HP=ZMoAcw0wQk;-@pt6LALMsv--Y$kO3Ie*Xwv&nG+?L4B|uxc`8&-*G6dsDo1= zgz%#^gzZ;TD&sFPEujG9+!30LFgftgLoBF%E7wHrJm+^UzxmjvMSz^n;pJ%0RM?+JO0I5F!SygC8kcx%Sd{VWc839PF_VwzL9NIh!LG~NAdtWvlX=@6eAKtp%Jr78ne~;Goh^HRMAfL5rxes zmf=qls8>-NHKm@PT}R+QO?VQ(SJXxg!6$;*Sw-z`K1UHqAi|TXNw%??3~S)s?3;WC zgWCpL6k0E+sFGG_d>y#AqqU3Qb4KrSwLRNdZsOl=KkD&*9q*Zm?wQehhUTQ3Q4;R0 zlJhmZ@NMo6eu_8<#uC$BH?>r3l%l6-DSGj`A-gJpag}KcF{(L%*^>mO`K|R8Fsejy zhPp$owwP%wn%h{=Z8^%0 z3<#dl<-s?A%%%ZsFgf7b;2sB&X3(#7~#t3jv3P1t@ zZruw4#KmWf5GPRx5(sfiu*?*(e_au8))>0k1*En73s@Fx@Qp@UM#E~77^9J&3i%B! zg#6*jllC~04@R&bteQ5+N8pEsfQatj(df_-A6GKOl3foULz zAYV*K5{p3W)rA&Ir4&(jx(=dkZQR2;Zaac>|?ar z!w1tx(z9Mjr|0cYWO@!>bElKMN~Gs3(T0XnAb|h4RC>;0FX=gSQE|-?bTSE?TrfR{ zxJMzTQ60L)3UD+9Ab|h{({qS>BtV>=L$_HWj-wDH5TaOm4l%Fm$?q#yk3p>0=k`0E5*OQWp=5pyI1lDW@Tm(><7tj`wuYo<8`St?6b)YqX-D( zztTY77OZOvv6di?wJ?3Uiv${k6Mk_Rn}#EknOy`U0hs+vaTVrLo#F%>1KvhJ68a~U zcc)ga?%D3`3_A@2@UOy2-Og-N2Om+^@N;Nh{{)2E2746!0Nj-o#6$$AI0(3Z(0~gM zrcP(9h`Do5q>nj>ZXu~C4w6td>^uXSjRYhCV0e_Xq;9&xWQ*@LvzeeI0KK|=@QFTL zdJx<30}MbH96$*-qNY`is}cH*mFAozegMje8JrlJ`#m1vcv#|Ge8^{*aIdQ*G!tSd zG6M9I8ld4uO*u_%GcLkaO!GaCu#rHs@PJTx*eGPv;6Efd3Bbc`it^y_W*ok00e(UO zNFcxys|ex4=xwmvse{9^*I^2E@RpgHf8?#O>77x z&P9h&v{%p&NQ*HvL`FE?^?PE;3K{}w2nkF7q+*&cuqq^hfh%YT_z0=Q>0h$o|A*it z0I#4S;3GufaoGBotpH!403;Bgd_%wosM`aVJ?UU`7r1vcpejf{_%s7P>?1ns&!M^3 z5@LCSJ&Jxn&kFijF`VKca*x)?t)Pz;Gnbh4^)X*!x*>rc738-Rl%~@J;C~X31b`K^ zWm14~Y$ibOBq#|$%lEOAbv=P_6a&!(2T;O;{Zlntuzk&9b46EU+TRF{E`o5QJB)t; z@~ZN6p$Dl@h{Kx3VFfj<$K3{^D5ywg11D@qph^W5QyR>Lq7S)=kR*VtpoU08`oZYK z9!6Lazy?=j76}uCqmOZK#$yyG0IHx#x!PS?(u{~7L-R$hcRz?HhxQ*}DrizV7)3w? zo~{vCMOJqjuoEwmix%cJ%nu~cpo&2EVQk<tjFBD}14ssxY((s1+PmI+4!xC#<$5-tunA996|B!IlKbi@f~Ozj{n)KBId z#+;1^Kvdx^Y@XY?O)J};{vMh)Hd)!a!}u2zWa1mr9sNdQ?vWt-N|3&aHMJYh)yTfVZjsCD~a{bsIYI7V>-penLp zA6rUEZHv**S!{{@8FoJo)&ut+P*r3>2c;kg!<(zif{wQaVXTVzCLKcpC924R2_PGQ z9^AJHM*_GivS0$v3qB9>dxRtbWCdA}oaFbx?8VG{ORge3uN`L>|t zT~A^>pV1h_34ki7mTzmVcB7RRJkV7Zr?y!wN5}fpO@>!cE&H%oYX&q#8>(h!s@Jj(e(FcBd`qdk9Jb&f#2|CccoZ%@k;{qikd*NHL!G(x8zh%C=++1F2^!hDb?x@GuSh0nf=HGr2qViDx zlsl3KxJu&uaC>J8NQFT-{*i`bMu%$(juL^MVv1lMOt+9g?8}30$%#={-guEFvXXf{ zoncKC8Rzopjg#~SkE}2La1OrM6ra%F5!9ngLZPh(0C?f8>V*QKloXw<<>-uZH@{8~ zkiY{MPwjz-Tb;k0^(nS_3#~84i42m_Mjhv3%mT43A}pko+Y{CUzg&O^4ojSi4kOqL zruRb{c4&wMSNyHIBBQN3l_oMs?y093=FM~n2^@08)DH0l=M)-^=iEXS%)96oXR*jc z;rfPq0fn*@&u_tJ`x^YwnrmQdyf!|!EdJr=|MWEWuaeW4Xy8iiV**#?WQq$j*kwVF z6%a?U;kOT|-@*;B0*ob}jhaC5%+u*Z66o@{kPoLstOE(}|BAJ5cILKNAEZNR+<+a! z$!;w8EM5QZx$D%g;|76iX=Lo7?FZ z5(pejcKP^Y(d5b=^@oaW{)J9R8l*dY49~4$5FQJQTMcQ|)6uQnjoC%)a;AkVxWN{;vFPoqRzSrAF!NsfJys^>b0l=(Ncon4<8zS)POp^z=Iy668hL7%n za-MO6yB1(g4;C``7*SOqIP?eV(B&c#GKRloXVo^Ok(k5$l

1)P1nBbE0C0w5&u8c={9Tf5~b3 z2kaG>Cf+-;AWg~xO48r(9GE1%1S>BeB$4MnTOBU0OIs+3bXIrikYsw=vnieflcbGc zW#=TtUN^JVq(wo&D+Q^?;Hzgy+B{sRS!KCyCL6XN!X)>T)*yjKi1YG~EdM#ic2Y z9=zcLCF%w|4<=F9!OG5wni)Opv(0ze;*dI-RVWtJlvmV>)NkZi{R%dXi`6Nt4RWj* zZ!&|j^$4B}ldYe@%Ffwh%zL?@r$<9-#UsRB`8%*zT%^*N_o^OHlHS5|V3PC(tn8d5 z#%^XV==BB$JPoGla+r2j66q}QPDr6X)oq|W?SQAjj;$N-A+KdUFcC1fA-k8+-#fi2_m#Cs(W0Db zG~sEi=&Bx2lGea;V3ITiR$e|xD(W}-?JXy1PuMGNX-bErVvdruJDvlRq+MZU=Oo1r zs9Wc{lDauZYry;EDD}c-aZ%zOPzPtZstJ^(9G(P|B@b41&JyGKN^i-_1?r5YhSQaD zoR-0UadArH`AWkFO4Ma|9!#Pxft8&T#i&kwBZEa9ryt63`W|c+7pF9;Q)mKZ={`IO zCQJ9g%FbD0?1Ben(*ewX$Z7f;Y!{cNG%+>N0&hG)T~ z=_jzVbD9|M85I1b6|bj4p3l7_2kI@@FfLGOyk{_G1ZChi#=Hj7JD8atVx36!N<@g$fmeHm7E&JttR zJI$}?FB&`}N9ifpD=tcD%z9N1C`rG=b6}G6IIL_TDZ%AV(fv@h3w{zvurGFP|8;kp zN0aY7zu=d=y!CFVjgJy91U66-=_~{eW}Qm!t)&>d7s`}$osH-w&-dbCGr?UaRGtiX zLd8y(8$5|!gcQFIYJWKrAHcn3-UoG5`;dsGPvF=aPk;%>p0F~hYP*LL6L$|(?BYZd zMI}Esl-0jmG^k<}-T*ZKJH?$HKiEcyYT46yu^*3~Nl-7WY#}JYq!!JKwIY{5!r{Ca zyXSgd{ZL=oIy2rZC-^3Kq__n0?zwK9*el29Mq}cn0Dc}1or&+~LS^ghIB{hywuCg& z5St(3)8nIZE`EWV%bXs0OGq{sF$)MGKgW|`67o}6nH0DmCzXf_T#eJ^tH5mRGtJyZQB+E#D2~3f;L;u z!YtfaWsF2mzT)qlf?85#9-iTkaw`oOXkZ_@q zhdt)DX}k;j^I?XuQf5e*P#fSuGpX$fm94dG0|Gwe#RT_Rd2=@^E37LPk*H1 z6_%GDz^-x23-9O+2PcCObW7uYJP{^X_rl7{8(6#OVEt1L)+?}UlK`w;3~x8Tj3>eb z>qS_3c>zmZI1pAW0#@fS;)=Dol1OK1mqNvgjGz^36FdA=z2otQiu(EToVjHQZ9?RBRohIjL32YXZr-iJ22Ucq}mOrge6+C_> zMyJBc%LztgzWbsaqc6Z_xx>iRKV6T<&&23jSa~_Yh|F%kmSglw*erJ#nI^S|@%Wh- zJp?N|$7t(lBi%5m<+A$y9V;9wZoA)xUE=bypl!36N}Nt(Z{mS7!Fe54p6uZC=-_nA z!P!Ykq_bXYBRD+=?44;`jrL{9G<5^lB&CKP1QJIM^$0-D%%` z_gMP0`W%gi&xGhmSlKy5t*5OXQhhFz<8vPD5*MHLRUef&1?L<*a3(ls!phFUncA}7 zQU2|s6`pU%$@w~L6PKJr+t%<@GpFd>hDXjs=N4FblA{yQUimpWI#0tkO*}f)%qcog z;*m4ac>-3R?C8+>>fOhQmsx8niFCT<_EjDAfgl4qtK*R~(ODH%c8<?j@tL^E6Sf@bSWM` z6Qhe^<>dq;^6cvea*XbW&2op4>Dkx4c>GL^?uM0@6O72SuUF(4y$qY>4kOdEuNU$7 znHaqQD?7(1cCDD9JE|7-p@Q+W?B>UdS7)0jiF8(HN4ITHDDD8A*fzv7V4}1htn3`6 z*!MLIDAit`&MXNEx#ALSfAL^BOY>mAxJ8NgkvmSS-DClUX)c}u6Q((^vU8YP?@^cN zZqX7sLlxL2E<^3xEvjZt(K!{5oQX~WR(6g~>)oQNf%ou(VMVMT!`8?ja4(J=)8_c&P3-mSlNP3f_JN<*RyM{+a{23c#%$= z;Gp1pr8)Ute^JS^UZ%7A3F3v}u1X@Eg(0&HhKXjpTBh;0wXF`+af$Ann~CSZWVt(3 zo(wN-$0tjhGqKl~Ja!O9d9cI3}?eVq`U`k?M5MDlnXT#*>I9Qp~zN15liF=is z1(uiVFRI6P+FrsXDpcWH+#iPx<4&NNw7{x+L8sIU@m!c#od+vB$0~MH`2uUbTI5x- zeSR)e9HL+6xJM4xw_w}2aQSJ$)#M08>>GGSOvJtpD?3Lle%io_ShiTu-?;s=oUA{= zZgI(CzRHcyhgBmeP|x9sFoAj+R(1{)r~B;A1zvBDI>VyPh3kJvJQu!4Nu<+?pORL& zYM4R6dN-a76Rb61W#?eUkF!`SRgQeTdOtZ+`@&{%3l;BM=y|+QDIX|K@5l3C; zynNu~2l_irMLAA+*evHbDIX|K0iFjFryf|@IZm@9ChCYkd7g&exA%!?=8)xbki&K;Y#q0{1!=)XT%o8PjAz9}Z62)b z95vRa>f%ySKi74JoUYSgx43krwy9b*f&#S!PlO3n1y*(r6stQM@D}@-@^CIwC>AmW zzt^i?AFV9`zAPu~i?DrM!cyzbjLuNxzJO=OMDBW6**S7EIMd~Tr*<=zX8fgt8fTBo zIr}y28J9EOCz2EFx<+8!7 zYM4R6dK(`8Q6^Y#!phFUn$D_PL-|TzAZw^wXrCS>Qp%FZEUbzjwmWKTZO8~bm`@%jer7#FY9y03;A6s)h~$uPmX z4OVszR{V=r)`#E~zfdlg)MIcj(D%RoB!}xc*flO(xwIz8xFHm5=VbBX@!d)yoyB8n2cnxCp@^+%&*+L3I#%eY{&Ui@{wod) z|G2XD$JOB<+@<8|_P@fS?3^{$4@GFD_vxr#5SbR#2#V@Kl&kWnpCtR0&?Fjo!(v zy-k@w!r?o)@lPff%VppG$>ba5EZ+bR6PIP?CzHbr<7+IMavhB5?c3|{pqbQuCRCmb zZ{Nm0nM^E+y=oeN?e-Bl4?n}LWxjUH{Dj2#Jj9YGWc&mVpGn4#U}aLzeh^Ab+;8jGh?6Q$mG@kMC-=hQUMF!wtWM(jay$%;?0!|o=i^Asq)`=CQP*c2`f8C zEB<inSrs2wt5pte&I=`1Ljx8-tx8q1$zG!>7ZiBTu4>>Q(QV^4`FMvL>A zTrjNFq+{d=ErgBY)}+JRR+DPEQ+$rVV`t)XD6H%ppVmE6ex|7eoh#?(EZ8Y7KS#8U zpL+5Xpfm8`nE;&zD?0}$egJ~jpM0@beVIKdm(>YD!(?{5oTOV}%eW*R-#(Hw7bsF+ z#1&Y+;cos~gehn)-M=JgjBdt>9fnu@J zmod+FYn&o(xTh$IbQ*5vb#07>yV(PZ)5>@bOq^DLm7U|%deSQwd#X=qO1*(`(%W4Q z)UL2)6JMcp7bsFQ@hq4~b;HUQq!Mg>e8H`Sg>AZ zIVgvD03IwZ%)F044aD+{?V?-LucH#}rT60rFgflGl_$eqdhBVT&6wDxa(qYq({e(t z#0_TdsPmo{f`r73AgnCIQ(>}l8LUid-X)>L#Ol`9$Y(Zj7garN3lNu;x?OsRT}c|pP2 z6wieT)<&@Mas?Lo4B}yOunvJOnvwrp~M zW%@|s5S|MYtP-s39ITm)ek)td4-FJlGw)>=YY(KqBuDE;*fcI$y!T+yUMubfoepon zvthz@9jxpeuGqPFYcsFz$yRS*WO_=)flS#yb;vJd^_xh3BZur)uz6g_csD8GkWp7C zY>(hsF=6`|tn3`N*ymoYu;t2w`9QyhaK%O9hW;JcE-qfYYoAfPYCce)-oo=>0`&&0 zyqo}Km=veWf!bL~q_aXy3#h6O6sR5WJeWXj2P-cZK&ktYJn{vN6Xif158LIoLe+er zKplhU!31g{tn3`9*h|#bDX%9`r)?~^h<{AZ)%mb%T&{RmZ=o|^lN}VVbMbVTc%20+ zJI9OjW^}wo`LP+5|vI*Rr7%Y^%R~56R6+8%F7KLpf02gY9w+lzFT3K0FU5Q1`&f&VkyV@mM*Sq0M;z zki+yh*eWhey!Um`9x9kYE7MDO4or~#3@bYaiPJ%a*Q#aJhj=uew#bQ>c$+GTbe4GO zbWmefP^>n>Q(Ym>aoG2k2Kv1)hsdcq2sVscrFi$kpjE2j1cmAV zJQF5V`@zc2p_;~+^aeeB=U}OvryFj?-lRu)QYKK8N_Y}Xl!~yjbCfv8@){SJ z_t4#_8|6&h0Gq~TDxG6_aW^Pj*WuYP;ra}$>>RE=S#_%Z;eh%T+{MhWpVj)SU&$$Z z1a^;0S$|5E%U}z|?PqveOx%6~D?7(6b`zhq*J}KFhYE&j_Kuvhw_w}2oMltxtmX#= z>sga66u0g0w3xU}g_WJ-#;RvS zm5i4!7J4&=73A@9&W?d?b6n4w{Gfm>#PeYSb_A^K9I)6ofvpo}saV-V-#DH6Q;*u zW#=%(zMyHH0;@LKo2<2Z#LfH~N+O+Rp7((;v|?$7P{gL-2{92{8CG_V7^lms6bCc< zE6;n%!P*^mi(9bL>9Rr_C{DZLX)tk`2`f9tiF2onx(#a}bDCc&>dzE=EwL4>*VW<$O8$L4X&X2O69jXMw z`fBiRa=2cCt>ePgo5~gz^@LWgKjS$uLHiS|>>M;sO6Nu;wROs8_y ze4s$BkLSSz>OHXXasrg$^!q__pbmiT;#RA)fHI$c-w)4&3Dmx@vIVFF*SSYG!q@Ke zP9Wj%M)*ym8TqhcX~6y|)wAUse*_*SF2@J5X5B(H!PruXCS0c?y8Qjac*sm-mxjud z;qv#`H|B^VvCGcmx4wTx4#SslXPLLY^S%)_E)22M2^Kfv!85VA0ahlJ?7C25;_i8m z9ciZgEb=PZzD(6@?U~MRRg}UD-hTso#jPhFY)?Juj}ACI5O(YdhlBOfbA%TR$J*Um0J*OkpMYhEO>-Ps=l>_{D zc$l~VAH-TDmck5UyH19b>tICNPJhLNW>Wi?PjHc|yhpc=${*-U};}dbUm|;biB@fY2hpR45MR^MSVWG+#w2+<7_>_KI6n z+6U2C`gBs<9}k}i(Fb5<=MYV8H5+v=@++Rk&#;`IGHerRPcA40*}lB5e@o=^a(+Gsd&T9aef4K7eG1WM@$i`teHvDF4$(F(>rbyY zFrXKpU&sOaIqVY`pu^f$fWp)%JU_)lXTtMiSlKx|t()k&a7q{(}e41n6I|vIU?7>-lI)pti(IAmMOJV9TfoF7&-pwokoYYTXr> z-7jw7XDNwvR)M_wS8gO3+ZZq>UMD2l8<>HI&cwGXRGtib1F`o+jjqI2$nougQ{-Tr zguBZ;mcqLxjSWW30)og1coIxRj)j#;g*z&gn7B=X*h^PtmWB!?Z`jXgf2DQ3NC^zo3-+nK*Hg?xp92ntXOBv zAIUNP0X#-rjQ3-$7|MR7X|8NemXyHz@o<^2-Ww`gXUT~xY_W~2g?^JAvAH2WJ-#BR z;APxa=JdEgPC+bf!o!Pr;7lG~fR#z{dOoQ{RJ>|bE?>oK^H}jJsyh=~wER0P7SF@m zDT#Di{)2hw)>4cYF++^KljOmI6xWosduHgT0K_9cLY)RWlHI$q5d%8@t%_m)}B zc&GNt93*1t6F3gV6JWw|Fsw|f+PqL=(omH5msb7O8vL_VkirK44A?4eXT;l#=TTHo zpSJa<;o&nGS^_Iu7)mg$MKfcq%q5U;*w$|qn;9!!B`8;dte3a8_urO7{7rbQ+6-}& zW_*T>{@bSHNg=!g51$F~?V<8ym?dN9+ZURBiA@#pnevZvJf6Y*WzLk$O^hhv@$rb+ zKtOp4PlO4|?_gz8?H&&$CT_-zeZ1L5)S{q}Ee;j*X>*;tc-mY`Nu<+{^WJJ!?}Ic7 zD+8&94|M)q1J8p=)D&2Gc_1oVES0iFzej7t_LdX1C+rt@4oicmh7Xje-SIq_MC}SI zJ0~i>HjI9;@ou0yTO8J4>X*aR3tPp7=@{O2L6j_`JSht(M>#wNCPyBu?3|<6J6*Q9 zE<2>o+UQS!u9Ty+40el)67TL=Y^JNZKxw)R&w@$QC9v}HLQ|lhz4@V>rtiUSxuz*7 zP@3+;vtZJ653KB*rr4JTZMCUS?Ew^fOP+p>!aw9d{S7vZ3sf3wyD=juQ!n9(Fq!%@ ztn8dA#(Wo;4wr5*AYR#RswC1`*`+bx)m)%7ZG>mRq-lLvd3m5|z|RGqKHnW8r|BTr zEpB;AgQl7bl%@mlESNOy2P-?LiLsMe@CpMy!D*=+ry66A)v;#0ZUg11gr~ve zsR%1O=ZVojg+>|*)QxhYZh#Hr5|u{(G-d>4>N-3TCR3k*m7O!i=%1=qk`>;s_IZBk@N)%i_lxd^yRB;Bn%XM&6lF^?8G8im?Ygrljj^M6ZBl z@UWTSo){`mhSM&w=Y9rHVn;mUNPI$$#3=49^P~&!OehP9So#ExkKqY0;W!^wCROd+ zP-5avxWv8@Xrib%SP6;+FQ4i4D;YoU5BTJy%Xd`7!ULk;hJE8!8Qy2Ncu1MNpmXLo z@m!d6-2p3G=t?l*MRR7Y049*o=gb5WQ52mARXeN%5>XVJhZ0`@YFl)4oUv?L|78bu zbey!T|MJ=&SJeKvvi8T-;U9H7t5FOs>R*4=jt=WQVEqA4>p%IBj*cD9URM1p-`>2V zqwk*nchn#1Z_e8O#fmDz(JAx%f?x9TO*8zIBKq4i{%}SQ$rZEZ={c|BWwLp%T=up9 zpuRO!@dEYtPY;Giy5s*lb+)Abuey8d0gkSr?h)=QmI~g0zpU>bQh!%gL1W!u2_F7;tP*=`#(|j_@GW^Ic`bM!ws_mKn#ne*>k{ zG(4kw(6csVM7zy7l7Za@kCIvXwhEQ4<2`|I;%sU3BGzuiyRD;C*utstgSe;0Zi|lm z{)tCEmMvl6Fg#u+1BbxM_28nCe^4l4t<4EabL--;g9VoG5l2>ib~&H%)#^L19nL#j zg(<}5Bd}TAf^mod8$EB@J$)FDn~Bd-SlKx~JB@=+spO3q0s5*Ops&DoaRD-1z{i|% zx-$)cqRc5mU&142B6K6H>>Q!p$3aN7dZkLHJTy3{-ux@88$Jf}URK``{ku<~TD zOny)(4wf?|b;F#xCb3ta?H0*l%D|pYU}e(Nr!bv}htGuRcv#svOkJ&~xiL3$L!@u| zgq);N*f1_hhs)P-O}SHyK8DB6#OQojdAY%8(D(FLiN7Pq=-aSiE-9y=4G zJ78t!7;QIBHCn3Pf+=g;Nq>>^^M9~YTz(ASh(TLzKTMi}^G7^rCOFT)%Fe+t@8OT_ zsPq(vN`YU>`06r)oZb;_aH@E%_Fg5C&RWfIA2te5bMh3Vb@1SsAgu)}I|pf;3e@XW z`uvhsf%caJ^a0qZ39LZ1q$xOi<3TgQ*%MZF4$e3aLuwvo3i|opK{-1EuvuJo+VC)B zEN_ZWKOQ#|pI%tmIX*kL?tH4}lL|uvnOrcS_dlPN6ZC1=FD^lb+wjrpE1o)q=t?|v zCPd3%W#AB(}BtV$Z`4?Y#Ns$!$+`Dib(zxr+?t_GmFySVCCfnCw0%9 z5vOfR;?>z!N+O-rSsQU0%b()31s*>Wr%hpH=QxeC(r^4ahX&O#PJN~SK{-o@!H#iD zQyW(L&B;@c4#9(Gf^-n9>>Q+Vnx&wesXjm((boDOkt6hB*efnVZRn92X;XNX;$bu4 z8G@Ca!!youO}VH}k{bc~iX5OX!G3W8YQu6Zo;ro-Mm%&TL^r_7&LNsUPNQ92tyO|y z-^kH#qi3S@2(0WJrE%&}IqOv_>iI`co;-eCr7Z5R zS5y+|^w({uNAc7tMDM^u&0YAv1uHv;Xvfy|sNp2p!`?-X(Dc+0GJIDGUGYbWQ-F5H z17}vD9bjeW0Bti4K*4GHiYy~X=S0{i?kskod=@LKlqodF;~_JlIR;jC4$U|x(9}B- zi}JpD@G%^aC-w)lUGL@wbJz7ig;`cX*OTp9M!X?=&XfD%|vGn zSlKx`N;I z(@!)G$m!{a&EnG2hEr){c~g9P@wl1z8lyIPB$z{7kr0t6%*7X*oex!hUfH zYQwf-Jar1uGCXu9M3=$J&LP^$-22$B2l=s_oFBp_amf+fDl?WZ#pQc=yi8o~gO#1* zGSz}hbSZ|`CjUzg%s*h8xWF8cyiE>|AJi^Dp~(CVkC=(fOR%zYWGoL-t2e!kfBnZ+ zL*iA|7D^(WRhHmEswI1h(x!OyOq4c)m7SwxS#9a}U1%lfFgZhqz+Q1nkYKf?r%mBG z2oIYH&jGOVq=qMUzl8?Rhvo1rg}s_6cw%W&c!uz>nedcg<;e=q*ewL+>pZ?Bhv!Dv zs|kQdPn*JX10FULp6g&`=kRQ6ZkoqjG+f{D8#y_@f{o&mGcS4D+>|rL<`Fz*CN@8V zl_xzmhU+?392U3B@4!Y)BsS)2I^M!#W@7UOtn3_{EiBc>bUnv(IWIdaiFB4%9}tuo z%e5Rk;K4FM*$!5A4vOVAh2|S6w08JJIWWh=PH_v2;69h;r0K+T3?4KSoQ1Hmb8svb z#(4e4$K=4A4?DyKMo?jF*KVAP2g?NIELhn&D3*r{W7ke-#pRoFR_=gJ;<6%mxGDOlW=wD?5j#)7pZ!XIEHxvg0#$ON3T*`sMia!e&h%K4W=Pd~$f)Onf|8**QLz1$X0D zXuK8UN;x~rV5hk32o~JUNmFnx!-Hmma|x{M92`rJqt5o3Zo&AW9GUOI9&wQo^f--l zDJ=Kl;WA;l2Ud0ti)9t1+_T+!@eesLe}jGE0wY*O#Z#uxyo86$gyzq%vU6xGufQk= zEq4^A~>>Qe{&C^iBL2@t7ujI%) z0=vXTW^VGyC`y01ob(K~Wf-h%z%q9W*9%=h2CfrrY3kJzI*3heyjq?#>CJoJlhbk^Y!a6i!3!#5`BGf&!Q*A(@-0}| zIWCq5lkw~3v_9r%WHpJQTyY{+8(`)rM@2VZ=^^N35RpDr3K*<6+~BgWi9T(rFr`(U!Hbd3d#t zUN$F8#`+jMWM*w#7%E#4m}dPwCipqFMnHRN+T=)g##^MGXbcSIn|{9MtKiFv64b*8 zhI4UeR|^X2%UcC6zwE-%RZD))P$^hufT88rKlw1kQYToPg$K{X;tW{19$Yk8ofb+= z96zmoQQevPj;$)FdB40^zgztd6{`@W+hNDJRpr=LJ4Xmeng_H6yA{uY$HY z)M84Ccq$dkaah?oN!km<+RRq}RpxyCVGL`X2QzOIb!umRUeD0#no8qm9vzC9pkdp?mnsE0p-cVb71mxGOX;J zCstkZgWf)krDbxKE`#0TvefRnRL!4qbO|0mlcSHr%Fa1r)g|Sl+C?twEPYST(tWUF zT$b8hml_^Wp6HA=_S}ME==uSzl8=+lKzY*z$EEU zu(ETKSnIc-Fsw~*o1P(Fzip%>mXGzDN}p1+J{~@kqW8ec&MDHqyk=g%4S1D-A-(H9 zNDk5guwUGQbab0na5V=gOZ(v&Fj?9cR(8(POwQh|Dg*TJrFvHDQ^>s0mE75YHA`V5{2 zldG#?W#?QW)vDwb7Hie&5jj>rgH7XNl~T2;+CZuL37!U%svp71&Z(LWRI7^evpiTV z>vzVyB}eNG*f}m*nRF`Fm=~0!iYLG%sS{RqP7-T}e2{J+93uy5A?y~nI<-7Je<>d?KRF6_u5mGL^{28yU)m}^eIIvqCNyGJ12^@6J9gZ)HPiuXX+BzG%i!^-U*M{K&kpTo(7Yu3t?sF zRI$2nwe6eLyYTzuJlzA^#pS8pU3h2!CFxsu0!)&=0V_KviFHP0*em47ruR#7l>Q9+ z#YL&zXH;qqP?r9LXTW6XIaql)Vad-aqh9JZvU4ufWRAsnI@9qESQd z9oX({@hWbrl1OJ2cSyUiG2S=OiO0?4W^-8CIX5l)oW?u$S{uDk&dw3AQ{0l%u0E%c zJMD80#bamkb1zE9vZJZ>g8OJHT^+_bDajd$p^ zx^t_XoiD>qaoK5C-D%`b>&_SP*qQu%0akX-&#YFvL%qJbH^9qh!q?|BgQa3_D65|U z_?;Z4$6?#JFrC<@2FPdxCF|FCB22P=2`f7%tL4hwbR)%-bHuIm%1R=gR=Qm)cgsx_ zE8u}M$$5MEBd6ucoxVV_tDKvexc$ugaoe?WH@-L0jfc&oW+zzLdA-rTK+wE$uidwx z^+BE-oReXnxKr1mZJN4jnbW!ILwMv&c8-IUowL*OTz2eg1r4A}4dDIY!@t-Qr@@t~Vg#`BRR*fyd9}=Nykll5QY*ewa##J2vq;-%Poltem9 zv3A`wse3@H(!22-m^`fsD?8_@<$B(9L&Sb^i1vkT;?|>ft>-N_L%bgkoJr0eu(ES< zT0Yw_+z3&WgOi6{;)2tzXB+05AObvYCO18>vU6^<@0B*M=*bNbpOI5@HS7_Wn)z*7 z&6{q1_!J&BlbOq5W#`Pa{Jxg?#)qHC!TAwv6c?Ps+60dEriUNkp)={ZA69lwPs<+1 z^seH+{pdh^0>{`XwGd zlcI-VW#<&NT%DP2{#f}uaWlPwl1QhSZrAF}a^uI_@c520$$1l2c1}*qvq8q2K4!|% z=}rxucAX8f-SDv!9yybpX|VDnXUBB2$H{VbJ_P&3ownM>j^##=>Ld%J7=e5 z-xIsSLhE}zE(hpB*eotU?dp4C>C?XFJUo0RMd!fE&MDfv)%t6k>nSv{z9lE?8?b>~ zvU=LIy*Q2~l(w(qDH&>~Qw7s+VtX-qF!_PyajW4`u0bmVYs=|76R*>Cf8!#foaQMprpZ zeV(qo?7U^wzpVzuO6Q|%6XVZlbbhXwElc%(c2 zzv~|RSKZaG=arX@uHhBbwIrp2H{dVpyQfai^J5HmsF1O>5cwJWFZ>xyjPv()T81|q zlJ_CSs2zVWiXGgNd!Qci+bsLgmJr~2a*nZv^e;FC}Eu|tu-)7 zKiYb(TsJeP>dCP|rOz}lFTn#-|E)&zjAPsXxYB9viDuHO*EEvdG&eFM{t1tc zS>~P#m91kuf&I{?#D`dq5MQFKe*yY4B%}QvC4ns&xTC!nJle4=$+*88kCQp>Yr@L) z;G&6T^-#iE1yX33^&-&i>QCTX$=W$tr3!<9Fjb25f_rZ@j4RAlwuO#kuovqft8(OvXcQ5wMA8`WXeN>gT+#% ztnL;X%+qgnd`6DU)v#S$WDGBJjMHdzS2yMiSyOyIg-6ZA=WG^e6smquzo4I z=??s#$hr9u>=T!p{qRzwr%QqP0Uj?HVTF#Ku zavE$BmlnhGrt#X`rd%m1OYm5ks8nF(NsY>&@97iJm*uE@5jJTeP^sohQTYNMD-)IL zVP)s2Y+|S?OM`Mn|GM+zaz=g)yTfJVeRz}Nhe=X6eu)RkgyUgY**P3rQ#g8xL#04H zxAqI!VoslPR{of{lU+ecq|?b7o?MSN=QJlvVR;)KQud1wu(ESl43(tUtMri%oz9d) z(w!P42`Wh~NeahKc#zCWG7VOC4#(!SlGJ?56mr_O$;om)J_H-YooNz08XU`$B61ua zClisQVP)rtbQ%!xE1AO3KqeOq=>5pY<&<0qd&H$=AG{ywjipLKIS&t&3CcOJvU5;2 zqoDM83#U*8boD`BTMdoQdUM4b6!pf5wnV?`s<~aenNWDJYr#;^YVV!C2omHusCi`mcp_J9xM}<*|4&6SPVT& zP|k$=58Co4FUKT+{o!Jgpl4~MNdf7>!(;-Ig_WHHVp#ns=hS<3Mo6xfL-HxuBQ7Kf zRzLAnDJYlYp)x_a6jpW)is89&-Mz7QF13pCBRMQTfPLb^lHlNyo-PIEemqf0FXPcNad{C|c8<$NCR~DoR#Q4Z zE?)d>t|Zb~{LD_mNKl|)Y=Vc#1Y<*3**O@74yBy+Di!rGuqRK>6dWoCCChiHFJr z?dBKM#$i6+dBjMiuUMGX{k~35pGhr@8X#=_}R;dF)Jbg6K<>fsRY`{myECY6W^X0A4Twi~&V z4$@Zp=ZghD91eASCmbO4XV-vwT`phlEct`QreDCNsg2LpQ^QEYk*G#c9h)eUt}qfZ zG#4lJHL5QcC6!2hXm)7)eqsZYsSiv~sW=c0TGf~4`_%79ZHRUp`w7Jcs2)*QHKK6v zY7vp4x;?4S(NNu*R6-xB1U*C4cGT)<0*NS!xnUyKdkhoLT<<<|s1Q<7owlDl>!zlk z?sKVevCdTW_l9F%{d>E+yJ<)Kbkd=VM*qp0X|`__wDsQ5aQ<3fIk-gK|Jqq8ma=`F zi@fY&zmRM4bj3^B(q|bOf(@oBAFF?RSNOMgHU4(;yLw0N>|04CBBI}@4Nkjfr%lxm zgf4W}J`UKEFD@|-#I~so#AeljsE>qSC>KlB80^EbwF*So@ot$^BK6^TZ{ruy?=3YB z!$GMH!+K-C2laQ`?LQ!?cTt_$FR4W8_Ky{$aHrNd0E<%_fT$paf4hAM`jYw=4S}Cj zLLY(zvvf4k*Cw0<5>XVji9Ufu6h&?Qn?NFpVwHs=LjoS9HCM`l4w4?^n08sy%^m_d9M$3U0*y z&7s6Z?ssf(RIziYTw4Q18SmND=seOMm;3KiI?X#D8%{l{*ropZuz!sI^`z7JncUo; zv^Lk;ktbbUuh&elU+Pge{5Bc;_tcDCe`@rXcd4IG{VylB{#9=4Uy@2hHR}J8N<@{i zHn^fn`J*t3wqvmRQGQ;%$6YCnG>!chpJ>nOf&Qr0m>T_!WWYC7f32`Z-6*L~#RaL2#l}--#mAx+fEoxD02zpnCUr3yh_jPQ=mU{pQi?aa&XIh{DhR`B>OT!%_xw&$Y9jEy9ZFc6 zcx!`^Waqc_cdXtWoiwI{@*F%U^lK8!QEIJ+}MYm;!ET;FGc%IGR&(h39M)24)gBNFvl_^1HLLA zBXhu4f|cvRMHRdwsYEo7JP~3innxake-rgYq9|&mO%%m9B~hr^Z10KPkD79HCCCSr z=C#|gYCN&;eHnicvM)0Z)dOoPoQ4_gsHE^kGuj733B2aDe@2Uanb9;br@;e5iro^} zF5}qt_b8pFp&7M)nXx{Sv01H=8!2-YJUV8XJ2h0cj&WO`u(qDqVz0Nb9)64t)9?VZntQRmYD zM4dF#4june1to;zVb~gODKLDvzV@!19S)TtT_!(-N65tDL0EZGVo}iFX?a_Y#hb7- zX<|_rp;)|*N65tDHCWk#MS>nOYC~&tRRW2qW)+eq5=Bw#ibPQyCW%5d!)H$HXUgAo zK=nyRp|T_>H*fIFzYHz5#-GIKJjn)6_?V?0TvO*|Xo?S10b@(rI>%8{yniTRZJ4an zVf&ln^`rUFHb8lJfa>{1n>_(+nQ@H!k5f8L!!v4q)iXAtvF13QV?D~~tb7k1CA0Kp zLuKoDPhf)_`|NPci&*;@Z<0Ty!WQ;Hm*buqn`Aoj*1Lbl9r;+cgn>)(c$o}b3@g`z zizc3nLJ4biXnV69TTR7b@fPWqOZ-3uCIsbv*dA_)uzsIWsW1XXItrA1))-H#r%Ms8lH=FXEvxA$b8-b`DAGt#BQZK5gl}`6tDd zWD_NU^=Dj4tT$lsDCwh^Y>3Co#AH2K**PY*=_aRtJLzCKB=cZb=07Z@#(LsEea;zA;+B-LCgCa2=DGBGK@%FZ#dbtPqT!|xa5lw1${ z!=*&hm8euHB-i4hG9kGJR(1}Ft(GX~^seNWa!MYC4dPNFsU_81DJBo$u`)4v5LR}M ziLI7Y$XzvW%PDyi_J>P}q?V{uDI~Asp)w(P4OVsziLI6>=XTLnI6GY~Ug1nr5|eL* zQ_YoPvMnAf6O*lB<;jeRKII%I$K+_(AZ{^{OgRb@!<2I*9xD@*!(nCTn8dzi65lUb z6ogODGU|pCt)`qOhvgjDCN3-o*bZurziSf9m{yiE@raqooDM5HM`k;s{u$*QQ|`?}^basRuzl1Qijoht{YSfaqJiU-UD zW+hnJIWRl5t~jNjx6fR1_K=e^8@7vEat@V~6U&?;Gz*WMiO>vK**QYvG{{Ry(dm(+ zlZ9>KqSJ;3S!GO-IR%fHiOfl`vU6lC+j#0ST>bR-<#JXoh5g~OBG|^Orb;2X7!Q>R z$wjcTb4V;tpy^?j`{j(>3){nGMDPUKc$VdEJW?hicfrce5wX>gVp-q8ds)uNi?Baj zMkIAarAq6_3wWqZNS=q4okL0Tq!17 ztTq!1prk74Zj-}u3+xXU7D1mBTvBga2XLSiB+Z)k;m{znTR|JD?3NTvSHs_@;&wa z1Fe*-ex)65Ds?CaT5R93>HWunpnD?3MJTXUaMH!ow_kDV+Ay zK@)B z*dJ~s5p1|sQ>BpXgNMq5WG`6RIV6@>!m7?0*T<*IQ7OPKaZwSx5*8&)fmw_P%mk(n zR(1}IZQ?2RY7@`3a#F5=?ctIlnRtr56p^d&NSTOS0V_L4#IhvL7kg*U&>(q84#|VC zL0m`#OX4tBipc|btV~S44=Yb*O!U)jugfuc4K`?kFfp8OdliqBiOJt#W#^dK+Sp>R ze!gwntHn#5t(8PNOC3oYt5T)4WJ^3$CM27|%FZF#%KW59m0>TJQ|AMUam7sPRtB^0GOYNYQwZ-yj-UXkC=(fj*vhV_%#>s=#W9<8e+(peq}%1k3&O3m7MxJ+u^1uKt3P5Q7{o(ZUJ2;<3? zIdWR|flcC88NoAwv3w~md*Sgiad{uC>>L+MZ5b?<14C^o$Z1&&d&H$hP+J=5Qds)% zaG9|9u(ESlET^Cbi%Ya8jn~LIxeB(2%ZcC=l**JMas?hK6Om8C%FYq7Y_zCLC3jKR zEozuND97Xh*di__f{m7XwiK1`m>rFa>5aJYXg;8^g-Z zfw8QAO8$Ts6msOMgu~^$EPzeomKMSKXDnZe%X~auCN2lU%Fc1IoZ2oGhsZbVPM4!H z0vp6dMR006%#~s?jK|8vqzo%N$HdaBl!IRV8mF7(l-vaS!=*&ft5j2^kbE8wl?ln` zU}fi!SeD1?P6VwwPo`7f+IX(2h4d?0m(9Fnd{35iOTR+1g@P??Zy4=X!|#Bygw zS$%Dxq(2foNsh@0utVJWMsR0FEm;c6v3RgdP>zC?or7X|!c!hvR4I8`{W$hTa#SvW zJ>sGwc*4_2m%{Q?qEU2;zDgze#SB4}Y%rWBE{;gK>C`6{gJ z91%+ktBljXFZaBhk!N9lxQqx|*lMa2l0V>~G9mdrtn3^T%eI=DaRyJ*7Q^daD_-cV ztt8S}=m@se!dxjP@4{ncVzL^nJb5u0Dr7ZG_K{<<7in20b@xl&BthsVmqWH(sZ zIVP4bFH}m(I`fwo7RzbrgMH%CBKYz`JY@=vkB7{JW)ZAxfyVD&ZHwBO*~<ij&vL1XamNJ{ZbV-mL~m530$HI!)kAia0~z+kadsSZs( zSXA;#fnRPKlqcFVDE$v8ohGM8*PA-_cXvg9H?jY*q~1mLKblk`b^CW+;8&hI>*{jn zqM;z4>#X$ooeexYmjso*POtMQzfdlg)W>s{bT0C;ixtXEvyV+)6OCF46C>E(8K00JgPJ2 zRlKra>Fg<%)OZHv&ZCAZ#ZsWoY{hHcme--{7h|n6{H(gB9_x3hpt{1Ky27Bk>Opm> zpwvhP<*u=y$bfC8BEyzNb%|)eHcl#$`hab7lwYlPUTLIrZhf3QH9gH8QN=&VcIJzo zI_%RlQ2V7eP}@!&3#O|cOqU9#s~${OJs2`T`zCca8ld+ll}LSnHk#{KzZ{`{P1Rbc zI)u){{K}GIX>rq__^A!b##0*sgcVN((A5Zl48)?OE=B{9Nh*>0Kx{MCvMneU2Wykj zP$kF*m66UKwSuYy#X@tZaA9hLqJAm$=B=w5Ol|t92h$Y=Lk8%)r0zxobWT!<)CXwu zBl5*c*tk`HDQe%S_OluAE2SXYJThNNZDh8X+K3|jxiq5aYD7VX(Ow_6+9eez{_{JiXeaWwLp%T=up9;FU_= z$aJ+>?T-I%y2JmvJ6DUVX>ny(#{MVih(&|`uTa9eh0s>d@9i}2Q}l;>3+qI8SQ>_9 z^UtBpb^Rx@%Gi$2CQ1V9g3bN;>Pn|+WJagkJ~LGt$8M4t`T1^$$Hv^STQ5|$4scud zh*}TuCb|vX8E;WG6ATPCm(zJF;_{*dJ9E)c&&BODUeZK|dJk}@V>yyRpMyuq9Q1u) z<$7>YDc>uUu>SrNl-$;IY(VHxKOXJTPesKfB;!=r8Ez4ng_5E2qdWHnJU%89i(zHw zOvFwY)TV@Pweef4sTvvA%gMMF_J>ObTrK%xHZ%>)yRSzFrv6)vTBJ3VL_50SHI%b($HB`2a@dWn6u_KmsA7ag7{K3K=^3k4+`)O>5 z>1gi-k9I6eGVZhRIGN)<16C%}TURJytpaUti4A~wrQYhVNb7!jRA5-0CgmUt+hZ*C z{S**u_hT&wY7->Pl6F6*;88O1I0;sEj>pDij_4jRz;U@8j!R*4xNz)_SC249ipIrw zj7&5xf|Z@45qs66F}0L^uaxbp^5N&S@^QbMkb7Z|xP(}bXWPq1JXH$H-FT=>Q0{`2 zorAIwts#aI^0FL|7h!L>fXv2ANHs+Y#tV3eOfa5@l`UW-Sdm7H+FIwEKq6XNuaq>A zD2mz|OBBT)ldkmYOY6-i_9@fq3&YY|UBkw^`uE*{Hf_dV#OR^pEUvS~LPb4D_Dl3( z)7Zc2u9ZyAGJ7`_Hnwi8vm7n6cL^n|OE7DLon&*P^)h?I%>E5`j#cO1%meiyc%bST zM~m&_VAG6a-9Jz1G%vOdZ@3vowcD0wJ<@35eKZ~^vj`p;DqBZ=0vFy}S=@*%OyfV) z^Hku%)zvw;tH$Lw9shZB_5;R0mN6mWOgv^L38%x#_28n3Xe5-dR*JSS#iv=3DOc3p z+u4j-vZ}9YXpQyPRg^+>QsR8P#V=pHHs)So8DZ`m?%{z}h`7K!>%h{)DO13bZO7IuoIl zU}fhB?Jyofg<|0}zf{y_us!4i&4$h55_D*L2&!jJ0h)zJ&ID)%tn3`1?Z*SiRDgQq z_+(+LxcD5>9(*j-=M+3{COjv>%Ff~Gw83L+n=hABb1Cc*mm0&>&B%hQmN2a~7vljl zak&Uqp4_;QHu-)zF89J7O&~6&_V{i*U?whi!OG5Y*}6q_G0jRZ%Yk_jc8Lp&;Z6v! zzE~!t7x0jo$UF}#J4eR41!!)AH~E5iA+@2BNM|8s_--&ljJ5q;5097$%(}3$b6~c# z)fiKOnJ33(E^HCEz!<(IfZ$@OE_3jBnXv2wD_dYm@XRrKY*~AHkw7BavpziO##0nU z?a7%ais_Ol)GK<&tvaEv=&gCER|p1&@@kX4SZI2F`bqdlX8eVW9yHGL)0Qvl4aB2s zdNOBtUGEb~Nsb48hc;IIz-=qhp7J3jh>u-9rnyP%Kg_Xou=^_ zwH{oJk7?|za#NP|IHTvLx8ZRz>)$P*vUSKO@VRO1R9W1N*h9qlW7DTq+`@-nPvWK; zADhy_H}p)kH*Xn(AIq0u@B|()6NATKWikyu8cJAeMB5*l#_s-X;w7682DN?WHE$Hd zvbvIJM}tjav0hBhfu))(-R@Zx50=TvO0cqXPGX;mZ04j`$a?x&_dVpK%!V!E&MDS= z$yua?=~7l^;o&k_nE@+1XJy;yz^cxQI*?GPWClI`cyo`Om@I4*mzaa-LkRvvq}FX? zNmFi4!GmUUa}uoVoSWFqu}$3gO9#~jUFz=GfwDFwT`tGwQrIUhHilzgd~9MlQ)({8 zV`frw5v=T-8e0d`LpzxJ<+$7n8^py$)WKAfrJUT22g~H-E?C()C$?E>&@T-PReV!< zd0EcOi?C5#UPQA}JZZ|!3wY2>Zk~sgopWRBd`teIPdeXCZW6DNHdGSntdT^WZ!KNQ z%6fRXOjg!~m7TL<+kGkdcyW#_b5>qs6FOdai}N z;?|Is_nI*2iKR~at84JknE+h{D?10Mt3~ChyV&QIa^)pKxlg0$VL3$)!G>`uT1X#f zfiuzA4`?iZiqeC4{7jS{fR&x2WS`W>tjzn~;*m^=R-`xOEWHjp#%1ZK_OTQhKw)|f zPk;&2tFW?jn5K_km-5BlOu5)oq4x$(yIDNHZL1`(r3II!quWSRj@sBKRa2(`9gc_21ZV-QygUG8nAXmb19T?rl>>mPsZ)SX z$3tfVGy*F-2WY49C$w_VJ5UVt*RO7qGjt1V7nh+Awr?`4XHPM@8IPWc(M_=Oa)FVt zCwfwj(G##;E-w*wECCDz4fX}BAwp)$TpUv zdioTkmGJPHAa%gX&Oy>{ri^bu8a5th%i);?d&Dh5EpLwFZ9G;}roha=LuLZg1uHuT zW?OsZ8QW;nHX5^XYEFTT;!@LwhaF>iQ*=(k<7T3B0<7#Do$c)CMEhzQJD1AYxfphe z%TCKrNbo97lsJXwB0O*=JQu*q&f(GS-;PgI_Kn1Q<@DSQTg9cP<@N1MdRlED-i1fb z#OF>}**QKf`W(Z?;fr!^UVuH~a?^%B$Gl-;88QN*$Y;l)Yup| z0#B7=Q-E!nNNj8yfQ#{{nb`Ef%FeOb#=e%SK2tYr{9P;O<{H>1E;k3aq1;$E{I0^o zW`c7CtZV@%!8!KmD17Z4Yyyes+~Yn;Pnbke)J|fHqS!(bg*uSmHL-VduX?1qI(do4K#m6yr2X{TQdJ&1v*sqGm#;kBFh04|e zp1?Eqo9F`^J7gX|T0dJp)U$9qjYsS0Q11Z_bu33R=riyrnS|o zEDewfa<80_yJ3&GgzTM!km5i+Q_9I*c%)2D?u3<{a}s<1y_u7tLeQg7(H>vECRVo+>5fc|24mDbK>n&Pk!OO}THVr-xk9v*E4cZe%?rkY3GJi#B1-#A9PtxYI*r>j1migsIsO+n|VV!rZ1J z7A~=G!R<6|!qB0%Zo*iGI+i0D^qcW0nS*{4tW2i0&xaD$-+$XTVYZL9=<0MV3JP9n zB$F+vVwmv@l~QqVL~D_sR6z<+c>=bITNSKVMA=X=B}|*4$MAre)I16+JEtbL^sZCW z3YXQtD#m41CDD#{nN}9-(%XhhQ>K)YmGDTJoOHm-&N-pgr99}B%6`l0GFy(zEZC~l zs*5RMO3e&BU?w$Pu(E}k1S^zikyC4j5=cZ#t&yZENRz-%GPn6z_rze zP2(C{bi@}{536v6-SR`Ym&Sz^9pPE*5sqa?#`-}#KIT|I04tN}>-(XE_1E6^B~@$} zS^Y4&)z-WE+(^bFA2E7U#U|$OPk6SlKxku?xFnU}TF! zg^K>l_q5x@Y;3C}+OcG!HN*OZfy@dG_-i>*JhsMTWa6;M!47k^*u#9wZZx1+cPnK+N@H*vk)*PtKep=i^M+ATA$x{ix+g z@i-lik%`9$tZcy}!D=&Fu+}==1QOA*`KqMzWE4eh9VLolsU!-uZ2r^4E}K`|zob59 z8x#voYv-TCKPuxdVsybcYv-|BQ|V#xv47Q_ZA93#VlynHf0~r!Xd(UMP{O+4vbNUk zUr2Az{0@zAm|lU0ss7WAR@5)Uo*75F|4F6OG(Mw-v!ZlNwQF6+vaH7$t+8Lk<22U4 zE8f+yLPzzV3+sPHH1;oqe}#4ICvdT?y${}SCAKb&uevw6UED!$s3h9aK~oA2pdAvM zf>^$UhxPD?jXY2c)`gYp!9_FC+M$HCShRf|u3bM7@lwBJ+f&Cyd-cY8o(fX9D4z>k z#VsB!U%AWHCj?9J7`qUPSV#1km+zfUbq@;sVt2_G2zUQRnXVSgjrK^9>k+&lJfwp?3|qOs!!-) zCLb);d!IMu_`D9=#l@#B)h9}wGV~fAI+LMSVP)qGX?Io7>NBFlGwo~Q#(7&MkP&ylcS+|qM+JLrk! zPHWHMcRag^INk7Z5?x*3n0NzhHOvU7rV7>A&IP*BHtvwG|E zq#U3pV6(UYwY>0{3s56*%FknX;7ooVg_S2iKgC`XKdXOT+&ZtSB+_Y}+rv*iamvq1 zc;HNaI$-5V&(DBg?&~d)&lSy<^D_%JYeMT!BXP>l3_NfqKV7i0bAGfh%aYEypw2W5 ztD~r;lBaJSX5|c>0vpC<=!kZ7(DCFcM#w4m5cgu=X>So+zlJWMW-$6_iECVo4fF!ncUn7 zD?8_Ay!Ct4Leu*FML9e#z;1EjY0LV3EOScG^LXS;f}Vwyof9-(<*Aec{bI=t?+~xO z)>9Jcti9S&d8$cMZq~(vW^%JOth_vMGo&5$nJedJ4r~;+=(LL)!-w_u!GmUUvlp!F zoSX5^Xq@J&OH?#)PL+dGfSuxk)0Q(DVb-+bEXJc|lG6t(J11wnGa8|Xre^0_IX>6G zc5(4(%NdO*b;{6Hc<4-qu7H)DGh{mt?-|dgJ|qX{LD(ZMIQvUBc;vqAc`8%vUX_<+R(P_+V zd#89cwY8E+XEh~aCQ6wyvn3uflbOw6W#`P;P7cP-KWWe$DTn58*e7nG5uF^2DjD?4XqYs+b! zvC~c(GPlT)xfynei;U=v(6NjuF*o56Gl}^;tn8eatt`YejyGw*JRt|>G1w$7FotVx z`L7T+5~jR7iU-W((x=JFQMU?1GU_}*XzTBWpd)f%Fa2lt+!iDN7u-Cxe7Ll%Zq5e9Z#ChLs#HIGr9RBtn8c{ z+tbPDsG8OYKPac>0oW!kHKM1JQOcB=@8cmenfWfPY+)wBCDzeB*tM&06G%jNpgs>@ z*jrB|ilTNIvnYxmN}^D=ald=Ygnq4aid!dIHcKsmsc-kxQl`z)1$f9zYCZ}pJEvy4xxO@6n5n4y z+RKAQ@-3vh<^0?QTgK(5<<%8@exl?lNq6GGGfDaytn8em@$1hndi{Ap&d>9(QCxo7 zQh#>IQEHyWLuOL*2UyuTHRIQxU2@S+P@BKj`<8hAT31P6D+4Y+ZK*%;-x1pMsp9#js^u ze%exh;>pwc(}xGoB*}-BCpk$uf3VWGBq;lt>av7%Lf6Pix(c>z!bsASrzBm02hSww zld!ULlC;Y$w3U3WR2(c0=~uu#CX{1sMSKG-4C*4Ez^FTl1`66q|!+Qp7( z4Zj&4HIto_bYFBSd`kwv*`ss3T zMqs13;D}f4wUlY6GmMAKq^1ljJEulFCa-lm`Eq3-Gc=g#ZkD5S6YLfjot76R zb9$Xv-jtuu<8d?j`5dh5oS#`OpLz`p~)z8suJI{~FL3$LnjSJFI zi66DsAN!dMphW!wPk>3(&tYZfL}{;GXcejC=Z3O=W{G<7qPRpuX{EcxJ#>eXNT-Kx z`RWd*CN*VF8TubQ(xXg<{tGKRXK1gMRjHiy@_sIpD^@atrJ~}gVy#XyeR{zO4yEgB22=zhn1ZZroGlvuTsXdK_|%>IsrC_JHzdhlp))hpkwh+nUov_D?6uT zdt)7{S!aC~f03M*3t+3bytI5>qt!H~Cr#_iNAaMUPtLn zT3_CW2hAjBH&}U+lA|AA(a2dWC#Mg#Ds^)7q$xQ*9yF7jMX<7Sa?I~(na}E6B?smT z*dZ=3`zBplThHix5|5S1$tPfC=bUI4$klgX>fVvFISD2WEnO>%HP58K5B zXF<~CkSTFW(C6^LnFM_nR(4L1_5rIpK}{z}G;|)7qw@>cCoVcIFHCM#bDA=y%={dW zn90mfVP)scm{0PxIwGPW)N!x475*P=8yBI(C;3_#K#BS%?q7vM?7G2y{ zyUr-X~_gB&z+F$Gx}tY!4lv0z5$VY@@s57Q==a z$GHClrPDMxqr0{0#=_Cmu8ynaSC25dIj#?nkXi8jP#GWTwqFOPE%HMnVt1*>rb7nQuGY449J73?QwEQ#Y@n(CEG-pKS|c%)ms z{p4k`d9Pgd%iZCB-Cf)E$~59@Dy@cj@0q0bNAuoOp#)wH+duDZn3+?x=GdUpR~x1| zhEZDeK6I4G+_#dFz?uc)K=;3@oNF4OQNwPhX;`~$iIO_lfrrYhga2zi>=Sr>>Q)vv zV)H|MCY&J$pbK}^I1^F;42KL60AeW<6n4aeW}>h?tW2iFZ9)lakKFdoX=@uZ*}h`l zFE1X^b`VZd@nN-{RE-m0m$+5KaPcqaGn1L4U}fjbY-wetR4kV@U@npa za{+7-7Z}6WM=@Zk2~%1=iU-W3nSlKx%*1jdD zyek&GyvEDA-xc>QYb%L#Ry)$ZrI9mb=3RKqOlDStm7OzVor(NFFE9JZaoGzth+AHy zGm%P{lJY)0TqY^I!OG4_vCc%wx<0M4ES96v2Rp&Wv>h9TW<_eg)hEa$vp>Tf_xM zx`GZ9rnGz)512{IcVK1bv{?I=pfIdWMz6|Q`8#Y7mlbK>qSB?L{1p$ENy=YfW#^=H z+E&m5UPYbJ)L_~2e({=UGbNGEn#gdV5L!dmGN!z2j7QAmWdm5*IWOC`;H4BS%@m5I z0S%f3a%kqmMsX|5!NNT{1x+JuO3s0J*i3Tvhn1a^v)wr43>KG=MrK5g&M@p07ahZe zq-edVq7&v#*(u|3Guau0m7TLQUe!?_;9IO!otxz7d>%H6i%y%WPBm>x&gby3ndE#H zR(4L#j^k7v+qWAZmE-dZ*exzThqq_a8q1wB^m9CRCPP1km7OzWU3;tV%#bOo<9p&3 z`G2rQTyUgo?=WFX%YX5JnY8=|R(4K{btia`F21|uu?=QdYLd<7Kk4 z4Xo^(mCbCk)2aHF-U)J2j)ncZ*ltelWu6QP@rA&!g4G;PMarZWGc2xEK|As&wAb>z15C|-Z!9d(i zLLd@AFcJvQU_vB<;b!*U+1=UPhs}N1BovCGDB{MVSr8hFMkyAHMX87dqXQxiGkTQyKs#q{cP zW5Y&qxzU~R4TMd}>B5`MBqs$c8z(2S@)gsaX}R*fMW30^z!q_t(XD*FfGI71gEyE- z%OI?5oR-M_4+B;{Lne10(Z}Vxut!{6boW10Bc{B38*ed_mw$nkM=>vUnwB!J>GSeC z*rS&5;zdk(`3>G;CNKXDD;wt}vW^+B)8#@@wO{6_N43XHM+k{z#!R|(OdxDZ&S7}7 zndBS-D;p7x!EfzZKPUO|)9^bDdU*!);#MyQPQQ z?6;z9m7P-A5x0Uq9u$Gq`Mo1KqqOl&F(!ynBmljSHQcqBz#(({VZWkG1)f zCovk1wK>$!p-~U$0r&yc-dq1bw{O6fDW7rQmxNB}@eD4G%8!938aUA=7-OxK{-JJP z$6LuvegEVsM?UWso@Wyn`v<%T9PJW3&E`eXY|Vp7eu;akJk5qa`N+)|BR=^+w1k2G z#M{ec;AgNh>Hhx1lW5&RHW9F-D>?T9X{n4l;QQLJ>?b6eQIu0yBKKd63`;FqS}9G! zTgyacA6VHqDuF#+!Mq~OD^=vr9Zu6Hi9Dfm z_+Nk%&B^ z80{SOnD%Jr2qBToXh$QDxS`TKav0uJCM1Wz%Elpy$Rnk)JR&|%pOJH5ds>i3M5Gjv zv+$NO5qS@+JZcdkL*W5^L`twdtw5xbqlon5EoCB-gOx`sA_JEEUDKEJ5%~gaPYVzc zky1qd4sR(Fk-vqNBM^zPXy>o{RTlzcNcgLd{}^{3*>6R4`AMr4pVVoESbe-Z*3}v@ zj%wfQ=(e`O$;<6h-Y&N^ zOUR8s>g;k`H`0TjCR&Wu{k2TwKlrJhM2z*s=HH95|5Y+X_Zyp))pfi=~vCB@`&ZSb)v|5j7vgS&02KQ6BQcNH9so0|qhDj?F z3vVX#v0nu%lM3ZZPoi}T#D~j#IC-Z`;209E(uCvFus7U1@GcmRYK)YOPvLE3lJQAc z**F;_bCe=7$M^K%_zr9j7Y;mgG{U5OJcKus$;Y=~W#fEIlQM_Zl}gU&qY)x0C4P-Jl1auZu(EM77D!~IMSYpF%Bi*X##Fjjl;EY5lkcyHe^*Ln zoV5IH?2-Sf-Ps&2B(MUV%gm)HGb060v&^A*U`|Q<2W2K~AinoDJvUjWoPmv@wfB$c1M(r* z8ZIF4++HKZn)&`R;k9@pnPglID;p<6nM2&I>&h|C*YpwjD(n##k$5@8kCo<-ui$NE zlJaF(**GaDsd}6KVkK{LCxU;WPtVU`-?;Rwh}8oPA3r7Pr+E9BL_Gs58z*WZMiiY6 z-uDOEweLhBkxcEoyvaZ*XN330o6qEF9IR}dCuLt&$~tK;L&^2b{8k^8U&A(WQBmAm z!9&Flm-6xo-drXxFTu*jd6Cu>8}C}VSdo*;;s2&R5;{~!Br_61*Azp6QbrEO8_Hzl zKv;QnGEz!)6$<2Dle6_1c`s}bH=D#`q!uV;i>nDAYar6rvSUg1?PR>G)pzP3>Q76DT}wBNs|LBj~SXuqMJ&WD@D1h`n*0( zpMza%IZch|DNVQIt!L77E39msrrFWC$;sGx?{H$ND*mB9KtF(u;sT_&|HREWBMhLb z>8KGfW#)0b!Axczg_VsnGmpWH*aWOjKY!Gx=MS)DTzW3n=*$}Q_@Psd-o%^EwW#g zO-OOSpNqsuiN*UHQrMKAPQ2Mne&)i;#42#nDqH+giZOm5^pw> zpH;B3aemajQ@{Kv^{4b{`6O%(mlpI(lv?l9zmc+WBi=|R8#lnp#@SG<1f+|$RTi7= zx>HtHNvsA)j+l%FO+EgPF|S2P+$A=IyF_rcy3+3t-$&@B7QW z5;DKmN9GmSCoVFI3-lO;OgLUj%u9HCnZ&#RD;p<9nPnOd_S#NQubgEL{gL)q>0lv| z%vdR2mXQLc%p8a}n90l(SlKu;s@=UA+wK=*PExwOS09!$VTZW+CD!iVMx>OI)A5!v zDOn6F8>i$jMPDQie+f;y6!huH!p?B%K+j$E3R^eAn)Uvii-Wh3$wfD;Y@CbfYA)PW z`VbqR(`Vy$*c~n#u~vcv8(x%zk6ZC}GWpmHD;wuSH73qD-Q7~*`U8DD9*520;t^|1 z>;_45$D?>7nQS}^D;sA+I?cP9alI3if|r8-K_87bVQ;u-D6WHd!x(;YHlscz>UF%8 zOg47H%EsA{P7|%NQRx?-JG)aRR}t@Z`uJP~Tg6Q{=fuH>hD^CRA8#^~n`N-_=;o%e z93rKiYxTLg8n&u6+%!U_+^ol&%;csFD;wuVwX3B&Yn97(U|WlX%~$lX`7-Pj7n@kS zT1do{nmh3pGpX4MD;uXq*-OdP$XhFas*lYxuvJ`a;`LG_WXjD`c$1mjY=@PNbEC{Q zg<>vrd4-g1_WrSUZ9Gm$BvTv5%QkYvl$t&8vmInovl~_(ozxTyIdQp3X{~$7NpGh6 zWQm#u`qXreGHT?ADK&HP7Bi`t11pbyYWhlryhP1a`qW$rJH_py;^mqkHEzU|npJp< znbfR=m5oz#ylVU%^swJaug%)>MfRW62j@oEEG{_b#u|Yuf~M@;fH#`S&h@aeaduSa z33aMO=xQT~cm1*wiX_$S(9rUQjUGGnG# zYuB|nDIrtvb}|W>3@aNaMDT_~B>=HMj#QG{a6fLD?G2U7xEsJ1f z1_kFF6ZrKB5gDU*^ktZbYT)i*{B?`rGX$_s98*GJ}7 z*e)(IvA!`DzP^!Sn}qmGR9-50TpyiBVW+t0#F~d85mRa& z##_v!W*e+*oSHd`c^Kcr#_F!rOTDSj&FipNTyB=dnTAosOv%}ax0y-KtFW?ha+Fm~ zcS_thTq?_Xru`}HancMSk<2(LUR6_%lu|MsZz+?KX|S?!N>p=owMmy$r9UIK>`AHR zB7IcOhi&4fmRNIj;czK0%kbthd07f88|Ov!HHmy--_`nvtcRW9A`WeSZysgzvzDG(YU)E>kPS`CjE9b?jRFqLudbZ-NX3}#9 ztZbYfRjuN#6Q%kJj=VPgj6N|>!47eWiB+pKBBhjU$6Lyzw3L?X@zyeFxeit~PK#;}LeAPyJ=-Vr{rvs< zoZJWd!{sDaz3RtVdkp@V_+GrFOh)d3m5no^8r9?~*|L+OJH5elhArYInOI|DKUB)eBD|?gP8Pz-#yL^#UMURN#q~vT zV|3`o5NRmn=rhv|+r?!j*6tN`*p#0%-fSj6YhY#L{Jc{!zppk@PCB>h1GE|Tiwn>N zac1}<;-&=MjJKOf&?Z>fI6>_Sg8GY*24 zOEaF)9zIPM63GmoVx68V2TYlnhBuhW%v4y}I5Vnq%6tpG5BM7CMuz8neR!6^j&bu% ztaHjDBc~KC#aqs#XbG%roFdiuyWypb&3b)o%CJRTY+{YS{ZJ_<>+q&BImyGy#yL^l z4eXnj8b00Jsn5+;*fK6RvF-+r4xMsz2i|lhM_XWJ;~X8S7)2HBOoe=zf9 zSo1UyaZ`eJ;q7J;^cJjaoFLVib~Pvai;lPDj>0qdKeR_vbA&`Pqp4VD+R>0HH?#33 zGr5@wD;wuVb!&am_P&S}`DU&B9my(vVphT?annt#TkC_tQdXAZjb*ZO39M|K71dm@ zu&-RKq|23}jLHrAs9X06TyP*(O3HP3TbZO>11lRRMYV1ja4-7G>HGAdxfiyJ z3r(zbOLf?kpL_6TGx@n2RyNL$YA<-n8jw@W3;MJ?51YfKCDvYWH%Q9Hb9f_}Y&;7q z8)rkcYEZJv!|jHc@~n29J6T91Q|HE7HIM_Q%uK)=%w%RftZbYa)hQmbh4QrTVtr^9 z!A^0LORQ5oNW_$yg?NjZ)XayKjZ>qlcYP0KUb^*pNy8p-d5Kl;24bb8tijvLBxN%*}PHirvGteOAnv1&APJcu`wNyh`Q@+hUFuwL3KwNsytS7CFwbi^C!^cL1rHg@2R zWU}!xtZbYO)tr7w*w*;C(Yy9gB4zqdwZ}TsghVo9omg}FG-S%nRJ_SdZVrN#jdP=ie~#5#RW5i=!c3EpNVIcLDi#>r9biz`89PK@eAk8(kfl9qSM z&H0)3z-YFRNM>LZ>sFCkoRpB6csrSd90MyGCq$J~Jm(^BUtFnA%5vDJM01K1FD2#@ zyuD0fE`*gwJ28rz7q8bR<~rD?RuQAVckvp$y-Z>@!pg>pQO(o^-Z}NHi}&h7a}R74 z7n)czbu?s}Y3|0G%;e@SSlKu?s@=E3#Hbq=pVuemIoKpFF|l^v27{%nJc~D$$;#8P zvT;^aqiA8DI0&X_l?z2_6g~Ml?P_;|kVvN5jWvo6#7apSkGGXcN*k=)Qc`Xi*EX)r z{ikowjJCGkhx+~^eykqq+w17Iwn5caxqyxCM4ddTyGWm#g|K7X6ccN!oE$KPXFlFw zCOjRma!cV+F%wbB)YD9Az{*x^nVPgdHEUq2xYWcgWu%ZPH>>d`Gr73}RyNK}MEB$l z9;~jcymR|zePA}h9&v$*+db7|rKH@1x0OlC$6;mTq^K@05=lBQz9bTB(~676x9P+3 zAZ!yCmROe;g~O%1Jb*Ws$;&rjW#hc4KAsl_7A<*`)T{cO?11gzauRC`T{TR~$IEy# znS8tmD;wuyhT?FAa?!~t)}g2UTzgbBRY)W=Dmp#R`E>O_DI*8r4P`QN0IY1B5oHc3 zisk3DG;Ut1PskG3o@8@~7bfN747{04K2C#`jq@>GkwYqZr&~VYa-BXNdDtB;9d6H-KmoI?yvIh$diY|cj!~H1$K!`Nv!Qop=c>Bx8bd2(sB!| zJUVIdE@gFL5%+~lUCxvGv^)X3lq@a5Xelj^;jLxT@(8SKoEFtl3F{qk+Ed2vw!~!| z)w2=`Su(@FOCOuJV7s{3#5yWL9X93X4ZPV*eqMu>jq{_rh{Q9}&Wo{uT}oLcZ%#$- zqh|l7_E2c1kVs}I6zd`qWz>|OWAIip={X8kHcpRfg~;Jj_vr*Xe_E4eS;docI|>j+)Z55pOk< zo&i|dI6bPPIJ_6IdQ72{&xnpos*vx|C+BY1DK0s&j^ZE@Q)=$QTg;^9OR%zWY9jlo z=)*0a(}(6+*eEVE@%yPjz?7M%@dh)Q`3bCSoEg=jx`FpD>xfHiO8r*a$;%`13D0ZS z#^Z%VGPQB6LvCo-D+gM8mHh)=I`F14DLDaFHlAms zPmp>~PIWt3ky^wT_fj3RMjw*Zus_@`3H<~q7$?mmSK#er5^_1LY@873v-(nRrMp`Y zQgcv(WRpH5H^CNhAwe^V6e{K9<9Jh@eRD0Og_F2D@X8Q_e~O;t*;%L)A#9fyuH_(t3Ph3{`hS5$L-#an#5j*k8kUn zDE?P{CyCCw(iKBu*|fUE0#BlE)dg*B$A5UpZAW-3_*GGVkdFF;ZS4_K-mdZkQcfvV z-|HwPuQ&Cwu+TrfLE++Y)ojIy{BZyA%tS7BwsVyh{bm@3-+@>eJAztA2y%@7jF z44jS|`SH6U(dRxLZxZvlPlJ^so_mZ0;^&~L`Z?$zPr{0q2`gQFU!5Rw;fkny6qVZM z^x?V9OJS4FD%w`rDda)J9=tyW`(RvletTHG=lFmp(Hh@}?^6y=Eh!eQjhBmsZ{?%89)2`6 zzxHW#lh?t1DW7g%Ug(6L&EP_sSi;Y;QxP3`p4Z^*V`iC+o^s@4p3}P0;V5cEXUghI zr<`1WHuNsuBidZ*ijh$K2YxqhsB%7qKJa(Pc;JCJ$)mpuZz=Q9e+gEuHO?*kc zDM2#fm)ekw7ZS}VNogWcOs9+ti61KEqz!K>laoLH|AP}d*IyR96zI)n3-vjfkDJfz zaAI-dhe|o=z?;hCK}~dmY86t0O0rK&+IM zEAX~5Nx2+WHcraXDpD%htSX^w(&ywR*dZ<_u`1Z^dZd(+kK-+6Qu0w)**GOL6qJbF z2JT)1c}4I+eMlaF4dOzg_#koQWKs{5GV%?)p-e`;4l9pNMhZPDMt0~k@-l2tvW(OM zrHs6YHjd0HWf{a`RzeS&s+hB*djKmt> zG$N&x+=921Ny%qmW#g0_q3CnOw}x4%uX#crkjG$ixPU0`EE~D6af766Jc2ip$;NkK z<ceg`WXXG67abG2P8D7%-LztSGj93v!>8PUX= zkM~2RoE(KWmC4BwuyO<^T3d{&TM%MM`0LOEaTlQcjZW45E?TX4zfLQ}MyG#j?MA1` zOT{jv_VUJlJG8qZ2ftj(+&Or*&Q2$9^OM)K&~_TdR;RwW4EtN1dOV59Jus2m8{%v+ z8-Ad^7xTYHzH+^<@)mnDY7dT_bct4`=Y?sI4!Jry1Dnnd4L+)NfBPMWZ#hvOIu0s$6}h&pdKb zaoA@bh?G42Z{TfZKK-x5%A~vdCr=_WBgEKqI($M1Ow0I~SS2?zN>%d?(K1a+UWWbQ zW`@XF-r*^!21+ZU7x9KN5&0#oY#fo}6n#c#SFvDa(!xLWeZEs))Q06CA<>Kinx+)R zne5f!_wcaDAyaG)z?;m(WUBUM=? zqbOIl=reK~Y!8=_$W^4_8S&zzfZT$&lL^RYVCB&XNVk*kmiwD0^Z|JcwkKggyf`T! zkKpZO0`gs0d2|BeC;)j&ACNa-dlCl3i<1KK8s1JOAisl^jRP`E)y0Uf&btZ)aSOPj ztC{(d_F(52A(6~rM{x}}r*aL&OMy8GZ!Z&=BVc9Yz`Q*InC@)BDl3V(M4y-oVV}6E zMR7bFlbArj6q)nz1~ZX42Ua$YjB;=+-Z^okmJ*n2^nuw3yTk=1=HNIOF2!X4Z!Qy; z60B?-m#8kO62;5i`n=o)+r;H1ewXCOOM&?k-d-j!Ux1a30~6Sp>(8bX?UH+@zoLS9 zRv(wAVUxJHDDDj5^hbecDJ(z1Tg!yyN3e1PEHQQp_?r!?>yR-d{4Eb3jk{9ex1zf4 zt<{Q*PAkNghmJ`tJ=43mqXSUyi|xM%eNou6QY1;%M0-J>aGB zN1Z*5CWcnm6Se&(d{q5^AAK!Na)4e%p}2vm1~XjJEAU6A~I7neM`i=NMyvN zYh`f+bE#bDPt~)iv^2FvG*%O!+hEJM31o#PK&tp@ZFLLYekM$xft8KJG%E@wD`VvZ zNp`;k&=dLqJqFvv1xPakHDadFJc75G3C(w5W#iDy9u}I4cfp;6&0G4|ya5}<#b((1 zZR&}%6jiu%de~H>rr^AWx0(sg?_g!);4Fv&r*5*i*sqip!;_Q}qM0vicV5Q`32ex~ zg=nQ-=M~`q1?ng~0wz#Lz{H1m_%B zc{GDlEUCe{MjxDwuu&}orx7&;X8>Xl7&0Ue5)!t)cn z-As6X1S?0t6Jrg*Uxuj8M#hlv=b%oBI~MR;QJo3bYQ^C?tq_YL_qX=@&+#kla_Gy? zV_!kX7s?l8a9J~!K}w==q4{;y0*GiZHkzsN8(0AGBqFE6Bd0Z+zW{PjI4#N#XDR$} zYOw~EK480)&$n;B&fxd1vN- zYxh^j2nnq4=dz=pcd9W{bdJK?%tYr1SlKu_N7F7Vvc9=QpO*_^hq$~bPPQ1SzVQR4 zker7%lnKc>u(EMTq|IS&=T!4fSjWuo#USUCcf7_;>LM1OTQFouLbD|AZSTHSBOk)DKBD-PFbg;;L**2I>6doktg z4gGe}$%*YvR`@>8V|Snf0_EE=cxf}%9qeE$L-U@h1qjh{Y#dS}I*r+LaT_-Ojvw6ut$wk9ysA6m~4QE1Lluf;7^uV)CIFevH7Knb`(km<$a zVIpJ0%C*M%JzSS3(Ykeyg`CvWn59eGS^3cTEuz7ifZYb$#?3_C2?AD|t#vJ-W&bUB zNKD2)11lS6>_mt$ir5qSh&=|o#zo9d9x)|hkKhq83HvUrY@D#g5MjMmF;nU-I(hjP z*|+pTdjmF)3tBdL(0pTPMtcnpjLF;YU}fXHy$k2fAwB2JUu*ZA#|Q~*7{sNmuSK*8 zTPSNs;bAdZI|5c7gRGUUe6O_S;1Ye-E`+TcWvscjP}a`F!(y^_4yhZ2@N}aRYc{OyWwgvT@?D@n?zlqIc_~b{A|L7qu3QKV3^G zV_(8UVlwsxSlKvZ*yx~C=q@Wq2hZx0_B3oBm$Vj)4t!%MZ$H5UWAgSRSb2=`=60V- z-p2n%dwkF)B$62)w179?7|Pq9VJZfhy!{`nY@D}KpsKChD^39HEo9}}>gVg@){z)) zYm=|p8op54PQc@0()JEm**I-;S+pru3Rdd_b_Hw~xBt8QHRg_Euf+@z1x$6>d)NUcr|Ddmd5NAXCQM12@mHcpgu;!gxo{)D$QU-p1LSl@t6 z4G%i{RR$IOylrI|( zh{;zMtZbYwUe@X_(h=fq`e@w(`^7~o!K~$ZL8 z|xg z-e1GY#>wN&YWN>7NU(iFAGWWWLqd} zlkl*ZtnC9UN3a&-=u7|f%<7?dF(mvG&Q9@;dx<>ZEb-G7&nkEqD>#LG1rz5pJmtvK6(jLT`fx?HGlAm-gNG}w z8fL0H+2hr(p#Nm!ZWyeB+~)^)7X z9IzUy`V>@=ZY&!2d+p@22X>8{eE1(SL1+c-po5FucsNYFcEQTV@j59yO`^oBD{H0K z=B#{by_3%r)=N_*o%(>y6%xseV)-+12w;*S6tOvYKupAD!^*}H>tG;eZ?sccXRUlq z-(E0=TfJ?gY|qdr&)i8sibuS(a z6Rmq-W#ecqVRVRVEvIA`Q(bmRe07n^h>M2?#3F*S0DDQFwHII$xvcTm-H}W-oI4c0 z=ke&6@I41B8;6fGo~+rcr0u}hw8xWEghVpselp|9kR24S$#^(Sye7cP#_?Lj$Za{1 z(bn5ePj5Muv&uzhgEXQ%T_3T=zfV4<=HX)r_D>rSU+RNUedDjU#m$BXiXz7Nz+giLhJs3EK?Y$0dya zl?sx+)V@&QZpPzc0=EfPHVzzT>a}KUeNspw?NNQw9)^A6l9tTWt7Hg8Y#SaB6R`(j zW#foR7m+9@F=~#6Cx;}^Ue^b0C+r>Iy@>S zYE(h+AUba&v9F`?T6D;tN7v(#RzVANA? zPwAt!9kz{&S~5%RVLvEfPvY?~0eb>gHV&9{ILvTes8}t?ro=8ZCvBIcgtkYYvfZ$E zT*`Wr>_LO3P}FweK`~K#3syFc8fWRf_U=~lr9!bR7TrsBPtMMZwJO`nOU%vvAMLT~ z93hd+ST&iY_u<^3@Xf}fW5PERRyGdbd-&BGh0l@MTcyw5O4vhgzUxmi->J-@=q<;C zW1@EntURXCD^+q*+Pgs?z3X8QM<;s19E#p`cyLVgu7Q<}qX$fo3>1o8PD#DX?LK|x z?uE_cGMDHCNyrrn+dX(xOxW&*m5swDohqXoN(9SgDY3nv583muXJMI#`cI(rYhRx&BmP{R{a)rXS z29Jsf+iF;OY{Etdnw#}uyBRibl)T zWyyTf60(ElvIp^Sn0P$^D@WiJE`F)<_zp1(FLJbS#qZBKYQ4bsRt^ZJES(CMvH&;+M9R?Oq5^ulp_xwYTXer(g6!fV*=;x1P>mX z^``dFv|UIfGc@IYrwlO?u!7Js0}qBt%XCOzIG|`*#lzrKQilm zP?)57*xCnRpSfA@QhwI+qLfn}4V@7De!THaf>(ITqafc&^KeUvD}gsWnCw2LkH$xE zcbTWG@#o<(JTw9(5J*0Rhrxv8T3DH+xvS$!_-U?+>exziv%_ib?5yqXI=NgN0}+|) zzAK#4%yr*}&F1DhKG1eG)b%1%Dd9z#K!E-iJPan#-}ICtvtA32mz>7}B=Fh?bKh_D zQTcD&V`lE-e<}#060n0n^Iv#COlW=uE0Zkv3s0hTg9z!oqlh=J)5>Pk*+NM^sO_-- z)y_nR2#I9I5&SK_I9_!>=p4%1@OYSX?GGy(r%O7oA(F0~B_9TImOfeUf&Jq4aVd5^ zAA>C61*PiUcq~k+PKA}n4pn3ot6!h09PHQVpvuWps`~I)m{j$^%EqaZ_7FwosxBvQ z6`iZ?qO_Xuclv1kEo>SWtt2b0h9Q)%&*A|w`5Jy`WTmACHAe)%Rd!<5V&0_jI9uqqtmK{+QtZ>67)puxDJdlC0nBeo(sp2aktI z*Y9Cv<8+bazX5y-y#ni($XG87#@Z(e;8-bpaj=ld5xJW#d#aXHGLtk2o>jlEC_F zeX#xtwu}oFe|Hd`w`z7!wl?75FxjfW%EsAZW-PndotD7*M}4sV0rravR+1UZ^@39M z_joK!s=f#-8>fo54%R80bn*idS3lF|>OWw|xLol+V!{(v)eTD4zvIy`$@(#@Y@DpQ zyh^^CoXWk=AGGWDy@W(E^*jHLIvguu1!d|l@RJ{8GW91|**H_u2|;J8w=Q&cXA4$2 z)n8ao=1fo2XKP+!Z1GQgkHMC231#e^ct}jfj)#?vGsdj5y6FmHN*}Hd!hUi4!zAl0 z*9%J32k=;!RJ|Wo9y?SOGE$W_s87`=V82EORfPSK5;OsYNtD;uXu+K?aF9~SKm z{SsFHqL0-#VZ*ps@i*kh=m}jjC|CcC2gBs*Yp}9$u9#~)Jw+?yh`pl{TK}z&)_=jC zanVY0ji>GhrR!ICJWRTN0V^A)i@IYlV3$PY>AnUwy9r2X>6h zRg!CkRW~SEzsI9tlJ#3y**ICuo$z^kL)q#slU1E#cWI9bj}{Wij0%(73Ewb;@^vI0 z5R3Pe*cQs# zkMXdWto;yHHqIJz2UqR#AB%3X+3Szmwf3{3Geraou?3|q(LEYT5X*cO`4zJ`azWbLc4vT@c<=Y1Pg>m@?pwM)SL zmp*X6g8kzHS4h4G4S7SU`vo2wle(Y7%Eqa~dQruv|8M(0?Xl?oHQ((DUJo` z)5oj_wvCHf3&sTM(*ZJgNKD2oSlKvZ%+r`^b(->!fY0hvHUt~Tr7X$Qm_nw|%Iwp4 zP)yD~1uGlpOuATWgxNHDWWe|JA^RTe8W%D<`B8xK9F^T&%tZbY(tUgm5Cvfy`?a}6uLSoF0Hr1yJ z9FB*?Wb9B_dCW0J4i~sUpRsdc+qmhh1!I72vF)Gcv9s}zn2fy_RyNMqNzjZ&x8kUQ z4f>E(VBffq^|YYRRG&Cd#A9MoR)Cd_Q--ZR)jzbCinG7h2kncnbzIO|u=-TDg=VzR z<6$vb`y8xnoHZ_-&G;AE8IQHOFeazkk+r~|4Ef@!=Pd_*b4~fax0$ABNV`o5XPSV%@ zQV-grk6Q+Ikc->8S*(mWgq|e)@Vc)pCwO}sI z^Mq3NDLf`7WuJtVjZ=p8p;y~w`L4k4=|lD%*fuU?E$BmCODJOx;UO^@`xdNhoH6E! z#i|tcdwsfo3me9zE6Ed!BXZZT@nD!-y#gy6=ZbmWnIdT&xkr0^dAN{BW_+3Cd1vZu zbtoPSld6MZf2oXaZB~bXRAMM_kPqQ_BwogTi- z+SOWpdxiiig}Cz6V$Lm}N{sqm#UWp$-fPOd+U$6xE? z@mILNlbpObA~!Eky>W0t(eADkouR(@;!PUd*UG1R3*wJ*_R!!5n~z7p1_H_kJP;-* z6MyP_x2I-;cSos>k?z8@>vnM&H0#+d&o+FR>4-k@K4ib=bg?} z$PHTg|2-ZJlddnq%EswBVZ=_XQ%Tj&^r`v}*exzqA4niwRb8Mo{W~57lcpcT$`Lfh zD69O+tlG84kT6)8&61$5T|HNdtj!Mki*}AYKu9Dr+IT;o=6axVbyolPAp=OayB{6` z6Xi*sa%6qhy3SOZ=vbyQCQz9K>-W?2894&b65lc5#CKlK>aj!bd=Tie@JO>TTnF3C?ZPi+Cq2gvQi7QVPVmj+ zO=se})>9q@$?o_OXb8OBK`!pl=VA+PE;G@sYAzQ63kV^%;XyD7xdm1x3GOp-CHw?e z<#cQ%xb`s87g`(bVsu&eQ(=;3hIGQWE zzGaQ+rS5L|@~2LHq~;2VWJZzvDO_f{2^vACMdsjvFrk_aD;tMu@kqT^!^=|E$vF9* z)OshMDXf=fa#tS7DD+7dqPoLiO0l5Z8=x@mbSKWZSFr}*)z1l=}&^S zI+016ycPYTm9hHE&VZe=26|Hcg+g{gMgs0eec*23TG()o3mpHhL@sa&Lnv+6;{h>g zyAD=1p4ehQcA^Z~{rZsI2Rk>4AUjcUsL;K5KupN)ftAM+Wa0`aFOw0-Uebr`1=zV! z0GV$H&1BEx0Wl$a4pttEkS&xm*@5GXWJ_iz>xV*Jo=nY#29zUD@>M3cnVcpOZmHo?lqkveX~39w9Bo=tsJpQVRkr?@O# z*7P1v7(lzaZFm4oh#rKM#{xuTO8#|yh<3tG8HA`?0nw{?08EH>z{o+chiMLGNZfZFBmp#pjl}e9tIPrsj#wfphoW6=tAN7`Y0`foidk| zgaH(yrFZ~Lh?c<0#vyvgi1m>}3#9e>6qRACxD>5ydV%CRKrvc}N5I4=4=axajA$~t zQy-(PuvG>zQf8w&@CcX~ZGn}IV>D;vY$Qy~OZCxH`W$VCz2b7j|AvCQSnRkK(0ueH z9s(1jCtzjcAdS44%KQAZzmT=c@@I>C^l{n^JI2MS`J1T%Mo_4B;ejxrdJ9%I4%Ntu zDE0LyvY%z{cmB$cLWD(^CeWb334Kt6FY7yl+JPsyO*TBlgk(xJRS?(tMN?y5@^FDp3 z?u9MmLbbZ-lLbL1XyQ+xeic_p2H(x zV)QJmY#gJJCk`XZm5qb6V8m`N{6UB` z4YgRGs70`8+|0y3IFLIH750LnwGfYmiPn5r**IG79vQ8&Rd&)T#g`xwX5IRjrC|fP znDOu0U}F~P3q@`X9v2h2)v)pyMvhE1Y}QBaX4t^dhn#BaVG|w~6S`hYEk zedDIG!~s*)X-n{Mn1G!DD~~kim3E?LcA*7kj%o#GZe4kl8!!OCL@De@`Kc73Ftgbg!~lxpGV2|NxaQjfvP z#*vclH;XRh8(*YIb^LC9uy(<=alztWZ~#ulHr${Y>n%JQCSGsA%Es{;c@JtW`76G# zm@`3pgg9GBBr`&6{vOnT5frMKcpyxuj)9fO5L9&Q#7cdrmcx#5(^Ya%DR)p@f(OEc z>OxrAI8-C=@2bC`ij5T4>r-_dY#EoT=I`$cIze;QHFzXUtTw{R#<4n?yXYPG1VO5> z?$w9u9@sc8T~F`03&npi}V3o2>Ui_ zGMH*Eem))!6R-|g**IV$pOjoHY27{{;v0^%K4NQN=eUS9|9nw}A+(!ZjR(Yp>JK|^!UJJK^>J9)I8^Lu3Dx%<+w`e=5VnjKm}Kaje*j)5W~}(a@{K|dneky_-Jfd&h3X(Y5GGUyz{^ zeGBR{KU941D{lS!KSQgv~p(==|l~kmk%4?);IC!wzj_Ycq~k=%bxORxK&gB z2sg@|z`c^e%Qe5OPt2XT%goC)9sYt*EMfwl5O%iWQ8C%M16C$Eaf>GrnT?vBjM$J_ znZANpjgwX-pApT~yxsRH*fefh0s~w_CR+Ev%Er+;mD@E6D|=JrqT}`kg}jxOy2zLGIeP(i zkIPwq(p{u%4u$S{JUAwF&%w&Zp<_>92ww-RY)NA6zQC}NZG zn3#x7fR&9SCLdTAS&j9Iyk-|ugJGa8^}#B0N4O zdJAD?wX7rb>zgGbz<*roC4nAoj>m5pP^ zoLnfcw6P?W}*|MXc?0kL7mch1hlUd@MgmQIPC}vCXsF;{7ft8J8 zb_%;@^9-%Oyi&)xUZ1rx>>Zc2eBvEv$QlaVIy^KcaCumH>;Ttq72Sys^{mI8`oL|4 zy&E;ag{`5$-GPV31a1qgJa&MqeGseO4f&KlaNA+;Mh$RbYbbC};-N8tdjeKA4%`{s zF16-rXa}IwvF_2wZa3^87rS!O9jnS93g0d~Kqh=|!OF(rlaHf{95&RvRqT|UJ4JhV zI!8z(GduU29JR$@o~v&Wlv3O(ecV>U=5bS8p+zaK z?hQq5IUXAmxl3SWtl`!?D@6Sh#$?!m)if_68oY#g*DU?(aZ9d3u^3;NVO51YuPZheb7Q`sYm z;B$D4Oaz~Wm5n3Fo&v7*9>QM5e#>?M# z4K2cum_#95g9pika5b!K971%)PO&p{vp#n>!^UyBYt@XMdV}UBJT4|`H^IurQ9B3B zcgkIeQqFr=pS^9clU(+$X;IEo8b$NogLt4!7$1O@jl;Jcc%%7WQMz~TD7QqLy?<`$HqkNAXwQr za_rBi>+f=X@1oSzF4JdjDeN9M(Ix)*v}_KAZV4V76S^~CW#iDXKgJ39T7RP@^2++; zt%EJ(l9%|$I7){oetA4XCVp#SEZTN*9qWEpWBV^)t8?0;` zKeWnoKSu1%I`Ri$+x5YF5;l(uUaP9Sx;GTLC-B&q$UO!t8%K_Pm_)5RDcku{p(swv zu^jnJ>)ra;?Sc*DVwd<~5(N$svXB6gD8A6@c^0d9Rn*HhYwxNEtgZZsl0L_RZW5tf-ChATn_ulO@FOg z%~jY$LA(SHlL_L5u(ELw*@scrI~dh*I@jy7cO7gUm%YRfqYgPkak~bOjEUPuSlKvk z>{9^h^|O@a?$syl9@sT5X^Ec#P&b7_b~hdr6SBKtW#f>^_nJn2&NIwt;(2}0o`ap^ zf|gBsg*Ipmh3#29FeYqI!^*~CV|SpT@>oi1li#L2ewZL6k{LfF-hqakp}395BV*#$ z1}huKjXhzaD1{~H7U@H`5H^sT;u4=QQTRjAn~%rGM6Ux@HjdtW?nWr(k(+6K+Sb6H zacS#LyhHVdO%$-zct}jZu7H&z0E=;%pno4>_4c?J5(e)hY?nAMluC9f@*={|>2rNM z{HVBGU&`m&i&8%6l!jh|#J_p)R=n{{f;W50qv7Vk6GkE;aJ^pe%E8C=*?1JUmwDyj z70qTNU;?4!VLS{bCEH+SlII@uBwBaJpuEe3yk(uK+MH6alkc%pcCO3LWW;|=WyN2W zs<<~r<27#_d>yusn}2|z126v!>kRE)cjA#Tv3nI(HjbVA&BQR+Rl3BH{R-IH57LHh zhLA{RoC;j0gu>SFgCaH^kB5oaG+5a;hHlx>}#D^{{JPw$?Pi7OPbdH8Ut&Wjq)rTI54+`J)x-W#$#flwhLA^jvBusEfu=mJ#EDvN7<2f>cciyNF+1TOs*r9U7@(m z!J}g0HXBwpj+?yrPBR;02JK3H)KMlnHj9hX?IgxBf%crAu)<0h@<<0ZR6 ztExpKMsv$vZR6V9e^w9mefAvh$L-#aK_+JlNBkACvT@EvUWg1&>qwM2`jmCUrg152 z{z7Ef3(8m;kA;cW8d%vlS|j(6@+6J~*RA?+ZH8^*!qxl~Cc8oLx*3m#iPt7rIRdX3 zJ6Qcqu+@!>F(eFbf;}!gKE24wJN=ccxO2RakK79TV|}oH2tP0`*dJtSmX2#7K#urD;YIrfkGwEO`#nYlTZ|3N?uS^|a;Zr;R0 zVsi63tW0v@PEVqB8)c;iD^wwGWu;#CxT)IX(pf?xnQ>_`$>h}7 zGaIspcEjy>cue$Wz{4d|25ye9}(s5#cLaYi%jreMld zUBym`d!9>nx>9xqNc)?+Jyh6OV}r*<4uJc&3x~dJh9xsgQQWeC~jq zDy1#CZ?*JMy9zds+qd$+DvpO**cl4km3U-K;8wxP#(`sJwQ||R) z!KLUpf1nT7%rLVr(M^*fTPSKX@UWPuO^20@qsH9` zuHMISsXk;E!JcswSteP?svBDiaIMGVVZv30mB$oZ6}blciauOlhAkUCa8(qu{deN=FyYz?D;tMPIyfl01}kJ` zw0^3O)-$kST(tOKiN=|j=oW6!to0Ng4HK;Gu(ENmq|=Zi!RocG0jDJPl1aVd-iK=! z_Tz*^GKGDzAKx`Bp@{8)LEs*tup3r3ju^M<>QzmvF3{(zGcmrBt-7jyP`Kve@i6n( z99Ve_!KIj1y-FXhD`CsHU1QR4si##};qfrxS_vx~hifi#LCBde^@^X=2kS=IE-qO7 zV_)LbT+V!&v2MU)VM291tZW=AZpD?e#NPe1bG2M?eM_IM`(f9(Y$aQ9H7ucs-G_(7 zMC@Kz**Id-p;eJZeXcNIE50&+MW3*jVAHsS@y{`ilfCMWP{3ZmBVq#fJgjUSuy-;$ z#(qnljX3xS?eXG)LL!;*BLDWBIBW?sC{|POV3=4rsLr-(V7M;8%K+K$dq?Fb-A}_mwH9L=Hz>%?(-sj%+811N6u#% zcck`^VGr!ys6aP->$HQWx_8hD{)=*QP`EuY<+9TL0 zLL!-gL`$+-)X^`K@vxYvO@Nh+qsCptuk{q_V>wROXKgWT9XG8dyNDn5g?6Ef@VJ<; zErgYg!vk4UC?;kP!pg=m;~ocJt4JDW zS4gwGuj{k66E=^_TC&H%%g)eh?NvN7CU84oW#hns)td5fj~O$xN1@YlhMxF67 z4G)Wn+EiG1?4hQZTRUGLwPmn#+{D(BfkCfGaH@lpm*QbDQCk8l8%K?MI76+oAP0Y} z*T<|3yT-*V*~1wcme7uK9Uc-Bu{^A795Jv`Yn*u@Rcd$YleQH$k4suhDz%0)6u3L^ z$e6%wft8H|cM3KFtsj9Q@%EHHZ`)z-xV&XsF$%34Lvec&4~&W16R@&z+_?96*7^&2 zM93a}(sskPaY;+|9#7vB3fV3^CMINW!OF%V1NXJnKN?reuFXAKdki{9NF*}`ZOOj2 zpg9z~*?4eF>}JBs#<4pa>q_g+4tIRWDt-P|!bWnl-Nsh*t4fzBh|BRPnIK*QD;o!q zd$2>JL#ZB^q&!UI27LmrhaKb+nC!t0N_!}J*WuwY(Ypp#HjZA*92hz~LmFG$r%&L$ zu#sE>TbctyE>RHg!J}k?csHzU97OJEakZCRb@syx`rthe8^;AN+0){Ju29gP!=qw? z_AIPy9JD1^)klsykh0yBW3)#clZ8YwBaTWdDn8;61#ki$Arrvyu(ELg&%^*MTWjr< zl`Z6ZQi{`k7whA<2)2-$^GdD2Px6Ptw-Aqy3EzBJ**JV)H(M_Br{sIzyY-Pv!^Uxu zYe_fjxk5o(gGa>#Z8fZH95ir8iE=EvS)a6Sm&c^-ghVo9(qu1*blspiY$_fN6Rd+^W#eFRcaTT}D~YjX`iw1w zz2j!FWOtBA#!%dr;DIr5I|EiWjvMzhU)4~vtPj~b*fB0-$)4sLF~-c};V{u!3o9E( zi@P~VT)mb{U2PW&B`Jw*)#vLD*fuU-$!<>aJ)!w)3my{_vfE%~e95L>l%F0Qy-THj(f-U3nmF%^*QL|%j z;qfrxdIMHA4%cbS<)%vBSy!=B=|a9_rz>S=Kps`jIaYgAIa^31GpZ~ky3|Cyp&4x^ z9vc(7V_;?D&~Y=GaxQkIK4{Bf%SJ~=i<*SJ1doRa*M+e17=lYN`+B`TT-U*tjTX4n z)2`Rx@i5`q2rEaxW%o@wx~=Wnp*ek@KBuj1^-$mD>W^EhKR#Rial7}UCb8Gy=-X3`c_@g)^_}dhun7TnbFqP`%vFs#1GM&tD^oO9rXv> z+9Ra)5=|aFOmxF(tDNdC7ILYQEjs3WTJDb@(kJ;_@blr4e15$CSQR$yYVXIJ%>?#7 zSeXDj0xENw&dM?20`KBNF;_Z!L%%I1J?wnh$`0Ky1ghyzX;ampYCg0f)|%)s;>;x&AO12hY^5?hh0a z$yE2NnhQq20)ogCJP0NtlVN3&TPAoCtz${L8J@ghon2Nr-J5dXMrqdTOwrO(mxXuR z`!xF8(_z23dFBI6#>sbq_En4VD40Agf|W-Px9cNyD{L7TsSh?eMTLx@RBgrsVN!K7tZbaBk?P9M z>;jJ`E9+b>56T|bhw4$-F)mbBHW{j*50t5g@i>@FZG)A^08=MMGWDiDQ?J908DlEo z17&I_9tV@DS7GHbz*M!AQst@kS=#ma3?Y%saIfikD&PZUYC0YVlc{O2vT>%QEj6^F zs(oqd4|$}4-$nXhoe$f_O;&4~+yN3ZC|%3&V3>3*g_Xw)UH$+_qU&mXy4J(C8K%oO zgVI&TgJIIO4puf!m-NY5WbO)$g(SeftPj|ouyb6%_`7M`8MzVX$2)83E93`dY%3lQ zld(HsW#f!V-_J%e791K$h&`i^*i*1^T*UaBnjyr3c2L5$Oj9ETB^A};vv{CZn9}UPz@Vs$N4Qh3?@+b!^*~iddGkSFeUu8YTU?a*+mo4tv(B0c6s9a51QR9)RyGckv{*Q!i4HkSlKvK?3~poO{EI`kNRZ&0k(}xR$@7;;RelFZ{pD~@p>IrHjbCHBR;xI z4A$$njB6X$=KfRvO7OVjv`2xnghVo(>j1@nB(XhJk6GOt_qT#GC;VW#bnC^A* zJ(25%gZfN=0)ARtrunlRrFx)J*{e37MvK3C_%S>LCdwc2lt;trp>!m#(wV^8S#SaI zoBELaGwv{R0g=Bg8iFKX1;OQOcrZ*{z6vXo%=Z;fqIJuNr!rDbeXLo@7p(z1n{x6Q zdxJDI_%G3J%|*pu!R~Q0(OP!zia}PZH$uM9LBcQaxR|{C99A~Yn=}Sh=dqBX5@>IG zhc;;Y3yEaL2bqLG3mHNQ+ZPXrN!UbKIfAelg_vK?&7o^oX6*18T>+E%f`4p|bYQ-UR1NuP**+*)SI zb{UZ5Mj#>(K4Bw=2f$>b4^}2gttYO8pVX>^j;*A2td!IW;x_1EhNt%kmo$sQyJ4fb ziETL_<7$|4a#I9PAifK4J`>_EdCHLqu7#(5%^eYnz-u1Na?k4H@igu)Gt2Q8s!Ciu z0yYp(eu4+W1m#DtGRb!T=1H`!&y>EVTtVNoPA5NL7t1Me)L^bsw#p9KwK0Bq{g<2=24Z%DE z)vfnRWhZTABd63J)#v(Q_<3=;2D)fJRC)C2|4GP%8Z-Xl=r%kICeROh%A;WfD(yU4 zq4p*){0fdjcj}|^D(*3J6bdXT_(Ahf3D`lP*?|Ydgyv;fnPkBiJqdH8QQzp`o7b7D zb+qY<_!>oC9-V%?_GomPkVs}U>hMRSe(YSxLaxwiZYmxXleB|i<*`VbBY&;3OrNx+ zuyfp=uT`Wuc}m(6JSrw>XTZv1jkLU#&k@qf`lPLcof}Q0Rb8Q^2kaS_G5(o&UME-`vM~G2x*wFTEqFXkx^9D&#|mBPLa~@G z*xk}Z?sk2;o`gLc4RqE0pmaTf$HS!SF<99+UGfTnU;TzE|8!wM0&BNESi4}mxL{qC zV7V`>piI4mhr(p)4OrPYQ_TFY97WDKL3pIvp zE?h~@ur>^#nd=%nASPcMVP)fdF?#_g_~CH{Y4t8ubkX3bqlJzVe4U?>=Vdb$xR?f~imOMv4d9HRHKS4;0y*j?? z1|@4e9u1SMHdxs>S~jYj#k!=HuZo+3J9mjkCq9 z`RyI!8yLdYwY8&P13;$9EoAyra zA>&jbk<5^>FToW>$rj4mL3mh9)((J`#~5q%Z2%H$OZ8b>0$ayTXf0r^ZVP4Y3_L6* zYp21=##xiUJ@Qv|L%SntFEHICu}&YeJnR}5GvEtdKW^se$9IGhwib_wNmwteY@D!D zpq{g_+9sv5JM=l*0(-~h3^bK3g2&4K2t76KBey)OwSz(xTQRAH#!Ua`p(UJjOUvE=}&z=j<)mxKYGe)C%Prcu-8vUW1j#7-!0b z%Gn*-qt2N^BAHQV3-VdidgU>AP)yE_f|ZSPCZEyFH<@%sq0z1b|Xi0vx zRvQb{T%i@(g?Lm<($0gGjgy9r2Ru&|i0kbQc~Kle90v%En2q~I9(r)#kjxB zGko|b$+GbX*g!y8ga^U|Wg)CgvfX@7qIGBYNFxRnQH6f@^jIsK>aoiyJ8S1`ateVX zTCI7GbvNuCw`=WTPwVpWQh7rA)ifRxle9IkvT@SR46jwGNUM$YRpv^y+^zb+ZH6u6 z0+&w!xM8fJ+}(_a#^i1jtQ^5zjAG2M=c*lY3<aE2MZFY5!f(alo`lsm z>1g+U&pCacKBuj1^-$mD>W^EhKR#Rial7}UW~bYVN>|_SC$zOi)+Ldh$eg~bE@*2z z{=-A=uiP`Et*!T=zQ2ec;y0(G{$MZB!oevQS$U_wlJ$-g50#%U!tbNVZ0Y+?Pog!?VOx8|lk*l1)cgJ%uNi0i<$sJAZ~)h z9K7YsZgMuPTx*=)HO%xRB6E0*6h3_FIDR;GYSl+N>-0;7*p;H0nw9@5*eqq=(ML1M zrA+}S5IillR^p9kGPE34HqMYVJrPXE{^_rUeA<#vvAa>9q8nhlxD*XLd&TUJr0^+6 z*W=A+a&#T6Y@8$MBg`m{#EY31H{4kA$4vL@({vwf8keS3P0dM#e8U9F)V+8ROs4LE zm5nnceZr(<%HGg#_lPgKx+)MgMy#Ra0Me6cqA{Fp}67@VD1CyxdU}fV(aVn;6 zS}`3sU%O(OA|#R-do{IUa)YM~O~xC~WM~4cY@8uZPglLd%~qwQ)Ad7o-)kYZC@?-X)_jR58I{-iDZUtP3_Za@l%qf;q7OVG!<4hP7*60m96wz zDIcA$&(Sj2Ei?JZjh<4p6mLC~q9w4haf&)Pz1n)K-`ZfyQ>G zWoZ{40F$M+U}fVhN#8<+)@~JhlIEVMJye?`B$64bo!gAc$PJn@GaGL-lbM;YvTC%Mv(EWVp~efFa~o{XK2naxhJr{MndR5eT43Xz2YKtNiz~qAa+X7J$T!h z1l*cP8MCXEHP%RyNMia8#jyP4#yhLw$zGhC&k*b}r_ADf$DlepM4 zrP5LF1=@r+n#s&fu(EMxW)3sHQtbhHSRa~guuEKM&TB@liP-z|Al_;wH4nhb#;F;u zk5cdX*{RRXtFTX8Zkp0ZMeg<4fw!AU&dac}adL*uH;T2;=_hFqsip~uWQJ7D$v5h~ zJyY>kGpRWURyIz}?BRMT^`4$(`rs^ujp8Pp3!BnWMegNUf;XJW&Ka<>adw8QiWPf! z%KF@_gH7Uc)0C=My>};%H=4=JT3FdQGsD$4>ODJK^|84F_KAy4Q|g<@y*gX)b~DMj z4OTWz&Tu_deT#}TYrI__ohMX}|XN;e~8_s0sF<3c*ofxOm`3Kuo544IQ z;h$c#3qEbD7Kq=9>Zxj4t@xQvE5z}7x9`)^9IAI{YKiO1H(b&KcHH?`%J4JBDff~O!vr-)JJm7PTIrvbxCn10GxaU>lp~*a z3s2EIM(IW1Ai3ZHdflSgn&+RTaZi;8YttvMI7yNDoB=D3R!9_GP+1?6 zb+A7zfW!@zLXyXu%7kPstZW>Th~aX{>B$uw`Dos)`kdSWTg2sLN&Jqd7A-|(3*K5L zD!0MPqZSoqjj~-Il_z0~T7gP6T8hdOcx#!cJO(QpN2Og|(z@krf3_l@g|b_pm0hq$ zTvpzzkydKqQdr)?o6Cgd4Olq>mKaMn{_0P4Iyi=eKNUDX?m*6OMRgHEs}*n4X@yvW zdT3%x*P!;jtZ1d}_H-d*hnAquc~^MExbs}^zNpu#KmMosi@|pIP{UNh^n`3t0 zN}&_7a&Yo2?-zE6Us!uZa|*?q5d6b+hlPhD29PiNVQPr&LZkWjj}U5UIFI z`*l^aS#eRND;RpH{#(or?1n~Q?~d7=zCrJQ*!Op>T}eLdvP!v7bgXQteTl&9>@Q*%kF0ycJdi}!%&E}`itA=GxqtoKKhJ(uIlKDh@0w~x=`r7 zqi?&=O;+t9S+!S_Rp?!Pq&YVBeO>5;+#5V-mX{?v#4qls{bKUYeplbmZ^xDJ-;RIr zB$}QaCoHQt8Hw6g#II@swFb$6MCIY#?BAj zIJkdJu=X!LF*qq-$#schEHiY0NLyv6EPhcTpWP__SNj&N^?tmSz8{GzD=(PUw_W@g z?3~wI$l3FXmAre0=lVi%t-IaG`@ibmB(FO3`jXCKqXR!iv^Ew3Ztq(yZmI}q)d1Bj z7em5tMYZpWA>pTi+v8@ES|!pJs}hNE-JsWZPP@D)in?~IJtqbf+4f4w$@jFMH?T33 zVfw`5Z9+~TT%dk~=FMN6TJJU^Wu?4kq`YRN1b8FXD?M?^^HYB&u7v;0t+*1kXa48b zjv)^{x3IpwTo6y&ZqL~1LeUb%Xt-0kwMmbBUeqIBlUIEJcC3 zIj+_I1Hajmi0o~eU!d-@GVgSUU#V|4$KSrc7dj!!1}Ds_{x(u2{j7j#-=((8J9-9VLEitlG{u`iQs^ve7XLGrzX0ru`Ta zek(S`C8pNTZ*FZrf7pV~g{QVJ-I%v>PP%=d)V`uDK3+(NUf;``1J&R=s~!D%r+?mp z;JopI)WTGz+Je+TDJ6zeZVN(PmZF!xEG{uVbno*dTG-1^tQj4$cYSm0?dujgA=3sY z&8q)Ck{iqV?yZX};lC_-Pon8P{R9QXe=B}fGrD@}^2AxSUq?*-Y+Q$YM2F%^Bxv%S zK5tx@zO1mcaB90a5Hf2y`St?M|t^WS89$#bw2cn1mI7 zY>IQdcDgKT-i`88$xDZ6N8kvXC2OvuIFM99U}SqZmQVvVob z2CwBvqs6Ey-5dHJ{8VbR_c!W|?)#zmQ(z8jg!Z2H&i1ZKx&CC%5o-;JJeqyWcD__7 zc4rIgL!tgA80rCQ*7$!dp?LQ}pU?O{YeT5XyMs-hxMq#`^Mu+ut~2zDtMDVGiE^n& z(Mx=9miHoe)L!Hc@gj@=Tz!!{#EaZfdyzZbiI)zi)FEEvj&h;HeUUr5#2;5*Wbs$+ zd`I9#cK?n$C+xn+9p0OvlOY$YEOPfk35PCDWIpm+U9KzeJq)S^bQ*eZBZ`ePb7q*{Mv~sq)fF+*8(1$|L;m*XK!>n1NDIHd+!|JFtrQ@OtI~q+9 zPe(L`Je{p^t@WSI9iBuB6U*^u^;-EJTU7Ejn@eupU&!0-Sx5Z8Lbta?t^K9j{w`$w z_Y<@Jgjv-ViISw=BDd@iE$VPv)KTc}aJQ~?xGf@2;CuQ{;5%_8{P*Lb>O))=v2!Nw z8sBjj7uxf-cq_!s>VL_DMh&FvYdySBU1>&(9%dS3gU zmQ>erV$}0$w5%i0GPlG3I(>8#Me|rSRCI^GcU+0YAKf%>!Off9=(Th0qS`uEyil9& z3q7EY#2(P$)dfHC``w*rxeoXDi^m{-KY4>ri0h&M2E8M$g!~v{414^MQ?p@T zgz7JLF*3VRjEKTJpRuxTpD5~)#_J;37!21VA54smzBS?iE)e zapU*Duuv+spHs<;^92j}kn3|3bNzr>?r-gA{8nQ5oVb4Ztj~@sk-X(%6($`fu&FIrqZq7sQ^dGXc8+1XcG4+%xHQF%JBR@p6OS8a!nSLk4bMxa$_%BO`C(-mSZ=$M}_<;CbO-NJKwZw$k#_Gqtp=$2`W9~ZO<0!7a zEz7-k++}2g4M;YocU&+wU}Icp!4W5EW#3p0o#aCAfkX)kF@z)}5Rw3?gb+#sq(BJ0 zL+B8CZ=r`kzW1NEyKiTA?{qhJ>wNzG{6_!TnK$p=%uadpX7;htw5U$L6d>lhpxtp@ z5Q{)(-#78W-fqu*JYuV6X>t#07Foynl8-^|8{1);X+9~9e$^|)#~kUsHi z^&Yf2H61w3okvRJ#x(HED#6Zy&Qjm6hSaVtD=P0UHI1p`H{mp$lUhR?P)JXZ&YPF%n{-J9_V{$$iQ0{;K&?Q1tO7X#Y)E<=Kp#Rc8wI}_x zRP9CdT(vjRbJRZi?|q3L+(YfB!Tv;7Q*Wp*GMU8}ne36*MJ8e82JSRjNRn7JdFjQt z$rsg&ZBvXC)Qe@d@VsNk>N$H>%!MoN0`E=-W8QHZ{hksm&N^piH89MnNoD9F5&uew zZs!~)+p1XR94BZNS^KsvVq5reX*8?4h>tNGWVbE+sCdo&z?OwfH!jjFNyZy4;pUSkV>(w2blG^;@tIDK^@+7}vJ&b*l{`>s{O_Yy{Qk_i)Z5 zMLw4})aUzZ1aF6#SDMxp9PfDxR~KK?(m+E!AMI=K98`?KD`qXTpKZI5rnk3du?5Hb z9LM--OQT_R81XSw*V*kczMA4Sd5kR!d3}!3EJ{B9XFtYw78O{ENkCNN-5ujQ-Bw%D zbWgEmk+{M~@)1TH2Bx!P+D*fBuDmiay^nH_Pgdddo?mvvy!JC&-HG}yvt^OD`mOu* zab5@RYM(oJI!}73v4Xohv04~k=}F+$ftG*{D3An^y12tuky018X%<_s7axcN3blMd z!O-cOiRpBZK9=B>8PVcv#cT0pTNcuyU*L);`C)_=`ksr5H2ilBeGl0`xgMMgt>Qu> z3Li)%7dh|kXUigSg^zbne|S?d95{7*Q$zhbCZ_%g-dPY&1ROH;M2J*IwXG(l582+9 zMdFn)YCeyl`d)lb9Y!^*OspD4dyW$NZhXJ+NCg~bt39cJrM4^*uYkex*E)6UD%zY3 z-GpV{uDc;I%@3hd@KkD*S87D%?Y8<7l^p!+G78$=8!4_ZCsmgx)*z<4uObOk#lq0xdk8~;7KY|mBuu28{KU4B zrJY==S!}`iRrb?|e@{%m-JL$XwRk=L#g>J%^qaXVNj^5{JqX8z zMjGxbw%U@0`=Tw2dTcf!dFx<mi>ylpm4I{LlT@TQ z2fFTl-qpDBxvp8XlBO}3{E3=cwEx?5_B@J7sV~39Cv9-AF#PMb%bK*QskO}^2kA6@ zV^z}cku`m~i9G%2ywsW|`fwL-eR}tok~<>Zg@EF+OO|SMHs<*wHm<2{X`xSj`oGup zw2Jw?bhfr-{T%#&)>M5xeHJA5Z?0=;Uf=9&Y)1yZ89V43_%5pBeUJ}8J_7j!epS6&{3QN09w2wxzHt)|8@T=JVy)NpxA zF;b8Z;e9!~(QIo%_B>m%X!e5=v2~EDSCjc&hpv(-i>A*GhIH(wgP1abi8Kq zzwQezEsciNdBn$1TF$=UhsCS!`?f5kFZix43+W5E5{v2!HWVWT^#uo89b2*;QFd71 ztaln)TCvrUqP^bc^(~DZxF#yF*%ALu(Z}g`mf~G@kE8IHcW2GsnI^8DMC2OCbI$hs zFZ+MgR{ioOKV-{7n&SPoEZimPudNz^^^9$Muj}S!ux!&xeE7!wq%8RW=!w>jIu`W2G_=UDwlP+YwEsMMrZ!tl0 zzsNfPo=9|8CMn-gdZSi)wh!lyr(T$DTx@BkFKgCU(}*y?F_p>SBWdQ@s*GE8`fIwA zk3BYfwi1336{6E1neFSkxqsPk5;4aQIxF~tM(ZDBrY`yKC}g4$|M}KvSH73_1Jku$ zmAy*z-Skm)MBb3J)^|}`Rt;QbE3$l|tn^cwfwbg|Ju~$yw}SKE-pE(!gDR=as;pjCRi zjU8+R)%H(JxK^f{oQn0C>WZZuO|?!NZoSY;Ydl-t($QRR9`9O^SX3=bo05s?mUCai>zGMBvxb7 zd|9NLd|6Oa@r#*yTir_aq-+y9@ut*NI`r?A z9(hB)W~)D`f-`MdgsZ@!r*!ubCR=SHSu9g|88`UQ1uN$3D?Ap!VKz8*ysk7=+BuZB z37XQGx>+stnYwO0^{%n41*yp2Y8F}d1F|oBtQ9%J|BR^r%?3l8|0s<%)osMbG#`$X zZ-z?Ik+c@#Gm2Q}!t7Y7>tGu!!TK%AS zt-fc=Li(JyxnfGawj7F~jt;`Kb=0+YkXyZ>`f&?OGrx|u=V6s7w<=I>MD1g!@FM5c zBW+nEu6Es%EOc*2BfqS<%N84&-#anQb59~gSE1;L^7pXSoOI8-+OkMo`NPoV(Alqc zr=cUN`kKU4PhYL1{>CdfUh&7+YE2Y>lr4+I6+h^}wp8od3R(!%g*y4u6I1%&N?j-x zW+*h$(oeC~mMHv0TNYu3Th1s|-^ujZDjvBlScnw&<{o3L=S_NyPvHV;ss;Z3ggM4v zomlnr7@x{irO*PrvLmhFH?~zMt>BlMg~fE#cIGr_E`3GBzsDyytA8*tbq=niLaY2j zBYM2Acs<^2%R<`m9b6Tqo+}N6!sE_Be3+QN2WfqKWk%HfzOAmL*}h}TB5`&1hq|M; zn2bFzsY&Sot?VpUn2e%gi=2)Qw`CDlwM8c{W?t^6ELeyXJWg1!5Gi=^ZoxvN__gh# z%C*8&Z&`27A+zxr27eGTru$zhO`8th$Q*Z!lFkKtV_>%inj>u+t8^`^G>fbwV#!^) z;*V0EP#WDTMSM)7Os>1sHx{qH4qF!TinQ6XkQbFJv8Weyc`;IuFUsIt4x3q9k@akK z_Nt8DU(!3@3maQDR4l<&S{b^tv|>|BM_YxrBfPAwMbYNY#Vx~80;k}?moV*!&vV<#T-FL#M zn~zDH61)mAb+a8d@VsLPSlam#RcVQE!>lJ!q^>@&RkXYf@3Eq{oX6GpxwS1F?b^fB zAHwTnCdXqIC8hESm0ASt>nS3zx}#Q=kt9cvv*ls7EaZI{tXX7zA8fm(33O#R4rEnz zwCWnk(4bJ~#MH(fiPgqLTp{ktpsR#s$W|S@+Uio8{7$wk60eR~^XZ7Q)25HewXb#S zp@RHtn}R)6mOkp3#HwgE?P+^*=_=x$333Jdt6V+RQMNjlYCGJPMdH=wIULZCf?D$~ zM-JMtPD!kCe1`*ii>dVNS2Lezt3RoNO|~o&uY!t&>1L;@oxYvvR)TcwF}>MkiPgr` z%77qwjxd+lYE>%cVp|sBim_N7$pVY#5*92(if-n8w&NU~ZfLG+jNXj+U}6nnAo@(N z$jHR)KHK_|D!<#7MOfJu^(9r#izy2hBE>IkC$X;aYuuK-NN5(_4_%*bub7`|tFNGS zRYyI2i?p2<&vY$Gg?||dp74sxSV#0+Vs9q-)z!ZJTJ-O*fP_Hqx>?bTR78(o~1qiujmI z?$MQQ;k4im6dvgawkck(m9{M86|B%KO1`?-i4TfmNM>!M9ojiv9OmRf=VIw0?GW53yqH zUVS6Or!g~h6KHT!+mcxIjEWq{MA;GbH`?k>)StFxk+}ND&=o1`)6NEOMhiEya1ETF zSPhJ=l;ZV!;1wUKg!61QD3#D@%Odegm`dGuD+YIWS#bdMUgT4bPRmnB@Qt`OvHIA$ zQY3NvrF!_6W69@95~-Ts+3HoQ<|wwjd6_{f$;;*~L3ZzAv!qzZiopFRbU;k7|{(mVN}q$X8UcrSy+sM2Co8Dc~# zWdg}kmn_6462^pW8jn0|&wbhrr2YcDFNL=L; zS2%Qu1q}t%7h!m)px(J+E?pP8DU&ugx9bzDfl0KX;R&IK<|-1R$`>N?4y0_gDHZZn zTNa5|$SnAXQ%{txqoV;!oKyxUGcbcX#95PWr|%B5JM2j09-lPclCLFJN3$yfa?u$* zmJ9PKk&C@-J-H&)cBZY)rP@xjW%0kOHf=ZRXrz%pd$s-Ie^6~AS2xvmg{{t|+J0)w zBJpaQB$xOECj{OZ)Zj|x-oz?tvUdWOOe+B?vY&*#%T}LKCAZtMNW4laS2fo=ZB_cS z%@~z1Ak9lPrkd*EBDNVy1;;(c_XQOZG+N+qSxu>UqPKMdH;nL4WNL6_d(c zEh7(3YSuil(vyMQf4Z-ZVI)YAQ|7_8EE2Dd87o@JFHWX!>1J|vSm>nmflh5YUYTlJ z)$F@l*~1Re1twd$A`_WP-4ht(N7znQhA=@rtVQ^}_RPT~XBAr}YLr zZ2Y*t5bxEBaBUrxSZ!6u)|Mv~*A`1vrKO5g+2OYOmMU9e%OdeAqsf8i#KUz)uNIDv z&TVT;Z88@}Cni=!m>hUg@Eb+%6V8&lQbej`ldV3bO4i%5NW4nMlXaxEF{MptdbzrQ zuG(qF_Z!XnxFoUqm{2JqaD4Vwt4FDdn`~JmUKLx>d4xKLP0C*Pt@|vaCSFdgCdSd`mnQ($ zFnUzeuSe9L_JXYzr6QiQWs!JA(9S%4+EowZEe-AD=(0Xd?!imw5DAWugsqzW4oPZ` zJhjpjq-q5TQpJK)L6E9+bG)ImH%U|EM7hkCMdB5+b-+zQ??!sJv1hq}cl*SurV=B% z=gpzFBVAE=1Ay-Wj&xr$Y&9!y&2(E9iC4~yc}{cP+NM<7I=nev&7iS1!fM8IWZbG} zbZ1KwtD>2eL4m5g`q2VO_ofAkRMf$?T9%4hWXmG)ikcJD3%WD9qBKKxnS874xWuY# zC$q|Y(F&`)W?Rim<*l=2k$B~8XH=e9Wi*GXPqRyA2JgVK7rrN0U z#}cdaZ&d1^Tt%04`aijff3lv-_&?ci1m;h!qMxk45$XNpD*nk;fuCHZe{z-glX0RG zUR&Nz_BdBZyM#xIZ$b~+vXCy}K3f)YOn@75QO5)l@=@M_r)Ba|yB^B!cP#3(TUo_& z2R;?1QKrw5q*gmsbY(Zq6{`Y5v1_s+RFx-Gr03~Hk`=k~>0!%4noTzqW<8Qj^X{nT z>wRUxlXb|LnOIFt_b<%m+kQou++)Kww(6C!p;EKRIyRL48iT3S7s~GoDm(Uy<;969 zom^pqk_0uKeUo`%@fx3R%R=6X{khUgeVx}-8Z`^3n#KgH#*iexs!7}GRbGY$TNdG} zu^6Icl;c;@f`v%YO{Zyl{&CyG)0vJ`WBPa=&dC4DYc4qkxF00eOlDLX^1$!PlqdVx zc9CsOOJljfmPOvxWIeX+={oSZSJzWN=S_(9<~KR58M9=+7M(V8Zt|zZs?PsplzYED zCdl4GmxRNeuv$bv(yLgA7@4WuXj>Ihn>T0{TW}m48>|)ib$c2smS+>IfUWe^yPnE} zi*WRc` z;gaa-yO;M+`G1{H?SS+vsYq2tf34m;W2tw?r1wSe9sN5cY1;;01aE1pTkC!l{Orw3 zJM;a3_}QBswHueA(kO5p5l8JoQ3w5({;56buTHNj)n0_oReKXXNA08k-k0dXJ=A_0 z>`#<_df7Z;)C`TOdnE=CG^`QEqs_>AowddN=Iv-iZZx6YxjxS6+p zchWB@!9n#-Z9UD*+K_IYwG+3z4E-^?hOCKhsm3(}F&8ABYpYWkV$QZ@A>Ha3wk+Ik z^`$M_tqwjUb^Ip!0$arasWqXRy`e-kyDh(ojZUhqxrWTYHMG-6U!|HgdzYFI4!;coP zxrc07$g6R`W>NC3o8IJD5ZWpGoJuM|rxdGVE-j+sPi^%hjq@X07Ky94KmBO_?1Isf zCm))Wng{rIgF4aHJb{X}8p1`@TiLQmT-EXSU(ZcU)4A@y-q%)3qUgPBS%ejBG2N0G z8+ZE_EJTW{Y+p`yT%WRK@9G+{Bc^QG2lq{-X;7UrcyPzGjTR9yxbH|)x57sE^|mcV z8e2xQ_}`B1-z$w`)j7l`&(ZzD;x+djTNd(ybZHhPAKm-HE}U*OJz;L5vPv<&N0r=9 zAK^rKkrDn6wmOmqdYvtc#MPW-gnuqEMduvhpSIPLsQL+87Ky7meuOVumQ<6@HNyYb zR!gGj|Jbq!E81dsmJy!2ehU^NMXT)(aYy*kxxR3bePwCAV^*=aiI&ZD%5aUip>0UF zuhmD}RxPDl^8YDVKeiApWSd?2du;gOSR(TTzFwrZ13bOWnx%YBPt)clT2J6*0% zj&`m7fiFX+KTJ%gqbs>^c=-hik4(6}U%XzwYs*4f^k%M_Qg7l;#ucO50a*8&6>f)G z@!lmD-t_Jb=NVP;m&B@KioR`BJLPIIs$4OuJTW4baQrLq6fmPO)~GSqd>$Gr77-J^bt( z)P}!esL<;N8kXr03w>3jzTyZcy=HBDrs9QPeJwmFtxBw_b}_38es-v#DhP);gDYH> zD_oT;T%-b*+iG9>%tLKiBwm4I-3eS%Dx=TZ`k!+SF8VemR!3WTb2zvB9G{c!u+^bd zLz^v&#H(TEDw-?c7*~@%<4k9|+yyXyWm1pk8Jg66|5Rfx@q@%FX1hv~NKfdrL^yKg zN>qjKUh@1RL-RY5DDuW!WUFVXstascgsaM8iXgKL9^@=oh!i}zuwWrlurPFQ2fh~)~)jMl$Yb&+q^u|5Cqq`N&Jn1wKu;MP>$OLra z@}y?>vnzeM{PVRe7xl@(v&1+P5kIF!`L8xoRngiY-8-)2iVquynXXD3yVdZwHiks=(N+J_9psz zbE=Kk2{bV`y0NvT(Wp9t_!v6u98*c9)A@2PofiTqJ<_o`#jCc~R<*Wc@euE-GrA{y z?y|*(O3z75r9&&F*eVno(dAji>+*D47Sh|C!qrjg_3t1$zS8bAbVODD%fwVZSYN%4 zLgN*FrLDH4U-+3Vi?G5iyLYzB@hfD(LZqlksM_JZ2{Tk3E!T`U?a2hI-7S>v!JtAT z@7ZIvbtcvRh%Jk}6>dFljHG_Lf-Xm)FV1^Dq~-yFFA`JyD1Ba#ZYiN}%S+i2{r}rm zd7}SMGz*L2*mleqG`D$EMXbqZ(u&edV55WZ;7Teqhn;6Um0aZPbgV54X~&~9i>%W~ zTZIpV!W;Rknnu5|e`5L`r1kBU8ELlr*y>7}?Vh$Q5?6PBs9PJb3}x3PrtAS)*<4~o z)yLZENmRYsmPJ_A7Ne>dq`055U?EZ@G%&|I#hss6edltDJI}VRq`Et8S%ejBQCCvk zyh^lSAyVvTJ2<+F{rAdgv$k-z7VGK8b_?hdwmtp12Bvxo9H(_jy1D*^Q@@vyLyU_L zHF}o2O4HIhr-(m%J(b%;<;oGpnsiIIPH?x|wj61Ef72{1v~D{%4qr)EB|EUE(S^9} z^o1nT9qx_N=vF;Jd`!E*h)P|uzD30=InsN-TD(SIvSlGJ(({@{$>${_7B~%Q{pAUN z6Uu1UgIAVjIvCac$V#th*=>q0ZU#{KMNSI)+OkMq`AhVsU!A`7u|r?FYAAnpg38xL z(~1(eFS3>WmO0VM5{WVdH zSMD-f{Ye!pv1Jji0*i@&%q4hGv0x!m{56>_aJ09$$6z1d3!a`}LkN_ft0O$cwicx! zoM_7;@hTX$Y!f?lwWeDg`e=e_TKidI+8 z>2ur_^(`Bk8_A{E7=Z3bQ1k8={HpwdBbvX>R&ApBTQrL;IF%iMp9RXXv>)F+KMqA0Pb*yy$vhds`hzpD@FgMOe)ilNp&0anEGILZnD&J``_C zTb)>K=Q5=oZCh7T-ACB62rJs6u3RJ5$GMDHS(o(IWBL$pO6f$mDbFoUHG20pL@#C9 z*}n?TsnPqDhQ%euo8@fV`jIL=L$k;_%4gNEt-UJ#4f%O#RI4r`K8DgdbG;##7q7mb z*s_o}`6itImP_)|7|sl;Dhj<0j7iQ1~A@- zZ4;}3k?xsz&-$W^jwpXx@yefS%OdZ0zil zr=_%a{FA+1S2)LY;4r9v^E`h)z-Z(uF-32$eVKfb*ag-TDf9_}=&EZ?@l{Z7%R(A| z%9e#pGPofWHOWY57()HHhrs+=;)X*TqM4SqhQ^i+MqBw_Vr^xbZY$cCg+3AMo?+$| z6Obj+LtbcGJ@TG@$CiaOl7y;fV%F+8D7De3mzxr+mr2>{1wuqBp%KOV!smI!uiQFz|?yOy9k0?_(BI_37r8 z^>gUr`y2Mir=Um6{&@x;emA`Pq5 z9#E7t=d|%DESICvOyhH{!%Kr1lEEW<&W`iQl{l7~QRKj{D-H+a!sE75? zBTJ%N^(FlrbMDq3uPPT9c~J*ZsYOnK`)d|i^;h~S@DSHp4_`rA`WYSGti-f9)Y~M$ z91O)qbh$(Ex}0gtLb{u6xH?Mh=QEi12I6$SJTaXQakmAss{Bw}eaY*8h%Jl6Rj!ZS z&g1KKDi+Zt&5a?4wvNOU&&O`vva7tZBQ3toR(GQQ7F!mHtAD7zu6TuZ&F`T3zR}NI zl$h#=@omL{awBTLz*c9X_VaC7B(C-mFe=Ku7Ln^TZcI$`vqL1wl5h-|mQIr&~*sgNiCFE?YtpZ!0s^KdS ztyq4*vP0(1KY&j0rrSdw{yCsDjk-KL6M7| z{cKrC)7smXg;%Lt_G@IrR%P7Df5mbq6aF;GaV4tMX<1$6Xa+_fAj!{JuGv<#(u1wj zEVkgPc96TOrE3mDM!avAMz`uz;$vC{277B-E;KUH{8sUL{Dv(Hc~Q>MEV9~RY`dx0 z&%XSg$|`|{D@NBjKKpXDt&XI*{>GL?-fFfscjfkLdn_@9=i}G*h^^X0^ABnkTd<=T zhfl7g+W5+992=xN8yZu!PNTU({UkBPj<0kj&^s?A0q$;aC5Ut(9~Q6S_ib57+kS^D zsnkZXLOuX9{^+E7mcl;(GnQm2aso8UmPO)~lJf&F`y^Hid3*q7Pg|WyZ?l^%i?G@) z)+4f{;XcoTg-FrOpl&_dY^5DDDi(V_lkQ}7r=1P+U1MU+U|jeEFjYKTCIKRSW7@Vd zr9Cug7F%%i+1mK%i18&D|Az)YU(uPErYp@)j2K^o@kNQ~{M_Poezq+OY5iw#wUv52 z+TExe*z!C@6!KM=s}ifSJKe(=k#5+O z`3q3+?bPX z{#HuXo$hXVvf=9l&wzVKH&%U-S60bvLT_Q1TvY+T6N2hdg@7 z^iFn2X3Ih< z{W4n?Zl(X%YHQTmJkfgrT{2-BY9A|6wGQHHU4Fpa1xpU-w)P&e)tl7bgPKLw8Cc2R zn2Gb-9DZ9;6-!&%o!XX`brlUQZPAN6J}He#)hooucnvxyRo1ye&=)D1T_LJSh$?75 zI!b(4yqe#)Wg#!gJGLyOf9A?As(-$(7%8ZKo?+ELTfeFURyAY29dUx6bxcWCP@V2p zcl7$EIW=^^reRZlS2yiI(iAzXpQ%}Fx%W8U*XhvGs8#Jte9U(?*VRpj6tBL;wk+iR zTxiQe-cPQ?qTbJKijjie&v&g3s@QJd&-89s!}KXtu{M=n*CAipJNSG2dZ z8upK`(T^;_2ETUei?%d$Hz{i8Ispl%^PW|!WbxI+1456f|>^76j$$I1Vxhda3>S*&&>= z51j;{BzFRptC#rMLJkh)$Oq~AYvOq+m#`m~_b3NvAZ59l#?1b~8OC$=3pnx#PT8M> zb2-DwKxOI}&hQ3jc#DH69E{*3ogBQ)LVU!*Eu3T)3x5Ytx%xMrm8)-XhB9XTM;78& z2zslBIPzfxebnQ~Fi=eb>ZLYuZ>khbUCsQQkMYrQjbB1o@yp%9}Q;x)dVi#Y7QR5v;OK? zq#UBIK)!+MIRrh`(|9&gy~x>LKrmPxglB!#AqdLV5(ER(x4^8Q`Z1D>P%j~Jpqk3h z&S2DqB%{XSjlc(-90)oA9hm{RBZT^&5V6 z0?-I`7EqZwn}gr+v!l3#XE@){KqJ-jjD~aY4pR14BN#m-z0{+~K0vL(v!3b+prPti zBpIkqM=(Oo=4WRB^;E+Uj8xBYu^SNdRQG~eZ*?zH4pL(f*;oA$sJ9vm)LR{hV2Iil z*~h8r%xom29;^08%0B8IiX`RgQ%2PY%GG6vEK?sa`W!sV)ia#(E{>eQk^Q(D zkK@QT4kq%m`x*U+gP$?a;hf=Nh+C#k<;e9&Ql_3kWVyPE3mVHQuVHj3r~Cz{T*Se_ z9Q=xdH#qxr&ae$Mx9{!Lv-g!x?_h&t~zn+c-FaBah^uC;yZ$SlpdB$paj$ z<|H3+upg(q6wk`l=Nx$#i}Y7U131Zi4(4#A;@~0#W$G+`HWyratAiQc&B179J(7ca zIr1ScVJf5ZIe3JF%?QfW?aLW%W3(HW zUd!sK=in41DN~ynHE}SWBVS-MK14pPI3eXr*e|av{a%4NB+xgi+T*BG>Y$ONw zakJUTDK{aYdf;EQl#`sm&xUi*lV#b1gN+=F<9zpWl8ZUtv;3@rpFPKs|Ky;agMYDl z&g7JzarQm=*-S>8Ik

&XWb z@Nw#~wu}8C^C(1@Ow5I$}qA50z>KD=d~LOz&09(?F|3(-f7d@unYk9jOJ z^BBU&)5!=EF!GqYs-4#mPHrbBOu)(6$GXx4^Bls=Gsz4SFmvWHXU5IB2rthjFH9a6 z6Pf7<;pD5y2@`Pgn0sx=$n(eulgGnXf_W0r${l2e$>X6FGjAe{>>(pez{sw}c2->n zsP6tU{jOu|v}U`L_b<9i6gQr7V%_J~>{{oUkE0{IsrVq>wAXz*%C6}_&b{N|q_2pJ z4(_XU2Y1-_-3lF8&#>8sTlYDZUBOVVqB`Tk99*<8v(4T-zNMwtBdAfGQ8R;%555`7 zT$jm9*Bz915?ur;+*uj5uLuO~eXG{q;v;53j)HVez2rS`n71R6 z`w!P0Sq7Fg5bEvQbiIAeGGGj;J@RcotpTYudR|=Q|4}w)OknrduMEzD-SWcXJINvw zu=s5&g+;#~UU+;Ld1L|}zjKA~c)Z(bOiea=^Aj?+h?*{}zL%^r0jsZDA*|{p6JhVC z$Q~20H}n&_VXYoDLJV&7VpV0kU0V?be})V)0fR$7#raq`zYmc=CgAT4E5yF7 z*;yQ&GE>~b<Tx-_ffLP1ndp{g7;%&-<}Wu>@5bFSUM$DPqA=)r|;B|k}KnSj}q66M4A`3K~W3HVzn z&E&%DaqL7k_36`OkO>$ZHqc+BkD4!mic@9#@8j&xG~3OY=Is1w?6n?v+Bal=d+-tl zeZS1j0Zj}r*6#7dxKj9aV|4!jQXlLkEQTAuriU9tzbqW`KO{ippoWY(!qOT<1|LDT zQPCekMT!YD^TW%hnab>jU(yuYeuj)Q0po99$&BL@_Vd^*gB^}W<)0I`gS7 zh(<NlgfHeOAl$G_mx+*Xs7E;X?fhh04Moh)J{q6UVJnaI?;AFD7B|c>9TFdqG6z zAAR-oABHV2kiX48kkM@0uXPjv=R z|41k%fO_Frq1?JeDA~UdjtT7&@u9_%9fWuJDGbt6nT_}sr~pQ~)640UP9T#gn^J(o6O0%00eUBVF;Ez-}m3%Yy* zx|5(x0NNZssCULZ@NNP#0r2699_eV;-Cst$f0fwha{>0XRi$h<8xNhG=-LPRE`x; zJ8A*;8H8m5*b`&6A?t^C)dKWa5t<30@2%*oo_JmUd_en#xQ@E$iwLFKf1Jxyjy&zo ziHTlkdVZ#HMuGu;*Uay}`jNN8W7mdR^2@$JpS`=Xva<|mP&n=7kQVgK`N;}Cl%=n| z*5_$FbpeO7OaNIq(&csP18nfb0AEaCCIB`kk;W@);JF2<*AScuz>igRT~ECZF&}VF zB3`5}qw~_0Ts|->x5_iNC%`}Y>aV4zDSxLI$Ugw7+|#rmnm%0fM(vuFdzzN8_@uBa z5~%-R>&JvAUb*mQ2$LRCV;9OOEOU2?*h2<=x|JEmx>NYvh{%Wljvd2>Xlu~ zHQ~DPe&z=_h>^d|KjUyM3({Al57+w2F}ao{EUx7xP+z72n2f`K!aEy)0Nvx{KqVY=5kG1F;HNqcMl?yHZy8xD4{{ptS# z;9XT?Kme$L;Ay+Gr&W$G0c~+MD}e~4-b$-5ff$whpLrsf?5=z-2V08`xwgHE68@GbnfIH7*j2cY>2fYqJQ1NIex;Dm?A z<%FKLc0$9q;HZ5x4-<${-3fD0#tAck`w7SdfYqHa2N*bE2J~)%G6861C)AYd*8WU^O00_7ZKfc*V{WSR{y;PK&DX)C*}iCXg#Se6N65 z2hs!7nW$1dLiI3g*Fm=D>Pbo*c-ZwtGhVU8{X8m?;)_6;}B=v?cQcG=y##EnS&x{GAd*RrO zYC-Dw;{mNbQLOqlnv~jgDvft~mn3UzdZO7jTV`6*HU8aK|G>$Si|tSTC533sczawG zT0_E^Z`H;eV>rqPh?##YiwLRyou*_0(Y|(UrZgD!*7O5faT@HqX~_AmhZ?jO$_W`Mk3*uxQ;tzMUqfu5C7;$7to#CtEl`?jo@KG%@&cS&a;G(lx&H zn62yyvmxj!V#CVs9lMpYKw@Q|rEyhl8dhd9Rx5j$y8LM)GDTJI5i9#5RBwDfWfHg3 zaF0#2Z)l!jvA!{TLhoACfA-aHz6*8sBJ<1r0hrzK)^u?&nm#P{bJ}9@MZd-Ju9w9q zil(o=mBEz>_}&|>f1|UFD`Nu6AEp7UdO&?&6|Lkht$qKmL-p>`S{Z@UzPrW%(N`o6 zz5klldwfx2M7>+K-D;$!u5Ouz)|t>-Drg<_?L9r@TKy_@ZuA1uRe0~|c@6HOYv{lG z>Q>$re6juM{{qyW3aa-|8Uo7yq*i`>xo=RxFl zMFR(Kd z!6>c}fzp-LKQMsbK|m$|Ea|T=5zxC|0rV{dWdhKO4Xpo3zR@G|w0uz$O?+Ft&MMurZiqFg!3A8H|2pMDpX242B=P?>pz-s$12! zx~r>dXW2J@oasvEJL#Sq>(=*ZcWW20E>Zl2Yh$UsTiaA}IKx9!0r+n7V3T*o9?0D# zi+>VUvEYlJmoENE#<4?GXwk{+WLt{_rYlkW15jH0;|r>oxt@R|04!1bW4Aqb^gB5g@MG0 zIgt@5!Q##Xtwbe6h+S**^JqlN+d|Rd&^-4wtc2nlhKU2fmS}^(wl?;yr=oJJd0cdcYMD8-DY$Z4n2&XbMe18GylHz%L zer;(h=Ea{xG#tj0L;DZx&o9qjIm7qc)%PU^s3M7(97Ix)+PsDZlY|l%FPKmr z@3A>sm`BjuY7p=((M>1MxEaVJ+X_6JZzFDuPw4Nc4Or5*5#-Pi2p%|FJy52eOQ_=9 zVB0N3F&EPpB(PbDp@5{#yvo1{ph}s`2uA|AGPRFmD+PjZUP*V?Eaa7hBmv}(Qqd-M zlaO;wKQZB13_J;oC=^PJj4ri1J+w=-`R5LX<`%XAkBpAJpHR#0+?Sq-$y2F1j+*v~ zg21~{1Fu9i=ChTg?@p*D=4)&ml0fH})hn!7*XlR;qtWbR6OTE3RKl*lYxQS% zex})=|OBFNkhGq zP$Z0rU}I}~C@+nq;a*NS62R$xjj0@;8?7$BM)XDQH!TL7#z5ruu#Yf@HrHJadKqj0|@90}mU4W~kIaqNvk-i5(O0>~>vwb(R>^-=!)Zy^2>aRH!ky)hAq zH?%vth{gWKsP=aecpKbd{0lJQ@v~`Qls$s&xljWf!x?%SjuL22S`pryN*9m-Alw?8 z8bAXq3G*PrkN_r}K&OU@11kyjP(qOaDmV?07pb1)`y2*Sky*x0X0AbWG~3JK>&WgoZ~8^Xlx0pqL2JKZLGe9BvmC zVC=_eLO=5d?9-C~F5Dj|3YUn|Bcc2TFK~c_L=7)w1ul;>XY|eI9Xn7*ArnQvN|3`z@_$)p4wqDk9?-)gqufaU*k6x>}I=k5JEQHz{(M2pHU2wa;=+B|K%k2mz ztdr!0Ve|t);ep18S6(1RKsYy-KhCN^_~R)0 z0ie?1r9g^+@cJAS0o&5yW#!jtjaUcsFgk$*AmLmxg%=VaF1(z%%xQ!o0aWSm@}QF8 z6~S#M90}mchF7~I;T7@z_iwoH!l??}vv;wzsPDjNZj1{TPMn-8~@+d-* z05Uk>G$kU#&gXvz11}B=poHh?a>8`Fom*O~T^U=qzlY{d|HgKhJB)t;EZjPs9!xtjJ7Be01;kEkrN{>u{NUjd=Y_mxE{Fw011zzPYW_MWRDQraEDl@R5^)7 zX9ensZ&nuI01^mZDt9I!G`M`A9)U;zR4R^>KyhICV0#Eg0wXNKnAzK^InI(gC^H|$N&EIdLn zS+y8gp%7jV(C{ki{g|WFhSndxI_6o6a0v+n&&nlJSWG(=Y=DKpo=Y$ifMwN*Q-X~| zTSB`R5Re3bR}>34pyR)aYYPTVd&i{C zx)WG?Ax|>1g_k-^jy?}u(GY&W4*kF~t1_ELA1}i>VMQl%2Xg`mfU-IQ(*h+jT@vow zgd+i5R!3l3xRDr4LjETqNdOsKvX|RAQ4}TtPG=a}*ziN4Xa?NVTw1dWsBFOLnW4G( z3tk4aC!+#jkD+DJ3>X6|6hiO<4Z)%rFy`oIKr5-JW6q^}NFaF8448sR#9spJ0)mkM ztY`*IfsI680`Ou2k^rz^22_4g>?PQr?`J@Jg-GEsiS8=a)r1Fd^%4gmd-y56Q2Tpm z-t=um-3E6U{{m2WHisjAAntPdgGJ$|!$x+#)LjPY)DFne&6V#oUcxBmfI{4{~F1fWuSc@pmArMP3K{j1h;){FkGUl3zpf z-&_HDxE{Fw0LVyNQvfJygi;g2gJa=x5R1%;(-Yg=&H_yW_8AS0DFn80${_MVzC;ib zfE13^qz-Wa`9NPK5D9>SFHhts%EGVibG?b7WBpr31MS*UglO`YlTdnMX#V0;2&1F? zn}(@FfM*QPPWF+{m-$ff5L+u6TZM~unz6)ye^QamTR5OZ0xdF{O4DoM1zZ5~&j?8Z z$ne^k9P!}um5PK#C=NgWveoo22}=Ul;I5uiqGFOf9Ve#Cm`nx>&@u+Na@ZBOh;kGS z`x$;3p?H}5w*SEV+@iHG`Dn!kHVD>90C zFCj<(kCDj24DL0ydNAyjYV?7QBNYggb^4;2VgQ< z95JIDIK4Gp>jx` zkTIlD7$^$9$aLoEgd+i5Mm=2^E)jY$(=Cp_myqN#*GVWYR0Hbu+weTLI z4LkigG^^ia*x94#2f#{)T@0ou2)jS4DC}a^lJ$ID%=hUO66jDm>{37)b_uv25sn0K zrNb@-7l&N}@+X8O0c6>*Q^xfK|38(mv!{Sjx(0Mh(YW%=T=*FT++Af6nos~_bZPS! z9t)t%5odp=ahB1RnwqZ!StPvqC>uE>5WRE;wW52iwixK+1R?=YMn9*RE^%PRV4oxy z3BbZb7*k=@W6tklJUL%y%n?q(yVcZ{XUq73tycdX;dGe%w*Mf1MsIU^5ao}E`e%)( z(ixb7M!m6E19KOaX%a|Zx>c9}(VXQ$9Zo0`K$T9A2`DeDBHx%J2}eS|1iJ*&xux!@ z@)1UsIv?E2=PA2}P8Kv?@ma}JSk8vn)kSUP^OOP%4VfdV{=KR^_B+sC=ICfV_Z;z`jQ?5`dM?Q&`3r+v_&XQ|jx|c`E8;^2gA; z=s%dJp28{QDN+EG&QlgZnIo$H ztD-#R1eftIC%idn5tb)`=%w?N51}DNqllHvy$M7DpwfBD2Z{qK2CET_1Yl+J6u8!7 z&Og3`?I|9Eb@^bj9YX1LKJ}LpOc;*<04M;;2a^H}4VfdDj`*h7q;%ul^<*WOID$g{ z=9)IlP6E-(2a~l8A#5;3K-Uq71VH73$pi9&DFS-}!AJmBI+)g$>yfj~;op>CQeT%2 zraevF;tv0ZX2Wd^CjL}fMKD0ok#)6M~Ofk@Z z5r_mprGv=_ii0Tz`)`7g0IX~HF&}qE!0^S?g}^5x_?X zKmvephjdDSI7lLsn~xEM1R%lpWbsf&&zc ziwB1?R;CD!)5`{j6;$dDC#?BjG%E>2Egl>`YYmPF;9m(q0)XPd;Q@HT5rO<0K}Y~n zI5;}^rbNVXy9Ni2!SbS_1$?R7)Rr-S49(}bSIlAZ+x`Rd@N{sFXm-q%FCyf8jgatk z@DvOsf5Z}-ZEQJ`P})#WBq#5>$MZbeS4~mIz`f=k`;Iz(49%ByzMa1@L(6|<4D6UI zUl@2tNdr5EVqg(ZBsL#n1xQlDz+_kVcwQ+6mJ{GQrxCo^T3W$cW>$8MJ~rU%Z6j?k zCD=>&sz$GcWqRF?uC-t8&aExAW^z3+G@roWr#TAcaIopTh!1`6sDk*)5~jaFP2VZV zhZfJFu`1736&kZkU4Cv(G&+{)g#?{^gGhn~cD-u! z7MqbQCsGy?$g=0a$}+pyn%#|ULV9Z}D_DThnrqCp_Fx-H>z8{_5)w%A%!4C|SZB`j z)V(MZ31nJZcbPmv?n6OHAjsYWD~Kc!-%D<<73-(_Q4|u0vUp%ck;TqZ(k=F>#3lju z*;08;l?3r6AeRp6K&wpq4`fN(=gA4euJ&& zxf^ORZzf;6fHsfbjzda1g+UtbY8uv^tO_!$Hyw&EXC6gXa>tGfK#2sbIhQG}$#q%! zv7x!@hcNG}(DoS|ckxhEBYJ#E?$qa zA2hM5zM5@45-4}e`iq0@^*jAm2W@3B{A(!<38Z=2dP;+p*FBmiCC~3u9umm2x{mVn zu<18iYt|~SrxYaXD+NMjPk(g{m9O~b4U~dpeSITeOu*~KcqyT=doTZ4dEQKUNFdM6 z>*t&KrDh)yYlZj|3PA!P*0D5OA*3;asO{jp*W#l;r#K`KXB|tk6DL)A-b!gmAkA~u z-9u4XZp`mx(T2E0$$@)5O0ULumr!`hvSivq~ z^iE1c0%=~jevYFw5JIBbS_?gZ&Wigap2+rY%0{xzvaL4f+N}=vwV&-SuVA&ewCQXU z!P@N~C>sf6%ijbq9a#%bHa1kODDR^vBoO6!>*zu!ir+hs?vhK}AE00)5bRm&Czw_p zEOSzmbdq(+hba^Zgj&axApNMQ{JA)=9{ea}B7sc5xqgO9%Cy|-FLL#W6upmAA`(cn zj^V8mB}>{TDGCWhdGUH1$BNR}g)hCK?TR+_^2!<)k##%6SDkgIJKu?aYO+sLP7=uZ zTL(+dg;ngOG1ov_uD_TNR%QGwWh6NWwv19&$d)SJ=O`Y@K`>z?-UJhVfijXn#{7do zuD~Zctz!l*NA8!Bktm{Hq#z^^QM+?xhDuxCwszIwd55gzMP< z?62b6OmmI)Jeof@ueDdXwXbB{Z&Dr-$g_^M_}!%ry#31qnGK&eli=bHVd#r!!jNr2ft z(3ok3e@So>faf23ch<~lbf@sP`A(yQVQs7UUE07VSugDVYRh3CPHYljn*(n2cCX>; zT}c^75}gF-`6ma8T0K2I)^I&6k!3SwAz2qMFccc|7!MQdV~9-x?D+%b1#Hx`hCzXq zww?D88(z@TB;3NRgKVLm{^jYwb`X^BW z5=iiU=<$IogX1ra zxYXS3(8{js%F)b;nfg*FB$@-ae^acaTaXoESC0`Q2}L3E1@O*N;O|SAaohruSeQs% zSzQ_(u}+yh6*q~^(46(3Xq#}cCBLl+H4aW7jTr*E(Q_%Ka$N05*Ypchqj`-y4@v=N{U)%QY{jw z_1QyPEt^ubO@PMmeAhbIs`?nJN&;2?`OsF?e(SW++}C!FJcrtmK)X->zo8w*7O_ID z+gb4SJdb*kK+k_VwDoj58A?ICkb03ouMZv4di7);tGTb`Lh}-;Msmm(yj}xeifgPO ze{xxjX3)#29SOAi@S*CssNT~$&v|YKbt8dpA3Ica!>ACJQ(}~&vC!%ytAwkm9|`pP z_d`}cewn_-1x~a0-;tJ!v}k%!_gFH_PAW?RWj}g|E6b0CbKtmxI>MI2>!}{epBm;Yy!Yruh4!3Gs1IrP1! zQR%nGc2PMJDEEOw)qA?-QnGGnQ85xIcE~oUWt~$S0}+j0cWF-xbCmtr#l~{8zuLx* zP*VIBsV52a{P>~jz_gwT4R=#R5@>kHj!{saXi zN4kZIl0eaSAF7_yEpxmqFxwJr@TsLQV|4!&e6Q)~3;9;tK^ompNJZsTGK}umz9q4+j@foZmT{{=CRx~y z^$SmwSuyvk_^uoYVtgG3^Q+a1(-e*Q_7Ya0ShZeFwMd}WI*xE3Ftwrvxj5~$)Q;p( z){f1%XnsiyXMOkk)Q$w&y>I=hk!pQM?S!K%Xs@SMB+zR8DwBj#bvcT%>ezg{j)uor zWNWp#WJ5gfdc8ohOEDUnC;l82%6+gTVQ}mv3KA&~FFbwyVk;$?Rw|SZmCAOlRMs&| z1*Dm>T1j(=2F&CZ}^B+zUf=Zw?#E?-H|W84UafP)`!*xsLPt)$6%W_b!mZDCfkhs2mBDd*QkbB&T$%+vBJUJfVC1-t}u|bk@** zT`fNVkmNHob6-RM|D70f860z!Kt#I35&2*49PJ`bIi#PIOMCy64ZZ&-Y488w8hg4l zoYH0QX);?noBXj8--4zf1pMr(C85Mk}7Du^gilD0-c_} zZuux_k3?0_)_|l)t6sEIy&8aJP**W}9qb zq8n?7ZGJ&HNFYc4n#%!{kORBui!2GN+}S`H5=fK3sZm}UyTO!am%}It2_(tA?SK^o zA2gG)pH-UkZ{s0bV5~H`zc&^kHL!K%Lf(uLdUR->bT!gTZyD)j>$P~prxx+932)|_ z{Cj+dAhgj)7$lz8eM{_@e?>$V$8lLG_{`jX__94qrL59>ptK=@iuv0fLFN;pKKP6$ zke8ms9s4O6$-$Qlfs4lN0$v;v$(}~ZNFZ7My%2-?7qOX3Uv4umGS)Cv@t#5PNFd%Y zcV0j6;-ww@Y|2RjIe+_CNlsmX;+yn&6qN*`zTn`A%9$I;7Z5D%-8WG}5=i*+UkwRI{reUQNdh7B?`K|_f5X20 zGYUllp68s zv{C*iMI(V|`RCLtv(&D&_R^emxNTqP?0p2r?(Zoa34}WcRe|fM z>4=Ws()>pXMsjchED}ufM#5(QMA1kfTK-YN$^tCt#}82^63BEA8f&aM?e4P)Q~fi= zB7s=Hd9c!ILZW}6L?nWE$bvDW~zNrQEsQrmQXx6#_yTwYni{H5r)fzBnF zI^2BLIYylP+pQ$2jA13(M2Scs(R7uO4^dJgn%c^9H02?IJo(pGRO2g6rB;yRC$UlH7QAPu-!PB>z8l3MfjG~eDqmJBPW0N2 zNOez2MRKsEN<`4fl!^pWEv=WWdM$nkL#%RN;*$VB_bhTMfTa?F>!N%-Ay+?G^~Czf zZFoVT-GwV!`MC+MVw-*fM%yu;pU+)z_N485-Oz%vt#$zyDJ6 z`zf*%%Ezxq5D`1UHow3V8DRH}!T8;Ft=Qz((42TL$bGmT3=Y4JmpQp~Lf{d-8Nwa; zZSlg^NH}@C?r}65aEr(8VG%pous!e*a^_s?t)aR1^$==unh0YpD9+CPQ@zA z#I2<@Yr9qtQ0m$W*fGo5YA{Bn0+)2QFXLa1uO1z#hB!IcB zBA7^rH;_3AnA?r|^A(iLQnUacr&V|}QAmJtRV6Ac;$sHAz3twj4W~aL0tpaqs1_lu z%%2mAq%vieTFu@2SL3qrRw9s8rc8v8R_5)5A_3InDzV#AccIr_Snjq__e&xCTSAZk z;t3T)q}6#Ru}CUar#s(YZepWBQRm%+AgNRxg-EOO55yt?RyFwx-f5$MBbvOA+)2Q_ zn*1f)(@K1RFeHGfCVwr*<^IEDP6FoD)9ek7acLmB8X|CN2qZTL%nxvDx0e zmIOYAz$6D0csI7Q!^a`Jb8DO_k(k&*U=je^k0OT4LhK_MXw2(Swe(7J4lm&)k+%|= z-nau+kugL3lL=aGH}ntsOi8GV@&q3SMZ zL?lJq1JZ_(=C!ZcsY-~NxiSl-H2^+9D?`0DoEV7`+K%y-mf-qW<9 z9mNipT%U{PadLto|A!j#apN42emI$86IT&Q5TJt|xJY_$NNPwR-`Js%1QR>M8Angz zs)O(tsp&+NF+dNRHR)BDQ(b)5RwFt*H#3HPpPhU`)i#xKG3ynReKn5NPzQ{1A&uP z>@)(B0B~#ra|*9{w_3Hf6NLmQW2+eNQEkX2l2ziWcaRm5k0dNfg)sApy?VX8ROstYTw@?s6h7E+GsFU~a6aH2W}VwJs+f3Gl{t6AG%8RnB%0 zmjt+D$5*Dn^%MTpJI#4eU%~B1m-@kx_gCnk#1`^x74;+_dV#fM3TD%|E7VlVB z#g8T1y7qi?uDOC`6|Lr;1%71o5ts=S(cVT2l1y^dwER6+3D92?hy*|tDze=v@(%JR zsaBEgb7@81MIaIYU6{|2VUMId@gDLe0pGEGut}b9eA9xzmjEQy2p(Df{p3qhjo_me z{~!TKsuBEj7cw6qUy^DBKYb)rK1Ki%0OU<3fh@9(gB?+c{REkkfa%!5gb8t?Ow&Q~ zDRL*Nggf4<@AR-#6vK9s1U^IVB;Y=_L6=MRhjZu^AvIHz3GLf?f0#Ux-~ zrsWcS9m9%!IQf!*Z<&@$#5XPYkpv(CK$-ZSpLdqtOpYYrSSG%~F)i#dWK9Crk1Y`z z?O56^WJv;+V;B8Shzqhzi@TM)Nx*yTe90u)7)=cwrR0X zB7c&SR$l7$F{mpd-eG#^O-l4=BxnrUZ}FG)3mkG9kvLjaPp0Nj3hv4sHA_=$trV!P|E!ehv83?@y~~%WvInW;^3cqm zk3p(eWBwh3RC)@6jUS|n80*s*q&o9EqR;s37Cn|464CR!+MVX={#gtp_TU*bV)ifL zr`$QuF+W4l}c(e>Bc{g| z79GaTEG&9?X#VK}j_5+3!4W%jeGUX0TUcVo`ZNm5mERG4^2(ENy=9k>=WR3+31k^t zOUJS#OJIU2Tri7|lQ-}!Akp@($(^Js?rgn8+}}a&B;YYjjlfcab>> zn2&Af=VgxFQ7r5CkTnTdk8R>k!J6x$(3}&iznA<;suLaEA7TA|vL*rRu^ozhqR+MV zv}c{zA0%&*YQ&ar>{_uuLe?Z;eet*|AfMQ+JzN?f2Kg8{lT^bQpKx(e@(FS#0q3zT z(R?!NU5&XmhiXLhPZ59w0AnlPd;qJhg?5j7?rJ%*AfF)!2|&iyS5ty`>xo5~+lWI_ zjURf=JuWOiPtGLZJa*1Fp9bXI*xPC^Eb_}XBKz$`AOS)J`JlJh-P>4LZLVOEx$yrI z`IA({pFKxEkiJU(B;Y@`$&=4QSm>F^3*R7n60onJAYiC!Eu{z0e{~o!MfcpjI)7l=(_6KB30=5^GW{bTmnwIg8$(RI;$F;~b zPU`y4KAUbhjU6H5DxK`!i(DO=vra&JY$FCu2Zvw9`#Hh>fN|$1hQiZ^0H7=OBQtK{yXKJuZ5Z zQS{JpQ518~#mVG?P#S6|jm&LDi9q56@aG_fCKSS@{>pngpz?h$6C1i*JZQQjv`WBOOJ{1R()P6;Y%hUKFhm zfTS`futO>V+9PX{%A9~VF&er7CHm`vv4q$Fa$=AGql&;4 z46k4e$)5!L$Gt8Wd9PQGe_B(A+B;(#RlU~DYn(1=>W*#Ns86nWjc*y6KRyeMs&gUZ zVAIa%$%&1sn1eQ|$OVn64}V8=9h>Ttk0#5GcP;*DWxRmKB!Mx<7S8xd86r*$$$Hnk zpK(?eYg|kuk_m2$In?8yV=Q{EmK517PIgk0U)#8k-YTcJMtV@`>zG->rgdfk?ef8< z^P+A|g8$8H9MBcB zJdKP=z}Qw&B^d96#LgtoAZL;n4A&l9Ug-Jek}Qv9)I6K4Ng(t!c}kw7Inm26?plZz zn*Bu#S-jx4FNuYZX%`vrX6u?<`vdUPB;~ zD!kCcCj}dJQc1k^%eq>08lqF$i}P3%^Mpfq2|j& z!e+OhK$dn~^f}}m$8e8acR1K^zWvZOgt^~DHbcY5(FEG~T@n9O8Qe^ZZ<*H}h&*JD z#3Ko~xv_9w6VLKN?(f?juQS?ufg6YBnTI2h-ij}vV%uDN3czg(0e$VDe1`aw1yJ6w z#ul|kx2!^OTQQ)?w)XN0VoTQEvw6g?ri*R^e&Uq`D(zcm5xjn<$nrAELIPQyz236G zKv)rh&Dt^Hr^d1tdIhB-fmBahZ>jd6Lc~H=ah{duRg{MW@;vik%EOJ8tW2+_OeBzL z;Q-6D2MgYsb5Q`lme3@CURfvTbm0CzWgvkJz4elzwXZcBZ4o5p=k*kW1Y+zy;9{(x z?L6P^#GZHq;Yk3$wvO=IC`F^U(weo=_+|=10zobwSILae(x^V;j6bF(xN%xt^=l%l zQnh+xL{gP(bIIG@G&HZ+fGX%up$)cH!oCbkh{=nh4yKCr#*p{&(zn91) zKyDrwWKMG=LEleM5`a#fkMnul18ra}6LWBTzCGK({*@ddvv&U=1tEbT2Poz#h{2YR zNeg_0z$5^kx>=In0?Ye4BgX$2p-B!bG(I!5f&qa=+;z3AE1>mISc74h-zx zc7HKt=i7-&0@QP+Y+~7hRk#0bk{D^>^ruy(x3>Ibor1#xSkDGtj0C;ONvHvCs^=L7QPycjhwq2AW2pJ7@86jn#&C1w%}t z{H1*JiUhjeT9p$)jU!3uOO1tNh!FF&XPh1)h#SZ<(@ zBoOi$>no(z2BUU+5=A0`NY_u9n>}u>P}Xs7Bn{?BlV@dEgYPf4M_;(KT`7BYXzq6! zM_!@D;K=jcNhoyx$z1hW&5lh%&IgBGljNZlANjyR`_(~@%ln{Lv!%GI6wz>)$hm`SNk|}@ zehMIM!z7csJ#;FK*EVCqyoLEoe)_Yyij^f{qb6<{nupH7rVDWO;OL9wVSaEJ4|9~~ zL1D`zIH*O*1r~jdTJ(uIpYsfwCOM5mk+uc)k>OOooq`mQ6@rieBqI_Fg7h)y zB@jJAkW^u-Ruo^b#2t}ecvsVIAhLIRYGiTM1AaQ_TtZ@KR$cM@=aa@p`& z#J37$xkbZDG>Z@8^%{6{8e=tLvZoP_1aKJ>!}*nI2hc3eGl)Y{14fAL-#9e4*O3D6$7X#^hl23<{ zqIbt^v(uRCVsVy8eJU#%5}5j?sf3&a(_KcU(gin-UHk1zh=TbbVv+zeWAdSxYLX&3 ze2(`9b<+>QdnoZpfS0jQuOQx1cLg!L#t#b!(hQMEfOJEZ)?8S{N1gYhTJGabQGt3m zp-2E_zhRJBNIdUn)G*#1vWys?{PwU;Cl(2?o?4|^(o%5Q#@5fG-5EqA0b<5bcQKbK zqD??8CZJTXJetTPK(4evtgT=-npUGLEB01fJ#0~fnoqPni?QsC6Kgz_U?c#uFIA2d$2?$r_G9JmYI_$_ zXKQt}i|SX{&yYO{*k?5-im*?s@o?gh04HNDc4X%GO&QU2n|A@uvcrkdNvp`|1Rw!G zRxZw`NE#rm${9o=0aBR|gDP&lqBOgGw>+8{B)}*WVnK|wLT3?-1YnouDQJET9orPX z(RcQJMIKAuB;cLZQ;AumDv|g?l6P8x^9e#y+9R^Ia|P>ny3AO}VNr4r$q7Wyi(CjtAcL4eq!<6NCC+m9z_5^&DyiB8EmE&R2F zAOS?iJVqqd`256`Kl^;M-$2$RU|lX>#H`ceKZzJ5z$ll-+a2kDrjww}vQHrn32-u& z_2xEH5GSqJO#~zaBbYm|0kXO@s z7x0=!qq(|@Hy$WFY$lTZ|7`4&WJi?8Bbk4_3z)Bqd0Wj>TPCsgRu9=*X_8e8LJ7iNB9H(fqYqaIp^MD{1mG3|kN_Yf zJx&CWZ{NDRFg4S5(m$QdNx-~dxajJph`Dc@XOcTfWuo``kzJlc<|JSqp7eAw)!h$k z(b3|XQTDKGV^AbRQgHj|NBV z)YHJ*6yL0OLAi&kawo=@PT@Dz+O4^nX4~@GYXSi4N0x`+1^#vRw#=x*xBxhQaS^5o#?3lld1_wF7C8BFES6%efGMI5IOosjs*S$8}*@&fl0j~pezQipY; zKryEw0Q?|1PVccUuel&FkK}zR=bxzeS_en&6v@q_`9R3kTlJ~fpW;4!=xjc8%&2FN zwNi=SqM$J6@%E%QPtZG)K2zow@$OOY9j{L$oTLw2#s@~+Wo3ySqc`smSrRTn%%byF zkG!EbKAtxw{PLjFx+v>=+O55(`BF%!_D>AWv+jbjJt>|}%4Vk=Q0{Mr5QvET2Z8y~ z@i;;S)T{(;aZVWOv|Vf1J{TpSfq{NZw9V=;ggZNfvokz9G-p2y3T+v^FxYawWl_V; zH5577@9<&M;3;<~dy6W2#WW9}G9uHAW)R4YSJ18G_nC0l;65X2)PxN+A{+SNqN&7E zA>bgqBGGQ)9s3zwZeazwN9OgxJ+70|<2_olk3xvY6%eAu-6AB*F5~5(nQn(Zg;Fz% zYuJfRJbQl?XY8GW`>SB?CM?|nyIQwnZB)Ay>>%PLQ;C>xjBuQZUL+CGP8xH^;G~4x zR3P^_MA=bX6qu+t!^PNG#bWJcZBeVbOFPqYs zV&;tS^Yfx7JeQ2lSDlOQEB{pG7ZZL$G+$Z>mH`t*U&5^~BWA8pJwKxyMfDFBZmzcW zHdp7g0`bnz*z-g4hggR=I3aXtaKZ(yBI~Z!u2DuzCEKRMRSZ-lZ-Qoc{E^c=e#)-q z+yYmgilj%_qrnm9>uE5o7hyQlZ_D=o!gaH7wWkJ~g>~&(xdHso4tv;0#j5Lw5h&JK>bh;!1lOZgrzZ-adwk{e@a$P}UU9u1|_!}=zLtIMIjz7h#$-c4-- z!eq6{xTI@-Z3&+4b=Ow$YNhCG&!RZlvqSSQRC~+lg~66fl?95DyBW%7waJ2b${qTD zQ1#EKtVW)#+cSts2Q6}%56}u>!5*IBmF@~wU-p~5-D&|I&dA}=Tz4!~-{hU)R>`eS z?ONVVPd^|RPh|uxKcQM?mG6`!^X+|b@60@2o#Fp}OE%*YnYIS64Ypn^kJK*KM{3u~ zBarh^x#TvwBWPHoX3r{@F0`!<-$>R?o1rHxD| zAV()p4vxOq-c&p9>dVC1m*!)>7yEy;sE2HCHPf7l7|*YD>>@Zpynl{62lu~$?5L@* zt2JwmT`gh<#k2BC+NVx&c@;r-gcDhgcU))UD}&=B6T~Nh_2_(daN^DQo97AG3871a z6E3#qsa+iJwgUsi3ai8cX0^L%2qd)DjBjL`2Vj2J3NKtK7a1V?>N58%$e+ z*9KcL$Wyz>dxWvYxP44MlVa}!M6HxY^jV1!L!KDEI5_bl_mH%#DS-ve>cXUAW+Y1O z4EK!lqSg6+lW!c{ZzP&6vqUgIA)hs7xi=k+(d^9NBUx+G>7!A4GYja_tnIRW|aR7g)Gjvs1f_aO@PqoDb^NE@}7CEwr7ACi0$zgJ*v&T&2b~#wM{y z>0ZV+A7>?!%Jdm65s!_gOLr zBiGzPzFCPfM~s9Lo=W^3a?Z?%lUbwO)%;{gw_2gUC#;!xLaFbJiROqBn;i*!>GCosMb#$WnZc&3ahZedxD1{%8TD66yOsTXM+qCA3BwKUaIoR({TIjuu(~iG zt3B=2K6c@qX?5_c+hKd8H`D1xLwbU6p9yyjYS$~9n$M;-Q@g6`4d`VJH>8x)q1I(g zBcs}w!#9jXgk#gE2gmAgYkXsVpC~VkJmb?#>J#q_W`|^eSuTTT*0^>`Y#ln9k(U(V zVZ5p+!=p3KISO>&Nw*E|d!Y<1)-L1Qj><@er)r*WbB4)Y%-eMLqMM>&;tmHJZm<`i z-LK^fljY`Y*D*R=4+e+tXwE)vC&Mzp#t+Ah3Zvu4FP!X6EdxK2-l&jtB}v22l4 zq;JWx-R`6eeedx%4eq@&N=DM#WJzy#d?R0#PnhK{O7I*$wuSXPb2E$kSNKv$uie8i z{X%b4t_SD7fAHWPU|qY=vaVekv94VS)+uSTx>hL{cveCBLkF{krmcj>3872acf^`$ zZG~-$+QobTp2`|2O2M_~&amw7%AbkI%gy4RQYp z`a2M0^bukW@I?Zxb6u5ePDMSMu8K3pRXsMgt_)X(VqEi3GM-p#PL|lK9+mMnkvLgV zJ~-S`@+3~=U9+7${Oa+%i41I=m#)$}-I|*vpo`2Ic=oyqz)Z;7Me=Lg|!k z4B3Qp^vpzQkcw-`^lUohH{ z8m~|CR7U75y$OPisd$o4o#Ixuac;uOa#Z5n;3&7$?NZ(X&Szv)X(`VA?p$|-ZDD5ux?U)2b6GtBDap!Yhz_xu=VQ93>#`+~8>8f4<%#tg~iD zQmj|jmXy~#bn@ij=&NxPX5H*fkUOi{nquBt#zIQljqc5K=P{UV#Xli* z2|0%kh?&~`UhQ%60N^gp7q(K-aod4CI#zBwZ5+nLH-;nAX@xlMzJYe*^cD{Jy0t)@ zd{S1BDr*csWrWqWj*er{!tp8~vGj@Ii-Qxd(T8+K4IKyFgBGBV$Y%&%g!T~(Vt3v<5YLK z_z~f%%VWiKTVop5F+-b%&0msTF!5##V0$cGX00*jvTJDbp?N!*X5`q(wnH-IV0@Hb z%{#<)$+S9II)*4_9W+TYqt>kj|4yWnm>tQX88Z)_(!$oJO2_dZ$Z<4lPG-j3h-CnN z!Zhy}W+PcLqYdUsCRtE4X1?D-LeyQjN^aW}lK+Q6GC3;2FdazQqRf$aIA8S`m4=AA**`Vd%vx36NWcvc?d&NH zA|v%N2ZcBeU-IJ!etdp#+y(4(rNACL71%02F1Cmjro^&47doPt*$9tk22n;vAIo1uz#L1yY0saTUtW09cdiP1 z0+|NgT+ho{{TSeVck<5g=%ey-ht~qE??u)j|J^T+l(|-G1siznX-O8~(F~7<=GBit z+20tS7;L-{7i$;tA_~*pGg#<@DAK0^9QU0ZsSqL6`KuPAm~E6Z$=>TKMbDk4FGXX{ z7MrZ2%_|biIj&xD>&l*SU&wuI`t;z~^Z2$lSFC8;mpXVasEh>}8Zw1WXR1zKFJzp}uR~ zZ9wp*;c_8xy%1aF0&uhiuqOvcD}SnBTi)IT?RfU9E$klITGfR(G?pwFT*Jahi*?eN zI|e6R<2^3slf{Gb_%uoiaBp{eWd-@zDVaPuIGWz6?Q}PReLMt}sbgItk_!&piW(Zw zJW7gaAU5MRUN+09Wdw6mMr$c^HkpRwDefF(vlX9$p&v@-Jn{^LPdth}ks+jvBF9`r zexu_TZN$_1z?W?^e)G$#d)Al*?j>nT@}y0j7T8R-s*hX&D=~D0ncQX+a5L} ziJTI&A*8elu910On+ID6cFh&OQYzD&(n4^nOzpX$S-qYug!JjbvFGcjYHB<6;mj67 z07RLhc-{&X5D;GLKelV&xl`=E-ZN=wRLHw$T^`*1Lc7O#Ko{4 zW8YqmUQM2Hmxt!7eCay*x+n%hdhs2p7wj;o+pAq|xwCM1lMJ54#|osVC?~Jea18k`VzM&202(kiU4*@b;n7iQ2TvYOQ<-Z!Yps~>2Vc&soaS`$_^vVxYE6%Y~a zU-qp>-ene(-!0?n;BMDK6z?(bJ!bDkg1n|ag`53$JE(dDb%Q$`YD*xM9Vvx7T~y%^B7BpLI@k&s&7Bjp580jxgqIFR1;W_4`8gK>R~gE)wS6^+I-lL zL-ad&>^*~%>1x#0SQtwd^s>hSVtIonxy6!w5N5DRkdmdmXT7TSnJGd=7>EjHckpBh9* z+i(LgycMOnF>Iqu7GkrOanZSD^ul1v1=51UT5oQOBsT-~q5{RyGH>@qj-Y zatW;Ccfa#+9^EpamaHbtAF!rQzHg4amaGo13N;QgYr{J7mD{1fRb$DzM>I5VByz5b z>cZ*pk*-6PjiSDVsAKA*_%)7P_H}iSGXHZj_iLee4OK2~lpIMsu2q!n+sHOp<;2?` zB*6nR@BT&u(b<++e=x=Csf)*3h6q#M0R7rBHu}X2go~ILrhr? zZn{Y^{Cpp&@DajfR0vZ>?M*lN={`dE7b1+*1o4Y%IXxU_dz;xKfKQ60My^W@KAkUa zx+zNTQ67(AJ|mVIy@5Evo>_KgL@BVTJmUWEH2tWhkYC}2gg7nes<&$QzIGBTRCkqa&54clO!Ry;ABJqPQJB_ zmTOYc6Nr|+G&q4^JNa?u=8~^ka9SdT)xr2|q7mY3dVJu@;P|WT?KSs)xD338M!;em znZXqQS>9$7e4mb;cz!W1t|1;+A!ePJFpW8mJSX@%G-BdmaAF~Y`&M$#bZTfuAjQ`@ zt(Fw}9%P&4zR>Wx$JO~KdRyCB_hd57@KjT`w{%U&<`TbWdm6_&@UhtD(n4$3YEwRO z8{e@FcWg`Ev5hrJceU4DvU8r^@zC7VLYmm@pGqE~&|P;x#87DDmWRUvK(QYqk5#Eg zS=z(bP82r3)xq|iBmmxhK-7~hL}f%d0RKwDlK{SZ;NYY93yAPPC;|yYxRGtS(<-!l zebnNoG0qcl2H>h93!li+;Xi)=2wl&U=MmJ0>w)_ZIQt!k(uz7b1wsfvRzui+HKj8C z5<{L!<~4L036yD66gN&8KVV}kn%^TN2_Ws4)T`Cc3sMjEb%Z4W?A6tTC%M;sYo5c9 zv{3>W`;D`*+U>zOxZT)Xe-6zZvk1o{>{0ZCnpNY&7*eqikymL%+K)q4s1x(4ua|im zJw*b2DypzzeY~JdfIfquBmk|b;z)tUVVMAaHi1b1d`%^BsqE_slpTyr7cfAoDl}WO z_*kOMlkAb7_;$q&5}JAhNc{oGszNh@R4jz%Q>qQk2tZ=R*UQ|-Pe_nJpQ=JL38xi& z0`&6)B>`wvp_v5rLQ^iNWzFpbCIN6op(*UKe>ua(qTHyVsi!KnD|WhXbg<2ei%%S5 zBL?pB@V-U1Q6WZj${ooA?95iwl2D9D424F_E@{kG=g)+)l2b)H)khRI|C6bP1nO1P zMop>bXV($VD)x!Rs>EI09QpC9#jzmE6JMEA_-J*eGpLP@x_~a$#tGvyEcCHF(XPPV!;_wjbO{ zx9y9Hrc$7kzDP^yLO8mLvX`P5GK=Dx_c2;XpxN>PfYw4bMt~1c01^mr^8pYbE8dj6U7>)c?$RDu_A%Ar8q&<%0 zgAwcptELU|5%{4YAfo$sG`cf}YNl6|p0h+78cKlx{^L^VIg7od=g>vPH4mhdN#Nvy={dwb3Nel9&@EPg zhfn|#2v9IRhqy-q#OXP7n-$_=6oLdo6id$`=5;+enx5%#^JYoUq30N7;UR6joZiOk z)p#$U+X=N&{Oj9hm)g2}C4UUfGjBw&A11%;Kfu_J*QL_1&n7pFA|R08p@FVNRyINT5MD;TMOoX*e>Oxi7&;0A@c^T!pz*r#Jz}fcGaL3H=kwyHhJy_iXpK z3_A@2@UOy2-Og-N2Om+^@N;N>!n}HfJ&Jw+?#c>cB7##K1l$KT;KGBc(-|vb?%WgU zV;)YokW>^0Nhlk3o&nA21SA1qc$BlGZo0x`o9{Jq20=*xdR6)06MeY!AhzQN7=SJ~ zfD&#*O{*GLBlH_9%{fW@0F)CmI59MT{ZxeGQHgW$A)jHwy{3}TOo*Y#2++@HfQB12 zve7S(Cpsv8~;h1#9OYO_L0!okZTKh6qnf$InRB!fAxg&XiG5z@R zF`W`YVG+__)sU_rFQpJ9@p|VJ(flvElmu#pM=+*}DGwlODQY}>S1k0u5}E|i;qm&? z&~Y@6!v7oLNdW)E(!uQU$G7eoUN>sENIaRZFqCajMPXDyTXf#FMfqcBRvK)J%5VD* z%2m)7bufy6F#UmsX$8$3$6Deu*1}v!_mI#%<;z zAPN0bI{3)A?s5MGUA`}tte_!~hLEuIPb#MQ1t*V5VBiWG0zN`2ar&1m_?;O&Bml3VA>boK;Bnac zm#qMYQ2-JMP`)AH1Jvz-%bs+wxij258c-D^AAFhtANCQQ_214ax3U##mpsUeSOSby6_hX^r#@erJyvOCIAm7APE2~Xv?GkSc4ruDenKokWP$y~+EK>}4OsF>1VE);#p#}kqSkQLMrX-Gd9eb{RWO9I&7ip(Nm zf^hUP?#p0lHA5qO$LU=>;2X~0gr zNG@8Kud~i3fd*9sx({OmFEW|=Cc#JmRz=G7!Mu=*0lz~)68fiflagkud$!xgNYgL? z{|Y+5y_Kc5*1Ym-X!djwXou^8`wyrq%ICWXN-N9;&0NWFjN$}9Rb;_Fwv>|E7NeiD z*b@7uXiq4X`8rbs3ACx8OX}<-h1bi5NziW+lmwuy z3R*I09lelD0)L0VBmfS++)&7Mb*HtpsbOr!Ap@)mIv{;~7*DLqA4BtoIfUh5^4tCc zOa&bf2crlG#alEKE9ihY))I!X7UubM3JEl*pz=?^XfE`?ZY3BAz$)l~B*5aZ^8g0~ zB%yywHwVeM?s4DGP}48~{|efIYn*Vjm9PChH2?Huwguf`{0op3v;{p#g+kQbs!>-# zIC$J8@SGN+lsTT>A%Q9t)Qo8`4ZkGhiG(BpWCd-(G-MovN!WW3mIScn+k%#NJ&Ex` zMq?Bw0IHx`zNNL=jaFLlKv!8D$&frUI@X_VGQ5In*@qn(q9H0@tx;J)wd}K(uyiLB z%N$8>k-&%*RLhQgs#dG50(nMA=Z=y4-sUqWC zHob9@-r$k-#di8)V|+q?M^KL~2{kkXfEWHsy-*;OlA^P<9Gy|_=5F)=2|RGo)E9Jz+gi=Md6SiF46m1bhDUen`U(4UyoA z_oyo}+Nx7&B7@|fdWvDb$4o^6hg>nWLwvzGg+}8!w@?N1Zo0);EHY8JzTsX#p)AGo z+wj@G27k2X8rT}Ijn6HMfB5-7J&paVv|bOdpa!mnVdLI3;2oNO=EOtbL<1x5fGp9ZKT{>=;gVW5H+f0-$gb zZ}LdoiEsEwvWrg)Hb%G7W#MF(A4&n>see^Zg_B)=e&V25LJ{Ab#AHVTfrH5|AAc;G zT-mSwP_fOY=!B#}y3@z-+!_Yqv9P$+kXAh%-P+ffUBoVDTDYPc^m7j^VXb{LdIP%C zO%$_}$KK;z4q(ua;nhN8?GhmdSTc%KGPw43b#3neScb`ToE$2H*~NlM0!^2vE|}v0 z>e0m;)eKTjTl?^`jQGzA@C61+?4y9i=!Ed7^H?Wntnd~oxEdKe#P(&}m12{3#vVv9 zC)~NyJ0uCG81V2n)x+V6ek%Fl&lp4bo4=;_NFehiQ+qFFhYw$%+_(Zv^O!s67qwAj zmhkej30mNLy?qp1y!y=>8%-Vn%sPcvQEIUv0 z$lzl{Re|8pAF4x_i$us6{*s+l+mJ?L4s$!*O#%fM3%EN2AKvE`mQTKaPe-80%5mfh z^8?0%^+!lTh*X_TqQ+B(|9KsAVQfX+YuqjF>WIL?03wI`aYZ89iL7EFP=2X_a&u*Y z;t8-Qe)Ik9JADY{^UEp2$Qz>+P zbYYgt4zAnu1F>3o*kEjMIN`KoX$3TIpeslq-kDRo0zA=~bi6h~wn*3TSnVVU1Bn>? z(+PMR=YO}1UXXK17EHL|*Zrp#WoQTtC!DBG2u~PH&sRzfv`I-WXy$vIIVFK2HxzMD zk}KU6$fH!uY^DEb*5o5JVR==f6p?b97R!@4t$IS}lAQGgk_RACf&NlTH762w+yp%Q zT2sGPG7BFG)CsN-pB6LVT@UWQ^e>GZGG};fe!Ku{OZ_(TCu(Bh zDD9?Yp0u4EK0P$YadG5vBj@cY?|BB=#RXDiKnz8NOMgvWT42mX1oouURv|~_Qh17G zzRZG30xhnczM!U<)&(W%m&BGd52Y8?oSt;FU4fnm`C?G0+0l)J^l%1;*es2EsciDj zxC7ozxB@+qB%ETvNoS~&3N(z945hfmr@?iT0;6k9j10VQu8h z5}tMCvzfzl4r6s;?_z6J=k@g*#t!t{(0o_Ex0gOWI5zb#J#*3Yg($^^!LE>S&w1*e z0yTPoYr;nf<;9UZ~ikBW_R7no1EwfP1biTY4-*-!l|abTB_;=^-godcZF7N6h*Pzx41lAPQ7NHpnzB zgH6I0QX2{6soXF5IOn72ygSv1o~IZEs-ch=Lqk;f=mzysfodqkHsL9$I3f*ApZ+3& z7SmTlX|&jDgyDX7hzsguuBY>?Ig_?4FdDpquLQOlt>u-z)!0NqufJCuS{7v60#KF;kRY=TYF1nNxRb`M}We-bP)#zh6q5tvX^GCmJTvAOw89PkkL;l#-+Tc>Z*}!`_ZnHy@+FNuX3?>gIh=r=Z6@ z$i4KrnmlCM0_`z;1K8(ehq`e#U8bMU%5ux-1v!^w!SY;Sge54-&=43NevW#$KaIND^V1$K=nP=0ZH0!7d!*jA6tcy4NlJD^J@SUF7MSP`K z+BwnD(EP#k;j@kLiNVI5?pFHfk-?lh2|(GxBQI5tggbqcxQPAHm050L`h;?tOIBcX z5=d5(XB*!t7M_=rCkc3l*OBCvQ@UZ6>ke`y0oQOlBNx|Bx5EW!mg&`GN&=<@Jx^3$ z&YfgQ0+#hqf*L0#g4RZr74RjD)MNmioJBuy!A>aQZMCDx(@)!o+2@2^>o05?- zK@7fLWAL0QpO@%c>$LGQ6h3f;*L5kAc_!^eGM!)Tlr4;JInH+1I(>~QI2rhdJe?*2PV0d9shFWyVwT1oWXi4)E@+AS^vkLQ#75^Fek$~SBd1FOQS*Kuh zs!H}Y#*FXY3v!Fs$Ihd@KGxjmoA-Dz!5t6H$6to{+3cShY~JbJ0J$Gk5J;ILmfo+i zR9Ij-e|BwoWwi@8QDE~ynw13N<Y|<3-i|z*N>4a3ApAj zP61h^4It`&f-FhEGJhK&#In^y8$ft|iabe5i^*n%u>1^Jl9UzG^Zae(Nm5qKUf%`N z=gE?!G|R~6x05AFS(ba6tJaubB1;mmJST4^iCxZ@K9i;1ypI_rUD$KiMr&Af+qR=l z_V>`d>=xEW?r^Z-I=zW)m)y0H$5$n_`QYvNXqc*HTR$aB>eu2{7AqrZ~bG%tK0vU)Bh*+&vmgw z!|8mfxgYJX&@h}{;l8zdB>nQo&@|b~JxqSve~>iXPR-3)xgu=-kA_XSlbxHL_$Zdv z>}N?Np`@Xbn2R&_B(?gR@6onu1n?{&?jxd&boV?0A@zitVO(z7%cJNAAi|YKF1Zy# zdBem%R}+UvtEONW8QIBgPGRVhK;H16^0e&rEkbJ!F^+j4K}Y}+o`0Mc1nlE2ZX++4 zhY*MaK<5_@nn%n@*hDt^83V^T7@VIRY^vo{p@FY)c6uw_p3bAHoo1qwL-X=yBb<&K zIqy!z&okeL-=QufiXtP}HvdrU*QiiSX#`3E@x&KR%`q(JB+w>2Vp>QW+dW!sqEQ_1;J1^TQg z%FqxQ!S;~SDKO1Cs(Jkjif4YzT8jjREs+9!&QaIf55?H-7Wk(GCIN7X6c_|fhvx|R z&k0Tf@Zu@Z$Cebh9h-K0wJ9BH9vr1W|8@pXi4=HxoB~fr3f%ZymjZF5MFl?qQ6dE@ zgz`pIo>@8tTA5u6baI>fGii`O-V!O$V;{#|1o8lakN~7a3iLpdF%|(mm_Q@|DxLyQ z*Ay6WeN>bJaSEJEq`=cdDe&|}3Vh?OE(IpeYYOzAFPQ>;R+<8dj9|N@bP7zfj#8k1 zVQ7eFx^x){3|k@v`kVtP(7$YfR|!l4;1Vg&=Ntj2!_&`8qV*cVNdR6v1^U>M0#8q- zK!LhAN`e0E44&|=F1gyDjfGaHwc1?5{_yzjRx3`3Gxh@ZmX`}dbMt=0^Hx}7&&V}B zo#sW+!aJiB7EPrV|la|)^`JVJe#WgQyg+~I-!XHx0GpdtjE*`(po#mG6 zp2f{|bi0_{-4WdYDXK6)RM(0L5)O_o4b2BwJKinhs$Pf$j30xDS6ASph#^H(Sr7zG z4T9ZO14L;qppe+XJdDMj1p3Vt9;Fy%pALmcZ`Ik{#9$C7j6PeUMw`Rd5Q}@;{I(>D zx9y=sCuj8J(Da_g8g1mfcgj9rqDG6jd!i^Z9KNIuFF39dVlA#tUr;=ACpwt~PA*uZ zr8!4QMjKb@%NF>q1SSD+!5S^iIRb_+?XX+=77Km^!ASsKtVT;Su16>E`n$xJh1$(% zj^oK)1n_0Wiu4>lSlwOIwGQ_8(Cp|VYB#vU_!nTpt8FIMP9BW1M`-?rhGuwa@-!SZ zB2^LPZmwXpLjsX^mbZ*d^sI7R%^5{(WUe9%2|Zs8j2CSQjUG=Z5q!-E zVMIl~2J?cw!=-iy%ax?i=+B|~+RG6}N7$q22OtXe4r2)AjTm~7#!$flvY4TSkT19S z8VfZEZ zufME;gC9e48s`EIaYZc1d|89g4F<7IgcA>FCLW**rG*dV#6SW5G_5LTgJ`!}fV ziw1fun<(R4;N%sB%sc4`5{O@Lup%YCqy}4dV-Zv-^KQbC0IpygD+K42;t|MyAS4MO zcNC5_Yc&bE8iTyq`kc@nrcyhF;wrcsD{RAe-gL$_D~ zo#Uu;{9=E zR5?t8*^mSpKm7oTqIE+Kfp$?K5(xCH11L~jSL6_?MWIL_)XjzR)i{v4Uc^{)7q61p zcurIz3>ouT7B3ss*(((;0Eg22r1cNCdq@+X|iH7D;^fw8#YK4QaG^Cb@ z6mXruBmmABY%C2NM}7+YY=V;j{Q6*&7salpkiO1Pj>8Ce89leD0av>{-H&yazlP>3 z&qKf-t_SWv;KF;)OdqNaPJs}oKh`)6zpPuFzXoZnlBu&ICxJ3m6$+<}fZ6c$AkQWw z2_Q52Y{lKh_MsP;9_+b`;k(-p<6TK59P{D|>rqXaM+&97;-n`_y@Z@xme<2eY# zyW$iY=%j$jXs8y1Q3!k8lfmZ@&SmszXaJ+S5{#WedQk|< z!O%Qw536Z_>#_F}&=pnFj=NUVL_|nltsz-m!icrA+0fI_wCOYwXjM@)?Q7*#)9$pI z)+`a21i%$l(+(j}O}k4Lyi0HrfLBvZI{=2OZ{No;WaBUbUPU!ryMwjSswsaB%}@6t zU=NqmL-!wW6%Fk~a0-MtZD^cUG_(`(mxxgU%83?;0>{0XsI%TZ!pLPr;h8(_X z`tlXXTqc0; zATSAlgP*9MdU#9O<4X~Y9}ODwGzO@PoJ#Gw+Qzpbx~sb85|}ui;qlOX^aY64&HgEO zBo8oYR+QEhBN9WQ5wio0+3Nh6P?k+i4_Q&o4ID)#fqEHl#uO-)BfwDzyDJv{NrWc> ze7Bm>OHao@v(vk3MR*EDAb|)^sic$SVKA(rGWK7MV$8gl!EFOA3ayG7H5PiMyVo{F z^~8*v7@EgD4KaRH;+#8d=q)fp#=4S%VGxO;=m_)IYM5uNEi4P;5;OzN)7rd?iHigp zE>{|9k%nIL!S{nIZr(!yNFcz?2T*`S;!a!Py%d53LSTu;Z11#qH(xGGIIT$fjzFSl z_YMCVhP#cqILNB2DT$69c6Pg_2aacWjO}fDUPhNwQL&RF*r3{s?!-`Ng!-Qxh>Y$~ z{74slL}7CtT}%S?s?F#L;6z6E;4dUR3E->E=n43dDECCTgd&hYgi13yF`^jv0N>(g zbU9zS?W0#a{Vtxs=B+no6AU!vORlR?uvpZ(LwE!TDu?bjntG0r2ih3 ze!UWiT!s4g2h_hgo`X6KYP;TCZKr$uERhpQga$;eY?#PYPGreEm}F=`W~t8J-#hZz z;Y)0T`~_3Q>N6H&Oq=CblCXbQBRDyxim(wW?+pCrili=;Z!xyMOl?Hs&)Hz+Dw;`^;J&51n zdgxnYOAK5*ww^&qT_`?8_iYtjP3dF#^NNM5gK4oTXi$fm`q;pY%FR1Fp3Z3CtR{5_ z&Qhs)hbPh@4IDnE7NK1+ZhQ1^QDhWBeX*MiMoVsmqTNo+%dUgi4syHc7Tnf!TO)9* z?x4LNtM+PYr@({sd9F56IrByiNi?WZO(S8}p-M4!`)0bOf!ms{n`GUlqKsX?m9A;v zI`{j1`+UW~;Bgk{h zPb79V^;sTY#mUO4Co^FeLW9cGG%t*uSz!h)chV&dT-KEhzPZ@@2citzUP-q!a9hv3 zP%4TqgQU^iAFURsqpt32r@k_6vJ)?m`~`21?axiMs7+0GWr3;Z;&cHC9-|VhE2C^B z*g(D_=DTbZ8dRgEyKc4`qI4@h7dP_*x}$-+y3`)jD-fP{`9r#-fy;XC%A$hpG=jIK zI;fZxVp=)# zLJnFqs8U@WQ^uheWZ*WTTN=2nYnaZsjf5Gv{v*1kf$N%vY4uEj27c~Nk%o$?sXg)R zG(OCP=SxMZelIa!qgW3~3&L&GwWc!;kFWhEokFrFsAOw8-Hd!lr{+tvn&#zfM4I~a z<6THxnJFq)JzGm%3}q_OhdHCgydog^1rCHPfipa%6x<>Gk?CYPmm(S zkh^)?6=(|@aL!M!eRrUui`=}OZfM{p|6$AJ*%CA$pFhRfSMtH^Fzf7tbVdVb`NLExXIYV@wfj3dq=Cb;@_Mm-@n@xmr6VqQ z=Satu))HRwS27fFgKz%g^IaWD%t@y|?5y-wMq_=Q!V*5fjDsyb*y;~kdJwPNc^&k4 z?9AhGC>NJ%J-@VCHz2E=Al}PVy!lHjszyY#JcETYFn`I$r$J2zWgCBni#8(8SJ@0; z_$toH99nG7HktK*Db>NInHm4`qXj_wYdu{w$HwPQVt(>R5W~TKUpD1;Z0!8chZbxH z=S+Q|ar@f1`KKrQ2&yBVt&(~$C$jNqz&!W0L;K)E8!HWwS!T;HPChvKXW|8Y4A)oi zPH+2eEk+*&c<(x2vh}4K&?1LNWwP6Gf5VnJvq~B|Ae|@EA6jQkTc>=7j?jd_zJ*+& z*33Mbtwe)b5pN{9!tzSUJl9Lan@lu z0;nla3c36|1vSpWR85l*H2qA~^r%X*%<$pmopW3RV!CX98dP(+!eEl)L8agi%%u%w zeLsV$V2k9%h;c7Hjx2X4ogqGkCntp1X>lhpclu+FBYs~t<#(0Fk4|NBxH{<0_uRyGvc9@1Un18U>OnWL^#`$t=Z(LyQm*TP!&%%$kKX0W6d|4+gLy$`MkGX`@ zJ#_G9)j{c5NG^ILfV37;W%Dt%JPj(9|3q+sE@rk{?bfD_YlY1}&^Zm9SMCjb&2l=r zSp+^s0yH4-q>8%t{!_vGB3s`#QRq%&v7jm|yg$rSxGzmi^0H9j>4B6`T2_a`JsR6X z-9zCw)uiwUJyN(oqCU-eY-5@_6z;*j$YO>2{Q{t$hv!Xr1118yq7+8bX5!9^lyvYoBhov{{-4TGE?dc-22}_BLCaU`_RRu zBogroNq<-+UHbB4Uj1-gH7-_f=JsPWCk^USd6Y=&A_){L*?mWWp*6?SEe+h}-}NjN zLUB8-;mGx!>6!+vFR0i>D{!jb$kE?Xx=urZWF}=#4_yQ9?2h~0?Rb-I$4`7Tf$dDy zA8+~NiTT|(LD6@1iq89qKics}QwN-~mOeSz3vnd};eTF*zpJqT1zC_+M+uVo5qmfq zRC%?cKytjKYVil>f;cOO&rv(BwPv+P`8nf6C&j9oiJrP7=F_i$L=Nt|eQxUSDxFh1 z5IR#IXz8zOOP4;U4ncLWc2uPnX2dq6sU+JdO#U{w^R1OJW4fY&tJ3Gx4l{2cj%&6~ zcQkNU_MF;zYxi+VExoj@%fC=|QL~r6>I@&aNE+)51x{-(V|R2ow3e1}H~kxGuJl#s z5J+`Lf6(0zRCnd44go{oR-renFoq}dKWrr$)S~=MJkOaORD(m-<a) zUofBshppRR(k%_#mc8m622eB!QFviWJikw2PU)lk3`y&eRt$a9J*^mhVPal&Jw$rc zR5^=8sOe8p`TU0@icDiNU@BPphG2iCg3Vt}R1(~En9R?#3Q}8hD>f$$YE*t=mQ$l} zMwmIQfj0ZoH4R)}Qg+7HI(AF_lThSqw zio8M~c88^xisay_$VdVrJM4dIY44D)?>usRCx(8_(QI!TRIOXBy+hAwlWVE(NW|%( zsOroBR~f#C-8I~|id$XFT#Mh1)2rK{#iL@D;0kv7$871dO3#2}ENx{vMl0VzTe-?` z6!HvPI4n;L{h1zHmj>0ze>+XF-YbOmF8v@F9<`2_>6iwN%U^(;j$`)RGX8~izJtzb z;5>It;=Wf}^sM#tQkDqco>I#W0?3pl=2>jF+hmKUOF*Rbd^Cfu9XK7M0iUQ1Sb9F1 zgRO12K3MCgmDh@zSF;&uP@UYDMHiUDWIXEUQKvjz%(k40E8Lcz26KI(^jA19j22zv zfSz68I$FBm`tX;aVQ-gvOp2$ln4tOZS1k~fS>zH!9%$zUY3KF(l%I{yav{x~cTjzs zyRyw`P`~+-shbDiMxmXHXI53S%4VJdVEl6fU3yK<>bO75U#KnTMRIt?68wk%DHL(1 z4Srz{&Rhnb|9-~;>e!exUfl|2(8x&pg7vcJy&Jm`oy`7;vM}2?;iG|C%HH>x?W8S- zpqg0=@)-#;q;#~QX0}D?aU4@nd~bH#SsZkA*^(`2u>cFV-pp}4D)YPYH-02~SRcVCO zPQxgYF|VY%IH0B1rjm4T_k3@4tv?#_otRj)9tqYTY{@|@-S@r}(mfV`+{!&JhjMWl zmP(rQ{xW0}LrxI(TU6MWmF~kgib&8D5`x(hFFh;Yutl8M^P->;FuzCH(;(72DhM#o zg(iSMGN*0ea)A*se?oCm88e&ziFK38G>ZB2>HMhF;keaiQC_%(Z`uv~1}{?|#e9g$ zr3k0k`ZS3A6s=PF#y+DOf@z0N-_ZSEsqRbP*v|vksc*(B-nR&k=65(Lq(P0!-d)f7 zRDIbhI$4Rgzhs*-z)=9$o0PueAYizhDN`Nn*awQwd=;AVV81V${+Zd*cN{`ziJ=cP z*+;a=%Fl5b4p#%$HLyTEm}jypph1|*F70x}ZPTRSA7+a%PChv0=eGb^!G);p-AOuA zLP3iKi5c?p)8T9pUnaZ$ZzzM(OS@Qu(7F0U>wH#Qr_u~C1op|~3e}UjCtHaIwJ5vb zDXfIH6r9XSK&_Y0u(=pSUs*=2{7Iw*TIdZ&aMfKK>FZuyD+T4aKg(zIkI6eErNSuu z0}wm6%J9tq2YA{|k_1}ytJp#ln}4Ui*uZgs*qBwi zG3QI#GCcPYr{AN~_}r(`+-?Z%>6j0q(LOB%qc@?Rj@5_0v2ySqn2b& z8UCKFSo$JoCeERJ#pSQ3ae-KkP=0?tqE$M?2wUYOML7M{z*~QZp@uVJ zTKY~cGk3DwU9}5A{Q!4Q9B9db=#pZ>nbz%ck4fr=HZ2%nz+6TUB_ecQ>#qhC(EN<9ext7vuoU4UBwN?oa>VOQHwun*&jvMCoksp z$-99)a%6+w$xjfl+5VUxb4^wzG31K=@xGcXi%mKU^F~56J8!OTlt-FF8-!jWV@_f| z(V!)sT47qdQ7gOL8tuX@NoZ=$DKB${lQA>*q1>shy$Yx7LkN4r4l__FZJo}*(yNH+ zd~IbFujoq8=&_HNyWzghU+@hzhcT~Qk?grYV78o5ML2Cr*HwTpEB4o z^<(~(GNVBia^L4)aJaIlswnL6U1v6Mrp;zz^y-Nhrv*Ca<5psx`xZ3L0Wv})?tj$g zk)<2NIZ$Xc#p&7H=!&YKuX)(l{0@D5H5c`)Df08ws)=rC-W%wP6SFX{E#M7G3Lt>zBO&t+_?E?SB9-{jh{v(T#^Jfs3X*Pn)vz!x9cq z(@BM{QNEiCT?DHRQaArZH#CfUS+xMJowlcW z0=1%z3e@slnqGce=iwFOdwPMRf&c?)l195IOs-99=b`4I?|Z~ZI*bqQT_ zWmu6@^#o~Nq0%gWn<|10b?NJ44&x9*1O8QW0H|IZks?!fN75Y)+?BtOG+nPLEv7Dy zrb`;QEWHfNd-N(y9jsD5XptDKY}U^52-wX{18~I%Qvc>Li!dRoflloBZu7P_2}0FrLqx@sf4FvhN<7 zP?x29p0$y@lOjDOTpP)|d+e#zMM!=p0prhh}{r5AmKK$HibJ=HgEze*FKbT^j; z7V(FL>d9QnW~D(b%HAyvVcTmXG$P+}6U5KFlFc_2wbFwr91i*u`*o~Qi`$9W^GXh; zXeim`mi&m#Q+hBB9H|3zQGcQ>Q+hBBFkPdh6);z_J!mRQ+Q%myOkF@EQsyaiL<2`v zR2Df(dz0AN)9H)`&dw+~m|8>;SP-x`Q(9qTUzyui_IBg?J?@eX*Sdq_hNJPyB=1XB z;jgyJueJ_GcpU&<{yte94RL>-h0>2pIo{o`&c=H~wc4IYzs$d<-H)Moz4TS%l1 zx=Ib|{R>rZ{(X_Uy^6kb0;p`vpK}IJgD~vOQ$?M8+QNe`_}3Q0E7yIKnVTpgZ8!e| zJq~I+Y8KS0Aa@7u!p~q;)FTCn`Np4dyot)VoBj<&lfS6Ee7FL59fimOYWa|=Wz=v4 z*hfWGlqi_uAvX?53&L$g zBYy!_T}0G9lH#+P6a~74D%ECAq&1bQn^&^wX;9hxQ>3~oD>Br4$dY&sNzi~qfvl_= zgESYiL|#uKG$68luZd8SM?35FGt7ZNgU#q}t!uTv)=kV8-v`-m+1|sp{SQtr-g}3* zuT@s3>JK{qSJip`CGAQ=v$a!+yBeBfCumO^)UJU(C2;D5?OorQu4&-9fxHe}hjRAr ze~a#E*sirJd94c(dtYCtepO6O#2Gi4`}50#o}Qffy~LdKckH{&@INzi~q?R~d*=1HVt_s1-e z-zO0o5UIQG_P*MF%Xj{{Y=_|HEh7 z)g{FKYZZI`O4m9(iO_>;nkTSXX;8uZ1&_74)jm9QegU1+zsOae3@ zkh^NUs(*Y17vj?PHNT>mt*+p(_EugU;oW{CeQl=QPRwU-gqRO1tWai&SrgtD@(RoF3sr;z{+2-H4!WC^6=j!9fi5;P!j zS!}@kJOZs9X{^AQHR*N7^UHWQ++NQ%{V%t!569h|y#a13EcABE=w(ZAZww`g z`5j)AIU+9f`}$|REK@+1-f0zjN(kxjo0<*0}dFOXxm%{k%qa4&`**|_FX=`eHtiv7&{n@sQ=pB=2Y!dYV<@7l+QItT0c54Z7kUEeH` zwzyDI|E8sX)572A3jz}J{C7aW$EmAG+Z+Cw`-@228ioPbrhyFj~ zH!EQ_jI%VTxrXyv8if6CHaD3zVwaz2c#xV4R8^vLR@X?v;eubWN|l;rW}=nqJ_)bL zIS#LcOxF5XSh)8oYWmx)+wqm~(fUwNE!|FHKJgJ`)xmy0*hGWmKgJ)QX{0Vn(@_?X z_nOMP$hcF3TT!jAxkSRef_*y;YG35SXk9e)%risg)g(g$G6mLL;vux^%HZwa^a@Re z(CbKu2842#@z*MicEKI6LcC(7w3_5 zlm*h|nT@AQ=vLCj6(|RDJ$r8&)V{%VabBe{(gg~x*phh($oE z4J1SZLd~U%bJ}(r*84LgU3?)p6uDkmvJaUb?X;P)GcoV^DfhX?k-M zY0!X1foqlJTLF@HK3_<+i{{|8z$(1bYFo!53cbxcFPnJj-`_&+2iiTq0U8Shrs-uX z?`f!i=>D~;`zEF5o$6Q+)ZeVK&1q2YA~)JA*IOv)v?*)|Ga(Tg5NUEq%EV%XXM_5~ z-gs+7W+%zefXw3F&u%IOr5$;G4fDZ?65bn53Hw=CQs6gLAMvPTQ9#3-cu^f(8L7vWldR00g5)md-zu4h`rOS*%eToit&xl)gqv zG@vwSY#8xg+kVTo&|foi0@Z>>gX2kG7OLv$m0h#?U%d8vpdP?@VmCme!SN)ekr?_% zwtTYj@g#LB3bhp#|K?h%fClw$Fkv$kbUcZO>>&{v5NU8c$q-4?BO>zxlA!^a=Ef6s z*^WGaLdFwY1n&)|#7b|W-__OBx|x`3-piD*dwv5n8cd0lhWbZJe6{hENS#Vbg!MPy zW#iMJ-VLTihJvOarbq{)(i8ErRy~Pg0bf zVhy{)m7dKByPcRv{w0#)Ah(-tfl7lHzXB>s0eSIV&5H)-n1NSG3|DIjg82zGK!d91 zzl*4rYxP+Yni?^cpOFd;s5Cgg%Th^`Bc}7eq(cKb%Z*K@tWVrW6q%|n%y*a{UY{V) zv_AZ>Aw0O3m`mQybC9$k+y8Rp~97iHFAkyH3D-(-&Oz~v4kqiyUG&kW=E|M7D^C3_}sKsU{T&v^Jf^-$2!tKQT z(oMKzSB5s(LLi!*a5*YU0eSHonitIusLrcP45_OG!Q6@(ph4A}op41Yd};(#_9qn@ zP-%9;6;X+jBcO92>Ck{qqZ2OrWO@X?k7a&v!X;%O&|trL#d>$R)*tBC4BSp)j+PZx zet*xweiL*WTr%R^=v<2|kR|ugENSrOaOhUj#1&{H%!{Z78q~hQj@xb%$XDu4I)zD8P8g2X}WDd?ktj{0l5NC^VCW%O}`BYo?P)~ z5AZTUS|Ho{Q>NHywK!Ba$ezC6bCF|4M0*3Qi_`1&jN{ z0=gXe!h&|)a;)W!p&OTDi8=5lsPvBA8He4GDbQ+ZGn=Rqf|8%CO3uFoP%#)HwR{fh z-@K250u91lyxwJJ5 zcr?#`oP@(@AW?HAQ^o4k|H%Iagi23w=DYLDz0RVp*pQvpA}*o-0pIX{u-~_v_+6zb zPUuX1K=|4 zJ1bp$Lut3Xkz9H%7Php|etY3ne~y+pYN}j|!oO!rJ+|x+n@1)w^o7gl$EiD_LBxQeM-OtlK4czCx zYO_Se+w?VOmEt}R!Im}GQ_Lc*td6RQdS`EbZ8Xk^S_`eHKgPwzD(bM@k_rC4x~Ky% zo!ZkkME&|YM4bUoMI9VS3_Y4}uxV*3i#ove$_hjs9Ja2%Mb|WyMIB&!*XejFq7Hsy z-QP_2G*v|%KwD93i4(QN`E{wNgWpp}Pb%Fxx<_a_Ygew?Q&L~+mXsytwSNjp-zHle zl;|Im$XPWKQOD5pJ5R z22BH-hB5!uz(sn<_3;>&_B-3V^E-Nc^~aiiihW+oTeiG~^2GeMeETTx(4J##X$Zvj zEq&D^2T%Jfl0X~3PusZsm^h>2GB!;g)5@DSv8`!PwcLj$%Y__|z(_O9x$t2+>;i87 zij6)izNPbLp|{vwAJ}*J>vm$U{U{RmAbTiDw@}+t$|h6bNFAW@KB|pZS{wnUB&K65 z6)=Cy^LHB1zMux$;zCE2*wLTR5e*!jUNZA7Vmn6u2;1B@1mH{0LVEq-Xmx^5Ua%>|yKr<8(~}*QKY{S#0mx4<1{yKe6sVLH9Ip|HP8I%|f@efL~vWL}fll zDO+U)2jRN(#Y*pcVSPR$XqF`A4t$6G5&AQzTngPjILJN-Ji2V>FhxLJLd5^3A}&3@ znnI2hoL0|V!A7J(MXKivfxUn-+6|np(J2j_<}V#9FaYM)F-Nt5<6U%21IJ~*Ngw$Q z^cuMNCdF!n69}ccQdfIj9cz^YM9GrGy#GUyQl&5;Ap5l_)e%TueC)0EyA}V5Z%Fn> zbxGE_h$Smk5MO4I<0VZkl8xMDBpW#G(8rU)&-Y;=cQePPpkY%~ z=NwE3BR3top@Ez7U4{>hxCt~Cw1(MES2S>SYS|%N0NYU&_CqU#EnIpH#^Pvw-0zJ$ zJ-pCvL5CJw)Y78FT>saQ)sdM}Uts@|^UcSUZL(<+>J@T3TIE)HUOf#h%@r4`H**g* z77glB`b<4W_Bz*&FFt79-ivN&;I{MxH%9huQ(4A8u&(bz*EDc_K}mVWz-_yW`>3KQ z>*y%z)oI8bg41W0mdyHao*%Jrx0-qjorT^`c|$5+jk=It_FA;RboW+!3oZLgc_FI) zGBNk%(#U%i`*Hfa4c#**N>BM5lMOwvos~LL#&Qf4#=$RCuI zS&;^BJ68TaWe;x?wasncEgCksxhr+)TYbY=vo)*7c714XpcW8p@Y`I;9?SRk-`iEW zwU?i#zw89Rbit7q3fs`2qUF0k*GwDxP~oxy5bpg|xG$(I+`aqM&c7JP#E_qP8^ue5 zuspY_csFJk$T#@mECCC<`%%DN0|i<(f3-yP{PIe7*k4^A$VYzE77b|a{i|Jd1PUu( zcbaD1HJeR9<(@`OLm^Q!KVUCUgUIBM^0mp`w_4hi(kZyrX0A~~dOsvR8qmuhC!3}h z=44z0ZCCSSQltUJr{;~54Kd`(G#4@?s!s%SDzh}q20aLR&5nUqzFtMMl0m5oW5S1vB*f2bCk&C08gOq5ri($7hWX0!4tpfsIVp4Kl(i)NGZ z>ck+gJc%o!yh1U^Gpy3bmi>vP_#IND0mUXyin8w8 zz5u60B0o#$_n8K%+}uIXYxE)*p5U3^!Sk;{*DhRT0WVviATe+G4V*C`ioDzbxHI zSO%2_f75(75;#+dkP{^GhRx_kGR{>fL7_&-ypnREL31^F`W1%WkD0m>B0OYiy@s@C zKr4S;KwUBpLgHzq^Vb||uO~GcP;0c~4VdBK5{jMo9=y2C>$T$zenv?bcpp)Pj%PHS z@2+(g$D@_b1g|l{x(?e7%YhaTwA_KjJma5`gSSI8@kg0st~kbG1=boJIc8Kqxgs~; zskwRGEkVNO=yZscow=6Eqd}Cezr_f;oSjK?4{6eX<{#Z+G{YR8N%aM!N&~97i&1Lp zWu__cfidI-p3X+nAhT^c*|vTMliQ}wbdEGSyIPp6;=Oay8R}+Y9>&4+K)dHR5VS^T zS1A!?fb{&Jre~wGtJJL|WEcZ;Jq1I9y6Ck{qv*|&nNRPnx zr)_#j5&Sor9vCsP=vGD#-Av3Me~sy3_xuKkG@2eM5oLh%`1&TKN9tD6BaDIh6h%OT zx;L6084{Wv5tYx93Js_K^8@Xjw2x&5Ze2z>NH{@BAQ1LVmO|0_+<=(T{?sj!Y({!05oLh% zxXUJ`hpoSkB54fFVeBSpHX}U(5@~w4<}gQ+3e9GuM?fV`4^QW4(xKUe^jKez^zgp# z?9)S4*>7}~F&fz9z(!)ee=|~J%Obb!e+WQ`rc)xAGWf`2z918Rc zB8~Q{%jsQ7-Av5KWvXTO_8e$8K%~(#k(7usK;}GJGpErrk<_iGjf6uPnA=kgG^l&C z>6=O=Qi%r9OhV3p#haf&qOlu2vQ}C%$-Sx26UP{6HzwpC=_QhLjqMcoF2Tp zql1jS_w%?<^Gsw}_xwil>EVbZh76D%7jH^>IJY)E#YhPWY#Y*aV8{e1ddnK&R1F3R84~ z^oc2bnv`fjY0%)gx?|LK8@7d>#oS3n3l@#u(q8TAHDCOnnDJMTF#B^;Eu7CcnI_h` zI!1;hnj!fwY_DmgcNOLtv9Gkbk@E~1RJqZvDs-o(T z)N(j#IL+U&W2Zr&Ufk@+o``KHHudX|*UZ@BKEi{79GOw$vBkt+>)_A+W>E zP(eymnIWP7MiaWxvwN4&srzWmwLy?rnTK)=p+QVGWq8YwipSlE+9ODf2GllXEXh!t z&en+DDWpdOdRJ~jnyT|OKO-_9U|Kre2QuH3xS@C80IVHGGzQ}c2VgytnC<@(j=}N4 zv{Q-THf;=!yy_TCx=7hiZ{ip{#Ujew=%|L%{1ZnD8pv={#^8v=j4?R+jV1aO5~Tsr zO&NnD5}xRER!6_HWdDU^X+U-}#^8uUn&T+e0XWPc^QmYIj{cPC((D+#zSijuM#H6! zze2jYzSfeW7K;*dzt74T9G9YVivE&Bn;nBAcbd>-hJ^l?%@~8H+-oLB#TqMfFN%!@ zF==)Tj=cMnuw!s^&{De(snLL1vtvo*-BSy)HTr?2cYo5O0lgasPuvqj%Un33ZPg`@ZH_qqm#A zS4pj)`sQTnf(8|D^b9_xpotU`c?gNnfJmd)AY&qF+Js~tPBJtgv)Ev^h|hND`FqR^ zt4TO-^zztG;-(1r;XxB_>bNENza&Tlf-k&f2&RcRi{!6K zk_IH7-e6Kr`ERoXv&$e;T-=zgk{Iz(Fl=L6}Wgr8PHav$v)}ts7l36%o*k3TQlzG-yDh(e*kJjWllpD(8_3 z4Rz39s?cRS@Ov0kkSegzg$4AQJ-=dEbb_^&w=!;%E!L9Yk2z>HI{(Tcn;4Qq=G<8` zr_qr<$G=aaFb=}W{3X>xgRorNIN_!V{tXGzfZ$Ua z&b`39q+#Y9S5}^T+Mo+e4B0=f|Wd4I> zXh3GE$%LWLHWO9lP|Y~E+HWr5Nh;x zzjy2jrP<_lz__bU17d^IxPw11gO^Nsx(0 zlqzXtendJnpwr}|!^(z9lKQ@o8RFy#|JO8mvbsL(<4yh@gkjQ~U*~s)r5DlSR#2Rn zKlnGK&24jzxWW*H^Sklp6IYfz52>{}=|QJRkHGgcZF)!%{4ec&Bp!~&E0g0m{a9Qd&ad_5E#uq`pLN_S zzuLOJyEebv;kG1&?6$a@n8W`QiE(I9Vt3@%oY&1YNk#o5Ew0zJD6n{{LcJNCG!*LF z^x5n*sB3|9vx@FD4W>v8NP-3=3S7ahNFq&uDIy~hp#hQkz0R}B@o0z#Irl?2e~Wa}LB*5<~yUf!8&X1FdTWzb09rviF}zvXll=a)KyzHT@FwH=CzUo=}*}C z7MLdOOAhvj7@jIj>0p*P=oYnFtEERlaD5gHIFaM!nTEYcjw zA@gq}Ljy8erD+D+!u=SSeIJ=hlIhcw71H9vx%QH)Q@?W~u2!`>L5{>eGjwui7lsx$2Jc1mZm++DTH znnx`yYe`vRKJ}$5>dxUfv;%_toR+2Hv@|TL5uRIxzOM~iM zoHsw%caK>2gqD;z<0HBZwARghm93c<$Fr-%aeZa=N)a-fj5~>W+7W2NgZ(}?J9-GU zJhcvI>I1FyAKF@vuLD%NB~MjqVP3Ke?L!0R7uDuO2j+~c8|aD#t}3ONZxPBa?OHPK zUO{&>aQEm6%A+@xT-x~NW=bt;_H!!)Z!+H> zC7>>$!h?P#0W9A=WRX>gVX68upWTV}qCrK@FWX)rE*218IVS<)Ji~?29Ecj_#ICd^ z*Rf^;Pvi4F{GFAN{mO_GwxqDd!o-~OU^L-TQ{}cO_9ChB?J>Og9 zeVoqPxQlCanMU@9TXNVo_fI%h+(`ghxxcUnJN{sRP6=FCt(Ed%^~8(JAco&mG2~wr zs2&^61ZIaXF=S!h!Y-Ny^&M3bNM3cFRQxeKX2}M0su2ozp=z|9W;R8|gy|1g2RXX2 z#a1uhI|X{dk`;)%6&TyUZOXz5rrU+yaD@N6Ya=}uNZTzql9(O0Mx)+7|DY`wX5k+pETvB& zQ=J8f+R~(gmVTJFbpCb4N+C%5^-O>?4CZFe;%HF8+^2)fdXJhvsJHd|P^v)NATQSQ z)zWF$!~MDKgQ>CKmD^7Iqg=Cbj0zz>WJ^1)R3|QoQR%Z(6+wij5+Dgk;L$39idis) zA7p%VEHU(J*0@Z8235=bv`69QkI-G?yF%BOi_bIJ^cwZ)_*NXdSI52iK2FRsb3R*a zoBg{FO2_W#h#O%-lp4nF5Kh~i4AAE1YnxXbyR+~?lZS^AL$Bt}9J^`I;?>6P5ZpDm zEpzQH9?xTY+p#(6&&z^5kN%4B&41#q zaBm}5t%K9XpzY;QbSi&uHvb(|8B<5?0lf|$Ad=)0s*OTps4L5TPtk%gqoh_=d3}bge*&cjncYv8ie}em@Lm6D8pw*w?X7n&I zXYYrmJ3K10yY_F`aA(%#T>YWlo~P|r`ijR?tvFPKh3d(CnF9n3YEk+=cZe$?q%*zQ z6dtlJze<-ha9Mg*7~*=D=`E-5uyy-&x}|~JCzQPI5yG}*XAUahEq1FE^IWP^A!&hb z%TG7xt{raf@)vh7cB-z>0&mn7m@yK$Ki&sq>8^bR)sML++k*y?n{mytv@7}Qb=KkU z&>;;R&N%Nc>oCpvtke6_DGi*So2$Bg^x38dtfTSTFmIp;MIc@j)thd8b)mba7pdv6 zrTZBD9tkxb78dDV$Nm7-oUsaOAL^MpSBKE#yHt}irVypDQ&onQGaqM*(bOW7v?}T@ zRc7S$6Ld-gr@j2Hw0s>i>WmzJnvQAU_`It6RAj5r$jv*cQISm`lo=mv^+#gbL&$tm?)r|-* zKU~Vd{2ON_G^neoAcA}+ZCi{}Bs9oe+E~{62dNF$EIHAiF%u{j7B;`kUAU2$!?>7p zi)`EfP~{mb0Qb#-VxuuXsf{^f4dcFnO4Fsx&F7e{G-O?&p$LgbnOsE7C)flU79fwR zbU;MqbO(3GCiDDX`vKnuJl3+u{HU_y*SIrsNB5`M!|9O>D08#YQ0F{ma7h+7jz9|S z`A^!O`7aW40DGC-xu50u@lBi)H05Camgz}@>gGQk;qWWc(6c26mLY4&e1v3ZK<24U z358Slbky3I(8o!L2841y-s}FnTyP{!*fu!*S4GdcAxsovzQo+|+I2s2zX7Q;szk|j z^@EA{KQSxpz4qs(T7aKY1GoZ1>Nl&@D^1`WVK$*BZN9{giw2Y*RiWboVmn3scZOc# z0oY0%!JxacJ?yEt?|Y}q59gdWEYiK8jVpyL<2*5Ri01f_Hbo1jd6ndk7T zDGlOS>C`BImL5O71``~yPM=4oG;msJ&Kp2`r)lpI9JP+0PscQHTxHH1Ah)@lb_{Gl z^FyjrWD^LbqDse;Sf%5MSLr*CQkAAfbngFvV`W8^dMq6u=@2Tt^{*w66;&ExTb25< z#L$=dTecfbb(MN(FBl#B!hosMkI*Sib(Ky#4OQxo+S-1cj%g~Z)FVTsV_Yb7XJ!)A z{m^_`!b2ZYBj9P`I?h zd>{+o_64cT+0f=F$~;wDAgxLr*Mu+db`wmgK1=*Xhs2z~g}X<@g}U$mj6HLuv&AVA z>K5X@n~HnJJ(XhTqEqN1u&7l1nXhw_M}rDg%BKk2i%K;e9kY(VNyjvBJY%ItmAa;C z&U5~4I;Vm2iz-Mt!ftafy;NfBc~^>9#1x6A($#alo75dH2&4pCidrZV9VcdR5;S~d zrqmX6++R|~GZvi}i~Tea^$Zywr!uZIDow+Sj^kqWXj*Ji8q_KO$&@lxa`);GF>P7v zZ7W+dc$Nx_FJ)PCQ?W*TYKt1^bCP=tNEn!=gQhJu>|RHrq+LL(twG zDLC4vt?iS44{+}|(hy6%!MXyPA8>G>0k_jiaudwu?s#Fct3O$`z&|7~4S-Lt0zBw- zcU;*Sr<8w8WEvpnpYIn8!(g=3;Wxily1OmupAwn|(3K**k_O@z#H6W;8HC_h#H0ac zY3VXblm61msE>=al&;y2xkytPHj3&N!qNaX|N3vi24iEb4%YEWU7>pracSznMI>-b zUvLj4E)8%WmN&|5Ot&3&0E&1ryPa%TkiXO;2ODD|-$}KmJCPqFL51r42+WGumDHQ1@@ZgPbdl6Ts(}2`N%EPVpE#8ZX zM+3ZvmdBHI9YXM>1f;13*dH!hhA$@|4FDfmfnjf#eqmQwzKWnU0BskPs&Cr1-?9{Q z1d~5m&KKX>cr@rN4zOTyw5nQ#0~WSe*g|1qF1`)VM5oI49CeER^ltp=-S|_~XkUae zYS?fCfDCpAah=q!fBM!mSWNe;3hdfS!L( zZeP$BN8`?5G{OQG0l$ghGyu5#-$!_w zTHtpr_wgW65Sb4Uo`#Vro=%bWm{lxDm8?-;<`|GG^Wy#0xF=IjnR(9Joy3feMot~< z_xBupiaUgAJg{(A6M!owa_4E9I}a}dBK>`L+#N2V(yo5Z65Ug7EAR6G~Qqm|CWU={C$wmiR0T$)PN zC+_z3#l;?$8%y>7gRnG!Eti?v!wm)&@Vf-00pO!btA25PFbG@e2SlX-YVqkrwv`5W zcO*jUn(BuHrKtuwS_(mbOi-Fipey)%`O=uDD$+_nB`6I*3!k@6iAvv;6{YDf2uuUu z@;wUPanf1lXf9-bMNArCmX{PTG5HX{{dNP827u)yMZi!}TZl?i2^BA5iqiBTqS92V zJib8Z^65|l(o_Y+H4usB5d@?GV0kTp;W}Pmu+X3P&2$ujX#iY)yt7}A6spG%kp_t6 z$0k7xTmBA&r2%a5d2+Th;UmGlg-H)j1mXqCHn_h*Xc|EOZqX@~MQ*!AR9cBOssAop6_OU$YF#pLObv|!I6r{dt<=oJE;qOXlC@})$k0dnDPcAEEmci16qi+VXxX@FX|yU9Ua z?#=JuNov;t&l8viz=hA-bASh<2{O5Z%k}+*NO+5MKm!No7M;mVJ6Px~cGm}M_#D*A z>Y%qfa?z&?8n`Ij6U}xJDtka^nrh*3>?QIM_Yob?z(L`2-`U*zT-X_8(U|ZwfX{y` zSM>rW#j z4IuL$E-DmVce|)FSzlcpjWHf-8#?A!(+v&WTDuImU*QxSU7**?Nm&XDyV5}F3k6-GBakeb&a zUQcuypclSaH=RO2pYE_;LTnmfSLm>Sz1+oX0r*y)Ffca|o(Aw024=u#yQ)_ZnFh!e zWI{qCFTga%G3OkKvk3CI6nY@Y6~AE;^xslM0it&`DONH_-(RT;#6?ETpB-#Z)T1mp*9VqrzY!GXp1Dxr#eU zUVQ&s?RP8w)ANJ((Gv|kRTy&hRRtTV>jQK|Q>{v|qflQTq5~Q@sE{SGgK33*m~Lp` zrb1T|yUA+oV{}3TC;2bqDWtL3$&||efnI3fr9y`_J)ig#foT9-LB3W_wyz4?`m=OE z0|ylbPwOB={ydRsfLx&yw8$c#5dKSqrvZG0vDv~yHX-;w6PyO%73NwNoN@`#zeaQ# zpclQH?x$L9Zs~O+?RWlySF7TyNhcRRY3}XBbws&AwIG{``6O2c9%%RW9C)f0gXy+? z2URp&pSs7b4q#;q-{w*G!fO?`_Evgpyl*1Z4oM649P&7S5a@+(PXy>p{;s|B)!V5q z%mcYFhX$anij5q8N7`>(s`$%rn1?Q@)knN(V2gMtv;v zHa*b5L-Bqn_FzRzRA|EjKa{{U0B-NQ5abeLO7js!qXAm+O8{A#J3H%Zyjo9Lm{SNz z1IXfoNer2HQZ2v0QQhZ>X;RHiUdP*I+c{JV7z)kUaQS4@kZ>YzuJSa-< zJ56GxJeEFa;G_82N5;o0?nF#F-JRY3fM;bkO6L-q2GGTa+!%TpD{66?$CY?ih`3HT z?gw6;Krb}#QZ`BP!I;iGDltF8se)yH0dZ-7TUMLIU0US=LXpkIgrosv@hfU^KnOXj zEuTbu8sL}hSMZ`ceYAU$*RNbg4>a&lwn>x%j=E7@4kg&|&7Fj%sREtf z6<$eb8bFs7U3}^h1?4G(rvZHNvx7L$3O_^DPp1PKI4G-;_1qri8APT5a@p?N&Qzk1 zTti$M;Fj&aah|`36?-oKoqTAsFZhLE#q4;OH&u z?HFK5)_jA@lWEXGg*%*F$oY}O{1!23fLZv=ViqQzRuQ5%6O?9O)R_yqfE7vt`5i*i zROUHc;uKCmzfVw_$^o79@wkIv{x>mcDiZ~!3+VqPC{1Oec=Ev#{U2h|R3-|{Z5H(B z1f{71)Ybl%1f>CJ;YmlHoN&*ReF2|UvwUyGSFq3ky6_c{ji7P2tT(nDfZ3nuG(ayr zW8DaS(8GzsWVyfSJRC?5H1JS(eyLx@ZRd(g3tlL-odZ+(>x- zHX&&$L+-|NBLaDELec=Tl0kPX6viAhr(bL3L$WMa|)vyx7i<{jii2uTCTO3A;( zMWZ}75UoC(urz=ze90oOwJdBWOxH&doTh4M`zzfgOZYTm(g3sYc~>6c{shaK`fIMg zI+M6Gz^&9@^)b71oy%DSrKt`oPh3iqokLI>fL7|S`x8jPb*+ylDh*I8Np>*5Vw>uG zLec=TQa?E8P25?{MZ}~5W~FHnF(a{FLS&lC0T?;0UP?$BKvvQep1?ohcpKHr2})B3 zs2j582}%RdYE3m-azoZ4F=>EV_+Cz4rlR)Ug#`?THUfPD(*U@d1{|=XJRmX+kSonw zLAj3$ioyBFh|n~3LCZt1(jklqO;bZWgtZ^b*NIG17wL2!znjoBfUY#2;jI+?m37zW zTt!%#%CHz5QrM>vmIknuMx7Nb=<2Ty@Mxkm-POdU0d6HJV|eK3$LlTfvxrPnmGQ8* zgokN&x^eQ^#H9glrL2a2qyG1~1g5DV$(~{UyYt0cItE@vDNku8dC2vb}-GG(fH-gmG`Bi|4`ol=Kw@ zrU7uJQFA<6_m_iSO;DPuvDNpVNbSZVE+xgKmcP;Hk;?e-OQbVQJSl>lRnyNtsq`SUz z6ESIkSxNY)`|6Wzn!cByG}S?Im(+s3kDxRFt#ppRHs-C@=p6q8#HImu(YFc(v&MF? zZQ1VNji&4!pyFNDZY(XpR~?7A_bRueF%k6zi8<{KSZ;QBRJP~v)54#i9=}_3#Zic( z_nU~1`%Q=KCkxPWKN6I)=qkj)w+^y|&7pvsqPc#bJ%!&`WItIa0kPYOc?V;0klWpJ z&>6j9Z;Sy05je4E1Oi|MMCEU%l`s5Acz|)w;I5<4o4x$5@GIv+`2GSerU~%=+|1n1 zED4Fz5eK=gCdd<0$P;UVd|(Rsz?vW*ltMlz3t6~FjGBkbBe9CiUX@~0&2RHbYZ}P1 z@HA@*bi9N|KKN9eVBVXUG{7uR6qrM-6~(m<0lgnVX#iSynmJ7rZ-I&G-y$pxU<=>> znSz~6a5v07y~ihyRtNHa3}JpeUC>ksv8)m8EaEz?V4g@!8ekS4bF#GO2mRH~N*C`S z*xeb9#yD#f><1H@rZV=<9v41^*e4U42H1tKDNOOkyOJBlp)g_-} zk+&uZ-P4Fo1MI@1dzP-pURdYaVF5mqz%;c0uj2B%1wMSzy$NdwH%&1lD6w?y8r$hXZnq7NGQ zD13V_8*=Akp@;X(@I=Uhj|omw2Y7!NgRc{u2H>T8GRNF~T|(M&H<4+8T=*e~Sut^o z`X_EG)N@&S72VLlP3a8c(+T`MqmB5}h)Dy?(iz0(#N9&`7WZo6(g3&g+{)tewT?1X zvDnWdHVv>#Pf{$lzBwrh$+HPh1NhR@E5O@_ox*58m(VnTF8t)zlu+d2o(S(c;?V%F zf+8lk2HSN5%pVeyrV=Ll=n1}#Vq5HbV$uM!w8}8ao?q_l*wq~`xeo6o#H9gl>88>f zD7X-f`?vieE}ctgZy+=cpbI~tl5HvuD>H_}R}h~D_=TSz$>OIEkj(J%YI>om5_rgC z4eLAb8Vf(qd>wIVfLr)#ZI->m_0y0y5|sw1rF&>TG9uCF=(8x&nr|jD4UkKZj70A3 zp6}tyKX}BDmxFtukGIkX4SbaD^60~jF#-QSBQ_1NODDQur<11}iAe*@(n(27tbD?` z-oz#QyNF8z+|u2%!(HeNN5JpOvp>?5HxZr&@TDgpglE?;Z%zr~{9c070K8HguJY~{ zmJbKm?;|!%RpNNd-#T7Ff-A_QbvJYR0KsVhUb?$tRPZ(#yzyx&fj&fh8sJ}C_S{MF z@s@I)wRLvko&qi-Pbboc>5B%wN?)a-uQj|je4+0KwvQ2(2C$_r{PL=}gvSmM|3E+* z0G1xjgHiHR#G?UT>B|jP)9wa{q|9dtOatKZy|pHb+_M(c&l8mfsHHFF;Mx#Y_`31@ zON68WWchAdpCR^F5bam6oR5E|4;uI=-R)sv1ZTXV8oowcnkwM{?f@5Gtib-2kTifS zJ-y)?4q0vyvHdqf(*U~kfTGJoR^7S8zY~)Nn58dG05h77{wG0c09raJy{0;gYgb1&#h>d9Ra&!|06$-b(im>Mfow97$jr0GA#o z^uud%F~Hq*I-0mNz%4y%*tych+Ep2bZ$~^D;Fa!mr3VYv80(cSuX#iNE5rgl3 zTc&LS(^LiapK7+i4<#@SfQwILrb6JqitE06s{wul(P@BQd=@>09(}pg5`72Ux_y8UWq$c(rM^sVlI0q zUx{Y-_8j(XP(?$3_Dk*03a=PTAtcRkn*cBUA~W*>zMp~yj0)#e4%`Xo z2?X#(1f&6AVGZR1@^S~h{DK#~Tj&=Pnx-PxZI0_p2}o0s>$Zg{t}iDvO+~IJIEOg3s#WO>{t0Av6oP zR=q5*F<^3dg}jB(G=MHVQf9a>j7O_-`B9?rHX_mhv24QOi%3|1W5fG)0@47mY=f?1~^1W8Ud_OU1fLZv)cLtMJd-$$?JiLRaL9j>) zw{J3m_#oZTz)jKD4XKy5{%1q*zZ?XE!K(1>1C=JKzSP@3?&?S=YHit~#C+n`7!i-u zANtZgM?O}5b~pF4eQHVh)6l7U!AN<(Tg%$*;v>-%l#ZCoBRsUa1K01!-u!^; zRh{*RSi)*?4QnM^!FC{2m;dpxbRueY~XYOvIO}k zqSFAq_}G-6bar_&ZvFUJA47PW`p9Emj1No-`8yDu2I%J&KBL%>d@#Kd7r#LlG;mQ> zgqR2Uz}$tnG{CLeEv=?1yena809*Jf-wd%_;S%N^1f>CJ;Y<88Kqq)WJ?)(DMP!;9 zqB|K4_^hzB+I@&i1Kg@Z$z&(y@`8GQqSDk6hn)-T>n!qCBGUl5@CAYy5ys?jG8$u^ zWU)^mHVv?=_8*EJM*4w7rvZA^{E($Gmi0-*r2%f$?sO+EnfSzO6PTtB;NE;1=Z6xQ zriM624|9n29zk>(pkG$8tF!35g}S4+t24QB1+R%8_vh{NDYgYpp+_2cJhk9O_*jx{ z-Sx9t&7%8aQkpm6Eq=0TmE5QsMkw=??p=>$tpvlV3Tz3JVg`Js2uDJSy9B_}RhV z@XBN1Ct^b!I#Yb;;wh?&!ozD8NYAP8JeVSy$1u@oz^?FAARlxz#2QQsdp2Qd09*JB zb`~s_3*kwvRo?Pol+EJ^P6P1516D3Lo)P91ZGEaju+Jkl4X~>Pc`*(0g#@Lk91W~R zTj9;6fbkOvP6P02EjaG!Q(6*;Il|Haws1F*8)UqspX>E(<8_EjQ#run5no*{WVaKP z2B3wfT)AZBjq4V*M^u{1A;9|{dOfZ*7q-j9rK!$#O+I)ps5^*C1Jv@Jnyeq()m`oG zW{)YrLjuzPxLQi!yB{tFR}hq@a%{0KB8b8oacL??fuF$+I-OkvrU7u#_Ys5&Ylk~F zvR82|ni?bu-*LypNw4#9BQY;J3?tAM+1|6|Y!-p)@kK{?2c|d}Y2K(KP2tP14nRhj z#nDQ4WngdHlbCrL<3|Hhg|FvFm|4WDiAV#);<|J(qtMaeQIa9eXAzW!u`4+7B+E99 z#?HKf&FWjAaC34QmrN|Uk(f7q5ASo|BHMemoWr7hX-)^GIB3pyX>%67T<8F#Ir%aH z7T_AV|AsyJnK$xP)-?OlsuA=&W~PFzOwF5#NCU*e>lq@%g>`)10#gyULY!||+TEF7 z#^YJ&(uDR~>4XMO3a_AvoG2)ZEaaaNk_M24*Q{kA<>dnS+zM910vNX#813F}>)}Rv zpn-?N>r;w&!1tnDVBSR^H1JV)vKsl2MPCx+n}|gNtio4rvRJv1crTG@fLwS2xDj#? zf%g%c2H1s%(HNUAyVI5nh5Z2n(*U@f=I8|(*d5|jP9ppvLec=T@Ek4T>LABUyYTon z24}(jFmY+BQccD1F+$Rm4y&cA_aal^e;_aofD4aRQ4Ch`Hl|*ux3aqC;`%9K(g3rZ zz7&&gvRV9DV$%S-@D;Hfz5#Zi-p>=A2I%E-&OLRM<^3fh)0B=$2038;&%~wycF{qX z^>5Qy&Aw9x-E&v~l)|qd;_FcKa*k{z<^fy|d4TThIp7=~Cg2H0=TRO|p)m4(a~~&C z9zlj)xjAg#tU_+)?p$+416JD#&QJuhEmmonZ!lbG^$K7A!VQpx(TYq{bTcu>eFqbj z1MS|P1D_zjV9W|%|4Km>4MF?92CeYPTnZsklU{;PBREc>b9|qDl%328>Sg2cSx@p^51cgvUYQu*$V-$hg|Z=!*m z1HFb$9>|Q_YGz!~v_l<_Zs`8E|1r8}gJVqQZkG@x?TroWounBRXi zGUpikC($8a8Uk^AS*p7kXAo9$NT<7NIz4@p{EDD+I4K`UhIbLxJBF#1z zHG{O9xf=!L8ZSByZkN^_F8016ByJ?;4v&R$w#c^q4^H#nicn$baZc4A#P9$WL$|To zalVn(&|JXgreW=BZf?412fpsl_SBHV+oU)g+%P<=Yt%p>y_lA!^a zr*00JbU4i;^fnTr0ihi=XGi3(t$TA$hN4yTU?z+etUCfGwRe5v#YMey!i~hd>`CnU zWZV7+r?q!|&Z+uCGMwH}*XJB*4)_|HyFUeuOM}|gKIlhIt>RPHzfIRP)K%?5cdf}} z3-q13zc<~}uwCnxHQcmCJE9|VnsoY70B@ZpDyz$h=mJmG+;}R)dw}k^|Ka$FjX74A z(C-DR-}%Noc>&vMnjdjZ7Y!;{`!yN~p$wxzr=7;w{DjVF;Jo$|;@EjCVpsd0kpK+{ zT+)DwhazL=?R@Ik>Ix2@RC_BAt&E58_@Adk#QTr2sTK||YRI8FgM1fMzV&CQtr%6r z8cF5M(HvQ6P_+x|ZoDCy&U>0?!$~aRs`hIZlR+Psw3otJr!Df+&IddWjd^6I)E5Nf z`u4h;c$ysUUVsf+d!((s-n>icwPGg9!dy!Y(4b*zzf2H&%=BaNK}%;3>Ck{q?I+{0 zM^7j1+2S8qN-rQK8cY2do{DQM(6 z(0E$&Z_+&t+qG_G!%aJ=>QgCV6%)J_IoXb$GTZx2t?1`?;f@*MBBbQF-A>FC&Vis0 za=YnP!RSXGDiBg4Q2KSM^dfh4>hdk(cM*_)m@B9P8ib+934gs*{3$6mbC1Hm_OW(ggPQF^!xf}yqH&H!dEZR#E=?N>=l|~&um&o)1l&2J1SL9<{F;& z(;zU{-ZHdw9Lgj29Fn5}x$ABja%lqQ5qusA(tzMq4X0t`zis#CtgJ;~=H<*umjJ2Y zi=2vA5IfE*|<34_@M`@tqi4VrEt=a;0E3)1Dinl44|_|z8>4oi-WGBG!DYD0ra zG(M+rzNL9cMpMTXTT1UDB^pp_eC&3iY28FxG@!NGa2h$+ZMR`Lyoc$O z3K>j_oHPz4`9U#y&_D*9zuoBtios&G#Y!ksv`lnX5^L24ohS&W+I;-qdNuXg+`EJ;TpFNXRu7pUydO|>Af_=1GPIWSUL}cx|VizbMJTeYn1+>3I$OEaT;+xc#CpU~`$V z+zJX4lbnwcj*>$2P}#gCFA4JclJi&2cyF)xyTPntBKd3D1BRW?#g)aAKI@sb?o+e}-@kmw*N zHh!rbl=vbom%92=tqbRnu?N{hNxB6>n=!&VLWv;}q~%XEEgL_p4})Q|F%5{hKTo4+ z5QfGtm1n8=0WTo5m4s-hBdCQVbht7=% z-$24NAiSsH@iUi)`$7#LS3r8;SuuT`wGHSN=yQV%dS25pUd9lQq{SN~VOK`{>bA&1 z%Ue?3((=S?c=J6;QJ10B)xpK;wPt3?7pHImeWrIf(M4L8xAQ zOSN^H`m>21N}@C%+ITOOL&Nt`Y1-%f%0~4FlBEIJ=QN!3IV{>*hMRB9syUlhmfJB* zc$-60+4AhBCD0%C*YJcszQNsDTc6+28*5yBX-i8JbLPcJ^`q0Dy8~gFgqf1@ue9%#`e{^+(^u=FNb2b$hQ3tQE7Z>h9jZ=p^t~EJ{n(|;T)?nd<4v; zye2?{+BZIdjY#Na6KMcx40AcD(11$gOEV%W=|n4_Gfz4+)J4H3nEz&vN`qkF!vu{k zKJ~32LJ3)%MYRO2v>B2atalc>^J^oWRS(u%x|f*8T|mjC1>CkjT|e2S8xK`>j2b*$Y18?$y4Vk?`A@*w< zPq_q&IoR)WQ-4QNjjsT6&Qvbs0=aBgximhb4V^o+1W_@^a15eBB(7*)EaF^6VYAnQRQe(Vvj|GfHi(SESHFM80n?E+}~KTZIYz{*~YKh z=MwQ`(^+Ni?=0bmk}wSjU)OMo=kmbos&@3|m>zRXHyE35mf(QtFR67)r4UZ~cX#j@ zk3?2K#n!@ZV!pHwg|uX z>Z{Z}J-4${RqOrZo9^n~dhe@xU!_iR=I{fH60fa;Ks1==_7<=P1qX%O=m;l2KYns!-&DD0{j@S^iEu zED?4?mW?n`=TI*+&`b9F^ewg%vWYLl(NH>~?xkc;{`Ut>c9!DPRWYLbqLtqQ5@amYpkQrYk1og@`RSB2O%5~BgJ z+-nPtS5t490MnKBM+`6#wH5Lf)t!xb87b;8W0J($`yYr{J5jU6Z5}4oB;dle^m^>g zhPkg5N!eLQk}VY3A@u%SLT`&?6;cS|&n62ibtlS-24$1|y7Oe&XkuX`R_OgY>Cu4R zv$nqKG`(s}Rw&+;6lp;5vAHLCx>2wMY;xQJ_vz(1I%`3oEtE;T6qR1ZtTDj5p>Bz3hQnX5i@gKrNqOD6Wzs4NCAanFF;btyXs8kA7(=U%E5nmR#0_)@A;^>@^r)N7>@voAn!-JjpL)iKMZe)-t#m2D{P z7`LxC^?6&e01=WZ6uCfApAtriUwlzjnWf{YB!Y_g#=CM6nB z%D(Dov1?j+d&tl_Kw31Qm3slgLN~F2tFQWt%@mIM1Y?UzcJj@>P(1GRM}r|E8Q-bY zr6dVx%8^j0JM%t|<4b9FSN?}Fww8NrT_q{J5NBVJILkgZtrF0&7A6WK^-Z?eG$@tq zYu6#Z6S%}&c*s!uHmT8oTK2hGi0`QR5mtEE(EA?g(SY8e%;T#Nz9~EG=$zoyml=mf z^IM1#I|D%q1rmIh>>mb=THWYHXt@mQF-v^^f62i8MTk)-+sBYj%9M=TWetE58%I{8Oxu1a*v6+~M|>Gq^V14_Nz0j7bQr5ZW`DhZW3%Vcse8g)h+ zzbadwwtEHNaNsx0_jVTb=Nx)S)?(2I8ty=Y2MYD#2O)%RTzkwUSMp-lILnhaNk|Jn z1lO%4xMrDDCIQwGsw+xiq<)VwqCsiQGO0{QO2X_2)XpR|8c>^M5SEUb54j`IJDc=q zK<~Vd1X^90TWDB8aLo5 zj0QAjnFhqt2m+@{We2IyfXWPCi=LB7Q|rz~28E#R!pIOkItjK@$HTr}Yq7gucTf9z z4Qv+b+_O2RGke_N8SHc}%Lgu~(Ehze`<;AHTKC2&?W?*8HBSQ{_hkkay_eu`PIwx? z4>H4hotG%wk`!n_;qt^?f&ex5^>9Chm6vK#+kvzeQv2OI-8b^R(@hKifEJW}wB6;F z3#>9zr9g{yNY@=#>6%uF{2JXmh64Z5Qdp8IlRn%-c! zVG@n*Z^Z8^oIH`PlS=>3R(>(LI%`N4ikuJ5KWF~t75u^I*GRGVMFP$q(qY=+Nzk2l8?6PDTdb7q(ze<+NzLE zlYnO$dl;?BB%R7p%R0!a=TpDQ`}5K2U@%^3h26R&HSD-eUG`uE*ol=?n_&NwZaPKNpgi|gU~u4p_RPRnS|7VRZbQb>cJew)4=yx7M~-1*F+?!YU!LuIy9h@yiYA7 z)&x}f1XDr}B_$eAn&F+k5e3u~e1wr36jHZpKSRlgH`Ho+;S82|d1<)Z4aSBeB;w*M z6HRaRM!tXqcP>`aB`N&>EWH(RLlD+up~wj#_2f*wRUN1VRfUZ(QJc{^#NBIy-XXlSTUVUfF4PMSAgqqIyM7BKS{qNWY~FK`5OBoL zwGuxwENMmInSq`z1i@A>d<=9z19xX=*y7>6GHsFT8c;7H5gHKLyWy;VZXOsph3*#= zpsRd9XQ_f=8$H-+YeDY(mc7OT-t%zk0NUH>6YMrlWf07;hP?TLD3K8gP~e}60%us& zj6~ELbQ}a<-I#&q1zxK z)39lU`rZ?uhm)$wHl^iGWHIGvn@l-b9O>gp3JQ6hC}f7wYMR2~5>SPY6p*_2W1$ur z6vM_(14pxQnz6-VXuOunF_l%Snw)LOSe{oh5*ZH*^~m+04MBnvGqy9gAwotdKp}sV zzYQ_&2imYjpdQOMgeGqrG9EfTIOx9)+Yl-CtQwHl`&$iQ82*MQh8nKLkLz&fqxpnK% zerVx@a-!W29xm)&_EU)OrKh+n79 zjn)7D%JI}*V^BS9Jve9qPr z^Z|Gzl7B&xG$8r-3;|h--L$EAl1}0R&)vAdQ2)u0bR8uj^YDJkp>hueoa>zhP7eq7;S^jrfYv|f_AjN zs>hiVfr$f!`Z;GulR?X4KG_8=lea8r4RPU!pgmcei`J1>B`4pZc&ng}S^C@gC#$gH6y`+8R2-0-C+6Xm*A$4m_K`6!h526pL_B zyC@ABct68^=ILk*hiwe>%4AL>85)q8;mPATS8-oi+Zt;x-Iu!t2=NI zKm(6wScgjkFX7;dUfr1_Xh33yrTHWzf-vwz8YDu)`p*{v0BiJaJ?o1rGdv;Wgo&D+1sL5uOux?Z@Q)-uP=@TK3K4Lr`+T9x1>C;}1>A_*Fh$k9uHUm_p`wX1`+>8_Ig~8gPQFmFco7$a14HhB)W88kQ2|5`k)D}^?3$j2c zTq&WDaY7x!nsAU}k&;j^Sjh@+=T9A(u^wRmJ5Gf0&pQa9xy3=IlnhPy-N9bHTmhO7(d8A|Dxp>-;0 z(SX(rcV48W6$aR3iQS6SXh3b_k4`3GhEM|!{nb~mZuL|KoJictjFQeci&*R~E$Lw6 zMxp+4fnzhhZGHfsacpMc1sQ?#hZ0B`gV;i9xq7eFv)RCk}AO2)X*wSmwGYvomp4yR8L$k;D*hD!@NI=E4&Z|Zeky?uDQ z{sDZ(e!;>EG9u!w+4}_xsl!3LsJ&Ky$(E1?9%l^561?;a0f{$|1Pw@J>=#NTe7_J7 zc{7R7u>P~@pMcE(^)0$z&W?$b6EY9^-KeIGX|h>SA$Cr;3-^33N)aQakVa_;6?9g{DL%SK;u!_6c42$2V%7_v%d--OZOf2DU6qDAYaptjTu0ZGKP~87C7KUXT$s zKbEk`IF7WC(vdi?)je7LG_3x7YYHWJ)0KD<_a+G%kjUAd+FCEqr**w+4XEEH5gOKi zzTN~pngQyMsD6`&!!ycrHw2b~fJ6J&KUzOM zm2quN`{x?Nz;*R();A5D&N+y&PKP5YUjyoSq(K838CSQ;$QdaF<`8MDuj9s3Ik8T$-JLBJ6ozmmPraF{wc0@u}; zEhG(`&KRI&0umM>jRT}X0~#6oj4}-$5FwQ-NreVf^7R=Su^HmtM)w(#0_cn*i0;Tg ziDb45broMkd9>a2TcDD0^(&wv6c7%(B^)x2-vd+~5Y}s52x>P4K$BOCRT2^uWh$qW z3Js`aygFB<;sc{h=We7!13LMx&Kb;R8N0#oaQXy+jJ-r}(atRNR-x|HV=o~)_7@Z~ z_7aYQfFmsKo4uECm^vr|*VPSJ@icHcV=qxAAOR85*g+aJppmhcDAVx45K=jYRA@jY zUoW8%n<4IfbT1((fX=w8)awjocFm1K-C=|f*sizD58yMdDp`0zhW^hL{byWNvXCNw z=e2qi>zW20XY7?q@J9Te!~#jsfJDYsr4ori`ku%ViO{hAv(2f=qe&z6uO3X@i~N9_ zQw09Tou0WnnMM;I0q{r(fQ*X?9#ldg@L%1UlSG=#`t!x_ zFF%A8p>~l74Txl%%U8-G2!*gzP9qr_kjZz6TDUYz#c&w|!io~;8GC}&!J^#6%8f$3 ze2G1Q-Znpg&)5@KctJ)WsO&v~h16l-y;gt2+jD5(amJpY1TQ^7K;mynf(9fq_5>vo zUj6}*cajJV>pxphK)_~z+SNUQP5^Gko}l0E)jBgk)?UOSlpw zws534)EB4-8Wcdr#hXbYCR8ePzDPPWpp)??l1Vy2z*H!GnUrWiDc^J2j#1NXnHqWu zBPUQTXk=V=<-@9byK?oxY!~WNe0kZ?cGqu#O2%c^fQnE+$h<&8CS&Unpz46JUh6_o zZ{@s_2CipZ+^Ld~U@2318>!HMO2){oQt^ROrt@~vp#hzI%dQ5qS;l@oL&WJ51Tr?| zqi$awir_|}zNS~4^!DNH`UmhC=NT4WkP#8Dl8DGS#I%qm9IV$$vBqiOan^t|1@5QX zx}0^MN;yr@M?7>PPsh)Tq03s5S2J zz3_U%VbdCtR;aJ@3dBj(WS?UGnK#Pj?7}9g3N=K_TO?X$c+2FxcUxKS!-Ar6E9t^W z9Z%KJph%vQ?_R(PxURh*oXQ1esGUS=G@$nMt)~_QSuMRAksb}`9m*GPW$dOc$URod zTJ!473_~Y;dkoAnUjI9YPt@bnbEENTdaF>Y`w)FQWXJx3LdNTVj)H(AzTPkKl`*;< zrtXdc*VRusP^W>@8L$793CPGSq;VZ-(11q9A!3<^kCu?iFGz(3RPtT_(}>Lw_k9cp zqeMVw9F1Ms8OsCQ+$hvfIK$trx6KdWGmgeAydXpWpA!9N9F18>Er0K|`Zv}!4Lr^` z8Y{tz_yZE(BncXj$T%7+k?_(Fhf9!-?MR_JwLqQLhxS|!Osxl^Mh%rhyJSXvwCUZ z=L~&KB(%u9MBqmxKm!6ZL|Y^QFYywI|0D?-kl6UUQ}c0XmJq)}fm^Ww_1YOUX72qS zZ7gzo=5D;IaIv+pJ{sd|)b>W)*3x=^f!|TrLmr;dkTV+gjD|gbc%%Z`U8TXh1f>G6(&kDDo1vbCK-ySJOWxL39_?DC@+NNA%Y z+23YoBHx=0_6zl_D^Zolg-M5x`#t{;>=z!oaingNg219WZzR=uS#ktDh+63IOQrNs zy`LdT1Ai{fgXY0LNH7|JJt_~_N_)6CS{Zix`;3GCKuj87{(eSG{qa{_q#q$7OKtYgP$TCO}=Ub9IoxG4!Vm5^E1Sx$>-wQ&@1)xgrms^ zN3`EE-u(;VXaF}uKefqLMaTSTq222&wgT1sD?w=hnyH}~`4asq(P%QF`562<(P)5{ zsiheWmd2%)=3B(10cNHs90k?)9m3J%bCGBz7r#$T8eq2aG&JLtVP~{5=-I&k5g};+ zIm5%i^Mrzs-t6pYsz_6C@0L?jr-Ai=xZhIl&jcOBqae=iv$5 z8FutgQm;$cZ;}@3r7y!U@));&_?Y{f^H_@KrG*tV6yjM@h%>BsZzzS(E1tZ!*IwAS z+V0yA(P;Qutf04_myIRUqV7s7V?%Vi&L zMNk@mCKyQ8fc7h;`YS}F0b+sq?+S?gn zRM1+)G;BZGTl-;5#)-N;DbRpIf?j*VVMC#Wc}HT>0CR>rqc?R@&5Oc^0Y67VB?{uQkWI|gT^bYNB_e^Qt zjc7DLo8gMbrfYH7#ur^zTMJm@(Y1FE;?V#vM>A{iaN9w9sl9N9L2VM1Ca;%cyyQ-M zd0*nuWX8k9QsezD@o0dTBmPaPj@K9V@kM?b^Zvx70cL_B?L?b{kngq1E$sscNdw47 zWN2v#iS-@r-Z{jg0oF&Y;#1wZGCp<} zJNq%*(_`vci&_6ipO~)snLF)Xf!#|*qLawHqmH+mSBib=NqnE%SS~Gd4A=?QyO-aur&FKRX$;((bkAY1GEfH4V`pf z1<`;b0@CDj53iob<1QL)KhbD_mSE0R7Z&zK_ZsgI@o0dT;8JBBo_^D~275HYXaJUA ziK!OMznR&T=;H`Vldt~d<+s|!ClHMWXbBeWYF(7~n`*dg2uB0BOpT1aQ^geLQ;A5E z&q4E2Jni7q2}c9COyTZcGo}HbNkE!>{+ZV~X}ISQjs|dY@o4gShfz0PNutqSNHm&!-r48wHQtMeM+3Y}Lzv)!WexdKLec;-Q#iQCKQ-XX z2}qN#2IY}EjrJ;{(Ex3RyRPOL!Puva?1Mxioj)fq4S+K>+vXt-?dNL=N0YBq<<@zP z_Ijex04@HSYtSV%gKZOoPvde%bv|}+{H)g8VXdcwX1h@T`WKiA9&L9IAAPpm^3N&Y zLy|%Y6sCV4k?CK81;)@J>e${3PM_2pxb#E=PcDd_wHv6WEht@X>cgz5u*eb&|Lj;n zu8h0ALfz)|sHvSk;qcD0?H%cf)|Fh|GF>Mi>g#h-Uo$*Luu)r5%3n{`H@JD54AfUy zku<2t1lPkSN$C4>HPqJ$MUx9k-!rPAzC|b+K*irw;GA+V2FKM?jq_Pbw5*g1u|3nF3r~9{-*W!4~a_y+yqnH zYW?CO0iZ~XBgSEl>*tIjSBN|OkG$)O}A{tFj zG^dO=5sfAbT4!}{XAyUMEE|2im1s0TORvKvr;oQ0hXyza2I>`k00%c(Xu-doKr{fF z;oS`z4ah1$GPoUgTAeQ6+Suw`v950&G~n+dI1RuPTsEHoABW9y3wJ{FJGhNT`~6-* z(_|^&?xJf^K0qLvJV0JDA0iM9fG$biMBATISCZjwUOdYns16I2ynuSQo2Q9t(55 zUm8z;k$^M+Oh2CPciOmNztpA}m42DHG{8;YTGK@X^fdy}04Twgg-VIaYKOZ~Rmb`_ zh)9#gwV`jm{+&QH07~C{5y&=Q-z5?akka?z!@kA&0dZ)6lVByfQdy&3m*bLhZT*;# zG+AnEGYQB>}iRFGeJl2u@>=LJM}Zp32v&Z@tI?|_M#e~qZL5)11=rWz_A2R z9!4Io$w(11T7APoRhECtj9E_U0? zOIQmqpg$!j4M0iy%R1ufk1%fcP>c|*Le z(d+X<3Jt*X1q{G(4?fmFHRg6=(g3rcV60v5u(>pVNeo_^)LI+jnKn)VR((F!;w3p9c6U8-BOn9e3Nk?vie*)2IfS#vgU?aJ2 zg^#hchV6lI`eee=05)H1wQo4U5JLNT3IS;VnBd`yDGf6LJMy4_M!hLfX|kgB)?0Ys zV?3~3!Kp;00cyUM8K|Q{Z$F+C(yrc$pfmu@7s#vaeVx{5|6;2@=(qZvWvqcX2ERfE zG+>ZV%JM)~OMj4CJN~PLrO8^_xDTY$T6F!=?FmW)(0p=UUGI&%0qPxzN(0mst4#Hc zwV+lUz6+sgvO?q8DYla3CUQ5SX#kzCPu8)-PPyG*UhlPSET2wr8i41EWk%FeuZt(u zw50DwP#Sg zALwk22ks6X?fHF)PXqiEQ{4K{Ds}z8OGp|(Zu}0w4cDtnh)t<;H_wymy*nmjbyL6; zSG@;#MA%&Q)|-X;6TF82SG{Eq6JXhZvnj56J2=6?O!I)uG*iTj%UsX7RpOr`hzY>f#r+|(I3tc^nXyI*F7>8)+D+o=KMzrqC-*MLtXAWcp`2fg*xKB5+{_c5?fCM*qLXLytS zMuWqyb=pE5Wrjy41xm#VXRme+SQg>*nC?#HRs%f>n|u;;;7u$KOR@nk{e~?uKi7+VS@ipC+f{>to!G zF~Dssfvi73U>X1?xLRIY;={rCUbeOP5bi0PwQtr%c1rZH7ChL3kDy1Si(x_9s}6v)`$k@daF~ z`g3+yUV|01%W+%b;q4D$0?Ob)>9`b%`D0D++p;G3p!nkD_t2(NPf(0~+;FVd|7R>l zo?obYzXrwleB6(9c>8%wNK=fKi{y`D{Bf#cWX|{u{1oa5K0eYP3|Hkco8Bta5UTh9ZKu}EANiiiDp}V~G(zCvw61S8LR|QJFm6t|o*mNZHM58Sa z2kUDg+S`am1GEGkPuVv-E`*o4FLXk{w-b;CfCKb%oOLlh)0tJ?~Dn& z_Y#i=cnKz075@fU*u^{lM{Dd;!(#maVQI3sDUu0`^+Uv?0p7XMEwJ{osjaED|7Dlv zLps4#dU=_yZiZ#EP(OM#uhN^n!$&<#zciUGNP?^M9!_x3gxu&@eLr}Dp!S(d8-i!z z2J5|ESD@5E-pNY?R}wtQGJ(c#*0Su>RRp2|PyP@_GTXf!}e@Nh}R zt!2DK-}-emk!XOF;0}NalDR-`ym}I`Xn+-ey;z`{@?#Kg2;GJ1POx$}!Xp?9yg5Y2 zliMrQeV>Pr+UXMx@4V2S%D_55zC&|)%LQTrBDQWXv6WzwSju0A*Lr{0-jCPfo7cq? zQT;Xt_%v`T{yiNIv+1^^DAny)cjYo1rzpcsjYmfe!Hb^@w;S;I@U{!F55LbzMnrN) zHQrUK@qy7j3Miv2YiTEF5k~_oHCpk@cA-A@BuM{gbEr6c^o8aCN-DuClLAPALTTMo zN-M#ou^@LX`EGxIXE<)*j3&l}2&x(bv2F_4ubLKtN}SfD%0VQNFA#%It|dDoS+pA{B!Qtp!4d0`Lsg| z&q1wsMlB3^rs8NIe*gqa))LPC9x*fdWm*6*0&(Slm^N!))XE)9H+ zU#ts3o3dk~T1TBalMT*9xF?ucU~5v9@b`-OTH*31qc7o1WYKJLQc1h}4H zg(k?K6a*IS%w^KfB)FHNf*{kMZePDVTj10pdkq@+lnHTRFdQxnI(R!O%T+BCkp_q< zIz?YEE}9nxxI0;cDT2`eEWrXwU4bsFV=9CXBWb)<;?d;A<8v4qZ;f~~z)R5=*A(Uo z!eoGV<6+57LyibZlh4JjnOxZA^ZW?hRWM0FXU|47YO|~Yxb17Lq0WpgC|O6hTHp-5H1wSK?_e6 zEj(_k3X0`yOC|W^hDRv1Ws;)- zxq}-nRz>TlX^UwOD{zl{|11@yp284xnh$Fj7M41b*VSlH6#2t3q*Nb{j@a2GMgwB`!!aOsgm84^9z=39 zAeTKH&seMrN5|#)_2G!)AeS#3?OO>=$=L>@fppzFlHc8Vz0meDj+$8%&phy`FrSUwNs&j8u`>D81>wTObfm#(QDQ>5>$_ zeVQRS!`0SJj`wRw7K)q@fA5$0JG3Pwql2%)MwqB`DR3H;z!j+{JQc_$Yhq8S+;wrN z_fb5$o=OKnshhlf+?N?dGr=0eRWF8Gjty2F^p2gAfy@l6bDLC1iAmmF{SKj5KI+#zR13G9Db2Pm&5v#(3aV+^&Z?;4hZq0m&ecEgsBJ z3@qHR{xp6%&-D)&+4y*nVNSOGLC6$}3=j|B%N!5EFx18a$9Y6oui%)ICTBc^1WNJX zXuO&g*?Y?}+PPy~b6e3${1Unvw{FXf+Heh{#*edL7WB!t^2gE}5X`PBuB&&k&7;W}00Dd{0BrfI_mTun#sCONOay=< z@&OW|$rk{aUsmhj9$^503&4{HfP4SA?g!mop{~X=iHCRkgm4=~k_Ui8k|7Y`5dddr z3V;%t9s;=(ab2CxHjf6*CLaPhFgN;;0C4Gs#N9}O1|*UXfgG44;RC=OGeqt|A~Yb9 zdI;pOnr_RWK0pV6PX&1L2`j#PsQuR;T3p6^VGeKOrdR+bpRgLhLJzbbGA5(jKb+WaC2v z?~-?b);kUAL~9CH{Wqa$Sg?twenh5nEY>2WBee;%Yf>+LPW#lj){{NhknfN;{CCJd z^(tuW=2MURLld7chZ8frk92bqu{^3^bfQq?3VjYmpHJJ;5@a(wjh!%4%WQ>cP%=+Q zET(DDO?zOEDKh-JZ_Km2)D@JStKe$Ea?p8o`hqNdB-(s<-Ux9V-ayo_-=zOMuY24S z58~7v)d#}+R_v$jL4JlO&^If=Y2*taPQqdjFtkEZZgrFEpiGI{UWbr)gu)sXMJlD#Jr(R=D2fF|!fEoh;L z2XQ=A#F4!Bv_M)4+8vFkE@j2jz`NwVX9-k#&j5N4p=kh}d=jKVy4(gRf3ir|fC?U@`+{83H9#U=x}!Z*J6M4< zS)?0+8tHoIV+c)?MY(~lxF z=m2kw?*uig_Y3tpzH#xmU`UNO`-FQSl)kwv6A}`r?RQIU5AxJ@Pym?6hCb>-Q1|0H z2n}3Lz7QS2NgaTKY0Z3LNI|HxNQ4GNl0UgoMOc9D8Xm0@6#jsr@iWq(0gdEOYIrn9!-s@FXsG;>RA@jY^^+PN3?FJR z55Ms%n-qfjC9?VS>Ky%N3|0ADsbMb(?6+9Wabs<|k2$@2W0pj6Hnd2e2 zVZ@d;?-L=qx`6E=P0n}-2uLR}LE}Qwpvf5z0gcIca3yjHsnBGM2i!V?BJj^<>#F!- zDIP?EQ!ZupI;)-j_&|5mseNydKfJp?z`tNX{1NE$ z7`Gp6!o?|HB$(Ytn=e5H3*!8lh;z!S#(bG;ZCW%zQZHg<(ZG`_laUB8QDz15rG%sb zD3tLrJ>TA960hV8{O7CZ832(w+NbKeb79c_30 z7JP|TZvZGj5ZEn5V9~>gAaC8WSr4>B>IYmrq=6e#uBXgbZeDCeAPEE zx-#fb2ucIc`cIT>+DUw&M2ke~OPxvqI&}ahdNhVtNXQ6~8+cje`ys#WdfWT}K>XZW09QmK;4l|01ep3OWPJvAT|$m7edhhDth#43rhPF$jrm-CL9gx zC9-iNT2t4xu6K1us!J*#xktCt!_Gn%FXpxHS@*kz`r79qvtxsl(hk7Si&sVnE{G7` zJw{nvixL54&tIQO7XL-_zNL71=Nb*77WpDBj^rwu!1uTTd*2(j+;3E?(? z6EwjAu)sm7XNyu3G$}#urkyOgrY>NULIY>w`$}7G6EZD>UPw?HfJRSIq_qyb?4hj=&9 zFf!j}AOUqT#b$H>fanHk)LoXFJh)M)eV^l)P;Z+bfJBc8Er{d~jdet0(PKiJv6h(k zK%K!lpaJ{n&Y}b&0t=w-PAD2cMK|CjC@-%7?w*9BVZB5)Y0S16g8i2(vpa2VUvN?~aCR^7D+Nu7E?(qSzg3DI#lXeQ*R4jhL zKS4VsAd){6^~7ZDlwofqWjs)~Vd>L=eS&r>0CA$SP`4!%4WJUVQvp;-Ru=Adgri}- zM7LA@6$;Dd{RGoaNv+3A>x!Y=qdUSzp?>p2T3XzOwD^-mS_VY&hqRuXN?Imk=>kbt zd!R031<)jsRtRFG<)JPo6ipIog;0UCJlvxQN0UNY$hPV0T|GynMKI(ZKR&@l*P&e0 z8tKhK-HDf6k1~6117Ht|9m-3dY$OE*B72#LEWW$)e&`k~@I`%z)j^Y{_FaJy$V!cg z;*|Od;b;ICecj9#nGT;&ZUN-K5t0Uw^&fVheMB#akX(@eODQ@l31Gxm*ZSV^ux(yH zH!?eT4D>UQ-Z5@J*ra38@(Vx(3j+Kr5n%iX&sIv!qJ}*rWvXsLSQ@~_UQM-GH|>VOcs&K_g#x7L$-uZRlL7n|YWv3^#BJOZ z3xMd!fB}%qp}cpA@}egLmN=UuM_#>!O#%(5M~7<&AyV@|e?uS|07XYp2;|#35B9eN zqXAg#WB|D~ea`QsqI8WT>*x_1@|DQ|HwyK}f8>ZwZ<`;0L{A1Rh~y7NeN+?`Jt(jl z>vqh0pq|Fkrvdxu$v_FjiOLj~I!q`UKt)dmN>C+PS-58rj)wITIT;`tg=O>p2$dz3 zkKE(Keb`>RQn$kBLD#M<)DJiv*daUi7eLVquR2E=tPukG`l9G7dg0aOECTaxs72NT z4IGGXOk7F%ky=n@YMEd(0E=FDE&CLREbvYdkOqLU3$Gfl8M^Z?)S1x%01^moy}w|D zhOI*V#ovq2xI-ZR0w{sd43I!TXx~jHG?TLt8X0RhRG(Er0|ycaErc;`nJyjyyMkae z081dW5G)j$_iju;8UV%%4f#T7KKJh!p)n2DJNxKjYMcz|Fx=5RTs?wbth`y>#mcp z0IceD^St`%XyEQ3 ze@XknuBY%zQlJ5a8J;Ih;lCHVr*Q*nodz@>l}+owYkJI^Q|VfBd3|4L4;M!(!)||{ zZsq-Mq2A5aq+^4W(hg{?MbSY!)1ch2S|zrr25&S#=|!Krm3epFor?_gGt7gOyhUWaLMiz>PsI- z7#-vGgH6y`%3NE9j<7%g-9rK>V`FL^)y)YTb(Ys}aL61kZi$oiB8!i|UbGVdf_?{*p^E)I%12UPzr9`G2E&-wY zkq`|CTn6r&vN0S6Tu!d=Y`NLw4*hC``Fznqp?+C z<6?=A)qL%^!_>hMxUL2qmD9lKjQv@efP_UzV@Mh_ppkK0TBhLxBBZiTDm0+7n62~B zh|Li9BF2GHV)n|weYLBDuH3^95@xqh?|%%d>u_)1zR~2D- zaA@JVNSUZ@Y$It<1{oV|kLyN$E?7#Hq>dsX8W74jTd5&b3Y#*iog_sAQu$^po)ZJ8 z%wU006bcwjGWI8HLo7Dvs?uA9`rE%_e z22N+}Ps#)&L_!+pkOmECWNbOgG<;x$RL&(88c@mCpJ>Eph&$B%iKGBJV-PR~eoF^| z-YV4Ye`XNKj{OCNj6vWi2snb^3E6|dVd@|VTvre05P}9yXAFWe0SSVT#$}{I0~#5F zpiILDK}h9tQlSBrd_kZQ@dPB~C^}GA>mZO6Kxe$zGs4s5oy8XCFgg@uzabNyllVZ$ zabc3()BnJW*cs!qLak7wgAjR+gh<8-aRpfiN{}W@)Q#Cf(x4a~mv0gj09OWA!4X60 zW~4*|N>AKcNe-AbBW5SxDR(QRm@tp*5Q`gy zy6T@0OWXCf`9Wc1ym)Tm1sP%UQVE-k7tbxE#EbJ<9m`gfhSi@@mA1hB)kI(P>I9OY z0g0ULX-Fc7311o~lL!s#KVL8auo<}j5~^S12i%;pw@ck4y|mo_u$Dcy0nZ=0olyh^ zzEDJl>|dW>_6Aa9PZu?|dLCOn8hD&j_948CrhL(>=aU2tNaU1#NFtEEFO5GU5gOKi zKG_2hPc^za_)C#J6M&m>P&*ndje|?+ez#Che-}dF*dV2}16mmur#vdh4#EXN@lFYf zjHBx^u!M#yBH^LF&ewg>pbRoDPSsE`VNxaZEfS&up^S@DHH3nYsgn8*Nzs5*zQrle zsp&UOJ-vfL6bcwja*q4`WJIPRkLE@69V5MCe?cMRyj){R#1I@2^AU-dj2Al`rUZ+3 zUHv_qP8v9!Zx*WYn^MY(UaJqY-c7j!I%DfeXM@($?-uGm_2WKwPk+D=x-ALOfKbNP)8jfqzV-A64XN9a z6b(q_Ydt-zeu_$@Y#4l2x1RnC4n#5z2gfVJ&S+)OlZ#|-4_9q@jclh+2)98gVMd`(x3pY$~P&QBq9S4mu~3%jC5!~C*z8egRKjo zN(udvlxRSymu=YY7&YCNDUxq6dIHsMQORIQl&i10fE=aHVuOjew930LPM%0FCF%cX ztoOG-R{>pNhxqz0iLZ>yfI$KH(&FMv^?-0vhu9X=pj4i=wWXq?zY=t&&&m?T+oNv5G)gX90}5Z;8pn}(SZAa>@4mPO>6n9pD-}P7;u80VOF_-m*(m^@+Fm83kbL`=I3=Uw&{}+xGirk^A z2a2w){l6fg#df4B5SHo!Dv$=H^^*THqP~5cf%1i*gIKv( zVkOJOX96`04!h7q9_j@4#WavsmUWbRDiiWAkvf^AXh3R^Pw#^11YV+W5%p{|6KEvM z%GWA-ivykR^2)fi+8z(P2lapfsSQbONNS<(zz=5KaPojoD`&yJAj_&sEm@%kQSTK| z&v4ym^PyCWtc5*sMEI!tu-&9VVPsj4n*eqz4YEu)aoiC59TKAfu^BERq%12RdDF<< zkK|}T?qG)Ko4{=%1>K2`fITJzOhL67hE)8dy0c6z@#U}n`f6v`9?P;}uwSTCdH3^i zVN!Vy<&|Y>86Z+$LIlBfg#=rcPPKxm!z@S>4(cdMg$Ax~{Pg~4ytK<^yHJ1nQOMzFyX&_=BFjWBAR*w8z@tS1StfD;o~eFa2!gHNz&@G= z?&g@t8FW;8hv(7Xb740P(jF}mts?bg-B^VbfZ0wZo^F4C$9${CKr|$&P=Ee4X!yiR zs!M2@(?I57>B$H>#Qb~_b24QG{&LaN7HjCU`UiGSH1KUo1G)LytpJx*U4s7z;b{Or zWvmhnKdJ2!g^!a04JcfmNZtbA6E356!!$C1_FpO5pK_&l^BO3_l-hHDNXkL|j0&KEpHs$( zNeGnVV1mXkNrMJ7rYv|Qp)nZ`6I5=%CZ7gWmJ-E;2k~*iv^^qKQx~sba9CkhG#R6Y${opQs-=5-gq&{a*Ltoz^$L*#czga$;W+@X<%$Ydl;lDQwr(16TJqL2ts zd~E1M*ShN(c`u{HYP71xWV6(RmG&L`g*yGK2oE<)Ws=)#aSx@DY?f*W2q?nflM)8W zW~nCslKkm|c2d2SZ5|C=N;a1WASdk?kn6#Rm{iwLZ(17~IiKqwtxGN>~ zK?2bLD0=cy_61*S>GnHAydv6q^$!H20a)zU1CeXf=llbzN!K{Cj&G+1BYA-o0Pq#L zH~f!or??Hp@&_RC?UVtL{Gq5{rfR25#?nrauJ%Cv7fYW8?Bm<15X7`o9_oJxMFXh# zb}EDl+9?nBGs4lZUSiuRWJ_V$Qu~FpQ%pea7skfoVrTh`VOySOHQR-{^v4j`(RSBw z0Wi8@3;+cPN;~l+{rFC_2!gz|*sKTIA@y9=3Ju(dp8Hp!L~>=oYY9jLz~~kADxeo$ z8T1bcN(0dIBDH67Zk7>FKy8&Y5j~O#KJ{il^7bBfnMavDw*jA`KRWKg3Plv?@7AKf z=#I^2E%MV}uoD#ZQPv9$e28v>DnLejA>1bjM+3O%Nl*nYkX{J+X+qKf^4wVE>5Q8K zY)bG})SZ@R@MiEU&ZkU&6jzb=Z4ZoXa4T5y3I z>Jrul4IGFbNR?qkZXwvE1fv01bkkY}^I{7D_YjZkdyBl{Bg7ErO0y%cPG;fLfO>SBX{c-c8e!Q| zQl}7z20-x|4txnj<-l%AFdBfxP6psq)0bD1a?&-9tmDOWa81N?aIH|Cf74>ZCIDao z5HBVHkjx>b2c;5|A+E(_$*WIu5s3!W#Nc7Cof=K>Q)TN@R=y9XX zSUNwl)*h%YvGi%cK6+A70&$|UP+uVw4WOcjbtR~htSsEW5srrS5;?{q8ii%^egu`} zYCXR1IJmZYy4BX|>4iG+|@NdA!4E0Rgeu;-x6 zd!UZxMQEBd(h5MVv}|Fi69`3C@lwfGT~^FNNcbNX}P>#Zloo(9=!;%ydcWL zZ=s&^O9*QlH^qW}^dg7>kj$Z~H;JmE2dkDiMdiq=2e9O6Ks|a9B!m!2d7yI$L<6Ac zc}oc71?9ocB^V9BVi!S>Yt!faMyg5III@nO<}LGuiMTO<_ZFJ%LfxI$0*h*vE1cAL*1Qy*{h0bV^36|ifb2(z6fg90N$tsi)TM6)d0@465dPG_U3`AD~eHcM$ z02+G@)L=HvuPMj(P=HPyfQi1wX7X?Os~;w%VXjPkk!y1&loQ>){2M#e=poevkwOs~ z68(foH2OC72?RZQE2Rpi`W6Q}G;l2X_Qn!`4tBrXQaWb9ze8{ufUm|*E=m9nd_usc z9(9SU?~?!x2s|=!s8_^bLq{hwRv207YN+a6ke94gNwj7(E_#IZK;I zhXh0Ym^~5=97rH_S5odlwxG<^PY6Z>u;{UB*{4u+-n*X?kOqLUmpwEd$hd)t~`wO51LNh=D0im66vc6w4fzX@_P(a{@dN-?r1`Z?; zS_os?I2MyGGxa`#(Eu!g&_b|KXddwI2uK6Kc%dO*2+ikyJZdMX|M(Hm2$L)GWQN`> z)Z4xcsU6joJ-0z`;yYIhCMZzbtwe1J1`9T8)2?w>P}HBYMrhze{17WBu%KlN;9f~M z8o(v!#Y=vLk_#aJjF2>djJ-QkDjuQ>^1mfjXC(oQ=tYv=!m1vZ;I~jO`Vj=TjhkWt z5WU1_03>th>@K3S=!V%6=j_svS5M`rng-OPr5r*?d**?jP9PcpMK_%xkQbH*dnUnX z02aH%hg_RJ=Q~qRy2g=p^c=K@ci)Pduu-U+{0HQ;or#!(>K}ka&p|DSZ0zp9bus=b$AJBPv%|>LrAt0aSDYS%L~=<>CI6a5Su!$iY9+nn9`E zi^_7f9v>peURFz-!0eLU>i7~iiBWHqigz+&7d*br{xrdR;P_p1URnL~_^5HZI0tA@DlS1oz zHzODgz~b9&df}8@5}2(dbqfO005EnEsvV)oT<%Mhnb83Nk_b(ndmsvKhJW4ntzIG1_TT3C+Wp-qV+vS|AurDxrC>vd~N=sU-r^ zBof-17Mjg{-3cwt6A_S?JQ2Z-LcN1Gb#B+&<_BKH&lC)ZBYTDV32#{6=@Y_j0LRaMEtGVigoEY^(Oil;3fwZn3tdy+WgXGLndqB9Trs)+ z%}KBX`U8T}0JM`}U|8|7B*qf(j|ofz;D^O4Qu3xOODNByHUrH7EXAl)FkB00b_?~4 z|Aa)3btLe7Shxf5_^GUQP=gC1RQhsJX^J6H=vzsqhlB5K%w6EBv!9=&@{OgQ}EOooQBe*RBs6B8r=%; z-3d&SQoSMYqQ133Om+8PvF;vjyX`Z~a;^iALZ^##1u&w6_ z4Zii$?xcFJv&q}N*O`bA?#D&ADTWH6Z=r6jf9fbUKQt)J6hnn7U|F>eb|+zJ0Gnc{ zP=%e;tb;zD&@_OKUiB7npaQ*O9ni-p*otJ5wYK)%rdFQ%6{G8430qqx`PP}1}-HVD}<0`-Fo2H6PO0T$;JvH@T77*_!|jM z1MpO11?29v>!H3>YHgVg%;+`h)%L;e>bl$yVYUl(*0-VBqwTKW0$}t-q5x2Upw#b+ zQlpoTg1og#tq0m6bvrgQG;kxjC9gt>I?I4}ARr9@qZcQtfL@hl&^r^92B5J|sF<9a zWrXihh)x}Vi5DSmwRR$u?Ls}~zqJU>E&$CI0OLjI0R;#m{CO%7`n*MihPQS|eU8;b z12^JDSb;JkECK#A0cijjFTx67Ai@&pmk3G&&}b1#&P`kYQjR|p5gJs$L|>s@UGI&% zYrR8yj%arZ^%c(ck8%6KCP1U___z5IRIs4L<8P>Mf{h+Yhnb5Mjf;Y$9?M#yfhW-` z3KL*PjAh8H2}uLU=)vs-WFW^f?2`yf1K8L*{w-?LZkWb%(!Zy?%EP_qA8Qq53e5DN~7G!$oL~Ur8xrnsnmHK~d zS!m!%bQ?MWW&~P>d;Z9^?;({6}H)SYx2>JovpuXgo! zu|00L#)sBAcjXew(t3Yk+#U4sC;@lf!QG?IxV6|>YNIp2r}?nWf6-xxBMoz;fg=rl zq)@+pL$sc z&nA%ZHX^B`J**_`v6c+@Jt+uQh&{*GBMZL%;psUDtxuN+4_STukovf3sE^>NKHzxz z97(kPi;K}j3q?kd$eALMD^f|svv<8#SPA~HFi^LrNNC{ezCR^nICJ%@0Lvq7E(;FteA?bzsf5$>0r_>#i)JjIwM*Z|T zj+_vIFwPfYL^Y$+3V*6iJ^gu zF-=Sj!h|w{!dHvBiK+Q7M(HSBKKUP)afUfV@?`D)+AlO zR54f6667p1GE##~)f)pnjyX zrd3GPV85))^3b*{kzj0l(^H_Jn@u}xjySq5Q>v%_!p&UjarugNNDA7yO0<(Ov`RQN z%5ldFMGoq8c1ARCcQu)A9Lj`haKvdw6S$I^k?N_hgs8E9SuuX(tw;Z5P4J*?buPOJ zG;{N*$IT(f*XK*sJR)5~=`$ADkQZe0WRcB!E}$CScqWA+3-w?MhXx)Gk_pGdOelwk zoOCpWYbYJ5r72Yr6~O!3z3yT#4A%QrAx}OL3OO!JGJ9s4k5Z|>nm1$XQ2{R$0a5kO zk*bdxGFS4}wH>4hmii@o6dJg4VMGN7IXCsTt3>g7igKfA7d*XMcC0erZe} z+1(zsFa(Dd_Urg=j~dv;xMF{yp2-!CV}lg#*s~e6XVwSP<{$+J)$}J)O;g6Fo6A(! zPe4}tqHfFhqXGBYw^MAQw3_V^)~NO$Le1E+Qh&^Psg%)_^}re2>Fee5ux2DhDraRo zD(3`LPLRm`mj5?a(b;oXkbYRvsOe>*D#c5;6&~74YSmh z_d!>e?3xVQZniu+mvGz>J1cx)JA=oPw5^vVq`BpNag6J)?Ravq(c3}$q>Scl~k8N zA)zH_wbwrwxM8(VQV>kk_B*7ur}U6>_{K^u;|Z2Jl}#`W{HX6CH;0C=hU#lNx(-=B zx){~lS&gMoTgejD@FA&&v!Zg-T_1UA zqUt>iCK}M3GP>Hh#Kn8vRC9S1Rco_>y3nXQ#~*G5hePU9E&$J5vo+a@fXEI4`kn}A%Iaz?jBYS&3Dml%$U}XdBBDWM zt;LC`#^FFl!O=iSn!|S~Bv)OvWWjFELGCgxF}Hg?Jt3B>j^TJ8M;kb*XVY@jjriZr zm9kT(pP-M`XHDhLIYB-m-9nKRwDVKZ&XfhjjkI$_3@x0gX9xpzKF5bNte3e|GZmqU zBe*`?!&8@N1?`pMU;@A*Q2$NIuyUqXz?{S6<+b%zchqX{Z+Cm`y*;`42#JmEsNoXP z!ygBAoIH`PlS=+fKjD{HCwiu;16zQ|^R z2Hrekz6!5o+=O?iVl2;8N>$wep4FG*oO)kr_ZNGe)@ZQAyG=N}XzgzgyRLTSc!S4H zAJVYL3-z!Yp`vejq*LtCS^!r6oQq2v&=zV?!il1UDQo5%H3l1?Xi*&D9ATmE#0G%| z?hfYC#}P1^atuQe)R65w_P9DU6i%RQOhu)x3fzR-T7ZBT217G)MM?uH4V_Y`UmOLM zoKQ~G`~KgkggMvwCg24Sb$_bV{haH36Zz`eE~N^RdNt#p22RYk&R5E{i9IavumuPT zP~DtW$Wknq+MKgL=7UB?W*XROaHmj@zbUHf7`LxC^?9tIIcI+%lpvsPZYOm!=j<=c z(p8K1Ks}rhM?+c76>%0pDkI4HG*$yk$Q4Wdx=6Pj{d5yV|3ItPU{TXy9D^Z894*>$SN{P1g^r z=&{<(nrHdfm-C$Eu+|wabZ|5G`e<^&-5hK1SZTripuV|b+Tp`Do02KzFz15%lpJN! zMmi8gQv@;RT;vD{I>e_OFBH+$-5K#TaB;o`_bK@|O*)o4VPia!=(UG}G~wTJE14n9|E+}-ID4)46c9fV_3?sc9U znFE+QT0%s9kK-2_K)2_XTh(U~98>)y&{wv)jGAMOPZSm-dA`e-b-6WtDQlIfM-jMO z-g7QKX}GmscidWPFO1Fml#tjMF|i?uh58n6(K>k|T_?5lspkLb_?(MRbyNfydR`Sh zM>N*PN>%#xFdYihD|W@{uc@*5Gv%+!WNqwc}Ut($Y!QWRue3iTa-zc;`gb zn$1bZlY~XZJy9yI{!#voyD2HoFz2xDY`Qq9{+-oF16OJvY~L)Nt3d$q?jBp5>Itkx zDbsQZK4iWU#0waNn{HU}{sq}9)T53@bk6TqftE|chB{J&t&*JK|CTpqF$^krq1w8e61|$s%cE0gfwOpD= zn7H_-v0g1zS|tMHIj4=d?_gpUs;gBWm{=kBGOPB+wZ}|y&5U-=Y2!3%xWQJc`At&I zb57o-Wv{Ec?x5hRuduplQ0R}ED}?JZpLpuUHp}!?y^+-}#a>gsQ3X()MFy46LuPQ$ zkcs4NcyZ{ant#o@fgGrvUS2TY*g;CFj$)z61+o545y8IH0D%mu_=2r2WLr)HA#@^y zP|e;-f$6q;M*FUpZRoUm2i0(d!k%-0Uw8ds;=03wPJ#kXswPWHrIVR+fL}ucmwf<> z%Km$)>^TScH91QymoK~snmU@*OM~jIeG{rg=n-yEso*uaU+t*rnEDVaR2OQc2VMorkjGYVXr+1}>1`2k4%V;ysVNd8dN*F;hEGsQVF7D+h| z)KA!-(|~>bOmS`y5tWDfDWPZpRX+ru7b=jIhr5n&G_04p4r-HVOsq(u)jzWEX+S-`LkuCL?Q%dL zB@hjO;x!xq1)_3bpCA|wz@j_E#l2uK6K z=vIsQHUkN$lPEKz0|3O2yhh!=G+Wpx)N45j+ur83`2k4$$jg98{?OR3h{obaUY5OX zyPOB=IF5U1z&?KDRRR%#d8iW!MFXh#kyi*6$jigskZ?4tm)MaPvc-e{w%*lks4b~{ z+puxlv|-pl8^e2< zx8t?Px((wGK;qjl10wlDWA{zfhM9~-Vx+4*P*<@IXuv+c4J(0&z&zAr2}J{__%m{}gL$*y_*HUWtkv5EA$UVLdLq_r)R$}0TozJ|1Zo~8r+A#eKp!hb- z0tp24b#AIQ%;xL_X53J#tOpu65Z{KCVVuM)*c!oT02bedmB7j(vw$N4(f}~J4I`eG zna%yd(uOfTnb1sUi9FF#-j5G9X@RX2_BWN#%rXTbAhbs&6q>l8M`PX%^&(aUO)8-U zFivQu%+yN>Mw3ct9;_@h3;1#Z(j*cZI?JH!E^|U#q0sP#md@&6bk_sjHEea(@Ts50 zmVS%?-;x-12fMp#hx&U@vxgeNAwFP@hmEkH{tQU#mS>v(Zd|~pMEKw5oX=CvzTo1* zAKeuk-8Ja%;!)7J{Y*3j3KCNyu`_1+uhZ~k!f>#-u0K>@*dBjQn0C0l3qH7Ae3oMA z_D8s-q1RYDG+r6>e{=Ue`I+Jdu2ZkCHO4EQ#=g$5-@(mhx`cl19CP*sM?U+oJ#m*i zaTl`PrL*0IYv+!K#4f-9;2%)4o@^^Kx*y)WL!_L~kP`vH^H$3sMoTGUl z6V1$Lwo7LQV(2MnA!Z9Oprx-Lg4PmV`>rW7OI{PA%I;*#aN~b)=k5wvTCnD0a*ch-g(>DFzRYu)ObA+1a`BE%+IuHW4NTsK)q zY-I%Z0C8t)lODJMq-l(1XfFi%Dni>9X@>toG~!iWN0bPfmr|=CK#wC(sYUtf<6p&Y z^KKhtXJV$(DoCbJWTrPkMr>>l%O(!@ZFSe_cggQ&fVZYFLE86`_IGjPrEdn4qywn zOGj6Gm;a}*$G}%X=Wy*n2j9Hu;7Mzi?P|X}!o6=8;$wW+SQ-rBE#7c5UdKqF+s4>a zJN4@i5C7*O=bdxmMU($?k^P^;IDHo&c4>%R`t)4}VizFbVRy94osK%fbbk&<#vSUQ zJ;V!;4Sx=w7Z3H@tKEeLzQC}^C*rgNx4X!lduDL%ndNg2`_p!r({!I@PTOU&1Ys-^ z&OsQ@mFghZibBXX`knEC!Em1;dGj;Fgw+5nc3ahonE>+{_)5=GduHns;aBLbtiA_JoS>wq1Em7 z_L^eNv54Vd)$DWOTDIhYyIoR6>^)(V&noroSMK3sanZG3xhFY-ETUF9c}J<&Yjp>v zKHzyAB=p+%*bf^C=`9|<>4(`8Lx;o`GU!n?c=sb zdBCj#O)WcK1?Fqn<&VO*?Yi^i?Qx}*W{Sh$fUPu>8ZJ(+Prx&EmH43TaU^x2DgG*+ zdpd4ixcnJ@d(&EPyS|gUiRx~nx+(Vk`Pg^z2U}ET58a;cq!!B_do{yp1r!5(34pDu zs$;hI%hXZXud1?f>Zs+f@ROU=NB488#ifN>_KaznemJmE>e6s=QEs$7S(RZH=J1L2 zxMk$T~!pfodP2MAqAhmkR$z#8zXH9zSyt# zmbA08vv)q&yAno2U5s(MYH<@!gxcjZM z;-)`h5^@?3PkItAp7f+KA0{!Ee+|m)DdINfs$*)px~|D}pV5Jhe|s27M|9 z`_nhbl4h@x#=f`ayiAJOm-Vx5M|8`dH48rneT6(G%MN{H`ofy?-}+W{n;<&=$eP~G%EO-Y-96?Dw#jm&%aZnX^+PXx zWx}G5WGp8nJ?Qu&Yd1U6Wl7%^i@rcC+5tUvx*X-Qm?kCCudKb;g4|f|XCNlNwePR# zEhk0dw}hZS6@t^aZJ0B2dMAF+25Cvt;Kk@OyZi@wZp?$b&E7{wkX*5nZ}ojW%gTfiH?h9{6jbAhc+#{ zw{spJ9Tcj_wsyq5Y>X8Dd+!nVT3`O%r_`Ptdb0TdFC_oHNB^xS;HDdYOZ>NL5$+)t zee@QYt@QWi;{W2y%r7n99d7$`_9s^2-AfFg)EcdN6a~@Yxqp~t_ht)|`*OM(e-N(d z+9M4Vm^GV9s-Yqy6}>meby_kqKmN}pjy&?3$E=+Tkg;894Y=G zrPH6s>Ga$}{cde^Uwq^xgDX16C$$;dUz7c1M6S>F0!+B`jhcG#8o4kzbT){H5TEY{ z;$qO!ngK(14s?h=3Aj}6HzVy=)M5;ScrJ*D5MS&^0_xVQ{j0TpmW=1Yh=}neo-lS7 z&F<=U{h&?AR{@FmQxe-*HlGh2;t!pZ!52b@i0*}cWN;KNw!5L0C77q=A^;JO0JSGQ zD}5IOhzRgSo}{1vdo2#KHc5C1gop^^BkpEzLA5_^w9T5>WX~2wXce0ldqq=55zeRA zm;dM9+Eae{nM4ssXWue=6yf{`fld5FiXxs+L=-Xdg+Y9MpZt$oJ62o6$437S|Peia8yO-`Hv86vXhluA~QOcvV`au!^OxSm%k zSEJjr_kdWmHPDdK(X>Knuv%+{`!z>la`SA^5TTt}YO1l`yw+^>w3yqnodX*pwsN0= zg`sZMb5iYG$PkguHr|#z_NGSMer>T&%P1oyS(2US0fv+h)?IYLUIiFZI#@f1mKOW; z%gqCDK46Hz&MNf*h@+0UMX+!e0*45$+`3kqV`@uXbrVgZT?7{*u5zDDaYgQvc`;;& z$evkhc52C=#11C&OV4b-JTA%ZHmy*xeWcXOF|8EA;mPAnqcoJ*=%>wP?$ z?9WtIOx!tG?ZuaLY(7Vnes+ENDc@FP`!4xhJM_Zcf+z8je zeE>K_aI@8J+3)Tct{$0E5hvS+Awxtq+f+*dWLlL~Z#Kjir)iS4AA=DQ<641F)ds;) zW@J*}h}dR}D+^$2ItA~q07HBL z(*}cuBsc#WFvJJ2&;k1rV2HqGn~*9XD|N~9e7D=Gxmo(R03rgMZN8@%K<%fk>k2KW z(ES~RhzLusNtA?Ib(Q1$I(&#HSv(vC{6_#00luK@s#r^PhOI%($=`2*hY0VaS;D-u z0M7AWaTpa>s1t&#)@%u3t`VDJ{4zQ6{m=^(ANYIP~M&f6~^E%>t)Q0K7QDV{** z)9cHRd5IpwGhW0r`mx!G>$6XzJ3kUXko=Gy$gdVLjXv__8$Ao|$FfJ$dDYrKOZJx$ z<@9We@tp5A8L>fZ?tW|{nESYz99jbr5#nt9Lie{f3D4b+O-3{aup79ufkOm0+e$(A zS7(DW2ZS5CbD%>+H(O(0D4kXb8oYDCLp;h^P7*e7=K+U!ly>p?wg&H2;2|CrJngKv ziFZD9h)0QM4!Vr<_CoLwj}lLZjoHMz2s*^0#1oy)+%qNbV(<{Z@RCa967Ue=&92uMVbo&;bz#!<6; zCci%l9U?kUV%ID>{5WukM@eVyhA~O^Dd-T<%{EwC*yG#`7LV-LlREsf03rgMZ78xh zz;GpOs-JBV@bmB?;`1c<4^Gnw0~YU#;32~E{F zBR>Wc5$0@jmW4ILVZ?cNgQOw;PY4kadeRVw8VpI=x}SrG_=MLq~1r}KGV=n&C)QqA;( zM%e3j72wz`zCVnJ7(IE2`$1dRj+ko_Og(cnh=>q9=|}au!*sR4gTO=lDT6x5Dp{^_ zJamZYJgHx@g-9m=hxn9qTr6qI-AT|P9?_kaF8(+fIz)7yjJ!pfK|N%cPp5DeKYWg;4ktWzF|(oHQaB78xi;Gedo@w z-wrk+>`Q#dHm4*n^}~)%Gct+(PUsQQzo`=RA*WCq_IJaMRE0ebE)4toU`NFM2H(@2 z=>i3m2K;{{q~IxV>*pBb@{uxvlBnK#x>`o>HEp z{|fYo=)I462TMA-VX52FVn*|z{yp%B;4kyNo=M?V**KN_Ki~n8hZ1^9&SASwPsw?8 zLQmj0vjo*fY=1xB8~UWw{*g5Tl3QgG%Lg0ps7@T0z4x4*In_I%Cu=7tOoY9NkjcJ zs1Z?@5OPgR-40r{1A*D|*RJbaN?kZ(@c#>ZMEGUYf>V|lPSQ+zqQ3$e5%SypEhocH z)a?({=0w3FBZswiz#?ap>c7DPA`5S;k_Gl!7ze+@0a7ss5zAqWgF~J#2Z$UztHeC$ zbz7?|%$^&nD?^2d>Qz@fReFq;Q-!CmO=u?%1s4%+2_q{h+E%z@E#+Z=BLY9Sgmj*K ziq?b_z8;{6Kuf5gm(Uw?;I>8{ zOYd6(j|jemVdd??*ITVds~c%j-_&=vh8+=m2}3^HWH(o(8SdM`jZ}j>ZMW|TH&TUy zJ|A}Kece#6Es7@5?+iRrg+y0xdD(LBg&PsK_YWvnm&D7xOq$;nc0}x#Uhxg(_8!oN zR?!V=oo~g#n}rg{B!UXrHD@_SFejlL(jxOH}uCBGl!h{#JAuiD;Ix{!`OJP>R|*d+{}Y!lm@POY`QQP#kH3*8#rEo91*$qV?~|d;Gn)>PWdqpXb3za zc<(Dkx}iEu)z;@N(2**XbZtpWdKF!`5pkC=U$wocMHe>elKO?!+8|*5$|iju3y3Uu zA9x+qLPYJ$HpP7iI8uc&b9yjHde8^qM#TN{E50YX7<7WZwmM`>`0XnbhR&Y`Dk9Vi zJw+WGGJht}h@j8+6}lfZhg_p!O7e3cMnqh~#9-1Xh}<$^I||W+Qt^Cn5#g3lV@!=Z zRx(})I3n;FkHK@7A8mHUgZsI#U0)2GG&cX9kiIVk6A|WXuJ{7HCFWSVz6@YQz$Hw$ zw(6@v-z~iH3lmcI)qo-bEn&iS3ed5%eJ#j{kV}Y2r$Mea>pc#ssMS{%Ydu{=cSJI% z^E%*>3c(+lz`p@_qyq37|1&9{!oLZ4q(bmVB`NH#5B%5QBEl_U6ksacj)pUPq7 zhu6ReA|utPL}f(VCUv)r8H%_T{D}BJP>GDNGwQXlqq+8)j!@QQZ}K=_2RDe^ysr{& zmQ<`{qubXh%e8iw4bL`b{s=FKyu7CpUbxIFthcoBs5Tfj_NU9eZ-5g-PO8zw?eBM! zUces%k5uLXY1j7$wP>Zuex6!(Q-FEgZ;Bg4Zc12FwS)F9K6Rm{2;4pwx4;4-3)P4@ zw0bkBHPd!`4+an!s7BAhT-xC{xGfG4Ik>zMRa5L>BqQ#C4Wu$Qw8)SeHebE|2{w?* zJP=e)3#~ADqW=^Fhzz`=62&QA2ORSGEt4*s5xm`gZesYWhLp*9f=D> zE~*hg4Rk<^Ihcn_dvc3!?~WHlUP{;`w}ZAW7d71rd_?$VEd1(5QIK2sWnP#t687hS zA_6UAZhLFcv7xUAfQ$&agaaIPj>A@IyKhP3xdPMYPOutP-Kb%*8 z#$i4VW<<=dE}@Q}f_Z<7WA|+uKLlPxyd|s?ou-7ej&KwBM1TX}s;LiacsYan$avQ00VMnUM?le;8!H$T%gh7Sv z7WnY4w!FLwZloH;-Ao!Zv{u35pASAF{1S$Qx0~$k?n+QU7$!r)7ebGSzJy}~woBiu zC)N8!fFlC0K({2BfL+L{`HOLY$iaKB_>t}HC%v6QHs{nZX|@t1C+=K=6+~7_xSnXI zR)!rXJ1)foQmyPzCX7vBUWOH2f?E@=(ILS=%jA{qEr2NrUzt z&=H}Ru*zk-=w`$`y|XLZ$NPS4AhJ<`0D7R+Yqm-L5afu+OIR1O-3)+y`~mnVCXi}8 z0E2F?mJGOk9CSqJ6&U!}pnto@0p>|i^eOle@mHV&re-WR;_zAU5#d*0lrYx{e;#&3 z?CnM`4baxKvn2`|L(bc=RnQmlfm9<8R@_eTmtjY$!tQi}zY04d_7YAL>va2V zckPq;_k@|;2@qv2R0+_)5Ik?+$w| z@pmCcL|noeg{{*#>}Xm|vr#Ve_kl(PUBa5Ot)aDog%6qSCAM<@A3e&i5kZ#_`%DMj3J&r?TMyp}WTYhI zffm_DgRqf1uwPxHKe_Y?Y=MM zNL9$wUBvf?91*$q^~;iK&#rEaNQUZ;1|F$Gvga;deGueG70BCx*3~A)U%sbsbncNYPIK9jQWDH|S2fp9DNog%SgNTE(0UIZ}}l!wF9|2sjmVMCjfJFsBXc zok7@2W)dF*J0kWH`ahb~)E!<+R%z1C>eIV&Llk9xmfUp+irS>5M;W}kU^ zpPQj`?mz4gU2xV_4p}?wSm*Mjb^T;#rXh~x-ZO4%(jhy;R<*%J_B;{kZtnG%y}q6h{05OCMam^B-T8Bwa1)i*LKRG3NoxTRr4O%3nk<&n^wdeQZn) zTp28+T&%iw3u%uW$0{1EtAT|G>$&BnmU*IbV21*R2<#;#f~ivI4{Fh{*VA}Pq>;;B ztIqyHlX`~%i3sxf_l6=arXaDP4T~qe-}%frfa3)(bd# z*r44KG(>36C^6NviDaM^lZNTmFdD5WzjIOgKjROug}7h>&uNnGP}1ISPH9_?pH(4}}a7*>lQEtAs3VI3ETV zBCZl6S&gdCw{&E5xMH^Bo6LL!Xh_LP7NhmL2W%mGBwUEN&M7e~M|#4wxEV-V_(wyD zh_b|9op#&mV3eeBdK^$l=};~80c?K$1yG2fN{rByQVJb=N#*(^s1Q+=7-)-1bw;b6 z#QzPj5Mh%k)K}NS8q6yoLF(kl9Si0=@Vso z8Iju=BcbG*P10{PxSf6|jusDugC$M;+dQk)=Nq-K-P7Q$$&rTxhxhYlrwNihsEGM3Oq!3vrQ9b`LkoZbQa!;;&bUIzKK^D+PV;My=}x zcjQ`^Eouiu4riNTaZ-7M!o2~BTdqvXcVR+iF6cXF(y-bJ=Q10hK0t_oW*hRD6^QF} zI#I71sef$HhM*xOrxj;F8=!*#Atk5PkR?h?t zDG{w1^ae`@!pIytvXYjt=YWO?ZMH$=oj;Auez&I^ifukV4d(eO^=v)yk!$HT85dOkw zs|`CUxdP-2?B>#PUt_7;3Zng*^)RG;ND-0F_~hq*fA&Oe=$JhXkr>P&n20cETN7J& z-Zwc^!$2Mc5)tHV^OVIy>PmS_`D7>&|H@`|nS)8sr$LJNm+89U-X`ZWfkgbvbU`jz z%I83d_?PLT)Z}86kUkGmM5LZoNMXmU6EbD<`CuacmCdlD?bQbIg+L;LT=%OP(%JZm zM=j@z;Y7qa+bJW3SDg0Z-*|6 zL{By~-vKBhP|v!^y5>yhGHGQ}IDVOiR`KR8f}R@?1B zS1B~?&Rtu2KaBxI1|B=p=x%N#YA$YQ)8W(jQQ2r@b;hL<@pb7_jP{xjt}mZMO@m#4_(G9rgF&hqV) z#2u$KDgP*#5HZa-Ewf`LokCaduhz_Hr?#UGG&QQhS%ddj@DSn6wuhy)W4uXRPk;+4 zG1(&Blg89GgT!gFoqO0JS2~3M#pzdr6A|ZZ^F=24=HgV`;Hf=0Q=OZ;325v3!~OXB z@`V?v7Wu&0sznYvvEB)LLv4d%a!YPy_l|v&6bAeK9|)l?#ng} zKCCoYM&x|9ey;oFGqSn0j>)NyL5YZRwwbmfDLG2RCgUdnLFAt5rNJYlNSl9Lz@(k+imlP^RMAVyegF3F>Q1FO8_EX z<#;dXw>8k_rsUrOiU`!7r>7sp2ZNZ*{yPv6A)WoD;yHVQ`e;})D z%)hO{KW5z}q8y!Vk?+nh+#Zxk@tXpK2xzu7>^lT9D@W~_eun545FsL(X)~7rnsZZs zqvE3aB1CyO+X&^3N!*fdQvSX$A!3?sIs49;%);?bw;ghJs-e0+RLIQF-_EJ{ z%dn&I07G;%M2LuH8!DZRsN1&pFOlVHaKhLo6v(b8~X zfwO81(FqVCBARKmHcqLz`2XyekJezb9VU|9`?YmNntpbD`DOQ2UHY>#RhJ%mN^(OR z)#+@9iKIWkIA#1Js!{uKjXK+5BDt^Ls8Y>7l+~;0Yu5CC$@DTJx3e84l791Mqq5nD zCLppS1=>wSt`1zG0B%icQaA(!5z1`yp-J9uSci_J#Xdzh8dt38lz*EnEm#n- zJo$=E7RzETm(u{9Nt!M=h;U}xTDa4s(L!6D#i2^l@buw9N=qJdq+F6bLvRq`96ek8 zGf>Sl@sXeH0+QtV$th}__}b6)<==k4R8fI>BHpU3m`*8HrsgLOgZSJ)r%lP zL^RXkmlkNw{{Kdm#%yc%+&lE9sK2tyUe}jj{|VJ$pVO+$wQHT?ye``(%vO(OUl!M8 z{E+Ih%i_9h#^5;rbS=8|TJ$#5ie7bEW zQSajc)-pbpH$;;!)BukYeDz103Q{(m7A< z_n<@kNxEo|R4G3I4)F*stxtXg9O4h$3WtiDLiZEk5W$@?Q*SG)OXi%0!~V>~uwk}d zSaJ#G)=`Z8~=FKK)F+ z*~~6p($$@+n>&r5rfqji-KNIe4BK^KL&SFCEUiHDvvbLRY?#qoE@4RTV;aAEIDKnh zT`9a`wzzD5o5RGvSYN)!n^XvYrM~;xwH}at6Xo!cTb0A~8@GWM|DcNGkK-b_<#vUg z{K$A?k$y`qxoYXl^eCN#w8`=t#x)S7#%p&YHD(5N8y1t3zXKT&^6NZBHnCAdcXGFe zHlYt;z#9?u#eP#S)%(pz2g&M)CX?V-1|1RloBT#^1@--_x=l7s_N&2;i2co;vv(J3 zQFmcry4fb-4+S3azofUb;&K?&i2u}1LHR?d5mCRv?}8GAi|uZxUa=`8*8?1>0C=u+ z-w<#_;BWLi#RcAL4HZb4B)>7_h{(4*5-e?iw-G|j-e@{4&&{AkMC)l2KicBl5@bZk z7x-B;##)+N!;FaeLQk2;TA14bjrd!VotEW}&?5fQIxWhbp+!Xd8b1p}z9rcUFyb+A zt_8U(z=(jiJU_6UdYFLDX*rI97!mQ~x9Eaz7kF;GcQ>)qJ1C?q&ex;OubfKp_wmv7 z@zyffEZQiGM=M(PB>c9MeDi`zSA2H zYV}A*CN#7d$^c&#U_`*LF0>NZEOIuc(tI)h+7vhnPP4q%fEN*OF@rZVC9rPJXz2n{ zjfm<DQHeYW67~)65vA8Dp%V$qY>3#lJZpB>(@kvcZpR6EZTWi?l!z!x9dR_}PqM(xX{J7WENF<(w!Ez3 z3P`}t#*NJrKt=pR9jy^-pdvyowF_%AoWsmbcFzNb2(0|(uh9?cI<_@j&_=3AO`wGg zfJ6kj<-w@CUnYlx?t%yzfYM#wmT?J2#E*nb8JD;Pbhz_#4Byz9?w(;1CD z9Wq2@#jFdOrB~G)_B38Yt!H+W5-Y@0GBzEb3N0eqEiXCR^>kbabw2r|j^8uDMEt@W zZHJ!?CL+x8!@~vL2%&4OviQ*E`590mekA57Wzr8g3rxh1#MCKzxj9Xnm}^iXeo*#x z7GX1t_A}SI)Lgi`r92x-#6QaANSBtx(c(E!BBCs2!^A9A=YpG-y|A&r#nBWdtUVV{ zM4;sliyBZK_F60CFhGNN9*Bq+h)X)RQ&ZAf2GBA$*BQiDfrtpP{J>{PPmEeen|$ZP zhKQ~FAsovVucoks7ea`Lu>4><9j&u;7eR-JuKa#}N@t^>-2CswpdvyoztPT66>VwU zBxwyVff5nrmRHK`dZ3n3j)p*&!io4%EEj584HFHLRJ;s2M0Dj>+_pNb4SP*R==RCE z97IHj<#$uF)d=r_3lZ1LN}nXirU8>lBJE1HDfoU!5ig1$ZE|h7%h?~M)%y^1i0De4 zE~k<(5d*8pxDLbMeH1)Ic;)x_TitpRbA22zL}2AV7wx*Ps4@xmDYy`El^-dHEA2oh zmELC|L_}DAq@bORxslD!Lx=c5H*5_;T~V9l?iZm$L|1;TXAb3uPLZ^8=zuAQUxpMB zY5Da^N2_qmh*MGszX~2Ayz&FWu1-Zg(AP4Y+&X3ZM1KubM5yPL-qKA*O_KE+up(kD zb#bL>P2weZLAy6d`cdD64-sGab1NfD1Z{qQ8%9Ko<4XCmuA4b6?7K08=@7q!(>S8=ddDTEq|`VviADA&nAcYOE3{(mcP8o-p?t*{Yjqx z8bCyV<+nKk99bXsTlf(1l^<$2eA!G)QW5Xa-iHNfN$0ego_^t^bBEIsc(%qdy*Mb6kR4ZJ>Jh``Ek>6l;na0Hl$ zFw5_p2y=AZ!`%Qx1XzB3BR~x@_UnUg((v6AK16)w2i6WBbz%|{&H;(|QW%p&tR?qH znONt(U?RTcHP3ThXD`@T?Edf};wyi)S$W-2Us(~3vrOn{5D_7kA7Tr!Ur!?02Z4qN zt^AFhgMQd{!iM94L;Og$zCxOYEp;b=h6t_v{+xTr$4QVOA}c>y9dbZ+W4~EHkW_pp zLx}i6Xx4=Qm~Egs6+%RW-LE_=JJ>I;4n5%O96B$r%r`YkNVq z?W+kT;!mcJPX;Uki3qa%`4uNATN=!%MZJ0>TX(e#DB-TE10Gq^pZ~IQ@}ukvDGCXQ?C`CV>5*<5cwlKi@D%KAly|P zc01Ev@ZtQ$`tp~K)X}2%*5&kT*E%};rs6L6aDFVlyOJN&L8EuRsX1u0nEfgvKeE|D zhVDm`HLzOLq$2>GcWkoUN6E5`s5}&N>Xq{wlkdsV2iRI4^f?nX&DRY<-3vZUPTmh> zM93Ev@+7$&6R*?RHnKf^kwFv=Z8O{tgc}j}#olvwbbKUpz6SkR&=H{*b0BBoNuEpU z2g8f_TdEmzag+F=AR|I9gr8z0!zPXU-I$w z<$rp+>giRTe!X^$qdAX3-$5n)h+>`<`;Bo8%}=R@{`0toE@m`1F|uW?mynE9d5PsX z9iGBb;D}P7m@aZbd~SVga_s4lA|fqj$y{Niwi>SY>zzf_Wd`?I;3C2;s4hz~bgQ-_ z`P}4;-#he9OG;6$_yQL8eZFMr~yACrV=2sNn z{A?P#C(q^<7t z@fWze=mK8=Fybw6JBXGR`&?6I3i0a!Mg&~U^+-h*i8xx%wR3L-8WFUgp+r|hu}fVo zb2o|nW_S_t`dO`sSHpJ(_N~Aog7vdn1J}2`u6>tZqj&W#Qex zB7*fZpgcY3caxI)K4=lq`WdksTDRza5M)Hi#Vools`|}$hCTu(BFjeEJ zsEBu{W8H~Qf{F;$ukOTnX#N>k5$}=})_Kj5v69`?TAu?I5vpH9IP@Oe$NvkEA|fql zx+3Yv%s9p{5{Ul|poo8<`2hSYfFj<3js)I+4=5r~zhc4(0rx)uiwM@QW-1?O{}Y^u zIQ@F^M`PB1h7=L0Us1LlyB(`lzXLHMV!y_dl1aaQIMgW|y3a1{%X|-JM9jskA}cCv zae4$l021*LGU*BY2uMVbepOdW$PFQQybwpiqT9aXaJnV?ri&=e> zAr+R|8T+7Xi}VxWM#NoA*su%S4c((il3V6F%!rsT^|hQNYy5TPOivfg*6fM*rm!?I zfXKjGd^fP5BL#J}hVz^*f{zHln0cyQC^IhbGQfz>z&gr*A$cm>03!l^hpz=>Vc2P~ z7)i$!^m^JRu6=SQ(UaD)hY3U`F8AJqHaAVS5n%)Ix$uNe;aLF~5%3#)O?RyX=VrxR zy|M~8B5-fpe}PY`(w_o5BK9|Woap1V`O_gsMDA_mqEzS9FSk;E7Tk#E#e6sl{#?Kj zfxq6@qM}2%*rDjO`e%ZT2)mfUy8>H%1&8K(cN1Q{08&Jx-o><844&&hya;AQ%*Cvk zC@^(1=Ct4N5_l2u7Be?iAn!@6v*mUX)gy9@e$OGPhSZr;v=XV3%v$V zM4;YvRVKwi7XXY1*t@!GgV^WwFe762Zlp=f<1x=0Ax1>(U2Qud)_F6$h^NJPEXH{& zz=(j0+5Avol{+5Wyd7LbxQ{Mkm_MbR&KS}PF5jijBJiD36+_8Lk=YX~bM)?%*sm_0?alx#tVcvL1wQ?LsoBF0A)QfHdXp37y^Xw_8A#`&NXv~{e> zfiRl3zI6U#efg*xtI~|*eC=AtX5UoY#(C$*sLtabRQ37uA~(*D{K#gLW9~=u6{+)% zO_mi(1)@?>%pzasH@2F`bw9cxs9U+3oLmJN5ppqmEL@H)Chy#jZi1Xlm(FW&-9SGD zXhhJjE2O=4Ns5JTums#tKOJgB)Wr;a?JBkIk~i4T0voA732AEUkb!t*$ zBck>^IM2e|w*rk+AgQ}i(muT%YDCn6Oy*tGs2&`1TK59%&mQ?Ne*G*W>AaTMhLqvnEOJ$tO8T7 zy=%3%1+Tfa;TOP1gkQ|Uzg@!*Bdy`k#UM7}{|0hI0A z4>lrf&x4dO(gT{b_WuAkB5u!H`&OfEi}pVOjR@NFzD_HMlF{*hh8hvI=ly%AbJgH? zU`HxYOuCDRoH!RYvN~W{`Fteg--sbkB#YgdR3@hhsM2{9nK$)q(GDqMV6oe+4`uc;9PsoAPNl z=r^z<)k*klkn?xIBZBw57u2pF4BNvbVmah_0!JzUu1-V-er3QBfqUNnX=_JI*lX$H z0rQYv4RXYP@=ma555+g+heD2s-19a`bz&|~JPdTi|3vR~qcFbg!6f=0LXL>s^NvuD z%gqh+^?*hM?RkBu@%$q-u5ZC_2sk2e&s)%b&*pSI$dwM^e{sRN86FUM@Vsl(?+(*t3bzCs5w_=jj3``8*5TY5YDCnYS1s8}t=j>O zR3WL;g<5xn8mR#FY3b^fJ420#+VjD~NHc}~WQch$+=#e64-TW@{GeZNBt5vhLXL>s z^G7mU&vz8ii2sFK(8;=kdq9nd+ViGHC8T${ZRPI`Hc|y_9o1s7?*ld>Y|m#o2Yq4Z zXF2Z&JtF#I&N(c6G_Ibm(SIPYh+vC3p1pY3Y|+xO&?2HOX3OTT&?dFUgTX~SE(z&c z{D%UIc$~JK#a7a6KMY*N|iuuCq1Zao{3; z<0h5ZUx14U*V8C7S;?Kv%sdHbM9`jgMiS`U7Jvrah`2o+QcAeTmi{lmj)=XOV?hdU zoD=qRA}NF!5woY$j|ubmQvVk4h~PbcGPBvQF3^aeJqe9axQK8)ebln0 z`p*Ft@fbE;WAi*<5y5&||ieTW2G|3&BPF#dS9jyck?WxSmcvP1rc_ zQm7GsOYlNFJs;p@&?2Jsv?g0@BpcIS0W2a|Pn+TVUW``*j0o7%q4-IAFkTBb;%^ZS z+x28=!|R|$L|e>piG{~HBRfUj05KwBPoo`ohsc}2MSRB1c80tKTtv8@#=f~7A#Z~h z5wE9JaJCcV9l#=j^)x4_O*UUHlZYa&cA{g5woWwspGp( z{u*e+f9P!2$(Mjeye=JPpHDhT@V77{{wH)c&i;2mBZBs{Uzguq@^yd_kAZW$O8yaG zM8KZ*kw$itd<$Yk#GY2o>T=X{if<>~bo4JUBmSoH$j+C4g%}aBr)~D=j+cJ}8Syuf zM|QgWJH&{HJ?-FSJ6!$)SVXX%*2VdqEk6Yq5wNF0vUB{yFQ7$4>uI$%w*Th8VMfI4 zX(f^EyNS2k{13>8kUi~}y4!62AGnCWW!TwX^S{s{qV=>s%T_b~0auYAJ|}IucK@o- zA|BIb+i0!mX2MTF~Vcr;-P&tijH(jK4hjm?~b=a})8%mi|cZD$iNnNFNhnruO^ncr~{K}?xX*oXkX}fv2 zqJw?9ooHYF@~7;b2`TocO0i``4&GNS2kzxtCif4=3nDKcteO`ab2Wn2&=%$+v4hCY z2P$eOb8~mxAae7U6?L;z?>D2Re%RS>v*=!!LS*WrRW=o-rS8wLgjC#8966bK;m@&z z$kN9vnoE(6gbJE9$JGOHg~(M^Yr7~bcgJ7{k)5j64^ekvkgFe#!xU0sQxv(JsfS<+ zk*SYW^l=(2>EiCCZcD4{O%-t>o)CGuykef5km2FjKxE^c6|<3r3a8)#k&E|N%*9xU z@F>h6GV|Uln#ro@$6^Jks1>L2d;(SwS$S8*a)lL!I$F%sTQz(j6?|0WLldj*ZkSZU z^O!*@m?^z}R(}QfKq}}18~3n&Y^b(|7erpFHV~b9$(OaWv4qG{$#ZLsF4wkcP7lOor?pc`~sG7j?NBd z@3;=e=GM-`3nDKC9l++!UiPEG)H9t8uKZM9j7)PTFS|DE({VoVh~P^O{S(S5;K%ad zLTn(iQSwmIwrnJAN>$dS zlE+=QV=*(m_cNw&^I7~L^7Dnt z`I({(`aA{^8T?394d$AnFX9N1qmmap?ck}}s73lRt`NDZP-to&tbD`tRlFeb^5M#r zIfV(Wn)*IrBhX#*rltKFh7cL5P>5 zoV>kSPLehGKg0qe3l)l4$7_PDj{7l|kZL_KH%caPu8$W)UP@lsyaO*fYSISsH^K)}O&@76aua+Y zReVt9!%n>)o*wjVrraDeNEI_hD;<`tk6Ymbk&ntf@QrS7H9nEd^muQB7ero49!}c+ z1K;QlHR96gc2vf?Hgj%|A*70htQjsWSRZ%72O=LO2kqO>m}a=BY4y6bau=*1Rm>9I z2Br(k&9kx(ABcREJeIQkERhf0L28{GffGbdN?y{meJ2a)O!M8afyhS56X!dy(dyO* zH60(DwvYG34pPPEWFZT_=J0`3(?>ViQFdQ^Ao5XiZ+!>FtFL~SecbPl5ky8R7qBeq z(Be=tE7r@=ctNU|DNC!pZerv?7(ryDat(YKxxL2Yv4T`FPg>3FK{){TRO``Zfo z$pe29K9DNe?T(uv!}gET^zpQ^yigNlWp* zzLDY8CYBIcs$7S~u6U_uf&L^{Tlzi$+FZBP=1Z^vQCkw0B(UCJn@{;0vj6$#ceISFwZ0PRUEdcAQQ5VcDnP z2&r%eIis^r#||Ppm7B@1ZEJ3j_E{K0WT@n04R&1Ova#Cd;s%kMl2?}R+|AgK?U}ej zD*OyNBeyTW4pM15=>YDFu!G1>$s1~RUgn%}+?U`7k)NtYKO@7r>sUf6oJH=a?#uCm z$WK+ng#6&{D{+KWIEUOZ-q+v{hI9vY zcI~Pi)a!lNL1d?LOD5cW`5;CR8L8Y%u#+Jl!3QEA1>G08(~TO7 zK_}?zey05WLiW`On*=@yIwJIv&k>m#eQa~UXE1@tM9DMQ+c05=qxwN}*hsbpd=4jw zoRoZ`-tge7v^O|eGHr4+GHX`gxD}X(g?*EJdLPXCy(i6WpA?3dZ zI3nMM&{Jl<^`k*rq!8D@|Qn>jKu^Iw=jDriRQV@%GZW`2bkq{3#7 zN^<5mm_cObvT|F&sh^qAN9A{TK&s~z04)S_Wl^sfg!QX%>* z?QaM@BKnet0j8~Wv@Lj$9KLpA@Dbrxq$d$}w0A(q7}f{LVA9PnfyhKfqKG7{O9Sp( z;sL3ihct?~H6D=ac}Sy(+u;F`hmw!apZ0mCEDbxk?%N%4fyhNgT7-U9r`{QQMD!J@ zQ=w1l)V<&%!Y_HYXWAk(aX{m)_(0^N-2jHXPSD3QtJ&J*Cy|J@AB7*Hh9Q zrk?JNC#3qG(x&A;ctYf<q)%ad<)GrCQB-5^be}4}XCbq_S4h=KM)mK`Lt{ zZO$85L1d*O6Uz3HpD-e^fEh$)s@0M>0}~-85Sge}CG3t*v~YpQMYY1jekU1Y>EZ#Y zTycs9X`I-{1R@g^8KraRhtMOUFMF6P>;(0Gt=?J;=KJ;0g<$4Q``(20U{A&eA|EC1 zKWXjA$Jp|)r{M^Zqq0|4?aWcVx!hI6WhZB!i62CMO5W|g!yKBg4;o9l*QqM`EO(me;gB!H z3sPAxx)|2x%Zu@X$VS5i^nx}Efn*q34qk+Eu4+A^jqZ&oa_yUT@qwh+DoZ-~5=yd!dlg)r=dgRtJxeG0X~u(3Zq zjPcbtL*%TQjne*pH|Zq27Bh&uIEy_+fk@@>R_?IPsNs7C(k1r0SNkKI12_gviogSGl^_ zpzHW){2}sJ%{JMV!h8?%uds#4)|aZBZ5wwa{~C*kEPkQN7B}ioehGt!3|6`^bGns( zizh^$zFg%@+pKr_cbG(EvYJC2woV!AWPTlIh@4eA78&Wn{3E^)`Kso~Xp&`kgP{vWOoxvFMuzj1Bxzj#CB zt>hD|cQ`bco51{om&*{v4M;)G>r*8m(5_}fda4yFSiTX%LXEFiK_ zcEdBR1>4jt=_rt(mTrHkweiB;v2iKgFQs{%3cz*U3n_Du11jdVFY zE{r0rQE-abO>u-&&r#y0(`vbnZh<32j>=x5waq+=+THG8sg^Hud+>u)FNdP;0{x%< zVwfv)x5W`6MXIJVYf4~mC1c;LKpG@m_THr}p2<-^Y}ZZ?`rRa_9*!?WzDiyflchkaWbjJDZz3bqj0DtWor zY_`JFh5`56L_uTdEc|~I{t)>qxf{9@fAvTsAlm*EBvW#a#SbDsB@Y|!%um#9gl1<( zEo#)0QuqX1Ar;M~K`W?7gIani|1>$D$7h#Zx?ux=-{oth&psi-aVyX{&OsDbLF zcY1YjhR9jT^CLTP){J_sFxlaG8eWj9dT~nJ053>2y{MyGPtO@RfEPqwO5Sj>lQK4` zFL*kZ5LqgD%k7RVzD z&cF#GClwszS_D*M^R%uy)SH4k9}xPw?&}TiV@~z!@q%4>yS1l)QRnCvJN6q*8trMi3dP zU^gwc4`Bl!u~vHvLM5Sc4^8}bb1CJfwv9Ak)#m3&siOvW}GzyA~l5gDxD*s3j-xncaz zVhO3ZC1+sb^H@SEZ7DaX|3xezvQ)tiNwUr>HxT}1JRz0Nrrdb=SFwat-cmX&{xvKi zvQ+Y>;u-36ryu+c3?VX9!L>B@Q5qd2|0b@GN|(IcSoycHgjC#;(=vS*ONcC0aAwAq zy>#UK``AG${V0tNp#Kn8h+LI?>c9*&-pDxmk1>VFR0UT=+LD(Ir~fB@5c#QYA1WDx zcABT3V+@h8FII0!f0|MDsNJ9wb^8q1W`pa$#33Sw6`VI1ahMxp|25W-{}Y)vX{i0T zI7H;Ig40+w^W4$t-{T08qms`~o1wbjXps6!=gA!+cNN@5WAlrhCga;^u7WqD(q(bb z?bVW%uUE$rB1hF7U&>X9*TfQ1X-g~aBA#nw38}axr(<$mEFrQ~!NqURPPFUe1d)>p zM(>krx*K5%k*Nw!2D??nQM4-$6CK_mq^ax0I7m_QT$m3AbxXetJyM+v zXomf;vD6BZ10~v6KxE-9)yROwdb^$EKo5LG_$BvAr!7DB>`hyQA`BohQ1TqWv<8v@ zaO6>5!3iQKCHL&M?IeAoS22N9E;~ja?5E%ak&|~;e-&BNoHPx8AN7E9?p+~!B`m^On5k64l*L-Hesw~+UjRBH^pXP(Ew`KweJuT7j|oI3N6rng{QhYj=Pt(Zb& zs^nhAwoT=;=j}K_JSbrl{b&$2>aEdsB70{-z4dM^AhJ+)d!2z!XJM@VdLL#GnJIZ` zvUv!$lOO4oSB;@Y6q0c2gE&H}?kK%D_ait$s_dv!@3d1#e~BYRj!K@Q*?y^;4?B(S zu#+@6pTrANMK6tRzu)Kv3%2q63|^)PUtT7>&ZHvuV4nLVzz|t0Nvl?1gWBvmh0pnaDr6PNjuO@ zK1na^pKyZ6Ny(G`+ix9d=Y!PBKVt=vmC8N!#)^|K-@y!0#S)f_zrKePq@pFP*Y74r zg#G|4h^$mDlss)%?+n6LatiH_@Pf!o$vfG$|KOXyXw*icuaF@`hAKCXW-En!=yqisA#zmJieWT@yBeO5YUh#@{v3)UM2@N&GK@q)hhYhk zrIM#Kbv>f)Zdx4~Teq)Hm>Req=!noup3QNMo{6m`=2lcQM z^bZeLR`&|Y#~#$QaY*vkTkHDi(+e3UUJL}MdANQw zxNW=J9JYeJn~>U1uP@)Idu3hYwDgL3Q4=z9QR#zpt&no%{Zo9SF zkvb@!1pAc)%ZT7!>J6M*vzVOffQbn6RUTp5hpny)wRQEN%5_|@P6HPa?rS{6?f2`e zIp6`nh=7Y($>ctlJ1wK>G%XdAmYqbyUQg>aA}xaJwd!2+XbQ&x;1R*U&cD=d=nA)* zIrZ?M-AZbxPlp=um|91Y4RoFy8@Oy*KNV`kPwF7-bbC>)ua&M^wY!*kH8;=FSmc3^5|&3;nAv zMBLG$+7+EU>Ll|eKqG!8bEJ#s2Wq7kbkT+_7?(nfi1^k1C38ZYHhh=Ci-`AS9`c%t zR!v=eIi!e4J&fTs5-{Hi)IzVAtCS7$dq74!EetVouY152-uJ_ch_{$M`GvO9quu{n z+<+u8#)qIsME?r^in0!6Z>a-fllr5;B7*fWd=sqV&0f;neH>auv>rzDqE*G#swbU~ zPl1aF*TdF%rQR9_HPhm0;hw1}J_|7-VvmMlN5?fk4<;habNzY5OvsQM&-@~wh(JAx zb~Yc!{4&sppgpP+HW- zc#7(bPktLzM5r(JC{^8Y$?w95h|!}l)QRJf--i|PD?M}LkUxYG5u-;9>*)C7kHJKQ z=}|Xq!nosqLW+p=9Dg37k@3c#Ly3seqkuIT`5GN({3W=EpSYvri@ydJ5w1s-RFb;6 zamC-liuhGtN5&I>4<#Z>kDmVt;d4uW=+jlEqHO2n_?nT%#SP!Z2EeRO>FCU7F+^l13RE@E?PrJDna2-KrWJ^{^FPPYOU5v)hih=q-Gg;6s| z#;9)tD3t zqr?11fQbmxqo8@h@c!K(MMQc^5i9QPyxN@oe;Z7Wt!IB)F;z^z-VC*DKbm%tee!uN z|NpL**?;GyT4sOfap|i{gp-R0i+@Z@?f*4iYJYa|Ke6dz`^4Vpa{J_Un;73yVk{#{ zg@T&ao4>XCe4`e&ds@eCa_$GfB7%K`XX%+P4%Y!I zy;|bIg8v9`#K%;wH|ybyyo@g+ za{WRNu-yH5CT9Ww5dof5M5#3H=iD?H$^3(bBtxsd8uX`)YvT{EFW=_9DvQ5-vC87r zPB4E@VLYi|p7>`}8V`$0;~52i|7OL}rb@m%=G^~U?w1icFJ>y;{^l0($|huPnKU`{ zTNn{B7Bkvb0HYlhQvAJggf^cT(BA`!2(*}$twn>@2HH&*^}3N(>l@@N@w_9RrtOhQ z+Fk`v#M87rvN@KvR|gsKG;NPc()OBwBA%x0QR8WQZIBTUk()tpuyi1d0_xqBv;K#ZXxqcqAgnC~^=6Ij zP&$^9TR{x=?ZHNbUCeH%;;{Pxt5|CXbfFR(U<~h_;6=py7C!>+Y?xC!9D-)8+12$c zeI0bu7>p(NUBE|#UraY~_TZKa{wZqrR9VO_P(GZ9-(d!x!xaCM5x8AzMK7N&qu6BLx_mbmthP`m`17( zf)VkLF|CV^hY|6QF@45QfDsX+FO6d^B0UK}M1aMt4VnFM8IMFyh7u8FF_V?EQ*IK0 zo(e7^++x;)&W<}N@_Y=Oh&X)-@Yz$lMa21dun}QDqKI+-ICbaZ|Fco~=urEa#YE<& zH(0B;7K8bIeahLW_<>FSXnpy?Pu5hxy|l1r?K&rz@7rU)k12si?-FPHvzi)sOguGE z%)DjZ+E!~xMm{|$@1KK?2>orl zl&70c$7};VnO|7ywt{HC_U{`955NH;2L<(O^GpRMe&V3tjWiK$@Q(o>5&oO2kpay> zqoM}>IN%Y%7jvk_?iGBS_PV)d(b7KzdZapKA9@aSwhm6j0aBgx55mPIOaE}_k?N$s z=(PkkN*tVm14IrgQul-%ohfZI;8EZs!mmi(qsxFT{9}Pf1pn4*RGc~}SK++ne**l7 z_}@_({(hJo^lKV`8YU2#cxRs3BDJa}iqq1xAACgk6$y%ZS+&}M9ufVUs!@ziOWL#3U`ND$X*JlRR(COrrw157 zs#Ef#Zfiv=r_6(U0DMIF6^SRJ6|ML&@TUWhRH*Q*G>Jy7fu~{sk%6~Yqx5S=J?i!~ z?Q1PO0}F^OR3s*fEx1p?voV3lL`9k}wZI(CZ=QoQz(<5%k+^!L-f5=I?^*C872*#X z*)y;PKT@4%Aa^94DMV*u0+ESNRiiGlCfJC(KR8f}R@?1BTgMyrdK3F}oP#k$#@^_+ zu||HJ^jydhkry-zvs>e&4QG7xJg^aA7jxR>t_?9}aonqbMg(2VDFeF)osEZ{4>jU{ z*&Z1Oy%2K5|MYgoKQDqB@jtys#yu~F91;2De%FHb6aihUrE$+>b)l`yFTn;P8=hB* z?y&8pU?alzyh_Z*6)poB5%fiV7n$5J?d5PI;`Y2xo4be2gkkRi9ud6fLs1sq9hQAR z^hjlr-WiVl5b%iLJ)c;&Nk2La`%xSqa^QLG=nlVr9Bf3`p2uF!u>6`^nDz63BmS3ccVOv@U?al*fZt81U2L&g@bzWfAadh*6vH6# zxwkyzN{8^jc$Dm`&?6Nn`?*o#uK|t--1D_+qoc#$038v!=b_m6sPH#|M+EPAYwC^$ ze;aH>*q(>&xl!Qn!i`jb+a3M=KHP}^Wqf?p_lLkEg8#7J4b*g_y+6hfB182;mVoDm zOy}ZwCtX(^H!T}2xi08b7%e>wral$Me0Y8Nr+=oU;D2|fITa>;NeNQWsW2%|{4-km z{q;gmg-O4E(`Cry{ubDXunXErT^RNx-hY7?@i3XAUcJvL8_b}LB=f(5jR?D- z-Aywm^CqR@-@rwLThQ*NnQ%YT^c$BQ0l!E^N7ZGkTyP8a@&b7?{ZO~Lar;uQv zUGIdwq3)yAAq-RQX>$KWZ2RQ>R3sEZkg+7;?#^G_?(;kc$K-U)C- z;KlUCcNM(b(Vfs1{Vt#*LN8{it!yudd~OChhlO0Fi-WmO1UFf#6_IYn*fg zb6czZ4F3`EBb6xh3t6GR8{kMKN=`56x3#w0P5FCb0FeRzpW1#9-x6sG%^c{6(2H5z zy_G2r(H91(aiOU8CH(W71~Oe*=KAxA1vT%yy4 zL2!CfTpk2FQjJs})EnB!W6I0%kRu{5W|(_d%gcd!uYQnAfDHTzz$1e9KNcH=t)#r1 z1UOQOvOer6o=Hp0$*?1pC^0&xzUu^Hrvi@%zL?VuPn>u@7p7iuReZvu>XT|y>A98*N7rBVHGa ze3ZQcGvaqDJF(I##E6KCS$34m>n#oo%6)dTa*>a!p8_-@Xn$iQCz^gbz=+pnIUhwo z3ueUYk}(oJKNo03(0@_H3I(@>&bj}v(eLExlVa{p>U8__^DQC ztX=hC{B?16C#5j)k7yF-KDRFL?xghVH)}@X59R9#^O`mO3)ZI~%Kc)_{hSTUotiN@ z^WOj>0xag3+!+DQ;fpoC#3teYK!}L&q#_<512|`Na`7x?9gnseG`sC7r$OTnuP-<5 zuczhKXR(gwWb^mM-R_j}#6P3w;86fzljwzjEESExxb+RMmv3J&ZF&g+aZV08QMETi-@+EOI(Vh<(tBe#%f(tALPh_sjk zsb^2x@ki_4P$Hr%rum$ml5fZ!srx{Ph_IMdTE!5KK1%n46A@=IclQ*=nSX>H2q@xF zmggUxV2MD|9;a zl;m58o{G8cJ^dlT;vZ80wHyafXBRSjmHUa!VyNtc`7kPd-6qDlN{nShsZh*q@98gW zwNfnm;0B0pNM&;FJYW&Q7Bd`}F>EpBlYMYQSQ}f_`-|=RL7Tjfb6F6#Q-A$ zE~bM}AaL%Py983iSJL!ZyA)DHq{XZ%E;dcw{J#uVM6AW!j8-6P{@J=5R79x7goy>B zx@r0zKoNmHx`<(`lyffqFI(SC2zvSjMI?i%<1ht9cm19su&b;q0=x1lx`9B(Pbd;2 z{sBc@&yS<7rxy9;o5x#&eWQ^<*8~j_S}_A@Q4p7haAkF0 zvp%TT8m+q7tf++{gSvK3_V@9Tv9wCBkyKAgYXEhFjfSQS?^v2EgbA=)cegn3;p`Axko2c1`W2&9o{hS)p)OF-qYXM_x6Ro z)z18F<4^466MM}k_NJfMJB&1TvRCyp@3eyh-M$tr-}rbn$%h|pzIgA^{Mm!}(Y?nc zUu^&Ec>S5)v458Q#UB1*kNJx|>0j(IKeR`G!8`UZl%|i`9nY}`HT@UIP5=Jg`I+0c zLfyvJU)>wB&aoA5WVGpbgA?p~$Gh*XB`@#Ey{wdY{w^Vg?OwM(AeUpFR_)7DOI>)@#4(?5;9B!7DJ$e$kT{OMZuS9{XG+M^%bx@Wmb_{hlUK#p-X*?XKUfI^UFv z(_I*KvRg&M^6IH&rpxR;wnhH>mT>R!&Rc8At9oX$KTwf4ZMRao$-VRot0Z+hj7$}s zv`VJr-t>6q6DQhFJSvWu*4#Ju*f;msHw8W1C1`WlVBNGydrg?Xw;4upJEmsJrtd8u zsX2kje(GpC1AC8gKegt5V2}C0p4cbL%B7dc|h`+HRtU;yuC+Xu_t|7=(`nf zn0`?-2z4Rr-uD0J?meKaDwa21%&3TpVh#sEQFMsLF%lIKM8O%sCws zj^UbfzUG{By5^iO<{YkiP1o?M`m6f(K5@<{{NG#8$!{OxxF(nueOmwRK}-i%aGSop*^z zN2HVX^Q1OlG-vZt#n$GjV*68pQUhhBZN3c8GRsGIQBx`(tICYtlelG7w4bq=nvBP$ z?LK5a*&Sb)Px?7|5uveaoY)zA4V|b?lLh@cU0I2p-nt|7bJmzX_IWY=pmh3?mOh&# zMgONsGoCa~Nj<3)iyUY&Uy7wz_NGmhwJ)u7F?)5==gGBH56@#&u{=uiNp2cxH;vGn zvPt?>Mm;?;iu9S7UUEDCx&&QbN=j48QU=qinyFK3W_j+U$um(bLP;cpX;oh&(k{W{ zksT>DiO*QPSU67Cu%o@zf(NKAgV1hxOARFT{skjW|#Nx*JWbu@#jkR@{ z)v_gMF3jMSh9~h}iDNg_oJ~dPa1q->^tE=Z`_CtH>n7KXi9s}#*k*|^XGbC_lle7hjH#Pk zJ7H4I)QQ?wJttZw4LZ$2KPgj9S?0!|(J!6e^P`S$sPcMLHB!@O*G(tQc&=j7q{_vl zlD*^RQ(5I?PpX)V=uI*$X*r|4)7Hmc6?c}+a?VX!4WX{3%pdlDk@?&#OE)*R9*>x* z((RU$>D;VJ-{yCqd~*`#Wid&d@e-CdN$1P7prR5^WmmqFjY|(QJ+(T$c}}ibYE>ok zKRhKOn{#)`GEX@qeYe#7_vV*hVnvrxj1H=rCUcjj4PsAJ*c9ZUy`fImEM;OVcTK2i zk{)`Jes(So&(dVZ)ilZPxK^dySEV(lNtQqL;YCu&>_eA7<)L-*SY7J28rR+2e0;yM z78Uw^-dkiP+FjO&qcNGr$r-vQ1NX!}n8vVP=Ngj{_sGsc;+_oLlS#QJ6Wx<>_he-9 zrHi%h9+%u*N8BUkQzbx0p45I@u-4@w8Cm4WGA(ME(8#*B&&)PJXP#78+~Y%*-LtdZ zlSOi!`B?AJgeB@66&X)1Sv_DrWwlP%^^hT1A*nU}xi!{mVwZtAX+3L_Hr+O}sbsnq zk|fKdlS!85+dA=#S;g}qi$Qp*$DrIvs%v6hIuptAKyI3J4$?~m^D8IP6;zfJX`wCV zBqvR&oXAVj^JTc1QQtJZrlEdzK}{>#n7ZzopWJho-;Q!qrt2G0rkl{I^C@q(4Amrk zf;1r=B7D-IkJsLD5hf+-eMhyeQJDnoMST!e39>GUk-?!mL*Aok&ZchG?90vGMaCY* zZzfFNERAsTd~!gKG*6tT5>zAkmUgT34e4PMRt$dbvin$e|9 zKV%*^t7`127u}J!t!^m+-K$UUsfWvDH~KGalaHO(_G2%2mOOV#1IgLA4%e!YCAX=M znAeub6b1X!8SYQVmXms3jWdvf{poOn8v0kan``HFK5U;k+N!G=y4)KFx^RoyS!!E( z+`P6!rcJh=T*Q<+)RZ!N$NSA|Ym!Z4D@5+|=KAO!HLS8-;dx$iW{I?g_=u&mODnkt zV#y6aX=d_vf5SZYRkEp@v2EXsPWkjTI9i9FlHB_vr$&q&dGU+|@x z-THmS`OuQM7a03kS&q_)b$UZFe5!zkR;;h1F)Z&Wwbmsl~O?opY zZC>8fOcyn?vfY|_Zll!w;x5dyaouQRMf))O&+8J;*?>tGdeLgSfm+&{y_MtVwY|xv ziW)0D7zcNKV375NxFtfE_}?EOdTJK_=H|%wd7Z0tJ`$5{S0rqxCYRd)nfEJ5rTyqe zZK_7KxWBQ2Z6nDGzGElVb)Pi0b97yE_;@e*ly4CPvWpDRwL#s=StdU{QpyK&*NQ$# zP?euRzao@HC4FhNYI5VWI(d0)Vti>@Wt*PW%BIP#*55?PBmFQF5!WBoEVZgbw6g~? zQ5^%29IjC>B<8P|lhCz_Shp;S)kJpxjnRuO>F;Hk)^F6OHTCG(Yt*zldA~$nB(X0k z#F57l4*MO+{it|!OM=^v1;dm!*}T0e_*w|N2U?VGR`t!lEpP!PyvBb z4)>rOx*?~97FElWu-hW@JlYcO)~ps+-qV!V&D2-f>zYPME0(WCrB1|C8yv^ik|S;o zZ}ye!btn>(?J&@!#6^z*Dn-k1^|Cr3P_p+ZvbR36=kgPSsvSk?DPzJTn!ggtw=Ai= zM@>WB%*l1rVs@=GbzWvTzBJSv9@<-SyUbwWeI@y@I(^+!>QF=(L-7R~&FKcMQ3lzP z@n@0o&02GF=iFVoXk|P3$}ZWt%jO2fy4JZuAI7Uviw5qB0m_FbiwWWiMd??D)fGcp zmz$K|WzR*9Zj!g!^krK4;JJ2!sa_*p3OT7p##C8Nz%pS1eSAj(F{^K@%$g?edN)oT z*U-4X*kV?hG0TsPaf5Q>vMH>aN63i!qqB7gzH!$gurgMBPNvRDq z-|iv<&C;FY8`}L84~XN;(w*ZAL`vlA08EP3E8WiX)W~`MB38zj1vtb-(-8O+P{9<1o_ZQjx^E{&!0f>2xz|U zCY@RS9V7gX{yFcbHfJ?)(u6W9KI4h`=BJ4l4-IXd-En;-->9SgQniOR(k)1*Q`p6n9uE?cHU%wc=&{cUi>hevCJNGs)f<)Uz*8z> zThD3MkiLXUFVX5tk2Q(l!a+IuqrHkPI-ea{iM54I&s#QE^wKRmbWnAzY_WqXG^BWy z;e-~=A*`SlRN4}^{yVDK1j8z-v&Dwi_wOi6wXm>;s*6*g;x6%4G^TXRmW{U=lj~+q z8#S#_{+A~bdtAg(NlABwPOnKi$f{Y5)8!kJSuwSYD~&1W9@3~7nzhh+b z1TnNxzB^0q8$N5KYLRir?z3Am$u034!Gc`Z}_u29)R?Pg$^41OBfRz(fauZ~eIC--!H%^Qx z^LSIrnD|Q56j2`+sqza-KlHI8GUL`8sjs&2hQ!@AoXHL5=;mxXt*kR8X>I(F)fi7J z#>+95x*k$&hF!||nlX*jF$3~!$hS$c4x6>B^evqti^$k@Cbz>h9mmQH{H5%X6|lJ4 zH+>2|kCJLIQd-N}PTT+TzIlTPj1#RBpgHc_ByvyA{z* zV>2|X9+^#ew9L5_v7B1p+A23r4&bbsCWi)^Lz9}5Q}Hr`T1uBqCn;G8%RCR1s)WL8 z8>HXW7jk2rTSAJ)Nj4qO9;0#xRO2+dq}rffCLOGG6!IjW?#n~9jxOlX(^UZ-dfDE& z^kaTO-mBTEip1Q0F*+e^qgIsfJxf0?7pn7OmuetATfR^91HhbaGYnAmt?Lg5wxVca zM_9ZPA^Y2@{uVmC((|Um{3ktK)SA;#LE{dpv84`e&sOA7jX+NpRmPqS9Zbso1&$xC zX8e`TX`5D=X1!9h%sUwPVWb*Rx(gc83N@*|r(9X@t{N-qT}nS-6qdLU??jNXy;V(K zcT!urLzVLc8)x*^`QenBv11#2cW8pF9LqRjg^ND42?LbR4Rv&ix8QGcSY+yO>>(6UH!4g=Bb)&K(U~cwi8YB$TDqer&fDA)v}@z_eV0FjHaX;Rq=F{wY$w* zZD6|fMN`rZFTWM;U9wNfFaBz2ep=zJ`T2+*+k+41+NBmWzi@!I{=e9qHmlseWME4* zgK(HCFIMwQKYthG+>2O8aQ#?6E&nK$U%Gy`LJKQ))ZukE_F&<-sD+c(oD|ZEx3Anw zsp=c0c;4jwx^%WqRE6m}Ts*Pp-mr4r`86|~s#?<3Q{y&rF*st4XB;oG)Sc>x*)>QTWwZ|m&Y{Q%kc!!32rAhd`yXD@S&ABb^V`z5K#F^mM7IT#WTl}k7{C{vZ6KTg6OQpWGp868b_@1^R54S5lolHkgSEt(}j&H zSdot9*d$H->_e>4|) z)2ZS{v}7=oEwkWx94>78^QB@S( zLmXCe-r1rq^fmD{qGS>f=StyL)mL(su=`)vsndfp<2tn8soE=;0?6_7CAL3W%sa<^ z8`7cpUR7Ldxc?iP(5><140JZ(!KkUo(Ec}kn;z4>DaJ89-98?TzD;CfayVGB<57rh6hEJIFjG9$$h_%B){))F`Y^`wk zgDo$pEv*|gclhgmNk&T!e=y?}HKWAnxaD8h$6+zNp$dFdw9l9SihnsAqT4AqN~MO8 zcU1dd8R7OQJ$_G`bDll;C%|2)l}_V*A$mQ zfa3FjA#vRLrOUfOS94I&;~lJk zGqGuvV++?s;Mf6`z3e}*HO5QB(qmTRj8`_=;?IE8jFH!0EITVpD=Cp6>v6GvkehYB z+JKwIhugQtjFuKZq66l|;zya~@Pb;`nR6Xq=ZIz`(;UM^Cq88!bP5&4sZO$_VGXL! zhE@nG#pzD6wqXrR;7~{+a&Ara zV|_NPU~R*HLa(Ac7AzRpOUSc|tQf>xbt_mgD1Ap(6X(vEJaN%AgLzPgH|klw4oiHg zIxJE1x(?Htoa$Mu4y#=`iHg->SU4~0@J2oVULE%P|3V$!sAmOrxJRpclCiz4&=;zg z%huMq(r*f+x&(VeNO}SJ$}*XKgynV0Q*^%3tK>8*E!JM6PE8iVDk`#F{`W>3R3 zhq>I2>s>V%Iopc3SdeAtj)#AZze3sbR9Y+tTUxR7MnDzZ0J zW}`XIPjeowJExzJ{eAMBC;a$$e3u@(&?RR&Zz0ovGt1Po}R3tP(cuZX5ejk0P~H*-RbyeFgYK-kQ} zs=$gvOGIa5jJ%fOH~JeYT6kq%=`CV`AJU~?N7$j2@wbDjW;AuLnmm1yd|#-`S+UTy z@l0)$qjhCnE0*)d{$ni?5m$jVh5o2iyn7h$j=!v?aXaJgZ0g3`-y6$_+6->gg)qM{ zV>e3n%Di|}BzuKrHh7oeMJ{pLHck(K9erMza~MWhyn;JBxm;s^ivK z*iUot1m);sf1B1K{WoLzHmz_~>|8ul`gtPlpxi;wVp5}@Di25L=-2WP6TkN_`XN}3 zM%kFhj~PYTC#Y( z5tn}Q$dRf&aIuaQ(yvhIbT1pOQ6v6Fk6HTd zfgBsXtBmKVM#I=us%@!;a=jWo=c6V;M0 zFh^NpB7zkwMuy}n^=mHgDxw8kmTVL5#cSYL*x)Ga<2 zDSk^%YWdvFzm$oo^&PjUK#y`&1(I3+UIy8$AP2BYy!8>h<;TQSETD6&;#Jc}ZM#a#|hpnDIP@ z&sAMc?)J>9Ir6zxQp{3wCe+kVoL;8p#CSZI7uK6I^qjZ!Cya8aVYwS}(uyZyT0Ejx zQfFGUy*a2wQfK~)Ix`}-Xv^H6SG45}i#oy&>gjaWTh2~?Bkq$|6w}6)DTid-D^(b0 zY9sER+lWUdA9R;!$LSj+3&{!(`! z(uc0e=tnX(1SDysS!$ZbhUxlRX-z|wq~5=A>clF(8`2y;=_l1^1Nkj&liR{QvM(z~ zHzvuY?&PS*mYEXM|j0mxJY%7!@hw^xqTCh<(2UTGyErC{N zuB(-Iy}VjDGoA!GZMqE1@)ZJpMAawv&EdvP#Mdj7h|R7r(r?T3l|zCD+WDaBzh&}O zK$iGsMfj#ueuB;obv09En3p%DG z-DzipjNX%)wXKm(={81#V}x1TMeizc5Ua1OMk7Z_A&x@H#M)I*f?=zzq+V58va4D# z6_ec@MM<^VNQ{$O&=on!Pg)&8j`P%nuwhB(ZB;_4&b#)XT0gBWe&ko%IMzP~k1)RE zudq4%p&xp;-%XRoQ~x405a0NSKuqq@N=*6g+_7%$fJeRaox<46D^yrajW83~7 z&L)>)SF1f>Tiv?26?-Un!1lS7#;&-10@MxKS@_y@#W}$0Nv@*g_urr=3A>v9t#ou} z$%QYp%4~76eE2`re72leUeym@p;T>WQCX!KqZy}?KVRjoIDh(pDL-U8b$acz>9S*L zN|)9ZHTiW~;%p?D6cJ^<+*YwN&82_cBqMIklzP+GK{GjM`sBFqCoz4850)dlHIE6* zC={*!&1tK&>aW(-jhmj<8P8%K;XG=Lr@cCIeXXwa$ukxzeTiqRO^Wv)g>9)iw)c4K zUeeyfmfD}7(dV>rTY+lXJJq?3GxS%1InAN4b$S+fm*^46uEq|~l(WGj3h9~o=w(!Q6K5vyDbI)XbhWYDUwj zI{EZ;s;x07ldagQ$eP3Bx*ERJ4h9Em!e)eJxj%!j^flc}b__+eK&}+e^(dawT~*QB zJI4;jj9VmjpYn?_6_*y9j7y6RMPC@vcBEZ!>8evw8fvpiT%6UrIh(o`$(yv! zX{kCHOQlquw7szw3%pv3T1zoi)Zsd>++{m6N^MP(($Qn8Fwd4xNn z3>HSohLLZF$Vit$xJTvWy1!?sNmstCq>ZWH!viV`&bJK*Kh?C*-s8Y>L#g9rDq{!t$;ph zi!V#QL`>-pqpTQjlhOFXHu+bjT3vutRD)F8Ed4Z9-quv@h>}wkBd?N_ek3igA=a6= zRTUMKYO8ksW5pH6&+^JE{a9tfOIk6t-W0DNCHsXEIq|lv83=Ev?4&KXT2`tY!#hzH z3R5av$vJ*0yYfmeyr=R~MJO^$KJS#0nY8hk-H%jcg>8J3)Lf@#@~lw}^<$>iO!YN; z8Y@esv#KnvIh?GE^E`d5E+;a@Wo>a*#&0Uy#>-j(ebUB%k$j1m(zUv*nA8Xq?QeCh zE+IWNIZEd@Iw}0DMUi+a-y+6UPW8`h1LEJV4>NY**bL%Hfv?5)=fBB zuCS8Df_07U(xx`pX6ZP+B37<*qX)|}lEugtRm^klwpr;(Wee6c2h}Piy)sJLUeswt zu53Xr*DT2`B!`vMbI4S2)4SNLby9s(ZI8yWO||AGy^PEHI<0CBj}8>)EVbi+5&h$; z{s4st#|6I_mddn3acQ_;vbh$r>A&@puT<==s*%k&ITF^6(>Kj=O*Y2JyOua;-_~Sn zz1|GDIvdL^*YL~Z1uXFLy}cCEK*0Yty!e@ea~Xv_BFPY z=t|e3eH$@f?D(lQQzq!E#I?F_5Up*uZDi7OD$63Mul;JUg(8ckF4EBFy2MyyF-oL( z6xK^)jY!dBny0UuEoH2B;qG8Jwr`qc+ewfsooeh_CCXn#`PhzZFR79oWi^x@{4-_b zSic&bx423H$m%sZAhl$5Jo2yrsm>#LYj3)*Yu=cHiWI?CvwGK#HR7tM{AYfS@IkfVq` z%*`Nf@%Zja{1Kt1yxe#TNy*qmWfWb7ww>$5AF(m$8=q_pVROB^pa~T9WOR6b-49!< zfauA>s-7*dpe9{?W4#RhqXk-(+(lZOR?RO1z0+$iZroOH%&*5Q7rQT2fx{5JE4Su) z8`^JreeFc?@KirDHUZ6Hx1D9oSz;$9Y0e3V#s2O?auWtG+$zJ(exg~@`3q6`={k>> zlRC!LOp>2cshNt;uHwiU6?fdWAabzI1C(d{CcG`LT-5l$P@u-W?Awe{e*2{UVT&;Z zyh8fmTp-aaCA#e>uic28?L!7zl%cd`z#aF8Fr1`!=J&9x6d12JrfOW6qqpUDvDPi8v?Y(q zv4GCdd+ecVm-r~?E7<$jPwCNfRD45RpPj}uG)gBeq$jpN?Fpf0_ny^qfTwJBHiz!I z{;@E5|U3U~vOR|yzP|L!71qI-zDwPt{OLjje$@}g8@>S37y{e_(j;J|Yw1pHxyU6+* zLr{J@14+b}zO_@K3P_crcoId?QWeR!FzMH#b)^c!PNQhiC@GF!)zaEiISx;#8)LT9 z`D~$hX=iGwK`ji=78HuFu9Y$_d22l>mfmuRtv{DEhoHZY*S=?Wq0%qeMh1XB1R0RR z@sBVnRt4EoJa3?Q{3DEt1*BR_w6atI*}7Z>a;1oRSL=+|vK4b5URSq97v$#HKBcHc zZqjYOUk z+8k7c6xnAevUKNG$^E`F6AdlgnMpU$io|(iI(?Bg3$)SyqJ7!Lyw6Ckq=KgFS4GlO z^&lFYTG!8C<8P%OQ#ChAE>&~wm8O;}MYR^X9K4sai>ji-r&`rY6o0DgFYgfFe~A*m zR*A{}ORBSKL5P=DETr(AieX7f`J|dt3xe_rCj6+PQl%rpY$yk{tSH>DBm4@5CYn+v&2kSg%myzPlH)f!)`TA0SD;>pZ5yi4bu>+B8xt!5>%HSFNwpUR0$<`{$Cv2m#QiUYaN{{aab|oz| z8a6JNV*%blk+j%}=#(}AWm=uzu4>TCR@AUR@f!YmevE(%rEOS#D6 zwY-ZaFaFDSg%Vviu10=#S(4Vtw}$p?ri;FkMm{^hPjJd96jNmRR)X=kf(_&lf@v;j zoO~o%xuoQ~-6&2@80l_)eqdzdfWMHBk@G4agZ_3tvdDs*7!r#jBSqn7FEwSPC^A;D z;`&^szDZ^t)AS84%|d33M58DqX`Ot_nG}Vl5#QtIabr=$Ac{hcYnbMOViqcvloUl2 z7mGsbpq&s@S=*PsSemcrOPX)Giih2_XDQRdOV6Wd{*keI2doe$h44B_kRV6E!20v5+(s ze|{Z zG|pf4@1r>*Y!2t>+y3n%9qvh+0Wt~5%VIeV5Gh$a1X)ZCWW{f*R^^#IlfuE8%V<}w z8R=(+l)PR#1sT&IZ(P@p8z(Ppae1JRE)O8CigEG+bYIDK#~3*x-dHujZB7yzp?c~*yG)H9_`OgkukXg;b@d>aqhZpuGh zBF0xG@u~goq1ED`mHX*&164ax021h4w#8+VxSV}%f5A#?b_-TC2h}A`Iu%YzKMJ*Q zYiIk8Q-9ZQ&V3Lh-&#%<&o#(_4G|_``F%b~B&C>M|7=kMPNNf9=Nw@Q+6_)KIj$T* z5idzZ{LoaDZ&AE&hU?>Dz5XtBLuxVW+Y6fI*9v1%tR+szldtZVY09BHR3*z=F{K<( z?HiVsC^K}2)B;ybBnFObg@LsbY9`As^m37;NvDd9lj~$xT>i+JkNQeL)%$0iXLhdF zzv3IRmNr>|Y0^(i`9NMaRpVX^W;W39z}d4Q&%}7WvX~?OruOx z~2h%HkcbVH|brImTGid=ZKFD6Y3^aNjvN$ zzCQ6Lvw20Wn6rvRXBneMQB2C{jiO&}6#f1tZzbN8J$tkh=>#T^t!dD@n%AhZ-l*1Q zqe>-~c13T9>5@3B>9Ed_q|>IwbYiKb6HEQ`lu9hs=P!E?F41Uy>Nr9o{S<{kzW6Oe zlW?A+kZ{r5nodogFSPaA+X1nEX*U3DsI<5SdHoW>41%o`UpuuSyZO&Uy!WNO6^v4ORnUjNaFc4Rd|b0H z_R8zmRV;t8n+~@g;5OA)di1KOwPM)vm)f-d3U{g4g2AdHX&6Rwq}>;#<&RCN#i`Qe zYtr%trSOnSEIJHTBsGpdSmR5LKjE<`wb+PLQ7@`PP4dsB|&HizVB??2b ze(}*Y89UP{^wFY5rcv^6n=_iGw*^yrOIz0*RJ%O8F0^i3&q;4@S0o_+2{vYigPBY} zWtb~6xTRkKs8CP(nKfF?K~A*DgDZnFg5o(gy^_!xC3ezV-13siS`rexRi@c1jlJoJdLS9O(DbkD6`?RemT~sdV7ytqaG}ny{4;j#`YN*} zHLo}AOX_UidPZ41)H%F|bcU6B9IsGAjsAGO{D`GYIZZ{o5ospxMaQ80f|e!`B|}=R z#2ympS$UR*b+R`c%XAfcWGI#*Ymw|`^qJXj7jyiFQ!DqX-5gKBbd6@n^8K;Dnj0rS z4G$d8Hsmd$y!EZLc0yh4ME$8y*&vfM=g>;~=fLbzF|0q47ZZt|U0UsPWK!qoP4%&e zC)Z7%nmX(C+Y7Gn8r=oCYawkmNtS^~dHh$AJli#j6k}Uo3$23KQ)Ki>OHYxlSAucX zpCzFL1GInd*3QOj*ztFAlGC27a)WV-!S`OiTRwmOtvev5m*=wh>4l~rAkv45bV<(*-@!XJTT*_Cp*1H-nrzBSQW>E9yH;&OZa@)p zVTC*|O_hAhZRzF9GPiZc7H!;Z@&lSlLrehD8XiC4XSWZ(cdUcEJ zLinsBs_HO67szvCvV^fi;0&ZvW$^}?Rm+B@p1vx()>cd%hBnGFd~Qq@P-fx z0i|5dni}O7*Cy08$Yw5|o@Fi@GuLrM(MVaa5uU+K>|~qrAB)Oqm9+uZw0xKHh@U*K zrg^So)0-USwEA!5OsStzr+bN(&1L)tamcfdGDPCiO4aDPratYBZQOsd{#=-=8IaGj z%NWWqsi^5yX&V=DDqgobVsR~@()8CS^`wk+K!o!iR3k_K@KVI3-*_nJ zas9nDDMpjFnEnW-2D7|sg=xu)!ZEjPch=tnEd0@*?UKQ-sAcl25z;s2yg%pZx;7;* zoOs_D_S3$&TkIf<_ImFh`j4jkelN8?=CX6Ty=uHf61TF`Jy+OYl@;%*QZMipm+5^} zs%^x25e`tHCHkZmrN+)Ew|9ZmL!#8!BjrX*k)|e;#ckDIr?3No;3HIU=`N;4*{Qyz zz!k?t*;13e_erG?yHhK~#qIVVhGMq>lTT2wMf;2vC0b{Z^Z<}}a+FxCd+63;{m$zb z!f7fiuRmC~B`M;?IIf}ThBH-0P8VQ598q#;ug+=v;T#o^ZuTu&ki3Sj?LAx&Er^XC zpN37(E>SbNadJb=n7W3h=7XBo4YOa9boyt)-A6ZvBQ$iRhmO;b{)urXX-NOX(5V`# z9wQ$x&XFs*^>ha@`b-anlgGs9e-O+8IEUbLfb$4U;)M!M+F4XwBv+#1QU_7R!GkZ1k5GK0K8Ao8Q?<#llX~(=DkJ5r*b7KzHks# zeC44q6au~>u=L+4*nU?L@V#7#fFB)10Y7^v{10CGmEaG6-v}0fia!WU;sURWiXYX+ z1?5UqEaD)lSjd_P&foeuS9S- zz$yeLV08uO?jaJ_kSmec$w8FZ*+Zc#Oj?`3(yy!FJ*}YY$(0D$z(Ewy-9w=n7W5=I z6QDQ2*#H|7n8ZyKOc*IDHkB(;vAKh&VoMK&k04-c0!!adLCuaLpub#+fI$wTfbBdK zE{A~a2`v3k1x-Ulz%aQI0XsQ}0!DZ!OoxD72xbE8MsNVY9t0+FZw0UKB`WrjD^W4p zK~youL!mzkVl2TRfN=za0VWWb#EA-?Qa?7xm8fWR5LN8wq3{`OY$Es)U^>A!0Q(b| z#Muf~(_9=NSEAxz2T{eL9txYm#={A=063ChYk;E(OyY407S&uFFIS@CL!Gd!MEd2!v{um_!E|e<~aEXH`;4%+|CJ4BK zz|vo>U;`bRu8}JdaGirF;06zcCy|Al2rT`r3ZB|Y1l%T9BH&I3QNZ0E3Xej-y#$v2 z0R^LVIA(3)+E>npc8>f?4saPwQ+5^5*6z@h$^~yDEtH)Hz2U|Jrta)CD~K1L_i-0 zQNTtX3XQN}69P+Lt>B^EM8M{9B?7i`5Cv@Gp|CUr^dsm1Fo2*Vz#syXI9S2v+9tP` zD^W4jK~%A$hr)fx!A<*!ibLf}R2<bkcOMj_?hjnImnOup0D;-1u zS9>TN4FT5@So-S~99$y;ZjdVxaI=Fb;8qWXqu{06362H0li&n^y9rF{q^psqQfM*;;0nd3TT#QV z@vDN(>%@rv$(0!Khl6NDn>Rgr0lAXsg$Wh`XiKm-Ks$n^0G1&z70VHr&=m+w=*k2p zbTtL{juSIimn*R&;~<*3mWM)TM6W~86`&iz`T*StdI0n$=mW4Z!6pFJ1e*hFMX)tM zKZ5=Mg9x?-*q&erz%T;K*-iwOmyraPm)!^~FMASLUiKldyo@HWywnm{Ud9nvUg`-f zFAW5imqrC|Xx*72S5hcV4q~B9_fVLD=vf4_0S+QK7~n91!vT&WI2zzMg5v>BBrqdR zAuzS45t!OD2u$ri2u$s{1g7=^1v7MPx=^kptCu*4S-s3d;c`S@MQ}C1KMAe_xRKx{ zfLjSn#T^7D^lkzZdLMxaeUQL}KBC~sgT(Gf+!a=nADG!BzA^KT@=Kx+LcnRQD zg4Y1vBzOzpU4nlDyif1}z{doi0DMmH1;Ez?-vE3^@IAnf1U~`%O7K5`KM4K=Snw@( z#zJx>&RCRSF@PlqmIP=|urxpi0&{3b0(0R?1m?n33Cx9S5SR-)5ts|R5SR8Kp zSp>5I4k9=h;4lKq>X8JNxnl?{bH@`{=1wHA%$-7DnLCZZGIs`nW$qsYmbr5YEOQqS zSmrJ!u*_XXV41s8!GQgx9IuiqDaUIa#B#jOL*aTv-$ZaTz-fvL?X_?OO$JIR&!s*8h| z_jNoJx+1z8!TJE*33>qZCg=mOF~KGP)dZ$Nd0$fjU1HjD$w*cHuU}oM$V20gGV1_+FV1_+R zV1_+LV1_+OV1_+SV1_+MV1~V@VB5*!znA1n{P(JZ=)c!J6y8Ae+XU|b%q4ga;6s9s z06r!74B$(GuK>O!_z%Dj1ZLGw1ZKyt1ZKzY1ZGE@cRXii$3g^V$D#yg$KnKLM>_>y zA0XaYO0L8^%Q%SM>ENNT9HLhsSP@_qf>i<5AXpP%ErQMf>kxDW=ti(UKzD*30KEzN z0BlUK2|zW0Wn@bNGkqHZGrd27nLdcXOdm{Ortd&trte5#rteH(rtd;vrteN*rthU- zw-cod_LeItgHaA*8Ps?vj6rlA!8m|=f&egyU^2jd1XBT~6U+dZMKBxSAcBJd4kI`m z;3$Hl0gfZEjARMS^pgq9^f?4(`soB_`dI{K`Z)w<`uPNA`b7k0`lSSB`V|Cb`qc{F z*NNUWawTPOor72gH+U%Ai0E4gZUwl5;7)*h2u$Mr1SaDl0+aD5fysD6LBHe0swd@2 zta{o(wCY(8h363cBEd@luM)fl@Fu}q0Phm~8{mC{4*)(U_ypi{f-eBRCin*6JA&^4 zek8Dr{6b)+|3+Y@|4Cq`FZixI!%SaVMFw>VOFw<95aLZIF zgO%h;%3xIou?$xCP*?-eoe0(fSesxSfb|Hv0aOum2k1r68(<@XjR7_zs0P@QU@L&W z1pNR85)1+uOkg?Nfxz;zBZ1{*X9CO1E(DgB-3cr&dl6V(_9d{q)DT!+#u8Xw#uHdx z0)gdal7eH-lv0{3S5iv*If$jy7j5P zqHiR)3E)^&wm5-#tQ~=QY-s}XSO)_0SVsc$*h&QEu~iAoV`~tY$2t+1$GQ-h$GR$bUY97= zl`E-n>pO@wuF6B9JED6L^aj|7U}J#I2&w_LB-jd|FF`+mfdpp6b_Aw&2!W{`Mqp}p zA~3Zh2~6#71g3UR1+VQVdEZN}B=7q=h^Gh6A0=78VF2cBZ0}7N?o2TLKfhB!LNSui(2`V)xQ=CHd^&AlkjWheAh0uSBpiz-k1m17rv~ z0dyf)8(>|6^#C>?r~>Fo&Rr#+}0CVZW{GaST{p6Q`53(*G>90YJE!C?SL5}3qe2u#ND1SaD|0+Vryg3usVohnyiRkMR= z)fpZNXCnG+f^z`QC%6FMVgi$R8G*^TlE7qKLtrwlQ*grRV%7C>C059kL z9|3$yV0r(7z;gRFf#vo;1eV($2rRch5m;`2C9vH7PGGrh^PZQ1<#r(g%k82BmfOV% zEVu0lEVoM&SZ+HgIQVEO>E+}~N_qtcv7}e>P*@q!s}ZaYkRj*<(1l=afOQGh1K5C| z3ZN%JFMtgR%&JWY%#LaTvtvsFvtt_qv!g$O*)fQ~>=;a7cI=>Fl(vJRawXmw?jU++ zXAgPwE(+S}>|j@<-@`#nzn6zRdS3-M>sHt(q#xrTrXTAej~=gJzeY(v0qG|?i0LPJ zC`?B5egsnirW4Enm_;xf;2;81aVUWaJ%Yf59!+3Ek0UUlSp~n$5xY;6EAitg4x-(2 zJQPkt^ce(a0-Q}?0?s3_TP`H9TP{&>n7;0Dsa%Q9D;z|fS9!>zuT}7!jt~Dt`Wqa? z^f!4Z+>Gek2yO?si{Ng6`v~p_c!=O(fX4_P2Y8C$UjWY%JO}V1!K-+e?qveA`!xcy z^i2Y@^c@1TbS{Be`T>Di`Z0l7`Wb;)`Xzx``i+9)W{N|*6b?f4p#+Bk z97%8#z_A3!0b~hG#mNLFbPjFempSFeh(FU{2nIz?@u7U{2nWz?{4dfjPN9fjM~) zfjN0FfjM~x1)J)$WvE<9xeRv@tMSer3L_A`E5U96dlKvgurI+VfH4HM0OJTuXFY*w zX&^8yjRdA;DuHR4uHfiHB_lKBN-{FbLCnYj9tsB{`VfLc0gfOz65tquV*ySeFcl{e zn9x%ROlUKK2|ZK69y)TIC0AnRIS!(k=XofckLZgCE(W-a;BtVg2(AYBCxNNBfxv{` zOkhH9BQT+NDp>9uF>}Y-Xy!c*qM7%3DC~^r2MBfnc!*$kfJX@S0(gvIUw|hFY5<-h z7z^+;!FYgY2?D_L1d{+>B(RLUqG0C-C1>Z=#hktFAm;2%4}}X6{WifR0Phl94ltMC zDuDM1t_Apz;Cg_M32p-Tl;Bo?&k61T_>$mmfUgPe1NfHUL4fZF9*JQ3y5R?+$C2ho zf~Np}CU^$mSAypOej|7Z;12?G=>i{$k0(4KK3;BI^zp(DqK_B#P*?%cZ3$KeSb|_R zfOZ6H0<f2!;T3Cm06MlVB%+-UK57HYC^$U}FL^b2A0~ zo)Noug0Hr45bfT|Lt!MMw;|XKpdZ1W00Rj20T@Iu8eltuT7c~d#sTa=P!BMSpaEbw zK_kG<1XBS<5=;l!m0%{o?gR$_>`8Diz}^Ih0qjd~B*18bV*thw91k#-;6#9N1g8K@ zAUF*m5S#(fKwzcRsNmRprPxNHV5d5W#Wu}DVGN>Y5Yz$8B$xm&n_wcqfdrEQ4kp+S z;822T0EZLo4{#*GY=EN)4gxrq;81|$3622B5*!V162Wl*rx0WT<`A3=&`eME{-Zq3{Kw&nNgA;6j4`09;J)1Hh#OKLK1$@GHQT1iu4ZP0$AAel5X5 z0M`*L3UC9#;s7@hv;(+>U}=Ec2rTb+D){PJamGGlF~U2D&bZG*VKky2AgBd+h+rJR zBLwvTj}bHgJVDS1@D#yRfTszj13XJG6X1D*0{~tmI2hn%g2Mn_B{&k`b%J96-Xu64 z;B5l)&c79myj|S&J5s#wAiC>A4}~@;)sG1l0{E0*QGm}076VJ<2|5CdCRhnz48f`Z zV+qy(7)Q_vU;;rGfI!d{pn;$pz+{3dfGGq$0j3i40hmUxF~AIh%>ZT+YymKvU~7N_ z3HkvXOfV4OPy%!45ejBLB_2LfuEfK~IEWrT&O;uZRdCl?lKw=bKgB^zKgUC%7mBo* zU_*d22sQyYi=Z0dYywkpo`M5z6rGnN7Z*B+IxqH6xC+si5?l*#Il=V+R}$O=a5cfL z0M`=S0dO6`-2gWb+y`(I!Gi#|5Ih2K8^PlMcMv=Ua2LTd0QV3)4{#sBO8^fLybACT z!5aXN5SafSS8&%O;?URXVxd3fAUgDE4}~`o{Vc&d0M8T51$dFbB)+2Hm#0O=t8yjv z>J0}`#akZo=yw&2)t3Hmq<`N*O#h*WJo*y_Juj2=pCbJi4r2PRJQTh~rTT{8dw~BC z{0Q(pfl2&P!4v-w6+g+9WZ_o_QN?c_3R^+I9|U~?+I;K+1^_HbU=kNm@Tj)FMdeCV zEbbtxSkgnG_qZ6n6v0LSOA~Aguq=T|TwcMImy3#yawRHOau8Ll;-RoGD$8mFivg@b zumnJcz$A87@THbT7r7D@T^&Rf>v<^r3OB4z@H;>iK^v&(L0}SlE7O2&t z!}a3{W&+d`8~`wpz$8vqaL-+$qEW6y#Z(7T#WW9vP3mIw3<66(OTjw&P&`|%M8H7~ zqJTp@6!wCE!w4+>kqQpcr^2J;N(3D1APP9%L*YXR$P!rklNH={iwHPHu0+6T4x)h5 zJrv%7o6jV$^k*yhPV3`2awP)JcMt_!=%Mfn1YAsD=`T~ToR-t&awP(;au5YvD`?koqg;uATO33Iw|OX3jf>HD5Lo)V6+C;r2)IYCM8N$HqJRfI6iz}G z9wxB#k14q2NfGe4T#10E97F+6dnl|oE=E5~VCi2_&`Td5UX&{l@QQ;d;5840L*Roq z2o48$i{L1LcL+@4Tm@%5AS&LID^c;GgQ((T4~5fEQ$8g)1K@Lle*k<*U=qJku!gQE zek)g^;(G^C#eY2{XZXbEp9n1duL^qUWBvc+N(B7jAPQ*niARq>K`cnHE5O18djKp- zU=kNsu+pufVhOnt6-zmYDwg(8cn<=WC9w3%D>&?5BA}yOiGYH#61+8^@*t1Q?5kCJ`SRaQ636!j*rnb1eSiR zf;r!dfI7Jn0TUcV0l`Dzgb6Xaf#4*7$pohYOd&9dO$xeyE-I$Um8jU?K~yozL*cja zG5P?4KLHLRSP&`>Aux%DD_G+zQE`M^iHf5gL>0$+D0G2<;|aO~WC^+foJ3#}PgStW z`=VlwT#1U)9YhspdMF$_K1Tn8-~@nk2u=bxkH92esNgHD(-+B=sJPTYRB^e7!Ud>s zR}x$da5ceY0M`JVsy=pH#5myQ1PLxe^u6IEX5q^HA7+e2jj9U?{*#1j7Md zAux%rD|lAj@P=H8inkp^74Lc|Y%o4X&n4&q@IFCrfDZ{w;wK6|*INInT#1S=97Gjg zc_=K33il1c;sF04Xb12;fl2&PL7P`a#ZPi2Dt>hkRs80m@CrQr2f^zAZ9a7YZviYw zU=kNmFk`N$SX8b=#o`X4iX}Z1ri_o#OA#~yEKM*2U|9l_xV(ZZKNJ-mzybuWsFM!6CdQyoMV(>xTeLam=c za4o=0g6jch6PUz<6s+^Is5n@zM8#naqKYFtB&R0E=%WZ8062!=VSwWZOk!5Smmi3V z6Xi-&oZ=v=nB$>v8QjoJa3#PQ1lItZMPL%oQPBH6QE{$ZiHZvxL=_i#D9na{O9&1E zxQyUXfGY@0;?)YKekLlekt*Dmu%Rs948ARI#py!ej7sH-aYtHXwK! zpgVy{?4{ssRnc3nM8!r9qKZvC6rP8G%?Mrs*qq>1fGr73;x-E2)OmMbxe^rv97Gj^ zJQTX4Ft;PH^g|T9ul?u_awP(GbPxsXAMiF!bs3BMhpq5}&fI5OT0LBw^0;nhG0x*%l%$%&?YwdcEM2h_!M7x_jnJPU9U!3zMF z5WEa<8Nq7+R}j1ja23Hj0M`)A1^6ey2LRU-d<<|S!Dj$B6MPA9D}mL8I~1Jzi&Tzp zk>YL#v2xt&q3}JT?X;6Z|403Igz4d79NKLH*mSg<~}+$RYZ0r(d|TYzT>mIQc? zpgq6~1j_=vM6f)-D+DV7yhgAJz#9bSjJFj$tiAa=awUDtTnEuR?|aCjKT@#8*OI-Wr=mxMAK^4F@1U&)z z5%d8VK(H~uAcD;RwjYoU>Lxz1m>Na&p5AWEF+p|BgGXA|rRa3H}x00$F{1~`FqX2FoI2Pb0f)fC4 zAvg)(HiAN!&fFB4}2KbR+HGrQ9 z)&%&K!0i5A!O`nWM*fg1na3>fg@Krng*@cZiz?{2s-#~`t|a{u4r2Ot9`fj=6|BCi zq+bT%K$qPyauon!J7ah2;KqMg_PA`z+MEO0qjHYCBP_xZvbitz5}Qw_%A>m!OsBW3H}FAPw)r8M1lnxVwIXiV3l+V zfz`q$1)FXr)p!xyGQ&Zv#xp$>+9G;3!IA(660`?6m|$6eLkX4#IGkWbfFlW30XUjq zb%0|D%*+!Myrtd2sEIMFCpn0ApW>k~2GMf}EdA*UhOHn1RtZtSSq`Frvpp16NA$S_ z8G!Q%Is;rtunxe*1nU7@O0WUI811|z=8z704z-K8^EFje*&~6Sa4!&u}csv0?>}2EkJvM zB>|QpXb;eVU|E3W36=*~fnY^|l?YY=ScPD9fYk^x0BaC*2FMVs1F#msdH`JrHULlm``SdoxPH>$&T5FoQ0*W#xGg*s z&O!861m^>6LvRs5KY~jE1`u2UFo@u4fb9s(h#?9d>95@YQVeqtts3s3a3i93Cb$J) zB*EjnOCV=Y*W&qqk zFbm)&f&&3=Avgr!HiE+e?jSe{;4Xq=0q!9<0pLD@lK>tdI2GU_f@Xk62&_;ZS8(MP zQcBw(#ZwMqDLw6>&>zvy5)1-(p1=gWq@Y0`5yzuuyy_rIeBDDKAo@*$NdRvXOaXY8 zpb20u!3==+31$I&NN^y)#{`E&AO|IUN_05Vd`@r_z?THa0(?zy0>HNfCjop%a4NtL z1kC_H5}XO}Gr`#azY?4W@EgH}0Dll%0?_6wclzZ33ldxfurPrY%VG+KwwH2hD_8O? zy`+O!PD^>nqnA-|=pvH-IIOZQ=OCu<=%J8B^oj&01FTFi2Vhl#(*af|I16A+f^z^m z5u6XuncyOTwFxc-=t^(}z0SqR15nu?xD*!_YUI*Bb z;4Ofi2;K!4L16ydRly3~#GwN*-PyxIbm(3l3fm!iAA%tOqX>op)DY|hP)jfpppIZS zfbj%-0@M?jRSgO{_0SrP6pap|nfrMtWD(s&a5BJj0uwM(!8Tip#O)hmn>xTjlz5Pb z!casXLSX3+SJ16W1dNA@qZ~v5$9O0NL?1^m3E%{RDF7!DGy$AUFazLJf>{8k5gZ6` zI>8|TXA&F^@DGBc0L~$>jGV9F-D=5MC*=Ji2Qg=tcqnv1^koEH0j?nE25=QY6~HwF zJpukn&>1bB&HJAhXRh5)=qFbv=g zf}H@~A{Ytq4#92!|0dWI;5~wU06riX4e${`Ex;!P;{ZM*s0a9hpaI}3f<}OE2&^2x zQ&6po`oE&+|LY(Y>`xvFza#n=f;N+4Mfe|q3HU?7Ds4pKKIkbI_}V~}xR8fJ4Wbtz z7z?l%feBbb!F4Ke0#YpHAWB@?Lt!GKmnE1CupGgD038XY0jx-{KfuZavjJ8mI0#^M zf2RnjA#`P4|#T&s4DG29kaj(jVv`ra#z2 z;SfY0PH+Uk(FDf;98Yipz)1ur1I!^Xou?C+ma_;<%Q*z5<$MCuauI=Pxm3Z$I%r=e zSK^5)9mJen?V)fDqOT*k9^fVd6L2em-Es$k-Ey~rUzQM^_sEs#yx&38`Jjh9`Vj@s zX!=Ky{s{*${Zk(D=w}q{vb3as7U^Gb5YxZpq3|-IUn6)O;4Ol;0sc)e7vKYe4*@&#L8R5dzCgTLR0=k_48Q_5_xf zWeF@V%M(~$RwS^ztU_RUS)IW0k|D6XbXKtTl2S@tP(nZiLAtvYq$C#IDJ9)fBHaxF zBHhwm(jXup(%o_9Tw~2~uIv5&IdlG=n=#gX?`J=I!~34|0lpy=1(YC^1e76^1ymqZ z1XLkZ1=Jwa1k@qa1=J(d2Q(x!0{lQ|3TQ!afYyXIfcAv&Ksyn_BkW2DkFWXgVQ0pjm|Q zfaWUXODylWc{1r|oq>PHEw;@q!OP1DzX4Veeg~`}tOaZ!Yy@l}Yz6Ef{0Z1i*aO&4 zH~=_II086MH~~0CI1M;QI1ji)2={)45bpLGA>8f1gmAaF2;pw;62jd+AcVVpObB=T zj1cbjB_Z7H8$!6-_k?h_ksjFBG2CrbLb%%)3gh*kcVfyUU+Fjo{ww`~Z7v>OPDn@u zNJ>ZsNJ&TqNJ9t}=?Eb-10jTFB81SagbgQB!reagwXOGA+&r?2rZ2i z#+8*jYb=vIiKYhr&YIiiTHxhYgw}v|g!X_=gwB9&giz6w5JGzsLTEoi2pvEOp@S7V z=zr&Dh)iT(U_#@L5uIX>HGh~v^*#^FIu5E4} zUS3F81XxN~23SE@30O_|1F(*;995$Lb&}WgmC-M3E}o%5yI`iC4}3L z@X)@n;r1gF!tF;Rgxim)&@-XD7h=gI?}fMq{=E>-HWwc+Cn6*UBqJmTq#~pSq$Pxk z^n?(akq|;N6GCV= z+2+>aj2#FY0i6h209^}22#;OCaL(*z*qFK&DBOgKf<6GGxng%^4kyJV7zy#~HwzisYw1RNyf1{@~j1so-W#1jgu>r2H+ znWW;hfv-4gn=62T^Mpcxi-aP8zX>7ns=`z!75~U26*mlg#ZBAXQ3Tu~oB-S*oC4e< zgv5sm?Y@_aM>0vpQv+Y|+%{Jn0WS%q0IvyU0dEN*F~TFMC|_49BFZEcQ4D-VG~3)e zd_2S;L_}gNLKHw8LP(6Ku%V4q#Ft4b5*hf4B(}LoZT-v12vGqk2r&Su2q7_z!l(KH zl2#_ENN?aPGT7!S;*6gVssJ(*sspkTLSlA>4z;BshfGqD)4*5cw$0tZgZhH-A0Qv$ z4&X~dNGzz(rL9yHl1VCx82E~!wz)WX48;lY03`_t0i_8cv7ExY)>2VkCaI`o;47-w z=3d}2R3p3w)F8YA)FOn$x(Z|JNX54@Nkx4FU(vue_XLlj5#c$Y3E>r>DIp}bQ0U!C zDx6GG(b~XQw6)FMz!}>U{sVL*+yQhZgv4$NbDKy-cbTN3mw~V7ZJQf}fWCyGfc}IL zfB}S%I9Orlw^A`gCaD;1;44Pj<`N=cG$9G#XF_toI6_FAs1QRdevwHkCL8#QskXTo z2$)WY4VX#z05F>n66YyAYbO=+Ws-_T2EJm6Z7vPolFJC;`V|VfG+?Dn60q992duHp zB}KqGLb!gTLIHhGZ<0v@wi@_=?Y6lGxP?Cn;riVknn}POnIvGpfe$!nn_Gy0!-R1C zF@^DZ3&&-WfWHiUz-ilDO5DO(Lb(2d!rX=ua8V`+xNP79uG;1r;RM$R;rf3S8t5-+ zH)WE5+Xg=1u5E5L0`3#S^^X)bw3L9yGD*NQ10V3hHg^dDuL$A#w+ip{A-&dUlp=)d%PLIO zZ>DlGNkBydA5hsg_XH=XN(k52P{^Qv>8UA`1k^F`0pHr@Iw7DQAza@;p|-vg8_FaB zO$>ZMQ`_7*1T-gv>su;J)puemnIxdCfe&bJn_G&2j)ZW17li`)n_X9#B%p_Z59no^ zJBWbZgm8U7g+clZ`pYB%0}Xt@VB1_b1PmpF>qjWe7$gBBWs-m~20mb{ZLU;1|MGZ3 zS-?a>1;8XiWx!-YHNaFt=$xVO=P)_MOqt{ma}4|;=Go@@B47dGC%_`YAixsBP{1-m zs92#eYpisxlu0^Q8~DyOwz)?LSVwpY*g$vz*hF{@*g^;u+Z7Ivmd+hAN#`yD-?_&& zw;KWb2>SpB2nPX&2uA=%2*&}(2!8=i5Y7PpBAf@DCR_rXC0qfVCxjchq%gXN+}YnU z$(>y_@OO62Ha7=9mu?W|18x!)0d5hN0`3q(#eIc_`mT8(lXN~d@SRU>bKP<1=Y(+m zD}~zaCE&G867bHz2Sj*cFMo^^L?V0wh(gE$h(-vBF%^F9FBP$5l8U$nz9OD&?gN}L z0U-e(5g{=k2_YmVR~S4*DpJTK6{!t;MH<^&Lj-(8XaY!2Xa>kY2#J{#*7lW(%rZ$u zHUnRg-8T0OkKr@IOF&M-8$fPCNX)AcbAVLjlSwKH82E~Uwz>2;lT?&3@D=53b8Qh&fzSa^iO?BPg%A>}E41$}6*Xj%irNOgqONW3XFP`Q z2;utg6?W-kXdsgWG&b-7KiK9z#R-}b!u3v}V?POKDU$@WG4KKHY;zG1(18#c(1{QY z(1j2ZyDL=aBo#eml8PSYz*#aKyj|9J9@}M8F9`xc-#FF1^XqGD*NW z10Qg~HupVl;S!+{;4ysq$92dTIrlT`d?;45z1=JFxnE};P6KA{lcAt59_ zQTS(|R6LbQDqa})idVL|0(cB>2!#Oe2t@!9p8ii_WQ7VpNktTyq$0Y3uZU@zOOAlp zgj9gIgfxJ7gpim};iukGkw_+~NNV6KlH2Ca;4!2moCl;PTmqyagv4|Te{_?I^fF0B zMgw1w$u>6_0a*yc0NDs50oe&5@pFYeKT1VTnWQ3*fv?DGn>&nv{DfnG0)&%*f`pJ* zSRuAn6p=|PiW&Hd61KUW2q;C^11Lk-4=6_ni4_(4b&-lnGD$^M17A_yHrE0HH3_W% zwFzwjbqOJ{p2EwnQc+(fsc2~6D;nG8enh|zguZ}ggr5K{2qCeR!nmGN(OM>{XlLLn zI@sn`AfOZBcR&}y8bCKfNbIRlxQ|ryl1VE182E~Qwz;ba_=#{GFpzK)FqjY$hbbHw zEEU6Ll8R9VzG94Rt`@$r#uDlR#uMrRCK5v8uL_lVNyTKDq+*(Zub5$*+ki99B5VfC zA#4N8BZS0-3O{$0ibXO>#Zm)bvD`NI4FXmWiUU>=N&!|ALgHG5O!_gnP9~|?Xy7Y0 z+vYyUW7tZ_4cJb|3;2@|5_c=q93>TdWRi;g2EO8;ZSFS&944#+93}h#I8F$Oe<_^M zU*k^6Bo${3e8qX&+yp#^i-bvlzX?+SR|p~TnnDWwk#t=qskmw2D{k55vLoOQ;d8(} zLTiprAtWYHc&*>v31yOsBnG}BnQiV40#Xp}15yzl0X`&z#E%rx zkC2LVGD$@S17GopZSH40hRlTVfUJaH0G|><;%5q%wBmD_q$0P0ulT|?Hw6Lt2-5*y z5@rFuB80@R6=u(pio!BUMNtD^QQS7Sti6A^Bw+=hG~stZSwcvxppbr!R8*8nDykUx zifXpGtq7<=*a4_T*afIV2#Mb*Y@00=^<FuNGf*8Bo%uNe8qm-T#^p{<%5LefWw4T zfTM(vctRon0;xDDlT@5G@D*ombB}Sx^Mr8yC559?CE#zFB;cxn54dKVYm0yzgbsk4 zgwB9lgphbwVX~g_o=j5l(7;zbw#_|9z*E92z;nV|z)M0%e4{XZoK(D(Nh%^d58x{z z+2$f3APONeAQ~YA#8kL9UJ_%;B#Chid}2J?Tml3nAcX4^DKEArdsa^MYGfDo=Pq)>T+1bi)%1bk!Q1B%(^lHdd-2+0AZ2&n*N2qCe&Li(9f zQ9&lDsBGXXs@mqJAfP%STwhCJfCki-Ndmq#@B#H~b2AX|Jt17*NFmNd31}>n1T;0! z0QtXM(A;*H77>mR{zPkq!b>HhjZ6~J-oT%sqirr19&~3yxW1c0&4m)sT_y?WW#9vP z+vXx7pf4c`pg$oxU;rT`4pz9K&uNHEQZd}XSB$jH&B0BMCd>!?OjraMM+k`%73%Ac z@Lyz-ipd7PVybO!8eX1BSc}Bjgb*-~5dO$Qg$h@BvqBbJ-B^4};Ff_8xMQ2Uil9Fxi<0Vxc8Kq}i@YP_75 z@EH=*5kf!)Lii(@6l&`mI$>k-4 zKk}u*I{nSAfJ|~bg$#T}VcXmlBz{8(*B4h9wpap6$Rq)!4SYaZ+gw_FiOLhw11b_i zKoy0_b0x8=Op;i`z$ezS&7HuJ>JUx=z9pOm)FXt%1`3Py+p(ccQqjb~S2VTF4Msq7 z!Z3g%j0ChIgv7QA3H5iyb}~stM+0Bc*)|s&kD)8!13-5|0zgkfNbIf9bcR&)kx450 z8~BO=wz;2i#zBPffFXom0K*6&ail_O{rk@-nWW-p179)DHdhz{69`2CzYt0QekFv& zsS1_#??2OIl8TuIzGAj*t{wvB62kQh6h=&wfQ2$iz!C!=u*^2s9Ra@)dI44v`T%|> zgv2!pH~)}|wK7S?1_NKQ$u{>JzEoQX;ri_gSC>n`4w)oimw^x1W1FjnfPI9TfCGd& zfJ20kcvPYJYNNyUAcq~ei*uXtjc>w$o0gdYJf2z>#s2qE#ULa7~6 z@lGbGi1;#quZV1$tBQcAgc^Y8gxY|Zgpe3V;rL3ah%1v+#5eF232k#d@uU+IdIORY z`T>#?LSia~PxKv?S|+JTYv3!=+2+b1;A290Kt@6(Kqf*+%&O3Pom6C#Nh)#}_=?YM zbH@;ni*OQLWt$s-fI5V5{dWqT^}D2=OcKz*zy~z4 z%_T-a6GFJYnZl@563|>G3215H16teW2I3jCC4}ocC>+`&0Uc$MfG!3;pqp)ODo)UY zFaywwFdNXD5EA<-Ed5<7`pYC00}Xt|VB6d{oN*{&B49Y-SHMU@NF1ZEev?%EER$4> zH}Dk`ZF8}3#z};@fXRgTfT@I#I76Z5PN|qFlT^$x@D=lHbL|kYfY1@Jh|mSFgb)&! zE0kR$6~DN=W#ci3S;+}!8cwn1*hJZ(emw+dPH-Kk^koZ!e z?h2`RC6iRVHSiVhZF9{K5b>2=?*NertpQO9Au)zRrL9sCQzog1W8f=3u+4pnw`6?6 zXMlu+T!6%ckeE#2tv;yaGD$@$17Go>Z7u==(h?#A(h;HoJ|=|3PZSd9XH+Jcq#~<< zulUq9Hx>ao2onIG6D9$25kle@3d6TcMP8Yt;!6Wx@s(|^Gy)0{$^i-!DgwSCgv8vF+S=xZAfP>AIG`h86reL9 zBz9AXwpJ>-%On-O417gz+uUZ{WM9HIK!3uYfB}S%I9Oqj{tiDxCaD;1;44Pj=9VB} zG$C9+R$=;Y5-?6C37BZ$118z#>LFkfo<+8 z0u~Xj1C|hO0+ta%;tGXX`tOn}Ws-{32EJmAZ7v@I))B(>8x=C>bKE481Z*|%0o!eJ z3lQ)pAzZ&(Vd!27*dvn!>^JZM2W@ln@n$(pSOhpq2mvP)cIdn3q)d`{+Q28Cwax9p zkO2s3Y zq~fW8uXt{oYl_G4lF$P1n$QaHmJkvnyq1c{S`kqusfc3WE27!vzC%C^!uNn!ghqfk zgpe3dVcZs}h%b{=Br@<7No;fJ5s-|K5s-qA8IXz)64NMT(a-g?GD$^x17DHBHdh=0 zpAf?JSrn4%-x0FPBmvnCe86Y6xn&5*NeI{HQHXO)0=|$*0`eR9fC9F;WS#uW1qmqu zUlTqA6d{DfVhX7bOGR;+q@t98uP9@iyN@%LBRm3BAUp+BB80@M3geGRMKzhEqNahb zsBN2zj5F3HL<4+BhzY1q2#F09DxQ{#Mlwmo4+g%XnQg8m0$LE-09q2-16mV8VmpP2 zSEQo7Oj6Owz*ls!%{@mzH^M7G55ikOFG5J{qcHN2RP>ceDttHYnvO2fc1nC zfQ^LFfX#%ExJ}_}y^HNKN#{-jU$NUZHx2=N2@?VP3BLjk5<=n;h59F@;;2kgal*h? z{AHUfhJe$Al7O>>GJx}hka$U9{w1mSTPCTvYTzrb+2)QQ;0ED1;3nZOz%4>ZysL0Q zKl1L$Boz-0e8pqi+#0-NpAyyso)b0!UJ^p$8-=3RrQ)qjQW4=z0ACTwHkSqO=_rIx z0nrGb0b&qBVr+%6r=%i|Oi~fgz*i)&%{9bhNJMA?NJ3}^NJa>WDHT5WM=DauBo%24 ze8oq$x!5>kdcp^Q41@%LPY59~i^9E|Qjt|AsmN~ND?YQ$eT#scg!+Kogoc1G2q7`Q zLN2ZNQYNV=Xy7Zpw#`*RKoLT9Kv6<1KygAyETyntA5>|Xq@tXGuc%;~OM-w(gyeuK zgj9fPgpgQMq4H6ws3ntB)HU!G-`VEk;)_|I5FgNhkOaSx#gU>~6v-~b^c9#&}d zw^SUFNh*#T_==OZxwAOqDZ&N78N%OybA*t1Q6cMbskkJQR9rFe75~`gG9utQAv54# zLN>sEgphbgVfG2BxGR%XJTUMTk8E>aBH#(3AmACHFyI9tB)(QSqrXJIkx44v8~BQd zZ|&umc-KcJya7Zdyaz-lgv3}1DgTm+*fL4Q2L`?(zHRcqB`*OsED(N(hN5 z6msaBHl<8b@u7jQNNbzhh=6p2Er5>++W{E~Au+Q;n#)p=MJB2E)WBEdu+9C0fX@jx z0J#YN0rC(+Vm^gfXQU#(Oj7Zcfv+fJo9m2#!h~*sZwNgB#Rws>q{1ovT9lGWD#{x8 zit@I(S_r5}s0*k}s0XM@2#GZm&gp}yDU(#xG4K`N+UD*epdR4?;CsSjKtn=EY@#se znpFHClTZ3r0w?Fb>Uqe7Q|rJ|EeQqk4GS9G_{l|n#ILRr9% zgbIK@gpk-@;hp|A_>)XhG04DI46)7SM!+yaUcd;#mw-`(kodDgoLf>cRwk*KVBjl$ zvCXwWz^{Z>fGLEwfN6w~I8!0XL8+J}lT^$#@D=lIb0_ifu#j*Xu$XWTu#^xIe^c14 z-xn)nl8WCAe8nHOxjuNmtR?gZtS1ZvY$SxlEeglBU4$CAJ#|(VM3ESLfIOAW0T!7PrF92r=A@PF3k)o00zrQMzR9rUj z6<2L@7kc=YuMxua|0?v3D*-oUl7QO=KH#oxZemye@_oXufQN*sfX9T8_)MX|2U77| zCaHL3;49wP=4K+`9bpb2!aEC?4~RqviBT1XMv#hVGD$^D178u_Hg~*>e>pB8TpwSd zVqOVIAd>_nHt+#SZF6by9Fr5m^{Et|=}o4VNdnRu_<(e_xy87Jj|t)WPZaJJlYmSz zNkCQuAMmMd?iNmvgAlIIsc<#31mu!Q0=_Wt0r_lmWxM;Aza)g~3o5jXBmsqFl7J!x zKA@;=?j{~$aYDGhl)_&9>?tji1e7!I0Tpa>o$$$0i4d-@s&MBEIYBjps{W46mH=MLb$%ULM9DpA(I5OGVlRyY;%VZ(2fwU z@2HSkzn?nEBmrFwd_Z^G+*rI1dJ@9*y%j1Imw-MpNkD%CA27f+cMs2C5FuPYRG~sd z2^c1m1dKHB0i$hm=Wq)@6D|VA5iSEJ5JKW4g}X(h;#ZlZVyc0!m~NZfjWf<9gzM)h ztk7?_xiU$>0s|kg$Ts&e0+tXy0W2eA0sKY?iK`SUeIpgW%On+R41C2p+uVKxY#Bu;RW z5UxM1(DJ=}$DNT$0?r%wfQz=dojAeYggt;Og#Cbj2qE!?LTf$azcNY1EdyV1$2NBc zXS_!U*FRKf5Jv(Y$s_?!4Sc|J+uRU*N4z8q2fQYX0=y-J#0c-D;`jJc5m6?oh+^O? zqS@wlA|M7~41 zs;_}RRe#&uF$4@CoCFLaoCXXboC6FaTm+0DTn3CH`~w(6xB(bT_zy6ia0f7va33&< z@CY!O@DwnW@B%QM@ES0a@D4DW5V4zoTyqIg0P_ja0SgJS0E-E60ZR$-0m})A04oSd z0jmfp0ILb%>$p~-cozA>u9Hc=up15h7k0C4t_r^Kwi2oXwi9Xr{v^}|>>|_y>>)G& z>?1S=93V6W93r#;93iv<93!*^oFH@n{6**tI8EpVI7{dWI8W#exJc*+_?s{QaD^}! z@DE`a;5uO>;9tTRz<-2sfZK$LfV+fW0rv@00S^f?0FMc?0Z$3@0M7{v0WS$l0Ivzl z0dEN_0q+T`0TCla4R5fufXIXmfT)Dcfarv6fS80o0kH|Y0dWcY0PzS10SO340Er04 z0Z9md0g@5U08$Xn15yz#0X`&zZ>NtG4(pHGbTY~JR|W(B{q>1$@;46ua#lhf{FM5X zkPnc9Pyp~bp%5S!p$H%kp%@@9p(G$bp$wn^p*)}1P7>0Xbq@JXa}fH=m@Au=mMxs=nkk$=mq$W&<9YT&>zr% zFc8p)Fa*$q5Z)Zk2;uGE6n=Opzml|+N!~tf4E)=too((aex2w*xDMzLuu$oXBu!c|$u#Qj>uz^qou!&F|u!T?yu#Hd`u!B$!u#?aL zu$#~ru$Ryju%FNZaFEanaG1~*aFoyiaGcN?aFWmsaEj0qaE8zuaE{OqaDgxYaEUM& zaG5X+aFs9;aE&kqaDy-oaFZ|*aEtIO;0|Fb;2vQH-~nMa;1OXS;0a+N;2B{F;00kh z;1yvd;0<9l;2mKtAVNg@nA-q|MA!_7Lf8g~MhKsbF%?QAm7lb+WRj1{xCZ{CGM;VW zW%<8WkWgur{)t5R6G;vHpGa<-OM#bD6FvldL`Vn7K*$KlOvnQGl#m_pIUxgnMbAaZ z1js|k3dl>y4#-dV98iFe8&Hst7w|RVOF$7qK|oPLVL)+0Q9wyT2|#H=X+T**IY4QG zP3LpMBS0>~Q$QZV3qW4NYe0U&J3s+KMEsLwK|&P3*M#VRB7|6gqJ+4B;)M8sl7vKn z(uAadvV;_X@`TiYiiEU)%7pZQs)USy>V(XInuKhC+Jqc{x`dp7?+AGS^$Ga^4G0AQ zjR=JRO$bE*O$o&S%?aVX&{83d{^#GVWRf>WTLb^*Xm6WKfOl6%LSjH?LNY*CLP+eP z&@hHn^pr^|dK>tPzP7otIAec81;7A8WxyapHNX%;O~5ch9l!{}cYslZ?*U^7jR0c_ zKLExPngb>hS^_2!+5jdK+5@H%Isv8=x&mer!sD8wFgCV4zqvBW^IKrxpWh}N1vp1I1Gqpq z54c1KPxy+$r}`uQs!a08uN(MB{;zE=9e!~BM+n#7QTXh(e9i94BmoZ$e83~yTrZs9 z384?*8KFPm1z{lI6=4YA4PiLo9U&YdVq`hh#0qj-kz|rnMK$oJif)^0*36GCEIg}!B^;v<=);$s6} zkHkl+Khk+0H+%{JO0l5g_`Y#k3RF#0dGD*Of20q{`+uQ;K z6e27J6ecVKd_xF{#T6!hD-|VVl8Vv>zM`ycE?qDGr7BOz0H{dF1gK01iPaQV>VLDS zx=d10%fMIEvCTck&yH^i&j9rZF9F{ZLSiF@TP3BUu}o6Y)WBCXx6LKMV{n9UeQSkJ zD@#BdnIxdSfe+|tn;VLN&V&(wu7uHm?u3xoOQB6osrXSQspxCqEBf2!E+Sw6;WA(l z;UB;dLP#90P_?2|jF3qxMjQBwpKWvP5ipL>2{3`s74QooBu-X%)JQ6($Rrih4SdB+ z+uT6B8)g%R0Ok^g1LhM#;v$8^^`v64Oj5DTz*qccn=6cfm4u>z-w7oEe-J|AI)&8L zq+-2HQnAUvS8TD(t;A#4MpzBlL0AjeNeGF16h5dV6?`URM}jT`F$KBo+S|_=?-M zxm^gjOV|szPdEU0NC=5f6l#7a6;EZ7iWdgH;+1VK8@`xt2sr@n2sr@}qWn){WQCjh z-5o_HsfcdiD`MIv|Nmk554qTciGa9-Ujgw5Au*vs4*dj5B$HGmHSiV5ZFA8PkdhD! zkeUz|kcJQv(q6qqy`dDP$mf|Y~TaFvCY-Pm#P?{0iXn-F`yJ7B$idUQA;Yy$s`pO z4SYpq+uTE(u__^4UqhjC4GE|zlLXW;@B!c2=8hns9wA)cK%rM%31}#j1T-=50Znal ziEsPH6S}GRGBo#{xe8n=`TowfUM)(x4 zlJFVecS1;9qp(H4Db~s)6&nnE#U|TaGdzYZ1P9ngXbspw2#LECy6KOC-7-nVJ_BEI zz&2M0XFNm**B@2r(NF@8$s_?M4Sc{U+gy8`;0&P?;2fbV-~u5e{;iNzzi}_iBo+S{ z_=@YcxqorSe+jn${}Jv2ZWBV{J%uy+bN#+dQt`;ZS3I%JZA8E`!WO^_!gjzbLP&h8 zu&s_%ypu^PB1R41DbUz83D-&Au*N0^s-WsS|+JTYv3!=+2+1Mz{iB*fQ*DvfJ}stm{lQ)KB#OmNkt9= zU-7wZ?mYr>5hCHaMSw+6nVo^9?61bk1( z4`@jE3ecDk5}PXI)!*8i$s`rdz*n@g&Gke;8$xeDJ3>D|2SP~ftWdX{RCJL^D!Lo^ zik`N)a(L1|5-I}v5UK$B5klesg;n~4d!S5GF~q=E471IhK)?vXDZnVgS-==VNF1l| zOIN8FFOyXKV&E%&warcb(f_76g)j{;jSvE6Dx_#DiL+#q#JL7OalUOXD*_f0!u3lO z?)H~}r7}stZw5YKrETu3-u_6x6T@x5Hdu(&XaDsh=aQ#7r?p-9{kW3PA)W8QEx6O^f2~HBi^`{lu^pSuwGD*OB z10QhFHWvpc_?r+9aD@;8t|@G9CW+T&lEj+^KJk`qZa3cVcL@6c_Xr084+tUgvBHpU zQt?D4sd#SSD_+{>=Haei6BYvA5|#ko6GCF7Xj1XGom51YNh+cl_=*^|xuOV&MJNG? zLnsaSfDjTBD7@82pHL>LNMhhClG)}G;Yp_;Bn6}*qyT(K2#Fsl6z?t->12|M3q@t36uc%_1n~Qf~HNpZw4Z>nT zEka1FtFWrKRD3IwRMa={6%A~2k#NRFgs6ZfgcyLPgpk-mA<+P-a570nYXe`=);3oP z0qqH80UZey0G$aTv718MCQ{K|CaLIU;46CD<|gAY^d(FK^e4;&3?PKW!3wilOT`eG zq++;%uNY~YON#f)XhI6W&xF)~afFaKQDJ#wsrW@EshDiwE2i4!#^8+83F81W2@?Uc z2_bQw!f)-RV!ljLvBkqV@GD*cA17ESvHrF3#JU|!-I7Ao%I6?@C#}%IaC>1AU zl8RFXzT%8+?gawQ5ncl>5Z(bU5kle>g_a$p;;KwiaoxaI{A-)5iGcqIbpW>s-vRCt zLgE93eEQ?zp-fWo#K2cPv(4p4zzf1xfLDaC0dEK)@x8)%{m~vFy03^V|HFf?h-#Y~ zgMjFSae$bFiGbLIkobW@PW=Tao=kEV2@QNjV%uC!d^{v2%D`8&vCXZ+Cr~@WMnDI`7C-WWK znWSQ^fv;F^n~Q^hjf8lB&4h%2t%Q)cL!os`srXYSsn~7cEB4yvUf@aZC%gt6B)kJ0 zCWORe3QzUReOxA~_{+dooVLwfL%>)-sM$s_?W4SYas+uRP^LR><)KEA@}9ukm1CJ9Jv-~*D{=62!) z$q9P^DGB=lsR@SwX$VIF9}!Lf(i2VrG7!!JJ|SEHWG4I#$V#{h_>^!Rkb`g&@Hyc& zAQ#~tAP?aoATQwwAU`2IzpoV9jgbc$w~zlPjIRy+11(~kyc|C}rTU zFJqfa+SkXGBcuRSAfyIVBBTXWA*2UXBV+{BAY=yAB4h*9A>;sjOUMbRN5}*Co{$gF zkWc{7m{17t1EC0@8KD@U1)(IMC7}$UHK9D9Euj*iJ)tU~BcTSMGa-CYx+#3WRlZ7> z`}r?JPXqr|`q4Ifxv#>4`Eq?@B>rUJuODcey*xx=-x|4os7&%M7-8VAA7z{S7WHEY z^#NlE4FTf`O#l-K%>a`K4ltR}8Zed64lte25ipa`1u&b?9Wa;B3oxJ12e6RPAF!A( z5U`Xm1hAYi9I%2g3b2asGhj7gJYWss7r;8gWWWZ(G{7dpOu!bx9Kbfhe83LEBEU|< zQowG)Z-Bjo@Lo8e@b?mVa~zaO-W*2^{F~#LZEhvrYbOZd`cn#Nev^RHGD*NW10Qg~ zHg^>Pmk8GZmkBokR|z5Ux zr-bQ%=Y&~+mxQ^1*MtRtw}i!j_k?ADh%xQXRsbRseg{M)tN}zPtOvv-Yy!k4Yz4$6 z>;S|g>;fbp>;)tu8~`LC90nvK90Q~voCKsIoCbVII0r~exClr`xD5E1@DCs(;RYZR z;XgnY!W}?1!hJw?!XvZxK1Td74 z1u&ctjyX!<_la`u(K5-o#~S!^kGD80Nfyi_w|1YJqF4fy&gW!?-=+u z`aRq1<%bGiEtcyi;)C{yfxrHlZT9j@g?gLh`d2c^H_}@JfBk#g+!}m>M2uzEuLndX zYyw0jYz0Io>;S|h>;l9l>;=Rngj2;=c(_20nLs8vW?}<>%%rxtZn*2@gr0zugx-ME zgnocDgaLq$2%+<1g+k-x5E*2WLu4}Whsa`^`x;-&Y=m%q4uu+HB_KPl$Z6mMa@%Gv z=T$hO|0!BNnWV6Qfxo_>ZLTKX8($OZ0E!SoKrw|q%OtV5Op;j2z$ccm%^k!uC`UK~ zs6aRls6_Y+P=#>DgZ!UAs75-EYiba}F={K!*SC2cndDsG8TfP6x6L)djWr-N12iJY zf9X*Jnh;t8niARpniDz#9H9%K6`?zz4WSpH9ib1P1ED{l6Ja2r3t&)Ate5;uzQA7td>bC)*ASV^|ra!cnli}?*N+#5mB*~5E6GNv=}cHf662k zyA6EBUfW!GBkldPoGt-}Ws-nn20q|~ZSEEV{vzB3oF+T~oF#fTj68A`AyaA&de$xGMLgSF zMLdQCgerhUgzA7KgpinAq0&;RNFkF{q&DysX>4N`!oXDuj?&U7?x&GF3w+siE9%M4_A*Ig zCj+0@#WvRrN9slh*Y{L7tKUbxWRieB20oylZEh?Aej&lYyHnOR?8$6YYlwGdfQw)oN*%|T)#zO znf^w)RVE48Vc-LH+UAPl&9a+N0xW(Ws-`^2EO8|ZLTuTc#TjEaDz}2aFY-cZ!26sE){oVl8XBV zzT%;6?q+}g+v8)xZNO8)J-~B9NPMM`^^jD&mPsn!8Tg6_aqQ)32#7?O35Y_N1BgZl zi7^#sosf!HGD$^T178u(Hunet2?$RCi3l$MNeCe^xkCAEQjtO?sYq?$E7I8J?&CfE z5#bRaJ>e-J10f`4QW(5bDl*F?71<1YMRwa*)V0lJ#u>jOWCPSE=5paN^dNiz=tam6=uHTT{S*%TDHZ)? zl8S)_zGAR#E)4>P64C*N6EXls5<=n_h1`3k;%AwpV!VN`m}r};i-1XldVtA<27sxA zkT^pji+)DUlu0V)82E~Lwz*3PSU|V}SVXu6SV9Pi%N6pSl8WDCl8RLZzGAg)E-}8C zYY52z>j)_U8weqBvqF?3Qn5uQsn~AdEB>_2{ed&?BCG@KA#4QfBZS0*3abuC#UYub z;;4bIIBuI8ihz@Z5r9*K(SS3Aka%9Kgpl}&!Zv-=W|B!NvKsh`Pi=Esk(h(91MoRv7a$iQ zBz~cA>8MoXl}ReTH1HK)+2#%*pb+6GpfKSC;2T0nEUxfgKWR(IBo(C%d_`H?TtNhs zClm%$BoqZyCWORl3NbE9MRl2^qLzWLsAHRJizodpp#z{Ep)=rnLP%_+uyeaqG?qy! zni}|u=C--WIHUaUONQ&C0a_7a0@@HlVta*+yQQLoOj6O=z*ls&&6PwzcS0FJPeOUX zkA#reS0TrFspuz@R17fi6@zSZweT2*5b6Sk5$XX(5JKW;g?Rc?Z;VV*G0wnOOt8%* z#uHn$IFJV6N8pHg_NKbcR5#7L7#I()z!IO?n=nsfX7zl_*2#E<5 z%3qL*L^4T5QUhO++&1?E&X|(W9FUsO5|D-v64NP6J|-3EWs-`F2EHPbZSFMAn1yf- zkc|)maws&@=kl3Ml9vZ)|f7ag)Ue z;rfyaGtNmsDVZdotbq?GZ=0)(fQp1_fXajrP)(ul4oR#olO)zM@QHP7b8&G`-xA^j z>JdUf1BFcbH^qiBNn#TNpV-tkR}e>PPACj;gra~}gpk-)A%%X3wv$OJIvV(j&bGN| z2~o0!$|y1%@9E%p%#0}c?10uB*E;!%a1SEb^ZOj2>uz*n5I&8@*1 z&k)uF&Ji{NE)YWE-wLzdNX2EDq~ad~Uvb?wmj-A2myizdA0Y$aHX$V5Q;7OZD(=f9 z6^{&j#S`1yPJA(+5%vIH5cUIJ5klfyg_SR*;+;%V5iwo>UlG|h_Y4712`>TB32y)~ z2_Z3#LY+ra5mzRuh;QI4658g*A|Nqg0w5`25+FGtB&Jf>t`91;Oj427z*nTR%^gO- z$An{mjD(YbOoWh_RpH@XsmLaiROB%56`$MYY9b&Pp$;Gq;X6QHLP-2l;m}Q~C?Jzm z6f*D?g>7^35%3Km5ug|$DWC))B$ihA;hI#Gkx44b8~BQfwz-pd*H@S15_u3 z#99jJu1iI2nWW-d17A_kHg^dD-xIC?8WOGn8WTcdQ-$t#q@tNjQsE4IMJwA}Q9On= zgc5*ugwlWxgpk--;ma3N(M2Yy=x*REdfMi$BH%~DbwD4&O+Y_FNF1OL@wQY9lu0Uv z82E}|wz(V#7(vJh7)8hf7()n&;}qWNhxvG!q~aF?U-7GLZW5mK6v7n1G{SVi3_?hp zt&rulRLqe{D&`ybiiNhhSon}zOo$6uN{A0wP6&xB6@Gp%6{}>Dia!i|#ai23Nd&AX zlmToclm~1kgv4zMU+8!DcA2DNr-857ZJR5PC%uyLc5|1cc)bERm%Zw-el#mVZoR9p>iuq#~YyuSj5<+lGKdgg*gE2)hBv2q7`0!urcnkxC}1 zNMqnDKC;ctMnHPPJU|A*Lck}4keEeb+C!nXqlu0TI8u*H@ZF5r*P=qi8P?RtmP@E7FODVK|B^9M*l8SN$zM_I{E&|>! zl?agmRS3}l)d(T6rou73i&`>CMO_15@ttjMKF(O5un5qAuoTdU5E6e-xUL_AO=Xgb z76!herEM-T&e)oe4A7R4640Iy5<4j@yC)T$Ws-_+2EL+)ZLR^%*o)8@(3{W{(3cPr ze^S`2KavK>Bo%`Ve8o`PTz&)$Cwv7MN%$Htnh+AlDm>L6tm9;oiirlkVv=p{4gw|< z?gOS09s#BkLgFlikx!&zwoFnn&%jqKu+6PNz#_u$fF*=AfMtY`xI!W01F2XklT@rW z@D*!pbDa>dj?fjbfzSi6i4YREDx}cAC2f;QD*iO^6}xP6x$u73L-+!)kB}d5fDjT7 zDj9! z_zmzcVHMy%LP)%$P~w(U+?7cx9vJwFN4B{PIO7vSCcra7R=^8FNPMmE<8!HaBa>9T zH}Dk^6WGgV5D=Mg9uSpq2@stS5@RV`(RWmAnWW+a178u}HrE>g2?_lGi3tM$NeLk_ zg+hf0kt4X2GD*dU2EHP#ZLTujFX;%?03Q=-0x}XpVrGRhPvtJM$Rrh?8u*GFwz&;B z7DVlqiUNdq5H z+BTOF0c8o{`U(mgVo5+nnIxc!fe)x=oBIn-sRkijUt8ftVhN}tlLUNc-~;O0=1SoN z4G7`-#tJbbNxP^X%aQy&~v+s||d>8r$4v1gs;3>o+Rwk1qk6WRifb20mcBZ7v0F z;ZH)iez!u=m=dr@CJESY-~$fY=ClEl9hdh1P|0-QDQ73Xbp z>k)8~5U#(h&`#g%S7egJYX&~xhHdV91l%Nq>u)O*jUxefWRigU20q}SZSFb(9uva# z&lEQ4d-b_Y67b5v2fVS(Rl;L_M+nzPOsLNwwgg0yNdlr8_<-oPxr;bKOhULmjzZOh z5)fA=35ajt0}|Tivfu=X3E}!=3h$yxKysNRAeDg+_|P`D04GRG2-l}q=$ljmK9)%W zJ~8kCnQe2maDuFaaD8@#vXLbqhfETX)4&Jhw#{|L3BDkN>+>sg(~q1lWs-n`20q|x z+uRp8K@mc@zL>&leTcq7FPo5$|M2x41B=%wz&p)xiR4`9?B1d5YU_u{zyxOoBFZXN+zjjYv3!|+vXzU zj2#K#`YsC1^^9F*l7JotKA@Lv?jerUn-H$=r!ZH)-TKQU0Rs(uz+l_le+U>#2-lBL zXb@cjM#>}sV+?%2SliqZ1dJyv2TUZa1WY1?#3>5R^@DS&Oj0q!z*o$&%_YH8nnMWJ z&sRvT-_Z+Xl7PhqK47VB?krBQoDi;Gsc=~XR>>p*e;D|HwYIq{2v|=D*Kbltqu-F5 zWs-nx20mbiZLS(_VJ9J6zek~LJPFtkT#19nq>+d4*WRkl`Xy7Xn+vbKMASq!4AUR<)ASEFreyFfi-!Exol8ST& zzT#usTx@(XGZH=kWFjO0WFdsaPZb75m5S^#NyX;|z9N@xZXC{-hcFS4m+&hfKOrQ3 zrLa_g3>B0~DheC;if?RlJrPih&>K*K&<{|G5E9EOjEW=`3 zE85uR+T!I7gpPnNgsy-dgr0!jgg$`&gr5L|2!jE`2*UxR2%`aG3E|um2;roY2;rnt z2;rpD3E`x(2;ro23E`v*2;roQ3E`y62;rnF6n0IQC%jT7dBUp={1aYdn_G*QHxM=g zwh*=gb`bsq>?Z61>?a%m93~tA94DOcFd|OlwyhdA%HF7Rr%r9#$Umli6D7j`m>m5S z|5Uh_vxIQ^3xsg`zX{>=R|(d#JFvs66CHGRaAw8u*9& z+&1?DFTW;)>)#Q=6%i9l;+9d8_;uza&XQCngQKl8_`xk}FAaB}tMbNs=o`k|arzerxUTS|3#IbMJkg-+jIA zIcL4s|Fzdyd+mL;shIg>N<7CyP-00Rij-3Hc|aM#`9OI=MWB-4BA|+(8c5I6=mN|XbOmM$x&hA$x&!kB zJpk9UyDa>CjTxGk#{^yN?IGxDA0LV=QFIFMsvr$mE=UL75M%(W1QFmZK^Cw!0P~jz zvY~gCCKuQshyou7@&VVCK^C$=3L3++e(E;oKQ!bh0J{vullqV06~{P$Wmu>wu_WJy0On01Osv z1Y8v#TIlhpsdM!Bpw2BGf;zYQP-Lv4w*fK1c3^^F2QX2v6PP5}1xyj_2A&Y?0j3M~ z0y72sfZ2lmz_Wq_z&yc0;03`UV4>hJ@Uq|tutabacvWx=SS~mYydgLNtP;ds=!g6* zK`~&hpg8cZpaif%Pzv}!P#V}QCzDg%22Re-MrRe}A2 z>cDq`8o(hzE#OB%ZQ!V&4)BYh9&kcXA2>@By#Y{M&=4pohzCjw5`eOTM4-GN38*M& z3RD&}2QC)00ICaG0yPD#fZBrAKwUu_puV6TaHXI<5HIKeG!}FOk_4TAW`fQ@3qcp) zIzd;UwV)f&R?r=2FX#c>BdMX zFdf({m;rnvm<1dV%m%&}%mEGy<^n$n<^jh9^MPLl3xK$B!J%IWoGn-coGVxilo2ce zDhQSW7YddE)db6d8iEzTrGk|}9l9(QU^mcHum`wXuovhf*axHv z_5dpg?dG7%Vsj3>O>+?iZW@MhW67`!#EvpcwFopg8cD zpad{kPzsnPC=EO%CcBEV4d8V_ zEnuafHt?pP4zNa04|qpVA6PGF0K6|~2y7C>10M+zfUSZ=;8Q^outU%k_@|&buv^dq z_)5?c*e7TO92B$$eh{<)jtJTTKMUFe#|0gL-vk|jVh;zaWhdYqL1&g5G=mA_L=m}I6^a3ss^ag4P`T&;+Qh<7bG~fzBI?zy%0W=asfJ8wSaJ3*C zXfDVFS_z`SUj+F;JHbHUM!{g9qhKg-i(nYgMKBz=O)vuJE*J^iDHsKW1fziz!5APc z7zbnsVn9E^cpzI)2n-NR1o8z%z#ze7V5ndUaIau0FhVd5ct9{67%i9qj1|lRVuIPg z1i>6&qF^pCNiYwXBA5?6Ay@!R7c2y33Kjvg1&e`a1xtW=f~CL1jt-wyf zHsA}vc3_WS2k^CEC$L|z3;0g38~9PM2RJI&3;ZJ32b>V>2hNHG3+w@)xZogAQg8?; zD>w|47aRd93XTF73yuNR1;>Hff)hYpLEJ@t|50C142TyL2O0}X07-&UKr=yUpoO3e zaGjtW&{|L)Xe+1yv=>wYZW2@mIti)(w+gBPT?N&F+XXd%9)emxZ$WJ!Sx^T^6VwCT zW#<(ZJ|1nZLw|iFIQk7e1lOVQJ`{=5y^#dqY(XMWLXZTUD`*Oo5i|$R7qkE>2wDOc z3R(eG1g(K;f;K=6K|A15L3^N%paXEZpd-*g&2V&bOD+Ox&loF-GFNZ-GP>Z z9>Dd2ocpr;@UxLc47^bzC&se&kw zF31Pmj2mR(^0sCQcGLy(P!GWr9OgrjTNFJU=pq;a+$IQ?i7p$dI`n=A;CBx zMGynRg7JWB_oEgzOfVhEQdf&S1Ra^|Ly;UsPXVHWsemisNejo?nG!Qq=L`=)iL-nt zlBMX`K#pJz5EaY?3Iy|j!Gig~J%R3=yf}wj|R)#IuF5suJ@rxmZCQRIf9KqRImvs5Nrkp z3$_6F2(|*l1>1o81>1p9f*rs^f}OxP!7ktt!ET^Xum^Zduosvt*a!SgupgKvH~>5) zI0(!V90HyZ90ukJjsVXKjsgn=$AFgv$AQIy6TmBixGMg@E)x_3UKbPxRtic0Zwg8Q zYXqeMH(SbD81RCbK3xif=~LcAFnuccP~4ssOzNRe_M8I^gQ8X<_DU z(}-odxm?>r(1N)`8w0g@7-e!9)e~L^r6UMMGppk5)1{735Ef`3Wfu58mke& z*@BTk3Bf49wdx@Yg$qnGQ`M1i9)f1Zd?=Ex=K2U68 zu={8LoFixmloG@P=Lr&ka)LzQ0znc`NzfFyNYEUpDrf;*B4`QJ60`y?6SM~E3EBWx z2-*P+1?_=Gf(}5Upd)a#pcBws&>6T^&;@8E=nDKr&<$uO=nmW{=mB&T^aO4Z^a8pF zdIPr!`T*SpDZrhAG@zFt9S8|BfD}Ol2n(`+3_&)~Pml{_3!=aPK|YW#7zhj!30VWE@0h0tVV2WTo@Pwccm@b$I%oG#> zvjvlZX9ZJ$d4j3H3xa9DLcw(4Wx)(!iC`A+s$e#-TrdZCLogRuC71`iC72Ja6)XVW z6)Xfc2o?b!2o?jI1xtXB1xtZ#f@Q#Gg5|(Y!3y9D!Af9{U={GSU^TE`um<=}uogHZ zSO@$lSPvW(Yyf@{Yy?gSHUVep$;{0_alsa#q+lyhTCfc$E7%T{7wiBk3U&gO1-pQY z1-pUjf;~V@!Cs)YU>{Idupg)|H~?HJI0(cG4grk?hk+!)5ulmiD9}Q147g5k9B3^# z0kjpwRrROi_JU%-O@iV;CqW6|RzWGCtDrP+yPyovLr@O5OHdx@EvNt_3n~F=g33T& zK@}h(s0#EKR0nbeHGn)pEnuLaHZVj`2N))(2e=*06&Bu4G+Uf&bfwnNL$Jk(_n}Bj zMJE8)3lf1gf+XMuK~tcEpgC}}patL>ah-+jFPc^j(blZBhoDt$d?+$Z(d~fy1nq&5 zf)2ogf{wr#K_}p0L1$pRpbPM*pes-$=mtD4=nhO3^Z=d|^aN%IdI3)hdINI=eSqf# zDZqR|8t|eZ9atpD0RAqB080f~z-xkRV1*zT_=g}0tQO=0Zwm$j>jZ;=_XIUXxnMM~OE3obQZNqKD~JK#2*v{k1cku&f{B2e#*-{mOEUBN zR?Yk=9)fv2)rTTo6+I2OT`(Q!A(#Q&C71>D7R&~c1#^Hj!CauPU>*<=%m?}l767?| zg+QKQ5in4&7#Jd00t^!@1@03p14as#0}l#T0AmCzfrkaFfboLWz@vgSK#^cA@VH5Wz8E znBX{YpWp;AQV>_o*ZH8J7%)aq9C%nz0vInS1w1M!4HOB=0FMjG0aFF#fhPqOfEj{H zz|(@tz#Ksp;5k86V7{O_@S>mwut-n~_`9GsuvAb7cui0bSRtqn{6o+HSS@G>ye)_a z)(H}T_XLT+MnMwrp`a1*E@%mSE@%bp60`=s6tn^M3fckR2-*V&1Ra3y z1s#FIf=<9sg3iD(K^NdxL02H|q2LBkH{fhRcc6rz2XL;SCs0Pv3piiU8>k@Y16(Lb z0jdbnfNFwtpoSm=xKt1U>Ikxc%LUm$13@lul^_Zv2=aj@f`LF&!C>GT!BC*3U>I<{ zU^vi5Fao$iFcRn>7zNxc7!7n5i~;^C7zcC{#DF^lItd$t6JLD~!7j0Z4@DX(x*^a=5Dz2@5`e1( zi9mBf5^$}cDbPyL9Qcc%1<+2=61Y*&3g{?k4csDV19TCz18x(v2f7P70Cx&H0=)#C zfRLawkRs>;gauuJ3_&-bpP)OCE$9IZ5cCA{1-*blg5JPTK_B2=K?*QJkOn*;NC!p> zGJvsy2oMuw0TTq-z$8H~FhvjrrVH|cnE{x;3Na9xtu%vyX9Yund4gdcCN0Q{3;q{* zK{3O9Ok|;81n{z8B(Ov<3V2m88dxqE1H2&^2domrfVTwWfwh7{;9bE)V1u9t_&_ij z*esX=d@Ps>Y!gfaJ`+p_b_!+yUkGLadjzwAuLW~}{ero`cY=AqA;Em$N5KN%7r{c{ zgkTX+d{VGlEe1*omH=f1OM&u&Wk5y2a-gzc1#q!oB~V?k3aBYq4b&E_0qP3Y0`&#! zfGY*-fq20Nps`>hkR;dyG!twFS_rlP*9o=)tp(eFwu0?Id%+IiCc#dilVBHct6(?K zRj>!RU9cDEA=n4pCD;%2790SQ1qXpN!6Bfp;4lyo90B?Zjsm%YV?dtZI51Ff0vIBQ zyTqSFhY5-S_X&yvBLyXZ2L+{oF@n;-!-6uvctJVfQ9*g2NKgTITu=#^DyR%RDX0R> z5L5-87E}l32xc}I1RN7| z27VQE0pcbH%V$^MY(Y1mgrGZcuAm1{M$i*DU(gGvAm|NTDCh%J5u^as1ZhAGK{{}$ zAOol)hya%hvVaDHY~U(EE|4II0!;+@KvTg$;2ObTprv3aaJ^s{&_*yExIr)i=pYyg z+$QfyV@kfXRZzz~2N*fN6rI zz*B-{z%0RX;2FURV6I>#@VsCZut2aHcuBAZSS(lzydqc!EEB8;UKeZtRth!(ZwfX6 zYXqBtcLZC2^@6Ry`+{x2Cc$>#Bf$<}t6(SasbCkdL$Dk8r(h4TTd)`SO0W;uC)f{s zD>wig6dVM85F7%I2o3{33yuKC1xJD31jm44j|YqNaiEmo1aO`pu7=-#loJ#KE)Wz4 zDhWye7YRxMRRyJiO9W+rT7q)GWrFfRJwXNF3PB~Hp`bF*NKgex6jTMS7E}kC3u*w@ z3Tgp=5!43S3F-hh3hDtJ1@(bj1Py>Lf`-6tf_R|2AOW~jkO=e=Bmp5oQy@jq90&_q z02zXoKtDk%AY0HH7$9f^A*Ze2JnI)0xT3{0WS-(fhB@m z;8j5sST4v1-Vh7~RtW|JZwZD1YX!rAcLl?N4T2HC2ZE8nX2B@nW5H-(n_vv^nP42S zQxF5b5R3=*2nvC(1rve&f+FBM!DQf&U<&Y~U@CA_Fb()cFdaA{m;szMC0K%I0mTKg zfs%qbKxx5TpsZjXP+l+}s3=$fR2D1*E*2~TstXnaH3dt6+JdD(UBNP-zF;|UrCB?QNeNGalr{-svxeW-+#;y6a$_X6bI%AN&wFZN&)i)rGXa(Wq`j6 z$^lCS<$>1(6@V3jO29t^m4VfQD!|)KZg4Pc|77Vx28I$PK(?S4FhI~7$QSeh1_@Gtp@KBvUO_rALXZJGAcz2?1zEsYK{gN*R^iupBr`e-vj0P+YJQC@EM4 zloqT8$_my1I_O3$_AR3bq09g6%+K z!44ovuoG}g)E5>KzA$UnF8ynQJsyHJYp)MQzEt!+V6R|5@QvUAa6oVn_+D@bI4n2} z{3JL691|P`eia-8;`C$Qalm!tHw!)OpAZS@pJf)S90q0q$ z{fa5^M?DK(&O=aQc^`@#Rdfa57eOW9grG8Tmg=km6cy@6JOKEPiDDL^|x8gQc^9q1^?0B#XPfG&b8;5I=v&|Q!V z+$o3xy#)C{NH7pc5ex>xf}uc$U>ML(FdWDhi~t4*MgsYQQNSR4CJLqilLS+NDS~Oh6N2f$bioW@reGE@TQD1VRxk&c zCzuPoAeaX%6wC)+7Aydk2o?gb3Kjv&1&e_<1WSNbf~CM)f@Q#3!E)eT!3to5U?uQ@ zU=^@gup0PSum;#BSPOh6SO@GBtOvdjYykEMHUeJ@HUawun*p~pd~D(1wPvmONKfZ& z^AM~R+kGgqRna?uPX#-H9fDoJKLxvi-GV*9SAxC3KEXcVTfu(7HS@aw;>~|0siv;0 z4tWULeb|R0wH18?s4F-M)E68Bt`r;x;sqyw#)7y@?cmu)BngTE%>>1P7J?GMb%Ihr zYe8wCt)L9hUQiCWNl+f>B&Yz~DyRf>6;uXp7gPay2&w{i3919V1vP+VK`kInP#fqg zr~^a<^??3@`arIr0gxwX2n-a&149G}z%W4~aGxLv7%6B9JSb=mxCwTxg$nj>X&%&f zsg;Ld#2t3#OBYpo-2u6se==F2Lo2u0R7p zH{dEkcOXH~185@X2{aY-0*`nw316DN7uRJ;%tO%k@jetOspvwWv|u7oR!{_#7fc2!3Z?*+1yg~G1=E1)g6Tj_ z!3?0bU>4vy@{ENlH<=Z3j`?K%<9E+_2zvIs4@KrH`bA)&;ALR3;1yu0;5A^m;0<7< z;7wq);B8>7;9X$7;C*1D;6q@u;A3E`;8S3`;B#Q7;0s{4;45IS;2U7S;5*=;;0NHa z;3wdy;1}Sy;5Q(yc5n>NHg7s8#RVmSQiAh#;3i#nz)iY40XOM-0dCTT05|DU05|EvfSYs~fSYvv05|Ef0XOLe0B+Ld18&j{ z0^Fn<3b;vkFW@HK2*6Fc2LLzeMgwlrjRoAKive!ZO#s}an+Ui`Hwkc)ZVKQg-4lSD zbkhMh>1G0M(#;0kqkP~u7-^3iWv*k=C2vys(G|F(x9{X0J7qt{zl)yt%RPw6*$2-0uzp~#1d z-U56q*amzm*a3Vl*adtc*aLhe*ax^qd<(d04+5^*9{^YF5x`aZGvKN{4!CN6vvBZs z)AzW`v_hJ<0D``s<3o`Wiar-8Ehr0=6I=jP5L^gU7F-Ne6JfUEOyz|}GpaJ4)M zxLRfau9l|(SIZm=H+3;Rd)9n1J)7qt=-GT9ioBrcg}_UK#lYVMOMzDf%YoMgD}jFq zRs(Md)&lPc)&uVeHUb|AHUl3CwgR6BwgaCDb^@;NUjVMRdjQwluL0NF{ebK3cYy2d zA;9(aN5J*=DBybg3*dTt0&u-OtByZxuD8Vj*V~eS>uqTZ{o0x%eV+Mbj&wN>!I3WS zLq58qg%S2_RY~bD@(`rI*oPuj6@3X%LvSfjTTmCMC%6J=Ah-&M7c>SE1y=)21=j#A z1lIwr1b+eA2yOt{3vL2B3T^>93;qhY!RQ9K?%x5p?)L;-_wNQ=_xk{@`>BBIemdZ~ zp9#3`X92GJIe=?=6mZ=y09^M61Frk`SXgGaKEuo>Gga>M5FGmZeaJ_TvhbaqS`RAy z7!N`EaXu7zSkdEw34)2hV}i-R)ES->&tS$_2mt~^<@>{`tlaw`mz>qeR&sfec1rGzI*_y>0l4(%0xm@v3tzP{C6-l|@*aW`EBKI) zzR3b=;dYoV2$x5LdRGv4=m z2*&RLABv1p^h1D4KMrsy9Q7!W4S}G+kL{ zdI(B<+J_>u75yyW($522iWe-rZP$wh%JPzjpv0GbD6&}5uK-I0uK~*iZvZO=Zvw80 zHGnJh9l#a39&m-e54b`%S$L+oY4?ZblQ~*jJOu6D>O+xF6ulkzOt2I9r(iemrC=}M zs`v(Qg&qK0q2B|p(8GW$^d}1w?AmnHd@}9+#Y52UUwtTYLeXc{`(66tfJ;%*!k+6) ziKWaZQ{s6Zf)dO6P^6rqF92NnN`Omok%b|4Y^x|sH4j0Fm-vv6u4Un^8%+93mA;OL zAbmX_id?Sf2Edhqc%YFW5ojW43N#b60Im(d{N0CE(Dh2w252j258No|2;3~_47jfR z6>yF32DrxG0l3EZ1YG0q23+I&0BU?B6>v>Y2VB!L0oU{_z%@O`!W~`BQOGr)%sj~R z5FCX9ABqfA^blaE;9g+3;C^7F;6Y%tU@S0B@CYzo@F*}*FbS9}_#5EbJq>UzeF|_b zodvj-J_ERx&IMdcp9fq^7XYrMF9EKlivictS1iQa@9t9b$&B!89)b~m-G?G86#Wmt zrC$xW6mMIY+0vA_R$1Ql5R~|y4@EX8`UAkF-we1EA6tmnn?PHYwqiJ$pUWQU^v z3ApsT0hi({3uA6ICGJ(0Z#)Dge(OV#1B(70I3)NHI3oBNI41ZNa8<-z?(1}go(;G{ zO8~CWa{*Uq84Gpox>(kHGDoYthoIdRd?->;(UpOV1XY1*f*L?gL2bZQQ5SH9)(2dn zR|2lkc)%6f*g~P*_a&N7rrlS22-@Auha$}teJ#*Za6Qmk&=zPXxDjwwbOc<73qvH@4d0Kk=z zZ{cVA4J$C8OsfWa2wFANhkW$C7M`&Cq2Wq@zlR|G13u)VM_YKt-oAfG>Bo5p(#L$r zM^CVDOAC{}Q0X7@5Tu{vLy^gf{u?k=@FXx@FcX+1cm|jwcn+8+cmY@-cnMe}_&cyf z@G7uO@H((U@DE^>;4NT{;2mI{;5}f2-~+&o&St=k$H#yhk8OY(kIw)%9y~y2Ed|#Dtp#lXH#+SBHy$?uZag{xZai)U+<0^a+<4p$xbf%#xbe6PaO2S% za4k&++<2q`Zan$|ZagA@8;|~g8;@KIpWJ39#{l!mOpbgH!Q>d|Ly9tzwe7!KSg z7zsQe7!5om7zaEo7!OPkOavYiOa>koOa-10Ob4D4%mQ4`o&j86<^rxS&jYS63jo)b zmjKt7#enO}D}d|EGQjoab-?vyCE)t@dVF7D>I*g5&(X#c#TdyDGFO66we zhO;uW!$pzMq`0`qC8_ow4#&!54jfV|B{{WUI6E!RMg5i%M3uEs>Cv3*{8QpeDciZ} z(d7Q&K{?TWF3&;bDQENKN0YPjax=5SQ5SiEG6e;un(~rOGkn}Rr?ewAr~j$hiYcmG z-)M4fMy=mP{;Ud1y9!e&u$*#L2wGo|otmGSlbxJZD>*mQwdOn}xPUIy%1F*mJK5SF zRPy<5RDKtGM6p$q3-WXNC+BCTnueu?%}e&ca5T@<Y0$X8u0aKG&H3nS;Y=e<-7p%BYl=Z+eiNm6IL*Lz2tfaAb!~qLi#ZCa9_e z7Y04Z&J1U#{xQwBYDJlB)8T>PTFKF9@(?$g7b*L>cDPUV<8GYt3R3##q!pNoGs0Q9 z;piV4ST87`pr9aD!VFa3a9&aDyu93u%^CoE=vfyF4x2KPN9VC^I*d77pk3&&*B>nfg-0rp3|BoKRvy zC?P&KyKj+MwC?`Tawdiv`<#9Lvz$pM>kR#8Ih&rWGt1?CYr5@c)06!)-^);bPAGVb znlDvmcHfZynujv8L*|%-nlwGxgvPF**W1{F>YOYnBRyok`&Fb*0#65ej3C&)Al< z%M!iSCrl77sl$VReyeB4Vg1*Qe!$)V9&=jZ!*^iW$jCC`_k6F z6t^#}?Mq4fa;trbw=Wg#%XRjpg?;H{Uy|%gY5P*yzO=V5_3cY}`_kCHTx?&iv@bW= zm%8@lL*XDva@oM)9kJyPg{vtg`8++ z-%PVj3~5y^m7sVDo0LNX|Dq-~Kt-W^>#xl#`t`#FSa8Z+d_K z`2sU&X1^LTqiwb(!Nz)mDJ?BCFW|f(X4M~D6lq#KE-qHVj)u9o>6aHIkD4QCTUZdy z3gx9{gf;eNqiE80j+nc%=GENmG_U3^M_lIu9ojUrpU*Vg_s+2j>2?=vw>D{+QM;)a z7%nn(SI92tpAwFmKBt+lW>!vWKQpP!sXH!qzK)hTDQ1L|)6AvF*x32@liiRdXQyW5 zMDvQw<=6$@^0Es0hU`|~RCaDge*dgc|FD^45p&9mi&ad|$;r>o$q(yGA6yv}jfs^v zS6gX$c1s&Fd)tEiaM8_cV`a_uI?q&YcFMt(hdFu2#mX5p$1E$ef2O(qGi@~c8&j+u zpUm_jrrx1L?Gj=}%M@E7&0NJ~gvo8y$)FC}NN zi5Q!acz03k!i>zm8CmB4c9xwS@iDRUGR?JCw%G`2au=kSBa`B$svS3Tx-eZcQ!KbL zaQoawX8mgPXBP(XnYlxYOw|6JQ2^Y|gM&wKuhBhtTrZZvEz3(ZxisnRR} zKA+t!#u}Wllc#JJeGdD$;J=t&x*$5e61%1R7g-1O8bPC+hI5Q{qE9sb5PWrDS|5}yVCkx_PHc~sQ#EM zF;tLkPba75u+JTxIY-bzb6!0)hkdT-%q>e|NKVgXpB-`+?0?dqtIc`LoZ$wV&49U| z6!qP)5AMXS)|mgXJ556w<^*V_Q9)kV3~FjlG}+9oJfGQa(9fLt4EuAR**+-akK7+? zZhlH9?dJZpiDI9K@oT~#vtHwlT(UBmw%d7NPAa};`+!XBLiM?SW?pKeoV2`DA8DW4 zh*ehPfPzf3oykv*=KEOt%z^(7*>h(?D5W4XE7;O#?_(rEbHHb@4;A>sa;7Ye&EXI3 z^7>462j#y(XUcT)8^z?b4+r>(W3!pl5*JJ+knrbo!2UEJOH!BrBv<1QH-*iHIZOAG zd_(Qez@Be}yKm0XV(f@p#*xz`KmCVn{ z$;!{nE$UnlYz}RK@0e@K|N0JW$BJ`rpXd3b#fH{|J|28ZP@Mp(;QB_!L)7u$d3M*Zxo%n(F}2)HS)1W-EKK;S!TJR ztpDVeD>qAhfp%|6N&n5wPG6ASZBo$x;)W+T=X}94P0vl2pVph*v6+zFfKl6-Z+f4y z5j%O;&KGRAWTq&)&7!C?AD2_NTcNA{-7jC3-FTU@>_*DG*^QBTvwI!$X7?@T&2B`@ zo84WQH@jspZ*~u0-t1Z3yxH?JP5IC7qxqX(zESp!ZA!IgU-M?qqUOz>FU^}hF`74f zvNLb?^kv@c>Bzj<^NV@2rwa3CmwxkR*KzY^7ijZlS6=gG*HZIlS4i__S3H{k@8589 z%`J$PXAK;bnby}_rHfFzfnd`|8S#dLALotwvqik iw~^UB1piOVNzH2%obnsRo6q^tusQAc0*VS!;{P9znsrM6 diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index 9db7d6fa823803d540ace8aa466ff764f07edefc..b4325f678ea6f76907c64d086b3f435d85356eb3 100644 GIT binary patch delta 128907 zcmZs^cVJY-_dd+td$XHlcT<3nLQ8;9Lkhi<(4+{2B0VG_1+t`(LQ@FXjYyG@gQy7h zh6F6AC`Ih3G!;b@uvePB@;=YZ-6Wsi`~7G0+%q$0`k6Cl&P=u(?ziP|zg0Ino-raE zj%IsWIE+q{q^#CRl_wuFgQV^&BT_8@$yS&-L43S|Y%&BtXN28r2zlcx@uGJ6Y7z+fI(hn=>S* zvpH6--ySen(wdtka`_*#on(D$4v|6Uj4&}XkUBlp>=#&GkzKr?W=*Wbo-kU-$}B5b z92v$OXMS1U($bpRcTkE0!^}iEI>3yO-S;9{>AgljXHi~mL3XjEeQb1-r@uEw%l#Q< ztZZIrCds9pMh987)fnh1%F8aUS<^|go}Fohqb}Qh=5%@Ebt6Q+z14`219OZND>tvg zu4G-7kt886xP#4_HQgm8%Ru6OrqiJd!UD^6d(nEAmK$^AY!}lhPk#$8sk4ptVHIV| zGV=<{^D>J|it}pLbkW(a&9s_HT%;Mv2JGt?B;hm7WC<%YJ)t#gJSB_s$`%*oElJAH zUL@ORqD$(oHREOCax(}e7%FjD=3pbQLegF_q9iOIwIABb3YC-tM!X!TGX`4=%SwtR zYdR8sHpOah6_#Y@%BT;FMEQBS-NIIRUSXxg6&b^<@`B<85?5pN5;NGGEI)s3H-M}d zV7cVr2WYo#&zXY|4=KWL3K$~mZ!I=75nqER4N2j4dPOUNBx<;z;N(+h?%ek2W zk&?avt(ttn>?OxmAaeQ*W&#_kgX(C_bkXhZNQpgT4n^%|%DLSrBNB8EUQjtNuPn2$ zq`X}I+h=rkjFn02jS;902#H<6C-Zf~E#ZfaS#tlg7)hzWnuCH1D~pOVF@ACuvgwAI zsGdCbhtWeGIAx5NjlD5ovIbj&WOXEJQu?erP?84(xE%3vEYE1;O3th-F34XdyS_(R z*H5v!IddwD$}5YcWS0>qxyeX<^adlrD9e|lA0o=C30AzUo?#?N&jWVTigzy>(m!}N zhGqn-fnntq>{+l z_9ACD`Gv)2QptSHaH-yx_4k{WTy57jkyGJWOfJmHq0)V=5wz)q*+OFPGJ8nI7IZL1 zL%yW!Hb%Z?Lk%tvoP~pW7e_tXIU*JEYTYbdR@1`K62@h(MRH3Ry%1u#O!7I7MIGUuTeWS z8CN~$4w8s3Fp4N_oD0fJ3kxb(y18=1VL2uIIASI*M)o_{Nz4_ zUO&a=b2Md_E#t^bJ8e!kdgjWmZ;fGr*_;WXk)LE8YoLf>Pj$rdDH-=_KL3u?% zPIjR<;>>*6Fxt#_s9`@*)_q{I0aPFO#i&Od%U$vEOnZ*K?P&TZ-bPOxYmNqvN;ktL z?j`pS*}B7RPe0Z=xGXQHptP)nc^u3Lm?DmaM(akCKZiY0`l5fVcsp8wQg<&}Gj$52 zXyN?qqM~d`Ymcs9ABY@IG>4Gi7!NU5vd9RMN%4X0DPFaN6VF=^-AZbxp>@S;xhZY) zClG$atHd&=cymNkLL2-VG%*jN3R4KRZGE=}LT}cl~ z%!ly8^zJ9WeP=Y)0s$hcpM>?ZEOtHSeI5kbxNcUE>^h0hBa6^@M}keKGq0$$Vwslu zu`fWRWF0g^Wz}{_x!B)~4gr~!6$OR*8&fr|c7qv+;;zoHQl#$PU^RP`EKOBYFQBkw zevca2un+T%eI2wQFMDx8c|mTTO!^oCQO%>e)oAeL2hq7Nzl|19jrC-(5p1j(udDNY zTMPy@P3lgXy^WMywNM5u1@mPbd{;Tz%egl_&1Gl46^d49#fEJqlN@FjIhJV-mVG~= zir*s!iW*xAYUz{6GW$ED7v_Eh+ai_Ab_*?|c5cJ6t`{!OuG04mk3GX7gFK6~3oG+7 z3(7N#vx{pZQLl5GFiM7YG&{-Z=|-Sj-#NI2fi>`;*Nm3*bTdq^ZmNMR$EuYW&C!Aa zx}W?q*ou;MZ=n|{03_kK*&5}~(DQNp1xSa_ZZ(4ChRMjnZf>h~DjSJHgZ&d&QHC|E zW=#iKl<4UoX}22pNa8*$8L5>){bhLfz#a~JIj@^)I3;!r=Ig}~R%>}@9wJS-7L2(B z1Y-%nWXi2s6Co+b9TBp6mC;7aXQhOkX@+*{y9lvYox~!swI>G7@jl>n_6?)6i|a{A zS&dWf(7)^3Cy*+14B- z%`YJr>RbVOg$vI^^W1yd7$rH6GXE{^u3Ad6L1h0OCrn0Q7=>}Ue=v5f-sW{vn%p)8+F;j0cNO~ zx75~>)a*~+VNkOB7m*=y%3%iU!YLhQQUT`D(IHl>j30vaO39d`n~ZRIV5SjKyEP!0 zy_YUt7urw_vuzKWiLUHitdylalxQuz4^_S|#)^^cJB$(HJ%E)A)3m>YzKan?HUcq_ zERJ^|Yy3(gG}}!GJ^H3$$(x@WgR}}$)iS^($KS=G@v~))l*#WKLjtfGj}ZW2*@lfSeT~=76y4|t)?i^ zao|-m+~mrkx16({eEK!93D&$hEV$&OfvYb7E| zuQo>+C5z?gyJ!0^@hgUsIYw8Ps)W`B+`&@>mzwAv1w zbfU%>v_qs>Q^?{kIk-7~th{A;l)tkj?uvm~!cl(q2Z(XjNz%VUUtpi0b<2R#GA?r% zCD5GgLF1Ag(G=^{cU0ngT~L#h^2mGx3oA3rO9~g~Npe@SuS1L2p!sO4g1q92a=k`w zd&?Yx7Oj?D7g5}#cBYT*mnvtfi~zMt*Is8_6yl!3M%vJ0%H{Di)F(&v(T$pXD-MqEX^w`*Hc%CWA6m$_Shlx3RYTZW^rD5 zg{=FH`lZs>s8K$*0OeKVG3=}{(9udS!V@QXf@I#W82Vq#3>d^(wEjQlnn$nosxvdc zh6vF8eZ=U^3{qvtvl#Gdm!yP0BuRwc{&6KVOR--;4|J8YJ0XY*4jXfwxmw^sM;Ita zHbd?o`T(uZU7u`;0Dq-`piA4ywhd+rh@iN=T8|wfLtn;%rUV1pELrLks(-+XomRU_BTIgK1+83uyBpnAVR&Vg)9N9Ut_6+CtYqE-rp=Cn z%h`{>uV@FBVd|gG#k!!XkJNgwW(ahf&mKX8){isk{yS<=_9Dv=3w8YIlR%|cTkV1t zROaUws(oVBbgac{4+k!tFyOjL+^xm+kQf8Toa7`yIAAyEEDf?bCYVXabfSHuQQ@B znbAKJwK_&l(NL67%g}l?JU6erU_Q3x-SqZ)+eqkQso`cDaU??R#OzLUW-l!$!bS}H zr4bT*1moiJ4`_I`{MW5C`%rzMoPrwESC2No$PSW_QRsqZH(|KGd^HkECH3r$=yD9e0m1XLD;8j9TAT~@trYqS$FNzH zT}t_;w~ZF93=;PkK50&g&M7K|UR1LtOmF=bRTktd#6W>4J@Ti~l_rdI>3UHsM8iz1 zcXDt)eb$Ka zt2v<|6p)2Rp<{%cdkxFrl`N=p|GNW~i%THK7Ig`ZlHK1LX@O8AQ%Y;rTur@eq@;C1 zpKyy|<&=~!khPu6G#Ge}O@`Wa>jxC!&x9xsrJ*R5D&z<;55Wv{;0K8ODR)A~ zsjUmw17|k2R`c_?L`TWlhoC)en}SH0$z}kzA35B$q}jvHiTRY?89lmlIb;u}ZVM?% zusX_St{-XdK*B+FJmhI68DBx=QBrDaIJS2=7mZ<(6o_R*?JwW$PYrmst)t12Tx6xY zJ=W|bhaWJ49SM36hmNxX8cm)YP9Ds$2@+q6=?--X`&*iTfD&c>Omq!Q3Pa@mHz^jN zcS_+E=qyt{h6I9AHb_b-k7K(8wuLB8Tk3&4ra=WWv9la_&23RQHEx76U!xyslCp|Q za`PK)_pU@ie^9#?D7)ANkP8-tM2EdYitdK}tP*W%of>)wva0PPZrHoDUZ)g|7k)%n zsmZ6r;rTMtjcK1C5L?l5WIFm=?bel2xNRL~tFmAmSRBw(vNq#W$!oPN9{J6524v}UpayD@ z=THsGEm(|Qm2F#6o9sZN2NYRq2DDb0c?I(&>$iaJ9Bc#RzBC8`wLmC!>ufm0SHn_; zeM+dSASVx#IZd1GN-tpGpLiY9mD^|9({fbiwR_zOQqsnBajlvosehTy+CpPq5R{Dk z?3@bdMw@G3lT(_zQjU)<#aL23mRFXa)2Mvqi`B$dOHYd2FwNPyku7KcGsr>Jh0PgU zS*#YInl<(m519?C63fa7A3)(>u7@3KE?WyQ7ruBA2HB8P5awxr7(TgkA2esI!-HK= z_$%@tCNKS?*V3W#U!4)!yqOkaOA1Pp%JRyK^C~h^`YEG{bWcNB)VA{9*;o)^*n@%c zC9DDGzQia_4z{k6zk*;khF}~ZZ*;JtP_jflW+tRzDm)mDbwsT#`$_^loc6Yn;lF51 z`=%MRIIs13bt5g$tH`E7a;7w&jvY|qEX)?AyVwaQ_amOZ$h7}Jw$QD4NGV&r2Gxn7}4@G%z#9GsYCmXS&os)crT}qqa+Y9+N$D#(bwK5^%a4;iQ&Aq+Y@;{cH7cyWm*Qzt!phe{E8D@BSaR;NxkN$fSt?ac zp@%6pl(w~7P<3^Vq_p2H-JvkN-^ax6>~YhQ$$ijpSW&f6*$KO7&6?IUNwtuS&VfOa z(hT7+6V6cwNX|-F@(N*)<%WlSW-Z7rRjd6l@n&MdY&XX2Zx%1J7bgG4TIfoXDM$DNnPGhUUl`H^e`HEuM)(xYuj`o+`g~l#9kO{ds{8l4P;%8u? z!=lqw&jXc5@FCL!$z@xNv6T4RXPDMCF!?&xa_*_k{kB`sT2p_)kFu>yOEO#X5Fyck z^-mw7>1GR*;{6a|P(>nWPwdDMW1Fo@2BGUuW|}b)Hs9>zu+IZv3LnyFd<+?5(UxRe zCqDZNrY0!$nb7R#{YpiFXGo)eK@F+fnAtfca*PYAI_}#Fx}&p}#2u$&!E4Zmiywi) zqxKW*aRd9rtc#e+JQOgOVi8ly519w&l$0*Z%q}a-UZxv_%b}b1U>fv!#6nmC#?X(9*r zpvfsnm4>0Vz^Vf2TOrx7@tVx3FkXiLVdV1Mfhtn%AdB{zep(DnNC<2y!`q{wx@TLV z&>pmoAvYgI&6LWa8mrjHMi?wvH@R`FV;?Jam(<~YMNe&oc1BoKKsqSfsL%kVcPTI; z##3jP0jDqr(t1E`R@>gvQ;=lnUA0$Q(8y3#m5*cHzFNs$RcVIt%uV7J#sTEpsAOamXzlymXfs%(m)Lz%XR;I zrJ1k}(kv<5Z02axL$brNI15K=op0`J#5o#>BG+YMp@1fnudLxbZ<;VMAcU=)AziOQ zCpOIeGR}RP6>IAPQXOq2d9$ajo-IlNKROxP1+~6oo8Czti^8d`S`B%StgLq%zQ+_* zYKqcjaUK*%b!wcfeAq~>eH{AS&r2{mRj=RG3Z1rboViTz_m!o&Y6MP8j{Rs;fSo0Dr8Hf^rVb<4)gTaEy*+_}WTZ)B8_f0dWMX&d9~E~&6~<{sv0hA-PB-*MZ0bhzGb5B{tajm8eH)#p z%zViVMQ=$^fHadlT84vDyvP)gmzx#@-U4G77RIWz)F%e4jrOSfs_W75D2Y`<~=7J5A-g0 zM8J}=?9x(6cS9auJmH3+fNm3N`g?1P2-Ek1AqS3_8G+e_g*lKdc^owHQhErwRlR3` zWWtzC^XpYEF2=O$=`+OZum)T{Y4nlUB#ge@Jf#b}-JPP(`AXjn@bV;k6wWrXbFine z{TS}K20L&Vum{V|*=Ph*V3_QC7%L?7g)w?FheMTK>MU6;f>`>7G_2!tW;%Lseon3) z-rL?&CQclgjKsM~z0u1B8%4oZ(sulQDCm{5OsNIg0edFWM8cPRyn(CI?|0P-q z2hOme-H)XOy){|(UqH`8@raUD=~ladB4zhR-5L(&x`+rwMeHdn^73H}%zhLtK%vZiOK#p` zDxg?0riptqM2k9fQ4Lb}JG$iZQ|RNI1to=fX6qi$%k(lSj z&Vq8z7&*8AHGpXAg+YYfXNC+iEY(>J$FUJg{3-3F;4U;&uMl)N+hH{bs0VNj47~0SM*xqWocidA!(@2C z($b<7drW5?fIon;oG2}K<;y6)GL@^2>w4OBqu|&I43WLFkkMrmn}?&vu#2l31s@wM zMRVk}=OAt%IhAQSF+d-atHoOloTH@}3%h$_F+BSi=0ThO7WM*{JW#v}tS~FPv;d97 z9qY=S?q>WhE8;lj+NpDs!Jh+kfyZ=8oE# z!?>XIeYNDOPOQkrahjTDbV;gx4x$eB(^fL@GC1pHm;&Ihj&vA1#JLJvy}P_5zoN9T z5(-|4R`8S(zi^+~swr&HT5~DFz)LF0EzeP2RkiVO>)98NZL2zGqYcW+FIcMEgNwhU zhvJ}X>kF{oG`K#Lw1yCXwid6~6SXiwDR%{Cm(5>-A(^K=qU!tHRa#O|UJh3+sx86u z^NRDzaNM@WHr&3KjuuiHQgS*pqy~lj^b-({YM>~EX-y)m3rYv3lz>HaK6g6klrg$! z%FYw^INWtw>jS3LhrP52#cIER{lCEfroFV9#^d^0m*2}u&g7$Ul|HUoEAeHR)ZoxH zn>+q&JzrD>e;8@C(wjvpnYG=pW~oBcz8j!71FN?|QBYV45 z8wqj@Oeihn0+M&QE(+f*^e}8V7)UHAT~<7=##hYHYh>3bb7GL6)>0Ntgz@_?^6#e2 z{Fnir5Px`I7N|1=+SR8SD2bD>7lzAFbilPNfn?8jM9V~cJD=tEP|ax7KSpe@pV7}z zvMU|Vh9hJ6x4q;(Yc#FrxP%=0I&Wm+t~&AG;~{C*O+q8x+o)_m{AqaVS(Ze}l}ToA z=ONZBNp@W_y3~jDjgq3tW)Gujq->vT_II8klSE}~+81tw)z@#X%2Lr2r$4suNApVm~MBkS|Hk9qf0dF)NX%Ccsv z8R-0v#J-9M>sNF)e>?rh3?u#@N#YM2$lmB8j{QdadhUH#;v^aKfq_GbYrwe^3GtGd z3Eh4L2^&f1Ktijqf)YQk-K6%EC;xz@*H0T1Dd(>-I~&6yC2E?PWK4*WG1JVp&f_dp zH|5tTYo?i@Mrx$oJI(CrY{gn6$@UkJ`ITwNYbZ--+hMW$k2EGk%h2iAg?|(!*G@-g zjUuZa^~U{{#*QfYak`n{+{l2AG{wcrkQrb#jD+s>wz;PDr3{Rg6*J71u@2_dv|h2G z?pvy@EqpVo8mn83oGuG=kOIR=qd)~+YhlJ%h+=z~m{aG+k!B!sPI4midI5fh3 zGSs*wS|(*607|vTdY7djFF8BgOf=qyf-=XPY~)8tDH4a;@>`dDM2xhVZKg)l`wnQb zih}^l2c?78q(|1xg-=>G zM}*B%S@(6kcU02U5bWXLdZ=mTk*ZMg$#EknSd&_?PRFqP1m#s|N_#2ELI$Bhrpu1= z7g|`?J2eaSZWhh@j(6ND`?Ac5j^)xe#~dTmv(0d<|0o<(U^p*%=)7bX1x`pg&|01I z%y4H{wtzZl8W{?cd<8TJ9cyKjEShIdcRav07!#sZOC9u+VldMg$h1@SeiesQ9yyX@ zI<3c8you{^0?;m;c9g?Go!gKo9Qq^l%wI-;OEVuMDS24Z z9*SnjRA*l{r=15}1)DlIkzn(v&Ib>tiaDAKq{m2)VW~&U`h`Z244IGOylW4yQL=Wv z8RQ(rK|PT!TqC8f9D`TqI!i9hH)mNDjLfo!*n2=7`nqgiU`}@)VA?s_;SCO`Lyh7{ zxz7hTdN{EK$^HWL{yvs&zK#N)xZcv%XGR!{RlJ$9&WG`wEn9u&0_O{i3D-h;v(kGm zN^PeyalV7aSZ5o_D9RqtmQM4%jpop{7n+$yf9!4x%>>74$tc8X&@WQfm73iIj)>TN z6r$4iBc)_dhhBNH(ClJe$5D0h5X4K?--t4?$P6&L+KJ#^7_8^$laaEo7;NB6@6wc* zNSRv*%C^T$uahfiG6qEn2zAR0uTxF?+}cHE0-SIIb&3+3E6(PFb%X-hP-G?uJo;R6 zvDgf-4zg^=K1A8lOJGQgon?gRv<{VjLgU#rPfAP7A&zflXNlRzNQjX-<_>R!0L^^1 zv@V5X&|Nx@BUf8?!I#2QvD6%3-NC#T!A&^WKb`)K7RMs9pW|0HU4n#Rnbx^Ci()`G z-mI|e0!_zJZVva*Pg-|KW~8Lu0xi&Qtq7KhWoXL1(GuPV8#wgdyJ%g=BL9@?XT{5N&QSSA8I$i2e4>c(aL5VqCEq2UbjbK=K~HjCVQ1ms_CcU zz~2LPQ%2?=mY7~6KZbo^Q~EA7!yJ<(t%J=|ctC4s^{Q?}zj->$F-wk2^v7$v%nUMc z^clX{&uacMEHfXd4z`)^SqA3gBz%QA#Ep%0p)S$yvU5A?q}bxVN2t*bXN$|tagN(0 zb2)6Au<+uX-B&It0?!}T)JZtgR73b^xh2e;sc&(3nO)*S%at#*cfj~_2+(@-zAG5j7A z@p;Uyt8z(geGi?2d>3Uy6&6!iV?DBdrRg-Pqh*(BqLom>vROm81uucvNUAb}jrStu zQVl2+j_CCVUUu|0Y9QMOVepd=Md_}C|H*1J zCpOQK_>7C;$eZQ3N*rZueHuoRpLV;Ap(@@CV;g4G&4{n=i{SDByg+^Vl6Jj0!-&>n z2qw*B5O+#esuk@&`45of8*oqPfK>HBZ{g}o52FV>xNZlhi8lpA%a9up`l%eOMys@) z70^-qB43p zv~Cmsy`pf?60vt@iz^x&bps^pYoz=pk__h&-BuDVA$?HBR=M+4cN_EuQV@qFa^czVhpVz~lpp>{tt<(%rJE4ut7K3^*pB?r07B z5IS1sZor6Zt_Eqn18i7*_n%pX4U&osKjxM;`GOJLwIM-Qsoj6!H`-2f? zw;Rl;N_?s~@S*k7+uEgoBS0s~j5Pf$@75CvyyBAsk?<46*nK4{g zMz}$+`4ma&z2*oHk7aa}8pUUV@mREEZ#E|wC$Nv-Y)*xOzH=yssC`ba4xF8KKEu`M znQgpe%LO}57#uCax0o4@8M=e(lkVMuHExnF9FNN_yTNft!$Hq@uoBuef84G_L)ELI zB;{dqIQ0DaJ>Xxhiw)}wq^C+7qMf!heUGZnaIf-5*QBw!>4M=Yr3u41Oh>qJOryW| zt1QPmhOyB{ctI~p(IFA4{f2w;3rqZ(?|X1wwF}J~V;-s6ia}SPnpNK3ic49G*_R_c z`S7LFTng>J!=Z^LoQPI6QeNnGTZBl}4i0SI?t@38*CyYhc<~4{*jR1LS+p0F)@_g) zJ7p1a@+!la<~-9bu(H%@Qb&$r)lvx_<=UjlXSuZBgFzV92ki(0c0yRaAHR-qh0QeH zF+jD7ht8eJIsn&C(N2nDx8Mq0WnNR#QSP(VQ5wcWv|(HaG)DnBUl}0F9z-S1>Cpnh zAmds!_=cn8Bl z4V3pDhBTUwLBc|CA4X5RpFDaf zgVH@{iH=pLI~m(*b$vn;|IyQr9%h;Vzn_MpOn(fk&hsw1OAAabBriu%Fm|?G&~c#?y_bR0m<< zrJrqVCo@jkJO#D=9=o!BH`XAvbGx^3uHv?+ZPyKpbQg`g@EwT5(Pv4@}hN)p6^>}oeW_mh-+81Xj;atX53ES*OJ2z2%Zr5A+7nkftJ3ZLADs^!< zp;Q~xAiIPt6ugG*z3wI@!5Z-hF8A*c*J!m#<%fH@ftt-!T~0;Cr7Ex9G@gR8$!5YO zOM4r6t39w(M7V-_9dAkaTV_Xn&9d9GDE}&0QxCx2&C?-w{oeA4Xj$|%sP;jM$LJFy z8xGq9DR~Y9rMs*@3{HqK%Gip$~i`A}f*;I7D|J!Y|SIhr90j8GivAckb#VFcKg zqmO9^fWLWrm3PxdCsTT!w3Gcu?4r7PAzf2DOZa>K3LJg`<>)D;U;7C-A`O-yFJiv` ztn$t9;Aqmn4tg6!#4YSFV-(cI-|edNj((`o5}V9_8&QHnaaP8QLOSm?b^>+g0e6H5 zV;8iom&`oa1XN@A4?~(eCdq+4D3v1I{W4ULrP1=#%Vw^#Bdt#5|9jHZ&KM9Q>-L#G z>o%GQRGY-^H^&$^s8)-Y_501?4pVl#4D(LH0i1lC*l*61)PD{CF1Q6Qyd5y}jUO79 z5C`KC#unATbAu~vGY(`RV$PMpuRyAvjApje)e(A#K0?rXTx9PX5d1SG^h+?uS>!lJB1hd^+43ehj)whcABr3Hlrg}gj$n1- zYMpDzTZr>olx`_p{2F0IsK$*~#q{DxP)8pO%cSm9Reapg4j1zUvy-k(%fsN(OAS|@ z5O*)@^^{PKt3qQ+qhOi+4&=)eHDKc9Xq4%gBC0^&gTUA}|eizyNXcv}o zy!s}$j&wb1w7_`CUzzvJ5svr8@e*1E2h(ZxN)Tgbs;c1~3&WgFeTUAX^-*;Eep!9U z-%)Txi!c^7F8g0cu}yhMHJ_Uv+B*GdDLH1&b4JjjxmZsP|E=Ek#`EabS;6jh{|w`zOAzVLzL%cZQ)X$ovluy+$-%_ zL|2U96g%02s%G)LoHW>&hnjJosTh97f7r=X1>pD*Bs)KX3i^xA@90O64lmN)HPuaL zCf%qna0Yf#u6wwSfwPj2F}a?=%6-}2Zt&=9-P0glxTJzz^Ne|2lpES{At#oMnjEJ4Kzh?@ib8WJ&hI_%x0Vu z?5|iM+(lmU^WgQ=F#q*bU5P&$cMYym`+M|twe8M;^NPdc&#`2I;jKM`N^Xndo_vbT zK7;edhFZLcPsbYFWM|Ky$#zqw=oUIZtbPM`Of>=)j(mG1I|&!7FX8qGcXzMjA35+J zMws${f90In%$TcI${ZQ+IU4Ozws|fu@CEuePWC`m30i%DAu!&q5-Fj$TcRskz}79- zcfbAj;{3*#=`h}XX_h*A%jz%9D#svkd}XeH`L^mS^IGFBs101QR0gwGUl(1|0a72<88$xN51(1y51*f zhM)cAhO<^v;~WIVe|`$?_`< z8^zhSvwl-@+y9aS>m}6@HGNBrBE_oG_$8|LA8_pS3z~03q@4Q`ADMA*&Diz}TCP&A z{B35*#g3-Oqq}E-?w9|0ous)@YNv!>onPbrELt)1>Wj5Haf+P%6YOxU#pC!!k0Mn$ zc(*lk{HPZTMSypg*T5BgRh+gT)~oR|?R@6`Q%|b27aXPwp%a$QDy)9RWI%ZR+ZQ@? zo8pu0;j=E9GG9>^Iu7c7QKi`Nmls7DMZz+z*&t$Z;&gicL5xHlVR7xiTZY%;9~<5Q(Q*@deU zBVf}?%jv)cU;oJ4^cCE}S~YG>+t)j52$9fP-g$TRNPg@JFlgtsVGh zH+9_Hh|n|ugbA{CpFaj(opEuW9IX+}ymV^|+-!?4Rayt7l+S>YP3nbQUIgJ)rD7l#`z1K*! zGaRDyQAO$(mQzwzmQ#{v+pc=rN+n|VlT42lrYo}di1>v^G3Jwx$;L^1DrYmOZ_Y)g%!_OV+QFU?I1w?Z5}cyKpJwg4M< zHiX8DcO{N-&xd2kU(}~oNaH`K`bt^1;pl4Ly=#R%nqq?scK*fr2enBbD0mLbFOetF z+KlrYK5>9+g??-ADchc}=(wgFVcZxc=bBkl9jP=S58~TLer@=sMl3=j;53E{=Kg(J zj@s$taF+ZLNWlq%o}D3_zMDB-(^h>I1D7&95aY`3sR(#ZDa3BcThzwRX4UW#P(}+Y zinirFu#TuC2)!C8ZFp*npiWXa7aq~8+MuD+ zbtB?Q082un;7IxYR%pB`(yS=-)n*=>KrgUwL_{0wAzWjufr5L*A;!Zt(}v51lcTK` zj)mIr)Qzm^_4B62O?JmC$LFyHFc(c|WjU=5+@~*k5pDy> zrITH#9jdB>LzG&$M-xxz)dbb z+=o}&V$kB-EByl`G{-=Xp&yJ4`+x|(h`k-x>+=raZb8NN@|B@SjsHrNe>*c9W-)fF zqIY}7Xl|GNA7w5Zs9!a}mCUAw!|ph~bKvGfF1iX1T?LgMZ_R`_expfiQ2lcVp_17d z<79#EJQWRhq`go}Q0kZL38&spz&$7b>7-8&02TYsI81_CZE{zHiO1^?W9G$3=`nxl z;q%$fn4|2Nsy@Ap@i=gs2m=QiqJx{x!Meyva&R;a-lW!dMS-$v>bTAHWzWWk3IX*^ z+99m|DyU}X<%}O=thL87*~*(8tk#Z`^}X9(+Qp*@d~fP8%-c;t ze!Br)V&s9Cy7BbW_lCzVc(X{UO0q^8SJ^TW;VBZD3?{1@nAGpU%Nt_F(+A(rB}tvy zMAs%^bn}HT9J#3%zH~EuBo_x+G5)}&b|XAnU!XX?pXaY~t(;qmw&h)j(A=_;(vnJh z7NkY7r2To*+i4qxO)BjEy2p76%PVZT^S7E3V~xoAa>epavR{71Me}%kn6bg{XktIM z7V3CI%TMMmxNqFbE^B8!K-cf9*G>bpgA^z|WM?l7u)((VoIdiwc<@zM9h>n!)>t>* zlAW&!cr%2@rpl9kM{msDWczS}6nFg&{{_|0QylNgF7}#=j;lH$#&5Qti=yDNlHZBw zb1f7Vd2V0m5uMa=As*gw1)k$h^{2!_LIVXSlKSCfb=ll($i5Np(;94 zE`175b=((e0q6EQ&O*f>?+V~-N0o4lo6ocAG|5`V;3ck}_TX~bQbMJ|8?auyXQJFc zNbsl|TRQ3KMy2mI5X#`|jZ@;rfnQx3CmU{rixI9I%BPI?Ad1x28Y3B_O#cKf)-8lM zJ!I`5^vq$1&q3B$Nt#vfsri{ccjrAe89W$#j@o>F8f>{j==-Y6HH3l$7WRgB1lu_F zuuEg=U!IGB*A3mC>fcxM%FZE}KEKvS8(>UQ(+0=&c(+9}-lEnv$WJ^Cp`QM<2iiss zj~SA?0eX@O?OO>taRgo zEt43*(`cjiWkWjIGR*QCpErsq=Z9Ht#}QkWv&^^<9D>W^kSU|w4O%%2Ce*^nJJfzX zL}&iCEw>QjcM-yM2~KqX-PLdi zVv!$djevuUI*jw*BWdS=$B0pyf+t?0?LqpiJ=9c8&?7_mB#SQg za}+SC@1Xw~>c+cFn!XTe#^QA=K3f=+XIt(+mJL@~6LBV>oX-?HytCk!Ygj}^TZ3ic zXl%)Xv=^6(!dpF|{#!ko`>;kuM{uBA8EpmPoV|fBs4X0$wVR;g!Z$@d>P=D2;x3k@ z51$(Kdn(}t6Y7rs*x~MmT0%(D&q4*^O`1r@b2>HOr|~pIdl??I^#8+~8C|69IP{In zb`SJlcMW&Etjoj~<)m&Ls@g{HwLnO;hj<@bC&Y`EGUjT_YrV-yrldIDE$e1%we>PS zV&>J4nCUu=)D6I^N$|X!kE=7&vL;~GJ}TQ2!3&SGbaUX<8?_Sgp%%Od>9=-$X%9&M11?_UYgOWC zIsXn;jinQz&;M;NEWD(|&gCT~U8ot5922ckj_;NJg6mkl9iw!2Bd&kz^*;3j=ofe- zfm?RI7^+hr(g(^6;FcY)NozWu58^?yqURM9*VFH_{WB3ixW2vORo0B_ZrGt0Hje3U z!Q=HY1^3s39qZVBBc$yVbS!on#6`sSXuKELmLzr)g3Fjr5t1{pcHZE%e>%DIZip@Zt*Gw|=XOCa&5SqaVT zcNBCk`CP$<)IWjZ*E%jr(KM?&-#7`i$74%UhB@#!%`|I(aX@8-(GcW~f*0SPkx~rS zxXNWkIQNj{@_LqO^6xm)Ya2`D{|(EZVKsBcvB1~Wr%1O&&Ny6LnqjSWMln%WS>48) z;Jk)W@r0KBcy)-g#y5}cvi&FAHc9H~bqCh?Tp;jWyTRUWDBIPzS31kW!aUL&jL&n} zp7673lKPw*!_RKUjA(gxmetjHGt=7qOS8QpV0X9?2`|5eIV)HO+}$howgJ9F(3 zArA^GzWfhVh9IYwQOv2Mu^m>x*~k&s3O%e~jD%(&yVhhmgipI9@%3ZdUEyA6t{GOU zu^;w}4C`uR9p1;AYqf=|LDF2SwJ{NwdgfZu(X*I1tp0UCyo0aDN1Uu;>}O=#T&tC_ z5DxrE<+xK$&$Ze(yRyXa)i~~GA*r8u0&t+$D${CjjD>eirj_Ds!ItY@{{VlqvkeKI zN$~qy_LtO5yhDy>iXyQlyR)or*3~GAv^il!;U#x>kaF?33h5My|Cu1n2!Rrr2?>Qe z_~G{Od`FJvQsECYL+#OX1H5XoP?*;u zv8}tyLAM9@C!8J&&7Z~gh?A7&o;ZBXVMW_WN?T7G47e(m=F$(iG>b=nn%X1#&H4m* z3#h#Z@4a>KxUAMlsH5`wZ*9Ed9nb7Kt0$6c6Fg4mOKg=mxzy9sTEbF17P9DDpN@Ct z?HYXz>79cI@~^Noo%vKiSLX-B>Q(q=f`>xs7v2dLOI8@K{D#Vz4iML$$t9#SX5*3y z1J?J2?I5<;)o>N-{b? zr?ywyWr^f7WF&l>1_p6U9Eqt4UQ zPM6K*=um$*7PqYOVdWi9YNz^_v?H94=vKnh+U<=eBIQE9)!zA`rfoQhmOFb))#Xk( zpO3k*;$u$`JC425Np{`nY$4ap$IdVpJ~#8NzSc7wWJjOD8E)x0Pjkc!)uq_}y{7}d zmg%}=|KjQ7s_{)^nC$w~6Qv#lwYy_dt8G2nz6@EwZdj)@%khqeF z*Gqj>L<{+|ia)$u>RU}z!g$vc@jj{V2BN-1Hxe~v+M9^ZFvZP8ygTZ>ujeWI*6Zj+i;SEmTW};Mv-bKXAo4zeXytV1On?DmsyNBo_ zrnr}gS2lfHiFOd(N5tEjzHLOjrs>;G6v(vq$26&G;^Wm!-vj(ml*LOB3{Du zJxr8A+9O1~eCd0XXdlsIM7(n8dz^?jEqzZAMf2xL{v2k!9YnW~-%~`qSm~?UN%%g4 z>xlA+b`g!>&u;$k`lRn^{`}1(&k#M#Or9lrjwzla`ku5sM7$m8d!FbWhQ2^lPTGq^ zy#46gOVmD+PN|er@WBlQrMBi~DUPttuAeu$m`$W8i==(rTvDX>=A&IdN3RiJm0-iYSKYYocVb`GzQ$v~P(@h`u8#VCeTmy#D9=fyhDhBhftO@e|Rv zMCXaB68L+8KeL(mBGFw$mxz`UT_)lkKi|(p|1$9}M87ihSE6P_zY!UX_d8K0(H}&6 znc`2PHvIXEKTk5n-%9>e2c^uL~EHOlIRbHMiKo-S~Sra zq8OrJqLxIrGF~g9X+*7wjxn?i(M6)RMAghAmMEL?;#zY2y~p5oBtA}Jd!ng~*ny}G zQ9RLgjMtGUj&0P5=qiSGCK}4nE=1c%>q?YQS~sF-q6DIy4DC*IfVovA682zl649q5 zCKF9&CMiS@kk*4}CFAuZsv(H_=n1^&tvp+P*{wN$W?H#kBp2rZU9OwSVFl47(khAi6D=lsoM;J=n&eA~f=F9Nw1>GZZ^`jDmLKsRzFP=)lFh9| zGnx1{qK-t>L}!`gcA}RVZw=8kM0XHfAzDi`fZ44hN+w!Qw1R0j5Z%XkcM>%x=Z!?? zsz|IMyp|C+5sf3QmdGSci0&rC%|vrayNl=uXz9n;=JG?AhA5=9biCGrs6 zr{WQ9Q}XX0CfQD60NLD6w1Tt;h_1B2&x1spnB*a%E<_I#4P?AW6piRnqVDAK7}1}M z_c+m2tnm{>c?^A$XgNcxb`WMT_$i|EWV4fKC?nPpJw>#O=pLfoME4RsO_WLW4AC28 z_$*N>`8`MU1^MkEDrD&MM2kp!foP)A|6U|~i^RP|&6xNlq8id(CThaO`-mQ7cKeBf z7{6l8=bKCGBIPNzCLF(NczfLd2^OzSBel82TyEZA|eQ(G3heLu9J` z$63N(7<`VX1(SSE^aE*M5N#p)lE`A>uZT`EyRV7P5`9B7i0E6Qy-e{P(PGlRC%R19 z4@5mk`;n+Blkg|PLqz9^S~21UqRB)Ti9F2s5>XlBT_&1I^fOT+3;hexXr}m;sG8_E zqSu)AccKWQKZpi1#h*(4Eoa2PNbE(1e-nk0_7Bk%(*9M5N&X`WBDzAfn+%(@!q1OH z4x;Os)*yO_G?VCkaIBF*JF>35l^JE+dK~3MA`x zM14qWPjo$#bRddi?c#~Xkk*lCFynP1DrDNuM1K%;SB9fG@dE?5EU@AFVS>{_9N=8 z^uPXugGd}e^dut=B)W@e5K%XV4kn5x!y!b=NE=G@3Q;OiQ=&8?C);Qkk;xRpiKY{c zAj&1@kw8_xV@xuNL=S_nB6^!>G|?wSV~EZ%$ylO5rWi-miJ4qY^e{um6OCo)1ft$d zJCSG>6DyO>&85l1&~_ zCFA82g)wwK(Kd!IAev89Ky;Atd_>{ow~(kRio`;~pGYhsN+PY8Xekqy5IKoTi4qxa z5z%aBS4QM!XgN_2(kh6yGhQW8Z_*YMeM;IAqFAD(t*HOCV(>B&k22%sL<`99S|T?? zuOq5u=nA4#qLoA=$wqZz8ELCXJ4M=RqMM1XCz`;}8;E@5d?Qf~LaTf?5w>S0HxmtJ z#9N5YGUBa7tr>b7(Qu+_qF}PVo#=j|HAGFA_70*f($*4vNZLB0ex$7@YC+ltq9IED z-AUM!#EnG1GvgYfe@WX!)R`IA5-lJSqAg^&nJAno?jnjH+Cnsh@$M$tzN8rrksIu#$hz6D}n21)?xUe39r+qP;}Bh+ZQ4oJDwLISKT!hX9U!`i=pYeYN`0>o?O+~3ar$q5;|N9x?(~NkA zXb{<)C0fn0o+J8+Nj@iPP1+Yk{TS~{qF0#qE21xmz9w476yFfdAo`Z*XQus*=u5`? zo~Y_t!XF5qA^MT1C(%zt3y97W?PB5!MAtCmi$t4AyF~N=<6S1Yf#_$VfkeL$J;ivx z5G^*OLtYAaOl||0L>1^cT@+hW<_TCK>)i)Sl>HqGn|CAJJ7zafN6V zLz}e5PdRB0q9k%Lh(2NpljvE*tMXZdwIl`*r7?+<$RryV(ccUWB#I=PAfh;i1`};y z3OCUkjOQWh%up{;08@kz4Q6O4Q4~=ak)`BcIAJm)HYIw244V_+q}Q3BB< zChktOg(#6|BiSSoS&WxVRL9U1qA5f@h@y#l5*b9jh8O7sZhr4lt|#%V;C7&?q-Drv)k zs(kGkaRiCa5{)E!jtoZ;EhOzKqK}z)G*KdHV~C;|Z!A#|Y2%27k@eL?14tWBG@9`y z5Zy&C6Nx;GmtI8}!{A9o&oOv1(aTIcg~-LwsftE)4N)70P9y3=G@a;8rkz2wm9&{e zBZ+1ajbV1PiJoS>IYhrkbNpoxwqwM(M2`|>5{+QQETS)ovWdQC=scpoiE@Z$kaaH6 z_bgx@(J0dLiQZ@0`9z0^77(Qo6%bY3M>amfcqU#*R7hGO(Q(p>h}IDm6QvWC5Zyym zN;HiO7ZIHxDkDl^XgN_w(kh6)BCV1rhqT45ssF8Fc1uVsVenF-e4=GU7m1b=wIsTh z$i)=b5gj0#6-0j$tt8sRc&cNCXccL3OtG419MSbeQ3$Q_-9UH^i8m6>Bb%FuTtqh$ zT}^Zg(K*Jum1r&-_%@;$%%qy=X2!dn=rGY5q6((CgJ?cetR;Gsq3ehel>A#ysL%$Y zPnhIRqTk7SBT*g`*ATU2=q94=M72a$GgOFLleU@YUS@I^(SD*WMC*v|ChAVk_bB-{ zkxA|)aTd{5qBuspkLVeqZA1%+wiDgSc=r=^C7TC`US;TmL}N*Nh^Pf=4->T^dW5Jy z(>_XMFkaPTgjbXJIMG#%_ykc1(UU~)FyaoP8%TSK=ry99M5PR^BU(?|E+QY>V>eM2 zIX_J_hw+{vQa0CTiQZK5?>WNO4BkT&&&1CYy+npD5cOr~i$q@&?IpTG^b*krL@yI{ zVs`t8K4aSbM6-zw5KSRENHmA&6`(5L{Y-L*#IJ~6B}!uvUL)#2^g7X6X7UEnUrhWa z(R|Y0A{s;5+eFWkc9h_Jpm0 zS5?&+gjTzr-=6tvQjAlbs#Uu_d1aycI*8I$yEZ0WtG=q$SK;Pd^>v5(S|7DaeZ7Yg zRJ#)YyH0(5qj>H*P^G@EQ(xJAed?=5rMqzFQuXx~XJNH#+Ui;AbES&XXNK)h_FUw8f#%^j@2qSe>eRYfW$j}EI{pTDTNY*mH% z<{O>GHuZI2Mxl!NfZ}=8!6oYJDy~P>uG*fuxyx15mR)A3z_lui-yfW#z8+Tz$38V* zeepoF+BNb4-K77im4uRj!*(1jW5>lnhSs$Fj!*NvE^ zqTcX_?(L@(o1*V^bLVR|-|1THRAKX@OBI``>g(_e3)EMliur4X?uxxCL!)x03hSZ5 z!p~HyuLBILa(#B4X2SuC!8Y!C705wb?J8cYzg|>q{@!_m3ZuZQc4bYwNqu2ZWj0i+O_B7 z-Rg^yr`mOYdX4&`gsyh&82P07qUfl0b$sq2^~L#I?RqAlPJMM%Un_k&dy2to*JD9z zR2U^(wd?7sQFp3ON|tKZk%3RBFABnH*YZsp)EC7+YIsg($VH>tbs*sp6-Kd9?TXLR z8B$DCyS^#grNStqs$K5D$J7^P64H5gs4oi6YS)&Cs#^6)v0d%TpK+`DqGYLdy&k7q zhGMeXWz5wzr0lJB4a(T0Vp76ZyKZT6kNV=8RP73VP8WuPw%WCH^MfjkLbTd7bdGLc zO8;tCr^nanVZ!CF+O_USU3&`aYS+a{nkmJ3wQEYhEs720bG7T+j~`ZFTso>iEdH~_i9(K$90o(!K-%7{JL7DqoP#p8g|Wd>Wj(}#N0zK zs;@mN<{$9~eod-E_70VON*zA&)m8!!&N`3FRD`2uF`4e@m1wi`c$>6px-YlkUCYhYwOlu z)z@M5)R`G%-YlQ9G-41;&P}FKTGjt}Yv! zt1oJ4)voiu>Mv?))vmdHB2*Z)HH@xTBGnf)HptvR^q2bugP)@>ME{l~tv6X?TwD;> z)pVA)d+}eJFK@!Fy|dflI=1io2~9Hu9Nji8pvEQ{|_=(&i{kV zC6wev4>I3f`0w(uTdW>I>y-z{|37~1-MIYH?p~|2G-SxN_5UB!^;QG9m5jT`>L-`} zKgPa0zKY^|+q>M|z4xXQl2AfOXrZOiLkS7J1PC4Jq36<(rcweTy-FFSNf1OqN&s0z zNa&unE!5@(D?r@R3%4%lHU;~e1iAk$v4o+cuS1jg!eumkKw%~ zkn^DD@RS*O5$`2L4#j&3k#F(d2jpg$CA`&z$m#h1JtGg~y#&b_F*E&@jqa%T4f0FO z2WCgeOAZQ>r{#`~rSI^@b?%(eKVwMe&g@|}`m>&w{Fe8YMlQ^|L{;)-^knZQAh+hd zgvi5rmynZ&1|;KiB2PBqWzFGh@XfJNYwe}bBWawV94FS;%j2H(@7LNB*iUP45rrq# zzSf>7Y5CapAMC{x@nR1fPRP)8_HqnQE3uVp?fpTH#tS01cpbj#G;*Ci%03GdZnky< zUI=KHZ4Y2K*V&7xG;$EC%6fZ2vOIATUY}{d-d-}C#tq^$pDssS0?EHm7uPraWA^QO zyhXZh9j>nEvff@)rBTH!tH%a=Zhw4X4&Qr?9r*FwSr}ySB|X^7nDzL?Z~bh06g!`d zdtRCd5oBfC^MYL(drT4_T9`H5U@rik59>TH+F%b139rfgs@dza>6`4`AZ^|n$2OrtS2yCN!sbyn#kBp=0zixmy|jA2za+eb*3^Ri8w?a|V+d=wUAziqY`NBw)?zQ7;t zg%QK+K+QFKFM1v5XU!g^(%439#BQ;7k*3wR>fl4A2npbVgDv(pe5N;ZE}!Bd5MvfU zp^0B&Ov3p@qNa~H`~W6?iBW~07sW3zX7DqO_$9^!ehL)7guUnIMDa`5a(>VezpjoE zw1sKr=RuJw3@<;fiC@C3@&l3hB`haDjfr2vF7l(S_$90!KR}9K!lLmrtN11C6+dQ* zU&0pQbSh?g_$f>bKe~xu!hG;EqWC2Y0zZ3+U!uG7qoVjFx-y?t;}^|N5YV&)K||iy zG`pr>Gy_3EQx60*=RknT#uy4|mVtn#7YJxxfq*6y2vT@c@+ATMDkYwc5zlD0fJB-l zAfV|10-6^fpa}s2nh7AFDF6cU{SlDUkAS@WF$l@cM?n5P0&?sTkVlVzTzLfK!y_Q) z9RYdm2*_PWKyEq$^3M^FV~&74as=dxBOo6f0Xg3Y$m>RsPKnWTxu1=nBih$<3 z2uN8Gkg_5mWko>Bihz_A0Vyj2QdR_{tO!V15sBihz_A0Vyj2Qr1zrvf?KxD*{qh z1f;A8NLdj;SvT#lr%3cImz}Wx^A6)*!JQZo@Clh?7-MH9%6X;Nc$+`RUKw}l-8g~o zjBff}j$nCm>{V=2M8cN6cy(u;u{}sj>$Ntp(!o8+aiL1XG6u-O?ujd;^R`U#}qn6i=4} zSg*avHA&=(%|gOSO2C&wZ=s<0T|{>u60QnFp$W2+{e2Lg$3{vG60jG&@R^pP`;m|? zV9woOa6A&E$9h=@b3pDfrQq8zy!4BgCtHl zVRa6ptyT#l?dQwkY}H}pi4tu5v>MWO9YLPgI;WAJ$RTVvQg8>;?7VeCnWB~nNs{0!XouBYtHCA=fa`S0sg zin2$ikZY?ToP65e#@0~qk$ei0KYSX6)Y0Ki?SLREU&0&DYxT7HBJI#4B~toXPn#hMd{auvFC7qR%uao*(eI#k zR!65-mw$R1?P(*wl*)w6yhlMX8p_fQ_ zk)TAd*+`JK>HJJPgV(iN;nM<;{uiRg*DEO@%zYWT+KGhGRh1xiniBBoyOV;w64IC= zEb*+pKrVNlB5d}r_VUt5Pxb;tORhU-FJPO)$x98Osno9@-NsE?OGS~51+0BxCCs*l zC$a1!5XzfgY92H-vBg^6MZ%-AN))aY;(X$p5x0;Oc^mJ9pAkvF3r?4|NBtIF1E*(2 zg~wcjEwEijw=VwxSsGu4UVMa~(jLA3tH3MfEp-rxvtz6G_EHQs!}`Ag;XSs4gOD{Y0g-ZIqxi^b9C%zhEzn zk%41wi~2gQqB$8Qr7`Dkko|J;7$1Qrk!`ySk!ABF=^Vae_M1H!V@=j?cn#iY#T`X0 zC8PKGd1tY2QiCBvm#}Gq=G0&Z?z5x>o2YW&UEE27F_ElIpS$R&Pedaf zE9J<|j@$*X6&aDd%ZkK!Z>bQu47kFj3BZ%$0XD>k$RsM8Gh#JPi?<4OG zK`dt(AblyJlPGodeKbv5Uh4e+@XYrCvQN;nH+p~zPcg~lv=%%-Nkasg6RFM+mg^zN z^b%wSG($ogO8AatKE$0tm_zbhM}|2=*?;t4r(m-BBNRAOnB5tV>~(Oz6R+~!NA{}d z*F65M=517Uf;o;>^o_poC`vvGkxbf;pccp@(3g{u6LlK%f^icAH?!!89}dDzOQ_Q~9@cHb+69Y9*kbibw;dDm{ANc=J+yLcKLG50Zw(JG(&GR4RtcmF{#^2y!*P>kGiw-kkcfuBcRh;nUEX#SBS+uei((Cl-VlnB zyYC)bn2x`Y%kQ2+iRAUWvnWQ6zk4mk;QOOYijnv4K0q;=0JzUmjOGCD-zdh9DLkSW z%>>;4QjBkAJBuJzif~aBqbY$qmSQw3aF3}r;#-2kurB<7XVYQjDeu?g13z zd*UN0MiT}19E$Oc_oWo$o9t^S#!mrkr5Mc_-1{j;(+2k$it%m!8x%X6kM!>$MfuTy zR}|w1DI7%+<0k_`D8_gE3sa0AQ;4G&KcZ2MVl<_2H=r0lYS5ZuG_i1ZqZrLC+yf~_ z(+l?~iqQd!V?z0r*2Mm6r7)?9ek0{0u zSNuycT1<31i{al3iiJ{4Bl#Agn2jjMQ>+lBRUbo9+Ea2jq!>Sj(}rUF7*2PJsYGTF z#rQFt(G;U~K=)LN@nbk&QmiczTtP8fwsUWw*kOw8q}UM3afD+07|unCVF?cUcblU8 zu*_c++eukID2{*pu#6wYX!XpUpJKefL{scC5iC!!XY@3MVzdS1ZbGpF^t3(2vMAP@ zV*HTKP>S(GI^!tDia)o1XuHOq6jzI~<928vc5;I3Bjt-`Co9Tb*!?PUeyL_On;j%q##|AAIF{xwhe)x} zEFvH7t6W@F&WG<4;6a)#Q4qNP8rRHK6!FMk>~_uqToZhI&Muc_OL2i8Zsg%*nUBFC zZgTG^H|DcWX{^p+*loGDZM47=Uj;tpwdsAYB)K~!ddt0)c^~NanzO7+j%F(X0~!4|&CLTu5rT&hz-H1fT5a({gE4n^oqTcd<%+JDx|MWx<4 zTRk{iQp*x-%n-Ed`fRy~t*ZxLodp5TR|gUI6c<(z0^~&K0WZdU0+x=klti!;IY5@# zr@JvtS*h~{<*UI0FZsCG)XOq?iWY}iC75l6Go57)lEhcZs1Tdd4tzH%)YXi&EG8F{p6LYsHVJeYgL?it7<2mI;&LclJB!Lg zi;8UrJK-ZY!>4qeGQ0K>(8r=>7mJ9Nec?XO3PPo$*q~s+6GT^po`+(xj5M960u+yB zTy#4~PGyY_ktL+IL=@*KwL7A>o>+j%_L5z=*SA|q(VCSCphI*K6uEwNEQuMFBb`+X zmkZ)@ea_Kmf}_DDaW6GAKGTDlQ69{EBH~o8ldJ^v3)IpB(9_#lj|>AcQm{meIMQCu z%@~HS=lbA=Ks4WOk%618NJzia^V-sxk}N7*4P~K?Cq z36skS%W%ai+TaQVIak}PM+R5;I2&m^tt8>Yl-Ut-ZL(_B={va5XrN|MFgRU0$*L4p zN-%ZvXE{G+?m)(}%u2Ek)=vP6WoaQ$vx=oiui|iNAWwT7D;LK1W;hXUwUT(;U<)KU zTM<0f;0T{vBaUb(%Ql&FG_SE-h2>1~@nyaCK~xh2LC)1@rG%yz+7B!Gg9lgN6G-Rk z%Tny24a$0aKS+Kn9&pyM7DV+U)}*DVpO2izmfnz6cK8607d^t4+3=B zgWL&ka<-dtdzN_!>w-#Y!*x|M$ou_{yz|+i&J^^gacidK4 zjAfN(*_+V+dVDVzkPhiQ?H4?4F3oJK|@Qnn{4GpJ68pNfUG`pLtV(jZB0^G6}Gt1ij}I6P_xA zN^yC7Kwx1rF`l#*@}NatX|Iq6`d2y(5TQh0->HkEkqyqyA37hud+>3l4E3m3SRj)R zxLSxON>`AV6yI$}e+|q9Gatg5RX2=9ZkAG&%oxO__W&2$o(nP!pa-HGuz3}Y8iAN+ zjldVL(KgPjp>T(U!Jsv2TI8+{6PD449J8ZxaeP#;Sru^ABt|rFxnn46xCcW+1Vi0o zgkAmZ80_jGix*pemQ@4!`@{(AaPGJqfuYu_P?nj0=n3u|nbm-Ys0z%vN;?LqMzY_y|NwZOCBlMp(^F>Ci{N zSe8{lt}MA?g%AdIm4k4h{OmfYSbQu??<3ce3dOQ6gRyWJ)=dtQVq#fJdAX@n3K<;8 z7#%BW@3$O7cR+X94SD`bEFz9mXp%WTsHfhiV&LFZu- zyL>DA1@xUew09NvL3r^PQ77so$6F*l#eq7JI3$%nPB3(061%Zf?qECOA&LR}C57cG z1&uza%VQt%kedW~*xATssMaIF)qS0-%eqhseFLHVsWWn0XXK_OlrSkgj@t|=Uz`vp zazY@50)~24B{WWmH8@U))t~_B6p$Kl3W@mWId2aTFa(lcs-Iwt6#99b(2Q|$VsQT~F9wFydR@NLSz&QBQ;CyS=v*w* zx%irg<_HBEoQp9c*=UKY!rqvhKhj;DmDR)0N1J{wmzVD7T-?&R0JgZ~hl|u{&g5c2 zEzv<<#Ib;EM<}~8K`w^HL8R$prk$mBUiM|_sBKJD_8Oshn;Qji>wFrtozKY*~PKkIJBQ!)P{SH&1&cH{8G1gs;Jop zr~uU)A8aCN7)_8ant(ReBu9d%Hb&&0Hkm!?Y}kB!@PLoQ&kLdMr4xkkG1cg741r+) zj6xS(6^RkNn0UZPu)-8i#5yk#Gg<)TI45tsIC)HFstG%kgL#Zw=VZrB%)T=h_>^Kl z2VxT4i<1%KQ1=AU9wUO}FloBZ(-cuO_cuRIV1c>iGPa2#jk7bJ;)&AO1Yxt1#wZFa z6bu4ebpo0rqVkE4Sd6c04`6zI)xR{?-7HCgXDqdDJPxZ@khOG$8&Vcm!oFEckbfP&y%_~4PC`-+g zNRMkv72v?mMY}w|f}yDvrRhB*S!Cz)rs^W@IaL8g-a-YfM~1>Q7yX1bRi#NfM>ju| z2irauSkBQnFwst)B(3JmRK_YfXNQ$#V*_270k_8lVg;q?>?{*`IXhpAxFWi{sW4veeC+6VM<|q*@}`;Nlz6r)e8o zTB~!BQxc-txz|T#5tG5iYMqPkkdubFbCc!V(n+0_V>&C_%dw!k(4H|sYE=c8}R$VzZVM*p4zJO{kzI=z2Pdh-T3o3Wtjupqd= zdlak&PG65VEDU(z7N$=FxEV*M!$~P7p6X@>NPV&f#vl~4wNOJYqZQsVswW&n+S$iP z@laeWi+q93zHo=!7j}k|HJeC%bmSziPwn>J(^}O@v%06uJ1v!t@fag#2&J8mZ$&xP0d0>W! z1pDlBy?fy!N+b?LIQu+=^9yIu5Y7x?3wz|?F6T)VMCXE9hmds2uwzaL=5xUp7tFW{ zLNF6t;Ayp9r|&$tVii~cAGst95wFuSk2-x_f#l(qF6i0LdS~N{v!{HqtZ+)?J^oJK zGH!a3>x zm0Vbwt7n>RWx`ynvNS`_G}X$KbwO>$I+R0i{N#JAGv<8jqxgF|@w;?VJ1kNs>%vL9 zwGa;6&pN#=7Cp~Cn}j@M*Q)ZzrsIw~*~w|8gEUwgnf;Z~XJKL8(tlhAm8F*zslTSP zVr#Hgff@K$kV_<+{iUJF0hNS(y-d$>CiY9{Vi9KOVi+aB6nHG#fgoq*nKv`9g*MU| z9xRDi%wYeZ3cEhT$IiBV0zNwnf_x0>fVlzIB=b@Po3}$gvw=*x3ZAI)>+u+ zNU6+%V&SXcv2JH#Dhq4XZ8oe`ReF$St1Pl}IaH`D3{{&iV5s_6W@A&|&JHsb&I0DZ z(DWABd%T++wyKb{5Jk}>;!ApN6%RvI-ZoEU{lYt|r!Y_tE{qTX@f5}}p&8eoZ)BYHAC8x_ z5gA)r8Q}q!m73{!nut8?*(%FafoU#?lkW=RIZd>i;DZ$S5Yl|2tdFr+efUtClPLV4 zS&3qN{bm!!^q)leoAvTnB#MQHhCjl+*r+qHUT1s_56y8NbchdWx=1!O^Q34DIwXhF za~2QXzQZ>h_{?JcSg6uJIyX;sZhDP_KUAQKFy48q2sx@%gg+Gc8Q2M_BIKC6ijZRf z4^4JJh_my^o1HF#oyEUmsi9pJ(MR~+R`v5(68m2~SZPy52&N?nlC^ks4cJjSE1&4B zWKyy;fKWI*urXRyD`3YApVQPawO$ z1GX)gH9G>wf)C( zo0zK17_W-6y*uSG67urlC|`NGI2)BCPnCc{i}s&Buqj6 z-6MZwJX$AeM@K2K2=Vv`mf5(|-FX|FZfaRJZlAoEjjki-W|jBLvsqMK?6Te2FJBct zba*{Eh}}GZ2Z4=cg^}0H4pG{d2LTD34)^Mp`tQ zc*J6-rC^62cI-)_U)z#IzkXa@ z3_6u-V9XG&twi}T@QF>lo^rkY&=$r|9)>x4hA4(p09%pH9CBw%ojSuk9%4mrs zVG;C<+%dkMg5$yISD<((jC|pFt9_hoNli#J^eU7OSWo2xyIlD$@G2M@hFLBx2JmCH zn}3B2pGsRbIC92GR_L3S&clGj!>740LJ8O+1Az zMX{J$T!Zf4vLuXUB-*SAIEHD_sozmtbq#*inA`FqR%HtcNxXy1ziq*A```}G{KFqs z=17+QD^_y~p0P);`F|pFoS%|J=PCkN=w10M_QnrqF%R99+py}dWCt7Uk5i(TnC&qd zY`_!DC_la@XR>MmN+1in570LOc>dbs`N8{gGMoHJUgap7%+Fw~5yHV~;$rxSboL9m zCVTu?PQ`iI*?*%I%O|t+yBLi2J(2yTb{tSkYLLuQDyn%{+*7RYw&6hR5&&OzUZkR8 ze<1s*oGOj-LI<-pe?i?p5$NG>p_5qNzvTdS=80Sf3y1ywh7whKDi4vGB}0jn1Sc_z z86dc!pS%>T8KFR<8e4_XaR$1ebV092`u{);QxK}hsbm&4LrDux@6}^)+Q*UBqWN>3 z%R9+z$}{wqe*}Y1Ee0P^b&{C-IR@GSZ2b$Y4*|UUxm;4po5E7=$(7mQ|KxIUCA6W+F20og*r(40B<2-dm3z-ENWi~1B);y2cxuX; z6?zGoJo1(aYG%shxR*>C3R6aB!EM`!@mlQCpK=Ua@;})j{UlhoZDu$ACpTs5?xN>k z5w$yvkG|cLW2K7%BArWNS%1OfJIzkMf*@Yp!=l(56WZy%oFM(H3!;{zc?XpQX}b>H`WBR*e7|WxS&*cZl&xoQb6Kd5DLaIzze!1{Ce40lNbI@PYkNyT+&5ev$h z<;S2?IaHcflf9{nZ#mtU6|8dV8S07*wz(`*Q8H`;461ReQbX#igEHQtO79@pzA&H@ z97;K9rhu|#fuh|_aq+hkg8h{`sMR^AQkhNmN0S=Dq&Em`7Ys_#K1zAEH9#2xc24*x zqEDl@59hzAUr9r__{IErvSp7MwFPrtXQc9T0(?QBtEcpvXcHk3< zL;K-{RyH!XlFrtCq2y;Taw}We#4IH*I}oh2VSzb{oxRM$nfFS0l#Oi9GT2Tz1P@Ao zgH!FFgeae|(Rr0sjzzV(y<9Dd=I=^usLj&bLDTLY@Xf=%U#u38*43t?;+3Tz@Py1} zlO<{?=~QhtHd3i2?W)aoE>SB>$92$=+RPRM@Iin{#a4Z-mXQ9jz?hl_vocH72rok; zPx7eD3}LPLi!>Q^MQu8jR;uFVBTlVbUC~TM$|%L9$@sMAE2TD@Sw^Xd!#f=CSzVz{ znE+BnM#Lyl(hmX%4l%(GVgJM^1#I67{I?c9p)neCPpncl*$Pow1Awj zBVGxWp6bBv@o2+G0(jp7dMYP4C*{NjH^`N>En=%nDJ{kOL8a=6iuP-yx|rW5YFQkZ z3W|l4i`EmhJ@|>5TWVNOG)H1RR`^r3G}MtWbRwz(pecZ&C33gumfT2Qdk5_A9C63eY;Em@Jua(}jXAciw z>T@e=l?fkoojDye;UN>WnKv|J2K4U} z3%YZLS`4RYICO|N6f*GjFY6)i#a1@RqaX{OrRKLS5P9(_c2AD3&w~7NEPRdGkl%Iz z-D*NTdo6k(@3m2+il)hZqtDjyQj_$&f#|$bYAe;rZ$|B;r+BZ629suWlyE6;Lm^eQ zA=^|(iNmQSTSMsRtUmC6_chQ(i(^W&o5Q`CUsowCRkd=!X{mrUOe;rFqqlP0sfX7D zJ6SpE*H>a}?X4VmVF|etjRHzEKmlVd`0NHKV6+8iD;mF5z{d^YGA*}qTm$!bW5{F) z=eDf^YOuYHQ0M&?yhN%JPv`86I^(@E3!cP$8sjy}yB2&finrbIfZyV9DWD-A>W$&> zDNCp&I=X`mt8cXocG`=p-SFY*^fnj=zl>HBaC{)49oi(kk!X_^CDcMVz=-FyrG!T8 zrxGx?H8_N2w=}Ab)xx%DjU^@3AiOkXVEAz!g6Bp z+T8&`danoR-GY$`v0&t(ndM7`tK)mjoryL&5Dq%U;RGxbVO11~<< zk7=2KA`bB)LfK~-Q16qeEGq;3NPjo7z#*d?IWoO}cMscSWvbdwHI(N=KN=s?K&fOl1J5NIedGIFb%VDNV40-b8RFQ17$`>qs zxiT!cLgNoU_^4}oZ`mD;*O+iLPOp#+Coe`Ru`DnS2ltlzqxi6XD`2^Bd~1|$xui0U zS+h?asjTR?kVpH*!o)Rf%qD)Tl!3{yfUO#fCHkf-VW&nnruV879C@fXdY8i}CR9S+ zyDRY`>j;rHDqJm$w&!%nuEbt)aFRi|Zls8$tZ2caVDqGMX zb1SWFENsBARWLedEa25uFghnKpzWAduyh!i$dmkKH8MT($`rwNoc4A3(xJjAF$MYC zgUAzaB5*Ehu-t1PuKZ0*aSdIgB-rq_$zaGeu)XS_SRxha*|uQYs4VB?=vpO2YG4tW zT}UYb-^q$-B4gRL7-O>kA_n6y+T~EX&?)o!I zE!-qP6*d$C#d3}p@>GN4F=C!N;wvS$^it>e_*a-MJoDiA?T<#Icl zvWE+l(o$GcZUot&5f~N*_EH_Tra}{rEL5U#wUddivIy3ria<-1FxeuL8Ki@w7sK*( zvA~lSD=|_>9o)_Wdx{?%QDvBIxMfHy3E|VL`!?)4j>f#_>whq*TmMG#WqaDG`J{O| z(JxRkc^@6RtD&|nddVxBvOVq9lG2YlXoFtzx~6&uYJ;Py%Q~RbUAA)gbW|%!7xWxw zDTmsW9qEWy@LyS==uVihKi5J3=wzSjwU;`>!;MH2`VJo2cZOqEfQ_AuAv7-qy0dQJ z%XI-h#llbP0(_FdSM|nw3JkoFz$Da$_mB(e;Ax;mre0UIDyHPTShoimqxRRoSMBWa zS#SSWtteIw#sa&9b1>YOY{ur6LvN@gV38eQfOrOOadC`t9-N?2<(0y=j%J42 z<>Ak@6EJRU+Ps_PU7WQa9O z+L57KJfuamCoE$LSFrR8?9s3GQUUHmWTRI% z$G^jfv8Y64nA?3CQL^GWl)jt(?ZLku?z2ee_S=09v1zWF>D~JD8a!ZV|L$|$=aDkm zeF6U`xi9kgCH!xMcXauWEBN1W?ljln^x=l-ckge`s#n1Z`9{v9>EVD^-XrFSWTUq2 zL~ZGc66rRtZGY*eUcKw@ub!W%-an#xY)Lg`R7az3t`?}4Fa7h!zjx}U)b8<7Mz8+= z$9lOBQV~Hd*of*%iu9j%eZU;A&sFdGbfEe)WCLBYFB|=vU18JmDWSn-!HjU=CU`k; zQd|p`o=KpAsgPW=V%Z-fukmpa~5c5!;8p}q9t5MS67GfA2z)6~|1aXsqw zw~l&Zp}>X76y(C0DlT|6R4719UFfPBDGuuvw6c1&m{JqBa0IP}X)f7PSk&)}D}hqe zmW(f!CbgU&4eub8L$Hf?V-1jXfu!1AiUxA9iDU^S039HpeZ8SRCE>EnGojp0j3|kH z%r69drV00|3D~5bUz}xqXIak%!g@ZuZON( z)%^wo)m>5E9Z}vby(T*sI%HOQxtdoBY$YlV{FLQtyyVwPD4VO5PypoM%WC~sU|Fr4 z1wOSxO_1VsaEt}!yFA*r;H0$$&bv~Lm0IZFGz;umchrK{eUDe&8&e||nSURfA{`22 z#dbz3(U5$t6|$tO+K3z(!A@Hzi&4zkh0q|g;a(pH_!sFYb%!r$$RfTeHi3)Hr==8N#Cas+9=QuCH2* zBWWfH2KMz;o05aD3r+zaiNh$KDCKD_rn-CksgY7EPs$yJu#H(MzhP<%2>9e)C_xwnx_@iX4<4?Tk&-R^gyCupOeHuT z2d_Nwo&(n)!@fMPBw;ScnOWk&%tGKvICKS;wBN$R^oOt)7qFYPM`YUNooVbvrL}a|!be+YCB?_i&SCqa|yoKL%1uk!l zfR^%xa{4Q;D)CYa3m@?-rjcm^j|s0QY2G7qUxR#xS$MpD63o83rj)`>e#DP7u&oee z z%eS#>-0VCYFr#HYrj&E%v7-$PH{12@psny4#yRwGx6ag;yvp=8>f`X<`{Lq@BoVMY-cKF zxrZ3H6&Cb|QEV=XClcP14Eh<7fd@q$+i)wI3b%sJJV+_+SVB`QXp9-H_%YvqeEpcp z)B>3Bnxv(w?ZjBJhG8s8*Lg^5$CNMC;<%X11Y*sfcz{cH657PBeTmJN@fN(|S85UT ze+xd^3+}rBgW5_9-fIE&YLmu@I4$ZwQc7m5Y&YW1Shv4 zIzu483v)$x^w}hqav#>}N-?ZC`gMTpu+>6R&OCyN9?I*W^uppkFtw$i_AIU=RJjn# zzGt*UIK>mO8~Ef2WZ>Tk`@Goh*3knyVK)~CQcQFW4|I*(4TgOjnUdDPT7m6t=3Lbo z+q*qHa(4B|nZ(9*ftF1*(bu|Q_B+V~jhEXzxcWIA#MYYV=&q>cY7aDCck@8!?uOod z(nJsKhUK>ct46NkqV2^9# z-{L(GnZmMP>JpW5br2@5=3Znf*+F!HydBs#d$G+_+yc@&g)h+sB0C6oZ~Q*&qo-Q< zKlWjvvw;V`u8HSH;mCgA2UvJ))CaR#2XNV8Uyn=~-kE|AVr%LPE7QjZvEVz?13%5g zM;%hyNSCiG-eoC8>P7_*BD7Cz{RQVlBzreJKREPO|$29u7$fqZ4* zyB-Do=N|ZfOgyh|tz)pt5gko=E<1*`?*iZJl*>!rC9h|$FU5P zB=9&5{SJQr2@L+-EqvTbr99pj;#W4{aeP5OhnXw5X#w6LPUN z{h+*G395Jr*`|iD>%G+~Y(RgkXl(1qQiiLwv37)a$V%aOJ}-Q;N8uash+JR3{Px2D zOjWOOj%)hP%dH=GbFc2mf(L^4D3)znF4*!jBo25&D`-HKk6>KtnD8|p!MVV`A;EFomM5Gy(9$6o z`+A#j_%1QDbx828-f&NOUxWl`q=6*3+O-~r)j4KT**gqcH&;-Z?Loy5+=k(h3~s*F zs}wT=b6$^f4Zi>(BXEN&t_#V}up0WJ+`vY~c+ zgxb+ntWtNp3q^jc`Wfs9E_6nzQm4-EU8V{V>o^~E#v%(XQ(`O-^XcE0^lt(ETZDh_ECKm8@6i`uw&)(& zX29S+|A&PjUt&zG1by9^^_!s7gP(wEnc_$7NcR##Rl;&xoK6zsAX8TpFCyhPld zJJ~zWNhj{O3aA1xOz_C~nVFHx;%XH&9B;#U6_#98jl-EStFUjq^AxUz>wJ%U=UG%u zt&8JhR-S|2dFEAD%h;ZJ=W!%qLiord&wVowpE|rs!dc3YbhBOi)=;b4aY$LrD|SuHPBw(#eZ)p|C(|4Mkg67UZGWD4lFx9~M8ct4@U+5kT;%-;m3Mvxb&BW&s!hOiAy6$3=iIee_0>v0HIw?G52Z!jSTK8mbL=B zilr?u<5?$kJ>FqAd3D&A!idpj(NdGHEahvg3msYH8^-#~!GcjE94FZW9xz0_XTd#K zSh9{?VRQ^j#?m%mJF?SUbwE+Wf(@qUL+IZy{PVUqQ>B5bj!4G&#V3DbP3=UeT8cd?f^nFk3hh*WvewCZ6va08TwPqVb#cuQ zSq)1T#RU`SeM$B&D2B}Zg&(njm!lKd4$`!tIb|~@B{$jnl4>0Y?D=N3igaCvT-D3C z1Spxa-!+v^lm}J9SbwT3tGxxwYPq_J=KG+VXg&j5_$TaomNc!tx)v6*_O`UJtHTD}#5}#oHnewN9h+fcIloV~;Sdg%cJ&Nx zw&M`aOdUJzEo`+N!2W1rm+b&{gN|MI7IxxJ9B;Z{VCUyR9A|atskflda@0ud>l!R{ z+NGA0p6l3u-on=2jrksKj87Kg&EAdPQJ}jJZ{F_S;$8d;tZ9mYoxcamlu0_Yss-iJ zy}3sXwRJb3EO{@ao33L!Sy(Qyg8S4!T$y07Fl3)vL>jMS$68p=4hlV*oxnRAU6*g@ zVF%Gc`F-p=iC!%>`T!27Z_|nWgwR;brFWpI&d0iowcIN@=AvHUIWSKSZB8tXqYOQS z@ke4&4Mc{EhhQn+=o$X)E>wE%VGM|cP0X9a7z+!rELa=(qzH6tp09@(3-2C*s@5^# zEsm-c;FEHA4R5$-y-^tNyWozCZrw4o^bnIu=y42Pg9H`aN@f-cIB%6DctOPvhcC

bUPPPj-@_*+iG({P?Kys zM82QB^Kt%zTf%VOGT~!es#WmXBQNGxZ#ZT?ZY;Cj=qN<^TPuv_b~d&%7_w1diI6jN zt~Dlh_~L{Puh$0EjTZ2t-f+%G#kP|8lB{T3IA#}4C!70-|Y>Dm)ZsAD|xLz_>Ujdinv^r6aL*B$qAoa zgS`v?-omv2zS>&gec0^Ykb;8(UB(6@#n!{t$s5w1fKZMu|1 zi|luxMR3CexRAcb0~*i!I`LM|@!l+}Jf^L^8GQ2uxXYZ;gB}I%1DsmqM;G=^o|^Cy zKHO90@cZ6yerz+$7i*Lu8Df{Lrmu>-^fFj`U+hhbQ;s2Qj;~riA|yjUBkG7u8$7f> zKF?{%S~Ms!^sZvUZPd0|uuL88Fx?HPtFLjAm*$OircZfS+C}mqxBY zY}JjgE$MUy#(kU*`)?Aw!563l?eqPS!P-v7lE(i;d4GxW9%t|t z4b0UxHN~oTI8J8ic_vN4>Qz3sa416E!lBS}u?|xef2oEA&YlWzH65I2fjz4P=6ID( z5Cf(S*(4^@^rE0N+%2jUUPEah4biC$a^tE@rK803(k8ggm#6%sxjJaJUgQk7(9?V= zN`SQWtsFFsmNXz~d)O;O602Pk#{#Z;Wr&h4>D13#V9yGHGpdl(pTkUN=C(KpMxT3; zLi$ku8xO6`8i)1?=tF)?I(wF>){%<#VRRIfWsFsaNM-tnZK-c&Vq2;$eo!j_k!Kc$ zsHNj{M2MQq9J6s;srzSw0LIrmZ1`-fs+{>uV7R-G@&!^>j2DNPH{=w5oL@DE<8gh3;0E<&xAS0}8)Id{Z9E{5D18h_2GO}u9X!78udha742w>ZMJ z00Sq^3i{9_oq;I*ZIejdG`U_ahVvFW{Q4u)Uc z$54?i-Gqgq#+f+UgBQ;A9LqCtw5PfNOI7-bE?tTLHYb_+`w68E^G*gMydKZI>T!2SLxuDX1!9`_}}oo*%O5GJ`Z)27l89n$c$U-Vx&VnK|cz$U$5*QPSLFFN>N$t zvSobaWzIZ_8eXz#w;ChQVTvhce%VNc?75BxY2&kaS^k63qEZQ<>kv0eC`2Y!V& z{`O{!)yFJ+iiVBt!yfnpp7W>?#lku&-50RnB5qK?>o-SEAqhXn(P{RjyH#btTgkK zYXN;-F5q~n-Ilve-|DsI&RQlw&#D?-Yvv-9YiyPQy`jw z-a|fS81rwR;dP`sRvw?{*t)7I^5COC2Y`#DtJL>B$Np9i3s>|7Hwv6~XTmjQ7hd3P zv(GI^%1boaI6-QRNAV-6_#{^H6-?rH7JU9IIGrm5e3=E8Mh+&ym{zhg|5+JdbEFCx z+kiFnR9>|tMlZieH!a%q@{8@dpncV%?InqQuW?O>@{uXMYHx6gHWwRo1Y+Y()dwF5 zSAzz@c@DUV#ZBpSa;fE6gX8KDQMDv?$*vY=!6z_SLm_I(Y6Uj_ zg!Qzvq84KfPl~5ZQ7bd;Bz(|(-Xe#7@iJd{sb-Gosg6JGxmn_AOgwYgu3WBy+Vs<^ zug#XDEjXi&vq?EPVCe6NVUe9(1z6KyAE!3p9G0~xJ>h$NV(`a5)V$(hT1VWQJo2*Y zqgA+o4S7Orf1~O-3+C~0X-6-rt$2D;q(Lz=k58b6OwD-u*p;9-CeXntMr%c`V&%<- zU3PxQ%&*9d8W4+7*Hp!ZFF9%@udA6nvigR)ghv|PRR89Yl;71wJaX-}x|2ti{-N3= z`u-z|$IaV!)O>7a50{_z@-B)YYKiw%jYpn7P~T95J#;#1vZY;J4z2oQwF!SV{fYWB zk2L&CeZ@fr*D-8qexKZI@$V49xBp;lCz@yfr>^6X3D4DMJTm5`I*Uhw{#7^f$iDy7 ze|QA)n#3dZY>rJ7F=ZU1)yU=eoq)mX-}pzN9~-sNy=SA8643qu&|Rlj^JGuY3c?Fe-EXw1)1nP)`PGmfG< zYG@fDZCh?fH5(m~qfg!7yP0XU)LO(*Pg+9|MyR@o*evj12R0Xw5<#jVMFr zO56qyGU5E${9!Jqb}tm!kwvSX*D;sp&G{H*{gKZxj3;*~;F!&m!3!tptHl>|bmK{o zKrz^6RJnY)OiqJ$~LpwntN+fl?((|q-0M-z4< z+EG9&Thy^!g2mam1Pa%z)&ka&yqODYx;o;^9!*@DGpzj_KC}`9gTOCv?14^ z%Z^BqoKwulPm3?>m`uspGm-qbuESTmUCxnUy30np%^0~{aH zlj?&U-V1`9Qe*{V1SvDoPtrAB`YXsUqjpfB>C_yi263VhK|9l31u!CsD^S;^0j zEiDTr?=+HXj`Xp$&_j)M2fJIAhPF`-3=gScTEQ`niyZZ42233q#3`VM%lQOo<;J2I zLiHKvILA@YJe}71Ss02&j(3#j={M4myZtmYC(^^%$VCpH%@fG9r;2Lx;$M~b@zJ(V zbX4J4U?@X0|H+QMZxOy*0TT3|>Zo86)<77B991ECGRRYB63{{{a0&Wexf$qIguoS~ zfY-uuPQ-v*N+1aAAY5C+3bQrJ&n0k&3_?jZ7Lg-w73}uC~$S+;8cI0bE8She&tlN_0EJs-z_N=&t#)p~fNjHRX){1@O zfKPOTtZ+0tk?50K>$BWZiBj%==cvfizH<4B-u8HfV~Pn}|CKAZwrM2?Y5*RmC+JGC z+TB$siKq*~ZE*Or`wKv0)@{_g>knjyb!70`caS+%A>zz+j_CktAlJpDq|Mwwo$CgB zoZ~31b>2jBxwYO^&`4e$aRT!^jv(c#BNFLpUu+7_tA zswU`|xqm_f8dSG$^`fe1`L{V1dr%G39&LY%ppTZelb5W4uXYBOElq;Czn)|ms_DDQ z)(CdRv-Nx7sHE(CT{#8}SG9t;p}5 zTJ-gw4u5U@Z5nfKXn5|SKzOv$%r*4h+qveiG8Fy6eaBQw4#?(Uuj`;+Y%||Yklobs3a%_m4LQ!DAF6g3$<$< zRcB2~*RmYWkKO_d%yubS1D7+Ir}Hn?w6>x0TYPl#R#F*1kf+0S?R4JQ^bP3s+5S$b zQd^ermyz6eBOJW)fliFH;IC;Hj0}*alQYTiFjzYr^iF|Qf}M?t%)ll_%{S+9w%`=Z z8nPvuTs~T@P$wpZUNzqw=1il^h3aD+Jf4{%hIdk&2r zKrKrYcG6vc+BD9<^Ra7vOFJ=A9Twxgm3*KK zBrYA+$6Pa=job>R(qf(PlJSr$zxD9?R*ai_;+&J|q1H6Pi5dLcBxLP!Sts0Bi;)0r zad~eZ0=1VFoT*-UgV>I3koMS09wloid5KBsQIa!2TT{h@5>f&+S2a&cND5-fJ3wi6 zbx%r2|Av>^ z>Qs;ctjEWubZgWHhX)%t>+(k^X^;(v6Sy02BGuVQ8lt-aiH)6hdctQ&otgk|8)D3m zoD2ye+NGwXyuHM?xmZz3(cIejehZ4-S4$>=GFXKpc7Kk2{)$e16w*VtloB!-Wdf`gL@6BHoaSdou_4DVsY}@9jl~v!E#A+5kV5We)K3)n;~~&IuCf&Iz0Z zR0>}>bVC0*GXvUThO)Suvk8IjcXv+oW@`S2XiwK5KOb#PPl5Tj7c~$Vhi%d;bbOGX ztYv5Lf*1;l)#Ce*YI@d=6Ph&`g!cC3l@jbf9PFoPRr))day0idmk!V+W)%?F(MQ&j z2RYkv6ue!%;K@f^5$yND==R@gf`>7vpTe$ui~_Hx`-Ey; zrhpWlMIL}|7|D^^<*80MJ3Bq9%TQehi#+Rcu;ZirLbac!lcC=kreOv&g-5_L>We%^ zodQ{GH>h&@7f@vs0Y_dhf>Sv(2D%O^KHB3sf(Mw-Fj94uUHusUx?F@8vOUvJ)jG|i z;R`~c=T!XceMa$| zaHk$V0iyWAi)p;m`PR@D{Y-lEd%_)ySxUwPl+b*i@<%oas?CMPYqIl_%a4;{WxsL$ zhL^^;{h$8G9>Fq~qZww3W;nCl>2H%}^66MnR^y5*j~4zd_34>m8W!Hx@(5O2_wdNG zReB2Acqz|@rB2MU){>nA5zMke*}0D~ni3`U?KM|!_UH$UDmB-G2V5&bi*|P(*@M~V z+2Em!Sh>5HO+1w0j!CEnSr6jB;0ApSIGae9b=z6{CufL_e!-rVV(a?AdQ9Ky#DxDcJNDEW!Di+-{U|wD zE4Gac>t$N@D9Edmau~Nzn(uCB2Bl1y zg$(%N&x-c*3D>s&BIpGCi2~Q{LxEjp`-N!r_FBmrk_Qr>8u(1G*`A47FFojNi8x>6 z%zen2%O*V&qT&{qig2>bIeu7*n1kicriaP?3xR-Yd(x=(C!C`6lW>Z_7~Hrp_WEaMfZ$^7pO_}y zI0YF|M&9i>)ur?Og0wDYoS5+-o!dhry|@N`IM)nZ$Kz6JpAh!dd6-Cio`}w5)qg^6 z%LQjesYiY->Y_8oh6vf7@Oeq-j}iA_y{2EHu^Z2iTy|dJ&(R~IS>wT&8Qi?;ti+Q{ zL&?hgiIzzljK!PM4_q!5cpC!AxaOS3VU|ERY~TZYLS^9-AgbSR!W&1~XrY2E=1(*u z9tN@>USRy)_8VM0561ji^@r$BQ*Sw|@nkSof@MB*g|Nd9vA~5Qzu@U`9z(UQchJhj ze&C-@tm0VJ^Jh6jeDY`|?|D$sX5M$M<{=aM9~E_$57U^oS^HpzKeJJX~+%{jdws z*cUldbx$nI*M$y@U)&|!=I5%T{@B?{EG5wB!I+4NBMGPK@9Hi)%t@C33q~ za=^)87kWA9p*_Rd;gML;7`W0ekH$h=aPN>#!@}k;;*eM%FAbmwZCPHuWO_b7%mwcA zyPo2cZ@k7`3b-0d1@+1vC;+oczxbDqx_|E%s67dHO?17zg~7U%#B%LKUHS%!UV0hVw6~rVW}{+U-QSm}vLYYm zD#(&zUCD1fF3Nt2bsZgZEeuz7N$wgV*p-j}nj(VfA~=>8iFWrL0U0TRx#HPD3heID zBC#bQCHF;)L;j(cL4!W1O&UH0(RB{D)w^KSaPjkl(Cl>yRpTVsE9GqM2#&?V{GZg#F7|e zjQV@d%~fk#-}I;*~YxiDbqtDceQhZhS1QbPW7ICuMtyRGm!1^2SRFc^U^P9OsVa7nx^fEjMY(^46ka3q}jf?>l&%^*<#ySFKoFph`EG6(X>Qi)g!%1K>ZcsdCJfV=o7(&r28Nt%nCJ9MI zI*ck5vKjnkBS)N*s`dZz4OLN>|F5s|QRNcge4*RHepHVQzs6HQ}A72zW4@hNr*m1TN0vzp%9%b z&ld;AOG0#Vyd*?N$V)Epg!;V_+HQuZr{^0xDC9))GPv^<;jULgyI%>t z^GayXE1|uwg!a7>+W$(Z_ZBMAklJF1$T#|kpcU$Cg^qM;;V9!COj9j7*CP8k98eiK zWci}tyqt`|BXjXdO@1XFYsrU6j*7OZ0A8uRBf)kmh=1M9(Z#kPh}VpB#M>6*0DX!h z-F7jM&x&$y(PT%G?Rp^JoB(4z1G!HdN1^Rp5HFkNxMssUQI8IeJ@^8SXR>22 zKHasd9qy%W@&}z9nb`b!xP#+2TUH=%66NS@dl10Sv~^sy1>vzsS4WzyYbBl>?-*oT zAH=t{fx{bv_(w60Znn*VylbN4pe-SYPwnF9Wg8d7Z>KrV*p>wFGHo5jww-uI*4gp5 zty(2+Pl5i60RC%7#|0cw_2}$4tJBPl{KyRP0j(W-ZT|%FqbZK2_~Zp1*0-=_2JnBo zI&Rta1o0{{j;%O7_*oZ6s@q;(H`Z~;);)-iii0#FfV(<6GHk~J`JncWGdMChG#cXK zKz={P5#yw}9N%=Hxg0=qIe_MJ0L|q9n#%z+mjh@n2VgEIps5@{Q#s(J4AE4MP>eK9 zQ#mz*GPzmVW0xB7nE)>F8Ug z(g|c?f0R~}(()R895qUZQ~SJ{{@gyV`ggp~tLgvV z=T&=k`#M5cNqL;$1?{zp-0175RGKY}!>2a3_jOb$o%E%?j@S@0>JV{rg$kgXD*)YG z0g8{*O?SLjhW4|iW;iC7r#)lm$2l(IA2DTp(EtxU8fXDM0*~yQ?1=KFttRswJIi1@ zNa|zkm3#gU-fb5xaxA7D3CW8czc}y`wE0R$Q8{`=*kYxl26xtR_uvCp;?*Or>_^(} za%{2Dn=1&b^Qt-?b7^}V(O&fO=hSUSkT7{9_lN`gS_H`<`Q|C%rp( zI3Mv+dNRh{K5+a?Pq)(^J3@|BKJ8fMg*%kJ7aX1FY4N`o9K5Uzj~n4t(2?C&9ko2^ z3E&rBJAN&LCv!)TRyaLvyMM=VnjWOVY|xQU?>erPp@%t$9m4B>hs<5BjrXNDesoMK zLyLM!inC5`jw3UEb6oMl>iY;Ntlc&R9vS(!!(XgmXFYK|a>v3m@0sJFSaG?;g3D#l zddp=j5WlqAav8MPa*4H;%b11=av8MJav8MHa*1`8%b;bJORTb71}(B&VvXf8Xo=+# zD=b{2(p<((A*I!oODwKj#sgYAxC~lbxeQubxeQuaxeQuZxeQuYxeQuXxeQuWxeQuV zxeQuUxr}N;pH@^ZgBDb9S6tI_%4J*;*R+;$8MKsgiItQ~ETrJHU?OP6Jr1K%b=mtB}Pt{7&u*G+;oXy^9?a-y2POA z5@V)I44E!5V!FhD=@R3mOAMDNGvOQ!mM$??I$dI{bcvx7Mnz&YPP)V}iFy(Y4U#S~ zM!LkB$R&EMOLST|Dl$OpA(vPVxx{M7CGG)T;#SNhI;u;ogj`}F<~3=BEW?KW23zNIDf zS4jQ#HdfI-ra6d-k{D}al_fESFSoHq@_IVIU}LrU&9bZ#_jYG~_K*lfahFkAy0ZWe zLD-Mu5C2$2KFS?d1>?nC?yQFW2C3^x-P?Eka^u>m|NFn%hLHG{#M6CV75SrJ0(f{C zR^H?D`Y`ecrDMkv&CD{as$DRT`J6KBHM>VENLR@uJ}AQi?2{XU2$#g4WmpvtK|~(s z0cDXb5oj!o_lk4q-ljW`Y9Z25Q3DO^0b~LHLP7<54pn0Rr3HwEL;a=fyvF`z%KMKH&ogK2VSA! zzrXQ*g@S_|D7%H;&|B`n2KgeoLX1HE#9Jy?=8b%Cm0BN-x(;L2>`xmYkzkp~V8&|O zIi-p}SSR4+W4dG$`2)rx*$Vx{^OXediqay-E2-_tzlrB z^yXwQE0~TBcJNwpgBTp zK|8c(Q@dX$<6rYe!x6+rYB){h^=8U<0Po_1ZhDw9{JqFtFn_}b1$MYLm}1If6Ay8H zx+Hr#f1y;)@QS{yzMWGIV3P?Ict2nCyQfqGQIbG`m*pFLnZL)NaIjBJKQH*Qs*?E+ zW#r2m%fL%~Eu|Y6=^;3L$6$m zqqlHrRyDZvS~-k7iTGzJ4tOvm6&-w#0{n-e> z1%EaW(4agUZl^iQ$m3W1@w%%;byk@Uv()l5>$R9aFVDKtF^RMatS8})3Tz;uUXcy5 z(}O-^j*PpoqEx(Hk>!dA0W6R3YycZf7#_$*60Ql9ay^I*rSSM5Hk$BmhnET%mz@naTRHAO%*BksLFa1pH-C&@(_*|pWv4w zk;^+(SrkdCg&_Mvaz+;F<`9-df`=h&s1#g~f@k)57`;Yyruk-l%w22 z=|GJi-|g#J&dV%3SgKl$^(TwdtFg{>EaY4@)}1i4IvZ%G=cC4LX<==3)=?7QO5#Oz z7DJjbH8AD~&7Vv85?aOcHLEEJA&!JnvzYoCixvk$ysddhNO5@7l%_~q4l*jBU{6bht^^B{S)F7l6qK42tgU1QHPo5 zEDbU|ul{Z365;~~_2i@0w`R+XQePA=iV1y8TV z{77eXEffcEe=XLD@V{EDJz;chmPoj$whUi3!w#28`VevBMddd~eJ2`vY@DlI& zojNQ|Dm4_@<2V>$w~ALd)34|TP zW!M$Y5@boI7xCYEU?XV6AkPX`dxc{82-cAz42WQD2-iliI2mDB5q~2J5!NrD7u5}z zCk`M4HDGao0S#DhJ3Yxa#_)@gEQUXCz{*P^PZD&z!OJS}fqYaXOGmsW$eEVSvx?>My!RMUKtom_{)aqpnIl! zR`9V>5rP7rX8WyTGWgQ5!o3a$b_nM;jikJteWrgyH0#Cov5!0F>lS1KW z5x>^+&EaDFt=KB1WEC9Qgx3^?5fL~j(WDj~BW85(_ z?%j%2WR39OLUOFQ%V)G=$M|rWfCE0KF#_HW06O8%AH!db15{FQdOGtc{|ycIrEJ&xm#_NHB2y$z4?rXv}2yqxXwe`vbw}p-~-y?rbl?} zYuYR2GT+ZR*rak0jb`)z4ct46oN$b_E_|dE?1nr_( zXTXAJ)>_Kzo#a_PFfLZT}Y*sh+WC!r5PUyjc&X;N60h>3+{&`Pp#6sMK zoiP0YFLpxR2<26LX(!f%CnYj367)*M{0Cf3udqUR$V+8I3^nAsUQ1a9k$8xi1N zomrA}X8%dPusNF0A4$xoT-JmkRy~ST4xZ%uGcYWyOJemX+PNeaN9da@v1hV0yACML zoj%Ev!(mS3g7&AY5m^{KQ<8PLO`T_^;4T0rvr{ld0=K7Nt^)p&!Xn+~@k(7-D-U}2 zYkYYU+bhrs#8z`>7gib4wO!C;=ke=ZFcHn;Ra04W4|+jte0P%f4`adf9MVVC*ZBaR zpNbn9q45jfl#B{(P=qxlZ8sPD$E^~FX5};#Brqcl1qj@bhLRUCAM;IJ5OYZrFJJ2( zLGb_ZTV0TG@IJhIS3ElqEdJ@vOh@PMA9v`blGxK#Ch@QWTR^k8kYB5&^&UWKFO|IG%S*zb;Z7DeYEcFA!m?b{L|j7JuLh7 zVX;!bv#Foak5(hJAv?bhvrAcuDcjeFHM0xrX?$Ngi{#k29iW>g$-VBT;>O8HbU%uhdFc@uhO6OmGbe${H`aK`Gx&i1-I>dcYoYuW2^E{{ZUK6#sjdzq7BXi zSQg=Gadl?_eEVQ*B&2Q7s>MU=`%Ko& zLujqR2M>JFmn$swDjCD@w0&F_20P%tNf-YQU7q_6!2>}N<+Lf=Hwsa1Uc)PiQA04!3fURu zk}vI)#?D=cWVBEI*Ch5in-(vaBGHOJ&A>6a&^da5IfuaAtf4GH+P|uDhCko_#^JB3 z1Dlf{4Mla(&J^RiX)j|KvMHEvOy=}3)?G5UO{U>+mMNKUO=j0{)=n}%n2dWi>nfR_ zO(rKB-5P1`&&HDo+6H6XFXl5xqXl+0utm@3U9WOH#6Z@C?2#EO+F;Ej^VnqYw5A$f zyBshu;?Tonq%xWn<4_jcnenuhlBgg>sA$Y`1++vT zWhD`)L`|hGc38q43{Z?GkD$)7Ob^!NpdoBkl@Yp)W;N-R($vu?K;VhdtegD_<-E33 zzj?uun9@)smM2Q##CC8lEyyXe;li#cGm`(?N-R%mFd)-#u`(kjA^JtA$U&; z(8(etaa9E-XG6oSXe*tuy8Qm z_z$-ax4ZI|&%#cE)6lu|F}>pu&(fy8BE3-}JwhGm`YTe~hbk@}Hbl=r$^&`-8Df<` z6+mm$)x_TAM-Xf)?zG38ES-FrGs=Xx!JPk!bXbXW9`|#?B5rdcov@h4lM%%HJc3|5 zcaaeD<#q_u#Wb;@xO6)E&Z>08VEyGQ(n}>$bD%99_v;d=lZVViLKxiI&198n$mmCi zW;TTot!X8&t!O=~@#3hYocE!K&2kpi_4X^$uS%p<_`{hj-Psi-J#V>DI|tFa$?K3$ zaNVR7-?S9pwiMs46dzWKuUU%kP>N3|#kZ2zPLXiyQiA5CBD5&QN0j0ll;UGc@o}a2 z=u&)4DZX|ozRn4}#YXN$j_Z{Y)GrkwxD;Qx6yKv1-?J1SQi=~P#dj*jCt5txH+q*6 z^sxlsyOiQnOYzl9@ij{ENu~JYQhdWwe4|o)IK?{3=Hg(^S96)Kl=mh%{(tceJk=AT#D%zXNSVhRJ|ccP z$?0c4pVifdFXfmvJo&D9j8R%g=doe72W@$^`E0N!y(b=SHzx3^b762pjJqfIosU;3 zH|8^MCSM|x!E@3f-#1tX$$m=gr{u;^AE9=c2>LP8g=#pjKCvIQeg@yOgYZ0U4V!A`K&qL02vdJr;}_tKUsj42doAx!>g0C zHTmnykP7hLGNf|0CUkaFf$ToUiwjs3U-Krb=q2dm7*Ke@GS=C5Z1%{AvE%Y;w6Q zCuM(;01sM8?KXnfT**e*KCjQ;T*-1h>HRy}?T_4d0orZSDprG;FX<8Sk!(E=mSf{U zmsNPbdwCTL)Z{CBDz?X>9Ys+zjYq9!zGOCSH7XSU;dXR2OK0>-ALjq0(!9Hnwc|_I zva%tfJhLZEj+ioJY|gmlhJ5i)uCBt*e7^r@bhw$TSzSjfrNPgy!CSM*4SCbGs7m0b zwQMMpI|L|Zxa`WXk0WOVxCa=yj%iXJN%BbUq#O$Q>H_8yEG%b?%pQT~LUJnssWlc3 zRNG-Xz}v28{*+qR^=zE&Q7wLUJ>KO3TW??^eax)}h;|gkF`wVD{? zFBE+-Lo!QO(G=nrGM|8~ae0$-kt=gM0~8BHu4V4bW*#_-hTUaoYn;H$c6UWKmar`GY8>z_+6-1mo&U1d0PMR@tcd$Soq3{7I(9eACJFb)q zTDevO$L3@W9)$AgmywsV+<+HaCS71Du78JB(@0=kq|SCxbT)iYfJziH#sl^+AF@z;51VcCY0h`=Ve>s{HwY{l zJp2$!bjDuRP?H-($d7Ty`8$Wu3qbpGpM5NlqSe{QmWVwgi*U$&AC@qm?PKG-XcGzS zj6cWIwxXbO4%`@YBAws$`ZU~;nw8BgO^_OmgP$UBFf-xavu5nDx` z_X$Qt5kK->l-j`S%Fs{qfnO(J%(f&Vz`)@1t#0Y{Q-J<5f5C*86OLR}#buY^!Uw1FVH=JO8J|s16QFQv5&!gkq0}EewkK`Uj%$sZk6k)90-Hy*F zf``DHMeuNUJ4E=LVtsCUc)1AW-rywM{+_FJD{zJ?aQ%*5ozvYJ9 z??cvt@iU)axhK11Bp>|&9-P6<`VZJf8*jv;PqPh#cTckgK5|zOMQbghg^rie+VdG7 zpy}WGkX7&!I=9i%c;;zrv8wVB7SJae^HCq6Fn||6LSe|wL}VwyER2&MF|R5$X!enl zbhgZwP)sDnL|G`L$A3M8Y89en5+%z5fd~bnBJzG`*)&`Cdi?9N=zz2#2?g@6?0_%( z<9`!Re$1*ebE6Wh+~K@`8=WlD_vlCCMI@3QP=vJrt=QGD5oq=v0gy# zW?(J|&K{RBFehiE)$YyxQBcPwDg9G6#@E~$1?CS*cR8QA(7i36c^-Sfu6@eNQ9}1V zWixDHt@+4{67OBa1R-}$QL$~K2_lw9US__$=n@Ol%)Mroi+_{^e!l2$*_>F+r6<_%UZUunamuw`Hd$=g2bu?GS^0r^$nFkecB@{3Q7OQ;a-Y!zyXl4SM;XZ=i zOf>zNw-S(O{Pb6-TqN`5SGborT#t9VCh_t$HdZq?gCQDrgr!`^A_y7>ufxH^wRz;% zY`iCJ2t#ws?i>Sw?PI9;c&U6J>jz&UJ44F! zqnf~ccbyOU22B8oP5uTo#T)QHzd_pr8aL5owS3%E=po zi5T}PxCca(_*-m|?P(+a*)8^_Cv8fD-&6RkpJ{~p2CdD zqsaJj{_sDH>9C$oMn>I1Qydh|f4_ri7C7K8mP+QHHblY3HY}Bb`OLelwWuZ@`7MS< zq3|DN^gk+EO+G(_lj|B2<>y4U7E{>0uSocc4H?Q8C^L)_yOSC&fQKHT{=`vF@w zbAQ3i0o|FuU=eUGivRu#W)NWaU$IdHxb;`~1N8fiwI)pY4MQ97!fzOnfRXnwivefd zV}op+qWQ+ZSX*A>cf9rQ#M6Ig9RY9uj(roI_@m!h3LxeWA)EXMD?o_d$7a1wJo`RN z0PMdnBK&)wb#q(9Qy#DZfOj6?(dwf1{NfEQj8}b#H)xA^)GV3jq0lvV1_bzu0uZhQHYB_C@W*tw_Uvw1<V>};Q#3wu!aejTw zdLtD3w}7>OV>{s@{^)O(>OpY~_X|Aov4*V@PgrXRRzG2xfM-uwE@0$8Y?M^~Ho$QRB915Wc$_*;uR0 zuh_JPwl{n6GVa;{DGlY(?pif$Dc1&(;174LKVfniZ8+hPGTL;hSe^Tp)oSqmWwlu( zxKmc!O8ACdTPYQ)a5oRFDv$HfCX(QUhqjn7$x|Ca_@1YTDyO%raVeo}z1Q zNVZ7VMiD;Kwbuz}dTTR)g+AIO3QqCSCKEpP(G0>YU#&OcF<-40VR=8T4`GgSx7J1TMO{a9Z$Rcptho%mPqP%%V}K*8~LMJ@LBmO{#qPivA@=y zuuOSvFriT%bgsy7Qp8O!f6O@2O@L8zCp+w@Jx`_kKn7K}0mUJTYo6Sk|21^_%&S<5D@UqwqLoKZzfC%jQb%OGr16=`^N;Y+J(tqCtw zg*~7n1UUvGN8<^93ei#sn}=#qgp)$G?t~XZ(V&4ft7-jgZQ}VHpjVrC(Q(&)%0v5U zmH3@V_j110!;A2|tkKI2XogisnFA+OhiAZ#tHUC&Y7NQf)X?H7eAvY2HBcv82lCk0 zB)VSHnp60L*U$v;S8>5%@BlbDOiQ*G4M#Ei^Zj9{@;hN@(hwxp)ZQe#T~nJwIHZ;~ zm+)RKWDz*1Hi{p3sWyrTSig>Dc#$FF0u^^|O%1EBI$9@^`PJ3N63(rQ_6Gc;E;=MI zxgPLr8sA+HLjusVzLr3kRv*O;JWwA_0)4|#UBHRqh!4CIuH_J>MW8r=J0eirz^4%? z3}9jdbS2>W2FNV%35B5v8)RpGPqN zs)-gsGLNQc9KeoE(TITano2LfZmMNbxNS478{x8MD23NX@CPQQG)Ff>`1jAXVE#^X zB#glG=BOUvoE9ij;CC&MC17exZ2{poEm4iYfvqrd0I#${^#R+qMtcG-ZH>fnibFXuC%uiY|cr zCD^g^I0|(IfmgIDtS<^IsJ|GsQiWqBSQ6Ru)v085rp>^sa|Dz8Mfb+Im zD9?@3%5oej4J4g?aTurq`|)z|$Q*D~JcbtFk$4OX!0H{eT*Boh+7o1WQi3*t_y-9n zWZ;C3Xs^JV9Z^_7bhZZka3-eteTkYM-w=;9*LBhY?ScK^a77+-#U8+~cG7x~a-Bqp zGZRs=2wzV`=KwbCtfhNV1mjQ2dPoAsis?yOO@6(zhV@ZD{(EO_kW_dk+S+-0H9jQ? z0~KUPlF+t*EE(++n3arD0Tw5tTtDf-{Zq6U_DK&h5H-96^ZTlyYA&T|K5W8}u@ka~ zOk8e2tsn&xFsUu7#xJF4)v>)yn@;gpbbL181hAJ>l5?xpYiXz@UDx4;(!dHzCe`Xs`&J=%?ioHtw&@v%3vNSy#or zJC6{4t3T=tg0=&+JSo6;&j;W>=h^`DbqL}!v?Wqdo$t+n$^SCYr63rUsVyRWmWlRC z;Vk$Gd@l=~7RUyo^8-f=#C-rIY3!vkK!UGvw?SGHk~JTMQ3<$u5C#IE*I;RT%3zc| z!uJPDC;AORS?%i2&kWJ}d+q8kTGa2CxKDjF*Zk&K%Y}~C@Y(KR=mG<_n- zD!M|^P)zlI4n=E)AYquqHN!AXBg}^5_6xXrxHdsXsLCG<$K86U;h z5MF0!^9aL6Xq>QU1S$$xVI(>@Fn1&x7x3eeC=g)zQMh9PP97yQ@!cqNV1zr3Mk58D z8LbT^jL6Ztip&`mFQcF~PO(?u>vN>-$2r;z`^CY?O&CwgMgQE8i&+VO#{D2yYe9%k z6wKqtU_M4*#u#J`_{SJ+l8lA(+hfsD=8Q%6hv4Q|j3vOhanj0)aTuczeliYO1op_o zfD2rohkHEWKY3^+z+U6EK3?R8(VJY{a}ocub7eec9?0A#XwihR6VQ$?WY7(A6~1MH z_8JAwPe7vtdQU`S2M(GDW#E>HXzW1SB;3UTXG}uH1OJ?aNg3F0vNpwjAp`lY&G)qN zsKd)nK|_XM>J+Vj(0i)3l5qP}j1j=j)3kiTo71$_GU97IZ93LtZ%s$FL-6->6alcy z3^X}l(G1L4z`9OM&%m)xWF2_S47<-n4ItciCYm$w{h25dVEI`XkE`>jB@Gj~W5qoKJVY>Ace$nv?L{8@Tl%d&YlcZ9_W#+q9bt13zT> zE|dxICl`h!VDkmIB?Hc0faU|dvp^dt<5s+axPF81->Df3aeFj4iLYO%bz_5*grAWl zjhq5Mqn2tuyv8D}I;kWq(%vAvvPj!zC)GvGc=TeeIX|=*iqbCD97oe2^&lcd$9GJLFTSj;l@j z#2k)-e%zIR$kAVbe{n60FnFbwh<{2Sx>8F699^j;*(Y^?3pl8@(k+lzU!|pkpRr0C z0r+*5)(?=dTI&MftA*^()!IOWdalv>0`{*FGPkuDh58TVeb!=B0v=qe#d**Nq>MvX z_`~H`=T=;YKKV^|-e(< z4M%K4sUy5*n+$tw#|;m{gSKP90Tyq^tWE}uhvanXX3P-LJJ3WSbM8Pv0I%#o(E;o4 zL`H#&cB1P5|JsRy0QTJ_`S*88XRGd(X-wHIGjVM<27LS}Zu@r-54iIkjJCjM@1PX{ z2kb%X0)Dbb${X&5ZwN2hiy;d5(_YvE#_mH^)=A@Q_Q5Xj=|1=e?7SZfbl~~@+GKm3 zG!#Y<@7&B@i4Q&i#~}Fd02~F@eODXqMG8jFRb+Nr6X+az7q<OC#S zi##w2$op#V;btrBeJzA!9p2Yk63%+x(pg73500aKfBU{xi)8E=Mr`1aW2jDG@iE*e z0ey~R)B^TBuC*d8JdTbDJVW7zow@A<`~t?9IP(Om0pV*WFs}n&E7Ef84LhS`g8BOT zxa&Mrgc5<^Ws%lZ3Mv*hfFq+%B0=ycPD%q6im_ruIK3F_5#ZWlbVT6oVkvKa3U_!2 z&pm|^1$f~U+6}PE2dJvrIeg#;xO)Pw{6MQic=`hj%e%T3o`&DMy7D%swQ#}_r(tGY z5B}b1lsnM=A<7jP_aQ0_{~@{B#0MW@20^&VN2nLzx{tJ(gdt}z4gd?zV5UqRQ+O7+ zK(NbMv`XNvvuO1|pN~=Rz)>G#f;|<-Pkjt8f%Z=@lAVe}@!+$t>oGu%`vk2Lg3mrd za|gCQr}gq81!LG}sI%ntm<>;yLs6WHD?E=D{%#8IdLCH02!#i(m)}SF{!?SX;m(!mTFTH>P2l(v;BnnLYR2xZn^i#>R zi)aK0_q>QH7wC3fYbp%!Td+oqSP_@Kq%{-?8UfhHg#+I)mvG+&>C{W8Bj5*@P^Uo8 z%NXT>{VyX2z`d7|A>gCSD12b#6^Wxw+7P#{hTb zDh4>)XIc+QRN&E{X%+dn&(K<+dHyr>H(=|}F{%KOgAjh=bF^gy;CxCsc_f{lkNwV}uFa z_;VAZuHp6*;Yrs}7Qmuw$U6`ob#hDK_ddsS)nV7QdQ2XPCx`yy>#l2!Na@OT3@bpt zuTikT&R?Tv1Lu8>0t0^dH9E_<3|{sI5(OsQzyn&~lpAPv_+M^3bWbG={RW)@*#8?; zFmT^DXga{#-(Z3O#@s{&0Sj-Uz=7Z21V7K<9d2o(**rrusie=*r1Edzj@svzR@oza zaKq&WRG!~L{(*_NCGy)^Qwm?at-awvQH{=@bGLt32%mOGO5VMLAq*PN?x2=|@ps{D zyY76|U9Asmhba^7cQhsD`wJ4wy^DGd|5jt9(&}5xvcQ6GF=_$teT)19!@olV2Cn%| zn!5iT8ZN>uzK2u5x!)t)GJ#$=2n_fEy&K{5A7BS~_y^bp>OV>x{3B*)gg^NaGcB;) zPnd*&YkrdYfB%G0u4MumVifS_aYzU|`lgtuZMazK4MdsQr!s7ufrE^flmy z-_gE+KbTnW4-^H$&OfB#i+`9|zc2L%+{eHJdC`3|383Et)CMs9fwaH>0g4Xc7Y}4n zwSOq%FMKG|x$+Q24|%yqXkx&@k7UkIK0*dl`|^5^aH_K9pISW%4E+=B6S)0Pv@hV_ zf5LfS`@fJlaK&F}@4!#~Lc0UjdyD}HIN>om3-G3G8$z-PGYD+vS3NIXzRUq|7z zvierSr)BjWOze4IOat{|{<54ti${3qJ|vCu(BC5b&O_fqxWH3iLs-j8f1B`AFMS)~ z1c$zYP-psj!grXyi7-{uIpHswzL9XDF6}h(*59P?S#NzU;Se8v1EJklUo5>jLEfAo zZzl5qKRtk?k$(CT!eT$^MgMZr`rqaBRm2zg>&s;9OBDMOcRCQ8zGmT$ZT>=~C>Rf(TSrgw95!SmKHmg!!)p3qQsdS1Ov0zt^lYi_PwM`BV>LaA z2iMTO$_V{4)%9%BYgj|iB3xcWH-Lq&=~*&bb&6J$l7O?d&O#0HRrc^&v6YUv%vjEehUSgR znnbyWpf^eJcUhK{@2Ds9c)XsTL58Z-*M}3%uWuzgn4%1p$@+%NWD~<>?V(CLllIMU zeISmGL`UfHUi8Tb%ykpKFbkJKk4bTLwp2@UlL z2o*Kd2LY-#(qjQIi34qo^bYvq#7B+vC@=a}HOw#h5+|8pzCmL>5~9q;dRxHy#whZn z0A99&@Lp@g3|({l*po1^f7yPE6c zHSu|e9aIWCig-vjy?SADy&j+30^l1|O*3$c5TcdJ?jk9FqEH&yHaqM(im>?wgoqK|MfkgLUpcch&n7R_KN< z1)SauqaX0=Zs=0L=VsSX!~06T`F%0(ApA>TX}43l#2x7< z1@NBzWc=)YdLL$ffdT%Wk^VmDr$>@j_5OMf!pZ$nGeYYUGdSCxh1nRmJqy_e>I0?T=z%CMgwG9>e1kzK zMuZm(lKOuP(g!i|RfHFmffv%3JA?H)6-Nz>7?+ooha3pG8_w?;xC1_K9WVrpVST#ug{qHCmcZHRQG7h+_1r~I2T45VZ}VW5pJ{cU*d?t{A^t(D}~vZobq_m z2+T_53_Tpz(FQtT9$#;u$K-L(5tz1wLOKpNZXcmX0e&8VyWL^D%}DgEVSL?4y(i$W zk%%yi4;Y2$!}#%07(wwwd9>aeFn+Y&2XIM-YUk)f5L%Lh(RCPqlB4%!;yVew$jx57 z+88~7R~q6~-ewHr@8t?}0b?-C;i>o-bo^ob%P}Hm)L0=~H&&$a_gH-xWCO+tmBZuo zT!d=nVRRqHhveyTIFz|FPj3hKB~Nbxs5)MsMn^Q)jz=Q^{xcr;i@-?}^aX@vCgMI4 zxOyV)JArj4>B|U{%h*E& zwTEAxt>e|(ARH)wbg)yOM0m@ok0b0h6J7wnnW;~du})B|6Fl{GJ&XRn&4;9yXCW`Z z&a?F?glA`?41fu*Oa6n`_3;#LIY-YU+&f24B}6tB(zgJX%*Ble@ZY)mQo@DvupR)` zo{!Z9@X~yJKjG{*q}<=7Z>I23mtH{Fc>!8E5OzZO7Yp<#e3+S6T&UyUE#(lJbB&K$ zqvN0Zn&F_$^o4qTQrNW+-4p1u2)A#*PK(eGoqXpaJ;95$u#Y#j+6yT&8dV&1;B zQm=r?N*rd7!=Ydt|1Vgpw?$;DVC~iVa3&&kqe$I&_*y-V z-(Ia(kZez4dy*-^`s)!T6C0urT7ymqJh?`C_S#xhF~V=G)kjDJL&(4oK5Hv#=khwe zw&&QfIrvHxbULq-F6~^04u^1=^;rD~SH@7BG5qdEBjAz3NpFE^p)Q#b1lpH|tpFB~!`FFObO z-elAO{`F>Ed>J6&+VbUb*(7TrM~8ECad??z|+mu|uB4DkFG9iNG-#4Bw@dj?M0s^g1vmH5T2 zm?436w&6wrxNsY)A9!yYZcKokwoCnO+hw@S4s=oQuv>w5+o8wcTL1%g>iGQ34!x!) zeGmXmuNICFpjM3?_)p2QJ9YYAK=qxt8K`mus$aP~#o6GYIL?Se$k_mch~ajGMpz-E z2cF4-7^Mh0YYZYs5p=E?#27`G7W0S@$AHJ<3L29vLL@Qe6Q?CVCoN2~Y-th7QnUo6C{6+y>~p}$rUbg&r2dPz|JO_Q655hse@!WC4uScFJpn-wxv zNDDg@Ve0QDLL3%;2Ujq#&mx3@16BxUkcIdl2&ardCyx=~uu`Gp#vqO=!Zdk|2z8(s z8YeA6q;bj$iDSqRpH>7NKn8J!2ys^UED_G-#yN`-7A{yJoIe&3E-HeK9K*t8MR-Z# zsv?9*{QU+I;{5QJxI&cc79o7_eC(BV1;x%sI4w8G()zBZ6J2(79m{o{BI{G9tt|VGUQ%@UaMy zhMyG@Cx{{TSA?lwkqB{QH~?2ps8q5TVWF}WGU`Ydsw#paK))Ih;w*4=NrYL1Fi^`1 z;efHwucHV$WDEoK6j9)mOt@l9laWM-1HcV&g*Z(tLZs2m3K`kbKnq3C31aBCQUo0y z2GK?lro|{CoZ^IUG%leMOAHYrjd&|$(2-$?6BKb$5}g!5r-Px>|{{SS!{=Wsv56*NA!2r}R_ z&RIcm&KL3vilB47ATBC`PV$1dtO(QOXGDn8xu4?-8edt2aPqnp66bayzM%-G8Q~T& z>JTnezO@Kp;d?72j_^YKqatqO3dAo&h|{&dO5%5m5C-mBA)MV6`VS>RosdrI!or_Q zh0f=Kc&rH178?Iqgh=Cs6~ccA2=V{naNaBW?nE@Ji=Q&Mf&mYw#Rv;t zR!AJng`6qEjNna#I7RD&D`=Fn2w|YS6*7L7E>u*+Z;}X91f9U8n}AA+F-=w>LLH(- z8r3X9q*22P8QWwzg(+gEBx)&wPT|5pT_VH*+Io_Run4Cx8EFM^8dpSUq=@R0Xrc%@ zeG8M#6k(cdNrX6Y+X`3EXloH7i6|>1&f-EGBM4_L#4;nq5hD)I#^VYq9W6pwNVG!6 zI_W}^A~s4QMG!6O~6dWm=RtlLY$zTgDY5=ZxOs<^L+;nIv8);-w^PI7%r^y5kBa?TYY_ghLTb65fjNxq$jdoN|ismnsz%5g>_5 ziU^iORYinIqPil?yoD*k%uH=Xn3<_}ffga6Jj~ogC>1j|4HaSLrimiV+%#8&53Z1z zR*En)(^e5?W}+1l?38h0iBSiVVI;vKM7?yfLPnz0PgX>VB+?YoRT4cE(NhwA6wy}_ z{fTgjL6k(=oD8fv4lp@S@a}{BxJB|qJNVK>KpJ*{6vy-im zF$GufV!9$`NMe>EW=mqOBIZfLr3gB94I7ITVH#a32^xP)tIL#%X?2AnOsgx2Q0JLp zb*)7R$JbjSV*{=reoGOXC9zcz+a$4*>R+1NC7C^n*ei(xig;HNhZS)|67MVGm?Vl6 zaZ(Z=DB`pv&RB%gI4hZR7Gs>3#6?A1lEhU-d?tx674elMzE;EyN!(JzZApBqi0>rf z{82G665-EhEH zR*hMTWfWnSqK6{PLUbs?EJR%qW+D12LKdRa@K=mkiWL=MmST`1%u=kZ2(uJJh!BUs zLve*dtYHzNVTM^Dqox$sQG~OuWWp5_A&G{HpmXIg*;EnDB+*h4tt8P_5$z-qqlosB zh*v}hNpx~5CQ&lUib#<}nj*SNqK6{P%=T7R>|dxj#+?2S@{nY~;^nAsbr2s3vR6k+DhIax7g_NEcx)dfG(aRtw2T7;;}*;dGS zU5e)^V!k96C}N=`mMFrsSfGg4sr-?~a>bZNxFSp=tBIg9{Kgs?WxYiRw>DZKW0MrW zt%xm>*sh2jlGsgzv$V;*O2ssCKoO>qLy9ns93^5a9mRMLSIEh6ix6%VSs_b&iU@Ij z{{x}#G(NHz5#g*AGCme^OX4d<%p4I$#S5%?J@iEN7yWjewN86%}QM-jP_7^jFlNlaA4BtbZhsfw8f74e277AnH@bBQ8M&k7V_dbV5=bpL0%#+8b6%~-7n)3bGoFg@F-2-CC8iZDIf zN`yxuezxHXMY_`>L<#N|nHBPPq>Mys)+X_aa<86BvGu0Qo>B!fLFdez62-6Yg9by9e;pZ-{ zkiG9MLKM)CR>=5CihotaZ<6>!5%(qWND+TZ;%`Mfk;K1>ct+)qL|-W8r6g>ZEVtZo z1r56*JS5>z1e1ifBFvolDZ=!z(t75a(=h%`meCoDkpPy~Iy0z@B0^p!+^MVL9sRD|jKAVsvI z@`sV3iZPwfR)p#NNJW^==P1JTeXJr(-^VM$^nH>dOy8$oqUR5y)J^ASkV*)hKy=~? zp3SxhQ4MpfkTF+^-%x~05{neESQ7b)FfG2R2(m%*PoZK=BdZi)8d*z(_+rL7Tp`Lv zix6(TWrd8*QoL0W+a$455xXR@$0U${`UnS19#AUpO5(60j!5EtMI4hvks?k?;sZsT zmc$uFoR!2mMaY~ujZYP0I)7Oart_aE!gT&iMVP){SA^;NH;OQQzpV(<_irUZ{oi!{ z2c=><|Fa@Y=YJ!Dz93@U!xhTxzD0;?cxZ);M^gM)5r0eKsUrTB#B*vC(&P)txZ&Fh zlCa?lX_QrjT@qf3a7aQ|gtsL86j4qR6%;`q5`obmi*Op1BvZv=th|LP!puz#MVPs% zsR%PSbrfM{roJM~%rsDhnHgsz#hAHist7YTEfitqrnMr>+_Y1KnVA?O#8*k$;|lqW zw+K;D30BDH=#=u#ib;}07e%B>qMIVROQM$|=*uTaBV7^wB$1(rOi2tBx9Rn2tYF#udu!ks{18d#nhv%>Ge?S!U0OP+yRNjhCYR%Wu>m=yt`D+i(SSF4j0P#S1V+6lj5F==p~81ilA@bz`y`SWJqG5A_hrfs6{x9VUjT{ z#uy=q(TXtL8lwo)kvv71j!aa9>BtmCn2t@o7C{+kvd^jBCRqYzhg|F=ppt8oQlog&stVv{1?lEfB8m}zWR z1X+cRU5YS`?ootkbUzVJ;izf#ATj0_frOEx79l);-wNS_K|*}u|10ax1AHvkK7iY^ zjGv`!!iY*9SKp=8U_4^a}%6gkw?$YG2~los2BLqsGY z92{z@_qy)yb$?&I??2Bx_vgNz>t3GcH@_J(u2FDxezE}DJ-GNCz7_05_osy2fY0~o z`yVR>$+W*>$kzxtK(H}#2$uB-!LlABX!#*YdV*j{PbqXAE{E_mLe6?|Ge75B!H?*^ zK)49FOwejUGR8H+b-+!+EkG{eH$WaKOcP=ndF51+6p#;qf`Gz=B7hh|aX?8zDZpKX zGJx`g3V=$4)4KmMZal@-Ta{qztwFH$)*{$?>kw?cbqTiK`UG2U!~OdH=k9~8w=qL( zy-f+W-sS{bZwrF0w-v$G+eTsJ5IMA!Gg)qX56Ok}_4kBt28rnJMCc6YO6UgYL9mp) z36|q2g5^jeSdIY-VeQUx94MzUkz^GG_YelY6{Mnj7(t6RNqib%6ksgDGL9!$j^_!; z5z4Qj+Mt0Yc|pNdSDGqkGR$-jZdxz;R`3$KXAx!t<`G^2EF>%fEGC3YAj>FPu1N-6 zL3k6eim)1xPIw!zj_@vE17RZ|gYW@hlUu!8>_?C-46)U3BiMRBCfIsEA=r9%6KuVo z6KuI(dI$qs?>;Yqt@j|o*82^?)_as->pf1e^`0cydQTHgxB|FFxDL2UxCO{1{07J)1)4Bs-cU|u&;pc#fWicuRxyH2Bto!>lp@$f z?jqPk$`NcLu?O`1$E`lE^vOix7-ADiP^hJE6;%*X-Gkeon!e?`Yb&gMQV#bZ{yq;b zzMgMcxBUE5Ww}YuEzY^WTj;DTu$+y&EpE0}@q znS_@Ca|m+*^9c(8uM(pA{K=%2QeH#I>x4G|D+zA_))2J*nB+(&*u>WoY^v)CHr0)K z|FKw`YX(DXu9<|WoXIeo2{zTO1e?b(kf^&uOAp<6FpC`nO!8<%q|mbX8$4B%x(~D zX1543Gxz;xF2$zyhk~n#mPcxV$;|T02M6vUEa+Q7A#@iZ6a^F~L;$4-r2%CC`uQ&x zt1rh88#I<+!^9D6m;{0iQ;lH5)KnPNPY!p>nXKd<4{jy*hQ8_h>nW7b*WdlPpn(T> z!GpdPG(vY1LQ_C(H(?K8FCqK_ z@-<~2;2_};;4t9`;27aJ;3VNY!1n~(^&bef&F9_g&)pc?=Zg%neZEYvef|%@_W1_E z_W2gU_Boee+x&-zFtB~jCne-?Cv2Y!5^SFf6KtQ05p16$1l#9Q1l#7j2)4~(Ig0Ib zEW!3Uj$r$opwOw89ID8fJj~TSxEEbb-wN(V_dSF;u{13)7}V?a}a4ceSw z!?YmSFs%sn{a`g}h1_23SlO30O)P4Om7P z2Y8)evv^a%)j)g>5vx4l|39tq&0rGx(+N`m?+~T|))8g^))Qs|HW0M%qTI9h2=f3L zdjB!61&|LJ@+x2xVF_R}VHscx;SE3*VI?4&up00&Aw7ibq^t$(BCK~XrdF_`Azvk_|aX*a65P>;fDn>;W7l>;)VnXq`wI=3Bykz)1ty z|3i>d46$eAj6$ZAO$m-5;+zNfET8wS;263u5KaIt5l#Uv6V3pxy3apujB}7{4EYIg zgK!COlW+y_3*j0dmtYhBLm{u!V+r!)xb4U<9~>lyTJEBtZ~Fei3h}!1BDf&NgIjvU zw|sXgg)3SLq%`8ocyRIMe9L#oD!59E;jfr;oELXNyl({wawapZMyL+BoA5gl)F$MW z3Vm`(9YO)XeS|vz^#nppqbQ_4Ly7|$5K00bBxvPK8KyCzET9RY0-zb85}-LDJ_}!e zKSI&Mnv%68p$4E8p%$PuL91-aC2a|H0qqF&0gn?J0upod^N+g^jUgQw(iG5{&>YZ( z&;rnnp!GRrBHamX06huq0KExMgpj_Jj(~oICjm(WE!`=@^e1SwPJw}h-hjb`rvNF0 zBtUA8zW=!m(E6Q{WGF)h1BMgqNlhczqc}!E%XtQ=xa3(6?pdDTTfs1NKTjB$h4=qS zl+g&8Oc)1vfiM9ujW7`~oiG{jB4H|ECc)-8TObUyQfM#(A@ei@r9)*e=KEGK6Wt35 z79Uk`WijU89vmrBHLf|e^4_>7PP*lQrKf4g;Gskl;_M-j5$gS(dpeJePQ?i|8N zz+u8^z)`|kz%jy)fN$OF&kcG3a*`oG15OdH0=_3)2b?9`1e_!M3OG;r9dLmV=H2Et z=n|y>;4MG-wCA0vP zCumVui3npUZ6K8h?EsYtTH{r&Ng#9tR3$tKs7~kxs7cVeuacvdfjs}cA@?xkDZssi zBtTt)R)m!#_Y(#K9v}pOhJ>MjMg+Xd!k~$YR*MZrBIF?t?sfODZv~^#-GVR<@F-yd z;4#8PKpVnjz+VaBR7iV@%_3336HvrENRssePRs#kR(gDeYwcA2B*MPDfAwvio0mBFxfDwdD zKpJ5)U^HPXU@RdU@a#AG^_Sb^9gqnO*#&r>um>=Suop0ypw)0?<6j`yo%_4O^m1}I zfQT18;O7rBeKW{G|1820z#PIcz&yeUz1S z@DSi6;Ss~rna~|@mCy@tjnEfx zgYY!qCZT@_`GqnFkV{Ab{7x7G$aC0l@^C;tLK>g|VGN)U!R||u!}|QCmy<(L>61HA zTtgJxohsp5zPq%-a*dyelw~})_;S7#Oh$JF!c;&-!gL2=5J!0lA@PJ+fGUK!fNF&K zfEt8FfV&Bc0ksLQ0qOus{qIuhsz?#yOL-&ZLzGdL4QT+Cu9dj(LBeW4V?sKh31Kau z89_@dOVZ|qjeti884kjrB_$Iftq7X|tqEHJZ3)?cc7z>(#|gUtiG)3XjsSfu_Ch){ z?8C893VUcI3y5aZCV^#vVOym zWWW(ZD&XIQVSwWVEtV}gP7t(8w!n7;Es!m6nlNFzeEtzRLz#$>9|)5HKN6+_ej;e) zY{_wv@Dku>!YsfQg5An%hh_hzDz@C=c?kKhhA6n3d&{?i1?c{jpoO+&(BBA_AkPs= z@TMdPmLej*2bZy+Zw1TI9o|9F;@Xn32*EPMC_E7>hgFCu;lZUWKfF7Af_vtm-lj!$?dsekIgVFO0VH~GUQ&4ba(#Uf>!x$}n+R%B3G z($In9hNq=kOig%1FUQ}^Nf|Ows=&L8+D3;W^V-q4m`Hh?-y3Zf6RCEei>ZV}rADNs z3{6TKpD<|5FjvLhul8@~mp|P0XiSCb?veyhiJ>Xa4jl0RE@&U!9TSPeKs}>B#rVl| zipCU=REAfJ-d{XYrn1YHh-^i4B}r*%N#kuH4@CPHk5of^pUhdsBduccZR-%-S0OSb zUsi``*Vu^s{Rr1?6#XMM(o?Zl#mFGy&5FP-m2Sf;m4Hvg-G=AmfUPUvhNmk7AC8aA zv7EK#uWA)77|o53G|zWm8y}X=O^Cg+@I9 delta 128704 zcmaI9cUV-{_dT4s_c8;_48=yV19qg?3kq1Hv0(240wN<#iX{z94-zZ7jY%v?OwkxI zrWZ?kkEX{YiZRU;OM21xu652G@bi1V&+8wG zhEw*RGKN`2c@^1`{X3#$R2iLQ{5msS+BF#S<=gXSnCyEM0rl<7j`I9ZNPC~#TqILw zqoC?;)<7BlwGkz6w>O*1l&_2e$7D(W#uy<#HAlky0z|4`YV?r3rACOHTxF)nftTE^ zS(_`JMcEZam4$L>r_pEAUxrIUw;BO5`67}ejWl~01;uhc%#4tRbw+|b@v9NJ>7vou zRZx*vR9D+llHYf zZ7|$2=`(kPbSO2vl6AK+(8wv(1#~!w0#Kt2*&k*0mdAQq=)z-WinF*PudK9Ac06Im zN>+e5!cibQE*O!z8;jdo9@%#apA8$0?g8aXDznR^KGEzXS-+WsoTb^hb+xI|G0Pkh zkXKPxJ5F^=P)=E1c11x+ah>ezZK1c{Gm@m;Kns1GXvRtXXfxF@Q1(r*`kC2vc!eiOC;kWvPxTrNtJoCJ5X*oZ_KrFN{W4wJ`Dk3UmJa8-ogl5MKOd~Zm>r2D{Uq&rLUd)3trm-J+Fh%>J^uPnRJUTCaHVxSddPfHKhM$zk7 zC9&ho0iKGI%z~vWGRqfbm*(jauFo}+rTRTAkyCdXEjP8b;v}t&6=E+=1}1!j8V&Cm z*h?mL3XGL?^~Ox2SFY?Z?RExXtQThIRFsrSX(HB3^%i$`bZE3BxA#QL(H2Icm^+M- z;;S{>VWGKsMJ45lMFr(Ki6yz^Ig;fuXUKgf#$NT=3ooDxe+@(baD6*VOP1Bu7R$=P z2tWRdv0Bn5m;n;=6Zj3*+90zsXR(~@Y(`1gW}~B=TZ{2zGvvq*MqBCL+YGk~a`MXc z#5*_7=qA6;z~I;4YV?zkmoPf#XBcskl#MDLI*Tsv_=q!EjhO0(jP;l!y*t^{QqH`^ z1Y{j)Cou1lHlU{aUqxZXWoBPJMwo5gQtGksPT8ZHd z+lMvNFa}jJ+nFO>_<6JNs_G276 zJYn>-7G#&_>G6hS>16cIWvm696=|}&gBj%LqN_G1(+Wp^;q$O4lU94Zz}Y9skilgo z^8)(y*ag!|b}~ZR?ZqNg%!_%Ny>jcMgUgDQ_9ezZJq1v7H!102hDh!vEaH3qF+4Km zICxohS$<}5b`j>FVoWODKb_Gl&63P~c`?iEAX(pFHnp!sD>zlO6u1;=1vYkEZ?hP4 zLCw7Sjb;LB+OP_}pr%36S+kFtCZXjy*%c5hnF|ZEAs3=#WwzBE#g}ETD6gySCWoJe zIL*j_^hC*VN>T-uW|w7S<@SRs zsn#Hlv@!?EP3KY2k#lCE^!>#Mm0ttRspNHOR(V13A~|vcR`>_A5hZD_k!qAwY`UQgk5JB|7)f zp3Y8kVh)<1cxpq8m7rCEjHk^Zm`L?rOk*WXmeNV^eWi4CSs8L@9ZG|GHC94b zVKJO5G&-o>a)aF$EL9puIoDU5G-N^}+`9~uSTP#Tb5})CDKw@s@(f!?eB_W39_rR2 zprAN6Z+TtqM6K7=rXYU|Hk7ms3*2}SdzR9t-D%Thm1P$%CToM51$kx^+bSISfb3a= zq0+LlCzh#Fc+dd@B{#z^xhWIt0z)%I_Rc{`sqaI-^G~PvfP(y@k^(vU z8kCw2bB&&6MM0s2CqZwkp8*bc@I$3C#mMFs;WN&+9 zu2vDJmIrG;GY?u|VO?#EEa~lyvFd!!7*KI+l~9hPnpSXTc40|zekK^Rboj|wDEkx5 zY^r#zHa%^0mbJH=9_djF`IEHE8%cf_BuBaiY91vM!l5lti<699VDYM-F^31sn%)q$ zFYd&ktQ`+V(CdC6)t9TrfDvf*eJL8JHK065(dsANLFnXkaXbJGG_AlSkA+UzO0)f} zwUAu4Vjf5iuBL`soCi8V?_IJAnzUL5)ej=(p6|g%S7c$N-feKZZP`nm@5EfpODK$U zt%W6pxtA&64KY~CN@Q>AZVm`sP*9vxQdtb+eboh zAHLEYt@{xAN35$nn>uk%#hvBcHBc~`*z41mu!SfKcXgFtzBJ}oS99~EIvMk+KNoN- znRqis(>nnoIrM($Kr!qa)m1N~1bd{kTQD@C7;BI$`V`!r8lTkfHLSqm$|9`9qH^i@ zynCpuUW#%QqpudtV6mel{RiV}M+a#)6XI`J7{t-` zH!w6xdsO?ut-UcLmDXE50Rxga5e+`n6@wHWV-1jr>y1F^W|+;iat%2+*j%`uZL%?X&i5L?5noWg=q>KkL_)Oip1c>y-5mre&bm85r- zFDZlalB~6rcQe2Uqh2stNO?bVp3M>=6U_3ZXfB0{+E=aV31)<@m@hpCz?Puchhliu zr`+DKy4sN3lAQ8HYq6lkuuZjOj@6=hNBf%7UB$UdaLL*_BQ*$eDYpc6gKn~8y4g-18fJRE_H@awgr%Td zs&9nw-@DTYk`b@K?(v?(a$>?Moh0K9GtR}`SZ>}@rGe2F(n;=00wYu=g{)Ul$@as@ zgBKZ7w4$k6T$_Lm8m4!oY@KZMk-eXQO)5d8LhtH<{#dXH-2;0^_kd-K^2%Vc_zFre zCXGw$VQQ5<(+d%m=8?4#o17jSq5Yq@#h4+xZUcL@_bolNwF8r`mmErh{%ory8P$mM z>;g<;Jt-loHf=Ejodw0%rdM3HingyZ0?_2O4VZaLPeU%Ji?fyN^I~0NDmGvHflTZj&NpA9jY<>uD_g-vMTr&yDj$ija#;h(H3n3y)}PK^BErh z;88se%*oDKl$W`%Sdu$&VNmJFXbY7>>u0|kz1hrINw^Cc|J}@Nq19JPCMg|{2?h0k zh|Dd9q`UtD>I;FAEcg1%>GIDk(B3=((ZubDQIJGtm?D{@u};cYxs@F$Rj*QIl)Lgt zhgZ#+O;4F4O)O10IvXA3*E|9-Xi70rO8s9gF?*EFC(-8(mWBl^CK-Fy6Z6avw6;ud z1{V)TSE-FTY*b@p%4aB6r61GE>cm+z$djL4fytE##j$pp=JT5un=s1dV5B~O*qG~F zM4pJrz)@5DXk5D4&M`pF8_2u#jM2d;E|S&tnA~eVG6Ttd!Q~^RbRkszGvxAWN5ole zYQ4ZF~-Ma*kv#KoS-an71M?v#?-sUZZ}}BN#j}6P6E1L0g`3 zx3;Sb)|q1V+>r+7W>;iqQn=enu~KN;$AbZ=Z7uC04?cw5`Bw{I%6M@jnDM-prppm0 zOAz8-`#3 z|C9u+qkR+>rc!di@&?eL4XY$KH{0f8a|0XoJWAXksec??Z0#~nklgDsr^uYcMzj** zvi%gwRYt(q!mJUjF?NJ|jKKj~iP|w6U31@TFtn^h%Qo$)Wwo~@KA-;>l`&64^-Qt) zn=}FKb9j45)(k6Dj{F%>rzETp3k3Z= zH4yTOMzG5^d&c52dG{x5W)6gdiT-i{gQ6zGozr34PyQ3K8C94hH=cwbEQz-|%T%>VFy%N*SQbe17v3jmU)r|mFMmYSi5TDfZbf2l&;3uD^>#4 zV}ylf`RC@X(6phRjF#Tr%@I~=iKp_pPiL1zUez> zOIjSD9Qt>i^5qHa1lPw04$-2Q0nmlB^XqCmDS7Wo%B(CdShzx|Ub1Z@*g=!#5-Dqo zp|vkK6VOXO_%)zM<7DqByRSp9W3M|$)~Sr2uP4QZ((vSIB90dsc#_O&^MiE zKTPmcE&%&3EGfrQLpQYZcBV}yMsn(rXk{}j^ML=19Gn~|ey!FB41L37PZSmkG=-Ux zc*zKsd!Il98qR?wmi+>*K;xOSvRLiR{QPymWt%eWWs9MRZ14p0a|Rf~);(n+z+c2uB6j31iAD ztwS-KFQ0>wl=F`ON`-VOUW`I4mKCuWagejx6t`>r=*6eFRpR1F@S>XQ}b0I(egZ{7k2!^XGRkdNB zqM5EDuUN8%Lh@n>q***+k&NTm9{IV9i+1(`YF_)l#iCR;B&D}pzas!spDGks(-7&K z2EF&#vqng>@J3x1^QIziAnBG7wsVvA@jA}tURP0er%|XY&^T9$UX}giKE>w;MkEuR_9#-Z) zrB{8p6{aWF)0tOLTn<4F1*W_7x`@p|XvE4?7CV)nSLSkx5py zQP8+wOz|wNsN2}*3da@vCq*Z)mu}t+Tjqo*7_bG~p(~fH#mrVRP-&^%&zWKVHHA5r zBED;Bn}`F$P&VB)VuU(UwAmx95Sg4jjuGR0lQnlMGpKEMp8GXMLbVHe;9$uJ1=nxd zavtvtzOGb^6AK|*VLTYHX`N{W=9E@u=9EB>-`6uRUjB*?4Cf-jA<}N_(O^(i3h4GH z%``4<9Km$MfG#?3v~d(_W$v|mP`y}bGu@0uE3n_4Bn5*Y=$aTwz*;j53rw9T;YctG z^?=>@jAtf{mRV}YYx!7gCeJ(99WbX!_92W3 z#Nb>>F|20V4gtXxD`{h(T*m0#=x2{WuB&2|gt%@H_EPJ6W1sxTSRDGKn~=(XKyWML zANH}8d3jgo>8*xhAQ|Zx=;PlRUBr0EuTq3w1LlnmPSbWLWr4s>zUic)(SD8o>k?1^ zo@!gu6z`v~271Va)!^u8aXZ=nGFS&>Hf%mTF-kfD=}9>!rMCqn=p%a-aG?X17qtF~ zoQ8Rhmed_v%1!ZTisEhW75P`5TA{OR5UTfhl#F}&s)MK{zd#X6{ZDNeddtZav#YFq z!f>NU!E&L+jm6d#>>@_icyOTn66v8o&g-82rp5yh$gOBa_h;O}oaw zA4iX?O$B!mPMm)f=i?yMZ|bseELkXrXByL4`CMHorJXHn4m*WD{99)vIfhAkWl*A| zei7W9YY!XyKd=Ur#j5@psGQL9y5q>ayc{L~Xo?*<=vlO72dn7LrDzk5E+I|r^S$6u z=);QpLdwVUENozq_Bp^2sMfL6!P(v+ShZ!T&{nZm7|L#%tQIkq87cZUz~x`@e_X_h zkI{C&PX7^7wTN=$Ls6fucCFyX!U7WS>Gv(TnE zS6)RXy(ILhALLyx)f89GqLPwwh+lOkMMYPhAC7scB{vNkP^-yVY8p>*$4T71n6K)< zUu}lBhJkPA1Y-qVmu$LGYe%go=CZ{bPob%t6$Z#}L*Se6-+CBHr*sOK^#5$6u=8o$ z`KAV7_1OLqfy-du$Id6;UfXDnTpx!8sceLF%1{PGbwmXo)+JCGP3mgnBz>eO4mDA_ zRNC+0`_Z}J`>Jv0_LvEB?hqJd&_OVqLw(F-8Ga`QKQunD6}8`?_FjFDkRdLfxU=9#{X-*pKaLyc-Wp%&+DZB2WAHhhnI$}@u$_E$`#djB{Vlp;~xd-nj z%O#)YoR*nhtYgUW1!LD-X6}P1&GPJW{O-3p+7d|l1L)7Swl-w4`m}iB-1q+oINL}q>Ev;)h zV>kTU8Q8_zlFzh~;(uqpoHuBg37J;!WXdt)K)YDlY1{sFkpmp!LO7dr`;0F z6D122GYWYeijK0$VD6}sxDZKw_%i7+oC_iqlSY|ma9rL;;@^k9tIkEk&Ow7y`X>j< zsRmk!k63LY==3Ls>Ou{q7zM7eq)fYQPa0aSEiLl1O0<@OV-zJ?$T`bk#R% ze*Rp5>NM#Od!GU?-~I&jPb%*)yhA#3nhw{~r0P@H9F)^p*lq5f%rFZ9n8|86Yj2gI zP-d`zhnY*W%k(L#61dA7lvLFwQCC4xc0NvwR4v~PH=`W=wK1}~5=Z&edIRC?R#8w| zxI*i|#Sem)s$*!sj?hMP36z;c#??Y1T89gFbms6iZ(E#h*){}7}!ize{(XonA&2g9Vo_)#UNppkC(6kki!4tCO1Uy zh}2+W!|1`(&1pO;8s+FpIUglU|Ax{BmzjYEyw+5snymZka8R8=kylFQOBimYII3;( zxa%Rxka7r_MY>UuE7f;G_kvgAl{%Ih(@gCO({xai=+!6ci}DIf8_i*=Be$)?48aN5 zTqh3;z?U(H)5Y8Y_dccADCGmXXlt9s(h3@*znFNXNUK1dGkM8B&!2pe4< z27bf@xC9Q0yyA-5HjE6L{shz6cW4v{_QpvcB_x!USJe4@jA%Pise=ej{wxCIXfV%K zau&(s+AvzH|99V&P*A#}ctM?S8Z)0J)&0$hL4Mj)Su)Y=o8jqCYk-6Gnu%%PJGiObCmNJ=B_H$sWBrg+DnsgVs|=1`c1~)?om=S z+3aO}7%4j@n**J-G(|KK;%b@ST2)r&c4 z!F2IwBeb!$?WJLgnPLoxmXlM=HiE?&(OAmpXr$?_N`WwI>$LdYUw!vKWkmJx*CvH| zx76d*=o9A;oXx;)^1=cmwlU*tS^Y$bo)7t*F%35JS0ZKhG_!{@o{{5}RvcDP;?H6) zThm(#bB&&jJvS^$&P+4A8sj4+a=MvlR7S~|>1KQ9*UY+yKFO+`ZiX5`QF708_&$zc z)`>dcx9Mhcs{k>j`cusH&NIviV|KKp&cHE6TC`j054OYAA{d}DNJtlevoa@|a`b%)VR)2z{)!K1r!J=e3CDppEP z80`Z!WkHmjm}$m?e|ct^X~ut1GGUfE+&P$8jMRH_xFR%jsTK4ee3oXJqpU>;mFhy+ z(A43_qSlg3d^6OVWzUV#vL+v9(R1wHi9#LCt35V#ft7ML-<<92z^dtb zhj7LhRIJe9Kgy0p<_za?mOHmmPWJUQ^=h|B+2%86%990X;&K*~-xzO%B=}6HF)Nx; zX2}{KCUUH7^_h#D2T;G-yvCS)C2O(S+_{nICu=H>^!gf4M#+1N%}nDyI1d$KrM)Wi z3gJNZnyf5_o{XIV{D}%N^Zr2v3v49 zQ!UAlj zQc~hAJKGPK?EvRjY|OyML*x)$#7zwB=}}vB-N!FTX^A=1@u2K2G5Z-~V8UdPaN-FF zQnd_6KC<#gFkU#yIAvlfn$l6%{6virs4DuWs>C2`G2P^HS)}vnA0>`*bGVxx9GU{R;=52DoFd~xlowmBrvCti zryM)fXQa9X%AnJv)KtK1_OGm~(g_9{ZK7pmJqo46m`kUdAmLjOOo|)cYnu3Xgk;^R z<0odPiMGhqr^DUKS~bqhSu){VAnz_V(%P2RPs96h6odujzN%Dr$lW)nOx))(q>HsK&^ z2Z~qmCSGlZI^cNSm>s+YLmX!$^J*LcXWi_EcZ07VzlO@Yx4NN7`_g4!I?4`PxXpmjzNU#13yNI>D~D`pt;?k&ow8&-JAg^tedWNlUH)-+inZ3I*8RuH23~s(S|qPPju*{8Gg{BBlDIyB|I=n^n{Oj#=TLWnzZk zf@F#Yw}=4A`qu3yELk-WZgcH^g3p=1pQf^3 zvmGDEk~J8Or(t|};ahhQ3Jy_~nQydKC8ai+LPCvLn**s5{646<1c#y7qzZyRSh%s! zWbh-D}MDj`Mmcs)RVvX=N-!Xf+b4 zTEG_6+MWg-u|UaUGI%fV$+ciHB`kUnPMboEQhPzFKwR335LX%&p~@Be;I@uDIZ+MC zqB8w!5%vM|*I^#Rudm8aUG$>S%q}V}TF*FGm^#bu^=3=Qc+H?dNVeO(R`WMd)a{RO z$8DN_D#DfxW(x-nBgxWL9ZqjReaBtaRGfnQIYTS1y+HyyUzlCK+b&-@x&82}(cGrj zM{$8nb1cK8=;pOOow%oNOk-;?x5XTBS!>(M%C>gNus^8l4m#zb2+2;vG-i2TeV;)Gyll4> zbb3el_bc#G#?%|`hMR_t2crQA!8lXUghy4`9-c91!V%RQ!$~Ph)}$vd%bdQ(cK<>s zf$6Eb&;{8eRa-GLJt{+abE_F_jIajo z@wk&ovY(q?urtHms9?wSS}3s}coZFC%(JVljDtGsp|S+sYWwLPNVGcWZqr_4I?5B8 zi8S!y$!|N%8AcegQ7l{E{|K_H^g3%j-Vv@l0?`wKl9O~6-7lxvoti3X_h3NbWng#e zSk1_hu#deWBAW{8E7kXdtKOnG!El*)z;N4e3#qcq#%6ogv0p z@atQ_#z+ZjyeT0=t_RO0Ev&SpyZ~2K>;*a8o_aV_(`C<7We*Rrk1aIuqUtFR{rEJY z+HM?j^vlc(y7NF$=a(+Kb9U|yRBUr@m+mr9QN02OBO)Po)5o~C`zHDu@ z*@LR&_XqoCe+XQfn}K~-?Sa5QPKIE6t+jm=^3`E?xc_7;NIczO4_3DR*Ac<7SNFdn z;8GmDVX-Vm2~H*Lz0Av6H$jX9*>>9A6?Ia~3(5qX+-3XwroBJwOcl^Be{E0G-us=P z?3)cHrZyd_C|rWI14mQc!lc@V>~Z(nqjy%VYz_o+e*@A=u_Il{$IvwkH0M%;lE=_L zU7HI2A9KiQJ!MryT%onAIZpQ`sczh2)>Fc1PdpX(+5M3H(7Mww-xUD|Bh8GiP`vlx zEC#oN?aslq7^PtHiY{(IdL1`Q_#0+t?O)jA2{5ORBV@-Rvy-9(H*V0j$fT!m#+;O9 z`Zp*eqh#G%I$oMR^;$-261+f0Im+Y^Qh3xA1zq96%%j*yiI&4pnTw1`;O|eF^Fp}` z?5AVAM^i<1HyCV`zoQ5KAvUMEx~ZDz0spq~n53WcSN^SMQ2A!jvgBL4@&eb{U>W)> zcu2i2%FAQ?MY^aKFp)IIgeOLrqee3R^k)XQ2>;G%2Q-(9{wzWFOZkmDy7DQ8pJ_|u zP3%CQH}i}~B6TmQ5ZoDUVbnyhrMQMgpHv+1g9o6BWImWSyeT_R-2XXfE8~adYeMpRfws|X`@f9)a zkeO;sj^Y?Ebif?&JPbBjhf)3e)ws_Os<8Rw4B37NK5#=`goW3sik-oTu8<1cc+RsU zWktx*4|U7bb>Nd&jU=9C z-=8x^*{R}S#yEg`*|YwG6KUEjNYz12xOwz%_wTFL*yE4W7Y|RWbqAh_l0)yoH{_aE zvGV@5M-@@RaThDQ432tst?VuO!a>?#*ZgIA@=nook^^YeB^y2#h$!Szdl4(xM4H`nvlZ-cUB}D=qa!(T+%q2 zAP=`YAR=0~qV-#t*R}QxVltRb{94LetZ$*Q$UnbE!+#;`Z5Y8~)k12lAAL&TA))K{ zgq|#{xL0`%YVrWP*Y0`;<*l*DRYy{8!#Y-P34a%B7ss4x+~EN-!tsjkVtS4@^Lvi# z*w6e=H}QbXFQw+G*5w-?+mnL@$wku)wOj91OafepbX=nhkV{9PMKzEO%y;u%nl2$i zN{*Tf9981@20iRQ-i4-XG_Qj5LSIb`;(J(hLI}QeSm5ArM-q{80mJo z-J9a{=Z(q0;9j;yb{BSPc4`$8X8fc&p#ZCI#}_!c$NhmYV`8-I_{hw0{MJYd4DM~` z@Sxi3;gOA%xJYsEW2~z$FQ>Hq1eEM3)*E%iRj}Y>JE1fYhZqNurZI*;>j8eEeGw{1 z_I`>bGr1}M!EX56=sxQOp?%z(;-PPxrc_07L3Wm~Y0xF$sv9XMK0|MVON3#r`n@FE z7}J#%Y>MnYhB>lXXCuL%R&n)&=-0Kx$)GPEfqoE{?aYL;bg{b%UNFW3y`x z?=k;=>wZ=LdDusTx7opkuN&S?C(zpQl6D-!IOhb!bL3^Md6tBCxPgK4eZm}$S))Xz zY6nirTNoqNmVJtw&iuOkPslvL3Qs~|!j5&5k#+vLPAcI5w&V#8FkG5z-$>2{q~a%y%_F6y%R3{Fv6 z+tWF&@!1QfEn6!%vsXR~94z5iv(o4vz3Bq-SOgzpyUGir|?o8>{DFd;!K^qeOLsvEVo zELDqa4}FGowEI<7i;Y1_^60mWWY0flptY$ngI51y3zBGShN{nQ`4_4{l9rexxZwk; z^J^c09$I3|go^zQR=0}nf3%~yu|chcEXlfHy1e=(f=Myi@3c6q#aZx7GQTs^pV%i$q;qst1nezDbnc~bS0 z5wP)k%W3?o=1V3oss?X7YdNj?jjf;VutMEe*dFP=A@+2@eNm62kW19AH5`;94ZQBb z5e?B^S-Ogy^(cczHzQ3u1U6t=c-Mv<4X8 z+rktdSefe#zb)f^Y3s5wp<%#ci<2XGk%p9(6qJ{j*c<2fH6O;aBcqLn6vODmYx+sN zR_V7huCt2Z@i{CQ*KmJeV3sTkwxXQ#$xc^a=Aml2 ztr+7&dzVEg)iD2C0=jEm_CCY!-t1Sc9#+bIC++r}<*@>dG4{ei%n`;yJcvY<9Um#d z1$N_dP;n|Z{)?ghPFb%tSHFv_e~o`+XQ*mbl!qHhc0O@xGEwhD&|nX5<=bc#tB&X)sY$<{3l{><@i$$ zMZ-Vr(QA!BdxG5QKXyBT?f;o@bp4&QgWw#@en-jQ-~w9e6WDCTBhjuH+)B3DO#ld4Eeueha2szo@nrb|2pX(vKyFEpUXlI!0 zm_+jlL;_#3gTq^MI5emOJVk(;SaTx>yW7<;H7N=%>v#oMHNBlVf8a#3yIV{O&#&};B4WqI{b zPwa^A*$0v;V&bcf$BgZGY^6$3F0QQ_m&4Ic$N-NEg*fg}M+{Am{@^_Y|K>WG2R%_u zLAdTkS8^UdHxk2fld>$YD6iON@GG^|r7_%FS&AFA_NHg2WZd4AVYFSFd^TsSqn4*4 zD&3W>t#C)CJ{RPDTWM{zbnKIc=BP6s8;mlp&}T|2G9D>w0k@9p6LqEBFsAE?=|#^+ zTSMen8w^n~%NQb=Up5+YSExf6HHdg>ubI)-KBrO?Tr%-bnVZzNE944uDR$s>seRv5BYoslzy6aiOs~6$gxscEG=(@h4&v}yg90{IC zXkquvG(FS9zBYQ>lmYh8BNI2B@OAQLx@aWtA=R7l&W9$KtJywSUjxBykCr&f;NbBk z!!EoR;+4#fsQEprt2Gsmp?K`Fg4FP9GOi`yRl{x&U5D-d@ZU#n;dqw2KQQaDu#_K) zL6nD-aT3~VjMc|@*FF=6m#_a!yeIB6p%!>c#=jc=(TfcAifexP3yZoPEp=})G_3J1 zgbsR%r$J+k6L{u|&IgPlug6(!9c|U{suyKCb+ST@3HFKy#lPZ1X%0-0=Q>#}4K7nM z7;k4RiKq41t4h53xZ&rwY09RHvlTqpCp$Y^%^V}iGg9({q0f~O7k;c=F)}6%k;4R+%Jfhf`L<; zF!i93j8_|jp^hoO=y$U9v+nuq)M$NM7!Oc{8|CUSDpEhukr-t9dC)%2WEHWyOo&HK z9)@tb9b>3+#2blijp6o~f#M&t7d2m3aqyx8&j*#yiXz|vkZ{L5eek0QxFhT5Wi9p0 zS7h8`_G>x6=p!;k#%mfatRhhfYGx7s}tnuJEa6Dd`R){w?6^yKh=i>^dshVVt;Ex<>Yc*yN)5+#ocDl{q!iR_&s|mopMKlHORwD^?F6U zrv&*}$5LGnKF+{rSzFjV#R>QL-qtYV0i3naGe+fvXL>@71bd(r1s6fu*lgs2eNt&Z z9O6GnyIT7dz@^{sSMZtUH+1sH(_nUmTdAXnF>c-af_TwvBrkzr(<<+2(I+> zw`M!0%Z^GrwR((93I|wj!wFg6-^#$jQL(LTe?fI0CKt>g-jl=YtF4R}zh?_6cuvUe z7|8A&>*gyAx|lIzz8hhPioT*-yn8%}hr>E%;PI+{^ShHfSzELI`~I`8ujjfQ!ZHR)(WMvmb_g z)J+&2nj+hWTcc#lFm&|#rYLe|7-mRPN zpeX~tVIwk9JDTxTTd5iWHj6iaN=I6_8%4@%BcP}a)EXuTiH^lKPw!(U+I{zptQ!HQ zqHZhT1=1jSbR;-kiC!{_ig)s2jFS-(I?5UeS50+@>%ZI(W#>|$C#ats5ytzsx;eLC ziA4&Q7f<8r>;?=aF*-$#6POUTczj#HLQbaa#C@w!eu?fiR_T@8`NS7OG7YN^b! zcsniBzMW?G-d~yl+o6GS=}KHry@K8({SZ4$CXB%>d*0SXRDJPwT{t}$5rZ$p`pr`} z>hV)i_;9SdsYweOYu{FIH$B4GXA4gi*?(Kz?@TaLJILWyaH6r+*6r0JJ-B)m4mJ9{ ziD;`LJaQGb$N9D+PUAa1b{E{K6d6UuliPSLa2&Snms zr*MO5yfq@&eVUwm9+M zw)RVjJG3BEWOoMmW|Ha-eD`&Hu9SYh6B!o_A8K9gKeaxv)_%#rpU+i#$tg0fmOJgv zy`hO5qTdtHxy%OBrB@W=WA@r7M9Xwfk?3yPRKLNF8risscSX~!Rww1H<6z^l%QBPp zQ^20H?6FqWDI%puQ=C4I5mGV|bA#^$2IHA-U8Omf6N_y})J!eT5!0_p=jcvhS`XhC z)QOuz8J}vU7#3FvqV_KONkAvb3Fs@T?$jBwXxz!0#BD^5vSA&Tp9+p4YTr z!%LK}XIRahxpWS1qNdokw4scA?PZZ)*w?rz`wf?VW?CzqJs77uUo44twjsmmhHJl8 zYd&Hg5(tM*T5~$9$1>%=US6m3JPAD{d5E_M>b3yN=4=a3ACL3~<1@zoteT`gf5u*J zHl}soNO@^|3*f^9M<>e5EiJ5&G*w{BNSu z$+AxbOX}rkya+UIzHp}Dllv|^3#a9WjVB|F!#L3p-$j?v8??RQA&s-CZsmoo9z>H!rs zTJTOrxINDni#rPse*`jf{n8blEp)q;Q~p(KqbBmT=`iEQ2o@F1|2ZJs)?I^Owav96 z_;7`PcYh6(>nv34UONakj%V!ig%-$P&W*z3K)gOJo3r7x|2xMG zn_0J~n`AjXmb1@`M_5u_l;z>0poF5}JVvSvlyj zE7)UQd568b^DE}kLB9tuagv8l+6Q0+WXjZ8o|cZEU5c>_oS+>T&u_z#f~Oxa73Zayt8v z+NJTOz?RM%ITi4D>Fb_YV}6vJU1-HRZ)2p6vhEX4TWL6|hN>Aza?}e|bz8YJK8p7gXpy<3qKCp&)d#Nq30R=5jq@pr+n z{>1FF&jdi!{ppE9FSm=5)r+v+azR;S^|5Ah_>#}MlkIZ6u#Xp5$yN(wBVp$~*iQZH zZiR#)QSwlM6<5W(p}tadoR616eM^XV4b)dg#G9YKaw6XO^i>e?ey6XJXexh}@`o2Y zeanb=qtmyXXf@FaBHrKhT}{NBo4#v^GDy2Nx(dH;!s|$!%|fmx;w?>I713h;RP%=y zHGM0IMiJdWbei#QB zh=vhuBpP4Eh?@v2NfaVpmGo^U3L@=JBHohpZ6V_INZ(yVv-xv3f71AK4}W+&(zlg} z*CKt}h%Pe4b|PMh^z9&ejp*L!E2_{sM!b(i-hK4lPqcuvokVp+4-oxF^dJ$hKKdR~ zG*;_jB3^j(?IPkeN8fIuCz;1m)n3Bq2kn2q#Y#cOLT~6CDCD`yBY6ABHl3cy+qWJ=w+g}8SfRM$5`B}M7&PudyR-! z2z{>uRrxX){051O`12-zZfEdYL}Q8GCUP_DcZhgl(DyD8ZwmU}Bl?u+2vIT7Q6k0@kf;NHK2l5UM<)50-@F3o`-G?)lYC0V>wdn^h-UHU7=L0J?{gwv z@$-E_#A|)NFNvOH=y9U^NIOCFDp3Q`YfN#H2>1Cg|Gpx;l0T>T^Bse~Ci;j;z9BkE z^exdfMBfqJLG(S*wJh#5(FdgcK*Vc#z8{HhBKnEw1;+cC=s}`0L{(#0+*v~2!1J9W z>PU2+=ubxcg@||Ve7_PUGR1F1X{7y5bdK@n%?PBP^ zivRT|yg*_dBVHu>ff4^BdWPr{(Z3A6qBVZn@Y6vwfoTn*zZuUYI!t5{MKWFhQE$d` z5|uF*7t!OORrvx5e_(JBQ5q8m6Ky7P6OCi2hv*b(UZNL?LWp)T!%(7Lj2A|GfdH(s2@=aqI5O?S`zwL*H%PZnK*)IJW(W3I8hYQGepruR}-}+5*E^is26i- zOEjH@v?KB{UVEY&Nb5kfi>PC3&cC-997EzOB*qfeFvB>a5e)4_)Sk4?L|urw5G6B3 zSE5@<>qc}fY2Aq~67?W@mAS+dSwuaFUL&eXAl$=UnKO*9&)$`{KdSCVLuIEH8; z(O9A)qN|9S5sf2yiD*306sDa(G>|BN6bb;}1A-W#4D&MVy^BD0qqM@wo?L?y)v4-dgqE$pMFq>MU zFs8VJ=ylRo6NMA4A?i-FmME3+))9>*Z9P#WX&Z=csUoqC@Ft>-L|chA5naKELNt`L z%|t52okVL%+d?#kmA;E;5371N(OA;%Av(u+TZx7`9=;K6n%;gE9ml^sbQ75K&il{SbPZOPB zyl03mDgO5?;b;<{BWgwTJdsKC0?`6ybAYHTvpGm~n&=SGIL13n!`j}`V(I-T2GRdbzj}U!E zRKr4!5rr`8&xv@=!S@BxPNFY~c&)*AoM;vEJ3;hY1m$l7VLpRT5>00CS40ua`V`Uq zL|+rlU?JZSIho>HqAZ4fN0dwSJ<;C`Jx#Qo=m(-U4E>QPj%EBrRMmm-XTmj%c!uZ< zX=jQ4COStni|9O2e`fOw(H~6lD^WJlZ$!h0ekY10`h#dV(Vs*;iT)xgA^KbKzX-PJ z9};Vs^}j@K5nUi!M0AlTmgqmCCs>(FL<5MfXoH_M40RCoCNhW&B9rJ9#LCK^E0nrJdn z8=_uBZHcOwq8(8bQTsNWf71y&khqxiTbmubBGo)bS}|RqIpE8h~^XB zuJ~Uj;Zr1L5e;MFY@+8#TR@adS`N`&tU@l)>ntvhXd>e+BnlucpD2s8MMU?LRzNg} zx%h}Sk+ztqDv=Qj36qG5h}yG|VxpN$QbM$Wv{Ir@jJJen8biy79w4opXbQ8gAWCJ5 zN}`uZTS`Q)W#2NQUx}8t;ryG=;1wheVK!G26_R!hQ7viL5_M*A*AX2e?Rug_($pX( zlU7aI+f2KX=s^~80}*|TeK!&{XNsGMS|VPR?`FcK48Dcvd!k#3-e=<5h#HvT?TW_G z8ls07x{7EWLu-jVM0XIS60IisfoKiUe5P1S^dWOuN90ocZ$06|ByJ!YLsUn!kagWi zl*4Q`5v?Z@qK_DFGf^CAcM^3b+Co&w(7TA*F_*iEf*E=bQ5S}8Rs8P+iQ7p0lQrB< zbSHy%C`8)5LbE5xagenluMdF=+Rg4%;xRa)q>@mdkxLRth-2;)T(O=s3oL{7$w zCi;S*t%+iY+7Jz7+O}<}{~aQ1M`98awPGY#%c$y3m`!32qH)Y7o@h8xPon88B!TD=CP^gPLzF}` zgD6=c#_L7YkF?%I8;JT41v9_CLlq6OAPbW$0Bze=+SiqAOUf@kGxvbOO=8L=%Z_WW0$%Cu#XaS25lq zq8o?`h^l52`UsaX$zq~6n52-%#rhW!J;r#&L|LSj5cMFflxPHLONizWl@VnUl@sMK z=L(|c%(;@t!?a7=Qvdswa2bi~h?W!WX2calF4C?hDkZvx=vRhbOEj5TUq{q~#a&PI zEko77=8{%T+ECI~68*+pZcr&etMc7Q*oMTLh`KPtn~Ba7-9og0iEkx}A-av|XQsHF zs4rGK~&8Q?z6(Ho@I6SZL4eMG;L_83tF(SD+~M2{2AVA>~$ zg4FrjlY|eG_!QC2jQBLs+4OEjOf_tY}EjqnJG&4`W?-9_|1(J`VAi2h^Z4~be4eMIy& zi~E@9C&v4Ps2$O#M7fOj8PQClV?g$DZhDvy?`nvhxuPW?Tm1$v| z{z_K`#-BZ*!Yoyp!^U6gtG$Z(N7Z@tb%V;~`S5=LxMUn2dZYpZU&$=?n>MLQ@FRH+c z>g(a0-_#e6j%!>ijg#ujR0VFGu3O(v#Z12ExC(n!75GNL@9Jxaiuw3ex}v}HtIAck zN_Q#QSdHuPLtfPiPTCsRjTeK}SBUyr)!w7NFpUxRM~z#3aiZ6_9(-EIBnzo=J@8|c z3ge=xasA$Mp!(vftZ@xI+E;y%0oAywzH>yXPp+^U*Zk3g)E5_jjq7Mpvijn(M|%_d zs4sHk8rO;kbvESTHLe~vC8;p3*cw;RC0!snR*h@p<~Ayftf0o#F1w%l3Q}Q3RmlfJP>n0}$pPw%EUm`X=X@{qMQ&T;di9;QI!tBy zMce-Bi|oF}_4E^A>Wh4+#uc5di>ClUE(y(57`Z$ax;ILFkyX~XhOO;gr9R0JYh3-k zx_FAf8rSMhx`WBDYh0hM=&53oxud&pj8R_{6E&`n?u=Gn2h`WG8{4TbGRhj)&qoKV zFY@pj*Wn#{K*>65TxZ&)9Iqm0o3B1Ee5*%>ti8rno2FY&fl%XmBSDWZWpa(H;6`0F zO6?j~{`-1fP{!1_D%a>?qN0Re+nTD1r?P~hczC$_qQX?;Iu$YIIP?*xatNz&?bwD- zd}XP?uD|H71*&SkF=JI2)utNPBNs1&Pq8it(XY14#m7*F~*L@rLRpo1~vg!V%s6c9E zHLg`5o7ERJvl>_N=Xa_vYG*aBFSgvRzNn$qxH|OOuD<%Huw|$97d5pSSIfaWR2a3j z8rM%L_o**xY$(21f4QGA`1!(&oyS{C+l|&37X{*)x~|fGvo+b^|8sB;{Ew5iS>B+v zN<1=b&2C(1UbzMTQ{1=P;ClY|PRoN(ic5x`+=YjBZrEaVWoSsdH?8@V7I^KToanCvT-XxO9hD5{~gh)sbBx2u*t#%T-YhPPR#Zqdg z)X-W>soF~&)Dl|zzEtgN?Q67EE#>__GiSLMzt88*ADOvxzRxqyJoC)VGs~Gn-)%45 zv18A^JqLH}$O2c|V^kWf-@}bY?e`?p@U1g^r*iz>PeOzGdpObPPRX9)(is20xYLOL zzn;lt|x^vuhKOR3~i zn8|wekz+w=Zy7Xs81G3YSK~d&QCT4$ZqHQd6ACUyJ*^rmw}ji8Wc(O?Z3rhpwc<8hl3T*jjsepBa2!4Sx9e+JLpVxHEknKD!jX7SH>w#k)Al zI(r|Mx(;{Fa+>~Y?fHX^mwx&Wn>~Ziu}Pe{>+q$pLL2ZY%xUZFt{gMm(QNxVdp#!& z7{tB=tIEK>-g>(q8?wQk4|3t1nzrlh#U;E(NJ5dZFv_5?`Nj8)uh|5*AWj9uOgsb=tn z1p-MLhK8-1?FDV+af2r$Ow~{}y!g{pvv-#&g|VMBdjTg6SU^vyLsC_B(6>WK0CrQe zr-M7L2Hj$B$!BiU>2iJo>w^!Uq~VtsU-%(I{1QV5KZA*1Vu;{pAn{9d{CZ!{PgNpO z^yU2QBz}o5njhxGFVO|N{b=TfpQ3x^XG8Hz^q~BVBz}p0k)I{SFVXe!6PNfUx;B2? z6Td`<#m}1Jm*|W5xk>yI-3>qfh+m>R!C_9!-0)NM7yMi(eu@5oA8o}i(d7B*SNswU znjg!=FVR-{+6jKqYy$yJGZ4`H0s&1d5YUVQ0ZkR8*CJ&=1q*((3nl2!qc>)5O zARwTb0Roy5AfUMb0-6LMAnzXmdHo2;-A6!vJ_2&^5s+t(fLwY6?hfZT2bO6l87l%B`w@__ zBA}5S0U0X-8nh9Ru_B;x837q90vd7=kg+15ffNB5D*_rT5svAY(;9#)^Q96#*G50y0(v z+*lEku_7R2ML@=ifQ%IZ87l%ZRs>|M2*_9wkg*~lV?{v5ihzt20U0X-GFAj+tO&?h z5sVHD*`fB`X!)btoTL7ihzt20U0X-GFAj+tO&?h5s|M2*_9wkg+0wv2NOFuWCEYt{=i!c6Egu$O`PjeNtuE z%*#laS{5&YE!~CJV~4T=cac!}Ajb7vS@w#o$UzKLZ4cwBDO`Z^i#^Ha7CavA2kaRT zc$1&=Sk_R^1AZK%v8Z40_{3LEJ3EjIHv}Bn4dC~J_o)5$2$rx139Bd}j4k)Un|TY7 zz&4!1&yP>y8^-F-c)m^$JlQViV;>`dDSPnz>w$6ngH8`wO>hOGmsKG z3PGaI$kFTpB?Jl{3yxs$%s7aI4@I^Oet_(!DB*-4nZFN1ZP`Oe2l?Hk*IQ zUIQ;@b4eB-g61DB2BqsTfO`e2U5D{5th)fqK54ID+bWRPULe1V1Y(?hpdEg}klCNj z9zA>H>>hdD<8*itk@>-&QF%Wc0X$kH%wV#Em6`+l2|G$PbQ6j_ng#0_hM%^EB9lW$ z?RD`LE-u>nlh9PfV|Z9xNEMS8I$1^u@ggC0q+F2YI*x?@L_(iEawHo~32vd+Cwt&_ z-JpaVLW-vqsIpEVp`0KI7%c~}pDAIV$aYi@$Qjuku;`OWO%`;MkHK_4r-Z+F!j~

uZRhX)<@Jsg4&}9Wb z_+U_{j2`k7|MYasF=L1H?b&S@TXxP~U0PC*W#>}jS>}1LPY}YaxNHwY%?6%BLtQDv zc@?LIKnav2h2mxEOZGT?YleQZ@6JMmc14xEbZ0V=tQI8QFW4jTrY%p(6ms90qlDQ0 z6-mjW628BPiz4u?`tu-sEl^i}hXWWal0FcqBEQ-5;EE!S8cV1!7PD2weFEp9F{i)` z`4zW2;MV@vKKVMaULWdG*{a;L02vToxAb3^RPg+0VR#7;gY-T#KG*_yEp z*P#7NLXiuD)nHq?NWw>|NbGz!QMf)liA}zXy2$^D5{!~wn%qUg8Ij;uQ!UFhN@yw)9QP295#(#HsQKB) z_w2=Nw}l-~33A|#a!RNzqzbr?9ynd7sMme;v7JQvu@a74?8topBSeDF1A7WOP;M3J z5A4bKAQF#X{0P8(4*={WxNIHn2xAcs?Zs%udh!|c-0mUxJ`!wJJw%(vjFdlkg$FDc zM$hU$0;H{gtec^Ruyv2Xae?4?qJcAn<#>#QMxt2#njoPiC2SNzL=AT4V&751PlDvg zP<-3_KP1p)45J@Ih~y`*g>9m(PJ4n2c)|s*`%mnZU@F{fAN`0Av$l8&HeU$7=e9U= zv(=RFTqG<$=!|5}Y$TKy8P&;#DiXxQ`4q1t;!m?t3jqQX=jRGy&7XlNuSiG_cLlQ* z&+HSqEAD=fADe*u<-OMwBZu7W6NP`|le=?MjNEc}5sHy#?k+ zMR&KR72RV&v72a+jkh zdG_w=6eH)}oklV8@7?VwMlQbFO)>KF-5*hm9DR)Q_(#6JdnU!m-FGjf7cpK!OJ7)>eMohU}L3U@z>(Zs?%f?|AYdm_bXdf}c!F@CaO zDaB}#;a*QMzNNl{Vti-*48>@&;l9q(_z8r^6s0+b`z6I_+TnH-#y@^&A%tQy`EVDc z7|lQ2r76bu?JHA^W+Coo6ywJU(kaHz9rU3XO-J0rDMm9A_XLX3q{KZNu~FhY!4gX3 zTli}!)`5UOQH-A~I6yI)qqu*i7(WVfgJS%k$P97i$QS#l?jq9|=Ex$9Akwv^m0DaKFYbfFln47vw!9FcrVF@6$fGQ}Pd#axOd z($jA#){H2Apjcaax{G29=;;xP@sl{`DYlWHK)p>-eqQDeitQla2SxF38xi|aj8@g$ zc`3%v=|oeEc7xmr6njpwsuU|vw2dg1Kxu6$M!P@m9u%X6H1`mS@pC$3D8`Duu(!q( z@8ocJsLNj9=1)G)`|E|hCTo384iO)#9P}Mr;2Hne`_8$oHe{t&!c9*9*FJ}xUI`aI z@TGk&lk3Y3*n#imJop}2f!FBho$Tamd+9j}Sp5DkR$H%Wvcf)ICFiy&^dt>V_(?@B z!_v}ZRXSOe+3L$_tj}sWAEt(!0WPxhVi3MYE{H4tIBlFaZD1`qjum}``RVPK_CAiz z(I0#;q>~%d)T>G(Hm$52hA-@aXDoaA3gb}8+mOllpr@0?CCK5J!E#}u!XeBc+~G1t z&R};F4VpGRvD1MT>V*fiSCrVE9=9-y$SojbaXEOA5;k`Q#h-p=SBW zHCV}ha$k7G1#&{ayhu_p)}*#0ot5h^7lvmN;DTx<(URAwzQvPaWScC?4c?Sr z52GUfZc-*rmCM3qHnY285_u{ZBJ(n4@M0JW#@AejD-9W~T}VZX<7y zd~P|G1<10G6opTflF{_cki(?9n56olqG}PKhLnhBo#c|Z0}?-lic;r9pEOh_9b}Sz*I6!uDmO{{yoXflA{UUB>ZFTJ(k1=i$Mx+h7l0pU(tqVm?^%8n zf|oy^4%utB8%n@>%~dFY)@!62TnVGZCsFG+lEc|wx#hCL(k>MjmL@fp^Gb3Ft_Mjf z!Iu1s$!B(P#;b5+V^rZAOQctpNcgN0B#mWh$lEYI@Z@5hw;mZ{X{xw853)hM*N+son7K|Skz zde%RJB99Wp`gD*ZrJwcuvr4c5E>P|eIib}(EF>q1K68P0?yE%Z-}*rBju=wH3UmRZ zqs=ZLMi{8<2S7}WFwkNIh-Gp01hd6uArLoC{8+*WHr_4&l1NqwD$HiJXWnbwt zo#_~FrbpxDLWJ^RU;iTe;EPNa(-9_9PcxPvDb>##Zw;*x8lsg#=@+h{>I}VB2*dY_ zOR`Bv?CVl?8 zoLdUU#dp*j1hNf@X#N-xCD30VCP%PoH$b10($j1{6u|JQO91`M`4}=r-h`!8)#+2b z=((|!{2iTLB|%@oo8D6)C<-YAQ!^@_VXy0iK4_s-$}B0GP1uBsU*hF6NgdM@UO`nHF0zO)ts**om%cfe_~_4{=yYw&a}Jg#9#2b_x0uI{i^E z`jfRBp)4y)E{ZGoxK8$aGx01F1mb1-NQa=mK=X(T#h^rMy|`L+Lpi9EM*KO0WH)^# zwK9J5&e~Z@bW+M-0Lu_C$yS=4i`t1S#ke8w7%b{8J*A{HEGKYEZm;)2Szm54XB>RIzb}9q_eIu%y5bViV569= zn#Cf%CAx@jE@F7kN9k#pkt5LUUhqj{^DaU2X&yWpdhy8L6FeGUhVA1!uf(IaHxExc zL7{lf9MZ-07}M-xV5fC{+(He3Yw-R6A386|_Sw-LOc89k%}k7??w}JJu^&zL2M^KK zS)whB72QJN1Hh~nqOG(>=;}u z>yR8M`IZ)AEbhVNV=QDax&}X%;_^}ahV-cDJ_uhQ9;8xQjB7bc^Kr$toCVaF(1p-a$JNFa5>Z;zq1W@%nqQZKS`9|brdz{&$64sUZXb4P1%&` z=+M?2MF;AOZwJsA?~D_}Z1-arMavL0Nh*zNAj$oS#IxgatW*-y7xFHO$BEIsDAH-P z@I3*m?6Sv1_*XB0rwI&cCdXsuI!Xi@X&#mq)3`v-dV7vk9H09Pmr z?juJ_cXb(V=`!39nHf$V_;4Bac*}56v{BkM!xt_`XF&6MmtGm)29smqnqBW|4B64~ zLKdJE*0Cu1m^30uq8+8K)E$wZQ#oGr?g7!zc0KWcdnj0s?FuY5!@!X10Bs_gHR*^% z+|X$xVrDs92t_-0=r~NFSnhRlMK&cBe5Y`{aET|z3zMi*mG>N6pmp?I7ieKTyPgA% z`V)G-T0Gzat)zI8v>fzg9_#DE*zQ!5{m^-ECYLNGwuN&#VT#_Np6txod$vc5Kkvcs ztS7$?Y)TE;Px39JcOPZ+?gQGP9y+cj+(e~}-d&V2x(g`7RLw-8n(@TdbSkiiN%I8S z!<6cm5k1AM7IIgq4yNPOKx&o|+W7KAxHf(D+=MnSZ%Npj$})xt6K%>e5BvBr)dn}J>i}b@#{veQCLSvVa0vn@ zVM#w@FlLFNWrhDeDi%FQVM;5_vQ}YJ6ES^wjKoJ$br&38>?;iqyQN^!++<;R;Q8^X z2x7q}^o_iEa8()(cz)YB!DF<^0}gi*KKO2uf8tH<*>j*gyw$$;R!K+EU(!A`)-?>3 zgtDDYj9FRcO(=(aOl*Sj0`ft2M_JK;=l%*G@V1carjYAYSvH^<470^qxd?V1P2nyJ z^7NC~0_BW6XO7@U;$bDhd}MTPfz*Z@v4ux)FLRLuVW<`V!S>j-X+C!L*;jIuR4_r9 zY<}#MekFe-)xjB03l# zUDwMyuyl?Pmid)W33lxVw8krXc`qi2T3{RHT#_BzUQ}pofAK-=X@c-^Qa8c*c&&@_ zQWxcg$kXW4!HA1;&Rdid!aC?kf>b?Gs2-NlUrJ3B3QtZH0s!G;!*=@w<}6m+I$Y3A zm#DKYQB#}fPk@NPnkqRS zdCCb5A!Dc{9#e-$Q;lVX`QGZOA%;5hXo!@7&+X_dV3;{~#YeY3U4r@fkeP-~+Log( zt`n>BjT|hE(`6d1%hbOdJM)cPLi$vftwqSkrK!s>F0In3 zzw@Hz(*_?l{acV<(aA4b`Nz4W&I{Z+E$#Zw6%{3GehKs&wNwE10ENZ6`E(s?{YzqPBj!4P!?AZ)Vm@A4j zKIDUBAx4;l^0Z_;h_=Rw%I!^s<>FBG(-&~}x_gjzF-eWNc2OH9;Y828>5XZ&i(OHC z0$HA!n5512;55_Z)NdCy>Cb!U0$u5cEZtXju#Jlhg`CDI zUs{E(_bD?%9K0}jjCqGgFWVLm@*hod!#VR~ z0S({@{$TM~=gotv4h{SAa$`*Zt`(J=hDSqVMMOtT$FuNhORgs@Si-SB@8i!s7kq7; z6LDo_V}*&9FY}hbSdkaIG_MBgk16h*|ve@LoIv2%_ zIs`XfhmYSC3uhc?wrL&`lUjo_`W&p|RA!&9^9f?-=fH9JQ1H&WEjzGh#4QUXQPK!q zv|*NLJ(9@hPsBD4muirQRQd~&jUS@LA5X(g7Lf=;2wD7gT;O(|_Ed3!FEcy>}nk!xL$XBz%D&wzmo;!W{z&_vPqBD|`N`;GD4Mko8Zg->o{fxzS94{bynrR< zm-Dcx`{kKpzxGys?C&NXkT0_fQF4A(;vgQB?up4YmLnqBxr2BxwVdq3<`e|(IoWxq zEID@Qa?Cw#$pH_6EQp`|tbGP@U|qB#>-d?EgMB|5a=bbtr}1s?PGhiFu=7{&b&Qqs zvf*bD!?t%rta|3P9cR~1!cLB`>nB8a$db>>x!C-Rn3i081AilH97frL^f--9m!3c| z_>eINjgp28EP48{jh|ud^p#-s&s(gx-m&QEVm-$5^;yp94{ug5OX~HLev=0o)sL-a z+P*Z8vPzXwgl!J*F89P}n0>?OGZIsTeFB=FZMh_mlIo=}xJ?PH&t-Wsc5?`7R4Kr` z4PcE6sYYhWqEh(@S^HHe6RUKUS@Lf_zUn(_aBLgwV(v}AVQ|G*z2D`XD7N#KRqVgGB>ZUZ zom&v(1Z@b88lNLjOv$I-mglqmHe{cA2V90qu%1VEIG5FTEiQLNdH8|eS@*!^)JwS} zorLgbMefV<*o;>w)T#S&OD6pXUUeSG+t_J}<$8#;I&sq>pH$l-$;J9NRDD>R z*I0R~;Xzkb(Ea&PUhie|b+C9GIsX znMRMN)?t>>wUzRW&eKXgs&T^vyuYFpw{>Of-k^k?C=ewSJX08*td%C4= zd*}%K|AdG8g~d^tUR|_Wm}ju)MN$fD%GWc znk;dV5{<5_Y9#C`yrvjjKVG1OqU+8K2g|6-n2W8Z-154s5)7VMkP=FyI9?EK!}skd zZQoaFLG1D)&P%Og(55&q4k*J}MiKpql)I+rg#KKj1W3azN$P(CwR}WmNw&cjCljCk zjT#~?u<#?7D#fsR!13%o_*TnM(ku&~y;LoVVSwYeS$K5PB%2}WGqxlz1bD*h#i$Le z4Gvcdv9$7P3HBXc3V^<$oEmI>DaFNNHY#PHYR>nW2j3?=Zm?KMePkhgvmE_5y}2S4 zuEj=&qxsCpLUmm$FM5+a^NFV`fYJN&hnQb39q zXz4#3Y-^h4ywF`^VEG@J=-n|&5tyn# zk5Gj)l8ombWxuPJ{gzkRSBtXK3rW(t+T0T6%u-z}b)u4p4K`B%X=QD;VWKirIovMb!vN}s;$h{utC)KV){YwbDG*D@s zvt1p0wok>y00Vn=9W2s+Q5YSNDPahV<<+o820uGz^&H8kq4>=ZyY?d-mi8s<4LgEQu!9f{UNh!;1Oj=ZjWyCn(d*I#vVy+;mHwtmdULwRj zh=kfi{|4h9WNkDhKZ~2|o1YE)TKTa32$ASMNQlGq?e-l;|4K2e92oUc^H7(zuc3J5`Y0q1)a z@U^HCa#~o+Wb|1-f1=i7`;(PaRx<)43>%^POF8R`F5 z%cY`N?7uo_Gsi7(x4KHAbfhl6AF3wVENoysrKR-Df~~8klwyCT8OnNSA-S79y}nWq zO)IJ{nieE@QC~@9G^$m0jFLW{+*ck4>rzZOPK#Vz$8^fRJ-oPOF*dp<)1*ns(N*c>G7jLwiv1C?_ z_#2PX=6Y8Db^m~`4_ns_bI&zf)o^KJJz)>)>#-)EVnAxP4e!^T6>{vY$JTCBi%F+( zz@aR98dqN@1N9)(sP~LAKuX4x8u#a2)3aq)C_2y9cpQ& zwnMox%P9_)(OU1q49+EXss-?RpaK74r<%YzHv>FsIJ$68_~H;r&l1b9bp73A5w>mq}5ehcGHtS^f!!ZaACf-TXfcj*g>6lw`3C7oFYb3P@HaF-g z&eWL#NYmvWVpO;+X1a~9V!#S%Ale;#k7^hzc6WwiXgrqu8|ZECj*>@8Y``+c zsx@p4Snj)+e&L{nfuny@jP&_MRJ(?JQXV?R6_qg6g-0G-Q zlv?YVd_oUCCbXep!zmL ziS+p%DDm=m7#lF%H%ysrO@)YmflgqJ&=6`|C#AVGO&4mi5DIT|Rvln9?{f4jNh-@h zqGiKx4HczEI9e$Bv-R*62t=`9>fH~66sDJqT7vBTcNZnLYU@Huh=8!M}+(jpx@-@;-r zOko8THIHqti5;V;rKCMNc9(_qv~q|~RxVLdNwl-7S{$2rMs~FvYGpQOxG^j})|nWJ zDeF`dutKtAsIEk(T0;tMER-17n9RSPnCOmhsXmtW>!zPtOB%0Z$68p@0&mqY ztv`fmJ@q!N3!<&ldKnJ-gI{&_<_oBQr_SsrUc$m`#xx~{9hwCRuZvtyH0GY0bVUbV z)K$^HuwrNDX2bi!ej%Up16le@wUG2$N4^yDu|lJivW6=OYN{d@@~M@Eta-I<;dJKU z7bF@3T}mL;#8F0?(*EVI#@ni~nPbt%r~iyT^7=R>B!~Mg4?0MA(9P34JZLIyQ7t<_ zy=og}IM6)_(2M@{p@048-vIhIi2e9n)k4i&Tx(9>ngU?&% zl13V{u#d0~uv4#>HEC?nM=HIWZsE32JW2X7jRk(J)|akZ(4`;4iMiqd#onz2O<^Ao zQ~hvBjBN&*2{<1a2Dpu7Plk)}+C-8)8l{=5m*z{((>VQE z=1Wa1BJ%Tb!2!>tzBk^pHp?{;wpo_TZPaE<(N^gm5NRS_e4@5`Ux_c0Hc@NR;V63oBwTO~Ku--YzgJ^;`k!O8ETHe=0a)?p*Tr^sE zE)vs?EkOsG8H>dG@v6M#8KEVhB-o~mSEJY^zZ{|L&rdLT@3AD1b~O_##WQMQ)F{^t zg?y~bd$}3=vKzd3EX|oJybCm)m1^G|o@ronQhq7EUhLG@i*q)oak-ROFb0Pg-LV(q zqbJgevE*nj24cJsMOXe9oe?-waiv?(H+e$=Z6HtQo^VKOHy26=w*x(uGExmrSV5}V zTvX>cw-P0Fw?GfvN?ECk4$9DT>(E?Oq@mGX2KSJus43w_vi^1 zSopA2YH6(GTX^P;|7VpNEM-~v=Bu$bu)_nt&BSB1sgZQkf{tGUKl+*n^s)(sf>T(B zwGc)5&@AunwQ3w*`@g;&JF?5 z82$a%*_alm>9~e1MK4pYB|`&FVeV(xt{=+rQni-s*fTWZK{~d-h2;ja@ei!C%`>ss zQwUe~%l`iRA z&%cG8@Hcu13A?YyKgQCsXYnLoYqokn40**_ z?2Z>{EozbOE@MM}6OXYs8^Zh!Vtf1kZyuOa2bDZ*?>T|NG2b9o^AJ*MpBEV3gmWE6 zO705+Gw?9-{QLrT3-*py5-6_%(P|ae{D@LY+J+xwj*#ZS5hYd9ba^+m7R}8N?5Cqj zoOIa&mpKNa3j)mcUcyYDJ68m!!M^Bmc!M7>+Z9Y*z#4Do1+g{9l@ii_(8DY=BV8S1 z{Cx|!%IAkB^RWWI>th?voFbkig|!iS$~p<_u5QB1oKjM7^xcBve3&P^ z&}p>NZYKP*(`ZYbJ>coy@NQ?6JXi`agxPlnPSbb~I2O)z?w+RpFSJ9Z4ju41csfaz zS^l%Q_-%{HYWP{`;aH^FT=iw_AXlvFu2EHIR@B)@oBijly4R6cMG|-+lWKa)l<*uql)8itR`ciaw zrMALKDzp{Vl6(n{coz%&^(9n!h7Rsvfj!lREDg2sj_l!OC0Lqe@u+Y3oD5GBlR3Fv=xgmciXa) zonfeYhBx#Q)+&U7X~W+zYXGrbhHEaf4I6b(JV^qS@0SfOtl%mJ9ZH*J*uu8JF(%lv zAdrX`WDl3nEJ!{o2u{ysVX?3$@vP4JcU62?dOQy4Wrkpuv^ER#_-+<|sdGEg;WXQg z2e?*}D-Lr6b3y&-BCgdQeIqyC!Zu++u zrV6{F8@-}a*3ob83#0qm(fWJSuu7(&G}<{`^PszfCu&U~U<&*DrIU8%OtxrWZ! zP)FK8yw17hpc*Unu_#I%QmaXBouYet4`uvw2)w3R$l-_8hSDS*Ie{bVv4%&~yt&r2 zH|~21|G@SE{jr&`a0gJ-wMVd~{Jl=JLKkQm|7}jLz>C|-IPYW#!;_7&4myS{+PjuK z7mr~H`j*c6hDTXRF?)_>nQZrzYOB zbd&H(G4&x6IMOiB?MB2B@d_;h1^rWWo3wAN>&SlBf!ml&t`5~UcPQb8(~F4kqz z&ZCE2I~P;LmT)`x6g{0e=V2YPxsGgt%WLTcsAKc6`#wCKT7&nR%tv}A{19KQbaCxP z=2w{I4c4FVg_!~AqRsZ@iDusc_PmIVSbQXERC7yzSkPq))fnli&hL>ocFZEwR4Cg} z1iL^e%#}r`s2~}cgt})o#U%8m$oNzS`@1QQC|p z3mL-QxZDg&lS(IcvI6$&Ggv}%oX5}6i48ae?RCQCMF=uPQ}StnSxRveIj99D1w}iF ze!h?eC3j%Pud1E3`w$*j0~3GfLpV8gabv+BN)oGDR&C6twp2o--X`E)OQo39Q)k$% zlQ6>0okZrpv_j_7O>D{5$b5>9o%j|usEv|e`oY8wYlCU{Ivu;(!a~tzRoChy^bW0f zCPSy(0=9Ae8MSeVH3?QTr01Q4YxsAtT0#0l@W-2=yl7iP;68=2ndM=ea%UDE3im09 z*~%NniCB{4*IAV9RVWM#H`wW5I!y)Z%;d|@L+M{X^kCfn)@WF2qh z%7WN&9$+F17s5_pUxDmpBCi)xyW3`)py`FdZl(ZDGeKO|QAOYpYbNsVB5EqGisT}0 zFp-}2hpHs|BTK>DyEnXDL+CTnYBjWSPJ2zz0>rE5P%%`GlQn51bQfD3&YaR!w9_12 zMYA$YPbz_GDQRN6mQYJe#dU1ax3INi&}(9ES?9Yc2DQ*Y$JVv5p7KA{o7E%UI?O>I z*Q?Vjf06jE0!Bc;hHNHFO`$X?dMKKu~lVVsUF<&8bs5@Xwk7Pd+&HAQNsW7E8` zajoI*4YRNdTVuj7RL2hT#{TzIb+XA_e8X{NjOvu;TU2k_;5flNoobFZ)w8ycW|xKS z(hjBEu4A`)W1F>y6Mw_P?rIP1UDdId1Xfzu)vG5R&3{&qKIKX_EukHGNS&m--9=Z5 z1M$JEefBvAd{=;@#QY5jetyV;;a@Lj!?W+r%d~ zvOB>;;U}Snj8qCq?Jb(CBb9P^{e|;w*_}=%c9uq3k6(U@m673s#(`)xrbc)Wmz12H8<*q?O24$wyxr1?F} z@imw=Zi3Z{Yg_|GDf@~IoZR{Zy zE56-~W+%2NPNLwGuT?!*)K;Z2UYNBc`A10d968Xbxcu9keg$RWimhcGFy zCp)wa+Y@*WP3c>yU|Q`brLL6FQ*=P_Jw=C39JebOlDns&g_YZt@=|vl*2RK()(uL^ z>&DQ`)7F?|ICsJYoM-YGyc3l-N9QvOveMRhxm{S!+iGGK?ZTPq%{peIp4a-G!o8W0 zg~N!KOzfXo@B`25*t2h8ukFTS@*5M|eUH*idZlCkc?;X;XRNOlWG6>roP%1f{j5}x z^1FpvBHThPkioOO5Z@@TXYw4O1{wp0+ExnwWM@62bT=ua zG5aW13B&>!7iNf?9goF!_gEd1sS7g_zv-pVwWV=@ccqDyGu4x^18qYjpg#|IP9=e4r96)XqD?_&jm zil3|AklsBrJc{&*1#VSdDbDhLCcxa8NvxpcWA{E2xy`G970fo{EnaL!k`lnmOc0Ox zy7a$EXq+1+cu4efMKt5ztxWP&!Uo25y?k{hVk9+W|F04>q4qX4(XKMyK5aJ1Bfr|o z$gj|3k>A2(Nc+`fkF18LU^3OvVt|(!qosPig-zD(Eo{=rZB-S>)!zcksgSFW4tBo< zzLg5jvn+7ssv8?J! zUg@k(cKR){sWqUhR~E&?8nBvwbntTv?AgxHSa|bm&n?k(0x-X%T|N3rj+D?xbow~u zoFc{d5t@tb^WJSeKXHn%dLO>6$L7bX-xW4?@mf)08~WD{|Ganc*qiyjVX^<8jXdM6 zn~r_hn$l`>sXiA-2#!6ySZ14p0W!uT6`Oi^$BLG;_`mhey(PMt4gBV`gqm$IL`-t{e{st@|%K}fk0S{+~4&L?_ zxXVrKirlooyKcg4uIb>*Z-M9ij`h&&uVLJf;g8>yqO99|HI>y`j7bnKV49 zqTqu$BeNbmP{A9qfM4ywQc7RbqjRz3Fl^D{4bjEA3xZc&mdwWj!1FNd^K|Gd%H6Op z>z*544>ng!Tq}wvNiF({qBqS0PiVA-$ILSxueNY}dIP-hVW2&Yt^)AnO(k-i(YfPv zFI}raA6SyM>arGEjXj>tf*qgtZWLnvwHkGHUeESGU-sb|I6h|uE^8>3ns~M+xR5C< z>uaq2S6WN0!y@@=Ew;)3@nHSjB;wuNr|WPmAwN6$J^FU!aAO?`hSyqFz){S@Mz4Yn z1p8#RZ#{gVY94 zW01oOEY;{`7I2dW_Y)R6J01H_Ux{2N_G7QoVG?+Yh2)zpc-7fd9aniMv+3l1&k=r8O9*+1$6=m#wO z2g9EJGx2jH1eq~_tpOFby*zN zd}IM__jwl5o&KUOA0()`v23;BCs-xm^%9|$02cU@p>{utCz=3UD^;yzPot0>|+>aAzMTPlpmMb zLN-?SIDAn9h3j>Em|sJ@>-GC_0mXUD5-j}$+)V?M+z3)sI4K^pMru)}ofMBf^M@+A z{(t8BGCGc?LjU*}U@n$)8vSWgt^a8pXv95A*T*|Uwe@GP-iRM3ayoDmL`PRRYaHa` z)cT!O+fs7eO592O<6Skkc$U^4_h^r}sQPG$=g<@Y*#1V<>GB2pxU{3^)fP6XX&6h1 za$r}A_++`zp4JoBUNvy^LgazZFLuqEWWGSBv4WA@hsquiqFA!b@^%k-bXgX zE$N}E@yN4B>Klr%$4*Bzwz!kap(Q_68}VmTv(=w?q~0IuOAZ>n0^b>g)c7W9UY}fS z!7V6Y`CsU_iRZ7+)pa~F{)PHCkBs_Poxvl4uhfk^vhP3jFCN+PM*W;eYTF!}D8k}b zf;Ti=N~@B?v64T#Z+CpkpYdWW?(53S)<@!^;`M(Z-=m6S9DkVI#}T6SaEM z7NYq(!1!8ZW5h?7M$P;a6vCFgd`=Af)$$n0(&$55V}9`2aQlOYV}>8r)%b9ClO&_NRx73om4hmkrLByqTQ zvVfzsjXfKI*Oc-7$_VBzkcVJ33+-28}#yN`HC_S*4k)Bn=$4`qZ+4D|2_3`$@@3be(I@mscEowX{aAXk!=W8Z zam?lE@i!g3P@&p_R3WK$qN?Ml_3X{3t}yM_>N*=d!`B%H?9K8lfmnYLe+k zHRl>^sRsYW&FFBfPfqQ4cL%!cXfdqd z1F#{iUr)54Xog`WpZ0T4hYy}=$K8%kD6HSxv5dl}eH`Bs6~d}4qMyT8yV=jtnw}&N za4a{U_{YQO%M3!l1?;Y2&MeN_JF>!`prP72&8g^!V$;j}`LV@i zVB{S}kcK+pW3kjGjC2RPUxr4vkq!(IopNjWMmf%N6jc^ggHu2cm-X@2%8rIU2-Rzh z<1BJu{Tmrste=6=Xv8>20w=zn0phk(P=`nlV{1h4&O#t2EQGkW#YS81nd+_wm(&X6Z#h4;-R(nC%!vS!q|lbe!gS()TvBL(EZ| z|2pADU2s)iV-A_UEDu{*ClI57CB13l`GQq-XnF1ql^uU$=n#SzJYuNg)tOa>hPrp z(0epHk>rz0>$S{Lo>Cru=P1Y0=DB=D^LqNNW0DD6KhKp*+q8lMH2{y>=v&A90|96` z5c>y5PVN5pB2S@0q_Bryf!mDRP(Y{E=#Jk*6SVeinygAtd*(XF)OXfXBNn)PwV4`B2e6s@oMGCPEsl*Q zgB{zv7${oa?T!T=3<9(#J1klT+F&hh7tce31Z@l`TbzQ9{#uIBO-Z_8h8FwT&^0s)D<8=Rgb@~E>zaw6y*Bzgr#AsR#ijtSEgJV z_78dodtDRl zYvW^bK#?7FAq-uJiy03CwIWZ^G_hpCy(oMtJdhpEh8Oincu`vZXO2J{{o=#e!rDG6 z^Iwgwe%EshEW`hxQTtIIZOxyK3mnC38>lc105s}HY``YidCnJ(?ev3uAr@Q5CuH-# z)PaI6@B5LGUsy)wODbF>N=JeBMzsB&46lk5N1ZaP} zp$Zcz8Za67!G|2gb81f{XI**4qFc7c zpY`4d7cn8giMa(BH%@nkGHBAtaAzjwqfA?rL+^%4G>zLg@I7CQSr{0ce%>i z#WGH~#2(W5YYP(I5-dRbH__R^i#m|)+>QzuUEUH$LuQ!c8?2tBIQ_LX6+KxYDL`{o z_GE>mK$f}_tY#*AutM@u&ML6JvjmH44ud(6>csp7+(GeM3v@RVze2PNjme&IV+yT>^lJjTMq(}GTob2klN#lvc?>@G*}|Dy^J|93 zlmyo*RO{c|iMg^4&;aPoe-$|3j9?>r`vtOyR_OZ{w4{a)6l4x%Z+>tpn_KI21C{{! zs*hi!wx|u7uC0-Ft*vti2V)iys`Y8_>_DO+6^lLn{FKcdsW~^&8l^jDa(ISwJcq;W z4rS?1GytA)zc!fJEa>cPM4*RVoD;kSn9~|{=NjPWqpj&CFt56!3XoG~fGeM1aeRQE ztZnFtK7a(saK>tJy_{{|!)L}o@Y&m&%P%B-JkU?kD)x0Y=4kG!F75~Ac<~Qt?;~re z1E^x58#v3l&L$plMY3B1(de-~L~HL+gPnB{r}oaq4|cx2woq8hF~o_xsyF_I)rccQ zVWRlXDJ__k`^f2QlYY_%ItZX@=^sO%NYaqqG9KyniSs)S!n#X{R%9g9O3$}^>b%C2 zQA34U|C6o|?R2IS!yDLP_7K4`7djo39;&5|L4Qi=lV=EMLG9vL!G<;Y8cA`dTzRxr zpE)ta0kvYak(7S|%7v|*(Is$WQSuXvwfjFu&xQn&K769nX_I#3=9b1_X$reE40&G5 z@Cnt@CxIJ~Q3ss)%;YHT;$$aWBhc`nol4A5Vh4-*)#YHvNBV_oTc@Iz2SUUAX%de> zY7`kXMzI1|Y-d<)#uqdc;&sX_BMZ*u&?uNSxcF#KX9*cFR)&#PtL*YH%J4k=j~$tQ zs@CC48mf@jk8_+ecoxVMx2G?3+O?17QqxDS&`=!PH5#j9m8OGf@K-b}fClNGQTA|* z^%8Q%9lGMvBs}|q3uvs<<Dd-iFR=g>x;B zU_lWcA5#AQUQa3{pIvY#Pbivzfb~-Q+ z=D|v%D?-cEoGu%#lIG3o+!nO_FT^lfW2-a7CVdgc&~=qy>w2N{n7Yl`nkOB9h8mcj zh2a?KL0XaR=s-dDdK!|qPxlMgmhB*43Y?aRlt``kF7&9xj%YQ|cI3azK1%c5AN4kde{)EyXY`o3(Toh;VL1%Ns zxmS?ukP|Bm&uQ&~o2Ei}I9cW_KdfTR!kTI0!^H4;nD*5XY6j24u;qzHZK3M+!F7Zz5+L^HHdNA6-=zj>T`zUM+A*0aj@;1gw>gil254JA5+5Nq$b{Iu(* zXxzcOFrPWXwA3@s5%dFVFI*!|ws?+TQ4Jz+K^X*%VIIC@NY;*AbY8LnOpQT9V`#&{R(DbI9_k`( zAQpOJ9=TjB;5IbS^Qvc z?#(D`uurg7{DB7}ZTds!Dh}d~RMC6RVD|JWywF~cotTb`a#JV3ll?{cu05fyraUc% zglQwQX}~K_-JV{QzS;PEN5!F-KbL-rm4mQ9Fyh+E! zPgv=r*Uqx0Y(J*Bc2gmZE-{c5lU#4;j4zG1^U0_t<#3fl0&h-Na=3hK_>sR3n$r~* z%Iv!o?Y^MwLJyn3m;7|!1L;0&s^WTy(lHgU@;liL?Nf2pJU^g2c z5oZmYbK0=~&HcAHKkRQb^aWvnuOSWBUA zw{=w`#j#q4d!19!3ek~v$&@YF3Ed7$*P9dR8 z+*J2(6xiMW$JuuVM0I>`|5My_r}NV-lmj&zYG!;P2!6WuH6GIdkSrzh!3j8;WjNUs9-; zRfV*s-%yBI6EZii4C$g5LwJhpp=5Fw@Bt?9VL=k#|cVW?~$gDRi0FeS;-V~SSv`A zS$`3@tY)NH&T34dVpb~&0Ytj2as&>Gzi8-+byHpc?}6{MXp<_R`2Rgeoobc%|KH;w zsd6d4I_d>SrKz)CsA@>?zpF>_>G=Cbt`?3#7)Kks+R)eDL5*E4@YJ`qu`AzA{w+r| zIuSls9Qa-sqLbeXLu8mjv}QF|tWPZr(L&Y25FLI`q5i@qoq}H&n)*`c7k6JNr1NcZ z#nCmSDnoRJO<{-%j6!tqX0A9`voJ&_Y!-&-sLjFUqQf@}LlY7)h!h6tJkG)p z9n4u6q7ym`Lv&PUVd$UfGDPh;*ZTLR(9@Sf|GgA?HXVZqnUN8nza)I|Qt1C?6iveG zrI6#LP?8E!ugbNOUkdenDbx!gHzhAsd%q;?^HQkqOQC)*g;HJ$rM?vE|59j&3QL-GBD8&vP z>D=5^yjU5UYSFoBEpd*|$Q&_x*vcir>Erp;DBPT^ig&&0XjqQFh;ijRCI<1Cj;>V4 z#t{BdXV*!G6~Yh2xvpV{?3MPePL3nN{GBLQcgLUu*69&g)Gcne003 z*cZg7c6V)eOb_B4I=Ye_3xfH|R<4eYw&l2$G(=Bwr8xpa`1P)?i&)AyD8bbnXAOkJx&}E)m*bB*x(?y5b+&bLopXE; z#20sQ{bkTxO#==&!w0l-HNmRdu=cKfUe)=9XjeBsnzn8ElIk4)=vRhkw88WEm5zAz ze6*{pydyP;PiT$eiVxv+5?oCj=R){T$*#7J+Ce;_4Kf}X#CLRZ_3?VfD<`@V9acHc z+aOoPg7L>WuIrAbxYh0KI_o$a!WVXM^>9Q5^R)?(KMv-%TDiJ6r^y}5;AwIP(BuxF z$sItGJAfv408Q@jbxHB;^o(&UdC6X`#%`MFA;L^gKodQHCVBu(^Z+^dtFc~8^dM=X z2hcrJwi0m1NwwW9h&J8q=}vi^T%T->@_`It=rO^ z4*|{j068sKH0L8kb3TCPd;rb)0GjgwH0KLT{6Q~Q`|dRNgQdA2KyyEU=6(Rp{Q#Q# z0dj(|XzoXdrhWiT{Q#Q!0X56*K0iG#uB*6IF+&OKC|&{8HD?E_{b=w%S!tlD;iAU+t>OH}$}q>9F0d)AWb-5LM-&rmypevDX#j z>%jM-Q+Je|BiTn>+r*cKhYMU)_@%`T<4D}QuBATo?Lbfoy&2uaQ6=}3h$ zt`)wxXW4hr)tO!*|9jEJOVBGy_!4qt&ox&~A9_9b*_W zFl46Ok&nN2T`!LJK>u8Hh4FgdB12bd;oIuXA6%1*(>sdCpjl@x*O8gOx~}@->H7#} zot~(VjQ-12N#=Br^@su1BgR*c7+yVMboGeA6_!Pk^bF+@BdbRYtR5Oy-Job( z^@w5BBSuw^7*suCO!bH%)gwk!k9czOSTvk^#AxafPfds=EYSGr5yR&~F?xE$;OP-# zCn`wj(8%c#4@({~Ub<0FA{q^s9x+;a#9-+WW2Hw7l^!utdc;79LKFF*CnS&Ps2`Nth)|<~ zq30owcpUPGTOE&h81jf`A&+O-}Hh+N-!xDEn1eV7XMJXPMG4phjK5-h~~Tn&i!9pw*uv$8zg$$}+w zP%($LVOjYDCv!UMQDIHxvz)A%x452hj90FWNS``c6)ByC%ErIKc(c;pp$(uNrhISf z%_=zsQQMnpvTKb);}Jjez*_w zmh42{(gzt%p$rEf<6HdE5MJ?N<-JF?0F$pwz2gHflUjk<#qavC2=7_cnEy}dhx@Yf z&QN0hlckiL=nCRfd|8aMOB=9P_$(L0eYGz$y*EaH@Ka__x-iMPT+DO|I*>nL$X^>x zl;%BLthRF*wbIwfNDb#Fb#eWxOa{?|y#?_*3Y@VpjvSkkd3cnk*FgE!hDB#m6GXy# zM8;Y>zofFQBR$&9pniyi!;5-!3$#M0Y;Mb7SBWkHUAs2a)(o?m}6&W3mygFj=s3c|B-9 zmYF=!2iG^R6o|hdnEoN z*t)IMxB0>K?JhLp>wXwjuB%a{DmNHv|A7m}y8E*rZznZ@6(VEh`9gn&1NW))zm|?& zH}D;2v_Eq3u|IMsMBg3NISdxGjPWBc8^G#0A5sVWOvdgXz^XZeXt=^xSn64*%o2Q4 z0J>LAZ+LbwfZ;z|z2Q&ybO^iy(O<98PX&9Coiv$Q_6S+%EaHb$knujLzy?yd zQAKHQT}3JP4rP6bPY-27yoIADkMqk7kjuNFESe;hDP& z6a<$-xg`3SWqB@oA>S3o{G|M{l%w3jXtPfs-xJ_d(pME8EQMBP1IXfx%B(BxSUF#r z^&||d!Uj9(y{dIbT3BC&b&|w4l6YQ)wI$8ARaqY?_^F65VHJI<+0(Bu^Q#n2tHxr) zRuw;c$Q9DxwKPH6dMJsYGUWFpd>qX!Z#sSCbdE$TR%b0}1%BV^tQlcmb=KZVcQj~j zVYOMkQXS(ucI#y)Aq2&FT5a3_h%F%>SI3YoSZ{u{C6bs`10#hXTzqo`)WmiWQX}hk zYp}N7LK;xO13IBIotQx`VIv4nt;qsOC$lDs19+e&>rD7xP1cSurWWf$xTKa0Us2%- zwOJJLskK?0Oc{U4s$4Pr;xlk~u&N~}-L1`HrBbBG9>-1%r(L|lvBolY$7f?1cVX_D zNt0LV*tu&dbBE0w#req|SWjwau|ZwwPF7vp9sK{a?M}($VgFN@9i$!X2f!zi%lI;mvUWD4=o({q8{r=*eP6wJ>jgQEa}t&EaSp}8ZpGDjNM+LSUQ4r zq6h;cSZl)d5iC|l7*W6%MkB(;Mf5eiKJ&qjh>-d$7BH|r>+7UDU281A)PS|+&+4<% zlE{$+ZMX2X3%n*D(}1NS-bW2sid37yk2gUxdA`_H&mMVd@)?mV&Rdv$r9j?^eig|o zVw=Ukk*p1%MMKuyNuL_5W&A}XI_TaRK4tvvRD>W;wI@g_*|{7X%%3&HPzCJK2)PBW zYs3->e`~}#NQ;~Km?o^A*c4$8+`{120)Dw0O5yj$EZ9|;6u;0I{Tdc3H(?zJGn%jj z!grgX_llSYsbyi2Z=O$J(TF{oB9lVlodSNlCrm$I5H{9^Qg=kg0!O zKzAh=-&(LBtd!o-g0%(w(t^c%SD_-lt1|A_l9go*huT@M!e_Q*@zA{3l0`|)p9^?i z9IKw+8cU*Ew_>FrOl-xX0LxmT@e6B@s3k`PHj34DD2>NDrZ3-g5WOc6HW06GYt|C* zYHQX`Mt`1P3q`r_u#d@SZg9EmCR2r%i(*}+7sXHTfvs5`*03-Mz9ovalTsJX53Gf< zh6%>8SAg+KZJ3WVZt_Y|tPZhQ6CQ=T1>tdkvRA}qzORjKudK3HX*2GYXcqwwkGAcF zNPE~sAnhS1bD~)@z*@K_*U(O*7WwQi}b3yD3cmxy5a3u`nZ>>GU)_g)0$Q1;jy?k z6SjIOPu*)>-u&`CAMb$3!m6R#?@Nw{^TV;Ml#G%3zcKiKvCJhs8z`0E{MpAS%w>F> zXl9G!SRCBF8pk>Sf;+GTX>Sbvj!QLhEcEYTdaL;kZ^YJjU~%+j?As3LAHb#^S$o21 z9a&c=J*rzXcvuhWzF4ELJ0}!aC)U|pD7;c=-B-Ly z-!5<$0FxOBm?D8Y5-?W*e@*p%#HZ^g?3+*6NMnU;|I@ zjrny0-`tyZ0sPvVHO6w~us#@s6L@ML^nUtUZ?!lnCuKbJ)s#$Y$>jGHnyvccUPEZM zQ<^8I;}QC45*A#WnWmq&yxUCRANOVLU^$>4YcKV?D*d$n^fZ!%8}8hG%qe9FO18fr zYw8r%d+`0KtO381Wd@nbB)Qj9DQ=#ELDy?Q8fh?7?fT3*et=xVHet z4q{18S}I}T?-YCDF>}XIJmu0FYu)0Z_1z$r>@Bp`o#YP#(3i_B_bnX5@J@bwItDx7 zJL#;uH?6s_ww>g;lTh~kr<(z^TG}pHA>5&I*=H#FSHes)P?fq6?pDI%gYo)8Fng(b zFdPhF5tK;65R9loaEQnBg`i*vUatw_h>H7k2wEppqlcoY3CVFK**Ou_w09`0E$Ng0 zLzm_O!|)1GL^-2m`^O;4t?T%_F=iOXSs^>CT?(Kz*jNh>kP5NalOR6w6>qlKDw7SsCcoNb^7jYvfJKXRP}t`K(N|z^)dS z`T4))Tas6@kaZz@q+-Qbtf^!kD+aG@Dr0m#Xko;mx6amoI9ZflzLhxPTbMa4R&Fo~ z&(FY_qfp88X4-P{Q<->OaW)G-gO;0kBRm>!7=_4JibQd;6TYGL7>D@jqcKSV_m0MZ zD3tO4-(&~Pig755Rnk?ZsEib$qOnvaj~>y-*hyf{rC1O(k-FstfdPu~_)*kZR+!}t zIcSJvLS=;HOjd)|Do@Kq0RoR_vScSMHL`Fv4q3!_(M%F`B{40FMUv*;EY?K|B9$hM zc@?u+Ey*?(Y<>#JUssrTx1No=2I?Mzr*~f+V7( z+TgLQA}xWPJr++dv=YjS-X%~`~;g2VxzzP>QpPY<2 z1A0ftp&1LkM5$MCJSGhY`i)1{grGMGB53t;DX~Egz`PucY`|MN zthcv_I_#8u)tNW}uQ~-YQl_$G0;^A|$0wl3fiEVYDFNdrV!8w7PQ+6X@XkbOy8a}V zLgB@eSb{V(OBzC<;gAum0p?f(j7Ny^==CC@S9p(!m{VyDuwB@KpD*KKY(e|^6A!m< zPnIS2(PYe;NFrbg?%%Mux8oER?WC_O)~mAMF}2hs!N*frL$Q!|D&}!4=#80*qNWcp z)@G@Qx7#K7r3~yoW*v&@$sCJzk4;5iqmMM!8>i^z2GunUHX&&>4fzJnoQ6sj8vFTx z@vI`ZSLlYQb}M9W$#m*WXN@RQ+H};R5WFh|=wuBffj?}d28`lnWU3smKLhvFLidCe zCC|W}RXLtL0~0KLIkL_YUkdMJSoQu%l&himEp+$yd-tJujArnL(EL1T$2x&DW3AD0q7ZZEwNSj5d@>eo%YxhMUyXnR+|tv zmQ{&*^l;VEy?^ z(#wTXHP9A~`(>dtnOB;HgfO_ZnZ+v5kkOwI&1@SuA3C$n-<~Q6yc+b@HL9?HH+{ai}0O_ z@U7&vTO{1Nh@g3q2rY{6^^5Qgitw>T__!i`+ai3sB7E&4e4XR?+>P9e9M>x%2rm+$ zLJ_`V5x#d3zE2T8tO#GZ2;Zd$-__=kzSXaYAjKAdPb|XsD8g4Q!dEN8#~0xfitr7K z@QsS_{c-JU*ZqJaJzinhcC;*tADoL<@xb7DY%mkwf6rop5<2+)qqy6P$#YcaY4fn% z=ZkqPK*~QN`A0l`A>Qfc{dMUvCc0-pZZfuT>?@Zr1XGe&8>GoOuc zd=t(qFJMD`=u7cPr!|p>&V#{A3s`wZ6h1Z6k8~qoA?qMnZ(_YE@!|eL%|!(LsMMeu z&dYg_5E7{AVOfr{t@&yXzApe>i}(&vcAckDY$@p=Jv8ZN^pi+U~jie>mj0lc@2r7-n<8=4z=kL9=lf?(rv zHq6nuF)xveLIh^!vZ03h>gBOAQlSs!r4O=r5gz8|vSxe} zWK2X(Az2DPk%tEkSPfc%FD5@V>C_BYByX$PqAWB}*~XH+Gn4c#Lme0vl6TF*7KA+_>~95q1gBQ&AgPDM~JBBOC8HR-d2S zh|hSyR-4%90JSy&@hXtxEBW2U#iICo#Y-6Zn{kr`wNjheG{@mOJXfK)g^go!6$2%A zi^tz!?fAtltSV_e+=6d`=W6h@*YJ%HcnWBUg$;X1dynXlX_DDT4AwiKhm`00XBMl? z>$}k);ubUip!D%MQ?l`O0MUT2dW^_uZ(ud|uHv>F1n z)$lwG9PRj$)d>C!B1%jp61Sn$`>=X7I%AY_h)~W)VR@`17t?NGWlc zqo%Y{{S8){l4Hq=E`DbxD@kepv6GE)WH;r5 zcj1F7@cb?eI%>5BB4f#hC{ht|=9UsZy!>wF%a`tE0a9x`B{5!%Jngux;Ns7A!)sw? zA}LIyQKh_0o|ODr4oT1KpEd+lv(iGUdumE%2eGBCurf@WUw6nfq8IQ>#Z{BcJa% zjB*28iu>|L}^x%h<~y+TRwt0}U5*5?Hy(C+>{f*F58 zMrKa`w4t)=AY#CKXeb*axcfbPn z%-4j!4}FRS30u*}v6Y!9q zV5U^~ofLk@;+3QDUMu9EWPwutkmOjj6M76)2YCrs%i$TB!?DT<>5Mta7CMre@FyqP z8edw>1NT2eGx-j-3eF(0%+oA@$GwjkW9lguP!fxN#fl%w%3#XMN}m2T)$S|BYVi|i z(5?_6f-G)4%{Du}Y`|mAuuX(tpJ9ti$|XV+xsHguB!|yFiFvf%++rp9%+q+vyZt^Z z<15tepxN<3XRvIk;soFXHmmKG@3-CsY2V42*sl#^8V-8bVut*{^dDzMp~bQ;`vv0#^u#< z!1##|StwKMmS819_DCU$`Un%O5dA~_rxd?Bw^%9aKZ6|)TJkSGLWcn+oJWUI%bZ|f zyC@YdI!yL?d@w0{0UZW0{hgWnV=8 zW^TpMn;+xyGcC133Tjv;Wq!=Y1_-7b<(qy`hqGv+n{@$4re6OT!zvQE_c5F4SYD5h zz9jM9C6;5z)l<}-9v_uMNrNkB9tD?Kbt(IsWLQXb|1ulyE3`u|pcZFe!bp^J1+!pE zL;m>{WCfUbm1P@hu@z!r#g&)_F83s z75#<09m(kj!$A|=aooLzugFNJ&L?cPV`MacQ(=Qo*+hS}Y6~%Lix`#fVE}pX32V-a zf5ys^dWFx}RL7n+eD!CzLjW3|v(ao1ExP-Z62dXfJK#vv7Z?<&tjlGLPs4y?k2gZ` z3sU?-LFhh1bHc)*vamSQ(qNha5oQMG(cw}6?F_>PG0xbd;A zdmnd)0Ydjj648&{EV4htL^13uGz+9PT}->cfnVe4Ni1SJMumG!JU!v=@oUyf_JjuC zV7L?tCrIIh=r8T~rMoDnb-44DveP8PGB`0cBXUFT_bp~+Bv9#Fw#;#@5#RSMTSM68 zJ2s!G#c_y}$Zvkfrb^;fwD=_k#G8JP zJK*e}nIFZN^)ns~UT@ET`xz4pu;(vWGy>fI3p@e_{>oYrCj5#K4tVib3{1cV_b{&k zXWwH(9Lr<)=08~!ulgHS04(RJzp+k$*MGwrisk&#Z!7`O_IDwh@;l2zh~3A+z2!XP zKI;fLa9>3D_dZMZ3gih7*g(LW5Ad2b5M_VUsLn$l;%izUPk)G6l(_GVO8nkKd>9Yp zbsn+dfV@X+JfOrMY!M*$50(q4{3n|M*z_lR#TnR6+@3`KZA9{ZkMXW7kWYLp;{5WM z^+l-tUjo+ug{6go{Lx=5(VOB}#V+y&j}0tyc*0siu=WWX1bF&{Wdlb4&BjQzQuu43 zU-9hp-{1IZ8_3)K!$tsh{)5}i@U}egUzX+{-c~f?xQoVhVhtUMrABRH-?bl_hQBX!uaCGNWvq)mMgdeT}Ka8!lrGVXn&< zNcg~I^dQ8l5E0(W3>>|Kj96{SBN1L*`FV)Du^oRe7ZVBZg$@0Y+cKqX9-A!qS08 zKf>wN! zWUM3f2{zK4llzN$?;ebLpBoIPA-EH4Op$_eJnyP^c|Ik?=t_dKAx0;{fO05!;E-}g zJmEoveaVv5@MGjIzKl_k*DjAjg=|E56g==!c_WjsO$D?H;He5m24TI5Mk3+Nibg8o z&5A}EVe3$&u{wz_4>ej5UJQjjpsNzH4n)=_5dK)nNFZz$W<(QC4l{ZZUJ64i2iB-; z^mokf%I5-o=XVvodHu&ctiOR1&VF_H@IsS3%(eCsu)Hzz?gy zA~3Y7I>>6l*(7aQ_m@5V4`DXmNIiFV(g$TjDn#eS8NG-!6yj%-~ z2CP@xuzbn1b&)Cnc53powT;ds3#?;|Bb-+UO%eEe9rRmZd|hCrSiYw&Mh>7)J)Sd@o`Clv(dL1T8yfwcwMU@1D)O-nF0i#->g#nkh!T<)m-^v(FnA}?0-P&3v?iD5DWk(r9 zeY^HRhUQX+PI_=K<{t)nZgwl96ffV#C{3{=+o0grb>@rOz&h}&HmF!&^=R}!;Hqde z2%v9_VL8`zMge2UpN;`3F9xj%g5P6M!$7!MpD$~Rf$U@zU_@>OfZMx-4cI3dpf)t*d7H8{q^lpHo&LtF;W71#bU4l?vKUL)vgaO z8HX@%OdQ4-;E^~Z!`ZHn=q-02IZN}F9S{+Ml^u+1DJadyK6aMjl{zB75KQi9OeB2J z5v2{B*a;06c&ige3?TYpeg5_!+!pNbV&D!V&M3h*bT)#eF)S_XjFP<8+2}>ewYx~1 z)kPY=(ZxvdC3md*RP+b_K*Bw`8qt#bgE;ts_4VD18vI6Aqa+#mt*e10Boyf>l}ISh z?dmMcH$HLt@~Pc0tU={SH?%t-i$~i9rpKe0fG6Wo%)3YOQVB*|wtJ))wjwVhmHm}b zQ{ArX(6$2%jYy(+Q{b zFs8`}LHxi8XD~0FgoGg&pM==~7?5lnCHy!Ur3#GeX|y4n*Av|yc&n$ez?V|A+K^k9 zyBjU|_Fm{TkUi~Xj3>Rpxpmxd06sAC2hOQZk?mJYx~S}q;6N`iDa z416~oT@=U$V*mh-8jRZnO3T_ug>id;QH^^IF&dMs*$|9Oz_mj#7yx~T%0#9PMPVa+ ze<%hWVEM!9uA5tB*1`VZkU=9k9%3bbDa-Xf!L}hoez4z|v!IX9JuvM&{<*G3dky zcg{4X5uVMI4n$-bNg|h4*()fq$_D-gd1IEe{W!~*>AX1(*{aUFWusqi%ElChe;|60 zZ8RrDuPM*t#-c$YFmo)1N8s;cjma`r5RV^+&Ng=(h5!g|jl*~Xj2$nntQwDz3*jf@ zkwsvy9E`KTjX4;ofPd$pM*;gxKo)@qC!qBKy(Z$G5!ikrT62jZbR%7nZ<}aTqrioU zXqrI3NoexGA(NmC+%^eK9_W~iJ3Qdb$*6VUACoaF1N%>r{Pij5=Lk=mYUC06O*2*# z?wDq5ah4c@vZ#b(;P7uuS<{WtB)B!*SStn9c#j!)ZhLJ8>KuZ5$}F^H;Cr)-zP^;Al}|Nux4d^*9yuFr8L|jXej#qc$ei^b8B4f>j~dAy z4D*oXdQdpPA3YeMfXx=+<_tJz5!w#$?jmEbj9d09;@(||PWVAzOjXg#4Szm=u~F7h zH=b`?Y$UU~@xtK-q}O07%0Z}9U1C%rm5xh{g@jj^7;iX9bxBhmv(#wD4=+V=LJ+WWg}jMh*22 z;UiYyo)m)HD~x=?iLauE0{?hbh8M3ydqDWtl_)-7!YX5kFBz~>DGL!pFfM+!3IjD{ z74lJwz*YGe%YY6pF^i+f4|U@2b0dQAPi|BvEWg_5f>U0GuQqxB-dSyQb3W?;*KovW zP0VRk))=YaXRa|u0e)Fy^apfYYjg+jwMMEhDO>sEhP$RSl!vS{T0_)(osj}Kuudp? zt;fjJehlxo9^DvtXgww;;J@opkRN99ejCuzfO|Hez<|#;7}c|hOSaU%&F^EyTe;5V;hZUgq+hKDcU&26~#>(C1&RhobO z7KY40+cB0waC*Bm9PtJU9^rLw$guYgJR~4IWCw;J;K?1B*~x(Qkep83iuM|_6F2sd zxp$%V}kr}$a z2h+f&G~Vt_^hMyVH!%hSpT3Dk1su2+Pm{op_DXr=KKP07vV9oDfIseoJz)F&sLXvIB4-F6c>o3>xNrc?9@ya^?w5e?A4Kf|>%0X=fGgiZg1{GV zVGze3MaCXNiv*53WJEddWWyl-^Q$p(c;OJ53j~3OQFXwfhv5nE;{OO9B1RNAu+W0I-$o>75h9o{oq5YB!NlMV3w_t5=->?md~;IN~pIpE2on6ZHV z$1qv}Q;r!e3G)!SKt zA1*-VA$U<>BuPP8-lm^3h-aQaiVz$>AuW_SiPA$j^(3A`fa_1fW8j^WQr_$o?(`6z zcM3TGUOa_%0jzi$)$&$0AAA}U4si8pqc-80(-@EYcgjBl$NP8UtyxF0qzljmCmBi1M|*euKb`&{yF3V z!S3f!*TCK9(5iv{AEJ(dV?M+b8;?Jr{19FOogZP~ipLPJq#U0T>@1ION$3s`eDV>R zGqBZpG-Ke(^XQK8nfVvc!#?ZFlP(||z-1SZ4dC$$DAo>xxc5b)8>3y?c>O--6V(2d z>ljpGE*UProN?(xhK&nP&(2tBL38;<8c+uDZ!RJsV3&_^R{(tHW685isCk5YU&3S$ z^txd*5r+6}SR+O}2$#5QM2ZA06Dz(flefK$J1j`2T}HhCPhUno0)4JvAO{Y(LSw`r zzV8a^6Zq%~3LMzrs>Do%d#)l!x03l^S5ZO0*lQRsfb*~6d55;0V*tB)4fCYq6Qh?T z%J7&^a0Jr$PtZc3dEpcECt#~jjdZVD`8V(ga{N;?Ur=y8p`_fqPF{QA2k&?zdEOUz zQ84N=qYNp{`3y}0c=58=tzQ7XWK>nH^vO1CqiDAN%)jJiy1q=$Du^9?tQh9tdu15aYWz%Nn8 zz^-4SHv{K?iLwK}|0ViL&qQA0CQ=1aKLBxATdFVPByy00(@9x(4q5 z3atou=PS$wz_zzgSHS#RD0|>{x4=K^#5>$JGTF0EqIGrq6s;@wCT^qsZyOc7GloX4 zw4n0rHVOdP<&H#t$7n*~OLvTg-W1j9`YHGNn^oe|?@GyAcQI^1uOqbX-nVgWxRvFxu=<>B8Lj8s~Fg9#Ow_YFoZ;Jt5o1gHwk@piGaiQ?&C#ewsGbUAp-}@P}HZc4b6fkhkFEW7} zzes~kf5q?te%`M#{LQb1TN)1G&tsi9!1$igh!ozwhv5lm{DyHB*!MT|HsGe;(5`^r zE3ErFN&sQ^@6zz4-&Kz9OZ|cOG2B32a33uJ82A8{08D)#?H_o65<~d;16e}t9?JNO zAIfyDK17K_Uh)xI7I5eznc)+UkU{*hdfi9Zf!X2@ym>=l_#bGNz#V^}Spon01I`26 z{fWeZtNuhY2Y&P?nj5h0V{{7O#K-6)z;_?R3E;EGa2^=@myuQ?6{TK=iw{LN{xTZl zKVAHu7_orlC%B1A(a?tY4X1pMi#vB&q#M3^1@85(N(cg3sn zlmDTlAoG2Ok_4tbLk$4;J~PJR+>5a1MmNBi=f+gPPtT3{fUFnBt6oW~ikS=WyVzU` zD#Xk50JeIW$pFME!wrWyjSh71ILu*$4;jT;iFm(2__JYdCR}VvI}QEJS1EkX&s{&?2TS>Y5OXPo?}eBv3FnlP z7+l_*N#WJy&3=S`ls7xl|E{*KV0Iv!TfuBd_)Z10B^{>wX9cq^VdaWuRl*Jx&9-#7 zuBW1j9r7XkLPfJFVX;tiFdcl58;;FN?ocy=0{cSESi;AlW_Q94m88ZM4%6yIFg?8eJi zHGPW<{j*if4AP6NYNivetZG`o{Ay;pj8=uBRpA?|nu+{aHB%gvak-lGCA_-rOI^~c zD}5Ow4!(e`ht;JoeQHSc!!^*J!B?n>`T038a>&6qBnN|6N+GcYyTBnXVkZ@5QbA;6DMOwXhKn%35)H3Uo${LHjW&?-@H8P_B8ylg_ zvBRZAW3v-s_r@q5;J(JFXJGjz<~YLTO^{3AKTXhwfTNq5!wElaYGx6}HACS8cQ-R9 z7=vlc&Q2BB@H zmKKPv&m&rzj7+p@DZPHJrI|_LlC8{%!gMR?{V%Ohxx$NcWaAvQ>Z;^K=?R$`!?VVX z!SR*k<9U*v=a;KUDL10bl4K_=${Z`>Um=YvqH$3Cl4`B9i2Vu4J`qhrWUxycGk{|E zZ-f31e7%i10K0}9(I{!WJdHN{12#mPBLU7BGYv32MuaZMn0*kc+14BcSlCvC?#fWx zb|SQ5}tMt#s_yadqCw-M>7TB-$|&9>0}OuUNV_QtMeZ$o(9o;2E@;DIqFmLzvG>12;y-OMDwj&A6GLa7@mb>j!pZ8M4SW-v4| z;zjlf;)U-O63jkQzc1Y%7k6EKk8dfxq9-Wq^6c@th2TQ*G5ELWAi-t)3 z--nn(m^eb=Ic4Cv^yThQvv%1rgCoZ0q~{<9LhgmlewNosexf6C2!(Jm<3G$CYzVP8 ziM>x!6BFXP{QNM}Af4;Oq$@3kqofgDGu#|O=oo<^9XNV~bnWU0)DXgTM`Ef6E*ojv zu0pn}oTOfdl?v%*&7kokhQ8!nb<(JQl7~0MeO7LDoSU;C!!*fCeg-C|4ZPbZ%t|FK zGaT137CPVtzR^OD*}#29VcHT3sn`j*W0V;U_-PbwcN2K)(db+Ff;8If4fu03A|&vE zV-P)o9~*-aG=W#hH2VT3WSac|mu09{mN^WeWmy6v7r$%sGU|r{G2u7(3ORL3m~=Zcu^UrlH1wu#ZU7P|Y|4z-yjanm3wm zwqdk`6k|mF>v$w-Fu`oh_fN;j1C^hqn{L948L&s;8RjIy^qJ;t5zE?31+|x7nPU#1 zKcEXH=}@;hneevT98Z`$3tj-fnq^Lsv5r%$<5)IsrqjR3`IGd@Y~%&lb&ffe@Z21f z0kGpMl0W^5If240=9)Q#`{tU7gviEXIyhk2Jlu!?|D9(pCtN%q4+Owk3-EXWyu83X zKsaZil$Y|DTPggG$IK(_x(KZt2s>f?vqfe!{b^g-#b!%i+9ZqO$-2(RtTQX{G4~xl ze8yt49x3czjP42aUxM2=VCN-hh{=4{60@T(9Y270)2?&BjfnRk6@RK!YpGcq@}#9^ zoK&m84=pu2(;nNr6=pdevdpaGOWXSqao+X(b!J5@L&CqO?#nZAYma|;o3~}<;U?xD+v^B^W@Z1_SY+$Xm=13+YB~zqi9=_g;<#*PaWhC31 z*xqDHu%*n1!if#hhpa;<1fEzYJ*&1JRgCb$_2wvPU>F$~#%FIw?OfSl*76xQE(=FW zL8t2m>C&zZ=x_)Z--yQ_;mTNwGnRk78HxIDGF^7Qa){57E`nDsP9k;^pPgrh^6qQR z8vN!aGYAh_Fu80KstNdFlg#yq%`$v_Gv+~&)O?COUz(h?#VkYGe2aAKuPtV43O9ZY znZyR}+}F%DgjZgJ!@xRQVMUx9kWW_f`HL;6`NXZJ%fDp??hA(v$;rsV8aNp>h<~}& z6vqgJylyu4r;XsKKCc_%C21@_H3}zOTzcIM&41zwq`$i1J6<>Y8uGLOGQSz8!{wOe zNynQwxc}*CvP`<5?;F?=;)u;DCX<@HZBFcA7PO==1>iUK2YEP^;EX z{Iz9?T_znaP-Pcx2Fe|Q>KDb_Vk7Zz?103MZtR|Gj93sT-;R(2c#$=liNlg97ZOdsBGUU^3xkdYrLCn+yZ9N7tOB2fED@2H` z#&dB6jRiI#((u?JY(f^|#hSoIWH&`vsu|jY3}U$^l*tuDh`qQzf#1`W> zaRmeWZ9*70Xos+KS%?pTaLWj^Ul|eJ)+)3~8N@r9P$rKOq4yy}Sh#41ux(jHxTFc%sSFEOG(nq`L0r>>FuBtDj0myq z_;XxA1jsnxK8k(D+&t%H(%Mhz-f#;|dx-*@Q^r7dvFV zE$jQ9CTN2)^nVwGyC%#i3lE7AyNw^=3M!9nLYRDFhr~W)i2u=q(*KW$CbjYN3|G+j zKWx9D9gGgua@fjlgG*xPpbzHX$rz+98}WFT~lJQ2OJE5W9V8b1w``vI${eiXF0cNdwa~;Z_l55+io{ zx^V>yb8JFbm}`f`9$<*)YeMOJh!9(T7vTyTOKn0JSZ;@~8CZz(B*C{IHWS@q|LedTkk}3k@hMFx{r8Cw`+q;c6*NAy2{Pce&f7t34Hoi? znxOr_h;T_0v;i2z6-_9UpAaFo^L~meXnbK4!pR$UNNn_l_@*Y@D#C4I^k!YCd}9;B z!gqE^?DmED2Tk0;6^NgS5W8@Hk;HE{Aq?ENL)hah^dCxsI$?%n{?ID4j~6B%YeJd) zn+UxT7aITBgh=DL9l~D^2m}9z{d+Iz7b8OK(JhWE81Q!6jIiKqhs5?>$eAWo1V19g zrdxkpL8GKi2m__<5ccs3aam1tmPD{7Xu~eu1eDW^GFg!bz2z2ZRJI9`MpZk6t-B(P z>YAWUyU?$x3EHy@q7D&aYi(UgMA(E|m~3DNv3FNQXsC&3Ni^03?aPJ9rkYSDTM!{O z>VG@@)mBoS?g#5P@s+X})RjaVu|EHPqVZ5*zk(#a--g)VkTY}?ikab+$1kBQmitq{%Vwde)T*1Nun-CT}b_g4Eg?ObmNwc#C10pCQse(>JA{9&5aP9(Q2HB)NUnpQjktn=EjA&X+-irc8?xxP zX+r7mxIp8N*p0hWTG&G>Ls0n4{f+nO9>k<*mWAJksSMcJRO$aYOwL{itQhZ$#?i-T% zN;9`4aaR*xOX53Cs5E}mgtGdJCX~_NG@*<>AVTceeTXag`KK6vi4l(erR7hg{9jEx zmBe#RypV(g`zxi%Vz`1yrzX55;nDfuN)swG zF`6jvmT}q>qjxOBNJpCx_0ri6SzV-lye1MP(L)nSlIW$0-je92i4;i;Ai^yY9VnS} ztwQ^z;l)r*sB}kYLZxeILZv%K6Dr+oO{jFo6JhU}7B}IOY(`{uiXF11;tF2O(8Nqh z%+|ylNzBv4d`WmTLHn{{V~Hk|(dCk$@kd!*p;eUCRhm#%R}-N(Jj3dGn-Gp~v_sY= zTtWPrCbmjqyC&X{#4f6TX>zw@_G)6EBo1ogElIqsi6fGDPZLKaQJ{$vk~po2GmB+=QenJ$uv z*F=IOdT1g^61_B`GTT=ZDtoD#P`MkZ36;Ban{bOQ^vK>&o3T{(MrcB1&(eg--WW}& z>}6|0WpBJDRPH8fLgmgqMKdaU(}`G}gr6C>f@iaALe%9PJ7m2g#q%|>KoW~Iu~-tz zG@&f!Y2pqU+JtaxvmLUwNb&2M*d~b`n%F6cJw&*R zn%t*Vl#zp)P(}`GLK%67h(@%n=v`bPC&z3;xK&_>Z1E`~#LoTGLf>tDU^61ZIXh&1 zDCE`!P0&_hjkno!A<(}YTj96k+m9j$f_yD zbp+wIk1Ifg2(40Isx;I@BS|#XL^DaW)I=*uw9!PgB-&}By(Btlq9d;8`Ll~=l;`o9 zP;nA9K_@F9O0p)DtGzX$TnaElUCz7EzZ{!vMDyXkwux7HdNJxl9wv zvph{G&sIu;?*Ei)T&qaethJg@o^8;C@@%svlxJHtp*-78ggB((4P3$ZT{a;~aF58W zkiRMA`)xVSc@Pl}X@ZVECft_t>w?W#%8^T& zP>x*HgmUClO(;jc(1dd2OHC+8ZfQa};=W6aIJ4nvTp@ek*@P&dAMB9zqZI$5iC-o0 zyC&{S;*lo)ki=h_cp`~^HSv_nABjHK%nM04a2|kks~E1J;nak;BwU(clJL`n%1NLm zl<%cAp?nXzOzlq}bAe>aX%*#sMNKH@!!$vMTp&tSO(@@MXhQj3TNBFndYW)6=j#(A zj*e)6D_Cu06QUZL*deQ_6t~bsOG!j&g3hOafwr1xCy6*sbdW@6fLkU?=T#t1yjDq& zL=R0QNurk~==cgm>8FVlNes}0%E=&2DBp)@q9v6-j11R|ay~;7%K6cnP|jy*Lis*U z6Uz4qnozz^)`aqX+GTqGAWB_1Ka*6NVxOJm#uYr9V-unp=Gq}^o)jLM^gM)6MsqKA5Hu#iD%R(q{-)!@w#FY4qPFP5}I&I!dDY6Ntl}OlSH5Y}OTbL$PZmMcR<)(%vRBmc(LS?3&CRAqXYeHql-B2?sH%&C5 za?@NBDmSe(p>oqk6Dl)piJ+5Etai9Ue&cLHR8&VhWOZ^&c~{MJlSFq-BuXM#6Fnu- zM-zP|k*bOQl1S6UAW00-gmP>66>5LN(N0n&L#rr9Mr%SjlBEgd$T&?XMo@ z)OYD#>UQUEKX(w0eziJagf0Z2)2l3GT-x|%V zl@T^*VxuIsXyP?VY}15FV}~Z_cpn(utqEmxuO^hy14OumqsrCWQVOJ7m2t#pg8fp(HL`rTI@-pu>QW;$^LJMG~KALZ$J! zCY041now51(u6X4M-$5EH$;fzeB9sS66yY6Gs5$q?2z@d6#u`n?mR%pa{U9ieVutj zS!Nh!>`TZY4wCIyODKM1iLs7nG8kJF4{=gLvh*S%;Y?W$nW8zC5s3~JA^eDlB!q)Q zsm^uX-|PM!{eJ(v^W2~NdaiqUo@d@SGhK6ua2arwpap>>!41Mqz-_`Ez+J+xfE-e& zCd4#y%Aq95BVPboGDx5Rp&%fJ5DO?mC<=IhP#jQ-5CI z-l_y!Zw-R2w-&+HTZdrFt#?r0|J-%3^)_ILt+x@u*4u<&>upA`^|mC~dRr?j?ISO3 z4~ za5rJ#TR|$i(+I-=>4cGhF$Bvvj$k=nARtF5zkygy0z$YDvY4_2u#E6FU5_+F0WYG3r=uJ$G03NEAjD&ZR72H_^)HsKE7F5y=|4yho7 zF>{7;D1+vqswN)c4>{__J^M?#2qA zw3nAh5Z}~;i*N2*K?`)ZBD4myBeeetpMN`0o4aASvk0#N<`Cur-XKKv{*y^9qP&Taw+KrC%L(rQ zRuQxWndHbI*u+;8Y^v)BHq{M!{jpe^YbHZ%uA2x^Ig(+r2sYKN1ez)8Y4fNu$B0Ou4!)#0HHg*f0qM8zzxp!&D&HFqIX$bdr}UawIFM z?!m3(!O%B-e{F>?JIc#LIH9fwcf!NI71T#}Lqa1!6T+i_<^;?57ef6*c>dZ@EJ=F> zE8OO${e%ZMi%z~3be1DoRTn~6KzG8^fL?^&fW8hw6o+$3`ZL6`4kB3AAq30%tb&${ z3x>*(Ok}tRH_vq63Pz%P3}GxF98Y;3GLfLyMpC{=urdBhu&gf=EbFTTOFBzobRaLU z$&nm4FPwyMQ%>wSe_{{V}f%kW7Yr0N70U z2(X2)6_8EX0oX_!Q6QwSoKA{1i5y1v+La^K4D9QQ95W`~P@Pd1;T34jQ81 zmeSF;f==juiqHknjnEy?lh6y$hhRhWBS=#B{x^_fSyKp>HC17)zKv+DL0QT$4{n|# zd@D#t_h`Zxz&OHqzyyGH8B9cf24OPb zJ;GGL8p1TdI>L0odV*G7lxy}rVKyLBuRrEB7xE!P-T-VSECgf`76Y~rmIAgBmIJa0 zD*+!9GD65M%4)!F!a4_|s|I^W8xZpuArr8VunF)vAq(&&LF+%to`eS}*^onooq!{R z-GHNny@2C{eSi}LEfgukd_y=0IBg*Ne;9IxA$E_PQ#dcBB!XjzxZuIv%NKnsIDzg< zgj0YkgfoDvgmZxF?)#4$;{xOcLw*F@B3uF7CR_vjOt=BKOR$OmuFys**aSI_xb4U- zUmT=_TJ9pRZ~FcM3Vn6y1#v=*2epGMjQr8$vBWJ3<}6 zV}yEu4oCF+kGl>HARQUf2+*0(1n?B08K5gc3v|jvx)E9fo+h*d^dvkULV8m=0{Rf1 z1SAu*bf*l{pPL#f)O3Q~ilY^@ zoM(`VQ=aqS?&a~m6{Mm21;U7Jc>kYB8HJEZgt34Z3F84%2@?P>5hej%CQJcLC)hk^ z3WR}H3JsSxAXO zmJ=2MRuGl|RuPr~G6?Sg-Xp96tRZNDQd!zM4`HwdvffMZcfk7utyC)KWD>MSslbPX z&4A5>e*m%w+W=b#I{@J}$}UJY;ZwlJ1g%^ugzX2{0!kpXP23?`#0bC{I2V5s;g;m+p8w4$@DsYQX1aO;h zKj3FV3BX-<|GN!{gZ##jGJqUk`|DB;kc&_rkcUtSkdL4hT4iPh2sHqOJcL0lNQ{@D z4j@9P2Pi^l04PRi1bBd;MO|gw5`<=eQUopPDiL8kr8T4sp&g(sL2JCqIf;ahfbxVV z0Tl^d0hI|__f>LKHIVziC!{((PaP@jOOEDRc| zXtmg21VSG1;GVljeJdD+?q-CsfEI-DfWHtX09q3!0ooG6DUkLQn?(l&S7db>B070+ z(|XdkT;*BWi!KB$H7oExgxP@Zgt>qo0wKnD1Ja8j3jxm%76bYcmIC?_mIDS5RsseQ zG5{%r)!Rci*MPDPAEqfOJ9@U=(31U<@G}@Z8t>`O9tcPRMwM>;}9* z*bA6Q*aw(I&}z7{@h=kW%KcTrmA?H75ifhd&mX4yW^e@kGYH23vj`^uvk9jFa|kxZ zd<9pe_ADY6cyRa6B5TR|&!c~_?+<u$*umu!3+Cu!?XSkU{vxK^VM8 z(PF%^e`^RirL?KQIzk@6dP07{`-DP(OhPQ+LqZY2Wx4LC@!1cwz| z?cKVFIO@S=JnmaT{cKskOzH%sAx`*)@Ce{Ep()@Dp#|VOLMy;|LR-KE!efAo?)h^Q zeFAccA)NtN2webI3EcqK2|WNe2)zNf2z>#!3H?LJ&y+!cyM!Tt-w4kFavb%WJPeSF zkPgU07!Alru60rFt04;RO5NvMzPp&hKT65V1f(qP!Nr&KtzZ(m z;|Nm#r3o)N2!jO5D+nn^m;p#4yauR1m;~ zlnPNsSvI6DRJxYq#D@th0SyQlfQE$CfX0M%fF^_ufTn~@2Vu~hvI!wA30Z(vgsp%! zgls@N!cM?rgx!D+guQ@{0KF~tK{_+!3&2x^gMhAtrGV}VS#k1m1klriyGwfeR&Wg6 zeF!H2$sy$wq(9*dU?AZfU@+kVUS$L#x2G`L)ns5^^ zmS7piD`>Ik;0_`tcyLR1>vG+9(LLFB`}nB}b3%P2b4XcTxdW#;@sH#yz7^y~_p5|_ zfSH7XfY%5yfY%B40p=2l0mAu|;*cnz6ks8tG~i7_S-=v4tz?Gm02>L703Wz-i*BM#Ae$IsGtW|JP)c5! zBVwxux0LO^6=ufPluiiQOVDE267f%h*1;CoPk0*e z1)&$<0HF`yD?&fOVSx~9)8g2Y^=pQt0FDt-0sl)#1Dqsiv24k4il9}p1->O{foy@Z zgz-D%`;W*u$^?XbPnZPwfiMN|BS9-?OODHgR{%c|W&o}c>{8x1D*G>0vE|~eJTI@q+RV5EP}B=@_CUEB`=X2c8`GcK`Ta{ttUX#+;i z!>=vYkCrVQDbd)4HAPs#LFvgu2aX+v~f(NLQNNwfJ8-yrw{WI9JIOsu3)YZ}IBt~ZcvFBQ1q;7%1@*7Ag@xjJu aQu#=7bY@bd+8=|?C%Mx%l`bC%bN>fCm0rdG diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index dc558e0c8..f0c186764 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1420,7 +1420,7 @@

Meta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1474,7 +1474,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1551,7 +1551,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index d1c59f4c5..13f957ee9 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1423,7 +1423,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 1045f2323..625ebe87d 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1423,7 +1423,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 38bbe1162..7e4948b7f 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1420,7 +1420,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f768e3e9120>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fed0e085120>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index aa00f39ff..e90109380 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1409,7 +1409,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f76823edf40>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fed01e55f40>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 3a9891474..177eac8bb 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1536,8 +1536,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00df60>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00df00>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcade10>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcaddb0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1574,8 +1574,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dea0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00de40>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcadd50>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcadcf0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1613,8 +1613,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dde0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00dd80>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcadc90>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcadc30>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1651,8 +1651,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dd20>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00dcc0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcadbd0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcadb70>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1690,8 +1690,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dba0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00db40>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcada50>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcad9f0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1728,8 +1728,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dae0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00da80>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcad990>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcad930>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1792,8 +1792,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00dc60>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00dc00>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcadb10>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcadab0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1949,7 +1949,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00da20>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcad8d0>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -2008,8 +2008,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f768e00e020>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f768e00dfc0>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fed0dcaded0>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fed0dcade70>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 3b84c6fe9..ff81eed38 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection", "demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/convnext_to_torch", "demos/examples_and_demos/dinov2_to_paddle", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_tensorflow_to_torch", "demos/examples_and_demos/lstm_torch_to_tensorflow", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection.ipynb", "demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/convnext_to_torch.ipynb", "demos/examples_and_demos/dinov2_to_paddle.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_tensorflow_to_torch.ipynb", "demos/examples_and_demos/lstm_torch_to_tensorflow.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Credit Card Fraud Detection using Ivy Framework", "Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Using TensorFlow Models in your PyTorch Projects", "How To Convert Models from PyTorch to PaddlePaddle", "Image Segmentation with Ivy UNet", "<no title>", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 168, 171, 172, 173, 175, 179, 180, 194, 197, 207, 213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 580, 586, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 722, 724, 725, 730, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 779, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "notebook": [0, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 46, 794, 812], "i": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 180, 192, 194, 196, 197, 199, 200, 202, 204, 207, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313, 315, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 427, 428, 429, 430, 432, 433, 434, 435, 437, 438, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 482, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 572, 573, 576, 577, 578, 580, 586, 590, 591, 592, 593, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 798, 801, 802, 805, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "dedic": [0, 789, 821, 836, 847, 851, 853], "task": [0, 1, 6, 48, 640, 715, 716, 717, 812, 813, 815, 819, 820, 821, 841, 842, 870, 876, 877], "util": [0, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 45, 48, 57, 80, 198, 376, 447, 631, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 819, 826, 830, 833, 834, 837, 840, 844, 845, 849, 864, 868, 876, 877], "power": [0, 22, 31, 32, 56, 57, 58, 62, 79, 80, 81, 85, 102, 103, 234, 243, 244, 278, 333, 346, 369, 372, 375, 423, 582, 593, 605, 632, 634, 637, 641, 679, 692, 724, 791, 846, 851, 852, 853, 870, 872, 876], "we": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 57, 62, 63, 64, 72, 80, 85, 86, 95, 97, 98, 118, 364, 374, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 494, 499, 545, 555, 595, 617, 618, 620, 625, 626, 634, 635, 637, 638, 639, 680, 696, 702, 703, 704, 706, 708, 709, 711, 713, 788, 794, 801, 806, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 866, 870, 871, 875, 876, 878], "emploi": [0, 14, 876], "build": [0, 9, 15, 19, 20, 22, 29, 31, 32, 35, 36, 37, 38, 43, 45, 50, 68, 74, 103, 645, 749, 750, 751, 752, 792, 793, 794, 812, 813, 819, 822, 828, 829, 837, 839, 848, 850, 853, 854, 855, 857, 860, 864, 868, 870, 872, 875, 876, 877], "The": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 133, 134, 136, 138, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 166, 167, 168, 170, 172, 173, 174, 177, 178, 180, 181, 183, 184, 185, 186, 192, 193, 194, 195, 196, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 427, 428, 429, 430, 432, 434, 446, 447, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 471, 473, 474, 475, 476, 480, 483, 484, 489, 490, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 513, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 573, 576, 577, 580, 582, 583, 586, 589, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 801, 805, 806, 812, 813, 814, 816, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 844, 845, 847, 848, 849, 852, 853, 854, 856, 857, 858, 859, 861, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "goal": [0, 20, 45, 247, 632, 812, 818, 821, 860, 870, 876], "accur": [0, 6, 245, 263, 632, 637, 685, 838], "distinguish": 0, "between": [0, 6, 14, 20, 21, 26, 36, 37, 38, 43, 56, 57, 58, 61, 62, 63, 64, 68, 74, 79, 80, 84, 85, 86, 87, 103, 126, 165, 228, 241, 276, 292, 334, 351, 353, 372, 375, 376, 377, 378, 387, 399, 400, 401, 412, 413, 414, 422, 428, 432, 453, 454, 455, 456, 457, 458, 459, 484, 532, 629, 630, 632, 636, 638, 639, 641, 643, 645, 659, 682, 696, 697, 698, 702, 710, 724, 739, 750, 751, 752, 777, 784, 796, 812, 824, 825, 829, 831, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 854, 859, 863, 864, 866, 867, 869, 870, 871, 876], "activ": [0, 6, 16, 29, 31, 32, 57, 58, 61, 72, 80, 84, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 295, 296, 297, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 595, 636, 663, 666, 791, 792, 810, 812, 819, 820, 829, 835, 845, 846, 853, 864, 870, 873], "therebi": [0, 6, 844], "enhanc": [0, 28, 31, 32, 812, 843, 864], "secur": 0, "usag": [0, 7, 213, 631, 829, 837, 840, 844, 849, 855, 860, 873], "befor": [0, 4, 5, 6, 8, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 38, 45, 57, 61, 62, 64, 68, 70, 74, 80, 84, 85, 93, 210, 213, 218, 375, 378, 387, 403, 408, 418, 422, 468, 475, 476, 477, 484, 523, 524, 631, 636, 637, 639, 640, 641, 645, 647, 649, 650, 651, 652, 654, 656, 658, 662, 663, 666, 677, 678, 694, 700, 715, 716, 730, 749, 750, 751, 752, 757, 758, 761, 763, 765, 773, 792, 801, 805, 818, 819, 820, 823, 824, 826, 829, 830, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 849, 852, 855, 863, 864, 870], "dive": [0, 14, 20, 22, 31, 43, 812, 813, 814, 817, 818, 820, 823, 827, 829, 835, 842, 848, 851, 852, 855, 876], "need": [0, 1, 4, 7, 11, 13, 20, 22, 28, 29, 31, 32, 45, 46, 47, 57, 58, 64, 80, 81, 87, 375, 376, 387, 398, 403, 404, 408, 429, 529, 540, 541, 562, 634, 636, 637, 639, 641, 663, 672, 699, 702, 729, 777, 812, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 851, 852, 855, 856, 861, 863, 864, 866, 870, 871, 872, 876], "up": [0, 4, 7, 8, 11, 13, 14, 31, 57, 58, 80, 81, 375, 378, 398, 411, 468, 476, 557, 569, 634, 636, 659, 661, 812, 813, 816, 818, 820, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861, 863, 871, 876, 877], "our": [0, 4, 6, 7, 11, 13, 14, 16, 18, 20, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 49, 72, 95, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 778, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 831, 833, 834, 835, 838, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 859, 860, 863, 875, 876, 878], "necessari": [0, 6, 7, 37, 53, 57, 76, 80, 87, 128, 240, 273, 377, 378, 452, 462, 463, 464, 470, 472, 473, 474, 475, 476, 483, 499, 585, 608, 632, 634, 702, 703, 704, 706, 708, 709, 711, 713, 812, 818, 819, 824, 825, 827, 829, 831, 840, 841, 844, 846, 847, 863, 864], "follow": [0, 1, 6, 7, 14, 25, 26, 27, 29, 31, 32, 35, 36, 37, 43, 46, 47, 57, 58, 59, 61, 62, 68, 74, 80, 81, 82, 84, 85, 134, 165, 168, 213, 223, 240, 247, 273, 275, 282, 283, 319, 369, 375, 377, 378, 381, 398, 411, 419, 457, 472, 484, 501, 503, 560, 561, 562, 592, 593, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 637, 641, 645, 663, 666, 678, 684, 694, 724, 730, 749, 750, 751, 752, 792, 796, 812, 814, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 863, 867, 870, 873], "command": [0, 45, 47, 814, 819, 823, 826, 828, 834, 835, 856], "which": [0, 1, 4, 6, 7, 9, 10, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 153, 155, 157, 163, 165, 168, 170, 173, 180, 192, 197, 201, 206, 208, 211, 212, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 322, 325, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 348, 350, 351, 352, 353, 355, 356, 357, 359, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 418, 419, 420, 422, 427, 430, 442, 445, 446, 447, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 489, 490, 491, 492, 493, 494, 496, 501, 503, 504, 505, 507, 508, 509, 510, 511, 512, 514, 515, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 574, 575, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 693, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 723, 724, 725, 726, 731, 733, 734, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 788, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 808, 810, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "an": [0, 1, 3, 4, 6, 7, 9, 10, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 175, 179, 180, 210, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 316, 317, 318, 320, 321, 328, 329, 330, 331, 332, 333, 335, 336, 338, 341, 345, 350, 354, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 407, 409, 411, 412, 413, 414, 417, 418, 419, 420, 421, 422, 423, 424, 426, 429, 430, 431, 456, 457, 461, 462, 463, 464, 468, 469, 470, 472, 479, 483, 484, 490, 492, 496, 498, 499, 501, 502, 503, 506, 508, 509, 511, 514, 515, 520, 521, 522, 523, 524, 525, 526, 529, 530, 533, 538, 540, 541, 549, 552, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 577, 580, 581, 590, 591, 595, 599, 600, 601, 614, 617, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 724, 737, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 781, 784, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 876, 877], "machin": [0, 6, 7, 12, 13, 26, 27, 28, 29, 34, 35, 43, 49, 57, 62, 80, 85, 165, 168, 376, 430, 630, 637, 680, 683, 812, 819, 823, 837, 857, 860, 868, 870, 872, 873, 874, 875, 876], "learn": [0, 6, 7, 14, 16, 18, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 43, 45, 57, 59, 82, 376, 377, 447, 452, 545, 616, 619, 621, 622, 623, 634, 635, 640, 715, 716, 717, 796, 812, 813, 817, 818, 819, 822, 823, 829, 834, 835, 837, 839, 848, 857, 859, 860, 868, 872, 873, 874, 875, 876, 877], "other": [0, 4, 6, 7, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 54, 56, 57, 58, 64, 70, 74, 77, 79, 80, 81, 87, 93, 97, 102, 103, 126, 141, 153, 179, 240, 245, 247, 263, 272, 273, 337, 341, 372, 378, 468, 469, 477, 534, 535, 629, 630, 632, 634, 643, 647, 700, 710, 741, 764, 766, 773, 778, 812, 816, 818, 819, 820, 821, 823, 824, 827, 828, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 856, 857, 860, 863, 864, 866, 868, 869, 870, 876, 877], "essenti": [0, 812, 815, 818, 825, 827, 830, 831, 837, 840, 841, 842, 859, 860, 876], "panda": [0, 14, 45, 47, 860, 867], "matplotlib": [0, 6, 7, 14, 26, 27, 28, 29, 45, 46, 47, 50], "scikit": [0, 14, 376, 447, 860], "torch": [0, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 48, 49, 50, 53, 58, 62, 72, 81, 85, 129, 167, 194, 195, 199, 209, 211, 216, 283, 335, 336, 372, 378, 496, 538, 562, 595, 629, 630, 631, 632, 634, 637, 640, 687, 716, 717, 773, 784, 789, 801, 810, 812, 816, 819, 820, 823, 824, 825, 826, 828, 829, 830, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 863, 864, 865, 876], "cryptographi": [0, 14], "These": [0, 14, 38, 57, 80, 376, 378, 387, 429, 483, 522, 636, 637, 663, 672, 673, 812, 815, 817, 818, 819, 820, 823, 827, 829, 831, 832, 836, 837, 840, 841, 844, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 864, 870, 874, 876, 877], "tool": [0, 14, 22, 31, 32, 812, 819, 820, 831, 835, 850, 854, 855, 858, 861, 864, 868, 869, 870, 871, 873, 876, 877], "provid": [0, 6, 9, 20, 22, 26, 29, 31, 32, 36, 37, 43, 49, 53, 57, 58, 62, 64, 67, 70, 71, 74, 76, 80, 81, 85, 87, 90, 93, 94, 122, 139, 141, 158, 159, 160, 161, 162, 170, 180, 192, 196, 209, 292, 375, 376, 378, 381, 387, 411, 419, 423, 428, 432, 445, 446, 450, 451, 468, 470, 479, 499, 501, 503, 532, 544, 576, 577, 628, 629, 630, 631, 632, 634, 636, 637, 639, 641, 644, 647, 648, 663, 679, 682, 693, 702, 703, 710, 722, 744, 764, 766, 767, 768, 777, 792, 796, 801, 802, 812, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 844, 845, 847, 851, 853, 855, 859, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 877], "robust": 0, "foundat": [0, 22, 860, 873], "manipul": [0, 57, 80, 840, 841, 845, 847, 849, 854, 859, 870], "4": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 117, 118, 126, 127, 128, 129, 132, 134, 136, 137, 138, 139, 140, 141, 143, 147, 149, 153, 154, 155, 163, 165, 168, 173, 175, 180, 197, 198, 206, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 321, 328, 330, 335, 336, 338, 340, 341, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 359, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 440, 446, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 467, 468, 469, 470, 471, 474, 475, 476, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 558, 560, 561, 562, 569, 576, 577, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 796, 805, 806, 812, 816, 818, 819, 825, 826, 827, 828, 829, 831, 834, 839, 842, 844, 847, 849, 851, 852, 853, 854, 861, 863, 870, 876, 877], "pip": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 49, 50, 812, 816, 819, 826, 835], "q": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 45, 46, 47, 57, 61, 62, 80, 84, 85, 362, 372, 376, 387, 429, 532, 636, 637, 641, 663, 666, 672, 673, 684, 726, 819, 820, 822, 842, 855], "r": [0, 4, 12, 45, 46, 57, 62, 74, 80, 85, 97, 98, 349, 364, 372, 374, 617, 635, 637, 639, 684, 713, 819, 820, 822, 839, 842, 878], "requir": [0, 6, 7, 26, 27, 28, 29, 36, 45, 46, 47, 50, 56, 57, 74, 79, 80, 274, 287, 291, 376, 378, 429, 430, 484, 632, 637, 639, 672, 673, 674, 710, 776, 784, 789, 806, 814, 818, 819, 824, 826, 828, 829, 830, 831, 832, 833, 835, 836, 838, 841, 842, 843, 844, 845, 847, 849, 851, 855, 864, 870, 876], "txt": [0, 4, 6, 12, 46, 58, 819, 823, 826], "16": [0, 4, 7, 8, 9, 10, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 102, 103, 168, 234, 263, 283, 290, 346, 349, 353, 372, 375, 378, 387, 394, 395, 397, 403, 407, 408, 412, 413, 418, 422, 457, 474, 523, 529, 546, 549, 571, 592, 593, 625, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 647, 658, 660, 667, 671, 674, 675, 682, 684, 688, 713, 726, 739, 740, 741, 748, 758, 759, 776, 779, 812, 820, 829, 831, 852], "mb": [0, 6, 7, 9, 10, 12, 45, 47, 50, 828], "25": [0, 14, 43, 45, 46, 47, 56, 57, 58, 62, 63, 66, 70, 73, 79, 80, 81, 84, 85, 88, 89, 93, 102, 103, 118, 137, 223, 224, 234, 240, 242, 253, 258, 273, 278, 281, 283, 286, 287, 288, 293, 315, 369, 377, 387, 418, 453, 456, 523, 532, 560, 561, 577, 592, 629, 632, 634, 637, 638, 641, 642, 647, 650, 667, 671, 676, 692, 697, 719, 726, 730, 737, 739, 740, 741, 758, 759, 761, 766, 821, 827, 839], "1": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 149, 152, 153, 154, 155, 159, 163, 164, 165, 168, 173, 175, 180, 196, 197, 201, 205, 206, 208, 209, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 325, 326, 328, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 442, 445, 446, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 784, 788, 791, 792, 793, 794, 795, 796, 797, 801, 805, 806, 810, 812, 815, 816, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 854, 855, 860, 861, 863, 864, 865, 878], "": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 46, 48, 49, 50, 53, 57, 58, 59, 62, 70, 80, 82, 85, 93, 122, 139, 145, 146, 166, 167, 196, 199, 200, 212, 247, 282, 329, 334, 335, 336, 338, 349, 351, 357, 361, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 391, 398, 404, 409, 420, 428, 432, 440, 449, 454, 456, 457, 473, 475, 476, 484, 501, 502, 503, 512, 522, 532, 550, 551, 557, 571, 594, 595, 616, 618, 619, 620, 621, 623, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 663, 670, 678, 680, 687, 688, 694, 730, 764, 766, 777, 791, 792, 793, 794, 795, 796, 797, 801, 810, 812, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 857, 860, 861, 862, 863, 864, 865, 866, 869, 870, 871, 873, 874, 875, 876], "eta": [0, 7, 9, 10, 45, 47, 50], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 141, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 168, 169, 173, 175, 180, 193, 196, 198, 201, 206, 207, 208, 209, 211, 212, 213, 215, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 328, 329, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 394, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 418, 419, 420, 422, 425, 426, 427, 429, 430, 431, 434, 435, 437, 440, 441, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 467, 469, 470, 471, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 539, 540, 541, 544, 545, 546, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 574, 576, 577, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 609, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 788, 789, 791, 792, 793, 794, 795, 796, 797, 798, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 827, 828, 829, 830, 831, 832, 833, 834, 839, 840, 841, 842, 844, 845, 849, 851, 852, 853, 854, 855, 863, 864], "00": [0, 6, 7, 9, 10, 12, 14, 45, 47, 50, 57, 58, 62, 80, 81, 85, 245, 312, 343, 344, 369, 375, 397, 403, 407, 408, 549, 593, 632, 634, 637, 674, 684, 776, 835, 844], "44": [0, 6, 7, 9, 10, 43, 47, 56, 57, 66, 79, 80, 89, 226, 273, 283, 287, 288, 339, 372, 375, 396, 397, 632, 636, 637, 641, 644, 647, 659, 682, 726, 739, 740, 748, 759], "6": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 69, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 98, 102, 103, 110, 112, 117, 122, 127, 128, 135, 136, 139, 140, 143, 149, 153, 154, 155, 163, 165, 173, 219, 220, 222, 223, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 263, 264, 265, 266, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 294, 296, 297, 299, 301, 303, 305, 306, 307, 309, 310, 311, 312, 313, 319, 330, 335, 336, 338, 340, 349, 350, 352, 353, 354, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 385, 387, 397, 399, 402, 403, 407, 408, 412, 418, 419, 420, 422, 425, 428, 431, 432, 436, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 475, 479, 480, 483, 484, 489, 490, 492, 493, 496, 499, 500, 510, 512, 513, 515, 520, 522, 523, 524, 525, 527, 529, 531, 532, 538, 540, 541, 544, 545, 546, 552, 553, 560, 561, 562, 577, 591, 592, 593, 594, 595, 597, 601, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 729, 730, 736, 737, 738, 739, 740, 741, 743, 744, 745, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 776, 791, 812, 816, 819, 823, 825, 827, 828, 829, 831, 834, 839, 844, 847, 849, 851, 852, 853], "kb": [0, 6, 7, 9, 10, 12, 45, 47, 50], "3": [0, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 136, 137, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 194, 196, 197, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 392, 394, 395, 396, 397, 399, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 443, 446, 448, 451, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 576, 577, 590, 591, 592, 593, 597, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 779, 792, 805, 806, 810, 812, 816, 818, 819, 823, 824, 825, 827, 828, 829, 831, 833, 834, 837, 839, 842, 844, 849, 851, 852, 853, 854, 863, 864, 877], "45": [0, 7, 9, 10, 43, 45, 47, 56, 57, 70, 79, 80, 82, 84, 89, 103, 224, 228, 240, 283, 284, 343, 344, 357, 372, 375, 387, 397, 407, 418, 523, 529, 615, 621, 632, 635, 637, 639, 647, 682, 708, 740, 741, 759, 776], "5": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 23, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 126, 127, 128, 134, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 153, 154, 155, 159, 163, 165, 173, 175, 180, 197, 206, 211, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 330, 333, 335, 336, 338, 340, 342, 344, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 425, 428, 429, 431, 432, 434, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 478, 479, 480, 483, 484, 489, 490, 491, 492, 493, 494, 496, 499, 500, 505, 506, 507, 510, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 529, 532, 538, 539, 540, 541, 544, 545, 546, 547, 549, 552, 553, 555, 558, 560, 561, 562, 576, 577, 581, 592, 593, 594, 595, 597, 601, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 658, 659, 660, 662, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 687, 688, 689, 691, 692, 693, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 792, 805, 806, 812, 815, 818, 819, 820, 823, 825, 827, 828, 829, 831, 833, 834, 836, 839, 842, 844, 851, 852, 853, 864, 878], "143": [0, 7, 9, 10, 62, 79, 103, 290, 632, 637, 675, 831], "8": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 102, 103, 110, 125, 135, 136, 140, 143, 149, 158, 160, 161, 162, 165, 173, 198, 215, 223, 225, 226, 230, 231, 234, 235, 236, 238, 244, 247, 251, 252, 258, 259, 260, 264, 265, 268, 269, 271, 272, 273, 278, 279, 282, 283, 284, 287, 288, 291, 292, 293, 297, 303, 305, 306, 307, 309, 310, 312, 313, 330, 334, 346, 349, 351, 352, 353, 356, 363, 367, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 425, 428, 436, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 479, 480, 489, 490, 493, 494, 495, 496, 499, 500, 510, 512, 524, 527, 528, 532, 538, 539, 545, 546, 549, 552, 556, 560, 561, 562, 564, 565, 568, 571, 576, 577, 581, 591, 592, 593, 594, 595, 615, 618, 620, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 650, 654, 655, 657, 658, 659, 660, 663, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 703, 710, 711, 713, 719, 726, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 779, 792, 819, 827, 828, 831, 844, 848, 852], "7": [0, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 24, 26, 27, 28, 29, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 112, 113, 114, 115, 126, 127, 128, 137, 140, 141, 159, 165, 168, 198, 220, 223, 226, 230, 231, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 246, 247, 250, 251, 252, 257, 258, 259, 260, 261, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 283, 284, 285, 287, 290, 291, 293, 294, 296, 297, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 318, 319, 330, 334, 338, 340, 341, 349, 350, 351, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 417, 418, 419, 420, 422, 425, 428, 441, 453, 454, 455, 456, 458, 459, 462, 463, 464, 468, 470, 474, 479, 480, 483, 484, 489, 490, 492, 493, 495, 496, 499, 500, 510, 512, 513, 520, 523, 524, 526, 527, 532, 538, 540, 541, 545, 546, 549, 560, 561, 562, 569, 576, 577, 592, 595, 615, 616, 618, 619, 620, 621, 622, 623, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 655, 657, 658, 659, 660, 666, 668, 669, 670, 671, 673, 674, 675, 677, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 696, 697, 698, 699, 702, 703, 708, 710, 711, 713, 718, 719, 726, 730, 737, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 757, 758, 759, 761, 763, 765, 766, 776, 819, 820, 825, 827, 828, 831, 837, 840, 844], "9": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 73, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93, 102, 103, 110, 126, 127, 128, 140, 158, 159, 160, 161, 162, 165, 168, 221, 223, 225, 226, 229, 230, 231, 234, 235, 240, 241, 242, 247, 254, 260, 261, 262, 264, 268, 269, 271, 272, 273, 276, 278, 279, 283, 284, 287, 288, 289, 294, 300, 303, 304, 305, 342, 345, 349, 355, 356, 363, 367, 372, 373, 375, 377, 378, 385, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 436, 453, 455, 457, 458, 462, 463, 464, 470, 474, 479, 489, 490, 491, 492, 494, 496, 499, 510, 512, 515, 524, 541, 545, 546, 547, 549, 552, 560, 561, 564, 565, 568, 576, 577, 591, 592, 594, 615, 616, 617, 621, 622, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 646, 647, 650, 651, 652, 658, 659, 660, 668, 669, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 699, 703, 707, 708, 710, 711, 713, 718, 719, 724, 726, 729, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 796, 827, 829, 831, 839, 844, 852, 853, 866], "756": [0, 7, 9, 10], "21": [0, 4, 7, 9, 14, 43, 45, 47, 50, 56, 57, 58, 66, 76, 79, 80, 84, 85, 89, 93, 102, 138, 168, 223, 226, 228, 234, 258, 273, 304, 356, 375, 376, 377, 378, 387, 394, 397, 407, 412, 418, 420, 422, 426, 452, 467, 523, 577, 629, 630, 632, 634, 637, 641, 647, 671, 682, 686, 724, 739, 740, 757, 758, 759, 833, 839], "116": [0, 7, 9, 10], "23": [0, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 62, 66, 76, 79, 80, 81, 84, 89, 136, 235, 238, 255, 256, 257, 280, 282, 283, 284, 286, 293, 338, 339, 372, 375, 378, 387, 394, 395, 397, 407, 412, 413, 414, 418, 422, 467, 523, 529, 629, 632, 636, 637, 641, 644, 655, 657, 671, 675, 678, 686, 688, 689, 719, 726, 730, 739, 740, 741, 748, 812, 828, 844, 849], "29": [0, 6, 14, 43, 45, 47, 50, 62, 79, 81, 82, 84, 89, 228, 387, 418, 523, 545, 546, 617, 621, 632, 634, 635, 637, 675, 739, 740, 741], "823": 0, "46": [0, 6, 43, 45, 47, 57, 66, 80, 84, 89, 138, 263, 284, 314, 369, 375, 395, 413, 414, 629, 632, 641, 719, 739, 740], "14": [0, 4, 6, 8, 11, 12, 27, 43, 45, 46, 47, 54, 56, 57, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 152, 165, 168, 221, 226, 228, 235, 239, 265, 269, 273, 279, 286, 294, 345, 375, 376, 378, 387, 394, 395, 396, 397, 407, 412, 414, 417, 418, 419, 422, 426, 432, 433, 468, 470, 474, 479, 499, 523, 592, 615, 630, 632, 634, 635, 636, 637, 639, 641, 645, 647, 650, 651, 653, 655, 657, 659, 671, 673, 675, 682, 689, 691, 693, 713, 730, 739, 740, 741, 749, 758, 759, 827, 831, 844], "731": [0, 51, 116], "945": 0, "410": 0, "2": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 196, 197, 198, 201, 204, 206, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 319, 320, 321, 328, 330, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 391, 394, 395, 396, 397, 398, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 779, 788, 791, 792, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 826, 827, 828, 829, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 863, 864, 865, 876, 877], "121": 0, "56": [0, 12, 14, 43, 45, 56, 57, 61, 66, 79, 80, 84, 138, 273, 287, 290, 293, 375, 397, 407, 615, 629, 632, 635, 636, 637, 641, 647, 651, 653, 655, 657, 660, 682, 718, 740, 759, 831], "124": [0, 636, 660], "196": [0, 84, 636, 660], "166": [0, 73, 110, 626], "99": [0, 14, 43, 56, 57, 59, 77, 79, 89, 135, 222, 237, 360, 372, 592, 619, 629, 632, 634, 635, 641, 647, 722, 730, 740, 759], "11": [0, 4, 6, 7, 8, 12, 13, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 58, 61, 62, 66, 70, 79, 80, 81, 84, 85, 87, 89, 93, 103, 223, 227, 230, 235, 245, 282, 283, 289, 353, 372, 375, 376, 378, 394, 395, 407, 412, 413, 417, 418, 422, 431, 467, 468, 470, 474, 479, 481, 499, 523, 524, 539, 545, 546, 552, 561, 577, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 647, 650, 651, 659, 660, 671, 674, 675, 676, 677, 678, 682, 686, 687, 688, 689, 691, 693, 696, 703, 708, 709, 711, 713, 724, 726, 736, 739, 740, 741, 748, 749, 757, 758, 759, 766, 827, 828, 829, 831, 839], "71": [0, 43, 56, 79, 84, 239, 279, 418, 632], "To": [0, 1, 6, 12, 13, 14, 16, 18, 22, 26, 27, 28, 29, 31, 32, 43, 46, 47, 48, 98, 247, 377, 456, 586, 632, 634, 791, 812, 818, 819, 823, 824, 825, 826, 829, 831, 833, 834, 835, 837, 838, 841, 842, 843, 844, 845, 852, 853, 854, 856, 863, 864], "ensur": [0, 1, 12, 13, 16, 18, 26, 27, 28, 29, 57, 58, 80, 81, 375, 376, 412, 413, 414, 447, 562, 634, 771, 812, 815, 818, 819, 820, 824, 829, 830, 831, 833, 835, 836, 838, 840, 841, 842, 843, 844, 845, 856, 870], "begin": [0, 7, 27, 57, 80, 284, 377, 378, 452, 468, 484, 485, 486, 487, 488, 632, 641, 718, 729, 776, 819, 823, 828, 842], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 70, 79, 80, 81, 147, 176, 194, 199, 224, 284, 307, 328, 369, 387, 522, 529, 538, 562, 592, 595, 599, 629, 630, 631, 632, 634, 637, 647, 685, 759, 771, 773, 784, 801, 805, 806, 812, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 833, 834, 836, 840, 842, 844, 845, 847, 849, 851, 854, 856, 857, 859, 860, 863, 864, 865, 867, 872, 877], "handl": [0, 4, 8, 43, 45, 51, 55, 56, 57, 73, 74, 78, 79, 80, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 193, 194, 195, 196, 197, 201, 206, 207, 215, 219, 225, 237, 262, 264, 278, 284, 285, 290, 291, 295, 300, 301, 303, 367, 378, 467, 493, 626, 631, 632, 637, 647, 691, 763, 765, 788, 796, 813, 815, 822, 827, 828, 829, 835, 836, 837, 839, 840, 841, 842, 843, 844, 846, 847, 853, 867, 877], "its": [0, 1, 6, 13, 22, 24, 31, 32, 34, 37, 44, 45, 47, 52, 54, 57, 64, 74, 77, 80, 81, 87, 100, 112, 115, 118, 123, 153, 158, 159, 160, 161, 162, 213, 240, 273, 292, 302, 367, 375, 378, 387, 415, 423, 496, 498, 525, 549, 598, 626, 628, 630, 631, 632, 634, 637, 639, 641, 677, 702, 706, 707, 711, 724, 773, 806, 812, 818, 819, 824, 827, 828, 829, 830, 832, 833, 834, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 854, 855, 857, 863, 869, 870, 876], "backend": [0, 4, 6, 7, 9, 10, 13, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 37, 52, 53, 57, 58, 62, 74, 80, 81, 85, 102, 129, 166, 167, 170, 192, 199, 200, 202, 205, 216, 335, 336, 372, 376, 428, 430, 529, 538, 550, 551, 559, 562, 563, 573, 580, 595, 598, 629, 630, 631, 634, 637, 685, 687, 771, 773, 774, 776, 777, 778, 781, 783, 784, 789, 793, 794, 796, 800, 801, 812, 816, 817, 819, 820, 822, 823, 824, 828, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 848, 850, 851, 854, 857, 859, 863, 864, 865, 870, 873, 876, 877], "jax": [0, 3, 6, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 49, 51, 56, 57, 58, 68, 73, 79, 80, 81, 110, 111, 112, 113, 114, 115, 116, 117, 118, 209, 291, 295, 300, 301, 303, 349, 367, 372, 387, 532, 562, 595, 614, 626, 631, 632, 634, 645, 749, 750, 751, 752, 784, 788, 801, 812, 816, 817, 818, 819, 820, 823, 825, 829, 830, 833, 834, 836, 839, 840, 841, 842, 844, 845, 847, 849, 851, 854, 855, 860, 861, 863, 864, 865, 871, 873, 876, 877], "capabl": [0, 6, 20, 28, 32, 844, 847], "optim": [0, 6, 7, 11, 13, 14, 22, 26, 27, 29, 31, 32, 45, 47, 48, 50, 57, 59, 80, 82, 312, 369, 377, 456, 457, 536, 623, 634, 635, 640, 715, 716, 717, 791, 806, 812, 829, 840, 847, 850, 852, 854, 861, 864, 868, 869, 870, 871, 872, 873, 874, 877], "frontend": [0, 14, 579, 634, 773, 774, 777, 781, 784, 812, 817, 820, 822, 828, 829, 833, 834, 839, 843, 844, 847, 848, 850, 857, 864, 870], "xgb_frontend": 0, "access": [0, 1, 28, 31, 32, 74, 812, 818, 819, 820, 828, 829, 835, 840, 841, 856, 864, 870, 872, 874], "compat": [0, 6, 9, 23, 29, 33, 37, 43, 50, 56, 57, 62, 64, 67, 70, 71, 79, 80, 85, 87, 90, 93, 94, 102, 103, 154, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 294, 335, 336, 372, 630, 632, 637, 639, 644, 647, 648, 668, 680, 683, 686, 689, 693, 694, 706, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 819, 825, 836, 841, 842, 845, 849, 855, 860], "manner": [0, 24, 32, 34, 44, 52, 75, 641, 730, 819, 829, 830, 832, 837, 841, 845, 852, 855, 859, 866, 868, 876, 877], "sklearn": [0, 14], "model_select": [0, 14], "timeit": [0, 11, 13, 14, 24, 31, 32, 48, 50], "oper": [0, 6, 22, 23, 26, 27, 28, 29, 31, 32, 33, 37, 44, 47, 53, 54, 56, 57, 58, 61, 62, 70, 74, 76, 77, 79, 80, 81, 84, 85, 93, 103, 118, 137, 138, 180, 210, 218, 223, 225, 234, 237, 240, 247, 262, 264, 273, 274, 278, 282, 285, 290, 302, 310, 330, 331, 332, 364, 367, 369, 374, 375, 377, 378, 389, 390, 391, 392, 394, 395, 396, 402, 403, 404, 408, 412, 413, 414, 415, 417, 418, 420, 422, 423, 452, 489, 491, 538, 545, 546, 547, 595, 626, 629, 630, 631, 632, 634, 636, 637, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 663, 678, 689, 691, 761, 763, 765, 776, 779, 792, 806, 810, 812, 818, 819, 822, 823, 824, 827, 829, 830, 831, 832, 833, 837, 840, 841, 844, 847, 849, 852, 853, 857, 859, 863, 866, 867, 868, 869, 870, 871, 873, 874, 875, 876, 877], "xgb": 0, "functool": [0, 14, 45, 833, 841, 851], "higher": [0, 14, 57, 80, 376, 378, 387, 433, 445, 451, 462, 463, 464, 532, 791, 829, 840, 848, 849, 854, 855, 867, 870, 871, 874, 876, 877], "order": [0, 4, 25, 35, 37, 45, 48, 50, 53, 57, 58, 61, 62, 64, 68, 69, 74, 80, 84, 85, 87, 91, 92, 97, 102, 103, 127, 128, 139, 147, 228, 247, 290, 328, 349, 369, 372, 375, 376, 378, 381, 385, 421, 426, 429, 430, 431, 432, 433, 437, 443, 445, 448, 451, 474, 475, 476, 481, 482, 494, 501, 502, 503, 506, 515, 629, 632, 636, 637, 639, 640, 644, 645, 646, 650, 651, 652, 653, 654, 655, 658, 672, 673, 678, 687, 688, 692, 694, 703, 706, 715, 716, 747, 749, 750, 751, 752, 753, 755, 756, 773, 795, 797, 806, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 841, 842, 843, 844, 845, 846, 847, 852, 854, 855, 859, 866, 869, 870, 871, 873, 876], "callabl": [0, 12, 49, 57, 58, 72, 80, 81, 84, 95, 122, 123, 125, 166, 167, 199, 200, 213, 363, 365, 366, 373, 374, 375, 378, 418, 421, 423, 461, 484, 535, 539, 544, 546, 550, 551, 572, 601, 614, 618, 620, 625, 628, 630, 631, 634, 635, 640, 641, 715, 716, 717, 724, 725, 726, 728, 729, 730, 731, 771, 774, 784, 796, 807, 810, 827, 833, 839, 841, 849, 862, 863, 864, 865], "object": [0, 14, 22, 27, 29, 31, 45, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 106, 107, 129, 133, 134, 144, 156, 165, 168, 176, 179, 214, 272, 509, 557, 573, 617, 629, 630, 631, 634, 635, 641, 643, 721, 722, 723, 725, 726, 727, 733, 734, 735, 736, 743, 771, 773, 774, 781, 782, 783, 789, 790, 792, 793, 794, 801, 805, 812, 824, 825, 827, 828, 837, 838, 841, 842, 844, 847, 851, 854, 862, 863, 864, 865, 870, 876], "tqdm_notebook": [0, 14], "tqdm": [0, 6, 7, 14, 26, 27, 28, 29, 45, 47, 812], "progress": [0, 637, 692, 815, 819, 820, 854], "bar": [0, 819, 834], "jupyt": [0, 1, 860, 872], "lai": 0, "groundwork": 0, "preprocess": [0, 4, 12, 14, 31, 32, 45, 48, 863], "step": [0, 1, 2, 6, 7, 17, 18, 19, 30, 31, 32, 43, 45, 46, 47, 57, 59, 76, 80, 82, 126, 137, 375, 378, 421, 423, 478, 615, 616, 619, 621, 622, 623, 629, 635, 640, 715, 716, 717, 796, 810, 812, 818, 819, 820, 821, 824, 825, 827, 828, 829, 830, 831, 834, 839, 841, 844, 849, 852, 853, 854, 861, 870], "np": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 53, 57, 79, 80, 81, 127, 128, 129, 140, 176, 253, 257, 307, 375, 376, 403, 408, 424, 592, 629, 630, 632, 634, 641, 724, 773, 801, 805, 806, 812, 818, 824, 829, 830, 833, 836, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 857, 865], "pd": [0, 14, 47], "set_backend": [0, 4, 5, 8, 12, 14, 22, 23, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 44, 46, 47, 48, 56, 58, 72, 79, 81, 167, 176, 194, 195, 199, 209, 211, 216, 224, 538, 562, 630, 631, 634, 637, 640, 685, 716, 717, 801, 812, 823, 825, 829, 830, 837, 838, 839, 849, 851, 854, 863, 864, 865], "config": [0, 5, 6, 7, 8, 11, 13, 14, 25, 28, 31, 32, 45, 46, 48, 74, 641, 731, 812, 819, 823, 826, 828, 835, 842, 852, 863, 871], "updat": [0, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 45, 47, 52, 58, 59, 74, 81, 82, 97, 378, 489, 562, 576, 577, 580, 581, 604, 615, 616, 619, 621, 622, 623, 634, 635, 636, 640, 641, 659, 662, 715, 716, 717, 725, 726, 730, 735, 736, 784, 789, 795, 796, 801, 806, 812, 818, 819, 820, 822, 823, 824, 827, 828, 829, 831, 836, 838, 839, 841, 842, 844, 847, 849, 851, 852, 854, 855], "jax_enable_x64": [0, 5, 8, 11, 13, 14, 25, 28, 31, 32, 812], "true": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 25, 26, 28, 29, 31, 32, 36, 37, 38, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 163, 165, 166, 167, 168, 171, 172, 173, 174, 175, 176, 177, 180, 192, 196, 197, 199, 200, 204, 207, 208, 210, 214, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 471, 472, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 781, 792, 793, 794, 795, 796, 798, 801, 803, 805, 806, 810, 812, 816, 819, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "from": [0, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 94, 95, 97, 98, 100, 103, 126, 128, 131, 133, 134, 135, 136, 139, 140, 143, 147, 149, 155, 173, 179, 180, 196, 201, 206, 212, 213, 239, 247, 248, 275, 279, 280, 287, 291, 312, 313, 319, 322, 328, 330, 331, 332, 339, 342, 346, 347, 349, 350, 362, 366, 369, 372, 374, 375, 376, 377, 378, 382, 387, 399, 400, 401, 415, 420, 421, 440, 447, 452, 453, 457, 467, 470, 479, 484, 490, 492, 493, 495, 496, 498, 499, 508, 509, 510, 511, 512, 523, 524, 544, 552, 553, 555, 575, 586, 597, 614, 616, 617, 621, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 645, 647, 648, 650, 658, 659, 668, 671, 687, 691, 692, 693, 700, 703, 706, 709, 715, 716, 717, 719, 730, 731, 732, 738, 739, 740, 741, 745, 748, 749, 751, 757, 758, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 796, 801, 806, 810, 812, 813, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877], "classification_report": [0, 14], "train_test_split": [0, 14], "usr": [0, 7, 8, 9, 10, 11, 13, 45, 46, 47, 50, 819], "local": [0, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 45, 46, 47, 50, 381, 506, 557, 634, 813, 819, 823, 826, 834, 837, 842, 844], "lib": [0, 7, 8, 9, 10, 14, 26, 27, 28, 29, 45, 46, 47, 50], "python3": [0, 7, 8, 9, 10, 12, 26, 27, 28, 29, 31, 45, 47, 50, 819, 820], "10": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 47, 49, 50, 53, 56, 57, 58, 59, 61, 62, 66, 68, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 126, 136, 137, 138, 222, 230, 231, 234, 235, 238, 245, 250, 252, 258, 260, 262, 273, 279, 286, 287, 292, 301, 334, 335, 336, 339, 343, 344, 346, 348, 349, 351, 352, 353, 355, 356, 360, 363, 372, 375, 378, 387, 394, 395, 396, 397, 407, 412, 413, 417, 418, 419, 420, 422, 452, 464, 467, 470, 474, 479, 489, 490, 499, 520, 523, 524, 527, 529, 532, 545, 546, 547, 549, 552, 553, 555, 560, 561, 569, 577, 581, 586, 592, 594, 606, 609, 621, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 659, 669, 671, 675, 676, 677, 678, 679, 682, 687, 688, 689, 691, 693, 703, 708, 709, 710, 711, 713, 724, 726, 729, 737, 738, 739, 740, 741, 747, 749, 755, 757, 758, 759, 760, 762, 763, 765, 766, 776, 778, 796, 812, 816, 819, 823, 827, 828, 829, 831, 834, 839, 842, 844, 849, 851, 852, 860, 865, 875], "dist": [0, 7, 8, 9, 10, 45, 46, 47, 50], "packag": [0, 2, 4, 7, 8, 9, 10, 12, 13, 16, 26, 27, 28, 29, 32, 45, 46, 47, 50, 804, 816, 819, 828, 841, 855, 856, 870, 872], "except": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 50, 57, 58, 64, 66, 71, 74, 80, 81, 85, 89, 94, 154, 335, 336, 341, 360, 372, 378, 382, 387, 468, 492, 496, 509, 528, 529, 544, 562, 579, 595, 601, 630, 634, 637, 639, 643, 644, 648, 683, 700, 702, 710, 739, 740, 741, 747, 767, 768, 771, 774, 778, 812, 820, 821, 822, 823, 824, 828, 829, 830, 832, 834, 836, 840, 841, 845, 846, 847, 851, 855], "py": [0, 6, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 45, 47, 50, 93, 376, 447, 759, 801, 805, 812, 818, 819, 820, 823, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 841, 842, 844, 845, 849, 851, 853, 854], "383": [0, 7, 9, 10, 23], "userwarn": [0, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 50], "current": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 45, 46, 52, 57, 58, 74, 80, 103, 122, 166, 167, 170, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 206, 208, 376, 378, 428, 429, 484, 492, 550, 551, 554, 557, 559, 563, 574, 575, 595, 628, 630, 631, 634, 637, 641, 672, 718, 728, 729, 773, 777, 793, 794, 801, 802, 806, 809, 810, 812, 814, 818, 819, 820, 823, 825, 827, 828, 829, 830, 833, 834, 835, 837, 840, 841, 842, 843, 844, 847, 849, 854, 855, 861, 863, 870, 876, 877], "39": [0, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 26, 27, 28, 29, 43, 45, 46, 47, 48, 50, 51, 56, 57, 62, 66, 73, 79, 80, 82, 85, 89, 112, 226, 261, 263, 265, 295, 296, 299, 367, 375, 387, 395, 397, 414, 417, 523, 615, 626, 632, 635, 637, 647, 675, 682, 740, 759], "doe": [0, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 44, 46, 56, 57, 58, 64, 74, 79, 80, 87, 97, 147, 274, 276, 284, 328, 369, 376, 377, 387, 388, 429, 456, 457, 528, 529, 533, 562, 629, 632, 634, 637, 639, 672, 708, 771, 806, 816, 818, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 855, 857, 860, 863, 866, 870, 871, 877], "support": [0, 5, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 34, 46, 55, 57, 58, 62, 78, 80, 81, 85, 147, 166, 170, 192, 199, 214, 223, 240, 247, 268, 269, 273, 283, 302, 328, 349, 367, 369, 372, 376, 378, 411, 429, 438, 492, 538, 550, 559, 562, 563, 580, 595, 629, 630, 631, 632, 634, 636, 637, 660, 672, 673, 674, 678, 687, 694, 771, 777, 784, 796, 801, 802, 805, 810, 812, 814, 816, 818, 819, 820, 823, 824, 826, 830, 831, 832, 834, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 851, 852, 854, 856, 857, 859, 860, 861, 864, 867, 869, 870, 873, 875, 876, 877], "inplac": [0, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 52, 58, 74, 81, 97, 100, 536, 538, 559, 562, 563, 580, 581, 634, 641, 725, 726, 730, 735, 736, 783, 784, 789, 796, 822, 824, 831, 834, 836, 838, 841, 847, 851, 853], "nativ": [0, 4, 5, 6, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 52, 53, 54, 55, 58, 75, 78, 81, 102, 106, 140, 150, 151, 157, 158, 159, 160, 161, 162, 176, 179, 194, 195, 196, 197, 207, 215, 219, 562, 564, 568, 575, 580, 598, 629, 630, 631, 634, 773, 784, 789, 801, 812, 816, 818, 829, 830, 833, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 857, 863, 864, 865, 868, 877], "would": [0, 6, 7, 8, 9, 10, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 47, 53, 55, 57, 76, 78, 80, 87, 113, 117, 128, 214, 375, 378, 403, 408, 462, 463, 470, 472, 474, 475, 476, 483, 487, 499, 626, 631, 702, 703, 704, 706, 708, 709, 711, 713, 778, 788, 792, 812, 813, 816, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 831, 832, 834, 836, 838, 840, 841, 842, 844, 845, 847, 848, 849, 851, 853, 854, 855, 856, 860, 863, 870, 876], "quietli": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29], "new": [0, 1, 7, 9, 10, 11, 13, 15, 16, 18, 20, 23, 26, 27, 28, 29, 31, 32, 33, 47, 49, 52, 57, 58, 59, 64, 65, 74, 76, 80, 81, 82, 85, 87, 88, 130, 133, 135, 136, 141, 142, 143, 148, 149, 186, 209, 229, 275, 277, 281, 334, 339, 351, 356, 372, 375, 378, 387, 411, 460, 468, 469, 483, 489, 496, 529, 545, 546, 547, 549, 552, 553, 555, 576, 577, 580, 582, 589, 592, 593, 599, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 639, 641, 642, 663, 675, 682, 702, 706, 710, 723, 735, 736, 737, 789, 792, 795, 796, 801, 806, 812, 813, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 831, 832, 834, 835, 838, 840, 841, 842, 843, 844, 845, 847, 848, 851, 854, 856, 857, 859, 860, 861, 863, 868, 872, 876, 877], "when": [0, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 46, 48, 52, 53, 54, 56, 57, 62, 63, 66, 67, 70, 74, 76, 77, 79, 80, 85, 86, 89, 90, 93, 103, 141, 152, 223, 240, 245, 247, 263, 273, 291, 292, 300, 335, 336, 367, 372, 375, 376, 377, 381, 382, 387, 398, 411, 423, 430, 434, 445, 451, 452, 457, 501, 503, 509, 529, 532, 562, 578, 586, 593, 629, 630, 632, 634, 636, 637, 638, 639, 641, 643, 644, 647, 649, 661, 663, 680, 685, 696, 697, 698, 706, 729, 730, 739, 740, 741, 744, 745, 747, 748, 760, 762, 764, 766, 776, 779, 791, 792, 793, 794, 795, 801, 810, 812, 813, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 856, 859, 860, 863, 864, 868, 870, 873, 874, 875, 876], "lead": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 62, 74, 85, 103, 247, 376, 440, 580, 632, 634, 637, 684, 687, 778, 828, 829, 831, 843, 845, 855, 860, 861], "memori": [0, 4, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 53, 57, 64, 76, 80, 87, 128, 139, 195, 207, 213, 215, 219, 378, 387, 462, 463, 470, 472, 474, 475, 476, 483, 499, 529, 575, 580, 604, 629, 631, 634, 636, 639, 661, 662, 702, 703, 704, 706, 708, 709, 711, 713, 806, 810, 828, 829, 830, 840, 841, 847, 849, 855, 863, 870, 872, 873, 874], "overhead": [0, 7, 8, 9, 10, 13, 23, 24, 26, 27, 28, 29, 31, 32, 34, 855, 863, 873], "same": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 23, 24, 26, 27, 28, 29, 31, 34, 36, 38, 43, 44, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 93, 97, 98, 99, 100, 101, 102, 116, 126, 131, 136, 138, 139, 141, 143, 145, 146, 147, 149, 152, 153, 154, 165, 168, 213, 220, 221, 222, 223, 225, 227, 231, 233, 236, 240, 246, 247, 253, 273, 275, 277, 280, 282, 283, 284, 293, 301, 313, 327, 328, 329, 330, 331, 332, 335, 336, 338, 346, 362, 367, 369, 372, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 412, 413, 414, 415, 417, 418, 419, 420, 422, 429, 434, 435, 445, 446, 447, 448, 449, 451, 452, 454, 457, 467, 469, 484, 492, 493, 496, 501, 503, 513, 515, 520, 521, 522, 523, 524, 525, 526, 532, 569, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 663, 666, 667, 668, 669, 671, 672, 673, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 700, 703, 704, 706, 707, 709, 710, 715, 716, 731, 741, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 784, 792, 805, 812, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 859, 861, 863, 865, 867, 869, 876, 877], "appli": [0, 7, 9, 10, 11, 13, 23, 26, 27, 28, 29, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 411, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 630, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 691, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 724, 727, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 778, 779, 788, 792, 795, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 841, 844, 845, 847, 851, 852, 853, 854, 855, 863, 864, 871], "view": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 57, 64, 80, 102, 133, 144, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 496, 499, 555, 629, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 819, 820, 833, 870], "If": [0, 1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 46, 49, 50, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 180, 196, 212, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 328, 329, 331, 334, 335, 336, 337, 338, 340, 341, 342, 346, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 419, 420, 421, 423, 428, 430, 432, 434, 435, 442, 444, 446, 447, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 489, 490, 491, 492, 493, 494, 496, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 619, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 670, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 791, 792, 794, 795, 801, 806, 810, 812, 813, 814, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 859, 863, 864, 865], "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 57, 58, 80, 81, 97, 102, 103, 378, 387, 472, 529, 552, 553, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 663, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 870, 878], "want": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 44, 45, 47, 57, 72, 80, 95, 240, 273, 378, 472, 632, 794, 812, 813, 814, 818, 819, 820, 826, 828, 830, 833, 835, 837, 838, 839, 840, 844, 847, 852, 853, 854, 855, 856, 860, 864], "control": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 39, 57, 80, 147, 296, 328, 367, 369, 375, 378, 399, 400, 401, 467, 493, 580, 629, 634, 637, 670, 827, 829, 830, 839, 840, 841, 842, 847, 851, 852, 857, 863, 870, 876], "your": [0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 49, 812, 813, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 832, 834, 835, 839, 841, 843, 845, 847, 852, 853, 855, 856, 860, 861, 863, 864, 870, 878], "manag": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 580, 604, 634, 812, 813, 821, 825, 829, 830, 840, 843, 855, 861, 872, 874], "consid": [0, 6, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 36, 37, 57, 62, 68, 80, 85, 118, 147, 268, 269, 328, 334, 339, 351, 369, 372, 376, 387, 430, 434, 445, 522, 626, 629, 632, 637, 645, 670, 680, 749, 750, 751, 752, 778, 791, 824, 828, 829, 837, 839, 845, 847, 850, 851, 852, 859, 860, 863, 867, 871, 875, 877], "do": [0, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 43, 45, 47, 57, 58, 74, 80, 81, 240, 273, 282, 375, 377, 378, 387, 421, 457, 469, 529, 532, 562, 632, 634, 641, 718, 725, 728, 729, 730, 735, 778, 806, 812, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 851, 852, 853, 854, 855, 857, 861, 871, 876, 877], "set_inplace_mod": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 604, 634], "strict": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 580, 604, 634], "should": [0, 1, 5, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 48, 51, 53, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 79, 80, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 100, 102, 103, 113, 117, 125, 139, 141, 145, 146, 154, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 313, 329, 335, 336, 348, 352, 353, 354, 355, 359, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 382, 387, 390, 399, 400, 401, 403, 408, 419, 434, 445, 451, 458, 483, 484, 508, 509, 522, 523, 524, 539, 557, 562, 614, 616, 619, 621, 622, 623, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 691, 693, 694, 706, 722, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 757, 758, 759, 760, 761, 762, 763, 765, 766, 773, 774, 776, 778, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 858, 860, 864, 866, 867, 870, 872, 877], "rais": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 53, 57, 58, 66, 68, 71, 74, 76, 80, 81, 87, 89, 91, 94, 128, 154, 243, 278, 335, 336, 346, 372, 375, 377, 378, 382, 387, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 492, 499, 509, 528, 529, 538, 562, 580, 582, 593, 595, 601, 605, 630, 632, 634, 637, 639, 643, 644, 645, 647, 648, 677, 679, 693, 702, 703, 704, 706, 708, 709, 710, 711, 713, 739, 740, 741, 747, 752, 760, 762, 767, 768, 771, 778, 796, 812, 820, 823, 825, 829, 830, 833, 840, 841, 845, 846, 849, 851, 856, 860], "error": [0, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 37, 48, 50, 56, 57, 61, 74, 79, 80, 84, 110, 242, 290, 335, 336, 343, 344, 372, 376, 377, 378, 387, 388, 445, 451, 453, 455, 492, 529, 533, 580, 626, 632, 634, 636, 637, 647, 666, 685, 688, 760, 762, 778, 796, 809, 813, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 831, 835, 836, 841, 844, 845, 846, 851, 855, 861, 870], "whenev": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 792, 820, 825, 828, 829, 833, 840, 843, 844, 846, 852], "attempt": [0, 6, 7, 9, 10, 13, 23, 26, 27, 28, 29, 45, 47, 50, 819, 846, 855], "warn": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 45, 46, 47, 50, 809, 819, 820, 846, 863, 864, 865], "first": [0, 4, 5, 7, 8, 9, 12, 16, 22, 24, 25, 26, 28, 31, 32, 34, 35, 36, 45, 48, 49, 50, 53, 56, 57, 62, 64, 66, 67, 68, 70, 76, 79, 80, 81, 85, 87, 89, 91, 93, 97, 98, 102, 103, 122, 123, 137, 138, 147, 178, 186, 196, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 290, 302, 312, 313, 328, 330, 331, 332, 334, 347, 349, 350, 351, 357, 361, 362, 367, 369, 372, 375, 376, 377, 378, 385, 387, 398, 428, 429, 430, 432, 436, 458, 468, 470, 474, 481, 484, 486, 487, 490, 498, 509, 511, 515, 523, 524, 525, 532, 537, 628, 629, 630, 631, 632, 634, 636, 637, 639, 640, 641, 644, 645, 646, 647, 663, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 706, 707, 710, 711, 715, 716, 717, 718, 719, 728, 729, 731, 743, 744, 745, 749, 750, 751, 754, 755, 757, 758, 773, 791, 792, 793, 794, 796, 801, 812, 814, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 830, 831, 835, 836, 837, 838, 840, 841, 844, 847, 849, 851, 852, 854, 856, 859, 860, 863, 864, 868, 870, 871, 875], "datafram": [0, 870], "allow": [0, 6, 14, 29, 31, 32, 43, 57, 70, 80, 93, 137, 278, 376, 387, 448, 525, 529, 572, 629, 632, 634, 646, 647, 755, 762, 776, 777, 778, 779, 793, 794, 806, 810, 812, 818, 820, 821, 824, 825, 828, 829, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 849, 851, 855, 857, 860, 863, 864, 865, 868, 870, 874, 875], "u": [0, 4, 11, 45, 47, 49, 50, 57, 62, 76, 80, 85, 97, 98, 138, 376, 440, 447, 449, 637, 641, 667, 673, 674, 687, 726, 812, 813, 819, 820, 822, 827, 828, 835, 838, 840, 841, 842, 843, 844, 845, 847, 853, 855, 860], "leverag": [0, 28, 31, 32, 812, 819, 840, 864, 868, 870], "explor": [0, 6, 7, 14, 16, 18, 22, 26, 27, 28, 31, 32, 37, 38, 39, 818, 819, 820, 829, 834, 847, 850, 854, 870, 873], "expect": [0, 4, 8, 11, 13, 24, 28, 31, 32, 34, 47, 48, 50, 57, 62, 63, 80, 86, 179, 247, 291, 375, 377, 398, 420, 457, 536, 630, 632, 634, 636, 638, 661, 682, 696, 791, 792, 812, 819, 820, 823, 829, 830, 833, 835, 838, 840, 842, 844, 847, 855, 856, 861, 863, 864, 865], "contain": [0, 9, 22, 31, 32, 46, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 166, 167, 168, 171, 172, 173, 175, 177, 180, 197, 199, 200, 201, 206, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 367, 369, 372, 374, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 581, 584, 586, 591, 592, 593, 594, 595, 597, 599, 600, 607, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 783, 784, 792, 793, 794, 796, 797, 801, 805, 806, 810, 812, 814, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 831, 832, 834, 836, 837, 838, 839, 840, 842, 844, 846, 847, 848, 849, 850, 853, 855, 856, 857, 859, 863, 870, 871, 876], "variou": [0, 6, 14, 25, 35, 37, 43, 812, 815, 818, 819, 820, 823, 828, 829, 832, 833, 836, 838, 839, 841, 842, 843, 844, 856, 866, 868, 869, 870, 873, 876], "among": [0, 6, 74, 827, 828, 844, 847, 861, 870], "pattern": [0, 57, 58, 80, 81, 376, 440, 545, 546, 547, 634, 829, 832, 843, 861], "signal": [0, 57, 80, 319, 369, 375, 389, 390, 391, 392, 397, 398, 407, 423, 792, 869, 870], "credit_card_data": 0, "read_csv": [0, 14, 47], "creditcard": 0, "csv": [0, 14, 47], "get": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 45, 46, 48, 54, 55, 62, 74, 78, 85, 102, 163, 164, 165, 168, 196, 197, 198, 201, 207, 212, 215, 219, 378, 489, 536, 554, 575, 594, 630, 631, 634, 637, 641, 694, 720, 776, 791, 792, 805, 813, 815, 817, 818, 819, 821, 822, 823, 828, 829, 830, 834, 837, 838, 839, 840, 841, 842, 843, 844, 849, 850, 851, 852, 853, 857, 861, 864, 865, 870, 876], "sens": [0, 823, 829, 831, 841, 843, 851], "re": [0, 14, 20, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 48, 50, 57, 58, 67, 80, 90, 100, 213, 319, 369, 376, 378, 450, 485, 486, 545, 631, 634, 637, 639, 644, 689, 707, 746, 748, 813, 814, 818, 819, 820, 821, 822, 823, 826, 829, 834, 839, 840, 841, 842, 843, 845, 847, 851, 854, 855, 858, 859, 860, 870], "work": [0, 1, 6, 29, 31, 32, 43, 44, 46, 50, 52, 57, 80, 97, 387, 532, 637, 641, 688, 725, 726, 730, 735, 736, 812, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 845, 848, 849, 851, 853, 854, 856, 861, 863, 864, 865, 868, 870, 872, 874, 877], "help": [0, 1, 20, 47, 49, 54, 535, 580, 634, 647, 765, 791, 812, 813, 814, 818, 819, 821, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 840, 841, 844, 845, 851, 852, 853, 856, 857, 866, 870, 872, 876], "few": [0, 6, 7, 812, 817, 818, 820, 827, 829, 830, 836, 837, 839, 840, 842, 844, 847, 849, 850, 851, 852, 853, 861, 870, 872], "entri": [0, 57, 64, 74, 80, 87, 91, 98, 137, 376, 378, 382, 446, 473, 475, 476, 508, 629, 639, 641, 708, 731, 749, 819, 828, 844, 870], "can": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 50, 53, 54, 57, 58, 62, 64, 66, 68, 76, 77, 80, 81, 85, 87, 89, 91, 97, 98, 112, 115, 127, 128, 138, 140, 155, 194, 211, 212, 213, 302, 319, 367, 369, 375, 376, 377, 378, 381, 382, 385, 387, 398, 411, 435, 442, 444, 449, 457, 469, 496, 501, 509, 510, 515, 522, 569, 580, 614, 617, 626, 629, 630, 631, 634, 635, 636, 637, 639, 643, 663, 671, 677, 687, 691, 706, 710, 739, 740, 741, 749, 773, 776, 777, 778, 779, 784, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 874, 876, 877], "give": [0, 8, 23, 33, 43, 57, 61, 80, 84, 179, 365, 374, 375, 418, 422, 630, 636, 639, 649, 650, 651, 652, 654, 656, 658, 706, 791, 812, 819, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 844, 861, 870, 874], "insight": 0, "structur": [0, 14, 32, 74, 77, 103, 165, 168, 542, 634, 641, 722, 731, 812, 818, 820, 821, 824, 827, 837, 842, 843, 844, 845, 852, 853, 869, 870], "type": [0, 5, 11, 16, 18, 22, 28, 31, 32, 37, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 771, 773, 776, 777, 778, 779, 783, 784, 788, 791, 792, 793, 794, 798, 801, 805, 806, 807, 810, 818, 819, 820, 822, 823, 824, 827, 830, 831, 832, 833, 836, 838, 840, 842, 844, 845, 847, 849, 851, 852, 863, 864, 865, 870, 871, 874], "present": [0, 46, 57, 70, 74, 80, 93, 338, 372, 381, 501, 502, 503, 647, 762, 818, 819, 820, 827, 829, 830, 836, 840, 849, 859, 867, 868, 877], "initi": [0, 5, 6, 9, 31, 32, 48, 57, 61, 70, 74, 80, 84, 93, 103, 376, 387, 434, 445, 451, 530, 531, 636, 647, 661, 662, 762, 789, 792, 793, 794, 796, 797, 810, 812, 815, 820, 821, 825, 829, 830, 834, 842, 844, 849, 860, 863, 864, 865, 870, 876, 877], "qualiti": [0, 815, 820], "below": [0, 2, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 43, 46, 47, 48, 53, 57, 62, 80, 85, 93, 145, 146, 147, 247, 257, 280, 328, 329, 338, 369, 372, 378, 492, 629, 632, 637, 671, 691, 766, 813, 816, 818, 819, 822, 823, 827, 828, 829, 830, 831, 833, 834, 837, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 863, 864, 865, 866, 868, 873, 875], "head": [0, 6, 7, 48, 49, 636, 663, 792, 812, 817, 819, 828, 841, 867], "method": [0, 14, 22, 31, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 637, 638, 641, 644, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 784, 790, 791, 792, 793, 794, 818, 820, 823, 824, 828, 829, 830, 831, 832, 836, 844, 845, 849, 850, 853, 854, 855, 863, 864, 865, 871, 877], "five": [0, 852], "row": [0, 45, 57, 80, 98, 132, 147, 328, 369, 376, 378, 385, 387, 435, 447, 476, 482, 500, 515, 521, 522, 629, 637, 643, 644, 678, 686, 687, 692, 738, 747, 791], "v1": [0, 853], "v2": [0, 853], "v3": 0, "v4": 0, "v5": 0, "v6": 0, "v7": [0, 870], "v8": 0, "v9": 0, "v21": 0, "v22": 0, "v23": 0, "v24": 0, "v25": 0, "v26": 0, "v27": 0, "v28": 0, "amount": [0, 14, 63, 86, 215, 631, 638, 696, 697, 698, 806, 819, 828, 830, 842], "359807": 0, "072781": 0, "536347": 0, "378155": 0, "338321": 0, "462388": 0, "239599": 0, "098698": 0, "363787": 0, "018307": 0, "277838": 0, "110474": 0, "066928": 0, "128539": 0, "189115": 0, "133558": 0, "021053": 0, "149": [0, 62, 637, 675], "62": [0, 14, 43, 45, 51, 73, 79, 80, 89, 113, 258, 286, 632, 642, 643, 737, 739, 741], "191857": 0, "266151": 0, "166480": 0, "448154": 0, "060018": 0, "082361": 0, "078803": 0, "085102": 0, "255425": 0, "225775": 0, "638672": 0, "101288": 0, "339846": 0, "167170": 0, "125895": 0, "008983": 0, "014724": 0, "69": [0, 24, 43, 50, 56, 82, 89, 221, 263, 375, 397, 407, 619, 632, 635, 637, 678, 679, 740, 844, 852], "358354": 0, "340163": 0, "773209": 0, "379780": 0, "503198": 0, "800499": 0, "791461": 0, "247676": 0, "514654": 0, "247998": 0, "771679": 0, "909412": 0, "689281": 0, "327642": 0, "139097": 0, "055353": 0, "059752": 0, "378": [0, 279, 632], "66": [0, 26, 27, 28, 29, 43, 45, 47, 70, 80, 81, 82, 375, 407, 545, 546, 619, 634, 635, 637, 647, 682, 759], "966272": 0, "185226": 0, "792993": 0, "863291": 0, "010309": 0, "247203": 0, "237609": 0, "377436": 0, "387024": 0, "108300": 0, "005274": 0, "190321": 0, "175575": 0, "647376": 0, "221929": 0, "062723": 0, "061458": 0, "123": [0, 23, 76, 77, 80, 136, 168, 456, 548, 629, 634, 806, 844], "50": [0, 13, 14, 31, 32, 43, 47, 57, 70, 79, 80, 81, 239, 279, 357, 372, 375, 376, 378, 404, 428, 436, 489, 547, 553, 560, 561, 577, 592, 632, 634, 637, 641, 644, 647, 676, 682, 693, 719, 721, 747, 759, 776, 779, 839, 851, 863, 864], "158233": 0, "877737": 0, "548718": 0, "403034": 0, "407193": 0, "095921": 0, "592941": 0, "270533": 0, "817739": 0, "009431": 0, "798278": 0, "137458": 0, "141267": 0, "206010": 0, "502292": 0, "219422": 0, "215153": 0, "31": [0, 14, 26, 27, 28, 29, 43, 45, 46, 50, 51, 56, 57, 79, 80, 81, 84, 89, 113, 118, 138, 234, 265, 273, 375, 378, 387, 396, 397, 467, 523, 540, 626, 629, 632, 634, 740, 741, 852], "column": [0, 14, 47, 57, 62, 80, 85, 97, 98, 132, 147, 328, 369, 376, 378, 385, 387, 429, 435, 447, 468, 473, 475, 476, 480, 482, 515, 521, 522, 629, 637, 672, 673, 678, 684, 686, 687, 692, 776, 791], "It": [0, 1, 4, 7, 13, 14, 23, 26, 27, 28, 29, 31, 32, 33, 34, 43, 44, 45, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 443, 444, 452, 453, 454, 455, 456, 458, 459, 469, 472, 477, 485, 486, 487, 488, 490, 492, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 578, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 717, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 756, 757, 758, 761, 763, 764, 766, 767, 768, 791, 792, 812, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 838, 840, 841, 842, 843, 844, 845, 846, 847, 849, 851, 852, 853, 862, 865, 868, 870, 871, 873, 874, 875, 876, 877], "just": [0, 6, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 47, 57, 62, 70, 85, 97, 100, 147, 328, 369, 376, 444, 629, 637, 647, 680, 759, 784, 792, 812, 816, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 855, 860, 861, 864, 870, 871, 876], "verifi": [0, 6, 9, 10, 14, 28, 325, 326, 369, 818, 829, 830, 841, 844, 845], "consist": [0, 6, 7, 12, 13, 14, 26, 27, 28, 29, 31, 32, 70, 74, 240, 247, 273, 375, 376, 419, 429, 632, 637, 647, 672, 673, 759, 793, 794, 815, 823, 824, 828, 829, 835, 840, 849, 859, 871], "complet": [0, 62, 74, 85, 637, 684, 777, 818, 819, 820, 821, 823, 824, 827, 828, 831, 833, 837, 841, 842, 844, 847, 851, 852, 860, 868], "By": [0, 23, 43, 50, 57, 63, 64, 70, 71, 80, 86, 87, 93, 94, 287, 333, 335, 336, 349, 356, 369, 372, 375, 377, 378, 385, 387, 398, 456, 457, 492, 496, 515, 522, 525, 580, 632, 634, 637, 638, 639, 647, 648, 668, 693, 696, 705, 757, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 825, 829, 831, 833, 837, 839, 840, 841, 849, 853, 854, 863], "tail": [0, 867], "last": [0, 24, 29, 31, 34, 53, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 76, 80, 84, 85, 86, 87, 92, 93, 94, 98, 102, 137, 138, 141, 196, 313, 341, 369, 372, 375, 376, 377, 378, 385, 387, 404, 409, 419, 420, 421, 432, 456, 474, 484, 486, 492, 496, 515, 523, 524, 629, 631, 636, 637, 638, 639, 644, 646, 647, 648, 662, 663, 668, 671, 682, 691, 693, 697, 698, 700, 703, 706, 707, 708, 710, 744, 745, 753, 755, 756, 757, 758, 767, 768, 792, 801, 812, 820, 823, 825, 826, 829, 831, 840, 842, 844, 847, 849, 855, 861, 864, 870], "well": [0, 14, 31, 32, 45, 46, 47, 81, 377, 456, 558, 634, 637, 686, 778, 812, 814, 818, 820, 826, 828, 829, 833, 840, 841, 842, 844, 853, 854, 864, 869, 870, 871, 875], "readi": [0, 16, 18, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 818, 819], "284802": 0, "172786": 0, "881118": 0, "071785": 0, "834783": 0, "066656": 0, "364473": 0, "606837": 0, "918215": 0, "305334": 0, "914428": 0, "213454": 0, "111864": 0, "014480": 0, "509348": 0, "436807": 0, "250034": 0, "943651": 0, "823731": 0, "77": [0, 7, 14, 43, 47, 81, 593, 637, 647, 682, 759], "284803": 0, "172787": 0, "732789": 0, "055080": 0, "035030": 0, "738589": 0, "868229": 0, "058415": 0, "024330": 0, "294869": 0, "584800": 0, "214205": 0, "924384": 0, "012463": 0, "016226": 0, "606624": 0, "395255": 0, "068472": 0, "053527": 0, "24": [0, 6, 14, 24, 43, 45, 56, 57, 62, 70, 79, 80, 81, 84, 85, 89, 102, 235, 243, 258, 260, 273, 283, 284, 287, 349, 352, 372, 375, 387, 394, 396, 397, 407, 412, 413, 414, 418, 422, 523, 545, 546, 632, 634, 637, 641, 647, 650, 671, 678, 682, 719, 730, 739, 740, 741, 757, 759, 773, 833, 852], "79": [0, 43, 45, 57, 58, 80, 81, 84, 89, 102, 240, 375, 397, 407, 418, 540, 541, 632, 634, 741], "284804": 0, "172788": 0, "919565": 0, "301254": 0, "249640": 0, "557828": 0, "630515": 0, "031260": 0, "296827": 0, "708417": 0, "432454": 0, "232045": 0, "578229": 0, "037501": 0, "640134": 0, "265745": 0, "087371": 0, "004455": 0, "026561": 0, "67": [0, 14, 43, 56, 57, 58, 62, 79, 80, 81, 84, 89, 102, 238, 243, 283, 284, 286, 293, 304, 308, 367, 387, 418, 523, 545, 546, 592, 618, 620, 632, 634, 635, 637, 675, 741], "88": [0, 14, 43, 82, 89, 112, 387, 523, 619, 626, 635, 637, 643, 647, 682, 741, 759], "284805": 0, "240440": 0, "530483": 0, "702510": 0, "689799": 0, "377961": 0, "623708": 0, "686180": 0, "679145": 0, "392087": 0, "265245": 0, "800049": 0, "163298": 0, "123205": 0, "569159": 0, "546668": 0, "108821": 0, "104533": 0, "284806": 0, "172792": 0, "533413": 0, "189733": 0, "703337": 0, "506271": 0, "012546": 0, "649617": 0, "577006": 0, "414650": 0, "486180": 0, "261057": 0, "643078": 0, "376777": 0, "008797": 0, "473649": 0, "818267": 0, "002415": 0, "013649": 0, "217": [0, 45, 833], "understand": [0, 20, 21, 22, 26, 43, 49, 816, 817, 818, 819, 820, 822, 823, 826, 831, 832, 836, 842, 843, 848, 861, 866, 876], "composit": [0, 22, 31, 166, 167, 199, 200, 292, 376, 436, 550, 551, 630, 631, 632, 634, 777, 779, 818, 822, 824, 825, 827, 829, 830, 838, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 863, 871], "crucial": [0, 830, 839], "proce": [0, 14, 818, 819], "ani": [0, 1, 6, 7, 8, 12, 16, 18, 20, 21, 22, 23, 24, 33, 34, 37, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 57, 58, 62, 71, 72, 76, 78, 79, 80, 81, 94, 95, 97, 102, 103, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 156, 171, 175, 179, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 420, 421, 430, 435, 452, 473, 484, 492, 496, 501, 502, 503, 522, 525, 528, 529, 530, 534, 544, 545, 546, 547, 548, 552, 556, 558, 560, 564, 566, 567, 585, 591, 593, 600, 601, 608, 614, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 724, 725, 727, 728, 735, 737, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 771, 773, 774, 778, 788, 789, 791, 792, 794, 795, 796, 797, 801, 805, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 876, 877], "info": [0, 45, 809, 810, 812, 826, 832, 835], "concis": 0, "summari": [0, 74, 169, 542, 630, 634, 819, 820, 844], "includ": [0, 1, 6, 14, 20, 24, 34, 39, 53, 56, 57, 58, 62, 67, 70, 71, 74, 76, 79, 80, 81, 85, 90, 93, 94, 126, 127, 128, 137, 138, 140, 147, 220, 244, 248, 249, 250, 253, 255, 258, 266, 274, 287, 292, 314, 317, 318, 319, 322, 328, 331, 333, 335, 336, 340, 341, 342, 345, 346, 347, 348, 350, 352, 353, 355, 356, 357, 358, 361, 362, 369, 372, 375, 378, 387, 394, 395, 396, 426, 429, 431, 475, 476, 478, 481, 483, 485, 488, 510, 512, 513, 521, 525, 527, 528, 530, 531, 532, 558, 613, 629, 632, 634, 636, 637, 641, 643, 644, 647, 648, 661, 672, 692, 694, 718, 741, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 795, 808, 810, 812, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 860, 863, 864, 867, 868, 870, 872, 875, 876, 877], "number": [0, 45, 47, 48, 49, 50, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 97, 98, 100, 102, 103, 106, 126, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 147, 153, 158, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 175, 177, 180, 204, 205, 206, 220, 221, 222, 223, 224, 226, 228, 229, 236, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 257, 261, 263, 271, 272, 273, 274, 275, 276, 278, 280, 282, 283, 284, 286, 287, 291, 293, 319, 323, 324, 325, 326, 327, 328, 330, 331, 332, 334, 335, 336, 338, 339, 340, 341, 351, 356, 360, 369, 372, 375, 376, 377, 378, 381, 387, 409, 420, 423, 426, 429, 433, 434, 435, 445, 449, 451, 452, 462, 463, 464, 484, 485, 486, 487, 488, 490, 492, 494, 496, 498, 501, 502, 503, 520, 522, 523, 524, 525, 531, 549, 556, 574, 591, 592, 593, 600, 613, 614, 627, 629, 630, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 647, 648, 649, 656, 657, 659, 661, 663, 668, 672, 673, 674, 680, 685, 687, 691, 692, 693, 696, 699, 701, 702, 704, 705, 707, 708, 710, 712, 714, 715, 716, 717, 738, 742, 747, 749, 750, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 784, 791, 792, 795, 806, 810, 812, 819, 820, 827, 828, 829, 830, 831, 838, 839, 840, 844, 845, 846, 847, 849, 852, 858, 859, 863], "presenc": [0, 771, 827, 840], "null": [0, 819, 834], "each": [0, 11, 13, 14, 24, 25, 26, 31, 32, 34, 35, 36, 38, 45, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 74, 77, 79, 80, 81, 82, 84, 85, 87, 90, 91, 93, 97, 98, 100, 102, 103, 111, 112, 114, 115, 116, 118, 122, 139, 153, 165, 168, 213, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 297, 298, 303, 305, 306, 307, 309, 310, 311, 316, 327, 330, 331, 332, 338, 346, 350, 354, 359, 362, 367, 369, 372, 375, 376, 378, 381, 382, 385, 387, 394, 395, 396, 399, 400, 401, 404, 412, 413, 414, 415, 418, 420, 421, 422, 429, 430, 435, 444, 445, 449, 451, 462, 463, 464, 468, 469, 470, 475, 476, 478, 479, 481, 483, 484, 487, 489, 498, 499, 506, 508, 515, 520, 521, 522, 523, 524, 525, 534, 537, 545, 552, 553, 569, 594, 614, 616, 617, 619, 621, 622, 623, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 667, 668, 669, 672, 673, 674, 677, 679, 680, 681, 683, 685, 686, 687, 692, 701, 705, 707, 708, 710, 712, 714, 724, 731, 738, 747, 749, 750, 752, 758, 759, 766, 773, 776, 778, 784, 792, 795, 796, 797, 806, 810, 815, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 859, 860, 861, 863, 864, 866, 867, 871, 873, 876], "invalu": 0, "plan": [0, 812, 856], "right": [0, 46, 57, 62, 74, 80, 85, 103, 120, 121, 232, 234, 287, 350, 372, 375, 376, 378, 410, 440, 446, 447, 449, 475, 545, 628, 632, 634, 637, 646, 687, 692, 755, 776, 813, 818, 819, 820, 822, 823, 831, 834, 847, 852, 863], "format": [0, 1, 28, 29, 31, 32, 43, 45, 46, 47, 55, 58, 61, 70, 73, 74, 75, 78, 84, 100, 118, 163, 197, 375, 376, 386, 417, 450, 518, 545, 626, 630, 631, 634, 636, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 661, 759, 769, 770, 771, 788, 812, 819, 820, 822, 828, 829, 830, 831, 832, 833, 841, 843, 852, 864, 866, 868, 870, 871], "lt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 103], "core": [0, 6, 26, 27, 29, 45, 46, 47, 49, 50, 57, 80, 97, 100, 204, 376, 434, 445, 450, 451, 631, 819, 830, 834, 844, 854, 859, 868, 869, 870, 871, 875, 877], "frame": [0, 47, 57, 80, 319, 369, 375, 423, 860, 870], "gt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 50, 103, 842, 849], "rangeindex": 0, "284807": 0, "total": [0, 45, 47, 57, 70, 74, 80, 93, 103, 134, 215, 330, 331, 332, 340, 369, 372, 377, 452, 629, 631, 644, 647, 747, 764, 766, 806, 812, 813, 819, 820, 829, 830, 831, 844, 847, 852, 853, 855, 861], "non": [0, 7, 24, 34, 54, 56, 57, 62, 66, 67, 70, 71, 77, 79, 80, 85, 89, 90, 93, 94, 134, 152, 170, 179, 248, 268, 269, 274, 335, 336, 340, 347, 360, 372, 375, 376, 378, 387, 419, 430, 434, 440, 463, 464, 525, 528, 629, 630, 632, 637, 641, 643, 644, 647, 648, 668, 669, 678, 680, 687, 689, 693, 694, 731, 740, 744, 745, 746, 747, 760, 761, 762, 763, 764, 766, 767, 768, 776, 791, 793, 794, 796, 824, 827, 831, 849, 863, 864, 865, 870], "count": [0, 49, 57, 64, 68, 71, 76, 80, 87, 91, 94, 134, 206, 340, 372, 378, 387, 492, 496, 498, 520, 525, 629, 631, 637, 639, 645, 648, 668, 693, 700, 703, 749, 750, 767, 768, 826, 827, 831, 852], "dtype": [0, 4, 8, 12, 14, 18, 24, 26, 27, 28, 29, 43, 46, 53, 54, 57, 58, 61, 62, 66, 67, 70, 74, 76, 77, 79, 80, 81, 84, 85, 89, 90, 93, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 208, 235, 239, 271, 272, 274, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 333, 338, 340, 356, 369, 372, 375, 376, 377, 378, 382, 387, 397, 407, 419, 420, 423, 446, 452, 457, 468, 492, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 532, 549, 550, 551, 553, 562, 571, 599, 629, 630, 631, 632, 634, 636, 637, 640, 643, 644, 646, 647, 648, 652, 659, 678, 694, 716, 717, 739, 740, 741, 744, 745, 746, 755, 756, 757, 758, 761, 763, 765, 767, 768, 771, 773, 776, 778, 779, 791, 792, 793, 794, 795, 797, 812, 816, 823, 825, 829, 830, 831, 833, 834, 837, 838, 840, 841, 842, 844, 845, 849, 851, 864], "float64": [0, 26, 27, 54, 57, 66, 70, 76, 77, 79, 80, 81, 89, 93, 126, 134, 135, 152, 155, 159, 160, 165, 166, 169, 170, 175, 176, 180, 182, 183, 189, 192, 274, 346, 372, 377, 387, 452, 457, 522, 571, 629, 630, 634, 637, 643, 673, 674, 678, 694, 740, 741, 758, 773, 776, 777, 829, 842, 844], "v10": 0, "v11": 0, "12": [0, 4, 6, 7, 8, 11, 12, 14, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 54, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 88, 89, 93, 102, 103, 168, 223, 225, 230, 234, 235, 238, 240, 241, 242, 260, 273, 276, 283, 286, 293, 294, 317, 318, 349, 352, 353, 369, 372, 375, 378, 387, 394, 395, 396, 397, 399, 403, 404, 412, 413, 417, 418, 419, 420, 422, 467, 468, 470, 474, 479, 496, 499, 512, 523, 529, 530, 531, 541, 545, 546, 577, 583, 592, 606, 632, 634, 636, 637, 639, 641, 642, 643, 644, 645, 647, 650, 654, 659, 660, 671, 673, 675, 678, 682, 686, 688, 689, 691, 693, 703, 707, 709, 711, 713, 730, 737, 739, 740, 741, 748, 749, 757, 758, 759, 763, 765, 776, 819, 825, 827, 829, 831, 839], "v12": 0, "13": [0, 4, 6, 7, 8, 11, 12, 22, 26, 27, 28, 29, 43, 45, 47, 51, 56, 57, 61, 62, 66, 70, 79, 80, 81, 82, 84, 87, 89, 93, 102, 118, 168, 198, 223, 238, 247, 258, 278, 287, 349, 356, 363, 372, 375, 378, 396, 397, 407, 418, 422, 467, 468, 470, 474, 479, 499, 512, 523, 524, 540, 545, 546, 561, 583, 592, 615, 626, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 647, 650, 651, 659, 660, 671, 675, 682, 686, 688, 691, 713, 717, 730, 739, 740, 741, 748, 749, 757, 758, 759, 827, 829, 831, 841], "v13": 0, "v14": 0, "15": [0, 4, 6, 7, 8, 9, 12, 13, 14, 27, 43, 45, 46, 47, 50, 56, 57, 58, 62, 66, 70, 76, 77, 79, 80, 81, 84, 85, 87, 89, 93, 103, 136, 165, 223, 230, 234, 240, 242, 251, 258, 259, 264, 265, 273, 282, 283, 284, 349, 363, 372, 373, 375, 376, 378, 387, 394, 395, 412, 414, 417, 418, 422, 428, 470, 474, 479, 499, 523, 541, 545, 546, 549, 560, 561, 586, 592, 609, 629, 630, 632, 634, 636, 637, 639, 641, 643, 644, 645, 647, 650, 660, 671, 674, 675, 676, 682, 688, 689, 707, 713, 718, 739, 740, 747, 749, 758, 759, 773, 815, 819, 828, 831, 839, 873], "v15": 0, "v16": 0, "17": [0, 6, 8, 9, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 57, 62, 73, 79, 80, 81, 82, 84, 85, 89, 103, 112, 113, 138, 223, 240, 265, 273, 304, 312, 363, 369, 375, 378, 394, 395, 403, 404, 407, 408, 412, 413, 418, 422, 474, 546, 561, 615, 617, 626, 629, 632, 634, 635, 636, 637, 641, 643, 650, 659, 660, 671, 675, 726, 739, 740, 741, 743, 827], "v17": 0, "18": [0, 4, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 66, 79, 80, 81, 84, 85, 89, 93, 113, 235, 240, 282, 286, 295, 296, 349, 367, 372, 375, 378, 397, 403, 407, 408, 412, 418, 422, 474, 591, 626, 632, 637, 643, 647, 654, 671, 677, 682, 689, 739, 740, 741, 758, 759, 763, 827, 829, 831], "v18": 0, "19": [0, 4, 13, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 66, 79, 80, 84, 85, 89, 226, 235, 263, 273, 290, 375, 376, 378, 387, 396, 397, 408, 412, 418, 422, 428, 433, 474, 523, 632, 637, 641, 643, 646, 671, 678, 691, 729, 739, 740, 741, 756, 831], "v19": 0, "20": [0, 4, 9, 10, 14, 18, 43, 45, 46, 47, 50, 56, 57, 58, 61, 66, 70, 79, 80, 81, 84, 85, 89, 93, 235, 239, 243, 279, 283, 287, 304, 349, 351, 353, 372, 375, 378, 394, 396, 412, 418, 422, 467, 489, 545, 552, 553, 555, 577, 581, 592, 632, 634, 637, 643, 644, 647, 650, 651, 662, 671, 676, 678, 682, 689, 739, 747, 748, 757, 758, 759, 763, 765, 812, 828, 847, 851], "v20": 0, "22": [0, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 56, 57, 58, 66, 70, 73, 80, 81, 84, 89, 113, 118, 235, 243, 304, 308, 367, 375, 376, 377, 378, 383, 387, 394, 395, 397, 412, 413, 414, 418, 422, 428, 452, 467, 513, 523, 546, 577, 613, 626, 632, 636, 637, 641, 644, 647, 659, 660, 671, 676, 682, 686, 726, 736, 739, 740, 741, 748, 758, 759, 819, 827, 833], "26": [0, 26, 27, 28, 29, 43, 45, 47, 50, 56, 57, 65, 66, 80, 81, 82, 89, 235, 240, 286, 375, 376, 397, 433, 443, 560, 615, 632, 634, 635, 636, 637, 641, 642, 647, 658, 671, 682, 689, 719, 737, 739, 740, 759], "27": [0, 14, 43, 45, 50, 56, 57, 62, 66, 79, 80, 81, 84, 85, 89, 93, 234, 235, 238, 278, 286, 287, 346, 372, 375, 397, 407, 561, 591, 632, 634, 637, 641, 647, 677, 682, 692, 719, 726, 740, 759, 763, 776, 878], "28": [0, 14, 29, 31, 32, 43, 45, 47, 50, 56, 57, 61, 65, 79, 80, 81, 84, 85, 89, 93, 239, 242, 263, 279, 375, 376, 397, 407, 428, 529, 560, 615, 632, 634, 635, 636, 637, 642, 647, 651, 653, 655, 657, 658, 660, 682, 737, 739, 740, 741, 759, 763, 812], "30": [0, 14, 26, 27, 28, 29, 43, 45, 56, 57, 58, 80, 81, 89, 93, 103, 273, 304, 349, 357, 372, 375, 378, 397, 407, 418, 467, 489, 513, 545, 547, 552, 553, 560, 561, 577, 586, 592, 632, 634, 637, 641, 647, 676, 682, 727, 739, 740, 758, 759, 763, 778, 791, 806, 815, 828], "int64": [0, 8, 57, 66, 67, 69, 70, 77, 89, 90, 92, 93, 142, 155, 161, 164, 166, 168, 172, 173, 177, 184, 316, 369, 385, 387, 515, 523, 524, 629, 630, 644, 646, 647, 739, 744, 745, 746, 755, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "proceed": [0, 45], "within": [0, 7, 14, 16, 18, 22, 31, 32, 52, 57, 80, 126, 334, 351, 372, 375, 381, 412, 413, 414, 419, 422, 462, 463, 464, 506, 629, 643, 741, 806, 815, 818, 820, 821, 824, 828, 829, 841, 842, 843, 844, 853, 855, 864, 866, 867, 871], "significantli": [0, 9, 11, 13, 31, 57, 62, 80, 85, 376, 449, 637, 687, 828, 859, 868], "impact": [0, 815, 828, 844, 853, 872], "isnul": 0, "sum": [0, 6, 7, 45, 47, 56, 57, 58, 61, 62, 63, 70, 74, 79, 80, 81, 84, 85, 86, 93, 97, 102, 103, 213, 223, 265, 289, 332, 356, 369, 372, 376, 377, 378, 381, 387, 418, 428, 452, 453, 454, 455, 456, 457, 458, 459, 489, 506, 528, 529, 546, 576, 577, 631, 632, 634, 636, 637, 638, 647, 659, 666, 678, 687, 691, 694, 696, 758, 759, 791, 793, 805, 812, 827, 829, 837, 839, 840, 841, 849, 863, 864, 865, 867], "quickli": [0, 6, 819, 820, 828, 852, 853, 859, 861, 870, 877], "appropri": [0, 6, 11, 22, 26, 27, 29, 31, 32, 58, 67, 72, 90, 95, 223, 240, 247, 273, 334, 351, 372, 632, 644, 744, 812, 818, 819, 820, 833, 838, 844], "either": [0, 14, 26, 27, 36, 37, 38, 39, 43, 49, 56, 57, 58, 61, 70, 74, 79, 80, 81, 84, 85, 112, 115, 118, 123, 133, 134, 144, 220, 221, 222, 223, 228, 238, 240, 241, 243, 245, 247, 254, 255, 261, 262, 263, 264, 265, 273, 282, 284, 285, 287, 290, 291, 337, 359, 372, 375, 381, 387, 397, 407, 417, 418, 422, 506, 523, 524, 544, 564, 572, 573, 581, 601, 626, 628, 629, 632, 634, 636, 637, 640, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 677, 682, 685, 689, 715, 716, 717, 757, 758, 763, 765, 778, 792, 793, 794, 801, 814, 818, 819, 820, 825, 826, 827, 829, 830, 831, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 849, 852, 855, 856, 864, 870], "imput": [0, 57, 80, 376, 434, 445, 451], "remov": [0, 6, 9, 14, 20, 21, 24, 29, 31, 32, 34, 62, 74, 85, 637, 639, 640, 641, 671, 677, 691, 709, 715, 716, 732, 806, 809, 812, 818, 825, 826, 828, 829, 832, 837, 843, 844, 847, 854, 863, 864, 870], "maintain": [0, 69, 92, 646, 753, 756, 812, 819, 820, 823, 835, 840, 842, 843, 844, 859, 869], "integr": [0, 4, 5, 6, 16, 18, 25, 32, 35, 54, 56, 57, 77, 79, 80, 152, 292, 355, 372, 387, 525, 630, 632, 812, 817, 819, 821, 822, 838, 864, 868, 870, 872, 873, 874], "check": [0, 4, 5, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 48, 50, 52, 54, 58, 62, 74, 77, 81, 85, 118, 156, 157, 166, 167, 170, 172, 173, 174, 177, 192, 199, 200, 207, 219, 538, 548, 550, 551, 558, 564, 565, 566, 567, 568, 584, 595, 607, 613, 626, 630, 631, 634, 637, 641, 673, 674, 680, 718, 728, 729, 730, 771, 778, 805, 806, 812, 813, 814, 817, 818, 819, 820, 821, 823, 827, 828, 830, 831, 833, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 851, 852, 853, 856, 863], "A": [0, 6, 31, 32, 46, 53, 54, 57, 58, 64, 66, 70, 71, 74, 77, 79, 80, 81, 84, 85, 87, 89, 91, 94, 97, 98, 103, 122, 123, 125, 132, 140, 147, 153, 194, 213, 275, 277, 281, 313, 324, 328, 330, 331, 332, 334, 348, 351, 355, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 390, 404, 418, 421, 423, 430, 438, 443, 446, 454, 458, 469, 472, 490, 494, 495, 501, 502, 503, 504, 508, 509, 510, 511, 512, 520, 529, 532, 537, 539, 548, 557, 560, 561, 592, 593, 594, 597, 625, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 647, 648, 659, 663, 671, 673, 676, 681, 682, 686, 687, 699, 702, 704, 708, 710, 718, 721, 723, 725, 726, 727, 728, 729, 733, 734, 735, 736, 738, 739, 740, 741, 743, 749, 759, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 791, 806, 810, 812, 817, 818, 819, 822, 827, 829, 830, 833, 836, 837, 841, 842, 844, 849, 852, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 870, 871], "critic": [0, 6, 26, 27, 29, 31, 32, 810, 870, 876], "grasp": [0, 841], "imbal": 0, "common": [0, 22, 25, 31, 35, 56, 57, 74, 79, 179, 250, 258, 339, 346, 372, 630, 632, 813, 816, 818, 819, 826, 829, 830, 831, 837, 838, 841, 845, 847, 855, 859, 867, 870, 877], "scenario": [0, 28, 829, 839], "call": [0, 4, 6, 11, 16, 18, 22, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 38, 45, 49, 57, 72, 77, 80, 95, 97, 103, 122, 172, 173, 213, 376, 387, 443, 529, 580, 586, 601, 617, 618, 620, 628, 631, 634, 635, 637, 641, 685, 718, 724, 728, 729, 773, 784, 792, 793, 794, 796, 801, 806, 810, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 860, 863, 864, 865, 870, 871, 874], "value_count": 0, "see": [0, 4, 5, 6, 7, 9, 10, 11, 13, 14, 23, 24, 29, 31, 32, 33, 34, 38, 43, 44, 50, 51, 54, 56, 57, 62, 67, 68, 70, 71, 73, 79, 80, 85, 90, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 133, 137, 144, 147, 154, 173, 180, 223, 228, 230, 232, 233, 234, 235, 240, 241, 245, 247, 251, 252, 259, 260, 263, 265, 267, 269, 270, 273, 276, 278, 282, 289, 291, 294, 295, 300, 301, 303, 328, 335, 336, 367, 369, 372, 376, 377, 378, 426, 454, 492, 626, 629, 630, 632, 637, 644, 645, 647, 648, 668, 680, 683, 686, 693, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 788, 812, 813, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 841, 842, 844, 847, 849, 851, 852, 855, 859, 866, 878], "instanc": [0, 6, 14, 22, 28, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 587, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 784, 789, 810, 818, 819, 820, 823, 824, 825, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 844, 852, 853, 854, 857, 863, 871], "typic": [0, 6, 57, 80, 334, 351, 372, 387, 522, 646, 755, 792, 823, 837, 869, 877], "repres": [0, 53, 56, 57, 61, 62, 79, 80, 84, 85, 100, 125, 139, 141, 164, 222, 223, 226, 229, 238, 240, 247, 273, 286, 290, 291, 316, 330, 331, 332, 349, 366, 369, 372, 374, 375, 376, 377, 378, 381, 382, 385, 418, 422, 436, 450, 452, 457, 484, 495, 501, 502, 503, 508, 514, 521, 557, 628, 629, 630, 632, 634, 636, 637, 659, 660, 661, 675, 682, 685, 686, 778, 791, 795, 806, 819, 824, 829, 847, 851, 867, 868, 871], "ones": [0, 6, 22, 29, 31, 43, 49, 53, 57, 59, 61, 66, 74, 76, 80, 84, 89, 132, 136, 141, 143, 149, 199, 200, 236, 313, 369, 387, 531, 615, 629, 631, 632, 635, 636, 654, 655, 739, 740, 741, 777, 812, 818, 824, 828, 831, 836, 837, 843, 844, 851, 852, 870], "how": [0, 3, 4, 5, 6, 8, 11, 13, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 43, 46, 49, 50, 51, 56, 57, 73, 79, 80, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 240, 273, 291, 295, 300, 301, 303, 367, 377, 378, 452, 467, 492, 493, 626, 632, 788, 791, 792, 793, 794, 812, 813, 814, 816, 817, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, 859, 861, 866, 870], "approach": [0, 36, 816, 818, 819, 820, 824, 827, 829, 830, 834, 837, 841, 844, 845, 847, 851, 852, 855, 867, 874, 876], "legit": 0, "284315": 0, "492": 0, "name": [0, 1, 6, 9, 11, 31, 32, 43, 45, 46, 47, 57, 62, 68, 72, 80, 85, 91, 95, 247, 375, 376, 378, 423, 429, 438, 494, 498, 535, 536, 632, 634, 637, 645, 672, 673, 684, 685, 687, 688, 692, 749, 750, 751, 773, 777, 784, 794, 801, 802, 804, 810, 818, 819, 820, 825, 826, 827, 828, 831, 832, 833, 836, 841, 842, 844, 845, 846, 847, 849, 852, 854, 870, 878], "highli": [0, 46, 812, 818, 870], "imbalanc": 0, "normal": [0, 2, 4, 6, 7, 9, 12, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 57, 65, 66, 80, 88, 89, 97, 98, 359, 372, 375, 381, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 501, 502, 503, 504, 505, 506, 507, 522, 525, 639, 642, 643, 700, 710, 737, 738, 740, 791, 792, 795, 812, 818, 840, 841, 847, 852, 863, 865, 868], "unifi": [0, 20, 21, 22, 24, 25, 31, 34, 35, 39, 46, 74, 213, 631, 821, 822, 823, 824, 828, 829, 833, 838, 839, 841, 847, 849, 855, 858, 860, 862, 864, 866, 867, 868, 870, 874, 877], "write": [0, 20, 21, 31, 32, 43, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 350, 352, 353, 354, 355, 358, 359, 360, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 426, 427, 435, 436, 438, 441, 442, 443, 444, 450, 453, 454, 455, 456, 458, 459, 468, 469, 472, 473, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 774, 812, 817, 818, 820, 822, 823, 825, 826, 828, 829, 831, 832, 833, 837, 840, 842, 845, 849, 851, 854, 861, 870, 877], "code": [0, 1, 5, 6, 11, 12, 13, 20, 21, 28, 29, 31, 33, 34, 35, 36, 37, 38, 45, 46, 55, 56, 74, 78, 79, 103, 214, 260, 387, 529, 538, 546, 547, 562, 576, 580, 595, 631, 634, 636, 637, 639, 658, 679, 680, 681, 710, 810, 812, 815, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 875, 876, 877], "agnost": [0, 20, 21, 22, 23, 31, 32, 33, 37, 43, 812, 824, 829, 836, 849, 851, 854, 855, 876, 877], "underli": [0, 22, 31, 32, 43, 57, 64, 80, 87, 100, 230, 233, 235, 270, 377, 378, 457, 474, 632, 637, 639, 685, 706, 827, 840, 847, 863, 870], "deep": [0, 6, 22, 29, 31, 43, 74, 545, 634, 812, 813, 814, 817, 818, 820, 823, 826, 827, 829, 835, 839, 842, 848, 851, 852, 859, 868, 870, 873, 874, 876, 877], "develop": [0, 6, 7, 16, 30, 31, 32, 812, 813, 814, 815, 816, 817, 818, 819, 820, 823, 826, 828, 834, 843, 845, 855, 857, 859, 860, 861, 863, 864, 868, 869, 870, 871, 872, 875, 876, 877], "ar": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 49, 52, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 97, 98, 102, 103, 126, 136, 138, 141, 147, 201, 206, 208, 213, 237, 239, 240, 243, 247, 268, 269, 273, 278, 279, 283, 285, 290, 291, 292, 328, 330, 331, 332, 334, 337, 339, 340, 341, 345, 346, 351, 356, 359, 363, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 391, 392, 398, 399, 400, 401, 404, 409, 411, 419, 420, 429, 430, 434, 444, 445, 447, 451, 452, 453, 457, 458, 462, 463, 464, 474, 475, 476, 478, 484, 487, 491, 492, 501, 503, 508, 509, 510, 511, 512, 522, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 548, 554, 559, 563, 574, 575, 584, 595, 607, 617, 629, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 659, 660, 661, 663, 666, 668, 672, 673, 674, 677, 678, 680, 683, 684, 687, 688, 692, 693, 694, 699, 700, 703, 707, 709, 719, 724, 729, 730, 731, 739, 740, 741, 744, 745, 746, 747, 749, 751, 771, 773, 776, 777, 778, 779, 784, 791, 794, 797, 798, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 870, 871, 872, 873, 874, 875, 876, 877, 878], "tensorflow": [0, 3, 9, 10, 13, 15, 16, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 49, 56, 57, 58, 79, 80, 147, 194, 209, 224, 328, 369, 376, 430, 595, 629, 631, 634, 771, 784, 801, 812, 816, 817, 818, 819, 820, 823, 828, 829, 830, 834, 836, 840, 841, 842, 844, 845, 847, 849, 854, 855, 857, 860, 861, 864, 865, 867, 868, 871, 873, 874, 876, 877], "pytorch": [0, 3, 4, 5, 8, 9, 11, 12, 15, 17, 18, 20, 21, 29, 31, 32, 43, 50, 283, 335, 336, 372, 632, 796, 812, 817, 818, 824, 829, 830, 833, 836, 837, 840, 841, 842, 847, 849, 854, 855, 857, 860, 861, 863, 864, 867, 871, 873, 874, 876, 877], "flexibl": [0, 812, 827, 829, 836, 839, 845, 847, 870], "particularli": [0, 820, 852, 855, 863, 868], "research": [0, 6, 31, 32, 45, 812, 859, 864, 870, 877], "where": [0, 1, 11, 24, 28, 34, 35, 39, 47, 53, 56, 57, 58, 62, 64, 66, 67, 70, 71, 74, 76, 79, 80, 81, 85, 87, 89, 90, 93, 94, 97, 98, 135, 136, 139, 141, 147, 228, 238, 240, 243, 245, 247, 248, 257, 262, 263, 264, 271, 272, 273, 278, 280, 284, 286, 290, 300, 302, 328, 330, 331, 332, 347, 351, 358, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 389, 390, 391, 392, 398, 403, 404, 408, 423, 429, 430, 434, 435, 437, 438, 445, 451, 452, 453, 462, 463, 464, 478, 484, 501, 502, 503, 506, 508, 509, 511, 512, 522, 530, 531, 532, 562, 576, 614, 629, 632, 634, 636, 637, 639, 641, 643, 644, 647, 648, 661, 663, 668, 672, 673, 678, 680, 682, 683, 684, 687, 688, 691, 693, 699, 701, 702, 704, 710, 714, 722, 729, 738, 739, 740, 741, 746, 747, 762, 764, 766, 767, 768, 776, 791, 795, 806, 810, 812, 813, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 861, 863, 868, 877], "abil": [0, 819, 847, 850, 855, 870], "switch": [0, 31, 43, 784, 825, 833, 837, 838, 877], "differ": [0, 4, 5, 6, 9, 11, 13, 14, 16, 20, 21, 25, 26, 27, 31, 32, 35, 36, 37, 38, 56, 57, 58, 62, 70, 74, 80, 81, 93, 102, 103, 112, 115, 165, 223, 240, 247, 248, 273, 289, 334, 341, 346, 347, 351, 372, 375, 376, 378, 387, 409, 420, 445, 451, 468, 475, 476, 490, 523, 524, 532, 552, 553, 626, 630, 632, 634, 636, 637, 639, 647, 659, 660, 675, 685, 700, 710, 757, 758, 763, 765, 766, 771, 776, 784, 793, 794, 812, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 873, 876, 877], "without": [0, 1, 4, 14, 34, 43, 47, 50, 68, 74, 100, 586, 601, 634, 639, 641, 645, 706, 719, 749, 750, 751, 752, 776, 779, 805, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 836, 837, 841, 844, 845, 847, 851, 852, 853, 855, 863, 867, 870, 871, 872, 876], "chang": [0, 4, 5, 14, 22, 32, 45, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 632, 639, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 818, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 834, 835, 841, 842, 843, 844, 845, 846, 847, 849, 853, 855, 856, 861, 863, 873, 876], "codebas": [0, 6, 31, 32, 211, 212, 631, 813, 815, 822, 829, 835, 840, 841, 843, 844, 845, 848, 861], "signific": [0, 14, 57, 377, 457, 846, 855, 859, 860, 870], "advantag": [0, 6, 29, 31, 32, 812, 819, 820, 829, 840, 841, 856, 864, 870], "effect": [0, 6, 37, 53, 57, 59, 70, 80, 82, 93, 139, 377, 411, 456, 615, 623, 629, 635, 636, 647, 663, 764, 766, 776, 779, 818, 824, 827, 828, 832, 836, 840, 842, 847, 855, 860], "analyz": [0, 818, 857], "done": [0, 45, 47, 50, 637, 674, 817, 818, 819, 820, 823, 826, 828, 830, 831, 834, 835, 840, 841, 844, 852, 863, 864, 870], "two": [0, 25, 35, 37, 43, 53, 57, 62, 68, 80, 81, 85, 102, 103, 123, 126, 132, 139, 145, 146, 147, 178, 186, 234, 248, 249, 283, 328, 329, 334, 347, 348, 350, 351, 353, 355, 362, 369, 372, 375, 376, 377, 378, 387, 404, 427, 428, 429, 438, 443, 452, 454, 458, 463, 484, 490, 494, 522, 532, 537, 628, 629, 630, 632, 634, 636, 637, 639, 645, 661, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 711, 749, 750, 751, 752, 776, 778, 784, 792, 818, 819, 823, 824, 829, 830, 831, 832, 837, 841, 842, 844, 847, 848, 852, 854, 861, 867, 875], "distinct": [0, 57, 68, 80, 330, 331, 332, 369, 645, 749, 750, 751, 752, 815, 819, 827, 832, 839, 840, 841, 848, 860, 870], "one": [0, 4, 6, 11, 13, 16, 18, 20, 21, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 49, 53, 57, 58, 61, 62, 64, 67, 68, 70, 74, 76, 79, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 97, 126, 129, 139, 141, 142, 143, 153, 155, 213, 234, 240, 247, 248, 265, 271, 272, 273, 292, 302, 312, 315, 316, 334, 340, 343, 344, 347, 348, 351, 352, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 397, 399, 403, 404, 407, 408, 411, 419, 424, 426, 435, 444, 458, 462, 463, 464, 468, 474, 475, 476, 481, 483, 488, 491, 501, 502, 503, 508, 513, 523, 524, 527, 528, 529, 530, 531, 532, 534, 572, 576, 577, 579, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 647, 650, 651, 652, 653, 654, 655, 658, 675, 677, 678, 682, 684, 693, 694, 702, 703, 704, 707, 709, 713, 737, 744, 747, 749, 750, 751, 752, 757, 759, 776, 778, 795, 798, 801, 806, 809, 812, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 846, 847, 848, 851, 852, 854, 855, 856, 857, 860, 861, 864, 870, 871, 873, 876], "anoth": [0, 4, 22, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 133, 153, 155, 629, 630, 812, 818, 819, 820, 825, 827, 829, 830, 833, 835, 837, 840, 841, 844, 849, 851, 854, 857, 860, 862, 863, 864, 870, 876], "characterist": [0, 826], "clear": [0, 14, 195, 631, 818, 820, 825, 829, 830, 831, 841, 847, 849, 851, 859, 860, 861, 870], "print": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 18, 22, 23, 25, 29, 31, 32, 33, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 166, 167, 170, 172, 173, 175, 180, 192, 193, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 211, 212, 214, 215, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 305, 306, 307, 309, 310, 311, 313, 320, 321, 328, 330, 334, 335, 336, 338, 353, 354, 359, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 402, 404, 407, 409, 412, 413, 414, 417, 419, 420, 425, 428, 430, 432, 433, 443, 450, 453, 454, 455, 456, 457, 458, 459, 465, 467, 469, 480, 484, 489, 490, 492, 493, 494, 496, 500, 504, 505, 507, 522, 523, 524, 525, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 572, 573, 575, 576, 577, 581, 582, 583, 586, 589, 590, 591, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 805, 806, 810, 812, 819, 820, 827, 829, 831, 842, 844, 846, 849, 851, 852, 853, 863, 865], "shape": [0, 4, 5, 8, 9, 14, 16, 18, 24, 25, 26, 27, 31, 32, 37, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 101, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 208, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 360, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 424, 425, 426, 427, 429, 430, 431, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 465, 467, 469, 472, 477, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 540, 541, 545, 546, 547, 549, 552, 553, 556, 562, 569, 576, 577, 587, 596, 598, 610, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 776, 778, 791, 792, 795, 805, 810, 812, 820, 821, 827, 829, 830, 831, 832, 833, 834, 836, 840, 841, 842, 844, 845, 846, 849, 851, 852, 853, 854, 863, 864], "gain": [0, 14, 791, 820, 821, 823, 848, 853, 870], "descript": [0, 1, 2, 40, 41, 42, 47, 50, 53, 56, 57, 62, 79, 80, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 832, 839, 840], "describ": [0, 7, 57, 70, 80, 98, 223, 240, 241, 273, 276, 278, 377, 382, 385, 457, 512, 515, 632, 636, 647, 663, 759, 763, 765, 814, 815, 818, 819, 820, 826, 828, 840, 841, 844, 849, 854, 870], "obtain": [0, 31, 32, 50, 57, 80, 319, 369, 375, 415, 636, 663, 778, 841, 863], "mean": [0, 4, 6, 7, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 47, 57, 58, 61, 63, 64, 66, 70, 72, 74, 76, 80, 81, 84, 86, 87, 89, 93, 95, 97, 134, 213, 330, 340, 369, 372, 375, 376, 377, 378, 381, 382, 387, 404, 409, 427, 440, 452, 453, 454, 455, 456, 457, 458, 459, 469, 474, 484, 501, 503, 509, 528, 529, 546, 617, 618, 620, 625, 629, 631, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 651, 653, 654, 655, 657, 658, 659, 670, 696, 697, 698, 706, 715, 716, 717, 724, 739, 740, 776, 778, 779, 791, 792, 795, 812, 819, 820, 822, 823, 825, 827, 829, 830, 831, 837, 839, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 864, 865, 867, 870], "deviat": [0, 65, 66, 70, 88, 89, 93, 642, 643, 647, 737, 740, 764, 778, 791, 795, 823, 861], "minimum": [0, 45, 56, 57, 58, 64, 67, 70, 79, 80, 81, 87, 90, 93, 220, 248, 275, 299, 331, 335, 336, 346, 367, 369, 372, 378, 387, 484, 520, 524, 530, 582, 583, 592, 593, 605, 606, 632, 634, 639, 644, 647, 699, 745, 760, 762, 776, 778, 779, 784, 829, 846, 867, 873, 877], "maximum": [0, 56, 57, 58, 59, 64, 67, 70, 74, 79, 80, 81, 82, 87, 90, 93, 103, 213, 299, 335, 336, 347, 360, 367, 372, 375, 376, 378, 387, 391, 392, 402, 445, 448, 451, 484, 523, 525, 530, 540, 541, 549, 557, 621, 631, 632, 634, 635, 637, 639, 644, 647, 678, 699, 744, 745, 760, 762, 776, 778, 779, 784, 806, 820, 829, 831, 840, 852, 867, 877], "quartil": 0, "overview": [0, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 826, 828, 842, 844, 848], "instrument": 0, "unusu": 0, "might": [0, 6, 7, 12, 37, 58, 98, 179, 544, 630, 634, 816, 818, 819, 820, 828, 829, 831, 834, 835, 838, 841, 844, 845, 847, 849, 851, 852, 857], "indic": [0, 4, 12, 53, 57, 58, 61, 62, 64, 65, 67, 68, 69, 74, 76, 77, 80, 81, 84, 85, 87, 88, 90, 91, 92, 97, 100, 127, 128, 141, 145, 147, 168, 172, 173, 284, 328, 329, 330, 349, 369, 372, 375, 376, 377, 378, 383, 385, 394, 395, 396, 398, 402, 403, 404, 408, 409, 412, 413, 414, 415, 419, 420, 430, 451, 454, 462, 463, 464, 467, 470, 472, 474, 475, 476, 479, 483, 489, 490, 492, 493, 494, 496, 498, 499, 513, 514, 515, 537, 552, 553, 555, 576, 577, 581, 614, 617, 618, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 650, 652, 653, 654, 655, 658, 663, 680, 694, 702, 703, 704, 706, 707, 708, 709, 711, 713, 718, 721, 723, 725, 726, 727, 729, 733, 734, 735, 736, 737, 738, 744, 745, 746, 747, 749, 751, 753, 755, 756, 773, 774, 776, 778, 792, 798, 805, 806, 808, 819, 828, 836, 839, 841, 854, 863], "000000": 0, "291022": 0, "std": [0, 4, 6, 7, 11, 12, 13, 14, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 46, 61, 66, 70, 84, 89, 93, 382, 509, 636, 643, 647, 651, 653, 654, 655, 657, 658, 739, 740, 812, 831, 865, 867], "250": 0, "105092": 0, "min": [0, 43, 47, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 145, 147, 165, 168, 272, 328, 331, 336, 369, 372, 376, 378, 430, 489, 530, 546, 576, 577, 592, 629, 630, 632, 634, 637, 647, 678, 684, 687, 688, 694, 812, 867], "650000": 0, "75": [0, 4, 7, 8, 43, 56, 57, 79, 80, 81, 84, 89, 119, 137, 226, 228, 240, 242, 253, 315, 348, 349, 369, 372, 418, 532, 547, 560, 592, 626, 629, 632, 634, 637, 641, 643, 650, 676, 682, 726, 741], "050000": 0, "max": [0, 43, 45, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 165, 168, 271, 335, 372, 375, 376, 377, 378, 394, 395, 396, 412, 413, 414, 415, 417, 419, 430, 452, 489, 491, 492, 540, 541, 546, 562, 576, 577, 630, 632, 634, 637, 647, 678, 680, 683, 776, 792, 796, 828, 841, 867], "25691": 0, "160000": 0, "reveal": 0, "outlier": [0, 844], "receiv": [0, 6, 45, 49, 97, 536, 572, 634, 640, 715, 716, 717, 792, 810, 815, 819, 820, 829, 830, 844, 847], "anomali": 0, "financi": 0, "behavior": [0, 4, 8, 57, 68, 240, 247, 273, 282, 388, 533, 580, 604, 632, 634, 645, 749, 750, 751, 752, 818, 826, 827, 828, 829, 840, 841, 842, 844, 847, 849, 855, 867], "associ": [0, 12, 57, 62, 80, 85, 223, 273, 378, 387, 461, 525, 632, 637, 680, 683, 695, 773, 820, 829, 837, 838, 841, 842, 844, 855], "122": [0, 13, 54, 168, 238, 632], "211321": 0, "256": [0, 4, 8, 12, 56, 81, 283, 284, 593, 636, 651, 653, 776], "683288": 0, "250000": 0, "105": [0, 62, 84, 636, 637, 659, 660, 675, 682], "890000": 0, "2125": 0, "870000": 0, "deepen": 0, "averag": [0, 6, 7, 45, 47, 57, 59, 63, 80, 82, 86, 375, 377, 381, 387, 389, 390, 394, 395, 396, 454, 455, 456, 457, 458, 459, 506, 522, 615, 616, 621, 635, 636, 638, 640, 663, 696, 715, 716, 791, 792], "across": [0, 1, 12, 13, 14, 26, 27, 28, 29, 43, 57, 67, 74, 80, 81, 90, 102, 211, 212, 240, 247, 273, 291, 377, 381, 452, 503, 506, 537, 558, 594, 631, 632, 634, 636, 641, 644, 659, 663, 724, 744, 745, 792, 818, 823, 829, 831, 833, 836, 837, 839, 844, 847, 868, 870, 875], "all": [0, 1, 2, 4, 5, 6, 7, 8, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 44, 45, 47, 48, 50, 52, 53, 57, 58, 61, 62, 64, 66, 71, 72, 74, 75, 76, 79, 80, 81, 84, 85, 87, 89, 94, 95, 97, 98, 126, 134, 141, 145, 146, 147, 201, 208, 240, 244, 272, 273, 328, 329, 341, 360, 369, 372, 375, 376, 377, 378, 387, 409, 418, 420, 421, 422, 430, 435, 445, 446, 448, 451, 452, 473, 484, 492, 498, 528, 534, 537, 554, 574, 575, 592, 599, 600, 614, 617, 629, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 648, 659, 662, 663, 668, 680, 685, 686, 689, 694, 703, 707, 709, 715, 716, 717, 718, 719, 720, 729, 730, 731, 732, 738, 741, 746, 771, 773, 776, 777, 778, 779, 791, 792, 798, 801, 806, 808, 810, 812, 813, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 876, 877, 878], "group": [0, 6, 57, 80, 378, 381, 498, 502, 636, 641, 649, 656, 657, 720, 810, 821, 823, 827, 829, 837, 841, 842, 866, 869, 875], "calcul": [0, 4, 14, 45, 56, 57, 58, 63, 70, 74, 79, 80, 81, 85, 86, 93, 103, 220, 221, 222, 223, 224, 225, 226, 227, 228, 237, 238, 240, 243, 244, 245, 261, 262, 263, 264, 265, 266, 271, 272, 273, 278, 285, 286, 287, 289, 290, 291, 297, 307, 335, 336, 349, 359, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 430, 452, 457, 484, 501, 503, 529, 569, 632, 634, 637, 638, 647, 674, 682, 685, 696, 697, 698, 760, 761, 762, 763, 764, 765, 766, 776, 778, 791, 792, 795, 818, 832, 849, 860, 863], "pictur": [0, 47, 812, 818, 849, 859], "vital": [0, 854, 859], "select": [0, 22, 31, 36, 49, 57, 70, 80, 93, 376, 378, 387, 430, 443, 492, 493, 496, 523, 524, 647, 757, 758, 818, 819, 820, 828, 834, 840, 844, 849, 851, 854, 855, 870, 873, 874], "guid": [0, 16, 29, 812, 813, 818, 819, 820, 826, 835, 841, 843, 876], "recogn": [0, 47, 815, 821], "both": [0, 6, 9, 11, 12, 13, 14, 16, 18, 26, 28, 31, 32, 36, 37, 44, 46, 53, 56, 57, 58, 61, 62, 76, 79, 80, 81, 84, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 178, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 339, 341, 346, 351, 369, 372, 375, 376, 378, 382, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 478, 484, 492, 495, 496, 508, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 625, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 792, 812, 816, 818, 820, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 847, 849, 851, 852, 853, 854, 855, 863, 864, 870, 873, 875, 876, 877], "groupbi": 0, "94838": 0, "202258": 0, "008258": 0, "006271": 0, "012171": 0, "007860": 0, "005453": 0, "002419": 0, "009637": 0, "000987": 0, "004467": 0, "000644": 0, "001235": [0, 47], "000024": 0, "000070": 0, "000182": 0, "000072": 0, "000089": 0, "000295": 0, "000131": 0, "80746": 0, "806911": 0, "771948": 0, "623778": 0, "033281": 0, "542029": 0, "151225": 0, "397737": 0, "568731": 0, "570636": 0, "581123": 0, "372319": 0, "713588": 0, "014049": 0, "040308": 0, "105130": 0, "041449": 0, "051648": 0, "170575": 0, "075667": 0, "In": [0, 3, 4, 5, 6, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 50, 55, 57, 58, 64, 78, 80, 81, 87, 97, 98, 207, 214, 215, 219, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 378, 381, 399, 400, 401, 421, 462, 463, 464, 470, 472, 474, 475, 476, 477, 479, 483, 489, 490, 499, 501, 503, 535, 555, 562, 580, 631, 632, 634, 637, 639, 643, 685, 702, 703, 704, 706, 708, 709, 711, 713, 741, 812, 818, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 854, 855, 859, 861, 863, 864, 865, 866, 868, 870, 871, 873, 876], "outnumb": 0, "address": [0, 31, 32, 57, 58, 80, 378, 492, 599, 634, 818, 820, 823, 824, 836, 843, 849, 861, 866, 868, 870, 876], "fair": 0, "dure": [0, 11, 13, 24, 26, 31, 34, 36, 37, 55, 59, 70, 74, 78, 82, 93, 214, 375, 399, 400, 401, 580, 601, 615, 616, 621, 631, 634, 635, 636, 637, 640, 647, 659, 677, 715, 716, 717, 764, 766, 784, 795, 796, 810, 819, 827, 829, 830, 833, 837, 838, 840, 841, 842, 843, 844, 847, 855, 863, 870, 871, 876], "similar": [0, 1, 6, 22, 31, 32, 57, 282, 377, 452, 632, 636, 663, 792, 816, 818, 819, 827, 828, 829, 830, 833, 834, 835, 837, 838, 839, 841, 842, 844, 845, 852, 855, 859, 864, 866, 867, 868, 869, 876], "here": [0, 2, 4, 6, 7, 9, 14, 17, 19, 22, 27, 30, 31, 32, 43, 45, 46, 47, 48, 50, 80, 283, 459, 632, 812, 816, 817, 818, 819, 820, 823, 825, 826, 827, 828, 829, 831, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 849, 850, 851, 852, 853, 854, 855, 863, 864, 865, 870, 871, 878], "take": [0, 4, 6, 12, 22, 29, 31, 32, 37, 43, 45, 48, 57, 62, 64, 70, 80, 87, 97, 122, 123, 125, 141, 280, 287, 302, 367, 375, 376, 378, 395, 403, 408, 413, 423, 432, 446, 467, 474, 493, 523, 524, 628, 629, 632, 636, 637, 639, 640, 663, 677, 681, 706, 717, 757, 776, 784, 791, 792, 805, 810, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 837, 840, 841, 842, 844, 847, 849, 851, 853, 854, 855, 856, 861, 863, 864, 867, 868, 876], "random": [0, 6, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 45, 47, 48, 57, 61, 74, 80, 84, 323, 324, 325, 326, 327, 369, 376, 377, 434, 445, 451, 457, 508, 509, 510, 511, 512, 636, 659, 738, 739, 740, 741, 742, 743, 776, 778, 791, 805, 806, 812, 818, 830, 842, 844, 845, 854, 864, 865, 870], "match": [0, 1, 54, 57, 74, 77, 80, 152, 247, 282, 339, 341, 372, 375, 377, 378, 420, 452, 467, 489, 493, 572, 630, 632, 634, 637, 673, 674, 678, 694, 771, 816, 818, 824, 826, 827, 831, 834, 842, 871, 876], "prevent": [0, 57, 59, 70, 80, 82, 93, 377, 457, 557, 615, 616, 621, 634, 635, 636, 647, 659, 761, 765, 791, 796, 818, 820, 828, 829, 833, 840, 841, 845], "being": [0, 6, 7, 9, 31, 32, 43, 57, 74, 80, 95, 102, 106, 126, 376, 378, 440, 468, 484, 586, 629, 634, 636, 637, 661, 674, 773, 779, 791, 812, 819, 820, 823, 824, 825, 827, 829, 830, 831, 834, 836, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 860, 861, 866, 868, 869, 870, 871, 876, 877], "bias": [0, 636, 661], "toward": [0, 57, 64, 80, 87, 247, 294, 345, 357, 372, 378, 387, 490, 525, 632, 639, 707, 812, 816, 818, 819, 834, 849, 866, 870], "legit_sampl": 0, "n": [0, 14, 43, 46, 47, 48, 50, 53, 56, 57, 61, 62, 64, 66, 67, 70, 71, 79, 80, 84, 85, 87, 89, 90, 93, 94, 97, 102, 139, 145, 146, 147, 220, 290, 292, 328, 329, 341, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 397, 398, 403, 404, 407, 408, 409, 417, 418, 419, 420, 422, 430, 431, 438, 442, 444, 446, 451, 452, 464, 470, 473, 477, 479, 490, 499, 501, 502, 503, 506, 508, 509, 510, 511, 512, 515, 522, 532, 629, 632, 636, 637, 639, 641, 643, 644, 647, 648, 649, 650, 651, 652, 654, 656, 658, 663, 668, 671, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 688, 691, 692, 693, 694, 701, 702, 704, 710, 714, 726, 739, 740, 741, 747, 761, 763, 764, 765, 766, 767, 768, 792, 795, 805, 812, 822, 826, 828, 844, 856, 864], "after": [0, 4, 5, 8, 9, 11, 12, 13, 31, 32, 46, 57, 58, 59, 61, 65, 74, 80, 81, 82, 84, 88, 186, 287, 304, 308, 357, 367, 372, 375, 376, 378, 398, 399, 400, 401, 418, 422, 443, 473, 484, 562, 616, 619, 621, 622, 623, 630, 632, 634, 635, 636, 641, 642, 649, 650, 651, 652, 654, 656, 658, 659, 729, 737, 796, 801, 812, 818, 819, 820, 823, 825, 826, 828, 829, 831, 833, 836, 839, 842, 844, 848, 856, 863, 864, 870], "combin": [0, 14, 37, 57, 74, 80, 103, 375, 387, 409, 420, 522, 550, 551, 634, 637, 668, 677, 820, 824, 827, 828, 829, 831, 833, 837, 844, 854, 870], "them": [0, 3, 4, 11, 13, 16, 18, 20, 31, 32, 37, 376, 446, 539, 575, 634, 776, 792, 812, 814, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 833, 835, 838, 840, 841, 842, 844, 846, 849, 851, 852, 853, 855, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 868, 870, 872, 876], "achiev": [0, 11, 13, 14, 31, 812, 813, 815, 821, 828, 829, 837, 838, 844, 847, 852, 854, 857], "concaten": [0, 43, 57, 58, 64, 80, 85, 378, 469, 545, 549, 634, 636, 639, 663, 682, 700, 776, 842, 847, 849, 852], "along": [0, 46, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 92, 93, 94, 97, 98, 100, 113, 117, 122, 137, 138, 213, 287, 290, 292, 330, 331, 332, 335, 336, 340, 341, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 397, 403, 404, 407, 408, 409, 419, 420, 445, 456, 469, 470, 471, 473, 475, 476, 484, 489, 492, 494, 496, 504, 505, 506, 507, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 628, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 646, 647, 648, 668, 682, 691, 693, 694, 696, 697, 698, 700, 703, 704, 705, 707, 708, 710, 712, 713, 715, 716, 717, 743, 744, 745, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 792, 812, 818, 821, 822, 831, 840, 843, 845, 847, 849, 870], "axi": [0, 4, 6, 7, 8, 14, 46, 47, 48, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 113, 117, 137, 138, 141, 213, 287, 292, 335, 336, 340, 341, 349, 356, 372, 375, 377, 378, 381, 385, 387, 397, 398, 404, 407, 409, 419, 420, 456, 461, 469, 470, 471, 474, 475, 476, 479, 484, 489, 490, 492, 493, 494, 496, 498, 499, 504, 505, 507, 515, 520, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 614, 626, 629, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 646, 647, 648, 658, 668, 671, 678, 691, 693, 694, 696, 697, 698, 700, 701, 702, 703, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 743, 744, 745, 749, 751, 753, 754, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 793, 798, 827, 829, 831, 833, 836, 837, 840, 841, 844, 847, 849, 851, 854], "result": [0, 1, 4, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 31, 32, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 180, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 432, 433, 435, 436, 440, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 461, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 557, 562, 569, 576, 577, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 721, 724, 725, 727, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 778, 784, 798, 806, 810, 812, 816, 818, 820, 823, 824, 826, 827, 828, 829, 831, 832, 834, 836, 837, 839, 840, 841, 842, 844, 845, 849, 852, 855, 863, 864, 865, 871, 873], "new_dataset": 0, "now": [0, 1, 5, 6, 7, 9, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 47, 792, 793, 794, 812, 819, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 838, 841, 842, 844, 845, 847, 851, 852, 854, 855, 861, 863, 864, 865, 870], "equal": [0, 5, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 70, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 98, 102, 103, 132, 134, 135, 136, 142, 143, 152, 232, 234, 238, 243, 245, 254, 255, 276, 278, 283, 286, 287, 291, 330, 331, 332, 334, 351, 369, 372, 375, 376, 378, 381, 387, 398, 419, 446, 470, 479, 492, 496, 499, 504, 505, 507, 525, 534, 537, 614, 629, 630, 632, 634, 637, 638, 639, 643, 644, 645, 646, 647, 671, 679, 680, 683, 685, 691, 696, 699, 701, 706, 708, 714, 741, 747, 749, 750, 751, 752, 753, 756, 761, 763, 764, 765, 766, 784, 791, 792, 826, 827, 829, 831, 833, 842, 844, 867], "unbias": [0, 57, 70, 80, 93, 387, 522, 647, 766], "concat": [0, 8, 43, 48, 58, 64, 74, 87, 213, 549, 631, 634, 639, 714, 842, 847, 849, 863], "65908": 0, "51801": 0, "519205": 0, "852437": 0, "191664": 0, "749435": 0, "639186": 0, "666758": 0, "310037": 0, "116659": 0, "554879": 0, "207139": 0, "748058": 0, "229554": 0, "272256": 0, "304838": 0, "251128": 0, "131252": 0, "036799": 0, "195557": 0, "131120": 0, "102139": 0, "442451": 0, "887016": 0, "579461": 0, "325601": 0, "615304": 0, "621226": 0, "291374": 0, "236204": 0, "557458": 0, "159454": 0, "710631": 0, "429388": 0, "234335": 0, "787399": 0, "300106": 0, "108052": 0, "614": 0, "53744": 0, "46126": 0, "823696": 0, "028978": 0, "698815": 0, "498501": 0, "813862": 0, "788743": 0, "279106": 0, "488737": 0, "885320": 0, "300256": 0, "715811": 0, "186151": 0, "132502": 0, "385279": 0, "634010": 0, "231485": 0, "096003": 0, "98": [0, 43, 51, 57, 59, 66, 73, 79, 82, 89, 113, 238, 286, 360, 372, 619, 626, 635, 637, 641, 644, 647, 682, 719, 730, 739, 741, 748, 759, 878], "224892": 0, "144011": 0, "802980": 0, "264517": 0, "123151": 0, "302386": 0, "758015": 0, "307608": 0, "405042": 0, "111496": 0, "265297": 0, "260045": 0, "499437": 0, "056524": 0, "534144": 0, "206880": 0, "386490": 0, "001905": 0, "026937": 0, "172": [0, 279, 632], "03": [0, 6, 14, 27, 46, 53, 56, 58, 59, 79, 80, 82, 89, 138, 238, 263, 343, 344, 592, 593, 616, 621, 629, 632, 634, 635, 637, 676, 740], "55713": 0, "47085": 0, "738160": 0, "575518": 0, "551978": 0, "894729": 0, "839781": 0, "083335": 0, "779428": 0, "083990": 0, "568542": 0, "554234": 0, "707282": 0, "924631": 0, "076400": 0, "157681": 0, "914957": 0, "266566": 0, "168184": 0, "1025": [0, 776], "279863": 0, "169142": 0, "927883": 0, "125653": 0, "518331": 0, "749293": 0, "566487": 0, "010494": 0, "882850": 0, "697211": 0, "064945": 0, "778584": 0, "319189": 0, "639419": 0, "294885": 0, "537503": 0, "788395": 0, "292680": 0, "147968": 0, "390": [0, 13, 26, 27, 28, 29], "280143": 0, "169347": 0, "378559": 0, "289381": 0, "004247": 0, "411850": 0, "442581": 0, "326536": 0, "413170": 0, "248525": 0, "127396": 0, "370612": 0, "028234": 0, "145640": 0, "081049": 0, "521875": 0, "739467": 0, "389152": 0, "186637": 0, "76": [0, 14, 24, 43, 56, 57, 70, 77, 79, 80, 89, 168, 222, 238, 286, 322, 369, 407, 630, 632, 637, 641, 647, 689, 726, 740, 759], "280149": 0, "169351": 0, "676143": 0, "126366": 0, "213700": 0, "468308": 0, "120541": 0, "003346": 0, "234739": 0, "210158": 0, "652250": 0, "751826": 0, "834108": 0, "190944": 0, "032070": 0, "739695": 0, "471111": 0, "385107": 0, "194361": 0, "89": [0, 5, 14, 43, 56, 66, 77, 79, 80, 89, 103, 168, 235, 630, 637, 647, 689, 740, 741, 765], "281144": 0, "169966": 0, "113832": 0, "585864": 0, "399730": 0, "817092": 0, "840618": 0, "943548": 0, "208002": 0, "058733": 0, "632333": 0, "583276": 0, "269209": 0, "456108": 0, "183659": 0, "328168": 0, "606116": 0, "884876": 0, "253700": 0, "245": [0, 56, 84, 228, 636, 659, 660], "281674": 0, "170348": 0, "991976": 0, "158476": 0, "583441": 0, "408670": 0, "151147": 0, "096695": 0, "223050": 0, "068384": 0, "577829": 0, "164350": 0, "295135": 0, "072173": 0, "450261": 0, "313267": 0, "289617": 0, "002988": 0, "015309": 0, "42": [0, 11, 13, 14, 24, 25, 29, 31, 32, 43, 45, 46, 51, 66, 73, 82, 89, 118, 234, 375, 397, 407, 615, 619, 626, 632, 635, 637, 642, 643, 647, 678, 682, 737, 738, 739, 740, 741, 742, 759, 812, 849, 854, 864], "53": [0, 10, 14, 26, 43, 62, 66, 79, 84, 159, 215, 245, 418, 618, 620, 630, 631, 635, 637, 642, 675, 737, 741], "93007": 0, "762195": 0, "000285": 0, "013777": 0, "014009": 0, "039620": 0, "140964": 0, "011996": 0, "076337": 0, "031293": 0, "076897": 0, "029911": 0, "043784": 0, "053381": 0, "010626": 0, "066434": 0, "007150": 0, "021923": 0, "030825": 0, "041431": 0, "632297": 0, "final": [0, 9, 11, 13, 16, 18, 20, 28, 31, 32, 37, 43, 44, 53, 57, 58, 80, 81, 97, 125, 137, 138, 322, 369, 375, 420, 549, 628, 629, 634, 636, 661, 662, 663, 806, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 837, 839, 840, 841, 843, 847, 848, 852, 863, 864, 866, 876], "predictor": [0, 855], "label": [0, 6, 7, 14, 45, 46, 47, 57, 63, 80, 86, 377, 452, 453, 455, 456, 457, 458, 459, 638, 696, 697, 698, 812, 818, 823, 841, 848, 849, 850, 854, 856, 870], "whether": [0, 20, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 125, 127, 128, 134, 136, 141, 143, 149, 152, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 170, 171, 172, 173, 175, 176, 177, 178, 180, 192, 196, 197, 199, 200, 202, 204, 207, 208, 210, 213, 214, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 398, 399, 400, 401, 417, 419, 421, 423, 438, 440, 446, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 479, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 572, 576, 577, 578, 579, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 607, 608, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 648, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 686, 691, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 788, 789, 792, 793, 794, 795, 796, 805, 812, 813, 818, 819, 824, 827, 829, 831, 836, 840, 841, 844, 846, 847, 863, 864], "x": [0, 4, 8, 9, 10, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 172, 173, 175, 180, 196, 197, 199, 201, 206, 207, 208, 212, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 328, 329, 333, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 385, 386, 387, 388, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 422, 424, 426, 427, 429, 431, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 465, 466, 468, 469, 471, 472, 474, 477, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 494, 496, 497, 498, 500, 501, 502, 503, 504, 505, 506, 507, 514, 515, 516, 517, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 620, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 792, 795, 798, 801, 805, 810, 812, 816, 818, 822, 824, 825, 827, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "y": [0, 14, 31, 32, 43, 44, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 129, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 149, 152, 153, 154, 163, 165, 168, 180, 193, 197, 201, 206, 207, 208, 212, 214, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 334, 335, 336, 342, 350, 351, 352, 353, 354, 359, 361, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 395, 397, 399, 400, 404, 407, 409, 413, 419, 426, 430, 436, 443, 450, 452, 453, 455, 456, 457, 458, 459, 469, 471, 480, 484, 492, 493, 494, 496, 500, 504, 505, 507, 515, 521, 522, 523, 524, 525, 528, 530, 531, 532, 534, 537, 540, 541, 544, 545, 547, 548, 549, 552, 553, 554, 558, 560, 561, 562, 564, 565, 568, 569, 574, 581, 582, 583, 586, 589, 590, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 614, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 655, 657, 658, 659, 660, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 685, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 727, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 825, 827, 830, 831, 839, 841, 842, 844, 845, 847, 849, 851, 863], "upcom": [0, 850], "phase": [0, 844, 855, 870], "drop": [0, 14, 47, 57, 80, 331, 369, 377, 378, 456, 493, 791, 792, 819, 855], "015162": 0, "655442": 0, "367897": 0, "290904": 0, "902524": 0, "252967": 0, "226138": 0, "247968": 0, "306271": 0, "017652": 0, "984": [0, 291, 632], "length": [0, 6, 12, 45, 46, 53, 57, 63, 64, 74, 80, 86, 87, 97, 98, 103, 126, 134, 139, 314, 317, 318, 333, 341, 369, 372, 375, 376, 378, 382, 385, 397, 398, 403, 404, 407, 408, 409, 419, 420, 421, 423, 435, 444, 484, 493, 510, 515, 614, 629, 634, 636, 637, 638, 639, 645, 663, 687, 688, 696, 706, 749, 776, 792, 844, 852], "valid": [0, 8, 45, 47, 57, 61, 71, 80, 84, 94, 97, 98, 157, 375, 376, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 443, 451, 565, 630, 634, 636, 639, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 702, 710, 767, 768, 776, 777, 792, 805, 819, 825, 829, 831, 835, 839, 842, 844, 863, 871], "gener": [0, 1, 7, 8, 20, 24, 29, 31, 32, 34, 37, 45, 47, 49, 50, 53, 56, 57, 61, 66, 72, 76, 79, 80, 84, 89, 95, 98, 126, 137, 138, 147, 155, 240, 243, 253, 254, 269, 273, 282, 312, 315, 319, 320, 321, 323, 324, 325, 326, 327, 328, 335, 336, 369, 372, 375, 376, 378, 382, 387, 419, 425, 447, 492, 510, 522, 629, 630, 632, 636, 637, 639, 643, 647, 659, 685, 686, 689, 692, 714, 738, 739, 741, 742, 764, 776, 779, 784, 796, 805, 812, 818, 819, 820, 822, 823, 824, 826, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 857, 868, 869, 870, 871, 872, 873, 874, 875, 876], "partit": 0, "have": [0, 1, 2, 4, 5, 6, 7, 8, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 165, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 424, 426, 427, 429, 430, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 457, 458, 459, 463, 464, 469, 470, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 504, 505, 507, 508, 509, 511, 512, 513, 515, 522, 523, 524, 525, 529, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 580, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 865, 866, 867, 868, 869, 870, 872, 876, 877, 878], "stratifi": 0, "paramet": [0, 6, 7, 14, 18, 29, 31, 32, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 580, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 632, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 805, 806, 808, 810, 812, 818, 824, 832, 833, 836, 841, 842, 844, 845, 849, 851, 852, 863, 864, 865, 871], "test_siz": [0, 14, 45], "specifi": [0, 28, 29, 31, 32, 36, 37, 38, 49, 51, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 130, 135, 137, 142, 145, 146, 148, 152, 154, 201, 206, 208, 212, 213, 214, 282, 291, 295, 300, 301, 303, 329, 334, 351, 356, 367, 369, 372, 375, 376, 377, 378, 382, 387, 394, 395, 396, 398, 404, 409, 419, 420, 421, 422, 430, 442, 444, 449, 452, 456, 457, 458, 460, 474, 477, 486, 487, 489, 490, 492, 496, 509, 520, 522, 523, 524, 527, 528, 532, 535, 552, 553, 555, 557, 558, 571, 573, 581, 614, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 661, 663, 666, 668, 670, 671, 673, 674, 678, 686, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 707, 709, 710, 713, 714, 722, 723, 725, 726, 733, 734, 735, 736, 739, 740, 741, 743, 744, 745, 747, 750, 751, 752, 753, 757, 758, 759, 761, 763, 765, 767, 768, 776, 779, 788, 792, 793, 794, 806, 810, 819, 822, 826, 829, 830, 836, 837, 838, 840, 841, 842, 844, 849, 852, 853, 863, 864, 865, 876], "reserv": [0, 818], "x_train": [0, 14], "x_test": [0, 14], "y_train": [0, 14, 47], "y_test": [0, 14], "random_st": [0, 14, 376, 434], "With": [0, 4, 6, 24, 34, 43, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 168, 175, 180, 181, 182, 183, 184, 194, 197, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 335, 336, 338, 340, 343, 344, 348, 351, 352, 353, 355, 356, 359, 367, 369, 372, 375, 376, 377, 378, 387, 397, 399, 400, 407, 419, 426, 427, 428, 430, 431, 432, 443, 446, 458, 474, 475, 476, 478, 481, 483, 484, 490, 492, 494, 496, 498, 513, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 538, 539, 540, 541, 544, 545, 546, 547, 548, 552, 553, 556, 558, 560, 561, 562, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 684, 685, 686, 687, 688, 689, 691, 692, 693, 696, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 829, 831, 841, 844, 847, 849, 860, 861, 863, 870, 873], "next": [0, 1, 6, 7, 8, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 45, 47, 57, 80, 165, 348, 352, 357, 361, 372, 630, 791, 796, 812, 818, 819, 820, 825, 829, 831, 832, 834, 835, 838, 850, 851, 852, 861, 870, 872], "convers": [0, 56, 57, 80, 239, 279, 578, 588, 634, 793, 794, 818, 848, 850, 854, 855, 857, 861, 869, 876], "becaus": [0, 26, 34, 36, 46, 57, 375, 398, 771, 819, 820, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 847, 849, 853, 854, 855, 870, 873, 876], "own": [0, 6, 7, 10, 16, 18, 22, 31, 32, 37, 812, 819, 823, 828, 829, 832, 833, 840, 841, 845, 849, 855, 857, 860, 861, 866, 869, 870, 875, 876], "confirm": [0, 4, 46, 815, 818], "been": [0, 6, 7, 13, 16, 18, 26, 28, 31, 32, 57, 58, 66, 80, 81, 89, 196, 283, 378, 491, 545, 546, 547, 631, 632, 634, 643, 738, 805, 806, 818, 820, 823, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 844, 849, 851, 855, 856, 863, 870, 877], "correctli": [0, 1, 28, 31, 32, 45, 57, 62, 67, 80, 85, 90, 340, 372, 387, 528, 529, 530, 531, 532, 637, 644, 678, 744, 818, 819, 820, 824, 827, 829, 831, 833, 835, 836, 842, 844, 847, 853, 855, 863, 864], "size": [0, 8, 14, 16, 18, 23, 26, 27, 33, 34, 36, 37, 38, 45, 47, 50, 57, 58, 61, 62, 64, 66, 67, 74, 80, 81, 84, 85, 87, 89, 90, 97, 98, 102, 103, 134, 137, 211, 212, 213, 312, 315, 319, 330, 331, 332, 333, 340, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 393, 394, 395, 411, 412, 413, 415, 416, 422, 423, 430, 433, 445, 451, 452, 454, 468, 470, 482, 492, 494, 496, 502, 503, 506, 510, 515, 527, 528, 529, 530, 531, 532, 571, 576, 629, 631, 634, 636, 637, 639, 643, 644, 648, 661, 663, 666, 668, 671, 675, 678, 682, 684, 687, 693, 702, 707, 708, 709, 738, 744, 747, 767, 768, 776, 778, 779, 792, 806, 812, 840, 842, 844, 847, 852, 863, 865], "correct": [0, 11, 16, 18, 27, 37, 43, 45, 47, 70, 93, 186, 376, 447, 630, 639, 647, 699, 764, 766, 773, 776, 812, 816, 818, 820, 822, 827, 828, 829, 830, 833, 834, 836, 837, 840, 842, 844, 864], "787": 0, "197": [0, 56, 228, 632], "success": [0, 637, 647, 691, 763, 765, 815, 819, 828, 860], "prepare_data": [0, 14], "list": [0, 1, 5, 8, 11, 12, 14, 47, 52, 53, 54, 56, 57, 58, 61, 64, 65, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 134, 136, 139, 140, 141, 143, 149, 153, 155, 168, 172, 173, 180, 196, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 349, 350, 351, 357, 358, 359, 361, 362, 363, 372, 375, 376, 378, 385, 394, 395, 396, 398, 399, 400, 401, 412, 413, 414, 415, 419, 421, 425, 430, 434, 437, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 470, 479, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 514, 522, 523, 524, 525, 534, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 598, 599, 600, 601, 613, 614, 619, 624, 629, 630, 631, 632, 634, 636, 637, 639, 641, 642, 645, 646, 650, 651, 652, 653, 654, 655, 658, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 689, 691, 696, 697, 698, 699, 700, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 720, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 792, 798, 805, 806, 810, 812, 815, 817, 818, 819, 821, 823, 824, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 849, 852, 853, 854, 855, 863, 870, 871, 876, 878], "tupl": [0, 14, 49, 52, 53, 54, 56, 57, 58, 61, 62, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 127, 128, 134, 136, 140, 141, 143, 147, 149, 153, 154, 155, 166, 167, 168, 172, 173, 179, 180, 186, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 321, 325, 328, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 348, 349, 350, 351, 355, 356, 357, 358, 359, 361, 362, 363, 364, 369, 372, 374, 375, 376, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 403, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 429, 430, 434, 438, 440, 445, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 479, 484, 490, 492, 493, 494, 496, 498, 501, 503, 504, 505, 506, 507, 509, 510, 512, 513, 514, 522, 523, 524, 525, 527, 528, 529, 530, 531, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 581, 591, 592, 593, 594, 595, 597, 598, 599, 600, 613, 614, 615, 616, 617, 619, 621, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 689, 690, 691, 694, 696, 697, 698, 699, 700, 701, 703, 704, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 725, 726, 727, 729, 730, 733, 734, 735, 736, 738, 739, 740, 741, 743, 746, 747, 749, 750, 751, 752, 753, 754, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 791, 792, 794, 805, 806, 824, 829, 836, 837, 840, 842, 844, 849, 852, 853, 855, 863, 864, 865], "thei": [0, 1, 14, 38, 43, 48, 57, 62, 66, 68, 74, 85, 89, 91, 178, 292, 346, 372, 630, 632, 636, 637, 640, 643, 645, 661, 692, 715, 716, 738, 749, 771, 797, 812, 817, 818, 819, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 863, 867, 870, 872, 873, 876, 877], "dimension": [0, 53, 56, 57, 62, 64, 67, 70, 71, 74, 76, 79, 80, 85, 87, 93, 94, 102, 126, 132, 134, 139, 147, 292, 328, 335, 336, 369, 372, 375, 376, 378, 387, 403, 404, 408, 409, 419, 420, 427, 462, 463, 464, 468, 473, 474, 520, 532, 629, 632, 637, 639, 644, 647, 648, 668, 669, 675, 677, 680, 682, 683, 693, 694, 708, 744, 745, 747, 760, 761, 762, 763, 764, 765, 766, 767, 768, 837, 839, 844, 847, 849, 867, 870, 877], "reshap": [0, 4, 31, 32, 47, 48, 57, 61, 62, 64, 74, 80, 84, 85, 87, 360, 372, 375, 376, 378, 394, 395, 396, 399, 412, 413, 414, 417, 426, 443, 468, 474, 614, 634, 636, 637, 639, 652, 654, 658, 678, 694, 812, 840, 841, 844, 847, 849, 851, 854, 867], "float32": [0, 4, 8, 12, 14, 16, 18, 23, 24, 43, 45, 46, 47, 53, 54, 57, 58, 61, 76, 77, 80, 81, 84, 93, 138, 141, 143, 149, 150, 151, 155, 159, 160, 163, 164, 165, 166, 169, 172, 173, 175, 180, 183, 189, 239, 253, 280, 333, 346, 369, 372, 375, 376, 377, 387, 397, 407, 420, 446, 452, 457, 525, 562, 599, 629, 630, 632, 634, 636, 637, 640, 652, 654, 655, 658, 685, 687, 688, 694, 716, 717, 773, 776, 777, 812, 829, 831, 842, 844, 845, 864, 865], "def": [0, 4, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 56, 79, 122, 224, 539, 628, 634, 640, 641, 716, 717, 724, 805, 812, 816, 818, 819, 823, 824, 827, 829, 830, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "isinst": [0, 8, 14, 29, 31, 32, 833, 841, 844, 845, 853, 854], "rang": [0, 4, 6, 7, 9, 10, 14, 31, 32, 43, 44, 45, 47, 53, 57, 70, 76, 80, 126, 137, 138, 287, 299, 307, 319, 367, 369, 376, 378, 387, 430, 442, 477, 485, 487, 492, 497, 523, 524, 525, 545, 614, 629, 632, 634, 645, 647, 749, 757, 758, 763, 765, 776, 778, 779, 791, 812, 815, 818, 829, 833, 837, 844, 849, 852, 853, 854, 870, 876], "len": [0, 6, 7, 8, 14, 45, 47, 53, 57, 62, 80, 85, 139, 316, 325, 326, 369, 375, 376, 387, 409, 420, 432, 435, 445, 451, 532, 629, 637, 673, 692, 812, 827, 828, 833, 840, 841, 844, 851, 854, 863], "expand_dim": [0, 6, 14, 28, 31, 32, 47, 49, 64, 87, 636, 639, 658, 812, 841, 849, 852, 864], "astyp": [0, 14, 16, 18, 23, 45, 46, 47, 54, 61, 77, 84, 630, 636, 652, 654, 655, 658, 812, 829, 840, 841, 847, 865], "els": [0, 5, 6, 7, 8, 11, 14, 46, 47, 49, 50, 57, 58, 66, 79, 80, 89, 158, 159, 160, 161, 162, 174, 280, 284, 375, 376, 382, 421, 434, 445, 449, 451, 509, 544, 548, 630, 632, 634, 636, 641, 643, 662, 728, 731, 739, 740, 741, 771, 805, 806, 812, 818, 819, 820, 823, 825, 829, 830, 833, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 871], "return": [0, 4, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 783, 784, 789, 791, 792, 794, 796, 801, 802, 805, 806, 807, 808, 809, 810, 812, 819, 820, 824, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 865, 871], "defin": [0, 23, 29, 31, 32, 33, 53, 57, 58, 62, 76, 80, 81, 85, 100, 116, 141, 145, 146, 147, 223, 240, 247, 273, 274, 282, 284, 287, 300, 304, 308, 314, 317, 318, 319, 328, 329, 330, 331, 332, 335, 336, 338, 367, 369, 372, 375, 376, 378, 387, 411, 428, 484, 490, 525, 560, 561, 581, 626, 629, 632, 634, 636, 637, 647, 661, 668, 673, 674, 686, 760, 761, 762, 764, 812, 818, 819, 824, 825, 828, 829, 832, 836, 839, 841, 842, 844, 845, 851, 853, 855, 857, 865, 867, 868, 869, 870, 871, 874, 876, 877], "proper": [0, 812, 818, 841, 864], "adjust": [0, 45, 70, 93, 376, 447, 647, 764, 766, 801, 810], "comput": [0, 6, 28, 29, 31, 32, 38, 39, 44, 45, 47, 51, 56, 57, 58, 59, 61, 62, 63, 68, 70, 73, 74, 79, 80, 81, 82, 84, 85, 86, 93, 97, 98, 100, 113, 117, 213, 223, 230, 233, 235, 240, 241, 242, 247, 248, 249, 251, 252, 258, 259, 260, 267, 268, 269, 270, 272, 273, 276, 281, 282, 300, 304, 308, 314, 317, 318, 330, 331, 332, 335, 336, 338, 342, 344, 347, 349, 350, 354, 356, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 385, 387, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 423, 424, 426, 428, 429, 430, 431, 433, 434, 436, 438, 441, 443, 445, 448, 449, 451, 453, 454, 455, 456, 457, 458, 459, 478, 481, 494, 501, 503, 514, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 539, 540, 541, 585, 608, 615, 617, 618, 620, 624, 625, 631, 632, 634, 635, 636, 637, 638, 639, 641, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 667, 668, 672, 673, 674, 677, 678, 680, 682, 684, 686, 687, 689, 691, 693, 694, 696, 697, 698, 702, 724, 749, 750, 751, 752, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 773, 778, 792, 795, 806, 812, 819, 827, 828, 829, 837, 839, 841, 844, 846, 847, 849, 852, 855, 857, 860, 861, 863, 864, 866, 868, 870, 871, 873, 874, 876], "most": [0, 6, 14, 22, 31, 32, 74, 76, 97, 100, 141, 376, 429, 585, 608, 629, 634, 637, 672, 673, 809, 812, 817, 818, 819, 824, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 860, 870, 871, 873, 874, 876, 877], "avail": [0, 2, 4, 6, 8, 12, 26, 27, 29, 31, 32, 47, 58, 81, 196, 202, 204, 205, 216, 546, 631, 634, 637, 688, 777, 810, 812, 819, 820, 827, 828, 829, 830, 832, 833, 841, 844, 847, 855, 856, 859, 863, 864, 865, 875, 876], "cpu": [0, 6, 7, 8, 9, 10, 11, 13, 26, 27, 28, 29, 31, 45, 46, 47, 49, 50, 53, 55, 57, 66, 76, 78, 80, 89, 126, 132, 135, 137, 138, 141, 142, 143, 149, 193, 194, 196, 197, 198, 199, 204, 207, 209, 211, 214, 215, 217, 219, 376, 382, 438, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 773, 791, 792, 793, 794, 795, 796, 797, 810, 812, 816, 819, 820, 826, 829, 830, 834, 841, 844, 855, 868, 870, 873, 875], "gpu": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 45, 47, 49, 50, 196, 198, 199, 202, 205, 207, 209, 211, 212, 215, 217, 219, 631, 810, 812, 819, 820, 828, 830, 851, 856, 868, 870, 873, 874, 875], "tpu": [0, 45, 194, 200, 209, 211, 216, 631, 810, 830, 870, 873], "explicitli": [0, 637, 673, 674, 689, 773, 792, 793, 794, 816, 823, 824, 825, 827, 829, 832, 833, 834, 837, 838, 839, 840, 842, 844, 849, 855, 864, 870], "hardwar": [0, 4, 45, 102, 106, 819, 847, 860, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876], "mai": [0, 1, 6, 55, 56, 57, 62, 68, 69, 78, 79, 85, 92, 102, 103, 126, 133, 144, 214, 240, 241, 247, 252, 260, 268, 269, 273, 274, 276, 291, 335, 336, 372, 404, 544, 580, 629, 631, 632, 634, 637, 645, 646, 647, 685, 694, 749, 750, 751, 752, 753, 756, 760, 761, 762, 764, 776, 806, 817, 818, 819, 820, 823, 827, 828, 829, 833, 834, 837, 838, 839, 841, 842, 844, 847, 850, 851, 853, 861, 877], "vari": [0, 57, 68, 97, 98, 291, 404, 545, 632, 634, 637, 645, 684, 750, 751, 752, 806, 827, 831, 841, 844, 851], "known": [0, 57, 80, 284, 376, 448, 450, 632, 791, 823, 828, 829, 841, 844], "advanc": [0, 20, 43, 819, 821, 869], "set_soft_device_mod": [0, 4, 14, 18, 218, 631, 830], "section": [0, 1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 51, 57, 68, 80, 112, 375, 378, 409, 420, 470, 479, 499, 645, 749, 750, 751, 752, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 852, 853, 865, 866, 873, 876], "binari": [0, 6, 14, 26, 27, 29, 57, 58, 61, 63, 80, 84, 86, 230, 233, 235, 270, 290, 375, 377, 421, 456, 459, 632, 636, 638, 659, 663, 696], "logist": [0, 14], "gblinear": [0, 14], "booster": [0, 14], "linear": [0, 4, 12, 18, 30, 31, 32, 43, 44, 45, 47, 50, 57, 58, 61, 73, 80, 81, 84, 110, 112, 114, 115, 118, 295, 299, 303, 305, 306, 307, 311, 353, 367, 372, 375, 378, 387, 411, 446, 484, 532, 549, 572, 626, 634, 636, 641, 663, 686, 725, 776, 778, 779, 791, 792, 812, 827, 832, 837, 838, 840, 841, 844, 847, 849, 852, 853, 854, 864, 868, 869, 870, 873], "estim": [0, 57, 80, 349, 372, 387, 522, 810], "rate": [0, 57, 59, 80, 82, 375, 382, 417, 512, 616, 619, 621, 622, 623, 635, 636, 640, 661, 715, 716, 717, 796, 828], "fine": [0, 16, 18, 31, 32, 819, 820, 829, 831, 841, 851, 854, 876], "tune": [0, 16, 18, 31, 32, 875, 876], "regular": [0, 46, 80, 376, 387, 438, 443, 526, 819, 841, 870], "term": [0, 6, 57, 80, 312, 319, 322, 369, 377, 456, 457, 636, 661, 662, 792, 806, 812, 820, 827, 849, 857, 859, 870], "reg_lambda": [0, 14], "reg_alpha": [0, 14], "overfit": [0, 636, 659], "compil": [0, 6, 9, 10, 11, 12, 13, 14, 26, 27, 29, 31, 32, 35, 48, 50, 291, 632, 784, 819, 841, 845, 849, 855, 857, 864, 866, 869, 870, 871, 874, 877], "param": [0, 11, 13, 14, 31, 45, 46, 47, 49, 74, 80, 81, 103, 535, 552, 553, 634, 798, 812, 854, 864], "n_estim": [0, 14], "100": [0, 6, 7, 9, 11, 12, 13, 14, 43, 45, 47, 53, 56, 57, 76, 79, 80, 81, 84, 101, 138, 147, 234, 274, 287, 328, 351, 360, 369, 372, 375, 376, 378, 399, 400, 445, 451, 489, 553, 561, 577, 629, 632, 634, 637, 641, 676, 724, 812, 828, 829, 844, 852, 853, 854, 855, 860, 861, 863], "learning_r": [0, 7, 14], "base_margin": [0, 14], "none": [0, 4, 6, 8, 11, 13, 14, 31, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 101, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 170, 171, 172, 173, 175, 177, 180, 192, 195, 196, 208, 209, 210, 211, 212, 213, 214, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 518, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 578, 579, 580, 582, 583, 584, 585, 587, 588, 589, 591, 592, 593, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 729, 730, 731, 733, 734, 735, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 800, 801, 804, 806, 810, 812, 816, 819, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 863, 864, 865], "xgb_cl": [0, 14], "better": [0, 11, 14, 34, 43, 49, 50, 818, 822, 841, 842, 845, 847, 848, 851, 852, 853, 861, 873], "ivy_cl": [0, 14], "effici": [0, 8, 11, 12, 13, 20, 21, 23, 24, 31, 32, 33, 34, 57, 62, 80, 85, 376, 377, 440, 456, 585, 608, 634, 637, 680, 812, 819, 820, 827, 837, 838, 840, 844, 846, 849, 852, 855, 864, 870, 872, 873], "fit": [0, 14, 64, 87, 639, 705, 818, 841, 849, 866, 867, 870], "magic": [0, 828], "durat": 0, "70": [0, 14, 43, 45, 57, 80, 81, 375, 397, 407, 553, 577, 637, 647, 682, 759, 860], "m": [0, 11, 12, 13, 14, 31, 44, 46, 48, 50, 53, 57, 62, 66, 79, 80, 85, 89, 102, 139, 145, 146, 147, 267, 328, 329, 369, 375, 376, 377, 378, 382, 398, 429, 434, 435, 437, 438, 453, 464, 475, 476, 490, 508, 509, 510, 511, 512, 629, 637, 641, 643, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 726, 739, 740, 741, 812, 819, 820, 822, 828, 849], "per": [0, 11, 13, 14, 24, 45, 47, 57, 61, 80, 84, 319, 369, 375, 376, 378, 394, 395, 396, 412, 413, 414, 415, 444, 491, 636, 650, 652, 653, 654, 655, 658, 663, 792, 820, 828, 838, 841, 852], "loop": [0, 6, 7, 11, 13, 14, 24, 39, 72, 80, 95, 122, 125, 375, 421, 628, 640, 715, 716, 717, 812, 825, 855, 863], "dev": [0, 4, 11, 12, 13, 14, 24, 45, 47, 50, 55, 74, 78, 201, 208, 631, 819, 830, 834, 837, 851, 853], "run": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 45, 47, 48, 49, 57, 59, 80, 82, 381, 501, 503, 615, 616, 621, 635, 636, 640, 661, 715, 716, 717, 773, 774, 792, 793, 794, 795, 805, 812, 814, 818, 819, 822, 824, 825, 828, 830, 831, 833, 835, 836, 838, 841, 842, 849, 850, 851, 852, 853, 854, 855, 856, 863, 864, 865, 868, 870, 871, 872, 873, 875, 876, 877], "59": [0, 7, 43, 56, 235, 387, 523], "04": [0, 6, 45, 46, 53, 59, 73, 77, 80, 82, 112, 113, 138, 165, 245, 582, 615, 616, 621, 626, 629, 630, 632, 634, 635, 776, 819, 844], "slowest": [0, 34, 57, 64, 80, 87, 378, 474, 639, 706], "took": [0, 11, 79, 280], "87": [0, 14, 43, 82, 84, 234, 263, 387, 418, 523, 615, 632, 635, 776, 834], "longer": [0, 14, 819, 829, 840, 844, 870], "than": [0, 7, 9, 10, 14, 31, 32, 34, 37, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 74, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 102, 103, 126, 134, 165, 213, 221, 222, 225, 226, 228, 229, 232, 234, 236, 240, 246, 247, 261, 262, 263, 264, 271, 273, 278, 282, 284, 286, 287, 291, 292, 293, 302, 312, 334, 337, 351, 358, 369, 372, 375, 376, 377, 378, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 424, 426, 445, 451, 452, 475, 476, 523, 524, 525, 564, 565, 568, 585, 608, 629, 630, 631, 632, 634, 636, 637, 639, 643, 644, 645, 647, 661, 666, 668, 677, 678, 679, 680, 683, 694, 699, 703, 709, 741, 747, 750, 751, 752, 757, 758, 763, 764, 765, 766, 792, 806, 816, 818, 820, 823, 827, 828, 829, 831, 833, 834, 840, 841, 842, 844, 845, 846, 847, 849, 852, 853, 854, 855, 856, 860, 867, 868, 869, 870, 876, 877], "fastest": [0, 34, 57, 64, 80, 87, 376, 378, 443, 474, 639, 706], "could": [0, 6, 13, 31, 32, 37, 68, 645, 749, 750, 751, 752, 818, 819, 820, 823, 828, 829, 831, 838, 840, 841, 842, 844, 849, 851, 852, 853, 860, 861, 870, 875, 876], "intermedi": [0, 44, 868, 869, 870, 871, 876], "cach": [0, 7, 12, 13, 26, 27, 28, 29, 45, 47, 50, 195, 539, 631, 634, 781, 801, 835, 837, 840, 844], "400": [0, 14, 81, 84, 375, 399, 400, 553, 577, 634, 637, 676], "\u00b5": [0, 11, 13, 14, 24], "487": [0, 279, 632, 636, 660], "make": [0, 1, 4, 8, 11, 12, 13, 14, 23, 31, 32, 33, 45, 49, 57, 80, 375, 419, 801, 812, 815, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 856, 860, 861, 864, 868, 870, 871, 872, 873, 876, 877], "out": [0, 4, 6, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 163, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 425, 426, 427, 428, 429, 432, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 465, 467, 468, 469, 471, 472, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 536, 540, 541, 545, 546, 547, 549, 552, 553, 562, 572, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 784, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861, 863, 864, 870, 877], "respect": [0, 53, 56, 57, 59, 62, 79, 80, 82, 85, 97, 139, 220, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 282, 286, 289, 290, 300, 349, 364, 367, 372, 374, 376, 378, 381, 432, 449, 461, 501, 503, 557, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 629, 632, 634, 635, 636, 637, 640, 649, 656, 657, 663, 668, 684, 687, 715, 716, 717, 773, 776, 791, 806, 817, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 836, 837, 839, 840, 841, 844, 845, 846, 866, 876], "kei": [0, 6, 7, 11, 24, 25, 31, 32, 47, 49, 52, 57, 61, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 385, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 515, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 542, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 634, 636, 640, 641, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 721, 727, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 776, 777, 783, 789, 792, 796, 812, 815, 826, 827, 828, 837, 840, 841, 842, 844, 852, 864, 870, 873, 877], "precis": [0, 14, 57, 62, 80, 85, 165, 253, 273, 280, 287, 346, 372, 376, 387, 430, 522, 585, 608, 630, 632, 634, 637, 673, 674, 678, 685, 687, 688, 694, 784, 828, 841, 846, 847, 874], "recal": [0, 14], "f1": [0, 14, 829], "score": [0, 14, 61, 84, 377, 459, 636, 664, 666, 812], "ivy_pr": [0, 14], "xgb_pred": [0, 14], "nxgbclassifi": [0, 14], "86": [0, 14, 43, 66, 80, 89, 375, 387, 407, 523, 615, 635, 740, 741], "93": [0, 14, 43, 57, 79, 81, 89, 198, 287, 360, 372, 545, 546, 631, 634, 740, 741], "84": [0, 43, 61, 70, 79, 89, 168, 198, 263, 630, 631, 637, 642, 647, 660, 682, 737, 740, 741, 759], "91": [0, 43, 57, 84, 89, 360, 372, 418, 636, 637, 643, 647, 660, 682, 740, 759], "accuraci": [0, 6, 14, 45, 47, 50, 375, 419, 829], "92": [0, 14, 43, 47, 57, 58, 89, 360, 372, 613, 623, 635, 637, 669, 740, 741], "macro": [0, 14], "avg": [0, 14, 375, 394, 396, 417], "weight": [0, 4, 6, 14, 16, 18, 31, 32, 45, 46, 57, 59, 61, 63, 80, 82, 84, 86, 97, 98, 315, 319, 353, 369, 372, 375, 376, 387, 402, 435, 520, 522, 525, 615, 616, 619, 621, 622, 623, 635, 636, 638, 640, 660, 661, 662, 663, 666, 696, 717, 778, 791, 792, 794, 796, 810, 812, 827, 837, 844, 849, 853, 854, 869], "90": [0, 14, 43, 45, 47, 56, 57, 79, 80, 239, 279, 283, 360, 372, 378, 387, 490, 523, 632, 637, 647, 682, 759, 806, 860], "summar": [0, 31, 32, 97, 844], "perfect": [0, 812], "fals": [0, 6, 7, 8, 11, 12, 13, 18, 22, 23, 31, 34, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 196, 197, 202, 204, 207, 208, 210, 213, 214, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 417, 418, 419, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 728, 729, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 792, 793, 794, 796, 798, 801, 805, 806, 807, 810, 812, 816, 819, 823, 825, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "posit": [0, 47, 49, 52, 56, 57, 58, 62, 63, 64, 79, 80, 81, 85, 86, 87, 97, 132, 134, 147, 165, 220, 221, 222, 226, 229, 240, 247, 254, 255, 261, 263, 273, 274, 281, 282, 286, 287, 291, 313, 328, 334, 339, 351, 369, 372, 376, 378, 427, 447, 458, 483, 492, 539, 549, 614, 627, 629, 630, 632, 634, 637, 638, 639, 643, 644, 648, 667, 670, 691, 696, 702, 707, 742, 747, 767, 768, 773, 776, 784, 789, 793, 794, 806, 812, 818, 820, 823, 827, 841, 844, 845, 852, 863, 872], "excel": [0, 6, 877], "high": [0, 6, 22, 31, 32, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 585, 634, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 815, 818, 833, 839, 841, 852, 857, 861, 866, 867, 868, 869, 870, 874, 876, 877], "show": [0, 3, 4, 5, 6, 7, 12, 20, 26, 31, 32, 33, 34, 36, 43, 45, 47, 48, 579, 588, 611, 634, 812, 818, 819, 820, 826, 828, 831, 835, 840, 841, 844, 846, 855, 863, 870], "trade": [0, 863], "off": [0, 24, 34, 61, 62, 84, 85, 399, 400, 401, 636, 637, 659, 671, 691, 791, 792, 819, 834, 848, 861, 863, 876], "wa": [0, 9, 31, 32, 37, 46, 57, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 358, 359, 361, 362, 363, 369, 372, 376, 399, 400, 401, 419, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 619, 624, 632, 634, 641, 647, 648, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 812, 814, 820, 823, 825, 826, 828, 831, 837, 839, 841, 849, 851, 860, 863, 864, 869, 870, 872], "overal": [0, 636, 659, 806, 827, 829, 830, 832, 854, 863, 866, 868, 869, 870], "slightli": [0, 14, 312, 369, 827, 841, 844, 849, 853], "lower": [0, 14, 47, 53, 56, 57, 62, 66, 79, 80, 85, 89, 132, 145, 271, 307, 313, 319, 328, 329, 367, 369, 387, 525, 526, 532, 629, 632, 637, 643, 667, 673, 674, 680, 741, 778, 791, 820, 829, 831, 841, 844, 849, 855, 857, 866, 867, 868, 870, 871, 876, 877], "good": [0, 22, 31, 32, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 844, 845, 847, 849, 850, 853], "due": [0, 24, 31, 32, 34, 48, 50, 273, 283, 378, 492, 632, 819, 823, 828, 833, 840, 841, 860, 863, 864, 870], "97": [0, 12, 14, 43, 57, 59, 79, 82, 89, 226, 360, 372, 619, 632, 635, 740], "suggest": [0, 1, 6, 818, 819, 820, 826, 829, 835, 839, 841, 844, 845, 846, 856], "slight": [0, 31, 32, 829, 844, 853], "edg": [0, 49, 57, 64, 80, 87, 319, 369, 375, 378, 387, 411, 484, 525, 639, 699, 701, 714, 779, 823, 844, 864, 870, 872, 876], "ivy_report": 0, "output_dict": 0, "xgb_report": 0, "block": [0, 6, 11, 31, 32, 35, 36, 37, 38, 376, 436, 812, 820, 827, 829, 833, 837, 844, 848, 850, 854, 855, 857, 864, 875, 877], "design": [0, 1, 6, 14, 22, 31, 80, 247, 312, 317, 318, 369, 632, 812, 815, 822, 826, 828, 829, 840, 841, 842, 843, 847, 849, 851, 855, 859, 860, 866, 868, 870, 873, 874, 875], "heatmap": 0, "seaborn": [0, 47], "aesthet": 0, "appeal": 0, "eas": [0, 839, 870], "plot_classification_report": 0, "argument": [0, 6, 9, 26, 28, 29, 31, 32, 34, 36, 37, 38, 43, 45, 47, 49, 52, 53, 56, 57, 58, 62, 74, 75, 79, 80, 81, 97, 98, 103, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 180, 209, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 343, 344, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 419, 421, 423, 430, 484, 492, 496, 522, 525, 529, 535, 536, 538, 539, 544, 546, 547, 552, 556, 558, 560, 562, 572, 576, 577, 591, 595, 600, 601, 614, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 724, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 784, 789, 792, 793, 794, 801, 805, 808, 812, 818, 822, 823, 824, 825, 826, 827, 831, 832, 835, 837, 842, 844, 845, 847, 849, 851, 852, 857, 859, 863, 864, 865, 870], "plot": [0, 6, 7, 14, 46, 870], "color": [0, 46, 74, 103, 811], "represent": [0, 49, 57, 58, 74, 80, 81, 103, 150, 151, 165, 168, 193, 194, 220, 223, 230, 233, 235, 240, 247, 270, 273, 275, 290, 316, 348, 352, 357, 361, 369, 372, 535, 597, 627, 630, 631, 632, 634, 776, 778, 779, 792, 829, 868, 869, 871, 875, 876], "easi": [0, 1, 31, 32, 45, 819, 820, 824, 825, 827, 837, 839, 842, 844, 847, 860, 868, 870, 876, 877], "assess": [0, 24, 34, 818, 847], "side": [0, 69, 92, 350, 372, 376, 446, 646, 755, 776, 792, 805, 806, 819, 820, 826], "pyplot": [0, 6, 7, 14, 45, 46, 47, 50], "plt": [0, 6, 7, 14, 45, 46, 47, 50], "sn": 0, "model_nam": [0, 6, 47], "ax": [0, 46, 51, 57, 62, 64, 67, 70, 71, 73, 80, 85, 87, 90, 93, 94, 102, 106, 113, 117, 213, 335, 336, 340, 341, 356, 363, 372, 373, 375, 376, 378, 381, 387, 404, 409, 420, 446, 483, 484, 490, 504, 527, 528, 529, 530, 531, 532, 545, 614, 631, 634, 637, 639, 644, 647, 648, 668, 678, 686, 689, 690, 694, 701, 703, 704, 707, 709, 711, 714, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 792, 829, 831, 844, 845, 849, 851], "iloc": 0, "t": [0, 1, 5, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 47, 57, 61, 72, 80, 84, 95, 97, 98, 102, 349, 364, 372, 374, 376, 430, 562, 580, 595, 617, 634, 635, 636, 641, 660, 662, 726, 771, 792, 812, 814, 815, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 834, 835, 837, 838, 839, 840, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 860, 861, 863, 864, 865, 868, 870, 872], "annot": [0, 836], "fmt": 0, "2f": [0, 5, 11], "cmap": 0, "blue": 0, "set_titl": [0, 46, 47], "f": [0, 4, 5, 6, 7, 9, 10, 11, 12, 31, 32, 44, 45, 47, 57, 64, 80, 87, 302, 319, 367, 369, 378, 474, 495, 639, 641, 706, 721, 725, 726, 727, 730, 735, 736, 812, 813, 820, 822, 827, 828, 833, 845, 849, 851, 852, 861, 866], "figur": [0, 46, 846], "fig": [0, 46, 47], "ax1": [0, 47], "ax2": [0, 47], "subplot": [0, 46, 47], "figsiz": [0, 46, 47], "tight_layout": [0, 47], "observ": [0, 14, 57, 80, 387, 521, 522, 820, 829, 833, 849, 863, 872], "exhibit": [0, 34, 876], "strong": [0, 778, 855, 860, 870], "commend": 0, "impli": [0, 68, 645, 749, 750, 751, 752, 844], "neg": [0, 51, 56, 57, 62, 64, 66, 71, 73, 79, 80, 85, 87, 89, 94, 97, 112, 115, 118, 126, 132, 134, 147, 240, 247, 254, 255, 273, 274, 282, 287, 295, 313, 328, 331, 367, 369, 376, 377, 378, 382, 427, 434, 440, 457, 492, 496, 512, 626, 629, 632, 637, 639, 643, 648, 668, 670, 687, 691, 693, 694, 700, 702, 703, 707, 740, 767, 768, 776, 778, 788, 827, 840], "depend": [0, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 53, 54, 57, 58, 62, 68, 69, 77, 80, 85, 92, 93, 123, 129, 152, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 261, 262, 263, 264, 273, 275, 278, 285, 286, 290, 291, 359, 372, 375, 376, 421, 429, 447, 595, 628, 629, 630, 632, 634, 636, 637, 644, 646, 661, 672, 673, 684, 685, 686, 687, 748, 753, 756, 766, 814, 816, 818, 819, 820, 826, 829, 830, 832, 834, 838, 840, 841, 842, 843, 844, 847, 849, 855, 856, 860, 863, 868, 870, 871], "applic": [0, 6, 18, 20, 45, 47, 50, 57, 61, 80, 84, 100, 376, 451, 636, 637, 641, 647, 663, 666, 691, 724, 725, 726, 730, 731, 763, 765, 812, 819, 828, 829, 830, 838, 853, 867, 868, 870, 872, 874, 876], "conclus": 0, "appear": [0, 378, 475, 476, 614, 634, 819, 820, 823, 841, 847, 863], "outperform": [0, 14], "especi": [0, 7, 819, 825, 835, 859, 870], "increas": [0, 11, 13, 14, 24, 31, 34, 57, 62, 64, 80, 85, 87, 100, 378, 387, 484, 525, 637, 639, 692, 701, 714, 778, 829, 833, 841, 845, 847, 859, 863, 870], "context": [0, 325, 369, 573, 634, 818, 819, 820, 825, 829, 830, 831], "specif": [0, 6, 7, 22, 23, 28, 29, 31, 32, 33, 35, 37, 45, 55, 57, 58, 78, 80, 81, 180, 211, 214, 247, 268, 269, 278, 322, 335, 336, 369, 372, 378, 382, 492, 512, 545, 546, 547, 573, 630, 631, 632, 634, 637, 639, 640, 643, 646, 647, 673, 674, 689, 710, 715, 716, 717, 738, 755, 760, 761, 762, 764, 771, 773, 793, 794, 801, 802, 808, 810, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 833, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 857, 859, 863, 864, 865, 866, 868, 869, 871, 872, 873, 877], "problem": [0, 7, 812, 815, 818, 820, 823, 824, 830, 841, 851, 860, 866, 872, 876], "domain": [0, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832, 868, 870], "repo": [1, 16, 45, 817, 820, 823, 826, 828, 829, 834, 842, 844, 859], "hold": [1, 57, 58, 62, 70, 80, 85, 93, 97, 98, 334, 351, 356, 372, 387, 470, 499, 523, 524, 529, 576, 577, 634, 637, 647, 678, 758, 774, 821, 852, 871], "exampl": [1, 6, 7, 9, 11, 13, 22, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 784, 801, 805, 806, 810, 812, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 840, 841, 845, 849, 851, 852, 853, 854, 855, 861, 867, 868, 871, 873, 876, 877], "tab": [1, 818, 819, 828, 834, 852], "ivi": [1, 2, 3, 6, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 819, 822, 823, 825, 827, 829, 830, 832, 834, 835, 836, 837, 838, 840, 847, 848, 855, 857, 860, 861, 862, 866, 877, 878], "web": 1, "relev": [1, 53, 76, 138, 629, 796, 812, 818, 819, 820, 824, 827, 828, 829, 831, 834, 838, 839, 842, 843, 844, 852, 856, 860, 868, 875, 876], "link": [1, 22, 31, 32, 46, 812, 818, 819, 820, 826, 828, 829, 835, 841, 864, 866, 868], "open": [1, 4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 46, 47, 48, 58, 66, 89, 126, 629, 643, 739, 741, 812, 813, 814, 815, 819, 820, 821, 826, 829, 832, 834, 841, 842, 847, 856, 859, 860, 861, 863, 864, 868, 869, 870, 872, 873], "avil": 1, "discuss": [1, 818, 820, 826, 829, 830, 840, 841, 843, 844, 847, 850, 851, 852, 855, 861, 866, 871], "comprehens": [1, 20, 812, 820, 823, 843], "possibl": [1, 4, 37, 53, 57, 76, 80, 87, 97, 128, 247, 290, 312, 335, 336, 369, 372, 375, 377, 378, 398, 453, 462, 463, 464, 470, 472, 474, 475, 476, 483, 499, 572, 632, 634, 636, 647, 659, 702, 703, 704, 706, 708, 709, 711, 713, 760, 762, 776, 792, 806, 809, 812, 813, 816, 818, 819, 820, 823, 826, 827, 829, 831, 832, 834, 835, 837, 839, 840, 841, 842, 844, 847, 849, 852, 855, 860, 868, 870, 876], "us": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 95, 97, 98, 100, 103, 110, 138, 141, 152, 164, 166, 167, 178, 179, 199, 200, 202, 207, 211, 212, 213, 214, 216, 219, 225, 233, 261, 262, 264, 265, 267, 268, 269, 271, 272, 274, 283, 287, 292, 312, 314, 315, 317, 318, 319, 327, 349, 352, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 402, 404, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 428, 430, 434, 440, 442, 444, 445, 447, 448, 449, 451, 452, 457, 474, 478, 482, 484, 492, 496, 501, 503, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 529, 532, 550, 551, 560, 561, 572, 573, 580, 582, 583, 585, 592, 593, 605, 606, 608, 615, 616, 621, 622, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 647, 660, 661, 663, 666, 671, 673, 680, 684, 688, 691, 694, 696, 705, 706, 707, 711, 715, 716, 717, 718, 720, 721, 727, 728, 729, 731, 738, 739, 740, 741, 743, 744, 745, 746, 749, 751, 759, 761, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 801, 805, 806, 810, 813, 815, 817, 820, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 857, 861, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "attract": 1, "visual": [1, 6, 7, 14, 49, 810, 812, 819, 834, 841, 844, 855, 870, 872, 875], "graph": [1, 4, 6, 7, 8, 12, 14, 20, 21, 24, 26, 28, 29, 32, 38, 39, 44, 49, 50, 68, 645, 749, 750, 751, 752, 784, 812, 827, 837, 841, 843, 847, 849, 854, 855, 857, 861, 862, 863, 864, 865, 866, 870, 873], "nice": [1, 844, 861, 870], "etc": [1, 34, 39, 46, 53, 57, 66, 68, 72, 76, 80, 89, 95, 129, 137, 138, 141, 375, 382, 404, 409, 420, 508, 509, 511, 512, 629, 643, 645, 738, 739, 740, 741, 749, 750, 751, 752, 776, 779, 791, 792, 793, 794, 795, 796, 797, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 831, 833, 836, 841, 842, 844, 845, 849, 851, 852, 855, 857, 861, 863, 868, 870, 876], "tone": [1, 5], "feel": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863], "free": [1, 6, 7, 8, 45, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 817, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863, 871, 873], "emoji": [1, 818], "don": [1, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 72, 95, 812, 818, 819, 820, 828, 829, 830, 835, 839, 844, 847, 853, 855, 856, 861, 863], "keep": [1, 2, 16, 18, 22, 28, 29, 31, 57, 64, 74, 80, 87, 97, 100, 360, 376, 451, 639, 713, 817, 818, 819, 820, 823, 826, 827, 828, 833, 840, 841, 844, 845, 847, 852, 854, 856, 864], "thing": [1, 7, 29, 43, 45, 805, 817, 818, 819, 820, 825, 841, 844, 847, 851, 852, 859, 860, 861, 870], "super": [1, 4, 8, 16, 18, 31, 32, 45, 57, 80, 376, 430, 812, 833, 849, 852, 853, 854, 864], "seriou": 1, "given": [1, 4, 7, 22, 31, 44, 57, 58, 63, 64, 66, 74, 80, 81, 82, 86, 87, 89, 97, 98, 100, 102, 103, 126, 130, 137, 138, 158, 159, 160, 161, 162, 174, 179, 198, 207, 211, 212, 213, 215, 219, 292, 322, 331, 334, 340, 341, 349, 350, 351, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 397, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 420, 430, 435, 450, 454, 455, 456, 458, 459, 460, 461, 471, 472, 473, 480, 482, 494, 500, 504, 505, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 531, 553, 557, 576, 577, 587, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 695, 696, 697, 698, 699, 702, 703, 704, 705, 707, 708, 712, 713, 725, 726, 735, 736, 739, 740, 741, 743, 755, 756, 757, 758, 771, 776, 777, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 797, 798, 805, 806, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 850, 851, 853, 860, 861, 867, 872, 873, 876, 877], "intern": [1, 14, 74, 105, 106, 107, 641, 718, 728, 729, 791, 792, 793, 794, 795, 797, 821, 824, 827, 830, 832, 840, 842, 844, 846], "releas": [1, 6, 46, 818, 819, 829, 845, 847, 855, 861, 870, 876], "tracer": [1, 4, 8, 12, 13, 23, 26, 27, 28, 29, 32, 48, 50, 841, 848, 850, 855, 857, 864, 865, 866], "around": [1, 15, 16, 18, 20, 57, 74, 80, 103, 378, 484, 492, 818, 820, 823, 824, 826, 830, 836, 837, 841, 844, 845, 851, 855, 857, 863, 867, 868, 870, 877], "corner": [1, 57, 80, 375, 411, 819, 820, 834, 841], "anybodi": 1, "abl": [1, 4, 6, 7, 8, 33, 37, 48, 50, 74, 97, 819, 820, 821, 823, 829, 834, 837, 840, 841, 845, 849, 854, 863, 873, 876], "start": [1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 46, 47, 53, 57, 74, 76, 80, 84, 126, 134, 137, 138, 353, 363, 372, 373, 375, 378, 387, 418, 474, 477, 485, 487, 497, 531, 629, 778, 805, 810, 813, 818, 819, 820, 821, 822, 828, 829, 831, 832, 834, 835, 836, 841, 844, 847, 848, 849, 851, 852, 853, 855, 863, 864, 870, 876], "shortli": 1, "so": [1, 2, 7, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 375, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 641, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 729, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 859, 860, 863, 864, 865, 870, 871, 872, 874], "worri": [1, 31, 32, 818, 819, 835], "about": [1, 20, 21, 22, 25, 27, 29, 31, 32, 35, 46, 47, 54, 77, 165, 168, 630, 810, 812, 814, 817, 818, 819, 820, 821, 822, 823, 826, 828, 829, 830, 835, 836, 840, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 861, 865, 871, 872, 875], "transpil": [1, 9, 10, 11, 12, 13, 15, 20, 21, 23, 24, 34, 783, 784, 812, 818, 819, 833, 834, 841, 848, 849, 850, 857, 862, 863, 865, 870, 876, 877], "style": [1, 14, 45, 47, 378, 484, 644, 747, 820, 835, 870], "stori": 1, "anyon": [1, 812, 813, 820, 828, 855, 860, 876], "ha": [1, 4, 6, 8, 10, 12, 13, 14, 16, 18, 22, 24, 28, 31, 32, 34, 37, 39, 43, 50, 53, 57, 62, 64, 68, 70, 74, 77, 80, 81, 85, 87, 91, 93, 97, 139, 196, 220, 240, 243, 245, 247, 257, 273, 275, 280, 283, 285, 286, 290, 330, 331, 332, 369, 376, 377, 378, 387, 411, 446, 456, 467, 491, 493, 498, 521, 523, 524, 526, 558, 629, 631, 632, 636, 637, 639, 644, 645, 647, 662, 663, 677, 678, 686, 687, 689, 691, 694, 702, 709, 747, 750, 751, 752, 757, 758, 761, 763, 764, 765, 766, 773, 776, 779, 801, 818, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 859, 860, 861, 863, 865, 866, 869, 870, 872, 873, 876], "question": [1, 6, 7, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861], "ping": 1, "me": [1, 820], "guillermo": 1, "commun": [1, 6, 7, 46, 813, 818, 819, 820, 821, 855, 860, 869, 870, 872], "ux": 1, "team": [1, 812, 813, 815, 818, 819, 820, 821, 841, 856, 872], "discord": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "channel": [1, 29, 47, 57, 58, 61, 80, 81, 84, 102, 103, 375, 381, 399, 400, 401, 411, 501, 502, 503, 506, 545, 549, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 788, 789, 791, 792, 794, 795, 796, 797, 820, 826, 834, 843], "templat": [1, 812, 826, 832, 844], "locat": [1, 47, 141, 387, 523, 629, 641, 643, 646, 722, 738, 755, 806, 818, 820, 825, 826, 830, 841, 842, 844, 845, 856, 868], "asset": [1, 857], "01_templat": 1, "ipynb": 1, "pleas": [1, 37, 46, 50, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "copi": [1, 47, 50, 53, 54, 55, 56, 57, 58, 64, 74, 76, 77, 78, 79, 80, 81, 87, 97, 101, 127, 128, 129, 133, 144, 152, 214, 274, 378, 460, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 581, 592, 599, 600, 629, 630, 631, 632, 634, 639, 641, 646, 702, 703, 704, 706, 708, 709, 711, 713, 719, 754, 756, 784, 806, 819, 820, 823, 825, 828, 829, 832, 841, 842, 849, 855, 863, 864, 865], "firstli": [1, 23, 24, 27, 33, 34, 38, 43, 824, 829, 831, 832, 833, 837, 838, 840, 847, 852, 866, 876], "file": [1, 6, 7, 45, 46, 47, 58, 74, 589, 612, 634, 794, 810, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 832, 833, 834, 835, 837, 841, 842, 843, 844, 845, 849, 852, 856, 866, 869, 870, 871], "topic": [1, 20, 23, 24, 25, 33, 34, 35, 36, 37, 38, 838, 851, 870], "Then": [1, 50, 636, 663, 814, 818, 819, 820, 825, 826, 828, 834, 835, 838, 840, 844, 845, 855], "place": [1, 7, 12, 13, 26, 27, 28, 29, 45, 52, 53, 56, 57, 58, 62, 64, 74, 76, 78, 79, 80, 81, 85, 87, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 312, 313, 316, 328, 329, 334, 335, 336, 338, 341, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 474, 484, 489, 492, 496, 509, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 561, 562, 576, 580, 591, 595, 600, 604, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 812, 816, 817, 820, 822, 823, 826, 827, 828, 830, 831, 832, 834, 836, 837, 841, 842, 844, 845, 847, 854, 857, 872], "folder": [1, 12, 13, 26, 27, 28, 29, 47, 812, 819, 820, 823, 826, 828, 834, 837, 841, 844, 845, 846], "edit": [1, 818, 819, 820, 835], "titl": [1, 14, 17, 19, 30, 46, 49, 812, 818, 820, 826], "accordingli": [1, 57, 62, 67, 68, 70, 71, 80, 85, 90, 93, 94, 139, 240, 245, 247, 263, 273, 287, 335, 336, 372, 629, 632, 637, 644, 645, 647, 648, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 841, 849, 856], "render": [1, 826, 832], "webpag": [1, 20], "content": [1, 2, 17, 19, 30, 31, 46, 47, 57, 74, 80, 387, 529, 818, 820, 826, 830, 840, 843, 849, 852, 856], "behind": [1, 22, 31, 812, 822, 836, 844, 848, 850], "exist": [1, 22, 31, 32, 45, 46, 47, 50, 53, 57, 58, 74, 76, 80, 81, 87, 128, 378, 462, 463, 469, 470, 472, 474, 475, 476, 483, 499, 544, 580, 634, 639, 700, 702, 703, 704, 706, 708, 709, 711, 713, 796, 798, 810, 812, 818, 819, 823, 825, 830, 831, 832, 837, 838, 840, 841, 844, 847, 849, 855, 857, 859, 860, 868, 870, 873, 876], "cell": [1, 2, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 61, 84, 636, 661, 662, 792, 828, 849], "h2": [1, 2, 17, 19, 30], "tag": [1, 2, 17, 19, 30, 819, 820], "h3": [1, 2, 17, 19, 30], "subsect": [1, 2, 17, 19, 30, 818, 819, 820, 823, 828], "explan": [1, 2, 17, 19, 30, 818, 819, 820, 827, 832, 836, 841, 845, 851], "go": [1, 5, 6, 7, 16, 18, 22, 29, 32, 37, 52, 57, 80, 84, 375, 418, 422, 641, 729, 730, 812, 813, 816, 818, 819, 820, 822, 825, 826, 829, 831, 834, 835, 841, 842, 844, 845, 848, 852, 855, 866, 870, 871, 875, 877], "default": [1, 4, 6, 8, 31, 32, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 178, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 196, 197, 199, 200, 204, 207, 208, 209, 211, 212, 213, 214, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 390, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 572, 573, 576, 577, 580, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 805, 806, 810, 818, 819, 820, 825, 826, 829, 830, 831, 832, 833, 836, 837, 841, 844, 847, 849, 853, 857, 863, 870], "text": [1, 5, 6, 12, 14, 45, 57, 58, 376, 377, 444, 452, 818, 820, 826, 831, 832], "paragraph": [1, 2, 17, 19, 30, 826], "p": [1, 2, 17, 19, 30, 43, 57, 58, 62, 80, 81, 85, 98, 139, 244, 376, 381, 426, 439, 507, 540, 541, 629, 632, 634, 637, 641, 678, 694, 726, 792, 812, 819, 820, 822], "path": [1, 12, 13, 14, 26, 27, 28, 29, 46, 47, 773, 784, 800, 819, 826, 840, 841, 842, 856, 870], "correspond": [1, 4, 11, 13, 18, 31, 32, 46, 54, 56, 57, 58, 61, 64, 67, 68, 70, 74, 77, 79, 80, 84, 87, 93, 97, 100, 103, 153, 165, 168, 228, 278, 292, 331, 345, 346, 369, 372, 375, 376, 378, 381, 387, 398, 404, 415, 420, 426, 429, 430, 431, 450, 475, 476, 496, 501, 502, 503, 506, 523, 524, 592, 614, 630, 632, 634, 636, 637, 639, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 668, 672, 673, 678, 685, 686, 706, 707, 738, 744, 745, 749, 750, 751, 752, 757, 758, 763, 764, 765, 766, 773, 776, 778, 805, 810, 812, 818, 820, 824, 825, 827, 828, 829, 831, 832, 833, 836, 837, 839, 841, 844, 847, 849, 863, 864, 865, 870], "toctre": [1, 826], "index": [1, 45, 46, 47, 50, 53, 57, 58, 64, 67, 68, 69, 74, 76, 80, 81, 87, 90, 91, 92, 132, 139, 313, 320, 321, 330, 331, 332, 369, 375, 376, 378, 383, 385, 387, 398, 404, 435, 437, 444, 467, 474, 477, 485, 487, 489, 492, 493, 496, 497, 513, 514, 523, 532, 535, 553, 555, 576, 577, 581, 627, 629, 634, 639, 641, 644, 645, 646, 706, 710, 720, 721, 722, 725, 726, 727, 733, 735, 744, 745, 747, 749, 750, 751, 753, 755, 777, 792, 806, 808, 827, 828, 833, 837, 838, 839, 840, 842, 844, 851, 870], "rst": [1, 837], "left": [1, 24, 34, 45, 46, 57, 62, 67, 69, 80, 85, 90, 92, 120, 121, 232, 247, 340, 356, 363, 372, 373, 375, 376, 378, 387, 410, 429, 434, 440, 447, 449, 475, 485, 527, 528, 529, 530, 531, 532, 545, 628, 632, 634, 637, 644, 646, 672, 673, 678, 687, 692, 744, 755, 776, 819, 820, 823, 826, 828, 829, 831, 834], "add": [1, 24, 34, 47, 49, 56, 57, 65, 72, 74, 79, 80, 88, 95, 102, 103, 363, 373, 375, 377, 418, 457, 572, 601, 632, 634, 636, 637, 642, 647, 663, 691, 737, 765, 773, 784, 792, 795, 810, 812, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 840, 841, 844, 845, 847, 849, 851, 855, 856, 866, 867, 868, 870], "grid": [1, 47, 53, 139, 316, 369, 629, 831, 844], "item": [1, 5, 6, 7, 31, 32, 43, 45, 47, 52, 58, 72, 74, 76, 79, 80, 81, 134, 159, 196, 250, 266, 274, 341, 345, 358, 542, 552, 553, 557, 592, 593, 629, 630, 631, 634, 641, 648, 723, 724, 725, 726, 730, 735, 736, 770, 812, 818, 827, 829, 849, 851, 852, 854, 863], "card": [1, 57, 80, 360, 372, 875], "refer": [1, 8, 57, 64, 70, 71, 80, 82, 87, 93, 94, 132, 147, 245, 263, 313, 328, 358, 369, 372, 375, 376, 378, 404, 409, 420, 427, 451, 474, 615, 616, 629, 632, 635, 637, 639, 647, 648, 668, 670, 693, 706, 764, 766, 767, 768, 792, 812, 817, 818, 819, 820, 823, 824, 826, 828, 829, 836, 837, 838, 839, 840, 841, 842, 843, 844, 855, 856, 857, 870], "also": [1, 4, 5, 6, 7, 10, 11, 13, 14, 16, 18, 22, 24, 26, 27, 29, 31, 32, 34, 36, 37, 38, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 728, 729, 730, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 801, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "look": [1, 6, 7, 8, 22, 31, 32, 45, 47, 50, 812, 816, 818, 819, 820, 825, 826, 827, 829, 830, 831, 833, 834, 835, 836, 837, 841, 842, 844, 845, 846, 847, 849, 851, 853, 854, 856, 859, 863, 866, 870], "document": [1, 6, 7, 22, 31, 64, 247, 335, 336, 372, 614, 632, 634, 710, 813, 814, 817, 820, 826, 828, 829, 831, 840, 841, 842, 844, 852, 854], "sphinx": [1, 814, 826], "websit": [1, 49, 819, 823, 860], "alreadi": [2, 6, 13, 23, 26, 27, 28, 29, 31, 32, 37, 45, 47, 50, 57, 62, 74, 80, 85, 236, 246, 273, 283, 293, 378, 387, 463, 464, 484, 520, 529, 632, 637, 675, 682, 805, 806, 812, 818, 819, 820, 825, 827, 829, 830, 836, 840, 841, 847, 855, 856, 870, 872, 877], "instal": [2, 7, 8, 9, 10, 11, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 48, 49, 50, 814, 819, 820, 825, 826, 834, 835], "skip": [2, 5, 47, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 376, 378, 399, 400, 401, 419, 435, 437, 444, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 485, 488, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 777, 805, 826, 837, 844], "colab": [2, 5, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 45, 47, 49, 50], "manual": [2, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 641, 718, 728, 729, 818, 819, 820, 829, 835, 844, 853, 856], "mind": [2, 16, 18, 22, 28, 31, 35, 818, 819, 824, 827, 844, 856, 864], "click": [2, 4, 47, 818, 819, 820, 828, 832, 834, 835, 850], "runtim": [2, 4, 5, 8, 11, 12, 13, 24, 31, 34, 45, 46, 822, 837, 844, 847, 870], "restart": [2, 4, 5, 8, 12, 45, 46, 819, 834], "git": [2, 4, 5, 8, 12, 31, 45, 46, 47, 48, 812, 814, 817, 819, 820, 823, 826, 828, 834, 835, 844, 856], "clone": [2, 4, 8, 12, 31, 45, 47, 48, 812, 814, 820, 834, 856], "http": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 26, 27, 28, 29, 31, 32, 45, 46, 47, 48, 49, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 814, 819, 820, 823, 826, 828, 829, 832, 834, 856, 864], "github": [2, 4, 5, 8, 11, 12, 13, 31, 45, 46, 47, 48, 49, 812, 814, 815, 817, 820, 821, 823, 826, 828, 829, 831, 832, 834, 835, 843, 844, 856, 859, 878], "com": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 823, 826, 828, 829, 834, 856], "unifyai": [2, 4, 8, 12, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 826, 834, 856], "model": [2, 3, 4, 9, 14, 15, 20, 21, 22, 48, 50, 240, 273, 377, 453, 632, 789, 793, 794, 810, 812, 852, 853, 857, 863, 864, 868, 869, 870, 871, 872, 873, 874, 876, 877], "depth": [2, 4, 6, 8, 12, 46, 53, 57, 61, 76, 80, 84, 141, 375, 378, 411, 471, 545, 557, 629, 634, 636, 654, 655, 820, 828, 852, 853, 854, 856], "repositori": [2, 4, 8, 12, 814, 818, 819, 820, 822, 823, 826, 834, 843, 861], "cd": [2, 4, 8, 12, 31, 48, 812, 814, 819, 820, 834, 856], "resnet": [3, 6, 13, 20, 31, 863, 864], "imag": [3, 4, 6, 7, 11, 13, 16, 20, 28, 31, 32, 45, 46, 47, 48, 49, 50, 57, 61, 79, 80, 84, 102, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 283, 284, 286, 287, 291, 375, 394, 395, 411, 412, 413, 415, 545, 632, 634, 636, 649, 650, 651, 652, 653, 656, 657, 658, 792, 812, 819, 834, 847, 849, 850, 852, 854, 856, 863, 864, 870], "classif": [3, 4, 12, 14, 20, 45, 812, 870], "acceler": [3, 20, 812, 829, 841, 868, 872, 873, 874, 875], "convert": [3, 8, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 28, 29, 31, 32, 33, 35, 37, 45, 48, 50, 52, 53, 56, 74, 75, 76, 79, 97, 127, 128, 140, 150, 151, 193, 194, 195, 196, 207, 215, 219, 239, 279, 378, 383, 462, 463, 464, 513, 578, 596, 598, 599, 600, 602, 629, 630, 631, 632, 634, 637, 641, 695, 719, 730, 731, 773, 801, 805, 812, 818, 824, 825, 838, 839, 841, 844, 846, 849, 855, 857, 861, 864, 868, 869, 876], "faster": [3, 4, 9, 11, 13, 14, 20, 31, 32, 48, 50, 57, 62, 80, 85, 376, 449, 637, 687, 814, 817, 826, 857, 872, 875], "infer": [3, 6, 7, 9, 11, 13, 14, 20, 24, 34, 36, 37, 46, 48, 50, 53, 57, 58, 61, 64, 76, 80, 81, 84, 87, 126, 128, 131, 135, 136, 140, 143, 149, 158, 159, 160, 161, 162, 312, 313, 375, 378, 382, 411, 496, 510, 556, 590, 591, 629, 630, 634, 636, 639, 659, 706, 801, 802, 822, 825, 829, 830, 844, 849, 854, 864, 868, 869, 872, 874], "mmpretrain": [3, 20], "segment": [3, 20, 57, 80, 330, 331, 332, 369, 826, 831], "unet": [3, 20], "alexnet": [3, 20], "written": [3, 4, 5, 6, 20, 22, 31, 32, 45, 58, 378, 473, 819, 823, 824, 832, 835, 836, 840, 841, 845, 849, 851, 854, 855, 859, 864, 868, 870, 874, 876, 877], "xgboost": [3, 20], "paddlepaddl": [3, 20, 335, 336, 372, 819], "dinov2": [3, 7, 20], "project": [3, 12, 13, 20, 25, 26, 27, 28, 29, 31, 32, 35, 98, 636, 663, 792, 812, 814, 815, 818, 819, 820, 821, 824, 825, 826, 844, 853, 855, 859, 860, 861, 864, 866, 868, 870, 873, 877, 878], "convnext": [3, 6, 11, 20], "video": [4, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 813, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 856, 868], "tutori": [4, 6, 7, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 820, 841, 856], "three": [4, 5, 20, 26, 36, 37, 47, 57, 139, 312, 369, 378, 464, 629, 819, 820, 827, 828, 829, 831, 841, 844, 847, 848, 849, 871, 876], "major": [4, 5, 644, 747, 829, 830, 842, 844, 855, 860, 867, 870], "ml": [4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 50, 812, 813, 817, 841, 848, 849, 850, 852, 853, 854, 858, 860, 861, 864, 866, 867, 868, 869, 870, 873, 875, 877], "framework": [4, 5, 7, 9, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 38, 45, 47, 49, 52, 58, 170, 192, 202, 205, 216, 543, 559, 563, 595, 598, 630, 631, 634, 641, 720, 771, 773, 777, 784, 789, 796, 801, 802, 812, 815, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 844, 845, 847, 848, 849, 851, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 871, 874], "sinc": [4, 8, 12, 28, 29, 31, 32, 45, 47, 57, 80, 98, 372, 812, 814, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 833, 840, 841, 855, 860, 870, 876], "automat": [4, 8, 9, 12, 29, 31, 32, 37, 818, 819, 820, 822, 825, 826, 828, 829, 835, 837, 840, 844, 847, 848, 850, 853, 854, 856, 857, 861, 870, 873, 877], "sure": [4, 8, 11, 12, 13, 14, 31, 45, 815, 818, 819, 820, 823, 828, 833, 834, 841, 842, 844, 847, 856], "enabl": [4, 5, 6, 8, 11, 12, 13, 14, 26, 27, 29, 46, 57, 62, 74, 85, 103, 375, 377, 398, 456, 580, 634, 637, 680, 794, 810, 812, 819, 820, 821, 824, 827, 829, 837, 838, 839, 840, 841, 844, 845, 848, 850, 852, 854, 855, 857, 860, 863, 868, 869, 870, 871, 872, 873, 876, 877], "dm": [4, 5, 8, 11, 13, 31, 32, 43, 45], "haiku": [4, 5, 8, 11, 13, 29, 31, 32, 43, 45, 49, 789, 812, 854, 861, 864, 870], "exit": [4, 8, 12, 31, 32, 830], "download": [4, 6, 7, 12, 16, 18, 31, 32, 46, 47, 50, 814, 819, 826, 844, 863, 864], "imagenet": [4, 6, 18, 46, 48, 812], "class": [4, 6, 7, 8, 12, 14, 16, 18, 22, 31, 32, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 134, 143, 149, 165, 168, 181, 183, 184, 243, 280, 338, 360, 372, 386, 387, 395, 396, 429, 528, 529, 536, 545, 549, 562, 572, 595, 629, 630, 631, 632, 634, 636, 637, 638, 641, 642, 657, 662, 666, 672, 682, 686, 687, 689, 696, 712, 719, 730, 737, 752, 759, 763, 764, 773, 774, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 810, 812, 818, 825, 826, 827, 829, 830, 831, 832, 836, 838, 839, 842, 843, 844, 847, 849, 850, 852, 853, 854, 857, 863, 864, 868, 870, 871, 877], "wget": [4, 6, 8, 12, 45, 46, 49, 819], "raw": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 48, 49, 74, 812, 832, 864, 871], "githubusercont": [4, 6, 8, 12, 45, 49], "hub": [4, 6, 8, 12, 45, 48, 50], "master": [4, 8, 12, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 48, 49, 815, 828, 870, 878], "imagenet_class": [4, 12], "categori": [4, 6, 12, 818, 823, 824, 827, 829, 833, 841, 845, 848], "strip": [4, 12, 24, 34, 860], "readlin": [4, 12, 46], "cat": [4, 7, 12, 46, 842, 847, 849, 854, 863, 864], "jpg": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 47, 48, 812, 864], "filenam": [4, 8, 12, 31, 32, 45, 47, 50, 58, 794, 800, 852], "import": [4, 6, 7, 9, 10, 11, 13, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 48, 49, 50, 57, 68, 72, 76, 80, 95, 194, 195, 199, 211, 307, 387, 522, 557, 573, 631, 634, 640, 645, 716, 717, 752, 784, 801, 802, 812, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 835, 838, 839, 840, 841, 842, 843, 844, 845, 849, 851, 852, 854, 855, 856, 860, 863, 864, 865, 866, 868, 870, 873, 874, 876], "devic": [4, 6, 7, 8, 9, 11, 12, 13, 46, 47, 50, 53, 57, 66, 74, 76, 80, 89, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 219, 312, 313, 328, 329, 369, 382, 472, 508, 509, 511, 512, 536, 550, 551, 629, 634, 643, 738, 739, 740, 741, 771, 773, 774, 789, 791, 792, 793, 794, 795, 796, 797, 798, 810, 812, 820, 822, 825, 829, 833, 837, 838, 842, 844, 845, 847, 849, 854, 855, 856, 857, 860, 869, 870, 872, 873, 874, 875], "torchvis": [4, 6, 11, 12, 45, 861], "transform": [4, 5, 6, 7, 11, 12, 13, 28, 31, 32, 45, 46, 48, 57, 61, 80, 84, 375, 376, 397, 398, 403, 404, 407, 408, 409, 419, 420, 423, 440, 636, 660, 776, 779, 792, 812, 838, 844, 854, 857, 863, 864, 868, 870, 871, 872], "pil": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 46, 47, 48, 812, 864], "time": [4, 5, 6, 7, 9, 10, 11, 13, 29, 31, 32, 37, 45, 47, 48, 49, 57, 59, 62, 68, 80, 82, 91, 97, 98, 134, 341, 372, 375, 376, 378, 387, 404, 409, 421, 423, 444, 451, 484, 490, 522, 616, 621, 629, 635, 636, 637, 639, 640, 644, 645, 659, 662, 677, 712, 715, 716, 717, 744, 745, 749, 750, 792, 793, 794, 810, 818, 819, 820, 823, 825, 827, 828, 829, 831, 834, 836, 837, 838, 840, 841, 844, 845, 849, 852, 854, 855, 856, 859, 860, 861, 863, 864, 868, 870, 871, 874, 875, 876], "filterwarn": [4, 5], "ignor": [4, 5, 44, 52, 53, 57, 74, 80, 139, 375, 376, 378, 387, 399, 400, 401, 430, 438, 446, 486, 487, 491, 530, 629, 636, 641, 663, 729, 730, 796, 819, 826, 828, 831, 844, 855, 876], "compos": [4, 6, 7, 11, 12, 31, 32, 45, 57, 80, 375, 389, 390, 391, 392, 819, 827, 841, 844, 863, 865, 870, 877], "resiz": [4, 6, 7, 8, 11, 12, 45, 46, 57, 80, 375, 411, 847], "centercrop": [4, 12], "224": [4, 6, 7, 12, 16, 18, 31, 32, 45, 46, 48, 812, 864], "totensor": [4, 6, 7, 11, 12, 45], "485": [4, 12, 45], "456": [4, 12, 45, 844], "406": [4, 12, 45, 57, 80, 397, 540, 634], "229": [4, 12, 45, 279, 632], "225": [4, 12, 45, 47, 234, 632], "torch_img": [4, 8, 12], "unsqueez": [4, 8, 11, 12], "img": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 812, 852, 864], "ipython": [4, 8, 12, 26, 27, 28, 29, 31, 32, 50], "displai": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 50, 819, 826, 828, 833, 844, 852], "end": [4, 8, 45, 46, 57, 80, 126, 228, 284, 353, 372, 375, 377, 378, 423, 452, 474, 484, 486, 487, 629, 632, 806, 812, 819, 820, 825, 828, 834, 840, 845, 847, 848, 855, 868, 873], "set_default_devic": [4, 5, 6, 8, 11, 12, 13, 217, 631, 830], "ivy_model": [4, 5, 8, 12, 48], "ivy_alexnet": 4, "quick": [4, 20, 32, 820, 822, 842, 853], "trace_graph": [4, 5, 8, 12, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 39, 48, 794, 812, 849, 854, 862], "moment": [4, 57, 59, 80, 82, 376, 433, 615, 616, 621, 635, 796, 810, 818, 825, 855, 863, 864], "cost": [4, 59, 82, 615, 616, 619, 621, 622, 623, 635, 640, 715, 716, 717, 806, 829, 847, 868], "arg": [4, 6, 8, 9, 10, 11, 12, 16, 18, 26, 27, 29, 31, 32, 36, 37, 38, 49, 52, 74, 96, 106, 122, 203, 213, 601, 628, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 798, 801, 805, 810, 812, 824, 829, 830, 833, 839, 840, 841, 847, 849, 853, 863, 864, 865], "asarrai": [4, 5, 8, 11, 12, 46, 53, 57, 58, 69, 76, 80, 81, 92, 127, 385, 514, 515, 545, 556, 560, 561, 591, 592, 593, 629, 634, 636, 645, 646, 650, 750, 754, 833, 838, 841, 842], "cuda": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22, 31, 46, 47, 50, 53, 57, 66, 76, 80, 89, 137, 138, 141, 193, 194, 195, 211, 382, 508, 509, 511, 512, 629, 631, 637, 643, 688, 738, 739, 740, 741, 791, 792, 793, 794, 795, 796, 797, 810, 849, 855, 857, 875], "output": [4, 5, 7, 8, 9, 10, 12, 22, 28, 29, 31, 32, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 435, 436, 438, 441, 442, 443, 444, 446, 447, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 467, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 539, 540, 541, 545, 546, 547, 549, 553, 562, 569, 576, 577, 578, 602, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 791, 792, 805, 806, 812, 814, 819, 820, 822, 823, 824, 826, 827, 829, 830, 831, 832, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 849, 851, 853, 854, 855, 857, 863, 864, 871], "softmax": [4, 6, 7, 12, 16, 29, 31, 32, 47, 51, 61, 72, 73, 84, 377, 454, 626, 636, 663, 666, 788, 812], "pass": [4, 6, 7, 8, 11, 12, 13, 14, 16, 18, 22, 29, 31, 32, 38, 44, 45, 47, 49, 50, 56, 57, 72, 74, 79, 80, 95, 103, 122, 123, 125, 157, 179, 194, 213, 228, 274, 375, 377, 378, 381, 382, 387, 421, 454, 474, 501, 503, 508, 528, 529, 562, 628, 630, 631, 632, 634, 640, 715, 716, 771, 773, 777, 784, 789, 793, 794, 796, 797, 801, 805, 810, 812, 816, 818, 820, 823, 824, 825, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 855, 863, 864, 865, 868], "argsort": [4, 12, 69, 92, 646, 755, 841], "descend": [4, 12, 69, 92, 637, 646, 687, 688, 753, 756], "top": [4, 12, 15, 20, 29, 31, 32, 45, 46, 57, 64, 80, 319, 369, 377, 378, 452, 494, 545, 634, 700, 812, 819, 820, 829, 834, 841, 843, 844, 847, 852, 853, 870, 874], "logit": [4, 5, 6, 7, 8, 12, 45, 46, 47, 48, 57, 63, 80, 86, 367, 382, 508, 511, 638, 696, 698, 788, 812, 863], "gather": [4, 12, 45, 57, 58, 80, 81, 330, 331, 332, 369, 553, 555, 634, 877], "to_list": [4, 12, 58, 81, 634], "arrai": [4, 5, 6, 7, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 175, 177, 178, 179, 180, 186, 196, 197, 201, 206, 208, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 574, 575, 576, 577, 578, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 597, 598, 599, 600, 601, 602, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 778, 784, 791, 792, 793, 794, 797, 801, 805, 806, 808, 812, 816, 818, 819, 820, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 864, 865, 868, 869, 870, 872, 876, 877], "282": [4, 12], "281": [4, 12, 45, 47], "285": [4, 12, 80], "64773697": 4, "29496649": 4, "04526037": 4, "tiger": [4, 12], "tabbi": [4, 7, 12], "egyptian": [4, 12], "torch_alexnet": 4, "alexnet_weight": 4, "imagenet1k_v1": [4, 12], "dropout": [4, 61, 84, 375, 399, 400, 401, 636, 661, 663, 666, 792, 852], "torch_output": [4, 8, 9, 12], "dim": [4, 12, 47, 57, 74, 76, 80, 141, 313, 369, 375, 378, 393, 403, 404, 405, 408, 416, 474, 496, 629, 636, 649, 656, 657, 662, 778, 792, 812, 829, 841, 842, 847], "torch_class": [4, 12], "torch_logit": [4, 12], "tensor": [4, 5, 6, 9, 11, 12, 13, 16, 18, 22, 23, 26, 27, 29, 31, 32, 33, 37, 43, 45, 53, 56, 57, 58, 61, 62, 63, 64, 66, 70, 74, 76, 79, 80, 81, 84, 85, 86, 87, 89, 93, 96, 129, 137, 138, 141, 147, 163, 179, 271, 272, 302, 319, 323, 324, 325, 326, 327, 328, 337, 360, 367, 369, 372, 375, 376, 377, 378, 387, 388, 394, 395, 398, 402, 411, 412, 413, 414, 421, 423, 425, 432, 433, 434, 435, 438, 440, 442, 444, 445, 448, 450, 451, 452, 454, 457, 458, 474, 477, 482, 485, 486, 487, 488, 491, 496, 497, 528, 533, 576, 577, 629, 630, 632, 634, 636, 637, 638, 639, 643, 647, 659, 662, 663, 678, 689, 696, 706, 708, 738, 761, 792, 801, 806, 810, 812, 824, 825, 829, 830, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 859, 863, 864, 865, 867, 868, 871, 873, 874, 877], "6477": 4, "2950": 4, "0453": 4, "grad_fn": [4, 12, 29, 43, 618, 625, 635, 852], "takebackward0": [4, 12], "great": [4, 7, 8, 812, 820, 844, 849, 851, 860, 861, 876], "simpl": [4, 7, 16, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 43, 45, 47, 50, 57, 80, 387, 522, 778, 792, 806, 812, 818, 819, 820, 824, 826, 827, 829, 830, 831, 832, 837, 840, 841, 844, 845, 847, 851, 853, 854, 855, 857, 859, 863, 864, 869, 870, 871, 872], "let": [4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 48, 50, 58, 70, 81, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 284, 286, 287, 291, 552, 553, 632, 634, 637, 647, 691, 761, 763, 764, 765, 766, 812, 818, 821, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 861, 863, 864, 877], "ll": [4, 6, 7, 8, 9, 11, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 46, 812, 813, 815, 816, 818, 819, 820, 821, 826, 831, 834, 835, 839, 840, 852, 856, 861, 863, 864], "try": [4, 6, 7, 23, 33, 43, 46, 50, 74, 601, 634, 791, 801, 812, 818, 819, 820, 823, 824, 827, 828, 829, 833, 835, 840, 842, 849, 851, 855, 858, 860, 861, 865], "tf": [4, 6, 8, 9, 10, 13, 16, 18, 23, 26, 27, 29, 31, 32, 33, 34, 36, 38, 43, 48, 49, 789, 812, 824, 829, 830, 836, 840, 841, 844, 845, 847, 849, 854, 855, 857, 863, 864, 865, 870], "onc": [4, 6, 8, 31, 32, 43, 45, 62, 66, 85, 89, 213, 376, 429, 631, 637, 643, 672, 673, 674, 687, 738, 812, 818, 819, 820, 827, 828, 829, 830, 831, 834, 835, 840, 841, 844, 847, 849, 852, 855, 856, 861, 863], "set": [4, 7, 9, 16, 18, 24, 31, 32, 34, 37, 45, 46, 47, 48, 49, 52, 57, 58, 61, 62, 67, 69, 70, 74, 80, 81, 84, 85, 90, 92, 93, 115, 118, 125, 145, 147, 181, 182, 183, 184, 185, 196, 209, 210, 211, 212, 213, 228, 328, 340, 356, 358, 363, 369, 372, 373, 375, 376, 377, 378, 387, 398, 419, 423, 427, 431, 434, 452, 457, 458, 474, 484, 487, 494, 522, 527, 528, 529, 530, 531, 532, 534, 538, 545, 557, 562, 578, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 595, 603, 626, 628, 629, 630, 631, 632, 634, 636, 637, 641, 643, 644, 646, 647, 659, 666, 668, 678, 680, 683, 686, 687, 718, 725, 728, 729, 730, 735, 736, 742, 744, 745, 749, 751, 752, 753, 756, 764, 766, 773, 776, 777, 778, 779, 784, 791, 792, 794, 796, 801, 806, 809, 810, 812, 813, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 859, 862, 863, 864, 868, 869, 870, 871, 872, 874, 877], "post": [4, 6, 8, 45, 65, 88, 642, 737, 819, 834, 839, 854, 856], "process": [4, 6, 8, 26, 31, 32, 36, 45, 207, 219, 631, 813, 819, 820, 826, 827, 828, 834, 835, 837, 839, 841, 842, 843, 844, 847, 849, 854, 860, 861, 863, 868, 869, 870, 873, 874, 876, 877], "st": [4, 5, 11, 776, 823, 842, 844], "perf_count": [4, 9, 10, 11], "raw_logit": 4, "latenc": [4, 11], "nn": [4, 6, 7, 8, 10, 18, 29, 31, 32, 45, 49, 139, 629, 812, 837, 842, 847, 854, 864, 871], "direct": [4, 57, 80, 341, 348, 352, 357, 361, 372, 375, 378, 409, 420, 475, 476, 490, 646, 756, 818, 824, 826, 841, 847, 853, 854, 866, 870, 871, 874], "tolist": 4, "652289830999962": 4, "int32": [4, 43, 45, 54, 57, 58, 66, 67, 70, 77, 80, 81, 89, 90, 132, 137, 141, 143, 149, 152, 155, 157, 159, 161, 163, 166, 168, 169, 173, 176, 180, 184, 188, 190, 208, 235, 271, 272, 383, 387, 513, 523, 524, 525, 553, 562, 599, 629, 630, 631, 632, 634, 643, 644, 647, 739, 740, 741, 745, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "6477362": 4, "29496726": 4, "04526032": 4, "As": [4, 6, 7, 8, 11, 13, 14, 16, 18, 24, 28, 29, 31, 32, 34, 37, 43, 44, 68, 72, 95, 637, 645, 685, 749, 750, 751, 752, 812, 816, 818, 819, 820, 821, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 851, 852, 853, 855, 859, 863, 864, 865, 870, 875], "ident": [4, 6, 9, 14, 29, 46, 48, 62, 74, 132, 201, 555, 581, 629, 631, 634, 637, 641, 675, 679, 731, 792, 827, 837, 838, 841, 842, 845, 847, 851, 852, 855, 857, 859, 861], "had": [4, 827, 828, 840, 845, 849, 870, 871], "postprocess": 4, "routin": [4, 828, 840, 841, 847, 855, 870], "feed": [4, 213, 631, 863, 870, 871], "carefulli": [4, 278, 632, 791, 841, 868, 873], "rewrit": 4, "easili": [4, 28, 31, 32, 43, 812, 819, 824, 828, 834, 841, 844, 847, 852, 853, 854, 855, 860, 870, 876, 877], "quickest": 4, "particular": [4, 31, 32, 268, 632, 777, 819, 820, 823, 825, 828, 829, 831, 838, 840, 841, 844, 845, 866, 870, 876], "again": [4, 8, 25, 26, 34, 35, 36, 37, 637, 685, 820, 824, 825, 826, 827, 831, 833, 835, 840, 841, 844, 845, 847, 852, 854, 855, 860, 861, 875, 876], "speed": [4, 11, 13, 14, 31, 32, 45, 50, 58, 81, 569, 634, 844, 859, 873], "repeat": [4, 5, 25, 35, 57, 58, 64, 80, 81, 87, 375, 378, 387, 404, 409, 473, 522, 547, 634, 639, 640, 712, 716, 717, 805, 820, 824, 825, 831, 832, 840, 844], "previou": [4, 14, 24, 25, 26, 28, 34, 35, 36, 38, 59, 80, 82, 187, 188, 189, 190, 191, 364, 374, 375, 421, 602, 604, 605, 606, 607, 609, 610, 612, 616, 621, 630, 634, 635, 791, 809, 819, 820, 823, 825, 828, 830, 836, 841, 844, 847, 854, 855, 873], "trace": [4, 5, 6, 8, 11, 12, 13, 20, 21, 25, 28, 31, 34, 36, 37, 49, 58, 62, 74, 81, 85, 564, 565, 568, 579, 588, 603, 611, 634, 637, 773, 784, 794, 796, 810, 812, 823, 827, 829, 841, 846, 847, 849, 854, 855, 862, 863, 864, 871, 876], "026875037000081647": 4, "overrid": [4, 8, 37, 46, 53, 57, 76, 80, 141, 387, 522, 629, 824, 826], "prealloc": [4, 8], "temporari": [4, 8, 589, 612, 634, 806, 829, 846], "fix": [4, 8, 47, 57, 80, 97, 98, 372, 375, 376, 421, 451, 636, 663, 812, 816, 819, 820, 823, 829, 835, 844, 845], "until": [4, 8, 806, 820, 840, 849, 855, 860, 863, 877], "o": [4, 8, 44, 45, 46, 47, 49, 572, 634, 636, 663, 812, 819, 822, 828, 849, 856], "environ": [4, 8, 13, 26, 27, 28, 29, 46, 49, 812, 813, 820, 856, 870, 872], "xla_python_client_alloc": [4, 8], "platform": [4, 6, 8, 14, 26, 27, 29, 814, 817, 819, 826, 868, 872, 874], "jit": [4, 11, 13, 31, 34, 849, 855, 863, 870], "img_jax": [4, 8], "device_put": [4, 11], "warm": 4, "_": [4, 9, 10, 11, 13, 14, 31, 44, 45, 56, 57, 74, 79, 80, 82, 98, 155, 243, 245, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 448, 451, 492, 522, 545, 615, 616, 630, 632, 634, 635, 637, 639, 641, 647, 685, 686, 688, 714, 725, 764, 812, 820, 828, 829, 832, 840, 844, 852], "0022192720000475674": 4, "64773613": 4, "29496723": 4, "exact": [4, 57, 73, 74, 110, 375, 377, 411, 416, 456, 457, 645, 749, 751, 778, 788, 819, 820, 823, 831, 849], "note": [4, 6, 8, 14, 27, 31, 32, 37, 46, 47, 48, 57, 58, 62, 64, 68, 80, 85, 87, 97, 134, 147, 179, 247, 282, 283, 290, 328, 329, 349, 369, 372, 375, 376, 378, 398, 429, 434, 444, 445, 451, 474, 492, 630, 632, 636, 637, 639, 645, 647, 663, 672, 673, 684, 685, 687, 706, 710, 750, 752, 761, 792, 806, 810, 816, 818, 819, 820, 824, 829, 831, 832, 835, 840, 841, 842, 844, 845, 847], "were": [4, 8, 48, 74, 77, 168, 172, 173, 247, 632, 636, 663, 818, 819, 820, 829, 833, 835, 839, 840, 842, 844, 845, 847, 849, 863, 870, 871, 876], "function": [4, 6, 7, 9, 10, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 166, 167, 168, 171, 172, 173, 175, 179, 180, 197, 199, 200, 209, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 384, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 575, 576, 577, 580, 581, 584, 586, 588, 591, 592, 593, 594, 595, 597, 599, 600, 601, 607, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 722, 724, 725, 726, 728, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 774, 776, 777, 778, 779, 784, 788, 791, 794, 801, 802, 808, 810, 812, 816, 819, 820, 822, 823, 824, 825, 826, 828, 831, 832, 834, 840, 843, 848, 850, 851, 852, 853, 857, 859, 863, 865, 867, 868, 869, 870, 871, 876, 877], "dog": 4, "006431100999861883": 4, "258": [4, 636, 651, 653], "104": [4, 70, 637, 647, 682, 759], "259": 4, "72447652": 4, "13937832": 4, "05874982": 4, "samoi": 4, "wallabi": 4, "pomeranian": 4, "incorrect": [4, 828], "predict": [4, 6, 7, 8, 12, 14, 45, 46, 47, 48, 57, 63, 80, 86, 377, 453, 456, 459, 638, 696, 697, 698, 812, 829], "down": [4, 24, 34, 48, 57, 80, 375, 378, 411, 476, 812, 819, 844, 857, 870, 876], "itself": [4, 7, 26, 36, 56, 97, 274, 535, 601, 632, 634, 641, 730, 806, 816, 819, 820, 823, 826, 827, 828, 829, 830, 833, 834, 835, 840, 841, 853, 855, 859, 863, 869, 870, 871, 876], "version": [4, 6, 9, 14, 28, 29, 34, 45, 46, 47, 50, 51, 57, 80, 97, 110, 291, 340, 342, 372, 387, 527, 532, 614, 632, 634, 637, 673, 674, 773, 801, 802, 812, 819, 820, 826, 828, 829, 832, 840, 842, 849, 859, 860, 861, 864, 876, 877], "004749261999904775": 4, "7245": 4, "1394": 4, "0587": 4, "promis": [4, 7, 860], "sourc": [4, 7, 9, 10, 12, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 780, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 841, 843, 859, 860, 861, 862, 864, 865, 869, 870, 871, 872, 873], "modul": [4, 6, 8, 11, 13, 16, 18, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 37, 43, 44, 45, 47, 48, 49, 72, 74, 95, 103, 368, 370, 371, 379, 380, 384, 573, 634, 648, 769, 773, 788, 789, 790, 792, 793, 795, 797, 800, 801, 810, 812, 814, 819, 824, 825, 826, 833, 837, 840, 841, 843, 844, 849, 850, 852, 854, 855, 861, 863, 865, 870, 871, 873], "__init__": [4, 8, 16, 18, 31, 32, 43, 44, 45, 47, 74, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 774, 781, 782, 783, 788, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 807, 810, 812, 818, 824, 825, 829, 833, 841, 845, 849, 851, 852, 853, 854, 864], "self": [4, 6, 7, 8, 16, 18, 31, 32, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 805, 812, 820, 824, 827, 833, 841, 842, 849, 851, 852, 853, 854, 864], "num_class": [4, 16, 18, 31, 32, 45, 47, 49, 812, 854, 864], "1000": [4, 6, 9, 10, 11, 12, 16, 31, 32, 45, 46, 47, 48, 50, 53, 76, 138, 629, 812, 852, 864], "v": [4, 5, 8, 20, 21, 24, 31, 32, 34, 37, 38, 43, 46, 47, 57, 61, 69, 76, 80, 84, 92, 138, 238, 243, 245, 286, 376, 378, 430, 440, 447, 448, 473, 632, 636, 640, 646, 663, 666, 716, 717, 755, 773, 792, 793, 794, 795, 796, 797, 812, 814, 819, 820, 822, 826, 834, 849, 852, 853, 854, 878], "_build": [4, 8, 793, 794, 812], "kwarg": [4, 5, 7, 8, 13, 14, 31, 45, 49, 52, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 103, 106, 203, 378, 484, 572, 601, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 801, 810, 812, 824, 829, 830, 833, 837, 840, 841, 847, 849, 853, 863, 864, 865], "featur": [4, 7, 13, 14, 16, 18, 20, 22, 31, 32, 45, 49, 57, 80, 375, 389, 391, 392, 399, 400, 401, 791, 792, 810, 812, 818, 819, 820, 824, 825, 828, 829, 836, 845, 847, 852, 855, 864, 870, 871, 872, 876], "sequenti": [4, 8, 9, 12, 29, 31, 32, 47, 812, 826, 827, 853, 864], "conv2d": [4, 8, 12, 29, 31, 32, 47, 50, 61, 84, 636, 653, 792, 812], "64": [4, 8, 12, 43, 45, 46, 47, 50, 56, 57, 61, 79, 80, 81, 84, 85, 89, 93, 103, 164, 234, 244, 278, 287, 288, 346, 372, 375, 397, 407, 545, 546, 593, 621, 630, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 658, 679, 682, 692, 726, 730, 740, 759, 763, 819, 829, 852, 853, 867, 875], "data_format": [4, 47, 57, 61, 80, 84, 375, 381, 390, 394, 395, 396, 399, 400, 401, 412, 413, 414, 415, 417, 501, 502, 503, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 776, 792, 795, 812], "nchw": [4, 47, 57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792, 812], "relu": [4, 8, 12, 29, 31, 32, 43, 50, 51, 57, 72, 73, 80, 112, 302, 303, 311, 367, 626, 788, 812, 842, 852, 853], "maxpool2d": [4, 8, 12, 45, 792, 812], "192": [4, 47, 776, 805], "384": [4, 82, 615, 635, 641, 718], "avgpool": [4, 12], "adaptiveavgpool2d": [4, 12, 792], "classifi": [4, 7, 14, 16, 18, 31, 32, 45, 47, 48, 812, 818, 863, 864], "prob": [4, 6, 7, 47, 57, 61, 80, 84, 89, 375, 382, 399, 400, 401, 508, 636, 643, 659, 738, 792, 812], "4096": 4, "_forward": [4, 8, 11, 13, 31, 32, 43, 44, 47, 812, 832, 849, 852, 853], "bidirect": [5, 636, 661], "encod": [5, 16, 18, 31, 32, 45, 47, 58, 63, 81, 86, 549, 634, 638, 696, 812, 852, 860, 864], "mlm": 5, "googl": [5, 26, 27, 28, 29, 45, 46, 47, 49, 828, 860], "choos": [5, 45, 47, 55, 67, 68, 78, 214, 240, 247, 268, 269, 273, 335, 336, 372, 378, 631, 632, 644, 645, 647, 748, 749, 750, 751, 752, 760, 761, 762, 764, 776, 812, 818, 819, 820, 838, 844, 850, 854, 863], "librari": [5, 6, 7, 11, 13, 20, 21, 27, 29, 43, 45, 55, 68, 78, 214, 245, 247, 263, 268, 269, 291, 335, 336, 372, 631, 632, 637, 645, 647, 673, 674, 749, 750, 751, 752, 760, 761, 762, 764, 810, 812, 818, 819, 823, 829, 854, 855, 859, 860, 861, 863, 866, 867, 868, 870, 874, 877], "pretrain": [5, 11, 16, 17, 18, 31, 32, 50, 812, 864], "save": [5, 6, 12, 45, 57, 74, 80, 387, 529, 589, 612, 631, 634, 648, 794, 810, 819, 828, 835, 844, 855, 861, 869], "some": [5, 8, 9, 10, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 43, 47, 48, 74, 82, 245, 247, 263, 375, 399, 400, 401, 615, 616, 619, 621, 622, 623, 631, 632, 635, 641, 729, 792, 812, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 855, 856, 857, 860, 861, 863, 864, 866, 867, 869, 870, 871, 876, 877], "mohame54": 5, "automodel": [5, 13, 31], "autotoken": 5, "load": [5, 6, 7, 11, 13, 28, 31, 45, 46, 47, 48, 49, 50, 74, 376, 447, 648, 794, 812, 844, 855, 869, 876], "token": [5, 47, 821], "bert_bas": 5, "from_pretrain": [5, 7, 13, 31, 48, 863, 864], "base": [5, 7, 14, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 138, 147, 179, 243, 244, 261, 262, 263, 264, 278, 319, 328, 330, 337, 340, 346, 353, 369, 372, 375, 376, 377, 385, 418, 422, 447, 452, 514, 582, 593, 605, 629, 630, 632, 634, 637, 639, 645, 647, 678, 702, 749, 750, 751, 752, 759, 774, 777, 778, 781, 782, 783, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 806, 807, 810, 812, 819, 820, 821, 823, 827, 828, 829, 833, 836, 838, 839, 840, 842, 843, 844, 845, 846, 847, 849, 870, 875, 877, 878], "uncas": 5, "eval": [5, 6, 8, 12, 18, 26, 27, 28, 29, 636, 661, 794], "evalu": [5, 56, 57, 74, 79, 80, 243, 245, 261, 262, 263, 264, 268, 275, 277, 284, 288, 322, 354, 365, 366, 369, 374, 376, 377, 378, 443, 452, 457, 481, 625, 632, 635, 641, 648, 728, 729, 767, 768, 793, 794, 820, 827, 829, 837, 838, 870], "bert_token": 5, "sampl": [5, 6, 7, 11, 13, 16, 18, 28, 31, 32, 46, 53, 56, 57, 66, 70, 76, 79, 80, 89, 93, 137, 138, 292, 319, 369, 375, 377, 378, 382, 399, 400, 401, 411, 421, 423, 452, 457, 487, 508, 509, 510, 511, 512, 629, 632, 643, 647, 738, 739, 740, 741, 764, 766, 792, 842, 844], "test": [5, 7, 23, 24, 26, 27, 33, 34, 36, 37, 38, 46, 47, 56, 58, 71, 79, 81, 94, 125, 171, 175, 254, 255, 256, 257, 280, 375, 399, 400, 401, 569, 628, 630, 632, 634, 648, 767, 768, 771, 774, 777, 806, 812, 814, 816, 817, 822, 826, 829, 831, 833, 835, 838, 841, 843, 845, 855, 856, 861, 863, 864, 865, 870], "did": [5, 45, 818, 826, 854, 860, 876], "realli": [5, 43, 819, 827, 834, 855, 863, 875, 876], "like": [5, 6, 7, 11, 13, 23, 24, 25, 31, 33, 34, 35, 36, 37, 38, 48, 50, 53, 56, 57, 64, 76, 79, 80, 84, 87, 92, 138, 156, 179, 224, 244, 250, 253, 266, 284, 341, 346, 358, 372, 375, 376, 377, 378, 385, 387, 418, 420, 429, 454, 463, 464, 473, 474, 514, 515, 532, 629, 630, 632, 637, 639, 643, 646, 672, 706, 741, 754, 806, 812, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 860, 863, 864, 870, 875], "input": [5, 6, 7, 8, 9, 10, 13, 16, 18, 28, 29, 31, 36, 37, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 194, 196, 197, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 430, 431, 432, 434, 435, 436, 441, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 576, 577, 578, 584, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 602, 607, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 791, 792, 793, 794, 795, 805, 806, 810, 823, 824, 825, 827, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 871, 874], "pad": [5, 12, 45, 47, 57, 61, 64, 80, 84, 87, 98, 100, 375, 378, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 549, 634, 636, 639, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 701, 714, 778, 792, 812], "longest": 5, "return_tensor": [5, 7, 13, 31, 48, 863, 864], "pt": [5, 7, 13, 31, 863], "max_length": [5, 74], "512": [5, 8, 12, 45, 47, 85, 636, 651, 692, 812], "input_id": 5, "101": [5, 14, 46, 636, 637, 641, 660, 676, 724], "1045": 5, "2106": 5, "1005": 5, "1056": 5, "2428": 5, "2066": 5, "2115": 5, "4309": 5, "1012": 5, "102": [5, 14, 57, 80, 89, 397, 739], "token_type_id": 5, "attention_mask": [5, 61, 84, 636, 663], "pooler": 5, "compar": [5, 9, 10, 11, 13, 31, 44, 48, 50, 57, 58, 68, 69, 70, 74, 80, 81, 92, 93, 334, 351, 372, 387, 530, 534, 537, 634, 636, 645, 646, 647, 661, 749, 750, 751, 752, 753, 756, 762, 773, 812, 825, 831, 833, 842, 844, 847, 852, 866, 868, 870, 876, 877], "no_grad": [5, 45, 863], "bert_output": 5, "pooler_output": 5, "ivy_bert": 5, "bert_base_uncas": 5, "ivy_input": 5, "k": [5, 11, 44, 47, 53, 57, 58, 61, 62, 66, 76, 79, 80, 84, 85, 89, 97, 98, 122, 132, 145, 146, 147, 267, 313, 328, 329, 369, 376, 378, 382, 385, 387, 427, 442, 446, 448, 450, 490, 494, 508, 509, 510, 511, 512, 515, 525, 537, 628, 629, 634, 636, 637, 641, 643, 644, 663, 666, 670, 677, 678, 684, 686, 687, 688, 691, 726, 739, 740, 741, 747, 822, 823, 841, 842, 849, 863, 866, 870], "ivy_output": [5, 48], "logits_clos": 5, "allclos": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 48, 50, 57, 80, 372], "detach": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 839], "rtol": [5, 7, 16, 18, 57, 62, 80, 85, 334, 351, 372, 637, 680, 683, 771, 773, 816, 834, 842], "005": [5, 12, 57, 80, 334, 351, 372, 453], "atol": [5, 7, 9, 10, 11, 13, 31, 57, 62, 80, 85, 334, 351, 372, 637, 680, 771, 773, 816, 834, 842], "768": 5, "fn": [5, 48, 50, 57, 74, 77, 80, 106, 166, 167, 199, 200, 203, 378, 461, 535, 550, 551, 601, 630, 631, 634, 641, 724, 725, 726, 728, 729, 730, 771, 773, 798, 801, 807, 808, 810, 830, 833, 840, 841, 849, 863], "finish": [5, 7, 20, 31, 32, 43, 46, 812, 813, 818, 819, 822], "sec": 5, "43": [5, 14, 43, 45, 47, 57, 80, 89, 103, 234, 375, 376, 387, 396, 428, 523, 632, 643, 644, 740, 741, 748], "procedur": [5, 826, 828, 831, 842], "60": [5, 43, 47, 56, 70, 79, 81, 89, 93, 224, 258, 378, 489, 553, 561, 577, 592, 614, 632, 634, 637, 641, 647, 682, 721, 739, 757, 759, 763, 806, 828], "big": [5, 791, 813, 855, 870], "jnp": [5, 23, 28, 31, 32, 33, 34, 37, 43, 45, 49, 812, 829, 830, 833, 836, 840, 845, 849, 854, 864, 865], "ref": [5, 8, 11, 13, 81, 85, 259, 273, 276, 282, 289, 632, 639, 710, 819, 840], "fast": [5, 26, 36, 57, 375, 398, 870], "valu": [5, 14, 43, 44, 46, 47, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 100, 102, 103, 105, 118, 122, 123, 125, 126, 132, 135, 136, 137, 138, 141, 147, 152, 169, 173, 179, 212, 213, 220, 221, 222, 223, 225, 227, 228, 229, 236, 240, 241, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 302, 307, 310, 311, 313, 320, 322, 328, 330, 331, 332, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 351, 352, 354, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 386, 387, 398, 411, 418, 419, 421, 423, 427, 430, 434, 440, 445, 447, 449, 451, 452, 453, 455, 456, 457, 458, 467, 473, 478, 484, 489, 491, 492, 493, 494, 496, 498, 501, 503, 508, 509, 511, 512, 518, 520, 523, 524, 525, 528, 529, 530, 531, 532, 538, 540, 541, 542, 544, 549, 552, 553, 555, 560, 561, 562, 569, 576, 577, 581, 582, 583, 586, 595, 600, 605, 606, 609, 612, 613, 614, 615, 616, 617, 621, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 666, 670, 673, 674, 678, 679, 680, 683, 684, 685, 686, 687, 688, 691, 694, 699, 700, 701, 705, 706, 714, 715, 716, 720, 722, 723, 724, 725, 726, 731, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 779, 781, 783, 788, 791, 792, 793, 794, 795, 796, 810, 816, 819, 820, 823, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 846, 847, 849, 851, 855, 863, 870, 871], "emerg": [6, 870], "popular": [6, 7, 812, 823, 870], "Its": [6, 57, 377, 452, 870], "python": [6, 7, 12, 16, 22, 34, 39, 43, 45, 46, 47, 49, 50, 57, 66, 80, 89, 126, 207, 219, 247, 282, 375, 382, 421, 508, 509, 510, 511, 512, 614, 629, 631, 632, 634, 643, 738, 739, 740, 741, 743, 801, 805, 806, 810, 817, 819, 820, 823, 826, 827, 828, 833, 834, 841, 843, 844, 849, 851, 852, 855, 857, 858, 859, 860, 863, 867, 870, 871, 872, 876, 877], "superior": 6, "eager": [6, 20, 21, 24, 27, 29, 34, 37, 38, 49, 810, 827, 855, 870], "execut": [6, 11, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 39, 46, 48, 50, 123, 125, 601, 628, 631, 634, 819, 820, 826, 827, 828, 829, 830, 831, 833, 837, 838, 840, 844, 847, 849, 851, 854, 855, 857, 863, 866, 870, 871, 872, 873, 874, 876], "mode": [6, 7, 8, 37, 49, 57, 62, 74, 80, 85, 96, 97, 98, 99, 100, 101, 210, 213, 218, 223, 240, 273, 327, 365, 366, 369, 374, 375, 376, 378, 406, 411, 419, 420, 432, 434, 442, 444, 445, 451, 467, 477, 482, 484, 485, 487, 489, 492, 493, 497, 578, 579, 580, 584, 585, 587, 588, 602, 603, 607, 608, 610, 611, 631, 632, 634, 636, 637, 661, 684, 784, 792, 793, 794, 809, 810, 819, 820, 822, 827, 830, 831, 834, 847, 855, 870, 873], "made": [6, 11, 13, 31, 57, 64, 80, 376, 378, 436, 462, 463, 464, 710, 818, 820, 821, 823, 824, 827, 828, 833, 835, 837, 839, 840, 841, 845, 847, 849, 851, 860, 870], "favorit": [6, 812], "increasingli": [6, 831, 863], "span": [6, 820, 868, 876], "industri": [6, 860, 870, 872], "still": [6, 14, 25, 27, 28, 31, 32, 34, 35, 38, 62, 74, 85, 637, 687, 776, 818, 819, 820, 824, 825, 829, 832, 833, 835, 837, 840, 841, 844, 847, 853, 855, 860, 863, 864, 867, 870, 876], "practition": [6, 7, 870, 874, 875, 876], "larg": [6, 46, 56, 57, 79, 80, 223, 240, 247, 273, 274, 378, 387, 492, 522, 632, 637, 685, 814, 819, 820, 826, 828, 834, 852, 863, 870], "unabl": [6, 13, 820, 847], "rich": 6, "ecosystem": [6, 870], "state": [6, 19, 30, 45, 61, 80, 84, 100, 187, 188, 189, 190, 191, 273, 375, 421, 602, 604, 607, 609, 610, 630, 632, 634, 636, 661, 662, 774, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 812, 816, 819, 826, 829, 830, 832, 833, 834, 835, 836, 841, 844, 848, 849, 850, 852, 860, 864, 876, 877], "art": 6, "sota": [6, 7], "inaccur": 6, "dynam": [6, 9, 38, 639, 706, 794, 801, 822, 828, 829, 830, 840, 841, 846, 849, 863, 870, 874], "connect": [6, 12, 45, 792, 812, 814, 819, 826, 843, 853, 854, 860, 868], "layer": [6, 7, 9, 10, 16, 18, 22, 28, 29, 31, 32, 43, 48, 57, 65, 80, 88, 642, 661, 662, 663, 737, 789, 791, 793, 794, 795, 796, 797, 812, 832, 841, 845, 847, 849, 850, 853, 859, 864, 868, 870, 874, 877], "togeth": [6, 57, 74, 80, 334, 351, 372, 376, 430, 797, 812, 821, 824, 827, 829, 840, 841, 844, 845, 847, 853, 854, 855, 860, 868, 870, 871, 876], "For": [6, 11, 12, 13, 14, 22, 24, 31, 32, 34, 37, 39, 53, 57, 62, 68, 80, 85, 126, 139, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 275, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 330, 331, 332, 335, 336, 338, 359, 369, 372, 376, 378, 442, 444, 464, 484, 487, 629, 632, 637, 639, 645, 647, 685, 687, 691, 699, 710, 749, 750, 751, 752, 760, 762, 763, 765, 777, 789, 812, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 867, 868, 871, 876, 877], "user": [6, 7, 13, 20, 26, 27, 28, 29, 31, 46, 47, 49, 274, 291, 378, 484, 580, 632, 634, 792, 793, 794, 805, 812, 819, 820, 822, 824, 825, 827, 828, 829, 830, 833, 838, 839, 840, 841, 844, 846, 847, 848, 849, 855, 856, 859, 860, 868, 870, 876, 877], "seamless": [6, 812], "wai": [6, 14, 20, 21, 22, 25, 27, 31, 35, 37, 43, 97, 100, 812, 814, 817, 818, 819, 823, 824, 825, 826, 828, 829, 830, 840, 841, 842, 844, 847, 851, 852, 853, 854, 855, 856, 859, 860, 865, 872, 876, 877], "introduc": [6, 31, 32, 247, 632, 639, 645, 707, 749, 818, 827, 828, 829, 838, 842, 844, 847, 852, 859], "pipelin": [6, 7, 812, 814, 822, 823, 824, 842, 845, 854, 857, 859, 864, 870, 871, 876], "blog": [6, 7, 820], "through": [6, 7, 32, 37, 45, 57, 80, 100, 228, 387, 528, 529, 632, 641, 721, 727, 794, 805, 812, 813, 816, 817, 818, 820, 821, 822, 825, 826, 827, 828, 830, 831, 833, 834, 835, 837, 838, 840, 841, 842, 844, 846, 847, 848, 849, 852, 853, 854, 863, 868, 870, 871, 872], "train": [6, 7, 16, 18, 29, 31, 32, 48, 57, 59, 61, 80, 82, 84, 100, 375, 376, 381, 399, 400, 401, 448, 501, 503, 615, 616, 621, 635, 636, 659, 661, 663, 666, 791, 792, 793, 794, 795, 812, 827, 830, 837, 852, 853, 854, 855, 861, 864, 868, 869, 874, 876, 877], "illustr": [6, 24, 34, 825, 849], "workflow": [6, 25, 35, 46, 818, 820, 821, 825, 829, 839, 841, 852, 857, 861, 869, 876, 877], "pre": [6, 31, 32, 816, 818, 843, 844, 854, 855, 856, 870], "belong": [6, 74, 818, 823, 853], "convolut": [6, 29, 57, 61, 80, 84, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 810, 864, 868, 870], "neural": [6, 636, 788, 792, 812, 864, 866, 868, 869, 870, 874, 876, 877], "network": [6, 22, 29, 31, 32, 43, 45, 50, 636, 660, 788, 791, 792, 812, 827, 837, 849, 853, 860, 864, 866, 868, 869, 870, 874, 876, 877], "cnn": [6, 31, 32, 870], "architectur": [6, 48, 812, 819, 854, 855, 868, 869, 870, 873, 874, 875], "inspir": [6, 824], "vision": [6, 7, 31, 32, 50, 866, 876], "perform": [6, 8, 10, 14, 24, 26, 27, 28, 29, 31, 32, 34, 36, 43, 45, 53, 57, 61, 62, 70, 71, 76, 80, 81, 84, 85, 93, 94, 113, 117, 137, 138, 210, 218, 240, 273, 294, 341, 363, 372, 373, 375, 376, 378, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 417, 419, 445, 461, 515, 523, 524, 545, 546, 547, 560, 561, 562, 578, 588, 626, 629, 631, 632, 634, 636, 637, 640, 641, 647, 648, 659, 662, 678, 687, 689, 694, 715, 716, 717, 725, 726, 757, 758, 761, 767, 768, 771, 788, 792, 806, 810, 823, 824, 825, 827, 829, 830, 831, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 861, 863, 864, 867, 870, 871, 872, 873, 874, 875, 877], "strength": 6, "wise": [6, 31, 51, 56, 57, 62, 73, 79, 80, 85, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 239, 240, 241, 242, 244, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 276, 278, 279, 281, 282, 289, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 334, 337, 342, 345, 346, 347, 350, 351, 352, 353, 357, 358, 361, 362, 367, 372, 375, 376, 378, 399, 400, 401, 428, 435, 471, 478, 480, 481, 500, 626, 632, 639, 668, 699, 796, 847], "supervis": [6, 7, 57, 377, 452], "convent": [6, 287, 632, 637, 647, 677, 759, 820, 825, 836, 845, 859, 876], "demonstr": [6, 7, 14, 28, 31, 32, 46, 812, 821, 829, 831, 833, 851], "improv": [6, 11, 13, 14, 31, 34, 815, 820, 829, 836, 837, 847, 849, 857, 861, 863, 868, 870, 872, 873], "scalabl": [6, 849, 859, 875, 876], "sometim": [6, 818, 819, 820, 823, 829, 837, 841, 844, 847], "rival": 6, "even": [6, 11, 28, 31, 32, 57, 80, 97, 240, 273, 278, 283, 378, 387, 484, 522, 632, 819, 820, 821, 823, 825, 828, 829, 830, 832, 836, 837, 840, 841, 842, 847, 851, 852, 853, 854, 855, 860, 861, 876], "downsampl": [6, 12, 57, 80, 411], "detial": 6, "outsid": [6, 639, 699, 710, 829, 830, 837, 851, 875], "scope": [6, 825, 871, 875], "demo": [6, 7, 8, 11, 12, 13, 14, 32, 39, 43, 47, 812], "interest": [6, 7, 29, 31, 43, 240, 273, 632, 818, 820], "reader": [6, 7], "paper": [6, 636, 663, 812, 861], "mostli": [6, 830, 840, 844], "kera": [6, 9, 10, 15, 16, 18, 20, 21, 29, 31, 32, 48, 49, 789, 812, 861, 864, 876], "wrapper": [6, 20, 21, 24, 57, 80, 298, 784, 824, 826, 827, 829, 833, 837, 840, 841, 844, 851, 857, 866, 870], "prepar": [6, 32, 45, 47, 50, 812, 828], "data": [6, 7, 18, 26, 27, 28, 29, 32, 37, 45, 47, 50, 51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93, 94, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 154, 155, 157, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 186, 192, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 300, 301, 302, 303, 312, 313, 314, 315, 316, 317, 318, 329, 330, 331, 332, 333, 335, 336, 337, 354, 359, 367, 369, 372, 375, 376, 378, 382, 386, 387, 390, 399, 400, 401, 417, 419, 421, 427, 429, 449, 467, 489, 492, 493, 495, 496, 508, 509, 510, 511, 512, 518, 522, 523, 524, 528, 531, 532, 549, 562, 564, 565, 568, 595, 626, 629, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 700, 703, 704, 706, 707, 709, 710, 714, 722, 739, 740, 741, 743, 744, 745, 747, 748, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 791, 792, 793, 794, 798, 806, 810, 812, 819, 822, 823, 824, 825, 826, 827, 830, 832, 836, 837, 838, 840, 842, 845, 847, 849, 851, 857, 858, 860, 870, 871, 872, 874, 875, 876], "request": [6, 7, 11, 12, 13, 26, 27, 28, 29, 31, 32, 45, 48, 57, 204, 382, 512, 631, 810, 812, 813, 815, 818, 831, 835, 845, 847, 861, 864], "experiment": [6, 10, 810, 816, 820, 829, 841, 845, 849, 870], "set_memory_growth": 6, "list_physical_devic": 6, "manual_se": [6, 7, 29], "set_se": 6, "2024": 6, "51": [6, 14, 43, 47, 56, 57, 79, 80, 81, 89, 235, 273, 286, 376, 397, 451, 632, 741, 776], "38": [6, 13, 14, 27, 43, 45, 47, 50, 54, 57, 79, 80, 89, 165, 290, 357, 372, 375, 387, 395, 414, 417, 418, 523, 630, 632, 637, 679, 776, 831], "926817": 6, "e": [6, 13, 31, 48, 49, 53, 57, 62, 66, 68, 69, 70, 72, 79, 80, 85, 89, 92, 93, 95, 97, 98, 102, 129, 138, 139, 142, 143, 147, 151, 180, 193, 220, 221, 222, 226, 228, 229, 232, 234, 236, 240, 241, 243, 246, 247, 253, 254, 261, 262, 263, 264, 271, 272, 273, 274, 276, 280, 282, 283, 286, 287, 291, 301, 328, 335, 336, 369, 372, 375, 376, 377, 378, 382, 387, 388, 394, 395, 398, 412, 413, 414, 415, 419, 432, 435, 443, 457, 492, 496, 508, 509, 510, 511, 512, 523, 524, 533, 627, 629, 630, 631, 632, 636, 637, 639, 641, 643, 645, 646, 647, 663, 668, 673, 674, 677, 678, 680, 683, 686, 687, 688, 691, 694, 702, 710, 721, 725, 726, 727, 730, 735, 736, 739, 740, 741, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 792, 805, 806, 810, 812, 813, 816, 818, 819, 820, 822, 823, 825, 827, 829, 833, 834, 839, 841, 844, 849, 852, 855, 856, 857, 860, 861, 863, 866, 878], "extern": [6, 827, 836, 841, 844, 845], "local_xla": 6, "xla": [6, 13, 841, 855, 857, 870], "stream_executor": [6, 13], "cuda_dnn": [6, 13], "cc": [6, 13, 26, 27, 29, 46, 834], "9261": 6, "regist": [6, 13, 794, 820, 856, 863], "cudnn": [6, 13], "factori": [6, 13, 57, 377, 456, 457, 806], "plugin": [6, 13, 819], "926873": 6, "cuda_fft": [6, 13], "607": 6, "cufft": [6, 13], "928224": 6, "cuda_bla": [6, 13], "1515": 6, "cubla": [6, 13], "936743": 6, "cpu_feature_guard": [6, 26, 27, 29], "182": [6, 26, 27, 29, 80], "instruct": [6, 26, 27, 29, 74, 103, 812, 818, 819, 823, 833, 835, 842, 844, 856, 868, 871, 874, 876], "avx2": [6, 26, 27, 29], "fma": [6, 26, 27, 29], "rebuild": [6, 26, 27, 29, 74, 103], "flag": [6, 26, 27, 29, 74, 196, 377, 387, 454, 522, 631, 636, 663, 773, 784, 795, 820, 829, 830, 840, 841, 842, 844, 863, 864], "40": [6, 9, 14, 43, 45, 47, 57, 58, 79, 80, 81, 89, 93, 103, 234, 238, 258, 287, 349, 372, 375, 378, 395, 397, 407, 413, 489, 545, 547, 552, 553, 577, 592, 614, 617, 632, 634, 635, 637, 641, 647, 676, 682, 727, 740, 759, 763, 812, 828], "071672": 6, "w": [6, 8, 13, 46, 47, 57, 58, 59, 61, 74, 79, 80, 81, 82, 84, 97, 267, 349, 364, 372, 374, 375, 376, 381, 394, 395, 396, 398, 412, 413, 414, 415, 431, 451, 506, 521, 545, 547, 592, 615, 616, 617, 619, 621, 622, 623, 634, 635, 636, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 724, 822, 839, 849, 852, 853, 864, 878], "tf2tensorrt": [6, 13], "py_util": [6, 13], "trt": [6, 13], "find": [6, 13, 20, 46, 47, 50, 62, 68, 74, 85, 637, 641, 645, 680, 720, 749, 750, 751, 752, 805, 806, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 828, 834, 839, 844, 847, 849, 852, 856, 857, 859, 863], "tensorrt": [6, 13], "map": [6, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 372, 375, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 619, 624, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 725, 726, 730, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 806, 824, 827, 829, 836, 837, 841, 844, 845, 852, 855, 857, 864, 871], "dataset": [6, 7, 14, 31, 74, 812, 852, 863, 864], "gist": 6, "yrevar": 6, "942d3a0ac09ec9e5eb3a": 6, "238f720ff059c1f82f368259d1ca4ffa5dd8f9f5": 6, "imagenet1000_clsidx_to_label": 6, "idx2label": 6, "read": [6, 45, 47, 57, 64, 74, 76, 80, 87, 134, 378, 474, 629, 639, 706, 818, 819, 826, 828, 834, 844, 846, 847, 870], "resolv": [6, 12, 45, 47, 57, 70, 247, 387, 523, 524, 632, 639, 647, 702, 757, 758, 763, 765, 820, 826, 829, 835, 849], "185": [6, 12, 45, 73], "199": [6, 12, 45, 226, 632], "108": [6, 12, 14, 26, 27, 28, 29, 45, 636, 647, 660, 759], "133": [6, 12, 45, 61, 660], "109": [6, 12, 45, 62, 637, 675], "111": [6, 12, 45, 641, 736], "443": [6, 12, 45, 285, 632], "sent": [6, 12, 45], "await": [6, 12, 45], "respons": [6, 12, 45, 381, 506, 820, 828, 829], "200": [6, 12, 14, 45, 81, 84, 234, 375, 399, 400, 553, 577, 632, 634, 805, 852], "ok": [6, 12, 45, 819], "30564": 6, "30k": 6, "plain": [6, 12, 45], "imagenet1000_clsidx": 6, "85k": 6, "003": 6, "is_avail": [6, 14], "url": [6, 7, 11, 13, 28, 31, 32, 45, 48, 812, 864], "cocodataset": [6, 7, 11, 13, 28, 31, 32, 48, 812, 864], "org": [6, 7, 11, 12, 13, 28, 31, 32, 45, 47, 48, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 832, 864], "val2017": [6, 7, 11, 13, 31, 48], "000000039769": [6, 7, 11, 13, 31, 48], "stream": [6, 7, 11, 13, 28, 31, 32, 45, 48, 55, 78, 214, 631, 812, 864, 874], "initialis": [6, 823, 841, 844], "api": [6, 7, 19, 24, 29, 30, 34, 47, 49, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 178, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 819, 820, 822, 824, 826, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 842, 844, 847, 848, 850, 852, 855, 857, 858, 859, 866, 868, 870, 872, 875, 877], "convnextxlarg": 6, "while": [6, 7, 14, 31, 32, 39, 57, 61, 74, 80, 84, 97, 98, 103, 125, 141, 179, 247, 248, 268, 269, 347, 372, 375, 376, 378, 420, 421, 443, 486, 487, 521, 628, 629, 630, 632, 636, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 749, 761, 764, 774, 816, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 851, 853, 854, 855, 856, 859, 860, 863, 870, 876, 877], "arbitrari": [6, 24, 34, 53, 54, 57, 74, 77, 80, 139, 153, 180, 322, 377, 454, 462, 463, 464, 617, 629, 630, 635, 836, 837, 839, 840, 841, 844, 853, 855, 863, 865, 871, 876], "regardless": [6, 31, 32, 43, 74, 813, 829, 833, 851, 854, 861], "host": [6, 810, 814, 828, 855, 860, 875], "convnext_xlarg": 6, "include_top": [6, 18, 812], "include_preprocess": 6, "input_tensor": [6, 57, 80, 376, 377, 448, 452, 457, 841], "input_shap": [6, 11, 18, 29, 31, 32, 812], "pool": [6, 57, 80, 84, 375, 389, 390, 391, 392, 394, 395, 396, 412, 413, 414, 415, 418, 792, 819], "classifier_activ": 6, "936026": 6, "common_runtim": [6, 46], "gpu_devic": 6, "1929": 6, "creat": [6, 7, 8, 9, 10, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 49, 50, 53, 56, 57, 66, 74, 76, 79, 80, 85, 89, 98, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 274, 312, 313, 323, 325, 327, 328, 369, 375, 376, 378, 382, 394, 395, 396, 417, 434, 445, 451, 460, 468, 484, 489, 508, 509, 510, 511, 512, 580, 597, 614, 625, 629, 632, 634, 635, 643, 682, 738, 739, 740, 741, 743, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 813, 815, 819, 820, 821, 824, 825, 826, 828, 829, 830, 833, 837, 838, 840, 841, 842, 844, 847, 849, 850, 853, 856, 857, 860, 863, 864, 865, 870, 871, 876], "job": [6, 31, 32, 812, 826, 828, 864], "localhost": 6, "replica": 6, "14791": 6, "tesla": 6, "v100": [6, 11], "pcie": [6, 860], "16gb": 6, "pci": 6, "bu": [6, 85, 860], "id": [6, 14, 46, 57, 80, 196, 330, 331, 332, 369, 557, 631, 634, 812, 817, 819, 824, 826, 827, 835, 839, 844, 856, 878], "0001": [6, 56, 57, 80, 283, 284, 376, 445, 451, 776, 779, 796], "over": [6, 7, 9, 22, 29, 32, 34, 45, 57, 62, 70, 71, 72, 77, 80, 84, 85, 93, 94, 95, 97, 122, 320, 321, 335, 336, 349, 356, 369, 372, 375, 376, 377, 378, 385, 387, 389, 390, 391, 392, 395, 404, 409, 413, 417, 418, 419, 420, 421, 422, 444, 452, 461, 474, 489, 492, 493, 496, 515, 525, 531, 580, 614, 628, 634, 637, 642, 643, 647, 648, 668, 678, 689, 691, 693, 694, 737, 741, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 801, 805, 812, 819, 820, 825, 831, 832, 839, 840, 842, 845, 849, 851, 855, 859, 861, 868, 870], "wonder": [6, 851, 859, 861], "why": [6, 22, 812, 820, 840, 851, 858, 860], "One": [6, 7, 47, 57, 58, 64, 66, 80, 81, 87, 89, 100, 378, 462, 463, 464, 467, 484, 493, 496, 546, 634, 639, 643, 706, 739, 824, 827, 829, 831, 837, 842, 844, 849, 851, 852], "reason": [6, 282, 291, 632, 818, 820, 823, 824, 827, 828, 829, 831, 837, 840, 841, 844, 845, 847, 849, 851, 860, 876], "highlight": [6, 820, 828, 831, 841, 843], "directli": [6, 16, 18, 22, 25, 29, 31, 32, 35, 375, 376, 411, 435, 641, 730, 812, 818, 819, 820, 821, 823, 824, 827, 828, 829, 830, 832, 835, 837, 838, 840, 841, 842, 845, 846, 849, 851, 853, 854, 855, 856, 861, 863, 864, 865, 874, 875, 876], "much": [6, 11, 13, 14, 22, 23, 29, 31, 32, 33, 34, 45, 100, 334, 351, 372, 791, 818, 819, 820, 824, 827, 829, 837, 840, 841, 842, 845, 846, 847, 849, 851, 852, 860, 868, 870, 876, 877], "more": [6, 7, 16, 19, 20, 22, 23, 24, 27, 29, 31, 32, 33, 34, 43, 45, 46, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 153, 245, 247, 263, 278, 291, 295, 300, 301, 303, 363, 367, 373, 376, 377, 378, 424, 426, 438, 440, 443, 456, 462, 463, 464, 469, 490, 580, 626, 629, 630, 632, 634, 637, 639, 645, 671, 677, 680, 683, 685, 687, 694, 703, 710, 749, 750, 751, 752, 778, 788, 806, 812, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 864, 865, 868, 869, 870, 871, 872, 873, 876, 877], "There": [6, 22, 29, 32, 37, 97, 368, 370, 371, 379, 380, 384, 778, 818, 819, 820, 823, 824, 826, 827, 829, 830, 831, 833, 835, 837, 839, 841, 842, 846, 849, 852, 855, 859, 863, 871, 872, 876, 877], "deeper": [6, 20, 22, 32, 52, 641, 729, 730, 812, 820, 822, 844, 848, 859], "what": [6, 11, 13, 20, 25, 31, 32, 35, 36, 39, 44, 45, 375, 409, 420, 778, 806, 812, 818, 820, 822, 827, 828, 831, 832, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 860, 861, 866, 871, 872, 875], "offer": [6, 841, 853, 861, 870, 876, 877], "limit": [6, 74, 103, 165, 168, 540, 541, 557, 630, 634, 639, 699, 776, 778, 779, 791, 798, 806, 812, 819, 820, 826, 828, 831, 833, 841, 844, 847, 852, 855, 869, 870, 871], "soon": [6, 818, 820, 828, 829, 855, 863], "detail": [6, 7, 24, 34, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 81, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 133, 144, 291, 295, 300, 301, 303, 367, 376, 426, 469, 548, 626, 629, 632, 645, 671, 677, 683, 687, 710, 749, 750, 751, 752, 788, 812, 818, 820, 823, 825, 826, 827, 828, 835, 836, 837, 838, 841, 842, 843, 844, 845, 846, 849, 851, 852, 853, 872, 876], "comparison": [6, 10, 12, 57, 80, 241, 276, 337, 372, 377, 456, 457, 632, 637, 688, 771, 833], "separ": [6, 46, 57, 58, 80, 381, 502, 549, 634, 636, 663, 773, 784, 819, 820, 824, 827, 828, 831, 842, 843, 844, 849, 851, 852, 871, 875], "stai": [6, 812, 828], "origin": [6, 7, 9, 10, 11, 13, 14, 29, 31, 32, 33, 34, 35, 37, 44, 45, 46, 50, 57, 62, 64, 70, 74, 80, 85, 87, 93, 97, 100, 102, 103, 228, 253, 280, 319, 369, 375, 376, 378, 387, 419, 445, 477, 483, 485, 488, 523, 524, 528, 529, 530, 531, 532, 632, 637, 639, 647, 678, 706, 707, 758, 773, 778, 801, 802, 812, 814, 818, 819, 820, 825, 826, 828, 829, 834, 838, 840, 841, 842, 849, 861, 863, 864, 870, 871], "convert_to_tensor": 6, "tmp": [6, 45, 47, 589, 612, 634], "ipykernel_65585": 6, "3221769294": 6, "_eagertensorbas": 6, "op": [6, 16, 22, 43, 788, 801, 810, 845, 849, 855], "deprec": [6, 50], "futur": [6, 9, 22, 29, 31, 45, 637, 673, 674, 812, 819, 820, 821, 828, 829, 844, 845, 847, 851, 855, 859, 861, 876], "instead": [6, 13, 16, 18, 22, 26, 27, 28, 29, 31, 38, 45, 50, 56, 57, 62, 79, 80, 85, 98, 194, 282, 316, 369, 375, 387, 412, 413, 414, 522, 525, 631, 632, 637, 680, 776, 818, 819, 820, 823, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 863, 864, 865, 868, 870, 876, 877], "logits_np": [6, 7], "class_id": 6, "int": [6, 7, 8, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 106, 113, 117, 118, 127, 128, 132, 134, 135, 136, 137, 138, 141, 145, 146, 147, 154, 161, 164, 165, 168, 175, 190, 204, 205, 206, 213, 214, 223, 230, 231, 232, 233, 234, 235, 247, 250, 274, 278, 283, 289, 292, 300, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 335, 336, 340, 341, 345, 349, 356, 358, 360, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 426, 430, 432, 433, 434, 435, 437, 442, 444, 445, 448, 449, 451, 456, 460, 461, 465, 469, 470, 473, 474, 477, 479, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 496, 497, 498, 499, 502, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 535, 545, 546, 547, 549, 552, 553, 556, 557, 571, 574, 576, 591, 592, 593, 594, 598, 614, 615, 616, 617, 618, 621, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 668, 670, 671, 678, 679, 684, 689, 691, 692, 693, 694, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 724, 725, 727, 729, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 747, 749, 751, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 788, 791, 792, 805, 806, 810, 827, 829, 830, 831, 833, 836, 837, 840, 842, 844, 845, 847, 849, 854, 863], "argmax": [6, 7, 8, 46, 47, 48, 67, 90, 378, 489, 644, 812, 841, 863, 867], "57": [6, 12, 14, 43, 45, 56, 57, 79, 80, 198, 221, 222, 225, 226, 228, 238, 239, 279, 295, 296, 367, 631, 632], "342029": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 9, 45, 46, 47, 50, 57, 290, 462, 463, 464, 632, 820, 823, 825, 829, 841, 849, 854, 876], "spawn": [6, 573, 634], "child": 6, "No": [6, 31, 32, 45, 57, 63, 80, 86, 377, 454, 455, 456, 458, 459, 638, 696, 820, 828, 829, 870], "directori": [6, 45, 46, 47, 50, 589, 612, 631, 634, 810, 814, 818, 819, 820, 826, 828, 834, 841, 844, 856], "906376": 6, "454": 6, "8904": 6, "993553": 6, "58": [6, 7, 10, 43, 264, 540, 632, 634], "578886": 6, "servic": [6, 872], "168": [6, 47, 540, 634, 641, 718], "0x558ecdd86830": 6, "guarante": [6, 645, 749, 751, 810, 824, 829, 840, 855, 861], "578915": 6, "176": [6, 540, 634], "streamexecutor": 6, "log": [6, 53, 56, 57, 62, 76, 79, 80, 85, 118, 138, 263, 265, 278, 300, 301, 354, 361, 367, 372, 377, 382, 454, 456, 457, 508, 626, 629, 632, 685, 776, 778, 779, 788, 820, 827, 828, 831, 837, 840, 841, 842, 844, 846, 847, 849, 852], "messag": [6, 798, 807, 811, 819, 820, 828, 831, 833, 835, 841, 849, 851, 860], "absl": [6, 45], "initializelog": 6, "stderr": 6, "i0000": 6, "1710255118": 6, "868823": 6, "65585": 6, "device_compil": 6, "h": [6, 8, 57, 58, 61, 80, 81, 84, 375, 381, 395, 396, 413, 414, 506, 545, 547, 634, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 721, 725, 727, 730, 735, 813, 822, 826, 827, 828, 864, 866], "186": 6, "cluster": [6, 57, 80, 376, 430, 855, 870], "line": [6, 11, 13, 14, 20, 21, 24, 25, 28, 31, 32, 34, 35, 46, 47, 290, 632, 810, 812, 819, 823, 824, 828, 830, 831, 833, 841, 844, 847, 850, 851, 852, 853, 861, 864, 873], "lifetim": 6, "grei": 6, "fox": 6, "grai": 6, "urocyon": 6, "cinereoargenteu": 6, "eagerli": [6, 26, 27, 31, 32, 36, 37, 38, 45, 812, 863, 864, 865], "explain": [6, 7, 37, 57, 80, 375, 409, 420, 812, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 844, 845, 847, 849, 850, 851, 852, 853, 854, 866, 873, 876], "doc": [6, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 47, 80, 147, 328, 335, 336, 369, 372, 524, 629, 812, 813, 817, 818, 822, 831, 832, 835, 836, 844, 849, 852, 853, 863, 864, 865], "involv": [6, 16, 19, 20, 27, 29, 54, 77, 180, 223, 240, 247, 273, 278, 630, 632, 806, 813, 821, 822, 828, 829, 831, 842, 847, 854, 860, 870, 876], "dummi": [6, 26, 27, 36, 37, 38, 44, 820], "transpiled_model": [6, 7], "backend_compil": [6, 31, 32], "root": [6, 7, 9, 12, 13, 26, 27, 28, 29, 45, 46, 47, 50, 56, 79, 287, 632, 814, 818, 819, 820, 826, 834, 841, 852], "placement": [6, 13, 818], "case": [6, 16, 18, 24, 26, 31, 32, 34, 35, 36, 37, 45, 52, 53, 57, 58, 64, 70, 74, 76, 80, 81, 87, 97, 98, 103, 128, 139, 166, 167, 194, 199, 200, 207, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 347, 349, 359, 372, 375, 377, 378, 381, 382, 388, 399, 400, 401, 421, 452, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 489, 490, 496, 499, 501, 503, 510, 533, 550, 551, 555, 562, 576, 577, 578, 629, 630, 631, 632, 634, 637, 639, 641, 647, 685, 691, 702, 703, 704, 706, 708, 709, 711, 713, 721, 727, 760, 761, 762, 763, 764, 765, 766, 776, 777, 796, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 860, 863, 864, 865, 869, 873], "ad": [6, 12, 13, 14, 26, 27, 28, 29, 57, 64, 80, 87, 95, 240, 273, 334, 351, 372, 381, 501, 502, 503, 592, 593, 632, 634, 636, 637, 639, 663, 673, 674, 702, 792, 797, 812, 816, 817, 818, 819, 820, 823, 824, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 853, 855, 860, 863, 869, 870], "logits_transpil": 6, "logits_transpiled_np": 6, "class_id_transpil": 6, "But": [6, 7, 31, 32, 778, 827, 828, 832, 835, 838, 847, 854], "produc": [6, 7, 9, 44, 57, 58, 61, 80, 84, 302, 312, 315, 367, 369, 375, 423, 636, 666, 776, 806, 818, 829, 834, 835, 840, 842, 844, 845, 863, 871, 873], "granular": [6, 7], "level": [6, 7, 22, 31, 32, 34, 57, 80, 81, 376, 448, 537, 806, 810, 812, 813, 818, 819, 820, 821, 827, 829, 833, 837, 839, 840, 841, 843, 846, 847, 848, 849, 852, 853, 854, 855, 857, 861, 866, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878], "close": [6, 7, 47, 62, 245, 263, 283, 312, 369, 632, 637, 639, 687, 702, 815, 816, 818, 819, 820, 821, 829, 832, 834, 841, 847, 870], "inde": [6, 7, 836, 847, 855, 868], "benefit": [6, 7, 32, 812, 819, 824, 827, 840, 847, 851, 852, 855, 860, 861, 868, 872, 875], "trainabl": [6, 7, 16, 18, 22, 28, 29, 31, 32, 49, 789, 793, 794, 797, 812, 832, 850, 852, 853, 864, 865], "further": [6, 7, 22, 74, 103, 778, 812, 820, 823, 824, 828, 831, 833, 836, 837, 840, 841, 843, 844, 848, 849, 852, 853, 860, 861, 875, 876], "cifar": [6, 7], "dataload": [6, 7, 852], "cifar10": [6, 7], "batch_siz": [6, 7, 45, 47, 50, 57, 61, 66, 80, 84, 89, 375, 377, 394, 395, 396, 412, 413, 414, 415, 459, 636, 643, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 663, 738, 812, 852], "shuffl": [6, 7, 47, 57, 66, 74, 80, 89, 510, 643], "drop_last": [6, 7], "num_work": [6, 7], "opt": [6, 7, 26, 27, 28, 29, 49, 819, 825, 829, 840, 844, 847], "sgd": [6, 7, 45, 796, 870], "lr": [6, 45, 59, 82, 536, 616, 619, 621, 622, 623, 634, 635, 796, 852, 853], "1e": [6, 7, 9, 10, 11, 12, 13, 16, 18, 31, 43, 47, 54, 57, 59, 62, 63, 65, 77, 80, 82, 85, 86, 88, 101, 165, 334, 351, 372, 377, 381, 457, 501, 502, 503, 582, 583, 592, 605, 606, 615, 616, 621, 623, 630, 634, 635, 637, 638, 642, 687, 696, 697, 698, 737, 771, 773, 793, 795, 796, 812, 816, 827, 834, 837, 840, 842, 853, 854], "loss_fn": [6, 31, 32, 43, 45, 47, 812, 852, 853, 854], "crossentropyloss": [6, 45, 793], "epoch": [6, 7, 31, 32, 45, 47, 812], "loss_epoch_arr": [6, 7], "loss_arr": [6, 7], "enumer": [6, 7, 8, 45, 47, 781], "permut": [6, 8, 12, 45, 64, 87, 102, 385, 514, 639, 704, 711, 864], "loss": [6, 7, 31, 32, 45, 47, 57, 80, 97, 452, 453, 454, 455, 456, 457, 458, 459, 585, 608, 634, 696, 697, 698, 812, 828, 829, 837, 841, 845, 846, 852, 853, 854, 870, 877], "backward": [6, 7, 45, 57, 71, 80, 94, 282, 375, 398, 403, 404, 408, 409, 419, 420, 632, 637, 648, 668, 693, 767, 768, 792, 810, 845, 855], "append": [6, 7, 14, 46, 47, 57, 62, 74, 80, 232, 341, 372, 632, 637, 639, 671, 677, 702, 806, 812, 828, 844, 849, 852, 867], "avg_loss": [6, 7, 45], "02": [6, 12, 13, 45, 53, 58, 59, 65, 66, 79, 82, 89, 138, 225, 226, 265, 375, 397, 407, 408, 592, 593, 615, 616, 621, 629, 632, 634, 635, 642, 643, 737, 740, 741, 842], "94": [6, 14, 43, 56, 57, 59, 66, 79, 80, 82, 89, 207, 283, 284, 360, 372, 407, 619, 631, 635, 741], "ve": [6, 7, 8, 9, 14, 20, 29, 31, 66, 89, 643, 738, 818, 819, 820, 821, 834, 844, 847, 848, 851, 857], "And": [6, 7, 11, 13, 14, 16, 18, 23, 26, 31, 32, 33, 46, 77, 365, 366, 374, 812, 823, 826, 835, 837, 844, 863], "successfulli": [6, 7, 45, 47, 50, 794, 815, 819, 824], "plug": 6, "seen": [6, 16, 18, 23, 29, 31, 376, 382, 435, 510, 557, 634, 801, 828, 829, 831, 833, 841, 844, 849, 851, 852, 859, 860, 876], "d": [6, 7, 46, 57, 58, 61, 62, 64, 76, 80, 81, 84, 85, 87, 100, 116, 138, 147, 180, 223, 240, 241, 273, 276, 328, 369, 375, 376, 378, 381, 382, 385, 394, 395, 396, 403, 408, 412, 413, 414, 415, 417, 421, 427, 443, 464, 470, 472, 475, 479, 493, 495, 499, 506, 508, 514, 537, 548, 626, 629, 630, 632, 636, 637, 639, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 670, 671, 675, 678, 682, 691, 692, 708, 721, 725, 726, 727, 730, 735, 736, 777, 806, 812, 813, 819, 822, 825, 826, 827, 834, 839, 844, 847, 852, 860, 861, 866], "sign": [6, 7, 56, 57, 62, 68, 70, 79, 80, 85, 97, 126, 220, 221, 222, 223, 226, 228, 229, 234, 238, 240, 243, 245, 247, 273, 275, 282, 286, 287, 291, 339, 372, 376, 378, 387, 447, 491, 492, 523, 524, 629, 632, 637, 645, 647, 685, 749, 750, 751, 752, 757, 758, 763, 765, 812, 819, 821, 829, 849, 854, 860], "ask": [6, 7, 812, 818, 819, 831, 849, 851, 855, 856, 861], "server": [6, 7, 45, 812, 819, 820, 826, 834, 856, 870], "forward": [6, 7, 8, 12, 18, 31, 32, 45, 47, 57, 80, 365, 374, 375, 398, 403, 404, 408, 409, 419, 420, 789, 791, 792, 794, 796, 810, 812, 819, 825, 832, 839, 844, 845, 847, 854, 855, 863, 870, 871], "come": [7, 22, 45, 815, 818, 819, 820, 824, 828, 841, 846, 847, 853, 857, 870], "onto": [7, 641, 724, 730, 858, 859, 870], "scene": [7, 812, 822, 848, 850, 858, 859, 870], "almost": [7, 45, 817, 827, 842, 850, 852, 859], "alwai": [7, 53, 54, 57, 58, 64, 76, 77, 80, 87, 110, 128, 152, 223, 273, 346, 372, 376, 378, 447, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 562, 626, 630, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 812, 818, 819, 820, 824, 825, 827, 829, 832, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 855, 863], "huggingfac": [7, 45, 863, 864], "implement": [7, 14, 22, 23, 31, 33, 37, 45, 48, 54, 55, 57, 68, 69, 77, 78, 80, 85, 92, 97, 152, 166, 167, 180, 199, 200, 214, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 273, 275, 278, 282, 285, 286, 290, 291, 335, 336, 359, 372, 376, 387, 428, 429, 528, 529, 550, 551, 630, 631, 632, 634, 636, 637, 645, 646, 647, 663, 672, 673, 674, 682, 691, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 777, 779, 801, 812, 816, 818, 822, 823, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 867, 868, 869, 870, 873, 876, 877], "conveni": [7, 25, 35, 818, 829, 830, 836, 842, 850, 852, 853, 857, 876], "who": [7, 20, 812, 815, 821, 822, 833, 848, 855, 870, 872, 878], "must": [7, 37, 45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 325, 326, 329, 330, 331, 332, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 422, 424, 426, 427, 429, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 458, 459, 462, 463, 464, 469, 470, 472, 474, 475, 476, 477, 479, 483, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 499, 504, 505, 507, 508, 509, 511, 512, 515, 522, 523, 524, 525, 532, 540, 541, 545, 546, 547, 552, 553, 555, 562, 576, 577, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 791, 792, 796, 798, 817, 818, 819, 820, 823, 824, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 844, 845, 846, 847, 849, 853, 854, 859, 861, 864, 865, 871, 877], "reimplement": 7, "choic": [7, 14, 32, 49, 57, 70, 80, 93, 376, 378, 447, 467, 647, 764, 766, 812, 819, 828, 840, 841, 852, 861, 864, 870, 877], "veri": [7, 16, 24, 31, 32, 34, 56, 79, 274, 334, 351, 372, 632, 637, 685, 778, 817, 818, 819, 820, 826, 827, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 850, 852, 853, 854, 855, 859, 860, 866, 867, 868, 870, 871, 872, 875, 876, 877], "thousand": [7, 855], "china": 7, "howev": [7, 14, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 62, 85, 247, 290, 291, 378, 381, 492, 501, 503, 580, 632, 634, 637, 685, 687, 801, 818, 819, 823, 824, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 855, 860, 863, 869, 870, 876], "suffer": 7, "abov": [7, 22, 27, 31, 32, 37, 38, 53, 56, 57, 62, 66, 73, 79, 80, 85, 89, 98, 118, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 311, 313, 328, 329, 335, 336, 338, 341, 367, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 409, 412, 413, 414, 419, 420, 421, 429, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 562, 591, 600, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 870, 875], "second": [7, 9, 56, 57, 59, 62, 64, 68, 79, 80, 81, 82, 85, 87, 91, 98, 102, 103, 123, 147, 178, 186, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 319, 328, 334, 347, 349, 350, 351, 357, 361, 362, 369, 372, 376, 377, 378, 385, 387, 428, 429, 430, 432, 436, 458, 490, 498, 509, 511, 515, 522, 525, 537, 586, 609, 615, 616, 621, 628, 629, 630, 632, 634, 635, 637, 639, 640, 641, 645, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 710, 711, 716, 719, 749, 750, 751, 796, 819, 823, 826, 829, 831, 835, 840, 841, 844, 846, 851, 861, 875], "iter": [7, 45, 47, 52, 57, 58, 64, 72, 74, 80, 81, 87, 95, 100, 103, 122, 213, 320, 321, 369, 375, 376, 378, 421, 434, 445, 451, 468, 484, 534, 572, 628, 631, 634, 639, 641, 701, 705, 712, 714, 719, 720, 721, 722, 723, 724, 726, 727, 728, 729, 730, 733, 734, 736, 805, 806, 810, 823, 825, 827, 849, 852, 861, 863], "dino": 7, "meta": [7, 45, 715, 716, 717, 824, 845, 870], "vit": 7, "purpos": [7, 24, 31, 32, 34, 45, 47, 147, 245, 263, 328, 369, 629, 632, 637, 685, 820, 822, 824, 827, 828, 830, 831, 833, 836, 837, 838, 841, 843, 844, 847, 848, 851, 857, 869, 871, 874, 875, 876], "abund": [7, 861], "literatur": 7, "mainli": [7, 812, 818, 822, 839, 841, 844, 850, 852, 857, 870], "focus": [7, 812, 829, 845, 868, 869, 870, 876, 877], "rather": [7, 37, 58, 74, 81, 126, 213, 564, 565, 568, 629, 631, 634, 636, 661, 816, 820, 823, 827, 829, 832, 834, 841, 842, 844, 845, 854, 855, 860, 866, 869, 870], "65": [7, 14, 43, 45, 47, 50, 79, 82, 89, 234, 273, 560, 615, 632, 634, 635, 637, 647, 682, 740, 741, 759, 828], "749": 7, "env": [7, 26, 27, 28, 29], "flags_fraction_of_gpu_memory_to_us": 7, "auto_growth": 7, "paddl": [7, 26, 27, 28, 29, 209, 335, 336, 372, 631, 789, 801, 818, 819, 829, 834], "autoimageprocessor": [7, 863, 864], "automodelforimageclassif": 7, "device_count": 7, "seed": [7, 23, 26, 27, 47, 48, 57, 61, 66, 68, 74, 80, 84, 89, 323, 324, 325, 326, 327, 369, 376, 382, 434, 445, 451, 508, 509, 510, 511, 512, 636, 643, 645, 659, 738, 739, 740, 741, 743, 749, 784, 789, 791, 806, 838, 842, 844], "libpaddl": 7, "0x7c8738e15470": 7, "processor": [7, 875], "facebook": [7, 48], "imagenet1k": 7, "id2label": [7, 48, 863], "predicted_class_idx": [7, 48], "paddle_input": 7, "pixel_valu": 7, "to_tensor": [7, 96, 97, 98, 99, 100, 101], "stop_gradi": [7, 59, 82, 213, 536, 616, 619, 621, 622, 623, 631, 634, 635, 640, 715, 716, 717, 796, 853], "logits_np_transpil": 7, "4th": 7, "decim": [7, 56, 79, 283, 632, 846], "io": [7, 13, 26, 27, 28, 29, 46, 49, 819, 828], "to_rgb": 7, "cv2": [7, 45, 47, 49, 852], "tar": [7, 45, 46, 47, 50], "gz": [7, 45, 46, 47, 50], "found": [7, 45, 47, 48, 50, 62, 64, 68, 74, 80, 85, 87, 91, 103, 201, 387, 469, 523, 631, 641, 671, 677, 710, 729, 749, 806, 815, 818, 819, 820, 824, 825, 826, 827, 829, 830, 832, 835, 838, 840, 841, 856, 872], "bj": [7, 223, 240, 273, 338, 372, 632], "bcebo": 7, "41626": 7, "2m": 7, "cross_entropi": [7, 47, 63, 86, 638, 698, 812, 827, 837, 840], "01": [7, 12, 26, 27, 29, 47, 53, 57, 58, 59, 62, 80, 81, 82, 85, 89, 138, 265, 283, 284, 312, 318, 343, 344, 351, 369, 375, 397, 407, 408, 549, 592, 593, 615, 616, 621, 629, 632, 634, 635, 637, 640, 643, 674, 684, 716, 717, 740, 741, 776, 825, 854], "33": [7, 14, 43, 45, 46, 56, 66, 70, 79, 80, 81, 82, 84, 226, 227, 234, 283, 375, 376, 378, 387, 395, 417, 418, 448, 467, 523, 541, 592, 619, 632, 634, 635, 636, 637, 641, 647, 659, 660, 682, 736, 739, 759, 766, 776, 779], "bring": [7, 31, 32, 823, 843, 844, 849, 850, 857, 860], "hope": [7, 43, 855, 860, 876, 878], "milesi": 8, "blob": [8, 45, 47, 812], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 8, "data_load": 8, "l65": 8, "mask_valu": 8, "pil_img": 8, "scale": [8, 11, 45, 57, 61, 65, 80, 82, 84, 88, 112, 211, 212, 304, 305, 308, 319, 349, 367, 369, 372, 375, 376, 381, 393, 399, 400, 401, 409, 411, 416, 420, 436, 501, 502, 503, 622, 626, 631, 635, 636, 642, 659, 663, 666, 737, 776, 778, 779, 791, 792, 796, 806, 870, 872], "is_mask": 8, "neww": 8, "newh": 8, "assert": [8, 14, 46, 48, 50, 74, 538, 634, 784, 816, 822, 823, 834, 837, 840, 841, 842, 844, 845, 851, 852], "too": [8, 57, 80, 223, 240, 247, 273, 378, 492, 632, 791, 818, 819, 820, 823, 829, 833, 845, 855], "small": [8, 14, 47, 56, 57, 62, 65, 79, 80, 85, 88, 240, 247, 273, 274, 334, 351, 372, 376, 377, 381, 440, 457, 501, 502, 503, 632, 637, 642, 680, 683, 685, 737, 791, 795, 812, 819, 828, 831, 837, 842, 847, 849, 853, 855, 863, 864, 871], "pixel": [8, 45, 57, 80, 375, 411], "resampl": 8, "nearest": [8, 57, 80, 223, 240, 273, 283, 345, 372, 375, 387, 411, 532, 632, 847], "bicub": [8, 57, 80, 375, 411, 847], "zero": [8, 45, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 71, 76, 77, 79, 80, 82, 84, 85, 89, 90, 93, 94, 98, 112, 114, 115, 116, 118, 129, 130, 132, 134, 139, 141, 142, 143, 145, 146, 149, 152, 153, 221, 222, 223, 225, 226, 227, 228, 229, 232, 234, 235, 237, 238, 239, 240, 242, 245, 246, 247, 254, 255, 256, 257, 263, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 286, 287, 288, 290, 291, 293, 294, 296, 298, 299, 303, 305, 311, 313, 322, 329, 335, 336, 339, 340, 341, 345, 353, 356, 358, 359, 360, 361, 367, 369, 372, 375, 376, 378, 385, 387, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 418, 419, 420, 421, 422, 423, 428, 430, 438, 443, 446, 468, 478, 483, 484, 495, 496, 514, 523, 524, 541, 545, 552, 572, 577, 615, 616, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 663, 666, 667, 669, 673, 674, 676, 677, 678, 679, 680, 681, 683, 685, 691, 693, 694, 701, 702, 703, 704, 706, 707, 714, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 796, 810, 824, 827, 829, 830, 831, 836, 838, 839, 842, 849, 852, 853, 861, 869], "ndim": [8, 57, 62, 67, 80, 85, 90, 102, 106, 376, 378, 444, 445, 451, 462, 463, 464, 477, 485, 487, 497, 614, 634, 637, 644, 684, 687, 747, 827, 837, 844], "newaxi": [8, 627], "transpos": [8, 28, 31, 32, 49, 57, 61, 62, 74, 80, 84, 85, 102, 376, 424, 442, 444, 446, 521, 636, 637, 649, 651, 653, 655, 656, 657, 661, 677, 681, 683, 689, 778, 792, 812, 834, 840, 851, 854, 864], "255": [8, 28, 31, 32, 45, 46, 47, 49, 61, 80, 84, 234, 632, 658, 812, 864], "car": 8, "full_img": 8, "from_numpi": [8, 9, 852], "img_numpi": 8, "torch_unet": 8, "unet_carvana": 8, "ivy_unet": 8, "n_channel": 8, "n_class": 8, "l62": 8, "mask_to_imag": 8, "ndarrai": [8, 53, 57, 58, 76, 80, 98, 127, 128, 140, 375, 376, 378, 387, 420, 445, 489, 528, 529, 599, 629, 634, 801, 805, 818, 824, 829, 830, 833, 836, 840, 841, 842, 845, 847, 849, 851, 854, 857], "uint8": [8, 28, 31, 32, 47, 155, 162, 166, 177, 180, 185, 191, 630, 776, 777, 829, 844], "elif": [8, 11, 828, 833, 840, 841, 842], "bool": [8, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 182, 188, 192, 196, 197, 199, 200, 202, 204, 207, 208, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 394, 395, 396, 398, 399, 400, 401, 411, 412, 413, 414, 417, 419, 421, 423, 430, 434, 437, 438, 442, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 487, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 506, 507, 509, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 576, 577, 581, 590, 591, 592, 593, 595, 597, 599, 600, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 692, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 788, 792, 795, 796, 805, 806, 810, 829, 831, 833, 840, 841, 844, 845, 847, 849, 854, 863, 864], "fromarrai": [8, 28, 31, 32, 47], "interpol": [8, 45, 57, 80, 353, 372, 375, 387, 532, 636, 663, 847, 870], "bilinear": [8, 57, 80, 375, 411, 847], "torch_mask": 8, "squeez": [8, 45, 64, 87, 639, 870], "torch_result": 8, "to_numpi": [8, 14, 31, 32, 43, 46, 47, 50, 58, 81, 634, 812, 834, 842, 852, 867], "img_tf": 8, "math": [8, 48, 98, 290, 632, 829, 840, 841, 842, 854, 868], "lot": [8, 828, 829, 838, 844, 855, 860, 861, 869], "far": [8, 31, 32, 641, 718, 729, 806, 830, 831, 850, 875, 876], "space": [8, 53, 56, 57, 58, 76, 79, 80, 81, 126, 137, 138, 292, 349, 372, 377, 454, 545, 549, 629, 632, 634, 847, 860], "del": [8, 828], "empty_cach": 8, "permute_dim": [8, 64, 87, 639, 834], "func_wrapp": [8, 51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 830, 841, 846], "242": [8, 80], "mani": [8, 31, 32, 35, 64, 74, 87, 147, 328, 369, 629, 639, 708, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 859, 860, 861, 866, 870, 873, 876, 877], "factor": [8, 14, 57, 59, 61, 62, 80, 82, 84, 85, 96, 97, 98, 99, 100, 211, 212, 213, 375, 376, 381, 409, 420, 434, 435, 445, 448, 450, 451, 506, 615, 616, 621, 622, 631, 635, 636, 637, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 667, 776, 778, 779, 791, 792, 796, 833, 860], "inc": 8, "unetdoubleconv": 8, "down1": 8, "unetdown": 8, "128": [8, 12, 31, 32, 45, 54, 56, 61, 77, 79, 84, 103, 168, 244, 375, 397, 407, 545, 555, 630, 632, 634, 636, 637, 651, 653, 658, 682, 812], "down2": 8, "down3": 8, "down4": 8, "1024": [8, 12, 45, 46, 812], "up1": 8, "unetup": 8, "up2": 8, "up3": 8, "up4": 8, "outc": 8, "unetoutconv": 8, "x1": [8, 22, 31, 32, 50, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 92, 102, 103, 107, 153, 163, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 313, 334, 339, 346, 347, 348, 350, 352, 357, 361, 369, 372, 376, 378, 387, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 646, 668, 675, 677, 682, 686, 689, 690, 693, 748, 755, 773, 798, 812, 823, 829, 831, 833, 836, 840, 841, 864, 865], "x2": [8, 22, 31, 32, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 102, 103, 107, 153, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 334, 339, 346, 347, 348, 350, 352, 357, 361, 372, 376, 378, 387, 432, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 668, 675, 677, 682, 686, 689, 690, 693, 748, 773, 798, 823, 829, 831, 833, 836, 840, 841], "x3": [8, 54, 58, 153, 534, 630, 634], "x4": 8, "x5": 8, "in_channel": 8, "out_channel": 8, "mid_channel": 8, "double_conv": 8, "with_bia": [8, 792, 812, 853, 864], "batchnorm2d": [8, 12, 795], "downscal": [8, 58, 81, 540, 541, 562, 634], "maxpool": [8, 12], "doubl": 8, "conv": [8, 636, 792, 847], "maxpool_conv": 8, "upscal": 8, "scale_factor": [8, 57, 80, 375, 411, 847], "align_corn": [8, 57, 80, 375, 411, 847], "conv2dtranspos": [8, 792], "bhwc": 8, "diff_h": 8, "diff_w": 8, "pad_width": [8, 57, 64, 80, 87, 378, 484, 639, 701, 714], "constant_pad": [8, 64, 87, 639], "via": [9, 34, 37, 247, 376, 378, 445, 448, 451, 492, 632, 641, 728, 729, 820, 823, 827, 829, 830, 840, 845, 847, 849, 851, 852, 870], "alongsid": [9, 20, 21, 22, 23, 33, 636, 663, 860], "basic": [9, 16, 18, 22, 25, 29, 31, 32, 35, 38, 378, 491, 812, 813, 818, 831, 844], "singl": [9, 24, 34, 43, 48, 56, 66, 74, 79, 89, 98, 292, 351, 372, 376, 382, 443, 509, 600, 613, 617, 632, 634, 635, 636, 643, 645, 663, 739, 740, 741, 749, 776, 792, 810, 812, 818, 819, 820, 823, 828, 831, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 861], "lstm": [9, 10, 636, 662, 792, 849, 870], "sample_input": 9, "uniform": [9, 23, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 38, 45, 57, 66, 80, 89, 387, 525, 643, 738, 739, 741, 791, 812, 843, 853, 864, 865, 877], "tf_lstm": [9, 10], "torch_lstm": [9, 10], "physicaldevic": 9, "physical_devic": 9, "device_typ": 9, "alloc": [9, 53, 54, 57, 77, 145, 146, 152, 329, 369, 629, 630, 810, 818, 820, 855], "physic": [9, 204, 631], "modifi": [9, 47, 57, 74, 80, 97, 378, 387, 481, 484, 489, 529, 776, 806, 818, 819, 820, 823, 825, 826, 829, 830, 832, 834, 835, 837, 840, 842, 844, 845, 849], "164": 9, "state_upd": [9, 29], "properti": [9, 29, 74, 97, 98, 99, 100, 101, 102, 106, 794, 796, 823, 827, 837, 842, 844, 851, 852, 853, 876], "_transpil": [9, 29], "those": [9, 20, 44, 45, 62, 64, 74, 80, 85, 87, 126, 179, 240, 273, 493, 614, 629, 630, 632, 634, 637, 639, 641, 644, 684, 687, 699, 720, 747, 815, 818, 819, 820, 821, 824, 827, 828, 829, 838, 840, 841, 842, 844, 847, 859, 867], "torch_input": 9, "rand": [9, 10, 29, 31, 32, 47, 805, 806, 812, 863], "tf_input": [9, 864], "constant": [9, 10, 16, 18, 23, 26, 27, 33, 36, 38, 43, 57, 64, 65, 80, 87, 88, 97, 98, 322, 369, 375, 377, 378, 421, 456, 457, 484, 639, 641, 642, 701, 724, 737, 791, 795, 812, 837, 842, 845, 853, 854, 855, 863, 865], "tf_output": 9, "toler": [9, 10, 57, 62, 80, 85, 334, 351, 372, 376, 430, 445, 451, 637, 680, 683, 771, 773, 823, 842, 870], "benchmark": [9, 10, 872], "n_run": [9, 10], "tf_time": 9, "round": [9, 56, 57, 79, 80, 97, 99, 100, 101, 223, 236, 240, 246, 247, 273, 287, 293, 294, 345, 372, 632, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 867], "torch_tim": 9, "cpu_speedup": 9, "gpu_speedup": 9, "ntranspil": 9, "5017": 9, "1101": 9, "7519": 9, "901": 9, "607x": 9, "944x": 9, "32": [10, 14, 29, 31, 32, 43, 45, 46, 47, 56, 57, 66, 79, 80, 84, 85, 89, 102, 103, 112, 164, 222, 234, 235, 244, 258, 264, 280, 283, 284, 338, 372, 375, 376, 378, 387, 395, 396, 397, 407, 417, 418, 428, 432, 467, 523, 545, 561, 626, 630, 632, 634, 636, 637, 643, 644, 647, 651, 653, 654, 658, 660, 677, 682, 693, 739, 740, 741, 748, 759, 776, 779, 812, 828, 829, 839, 852, 875], "original_output": 10, "transpiled_output": 10, "original_torch_tim": 10, "autograph": 10, "do_not_convert": 10, "compiled_tf_lstm": 10, "transpiled_tf_tim": 10, "original_tf_lstm": 10, "time_major": [10, 80, 375, 421, 636, 662], "return_sequ": [10, 792], "original_tf_tim": 10, "slower": [10, 24, 841], "480074623755541x": 10, "362692848996253x": 10, "openmim": 11, "mim": 11, "0rc8": 11, "get_model": 11, "list_model": 11, "mmengin": 11, "configdict": 11, "saniti": [11, 13, 14, 31, 841], "checkpoint": [11, 12, 48, 855], "against": [11, 54, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 153, 272, 291, 334, 337, 340, 351, 372, 387, 528, 529, 530, 531, 532, 569, 630, 632, 634, 637, 644, 677, 678, 680, 683, 744, 844, 849, 855, 859, 870], "zoo": 11, "checkpoint_nam": [11, 13, 31], "tiny_32xb128": 11, "noema_in1k": 11, "openmmlab": 11, "get_scal": 11, "cfg": [11, 835], "_config": 11, "train_pipelin": 11, "tensor_imag": 11, "transpiled_graph": [11, 13, 31], "issu": [11, 13, 377, 454, 791, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 828, 829, 830, 831, 833, 834, 841, 844, 845, 847, 849, 853, 855, 861, 863], "107960": [11, 13], "export": [11, 13, 46, 828, 869, 876], "lc_all": [11, 13], "en_u": [11, 13], "utf": [11, 13], "ld_library_path": [11, 13], "lib64": [11, 13], "nvidia": [11, 13, 26, 27, 28, 29, 45, 47, 50, 874, 875], "library_path": [11, 13], "stub": [11, 13, 826], "ldconfig": [11, 13], "_f": [11, 13, 31], "comp_model": [11, 13, 31], "equival": [11, 13, 31, 62, 85, 97, 98, 126, 234, 247, 268, 269, 282, 283, 378, 468, 492, 498, 629, 632, 637, 680, 683, 686, 694, 801, 840, 841, 847, 852, 854, 856, 864], "np_imag": [11, 28, 31, 32], "jax_imag": 11, "hk": [11, 13, 31, 45, 49, 812, 854, 864], "rng_kei": [11, 13, 31, 812, 864], "prngkei": [11, 13, 24, 25, 31, 32, 45, 812, 854, 864], "jax_mlp_forward": 11, "init": [11, 13, 31, 45, 47, 57, 80, 376, 434, 445, 451, 812, 823, 854, 864], "rng": [11, 13, 31, 45, 812, 854, 864], "06": [11, 14, 26, 47, 54, 66, 79, 82, 101, 110, 165, 222, 238, 375, 397, 407, 621, 626, 630, 635, 741, 771, 773, 844, 852], "block_until_readi": 11, "08": [11, 57, 70, 80, 89, 226, 334, 351, 372, 375, 377, 397, 407, 457, 632, 740, 741, 766, 771, 776, 835], "3x": 11, "train2017": [11, 13, 28, 31, 32, 812, 864], "000000283921": [11, 13, 31], "out_torch": [11, 13, 31], "et": [11, 636, 637, 663, 687], "out_jax": [11, 13, 31], "66m": 11, "53m": 11, "That": [11, 13, 16, 18, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 45, 282, 377, 456, 632, 805, 819, 820, 824, 844, 851, 852, 853, 871], "pretti": [11, 13, 31, 32, 45, 816, 834, 852, 876], "solid": [11, 13, 31], "2023": [12, 13, 26, 27, 28, 29, 45], "52": [12, 14, 43, 56, 79, 81, 82, 89, 228, 238, 240, 387, 523, 545, 546, 561, 615, 632, 634, 635, 636, 637, 647, 660, 682, 741, 759, 805], "110": [12, 45], "10472": 12, "10k": 12, "tx": 12, "23k": 12, "634575": 12, "620k": 12, "jpeg": [12, 46, 47], "619": 12, "70k": 12, "113": 12, "resnet34_weight": 12, "torch_resnet_34": 12, "conv1": 12, "kernel_s": [12, 29, 31, 32, 47, 57, 80, 375, 394, 395, 396, 415, 422, 792, 798], "stride": [12, 57, 61, 80, 81, 84, 102, 375, 378, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 460, 634, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 840, 845, 870], "bia": [12, 57, 61, 80, 84, 88, 381, 387, 506, 522, 572, 634, 636, 642, 649, 650, 651, 652, 653, 654, 655, 656, 657, 660, 661, 662, 663, 737, 792, 837, 844, 849, 853], "bn1": 12, "ep": [12, 57, 62, 65, 80, 85, 88, 165, 300, 367, 376, 377, 381, 430, 457, 501, 502, 503, 630, 637, 642, 680, 683, 737, 788, 795], "05": [12, 14, 47, 53, 56, 57, 59, 65, 79, 80, 82, 88, 138, 265, 318, 334, 343, 344, 351, 369, 372, 381, 501, 502, 503, 560, 582, 605, 615, 616, 621, 629, 632, 634, 635, 637, 642, 678, 737, 771, 776, 791, 795, 842, 844], "momentum": [12, 45, 57, 80, 381, 501, 503, 795, 860], "affin": [12, 795], "track_running_stat": [12, 795], "dilat": [12, 49, 57, 61, 80, 84, 375, 378, 412, 413, 414, 417, 418, 422, 484, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "ceil_mod": [12, 57, 80, 375, 394, 395, 396, 412, 413, 414, 417, 792], "layer1": 12, "basicblock": 12, "conv2": 12, "bn2": 12, "layer2": 12, "layer3": 12, "layer4": 12, "output_s": [12, 57, 80, 375, 389, 390, 391, 392, 636, 665, 792, 812, 864], "fc": [12, 18, 45, 812, 853, 864], "in_featur": [12, 61, 84, 636, 660, 844], "out_featur": [12, 61, 84, 636, 660, 844], "resnet_34": 12, "ivy_resnet_34": 12, "34": [12, 14, 43, 45, 79, 80, 81, 89, 168, 238, 265, 286, 375, 387, 418, 529, 545, 546, 630, 632, 634, 636, 637, 643, 660, 679, 740, 741, 830], "333f7ec4": 12, "pth": 12, "83": [12, 14, 43, 62, 84, 89, 287, 375, 387, 397, 407, 418, 523, 632, 636, 637, 660, 675, 740], "3m": 12, "4mb": 12, "preserv": [12, 13, 26, 27, 28, 29, 57, 58, 59, 74, 80, 81, 82, 103, 375, 376, 378, 387, 411, 445, 462, 463, 464, 475, 476, 495, 529, 562, 624, 634, 635, 639, 703, 776, 843, 844, 854, 855, 864], "multipl": [12, 13, 22, 26, 27, 28, 29, 31, 56, 57, 62, 65, 70, 71, 74, 79, 80, 81, 82, 85, 87, 88, 93, 94, 134, 234, 258, 265, 271, 272, 273, 275, 335, 336, 372, 375, 376, 378, 381, 385, 397, 404, 407, 409, 443, 470, 479, 496, 499, 506, 515, 534, 541, 572, 615, 616, 619, 621, 622, 623, 624, 629, 632, 634, 635, 636, 637, 639, 642, 644, 647, 648, 651, 652, 653, 654, 667, 676, 677, 678, 691, 699, 702, 707, 708, 737, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 810, 812, 818, 820, 824, 825, 827, 831, 833, 835, 837, 840, 841, 842, 844, 847, 849, 855, 861, 863, 868, 869, 870, 877], "rel": [12, 13, 26, 27, 28, 29, 57, 59, 62, 64, 69, 76, 80, 82, 85, 87, 92, 102, 136, 334, 351, 372, 377, 387, 456, 457, 522, 616, 619, 621, 622, 623, 635, 637, 639, 646, 671, 680, 683, 691, 703, 707, 753, 756, 771, 773, 820, 828, 842, 847, 870, 872], "home": [12, 13, 26, 27, 28, 29, 828], "workspac": [12, 13, 23, 26, 27, 28, 29, 819, 834], "95": [12, 14, 43, 57, 59, 62, 66, 73, 82, 84, 89, 110, 360, 372, 418, 615, 619, 623, 626, 635, 637, 643, 675, 740, 741], "builtin": [12, 819, 851, 853], "track": [12, 22, 31, 32, 44, 45, 810, 819, 820, 823, 839, 840, 863, 870], "properli": [12, 819, 822, 833, 835, 841, 844], "_trace_graph": 12, "shown": [12, 29, 31, 72, 74, 95, 257, 280, 338, 372, 632, 818, 819, 820, 823, 826, 828, 829, 831, 833, 835, 836, 841, 842, 844, 845, 846, 849, 851, 855], "8507": 12, "1351": 12, "0069": 12, "85072625": 12, "13506091": 12, "00688289": 12, "resnet50_weight": 12, "torch_resnet_50": 12, "imagenet1k_v2": 12, "11ad3fa6": 12, "8m": 12, "8mb": 12, "bottleneck": [12, 859], "conv3": 12, "bn3": 12, "2048": [12, 593, 634], "resnet_50": 12, "ivy_resnet_50": 12, "3429": 12, "0408": 12, "0121": 12, "34288204": 12, "04077014": 12, "01212029": 12, "yet": [13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 47, 368, 370, 371, 379, 380, 384, 818, 819, 834, 855, 856, 863, 864, 865], "broken": [13, 26, 27, 28, 29, 866, 870], "permiss": [13, 26, 27, 28, 29, 819, 828], "conflict": [13, 26, 27, 28, 29, 37, 819, 820, 828, 841, 852], "behaviour": [13, 26, 27, 28, 29, 112, 115, 274, 626, 632, 817, 820, 822, 823, 824, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 844, 845, 851], "system": [13, 26, 27, 28, 29, 47, 376, 446, 637, 686, 776, 812, 819, 820, 821, 825, 828, 829, 855, 864, 868, 870, 873, 875, 877], "recommend": [13, 26, 27, 28, 29, 268, 269, 282, 377, 454, 632, 647, 761, 764, 814, 819, 825, 826, 835, 838, 839, 863], "virtual": [13, 26, 27, 28, 29, 820, 841, 860, 873, 874], "pypa": [13, 26, 27, 28, 29], "venv": [13, 26, 27, 28, 29], "autofeatureextractor": [13, 31], "extractor": [13, 16, 18, 31, 47, 812], "hug": [13, 31, 863], "face": [13, 31, 813, 819, 823, 834, 835, 839, 847, 849, 863, 870, 876], "arch_nam": [13, 31], "microsoft": [13, 31, 860, 863, 864, 870, 875, 877], "feature_extractor": [13, 31], "980130": 13, "9342": 13, "980177": 13, "609": 13, "980207": 13, "1518": 13, "351203": 13, "inputs_jax": [13, 31], "last_hidden_st": [13, 31], "jax_forward": [13, 31], "jit_appli": 13, "63": [13, 14, 43, 47, 56, 73, 79, 84, 85, 118, 279, 286, 287, 375, 387, 397, 407, 418, 523, 632, 637, 641, 647, 667, 682, 719, 730, 759], "134": [13, 61, 637, 660, 679], "2x": [13, 31], "ipytest": 14, "load_breast_canc": 14, "autoconfig": 14, "sole": [14, 43, 836, 845, 869, 870, 871], "test_jax_gpu": 14, "xla_bridg": [14, 45], "get_backend": [14, 837], "test_torch_gpu": 14, "test_xgboost_gpu": 14, "capsi": 14, "load_diabet": 14, "target": [14, 16, 18, 24, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 47, 57, 80, 195, 377, 452, 453, 454, 455, 456, 457, 458, 459, 631, 771, 792, 794, 800, 812, 816, 819, 822, 825, 834, 835, 842, 843, 848, 852, 853, 854, 864, 865, 866, 868, 869, 870, 873, 875, 876], "xgb_model": 14, "xgbregressor": 14, "tree_method": 14, "caus": [14, 377, 454, 819, 820, 823, 825, 827, 828, 829, 831, 840, 842, 844, 855], "consol": [14, 575, 634, 812, 820, 835, 844, 851, 856], "gpu_hist": 14, "captur": [14, 839, 844, 854, 871], "readouterr": 14, "err": 14, "tabular": 14, "pulsar": 14, "standard": [14, 56, 62, 65, 66, 70, 79, 88, 89, 93, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 376, 378, 387, 419, 449, 492, 496, 522, 614, 629, 630, 632, 634, 637, 639, 642, 643, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 737, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 778, 791, 795, 805, 806, 812, 815, 822, 823, 824, 827, 829, 832, 836, 840, 843, 844, 845, 855, 858, 864, 866, 868, 869, 872, 873, 875], "extra": [14, 32, 74, 103, 122, 614, 628, 634, 824, 829, 831, 838, 840, 841, 842, 847, 849, 863, 864, 867, 872], "dimens": [14, 53, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 100, 102, 103, 106, 113, 117, 141, 145, 146, 316, 327, 329, 330, 331, 332, 335, 336, 340, 341, 349, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 418, 419, 421, 422, 424, 426, 429, 438, 447, 452, 456, 462, 463, 464, 468, 474, 485, 486, 487, 488, 490, 492, 496, 501, 502, 503, 506, 510, 512, 515, 525, 527, 528, 529, 530, 531, 532, 545, 546, 547, 549, 556, 590, 594, 614, 626, 629, 634, 636, 637, 638, 639, 640, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 667, 668, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 694, 697, 698, 700, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 716, 717, 743, 744, 745, 747, 749, 750, 751, 752, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 795, 831, 833, 839, 841, 842, 844, 847, 849, 852], "load_data": 14, "standardscal": 14, "df": [14, 47], "delimit": [14, 852], "sc": 14, "fit_transform": 14, "117564": 14, "navig": [14, 816, 819, 820, 822, 834], "rerun": [14, 45], "436": 14, "48": [14, 43, 47, 56, 57, 79, 80, 81, 82, 89, 112, 222, 245, 287, 375, 395, 396, 397, 407, 413, 414, 417, 560, 615, 619, 626, 632, 634, 635, 637, 641, 647, 682, 719, 740, 759], "t4": 14, "tier": [14, 821], "reduc": [14, 57, 58, 62, 67, 70, 71, 74, 80, 81, 85, 90, 93, 94, 213, 335, 336, 356, 372, 373, 387, 527, 528, 529, 530, 531, 532, 546, 631, 634, 637, 644, 647, 648, 684, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 805, 806, 828, 833, 841, 847, 849, 851, 863, 868, 872, 873, 874], "although": [14, 637, 685, 814, 824, 826, 827, 841, 847, 868, 870], "experi": [14, 20, 47, 812, 819, 833, 844, 850, 852, 855], "substanti": [14, 815, 820, 824, 829, 844, 860, 870], "stuff": 14, "201": [14, 79, 80, 225, 397, 632], "20x": 14, "ivyclassifi": 14, "106597": 14, "10967": 14, "96": [14, 43, 57, 59, 79, 80, 81, 89, 237, 258, 290, 360, 372, 375, 397, 545, 546, 619, 632, 634, 635, 637, 647, 682, 741, 759], "73": [14, 43, 56, 85, 287, 387, 523, 637, 643, 667, 740, 844], "852": [14, 636, 660], "449": 14, "47": [14, 43, 47, 56, 57, 62, 66, 79, 80, 81, 82, 84, 89, 229, 287, 375, 387, 395, 413, 414, 523, 545, 546, 619, 632, 634, 635, 636, 637, 643, 660, 675, 740, 741], "82": [14, 43, 45, 50, 51, 56, 82, 89, 113, 226, 387, 523, 615, 635, 740, 741, 816, 834], "68": [14, 43, 47, 50, 56, 89, 113, 135, 228, 375, 397, 407, 626, 629, 632, 637, 642, 693, 737, 740, 741], "nevertheless": 14, "fall": [14, 45, 796, 818, 829, 848], "short": [14, 43, 57, 80, 423, 636, 661, 662, 818, 820, 829, 849, 853], "blaze": 14, "36": [14, 43, 47, 56, 57, 61, 70, 80, 81, 85, 228, 283, 284, 349, 372, 375, 376, 387, 397, 407, 433, 523, 545, 546, 593, 632, 634, 637, 641, 647, 660, 679, 682, 692, 729, 759], "35": [14, 43, 51, 61, 62, 73, 79, 80, 84, 85, 89, 113, 228, 287, 375, 397, 407, 632, 636, 637, 644, 647, 660, 668, 675, 740, 748, 759], "37": [14, 26, 27, 28, 29, 43, 51, 56, 57, 73, 79, 80, 84, 102, 113, 226, 234, 283, 286, 290, 383, 418, 513, 632, 636, 637, 641, 643, 660, 679, 726, 740, 828], "surpass": 14, "remark": [14, 855], "artifici": 14, "simpli": [14, 22, 31, 32, 34, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 632, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 812, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 832, 834, 836, 837, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 871, 876], "stack": [14, 24, 26, 27, 28, 29, 34, 43, 47, 57, 62, 64, 74, 80, 85, 87, 102, 145, 146, 329, 369, 376, 378, 429, 468, 469, 471, 480, 500, 579, 588, 611, 629, 634, 637, 639, 641, 669, 671, 672, 673, 674, 676, 677, 679, 680, 681, 683, 684, 685, 687, 688, 691, 718, 728, 729, 792, 812, 817, 823, 840, 849, 866, 868, 875, 876], "x_doubl": 14, "vstack": [14, 57, 80, 378, 480], "y_doubl": 14, "235128": 14, "41": [14, 26, 27, 28, 29, 43, 45, 50, 56, 57, 62, 79, 80, 81, 84, 85, 113, 227, 235, 242, 273, 287, 375, 376, 383, 387, 395, 413, 418, 440, 513, 523, 540, 626, 632, 634, 637, 647, 667, 675, 765], "315": [14, 279, 632], "879": 14, "380": 14, "seem": [14, 818, 819, 847, 853, 854, 855, 870], "examin": 14, "600": [14, 47, 81, 84, 375, 399, 400, 553, 828], "conduct": [14, 874], "num_boosting_round": 14, "300": [14, 79, 81, 84, 283, 375, 399, 400, 553, 577, 632, 634, 637, 676, 844], "500": [14, 57, 80, 81, 84, 375, 376, 399, 400, 451, 553, 634], "ivy_elapsed_tim": 14, "xgb_elapsed_tim": 14, "ivy_tim": 14, "partial": [14, 57, 74, 80, 166, 167, 199, 200, 349, 372, 375, 376, 378, 387, 423, 438, 445, 485, 486, 487, 488, 529, 550, 551, 620, 630, 631, 634, 635, 777, 779, 793, 794, 820, 826, 847], "xgb_time": 14, "fivethirtyeight": 14, "legend": [14, 47, 818], "loc": [14, 867], "best": [14, 45, 572, 634, 806, 810, 812, 813, 816, 817, 818, 819, 820, 822, 828, 829, 833, 834, 843, 844, 845, 856, 873, 874], "xlabel": 14, "ylabel": 14, "obviou": [14, 852, 870], "trend": 14, "gap": 14, "train_siz": [14, 45], "widen": 14, "impress": 14, "outcom": [14, 57, 80, 337, 349, 372, 806], "tend": 14, "95933": 14, "9874": 14, "105807": 14, "wrap": [14, 22, 24, 31, 32, 34, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 588, 591, 592, 593, 594, 595, 597, 599, 600, 611, 613, 615, 616, 619, 621, 622, 623, 624, 634, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 841, 844, 849, 851, 854, 855, 857, 863, 864, 866, 870, 871, 876, 877], "balanc": 14, "breast": 14, "cancer": 14, "return_x_i": 14, "171": [14, 62, 637, 675, 776], "perfectli": [14, 778, 861], "align": [14, 57, 74, 80, 375, 376, 411, 427, 636, 665, 806, 815, 819, 828, 841, 843, 849, 851, 857, 876], "timm": [15, 16, 20, 31, 32, 812, 864], "focu": [16, 29, 818, 839, 868, 869, 872, 877], "usual": [16, 18, 48, 240, 273, 632, 805, 819, 823, 829, 841, 844, 847], "mlp": 16, "mixer": 16, "onli": [16, 18, 31, 32, 37, 43, 45, 47, 49, 52, 53, 56, 57, 62, 64, 66, 74, 76, 79, 80, 85, 87, 89, 97, 100, 102, 118, 138, 178, 179, 208, 268, 269, 274, 280, 312, 342, 349, 369, 372, 375, 376, 378, 382, 387, 398, 411, 421, 430, 435, 449, 451, 462, 463, 464, 474, 508, 509, 525, 539, 626, 629, 630, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 663, 677, 684, 687, 688, 703, 706, 718, 719, 725, 726, 728, 729, 730, 735, 736, 739, 740, 741, 744, 745, 755, 761, 764, 774, 776, 777, 779, 792, 796, 805, 810, 812, 813, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 859, 863, 864, 869, 870, 871, 876, 877], "retriev": [16, 18, 22, 535, 557, 582, 634, 820, 841], "mlp_encod": [16, 31, 32, 812, 864], "create_model": [16, 31, 32, 812, 864], "mixer_b16_224": [16, 31, 32, 812, 864], "nois": [16, 18, 31, 32, 812, 863, 864], "randn": [16, 18, 31, 32, 378, 496, 812, 864], "tf_mlp_encod": [16, 31, 32], "output_torch": [16, 18], "output_tf": [16, 18], "output_dens": [16, 31, 32, 812], "dens": [16, 29, 31, 32, 316, 369, 792, 812], "unit": [16, 31, 32, 57, 73, 80, 97, 98, 110, 112, 113, 114, 115, 116, 117, 118, 295, 296, 299, 303, 305, 306, 309, 310, 311, 367, 504, 505, 626, 812, 819, 823, 829, 841, 842, 844, 855, 871, 874], "mention": [16, 18, 31, 32, 37, 818, 819, 820, 824, 831, 836, 837, 840, 841, 844, 847, 860, 865, 870], "fulli": [16, 18, 20, 21, 24, 29, 31, 32, 45, 57, 80, 387, 529, 792, 812, 824, 829, 836, 839, 847, 849, 850, 851, 852, 853, 854, 855, 861, 865, 868, 869, 870, 876, 877], "ground": [16, 18, 377, 453, 771, 773, 784, 816, 834, 841, 844, 859], "ret": [16, 18, 31, 32, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 431, 436, 438, 441, 443, 446, 449, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 789, 794, 796, 801, 806, 808, 812, 829, 830, 832, 833, 839, 840, 841, 842, 845, 849, 854, 864], "eagertensor": [16, 22, 43, 801, 842], "deepmind": [17, 861], "perceiverio": [17, 861], "backbon": [17, 45, 812, 849, 852], "TO": [17, 19, 30], "replac": [17, 19, 30, 46, 56, 57, 58, 64, 66, 74, 79, 80, 81, 87, 89, 132, 274, 310, 313, 367, 369, 378, 489, 492, 496, 576, 577, 581, 629, 632, 634, 639, 643, 699, 738, 776, 820, 826, 827, 829, 830, 838, 841, 844, 851, 854, 855, 860, 864, 877], "efficientnet": 18, "eff_encod": [18, 812], "efficientnet_v2": [18, 812], "efficientnetv2b0": [18, 812], "storag": [18, 45, 46, 852, 860], "googleapi": [18, 45, 46], "efficientnetv2": 18, "b0_notop": 18, "h5": [18, 74], "24274472": 18, "0u": 18, "torch_eff_encod": [18, 812], "modes_to_trac": 18, "1280": [18, 545, 634, 812], "welcom": [20, 46, 812, 813, 819, 820, 821, 843], "varieti": [20, 823, 828, 829, 830, 844, 846, 866, 868, 872, 873, 876, 877], "organ": [20, 824, 827, 837, 841, 843, 845, 857, 860], "main": [20, 32, 53, 57, 62, 80, 85, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 473, 629, 637, 670, 671, 691, 812, 815, 818, 819, 820, 821, 823, 826, 827, 834, 838, 840, 868, 870, 871, 876], "exactli": [20, 24, 34, 43, 44, 48, 290, 632, 818, 827, 828, 829, 830, 831, 833, 844, 847, 859, 861], "rush": [20, 861], "jump": [20, 842], "straight": [20, 812, 828, 841, 844, 851], "quickstart": [20, 812], "introduct": [20, 22, 29, 31, 32, 870], "point": [20, 29, 54, 56, 57, 62, 66, 68, 70, 77, 79, 80, 85, 89, 93, 126, 127, 128, 130, 132, 135, 142, 143, 148, 152, 165, 169, 173, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 256, 261, 262, 263, 264, 265, 273, 275, 276, 278, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 312, 313, 315, 335, 336, 353, 354, 357, 359, 369, 372, 375, 376, 377, 382, 387, 390, 399, 400, 401, 419, 429, 449, 453, 508, 509, 510, 511, 512, 522, 523, 524, 532, 627, 629, 630, 632, 637, 643, 644, 645, 646, 647, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 740, 741, 747, 749, 750, 751, 752, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 801, 802, 810, 816, 818, 819, 820, 823, 824, 826, 828, 829, 831, 832, 834, 836, 840, 841, 844, 845, 847, 849, 851, 852, 861, 863, 876], "showcas": [20, 812], "real": [20, 28, 56, 57, 70, 79, 80, 93, 102, 112, 115, 118, 142, 143, 220, 221, 222, 223, 225, 226, 227, 228, 229, 238, 240, 241, 243, 245, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 273, 275, 276, 278, 282, 283, 284, 286, 287, 288, 289, 290, 291, 293, 294, 335, 336, 342, 343, 344, 354, 372, 375, 376, 398, 419, 420, 429, 430, 626, 629, 632, 637, 644, 647, 672, 673, 674, 678, 685, 687, 688, 691, 694, 747, 760, 762, 763, 764, 765, 827, 872], "world": [20, 28, 820, 872], "beginn": [20, 813, 870], "got": [20, 43, 833], "cover": [20, 31, 57, 80, 375, 412, 413, 414, 818, 823, 824, 826, 829, 831, 832, 837, 838, 844, 847, 848], "familiar": [20, 21, 22, 818, 819], "concept": [20, 21, 22], "turn": [20, 21, 24, 34, 61, 84, 97, 98, 399, 400, 401, 636, 659, 792, 819, 826, 827, 830, 831, 841, 844, 861], "unus": [20, 21, 24, 831, 840], "part": [20, 21, 24, 53, 56, 57, 79, 80, 85, 102, 112, 115, 118, 145, 146, 147, 253, 257, 280, 328, 329, 355, 369, 372, 375, 376, 378, 387, 419, 430, 484, 532, 626, 629, 632, 637, 673, 674, 773, 812, 818, 819, 820, 821, 823, 826, 829, 835, 837, 840, 841, 844, 845, 847, 849, 850, 854, 855, 863, 864, 865, 868, 870, 875, 876, 877], "lazi": [20, 21, 24, 27, 34, 37, 38, 49], "decor": [20, 21, 26, 28, 29, 37, 49, 539, 634, 776, 778, 784, 816, 823, 824, 827, 829, 830, 834, 837, 840, 841, 842, 847], "kornia": [20, 21, 28, 31, 32, 45, 49, 812, 864], "roundup": 22, "indep": [22, 31], "proof": [22, 31], "delv": [22, 32, 812], "theori": [22, 814, 826], "esenti": [22, 31], "abstract": [22, 31, 32, 791, 796, 812, 827, 829, 840, 841, 844, 847, 853, 859, 868, 870, 872, 873, 877], "quirk": [22, 31], "perk": [22, 31, 812, 824, 827], "under": [22, 31, 32, 57, 377, 456, 457, 805, 812, 818, 819, 822, 823, 830, 831, 832, 835, 841, 842, 844, 847, 848, 849, 852, 854, 855, 863, 864, 870, 873, 877], "hood": [22, 31, 32, 812, 822, 830, 831, 835, 841, 844, 847, 848, 849, 852, 854, 863, 864, 877], "appropi": 22, "string": [22, 31, 32, 47, 57, 58, 61, 74, 80, 84, 150, 151, 163, 170, 192, 193, 194, 195, 196, 198, 207, 214, 215, 219, 375, 376, 378, 418, 422, 430, 484, 495, 524, 543, 630, 631, 634, 636, 637, 649, 650, 651, 652, 654, 656, 658, 674, 771, 773, 777, 805, 806, 825, 826, 828, 829, 830, 833, 841, 849, 852], "simplest": [22, 819, 831, 844, 847], "interact": [22, 31, 46, 49, 818, 869, 870, 875], "submodul": [22, 31, 45, 47, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 818, 819, 820, 823, 826, 828, 830, 834, 837, 838, 844, 848, 849, 853, 857], "likewis": [22, 27, 31, 38, 812, 820, 827, 829, 832, 836, 837, 841, 847, 852, 863, 864, 876], "nativearrai": [22, 31, 32, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 131, 136, 137, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 175, 177, 179, 180, 186, 196, 197, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 317, 318, 322, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 523, 524, 525, 526, 534, 537, 538, 540, 541, 545, 546, 547, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 565, 568, 569, 571, 576, 577, 578, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 602, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 797, 824, 827, 831, 833, 836, 837, 838, 840, 841, 845, 846, 849, 851, 857], "alia": [22, 31, 335, 336, 372, 627, 818, 841, 862, 865], "lastli": [22, 31, 824], "subclass": [22, 31, 32, 838, 841, 847, 864], "dict": [22, 31, 32, 45, 49, 52, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 141, 143, 149, 153, 155, 166, 167, 168, 172, 173, 180, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 325, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 378, 398, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 484, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 624, 628, 630, 631, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 773, 774, 789, 792, 794, 801, 806, 824, 827, 852, 853, 857, 863, 864, 865], "recurs": [22, 31, 32, 45, 47, 52, 74, 75, 166, 167, 199, 200, 376, 448, 550, 551, 557, 630, 631, 634, 641, 718, 719, 722, 728, 729, 730, 771, 819, 823, 826, 827, 834, 837, 840, 853, 855], "fashion": [22, 778, 844, 864], "native_arrai": [22, 31, 32, 53, 54, 56, 76, 78, 79, 80, 81, 85, 92, 110, 113, 136, 139, 141, 143, 149, 152, 153, 154, 155, 163, 168, 175, 197, 206, 214, 230, 234, 239, 240, 241, 243, 247, 251, 259, 260, 268, 273, 276, 279, 282, 287, 335, 336, 363, 372, 377, 378, 458, 484, 490, 494, 534, 537, 564, 565, 568, 599, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 643, 644, 647, 648, 650, 651, 658, 666, 669, 673, 674, 679, 680, 684, 688, 689, 691, 694, 696, 698, 699, 706, 738, 747, 756, 762, 765, 767, 773, 783, 801, 816, 834, 842, 844], "data_class": [22, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 395, 396, 545, 549, 687, 712], "low": [22, 31, 34, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 827, 833, 840, 841, 847, 849, 866, 868, 870, 871, 872, 874, 876], "c": [22, 31, 37, 46, 47, 53, 57, 58, 59, 61, 64, 70, 76, 77, 79, 80, 81, 82, 84, 85, 87, 91, 93, 97, 98, 116, 127, 128, 138, 141, 165, 168, 223, 234, 240, 241, 261, 262, 264, 273, 276, 284, 291, 375, 376, 378, 381, 387, 389, 390, 391, 392, 403, 408, 424, 426, 428, 429, 431, 443, 462, 463, 464, 474, 492, 496, 501, 502, 503, 506, 524, 537, 545, 546, 547, 548, 556, 560, 561, 591, 600, 615, 616, 619, 621, 622, 623, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 644, 645, 647, 650, 651, 652, 653, 654, 655, 657, 672, 674, 676, 706, 710, 718, 721, 725, 726, 727, 729, 730, 735, 736, 747, 752, 758, 759, 764, 766, 795, 805, 806, 813, 819, 822, 825, 826, 827, 831, 837, 839, 848, 849, 850, 852, 855, 857, 858, 860, 861, 864, 866, 870, 874, 875, 877], "fundament": [22, 31, 828, 841, 847, 849, 859, 870], "signatur": [22, 31, 378, 387, 484, 522, 829, 830, 831, 832, 836, 840, 844, 845, 847, 860, 867, 876], "matmul": [22, 31, 32, 48, 62, 85, 376, 446, 614, 634, 637, 687, 825, 844, 845, 849], "to_n": [22, 31, 32, 43, 52, 75, 849], "jaxlib": [22, 28, 46, 801, 819, 824, 829, 830, 836, 845, 849, 851], "xla_extens": [22, 28, 801, 824, 829, 830, 836, 845, 849, 851], "arrayimpl": [22, 28, 801], "disabl": [22, 31, 57, 80, 378, 492, 794, 810, 826], "array_mod": [22, 31, 578, 602, 634, 846], "set_array_mod": [22, 31, 602, 634, 846], "ultim": [22, 31, 863], "sigmoid": [22, 31, 32, 43, 51, 57, 73, 80, 301, 367, 382, 508, 626, 788, 849, 852, 853], "z": [22, 31, 32, 44, 45, 53, 56, 57, 58, 62, 63, 66, 68, 70, 76, 79, 80, 81, 85, 86, 87, 89, 93, 102, 103, 137, 138, 140, 141, 201, 223, 224, 228, 230, 233, 235, 240, 251, 252, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 280, 289, 300, 301, 335, 336, 338, 367, 372, 377, 387, 453, 455, 456, 457, 458, 459, 465, 469, 480, 521, 522, 525, 532, 537, 549, 552, 553, 560, 561, 577, 590, 592, 593, 601, 614, 629, 631, 632, 634, 637, 638, 639, 641, 643, 644, 645, 647, 668, 677, 682, 683, 687, 694, 696, 697, 698, 699, 721, 725, 727, 735, 739, 740, 741, 744, 749, 759, 760, 762, 763, 764, 791, 812, 825, 827, 830, 831, 849, 851, 863], "divid": [22, 27, 31, 32, 48, 56, 57, 58, 64, 74, 79, 80, 87, 102, 103, 247, 381, 454, 501, 502, 503, 506, 592, 632, 634, 639, 708, 824, 827, 831, 835, 844], "exp": [22, 31, 32, 56, 57, 79, 80, 116, 118, 245, 265, 278, 301, 367, 375, 377, 403, 408, 457, 626, 632, 637, 685, 839, 841], "entir": [22, 31, 32, 34, 47, 57, 70, 71, 74, 80, 81, 93, 94, 213, 243, 245, 285, 286, 335, 336, 372, 375, 378, 387, 399, 400, 401, 484, 525, 558, 631, 632, 647, 648, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 818, 819, 820, 823, 824, 827, 829, 831, 833, 840, 841, 842, 844, 847, 849, 852, 853, 854, 855, 860, 861, 864, 870, 876, 877], "congratul": [22, 28], "independ": [22, 32, 57, 66, 80, 89, 223, 240, 273, 283, 381, 382, 506, 508, 632, 637, 643, 668, 686, 738, 812, 823, 829, 831, 838, 849, 854, 864, 868], "div": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 865], "sub": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 57, 62, 64, 74, 75, 79, 80, 81, 85, 87, 103, 272, 376, 378, 387, 430, 470, 479, 499, 528, 529, 557, 634, 637, 639, 640, 671, 691, 708, 715, 716, 717, 818, 820, 822, 827, 833, 841, 842, 844, 851, 852, 853, 865, 866], "with_numpi": 23, "reproduc": [23, 48, 61, 84, 636, 659, 776, 777, 778, 779, 784, 816, 823, 834], "x_": [23, 33, 98, 284, 632, 865], "66391283": 23, "12516928": 23, "38367081": 23, "03102401": 23, "76419425": 23, "52797794": 23, "90346956": 23, "61316347": 23, "27585283": 23, "66309303": 23, "ivy_repo": 23, "sever": [23, 24, 33, 34, 36, 37, 38, 57, 80, 97, 375, 376, 389, 390, 391, 392, 444, 776, 819, 820, 845, 855, 868, 874], "pro": [23, 24, 25, 33, 34, 35, 36, 37, 38], "pick": [24, 34, 791], "trigger": [24, 34, 794, 818, 835], "unif": [24, 26, 27, 34, 36, 813, 851, 860, 866, 876], "55563945": 24, "65538704": 24, "14150524": 24, "46951997": 24, "30220294": 24, "14739668": 24, "57017946": 24, "91962677": 24, "51029003": 24, "59644395": 24, "constitu": [24, 34, 74, 854], "5556394": 24, "655387": 24, "1415051": 24, "4695197": 24, "3022028": 24, "1473966": 24, "5701794": 24, "91962665": 24, "51028997": 24, "5964439": 24, "985": 24, "000": [24, 79, 274, 776, 816, 828, 834], "On": [24, 31, 32, 819, 829, 830, 835, 841, 844, 847, 850, 854], "hand": [24, 56, 376, 446, 776, 812, 823, 829, 830, 835, 837, 844, 855], "learnt": [25, 35], "ivy_norm": 25, "jax_norm": [25, 31, 32], "wider": [25, 35, 585, 608, 634, 829, 846, 876], "avoid": [25, 35, 37, 57, 64, 80, 240, 245, 247, 263, 273, 377, 378, 381, 454, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 501, 502, 503, 539, 555, 557, 580, 585, 608, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 779, 819, 820, 825, 826, 827, 828, 829, 833, 838, 841, 844, 845, 846, 847, 870], "act": [25, 35, 57, 80, 298, 363, 373, 820, 831, 846, 855, 877], "shorthand": [25, 35, 37, 844], "pair": [25, 35, 45, 57, 61, 80, 84, 228, 247, 320, 362, 369, 372, 375, 409, 418, 420, 422, 632, 636, 637, 649, 650, 651, 652, 654, 656, 658, 666, 668, 806], "93968587": 25, "26075466": 25, "22723222": 25, "06276492": 25, "47426987": 25, "72835908": 25, "71737559": 25, "50411096": 25, "65419174": 25, "15576624": 25, "implic": [25, 35, 36, 39, 827], "satisfi": [26, 27, 28, 29, 45, 47, 50, 57, 375, 376, 398, 430, 829, 831], "fw": [26, 27, 28, 29, 61, 84, 387, 522, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 773, 819, 844], "mxnet": [26, 27, 28, 29, 209, 631, 801, 818, 819, 860, 877], "einop": [26, 27, 28, 29, 45, 47, 50, 58, 81, 545, 546, 547, 634, 829, 860], "miniconda": [26, 27, 28, 29], "multienv": [26, 27, 28, 29], "site": [26, 27, 28, 29, 871], "psutil": [26, 27, 28, 29, 45, 47, 50], "termcolor": [26, 27, 28, 29, 45, 47, 50, 74, 103], "colorama": [26, 27, 28, 29, 45, 47], "535": [26, 27, 28, 29, 51, 73, 118, 626, 833], "diskcach": [26, 27, 28, 29, 45], "auth": [26, 27, 28, 29], "urllib3": [26, 27, 28, 29, 45], "pyvi": [26, 27, 28, 29, 31, 32], "dill": [26, 27, 28, 29, 45], "astunpars": [26, 27, 28, 29], "cloudpickl": [26, 27, 28, 29], "gast": [26, 27, 28, 29], "wheel": [26, 27, 28, 29, 45, 47, 50, 859], "six": [26, 27, 28, 29, 45, 50, 819, 847], "cachetool": [26, 27, 28, 29], "pyasn1": [26, 27, 28, 29], "rsa": [26, 27, 28, 29], "jinja2": [26, 27, 28, 29], "jsonpickl": [26, 27, 28, 29], "networkx": [26, 27, 28, 29, 50], "charset": [26, 27, 28, 29, 45], "idna": [26, 27, 28, 29, 45], "certifi": [26, 27, 28, 29, 45], "2017": [26, 27, 28, 29, 45, 636, 663], "jedi": [26, 27, 28, 29], "inlin": [26, 27, 28, 29, 826], "prompt": [26, 27, 28, 29, 818, 820], "toolkit": [26, 27, 28, 29, 870, 871, 877], "pygment": [26, 27, 28, 29], "traitlet": [26, 27, 28, 29], "exceptiongroup": [26, 27, 28, 29], "pexpect": [26, 27, 28, 29], "markupsaf": [26, 27, 28, 29], "parso": [26, 27, 28, 29], "ptyprocess": [26, 27, 28, 29], "wcwidth": [26, 27, 28, 29], "asttoken": [26, 27, 28, 29], "pure": [26, 27, 28, 29, 37, 47, 812, 832, 836, 841, 847, 851, 854, 855, 870, 876, 877], "lazili": [26, 27, 28, 31, 32, 36, 38, 49, 812, 863, 864, 865], "actual": [26, 36, 816, 820, 822, 828, 834, 837, 838, 840, 841, 842, 844, 847, 848, 853, 855, 871, 876], "occur": [26, 31, 32, 36, 49, 54, 56, 68, 77, 79, 91, 155, 274, 290, 630, 632, 644, 645, 744, 745, 749, 750, 751, 752, 823, 828, 830, 833, 846], "altern": [26, 36, 46, 57, 80, 85, 97, 98, 334, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 372, 818, 819, 826, 840, 852, 873], "assum": [26, 27, 36, 37, 38, 53, 56, 57, 58, 61, 62, 63, 79, 80, 81, 84, 85, 86, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 329, 335, 336, 338, 341, 359, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 444, 446, 484, 492, 496, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 805, 812, 819, 823, 825, 828, 829, 832, 842, 844, 847, 851, 852, 855], "201733": 26, "slowli": [26, 36], "norm": [26, 36, 37, 57, 58, 62, 80, 81, 85, 96, 97, 375, 376, 397, 398, 402, 403, 404, 407, 408, 409, 419, 420, 426, 430, 504, 505, 507, 540, 541, 562, 634, 637, 678, 694, 737, 792, 796, 845], "slow": [26, 36, 814, 819, 826], "34431235": [26, 27], "51129461": [26, 27], "06686894": [26, 27], "36452447": [26, 27], "98795534": [26, 27], "15493582": [26, 27], "91630631": [26, 27], "41939619": [26, 27], "78909753": [26, 27], "19475674": [26, 27], "norm_trac": 26, "norm_tran": [26, 36], "know": [26, 27, 36, 37, 38, 68, 645, 749, 750, 751, 752, 812, 814, 818, 820, 830, 838, 842, 844, 847, 861, 865, 871], "07": [27, 45, 47, 59, 63, 79, 82, 86, 89, 228, 261, 264, 265, 284, 375, 407, 605, 615, 616, 618, 619, 620, 621, 632, 634, 635, 638, 697, 698, 740, 793, 796, 853], "981554": 27, "happen": [27, 31, 32, 292, 632, 812, 819, 820, 821, 830, 840, 844, 852, 861, 863, 864], "wherea": [27, 38, 80, 375, 421, 820, 824, 827, 829, 830, 831, 836, 837, 844, 854, 867], "subtract": [27, 31, 32, 56, 79, 102, 103, 134, 378, 484, 629, 632, 824, 827, 831], "filelock": [28, 45], "extens": [28, 45, 56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 819, 820, 832, 834, 835, 844, 867, 870, 877], "sympi": [28, 860], "fsspec": [28, 45], "mpmath": 28, "often": [28, 57, 377, 452, 817, 823, 833, 836, 837, 841, 844, 855, 861, 871, 874, 877], "fortun": [28, 29, 823], "everyth": [28, 46, 805, 812, 818, 819, 820, 821, 822, 828, 831, 840, 841, 842, 844, 850, 855, 856, 861], "practic": [28, 820, 825, 828, 841, 843, 873], "everi": [28, 31, 32, 37, 45, 53, 57, 58, 80, 81, 135, 136, 301, 335, 336, 349, 367, 372, 375, 378, 412, 413, 414, 421, 498, 534, 629, 634, 818, 820, 823, 825, 826, 828, 829, 831, 835, 836, 837, 838, 840, 841, 842, 844, 849, 851, 853, 863, 864, 865, 870], "jax_kornia": [28, 31, 32, 812, 864], "though": [28, 817, 818, 820, 829, 830, 832, 837, 840, 841, 847, 852, 855], "000000000034": [28, 31, 32, 812, 864], "raw_img": [28, 31, 32, 812, 864], "sharp": [28, 31, 32, 812], "prefer": [28, 31, 32, 247, 632, 819, 827, 833, 834, 838, 841, 856, 870], "whole": [29, 57, 80, 378, 381, 491, 504, 505, 507, 820, 826, 835], "full": [29, 57, 62, 80, 84, 85, 97, 98, 100, 165, 252, 260, 323, 324, 325, 326, 327, 369, 376, 377, 378, 449, 450, 456, 457, 485, 488, 579, 588, 603, 611, 629, 630, 632, 634, 636, 637, 651, 653, 654, 655, 657, 680, 684, 686, 687, 777, 784, 812, 819, 820, 826, 829, 832, 833, 836, 837, 841, 844, 847, 849, 855, 860, 861, 868, 870, 876], "complex": [29, 31, 32, 45, 51, 56, 57, 62, 70, 73, 77, 79, 80, 85, 93, 110, 111, 112, 113, 114, 115, 116, 117, 118, 142, 143, 158, 172, 181, 187, 220, 221, 222, 223, 224, 225, 226, 229, 237, 238, 240, 241, 243, 245, 253, 254, 255, 256, 257, 261, 262, 263, 264, 273, 275, 276, 278, 280, 283, 284, 285, 286, 287, 290, 291, 295, 300, 301, 303, 338, 343, 344, 367, 372, 375, 376, 387, 398, 409, 419, 420, 424, 429, 430, 431, 442, 444, 530, 531, 592, 593, 626, 629, 630, 632, 634, 637, 644, 647, 672, 673, 674, 678, 685, 687, 689, 691, 694, 747, 762, 763, 765, 777, 788, 806, 815, 818, 821, 826, 829, 831, 838, 841, 844, 845, 847, 852, 853, 854, 855, 857, 864, 866, 868, 870, 872, 876, 877], "neccessari": 29, "set_random_se": [29, 48], "301436": 29, "_c": 29, "0x7f252c392390": 29, "flatten": [29, 31, 32, 45, 47, 50, 57, 58, 62, 64, 67, 68, 80, 81, 85, 87, 90, 91, 340, 356, 372, 376, 378, 387, 427, 473, 483, 487, 492, 493, 496, 498, 520, 527, 528, 529, 530, 531, 532, 545, 549, 634, 637, 639, 644, 645, 675, 682, 694, 700, 705, 707, 744, 745, 749, 750, 751, 752, 771, 773, 812, 840, 847], "keyword": [29, 31, 32, 47, 49, 52, 53, 57, 74, 80, 103, 139, 274, 375, 378, 387, 423, 484, 522, 536, 539, 572, 601, 629, 632, 634, 637, 641, 647, 688, 724, 765, 771, 773, 777, 793, 794, 805, 818, 824, 827, 829, 830, 838, 840, 841, 842, 844, 845, 847, 852, 863, 864, 865], "input_arrai": [29, 31, 32, 840], "torch_model": [29, 31, 32, 49], "159": [29, 73, 110, 626, 636, 660], "thank": [29, 852, 860], "fledg": [29, 819, 849, 850], "output_arrai": [29, 31, 32, 57, 454], "0893": 29, "1504": 29, "1372": 29, "0991": 29, "0867": 29, "0851": 29, "0911": 29, "0804": 29, "0926": 29, "0881": 29, "softmaxbackward0": 29, "furthermor": 29, "relat": [29, 247, 632, 812, 814, 817, 818, 819, 820, 826, 833, 841, 844, 845, 846, 847, 864, 873], "continu": [29, 31, 32, 47, 125, 287, 295, 367, 628, 632, 812, 817, 818, 819, 822, 823, 834, 840, 843, 844, 855, 860, 861, 870], "regress": [30, 870, 877], "checkout": [31, 46, 820, 823, 844], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 31, "theoret": 31, "aspect": [31, 32, 813, 839, 852, 870], "easiest": [31, 812, 814, 819, 856], "defer": [31, 32, 818, 824, 829, 830, 837, 840, 841, 844, 876], "similarli": [31, 44, 139, 147, 223, 328, 335, 336, 369, 372, 629, 632, 825, 829, 841, 847, 851, 876], "essenc": [31, 871, 876], "becom": [31, 57, 80, 97, 346, 372, 378, 464, 639, 699, 801, 820, 821, 827, 829, 831, 833, 840, 855, 859, 861, 863], "slide": [31, 57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 418, 422, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "regressor": [31, 32, 812], "input_dim": [31, 32, 46, 812], "output_dim": [31, 32, 46, 812], "linear0": [31, 32, 43, 812, 852, 853], "linear1": [31, 32, 43, 812, 852, 853], "instanti": [31, 32, 784, 832], "adam": [31, 32, 43, 47, 59, 82, 536, 615, 616, 621, 634, 635, 796, 812, 852, 853, 854, 870], "n_training_exampl": [31, 32, 812], "2000": [31, 32, 80, 314, 369, 812], "random_norm": [31, 32, 61, 62, 66, 84, 85, 89, 545, 634, 636, 637, 643, 651, 653, 654, 655, 657, 658, 662, 687, 812], "linspac": [31, 32, 53, 76, 126, 629, 812, 836, 847, 849, 877], "pred": [31, 32, 46, 47, 57, 63, 80, 86, 377, 453, 456, 638, 696, 697, 698, 812, 827, 837, 840], "gradient": [31, 32, 45, 47, 57, 80, 97, 213, 364, 372, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 631, 640, 715, 716, 717, 773, 784, 796, 812, 822, 845, 852, 853, 855, 870], "grad": [31, 32, 43, 47, 615, 635, 796, 812, 839, 852, 853, 854], "execute_with_gradi": [31, 32, 43, 47, 635, 812, 852, 853, 854, 855], "lambda": [31, 32, 48, 50, 80, 123, 125, 297, 307, 544, 557, 617, 618, 620, 625, 628, 634, 635, 637, 641, 673, 725, 726, 730, 812, 818, 837, 838, 839, 842, 847, 849, 852], "2d": [31, 32, 47, 57, 80, 97, 313, 369, 375, 376, 378, 387, 390, 391, 399, 400, 442, 449, 463, 473, 522, 792, 810, 812, 841, 847], "5f": [31, 32, 812], "nonetheless": [31, 32], "extract": [31, 32, 39, 46, 57, 80, 98, 378, 467, 493, 841, 843, 845, 866, 870, 871, 876], "gc": [31, 32, 557, 634], "decompos": [31, 32, 57, 80, 97, 100, 323, 324, 325, 326, 327, 348, 355, 369, 372, 376, 440, 445, 448, 451, 841, 854], "said": [31, 32, 778, 845, 861, 863], "otherwis": [31, 32, 49, 52, 53, 54, 56, 57, 58, 61, 62, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 128, 129, 134, 136, 137, 138, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 171, 175, 179, 180, 196, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 313, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 341, 342, 350, 351, 357, 359, 361, 362, 363, 367, 369, 372, 375, 376, 378, 381, 394, 395, 396, 399, 400, 401, 419, 432, 447, 449, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 521, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 617, 619, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 687, 691, 693, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 731, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 777, 792, 794, 795, 801, 812, 820, 824, 827, 829, 830, 831, 837, 838, 840, 844, 849, 856, 863, 864], "x0": [31, 32, 50, 81, 537, 634, 831], "normalize_trac": [31, 32], "html": [31, 32, 46, 56, 57, 79, 80, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 629, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832, 860], "fname": [31, 32, 48, 50, 794, 852], "anticip": [31, 32], "addition": [31, 32, 827, 840, 841, 876], "normalize_native_comp": [31, 32], "return_backend_compiled_fn": 31, "immedi": [31, 32, 810, 818, 819], "built": [31, 32, 37, 45, 47, 50, 126, 629, 792, 793, 794, 812, 819, 820, 826, 827, 844, 850, 856, 863, 869, 870, 874], "eager_graph": [31, 32, 812, 863, 864], "lazy_graph": [31, 32, 812, 863, 864], "thought": [31, 32, 819, 820, 836, 860, 868], "matter": [31, 32, 37, 831, 859], "haven": [31, 32, 37, 856, 870], "jax_out": [31, 32], "ideal": [31, 32, 828, 829, 841, 847, 852], "worth": [31, 32], "differenti": [31, 32, 295, 365, 366, 367, 374, 870], "chosen": [31, 32, 50, 100, 126, 228, 629, 632, 644, 748, 818, 828, 841], "plai": [31, 32, 377, 456, 812, 815, 819, 821, 824, 830, 834, 841, 844, 854, 870, 873], "role": [31, 32, 812, 815, 820, 821, 830, 841, 850, 871, 873, 877], "dl": [31, 32], "effortlessli": [31, 32], "previous": [31, 32, 603, 634, 801, 818, 819, 825, 837, 839, 844, 849], "default_devic": [31, 32, 206, 209, 210, 211, 217, 218, 631, 830, 833, 834], "as_n": [31, 32, 54, 55, 74, 77, 78, 158, 159, 160, 161, 162, 163, 169, 196, 197, 630, 631, 829], "certainli": [31, 32, 812, 860, 876], "upon": [31, 32, 49, 810, 820, 821, 831, 840, 844, 847, 855, 869, 870], "unnecessari": [31, 32, 841], "extend": [31, 32, 57, 80, 378, 387, 484, 525, 825, 826, 829, 832, 833, 836, 841, 845, 855, 867, 870, 876], "infrastructur": [31, 32, 866, 872, 873], "least": [31, 56, 57, 62, 79, 80, 240, 258, 273, 375, 378, 387, 403, 408, 462, 463, 464, 473, 475, 522, 632, 637, 644, 677, 747, 812, 820, 824, 828, 829, 830, 831, 837, 840, 844, 864], "coco": 31, "seamlessli": [32, 844], "therefor": [32, 37, 53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 477, 484, 485, 487, 492, 496, 497, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 823, 824, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 855, 859, 867, 870, 876], "wide": [32, 812, 820, 844, 868, 870], "plenti": 32, "resourc": [32, 813, 818, 819, 828], "visit": [32, 818, 819, 820, 828], "page": [32, 812, 818, 819, 820, 826, 828, 834, 850, 851, 854, 856, 865, 878], "newli": [33, 34, 46, 48, 54, 77, 152, 539, 630, 634, 820, 828, 840, 844], "randon": [33, 34, 36, 37, 38], "mean_": 33, "std_": 33, "detect": [33, 37, 56, 74, 79, 255, 632, 641, 718, 729, 818, 819, 825, 827, 828, 835, 844, 852, 853], "inspect": [33, 37, 535, 634], "__": [33, 34, 35, 36, 37, 38, 74, 831, 852], "script": [34, 812, 819, 820, 823, 828, 831, 849, 855, 870], "comp": 34, "low_level": 34, "chain": [34, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 640, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 720, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 797, 824, 827, 839, 841, 853, 854, 855, 870], "un": [34, 170, 630, 829, 849], "partial_comp": 34, "time_funct": 34, "express": [34, 56, 57, 79, 80, 98, 221, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 798, 806, 832, 841, 849, 854, 870, 871], "maxim": [34, 837, 840, 849, 867, 868, 872, 873, 874], "conclud": [35, 845], "collect": [35, 45, 47, 49, 50, 52, 74, 75, 626, 631, 634, 635, 636, 638, 641, 642, 643, 731, 788, 792, 793, 794, 795, 796, 819, 828, 833, 834, 838, 839, 842, 844, 868, 870, 873], "norm_comp": [36, 37], "global": [36, 37, 47, 58, 74, 81, 103, 158, 159, 160, 161, 162, 211, 212, 213, 582, 583, 586, 592, 593, 605, 606, 609, 630, 631, 634, 784, 795, 801, 819, 824, 825, 828, 829, 830, 833, 837, 841, 849, 870], "b": [37, 51, 56, 57, 58, 61, 62, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 127, 128, 129, 134, 135, 136, 138, 141, 143, 149, 152, 153, 154, 155, 163, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 382, 385, 387, 394, 395, 396, 397, 399, 400, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 425, 428, 430, 432, 436, 439, 443, 446, 451, 452, 453, 455, 456, 457, 458, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 490, 492, 493, 494, 495, 496, 499, 500, 505, 507, 509, 510, 512, 513, 515, 522, 523, 524, 525, 527, 529, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 599, 600, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 805, 806, 810, 812, 813, 816, 820, 822, 823, 825, 827, 828, 831, 834, 837, 839, 842, 848, 849, 850, 852, 853, 854, 858, 861, 863, 866], "option": [37, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 168, 170, 180, 192, 196, 208, 211, 212, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 601, 613, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 724, 725, 729, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 789, 791, 792, 794, 796, 797, 805, 810, 818, 819, 820, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 847, 849, 854, 855, 863, 864, 865, 870, 876], "prioriti": [37, 74, 801, 815, 818, 820, 821, 830, 840], "normalize_via_oper": 37, "determin": [37, 56, 57, 62, 64, 68, 71, 74, 79, 80, 81, 85, 92, 94, 97, 100, 102, 103, 132, 155, 157, 164, 170, 171, 172, 173, 175, 176, 177, 192, 202, 204, 205, 216, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 253, 254, 255, 256, 257, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 304, 308, 354, 359, 367, 372, 375, 376, 377, 378, 387, 411, 419, 430, 452, 453, 492, 496, 522, 534, 537, 558, 559, 563, 564, 565, 566, 567, 568, 595, 613, 629, 630, 631, 632, 634, 637, 639, 640, 645, 648, 667, 668, 669, 671, 675, 676, 677, 679, 680, 682, 683, 685, 686, 691, 693, 694, 700, 715, 716, 717, 749, 750, 751, 752, 753, 767, 768, 778, 784, 791, 795, 827, 829, 830, 832, 837, 841, 844, 846, 847, 859], "think": [37, 818, 820, 828, 831, 847, 871], "uniqu": [37, 47, 57, 58, 68, 80, 81, 91, 375, 376, 378, 423, 446, 483, 484, 498, 569, 634, 640, 641, 645, 715, 716, 717, 720, 724, 749, 750, 751, 752, 778, 812, 823, 827, 837, 841, 842, 843, 847, 855, 859, 873], "rule": [37, 54, 56, 57, 62, 77, 79, 80, 85, 152, 155, 178, 179, 180, 229, 240, 273, 275, 282, 284, 292, 294, 375, 378, 387, 419, 472, 522, 630, 632, 637, 639, 667, 668, 675, 679, 682, 686, 700, 778, 805, 823, 824, 827, 828, 829, 831, 835, 836, 837, 839, 844, 847, 871], "broadcast": [37, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 339, 340, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 444, 453, 454, 455, 456, 458, 459, 465, 469, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 528, 529, 530, 531, 532, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 805, 827, 829, 831, 832, 833, 844, 845, 849], "elementwis": [37, 57, 65, 80, 88, 300, 302, 362, 367, 637, 642, 692, 737, 837, 845, 849], "taken": [37, 57, 62, 80, 85, 341, 372, 375, 420, 637, 671, 691, 818, 828, 841, 845, 854, 871], "account": [37, 47, 49, 57, 64, 80, 87, 287, 378, 474, 632, 639, 706, 791, 805, 819, 828, 832, 841, 845, 863], "fact": [37, 97, 820, 823, 828, 841, 844, 849, 852], "consum": [37, 773, 827, 828, 836, 842, 844], "thrown": [37, 562, 634, 819, 824, 830, 833, 835, 855], "doesn": [37, 562, 580, 634, 771, 792, 818, 819, 825, 827, 828, 829, 830, 831, 834, 835, 837, 839, 844, 847, 849, 855, 863, 868], "consider": [37, 818, 831, 836, 847, 859, 867, 868], "standalon": [38, 818, 824, 844, 857, 866, 871, 876, 877], "static": [38, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 106, 107, 129, 319, 375, 396, 409, 414, 423, 445, 451, 490, 502, 595, 629, 636, 663, 682, 789, 794, 841, 846, 855, 869, 870, 871], "flow": [39, 827, 863, 870, 871], "statement": [39, 44, 828, 840, 844, 847, 855, 863, 864], "opposit": 39, "exclud": [39, 70, 80, 93, 126, 147, 328, 369, 523, 524, 629, 643, 741, 757, 776, 779, 801, 831, 849, 863], "todo": [40, 41, 42, 47, 50, 80, 524, 818, 829, 841], "aim": [43, 816, 820, 823, 834, 838, 841, 844, 848, 868, 870, 873], "interfac": [43, 76, 134, 629, 851, 854, 855, 857, 860, 866, 867, 868, 869, 870, 874, 877], "set_framework": [43, 50], "underneath": [43, 828, 868], "sai": [43, 818, 819, 834, 838, 851, 861, 878], "clip": [43, 56, 57, 64, 79, 80, 81, 87, 271, 272, 378, 467, 492, 493, 540, 541, 632, 634, 639, 827, 837, 839, 840, 852, 854, 867], "a_min": 43, "a_max": 43, "tensforflow": 43, "clip_by_valu": [43, 854, 867], "clip_value_min": 43, "clip_value_max": 43, "clamp": [43, 57, 80, 300, 367, 854], "49": [43, 47, 57, 66, 80, 84, 85, 287, 375, 376, 387, 397, 407, 418, 443, 523, 632, 647, 692, 740, 759], "devicearrai": [43, 824, 841, 849, 851], "accept": [43, 52, 53, 56, 57, 62, 75, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 342, 364, 369, 372, 374, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 851, 857, 868], "jax_concat": 43, "tf_concat": 43, "np_concat": 43, "torch_concat": 43, "85": [43, 51, 57, 66, 73, 79, 80, 82, 84, 89, 103, 112, 225, 234, 235, 279, 295, 296, 299, 367, 387, 523, 592, 619, 626, 632, 634, 635, 636, 643, 660, 739, 740, 741], "mymodel": [43, 852], "x_in": [43, 852, 853, 854], "reduce_mean": [43, 812, 852, 853, 854], "49040043354034424": 43, "48975786566734314": 43, "4892795979976654": 43, "48886892199516296": 43, "4884953498840332": 43, "4881443977355957": 43, "4878086447715759": 43, "48748287558555603": 43, "48716384172439575": 43, "48684927821159363": 43, "48653748631477356": 43, "48622724413871765": 43, "4859171509742737": 43, "48560672998428345": 43, "48529526591300964": 43, "4849821627140045": 43, "48466697335243225": 43, "4843493402004242": 43, "4840289056301117": 43, "4837053418159485": 43, "4833785891532898": 43, "4830484390258789": 43, "48271444439888": 43, "48237672448158264": 43, "48203518986701965": 43, "48168954253196716": 43, "4813397228717804": 43, "4809857904911041": 43, "48062753677368164": 43, "48026490211486816": 43, "479898065328598": 43, "47952669858932495": 43, "4791509211063385": 43, "4787706732749939": 43, "47838595509529114": 43, "4779967665672302": 43, "47760307788848877": 43, "4772048890590668": 43, "47680220007896423": 43, "47639501094818115": 43, "47598329186439514": 43, "4755673110485077": 43, "4751465618610382": 43, "4747215211391449": 43, "4742920398712158": 43, "47385817766189575": 43, "47341999411582947": 43, "47297725081443787": 43, "4725303053855896": 43, "47207894921302795": 43, "47162333130836487": 43, "47116345167160034": 43, "470699280500412": 43, "47023090720176697": 43, "54": [43, 54, 56, 61, 79, 80, 84, 89, 168, 237, 238, 243, 258, 287, 293, 314, 369, 375, 387, 397, 407, 523, 632, 636, 637, 647, 660, 679, 682, 739, 740, 741, 759, 828, 831], "4697583019733429": 43, "55": [43, 51, 80, 89, 118, 234, 293, 387, 523, 560, 632, 634, 637, 643, 647, 676, 682, 740, 741, 759, 823], "46928152441978455": 43, "46880054473876953": 43, "4683155119419098": 43, "4678264260292053": 43, "46733325719833374": 43, "46683603525161743": 43, "61": [43, 45, 56, 57, 62, 79, 80, 82, 86, 89, 226, 261, 263, 288, 397, 615, 632, 635, 636, 637, 658, 675, 741, 834], "4663347601890564": 43, "4658295214176178": 43, "465320348739624": 43, "4648073613643646": 43, "46429020166397095": 43, "4637692868709564": 43, "46324464678764343": 43, "4627160429954529": 43, "4621836841106415": 43, "4616474211215973": 43, "46110764145851135": 43, "72": [43, 57, 66, 80, 82, 245, 349, 372, 375, 397, 407, 619, 632, 635, 637, 647, 682, 740, 759], "460563987493515": 43, "4600166976451874": 43, "74": [43, 45, 56, 89, 235, 265, 632, 637, 679], "45946577191352844": 43, "45891112089157104": 43, "45835286378860474": 43, "4577910006046295": 43, "78": [43, 59, 284, 621, 632, 635, 637, 643, 647, 682, 740, 759], "45722562074661255": 43, "45665669441223145": 43, "80": [43, 57, 80, 349, 372, 376, 387, 443, 523, 637, 641, 647, 682, 729, 759, 860], "4560841917991638": 43, "81": [43, 47, 56, 62, 77, 79, 85, 89, 168, 238, 263, 264, 288, 387, 523, 630, 632, 637, 641, 643, 647, 675, 679, 692, 726, 741, 759, 844], "4555082619190216": 43, "45492875576019287": 43, "45434585213661194": 43, "45375964045524597": 43, "4531698524951935": 43, "4525766670703888": 43, "45198020339012146": 43, "4513803720474243": 43, "4507772624492645": 43, "4501707851886749": 43, "4495610296726227": 43, "4489481747150421": 43, "44833192229270935": 43, "4477125108242035": 43, "44708991050720215": 43, "44646409153938293": 43, "44583529233932495": 43, "4452032148838043": 43, "44456806778907776": 43, "4439": 43, "selectbackward0": 43, "ivy_compil": 44, "ic": 44, "numer": [44, 53, 54, 56, 57, 58, 62, 66, 67, 70, 77, 79, 80, 81, 85, 89, 90, 92, 102, 103, 139, 152, 220, 223, 236, 240, 245, 246, 247, 254, 255, 256, 259, 268, 269, 273, 275, 276, 277, 278, 282, 283, 284, 288, 289, 293, 294, 375, 377, 382, 387, 419, 454, 509, 522, 582, 583, 592, 593, 605, 606, 629, 630, 632, 634, 637, 643, 644, 647, 668, 675, 677, 682, 685, 687, 689, 691, 693, 739, 740, 741, 743, 744, 745, 747, 748, 753, 760, 763, 765, 776, 777, 778, 779, 791, 816, 829, 834, 839, 841, 842, 844, 845, 846, 847, 849, 853, 867, 870, 876], "anyth": [44, 57, 80, 387, 528, 529, 820, 833, 844, 845, 870, 871], "affect": [44, 50, 57, 377, 457, 828, 841], "variabl": [44, 46, 47, 49, 57, 58, 59, 65, 74, 80, 81, 82, 88, 122, 123, 125, 322, 369, 375, 376, 382, 387, 421, 447, 510, 521, 522, 538, 562, 563, 564, 565, 568, 595, 616, 617, 619, 621, 622, 623, 628, 634, 635, 637, 640, 642, 686, 715, 716, 717, 737, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 820, 825, 829, 832, 836, 839, 840, 844, 845, 849, 852, 853, 854, 855, 856, 863, 871], "original_fn": 44, "100000": 44, "var": [44, 70, 93, 95, 122, 123, 124, 125, 628, 640, 647, 715, 716, 798, 819, 831, 849, 867], "co": [44, 45, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 817, 829, 849, 860], "sin": [44, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 824, 849], "tan": [44, 56, 79, 536, 632, 634, 832, 836, 837, 840, 841, 849], "comp_fn": 44, "compile_graph": [44, 50], "expected_result": 44, "compiled_result": 44, "irrelev": [44, 828, 829, 831], "opeat": 44, "_layer": [44, 849], "net": [44, 49, 50, 849, 854, 860, 861], "compiled_net": 44, "latest": [45, 47, 56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 421, 492, 522, 630, 632, 637, 639, 647, 685, 686, 714, 764, 792, 812, 818, 819, 820, 823, 825, 828, 832, 834, 845, 855, 856, 864, 875], "pypi": [45, 47, 50, 818, 819, 845, 855], "pkg": [45, 47, 50], "public": [45, 47, 50, 542, 634, 828, 839, 851, 873], "revis": [45, 47, 820], "req": [45, 47], "tabqrujw": 45, "filter": [45, 47, 49, 57, 61, 80, 84, 317, 318, 369, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 812, 825, 828], "quiet": [45, 47], "commit": [45, 47, 815, 816, 818, 821, 823, 831, 843, 844], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 45, "metadata": [45, 47, 50, 840], "setup": [45, 47, 50, 819, 820, 826, 828, 834], "py3": [45, 47, 50], "whl": [45, 46, 47, 50], "cp39": [45, 47], "manylinux_2_12_x86_64": [45, 47], "manylinux2010_x86_64": [45, 47], "manylinux_2_17_x86_64": [45, 47, 819], "manylinux2014_x86_64": [45, 46, 47], "py2": [45, 47], "495": [45, 47], "nvidia_ml_pi": [45, 47], "pypars": [45, 47, 50], "ivy_cor": [45, 47, 50, 819], "1338326": 45, "sha256": [45, 47, 50], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 45, "store": [45, 47, 50, 54, 57, 58, 62, 64, 74, 77, 80, 81, 85, 87, 154, 375, 376, 420, 428, 432, 446, 450, 549, 634, 637, 639, 691, 708, 773, 774, 792, 793, 794, 814, 820, 824, 825, 827, 832, 838, 840, 841, 842, 849, 851, 852, 853, 857, 863], "ephem": [45, 47], "njrc_e6b": 45, "2e": [45, 47], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [45, 47], "4845": [45, 47], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 45, "b6": [45, 47], "0d": [45, 47], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [45, 47], "uninstal": [45, 47, 50], "vnd": [45, 47, 50], "json": [45, 47, 50, 74, 819, 834, 852], "psst": 45, "pickl": [45, 46, 74, 794, 827, 852], "imageio": 45, "urllib": [45, 50], "_src": 45, "back": [45, 57, 64, 80, 87, 378, 474, 495, 578, 602, 634, 636, 639, 663, 706, 791, 796, 806, 819, 824, 829, 830, 833, 838, 839, 846, 848, 855, 856, 860, 868, 872], "tf_cpp_min_log_level": 45, "mkdir": [45, 46, 47, 819, 828], "perceiv": [45, 46], "touch": 45, "io_processor": 45, "position_encod": 45, "jmp": 45, "tabul": 45, "29359": 45, "29k": 45, "67k": 45, "002": 45, "30179": 45, "47k": 45, "8107": 45, "9k": 45, "92k": 45, "itertool": 45, "preprocessor": 45, "vector": [45, 53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 139, 365, 366, 374, 375, 376, 378, 381, 382, 387, 398, 429, 434, 442, 444, 449, 484, 486, 488, 506, 510, 522, 541, 545, 562, 614, 629, 634, 636, 637, 660, 663, 668, 672, 673, 675, 677, 682, 687, 688, 692, 693, 694, 695, 776, 792, 870], "perceiverbackbon": 45, "input_preprocessor": 45, "_input_preprocessor": 45, "_encod": 45, "__call__": [45, 773, 792, 793, 794, 812, 864], "is_train": 45, "po": [45, 806], "input_mask": 45, "network_input_is_1d": 45, "_input_is_1d": 45, "queri": [45, 46, 61, 74, 84, 198, 212, 555, 581, 631, 634, 636, 663, 666, 792, 827, 829, 834, 851, 870], "decod": [45, 852], "cross": [45, 47, 62, 63, 85, 86, 98, 637, 638, 696, 697, 698, 812, 828, 829], "attend": [45, 636, 663], "encoder_queri": 45, "latent": [45, 640, 716, 717], "imagepreprocessor": 45, "deal": [45, 794, 816, 830, 837, 839, 841, 844, 855], "image_s": 45, "fourier_pos_config": 45, "position_encoding_typ": 45, "fourier": [45, 57, 80, 375, 398, 403, 404, 408, 409, 419, 420, 423, 549, 634], "fourier_position_encoding_kwarg": 45, "concat_po": 45, "max_resolut": 45, "num_band": [45, 58, 81, 549, 634], "sine_onli": 45, "prep_typ": 45, "spatial_downsampl": 45, "cross_attend_widening_factor": 45, "cross_attention_shape_for_attn": 45, "kv": 45, "dropout_prob": 45, "num_block": 45, "num_cross_attend_head": 45, "num_self_attend_head": 45, "num_self_attends_per_block": 45, "num_z_channel": 45, "self_attend_widening_factor": 45, "use_query_residu": 45, "z_index_dim": 45, "z_pos_enc_init_scal": 45, "perceiver_backbon": [45, 812], "perceiverencod": 45, "At": [45, 818, 819, 820, 823, 834, 844, 845, 860, 870], "publish": [45, 812, 855, 861, 864], "thankfulli": [45, 844], "perceiver_io": [45, 46], "imagenet_fourier_position_encod": 45, "pystat": 45, "imagenet_checkpoint": 45, "rb": 45, "ckpt": 45, "09": [45, 51, 56, 82, 89, 118, 278, 288, 615, 626, 632, 635, 740], "173": [45, 62, 637, 675], "194": 45, "125": [45, 57, 62, 85, 234, 346, 372, 377, 453, 632, 637, 692], "177": [45, 47], "193776248": 45, "185m": 45, "octet": 45, "184": 45, "80m": 45, "144mb": 45, "144": 45, "mean_rgb": 45, "stddev_rgb": 45, "im": 45, "denorm": 45, "resize_and_center_crop": 45, "crop": [45, 57, 80, 375, 404, 409, 420], "center": [45, 791], "image_height": [45, 47, 812], "image_width": [45, 812], "padded_center_crop_s": 45, "offset_height": 45, "offset_width": 45, "crop_window": 45, "inter_cub": 45, "ye": [45, 855], "dummy_input": [45, 812], "transpili": 45, "torch_perceiver_backbon": 45, "quicker": 45, "params_v": [45, 812, 864], "perceiverioclassifi": [45, 812], "max_pool": [45, 812], "Of": [45, 824, 840, 841, 852, 875, 876], "cours": [45, 819, 820, 823, 824, 831, 840, 841, 847, 852, 855, 875, 876], "468": 45, "huggingface_hub": 45, "multiprocess": [45, 74, 103, 634, 852, 855], "py39": 45, "132": [45, 80], "pyarrow": 45, "xxhash": 45, "212": [45, 57, 61, 80, 359, 372, 660], "pyyaml": 45, "2021": [45, 57, 80, 362, 372, 812], "aiohttp": 45, "async": 45, "timeout": [45, 74, 103, 586, 609, 634, 846], "0a3": 45, "async_timeout": 45, "frozenlist": 45, "manylinux_2_5_x86_64": [45, 50], "manylinux1_x86_64": [45, 50], "158": 45, "attr": [45, 829], "aiosign": 45, "multidict": 45, "114": [45, 375, 397, 407], "yarl": 45, "264": [45, 641, 718], "2022": [45, 46], "pytz": 45, "2020": [45, 823, 870], "dateutil": [45, 50], "wikiart": 45, "paint": [45, 812, 849, 859], "load_dataset": [45, 863, 864], "n_sampl": [45, 57, 80, 376, 378, 425, 433, 487], "10000": [45, 47, 53, 76, 138, 629], "huggan": 45, "split": [45, 46, 47, 51, 56, 57, 64, 73, 74, 79, 80, 87, 110, 111, 112, 113, 114, 115, 116, 117, 118, 211, 212, 213, 291, 295, 300, 301, 303, 348, 355, 367, 378, 470, 479, 499, 545, 572, 626, 631, 632, 634, 636, 639, 649, 656, 657, 711, 773, 788, 792, 812, 813, 820, 828, 848, 849, 855, 877], "wiki_art": 45, "gib": 45, "unknown": [45, 776], "huggan___parquet": 45, "36ee951979f9b56c": 45, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 45, "parquet": 45, "subsequ": [45, 801, 819, 824, 828, 829, 831, 836, 837, 840, 844, 853, 871], "reus": [45, 53, 76, 80, 87, 128, 462, 463, 470, 472, 474, 475, 476, 483, 499, 702, 703, 704, 706, 708, 709, 711, 713, 833, 844, 875], "curl": [45, 819], "2fwikiart": 45, "xferd": 45, "dload": 45, "upload": [45, 844], "spent": [45, 861], "25936": 45, "278k": 45, "abstract_expression": 45, "action_paint": 45, "analytical_cub": 45, "art_nouveau": 45, "baroqu": 45, "color_field_paint": 45, "contemporary_r": 45, "cubism": 45, "early_renaiss": 45, "expression": 45, "fauvism": 45, "high_renaiss": 45, "impression": 45, "mannerism_late_renaiss": 45, "minim": [45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 375, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 832, 840, 842, 847, 849, 863, 868, 876], "naive_art_primitiv": 45, "new_real": 45, "northern_renaiss": 45, "pointil": 45, "pop_art": 45, "post_impression": 45, "realism": 45, "rococo": 45, "romantic": 45, "symbol": [45, 805, 818, 819, 870, 871], "synthetic_cub": 45, "ukiyo_": 45, "custom": [45, 57, 80, 299, 311, 364, 367, 374, 776, 805, 814, 822, 828, 833, 838, 842, 844, 847, 853, 860, 870, 874, 875, 876], "hugginfac": 45, "customdataset": 45, "__len__": [45, 827], "__getitem__": [45, 74, 827], "idx": [45, 46, 47, 535, 634, 812, 830, 851], "random_split": 45, "224x224": 45, "val_siz": 45, "dataset_train": 45, "dataset_v": 45, "dataset_test": 45, "dataloader_train": 45, "dataloader_v": 45, "dataloader_test": 45, "batch": [45, 46, 47, 57, 58, 62, 74, 80, 81, 85, 211, 212, 375, 376, 377, 381, 389, 391, 392, 398, 411, 421, 438, 452, 454, 501, 502, 503, 506, 549, 552, 553, 614, 631, 634, 636, 637, 640, 642, 660, 661, 662, 663, 694, 715, 716, 717, 737, 776, 792, 795, 812, 827, 837, 842, 852, 868], "train_featur": 45, "train_label": 45, "imshow": [45, 46], "001": [45, 56, 57, 65, 77, 80, 82, 165, 263, 280, 338, 351, 372, 616, 630, 632, 635, 642, 737, 776, 852, 853], "train_step": 45, "running_loss": [45, 47, 812], "last_loss": 45, "training_load": 45, "intra": 45, "report": [45, 815, 818, 844], "zero_grad": 45, "999": [45, 59, 79, 82, 291, 615, 616, 621, 623, 632, 635, 796, 853], "epoch_numb": 45, "best_vloss": 45, "1_000_000": 45, "running_vloss": 45, "vdata": 45, "vinput": 45, "vlabel": 45, "voutput": 45, "vloss": 45, "avg_vloss": 45, "model_path": 45, "model_": 45, "state_dict": [45, 793, 794], "highest": [45, 57, 66, 80, 89, 319, 322, 369, 643, 739, 829], "energi": 45, "augment": 45, "mayb": [45, 46, 52, 812, 819, 828, 849, 851], "finetun": 45, "deploi": [45, 812, 828, 857, 864, 868, 869, 870, 872, 876], "percieverio": 46, "ai": [46, 828, 868, 872], "contribut": [46, 57, 80, 387, 525, 815, 817, 819, 820, 821, 826, 834, 835, 841, 842, 849, 856, 863, 874, 878], "invit": [46, 818, 821, 841, 847], "g4ar9q7dtn": 46, "step1": 46, "printf": 46, "8packag": 46, "share": [46, 74, 186, 630, 776, 777, 812, 825, 827, 831, 837, 839, 841, 842, 844, 847, 849, 860, 868, 869, 876], "googledr": 46, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 46, "file_id": 46, "drive": [46, 47], "uc": 46, "tee": [46, 819], "file_id_wget_cmd": 46, "perl": 46, "pe": 46, "g": [46, 48, 49, 57, 66, 68, 70, 72, 80, 89, 95, 97, 151, 180, 193, 240, 253, 273, 280, 283, 335, 336, 372, 375, 376, 378, 382, 387, 412, 414, 451, 492, 508, 509, 510, 511, 512, 523, 524, 630, 631, 632, 637, 641, 643, 645, 647, 673, 674, 678, 685, 687, 688, 694, 721, 725, 727, 730, 735, 739, 740, 741, 749, 750, 751, 752, 757, 758, 760, 762, 763, 765, 791, 810, 813, 818, 819, 822, 823, 825, 826, 827, 839, 841, 844, 849, 855, 857, 861, 866], "uuid": 46, "anywai": [46, 824, 838, 841], "bin": [46, 57, 80, 387, 520, 525, 819, 820, 823, 827], "bash": [46, 819, 820, 823], "step2": 46, "interpret": [46, 53, 57, 76, 80, 127, 128, 134, 140, 377, 387, 454, 522, 629, 828, 871], "sudo": [46, 819], "apt": [46, 819], "yf": 46, "step3": 46, "delet": [46, 820, 828], "xvzf": 46, "rm": [46, 48, 814, 820], "step4": 46, "symlink": 46, "unzip": [46, 47], "fr": 46, "l": [46, 57, 62, 79, 85, 267, 376, 377, 429, 452, 636, 637, 663, 667, 672, 673, 674, 677, 691, 820, 822], "ln": 46, "sf": 46, "la": 46, "step5": 46, "step6": 46, "ipkykernel": 46, "step7": 46, "engbjapanpython3": 46, "ipykernel": 46, "reconnect": 46, "sy": [46, 878], "oct": 46, "gcc": [46, 868, 875], "lf": 46, "upgrad": 46, "cuda11": 46, "cudnn805": 46, "cp38": [46, 50, 819], "helper": [46, 771, 773, 774, 780, 782, 783, 812, 816, 826, 829, 833, 834, 843, 852, 857], "feedforward": 46, "prenorm": 46, "perceiveriospec": 46, "fetch": [46, 557, 634, 819, 820, 823, 828], "ogbanugot": [46, 878], "xmartlab": 46, "caffeflow": 46, "fetch_class": 46, "class_label": 46, "ground_truth": 46, "127": [46, 54, 57, 62, 77, 80, 168, 359, 372, 630, 637, 675], "path_to_imag": 46, "get_imag": 46, "spine": 46, "set_vis": 46, "bottom": [46, 545, 634, 818, 819, 828, 834, 876], "tick_param": 46, "set_xticklabel": 46, "set_yticklabel": 46, "show_result": 46, "listdir": [46, 47], "endswith": 46, "this_dir": 46, "dirnam": 46, "join": [46, 47, 64, 74, 80, 87, 468, 469, 639, 700, 710, 812, 821], "add_subplot": 46, "xtick": 46, "ytick": 46, "green": [46, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 811, 818, 819, 820], "red": 46, "perceiver_io_img_classif": 46, "normalize_imag": 46, "batch_shap": [46, 61, 66, 76, 84, 89, 132, 141, 629, 636, 637, 643, 662, 666, 695, 738, 792, 847, 849, 851], "img_dim": 46, "queries_dim": 46, "learn_queri": 46, "load_weight": 46, "num_input_ax": 46, "network_depth": 46, "num_lat_att_per_lay": 46, "query_shap": 46, "num_fourier_freq_band": 46, "weight_fpath": 46, "pretrained_weight": 46, "isfil": 46, "noinspect": [46, 851], "pybroadexcept": 46, "from_disk_as_pickl": 46, "action": [46, 810, 817, 828, 831, 835, 844], "fail": [46, 771, 816, 819, 820, 823, 828, 829, 831, 835, 838, 840, 841, 842], "placehold": [46, 641, 725, 730, 735, 792, 820, 824, 836, 857], "pyunboundlocalvari": 46, "max_fourier_freq": 46, "random_uniform": [46, 50, 66, 89, 643, 812, 830, 833, 844, 849, 853], "817437": 46, "gpu_bfc_alloc": 46, "orig_valu": 46, "tf_force_gpu_allow_growth": 46, "autograd": [46, 855], "declar": [46, 820, 843], "_3r2_73j": 47, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 47, "1297564": 47, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 47, "le3bu3_v": 47, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 47, "third": [47, 97, 98, 378, 471, 498, 637, 645, 687, 749, 826, 829, 840, 855, 869, 870, 876], "parti": [47, 826, 829, 855, 860, 869, 870, 876], "mount": [47, 814, 820], "mydriv": 47, "chdir": 47, "kaggl": 47, "medium": 47, "articl": [47, 812, 835], "insert": [47, 57, 67, 80, 90, 378, 459, 469, 639, 641, 644, 646, 702, 722, 723, 744, 755, 828, 835], "www": [47, 335, 336, 372], "your_kaggle_usernam": 47, "competit": 47, "digit": 47, "zip": [47, 849], "readabl": [47, 824, 827, 833, 835, 836, 844, 845, 851, 852], "chmod": [47, 819, 828], "recent": [47, 809, 819, 820, 844, 859, 860], "forc": [47, 826, 828, 830], "archiv": [47, 819], "inflat": [47, 829], "sample_submiss": 47, "later": [47, 74, 539, 634, 818, 835, 840, 844, 845, 870], "my": [47, 828], "label_df": 47, "mod_train": 47, "data_valu": 47, "test_data_valu": 47, "correct_label": 47, "train_path": 47, "str": [47, 49, 52, 53, 57, 58, 61, 62, 63, 64, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 139, 141, 143, 149, 150, 153, 155, 157, 158, 159, 160, 164, 165, 168, 169, 170, 171, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 192, 193, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 375, 376, 377, 378, 381, 387, 390, 394, 395, 396, 398, 399, 400, 401, 403, 404, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 430, 445, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 474, 490, 492, 493, 494, 495, 496, 501, 502, 503, 504, 505, 507, 509, 511, 522, 523, 524, 525, 532, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 579, 580, 589, 591, 592, 593, 595, 597, 599, 600, 613, 617, 624, 628, 629, 630, 631, 634, 635, 636, 637, 638, 639, 640, 641, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 688, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 724, 725, 730, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 753, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 774, 776, 777, 782, 784, 792, 794, 795, 805, 806, 810, 829, 830, 833, 837, 840, 841, 845, 849, 854, 863, 864, 865], "makedir": 47, "valid_path": 47, "28x28": 47, "pic": 47, "int8": [47, 54, 66, 76, 77, 89, 134, 161, 166, 168, 169, 173, 629, 630, 739, 776, 777, 829, 844], "new_img": [47, 49], "builder": [47, 814], "batchwis": 47, "subset": [47, 778, 824, 828, 832, 836, 839, 841, 844, 849, 870], "goe": [47, 378, 467, 822, 835, 840, 847], "seed_valu": [47, 74, 643, 742], "randomize_dataset": 47, "create_dataset": 47, "num_examples_per_class": 47, "img_arrai": 47, "class_nam": [47, 773], "dir": [47, 852], "img_path": 47, "imread": [47, 49, 852], "imread_grayscal": 47, "generate_batch": [47, 812], "dataset_s": [47, 812], "ivyerror": [47, 807, 812, 833], "smaller": [47, 57, 64, 70, 80, 87, 302, 334, 351, 367, 372, 375, 377, 387, 404, 409, 420, 452, 522, 523, 524, 545, 634, 639, 647, 699, 707, 757, 758, 763, 765, 812, 820, 833, 849], "yield": [47, 67, 320, 321, 369, 378, 484, 644, 748, 812, 828], "x_batch_inst": 47, "form": [47, 49, 52, 53, 57, 62, 74, 76, 85, 96, 97, 98, 127, 128, 140, 145, 146, 312, 315, 329, 338, 369, 372, 376, 378, 429, 440, 471, 480, 484, 500, 535, 596, 598, 629, 634, 636, 637, 641, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 719, 730, 776, 791, 813, 818, 819, 837, 844, 847, 853, 854, 860, 870, 871, 876], "intialis": 47, "num_epoch": [47, 812], "inherit": [47, 824, 827, 833, 851, 855, 857], "creation": [47, 57, 74, 80, 103, 826, 829, 830, 836, 838, 841, 842, 844, 845, 849, 863, 870, 872, 876], "inform": [47, 49, 54, 57, 59, 77, 82, 165, 168, 319, 369, 535, 624, 630, 634, 635, 640, 717, 810, 812, 817, 818, 819, 820, 821, 823, 827, 828, 833, 837, 838, 840, 842, 844, 873], "insid": [47, 62, 85, 103, 378, 494, 637, 680, 774, 819, 820, 824, 827, 829, 830, 834, 837, 838, 844, 845, 863, 876], "ivynet": [47, 812], "h_w": [47, 812], "input_channel": [47, 792, 812, 849, 853], "output_channel": [47, 792, 812, 853], "gelu": [47, 48, 51, 73, 626, 788, 812], "image_widht": 47, "start_dim": [47, 57, 80, 378, 474, 812], "end_dim": [47, 57, 80, 378, 474, 812], "gpu_is_avail": [47, 631, 812], "120": [47, 70, 93, 103, 637, 682, 757, 812], "__name__": [47, 48, 50, 601, 634, 833], "heavi": [47, 778, 819, 841, 842, 847, 871], "lift": [47, 842, 871], "num_correct": [47, 812], "y_pred": 47, "epoch_loss": [47, 812], "field": [47, 62, 68, 85, 91, 376, 378, 429, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751, 828, 868, 876], "training_accuraci": [47, 812], "train_loss": 47, "train_correct": [47, 812], "train_loop": [47, 812], "leav": [47, 52, 57, 75, 77, 79, 80, 81, 84, 85, 87, 93, 103, 165, 168, 240, 297, 300, 301, 307, 378, 468, 469, 474, 486, 487, 488, 504, 505, 507, 523, 524, 529, 549, 597, 639, 641, 655, 666, 671, 687, 701, 705, 710, 712, 713, 718, 719, 728, 729, 730, 731, 757, 758, 805, 812, 818, 827, 828, 829, 831, 832, 836, 837, 840, 841, 844, 852, 853], "xbatch": [47, 812], "ybatch": [47, 812], "to_devic": [47, 55, 78, 196, 631, 794, 812], "entropi": [47, 63, 86, 638, 696, 697, 698, 812], "hot": [47, 53, 76, 141, 629, 812], "ybatch_encod": [47, 812], "one_hot": [47, 53, 76, 629, 812, 854], "loss_prob": [47, 812], "ret_grad_idx": [47, 617, 635, 773, 839], "xs_grad_idx": [47, 617, 635, 773, 839], "batch_loss": [47, 812], "set_descript": [47, 812], "set_postfix": [47, 812], "accuracy_percentag": [47, 812], "naverag": [47, 812], "6f": [47, 812], "_train_summari": 47, "writer": 47, "writerow": 47, "157it": 47, "06it": 47, "475401": 47, "11it": 47, "081436": 47, "13it": 47, "0187": 47, "029279": 47, "0324": 47, "008382": 47, "07it": 47, "00456": 47, "003816": 47, "82it": 47, "00277": 47, "002179": 47, "05it": 47, "00175": 47, "001569": 47, "00147": 47, "09it": 47, "00128": 47, "001005": 47, "106": 47, "10it": 47, "00112": 47, "000837": 47, "129": [47, 636, 655, 657], "12it": 47, "000989": 47, "000709": 47, "145": 47, "000873": 47, "000606": 47, "08it": 47, "000774": 47, "000524": 47, "000688": 47, "000455": 47, "000613": 47, "000398": 47, "000547": 47, "000350": 47, "205": 47, "000488": 47, "000308": 47, "218": 47, "000437": 47, "000273": 47, "000391": 47, "000243": 47, "238": [47, 247, 632], "98it": 47, "000351": 47, "000216": 47, "260": 47, "plot_summari": 47, "whitegrid": 47, "nrow": 47, "ncol": 47, "fontweight": 47, "bold": 47, "set_xlabel": 47, "set_ylabel": 47, "savefig": 47, "summary_plot": 47, "png": [47, 49, 50, 852], "save_weight": [47, 794], "model_param": 47, "ivynet_weight": 47, "hdf5": [47, 74, 794, 852], "deitimageprocessor": 48, "tfdeitforimageclassif": 48, "tfdeitforimageclassificationwithteach": 48, "distillation_classifi": 48, "cls_classifi": 48, "randomli": [48, 375, 399, 400, 401, 636, 659, 776, 777, 778, 779, 784, 792], "henc": [48, 68, 223, 338, 372, 632, 639, 645, 702, 749, 750, 751, 752, 801, 819, 827, 828, 829, 840, 844], "image_processor": [48, 863, 864], "distil": [48, 871], "patch16": 48, "outputs_from_original_model": 48, "bertforsequenceclassif": 48, "bertforpretrain": 48, "NOT": [48, 268, 632, 805, 818], "probabl": [48, 57, 61, 63, 66, 80, 84, 86, 89, 375, 377, 382, 387, 399, 400, 401, 454, 508, 522, 525, 529, 636, 638, 643, 659, 663, 666, 696, 738, 778, 791, 792, 812, 844, 856, 861], "ptarmigan": 48, "rf": [48, 820], "branch": [48, 228, 240, 243, 245, 273, 285, 286, 287, 290, 632, 819, 820, 823, 828, 835, 855, 863, 870], "moduleconvert": [48, 789, 794], "mc": 48, "from_keras_modul": [48, 789], "compiled_func": 48, "return_graph": [48, 50], "compiled_output": 48, "diverg": [48, 57, 80, 247, 377, 454, 632], "_all_funct": [48, 50], "convert_to_tensor_v2_with_dispatch": 48, "transpose_v2": 48, "convolution_v2": 48, "bias_add": 48, "binary_op_wrapp": 48, "cast": [48, 54, 56, 57, 62, 70, 77, 79, 85, 93, 152, 155, 180, 274, 387, 523, 524, 630, 632, 637, 647, 678, 694, 757, 758, 761, 763, 765, 777, 837, 842, 849, 867], "moments_v2": 48, "batch_norm": [48, 50, 57, 80, 381], "tensordot": [48, 62, 85, 637, 806, 829], "softmax_v2": 48, "_slice_help": 48, "save_to_disk": [48, 50, 794], "12265048989200113": 48, "11038777417100028": 48, "1167045795539998": 48, "ivy_api_kei": 49, "obj": [49, 127, 128, 557, 629, 634, 863, 864, 865], "combo": [49, 852], "permit": [49, 824, 836, 841, 844, 847], "usabl": [49, 836, 845], "neither": [49, 223, 240, 247, 273, 632, 637, 689, 828, 841, 847], "nor": [49, 223, 240, 247, 273, 632, 828, 841, 874], "specifc": 49, "invoc": 49, "externally_link": 49, "logo": 49, "patch": [49, 291, 632, 829, 870], "cv2_imshow": 49, "envrion": 49, "canni": 49, "original_img": 49, "fn_arg": 49, "dilate_edg": 49, "morphologi": 49, "hk_model": 49, "resnet18": [49, 50], "keras_model": 49, "odsc": 49, "talk": [49, 875], "228": 50, "352": [50, 84, 636, 660, 833], "nvidia_ml_py3": 50, "19190": 50, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 50, "b9": 50, "b1": [50, 637, 686], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 50, "cycler": 50, "fonttool": 50, "965": 50, "pillow": 50, "kiwisolv": 50, "show_graph": [50, 794], "to_ivy_modul": [50, 789, 854], "image_dim": 50, "v0": [50, 853], "urlerror": 50, "dev_str": 50, "comp_network": 50, "time_chronolog": 50, "ret0_nc": 50, "ret1_nc": 50, "ret0_c": 50, "ret1_c": 50, "pytorch_vision_v0": 50, "distribut": [50, 57, 63, 66, 80, 86, 89, 375, 376, 377, 382, 399, 400, 401, 434, 445, 451, 454, 456, 457, 459, 508, 509, 510, 511, 512, 638, 643, 696, 697, 698, 738, 739, 740, 741, 743, 791, 792, 818, 819, 828, 830, 855, 870, 873], "distributed_c10d": 50, "262": 50, "reduce_op": 50, "reduceop": 50, "004645566477999864": 50, "0044566806820000695": 50, "attribut": [50, 74, 165, 166, 167, 168, 199, 200, 208, 550, 551, 630, 631, 634, 774, 825, 826, 827, 832, 833, 837, 838, 840, 841, 847, 850, 851, 852, 853], "definit": [50, 56, 62, 79, 85, 292, 632, 637, 667, 812, 816, 820, 824, 829, 834, 837, 851, 864], "max_pool2d": [50, 57, 80, 375, 395], "__iadd__": 50, "adaptive_avg_pool2d": [50, 57, 80, 375], "_arraywithactiv": [51, 102], "abc": [51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 106, 548, 634, 641, 736, 791, 796, 805, 806, 851], "_abc_impl": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc_data": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "approxim": [51, 56, 57, 62, 73, 79, 80, 85, 97, 100, 110, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 247, 261, 262, 263, 264, 278, 285, 286, 290, 291, 292, 349, 359, 372, 377, 456, 457, 626, 632, 637, 680, 683, 788, 832, 841], "complex_mod": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "variant": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 683, 684, 685, 687, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 824, 831, 832, 847], "docstr": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 637, 639, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 818, 822, 826, 835, 836, 837, 838, 841, 843, 845], "liter": [51, 56, 57, 62, 73, 79, 80, 85, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 375, 376, 378, 381, 397, 407, 411, 419, 434, 440, 445, 448, 451, 484, 506, 626, 632, 637, 646, 678, 694, 755, 788, 847], "magnitud": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 220, 223, 240, 247, 273, 291, 295, 300, 301, 303, 367, 626, 632, 637, 687, 688, 788, 829], "handle_complex_input": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "element": [51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 98, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 129, 135, 136, 145, 146, 147, 163, 165, 168, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 342, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 387, 388, 399, 400, 401, 404, 409, 412, 413, 414, 418, 420, 421, 422, 428, 429, 430, 452, 462, 463, 464, 474, 475, 476, 478, 481, 491, 492, 494, 496, 498, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 537, 540, 541, 552, 553, 569, 571, 591, 592, 593, 595, 599, 600, 626, 629, 632, 634, 636, 637, 639, 641, 643, 644, 645, 646, 647, 648, 659, 668, 670, 672, 673, 677, 682, 684, 685, 687, 691, 699, 702, 703, 704, 705, 706, 707, 708, 709, 718, 721, 727, 738, 746, 747, 748, 749, 750, 751, 752, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 792, 806, 832, 842, 844, 847, 849, 874], "138": [51, 110, 626], "165": [51, 110, 626, 636, 660], "hardswish": [51, 57, 73, 80, 298, 367, 626, 788], "leaky_relu": [51, 73, 80, 295, 626, 777], "alpha": [51, 56, 57, 73, 79, 80, 107, 112, 223, 289, 295, 296, 304, 308, 314, 367, 369, 376, 381, 382, 430, 506, 509, 510, 511, 626, 632, 788, 836, 841, 842], "float": [51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 73, 76, 77, 79, 80, 81, 82, 84, 85, 86, 88, 89, 93, 97, 100, 102, 112, 118, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 142, 143, 148, 152, 156, 160, 165, 169, 173, 179, 180, 183, 189, 198, 207, 211, 212, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 251, 253, 254, 255, 256, 257, 259, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 302, 304, 307, 308, 310, 311, 312, 313, 314, 315, 317, 318, 319, 334, 335, 336, 337, 345, 346, 351, 353, 354, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 399, 400, 401, 418, 419, 426, 429, 430, 432, 445, 449, 451, 452, 453, 457, 458, 473, 491, 501, 502, 503, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 530, 531, 532, 539, 540, 541, 549, 558, 582, 583, 586, 592, 593, 613, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 640, 641, 642, 643, 644, 645, 647, 659, 661, 663, 666, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 696, 697, 698, 715, 716, 717, 724, 737, 740, 741, 747, 749, 750, 751, 752, 757, 758, 760, 761, 762, 763, 764, 765, 766, 773, 776, 777, 779, 788, 791, 792, 795, 796, 810, 816, 823, 827, 829, 832, 833, 834, 836, 837, 839, 840, 842, 844, 845, 847, 849, 851, 853], "slope": [51, 57, 73, 80, 112, 295, 296, 302, 304, 308, 367, 626, 788], "leaki": [51, 73, 112, 626, 788], "log_softmax": [51, 73, 626, 788], "0719": [51, 73, 113], "221": [51, 113], "mish": [51, 73, 626, 788], "30340147": [51, 114, 626], "86509842": [51, 73, 114, 626], "269": [51, 116], "881": [51, 56, 79, 116, 226, 239, 279, 632], "422": [51, 117, 626], "155": [51, 84, 117, 626, 636, 660], "softplu": [51, 73, 626, 788, 847], "beta": [51, 57, 65, 73, 80, 88, 118, 304, 308, 314, 317, 318, 367, 369, 376, 377, 381, 382, 430, 458, 506, 510, 511, 626, 642, 737, 788, 847], "threshold": [51, 56, 57, 73, 79, 80, 118, 271, 272, 311, 337, 367, 372, 377, 378, 453, 458, 491, 626, 632, 788, 847], "union": [51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 568, 569, 571, 572, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 791, 796, 797, 824, 827, 829, 830, 831, 833, 836, 837, 840, 845, 847, 849, 854, 863, 864, 865], "3461": [51, 73, 118, 626], "6491": [51, 73, 118, 626], "_array_to_new_backend": 52, "_to_ivi": 52, "_to_n": 52, "to_ignor": [52, 72, 95, 641, 729, 730], "_to_new_backend": 52, "args_to_ivi": 52, "include_deriv": [52, 75, 641, 719, 730, 773], "nest": [52, 74, 75, 103, 106, 243, 567, 597, 614, 617, 632, 634, 635, 640, 715, 716, 718, 719, 720, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 796, 824, 826, 827, 837, 839, 845, 852, 853, 855, 857, 870], "unchang": [52, 56, 375, 378, 420, 474, 636, 659], "deriv": [52, 53, 57, 59, 75, 76, 80, 82, 131, 136, 143, 149, 313, 317, 342, 369, 372, 615, 616, 619, 620, 621, 622, 623, 629, 635, 640, 641, 717, 719, 730, 794, 796, 797, 829, 830, 851, 853], "word": [52, 126, 378, 477, 629, 643, 741, 789, 792, 827, 840, 841, 857], "args_to_n": [52, 840], "cont_inplac": 52, "decid": [52, 74, 641, 729, 730, 812, 818, 819, 829, 847], "args_to_new_backend": 52, "shallow": [52, 641, 725, 726, 730, 735, 736], "nativevari": 52, "mutabl": [52, 641, 719, 725, 726, 730, 735, 736, 825], "to_ivi": [52, 75, 641, 731, 840], "leaf": [52, 74, 81, 93, 103, 548, 641, 728, 729, 731, 758, 827, 837, 852], "travers": [52, 75, 641, 722, 730, 827, 829, 833, 849], "lowest": [52, 57, 66, 75, 80, 89, 387, 525, 641, 643, 730, 739, 806, 837, 855, 857, 867, 871, 875], "search": [52, 57, 75, 80, 744, 745, 784, 817, 819, 827, 831, 834, 844, 845, 859], "to_new_backend": 52, "_arraywithcr": [53, 102], "boolean": [53, 54, 56, 57, 58, 64, 67, 70, 74, 76, 77, 79, 80, 81, 87, 90, 93, 102, 103, 123, 125, 127, 128, 129, 135, 152, 168, 170, 172, 173, 176, 192, 202, 210, 216, 230, 231, 232, 233, 234, 235, 267, 268, 269, 270, 335, 336, 351, 372, 376, 378, 434, 445, 451, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 492, 499, 534, 537, 548, 555, 558, 559, 563, 564, 565, 566, 567, 568, 569, 578, 581, 584, 585, 587, 588, 613, 628, 629, 630, 631, 632, 634, 636, 639, 640, 641, 644, 647, 663, 702, 703, 704, 706, 708, 709, 711, 713, 715, 716, 728, 746, 747, 748, 760, 762, 776, 777, 778, 779, 784, 795, 827, 829, 837, 841, 844, 847], "never": [53, 57, 64, 76, 80, 87, 128, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 820, 829, 840, 841, 844], "valueerror": [53, 57, 64, 76, 80, 87, 91, 128, 375, 377, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 499, 639, 702, 703, 704, 706, 708, 709, 711, 713, 752, 778, 807, 833], "buffer": [53, 76, 80, 87, 128, 134, 462, 463, 470, 472, 474, 475, 476, 483, 499, 629, 702, 703, 704, 706, 708, 709, 711, 713, 793, 794, 840, 855], "nativedtyp": [53, 54, 57, 61, 62, 66, 67, 70, 76, 80, 85, 89, 90, 93, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 151, 152, 157, 158, 159, 160, 161, 162, 163, 164, 169, 170, 174, 176, 178, 182, 192, 312, 313, 314, 315, 316, 317, 318, 333, 340, 356, 369, 372, 382, 387, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 629, 630, 636, 637, 643, 644, 646, 647, 659, 678, 694, 739, 740, 741, 744, 745, 755, 757, 758, 761, 763, 765, 791, 829, 830, 836, 845, 849], "datatyp": [53, 57, 74, 76, 80, 128, 136, 140, 157, 178, 182, 375, 423, 629, 630, 771, 845, 863], "nativedevic": [53, 55, 57, 66, 76, 78, 80, 89, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 194, 195, 196, 197, 198, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 312, 313, 328, 369, 382, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 791, 796, 797, 829, 830, 833, 836, 845], "39999998": [53, 127, 128, 629, 645, 750], "5999999": [53, 57, 80, 84, 127, 128, 297, 367, 376, 425, 629, 636, 659, 666], "0999999": [53, 70, 127, 128, 297, 307, 310, 353, 367, 372, 629, 761], "10000038": [53, 127, 128, 629], "90786433e": [53, 127, 128, 629], "310": [53, 127, 128, 629], "copy_arrai": [53, 76, 629], "to_ivy_arrai": [53, 76, 129, 629], "empty_lik": [53, 57, 76, 80, 264, 376, 428, 629, 632], "uniniti": [53, 130, 131, 629, 835], "from_dlpack": [53, 76, 629], "full_lik": [53, 76, 629, 845], "fill_valu": [53, 57, 67, 76, 80, 90, 135, 136, 252, 260, 378, 382, 492, 512, 629, 632, 644, 747, 829, 842, 845], "scalar": [53, 56, 57, 58, 62, 73, 76, 79, 80, 81, 85, 97, 112, 136, 141, 223, 244, 289, 295, 338, 339, 341, 346, 349, 351, 353, 358, 372, 375, 376, 377, 378, 423, 430, 452, 462, 463, 464, 473, 478, 600, 613, 629, 632, 634, 637, 694, 829, 839, 841, 855, 870], "fill": [53, 56, 57, 66, 67, 74, 76, 79, 80, 89, 90, 130, 135, 136, 138, 141, 142, 143, 148, 149, 274, 313, 369, 376, 378, 382, 434, 440, 445, 451, 473, 492, 493, 509, 511, 512, 629, 632, 643, 644, 739, 747, 791, 818, 842], "000123": [53, 136, 629], "stop": [53, 57, 59, 76, 80, 82, 126, 137, 138, 213, 376, 445, 451, 578, 616, 619, 621, 622, 623, 624, 629, 631, 634, 635, 640, 641, 715, 716, 717, 729, 796, 810, 836, 839, 847, 849, 855, 870], "num": [53, 76, 137, 138, 629, 776, 820, 836, 849], "endpoint": [53, 76, 137, 138, 629, 791, 836], "logspac": [53, 76, 629, 849], "sequenc": [53, 57, 61, 62, 64, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 132, 134, 136, 138, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 365, 366, 369, 372, 373, 374, 375, 376, 378, 382, 387, 388, 390, 391, 392, 399, 400, 401, 403, 404, 408, 409, 411, 418, 419, 420, 421, 422, 425, 433, 434, 435, 437, 443, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 469, 470, 471, 477, 479, 480, 482, 483, 485, 488, 490, 492, 493, 494, 496, 499, 500, 501, 503, 504, 505, 507, 509, 510, 522, 523, 524, 525, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 618, 619, 624, 629, 632, 634, 635, 636, 637, 639, 641, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 718, 725, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 797, 820, 828, 829, 830, 831, 833, 844, 845, 847, 849, 854, 873], "on_valu": [53, 76, 138, 141, 629], "off_valu": [53, 76, 138, 141, 629], "evenli": [53, 56, 57, 61, 64, 74, 76, 79, 80, 84, 87, 126, 137, 138, 292, 375, 418, 422, 629, 632, 636, 639, 649, 650, 651, 652, 654, 656, 658, 708], "hint": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 824, 832, 834, 836, 837, 840, 841, 845], "simplic": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 832, 847, 853], "nestabl": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 822, 831, 832, 840, 844, 857], "464": [53, 56, 89, 138, 227, 228, 632], "15888336": [53, 138], "2154": [53, 138], "43469003": [53, 138], "meshgrid": [53, 76, 629], "spars": [53, 57, 63, 76, 80, 86, 139, 316, 369, 376, 434, 445, 451, 629, 638, 698], "xy": [53, 76, 139, 629], "coordin": [53, 56, 67, 79, 80, 90, 139, 147, 228, 290, 320, 321, 328, 349, 369, 383, 513, 629, 632, 644, 747], "conserv": [53, 139, 629], "cartesian": [53, 139, 629], "matrix": [53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 102, 139, 145, 146, 147, 328, 329, 369, 376, 378, 387, 426, 429, 430, 433, 434, 435, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 482, 522, 534, 540, 629, 634, 636, 637, 660, 667, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 695, 776, 778, 791, 792, 806, 810, 818, 829, 841, 868, 870], "ij": [53, 70, 139, 629, 647, 759, 806], "rank": [53, 57, 62, 64, 71, 80, 85, 87, 94, 97, 98, 99, 100, 101, 106, 139, 323, 324, 325, 326, 327, 369, 376, 378, 387, 434, 435, 445, 448, 451, 484, 492, 496, 532, 629, 637, 639, 644, 648, 668, 670, 678, 680, 684, 686, 691, 693, 694, 701, 702, 710, 713, 714, 747, 767, 768, 813, 878], "ni": [53, 139, 629], "xi": [53, 139, 629], "scatter": [53, 58, 76, 81, 141, 576, 577, 629, 634, 826, 840, 847, 877], "j": [53, 56, 57, 58, 62, 70, 76, 79, 80, 85, 97, 125, 141, 221, 222, 223, 224, 226, 229, 238, 240, 243, 245, 253, 261, 263, 267, 273, 284, 286, 287, 290, 291, 338, 372, 375, 376, 387, 403, 404, 408, 419, 420, 424, 429, 431, 442, 448, 532, 537, 628, 629, 632, 634, 637, 647, 672, 691, 759, 806, 820, 822, 826, 863, 866], "unless": [53, 57, 62, 76, 80, 141, 273, 334, 351, 356, 372, 629, 632, 637, 680, 825, 830, 840, 855, 864, 865], "ones_lik": [53, 76, 629, 825, 854, 867], "tril": [53, 76, 629], "whose": [53, 56, 57, 58, 62, 64, 68, 70, 76, 79, 80, 81, 85, 87, 91, 93, 98, 100, 102, 136, 145, 146, 222, 226, 229, 237, 238, 239, 278, 279, 285, 286, 290, 291, 292, 329, 343, 344, 348, 352, 353, 355, 359, 369, 376, 378, 429, 450, 483, 492, 498, 539, 595, 629, 632, 634, 637, 639, 645, 647, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 694, 703, 707, 749, 750, 751, 758, 759, 778, 815, 832, 844], "innermost": [53, 57, 62, 85, 145, 146, 329, 369, 376, 429, 629, 637, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691], "mxn": [53, 57, 62, 85, 145, 146, 329, 369, 629, 637, 671, 678, 680, 681, 683, 684, 688, 691], "matric": [53, 57, 62, 80, 85, 97, 98, 102, 139, 145, 146, 329, 369, 376, 378, 429, 434, 435, 437, 443, 444, 449, 473, 629, 636, 637, 660, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 692, 778, 816, 834, 870], "diagon": [53, 57, 62, 80, 85, 98, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 430, 440, 446, 473, 629, 637, 670, 691], "triangular": [53, 57, 62, 85, 145, 146, 147, 328, 329, 369, 376, 446, 629, 637, 667, 673, 674, 680, 684], "triu": [53, 76, 629], "upper": [53, 57, 62, 66, 80, 85, 89, 132, 146, 147, 313, 329, 369, 376, 387, 446, 525, 629, 637, 643, 667, 673, 674, 684, 741, 829, 840, 844], "zeros_lik": [53, 57, 76, 152, 269, 378, 492, 615, 616, 619, 621, 622, 623, 629, 630, 632, 635, 637, 639, 684, 699, 841, 847], "data_typ": [54, 57, 77, 80, 182, 630, 826, 829, 844, 845], "_arraywithdatatyp": [54, 102], "irrespect": [54, 62, 77, 85, 152, 630, 637, 687, 827, 840, 851, 877], "promot": [54, 56, 57, 62, 77, 79, 80, 85, 92, 102, 103, 152, 155, 178, 179, 180, 186, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 346, 354, 359, 372, 375, 387, 419, 522, 585, 608, 630, 632, 634, 637, 639, 647, 667, 668, 675, 676, 677, 678, 679, 680, 682, 683, 685, 686, 693, 694, 700, 710, 753, 761, 764, 776, 777, 821, 823, 832, 833, 837, 846], "nan": [54, 56, 57, 58, 68, 70, 77, 79, 80, 81, 152, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 248, 249, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 279, 282, 283, 284, 285, 286, 287, 290, 291, 293, 300, 334, 335, 336, 347, 351, 356, 359, 367, 372, 378, 387, 492, 520, 521, 528, 529, 530, 531, 558, 613, 627, 630, 632, 634, 645, 647, 648, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 767, 768, 776, 779, 823, 829, 832, 839, 845, 846], "infin": [54, 56, 58, 62, 77, 79, 85, 152, 220, 221, 222, 223, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 282, 283, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 558, 627, 630, 632, 634, 637, 647, 648, 685, 694, 760, 762, 767, 768, 823, 832], "desir": [54, 55, 57, 67, 70, 74, 77, 78, 80, 90, 93, 97, 152, 154, 155, 214, 319, 360, 369, 372, 378, 387, 482, 528, 531, 532, 630, 631, 637, 644, 647, 689, 746, 761, 791, 792, 820, 825, 828, 829, 830, 841, 849, 859, 863, 870], "broadcast_arrai": [54, 77, 630], "mix": [54, 56, 77, 79, 80, 81, 86, 89, 102, 103, 153, 166, 167, 180, 199, 200, 230, 233, 234, 235, 240, 241, 247, 251, 259, 260, 270, 273, 276, 282, 377, 387, 458, 529, 548, 550, 551, 552, 553, 562, 597, 600, 630, 631, 632, 634, 636, 637, 638, 639, 642, 647, 650, 652, 655, 657, 658, 660, 666, 667, 689, 696, 698, 699, 737, 759, 761, 764, 777, 779, 818, 822, 829, 830, 831, 840, 847, 849, 857, 870, 874, 876], "broadcast_to": [54, 77, 630, 829], "can_cast": [54, 77, 630, 829, 837, 841], "accord": [54, 57, 58, 64, 70, 77, 87, 93, 155, 165, 223, 234, 240, 247, 273, 284, 319, 369, 375, 378, 420, 484, 552, 555, 576, 577, 630, 632, 634, 637, 639, 647, 693, 701, 714, 764, 766, 771, 778, 798, 805, 818, 819, 823, 829, 835, 837, 841, 844], "finfo": [54, 77, 630, 844], "resolut": [54, 77, 165, 630, 820], "4028235e": [54, 165, 630], "iinfo": [54, 77, 630], "integ": [54, 56, 57, 61, 62, 64, 66, 70, 71, 74, 79, 80, 81, 84, 85, 87, 89, 93, 94, 102, 103, 126, 135, 168, 169, 175, 179, 180, 184, 220, 230, 231, 232, 233, 234, 235, 236, 246, 247, 258, 270, 275, 278, 282, 283, 293, 294, 330, 331, 332, 335, 336, 340, 345, 346, 369, 372, 375, 378, 382, 385, 387, 403, 408, 418, 421, 422, 423, 470, 479, 484, 492, 496, 499, 508, 509, 510, 511, 512, 514, 515, 520, 522, 523, 524, 529, 532, 555, 571, 581, 614, 629, 630, 632, 634, 636, 637, 639, 643, 646, 647, 648, 649, 650, 651, 652, 654, 656, 658, 668, 670, 679, 693, 694, 708, 738, 739, 740, 741, 742, 743, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 784, 792, 806, 820, 827, 829, 839, 842, 844, 849, 851], "119": [54, 168], "1220": [54, 168], "int16": [54, 57, 66, 70, 77, 89, 155, 159, 161, 166, 168, 175, 190, 387, 523, 524, 630, 647, 739, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "32768": [54, 77, 168, 593, 634], "32767": [54, 77, 168], "is_bool_dtyp": [54, 77, 630], "is_float_dtyp": [54, 77, 630, 845], "is_int_dtyp": [54, 77, 630, 842, 845], "is_uint_dtyp": [54, 77, 630, 842, 845], "result_typ": [54, 77, 630, 829], "arrays_and_dtyp": [54, 77, 180, 630], "_arraywithdevic": [55, 102], "move": [55, 57, 78, 80, 147, 210, 214, 218, 328, 369, 378, 483, 629, 631, 794, 812, 820, 830, 845], "addit": [55, 57, 58, 65, 78, 80, 81, 88, 123, 125, 214, 223, 283, 377, 381, 387, 452, 506, 521, 526, 545, 546, 547, 614, 628, 631, 632, 634, 636, 640, 642, 663, 717, 737, 792, 806, 818, 819, 820, 825, 829, 831, 832, 835, 837, 839, 840, 841, 844, 845, 847, 851, 852, 854, 863, 870, 871, 872, 876], "__dlpack__": [55, 78, 133, 214, 629, 631], "caveat": [55, 78, 214, 377, 456, 631], "portabl": [55, 78, 214, 631, 812, 868], "_arraywithelementwis": [56, 102], "ab": [56, 62, 72, 79, 95, 102, 103, 278, 334, 351, 372, 378, 491, 632, 637, 641, 678, 688, 694, 726, 729, 773, 805, 806, 816, 824, 829, 834, 838, 841, 844, 867], "absolut": [56, 57, 62, 72, 74, 79, 80, 85, 102, 220, 284, 334, 351, 354, 360, 372, 376, 377, 430, 447, 453, 455, 632, 637, 678, 679, 680, 685, 771, 773, 776, 778, 779, 813, 819], "aco": [56, 79, 632], "invers": [56, 57, 62, 79, 80, 85, 221, 222, 225, 226, 227, 228, 229, 344, 372, 375, 385, 398, 407, 409, 419, 514, 632, 637, 676, 679, 683, 798, 829], "cosin": [56, 79, 221, 222, 237, 238, 312, 315, 369, 375, 397, 407, 632, 792], "acosh": [56, 79, 166, 167, 630, 632, 816, 834], "area": [56, 57, 79, 80, 84, 222, 226, 229, 375, 411, 418, 422, 632, 815, 840, 847, 860, 866], "hyperbol": [56, 79, 222, 226, 229, 238, 286, 290, 291, 304, 308, 367, 632], "sector": [56, 79, 222, 226, 229, 632, 860], "multipli": [56, 57, 61, 70, 79, 80, 84, 97, 223, 289, 352, 375, 376, 411, 442, 443, 523, 524, 632, 636, 647, 659, 757, 763, 820, 824, 825, 827, 831], "angl": [56, 79, 228, 238, 286, 291, 350, 372, 632], "deg": [56, 79, 224, 632], "radian": [56, 57, 79, 80, 221, 224, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 832], "degre": [56, 57, 70, 79, 80, 93, 224, 239, 279, 322, 369, 378, 490, 632, 647, 764, 766, 869], "1j": [56, 79, 80, 224, 225, 237, 238, 243, 245, 257, 280, 285, 286, 290, 338, 592, 632, 634], "2j": [56, 57, 79, 80, 224, 253, 338, 375, 403, 408, 593, 632, 634], "3j": [56, 57, 79, 80, 224, 257, 280, 338, 372, 632], "35619449": [56, 224, 632], "78539816": [56, 224, 632], "135": [56, 224, 540, 632, 634], "asin": [56, 79, 632], "sine": [56, 79, 225, 226, 285, 286, 632], "927": [56, 79, 225], "asinh": [56, 79, 225, 632], "atan": [56, 79, 632], "tangent": [56, 79, 227, 228, 229, 290, 291, 304, 308, 365, 367, 374, 632, 832], "785": [56, 79, 227, 228, 632], "atan2": [56, 79, 632], "quotient": [56, 79, 228, 240, 247, 632], "588": [56, 228, 632], "inf": [56, 57, 58, 62, 79, 80, 81, 85, 228, 245, 254, 255, 256, 257, 261, 262, 264, 274, 300, 344, 354, 367, 372, 376, 387, 426, 525, 558, 613, 627, 632, 634, 636, 637, 664, 678, 694, 776, 779, 816, 829, 834, 839], "719": [56, 228, 632], "atanh": [56, 79, 632], "549": [56, 79, 84, 229, 632, 636, 660], "bitwise_and": [56, 79, 632], "bitwise_invert": [56, 79, 632], "bitiwse_invert": [56, 231], "bitwise_left_shift": [56, 79, 632], "bitwise_or": [56, 79, 632], "bitwise_right_shift": [56, 79, 102, 632], "bitwise_xor": [56, 79, 102, 632], "ceil": [56, 57, 79, 80, 97, 100, 126, 375, 394, 395, 396, 412, 413, 414, 417, 629, 632, 792, 840], "416": [56, 237, 632], "540": [56, 237], "990": [56, 237], "cosh": [56, 79, 237, 632], "deg2rad": [56, 79, 632], "180": [56, 79, 239, 279, 632], "270": [56, 79, 239, 279, 632], "360": [56, 79, 239, 279, 632, 828], "dividend": [56, 79, 240, 247, 282, 294, 632], "divisor": [56, 57, 59, 70, 79, 80, 82, 93, 240, 247, 250, 251, 282, 294, 375, 378, 394, 395, 396, 470, 479, 499, 615, 616, 621, 632, 635, 647, 764, 766, 792, 796], "375": [56, 241, 276], "erf": [56, 79, 343, 372, 632], "exponenti": [56, 57, 79, 80, 242, 243, 245, 265, 278, 295, 305, 367, 376, 441, 632], "gauss": [56, 79, 242, 632], "328": [56, 242, 290, 632], "677": [56, 242], "842": [56, 242, 290, 632], "71828198": [56, 79, 243], "38905573": [56, 79, 243], "08553696": [56, 79, 243, 632], "exp2": [56, 79, 632], "expm1": [56, 79, 632, 829], "244": [56, 245, 812], "918": [56, 245], "147": [56, 245, 632], "floor": [56, 57, 79, 80, 97, 100, 234, 247, 375, 394, 395, 396, 398, 412, 413, 414, 417, 632, 792, 840], "floor_divid": [56, 79, 632, 784, 829], "fmin": [56, 79, 632, 829], "gcd": [56, 79, 632, 829], "greater": [56, 57, 61, 64, 66, 79, 80, 84, 89, 102, 103, 134, 221, 222, 225, 226, 228, 229, 232, 234, 240, 246, 247, 261, 263, 278, 282, 284, 286, 287, 291, 292, 293, 337, 372, 375, 398, 403, 408, 419, 629, 632, 636, 637, 639, 643, 666, 668, 679, 709, 741, 778, 792, 820, 821, 842, 867], "greater_equ": [56, 79, 102, 103, 265, 632, 867], "isfinit": [56, 79, 632, 841], "out_i": [56, 79, 254, 255, 256, 257, 280, 632], "self_i": [56, 79, 254, 255, 256, 257, 280], "finit": [56, 79, 220, 221, 222, 223, 226, 228, 229, 238, 240, 241, 243, 245, 247, 254, 255, 261, 263, 273, 274, 276, 278, 282, 286, 287, 291, 632], "isinf": [56, 79, 632], "detect_posit": [56, 79, 255, 632], "detect_neg": [56, 79, 255, 632], "isnan": [56, 79, 632], "isreal": [56, 79, 632], "5j": [56, 79, 80, 257, 280, 338, 372, 632], "6j": [56, 57, 79, 253, 257, 338, 632], "lcm": [56, 79, 632, 829], "less": [56, 57, 62, 66, 70, 79, 80, 85, 89, 102, 103, 221, 222, 225, 228, 229, 236, 240, 247, 261, 262, 263, 264, 278, 282, 284, 287, 358, 372, 375, 376, 387, 397, 398, 407, 419, 445, 451, 522, 525, 632, 637, 643, 647, 678, 679, 680, 683, 694, 741, 764, 766, 792, 819, 820, 827, 829, 831, 833, 836, 841, 844, 847, 848, 849, 860, 867, 870, 872], "less_equ": [56, 79, 102, 103, 632, 833, 867], "log10": [56, 57, 79, 319, 369, 632], "logarithm": [56, 79, 243, 261, 262, 263, 264, 265, 342, 354, 372, 632, 637, 685], "602": [56, 262, 632], "699": [56, 262, 632], "log1p": [56, 79, 632, 839], "693": [56, 79, 117, 226, 263, 626, 632], "0953": [56, 79, 261, 263, 632], "log2": [56, 79, 266, 632], "logaddexp": [56, 79, 632], "logaddexp2": [56, 79, 632, 816, 834], "169925": [56, 79, 266, 632], "logical_and": [56, 79, 632, 841, 847, 877], "logical_not": [56, 79, 632, 829], "logical_or": [56, 79, 632, 877], "conform": [56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 832, 835], "api_specif": [56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 419, 492, 630, 632, 639, 647, 714, 764, 832], "array_api": [56, 79, 155, 243, 253, 254, 269, 375, 378, 419, 492, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832], "logical_xor": [56, 79, 632], "use_wher": [56, 79, 271, 272, 632], "formula": [56, 57, 79, 240, 262, 264, 271, 272, 273, 319, 353, 369, 372, 381, 501, 503, 632, 810], "exce": [56, 57, 80, 272, 378, 494, 632], "product": [56, 57, 61, 62, 70, 79, 80, 84, 85, 93, 97, 98, 100, 273, 365, 366, 374, 376, 378, 387, 425, 428, 432, 435, 436, 437, 442, 443, 444, 496, 523, 524, 531, 632, 636, 637, 647, 663, 666, 668, 675, 677, 682, 689, 693, 757, 758, 759, 763, 764, 806, 818, 849, 870, 872], "nan_to_num": [56, 79, 632], "posinf": [56, 79, 274, 632], "neginf": [56, 79, 274, 632], "5e": [56, 59, 79, 80, 274, 357, 621, 632, 635], "not_equ": [56, 79, 102, 103, 632, 867], "pow": [56, 79, 102, 103, 632, 823, 867], "expon": [56, 57, 58, 80, 81, 278, 346, 348, 352, 372, 381, 506, 593, 632, 634, 637, 679], "rad2deg": [56, 79, 632], "286": [56, 80, 279], "458": [56, 279], "573": [56, 279, 632], "reciproc": [56, 79, 632], "333": [56, 79, 240, 281, 632], "remaind": [56, 57, 64, 74, 79, 80, 87, 249, 632, 639, 708, 823, 840], "modulu": [56, 79, 282, 632, 840], "x2_i": [56, 79, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "678": [56, 283, 284], "np_variant": [56, 79, 284, 632], "841": [56, 73, 79, 110, 285, 626, 632], "909": [56, 79, 81, 285, 632], "141": [56, 79, 152, 285, 630, 632], "sinh": [56, 79, 285, 632], "232": [56, 79, 286, 632], "sqrt": [56, 57, 79, 80, 375, 398, 403, 404, 408, 409, 419, 632, 791, 792, 812], "squar": [56, 57, 62, 79, 80, 85, 287, 376, 377, 381, 387, 429, 441, 453, 506, 522, 617, 618, 620, 625, 632, 635, 637, 641, 667, 669, 670, 672, 673, 674, 676, 679, 685, 686, 687, 692, 724, 812], "tanh": [56, 57, 79, 80, 290, 304, 308, 367, 632, 788, 849], "762": [56, 79, 291, 632], "964": [56, 79, 291, 632], "trapz": [56, 79, 632], "dx": [56, 79, 292, 632], "apart": [56, 79, 292, 632], "trapezoid": [56, 79, 292, 632], "trunc": [56, 79, 632], "025": [56, 293, 377, 458, 632, 640, 717], "trunc_divid": [56, 79, 632], "_arraywithactivationsexperiment": [57, 102], "celu": [57, 80, 367], "formul": [57, 73, 80, 98, 110, 295, 297, 367, 788], "elu": [57, 80, 299, 367, 788], "scaler": [57, 80, 296, 367, 776, 779, 844], "hardshrink": [57, 80, 367], "lambd": [57, 80, 297, 307, 367], "hardsilu": [57, 80, 367], "66666667": [57, 119, 298, 387, 522, 626], "hardtanh": [57, 80, 367], "max_val": [57, 80, 299, 367], "min_val": [57, 80, 299, 367], "region": [57, 80, 299, 307, 367, 819], "19722438": [57, 80, 300, 367], "38629448": [57, 80, 300, 367], "38629436": [57, 80, 300, 367], "logsigmoid": [57, 80, 367, 788], "31326175": [57, 73, 301, 367], "126928": [57, 80, 301], "01814993": [57, 301], "00004578": [57, 301], "57888985": [57, 301], "31326169": [57, 80, 301, 367], "69314718": [57, 62, 73, 80, 85, 301, 354, 367, 372, 637, 685], "01104775": [57, 301], "prelu": [57, 80, 367, 788], "unidirect": [57, 302, 367, 636, 661], "relu6": [57, 80, 367, 788], "rectifi": [57, 73, 80, 112, 114, 115, 303, 306, 311, 367, 626], "scaled_tanh": [57, 80, 308, 367], "7159": [57, 80, 304, 308, 367], "amplitud": [57, 80, 304, 308, 367], "65537548": [57, 80, 304], "49570239": [57, 80, 304], "77637792": [57, 304], "selu": [57, 80, 367, 788], "11133075": [57, 305, 367], "05070102": [57, 80, 305, 367], "10140204": [57, 305, 367], "15210295": [57, 305, 367], "20280409": [57, 305, 367], "25350523": [57, 305, 367], "30420589": [57, 305, 367], "35490704": [57, 305, 367], "silu": [57, 80, 367, 788], "26894143": [57, 306], "73105854": [57, 80, 306], "softshrink": [57, 80, 367], "bound": [57, 80, 307, 319, 367, 369, 378, 467, 492, 493, 776, 829, 833, 841, 844, 849, 876], "tanhshrink": [57, 80, 367], "23840582": [57, 80, 309, 367], "condit": [57, 67, 80, 90, 123, 310, 325, 326, 369, 376, 426, 628, 641, 644, 728, 729, 748, 778, 823, 829, 831, 833, 837, 838, 840, 844, 863], "met": [57, 80, 310, 833], "hreshold": [57, 310], "thresholded_relu": [57, 80, 367], "_arraywithconversionsexperiment": [57, 102], "_arraywithcreationexperiment": [57, 102], "blackman_window": [57, 80, 369], "period": [57, 80, 286, 290, 312, 314, 315, 317, 318, 369, 375, 410, 632, 820], "window": [57, 61, 80, 84, 312, 314, 315, 317, 318, 333, 369, 375, 381, 394, 395, 396, 398, 412, 413, 414, 415, 417, 418, 422, 423, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 814, 820, 826, 834, 875], "symmetr": [57, 62, 80, 85, 97, 98, 312, 314, 315, 317, 318, 369, 376, 378, 429, 484, 637, 667, 672, 673, 674, 695, 827], "38777878e": [57, 80, 312, 369], "40000000e": [57, 312, 369], "00000000e": [57, 62, 80, 81, 312, 343, 344, 369, 375, 397, 403, 407, 408, 637, 684, 816, 834], "30000000e": [57, 80, 312, 369], "eye_lik": [57, 80, 369], "elsewher": [57, 80, 132, 313, 369, 629, 644, 748, 819], "mel_weight_matrix": [57, 80, 369], "num_mel_bin": [57, 80, 319, 369], "dft_length": [57, 80, 319, 369, 375, 398], "sample_r": [57, 80, 319, 369], "lower_edge_hertz": [57, 80, 319, 369], "upper_edge_hertz": [57, 80, 319, 369], "3000": [57, 80, 319, 369], "melweightmatrix": [57, 80, 319, 369], "linearli": [57, 58, 81, 319, 369, 549, 634, 637, 686], "frequenc": [57, 58, 80, 81, 319, 369, 387, 522, 549, 634, 820], "spectra": [57, 319, 369], "dft": [57, 80, 319, 369, 375], "stft": [57, 80, 319, 369, 375], "mel": [57, 80, 319, 369], "hertz": [57, 319, 369], "2595": [57, 319, 369], "700": [57, 81, 319, 369, 553], "band": [57, 58, 80, 81, 319, 369, 549, 634], "spectrum": [57, 80, 319, 369], "n_fft": [57, 80, 319, 369, 375, 398], "8000": [57, 80, 314, 319, 369], "75694758": [57, 319, 369], "trilu": [57, 80, 369], "retain": [57, 147, 328, 329, 369, 617, 629, 635, 839, 843, 857], "unsorted_segment_mean": [57, 80, 369], "segment_id": [57, 80, 330, 331, 332, 369, 798], "num_seg": [57, 80, 330, 331, 332, 369, 798], "identifi": [57, 80, 330, 331, 332, 369, 818, 823, 828, 829, 844, 847], "th": [57, 80, 98, 330, 331, 332, 341, 369, 372, 376, 377, 387, 427, 434, 452, 532], "unsorted_segment_min": [57, 80, 369], "unsorted_segment_sum": [57, 80, 369], "polyv": [57, 80, 369], "coeff": [57, 80, 322, 369], "polynomi": [57, 80, 322, 369], "coeffici": [57, 80, 314, 322, 369, 376, 446, 637, 686, 796], "indetermin": [57, 80, 322, 369], "simplifi": [57, 80, 322, 369, 805, 806, 833, 841, 849, 850, 853, 860, 863, 866, 868, 869, 870, 873, 876, 877], "substitut": [57, 80, 322, 369], "_arraywithdata_typeexperiment": [57, 102], "_arraywithdeviceexperiment": [57, 102], "_arraywithelementwiseexperiment": [57, 102], "equal_nan": [57, 80, 334, 351, 372], "1e10": [57, 334, 351, 372], "00001e10": [57, 334, 351, 372], "00001e": [57, 334, 372], "amax": [57, 80, 372], "keepdim": [57, 62, 64, 67, 70, 71, 74, 80, 85, 87, 90, 93, 94, 335, 336, 340, 356, 363, 372, 373, 378, 387, 489, 527, 528, 529, 530, 531, 532, 637, 639, 644, 647, 648, 678, 694, 713, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 833, 841, 849], "singleton": [57, 62, 67, 70, 71, 80, 85, 90, 93, 94, 335, 336, 372, 637, 639, 644, 647, 648, 694, 702, 709, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 849], "amin": [57, 80, 372], "binar": [57, 80, 372], "conj": [57, 80, 238, 243, 245, 286, 287, 291, 372, 632], "conjug": [57, 62, 80, 85, 338, 372, 375, 376, 382, 398, 424, 430, 442, 444, 446, 510, 637, 677, 681, 689], "copysign": [57, 80, 372], "unsign": [57, 70, 80, 339, 372, 378, 387, 492, 523, 524, 647, 757, 758, 763, 765, 777, 829, 849], "count_nonzero": [57, 80, 372], "diff": [57, 74, 80, 372, 831, 840, 867], "prepend": [57, 80, 341, 372, 637, 639, 677, 702, 819], "differenc": [57, 80, 341, 372], "prior": [57, 80, 341, 372, 382, 510, 637, 689, 833, 845], "expand": [57, 58, 64, 80, 81, 341, 372, 378, 496, 549, 634, 639, 702, 812, 827, 843], "discret": [57, 80, 341, 372, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 638, 697, 792], "digamma": [57, 80, 372], "7549271": [57, 342, 372], "92278427": [57, 80, 342, 372], "9988394": [57, 342, 372], "erfc": [57, 80, 372], "complementari": [57, 80, 333, 343, 369, 372, 868, 876], "84270084e": [57, 343, 344], "80259693e": [57, 343, 344], "erfinv": [57, 80, 372], "float_pow": [57, 80, 372], "fmax": [57, 80, 372], "fmod": [57, 80, 632], "divis": [57, 58, 59, 80, 81, 82, 234, 240, 247, 249, 282, 284, 294, 378, 470, 583, 592, 606, 615, 616, 621, 632, 634, 635, 636, 649, 656, 657, 796, 837, 846], "frexp": [57, 80, 372], "edge_ord": [57, 80, 349, 372], "boundari": [57, 66, 80, 89, 100, 325, 326, 349, 369, 372, 375, 411, 643, 741, 870], "33333333": [57, 80, 281, 349, 372, 452, 632], "hypot": [57, 80, 372], "hypotenus": [57, 350, 372], "4031": [57, 350, 372], "8102": [57, 350, 372], "isclos": [57, 80, 372, 823], "ldexp": [57, 80, 372], "lerp": [57, 80, 372], "lgamma": [57, 80, 372], "45373654": [57, 354, 372], "6477685": [57, 354, 372], "modf": [57, 80, 372], "fraction": [57, 80, 355, 372, 387, 532, 636, 659], "nansum": [57, 80, 372], "accumul": [57, 80, 356, 372, 378, 489], "nextaft": [57, 80, 372], "0e": [57, 59, 80, 82, 357, 372, 621, 635], "4013e": [57, 80, 357, 372], "4028e": [57, 80, 357, 372], "signbit": [57, 80, 372], "637": [57, 80, 359, 372], "0909": [57, 80, 359, 372], "sparsify_tensor": [57, 80, 372], "sparsifi": [57, 80, 360, 372], "arang": [57, 62, 70, 80, 85, 137, 360, 372, 375, 376, 394, 395, 396, 403, 408, 412, 413, 414, 417, 426, 443, 476, 572, 614, 629, 634, 637, 640, 647, 678, 694, 716, 717, 759, 812, 829, 840, 877], "xlogi": [57, 80, 372], "0986": [57, 80, 361, 372], "3863": [57, 80, 361, 372], "0000": [57, 80, 314, 315, 318, 344, 361, 369, 372, 376, 378, 441, 478], "zeta": [57, 80, 372], "0369": [57, 80, 362, 372], "_arraywithgeneralexperiment": [57, 102], "init_valu": [57, 80, 84, 363, 373, 375, 418], "reduct": [57, 58, 63, 71, 74, 80, 81, 84, 86, 94, 363, 373, 375, 377, 378, 418, 452, 453, 454, 455, 456, 457, 458, 459, 489, 546, 576, 577, 634, 638, 648, 696, 697, 698, 767, 768, 793, 829, 837, 840, 844, 851], "_arraywithgradientsexperiment": [57, 102], "_arraywithimageexperiment": [57, 102], "_arraywithlayersexperiment": [57, 102], "adaptive_avg_pool1d": [57, 80, 375], "1d": [57, 80, 97, 98, 375, 376, 378, 387, 389, 397, 399, 401, 407, 442, 462, 467, 489, 493, 522, 776, 792], "adapt": [57, 80, 82, 375, 389, 390, 391, 392, 622, 635, 792, 796, 860], "plane": [57, 80, 240, 243, 245, 273, 285, 286, 287, 290, 375, 378, 389, 390, 391, 392, 490, 632], "l_in": [57, 80, 375, 389], "spatial": [57, 61, 80, 84, 375, 381, 389, 390, 391, 392, 411, 418, 422, 501, 502, 503, 506, 636, 649, 650, 651, 652, 654, 656, 658, 795], "Will": [57, 80, 375, 389, 390, 391, 392, 801, 855], "l_out": [57, 80, 375, 389], "nhwc": [57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792], "3d": [57, 62, 80, 375, 390, 392, 399, 400, 464, 637, 675, 792, 847], "4d": [57, 80, 375, 376, 381, 390, 400, 401, 450, 506], "s_0": [57, 80, 375, 390, 391], "s_1": [57, 80, 375, 390, 391], "adaptive_max_pool2d": [57, 80, 375], "h_in": [57, 80, 375, 391, 392], "w_in": [57, 80, 375, 391, 392], "adaptive_max_pool3d": [57, 80, 375], "avg_pool1d": [57, 80, 375], "kernel": [57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 636, 662, 849, 855, 870, 873, 874], "nwc": [57, 61, 80, 84, 375, 394, 399, 412, 415, 636, 649, 650, 651, 656, 657, 792], "count_include_pad": [57, 80, 375, 394, 395, 396, 792], "d_in": [57, 61, 80, 84, 375, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658], "algorithm": [57, 61, 73, 80, 84, 110, 375, 376, 394, 395, 396, 411, 412, 413, 414, 415, 445, 447, 451, 637, 650, 652, 653, 654, 655, 658, 685, 788, 792, 806, 829, 841, 847, 855, 870, 872, 874], "ncw": [57, 61, 80, 84, 375, 394, 399, 400, 412, 415, 636, 649, 650, 651, 656, 657, 792], "avg_pool2d": [57, 80, 375], "divisor_overrid": [57, 80, 375, 394, 395, 396, 792], "avg_pool3d": [57, 80, 375], "ndhwc": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "volum": [57, 61, 80, 84, 375, 396, 398, 403, 404, 408, 414, 636, 654, 655], "ncdhw": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "dct": [57, 80, 375, 792, 852], "truncat": [57, 80, 375, 376, 397, 403, 407, 408, 409, 420, 449, 579, 634, 792, 833, 852], "larger": [57, 64, 70, 80, 87, 93, 165, 375, 397, 404, 407, 409, 420, 630, 639, 647, 699, 707, 764, 766, 792, 844, 847, 877], "ortho": [57, 80, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 792], "onesid": [57, 80, 375, 398], "fft": [57, 80, 375, 398, 404, 419, 420, 423, 792, 818, 870], "symmetri": [57, 375, 398], "rfft": [57, 80, 375, 398, 420], "invok": [57, 375, 398, 812, 835, 863, 864], "batch_idx": [57, 375, 398], "signal_dim1": [57, 375, 398], "signal_dim2": [57, 375, 398], "signal_dimn": [57, 375, 398], "signal_dim": [57, 375, 398], "embed": [57, 80, 375, 377, 452, 636, 663, 778, 792, 870], "max_norm": [57, 58, 80, 81, 375, 402, 540, 541, 634, 792], "ifft": [57, 80, 375, 403, 409, 792], "pi": [57, 80, 286, 290, 375, 377, 403, 408, 457, 627, 632], "44509285e": [57, 80, 375, 403], "14423775e": [57, 80, 375, 403], "17j": [57, 80, 375, 403, 408], "11483250e": [57, 80, 375, 403], "16j": [57, 80, 375, 403, 408], "33486982e": [57, 80, 375, 403], "22464680e": [57, 80, 375, 403], "95799250e": [57, 80, 375, 403], "66951701e": [57, 80, 375, 403], "fft2": [57, 375], "20477401j": [57, 375, 404], "0614962j": [57, 375, 404], "idct": [57, 80, 375], "49862671": [57, 80, 375, 397, 407], "37691498": [57, 80, 375, 397, 407], "00390816": [57, 80, 375, 397, 407], "58938599": [57, 80, 375, 397, 407], "92713165": [57, 80, 375, 397, 407], "078475": [57, 80, 375, 397, 407], "19664812": [57, 80, 375, 397, 407], "95411837": [57, 80, 375, 397, 407], "30636606e": [57, 80, 375, 408], "43029718e": [57, 80, 375, 408], "18j": [57, 80, 375, 403, 408], "53080850e": [57, 80, 375, 408], "58689626e": [57, 80, 375, 408], "24474906e": [57, 80, 375, 408], "91858728e": [57, 80, 375, 408], "01435406e": [57, 80, 375, 408], "ifftn": [57, 80, 375], "24730653": [57, 80, 375, 409], "90832391j": [57, 80, 375, 409], "49495562": [57, 80, 375, 409], "9039565j": [57, 80, 375, 409], "98193269": [57, 80, 375, 409], "49560517j": [57, 80, 375, 409], "93280757": [57, 80, 375, 409], "48075343j": [57, 80, 375, 409], "28526384": [57, 80, 375, 409], "3351205j": [57, 80, 375, 409], "2343787": [57, 80, 375, 409], "83528011j": [57, 80, 375, 409], "18791352": [57, 80, 375, 409], "30690572j": [57, 80, 375, 409], "82115787": [57, 80, 375, 409], "96195183j": [57, 80, 375, 409], "44719226": [57, 80, 375, 409], "72654048j": [57, 80, 375, 409], "51476765": [57, 375, 409], "66160417j": [57, 375, 409], "04319742": [57, 375, 409], "05411636j": [57, 375, 409], "015561": [57, 375, 409], "04216015j": [57, 375, 409], "06310689": [57, 375, 409], "05347854j": [57, 375, 409], "13392983": [57, 375, 409], "16052352j": [57, 375, 409], "08371392": [57, 375, 409], "17252843j": [57, 375, 409], "0031429": [57, 375, 409], "05421245j": [57, 375, 409], "10446617": [57, 375, 409], "17747098j": [57, 375, 409], "05344324": [57, 375, 409], "07972424j": [57, 375, 409], "8344667": [57, 80, 375, 409], "98222595j": [57, 80, 375, 409], "48472244": [57, 80, 375, 409], "30233797j": [57, 80, 375, 409], "recompute_scale_factor": [57, 80, 375, 411, 847], "antialia": [57, 80, 375, 411, 847], "height": [57, 58, 61, 80, 81, 84, 375, 411, 545, 634, 636, 652, 653, 654, 655, 658, 821, 852], "width": [57, 58, 61, 80, 81, 84, 375, 376, 378, 381, 387, 411, 430, 484, 506, 525, 545, 634, 636, 650, 651, 652, 653, 654, 655, 658, 663], "trilinear": [57, 80, 375, 411, 847], "nearest_exact": [57, 80, 375, 411, 847], "tf_area": [57, 80, 375, 411, 847], "mitchellcub": [57, 80, 375, 411, 847], "lanczos3": [57, 80, 375, 411, 847], "lanczos5": [57, 80, 375, 411, 847], "gaussian": [57, 80, 110, 375, 411, 626, 847], "overwrit": [57, 74, 80, 213, 375, 411, 631, 820, 840, 841, 849], "thu": [57, 80, 234, 247, 282, 290, 291, 375, 376, 411, 429, 632, 637, 672, 673, 818, 828, 833, 838, 841, 845], "antialias": [57, 80, 411], "max_pool1d": [57, 80, 375], "dilaton": [57, 80, 412, 413, 414], "max_pool3d": [57, 80, 375], "max_unpool1d": [57, 80, 375], "unpool": [57, 80, 375, 415], "reduce_window": [57, 84, 375], "window_dimens": [57, 84, 375, 418], "window_strid": [57, 84, 375, 418], "base_dil": [57, 84, 375, 418], "window_dil": [57, 84, 375, 418], "trim": [57, 74, 80, 375, 378, 419, 495], "orthonorm": [57, 62, 80, 85, 375, 419, 637, 684, 687], "8660254j": [57, 80, 375, 419], "rfftn": [57, 80, 375], "sliding_window": [57, 80, 375], "window_s": [57, 80, 375, 422], "frame_length": [57, 80, 375, 423], "frame_step": [57, 80, 375, 423], "fft_length": [57, 80, 375, 423], "window_fn": [57, 80, 375, 423], "pad_end": [57, 80, 375, 423], "smallest": [57, 74, 80, 165, 168, 236, 375, 378, 423, 494, 630, 632, 637, 678, 776, 778, 779], "enclos": [57, 80, 375, 423, 871], "window_length": [57, 80, 312, 314, 317, 318, 333, 369, 375, 423], "li": [57, 80, 375, 376, 387, 423, 430, 532, 859], "past": [57, 80, 375, 423, 820, 823, 842, 844, 856, 870], "fft_unique_bin": [57, 80, 375, 423], "complex64": [57, 77, 80, 158, 172, 181, 187, 253, 280, 375, 419, 423, 630, 632, 637, 685, 687, 688, 777, 829, 834], "complex128": [57, 80, 81, 158, 159, 172, 181, 187, 375, 423, 571, 630, 634, 637, 673, 674, 678, 694, 776, 777, 816, 829, 834], "compon": [57, 80, 142, 143, 221, 222, 223, 226, 229, 238, 240, 241, 243, 245, 273, 275, 276, 283, 286, 287, 290, 291, 323, 327, 338, 369, 372, 375, 376, 381, 423, 434, 445, 506, 629, 632, 644, 747, 812, 843, 849, 860, 866, 871, 873], "linear_algebra": [57, 62, 80, 85, 637, 845], "_arraywithlinearalgebraexperiment": [57, 102], "adjoint": [57, 62, 80, 85, 376, 446, 637, 676, 686, 687, 776], "batched_out": [57, 80, 376], "j1": [57, 80, 376, 425], "jn": [57, 80, 376, 425], "k1": [57, 80, 376, 425], "km": [57, 80, 376, 425], "outer": [57, 62, 80, 85, 97, 376, 425, 637, 640, 715, 716, 717, 806, 818], "30000001": [57, 80, 376, 425, 545, 634, 645, 750], "40000001": [57, 61, 73, 80, 102, 103, 112, 115, 296, 367, 376, 425, 626, 636, 645, 666, 750], "60000002": [57, 80, 93, 103, 376, 381, 425, 505, 507, 541, 634, 761], "80000001": [57, 80, 376, 381, 425, 505, 507], "60000001": [57, 80, 376, 425], "90000004": [57, 80, 376, 425, 647, 761], "20000002": [57, 80, 376, 425, 541, 634], "20000005": [57, 59, 80, 296, 304, 307, 308, 367, 376, 425, 615], "00000012": [57, 80, 376, 425], "49999994": [57, 80, 376, 425], "00000006": [57, 80, 376, 425], "60000014": [57, 80, 376, 425], "19999993": [57, 80, 376, 425], "80000007": [57, 80, 376, 425, 541, 634], "20000017": [57, 80, 376, 425], "89999992": [57, 80, 376, 425], "60000008": [57, 80, 376, 425], "80000019": [57, 80, 353, 372, 376, 425], "4000001": [57, 80, 84, 376, 425, 636, 659, 666], "cond": [57, 80, 123, 376, 628, 855], "933034373659268": [57, 426], "diagflat": [57, 80, 376, 436, 441], "offset": [57, 62, 65, 76, 80, 85, 88, 134, 376, 381, 427, 501, 502, 503, 629, 637, 642, 671, 691, 737, 783], "padding_valu": [57, 80, 376, 427], "right_left": [57, 80, 376, 427], "num_row": [57, 80, 376, 427], "num_col": [57, 80, 376, 427], "dot": [57, 61, 80, 84, 97, 376, 377, 443, 452, 636, 637, 663, 666, 693, 806, 812, 819, 828], "eig": [57, 62, 80, 376, 637, 673, 674], "37228132": [57, 80, 376, 429, 431, 672], "82456484": [57, 429, 672], "41597356": [57, 429, 672], "56576746": [57, 429, 672], "90937671": [57, 429, 672], "eigh_tridiagon": [57, 80, 376], "eigvals_onli": [57, 80, 376, 430], "select_rang": [57, 80, 376, 430], "tol": [57, 80, 101, 376, 430, 445, 451], "eigenvalu": [57, 62, 80, 85, 97, 98, 376, 429, 430, 431, 637, 672, 673, 674, 680], "eigenvector": [57, 80, 376, 429, 430, 637, 672, 673], "interv": [57, 66, 71, 80, 89, 94, 126, 137, 138, 145, 376, 387, 430, 525, 629, 637, 639, 643, 648, 668, 693, 699, 702, 710, 739, 741, 767, 768], "converg": [57, 80, 376, 430, 861], "_2": [57, 80, 376, 430], "eig_val": [57, 80, 376, 430], "decreas": [57, 80, 376, 430, 778], "eig_vector": [57, 80, 376, 430], "38196": [57, 430], "61803": [57, 430], "eigval": [57, 80, 376], "general_inner_product": [57, 85, 376], "n_mode": [57, 85, 376, 432], "tradit": [57, 85, 376, 432], "inner": [57, 62, 76, 85, 106, 141, 376, 429, 432, 629, 637, 640, 672, 673, 677, 715, 716, 717, 806, 818, 840], "higher_order_mo": [57, 80, 376], "n_featur": [57, 80, 376, 433], "d1": [57, 80, 376, 433], "dn": [57, 80, 376, 433], "initialize_tuck": [57, 80, 376], "svd": [57, 62, 80, 85, 100, 376, 434, 440, 445, 447, 448, 449, 451, 637, 688], "truncated_svd": [57, 80, 376, 434, 445, 448, 451], "non_neg": [57, 80, 327, 369, 376, 434], "mask": [57, 61, 80, 84, 97, 375, 376, 378, 421, 434, 435, 445, 451, 491, 555, 634, 636, 659, 663, 666, 847], "svd_mask_repeat": [57, 80, 376, 434, 445, 451], "tuckertensor": [57, 80, 101, 327, 369, 376, 434, 445, 451], "scheme": [57, 80, 376, 434, 445, 823, 853, 870], "tucker": [57, 80, 327, 369, 376, 434, 445], "decomposit": [57, 62, 80, 85, 97, 98, 100, 323, 324, 325, 326, 327, 369, 376, 434, 438, 445, 448, 450, 451, 637, 667, 673, 684, 687, 818, 877], "miss": [57, 80, 376, 378, 434, 445, 451, 491, 796, 818, 819, 824, 827, 828, 831, 841, 844, 847], "everywher": [57, 80, 376, 434, 445, 451], "kron": [57, 80, 376, 441, 877], "make_svd_non_neg": [57, 80, 376, 449], "nntype": [57, 80, 376, 440], "nndsvd": [57, 80, 376, 440], "singular": [57, 62, 80, 85, 376, 434, 440, 447, 449, 637, 678, 680, 683, 687, 688, 776, 778, 829], "nndsvda": [57, 80, 376, 440], "boutsidi": [57, 80, 376, 440], "gallopoulo": [57, 80, 376, 440], "recognit": [57, 80, 376, 440, 815], "1350": [57, 80, 376, 440], "1362": [57, 80, 376, 440], "2008": [57, 80, 376, 440, 870], "matrix_exp": [57, 80, 376], "7183": [57, 80, 376, 441], "3891": [57, 80, 376, 441], "mode_dot": [57, 80, 96, 97, 101, 376], "matrix_or_vector": [57, 80, 97, 101, 376, 442], "i_1": [57, 80, 97, 98, 376, 442], "i_k": [57, 80, 97, 376, 442], "i_n": [57, 80, 97, 376, 442], "i_": [57, 80, 97, 376, 387, 442, 525], "multi_dot": [57, 80, 376], "148": [57, 79, 80, 243, 376, 443], "multi_mode_dot": [57, 80, 376], "mat_or_vec_list": [57, 80, 376, 444], "times_0": [57, 376, 444], "vec": [57, 376, 444], "times_1": [57, 376, 444], "cdot": [57, 273, 376, 444, 632], "times_n": [57, 376, 444], "partial_tuck": [57, 80, 376], "n_iter_max": [57, 80, 376, 445, 451], "verbos": [57, 80, 376, 445, 448, 451, 810, 844, 849], "return_error": [57, 80, 376, 445, 451], "variat": [57, 80, 376, 445, 451, 831, 841, 844], "reconstruct": [57, 62, 68, 80, 91, 100, 376, 378, 445, 451, 498, 637, 645, 687, 749, 751, 842], "return_erro": [57, 376, 445, 451], "svd_flip": [57, 80, 376], "u_based_decis": [57, 80, 376, 447], "basi": [57, 80, 376, 447, 820, 823, 852], "flip": [57, 64, 80, 87, 97, 231, 376, 378, 447, 475, 476, 632, 639, 840, 851, 852, 854], "decis": [57, 80, 376, 447, 812, 823, 829, 847, 849, 851, 870], "u_adjust": [57, 80, 376, 447], "v_adjust": [57, 80, 376, 447], "tensor_train": [57, 80, 376], "tt": [57, 80, 326, 369, 376, 448, 450], "kth": [57, 376, 448], "tttensor": [57, 100, 326, 369, 376, 448], "compute_uv": [57, 62, 80, 85, 376, 449, 637, 687], "n_eigenvec": [57, 80, 376, 449], "returnedv": [57, 449], "vh": [57, 62, 80, 85, 376, 449, 637, 687], "eigen": [57, 80, 376, 449], "namedtupl": [57, 62, 68, 80, 85, 91, 376, 378, 429, 449, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751], "tt_matrix_to_tensor": [57, 80, 376], "rank_k": [57, 80, 376, 450], "left_dim_k": [57, 80, 376, 450], "right_dim_k": [57, 80, 376, 450], "rank_": [57, 80, 376, 450], "49671414": [57, 80, 376, 450, 643, 740], "1382643": [57, 80, 376, 450, 643, 740], "64768857": [57, 80, 376, 450, 643, 740], "5230298": [57, 80, 376, 450, 643, 740], "23415337": [57, 80, 376, 450, 643, 740], "23413695": [57, 80, 376, 450, 643, 740], "57921278": [57, 80, 376, 450], "76743472": [57, 80, 376, 450], "1163073": [57, 80, 376, 450], "11629914": [57, 80, 376, 450], "03237505": [57, 80, 376, 450], "03237278": [57, 80, 376, 450], "78441733": [57, 80, 376, 450], "38119566": [57, 80, 376, 450], "21834874": [57, 80, 376, 450], "10610882": [57, 80, 376, 450], "15165846": [57, 80, 376, 450], "15164782": [57, 80, 376, 450], "35662258": [57, 80, 376, 450], "35659757": [57, 80, 376, 450], "02283812": [57, 80, 376, 450], "49705869": [57, 80, 376, 450], "40518808": [57, 80, 376, 450], "16882598": [57, 80, 376, 450], "fixed_factor": [57, 80, 376, 451], "tl": [57, 80, 376, 451], "kolda": [57, 80, 376, 451], "bader": [57, 80, 376, 451], "siam": [57, 80, 376, 448, 451], "review": [57, 80, 376, 451, 814, 815, 818, 820, 826, 828, 831, 841, 845], "vol": [57, 80, 376, 451], "pp": [57, 80, 376, 451], "455": [57, 80, 376, 451], "2009": [57, 80, 376, 451], "_arraywithlossesexperiment": [57, 102], "hinge_embedding_loss": [57, 80, 377], "margin": [57, 80, 377, 452, 459, 841], "measur": [57, 377, 452, 636, 663, 792], "semi": [57, 377, 452], "l_n": [57, 377, 452], "x_n": [57, 377, 452], "y_n": [57, 377, 452], "ell": [57, 377, 452], "operatornam": [57, 284, 286, 377, 452, 632, 637, 673], "l_1": [57, 377, 452], "hyperparamet": [57, 80, 377, 452], "aggreg": [57, 80, 377, 452, 645, 749, 828], "unreduc": [57, 80, 377, 452], "hing": [57, 80, 377, 452, 459], "target_tensor": [57, 377, 452, 457], "huber_loss": [57, 80, 377], "delta": [57, 59, 80, 82, 377, 453, 615, 635], "transit": [57, 80, 377, 453, 870], "huber": [57, 80, 377, 453], "kl_div": [57, 80, 377], "log_target": [57, 80, 377, 454], "contai": [57, 454], "batchmean": [57, 377, 454], "kullback": [57, 80, 377, 454], "leibler": [57, 80, 377, 454], "0916": [57, 454], "l1_loss": [57, 80, 377, 456], "l1": [57, 62, 80, 85, 377, 381, 453, 455, 456, 458, 504, 637, 694, 827, 852], "targetict": [57, 80, 377, 455, 456, 458, 459], "20000000000000004": [57, 455], "log_poisson_loss": [57, 80, 377], "compute_full_loss": [57, 80, 377, 456, 793], "favor": [57, 80, 377, 456], "likelihood": [57, 80, 377, 456, 457], "28402555": [57, 377, 456], "03402555": [57, 377, 456], "1573164": [57, 377, 456], "poisson_nll_loss": [57, 80, 377], "log_input": [57, 80, 377, 457], "poisson": [57, 80, 377, 382, 456, 457], "assumpt": [57, 377, 456, 457], "minu": [57, 377, 456, 457], "omiss": [57, 377, 457], "stirl": [57, 80, 377, 456, 457], "1977562": [57, 457], "smooth_l1_loss": [57, 80, 377], "smooth": [57, 63, 80, 86, 377, 453, 458, 638, 696, 697, 698, 839], "8125": [57, 458], "soft_margin_loss": [57, 80, 377], "soft": [57, 80, 307, 377, 378, 459, 491, 830], "35667497": [57, 459], "22314353": [57, 459], "60943791": [57, 459], "_arraywithmanipulationexperiment": [57, 102], "as_strid": [57, 80, 378], "nativeshap": [57, 61, 64, 66, 80, 87, 89, 127, 128, 130, 135, 142, 148, 378, 382, 460, 472, 477, 485, 488, 508, 509, 510, 511, 512, 577, 590, 596, 598, 629, 634, 636, 639, 643, 649, 651, 653, 655, 657, 706, 739, 740, 741, 836, 838], "byte": [57, 58, 76, 80, 81, 102, 134, 378, 460, 571, 629, 634, 875, 876], "associative_scan": [57, 80, 378], "revers": [57, 58, 62, 70, 80, 85, 93, 102, 103, 366, 374, 375, 376, 378, 387, 421, 437, 461, 475, 476, 523, 524, 544, 634, 637, 639, 647, 692, 703, 757, 758, 818, 827, 828, 829, 831, 832, 840, 841, 847, 854, 855], "scan": [57, 80, 378, 461, 855], "atleast_1d": [57, 80, 378], "ari": [57, 80, 378, 462, 463, 464, 470, 479, 499], "a1": [57, 81, 378, 462, 463, 464, 468, 537], "a2": [57, 81, 378, 462, 463, 464, 468, 537], "atleast_2d": [57, 80, 378], "atleast_3d": [57, 80, 378], "column_stack": [57, 80, 378], "concat_from_sequ": [57, 80, 378], "input_sequ": [57, 80, 378, 469], "new_axi": [57, 80, 378, 469, 854], "dsplit": [57, 80, 378], "indices_or_sect": [57, 80, 378, 470, 479, 499], "3rd": [57, 80, 378, 470], "dstack": [57, 80, 378], "fill_diagon": [57, 80, 378], "fill_diag": [57, 473], "fortran": [57, 64, 80, 87, 378, 474, 639, 706, 870, 874], "layout": [57, 64, 80, 87, 378, 474, 639, 706, 825, 840, 841, 847], "fliplr": [57, 80, 378, 840], "diag": [57, 62, 80, 85, 98, 378, 475, 476, 637, 673, 849], "flipud": [57, 80, 378, 840], "fold": [57, 80, 378, 485, 486, 828], "unfold": [57, 80, 97, 98, 100, 376, 378, 434, 477, 485, 487], "folded_tensor": [57, 378, 477], "heavisid": [57, 80, 378], "5000": [57, 378, 478, 637, 676, 806], "hsplit": [57, 80, 378], "horizont": [57, 80, 378, 468, 479, 545, 634], "hstack": [57, 80, 378, 468], "i0": [57, 80, 378, 387, 525], "bessel": [57, 70, 80, 93, 317, 369, 378, 481, 647, 764, 766], "kind": [57, 70, 80, 165, 168, 169, 387, 481, 523, 524, 529, 630, 647, 757, 758, 763, 765, 776, 777, 817, 841, 844, 847, 849, 855], "26606588": [57, 80, 378, 481], "2795853": [57, 80, 378, 481], "88079259": [57, 80, 378, 481], "row_mod": [57, 80, 378, 482], "column_mod": [57, 80, 378, 482], "ascend": [57, 69, 80, 92, 378, 385, 482, 515, 646, 753, 755, 821], "prod": [57, 58, 70, 81, 93, 376, 378, 435, 437, 482, 531, 546, 634, 647, 776, 806, 829, 831, 849, 867], "moveaxi": [57, 80, 378], "destin": [57, 80, 378, 483], "unstack": [57, 64, 74, 87, 483, 639, 827, 849, 852, 877], "reorder": [57, 64, 80, 87, 378, 483, 545, 634, 639, 703, 843], "stat_length": [57, 80, 378, 484], "constant_valu": [57, 80, 378, 484], "end_valu": [57, 80, 378, 484], "reflect_typ": [57, 80, 378, 484], "partial_fold": [57, 80, 378], "skip_begin": [57, 80, 378, 485, 486, 487, 488], "untouch": [57, 80, 378, 485, 486, 487, 488], "partial_tensor_to_vec": [57, 80, 378], "skip_end": [57, 80, 378, 486, 487], "vectoris": [57, 80, 97, 378, 486, 488], "partial_unfold": [57, 80, 378], "ravel_tensor": [57, 80, 378, 487], "n_1": [57, 80, 378, 487], "n_2": [57, 80, 378, 487], "n_i": [57, 80, 376, 378, 435, 487], "partial_vec_to_tensor": [57, 80, 378], "put_along_axi": [57, 80, 378], "rot90": [57, 80, 378, 840], "rotat": [57, 80, 378, 490], "soft_threshold": [57, 80, 378], "behav": [57, 80, 335, 336, 372, 376, 378, 429, 492, 637, 672, 823, 833, 838, 840, 841, 842, 851, 871], "invalid": [57, 71, 80, 94, 378, 492, 637, 639, 648, 693, 702, 767, 768, 776, 819, 829], "slice": [57, 70, 74, 80, 81, 93, 98, 147, 328, 369, 378, 467, 489, 492, 493, 552, 553, 555, 581, 629, 634, 641, 647, 727, 762, 844, 870], "inexact": [57, 80, 346, 372, 378, 492], "largest": [57, 74, 80, 165, 168, 376, 378, 447, 492, 494, 630, 637, 678, 687], "take_along_axi": [57, 80, 378], "arr": [57, 58, 77, 80, 173, 378, 467, 489, 493, 577, 630, 829, 830], "top_k": [57, 80, 378], "sort": [57, 68, 74, 80, 91, 103, 199, 292, 376, 378, 387, 429, 494, 515, 529, 631, 632, 637, 645, 672, 673, 687, 688, 749, 753, 754, 755, 778, 812, 817, 828, 843, 845], "trim_zero": [57, 80, 378], "fb": [57, 80, 378, 495], "front": [57, 80, 378, 495, 841, 848, 849, 852, 859, 868, 870], "unflatten": [57, 80, 378], "unfolded_tensor": [57, 378, 497], "unique_consecut": [57, 80, 378], "vsplit": [57, 80, 378], "vertic": [57, 80, 378, 499, 500, 545, 634, 820], "_arraywithnormsexperiment": [57, 102], "varianc": [57, 70, 80, 93, 381, 501, 503, 647, 766, 791, 795], "nsc": [57, 80, 381, 501, 502, 503, 795], "braodcast": [57, 80, 381, 501], "running_mean": [57, 80, 381, 501, 503, 795], "running_var": [57, 80, 381, 501, 503, 795], "nc": [57, 80, 381, 501, 502, 503, 795], "group_norm": [57, 80, 381], "num_group": [57, 80, 381, 502], "instance_norm": [57, 80, 381], "l1_normal": [57, 80, 381], "33333334": [57, 80, 298, 367, 381, 504, 507, 541, 617, 634, 635, 636, 637, 658, 694], "33333337": [57, 137, 381, 504, 617, 629, 635], "28571439": [57, 381, 504], "l2_normal": [57, 80, 381, 507], "l2": [57, 62, 85, 96, 97, 381, 505, 507, 637, 694, 792, 827], "44721359": [57, 80, 381, 505, 507], "89442718": [57, 80, 381, 505, 507, 541, 634], "lp_normal": [57, 80, 381], "lp": [57, 381, 507], "_arraywithrandomexperiment": [57, 102], "bernoulli": [57, 80, 375, 382, 399, 400, 401], "event": [57, 80, 382, 508, 844], "parameter": [57, 66, 80, 89, 382, 508, 509, 511, 512, 643, 738, 740, 741], "odd": [57, 80, 278, 378, 382, 484, 508, 632, 806, 817, 823], "drawn": [57, 66, 80, 89, 382, 508, 509, 510, 511, 512, 643, 738, 739, 740, 741, 776, 777, 778, 791, 844], "dirichlet": [57, 80, 382], "10598304": [57, 382, 510], "21537054": [57, 382, 510], "67864642": [57, 382, 510], "48006698": [57, 382, 510], "07472073": [57, 382, 510], "44521229": [57, 382, 510], "55479872": [57, 382, 510], "05426367": [57, 382, 510], "39093761": [57, 382, 510], "19531053": [57, 382, 510], "51675832": [57, 382, 510], "28793114": [57, 382, 510], "12315625": [57, 382, 510], "29823365": [57, 382, 510], "5786101": [57, 382, 510], "15564976": [57, 382, 510], "50542368": [57, 382, 510], "33892656": [57, 382, 510], "1325352": [57, 382, 510], "44439589": [57, 382, 510], "42306891": [57, 382, 510], "gamma": [57, 65, 80, 88, 342, 354, 372, 382, 387, 526, 642, 737], "lam": [57, 80, 382, 512], "_arraywithsearchingexperiment": [57, 102], "unravel_index": [57, 80, 383], "unravel": [57, 80, 383, 513], "_arraywithsetexperiment": [57, 102], "_arraywithsortingexperiment": [57, 102], "lexsort": [57, 80, 385], "indirectli": [57, 80, 385, 515], "statist": [57, 80, 95, 378, 484, 795, 810, 818, 829, 844, 845, 870], "_arraywithstatisticalexperiment": [57, 102], "bincount": [57, 80, 387], "minlength": [57, 80, 387, 520], "corrcoef": [57, 80, 387], "rowvar": [57, 80, 387, 521, 522], "relationship": [57, 80, 521, 791, 843], "cov": [57, 80, 387], "ddof": [57, 80, 387, 522], "fweight": [57, 80, 387, 522], "aweight": [57, 80, 387, 522], "overridden": [57, 80, 387, 522, 796, 824], "assign": [57, 80, 97, 387, 522, 818, 820, 825, 829, 840, 843, 851], "covari": [57, 80, 387, 522], "cummax": [57, 80, 387], "exclus": [57, 58, 70, 74, 80, 81, 93, 126, 376, 387, 445, 523, 524, 564, 565, 568, 629, 634, 643, 647, 739, 757, 758, 815, 827, 829, 837, 854, 874, 876], "cumul": [57, 70, 80, 93, 387, 523, 524, 647, 757, 758], "uint64": [57, 70, 162, 167, 169, 170, 180, 182, 185, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "uint16": [57, 70, 157, 162, 167, 168, 177, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "bit": [57, 70, 164, 165, 168, 231, 232, 234, 387, 523, 524, 630, 632, 647, 757, 758, 763, 765, 812, 817, 818, 819, 827, 828, 829, 831, 837, 849, 851, 876], "uint32": [57, 70, 162, 167, 168, 169, 191, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "cummin": [57, 80, 387], "histogram": [57, 80, 387], "extend_lower_interv": [57, 80, 387, 525], "extend_upper_interv": [57, 80, 387, 525], "densiti": [57, 80, 387, 525], "monoton": [57, 80, 387, 525], "rightmost": [57, 80, 387, 525], "c1": [57, 80, 387, 525, 827], "ff": [57, 80, 387, 525], "c_": [57, 80, 98, 387, 525], "igamma": [57, 80, 387], "incomplet": [57, 80, 387, 526, 820], "3614": [57, 80, 387, 526], "2085": [57, 80, 387, 526], "median": [57, 80, 378, 387, 484, 529], "nanmean": [57, 80, 387], "6666666666666665": [57, 80, 387, 528], "nanmedian": [57, 80, 387], "overwrite_input": [57, 80, 387, 529], "treat": [57, 74, 80, 103, 278, 356, 372, 378, 381, 387, 493, 506, 529, 531, 632, 773, 839, 844, 850, 854], "undefin": [57, 80, 378, 387, 388, 484, 529, 533, 829, 833, 839], "nanmin": [57, 80, 387], "nanprod": [57, 80, 387], "Not": [57, 80, 356, 372, 376, 387, 431, 531, 627, 825, 833, 842, 852, 853, 855], "quantil": [57, 80, 387, 867], "inclus": [57, 80, 126, 387, 532, 629, 643, 739, 813, 825, 840, 847], "midpoint": [57, 80, 387, 532], "surround": [57, 80, 387, 532, 847], "whichev": [57, 80, 387, 532], "_arraywithutilityexperiment": [57, 102], "optional_get_el": [57, 80, 388], "empti": [57, 58, 70, 74, 81, 93, 126, 378, 388, 484, 533, 540, 577, 629, 634, 637, 641, 647, 648, 691, 694, 732, 762, 763, 765, 767, 768, 818, 819, 824, 826, 829, 830, 840], "_arraywithgener": [58, 102], "all_equ": [58, 81, 634], "equality_matrix": [58, 81, 534, 634], "array_equ": [58, 81, 634], "assert_supports_inplac": [58, 81, 634], "ivybackendexcept": [58, 81, 538, 562, 634, 807, 824, 830, 833, 834], "clip_matrix_norm": [58, 81, 634], "894": [58, 81, 540, 541, 634, 642, 737], "clip_vector_norm": [58, 81, 634], "default_v": [58, 544, 634], "catch_except": [58, 544, 634], "rev": [58, 544, 634], "with_cal": [58, 544, 634], "catch": [58, 544, 634, 838, 844], "einops_rearrang": [58, 81, 634], "axes_length": [58, 81, 545, 546, 547, 634], "arrang": [58, 545, 634], "rearrang": [58, 81, 545, 547, 634, 843], "einops_reduc": [58, 81, 634, 829], "einops_repeat": [58, 81, 634], "fourier_encod": [58, 81, 634], "max_freq": [58, 81, 549, 634], "oppos": [58, 81, 549, 634, 829], "geometr": [58, 81, 549, 634, 637, 692], "0000000e": [58, 81, 549, 634], "2246468e": [58, 81, 549, 634], "4492936e": [58, 549, 634], "6739404e": [58, 81, 549, 634], "batch_dim": [58, 81, 552, 553, 634, 798], "gather_nd": [58, 81, 634], "get_num_dim": [58, 81, 634], "as_arrai": [58, 81, 556, 590, 634, 798], "has_nan": [58, 81, 634], "include_inf": [58, 81, 558, 613, 634], "inplace_decr": [58, 81, 634], "val": [58, 74, 79, 81, 253, 378, 473, 560, 561, 562, 581, 582, 583, 632, 634, 829, 840, 851], "decrement": [58, 81, 560, 634], "inplace_incr": [58, 81, 634], "increment": [58, 81, 561, 634, 820, 870], "inplace_upd": [58, 81, 580, 634, 789, 840], "ensure_in_backend": [58, 81, 562, 634, 840], "keep_input_dtyp": [58, 81, 562, 634, 840], "is_arrai": [58, 81, 634, 840, 841], "is_ivy_arrai": [58, 81, 634, 840, 851], "is_ivy_contain": [58, 634], "is_native_arrai": [58, 81, 176, 565, 630, 634, 851], "isin": [58, 81, 634, 867], "test_el": [58, 81, 569, 634], "assume_uniqu": [58, 81, 569, 634], "invert": [58, 81, 231, 569, 632, 634, 637, 679], "scatter_flat": [58, 81, 634], "occupi": [58, 165, 168, 576, 577, 630, 634], "scatter_nd": [58, 81, 634, 847, 851], "stable_divid": [58, 81, 634, 837], "denomin": [58, 65, 81, 88, 583, 592, 606, 634, 642, 737, 795, 837, 846, 855, 867], "min_denomin": [58, 81, 583, 592, 606, 634, 846], "_min_denomin": [58, 592, 634], "stable_pow": [58, 81, 634], "min_bas": [58, 81, 582, 593, 605, 634, 795, 846], "stabl": [58, 69, 81, 92, 147, 328, 335, 336, 369, 372, 385, 515, 582, 583, 592, 593, 605, 606, 629, 634, 646, 753, 756, 778, 819, 825, 829, 841, 846, 849, 855], "00004": [58, 81, 593, 634], "00008": [58, 81, 593, 634], "00004000e": [58, 593], "56002560e": [58, 593], "60001200e": [58, 593], "09602048e": [58, 593], "supports_inplace_upd": [58, 81, 634], "to_fil": 58, "fid": 58, "sep": 58, "format_": 58, "recov": [58, 833, 841], "to_scalar": [58, 81, 634], "value_is_nan": [58, 81, 634], "_arraywithgradi": [59, 102], "adam_step": [59, 82, 635], "mw": [59, 82, 615, 616, 635, 853], "vw": [59, 82, 615, 616, 635, 853], "beta1": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "beta2": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "epsilon": [59, 62, 63, 82, 85, 86, 536, 615, 616, 621, 634, 635, 637, 638, 680, 683, 696, 697, 698, 788, 793, 795, 796, 827, 837, 840, 853], "dc": [59, 82, 615, 616, 619, 621, 622, 623, 635], "dw": [59, 82, 615, 616, 619, 621, 622, 623, 635], "forget": [59, 82, 615, 616, 621, 635, 796, 812, 829], "dcdw": [59, 82, 615, 616, 619, 621, 622, 635], "adam_step_delta": [59, 82, 615, 635], "2020105": [59, 615, 635], "22187898": [59, 615, 635], "24144873": [59, 615, 635], "10000002": [59, 93, 296, 367, 615, 761], "00300002": [59, 615], "00800002": [59, 615], "adam_upd": [59, 82, 635, 853], "mw_tm1": [59, 82, 616, 621, 635], "vw_tm1": [59, 82, 616, 621, 635], "ws_new": [59, 82, 616, 621, 622, 623, 635], "updated_weight": [59, 82, 616, 635], "92558753": [59, 616], "92558873": [59, 616, 635], "92558718": [59, 616, 635], "00000063e": [59, 82, 616, 635], "00000016e": [59, 82, 616, 635], "00000086e": [59, 82, 616, 635], "gradient_descent_upd": [59, 82, 635, 640, 715, 716, 717], "descent": [59, 82, 619, 635, 796, 853, 870], "new_weight": [59, 82, 619, 621, 622, 635, 852], "lamb_upd": [59, 82, 635], "max_trust_ratio": [59, 82, 621, 635, 796], "decay_lambda": [59, 82, 621, 622, 635, 796], "trust": [59, 82, 621, 635, 796], "ratio": [59, 82, 621, 635, 796], "decai": [59, 82, 621, 622, 635, 796], "lamb": [59, 82, 621, 635, 796, 853], "784": [59, 621, 635], "lars_upd": [59, 82, 635], "lar": [59, 82, 622, 635, 796, 853], "34077978": [59, 622, 635], "78025991": [59, 622, 635], "56051969": [59, 622, 635], "78026009": [59, 622, 635], "56051981": [59, 622, 635], "12103939": [59, 622, 635], "optimizer_upd": [59, 82, 635], "effective_grad": [59, 82, 623, 635], "3e": [59, 82, 623, 635], "preserve_typ": [59, 82, 624, 635], "_arraywithimag": [60, 102], "_arraywithlay": [61, 102], "conv1d": [61, 84, 636, 792], "filter_format": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_last": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 776], "x_dilat": [61, 84, 636, 649, 650, 652, 653, 654, 656], "d_out": [61, 84, 375, 392, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_first": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "wio": [61, 636, 649, 650, 651, 656], "conv1d_transpos": [61, 84, 636], "output_shap": [61, 84, 636, 649, 651, 653, 655, 657, 792], "iow": [61, 84, 636, 651], "woi": [61, 84, 636, 651], "fh": [61, 84, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 730], "hwio": [61, 636, 649, 650, 652, 656], "conv2d_transpos": [61, 84, 636], "iohw": [61, 84, 636, 653], "hwoi": [61, 84, 636, 653], "conv3d": [61, 84, 636, 655, 792], "fd": [61, 84, 636, 649, 654, 655, 656, 657], "conv3d_transpos": [61, 84, 636, 657], "iodhw": [61, 84, 636, 655, 657], "dhwoi": [61, 84, 636, 655, 657], "depthwise_conv2d": [61, 84, 636], "randint": [61, 66, 68, 84, 89, 643, 645, 658, 662, 749, 812, 829, 863], "noise_shap": [61, 84, 636, 659], "42857146": [61, 636, 659], "85714293": [61, 636, 659], "28571415": [61, 84, 636, 659], "71428585": [61, 84, 636, 659], "14285755": [61, 84, 636, 659], "5714283": [61, 636, 659], "4285717": [61, 84, 636, 659], "8571434": [61, 84, 636, 659], "2857151": [61, 636, 659], "dropout1d": [61, 84, 375, 400], "dropout2d": [61, 84, 375], "dropout3d": [61, 84, 375], "outer_batch_shap": [61, 84, 636, 660], "inner_batch_shap": [61, 84, 636, 660], "lstm_updat": [61, 84, 636, 849], "init_h": [61, 84, 636, 662, 849], "init_c": [61, 84, 636, 662, 849], "recurrent_kernel": [61, 84, 636, 662, 849], "recurrent_bia": [61, 84, 636, 662, 849], "hidden": [61, 84, 636, 661, 662, 792, 826, 833, 849, 853], "recurr": [61, 80, 84, 375, 421, 636, 662, 849, 870, 874], "timestep": [61, 80, 84, 375, 421, 636, 661, 662, 663, 792, 849], "h_i": [61, 84, 662], "c_i": [61, 84, 662], "rc": [61, 84, 662], "multi_head_attent": [61, 84, 636, 840], "num_head": [61, 84, 636, 663, 792], "in_proj_weight": [61, 84, 636, 663], "q_proj_weight": [61, 84, 636, 663], "k_proj_weight": [61, 84, 636, 663], "v_proj_weight": [61, 84, 636, 663], "out_proj_weight": [61, 84, 636, 663], "in_proj_bia": [61, 84, 636, 663], "out_proj_bia": [61, 84, 636, 663], "is_caus": [61, 84, 636, 663, 666], "key_padding_mask": [61, 84, 636, 663], "bias_k": [61, 84, 636, 663], "bias_v": [61, 84, 636, 663], "static_k": [61, 84, 636, 663], "static_v": [61, 84, 636, 663], "add_zero_attn": [61, 84, 636, 663], "return_attention_weight": [61, 84, 636, 663], "average_attention_weight": [61, 84, 636, 663], "scaled_dot_product_attent": [61, 84, 636], "dropout_p": [61, 84, 636, 666], "num_queri": [61, 84, 636, 666], "feat_dim": [61, 84, 636, 666], "num_kei": [61, 84, 636, 666], "causal": [61, 84, 636, 663, 666], "attent": [61, 84, 636, 663, 666, 792, 820, 824, 860], "29999995": [61, 296, 297, 307, 367, 375, 419, 636, 645, 666, 750], "19994521": [61, 636, 666], "09994531": [61, 636, 666], "30000019": [61, 378, 468, 636, 666], "_arraywithlinearalgebra": [62, 102], "choleski": [62, 85, 637, 840], "625": [62, 80, 348, 637, 667], "vif": [62, 85, 668], "det": [62, 85, 637, 685, 828], "axis1": [62, 64, 85, 87, 637, 639, 671, 691, 711], "axis2": [62, 85, 637, 671, 691], "eigh": [62, 85, 376, 429, 637, 672], "uplo": [62, 85, 637, 673, 674], "eigvalsh": [62, 85, 637], "array_lik": [62, 85, 375, 377, 378, 420, 453, 454, 458, 459, 489, 637, 675, 682, 806], "203": [62, 79, 229, 637, 642, 675, 737], "233": [62, 637, 675], "inv": [62, 85, 637], "transpose_a": [62, 85, 637, 677], "transpose_b": [62, 85, 637, 677], "adjoint_a": [62, 85, 637, 677], "adjoint_b": [62, 85, 637, 677], "matrix_norm": [62, 85, 637], "ord": [62, 85, 637, 678, 694], "fro": [62, 85, 377, 453, 637, 678], "nuc": [62, 85, 637, 678], "performingth": [62, 678], "matrix_pow": [62, 85, 637], "matrix_rank": [62, 85, 637], "hermitian": [62, 85, 376, 429, 430, 637, 672, 673, 674, 680, 687], "largest_singular_valu": [62, 85, 637, 680, 683], "defici": [62, 637, 680], "matrix_transpos": [62, 85, 637, 851], "pinv": [62, 85, 637], "pseudo": [62, 85, 637, 683, 839], "99999988": [62, 85, 637, 683], "qr": [62, 85, 637, 842], "12309149": [62, 637, 684], "90453403": [62, 637, 684], "40824829": [62, 637, 684], "49236596": [62, 637, 684], "30151134": [62, 637, 684], "81649658": [62, 637, 684], "86164044": [62, 637, 684], "12403841e": [62, 637, 684], "60113630e": [62, 637, 684], "10782342e": [62, 637, 684], "04534034e": [62, 637, 684], "80906807e": [62, 637, 684], "88178420e": [62, 85, 637, 674, 684], "slogdet": [62, 85, 637], "logabsdet": [62, 85, 637, 685], "natur": [62, 85, 243, 261, 262, 263, 264, 283, 354, 372, 632, 637, 685, 824, 831, 833, 842, 860], "098611": [62, 637, 685], "solv": [62, 85, 376, 440, 637, 776, 812, 819, 823, 834, 841, 850, 872], "full_matric": [62, 85, 637, 687], "svf": [62, 687], "reconstructed_x": [62, 637, 687], "svdval": [62, 85, 637], "tensorsolv": [62, 85, 637], "vander": [62, 85, 637], "vandermond": [62, 85, 637, 692], "vecdot": [62, 85, 637], "vector_norm": [62, 85, 637], "mathemat": [62, 85, 223, 228, 240, 245, 247, 263, 273, 627, 632, 637, 678, 694, 829, 841, 847, 870, 876], "manhattan": [62, 85, 637, 694], "euclidean": [62, 85, 97, 98, 637, 694], "7416575": [62, 85, 637, 694], "vector_to_skew_symmetric_matrix": [62, 85, 637], "_arraywithloss": [63, 102], "binary_cross_entropi": [63, 86, 638, 828], "from_logit": [63, 86, 638, 696, 793], "pos_weight": [63, 86, 638, 696], "crossentropi": [63, 86, 638, 696], "26765382": [63, 638, 696], "34657359": [63, 638, 697], "sparse_cross_entropi": [63, 86, 638], "07438118": [63, 86, 698], "11889165": [63, 698], "_arraywithmanipul": [64, 102], "x_min": [64, 87, 639, 699, 854], "x_max": [64, 87, 639, 699, 854], "before_1": [64, 87, 378, 484, 639, 701, 714], "after_1": [64, 87, 378, 484, 639, 701, 714], "before_n": [64, 87, 378, 484, 639, 701, 714], "after_n": [64, 87, 378, 484, 639, 701, 714], "repetit": [64, 87, 639, 705, 712, 847], "flat": [64, 74, 87, 383, 513, 576, 634, 639, 705], "allowzero": [64, 87, 639, 706], "remain": [64, 67, 80, 87, 90, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 399, 400, 401, 420, 632, 639, 641, 644, 706, 724, 747, 806, 819, 820, 828, 831, 833, 837, 845, 847, 855], "roll": [64, 87, 639, 836, 867], "shift": [64, 76, 87, 103, 136, 147, 232, 234, 328, 369, 629, 632, 639, 707, 819, 820, 830, 831, 836, 843, 867], "restor": [64, 87, 639, 707, 835], "num_or_size_split": [64, 74, 87, 639, 708, 849], "with_remaind": [64, 74, 87, 639, 708], "squeezabl": [64, 639, 709], "swapax": [64, 87, 639], "axis0": [64, 87, 639, 711], "swap_ax": [64, 711], "swap": [64, 87, 639, 711, 801, 864], "tile": [64, 81, 87, 547, 639], "unpack": [64, 87, 639, 713, 842, 844], "zero_pad": [64, 87, 639], "_arraywithnorm": [65, 102], "layer_norm": [65, 88, 642], "normalized_idx": [65, 88, 642, 737], "new_std": [65, 88, 642, 737, 795], "learnabl": [65, 88, 636, 640, 642, 661, 717, 737, 792, 795, 854], "0976": [65, 642, 737], "3452": [65, 642, 737], "2740": [65, 642, 737], "1047": [65, 642, 737], "5886": [65, 642, 737], "2732": [65, 642, 737], "7696": [65, 642, 737, 776], "7024": [65, 642, 737], "2518": [65, 642, 737], "826": [65, 642, 737], "178": [65, 642, 737], "981": [65, 642, 737], "831": [65, 642, 737], "421": [65, 642, 737], "_arraywithrandom": [66, 102], "multinomi": [66, 89, 382, 510, 643], "population_s": [66, 89, 643, 738], "num_sampl": [66, 89, 643, 738], "unnorm": [66, 89, 643, 738, 844], "popul": [66, 70, 74, 89, 93, 643, 647, 738, 764, 766, 829, 830, 840, 844, 849, 876], "draw": [66, 89, 382, 508, 510, 512, 643, 738, 740, 741, 776, 777, 778, 779, 784, 791, 818, 823, 842, 844], "half": [66, 89, 126, 287, 629, 632, 643, 739, 741, 816, 834, 847], "235": [66, 740], "float16": [66, 77, 89, 134, 157, 159, 160, 165, 167, 346, 372, 629, 630, 637, 694, 740, 741, 776, 777, 816, 829, 834, 841, 844], "807": [66, 740], "_arraywithsearch": [67, 102], "select_last_index": [67, 90, 644, 744, 745], "occurr": [67, 378, 387, 498, 520, 644, 645, 744, 745, 749], "argmin": [67, 90, 644, 867], "output_dtyp": [67, 90, 644, 745], "argwher": [67, 90, 644], "nonzero": [67, 90, 98, 221, 222, 223, 226, 229, 238, 240, 243, 245, 247, 273, 286, 291, 632, 644], "as_tupl": [67, 90, 644, 747], "fewer": [67, 90, 644, 747], "_arraywithset": [68, 102], "unique_al": [68, 91, 645], "by_valu": [68, 91, 645, 749], "inverse_indic": [68, 91, 378, 498, 645, 749, 751], "unique_count": [68, 91, 645], "unique_invers": [68, 91, 645], "unique_valu": [68, 91, 645], "admonit": [68, 752], "dask": [68, 645, 749, 750, 751, 752, 860], "difficult": [68, 645, 749, 750, 751, 752, 820, 823, 829, 844, 855], "omit": [68, 283, 632, 645, 749, 750, 751, 752, 836, 840, 841], "x_i": [68, 70, 79, 98, 220, 221, 222, 225, 226, 227, 229, 231, 236, 237, 238, 243, 245, 246, 253, 254, 255, 256, 257, 261, 262, 263, 264, 268, 275, 280, 283, 284, 285, 286, 287, 288, 290, 291, 293, 335, 336, 338, 359, 372, 632, 645, 647, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 791, 832], "x_j": [68, 645, 749, 750, 751, 752], "typeerror": [68, 91, 645, 752, 851], "_arraywithsort": [69, 102], "stabil": [69, 92, 592, 593, 634, 646, 753, 756, 829, 839, 845, 847], "msort": [69, 92, 646], "searchsort": [69, 92, 646, 777], "sorter": [69, 92, 646, 755], "ret_dtyp": [69, 92, 646, 755], "_arraywithstatist": [70, 102], "cumprod": [70, 93, 647, 841, 854, 867], "cumsum": [70, 93, 647, 829, 867], "einsum": [70, 93, 647], "equat": [70, 80, 93, 314, 369, 376, 446, 637, 647, 686, 759, 776, 805, 828, 870], "operand": [70, 80, 84, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 363, 372, 373, 375, 418, 632, 637, 647, 685, 691, 759, 760, 762, 763, 765, 805, 806, 824, 827, 832, 841], "contract": [70, 637, 647, 689, 759, 806], "seq": [70, 647, 759, 776], "ii": [70, 93, 647, 759, 820], "jk": [70, 647, 759, 806], "ik": [70, 647, 759, 806], "126": [70, 110, 279, 626, 632, 637, 647, 679, 759], "510": [70, 647, 759], "special": [70, 85, 97, 98, 102, 103, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 632, 637, 647, 685, 691, 760, 761, 762, 763, 764, 765, 766, 776, 777, 778, 779, 784, 791, 818, 821, 823, 824, 826, 828, 831, 832, 833, 836, 840, 842, 843, 844, 845, 847, 870, 871, 872], "arithmet": [70, 93, 234, 240, 273, 632, 647, 761, 841], "propag": [70, 234, 335, 336, 372, 632, 647, 760, 761, 762, 764, 765, 766, 839], "overflow": [70, 93, 223, 240, 247, 632, 637, 647, 685, 761, 765, 817, 829], "04999995": [70, 761], "freedom": [70, 93, 647, 764, 766, 825], "constitut": [70, 93, 647, 764, 766, 837, 849, 871], "commonli": [70, 93, 647, 764, 766, 833, 837, 839], "81649661": [70, 647, 764], "6666665": [70, 766, 852], "667": [70, 81, 240, 541, 592, 632, 634, 766], "_arraywithutil": [71, 102], "logic": [71, 94, 204, 240, 241, 267, 268, 269, 273, 276, 631, 632, 648, 767, 768, 818, 824, 828, 829, 830, 833, 837, 838, 839, 840, 841, 843, 844, 847, 851, 864], "AND": [71, 94, 230, 241, 267, 632, 648, 767], "OR": [71, 94, 233, 269, 276, 632, 648, 768, 819, 820, 839], "_wrap_funct": [72, 95, 826, 837, 838], "function_nam": [72, 95, 818, 845], "new_funct": [72, 95, 826], "add_ivy_array_instance_method": 72, "cl": [72, 95], "moduletyp": [72, 95, 863, 864, 865], "toi": [72, 95], "arrayexampl": 72, "hasattr": [72, 95], "_containerwithactiv": [73, 103], "dict_in": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846, 852], "queue_load_s": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "container_combine_method": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "list_join": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue_timeout": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846], "print_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "key_length_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_ind": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_line_spac": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "ivyh": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "default_key_color": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "keyword_color_dict": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "rebuild_child_contain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "types_to_iteratively_nest": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "alphabetical_kei": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "dynamic_backend": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 793, 794, 825, 846], "build_cal": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "containerbas": [73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 827], "_static_gelu": 73, "key_chain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "to_appli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune_unappli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "map_sequ": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 732, 733, 734, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 774, 777, 828], "static_gelu": 73, "046": 73, "_static_hardswish": 73, "_static_leaky_relu": 73, "static_leaky_relu": 73, "38999999": [73, 80, 112, 295, 296, 367], "_static_log_softmax": 73, "static_log_softmax": 73, "371": [73, 113], "_static_mish": 73, "static_mish": 73, "30883577": [73, 114, 626], "28903052": [73, 114, 626], "10714479": [73, 114, 626], "_static_relu": 73, "static_relu": 73, "_static_sigmoid": 73, "static_sigmoid": 73, "2689414": [73, 116, 117, 626], "7310586": [73, 116, 117, 626], "88079703": [73, 116, 626], "62245935": [73, 116], "4750208": [73, 116], "_static_softmax": 73, "static_softmax": 73, "72844321": [73, 117], "19852395": [73, 117], "07303288": [73, 117], "_static_softplu": 73, "revert": [73, 118, 626], "static_softplu": 73, "53499615": 73, "42036411": 73, "948": [73, 118, 641, 718], "dictionari": [74, 91, 103, 212, 601, 617, 631, 634, 635, 752, 771, 773, 806, 824, 828, 829, 837, 841, 842, 852, 855], "asynchron": [74, 103, 870], "wait": [74, 103, 586, 634, 812, 818, 820, 828, 841], "arriv": [74, 103, 586, 634, 847], "cont_list_join": [74, 103], "whitespac": [74, 103], "indent": [74, 103, 852], "newlin": [74, 103, 832], "termin": [74, 103, 819, 820, 827, 834, 835, 849, 852], "constructor": [74, 103, 536, 634, 773, 789, 797, 829, 830, 832, 851], "kept": [74, 103, 640, 715, 716, 820, 840, 845], "encount": [74, 103, 792, 816, 818, 829, 833, 834, 844], "node": [74, 81, 103, 538, 548, 595, 641, 728, 729, 791, 800, 826, 827, 841, 860, 863, 864, 871], "alphabet": [74, 103], "__setitem__": [74, 378, 492, 824, 827, 851], "_cont_at_key_chains_input_as_dict": 74, "current_chain": 74, "ignore_key_error": 74, "_cont_at_key_chains_input_as_seq": 74, "_cont_call_static_method_with_flexible_arg": 74, "static_method": 74, "kw": 74, "self_idx": 74, "_cont_concat_unifi": 74, "_cont_get_dev": 74, "_cont_get_dtyp": 74, "_cont_get_shap": 74, "_cont_ivi": 74, "_cont_mean_unifi": 74, "_1": 74, "_cont_prune_key_chains_input_as_dict": 74, "return_cont": 74, "_cont_prune_key_chains_input_as_seq": 74, "_cont_slice_kei": 74, "key_slic": 74, "_cont_sum_unifi": 74, "_get_queue_item": 74, "cont_all_fals": 74, "assert_is_bool": 74, "cont_all_key_chain": 74, "include_empti": 74, "cont_all_tru": [74, 827, 852], "cont_as_bool": 74, "cont_assert_contains_sub_contain": 74, "sub_cont": 74, "screen": [74, 818, 819, 852], "cont_assert_contains_sub_structur": 74, "check_shap": [74, 798], "cont_assert_ident": 74, "check_typ": 74, "same_arrai": [74, 852], "arrays_equ": 74, "cont_assert_identical_structur": 74, "assert_and_assign": 74, "congruent": 74, "cont_at_key_chain": 74, "ignore_non": 74, "cont_at_kei": 74, "substr": 74, "cont_combin": 74, "duplic": [74, 378, 489, 557, 634, 641, 720, 825, 832, 838, 839, 842, 853, 876], "configur": [74, 212, 631, 641, 731, 819, 820, 826, 828, 829, 834, 835], "container_rightmost": 74, "cont_common_key_chain": 74, "cont_config": 74, "cont_contains_sub_contain": 74, "cont_contains_sub_structur": 74, "cont_copi": [74, 852], "cont_create_if_abs": 74, "noth": [74, 847, 876], "cont_cutoff_at_depth": 74, "depth_cutoff": 74, "cont_cutoff_at_height": 74, "height_cutoff": 74, "cont_deep_copi": [74, 852, 863], "cont_dev": 74, "cont_dev_str": 74, "cont_diff": [74, 852], "diff_kei": 74, "detect_key_diff": 74, "detect_value_diff": 74, "detect_shape_diff": 74, "container0": 74, "cont_dtyp": 74, "cont_duplicate_array_keychain": 74, "cont_find_sub_contain": 74, "sub_cont_to_find": 74, "cont_find_sub_structur": 74, "sub_struc_to_find": 74, "cont_flatten_key_chain": [74, 852], "above_height": [74, 852], "below_depth": [74, 852], "cont_format_key_chain": 74, "format_fn": 74, "cont_from_disk_as_hdf5": [74, 852], "h5_obj_or_filepath": 74, "slice_obj": 74, "disk": [74, 794, 852, 869], "h5py": 74, "filepath": [74, 648, 769, 770, 820, 823], "cont_from_disk_as_json": [74, 852], "json_filepath": 74, "cont_from_disk_as_pickl": [74, 852], "pickle_filepath": 74, "cont_from_flat_list": 74, "flat_list": 74, "hierarchi": [74, 810, 818, 843, 852, 866, 876], "cont_handle_inplac": 74, "prime": [74, 829], "overwritten": [74, 824, 825], "cont_has_kei": 74, "query_kei": 74, "somewher": [74, 828], "cont_has_key_chain": 74, "cont_ident": [74, 852], "cont_identical_array_shap": 74, "cont_identical_config": 74, "cont_identical_structur": 74, "cont_if_exist": 74, "cont_inplace_upd": 74, "cont_ivi": 74, "cont_key_chains_contain": 74, "sub_str": 74, "cont_list_stack": [74, 852], "cont_load": 74, "cont_map": [74, 827, 852], "func": [74, 97, 213, 364, 365, 366, 374, 539, 614, 617, 618, 620, 625, 631, 634, 635, 641, 731, 773, 818, 823, 824, 831, 833, 839], "cont_map_sub_cont": 74, "include_self": 74, "possibli": [74, 597, 634, 776, 844, 855], "cont_max_depth": 74, "cont_multi_map": 74, "map_nest": 74, "assert_ident": 74, "leftmost": [74, 641, 731], "cont_multi_map_in_funct": 74, "cont_num_arrai": 74, "cont_overwrite_at_key_chain": 74, "target_dict": 74, "return_dict": 74, "cont_prune_empti": 74, "keep_non": 74, "cont_prune_key_chain": 74, "key1": [74, 812, 853], "key2": [74, 812], "key3": 74, "cont_prune_key_from_key_chain": 74, "certain": [74, 126, 137, 138, 377, 454, 629, 818, 819, 820, 823, 829, 837, 843, 844, 847, 855, 863, 864, 865, 874], "cont_prune_kei": 74, "cont_prune_keys_from_key_chain": 74, "cont_reduc": 74, "cont_remove_key_length_limit": 74, "cont_remove_print_limit": 74, "cont_reshape_lik": 74, "leading_shap": 74, "cont_restructur": 74, "keep_orig": 74, "old": [74, 819, 825, 840], "cont_restructure_key_chain": 74, "keychain_map": 74, "cont_sav": 74, "cont_set_at_key_chain": 74, "cont_set_at_kei": 74, "cont_shap": [74, 636, 654], "cont_show": 74, "cont_show_sub_contain": 74, "sub_cont_or_keychain": 74, "cont_size_ordered_arrai": 74, "keychain": [74, 80, 298, 337, 462, 463, 464, 493], "cont_slice_kei": 74, "all_depth": 74, "cont_slice_via_kei": 74, "slice_kei": 74, "cont_sort_by_kei": 74, "cont_structural_diff": 74, "cont_to_dict": 74, "cont_to_disk_as_hdf5": [74, 852], "starting_index": 74, "max_batch_s": 74, "cont_to_disk_as_json": [74, 852], "cont_to_disk_as_pickl": [74, 852], "cont_to_flat_list": 74, "cont_to_iter": [74, 827], "leaf_keys_onli": 74, "cont_to_iterator_kei": 74, "cont_to_iterator_valu": 74, "cont_to_json": 74, "cont_to_nested_list": 74, "cont_to_raw": 74, "cont_trim_kei": 74, "cont_try_kc": 74, "cont_unifi": 74, "concatten": [74, 213, 631], "cont_unstack_cont": 74, "dim_siz": 74, "cont_update_config": 74, "cont_with_default_key_color": 74, "cont_with_entries_as_list": 74, "cont_with_ivy_backend": 74, "ivy_backend": [74, 842], "cont_with_key_length_limit": [74, 852], "cont_with_print_ind": [74, 852], "cont_with_print_limit": [74, 852], "cont_with_print_line_spac": 74, "h5_file_s": 74, "shuffle_h5_fil": 74, "split_cont": 74, "_is_json": 74, "_repr": 74, "_containerwithconvers": [75, 103], "_static_to_ivi": 75, "_static_to_n": 75, "_containerwithcr": [76, 103], "_static_arang": 76, "_static_asarrai": 76, "_static_copy_arrai": 76, "_static_empti": 76, "_static_empty_lik": 76, "_static_ey": 76, "n_row": [76, 80, 132, 147, 328, 369, 376, 437, 629], "n_col": [76, 80, 132, 147, 328, 369, 629], "_static_from_dlpack": 76, "_static_ful": 76, "_static_full_lik": 76, "static_full_lik": 76, "2324": [76, 136, 629], "234": [76, 79, 136, 159, 242, 293, 629, 630, 632, 636, 660, 776], "_static_linspac": 76, "_static_logspac": 76, "static_logspac": 76, "15443469": [76, 138], "64158883": [76, 138], "_static_meshgrid": 76, "_static_native_arrai": 76, "_static_one_hot": 76, "static_one_hot": 76, "_static_on": 76, "_static_ones_lik": 76, "_static_tril": 76, "_static_triu": 76, "_static_zero": 76, "_static_zeros_lik": 76, "frombuff": [76, 629], "expos": [76, 134, 542, 629, 634, 812, 828, 849, 853, 859], "x00": [76, 134, 629], "xf0": [76, 134, 629], "x01": [76, 134, 629], "x02": [76, 134, 629], "x03": [76, 134, 629], "x04": [76, 134, 629], "x05": [76, 134], "5443469": [76, 138, 629], "static_frombuff": 76, "static_triu_indic": 76, "triu_indic": [76, 629], "_containerwithdatatyp": [77, 103], "_static_astyp": 77, "718": [77, 79, 152, 269, 630], "618": [77, 79, 152, 269, 630], "static_astyp": 77, "_static_broadcast_arrai": 77, "static_broadcast_arrai": 77, "_static_broadcast_to": 77, "static_broadcast_to": 77, "_static_can_cast": 77, "from_": [77, 155, 630], "static_can_cast": 77, "_static_default_complex_dtyp": 77, "complex_dtyp": [77, 158, 181, 630], "_static_default_float_dtyp": 77, "float_dtyp": [77, 160, 183, 630], "_static_dtyp": 77, "_static_finfo": 77, "inquir": [77, 165, 168], "static_finfo": 77, "55040e": [77, 165, 630], "7976931348623157e": [77, 165, 630], "308": [77, 165, 630, 776, 844], "_static_function_supported_dtyp": 77, "_static_function_unsupported_dtyp": 77, "_static_iinfo": 77, "1800": [77, 168, 630], "1084": 77, "40000": 77, "static_iinfo": 77, "2147483648": [77, 80, 168, 378, 492, 630], "2147483647": [77, 168, 630], "_static_is_bool_dtyp": 77, "dtype_in": [77, 150, 151, 164, 170, 171, 172, 173, 174, 175, 176, 177, 192, 630], "_static_is_complex_dtyp": 77, "is_complex_dtyp": [77, 630, 845], "roughli": [77, 819, 823, 873], "static_is_complex_dtyp": 77, "_static_is_float_dtyp": 77, "static_is_float_dtyp": 77, "_static_is_int_dtyp": 77, "_static_is_uint_dtyp": 77, "_static_result_typ": 77, "static_result_typ": 77, "broadcats": [77, 153], "_containerwithdevic": [78, 103], "_static_dev": 78, "static_dev": 78, "_static_to_devic": 78, "static_to_devic": 78, "contaion": [78, 197], "_containerwithelementwis": [79, 103], "_static_ab": 79, "static_ab": 79, "_static_aco": 79, "static_aco": 79, "_static_acosh": 79, "static_acosh": 79, "_static_add": 79, "static_add": [79, 107], "_static_asin": 79, "static_asin": 79, "524": [79, 225, 632], "412": [79, 84, 225, 632, 641, 718], "_static_asinh": 79, "static_asinh": 79, "_static_atan": 79, "static_atan": 79, "_static_atan2": 79, "static_atan2": 79, "915": [79, 228, 632], "983": [79, 228, 632], "978": [79, 228, 632], "696": [79, 89, 228, 632, 740], "993": [79, 228, 632], "_static_atanh": 79, "static_atanh": 79, "_static_bitwise_and": 79, "static_bitwise_and": 79, "_static_bitwise_invert": 79, "static_bitwise_invert": 79, "_static_bitwise_left_shift": 79, "_static_bitwise_or": 79, "static_bitwise_or": 79, "_static_bitwise_right_shift": 79, "static_bitwise_right_shift": 79, "_static_bitwise_xor": 79, "static_bitwise_xor": 79, "_static_ceil": 79, "static_ceil": 79, "_static_co": 79, "static_co": 79, "_static_cosh": 79, "static_cosh": 79, "_static_deg2rad": 79, "static_deg2rad": 79, "0262": [79, 239, 279, 632], "873": [79, 239, 279, 632], "_static_divid": 79, "static_divid": 79, "_static_equ": 79, "static_equ": 79, "_static_erf": 79, "static_erf": 79, "27632612": [79, 242], "934008": [79, 242, 632], "99999928": [79, 242], "91903949": [79, 242], "_static_exp": 79, "static_exp": 79, "59814835": [79, 243, 632], "4131622": [79, 243], "_static_expm1": 79, "thefunct": [79, 242], "areal": 79, "static_expm1": 79, "71828175": [79, 243, 632], "38905621": [79, 243, 632], "59815216": 79, "_static_floor": 79, "static_floor": 79, "_static_floor_divid": 79, "static_floor_divid": 79, "_static_great": 79, "static_great": 79, "_static_greater_equ": 79, "static_greater_equ": 79, "_static_isfinit": 79, "999999999999": [79, 254, 632], "static_isfinit": 79, "_static_isinf": 79, "static_isinf": 79, "_static_isnan": 79, "static_isnan": 79, "_static_isr": 79, "0j": [79, 80, 142, 143, 221, 222, 223, 226, 229, 238, 243, 245, 257, 261, 263, 280, 284, 286, 287, 291, 338, 372, 629, 632, 637, 685], "23j": [79, 80], "9j": [79, 80], "static_isr": 79, "_static_lcm": 79, "1080": [79, 258], "1550": [79, 258], "130": [79, 258], "_static_less": 79, "static_less": 79, "_static_less_equ": 79, "static_less_equ": 79, "_static_log": 79, "static_log": 79, "_static_log10": 79, "static_log10": 79, "898": [79, 262, 632], "0414": [79, 262, 632], "_static_log1p": 79, "static_log1p": 79, "_static_log2": 79, "static_log2": 79, "_static_logaddexp": 79, "static_logaddexp": 79, "_static_logical_and": 79, "static_logical_and": 79, "_static_logical_not": 79, "static_logical_not": 79, "_static_logical_or": 79, "static_logical_or": 79, "_static_logical_xor": 79, "static_logical_xor": 79, "_static_maximum": 79, "static_maximum": 79, "_static_minimum": 79, "static_minimum": 79, "_static_multipli": 79, "static_multipli": 79, "_static_neg": 79, "static_neg": 79, "_static_not_equ": 79, "static_not_equ": 79, "_static_posit": 79, "static_posit": 79, "_static_pow": 79, "static_pow": 79, "_static_rad2deg": 79, "static_rad2deg": 79, "5160": 79, "10300": [79, 279, 632], "15500": 79, "20600": 79, "2860": [79, 279], "_static_reciproc": 79, "recirpoc": [79, 281], "static_reciproc": 79, "_static_remaind": 79, "static_remaind": 79, "_static_round": 79, "thevfunct": 79, "527": [79, 283, 632], "static_round": 79, "301": [79, 283, 632], "_static_sign": 79, "static_sign": 79, "_static_sin": 79, "static_sin": 79, "757": [79, 285, 632], "959": [79, 245, 285, 632], "279": [79, 285, 375, 397, 407, 540, 632, 634], "_static_sinh": 79, "static_sinh": 79, "835": [79, 286], "347": [79, 286], "721": [79, 286], "_static_sqrt": 79, "static_sqrt": 79, "_static_squar": 79, "static_squar": 79, "_static_subtract": 79, "static_subtract": 79, "_static_tan": 79, "static_tan": 79, "_static_tanh": 79, "static_tanh": 79, "995": [79, 291, 632], "9999": 79, "_static_trapz": 79, "static_trapz": 79, "_static_trunc": 79, "static_trunc": 79, "_static_trunc_divid": 79, "75j": [79, 224, 253], "01317055": [79, 224], "05634501": [79, 224], "115": [79, 224, 279, 632], "3461759": [79, 224], "524111": [79, 224], "644": [79, 225, 632, 853], "305": [79, 84, 225, 632], "351": [79, 239, 279], "00613": [79, 239], "0154": [79, 239], "403": [79, 243], "428772": [79, 243], "649": [79, 245], "220": [79, 245], "865": [79, 245], "metho": [79, 252, 264], "imaginari": [79, 102, 112, 115, 118, 142, 143, 221, 222, 223, 238, 240, 241, 243, 245, 253, 273, 275, 276, 283, 286, 287, 291, 338, 372, 375, 376, 419, 430, 626, 629, 632, 644, 747, 831], "4j": [79, 253, 375, 419, 593, 632, 634], "7j": [79, 80, 257, 280, 338, 372, 632], "956": [79, 263], "08746284": [79, 266], "32192809": [79, 266], "nuner": [79, 273], "413": [79, 279], "335": [79, 80, 280, 338], "345j": [79, 80, 280, 338], "static_angl": 79, "static_exp2": 79, "static_fmin": 79, "static_gcd": 79, "static_imag": 79, "static_logaddexp2": 79, "static_nan_to_num": 79, "static_r": 79, "_containerwithactivationexperiment": [80, 103], "_static_celu": 80, "formlat": 80, "static_celu": 80, "_static_elu": 80, "static_elu": 80, "_static_hardshrink": 80, "hard": [80, 297, 820, 851, 870], "shrinkag": [80, 297, 307, 378, 491], "_static_hardsilu": 80, "20833333": [80, 298, 367], "29166666": [80, 298, 367], "66666669": [80, 103, 298, 367, 381, 507, 617, 635], "66666663": [80, 137, 298, 367, 629], "_static_hardtanh": 80, "3899": 80, "_static_scaled_tanh": 80, "931": 80, "71587813": 80, "88367474": 80, "00376701": [80, 304], "2285642": 80, "99999881": 80, "49999905": 80, "_static_silu": 80, "static_silu": 80, "27777028": [80, 306], "23947507": [80, 306], "0900332": [80, 306], "_static_softshrink": 80, "_static_tanhshrink": 80, "36634541": [80, 309], "02005103": [80, 309], "00262468": [80, 309], "_static_threshold": 80, "389999": [80, 299], "19722462": [80, 300], "84729779": [80, 300], "31326163": [80, 301], "46328258": [80, 301], "51301527": [80, 301], "79813886": [80, 301], "simplywrap": [80, 304], "54939651": [80, 304], "09999998": [80, 304, 615, 635], "09999999": [80, 304], "08336546": [80, 304], "0379949": [80, 304], "22856998": [80, 305], "42028043": [80, 305], "31868932": [80, 305], "static_logit": 80, "static_logsigmoid": 80, "34115386": 80, "64439666": 80, "24115384": 80, "55435526": 80, "07888974": 80, "00741899": 80, "26328245": 80, "00012302": 80, "static_prelu": 80, "static_relu6": 80, "static_selu": 80, "static_thresholded_relu": 80, "_containerwithconversionexperiment": [80, 103], "_containerwithcreationexperiment": [80, 103], "_static_trilu": 80, "blackman": [80, 312, 369], "00770143e": [80, 312], "49229857e": [80, 312], "hamming_window": [80, 369], "ham": [80, 314, 369], "4180": [80, 314], "8180": [80, 314], "hann_window": [80, 369], "hann": [80, 315, 369], "7500": [80, 315], "3455": [80, 315], "9045": [80, 315], "kaiser_bessel_derived_window": [80, 369], "suitabl": [80, 317, 318, 369, 646, 755, 778, 819, 820, 827, 845, 870], "spectral": [80, 317, 318, 369], "analysi": [80, 317, 318, 369, 870, 871], "kaiser": [80, 312, 317, 318, 369], "70710677": [80, 317, 505, 507], "18493208": [80, 317, 369], "9827513": [80, 317, 369], "kaiser_window": [80, 369], "static_kaiser_window": [80, 318], "2049": [80, 318], "8712": [80, 318], "0367": [80, 318, 369], "7753": [80, 318], "static_blackman_window": 80, "static_eye_lik": 80, "static_hamming_window": 80, "static_hann_window": 80, "static_hann": 80, "static_kaiser_bessel_derived_window": 80, "static_mel_weight_matrix": 80, "static_polyv": 80, "static_tril_indic": 80, "static_unsorted_segment_mean": 80, "static_unsorted_segment_min": 80, "static_unsorted_segment_sum": 80, "static_vorbis_window": 80, "vorbis_window": [80, 369], "vorbi": [80, 333, 369], "38268343": [80, 333, 637, 673], "92387953": [80, 333], "14943586": [80, 333, 369], "51644717": [80, 333], "85631905": [80, 333], "98877142": [80, 333], "tril_indic": [80, 369], "_containerwithdata_typeexperiment": [80, 103], "_containerwithdeviceexperiment": [80, 103], "_containerwithelementwiseexperiment": [80, 103], "0003": [80, 334, 637, 676, 776, 779], "0006": [80, 334, 362], "2345j": [80, 338], "5772": [80, 342], "9635": [80, 342], "4228": [80, 342], "9228": [80, 342], "57299206e": [80, 343, 344], "67773480e": [80, 343, 344], "20904985e": [80, 343, 344], "84270084": [80, 343, 344, 372], "99532223": [80, 343, 344], "99997795": [80, 343, 344], "mantissa": [80, 348, 372, 829], "frist": [80, 349, 372], "coord": [80, 349], "6055": [80, 350], "160": [80, 352], "10240": [80, 352], "60000038": [80, 353, 372, 637, 693], "0707": [80, 359, 372], "0579": [80, 359, 372], "static_allclos": 80, "static_amax": 80, "static_amin": 80, "static_binar": 80, "static_conj": 80, "static_copysign": 80, "static_count_nonzero": 80, "static_diff": 80, "static_digamma": 80, "57721537": 80, "96351004": 80, "static_erfc": 80, "15729921": 80, "00467773": [80, 343, 372], "static_erfinv": 80, "static_fix": 80, "static_float_pow": 80, "static_fmax": 80, "static_fmod": 80, "static_frexp": 80, "static_gradi": 80, "static_hypot": 80, "static_isclos": 80, "static_ldexp": 80, "static_lerp": 80, "90000057": [80, 353, 372], "70000076": [80, 353, 372], "55000019": [80, 353, 372], "05000019": [80, 353, 372], "static_modf": 80, "static_nansum": 80, "static_nextaft": 80, "static_signbit": 80, "static_sinc": 80, "636": 80, "090": 80, "070": 80, "057": 80, "static_sparsify_tensor": 80, "static_xlogi": 80, "static_zeta": 80, "0244": [80, 362], "_containerwithgeneralexperiment": [80, 103], "_static_reduc": 80, "static_reduc": 80, "_containerwithgradientsexperiment": [80, 103], "_containerwithimageexperiment": [80, 103], "_containerwithlayersexperiment": [80, 103], "_static_fft": 80, "static_fft": 80, "_static_sliding_window": 80, "673": [80, 397], "0507": [80, 397], "79711437": [80, 375, 397, 407], "94867325": [80, 375, 397, 407], "74089146": [80, 375, 397, 407], "25980937": [80, 375, 397, 407], "64958102": [80, 375, 397, 407], "2442648": [80, 375, 397, 407], "247306": [80, 409], "908323j": [80, 409], "494955": [80, 409], "90395j": [80, 409], "static_adaptive_avg_pool1d": 80, "static_adaptive_avg_pool2d": 80, "static_adaptive_max_pool2d": 80, "static_adaptive_max_pool3d": 80, "static_avg_pool1d": 80, "static_avg_pool2d": 80, "static_avg_pool3d": 80, "static_dct": 80, "253": [80, 286, 632], "515": [80, 643, 740], "467": 80, "static_dft": 80, "static_embed": 80, "static_idct": 80, "93732834": [80, 375, 397], "75048852": [80, 375, 397], "29723358": [80, 375, 407], "6950531": 80, "93914509": 80, "88008738": 80, "18951225": 80, "06697273": [80, 375, 407], "57439804": 80, "68861485": [80, 375, 407], "41308832": [80, 375, 407], "0700836": 80, "2449036": 80, "6711426": 80, "514": 80, "501709": 80, "4924011": 80, "static_ifft": 80, "static_ifftn": 80, "static_interpol": 80, "static_max_pool1d": 80, "static_max_pool2d": 80, "max_pool2dd": 80, "static_max_pool3d": 80, "static_max_unpool1d": 80, "static_rfft": 80, "static_rfftn": 80, "static_rnn": 80, "step_funct": [80, 375, 421], "initial_st": [80, 375, 421, 636, 661], "go_backward": [80, 375, 421], "unrol": [80, 375, 421, 636, 662, 849, 852], "input_length": [80, 375, 421], "zero_output_for_mask": [80, 375, 421], "return_all_output": [80, 375, 421], "rnn": [80, 375, 870], "tempor": [80, 375, 421], "state_s": [80, 375, 421], "while_loop": [80, 375, 421, 628], "otput": [80, 375, 421], "funciton": [80, 375, 421], "static_stft": 80, "_containerwithlinearalgebraexperiment": [80, 103], "933034": [80, 376, 426], "eigenvealu": [80, 429, 672], "xx": [80, 429, 431, 672], "37228107": [80, 429, 672], "3722816": [80, 429, 672], "8245648": [80, 429, 672], "41597357": [80, 429, 672], "56576747": [80, 429, 672], "9093767": [80, 429, 672], "56155": [80, 430], "82842": [80, 430], "450": [80, 436], "static_adjoint": 80, "static_batched_out": 80, "static_cond": 80, "static_diagflat": 80, "static_dot": 80, "static_eig": 80, "static_eigh_tridiagon": 80, "static_eigv": 80, "static_higher_order_mo": 80, "static_initialize_tuck": 80, "static_kron": 80, "kroneck": [80, 376, 435, 436], "static_make_svd_non_neg": 80, "static_matrix_exp": 80, "static_mode_dot": 80, "static_multi_dot": 80, "static_multi_mode_dot": 80, "static_partial_tuck": 80, "static_svd_flip": 80, "static_tensor_train": 80, "static_truncated_svd": 80, "static_tt_matrix_to_tensor": 80, "tt_matrix": [80, 376, 450], "output_tensor": [80, 100, 376, 450], "static_tuck": 80, "_containerwithlossesexperiment": [80, 103], "_static_hinge_embedding_loss": 80, "_static_huber_loss": 80, "static_huber_loss": 80, "0575": [80, 453], "_static_kl_div": 80, "_static_l1_loss": 80, "static_l1_loss": 80, "_static_log_poisson_loss": 80, "static_log_poisson_loss": 80, "_static_poisson_nll_loss": 80, "06446016": 80, "55611551": 80, "30244565": [80, 457], "_static_smooth_l1_loss": 80, "static_smooth_l1_loss": 80, "_static_soft_margin_loss": 80, "3890561": [80, 456], "413159": [80, 456], "06429195": [80, 457], "43333333": [80, 458], "10666666": [80, 458], "_containerwithmanipulationexperiment": [80, 103], "_static_fill_diagon": 80, "_static_put_along_axi": 80, "_static_tak": 80, "69999981": [80, 307, 367, 378, 468, 492], "_static_trim_zero": 80, "_static_unflatten": 80, "_static_unique_consecut": 80, "ary1": [80, 378, 462, 463, 464], "ary2": [80, 378, 462, 463, 464], "broadcast_shap": [80, 106, 378, 776, 778], "static_concat_from_sequ": [80, 469], "30192195": [80, 481], "static_as_strid": 80, "static_atleast_1d": 80, "static_atleast_2d": 80, "static_atleast_3d": 80, "static_broadcast_shap": 80, "static_column_stack": 80, "static_dsplit": 80, "static_dstack": 80, "static_expand": 80, "static_flatten": 80, "static_fliplr": 80, "static_flipud": 80, "static_fold": 80, "static_heavisid": 80, "static_hsplit": 80, "static_hstack": 80, "static_i0": 80, "static_matric": 80, "static_moveaxi": 80, "static_pad": 80, "static_partial_fold": 80, "static_partial_tensor_to_vec": 80, "static_partial_unfold": 80, "static_partial_vec_to_tensor": 80, "static_rot90": 80, "static_soft_threshold": 80, "static_take_along_axi": 80, "static_top_k": 80, "static_unfold": 80, "static_vsplit": 80, "static_vstack": 80, "_containerwithnormsexperiment": [80, 103], "16903085": [80, 505, 507], "50709254": [80, 505, 507], "84515423": [80, 505, 507], "44183609": [80, 505, 507], "56807494": [80, 505, 507], "69431382": [80, 505, 507], "static_batch_norm": 80, "static_group_norm": 80, "static_instance_norm": 80, "static_l1_norm": 80, "static_l2_norm": 80, "static_lp_norm": 80, "12500000": 80, "37500000": 80, "62500000": 80, "27500000": 80, "35000000": 80, "42500000": 80, "0000000": 80, "5000000": 80, "2500000": 80, "_containerwithrandomexperiment": [80, 103], "43643127": [80, 510], "32325703": [80, 510], "24031169": [80, 510], "34251311": [80, 510], "31692529": [80, 510], "3405616": [80, 510], "5319725": [80, 510], "22458365": [80, 510], "24344385": [80, 510], "26588406": [80, 510], "61075421": [80, 510], "12336174": [80, 510], "51142915": [80, 510], "25041268": [80, 510], "23815817": [80, 510], "64042903": [80, 510], "25763214": [80, 510], "10193883": [80, 510], "31624692": [80, 510], "46567987": [80, 510], "21807321": [80, 510], "37677699": [80, 510], "39914594": [80, 510], "22407707": [80, 510], "static_bernoulli": 80, "static_beta": 80, "static_dirichlet": 80, "static_gamma": 80, "static_poisson": 80, "_containerwithsearchingexperiment": [80, 103], "static_unravel_index": 80, "_containerwithsetexperiment": [80, 103], "_containerwithsortingexperiment": [80, 103], "invert_permut": [80, 385], "static_invert_permut": 80, "static_lexsort": [80, 92], "_containerwithstatisticalexperiment": [80, 103], "_static_cummax": 80, "static_cummax": 80, "_static_cummin": 80, "static_cummin": 80, "_static_nanmin": 80, "static_nanmin": 80, "func_nam": [80, 525, 818, 831, 832, 837, 841], "static_bincount": 80, "static_corrcoef": 80, "static_cov": [80, 387, 522], "static_histogram": 80, "static_igamma": 80, "static_lgamma": 80, "static_median": 80, "static_nanmean": 80, "static_nanmedian": 80, "static_nanprod": 80, "static_quantil": 80, "_containerwithutilityexperiment": [80, 103], "static_optional_get_el": 80, "_containerwithgener": [81, 103], "_static_all_equ": 81, "static_all_equ": 81, "_static_array_equ": 81, "a0": [81, 378, 468], "static_array_equ": 81, "_static_assert_supports_inplac": 81, "_static_clip_matrix_norm": 81, "static_clip_matrix_norm": 81, "849": [81, 540, 634], "_static_clip_vector_norm": 81, "static_clip_vector_norm": 81, "_static_einops_rearrang": 81, "static_einops_rearrang": 81, "_static_einops_reduc": 81, "static_einops_reduc": 81, "29333329": [81, 546, 634], "53000069": [81, 546, 634], "39666676": [81, 546, 634], "20666695": [81, 546, 634], "_static_einops_repeat": 81, "static_einops_repeat": 81, "_static_exist": 81, "_static_fourier_encod": 81, "static_fourier_encod": 81, "classivi": [81, 645, 750], "89858720e": 81, "79717439e": 81, "_static_gath": 81, "static_gath": 81, "_static_gather_nd": 81, "static_gather_nd": 81, "_static_get_num_dim": 81, "static_get_num_dim": 81, "_static_has_nan": 81, "leafwis": 81, "static_has_nan": 81, "_static_inplace_decr": 81, "_static_inplace_incr": 81, "_static_inplace_upd": 81, "_static_is_arrai": 81, "static_is_arrai": 81, "_static_is_ivy_arrai": 81, "static_is_ivy_arrai": 81, "_static_is_native_arrai": 81, "static_is_native_arrai": 81, "_static_scatter_flat": 81, "_static_scatter_nd": 81, "static_scatter_nd": 81, "_static_s": 81, "static_s": 81, "_static_stable_divid": 81, "22222222": 81, "11111111": 81, "857": [81, 592, 634], "444": 81, "_static_stable_pow": 81, "00012": [81, 593, 634], "00016": [81, 82, 593, 621, 634, 635], "00001": [81, 593, 634, 776], "00032": [81, 593], "00256": [81, 593], "1679638": [81, 593], "395": [81, 593], "16777383": [81, 593], "_static_supports_inplace_upd": 81, "_static_to_list": 81, "static_to_list": 81, "_static_to_numpi": 81, "static_to_numpi": 81, "_static_to_scalar": 81, "static_to_scalar": 81, "_static_value_is_nan": 81, "452": 81, "static_value_is_nan": 81, "833": [81, 541], "items": [81, 102, 634], "static_isin": 81, "static_items": 81, "static_strid": 81, "425": [81, 613], "_containerwithgradi": [82, 103], "_static_stop_gradi": 82, "static_stop_gradi": 82, "976": [82, 291, 615, 632, 635], "49e": [82, 615, 635], "74e": [82, 615, 635], "95e": [82, 615, 635], "024": [82, 615, 635], "096": [82, 615, 635], "216": [82, 85, 615, 635, 692], "626": [82, 615, 635], "en": [82, 615, 616, 635, 828], "wikipedia": [82, 615, 616, 635], "wiki": [82, 615, 616, 635], "stochastic_gradient_desc": [82, 615, 616, 635], "01099": [82, 616], "01003": [82, 616, 635], "01015": [82, 616, 635], "99936122": [82, 616, 635], "99936116": [82, 616, 635], "99936128": [82, 616, 635], "99936104": [82, 616, 635], "w_new": [82, 619, 635], "708": [82, 621, 635], "445": [82, 621, 635], "6e": [82, 621, 635], "00036": [82, 621, 635], "00049": [82, 621, 635], "layerwis": [82, 622, 635], "01132035": [82, 622, 635], "22264051": [82, 622, 635], "2056601": [82, 622, 635], "1324538": [82, 622, 635], "56490755": [82, 622, 635], "96622658": [82, 622, 635], "90848625": [82, 622, 635], "93616199": [82, 622, 635], "77232409": [82, 622, 635], "_containerwithimag": [83, 103], "_containerwithlay": [84, 103], "_static_conv1d": 84, "static_conv1d": 84, "_static_conv1d_transpos": 84, "static_conv1d_transpos": 84, "112": [84, 637, 647, 651, 682, 759], "_static_conv2d": 84, "ey": [84, 629, 636, 652, 658, 847, 854], "static_conv2d": 84, "_static_conv2d_transpos": 84, "static_conv2d_transpos": 84, "_static_conv3d": 84, "fdfh": [84, 654], "static_conv3d": 84, "_static_conv3d_transpos": 84, "static_conv3d_transpos": 84, "_static_depthwise_conv2d": 84, "inp": [84, 636, 658], "static_depthwise_conv2d": 84, "_static_dropout": 84, "static_dropout": 84, "_static_dropout1d": 84, "static_dropout1d": 84, "_static_dropout2d": 84, "_static_dropout3d": 84, "_static_linear": 84, "278": [84, 636, 659, 660], "static_linear": 84, "195": 84, "_static_lstm_upd": 84, "_static_multi_head_attent": 84, "_static_reduce_window": 84, "_static_scaled_dot_product_attent": 84, "static_scaled_dot_product_attent": 84, "39999962": [84, 636, 659, 660], "19999695": [84, 660], "11600018": [84, 660], "88399887": [84, 660], "306": [84, 636, 660], "19999981": [84, 297, 310, 367, 375, 419, 636, 659, 666], "59249449": [84, 636, 666], "68226194": [84, 636, 666], "19603825": [84, 636, 666], "9960382": [84, 636, 666], "26894283": [84, 636, 666], "40236187": [84, 636, 666], "39999437": [84, 636, 666], "59999037": [84, 636, 666], "35046196": [84, 636, 666], "54282808": [84, 636, 666], "39989519": [84, 636, 666], "5998764": [84, 636, 666], "_containerwithlinearalgebra": [85, 103], "_static_choleski": 85, "static_choleski": 85, "577": [85, 637, 667], "707": [85, 637, 667], "static_rol": [85, 87], "_static_cross": 85, "static_cross": 85, "_static_det": 85, "_static_diag": 85, "_static_diagon": 85, "static_diagon": 85, "_static_eigh": 85, "_static_eigvalsh": 85, "static_eigvalsh": 85, "51572949": [85, 637, 674], "17091519": [85, 637, 674], "3448143": [85, 637, 674], "35898387e": [85, 637, 674], "46410179e": [85, 637, 674], "_static_inn": 85, "static_inn": 85, "_static_inv": 85, "static_inv": 85, "_static_matmul": 85, "matul": 85, "static_matmul": 85, "_static_matrix_norm": 85, "deimens": 85, "static_matrix_norm": 85, "_static_matrix_pow": 85, "_static_matrix_rank": 85, "static_matrix_rank": 85, "_static_matrix_transpos": 85, "static_matrix_transpos": 85, "_static_out": 85, "n1": [85, 139, 629], "n2": [85, 139, 629], "static_out": [85, 682], "_static_pinv": 85, "static_pinv": 85, "0426": 85, "0964": 85, "0605": 85, "1368": 85, "_static_qr": 85, "static_qr": 85, "31622777": [85, 637, 684], "9486833": [85, 637, 684], "4472136": [85, 637, 684], "89442719": [85, 637, 684], "16227766": [85, 637, 684], "42718872": [85, 637, 684], "63245553": [85, 637, 684], "47213595": [85, 637, 684], "81377674": [85, 637, 684], "_static_slogdet": 85, "static_slogdet": 85, "6931472": 85, "0986123": 85, "_static_solv": 85, "_static_svd": 85, "static_svd": 85, "au": 85, "aS": 85, "avh": 85, "bvh": 85, "_static_svdv": 85, "_static_tensordot": 85, "_static_tensorsolv": 85, "_static_trac": 85, "static_trac": 85, "_static_vand": 85, "static_vand": 85, "343": [85, 283, 632, 692], "729": [85, 692, 853], "_static_vecdot": 85, "_static_vector_norm": 85, "static_vector_norm": 85, "77359247": [85, 694], "_static_vector_to_skew_symmetric_matrix": 85, "09861231": [85, 637, 685], "static_general_inner_product": 85, "3475602": [85, 687], "93765765": [85, 687], "58776021": [85, 687], "10416126": [85, 687], "80644298": [85, 687], "87024701": [85, 687], "48127627": [85, 687], "79101127": [85, 687], "98288572": [85, 687], "68917423": [85, 687], "_containerwithloss": [86, 103], "_static_binary_cross_entropi": 86, "static_binary_cross_entropi": 86, "511": 86, "223": 86, "357": 86, "_static_cross_entropi": 86, "static_cross_entropi": 86, "20397282": 86, "83258148": 86, "60943794": [86, 637, 685], "_static_sparse_cross_entropi": 86, "static_sparse_cross_entropi": 86, "36354783": [86, 638, 696], "14733934": [86, 638, 696], "17027519": [86, 697], "53647931": [86, 697], "53647929": [86, 698], "1702752": [86, 698], "_containerwithmanipul": [87, 103], "_static_clip": 87, "static_clip": 87, "_static_concat": 87, "_static_constant_pad": 87, "static_constant_pad": 87, "_static_expand_dim": 87, "static_expand_dim": 87, "container_axi": [87, 639, 702], "_static_flip": 87, "static_flip": 87, "_static_permute_dim": 87, "static_permute_dim": 87, "_static_repeat": 87, "static_repeat": 87, "_static_reshap": 87, "static_reshap": 87, "_static_rol": 87, "positivclip": 87, "_static_split": 87, "static_split": 87, "_static_squeez": 87, "static_squeez": 87, "_static_stack": 87, "leavv": 87, "static_stack": 87, "_static_swapax": 87, "_static_til": 87, "static_til": 87, "_static_unstack": 87, "static_unstack": 87, "_static_zero_pad": 87, "repreat": [87, 705], "_containerwithnorm": [88, 103], "34198591": [88, 642, 737], "04274819": [88, 642, 737], "29923761": [88, 642, 737], "24053511": [88, 642, 737], "62221265": [88, 737], "20277636": [88, 737], "41943574": [88, 737], "83710337": [88, 737], "_containerwithrandom": [89, 103], "_static_multinomi": 89, "_static_randint": 89, "static_randint": 89, "_static_random_norm": 89, "static_random_norm": 89, "651": 89, "_static_random_uniform": 89, "static_random_uniform": 89, "481": 89, "0999": 89, "_static_shuffl": 89, "static_shuffl": 89, "431": [89, 740], "274": [89, 740], "_containerwithsearch": [90, 103], "_static_argmax": 90, "static_argmax": 90, "_static_argmin": 90, "static_argmin": 90, "_static_argwher": 90, "static_argwher": 90, "_static_nonzero": 90, "_static_wher": 90, "static_wher": 90, "_containerwithset": [91, 103], "_static_unique_al": 91, "static_unique_al": 91, "_static_unique_count": 91, "static_unique_count": 91, "_static_unique_invers": 91, "static_unique_invers": 91, "_static_unique_valu": 91, "_containerwithsort": [92, 103], "_static_argsort": 92, "static_argsort": 92, "_static_searchsort": 92, "_static_sort": 92, "static_sort": 92, "static_msort": 92, "_containerwithstatist": [93, 103], "_static_cumprod": 93, "static_cumprod": 93, "_static_cumsum": 93, "static_cumsum": 93, "_static_min": 93, "_static_prod": 93, "static_prod": 93, "11000001": [93, 763], "23100001": [93, 763], "30800003": [93, 647, 763], "_static_sum": 93, "_static_var": 93, "static_var": 93, "12666667": [93, 647, 766], "11555555": [93, 647, 766], "rtype": [93, 759, 805], "respectv": [93, 764], "81649649": [93, 764], "94280904": [93, 764], "509902": [93, 647, 764], "2472192": [93, 764], "44948983": [93, 764], "41421354": [93, 764], "6666667": [93, 766], "_containerwithutil": [94, 103], "_static_al": 94, "static_al": 94, "_static_ani": 94, "static_ani": 94, "add_ivy_container_instance_method": 95, "containerexampl": 95, "factorized_tensor": [96, 97, 98, 99, 100, 101], "factorizedtensor": [96, 97, 98, 99, 100, 101], "matrix_or_tensor": 96, "to_unfold": [96, 97, 98, 99, 100, 101], "to_vec": [96, 97, 98, 99, 100, 101], "cp_tensor": [97, 98], "cptensor": [97, 98, 323, 369], "cp_copi": 97, "cp_flip_sign": 97, "s_i": [97, 98], "normalisation_weight": [97, 98], "normalised_factor": [97, 98], "cp_lstsq_grad": 97, "return_loss": 97, "nabla": 97, "mathcal": 97, "mathbf": 97, "factor_matric": 97, "cp_gradient": 97, "quantiti": 97, "cp_mode_dot": 97, "keep_dim": [97, 101], "cp_multi_mode_dot": 97, "cp_n_param": 97, "tensor_shap": [97, 99, 100, 101], "n_param": [97, 98, 99, 100, 101], "cp_norm": 97, "cp_to_tensor": 97, "khatria": 97, "rao": [97, 376, 435], "khatri": [97, 376, 435], "cp_normal": 97, "normalis": [97, 98], "u_1": [97, 98], "u_n": [97, 98], "v_1": [97, 98], "v_n": [97, 98], "v_k": [97, 98], "u_k": [97, 98], "absorb": [97, 98], "refold": [97, 378, 477, 488], "cp_to_unfold": 97, "ie": 97, "s_u_i": 97, "exploit": [97, 873], "khatri_rao": [97, 376], "cp_to_vec": 97, "ravel": [97, 847], "unfolding_dot_khatri_rao": 97, "mttkrp": 97, "validate_cp_rank": 97, "percent": [97, 100], "validate_cp_tensor": 97, "parafac2_tensor": 98, "parafac2tensor": [98, 324, 369], "apply_parafac2_project": 98, "evolv": [98, 859, 870], "b_i": 98, "ijk": [98, 806], "sum_r": 98, "a_": 98, "ir": [98, 868, 871, 876], "jr": 98, "kr": 98, "coupl": [98, 819, 824, 851, 853, 870], "factoris": 98, "i1": [98, 387, 525], "classmethod": [98, 105, 106, 781], "from_cptensor": 98, "parafac2_tensor_ok": 98, "parafac2_normalis": 98, "normalised_project": 98, "parafac2_to_slic": 98, "slice_idx": 98, "frontal": 98, "a_i": 98, "j_i": 98, "b_": 98, "reformul": 98, "p_i": 98, "orthogon": [98, 323, 327, 369, 376, 429, 445, 451, 637, 672, 673], "sum_": 98, "ijr": 98, "constraint": [98, 806, 828, 829, 839], "projection_matric": 98, "parafac2_to_tensor": 98, "construct": [98, 639, 712, 792, 795, 796, 797, 843, 849, 853, 854, 868, 870, 877], "uneven": 98, "parafac2_to_unfold": 98, "parafac2_to_vec": 98, "validate_parafac2_tensor": 98, "cp": [98, 323, 369, 820], "tr_tensor": 99, "trtensor": [99, 325, 369], "tr_n_param": 99, "tr_to_tensor": 99, "tr_to_unfold": 99, "tr_to_vec": 99, "validate_tr_rank": 99, "validate_tr_tensor": 99, "tt_tensor": 100, "_tt_n_param": 100, "mp": [100, 326, 369], "index_upd": 100, "pad_tt_rank": 100, "factor_list": 100, "n_pad": 100, "pad_boundari": 100, "ring": 100, "bond": 100, "padded_factor_list": 100, "tt_to_tensor": 100, "assembl": [100, 376, 450], "tt_to_unfold": 100, "reassembl": 100, "tt_to_vec": 100, "validate_tt_rank": 100, "constant_rank": 100, "allow_overparametr": 100, "proport": [100, 791], "realiz": [100, 870], "validate_tt_tensor": 100, "tucker_tensor": 101, "tucker_copi": 101, "tucker_mode_dot": [101, 877], "tucker_n_param": 101, "tucker_norm": 101, "tucker_to_tensor": 101, "skip_factor": 101, "transpose_factor": 101, "tucker_to_unfold": 101, "tucker_to_vec": 101, "validate_tucker_rank": 101, "fixed_mod": 101, "validate_tucker_tensor": 101, "_bisection_root_find": 101, "fun": [101, 366, 374, 614, 634, 641, 729, 828], "max_it": 101, "__abs__": [102, 103], "__add__": [102, 103, 824, 827, 831, 832, 836, 841, 842, 851], "__eq__": [102, 103], "__ge__": [102, 103], "__gt__": [102, 103, 847], "__le__": [102, 103], "__lt__": [102, 103], "__ne__": [102, 103], "__pow__": [102, 103, 851], "69678056": 102, "59876156": 102, "82660675": 102, "__radd__": [102, 103, 831, 832, 841], "__rrshift__": [102, 103], "__rshift__": [102, 103], "__rsub__": [102, 103], "__sub__": [102, 103, 824, 827, 831, 836, 851], "__truediv__": [102, 103, 824, 827, 831], "__xor__": [102, 103], "referenc": [102, 833, 840], "resid": [102, 106, 639, 702, 841, 849, 853], "mt": [102, 851], "hopefulli": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861], "reach": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 869, 870], "eq": 103, "ge": 103, "le": 103, "ne": 103, "75979435": 103, "52153397": 103, "13532257": 103, "rshift": 103, "truediv": 103, "nested_arrai": [105, 106, 107, 826], "nestedarrai": 105, "nested_rank": [105, 106, 107], "inner_shap": [105, 106, 107], "nestedarraybas": [105, 106, 107], "from_row_length": 105, "row_length": 105, "from_row_split": 105, "row_split": 105, "ragged_map": 106, "ragged_multi_map": 106, "ragged_arrai": 106, "ragged_multi_map_in_funct": 106, "replace_ivy_arrai": 106, "unbind": 106, "nestedarrayelementwis": 107, "strictli": [112, 115, 118, 247, 626, 632, 836, 840], "24000001": [112, 626], "703": [113, 626], "683": [113, 626], "408": [113, 626], "313": [113, 626], "437": [113, 626], "40337825": [114, 626], "56114835": [114, 626], "20788449": [114, 626], "0768": [117, 626], "231": [117, 626], "\u03b2": [118, 626], "body_fn": [122, 123, 125, 628], "bodi": [122, 125, 628, 823, 844], "lst": [122, 628], "orelse_fn": [123, 628], "body1": [124, 628], "body2": [124, 628], "test_fn": [125, 628, 774, 812, 864, 865], "repeatedli": [125, 628, 641, 727, 828, 844], "ml_framework": [126, 629], "distanc": [126, 629], "adjac": [126, 629], "nestedsequ": [127, 128, 629], "typevar": [127, 128, 629], "supportsbufferprotocol": [127, 128, 629], "static_copy_arrai": [129, 629], "intdtyp": [132, 143, 149, 161, 172, 177, 184, 190, 629, 630], "pycapsul": [133, 144, 629], "interchang": [133, 144, 629, 639, 711], "plu": [134, 629], "x00b": [134, 629], "x00d": [134, 629], "x00e": [134, 629], "41588834": [138, 629], "7827941": [138, 629], "6227766": [138, 629], "23413252": [138, 629], "n3": [139, 629], "xv": [139, 629], "yv": [139, 629], "x_nativ": [140, 629, 840], "y_nativ": [140, 629], "z_nativ": [140, 629], "d_type": [142, 629], "col": [147, 328, 369, 629], "primari": [147, 166, 167, 199, 200, 328, 369, 385, 515, 550, 551, 629, 630, 631, 634, 777, 779, 818, 822, 825, 829, 838, 840, 841, 843, 844, 847, 855, 857], "upward": [147, 328, 369, 629], "downward": [147, 328, 369, 629], "2xn": [147, 328, 369, 629], "subarrai": [147, 328, 369, 629], "incompat": [154, 630], "closest": [157, 236, 246, 247, 283, 293, 630, 632, 844, 847], "xtype": [157, 630], "ytype": [157, 630], "native_uint16": [157, 630], "complexdtyp": [158, 172, 181, 630], "set_default_complex_dtyp": [158, 187, 630], "4294": [158, 160, 630], "967346": [158, 160, 630], "set_default_dtyp": [159, 188, 630, 829, 837], "floatdtyp": [160, 183, 630], "set_default_float_dtyp": [160, 169, 181, 189, 630, 829], "int_dtyp": [161, 184, 630], "set_default_int_dtyp": [161, 169, 190, 630, 829], "4294967346": [161, 162, 630], "uint_dtyp": [162, 185, 630], "uint": [162, 177, 185, 191, 630, 829, 842], "uintdtyp": [162, 177, 185, 191, 630], "set_default_uint_dtyp": [162, 169, 191, 630], "native_bool": [164, 630], "ieee": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "754": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "smallest_norm": [165, 630], "bfloat16": [166, 630, 776, 777, 829, 841, 844, 845], "unsupport": [167, 200, 551, 630, 631, 634, 771, 774, 816, 819, 834, 841], "encapsul": [168, 630, 828], "314": [168, 280, 338, 372, 630, 632], "9223372036854775808": [168, 630], "9223372036854775807": [168, 630], "65535": [168, 630], "4294967295": [168, 630], "native_uint8": [170, 630], "hashabl": [174, 630], "type1": [178, 630], "type2": [178, 630], "array_api_promot": [178, 179, 630, 776, 777], "unexpect": [179, 247, 630, 632, 829], "default_complex_dtyp": [181, 630], "default_dtype_stack": [182, 188, 630], "unset_default_dtyp": [182, 630], "native_uint64": [182, 630], "default_float_dtyp": [183, 630, 829], "default_int_dtyp": [184, 190, 630, 829], "default_uint_dtyp": [185, 191, 630], "ret1": [186, 630], "ret2": [186, 630], "reset": [187, 188, 189, 190, 191, 217, 218, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 630, 631, 634, 830], "default_complex_dtype_stack": [187, 630], "default_float_dtype_stack": [189, 630], "native_float16": [192, 630], "unmodifi": [194, 631, 825, 829], "aliv": [201, 206, 208, 554, 574, 575, 631, 634, 830], "139740789224448": [201, 631], "process_specif": [207, 219, 631], "percentag": [207, 631], "ram": [207, 215, 219, 631], "alon": [207, 219, 631, 812, 835, 844], "036902561555": [207, 631], "7024003467681645": [207, 631], "as_native_dev": [207, 631], "7095597456708771": [207, 631], "attr_onli": [208, 631], "soft_device_mod": [210, 218, 631], "chunk": [211, 212, 213, 631], "split_factor": [211, 631, 833], "max_chunk_s": [213, 631], "chunk_siz": [213, 631], "input_ax": [213, 631], "output_ax": [213, 631], "fed": [213, 631, 853], "fist": [213, 631], "gb": [215, 219, 631, 819, 834], "66700032": [215, 631], "589934592": [215, 631], "219563008": [219, 631], "902400346": [219, 631], "525205504": [219, 631], "na": [220, 632, 844], "noqa": [220, 287, 632, 792, 801, 842], "princip": [221, 225, 227, 359, 372, 632], "codomain": [221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832], "\u03c0": [221, 225, 227, 228, 627, 632], "3\u03c0": [221, 228, 632], "unspecifi": [221, 222, 226, 229, 238, 243, 245, 247, 282, 286, 287, 291, 376, 429, 632, 637, 639, 672, 673, 710, 840], "\u03c0j": [222, 226, 229, 261, 263, 632], "3\u03c0j": [222, 261, 263, 632], "x1_i": [223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "2019": [223, 240, 245, 263, 273, 632, 870, 873], "commut": [223, 632], "tabl": [223, 240, 273, 585, 608, 632, 634, 776, 777, 792, 841, 846, 870], "dj": [223, 240, 273, 632], "z1": [223, 632], "z2": [223, 632], "yj": [224, 632], "nanj": [226, 632], "809": [226, 632], "569": [226, 632], "733": [226, 632], "notat": [228, 632, 647, 759, 828], "denot": [228, 632, 794], "quadrant": [228, 632], "rai": [228, 632, 860], "bitwis": [230, 233, 235, 270, 632], "170": [234, 632], "243": [234, 632], "xor": [235, 270, 632], "654": [237, 632], "ci": [238, 243, 245, 286, 632, 823, 829, 835, 842, 844, 855], "368": [238, 632], "670": [238, 632], "202": [238, 632, 823], "548": [238, 632], "1490": [238, 632], "57079633": [239, 632], "14159265": [239, 632], "71238898": [239, 632], "28318531": [239, 632], "02617994": [239, 632], "87266463": [239, 632], "01919862": [239, 632], "03839725": [239, 632], "05759586": [239, 632], "07679449": [239, 632], "09599311": [239, 632], "11519173": [239, 632], "35081118": [239, 632], "88139129": [239, 632], "underflow": [240, 247, 632, 637, 685, 829], "textbook": [240, 273, 632], "frac": [240, 262, 264, 284, 286, 290, 375, 381, 403, 404, 408, 409, 501, 503, 632], "ac": [240, 273, 632, 805, 806], "bd": [240, 273, 632], "bc": [240, 273, 632, 805, 806], "versu": [240, 273, 632], "riemann": [240, 273, 632], "sphere": [240, 273, 632], "c99": [240, 273, 632], "infinit": [240, 273, 287, 632], "unlik": [240, 273, 632, 823, 828, 831, 860, 875, 877], "698": [240, 632], "truth": [241, 251, 252, 259, 260, 276, 377, 453, 632, 771, 773, 784, 816, 834, 841, 844], "32862675": [242, 632], "67780113": [242, 632], "11246294": [242, 632], "42839241": [242, 632], "52050018": [242, 632], "16799599": [242, 632], "30787992": [242, 632], "43796915": [242, 632], "98667163": [242, 632], "79690808": [242, 632], "88020504": [242, 632], "91031402": [242, 632], "95228523": [242, 632], "96610528": [242, 632], "cut": [243, 245, 285, 286, 287, 290, 632, 859, 876], "08553692": [243, 632], "567": [243, 632], "00344786": [243, 632], "76297021": [243, 632], "197948": [243, 632], "53253174": [243, 632], "fdlibm": [245, 263, 632], "compliant": [245, 263, 268, 269, 335, 336, 372, 632, 647, 760, 761, 762, 764], "potenti": [245, 263, 632, 812, 818, 819, 828, 829, 841, 848, 873], "632": [245, 632], "20e": [245, 632], "72e": [245, 632, 776], "greatest": [246, 247, 250, 632], "pep": [247, 632, 836], "disambigu": [247, 632, 839], "former": [247, 632, 819, 829, 832, 841], "latter": [247, 632, 819, 823, 825, 829, 832, 841], "overload": [247, 632, 844], "led": [247, 632, 823, 872], "subtl": [247, 632, 829, 876], "bug": [247, 632, 812, 818, 820, 826, 834, 835, 841, 844, 856], "ambigu": [247, 632], "semant": [247, 282, 378, 492, 632, 829, 849, 854, 859, 871], "ill": [247, 632, 778], "surpris": [247, 632, 855], "arrau": [253, 632], "log_": [262, 264, 632], "742": [263, 632], "negat": [275, 338, 372, 632], "52095687": [278, 632], "92457771": [278, 632], "49372482": [278, 632], "22738838": [278, 632], "156": [278, 632, 776], "5877228": [278, 632], "189": [279, 632, 641, 718], "252": [279, 632], "1150": [279, 632], "2890": [279, 632], "344": [279, 632], "355j": [280, 338, 372, 632], "55j": [280, 338, 372, 632], "primarili": [282, 632, 818, 827, 870], "counterpart": [283, 632, 827, 838], "deliber": [283, 632, 847], "imprecis": [283, 632], "5654": [283, 632], "034": [283, 632], "433": [283, 618, 620, 632, 635], "signum": [284, 632], "textrm": [284, 632], "932": [285, 632], "746": [285, 632], "657": [285, 632], "indistinguish": [287, 632], "infti": [287, 632], "32455532": [287, 632], "89897949": [287, 632], "169": [287, 632], "analyt": [290, 632, 870, 872, 876], "pole": [290, 632], "546": [290, 632, 636, 660], "916": [290, 632], "996": [290, 632], "histor": [291, 632], "stem": [291, 632, 840], "older": [291, 632], "advis": [291, 632, 841], "462": [291, 632], "604": [291, 632], "997": [291, 632], "0375": [293, 632], "032": [293, 632], "57258511": [296, 367], "69999999": [296, 367, 625, 635], "90928203": [296, 367], "98772264": [296, 367], "99591321": [296, 367], "99863964": [296, 367], "69880581": [296, 367], "18126924": [296, 367], "79999995": [297, 307, 310, 367], "70000005": [297, 310, 367], "1241": [298, 367], "4897": [298, 367], "4090": [298, 367], "31008321": [298, 367], "1147176": [298, 367], "40899992": [298, 367], "20141329": [301, 367], "40318608": [301, 367], "48683619": [301, 367], "46328247": [301, 367], "59813893": [301, 367], "43748799": [301, 367], "parametr": [302, 367, 823, 844, 870], "71589994": [304, 308, 367], "14324772": [304, 308, 367], "70648694": [304, 308, 367], "54488957": [304, 308, 367], "10740992": [304, 308, 367], "19514863": [304, 308, 367], "6705687": [305, 367], "52016652": [305, 367], "40560818": [305, 367], "45630932": [305, 367], "2689": [306, 367], "7310": [306, 367], "7615": [306, 367], "2784": [306, 367], "7168": [306, 367], "8708": [306, 367], "4374": [306, 367], "1379": [306, 367], "0089": [306, 367], "59999991": [307, 367], "03597236": [309, 367], "43827677": [309, 367], "80100036": [309, 367], "12954807": [309, 367], "76459098": [309, 367], "20044947": [309, 367], "60000372": [309, 367], "taper": [312, 315, 369], "summat": [312, 369, 647, 759, 805, 806], "leakag": [312, 369], "wors": [312, 369, 860], "y1": [313, 369], "0800": [314, 369], "3979": [314, 369], "9121": [314, 369], "5400": [314, 369], "han": [315, 369], "ith": [316, 369], "00726415": [317, 369], "9999736": [317, 369], "2773e": [318, 369], "0172e": [318, 369], "9294e": [318, 369], "4149": [318, 369], "9138": [318, 369], "5529": [318, 369], "multidimension": [320, 321, 369, 870], "normalise_factor": [323, 324, 369], "parafac2": [324, 369], "tr": [325, 369], "38268346": [333, 369], "38268352": [333, 369], "8563191": [333, 369], "14943568": [333, 369], "cn": [335, 336, 372], "zh": [335, 336, 372], "amax_cn": [335, 372], "sentinel": [335, 336, 372, 647, 760, 762], "amin_cn": [336, 372], "4769": [344, 372], "position": [346, 372], "triangl": [350, 372], "999999e": [351, 372], "65999985": [353, 372], "52000046": [353, 372], "1500001": [353, 372, 546, 634], "11259177": [354, 372], "3574118": [354, 372], "20097363": [354, 372], "suppli": [358, 372, 378, 484, 805, 824, 826, 844], "217234": [359, 372], "hurwitz": [362, 372], "custom_grad_func": [364, 374], "bind": [364, 374, 818, 839, 869, 870], "upstream": [364, 374, 819, 820, 823, 834, 839], "primal": [365, 366, 374], "jacobian": [365, 366, 374, 620, 635, 855, 870], "cotang": [366, 374], "stanh": 367, "ndenumer": 369, "ndindex": 369, "random_cp": 369, "random_parafac2": 369, "random_tr": 369, "random_tt": 369, "random_tuck": 369, "bind_custom_gradient_funct": [374, 839], "jvp": 374, "vjp": 374, "h_out": [375, 392, 636, 661], "w_out": [375, 392], "area_interpol": 375, "01823380e": [375, 397, 407], "15385818e": [375, 397, 407], "36371466e": [375, 397, 407], "38763905e": [375, 397, 407], "60722279e": [375, 397, 407], "80319249e": [375, 397, 407], "05617893e": [375, 397, 407], "21500000e": [375, 397, 407], "24000015e": [375, 397, 407], "90734863e": [375, 397, 407], "10000420e": [375, 397, 407], "15899994e": [375, 397, 407], "24000053e": [375, 397, 407], "81469727e": [375, 397, 407], "09999847e": [375, 397, 407], "4135742": [375, 397, 407], "6779785": [375, 397, 407], "3770599": [375, 397, 407], "8719864": [375, 397, 407], "72109985": [375, 397, 407], "52869415": [375, 397, 407], "79182434": [375, 397, 407], "72489166": [375, 397, 407], "container_n": [375, 397, 407], "container_typ": [375, 397, 407, 634], "container_norm": [375, 397, 407], "1580677": [375, 397], "89422607": [375, 397], "86190414": [375, 397], "00041008": [375, 397], "75149155": [375, 397], "97056389": [375, 397], "87819386": [375, 397], "89381361": [375, 397], "50000000e": [375, 397, 407, 776], "22044605e": [375, 397, 407], "ed": [375, 399, 400, 401], "rest": [375, 378, 399, 400, 401, 470, 819, 826, 828, 844, 854, 872], "5d": [375, 401, 792], "emb": [375, 402], "51285338": [375, 402], "87183261": [375, 402], "2308116": [375, 402], "02733949e": [375, 403], "00j": [375, 403], "49660576e": [375, 403], "68178638e": [375, 403], "01j": [375, 403, 408], "98912367e": [375, 403], "21802426e": [375, 403, 408], "04549134e": [375, 403, 408], "82842712e": [375, 403, 408], "86902654e": [375, 403, 408], "25501143e": [375, 403, 408], "32978028e": [375, 403, 408], "52068201e": [375, 403, 408], "71158374e": [375, 403, 408], "generate_einsum_equ": 375, "get_interpolate_kernel": 375, "27279224e": [375, 407], "44232273e": [375, 407], "70464332e": [375, 407], "73454881e": [375, 407], "00902849e": [375, 407], "10039906e": [375, 407], "07022366e": [375, 407], "69506073": [375, 407], "93914604": [375, 407], "88008881": [375, 407], "18951607": [375, 407], "57439613": [375, 407], "15318303e": [375, 408], "15148591e": [375, 408], "19j": [375, 408], "25000000e": [375, 408], "35378602e": [375, 408], "02j": [375, 408], "65404249e": [375, 408], "17611649e": [375, 408], "24320230e": [375, 408], "79344813e": [375, 408], "22374531e": [375, 408], "45929364e": [375, 408], "14208718e": [375, 408], "07177031e": [375, 408], "indexerror": [375, 409, 420, 639, 702, 807, 833], "interp": [375, 847], "xp": [375, 410, 823], "fp": [375, 410], "nd": [375, 411], "tf_bicub": [375, 411, 847], "nearest_interpol": 375, "window_shap": [375, 417], "pool_typ": [375, 417], "irfft": [375, 419], "silent": [375, 419], "discard": [375, 419, 828], "1400001": [375, 419], "3999999": [375, 419], "3999996": [375, 419], "99038106j": [375, 420], "33012702": [375, 420], "23205081j": [375, 420], "33012702j": [375, 420], "superdiagon": [376, 427, 637, 670], "subdiagon": [376, 427, 637, 670], "eigendecomposit": [376, 429, 637, 672, 673], "qlq\u1d40": [376, 429, 637, 672, 673], "tridiagon": [376, 430], "38196602": [376, 430], "61803389": [376, 430], "35048741": [376, 430], "56710052": [376, 430], "06693714": [376, 430], "74234426": [376, 430], "56155282": [376, 430], "56155276": [376, 430], "82842714": [376, 430], "82842731": [376, 430, 637, 673], "necessarili": [376, 431, 824, 827], "generalis": [376, 432], "skip_matrix": [376, 435, 437], "khatri_rao_product": [376, 435], "kronecker_product": [376, 437], "n_column": [376, 437], "lu_factor": 376, "pivot": [376, 438], "lu": [376, 438, 439], "lu_solv": 376, "nnmf": [376, 440], "hoi": [376, 445, 451], "solve_triangular": 376, "unit_diagon": [376, 446], "solut": [376, 446, 637, 686, 776, 812, 816, 818, 819, 820, 827, 829, 834, 842, 844, 847, 868, 872], "determinist": [376, 447, 844], "borrow": [376, 447, 822], "extmath": [376, 447], "ivan": [376, 448], "oseledet": [376, 448], "scientif": [376, 448, 870], "2295": [376, 448], "2317": [376, 448], "2011": [376, 448], "convention": [377, 454, 873], "explicit": [377, 378, 454, 492, 819, 827, 829, 839, 840, 841, 849, 855, 870], "555969": [377, 454], "223876": [377, 454], "111938": [377, 454], "42649534": [377, 454], "68651628": [377, 454], "51119184": [377, 454], "59967244": [377, 454], "mae": [377, 455], "666": [377, 455, 636, 637, 660, 678], "91097307": [377, 457], "3467": [377, 458], "0133": [377, 458], "0250": [377, 458], "0056": [377, 458], "0025": [377, 458], "0675": [377, 458], "6987": [377, 459], "1606": [377, 459], "3711": [377, 459], "4032": [377, 459], "6931": [377, 459], "whilst": [378, 462, 463, 464, 854, 857, 870], "ary3": [378, 464], "check_scalar": 378, "force_integ": [378, 466], "force_posit": [378, 466], "mod": [378, 467, 823], "tall": [378, 473], "horizot": [378, 480], "shortcut": [378, 484, 819], "linear_ramp": [378, 484], "reflect": [378, 484, 820, 824, 840, 844], "ramp": [378, 484], "mirror": [378, 484, 815, 818, 870], "padding_func": [378, 484], "iaxis_pad_width": [378, 484], "iaxi": [378, 484], "unalt": [378, 484], "put": [378, 489, 812, 818, 844, 855, 876], "mul": [378, 489, 840, 851], "conceptu": [378, 492, 866, 871], "concern": [378, 492, 820, 822, 827, 829, 831, 840, 847, 848, 876], "regard": [378, 492, 817, 827, 841, 842, 847, 860], "mutat": [378, 492], "elimin": [378, 498, 819], "consecut": [378, 498], "batch_mean": [381, 501, 503], "batch_var": [381, 501, 503], "running_vari": [381, 501, 503], "local_response_norm": 381, "neighbour": [381, 506], "42857143": [381, 507], "5714286": [381, 507], "multivari": [382, 510], "bayesian": [382, 510], "supposedli": [385, 514], "indirect": [385, 515], "secondari": [385, 515], "is_ivy_sparse_arrai": 386, "is_native_sparse_arrai": 386, "native_sparse_arrai": 386, "coo_indic": [386, 518], "crow_indic": [386, 518], "col_indic": [386, 518], "ccol_indic": [386, 518], "row_indic": [386, 518], "dense_shap": [386, 518], "native_sparse_array_to_indices_values_and_shap": 386, "nativesparsearrai": 386, "sparsearrai": 386, "linalg": [387, 522, 637, 685, 686, 818, 840, 842], "aw": [387, 522, 860], "48447205": [387, 522], "c0": [387, 525], "ck": [387, 525], "c2": [387, 525], "nearest_jax": [387, 532], "trace_on_next_step": [536, 634, 796, 853], "recalcul": [539, 634], "my_sum": [539, 634], "val1": [539, 634], "val2": [539, 634], "cached_sum": [539, 634], "line_eq": [539, 634], "slp": [539, 634], "itc": [539, 634], "cached_line_eq": [539, 634], "0353": [540, 634], "424": [540, 634], "339": [540, 634], "271": [540, 634], "391": [540, 634], "78885436": [541, 634], "41666666": [541, 634], "58333331": [541, 634], "06666667": [541, 634], "13333334": [541, 634], "40000004": [541, 634], "26666668": [541, 634], "13137734": [541, 634], "26275468": [541, 634], "39413199": [541, 634], "52550936": [541, 634], "6568867": [541, 634], "78826398": [541, 634], "84852815": [541, 634], "1313709": [541, 634], "41421366": [541, 634], "27279221": [541, 634], "69705628": [541, 634], "12132034": [541, 634], "default_str": [544, 634], "46999979": [545, 634], "66000009": [545, 634], "93000001": [545, 634], "29000092": [545, 634], "33999991": [545, 634], "6400001": [545, 634], "96000004": [545, 634], "36000013": [545, 634], "51999998": [545, 634], "67000008": [545, 634], "suppos": [545, 634, 829, 844], "960": [545, 634], "3600": [545, 634], "h1": [545, 634], "w1": [545, 634], "40499985": [546, 634], "61000061": [546, 634], "max_depth": [557, 634], "seen_set": [557, 634], "local_set": [557, 634], "referr": [557, 634], "redund": [557, 634, 812, 829, 833, 841, 863], "example_funct": [557, 634], "repr": [557, 634], "ivyexcept": [562, 595, 634, 807, 830, 833, 838, 840, 841, 845], "allow_dupl": [572, 634], "fork": [573, 634, 813, 823, 828, 834], "forkserv": [573, 634], "mp_default": [573, 634], "defaultcontext": [573, 634], "0x7f4e3193e520": [573, 634], "mp_fork": [573, 634], "forkcontext": [573, 634], "0x7f4e3193e580": [573, 634], "mp_spawn": [573, 634], "spawncontext": [573, 634], "0x7f4e3193e5e0": [573, 634], "mp_forkserv": [573, 634], "forkservercontext": [573, 634], "0x7f4e3193e640": [573, 634], "garbag": [575, 634], "collector": [575, 634], "get_all_arrays_in_memori": [575, 634], "exception_trace_mod": [579, 603, 634, 846], "lenient": [580, 604, 634], "inplace_mod": [580, 604, 634], "break": [580, 634, 812, 825, 829, 836, 845, 855], "infus": [581, 634], "unset": [582, 589, 634, 637, 685, 801, 825, 849], "unset_min_bas": [582, 634], "nestable_mod": [584, 607, 634, 846], "precise_mod": [585, 608, 634, 846], "shape_array_mod": [587, 610, 634, 846], "show_func_wrapper_trace_mod": [588, 611, 634, 846], "tmp_dr": [589, 634], "tmp_dir": [589, 612, 634, 846], "my_tmp": [589, 634], "unset_tmp_dir": [589, 634], "49999999999975": [592, 634], "5015015015010504": [592, 634], "000444502911705e": [592, 634], "9999999999995j": [592, 634], "00000262": [593, 634], "15605032": [593, 634], "01208451j": [593, 634], "00048": [593, 634], "1296": [593, 634], "00864": [593, 634], "isn": [595, 634, 815, 820, 838, 840, 844, 852, 855, 872], "100000023841858": [597, 634], "200000047683716": [597, 634], "299999952316284": [597, 634], "400000095367432": [597, 634], "599999904632568": [597, 634], "hemant": [601, 634], "unset_shape_array_mod": [602, 634], "set_exception_trace_mod": [603, 634, 833], "set_min_bas": [605, 634], "set_min_denomin": [606, 634], "set_nestable_mod": [607, 634], "set_precise_mod": [608, 634], "set_queue_timeout": [609, 634], "set_shape_array_mod": [610, 634], "set_show_func_wrapper_trace_mod": [611, 634, 833], "set_tmp_dir": [612, 634], "my_dir": [612, 634], "451": [613, 634], "in_ax": [614, 634], "out_ax": [614, 634], "thereof": [614, 634], "summaris": [614, 634], "99999998": [615, 635], "19999998": [615, 635], "00000001": [615, 635], "00300001": [615, 635], "00800001": [615, 635], "0125": [615, 635], "17294501": [615, 635], "15770318": [615, 635], "20863818": [615, 635], "90000075": [616, 635], "90000164": [616, 635], "9000032": [616, 635], "50000012e": [616, 635], "92558754": [616, 635], "92558694": [616, 635], "92558682": [616, 635], "92558861": [616, 635], "60000025e": [616, 635], "01024": [616, 635], "retain_grad": [617, 635], "func_ret": [617, 635, 839], "666666": [617, 635], "333332": [617, 635], "66666675": [617, 625, 635], "argnum": [618, 635], "933": [618, 620, 635], "jac_fn": [620, 635], "639": [621, 635], "361": [621, 635], "52565837": [622, 635], "8418861": [622, 635], "68377209": [622, 635], "value_grad": [625, 635], "42333412": [625, 635], "5333333": [625, 635], "93333334": [625, 635], "43333334": [625, 635], "0666666": [625, 635], "softsign": 626, "718281828459045": 627, "euler": 627, "141592653589793": 627, "cmp_i": 628, "cmp_isnot": 628, "for_loop": 628, "if_els": 628, "try_except": 628, "to_dlpack": 629, "as_ivy_dtyp": [630, 841], "as_native_dtyp": 630, "check_float": 630, "closest_valid_dtyp": 630, "default_dtyp": [630, 829, 837], "dtype_bit": 630, "function_supported_dtyp": [630, 829, 844], "function_unsupported_dtyp": [630, 829], "infer_default_dtyp": 630, "invalid_dtyp": [630, 829], "is_hashable_dtyp": 630, "is_native_dtyp": 630, "promote_typ": [630, 829], "promote_types_of_input": [630, 829, 840], "type_promote_arrai": [630, 829], "unset_default_complex_dtyp": 630, "unset_default_float_dtyp": 630, "unset_default_int_dtyp": 630, "unset_default_uint_dtyp": 630, "valid_dtyp": 630, "defaultcomplexdtyp": 630, "defaultdtyp": 630, "defaultfloatdtyp": 630, "defaultintdtyp": 630, "defaultuintdtyp": 630, "as_ivy_dev": [631, 851], "clear_cached_mem_on_dev": 631, "dev_util": [631, 830], "function_supported_devic": 631, "function_unsupported_devic": 631, "get_all_ivy_arrays_on_dev": [631, 830], "handle_soft_device_vari": [631, 830], "num_cpu_cor": [631, 830], "num_gpu": [631, 830, 844], "num_ivy_arrays_on_dev": 631, "percent_used_mem_on_dev": 631, "print_all_ivy_arrays_on_dev": 631, "set_split_factor": [631, 833], "split_func_cal": 631, "total_mem_on_dev": [631, 830], "tpu_is_avail": 631, "unset_default_devic": [631, 830], "unset_soft_device_mod": [631, 830], "used_mem_on_dev": 631, "defaultdevic": [631, 830], "profil": 631, "save_dir": 631, "arg_info": 634, "arg_nam": 634, "cache_fn": [634, 837], "current_backend_str": [634, 844, 849, 851], "function_supported_devices_and_dtyp": 634, "function_unsupported_devices_and_dtyp": 634, "get_item": [634, 840], "get_referrers_recurs": 634, "inplace_arrays_support": 634, "inplace_variables_support": 634, "is_ivy_nested_arrai": 634, "isscalar": 634, "match_kwarg": 634, "num_arrays_in_memori": 634, "print_all_arrays_in_memori": 634, "set_item": [634, 844], "to_ivy_shap": 634, "to_native_shap": 634, "try_else_non": 634, "unset_array_mod": [634, 846], "unset_exception_trace_mod": 634, "unset_inplace_mod": 634, "unset_min_denomin": 634, "unset_nestable_mod": 634, "unset_precise_mod": 634, "unset_queue_timeout": 634, "unset_show_func_wrapper_trace_mod": 634, "vmap": [634, 855, 870], "arraymod": 634, "precisemod": [634, 829], "jac": 635, "value_and_grad": [635, 839], "feature_group_count": [636, 649, 656, 657], "oiw": [636, 649, 650, 656], "oihw": [636, 649, 652, 656], "oidhw": [636, 649, 654, 656], "dhwio": [636, 649, 650, 654, 656], "conv_general_dil": [636, 841], "conv_general_transpos": 636, "depthwis": [636, 658, 778, 792], "1428566": [636, 659], "49000001": [636, 659], "55599999": [636, 659], "21000004": [636, 659], "incom": [636, 660], "4269": [636, 660], "911": [636, 660, 833], "157": [636, 660], "753": [636, 660], "545": [636, 643, 660, 741], "547": [636, 660, 830], "963": [636, 660], "98495483": [636, 660], "0293808": [636, 660], "0159359": [636, 660], "74752808": [636, 660], "20942307": [636, 660], "3205719": [636, 660], "all_weight": [636, 661], "num_lay": [636, 661, 792], "batch_first": [636, 661, 663], "weights_transpos": [636, 661], "has_ih_bia": [636, 661], "has_hh_bia": [636, 661], "multi": [636, 637, 661, 663, 668, 778, 792, 831, 848, 855, 866, 868, 870, 874], "long": [636, 661, 662, 819, 820, 828, 829, 831, 833, 834, 841, 849, 870], "seq_len": [636, 661], "input_s": [636, 661], "h_0": [636, 661], "c_0": [636, 661], "num_direct": [636, 661], "hidden_s": [636, 661], "four": [636, 661, 815, 824, 829, 831, 836, 837, 844, 847, 852], "w_ih": [636, 661], "w_hh": [636, 661], "b_ih": [636, 661], "b_hh": [636, 661], "pack": [636, 661], "c_out": [636, 661], "vaswani": [636, 663], "al": [636, 663], "num_attention_head": [636, 663], "key_dim": [636, 663, 792], "value_dim": [636, 663, 792], "attention_weight": [636, 663], "unbatch": [636, 663], "nm": 636, "box": [636, 664, 665, 819], "iou_threshold": [636, 664], "max_output_s": [636, 664], "score_threshold": [636, 664], "roi_align": 636, "spatial_scal": [636, 665], "sampling_ratio": [636, 665], "23333359": [636, 666], "03946018": [636, 666], "0280633": [636, 666], "29981947": [636, 666], "29981089": [636, 666], "06345534": [636, 666], "9634552": [636, 666], "19336844": [636, 666], "09336829": [636, 666], "axisa": [637, 668], "axisb": [637, 668], "axisc": [637, 668], "293": [637, 669], "46997": [637, 669], "17157288": [637, 673], "9238795": [637, 673], "78930789": [637, 673], "59803128": [637, 673], "19127655": [637, 673], "31213903": [637, 673], "63418275": [637, 673], "84632206": [637, 673], "70548367": [637, 673], "70223427": [637, 673], "09570674": [637, 673], "63116378": [637, 673], "56109613": [637, 673], "53554028": [637, 673], "32237405": [637, 673], "43822157": [637, 673], "83906901": [637, 673], "50766778": [637, 673], "71475857": [637, 673], "48103389": [637, 673], "3676433": [637, 673], "68466955": [637, 673], "62933773": [637, 673], "77917379": [637, 673], "14264561": [637, 673], "61036086": [637, 673], "45033181e": [637, 674], "02829754e": [637, 674], "54220343e": [637, 674], "12647155e": [637, 674], "38447177e": [637, 674], "56155300e": [637, 674], "26794919": [637, 674], "7320509": [637, 674], "0012": [637, 676], "00342": [637, 676], "000565": [637, 676], "0104": [637, 676], "000981": [637, 676], "00282": [637, 676], "000766": [637, 676], "0322": [637, 676], "00237": [637, 676], "000151": [637, 676], "00101": [637, 676], "00019": [637, 676], "0214": [637, 676], "00171": [637, 676], "0107": [637, 676], "0167": [637, 676], "0472": [637, 676], "0536": [637, 676], "0177": [637, 676], "000429": [637, 676], "00762": [637, 676], "frobeniu": [637, 678], "nuclear": [637, 678], "induc": [637, 678], "ranl": [637, 678], "47722558": [637, 678], "776": [637, 678], "6000004": [637, 678], "118": [637, 679], "moor": [637, 683], "penros": [637, 683], "31622776": [637, 684], "94868332": [637, 684], "1622777": [637, 684], "42718887": [637, 684], "deteremin": [637, 685], "logsabsdet": [637, 685], "subject": [637, 685], "unset_backend": [637, 685, 801, 825], "ordin": [637, 686], "b2": [637, 686], "usvh": [637, 687], "cetera": [637, 687], "driver": [637, 688, 855], "cusolv": [637, 688], "gesvd": [637, 688], "gesvdj": [637, 688], "gesvda": [637, 688], "86217213": [637, 688], "31816804": [637, 688], "615": [637, 688], "ss": [637, 688], "25994301": [637, 688], "16403675": [637, 688], "61529762": [637, 688], "51231241": [637, 688], "39777088": [637, 688], "15413129": [637, 688], "1029852": [637, 688], "01383495": [637, 688], "86647356": [637, 688], "7786541": [637, 688], "55970621": [637, 688], "16857576": [637, 688], "86412698": [637, 688], "37566757": [637, 688], "88477993": [637, 688], "95925522": [637, 688], "6444726": [637, 688], "54687881": [637, 688], "16134834": [637, 688], "35037804": [637, 688], "31025076": [637, 688], "35769391": [637, 688], "transposit": [637, 689], "0x": [637, 692], "Such": [637, 692, 837, 844], "alexandr": [637, 692], "theophil": [637, 692], "dot_product": [637, 693], "9000001": [637, 694], "64158917": [637, 694], "skew": [637, 695], "60309976": [638, 696], "6666193": [638, 696], "01348412": [638, 696], "05393649": [638, 696], "49992943": [638, 696], "83330965": [638, 696], "02136981": [638, 696], "32844672": [638, 696], "26561815": [638, 696], "22314337": [638, 696], "08916873": [638, 697, 698], "44832274": [638, 698], "75646281": [638, 698], "13862944": [638, 698], "57564628": [638, 698], "honor": [639, 706], "beyond": [639, 707, 812, 832, 841, 876], "famili": [639, 710], "intxx": [639, 710], "floatxx": [639, 710], "rep": [639, 712], "fomaml_step": 640, "inner_cost_fn": [640, 715, 716, 717], "outer_cost_fn": [640, 715, 716], "inner_grad_step": [640, 715, 716, 717], "inner_learning_r": [640, 715, 716, 717], "inner_optimization_step": [640, 715, 716, 717], "inner_batch_fn": [640, 715, 716], "outer_batch_fn": [640, 715, 716], "average_across_step": [640, 715, 716], "inner_v": [640, 715, 716], "keep_inner_v": [640, 715, 716], "outer_v": [640, 715, 716], "keep_outer_v": [640, 715, 716], "return_inner_v": [640, 715, 716, 717], "num_task": [640, 715, 716, 717], "maml": [640, 715, 716], "0x7f768e3e9120": [640, 715, 716, 717], "maml_step": 640, "vanilla": [640, 716, 853, 870], "_variabl": [640, 716, 717], "sub_batch": [640, 716], "40069818": [640, 716], "13723135": [640, 716], "reptile_step": 640, "cost_fn": [640, 717], "reptil": [640, 717], "batch_in": [640, 717], "4485182": [640, 717], "139": [640, 717], "9569855": [640, 717], "9880483": [640, 717], "01766968": [640, 717], "02197957": [640, 717], "02197981": [640, 717], "all_nested_indic": 641, "include_nest": [641, 718], "_index": [641, 718, 729], "_base": [641, 718, 728, 729, 840], "themselv": [641, 718, 827, 829, 830, 832, 837, 841, 853, 867, 876], "863": [641, 718, 830], "672": [641, 718], "482": [641, 718], "674": [641, 718], "341": [641, 718], "copy_nest": 641, "to_mut": [641, 719, 730], "deepli": [641, 719, 821, 855, 870], "copied_nest": [641, 719], "1337": [641, 719, 730], "duplicate_array_index_chain": 641, "index_nest": [641, 837], "insert_into_nest_at_index": 641, "insert_into_nest_at_indic": 641, "special_squar": [641, 724], "6666666666666667": [641, 724], "special_pow": [641, 724], "linear_model": [641, 724], "map_nest_at_index": 641, "_result": [641, 725, 735], "hh": [641, 725, 730], "map_nest_at_indic": 641, "ub": [641, 726], "tb": [641, 726], "multi_index_nest": 641, "nested_ani": 641, "check_nest": [641, 728, 729], "nested_argwher": 641, "stop_after_n_found": [641, 729], "nested_indic": [641, 729], "nested_map": [641, 830, 837], "_tuple_check_fn": [641, 730], "_list_check_fn": [641, 730], "_dict_check_fn": [641, 730], "wherebi": [641, 730, 818, 867], "ah": [641, 730], "bh": [641, 730], "ch": [641, 730], "dh": [641, 730, 823], "eh": [641, 730], "gh": [641, 730, 819, 834], "ih": [641, 730], "1338": [641, 730], "nested_multi_map": 641, "index_chain": [641, 731], "nest0": [641, 731], "ivy_arrai": [641, 731, 824, 841], "unappli": [641, 731], "prune_empti": 641, "prune_nest_at_index": 641, "prune_nest_at_indic": 641, "set_nest_at_index": 641, "set_nest_at_indic": 641, "xyz": [641, 736], "pqr": [641, 736], "mini": [642, 737, 792, 795], "uniformli": [643, 739, 741], "22346112": [643, 740], "0922": [643, 740], "9213753": [643, 740], "12818667": [643, 740], "799": [643, 740], "469": [643, 740], "287": [643, 740], "0366": [643, 740], "26431865": [643, 741], "475": [643, 741], "878": [643, 741], "861": [643, 741], "929": [643, 741], "789": [643, 741], "519": [643, 741], "0435": [643, 741], "381": [643, 741], "4608004": [643, 741], "8458502": [643, 741], "67270088": [643, 741], "31128597": [643, 741], "394": [643, 743], "zeroel": [644, 747], "fourth": [645, 749], "1141": [645, 749], "8101": [645, 749], "9298": [645, 749], "8460": [645, 749], "2119": [645, 749], "3519": [645, 749], "6252": [645, 749], "4033": [645, 749], "7443": [645, 749], "2577": [645, 749], "3707": [645, 749], "0545": [645, 749], "3238": [645, 749], "5944": [645, 749], "0775": [645, 749], "4327": [645, 749], "62519997": [645, 749], "40329999": [645, 749], "59439999": [645, 749], "74430001": [645, 749], "81010002": [645, 749], "84600002": [645, 749], "92979997": [645, 749], "einstein": [647, 759, 805], "117": [647, 759], "intend": [647, 765, 774, 791, 823, 836, 839, 868, 870, 874, 875], "07472222": [647, 766], "00666667": [647, 766], "08966666": [647, 766], "simplicit": [648, 767, 768], "ivy_test": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 823, 826, 828, 834, 842], "test_ivi": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 826, 828, 834, 842, 844], "assert_all_clos": [771, 842], "ret_np": [771, 773, 842], "ret_from_gt_np": [771, 842], "ground_truth_backend": [771, 773, 774, 783, 784, 816, 834, 842], "mark": [771, 815, 818, 820, 823, 844, 849], "assert_same_typ": 771, "ret_from_target": 771, "ret_from_gt": 771, "backend_to_test": [771, 773, 816, 834, 842], "gt_backend": 771, "with_backend": [771, 801], "assert_same_type_and_shap": 771, "this_key_chain": 771, "check_unsupported_devic": 771, "input_devic": 771, "all_as_kwargs_np": [771, 773], "check_unsupported_device_and_dtyp": 771, "input_dtyp": [771, 773, 783, 816, 834, 842, 844], "check_unsupported_dtyp": 771, "test_unsupported_funct": 771, "value_test": 771, "ret_np_flat": 771, "ret_np_from_gt_flat": 771, "specific_tolerance_dict": 771, "ret_from_np_gt_flat": 771, "function_test": 773, "args_to_contain": 773, "array_arg": [773, 837], "args_to_frontend": 773, "frontend_array_fn": 773, "arrays_to_frontend": 773, "as_list": 773, "convtru": 773, "nativeclass": 773, "counter": [773, 853], "create_args_kwarg": 773, "args_np": 773, "arg_np_val": 773, "args_idx": 773, "kwargs_np": 773, "kwarg_np_val": 773, "kwargs_idx": 773, "test_flag": [773, 816, 834, 842, 844], "on_devic": [773, 783, 816, 834, 842], "flatten_and_to_np": 773, "flatten_frontend": 773, "flatten_frontend_fw_to_np": 773, "frontend_ret": [773, 842], "isscalar_func": 773, "is_native_array_func": 773, "to_numpy_func": 773, "flatten_frontend_to_np": 773, "get_frontend_ret": 773, "frontend_fn": 773, "frontend_array_funct": 773, "precision_mod": [773, 783, 784, 834], "test_trac": [773, 783, 784, 816, 823, 834], "test_trace_each": [773, 783, 784], "get_ret_and_flattened_np_arrai": 773, "gradient_incompatible_funct": 773, "gradient_test": [773, 844], "rtol_": [773, 816, 834], "atol_": [773, 816, 834, 842], "tolerance_dict": 773, "gradient_unsupported_dtyp": 773, "kwargs_to_args_n_kwarg": 773, "num_positional_arg": [773, 783, 784, 816, 834, 842, 844], "port": [773, 861], "test_frontend_funct": [773, 842], "fn_tree": [773, 774, 784, 816, 834, 841, 842, 844], "gt_fn_tree": [773, 784], "test_valu": [773, 842, 844], "frontend_function_flag": [773, 783], "functiontestflag": [773, 783, 816, 834], "with_out": [773, 783, 816, 834, 842, 844], "instance_method": [773, 783, 816, 834, 844], "as_vari": [773, 783, 816, 834, 842, 844], "namespac": [773, 818, 829, 838, 841, 842, 845, 849, 854], "arg_": 773, "test_frontend_method": [773, 842], "init_input_dtyp": [773, 842], "method_input_dtyp": [773, 842], "init_flag": [773, 842, 844], "method_flag": [773, 783, 842, 844], "init_all_as_kwargs_np": [773, 842], "method_all_as_kwargs_np": [773, 842], "frontend_method_data": [773, 842], "init_as_variable_flag": [773, 784], "dictat": [773, 824, 831, 836, 840], "init_num_positional_arg": [773, 784], "init_native_array_flag": 773, "with_v": 773, "ret_gt": 773, "test_funct": [773, 816, 819, 820, 828, 834, 842, 844], "fn_name": [773, 774, 784, 816, 825, 834, 842, 844], "return_flat_np_arrai": 773, "as_variable_flag": [773, 784, 844], "native_array_flag": [773, 784, 844], "container_flag": [773, 783, 784, 844], "test_function_backend_comput": 773, "test_function_ground_truth_comput": 773, "arg_np_arrai": 773, "arrays_args_indic": 773, "arrays_kwargs_indic": 773, "kwarg_np_arrai": 773, "test_gradient_backend_comput": 773, "test_gradient_ground_truth_comput": 773, "test_method": 773, "method_nam": [773, 782, 784, 842], "init_with_v": 773, "method_with_v": 773, "test_gradi": [773, 783, 784, 816, 834, 844], "method_as_variable_flag": [773, 784], "method_num_positional_arg": [773, 784], "method_native_array_flag": 773, "method_container_flag": [773, 784], "test_method_backend_comput": 773, "test_method_ground_truth_comput": 773, "org_con_data": 773, "args_np_method": 773, "met_arg_np_v": 773, "met_args_idx": 773, "kwargs_np_method": 773, "met_kwarg_np_v": 773, "met_kwargs_idx": 773, "v_np": 773, "traced_if_requir": 773, "wrap_frontend_function_arg": 773, "holder": 774, "current_frontend_config": 774, "0x7f76823edf40": 774, "interruptedtest": 774, "test_interrupt": 774, "baseexcept": 774, "tri": [774, 829], "testdata": 774, "supported_device_dtyp": 774, "is_method": 774, "setup_api_test": 774, "test_data": 774, "setup_frontend_test": 774, "teardown_api_test": 774, "teardown_frontend_test": 774, "hypothesis_help": [776, 777, 778, 779], "array_help": 776, "array_and_broadcastable_shap": 776, "searchstrategi": [776, 777, 778, 779, 783, 784, 844], "array_bool": [776, 844], "min_valu": [776, 777, 778, 779, 816, 834, 842, 844], "max_valu": [776, 777, 778, 779, 842, 844], "ex": [776, 777, 778, 779, 784, 828, 864], "strategi": [776, 777, 778, 779, 783, 784, 818, 842], "array_helpers_dtype_info_help": 776, "kind_dtyp": [776, 778], "array_indices_axi": 776, "array_dtyp": [776, 777, 844], "indices_dtyp": 776, "get_dtyp": [776, 777, 816, 834, 842, 844], "abs_smallest_v": [776, 778, 779], "large_abs_safety_factor": [776, 778, 779, 816, 834, 842, 844], "small_abs_safety_factor": [776, 778, 779, 816, 834, 842], "safety_factor_scal": [776, 778, 779, 842, 844], "disable_random_axi": 776, "axis_zero": 776, "allow_inf": [776, 779, 842, 844], "min_num_dim": [776, 778, 842, 844], "max_num_dim": [776, 778, 842, 844], "min_dim_s": [776, 778, 842, 844], "max_dim_s": [776, 778, 842], "first_dimension_onli": 776, "indices_same_dim": 776, "valid_bound": 776, "safeti": [776, 778, 779, 870], "0002": [776, 779], "hypothesi": [776, 778, 784, 818, 820, 823, 828, 838], "65536": 776, "44758124e": [776, 844], "array_indices_put_along_axi": 776, "values_dtyp": 776, "array_valu": [776, 844], "allow_nan": [776, 779, 844], "allow_subnorm": [776, 779, 844], "exclude_min": [776, 779, 844], "exclude_max": [776, 779], "subnorm": [776, 779], "get_shap": [776, 778, 842, 844], "1806": 776, "36912": 776, "6955": 776, "59576": 776, "arrays_and_ax": 776, "available_dtyp": [776, 777, 816, 834, 842, 844], "allow_non": [776, 778, 842, 844], "return_dtyp": 776, "force_int_axi": 776, "26e": 776, "10e": 776, "24322108": 776, "26446279e": 776, "96046448e": 776, "008": 776, "17549435e": 776, "038": 776, "06541027e": 776, "13725760e": 776, "07143888": 776, "arrays_for_pool": 776, "min_dim": 776, "max_dim": 776, "min_sid": 776, "max_sid": 776, "explicit_or_str_pad": 776, "only_explicit_pad": 776, "return_dil": 776, "mixed_fn_compo": [776, 777, 778, 779, 844], "return_data_format": 776, "cond_data_gen_help": 776, "create_concatenable_arrays_dtyp": 776, "min_num_arrai": 776, "max_num_arrai": 776, "concat_dim": 776, "common_shap": [776, 844], "stackabl": 776, "given_common_shap": 776, "create_nested_input": 776, "leaf_valu": 776, "dtype_and_valu": [776, 816, 834, 842, 844], "num_arrai": [776, 777, 842, 844], "shared_dtyp": [776, 777, 842], "ret_shap": 776, "array_api_dtyp": [776, 777], "shape_kei": 776, "37915": 776, "6322": 776, "26765": 776, "12413": 776, "26986": 776, "34665": 776, "000e": 776, "711e": 776, "100e": 776, "955e": [776, 844], "40817": 776, "56193": 776, "29200": 776, "5851": 776, "9746": 776, "9604645e": 776, "103": 776, "41795": 776, "1170789994": 776, "44251": 776, "44209": 776, "433075925": 776, "24791": 776, "24691": 776, "24892": 776, "16711": 776, "972": 776, "15357": 776, "72057594037927936": 776, "dtype_array_queri": 776, "allow_mask": 776, "allow_neg_step": 776, "dtype_array_query_v": 776, "dtype_values_axi": [776, 844], "min_axi": 776, "max_axi": 776, "valid_axi": 776, "allow_neg_ax": 776, "min_axes_s": 776, "max_axes_s": 776, "force_tuple_axi": 776, "29788": 776, "62222885e": 776, "68281172e": 776, "257j": 776, "40129846e": 776, "90000000e": 776, "63426649e": 776, "91931887e": 776, "29488e": 776, "14361019e": 776, "12445": 776, "einsum_help": 776, "get_first_solve_batch_matrix": 776, "choose_adjoint": 776, "get_second_solve_batch_matrix": 776, "get_first_solve_matrix": 776, "allow_simplifi": 776, "choose_sid": 776, "xa": 776, "get_second_solve_matrix": 776, "list_of_s": 776, "sampled_from": [776, 842, 844], "min_siz": [776, 778, 784, 844], "max_siz": [776, 778, 784, 844], "size_bound": [776, 844], "999999999999999": 776, "9394938006792373": 776, "mutually_broadcastable_shap": 776, "num_shap": 776, "base_shap": 776, "dtype_help": 777, "univers": [777, 841, 859], "cast_filt": 777, "cast_filter_help": 777, "current_backend": [777, 801, 818, 825, 833, 837, 842, 845, 849], "get_castable_dtyp": 777, "castabl": 777, "prune_funct": 777, "intersect": [777, 828, 844], "signed_integ": 777, "real_and_complex": 777, "float_and_complex": 777, "general_help": 778, "broadcasterror": 778, "apply_safety_factor": 778, "dims_and_offset": 778, "ensure_dim_uniqu": 778, "embedding_help": 778, "general_helpers_dtype_info_help": 778, "get_axi": [778, 844], "allow_neg": 778, "sort_valu": 778, "force_tupl": 778, "force_int": 778, "assertionerror": [778, 816, 823, 833, 834, 842, 844], "get_bound": [778, 844], "get_mean_std": 778, "matrix_is_st": 778, "cond_limit": 778, "instabl": [778, 816, 829, 834], "computation": [778, 819], "prone": [778, 829], "thumb": 778, "gradual": 778, "collinear": 778, "reshape_shap": [778, 844], "sizes_": 778, "two_broadcastable_shap": 778, "x_and_filt": 778, "number_help": 779, "arbitrarili": [779, 852], "safety_factor": 779, "backend_proc": 780, "input_queu": 780, "output_queu": 780, "frontend_proc": 780, "pipeline_help": 781, "backendhandl": 781, "update_backend": [781, 842], "backendhandlermod": 781, "enum": 781, "setbackend": 781, "withbackend": 781, "withbackendcontext": 781, "get_frontend_config": 781, "frontendmethoddata": 782, "ivy_init_modul": 782, "framework_init_modul": 782, "init_nam": 782, "test_parameter_flag": 783, "dynamicflag": [783, 784], "frontendfunctiontestflag": [783, 834], "with_copi": 783, "generate_frontend_arrai": [783, 784, 834], "testflag": 783, "apply_flag": 783, "args_to_iter": 783, "frontendinittestflag": 783, "frontendmethodtestflag": 783, "test_cython_wrapp": [783, 784], "initmethodtestflag": 783, "methodtestflag": 783, "build_flag": 783, "frontend_init_flag": 783, "frontend_method_flag": 783, "function_flag": 783, "init_method_flag": 783, "testing_help": 784, "handle_exampl": [784, 844], "test_exampl": [784, 844], "test_frontend_exampl": [784, 844], "test_method_exampl": [784, 844], "test_frontend_method_exampl": [784, 844], "given_kwarg": 784, "handle_frontend_method": [784, 842, 844], "class_tre": [784, 842], "init_tre": [784, 842], "init_native_arrai": 784, "_as_varaible_strategi": 784, "method_native_arrai": 784, "test_inplac": [784, 844], "_given_kwarg": 784, "test_compil": 784, "handle_frontend_test": [784, 842, 844], "alias": [784, 818, 841, 842], "number_positional_arg": [784, 842], "test_with_out": [784, 842, 844], "test_with_copi": 784, "handle_method": [784, 844], "method_tre": [784, 842, 844], "_gradient_strategi": 784, "handle_test": [784, 816, 834, 844], "test_instance_method": [784, 844], "num_positional_args_help": 784, "num_positional_args_method": 784, "geglu": 788, "leakyrelu": 788, "logsoftmax": 788, "from_flax_modul": 789, "native_modul": 789, "params_fx": 789, "rng_seed": 789, "constructor_arg": 789, "constructor_kwarg": 789, "instance_arg": 789, "instance_kwarg": 789, "flax": [789, 854, 855, 861, 870], "from_haiku_modul": 789, "params_hk": 789, "from_paddle_modul": 789, "from_torch_modul": 789, "to_keras_modul": 789, "native_module_class": 789, "modulehelp": [790, 794], "create_vari": [791, 853], "var_shap": [791, 853], "fan_out": [791, 853], "fan_in": [791, 853], "rectangular": 791, "firstlayersiren": 791, "siren": 791, "glorotuniform": [791, 792, 853], "glorot": 791, "xavier": 791, "neuron": 791, "w_1x_1": 791, "w_2x_2": 791, "w_nx_n": 791, "w_i": 791, "vanish": 791, "explod": [791, 858, 859], "kaimingnorm": 791, "fan_mod": [791, 853], "kaim": 791, "he": 791, "negative_slop": 791, "fan": 791, "propog": 791, "fan_sum": [791, 853], "Ones": 791, "randomnorm": 791, "stddev": 791, "w0": 791, "wlim": 791, "predefin": 791, "fan_avg": 791, "adaptiveavgpool1d": 792, "avgpool1d": 792, "implicit": [792, 827, 832, 841, 844, 849, 870], "avgpool2d": 792, "avgpool3d": 792, "e501": 792, "filter_s": 792, "weight_initi": [792, 853], "bias_initi": [792, 853], "0x7f768e00df60": 792, "0x7f768e00df00": 792, "conv1dtranspos": 792, "0x7f768e00dea0": 792, "0x7f768e00de40": 792, "filter_shap": 792, "0x7f768e00dde0": 792, "0x7f768e00dd80": 792, "0x7f768e00dd20": 792, "0x7f768e00dcc0": 792, "0x7f768e00dba0": 792, "0x7f768e00db40": 792, "conv3dtranspos": 792, "0x7f768e00dae0": 792, "0x7f768e00da80": 792, "depthwiseconv2d": 792, "num_channel": 792, "0x7f768e00dc60": 792, "0x7f768e00dc00": 792, "bernoul": 792, "num_embed": 792, "embedding_dim": 792, "padding_idx": 792, "lookup": 792, "num_embeddingss": 792, "renorm": 792, "insensit": 792, "return_st": 792, "0x7f768e00da20": 792, "get_initial_st": 792, "0x7f768e00e020": 792, "0x7f768e00dfc0": 792, "maxpool1d": 792, "maxpool3d": 792, "multiheadattent": 792, "embed_dim": 792, "head_dim": 792, "dropout_r": 792, "use_proj_bia": 792, "attention_ax": 792, "build_mod": [792, 793, 794], "on_init": [792, 794], "parallel": [792, 826, 870, 874, 875], "binarycrossentropyloss": 793, "store_var": [793, 794], "with_partial_v": [793, 794], "logpoissonloss": 793, "modulemeta": 794, "temporarili": [794, 816, 823, 834], "from_cal": 794, "module_dict": 794, "register_buff": 794, "register_paramet": 794, "weights_path": 794, "randomness_factor": 794, "with_edge_label": 794, "with_arg_label": 794, "with_output_label": 794, "output_connected_onli": 794, "highlight_subgraph": 794, "trace_kwarg": 794, "_unified_ivy_graph": 794, "_call": 794, "num_featur": 795, "trail": 795, "layernorm": 795, "normalized_shap": 795, "elementwise_affin": 795, "set_stat": [796, 853], "adamw": 796, "weight_decai": 796, "init_on_first_step": 796, "fallback_to_non_trac": 796, "ignore_miss": 796, "privat": [796, 841, 844], "_step": [796, 853], "stochast": [796, 870], "sub_modul": 797, "check_al": 798, "check_all_or_any_fn": 798, "check_ani": 798, "check_dev_correct_format": 798, "check_dimens": 798, "check_elem_in_list": [798, 837, 840, 841], "elem": 798, "check_equ": [798, 841], "check_exist": 798, "check_fals": 798, "check_gather_input_valid": 798, "check_gather_nd_input_valid": 798, "check_great": 798, "allow_equ": [798, 833], "check_inplace_sizes_valid": [798, 840], "check_isinst": 798, "allowed_typ": 798, "check_kernel_padding_s": 798, "padding_s": 798, "check_less": [798, 833], "check_one_way_broadcast": 798, "check_same_dtyp": 798, "check_shapes_broadcast": 798, "check_tru": 798, "check_unsorted_segment_valid_param": 798, "ast_help": 800, "importtransform": 800, "nodetransform": 800, "impersonate_import": 800, "tree": [800, 829], "local_ivy_id": 800, "visit_import": 800, "visit_importfrom": 800, "ivyload": 800, "loader": [800, 852, 855], "exec_modul": 800, "ivypathfind": 800, "metapathfind": 800, "find_spec": 800, "fullnam": 800, "contextmanag": 801, "choose_random_backend": 801, "global_backend": 801, "dynamic_backend_convert": 801, "backend_stack": [801, 849], "prevent_access_loc": 801, "previous_backend": [801, 825], "Or": [801, 812, 814, 819, 840, 852], "set_backend_to_specific_vers": 801, "set_jax_backend": 801, "set_mxnet_backend": 801, "mx": 801, "set_numpy_backend": 801, "set_paddle_backend": 801, "set_tensorflow_backend": 801, "set_torch_backend": 801, "sub_backend_handl": 802, "clear_sub_backend": 802, "find_available_sub_backend": 802, "sub_backends_loc": 802, "fn_name_from_version_specific_fn_nam": 802, "fn_name_from_version_specific_fn_name_sub_backend": 802, "sub_backend_vers": 802, "backend_vers": [802, 816, 829, 834], "set_sub_backend": 802, "sub_backend_str": 802, "set_sub_backend_to_specific_vers": 802, "sub_backend": 802, "unset_sub_backend": 802, "check_for_binari": 803, "cleanup_and_fetch_binari": [803, 819], "clean": [803, 820, 845, 849, 850, 852], "dynamic_import": 804, "import_modul": [804, 849], "einsum_pars": 805, "convert_interleaved_input": 805, "interleav": 805, "convert_subscript": 805, "old_sub": 805, "symbol_map": 805, "subscript": [805, 806], "oe": 805, "ellipsi": [805, 806], "find_output_shap": 805, "find_output_str": 805, "canon": 805, "gen_unused_symbol": 805, "abd": [805, 806], "get_symbol": 805, "letter": 805, "resort": 805, "unicod": 805, "charact": [805, 841, 860], "chr": 805, "surrog": 805, "\u0155": 805, "20000": 805, "\u4eac": 805, "has_valid_einsum_chars_onli": 805, "einsum_str": 805, "abaz": 805, "\u00f6ver": 805, "is_valid_einsum_char": 805, "\u01f5": 805, "legalise_einsum_expr": 805, "reproduct": [805, 806], "pars": [805, 806, 826, 831, 855], "intak": 805, "contract_path": 805, "parse_einsum_input": [805, 806], "einsum_eqn": 805, "legalis": 805, "legalise_einsum_eqn": 805, "za": [805, 806], "xza": [805, 806], "xz": [805, 806], "possibly_convert_to_numpi": 805, "myshap": 805, "__main__": 805, "0x10f850710": 805, "einsum_path_help": 806, "can_dot": 806, "idx_remov": 806, "bla": 806, "benefici": 806, "movement": 806, "costli": 806, "gemm": 806, "ijj": 806, "ddot": 806, "ikj": 806, "compute_size_by_dict": 806, "idx_dict": 806, "abbc": 806, "find_contract": 806, "input_set": 806, "output_set": 806, "lh": 806, "rh": 806, "new_result": 806, "idx_contract": 806, "iset": 806, "oset": 806, "bdc": 806, "flop_count": 806, "num_term": 806, "size_dictionari": 806, "flop": [806, 810], "greedy_path": 806, "memory_limit": 806, "exhaust": [806, 840, 844, 867, 876], "indices_remov": 806, "priorit": [806, 818, 843, 847], "hadamard": 806, "cubic": 806, "greedi": 806, "idx_siz": 806, "optimal_path": 806, "siev": 806, "input_str": 806, "output_str": 806, "parse_possible_contract": 806, "path_cost": 806, "naive_cost": 806, "propos": [806, 820, 841, 847, 870], "intermediari": [806, 825], "unoptim": 806, "new_input_set": 806, "update_other_result": 806, "provision": 806, "_parse_possible_contract": 806, "mod_result": 806, "inplaceupdateexcept": 807, "include_backend": [807, 833], "ivyattributeerror": [807, 833], "attributeerror": [807, 833, 851], "ivybroadcastshapeerror": [807, 833], "ivydeviceerror": 807, "ivydtypepromotionerror": [807, 833], "ivyindexerror": [807, 833], "ivyinvalidbackendexcept": 807, "ivynotimplementedexcept": [807, 833], "notimplementederror": 807, "ivyvalueerror": [807, 833], "handle_except": [807, 836, 838], "add_array_spec": 808, "fn_array_spec": 808, "set_logging_mod": 809, "debug": [809, 815, 819, 820, 827, 828, 839, 844, 847, 852, 870, 878], "unset_logging_mod": 809, "print_stat": 810, "viz": 810, "snakeviz": 810, "bonu": 810, "cprofil": 810, "tensorflow_profile_start": 810, "logdir": 810, "host_tracer_level": 810, "python_tracer_level": 810, "device_tracer_level": 810, "delay_m": 810, "toggl": [810, 820], "timestamp": 810, "awai": [810, 812, 868, 870], "millisecond": 810, "guess": 810, "tensorflow_profile_stop": 810, "torch_profiler_init": 810, "schedul": [810, 828, 855, 870, 877], "on_trace_readi": 810, "record_shap": 810, "profile_memori": 810, "with_stack": 810, "with_flop": 810, "with_modul": 810, "experimental_config": 810, "profileract": 810, "record_and_sav": 810, "dealloc": 810, "record": [810, 819, 855, 871], "callstack": 810, "aten": 810, "torchscript": [810, 849, 857, 877], "_experimentalconfig": 810, "kineto": 810, "torch_profiler_start": 810, "torch_profiler_stop": 810, "cprint": [811, 849], "pilot": [812, 817, 856], "grow": [812, 815, 821, 870, 878], "peopl": [812, 817, 819, 820, 822, 870, 872], "brief": [812, 840, 844], "idea": [812, 818, 843, 845, 850, 861, 869], "docker": [812, 816, 817, 834], "challeng": [812, 818, 825, 876], "pull": [812, 813, 815, 818, 819, 823, 831, 835, 845, 847, 855, 856, 861], "jax_fn": 812, "jax_x": 812, "torch_x": 812, "torch_fn": 812, "shorter": [812, 851], "ensp": 812, "customiz": [812, 826], "15c235f": 812, "deepmind_perceiver_io": 812, "sm_framework": 812, "segmentation_model": 812, "sm": 812, "torch_sm": 812, "metric": [812, 855], "iou_scor": 812, "rax": 812, "torch_rax": 812, "poly1_softmax_loss": 812, "madmom": 812, "madmon": 812, "torch_madmom": 812, "freq": 812, "audio": 812, "hz2midi": 812, "torch_loss": 812, "maxpooling1d": 812, "pool_siz": 812, "tf_kornia": 812, "tf_rax": 812, "tf_madmom": 812, "tf_loss": 812, "_forward_classifi": [812, 864], "forward_classifi": [812, 864], "hk_eff_encod": 812, "dummy_x": 812, "jax_sm": 812, "jax_madmom": 812, "jax_loss": 812, "np_kornia": 812, "np_sm": 812, "np_rax": 812, "np_loss": 812, "yourself": [812, 818, 820, 835, 844, 847], "favourit": [812, 819], "hyperparam": 812, "instantli": [812, 864], "everyon": [812, 813, 818, 819, 820, 855, 861], "interoper": [812, 860, 867, 868, 870, 873], "handler": [812, 848, 850, 854, 857], "facilit": [812, 821], "mse_loss": 812, "jax_ms": 812, "tf_mse": 812, "np_mse": 812, "torch_ms": 812, "someth": [812, 816, 820, 825, 834, 835, 845, 852, 853, 855, 856, 876], "motiv": [812, 851, 860], "contextu": 812, "explos": [812, 858, 860], "adher": [812, 823, 829, 832, 836, 847, 849, 854, 859, 860, 866, 867, 876], "orient": 812, "contributor": [812, 813, 816, 818, 819, 820, 834, 841, 848, 870], "believ": [812, 820, 860], "feedback": [812, 818, 828], "appreci": [812, 821], "amaz": [812, 878], "journei": [812, 813, 821], "ambiti": 812, "season": 812, "fellow": 812, "twitter": 812, "sneak": 812, "peek": 812, "credit": 812, "accompani": 812, "lenton2021ivi": 812, "inter": 812, "author": [812, 818, 820, 868, 872], "lenton": 812, "daniel": 812, "pardo": 812, "fabio": 812, "falck": 812, "fabian": 812, "jame": 812, "stephen": 812, "clark": 812, "ronald": 812, "journal": 812, "arxiv": 812, "preprint": 812, "2102": 812, "02886": 812, "year": [812, 823, 855, 859, 861, 870], "strongli": [813, 819, 841, 876, 877], "engag": [813, 820, 821, 860], "skill": [813, 821, 872], "veteran": 813, "effort": [813, 818, 855, 860, 866, 870, 876], "board": [813, 826], "stage": [813, 820, 822, 823, 826, 844, 860, 870], "excit": [813, 822, 860], "reward": [813, 821], "badg": [813, 821, 828, 878], "program": [813, 840, 867, 868, 870, 873, 874, 877], "climb": [813, 817], "Be": [814, 826], "awar": [814, 826, 833, 835], "linux": [814, 819, 820, 826, 873, 875], "regularli": [814, 826, 828], "internet": [814, 826], "codespac": [814, 826, 834], "make_doc": 814, "sh": [814, 819, 820, 823, 828], "pwd": 814, "ssh": [814, 828], "make_docs_without_dock": [814, 826], "award": 815, "formal": 815, "dynamo": [815, 878], "earn": [815, 821], "thoroughli": [815, 823], "valuabl": [815, 818, 820], "merg": [815, 818, 820, 823, 828, 841, 870, 878], "meet": [815, 821, 841], "wizard": [815, 878], "inspector": [815, 878], "acknowledg": [815, 821], "honour": 815, "dilig": 815, "bronz": [815, 821, 878], "silver": [815, 821, 878], "gold": [815, 821, 855, 878], "expertis": [815, 821, 872], "assist": [816, 834], "runtimeerror": [816, 834], "logaddexp2_cpu": [816, 834], "falsifi": [816, 823, 834, 844], "test_logaddexp2": [816, 834], "backend_fw": [816, 834, 842], "dtype_and_x": [816, 834, 842, 844], "reproduce_failur": [816, 823, 834, 838, 844], "axicy2bkaamobaar2waaaacvaai": [816, 834], "decoartor": [816, 834], "with_unsupported_dtyp": [816, 829, 834, 841], "25830078125": [816, 834], "258544921875": [816, 834], "test_acosh": [816, 834], "axicy2baabyqwqgiaabdaai": [816, 834], "quit": [816, 820, 824, 831, 832, 834, 837, 838, 844, 847, 870, 876], "41421356": [816, 834], "41421356e": [816, 834], "34078079e": [816, 834], "154": [816, 834], "test_ab": [816, 819, 834, 844], "000j": [816, 834], "154j": [816, 834], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [816, 834], "thread": [816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 852, 870], "pycharm": [816, 842, 844], "steep": 817, "curv": 817, "realpython": 817, "pyn": 817, "exchang": [817, 860, 866, 868], "stuck": [817, 818], "spell": 817, "sound": [817, 828, 848], "frequent": [818, 820, 825, 870], "outlin": [818, 819, 820, 822, 827, 829, 832, 837, 840, 841, 844], "broad": [818, 872], "individu": [818, 820, 823, 825, 829, 837, 841, 870, 873, 876, 877], "clearli": [818, 820, 831, 842, 844, 860, 874], "straightforward": [818, 821, 852], "lie": 818, "urgent": 818, "encourag": [818, 821, 835, 855, 860], "tackl": [818, 821, 841], "categoris": [818, 823, 841], "comfort": [818, 819, 833], "linkag": 818, "pr": [818, 820, 821, 823, 835, 841, 842, 844], "confid": 818, "submit": [818, 835], "scipi": [818, 860, 872, 877], "mindspor": 818, "simpler": [818, 820, 835, 863, 871, 877], "member": [818, 820, 841, 856, 860], "comment": [818, 819, 820, 823, 829, 835, 841, 843, 847], "composition": 818, "feasibl": [818, 828, 844, 860, 863], "pend": 818, "helpfulli": [818, 847, 868], "problemat": [818, 819], "unimpl": 818, "issue_link": 818, "alias_nam": 818, "notic": [818, 824, 828, 834, 835, 844, 847, 863], "push": [818, 820, 821, 823, 842, 844, 876], "liner": 818, "meanwhil": [818, 828], "reselect": 818, "faithfulli": 818, "creation_routin": [818, 842], "indexing_routin": 818, "ma": 818, "manipulation_routin": 818, "mathematical_funct": [818, 841], "sorting_searching_count": 818, "ufunc": [818, 841], "matrix_and_vector_product": 818, "matrix_eigenvalu": 818, "norms_and_other_numb": 818, "solving_equations_and_inverting_matric": 818, "gleam": 818, "uncom": 818, "test_numpy_inn": 818, "test_frontend": [818, 828, 834, 842], "unsur": [818, 844], "statu": [818, 821, 828, 835, 861], "refrain": 818, "checkbox": [818, 819], "aforement": 818, "parent": [818, 828, 851], "arraywithelementwis": [818, 824, 851], "containerwithmanipul": 818, "thorough": [818, 832, 836, 844], "add_reformatting_checklist_": 818, "category_nam": [818, 829, 830, 832, 836, 837], "autom": [818, 828, 835, 844, 857, 872], "bot": [818, 835], "markdown": [818, 826], "patient": [818, 819], "elabor": 818, "struggl": 818, "assigne": 818, "status": 818, "central": [818, 835, 847, 860, 876], "relevant_submodul": 818, "roadmap": [818, 828], "deem": [818, 841], "subtask": 818, "clearer": [818, 833, 842, 852], "backend_nam": [818, 825, 829, 830, 832, 836, 837, 838], "rare": [818, 830, 855, 875], "button": [818, 819, 820, 834], "centr": 818, "predetermin": 818, "superset": [818, 822, 837, 840, 855], "happi": [819, 834, 855, 861], "your_usernam": [819, 834], "your_fold": [819, 834], "enter": [819, 820, 824, 829, 830, 834, 836, 838], "sync": [819, 823, 834], "remot": [819, 823, 834, 835], "nutshel": [819, 836], "hook": [819, 835, 843], "lint": [819, 822], "succe": [819, 863], "whatev": [819, 827, 855], "elig": [819, 821], "student": 819, "licens": [819, 873], "remind": 819, "expir": 819, "won": [819, 820, 827, 829, 854, 856, 860, 861, 863, 864, 865], "profession": 819, "trial": 819, "jetbrain": 819, "month": [819, 859], "bui": [819, 876], "paid": 819, "rapid": [819, 859, 860, 870], "pace": 819, "person": [819, 820], "perhap": [819, 851, 852, 853, 855, 876], "conda": [819, 860, 872], "ivy_dev": [819, 820], "icon": [819, 820, 834], "panel": 819, "vscode": [819, 834], "palett": 819, "ctrl": [819, 820], "mac": [819, 820], "intel": [819, 860, 868, 875], "m1": 819, "optional_apple_silicon_1": 819, "optional_apple_silicon_2": 819, "array_api_test": [819, 820, 823, 834], "test_array_api": [819, 820, 823, 834, 844], "suit": [819, 822, 823, 828, 834, 843, 844, 852, 860, 870, 876], "cmd": 819, "bat": [819, 820], "virtualenv": 819, "tick": [819, 820, 828], "nz2": 819, "openssl": 819, "libssl1": 819, "1_1": 819, "1f": 819, "1ubuntu2": 819, "20_amd64": 819, "deb": 819, "dpkg": 819, "mitig": [819, 876], "desktop": [819, 834], "powershel": 819, "admin": 819, "deploy": [819, 864, 869, 872, 873, 876, 877], "menu": [819, 834], "introspect": 819, "dialog": 819, "persist": 819, "earlier": [819, 820, 829, 845], "virtualis": 819, "bio": [819, 860], "dropdown": [819, 828], "dockerfil": 819, "ca": 819, "certif": 819, "gnupg": 819, "lsb": 819, "keyr": 819, "fssl": 819, "gpg": 819, "dearmor": 819, "echo": [819, 828, 856], "arch": 819, "lsb_releas": 819, "ce": 819, "cli": 819, "containerd": 819, "systemctl": 819, "softwar": [819, 820, 859, 860, 868, 873, 874, 875], "press": [819, 820, 852], "4a": 819, "socket": 819, "rwx": 819, "sock": 819, "pid": 819, "editor": 819, "pytest": [819, 820, 823, 828, 834, 838, 844], "keyboard": 819, "screenshot": 819, "pop": [819, 834, 860], "test_elementwis": 819, "shell": [819, 820, 823, 828], "setup_test": 819, "run_ivy_core_test": 819, "run_ivy_nn_test": 819, "run_ivy_stateful_test": 819, "run_test": [819, 828], "test_depend": 819, "test_ivy_cor": 819, "test_ivy_nn": 819, "test_ivy_st": 819, "unix": 819, "test_": [819, 842], "test_cor": [819, 820, 842], "offici": [819, 829, 849], "wish": [819, 841], "ivy_nn": 819, "ivy_st": 819, "header": [819, 820, 843], "arrow": 819, "test_stat": 819, "test_submodule_nam": 819, "test_function_nam": 819, "debugg": 819, "studio": [819, 834, 844], "afterward": [819, 852], "background": [819, 826, 834, 870, 872], "overlap": [819, 828, 834, 845, 847, 871], "test_file_path": [819, 834], "test_fn_nam": [819, 834], "engin": [819, 870, 872, 873], "devcontain": 819, "comma": 819, "postcreatecommand": 819, "post_create_command": 819, "poststartcommand": 819, "safe": [819, 841], "containerworkspacefold": 819, "reopen": 819, "test_fle_path": 819, "slash": 819, "isol": [819, 820, 871, 876], "container": 819, "intens": 819, "headach": 819, "arm": [819, 820], "vm": [819, 828], "azur": 819, "cloud": [819, 828, 872], "theme": [819, 826], "ipad": 819, "browser": [819, 826], "quota": 819, "requisit": 819, "pane": [819, 820, 828], "dockerfilegpu": 819, "ivv": 819, "multiv": 819, "multivers": [819, 845], "dockerfilemultivers": 819, "dockerhub": 819, "upto": [819, 820], "minut": [819, 828], "launch": 819, "kindli": [819, 843], "guidelin": 819, "colour": 819, "chanc": 819, "troubleshoot": 819, "ever": 819, "flask": [819, 834], "toolbar": [819, 820, 834], "_array_modul": [819, 823, 834], "refresh": [819, 834], "pytestarg": [819, 834], "unittesten": [819, 834], "pytesten": [819, 834], "autotestdiscoveronsaveen": [819, 834], "conftest": 819, "serv": [819, 820, 824, 827, 836, 837, 841, 842, 844, 847, 848, 857, 868], "aren": [819, 829], "available_config": 819, "cp310": 819, "x86": [819, 875], "newer": [819, 844], "_compil": 819, "meantim": 819, "suffici": [819, 831, 841, 844], "bear": [819, 824, 827, 829, 841], "tendenc": 820, "land": 820, "unrel": [820, 860], "fly": [820, 870], "internship": 820, "suspect": 820, "iii": 820, "issue_numb": 820, "12345": 820, "rememb": 820, "respond": 820, "dai": [820, 835], "freed": 820, "situat": [820, 828, 854], "obvious": [820, 828], "hypothet": 820, "frustrat": 820, "delai": [820, 863], "busi": 820, "inact": 820, "unfairli": 820, "investig": 820, "name_of_your_branch": 820, "date": [820, 823], "complic": [820, 842, 849], "merge_with_upstream": 820, "abort": 820, "tediou": [820, 831, 847], "stash": [820, 835], "reinstat": 820, "uncommit": 820, "unstag": [820, 835], "untrack": 820, "atlassian": 820, "wrote": 820, "piec": [820, 824, 837, 838, 849, 863, 866, 868], "blame": 820, "eg": 820, "week": [820, 861], "grep": 820, "commit_id": 820, "handi": 820, "histori": 820, "approv": 820, "someon": [820, 855], "hash": [820, 852], "cancel": 820, "speedup": 820, "unavail": 820, "tickbox": 820, "intent": [820, 840], "discourag": 820, "adopt": [820, 824, 836, 847, 860, 869, 870, 875], "philosophi": 820, "infrequ": 820, "earli": [820, 870], "wast": [820, 828], "spot": [820, 831, 837], "mistak": 820, "mountain": 820, "advoc": [820, 855], "session": [820, 870], "beauti": 820, "care": [820, 830, 841, 847, 854, 860], "undo": 820, "stress": 820, "nifti": 820, "reassur": 820, "local_path_to_ivi": 820, "subfold": [820, 842, 844, 845], "dep": 820, "fresh": 820, "arsen": 820, "exec": 820, "ivy_contain": 820, "test_imag": 820, "test_random_crop": 820, "test_creation_funct": 820, "test_arang": 820, "cursor": 820, "alt": 820, "breakpoint": 820, "gutter": 820, "caret": 820, "f8": 820, "f9": 820, "Into": 820, "f7": 820, "smart": 820, "fragment": [820, 866, 868, 872], "wherein": [820, 837, 844], "failur": [820, 828, 842, 844], "embark": 821, "innov": [821, 860], "door": [821, 855], "elev": 821, "mission": [821, 860, 872], "opportun": 821, "testament": [821, 843], "stone": 821, "gift": 821, "acquir": 821, "peak": 821, "privileg": [821, 872], "bounti": 821, "cash": 821, "delight": 821, "weed": [822, 848], "tour": 822, "formatt": [822, 835], "conjunct": 823, "establish": [823, 872], "unconnect": 823, "strang": [823, 851], "test_linalg": [823, 842], "test_set_funct": 823, "test_signatur": 823, "excess": [823, 825, 831], "array_modul": 823, "vv": 823, "test_manipulation_funct": 823, "test_concat": [823, 844], "nb": 823, "liber": 823, "______________________": 823, "test_remaind": 823, "_______________________": 823, "test_operators_and_elementwise_funct": 823, "1264": 823, "1277": 823, "binary_param_assert_against_refimpl": 823, "ctx": 823, "620": 823, "binary_assert_against_refimpl": 823, "324": 823, "scalar_o": 823, "17304064": 823, "binaryparamcontext": 823, "axic42baaowcnp": 823, "rumwmabaear0": 823, "make_binary_param": 823, "numeric_dtyp": 823, "left_strat": 823, "left_sym": 823, "right_strat": 823, "right_sym": 823, "right_is_scalar": 823, "binary_param_assert_dtyp": 823, "binary_param_assert_shap": 823, "recreat": 823, "unexpectedli": 823, "discrep": [823, 842], "test_asarray_arrai": 823, "test_floor_divid": 823, "health": 823, "test_iop": 823, "__imod__": 823, "isequ": 823, "test_matrix_norm": 823, "alter": 823, "tweak": 823, "array_api_methods_to_test": 823, "test_special_cas": 823, "__ipow__": 823, "is_integ": 823, "easier": [823, 824, 825, 829, 842, 845, 857, 870, 872], "revisit": [823, 836], "_data": [824, 840, 841, 851], "organiz": [824, 827, 841], "underpin": [824, 827, 849], "programmat": [824, 827, 871], "backup": [824, 826, 827], "accident": [824, 827, 841], "absent": [824, 827], "auto": [824, 826, 827, 835, 852], "__mul__": [824, 827, 831, 836, 847, 851], "throw": [824, 829, 830, 833, 834, 851, 870], "imposs": 824, "inputs_to_native_arrai": [824, 837, 838], "outputs_to_ivy_arrai": [824, 829, 830, 836, 837, 838], "secondli": [824, 829], "__ivy_array_function__": 824, "__torch_function__": 824, "myarrai": 824, "handled_funct": 824, "notimpl": 824, "issubclass": 824, "enough": [824, 828, 829, 830, 844, 851, 852, 853], "ivy_funct": 824, "my_ab": 824, "my_arrai": 824, "implicit_backend": [825, 849], "__dict__": [825, 840, 849], "ivy_original_dict": [825, 849], "fallback": 825, "live": [825, 826, 829, 860, 861, 866, 868], "dlpack": 825, "set_dynamic_backend": 825, "unset_dynamic_backend": 825, "dynamic_backend_a": 825, "set_": 825, "unset_": 825, "backend_handl": 825, "requires_grad": 825, "memory_format": 825, "preserve_format": 825, "weren": 825, "vast": [825, 829, 870], "minor": [825, 847, 855], "fn_name_v_1p12_and_abov": 825, "fn_name_v_1p01_to_1p1": 825, "heavili": [826, 838, 855], "conf": 826, "cleanup": 826, "readm": [826, 855], "maxdepth": 826, "caption": 826, "related_work": 826, "deep_div": 826, "faq": 826, "glossari": 826, "autosummari": 826, "top_functional_toc": 826, "restructuredtext": 826, "discov": [826, 829], "ivy_toctree_caption_map": 826, "unfortun": [826, 835], "linker": 826, "foo": 826, "discussion_channel_map": 826, "1000043690254946374": 826, "1000043749088436315": 826, "forum": [826, 856], "seri": [826, 829, 841, 844, 870, 872], "discussion_paragraph": 826, "discord_link": 826, "channel_link": 826, "gg": 826, "zvqdvbznqj": 826, "799879767196958751": 826, "channel_id": 826, "autoskippablemethod": 826, "skippable_method_attribut": 826, "__qualname__": 826, "autodoc": 826, "__doc__": 826, "autoivydata": 826, "mutual": [827, 837], "containerwithelementwis": 827, "__repr__": 827, "__getattr__": [827, 863], "__setattr__": [827, 863], "__contains__": 827, "__getstate__": 827, "__setstate__": 827, "unpickl": 827, "num_dim": [827, 854], "restrict": [827, 828, 841, 849, 863, 867], "enforc": [827, 851], "lefthand": 827, "righthand": 827, "handle_nest": [827, 836, 837, 838, 849], "absenc": [827, 836, 870], "implicitli": [827, 839, 844, 849], "log_pr": [827, 837, 840], "intuit": [827, 844, 852, 853, 866], "chronolog": 827, "concurr": [827, 828, 837, 870], "despit": [827, 829, 830, 842, 849, 860, 867, 870], "__list__": 827, "whatsoev": [827, 837, 857, 876], "children": 827, "shallowest": 827, "deepest": 827, "rollback": 828, "incorpor": [828, 842, 852, 870], "techniqu": 828, "triplet": 828, "test_torch": [828, 842], "test_tensor": [828, 842], "test_torch_instance_arctan_": 828, "12500": 828, "daili": 828, "huge": [828, 852, 858, 860, 870, 876], "shoot": 828, "_reduce_loss": [828, 837, 840], "test_nn": 828, "test_loss": 828, "test_binary_cross_entropy_with_logit": 828, "test_cross_entropi": 828, "test_binary_cross_entropi": 828, "test_sparse_cross_entropi": 828, "test_loss_funct": 828, "test_torch_binary_cross_entropi": 828, "test_torch_cross_entropi": 828, "binary_cross_entropy_with_logit": 828, "torch_binary_cross_entropi": 828, "torch_cross_entropi": 828, "readthedoc": 828, "pedagog": 828, "f_1": 828, "t_1": 828, "t_3": 828, "t_7": 828, "t_": 828, "f_m": 828, "cyclic": 828, "intellig": [828, 844, 872], "tests_fil": 828, "file_nam": [828, 844, 845], "tests_lin": 828, "correspondingli": 828, "tests_to_run": 828, "determine_tests_lin": 828, "mongodb": 828, "databas": [828, 844], "mechan": [828, 855], "secret": 828, "db": 828, "ssh_deploy_kei": 828, "suffic": [828, 838, 844], "massiv": 828, "yml": 828, "felicit": 828, "clone_map": 828, "deploy_kei": 828, "user_email": 828, "user_nam": 828, "target_branch": 828, "github_serv": 828, "deploy_key_fil": 828, "ssh_known_hosts_fil": 828, "known_host": 828, "keyscan": 828, "git_ssh_command": 828, "userknownhostsfil": 828, "email": [828, 860], "methodologi": 828, "master1": 828, "restructur": 828, "_map": 828, "t_2": 828, "t_n": 828, "index_map": 828, "test_map": 828, "snowbal": 828, "recalibr": 828, "workflow_dispatch": 828, "cron": 828, "saturdai": 828, "night": 828, "pm": 828, "gut": 828, "lesser": [828, 833], "lol": 828, "hour": [828, 861], "cater": [828, 843], "master2": 828, "master32": 828, "synchron": 828, "runner2": 828, "corrupt": 828, "decoupl": [828, 853], "150": 828, "cycl": [828, 844], "yellow": 828, "queu": 828, "redirect": 828, "book": 828, "onrend": 828, "jo": 828, "ran": 828, "clickabl": 828, "all_dtyp": 829, "all_numeric_dtyp": 829, "all_int_dtyp": 829, "all_float_dtyp": 829, "replic": [829, 839, 840, 841], "thirdli": 829, "native_float32": 829, "importantli": [829, 851, 854], "arguabl": [829, 830, 841], "jaxarrai": [829, 830, 833, 836, 840, 845, 849], "_handle_0_dim_output": 829, "subtli": [829, 840], "promote_types_frontend_nam": 829, "promote_types_of_frontend_name_input": 829, "frontend_nam": 829, "upcast": 829, "nearli": [829, 836, 838, 870], "downcast": 829, "footprint": 829, "concret": 829, "aris": [829, 835, 855, 860], "utterli": 829, "meant": [829, 831, 840], "twice": 829, "disadvantag": 829, "relax": 829, "f64": 829, "unwant": 829, "primaci": 829, "resembl": 829, "compound": 829, "infer_dtyp": [829, 830, 836, 838], "settabl": [829, 830], "handle_out_argu": [829, 830, 836, 837, 838, 840, 849], "infer_devic": [829, 830, 836, 838], "deleg": [829, 877], "shape_to_tupl": 829, "with_supported_dtyp": 829, "unment": 829, "_cast_for_unary_op": [829, 837, 840], "target_typ": 829, "syntax": [829, 859, 860, 870], "unsupported_dtyp": 829, "supported_dtypes_and_devic": 829, "with_unsupported_device_and_dtyp": 829, "globals_getter_func": 829, "f2": 829, "lack": [829, 840, 870, 877], "mandat": [829, 840, 844, 845, 860], "confus": [829, 833, 840, 847, 857, 861], "inconsist": [829, 833, 839], "is_nan": 829, "supported_dtyp": 829, "anytim": 829, "84530": 829, "unwarr": 829, "risk": [829, 876], "needlessli": 829, "bloat": 829, "undergo": [829, 855], "unsupported_devic": 829, "supported_devic": 829, "downsid": 829, "coverag": [829, 844], "undesir": 829, "accomplish": 829, "upcast_data_typ": 829, "downcast_data_typ": 829, "crosscast_data_typ": 829, "cast_data_typ": 829, "downcast_data_dtyp": 829, "vice": 829, "versa": 829, "till": 829, "crosscast": 829, "exmp1": 829, "watch": [829, 841], "handle_numpy_arrays_in_specific_backend": [829, 836], "cate": 829, "understood": 829, "consumpt": [829, 874], "dual": 830, "categor": [830, 837, 841], "210": 830, "_handle_except": [830, 833], "1013": 830, "_handle_nest": [830, 833], "905": 830, "_handle_out_argu": [830, 833], "441": 830, "_inputs_to_native_arrai": [830, 833], "new_arg": [830, 833], "new_kwarg": [830, 833], "_outputs_to_ivy_arrai": [830, 833], "358": 830, "_handle_array_funct": [830, 833], "_handle_device_shift": 830, "handle_device_shift": [830, 838], "device_shifting_dev": 830, "__enter__": 830, "__exit__": 830, "soft_devic": 830, "eight": [831, 848], "op_nam": 831, "__r": 831, "unsurprisingli": [831, 859], "recap": [831, 853], "combinatori": 831, "okai": [831, 847, 849], "spec": [831, 832], "my_func": [831, 845], "some_flag": 831, "another_flag": 831, "jointli": 831, "5574077": 831, "1850398": 831, "5463025": 831, "8422884": 831, "91601413": 831, "9647598": 831, "3738229": 831, "1597457": 831, "0963247": 831, "9955841": 831, "3278579": 831, "asid": 831, "14254655": 831, "1578213": 831, "380515": 831, "trivial": [831, 840], "failing_fn_nam": 831, "onlin": [831, 832], "minutest": 831, "fault": [831, 870], "contrast": [832, 836, 841, 876], "preview": 832, "incorrectli": [832, 863], "needless": [832, 842], "renam": [832, 841], "judgment": 832, "operator_nam": 832, "succinct": 832, "docst": 832, "native_error": 833, "_combine_messag": 833, "truli": [833, 851], "wrong": [833, 835, 838, 841, 847], "198": 833, "392": 833, "_handle_array_like_without_promot": 833, "805": 833, "432": 833, "349": 833, "other_test": 833, "523": 833, "_handle_numpy_out": 833, "396": [833, 853], "_outputs_to_numpy_arrai": 833, "_inputs_to_ivy_arrays_np": 833, "ivy_arg": 833, "ivy_kwarg": 833, "453": 833, "_from_zero_dim_arrays_to_scalar": 833, "truth_value_test": 833, "visibl": 833, "unwieldi": 833, "squash": 833, "hide": [833, 863], "cleaner": [833, 852], "caught": [833, 835], "rethrow": 833, "_print_traceback_histori": 833, "error_stack": 833, "axiserror": 833, "polici": [833, 838, 844, 846], "moreov": 833, "submoodul": 834, "test_jax_transpos": 834, "manipulaiton": 834, "test_jax": [834, 842], "test_numpi": [834, 842], "test_manipul": [834, 842, 844], "preconditionnotmet": 834, "densetensor": 834, "holder_": 834, "phi": 834, "dense_tensor_impl": 834, "array_and_ax": 834, "aaegbaegaqaaaaaaaaaaaaab": 834, "black": 835, "flake8": 835, "linter": 835, "autoflak": 835, "docformatt": 835, "pydocstyl": 835, "yaml": 835, "patch1687898304": 835, "8072": 835, "3516aed563": 835, "reformat": 835, "akshai": 835, "jain": 835, "gui": 835, "cryptic": 835, "garden": 835, "utc": 835, "didn": 835, "human": 835, "intervent": 835, "typo": 835, "ui": 835, "handle_array_like_without_promot": [836, 838], "to_native_arrays_and_back": [836, 838, 849], "handle_array_funct": [836, 838], "inputs_to_native_shap": [836, 838], "rational": [836, 840, 847], "__div__": [836, 847], "484": 836, "brittl": 836, "freeli": 836, "technic": [836, 840, 855, 870, 872], "original_typ": 836, "cumbersom": 836, "hinder": [836, 859], "venn": 837, "diagram": [837, 876], "light": [837, 845, 855, 857, 871, 876], "maximis": 837, "encompass": 837, "partial_mixed_handl": [837, 838, 847], "handle_partial_mixed_funct": [837, 838, 847], "fn_decor": 837, "mixed_backend_wrapp": [837, 840], "to_add": 837, "to_skip": 837, "inputs_to_ivy_arrai": [837, 838], "modif": [837, 870], "briefli": [837, 844, 852], "get_all_arrays_on_dev": 837, "outputs_to_ivy_shap": 838, "outputs_to_native_arrai": 838, "handle_view_index": [838, 840], "handle_view": [838, 840], "handle_rag": 838, "handle_backend_invalid": 838, "handle_nan": 838, "to_native_shapes_and_back": 838, "modern": [839, 859, 860, 875], "inter_func": 839, "custom_grad_fn": 839, "args1": 839, "speak": 840, "val_n": 840, "base_idx": 840, "_manipulation_stack": 840, "base_flat": 840, "_view_ref": 840, "_update_view": 840, "contigu": 840, "c_contigu": 840, "ascontiguousarrai": 840, "copyto": 840, "_is_vari": 840, "tensor_scatter_nd_upd": 840, "is_vari": 840, "_update_torch_view": 840, "predominantli": [840, 845], "support_native_out": [840, 849], "_scalar_output_to_0d_arrai": 840, "_wrap_fn": 840, "dim0": 840, "dim1": 840, "res_floor": 840, "extent": [840, 841], "to_out_fn": 840, "add_wrapp": 840, "paradigm": [840, 855, 870], "expans": 840, "weak": 840, "_torch_bas": 840, "_torch_view_ref": 840, "_torch_manipul": 840, "weakli": 840, "adequ": 840, "tf_frontend": 841, "lax": [841, 842, 847, 854, 855], "torch_frontend": [841, 842], "numpy_frontend": 841, "jax_frontend": 841, "to_ivy_arrays_and_back": [841, 842], "fidel": 841, "algebra": [841, 868, 869, 870, 873, 877], "dynamic": 841, "mimic": 841, "arithmetic_oper": 841, "handle_numpy_out": 841, "handle_numpy_dtyp": 841, "handle_numpy_cast": 841, "from_zero_dim_arrays_to_scalar": 841, "_add": 841, "same_kind": 841, "subok": [841, 842, 847], "promote_types_of_numpy_input": 841, "underscor": 841, "unhandl": 841, "trigonometric_funct": 841, "_tan": 841, "check_tensorflow_cast": 841, "raw_op": [841, 842], "map_raw_ops_alia": 841, "output_typ": 841, "kwargs_to_upd": 841, "pointwise_op": 841, "sensibl": 841, "ahead": [841, 845, 870], "reduce_logsumexp": 841, "logsumexp": 841, "trick": 841, "max_input_tensor": 841, "preferred_element_typ": 841, "languag": [841, 849, 857, 859, 861, 868, 871, 873, 874, 875, 876], "finer": 841, "logicaland": 841, "np_frontend": 841, "_ivy_arrai": 841, "radd": 841, "_init_data": 841, "_process_str_data": 841, "_dtype": [841, 842, 851], "_shape": [841, 851], "govern": 841, "promote_types_of_": 841, "_input": 841, "promote_types_of_torch_input": [841, 842], "handle_numpy_casting_speci": 841, "new_fn": 841, "equiv": 841, "unsaf": 841, "array_type_test": 841, "_isfinit": 841, "organis": 841, "youtub": 841, "knowledg": 842, "np_frontend_help": 842, "open_task": 842, "test_lax": 842, "test_oper": 842, "test_jax_tan": 842, "test_mathematical_funct": 842, "test_trigonometric_funct": 842, "dtypes_values_cast": 842, "dtypes_values_casting_dtyp": 842, "arr_func": 842, "get_num_positional_args_ufunc": 842, "test_numpy_tan": 842, "handle_where_and_array_bool": 842, "test_tensorflow": 842, "test_math": 842, "test_tensorflow_tan": 842, "test_pointwise_op": 842, "test_torch_tan": 842, "_fill_valu": 842, "test_glob": 842, "test_jax_ful": 842, "test_from_shape_or_valu": 842, "_input_fill_and_dtyp": 842, "dtype_and_input": 842, "dtype_to_cast": 842, "input_fill_dtyp": 842, "test_numpy_ful": 842, "test_raw_op": 842, "test_tensorflow_fil": 842, "test_creation_op": 842, "with_arrai": 842, "test_torch_ful": 842, "add_nois": 842, "all_clos": 842, "_get_dtype_and_matrix": 842, "test_torch_qr": 842, "frontend_q": 842, "frontend_r": 842, "walkthrough": 842, "comparison_op": 842, "test_comparison_op": 842, "test_torch_great": 842, "all_alias": 842, "test_ndarrai": 842, "test_numpy_instance_add__": 842, "test_tensorflow_instance_add": 842, "1e04": 842, "allow_infin": 842, "test_torch_instance_add": 842, "_arrays_idx_n_dtyp": 842, "surprisingli": 842, "closest_relevant_group": 842, "strive": [842, 844, 847, 855, 872], "craft": [843, 844], "tailor": 843, "clariti": [843, 844, 847, 870], "weav": 843, "thrill": 843, "brim": 843, "stand": [843, 844], "landscap": 843, "forese": 843, "refin": 843, "inquiri": 843, "fixtur": 844, "hit": [844, 849, 863], "eleg": [844, 870], "unexplor": 844, "artifact": 844, "bespok": 844, "_array_or_typ": 844, "rigor": [844, 859], "test_default_int_dtyp": 844, "print_hypothesis_exampl": 844, "custom_strategi": 844, "randomis": 844, "simplist": 844, "intricaci": 844, "glanc": 844, "one_of": 844, "datum": 844, "pipe": 844, "array_or_scal": 844, "len_of_arrai": 844, "test_add": 844, "test_gpu_is_avail": 844, "pretest": 844, "snippet": [844, 864], "frontend_test": 844, "frontend_method": 844, "criterion": 844, "valid_ax": 844, "hoc": 844, "11228": 844, "268": 844, "wherev": 844, "9622": 844, "28136": 844, "6375": 844, "12720": 844, "21354": 844, "900e": 844, "57384": 844, "25687": 844, "248": 844, "test_devic": 844, "array_shap": 844, "test_lay": 844, "some_sequ": 844, "arrays_valu": 844, "36418": 844, "213": 844, "21716926": 844, "none_or_list_of_float": 844, "get_prob": 844, "103515625e": 844, "099609375": 844, "probabilist": 844, "number_positional_argu": 844, "unreproduc": 844, "x_and_linear": 844, "is_torch_backend": 844, "x_shape": [844, 849], "weight_shap": 844, "bias_shap": 844, "ivy_np": 844, "valid_float_dtyp": 844, "test_demo": 844, "failing_test": 844, "traceback": 844, "shrink": 844, "prescrib": 844, "scratch": 844, "test_gelu": 844, "test_fil": 844, "notabl": [844, 870], "max_exampl": 844, "deadlin": 844, "weird": 844, "systemat": 844, "safeguard": 844, "inabl": 844, "test_result_typ": 844, "9090909090909091": 844, "judgement": 845, "some_namespac": 845, "some_backend": 845, "another_backend": 845, "refactor": 845, "ongo": 845, "check_fill_value_and_dtype_are_compat": 845, "_to_devic": 845, "shouldn": [845, 863], "pin": 845, "unpinn": 845, "culmin": 845, "unsett": 846, "array_significant_figur": 846, "array_decimal_valu": 846, "warning_level": 846, "nan_polici": 846, "stablest": 846, "constantli": [847, 859], "answer": [847, 851, 855], "contradict": 847, "entail": 847, "sacrif": 847, "jacfwd": 847, "jacrev": 847, "banner": 847, "expens": 847, "incredibli": [847, 852, 855, 873], "price": 847, "pai": 847, "intrus": 847, "x_beta": 847, "equip": 847, "simplif": 847, "allevi": 847, "ineffici": [847, 855, 870], "fuse": 847, "hybrid": 847, "workaround": 847, "slip": 847, "radar": 847, "stumbl": 847, "gone": [848, 860], "fulfil": 848, "syntact": [849, 854], "power_seq": 849, "_determine_backend_from_arg": 849, "importlib": 849, "_backend_dict": 849, "x_flat": 849, "wi": 849, "wi_x": 849, "wii_x": 849, "wif_x": 849, "wig_x": 849, "wio_x": 849, "wh": 849, "ht": 849, "ct": 849, "hts_list": 849, "wii_xt": 849, "wif_xt": 849, "wig_xt": 849, "wio_xt": 849, "htm1": 849, "ctm1": 849, "wh_htm1": 849, "whi_htm1": 849, "whf_htm1": 849, "whg_htm1": 849, "who_htm1": 849, "ft": 849, "ot": 849, "reliabl": 849, "sacrific": 849, "hear": 849, "virtu": [849, 867], "pure_ivi": 849, "pure_torch": 849, "unclean": 849, "wx": 849, "temp": 849, "ivy_func": 849, "emphas": 849, "example_input": 849, "static_argnum": [849, 863], "static_argnam": [849, 863], "primit": [850, 855, 868, 870], "hierarch": [850, 852, 853, 870], "arraywithactiv": 851, "arraywithcr": 851, "arraywithdatatyp": 851, "arraywithdevic": 851, "arraywithgener": 851, "arraywithgradi": 851, "arraywithimag": 851, "arraywithlay": 851, "arraywithlinearalgebra": 851, "arraywithloss": 851, "arraywithmanipul": 851, "arraywithnorm": 851, "arraywithrandom": 851, "arraywithsearch": 851, "arraywithset": 851, "arraywithsort": 851, "arraywithstatist": 851, "arraywithutil": 851, "_init": 851, "_size": 851, "_devic": 851, "_dev_str": 851, "_pre_repr": 851, "_post_repr": 851, "framework_str": 851, "pypep8nam": 851, "immut": 851, "claim": 851, "_native_wrapp": 851, "genuin": 851, "some_method": 851, "rewritten": 851, "littl": [851, 859, 872], "compartment": 851, "newshap": 851, "new_shap": 851, "tidi": 851, "crystal": 851, "ton": 852, "ado": [852, 853], "soup": 852, "walk": [852, 853], "cnt": 852, "3333335": 852, "autocomplet": 852, "midwai": 852, "agent": 852, "total_spe": 852, "total_height": 852, "total_width": 852, "ag": 852, "tot": 852, "total_": 852, "total_h": 852, "cnt0": 852, "cnt1": 852, "diff_0": 852, "diff_1": 852, "config0": 852, "config1": 852, "l0": 852, "decoder__l0": 852, "decoder__l1": 852, "encoder__l0": 852, "encoder__l1": 852, "l0__b": 852, "l0__w": 852, "l1__b": 852, "l1__w": 852, "printabl": 852, "foresight": 852, "untidili": 852, "update_ag": 852, "normalize_img": 852, "img_max": 852, "reduce_max": 852, "img_min": 852, "reduce_min": 852, "img_rang": 852, "agent_posit": 852, "agent_veloc": 852, "agent_cam_front_rgb": 852, "agent_cam_front_depth": 852, "agent_cam_rear_rgb": 852, "agent_cam_rear_depth": 852, "agent_cam_lidar": 852, "camera": 852, "front_rgb": 852, "front_depth": 852, "rear_rgb": 852, "rear_depth": 852, "lidar": 852, "rgb": 852, "rear": 852, "veloc": 852, "cam": 852, "cam_max": 852, "cam_min": 852, "cam_rang": 852, "allud": [852, 860], "perman": 852, "_cnt": 852, "img_": 852, "_dataset_s": 852, "_batch_siz": 852, "_count": [852, 853], "__next__": 852, "img_fnam": 852, "loaded_img": 852, "batch_slic": 852, "0145": 852, "addbackward0": 852, "_create_vari": 853, "_input_channel": 853, "_output_channel": 853, "_w_shape": 853, "_b_shape": 853, "_with_bia": 853, "764": 853, "872": 853, "211": 853, "439": 853, "nightmar": 853, "overcom": 853, "key0": 853, "linear3": 853, "preced": [853, 860], "_w_init": 853, "_b_init": 853, "misnom": 853, "saw": 853, "_beta1": 853, "_beta2": 853, "_epsilon": 853, "_mw": 853, "_vw": 853, "_first_pass": 853, "_should_trac": 853, "new_v": 853, "_lr": 853, "_inplac": 853, "_stop_gradi": 853, "sparse_funct": 854, "_linear": 854, "jax_graph": 854, "to_backend": 854, "thinli": 854, "to_haiku_modul": 854, "loss_fn_t": 854, "without_apply_rng": 854, "update_rul": 854, "tree_multimap": 854, "trax": [854, 861], "objax": [854, 861], "matur": [855, 860, 870], "doubt": 855, "grate": [855, 878], "probe": 855, "lock": 855, "dex": 855, "tricki": [855, 857], "tight": 855, "dispatch": [855, 870, 873], "ast": 855, "autodiff": 855, "shine": 855, "merci": 855, "compet": [855, 870], "parallelis": 855, "spmd": 855, "mixtur": 855, "expert": 855, "sophist": 855, "depart": 855, "hundr": 855, "broadli": [855, 876], "supplementari": 855, "reusabl": [855, 868, 870], "fanci": [855, 870], "fusion": [855, 874], "lose": 855, "pmap": 855, "eventu": 855, "supplement": 855, "backdoor": 855, "callback": 855, "somewhat": [855, 870], "outsourc": 855, "ivy_root": 856, "pem": 856, "api_kei": 856, "asap": 856, "nail": 857, "scientist": 857, "correl": 857, "collabor": [858, 859, 860], "consortium": [858, 860], "grown": 859, "rapidli": 859, "shareabl": 859, "outdat": 859, "newest": 859, "prototyp": [859, 870], "obsolet": [859, 861], "invent": 859, "simultan": [859, 861], "runner": 859, "principl": [859, 868, 870, 873], "2006": 859, "cloth": 859, "forgiven": 860, "eyebrow": 860, "somehow": 860, "funni": 860, "comic": 860, "charger": 860, "instant": 860, "contrari": 860, "bumpi": 860, "road": 860, "technologi": [860, 868, 872], "motherboard": 860, "raid": 860, "bluetooth": 860, "wireless": 860, "btx": 860, "sata": 860, "tcp": 860, "ip": 860, "smtp": 860, "send": [860, 875], "gmail": 860, "outlook": 860, "growth": [860, 873], "necess": 860, "2015": [860, 870], "aros": 860, "ourselv": [860, 876], "quansight": [860, 876], "compani": [860, 866], "apach": [860, 872, 876], "onnx": [860, 868, 876], "cupi": [860, 870, 877], "modin": 860, "spyder": 860, "octoml": [860, 876], "sponsor": 860, "lg": 860, "electron": 860, "shaw": 860, "pursuit": 860, "complianc": 860, "convinc": 860, "celebr": 860, "streamlin": [861, 873], "awesom": 861, "love": 861, "slew": 861, "inevit": [861, 871], "erron": 861, "poor": 861, "spin": 861, "sake": 861, "wouldn": 861, "frantic": 861, "lucid": 861, "honk": 861, "hasn": 861, "spend": [861, 870], "sonnet": 861, "trainer": [861, 877], "quo": 861, "dopamin": 861, "ignit": 861, "catalyst": 861, "lightn": 861, "fastai": 861, "publicli": [863, 864, 865], "logger": 863, "arg_stateful_idx": 863, "kwarg_stateful_idx": 863, "include_gener": 863, "array_cach": 863, "return_backend_traced_fn": 863, "lazygraph": [863, 864, 865], "sum_j": 863, "traced_fn": 863, "impos": 863, "comp_func": 863, "bake": 863, "cont": 863, "new_attribut": 863, "wip": 863, "resnet50": 863, "breed": 863, "resnetforimageclassif": [863, 864], "traced_graph": 863, "predicted_label": 863, "debug_mod": 864, "rough": 864, "transformed_with_st": 864, "bigger": 864, "hf": 864, "tf_model": 864, "transpile_kwarg": 865, "transpiled_func": 865, "unified_func": 865, "rwork": 866, "vendor": [866, 872], "complimentari": [866, 876], "acycl": [866, 871], "fillna": 867, "pct_chang": 867, "_____________": 867, "__________________________________________________________________": 867, "scaffold": [868, 876], "heart": 868, "toolchain": [868, 873], "assembli": [868, 875, 876], "idl": 868, "middl": 868, "emit": 868, "gnu": [868, 873], "broader": 868, "heterogen": 868, "aid": 868, "coprocessor": 868, "programm": [868, 875], "gate": 868, "onednn": 868, "sit": [868, 871, 876], "tandem": 868, "possess": 868, "khrono": [869, 875], "appl": 869, "coremltool": 869, "albeit": 869, "promin": 870, "abbrevi": 870, "laboratori": 870, "proprietari": [870, 874, 875], "mathwork": 870, "commerci": 870, "1984": 870, "toolbox": 870, "mupad": 870, "simulink": 870, "graphic": [870, 874, 875], "simul": 870, "million": [870, 873], "worldwid": 870, "scienc": [870, 872], "econom": 870, "2001": 870, "od": 870, "solver": 870, "cython": 870, "friendli": 870, "2002": 870, "lua": 870, "luajit": 870, "idiap": 870, "epfl": 870, "2005": 870, "numarrai": 870, "cpython": 870, "partli": 870, "2007": 870, "forest": 870, "boost": 870, "dbscan": 870, "inbuilt": 870, "esqu": 870, "aesara": 870, "2012": 870, "polymorph": 870, "mpi": 870, "openmp": 870, "glue": 870, "jaot": 870, "nasa": 870, "cern": 870, "climat": 870, "allianc": 870, "influenti": 870, "2014": 870, "scala": 870, "ship": 870, "forgiv": 870, "decemb": 870, "announc": 870, "mainten": 870, "meaning": 870, "2016": 870, "imper": 870, "amazon": 870, "traction": 870, "cognit": [870, 877], "grade": 870, "dnn": 870, "backpropag": 870, "succumb": 870, "came": 870, "monitor": 870, "hobbyist": 870, "tremend": 870, "gear": 870, "batteri": 870, "zygot": 870, "jl": 870, "workload": 870, "daggerflux": 870, "frontier": 870, "hessian": 870, "2018": 870, "lightweight": [870, 877], "shortcom": 870, "barrier": 870, "inexperienc": 870, "underdevelop": 870, "fanat": 870, "ounc": 870, "infanc": 870, "nich": 870, "mobil": 870, "lite": 870, "enterpris": 870, "reinvent": [870, 872], "inertia": 870, "creator": [870, 872], "paszk": 870, "hi": 870, "bulk": 870, "haskel": 870, "dataflow": 871, "trace_modul": 871, "scriptfunct": 871, "scriptmodul": 871, "fake": 871, "proxi": 871, "graphmodul": 871, "travi": 872, "oliph": 872, "leader": 872, "cornerston": 872, "numba": 872, "numfocu": 872, "pydata": 872, "confer": 872, "consult": 872, "devop": 872, "mlop": 872, "dashboard": 872, "startup": 872, "mlir": [872, 873, 876], "Their": 872, "held": 872, "presum": 872, "llvm": [872, 875], "founder": 872, "tvm": [872, 876], "sustain": 872, "empow": 872, "har": 872, "burden": 872, "precompil": 873, "executor": 873, "julia": [873, 876], "fsf": 873, "gpl": 873, "biggest": [873, 876], "throughput": 874, "autotun": 874, "gpgpu": 874, "classic": 875, "sycl": 875, "dpc": 875, "maco": 875, "oneapi": 875, "ia": 875, "aka": 875, "xeon": 875, "gen9": 875, "xe": 875, "arria": 875, "gx": 875, "fpga": 875, "lofti": 876, "ambit": 876, "realm": 876, "bedrock": 876, "flux": 876, "bite": 876, "chew": 876, "eagerpi": 876, "tensorli": 876, "thinc": 876, "neuropod": 876, "fx": 876, "retrain": 876, "closer": 876, "greatli": 876, "modular": 876, "anywher": 876, "theano": 877, "plaidml": 877, "partial_svd": 877, "subsystem": 877, "bhushan": 878, "srivastava": 878, "he11owther": 878, "og": 878, "edward": 878, "amimo": 878, "moblei": 878, "trent": 878, "ogban": 878, "ugot": 878, "fayad": 878, "alman": 878, "sarvesh": 878, "kesharwani": 878, "krishna": 878, "boppana": 878, "saptarshi": 878, "bandopadhyai": 878, "tugai": 878, "g\u00fcl": 878, "sondertg": 878, "vismai": 878, "suramwar": 878, "leacornelio": 878, "samund": 878, "singh": 878, "samthakur587": 878, "suraj": 878, "zheng": 878, "jai": 878, "choi": 878, "zjay07": 878, "ebenez": 878, "gadri": 878, "akrong": 878, "aibenstunn": 878, "nitesh": 878, "niteshk84": 878, "abdullah": 878, "sabri": 878, "abdullahsabri": 878, "muhammad": 878, "ishaqu": 878, "muhammadnizamani": 878, "moham": 878, "ibrahim": 878, "medo072": 878, "sheroz": 878, "khan": 878, "ksheroz": 878, "suyash": 878, "gupta": 878, "sgalpha01": 878, "alvin": 878, "vinod": 878, "david": 878, "adlai": 878, "nettei": 878, "mwape": 878, "bunda": 878, "teckno": 878, "ramya": 878, "manasa": 878, "amancherla": 878, "ramyamanasa": 878, "rohit": 878, "kumar": 878, "salla": 878, "rohitsalla": 878, "sanjai": 878, "suthar": 878, "sanjay8602": 878, "muzakkir": 878, "hussain": 878, "muzakkirhussain011": 878, "chaitanya": 878, "lakhchaura": 878, "zenithflux": 878, "kacper": 878, "ko\u017cdo\u0144": 878, "kozdon": 878, "zera": 878, "marveen": 878, "lyngkhoi": 878, "fleventi": 878, "jackson": 878, "mcclintock": 878, "jacksondm33": 878, "ayush": 878, "lokar": 878, "ayush111111": 878, "garima": 878, "saroj": 878, "androgari": 878, "lee": 878, "bissessar": 878, "leebissessar5": 878, "mostafa": 878, "gamal": 878, "mr": 878, "array22": 878, "rahul": 878, "prem": 878, "rp097": 878, "vaishnavi": 878, "mudaliar": 878, "vaishnavimudaliar": 878, "waqar": 878, "ahm": 878, "waqaarahm": 878, "aryan": 878, "pandei": 878, "aryan8912": 878, "dhruv": 878, "sharma": 878, "druvdub": 878, "mehmet": 878, "bilgehan": 878, "bezcioglu": 878, "bilgehanmehmet": 878, "omkar": 878, "khade": 878, "omickeye": 878, "puriti": 878, "nyagweth": 878, "stefan": 878, "sanchez": 878, "stefansan26": 878}, "objects": {"ivy.Array": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [544, 0, 1, "", "default"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [404, 0, 1, "", "fft2"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [566, 0, 1, "", "is_ivy_container"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [590, 0, 1, "", "shape"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy": [[634, 1, 1, "", "ArrayMode"], [630, 1, 1, "", "DefaultComplexDtype"], [631, 1, 1, "", "DefaultDevice"], [630, 1, 1, "", "DefaultDtype"], [630, 1, 1, "", "DefaultFloatDtype"], [630, 1, 1, "", "DefaultIntDtype"], [630, 1, 1, "", "DefaultUintDtype"], [386, 1, 1, "", "NativeSparseArray"], [629, 1, 1, "", "NestedSequence"], [634, 1, 1, "", "PreciseMode"], [631, 1, 1, "", "Profiler"], [386, 1, 1, "", "SparseArray"], [220, 2, 1, "", "abs"], [221, 2, 1, "", "acos"], [222, 2, 1, "", "acosh"], [635, 2, 1, "", "adam_step"], [635, 2, 1, "", "adam_update"], [389, 2, 1, "", "adaptive_avg_pool1d"], [390, 2, 1, "", "adaptive_avg_pool2d"], [391, 2, 1, "", "adaptive_max_pool2d"], [392, 2, 1, "", "adaptive_max_pool3d"], [223, 2, 1, "", "add"], [376, 2, 1, "", "adjoint"], [648, 2, 1, "", "all"], [634, 2, 1, "", "all_equal"], [641, 2, 1, "", "all_nested_indices"], [372, 2, 1, "", "allclose"], [372, 2, 1, "", "amax"], [372, 2, 1, "", "amin"], [224, 2, 1, "", "angle"], [648, 2, 1, "", "any"], [629, 2, 1, "", "arange"], [393, 2, 1, "", "area_interpolate"], [634, 2, 1, "", "arg_info"], [634, 2, 1, "", "arg_names"], [644, 2, 1, "", "argmax"], [644, 2, 1, "", "argmin"], [646, 2, 1, "", "argsort"], [644, 2, 1, "", "argwhere"], [629, 2, 1, "", "array"], [634, 2, 1, "", "array_equal"], [193, 2, 1, "", "as_ivy_dev"], [630, 2, 1, "", "as_ivy_dtype"], [194, 2, 1, "", "as_native_dev"], [630, 2, 1, "", "as_native_dtype"], [378, 2, 1, "", "as_strided"], [629, 2, 1, "", "asarray"], [225, 2, 1, "", "asin"], [226, 2, 1, "", "asinh"], [634, 2, 1, "", "assert_supports_inplace"], [378, 2, 1, "", "associative_scan"], [630, 2, 1, "", "astype"], [227, 2, 1, "", "atan"], [228, 2, 1, "", "atan2"], [229, 2, 1, "", "atanh"], [378, 2, 1, "", "atleast_1d"], [378, 2, 1, "", "atleast_2d"], [378, 2, 1, "", "atleast_3d"], [394, 2, 1, "", "avg_pool1d"], [395, 2, 1, "", "avg_pool2d"], [396, 2, 1, "", "avg_pool3d"], [381, 2, 1, "", "batch_norm"], [376, 2, 1, "", "batched_outer"], [382, 2, 1, "", "bernoulli"], [382, 2, 1, "", "beta"], [372, 2, 1, "", "binarizer"], [638, 2, 1, "", "binary_cross_entropy"], [387, 2, 1, "", "bincount"], [374, 2, 1, "", "bind_custom_gradient_function"], [230, 2, 1, "", "bitwise_and"], [231, 2, 1, "", "bitwise_invert"], [232, 2, 1, "", "bitwise_left_shift"], [233, 2, 1, "", "bitwise_or"], [234, 2, 1, "", "bitwise_right_shift"], [235, 2, 1, "", "bitwise_xor"], [312, 2, 1, "", "blackman_window"], [630, 2, 1, "", "broadcast_arrays"], [378, 2, 1, "", "broadcast_shapes"], [630, 2, 1, "", "broadcast_to"], [634, 2, 1, "", "cache_fn"], [630, 2, 1, "", "can_cast"], [236, 2, 1, "", "ceil"], [295, 2, 1, "", "celu"], [630, 2, 1, "", "check_float"], [378, 2, 1, "", "check_scalar"], [637, 2, 1, "", "cholesky"], [378, 2, 1, "", "choose"], [195, 2, 1, "", "clear_cached_mem_on_dev"], [639, 2, 1, "", "clip"], [634, 2, 1, "", "clip_matrix_norm"], [634, 2, 1, "", "clip_vector_norm"], [630, 2, 1, "", "closest_valid_dtype"], [628, 2, 1, "", "cmp_is"], [628, 2, 1, "", "cmp_isnot"], [378, 2, 1, "", "column_stack"], [639, 2, 1, "", "concat"], [378, 2, 1, "", "concat_from_sequence"], [376, 2, 1, "", "cond"], [372, 2, 1, "", "conj"], [639, 2, 1, "", "constant_pad"], [634, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [636, 2, 1, "", "conv1d_transpose"], [636, 2, 1, "", "conv2d"], [636, 2, 1, "", "conv2d_transpose"], [636, 2, 1, "", "conv3d"], [636, 2, 1, "", "conv3d_transpose"], [636, 2, 1, "", "conv_general_dilated"], [636, 2, 1, "", "conv_general_transpose"], [629, 2, 1, "", "copy_array"], [641, 2, 1, "", "copy_nest"], [372, 2, 1, "", "copysign"], [387, 2, 1, "", "corrcoef"], [237, 2, 1, "", "cos"], [238, 2, 1, "", "cosh"], [372, 2, 1, "", "count_nonzero"], [387, 2, 1, "", "cov"], [637, 2, 1, "", "cross"], [638, 2, 1, "", "cross_entropy"], [387, 2, 1, "", "cummax"], [387, 2, 1, "", "cummin"], [647, 2, 1, "", "cumprod"], [647, 2, 1, "", "cumsum"], [634, 2, 1, "", "current_backend_str"], [397, 2, 1, "", "dct"], [634, 2, 1, "", "default"], [630, 2, 1, "", "default_complex_dtype"], [196, 2, 1, "", "default_device"], [630, 2, 1, "", "default_dtype"], [630, 2, 1, "", "default_float_dtype"], [630, 2, 1, "", "default_int_dtype"], [630, 2, 1, "", "default_uint_dtype"], [239, 2, 1, "", "deg2rad"], [636, 2, 1, "", "depthwise_conv2d"], [637, 2, 1, "", "det"], [197, 2, 1, "", "dev"], [198, 2, 1, "", "dev_util"], [398, 2, 1, "", "dft"], [637, 2, 1, "", "diag"], [376, 2, 1, "", "diagflat"], [637, 2, 1, "", "diagonal"], [372, 2, 1, "", "diff"], [372, 2, 1, "", "digamma"], [382, 2, 1, "", "dirichlet"], [240, 2, 1, "", "divide"], [376, 2, 1, "", "dot"], [636, 2, 1, "", "dropout"], [399, 2, 1, "", "dropout1d"], [400, 2, 1, "", "dropout2d"], [401, 2, 1, "", "dropout3d"], [378, 2, 1, "", "dsplit"], [378, 2, 1, "", "dstack"], [630, 2, 1, "", "dtype"], [630, 2, 1, "", "dtype_bits"], [641, 2, 1, "", "duplicate_array_index_chains"], [627, 6, 1, "", "e"], [376, 2, 1, "", "eig"], [637, 2, 1, "", "eigh"], [376, 2, 1, "", "eigh_tridiagonal"], [376, 2, 1, "", "eigvals"], [637, 2, 1, "", "eigvalsh"], [634, 2, 1, "", "einops_rearrange"], [634, 2, 1, "", "einops_reduce"], [634, 2, 1, "", "einops_repeat"], [647, 2, 1, "", "einsum"], [296, 2, 1, "", "elu"], [402, 2, 1, "", "embedding"], [629, 2, 1, "", "empty"], [629, 2, 1, "", "empty_like"], [241, 2, 1, "", "equal"], [242, 2, 1, "", "erf"], [372, 2, 1, "", "erfc"], [372, 2, 1, "", "erfinv"], [635, 2, 1, "", "execute_with_gradients"], [634, 2, 1, "", "exists"], [243, 2, 1, "", "exp"], [244, 2, 1, "", "exp2"], [378, 2, 1, "", "expand"], [639, 2, 1, "", "expand_dims"], [245, 2, 1, "", "expm1"], [629, 2, 1, "", "eye"], [313, 2, 1, "", "eye_like"], [403, 2, 1, "", "fft"], [404, 2, 1, "", "fft2"], [378, 2, 1, "", "fill_diagonal"], [630, 2, 1, "", "finfo"], [372, 2, 1, "", "fix"], [378, 2, 1, "", "flatten"], [639, 2, 1, "", "flip"], [378, 2, 1, "", "fliplr"], [378, 2, 1, "", "flipud"], [372, 2, 1, "", "float_power"], [246, 2, 1, "", "floor"], [247, 2, 1, "", "floor_divide"], [372, 2, 1, "", "fmax"], [248, 2, 1, "", "fmin"], [249, 2, 1, "", "fmod"], [378, 2, 1, "", "fold"], [640, 2, 1, "", "fomaml_step"], [628, 2, 1, "", "for_loop"], [634, 2, 1, "", "fourier_encode"], [372, 2, 1, "", "frexp"], [629, 2, 1, "", "from_dlpack"], [629, 2, 1, "", "frombuffer"], [629, 2, 1, "", "full"], [629, 2, 1, "", "full_like"], [199, 2, 1, "", "function_supported_devices"], [634, 2, 1, "", "function_supported_devices_and_dtypes"], [630, 2, 1, "", "function_supported_dtypes"], [200, 2, 1, "", "function_unsupported_devices"], [634, 2, 1, "", "function_unsupported_devices_and_dtypes"], [630, 2, 1, "", "function_unsupported_dtypes"], [382, 2, 1, "", "gamma"], [634, 2, 1, "", "gather"], [634, 2, 1, "", "gather_nd"], [250, 2, 1, "", "gcd"], [626, 2, 1, "", "gelu"], [376, 2, 1, "", "general_inner_product"], [405, 2, 1, "", "generate_einsum_equation"], [634, 2, 1, "", "get_all_arrays_in_memory"], [201, 2, 1, "", "get_all_ivy_arrays_on_dev"], [406, 2, 1, "", "get_interpolate_kernel"], [634, 2, 1, "", "get_item"], [634, 2, 1, "", "get_num_dims"], [634, 2, 1, "", "get_referrers_recursive"], [202, 2, 1, "", "gpu_is_available"], [635, 2, 1, "", "grad"], [372, 2, 1, "", "gradient"], [635, 2, 1, "", "gradient_descent_update"], [251, 2, 1, "", "greater"], [252, 2, 1, "", "greater_equal"], [381, 2, 1, "", "group_norm"], [314, 2, 1, "", "hamming_window"], [203, 2, 1, "", "handle_soft_device_variable"], [315, 2, 1, "", "hann_window"], [297, 2, 1, "", "hardshrink"], [298, 2, 1, "", "hardsilu"], [626, 2, 1, "", "hardswish"], [299, 2, 1, "", "hardtanh"], [634, 2, 1, "", "has_nans"], [378, 2, 1, "", "heaviside"], [376, 2, 1, "", "higher_order_moment"], [377, 2, 1, "", "hinge_embedding_loss"], [387, 2, 1, "", "histogram"], [378, 2, 1, "", "hsplit"], [378, 2, 1, "", "hstack"], [377, 2, 1, "", "huber_loss"], [372, 2, 1, "", "hypot"], [378, 2, 1, "", "i0"], [407, 2, 1, "", "idct"], [628, 2, 1, "", "if_else"], [408, 2, 1, "", "ifft"], [409, 2, 1, "", "ifftn"], [387, 2, 1, "", "igamma"], [630, 2, 1, "", "iinfo"], [253, 2, 1, "", "imag"], [641, 2, 1, "", "index_nest"], [316, 2, 1, "", "indices"], [627, 6, 1, "", "inf"], [630, 2, 1, "", "infer_default_dtype"], [376, 2, 1, "", "initialize_tucker"], [637, 2, 1, "", "inner"], [634, 2, 1, "", "inplace_arrays_supported"], [634, 2, 1, "", "inplace_decrement"], [634, 2, 1, "", "inplace_increment"], [634, 2, 1, "", "inplace_update"], [634, 2, 1, "", "inplace_variables_supported"], [641, 2, 1, "", "insert_into_nest_at_index"], [641, 2, 1, "", "insert_into_nest_at_indices"], [381, 2, 1, "", "instance_norm"], [410, 2, 1, "", "interp"], [411, 2, 1, "", "interpolate"], [637, 2, 1, "", "inv"], [630, 2, 1, "", "invalid_dtype"], [385, 2, 1, "", "invert_permutation"], [634, 2, 1, "", "is_array"], [630, 2, 1, "", "is_bool_dtype"], [630, 2, 1, "", "is_complex_dtype"], [630, 2, 1, "", "is_float_dtype"], [630, 2, 1, "", "is_hashable_dtype"], [630, 2, 1, "", "is_int_dtype"], [634, 2, 1, "", "is_ivy_array"], [634, 2, 1, "", "is_ivy_container"], [634, 2, 1, "", "is_ivy_nested_array"], [386, 2, 1, "", "is_ivy_sparse_array"], [634, 2, 1, "", "is_native_array"], [630, 2, 1, "", "is_native_dtype"], [386, 2, 1, "", "is_native_sparse_array"], [630, 2, 1, "", "is_uint_dtype"], [372, 2, 1, "", "isclose"], [254, 2, 1, "", "isfinite"], [634, 2, 1, "", "isin"], [255, 2, 1, "", "isinf"], [256, 2, 1, "", "isnan"], [257, 2, 1, "", "isreal"], [634, 2, 1, "", "isscalar"], [634, 2, 1, "", "itemsize"], [635, 2, 1, "", "jac"], [374, 2, 1, "", "jvp"], [317, 2, 1, "", "kaiser_bessel_derived_window"], [318, 2, 1, "", "kaiser_window"], [376, 2, 1, "", "khatri_rao"], [377, 2, 1, "", "kl_div"], [376, 2, 1, "", "kron"], [376, 2, 1, "", "kronecker"], [377, 2, 1, "", "l1_loss"], [381, 2, 1, "", "l1_normalize"], [381, 2, 1, "", "l2_normalize"], [635, 2, 1, "", "lamb_update"], [635, 2, 1, "", "lars_update"], [642, 2, 1, "", "layer_norm"], [258, 2, 1, "", "lcm"], [372, 2, 1, "", "ldexp"], [626, 2, 1, "", "leaky_relu"], [372, 2, 1, "", "lerp"], [259, 2, 1, "", "less"], [260, 2, 1, "", "less_equal"], [385, 2, 1, "", "lexsort"], [372, 2, 1, "", "lgamma"], [636, 2, 1, "", "linear"], [629, 2, 1, "", "linspace"], [648, 2, 1, "", "load"], [381, 2, 1, "", "local_response_norm"], [261, 2, 1, "", "log"], [262, 2, 1, "", "log10"], [263, 2, 1, "", "log1p"], [264, 2, 1, "", "log2"], [377, 2, 1, "", "log_poisson_loss"], [626, 2, 1, "", "log_softmax"], [265, 2, 1, "", "logaddexp"], [266, 2, 1, "", "logaddexp2"], [267, 2, 1, "", "logical_and"], [268, 2, 1, "", "logical_not"], [269, 2, 1, "", "logical_or"], [270, 2, 1, "", "logical_xor"], [300, 2, 1, "", "logit"], [301, 2, 1, "", "logsigmoid"], [629, 2, 1, "", "logspace"], [381, 2, 1, "", "lp_normalize"], [636, 2, 1, "", "lstm"], [636, 2, 1, "", "lstm_update"], [376, 2, 1, "", "lu_factor"], [376, 2, 1, "", "lu_solve"], [376, 2, 1, "", "make_svd_non_negative"], [640, 2, 1, "", "maml_step"], [641, 2, 1, "", "map"], [641, 2, 1, "", "map_nest_at_index"], [641, 2, 1, "", "map_nest_at_indices"], [634, 2, 1, "", "match_kwargs"], [637, 2, 1, "", "matmul"], [378, 2, 1, "", "matricize"], [376, 2, 1, "", "matrix_exp"], [637, 2, 1, "", "matrix_norm"], [637, 2, 1, "", "matrix_power"], [637, 2, 1, "", "matrix_rank"], [637, 2, 1, "", "matrix_transpose"], [647, 2, 1, "", "max"], [412, 2, 1, "", "max_pool1d"], [413, 2, 1, "", "max_pool2d"], [375, 2, 1, "", "max_pool3d"], [375, 2, 1, "", "max_unpool1d"], [271, 2, 1, "", "maximum"], [647, 2, 1, "", "mean"], [387, 2, 1, "", "median"], [319, 2, 1, "", "mel_weight_matrix"], [629, 2, 1, "", "meshgrid"], [647, 2, 1, "", "min"], [272, 2, 1, "", "minimum"], [626, 2, 1, "", "mish"], [376, 2, 1, "", "mode_dot"], [372, 2, 1, "", "modf"], [378, 2, 1, "", "moveaxis"], [646, 2, 1, "", "msort"], [376, 2, 1, "", "multi_dot"], [636, 2, 1, "", "multi_head_attention"], [641, 2, 1, "", "multi_index_nest"], [376, 2, 1, "", "multi_mode_dot"], [643, 2, 1, "", "multinomial"], [273, 2, 1, "", "multiply"], [634, 2, 1, "", "multiprocessing"], [627, 6, 1, "", "nan"], [274, 2, 1, "", "nan_to_num"], [387, 2, 1, "", "nanmean"], [387, 2, 1, "", "nanmedian"], [387, 2, 1, "", "nanmin"], [387, 2, 1, "", "nanprod"], [372, 2, 1, "", "nansum"], [629, 2, 1, "", "native_array"], [386, 2, 1, "", "native_sparse_array"], [386, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [320, 2, 1, "", "ndenumerate"], [321, 2, 1, "", "ndindex"], [375, 2, 1, "", "nearest_interpolate"], [275, 2, 1, "", "negative"], [641, 2, 1, "", "nested_any"], [641, 2, 1, "", "nested_argwhere"], [641, 2, 1, "", "nested_map"], [641, 2, 1, "", "nested_multi_map"], [627, 6, 1, "", "newaxis"], [372, 2, 1, "", "nextafter"], [636, 2, 1, "", "nms"], [644, 2, 1, "", "nonzero"], [276, 2, 1, "", "not_equal"], [634, 2, 1, "", "num_arrays_in_memory"], [204, 2, 1, "", "num_cpu_cores"], [205, 2, 1, "", "num_gpus"], [206, 2, 1, "", "num_ivy_arrays_on_dev"], [629, 2, 1, "", "one_hot"], [629, 2, 1, "", "ones"], [629, 2, 1, "", "ones_like"], [635, 2, 1, "", "optimizer_update"], [388, 2, 1, "", "optional_get_element"], [637, 2, 1, "", "outer"], [378, 2, 1, "", "pad"], [378, 2, 1, "", "partial_fold"], [378, 2, 1, "", "partial_tensor_to_vec"], [376, 2, 1, "", "partial_tucker"], [378, 2, 1, "", "partial_unfold"], [378, 2, 1, "", "partial_vec_to_tensor"], [207, 2, 1, "", "percent_used_mem_on_dev"], [639, 2, 1, "", "permute_dims"], [627, 6, 1, "", "pi"], [637, 2, 1, "", "pinv"], [382, 2, 1, "", "poisson"], [377, 2, 1, "", "poisson_nll_loss"], [369, 2, 1, "", "polyval"], [375, 2, 1, "", "pool"], [277, 2, 1, "", "positive"], [278, 2, 1, "", "pow"], [302, 2, 1, "", "prelu"], [634, 2, 1, "", "print_all_arrays_in_memory"], [208, 2, 1, "", "print_all_ivy_arrays_on_dev"], [647, 2, 1, "", "prod"], [630, 2, 1, "", "promote_types"], [630, 2, 1, "", "promote_types_of_inputs"], [641, 2, 1, "", "prune_empty"], [641, 2, 1, "", "prune_nest_at_index"], [641, 2, 1, "", "prune_nest_at_indices"], [378, 2, 1, "", "put_along_axis"], [637, 2, 1, "", "qr"], [387, 2, 1, "", "quantile"], [279, 2, 1, "", "rad2deg"], [643, 2, 1, "", "randint"], [369, 2, 1, "", "random_cp"], [643, 2, 1, "", "random_normal"], [369, 2, 1, "", "random_parafac2"], [369, 2, 1, "", "random_tr"], [369, 2, 1, "", "random_tt"], [369, 2, 1, "", "random_tucker"], [643, 2, 1, "", "random_uniform"], [280, 2, 1, "", "real"], [281, 2, 1, "", "reciprocal"], [373, 2, 1, "", "reduce"], [375, 2, 1, "", "reduce_window"], [626, 2, 1, "", "relu"], [303, 2, 1, "", "relu6"], [282, 2, 1, "", "remainder"], [639, 2, 1, "", "repeat"], [640, 2, 1, "", "reptile_step"], [639, 2, 1, "", "reshape"], [630, 2, 1, "", "result_type"], [375, 2, 1, "", "rfft"], [375, 2, 1, "", "rfftn"], [375, 2, 1, "", "rnn"], [636, 2, 1, "", "roi_align"], [639, 2, 1, "", "roll"], [378, 2, 1, "", "rot90"], [283, 2, 1, "", "round"], [648, 2, 1, "", "save"], [636, 2, 1, "", "scaled_dot_product_attention"], [304, 2, 1, "", "scaled_tanh"], [634, 2, 1, "", "scatter_flat"], [634, 2, 1, "", "scatter_nd"], [646, 2, 1, "", "searchsorted"], [643, 2, 1, "", "seed"], [305, 2, 1, "", "selu"], [634, 2, 1, "", "set_array_mode"], [630, 2, 1, "", "set_default_complex_dtype"], [209, 2, 1, "", "set_default_device"], [630, 2, 1, "", "set_default_dtype"], [630, 2, 1, "", "set_default_float_dtype"], [184, 2, 1, "", "set_default_int_dtype"], [185, 2, 1, "", "set_default_uint_dtype"], [634, 2, 1, "", "set_exception_trace_mode"], [634, 2, 1, "", "set_inplace_mode"], [634, 2, 1, "", "set_item"], [634, 2, 1, "", "set_min_base"], [634, 2, 1, "", "set_min_denominator"], [641, 2, 1, "", "set_nest_at_index"], [641, 2, 1, "", "set_nest_at_indices"], [634, 2, 1, "", "set_nestable_mode"], [634, 2, 1, "", "set_precise_mode"], [634, 2, 1, "", "set_queue_timeout"], [634, 2, 1, "", "set_shape_array_mode"], [634, 2, 1, "", "set_show_func_wrapper_trace_mode"], [210, 2, 1, "", "set_soft_device_mode"], [211, 2, 1, "", "set_split_factor"], [634, 2, 1, "", "set_tmp_dir"], [634, 2, 1, "", "shape"], [643, 2, 1, "", "shuffle"], [626, 2, 1, "", "sigmoid"], [284, 2, 1, "", "sign"], [372, 2, 1, "", "signbit"], [306, 2, 1, "", "silu"], [285, 2, 1, "", "sin"], [372, 2, 1, "", "sinc"], [286, 2, 1, "", "sinh"], [634, 2, 1, "", "size"], [375, 2, 1, "", "sliding_window"], [637, 2, 1, "", "slogdet"], [377, 2, 1, "", "smooth_l1_loss"], [377, 2, 1, "", "soft_margin_loss"], [378, 2, 1, "", "soft_thresholding"], [626, 2, 1, "", "softmax"], [626, 2, 1, "", "softplus"], [307, 2, 1, "", "softshrink"], [626, 2, 1, "", "softsign"], [637, 2, 1, "", "solve"], [376, 2, 1, "", "solve_triangular"], [646, 2, 1, "", "sort"], [638, 2, 1, "", "sparse_cross_entropy"], [372, 2, 1, "", "sparsify_tensor"], [639, 2, 1, "", "split"], [212, 2, 1, "", "split_factor"], [213, 2, 1, "", "split_func_call"], [287, 2, 1, "", "sqrt"], [288, 2, 1, "", "square"], [639, 2, 1, "", "squeeze"], [634, 2, 1, "", "stable_divide"], [634, 2, 1, "", "stable_pow"], [639, 2, 1, "", "stack"], [308, 2, 1, "", "stanh"], [647, 2, 1, "", "std"], [375, 2, 1, "", "stft"], [635, 2, 1, "", "stop_gradient"], [634, 2, 1, "", "strides"], [289, 2, 1, "", "subtract"], [647, 2, 1, "", "sum"], [634, 2, 1, "", "supports_inplace_updates"], [637, 2, 1, "", "svd"], [376, 2, 1, "", "svd_flip"], [637, 2, 1, "", "svdvals"], [639, 2, 1, "", "swapaxes"], [378, 2, 1, "", "take"], [378, 2, 1, "", "take_along_axis"], [290, 2, 1, "", "tan"], [291, 2, 1, "", "tanh"], [309, 2, 1, "", "tanhshrink"], [376, 2, 1, "", "tensor_train"], [637, 2, 1, "", "tensordot"], [637, 2, 1, "", "tensorsolve"], [310, 2, 1, "", "threshold"], [311, 2, 1, "", "thresholded_relu"], [639, 2, 1, "", "tile"], [214, 2, 1, "", "to_device"], [629, 2, 1, "", "to_dlpack"], [634, 2, 1, "", "to_ivy_shape"], [634, 2, 1, "", "to_list"], [634, 2, 1, "", "to_native_shape"], [634, 2, 1, "", "to_numpy"], [634, 2, 1, "", "to_scalar"], [378, 2, 1, "", "top_k"], [215, 2, 1, "", "total_mem_on_dev"], [216, 2, 1, "", "tpu_is_available"], [637, 2, 1, "", "trace"], [863, 2, 1, "", "trace_graph"], [864, 2, 1, "", "transpile"], [292, 2, 1, "", "trapz"], [629, 2, 1, "", "tril"], [369, 2, 1, "", "tril_indices"], [369, 2, 1, "", "trilu"], [378, 2, 1, "", "trim_zeros"], [629, 2, 1, "", "triu"], [629, 2, 1, "", "triu_indices"], [293, 2, 1, "", "trunc"], [294, 2, 1, "", "trunc_divide"], [376, 2, 1, "", "truncated_svd"], [634, 2, 1, "", "try_else_none"], [628, 2, 1, "", "try_except"], [376, 2, 1, "", "tt_matrix_to_tensor"], [376, 2, 1, "", "tucker"], [186, 2, 1, "", "type_promote_arrays"], [378, 2, 1, "", "unflatten"], [378, 2, 1, "", "unfold"], [865, 2, 1, "", "unify"], [645, 2, 1, "", "unique_all"], [378, 2, 1, "", "unique_consecutive"], [645, 2, 1, "", "unique_counts"], [645, 2, 1, "", "unique_inverse"], [645, 2, 1, "", "unique_values"], [383, 2, 1, "", "unravel_index"], [634, 2, 1, "", "unset_array_mode"], [187, 2, 1, "", "unset_default_complex_dtype"], [217, 2, 1, "", "unset_default_device"], [188, 2, 1, "", "unset_default_dtype"], [189, 2, 1, "", "unset_default_float_dtype"], [190, 2, 1, "", "unset_default_int_dtype"], [191, 2, 1, "", "unset_default_uint_dtype"], [634, 2, 1, "", "unset_exception_trace_mode"], [634, 2, 1, "", "unset_inplace_mode"], [634, 2, 1, "", "unset_min_base"], [634, 2, 1, "", "unset_min_denominator"], [634, 2, 1, "", "unset_nestable_mode"], [634, 2, 1, "", "unset_precise_mode"], [634, 2, 1, "", "unset_queue_timeout"], [634, 2, 1, "", "unset_shape_array_mode"], [634, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [218, 2, 1, "", "unset_soft_device_mode"], [634, 2, 1, "", "unset_tmp_dir"], [369, 2, 1, "", "unsorted_segment_mean"], [369, 2, 1, "", "unsorted_segment_min"], [369, 2, 1, "", "unsorted_segment_sum"], [639, 2, 1, "", "unstack"], [219, 2, 1, "", "used_mem_on_dev"], [192, 2, 1, "", "valid_dtype"], [635, 2, 1, "", "value_and_grad"], [634, 2, 1, "", "value_is_nan"], [637, 2, 1, "", "vander"], [647, 2, 1, "", "var"], [637, 2, 1, "", "vecdot"], [637, 2, 1, "", "vector_norm"], [637, 2, 1, "", "vector_to_skew_symmetric_matrix"], [374, 2, 1, "", "vjp"], [634, 2, 1, "", "vmap"], [369, 2, 1, "", "vorbis_window"], [378, 2, 1, "", "vsplit"], [378, 2, 1, "", "vstack"], [644, 2, 1, "", "where"], [628, 2, 1, "", "while_loop"], [372, 2, 1, "", "xlogy"], [639, 2, 1, "", "zero_pad"], [629, 2, 1, "", "zeros"], [629, 2, 1, "", "zeros_like"], [372, 2, 1, "", "zeta"]], "ivy.Container": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [465, 0, 1, "", "broadcast_shapes"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [134, 0, 1, "", "frombuffer"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [314, 0, 1, "", "hamming_window"], [315, 0, 1, "", "hann_window"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [514, 0, 1, "", "invert_permutation"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [172, 0, 1, "", "is_complex_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [317, 0, 1, "", "kaiser_bessel_derived_window"], [318, 0, 1, "", "kaiser_window"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [322, 0, 1, "", "polyval"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [328, 0, 1, "", "tril_indices"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [147, 0, 1, "", "triu_indices"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [333, 0, 1, "", "vorbis_window"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[51, 3, 0, "-", "activations"], [102, 3, 0, "-", "array"], [52, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [54, 3, 0, "-", "data_type"], [55, 3, 0, "-", "device"], [56, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "experimental"], [58, 3, 0, "-", "general"], [59, 3, 0, "-", "gradients"], [60, 3, 0, "-", "image"], [61, 3, 0, "-", "layers"], [62, 3, 0, "-", "linear_algebra"], [63, 3, 0, "-", "losses"], [64, 3, 0, "-", "manipulation"], [65, 3, 0, "-", "norms"], [66, 3, 0, "-", "random"], [67, 3, 0, "-", "searching"], [68, 3, 0, "-", "set"], [69, 3, 0, "-", "sorting"], [70, 3, 0, "-", "statistical"], [71, 3, 0, "-", "utility"], [72, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[51, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "gelu"], [51, 0, 1, "", "hardswish"], [51, 0, 1, "", "leaky_relu"], [51, 0, 1, "", "log_softmax"], [51, 0, 1, "", "mish"], [51, 0, 1, "", "relu"], [51, 0, 1, "", "sigmoid"], [51, 0, 1, "", "softmax"], [51, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[102, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[102, 5, 1, "", "T"], [102, 0, 1, "", "__abs__"], [102, 0, 1, "", "__add__"], [102, 0, 1, "", "__eq__"], [102, 0, 1, "", "__ge__"], [102, 0, 1, "", "__gt__"], [102, 0, 1, "", "__init__"], [102, 0, 1, "", "__le__"], [102, 0, 1, "", "__lt__"], [102, 0, 1, "", "__ne__"], [102, 0, 1, "", "__pow__"], [102, 0, 1, "", "__radd__"], [102, 0, 1, "", "__rrshift__"], [102, 0, 1, "", "__rshift__"], [102, 0, 1, "", "__rsub__"], [102, 0, 1, "", "__sub__"], [102, 0, 1, "", "__truediv__"], [102, 0, 1, "", "__xor__"], [102, 5, 1, "", "backend"], [102, 5, 1, "", "base"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "dynamic_backend"], [102, 5, 1, "", "imag"], [102, 5, 1, "", "itemsize"], [102, 5, 1, "", "mT"], [102, 5, 1, "", "ndim"], [102, 5, 1, "", "real"], [102, 5, 1, "", "shape"], [102, 5, 1, "", "size"], [102, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[52, 2, 1, "", "_array_to_new_backend"], [52, 2, 1, "", "_to_ivy"], [52, 2, 1, "", "_to_native"], [52, 2, 1, "", "_to_new_backend"], [52, 2, 1, "", "args_to_ivy"], [52, 2, 1, "", "args_to_native"], [52, 2, 1, "", "args_to_new_backend"], [52, 2, 1, "", "to_ivy"], [52, 2, 1, "", "to_native"], [52, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[53, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "asarray"], [53, 0, 1, "", "copy_array"], [53, 0, 1, "", "empty_like"], [53, 0, 1, "", "from_dlpack"], [53, 0, 1, "", "full_like"], [53, 0, 1, "", "linspace"], [53, 0, 1, "", "logspace"], [53, 0, 1, "", "meshgrid"], [53, 0, 1, "", "native_array"], [53, 0, 1, "", "one_hot"], [53, 0, 1, "", "ones_like"], [53, 0, 1, "", "tril"], [53, 0, 1, "", "triu"], [53, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[54, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "astype"], [54, 0, 1, "", "broadcast_arrays"], [54, 0, 1, "", "broadcast_to"], [54, 0, 1, "", "can_cast"], [54, 0, 1, "", "dtype"], [54, 0, 1, "", "finfo"], [54, 0, 1, "", "iinfo"], [54, 0, 1, "", "is_bool_dtype"], [54, 0, 1, "", "is_float_dtype"], [54, 0, 1, "", "is_int_dtype"], [54, 0, 1, "", "is_uint_dtype"], [54, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[55, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "dev"], [55, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[56, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "abs"], [56, 0, 1, "", "acos"], [56, 0, 1, "", "acosh"], [56, 0, 1, "", "add"], [56, 0, 1, "", "angle"], [56, 0, 1, "", "asin"], [56, 0, 1, "", "asinh"], [56, 0, 1, "", "atan"], [56, 0, 1, "", "atan2"], [56, 0, 1, "", "atanh"], [56, 0, 1, "", "bitwise_and"], [56, 0, 1, "", "bitwise_invert"], [56, 0, 1, "", "bitwise_left_shift"], [56, 0, 1, "", "bitwise_or"], [56, 0, 1, "", "bitwise_right_shift"], [56, 0, 1, "", "bitwise_xor"], [56, 0, 1, "", "ceil"], [56, 0, 1, "", "cos"], [56, 0, 1, "", "cosh"], [56, 0, 1, "", "deg2rad"], [56, 0, 1, "", "divide"], [56, 0, 1, "", "equal"], [56, 0, 1, "", "erf"], [56, 0, 1, "", "exp"], [56, 0, 1, "", "exp2"], [56, 0, 1, "", "expm1"], [56, 0, 1, "", "floor"], [56, 0, 1, "", "floor_divide"], [56, 0, 1, "", "fmin"], [56, 0, 1, "", "gcd"], [56, 0, 1, "", "greater"], [56, 0, 1, "", "greater_equal"], [56, 0, 1, "", "isfinite"], [56, 0, 1, "", "isinf"], [56, 0, 1, "", "isnan"], [56, 0, 1, "", "isreal"], [56, 0, 1, "", "lcm"], [56, 0, 1, "", "less"], [56, 0, 1, "", "less_equal"], [56, 0, 1, "", "log"], [56, 0, 1, "", "log10"], [56, 0, 1, "", "log1p"], [56, 0, 1, "", "log2"], [56, 0, 1, "", "logaddexp"], [56, 0, 1, "", "logaddexp2"], [56, 0, 1, "", "logical_and"], [56, 0, 1, "", "logical_not"], [56, 0, 1, "", "logical_or"], [56, 0, 1, "", "logical_xor"], [56, 0, 1, "", "maximum"], [56, 0, 1, "", "minimum"], [56, 0, 1, "", "multiply"], [56, 0, 1, "", "nan_to_num"], [56, 0, 1, "", "negative"], [56, 0, 1, "", "not_equal"], [56, 0, 1, "", "positive"], [56, 0, 1, "", "pow"], [56, 0, 1, "", "rad2deg"], [56, 0, 1, "", "real"], [56, 0, 1, "", "reciprocal"], [56, 0, 1, "", "remainder"], [56, 0, 1, "", "round"], [56, 0, 1, "", "sign"], [56, 0, 1, "", "sin"], [56, 0, 1, "", "sinh"], [56, 0, 1, "", "sqrt"], [56, 0, 1, "", "square"], [56, 0, 1, "", "subtract"], [56, 0, 1, "", "tan"], [56, 0, 1, "", "tanh"], [56, 0, 1, "", "trapz"], [56, 0, 1, "", "trunc"], [56, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[57, 3, 0, "-", "activations"], [57, 3, 0, "-", "conversions"], [57, 3, 0, "-", "creation"], [57, 3, 0, "-", "data_type"], [57, 3, 0, "-", "device"], [57, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "general"], [57, 3, 0, "-", "gradients"], [57, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [57, 3, 0, "-", "losses"], [57, 3, 0, "-", "manipulation"], [57, 3, 0, "-", "norms"], [57, 3, 0, "-", "random"], [57, 3, 0, "-", "searching"], [57, 3, 0, "-", "set"], [57, 3, 0, "-", "sorting"], [57, 3, 0, "-", "statistical"], [57, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[57, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "celu"], [57, 0, 1, "", "elu"], [57, 0, 1, "", "hardshrink"], [57, 0, 1, "", "hardsilu"], [57, 0, 1, "", "hardtanh"], [57, 0, 1, "", "logit"], [57, 0, 1, "", "logsigmoid"], [57, 0, 1, "", "prelu"], [57, 0, 1, "", "relu6"], [57, 0, 1, "", "scaled_tanh"], [57, 0, 1, "", "selu"], [57, 0, 1, "", "silu"], [57, 0, 1, "", "softshrink"], [57, 0, 1, "", "tanhshrink"], [57, 0, 1, "", "threshold"], [57, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[57, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[57, 1, 1, "", "_ArrayWithCreationExperimental"], [57, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "blackman_window"], [57, 0, 1, "", "eye_like"], [57, 0, 1, "", "mel_weight_matrix"], [57, 0, 1, "", "trilu"], [57, 0, 1, "", "unsorted_segment_mean"], [57, 0, 1, "", "unsorted_segment_min"], [57, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[57, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[57, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[57, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "allclose"], [57, 0, 1, "", "amax"], [57, 0, 1, "", "amin"], [57, 0, 1, "", "binarizer"], [57, 0, 1, "", "conj"], [57, 0, 1, "", "copysign"], [57, 0, 1, "", "count_nonzero"], [57, 0, 1, "", "diff"], [57, 0, 1, "", "digamma"], [57, 0, 1, "", "erfc"], [57, 0, 1, "", "erfinv"], [57, 0, 1, "", "fix"], [57, 0, 1, "", "float_power"], [57, 0, 1, "", "fmax"], [57, 0, 1, "", "fmod"], [57, 0, 1, "", "frexp"], [57, 0, 1, "", "gradient"], [57, 0, 1, "", "hypot"], [57, 0, 1, "", "isclose"], [57, 0, 1, "", "ldexp"], [57, 0, 1, "", "lerp"], [57, 0, 1, "", "lgamma"], [57, 0, 1, "", "modf"], [57, 0, 1, "", "nansum"], [57, 0, 1, "", "nextafter"], [57, 0, 1, "", "signbit"], [57, 0, 1, "", "sinc"], [57, 0, 1, "", "sparsify_tensor"], [57, 0, 1, "", "xlogy"], [57, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[57, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[57, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[57, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[57, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adaptive_avg_pool1d"], [57, 0, 1, "", "adaptive_avg_pool2d"], [57, 0, 1, "", "adaptive_max_pool2d"], [57, 0, 1, "", "adaptive_max_pool3d"], [57, 0, 1, "", "avg_pool1d"], [57, 0, 1, "", "avg_pool2d"], [57, 0, 1, "", "avg_pool3d"], [57, 0, 1, "", "dct"], [57, 0, 1, "", "dft"], [57, 0, 1, "", "embedding"], [57, 0, 1, "", "fft"], [57, 0, 1, "", "fft2"], [57, 0, 1, "", "idct"], [57, 0, 1, "", "ifft"], [57, 0, 1, "", "ifftn"], [57, 0, 1, "", "interpolate"], [57, 0, 1, "", "max_pool1d"], [57, 0, 1, "", "max_pool2d"], [57, 0, 1, "", "max_pool3d"], [57, 0, 1, "", "max_unpool1d"], [57, 0, 1, "", "reduce_window"], [57, 0, 1, "", "rfft"], [57, 0, 1, "", "rfftn"], [57, 0, 1, "", "sliding_window"], [57, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adjoint"], [57, 0, 1, "", "batched_outer"], [57, 0, 1, "", "cond"], [57, 0, 1, "", "diagflat"], [57, 0, 1, "", "dot"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh_tridiagonal"], [57, 0, 1, "", "eigvals"], [57, 0, 1, "", "general_inner_product"], [57, 0, 1, "", "higher_order_moment"], [57, 0, 1, "", "initialize_tucker"], [57, 0, 1, "", "kron"], [57, 0, 1, "", "make_svd_non_negative"], [57, 0, 1, "", "matrix_exp"], [57, 0, 1, "", "mode_dot"], [57, 0, 1, "", "multi_dot"], [57, 0, 1, "", "multi_mode_dot"], [57, 0, 1, "", "partial_tucker"], [57, 0, 1, "", "svd_flip"], [57, 0, 1, "", "tensor_train"], [57, 0, 1, "", "truncated_svd"], [57, 0, 1, "", "tt_matrix_to_tensor"], [57, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[57, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "hinge_embedding_loss"], [57, 0, 1, "", "huber_loss"], [57, 0, 1, "", "kl_div"], [57, 0, 1, "", "l1_loss"], [57, 0, 1, "", "log_poisson_loss"], [57, 0, 1, "", "poisson_nll_loss"], [57, 0, 1, "", "smooth_l1_loss"], [57, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[57, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "as_strided"], [57, 0, 1, "", "associative_scan"], [57, 0, 1, "", "atleast_1d"], [57, 0, 1, "", "atleast_2d"], [57, 0, 1, "", "atleast_3d"], [57, 0, 1, "", "column_stack"], [57, 0, 1, "", "concat_from_sequence"], [57, 0, 1, "", "dsplit"], [57, 0, 1, "", "dstack"], [57, 0, 1, "", "expand"], [57, 0, 1, "", "fill_diagonal"], [57, 0, 1, "", "flatten"], [57, 0, 1, "", "fliplr"], [57, 0, 1, "", "flipud"], [57, 0, 1, "", "fold"], [57, 0, 1, "", "heaviside"], [57, 0, 1, "", "hsplit"], [57, 0, 1, "", "hstack"], [57, 0, 1, "", "i0"], [57, 0, 1, "", "matricize"], [57, 0, 1, "", "moveaxis"], [57, 0, 1, "", "pad"], [57, 0, 1, "", "partial_fold"], [57, 0, 1, "", "partial_tensor_to_vec"], [57, 0, 1, "", "partial_unfold"], [57, 0, 1, "", "partial_vec_to_tensor"], [57, 0, 1, "", "put_along_axis"], [57, 0, 1, "", "rot90"], [57, 0, 1, "", "soft_thresholding"], [57, 0, 1, "", "take"], [57, 0, 1, "", "take_along_axis"], [57, 0, 1, "", "top_k"], [57, 0, 1, "", "trim_zeros"], [57, 0, 1, "", "unflatten"], [57, 0, 1, "", "unfold"], [57, 0, 1, "", "unique_consecutive"], [57, 0, 1, "", "vsplit"], [57, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[57, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "batch_norm"], [57, 0, 1, "", "group_norm"], [57, 0, 1, "", "instance_norm"], [57, 0, 1, "", "l1_normalize"], [57, 0, 1, "", "l2_normalize"], [57, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[57, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bernoulli"], [57, 0, 1, "", "beta"], [57, 0, 1, "", "dirichlet"], [57, 0, 1, "", "gamma"], [57, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[57, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[57, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[57, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[57, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bincount"], [57, 0, 1, "", "corrcoef"], [57, 0, 1, "", "cov"], [57, 0, 1, "", "cummax"], [57, 0, 1, "", "cummin"], [57, 0, 1, "", "histogram"], [57, 0, 1, "", "igamma"], [57, 0, 1, "", "median"], [57, 0, 1, "", "nanmean"], [57, 0, 1, "", "nanmedian"], [57, 0, 1, "", "nanmin"], [57, 0, 1, "", "nanprod"], [57, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[57, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[58, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "all_equal"], [58, 0, 1, "", "array_equal"], [58, 0, 1, "", "assert_supports_inplace"], [58, 0, 1, "", "clip_matrix_norm"], [58, 0, 1, "", "clip_vector_norm"], [58, 0, 1, "", "default"], [58, 0, 1, "", "einops_rearrange"], [58, 0, 1, "", "einops_reduce"], [58, 0, 1, "", "einops_repeat"], [58, 0, 1, "", "exists"], [58, 0, 1, "", "fourier_encode"], [58, 0, 1, "", "gather"], [58, 0, 1, "", "gather_nd"], [58, 0, 1, "", "get_num_dims"], [58, 0, 1, "", "has_nans"], [58, 0, 1, "", "inplace_decrement"], [58, 0, 1, "", "inplace_increment"], [58, 0, 1, "", "inplace_update"], [58, 0, 1, "", "is_array"], [58, 0, 1, "", "is_ivy_array"], [58, 0, 1, "", "is_ivy_container"], [58, 0, 1, "", "is_native_array"], [58, 0, 1, "", "isin"], [58, 0, 1, "", "scatter_flat"], [58, 0, 1, "", "scatter_nd"], [58, 0, 1, "", "stable_divide"], [58, 0, 1, "", "stable_pow"], [58, 0, 1, "", "supports_inplace_updates"], [58, 0, 1, "", "to_file"], [58, 0, 1, "", "to_list"], [58, 0, 1, "", "to_numpy"], [58, 0, 1, "", "to_scalar"], [58, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[59, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "adam_step"], [59, 0, 1, "", "adam_update"], [59, 0, 1, "", "gradient_descent_update"], [59, 0, 1, "", "lamb_update"], [59, 0, 1, "", "lars_update"], [59, 0, 1, "", "optimizer_update"], [59, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[60, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[60, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[61, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "conv1d"], [61, 0, 1, "", "conv1d_transpose"], [61, 0, 1, "", "conv2d"], [61, 0, 1, "", "conv2d_transpose"], [61, 0, 1, "", "conv3d"], [61, 0, 1, "", "conv3d_transpose"], [61, 0, 1, "", "depthwise_conv2d"], [61, 0, 1, "", "dropout"], [61, 0, 1, "", "dropout1d"], [61, 0, 1, "", "dropout2d"], [61, 0, 1, "", "dropout3d"], [61, 0, 1, "", "linear"], [61, 0, 1, "", "lstm_update"], [61, 0, 1, "", "multi_head_attention"], [61, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[62, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "cholesky"], [62, 0, 1, "", "cross"], [62, 0, 1, "", "det"], [62, 0, 1, "", "diag"], [62, 0, 1, "", "diagonal"], [62, 0, 1, "", "eig"], [62, 0, 1, "", "eigh"], [62, 0, 1, "", "eigvalsh"], [62, 0, 1, "", "inner"], [62, 0, 1, "", "inv"], [62, 0, 1, "", "matmul"], [62, 0, 1, "", "matrix_norm"], [62, 0, 1, "", "matrix_power"], [62, 0, 1, "", "matrix_rank"], [62, 0, 1, "", "matrix_transpose"], [62, 0, 1, "", "outer"], [62, 0, 1, "", "pinv"], [62, 0, 1, "", "qr"], [62, 0, 1, "", "slogdet"], [62, 0, 1, "", "solve"], [62, 0, 1, "", "svd"], [62, 0, 1, "", "svdvals"], [62, 0, 1, "", "tensordot"], [62, 0, 1, "", "tensorsolve"], [62, 0, 1, "", "trace"], [62, 0, 1, "", "vander"], [62, 0, 1, "", "vecdot"], [62, 0, 1, "", "vector_norm"], [62, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[63, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "binary_cross_entropy"], [63, 0, 1, "", "cross_entropy"], [63, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[64, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "clip"], [64, 0, 1, "", "concat"], [64, 0, 1, "", "constant_pad"], [64, 0, 1, "", "expand_dims"], [64, 0, 1, "", "flip"], [64, 0, 1, "", "permute_dims"], [64, 0, 1, "", "repeat"], [64, 0, 1, "", "reshape"], [64, 0, 1, "", "roll"], [64, 0, 1, "", "split"], [64, 0, 1, "", "squeeze"], [64, 0, 1, "", "stack"], [64, 0, 1, "", "swapaxes"], [64, 0, 1, "", "tile"], [64, 0, 1, "", "unstack"], [64, 0, 1, "", "view"], [64, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[65, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[66, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "multinomial"], [66, 0, 1, "", "randint"], [66, 0, 1, "", "random_normal"], [66, 0, 1, "", "random_uniform"], [66, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[67, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "argmax"], [67, 0, 1, "", "argmin"], [67, 0, 1, "", "argwhere"], [67, 0, 1, "", "nonzero"], [67, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[68, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "unique_all"], [68, 0, 1, "", "unique_counts"], [68, 0, 1, "", "unique_inverse"], [68, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[69, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "argsort"], [69, 0, 1, "", "msort"], [69, 0, 1, "", "searchsorted"], [69, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[70, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "cumprod"], [70, 0, 1, "", "cumsum"], [70, 0, 1, "", "einsum"], [70, 0, 1, "", "max"], [70, 0, 1, "", "mean"], [70, 0, 1, "", "min"], [70, 0, 1, "", "prod"], [70, 0, 1, "", "std"], [70, 0, 1, "", "sum"], [70, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[71, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "all"], [71, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[72, 2, 1, "", "_wrap_function"], [72, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[73, 3, 0, "-", "activations"], [74, 3, 0, "-", "base"], [103, 3, 0, "-", "container"], [75, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [77, 3, 0, "-", "data_type"], [78, 3, 0, "-", "device"], [79, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "experimental"], [81, 3, 0, "-", "general"], [82, 3, 0, "-", "gradients"], [83, 3, 0, "-", "image"], [84, 3, 0, "-", "layers"], [85, 3, 0, "-", "linear_algebra"], [86, 3, 0, "-", "losses"], [87, 3, 0, "-", "manipulation"], [88, 3, 0, "-", "norms"], [89, 3, 0, "-", "random"], [90, 3, 0, "-", "searching"], [91, 3, 0, "-", "set"], [92, 3, 0, "-", "sorting"], [93, 3, 0, "-", "statistical"], [94, 3, 0, "-", "utility"], [95, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[73, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_gelu"], [73, 0, 1, "", "_static_hardswish"], [73, 0, 1, "", "_static_leaky_relu"], [73, 0, 1, "", "_static_log_softmax"], [73, 0, 1, "", "_static_mish"], [73, 0, 1, "", "_static_relu"], [73, 0, 1, "", "_static_sigmoid"], [73, 0, 1, "", "_static_softmax"], [73, 0, 1, "", "_static_softplus"], [73, 0, 1, "", "gelu"], [73, 0, 1, "", "hardswish"], [73, 0, 1, "", "leaky_relu"], [73, 0, 1, "", "log_softmax"], [73, 0, 1, "", "mish"], [73, 0, 1, "", "relu"], [73, 0, 1, "", "sigmoid"], [73, 0, 1, "", "softmax"], [73, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[74, 1, 1, "", "ContainerBase"], [74, 2, 1, "", "_is_jsonable"], [74, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[74, 0, 1, "", "__getitem__"], [74, 0, 1, "", "__init__"], [74, 0, 1, "", "__setitem__"], [74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [74, 0, 1, "", "_cont_concat_unify"], [74, 0, 1, "", "_cont_get_dev"], [74, 0, 1, "", "_cont_get_dtype"], [74, 0, 1, "", "_cont_get_shape"], [74, 0, 1, "", "_cont_get_shapes"], [74, 5, 1, "", "_cont_ivy"], [74, 0, 1, "", "_cont_mean_unify"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_slice_keys"], [74, 0, 1, "", "_cont_sum_unify"], [74, 0, 1, "", "_get_queue_item"], [74, 0, 1, "", "cont_all_false"], [74, 0, 1, "", "cont_all_key_chains"], [74, 0, 1, "", "cont_all_true"], [74, 0, 1, "", "cont_as_bools"], [74, 0, 1, "", "cont_assert_contains_sub_container"], [74, 0, 1, "", "cont_assert_contains_sub_structure"], [74, 0, 1, "", "cont_assert_identical"], [74, 0, 1, "", "cont_assert_identical_structure"], [74, 0, 1, "", "cont_at_key_chain"], [74, 0, 1, "", "cont_at_key_chains"], [74, 0, 1, "", "cont_at_keys"], [74, 0, 1, "", "cont_combine"], [74, 0, 1, "", "cont_common_key_chains"], [74, 5, 1, "", "cont_config"], [74, 0, 1, "", "cont_contains_sub_container"], [74, 0, 1, "", "cont_contains_sub_structure"], [74, 0, 1, "", "cont_copy"], [74, 0, 1, "", "cont_create_if_absent"], [74, 0, 1, "", "cont_cutoff_at_depth"], [74, 0, 1, "", "cont_cutoff_at_height"], [74, 0, 1, "", "cont_deep_copy"], [74, 5, 1, "", "cont_dev"], [74, 5, 1, "", "cont_dev_str"], [74, 0, 1, "", "cont_diff"], [74, 5, 1, "", "cont_dtype"], [74, 0, 1, "", "cont_duplicate_array_keychains"], [74, 0, 1, "", "cont_find_sub_container"], [74, 0, 1, "", "cont_find_sub_structure"], [74, 0, 1, "", "cont_flatten_key_chain"], [74, 0, 1, "", "cont_flatten_key_chains"], [74, 0, 1, "", "cont_format_key_chains"], [74, 0, 1, "", "cont_from_disk_as_hdf5"], [74, 0, 1, "", "cont_from_disk_as_json"], [74, 0, 1, "", "cont_from_disk_as_pickled"], [74, 0, 1, "", "cont_from_flat_list"], [74, 0, 1, "", "cont_handle_inplace"], [74, 0, 1, "", "cont_has_key"], [74, 0, 1, "", "cont_has_key_chain"], [74, 0, 1, "", "cont_identical"], [74, 0, 1, "", "cont_identical_array_shapes"], [74, 0, 1, "", "cont_identical_configs"], [74, 0, 1, "", "cont_identical_structure"], [74, 0, 1, "", "cont_if_exists"], [74, 0, 1, "", "cont_inplace_update"], [74, 5, 1, "", "cont_ivy"], [74, 0, 1, "", "cont_key_chains_containing"], [74, 0, 1, "", "cont_list_join"], [74, 0, 1, "", "cont_list_stack"], [74, 0, 1, "", "cont_load"], [74, 0, 1, "", "cont_map"], [74, 0, 1, "", "cont_map_sub_conts"], [74, 5, 1, "", "cont_max_depth"], [74, 0, 1, "", "cont_multi_map"], [74, 0, 1, "", "cont_multi_map_in_function"], [74, 0, 1, "", "cont_num_arrays"], [74, 0, 1, "", "cont_overwrite_at_key_chain"], [74, 0, 1, "", "cont_overwrite_at_key_chains"], [74, 0, 1, "", "cont_prune_empty"], [74, 0, 1, "", "cont_prune_key_chain"], [74, 0, 1, "", "cont_prune_key_chains"], [74, 0, 1, "", "cont_prune_key_from_key_chains"], [74, 0, 1, "", "cont_prune_keys"], [74, 0, 1, "", "cont_prune_keys_from_key_chains"], [74, 0, 1, "", "cont_reduce"], [74, 0, 1, "", "cont_remove_key_length_limit"], [74, 0, 1, "", "cont_remove_print_limit"], [74, 0, 1, "", "cont_reshape_like"], [74, 0, 1, "", "cont_restructure"], [74, 0, 1, "", "cont_restructure_key_chains"], [74, 0, 1, "", "cont_save"], [74, 0, 1, "", "cont_set_at_key_chain"], [74, 0, 1, "", "cont_set_at_key_chains"], [74, 0, 1, "", "cont_set_at_keys"], [74, 5, 1, "", "cont_shape"], [74, 5, 1, "", "cont_shapes"], [74, 0, 1, "", "cont_show"], [74, 0, 1, "", "cont_show_sub_container"], [74, 0, 1, "", "cont_size_ordered_arrays"], [74, 0, 1, "", "cont_slice_keys"], [74, 0, 1, "", "cont_slice_via_key"], [74, 0, 1, "", "cont_sort_by_key"], [74, 0, 1, "", "cont_structural_diff"], [74, 0, 1, "", "cont_to_dict"], [74, 0, 1, "", "cont_to_disk_as_hdf5"], [74, 0, 1, "", "cont_to_disk_as_json"], [74, 0, 1, "", "cont_to_disk_as_pickled"], [74, 0, 1, "", "cont_to_flat_list"], [74, 0, 1, "", "cont_to_iterator"], [74, 0, 1, "", "cont_to_iterator_keys"], [74, 0, 1, "", "cont_to_iterator_values"], [74, 0, 1, "", "cont_to_jsonable"], [74, 0, 1, "", "cont_to_nested_list"], [74, 0, 1, "", "cont_to_raw"], [74, 0, 1, "", "cont_trim_key"], [74, 0, 1, "", "cont_try_kc"], [74, 0, 1, "", "cont_unify"], [74, 0, 1, "", "cont_unstack_conts"], [74, 0, 1, "", "cont_update_config"], [74, 0, 1, "", "cont_with_default_key_color"], [74, 0, 1, "", "cont_with_entries_as_lists"], [74, 0, 1, "", "cont_with_ivy_backend"], [74, 0, 1, "", "cont_with_key_length_limit"], [74, 0, 1, "", "cont_with_print_indent"], [74, 0, 1, "", "cont_with_print_limit"], [74, 0, 1, "", "cont_with_print_line_spacing"], [74, 5, 1, "", "dynamic_backend"], [74, 0, 1, "", "h5_file_size"], [74, 0, 1, "", "shuffle_h5_file"], [74, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[103, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[103, 0, 1, "", "__abs__"], [103, 0, 1, "", "__add__"], [103, 0, 1, "", "__eq__"], [103, 0, 1, "", "__ge__"], [103, 0, 1, "", "__gt__"], [103, 0, 1, "", "__init__"], [103, 0, 1, "", "__le__"], [103, 0, 1, "", "__lt__"], [103, 0, 1, "", "__ne__"], [103, 0, 1, "", "__pow__"], [103, 0, 1, "", "__radd__"], [103, 0, 1, "", "__rrshift__"], [103, 0, 1, "", "__rshift__"], [103, 0, 1, "", "__rsub__"], [103, 0, 1, "", "__sub__"], [103, 0, 1, "", "__truediv__"], [103, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[75, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_to_ivy"], [75, 0, 1, "", "_static_to_native"], [75, 0, 1, "", "to_ivy"], [75, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[76, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_arange"], [76, 0, 1, "", "_static_asarray"], [76, 0, 1, "", "_static_copy_array"], [76, 0, 1, "", "_static_empty"], [76, 0, 1, "", "_static_empty_like"], [76, 0, 1, "", "_static_eye"], [76, 0, 1, "", "_static_from_dlpack"], [76, 0, 1, "", "_static_full"], [76, 0, 1, "", "_static_full_like"], [76, 0, 1, "", "_static_linspace"], [76, 0, 1, "", "_static_logspace"], [76, 0, 1, "", "_static_meshgrid"], [76, 0, 1, "", "_static_native_array"], [76, 0, 1, "", "_static_one_hot"], [76, 0, 1, "", "_static_ones"], [76, 0, 1, "", "_static_ones_like"], [76, 0, 1, "", "_static_tril"], [76, 0, 1, "", "_static_triu"], [76, 0, 1, "", "_static_zeros"], [76, 0, 1, "", "_static_zeros_like"], [76, 0, 1, "", "asarray"], [76, 0, 1, "", "copy_array"], [76, 0, 1, "", "empty_like"], [76, 0, 1, "", "from_dlpack"], [76, 0, 1, "", "frombuffer"], [76, 0, 1, "", "full_like"], [76, 0, 1, "", "linspace"], [76, 0, 1, "", "logspace"], [76, 0, 1, "", "meshgrid"], [76, 0, 1, "", "native_array"], [76, 0, 1, "", "one_hot"], [76, 0, 1, "", "ones_like"], [76, 0, 1, "", "static_frombuffer"], [76, 0, 1, "", "static_triu_indices"], [76, 0, 1, "", "tril"], [76, 0, 1, "", "triu"], [76, 0, 1, "", "triu_indices"], [76, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[77, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_astype"], [77, 0, 1, "", "_static_broadcast_arrays"], [77, 0, 1, "", "_static_broadcast_to"], [77, 0, 1, "", "_static_can_cast"], [77, 0, 1, "", "_static_default_complex_dtype"], [77, 0, 1, "", "_static_default_float_dtype"], [77, 0, 1, "", "_static_dtype"], [77, 0, 1, "", "_static_finfo"], [77, 0, 1, "", "_static_function_supported_dtypes"], [77, 0, 1, "", "_static_function_unsupported_dtypes"], [77, 0, 1, "", "_static_iinfo"], [77, 0, 1, "", "_static_is_bool_dtype"], [77, 0, 1, "", "_static_is_complex_dtype"], [77, 0, 1, "", "_static_is_float_dtype"], [77, 0, 1, "", "_static_is_int_dtype"], [77, 0, 1, "", "_static_is_uint_dtype"], [77, 0, 1, "", "_static_result_type"], [77, 0, 1, "", "astype"], [77, 0, 1, "", "broadcast_arrays"], [77, 0, 1, "", "broadcast_to"], [77, 0, 1, "", "can_cast"], [77, 0, 1, "", "dtype"], [77, 0, 1, "", "finfo"], [77, 0, 1, "", "iinfo"], [77, 0, 1, "", "is_bool_dtype"], [77, 0, 1, "", "is_complex_dtype"], [77, 0, 1, "", "is_float_dtype"], [77, 0, 1, "", "is_int_dtype"], [77, 0, 1, "", "is_uint_dtype"], [77, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[78, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_dev"], [78, 0, 1, "", "_static_to_device"], [78, 0, 1, "", "dev"], [78, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[79, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_abs"], [79, 0, 1, "", "_static_acos"], [79, 0, 1, "", "_static_acosh"], [79, 0, 1, "", "_static_add"], [79, 0, 1, "", "_static_asin"], [79, 0, 1, "", "_static_asinh"], [79, 0, 1, "", "_static_atan"], [79, 0, 1, "", "_static_atan2"], [79, 0, 1, "", "_static_atanh"], [79, 0, 1, "", "_static_bitwise_and"], [79, 0, 1, "", "_static_bitwise_invert"], [79, 0, 1, "", "_static_bitwise_left_shift"], [79, 0, 1, "", "_static_bitwise_or"], [79, 0, 1, "", "_static_bitwise_right_shift"], [79, 0, 1, "", "_static_bitwise_xor"], [79, 0, 1, "", "_static_ceil"], [79, 0, 1, "", "_static_cos"], [79, 0, 1, "", "_static_cosh"], [79, 0, 1, "", "_static_deg2rad"], [79, 0, 1, "", "_static_divide"], [79, 0, 1, "", "_static_equal"], [79, 0, 1, "", "_static_erf"], [79, 0, 1, "", "_static_exp"], [79, 0, 1, "", "_static_expm1"], [79, 0, 1, "", "_static_floor"], [79, 0, 1, "", "_static_floor_divide"], [79, 0, 1, "", "_static_greater"], [79, 0, 1, "", "_static_greater_equal"], [79, 0, 1, "", "_static_isfinite"], [79, 0, 1, "", "_static_isinf"], [79, 0, 1, "", "_static_isnan"], [79, 0, 1, "", "_static_isreal"], [79, 0, 1, "", "_static_lcm"], [79, 0, 1, "", "_static_less"], [79, 0, 1, "", "_static_less_equal"], [79, 0, 1, "", "_static_log"], [79, 0, 1, "", "_static_log10"], [79, 0, 1, "", "_static_log1p"], [79, 0, 1, "", "_static_log2"], [79, 0, 1, "", "_static_logaddexp"], [79, 0, 1, "", "_static_logical_and"], [79, 0, 1, "", "_static_logical_not"], [79, 0, 1, "", "_static_logical_or"], [79, 0, 1, "", "_static_logical_xor"], [79, 0, 1, "", "_static_maximum"], [79, 0, 1, "", "_static_minimum"], [79, 0, 1, "", "_static_multiply"], [79, 0, 1, "", "_static_negative"], [79, 0, 1, "", "_static_not_equal"], [79, 0, 1, "", "_static_positive"], [79, 0, 1, "", "_static_pow"], [79, 0, 1, "", "_static_rad2deg"], [79, 0, 1, "", "_static_reciprocal"], [79, 0, 1, "", "_static_remainder"], [79, 0, 1, "", "_static_round"], [79, 0, 1, "", "_static_sign"], [79, 0, 1, "", "_static_sin"], [79, 0, 1, "", "_static_sinh"], [79, 0, 1, "", "_static_sqrt"], [79, 0, 1, "", "_static_square"], [79, 0, 1, "", "_static_subtract"], [79, 0, 1, "", "_static_tan"], [79, 0, 1, "", "_static_tanh"], [79, 0, 1, "", "_static_trapz"], [79, 0, 1, "", "_static_trunc"], [79, 0, 1, "", "_static_trunc_divide"], [79, 0, 1, "", "abs"], [79, 0, 1, "", "acos"], [79, 0, 1, "", "acosh"], [79, 0, 1, "", "add"], [79, 0, 1, "", "angle"], [79, 0, 1, "", "asin"], [79, 0, 1, "", "asinh"], [79, 0, 1, "", "atan"], [79, 0, 1, "", "atan2"], [79, 0, 1, "", "atanh"], [79, 0, 1, "", "bitwise_and"], [79, 0, 1, "", "bitwise_invert"], [79, 0, 1, "", "bitwise_left_shift"], [79, 0, 1, "", "bitwise_or"], [79, 0, 1, "", "bitwise_right_shift"], [79, 0, 1, "", "bitwise_xor"], [79, 0, 1, "", "ceil"], [79, 0, 1, "", "cos"], [79, 0, 1, "", "cosh"], [79, 0, 1, "", "deg2rad"], [79, 0, 1, "", "divide"], [79, 0, 1, "", "equal"], [79, 0, 1, "", "erf"], [79, 0, 1, "", "exp"], [79, 0, 1, "", "exp2"], [79, 0, 1, "", "expm1"], [79, 0, 1, "", "floor"], [79, 0, 1, "", "floor_divide"], [79, 0, 1, "", "fmin"], [79, 0, 1, "", "gcd"], [79, 0, 1, "", "greater"], [79, 0, 1, "", "greater_equal"], [79, 0, 1, "", "imag"], [79, 0, 1, "", "isfinite"], [79, 0, 1, "", "isinf"], [79, 0, 1, "", "isnan"], [79, 0, 1, "", "isreal"], [79, 0, 1, "", "lcm"], [79, 0, 1, "", "less"], [79, 0, 1, "", "less_equal"], [79, 0, 1, "", "log"], [79, 0, 1, "", "log10"], [79, 0, 1, "", "log1p"], [79, 0, 1, "", "log2"], [79, 0, 1, "", "logaddexp"], [79, 0, 1, "", "logaddexp2"], [79, 0, 1, "", "logical_and"], [79, 0, 1, "", "logical_not"], [79, 0, 1, "", "logical_or"], [79, 0, 1, "", "logical_xor"], [79, 0, 1, "", "maximum"], [79, 0, 1, "", "minimum"], [79, 0, 1, "", "multiply"], [79, 0, 1, "", "nan_to_num"], [79, 0, 1, "", "negative"], [79, 0, 1, "", "not_equal"], [79, 0, 1, "", "positive"], [79, 0, 1, "", "pow"], [79, 0, 1, "", "rad2deg"], [79, 0, 1, "", "real"], [79, 0, 1, "", "reciprocal"], [79, 0, 1, "", "remainder"], [79, 0, 1, "", "round"], [79, 0, 1, "", "sign"], [79, 0, 1, "", "sin"], [79, 0, 1, "", "sinh"], [79, 0, 1, "", "sqrt"], [79, 0, 1, "", "square"], [79, 0, 1, "", "static_angle"], [79, 0, 1, "", "static_exp2"], [79, 0, 1, "", "static_fmin"], [79, 0, 1, "", "static_gcd"], [79, 0, 1, "", "static_imag"], [79, 0, 1, "", "static_logaddexp2"], [79, 0, 1, "", "static_nan_to_num"], [79, 0, 1, "", "static_real"], [79, 0, 1, "", "subtract"], [79, 0, 1, "", "tan"], [79, 0, 1, "", "tanh"], [79, 0, 1, "", "trapz"], [79, 0, 1, "", "trunc"], [79, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[80, 3, 0, "-", "activations"], [80, 3, 0, "-", "conversions"], [80, 3, 0, "-", "creation"], [80, 3, 0, "-", "data_type"], [80, 3, 0, "-", "device"], [80, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "general"], [80, 3, 0, "-", "gradients"], [80, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [80, 3, 0, "-", "losses"], [80, 3, 0, "-", "manipulation"], [80, 3, 0, "-", "norms"], [80, 3, 0, "-", "random"], [80, 3, 0, "-", "searching"], [80, 3, 0, "-", "set"], [80, 3, 0, "-", "sorting"], [80, 3, 0, "-", "statistical"], [80, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[80, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_celu"], [80, 0, 1, "", "_static_elu"], [80, 0, 1, "", "_static_hardshrink"], [80, 0, 1, "", "_static_hardsilu"], [80, 0, 1, "", "_static_hardtanh"], [80, 0, 1, "", "_static_scaled_tanh"], [80, 0, 1, "", "_static_silu"], [80, 0, 1, "", "_static_softshrink"], [80, 0, 1, "", "_static_tanhshrink"], [80, 0, 1, "", "_static_threshold"], [80, 0, 1, "", "celu"], [80, 0, 1, "", "elu"], [80, 0, 1, "", "hardshrink"], [80, 0, 1, "", "hardsilu"], [80, 0, 1, "", "hardtanh"], [80, 0, 1, "", "logit"], [80, 0, 1, "", "logsigmoid"], [80, 0, 1, "", "prelu"], [80, 0, 1, "", "relu6"], [80, 0, 1, "", "scaled_tanh"], [80, 0, 1, "", "selu"], [80, 0, 1, "", "silu"], [80, 0, 1, "", "softshrink"], [80, 0, 1, "", "static_logit"], [80, 0, 1, "", "static_logsigmoid"], [80, 0, 1, "", "static_prelu"], [80, 0, 1, "", "static_relu6"], [80, 0, 1, "", "static_selu"], [80, 0, 1, "", "static_thresholded_relu"], [80, 0, 1, "", "tanhshrink"], [80, 0, 1, "", "threshold"], [80, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[80, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[80, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_trilu"], [80, 0, 1, "", "blackman_window"], [80, 0, 1, "", "eye_like"], [80, 0, 1, "", "hamming_window"], [80, 0, 1, "", "hann_window"], [80, 0, 1, "", "kaiser_bessel_derived_window"], [80, 0, 1, "", "kaiser_window"], [80, 0, 1, "", "mel_weight_matrix"], [80, 0, 1, "", "polyval"], [80, 0, 1, "", "static_blackman_window"], [80, 0, 1, "", "static_eye_like"], [80, 0, 1, "", "static_hamming_window"], [80, 0, 1, "", "static_hann_window"], [80, 0, 1, "", "static_kaiser_bessel_derived_window"], [80, 0, 1, "", "static_kaiser_window"], [80, 0, 1, "", "static_mel_weight_matrix"], [80, 0, 1, "", "static_polyval"], [80, 0, 1, "", "static_tril_indices"], [80, 0, 1, "", "static_unsorted_segment_mean"], [80, 0, 1, "", "static_unsorted_segment_min"], [80, 0, 1, "", "static_unsorted_segment_sum"], [80, 0, 1, "", "static_vorbis_window"], [80, 0, 1, "", "tril_indices"], [80, 0, 1, "", "trilu"], [80, 0, 1, "", "unsorted_segment_mean"], [80, 0, 1, "", "unsorted_segment_min"], [80, 0, 1, "", "unsorted_segment_sum"], [80, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[80, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[80, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[80, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "allclose"], [80, 0, 1, "", "amax"], [80, 0, 1, "", "amin"], [80, 0, 1, "", "binarizer"], [80, 0, 1, "", "conj"], [80, 0, 1, "", "copysign"], [80, 0, 1, "", "count_nonzero"], [80, 0, 1, "", "diff"], [80, 0, 1, "", "digamma"], [80, 0, 1, "", "erfc"], [80, 0, 1, "", "erfinv"], [80, 0, 1, "", "fix"], [80, 0, 1, "", "float_power"], [80, 0, 1, "", "fmax"], [80, 0, 1, "", "fmod"], [80, 0, 1, "", "frexp"], [80, 0, 1, "", "gradient"], [80, 0, 1, "", "hypot"], [80, 0, 1, "", "isclose"], [80, 0, 1, "", "ldexp"], [80, 0, 1, "", "lerp"], [80, 0, 1, "", "modf"], [80, 0, 1, "", "nansum"], [80, 0, 1, "", "nextafter"], [80, 0, 1, "", "signbit"], [80, 0, 1, "", "sinc"], [80, 0, 1, "", "sparsify_tensor"], [80, 0, 1, "", "static_allclose"], [80, 0, 1, "", "static_amax"], [80, 0, 1, "", "static_amin"], [80, 0, 1, "", "static_binarizer"], [80, 0, 1, "", "static_conj"], [80, 0, 1, "", "static_copysign"], [80, 0, 1, "", "static_count_nonzero"], [80, 0, 1, "", "static_diff"], [80, 0, 1, "", "static_digamma"], [80, 0, 1, "", "static_erfc"], [80, 0, 1, "", "static_erfinv"], [80, 0, 1, "", "static_fix"], [80, 0, 1, "", "static_float_power"], [80, 0, 1, "", "static_fmax"], [80, 0, 1, "", "static_fmod"], [80, 0, 1, "", "static_frexp"], [80, 0, 1, "", "static_gradient"], [80, 0, 1, "", "static_hypot"], [80, 0, 1, "", "static_isclose"], [80, 0, 1, "", "static_ldexp"], [80, 0, 1, "", "static_lerp"], [80, 0, 1, "", "static_modf"], [80, 0, 1, "", "static_nansum"], [80, 0, 1, "", "static_nextafter"], [80, 0, 1, "", "static_signbit"], [80, 0, 1, "", "static_sinc"], [80, 0, 1, "", "static_sparsify_tensor"], [80, 0, 1, "", "static_xlogy"], [80, 0, 1, "", "static_zeta"], [80, 0, 1, "", "xlogy"], [80, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[80, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_reduce"], [80, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[80, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[80, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[80, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fft"], [80, 0, 1, "", "_static_sliding_window"], [80, 0, 1, "", "adaptive_avg_pool1d"], [80, 0, 1, "", "adaptive_avg_pool2d"], [80, 0, 1, "", "adaptive_max_pool2d"], [80, 0, 1, "", "adaptive_max_pool3d"], [80, 0, 1, "", "avg_pool1d"], [80, 0, 1, "", "avg_pool2d"], [80, 0, 1, "", "avg_pool3d"], [80, 0, 1, "", "dct"], [80, 0, 1, "", "dft"], [80, 0, 1, "", "embedding"], [80, 0, 1, "", "fft"], [80, 0, 1, "", "idct"], [80, 0, 1, "", "ifft"], [80, 0, 1, "", "ifftn"], [80, 0, 1, "", "interpolate"], [80, 0, 1, "", "max_pool1d"], [80, 0, 1, "", "max_pool2d"], [80, 0, 1, "", "max_pool3d"], [80, 0, 1, "", "max_unpool1d"], [80, 0, 1, "", "rfft"], [80, 0, 1, "", "rfftn"], [80, 0, 1, "", "sliding_window"], [80, 0, 1, "", "static_adaptive_avg_pool1d"], [80, 0, 1, "", "static_adaptive_avg_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool3d"], [80, 0, 1, "", "static_avg_pool1d"], [80, 0, 1, "", "static_avg_pool2d"], [80, 0, 1, "", "static_avg_pool3d"], [80, 0, 1, "", "static_dct"], [80, 0, 1, "", "static_dft"], [80, 0, 1, "", "static_embedding"], [80, 0, 1, "", "static_idct"], [80, 0, 1, "", "static_ifft"], [80, 0, 1, "", "static_ifftn"], [80, 0, 1, "", "static_interpolate"], [80, 0, 1, "", "static_max_pool1d"], [80, 0, 1, "", "static_max_pool2d"], [80, 0, 1, "", "static_max_pool3d"], [80, 0, 1, "", "static_max_unpool1d"], [80, 0, 1, "", "static_rfft"], [80, 0, 1, "", "static_rfftn"], [80, 0, 1, "", "static_rnn"], [80, 0, 1, "", "static_stft"], [80, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "adjoint"], [80, 0, 1, "", "batched_outer"], [80, 0, 1, "", "cond"], [80, 0, 1, "", "diagflat"], [80, 0, 1, "", "dot"], [80, 0, 1, "", "eig"], [80, 0, 1, "", "eigh_tridiagonal"], [80, 0, 1, "", "eigvals"], [80, 0, 1, "", "higher_order_moment"], [80, 0, 1, "", "initialize_tucker"], [80, 0, 1, "", "kron"], [80, 0, 1, "", "make_svd_non_negative"], [80, 0, 1, "", "matrix_exp"], [80, 0, 1, "", "mode_dot"], [80, 0, 1, "", "multi_dot"], [80, 0, 1, "", "multi_mode_dot"], [80, 0, 1, "", "partial_tucker"], [80, 0, 1, "", "static_adjoint"], [80, 0, 1, "", "static_batched_outer"], [80, 0, 1, "", "static_cond"], [80, 0, 1, "", "static_diagflat"], [80, 0, 1, "", "static_dot"], [80, 0, 1, "", "static_eig"], [80, 0, 1, "", "static_eigh_tridiagonal"], [80, 0, 1, "", "static_eigvals"], [80, 0, 1, "", "static_higher_order_moment"], [80, 0, 1, "", "static_initialize_tucker"], [80, 0, 1, "", "static_kron"], [80, 0, 1, "", "static_make_svd_non_negative"], [80, 0, 1, "", "static_matrix_exp"], [80, 0, 1, "", "static_mode_dot"], [80, 0, 1, "", "static_multi_dot"], [80, 0, 1, "", "static_multi_mode_dot"], [80, 0, 1, "", "static_partial_tucker"], [80, 0, 1, "", "static_svd_flip"], [80, 0, 1, "", "static_tensor_train"], [80, 0, 1, "", "static_truncated_svd"], [80, 0, 1, "", "static_tt_matrix_to_tensor"], [80, 0, 1, "", "static_tucker"], [80, 0, 1, "", "svd_flip"], [80, 0, 1, "", "tensor_train"], [80, 0, 1, "", "truncated_svd"], [80, 0, 1, "", "tt_matrix_to_tensor"], [80, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[80, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_hinge_embedding_loss"], [80, 0, 1, "", "_static_huber_loss"], [80, 0, 1, "", "_static_kl_div"], [80, 0, 1, "", "_static_l1_loss"], [80, 0, 1, "", "_static_log_poisson_loss"], [80, 0, 1, "", "_static_poisson_nll_loss"], [80, 0, 1, "", "_static_smooth_l1_loss"], [80, 0, 1, "", "_static_soft_margin_loss"], [80, 0, 1, "", "hinge_embedding_loss"], [80, 0, 1, "", "huber_loss"], [80, 0, 1, "", "kl_div"], [80, 0, 1, "", "l1_loss"], [80, 0, 1, "", "log_poisson_loss"], [80, 0, 1, "", "poisson_nll_loss"], [80, 0, 1, "", "smooth_l1_loss"], [80, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[80, 1, 1, "", "_ContainerWithManipulationExperimental"], [80, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fill_diagonal"], [80, 0, 1, "", "_static_put_along_axis"], [80, 0, 1, "", "_static_take"], [80, 0, 1, "", "_static_trim_zeros"], [80, 0, 1, "", "_static_unflatten"], [80, 0, 1, "", "_static_unique_consecutive"], [80, 0, 1, "", "as_strided"], [80, 0, 1, "", "associative_scan"], [80, 0, 1, "", "atleast_1d"], [80, 0, 1, "", "atleast_2d"], [80, 0, 1, "", "atleast_3d"], [80, 0, 1, "", "broadcast_shapes"], [80, 0, 1, "", "column_stack"], [80, 0, 1, "", "concat_from_sequence"], [80, 0, 1, "", "dsplit"], [80, 0, 1, "", "dstack"], [80, 0, 1, "", "expand"], [80, 0, 1, "", "fill_diagonal"], [80, 0, 1, "", "flatten"], [80, 0, 1, "", "fliplr"], [80, 0, 1, "", "flipud"], [80, 0, 1, "", "fold"], [80, 0, 1, "", "heaviside"], [80, 0, 1, "", "hsplit"], [80, 0, 1, "", "hstack"], [80, 0, 1, "", "i0"], [80, 0, 1, "", "matricize"], [80, 0, 1, "", "moveaxis"], [80, 0, 1, "", "pad"], [80, 0, 1, "", "partial_fold"], [80, 0, 1, "", "partial_tensor_to_vec"], [80, 0, 1, "", "partial_unfold"], [80, 0, 1, "", "partial_vec_to_tensor"], [80, 0, 1, "", "put_along_axis"], [80, 0, 1, "", "rot90"], [80, 0, 1, "", "soft_thresholding"], [80, 0, 1, "", "static_as_strided"], [80, 0, 1, "", "static_atleast_1d"], [80, 0, 1, "", "static_atleast_2d"], [80, 0, 1, "", "static_atleast_3d"], [80, 0, 1, "", "static_broadcast_shapes"], [80, 0, 1, "", "static_column_stack"], [80, 0, 1, "", "static_concat_from_sequence"], [80, 0, 1, "", "static_dsplit"], [80, 0, 1, "", "static_dstack"], [80, 0, 1, "", "static_expand"], [80, 0, 1, "", "static_flatten"], [80, 0, 1, "", "static_fliplr"], [80, 0, 1, "", "static_flipud"], [80, 0, 1, "", "static_fold"], [80, 0, 1, "", "static_heaviside"], [80, 0, 1, "", "static_hsplit"], [80, 0, 1, "", "static_hstack"], [80, 0, 1, "", "static_i0"], [80, 0, 1, "", "static_matricize"], [80, 0, 1, "", "static_moveaxis"], [80, 0, 1, "", "static_pad"], [80, 0, 1, "", "static_partial_fold"], [80, 0, 1, "", "static_partial_tensor_to_vec"], [80, 0, 1, "", "static_partial_unfold"], [80, 0, 1, "", "static_partial_vec_to_tensor"], [80, 0, 1, "", "static_rot90"], [80, 0, 1, "", "static_soft_thresholding"], [80, 0, 1, "", "static_take_along_axis"], [80, 0, 1, "", "static_top_k"], [80, 0, 1, "", "static_unfold"], [80, 0, 1, "", "static_vsplit"], [80, 0, 1, "", "static_vstack"], [80, 0, 1, "", "take"], [80, 0, 1, "", "take_along_axis"], [80, 0, 1, "", "top_k"], [80, 0, 1, "", "trim_zeros"], [80, 0, 1, "", "unflatten"], [80, 0, 1, "", "unfold"], [80, 0, 1, "", "unique_consecutive"], [80, 0, 1, "", "vsplit"], [80, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[80, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "batch_norm"], [80, 0, 1, "", "group_norm"], [80, 0, 1, "", "instance_norm"], [80, 0, 1, "", "l1_normalize"], [80, 0, 1, "", "l2_normalize"], [80, 0, 1, "", "lp_normalize"], [80, 0, 1, "", "static_batch_norm"], [80, 0, 1, "", "static_group_norm"], [80, 0, 1, "", "static_instance_norm"], [80, 0, 1, "", "static_l1_normalize"], [80, 0, 1, "", "static_l2_normalize"], [80, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[80, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "bernoulli"], [80, 0, 1, "", "beta"], [80, 0, 1, "", "dirichlet"], [80, 0, 1, "", "gamma"], [80, 0, 1, "", "poisson"], [80, 0, 1, "", "static_bernoulli"], [80, 0, 1, "", "static_beta"], [80, 0, 1, "", "static_dirichlet"], [80, 0, 1, "", "static_gamma"], [80, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[80, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "static_unravel_index"], [80, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[80, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[80, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "invert_permutation"], [80, 0, 1, "", "lexsort"], [80, 0, 1, "", "static_invert_permutation"], [80, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[80, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cummax"], [80, 0, 1, "", "_static_cummin"], [80, 0, 1, "", "_static_nanmin"], [80, 0, 1, "", "bincount"], [80, 0, 1, "", "corrcoef"], [80, 0, 1, "", "cov"], [80, 0, 1, "", "cummax"], [80, 0, 1, "", "cummin"], [80, 0, 1, "", "histogram"], [80, 0, 1, "", "igamma"], [80, 0, 1, "", "lgamma"], [80, 0, 1, "", "median"], [80, 0, 1, "", "nanmean"], [80, 0, 1, "", "nanmedian"], [80, 0, 1, "", "nanmin"], [80, 0, 1, "", "nanprod"], [80, 0, 1, "", "quantile"], [80, 0, 1, "", "static_bincount"], [80, 0, 1, "", "static_corrcoef"], [80, 0, 1, "", "static_cov"], [80, 0, 1, "", "static_histogram"], [80, 0, 1, "", "static_igamma"], [80, 0, 1, "", "static_lgamma"], [80, 0, 1, "", "static_median"], [80, 0, 1, "", "static_nanmean"], [80, 0, 1, "", "static_nanmedian"], [80, 0, 1, "", "static_nanprod"], [80, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[80, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "optional_get_element"], [80, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[81, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_all_equal"], [81, 0, 1, "", "_static_array_equal"], [81, 0, 1, "", "_static_assert_supports_inplace"], [81, 0, 1, "", "_static_clip_matrix_norm"], [81, 0, 1, "", "_static_clip_vector_norm"], [81, 0, 1, "", "_static_einops_rearrange"], [81, 0, 1, "", "_static_einops_reduce"], [81, 0, 1, "", "_static_einops_repeat"], [81, 0, 1, "", "_static_exists"], [81, 0, 1, "", "_static_fourier_encode"], [81, 0, 1, "", "_static_gather"], [81, 0, 1, "", "_static_gather_nd"], [81, 0, 1, "", "_static_get_num_dims"], [81, 0, 1, "", "_static_has_nans"], [81, 0, 1, "", "_static_inplace_decrement"], [81, 0, 1, "", "_static_inplace_increment"], [81, 0, 1, "", "_static_inplace_update"], [81, 0, 1, "", "_static_is_array"], [81, 0, 1, "", "_static_is_ivy_array"], [81, 0, 1, "", "_static_is_native_array"], [81, 0, 1, "", "_static_scatter_flat"], [81, 0, 1, "", "_static_scatter_nd"], [81, 0, 1, "", "_static_size"], [81, 0, 1, "", "_static_stable_divide"], [81, 0, 1, "", "_static_stable_pow"], [81, 0, 1, "", "_static_supports_inplace_updates"], [81, 0, 1, "", "_static_to_list"], [81, 0, 1, "", "_static_to_numpy"], [81, 0, 1, "", "_static_to_scalar"], [81, 0, 1, "", "_static_value_is_nan"], [81, 0, 1, "", "all_equal"], [81, 0, 1, "", "array_equal"], [81, 0, 1, "", "assert_supports_inplace"], [81, 0, 1, "", "clip_matrix_norm"], [81, 0, 1, "", "clip_vector_norm"], [81, 0, 1, "", "einops_rearrange"], [81, 0, 1, "", "einops_reduce"], [81, 0, 1, "", "einops_repeat"], [81, 0, 1, "", "exists"], [81, 0, 1, "", "fourier_encode"], [81, 0, 1, "", "gather"], [81, 0, 1, "", "gather_nd"], [81, 0, 1, "", "get_num_dims"], [81, 0, 1, "", "has_nans"], [81, 0, 1, "", "inplace_decrement"], [81, 0, 1, "", "inplace_increment"], [81, 0, 1, "", "inplace_update"], [81, 0, 1, "", "is_array"], [81, 0, 1, "", "is_ivy_array"], [81, 0, 1, "", "is_native_array"], [81, 0, 1, "", "isin"], [81, 0, 1, "", "itemsize"], [81, 0, 1, "", "scatter_flat"], [81, 0, 1, "", "scatter_nd"], [81, 0, 1, "", "size"], [81, 0, 1, "", "stable_divide"], [81, 0, 1, "", "stable_pow"], [81, 0, 1, "", "static_isin"], [81, 0, 1, "", "static_itemsize"], [81, 0, 1, "", "static_strides"], [81, 0, 1, "", "strides"], [81, 0, 1, "", "supports_inplace_updates"], [81, 0, 1, "", "to_list"], [81, 0, 1, "", "to_numpy"], [81, 0, 1, "", "to_scalar"], [81, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[82, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_stop_gradient"], [82, 0, 1, "", "adam_step"], [82, 0, 1, "", "adam_update"], [82, 0, 1, "", "gradient_descent_update"], [82, 0, 1, "", "lamb_update"], [82, 0, 1, "", "lars_update"], [82, 0, 1, "", "optimizer_update"], [82, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[83, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[83, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[84, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_conv1d"], [84, 0, 1, "", "_static_conv1d_transpose"], [84, 0, 1, "", "_static_conv2d"], [84, 0, 1, "", "_static_conv2d_transpose"], [84, 0, 1, "", "_static_conv3d"], [84, 0, 1, "", "_static_conv3d_transpose"], [84, 0, 1, "", "_static_depthwise_conv2d"], [84, 0, 1, "", "_static_dropout"], [84, 0, 1, "", "_static_dropout1d"], [84, 0, 1, "", "_static_dropout2d"], [84, 0, 1, "", "_static_dropout3d"], [84, 0, 1, "", "_static_linear"], [84, 0, 1, "", "_static_lstm_update"], [84, 0, 1, "", "_static_multi_head_attention"], [84, 0, 1, "", "_static_reduce_window"], [84, 0, 1, "", "_static_scaled_dot_product_attention"], [84, 0, 1, "", "conv1d"], [84, 0, 1, "", "conv1d_transpose"], [84, 0, 1, "", "conv2d"], [84, 0, 1, "", "conv2d_transpose"], [84, 0, 1, "", "conv3d"], [84, 0, 1, "", "conv3d_transpose"], [84, 0, 1, "", "depthwise_conv2d"], [84, 0, 1, "", "dropout"], [84, 0, 1, "", "dropout1d"], [84, 0, 1, "", "dropout2d"], [84, 0, 1, "", "dropout3d"], [84, 0, 1, "", "linear"], [84, 0, 1, "", "lstm_update"], [84, 0, 1, "", "multi_head_attention"], [84, 0, 1, "", "reduce_window"], [84, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[85, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_cholesky"], [85, 0, 1, "", "_static_cross"], [85, 0, 1, "", "_static_det"], [85, 0, 1, "", "_static_diag"], [85, 0, 1, "", "_static_diagonal"], [85, 0, 1, "", "_static_eigh"], [85, 0, 1, "", "_static_eigvalsh"], [85, 0, 1, "", "_static_inner"], [85, 0, 1, "", "_static_inv"], [85, 0, 1, "", "_static_matmul"], [85, 0, 1, "", "_static_matrix_norm"], [85, 0, 1, "", "_static_matrix_power"], [85, 0, 1, "", "_static_matrix_rank"], [85, 0, 1, "", "_static_matrix_transpose"], [85, 0, 1, "", "_static_outer"], [85, 0, 1, "", "_static_pinv"], [85, 0, 1, "", "_static_qr"], [85, 0, 1, "", "_static_slogdet"], [85, 0, 1, "", "_static_solve"], [85, 0, 1, "", "_static_svd"], [85, 0, 1, "", "_static_svdvals"], [85, 0, 1, "", "_static_tensordot"], [85, 0, 1, "", "_static_tensorsolve"], [85, 0, 1, "", "_static_trace"], [85, 0, 1, "", "_static_vander"], [85, 0, 1, "", "_static_vecdot"], [85, 0, 1, "", "_static_vector_norm"], [85, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [85, 0, 1, "", "cholesky"], [85, 0, 1, "", "cross"], [85, 0, 1, "", "det"], [85, 0, 1, "", "diag"], [85, 0, 1, "", "diagonal"], [85, 0, 1, "", "eigh"], [85, 0, 1, "", "eigvalsh"], [85, 0, 1, "", "general_inner_product"], [85, 0, 1, "", "inner"], [85, 0, 1, "", "inv"], [85, 0, 1, "", "matmul"], [85, 0, 1, "", "matrix_norm"], [85, 0, 1, "", "matrix_power"], [85, 0, 1, "", "matrix_rank"], [85, 0, 1, "", "matrix_transpose"], [85, 0, 1, "", "outer"], [85, 0, 1, "", "pinv"], [85, 0, 1, "", "qr"], [85, 0, 1, "", "slogdet"], [85, 0, 1, "", "solve"], [85, 0, 1, "", "static_general_inner_product"], [85, 0, 1, "", "svd"], [85, 0, 1, "", "svdvals"], [85, 0, 1, "", "tensordot"], [85, 0, 1, "", "tensorsolve"], [85, 0, 1, "", "trace"], [85, 0, 1, "", "vander"], [85, 0, 1, "", "vecdot"], [85, 0, 1, "", "vector_norm"], [85, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[86, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_binary_cross_entropy"], [86, 0, 1, "", "_static_cross_entropy"], [86, 0, 1, "", "_static_sparse_cross_entropy"], [86, 0, 1, "", "binary_cross_entropy"], [86, 0, 1, "", "cross_entropy"], [86, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[87, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_clip"], [87, 0, 1, "", "_static_concat"], [87, 0, 1, "", "_static_constant_pad"], [87, 0, 1, "", "_static_expand_dims"], [87, 0, 1, "", "_static_flip"], [87, 0, 1, "", "_static_permute_dims"], [87, 0, 1, "", "_static_repeat"], [87, 0, 1, "", "_static_reshape"], [87, 0, 1, "", "_static_roll"], [87, 0, 1, "", "_static_split"], [87, 0, 1, "", "_static_squeeze"], [87, 0, 1, "", "_static_stack"], [87, 0, 1, "", "_static_swapaxes"], [87, 0, 1, "", "_static_tile"], [87, 0, 1, "", "_static_unstack"], [87, 0, 1, "", "_static_zero_pad"], [87, 0, 1, "", "clip"], [87, 0, 1, "", "concat"], [87, 0, 1, "", "constant_pad"], [87, 0, 1, "", "expand_dims"], [87, 0, 1, "", "flip"], [87, 0, 1, "", "permute_dims"], [87, 0, 1, "", "repeat"], [87, 0, 1, "", "reshape"], [87, 0, 1, "", "roll"], [87, 0, 1, "", "split"], [87, 0, 1, "", "squeeze"], [87, 0, 1, "", "stack"], [87, 0, 1, "", "swapaxes"], [87, 0, 1, "", "tile"], [87, 0, 1, "", "unstack"], [87, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[88, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[89, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_multinomial"], [89, 0, 1, "", "_static_randint"], [89, 0, 1, "", "_static_random_normal"], [89, 0, 1, "", "_static_random_uniform"], [89, 0, 1, "", "_static_shuffle"], [89, 0, 1, "", "multinomial"], [89, 0, 1, "", "randint"], [89, 0, 1, "", "random_normal"], [89, 0, 1, "", "random_uniform"], [89, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[90, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_argmax"], [90, 0, 1, "", "_static_argmin"], [90, 0, 1, "", "_static_argwhere"], [90, 0, 1, "", "_static_nonzero"], [90, 0, 1, "", "_static_where"], [90, 0, 1, "", "argmax"], [90, 0, 1, "", "argmin"], [90, 0, 1, "", "argwhere"], [90, 0, 1, "", "nonzero"], [90, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[91, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "_static_unique_all"], [91, 0, 1, "", "_static_unique_counts"], [91, 0, 1, "", "_static_unique_inverse"], [91, 0, 1, "", "_static_unique_values"], [91, 0, 1, "", "unique_all"], [91, 0, 1, "", "unique_counts"], [91, 0, 1, "", "unique_inverse"], [91, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[92, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "_static_argsort"], [92, 0, 1, "", "_static_searchsorted"], [92, 0, 1, "", "_static_sort"], [92, 0, 1, "", "argsort"], [92, 0, 1, "", "msort"], [92, 0, 1, "", "searchsorted"], [92, 0, 1, "", "sort"], [92, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[93, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "_static_cumprod"], [93, 0, 1, "", "_static_cumsum"], [93, 0, 1, "", "_static_min"], [93, 0, 1, "", "_static_prod"], [93, 0, 1, "", "_static_sum"], [93, 0, 1, "", "_static_var"], [93, 0, 1, "", "cumprod"], [93, 0, 1, "", "cumsum"], [93, 0, 1, "", "einsum"], [93, 0, 1, "", "max"], [93, 0, 1, "", "mean"], [93, 0, 1, "", "min"], [93, 0, 1, "", "prod"], [93, 0, 1, "", "std"], [93, 0, 1, "", "sum"], [93, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[94, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "_static_all"], [94, 0, 1, "", "_static_any"], [94, 0, 1, "", "all"], [94, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[95, 2, 1, "", "_wrap_function"], [95, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[96, 3, 0, "-", "base"], [97, 3, 0, "-", "cp_tensor"], [98, 3, 0, "-", "parafac2_tensor"], [99, 3, 0, "-", "tr_tensor"], [100, 3, 0, "-", "tt_tensor"], [101, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[96, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 0, 1, "", "norm"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "cp_copy"], [97, 0, 1, "", "cp_flip_sign"], [97, 0, 1, "", "cp_lstsq_grad"], [97, 0, 1, "", "cp_mode_dot"], [97, 0, 1, "", "cp_n_param"], [97, 0, 1, "", "cp_norm"], [97, 0, 1, "", "cp_normalize"], [97, 0, 1, "", "cp_to_tensor"], [97, 0, 1, "", "cp_to_unfolded"], [97, 0, 1, "", "cp_to_vec"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "norm"], [97, 0, 1, "", "normalize"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "unfolding_dot_khatri_rao"], [97, 0, 1, "", "validate_cp_rank"], [97, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[98, 0, 1, "", "__init__"], [98, 4, 1, "", "_abc_impl"], [98, 0, 1, "", "apply_parafac2_projections"], [98, 0, 1, "", "from_CPTensor"], [98, 5, 1, "", "n_param"], [98, 0, 1, "", "parafac2_normalise"], [98, 0, 1, "", "parafac2_to_slice"], [98, 0, 1, "", "parafac2_to_slices"], [98, 0, 1, "", "parafac2_to_tensor"], [98, 0, 1, "", "parafac2_to_unfolded"], [98, 0, 1, "", "parafac2_to_vec"], [98, 0, 1, "", "to_tensor"], [98, 0, 1, "", "to_unfolded"], [98, 0, 1, "", "to_vec"], [98, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[99, 0, 1, "", "__init__"], [99, 4, 1, "", "_abc_impl"], [99, 5, 1, "", "n_param"], [99, 0, 1, "", "to_tensor"], [99, 0, 1, "", "to_unfolded"], [99, 0, 1, "", "to_vec"], [99, 0, 1, "", "tr_n_param"], [99, 0, 1, "", "tr_to_tensor"], [99, 0, 1, "", "tr_to_unfolded"], [99, 0, 1, "", "tr_to_vec"], [99, 0, 1, "", "validate_tr_rank"], [99, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[100, 0, 1, "", "__init__"], [100, 4, 1, "", "_abc_impl"], [100, 0, 1, "", "_tt_n_param"], [100, 0, 1, "", "index_update"], [100, 5, 1, "", "n_param"], [100, 0, 1, "", "pad_tt_rank"], [100, 0, 1, "", "to_tensor"], [100, 0, 1, "", "to_unfolding"], [100, 0, 1, "", "to_vec"], [100, 0, 1, "", "tt_to_tensor"], [100, 0, 1, "", "tt_to_unfolded"], [100, 0, 1, "", "tt_to_vec"], [100, 0, 1, "", "validate_tt_rank"], [100, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, 1, 1, "", "TuckerTensor"], [101, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "mode_dot"], [101, 5, 1, "", "n_param"], [101, 0, 1, "", "to_tensor"], [101, 0, 1, "", "to_unfolded"], [101, 0, 1, "", "to_vec"], [101, 0, 1, "", "tucker_copy"], [101, 0, 1, "", "tucker_mode_dot"], [101, 0, 1, "", "tucker_n_param"], [101, 0, 1, "", "tucker_normalize"], [101, 0, 1, "", "tucker_to_tensor"], [101, 0, 1, "", "tucker_to_unfolded"], [101, 0, 1, "", "tucker_to_vec"], [101, 0, 1, "", "validate_tucker_rank"], [101, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[106, 3, 0, "-", "base"], [107, 3, 0, "-", "elementwise"], [105, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[106, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[106, 0, 1, "", "__init__"], [106, 4, 1, "", "_abc_impl"], [106, 0, 1, "", "broadcast_shapes"], [106, 5, 1, "", "data"], [106, 5, 1, "", "device"], [106, 5, 1, "", "dtype"], [106, 5, 1, "", "inner_shape"], [106, 5, 1, "", "ndim"], [106, 0, 1, "", "nested_array"], [106, 5, 1, "", "nested_rank"], [106, 0, 1, "", "ragged_map"], [106, 0, 1, "", "ragged_multi_map"], [106, 0, 1, "", "ragged_multi_map_in_function"], [106, 0, 1, "", "replace_ivy_arrays"], [106, 5, 1, "", "shape"], [106, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[107, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[107, 4, 1, "", "_abc_impl"], [107, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[105, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[105, 0, 1, "", "__init__"], [105, 0, 1, "", "from_row_lengths"], [105, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[626, 3, 0, "-", "activations"], [627, 3, 0, "-", "constants"], [628, 3, 0, "-", "control_flow_ops"], [629, 3, 0, "-", "creation"], [630, 3, 0, "-", "data_type"], [631, 3, 0, "-", "device"], [632, 3, 0, "-", "elementwise"], [633, 3, 0, "-", "experimental"], [634, 3, 0, "-", "general"], [635, 3, 0, "-", "gradients"], [636, 3, 0, "-", "layers"], [637, 3, 0, "-", "linear_algebra"], [638, 3, 0, "-", "losses"], [639, 3, 0, "-", "manipulation"], [640, 3, 0, "-", "meta"], [641, 3, 0, "-", "nest"], [642, 3, 0, "-", "norms"], [643, 3, 0, "-", "random"], [644, 3, 0, "-", "searching"], [645, 3, 0, "-", "set"], [646, 3, 0, "-", "sorting"], [647, 3, 0, "-", "statistical"], [648, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[367, 3, 0, "-", "activations"], [368, 3, 0, "-", "constants"], [369, 3, 0, "-", "creation"], [370, 3, 0, "-", "data_type"], [371, 3, 0, "-", "device"], [372, 3, 0, "-", "elementwise"], [373, 3, 0, "-", "general"], [374, 3, 0, "-", "gradients"], [375, 3, 0, "-", "layers"], [376, 3, 0, "-", "linear_algebra"], [377, 3, 0, "-", "losses"], [378, 3, 0, "-", "manipulation"], [379, 3, 0, "-", "meta"], [380, 3, 0, "-", "nest"], [381, 3, 0, "-", "norms"], [382, 3, 0, "-", "random"], [383, 3, 0, "-", "searching"], [384, 3, 0, "-", "set"], [385, 3, 0, "-", "sorting"], [386, 3, 0, "-", "sparse_array"], [387, 3, 0, "-", "statistical"], [388, 3, 0, "-", "utility"]], "ivy.stateful": [[788, 3, 0, "-", "activations"], [789, 3, 0, "-", "converters"], [790, 3, 0, "-", "helpers"], [791, 3, 0, "-", "initializers"], [792, 3, 0, "-", "layers"], [793, 3, 0, "-", "losses"], [794, 3, 0, "-", "module"], [795, 3, 0, "-", "norms"], [796, 3, 0, "-", "optimizers"], [797, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[788, 1, 1, "", "ELU"], [788, 1, 1, "", "GEGLU"], [788, 1, 1, "", "GELU"], [788, 1, 1, "", "Hardswish"], [788, 1, 1, "", "LeakyReLU"], [788, 1, 1, "", "LogSigmoid"], [788, 1, 1, "", "LogSoftmax"], [788, 1, 1, "", "Logit"], [788, 1, 1, "", "Mish"], [788, 1, 1, "", "PReLU"], [788, 1, 1, "", "ReLU"], [788, 1, 1, "", "ReLU6"], [788, 1, 1, "", "SeLU"], [788, 1, 1, "", "SiLU"], [788, 1, 1, "", "Sigmoid"], [788, 1, 1, "", "Softmax"], [788, 1, 1, "", "Softplus"], [788, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[788, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[789, 1, 1, "", "ModuleConverters"], [789, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[789, 0, 1, "", "from_flax_module"], [789, 0, 1, "", "from_haiku_module"], [789, 0, 1, "", "from_keras_module"], [789, 0, 1, "", "from_paddle_module"], [789, 0, 1, "", "from_torch_module"], [789, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[790, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[791, 1, 1, "", "Constant"], [791, 1, 1, "", "FirstLayerSiren"], [791, 1, 1, "", "GlorotUniform"], [791, 1, 1, "", "Initializer"], [791, 1, 1, "", "KaimingNormal"], [791, 1, 1, "", "Ones"], [791, 1, 1, "", "RandomNormal"], [791, 1, 1, "", "Siren"], [791, 1, 1, "", "Uniform"], [791, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[791, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[792, 1, 1, "", "AdaptiveAvgPool1d"], [792, 1, 1, "", "AdaptiveAvgPool2d"], [792, 1, 1, "", "AvgPool1D"], [792, 1, 1, "", "AvgPool2D"], [792, 1, 1, "", "AvgPool3D"], [792, 1, 1, "", "Conv1D"], [792, 1, 1, "", "Conv1DTranspose"], [792, 1, 1, "", "Conv2D"], [792, 1, 1, "", "Conv2DTranspose"], [792, 1, 1, "", "Conv3D"], [792, 1, 1, "", "Conv3DTranspose"], [792, 1, 1, "", "Dct"], [792, 1, 1, "", "DepthwiseConv2D"], [792, 1, 1, "", "Dropout"], [792, 1, 1, "", "Embedding"], [792, 1, 1, "", "FFT"], [792, 1, 1, "", "IFFT"], [792, 1, 1, "", "Identity"], [792, 1, 1, "", "LSTM"], [792, 1, 1, "", "Linear"], [792, 1, 1, "", "MaxPool1D"], [792, 1, 1, "", "MaxPool2D"], [792, 1, 1, "", "MaxPool3D"], [792, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[792, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[793, 1, 1, "", "BinaryCrossEntropyLoss"], [793, 1, 1, "", "CrossEntropyLoss"], [793, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.module": [[794, 1, 1, "", "Module"], [794, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[794, 0, 1, "", "__call__"], [794, 0, 1, "", "__init__"], [794, 5, 1, "", "buffers"], [794, 0, 1, "", "build"], [794, 5, 1, "", "build_mode"], [794, 5, 1, "", "built"], [794, 5, 1, "", "device"], [794, 5, 1, "", "dtype"], [794, 0, 1, "", "eval"], [794, 0, 1, "", "load"], [794, 5, 1, "", "module_dict"], [794, 0, 1, "", "register_buffer"], [794, 0, 1, "", "register_parameter"], [794, 0, 1, "", "save"], [794, 0, 1, "", "save_weights"], [794, 0, 1, "", "show_graph"], [794, 5, 1, "", "state_dict"], [794, 0, 1, "", "to_device"], [794, 0, 1, "", "trace_graph"], [794, 0, 1, "", "train"], [794, 5, 1, "", "training"], [794, 5, 1, "", "v"]], "ivy.stateful.norms": [[795, 1, 1, "", "BatchNorm2D"], [795, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[795, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[795, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[796, 1, 1, "", "Adam"], [796, 1, 1, "", "AdamW"], [796, 1, 1, "", "LAMB"], [796, 1, 1, "", "LARS"], [796, 1, 1, "", "Optimizer"], [796, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[796, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.sequential": [[797, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[797, 0, 1, "", "__init__"]], "ivy.utils": [[798, 3, 0, "-", "assertions"], [799, 3, 0, "-", "backend"], [803, 3, 0, "-", "binaries"], [804, 3, 0, "-", "dynamic_import"], [805, 3, 0, "-", "einsum_parser"], [806, 3, 0, "-", "einsum_path_helpers"], [807, 3, 0, "-", "exceptions"], [808, 3, 0, "-", "inspection"], [809, 3, 0, "-", "logging"], [810, 3, 0, "-", "profiler"], [811, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[798, 2, 1, "", "check_all"], [798, 2, 1, "", "check_all_or_any_fn"], [798, 2, 1, "", "check_any"], [798, 2, 1, "", "check_dev_correct_formatting"], [798, 2, 1, "", "check_dimensions"], [798, 2, 1, "", "check_elem_in_list"], [798, 2, 1, "", "check_equal"], [798, 2, 1, "", "check_exists"], [798, 2, 1, "", "check_false"], [798, 2, 1, "", "check_gather_input_valid"], [798, 2, 1, "", "check_gather_nd_input_valid"], [798, 2, 1, "", "check_greater"], [798, 2, 1, "", "check_inplace_sizes_valid"], [798, 2, 1, "", "check_isinstance"], [798, 2, 1, "", "check_kernel_padding_size"], [798, 2, 1, "", "check_less"], [798, 2, 1, "", "check_one_way_broadcastable"], [798, 2, 1, "", "check_same_dtype"], [798, 2, 1, "", "check_shape"], [798, 2, 1, "", "check_shapes_broadcastable"], [798, 2, 1, "", "check_true"], [798, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[800, 3, 0, "-", "ast_helpers"], [801, 3, 0, "-", "handler"], [802, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[800, 1, 1, "", "ImportTransformer"], [800, 1, 1, "", "IvyLoader"], [800, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "impersonate_import"], [800, 0, 1, "", "visit_Import"], [800, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[800, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[801, 1, 1, "", "ContextManager"], [801, 2, 1, "", "choose_random_backend"], [801, 2, 1, "", "current_backend"], [801, 2, 1, "", "dynamic_backend_converter"], [801, 2, 1, "", "prevent_access_locally"], [801, 2, 1, "", "previous_backend"], [801, 2, 1, "", "set_backend"], [801, 2, 1, "", "set_backend_to_specific_version"], [801, 2, 1, "", "set_jax_backend"], [801, 2, 1, "", "set_mxnet_backend"], [801, 2, 1, "", "set_numpy_backend"], [801, 2, 1, "", "set_paddle_backend"], [801, 2, 1, "", "set_tensorflow_backend"], [801, 2, 1, "", "set_torch_backend"], [801, 2, 1, "", "unset_backend"], [801, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[801, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[802, 2, 1, "", "clear_sub_backends"], [802, 2, 1, "", "find_available_sub_backends"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [802, 2, 1, "", "set_sub_backend"], [802, 2, 1, "", "set_sub_backend_to_specific_version"], [802, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[803, 2, 1, "", "check_for_binaries"], [803, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[804, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[805, 2, 1, "", "convert_interleaved_input"], [805, 2, 1, "", "convert_subscripts"], [805, 2, 1, "", "find_output_shape"], [805, 2, 1, "", "find_output_str"], [805, 2, 1, "", "gen_unused_symbols"], [805, 2, 1, "", "get_symbol"], [805, 2, 1, "", "has_valid_einsum_chars_only"], [805, 2, 1, "", "is_valid_einsum_char"], [805, 2, 1, "", "legalise_einsum_expr"], [805, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[806, 2, 1, "", "can_dot"], [806, 2, 1, "", "compute_size_by_dict"], [806, 2, 1, "", "find_contraction"], [806, 2, 1, "", "flop_count"], [806, 2, 1, "", "greedy_path"], [806, 2, 1, "", "optimal_path"], [806, 2, 1, "", "parse_einsum_input"], [806, 2, 1, "", "parse_possible_contraction"], [806, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[807, 7, 1, "", "InplaceUpdateException"], [807, 7, 1, "", "IvyAttributeError"], [807, 7, 1, "", "IvyBackendException"], [807, 7, 1, "", "IvyBroadcastShapeError"], [807, 7, 1, "", "IvyDeviceError"], [807, 7, 1, "", "IvyDtypePromotionError"], [807, 7, 1, "", "IvyError"], [807, 7, 1, "", "IvyException"], [807, 7, 1, "", "IvyIndexError"], [807, 7, 1, "", "IvyInvalidBackendException"], [807, 7, 1, "", "IvyNotImplementedException"], [807, 7, 1, "", "IvyValueError"], [807, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[807, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[808, 2, 1, "", "add_array_specs"], [808, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[809, 2, 1, "", "set_logging_mode"], [809, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[810, 1, 1, "", "Profiler"], [810, 2, 1, "", "tensorflow_profile_start"], [810, 2, 1, "", "tensorflow_profile_stop"], [810, 2, 1, "", "torch_profiler_init"], [810, 2, 1, "", "torch_profiler_start"], [810, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[810, 0, 1, "", "__init__"], [810, 4, 1, "", "print_stats"], [810, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[811, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[771, 3, 0, "-", "assertions"], [772, 3, 0, "-", "available_frameworks"], [773, 3, 0, "-", "function_testing"], [774, 3, 0, "-", "globals"], [775, 3, 0, "-", "hypothesis_helpers"], [780, 3, 0, "-", "multiprocessing"], [781, 3, 0, "-", "pipeline_helper"], [782, 3, 0, "-", "structs"], [783, 3, 0, "-", "test_parameter_flags"], [784, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[771, 2, 1, "", "assert_all_close"], [771, 2, 1, "", "assert_same_type"], [771, 2, 1, "", "assert_same_type_and_shape"], [771, 2, 1, "", "check_unsupported_device"], [771, 2, 1, "", "check_unsupported_device_and_dtype"], [771, 2, 1, "", "check_unsupported_dtype"], [771, 2, 1, "", "test_unsupported_function"], [771, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, 2, 1, "", "args_to_container"], [773, 2, 1, "", "args_to_frontend"], [773, 2, 1, "", "arrays_to_frontend"], [773, 2, 1, "", "as_lists"], [773, 2, 1, "", "convtrue"], [773, 2, 1, "", "create_args_kwargs"], [773, 2, 1, "", "flatten"], [773, 2, 1, "", "flatten_and_to_np"], [773, 2, 1, "", "flatten_frontend"], [773, 2, 1, "", "flatten_frontend_fw_to_np"], [773, 2, 1, "", "flatten_frontend_to_np"], [773, 2, 1, "", "get_frontend_ret"], [773, 2, 1, "", "get_ret_and_flattened_np_array"], [773, 2, 1, "", "gradient_incompatible_function"], [773, 2, 1, "", "gradient_test"], [773, 2, 1, "", "gradient_unsupported_dtypes"], [773, 2, 1, "", "kwargs_to_args_n_kwargs"], [773, 2, 1, "", "test_frontend_function"], [773, 2, 1, "", "test_frontend_method"], [773, 2, 1, "", "test_function"], [773, 2, 1, "", "test_function_backend_computation"], [773, 2, 1, "", "test_function_ground_truth_computation"], [773, 2, 1, "", "test_gradient_backend_computation"], [773, 2, 1, "", "test_gradient_ground_truth_computation"], [773, 2, 1, "", "test_method"], [773, 2, 1, "", "test_method_backend_computation"], [773, 2, 1, "", "test_method_ground_truth_computation"], [773, 2, 1, "", "traced_if_required"], [773, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[774, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [774, 7, 1, "", "InterruptedTest"], [774, 1, 1, "", "TestData"], [774, 2, 1, "", "setup_api_test"], [774, 2, 1, "", "setup_frontend_test"], [774, 2, 1, "", "teardown_api_test"], [774, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[774, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[774, 0, 1, "", "__init__"], [774, 4, 1, "", "fn_name"], [774, 4, 1, "", "fn_tree"], [774, 4, 1, "", "is_method"], [774, 4, 1, "", "supported_device_dtypes"], [774, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[776, 3, 0, "-", "array_helpers"], [777, 3, 0, "-", "dtype_helpers"], [778, 3, 0, "-", "general_helpers"], [779, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, 2, 1, "", "array_and_broadcastable_shape"], [776, 2, 1, "", "array_bools"], [776, 2, 1, "", "array_helpers_dtype_info_helper"], [776, 2, 1, "", "array_indices_axis"], [776, 2, 1, "", "array_indices_put_along_axis"], [776, 2, 1, "", "array_values"], [776, 2, 1, "", "arrays_and_axes"], [776, 2, 1, "", "arrays_for_pooling"], [776, 2, 1, "", "broadcast_shapes"], [776, 2, 1, "", "cond_data_gen_helper"], [776, 2, 1, "", "create_concatenable_arrays_dtypes"], [776, 2, 1, "", "create_nested_input"], [776, 2, 1, "", "dtype_and_values"], [776, 2, 1, "", "dtype_array_query"], [776, 2, 1, "", "dtype_array_query_val"], [776, 2, 1, "", "dtype_values_axis"], [776, 2, 1, "", "einsum_helper"], [776, 2, 1, "", "get_first_solve_batch_matrix"], [776, 2, 1, "", "get_first_solve_matrix"], [776, 2, 1, "", "get_second_solve_batch_matrix"], [776, 2, 1, "", "get_second_solve_matrix"], [776, 2, 1, "", "list_of_size"], [776, 2, 1, "", "lists"], [776, 2, 1, "", "mutually_broadcastable_shapes"], [776, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, 2, 1, "", "array_dtypes"], [777, 2, 1, "", "cast_filter"], [777, 2, 1, "", "cast_filter_helper"], [777, 2, 1, "", "get_castable_dtype"], [777, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, 7, 1, "", "BroadcastError"], [778, 2, 1, "", "apply_safety_factor"], [778, 2, 1, "", "broadcast_shapes"], [778, 2, 1, "", "dims_and_offset"], [778, 2, 1, "", "embedding_helper"], [778, 2, 1, "", "general_helpers_dtype_info_helper"], [778, 2, 1, "", "get_axis"], [778, 2, 1, "", "get_bounds"], [778, 2, 1, "", "get_mean_std"], [778, 2, 1, "", "get_shape"], [778, 2, 1, "", "matrix_is_stable"], [778, 2, 1, "", "reshape_shapes"], [778, 2, 1, "", "sizes_"], [778, 2, 1, "", "subsets"], [778, 2, 1, "", "two_broadcastable_shapes"], [778, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, 2, 1, "", "floats"], [779, 2, 1, "", "ints"], [779, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, 2, 1, "", "backend_proc"], [780, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, 1, 1, "", "BackendHandler"], [781, 1, 1, "", "BackendHandlerMode"], [781, 1, 1, "", "WithBackendContext"], [781, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[781, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[781, 4, 1, "", "SetBackend"], [781, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[781, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[782, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[782, 0, 1, "", "__init__"], [782, 4, 1, "", "framework_init_module"], [782, 4, 1, "", "init_name"], [782, 4, 1, "", "ivy_init_module"], [782, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, 1, 1, "", "DynamicFlag"], [783, 1, 1, "", "FrontendFunctionTestFlags"], [783, 1, 1, "", "FrontendInitTestFlags"], [783, 1, 1, "", "FrontendMethodTestFlags"], [783, 1, 1, "", "FunctionTestFlags"], [783, 1, 1, "", "InitMethodTestFlags"], [783, 1, 1, "", "MethodTestFlags"], [783, 1, 1, "", "TestFlags"], [783, 2, 1, "", "build_flag"], [783, 2, 1, "", "frontend_function_flags"], [783, 2, 1, "", "frontend_init_flags"], [783, 2, 1, "", "frontend_method_flags"], [783, 2, 1, "", "function_flags"], [783, 2, 1, "", "init_method_flags"], [783, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[783, 0, 1, "", "__init__"], [783, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, 2, 1, "", "handle_example"], [784, 2, 1, "", "handle_frontend_method"], [784, 2, 1, "", "handle_frontend_test"], [784, 2, 1, "", "handle_method"], [784, 2, 1, "", "handle_test"], [784, 2, 1, "", "num_positional_args"], [784, 2, 1, "", "num_positional_args_helper"], [784, 2, 1, "", "num_positional_args_method"], [784, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"credit": 0, "card": 0, "fraud": 0, "detect": 0, "us": [0, 6, 8, 12, 19, 27, 30, 47, 49, 812, 814, 818, 819, 823, 839, 842, 852, 856, 863, 864], "ivi": [0, 4, 5, 8, 12, 19, 22, 30, 31, 32, 43, 44, 46, 47, 49, 812, 818, 820, 824, 826, 828, 831, 833, 839, 841, 842, 843, 844, 845, 846, 849, 850, 851, 852, 853, 854, 856, 863, 864, 865, 876], "framework": [0, 6, 31, 37, 43, 772, 785, 839, 842, 850, 870, 873, 876, 877], "librari": [0, 28, 31, 32, 47, 49, 864], "instal": [0, 4, 5, 12, 22, 43, 44, 46, 812, 856], "import": [0, 5, 8, 12, 14, 22, 43, 44, 47, 804], "configur": [0, 833, 842, 852], "environ": [0, 819], "load": [0, 8, 12, 14, 769, 852], "dataset": [0, 45, 47], "preview": 0, "inspect": [0, 808], "end": [0, 47], "inform": 0, "identifi": 0, "miss": 0, "valu": [0, 842], "transact": 0, "class": [0, 108, 785, 824, 833, 841, 851], "distribut": 0, "separ": 0, "data": [0, 4, 5, 8, 12, 14, 22, 31, 43, 54, 77, 108, 370, 630, 645, 749, 750, 751, 752, 829, 841, 844, 852, 855], "analysi": 0, "statist": [0, 70, 93, 387, 647], "measur": 0, "legitim": 0, "fraudul": 0, "compar": [0, 6, 7, 14], "metric": [0, 14, 47], "under": 0, "sampl": [0, 44], "balanc": [0, 847], "creat": [0, 1, 43, 44, 818], "split": [0, 708], "featur": [0, 844], "target": [0, 43], "train": [0, 14, 43, 45, 47], "test": [0, 14, 45, 773, 783, 784, 787, 818, 819, 820, 823, 828, 834, 842, 844], "set": [0, 6, 12, 39, 43, 44, 68, 91, 384, 645, 819, 825, 834, 846, 856], "convert": [0, 6, 7, 789, 854], "arrai": [0, 102, 105, 127, 386, 776, 823, 824, 828, 836, 851, 860, 863, 867], "displai": [0, 48], "dimens": 0, "prepar": [0, 4, 5, 8, 12], "function": [0, 8, 22, 31, 32, 43, 44, 45, 47, 49, 109, 773, 818, 827, 829, 830, 833, 836, 837, 838, 839, 841, 842, 844, 845, 846, 847, 849, 854, 855, 864], "process": 0, "enabl": 0, "soft": 0, "devic": [0, 55, 78, 371, 631, 830, 836, 841], "mode": [0, 39, 829, 833, 846], "xgboost": [0, 14], "classifi": [0, 12], "benchmark": 0, "model": [0, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 29, 30, 31, 32, 43, 44, 45, 46, 47, 49, 854, 855], "time": [0, 14], "base": [0, 74, 96, 106], "predict": 0, "perform": 0, "implement": [0, 4, 8, 828, 839, 841, 861], "ha": 0, "demonstr": 0, "faster": 0, "standard": [0, 847, 860, 867, 876], "classif": [0, 5], "report": 0, "evalu": [0, 14], "ivyclassifi": 0, "xgbclassifi": [0, 14], "visual": [0, 48], "comparison": [0, 14, 852], "demo": [1, 3, 4, 5, 20, 31, 45, 46], "notebook": 1, "TO": 2, "replac": 2, "titl": 2, "exampl": [3, 8, 12, 14, 20, 39, 831, 836, 839, 842, 844, 847, 863, 864, 865], "alexnet": 4, "infer": [4, 5, 8, 12, 838], "torch": [4, 5, 8, 12, 39, 46, 870, 871], "tensorflow": [4, 5, 6, 8, 14, 18, 39, 46, 47, 48, 870], "jax": [4, 5, 8, 11, 13, 14, 39, 46, 870], "appendix": [4, 8], "code": [4, 22, 23, 24, 25, 32, 43, 835, 843, 845], "bert": 5, "dependeci": 5, "modul": [5, 794, 829, 830, 853, 864], "sequenc": [5, 836], "your": [6, 8, 12, 820, 844], "pytorch": [6, 7, 13, 14, 16, 45, 870], "project": 6, "incompat": 6, "transpil": [6, 7, 16, 17, 18, 25, 26, 27, 28, 29, 31, 32, 35, 36, 37, 38, 39, 45, 49, 854, 856, 864], "about": [6, 7, 43], "up": [6, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 819, 834, 843, 856], "sourc": [6, 856], "from": [6, 7, 39, 46, 856], "result": [6, 7, 44], "fine": [6, 7], "tune": [6, 7], "conclus": [6, 7], "how": [7, 27, 818, 826, 834, 843, 844], "To": [7, 49, 820], "paddlepaddl": 7, "imag": [8, 12, 60, 83, 253, 814, 826], "segment": 8, "unet": 8, "custom": [8, 824, 826, 839, 843, 852, 855], "preprocess": 8, "visualis": [8, 12], "initi": [8, 12, 791, 853], "nativ": [8, 12, 824, 847], "pretrain": [8, 12], "weight": [8, 12, 852], "mask": 8, "backend": [8, 14, 22, 31, 43, 44, 46, 47, 799, 802, 818, 825, 829, 839, 845, 849, 855], "acceler": [11, 13, 14], "mmpretrain": 11, "resnet": [12, 50], "label": 12, "resnet34": 12, "resnet50": 12, "xgb_frontend": 14, "xgb": 14, "more": [14, 819, 847, 861], "exhaust": 14, "v": [14, 26, 36, 39, 835, 855, 860, 863], "number": [14, 779, 836], "boost": 14, "round": [14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 283, 843], "fraction": 14, "guid": [15, 20], "build": [16, 17, 18, 47, 814, 826, 849], "top": [16, 17, 18, 821, 828, 878], "haiku": 17, "develop": 19, "convolut": 19, "network": [19, 44, 47, 852, 854], "tutori": [20, 47], "And": 20, "learn": [20, 21, 870], "basic": [20, 21, 43, 44, 820, 841], "write": [22, 30, 841, 844], "content": [22, 45], "handler": [22, 31, 801, 802, 849], "structur": [22, 31, 826, 839, 855], "api": [22, 31, 32, 818, 823, 827, 828, 839, 845, 849, 851, 853, 854, 856, 860, 863, 864, 865, 867, 874, 876], "state": [22, 31, 32, 853, 855, 863], "unifi": [23, 26, 27, 33, 36, 37, 38, 43, 812, 851, 861, 865, 872, 876], "trace": [24, 26, 27, 32, 691, 833], "lazi": [26, 36, 863], "eager": [26, 36, 863], "decor": [27, 38, 833, 838, 844], "ani": [28, 29, 31, 32, 768], "odsc": 31, "graph": [31, 48, 871, 876], "tracer": [31, 849, 854, 856, 863, 871, 876], "quickstart": 32, "get": [32, 812, 820, 856], "familiar": 32, "0": [33, 34, 35, 36, 40, 41], "1": [34, 36, 37, 38, 39, 42, 49, 870], "compil": [34, 36, 37, 38, 44, 863, 868, 873, 875, 876], "2": [35, 38, 40, 49, 870], "select": 37, "As": 38, "3": [39, 41, 42, 49], "dynam": [39, 47, 804, 825, 855], "static": 39, "todo": [39, 820], "explain": 39, "via": 39, "why": [39, 844, 861], "i": [39, 826, 847], "true": 39, "default": [39, 544], "when": 39, "numpi": [39, 46, 841, 870], "fals": 39, "kornia": 40, "perceiv": 41, "stabl": 42, "diffus": 42, "oper": [43, 836, 846, 851, 855], "ml": [43, 859, 872, 876], "chang": 43, "one": 43, "line": [43, 820], "No": [43, 819, 861], "need": [43, 844], "worri": 43, "type": [43, 54, 77, 370, 630, 829, 837, 841, 855], "differ": 43, "them": 43, "all": [43, 767], "standalon": [43, 837], "defin": [43, 44, 45, 47], "optim": [43, 796, 853], "input": [43, 44, 836], "loss": [43, 63, 86, 377, 638, 793], "loop": [43, 47], "check": [44, 835, 855], "simpl": 44, "neural": 44, "deepmind": [45, 46], "": [45, 47, 818, 826, 843, 856], "perceiverio": [45, 46], "tabl": [45, 826, 829, 867], "construct": [45, 852], "some": 45, "helper": [45, 775, 776, 777, 778, 779, 781, 784, 790, 800, 806, 842, 844, 845], "pipelin": [45, 47, 781, 826, 828, 844, 855], "download": 45, "dataload": 45, "gpu": [46, 855], "introduct": [46, 49, 841, 842], "python3": 46, "8": 46, "setup": [46, 835], "kernel": 46, "clone": [46, 819, 828], "repo": [46, 819], "ivy_model": 46, "run": [46, 820, 823, 826, 834, 844], "let": 47, "we": [47, 844], "ar": 47, "mnist": 47, "thi": 47, "temporari": 47, "loader": 47, "util": [47, 71, 94, 388, 648, 786], "plot": 47, "save": [47, 770, 852], "huggingfac": 48, "deit": 48, "can": 48, "html": 48, "file": 48, "browser": [48, 820], "interfac": 49, "telemetri": 49, "18": 50, "activ": [51, 73, 367, 626, 788], "convers": [52, 75, 838], "creation": [53, 76, 369, 629], "elementwis": [56, 79, 107, 372, 632], "experiment": [57, 80, 633, 818], "gener": [58, 81, 373, 634, 778, 839, 844, 847, 863], "gradient": [59, 82, 349, 374, 635, 839], "layer": [61, 84, 375, 636, 792], "linear": [62, 85, 376, 637, 660], "algebra": [62, 85, 376, 637], "manipul": [64, 87, 378, 639], "norm": [65, 88, 381, 642, 795], "random": [66, 89, 382, 643], "search": [67, 90, 383, 644], "sort": [69, 92, 385, 646, 756], "wrap": [72, 95, 838], "cp": 97, "tensor": [97, 98, 99, 100, 101, 104], "parafac2": 98, "tr": 99, "tt": 100, "tucker": [101, 451], "contain": [103, 820, 827, 852], "factor": 104, "nest": [105, 380, 641], "gelu": 110, "hardswish": 111, "leaky_relu": 112, "log_softmax": 113, "mish": 114, "relu": 115, "sigmoid": 116, "softmax": 117, "softplu": 118, "softsign": 119, "cmp_i": 120, "cmp_isnot": 121, "for_loop": 122, "if_els": 123, "try_except": 124, "while_loop": 125, "arang": 126, "asarrai": 128, "copy_arrai": 129, "empti": 130, "empty_lik": 131, "ey": 132, "from_dlpack": 133, "note": [133, 144, 629], "frombuff": 134, "full": [135, 842], "full_lik": 136, "linspac": 137, "logspac": 138, "meshgrid": 139, "native_arrai": 140, "one_hot": 141, "ones": 142, "ones_lik": 143, "to_dlpack": 144, "tril": 145, "triu": 146, "triu_indic": 147, "zero": 148, "zeros_lik": 149, "as_ivy_dtyp": 150, "as_native_dtyp": 151, "astyp": 152, "broadcast_arrai": 153, "broadcast_to": 154, "can_cast": 155, "check_float": 156, "closest_valid_dtyp": 157, "default_complex_dtyp": 158, "default_dtyp": 159, "default_float_dtyp": 160, "default_int_dtyp": 161, "default_uint_dtyp": 162, "dtype": [163, 777, 836], "dtype_bit": 164, "finfo": 165, "function_supported_dtyp": 166, "function_unsupported_dtyp": 167, "iinfo": 168, "infer_default_dtyp": 169, "invalid_dtyp": 170, "is_bool_dtyp": 171, "is_complex_dtyp": 172, "is_float_dtyp": 173, "is_hashable_dtyp": 174, "is_int_dtyp": 175, "is_native_dtyp": 176, "is_uint_dtyp": 177, "promote_typ": 178, "promote_types_of_input": 179, "result_typ": 180, "set_default_complex_dtyp": 181, "set_default_dtyp": 182, "set_default_float_dtyp": 183, "set_default_int_dtyp": 184, "set_default_uint_dtyp": 185, "type_promote_arrai": 186, "unset_default_complex_dtyp": 187, "unset_default_dtyp": 188, "unset_default_float_dtyp": 189, "unset_default_int_dtyp": 190, "unset_default_uint_dtyp": 191, "valid_dtyp": 192, "as_ivy_dev": 193, "as_native_dev": 194, "clear_cached_mem_on_dev": 195, "default_devic": 196, "dev": 197, "dev_util": 198, "function_supported_devic": 199, "function_unsupported_devic": 200, "get_all_ivy_arrays_on_dev": 201, "gpu_is_avail": 202, "handle_soft_device_vari": 203, "num_cpu_cor": 204, "num_gpu": 205, "num_ivy_arrays_on_dev": 206, "percent_used_mem_on_dev": 207, "print_all_ivy_arrays_on_dev": 208, "set_default_devic": 209, "set_soft_device_mod": 210, "paramet": [210, 578, 579, 584, 585, 587, 588, 631, 634, 783, 788, 846], "set_split_factor": 211, "split_factor": 212, "split_func_cal": 213, "to_devic": 214, "total_mem_on_dev": 215, "tpu_is_avail": 216, "unset_default_devic": 217, "unset_soft_device_mod": 218, "used_mem_on_dev": 219, "ab": 220, "aco": 221, "acosh": 222, "add": [223, 831, 842, 876], "angl": 224, "asin": 225, "asinh": 226, "atan": 227, "atan2": 228, "atanh": 229, "bitwise_and": 230, "bitwise_invert": 231, "bitwise_left_shift": 232, "bitwise_or": 233, "bitwise_right_shift": 234, "bitwise_xor": 235, "ceil": 236, "co": 237, "cosh": 238, "deg2rad": 239, "divid": 240, "equal": 241, "erf": 242, "exp": 243, "exp2": 244, "expm1": 245, "floor": 246, "floor_divid": 247, "fmin": 248, "fmod": 249, "gcd": 250, "greater": 251, "greater_equ": 252, "isfinit": 254, "isinf": 255, "isnan": 256, "isreal": 257, "lcm": 258, "less": 259, "less_equ": 260, "log": [261, 809, 819], "log10": 262, "log1p": 263, "log2": 264, "logaddexp": 265, "logaddexp2": 266, "logical_and": 267, "logical_not": 268, "logical_or": 269, "logical_xor": 270, "maximum": 271, "minimum": 272, "multipli": 273, "nan_to_num": 274, "neg": 275, "not_equ": 276, "posit": [277, 836], "pow": 278, "rad2deg": 279, "real": 280, "reciproc": 281, "remaind": 282, "sign": 284, "sin": 285, "sinh": 286, "sqrt": 287, "squar": 288, "subtract": 289, "tan": [290, 831, 842], "tanh": 291, "trapz": 292, "trunc": 293, "trunc_divid": 294, "celu": 295, "elu": 296, "hardshrink": 297, "hardsilu": 298, "hardtanh": 299, "logit": 300, "logsigmoid": 301, "prelu": 302, "relu6": 303, "scaled_tanh": 304, "selu": 305, "silu": 306, "softshrink": 307, "stanh": 308, "tanhshrink": 309, "threshold": 310, "thresholded_relu": 311, "blackman_window": 312, "eye_lik": 313, "hamming_window": 314, "hann_window": 315, "indic": 316, "kaiser_bessel_derived_window": 317, "kaiser_window": 318, "mel_weight_matrix": 319, "ndenumer": 320, "ndindex": 321, "polyv": 322, "random_cp": 323, "random_parafac2": 324, "random_tr": 325, "random_tt": 326, "random_tuck": 327, "tril_indic": 328, "trilu": 329, "unsorted_segment_mean": 330, "unsorted_segment_min": 331, "unsorted_segment_sum": 332, "vorbis_window": 333, "allclos": 334, "amax": 335, "amin": 336, "binar": 337, "conj": 338, "copysign": 339, "count_nonzero": 340, "diff": 341, "digamma": 342, "erfc": 343, "erfinv": 344, "fix": [345, 818, 834], "float_pow": 346, "fmax": 347, "frexp": 348, "hypot": 350, "isclos": 351, "ldexp": 352, "lerp": 353, "lgamma": 354, "modf": 355, "nansum": 356, "nextaft": 357, "signbit": 358, "sinc": 359, "sparsify_tensor": 360, "xlogi": 361, "zeta": 362, "reduc": 363, "bind_custom_gradient_funct": 364, "jvp": 365, "vjp": 366, "constant": [368, 627], "meta": [379, 640], "spars": 386, "adaptive_avg_pool1d": 389, "adaptive_avg_pool2d": 390, "adaptive_max_pool2d": 391, "adaptive_max_pool3d": 392, "area_interpol": 393, "avg_pool1d": 394, "avg_pool2d": 395, "avg_pool3d": 396, "dct": 397, "dft": 398, "dropout1d": 399, "dropout2d": 400, "dropout3d": 401, "embed": 402, "fft": 403, "fft2": 404, "generate_einsum_equ": 405, "get_interpolate_kernel": 406, "idct": 407, "ifft": 408, "ifftn": 409, "interp": 410, "interpol": 411, "max_pool1d": 412, "max_pool2d": 413, "max_pool3d": 414, "max_unpool1d": 415, "nearest_interpol": 416, "pool": 417, "reduce_window": 418, "rfft": 419, "rfftn": 420, "rnn": 421, "sliding_window": 422, "stft": 423, "adjoint": 424, "batched_out": 425, "cond": 426, "diagflat": 427, "dot": 428, "eig": [429, 672], "eigh_tridiagon": 430, "eigval": 431, "general_inner_product": 432, "higher_order_mo": 433, "initialize_tuck": 434, "khatri_rao": 435, "kron": 436, "kroneck": 437, "lu_factor": 438, "lu_solv": 439, "make_svd_non_neg": 440, "matrix_exp": 441, "mode_dot": 442, "multi_dot": 443, "multi_mode_dot": 444, "partial_tuck": 445, "solve_triangular": 446, "svd_flip": 447, "tensor_train": 448, "truncated_svd": 449, "tt_matrix_to_tensor": 450, "hinge_embedding_loss": 452, "huber_loss": 453, "kl_div": 454, "l1_loss": 455, "log_poisson_loss": 456, "poisson_nll_loss": 457, "smooth_l1_loss": 458, "soft_margin_loss": 459, "as_strid": 460, "associative_scan": 461, "atleast_1d": 462, "atleast_2d": 463, "atleast_3d": 464, "broadcast_shap": 465, "check_scalar": 466, "choos": 467, "column_stack": 468, "concat_from_sequ": 469, "dsplit": 470, "dstack": 471, "expand": 472, "fill_diagon": 473, "flatten": 474, "fliplr": 475, "flipud": 476, "fold": 477, "heavisid": 478, "hsplit": 479, "hstack": 480, "i0": 481, "matric": 482, "moveaxi": 483, "pad": 484, "partial_fold": 485, "partial_tensor_to_vec": 486, "partial_unfold": 487, "partial_vec_to_tensor": 488, "put_along_axi": 489, "rot90": 490, "soft_threshold": 491, "take": 492, "take_along_axi": 493, "top_k": 494, "trim_zero": 495, "unflatten": 496, "unfold": 497, "unique_consecut": 498, "vsplit": 499, "vstack": 500, "batch_norm": 501, "group_norm": 502, "instance_norm": 503, "l1_normal": 504, "l2_normal": 505, "local_response_norm": 506, "lp_normal": 507, "bernoulli": 508, "beta": 509, "dirichlet": 510, "gamma": 511, "poisson": 512, "unravel_index": 513, "invert_permut": 514, "lexsort": 515, "is_ivy_sparse_arrai": 516, "is_native_sparse_arrai": 517, "native_sparse_arrai": 518, "native_sparse_array_to_indices_values_and_shap": 519, "bincount": 520, "corrcoef": 521, "cov": 522, "cummax": 523, "cummin": 524, "histogram": 525, "igamma": 526, "median": 527, "nanmean": 528, "nanmedian": 529, "nanmin": 530, "nanprod": 531, "quantil": 532, "optional_get_el": 533, "all_equ": 534, "arg_info": 535, "arg_nam": 536, "array_equ": 537, "assert_supports_inplac": 538, "cache_fn": 539, "clip_matrix_norm": 540, "clip_vector_norm": 541, "container_typ": 542, "current_backend_str": 543, "einops_rearrang": 545, "einops_reduc": 546, "einops_repeat": 547, "exist": [548, 814, 843], "fourier_encod": 549, "function_supported_devices_and_dtyp": 550, "function_unsupported_devices_and_dtyp": 551, "gather": 552, "gather_nd": 553, "get_all_arrays_in_memori": 554, "get_item": 555, "get_num_dim": 556, "get_referrers_recurs": 557, "has_nan": 558, "inplace_arrays_support": 559, "inplace_decr": 560, "inplace_incr": 561, "inplace_upd": 562, "inplace_variables_support": 563, "is_arrai": 564, "is_ivy_arrai": 565, "is_ivy_contain": 566, "is_ivy_nested_arrai": 567, "is_native_arrai": 568, "isin": 569, "isscalar": 570, "items": 571, "match_kwarg": 572, "multiprocess": [573, 780], "num_arrays_in_memori": 574, "print_all_arrays_in_memori": 575, "scatter_flat": 576, "scatter_nd": 577, "set_array_mod": 578, "set_exception_trace_mod": 579, "set_inplace_mod": 580, "set_item": 581, "set_min_bas": 582, "set_min_denomin": 583, "set_nestable_mod": 584, "set_precise_mod": 585, "set_queue_timeout": 586, "set_shape_array_mod": 587, "set_show_func_wrapper_trace_mod": 588, "set_tmp_dir": 589, "shape": [590, 645, 749, 750, 751, 752, 838, 855], "size": [591, 855], "stable_divid": 592, "stable_pow": 593, "stride": 594, "supports_inplace_upd": 595, "to_ivy_shap": 596, "to_list": 597, "to_native_shap": 598, "to_numpi": 599, "to_scalar": 600, "try_else_non": 601, "unset_array_mod": 602, "unset_exception_trace_mod": 603, "unset_inplace_mod": 604, "unset_min_bas": 605, "unset_min_denomin": 606, "unset_nestable_mod": 607, "unset_precise_mod": 608, "unset_queue_timeout": 609, "unset_shape_array_mod": 610, "unset_show_func_wrapper_trace_mod": 611, "unset_tmp_dir": 612, "value_is_nan": 613, "vmap": 614, "adam_step": 615, "adam_upd": 616, "execute_with_gradi": [617, 839], "grad": 618, "gradient_descent_upd": 619, "jac": 620, "lamb_upd": 621, "lars_upd": 622, "optimizer_upd": 623, "stop_gradi": 624, "value_and_grad": 625, "control": [628, 855], "flow": [628, 855], "op": 628, "depend": [645, 749, 750, 751, 752], "output": [645, 749, 750, 751, 752], "conv": 649, "conv1d": 650, "conv1d_transpos": 651, "conv2d": 652, "conv2d_transpos": 653, "conv3d": 654, "conv3d_transpos": 655, "conv_general_dil": 656, "conv_general_transpos": 657, "depthwise_conv2d": 658, "dropout": 659, "lstm": 661, "lstm_updat": 662, "multi_head_attent": 663, "nm": 664, "roi_align": 665, "scaled_dot_product_attent": 666, "choleski": 667, "cross": 668, "det": 669, "diag": 670, "diagon": 671, "eigh": 673, "eigvalsh": 674, "inner": 675, "inv": 676, "matmul": 677, "matrix_norm": 678, "matrix_pow": 679, "matrix_rank": 680, "matrix_transpos": 681, "outer": 682, "pinv": 683, "qr": 684, "slogdet": 685, "solv": 686, "svd": 687, "svdval": 688, "tensordot": 689, "tensorsolv": 690, "vander": 692, "vecdot": 693, "vector_norm": 694, "vector_to_skew_symmetric_matrix": 695, "binary_cross_entropi": 696, "cross_entropi": 697, "sparse_cross_entropi": 698, "clip": 699, "concat": 700, "constant_pad": 701, "expand_dim": 702, "flip": 703, "permute_dim": 704, "repeat": 705, "reshap": 706, "roll": [707, 831], "squeez": 709, "stack": [710, 833], "swapax": 711, "tile": 712, "unstack": 713, "zero_pad": 714, "fomaml_step": 715, "maml_step": 716, "reptile_step": 717, "all_nested_indic": 718, "copy_nest": 719, "duplicate_array_index_chain": 720, "index_nest": 721, "insert_into_nest_at_index": 722, "insert_into_nest_at_indic": 723, "map": [724, 828], "map_nest_at_index": 725, "map_nest_at_indic": 726, "multi_index_nest": 727, "nested_ani": 728, "nested_argwher": 729, "nested_map": 730, "nested_multi_map": 731, "prune_empti": 732, "prune_nest_at_index": 733, "prune_nest_at_indic": 734, "set_nest_at_index": 735, "set_nest_at_indic": 736, "layer_norm": 737, "multinomi": 738, "randint": 739, "random_norm": 740, "random_uniform": 741, "seed": 742, "shuffl": 743, "argmax": 744, "argmin": 745, "argwher": 746, "nonzero": 747, "where": [748, 818, 834], "unique_al": 749, "unique_count": 750, "unique_invers": 751, "unique_valu": 752, "argsort": 753, "msort": 754, "searchsort": 755, "cumprod": 757, "cumsum": 758, "einsum": [759, 805, 806], "max": 760, "mean": 761, "min": 762, "prod": 763, "std": 764, "sum": 765, "var": 766, "assert": [771, 798, 833], "avail": 772, "global": [774, 846], "hypothesi": [775, 819, 842, 844], "struct": 782, "flag": 783, "sequenti": 797, "ast": 800, "sub": 802, "binari": [803, 819], "parser": 805, "path": 806, "except": [807, 833, 838], "profil": 810, "verbos": 811, "statu": 812, "ai": 812, "start": [812, 856], "document": 812, "contribut": [812, 813, 818, 843], "commun": 812, "citat": 812, "doc": [814, 826], "docker": [814, 819, 820, 826, 856], "conveni": [814, 826, 837], "script": [814, 826], "hub": 814, "local": [814, 820, 835], "without": [814, 842], "contributor": [815, 821, 878], "reward": 815, "badg": 815, "tier": 815, "error": [816, 833, 834], "handl": [816, 824, 830, 833, 838, 855], "help": [817, 820, 834], "resourc": 817, "open": 818, "task": 818, "fail": [818, 834, 844], "frontend": [818, 825, 841, 842, 854], "place": 818, "checklist": 818, "format": [818, 835, 869, 876], "extend": [818, 844, 847], "an": [818, 839], "issu": [818, 820, 835, 856], "github": [818, 819], "templat": 818, "fork": [819, 820], "pre": [819, 835], "commit": [819, 820, 828, 835], "pycharm": [819, 820, 835], "virtual": 819, "miniconda": 819, "venv": 819, "interpret": 819, "window": 819, "maco": 819, "ubuntu": 819, "detail": 819, "free": 819, "wsl": 819, "codespac": 819, "The": [819, 820, 826, 839, 841, 851, 855, 860], "list": 820, "manag": 820, "who": 820, "ask": [820, 834], "With": 820, "command": 820, "pull": [820, 828], "request": [820, 828], "small": 820, "often": 820, "interact": 820, "most": 820, "out": [820, 836, 838, 840], "id": [820, 823], "program": 821, "core": [821, 878], "rise": [821, 878], "deep": 822, "dive": 822, "termin": 823, "regener": 823, "failur": 823, "skip": 823, "integr": [824, 828, 835, 843, 844], "version": [825, 845, 855], "support": [825, 829, 838, 841, 855], "builder": 826, "being": 826, "option": 826, "index": 826, "rst": 826, "partial_conf": 826, "py": 826, "prebuild": 826, "sh": 826, "extens": 826, "custom_autosummari": 826, "hide": 826, "discussion_link": 826, "skippable_funct": 826, "ivy_data": 826, "instanc": [827, 841, 842, 851], "method": [827, 841, 842, 851, 852], "special": [827, 829, 841], "nestabl": [827, 836, 837, 838], "continu": [828, 835], "push": 828, "pr": 828, "trigger": 828, "A": [828, 847], "down": 828, "view": [828, 838, 840], "store": 828, "retriev": 828, "repositori": 828, "nitti": 828, "gritti": 828, "storag": 828, "space": 828, "unifyai": 828, "determin": 828, "coverag": 828, "workflow": 828, "multipl": 828, "runner": 828, "race": 828, "condit": 828, "period": 828, "manual": 828, "dispatch": 828, "ci": 828, "dashboard": 828, "promot": [829, 841], "precis": 829, "non": [829, 847], "argument": [829, 830, 836, 838, 840, 841], "other": [829, 830], "unsupport": 829, "attribut": [829, 846], "case": [829, 852], "bug": 829, "cast": [829, 841], "superset": [829, 847], "docstr": [831, 832], "func_wrapp": 833, "prune": 833, "handle_except": 833, "consist": [833, 844], "prerequir": 834, "common": [834, 835], "lint": [835, 843], "keyword": 836, "integ": 836, "primari": 837, "composit": 837, "mix": [837, 838, 844], "partial": [837, 838, 844], "order": 838, "wrapper": [838, 876, 877], "miscellan": 838, "overview": [839, 843], "usag": [839, 843, 847, 865], "signatur": 839, "design": [839, 845, 848], "our": 839, "polici": [839, 841], "specif": [839, 874, 875, 876], "consider": 839, "inplac": 840, "updat": 840, "copi": 840, "short": 841, "unus": 841, "rule": 841, "duplic": [841, 847], "alia": 842, "formatt": 843, "functionorderingformatt": 843, "work": [843, 860, 866], "own": 844, "strategi": 844, "ad": 844, "explicit": 844, "do": [844, 860], "effect": 844, "bonu": 844, "self": 844, "test_array_funct": 844, "re": [844, 861], "navig": 845, "categor": 845, "submodul": 845, "unpin": 845, "properti": 846, "getter": 846, "setter": 846, "set_": 846, "unset_": 846, "behaviour": 847, "what": [847, 876], "effici": 847, "maxim": 847, "block": 849, "monkei": 851, "patch": 851, "represent": 852, "recurs": 852, "built": 852, "ins": 852, "access": 852, "compartment": 852, "role": 854, "faq": 855, "maintain": 855, "deploy": 855, "auto": 855, "differenti": 855, "replica": 855, "parallel": 855, "altern": 855, "pip": 856, "folder": 856, "kei": 856, "question": 856, "glossari": 857, "motiv": 858, "explos": 859, "skeptic": 860, "complimentari": 860, "competit": 860, "infinit": 861, "shelf": 861, "life": 861, "One": 862, "liner": 862, "trace_graph": 863, "cach": 863, "sharp": [863, 864, 865], "bit": [863, 864, 865], "relat": 866, "infrastructur": [868, 876], "llvm": 868, "mlir": 868, "oneapi": 868, "exchang": [869, 876], "onnx": 869, "nnef": 869, "coreml": 869, "matlab": 870, "scipi": 870, "scikit": 870, "theano": 870, "panda": 870, "julia": 870, "apach": [870, 873], "spark": 870, "mllib": 870, "caff": 870, "chainer": 870, "mxnet": 870, "cntk": 870, "flux": 870, "dex": 870, "languag": 870, "tf": 871, "jaxpr": 871, "jit": 871, "fx": 871, "compani": [872, 876], "quansight": 872, "modular": 872, "octoml": 872, "multi": [873, 876], "vendor": [873, 874, 875, 876], "tvm": 873, "xla": 873, "gcc": 873, "tensorrt": 874, "cuda": 874, "icc": 875, "icx": 875, "nvcc": 875, "doe": 876, "eagerpi": 877, "kera": 877, "thinc": 877, "tensorli": 877, "neuropod": 877, "leaderboard": 878}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"astype": [[152, "astype"]], "triu_indices": [[147, "triu-indices"]], "promote_types_of_inputs": [[179, "promote-types-of-inputs"]], "one_hot": [[141, "one-hot"]], "zeros_like": [[149, "zeros-like"]], "promote_types": [[178, "promote-types"]], "set_default_dtype": [[182, "set-default-dtype"]], "as_native_dtype": [[151, "as-native-dtype"]], "is_uint_dtype": [[177, "is-uint-dtype"]], "finfo": [[165, "finfo"]], "is_complex_dtype": [[172, "is-complex-dtype"]], "default_float_dtype": [[160, "default-float-dtype"]], "default_dtype": [[159, "default-dtype"]], "meshgrid": [[139, "meshgrid"]], "dtype": [[163, "dtype"]], "check_float": [[156, "check-float"]], "as_ivy_dtype": [[150, "as-ivy-dtype"]], "broadcast_to": [[154, "broadcast-to"]], "function_unsupported_dtypes": [[167, "function-unsupported-dtypes"]], "infer_default_dtype": [[169, "infer-default-dtype"]], "tril": [[145, "tril"]], "is_float_dtype": [[173, "is-float-dtype"]], "is_bool_dtype": [[171, "is-bool-dtype"]], "set_default_complex_dtype": [[181, "set-default-complex-dtype"]], "ones_like": [[143, "ones-like"]], "zeros": [[148, "zeros"]], "function_supported_dtypes": [[166, "function-supported-dtypes"]], "iinfo": [[168, "iinfo"]], "can_cast": [[155, "can-cast"]], "broadcast_arrays": [[153, "broadcast-arrays"]], "to_dlpack": [[144, "to-dlpack"]], "Note": [[144, null], [133, null], [629, null], [629, null]], "triu": [[146, "triu"]], "is_native_dtype": [[176, "is-native-dtype"]], "closest_valid_dtype": [[157, "closest-valid-dtype"]], "set_default_float_dtype": [[183, "set-default-float-dtype"]], "ones": [[142, "ones"]], "dtype_bits": [[164, "dtype-bits"]], "invalid_dtype": [[170, "invalid-dtype"]], "default_complex_dtype": [[158, "default-complex-dtype"]], "default_int_dtype": [[161, "default-int-dtype"]], "native_array": [[140, "native-array"]], "result_type": [[180, "result-type"]], "logspace": [[138, "logspace"]], "default_uint_dtype": [[162, "default-uint-dtype"]], "is_int_dtype": [[175, "is-int-dtype"]], "is_hashable_dtype": [[174, "is-hashable-dtype"]], "Contributor Leaderboard": [[878, "contributor-leaderboard"]], "Top Contributors": [[878, "top-contributors"]], "Rising Contributors": [[878, "rising-contributors"]], "Core Contributors": [[878, "core-contributors"]], "Contributors": [[878, "contributors"]], "Vendor-Specific Compilers": [[875, "vendor-specific-compilers"], [876, "vendor-specific-compilers"]], "ICC": [[875, "id1"]], "ICX": [[875, "icx"]], "NVCC": [[875, "nvcc"]], "Wrapper Frameworks": [[877, "wrapper-frameworks"], [876, "wrapper-frameworks"]], "EagerPy eagerpy": [[877, "eagerpy-eagerpy"]], "Keras keras": [[877, "keras-keras"]], "Thinc thinc": [[877, "thinc-thinc"]], "TensorLy tensorly": [[877, "tensorly-tensorly"]], "NeuroPod": [[877, "id1"]], "What does Ivy Add?": [[876, "what-does-ivy-add"]], "API Standards": [[876, "api-standards"], [867, "api-standards"]], "Frameworks": [[876, "frameworks"], [870, "frameworks"]], "Graph Tracers": [[876, "graph-tracers"], [871, "graph-tracers"]], "Exchange Formats": [[876, "exchange-formats"], [869, "exchange-formats"]], "Compiler Infrastructure": [[876, "compiler-infrastructure"], [868, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[876, "multi-vendor-compiler-frameworks"], [873, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[876, "vendor-specific-apis"], [874, "vendor-specific-apis"]], "ML-Unifying Companies": [[876, "ml-unifying-companies"], [872, "ml-unifying-companies"]], "TensorRT tensorrt": [[874, "tensorrt-tensorrt"]], "CUDA cuda": [[874, "cuda-cuda"]], "Fix Failing Tests:": [[834, "fix-failing-tests"]], "Prerequirement:": [[834, "prerequirement"]], "Setting Up": [[834, "setting-up"], [819, "setting-up"]], "How to run tests": [[834, "how-to-run-tests"]], "Common Errors": [[834, "common-errors"]], "Where to ask for Help": [[834, "where-to-ask-for-help"]], "ivy.unify()": [[865, "ivy-unify"]], "Unify API": [[865, "unify-api"]], "Usage": [[865, "usage"]], "Sharp bits": [[865, "sharp-bits"], [864, "sharp-bits"], [863, "sharp-bits"]], "Examples": [[865, "examples"], [836, "examples"], [864, "examples"], [863, "examples"]], "ML Explosion": [[859, "ml-explosion"]], "Docstrings": [[832, "docstrings"]], "ONNX onnx": [[869, "onnx-onnx"]], "NNEF nnef": [[869, "nnef-nnef"]], "CoreML coreml": [[869, "coreml-coreml"]], "Building Blocks": [[849, "building-blocks"]], "Backend Functional APIs \u2705": [[849, "backend-functional-apis"]], "Ivy Functional API \u2705": [[849, "ivy-functional-api"]], "Backend Handler \u2705": [[849, "backend-handler"]], "Tracer \ud83d\udea7": [[849, "tracer"]], "Ivy as a Transpiler": [[854, "ivy-as-a-transpiler"], [31, "Ivy-as-a-Transpiler"], [32, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[854, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[854, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[854, "converting-network-models"]], "Motivation": [[858, "motivation"]], "Design": [[848, "design"]], "LLVM": [[868, "id1"]], "MLIR": [[868, "id2"]], "OneAPI": [[868, "id3"]], "Function Types": [[837, "function-types"]], "Primary Functions": [[837, "primary-functions"]], "Compositional Functions": [[837, "compositional-functions"]], "Mixed Functions": [[837, "mixed-functions"]], "Partial Mixed Functions": [[837, "partial-mixed-functions"]], "Standalone Functions": [[837, "standalone-functions"]], "Nestable Functions": [[837, "nestable-functions"], [836, "nestable-functions"], [827, "nestable-functions"]], "Convenience Functions": [[837, "convenience-functions"]], "Standardization": [[860, "standardization"]], "Skepticism": [[860, "skepticism"]], "Complimentary vs Competitive": [[860, "complimentary-vs-competitive"]], "Do Standards Work?": [[860, "do-standards-work"]], "The Array API Standard": [[860, "the-array-api-standard"]], "Docstring Examples": [[831, "docstring-examples"]], "ivy.tan": [[831, "ivy-tan"]], "ivy.roll": [[831, "ivy-roll"]], "ivy.add": [[831, "ivy-add"]], "Navigating the Code": [[845, "navigating-the-code"]], "Categorization": [[845, "categorization"]], "Submodule Design": [[845, "submodule-design"]], "Ivy API": [[845, "ivy-api"]], "Backend API": [[845, "backend-api"]], "Submodule Helper Functions": [[845, "submodule-helper-functions"]], "Version Unpinning": [[845, "version-unpinning"]], "Operating Modes": [[846, "operating-modes"]], "Global Parameter Properties": [[846, "global-parameter-properties"]], "Getter: ivy. attribute": [[846, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[846, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Ivy Frontend Tests": [[842, "ivy-frontend-tests"]], "Introduction": [[842, "introduction"], [841, "introduction"], [46, "Introduction"]], "Frontend Test Examples": [[842, "frontend-test-examples"]], "ivy.tan()": [[842, "ivy-tan"]], "ivy.full()": [[842, "ivy-full"]], "Testing Without Using Tests Values": [[842, "testing-without-using-tests-values"]], "Alias functions": [[842, "alias-functions"]], "Frontend Instance Method Tests": [[842, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[842, "frontend-instance-method-test-examples"]], "ivy.add()": [[842, "ivy-add"]], "Hypothesis Helpers": [[842, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[842, "frontend-framework-testing-configuration"]], "Array API Standard": [[867, "id1"]], "Table:": [[867, "table"]], "Related Work": [[866, "related-work"]], "Apache TVM": [[873, "apache-tvm"]], "XLA": [[873, "xla"]], "GCC": [[873, "gcc"]], "Function Arguments": [[836, "function-arguments"]], "Positional and Keyword Arguments": [[836, "positional-and-keyword-arguments"]], "Input Arrays": [[836, "input-arrays"]], "out Argument": [[836, "out-argument"]], "dtype and device arguments": [[836, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[836, "numbers-in-operator-functions"]], "Integer Sequences": [[836, "integer-sequences"]], "Devices": [[830, "devices"]], "Device Module": [[830, "device-module"]], "Arguments in other Functions": [[830, "arguments-in-other-functions"], [829, "arguments-in-other-functions"]], "Device handling": [[830, "device-handling"]], "Inplace Updates": [[840, "inplace-updates"]], "out argument": [[840, "out-argument"]], "copy argument": [[840, "copy-argument"]], "Views": [[840, "views"]], "ivy.transpile()": [[864, "ivy-transpile"]], "Transpiler API": [[864, "transpiler-api"]], "Using the transpiler": [[864, "using-the-transpiler"]], "Transpiling functions": [[864, "transpiling-functions"]], "Transpiling Libraries": [[864, "transpiling-libraries"]], "Transpiling Modules": [[864, "transpiling-modules"]], "Ivy Container": [[852, "ivy-container"]], "Construction": [[852, "construction"]], "Representation": [[852, "representation"]], "Recursive Methods": [[852, "recursive-methods"]], "Built-ins": [[852, "built-ins"]], "Access": [[852, "access"]], "Saving and Loading": [[852, "saving-and-loading"]], "Comparisons": [[852, "comparisons"]], "Customized Representations": [[852, "customized-representations"]], "Use Cases": [[852, "use-cases"]], "Compartmentalization": [[852, "compartmentalization"]], "Configuration": [[852, "configuration"]], "Data loading": [[852, "data-loading"]], "Network weights": [[852, "network-weights"]], "Function Wrapping": [[838, "function-wrapping"]], "Decorator order": [[838, "decorator-order"]], "Conversion Wrappers": [[838, "conversion-wrappers"]], "Inference Wrappers": [[838, "inference-wrappers"]], "Out Argument Support": [[838, "out-argument-support"]], "Nestable Support": [[838, "nestable-support"]], "Partial Mixed Function Support": [[838, "partial-mixed-function-support"]], "Shape Conversion": [[838, "shape-conversion"]], "View Handling": [[838, "view-handling"]], "Exception Handling": [[838, "exception-handling"], [833, "exception-handling"]], "Miscellaneous Wrappers": [[838, "miscellaneous-wrappers"]], "One liners": [[862, "one-liners"]], "Continuous Integration": [[828, "continuous-integration"], [835, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[828, "commit-push-pr-triggered-testing"]], "Ivy Tests": [[828, "ivy-tests"], [844, "ivy-tests"]], "Implementation": [[828, "implementation"]], "A Top-Down View": [[828, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[828, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[828, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[828, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[828, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[828, "determine-test-coverage-workflow"]], "Multiple Runners": [[828, "multiple-runners"]], "Race Condition": [[828, "race-condition"]], "Array API Tests": [[828, "array-api-tests"], [823, "array-api-tests"]], "Periodic Testing": [[828, "periodic-testing"]], "Manually Dispatched Workflows": [[828, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[828, "ci-pipeline"]], "Push": [[828, "push"]], "Pull Request": [[828, "pull-request"]], "Dashboard": [[828, "dashboard"]], "Quansight": [[872, "id1"]], "Modular": [[872, "id2"]], "OctoML": [[872, "id3"]], "Data Types": [[829, "data-types"]], "Data Type Module": [[829, "data-type-module"]], "Data Type Promotion": [[829, "data-type-promotion"]], "Precise Mode": [[829, "precise-mode"]], "Precise Promotion Table": [[829, "precise-promotion-table"]], "Non-Precise Promotion Table": [[829, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[829, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[829, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[829, "special-case"]], "Backend Data Type Bugs": [[829, "backend-data-type-bugs"]], "Data Type Casting Modes": [[829, "data-type-casting-modes"]], "Superset Data Type Support": [[829, "superset-data-type-support"]], "Ivy Exception Class": [[833, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[833, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[833, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[833, "handle-exceptions-decorator"]], "Consistency in Errors": [[833, "consistency-in-errors"]], "Assertion Function": [[833, "assertion-function"]], "Ivy Stateful API": [[853, "ivy-stateful-api"], [31, "Ivy-Stateful-API"], [22, "Ivy-Stateful-API"]], "Modules": [[853, "modules"]], "Initializers": [[853, "initializers"], [791, "module-ivy.stateful.initializers"]], "Optimizers": [[853, "optimizers"], [796, "module-ivy.stateful.optimizers"]], "ivy.trace_graph()": [[863, "ivy-trace-graph"]], "Tracer API": [[863, "tracer-api"]], "Using the tracer": [[863, "using-the-tracer"]], "Eager vs lazy Compilation": [[863, "eager-vs-lazy-compilation"]], "Array caching": [[863, "array-caching"]], "Generators": [[863, "generators"]], "Stateful": [[863, "stateful"]], "Get Started": [[856, "get-started"]], "Installing using pip": [[856, "installing-using-pip"]], "Docker": [[856, "docker"]], "Installing from source": [[856, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[856, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[856, "ivy-folder"]], "Setting Up the API key": [[856, "setting-up-the-api-key"]], "Issues and Questions": [[856, "issues-and-questions"]], "Testing Pipeline": [[844, "testing-pipeline"]], "Hypothesis": [[844, "id2"]], "Data Generation": [[844, "id3"]], "Writing your own strategy": [[844, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[844, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[844, "ivy-test-decorators"]], "Writing Ivy Tests": [[844, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[844, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[844, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[844, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[844, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[844, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[844, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[844, "self-consistent-and-explicit-testing"]], "test_array_function": [[844, "id5"]], "Running Ivy Tests": [[844, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[844, "re-running-failed-ivy-tests"]], "Ivy Frontends": [[841, "ivy-frontends"]], "The Frontend Basics": [[841, "the-frontend-basics"]], "Writing Frontend Functions": [[841, "writing-frontend-functions"]], "Short Frontend Implementations": [[841, "short-frontend-implementations"]], "Unused Arguments": [[841, "unused-arguments"]], "Supported Data Types and Devices": [[841, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[841, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[841, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[841, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[841, "frontends-duplicate-policy"]], "Formatting": [[835, "formatting"]], "Lint Checks": [[835, "lint-checks"], [835, "id2"]], "Setup Formatting Locally": [[835, "setup-formatting-locally"]], "Pre-commit": [[835, "pre-commit"]], "VS Code": [[835, "vs-code"]], "PyCharm": [[835, "pycharm"], [819, "pycharm"]], "Common Issues with Pre-Commit": [[835, "common-issues-with-pre-commit"]], "Lint Formatting": [[835, "lint-formatting"]], "Gradients": [[839, "gradients"], [635, "gradients"], [374, "gradients"], [59, "module-ivy.data_classes.array.gradients"], [82, "module-ivy.data_classes.container.gradients"]], "Overview": [[839, "overview"], [843, "overview"]], "Example Usage of the Gradient API": [[839, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[839, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[839, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[839, "custom-gradient-functions"]], "Design of the Gradient API": [[839, "design-of-the-gradient-api"]], "Our policy on gradients": [[839, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[839, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[839, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[839, "framework-specific-considerations"]], "MATLAB matlab": [[870, "matlab-matlab"]], "SciPy scipy": [[870, "scipy-scipy"]], "Torch torch": [[870, "torch-torch"]], "NumPy numpy": [[870, "numpy-numpy"]], "SciKit Learn scikit-learn": [[870, "scikit-learn-scikit-learn"]], "Theano theano": [[870, "theano-theano"]], "Pandas pandas": [[870, "pandas-pandas"]], "Julia julia": [[870, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[870, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[870, "caffe-caffe"]], "Chainer chainer": [[870, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[870, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[870, "mxnet-mxnet"]], "CNTK cntk": [[870, "cntk-cntk"]], "PyTorch pytorch": [[870, "pytorch-pytorch"]], "Flux flux": [[870, "flux-flux"]], "JAX jax": [[870, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[870, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[870, "dex-language-dex-language"]], "Ivy as a Framework": [[850, "ivy-as-a-framework"], [31, "Ivy-as-a-Framework"]], "tf.Graph": [[871, "tf-graph"]], "Jaxpr": [[871, "jaxpr"]], "torch.jit": [[871, "torch-jit"]], "torch.fx": [[871, "torch-fx"]], "Why Unify?": [[861, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[861, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[861, "infinite-shelf-life"]], "Ivy Array": [[851, "ivy-array"], [824, "ivy-array"]], "The Array Class": [[851, "the-array-class"]], "Unifying Operators": [[851, "unifying-operators"]], "API Monkey Patching": [[851, "api-monkey-patching"]], "Instance Methods": [[851, "instance-methods"]], "Superset Behaviour": [[847, "superset-behaviour"]], "Extending the Standard": [[847, "extending-the-standard"]], "What is the Superset?": [[847, "what-is-the-superset"]], "A Non-Duplicate Superset": [[847, "a-non-duplicate-superset"]], "What is not the Superset?": [[847, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[847, "balancing-generalization-with-efficiency"]], "More Examples": [[847, "more-examples"]], "Maximizing Usage of Native Functionality": [[847, "maximizing-usage-of-native-functionality"]], "Glossary": [[857, "glossary"]], "FAQ": [[855, "faq"]], "Maintaining Backend Versions": [[855, "maintaining-backend-versions"]], "Dynamic Sizes": [[855, "dynamic-sizes"]], "Type and Shape Checking": [[855, "type-and-shape-checking"]], "GPU handling": [[855, "gpu-handling"]], "Model Deployment": [[855, "model-deployment"]], "Dynamic Control Flow": [[855, "dynamic-control-flow"]], "Auto-Differentiation": [[855, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[855, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[855, "support-for-functions"]], "Alternative Data Structures": [[855, "alternative-data-structures"]], "Custom Operations": [[855, "custom-operations"]], "The Pipeline": [[855, "the-pipeline"]], "State": [[855, "state"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[843, "ivy-lint-ivy-s-custom-code-formatters"]], "Existing Formatters": [[843, "existing-formatters"]], "FunctionOrderingFormatter": [[843, "functionorderingformatter"]], "How the Formatter Works:": [[843, "how-the-formatter-works"]], "Integration and Usage": [[843, "integration-and-usage"]], "Contribution": [[843, "contribution"]], "Round Up": [[843, "round-up"], [24, "Round-Up"], [27, "Round-Up"], [34, "Round-Up"], [37, "Round-Up"], [38, "Round-Up"], [33, "Round-Up"], [28, "Round-Up"], [16, "Round-Up"], [18, "Round-Up"], [35, "Round-Up"], [26, "Round-Up"], [36, "Round-Up"], [32, "Round-Up"], [45, "Round-Up"], [25, "Round-Up"], [22, "Round-Up"], [23, "Round-Up"]], "Nested array": [[105, "nested-array"]], "hardswish": [[111, "hardswish"]], "frombuffer": [[134, "frombuffer"]], "Sorting": [[92, "module-ivy.data_classes.container.sorting"], [646, "sorting"], [385, "sorting"], [69, "module-ivy.data_classes.array.sorting"]], "try_except": [[124, "try-except"]], "softplus": [[118, "softplus"]], "asarray": [[128, "asarray"]], "Array": [[102, "array"]], "gelu": [[110, "gelu"]], "mish": [[114, "mish"]], "log_softmax": [[113, "log-softmax"]], "Functions": [[109, "functions"]], "Container": [[103, "container"]], "softmax": [[117, "softmax"]], "empty_like": [[131, "empty-like"]], "Tt tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "arange": [[126, "arange"]], "Wrapping": [[95, "module-ivy.data_classes.container.wrapping"], [72, "module-ivy.data_classes.array.wrapping"]], "sigmoid": [[116, "sigmoid"]], "Base": [[106, "module-ivy.data_classes.nested_array.base"], [96, "module-ivy.data_classes.factorized_tensor.base"], [74, "module-ivy.data_classes.container.base"]], "for_loop": [[122, "for-loop"]], "eye": [[132, "eye"]], "linspace": [[137, "linspace"]], "relu": [[115, "relu"]], "if_else": [[123, "if-else"]], "Tucker tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "softsign": [[119, "softsign"]], "empty": [[130, "empty"]], "cmp_is": [[120, "cmp-is"]], "Parafac2 tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "copy_array": [[129, "copy-array"]], "Statistical": [[93, "module-ivy.data_classes.container.statistical"], [647, "statistical"], [387, "statistical"], [70, "module-ivy.data_classes.array.statistical"]], "Elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"], [632, "elementwise"], [372, "elementwise"], [79, "module-ivy.data_classes.container.elementwise"], [56, "module-ivy.data_classes.array.elementwise"]], "cmp_isnot": [[121, "cmp-isnot"]], "Tr tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Utility": [[94, "module-ivy.data_classes.container.utility"], [648, "utility"], [388, "utility"], [71, "module-ivy.data_classes.array.utility"]], "array": [[127, "array"]], "while_loop": [[125, "while-loop"]], "Factorized tensor": [[104, "factorized-tensor"]], "leaky_relu": [[112, "leaky-relu"]], "from_dlpack": [[133, "from-dlpack"]], "full_like": [[136, "full-like"]], "Data classes": [[108, "data-classes"]], "Cp tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "full": [[135, "full"]], "random_uniform": [[741, "random-uniform"]], "searchsorted": [[755, "searchsorted"]], "shuffle": [[743, "shuffle"]], "sort": [[756, "sort"]], "save": [[770, "save"]], "max": [[760, "max"]], "nonzero": [[747, "nonzero"]], "Multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "min": [[762, "min"]], "var": [[766, "var"]], "Hypothesis helpers": [[775, "hypothesis-helpers"]], "mean": [[761, "mean"]], "Assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"], [798, "module-ivy.utils.assertions"]], "seed": [[742, "seed"]], "argmin": [[745, "argmin"]], "prod": [[763, "prod"]], "unique_values": [[752, "unique-values"]], "Data-dependent output shape": [[752, null], [749, null], [751, null], [750, null], [645, null], [645, null], [645, null], [645, null]], "argmax": [[744, "argmax"]], "Pipeline helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "where": [[748, "where"]], "cumsum": [[758, "cumsum"]], "Available frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "random_normal": [[740, "random-normal"]], "Dtype helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "cumprod": [[757, "cumprod"]], "unique_all": [[749, "unique-all"]], "Number helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "all": [[767, "all"]], "any": [[768, "any"]], "set_nest_at_indices": [[736, "set-nest-at-indices"]], "msort": [[754, "msort"]], "unique_inverse": [[751, "unique-inverse"]], "einsum": [[759, "einsum"]], "multinomial": [[738, "multinomial"]], "argwhere": [[746, "argwhere"]], "argsort": [[753, "argsort"]], "std": [[764, "std"]], "randint": [[739, "randint"]], "load": [[769, "load"]], "Array helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "unique_counts": [[750, "unique-counts"]], "layer_norm": [[737, "layer-norm"]], "Function testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "General helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "sum": [[765, "sum"]], "Logging": [[809, "module-ivy.utils.logging"]], "Profiler": [[810, "module-ivy.utils.profiler"]], "Contributing": [[813, "contributing"], [812, "contributing"]], "Building the Docs Pipeline": [[826, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[826, "how-the-doc-builder-is-being-run"]], "The convenience script": [[826, "the-convenience-script"]], "Options": [[826, "options"]], "The Docker image": [[826, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[826, "how-ivy-s-docs-is-structured"]], "index.rst": [[826, "index-rst"]], "partial_conf.py": [[826, "partial-conf-py"]], "prebuild.sh": [[826, "prebuild-sh"]], "Custom Extensions": [[826, "custom-extensions"]], "custom_autosummary": [[826, "custom-autosummary"]], ":hide-table:": [[826, "hide-table"]], "discussion_linker": [[826, "discussion-linker"]], "skippable_function": [[826, "skippable-function"]], "ivy_data": [[826, "ivy-data"]], "Ast helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "Handler": [[801, "module-ivy.utils.backend.handler"]], "Helpful Resources": [[817, "helpful-resources"]], "Error Handling": [[816, "error-handling"]], "Forking and cloning the repo": [[819, "forking-and-cloning-the-repo"]], "Pre-Commit": [[819, "pre-commit"]], "Virtual environments - No Docker": [[819, "virtual-environments-no-docker"]], "Using miniconda": [[819, "using-miniconda"]], "Using venv": [[819, "using-venv"]], "Docker Interpreter with PyCharm": [[819, "docker-interpreter-with-pycharm"]], "Windows": [[819, "windows"], [819, "id6"]], "MacOS": [[819, "macos"]], "Ubuntu": [[819, "ubuntu"], [819, "id8"]], "Setting Up Testing in PyCharm": [[819, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[819, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[819, "setting-up-for-free"]], "WSL": [[819, "wsl"]], "GitHub Codespaces": [[819, "github-codespaces"]], "The Binaries": [[819, "the-binaries"]], "Verbosity": [[811, "module-ivy.utils.verbosity"]], "Backend": [[799, "backend"]], "Contributor Program": [[821, "contributor-program"]], "Contributor": [[821, "contributor"]], "Core Contributor": [[821, "core-contributor"]], "Rising Contributor": [[821, "rising-contributor"]], "Top Contributor": [[821, "top-contributor"]], "Open Tasks": [[818, "open-tasks"]], "Fixing Failing Tests": [[818, "fixing-failing-tests"]], "How to Contribute": [[818, "how-to-contribute"]], "Frontend APIs": [[818, "frontend-apis"]], "Where to place a frontend function": [[818, "where-to-place-a-frontend-function"]], "Frontend checklist": [[818, "frontend-checklist"]], "Function Formatting": [[818, "function-formatting"]], "Formatting checklist": [[818, "formatting-checklist"]], "Ivy Experimental API": [[818, "ivy-experimental-api"]], "Extending the Ivy API": [[818, "extending-the-ivy-api"]], "Where to place a backend function": [[818, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[818, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "Containers": [[827, "containers"]], "Container Instance Methods": [[827, "container-instance-methods"]], "API Instance Methods": [[827, "api-instance-methods"]], "API Special Methods": [[827, "api-special-methods"]], "Norms": [[795, "module-ivy.stateful.norms"], [642, "norms"], [381, "norms"], [65, "module-ivy.data_classes.array.norms"], [88, "module-ivy.data_classes.container.norms"]], "The Basics": [[820, "the-basics"]], "Getting Help": [[820, "getting-help"]], "ToDo List Issues": [[820, "todo-list-issues"]], "Managing Your Fork": [[820, "managing-your-fork"]], "Who To Ask": [[820, "who-to-ask"]], "With Command Line:": [[820, "with-command-line"]], "With Browser:": [[820, "with-browser"]], "Pull Requests": [[820, "pull-requests"]], "Small Commits Often": [[820, "small-commits-often"]], "Interactive Ivy Docker Container": [[820, "interactive-ivy-docker-container"]], "Running Tests Locally": [[820, "running-tests-locally"]], "With Docker": [[820, "with-docker"]], "Getting the most out of IDE": [[820, "getting-the-most-out-of-ide"]], "with PyCharm": [[820, "with-pycharm"]], "Utils": [[786, "utils"]], "Running the Tests": [[823, "running-the-tests"]], "Using Terminal": [[823, "using-terminal"]], "Using the IDE": [[823, "using-the-ide"]], "Regenerating Test Failures": [[823, "regenerating-test-failures"]], "Test Skipping": [[823, "test-skipping"]], "Layers": [[792, "module-ivy.stateful.layers"], [636, "layers"], [375, "layers"], [61, "module-ivy.data_classes.array.layers"], [84, "module-ivy.data_classes.container.layers"]], "Sub backend handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "Framework classes": [[785, "framework-classes"]], "Helpers": [[790, "module-ivy.stateful.helpers"]], "Building the Docs": [[814, "building-the-docs"]], "Building the Docs using Docker": [[814, "building-the-docs-using-docker"]], "Using convenience script": [[814, "using-convenience-script"]], "Using existing image on Docker Hub": [[814, "using-existing-image-on-docker-hub"]], "Building the image locally": [[814, "building-the-image-locally"]], "Building the Docs without Docker": [[814, "building-the-docs-without-docker"]], "Einsum parser": [[805, "module-ivy.utils.einsum_parser"]], "Binaries": [[803, "module-ivy.utils.binaries"]], "Status": [[812, "status"]], "Unified AI": [[812, "unified-ai"]], "Getting started": [[812, "getting-started"]], "Installing ivy": [[812, "installing-ivy"]], "Using Ivy": [[812, "using-ivy"]], "Documentation": [[812, "documentation"]], "Community": [[812, "community"]], "Citation": [[812, "citation"]], "Deep Dive": [[822, "deep-dive"]], "Activations": [[788, "module-ivy.stateful.activations"], [626, "activations"], [367, "activations"], [73, "module-ivy.data_classes.container.activations"], [51, "module-ivy.data_classes.array.activations"]], "Parameter": [[788, "parameter"], [788, "id1"], [584, "parameter"], [587, "parameter"], [588, "parameter"], [579, "parameter"], [578, "parameter"], [585, "parameter"], [634, "parameter"], [634, "id1"], [634, "id2"], [634, "id3"], [634, "id4"], [634, "id5"], [631, "parameter"], [210, "parameter"]], "Converters": [[789, "module-ivy.stateful.converters"]], "Einsum path helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "Sequential": [[797, "module-ivy.stateful.sequential"]], "Dynamic import": [[804, "module-ivy.utils.dynamic_import"]], "Contributor Rewards": [[815, "contributor-rewards"]], "Badges": [[815, "badges"]], "Badge Tiers": [[815, "badge-tiers"]], "Losses": [[793, "module-ivy.stateful.losses"], [638, "losses"], [377, "losses"], [86, "module-ivy.data_classes.container.losses"], [63, "module-ivy.data_classes.array.losses"]], "Module": [[794, "module-ivy.stateful.module"]], "Inspection": [[808, "module-ivy.utils.inspection"]], "Testing helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Arrays": [[824, "arrays"]], "Native Array": [[824, "native-array"]], "Array Handling": [[824, "array-handling"]], "Integrating custom classes with Ivy": [[824, "integrating-custom-classes-with-ivy"]], "Exceptions": [[807, "module-ivy.utils.exceptions"]], "Test parameter flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Testing": [[787, "testing"], [45, "Testing"]], "Backend Setting": [[825, "backend-setting"]], "Dynamic Backend Setting": [[825, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[825, "backend-and-frontend-version-support"]], "nested_argwhere": [[729, "nested-argwhere"]], "vecdot": [[693, "vecdot"]], "multi_index_nest": [[727, "multi-index-nest"]], "roll": [[707, "roll"]], "map_nest_at_index": [[725, "map-nest-at-index"]], "stack": [[710, "stack"]], "permute_dims": [[704, "permute-dims"]], "zero_pad": [[714, "zero-pad"]], "unstack": [[713, "unstack"]], "clip": [[699, "clip"]], "sparse_cross_entropy": [[698, "sparse-cross-entropy"]], "concat": [[700, "concat"]], "constant_pad": [[701, "constant-pad"]], "flip": [[703, "flip"]], "reshape": [[706, "reshape"]], "vector_to_skew_symmetric_matrix": [[695, "vector-to-skew-symmetric-matrix"]], "duplicate_array_index_chains": [[720, "duplicate-array-index-chains"]], "cross_entropy": [[697, "cross-entropy"]], "nested_any": [[728, "nested-any"]], "nested_multi_map": [[731, "nested-multi-map"]], "set_nest_at_index": [[735, "set-nest-at-index"]], "vander": [[692, "vander"]], "tile": [[712, "tile"]], "tensorsolve": [[690, "tensorsolve"]], "trace": [[691, "trace"]], "map": [[724, "map"]], "all_nested_indices": [[718, "all-nested-indices"]], "prune_nest_at_index": [[733, "prune-nest-at-index"]], "insert_into_nest_at_indices": [[723, "insert-into-nest-at-indices"]], "index_nest": [[721, "index-nest"]], "vector_norm": [[694, "vector-norm"]], "binary_cross_entropy": [[696, "binary-cross-entropy"]], "prune_nest_at_indices": [[734, "prune-nest-at-indices"]], "expand_dims": [[702, "expand-dims"]], "prune_empty": [[732, "prune-empty"]], "insert_into_nest_at_index": [[722, "insert-into-nest-at-index"]], "map_nest_at_indices": [[726, "map-nest-at-indices"]], "swapaxes": [[711, "swapaxes"]], "reptile_step": [[717, "reptile-step"]], "nested_map": [[730, "nested-map"]], "squeeze": [[709, "squeeze"]], "repeat": [[705, "repeat"]], "split": [[708, "split"]], "maml_step": [[716, "maml-step"]], "copy_nest": [[719, "copy-nest"]], "fomaml_step": [[715, "fomaml-step"]], "conv1d": [[650, "conv1d"]], "qr": [[684, "qr"]], "cholesky": [[667, "cholesky"]], "matrix_rank": [[680, "matrix-rank"]], "dropout": [[659, "dropout"]], "multi_head_attention": [[663, "multi-head-attention"]], "scaled_dot_product_attention": [[666, "scaled-dot-product-attention"]], "eigvalsh": [[674, "eigvalsh"]], "solve": [[686, "solve"]], "inner": [[675, "inner"]], "diagonal": [[671, "diagonal"]], "conv_general_dilated": [[656, "conv-general-dilated"]], "pinv": [[683, "pinv"]], "inv": [[676, "inv"]], "matrix_power": [[679, "matrix-power"]], "eigh": [[673, "eigh"]], "eig": [[672, "eig"], [429, "eig"]], "diag": [[670, "diag"]], "matmul": [[677, "matmul"]], "svd": [[687, "svd"]], "conv2d_transpose": [[653, "conv2d-transpose"]], "depthwise_conv2d": [[658, "depthwise-conv2d"]], "lstm": [[661, "lstm"]], "conv1d_transpose": [[651, "conv1d-transpose"]], "det": [[669, "det"]], "conv3d": [[654, "conv3d"]], "conv_general_transpose": [[657, "conv-general-transpose"]], "matrix_transpose": [[681, "matrix-transpose"]], "cross": [[668, "cross"]], "Searching": [[644, "searching"], [383, "searching"], [67, "module-ivy.data_classes.array.searching"], [90, "module-ivy.data_classes.container.searching"]], "matrix_norm": [[678, "matrix-norm"]], "conv2d": [[652, "conv2d"]], "roi_align": [[665, "roi-align"]], "conv3d_transpose": [[655, "conv3d-transpose"]], "conv": [[649, "conv"]], "Set": [[645, "set"], [384, "module-ivy.functional.ivy.experimental.set"], [68, "module-ivy.data_classes.array.set"], [91, "module-ivy.data_classes.container.set"]], "nms": [[664, "nms"]], "svdvals": [[688, "svdvals"]], "tensordot": [[689, "tensordot"]], "slogdet": [[685, "slogdet"]], "outer": [[682, "outer"]], "lstm_update": [[662, "lstm-update"]], "linear": [[660, "linear"]], "is_ivy_container": [[566, "is-ivy-container"]], "isin": [[569, "isin"]], "is_ivy_nested_array": [[567, "is-ivy-nested-array"]], "itemsize": [[571, "itemsize"]], "num_arrays_in_memory": [[574, "num-arrays-in-memory"]], "set_min_base": [[582, "set-min-base"]], "set_nestable_mode": [[584, "set-nestable-mode"]], "set_min_denominator": [[583, "set-min-denominator"]], "set_shape_array_mode": [[587, "set-shape-array-mode"]], "get_item": [[555, "get-item"]], "set_show_func_wrapper_trace_mode": [[588, "set-show-func-wrapper-trace-mode"]], "set_exception_trace_mode": [[579, "set-exception-trace-mode"]], "supports_inplace_updates": [[595, "supports-inplace-updates"]], "get_num_dims": [[556, "get-num-dims"]], "inplace_increment": [[561, "inplace-increment"]], "to_ivy_shape": [[596, "to-ivy-shape"]], "get_referrers_recursive": [[557, "get-referrers-recursive"]], "is_native_array": [[568, "is-native-array"]], "is_array": [[564, "is-array"]], "to_list": [[597, "to-list"]], "set_item": [[581, "set-item"]], "stable_divide": [[592, "stable-divide"]], "strides": [[594, "strides"]], "match_kwargs": [[572, "match-kwargs"]], "multiprocessing": [[573, "multiprocessing"]], "scatter_nd": [[577, "scatter-nd"]], "gather": [[552, "gather"]], "set_array_mode": [[578, "set-array-mode"]], "get_all_arrays_in_memory": [[554, "get-all-arrays-in-memory"]], "gather_nd": [[553, "gather-nd"]], "inplace_decrement": [[560, "inplace-decrement"]], "size": [[591, "size"]], "inplace_arrays_supported": [[559, "inplace-arrays-supported"]], "set_tmp_dir": [[589, "set-tmp-dir"]], "has_nans": [[558, "has-nans"]], "set_queue_timeout": [[586, "set-queue-timeout"]], "inplace_variables_supported": [[563, "inplace-variables-supported"]], "is_ivy_array": [[565, "is-ivy-array"]], "scatter_flat": [[576, "scatter-flat"]], "stable_pow": [[593, "stable-pow"]], "inplace_update": [[562, "inplace-update"]], "shape": [[590, "shape"]], "set_inplace_mode": [[580, "set-inplace-mode"]], "set_precise_mode": [[585, "set-precise-mode"]], "isscalar": [[570, "isscalar"]], "print_all_arrays_in_memory": [[575, "print-all-arrays-in-memory"]], "container_types": [[542, "container-types"]], "lexsort": [[515, "lexsort"]], "arg_info": [[535, "arg-info"]], "unravel_index": [[513, "unravel-index"]], "lp_normalize": [[507, "lp-normalize"]], "clip_matrix_norm": [[540, "clip-matrix-norm"]], "nanmedian": [[529, "nanmedian"]], "einops_reduce": [[546, "einops-reduce"]], "poisson": [[512, "poisson"]], "native_sparse_array_to_indices_values_and_shape": [[519, "native-sparse-array-to-indices-values-and-shape"]], "igamma": [[526, "igamma"]], "corrcoef": [[521, "corrcoef"]], "bernoulli": [[508, "bernoulli"]], "current_backend_str": [[543, "current-backend-str"]], "cache_fn": [[539, "cache-fn"]], "local_response_norm": [[506, "local-response-norm"]], "cummin": [[524, "cummin"]], "assert_supports_inplace": [[538, "assert-supports-inplace"]], "einops_rearrange": [[545, "einops-rearrange"]], "invert_permutation": [[514, "invert-permutation"]], "histogram": [[525, "histogram"]], "clip_vector_norm": [[541, "clip-vector-norm"]], "median": [[527, "median"]], "nanmean": [[528, "nanmean"]], "nanprod": [[531, "nanprod"]], "cov": [[522, "cov"]], "native_sparse_array": [[518, "native-sparse-array"]], "beta": [[509, "beta"]], "fourier_encode": [[549, "fourier-encode"]], "nanmin": [[530, "nanmin"]], "all_equal": [[534, "all-equal"]], "arg_names": [[536, "arg-names"]], "function_supported_devices_and_dtypes": [[550, "function-supported-devices-and-dtypes"]], "optional_get_element": [[533, "optional-get-element"]], "gamma": [[511, "gamma"]], "exists": [[548, "exists"]], "einops_repeat": [[547, "einops-repeat"]], "cummax": [[523, "cummax"]], "dirichlet": [[510, "dirichlet"]], "is_native_sparse_array": [[517, "is-native-sparse-array"]], "array_equal": [[537, "array-equal"]], "quantile": [[532, "quantile"]], "bincount": [[520, "bincount"]], "default": [[544, "default"]], "function_unsupported_devices_and_dtypes": [[551, "function-unsupported-devices-and-dtypes"]], "is_ivy_sparse_array": [[516, "is-ivy-sparse-array"]], "fill_diagonal": [[473, "fill-diagonal"]], "matricize": [[482, "matricize"]], "moveaxis": [[483, "moveaxis"]], "group_norm": [[502, "group-norm"]], "l1_normalize": [[504, "l1-normalize"]], "broadcast_shapes": [[465, "broadcast-shapes"]], "associative_scan": [[461, "associative-scan"]], "soft_thresholding": [[491, "soft-thresholding"]], "atleast_1d": [[462, "atleast-1d"]], "hstack": [[480, "hstack"]], "as_strided": [[460, "as-strided"]], "choose": [[467, "choose"]], "put_along_axis": [[489, "put-along-axis"]], "l2_normalize": [[505, "l2-normalize"]], "rot90": [[490, "rot90"]], "dstack": [[471, "dstack"]], "take": [[492, "take"]], "unflatten": [[496, "unflatten"]], "fliplr": [[475, "fliplr"]], "atleast_2d": [[463, "atleast-2d"]], "trim_zeros": [[495, "trim-zeros"]], "instance_norm": [[503, "instance-norm"]], "concat_from_sequence": [[469, "concat-from-sequence"]], "dsplit": [[470, "dsplit"]], "column_stack": [[468, "column-stack"]], "i0": [[481, "i0"]], "pad": [[484, "pad"]], "take_along_axis": [[493, "take-along-axis"]], "partial_tensor_to_vec": [[486, "partial-tensor-to-vec"]], "expand": [[472, "expand"]], "partial_vec_to_tensor": [[488, "partial-vec-to-tensor"]], "top_k": [[494, "top-k"]], "unfold": [[497, "unfold"]], "atleast_3d": [[464, "atleast-3d"]], "partial_fold": [[485, "partial-fold"]], "flipud": [[476, "flipud"]], "hsplit": [[479, "hsplit"]], "unique_consecutive": [[498, "unique-consecutive"]], "flatten": [[474, "flatten"]], "vstack": [[500, "vstack"]], "partial_unfold": [[487, "partial-unfold"]], "vsplit": [[499, "vsplit"]], "heaviside": [[478, "heaviside"]], "fold": [[477, "fold"]], "check_scalar": [[466, "check-scalar"]], "batch_norm": [[501, "batch-norm"]], "unset_nestable_mode": [[607, "unset-nestable-mode"]], "Random": [[643, "random"], [382, "random"], [89, "module-ivy.data_classes.container.random"], [66, "module-ivy.data_classes.array.random"]], "Constants": [[627, "module-ivy.functional.ivy.constants"], [368, "module-ivy.functional.ivy.experimental.constants"]], "Nest": [[641, "nest"], [380, "module-ivy.functional.ivy.experimental.nest"]], "gradient_descent_update": [[619, "gradient-descent-update"]], "unset_shape_array_mode": [[610, "unset-shape-array-mode"]], "try_else_none": [[601, "try-else-none"]], "unset_queue_timeout": [[609, "unset-queue-timeout"]], "value_is_nan": [[613, "value-is-nan"]], "execute_with_gradients": [[617, "execute-with-gradients"]], "unset_min_denominator": [[606, "unset-min-denominator"]], "Linear algebra": [[637, "linear-algebra"], [376, "linear-algebra"], [85, "module-ivy.data_classes.container.linear_algebra"], [62, "module-ivy.data_classes.array.linear_algebra"]], "Manipulation": [[639, "manipulation"], [378, "manipulation"], [64, "module-ivy.data_classes.array.manipulation"], [87, "module-ivy.data_classes.container.manipulation"]], "Meta": [[640, "meta"], [379, "module-ivy.functional.ivy.experimental.meta"]], "lamb_update": [[621, "lamb-update"]], "unset_show_func_wrapper_trace_mode": [[611, "unset-show-func-wrapper-trace-mode"]], "to_numpy": [[599, "to-numpy"]], "to_scalar": [[600, "to-scalar"]], "unset_exception_trace_mode": [[603, "unset-exception-trace-mode"]], "Control flow ops": [[628, "control-flow-ops"]], "lars_update": [[622, "lars-update"]], "Creation": [[629, "creation"], [369, "creation"], [76, "module-ivy.data_classes.container.creation"], [53, "module-ivy.data_classes.array.creation"]], "Experimental": [[633, "experimental"], [57, "module-ivy.data_classes.array.experimental"], [80, "module-ivy.data_classes.container.experimental"]], "General": [[634, "general"], [373, "general"], [81, "module-ivy.data_classes.container.general"], [58, "module-ivy.data_classes.array.general"]], "unset_min_base": [[605, "unset-min-base"]], "Data type": [[630, "data-type"], [370, "module-ivy.functional.ivy.experimental.data_type"], [77, "module-ivy.data_classes.container.data_type"], [54, "module-ivy.data_classes.array.data_type"]], "optimizer_update": [[623, "optimizer-update"]], "unset_precise_mode": [[608, "unset-precise-mode"]], "unset_array_mode": [[602, "unset-array-mode"]], "adam_step": [[615, "adam-step"]], "value_and_grad": [[625, "value-and-grad"]], "Device": [[631, "device"], [371, "module-ivy.functional.ivy.experimental.device"], [78, "module-ivy.data_classes.container.device"], [55, "module-ivy.data_classes.array.device"]], "vmap": [[614, "vmap"]], "adam_update": [[616, "adam-update"]], "grad": [[618, "grad"]], "jac": [[620, "jac"]], "to_native_shape": [[598, "to-native-shape"]], "stop_gradient": [[624, "stop-gradient"]], "unset_inplace_mode": [[604, "unset-inplace-mode"]], "unset_tmp_dir": [[612, "unset-tmp-dir"]], "rfftn": [[420, "rfftn"]], "multi_dot": [[443, "multi-dot"]], "higher_order_moment": [[433, "higher-order-moment"]], "rnn": [[421, "rnn"]], "kl_div": [[454, "kl-div"]], "tucker": [[451, "tucker"]], "multi_mode_dot": [[444, "multi-mode-dot"]], "nearest_interpolate": [[416, "nearest-interpolate"]], "make_svd_non_negative": [[440, "make-svd-non-negative"]], "hinge_embedding_loss": [[452, "hinge-embedding-loss"]], "smooth_l1_loss": [[458, "smooth-l1-loss"]], "pool": [[417, "pool"]], "solve_triangular": [[446, "solve-triangular"]], "max_pool3d": [[414, "max-pool3d"]], "adjoint": [[424, "adjoint"]], "dot": [[428, "dot"]], "khatri_rao": [[435, "khatri-rao"]], "sliding_window": [[422, "sliding-window"]], "general_inner_product": [[432, "general-inner-product"]], "max_unpool1d": [[415, "max-unpool1d"]], "reduce_window": [[418, "reduce-window"]], "diagflat": [[427, "diagflat"]], "truncated_svd": [[449, "truncated-svd"]], "eigh_tridiagonal": [[430, "eigh-tridiagonal"]], "lu_factor": [[438, "lu-factor"]], "soft_margin_loss": [[459, "soft-margin-loss"]], "stft": [[423, "stft"]], "tensor_train": [[448, "tensor-train"]], "kronecker": [[437, "kronecker"]], "initialize_tucker": [[434, "initialize-tucker"]], "huber_loss": [[453, "huber-loss"]], "tt_matrix_to_tensor": [[450, "tt-matrix-to-tensor"]], "lu_solve": [[439, "lu-solve"]], "matrix_exp": [[441, "matrix-exp"]], "rfft": [[419, "rfft"]], "eigvals": [[431, "eigvals"]], "log_poisson_loss": [[456, "log-poisson-loss"]], "cond": [[426, "cond"]], "mode_dot": [[442, "mode-dot"]], "l1_loss": [[455, "l1-loss"]], "kron": [[436, "kron"]], "partial_tucker": [[445, "partial-tucker"]], "svd_flip": [[447, "svd-flip"]], "poisson_nll_loss": [[457, "poisson-nll-loss"]], "batched_outer": [[425, "batched-outer"]], "diff": [[341, "diff"]], "copysign": [[339, "copysign"]], "amin": [[336, "amin"]], "erfc": [[343, "erfc"]], "modf": [[355, "modf"]], "vjp": [[366, "vjp"]], "trilu": [[329, "trilu"]], "nansum": [[356, "nansum"]], "nextafter": [[357, "nextafter"]], "zeta": [[362, "zeta"]], "reduce": [[363, "reduce"]], "xlogy": [[361, "xlogy"]], "ldexp": [[352, "ldexp"]], "sparsify_tensor": [[360, "sparsify-tensor"]], "count_nonzero": [[340, "count-nonzero"]], "allclose": [[334, "allclose"]], "random_cp": [[323, "random-cp"]], "isclose": [[351, "isclose"]], "fmax": [[347, "fmax"]], "unsorted_segment_min": [[331, "unsorted-segment-min"]], "digamma": [[342, "digamma"]], "float_power": [[346, "float-power"]], "lerp": [[353, "lerp"]], "sinc": [[359, "sinc"]], "hypot": [[350, "hypot"]], "random_tr": [[325, "random-tr"]], "erfinv": [[344, "erfinv"]], "random_tucker": [[327, "random-tucker"]], "frexp": [[348, "frexp"]], "polyval": [[322, "polyval"]], "jvp": [[365, "jvp"]], "unsorted_segment_mean": [[330, "unsorted-segment-mean"]], "vorbis_window": [[333, "vorbis-window"]], "signbit": [[358, "signbit"]], "fix": [[345, "fix"]], "binarizer": [[337, "binarizer"]], "tril_indices": [[328, "tril-indices"]], "unsorted_segment_sum": [[332, "unsorted-segment-sum"]], "lgamma": [[354, "lgamma"]], "amax": [[335, "amax"]], "gradient": [[349, "gradient"]], "random_parafac2": [[324, "random-parafac2"]], "bind_custom_gradient_function": [[364, "bind-custom-gradient-function"]], "random_tt": [[326, "random-tt"]], "conj": [[338, "conj"]], "max_pool1d": [[412, "max-pool1d"]], "dropout2d": [[400, "dropout2d"]], "embedding": [[402, "embedding"]], "interpolate": [[411, "interpolate"]], "area_interpolate": [[393, "area-interpolate"]], "max_pool2d": [[413, "max-pool2d"]], "adaptive_avg_pool1d": [[389, "adaptive-avg-pool1d"]], "avg_pool1d": [[394, "avg-pool1d"]], "fft2": [[404, "fft2"]], "adaptive_max_pool3d": [[392, "adaptive-max-pool3d"]], "ifft": [[408, "ifft"]], "interp": [[410, "interp"]], "idct": [[407, "idct"]], "generate_einsum_equation": [[405, "generate-einsum-equation"]], "adaptive_max_pool2d": [[391, "adaptive-max-pool2d"]], "dct": [[397, "dct"]], "get_interpolate_kernel": [[406, "get-interpolate-kernel"]], "fft": [[403, "fft"]], "avg_pool3d": [[396, "avg-pool3d"]], "dropout1d": [[399, "dropout1d"]], "dropout3d": [[401, "dropout3d"]], "Sparse array": [[386, "sparse-array"]], "adaptive_avg_pool2d": [[390, "adaptive-avg-pool2d"]], "dft": [[398, "dft"]], "avg_pool2d": [[395, "avg-pool2d"]], "ifftn": [[409, "ifftn"]], "softshrink": [[307, "softshrink"]], "rad2deg": [[279, "rad2deg"]], "threshold": [[310, "threshold"]], "logsigmoid": [[301, "logsigmoid"]], "kaiser_window": [[318, "kaiser-window"]], "scaled_tanh": [[304, "scaled-tanh"]], "sinh": [[286, "sinh"]], "real": [[280, "real"]], "sin": [[285, "sin"]], "hardtanh": [[299, "hardtanh"]], "prelu": [[302, "prelu"]], "remainder": [[282, "remainder"]], "sqrt": [[287, "sqrt"]], "trapz": [[292, "trapz"]], "trunc": [[293, "trunc"]], "hann_window": [[315, "hann-window"]], "blackman_window": [[312, "blackman-window"]], "tanh": [[291, "tanh"]], "silu": [[306, "silu"]], "positive": [[277, "positive"]], "trunc_divide": [[294, "trunc-divide"]], "ndindex": [[321, "ndindex"]], "tan": [[290, "tan"]], "hardshrink": [[297, "hardshrink"]], "stanh": [[308, "stanh"]], "hardsilu": [[298, "hardsilu"]], "hamming_window": [[314, "hamming-window"]], "square": [[288, "square"]], "not_equal": [[276, "not-equal"]], "pow": [[278, "pow"]], "elu": [[296, "elu"]], "ndenumerate": [[320, "ndenumerate"]], "selu": [[305, "selu"]], "subtract": [[289, "subtract"]], "tanhshrink": [[309, "tanhshrink"]], "round": [[283, "round"]], "sign": [[284, "sign"]], "mel_weight_matrix": [[319, "mel-weight-matrix"]], "reciprocal": [[281, "reciprocal"]], "kaiser_bessel_derived_window": [[317, "kaiser-bessel-derived-window"]], "relu6": [[303, "relu6"]], "indices": [[316, "indices"]], "eye_like": [[313, "eye-like"]], "logit": [[300, "logit"]], "thresholded_relu": [[311, "thresholded-relu"]], "celu": [[295, "celu"]], "bitwise_or": [[233, "bitwise-or"]], "fmin": [[248, "fmin"]], "isreal": [[257, "isreal"]], "logical_xor": [[270, "logical-xor"]], "bitwise_xor": [[235, "bitwise-xor"]], "isnan": [[256, "isnan"]], "bitwise_invert": [[231, "bitwise-invert"]], "exp": [[243, "exp"]], "exp2": [[244, "exp2"]], "greater_equal": [[252, "greater-equal"]], "isinf": [[255, "isinf"]], "bitwise_left_shift": [[232, "bitwise-left-shift"]], "logical_or": [[269, "logical-or"]], "erf": [[242, "erf"]], "imag": [[253, "imag"]], "maximum": [[271, "maximum"]], "floor_divide": [[247, "floor-divide"]], "log2": [[264, "log2"]], "expm1": [[245, "expm1"]], "greater": [[251, "greater"]], "equal": [[241, "equal"]], "log1p": [[263, "log1p"]], "bitwise_and": [[230, "bitwise-and"]], "logical_and": [[267, "logical-and"]], "multiply": [[273, "multiply"]], "lcm": [[258, "lcm"]], "deg2rad": [[239, "deg2rad"]], "less": [[259, "less"]], "log": [[261, "log"]], "logaddexp2": [[266, "logaddexp2"]], "negative": [[275, "negative"]], "cos": [[237, "cos"]], "divide": [[240, "divide"]], "minimum": [[272, "minimum"]], "floor": [[246, "floor"]], "logaddexp": [[265, "logaddexp"]], "cosh": [[238, "cosh"]], "less_equal": [[260, "less-equal"]], "fmod": [[249, "fmod"]], "log10": [[262, "log10"]], "ceil": [[236, "ceil"]], "isfinite": [[254, "isfinite"]], "logical_not": [[268, "logical-not"]], "bitwise_right_shift": [[234, "bitwise-right-shift"]], "gcd": [[250, "gcd"]], "nan_to_num": [[274, "nan-to-num"]], "unset_default_dtype": [[188, "unset-default-dtype"]], "function_supported_devices": [[199, "function-supported-devices"]], "acosh": [[222, "acosh"]], "atan2": [[228, "atan2"]], "num_ivy_arrays_on_dev": [[206, "num-ivy-arrays-on-dev"]], "atan": [[227, "atan"]], "as_native_dev": [[194, "as-native-dev"]], "angle": [[224, "angle"]], "asinh": [[226, "asinh"]], "atanh": [[229, "atanh"]], "num_cpu_cores": [[204, "num-cpu-cores"]], "to_device": [[214, "to-device"]], "unset_default_float_dtype": [[189, "unset-default-float-dtype"]], "dev_util": [[198, "dev-util"]], "clear_cached_mem_on_dev": [[195, "clear-cached-mem-on-dev"]], "dev": [[197, "dev"]], "add": [[223, "add"]], "type_promote_arrays": [[186, "type-promote-arrays"]], "tpu_is_available": [[216, "tpu-is-available"]], "gpu_is_available": [[202, "gpu-is-available"]], "unset_default_device": [[217, "unset-default-device"]], "function_unsupported_devices": [[200, "function-unsupported-devices"]], "split_func_call": [[213, "split-func-call"]], "set_soft_device_mode": [[210, "set-soft-device-mode"]], "split_factor": [[212, "split-factor"]], "acos": [[221, "acos"]], "valid_dtype": [[192, "valid-dtype"]], "set_split_factor": [[211, "set-split-factor"]], "used_mem_on_dev": [[219, "used-mem-on-dev"]], "asin": [[225, "asin"]], "total_mem_on_dev": [[215, "total-mem-on-dev"]], "default_device": [[196, "default-device"]], "set_default_int_dtype": [[184, "set-default-int-dtype"]], "as_ivy_dev": [[193, "as-ivy-dev"]], "set_default_uint_dtype": [[185, "set-default-uint-dtype"]], "handle_soft_device_variable": [[203, "handle-soft-device-variable"]], "print_all_ivy_arrays_on_dev": [[208, "print-all-ivy-arrays-on-dev"]], "unset_default_int_dtype": [[190, "unset-default-int-dtype"]], "percent_used_mem_on_dev": [[207, "percent-used-mem-on-dev"]], "set_default_device": [[209, "set-default-device"]], "abs": [[220, "abs"]], "unset_default_complex_dtype": [[187, "unset-default-complex-dtype"]], "unset_default_uint_dtype": [[191, "unset-default-uint-dtype"]], "get_all_ivy_arrays_on_dev": [[201, "get-all-ivy-arrays-on-dev"]], "unset_soft_device_mode": [[218, "unset-soft-device-mode"]], "num_gpus": [[205, "num-gpus"]], "Conversions": [[75, "module-ivy.data_classes.container.conversions"], [52, "module-ivy.data_classes.array.conversions"]], "HuggingFace Tensorflow DeiT": [[48, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[48, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Deepmind PerceiverIO on GPU": [[46, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[46, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[46, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[46, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[46, "Run-the-demo..."]], "\u2026with torch backend": [[46, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[46, "....with-tensorflow-backend"]], "\u2026with jax backend": [[46, "...with-jax-backend"]], "\u2026with numpy backend": [[46, "...with-numpy-backend"]], "Ivy as a Transpiler Introduction": [[49, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[49, "To-use-the-transpiler:"]], "Transpiler Interface": [[49, "Transpiler-Interface"]], "Telemetry": [[49, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[49, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[49, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[49, "3.-Transpile-Models-\ud83c\udf10"]], "Image": [[60, "module-ivy.data_classes.array.image"], [83, "module-ivy.data_classes.container.image"]], "End-to-End Training Pipeline in Ivy": [[47, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[47, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[47, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[47, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[47, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[47, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[47, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[47, "Plotting-the-training-metrics"]], "Save the trained Model": [[47, "Save-the-trained-Model"]], "Resnet 18": [[50, "Resnet-18"]], "Trace code": [[24, "Trace-code"]], "Tutorials And Examples": [[20, "tutorials-and-examples"]], "Learn the basics": [[20, "learn-the-basics"], [21, "learn-the-basics"]], "Guides": [[20, "guides"], [15, "guides"]], "Examples and Demos": [[20, "examples-and-demos"], [3, "examples-and-demos"]], "Write a model using Ivy": [[30, "Write-a-model-using-Ivy"]], "How to use decorators": [[27, "How-to-use-decorators"]], "Unify": [[27, "Unify"], [37, "Unify"], [38, "Unify"], [26, "Unify"], [36, "Unify"]], "Trace": [[27, "Trace"], [26, "Trace"]], "Transpile": [[27, "Transpile"], [37, "Transpile"], [38, "Transpile"], [26, "Transpile"], [36, "Transpile"]], "1.3: Dynamic vs Static": [[39, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[39, "Dynamic"]], "Static": [[39, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[39, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Basic Operations with Ivy": [[43, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[43, "Installs-\ud83d\udcbe"], [44, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[43, "Imports-\ud83d\udec3"], [44, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[43, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[43, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[43, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[43, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[43, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[43, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[43, "Set-Backend-Framework"]], "Define Model": [[43, "Define-Model"], [44, "Define-Model"]], "Create Model": [[43, "Create-Model"]], "Create Optimizer": [[43, "Create-Optimizer"]], "Input and Target": [[43, "Input-and-Target"]], "Loss Function": [[43, "Loss-Function"]], "Training Loop": [[43, "Training-Loop"]], "0.1: Compile": [[34, "0.1:-Compile"]], "2.0: Kornia": [[40, "2.0:-Kornia"]], "1.1: Framework Selection": [[37, "1.1:-Framework-Selection"]], "Compile": [[37, "Compile"], [38, "Compile"], [36, "Compile"]], "Transpile any model": [[29, "Transpile-any-model"]], "Round up": [[29, "Round-up"]], "1.2: As a Decorator": [[38, "1.2:-As-a-Decorator"]], "Compilation of a Basic Function": [[44, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[44, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[44, "Function-compilation-\ud83d\udee0"]], "Set backend": [[44, "Set-backend"]], "Sample input": [[44, "Sample-input"]], "Define function to compile": [[44, "Define-function-to-compile"]], "Compile the function": [[44, "Compile-the-function"]], "Check results": [[44, "Check-results"], [44, "id1"]], "Compiling simple neural network \ud83e\udde0": [[44, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[44, "Create-model"]], "Define input": [[44, "Define-input"]], "Compile network": [[44, "Compile-network"]], "3.1: Stable Diffusion": [[42, "3.1:-Stable-Diffusion"]], "0.0: Unify": [[33, "0.0:-Unify"]], "Transpile any library": [[28, "Transpile-any-library"]], "Developing a convolutional network using Ivy": [[19, "Developing-a-convolutional-network-using-Ivy"]], "Transpiling a PyTorch model to build on top": [[16, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Accelerating MMPreTrain models with JAX": [[11, "Accelerating-MMPreTrain-models-with-JAX"]], "Transpiling a Tensorflow model to build on top": [[18, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Accelerating XGBoost with JAX": [[14, "Accelerating-XGBoost-with-JAX"]], "Imports": [[14, "Imports"], [8, "Imports"], [12, "Imports"]], "Tests": [[14, "Tests"]], "Loading the Data": [[14, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[14, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[14, "JAX-backend"]], "Tensorflow backend": [[14, "Tensorflow-backend"]], "PyTorch backend": [[14, "PyTorch-backend"]], "More exhaustive example": [[14, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[14, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[14, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[14, "Comparison-of-Metrics"]], "ODSC Ivy Demo": [[31, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[31, "Ivy-Backend-Handler"], [22, "Ivy-Backend-Handler"]], "Data Structures": [[31, "Data-Structures"], [22, "Data-Structures"]], "Ivy Functional API": [[31, "Ivy-Functional-API"], [22, "Ivy-Functional-API"]], "Graph Tracer": [[31, "Graph-Tracer"]], "Any function": [[31, "Any-function"], [32, "Any-function"]], "Any library": [[31, "Any-library"], [32, "Any-library"]], "Any model": [[31, "Any-model"], [32, "Any-model"]], "0.2: Transpile": [[35, "0.2:-Transpile"]], "Using TensorFlow Models in your PyTorch Projects": [[6, "Using-TensorFlow-Models-in-your-PyTorch-Projects"]], "Framework Incompatibility": [[6, "Framework-Incompatibility"]], "Transpiling a TensorFlow model to PyTorch": [[6, "Transpiling-a-TensorFlow-model-to-PyTorch"]], "About the transpiled model": [[6, "About-the-transpiled-model"]], "Setting-up the source model": [[6, "Setting-up-the-source-model"]], "Converting the model from TensorFlow to PyTorch": [[6, "Converting-the-model-from-TensorFlow-to-PyTorch"]], "Comparing the results": [[6, "Comparing-the-results"], [7, "Comparing-the-results"]], "Fine-tuning the transpiled model": [[6, "Fine-tuning-the-transpiled-model"], [7, "Fine-tuning-the-transpiled-model"]], "Conclusion": [[6, "Conclusion"], [7, "Conclusion"]], "Credit Card Fraud Detection using Ivy Framework": [[0, "Credit-Card-Fraud-Detection-using-Ivy-Framework"]], "Library Installation": [[0, "Library-Installation"]], "Importing Libraries and Configuring the Environment": [[0, "Importing-Libraries-and-Configuring-the-Environment"]], "Loading the Dataset": [[0, "Loading-the-Dataset"]], "Previewing the Dataset": [[0, "Previewing-the-Dataset"]], "Inspecting the End of the Dataset": [[0, "Inspecting-the-End-of-the-Dataset"]], "Dataset Information": [[0, "Dataset-Information"]], "Identifying Missing Values": [[0, "Identifying-Missing-Values"]], "Transaction Class Distribution": [[0, "Transaction-Class-Distribution"]], "Importing Ivy": [[0, "Importing-Ivy"], [22, "Importing-Ivy"]], "Separating Data for Analysis": [[0, "Separating-Data-for-Analysis"]], "Statistical Measures of Legitimate Transactions": [[0, "Statistical-Measures-of-Legitimate-Transactions"]], "Statistical Measures of Fraudulent Transactions": [[0, "Statistical-Measures-of-Fraudulent-Transactions"]], "Comparing Transaction Metrics": [[0, "Comparing-Transaction-Metrics"]], "Under-Sampling for Balanced Dataset": [[0, "Under-Sampling-for-Balanced-Dataset"]], "Creating a Balanced Dataset": [[0, "Creating-a-Balanced-Dataset"]], "Splitting Data into Features and Targets": [[0, "Splitting-Data-into-Features-and-Targets"]], "Splitting Data into Training and Testing Sets": [[0, "Splitting-Data-into-Training-and-Testing-Sets"]], "Converting Data to Ivy Arrays": [[0, "Converting-Data-to-Ivy-Arrays"]], "Displaying Data Dimensions": [[0, "Displaying-Data-Dimensions"]], "Data Preparation Function": [[0, "Data-Preparation-Function"]], "Processing Training Data": [[0, "Processing-Training-Data"]], "Enabling Soft Device Mode in Ivy": [[0, "Enabling-Soft-Device-Mode-in-Ivy"]], "Configuring the XGBoost Classifier": [[0, "Configuring-the-XGBoost-Classifier"]], "Benchmarking XGBoost Model Training Time": [[0, "Benchmarking-XGBoost-Model-Training-Time"]], "Benchmarking Ivy-based XGBoost Model Training Time": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Training-Time"]], "Benchmarking XGBoost Model Prediction Time": [[0, "Benchmarking-XGBoost-Model-Prediction-Time"]], "Benchmarking Ivy-based XGBoost Model Prediction Performance": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Prediction-Performance"]], "Based on benchmark tests, the Ivy-based XGBoost implementation has demonstrated faster performance times compared to the standard XGBoost.": [[0, "Based-on-benchmark-tests,-the-Ivy-based-XGBoost-implementation-has-demonstrated-faster-performance-times-compared-to-the-standard-XGBoost."]], "Model Predictions and Classification Reports": [[0, "Model-Predictions-and-Classification-Reports"]], "Evaluation of Classifier Performance": [[0, "Evaluation-of-Classifier-Performance"]], "IvyClassifier Performance Metrics": [[0, "IvyClassifier-Performance-Metrics"]], "XGBClassifier Performance Metrics": [[0, "XGBClassifier-Performance-Metrics"]], "Visualization of Classification Reports": [[0, "Visualization-of-Classification-Reports"]], "Comparison of Ivy XGBoost and Standard XGBoost Classifiers": [[0, "Comparison-of-Ivy-XGBoost-and-Standard-XGBoost-Classifiers"]], "Ivy XGBoost Classifier:": [[0, "Ivy-XGBoost-Classifier:"]], "Standard XGBoost Classifier:": [[0, "Standard-XGBoost-Classifier:"]], "3.0: Perceiver": [[41, "3.0:-Perceiver"]], "Lazy vs Eager": [[26, "Lazy-vs-Eager"]], "1.0: Lazy vs Eager": [[36, "1.0:-Lazy-vs-Eager"]], "Image Segmentation with Ivy UNet": [[8, "Image-Segmentation-with-Ivy-UNet"]], "Data Preparation": [[8, "Data-Preparation"], [5, "Data-Preparation"], [12, "Data-Preparation"], [4, "Data-Preparation"]], "Custom Preprocessing": [[8, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[8, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [12, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[8, "Visualise-image"], [12, "Visualise-image"]], "Model Inference": [[8, "Model-Inference"]], "Initializing Native Torch UNet": [[8, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[8, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[8, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[8, "TensorFlow-backend"]], "JAX": [[8, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[8, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Quickstart": [[32, "Quickstart"]], "Get familiar with Ivy": [[32, "Get-familiar-with-Ivy"]], "Functional API": [[32, "Functional-API"]], "Stateful API": [[32, "Stateful-API"]], "Tracing code": [[32, "Tracing-code"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[45, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[45, "Table-of-Contents"]], "Defining the model": [[45, "Defining-the-model"]], "Model construction": [[45, "Model-construction"]], "Some helper functions": [[45, "Some-helper-functions"]], "Transpiling the model": [[45, "Transpiling-the-model"]], "PyTorch pipeline": [[45, "PyTorch-pipeline"]], "Dataset download": [[45, "Dataset-download"]], "DataLoader": [[45, "DataLoader"]], "Training": [[45, "Training"]], "Transpile code": [[25, "Transpile-code"]], "# Ivy Bert Demo": [[5, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[5, "Install-the-dependecies"]], "Import the modules": [[5, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[5, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[5, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[5, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[5, "Ivy-model-inference-with-torch"]], "How To Convert Models from PyTorch to PaddlePaddle": [[7, "How-To-Convert-Models-from-PyTorch-to-PaddlePaddle"]], "About the Model": [[7, "About-the-Model"]], "Transpiling the Model": [[7, "Transpiling-the-Model"]], "Write Ivy code": [[22, "Write-Ivy-code"]], "Contents": [[22, "Contents"]], "Installing Ivy": [[22, "Installing-Ivy"]], "TO REPLACE: Title": [[2, "TO-REPLACE:-Title"]], "Using Ivy ResNet": [[12, "Using-Ivy-ResNet"]], "Installation": [[12, "Installation"], [4, "Installation"]], "Prepare the set of labels": [[12, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[12, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[12, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[12, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [12, "id1"]], "Model Inference ResNet50": [[12, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[12, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Accelerating PyTorch models with JAX": [[13, "Accelerating-PyTorch-models-with-JAX"]], "Demos": [[1, "demos"]], "Creating a Notebook for Demo": [[1, "creating-a-notebook-for-demo"]], "Unify code": [[23, "Unify-code"]], "Transpiling a haiku model to build on top": [[17, "Transpiling-a-haiku-model-to-build-on-top"]], "Ivy AlexNet demo": [[4, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[4, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[4, "TensorFlow-inference"]], "JAX inference": [[4, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[4, "Appendix-(Ivy-code-for-AlexNet-implementation)"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[51, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[51, "module-ivy.data_classes.array.activations"], [52, "module-ivy.data_classes.array.conversions"], [53, "module-ivy.data_classes.array.creation"], [54, "module-ivy.data_classes.array.data_type"], [55, "module-ivy.data_classes.array.device"], [56, "module-ivy.data_classes.array.elementwise"], [57, "module-ivy.data_classes.array.experimental"], [57, "module-ivy.data_classes.array.experimental.activations"], [57, "module-ivy.data_classes.array.experimental.conversions"], [57, "module-ivy.data_classes.array.experimental.creation"], [57, "module-ivy.data_classes.array.experimental.data_type"], [57, "module-ivy.data_classes.array.experimental.device"], [57, "module-ivy.data_classes.array.experimental.elementwise"], [57, "module-ivy.data_classes.array.experimental.general"], [57, "module-ivy.data_classes.array.experimental.gradients"], [57, "module-ivy.data_classes.array.experimental.image"], [57, "module-ivy.data_classes.array.experimental.layers"], [57, "module-ivy.data_classes.array.experimental.linear_algebra"], [57, "module-ivy.data_classes.array.experimental.losses"], [57, "module-ivy.data_classes.array.experimental.manipulation"], [57, "module-ivy.data_classes.array.experimental.norms"], [57, "module-ivy.data_classes.array.experimental.random"], [57, "module-ivy.data_classes.array.experimental.searching"], [57, "module-ivy.data_classes.array.experimental.set"], [57, "module-ivy.data_classes.array.experimental.sorting"], [57, "module-ivy.data_classes.array.experimental.statistical"], [57, "module-ivy.data_classes.array.experimental.utility"], [58, "module-ivy.data_classes.array.general"], [59, "module-ivy.data_classes.array.gradients"], [60, "module-ivy.data_classes.array.image"], [61, "module-ivy.data_classes.array.layers"], [62, "module-ivy.data_classes.array.linear_algebra"], [63, "module-ivy.data_classes.array.losses"], [64, "module-ivy.data_classes.array.manipulation"], [65, "module-ivy.data_classes.array.norms"], [66, "module-ivy.data_classes.array.random"], [67, "module-ivy.data_classes.array.searching"], [68, "module-ivy.data_classes.array.set"], [69, "module-ivy.data_classes.array.sorting"], [70, "module-ivy.data_classes.array.statistical"], [71, "module-ivy.data_classes.array.utility"], [72, "module-ivy.data_classes.array.wrapping"], [73, "module-ivy.data_classes.container.activations"], [74, "module-ivy.data_classes.container.base"], [75, "module-ivy.data_classes.container.conversions"], [76, "module-ivy.data_classes.container.creation"], [77, "module-ivy.data_classes.container.data_type"], [78, "module-ivy.data_classes.container.device"], [79, "module-ivy.data_classes.container.elementwise"], [80, "module-ivy.data_classes.container.experimental"], [80, "module-ivy.data_classes.container.experimental.activations"], [80, "module-ivy.data_classes.container.experimental.conversions"], [80, "module-ivy.data_classes.container.experimental.creation"], [80, "module-ivy.data_classes.container.experimental.data_type"], [80, "module-ivy.data_classes.container.experimental.device"], [80, "module-ivy.data_classes.container.experimental.elementwise"], [80, "module-ivy.data_classes.container.experimental.general"], [80, "module-ivy.data_classes.container.experimental.gradients"], [80, "module-ivy.data_classes.container.experimental.image"], [80, "module-ivy.data_classes.container.experimental.layers"], [80, "module-ivy.data_classes.container.experimental.linear_algebra"], [80, "module-ivy.data_classes.container.experimental.losses"], [80, "module-ivy.data_classes.container.experimental.manipulation"], [80, "module-ivy.data_classes.container.experimental.norms"], [80, "module-ivy.data_classes.container.experimental.random"], [80, "module-ivy.data_classes.container.experimental.searching"], [80, "module-ivy.data_classes.container.experimental.set"], [80, "module-ivy.data_classes.container.experimental.sorting"], [80, "module-ivy.data_classes.container.experimental.statistical"], [80, "module-ivy.data_classes.container.experimental.utility"], [81, "module-ivy.data_classes.container.general"], [82, "module-ivy.data_classes.container.gradients"], [83, "module-ivy.data_classes.container.image"], [84, "module-ivy.data_classes.container.layers"], [85, "module-ivy.data_classes.container.linear_algebra"], [86, "module-ivy.data_classes.container.losses"], [87, "module-ivy.data_classes.container.manipulation"], [88, "module-ivy.data_classes.container.norms"], [89, "module-ivy.data_classes.container.random"], [90, "module-ivy.data_classes.container.searching"], [91, "module-ivy.data_classes.container.set"], [92, "module-ivy.data_classes.container.sorting"], [93, "module-ivy.data_classes.container.statistical"], [94, "module-ivy.data_classes.container.utility"], [95, "module-ivy.data_classes.container.wrapping"], [96, "module-ivy.data_classes.factorized_tensor.base"], [97, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [99, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [100, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [102, "module-ivy.data_classes.array.array"], [103, "module-ivy.data_classes.container.container"], [105, "module-ivy.data_classes.nested_array.nested_array"], [106, "module-ivy.data_classes.nested_array.base"], [107, "module-ivy.data_classes.nested_array.elementwise"], [367, "module-ivy.functional.ivy.experimental.activations"], [368, "module-ivy.functional.ivy.experimental.constants"], [369, "module-ivy.functional.ivy.experimental.creation"], [370, "module-ivy.functional.ivy.experimental.data_type"], [371, "module-ivy.functional.ivy.experimental.device"], [372, "module-ivy.functional.ivy.experimental.elementwise"], [373, "module-ivy.functional.ivy.experimental.general"], [374, "module-ivy.functional.ivy.experimental.gradients"], [375, "module-ivy.functional.ivy.experimental.layers"], [376, "module-ivy.functional.ivy.experimental.linear_algebra"], [377, "module-ivy.functional.ivy.experimental.losses"], [378, "module-ivy.functional.ivy.experimental.manipulation"], [379, "module-ivy.functional.ivy.experimental.meta"], [380, "module-ivy.functional.ivy.experimental.nest"], [381, "module-ivy.functional.ivy.experimental.norms"], [382, "module-ivy.functional.ivy.experimental.random"], [383, "module-ivy.functional.ivy.experimental.searching"], [384, "module-ivy.functional.ivy.experimental.set"], [385, "module-ivy.functional.ivy.experimental.sorting"], [386, "module-ivy.functional.ivy.experimental.sparse_array"], [387, "module-ivy.functional.ivy.experimental.statistical"], [388, "module-ivy.functional.ivy.experimental.utility"], [626, "module-ivy.functional.ivy.activations"], [627, "module-ivy.functional.ivy.constants"], [628, "module-ivy.functional.ivy.control_flow_ops"], [629, "module-ivy.functional.ivy.creation"], [630, "module-ivy.functional.ivy.data_type"], [631, "module-ivy.functional.ivy.device"], [632, "module-ivy.functional.ivy.elementwise"], [633, "module-ivy.functional.ivy.experimental"], [634, "module-ivy.functional.ivy.general"], [635, "module-ivy.functional.ivy.gradients"], [636, "module-ivy.functional.ivy.layers"], [637, "module-ivy.functional.ivy.linear_algebra"], [638, "module-ivy.functional.ivy.losses"], [639, "module-ivy.functional.ivy.manipulation"], [640, "module-ivy.functional.ivy.meta"], [641, "module-ivy.functional.ivy.nest"], [642, "module-ivy.functional.ivy.norms"], [643, "module-ivy.functional.ivy.random"], [644, "module-ivy.functional.ivy.searching"], [645, "module-ivy.functional.ivy.set"], [646, "module-ivy.functional.ivy.sorting"], [647, "module-ivy.functional.ivy.statistical"], [648, "module-ivy.functional.ivy.utility"], [771, "module-ivy_tests.test_ivy.helpers.assertions"], [772, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [773, "module-ivy_tests.test_ivy.helpers.function_testing"], [774, "module-ivy_tests.test_ivy.helpers.globals"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [780, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [782, "module-ivy_tests.test_ivy.helpers.structs"], [783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [784, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [788, "module-ivy.stateful.activations"], [789, "module-ivy.stateful.converters"], [790, "module-ivy.stateful.helpers"], [791, "module-ivy.stateful.initializers"], [792, "module-ivy.stateful.layers"], [793, "module-ivy.stateful.losses"], [794, "module-ivy.stateful.module"], [795, "module-ivy.stateful.norms"], [796, "module-ivy.stateful.optimizers"], [797, "module-ivy.stateful.sequential"], [798, "module-ivy.utils.assertions"], [799, "module-ivy.utils.backend"], [800, "module-ivy.utils.backend.ast_helpers"], [801, "module-ivy.utils.backend.handler"], [802, "module-ivy.utils.backend.sub_backend_handler"], [803, "module-ivy.utils.binaries"], [804, "module-ivy.utils.dynamic_import"], [805, "module-ivy.utils.einsum_parser"], [806, "module-ivy.utils.einsum_path_helpers"], [807, "module-ivy.utils.exceptions"], [808, "module-ivy.utils.inspection"], [809, "module-ivy.utils.logging"], [810, "module-ivy.utils.profiler"], [811, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[52, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[53, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[54, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[55, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[55, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[55, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[56, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[57, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[57, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[57, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[57, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[57, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[57, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[57, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[57, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[57, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[57, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[57, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[57, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[57, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[57, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[57, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[57, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[57, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[57, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[57, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[57, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[58, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[59, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[60, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[60, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[60, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[61, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[62, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[63, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[64, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[65, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[66, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[66, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[66, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[67, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[68, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[68, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[68, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[69, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[70, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[71, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[72, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[73, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[74, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[74, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[75, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[76, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[77, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[78, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[78, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[79, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[80, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[80, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[80, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[80, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[80, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[80, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[80, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[80, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[80, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[80, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[80, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[80, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[80, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[80, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[80, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[80, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[80, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[80, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[80, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[80, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[81, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[82, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[83, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[83, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[83, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[84, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[85, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[86, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[87, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[88, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[89, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[89, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[90, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[91, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[91, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[91, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[92, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[93, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[94, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[95, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[96, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[102, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[102, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[103, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[103, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[105, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[106, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[110, "ivy.gelu"], [626, "ivy.gelu"]], "gelu() (ivy.array method)": [[110, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[110, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[111, "ivy.hardswish"], [626, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[111, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[111, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[112, "ivy.leaky_relu"], [626, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[112, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[112, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[113, "ivy.log_softmax"], [626, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[113, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[113, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[114, "ivy.mish"], [626, "ivy.mish"]], "mish() (ivy.array method)": [[114, "ivy.Array.mish"]], "mish() (ivy.container method)": [[114, "ivy.Container.mish"]], "relu() (in module ivy)": [[115, "ivy.relu"], [626, "ivy.relu"]], "relu() (ivy.array method)": [[115, "ivy.Array.relu"]], "relu() (ivy.container method)": [[115, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[116, "ivy.sigmoid"], [626, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[116, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[116, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[117, "ivy.softmax"], [626, "ivy.softmax"]], "softmax() (ivy.array method)": [[117, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[117, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[118, "ivy.softplus"], [626, "ivy.softplus"]], "softplus() (ivy.array method)": [[118, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[118, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[119, "ivy.softsign"], [626, "ivy.softsign"]], "cmp_is() (in module ivy)": [[120, "ivy.cmp_is"], [628, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[121, "ivy.cmp_isnot"], [628, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[122, "ivy.for_loop"], [628, "ivy.for_loop"]], "if_else() (in module ivy)": [[123, "ivy.if_else"], [628, "ivy.if_else"]], "try_except() (in module ivy)": [[124, "ivy.try_except"], [628, "ivy.try_except"]], "while_loop() (in module ivy)": [[125, "ivy.while_loop"], [628, "ivy.while_loop"]], "arange() (in module ivy)": [[126, "ivy.arange"], [629, "ivy.arange"]], "array() (in module ivy)": [[127, "ivy.array"], [629, "ivy.array"]], "asarray() (in module ivy)": [[128, "ivy.asarray"], [629, "ivy.asarray"]], "asarray() (ivy.array method)": [[128, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[128, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[129, "ivy.copy_array"], [629, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[129, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[129, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[130, "ivy.empty"], [629, "ivy.empty"]], "empty_like() (in module ivy)": [[131, "ivy.empty_like"], [629, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[131, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[131, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[132, "ivy.eye"], [629, "ivy.eye"]], "from_dlpack() (in module ivy)": [[133, "ivy.from_dlpack"], [629, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[133, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[133, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[134, "ivy.frombuffer"], [629, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[134, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[135, "ivy.full"], [629, "ivy.full"]], "full_like() (in module ivy)": [[136, "ivy.full_like"], [629, "ivy.full_like"]], "full_like() (ivy.array method)": [[136, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[136, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[137, "ivy.linspace"], [629, "ivy.linspace"]], "linspace() (ivy.array method)": [[137, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[137, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[138, "ivy.logspace"], [629, "ivy.logspace"]], "logspace() (ivy.array method)": [[138, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[138, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[139, "ivy.meshgrid"], [629, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[139, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[139, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[140, "ivy.native_array"], [629, "ivy.native_array"]], "native_array() (ivy.array method)": [[140, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[140, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[141, "ivy.one_hot"], [629, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[141, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[141, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[142, "ivy.ones"], [629, "ivy.ones"]], "ones_like() (in module ivy)": [[143, "ivy.ones_like"], [629, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[143, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[143, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[144, "ivy.to_dlpack"], [629, "ivy.to_dlpack"]], "tril() (in module ivy)": [[145, "ivy.tril"], [629, "ivy.tril"]], "tril() (ivy.array method)": [[145, "ivy.Array.tril"]], "tril() (ivy.container method)": [[145, "ivy.Container.tril"]], "triu() (in module ivy)": [[146, "ivy.triu"], [629, "ivy.triu"]], "triu() (ivy.array method)": [[146, "ivy.Array.triu"]], "triu() (ivy.container method)": [[146, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[147, "ivy.triu_indices"], [629, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[147, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[148, "ivy.zeros"], [629, "ivy.zeros"]], "zeros_like() (in module ivy)": [[149, "ivy.zeros_like"], [629, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[149, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[149, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[150, "ivy.as_ivy_dtype"], [630, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[151, "ivy.as_native_dtype"], [630, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[152, "ivy.astype"], [630, "ivy.astype"]], "astype() (ivy.array method)": [[152, "ivy.Array.astype"]], "astype() (ivy.container method)": [[152, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[153, "ivy.broadcast_arrays"], [630, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[153, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[153, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[154, "ivy.broadcast_to"], [630, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[154, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[154, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[155, "ivy.can_cast"], [630, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[155, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[155, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[156, "ivy.check_float"], [630, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[157, "ivy.closest_valid_dtype"], [630, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[158, "ivy.default_complex_dtype"], [630, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[159, "ivy.default_dtype"], [630, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[160, "ivy.default_float_dtype"], [630, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[161, "ivy.default_int_dtype"], [630, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[162, "ivy.default_uint_dtype"], [630, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[163, "ivy.dtype"], [630, "ivy.dtype"]], "dtype() (ivy.array method)": [[163, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[163, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[164, "ivy.dtype_bits"], [630, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[165, "ivy.finfo"], [630, "ivy.finfo"]], "finfo() (ivy.array method)": [[165, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[165, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[166, "ivy.function_supported_dtypes"], [630, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[167, "ivy.function_unsupported_dtypes"], [630, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[168, "ivy.iinfo"], [630, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[168, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[168, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[169, "ivy.infer_default_dtype"], [630, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[170, "ivy.invalid_dtype"], [630, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[171, "ivy.is_bool_dtype"], [630, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[171, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[171, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[172, "ivy.is_complex_dtype"], [630, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[172, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[173, "ivy.is_float_dtype"], [630, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[173, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[173, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[174, "ivy.is_hashable_dtype"], [630, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[175, "ivy.is_int_dtype"], [630, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[175, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[175, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[176, "ivy.is_native_dtype"], [630, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[177, "ivy.is_uint_dtype"], [630, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[177, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[177, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[178, "ivy.promote_types"], [630, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[179, "ivy.promote_types_of_inputs"], [630, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[180, "ivy.result_type"], [630, "ivy.result_type"]], "result_type() (ivy.array method)": [[180, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[180, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[181, "ivy.set_default_complex_dtype"], [630, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[182, "ivy.set_default_dtype"], [630, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[183, "ivy.set_default_float_dtype"], [630, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[184, "ivy.set_default_int_dtype"], [630, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[185, "ivy.set_default_uint_dtype"], [630, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[186, "ivy.type_promote_arrays"], [630, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[187, "ivy.unset_default_complex_dtype"], [630, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[188, "ivy.unset_default_dtype"], [630, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[189, "ivy.unset_default_float_dtype"], [630, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[190, "ivy.unset_default_int_dtype"], [630, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[191, "ivy.unset_default_uint_dtype"], [630, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[192, "ivy.valid_dtype"], [630, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[193, "ivy.as_ivy_dev"], [631, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[194, "ivy.as_native_dev"], [631, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[195, "ivy.clear_cached_mem_on_dev"], [631, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[196, "ivy.default_device"], [631, "ivy.default_device"]], "dev() (in module ivy)": [[197, "ivy.dev"], [631, "ivy.dev"]], "dev() (ivy.array method)": [[197, "ivy.Array.dev"]], "dev() (ivy.container method)": [[197, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[198, "ivy.dev_util"], [631, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[199, "ivy.function_supported_devices"], [631, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[200, "ivy.function_unsupported_devices"], [631, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.get_all_ivy_arrays_on_dev"], [631, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[202, "ivy.gpu_is_available"], [631, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[203, "ivy.handle_soft_device_variable"], [631, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[204, "ivy.num_cpu_cores"], [631, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[205, "ivy.num_gpus"], [631, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[206, "ivy.num_ivy_arrays_on_dev"], [631, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[207, "ivy.percent_used_mem_on_dev"], [631, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[208, "ivy.print_all_ivy_arrays_on_dev"], [631, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[209, "ivy.set_default_device"], [631, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[210, "ivy.set_soft_device_mode"], [631, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[211, "ivy.set_split_factor"], [631, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[212, "ivy.split_factor"], [631, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[213, "ivy.split_func_call"], [631, "ivy.split_func_call"]], "to_device() (in module ivy)": [[214, "ivy.to_device"], [631, "ivy.to_device"]], "to_device() (ivy.array method)": [[214, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[214, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[215, "ivy.total_mem_on_dev"], [631, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[216, "ivy.tpu_is_available"], [631, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[217, "ivy.unset_default_device"], [631, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[218, "ivy.unset_soft_device_mode"], [631, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[219, "ivy.used_mem_on_dev"], [631, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[220, "ivy.abs"], [632, "ivy.abs"]], "abs() (ivy.array method)": [[220, "ivy.Array.abs"]], "abs() (ivy.container method)": [[220, "ivy.Container.abs"]], "acos() (in module ivy)": [[221, "ivy.acos"], [632, "ivy.acos"]], "acos() (ivy.array method)": [[221, "ivy.Array.acos"]], "acos() (ivy.container method)": [[221, "ivy.Container.acos"]], "acosh() (in module ivy)": [[222, "ivy.acosh"], [632, "ivy.acosh"]], "acosh() (ivy.array method)": [[222, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[222, "ivy.Container.acosh"]], "add() (in module ivy)": [[223, "ivy.add"], [632, "ivy.add"]], "add() (ivy.array method)": [[223, "ivy.Array.add"]], "add() (ivy.container method)": [[223, "ivy.Container.add"]], "angle() (in module ivy)": [[224, "ivy.angle"], [632, "ivy.angle"]], "angle() (ivy.array method)": [[224, "ivy.Array.angle"]], "angle() (ivy.container method)": [[224, "ivy.Container.angle"]], "asin() (in module ivy)": [[225, "ivy.asin"], [632, "ivy.asin"]], "asin() (ivy.array method)": [[225, "ivy.Array.asin"]], "asin() (ivy.container method)": [[225, "ivy.Container.asin"]], "asinh() (in module ivy)": [[226, "ivy.asinh"], [632, "ivy.asinh"]], "asinh() (ivy.array method)": [[226, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[226, "ivy.Container.asinh"]], "atan() (in module ivy)": [[227, "ivy.atan"], [632, "ivy.atan"]], "atan() (ivy.array method)": [[227, "ivy.Array.atan"]], "atan() (ivy.container method)": [[227, "ivy.Container.atan"]], "atan2() (in module ivy)": [[228, "ivy.atan2"], [632, "ivy.atan2"]], "atan2() (ivy.array method)": [[228, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[228, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[229, "ivy.atanh"], [632, "ivy.atanh"]], "atanh() (ivy.array method)": [[229, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[229, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[230, "ivy.bitwise_and"], [632, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[230, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[230, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[231, "ivy.bitwise_invert"], [632, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[231, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[231, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[232, "ivy.bitwise_left_shift"], [632, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[232, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[232, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[233, "ivy.bitwise_or"], [632, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[233, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[233, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[234, "ivy.bitwise_right_shift"], [632, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[234, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[234, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[235, "ivy.bitwise_xor"], [632, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[235, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[235, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[236, "ivy.ceil"], [632, "ivy.ceil"]], "ceil() (ivy.array method)": [[236, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[236, "ivy.Container.ceil"]], "cos() (in module ivy)": [[237, "ivy.cos"], [632, "ivy.cos"]], "cos() (ivy.array method)": [[237, "ivy.Array.cos"]], "cos() (ivy.container method)": [[237, "ivy.Container.cos"]], "cosh() (in module ivy)": [[238, "ivy.cosh"], [632, "ivy.cosh"]], "cosh() (ivy.array method)": [[238, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[238, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[239, "ivy.deg2rad"], [632, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[239, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[239, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[240, "ivy.divide"], [632, "ivy.divide"]], "divide() (ivy.array method)": [[240, "ivy.Array.divide"]], "divide() (ivy.container method)": [[240, "ivy.Container.divide"]], "equal() (in module ivy)": [[241, "ivy.equal"], [632, "ivy.equal"]], "equal() (ivy.array method)": [[241, "ivy.Array.equal"]], "equal() (ivy.container method)": [[241, "ivy.Container.equal"]], "erf() (in module ivy)": [[242, "ivy.erf"], [632, "ivy.erf"]], "erf() (ivy.array method)": [[242, "ivy.Array.erf"]], "erf() (ivy.container method)": [[242, "ivy.Container.erf"]], "exp() (in module ivy)": [[243, "ivy.exp"], [632, "ivy.exp"]], "exp() (ivy.array method)": [[243, "ivy.Array.exp"]], "exp() (ivy.container method)": [[243, "ivy.Container.exp"]], "exp2() (in module ivy)": [[244, "ivy.exp2"], [632, "ivy.exp2"]], "exp2() (ivy.array method)": [[244, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[244, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[245, "ivy.expm1"], [632, "ivy.expm1"]], "expm1() (ivy.array method)": [[245, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[245, "ivy.Container.expm1"]], "floor() (in module ivy)": [[246, "ivy.floor"], [632, "ivy.floor"]], "floor() (ivy.array method)": [[246, "ivy.Array.floor"]], "floor() (ivy.container method)": [[246, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[247, "ivy.floor_divide"], [632, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[247, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[247, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[248, "ivy.fmin"], [632, "ivy.fmin"]], "fmin() (ivy.array method)": [[248, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[248, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[249, "ivy.fmod"], [632, "ivy.fmod"]], "fmod() (ivy.array method)": [[249, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[249, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[250, "ivy.gcd"], [632, "ivy.gcd"]], "gcd() (ivy.array method)": [[250, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[250, "ivy.Container.gcd"]], "greater() (in module ivy)": [[251, "ivy.greater"], [632, "ivy.greater"]], "greater() (ivy.array method)": [[251, "ivy.Array.greater"]], "greater() (ivy.container method)": [[251, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[252, "ivy.greater_equal"], [632, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[252, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[252, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[253, "ivy.imag"], [632, "ivy.imag"]], "imag() (ivy.array method)": [[253, "ivy.Array.imag"]], "imag() (ivy.container method)": [[253, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[254, "ivy.isfinite"], [632, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[254, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[254, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[255, "ivy.isinf"], [632, "ivy.isinf"]], "isinf() (ivy.array method)": [[255, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[255, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[256, "ivy.isnan"], [632, "ivy.isnan"]], "isnan() (ivy.array method)": [[256, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[256, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[257, "ivy.isreal"], [632, "ivy.isreal"]], "isreal() (ivy.array method)": [[257, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[257, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[258, "ivy.lcm"], [632, "ivy.lcm"]], "lcm() (ivy.array method)": [[258, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[258, "ivy.Container.lcm"]], "less() (in module ivy)": [[259, "ivy.less"], [632, "ivy.less"]], "less() (ivy.array method)": [[259, "ivy.Array.less"]], "less() (ivy.container method)": [[259, "ivy.Container.less"]], "less_equal() (in module ivy)": [[260, "ivy.less_equal"], [632, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[260, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[260, "ivy.Container.less_equal"]], "log() (in module ivy)": [[261, "ivy.log"], [632, "ivy.log"]], "log() (ivy.array method)": [[261, "ivy.Array.log"]], "log() (ivy.container method)": [[261, "ivy.Container.log"]], "log10() (in module ivy)": [[262, "ivy.log10"], [632, "ivy.log10"]], "log10() (ivy.array method)": [[262, "ivy.Array.log10"]], "log10() (ivy.container method)": [[262, "ivy.Container.log10"]], "log1p() (in module ivy)": [[263, "ivy.log1p"], [632, "ivy.log1p"]], "log1p() (ivy.array method)": [[263, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[263, "ivy.Container.log1p"]], "log2() (in module ivy)": [[264, "ivy.log2"], [632, "ivy.log2"]], "log2() (ivy.array method)": [[264, "ivy.Array.log2"]], "log2() (ivy.container method)": [[264, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[265, "ivy.logaddexp"], [632, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[265, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[265, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[266, "ivy.logaddexp2"], [632, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[266, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[266, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[267, "ivy.logical_and"], [632, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[267, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[267, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[268, "ivy.logical_not"], [632, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[268, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[268, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[269, "ivy.logical_or"], [632, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[269, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[269, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[270, "ivy.logical_xor"], [632, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[270, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[270, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[271, "ivy.maximum"], [632, "ivy.maximum"]], "maximum() (ivy.array method)": [[271, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[271, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[272, "ivy.minimum"], [632, "ivy.minimum"]], "minimum() (ivy.array method)": [[272, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[272, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[273, "ivy.multiply"], [632, "ivy.multiply"]], "multiply() (ivy.array method)": [[273, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[273, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[274, "ivy.nan_to_num"], [632, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[274, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[274, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[275, "ivy.negative"], [632, "ivy.negative"]], "negative() (ivy.array method)": [[275, "ivy.Array.negative"]], "negative() (ivy.container method)": [[275, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[276, "ivy.not_equal"], [632, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[276, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[276, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[277, "ivy.positive"], [632, "ivy.positive"]], "positive() (ivy.array method)": [[277, "ivy.Array.positive"]], "positive() (ivy.container method)": [[277, "ivy.Container.positive"]], "pow() (in module ivy)": [[278, "ivy.pow"], [632, "ivy.pow"]], "pow() (ivy.array method)": [[278, "ivy.Array.pow"]], "pow() (ivy.container method)": [[278, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[279, "ivy.rad2deg"], [632, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[279, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[279, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[280, "ivy.real"], [632, "ivy.real"]], "real() (ivy.array method)": [[280, "ivy.Array.real"]], "real() (ivy.container method)": [[280, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[281, "ivy.reciprocal"], [632, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[281, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[281, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[282, "ivy.remainder"], [632, "ivy.remainder"]], "remainder() (ivy.array method)": [[282, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[282, "ivy.Container.remainder"]], "round() (in module ivy)": [[283, "ivy.round"], [632, "ivy.round"]], "round() (ivy.array method)": [[283, "ivy.Array.round"]], "round() (ivy.container method)": [[283, "ivy.Container.round"]], "sign() (in module ivy)": [[284, "ivy.sign"], [632, "ivy.sign"]], "sign() (ivy.array method)": [[284, "ivy.Array.sign"]], "sign() (ivy.container method)": [[284, "ivy.Container.sign"]], "sin() (in module ivy)": [[285, "ivy.sin"], [632, "ivy.sin"]], "sin() (ivy.array method)": [[285, "ivy.Array.sin"]], "sin() (ivy.container method)": [[285, "ivy.Container.sin"]], "sinh() (in module ivy)": [[286, "ivy.sinh"], [632, "ivy.sinh"]], "sinh() (ivy.array method)": [[286, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[286, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[287, "ivy.sqrt"], [632, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[287, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[287, "ivy.Container.sqrt"]], "square() (in module ivy)": [[288, "ivy.square"], [632, "ivy.square"]], "square() (ivy.array method)": [[288, "ivy.Array.square"]], "square() (ivy.container method)": [[288, "ivy.Container.square"]], "subtract() (in module ivy)": [[289, "ivy.subtract"], [632, "ivy.subtract"]], "subtract() (ivy.array method)": [[289, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[289, "ivy.Container.subtract"]], "tan() (in module ivy)": [[290, "ivy.tan"], [632, "ivy.tan"]], "tan() (ivy.array method)": [[290, "ivy.Array.tan"]], "tan() (ivy.container method)": [[290, "ivy.Container.tan"]], "tanh() (in module ivy)": [[291, "ivy.tanh"], [632, "ivy.tanh"]], "tanh() (ivy.array method)": [[291, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[291, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[292, "ivy.trapz"], [632, "ivy.trapz"]], "trapz() (ivy.array method)": [[292, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[292, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[293, "ivy.trunc"], [632, "ivy.trunc"]], "trunc() (ivy.array method)": [[293, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[293, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[294, "ivy.trunc_divide"], [632, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[294, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[294, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[295, "ivy.celu"], [367, "ivy.celu"]], "celu() (ivy.array method)": [[295, "ivy.Array.celu"]], "celu() (ivy.container method)": [[295, "ivy.Container.celu"]], "elu() (in module ivy)": [[296, "ivy.elu"], [367, "ivy.elu"]], "elu() (ivy.array method)": [[296, "ivy.Array.elu"]], "elu() (ivy.container method)": [[296, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[297, "ivy.hardshrink"], [367, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[297, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[297, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[298, "ivy.hardsilu"], [367, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[298, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[298, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[299, "ivy.hardtanh"], [367, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[299, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[299, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[300, "ivy.logit"], [367, "ivy.logit"]], "logit() (ivy.array method)": [[300, "ivy.Array.logit"]], "logit() (ivy.container method)": [[300, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[301, "ivy.logsigmoid"], [367, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[301, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[301, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[302, "ivy.prelu"], [367, "ivy.prelu"]], "prelu() (ivy.array method)": [[302, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[302, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[303, "ivy.relu6"], [367, "ivy.relu6"]], "relu6() (ivy.array method)": [[303, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[303, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[304, "ivy.scaled_tanh"], [367, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[304, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[304, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[305, "ivy.selu"], [367, "ivy.selu"]], "selu() (ivy.array method)": [[305, "ivy.Array.selu"]], "selu() (ivy.container method)": [[305, "ivy.Container.selu"]], "silu() (in module ivy)": [[306, "ivy.silu"], [367, "ivy.silu"]], "silu() (ivy.array method)": [[306, "ivy.Array.silu"]], "silu() (ivy.container method)": [[306, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[307, "ivy.softshrink"], [367, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[307, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[307, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[308, "ivy.stanh"], [367, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[309, "ivy.tanhshrink"], [367, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[309, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[309, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[310, "ivy.threshold"], [367, "ivy.threshold"]], "threshold() (ivy.array method)": [[310, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[310, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[311, "ivy.thresholded_relu"], [367, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[311, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[311, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[312, "ivy.blackman_window"], [369, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[312, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[312, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[313, "ivy.eye_like"], [369, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[313, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[313, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[314, "ivy.hamming_window"], [369, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[314, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[315, "ivy.hann_window"], [369, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[315, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[316, "ivy.indices"], [369, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[317, "ivy.kaiser_bessel_derived_window"], [369, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[317, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[318, "ivy.kaiser_window"], [369, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[318, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[319, "ivy.mel_weight_matrix"], [369, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[319, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[319, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[320, "ivy.ndenumerate"], [369, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[321, "ivy.ndindex"], [369, "ivy.ndindex"]], "polyval() (in module ivy)": [[322, "ivy.polyval"], [369, "ivy.polyval"]], "polyval() (ivy.container method)": [[322, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[323, "ivy.random_cp"], [369, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[324, "ivy.random_parafac2"], [369, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[325, "ivy.random_tr"], [369, "ivy.random_tr"]], "random_tt() (in module ivy)": [[326, "ivy.random_tt"], [369, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[327, "ivy.random_tucker"], [369, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[328, "ivy.tril_indices"], [369, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[328, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[329, "ivy.trilu"], [369, "ivy.trilu"]], "trilu() (ivy.array method)": [[329, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[329, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[330, "ivy.unsorted_segment_mean"], [369, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[330, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[330, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[331, "ivy.unsorted_segment_min"], [369, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[331, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[331, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[332, "ivy.unsorted_segment_sum"], [369, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[332, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[332, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[333, "ivy.vorbis_window"], [369, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[333, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[334, "ivy.allclose"], [372, "ivy.allclose"]], "allclose() (ivy.array method)": [[334, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[334, "ivy.Container.allclose"]], "amax() (in module ivy)": [[335, "ivy.amax"], [372, "ivy.amax"]], "amax() (ivy.array method)": [[335, "ivy.Array.amax"]], "amax() (ivy.container method)": [[335, "ivy.Container.amax"]], "amin() (in module ivy)": [[336, "ivy.amin"], [372, "ivy.amin"]], "amin() (ivy.array method)": [[336, "ivy.Array.amin"]], "amin() (ivy.container method)": [[336, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[337, "ivy.binarizer"], [372, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[337, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[337, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[338, "ivy.conj"], [372, "ivy.conj"]], "conj() (ivy.array method)": [[338, "ivy.Array.conj"]], "conj() (ivy.container method)": [[338, "ivy.Container.conj"]], "copysign() (in module ivy)": [[339, "ivy.copysign"], [372, "ivy.copysign"]], "copysign() (ivy.array method)": [[339, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[339, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[340, "ivy.count_nonzero"], [372, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[340, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[340, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[341, "ivy.diff"], [372, "ivy.diff"]], "diff() (ivy.array method)": [[341, "ivy.Array.diff"]], "diff() (ivy.container method)": [[341, "ivy.Container.diff"]], "digamma() (in module ivy)": [[342, "ivy.digamma"], [372, "ivy.digamma"]], "digamma() (ivy.array method)": [[342, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[342, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[343, "ivy.erfc"], [372, "ivy.erfc"]], "erfc() (ivy.array method)": [[343, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[343, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[344, "ivy.erfinv"], [372, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[344, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[344, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[345, "ivy.fix"], [372, "ivy.fix"]], "fix() (ivy.array method)": [[345, "ivy.Array.fix"]], "fix() (ivy.container method)": [[345, "ivy.Container.fix"]], "float_power() (in module ivy)": [[346, "ivy.float_power"], [372, "ivy.float_power"]], "float_power() (ivy.array method)": [[346, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[346, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[347, "ivy.fmax"], [372, "ivy.fmax"]], "fmax() (ivy.array method)": [[347, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[347, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[348, "ivy.frexp"], [372, "ivy.frexp"]], "frexp() (ivy.array method)": [[348, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[348, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[349, "ivy.gradient"], [372, "ivy.gradient"]], "gradient() (ivy.array method)": [[349, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[349, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[350, "ivy.hypot"], [372, "ivy.hypot"]], "hypot() (ivy.array method)": [[350, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[350, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[351, "ivy.isclose"], [372, "ivy.isclose"]], "isclose() (ivy.array method)": [[351, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[351, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[352, "ivy.ldexp"], [372, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[352, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[352, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[353, "ivy.lerp"], [372, "ivy.lerp"]], "lerp() (ivy.array method)": [[353, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[353, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[354, "ivy.lgamma"], [372, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[354, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[354, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[355, "ivy.modf"], [372, "ivy.modf"]], "modf() (ivy.array method)": [[355, "ivy.Array.modf"]], "modf() (ivy.container method)": [[355, "ivy.Container.modf"]], "nansum() (in module ivy)": [[356, "ivy.nansum"], [372, "ivy.nansum"]], "nansum() (ivy.array method)": [[356, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[356, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[357, "ivy.nextafter"], [372, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[357, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[357, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[358, "ivy.signbit"], [372, "ivy.signbit"]], "signbit() (ivy.array method)": [[358, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[358, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[359, "ivy.sinc"], [372, "ivy.sinc"]], "sinc() (ivy.array method)": [[359, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[359, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[360, "ivy.sparsify_tensor"], [372, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[360, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[360, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[361, "ivy.xlogy"], [372, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[361, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[361, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[362, "ivy.zeta"], [372, "ivy.zeta"]], "zeta() (ivy.array method)": [[362, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[362, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[363, "ivy.reduce"], [373, "ivy.reduce"]], "reduce() (ivy.array method)": [[363, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[363, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[364, "ivy.bind_custom_gradient_function"], [374, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[365, "ivy.jvp"], [374, "ivy.jvp"]], "vjp() (in module ivy)": [[366, "ivy.vjp"], [374, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[367, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[368, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[369, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[370, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[371, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[372, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[373, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[374, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[375, "ivy.adaptive_avg_pool1d"], [389, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[375, "ivy.adaptive_avg_pool2d"], [390, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[375, "ivy.adaptive_max_pool2d"], [391, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[375, "ivy.adaptive_max_pool3d"], [392, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[375, "ivy.area_interpolate"], [393, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[375, "ivy.avg_pool1d"], [394, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[375, "ivy.avg_pool2d"], [395, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[375, "ivy.avg_pool3d"], [396, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[375, "ivy.dct"], [397, "ivy.dct"]], "dft() (in module ivy)": [[375, "ivy.dft"], [398, "ivy.dft"]], "dropout1d() (in module ivy)": [[375, "ivy.dropout1d"], [399, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[375, "ivy.dropout2d"], [400, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[375, "ivy.dropout3d"], [401, "ivy.dropout3d"]], "embedding() (in module ivy)": [[375, "ivy.embedding"], [402, "ivy.embedding"]], "fft() (in module ivy)": [[375, "ivy.fft"], [403, "ivy.fft"]], "fft2() (in module ivy)": [[375, "ivy.fft2"], [404, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[375, "ivy.generate_einsum_equation"], [405, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[375, "ivy.get_interpolate_kernel"], [406, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[375, "ivy.idct"], [407, "ivy.idct"]], "ifft() (in module ivy)": [[375, "ivy.ifft"], [408, "ivy.ifft"]], "ifftn() (in module ivy)": [[375, "ivy.ifftn"], [409, "ivy.ifftn"]], "interp() (in module ivy)": [[375, "ivy.interp"], [410, "ivy.interp"]], "interpolate() (in module ivy)": [[375, "ivy.interpolate"], [411, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[375, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[375, "ivy.max_pool1d"], [412, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[375, "ivy.max_pool2d"], [413, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[375, "ivy.max_pool3d"], [414, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[375, "ivy.max_unpool1d"], [415, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[375, "ivy.nearest_interpolate"], [416, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[375, "ivy.pool"], [417, "ivy.pool"]], "reduce_window() (in module ivy)": [[375, "ivy.reduce_window"], [418, "ivy.reduce_window"]], "rfft() (in module ivy)": [[375, "ivy.rfft"], [419, "ivy.rfft"]], "rfftn() (in module ivy)": [[375, "ivy.rfftn"], [420, "ivy.rfftn"]], "rnn() (in module ivy)": [[375, "ivy.rnn"], [421, "ivy.rnn"]], "sliding_window() (in module ivy)": [[375, "ivy.sliding_window"], [422, "ivy.sliding_window"]], "stft() (in module ivy)": [[375, "ivy.stft"], [423, "ivy.stft"]], "adjoint() (in module ivy)": [[376, "ivy.adjoint"], [424, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[376, "ivy.batched_outer"], [425, "ivy.batched_outer"]], "cond() (in module ivy)": [[376, "ivy.cond"], [426, "ivy.cond"]], "diagflat() (in module ivy)": [[376, "ivy.diagflat"], [427, "ivy.diagflat"]], "dot() (in module ivy)": [[376, "ivy.dot"], [428, "ivy.dot"]], "eig() (in module ivy)": [[376, "ivy.eig"], [429, "ivy.eig"], [637, "ivy.eig"], [672, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[376, "ivy.eigh_tridiagonal"], [430, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[376, "ivy.eigvals"], [431, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[376, "ivy.general_inner_product"], [432, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[376, "ivy.higher_order_moment"], [433, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[376, "ivy.initialize_tucker"], [434, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[376, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[376, "ivy.khatri_rao"], [435, "ivy.khatri_rao"]], "kron() (in module ivy)": [[376, "ivy.kron"], [436, "ivy.kron"]], "kronecker() (in module ivy)": [[376, "ivy.kronecker"], [437, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[376, "ivy.lu_factor"], [438, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[376, "ivy.lu_solve"], [439, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[376, "ivy.make_svd_non_negative"], [440, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[376, "ivy.matrix_exp"], [441, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[376, "ivy.mode_dot"], [442, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[376, "ivy.multi_dot"], [443, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[376, "ivy.multi_mode_dot"], [444, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[376, "ivy.partial_tucker"], [445, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[376, "ivy.solve_triangular"], [446, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[376, "ivy.svd_flip"], [447, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[376, "ivy.tensor_train"], [448, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[376, "ivy.truncated_svd"], [449, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[376, "ivy.tt_matrix_to_tensor"], [450, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[376, "ivy.tucker"], [451, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[377, "ivy.hinge_embedding_loss"], [452, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[377, "ivy.huber_loss"], [453, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[377, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[377, "ivy.kl_div"], [454, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[377, "ivy.l1_loss"], [455, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[377, "ivy.log_poisson_loss"], [456, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[377, "ivy.poisson_nll_loss"], [457, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[377, "ivy.smooth_l1_loss"], [458, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[377, "ivy.soft_margin_loss"], [459, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[378, "ivy.as_strided"], [460, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[378, "ivy.associative_scan"], [461, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[378, "ivy.atleast_1d"], [462, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[378, "ivy.atleast_2d"], [463, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[378, "ivy.atleast_3d"], [464, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[378, "ivy.broadcast_shapes"], [465, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[378, "ivy.check_scalar"], [466, "ivy.check_scalar"]], "choose() (in module ivy)": [[378, "ivy.choose"], [467, "ivy.choose"]], "column_stack() (in module ivy)": [[378, "ivy.column_stack"], [468, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[378, "ivy.concat_from_sequence"], [469, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[378, "ivy.dsplit"], [470, "ivy.dsplit"]], "dstack() (in module ivy)": [[378, "ivy.dstack"], [471, "ivy.dstack"]], "expand() (in module ivy)": [[378, "ivy.expand"], [472, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[378, "ivy.fill_diagonal"], [473, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[378, "ivy.flatten"], [474, "ivy.flatten"]], "fliplr() (in module ivy)": [[378, "ivy.fliplr"], [475, "ivy.fliplr"]], "flipud() (in module ivy)": [[378, "ivy.flipud"], [476, "ivy.flipud"]], "fold() (in module ivy)": [[378, "ivy.fold"], [477, "ivy.fold"]], "heaviside() (in module ivy)": [[378, "ivy.heaviside"], [478, "ivy.heaviside"]], "hsplit() (in module ivy)": [[378, "ivy.hsplit"], [479, "ivy.hsplit"]], "hstack() (in module ivy)": [[378, "ivy.hstack"], [480, "ivy.hstack"]], "i0() (in module ivy)": [[378, "ivy.i0"], [481, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[378, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[378, "ivy.matricize"], [482, "ivy.matricize"]], "moveaxis() (in module ivy)": [[378, "ivy.moveaxis"], [483, "ivy.moveaxis"]], "pad() (in module ivy)": [[378, "ivy.pad"], [484, "ivy.pad"]], "partial_fold() (in module ivy)": [[378, "ivy.partial_fold"], [485, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[378, "ivy.partial_tensor_to_vec"], [486, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[378, "ivy.partial_unfold"], [487, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[378, "ivy.partial_vec_to_tensor"], [488, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[378, "ivy.put_along_axis"], [489, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[378, "ivy.rot90"], [490, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[378, "ivy.soft_thresholding"], [491, "ivy.soft_thresholding"]], "take() (in module ivy)": [[378, "ivy.take"], [492, "ivy.take"]], "take_along_axis() (in module ivy)": [[378, "ivy.take_along_axis"], [493, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[378, "ivy.top_k"], [494, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[378, "ivy.trim_zeros"], [495, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[378, "ivy.unflatten"], [496, "ivy.unflatten"]], "unfold() (in module ivy)": [[378, "ivy.unfold"], [497, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[378, "ivy.unique_consecutive"], [498, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[378, "ivy.vsplit"], [499, "ivy.vsplit"]], "vstack() (in module ivy)": [[378, "ivy.vstack"], [500, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[379, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[380, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[381, "ivy.batch_norm"], [501, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[381, "ivy.group_norm"], [502, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[381, "ivy.instance_norm"], [503, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[381, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[381, "ivy.l1_normalize"], [504, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[381, "ivy.l2_normalize"], [505, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[381, "ivy.local_response_norm"], [506, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[381, "ivy.lp_normalize"], [507, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[382, "ivy.bernoulli"], [508, "ivy.bernoulli"]], "beta() (in module ivy)": [[382, "ivy.beta"], [509, "ivy.beta"]], "dirichlet() (in module ivy)": [[382, "ivy.dirichlet"], [510, "ivy.dirichlet"]], "gamma() (in module ivy)": [[382, "ivy.gamma"], [511, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[382, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[382, "ivy.poisson"], [512, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[383, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[383, "ivy.unravel_index"], [513, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[384, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[385, "ivy.invert_permutation"], [514, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[385, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[385, "ivy.lexsort"], [515, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[386, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[386, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[386, "ivy.is_ivy_sparse_array"], [516, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[386, "ivy.is_native_sparse_array"], [517, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[386, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[386, "ivy.native_sparse_array"], [518, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[386, "ivy.native_sparse_array_to_indices_values_and_shape"], [519, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[387, "ivy.bincount"], [520, "ivy.bincount"]], "corrcoef() (in module ivy)": [[387, "ivy.corrcoef"], [521, "ivy.corrcoef"]], "cov() (in module ivy)": [[387, "ivy.cov"], [522, "ivy.cov"]], "cummax() (in module ivy)": [[387, "ivy.cummax"], [523, "ivy.cummax"]], "cummin() (in module ivy)": [[387, "ivy.cummin"], [524, "ivy.cummin"]], "histogram() (in module ivy)": [[387, "ivy.histogram"], [525, "ivy.histogram"]], "igamma() (in module ivy)": [[387, "ivy.igamma"], [526, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[387, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[387, "ivy.median"], [527, "ivy.median"]], "nanmean() (in module ivy)": [[387, "ivy.nanmean"], [528, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[387, "ivy.nanmedian"], [529, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[387, "ivy.nanmin"], [530, "ivy.nanmin"]], "nanprod() (in module ivy)": [[387, "ivy.nanprod"], [531, "ivy.nanprod"]], "quantile() (in module ivy)": [[387, "ivy.quantile"], [532, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[388, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[388, "ivy.optional_get_element"], [533, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[389, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[389, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[390, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[390, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[391, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[391, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[392, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[392, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[394, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[394, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[395, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[395, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[396, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[396, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[397, "ivy.Array.dct"]], "dct() (ivy.container method)": [[397, "ivy.Container.dct"]], "dft() (ivy.array method)": [[398, "ivy.Array.dft"]], "dft() (ivy.container method)": [[398, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[399, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[399, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[400, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[400, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[401, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[401, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[402, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[402, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[403, "ivy.Array.fft"]], "fft() (ivy.container method)": [[403, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[404, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[407, "ivy.Array.idct"]], "idct() (ivy.container method)": [[407, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[408, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[408, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[409, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[409, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[411, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[411, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[412, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[412, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[413, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[413, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[414, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[414, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[415, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[415, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[418, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[418, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[419, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[419, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[420, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[420, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[422, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[422, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[423, "ivy.Array.stft"]], "stft() (ivy.container method)": [[423, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[424, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[424, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[425, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[425, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[426, "ivy.Array.cond"]], "cond() (ivy.container method)": [[426, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[427, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[427, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[428, "ivy.Array.dot"]], "dot() (ivy.container method)": [[428, "ivy.Container.dot"]], "eig() (ivy.array method)": [[429, "ivy.Array.eig"], [672, "ivy.Array.eig"]], "eig() (ivy.container method)": [[429, "ivy.Container.eig"], [672, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[430, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[430, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[431, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[431, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[432, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[432, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[433, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[433, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[434, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[434, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[436, "ivy.Array.kron"]], "kron() (ivy.container method)": [[436, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[440, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[440, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[441, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[441, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[442, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[442, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[443, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[443, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[444, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[444, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[445, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[445, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[447, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[447, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[448, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[448, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[449, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[449, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[450, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[450, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[451, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[451, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[452, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[452, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[453, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[453, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[454, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[454, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[455, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[455, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[456, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[456, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[457, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[457, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[458, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[458, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[459, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[459, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[460, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[460, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[461, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[461, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[462, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[462, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[463, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[463, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[464, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[464, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[465, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[468, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[468, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[469, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[469, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[470, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[470, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[471, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[471, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[472, "ivy.Array.expand"]], "expand() (ivy.container method)": [[472, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[473, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[473, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[474, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[474, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[475, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[475, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[476, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[476, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[477, "ivy.Array.fold"]], "fold() (ivy.container method)": [[477, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[478, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[478, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[479, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[479, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[480, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[480, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[481, "ivy.Array.i0"]], "i0() (ivy.container method)": [[481, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[482, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[482, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[483, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[483, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[484, "ivy.Array.pad"]], "pad() (ivy.container method)": [[484, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[485, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[485, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[486, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[486, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[487, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[487, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[488, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[488, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[489, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[489, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[490, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[490, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[491, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[491, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[492, "ivy.Array.take"]], "take() (ivy.container method)": [[492, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[493, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[493, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[494, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[494, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[495, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[495, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[496, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[496, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[497, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[497, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[498, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[498, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[499, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[499, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[500, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[500, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[501, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[501, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[502, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[502, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[503, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[503, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[504, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[504, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[505, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[505, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[507, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[507, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[508, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[508, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[509, "ivy.Array.beta"]], "beta() (ivy.container method)": [[509, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[510, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[510, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[511, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[511, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[512, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[512, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[513, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[513, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[514, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[515, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[515, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[520, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[520, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[521, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[521, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[522, "ivy.Array.cov"]], "cov() (ivy.container method)": [[522, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[523, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[523, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[524, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[524, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[525, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[525, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[526, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[526, "ivy.Container.igamma"]], "median() (ivy.array method)": [[527, "ivy.Array.median"]], "median() (ivy.container method)": [[527, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[528, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[528, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[529, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[529, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[530, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[530, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[531, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[531, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[532, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[532, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[533, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[533, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[534, "ivy.all_equal"], [634, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[534, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[534, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[535, "ivy.arg_info"], [634, "ivy.arg_info"]], "arg_names() (in module ivy)": [[536, "ivy.arg_names"], [634, "ivy.arg_names"]], "array_equal() (in module ivy)": [[537, "ivy.array_equal"], [634, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[537, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[537, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[538, "ivy.assert_supports_inplace"], [634, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[538, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[538, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[539, "ivy.cache_fn"], [634, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[540, "ivy.clip_matrix_norm"], [634, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[540, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[540, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[541, "ivy.clip_vector_norm"], [634, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[541, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[541, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[542, "ivy.container_types"], [634, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[543, "ivy.current_backend_str"], [634, "ivy.current_backend_str"]], "default() (in module ivy)": [[544, "ivy.default"], [634, "ivy.default"]], "default() (ivy.array method)": [[544, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[545, "ivy.einops_rearrange"], [634, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[545, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[545, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[546, "ivy.einops_reduce"], [634, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[546, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[546, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[547, "ivy.einops_repeat"], [634, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[547, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[547, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[548, "ivy.exists"], [634, "ivy.exists"]], "exists() (ivy.array method)": [[548, "ivy.Array.exists"]], "exists() (ivy.container method)": [[548, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[549, "ivy.fourier_encode"], [634, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[549, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[549, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[550, "ivy.function_supported_devices_and_dtypes"], [634, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[551, "ivy.function_unsupported_devices_and_dtypes"], [634, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[552, "ivy.gather"], [634, "ivy.gather"]], "gather() (ivy.array method)": [[552, "ivy.Array.gather"]], "gather() (ivy.container method)": [[552, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[553, "ivy.gather_nd"], [634, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[553, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[553, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[554, "ivy.get_all_arrays_in_memory"], [634, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[555, "ivy.get_item"], [634, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[556, "ivy.get_num_dims"], [634, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[556, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[556, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[557, "ivy.get_referrers_recursive"], [634, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[558, "ivy.has_nans"], [634, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[558, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[558, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[559, "ivy.inplace_arrays_supported"], [634, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[560, "ivy.inplace_decrement"], [634, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[560, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[560, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[561, "ivy.inplace_increment"], [634, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[561, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[561, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[562, "ivy.inplace_update"], [634, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[562, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[562, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[563, "ivy.inplace_variables_supported"], [634, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[564, "ivy.is_array"], [634, "ivy.is_array"]], "is_array() (ivy.array method)": [[564, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[564, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[565, "ivy.is_ivy_array"], [634, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[565, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[565, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[566, "ivy.is_ivy_container"], [634, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[566, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[567, "ivy.is_ivy_nested_array"], [634, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[568, "ivy.is_native_array"], [634, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[568, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[568, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[569, "ivy.isin"], [634, "ivy.isin"]], "isin() (ivy.array method)": [[569, "ivy.Array.isin"]], "isin() (ivy.container method)": [[569, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[570, "ivy.isscalar"], [634, "ivy.isscalar"]], "itemsize() (in module ivy)": [[571, "ivy.itemsize"], [634, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[571, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[571, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[572, "ivy.match_kwargs"], [634, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[573, "ivy.multiprocessing"], [634, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[574, "ivy.num_arrays_in_memory"], [634, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[575, "ivy.print_all_arrays_in_memory"], [634, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[576, "ivy.scatter_flat"], [634, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[576, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[576, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[577, "ivy.scatter_nd"], [634, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[577, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[577, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[578, "ivy.set_array_mode"], [634, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[579, "ivy.set_exception_trace_mode"], [634, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[580, "ivy.set_inplace_mode"], [634, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[581, "ivy.set_item"], [634, "ivy.set_item"]], "set_min_base() (in module ivy)": [[582, "ivy.set_min_base"], [634, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[583, "ivy.set_min_denominator"], [634, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[584, "ivy.set_nestable_mode"], [634, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[585, "ivy.set_precise_mode"], [634, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[586, "ivy.set_queue_timeout"], [634, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[587, "ivy.set_shape_array_mode"], [634, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[588, "ivy.set_show_func_wrapper_trace_mode"], [634, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[589, "ivy.set_tmp_dir"], [634, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[590, "ivy.shape"], [634, "ivy.shape"]], "shape() (ivy.array method)": [[590, "ivy.Array.shape"]], "size() (in module ivy)": [[591, "ivy.size"], [634, "ivy.size"]], "size() (ivy.array method)": [[591, "ivy.Array.size"]], "size() (ivy.container method)": [[591, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[592, "ivy.stable_divide"], [634, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[592, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[592, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[593, "ivy.stable_pow"], [634, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[593, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[593, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[594, "ivy.strides"], [634, "ivy.strides"]], "strides() (ivy.array method)": [[594, "ivy.Array.strides"]], "strides() (ivy.container method)": [[594, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[595, "ivy.supports_inplace_updates"], [634, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[595, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[595, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[596, "ivy.to_ivy_shape"], [634, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[597, "ivy.to_list"], [634, "ivy.to_list"]], "to_list() (ivy.array method)": [[597, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[597, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[598, "ivy.to_native_shape"], [634, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[599, "ivy.to_numpy"], [634, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[599, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[599, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[600, "ivy.to_scalar"], [634, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[600, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[600, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[601, "ivy.try_else_none"], [634, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[602, "ivy.unset_array_mode"], [634, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[603, "ivy.unset_exception_trace_mode"], [634, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[604, "ivy.unset_inplace_mode"], [634, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[605, "ivy.unset_min_base"], [634, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[606, "ivy.unset_min_denominator"], [634, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[607, "ivy.unset_nestable_mode"], [634, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[608, "ivy.unset_precise_mode"], [634, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[609, "ivy.unset_queue_timeout"], [634, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[610, "ivy.unset_shape_array_mode"], [634, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[611, "ivy.unset_show_func_wrapper_trace_mode"], [634, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[612, "ivy.unset_tmp_dir"], [634, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[613, "ivy.value_is_nan"], [634, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[613, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[613, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[614, "ivy.vmap"], [634, "ivy.vmap"]], "adam_step() (in module ivy)": [[615, "ivy.adam_step"], [635, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[615, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[615, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[616, "ivy.adam_update"], [635, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[616, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[616, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[617, "ivy.execute_with_gradients"], [635, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[618, "ivy.grad"], [635, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[619, "ivy.gradient_descent_update"], [635, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[619, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[619, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[620, "ivy.jac"], [635, "ivy.jac"]], "lamb_update() (in module ivy)": [[621, "ivy.lamb_update"], [635, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[621, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[621, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[622, "ivy.lars_update"], [635, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[622, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[622, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[623, "ivy.optimizer_update"], [635, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[623, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[623, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[624, "ivy.stop_gradient"], [635, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[624, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[624, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[625, "ivy.value_and_grad"], [635, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[626, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[627, "ivy.e"]], "inf (in module ivy)": [[627, "ivy.inf"]], "ivy.functional.ivy.constants": [[627, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[627, "ivy.nan"]], "newaxis (in module ivy)": [[627, "ivy.newaxis"]], "pi (in module ivy)": [[627, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[628, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[629, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[629, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[630, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[630, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[630, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[630, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[630, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[630, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[631, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[631, "ivy.Profiler"]], "ivy.functional.ivy.device": [[631, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[632, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[633, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[634, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[634, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[634, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[635, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[636, "ivy.conv"], [649, "ivy.conv"]], "conv1d() (in module ivy)": [[636, "ivy.conv1d"], [650, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[636, "ivy.conv1d_transpose"], [651, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[636, "ivy.conv2d"], [652, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[636, "ivy.conv2d_transpose"], [653, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[636, "ivy.conv3d"], [654, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[636, "ivy.conv3d_transpose"], [655, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[636, "ivy.conv_general_dilated"], [656, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[636, "ivy.conv_general_transpose"], [657, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[636, "ivy.depthwise_conv2d"], [658, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[636, "ivy.dropout"], [659, "ivy.dropout"]], "ivy.functional.ivy.layers": [[636, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[636, "ivy.linear"], [660, "ivy.linear"]], "lstm() (in module ivy)": [[636, "ivy.lstm"], [661, "ivy.lstm"]], "lstm_update() (in module ivy)": [[636, "ivy.lstm_update"], [662, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[636, "ivy.multi_head_attention"], [663, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[636, "ivy.nms"], [664, "ivy.nms"]], "roi_align() (in module ivy)": [[636, "ivy.roi_align"], [665, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[636, "ivy.scaled_dot_product_attention"], [666, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[637, "ivy.cholesky"], [667, "ivy.cholesky"]], "cross() (in module ivy)": [[637, "ivy.cross"], [668, "ivy.cross"]], "det() (in module ivy)": [[637, "ivy.det"], [669, "ivy.det"]], "diag() (in module ivy)": [[637, "ivy.diag"], [670, "ivy.diag"]], "diagonal() (in module ivy)": [[637, "ivy.diagonal"], [671, "ivy.diagonal"]], "eigh() (in module ivy)": [[637, "ivy.eigh"], [673, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[637, "ivy.eigvalsh"], [674, "ivy.eigvalsh"]], "inner() (in module ivy)": [[637, "ivy.inner"], [675, "ivy.inner"]], "inv() (in module ivy)": [[637, "ivy.inv"], [676, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[637, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[637, "ivy.matmul"], [677, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[637, "ivy.matrix_norm"], [678, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[637, "ivy.matrix_power"], [679, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[637, "ivy.matrix_rank"], [680, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[637, "ivy.matrix_transpose"], [681, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[637, "ivy.outer"], [682, "ivy.outer"]], "pinv() (in module ivy)": [[637, "ivy.pinv"], [683, "ivy.pinv"]], "qr() (in module ivy)": [[637, "ivy.qr"], [684, "ivy.qr"]], "slogdet() (in module ivy)": [[637, "ivy.slogdet"], [685, "ivy.slogdet"]], "solve() (in module ivy)": [[637, "ivy.solve"], [686, "ivy.solve"]], "svd() (in module ivy)": [[637, "ivy.svd"], [687, "ivy.svd"]], "svdvals() (in module ivy)": [[637, "ivy.svdvals"], [688, "ivy.svdvals"]], "tensordot() (in module ivy)": [[637, "ivy.tensordot"], [689, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[637, "ivy.tensorsolve"], [690, "ivy.tensorsolve"]], "trace() (in module ivy)": [[637, "ivy.trace"], [691, "ivy.trace"]], "vander() (in module ivy)": [[637, "ivy.vander"], [692, "ivy.vander"]], "vecdot() (in module ivy)": [[637, "ivy.vecdot"], [693, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[637, "ivy.vector_norm"], [694, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[637, "ivy.vector_to_skew_symmetric_matrix"], [695, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[638, "ivy.binary_cross_entropy"], [696, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[638, "ivy.cross_entropy"], [697, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[638, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[638, "ivy.sparse_cross_entropy"], [698, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[639, "ivy.clip"], [699, "ivy.clip"]], "concat() (in module ivy)": [[639, "ivy.concat"], [700, "ivy.concat"]], "constant_pad() (in module ivy)": [[639, "ivy.constant_pad"], [701, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[639, "ivy.expand_dims"], [702, "ivy.expand_dims"]], "flip() (in module ivy)": [[639, "ivy.flip"], [703, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[639, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[639, "ivy.permute_dims"], [704, "ivy.permute_dims"]], "repeat() (in module ivy)": [[639, "ivy.repeat"], [705, "ivy.repeat"]], "reshape() (in module ivy)": [[639, "ivy.reshape"], [706, "ivy.reshape"]], "roll() (in module ivy)": [[639, "ivy.roll"], [707, "ivy.roll"]], "split() (in module ivy)": [[639, "ivy.split"], [708, "ivy.split"]], "squeeze() (in module ivy)": [[639, "ivy.squeeze"], [709, "ivy.squeeze"]], "stack() (in module ivy)": [[639, "ivy.stack"], [710, "ivy.stack"]], "swapaxes() (in module ivy)": [[639, "ivy.swapaxes"], [711, "ivy.swapaxes"]], "tile() (in module ivy)": [[639, "ivy.tile"], [712, "ivy.tile"]], "unstack() (in module ivy)": [[639, "ivy.unstack"], [713, "ivy.unstack"]], "zero_pad() (in module ivy)": [[639, "ivy.zero_pad"], [714, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[640, "ivy.fomaml_step"], [715, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[640, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[640, "ivy.maml_step"], [716, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[640, "ivy.reptile_step"], [717, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[641, "ivy.all_nested_indices"], [718, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[641, "ivy.copy_nest"], [719, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[641, "ivy.duplicate_array_index_chains"], [720, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[641, "ivy.index_nest"], [721, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[641, "ivy.insert_into_nest_at_index"], [722, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[641, "ivy.insert_into_nest_at_indices"], [723, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[641, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[641, "ivy.map"], [724, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[641, "ivy.map_nest_at_index"], [725, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[641, "ivy.map_nest_at_indices"], [726, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[641, "ivy.multi_index_nest"], [727, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[641, "ivy.nested_any"], [728, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[641, "ivy.nested_argwhere"], [729, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[641, "ivy.nested_map"], [730, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[641, "ivy.nested_multi_map"], [731, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[641, "ivy.prune_empty"], [732, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[641, "ivy.prune_nest_at_index"], [733, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[641, "ivy.prune_nest_at_indices"], [734, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[641, "ivy.set_nest_at_index"], [735, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[641, "ivy.set_nest_at_indices"], [736, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[642, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[642, "ivy.layer_norm"], [737, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[643, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[643, "ivy.multinomial"], [738, "ivy.multinomial"]], "randint() (in module ivy)": [[643, "ivy.randint"], [739, "ivy.randint"]], "random_normal() (in module ivy)": [[643, "ivy.random_normal"], [740, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[643, "ivy.random_uniform"], [741, "ivy.random_uniform"]], "seed() (in module ivy)": [[643, "ivy.seed"], [742, "ivy.seed"]], "shuffle() (in module ivy)": [[643, "ivy.shuffle"], [743, "ivy.shuffle"]], "argmax() (in module ivy)": [[644, "ivy.argmax"], [744, "ivy.argmax"]], "argmin() (in module ivy)": [[644, "ivy.argmin"], [745, "ivy.argmin"]], "argwhere() (in module ivy)": [[644, "ivy.argwhere"], [746, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[644, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[644, "ivy.nonzero"], [747, "ivy.nonzero"]], "where() (in module ivy)": [[644, "ivy.where"], [748, "ivy.where"]], "ivy.functional.ivy.set": [[645, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[645, "ivy.unique_all"], [749, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[645, "ivy.unique_counts"], [750, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[645, "ivy.unique_inverse"], [751, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[645, "ivy.unique_values"], [752, "ivy.unique_values"]], "argsort() (in module ivy)": [[646, "ivy.argsort"], [753, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[646, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[646, "ivy.msort"], [754, "ivy.msort"]], "searchsorted() (in module ivy)": [[646, "ivy.searchsorted"], [755, "ivy.searchsorted"]], "sort() (in module ivy)": [[646, "ivy.sort"], [756, "ivy.sort"]], "cumprod() (in module ivy)": [[647, "ivy.cumprod"], [757, "ivy.cumprod"]], "cumsum() (in module ivy)": [[647, "ivy.cumsum"], [758, "ivy.cumsum"]], "einsum() (in module ivy)": [[647, "ivy.einsum"], [759, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[647, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[647, "ivy.max"], [760, "ivy.max"]], "mean() (in module ivy)": [[647, "ivy.mean"], [761, "ivy.mean"]], "min() (in module ivy)": [[647, "ivy.min"], [762, "ivy.min"]], "prod() (in module ivy)": [[647, "ivy.prod"], [763, "ivy.prod"]], "std() (in module ivy)": [[647, "ivy.std"], [764, "ivy.std"]], "sum() (in module ivy)": [[647, "ivy.sum"], [765, "ivy.sum"]], "var() (in module ivy)": [[647, "ivy.var"], [766, "ivy.var"]], "all() (in module ivy)": [[648, "ivy.all"], [767, "ivy.all"]], "any() (in module ivy)": [[648, "ivy.any"], [768, "ivy.any"]], "ivy.functional.ivy.utility": [[648, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[648, "ivy.load"], [769, "ivy.load"]], "save() (in module ivy)": [[648, "ivy.save"], [770, "ivy.save"]], "conv1d() (ivy.array method)": [[650, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[650, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[651, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[651, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[652, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[652, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[653, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[653, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[654, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[654, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[655, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[655, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[658, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[658, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[659, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[659, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[660, "ivy.Array.linear"]], "linear() (ivy.container method)": [[660, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[662, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[662, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[663, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[663, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[666, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[666, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[667, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[667, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[668, "ivy.Array.cross"]], "cross() (ivy.container method)": [[668, "ivy.Container.cross"]], "det() (ivy.array method)": [[669, "ivy.Array.det"]], "det() (ivy.container method)": [[669, "ivy.Container.det"]], "diag() (ivy.array method)": [[670, "ivy.Array.diag"]], "diag() (ivy.container method)": [[670, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[671, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[671, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[673, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[673, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[674, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[674, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[675, "ivy.Array.inner"]], "inner() (ivy.container method)": [[675, "ivy.Container.inner"]], "inv() (ivy.array method)": [[676, "ivy.Array.inv"]], "inv() (ivy.container method)": [[676, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[677, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[677, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[678, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[678, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[679, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[679, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[680, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[680, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[681, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[681, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[682, "ivy.Array.outer"]], "outer() (ivy.container method)": [[682, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[683, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[683, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[684, "ivy.Array.qr"]], "qr() (ivy.container method)": [[684, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[685, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[685, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[686, "ivy.Array.solve"]], "solve() (ivy.container method)": [[686, "ivy.Container.solve"]], "svd() (ivy.array method)": [[687, "ivy.Array.svd"]], "svd() (ivy.container method)": [[687, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[688, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[688, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[689, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[689, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[690, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[690, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[691, "ivy.Array.trace"]], "trace() (ivy.container method)": [[691, "ivy.Container.trace"]], "vander() (ivy.array method)": [[692, "ivy.Array.vander"]], "vander() (ivy.container method)": [[692, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[693, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[693, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[694, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[694, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[695, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[695, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[696, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[696, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[697, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[697, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[698, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[698, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[699, "ivy.Array.clip"]], "clip() (ivy.container method)": [[699, "ivy.Container.clip"]], "concat() (ivy.array method)": [[700, "ivy.Array.concat"]], "concat() (ivy.container method)": [[700, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[701, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[701, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[702, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[702, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[703, "ivy.Array.flip"]], "flip() (ivy.container method)": [[703, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[704, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[704, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[705, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[705, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[706, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[706, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[707, "ivy.Array.roll"]], "roll() (ivy.container method)": [[707, "ivy.Container.roll"]], "split() (ivy.array method)": [[708, "ivy.Array.split"]], "split() (ivy.container method)": [[708, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[709, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[709, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[710, "ivy.Array.stack"]], "stack() (ivy.container method)": [[710, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[711, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[711, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[712, "ivy.Array.tile"]], "tile() (ivy.container method)": [[712, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[713, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[713, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[714, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[714, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[737, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[737, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[738, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[738, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[739, "ivy.Array.randint"]], "randint() (ivy.container method)": [[739, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[740, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[740, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[741, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[741, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[743, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[743, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[744, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[744, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[745, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[745, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[746, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[746, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[747, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[747, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[748, "ivy.Array.where"]], "where() (ivy.container method)": [[748, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[749, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[749, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[750, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[750, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[751, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[751, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[752, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[752, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[753, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[753, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[754, "ivy.Array.msort"]], "msort() (ivy.container method)": [[754, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[755, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[755, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[756, "ivy.Array.sort"]], "sort() (ivy.container method)": [[756, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[757, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[757, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[758, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[758, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[759, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[759, "ivy.Container.einsum"]], "max() (ivy.array method)": [[760, "ivy.Array.max"]], "max() (ivy.container method)": [[760, "ivy.Container.max"]], "mean() (ivy.array method)": [[761, "ivy.Array.mean"]], "mean() (ivy.container method)": [[761, "ivy.Container.mean"]], "min() (ivy.array method)": [[762, "ivy.Array.min"]], "min() (ivy.container method)": [[762, "ivy.Container.min"]], "prod() (ivy.array method)": [[763, "ivy.Array.prod"]], "prod() (ivy.container method)": [[763, "ivy.Container.prod"]], "std() (ivy.array method)": [[764, "ivy.Array.std"]], "std() (ivy.container method)": [[764, "ivy.Container.std"]], "sum() (ivy.array method)": [[765, "ivy.Array.sum"]], "sum() (ivy.container method)": [[765, "ivy.Container.sum"]], "var() (ivy.array method)": [[766, "ivy.Array.var"]], "var() (ivy.container method)": [[766, "ivy.Container.var"]], "all() (ivy.array method)": [[767, "ivy.Array.all"]], "all() (ivy.container method)": [[767, "ivy.Container.all"]], "any() (ivy.array method)": [[768, "ivy.Array.any"]], "any() (ivy.container method)": [[768, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[788, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[788, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[788, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[788, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[788, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[788, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[788, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[788, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[788, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[788, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[788, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[788, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[788, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[788, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[788, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[788, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[788, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[788, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[788, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[789, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[789, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[789, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[789, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[790, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[790, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[791, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[791, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[791, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[791, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[791, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[791, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[791, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[792, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[792, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[792, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[792, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[792, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[792, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[792, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[792, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[792, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[792, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[792, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[792, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[792, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[792, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[792, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[792, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[792, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[792, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[792, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[792, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[792, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[792, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[793, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[793, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[793, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[794, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[794, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[794, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[794, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[795, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[795, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[795, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[796, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[796, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[796, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[796, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[796, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[796, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[797, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[797, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[797, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[798, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[799, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[801, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[801, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[803, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[804, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[804, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[805, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[807, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[807, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[807, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[807, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[807, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[807, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[807, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[807, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[807, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[807, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[807, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[807, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[807, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[807, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[807, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[807, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[807, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[807, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[807, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[807, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[807, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[807, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[807, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[807, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[808, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[809, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[810, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[810, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[810, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[811, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[811, "module-ivy.utils.verbosity"]], "automatic code conversions": [[857, "term-Automatic-Code-Conversions"]], "backend handler": [[857, "term-Backend-Handler"]], "compositional functions": [[857, "term-Compositional-Functions"]], "convenience functions": [[857, "term-Convenience-Functions"]], "framework": [[857, "term-Framework"]], "framework handler": [[857, "term-Framework-Handler"]], "graph compiler": [[857, "term-Graph-Compiler"]], "ivy array": [[857, "term-Ivy-Array"]], "ivy backends": [[857, "term-Ivy-Backends"]], "ivy compiler": [[857, "term-Ivy-Compiler"]], "ivy container": [[857, "term-Ivy-Container"]], "ivy frontends": [[857, "term-Ivy-Frontends"]], "ivy functional api": [[857, "term-Ivy-Functional-API"]], "ivy tracer": [[857, "term-Ivy-Tracer"]], "ivy transpiler": [[857, "term-Ivy-Transpiler"]], "mixed functions": [[857, "term-Mixed-Functions"]], "native array": [[857, "term-Native-Array"]], "nestable functions": [[857, "term-Nestable-Functions"]], "pipeline": [[857, "term-Pipeline"]], "primary functions": [[857, "term-Primary-Functions"]], "standalone functions": [[857, "term-Standalone-Functions"]], "submodule helper functions": [[857, "term-Submodule-Helper-Functions"]], "built-in function": [[863, "ivy.trace_graph"], [864, "ivy.transpile"], [865, "ivy.unify"]], "ivy.trace_graph()": [[863, "ivy.trace_graph"]], "ivy.transpile()": [[864, "ivy.transpile"]], "ivy.unify()": [[865, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection", "demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/convnext_to_torch", "demos/examples_and_demos/dinov2_to_paddle", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_tensorflow_to_torch", "demos/examples_and_demos/lstm_torch_to_tensorflow", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/Contributor_demos/Credit Card Fraud Detection/Credit_Card_Fraud_Detection.ipynb", "demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/convnext_to_torch.ipynb", "demos/examples_and_demos/dinov2_to_paddle.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_tensorflow_to_torch.ipynb", "demos/examples_and_demos/lstm_torch_to_tensorflow.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Credit Card Fraud Detection using Ivy Framework", "Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Using TensorFlow Models in your PyTorch Projects", "How To Convert Models from PyTorch to PaddlePaddle", "Image Segmentation with Ivy UNet", "<no title>", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 168, 171, 172, 173, 175, 179, 180, 194, 197, 207, 213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 580, 586, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 722, 724, 725, 730, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 779, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "notebook": [0, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 46, 794, 812], "i": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 180, 192, 194, 196, 197, 199, 200, 202, 204, 207, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313, 315, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 427, 428, 429, 430, 432, 433, 434, 435, 437, 438, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 482, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 572, 573, 576, 577, 578, 580, 586, 590, 591, 592, 593, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 798, 801, 802, 805, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "dedic": [0, 789, 821, 836, 847, 851, 853], "task": [0, 1, 6, 48, 640, 715, 716, 717, 812, 813, 815, 819, 820, 821, 841, 842, 870, 876, 877], "util": [0, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 45, 48, 57, 80, 198, 376, 447, 631, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 819, 826, 830, 833, 834, 837, 840, 844, 845, 849, 864, 868, 876, 877], "power": [0, 22, 31, 32, 56, 57, 58, 62, 79, 80, 81, 85, 102, 103, 234, 243, 244, 278, 333, 346, 369, 372, 375, 423, 582, 593, 605, 632, 634, 637, 641, 679, 692, 724, 791, 846, 851, 852, 853, 870, 872, 876], "we": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 50, 57, 62, 63, 64, 72, 80, 85, 86, 95, 97, 98, 118, 364, 374, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 494, 499, 545, 555, 595, 617, 618, 620, 625, 626, 634, 635, 637, 638, 639, 680, 696, 702, 703, 704, 706, 708, 709, 711, 713, 788, 794, 801, 806, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 866, 870, 871, 875, 876, 878], "emploi": [0, 14, 876], "build": [0, 9, 15, 19, 20, 22, 29, 31, 32, 35, 36, 37, 38, 43, 45, 50, 68, 74, 103, 645, 749, 750, 751, 752, 792, 793, 794, 812, 813, 819, 822, 828, 829, 837, 839, 848, 850, 853, 854, 855, 857, 860, 864, 868, 870, 872, 875, 876, 877], "The": [0, 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 133, 134, 136, 138, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 166, 167, 168, 170, 172, 173, 174, 177, 178, 180, 181, 183, 184, 185, 186, 192, 193, 194, 195, 196, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 427, 428, 429, 430, 432, 434, 446, 447, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 471, 473, 474, 475, 476, 480, 483, 484, 489, 490, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 513, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 573, 576, 577, 580, 582, 583, 586, 589, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 801, 805, 806, 812, 813, 814, 816, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 844, 845, 847, 848, 849, 852, 853, 854, 856, 857, 858, 859, 861, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878], "goal": [0, 20, 45, 247, 632, 812, 818, 821, 860, 870, 876], "accur": [0, 6, 245, 263, 632, 637, 685, 838], "distinguish": 0, "between": [0, 6, 14, 20, 21, 26, 36, 37, 38, 43, 56, 57, 58, 61, 62, 63, 64, 68, 74, 79, 80, 84, 85, 86, 87, 103, 126, 165, 228, 241, 276, 292, 334, 351, 353, 372, 375, 376, 377, 378, 387, 399, 400, 401, 412, 413, 414, 422, 428, 432, 453, 454, 455, 456, 457, 458, 459, 484, 532, 629, 630, 632, 636, 638, 639, 641, 643, 645, 659, 682, 696, 697, 698, 702, 710, 724, 739, 750, 751, 752, 777, 784, 796, 812, 824, 825, 829, 831, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 854, 859, 863, 864, 866, 867, 869, 870, 871, 876], "activ": [0, 6, 16, 29, 31, 32, 57, 58, 61, 72, 80, 84, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 295, 296, 297, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 595, 636, 663, 666, 791, 792, 810, 812, 819, 820, 829, 835, 845, 846, 853, 864, 870, 873], "therebi": [0, 6, 844], "enhanc": [0, 28, 31, 32, 812, 843, 864], "secur": 0, "usag": [0, 7, 213, 631, 829, 837, 840, 844, 849, 855, 860, 873], "befor": [0, 4, 5, 6, 8, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 38, 45, 57, 61, 62, 64, 68, 70, 74, 80, 84, 85, 93, 210, 213, 218, 375, 378, 387, 403, 408, 418, 422, 468, 475, 476, 477, 484, 523, 524, 631, 636, 637, 639, 640, 641, 645, 647, 649, 650, 651, 652, 654, 656, 658, 662, 663, 666, 677, 678, 694, 700, 715, 716, 730, 749, 750, 751, 752, 757, 758, 761, 763, 765, 773, 792, 801, 805, 818, 819, 820, 823, 824, 826, 829, 830, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 849, 852, 855, 863, 864, 870], "dive": [0, 14, 20, 22, 31, 43, 812, 813, 814, 817, 818, 820, 823, 827, 829, 835, 842, 848, 851, 852, 855, 876], "need": [0, 1, 4, 7, 11, 13, 20, 22, 28, 29, 31, 32, 45, 46, 47, 57, 58, 64, 80, 81, 87, 375, 376, 387, 398, 403, 404, 408, 429, 529, 540, 541, 562, 634, 636, 637, 639, 641, 663, 672, 699, 702, 729, 777, 812, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 849, 851, 852, 855, 856, 861, 863, 864, 866, 870, 871, 872, 876], "up": [0, 4, 7, 8, 11, 13, 14, 31, 57, 58, 80, 81, 375, 378, 398, 411, 468, 476, 557, 569, 634, 636, 659, 661, 812, 813, 816, 818, 820, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861, 863, 871, 876, 877], "our": [0, 4, 6, 7, 11, 13, 14, 16, 18, 20, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 49, 72, 95, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 778, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 831, 833, 834, 835, 838, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 859, 860, 863, 875, 876, 878], "necessari": [0, 6, 7, 37, 53, 57, 76, 80, 87, 128, 240, 273, 377, 378, 452, 462, 463, 464, 470, 472, 473, 474, 475, 476, 483, 499, 585, 608, 632, 634, 702, 703, 704, 706, 708, 709, 711, 713, 812, 818, 819, 824, 825, 827, 829, 831, 840, 841, 844, 846, 847, 863, 864], "follow": [0, 1, 6, 7, 14, 25, 26, 27, 29, 31, 32, 35, 36, 37, 43, 46, 47, 57, 58, 59, 61, 62, 68, 74, 80, 81, 82, 84, 85, 134, 165, 168, 213, 223, 240, 247, 273, 275, 282, 283, 319, 369, 375, 377, 378, 381, 398, 411, 419, 457, 472, 484, 501, 503, 560, 561, 562, 592, 593, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 637, 641, 645, 663, 666, 678, 684, 694, 724, 730, 749, 750, 751, 752, 792, 796, 812, 814, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 863, 867, 870, 873], "command": [0, 45, 47, 814, 819, 823, 826, 828, 834, 835, 856], "which": [0, 1, 4, 6, 7, 9, 10, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 153, 155, 157, 163, 165, 168, 170, 173, 180, 192, 197, 201, 206, 208, 211, 212, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 322, 325, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 348, 350, 351, 352, 353, 355, 356, 357, 359, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 418, 419, 420, 422, 427, 430, 442, 445, 446, 447, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 489, 490, 491, 492, 493, 494, 496, 501, 503, 504, 505, 507, 508, 509, 510, 511, 512, 514, 515, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 574, 575, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 693, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 723, 724, 725, 726, 731, 733, 734, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 788, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 808, 810, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "an": [0, 1, 3, 4, 6, 7, 9, 10, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 175, 179, 180, 210, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 316, 317, 318, 320, 321, 328, 329, 330, 331, 332, 333, 335, 336, 338, 341, 345, 350, 354, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 407, 409, 411, 412, 413, 414, 417, 418, 419, 420, 421, 422, 423, 424, 426, 429, 430, 431, 456, 457, 461, 462, 463, 464, 468, 469, 470, 472, 479, 483, 484, 490, 492, 496, 498, 499, 501, 502, 503, 506, 508, 509, 511, 514, 515, 520, 521, 522, 523, 524, 525, 526, 529, 530, 533, 538, 540, 541, 549, 552, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 571, 577, 580, 581, 590, 591, 595, 599, 600, 601, 614, 617, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 724, 737, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 779, 781, 784, 788, 789, 791, 792, 794, 795, 796, 797, 806, 810, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 876, 877], "machin": [0, 6, 7, 12, 13, 26, 27, 28, 29, 34, 35, 43, 49, 57, 62, 80, 85, 165, 168, 376, 430, 630, 637, 680, 683, 812, 819, 823, 837, 857, 860, 868, 870, 872, 873, 874, 875, 876], "learn": [0, 6, 7, 14, 16, 18, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 43, 45, 57, 59, 82, 376, 377, 447, 452, 545, 616, 619, 621, 622, 623, 634, 635, 640, 715, 716, 717, 796, 812, 813, 817, 818, 819, 822, 823, 829, 834, 835, 837, 839, 848, 857, 859, 860, 868, 872, 873, 874, 875, 876, 877], "other": [0, 4, 6, 7, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 54, 56, 57, 58, 64, 70, 74, 77, 79, 80, 81, 87, 93, 97, 102, 103, 126, 141, 153, 179, 240, 245, 247, 263, 272, 273, 337, 341, 372, 378, 468, 469, 477, 534, 535, 629, 630, 632, 634, 643, 647, 700, 710, 741, 764, 766, 773, 778, 812, 816, 818, 819, 820, 821, 823, 824, 827, 828, 831, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 856, 857, 860, 863, 864, 866, 868, 869, 870, 876, 877], "essenti": [0, 812, 815, 818, 825, 827, 830, 831, 837, 840, 841, 842, 859, 860, 876], "panda": [0, 14, 45, 47, 860, 867], "matplotlib": [0, 6, 7, 14, 26, 27, 28, 29, 45, 46, 47, 50], "scikit": [0, 14, 376, 447, 860], "torch": [0, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 48, 49, 50, 53, 58, 62, 72, 81, 85, 129, 167, 194, 195, 199, 209, 211, 216, 283, 335, 336, 372, 378, 496, 538, 562, 595, 629, 630, 631, 632, 634, 637, 640, 687, 716, 717, 773, 784, 789, 801, 810, 812, 816, 819, 820, 823, 824, 825, 826, 828, 829, 830, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 863, 864, 865, 876], "cryptographi": [0, 14], "These": [0, 14, 38, 57, 80, 376, 378, 387, 429, 483, 522, 636, 637, 663, 672, 673, 812, 815, 817, 818, 819, 820, 823, 827, 829, 831, 832, 836, 837, 840, 841, 844, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 864, 870, 874, 876, 877], "tool": [0, 14, 22, 31, 32, 812, 819, 820, 831, 835, 850, 854, 855, 858, 861, 864, 868, 869, 870, 871, 873, 876, 877], "provid": [0, 6, 9, 20, 22, 26, 29, 31, 32, 36, 37, 43, 49, 53, 57, 58, 62, 64, 67, 70, 71, 74, 76, 80, 81, 85, 87, 90, 93, 94, 122, 139, 141, 158, 159, 160, 161, 162, 170, 180, 192, 196, 209, 292, 375, 376, 378, 381, 387, 411, 419, 423, 428, 432, 445, 446, 450, 451, 468, 470, 479, 499, 501, 503, 532, 544, 576, 577, 628, 629, 630, 631, 632, 634, 636, 637, 639, 641, 644, 647, 648, 663, 679, 682, 693, 702, 703, 710, 722, 744, 764, 766, 767, 768, 777, 792, 796, 801, 802, 812, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 844, 845, 847, 851, 853, 855, 859, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 877], "robust": 0, "foundat": [0, 22, 860, 873], "manipul": [0, 57, 80, 840, 841, 845, 847, 849, 854, 859, 870], "4": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 117, 118, 126, 127, 128, 129, 132, 134, 136, 137, 138, 139, 140, 141, 143, 147, 149, 153, 154, 155, 163, 165, 168, 173, 175, 180, 197, 198, 206, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 321, 328, 330, 335, 336, 338, 340, 341, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 359, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 440, 446, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 467, 468, 469, 470, 471, 474, 475, 476, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 558, 560, 561, 562, 569, 576, 577, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 796, 805, 806, 812, 816, 818, 819, 825, 826, 827, 828, 829, 831, 834, 839, 842, 844, 847, 849, 851, 852, 853, 854, 861, 863, 870, 876, 877], "pip": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 49, 50, 812, 816, 819, 826, 835], "q": [0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 45, 46, 47, 57, 61, 62, 80, 84, 85, 362, 372, 376, 387, 429, 532, 636, 637, 641, 663, 666, 672, 673, 684, 726, 819, 820, 822, 842, 855], "r": [0, 4, 12, 45, 46, 57, 62, 74, 80, 85, 97, 98, 349, 364, 372, 374, 617, 635, 637, 639, 684, 713, 819, 820, 822, 839, 842, 878], "requir": [0, 6, 7, 26, 27, 28, 29, 36, 45, 46, 47, 50, 56, 57, 74, 79, 80, 274, 287, 291, 376, 378, 429, 430, 484, 632, 637, 639, 672, 673, 674, 710, 776, 784, 789, 806, 814, 818, 819, 824, 826, 828, 829, 830, 831, 832, 833, 835, 836, 838, 841, 842, 843, 844, 845, 847, 849, 851, 855, 864, 870, 876], "txt": [0, 4, 6, 12, 46, 58, 819, 823, 826], "16": [0, 4, 7, 8, 9, 10, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 102, 103, 168, 234, 263, 283, 290, 346, 349, 353, 372, 375, 378, 387, 394, 395, 397, 403, 407, 408, 412, 413, 418, 422, 457, 474, 523, 529, 546, 549, 571, 592, 593, 625, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 647, 658, 660, 667, 671, 674, 675, 682, 684, 688, 713, 726, 739, 740, 741, 748, 758, 759, 776, 779, 812, 820, 829, 831, 852], "mb": [0, 6, 7, 9, 10, 12, 45, 47, 50, 828], "25": [0, 14, 43, 45, 46, 47, 56, 57, 58, 62, 63, 66, 70, 73, 79, 80, 81, 84, 85, 88, 89, 93, 102, 103, 118, 137, 223, 224, 234, 240, 242, 253, 258, 273, 278, 281, 283, 286, 287, 288, 293, 315, 369, 377, 387, 418, 453, 456, 523, 532, 560, 561, 577, 592, 629, 632, 634, 637, 638, 641, 642, 647, 650, 667, 671, 676, 692, 697, 719, 726, 730, 737, 739, 740, 741, 758, 759, 761, 766, 821, 827, 839], "1": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 149, 152, 153, 154, 155, 159, 163, 164, 165, 168, 173, 175, 180, 196, 197, 201, 205, 206, 208, 209, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 325, 326, 328, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 442, 445, 446, 448, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 784, 788, 791, 792, 793, 794, 795, 796, 797, 801, 805, 806, 810, 812, 815, 816, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 854, 855, 860, 861, 863, 864, 865, 878], "": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 46, 48, 49, 50, 53, 57, 58, 59, 62, 70, 80, 82, 85, 93, 122, 139, 145, 146, 166, 167, 196, 199, 200, 212, 247, 282, 329, 334, 335, 336, 338, 349, 351, 357, 361, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 391, 398, 404, 409, 420, 428, 432, 440, 449, 454, 456, 457, 473, 475, 476, 484, 501, 502, 503, 512, 522, 532, 550, 551, 557, 571, 594, 595, 616, 618, 619, 620, 621, 623, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 663, 670, 678, 680, 687, 688, 694, 730, 764, 766, 777, 791, 792, 793, 794, 795, 796, 797, 801, 810, 812, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 857, 860, 861, 862, 863, 864, 865, 866, 869, 870, 871, 873, 874, 875, 876], "eta": [0, 7, 9, 10, 45, 47, 50], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 141, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 168, 169, 173, 175, 180, 193, 196, 198, 201, 206, 207, 208, 209, 211, 212, 213, 215, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 328, 329, 330, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 394, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 418, 419, 420, 422, 425, 426, 427, 429, 430, 431, 434, 435, 437, 440, 441, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 467, 469, 470, 471, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 539, 540, 541, 544, 545, 546, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 574, 576, 577, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 609, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 781, 788, 789, 791, 792, 793, 794, 795, 796, 797, 798, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 827, 828, 829, 830, 831, 832, 833, 834, 839, 840, 841, 842, 844, 845, 849, 851, 852, 853, 854, 855, 863, 864], "00": [0, 6, 7, 9, 10, 12, 14, 45, 47, 50, 57, 58, 62, 80, 81, 85, 245, 312, 343, 344, 369, 375, 397, 403, 407, 408, 549, 593, 632, 634, 637, 674, 684, 776, 835, 844], "44": [0, 6, 7, 9, 10, 43, 47, 56, 57, 66, 79, 80, 89, 226, 273, 283, 287, 288, 339, 372, 375, 396, 397, 632, 636, 637, 641, 644, 647, 659, 682, 726, 739, 740, 748, 759], "6": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 69, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 98, 102, 103, 110, 112, 117, 122, 127, 128, 135, 136, 139, 140, 143, 149, 153, 154, 155, 163, 165, 173, 219, 220, 222, 223, 225, 226, 227, 228, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 263, 264, 265, 266, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 294, 296, 297, 299, 301, 303, 305, 306, 307, 309, 310, 311, 312, 313, 319, 330, 335, 336, 338, 340, 349, 350, 352, 353, 354, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 385, 387, 397, 399, 402, 403, 407, 408, 412, 418, 419, 420, 422, 425, 428, 431, 432, 436, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 475, 479, 480, 483, 484, 489, 490, 492, 493, 496, 499, 500, 510, 512, 513, 515, 520, 522, 523, 524, 525, 527, 529, 531, 532, 538, 540, 541, 544, 545, 546, 552, 553, 560, 561, 562, 577, 591, 592, 593, 594, 595, 597, 601, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 729, 730, 736, 737, 738, 739, 740, 741, 743, 744, 745, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 776, 791, 812, 816, 819, 823, 825, 827, 828, 829, 831, 834, 839, 844, 847, 849, 851, 852, 853], "kb": [0, 6, 7, 9, 10, 12, 45, 47, 50], "3": [0, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 136, 137, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 194, 196, 197, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 392, 394, 395, 396, 397, 399, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 443, 446, 448, 451, 452, 453, 454, 455, 456, 457, 458, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 506, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 576, 577, 590, 591, 592, 593, 597, 600, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 779, 792, 805, 806, 810, 812, 816, 818, 819, 823, 824, 825, 827, 828, 829, 831, 833, 834, 837, 839, 842, 844, 849, 851, 852, 853, 854, 863, 864, 877], "45": [0, 7, 9, 10, 43, 45, 47, 56, 57, 70, 79, 80, 82, 84, 89, 103, 224, 228, 240, 283, 284, 343, 344, 357, 372, 375, 387, 397, 407, 418, 523, 529, 615, 621, 632, 635, 637, 639, 647, 682, 708, 740, 741, 759, 776], "5": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 23, 24, 26, 27, 28, 29, 31, 32, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 126, 127, 128, 134, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 153, 154, 155, 159, 163, 165, 173, 175, 180, 197, 206, 211, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 301, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 330, 333, 335, 336, 338, 340, 342, 344, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 412, 413, 414, 417, 418, 419, 420, 422, 425, 428, 429, 431, 432, 434, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 478, 479, 480, 483, 484, 489, 490, 491, 492, 493, 494, 496, 499, 500, 505, 506, 507, 510, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 529, 532, 538, 539, 540, 541, 544, 545, 546, 547, 549, 552, 553, 555, 558, 560, 561, 562, 576, 577, 581, 592, 593, 594, 595, 597, 601, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 658, 659, 660, 662, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 687, 688, 689, 691, 692, 693, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 792, 805, 806, 812, 815, 818, 819, 820, 823, 825, 827, 828, 829, 831, 833, 834, 836, 839, 842, 844, 851, 852, 853, 864, 878], "143": [0, 7, 9, 10, 62, 79, 103, 290, 632, 637, 675, 831], "8": [0, 4, 6, 7, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 102, 103, 110, 125, 135, 136, 140, 143, 149, 158, 160, 161, 162, 165, 173, 198, 215, 223, 225, 226, 230, 231, 234, 235, 236, 238, 244, 247, 251, 252, 258, 259, 260, 264, 265, 268, 269, 271, 272, 273, 278, 279, 282, 283, 284, 287, 288, 291, 292, 293, 297, 303, 305, 306, 307, 309, 310, 312, 313, 330, 334, 346, 349, 351, 352, 353, 356, 363, 367, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 425, 428, 436, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 468, 470, 474, 479, 480, 489, 490, 493, 494, 495, 496, 499, 500, 510, 512, 524, 527, 528, 532, 538, 539, 545, 546, 549, 552, 556, 560, 561, 562, 564, 565, 568, 571, 576, 577, 581, 591, 592, 593, 594, 595, 615, 618, 620, 622, 623, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 650, 654, 655, 657, 658, 659, 660, 663, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 703, 710, 711, 713, 719, 726, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 779, 792, 819, 827, 828, 831, 844, 848, 852], "7": [0, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 24, 26, 27, 28, 29, 43, 45, 46, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 112, 113, 114, 115, 126, 127, 128, 137, 140, 141, 159, 165, 168, 198, 220, 223, 226, 230, 231, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 246, 247, 250, 251, 252, 257, 258, 259, 260, 261, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 276, 277, 279, 280, 283, 284, 285, 287, 290, 291, 293, 294, 296, 297, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 318, 319, 330, 334, 338, 340, 341, 349, 350, 351, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 383, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 417, 418, 419, 420, 422, 425, 428, 441, 453, 454, 455, 456, 458, 459, 462, 463, 464, 468, 470, 474, 479, 480, 483, 484, 489, 490, 492, 493, 495, 496, 499, 500, 510, 512, 513, 520, 523, 524, 526, 527, 532, 538, 540, 541, 545, 546, 549, 560, 561, 562, 569, 576, 577, 592, 595, 615, 616, 618, 619, 620, 621, 622, 623, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 655, 657, 658, 659, 660, 666, 668, 669, 670, 671, 673, 674, 675, 677, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 696, 697, 698, 699, 702, 703, 708, 710, 711, 713, 718, 719, 726, 730, 737, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 757, 758, 759, 761, 763, 765, 766, 776, 819, 820, 825, 827, 828, 831, 837, 840, 844], "9": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 26, 27, 28, 29, 43, 45, 47, 50, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 73, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93, 102, 103, 110, 126, 127, 128, 140, 158, 159, 160, 161, 162, 165, 168, 221, 223, 225, 226, 229, 230, 231, 234, 235, 240, 241, 242, 247, 254, 260, 261, 262, 264, 268, 269, 271, 272, 273, 276, 278, 279, 283, 284, 287, 288, 289, 294, 300, 303, 304, 305, 342, 345, 349, 355, 356, 363, 367, 372, 373, 375, 377, 378, 385, 387, 394, 395, 396, 397, 402, 403, 407, 408, 412, 413, 417, 418, 422, 436, 453, 455, 457, 458, 462, 463, 464, 470, 474, 479, 489, 490, 491, 492, 494, 496, 499, 510, 512, 515, 524, 541, 545, 546, 547, 549, 552, 560, 561, 564, 565, 568, 576, 577, 591, 592, 594, 615, 616, 617, 621, 622, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 646, 647, 650, 651, 652, 658, 659, 660, 668, 669, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 691, 692, 693, 699, 703, 707, 708, 710, 711, 713, 718, 719, 724, 726, 729, 730, 738, 739, 740, 741, 743, 748, 749, 751, 753, 754, 756, 758, 759, 761, 763, 765, 766, 776, 796, 827, 829, 831, 839, 844, 852, 853, 866], "756": [0, 7, 9, 10], "21": [0, 4, 7, 9, 14, 43, 45, 47, 50, 56, 57, 58, 66, 76, 79, 80, 84, 85, 89, 93, 102, 138, 168, 223, 226, 228, 234, 258, 273, 304, 356, 375, 376, 377, 378, 387, 394, 397, 407, 412, 418, 420, 422, 426, 452, 467, 523, 577, 629, 630, 632, 634, 637, 641, 647, 671, 682, 686, 724, 739, 740, 757, 758, 759, 833, 839], "116": [0, 7, 9, 10], "23": [0, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 62, 66, 76, 79, 80, 81, 84, 89, 136, 235, 238, 255, 256, 257, 280, 282, 283, 284, 286, 293, 338, 339, 372, 375, 378, 387, 394, 395, 397, 407, 412, 413, 414, 418, 422, 467, 523, 529, 629, 632, 636, 637, 641, 644, 655, 657, 671, 675, 678, 686, 688, 689, 719, 726, 730, 739, 740, 741, 748, 812, 828, 844, 849], "29": [0, 6, 14, 43, 45, 47, 50, 62, 79, 81, 82, 84, 89, 228, 387, 418, 523, 545, 546, 617, 621, 632, 634, 635, 637, 675, 739, 740, 741], "823": 0, "46": [0, 6, 43, 45, 47, 57, 66, 80, 84, 89, 138, 263, 284, 314, 369, 375, 395, 413, 414, 629, 632, 641, 719, 739, 740], "14": [0, 4, 6, 8, 11, 12, 27, 43, 45, 46, 47, 54, 56, 57, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 89, 152, 165, 168, 221, 226, 228, 235, 239, 265, 269, 273, 279, 286, 294, 345, 375, 376, 378, 387, 394, 395, 396, 397, 407, 412, 414, 417, 418, 419, 422, 426, 432, 433, 468, 470, 474, 479, 499, 523, 592, 615, 630, 632, 634, 635, 636, 637, 639, 641, 645, 647, 650, 651, 653, 655, 657, 659, 671, 673, 675, 682, 689, 691, 693, 713, 730, 739, 740, 741, 749, 758, 759, 827, 831, 844], "731": [0, 51, 116], "945": 0, "410": 0, "2": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 31, 32, 43, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 149, 152, 153, 154, 155, 159, 163, 165, 173, 175, 180, 196, 197, 198, 201, 204, 206, 208, 211, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 319, 320, 321, 328, 330, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 391, 394, 395, 396, 397, 398, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 597, 601, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 779, 788, 791, 792, 801, 805, 806, 810, 812, 816, 819, 820, 823, 825, 826, 827, 828, 829, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 863, 864, 865, 876, 877], "121": 0, "56": [0, 12, 14, 43, 45, 56, 57, 61, 66, 79, 80, 84, 138, 273, 287, 290, 293, 375, 397, 407, 615, 629, 632, 635, 636, 637, 641, 647, 651, 653, 655, 657, 660, 682, 718, 740, 759, 831], "124": [0, 636, 660], "196": [0, 84, 636, 660], "166": [0, 73, 110, 626], "99": [0, 14, 43, 56, 57, 59, 77, 79, 89, 135, 222, 237, 360, 372, 592, 619, 629, 632, 634, 635, 641, 647, 722, 730, 740, 759], "11": [0, 4, 6, 7, 8, 12, 13, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 58, 61, 62, 66, 70, 79, 80, 81, 84, 85, 87, 89, 93, 103, 223, 227, 230, 235, 245, 282, 283, 289, 353, 372, 375, 376, 378, 394, 395, 407, 412, 413, 417, 418, 422, 431, 467, 468, 470, 474, 479, 481, 499, 523, 524, 539, 545, 546, 552, 561, 577, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 647, 650, 651, 659, 660, 671, 674, 675, 676, 677, 678, 682, 686, 687, 688, 689, 691, 693, 696, 703, 708, 709, 711, 713, 724, 726, 736, 739, 740, 741, 748, 749, 757, 758, 759, 766, 827, 828, 829, 831, 839], "71": [0, 43, 56, 79, 84, 239, 279, 418, 632], "To": [0, 1, 6, 12, 13, 14, 16, 18, 22, 26, 27, 28, 29, 31, 32, 43, 46, 47, 48, 98, 247, 377, 456, 586, 632, 634, 791, 812, 818, 819, 823, 824, 825, 826, 829, 831, 833, 834, 835, 837, 838, 841, 842, 843, 844, 845, 852, 853, 854, 856, 863, 864], "ensur": [0, 1, 12, 13, 16, 18, 26, 27, 28, 29, 57, 58, 80, 81, 375, 376, 412, 413, 414, 447, 562, 634, 771, 812, 815, 818, 819, 820, 824, 829, 830, 831, 833, 835, 836, 838, 840, 841, 842, 843, 844, 845, 856, 870], "begin": [0, 7, 27, 57, 80, 284, 377, 378, 452, 468, 484, 485, 486, 487, 488, 632, 641, 718, 729, 776, 819, 823, 828, 842], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 70, 79, 80, 81, 147, 176, 194, 199, 224, 284, 307, 328, 369, 387, 522, 529, 538, 562, 592, 595, 599, 629, 630, 631, 632, 634, 637, 647, 685, 759, 771, 773, 784, 801, 805, 806, 812, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 833, 834, 836, 840, 842, 844, 845, 847, 849, 851, 854, 856, 857, 859, 860, 863, 864, 865, 867, 872, 877], "handl": [0, 4, 8, 43, 45, 51, 55, 56, 57, 73, 74, 78, 79, 80, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 193, 194, 195, 196, 197, 201, 206, 207, 215, 219, 225, 237, 262, 264, 278, 284, 285, 290, 291, 295, 300, 301, 303, 367, 378, 467, 493, 626, 631, 632, 637, 647, 691, 763, 765, 788, 796, 813, 815, 822, 827, 828, 829, 835, 836, 837, 839, 840, 841, 842, 843, 844, 846, 847, 853, 867, 877], "its": [0, 1, 6, 13, 22, 24, 31, 32, 34, 37, 44, 45, 47, 52, 54, 57, 64, 74, 77, 80, 81, 87, 100, 112, 115, 118, 123, 153, 158, 159, 160, 161, 162, 213, 240, 273, 292, 302, 367, 375, 378, 387, 415, 423, 496, 498, 525, 549, 598, 626, 628, 630, 631, 632, 634, 637, 639, 641, 677, 702, 706, 707, 711, 724, 773, 806, 812, 818, 819, 824, 827, 828, 829, 830, 832, 833, 834, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 854, 855, 857, 863, 869, 870, 876], "backend": [0, 4, 6, 7, 9, 10, 13, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 37, 52, 53, 57, 58, 62, 74, 80, 81, 85, 102, 129, 166, 167, 170, 192, 199, 200, 202, 205, 216, 335, 336, 372, 376, 428, 430, 529, 538, 550, 551, 559, 562, 563, 573, 580, 595, 598, 629, 630, 631, 634, 637, 685, 687, 771, 773, 774, 776, 777, 778, 781, 783, 784, 789, 793, 794, 796, 800, 801, 812, 816, 817, 819, 820, 822, 823, 824, 828, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 848, 850, 851, 854, 857, 859, 863, 864, 865, 870, 873, 876, 877], "jax": [0, 3, 6, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 49, 51, 56, 57, 58, 68, 73, 79, 80, 81, 110, 111, 112, 113, 114, 115, 116, 117, 118, 209, 291, 295, 300, 301, 303, 349, 367, 372, 387, 532, 562, 595, 614, 626, 631, 632, 634, 645, 749, 750, 751, 752, 784, 788, 801, 812, 816, 817, 818, 819, 820, 823, 825, 829, 830, 833, 834, 836, 839, 840, 841, 842, 844, 845, 847, 849, 851, 854, 855, 860, 861, 863, 864, 865, 871, 873, 876, 877], "capabl": [0, 6, 20, 28, 32, 844, 847], "optim": [0, 6, 7, 11, 13, 14, 22, 26, 27, 29, 31, 32, 45, 47, 48, 50, 57, 59, 80, 82, 312, 369, 377, 456, 457, 536, 623, 634, 635, 640, 715, 716, 717, 791, 806, 812, 829, 840, 847, 850, 852, 854, 861, 864, 868, 869, 870, 871, 872, 873, 874, 877], "frontend": [0, 14, 579, 634, 773, 774, 777, 781, 784, 812, 817, 820, 822, 828, 829, 833, 834, 839, 843, 844, 847, 848, 850, 857, 864, 870], "xgb_frontend": 0, "access": [0, 1, 28, 31, 32, 74, 812, 818, 819, 820, 828, 829, 835, 840, 841, 856, 864, 870, 872, 874], "compat": [0, 6, 9, 23, 29, 33, 37, 43, 50, 56, 57, 62, 64, 67, 70, 71, 79, 80, 85, 87, 90, 93, 94, 102, 103, 154, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 294, 335, 336, 372, 630, 632, 637, 639, 644, 647, 648, 668, 680, 683, 686, 689, 693, 694, 706, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 819, 825, 836, 841, 842, 845, 849, 855, 860], "manner": [0, 24, 32, 34, 44, 52, 75, 641, 730, 819, 829, 830, 832, 837, 841, 845, 852, 855, 859, 866, 868, 876, 877], "sklearn": [0, 14], "model_select": [0, 14], "timeit": [0, 11, 13, 14, 24, 31, 32, 48, 50], "oper": [0, 6, 22, 23, 26, 27, 28, 29, 31, 32, 33, 37, 44, 47, 53, 54, 56, 57, 58, 61, 62, 70, 74, 76, 77, 79, 80, 81, 84, 85, 93, 103, 118, 137, 138, 180, 210, 218, 223, 225, 234, 237, 240, 247, 262, 264, 273, 274, 278, 282, 285, 290, 302, 310, 330, 331, 332, 364, 367, 369, 374, 375, 377, 378, 389, 390, 391, 392, 394, 395, 396, 402, 403, 404, 408, 412, 413, 414, 415, 417, 418, 420, 422, 423, 452, 489, 491, 538, 545, 546, 547, 595, 626, 629, 630, 631, 632, 634, 636, 637, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 663, 678, 689, 691, 761, 763, 765, 776, 779, 792, 806, 810, 812, 818, 819, 822, 823, 824, 827, 829, 830, 831, 832, 833, 837, 840, 841, 844, 847, 849, 852, 853, 857, 859, 863, 866, 867, 868, 869, 870, 871, 873, 874, 875, 876, 877], "xgb": 0, "functool": [0, 14, 45, 833, 841, 851], "higher": [0, 14, 57, 80, 376, 378, 387, 433, 445, 451, 462, 463, 464, 532, 791, 829, 840, 848, 849, 854, 855, 867, 870, 871, 874, 876, 877], "order": [0, 4, 25, 35, 37, 45, 48, 50, 53, 57, 58, 61, 62, 64, 68, 69, 74, 80, 84, 85, 87, 91, 92, 97, 102, 103, 127, 128, 139, 147, 228, 247, 290, 328, 349, 369, 372, 375, 376, 378, 381, 385, 421, 426, 429, 430, 431, 432, 433, 437, 443, 445, 448, 451, 474, 475, 476, 481, 482, 494, 501, 502, 503, 506, 515, 629, 632, 636, 637, 639, 640, 644, 645, 646, 650, 651, 652, 653, 654, 655, 658, 672, 673, 678, 687, 688, 692, 694, 703, 706, 715, 716, 747, 749, 750, 751, 752, 753, 755, 756, 773, 795, 797, 806, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 841, 842, 843, 844, 845, 846, 847, 852, 854, 855, 859, 866, 869, 870, 871, 873, 876], "callabl": [0, 12, 49, 57, 58, 72, 80, 81, 84, 95, 122, 123, 125, 166, 167, 199, 200, 213, 363, 365, 366, 373, 374, 375, 378, 418, 421, 423, 461, 484, 535, 539, 544, 546, 550, 551, 572, 601, 614, 618, 620, 625, 628, 630, 631, 634, 635, 640, 641, 715, 716, 717, 724, 725, 726, 728, 729, 730, 731, 771, 774, 784, 796, 807, 810, 827, 833, 839, 841, 849, 862, 863, 864, 865], "object": [0, 14, 22, 27, 29, 31, 45, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 103, 106, 107, 129, 133, 134, 144, 156, 165, 168, 176, 179, 214, 272, 509, 557, 573, 617, 629, 630, 631, 634, 635, 641, 643, 721, 722, 723, 725, 726, 727, 733, 734, 735, 736, 743, 771, 773, 774, 781, 782, 783, 789, 790, 792, 793, 794, 801, 805, 812, 824, 825, 827, 828, 837, 838, 841, 842, 844, 847, 851, 854, 862, 863, 864, 865, 870, 876], "tqdm_notebook": [0, 14], "tqdm": [0, 6, 7, 14, 26, 27, 28, 29, 45, 47, 812], "progress": [0, 637, 692, 815, 819, 820, 854], "bar": [0, 819, 834], "jupyt": [0, 1, 860, 872], "lai": 0, "groundwork": 0, "preprocess": [0, 4, 12, 14, 31, 32, 45, 48, 863], "step": [0, 1, 2, 6, 7, 17, 18, 19, 30, 31, 32, 43, 45, 46, 47, 57, 59, 76, 80, 82, 126, 137, 375, 378, 421, 423, 478, 615, 616, 619, 621, 622, 623, 629, 635, 640, 715, 716, 717, 796, 810, 812, 818, 819, 820, 821, 824, 825, 827, 828, 829, 830, 831, 834, 839, 841, 844, 849, 852, 853, 854, 861, 870], "np": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 18, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 44, 45, 46, 47, 48, 50, 53, 57, 79, 80, 81, 127, 128, 129, 140, 176, 253, 257, 307, 375, 376, 403, 408, 424, 592, 629, 630, 632, 634, 641, 724, 773, 801, 805, 806, 812, 818, 824, 829, 830, 833, 836, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 857, 865], "pd": [0, 14, 47], "set_backend": [0, 4, 5, 8, 12, 14, 22, 23, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 44, 46, 47, 48, 56, 58, 72, 79, 81, 167, 176, 194, 195, 199, 209, 211, 216, 224, 538, 562, 630, 631, 634, 637, 640, 685, 716, 717, 801, 812, 823, 825, 829, 830, 837, 838, 839, 849, 851, 854, 863, 864, 865], "config": [0, 5, 6, 7, 8, 11, 13, 14, 25, 28, 31, 32, 45, 46, 48, 74, 641, 731, 812, 819, 823, 826, 828, 835, 842, 852, 863, 871], "updat": [0, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 45, 47, 52, 58, 59, 74, 81, 82, 97, 378, 489, 562, 576, 577, 580, 581, 604, 615, 616, 619, 621, 622, 623, 634, 635, 636, 640, 641, 659, 662, 715, 716, 717, 725, 726, 730, 735, 736, 784, 789, 795, 796, 801, 806, 812, 818, 819, 820, 822, 823, 824, 827, 828, 829, 831, 836, 838, 839, 841, 842, 844, 847, 849, 851, 852, 854, 855], "jax_enable_x64": [0, 5, 8, 11, 13, 14, 25, 28, 31, 32, 812], "true": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 25, 26, 28, 29, 31, 32, 36, 37, 38, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 163, 165, 166, 167, 168, 171, 172, 173, 174, 175, 176, 177, 180, 192, 196, 197, 199, 200, 204, 207, 208, 210, 214, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 471, 472, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 781, 792, 793, 794, 795, 796, 798, 801, 803, 805, 806, 810, 812, 816, 819, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "from": [0, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 94, 95, 97, 98, 100, 103, 126, 128, 131, 133, 134, 135, 136, 139, 140, 143, 147, 149, 155, 173, 179, 180, 196, 201, 206, 212, 213, 239, 247, 248, 275, 279, 280, 287, 291, 312, 313, 319, 322, 328, 330, 331, 332, 339, 342, 346, 347, 349, 350, 362, 366, 369, 372, 374, 375, 376, 377, 378, 382, 387, 399, 400, 401, 415, 420, 421, 440, 447, 452, 453, 457, 467, 470, 479, 484, 490, 492, 493, 495, 496, 498, 499, 508, 509, 510, 511, 512, 523, 524, 544, 552, 553, 555, 575, 586, 597, 614, 616, 617, 621, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 645, 647, 648, 650, 658, 659, 668, 671, 687, 691, 692, 693, 700, 703, 706, 709, 715, 716, 717, 719, 730, 731, 732, 738, 739, 740, 741, 745, 748, 749, 751, 757, 758, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 796, 801, 806, 810, 812, 813, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877], "classification_report": [0, 14], "train_test_split": [0, 14], "usr": [0, 7, 8, 9, 10, 11, 13, 45, 46, 47, 50, 819], "local": [0, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 45, 46, 47, 50, 381, 506, 557, 634, 813, 819, 823, 826, 834, 837, 842, 844], "lib": [0, 7, 8, 9, 10, 14, 26, 27, 28, 29, 45, 46, 47, 50], "python3": [0, 7, 8, 9, 10, 12, 26, 27, 28, 29, 31, 45, 47, 50, 819, 820], "10": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 47, 49, 50, 53, 56, 57, 58, 59, 61, 62, 66, 68, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 126, 136, 137, 138, 222, 230, 231, 234, 235, 238, 245, 250, 252, 258, 260, 262, 273, 279, 286, 287, 292, 301, 334, 335, 336, 339, 343, 344, 346, 348, 349, 351, 352, 353, 355, 356, 360, 363, 372, 375, 378, 387, 394, 395, 396, 397, 407, 412, 413, 417, 418, 419, 420, 422, 452, 464, 467, 470, 474, 479, 489, 490, 499, 520, 523, 524, 527, 529, 532, 545, 546, 547, 549, 552, 553, 555, 560, 561, 569, 577, 581, 586, 592, 594, 606, 609, 621, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 650, 651, 653, 659, 669, 671, 675, 676, 677, 678, 679, 682, 687, 688, 689, 691, 693, 703, 708, 709, 710, 711, 713, 724, 726, 729, 737, 738, 739, 740, 741, 747, 749, 755, 757, 758, 759, 760, 762, 763, 765, 766, 776, 778, 796, 812, 816, 819, 823, 827, 828, 829, 831, 834, 839, 842, 844, 849, 851, 852, 860, 865, 875], "dist": [0, 7, 8, 9, 10, 45, 46, 47, 50], "packag": [0, 2, 4, 7, 8, 9, 10, 12, 13, 16, 26, 27, 28, 29, 32, 45, 46, 47, 50, 804, 816, 819, 828, 841, 855, 856, 870, 872], "except": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 50, 57, 58, 64, 66, 71, 74, 80, 81, 85, 89, 94, 154, 335, 336, 341, 360, 372, 378, 382, 387, 468, 492, 496, 509, 528, 529, 544, 562, 579, 595, 601, 630, 634, 637, 639, 643, 644, 648, 683, 700, 702, 710, 739, 740, 741, 747, 767, 768, 771, 774, 778, 812, 820, 821, 822, 823, 824, 828, 829, 830, 832, 834, 836, 840, 841, 845, 846, 847, 851, 855], "py": [0, 6, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 45, 47, 50, 93, 376, 447, 759, 801, 805, 812, 818, 819, 820, 823, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 841, 842, 844, 845, 849, 851, 853, 854], "383": [0, 7, 9, 10, 23], "userwarn": [0, 7, 8, 9, 10, 12, 13, 23, 26, 27, 28, 29, 50], "current": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 45, 46, 52, 57, 58, 74, 80, 103, 122, 166, 167, 170, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 206, 208, 376, 378, 428, 429, 484, 492, 550, 551, 554, 557, 559, 563, 574, 575, 595, 628, 630, 631, 634, 637, 641, 672, 718, 728, 729, 773, 777, 793, 794, 801, 802, 806, 809, 810, 812, 814, 818, 819, 820, 823, 825, 827, 828, 829, 830, 833, 834, 835, 837, 840, 841, 842, 843, 844, 847, 849, 854, 855, 861, 863, 870, 876, 877], "39": [0, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 26, 27, 28, 29, 43, 45, 46, 47, 48, 50, 51, 56, 57, 62, 66, 73, 79, 80, 82, 85, 89, 112, 226, 261, 263, 265, 295, 296, 299, 367, 375, 387, 395, 397, 414, 417, 523, 615, 626, 632, 635, 637, 647, 675, 682, 740, 759], "doe": [0, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 44, 46, 56, 57, 58, 64, 74, 79, 80, 87, 97, 147, 274, 276, 284, 328, 369, 376, 377, 387, 388, 429, 456, 457, 528, 529, 533, 562, 629, 632, 634, 637, 639, 672, 708, 771, 806, 816, 818, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 855, 857, 860, 863, 866, 870, 871, 877], "support": [0, 5, 6, 7, 9, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 34, 46, 55, 57, 58, 62, 78, 80, 81, 85, 147, 166, 170, 192, 199, 214, 223, 240, 247, 268, 269, 273, 283, 302, 328, 349, 367, 369, 372, 376, 378, 411, 429, 438, 492, 538, 550, 559, 562, 563, 580, 595, 629, 630, 631, 632, 634, 636, 637, 660, 672, 673, 674, 678, 687, 694, 771, 777, 784, 796, 801, 802, 805, 810, 812, 814, 816, 818, 819, 820, 823, 824, 826, 830, 831, 832, 834, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 851, 852, 854, 856, 857, 859, 860, 861, 864, 867, 869, 870, 873, 875, 876, 877], "inplac": [0, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 52, 58, 74, 81, 97, 100, 536, 538, 559, 562, 563, 580, 581, 634, 641, 725, 726, 730, 735, 736, 783, 784, 789, 796, 822, 824, 831, 834, 836, 838, 841, 847, 851, 853], "nativ": [0, 4, 5, 6, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 32, 52, 53, 54, 55, 58, 75, 78, 81, 102, 106, 140, 150, 151, 157, 158, 159, 160, 161, 162, 176, 179, 194, 195, 196, 197, 207, 215, 219, 562, 564, 568, 575, 580, 598, 629, 630, 631, 634, 773, 784, 789, 801, 812, 816, 818, 829, 830, 833, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 857, 863, 864, 865, 868, 877], "would": [0, 6, 7, 8, 9, 10, 13, 14, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 47, 53, 55, 57, 76, 78, 80, 87, 113, 117, 128, 214, 375, 378, 403, 408, 462, 463, 470, 472, 474, 475, 476, 483, 487, 499, 626, 631, 702, 703, 704, 706, 708, 709, 711, 713, 778, 788, 792, 812, 813, 816, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 831, 832, 834, 836, 838, 840, 841, 842, 844, 845, 847, 848, 849, 851, 853, 854, 855, 856, 860, 863, 870, 876], "quietli": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29], "new": [0, 1, 7, 9, 10, 11, 13, 15, 16, 18, 20, 23, 26, 27, 28, 29, 31, 32, 33, 47, 49, 52, 57, 58, 59, 64, 65, 74, 76, 80, 81, 82, 85, 87, 88, 130, 133, 135, 136, 141, 142, 143, 148, 149, 186, 209, 229, 275, 277, 281, 334, 339, 351, 356, 372, 375, 378, 387, 411, 460, 468, 469, 483, 489, 496, 529, 545, 546, 547, 549, 552, 553, 555, 576, 577, 580, 582, 589, 592, 593, 599, 616, 619, 621, 622, 623, 629, 630, 631, 632, 634, 635, 636, 639, 641, 642, 663, 675, 682, 702, 706, 710, 723, 735, 736, 737, 789, 792, 795, 796, 801, 806, 812, 813, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 831, 832, 834, 835, 838, 840, 841, 842, 843, 844, 845, 847, 848, 851, 854, 856, 857, 859, 860, 861, 863, 868, 872, 876, 877], "when": [0, 6, 7, 8, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 46, 48, 52, 53, 54, 56, 57, 62, 63, 66, 67, 70, 74, 76, 77, 79, 80, 85, 86, 89, 90, 93, 103, 141, 152, 223, 240, 245, 247, 263, 273, 291, 292, 300, 335, 336, 367, 372, 375, 376, 377, 381, 382, 387, 398, 411, 423, 430, 434, 445, 451, 452, 457, 501, 503, 509, 529, 532, 562, 578, 586, 593, 629, 630, 632, 634, 636, 637, 638, 639, 641, 643, 644, 647, 649, 661, 663, 680, 685, 696, 697, 698, 706, 729, 730, 739, 740, 741, 744, 745, 747, 748, 760, 762, 764, 766, 776, 779, 791, 792, 793, 794, 795, 801, 810, 812, 813, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 856, 859, 860, 863, 864, 868, 870, 873, 874, 875, 876], "lead": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 62, 74, 85, 103, 247, 376, 440, 580, 632, 634, 637, 684, 687, 778, 828, 829, 831, 843, 845, 855, 860, 861], "memori": [0, 4, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 53, 57, 64, 76, 80, 87, 128, 139, 195, 207, 213, 215, 219, 378, 387, 462, 463, 470, 472, 474, 475, 476, 483, 499, 529, 575, 580, 604, 629, 631, 634, 636, 639, 661, 662, 702, 703, 704, 706, 708, 709, 711, 713, 806, 810, 828, 829, 830, 840, 841, 847, 849, 855, 863, 870, 872, 873, 874], "overhead": [0, 7, 8, 9, 10, 13, 23, 24, 26, 27, 28, 29, 31, 32, 34, 855, 863, 873], "same": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 23, 24, 26, 27, 28, 29, 31, 34, 36, 38, 43, 44, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 69, 70, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 93, 97, 98, 99, 100, 101, 102, 116, 126, 131, 136, 138, 139, 141, 143, 145, 146, 147, 149, 152, 153, 154, 165, 168, 213, 220, 221, 222, 223, 225, 227, 231, 233, 236, 240, 246, 247, 253, 273, 275, 277, 280, 282, 283, 284, 293, 301, 313, 327, 328, 329, 330, 331, 332, 335, 336, 338, 346, 362, 367, 369, 372, 375, 376, 377, 378, 381, 383, 385, 387, 394, 395, 396, 412, 413, 414, 415, 417, 418, 419, 420, 422, 429, 434, 435, 445, 446, 447, 448, 449, 451, 452, 454, 457, 467, 469, 484, 492, 493, 496, 501, 503, 513, 515, 520, 521, 522, 523, 524, 525, 526, 532, 569, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 663, 666, 667, 668, 669, 671, 672, 673, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 700, 703, 704, 706, 707, 709, 710, 715, 716, 731, 741, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 784, 792, 805, 812, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 859, 861, 863, 865, 867, 869, 876, 877], "appli": [0, 7, 9, 10, 11, 13, 23, 26, 27, 28, 29, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 411, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 630, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 691, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 724, 727, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 778, 779, 788, 792, 795, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 841, 844, 845, 847, 851, 852, 853, 854, 855, 863, 864, 871], "view": [0, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29, 57, 64, 80, 102, 133, 144, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 496, 499, 555, 629, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 819, 820, 833, 870], "If": [0, 1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 46, 49, 50, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 145, 146, 147, 148, 149, 152, 153, 154, 155, 180, 196, 212, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 328, 329, 331, 334, 335, 336, 337, 338, 340, 341, 342, 346, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 404, 407, 409, 411, 412, 413, 414, 419, 420, 421, 423, 428, 430, 432, 434, 435, 442, 444, 446, 447, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 489, 490, 491, 492, 493, 494, 496, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 619, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 670, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 791, 792, 794, 795, 801, 806, 810, 812, 813, 814, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 859, 863, 864, 865], "you": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 57, 58, 80, 81, 97, 102, 103, 378, 387, 472, 529, 552, 553, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 663, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 870, 878], "want": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 44, 45, 47, 57, 72, 80, 95, 240, 273, 378, 472, 632, 794, 812, 813, 814, 818, 819, 820, 826, 828, 830, 833, 835, 837, 838, 839, 840, 844, 847, 852, 853, 854, 855, 856, 860, 864], "control": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 39, 57, 80, 147, 296, 328, 367, 369, 375, 378, 399, 400, 401, 467, 493, 580, 629, 634, 637, 670, 827, 829, 830, 839, 840, 841, 842, 847, 851, 852, 857, 863, 870, 876], "your": [0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 49, 812, 813, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 832, 834, 835, 839, 841, 843, 845, 847, 852, 853, 855, 856, 860, 861, 863, 864, 870, 878], "manag": [0, 7, 9, 10, 13, 22, 23, 26, 27, 28, 29, 31, 580, 604, 634, 812, 813, 821, 825, 829, 830, 840, 843, 855, 861, 872, 874], "consid": [0, 6, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 36, 37, 57, 62, 68, 80, 85, 118, 147, 268, 269, 328, 334, 339, 351, 369, 372, 376, 387, 430, 434, 445, 522, 626, 629, 632, 637, 645, 670, 680, 749, 750, 751, 752, 778, 791, 824, 828, 829, 837, 839, 845, 847, 850, 851, 852, 859, 860, 863, 867, 871, 875, 877], "do": [0, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 43, 45, 47, 57, 58, 74, 80, 81, 240, 273, 282, 375, 377, 378, 387, 421, 457, 469, 529, 532, 562, 632, 634, 641, 718, 725, 728, 729, 730, 735, 778, 806, 812, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 851, 852, 853, 854, 855, 857, 861, 871, 876, 877], "set_inplace_mod": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 604, 634], "strict": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 580, 604, 634], "should": [0, 1, 5, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 48, 51, 53, 56, 57, 58, 59, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 79, 80, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 100, 102, 103, 113, 117, 125, 139, 141, 145, 146, 154, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 313, 329, 335, 336, 348, 352, 353, 354, 355, 359, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 382, 387, 390, 399, 400, 401, 403, 408, 419, 434, 445, 451, 458, 483, 484, 508, 509, 522, 523, 524, 539, 557, 562, 614, 616, 619, 621, 622, 623, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 691, 693, 694, 706, 722, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 757, 758, 759, 760, 761, 762, 763, 765, 766, 773, 774, 776, 778, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 858, 860, 864, 866, 867, 870, 872, 877], "rais": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 46, 47, 53, 57, 58, 66, 68, 71, 74, 76, 80, 81, 87, 89, 91, 94, 128, 154, 243, 278, 335, 336, 346, 372, 375, 377, 378, 382, 387, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 492, 499, 509, 528, 529, 538, 562, 580, 582, 593, 595, 601, 605, 630, 632, 634, 637, 639, 643, 644, 645, 647, 648, 677, 679, 693, 702, 703, 704, 706, 708, 709, 710, 711, 713, 739, 740, 741, 747, 752, 760, 762, 767, 768, 771, 778, 796, 812, 820, 823, 825, 829, 830, 833, 840, 841, 845, 846, 849, 851, 856, 860], "error": [0, 7, 9, 10, 13, 14, 23, 26, 27, 28, 29, 37, 48, 50, 56, 57, 61, 74, 79, 80, 84, 110, 242, 290, 335, 336, 343, 344, 372, 376, 377, 378, 387, 388, 445, 451, 453, 455, 492, 529, 533, 580, 626, 632, 634, 636, 637, 647, 666, 685, 688, 760, 762, 778, 796, 809, 813, 817, 818, 819, 820, 823, 824, 825, 828, 829, 830, 831, 835, 836, 841, 844, 845, 846, 851, 855, 861, 870], "whenev": [0, 7, 9, 10, 13, 23, 26, 27, 28, 29, 792, 820, 825, 828, 829, 833, 840, 843, 844, 846, 852], "attempt": [0, 6, 7, 9, 10, 13, 23, 26, 27, 28, 29, 45, 47, 50, 819, 846, 855], "warn": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 23, 26, 27, 28, 29, 45, 46, 47, 50, 809, 819, 820, 846, 863, 864, 865], "first": [0, 4, 5, 7, 8, 9, 12, 16, 22, 24, 25, 26, 28, 31, 32, 34, 35, 36, 45, 48, 49, 50, 53, 56, 57, 62, 64, 66, 67, 68, 70, 76, 79, 80, 81, 85, 87, 89, 91, 93, 97, 98, 102, 103, 122, 123, 137, 138, 147, 178, 186, 196, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 290, 302, 312, 313, 328, 330, 331, 332, 334, 347, 349, 350, 351, 357, 361, 362, 367, 369, 372, 375, 376, 377, 378, 385, 387, 398, 428, 429, 430, 432, 436, 458, 468, 470, 474, 481, 484, 486, 487, 490, 498, 509, 511, 515, 523, 524, 525, 532, 537, 628, 629, 630, 631, 632, 634, 636, 637, 639, 640, 641, 644, 645, 646, 647, 663, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 706, 707, 710, 711, 715, 716, 717, 718, 719, 728, 729, 731, 743, 744, 745, 749, 750, 751, 754, 755, 757, 758, 773, 791, 792, 793, 794, 796, 801, 812, 814, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 830, 831, 835, 836, 837, 838, 840, 841, 844, 847, 849, 851, 852, 854, 856, 859, 860, 863, 864, 868, 870, 871, 875], "datafram": [0, 870], "allow": [0, 6, 14, 29, 31, 32, 43, 57, 70, 80, 93, 137, 278, 376, 387, 448, 525, 529, 572, 629, 632, 634, 646, 647, 755, 762, 776, 777, 778, 779, 793, 794, 806, 810, 812, 818, 820, 821, 824, 825, 828, 829, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 849, 851, 855, 857, 860, 863, 864, 865, 868, 870, 874, 875], "u": [0, 4, 11, 45, 47, 49, 50, 57, 62, 76, 80, 85, 97, 98, 138, 376, 440, 447, 449, 637, 641, 667, 673, 674, 687, 726, 812, 813, 819, 820, 822, 827, 828, 835, 838, 840, 841, 842, 843, 844, 845, 847, 853, 855, 860], "leverag": [0, 28, 31, 32, 812, 819, 840, 864, 868, 870], "explor": [0, 6, 7, 14, 16, 18, 22, 26, 27, 28, 31, 32, 37, 38, 39, 818, 819, 820, 829, 834, 847, 850, 854, 870, 873], "expect": [0, 4, 8, 11, 13, 24, 28, 31, 32, 34, 47, 48, 50, 57, 62, 63, 80, 86, 179, 247, 291, 375, 377, 398, 420, 457, 536, 630, 632, 634, 636, 638, 661, 682, 696, 791, 792, 812, 819, 820, 823, 829, 830, 833, 835, 838, 840, 842, 844, 847, 855, 856, 861, 863, 864, 865], "contain": [0, 9, 22, 31, 32, 46, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 163, 165, 166, 167, 168, 171, 172, 173, 175, 177, 180, 197, 199, 200, 201, 206, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 367, 369, 372, 374, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 581, 584, 586, 591, 592, 593, 594, 595, 597, 599, 600, 607, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 783, 784, 792, 793, 794, 796, 797, 801, 805, 806, 810, 812, 814, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 831, 832, 834, 836, 837, 838, 839, 840, 842, 844, 846, 847, 848, 849, 850, 853, 855, 856, 857, 859, 863, 870, 871, 876], "variou": [0, 6, 14, 25, 35, 37, 43, 812, 815, 818, 819, 820, 823, 828, 829, 832, 833, 836, 838, 839, 841, 842, 843, 844, 856, 866, 868, 869, 870, 873, 876], "among": [0, 6, 74, 827, 828, 844, 847, 861, 870], "pattern": [0, 57, 58, 80, 81, 376, 440, 545, 546, 547, 634, 829, 832, 843, 861], "signal": [0, 57, 80, 319, 369, 375, 389, 390, 391, 392, 397, 398, 407, 423, 792, 869, 870], "credit_card_data": 0, "read_csv": [0, 14, 47], "creditcard": 0, "csv": [0, 14, 47], "get": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 45, 46, 48, 54, 55, 62, 74, 78, 85, 102, 163, 164, 165, 168, 196, 197, 198, 201, 207, 212, 215, 219, 378, 489, 536, 554, 575, 594, 630, 631, 634, 637, 641, 694, 720, 776, 791, 792, 805, 813, 815, 817, 818, 819, 821, 822, 823, 828, 829, 830, 834, 837, 838, 839, 840, 841, 842, 843, 844, 849, 850, 851, 852, 853, 857, 861, 864, 865, 870, 876], "sens": [0, 823, 829, 831, 841, 843, 851], "re": [0, 14, 20, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 48, 50, 57, 58, 67, 80, 90, 100, 213, 319, 369, 376, 378, 450, 485, 486, 545, 631, 634, 637, 639, 644, 689, 707, 746, 748, 813, 814, 818, 819, 820, 821, 822, 823, 826, 829, 834, 839, 840, 841, 842, 843, 845, 847, 851, 854, 855, 858, 859, 860, 870], "work": [0, 1, 6, 29, 31, 32, 43, 44, 46, 50, 52, 57, 80, 97, 387, 532, 637, 641, 688, 725, 726, 730, 735, 736, 812, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 845, 848, 849, 851, 853, 854, 856, 861, 863, 864, 865, 868, 870, 872, 874, 877], "help": [0, 1, 20, 47, 49, 54, 535, 580, 634, 647, 765, 791, 812, 813, 814, 818, 819, 821, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 840, 841, 844, 845, 851, 852, 853, 856, 857, 866, 870, 872, 876], "few": [0, 6, 7, 812, 817, 818, 820, 827, 829, 830, 836, 837, 839, 840, 842, 844, 847, 849, 850, 851, 852, 853, 861, 870, 872], "entri": [0, 57, 64, 74, 80, 87, 91, 98, 137, 376, 378, 382, 446, 473, 475, 476, 508, 629, 639, 641, 708, 731, 749, 819, 828, 844, 870], "can": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 50, 53, 54, 57, 58, 62, 64, 66, 68, 76, 77, 80, 81, 85, 87, 89, 91, 97, 98, 112, 115, 127, 128, 138, 140, 155, 194, 211, 212, 213, 302, 319, 367, 369, 375, 376, 377, 378, 381, 382, 385, 387, 398, 411, 435, 442, 444, 449, 457, 469, 496, 501, 509, 510, 515, 522, 569, 580, 614, 617, 626, 629, 630, 631, 634, 635, 636, 637, 639, 643, 663, 671, 677, 687, 691, 706, 710, 739, 740, 741, 749, 773, 776, 777, 778, 779, 784, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 874, 876, 877], "give": [0, 8, 23, 33, 43, 57, 61, 80, 84, 179, 365, 374, 375, 418, 422, 630, 636, 639, 649, 650, 651, 652, 654, 656, 658, 706, 791, 812, 819, 820, 822, 825, 828, 829, 831, 832, 834, 835, 836, 844, 861, 870, 874], "insight": 0, "structur": [0, 14, 32, 74, 77, 103, 165, 168, 542, 634, 641, 722, 731, 812, 818, 820, 821, 824, 827, 837, 842, 843, 844, 845, 852, 853, 869, 870], "type": [0, 5, 11, 16, 18, 22, 28, 31, 32, 37, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 771, 773, 776, 777, 778, 779, 783, 784, 788, 791, 792, 793, 794, 798, 801, 805, 806, 807, 810, 818, 819, 820, 822, 823, 824, 827, 830, 831, 832, 833, 836, 838, 840, 842, 844, 845, 847, 849, 851, 852, 863, 864, 865, 870, 871, 874], "present": [0, 46, 57, 70, 74, 80, 93, 338, 372, 381, 501, 502, 503, 647, 762, 818, 819, 820, 827, 829, 830, 836, 840, 849, 859, 867, 868, 877], "initi": [0, 5, 6, 9, 31, 32, 48, 57, 61, 70, 74, 80, 84, 93, 103, 376, 387, 434, 445, 451, 530, 531, 636, 647, 661, 662, 762, 789, 792, 793, 794, 796, 797, 810, 812, 815, 820, 821, 825, 829, 830, 834, 842, 844, 849, 860, 863, 864, 865, 870, 876, 877], "qualiti": [0, 815, 820], "below": [0, 2, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 43, 46, 47, 48, 53, 57, 62, 80, 85, 93, 145, 146, 147, 247, 257, 280, 328, 329, 338, 369, 372, 378, 492, 629, 632, 637, 671, 691, 766, 813, 816, 818, 819, 822, 823, 827, 828, 829, 830, 831, 833, 834, 837, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 863, 864, 865, 866, 868, 873, 875], "head": [0, 6, 7, 48, 49, 636, 663, 792, 812, 817, 819, 828, 841, 867], "method": [0, 14, 22, 31, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 376, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 637, 638, 641, 644, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 784, 790, 791, 792, 793, 794, 818, 820, 823, 824, 828, 829, 830, 831, 832, 836, 844, 845, 849, 850, 853, 854, 855, 863, 864, 865, 871, 877], "five": [0, 852], "row": [0, 45, 57, 80, 98, 132, 147, 328, 369, 376, 378, 385, 387, 435, 447, 476, 482, 500, 515, 521, 522, 629, 637, 643, 644, 678, 686, 687, 692, 738, 747, 791], "v1": [0, 853], "v2": [0, 853], "v3": 0, "v4": 0, "v5": 0, "v6": 0, "v7": [0, 870], "v8": 0, "v9": 0, "v21": 0, "v22": 0, "v23": 0, "v24": 0, "v25": 0, "v26": 0, "v27": 0, "v28": 0, "amount": [0, 14, 63, 86, 215, 631, 638, 696, 697, 698, 806, 819, 828, 830, 842], "359807": 0, "072781": 0, "536347": 0, "378155": 0, "338321": 0, "462388": 0, "239599": 0, "098698": 0, "363787": 0, "018307": 0, "277838": 0, "110474": 0, "066928": 0, "128539": 0, "189115": 0, "133558": 0, "021053": 0, "149": [0, 62, 637, 675], "62": [0, 14, 43, 45, 51, 73, 79, 80, 89, 113, 258, 286, 632, 642, 643, 737, 739, 741], "191857": 0, "266151": 0, "166480": 0, "448154": 0, "060018": 0, "082361": 0, "078803": 0, "085102": 0, "255425": 0, "225775": 0, "638672": 0, "101288": 0, "339846": 0, "167170": 0, "125895": 0, "008983": 0, "014724": 0, "69": [0, 24, 43, 50, 56, 82, 89, 221, 263, 375, 397, 407, 619, 632, 635, 637, 678, 679, 740, 844, 852], "358354": 0, "340163": 0, "773209": 0, "379780": 0, "503198": 0, "800499": 0, "791461": 0, "247676": 0, "514654": 0, "247998": 0, "771679": 0, "909412": 0, "689281": 0, "327642": 0, "139097": 0, "055353": 0, "059752": 0, "378": [0, 279, 632], "66": [0, 26, 27, 28, 29, 43, 45, 47, 70, 80, 81, 82, 375, 407, 545, 546, 619, 634, 635, 637, 647, 682, 759], "966272": 0, "185226": 0, "792993": 0, "863291": 0, "010309": 0, "247203": 0, "237609": 0, "377436": 0, "387024": 0, "108300": 0, "005274": 0, "190321": 0, "175575": 0, "647376": 0, "221929": 0, "062723": 0, "061458": 0, "123": [0, 23, 76, 77, 80, 136, 168, 456, 548, 629, 634, 806, 844], "50": [0, 13, 14, 31, 32, 43, 47, 57, 70, 79, 80, 81, 239, 279, 357, 372, 375, 376, 378, 404, 428, 436, 489, 547, 553, 560, 561, 577, 592, 632, 634, 637, 641, 644, 647, 676, 682, 693, 719, 721, 747, 759, 776, 779, 839, 851, 863, 864], "158233": 0, "877737": 0, "548718": 0, "403034": 0, "407193": 0, "095921": 0, "592941": 0, "270533": 0, "817739": 0, "009431": 0, "798278": 0, "137458": 0, "141267": 0, "206010": 0, "502292": 0, "219422": 0, "215153": 0, "31": [0, 14, 26, 27, 28, 29, 43, 45, 46, 50, 51, 56, 57, 79, 80, 81, 84, 89, 113, 118, 138, 234, 265, 273, 375, 378, 387, 396, 397, 467, 523, 540, 626, 629, 632, 634, 740, 741, 852], "column": [0, 14, 47, 57, 62, 80, 85, 97, 98, 132, 147, 328, 369, 376, 378, 385, 387, 429, 435, 447, 468, 473, 475, 476, 480, 482, 515, 521, 522, 629, 637, 672, 673, 678, 684, 686, 687, 692, 776, 791], "It": [0, 1, 4, 7, 13, 14, 23, 26, 27, 28, 29, 31, 32, 33, 34, 43, 44, 45, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 388, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 443, 444, 452, 453, 454, 455, 456, 458, 459, 469, 472, 477, 485, 486, 487, 488, 490, 492, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 578, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 717, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 756, 757, 758, 761, 763, 764, 766, 767, 768, 791, 792, 812, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 838, 840, 841, 842, 843, 844, 845, 846, 847, 849, 851, 852, 853, 862, 865, 868, 870, 871, 873, 874, 875, 876, 877], "just": [0, 6, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 45, 47, 57, 62, 70, 85, 97, 100, 147, 328, 369, 376, 444, 629, 637, 647, 680, 759, 784, 792, 812, 816, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 834, 837, 838, 840, 841, 842, 844, 849, 851, 852, 855, 860, 861, 864, 870, 871, 876], "verifi": [0, 6, 9, 10, 14, 28, 325, 326, 369, 818, 829, 830, 841, 844, 845], "consist": [0, 6, 7, 12, 13, 14, 26, 27, 28, 29, 31, 32, 70, 74, 240, 247, 273, 375, 376, 419, 429, 632, 637, 647, 672, 673, 759, 793, 794, 815, 823, 824, 828, 829, 835, 840, 849, 859, 871], "complet": [0, 62, 74, 85, 637, 684, 777, 818, 819, 820, 821, 823, 824, 827, 828, 831, 833, 837, 841, 842, 844, 847, 851, 852, 860, 868], "By": [0, 23, 43, 50, 57, 63, 64, 70, 71, 80, 86, 87, 93, 94, 287, 333, 335, 336, 349, 356, 369, 372, 375, 377, 378, 385, 387, 398, 456, 457, 492, 496, 515, 522, 525, 580, 632, 634, 637, 638, 639, 647, 648, 668, 693, 696, 705, 757, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 825, 829, 831, 833, 837, 839, 840, 841, 849, 853, 854, 863], "tail": [0, 867], "last": [0, 24, 29, 31, 34, 53, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 76, 80, 84, 85, 86, 87, 92, 93, 94, 98, 102, 137, 138, 141, 196, 313, 341, 369, 372, 375, 376, 377, 378, 385, 387, 404, 409, 419, 420, 421, 432, 456, 474, 484, 486, 492, 496, 515, 523, 524, 629, 631, 636, 637, 638, 639, 644, 646, 647, 648, 662, 663, 668, 671, 682, 691, 693, 697, 698, 700, 703, 706, 707, 708, 710, 744, 745, 753, 755, 756, 757, 758, 767, 768, 792, 801, 812, 820, 823, 825, 826, 829, 831, 840, 842, 844, 847, 849, 855, 861, 864, 870], "well": [0, 14, 31, 32, 45, 46, 47, 81, 377, 456, 558, 634, 637, 686, 778, 812, 814, 818, 820, 826, 828, 829, 833, 840, 841, 842, 844, 853, 854, 864, 869, 870, 871, 875], "readi": [0, 16, 18, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 818, 819], "284802": 0, "172786": 0, "881118": 0, "071785": 0, "834783": 0, "066656": 0, "364473": 0, "606837": 0, "918215": 0, "305334": 0, "914428": 0, "213454": 0, "111864": 0, "014480": 0, "509348": 0, "436807": 0, "250034": 0, "943651": 0, "823731": 0, "77": [0, 7, 14, 43, 47, 81, 593, 637, 647, 682, 759], "284803": 0, "172787": 0, "732789": 0, "055080": 0, "035030": 0, "738589": 0, "868229": 0, "058415": 0, "024330": 0, "294869": 0, "584800": 0, "214205": 0, "924384": 0, "012463": 0, "016226": 0, "606624": 0, "395255": 0, "068472": 0, "053527": 0, "24": [0, 6, 14, 24, 43, 45, 56, 57, 62, 70, 79, 80, 81, 84, 85, 89, 102, 235, 243, 258, 260, 273, 283, 284, 287, 349, 352, 372, 375, 387, 394, 396, 397, 407, 412, 413, 414, 418, 422, 523, 545, 546, 632, 634, 637, 641, 647, 650, 671, 678, 682, 719, 730, 739, 740, 741, 757, 759, 773, 833, 852], "79": [0, 43, 45, 57, 58, 80, 81, 84, 89, 102, 240, 375, 397, 407, 418, 540, 541, 632, 634, 741], "284804": 0, "172788": 0, "919565": 0, "301254": 0, "249640": 0, "557828": 0, "630515": 0, "031260": 0, "296827": 0, "708417": 0, "432454": 0, "232045": 0, "578229": 0, "037501": 0, "640134": 0, "265745": 0, "087371": 0, "004455": 0, "026561": 0, "67": [0, 14, 43, 56, 57, 58, 62, 79, 80, 81, 84, 89, 102, 238, 243, 283, 284, 286, 293, 304, 308, 367, 387, 418, 523, 545, 546, 592, 618, 620, 632, 634, 635, 637, 675, 741], "88": [0, 14, 43, 82, 89, 112, 387, 523, 619, 626, 635, 637, 643, 647, 682, 741, 759], "284805": 0, "240440": 0, "530483": 0, "702510": 0, "689799": 0, "377961": 0, "623708": 0, "686180": 0, "679145": 0, "392087": 0, "265245": 0, "800049": 0, "163298": 0, "123205": 0, "569159": 0, "546668": 0, "108821": 0, "104533": 0, "284806": 0, "172792": 0, "533413": 0, "189733": 0, "703337": 0, "506271": 0, "012546": 0, "649617": 0, "577006": 0, "414650": 0, "486180": 0, "261057": 0, "643078": 0, "376777": 0, "008797": 0, "473649": 0, "818267": 0, "002415": 0, "013649": 0, "217": [0, 45, 833], "understand": [0, 20, 21, 22, 26, 43, 49, 816, 817, 818, 819, 820, 822, 823, 826, 831, 832, 836, 842, 843, 848, 861, 866, 876], "composit": [0, 22, 31, 166, 167, 199, 200, 292, 376, 436, 550, 551, 630, 631, 632, 634, 777, 779, 818, 822, 824, 825, 827, 829, 830, 838, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 863, 871], "crucial": [0, 830, 839], "proce": [0, 14, 818, 819], "ani": [0, 1, 6, 7, 8, 12, 16, 18, 20, 21, 22, 23, 24, 33, 34, 37, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 57, 58, 62, 71, 72, 76, 78, 79, 80, 81, 94, 95, 97, 102, 103, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 156, 171, 175, 179, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 420, 421, 430, 435, 452, 473, 484, 492, 496, 501, 502, 503, 522, 525, 528, 529, 530, 534, 544, 545, 546, 547, 548, 552, 556, 558, 560, 564, 566, 567, 585, 591, 593, 600, 601, 608, 614, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 724, 725, 727, 728, 735, 737, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 771, 773, 774, 778, 788, 789, 791, 792, 794, 795, 796, 797, 801, 805, 806, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 871, 873, 876, 877], "info": [0, 45, 809, 810, 812, 826, 832, 835], "concis": 0, "summari": [0, 74, 169, 542, 630, 634, 819, 820, 844], "includ": [0, 1, 6, 14, 20, 24, 34, 39, 53, 56, 57, 58, 62, 67, 70, 71, 74, 76, 79, 80, 81, 85, 90, 93, 94, 126, 127, 128, 137, 138, 140, 147, 220, 244, 248, 249, 250, 253, 255, 258, 266, 274, 287, 292, 314, 317, 318, 319, 322, 328, 331, 333, 335, 336, 340, 341, 342, 345, 346, 347, 348, 350, 352, 353, 355, 356, 357, 358, 361, 362, 369, 372, 375, 378, 387, 394, 395, 396, 426, 429, 431, 475, 476, 478, 481, 483, 485, 488, 510, 512, 513, 521, 525, 527, 528, 530, 531, 532, 558, 613, 629, 632, 634, 636, 637, 641, 643, 644, 647, 648, 661, 672, 692, 694, 718, 741, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 779, 791, 792, 795, 808, 810, 812, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 860, 863, 864, 867, 868, 870, 872, 875, 876, 877], "number": [0, 45, 47, 48, 49, 50, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 97, 98, 100, 102, 103, 106, 126, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 147, 153, 158, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 175, 177, 180, 204, 205, 206, 220, 221, 222, 223, 224, 226, 228, 229, 236, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 257, 261, 263, 271, 272, 273, 274, 275, 276, 278, 280, 282, 283, 284, 286, 287, 291, 293, 319, 323, 324, 325, 326, 327, 328, 330, 331, 332, 334, 335, 336, 338, 339, 340, 341, 351, 356, 360, 369, 372, 375, 376, 377, 378, 381, 387, 409, 420, 423, 426, 429, 433, 434, 435, 445, 449, 451, 452, 462, 463, 464, 484, 485, 486, 487, 488, 490, 492, 494, 496, 498, 501, 502, 503, 520, 522, 523, 524, 525, 531, 549, 556, 574, 591, 592, 593, 600, 613, 614, 627, 629, 630, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 647, 648, 649, 656, 657, 659, 661, 663, 668, 672, 673, 674, 680, 685, 687, 691, 692, 693, 696, 699, 701, 702, 704, 705, 707, 708, 710, 712, 714, 715, 716, 717, 738, 742, 747, 749, 750, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 784, 791, 792, 795, 806, 810, 812, 819, 820, 827, 828, 829, 830, 831, 838, 839, 840, 844, 845, 846, 847, 849, 852, 858, 859, 863], "presenc": [0, 771, 827, 840], "null": [0, 819, 834], "each": [0, 11, 13, 14, 24, 25, 26, 31, 32, 34, 35, 36, 38, 45, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 74, 77, 79, 80, 81, 82, 84, 85, 87, 90, 91, 93, 97, 98, 100, 102, 103, 111, 112, 114, 115, 116, 118, 122, 139, 153, 165, 168, 213, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 297, 298, 303, 305, 306, 307, 309, 310, 311, 316, 327, 330, 331, 332, 338, 346, 350, 354, 359, 362, 367, 369, 372, 375, 376, 378, 381, 382, 385, 387, 394, 395, 396, 399, 400, 401, 404, 412, 413, 414, 415, 418, 420, 421, 422, 429, 430, 435, 444, 445, 449, 451, 462, 463, 464, 468, 469, 470, 475, 476, 478, 479, 481, 483, 484, 487, 489, 498, 499, 506, 508, 515, 520, 521, 522, 523, 524, 525, 534, 537, 545, 552, 553, 569, 594, 614, 616, 617, 619, 621, 622, 623, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 667, 668, 669, 672, 673, 674, 677, 679, 680, 681, 683, 685, 686, 687, 692, 701, 705, 707, 708, 710, 712, 714, 724, 731, 738, 747, 749, 750, 752, 758, 759, 766, 773, 776, 778, 784, 792, 795, 796, 797, 806, 810, 815, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 854, 855, 859, 860, 861, 863, 864, 866, 867, 871, 873, 876], "invalu": 0, "plan": [0, 812, 856], "right": [0, 46, 57, 62, 74, 80, 85, 103, 120, 121, 232, 234, 287, 350, 372, 375, 376, 378, 410, 440, 446, 447, 449, 475, 545, 628, 632, 634, 637, 646, 687, 692, 755, 776, 813, 818, 819, 820, 822, 823, 831, 834, 847, 852, 863], "format": [0, 1, 28, 29, 31, 32, 43, 45, 46, 47, 55, 58, 61, 70, 73, 74, 75, 78, 84, 100, 118, 163, 197, 375, 376, 386, 417, 450, 518, 545, 626, 630, 631, 634, 636, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 661, 759, 769, 770, 771, 788, 812, 819, 820, 822, 828, 829, 830, 831, 832, 833, 841, 843, 852, 864, 866, 868, 870, 871], "lt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 103], "core": [0, 6, 26, 27, 29, 45, 46, 47, 49, 50, 57, 80, 97, 100, 204, 376, 434, 445, 450, 451, 631, 819, 830, 834, 844, 854, 859, 868, 869, 870, 871, 875, 877], "frame": [0, 47, 57, 80, 319, 369, 375, 423, 860, 870], "gt": [0, 4, 6, 7, 12, 16, 18, 22, 26, 27, 28, 29, 43, 45, 47, 50, 103, 842, 849], "rangeindex": 0, "284807": 0, "total": [0, 45, 47, 57, 70, 74, 80, 93, 103, 134, 215, 330, 331, 332, 340, 369, 372, 377, 452, 629, 631, 644, 647, 747, 764, 766, 806, 812, 813, 819, 820, 829, 830, 831, 844, 847, 852, 853, 855, 861], "non": [0, 7, 24, 34, 54, 56, 57, 62, 66, 67, 70, 71, 77, 79, 80, 85, 89, 90, 93, 94, 134, 152, 170, 179, 248, 268, 269, 274, 335, 336, 340, 347, 360, 372, 375, 376, 378, 387, 419, 430, 434, 440, 463, 464, 525, 528, 629, 630, 632, 637, 641, 643, 644, 647, 648, 668, 669, 678, 680, 687, 689, 693, 694, 731, 740, 744, 745, 746, 747, 760, 761, 762, 763, 764, 766, 767, 768, 776, 791, 793, 794, 796, 824, 827, 831, 849, 863, 864, 865, 870], "count": [0, 49, 57, 64, 68, 71, 76, 80, 87, 91, 94, 134, 206, 340, 372, 378, 387, 492, 496, 498, 520, 525, 629, 631, 637, 639, 645, 648, 668, 693, 700, 703, 749, 750, 767, 768, 826, 827, 831, 852], "dtype": [0, 4, 8, 12, 14, 18, 24, 26, 27, 28, 29, 43, 46, 53, 54, 57, 58, 61, 62, 66, 67, 70, 74, 76, 77, 79, 80, 81, 84, 85, 89, 90, 93, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 150, 151, 152, 153, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 208, 235, 239, 271, 272, 274, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 333, 338, 340, 356, 369, 372, 375, 376, 377, 378, 382, 387, 397, 407, 419, 420, 423, 446, 452, 457, 468, 492, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 532, 549, 550, 551, 553, 562, 571, 599, 629, 630, 631, 632, 634, 636, 637, 640, 643, 644, 646, 647, 648, 652, 659, 678, 694, 716, 717, 739, 740, 741, 744, 745, 746, 755, 756, 757, 758, 761, 763, 765, 767, 768, 771, 773, 776, 778, 779, 791, 792, 793, 794, 795, 797, 812, 816, 823, 825, 829, 830, 831, 833, 834, 837, 838, 840, 841, 842, 844, 845, 849, 851, 864], "float64": [0, 26, 27, 54, 57, 66, 70, 76, 77, 79, 80, 81, 89, 93, 126, 134, 135, 152, 155, 159, 160, 165, 166, 169, 170, 175, 176, 180, 182, 183, 189, 192, 274, 346, 372, 377, 387, 452, 457, 522, 571, 629, 630, 634, 637, 643, 673, 674, 678, 694, 740, 741, 758, 773, 776, 777, 829, 842, 844], "v10": 0, "v11": 0, "12": [0, 4, 6, 7, 8, 11, 12, 14, 22, 24, 26, 27, 28, 29, 43, 45, 46, 47, 54, 56, 57, 58, 61, 62, 66, 70, 77, 79, 80, 81, 84, 85, 87, 88, 89, 93, 102, 103, 168, 223, 225, 230, 234, 235, 238, 240, 241, 242, 260, 273, 276, 283, 286, 293, 294, 317, 318, 349, 352, 353, 369, 372, 375, 378, 387, 394, 395, 396, 397, 399, 403, 404, 412, 413, 417, 418, 419, 420, 422, 467, 468, 470, 474, 479, 496, 499, 512, 523, 529, 530, 531, 541, 545, 546, 577, 583, 592, 606, 632, 634, 636, 637, 639, 641, 642, 643, 644, 645, 647, 650, 654, 659, 660, 671, 673, 675, 678, 682, 686, 688, 689, 691, 693, 703, 707, 709, 711, 713, 730, 737, 739, 740, 741, 748, 749, 757, 758, 759, 763, 765, 776, 819, 825, 827, 829, 831, 839], "v12": 0, "13": [0, 4, 6, 7, 8, 11, 12, 22, 26, 27, 28, 29, 43, 45, 47, 51, 56, 57, 61, 62, 66, 70, 79, 80, 81, 82, 84, 87, 89, 93, 102, 118, 168, 198, 223, 238, 247, 258, 278, 287, 349, 356, 363, 372, 375, 378, 396, 397, 407, 418, 422, 467, 468, 470, 474, 479, 499, 512, 523, 524, 540, 545, 546, 561, 583, 592, 615, 626, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 647, 650, 651, 659, 660, 671, 675, 682, 686, 688, 691, 713, 717, 730, 739, 740, 741, 748, 749, 757, 758, 759, 827, 829, 831, 841], "v13": 0, "v14": 0, "15": [0, 4, 6, 7, 8, 9, 12, 13, 14, 27, 43, 45, 46, 47, 50, 56, 57, 58, 62, 66, 70, 76, 77, 79, 80, 81, 84, 85, 87, 89, 93, 103, 136, 165, 223, 230, 234, 240, 242, 251, 258, 259, 264, 265, 273, 282, 283, 284, 349, 363, 372, 373, 375, 376, 378, 387, 394, 395, 412, 414, 417, 418, 422, 428, 470, 474, 479, 499, 523, 541, 545, 546, 549, 560, 561, 586, 592, 609, 629, 630, 632, 634, 636, 637, 639, 641, 643, 644, 645, 647, 650, 660, 671, 674, 675, 676, 682, 688, 689, 707, 713, 718, 739, 740, 747, 749, 758, 759, 773, 815, 819, 828, 831, 839, 873], "v15": 0, "v16": 0, "17": [0, 6, 8, 9, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 57, 62, 73, 79, 80, 81, 82, 84, 85, 89, 103, 112, 113, 138, 223, 240, 265, 273, 304, 312, 363, 369, 375, 378, 394, 395, 403, 404, 407, 408, 412, 413, 418, 422, 474, 546, 561, 615, 617, 626, 629, 632, 634, 635, 636, 637, 641, 643, 650, 659, 660, 671, 675, 726, 739, 740, 741, 743, 827], "v17": 0, "18": [0, 4, 10, 13, 14, 26, 27, 28, 29, 43, 45, 47, 56, 57, 66, 79, 80, 81, 84, 85, 89, 93, 113, 235, 240, 282, 286, 295, 296, 349, 367, 372, 375, 378, 397, 403, 407, 408, 412, 418, 422, 474, 591, 626, 632, 637, 643, 647, 654, 671, 677, 682, 689, 739, 740, 741, 758, 759, 763, 827, 829, 831], "v18": 0, "19": [0, 4, 13, 26, 27, 28, 29, 43, 45, 46, 47, 50, 56, 57, 66, 79, 80, 84, 85, 89, 226, 235, 263, 273, 290, 375, 376, 378, 387, 396, 397, 408, 412, 418, 422, 428, 433, 474, 523, 632, 637, 641, 643, 646, 671, 678, 691, 729, 739, 740, 741, 756, 831], "v19": 0, "20": [0, 4, 9, 10, 14, 18, 43, 45, 46, 47, 50, 56, 57, 58, 61, 66, 70, 79, 80, 81, 84, 85, 89, 93, 235, 239, 243, 279, 283, 287, 304, 349, 351, 353, 372, 375, 378, 394, 396, 412, 418, 422, 467, 489, 545, 552, 553, 555, 577, 581, 592, 632, 634, 637, 643, 644, 647, 650, 651, 662, 671, 676, 678, 682, 689, 739, 747, 748, 757, 758, 759, 763, 765, 812, 828, 847, 851], "v20": 0, "22": [0, 14, 26, 27, 28, 29, 43, 45, 47, 50, 51, 56, 57, 58, 66, 70, 73, 80, 81, 84, 89, 113, 118, 235, 243, 304, 308, 367, 375, 376, 377, 378, 383, 387, 394, 395, 397, 412, 413, 414, 418, 422, 428, 452, 467, 513, 523, 546, 577, 613, 626, 632, 636, 637, 641, 644, 647, 659, 660, 671, 676, 682, 686, 726, 736, 739, 740, 741, 748, 758, 759, 819, 827, 833], "26": [0, 26, 27, 28, 29, 43, 45, 47, 50, 56, 57, 65, 66, 80, 81, 82, 89, 235, 240, 286, 375, 376, 397, 433, 443, 560, 615, 632, 634, 635, 636, 637, 641, 642, 647, 658, 671, 682, 689, 719, 737, 739, 740, 759], "27": [0, 14, 43, 45, 50, 56, 57, 62, 66, 79, 80, 81, 84, 85, 89, 93, 234, 235, 238, 278, 286, 287, 346, 372, 375, 397, 407, 561, 591, 632, 634, 637, 641, 647, 677, 682, 692, 719, 726, 740, 759, 763, 776, 878], "28": [0, 14, 29, 31, 32, 43, 45, 47, 50, 56, 57, 61, 65, 79, 80, 81, 84, 85, 89, 93, 239, 242, 263, 279, 375, 376, 397, 407, 428, 529, 560, 615, 632, 634, 635, 636, 637, 642, 647, 651, 653, 655, 657, 658, 660, 682, 737, 739, 740, 741, 759, 763, 812], "30": [0, 14, 26, 27, 28, 29, 43, 45, 56, 57, 58, 80, 81, 89, 93, 103, 273, 304, 349, 357, 372, 375, 378, 397, 407, 418, 467, 489, 513, 545, 547, 552, 553, 560, 561, 577, 586, 592, 632, 634, 637, 641, 647, 676, 682, 727, 739, 740, 758, 759, 763, 778, 791, 806, 815, 828], "int64": [0, 8, 57, 66, 67, 69, 70, 77, 89, 90, 92, 93, 142, 155, 161, 164, 166, 168, 172, 173, 177, 184, 316, 369, 385, 387, 515, 523, 524, 629, 630, 644, 646, 647, 739, 744, 745, 746, 755, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "proceed": [0, 45], "within": [0, 7, 14, 16, 18, 22, 31, 32, 52, 57, 80, 126, 334, 351, 372, 375, 381, 412, 413, 414, 419, 422, 462, 463, 464, 506, 629, 643, 741, 806, 815, 818, 820, 821, 824, 828, 829, 841, 842, 843, 844, 853, 855, 864, 866, 867, 871], "significantli": [0, 9, 11, 13, 31, 57, 62, 80, 85, 376, 449, 637, 687, 828, 859, 868], "impact": [0, 815, 828, 844, 853, 872], "isnul": 0, "sum": [0, 6, 7, 45, 47, 56, 57, 58, 61, 62, 63, 70, 74, 79, 80, 81, 84, 85, 86, 93, 97, 102, 103, 213, 223, 265, 289, 332, 356, 369, 372, 376, 377, 378, 381, 387, 418, 428, 452, 453, 454, 455, 456, 457, 458, 459, 489, 506, 528, 529, 546, 576, 577, 631, 632, 634, 636, 637, 638, 647, 659, 666, 678, 687, 691, 694, 696, 758, 759, 791, 793, 805, 812, 827, 829, 837, 839, 840, 841, 849, 863, 864, 865, 867], "quickli": [0, 6, 819, 820, 828, 852, 853, 859, 861, 870, 877], "appropri": [0, 6, 11, 22, 26, 27, 29, 31, 32, 58, 67, 72, 90, 95, 223, 240, 247, 273, 334, 351, 372, 632, 644, 744, 812, 818, 819, 820, 833, 838, 844], "either": [0, 14, 26, 27, 36, 37, 38, 39, 43, 49, 56, 57, 58, 61, 70, 74, 79, 80, 81, 84, 85, 112, 115, 118, 123, 133, 134, 144, 220, 221, 222, 223, 228, 238, 240, 241, 243, 245, 247, 254, 255, 261, 262, 263, 264, 265, 273, 282, 284, 285, 287, 290, 291, 337, 359, 372, 375, 381, 387, 397, 407, 417, 418, 422, 506, 523, 524, 544, 564, 572, 573, 581, 601, 626, 628, 629, 632, 634, 636, 637, 640, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 677, 682, 685, 689, 715, 716, 717, 757, 758, 763, 765, 778, 792, 793, 794, 801, 814, 818, 819, 820, 825, 826, 827, 829, 830, 831, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 849, 852, 855, 856, 864, 870], "imput": [0, 57, 80, 376, 434, 445, 451], "remov": [0, 6, 9, 14, 20, 21, 24, 29, 31, 32, 34, 62, 74, 85, 637, 639, 640, 641, 671, 677, 691, 709, 715, 716, 732, 806, 809, 812, 818, 825, 826, 828, 829, 832, 837, 843, 844, 847, 854, 863, 864, 870], "maintain": [0, 69, 92, 646, 753, 756, 812, 819, 820, 823, 835, 840, 842, 843, 844, 859, 869], "integr": [0, 4, 5, 6, 16, 18, 25, 32, 35, 54, 56, 57, 77, 79, 80, 152, 292, 355, 372, 387, 525, 630, 632, 812, 817, 819, 821, 822, 838, 864, 868, 870, 872, 873, 874], "check": [0, 4, 5, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 48, 50, 52, 54, 58, 62, 74, 77, 81, 85, 118, 156, 157, 166, 167, 170, 172, 173, 174, 177, 192, 199, 200, 207, 219, 538, 548, 550, 551, 558, 564, 565, 566, 567, 568, 584, 595, 607, 613, 626, 630, 631, 634, 637, 641, 673, 674, 680, 718, 728, 729, 730, 771, 778, 805, 806, 812, 813, 814, 817, 818, 819, 820, 821, 823, 827, 828, 830, 831, 833, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 851, 852, 853, 856, 863], "A": [0, 6, 31, 32, 46, 53, 54, 57, 58, 64, 66, 70, 71, 74, 77, 79, 80, 81, 84, 85, 87, 89, 91, 94, 97, 98, 103, 122, 123, 125, 132, 140, 147, 153, 194, 213, 275, 277, 281, 313, 324, 328, 330, 331, 332, 334, 348, 351, 355, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 390, 404, 418, 421, 423, 430, 438, 443, 446, 454, 458, 469, 472, 490, 494, 495, 501, 502, 503, 504, 508, 509, 510, 511, 512, 520, 529, 532, 537, 539, 548, 557, 560, 561, 592, 593, 594, 597, 625, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 641, 643, 647, 648, 659, 663, 671, 673, 676, 681, 682, 686, 687, 699, 702, 704, 708, 710, 718, 721, 723, 725, 726, 727, 728, 729, 733, 734, 735, 736, 738, 739, 740, 741, 743, 749, 759, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 791, 806, 810, 812, 817, 818, 819, 822, 827, 829, 830, 833, 836, 837, 841, 842, 844, 849, 852, 855, 856, 857, 858, 859, 860, 861, 863, 864, 865, 870, 871], "critic": [0, 6, 26, 27, 29, 31, 32, 810, 870, 876], "grasp": [0, 841], "imbal": 0, "common": [0, 22, 25, 31, 35, 56, 57, 74, 79, 179, 250, 258, 339, 346, 372, 630, 632, 813, 816, 818, 819, 826, 829, 830, 831, 837, 838, 841, 845, 847, 855, 859, 867, 870, 877], "scenario": [0, 28, 829, 839], "call": [0, 4, 6, 11, 16, 18, 22, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 37, 38, 45, 49, 57, 72, 77, 80, 95, 97, 103, 122, 172, 173, 213, 376, 387, 443, 529, 580, 586, 601, 617, 618, 620, 628, 631, 634, 635, 637, 641, 685, 718, 724, 728, 729, 773, 784, 792, 793, 794, 796, 801, 806, 810, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 860, 863, 864, 865, 870, 871, 874], "value_count": 0, "see": [0, 4, 5, 6, 7, 9, 10, 11, 13, 14, 23, 24, 29, 31, 32, 33, 34, 38, 43, 44, 50, 51, 54, 56, 57, 62, 67, 68, 70, 71, 73, 79, 80, 85, 90, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 133, 137, 144, 147, 154, 173, 180, 223, 228, 230, 232, 233, 234, 235, 240, 241, 245, 247, 251, 252, 259, 260, 263, 265, 267, 269, 270, 273, 276, 278, 282, 289, 291, 294, 295, 300, 301, 303, 328, 335, 336, 367, 369, 372, 376, 377, 378, 426, 454, 492, 626, 629, 630, 632, 637, 644, 645, 647, 648, 668, 680, 683, 686, 693, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 788, 812, 813, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 841, 842, 844, 847, 849, 851, 852, 855, 859, 866, 878], "instanc": [0, 6, 14, 22, 28, 31, 32, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 165, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 412, 413, 414, 418, 419, 421, 422, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 587, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 784, 789, 810, 818, 819, 820, 823, 824, 825, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 844, 852, 853, 854, 857, 863, 871], "typic": [0, 6, 57, 80, 334, 351, 372, 387, 522, 646, 755, 792, 823, 837, 869, 877], "repres": [0, 53, 56, 57, 61, 62, 79, 80, 84, 85, 100, 125, 139, 141, 164, 222, 223, 226, 229, 238, 240, 247, 273, 286, 290, 291, 316, 330, 331, 332, 349, 366, 369, 372, 374, 375, 376, 377, 378, 381, 382, 385, 418, 422, 436, 450, 452, 457, 484, 495, 501, 502, 503, 508, 514, 521, 557, 628, 629, 630, 632, 634, 636, 637, 659, 660, 661, 675, 682, 685, 686, 778, 791, 795, 806, 819, 824, 829, 847, 851, 867, 868, 871], "ones": [0, 6, 22, 29, 31, 43, 49, 53, 57, 59, 61, 66, 74, 76, 80, 84, 89, 132, 136, 141, 143, 149, 199, 200, 236, 313, 369, 387, 531, 615, 629, 631, 632, 635, 636, 654, 655, 739, 740, 741, 777, 812, 818, 824, 828, 831, 836, 837, 843, 844, 851, 852, 870], "how": [0, 3, 4, 5, 6, 8, 11, 13, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 43, 46, 49, 50, 51, 56, 57, 73, 79, 80, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 240, 273, 291, 295, 300, 301, 303, 367, 377, 378, 452, 467, 492, 493, 626, 632, 788, 791, 792, 793, 794, 812, 813, 814, 816, 817, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, 859, 861, 866, 870], "approach": [0, 36, 816, 818, 819, 820, 824, 827, 829, 830, 834, 837, 841, 844, 845, 847, 851, 852, 855, 867, 874, 876], "legit": 0, "284315": 0, "492": 0, "name": [0, 1, 6, 9, 11, 31, 32, 43, 45, 46, 47, 57, 62, 68, 72, 80, 85, 91, 95, 247, 375, 376, 378, 423, 429, 438, 494, 498, 535, 536, 632, 634, 637, 645, 672, 673, 684, 685, 687, 688, 692, 749, 750, 751, 773, 777, 784, 794, 801, 802, 804, 810, 818, 819, 820, 825, 826, 827, 828, 831, 832, 833, 836, 841, 842, 844, 845, 846, 847, 849, 852, 854, 870, 878], "highli": [0, 46, 812, 818, 870], "imbalanc": 0, "normal": [0, 2, 4, 6, 7, 9, 12, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 57, 65, 66, 80, 88, 89, 97, 98, 359, 372, 375, 381, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 501, 502, 503, 504, 505, 506, 507, 522, 525, 639, 642, 643, 700, 710, 737, 738, 740, 791, 792, 795, 812, 818, 840, 841, 847, 852, 863, 865, 868], "unifi": [0, 20, 21, 22, 24, 25, 31, 34, 35, 39, 46, 74, 213, 631, 821, 822, 823, 824, 828, 829, 833, 838, 839, 841, 847, 849, 855, 858, 860, 862, 864, 866, 867, 868, 870, 874, 877], "write": [0, 20, 21, 31, 32, 43, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 350, 352, 353, 354, 355, 358, 359, 360, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 426, 427, 435, 436, 438, 441, 442, 443, 444, 450, 453, 454, 455, 456, 458, 459, 468, 469, 472, 473, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 774, 812, 817, 818, 820, 822, 823, 825, 826, 828, 829, 831, 832, 833, 837, 840, 842, 845, 849, 851, 854, 861, 870, 877], "code": [0, 1, 5, 6, 11, 12, 13, 20, 21, 28, 29, 31, 33, 34, 35, 36, 37, 38, 45, 46, 55, 56, 74, 78, 79, 103, 214, 260, 387, 529, 538, 546, 547, 562, 576, 580, 595, 631, 634, 636, 637, 639, 658, 679, 680, 681, 710, 810, 812, 815, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 842, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 875, 876, 877], "agnost": [0, 20, 21, 22, 23, 31, 32, 33, 37, 43, 812, 824, 829, 836, 849, 851, 854, 855, 876, 877], "underli": [0, 22, 31, 32, 43, 57, 64, 80, 87, 100, 230, 233, 235, 270, 377, 378, 457, 474, 632, 637, 639, 685, 706, 827, 840, 847, 863, 870], "deep": [0, 6, 22, 29, 31, 43, 74, 545, 634, 812, 813, 814, 817, 818, 820, 823, 826, 827, 829, 835, 839, 842, 848, 851, 852, 859, 868, 870, 873, 874, 876, 877], "develop": [0, 6, 7, 16, 30, 31, 32, 812, 813, 814, 815, 816, 817, 818, 819, 820, 823, 826, 828, 834, 843, 845, 855, 857, 859, 860, 861, 863, 864, 868, 869, 870, 871, 872, 875, 876, 877], "ar": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 49, 52, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 97, 98, 102, 103, 126, 136, 138, 141, 147, 201, 206, 208, 213, 237, 239, 240, 243, 247, 268, 269, 273, 278, 279, 283, 285, 290, 291, 292, 328, 330, 331, 332, 334, 337, 339, 340, 341, 345, 346, 351, 356, 359, 363, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 384, 387, 391, 392, 398, 399, 400, 401, 404, 409, 411, 419, 420, 429, 430, 434, 444, 445, 447, 451, 452, 453, 457, 458, 462, 463, 464, 474, 475, 476, 478, 484, 487, 491, 492, 501, 503, 508, 509, 510, 511, 512, 522, 527, 528, 529, 530, 531, 532, 534, 537, 538, 539, 548, 554, 559, 563, 574, 575, 584, 595, 607, 617, 629, 631, 632, 634, 635, 636, 637, 639, 641, 643, 644, 645, 659, 660, 661, 663, 666, 668, 672, 673, 674, 677, 678, 680, 683, 684, 687, 688, 692, 693, 694, 699, 700, 703, 707, 709, 719, 724, 729, 730, 731, 739, 740, 741, 744, 745, 746, 747, 749, 751, 771, 773, 776, 777, 778, 779, 784, 791, 794, 797, 798, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 870, 871, 872, 873, 874, 875, 876, 877, 878], "tensorflow": [0, 3, 9, 10, 13, 15, 16, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 43, 49, 56, 57, 58, 79, 80, 147, 194, 209, 224, 328, 369, 376, 430, 595, 629, 631, 634, 771, 784, 801, 812, 816, 817, 818, 819, 820, 823, 828, 829, 830, 834, 836, 840, 841, 842, 844, 845, 847, 849, 854, 855, 857, 860, 861, 864, 865, 867, 868, 871, 873, 874, 876, 877], "pytorch": [0, 3, 4, 5, 8, 9, 11, 12, 15, 17, 18, 20, 21, 29, 31, 32, 43, 50, 283, 335, 336, 372, 632, 796, 812, 817, 818, 824, 829, 830, 833, 836, 837, 840, 841, 842, 847, 849, 854, 855, 857, 860, 861, 863, 864, 867, 871, 873, 874, 876, 877], "flexibl": [0, 812, 827, 829, 836, 839, 845, 847, 870], "particularli": [0, 820, 852, 855, 863, 868], "research": [0, 6, 31, 32, 45, 812, 859, 864, 870, 877], "where": [0, 1, 11, 24, 28, 34, 35, 39, 47, 53, 56, 57, 58, 62, 64, 66, 67, 70, 71, 74, 76, 79, 80, 81, 85, 87, 89, 90, 93, 94, 97, 98, 135, 136, 139, 141, 147, 228, 238, 240, 243, 245, 247, 248, 257, 262, 263, 264, 271, 272, 273, 278, 280, 284, 286, 290, 300, 302, 328, 330, 331, 332, 347, 351, 358, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 389, 390, 391, 392, 398, 403, 404, 408, 423, 429, 430, 434, 435, 437, 438, 445, 451, 452, 453, 462, 463, 464, 478, 484, 501, 502, 503, 506, 508, 509, 511, 512, 522, 530, 531, 532, 562, 576, 614, 629, 632, 634, 636, 637, 639, 641, 643, 644, 647, 648, 661, 663, 668, 672, 673, 678, 680, 682, 683, 684, 687, 688, 691, 693, 699, 701, 702, 704, 710, 714, 722, 729, 738, 739, 740, 741, 746, 747, 762, 764, 766, 767, 768, 776, 791, 795, 806, 810, 812, 813, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 861, 863, 868, 877], "abil": [0, 819, 847, 850, 855, 870], "switch": [0, 31, 43, 784, 825, 833, 837, 838, 877], "differ": [0, 4, 5, 6, 9, 11, 13, 14, 16, 20, 21, 25, 26, 27, 31, 32, 35, 36, 37, 38, 56, 57, 58, 62, 70, 74, 80, 81, 93, 102, 103, 112, 115, 165, 223, 240, 247, 248, 273, 289, 334, 341, 346, 347, 351, 372, 375, 376, 378, 387, 409, 420, 445, 451, 468, 475, 476, 490, 523, 524, 532, 552, 553, 626, 630, 632, 634, 636, 637, 639, 647, 659, 660, 675, 685, 700, 710, 757, 758, 763, 765, 766, 771, 776, 784, 793, 794, 812, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 864, 865, 867, 868, 869, 870, 873, 876, 877], "without": [0, 1, 4, 14, 34, 43, 47, 50, 68, 74, 100, 586, 601, 634, 639, 641, 645, 706, 719, 749, 750, 751, 752, 776, 779, 805, 819, 820, 824, 825, 827, 828, 829, 830, 831, 833, 836, 837, 841, 844, 845, 847, 851, 852, 853, 855, 863, 867, 870, 871, 872, 876], "chang": [0, 4, 5, 14, 22, 32, 45, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 626, 632, 639, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 719, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 818, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 834, 835, 841, 842, 843, 844, 845, 846, 847, 849, 853, 855, 856, 861, 863, 873, 876], "codebas": [0, 6, 31, 32, 211, 212, 631, 813, 815, 822, 829, 835, 840, 841, 843, 844, 845, 848, 861], "signific": [0, 14, 57, 377, 457, 846, 855, 859, 860, 870], "advantag": [0, 6, 29, 31, 32, 812, 819, 820, 829, 840, 841, 856, 864, 870], "effect": [0, 6, 37, 53, 57, 59, 70, 80, 82, 93, 139, 377, 411, 456, 615, 623, 629, 635, 636, 647, 663, 764, 766, 776, 779, 818, 824, 827, 828, 832, 836, 840, 842, 847, 855, 860], "analyz": [0, 818, 857], "done": [0, 45, 47, 50, 637, 674, 817, 818, 819, 820, 823, 826, 828, 830, 831, 834, 835, 840, 841, 844, 852, 863, 864, 870], "two": [0, 25, 35, 37, 43, 53, 57, 62, 68, 80, 81, 85, 102, 103, 123, 126, 132, 139, 145, 146, 147, 178, 186, 234, 248, 249, 283, 328, 329, 334, 347, 348, 350, 351, 353, 355, 362, 369, 372, 375, 376, 377, 378, 387, 404, 427, 428, 429, 438, 443, 452, 454, 458, 463, 484, 490, 494, 522, 532, 537, 628, 629, 630, 632, 634, 636, 637, 639, 645, 661, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 711, 749, 750, 751, 752, 776, 778, 784, 792, 818, 819, 823, 824, 829, 830, 831, 832, 837, 841, 842, 844, 847, 848, 852, 854, 861, 867, 875], "distinct": [0, 57, 68, 80, 330, 331, 332, 369, 645, 749, 750, 751, 752, 815, 819, 827, 832, 839, 840, 841, 848, 860, 870], "one": [0, 4, 6, 11, 13, 16, 18, 20, 21, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 49, 53, 57, 58, 61, 62, 64, 67, 68, 70, 74, 76, 79, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 97, 126, 129, 139, 141, 142, 143, 153, 155, 213, 234, 240, 247, 248, 265, 271, 272, 273, 292, 302, 312, 315, 316, 334, 340, 343, 344, 347, 348, 351, 352, 353, 355, 356, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 397, 399, 403, 404, 407, 408, 411, 419, 424, 426, 435, 444, 458, 462, 463, 464, 468, 474, 475, 476, 481, 483, 488, 491, 501, 502, 503, 508, 513, 523, 524, 527, 528, 529, 530, 531, 532, 534, 572, 576, 577, 579, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 647, 650, 651, 652, 653, 654, 655, 658, 675, 677, 678, 682, 684, 693, 694, 702, 703, 704, 707, 709, 713, 737, 744, 747, 749, 750, 751, 752, 757, 759, 776, 778, 795, 798, 801, 806, 809, 812, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 846, 847, 848, 851, 852, 854, 855, 856, 857, 860, 861, 864, 870, 871, 873, 876], "anoth": [0, 4, 22, 24, 25, 28, 29, 31, 32, 34, 35, 47, 48, 133, 153, 155, 629, 630, 812, 818, 819, 820, 825, 827, 829, 830, 833, 835, 837, 840, 841, 844, 849, 851, 854, 857, 860, 862, 863, 864, 870, 876], "characterist": [0, 826], "clear": [0, 14, 195, 631, 818, 820, 825, 829, 830, 831, 841, 847, 849, 851, 859, 860, 861, 870], "print": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16, 18, 22, 23, 25, 29, 31, 32, 33, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 166, 167, 170, 172, 173, 175, 180, 192, 193, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 211, 212, 214, 215, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 305, 306, 307, 309, 310, 311, 313, 320, 321, 328, 330, 334, 335, 336, 338, 353, 354, 359, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 397, 399, 400, 402, 404, 407, 409, 412, 413, 414, 417, 419, 420, 425, 428, 430, 432, 433, 443, 450, 453, 454, 455, 456, 457, 458, 459, 465, 467, 469, 480, 484, 489, 490, 492, 493, 494, 496, 500, 504, 505, 507, 522, 523, 524, 525, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 572, 573, 575, 576, 577, 581, 582, 583, 586, 589, 590, 591, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 805, 806, 810, 812, 819, 820, 827, 829, 831, 842, 844, 846, 849, 851, 852, 853, 863, 865], "shape": [0, 4, 5, 8, 9, 14, 16, 18, 24, 25, 26, 27, 31, 32, 37, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 101, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 208, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 360, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 424, 425, 426, 427, 429, 430, 431, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 465, 467, 469, 472, 477, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 540, 541, 545, 546, 547, 549, 552, 553, 556, 562, 569, 576, 577, 587, 596, 598, 610, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 776, 778, 791, 792, 795, 805, 810, 812, 820, 821, 827, 829, 830, 831, 832, 833, 834, 836, 840, 841, 842, 844, 845, 846, 849, 851, 852, 853, 854, 863, 864], "gain": [0, 14, 791, 820, 821, 823, 848, 853, 870], "descript": [0, 1, 2, 40, 41, 42, 47, 50, 53, 56, 57, 62, 79, 80, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 832, 839, 840], "describ": [0, 7, 57, 70, 80, 98, 223, 240, 241, 273, 276, 278, 377, 382, 385, 457, 512, 515, 632, 636, 647, 663, 759, 763, 765, 814, 815, 818, 819, 820, 826, 828, 840, 841, 844, 849, 854, 870], "obtain": [0, 31, 32, 50, 57, 80, 319, 369, 375, 415, 636, 663, 778, 841, 863], "mean": [0, 4, 6, 7, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 46, 47, 57, 58, 61, 63, 64, 66, 70, 72, 74, 76, 80, 81, 84, 86, 87, 89, 93, 95, 97, 134, 213, 330, 340, 369, 372, 375, 376, 377, 378, 381, 382, 387, 404, 409, 427, 440, 452, 453, 454, 455, 456, 457, 458, 459, 469, 474, 484, 501, 503, 509, 528, 529, 546, 617, 618, 620, 625, 629, 631, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 651, 653, 654, 655, 657, 658, 659, 670, 696, 697, 698, 706, 715, 716, 717, 724, 739, 740, 776, 778, 779, 791, 792, 795, 812, 819, 820, 822, 823, 825, 827, 829, 830, 831, 837, 839, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 864, 865, 867, 870], "deviat": [0, 65, 66, 70, 88, 89, 93, 642, 643, 647, 737, 740, 764, 778, 791, 795, 823, 861], "minimum": [0, 45, 56, 57, 58, 64, 67, 70, 79, 80, 81, 87, 90, 93, 220, 248, 275, 299, 331, 335, 336, 346, 367, 369, 372, 378, 387, 484, 520, 524, 530, 582, 583, 592, 593, 605, 606, 632, 634, 639, 644, 647, 699, 745, 760, 762, 776, 778, 779, 784, 829, 846, 867, 873, 877], "maximum": [0, 56, 57, 58, 59, 64, 67, 70, 74, 79, 80, 81, 82, 87, 90, 93, 103, 213, 299, 335, 336, 347, 360, 367, 372, 375, 376, 378, 387, 391, 392, 402, 445, 448, 451, 484, 523, 525, 530, 540, 541, 549, 557, 621, 631, 632, 634, 635, 637, 639, 644, 647, 678, 699, 744, 745, 760, 762, 776, 778, 779, 784, 806, 820, 829, 831, 840, 852, 867, 877], "quartil": 0, "overview": [0, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 826, 828, 842, 844, 848], "instrument": 0, "unusu": 0, "might": [0, 6, 7, 12, 37, 58, 98, 179, 544, 630, 634, 816, 818, 819, 820, 828, 829, 831, 834, 835, 838, 841, 844, 845, 847, 849, 851, 852, 857], "indic": [0, 4, 12, 53, 57, 58, 61, 62, 64, 65, 67, 68, 69, 74, 76, 77, 80, 81, 84, 85, 87, 88, 90, 91, 92, 97, 100, 127, 128, 141, 145, 147, 168, 172, 173, 284, 328, 329, 330, 349, 369, 372, 375, 376, 377, 378, 383, 385, 394, 395, 396, 398, 402, 403, 404, 408, 409, 412, 413, 414, 415, 419, 420, 430, 451, 454, 462, 463, 464, 467, 470, 472, 474, 475, 476, 479, 483, 489, 490, 492, 493, 494, 496, 498, 499, 513, 514, 515, 537, 552, 553, 555, 576, 577, 581, 614, 617, 618, 629, 632, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 650, 652, 653, 654, 655, 658, 663, 680, 694, 702, 703, 704, 706, 707, 708, 709, 711, 713, 718, 721, 723, 725, 726, 727, 729, 733, 734, 735, 736, 737, 738, 744, 745, 746, 747, 749, 751, 753, 755, 756, 773, 774, 776, 778, 792, 798, 805, 806, 808, 819, 828, 836, 839, 841, 854, 863], "000000": 0, "291022": 0, "std": [0, 4, 6, 7, 11, 12, 13, 14, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 46, 61, 66, 70, 84, 89, 93, 382, 509, 636, 643, 647, 651, 653, 654, 655, 657, 658, 739, 740, 812, 831, 865, 867], "250": 0, "105092": 0, "min": [0, 43, 47, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 145, 147, 165, 168, 272, 328, 331, 336, 369, 372, 376, 378, 430, 489, 530, 546, 576, 577, 592, 629, 630, 632, 634, 637, 647, 678, 684, 687, 688, 694, 812, 867], "650000": 0, "75": [0, 4, 7, 8, 43, 56, 57, 79, 80, 81, 84, 89, 119, 137, 226, 228, 240, 242, 253, 315, 348, 349, 369, 372, 418, 532, 547, 560, 592, 626, 629, 632, 634, 637, 641, 643, 650, 676, 682, 726, 741], "050000": 0, "max": [0, 43, 45, 54, 57, 58, 62, 70, 77, 80, 81, 85, 93, 165, 168, 271, 335, 372, 375, 376, 377, 378, 394, 395, 396, 412, 413, 414, 415, 417, 419, 430, 452, 489, 491, 492, 540, 541, 546, 562, 576, 577, 630, 632, 634, 637, 647, 678, 680, 683, 776, 792, 796, 828, 841, 867], "25691": 0, "160000": 0, "reveal": 0, "outlier": [0, 844], "receiv": [0, 6, 45, 49, 97, 536, 572, 634, 640, 715, 716, 717, 792, 810, 815, 819, 820, 829, 830, 844, 847], "anomali": 0, "financi": 0, "behavior": [0, 4, 8, 57, 68, 240, 247, 273, 282, 388, 533, 580, 604, 632, 634, 645, 749, 750, 751, 752, 818, 826, 827, 828, 829, 840, 841, 842, 844, 847, 849, 855, 867], "associ": [0, 12, 57, 62, 80, 85, 223, 273, 378, 387, 461, 525, 632, 637, 680, 683, 695, 773, 820, 829, 837, 838, 841, 842, 844, 855], "122": [0, 13, 54, 168, 238, 632], "211321": 0, "256": [0, 4, 8, 12, 56, 81, 283, 284, 593, 636, 651, 653, 776], "683288": 0, "250000": 0, "105": [0, 62, 84, 636, 637, 659, 660, 675, 682], "890000": 0, "2125": 0, "870000": 0, "deepen": 0, "averag": [0, 6, 7, 45, 47, 57, 59, 63, 80, 82, 86, 375, 377, 381, 387, 389, 390, 394, 395, 396, 454, 455, 456, 457, 458, 459, 506, 522, 615, 616, 621, 635, 636, 638, 640, 663, 696, 715, 716, 791, 792], "across": [0, 1, 12, 13, 14, 26, 27, 28, 29, 43, 57, 67, 74, 80, 81, 90, 102, 211, 212, 240, 247, 273, 291, 377, 381, 452, 503, 506, 537, 558, 594, 631, 632, 634, 636, 641, 644, 659, 663, 724, 744, 745, 792, 818, 823, 829, 831, 833, 836, 837, 839, 844, 847, 868, 870, 875], "all": [0, 1, 2, 4, 5, 6, 7, 8, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 44, 45, 47, 48, 50, 52, 53, 57, 58, 61, 62, 64, 66, 71, 72, 74, 75, 76, 79, 80, 81, 84, 85, 87, 89, 94, 95, 97, 98, 126, 134, 141, 145, 146, 147, 201, 208, 240, 244, 272, 273, 328, 329, 341, 360, 369, 372, 375, 376, 377, 378, 387, 409, 418, 420, 421, 422, 430, 435, 445, 446, 448, 451, 452, 473, 484, 492, 498, 528, 534, 537, 554, 574, 575, 592, 599, 600, 614, 617, 629, 631, 632, 634, 635, 636, 637, 639, 640, 641, 643, 644, 648, 659, 662, 663, 668, 680, 685, 686, 689, 694, 703, 707, 709, 715, 716, 717, 718, 719, 720, 729, 730, 731, 732, 738, 741, 746, 771, 773, 776, 777, 778, 779, 791, 792, 798, 801, 806, 808, 810, 812, 813, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 863, 864, 866, 867, 868, 869, 870, 871, 873, 876, 877, 878], "group": [0, 6, 57, 80, 378, 381, 498, 502, 636, 641, 649, 656, 657, 720, 810, 821, 823, 827, 829, 837, 841, 842, 866, 869, 875], "calcul": [0, 4, 14, 45, 56, 57, 58, 63, 70, 74, 79, 80, 81, 85, 86, 93, 103, 220, 221, 222, 223, 224, 225, 226, 227, 228, 237, 238, 240, 243, 244, 245, 261, 262, 263, 264, 265, 266, 271, 272, 273, 278, 285, 286, 287, 289, 290, 291, 297, 307, 335, 336, 349, 359, 372, 375, 376, 377, 378, 381, 387, 394, 395, 396, 430, 452, 457, 484, 501, 503, 529, 569, 632, 634, 637, 638, 647, 674, 682, 685, 696, 697, 698, 760, 761, 762, 763, 764, 765, 766, 776, 778, 791, 792, 795, 818, 832, 849, 860, 863], "pictur": [0, 47, 812, 818, 849, 859], "vital": [0, 854, 859], "select": [0, 22, 31, 36, 49, 57, 70, 80, 93, 376, 378, 387, 430, 443, 492, 493, 496, 523, 524, 647, 757, 758, 818, 819, 820, 828, 834, 840, 844, 849, 851, 854, 855, 870, 873, 874], "guid": [0, 16, 29, 812, 813, 818, 819, 820, 826, 835, 841, 843, 876], "recogn": [0, 47, 815, 821], "both": [0, 6, 9, 11, 12, 13, 14, 16, 18, 26, 28, 31, 32, 36, 37, 44, 46, 53, 56, 57, 58, 61, 62, 76, 79, 80, 81, 84, 85, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 178, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 339, 341, 346, 351, 369, 372, 375, 376, 378, 382, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 478, 484, 492, 495, 496, 508, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 625, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 792, 812, 816, 818, 820, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 847, 849, 851, 852, 853, 854, 855, 863, 864, 870, 873, 875, 876, 877], "groupbi": 0, "94838": 0, "202258": 0, "008258": 0, "006271": 0, "012171": 0, "007860": 0, "005453": 0, "002419": 0, "009637": 0, "000987": 0, "004467": 0, "000644": 0, "001235": [0, 47], "000024": 0, "000070": 0, "000182": 0, "000072": 0, "000089": 0, "000295": 0, "000131": 0, "80746": 0, "806911": 0, "771948": 0, "623778": 0, "033281": 0, "542029": 0, "151225": 0, "397737": 0, "568731": 0, "570636": 0, "581123": 0, "372319": 0, "713588": 0, "014049": 0, "040308": 0, "105130": 0, "041449": 0, "051648": 0, "170575": 0, "075667": 0, "In": [0, 3, 4, 5, 6, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 45, 50, 55, 57, 58, 64, 78, 80, 81, 87, 97, 98, 207, 214, 215, 219, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 378, 381, 399, 400, 401, 421, 462, 463, 464, 470, 472, 474, 475, 476, 477, 479, 483, 489, 490, 499, 501, 503, 535, 555, 562, 580, 631, 632, 634, 637, 639, 643, 685, 702, 703, 704, 706, 708, 709, 711, 713, 741, 812, 818, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 854, 855, 859, 861, 863, 864, 865, 866, 868, 870, 871, 873, 876], "outnumb": 0, "address": [0, 31, 32, 57, 58, 80, 378, 492, 599, 634, 818, 820, 823, 824, 836, 843, 849, 861, 866, 868, 870, 876], "fair": 0, "dure": [0, 11, 13, 24, 26, 31, 34, 36, 37, 55, 59, 70, 74, 78, 82, 93, 214, 375, 399, 400, 401, 580, 601, 615, 616, 621, 631, 634, 635, 636, 637, 640, 647, 659, 677, 715, 716, 717, 764, 766, 784, 795, 796, 810, 819, 827, 829, 830, 833, 837, 838, 840, 841, 842, 843, 844, 847, 855, 863, 870, 871, 876], "similar": [0, 1, 6, 22, 31, 32, 57, 282, 377, 452, 632, 636, 663, 792, 816, 818, 819, 827, 828, 829, 830, 833, 834, 835, 837, 838, 839, 841, 842, 844, 845, 852, 855, 859, 864, 866, 867, 868, 869, 876], "here": [0, 2, 4, 6, 7, 9, 14, 17, 19, 22, 27, 30, 31, 32, 43, 45, 46, 47, 48, 50, 80, 283, 459, 632, 812, 816, 817, 818, 819, 820, 823, 825, 826, 827, 828, 829, 831, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 849, 850, 851, 852, 853, 854, 855, 863, 864, 865, 870, 871, 878], "take": [0, 4, 6, 12, 22, 29, 31, 32, 37, 43, 45, 48, 57, 62, 64, 70, 80, 87, 97, 122, 123, 125, 141, 280, 287, 302, 367, 375, 376, 378, 395, 403, 408, 413, 423, 432, 446, 467, 474, 493, 523, 524, 628, 629, 632, 636, 637, 639, 640, 663, 677, 681, 706, 717, 757, 776, 784, 791, 792, 805, 810, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 837, 840, 841, 842, 844, 847, 849, 851, 853, 854, 855, 856, 861, 863, 864, 867, 868, 876], "random": [0, 6, 9, 11, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 45, 47, 48, 57, 61, 74, 80, 84, 323, 324, 325, 326, 327, 369, 376, 377, 434, 445, 451, 457, 508, 509, 510, 511, 512, 636, 659, 738, 739, 740, 741, 742, 743, 776, 778, 791, 805, 806, 812, 818, 830, 842, 844, 845, 854, 864, 865, 870], "match": [0, 1, 54, 57, 74, 77, 80, 152, 247, 282, 339, 341, 372, 375, 377, 378, 420, 452, 467, 489, 493, 572, 630, 632, 634, 637, 673, 674, 678, 694, 771, 816, 818, 824, 826, 827, 831, 834, 842, 871, 876], "prevent": [0, 57, 59, 70, 80, 82, 93, 377, 457, 557, 615, 616, 621, 634, 635, 636, 647, 659, 761, 765, 791, 796, 818, 820, 828, 829, 833, 840, 841, 845], "being": [0, 6, 7, 9, 31, 32, 43, 57, 74, 80, 95, 102, 106, 126, 376, 378, 440, 468, 484, 586, 629, 634, 636, 637, 661, 674, 773, 779, 791, 812, 819, 820, 823, 824, 825, 827, 829, 830, 831, 834, 836, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 860, 861, 866, 868, 869, 870, 871, 876, 877], "bias": [0, 636, 661], "toward": [0, 57, 64, 80, 87, 247, 294, 345, 357, 372, 378, 387, 490, 525, 632, 639, 707, 812, 816, 818, 819, 834, 849, 866, 870], "legit_sampl": 0, "n": [0, 14, 43, 46, 47, 48, 50, 53, 56, 57, 61, 62, 64, 66, 67, 70, 71, 79, 80, 84, 85, 87, 89, 90, 93, 94, 97, 102, 139, 145, 146, 147, 220, 290, 292, 328, 329, 341, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 397, 398, 403, 404, 407, 408, 409, 417, 418, 419, 420, 422, 430, 431, 438, 442, 444, 446, 451, 452, 464, 470, 473, 477, 479, 490, 499, 501, 502, 503, 506, 508, 509, 510, 511, 512, 515, 522, 532, 629, 632, 636, 637, 639, 641, 643, 644, 647, 648, 649, 650, 651, 652, 654, 656, 658, 663, 668, 671, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 688, 691, 692, 693, 694, 701, 702, 704, 710, 714, 726, 739, 740, 741, 747, 761, 763, 764, 765, 766, 767, 768, 792, 795, 805, 812, 822, 826, 828, 844, 856, 864], "after": [0, 4, 5, 8, 9, 11, 12, 13, 31, 32, 46, 57, 58, 59, 61, 65, 74, 80, 81, 82, 84, 88, 186, 287, 304, 308, 357, 367, 372, 375, 376, 378, 398, 399, 400, 401, 418, 422, 443, 473, 484, 562, 616, 619, 621, 622, 623, 630, 632, 634, 635, 636, 641, 642, 649, 650, 651, 652, 654, 656, 658, 659, 729, 737, 796, 801, 812, 818, 819, 820, 823, 825, 826, 828, 829, 831, 833, 836, 839, 842, 844, 848, 856, 863, 864, 870], "combin": [0, 14, 37, 57, 74, 80, 103, 375, 387, 409, 420, 522, 550, 551, 634, 637, 668, 677, 820, 824, 827, 828, 829, 831, 833, 837, 844, 854, 870], "them": [0, 3, 4, 11, 13, 16, 18, 20, 31, 32, 37, 376, 446, 539, 575, 634, 776, 792, 812, 814, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 833, 835, 838, 840, 841, 842, 844, 846, 849, 851, 852, 853, 855, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 868, 870, 872, 876], "achiev": [0, 11, 13, 14, 31, 812, 813, 815, 821, 828, 829, 837, 838, 844, 847, 852, 854, 857], "concaten": [0, 43, 57, 58, 64, 80, 85, 378, 469, 545, 549, 634, 636, 639, 663, 682, 700, 776, 842, 847, 849, 852], "along": [0, 46, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 92, 93, 94, 97, 98, 100, 113, 117, 122, 137, 138, 213, 287, 290, 292, 330, 331, 332, 335, 336, 340, 341, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 397, 403, 404, 407, 408, 409, 419, 420, 445, 456, 469, 470, 471, 473, 475, 476, 484, 489, 492, 494, 496, 504, 505, 506, 507, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 628, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 646, 647, 648, 668, 682, 691, 693, 694, 696, 697, 698, 700, 703, 704, 705, 707, 708, 710, 712, 713, 715, 716, 717, 743, 744, 745, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 792, 812, 818, 821, 822, 831, 840, 843, 845, 847, 849, 870], "axi": [0, 4, 6, 7, 8, 14, 46, 47, 48, 51, 53, 56, 57, 58, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 113, 117, 137, 138, 141, 213, 287, 292, 335, 336, 340, 341, 349, 356, 372, 375, 377, 378, 381, 385, 387, 397, 398, 404, 407, 409, 419, 420, 456, 461, 469, 470, 471, 474, 475, 476, 479, 484, 489, 490, 492, 493, 494, 496, 498, 499, 504, 505, 507, 515, 520, 523, 524, 525, 527, 528, 529, 530, 531, 532, 545, 552, 614, 626, 629, 631, 632, 634, 636, 637, 638, 639, 640, 643, 644, 645, 646, 647, 648, 658, 668, 671, 678, 691, 693, 694, 696, 697, 698, 700, 701, 702, 703, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 743, 744, 745, 749, 751, 753, 754, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 793, 798, 827, 829, 831, 833, 836, 837, 840, 841, 844, 847, 849, 851, 854], "result": [0, 1, 4, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 31, 32, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 180, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 432, 433, 435, 436, 440, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 461, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 540, 541, 545, 546, 547, 552, 553, 557, 562, 569, 576, 577, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 721, 724, 725, 727, 731, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 778, 784, 798, 806, 810, 812, 816, 818, 820, 823, 824, 826, 827, 828, 829, 831, 832, 834, 836, 837, 839, 840, 841, 842, 844, 845, 849, 852, 855, 863, 864, 865, 871, 873], "new_dataset": 0, "now": [0, 1, 5, 6, 7, 9, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 47, 792, 793, 794, 812, 819, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 838, 841, 842, 844, 845, 847, 851, 852, 854, 855, 861, 863, 864, 865, 870], "equal": [0, 5, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 70, 74, 77, 79, 80, 81, 85, 86, 87, 89, 92, 98, 102, 103, 132, 134, 135, 136, 142, 143, 152, 232, 234, 238, 243, 245, 254, 255, 276, 278, 283, 286, 287, 291, 330, 331, 332, 334, 351, 369, 372, 375, 376, 378, 381, 387, 398, 419, 446, 470, 479, 492, 496, 499, 504, 505, 507, 525, 534, 537, 614, 629, 630, 632, 634, 637, 638, 639, 643, 644, 645, 646, 647, 671, 679, 680, 683, 685, 691, 696, 699, 701, 706, 708, 714, 741, 747, 749, 750, 751, 752, 753, 756, 761, 763, 764, 765, 766, 784, 791, 792, 826, 827, 829, 831, 833, 842, 844, 867], "unbias": [0, 57, 70, 80, 93, 387, 522, 647, 766], "concat": [0, 8, 43, 48, 58, 64, 74, 87, 213, 549, 631, 634, 639, 714, 842, 847, 849, 863], "65908": 0, "51801": 0, "519205": 0, "852437": 0, "191664": 0, "749435": 0, "639186": 0, "666758": 0, "310037": 0, "116659": 0, "554879": 0, "207139": 0, "748058": 0, "229554": 0, "272256": 0, "304838": 0, "251128": 0, "131252": 0, "036799": 0, "195557": 0, "131120": 0, "102139": 0, "442451": 0, "887016": 0, "579461": 0, "325601": 0, "615304": 0, "621226": 0, "291374": 0, "236204": 0, "557458": 0, "159454": 0, "710631": 0, "429388": 0, "234335": 0, "787399": 0, "300106": 0, "108052": 0, "614": 0, "53744": 0, "46126": 0, "823696": 0, "028978": 0, "698815": 0, "498501": 0, "813862": 0, "788743": 0, "279106": 0, "488737": 0, "885320": 0, "300256": 0, "715811": 0, "186151": 0, "132502": 0, "385279": 0, "634010": 0, "231485": 0, "096003": 0, "98": [0, 43, 51, 57, 59, 66, 73, 79, 82, 89, 113, 238, 286, 360, 372, 619, 626, 635, 637, 641, 644, 647, 682, 719, 730, 739, 741, 748, 759, 878], "224892": 0, "144011": 0, "802980": 0, "264517": 0, "123151": 0, "302386": 0, "758015": 0, "307608": 0, "405042": 0, "111496": 0, "265297": 0, "260045": 0, "499437": 0, "056524": 0, "534144": 0, "206880": 0, "386490": 0, "001905": 0, "026937": 0, "172": [0, 279, 632], "03": [0, 6, 14, 27, 46, 53, 56, 58, 59, 79, 80, 82, 89, 138, 238, 263, 343, 344, 592, 593, 616, 621, 629, 632, 634, 635, 637, 676, 740], "55713": 0, "47085": 0, "738160": 0, "575518": 0, "551978": 0, "894729": 0, "839781": 0, "083335": 0, "779428": 0, "083990": 0, "568542": 0, "554234": 0, "707282": 0, "924631": 0, "076400": 0, "157681": 0, "914957": 0, "266566": 0, "168184": 0, "1025": [0, 776], "279863": 0, "169142": 0, "927883": 0, "125653": 0, "518331": 0, "749293": 0, "566487": 0, "010494": 0, "882850": 0, "697211": 0, "064945": 0, "778584": 0, "319189": 0, "639419": 0, "294885": 0, "537503": 0, "788395": 0, "292680": 0, "147968": 0, "390": [0, 13, 26, 27, 28, 29], "280143": 0, "169347": 0, "378559": 0, "289381": 0, "004247": 0, "411850": 0, "442581": 0, "326536": 0, "413170": 0, "248525": 0, "127396": 0, "370612": 0, "028234": 0, "145640": 0, "081049": 0, "521875": 0, "739467": 0, "389152": 0, "186637": 0, "76": [0, 14, 24, 43, 56, 57, 70, 77, 79, 80, 89, 168, 222, 238, 286, 322, 369, 407, 630, 632, 637, 641, 647, 689, 726, 740, 759], "280149": 0, "169351": 0, "676143": 0, "126366": 0, "213700": 0, "468308": 0, "120541": 0, "003346": 0, "234739": 0, "210158": 0, "652250": 0, "751826": 0, "834108": 0, "190944": 0, "032070": 0, "739695": 0, "471111": 0, "385107": 0, "194361": 0, "89": [0, 5, 14, 43, 56, 66, 77, 79, 80, 89, 103, 168, 235, 630, 637, 647, 689, 740, 741, 765], "281144": 0, "169966": 0, "113832": 0, "585864": 0, "399730": 0, "817092": 0, "840618": 0, "943548": 0, "208002": 0, "058733": 0, "632333": 0, "583276": 0, "269209": 0, "456108": 0, "183659": 0, "328168": 0, "606116": 0, "884876": 0, "253700": 0, "245": [0, 56, 84, 228, 636, 659, 660], "281674": 0, "170348": 0, "991976": 0, "158476": 0, "583441": 0, "408670": 0, "151147": 0, "096695": 0, "223050": 0, "068384": 0, "577829": 0, "164350": 0, "295135": 0, "072173": 0, "450261": 0, "313267": 0, "289617": 0, "002988": 0, "015309": 0, "42": [0, 11, 13, 14, 24, 25, 29, 31, 32, 43, 45, 46, 51, 66, 73, 82, 89, 118, 234, 375, 397, 407, 615, 619, 626, 632, 635, 637, 642, 643, 647, 678, 682, 737, 738, 739, 740, 741, 742, 759, 812, 849, 854, 864], "53": [0, 10, 14, 26, 43, 62, 66, 79, 84, 159, 215, 245, 418, 618, 620, 630, 631, 635, 637, 642, 675, 737, 741], "93007": 0, "762195": 0, "000285": 0, "013777": 0, "014009": 0, "039620": 0, "140964": 0, "011996": 0, "076337": 0, "031293": 0, "076897": 0, "029911": 0, "043784": 0, "053381": 0, "010626": 0, "066434": 0, "007150": 0, "021923": 0, "030825": 0, "041431": 0, "632297": 0, "final": [0, 9, 11, 13, 16, 18, 20, 28, 31, 32, 37, 43, 44, 53, 57, 58, 80, 81, 97, 125, 137, 138, 322, 369, 375, 420, 549, 628, 629, 634, 636, 661, 662, 663, 806, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 837, 839, 840, 841, 843, 847, 848, 852, 863, 864, 866, 876], "predictor": [0, 855], "label": [0, 6, 7, 14, 45, 46, 47, 57, 63, 80, 86, 377, 452, 453, 455, 456, 457, 458, 459, 638, 696, 697, 698, 812, 818, 823, 841, 848, 849, 850, 854, 856, 870], "whether": [0, 20, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 125, 127, 128, 134, 136, 141, 143, 149, 152, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 170, 171, 172, 173, 175, 176, 177, 178, 180, 192, 196, 197, 199, 200, 202, 204, 207, 208, 210, 213, 214, 216, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 372, 375, 376, 377, 378, 387, 394, 395, 396, 398, 399, 400, 401, 417, 419, 421, 423, 438, 440, 446, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 479, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 572, 576, 577, 578, 579, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 607, 608, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 647, 648, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 686, 691, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 788, 789, 792, 793, 794, 795, 796, 805, 812, 813, 818, 819, 824, 827, 829, 831, 836, 840, 841, 844, 846, 847, 863, 864], "x": [0, 4, 8, 9, 10, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 172, 173, 175, 180, 196, 197, 199, 201, 206, 207, 208, 212, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 328, 329, 333, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 385, 386, 387, 388, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 422, 424, 426, 427, 429, 431, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 465, 466, 468, 469, 471, 472, 474, 477, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 494, 496, 497, 498, 500, 501, 502, 503, 504, 505, 506, 507, 514, 515, 516, 517, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 613, 614, 616, 617, 618, 620, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 792, 795, 798, 801, 805, 810, 812, 816, 818, 822, 824, 825, 827, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "y": [0, 14, 31, 32, 43, 44, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 129, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 149, 152, 153, 154, 163, 165, 168, 180, 193, 197, 201, 206, 207, 208, 212, 214, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 334, 335, 336, 342, 350, 351, 352, 353, 354, 359, 361, 363, 367, 369, 372, 375, 376, 377, 378, 381, 387, 395, 397, 399, 400, 404, 407, 409, 413, 419, 426, 430, 436, 443, 450, 452, 453, 455, 456, 457, 458, 459, 469, 471, 480, 484, 492, 493, 494, 496, 500, 504, 505, 507, 515, 521, 522, 523, 524, 525, 528, 530, 531, 532, 534, 537, 540, 541, 544, 545, 547, 548, 549, 552, 553, 554, 558, 560, 561, 562, 564, 565, 568, 569, 574, 581, 582, 583, 586, 589, 590, 592, 593, 595, 597, 599, 600, 601, 605, 606, 609, 612, 613, 614, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 655, 657, 658, 659, 660, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 685, 687, 688, 689, 691, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 727, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 810, 812, 825, 827, 830, 831, 839, 841, 842, 844, 845, 847, 849, 851, 863], "upcom": [0, 850], "phase": [0, 844, 855, 870], "drop": [0, 14, 47, 57, 80, 331, 369, 377, 378, 456, 493, 791, 792, 819, 855], "015162": 0, "655442": 0, "367897": 0, "290904": 0, "902524": 0, "252967": 0, "226138": 0, "247968": 0, "306271": 0, "017652": 0, "984": [0, 291, 632], "length": [0, 6, 12, 45, 46, 53, 57, 63, 64, 74, 80, 86, 87, 97, 98, 103, 126, 134, 139, 314, 317, 318, 333, 341, 369, 372, 375, 376, 378, 382, 385, 397, 398, 403, 404, 407, 408, 409, 419, 420, 421, 423, 435, 444, 484, 493, 510, 515, 614, 629, 634, 636, 637, 638, 639, 645, 663, 687, 688, 696, 706, 749, 776, 792, 844, 852], "valid": [0, 8, 45, 47, 57, 61, 71, 80, 84, 94, 97, 98, 157, 375, 376, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 443, 451, 565, 630, 634, 636, 639, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 702, 710, 767, 768, 776, 777, 792, 805, 819, 825, 829, 831, 835, 839, 842, 844, 863, 871], "gener": [0, 1, 7, 8, 20, 24, 29, 31, 32, 34, 37, 45, 47, 49, 50, 53, 56, 57, 61, 66, 72, 76, 79, 80, 84, 89, 95, 98, 126, 137, 138, 147, 155, 240, 243, 253, 254, 269, 273, 282, 312, 315, 319, 320, 321, 323, 324, 325, 326, 327, 328, 335, 336, 369, 372, 375, 376, 378, 382, 387, 419, 425, 447, 492, 510, 522, 629, 630, 632, 636, 637, 639, 643, 647, 659, 685, 686, 689, 692, 714, 738, 739, 741, 742, 764, 776, 779, 784, 796, 805, 812, 818, 819, 820, 822, 823, 824, 826, 829, 830, 831, 832, 833, 836, 837, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 857, 868, 869, 870, 871, 872, 873, 874, 875, 876], "partit": 0, "have": [0, 1, 2, 4, 5, 6, 7, 8, 11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 43, 45, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 165, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 343, 344, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 420, 424, 426, 427, 429, 430, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 457, 458, 459, 463, 464, 469, 470, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 504, 505, 507, 508, 509, 511, 512, 513, 515, 522, 523, 524, 525, 529, 533, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 580, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 788, 789, 791, 792, 794, 795, 796, 797, 805, 806, 812, 814, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 865, 866, 867, 868, 869, 870, 872, 876, 877, 878], "stratifi": 0, "paramet": [0, 6, 7, 14, 18, 29, 31, 32, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 580, 581, 582, 583, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 632, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 791, 792, 793, 794, 795, 796, 797, 801, 802, 805, 806, 808, 810, 812, 818, 824, 832, 833, 836, 841, 842, 844, 845, 849, 851, 852, 863, 864, 865, 871], "test_siz": [0, 14, 45], "specifi": [0, 28, 29, 31, 32, 36, 37, 38, 49, 51, 53, 54, 56, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 77, 79, 80, 81, 84, 85, 86, 87, 89, 90, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 130, 135, 137, 142, 145, 146, 148, 152, 154, 201, 206, 208, 212, 213, 214, 282, 291, 295, 300, 301, 303, 329, 334, 351, 356, 367, 369, 372, 375, 376, 377, 378, 382, 387, 394, 395, 396, 398, 404, 409, 419, 420, 421, 422, 430, 442, 444, 449, 452, 456, 457, 458, 460, 474, 477, 486, 487, 489, 490, 492, 496, 509, 520, 522, 523, 524, 527, 528, 532, 535, 552, 553, 555, 557, 558, 571, 573, 581, 614, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 641, 643, 644, 645, 646, 647, 648, 661, 663, 666, 668, 670, 671, 673, 674, 678, 686, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 707, 709, 710, 713, 714, 722, 723, 725, 726, 733, 734, 735, 736, 739, 740, 741, 743, 744, 745, 747, 750, 751, 752, 753, 757, 758, 759, 761, 763, 765, 767, 768, 776, 779, 788, 792, 793, 794, 806, 810, 819, 822, 826, 829, 830, 836, 837, 838, 840, 841, 842, 844, 849, 852, 853, 863, 864, 865, 876], "reserv": [0, 818], "x_train": [0, 14], "x_test": [0, 14], "y_train": [0, 14, 47], "y_test": [0, 14], "random_st": [0, 14, 376, 434], "With": [0, 4, 6, 24, 34, 43, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 70, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 148, 149, 152, 153, 154, 155, 157, 163, 164, 165, 168, 175, 180, 181, 182, 183, 184, 194, 197, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 335, 336, 338, 340, 343, 344, 348, 351, 352, 353, 355, 356, 359, 367, 369, 372, 375, 376, 377, 378, 387, 397, 399, 400, 407, 419, 426, 427, 428, 430, 431, 432, 443, 446, 458, 474, 475, 476, 478, 481, 483, 484, 490, 492, 494, 496, 498, 513, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 538, 539, 540, 541, 544, 545, 546, 547, 548, 552, 553, 556, 558, 560, 561, 562, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 666, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 684, 685, 686, 687, 688, 689, 691, 692, 693, 696, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 819, 829, 831, 841, 844, 847, 849, 860, 861, 863, 870, 873], "next": [0, 1, 6, 7, 8, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 45, 47, 57, 80, 165, 348, 352, 357, 361, 372, 630, 791, 796, 812, 818, 819, 820, 825, 829, 831, 832, 834, 835, 838, 850, 851, 852, 861, 870, 872], "convers": [0, 56, 57, 80, 239, 279, 578, 588, 634, 793, 794, 818, 848, 850, 854, 855, 857, 861, 869, 876], "becaus": [0, 26, 34, 36, 46, 57, 375, 398, 771, 819, 820, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 847, 849, 853, 854, 855, 870, 873, 876], "own": [0, 6, 7, 10, 16, 18, 22, 31, 32, 37, 812, 819, 823, 828, 829, 832, 833, 840, 841, 845, 849, 855, 857, 860, 861, 866, 869, 870, 875, 876], "confirm": [0, 4, 46, 815, 818], "been": [0, 6, 7, 13, 16, 18, 26, 28, 31, 32, 57, 58, 66, 80, 81, 89, 196, 283, 378, 491, 545, 546, 547, 631, 632, 634, 643, 738, 805, 806, 818, 820, 823, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 844, 849, 851, 855, 856, 863, 870, 877], "correctli": [0, 1, 28, 31, 32, 45, 57, 62, 67, 80, 85, 90, 340, 372, 387, 528, 529, 530, 531, 532, 637, 644, 678, 744, 818, 819, 820, 824, 827, 829, 831, 833, 835, 836, 842, 844, 847, 853, 855, 863, 864], "size": [0, 8, 14, 16, 18, 23, 26, 27, 33, 34, 36, 37, 38, 45, 47, 50, 57, 58, 61, 62, 64, 66, 67, 74, 80, 81, 84, 85, 87, 89, 90, 97, 98, 102, 103, 134, 137, 211, 212, 213, 312, 315, 319, 330, 331, 332, 333, 340, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 390, 391, 392, 393, 394, 395, 411, 412, 413, 415, 416, 422, 423, 430, 433, 445, 451, 452, 454, 468, 470, 482, 492, 494, 496, 502, 503, 506, 510, 515, 527, 528, 529, 530, 531, 532, 571, 576, 629, 631, 634, 636, 637, 639, 643, 644, 648, 661, 663, 666, 668, 671, 675, 678, 682, 684, 687, 693, 702, 707, 708, 709, 738, 744, 747, 767, 768, 776, 778, 779, 792, 806, 812, 840, 842, 844, 847, 852, 863, 865], "correct": [0, 11, 16, 18, 27, 37, 43, 45, 47, 70, 93, 186, 376, 447, 630, 639, 647, 699, 764, 766, 773, 776, 812, 816, 818, 820, 822, 827, 828, 829, 830, 833, 834, 836, 837, 840, 842, 844, 864], "787": 0, "197": [0, 56, 228, 632], "success": [0, 637, 647, 691, 763, 765, 815, 819, 828, 860], "prepare_data": [0, 14], "list": [0, 1, 5, 8, 11, 12, 14, 47, 52, 53, 54, 56, 57, 58, 61, 64, 65, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 134, 136, 139, 140, 141, 143, 149, 153, 155, 168, 172, 173, 180, 196, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 349, 350, 351, 357, 358, 359, 361, 362, 363, 372, 375, 376, 378, 385, 394, 395, 396, 398, 399, 400, 401, 412, 413, 414, 415, 419, 421, 425, 430, 434, 437, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 470, 479, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 514, 522, 523, 524, 525, 534, 536, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 598, 599, 600, 601, 613, 614, 619, 624, 629, 630, 631, 632, 634, 636, 637, 639, 641, 642, 645, 646, 650, 651, 652, 653, 654, 655, 658, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 689, 691, 696, 697, 698, 699, 700, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 720, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 757, 758, 761, 763, 764, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 789, 792, 798, 805, 806, 810, 812, 815, 817, 818, 819, 821, 823, 824, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 849, 852, 853, 854, 855, 863, 870, 871, 876, 878], "tupl": [0, 14, 49, 52, 53, 54, 56, 57, 58, 61, 62, 64, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 122, 127, 128, 134, 136, 140, 141, 143, 147, 149, 153, 154, 155, 166, 167, 168, 172, 173, 179, 180, 186, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 321, 325, 328, 334, 335, 336, 337, 338, 340, 341, 342, 345, 346, 348, 349, 350, 351, 355, 356, 357, 358, 359, 361, 362, 363, 364, 369, 372, 374, 375, 376, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 403, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 429, 430, 434, 438, 440, 445, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 468, 469, 479, 484, 490, 492, 493, 494, 496, 498, 501, 503, 504, 505, 506, 507, 509, 510, 512, 513, 514, 522, 523, 524, 525, 527, 528, 529, 530, 531, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 581, 591, 592, 593, 594, 595, 597, 598, 599, 600, 613, 614, 615, 616, 617, 619, 621, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 680, 682, 683, 684, 685, 687, 689, 690, 691, 694, 696, 697, 698, 699, 700, 701, 703, 704, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 725, 726, 727, 729, 730, 733, 734, 735, 736, 738, 739, 740, 741, 743, 746, 747, 749, 750, 751, 752, 753, 754, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 791, 792, 794, 805, 806, 824, 829, 836, 837, 840, 842, 844, 849, 852, 853, 855, 863, 864, 865], "thei": [0, 1, 14, 38, 43, 48, 57, 62, 66, 68, 74, 85, 89, 91, 178, 292, 346, 372, 630, 632, 636, 637, 640, 643, 645, 661, 692, 715, 716, 738, 749, 771, 797, 812, 817, 818, 819, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 844, 845, 847, 849, 851, 852, 853, 854, 855, 863, 867, 870, 872, 873, 876, 877], "dimension": [0, 53, 56, 57, 62, 64, 67, 70, 71, 74, 76, 79, 80, 85, 87, 93, 94, 102, 126, 132, 134, 139, 147, 292, 328, 335, 336, 369, 372, 375, 376, 378, 387, 403, 404, 408, 409, 419, 420, 427, 462, 463, 464, 468, 473, 474, 520, 532, 629, 632, 637, 639, 644, 647, 648, 668, 669, 675, 677, 680, 682, 683, 693, 694, 708, 744, 745, 747, 760, 761, 762, 763, 764, 765, 766, 767, 768, 837, 839, 844, 847, 849, 867, 870, 877], "reshap": [0, 4, 31, 32, 47, 48, 57, 61, 62, 64, 74, 80, 84, 85, 87, 360, 372, 375, 376, 378, 394, 395, 396, 399, 412, 413, 414, 417, 426, 443, 468, 474, 614, 634, 636, 637, 639, 652, 654, 658, 678, 694, 812, 840, 841, 844, 847, 849, 851, 854, 867], "float32": [0, 4, 8, 12, 14, 16, 18, 23, 24, 43, 45, 46, 47, 53, 54, 57, 58, 61, 76, 77, 80, 81, 84, 93, 138, 141, 143, 149, 150, 151, 155, 159, 160, 163, 164, 165, 166, 169, 172, 173, 175, 180, 183, 189, 239, 253, 280, 333, 346, 369, 372, 375, 376, 377, 387, 397, 407, 420, 446, 452, 457, 525, 562, 599, 629, 630, 632, 634, 636, 637, 640, 652, 654, 655, 658, 685, 687, 688, 694, 716, 717, 773, 776, 777, 812, 829, 831, 842, 844, 845, 864, 865], "def": [0, 4, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 56, 79, 122, 224, 539, 628, 634, 640, 641, 716, 717, 724, 805, 812, 816, 818, 819, 823, 824, 827, 829, 830, 831, 833, 834, 836, 837, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 853, 854, 863, 864, 865], "isinst": [0, 8, 14, 29, 31, 32, 833, 841, 844, 845, 853, 854], "rang": [0, 4, 6, 7, 9, 10, 14, 31, 32, 43, 44, 45, 47, 53, 57, 70, 76, 80, 126, 137, 138, 287, 299, 307, 319, 367, 369, 376, 378, 387, 430, 442, 477, 485, 487, 492, 497, 523, 524, 525, 545, 614, 629, 632, 634, 645, 647, 749, 757, 758, 763, 765, 776, 778, 779, 791, 812, 815, 818, 829, 833, 837, 844, 849, 852, 853, 854, 870, 876], "len": [0, 6, 7, 8, 14, 45, 47, 53, 57, 62, 80, 85, 139, 316, 325, 326, 369, 375, 376, 387, 409, 420, 432, 435, 445, 451, 532, 629, 637, 673, 692, 812, 827, 828, 833, 840, 841, 844, 851, 854, 863], "expand_dim": [0, 6, 14, 28, 31, 32, 47, 49, 64, 87, 636, 639, 658, 812, 841, 849, 852, 864], "astyp": [0, 14, 16, 18, 23, 45, 46, 47, 54, 61, 77, 84, 630, 636, 652, 654, 655, 658, 812, 829, 840, 841, 847, 865], "els": [0, 5, 6, 7, 8, 11, 14, 46, 47, 49, 50, 57, 58, 66, 79, 80, 89, 158, 159, 160, 161, 162, 174, 280, 284, 375, 376, 382, 421, 434, 445, 449, 451, 509, 544, 548, 630, 632, 634, 636, 641, 643, 662, 728, 731, 739, 740, 741, 771, 805, 806, 812, 818, 819, 820, 823, 825, 829, 830, 833, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 871], "return": [0, 4, 8, 9, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 783, 784, 789, 791, 792, 794, 796, 801, 802, 805, 806, 807, 808, 809, 810, 812, 819, 820, 824, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 865, 871], "defin": [0, 23, 29, 31, 32, 33, 53, 57, 58, 62, 76, 80, 81, 85, 100, 116, 141, 145, 146, 147, 223, 240, 247, 273, 274, 282, 284, 287, 300, 304, 308, 314, 317, 318, 319, 328, 329, 330, 331, 332, 335, 336, 338, 367, 369, 372, 375, 376, 378, 387, 411, 428, 484, 490, 525, 560, 561, 581, 626, 629, 632, 634, 636, 637, 647, 661, 668, 673, 674, 686, 760, 761, 762, 764, 812, 818, 819, 824, 825, 828, 829, 832, 836, 839, 841, 842, 844, 845, 851, 853, 855, 857, 865, 867, 868, 869, 870, 871, 874, 876, 877], "proper": [0, 812, 818, 841, 864], "adjust": [0, 45, 70, 93, 376, 447, 647, 764, 766, 801, 810], "comput": [0, 6, 28, 29, 31, 32, 38, 39, 44, 45, 47, 51, 56, 57, 58, 59, 61, 62, 63, 68, 70, 73, 74, 79, 80, 81, 82, 84, 85, 86, 93, 97, 98, 100, 113, 117, 213, 223, 230, 233, 235, 240, 241, 242, 247, 248, 249, 251, 252, 258, 259, 260, 267, 268, 269, 270, 272, 273, 276, 281, 282, 300, 304, 308, 314, 317, 318, 330, 331, 332, 335, 336, 338, 342, 344, 347, 349, 350, 354, 356, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 385, 387, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 423, 424, 426, 428, 429, 430, 431, 433, 434, 436, 438, 441, 443, 445, 448, 449, 451, 453, 454, 455, 456, 457, 458, 459, 478, 481, 494, 501, 503, 514, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 539, 540, 541, 585, 608, 615, 617, 618, 620, 624, 625, 631, 632, 634, 635, 636, 637, 638, 639, 641, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 667, 668, 672, 673, 674, 677, 678, 680, 682, 684, 686, 687, 689, 691, 693, 694, 696, 697, 698, 702, 724, 749, 750, 751, 752, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 773, 778, 792, 795, 806, 812, 819, 827, 828, 829, 837, 839, 841, 844, 846, 847, 849, 852, 855, 857, 860, 861, 863, 864, 866, 868, 870, 871, 873, 874, 876], "most": [0, 6, 14, 22, 31, 32, 74, 76, 97, 100, 141, 376, 429, 585, 608, 629, 634, 637, 672, 673, 809, 812, 817, 818, 819, 824, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 860, 870, 871, 873, 874, 876, 877], "avail": [0, 2, 4, 6, 8, 12, 26, 27, 29, 31, 32, 47, 58, 81, 196, 202, 204, 205, 216, 546, 631, 634, 637, 688, 777, 810, 812, 819, 820, 827, 828, 829, 830, 832, 833, 841, 844, 847, 855, 856, 859, 863, 864, 865, 875, 876], "cpu": [0, 6, 7, 8, 9, 10, 11, 13, 26, 27, 28, 29, 31, 45, 46, 47, 49, 50, 53, 55, 57, 66, 76, 78, 80, 89, 126, 132, 135, 137, 138, 141, 142, 143, 149, 193, 194, 196, 197, 198, 199, 204, 207, 209, 211, 214, 215, 217, 219, 376, 382, 438, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 773, 791, 792, 793, 794, 795, 796, 797, 810, 812, 816, 819, 820, 826, 829, 830, 834, 841, 844, 855, 868, 870, 873, 875], "gpu": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 45, 47, 49, 50, 196, 198, 199, 202, 205, 207, 209, 211, 212, 215, 217, 219, 631, 810, 812, 819, 820, 828, 830, 851, 856, 868, 870, 873, 874, 875], "tpu": [0, 45, 194, 200, 209, 211, 216, 631, 810, 830, 870, 873], "explicitli": [0, 637, 673, 674, 689, 773, 792, 793, 794, 816, 823, 824, 825, 827, 829, 832, 833, 834, 837, 838, 839, 840, 842, 844, 849, 855, 864, 870], "hardwar": [0, 4, 45, 102, 106, 819, 847, 860, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876], "mai": [0, 1, 6, 55, 56, 57, 62, 68, 69, 78, 79, 85, 92, 102, 103, 126, 133, 144, 214, 240, 241, 247, 252, 260, 268, 269, 273, 274, 276, 291, 335, 336, 372, 404, 544, 580, 629, 631, 632, 634, 637, 645, 646, 647, 685, 694, 749, 750, 751, 752, 753, 756, 760, 761, 762, 764, 776, 806, 817, 818, 819, 820, 823, 827, 828, 829, 833, 834, 837, 838, 839, 841, 842, 844, 847, 850, 851, 853, 861, 877], "vari": [0, 57, 68, 97, 98, 291, 404, 545, 632, 634, 637, 645, 684, 750, 751, 752, 806, 827, 831, 841, 844, 851], "known": [0, 57, 80, 284, 376, 448, 450, 632, 791, 823, 828, 829, 841, 844], "advanc": [0, 20, 43, 819, 821, 869], "set_soft_device_mod": [0, 4, 14, 18, 218, 631, 830], "section": [0, 1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 51, 57, 68, 80, 112, 375, 378, 409, 420, 470, 479, 499, 645, 749, 750, 751, 752, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 852, 853, 865, 866, 873, 876], "binari": [0, 6, 14, 26, 27, 29, 57, 58, 61, 63, 80, 84, 86, 230, 233, 235, 270, 290, 375, 377, 421, 456, 459, 632, 636, 638, 659, 663, 696], "logist": [0, 14], "gblinear": [0, 14], "booster": [0, 14], "linear": [0, 4, 12, 18, 30, 31, 32, 43, 44, 45, 47, 50, 57, 58, 61, 73, 80, 81, 84, 110, 112, 114, 115, 118, 295, 299, 303, 305, 306, 307, 311, 353, 367, 372, 375, 378, 387, 411, 446, 484, 532, 549, 572, 626, 634, 636, 641, 663, 686, 725, 776, 778, 779, 791, 792, 812, 827, 832, 837, 838, 840, 841, 844, 847, 849, 852, 853, 854, 864, 868, 869, 870, 873], "estim": [0, 57, 80, 349, 372, 387, 522, 810], "rate": [0, 57, 59, 80, 82, 375, 382, 417, 512, 616, 619, 621, 622, 623, 635, 636, 640, 661, 715, 716, 717, 796, 828], "fine": [0, 16, 18, 31, 32, 819, 820, 829, 831, 841, 851, 854, 876], "tune": [0, 16, 18, 31, 32, 875, 876], "regular": [0, 46, 80, 376, 387, 438, 443, 526, 819, 841, 870], "term": [0, 6, 57, 80, 312, 319, 322, 369, 377, 456, 457, 636, 661, 662, 792, 806, 812, 820, 827, 849, 857, 859, 870], "reg_lambda": [0, 14], "reg_alpha": [0, 14], "overfit": [0, 636, 659], "compil": [0, 6, 9, 10, 11, 12, 13, 14, 26, 27, 29, 31, 32, 35, 48, 50, 291, 632, 784, 819, 841, 845, 849, 855, 857, 864, 866, 869, 870, 871, 874, 877], "param": [0, 11, 13, 14, 31, 45, 46, 47, 49, 74, 80, 81, 103, 535, 552, 553, 634, 798, 812, 854, 864], "n_estim": [0, 14], "100": [0, 6, 7, 9, 11, 12, 13, 14, 43, 45, 47, 53, 56, 57, 76, 79, 80, 81, 84, 101, 138, 147, 234, 274, 287, 328, 351, 360, 369, 372, 375, 376, 378, 399, 400, 445, 451, 489, 553, 561, 577, 629, 632, 634, 637, 641, 676, 724, 812, 828, 829, 844, 852, 853, 854, 855, 860, 861, 863], "learning_r": [0, 7, 14], "base_margin": [0, 14], "none": [0, 4, 6, 8, 11, 13, 14, 31, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 101, 102, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 170, 171, 172, 173, 175, 177, 180, 192, 195, 196, 208, 209, 210, 211, 212, 213, 214, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 518, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 578, 579, 580, 582, 583, 584, 585, 587, 588, 589, 591, 592, 593, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 729, 730, 731, 733, 734, 735, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 800, 801, 804, 806, 810, 812, 816, 819, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 863, 864, 865], "xgb_cl": [0, 14], "better": [0, 11, 14, 34, 43, 49, 50, 818, 822, 841, 842, 845, 847, 848, 851, 852, 853, 861, 873], "ivy_cl": [0, 14], "effici": [0, 8, 11, 12, 13, 20, 21, 23, 24, 31, 32, 33, 34, 57, 62, 80, 85, 376, 377, 440, 456, 585, 608, 634, 637, 680, 812, 819, 820, 827, 837, 838, 840, 844, 846, 849, 852, 855, 864, 870, 872, 873], "fit": [0, 14, 64, 87, 639, 705, 818, 841, 849, 866, 867, 870], "magic": [0, 828], "durat": 0, "70": [0, 14, 43, 45, 57, 80, 81, 375, 397, 407, 553, 577, 637, 647, 682, 759, 860], "m": [0, 11, 12, 13, 14, 31, 44, 46, 48, 50, 53, 57, 62, 66, 79, 80, 85, 89, 102, 139, 145, 146, 147, 267, 328, 329, 369, 375, 376, 377, 378, 382, 398, 429, 434, 435, 437, 438, 453, 464, 475, 476, 490, 508, 509, 510, 511, 512, 629, 637, 641, 643, 667, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 726, 739, 740, 741, 812, 819, 820, 822, 828, 849], "per": [0, 11, 13, 14, 24, 45, 47, 57, 61, 80, 84, 319, 369, 375, 376, 378, 394, 395, 396, 412, 413, 414, 415, 444, 491, 636, 650, 652, 653, 654, 655, 658, 663, 792, 820, 828, 838, 841, 852], "loop": [0, 6, 7, 11, 13, 14, 24, 39, 72, 80, 95, 122, 125, 375, 421, 628, 640, 715, 716, 717, 812, 825, 855, 863], "dev": [0, 4, 11, 12, 13, 14, 24, 45, 47, 50, 55, 74, 78, 201, 208, 631, 819, 830, 834, 837, 851, 853], "run": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 45, 47, 48, 49, 57, 59, 80, 82, 381, 501, 503, 615, 616, 621, 635, 636, 640, 661, 715, 716, 717, 773, 774, 792, 793, 794, 795, 805, 812, 814, 818, 819, 822, 824, 825, 828, 830, 831, 833, 835, 836, 838, 841, 842, 849, 850, 851, 852, 853, 854, 855, 856, 863, 864, 865, 868, 870, 871, 872, 873, 875, 876, 877], "59": [0, 7, 43, 56, 235, 387, 523], "04": [0, 6, 45, 46, 53, 59, 73, 77, 80, 82, 112, 113, 138, 165, 245, 582, 615, 616, 621, 626, 629, 630, 632, 634, 635, 776, 819, 844], "slowest": [0, 34, 57, 64, 80, 87, 378, 474, 639, 706], "took": [0, 11, 79, 280], "87": [0, 14, 43, 82, 84, 234, 263, 387, 418, 523, 615, 632, 635, 776, 834], "longer": [0, 14, 819, 829, 840, 844, 870], "than": [0, 7, 9, 10, 14, 31, 32, 34, 37, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 74, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 102, 103, 126, 134, 165, 213, 221, 222, 225, 226, 228, 229, 232, 234, 236, 240, 246, 247, 261, 262, 263, 264, 271, 273, 278, 282, 284, 286, 287, 291, 292, 293, 302, 312, 334, 337, 351, 358, 369, 372, 375, 376, 377, 378, 387, 397, 398, 403, 404, 407, 408, 409, 419, 420, 424, 426, 445, 451, 452, 475, 476, 523, 524, 525, 564, 565, 568, 585, 608, 629, 630, 631, 632, 634, 636, 637, 639, 643, 644, 645, 647, 661, 666, 668, 677, 678, 679, 680, 683, 694, 699, 703, 709, 741, 747, 750, 751, 752, 757, 758, 763, 764, 765, 766, 792, 806, 816, 818, 820, 823, 827, 828, 829, 831, 833, 834, 840, 841, 842, 844, 845, 846, 847, 849, 852, 853, 854, 855, 856, 860, 867, 868, 869, 870, 876, 877], "fastest": [0, 34, 57, 64, 80, 87, 376, 378, 443, 474, 639, 706], "could": [0, 6, 13, 31, 32, 37, 68, 645, 749, 750, 751, 752, 818, 819, 820, 823, 828, 829, 831, 838, 840, 841, 842, 844, 849, 851, 852, 853, 860, 861, 870, 875, 876], "intermedi": [0, 44, 868, 869, 870, 871, 876], "cach": [0, 7, 12, 13, 26, 27, 28, 29, 45, 47, 50, 195, 539, 631, 634, 781, 801, 835, 837, 840, 844], "400": [0, 14, 81, 84, 375, 399, 400, 553, 577, 634, 637, 676], "\u00b5": [0, 11, 13, 14, 24], "487": [0, 279, 632, 636, 660], "make": [0, 1, 4, 8, 11, 12, 13, 14, 23, 31, 32, 33, 45, 49, 57, 80, 375, 419, 801, 812, 815, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 856, 860, 861, 864, 868, 870, 871, 872, 873, 876, 877], "out": [0, 4, 6, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 163, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 423, 424, 425, 426, 427, 428, 429, 432, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 446, 450, 453, 454, 455, 456, 458, 459, 465, 467, 468, 469, 471, 472, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 536, 540, 541, 545, 546, 547, 549, 552, 553, 562, 572, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 784, 788, 789, 791, 792, 794, 795, 796, 797, 812, 813, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861, 863, 864, 870, 877], "respect": [0, 53, 56, 57, 59, 62, 79, 80, 82, 85, 97, 139, 220, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 282, 286, 289, 290, 300, 349, 364, 367, 372, 374, 376, 378, 381, 432, 449, 461, 501, 503, 557, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 629, 632, 634, 635, 636, 637, 640, 649, 656, 657, 663, 668, 684, 687, 715, 716, 717, 773, 776, 791, 806, 817, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 836, 837, 839, 840, 841, 844, 845, 846, 866, 876], "kei": [0, 6, 7, 11, 24, 25, 31, 32, 47, 49, 52, 57, 61, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 385, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 515, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 542, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 634, 636, 640, 641, 650, 651, 652, 653, 659, 660, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 721, 727, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 776, 777, 783, 789, 792, 796, 812, 815, 826, 827, 828, 837, 840, 841, 842, 844, 852, 864, 870, 873, 877], "precis": [0, 14, 57, 62, 80, 85, 165, 253, 273, 280, 287, 346, 372, 376, 387, 430, 522, 585, 608, 630, 632, 634, 637, 673, 674, 678, 685, 687, 688, 694, 784, 828, 841, 846, 847, 874], "recal": [0, 14], "f1": [0, 14, 829], "score": [0, 14, 61, 84, 377, 459, 636, 664, 666, 812], "ivy_pr": [0, 14], "xgb_pred": [0, 14], "nxgbclassifi": [0, 14], "86": [0, 14, 43, 66, 80, 89, 375, 387, 407, 523, 615, 635, 740, 741], "93": [0, 14, 43, 57, 79, 81, 89, 198, 287, 360, 372, 545, 546, 631, 634, 740, 741], "84": [0, 43, 61, 70, 79, 89, 168, 198, 263, 630, 631, 637, 642, 647, 660, 682, 737, 740, 741, 759], "91": [0, 43, 57, 84, 89, 360, 372, 418, 636, 637, 643, 647, 660, 682, 740, 759], "accuraci": [0, 6, 14, 45, 47, 50, 375, 419, 829], "92": [0, 14, 43, 47, 57, 58, 89, 360, 372, 613, 623, 635, 637, 669, 740, 741], "macro": [0, 14], "avg": [0, 14, 375, 394, 396, 417], "weight": [0, 4, 6, 14, 16, 18, 31, 32, 45, 46, 57, 59, 61, 63, 80, 82, 84, 86, 97, 98, 315, 319, 353, 369, 372, 375, 376, 387, 402, 435, 520, 522, 525, 615, 616, 619, 621, 622, 623, 635, 636, 638, 640, 660, 661, 662, 663, 666, 696, 717, 778, 791, 792, 794, 796, 810, 812, 827, 837, 844, 849, 853, 854, 869], "90": [0, 14, 43, 45, 47, 56, 57, 79, 80, 239, 279, 283, 360, 372, 378, 387, 490, 523, 632, 637, 647, 682, 759, 806, 860], "summar": [0, 31, 32, 97, 844], "perfect": [0, 812], "fals": [0, 6, 7, 8, 11, 12, 13, 18, 22, 23, 31, 34, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 196, 197, 202, 204, 207, 208, 210, 213, 214, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 417, 418, 419, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 509, 514, 515, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 572, 576, 577, 578, 581, 584, 585, 587, 588, 590, 591, 592, 593, 595, 597, 599, 600, 602, 607, 608, 610, 611, 613, 616, 617, 619, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 728, 729, 730, 731, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 789, 792, 793, 794, 796, 798, 801, 805, 806, 807, 810, 812, 816, 819, 823, 825, 828, 829, 830, 831, 833, 834, 840, 841, 842, 844, 846, 847, 849, 852, 853, 854, 863, 864], "posit": [0, 47, 49, 52, 56, 57, 58, 62, 63, 64, 79, 80, 81, 85, 86, 87, 97, 132, 134, 147, 165, 220, 221, 222, 226, 229, 240, 247, 254, 255, 261, 263, 273, 274, 281, 282, 286, 287, 291, 313, 328, 334, 339, 351, 369, 372, 376, 378, 427, 447, 458, 483, 492, 539, 549, 614, 627, 629, 630, 632, 634, 637, 638, 639, 643, 644, 648, 667, 670, 691, 696, 702, 707, 742, 747, 767, 768, 773, 776, 784, 789, 793, 794, 806, 812, 818, 820, 823, 827, 841, 844, 845, 852, 863, 872], "excel": [0, 6, 877], "high": [0, 6, 22, 31, 32, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 585, 634, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 815, 818, 833, 839, 841, 852, 857, 861, 866, 867, 868, 869, 870, 874, 876, 877], "show": [0, 3, 4, 5, 6, 7, 12, 20, 26, 31, 32, 33, 34, 36, 43, 45, 47, 48, 579, 588, 611, 634, 812, 818, 819, 820, 826, 828, 831, 835, 840, 841, 844, 846, 855, 863, 870], "trade": [0, 863], "off": [0, 24, 34, 61, 62, 84, 85, 399, 400, 401, 636, 637, 659, 671, 691, 791, 792, 819, 834, 848, 861, 863, 876], "wa": [0, 9, 31, 32, 37, 46, 57, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 358, 359, 361, 362, 363, 369, 372, 376, 399, 400, 401, 419, 450, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 619, 624, 632, 634, 641, 647, 648, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 801, 812, 814, 820, 823, 825, 826, 828, 831, 837, 839, 841, 849, 851, 860, 863, 864, 869, 870, 872], "overal": [0, 636, 659, 806, 827, 829, 830, 832, 854, 863, 866, 868, 869, 870], "slightli": [0, 14, 312, 369, 827, 841, 844, 849, 853], "lower": [0, 14, 47, 53, 56, 57, 62, 66, 79, 80, 85, 89, 132, 145, 271, 307, 313, 319, 328, 329, 367, 369, 387, 525, 526, 532, 629, 632, 637, 643, 667, 673, 674, 680, 741, 778, 791, 820, 829, 831, 841, 844, 849, 855, 857, 866, 867, 868, 870, 871, 876, 877], "good": [0, 22, 31, 32, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 844, 845, 847, 849, 850, 853], "due": [0, 24, 31, 32, 34, 48, 50, 273, 283, 378, 492, 632, 819, 823, 828, 833, 840, 841, 860, 863, 864, 870], "97": [0, 12, 14, 43, 57, 59, 79, 82, 89, 226, 360, 372, 619, 632, 635, 740], "suggest": [0, 1, 6, 818, 819, 820, 826, 829, 835, 839, 841, 844, 845, 846, 856], "slight": [0, 31, 32, 829, 844, 853], "edg": [0, 49, 57, 64, 80, 87, 319, 369, 375, 378, 387, 411, 484, 525, 639, 699, 701, 714, 779, 823, 844, 864, 870, 872, 876], "ivy_report": 0, "output_dict": 0, "xgb_report": 0, "block": [0, 6, 11, 31, 32, 35, 36, 37, 38, 376, 436, 812, 820, 827, 829, 833, 837, 844, 848, 850, 854, 855, 857, 864, 875, 877], "design": [0, 1, 6, 14, 22, 31, 80, 247, 312, 317, 318, 369, 632, 812, 815, 822, 826, 828, 829, 840, 841, 842, 843, 847, 849, 851, 855, 859, 860, 866, 868, 870, 873, 874, 875], "heatmap": 0, "seaborn": [0, 47], "aesthet": 0, "appeal": 0, "eas": [0, 839, 870], "plot_classification_report": 0, "argument": [0, 6, 9, 26, 28, 29, 31, 32, 34, 36, 37, 38, 43, 45, 47, 49, 52, 53, 56, 57, 58, 62, 74, 75, 79, 80, 81, 97, 98, 103, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 180, 209, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 343, 344, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 412, 413, 414, 419, 421, 423, 430, 484, 492, 496, 522, 525, 529, 535, 536, 538, 539, 544, 546, 547, 552, 556, 558, 560, 562, 572, 576, 577, 591, 595, 600, 601, 614, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 661, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 724, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 784, 789, 792, 793, 794, 801, 805, 808, 812, 818, 822, 823, 824, 825, 826, 827, 831, 832, 835, 837, 842, 844, 845, 847, 849, 851, 852, 857, 859, 863, 864, 865, 870], "plot": [0, 6, 7, 14, 46, 870], "color": [0, 46, 74, 103, 811], "represent": [0, 49, 57, 58, 74, 80, 81, 103, 150, 151, 165, 168, 193, 194, 220, 223, 230, 233, 235, 240, 247, 270, 273, 275, 290, 316, 348, 352, 357, 361, 369, 372, 535, 597, 627, 630, 631, 632, 634, 776, 778, 779, 792, 829, 868, 869, 871, 875, 876], "easi": [0, 1, 31, 32, 45, 819, 820, 824, 825, 827, 837, 839, 842, 844, 847, 860, 868, 870, 876, 877], "assess": [0, 24, 34, 818, 847], "side": [0, 69, 92, 350, 372, 376, 446, 646, 755, 776, 792, 805, 806, 819, 820, 826], "pyplot": [0, 6, 7, 14, 45, 46, 47, 50], "plt": [0, 6, 7, 14, 45, 46, 47, 50], "sn": 0, "model_nam": [0, 6, 47], "ax": [0, 46, 51, 57, 62, 64, 67, 70, 71, 73, 80, 85, 87, 90, 93, 94, 102, 106, 113, 117, 213, 335, 336, 340, 341, 356, 363, 372, 373, 375, 376, 378, 381, 387, 404, 409, 420, 446, 483, 484, 490, 504, 527, 528, 529, 530, 531, 532, 545, 614, 631, 634, 637, 639, 644, 647, 648, 668, 678, 686, 689, 690, 694, 701, 703, 704, 707, 709, 711, 714, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 792, 829, 831, 844, 845, 849, 851], "iloc": 0, "t": [0, 1, 5, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 43, 45, 46, 47, 57, 61, 72, 80, 84, 95, 97, 98, 102, 349, 364, 372, 374, 376, 430, 562, 580, 595, 617, 634, 635, 636, 641, 660, 662, 726, 771, 792, 812, 814, 815, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 834, 835, 837, 838, 839, 840, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 860, 861, 863, 864, 865, 868, 870, 872], "annot": [0, 836], "fmt": 0, "2f": [0, 5, 11], "cmap": 0, "blue": 0, "set_titl": [0, 46, 47], "f": [0, 4, 5, 6, 7, 9, 10, 11, 12, 31, 32, 44, 45, 47, 57, 64, 80, 87, 302, 319, 367, 369, 378, 474, 495, 639, 641, 706, 721, 725, 726, 727, 730, 735, 736, 812, 813, 820, 822, 827, 828, 833, 845, 849, 851, 852, 861, 866], "figur": [0, 46, 846], "fig": [0, 46, 47], "ax1": [0, 47], "ax2": [0, 47], "subplot": [0, 46, 47], "figsiz": [0, 46, 47], "tight_layout": [0, 47], "observ": [0, 14, 57, 80, 387, 521, 522, 820, 829, 833, 849, 863, 872], "exhibit": [0, 34, 876], "strong": [0, 778, 855, 860, 870], "commend": 0, "impli": [0, 68, 645, 749, 750, 751, 752, 844], "neg": [0, 51, 56, 57, 62, 64, 66, 71, 73, 79, 80, 85, 87, 89, 94, 97, 112, 115, 118, 126, 132, 134, 147, 240, 247, 254, 255, 273, 274, 282, 287, 295, 313, 328, 331, 367, 369, 376, 377, 378, 382, 427, 434, 440, 457, 492, 496, 512, 626, 629, 632, 637, 639, 643, 648, 668, 670, 687, 691, 693, 694, 700, 702, 703, 707, 740, 767, 768, 776, 778, 788, 827, 840], "depend": [0, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 53, 54, 57, 58, 62, 68, 69, 77, 80, 85, 92, 93, 123, 129, 152, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 261, 262, 263, 264, 273, 275, 278, 285, 286, 290, 291, 359, 372, 375, 376, 421, 429, 447, 595, 628, 629, 630, 632, 634, 636, 637, 644, 646, 661, 672, 673, 684, 685, 686, 687, 748, 753, 756, 766, 814, 816, 818, 819, 820, 826, 829, 830, 832, 834, 838, 840, 841, 842, 843, 844, 847, 849, 855, 856, 860, 863, 868, 870, 871], "applic": [0, 6, 18, 20, 45, 47, 50, 57, 61, 80, 84, 100, 376, 451, 636, 637, 641, 647, 663, 666, 691, 724, 725, 726, 730, 731, 763, 765, 812, 819, 828, 829, 830, 838, 853, 867, 868, 870, 872, 874, 876], "conclus": 0, "appear": [0, 378, 475, 476, 614, 634, 819, 820, 823, 841, 847, 863], "outperform": [0, 14], "especi": [0, 7, 819, 825, 835, 859, 870], "increas": [0, 11, 13, 14, 24, 31, 34, 57, 62, 64, 80, 85, 87, 100, 378, 387, 484, 525, 637, 639, 692, 701, 714, 778, 829, 833, 841, 845, 847, 859, 863, 870], "context": [0, 325, 369, 573, 634, 818, 819, 820, 825, 829, 830, 831], "specif": [0, 6, 7, 22, 23, 28, 29, 31, 32, 33, 35, 37, 45, 55, 57, 58, 78, 80, 81, 180, 211, 214, 247, 268, 269, 278, 322, 335, 336, 369, 372, 378, 382, 492, 512, 545, 546, 547, 573, 630, 631, 632, 634, 637, 639, 640, 643, 646, 647, 673, 674, 689, 710, 715, 716, 717, 738, 755, 760, 761, 762, 764, 771, 773, 793, 794, 801, 802, 808, 810, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 833, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 857, 859, 863, 864, 865, 866, 868, 869, 871, 872, 873, 877], "problem": [0, 7, 812, 815, 818, 820, 823, 824, 830, 841, 851, 860, 866, 872, 876], "domain": [0, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832, 868, 870], "repo": [1, 16, 45, 817, 820, 823, 826, 828, 829, 834, 842, 844, 859], "hold": [1, 57, 58, 62, 70, 80, 85, 93, 97, 98, 334, 351, 356, 372, 387, 470, 499, 523, 524, 529, 576, 577, 634, 637, 647, 678, 758, 774, 821, 852, 871], "exampl": [1, 6, 7, 9, 11, 13, 22, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 397, 399, 400, 402, 403, 404, 407, 408, 409, 412, 413, 414, 417, 418, 419, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 441, 443, 446, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 504, 505, 507, 510, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 717, 718, 719, 721, 722, 724, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 784, 801, 805, 806, 810, 812, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 840, 841, 845, 849, 851, 852, 853, 854, 855, 861, 867, 868, 871, 873, 876, 877], "tab": [1, 818, 819, 828, 834, 852], "ivi": [1, 2, 3, 6, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 45, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 819, 822, 823, 825, 827, 829, 830, 832, 834, 835, 836, 837, 838, 840, 847, 848, 855, 857, 860, 861, 862, 866, 877, 878], "web": 1, "relev": [1, 53, 76, 138, 629, 796, 812, 818, 819, 820, 824, 827, 828, 829, 831, 834, 838, 839, 842, 843, 844, 852, 856, 860, 868, 875, 876], "link": [1, 22, 31, 32, 46, 812, 818, 819, 820, 826, 828, 829, 835, 841, 864, 866, 868], "open": [1, 4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 46, 47, 48, 58, 66, 89, 126, 629, 643, 739, 741, 812, 813, 814, 815, 819, 820, 821, 826, 829, 832, 834, 841, 842, 847, 856, 859, 860, 861, 863, 864, 868, 869, 870, 872, 873], "avil": 1, "discuss": [1, 818, 820, 826, 829, 830, 840, 841, 843, 844, 847, 850, 851, 852, 855, 861, 866, 871], "comprehens": [1, 20, 812, 820, 823, 843], "possibl": [1, 4, 37, 53, 57, 76, 80, 87, 97, 128, 247, 290, 312, 335, 336, 369, 372, 375, 377, 378, 398, 453, 462, 463, 464, 470, 472, 474, 475, 476, 483, 499, 572, 632, 634, 636, 647, 659, 702, 703, 704, 706, 708, 709, 711, 713, 760, 762, 776, 792, 806, 809, 812, 813, 816, 818, 819, 820, 823, 826, 827, 829, 831, 832, 834, 835, 837, 839, 840, 841, 842, 844, 847, 849, 852, 855, 860, 868, 870, 876], "us": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 66, 67, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 93, 95, 97, 98, 100, 103, 110, 138, 141, 152, 164, 166, 167, 178, 179, 199, 200, 202, 207, 211, 212, 213, 214, 216, 219, 225, 233, 261, 262, 264, 265, 267, 268, 269, 271, 272, 274, 283, 287, 292, 312, 314, 315, 317, 318, 319, 327, 349, 352, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 394, 395, 396, 398, 399, 400, 401, 402, 404, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 428, 430, 434, 440, 442, 444, 445, 447, 448, 449, 451, 452, 457, 474, 478, 482, 484, 492, 496, 501, 503, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 529, 532, 550, 551, 560, 561, 572, 573, 580, 582, 583, 585, 592, 593, 605, 606, 608, 615, 616, 621, 622, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 647, 660, 661, 663, 666, 671, 673, 680, 684, 688, 691, 694, 696, 705, 706, 707, 711, 715, 716, 717, 718, 720, 721, 727, 728, 729, 731, 738, 739, 740, 741, 743, 744, 745, 746, 749, 751, 759, 761, 774, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 801, 805, 806, 810, 813, 815, 817, 820, 822, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 857, 861, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877], "attract": 1, "visual": [1, 6, 7, 14, 49, 810, 812, 819, 834, 841, 844, 855, 870, 872, 875], "graph": [1, 4, 6, 7, 8, 12, 14, 20, 21, 24, 26, 28, 29, 32, 38, 39, 44, 49, 50, 68, 645, 749, 750, 751, 752, 784, 812, 827, 837, 841, 843, 847, 849, 854, 855, 857, 861, 862, 863, 864, 865, 866, 870, 873], "nice": [1, 844, 861, 870], "etc": [1, 34, 39, 46, 53, 57, 66, 68, 72, 76, 80, 89, 95, 129, 137, 138, 141, 375, 382, 404, 409, 420, 508, 509, 511, 512, 629, 643, 645, 738, 739, 740, 741, 749, 750, 751, 752, 776, 779, 791, 792, 793, 794, 795, 796, 797, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 831, 833, 836, 841, 842, 844, 845, 849, 851, 852, 855, 857, 861, 863, 868, 870, 876], "tone": [1, 5], "feel": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863], "free": [1, 6, 7, 8, 45, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 814, 816, 817, 818, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 856, 863, 871, 873], "emoji": [1, 818], "don": [1, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 72, 95, 812, 818, 819, 820, 828, 829, 830, 835, 839, 844, 847, 853, 855, 856, 861, 863], "keep": [1, 2, 16, 18, 22, 28, 29, 31, 57, 64, 74, 80, 87, 97, 100, 360, 376, 451, 639, 713, 817, 818, 819, 820, 823, 826, 827, 828, 833, 840, 841, 844, 845, 847, 852, 854, 856, 864], "thing": [1, 7, 29, 43, 45, 805, 817, 818, 819, 820, 825, 841, 844, 847, 851, 852, 859, 860, 861, 870], "super": [1, 4, 8, 16, 18, 31, 32, 45, 57, 80, 376, 430, 812, 833, 849, 852, 853, 854, 864], "seriou": 1, "given": [1, 4, 7, 22, 31, 44, 57, 58, 63, 64, 66, 74, 80, 81, 82, 86, 87, 89, 97, 98, 100, 102, 103, 126, 130, 137, 138, 158, 159, 160, 161, 162, 174, 179, 198, 207, 211, 212, 213, 215, 219, 292, 322, 331, 334, 340, 341, 349, 350, 351, 353, 356, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 397, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 420, 430, 435, 450, 454, 455, 456, 458, 459, 460, 461, 471, 472, 473, 480, 482, 494, 500, 504, 505, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 531, 553, 557, 576, 577, 587, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 695, 696, 697, 698, 699, 702, 703, 704, 705, 707, 708, 712, 713, 725, 726, 735, 736, 739, 740, 741, 743, 755, 756, 757, 758, 771, 776, 777, 778, 779, 784, 788, 789, 791, 792, 794, 795, 796, 797, 798, 805, 806, 812, 815, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 850, 851, 853, 860, 861, 867, 872, 873, 876, 877], "intern": [1, 14, 74, 105, 106, 107, 641, 718, 728, 729, 791, 792, 793, 794, 795, 797, 821, 824, 827, 830, 832, 840, 842, 844, 846], "releas": [1, 6, 46, 818, 819, 829, 845, 847, 855, 861, 870, 876], "tracer": [1, 4, 8, 12, 13, 23, 26, 27, 28, 29, 32, 48, 50, 841, 848, 850, 855, 857, 864, 865, 866], "around": [1, 15, 16, 18, 20, 57, 74, 80, 103, 378, 484, 492, 818, 820, 823, 824, 826, 830, 836, 837, 841, 844, 845, 851, 855, 857, 863, 867, 868, 870, 877], "corner": [1, 57, 80, 375, 411, 819, 820, 834, 841], "anybodi": 1, "abl": [1, 4, 6, 7, 8, 33, 37, 48, 50, 74, 97, 819, 820, 821, 823, 829, 834, 837, 840, 841, 845, 849, 854, 863, 873, 876], "start": [1, 2, 6, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 46, 47, 53, 57, 74, 76, 80, 84, 126, 134, 137, 138, 353, 363, 372, 373, 375, 378, 387, 418, 474, 477, 485, 487, 497, 531, 629, 778, 805, 810, 813, 818, 819, 820, 821, 822, 828, 829, 831, 832, 834, 835, 836, 841, 844, 847, 848, 849, 851, 852, 853, 855, 863, 864, 870, 876], "shortli": 1, "so": [1, 2, 7, 8, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 372, 375, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 641, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 729, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 859, 860, 863, 864, 865, 870, 871, 872, 874], "worri": [1, 31, 32, 818, 819, 835], "about": [1, 20, 21, 22, 25, 27, 29, 31, 32, 35, 46, 47, 54, 77, 165, 168, 630, 810, 812, 814, 817, 818, 819, 820, 821, 822, 823, 826, 828, 829, 830, 835, 836, 840, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 861, 865, 871, 872, 875], "transpil": [1, 9, 10, 11, 12, 13, 15, 20, 21, 23, 24, 34, 783, 784, 812, 818, 819, 833, 834, 841, 848, 849, 850, 857, 862, 863, 865, 870, 876, 877], "style": [1, 14, 45, 47, 378, 484, 644, 747, 820, 835, 870], "stori": 1, "anyon": [1, 812, 813, 820, 828, 855, 860, 876], "ha": [1, 4, 6, 8, 10, 12, 13, 14, 16, 18, 22, 24, 28, 31, 32, 34, 37, 39, 43, 50, 53, 57, 62, 64, 68, 70, 74, 77, 80, 81, 85, 87, 91, 93, 97, 139, 196, 220, 240, 243, 245, 247, 257, 273, 275, 280, 283, 285, 286, 290, 330, 331, 332, 369, 376, 377, 378, 387, 411, 446, 456, 467, 491, 493, 498, 521, 523, 524, 526, 558, 629, 631, 632, 636, 637, 639, 644, 645, 647, 662, 663, 677, 678, 686, 687, 689, 691, 694, 702, 709, 747, 750, 751, 752, 757, 758, 761, 763, 764, 765, 766, 773, 776, 779, 801, 818, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 853, 854, 855, 856, 859, 860, 861, 863, 865, 866, 869, 870, 872, 873, 876], "question": [1, 6, 7, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 855, 859, 860, 861], "ping": 1, "me": [1, 820], "guillermo": 1, "commun": [1, 6, 7, 46, 813, 818, 819, 820, 821, 855, 860, 869, 870, 872], "ux": 1, "team": [1, 812, 813, 815, 818, 819, 820, 821, 841, 856, 872], "discord": [1, 6, 7, 46, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "channel": [1, 29, 47, 57, 58, 61, 80, 81, 84, 102, 103, 375, 381, 399, 400, 401, 411, 501, 502, 503, 506, 545, 549, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 788, 789, 791, 792, 794, 795, 796, 797, 820, 826, 834, 843], "templat": [1, 812, 826, 832, 844], "locat": [1, 47, 141, 387, 523, 629, 641, 643, 646, 722, 738, 755, 806, 818, 820, 825, 826, 830, 841, 842, 844, 845, 856, 868], "asset": [1, 857], "01_templat": 1, "ipynb": 1, "pleas": [1, 37, 46, 50, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 859, 860, 861], "copi": [1, 47, 50, 53, 54, 55, 56, 57, 58, 64, 74, 76, 77, 78, 79, 80, 81, 87, 97, 101, 127, 128, 129, 133, 144, 152, 214, 274, 378, 460, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 581, 592, 599, 600, 629, 630, 631, 632, 634, 639, 641, 646, 702, 703, 704, 706, 708, 709, 711, 713, 719, 754, 756, 784, 806, 819, 820, 823, 825, 828, 829, 832, 841, 842, 849, 855, 863, 864, 865], "firstli": [1, 23, 24, 27, 33, 34, 38, 43, 824, 829, 831, 832, 833, 837, 838, 840, 847, 852, 866, 876], "file": [1, 6, 7, 45, 46, 47, 58, 74, 589, 612, 634, 794, 810, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 832, 833, 834, 835, 837, 841, 842, 843, 844, 845, 849, 852, 856, 866, 869, 870, 871], "topic": [1, 20, 23, 24, 25, 33, 34, 35, 36, 37, 38, 838, 851, 870], "Then": [1, 50, 636, 663, 814, 818, 819, 820, 825, 826, 828, 834, 835, 838, 840, 844, 845, 855], "place": [1, 7, 12, 13, 26, 27, 28, 29, 45, 52, 53, 56, 57, 58, 62, 64, 74, 76, 78, 79, 80, 81, 85, 87, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 312, 313, 316, 328, 329, 334, 335, 336, 338, 341, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 474, 484, 489, 492, 496, 509, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 561, 562, 576, 580, 591, 595, 600, 604, 624, 629, 630, 631, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 812, 816, 817, 820, 822, 823, 826, 827, 828, 830, 831, 832, 834, 836, 837, 841, 842, 844, 845, 847, 854, 857, 872], "folder": [1, 12, 13, 26, 27, 28, 29, 47, 812, 819, 820, 823, 826, 828, 834, 837, 841, 844, 845, 846], "edit": [1, 818, 819, 820, 835], "titl": [1, 14, 17, 19, 30, 46, 49, 812, 818, 820, 826], "accordingli": [1, 57, 62, 67, 68, 70, 71, 80, 85, 90, 93, 94, 139, 240, 245, 247, 263, 273, 287, 335, 336, 372, 629, 632, 637, 644, 645, 647, 648, 694, 745, 749, 750, 751, 752, 760, 761, 762, 763, 764, 765, 766, 767, 768, 841, 849, 856], "render": [1, 826, 832], "webpag": [1, 20], "content": [1, 2, 17, 19, 30, 31, 46, 47, 57, 74, 80, 387, 529, 818, 820, 826, 830, 840, 843, 849, 852, 856], "behind": [1, 22, 31, 812, 822, 836, 844, 848, 850], "exist": [1, 22, 31, 32, 45, 46, 47, 50, 53, 57, 58, 74, 76, 80, 81, 87, 128, 378, 462, 463, 469, 470, 472, 474, 475, 476, 483, 499, 544, 580, 634, 639, 700, 702, 703, 704, 706, 708, 709, 711, 713, 796, 798, 810, 812, 818, 819, 823, 825, 830, 831, 832, 837, 838, 840, 841, 844, 847, 849, 855, 857, 859, 860, 868, 870, 873, 876], "cell": [1, 2, 4, 5, 8, 12, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 61, 84, 636, 661, 662, 792, 828, 849], "h2": [1, 2, 17, 19, 30], "tag": [1, 2, 17, 19, 30, 819, 820], "h3": [1, 2, 17, 19, 30], "subsect": [1, 2, 17, 19, 30, 818, 819, 820, 823, 828], "explan": [1, 2, 17, 19, 30, 818, 819, 820, 827, 832, 836, 841, 845, 851], "go": [1, 5, 6, 7, 16, 18, 22, 29, 32, 37, 52, 57, 80, 84, 375, 418, 422, 641, 729, 730, 812, 813, 816, 818, 819, 820, 822, 825, 826, 829, 831, 834, 835, 841, 842, 844, 845, 848, 852, 855, 866, 870, 871, 875, 877], "default": [1, 4, 6, 8, 31, 32, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 100, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 178, 180, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 196, 197, 199, 200, 204, 207, 208, 209, 211, 212, 213, 214, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 390, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 569, 572, 573, 576, 577, 580, 581, 586, 590, 591, 592, 593, 595, 597, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 777, 778, 779, 784, 788, 789, 791, 792, 793, 794, 795, 796, 797, 805, 806, 810, 818, 819, 820, 825, 826, 829, 830, 831, 832, 833, 836, 837, 841, 844, 847, 849, 853, 857, 863, 870], "text": [1, 5, 6, 12, 14, 45, 57, 58, 376, 377, 444, 452, 818, 820, 826, 831, 832], "paragraph": [1, 2, 17, 19, 30, 826], "p": [1, 2, 17, 19, 30, 43, 57, 58, 62, 80, 81, 85, 98, 139, 244, 376, 381, 426, 439, 507, 540, 541, 629, 632, 634, 637, 641, 678, 694, 726, 792, 812, 819, 820, 822], "path": [1, 12, 13, 14, 26, 27, 28, 29, 46, 47, 773, 784, 800, 819, 826, 840, 841, 842, 856, 870], "correspond": [1, 4, 11, 13, 18, 31, 32, 46, 54, 56, 57, 58, 61, 64, 67, 68, 70, 74, 77, 79, 80, 84, 87, 93, 97, 100, 103, 153, 165, 168, 228, 278, 292, 331, 345, 346, 369, 372, 375, 376, 378, 381, 387, 398, 404, 415, 420, 426, 429, 430, 431, 450, 475, 476, 496, 501, 502, 503, 506, 523, 524, 592, 614, 630, 632, 634, 636, 637, 639, 643, 644, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 663, 668, 672, 673, 678, 685, 686, 706, 707, 738, 744, 745, 749, 750, 751, 752, 757, 758, 763, 764, 765, 766, 773, 776, 778, 805, 810, 812, 818, 820, 824, 825, 827, 828, 829, 831, 832, 833, 836, 837, 839, 841, 844, 847, 849, 863, 864, 865, 870], "toctre": [1, 826], "index": [1, 45, 46, 47, 50, 53, 57, 58, 64, 67, 68, 69, 74, 76, 80, 81, 87, 90, 91, 92, 132, 139, 313, 320, 321, 330, 331, 332, 369, 375, 376, 378, 383, 385, 387, 398, 404, 435, 437, 444, 467, 474, 477, 485, 487, 489, 492, 493, 496, 497, 513, 514, 523, 532, 535, 553, 555, 576, 577, 581, 627, 629, 634, 639, 641, 644, 645, 646, 706, 710, 720, 721, 722, 725, 726, 727, 733, 735, 744, 745, 747, 749, 750, 751, 753, 755, 777, 792, 806, 808, 827, 828, 833, 837, 838, 839, 840, 842, 844, 851, 870], "rst": [1, 837], "left": [1, 24, 34, 45, 46, 57, 62, 67, 69, 80, 85, 90, 92, 120, 121, 232, 247, 340, 356, 363, 372, 373, 375, 376, 378, 387, 410, 429, 434, 440, 447, 449, 475, 485, 527, 528, 529, 530, 531, 532, 545, 628, 632, 634, 637, 644, 646, 672, 673, 678, 687, 692, 744, 755, 776, 819, 820, 823, 826, 828, 829, 831, 834], "add": [1, 24, 34, 47, 49, 56, 57, 65, 72, 74, 79, 80, 88, 95, 102, 103, 363, 373, 375, 377, 418, 457, 572, 601, 632, 634, 636, 637, 642, 647, 663, 691, 737, 765, 773, 784, 792, 795, 810, 812, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 840, 841, 844, 845, 847, 849, 851, 855, 856, 866, 867, 868, 870], "grid": [1, 47, 53, 139, 316, 369, 629, 831, 844], "item": [1, 5, 6, 7, 31, 32, 43, 45, 47, 52, 58, 72, 74, 76, 79, 80, 81, 134, 159, 196, 250, 266, 274, 341, 345, 358, 542, 552, 553, 557, 592, 593, 629, 630, 631, 634, 641, 648, 723, 724, 725, 726, 730, 735, 736, 770, 812, 818, 827, 829, 849, 851, 852, 854, 863], "card": [1, 57, 80, 360, 372, 875], "refer": [1, 8, 57, 64, 70, 71, 80, 82, 87, 93, 94, 132, 147, 245, 263, 313, 328, 358, 369, 372, 375, 376, 378, 404, 409, 420, 427, 451, 474, 615, 616, 629, 632, 635, 637, 639, 647, 648, 668, 670, 693, 706, 764, 766, 767, 768, 792, 812, 817, 818, 819, 820, 823, 824, 826, 828, 829, 836, 837, 838, 839, 840, 841, 842, 843, 844, 855, 856, 857, 870], "also": [1, 4, 5, 6, 7, 10, 11, 13, 14, 16, 18, 22, 24, 26, 27, 29, 31, 32, 34, 36, 37, 38, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 100, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 168, 171, 172, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 372, 375, 376, 378, 385, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 635, 636, 637, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 728, 729, 730, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 801, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 856, 859, 860, 863, 864, 866, 867, 868, 869, 870, 871, 873, 875, 876, 877], "look": [1, 6, 7, 8, 22, 31, 32, 45, 47, 50, 812, 816, 818, 819, 820, 825, 826, 827, 829, 830, 831, 833, 834, 835, 836, 837, 841, 842, 844, 845, 846, 847, 849, 851, 853, 854, 856, 859, 863, 866, 870], "document": [1, 6, 7, 22, 31, 64, 247, 335, 336, 372, 614, 632, 634, 710, 813, 814, 817, 820, 826, 828, 829, 831, 840, 841, 842, 844, 852, 854], "sphinx": [1, 814, 826], "websit": [1, 49, 819, 823, 860], "alreadi": [2, 6, 13, 23, 26, 27, 28, 29, 31, 32, 37, 45, 47, 50, 57, 62, 74, 80, 85, 236, 246, 273, 283, 293, 378, 387, 463, 464, 484, 520, 529, 632, 637, 675, 682, 805, 806, 812, 818, 819, 820, 825, 827, 829, 830, 836, 840, 841, 847, 855, 856, 870, 872, 877], "instal": [2, 7, 8, 9, 10, 11, 13, 14, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 45, 47, 48, 49, 50, 814, 819, 820, 825, 826, 834, 835], "skip": [2, 5, 47, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 376, 378, 399, 400, 401, 419, 435, 437, 444, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 485, 488, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 777, 805, 826, 837, 844], "colab": [2, 5, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 45, 47, 49, 50], "manual": [2, 6, 7, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 641, 718, 728, 729, 818, 819, 820, 829, 835, 844, 853, 856], "mind": [2, 16, 18, 22, 28, 31, 35, 818, 819, 824, 827, 844, 856, 864], "click": [2, 4, 47, 818, 819, 820, 828, 832, 834, 835, 850], "runtim": [2, 4, 5, 8, 11, 12, 13, 24, 31, 34, 45, 46, 822, 837, 844, 847, 870], "restart": [2, 4, 5, 8, 12, 45, 46, 819, 834], "git": [2, 4, 5, 8, 12, 31, 45, 46, 47, 48, 812, 814, 817, 819, 820, 823, 826, 828, 834, 835, 844, 856], "clone": [2, 4, 8, 12, 31, 45, 47, 48, 812, 814, 820, 834, 856], "http": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 26, 27, 28, 29, 31, 32, 45, 46, 47, 48, 49, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 814, 819, 820, 823, 826, 828, 829, 832, 834, 856, 864], "github": [2, 4, 5, 8, 11, 12, 13, 31, 45, 46, 47, 48, 49, 812, 814, 815, 817, 820, 821, 823, 826, 828, 829, 831, 832, 834, 835, 843, 844, 856, 859, 878], "com": [2, 4, 5, 6, 7, 8, 11, 12, 13, 18, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 823, 826, 828, 829, 834, 856], "unifyai": [2, 4, 8, 12, 31, 45, 46, 47, 48, 49, 812, 814, 819, 820, 826, 834, 856], "model": [2, 3, 4, 9, 14, 15, 20, 21, 22, 48, 50, 240, 273, 377, 453, 632, 789, 793, 794, 810, 812, 852, 853, 857, 863, 864, 868, 869, 870, 871, 872, 873, 874, 876, 877], "depth": [2, 4, 6, 8, 12, 46, 53, 57, 61, 76, 80, 84, 141, 375, 378, 411, 471, 545, 557, 629, 634, 636, 654, 655, 820, 828, 852, 853, 854, 856], "repositori": [2, 4, 8, 12, 814, 818, 819, 820, 822, 823, 826, 834, 843, 861], "cd": [2, 4, 8, 12, 31, 48, 812, 814, 819, 820, 834, 856], "resnet": [3, 6, 13, 20, 31, 863, 864], "imag": [3, 4, 6, 7, 11, 13, 16, 20, 28, 31, 32, 45, 46, 47, 48, 49, 50, 57, 61, 79, 80, 84, 102, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 283, 284, 286, 287, 291, 375, 394, 395, 411, 412, 413, 415, 545, 632, 634, 636, 649, 650, 651, 652, 653, 656, 657, 658, 792, 812, 819, 834, 847, 849, 850, 852, 854, 856, 863, 864, 870], "classif": [3, 4, 12, 14, 20, 45, 812, 870], "acceler": [3, 20, 812, 829, 841, 868, 872, 873, 874, 875], "convert": [3, 8, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 28, 29, 31, 32, 33, 35, 37, 45, 48, 50, 52, 53, 56, 74, 75, 76, 79, 97, 127, 128, 140, 150, 151, 193, 194, 195, 196, 207, 215, 219, 239, 279, 378, 383, 462, 463, 464, 513, 578, 596, 598, 599, 600, 602, 629, 630, 631, 632, 634, 637, 641, 695, 719, 730, 731, 773, 801, 805, 812, 818, 824, 825, 838, 839, 841, 844, 846, 849, 855, 857, 861, 864, 868, 869, 876], "faster": [3, 4, 9, 11, 13, 14, 20, 31, 32, 48, 50, 57, 62, 80, 85, 376, 449, 637, 687, 814, 817, 826, 857, 872, 875], "infer": [3, 6, 7, 9, 11, 13, 14, 20, 24, 34, 36, 37, 46, 48, 50, 53, 57, 58, 61, 64, 76, 80, 81, 84, 87, 126, 128, 131, 135, 136, 140, 143, 149, 158, 159, 160, 161, 162, 312, 313, 375, 378, 382, 411, 496, 510, 556, 590, 591, 629, 630, 634, 636, 639, 659, 706, 801, 802, 822, 825, 829, 830, 844, 849, 854, 864, 868, 869, 872, 874], "mmpretrain": [3, 20], "segment": [3, 20, 57, 80, 330, 331, 332, 369, 826, 831], "unet": [3, 20], "alexnet": [3, 20], "written": [3, 4, 5, 6, 20, 22, 31, 32, 45, 58, 378, 473, 819, 823, 824, 832, 835, 836, 840, 841, 845, 849, 851, 854, 855, 859, 864, 868, 870, 874, 876, 877], "xgboost": [3, 20], "paddlepaddl": [3, 20, 335, 336, 372, 819], "dinov2": [3, 7, 20], "project": [3, 12, 13, 20, 25, 26, 27, 28, 29, 31, 32, 35, 98, 636, 663, 792, 812, 814, 815, 818, 819, 820, 821, 824, 825, 826, 844, 853, 855, 859, 860, 861, 864, 866, 868, 870, 873, 877, 878], "convnext": [3, 6, 11, 20], "video": [4, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 813, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 856, 868], "tutori": [4, 6, 7, 8, 11, 12, 13, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 812, 820, 841, 856], "three": [4, 5, 20, 26, 36, 37, 47, 57, 139, 312, 369, 378, 464, 629, 819, 820, 827, 828, 829, 831, 841, 844, 847, 848, 849, 871, 876], "major": [4, 5, 644, 747, 829, 830, 842, 844, 855, 860, 867, 870], "ml": [4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 47, 50, 812, 813, 817, 841, 848, 849, 850, 852, 853, 854, 858, 860, 861, 864, 866, 867, 868, 869, 870, 873, 875, 877], "framework": [4, 5, 7, 9, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 38, 45, 47, 49, 52, 58, 170, 192, 202, 205, 216, 543, 559, 563, 595, 598, 630, 631, 634, 641, 720, 771, 773, 777, 784, 789, 796, 801, 802, 812, 815, 816, 818, 819, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 838, 840, 841, 844, 845, 847, 848, 849, 851, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 871, 874], "sinc": [4, 8, 12, 28, 29, 31, 32, 45, 47, 57, 80, 98, 372, 812, 814, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 833, 840, 841, 855, 860, 870, 876], "automat": [4, 8, 9, 12, 29, 31, 32, 37, 818, 819, 820, 822, 825, 826, 828, 829, 835, 837, 840, 844, 847, 848, 850, 853, 854, 856, 857, 861, 870, 873, 877], "sure": [4, 8, 11, 12, 13, 14, 31, 45, 815, 818, 819, 820, 823, 828, 833, 834, 841, 842, 844, 847, 856], "enabl": [4, 5, 6, 8, 11, 12, 13, 14, 26, 27, 29, 46, 57, 62, 74, 85, 103, 375, 377, 398, 456, 580, 634, 637, 680, 794, 810, 812, 819, 820, 821, 824, 827, 829, 837, 838, 839, 840, 841, 844, 845, 848, 850, 852, 854, 855, 857, 860, 863, 868, 869, 870, 871, 872, 873, 876, 877], "dm": [4, 5, 8, 11, 13, 31, 32, 43, 45], "haiku": [4, 5, 8, 11, 13, 29, 31, 32, 43, 45, 49, 789, 812, 854, 861, 864, 870], "exit": [4, 8, 12, 31, 32, 830], "download": [4, 6, 7, 12, 16, 18, 31, 32, 46, 47, 50, 814, 819, 826, 844, 863, 864], "imagenet": [4, 6, 18, 46, 48, 812], "class": [4, 6, 7, 8, 12, 14, 16, 18, 22, 31, 32, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 134, 143, 149, 165, 168, 181, 183, 184, 243, 280, 338, 360, 372, 386, 387, 395, 396, 429, 528, 529, 536, 545, 549, 562, 572, 595, 629, 630, 631, 632, 634, 636, 637, 638, 641, 642, 657, 662, 666, 672, 682, 686, 687, 689, 696, 712, 719, 730, 737, 752, 759, 763, 764, 773, 774, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 810, 812, 818, 825, 826, 827, 829, 830, 831, 832, 836, 838, 839, 842, 843, 844, 847, 849, 850, 852, 853, 854, 857, 863, 864, 868, 870, 871, 877], "wget": [4, 6, 8, 12, 45, 46, 49, 819], "raw": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 45, 48, 49, 74, 812, 832, 864, 871], "githubusercont": [4, 6, 8, 12, 45, 49], "hub": [4, 6, 8, 12, 45, 48, 50], "master": [4, 8, 12, 23, 24, 25, 33, 34, 35, 36, 37, 38, 45, 47, 48, 49, 815, 828, 870, 878], "imagenet_class": [4, 12], "categori": [4, 6, 12, 818, 823, 824, 827, 829, 833, 841, 845, 848], "strip": [4, 12, 24, 34, 860], "readlin": [4, 12, 46], "cat": [4, 7, 12, 46, 842, 847, 849, 854, 863, 864], "jpg": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 47, 48, 812, 864], "filenam": [4, 8, 12, 31, 32, 45, 47, 50, 58, 794, 800, 852], "import": [4, 6, 7, 9, 10, 11, 13, 16, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 48, 49, 50, 57, 68, 72, 76, 80, 95, 194, 195, 199, 211, 307, 387, 522, 557, 573, 631, 634, 640, 645, 716, 717, 752, 784, 801, 802, 812, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 835, 838, 839, 840, 841, 842, 843, 844, 845, 849, 851, 852, 854, 855, 856, 860, 863, 864, 865, 866, 868, 870, 873, 874, 876], "devic": [4, 6, 7, 8, 9, 11, 12, 13, 46, 47, 50, 53, 57, 66, 74, 76, 80, 89, 102, 105, 106, 107, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 219, 312, 313, 328, 329, 369, 382, 472, 508, 509, 511, 512, 536, 550, 551, 629, 634, 643, 738, 739, 740, 741, 771, 773, 774, 789, 791, 792, 793, 794, 795, 796, 797, 798, 810, 812, 820, 822, 825, 829, 833, 837, 838, 842, 844, 845, 847, 849, 854, 855, 856, 857, 860, 869, 870, 872, 873, 874, 875], "torchvis": [4, 6, 11, 12, 45, 861], "transform": [4, 5, 6, 7, 11, 12, 13, 28, 31, 32, 45, 46, 48, 57, 61, 80, 84, 375, 376, 397, 398, 403, 404, 407, 408, 409, 419, 420, 423, 440, 636, 660, 776, 779, 792, 812, 838, 844, 854, 857, 863, 864, 868, 870, 871, 872], "pil": [4, 6, 7, 8, 11, 12, 13, 28, 31, 32, 46, 47, 48, 812, 864], "time": [4, 5, 6, 7, 9, 10, 11, 13, 29, 31, 32, 37, 45, 47, 48, 49, 57, 59, 62, 68, 80, 82, 91, 97, 98, 134, 341, 372, 375, 376, 378, 387, 404, 409, 421, 423, 444, 451, 484, 490, 522, 616, 621, 629, 635, 636, 637, 639, 640, 644, 645, 659, 662, 677, 712, 715, 716, 717, 744, 745, 749, 750, 792, 793, 794, 810, 818, 819, 820, 823, 825, 827, 828, 829, 831, 834, 836, 837, 838, 840, 841, 844, 845, 849, 852, 854, 855, 856, 859, 860, 861, 863, 864, 868, 870, 871, 874, 875, 876], "filterwarn": [4, 5], "ignor": [4, 5, 44, 52, 53, 57, 74, 80, 139, 375, 376, 378, 387, 399, 400, 401, 430, 438, 446, 486, 487, 491, 530, 629, 636, 641, 663, 729, 730, 796, 819, 826, 828, 831, 844, 855, 876], "compos": [4, 6, 7, 11, 12, 31, 32, 45, 57, 80, 375, 389, 390, 391, 392, 819, 827, 841, 844, 863, 865, 870, 877], "resiz": [4, 6, 7, 8, 11, 12, 45, 46, 57, 80, 375, 411, 847], "centercrop": [4, 12], "224": [4, 6, 7, 12, 16, 18, 31, 32, 45, 46, 48, 812, 864], "totensor": [4, 6, 7, 11, 12, 45], "485": [4, 12, 45], "456": [4, 12, 45, 844], "406": [4, 12, 45, 57, 80, 397, 540, 634], "229": [4, 12, 45, 279, 632], "225": [4, 12, 45, 47, 234, 632], "torch_img": [4, 8, 12], "unsqueez": [4, 8, 11, 12], "img": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 812, 852, 864], "ipython": [4, 8, 12, 26, 27, 28, 29, 31, 32, 50], "displai": [4, 8, 12, 28, 31, 32, 45, 46, 47, 49, 50, 819, 826, 828, 833, 844, 852], "end": [4, 8, 45, 46, 57, 80, 126, 228, 284, 353, 372, 375, 377, 378, 423, 452, 474, 484, 486, 487, 629, 632, 806, 812, 819, 820, 825, 828, 834, 840, 845, 847, 848, 855, 868, 873], "set_default_devic": [4, 5, 6, 8, 11, 12, 13, 217, 631, 830], "ivy_model": [4, 5, 8, 12, 48], "ivy_alexnet": 4, "quick": [4, 20, 32, 820, 822, 842, 853], "trace_graph": [4, 5, 8, 12, 24, 25, 26, 27, 31, 32, 34, 35, 36, 37, 38, 39, 48, 794, 812, 849, 854, 862], "moment": [4, 57, 59, 80, 82, 376, 433, 615, 616, 621, 635, 796, 810, 818, 825, 855, 863, 864], "cost": [4, 59, 82, 615, 616, 619, 621, 622, 623, 635, 640, 715, 716, 717, 806, 829, 847, 868], "arg": [4, 6, 8, 9, 10, 11, 12, 16, 18, 26, 27, 29, 31, 32, 36, 37, 38, 49, 52, 74, 96, 106, 122, 203, 213, 601, 628, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 798, 801, 805, 810, 812, 824, 829, 830, 833, 839, 840, 841, 847, 849, 853, 863, 864, 865], "asarrai": [4, 5, 8, 11, 12, 46, 53, 57, 58, 69, 76, 80, 81, 92, 127, 385, 514, 515, 545, 556, 560, 561, 591, 592, 593, 629, 634, 636, 645, 646, 650, 750, 754, 833, 838, 841, 842], "cuda": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 22, 31, 46, 47, 50, 53, 57, 66, 76, 80, 89, 137, 138, 141, 193, 194, 195, 211, 382, 508, 509, 511, 512, 629, 631, 637, 643, 688, 738, 739, 740, 741, 791, 792, 793, 794, 795, 796, 797, 810, 849, 855, 857, 875], "output": [4, 5, 7, 8, 9, 10, 12, 22, 28, 29, 31, 32, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 154, 179, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 369, 372, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 435, 436, 438, 441, 442, 443, 444, 446, 447, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 467, 468, 469, 472, 474, 475, 476, 477, 478, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 539, 540, 541, 545, 546, 547, 549, 553, 562, 569, 576, 577, 578, 602, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 791, 792, 805, 806, 812, 814, 819, 820, 822, 823, 824, 826, 827, 829, 830, 831, 832, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 849, 851, 853, 854, 855, 857, 863, 864, 871], "softmax": [4, 6, 7, 12, 16, 29, 31, 32, 47, 51, 61, 72, 73, 84, 377, 454, 626, 636, 663, 666, 788, 812], "pass": [4, 6, 7, 8, 11, 12, 13, 14, 16, 18, 22, 29, 31, 32, 38, 44, 45, 47, 49, 50, 56, 57, 72, 74, 79, 80, 95, 103, 122, 123, 125, 157, 179, 194, 213, 228, 274, 375, 377, 378, 381, 382, 387, 421, 454, 474, 501, 503, 508, 528, 529, 562, 628, 630, 631, 632, 634, 640, 715, 716, 771, 773, 777, 784, 789, 793, 794, 796, 797, 801, 805, 810, 812, 816, 818, 820, 823, 824, 825, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 855, 863, 864, 865, 868], "argsort": [4, 12, 69, 92, 646, 755, 841], "descend": [4, 12, 69, 92, 637, 646, 687, 688, 753, 756], "top": [4, 12, 15, 20, 29, 31, 32, 45, 46, 57, 64, 80, 319, 369, 377, 378, 452, 494, 545, 634, 700, 812, 819, 820, 829, 834, 841, 843, 844, 847, 852, 853, 870, 874], "logit": [4, 5, 6, 7, 8, 12, 45, 46, 47, 48, 57, 63, 80, 86, 367, 382, 508, 511, 638, 696, 698, 788, 812, 863], "gather": [4, 12, 45, 57, 58, 80, 81, 330, 331, 332, 369, 553, 555, 634, 877], "to_list": [4, 12, 58, 81, 634], "arrai": [4, 5, 6, 7, 9, 10, 12, 13, 14, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 175, 177, 178, 179, 180, 186, 196, 197, 201, 206, 208, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 572, 574, 575, 576, 577, 578, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 597, 598, 599, 600, 601, 602, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 778, 784, 791, 792, 793, 794, 797, 801, 805, 806, 808, 812, 816, 818, 819, 820, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 864, 865, 868, 869, 870, 872, 876, 877], "282": [4, 12], "281": [4, 12, 45, 47], "285": [4, 12, 80], "64773697": 4, "29496649": 4, "04526037": 4, "tiger": [4, 12], "tabbi": [4, 7, 12], "egyptian": [4, 12], "torch_alexnet": 4, "alexnet_weight": 4, "imagenet1k_v1": [4, 12], "dropout": [4, 61, 84, 375, 399, 400, 401, 636, 661, 663, 666, 792, 852], "torch_output": [4, 8, 9, 12], "dim": [4, 12, 47, 57, 74, 76, 80, 141, 313, 369, 375, 378, 393, 403, 404, 405, 408, 416, 474, 496, 629, 636, 649, 656, 657, 662, 778, 792, 812, 829, 841, 842, 847], "torch_class": [4, 12], "torch_logit": [4, 12], "tensor": [4, 5, 6, 9, 11, 12, 13, 16, 18, 22, 23, 26, 27, 29, 31, 32, 33, 37, 43, 45, 53, 56, 57, 58, 61, 62, 63, 64, 66, 70, 74, 76, 79, 80, 81, 84, 85, 86, 87, 89, 93, 96, 129, 137, 138, 141, 147, 163, 179, 271, 272, 302, 319, 323, 324, 325, 326, 327, 328, 337, 360, 367, 369, 372, 375, 376, 377, 378, 387, 388, 394, 395, 398, 402, 411, 412, 413, 414, 421, 423, 425, 432, 433, 434, 435, 438, 440, 442, 444, 445, 448, 450, 451, 452, 454, 457, 458, 474, 477, 482, 485, 486, 487, 488, 491, 496, 497, 528, 533, 576, 577, 629, 630, 632, 634, 636, 637, 638, 639, 643, 647, 659, 662, 663, 678, 689, 696, 706, 708, 738, 761, 792, 801, 806, 810, 812, 824, 825, 829, 830, 834, 836, 837, 840, 841, 842, 844, 845, 847, 849, 851, 852, 854, 855, 857, 859, 863, 864, 865, 867, 868, 871, 873, 874, 877], "6477": 4, "2950": 4, "0453": 4, "grad_fn": [4, 12, 29, 43, 618, 625, 635, 852], "takebackward0": [4, 12], "great": [4, 7, 8, 812, 820, 844, 849, 851, 860, 861, 876], "simpl": [4, 7, 16, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 43, 45, 47, 50, 57, 80, 387, 522, 778, 792, 806, 812, 818, 819, 820, 824, 826, 827, 829, 830, 831, 832, 837, 840, 841, 844, 845, 847, 851, 853, 854, 855, 857, 859, 863, 864, 869, 870, 871, 872], "let": [4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 43, 45, 46, 48, 50, 58, 70, 81, 220, 221, 222, 223, 226, 229, 238, 241, 243, 245, 254, 255, 256, 261, 263, 276, 284, 286, 287, 291, 552, 553, 632, 634, 637, 647, 691, 761, 763, 764, 765, 766, 812, 818, 821, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 861, 863, 864, 877], "ll": [4, 6, 7, 8, 9, 11, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 46, 812, 813, 815, 816, 818, 819, 820, 821, 826, 831, 834, 835, 839, 840, 852, 856, 861, 863, 864], "try": [4, 6, 7, 23, 33, 43, 46, 50, 74, 601, 634, 791, 801, 812, 818, 819, 820, 823, 824, 827, 828, 829, 833, 835, 840, 842, 849, 851, 855, 858, 860, 861, 865], "tf": [4, 6, 8, 9, 10, 13, 16, 18, 23, 26, 27, 29, 31, 32, 33, 34, 36, 38, 43, 48, 49, 789, 812, 824, 829, 830, 836, 840, 841, 844, 845, 847, 849, 854, 855, 857, 863, 864, 865, 870], "onc": [4, 6, 8, 31, 32, 43, 45, 62, 66, 85, 89, 213, 376, 429, 631, 637, 643, 672, 673, 674, 687, 738, 812, 818, 819, 820, 827, 828, 829, 830, 831, 834, 835, 840, 841, 844, 847, 849, 852, 855, 856, 861, 863], "set": [4, 7, 9, 16, 18, 24, 31, 32, 34, 37, 45, 46, 47, 48, 49, 52, 57, 58, 61, 62, 67, 69, 70, 74, 80, 81, 84, 85, 90, 92, 93, 115, 118, 125, 145, 147, 181, 182, 183, 184, 185, 196, 209, 210, 211, 212, 213, 228, 328, 340, 356, 358, 363, 369, 372, 373, 375, 376, 377, 378, 387, 398, 419, 423, 427, 431, 434, 452, 457, 458, 474, 484, 487, 494, 522, 527, 528, 529, 530, 531, 532, 534, 538, 545, 557, 562, 578, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 595, 603, 626, 628, 629, 630, 631, 632, 634, 636, 637, 641, 643, 644, 646, 647, 659, 666, 668, 678, 680, 683, 686, 687, 718, 725, 728, 729, 730, 735, 736, 742, 744, 745, 749, 751, 752, 753, 756, 764, 766, 773, 776, 777, 778, 779, 784, 791, 792, 794, 796, 801, 806, 809, 810, 812, 813, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 852, 859, 862, 863, 864, 868, 869, 870, 871, 872, 874, 877], "post": [4, 6, 8, 45, 65, 88, 642, 737, 819, 834, 839, 854, 856], "process": [4, 6, 8, 26, 31, 32, 36, 45, 207, 219, 631, 813, 819, 820, 826, 827, 828, 834, 835, 837, 839, 841, 842, 843, 844, 847, 849, 854, 860, 861, 863, 868, 869, 870, 873, 874, 876, 877], "st": [4, 5, 11, 776, 823, 842, 844], "perf_count": [4, 9, 10, 11], "raw_logit": 4, "latenc": [4, 11], "nn": [4, 6, 7, 8, 10, 18, 29, 31, 32, 45, 49, 139, 629, 812, 837, 842, 847, 854, 864, 871], "direct": [4, 57, 80, 341, 348, 352, 357, 361, 372, 375, 378, 409, 420, 475, 476, 490, 646, 756, 818, 824, 826, 841, 847, 853, 854, 866, 870, 871, 874], "tolist": 4, "652289830999962": 4, "int32": [4, 43, 45, 54, 57, 58, 66, 67, 70, 77, 80, 81, 89, 90, 132, 137, 141, 143, 149, 152, 155, 157, 159, 161, 163, 166, 168, 169, 173, 176, 180, 184, 188, 190, 208, 235, 271, 272, 383, 387, 513, 523, 524, 525, 553, 562, 599, 629, 630, 631, 632, 634, 643, 644, 647, 739, 740, 741, 745, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "6477362": 4, "29496726": 4, "04526032": 4, "As": [4, 6, 7, 8, 11, 13, 14, 16, 18, 24, 28, 29, 31, 32, 34, 37, 43, 44, 68, 72, 95, 637, 645, 685, 749, 750, 751, 752, 812, 816, 818, 819, 820, 821, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 851, 852, 853, 855, 859, 863, 864, 865, 870, 875], "ident": [4, 6, 9, 14, 29, 46, 48, 62, 74, 132, 201, 555, 581, 629, 631, 634, 637, 641, 675, 679, 731, 792, 827, 837, 838, 841, 842, 845, 847, 851, 852, 855, 857, 859, 861], "had": [4, 827, 828, 840, 845, 849, 870, 871], "postprocess": 4, "routin": [4, 828, 840, 841, 847, 855, 870], "feed": [4, 213, 631, 863, 870, 871], "carefulli": [4, 278, 632, 791, 841, 868, 873], "rewrit": 4, "easili": [4, 28, 31, 32, 43, 812, 819, 824, 828, 834, 841, 844, 847, 852, 853, 854, 855, 860, 870, 876, 877], "quickest": 4, "particular": [4, 31, 32, 268, 632, 777, 819, 820, 823, 825, 828, 829, 831, 838, 840, 841, 844, 845, 866, 870, 876], "again": [4, 8, 25, 26, 34, 35, 36, 37, 637, 685, 820, 824, 825, 826, 827, 831, 833, 835, 840, 841, 844, 845, 847, 852, 854, 855, 860, 861, 875, 876], "speed": [4, 11, 13, 14, 31, 32, 45, 50, 58, 81, 569, 634, 844, 859, 873], "repeat": [4, 5, 25, 35, 57, 58, 64, 80, 81, 87, 375, 378, 387, 404, 409, 473, 522, 547, 634, 639, 640, 712, 716, 717, 805, 820, 824, 825, 831, 832, 840, 844], "previou": [4, 14, 24, 25, 26, 28, 34, 35, 36, 38, 59, 80, 82, 187, 188, 189, 190, 191, 364, 374, 375, 421, 602, 604, 605, 606, 607, 609, 610, 612, 616, 621, 630, 634, 635, 791, 809, 819, 820, 823, 825, 828, 830, 836, 841, 844, 847, 854, 855, 873], "trace": [4, 5, 6, 8, 11, 12, 13, 20, 21, 25, 28, 31, 34, 36, 37, 49, 58, 62, 74, 81, 85, 564, 565, 568, 579, 588, 603, 611, 634, 637, 773, 784, 794, 796, 810, 812, 823, 827, 829, 841, 846, 847, 849, 854, 855, 862, 863, 864, 871, 876], "026875037000081647": 4, "overrid": [4, 8, 37, 46, 53, 57, 76, 80, 141, 387, 522, 629, 824, 826], "prealloc": [4, 8], "temporari": [4, 8, 589, 612, 634, 806, 829, 846], "fix": [4, 8, 47, 57, 80, 97, 98, 372, 375, 376, 421, 451, 636, 663, 812, 816, 819, 820, 823, 829, 835, 844, 845], "until": [4, 8, 806, 820, 840, 849, 855, 860, 863, 877], "o": [4, 8, 44, 45, 46, 47, 49, 572, 634, 636, 663, 812, 819, 822, 828, 849, 856], "environ": [4, 8, 13, 26, 27, 28, 29, 46, 49, 812, 813, 820, 856, 870, 872], "xla_python_client_alloc": [4, 8], "platform": [4, 6, 8, 14, 26, 27, 29, 814, 817, 819, 826, 868, 872, 874], "jit": [4, 11, 13, 31, 34, 849, 855, 863, 870], "img_jax": [4, 8], "device_put": [4, 11], "warm": 4, "_": [4, 9, 10, 11, 13, 14, 31, 44, 45, 56, 57, 74, 79, 80, 82, 98, 155, 243, 245, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 448, 451, 492, 522, 545, 615, 616, 630, 632, 634, 635, 637, 639, 641, 647, 685, 686, 688, 714, 725, 764, 812, 820, 828, 829, 832, 840, 844, 852], "0022192720000475674": 4, "64773613": 4, "29496723": 4, "exact": [4, 57, 73, 74, 110, 375, 377, 411, 416, 456, 457, 645, 749, 751, 778, 788, 819, 820, 823, 831, 849], "note": [4, 6, 8, 14, 27, 31, 32, 37, 46, 47, 48, 57, 58, 62, 64, 68, 80, 85, 87, 97, 134, 147, 179, 247, 282, 283, 290, 328, 329, 349, 369, 372, 375, 376, 378, 398, 429, 434, 444, 445, 451, 474, 492, 630, 632, 636, 637, 639, 645, 647, 663, 672, 673, 684, 685, 687, 706, 710, 750, 752, 761, 792, 806, 810, 816, 818, 819, 820, 824, 829, 831, 832, 835, 840, 841, 842, 844, 845, 847], "were": [4, 8, 48, 74, 77, 168, 172, 173, 247, 632, 636, 663, 818, 819, 820, 829, 833, 835, 839, 840, 842, 844, 845, 847, 849, 863, 870, 871, 876], "function": [4, 6, 7, 9, 10, 14, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 155, 165, 166, 167, 168, 171, 172, 173, 175, 179, 180, 197, 199, 200, 209, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 384, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 572, 575, 576, 577, 580, 581, 584, 586, 588, 591, 592, 593, 594, 595, 597, 599, 600, 601, 607, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 722, 724, 725, 726, 728, 729, 730, 731, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 774, 776, 777, 778, 779, 784, 788, 791, 794, 801, 802, 808, 810, 812, 816, 819, 820, 822, 823, 824, 825, 826, 828, 831, 832, 834, 840, 843, 848, 850, 851, 852, 853, 857, 859, 863, 865, 867, 868, 869, 870, 871, 876, 877], "dog": 4, "006431100999861883": 4, "258": [4, 636, 651, 653], "104": [4, 70, 637, 647, 682, 759], "259": 4, "72447652": 4, "13937832": 4, "05874982": 4, "samoi": 4, "wallabi": 4, "pomeranian": 4, "incorrect": [4, 828], "predict": [4, 6, 7, 8, 12, 14, 45, 46, 47, 48, 57, 63, 80, 86, 377, 453, 456, 459, 638, 696, 697, 698, 812, 829], "down": [4, 24, 34, 48, 57, 80, 375, 378, 411, 476, 812, 819, 844, 857, 870, 876], "itself": [4, 7, 26, 36, 56, 97, 274, 535, 601, 632, 634, 641, 730, 806, 816, 819, 820, 823, 826, 827, 828, 829, 830, 833, 834, 835, 840, 841, 853, 855, 859, 863, 869, 870, 871, 876], "version": [4, 6, 9, 14, 28, 29, 34, 45, 46, 47, 50, 51, 57, 80, 97, 110, 291, 340, 342, 372, 387, 527, 532, 614, 632, 634, 637, 673, 674, 773, 801, 802, 812, 819, 820, 826, 828, 829, 832, 840, 842, 849, 859, 860, 861, 864, 876, 877], "004749261999904775": 4, "7245": 4, "1394": 4, "0587": 4, "promis": [4, 7, 860], "sourc": [4, 7, 9, 10, 12, 18, 23, 24, 25, 26, 27, 28, 29, 31, 32, 37, 38, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 773, 774, 776, 777, 778, 780, 781, 782, 783, 784, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 818, 819, 820, 823, 824, 826, 827, 828, 841, 843, 859, 860, 861, 862, 864, 865, 869, 870, 871, 872, 873], "modul": [4, 6, 8, 11, 13, 16, 18, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 37, 43, 44, 45, 47, 48, 49, 72, 74, 95, 103, 368, 370, 371, 379, 380, 384, 573, 634, 648, 769, 773, 788, 789, 790, 792, 793, 795, 797, 800, 801, 810, 812, 814, 819, 824, 825, 826, 833, 837, 840, 841, 843, 844, 849, 850, 852, 854, 855, 861, 863, 865, 870, 871, 873], "__init__": [4, 8, 16, 18, 31, 32, 43, 44, 45, 47, 74, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 774, 781, 782, 783, 788, 791, 792, 793, 794, 795, 796, 797, 800, 801, 805, 807, 810, 812, 818, 824, 825, 829, 833, 841, 845, 849, 851, 852, 853, 854, 864], "self": [4, 6, 7, 8, 16, 18, 31, 32, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 636, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 796, 805, 812, 820, 824, 827, 833, 841, 842, 849, 851, 852, 853, 854, 864], "num_class": [4, 16, 18, 31, 32, 45, 47, 49, 812, 854, 864], "1000": [4, 6, 9, 10, 11, 12, 16, 31, 32, 45, 46, 47, 48, 50, 53, 76, 138, 629, 812, 852, 864], "v": [4, 5, 8, 20, 21, 24, 31, 32, 34, 37, 38, 43, 46, 47, 57, 61, 69, 76, 80, 84, 92, 138, 238, 243, 245, 286, 376, 378, 430, 440, 447, 448, 473, 632, 636, 640, 646, 663, 666, 716, 717, 755, 773, 792, 793, 794, 795, 796, 797, 812, 814, 819, 820, 822, 826, 834, 849, 852, 853, 854, 878], "_build": [4, 8, 793, 794, 812], "kwarg": [4, 5, 7, 8, 13, 14, 31, 45, 49, 52, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 103, 106, 203, 378, 484, 572, 601, 629, 631, 634, 771, 773, 788, 789, 792, 793, 794, 801, 810, 812, 824, 829, 830, 833, 837, 840, 841, 847, 849, 853, 863, 864, 865], "featur": [4, 7, 13, 14, 16, 18, 20, 22, 31, 32, 45, 49, 57, 80, 375, 389, 391, 392, 399, 400, 401, 791, 792, 810, 812, 818, 819, 820, 824, 825, 828, 829, 836, 845, 847, 852, 855, 864, 870, 871, 872, 876], "sequenti": [4, 8, 9, 12, 29, 31, 32, 47, 812, 826, 827, 853, 864], "conv2d": [4, 8, 12, 29, 31, 32, 47, 50, 61, 84, 636, 653, 792, 812], "64": [4, 8, 12, 43, 45, 46, 47, 50, 56, 57, 61, 79, 80, 81, 84, 85, 89, 93, 103, 164, 234, 244, 278, 287, 288, 346, 372, 375, 397, 407, 545, 546, 593, 621, 630, 632, 634, 635, 636, 637, 641, 647, 651, 653, 655, 657, 658, 679, 682, 692, 726, 730, 740, 759, 763, 819, 829, 852, 853, 867, 875], "data_format": [4, 47, 57, 61, 80, 84, 375, 381, 390, 394, 395, 396, 399, 400, 401, 412, 413, 414, 415, 417, 501, 502, 503, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 776, 792, 795, 812], "nchw": [4, 47, 57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792, 812], "relu": [4, 8, 12, 29, 31, 32, 43, 50, 51, 57, 72, 73, 80, 112, 302, 303, 311, 367, 626, 788, 812, 842, 852, 853], "maxpool2d": [4, 8, 12, 45, 792, 812], "192": [4, 47, 776, 805], "384": [4, 82, 615, 635, 641, 718], "avgpool": [4, 12], "adaptiveavgpool2d": [4, 12, 792], "classifi": [4, 7, 14, 16, 18, 31, 32, 45, 47, 48, 812, 818, 863, 864], "prob": [4, 6, 7, 47, 57, 61, 80, 84, 89, 375, 382, 399, 400, 401, 508, 636, 643, 659, 738, 792, 812], "4096": 4, "_forward": [4, 8, 11, 13, 31, 32, 43, 44, 47, 812, 832, 849, 852, 853], "bidirect": [5, 636, 661], "encod": [5, 16, 18, 31, 32, 45, 47, 58, 63, 81, 86, 549, 634, 638, 696, 812, 852, 860, 864], "mlm": 5, "googl": [5, 26, 27, 28, 29, 45, 46, 47, 49, 828, 860], "choos": [5, 45, 47, 55, 67, 68, 78, 214, 240, 247, 268, 269, 273, 335, 336, 372, 378, 631, 632, 644, 645, 647, 748, 749, 750, 751, 752, 760, 761, 762, 764, 776, 812, 818, 819, 820, 838, 844, 850, 854, 863], "librari": [5, 6, 7, 11, 13, 20, 21, 27, 29, 43, 45, 55, 68, 78, 214, 245, 247, 263, 268, 269, 291, 335, 336, 372, 631, 632, 637, 645, 647, 673, 674, 749, 750, 751, 752, 760, 761, 762, 764, 810, 812, 818, 819, 823, 829, 854, 855, 859, 860, 861, 863, 866, 867, 868, 870, 874, 877], "pretrain": [5, 11, 16, 17, 18, 31, 32, 50, 812, 864], "save": [5, 6, 12, 45, 57, 74, 80, 387, 529, 589, 612, 631, 634, 648, 794, 810, 819, 828, 835, 844, 855, 861, 869], "some": [5, 8, 9, 10, 13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 43, 47, 48, 74, 82, 245, 247, 263, 375, 399, 400, 401, 615, 616, 619, 621, 622, 623, 631, 632, 635, 641, 729, 792, 812, 816, 818, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 851, 852, 853, 855, 856, 857, 860, 861, 863, 864, 866, 867, 869, 870, 871, 876, 877], "mohame54": 5, "automodel": [5, 13, 31], "autotoken": 5, "load": [5, 6, 7, 11, 13, 28, 31, 45, 46, 47, 48, 49, 50, 74, 376, 447, 648, 794, 812, 844, 855, 869, 876], "token": [5, 47, 821], "bert_bas": 5, "from_pretrain": [5, 7, 13, 31, 48, 863, 864], "base": [5, 7, 14, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 107, 138, 147, 179, 243, 244, 261, 262, 263, 264, 278, 319, 328, 330, 337, 340, 346, 353, 369, 372, 375, 376, 377, 385, 418, 422, 447, 452, 514, 582, 593, 605, 629, 630, 632, 634, 637, 639, 645, 647, 678, 702, 749, 750, 751, 752, 759, 774, 777, 778, 781, 782, 783, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 806, 807, 810, 812, 819, 820, 821, 823, 827, 828, 829, 833, 836, 838, 839, 840, 842, 843, 844, 845, 846, 847, 849, 870, 875, 877, 878], "uncas": 5, "eval": [5, 6, 8, 12, 18, 26, 27, 28, 29, 636, 661, 794], "evalu": [5, 56, 57, 74, 79, 80, 243, 245, 261, 262, 263, 264, 268, 275, 277, 284, 288, 322, 354, 365, 366, 369, 374, 376, 377, 378, 443, 452, 457, 481, 625, 632, 635, 641, 648, 728, 729, 767, 768, 793, 794, 820, 827, 829, 837, 838, 870], "bert_token": 5, "sampl": [5, 6, 7, 11, 13, 16, 18, 28, 31, 32, 46, 53, 56, 57, 66, 70, 76, 79, 80, 89, 93, 137, 138, 292, 319, 369, 375, 377, 378, 382, 399, 400, 401, 411, 421, 423, 452, 457, 487, 508, 509, 510, 511, 512, 629, 632, 643, 647, 738, 739, 740, 741, 764, 766, 792, 842, 844], "test": [5, 7, 23, 24, 26, 27, 33, 34, 36, 37, 38, 46, 47, 56, 58, 71, 79, 81, 94, 125, 171, 175, 254, 255, 256, 257, 280, 375, 399, 400, 401, 569, 628, 630, 632, 634, 648, 767, 768, 771, 774, 777, 806, 812, 814, 816, 817, 822, 826, 829, 831, 833, 835, 838, 841, 843, 845, 855, 856, 861, 863, 864, 865, 870], "did": [5, 45, 818, 826, 854, 860, 876], "realli": [5, 43, 819, 827, 834, 855, 863, 875, 876], "like": [5, 6, 7, 11, 13, 23, 24, 25, 31, 33, 34, 35, 36, 37, 38, 48, 50, 53, 56, 57, 64, 76, 79, 80, 84, 87, 92, 138, 156, 179, 224, 244, 250, 253, 266, 284, 341, 346, 358, 372, 375, 376, 377, 378, 385, 387, 418, 420, 429, 454, 463, 464, 473, 474, 514, 515, 532, 629, 630, 632, 637, 639, 643, 646, 672, 706, 741, 754, 806, 812, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 860, 863, 864, 870, 875], "input": [5, 6, 7, 8, 9, 10, 13, 16, 18, 28, 29, 31, 36, 37, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 186, 194, 196, 197, 210, 213, 214, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 322, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 430, 431, 432, 434, 435, 436, 441, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 555, 556, 558, 560, 561, 562, 564, 565, 566, 567, 568, 569, 571, 576, 577, 578, 584, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 602, 607, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 791, 792, 793, 794, 795, 805, 806, 810, 823, 824, 825, 827, 829, 830, 831, 832, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 863, 864, 871, 874], "pad": [5, 12, 45, 47, 57, 61, 64, 80, 84, 87, 98, 100, 375, 378, 394, 395, 396, 397, 398, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 549, 634, 636, 639, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 701, 714, 778, 792, 812], "longest": 5, "return_tensor": [5, 7, 13, 31, 48, 863, 864], "pt": [5, 7, 13, 31, 863], "max_length": [5, 74], "512": [5, 8, 12, 45, 47, 85, 636, 651, 692, 812], "input_id": 5, "101": [5, 14, 46, 636, 637, 641, 660, 676, 724], "1045": 5, "2106": 5, "1005": 5, "1056": 5, "2428": 5, "2066": 5, "2115": 5, "4309": 5, "1012": 5, "102": [5, 14, 57, 80, 89, 397, 739], "token_type_id": 5, "attention_mask": [5, 61, 84, 636, 663], "pooler": 5, "compar": [5, 9, 10, 11, 13, 31, 44, 48, 50, 57, 58, 68, 69, 70, 74, 80, 81, 92, 93, 334, 351, 372, 387, 530, 534, 537, 634, 636, 645, 646, 647, 661, 749, 750, 751, 752, 753, 756, 762, 773, 812, 825, 831, 833, 842, 844, 847, 852, 866, 868, 870, 876, 877], "no_grad": [5, 45, 863], "bert_output": 5, "pooler_output": 5, "ivy_bert": 5, "bert_base_uncas": 5, "ivy_input": 5, "k": [5, 11, 44, 47, 53, 57, 58, 61, 62, 66, 76, 79, 80, 84, 85, 89, 97, 98, 122, 132, 145, 146, 147, 267, 313, 328, 329, 369, 376, 378, 382, 385, 387, 427, 442, 446, 448, 450, 490, 494, 508, 509, 510, 511, 512, 515, 525, 537, 628, 629, 634, 636, 637, 641, 643, 644, 663, 666, 670, 677, 678, 684, 686, 687, 688, 691, 726, 739, 740, 741, 747, 822, 823, 841, 842, 849, 863, 866, 870], "ivy_output": [5, 48], "logits_clos": 5, "allclos": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 48, 50, 57, 80, 372], "detach": [5, 6, 7, 9, 10, 11, 13, 16, 18, 31, 839], "rtol": [5, 7, 16, 18, 57, 62, 80, 85, 334, 351, 372, 637, 680, 683, 771, 773, 816, 834, 842], "005": [5, 12, 57, 80, 334, 351, 372, 453], "atol": [5, 7, 9, 10, 11, 13, 31, 57, 62, 80, 85, 334, 351, 372, 637, 680, 771, 773, 816, 834, 842], "768": 5, "fn": [5, 48, 50, 57, 74, 77, 80, 106, 166, 167, 199, 200, 203, 378, 461, 535, 550, 551, 601, 630, 631, 634, 641, 724, 725, 726, 728, 729, 730, 771, 773, 798, 801, 807, 808, 810, 830, 833, 840, 841, 849, 863], "finish": [5, 7, 20, 31, 32, 43, 46, 812, 813, 818, 819, 822], "sec": 5, "43": [5, 14, 43, 45, 47, 57, 80, 89, 103, 234, 375, 376, 387, 396, 428, 523, 632, 643, 644, 740, 741, 748], "procedur": [5, 826, 828, 831, 842], "60": [5, 43, 47, 56, 70, 79, 81, 89, 93, 224, 258, 378, 489, 553, 561, 577, 592, 614, 632, 634, 637, 641, 647, 682, 721, 739, 757, 759, 763, 806, 828], "big": [5, 791, 813, 855, 870], "jnp": [5, 23, 28, 31, 32, 33, 34, 37, 43, 45, 49, 812, 829, 830, 833, 836, 840, 845, 849, 854, 864, 865], "ref": [5, 8, 11, 13, 81, 85, 259, 273, 276, 282, 289, 632, 639, 710, 819, 840], "fast": [5, 26, 36, 57, 375, 398, 870], "valu": [5, 14, 43, 44, 46, 47, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 100, 102, 103, 105, 118, 122, 123, 125, 126, 132, 135, 136, 137, 138, 141, 147, 152, 169, 173, 179, 212, 213, 220, 221, 222, 223, 225, 227, 228, 229, 236, 240, 241, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 302, 307, 310, 311, 313, 320, 322, 328, 330, 331, 332, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 348, 349, 351, 352, 354, 357, 359, 360, 361, 362, 363, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 386, 387, 398, 411, 418, 419, 421, 423, 427, 430, 434, 440, 445, 447, 449, 451, 452, 453, 455, 456, 457, 458, 467, 473, 478, 484, 489, 491, 492, 493, 494, 496, 498, 501, 503, 508, 509, 511, 512, 518, 520, 523, 524, 525, 528, 529, 530, 531, 532, 538, 540, 541, 542, 544, 549, 552, 553, 555, 560, 561, 562, 569, 576, 577, 581, 582, 583, 586, 595, 600, 605, 606, 609, 612, 613, 614, 615, 616, 617, 621, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 666, 670, 673, 674, 678, 679, 680, 683, 684, 685, 686, 687, 688, 691, 694, 699, 700, 701, 705, 706, 714, 715, 716, 720, 722, 723, 724, 725, 726, 731, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 771, 773, 776, 777, 778, 779, 781, 783, 788, 791, 792, 793, 794, 795, 796, 810, 816, 819, 820, 823, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 844, 846, 847, 849, 851, 855, 863, 870, 871], "emerg": [6, 870], "popular": [6, 7, 812, 823, 870], "Its": [6, 57, 377, 452, 870], "python": [6, 7, 12, 16, 22, 34, 39, 43, 45, 46, 47, 49, 50, 57, 66, 80, 89, 126, 207, 219, 247, 282, 375, 382, 421, 508, 509, 510, 511, 512, 614, 629, 631, 632, 634, 643, 738, 739, 740, 741, 743, 801, 805, 806, 810, 817, 819, 820, 823, 826, 827, 828, 833, 834, 841, 843, 844, 849, 851, 852, 855, 857, 858, 859, 860, 863, 867, 870, 871, 872, 876, 877], "superior": 6, "eager": [6, 20, 21, 24, 27, 29, 34, 37, 38, 49, 810, 827, 855, 870], "execut": [6, 11, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 39, 46, 48, 50, 123, 125, 601, 628, 631, 634, 819, 820, 826, 827, 828, 829, 830, 831, 833, 837, 838, 840, 844, 847, 849, 851, 854, 855, 857, 863, 866, 870, 871, 872, 873, 874, 876], "mode": [6, 7, 8, 37, 49, 57, 62, 74, 80, 85, 96, 97, 98, 99, 100, 101, 210, 213, 218, 223, 240, 273, 327, 365, 366, 369, 374, 375, 376, 378, 406, 411, 419, 420, 432, 434, 442, 444, 445, 451, 467, 477, 482, 484, 485, 487, 489, 492, 493, 497, 578, 579, 580, 584, 585, 587, 588, 602, 603, 607, 608, 610, 611, 631, 632, 634, 636, 637, 661, 684, 784, 792, 793, 794, 809, 810, 819, 820, 822, 827, 830, 831, 834, 847, 855, 870, 873], "made": [6, 11, 13, 31, 57, 64, 80, 376, 378, 436, 462, 463, 464, 710, 818, 820, 821, 823, 824, 827, 828, 833, 835, 837, 839, 840, 841, 845, 847, 849, 851, 860, 870], "favorit": [6, 812], "increasingli": [6, 831, 863], "span": [6, 820, 868, 876], "industri": [6, 860, 870, 872], "still": [6, 14, 25, 27, 28, 31, 32, 34, 35, 38, 62, 74, 85, 637, 687, 776, 818, 819, 820, 824, 825, 829, 832, 833, 835, 837, 840, 841, 844, 847, 853, 855, 860, 863, 864, 867, 870, 876], "practition": [6, 7, 870, 874, 875, 876], "larg": [6, 46, 56, 57, 79, 80, 223, 240, 247, 273, 274, 378, 387, 492, 522, 632, 637, 685, 814, 819, 820, 826, 828, 834, 852, 863, 870], "unabl": [6, 13, 820, 847], "rich": 6, "ecosystem": [6, 870], "state": [6, 19, 30, 45, 61, 80, 84, 100, 187, 188, 189, 190, 191, 273, 375, 421, 602, 604, 607, 609, 610, 630, 632, 634, 636, 661, 662, 774, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 812, 816, 819, 826, 829, 830, 832, 833, 834, 835, 836, 841, 844, 848, 849, 850, 852, 860, 864, 876, 877], "art": 6, "sota": [6, 7], "inaccur": 6, "dynam": [6, 9, 38, 639, 706, 794, 801, 822, 828, 829, 830, 840, 841, 846, 849, 863, 870, 874], "connect": [6, 12, 45, 792, 812, 814, 819, 826, 843, 853, 854, 860, 868], "layer": [6, 7, 9, 10, 16, 18, 22, 28, 29, 31, 32, 43, 48, 57, 65, 80, 88, 642, 661, 662, 663, 737, 789, 791, 793, 794, 795, 796, 797, 812, 832, 841, 845, 847, 849, 850, 853, 859, 864, 868, 870, 874, 877], "togeth": [6, 57, 74, 80, 334, 351, 372, 376, 430, 797, 812, 821, 824, 827, 829, 840, 841, 844, 845, 847, 853, 854, 855, 860, 868, 870, 871, 876], "For": [6, 11, 12, 13, 14, 22, 24, 31, 32, 34, 37, 39, 53, 57, 62, 68, 80, 85, 126, 139, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 275, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 330, 331, 332, 335, 336, 338, 359, 369, 372, 376, 378, 442, 444, 464, 484, 487, 629, 632, 637, 639, 645, 647, 685, 687, 691, 699, 710, 749, 750, 751, 752, 760, 762, 763, 765, 777, 789, 812, 818, 819, 820, 822, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 849, 851, 852, 853, 854, 855, 856, 859, 860, 861, 863, 867, 868, 871, 876, 877], "user": [6, 7, 13, 20, 26, 27, 28, 29, 31, 46, 47, 49, 274, 291, 378, 484, 580, 632, 634, 792, 793, 794, 805, 812, 819, 820, 822, 824, 825, 827, 828, 829, 830, 833, 838, 839, 840, 841, 844, 846, 847, 848, 849, 855, 856, 859, 860, 868, 870, 876, 877], "seamless": [6, 812], "wai": [6, 14, 20, 21, 22, 25, 27, 31, 35, 37, 43, 97, 100, 812, 814, 817, 818, 819, 823, 824, 825, 826, 828, 829, 830, 840, 841, 842, 844, 847, 851, 852, 853, 854, 855, 856, 859, 860, 865, 872, 876, 877], "introduc": [6, 31, 32, 247, 632, 639, 645, 707, 749, 818, 827, 828, 829, 838, 842, 844, 847, 852, 859], "pipelin": [6, 7, 812, 814, 822, 823, 824, 842, 845, 854, 857, 859, 864, 870, 871, 876], "blog": [6, 7, 820], "through": [6, 7, 32, 37, 45, 57, 80, 100, 228, 387, 528, 529, 632, 641, 721, 727, 794, 805, 812, 813, 816, 817, 818, 820, 821, 822, 825, 826, 827, 828, 830, 831, 833, 834, 835, 837, 838, 840, 841, 842, 844, 846, 847, 848, 849, 852, 853, 854, 863, 868, 870, 871, 872], "train": [6, 7, 16, 18, 29, 31, 32, 48, 57, 59, 61, 80, 82, 84, 100, 375, 376, 381, 399, 400, 401, 448, 501, 503, 615, 616, 621, 635, 636, 659, 661, 663, 666, 791, 792, 793, 794, 795, 812, 827, 830, 837, 852, 853, 854, 855, 861, 864, 868, 869, 874, 876, 877], "illustr": [6, 24, 34, 825, 849], "workflow": [6, 25, 35, 46, 818, 820, 821, 825, 829, 839, 841, 852, 857, 861, 869, 876, 877], "pre": [6, 31, 32, 816, 818, 843, 844, 854, 855, 856, 870], "belong": [6, 74, 818, 823, 853], "convolut": [6, 29, 57, 61, 80, 84, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 810, 864, 868, 870], "neural": [6, 636, 788, 792, 812, 864, 866, 868, 869, 870, 874, 876, 877], "network": [6, 22, 29, 31, 32, 43, 45, 50, 636, 660, 788, 791, 792, 812, 827, 837, 849, 853, 860, 864, 866, 868, 869, 870, 874, 876, 877], "cnn": [6, 31, 32, 870], "architectur": [6, 48, 812, 819, 854, 855, 868, 869, 870, 873, 874, 875], "inspir": [6, 824], "vision": [6, 7, 31, 32, 50, 866, 876], "perform": [6, 8, 10, 14, 24, 26, 27, 28, 29, 31, 32, 34, 36, 43, 45, 53, 57, 61, 62, 70, 71, 76, 80, 81, 84, 85, 93, 94, 113, 117, 137, 138, 210, 218, 240, 273, 294, 341, 363, 372, 373, 375, 376, 378, 385, 387, 398, 399, 400, 401, 403, 404, 408, 409, 417, 419, 445, 461, 515, 523, 524, 545, 546, 547, 560, 561, 562, 578, 588, 626, 629, 631, 632, 634, 636, 637, 640, 641, 647, 648, 659, 662, 678, 687, 689, 694, 715, 716, 717, 725, 726, 757, 758, 761, 767, 768, 771, 788, 792, 806, 810, 823, 824, 825, 827, 829, 830, 831, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 852, 855, 861, 863, 864, 867, 870, 871, 872, 873, 874, 875, 877], "strength": 6, "wise": [6, 31, 51, 56, 57, 62, 73, 79, 80, 85, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 227, 228, 230, 231, 232, 233, 234, 235, 239, 240, 241, 242, 244, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 276, 278, 279, 281, 282, 289, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 334, 337, 342, 345, 346, 347, 350, 351, 352, 353, 357, 358, 361, 362, 367, 372, 375, 376, 378, 399, 400, 401, 428, 435, 471, 478, 480, 481, 500, 626, 632, 639, 668, 699, 796, 847], "supervis": [6, 7, 57, 377, 452], "convent": [6, 287, 632, 637, 647, 677, 759, 820, 825, 836, 845, 859, 876], "demonstr": [6, 7, 14, 28, 31, 32, 46, 812, 821, 829, 831, 833, 851], "improv": [6, 11, 13, 14, 31, 34, 815, 820, 829, 836, 837, 847, 849, 857, 861, 863, 868, 870, 872, 873], "scalabl": [6, 849, 859, 875, 876], "sometim": [6, 818, 819, 820, 823, 829, 837, 841, 844, 847], "rival": 6, "even": [6, 11, 28, 31, 32, 57, 80, 97, 240, 273, 278, 283, 378, 387, 484, 522, 632, 819, 820, 821, 823, 825, 828, 829, 830, 832, 836, 837, 840, 841, 842, 847, 851, 852, 853, 854, 855, 860, 861, 876], "downsampl": [6, 12, 57, 80, 411], "detial": 6, "outsid": [6, 639, 699, 710, 829, 830, 837, 851, 875], "scope": [6, 825, 871, 875], "demo": [6, 7, 8, 11, 12, 13, 14, 32, 39, 43, 47, 812], "interest": [6, 7, 29, 31, 43, 240, 273, 632, 818, 820], "reader": [6, 7], "paper": [6, 636, 663, 812, 861], "mostli": [6, 830, 840, 844], "kera": [6, 9, 10, 15, 16, 18, 20, 21, 29, 31, 32, 48, 49, 789, 812, 861, 864, 876], "wrapper": [6, 20, 21, 24, 57, 80, 298, 784, 824, 826, 827, 829, 833, 837, 840, 841, 844, 851, 857, 866, 870], "prepar": [6, 32, 45, 47, 50, 812, 828], "data": [6, 7, 18, 26, 27, 28, 29, 32, 37, 45, 47, 50, 51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93, 94, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 154, 155, 157, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 186, 192, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 300, 301, 302, 303, 312, 313, 314, 315, 316, 317, 318, 329, 330, 331, 332, 333, 335, 336, 337, 354, 359, 367, 369, 372, 375, 376, 378, 382, 386, 387, 390, 399, 400, 401, 417, 419, 421, 427, 429, 449, 467, 489, 492, 493, 495, 496, 508, 509, 510, 511, 512, 518, 522, 523, 524, 528, 531, 532, 549, 562, 564, 565, 568, 595, 626, 629, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 700, 703, 704, 706, 707, 709, 710, 714, 722, 739, 740, 741, 743, 744, 745, 747, 748, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 774, 776, 777, 778, 779, 784, 788, 791, 792, 793, 794, 798, 806, 810, 812, 819, 822, 823, 824, 825, 826, 827, 830, 832, 836, 837, 838, 840, 842, 845, 847, 849, 851, 857, 858, 860, 870, 871, 872, 874, 875, 876], "request": [6, 7, 11, 12, 13, 26, 27, 28, 29, 31, 32, 45, 48, 57, 204, 382, 512, 631, 810, 812, 813, 815, 818, 831, 835, 845, 847, 861, 864], "experiment": [6, 10, 810, 816, 820, 829, 841, 845, 849, 870], "set_memory_growth": 6, "list_physical_devic": 6, "manual_se": [6, 7, 29], "set_se": 6, "2024": 6, "51": [6, 14, 43, 47, 56, 57, 79, 80, 81, 89, 235, 273, 286, 376, 397, 451, 632, 741, 776], "38": [6, 13, 14, 27, 43, 45, 47, 50, 54, 57, 79, 80, 89, 165, 290, 357, 372, 375, 387, 395, 414, 417, 418, 523, 630, 632, 637, 679, 776, 831], "926817": 6, "e": [6, 13, 31, 48, 49, 53, 57, 62, 66, 68, 69, 70, 72, 79, 80, 85, 89, 92, 93, 95, 97, 98, 102, 129, 138, 139, 142, 143, 147, 151, 180, 193, 220, 221, 222, 226, 228, 229, 232, 234, 236, 240, 241, 243, 246, 247, 253, 254, 261, 262, 263, 264, 271, 272, 273, 274, 276, 280, 282, 283, 286, 287, 291, 301, 328, 335, 336, 369, 372, 375, 376, 377, 378, 382, 387, 388, 394, 395, 398, 412, 413, 414, 415, 419, 432, 435, 443, 457, 492, 496, 508, 509, 510, 511, 512, 523, 524, 533, 627, 629, 630, 631, 632, 636, 637, 639, 641, 643, 645, 646, 647, 663, 668, 673, 674, 677, 678, 680, 683, 686, 687, 688, 691, 694, 702, 710, 721, 725, 726, 727, 730, 735, 736, 739, 740, 741, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 792, 805, 806, 810, 812, 813, 816, 818, 819, 820, 822, 823, 825, 827, 829, 833, 834, 839, 841, 844, 849, 852, 855, 856, 857, 860, 861, 863, 866, 878], "extern": [6, 827, 836, 841, 844, 845], "local_xla": 6, "xla": [6, 13, 841, 855, 857, 870], "stream_executor": [6, 13], "cuda_dnn": [6, 13], "cc": [6, 13, 26, 27, 29, 46, 834], "9261": 6, "regist": [6, 13, 794, 820, 856, 863], "cudnn": [6, 13], "factori": [6, 13, 57, 377, 456, 457, 806], "plugin": [6, 13, 819], "926873": 6, "cuda_fft": [6, 13], "607": 6, "cufft": [6, 13], "928224": 6, "cuda_bla": [6, 13], "1515": 6, "cubla": [6, 13], "936743": 6, "cpu_feature_guard": [6, 26, 27, 29], "182": [6, 26, 27, 29, 80], "instruct": [6, 26, 27, 29, 74, 103, 812, 818, 819, 823, 833, 835, 842, 844, 856, 868, 871, 874, 876], "avx2": [6, 26, 27, 29], "fma": [6, 26, 27, 29], "rebuild": [6, 26, 27, 29, 74, 103], "flag": [6, 26, 27, 29, 74, 196, 377, 387, 454, 522, 631, 636, 663, 773, 784, 795, 820, 829, 830, 840, 841, 842, 844, 863, 864], "40": [6, 9, 14, 43, 45, 47, 57, 58, 79, 80, 81, 89, 93, 103, 234, 238, 258, 287, 349, 372, 375, 378, 395, 397, 407, 413, 489, 545, 547, 552, 553, 577, 592, 614, 617, 632, 634, 635, 637, 641, 647, 676, 682, 727, 740, 759, 763, 812, 828], "071672": 6, "w": [6, 8, 13, 46, 47, 57, 58, 59, 61, 74, 79, 80, 81, 82, 84, 97, 267, 349, 364, 372, 374, 375, 376, 381, 394, 395, 396, 398, 412, 413, 414, 415, 431, 451, 506, 521, 545, 547, 592, 615, 616, 617, 619, 621, 622, 623, 634, 635, 636, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 724, 822, 839, 849, 852, 853, 864, 878], "tf2tensorrt": [6, 13], "py_util": [6, 13], "trt": [6, 13], "find": [6, 13, 20, 46, 47, 50, 62, 68, 74, 85, 637, 641, 645, 680, 720, 749, 750, 751, 752, 805, 806, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 828, 834, 839, 844, 847, 849, 852, 856, 857, 859, 863], "tensorrt": [6, 13], "map": [6, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 372, 375, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 619, 624, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 725, 726, 730, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 806, 824, 827, 829, 836, 837, 841, 844, 845, 852, 855, 857, 864, 871], "dataset": [6, 7, 14, 31, 74, 812, 852, 863, 864], "gist": 6, "yrevar": 6, "942d3a0ac09ec9e5eb3a": 6, "238f720ff059c1f82f368259d1ca4ffa5dd8f9f5": 6, "imagenet1000_clsidx_to_label": 6, "idx2label": 6, "read": [6, 45, 47, 57, 64, 74, 76, 80, 87, 134, 378, 474, 629, 639, 706, 818, 819, 826, 828, 834, 844, 846, 847, 870], "resolv": [6, 12, 45, 47, 57, 70, 247, 387, 523, 524, 632, 639, 647, 702, 757, 758, 763, 765, 820, 826, 829, 835, 849], "185": [6, 12, 45, 73], "199": [6, 12, 45, 226, 632], "108": [6, 12, 14, 26, 27, 28, 29, 45, 636, 647, 660, 759], "133": [6, 12, 45, 61, 660], "109": [6, 12, 45, 62, 637, 675], "111": [6, 12, 45, 641, 736], "443": [6, 12, 45, 285, 632], "sent": [6, 12, 45], "await": [6, 12, 45], "respons": [6, 12, 45, 381, 506, 820, 828, 829], "200": [6, 12, 14, 45, 81, 84, 234, 375, 399, 400, 553, 577, 632, 634, 805, 852], "ok": [6, 12, 45, 819], "30564": 6, "30k": 6, "plain": [6, 12, 45], "imagenet1000_clsidx": 6, "85k": 6, "003": 6, "is_avail": [6, 14], "url": [6, 7, 11, 13, 28, 31, 32, 45, 48, 812, 864], "cocodataset": [6, 7, 11, 13, 28, 31, 32, 48, 812, 864], "org": [6, 7, 11, 12, 13, 28, 31, 32, 45, 47, 48, 50, 56, 57, 79, 80, 82, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 615, 616, 629, 630, 632, 635, 637, 639, 647, 685, 686, 714, 764, 812, 832, 864], "val2017": [6, 7, 11, 13, 31, 48], "000000039769": [6, 7, 11, 13, 31, 48], "stream": [6, 7, 11, 13, 28, 31, 32, 45, 48, 55, 78, 214, 631, 812, 864, 874], "initialis": [6, 823, 841, 844], "api": [6, 7, 19, 24, 29, 30, 34, 47, 49, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 178, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 819, 820, 822, 824, 826, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 842, 844, 847, 848, 850, 852, 855, 857, 858, 859, 866, 868, 870, 872, 875, 877], "convnextxlarg": 6, "while": [6, 7, 14, 31, 32, 39, 57, 61, 74, 80, 84, 97, 98, 103, 125, 141, 179, 247, 248, 268, 269, 347, 372, 375, 376, 378, 420, 421, 443, 486, 487, 521, 628, 629, 630, 632, 636, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 749, 761, 764, 774, 816, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 851, 853, 854, 855, 856, 859, 860, 863, 870, 876, 877], "arbitrari": [6, 24, 34, 53, 54, 57, 74, 77, 80, 139, 153, 180, 322, 377, 454, 462, 463, 464, 617, 629, 630, 635, 836, 837, 839, 840, 841, 844, 853, 855, 863, 865, 871, 876], "regardless": [6, 31, 32, 43, 74, 813, 829, 833, 851, 854, 861], "host": [6, 810, 814, 828, 855, 860, 875], "convnext_xlarg": 6, "include_top": [6, 18, 812], "include_preprocess": 6, "input_tensor": [6, 57, 80, 376, 377, 448, 452, 457, 841], "input_shap": [6, 11, 18, 29, 31, 32, 812], "pool": [6, 57, 80, 84, 375, 389, 390, 391, 392, 394, 395, 396, 412, 413, 414, 415, 418, 792, 819], "classifier_activ": 6, "936026": 6, "common_runtim": [6, 46], "gpu_devic": 6, "1929": 6, "creat": [6, 7, 8, 9, 10, 13, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 45, 46, 47, 49, 50, 53, 56, 57, 66, 74, 76, 79, 80, 85, 89, 98, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 274, 312, 313, 323, 325, 327, 328, 369, 375, 376, 378, 382, 394, 395, 396, 417, 434, 445, 451, 460, 468, 484, 489, 508, 509, 510, 511, 512, 580, 597, 614, 625, 629, 632, 634, 635, 643, 682, 738, 739, 740, 741, 743, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 813, 815, 819, 820, 821, 824, 825, 826, 828, 829, 830, 833, 837, 838, 840, 841, 842, 844, 847, 849, 850, 853, 856, 857, 860, 863, 864, 865, 870, 871, 876], "job": [6, 31, 32, 812, 826, 828, 864], "localhost": 6, "replica": 6, "14791": 6, "tesla": 6, "v100": [6, 11], "pcie": [6, 860], "16gb": 6, "pci": 6, "bu": [6, 85, 860], "id": [6, 14, 46, 57, 80, 196, 330, 331, 332, 369, 557, 631, 634, 812, 817, 819, 824, 826, 827, 835, 839, 844, 856, 878], "0001": [6, 56, 57, 80, 283, 284, 376, 445, 451, 776, 779, 796], "over": [6, 7, 9, 22, 29, 32, 34, 45, 57, 62, 70, 71, 72, 77, 80, 84, 85, 93, 94, 95, 97, 122, 320, 321, 335, 336, 349, 356, 369, 372, 375, 376, 377, 378, 385, 387, 389, 390, 391, 392, 395, 404, 409, 413, 417, 418, 419, 420, 421, 422, 444, 452, 461, 474, 489, 492, 493, 496, 515, 525, 531, 580, 614, 628, 634, 637, 642, 643, 647, 648, 668, 678, 689, 691, 693, 694, 737, 741, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 801, 805, 812, 819, 820, 825, 831, 832, 839, 840, 842, 845, 849, 851, 855, 859, 861, 868, 870], "wonder": [6, 851, 859, 861], "why": [6, 22, 812, 820, 840, 851, 858, 860], "One": [6, 7, 47, 57, 58, 64, 66, 80, 81, 87, 89, 100, 378, 462, 463, 464, 467, 484, 493, 496, 546, 634, 639, 643, 706, 739, 824, 827, 829, 831, 837, 842, 844, 849, 851, 852], "reason": [6, 282, 291, 632, 818, 820, 823, 824, 827, 828, 829, 831, 837, 840, 841, 844, 845, 847, 849, 851, 860, 876], "highlight": [6, 820, 828, 831, 841, 843], "directli": [6, 16, 18, 22, 25, 29, 31, 32, 35, 375, 376, 411, 435, 641, 730, 812, 818, 819, 820, 821, 823, 824, 827, 828, 829, 830, 832, 835, 837, 838, 840, 841, 842, 845, 846, 849, 851, 853, 854, 855, 856, 861, 863, 864, 865, 874, 875, 876], "much": [6, 11, 13, 14, 22, 23, 29, 31, 32, 33, 34, 45, 100, 334, 351, 372, 791, 818, 819, 820, 824, 827, 829, 837, 840, 841, 842, 845, 846, 847, 849, 851, 852, 860, 868, 870, 876, 877], "more": [6, 7, 16, 19, 20, 22, 23, 24, 27, 29, 31, 32, 33, 34, 43, 45, 46, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 153, 245, 247, 263, 278, 291, 295, 300, 301, 303, 363, 367, 373, 376, 377, 378, 424, 426, 438, 440, 443, 456, 462, 463, 464, 469, 490, 580, 626, 629, 630, 632, 634, 637, 639, 645, 671, 677, 680, 683, 685, 687, 694, 703, 710, 749, 750, 751, 752, 778, 788, 806, 812, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 864, 865, 868, 869, 870, 871, 872, 873, 876, 877], "There": [6, 22, 29, 32, 37, 97, 368, 370, 371, 379, 380, 384, 778, 818, 819, 820, 823, 824, 826, 827, 829, 830, 831, 833, 835, 837, 839, 841, 842, 846, 849, 852, 855, 859, 863, 871, 872, 876, 877], "deeper": [6, 20, 22, 32, 52, 641, 729, 730, 812, 820, 822, 844, 848, 859], "what": [6, 11, 13, 20, 25, 31, 32, 35, 36, 39, 44, 45, 375, 409, 420, 778, 806, 812, 818, 820, 822, 827, 828, 831, 832, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 851, 852, 853, 854, 855, 860, 861, 866, 871, 872, 875], "offer": [6, 841, 853, 861, 870, 876, 877], "limit": [6, 74, 103, 165, 168, 540, 541, 557, 630, 634, 639, 699, 776, 778, 779, 791, 798, 806, 812, 819, 820, 826, 828, 831, 833, 841, 844, 847, 852, 855, 869, 870, 871], "soon": [6, 818, 820, 828, 829, 855, 863], "detail": [6, 7, 24, 34, 47, 51, 56, 57, 62, 64, 68, 73, 79, 80, 81, 85, 87, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 133, 144, 291, 295, 300, 301, 303, 367, 376, 426, 469, 548, 626, 629, 632, 645, 671, 677, 683, 687, 710, 749, 750, 751, 752, 788, 812, 818, 820, 823, 825, 826, 827, 828, 835, 836, 837, 838, 841, 842, 843, 844, 845, 846, 849, 851, 852, 853, 872, 876], "comparison": [6, 10, 12, 57, 80, 241, 276, 337, 372, 377, 456, 457, 632, 637, 688, 771, 833], "separ": [6, 46, 57, 58, 80, 381, 502, 549, 634, 636, 663, 773, 784, 819, 820, 824, 827, 828, 831, 842, 843, 844, 849, 851, 852, 871, 875], "stai": [6, 812, 828], "origin": [6, 7, 9, 10, 11, 13, 14, 29, 31, 32, 33, 34, 35, 37, 44, 45, 46, 50, 57, 62, 64, 70, 74, 80, 85, 87, 93, 97, 100, 102, 103, 228, 253, 280, 319, 369, 375, 376, 378, 387, 419, 445, 477, 483, 485, 488, 523, 524, 528, 529, 530, 531, 532, 632, 637, 639, 647, 678, 706, 707, 758, 773, 778, 801, 802, 812, 814, 818, 819, 820, 825, 826, 828, 829, 834, 838, 840, 841, 842, 849, 861, 863, 864, 870, 871], "convert_to_tensor": 6, "tmp": [6, 45, 47, 589, 612, 634], "ipykernel_65585": 6, "3221769294": 6, "_eagertensorbas": 6, "op": [6, 16, 22, 43, 788, 801, 810, 845, 849, 855], "deprec": [6, 50], "futur": [6, 9, 22, 29, 31, 45, 637, 673, 674, 812, 819, 820, 821, 828, 829, 844, 845, 847, 851, 855, 859, 861, 876], "instead": [6, 13, 16, 18, 22, 26, 27, 28, 29, 31, 38, 45, 50, 56, 57, 62, 79, 80, 85, 98, 194, 282, 316, 369, 375, 387, 412, 413, 414, 522, 525, 631, 632, 637, 680, 776, 818, 819, 820, 823, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 863, 864, 865, 868, 870, 876, 877], "logits_np": [6, 7], "class_id": 6, "int": [6, 7, 8, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100, 102, 106, 113, 117, 118, 127, 128, 132, 134, 135, 136, 137, 138, 141, 145, 146, 147, 154, 161, 164, 165, 168, 175, 190, 204, 205, 206, 213, 214, 223, 230, 231, 232, 233, 234, 235, 247, 250, 274, 278, 283, 289, 292, 300, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 335, 336, 340, 341, 345, 349, 356, 358, 360, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 426, 430, 432, 433, 434, 435, 437, 442, 444, 445, 448, 449, 451, 456, 460, 461, 465, 469, 470, 473, 474, 477, 479, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 496, 497, 498, 499, 502, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 520, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 535, 545, 546, 547, 549, 552, 553, 556, 557, 571, 574, 576, 591, 592, 593, 594, 598, 614, 615, 616, 617, 618, 621, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 668, 670, 671, 678, 679, 684, 689, 691, 692, 693, 694, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 724, 725, 727, 729, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 747, 749, 751, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 788, 791, 792, 805, 806, 810, 827, 829, 830, 831, 833, 836, 837, 840, 842, 844, 845, 847, 849, 854, 863], "argmax": [6, 7, 8, 46, 47, 48, 67, 90, 378, 489, 644, 812, 841, 863, 867], "57": [6, 12, 14, 43, 45, 56, 57, 79, 80, 198, 221, 222, 225, 226, 228, 238, 239, 279, 295, 296, 367, 631, 632], "342029": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 9, 45, 46, 47, 50, 57, 290, 462, 463, 464, 632, 820, 823, 825, 829, 841, 849, 854, 876], "spawn": [6, 573, 634], "child": 6, "No": [6, 31, 32, 45, 57, 63, 80, 86, 377, 454, 455, 456, 458, 459, 638, 696, 820, 828, 829, 870], "directori": [6, 45, 46, 47, 50, 589, 612, 631, 634, 810, 814, 818, 819, 820, 826, 828, 834, 841, 844, 856], "906376": 6, "454": 6, "8904": 6, "993553": 6, "58": [6, 7, 10, 43, 264, 540, 632, 634], "578886": 6, "servic": [6, 872], "168": [6, 47, 540, 634, 641, 718], "0x558ecdd86830": 6, "guarante": [6, 645, 749, 751, 810, 824, 829, 840, 855, 861], "578915": 6, "176": [6, 540, 634], "streamexecutor": 6, "log": [6, 53, 56, 57, 62, 76, 79, 80, 85, 118, 138, 263, 265, 278, 300, 301, 354, 361, 367, 372, 377, 382, 454, 456, 457, 508, 626, 629, 632, 685, 776, 778, 779, 788, 820, 827, 828, 831, 837, 840, 841, 842, 844, 846, 847, 849, 852], "messag": [6, 798, 807, 811, 819, 820, 828, 831, 833, 835, 841, 849, 851, 860], "absl": [6, 45], "initializelog": 6, "stderr": 6, "i0000": 6, "1710255118": 6, "868823": 6, "65585": 6, "device_compil": 6, "h": [6, 8, 57, 58, 61, 80, 81, 84, 375, 381, 395, 396, 413, 414, 506, 545, 547, 634, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 721, 725, 727, 730, 735, 813, 822, 826, 827, 828, 864, 866], "186": 6, "cluster": [6, 57, 80, 376, 430, 855, 870], "line": [6, 11, 13, 14, 20, 21, 24, 25, 28, 31, 32, 34, 35, 46, 47, 290, 632, 810, 812, 819, 823, 824, 828, 830, 831, 833, 841, 844, 847, 850, 851, 852, 853, 861, 864, 873], "lifetim": 6, "grei": 6, "fox": 6, "grai": 6, "urocyon": 6, "cinereoargenteu": 6, "eagerli": [6, 26, 27, 31, 32, 36, 37, 38, 45, 812, 863, 864, 865], "explain": [6, 7, 37, 57, 80, 375, 409, 420, 812, 818, 819, 820, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 844, 845, 847, 849, 850, 851, 852, 853, 854, 866, 873, 876], "doc": [6, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 46, 47, 80, 147, 328, 335, 336, 369, 372, 524, 629, 812, 813, 817, 818, 822, 831, 832, 835, 836, 844, 849, 852, 853, 863, 864, 865], "involv": [6, 16, 19, 20, 27, 29, 54, 77, 180, 223, 240, 247, 273, 278, 630, 632, 806, 813, 821, 822, 828, 829, 831, 842, 847, 854, 860, 870, 876], "dummi": [6, 26, 27, 36, 37, 38, 44, 820], "transpiled_model": [6, 7], "backend_compil": [6, 31, 32], "root": [6, 7, 9, 12, 13, 26, 27, 28, 29, 45, 46, 47, 50, 56, 79, 287, 632, 814, 818, 819, 820, 826, 834, 841, 852], "placement": [6, 13, 818], "case": [6, 16, 18, 24, 26, 31, 32, 34, 35, 36, 37, 45, 52, 53, 57, 58, 64, 70, 74, 76, 80, 81, 87, 97, 98, 103, 128, 139, 166, 167, 194, 199, 200, 207, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 347, 349, 359, 372, 375, 377, 378, 381, 382, 388, 399, 400, 401, 421, 452, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 489, 490, 496, 499, 501, 503, 510, 533, 550, 551, 555, 562, 576, 577, 578, 629, 630, 631, 632, 634, 637, 639, 641, 647, 685, 691, 702, 703, 704, 706, 708, 709, 711, 713, 721, 727, 760, 761, 762, 763, 764, 765, 766, 776, 777, 796, 806, 812, 816, 818, 819, 820, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 854, 855, 860, 863, 864, 865, 869, 873], "ad": [6, 12, 13, 14, 26, 27, 28, 29, 57, 64, 80, 87, 95, 240, 273, 334, 351, 372, 381, 501, 502, 503, 592, 593, 632, 634, 636, 637, 639, 663, 673, 674, 702, 792, 797, 812, 816, 817, 818, 819, 820, 823, 824, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 845, 847, 849, 853, 855, 860, 863, 869, 870], "logits_transpil": 6, "logits_transpiled_np": 6, "class_id_transpil": 6, "But": [6, 7, 31, 32, 778, 827, 828, 832, 835, 838, 847, 854], "produc": [6, 7, 9, 44, 57, 58, 61, 80, 84, 302, 312, 315, 367, 369, 375, 423, 636, 666, 776, 806, 818, 829, 834, 835, 840, 842, 844, 845, 863, 871, 873], "granular": [6, 7], "level": [6, 7, 22, 31, 32, 34, 57, 80, 81, 376, 448, 537, 806, 810, 812, 813, 818, 819, 820, 821, 827, 829, 833, 837, 839, 840, 841, 843, 846, 847, 848, 849, 852, 853, 854, 855, 857, 861, 866, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878], "close": [6, 7, 47, 62, 245, 263, 283, 312, 369, 632, 637, 639, 687, 702, 815, 816, 818, 819, 820, 821, 829, 832, 834, 841, 847, 870], "inde": [6, 7, 836, 847, 855, 868], "benefit": [6, 7, 32, 812, 819, 824, 827, 840, 847, 851, 852, 855, 860, 861, 868, 872, 875], "trainabl": [6, 7, 16, 18, 22, 28, 29, 31, 32, 49, 789, 793, 794, 797, 812, 832, 850, 852, 853, 864, 865], "further": [6, 7, 22, 74, 103, 778, 812, 820, 823, 824, 828, 831, 833, 836, 837, 840, 841, 843, 844, 848, 849, 852, 853, 860, 861, 875, 876], "cifar": [6, 7], "dataload": [6, 7, 852], "cifar10": [6, 7], "batch_siz": [6, 7, 45, 47, 50, 57, 61, 66, 80, 84, 89, 375, 377, 394, 395, 396, 412, 413, 414, 415, 459, 636, 643, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 663, 738, 812, 852], "shuffl": [6, 7, 47, 57, 66, 74, 80, 89, 510, 643], "drop_last": [6, 7], "num_work": [6, 7], "opt": [6, 7, 26, 27, 28, 29, 49, 819, 825, 829, 840, 844, 847], "sgd": [6, 7, 45, 796, 870], "lr": [6, 45, 59, 82, 536, 616, 619, 621, 622, 623, 634, 635, 796, 852, 853], "1e": [6, 7, 9, 10, 11, 12, 13, 16, 18, 31, 43, 47, 54, 57, 59, 62, 63, 65, 77, 80, 82, 85, 86, 88, 101, 165, 334, 351, 372, 377, 381, 457, 501, 502, 503, 582, 583, 592, 605, 606, 615, 616, 621, 623, 630, 634, 635, 637, 638, 642, 687, 696, 697, 698, 737, 771, 773, 793, 795, 796, 812, 816, 827, 834, 837, 840, 842, 853, 854], "loss_fn": [6, 31, 32, 43, 45, 47, 812, 852, 853, 854], "crossentropyloss": [6, 45, 793], "epoch": [6, 7, 31, 32, 45, 47, 812], "loss_epoch_arr": [6, 7], "loss_arr": [6, 7], "enumer": [6, 7, 8, 45, 47, 781], "permut": [6, 8, 12, 45, 64, 87, 102, 385, 514, 639, 704, 711, 864], "loss": [6, 7, 31, 32, 45, 47, 57, 80, 97, 452, 453, 454, 455, 456, 457, 458, 459, 585, 608, 634, 696, 697, 698, 812, 828, 829, 837, 841, 845, 846, 852, 853, 854, 870, 877], "backward": [6, 7, 45, 57, 71, 80, 94, 282, 375, 398, 403, 404, 408, 409, 419, 420, 632, 637, 648, 668, 693, 767, 768, 792, 810, 845, 855], "append": [6, 7, 14, 46, 47, 57, 62, 74, 80, 232, 341, 372, 632, 637, 639, 671, 677, 702, 806, 812, 828, 844, 849, 852, 867], "avg_loss": [6, 7, 45], "02": [6, 12, 13, 45, 53, 58, 59, 65, 66, 79, 82, 89, 138, 225, 226, 265, 375, 397, 407, 408, 592, 593, 615, 616, 621, 629, 632, 634, 635, 642, 643, 737, 740, 741, 842], "94": [6, 14, 43, 56, 57, 59, 66, 79, 80, 82, 89, 207, 283, 284, 360, 372, 407, 619, 631, 635, 741], "ve": [6, 7, 8, 9, 14, 20, 29, 31, 66, 89, 643, 738, 818, 819, 820, 821, 834, 844, 847, 848, 851, 857], "And": [6, 7, 11, 13, 14, 16, 18, 23, 26, 31, 32, 33, 46, 77, 365, 366, 374, 812, 823, 826, 835, 837, 844, 863], "successfulli": [6, 7, 45, 47, 50, 794, 815, 819, 824], "plug": 6, "seen": [6, 16, 18, 23, 29, 31, 376, 382, 435, 510, 557, 634, 801, 828, 829, 831, 833, 841, 844, 849, 851, 852, 859, 860, 876], "d": [6, 7, 46, 57, 58, 61, 62, 64, 76, 80, 81, 84, 85, 87, 100, 116, 138, 147, 180, 223, 240, 241, 273, 276, 328, 369, 375, 376, 378, 381, 382, 385, 394, 395, 396, 403, 408, 412, 413, 414, 415, 417, 421, 427, 443, 464, 470, 472, 475, 479, 493, 495, 499, 506, 508, 514, 537, 548, 626, 629, 630, 632, 636, 637, 639, 641, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 670, 671, 675, 678, 682, 691, 692, 708, 721, 725, 726, 727, 730, 735, 736, 777, 806, 812, 813, 819, 822, 825, 826, 827, 834, 839, 844, 847, 852, 860, 861, 866], "sign": [6, 7, 56, 57, 62, 68, 70, 79, 80, 85, 97, 126, 220, 221, 222, 223, 226, 228, 229, 234, 238, 240, 243, 245, 247, 273, 275, 282, 286, 287, 291, 339, 372, 376, 378, 387, 447, 491, 492, 523, 524, 629, 632, 637, 645, 647, 685, 749, 750, 751, 752, 757, 758, 763, 765, 812, 819, 821, 829, 849, 854, 860], "ask": [6, 7, 812, 818, 819, 831, 849, 851, 855, 856, 861], "server": [6, 7, 45, 812, 819, 820, 826, 834, 856, 870], "forward": [6, 7, 8, 12, 18, 31, 32, 45, 47, 57, 80, 365, 374, 375, 398, 403, 404, 408, 409, 419, 420, 789, 791, 792, 794, 796, 810, 812, 819, 825, 832, 839, 844, 845, 847, 854, 855, 863, 870, 871], "come": [7, 22, 45, 815, 818, 819, 820, 824, 828, 841, 846, 847, 853, 857, 870], "onto": [7, 641, 724, 730, 858, 859, 870], "scene": [7, 812, 822, 848, 850, 858, 859, 870], "almost": [7, 45, 817, 827, 842, 850, 852, 859], "alwai": [7, 53, 54, 57, 58, 64, 76, 77, 80, 87, 110, 128, 152, 223, 273, 346, 372, 376, 378, 447, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 562, 626, 630, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 812, 818, 819, 820, 824, 825, 827, 829, 832, 835, 836, 837, 840, 841, 842, 843, 844, 845, 847, 849, 855, 863], "huggingfac": [7, 45, 863, 864], "implement": [7, 14, 22, 23, 31, 33, 37, 45, 48, 54, 55, 57, 68, 69, 77, 78, 80, 85, 92, 97, 152, 166, 167, 180, 199, 200, 214, 220, 221, 222, 225, 226, 227, 228, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 273, 275, 278, 282, 285, 286, 290, 291, 335, 336, 359, 372, 376, 387, 428, 429, 528, 529, 550, 551, 630, 631, 632, 634, 636, 637, 645, 646, 647, 663, 672, 673, 674, 682, 691, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 777, 779, 801, 812, 816, 818, 822, 823, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 844, 845, 847, 849, 851, 852, 853, 854, 855, 857, 867, 868, 869, 870, 873, 876, 877], "conveni": [7, 25, 35, 818, 829, 830, 836, 842, 850, 852, 853, 857, 876], "who": [7, 20, 812, 815, 821, 822, 833, 848, 855, 870, 872, 878], "must": [7, 37, 45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 100, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 325, 326, 329, 330, 331, 332, 335, 336, 337, 338, 339, 341, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 362, 367, 369, 372, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 417, 419, 420, 422, 424, 426, 427, 429, 435, 436, 441, 442, 443, 444, 449, 453, 454, 455, 456, 458, 459, 462, 463, 464, 469, 470, 472, 474, 475, 476, 477, 479, 483, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 499, 504, 505, 507, 508, 509, 511, 512, 515, 522, 523, 524, 525, 532, 540, 541, 545, 546, 547, 552, 553, 555, 562, 576, 577, 614, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 791, 792, 796, 798, 817, 818, 819, 820, 823, 824, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 844, 845, 846, 847, 849, 853, 854, 859, 861, 864, 865, 871, 877], "reimplement": 7, "choic": [7, 14, 32, 49, 57, 70, 80, 93, 376, 378, 447, 467, 647, 764, 766, 812, 819, 828, 840, 841, 852, 861, 864, 870, 877], "veri": [7, 16, 24, 31, 32, 34, 56, 79, 274, 334, 351, 372, 632, 637, 685, 778, 817, 818, 819, 820, 826, 827, 829, 830, 831, 833, 834, 836, 837, 840, 841, 842, 844, 845, 847, 850, 852, 853, 854, 855, 859, 860, 866, 867, 868, 870, 871, 872, 875, 876, 877], "thousand": [7, 855], "china": 7, "howev": [7, 14, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 62, 85, 247, 290, 291, 378, 381, 492, 501, 503, 580, 632, 634, 637, 685, 687, 801, 818, 819, 823, 824, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 855, 860, 863, 869, 870, 876], "suffer": 7, "abov": [7, 22, 27, 31, 32, 37, 38, 53, 56, 57, 62, 66, 73, 79, 80, 85, 89, 98, 118, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 311, 313, 328, 329, 335, 336, 338, 341, 367, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 409, 412, 413, 414, 419, 420, 421, 429, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 562, 591, 600, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 816, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 842, 844, 847, 849, 851, 852, 853, 854, 870, 875], "second": [7, 9, 56, 57, 59, 62, 64, 68, 79, 80, 81, 82, 85, 87, 91, 98, 102, 103, 123, 147, 178, 186, 223, 228, 230, 232, 233, 234, 235, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 273, 276, 278, 289, 319, 328, 334, 347, 349, 350, 351, 357, 361, 362, 369, 372, 376, 377, 378, 385, 387, 428, 429, 430, 432, 436, 458, 490, 498, 509, 511, 515, 522, 525, 537, 586, 609, 615, 616, 621, 628, 629, 630, 632, 634, 635, 637, 639, 640, 641, 645, 668, 671, 672, 673, 675, 677, 682, 684, 685, 687, 689, 691, 693, 710, 711, 716, 719, 749, 750, 751, 796, 819, 823, 826, 829, 831, 835, 840, 841, 844, 846, 851, 861, 875], "iter": [7, 45, 47, 52, 57, 58, 64, 72, 74, 80, 81, 87, 95, 100, 103, 122, 213, 320, 321, 369, 375, 376, 378, 421, 434, 445, 451, 468, 484, 534, 572, 628, 631, 634, 639, 641, 701, 705, 712, 714, 719, 720, 721, 722, 723, 724, 726, 727, 728, 729, 730, 733, 734, 736, 805, 806, 810, 823, 825, 827, 849, 852, 861, 863], "dino": 7, "meta": [7, 45, 715, 716, 717, 824, 845, 870], "vit": 7, "purpos": [7, 24, 31, 32, 34, 45, 47, 147, 245, 263, 328, 369, 629, 632, 637, 685, 820, 822, 824, 827, 828, 830, 831, 833, 836, 837, 838, 841, 843, 844, 847, 848, 851, 857, 869, 871, 874, 875, 876], "abund": [7, 861], "literatur": 7, "mainli": [7, 812, 818, 822, 839, 841, 844, 850, 852, 857, 870], "focus": [7, 812, 829, 845, 868, 869, 870, 876, 877], "rather": [7, 37, 58, 74, 81, 126, 213, 564, 565, 568, 629, 631, 634, 636, 661, 816, 820, 823, 827, 829, 832, 834, 841, 842, 844, 845, 854, 855, 860, 866, 869, 870], "65": [7, 14, 43, 45, 47, 50, 79, 82, 89, 234, 273, 560, 615, 632, 634, 635, 637, 647, 682, 740, 741, 759, 828], "749": 7, "env": [7, 26, 27, 28, 29], "flags_fraction_of_gpu_memory_to_us": 7, "auto_growth": 7, "paddl": [7, 26, 27, 28, 29, 209, 335, 336, 372, 631, 789, 801, 818, 819, 829, 834], "autoimageprocessor": [7, 863, 864], "automodelforimageclassif": 7, "device_count": 7, "seed": [7, 23, 26, 27, 47, 48, 57, 61, 66, 68, 74, 80, 84, 89, 323, 324, 325, 326, 327, 369, 376, 382, 434, 445, 451, 508, 509, 510, 511, 512, 636, 643, 645, 659, 738, 739, 740, 741, 743, 749, 784, 789, 791, 806, 838, 842, 844], "libpaddl": 7, "0x7c8738e15470": 7, "processor": [7, 875], "facebook": [7, 48], "imagenet1k": 7, "id2label": [7, 48, 863], "predicted_class_idx": [7, 48], "paddle_input": 7, "pixel_valu": 7, "to_tensor": [7, 96, 97, 98, 99, 100, 101], "stop_gradi": [7, 59, 82, 213, 536, 616, 619, 621, 622, 623, 631, 634, 635, 640, 715, 716, 717, 796, 853], "logits_np_transpil": 7, "4th": 7, "decim": [7, 56, 79, 283, 632, 846], "io": [7, 13, 26, 27, 28, 29, 46, 49, 819, 828], "to_rgb": 7, "cv2": [7, 45, 47, 49, 852], "tar": [7, 45, 46, 47, 50], "gz": [7, 45, 46, 47, 50], "found": [7, 45, 47, 48, 50, 62, 64, 68, 74, 80, 85, 87, 91, 103, 201, 387, 469, 523, 631, 641, 671, 677, 710, 729, 749, 806, 815, 818, 819, 820, 824, 825, 826, 827, 829, 830, 832, 835, 838, 840, 841, 856, 872], "bj": [7, 223, 240, 273, 338, 372, 632], "bcebo": 7, "41626": 7, "2m": 7, "cross_entropi": [7, 47, 63, 86, 638, 698, 812, 827, 837, 840], "01": [7, 12, 26, 27, 29, 47, 53, 57, 58, 59, 62, 80, 81, 82, 85, 89, 138, 265, 283, 284, 312, 318, 343, 344, 351, 369, 375, 397, 407, 408, 549, 592, 593, 615, 616, 621, 629, 632, 634, 635, 637, 640, 643, 674, 684, 716, 717, 740, 741, 776, 825, 854], "33": [7, 14, 43, 45, 46, 56, 66, 70, 79, 80, 81, 82, 84, 226, 227, 234, 283, 375, 376, 378, 387, 395, 417, 418, 448, 467, 523, 541, 592, 619, 632, 634, 635, 636, 637, 641, 647, 659, 660, 682, 736, 739, 759, 766, 776, 779], "bring": [7, 31, 32, 823, 843, 844, 849, 850, 857, 860], "hope": [7, 43, 855, 860, 876, 878], "milesi": 8, "blob": [8, 45, 47, 812], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 8, "data_load": 8, "l65": 8, "mask_valu": 8, "pil_img": 8, "scale": [8, 11, 45, 57, 61, 65, 80, 82, 84, 88, 112, 211, 212, 304, 305, 308, 319, 349, 367, 369, 372, 375, 376, 381, 393, 399, 400, 401, 409, 411, 416, 420, 436, 501, 502, 503, 622, 626, 631, 635, 636, 642, 659, 663, 666, 737, 776, 778, 779, 791, 792, 796, 806, 870, 872], "is_mask": 8, "neww": 8, "newh": 8, "assert": [8, 14, 46, 48, 50, 74, 538, 634, 784, 816, 822, 823, 834, 837, 840, 841, 842, 844, 845, 851, 852], "too": [8, 57, 80, 223, 240, 247, 273, 378, 492, 632, 791, 818, 819, 820, 823, 829, 833, 845, 855], "small": [8, 14, 47, 56, 57, 62, 65, 79, 80, 85, 88, 240, 247, 273, 274, 334, 351, 372, 376, 377, 381, 440, 457, 501, 502, 503, 632, 637, 642, 680, 683, 685, 737, 791, 795, 812, 819, 828, 831, 837, 842, 847, 849, 853, 855, 863, 864, 871], "pixel": [8, 45, 57, 80, 375, 411], "resampl": 8, "nearest": [8, 57, 80, 223, 240, 273, 283, 345, 372, 375, 387, 411, 532, 632, 847], "bicub": [8, 57, 80, 375, 411, 847], "zero": [8, 45, 53, 54, 56, 57, 58, 59, 61, 62, 64, 67, 68, 70, 71, 76, 77, 79, 80, 82, 84, 85, 89, 90, 93, 94, 98, 112, 114, 115, 116, 118, 129, 130, 132, 134, 139, 141, 142, 143, 145, 146, 149, 152, 153, 221, 222, 223, 225, 226, 227, 228, 229, 232, 234, 235, 237, 238, 239, 240, 242, 245, 246, 247, 254, 255, 256, 257, 263, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 285, 286, 287, 288, 290, 291, 293, 294, 296, 298, 299, 303, 305, 311, 313, 322, 329, 335, 336, 339, 340, 341, 345, 353, 356, 358, 359, 360, 361, 367, 369, 372, 375, 376, 378, 385, 387, 397, 398, 399, 400, 401, 403, 404, 407, 408, 409, 418, 419, 420, 421, 422, 423, 428, 430, 438, 443, 446, 468, 478, 483, 484, 495, 496, 514, 523, 524, 541, 545, 552, 572, 577, 615, 616, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 663, 666, 667, 669, 673, 674, 676, 677, 678, 679, 680, 681, 683, 685, 691, 693, 694, 701, 702, 703, 704, 706, 707, 714, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 791, 792, 796, 810, 824, 827, 829, 830, 831, 836, 838, 839, 842, 849, 852, 853, 861, 869], "ndim": [8, 57, 62, 67, 80, 85, 90, 102, 106, 376, 378, 444, 445, 451, 462, 463, 464, 477, 485, 487, 497, 614, 634, 637, 644, 684, 687, 747, 827, 837, 844], "newaxi": [8, 627], "transpos": [8, 28, 31, 32, 49, 57, 61, 62, 74, 80, 84, 85, 102, 376, 424, 442, 444, 446, 521, 636, 637, 649, 651, 653, 655, 656, 657, 661, 677, 681, 683, 689, 778, 792, 812, 834, 840, 851, 854, 864], "255": [8, 28, 31, 32, 45, 46, 47, 49, 61, 80, 84, 234, 632, 658, 812, 864], "car": 8, "full_img": 8, "from_numpi": [8, 9, 852], "img_numpi": 8, "torch_unet": 8, "unet_carvana": 8, "ivy_unet": 8, "n_channel": 8, "n_class": 8, "l62": 8, "mask_to_imag": 8, "ndarrai": [8, 53, 57, 58, 76, 80, 98, 127, 128, 140, 375, 376, 378, 387, 420, 445, 489, 528, 529, 599, 629, 634, 801, 805, 818, 824, 829, 830, 833, 836, 840, 841, 842, 845, 847, 849, 851, 854, 857], "uint8": [8, 28, 31, 32, 47, 155, 162, 166, 177, 180, 185, 191, 630, 776, 777, 829, 844], "elif": [8, 11, 828, 833, 840, 841, 842], "bool": [8, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 182, 188, 192, 196, 197, 199, 200, 202, 204, 207, 208, 213, 214, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 323, 324, 325, 326, 327, 329, 334, 335, 336, 337, 338, 340, 342, 350, 351, 356, 357, 359, 361, 362, 363, 369, 372, 373, 375, 376, 377, 378, 381, 387, 394, 395, 396, 398, 399, 400, 401, 411, 412, 413, 414, 417, 419, 421, 423, 430, 434, 437, 438, 442, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 468, 469, 470, 472, 473, 474, 475, 476, 479, 483, 487, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 506, 507, 509, 521, 522, 523, 524, 525, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 576, 577, 581, 590, 591, 592, 593, 595, 597, 599, 600, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 659, 660, 661, 662, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 687, 691, 692, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 724, 725, 726, 728, 729, 730, 735, 736, 738, 739, 740, 741, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 774, 776, 777, 778, 788, 792, 795, 796, 805, 806, 810, 829, 831, 833, 840, 841, 844, 845, 847, 849, 854, 863, 864], "fromarrai": [8, 28, 31, 32, 47], "interpol": [8, 45, 57, 80, 353, 372, 375, 387, 532, 636, 663, 847, 870], "bilinear": [8, 57, 80, 375, 411, 847], "torch_mask": 8, "squeez": [8, 45, 64, 87, 639, 870], "torch_result": 8, "to_numpi": [8, 14, 31, 32, 43, 46, 47, 50, 58, 81, 634, 812, 834, 842, 852, 867], "img_tf": 8, "math": [8, 48, 98, 290, 632, 829, 840, 841, 842, 854, 868], "lot": [8, 828, 829, 838, 844, 855, 860, 861, 869], "far": [8, 31, 32, 641, 718, 729, 806, 830, 831, 850, 875, 876], "space": [8, 53, 56, 57, 58, 76, 79, 80, 81, 126, 137, 138, 292, 349, 372, 377, 454, 545, 549, 629, 632, 634, 847, 860], "del": [8, 828], "empty_cach": 8, "permute_dim": [8, 64, 87, 639, 834], "func_wrapp": [8, 51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 830, 841, 846], "242": [8, 80], "mani": [8, 31, 32, 35, 64, 74, 87, 147, 328, 369, 629, 639, 708, 812, 818, 819, 820, 824, 825, 827, 828, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 844, 847, 849, 851, 852, 855, 859, 860, 861, 866, 870, 873, 876, 877], "factor": [8, 14, 57, 59, 61, 62, 80, 82, 84, 85, 96, 97, 98, 99, 100, 211, 212, 213, 375, 376, 381, 409, 420, 434, 435, 445, 448, 450, 451, 506, 615, 616, 621, 622, 631, 635, 636, 637, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 667, 776, 778, 779, 791, 792, 796, 833, 860], "inc": 8, "unetdoubleconv": 8, "down1": 8, "unetdown": 8, "128": [8, 12, 31, 32, 45, 54, 56, 61, 77, 79, 84, 103, 168, 244, 375, 397, 407, 545, 555, 630, 632, 634, 636, 637, 651, 653, 658, 682, 812], "down2": 8, "down3": 8, "down4": 8, "1024": [8, 12, 45, 46, 812], "up1": 8, "unetup": 8, "up2": 8, "up3": 8, "up4": 8, "outc": 8, "unetoutconv": 8, "x1": [8, 22, 31, 32, 50, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 92, 102, 103, 107, 153, 163, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 313, 334, 339, 346, 347, 348, 350, 352, 357, 361, 369, 372, 376, 378, 387, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 646, 668, 675, 677, 682, 686, 689, 690, 693, 748, 755, 773, 798, 812, 823, 829, 831, 833, 836, 840, 841, 864, 865], "x2": [8, 22, 31, 32, 54, 56, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 102, 103, 107, 153, 179, 186, 206, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 248, 249, 250, 251, 252, 258, 259, 260, 265, 266, 267, 269, 270, 271, 272, 273, 276, 278, 282, 289, 294, 334, 339, 346, 347, 348, 350, 352, 357, 361, 372, 376, 378, 387, 432, 446, 478, 522, 534, 537, 630, 631, 632, 634, 637, 644, 668, 675, 677, 682, 686, 689, 690, 693, 748, 773, 798, 823, 829, 831, 833, 836, 840, 841], "x3": [8, 54, 58, 153, 534, 630, 634], "x4": 8, "x5": 8, "in_channel": 8, "out_channel": 8, "mid_channel": 8, "double_conv": 8, "with_bia": [8, 792, 812, 853, 864], "batchnorm2d": [8, 12, 795], "downscal": [8, 58, 81, 540, 541, 562, 634], "maxpool": [8, 12], "doubl": 8, "conv": [8, 636, 792, 847], "maxpool_conv": 8, "upscal": 8, "scale_factor": [8, 57, 80, 375, 411, 847], "align_corn": [8, 57, 80, 375, 411, 847], "conv2dtranspos": [8, 792], "bhwc": 8, "diff_h": 8, "diff_w": 8, "pad_width": [8, 57, 64, 80, 87, 378, 484, 639, 701, 714], "constant_pad": [8, 64, 87, 639], "via": [9, 34, 37, 247, 376, 378, 445, 448, 451, 492, 632, 641, 728, 729, 820, 823, 827, 829, 830, 840, 845, 847, 849, 851, 852, 870], "alongsid": [9, 20, 21, 22, 23, 33, 636, 663, 860], "basic": [9, 16, 18, 22, 25, 29, 31, 32, 35, 38, 378, 491, 812, 813, 818, 831, 844], "singl": [9, 24, 34, 43, 48, 56, 66, 74, 79, 89, 98, 292, 351, 372, 376, 382, 443, 509, 600, 613, 617, 632, 634, 635, 636, 643, 645, 663, 739, 740, 741, 749, 776, 792, 810, 812, 818, 819, 820, 823, 828, 831, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 852, 853, 854, 855, 861], "lstm": [9, 10, 636, 662, 792, 849, 870], "sample_input": 9, "uniform": [9, 23, 24, 25, 26, 27, 31, 32, 33, 34, 36, 37, 38, 45, 57, 66, 80, 89, 387, 525, 643, 738, 739, 741, 791, 812, 843, 853, 864, 865, 877], "tf_lstm": [9, 10], "torch_lstm": [9, 10], "physicaldevic": 9, "physical_devic": 9, "device_typ": 9, "alloc": [9, 53, 54, 57, 77, 145, 146, 152, 329, 369, 629, 630, 810, 818, 820, 855], "physic": [9, 204, 631], "modifi": [9, 47, 57, 74, 80, 97, 378, 387, 481, 484, 489, 529, 776, 806, 818, 819, 820, 823, 825, 826, 829, 830, 832, 834, 835, 837, 840, 842, 844, 845, 849], "164": 9, "state_upd": [9, 29], "properti": [9, 29, 74, 97, 98, 99, 100, 101, 102, 106, 794, 796, 823, 827, 837, 842, 844, 851, 852, 853, 876], "_transpil": [9, 29], "those": [9, 20, 44, 45, 62, 64, 74, 80, 85, 87, 126, 179, 240, 273, 493, 614, 629, 630, 632, 634, 637, 639, 641, 644, 684, 687, 699, 720, 747, 815, 818, 819, 820, 821, 824, 827, 828, 829, 838, 840, 841, 842, 844, 847, 859, 867], "torch_input": 9, "rand": [9, 10, 29, 31, 32, 47, 805, 806, 812, 863], "tf_input": [9, 864], "constant": [9, 10, 16, 18, 23, 26, 27, 33, 36, 38, 43, 57, 64, 65, 80, 87, 88, 97, 98, 322, 369, 375, 377, 378, 421, 456, 457, 484, 639, 641, 642, 701, 724, 737, 791, 795, 812, 837, 842, 845, 853, 854, 855, 863, 865], "tf_output": 9, "toler": [9, 10, 57, 62, 80, 85, 334, 351, 372, 376, 430, 445, 451, 637, 680, 683, 771, 773, 823, 842, 870], "benchmark": [9, 10, 872], "n_run": [9, 10], "tf_time": 9, "round": [9, 56, 57, 79, 80, 97, 99, 100, 101, 223, 236, 240, 246, 247, 273, 287, 293, 294, 345, 372, 632, 816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 867], "torch_tim": 9, "cpu_speedup": 9, "gpu_speedup": 9, "ntranspil": 9, "5017": 9, "1101": 9, "7519": 9, "901": 9, "607x": 9, "944x": 9, "32": [10, 14, 29, 31, 32, 43, 45, 46, 47, 56, 57, 66, 79, 80, 84, 85, 89, 102, 103, 112, 164, 222, 234, 235, 244, 258, 264, 280, 283, 284, 338, 372, 375, 376, 378, 387, 395, 396, 397, 407, 417, 418, 428, 432, 467, 523, 545, 561, 626, 630, 632, 634, 636, 637, 643, 644, 647, 651, 653, 654, 658, 660, 677, 682, 693, 739, 740, 741, 748, 759, 776, 779, 812, 828, 829, 839, 852, 875], "original_output": 10, "transpiled_output": 10, "original_torch_tim": 10, "autograph": 10, "do_not_convert": 10, "compiled_tf_lstm": 10, "transpiled_tf_tim": 10, "original_tf_lstm": 10, "time_major": [10, 80, 375, 421, 636, 662], "return_sequ": [10, 792], "original_tf_tim": 10, "slower": [10, 24, 841], "480074623755541x": 10, "362692848996253x": 10, "openmim": 11, "mim": 11, "0rc8": 11, "get_model": 11, "list_model": 11, "mmengin": 11, "configdict": 11, "saniti": [11, 13, 14, 31, 841], "checkpoint": [11, 12, 48, 855], "against": [11, 54, 57, 58, 62, 67, 77, 79, 80, 81, 85, 90, 153, 272, 291, 334, 337, 340, 351, 372, 387, 528, 529, 530, 531, 532, 569, 630, 632, 634, 637, 644, 677, 678, 680, 683, 744, 844, 849, 855, 859, 870], "zoo": 11, "checkpoint_nam": [11, 13, 31], "tiny_32xb128": 11, "noema_in1k": 11, "openmmlab": 11, "get_scal": 11, "cfg": [11, 835], "_config": 11, "train_pipelin": 11, "tensor_imag": 11, "transpiled_graph": [11, 13, 31], "issu": [11, 13, 377, 454, 791, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 828, 829, 830, 831, 833, 834, 841, 844, 845, 847, 849, 853, 855, 861, 863], "107960": [11, 13], "export": [11, 13, 46, 828, 869, 876], "lc_all": [11, 13], "en_u": [11, 13], "utf": [11, 13], "ld_library_path": [11, 13], "lib64": [11, 13], "nvidia": [11, 13, 26, 27, 28, 29, 45, 47, 50, 874, 875], "library_path": [11, 13], "stub": [11, 13, 826], "ldconfig": [11, 13], "_f": [11, 13, 31], "comp_model": [11, 13, 31], "equival": [11, 13, 31, 62, 85, 97, 98, 126, 234, 247, 268, 269, 282, 283, 378, 468, 492, 498, 629, 632, 637, 680, 683, 686, 694, 801, 840, 841, 847, 852, 854, 856, 864], "np_imag": [11, 28, 31, 32], "jax_imag": 11, "hk": [11, 13, 31, 45, 49, 812, 854, 864], "rng_kei": [11, 13, 31, 812, 864], "prngkei": [11, 13, 24, 25, 31, 32, 45, 812, 854, 864], "jax_mlp_forward": 11, "init": [11, 13, 31, 45, 47, 57, 80, 376, 434, 445, 451, 812, 823, 854, 864], "rng": [11, 13, 31, 45, 812, 854, 864], "06": [11, 14, 26, 47, 54, 66, 79, 82, 101, 110, 165, 222, 238, 375, 397, 407, 621, 626, 630, 635, 741, 771, 773, 844, 852], "block_until_readi": 11, "08": [11, 57, 70, 80, 89, 226, 334, 351, 372, 375, 377, 397, 407, 457, 632, 740, 741, 766, 771, 776, 835], "3x": 11, "train2017": [11, 13, 28, 31, 32, 812, 864], "000000283921": [11, 13, 31], "out_torch": [11, 13, 31], "et": [11, 636, 637, 663, 687], "out_jax": [11, 13, 31], "66m": 11, "53m": 11, "That": [11, 13, 16, 18, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 45, 282, 377, 456, 632, 805, 819, 820, 824, 844, 851, 852, 853, 871], "pretti": [11, 13, 31, 32, 45, 816, 834, 852, 876], "solid": [11, 13, 31], "2023": [12, 13, 26, 27, 28, 29, 45], "52": [12, 14, 43, 56, 79, 81, 82, 89, 228, 238, 240, 387, 523, 545, 546, 561, 615, 632, 634, 635, 636, 637, 647, 660, 682, 741, 759, 805], "110": [12, 45], "10472": 12, "10k": 12, "tx": 12, "23k": 12, "634575": 12, "620k": 12, "jpeg": [12, 46, 47], "619": 12, "70k": 12, "113": 12, "resnet34_weight": 12, "torch_resnet_34": 12, "conv1": 12, "kernel_s": [12, 29, 31, 32, 47, 57, 80, 375, 394, 395, 396, 415, 422, 792, 798], "stride": [12, 57, 61, 80, 81, 84, 102, 375, 378, 394, 395, 396, 412, 413, 414, 415, 417, 418, 422, 460, 634, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 840, 845, 870], "bia": [12, 57, 61, 80, 84, 88, 381, 387, 506, 522, 572, 634, 636, 642, 649, 650, 651, 652, 653, 654, 655, 656, 657, 660, 661, 662, 663, 737, 792, 837, 844, 849, 853], "bn1": 12, "ep": [12, 57, 62, 65, 80, 85, 88, 165, 300, 367, 376, 377, 381, 430, 457, 501, 502, 503, 630, 637, 642, 680, 683, 737, 788, 795], "05": [12, 14, 47, 53, 56, 57, 59, 65, 79, 80, 82, 88, 138, 265, 318, 334, 343, 344, 351, 369, 372, 381, 501, 502, 503, 560, 582, 605, 615, 616, 621, 629, 632, 634, 635, 637, 642, 678, 737, 771, 776, 791, 795, 842, 844], "momentum": [12, 45, 57, 80, 381, 501, 503, 795, 860], "affin": [12, 795], "track_running_stat": [12, 795], "dilat": [12, 49, 57, 61, 80, 84, 375, 378, 412, 413, 414, 417, 418, 422, 484, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "ceil_mod": [12, 57, 80, 375, 394, 395, 396, 412, 413, 414, 417, 792], "layer1": 12, "basicblock": 12, "conv2": 12, "bn2": 12, "layer2": 12, "layer3": 12, "layer4": 12, "output_s": [12, 57, 80, 375, 389, 390, 391, 392, 636, 665, 792, 812, 864], "fc": [12, 18, 45, 812, 853, 864], "in_featur": [12, 61, 84, 636, 660, 844], "out_featur": [12, 61, 84, 636, 660, 844], "resnet_34": 12, "ivy_resnet_34": 12, "34": [12, 14, 43, 45, 79, 80, 81, 89, 168, 238, 265, 286, 375, 387, 418, 529, 545, 546, 630, 632, 634, 636, 637, 643, 660, 679, 740, 741, 830], "333f7ec4": 12, "pth": 12, "83": [12, 14, 43, 62, 84, 89, 287, 375, 387, 397, 407, 418, 523, 632, 636, 637, 660, 675, 740], "3m": 12, "4mb": 12, "preserv": [12, 13, 26, 27, 28, 29, 57, 58, 59, 74, 80, 81, 82, 103, 375, 376, 378, 387, 411, 445, 462, 463, 464, 475, 476, 495, 529, 562, 624, 634, 635, 639, 703, 776, 843, 844, 854, 855, 864], "multipl": [12, 13, 22, 26, 27, 28, 29, 31, 56, 57, 62, 65, 70, 71, 74, 79, 80, 81, 82, 85, 87, 88, 93, 94, 134, 234, 258, 265, 271, 272, 273, 275, 335, 336, 372, 375, 376, 378, 381, 385, 397, 404, 407, 409, 443, 470, 479, 496, 499, 506, 515, 534, 541, 572, 615, 616, 619, 621, 622, 623, 624, 629, 632, 634, 635, 636, 637, 639, 642, 644, 647, 648, 651, 652, 653, 654, 667, 676, 677, 678, 691, 699, 702, 707, 708, 737, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 810, 812, 818, 820, 824, 825, 827, 831, 833, 835, 837, 840, 841, 842, 844, 847, 849, 855, 861, 863, 868, 869, 870, 877], "rel": [12, 13, 26, 27, 28, 29, 57, 59, 62, 64, 69, 76, 80, 82, 85, 87, 92, 102, 136, 334, 351, 372, 377, 387, 456, 457, 522, 616, 619, 621, 622, 623, 635, 637, 639, 646, 671, 680, 683, 691, 703, 707, 753, 756, 771, 773, 820, 828, 842, 847, 870, 872], "home": [12, 13, 26, 27, 28, 29, 828], "workspac": [12, 13, 23, 26, 27, 28, 29, 819, 834], "95": [12, 14, 43, 57, 59, 62, 66, 73, 82, 84, 89, 110, 360, 372, 418, 615, 619, 623, 626, 635, 637, 643, 675, 740, 741], "builtin": [12, 819, 851, 853], "track": [12, 22, 31, 32, 44, 45, 810, 819, 820, 823, 839, 840, 863, 870], "properli": [12, 819, 822, 833, 835, 841, 844], "_trace_graph": 12, "shown": [12, 29, 31, 72, 74, 95, 257, 280, 338, 372, 632, 818, 819, 820, 823, 826, 828, 829, 831, 833, 835, 836, 841, 842, 844, 845, 846, 849, 851, 855], "8507": 12, "1351": 12, "0069": 12, "85072625": 12, "13506091": 12, "00688289": 12, "resnet50_weight": 12, "torch_resnet_50": 12, "imagenet1k_v2": 12, "11ad3fa6": 12, "8m": 12, "8mb": 12, "bottleneck": [12, 859], "conv3": 12, "bn3": 12, "2048": [12, 593, 634], "resnet_50": 12, "ivy_resnet_50": 12, "3429": 12, "0408": 12, "0121": 12, "34288204": 12, "04077014": 12, "01212029": 12, "yet": [13, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 47, 368, 370, 371, 379, 380, 384, 818, 819, 834, 855, 856, 863, 864, 865], "broken": [13, 26, 27, 28, 29, 866, 870], "permiss": [13, 26, 27, 28, 29, 819, 828], "conflict": [13, 26, 27, 28, 29, 37, 819, 820, 828, 841, 852], "behaviour": [13, 26, 27, 28, 29, 112, 115, 274, 626, 632, 817, 820, 822, 823, 824, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 844, 845, 851], "system": [13, 26, 27, 28, 29, 47, 376, 446, 637, 686, 776, 812, 819, 820, 821, 825, 828, 829, 855, 864, 868, 870, 873, 875, 877], "recommend": [13, 26, 27, 28, 29, 268, 269, 282, 377, 454, 632, 647, 761, 764, 814, 819, 825, 826, 835, 838, 839, 863], "virtual": [13, 26, 27, 28, 29, 820, 841, 860, 873, 874], "pypa": [13, 26, 27, 28, 29], "venv": [13, 26, 27, 28, 29], "autofeatureextractor": [13, 31], "extractor": [13, 16, 18, 31, 47, 812], "hug": [13, 31, 863], "face": [13, 31, 813, 819, 823, 834, 835, 839, 847, 849, 863, 870, 876], "arch_nam": [13, 31], "microsoft": [13, 31, 860, 863, 864, 870, 875, 877], "feature_extractor": [13, 31], "980130": 13, "9342": 13, "980177": 13, "609": 13, "980207": 13, "1518": 13, "351203": 13, "inputs_jax": [13, 31], "last_hidden_st": [13, 31], "jax_forward": [13, 31], "jit_appli": 13, "63": [13, 14, 43, 47, 56, 73, 79, 84, 85, 118, 279, 286, 287, 375, 387, 397, 407, 418, 523, 632, 637, 641, 647, 667, 682, 719, 730, 759], "134": [13, 61, 637, 660, 679], "2x": [13, 31], "ipytest": 14, "load_breast_canc": 14, "autoconfig": 14, "sole": [14, 43, 836, 845, 869, 870, 871], "test_jax_gpu": 14, "xla_bridg": [14, 45], "get_backend": [14, 837], "test_torch_gpu": 14, "test_xgboost_gpu": 14, "capsi": 14, "load_diabet": 14, "target": [14, 16, 18, 24, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 47, 57, 80, 195, 377, 452, 453, 454, 455, 456, 457, 458, 459, 631, 771, 792, 794, 800, 812, 816, 819, 822, 825, 834, 835, 842, 843, 848, 852, 853, 854, 864, 865, 866, 868, 869, 870, 873, 875, 876], "xgb_model": 14, "xgbregressor": 14, "tree_method": 14, "caus": [14, 377, 454, 819, 820, 823, 825, 827, 828, 829, 831, 840, 842, 844, 855], "consol": [14, 575, 634, 812, 820, 835, 844, 851, 856], "gpu_hist": 14, "captur": [14, 839, 844, 854, 871], "readouterr": 14, "err": 14, "tabular": 14, "pulsar": 14, "standard": [14, 56, 62, 65, 66, 70, 79, 88, 89, 93, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 376, 378, 387, 419, 449, 492, 496, 522, 614, 629, 630, 632, 634, 637, 639, 642, 643, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 737, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 778, 791, 795, 805, 806, 812, 815, 822, 823, 824, 827, 829, 832, 836, 840, 843, 844, 845, 855, 858, 864, 866, 868, 869, 872, 873, 875], "extra": [14, 32, 74, 103, 122, 614, 628, 634, 824, 829, 831, 838, 840, 841, 842, 847, 849, 863, 864, 867, 872], "dimens": [14, 53, 57, 58, 61, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 84, 85, 86, 87, 89, 90, 91, 93, 94, 100, 102, 103, 106, 113, 117, 141, 145, 146, 316, 327, 329, 330, 331, 332, 335, 336, 340, 341, 349, 356, 363, 369, 372, 373, 375, 376, 377, 378, 381, 382, 385, 387, 389, 391, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 418, 419, 421, 422, 424, 426, 429, 438, 447, 452, 456, 462, 463, 464, 468, 474, 485, 486, 487, 488, 490, 492, 496, 501, 502, 503, 506, 510, 512, 515, 525, 527, 528, 529, 530, 531, 532, 545, 546, 547, 549, 556, 590, 594, 614, 626, 629, 634, 636, 637, 638, 639, 640, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 667, 668, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 693, 694, 697, 698, 700, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 716, 717, 743, 744, 745, 747, 749, 750, 751, 752, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 788, 792, 795, 831, 833, 839, 841, 842, 844, 847, 849, 852], "load_data": 14, "standardscal": 14, "df": [14, 47], "delimit": [14, 852], "sc": 14, "fit_transform": 14, "117564": 14, "navig": [14, 816, 819, 820, 822, 834], "rerun": [14, 45], "436": 14, "48": [14, 43, 47, 56, 57, 79, 80, 81, 82, 89, 112, 222, 245, 287, 375, 395, 396, 397, 407, 413, 414, 417, 560, 615, 619, 626, 632, 634, 635, 637, 641, 647, 682, 719, 740, 759], "t4": 14, "tier": [14, 821], "reduc": [14, 57, 58, 62, 67, 70, 71, 74, 80, 81, 85, 90, 93, 94, 213, 335, 336, 356, 372, 373, 387, 527, 528, 529, 530, 531, 532, 546, 631, 634, 637, 644, 647, 648, 684, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 805, 806, 828, 833, 841, 847, 849, 851, 863, 868, 872, 873, 874], "although": [14, 637, 685, 814, 824, 826, 827, 841, 847, 868, 870], "experi": [14, 20, 47, 812, 819, 833, 844, 850, 852, 855], "substanti": [14, 815, 820, 824, 829, 844, 860, 870], "stuff": 14, "201": [14, 79, 80, 225, 397, 632], "20x": 14, "ivyclassifi": 14, "106597": 14, "10967": 14, "96": [14, 43, 57, 59, 79, 80, 81, 89, 237, 258, 290, 360, 372, 375, 397, 545, 546, 619, 632, 634, 635, 637, 647, 682, 741, 759], "73": [14, 43, 56, 85, 287, 387, 523, 637, 643, 667, 740, 844], "852": [14, 636, 660], "449": 14, "47": [14, 43, 47, 56, 57, 62, 66, 79, 80, 81, 82, 84, 89, 229, 287, 375, 387, 395, 413, 414, 523, 545, 546, 619, 632, 634, 635, 636, 637, 643, 660, 675, 740, 741], "82": [14, 43, 45, 50, 51, 56, 82, 89, 113, 226, 387, 523, 615, 635, 740, 741, 816, 834], "68": [14, 43, 47, 50, 56, 89, 113, 135, 228, 375, 397, 407, 626, 629, 632, 637, 642, 693, 737, 740, 741], "nevertheless": 14, "fall": [14, 45, 796, 818, 829, 848], "short": [14, 43, 57, 80, 423, 636, 661, 662, 818, 820, 829, 849, 853], "blaze": 14, "36": [14, 43, 47, 56, 57, 61, 70, 80, 81, 85, 228, 283, 284, 349, 372, 375, 376, 387, 397, 407, 433, 523, 545, 546, 593, 632, 634, 637, 641, 647, 660, 679, 682, 692, 729, 759], "35": [14, 43, 51, 61, 62, 73, 79, 80, 84, 85, 89, 113, 228, 287, 375, 397, 407, 632, 636, 637, 644, 647, 660, 668, 675, 740, 748, 759], "37": [14, 26, 27, 28, 29, 43, 51, 56, 57, 73, 79, 80, 84, 102, 113, 226, 234, 283, 286, 290, 383, 418, 513, 632, 636, 637, 641, 643, 660, 679, 726, 740, 828], "surpass": 14, "remark": [14, 855], "artifici": 14, "simpli": [14, 22, 31, 32, 34, 43, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 632, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 812, 818, 819, 820, 824, 825, 826, 828, 829, 830, 831, 832, 834, 836, 837, 840, 841, 842, 844, 847, 849, 853, 854, 855, 857, 871, 876], "stack": [14, 24, 26, 27, 28, 29, 34, 43, 47, 57, 62, 64, 74, 80, 85, 87, 102, 145, 146, 329, 369, 376, 378, 429, 468, 469, 471, 480, 500, 579, 588, 611, 629, 634, 637, 639, 641, 669, 671, 672, 673, 674, 676, 677, 679, 680, 681, 683, 684, 685, 687, 688, 691, 718, 728, 729, 792, 812, 817, 823, 840, 849, 866, 868, 875, 876], "x_doubl": 14, "vstack": [14, 57, 80, 378, 480], "y_doubl": 14, "235128": 14, "41": [14, 26, 27, 28, 29, 43, 45, 50, 56, 57, 62, 79, 80, 81, 84, 85, 113, 227, 235, 242, 273, 287, 375, 376, 383, 387, 395, 413, 418, 440, 513, 523, 540, 626, 632, 634, 637, 647, 667, 675, 765], "315": [14, 279, 632], "879": 14, "380": 14, "seem": [14, 818, 819, 847, 853, 854, 855, 870], "examin": 14, "600": [14, 47, 81, 84, 375, 399, 400, 553, 828], "conduct": [14, 874], "num_boosting_round": 14, "300": [14, 79, 81, 84, 283, 375, 399, 400, 553, 577, 632, 634, 637, 676, 844], "500": [14, 57, 80, 81, 84, 375, 376, 399, 400, 451, 553, 634], "ivy_elapsed_tim": 14, "xgb_elapsed_tim": 14, "ivy_tim": 14, "partial": [14, 57, 74, 80, 166, 167, 199, 200, 349, 372, 375, 376, 378, 387, 423, 438, 445, 485, 486, 487, 488, 529, 550, 551, 620, 630, 631, 634, 635, 777, 779, 793, 794, 820, 826, 847], "xgb_time": 14, "fivethirtyeight": 14, "legend": [14, 47, 818], "loc": [14, 867], "best": [14, 45, 572, 634, 806, 810, 812, 813, 816, 817, 818, 819, 820, 822, 828, 829, 833, 834, 843, 844, 845, 856, 873, 874], "xlabel": 14, "ylabel": 14, "obviou": [14, 852, 870], "trend": 14, "gap": 14, "train_siz": [14, 45], "widen": 14, "impress": 14, "outcom": [14, 57, 80, 337, 349, 372, 806], "tend": 14, "95933": 14, "9874": 14, "105807": 14, "wrap": [14, 22, 24, 31, 32, 34, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 588, 591, 592, 593, 594, 595, 597, 599, 600, 611, 613, 615, 616, 619, 621, 622, 623, 624, 634, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 773, 812, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 836, 837, 840, 841, 844, 849, 851, 854, 855, 857, 863, 864, 866, 870, 871, 876, 877], "balanc": 14, "breast": 14, "cancer": 14, "return_x_i": 14, "171": [14, 62, 637, 675, 776], "perfectli": [14, 778, 861], "align": [14, 57, 74, 80, 375, 376, 411, 427, 636, 665, 806, 815, 819, 828, 841, 843, 849, 851, 857, 876], "timm": [15, 16, 20, 31, 32, 812, 864], "focu": [16, 29, 818, 839, 868, 869, 872, 877], "usual": [16, 18, 48, 240, 273, 632, 805, 819, 823, 829, 841, 844, 847], "mlp": 16, "mixer": 16, "onli": [16, 18, 31, 32, 37, 43, 45, 47, 49, 52, 53, 56, 57, 62, 64, 66, 74, 76, 79, 80, 85, 87, 89, 97, 100, 102, 118, 138, 178, 179, 208, 268, 269, 274, 280, 312, 342, 349, 369, 372, 375, 376, 378, 382, 387, 398, 411, 421, 430, 435, 449, 451, 462, 463, 464, 474, 508, 509, 525, 539, 626, 629, 630, 631, 632, 634, 636, 637, 639, 641, 643, 644, 646, 647, 663, 677, 684, 687, 688, 703, 706, 718, 719, 725, 726, 728, 729, 730, 735, 736, 739, 740, 741, 744, 745, 755, 761, 764, 774, 776, 777, 779, 792, 796, 805, 810, 812, 813, 814, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 839, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 854, 855, 859, 863, 864, 869, 870, 871, 876, 877], "retriev": [16, 18, 22, 535, 557, 582, 634, 820, 841], "mlp_encod": [16, 31, 32, 812, 864], "create_model": [16, 31, 32, 812, 864], "mixer_b16_224": [16, 31, 32, 812, 864], "nois": [16, 18, 31, 32, 812, 863, 864], "randn": [16, 18, 31, 32, 378, 496, 812, 864], "tf_mlp_encod": [16, 31, 32], "output_torch": [16, 18], "output_tf": [16, 18], "output_dens": [16, 31, 32, 812], "dens": [16, 29, 31, 32, 316, 369, 792, 812], "unit": [16, 31, 32, 57, 73, 80, 97, 98, 110, 112, 113, 114, 115, 116, 117, 118, 295, 296, 299, 303, 305, 306, 309, 310, 311, 367, 504, 505, 626, 812, 819, 823, 829, 841, 842, 844, 855, 871, 874], "mention": [16, 18, 31, 32, 37, 818, 819, 820, 824, 831, 836, 837, 840, 841, 844, 847, 860, 865, 870], "fulli": [16, 18, 20, 21, 24, 29, 31, 32, 45, 57, 80, 387, 529, 792, 812, 824, 829, 836, 839, 847, 849, 850, 851, 852, 853, 854, 855, 861, 865, 868, 869, 870, 876, 877], "ground": [16, 18, 377, 453, 771, 773, 784, 816, 834, 841, 844, 859], "ret": [16, 18, 31, 32, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 369, 372, 373, 374, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 429, 431, 436, 438, 441, 443, 446, 449, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 726, 727, 728, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 777, 778, 779, 789, 794, 796, 801, 806, 808, 812, 829, 830, 832, 833, 839, 840, 841, 842, 845, 849, 854, 864], "eagertensor": [16, 22, 43, 801, 842], "deepmind": [17, 861], "perceiverio": [17, 861], "backbon": [17, 45, 812, 849, 852], "TO": [17, 19, 30], "replac": [17, 19, 30, 46, 56, 57, 58, 64, 66, 74, 79, 80, 81, 87, 89, 132, 274, 310, 313, 367, 369, 378, 489, 492, 496, 576, 577, 581, 629, 632, 634, 639, 643, 699, 738, 776, 820, 826, 827, 829, 830, 838, 841, 844, 851, 854, 855, 860, 864, 877], "efficientnet": 18, "eff_encod": [18, 812], "efficientnet_v2": [18, 812], "efficientnetv2b0": [18, 812], "storag": [18, 45, 46, 852, 860], "googleapi": [18, 45, 46], "efficientnetv2": 18, "b0_notop": 18, "h5": [18, 74], "24274472": 18, "0u": 18, "torch_eff_encod": [18, 812], "modes_to_trac": 18, "1280": [18, 545, 634, 812], "welcom": [20, 46, 812, 813, 819, 820, 821, 843], "varieti": [20, 823, 828, 829, 830, 844, 846, 866, 868, 872, 873, 876, 877], "organ": [20, 824, 827, 837, 841, 843, 845, 857, 860], "main": [20, 32, 53, 57, 62, 80, 85, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 473, 629, 637, 670, 671, 691, 812, 815, 818, 819, 820, 821, 823, 826, 827, 834, 838, 840, 868, 870, 871, 876], "exactli": [20, 24, 34, 43, 44, 48, 290, 632, 818, 827, 828, 829, 830, 831, 833, 844, 847, 859, 861], "rush": [20, 861], "jump": [20, 842], "straight": [20, 812, 828, 841, 844, 851], "quickstart": [20, 812], "introduct": [20, 22, 29, 31, 32, 870], "point": [20, 29, 54, 56, 57, 62, 66, 68, 70, 77, 79, 80, 85, 89, 93, 126, 127, 128, 130, 132, 135, 142, 143, 148, 152, 165, 169, 173, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 253, 254, 255, 256, 261, 262, 263, 264, 265, 273, 275, 276, 278, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 312, 313, 315, 335, 336, 353, 354, 357, 359, 369, 372, 375, 376, 377, 382, 387, 390, 399, 400, 401, 419, 429, 449, 453, 508, 509, 510, 511, 512, 522, 523, 524, 532, 627, 629, 630, 632, 637, 643, 644, 645, 646, 647, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 740, 741, 747, 749, 750, 751, 752, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 801, 802, 810, 816, 818, 819, 820, 823, 824, 826, 828, 829, 831, 832, 834, 836, 840, 841, 844, 845, 847, 849, 851, 852, 861, 863, 876], "showcas": [20, 812], "real": [20, 28, 56, 57, 70, 79, 80, 93, 102, 112, 115, 118, 142, 143, 220, 221, 222, 223, 225, 226, 227, 228, 229, 238, 240, 241, 243, 245, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 270, 273, 275, 276, 278, 282, 283, 284, 286, 287, 288, 289, 290, 291, 293, 294, 335, 336, 342, 343, 344, 354, 372, 375, 376, 398, 419, 420, 429, 430, 626, 629, 632, 637, 644, 647, 672, 673, 674, 678, 685, 687, 688, 691, 694, 747, 760, 762, 763, 764, 765, 827, 872], "world": [20, 28, 820, 872], "beginn": [20, 813, 870], "got": [20, 43, 833], "cover": [20, 31, 57, 80, 375, 412, 413, 414, 818, 823, 824, 826, 829, 831, 832, 837, 838, 844, 847, 848], "familiar": [20, 21, 22, 818, 819], "concept": [20, 21, 22], "turn": [20, 21, 24, 34, 61, 84, 97, 98, 399, 400, 401, 636, 659, 792, 819, 826, 827, 830, 831, 841, 844, 861], "unus": [20, 21, 24, 831, 840], "part": [20, 21, 24, 53, 56, 57, 79, 80, 85, 102, 112, 115, 118, 145, 146, 147, 253, 257, 280, 328, 329, 355, 369, 372, 375, 376, 378, 387, 419, 430, 484, 532, 626, 629, 632, 637, 673, 674, 773, 812, 818, 819, 820, 821, 823, 826, 829, 835, 837, 840, 841, 844, 845, 847, 849, 850, 854, 855, 863, 864, 865, 868, 870, 875, 876, 877], "lazi": [20, 21, 24, 27, 34, 37, 38, 49], "decor": [20, 21, 26, 28, 29, 37, 49, 539, 634, 776, 778, 784, 816, 823, 824, 827, 829, 830, 834, 837, 840, 841, 842, 847], "kornia": [20, 21, 28, 31, 32, 45, 49, 812, 864], "roundup": 22, "indep": [22, 31], "proof": [22, 31], "delv": [22, 32, 812], "theori": [22, 814, 826], "esenti": [22, 31], "abstract": [22, 31, 32, 791, 796, 812, 827, 829, 840, 841, 844, 847, 853, 859, 868, 870, 872, 873, 877], "quirk": [22, 31], "perk": [22, 31, 812, 824, 827], "under": [22, 31, 32, 57, 377, 456, 457, 805, 812, 818, 819, 822, 823, 830, 831, 832, 835, 841, 842, 844, 847, 848, 849, 852, 854, 855, 863, 864, 870, 873, 877], "hood": [22, 31, 32, 812, 822, 830, 831, 835, 841, 844, 847, 848, 849, 852, 854, 863, 864, 877], "appropi": 22, "string": [22, 31, 32, 47, 57, 58, 61, 74, 80, 84, 150, 151, 163, 170, 192, 193, 194, 195, 196, 198, 207, 214, 215, 219, 375, 376, 378, 418, 422, 430, 484, 495, 524, 543, 630, 631, 634, 636, 637, 649, 650, 651, 652, 654, 656, 658, 674, 771, 773, 777, 805, 806, 825, 826, 828, 829, 830, 833, 841, 849, 852], "simplest": [22, 819, 831, 844, 847], "interact": [22, 31, 46, 49, 818, 869, 870, 875], "submodul": [22, 31, 45, 47, 102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 818, 819, 820, 823, 826, 828, 830, 834, 837, 838, 844, 848, 849, 853, 857], "likewis": [22, 27, 31, 38, 812, 820, 827, 829, 832, 836, 837, 841, 847, 852, 863, 864, 876], "nativearrai": [22, 31, 32, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 70, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 131, 136, 137, 138, 139, 140, 141, 143, 145, 146, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 175, 177, 179, 180, 186, 196, 197, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 317, 318, 322, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 522, 523, 524, 525, 526, 534, 537, 538, 540, 541, 545, 546, 547, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 565, 568, 569, 571, 576, 577, 578, 581, 590, 591, 592, 593, 594, 595, 597, 599, 600, 602, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 797, 824, 827, 831, 833, 836, 837, 838, 840, 841, 845, 846, 849, 851, 857], "alia": [22, 31, 335, 336, 372, 627, 818, 841, 862, 865], "lastli": [22, 31, 824], "subclass": [22, 31, 32, 838, 841, 847, 864], "dict": [22, 31, 32, 45, 49, 52, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 141, 143, 149, 153, 155, 166, 167, 168, 172, 173, 180, 196, 199, 200, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 325, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 369, 378, 398, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 484, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 535, 537, 538, 540, 541, 545, 546, 547, 548, 549, 550, 551, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 624, 628, 630, 631, 634, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 718, 719, 721, 724, 725, 726, 727, 729, 730, 731, 735, 736, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 773, 774, 789, 792, 794, 801, 806, 824, 827, 852, 853, 857, 863, 864, 865], "recurs": [22, 31, 32, 45, 47, 52, 74, 75, 166, 167, 199, 200, 376, 448, 550, 551, 557, 630, 631, 634, 641, 718, 719, 722, 728, 729, 730, 771, 819, 823, 826, 827, 834, 837, 840, 853, 855], "fashion": [22, 778, 844, 864], "native_arrai": [22, 31, 32, 53, 54, 56, 76, 78, 79, 80, 81, 85, 92, 110, 113, 136, 139, 141, 143, 149, 152, 153, 154, 155, 163, 168, 175, 197, 206, 214, 230, 234, 239, 240, 241, 243, 247, 251, 259, 260, 268, 273, 276, 279, 282, 287, 335, 336, 363, 372, 377, 378, 458, 484, 490, 494, 534, 537, 564, 565, 568, 599, 626, 629, 630, 631, 632, 634, 636, 637, 638, 639, 643, 644, 647, 648, 650, 651, 658, 666, 669, 673, 674, 679, 680, 684, 688, 689, 691, 694, 696, 698, 699, 706, 738, 747, 756, 762, 765, 767, 773, 783, 801, 816, 834, 842, 844], "data_class": [22, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 395, 396, 545, 549, 687, 712], "low": [22, 31, 34, 50, 57, 61, 66, 80, 84, 89, 375, 418, 422, 636, 643, 649, 650, 651, 652, 654, 656, 658, 739, 741, 778, 827, 833, 840, 841, 847, 849, 866, 868, 870, 871, 872, 874, 876], "c": [22, 31, 37, 46, 47, 53, 57, 58, 59, 61, 64, 70, 76, 77, 79, 80, 81, 82, 84, 85, 87, 91, 93, 97, 98, 116, 127, 128, 138, 141, 165, 168, 223, 234, 240, 241, 261, 262, 264, 273, 276, 284, 291, 375, 376, 378, 381, 387, 389, 390, 391, 392, 403, 408, 424, 426, 428, 429, 431, 443, 462, 463, 464, 474, 492, 496, 501, 502, 503, 506, 524, 537, 545, 546, 547, 548, 556, 560, 561, 591, 600, 615, 616, 619, 621, 622, 623, 626, 629, 630, 632, 634, 635, 636, 637, 639, 641, 644, 645, 647, 650, 651, 652, 653, 654, 655, 657, 672, 674, 676, 706, 710, 718, 721, 725, 726, 727, 729, 730, 735, 736, 747, 752, 758, 759, 764, 766, 795, 805, 806, 813, 819, 822, 825, 826, 827, 831, 837, 839, 848, 849, 850, 852, 855, 857, 858, 860, 861, 864, 866, 870, 874, 875, 877], "fundament": [22, 31, 828, 841, 847, 849, 859, 870], "signatur": [22, 31, 378, 387, 484, 522, 829, 830, 831, 832, 836, 840, 844, 845, 847, 860, 867, 876], "matmul": [22, 31, 32, 48, 62, 85, 376, 446, 614, 634, 637, 687, 825, 844, 845, 849], "to_n": [22, 31, 32, 43, 52, 75, 849], "jaxlib": [22, 28, 46, 801, 819, 824, 829, 830, 836, 845, 849, 851], "xla_extens": [22, 28, 801, 824, 829, 830, 836, 845, 849, 851], "arrayimpl": [22, 28, 801], "disabl": [22, 31, 57, 80, 378, 492, 794, 810, 826], "array_mod": [22, 31, 578, 602, 634, 846], "set_array_mod": [22, 31, 602, 634, 846], "ultim": [22, 31, 863], "sigmoid": [22, 31, 32, 43, 51, 57, 73, 80, 301, 367, 382, 508, 626, 788, 849, 852, 853], "z": [22, 31, 32, 44, 45, 53, 56, 57, 58, 62, 63, 66, 68, 70, 76, 79, 80, 81, 85, 86, 87, 89, 93, 102, 103, 137, 138, 140, 141, 201, 223, 224, 228, 230, 233, 235, 240, 251, 252, 255, 256, 257, 259, 260, 265, 267, 269, 270, 271, 272, 280, 289, 300, 301, 335, 336, 338, 367, 372, 377, 387, 453, 455, 456, 457, 458, 459, 465, 469, 480, 521, 522, 525, 532, 537, 549, 552, 553, 560, 561, 577, 590, 592, 593, 601, 614, 629, 631, 632, 634, 637, 638, 639, 641, 643, 644, 645, 647, 668, 677, 682, 683, 687, 694, 696, 697, 698, 699, 721, 725, 727, 735, 739, 740, 741, 744, 749, 759, 760, 762, 763, 764, 791, 812, 825, 827, 830, 831, 849, 851, 863], "divid": [22, 27, 31, 32, 48, 56, 57, 58, 64, 74, 79, 80, 87, 102, 103, 247, 381, 454, 501, 502, 503, 506, 592, 632, 634, 639, 708, 824, 827, 831, 835, 844], "exp": [22, 31, 32, 56, 57, 79, 80, 116, 118, 245, 265, 278, 301, 367, 375, 377, 403, 408, 457, 626, 632, 637, 685, 839, 841], "entir": [22, 31, 32, 34, 47, 57, 70, 71, 74, 80, 81, 93, 94, 213, 243, 245, 285, 286, 335, 336, 372, 375, 378, 387, 399, 400, 401, 484, 525, 558, 631, 632, 647, 648, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 806, 818, 819, 820, 823, 824, 827, 829, 831, 833, 840, 841, 842, 844, 847, 849, 852, 853, 854, 855, 860, 861, 864, 870, 876, 877], "congratul": [22, 28], "independ": [22, 32, 57, 66, 80, 89, 223, 240, 273, 283, 381, 382, 506, 508, 632, 637, 643, 668, 686, 738, 812, 823, 829, 831, 838, 849, 854, 864, 868], "div": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 865], "sub": [23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 57, 62, 64, 74, 75, 79, 80, 81, 85, 87, 103, 272, 376, 378, 387, 430, 470, 479, 499, 528, 529, 557, 634, 637, 639, 640, 671, 691, 708, 715, 716, 717, 818, 820, 822, 827, 833, 841, 842, 844, 851, 852, 853, 865, 866], "with_numpi": 23, "reproduc": [23, 48, 61, 84, 636, 659, 776, 777, 778, 779, 784, 816, 823, 834], "x_": [23, 33, 98, 284, 632, 865], "66391283": 23, "12516928": 23, "38367081": 23, "03102401": 23, "76419425": 23, "52797794": 23, "90346956": 23, "61316347": 23, "27585283": 23, "66309303": 23, "ivy_repo": 23, "sever": [23, 24, 33, 34, 36, 37, 38, 57, 80, 97, 375, 376, 389, 390, 391, 392, 444, 776, 819, 820, 845, 855, 868, 874], "pro": [23, 24, 25, 33, 34, 35, 36, 37, 38], "pick": [24, 34, 791], "trigger": [24, 34, 794, 818, 835], "unif": [24, 26, 27, 34, 36, 813, 851, 860, 866, 876], "55563945": 24, "65538704": 24, "14150524": 24, "46951997": 24, "30220294": 24, "14739668": 24, "57017946": 24, "91962677": 24, "51029003": 24, "59644395": 24, "constitu": [24, 34, 74, 854], "5556394": 24, "655387": 24, "1415051": 24, "4695197": 24, "3022028": 24, "1473966": 24, "5701794": 24, "91962665": 24, "51028997": 24, "5964439": 24, "985": 24, "000": [24, 79, 274, 776, 816, 828, 834], "On": [24, 31, 32, 819, 829, 830, 835, 841, 844, 847, 850, 854], "hand": [24, 56, 376, 446, 776, 812, 823, 829, 830, 835, 837, 844, 855], "learnt": [25, 35], "ivy_norm": 25, "jax_norm": [25, 31, 32], "wider": [25, 35, 585, 608, 634, 829, 846, 876], "avoid": [25, 35, 37, 57, 64, 80, 240, 245, 247, 263, 273, 377, 378, 381, 454, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 501, 502, 503, 539, 555, 557, 580, 585, 608, 632, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 778, 779, 819, 820, 825, 826, 827, 828, 829, 833, 838, 841, 844, 845, 846, 847, 870], "act": [25, 35, 57, 80, 298, 363, 373, 820, 831, 846, 855, 877], "shorthand": [25, 35, 37, 844], "pair": [25, 35, 45, 57, 61, 80, 84, 228, 247, 320, 362, 369, 372, 375, 409, 418, 420, 422, 632, 636, 637, 649, 650, 651, 652, 654, 656, 658, 666, 668, 806], "93968587": 25, "26075466": 25, "22723222": 25, "06276492": 25, "47426987": 25, "72835908": 25, "71737559": 25, "50411096": 25, "65419174": 25, "15576624": 25, "implic": [25, 35, 36, 39, 827], "satisfi": [26, 27, 28, 29, 45, 47, 50, 57, 375, 376, 398, 430, 829, 831], "fw": [26, 27, 28, 29, 61, 84, 387, 522, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 773, 819, 844], "mxnet": [26, 27, 28, 29, 209, 631, 801, 818, 819, 860, 877], "einop": [26, 27, 28, 29, 45, 47, 50, 58, 81, 545, 546, 547, 634, 829, 860], "miniconda": [26, 27, 28, 29], "multienv": [26, 27, 28, 29], "site": [26, 27, 28, 29, 871], "psutil": [26, 27, 28, 29, 45, 47, 50], "termcolor": [26, 27, 28, 29, 45, 47, 50, 74, 103], "colorama": [26, 27, 28, 29, 45, 47], "535": [26, 27, 28, 29, 51, 73, 118, 626, 833], "diskcach": [26, 27, 28, 29, 45], "auth": [26, 27, 28, 29], "urllib3": [26, 27, 28, 29, 45], "pyvi": [26, 27, 28, 29, 31, 32], "dill": [26, 27, 28, 29, 45], "astunpars": [26, 27, 28, 29], "cloudpickl": [26, 27, 28, 29], "gast": [26, 27, 28, 29], "wheel": [26, 27, 28, 29, 45, 47, 50, 859], "six": [26, 27, 28, 29, 45, 50, 819, 847], "cachetool": [26, 27, 28, 29], "pyasn1": [26, 27, 28, 29], "rsa": [26, 27, 28, 29], "jinja2": [26, 27, 28, 29], "jsonpickl": [26, 27, 28, 29], "networkx": [26, 27, 28, 29, 50], "charset": [26, 27, 28, 29, 45], "idna": [26, 27, 28, 29, 45], "certifi": [26, 27, 28, 29, 45], "2017": [26, 27, 28, 29, 45, 636, 663], "jedi": [26, 27, 28, 29], "inlin": [26, 27, 28, 29, 826], "prompt": [26, 27, 28, 29, 818, 820], "toolkit": [26, 27, 28, 29, 870, 871, 877], "pygment": [26, 27, 28, 29], "traitlet": [26, 27, 28, 29], "exceptiongroup": [26, 27, 28, 29], "pexpect": [26, 27, 28, 29], "markupsaf": [26, 27, 28, 29], "parso": [26, 27, 28, 29], "ptyprocess": [26, 27, 28, 29], "wcwidth": [26, 27, 28, 29], "asttoken": [26, 27, 28, 29], "pure": [26, 27, 28, 29, 37, 47, 812, 832, 836, 841, 847, 851, 854, 855, 870, 876, 877], "lazili": [26, 27, 28, 31, 32, 36, 38, 49, 812, 863, 864, 865], "actual": [26, 36, 816, 820, 822, 828, 834, 837, 838, 840, 841, 842, 844, 847, 848, 853, 855, 871, 876], "occur": [26, 31, 32, 36, 49, 54, 56, 68, 77, 79, 91, 155, 274, 290, 630, 632, 644, 645, 744, 745, 749, 750, 751, 752, 823, 828, 830, 833, 846], "altern": [26, 36, 46, 57, 80, 85, 97, 98, 334, 342, 343, 344, 348, 350, 351, 352, 353, 355, 356, 357, 361, 362, 372, 818, 819, 826, 840, 852, 873], "assum": [26, 27, 36, 37, 38, 53, 56, 57, 58, 61, 62, 63, 79, 80, 81, 84, 85, 86, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 329, 335, 336, 338, 341, 359, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 444, 446, 484, 492, 496, 522, 525, 552, 556, 558, 560, 569, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 638, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 805, 812, 819, 823, 825, 828, 829, 832, 842, 844, 847, 851, 852, 855], "201733": 26, "slowli": [26, 36], "norm": [26, 36, 37, 57, 58, 62, 80, 81, 85, 96, 97, 375, 376, 397, 398, 402, 403, 404, 407, 408, 409, 419, 420, 426, 430, 504, 505, 507, 540, 541, 562, 634, 637, 678, 694, 737, 792, 796, 845], "slow": [26, 36, 814, 819, 826], "34431235": [26, 27], "51129461": [26, 27], "06686894": [26, 27], "36452447": [26, 27], "98795534": [26, 27], "15493582": [26, 27], "91630631": [26, 27], "41939619": [26, 27], "78909753": [26, 27], "19475674": [26, 27], "norm_trac": 26, "norm_tran": [26, 36], "know": [26, 27, 36, 37, 38, 68, 645, 749, 750, 751, 752, 812, 814, 818, 820, 830, 838, 842, 844, 847, 861, 865, 871], "07": [27, 45, 47, 59, 63, 79, 82, 86, 89, 228, 261, 264, 265, 284, 375, 407, 605, 615, 616, 618, 619, 620, 621, 632, 634, 635, 638, 697, 698, 740, 793, 796, 853], "981554": 27, "happen": [27, 31, 32, 292, 632, 812, 819, 820, 821, 830, 840, 844, 852, 861, 863, 864], "wherea": [27, 38, 80, 375, 421, 820, 824, 827, 829, 830, 831, 836, 837, 844, 854, 867], "subtract": [27, 31, 32, 56, 79, 102, 103, 134, 378, 484, 629, 632, 824, 827, 831], "filelock": [28, 45], "extens": [28, 45, 56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 819, 820, 832, 834, 835, 844, 867, 870, 877], "sympi": [28, 860], "fsspec": [28, 45], "mpmath": 28, "often": [28, 57, 377, 452, 817, 823, 833, 836, 837, 841, 844, 855, 861, 871, 874, 877], "fortun": [28, 29, 823], "everyth": [28, 46, 805, 812, 818, 819, 820, 821, 822, 828, 831, 840, 841, 842, 844, 850, 855, 856, 861], "practic": [28, 820, 825, 828, 841, 843, 873], "everi": [28, 31, 32, 37, 45, 53, 57, 58, 80, 81, 135, 136, 301, 335, 336, 349, 367, 372, 375, 378, 412, 413, 414, 421, 498, 534, 629, 634, 818, 820, 823, 825, 826, 828, 829, 831, 835, 836, 837, 838, 840, 841, 842, 844, 849, 851, 853, 863, 864, 865, 870], "jax_kornia": [28, 31, 32, 812, 864], "though": [28, 817, 818, 820, 829, 830, 832, 837, 840, 841, 847, 852, 855], "000000000034": [28, 31, 32, 812, 864], "raw_img": [28, 31, 32, 812, 864], "sharp": [28, 31, 32, 812], "prefer": [28, 31, 32, 247, 632, 819, 827, 833, 834, 838, 841, 856, 870], "whole": [29, 57, 80, 378, 381, 491, 504, 505, 507, 820, 826, 835], "full": [29, 57, 62, 80, 84, 85, 97, 98, 100, 165, 252, 260, 323, 324, 325, 326, 327, 369, 376, 377, 378, 449, 450, 456, 457, 485, 488, 579, 588, 603, 611, 629, 630, 632, 634, 636, 637, 651, 653, 654, 655, 657, 680, 684, 686, 687, 777, 784, 812, 819, 820, 826, 829, 832, 833, 836, 837, 841, 844, 847, 849, 855, 860, 861, 868, 870, 876], "complex": [29, 31, 32, 45, 51, 56, 57, 62, 70, 73, 77, 79, 80, 85, 93, 110, 111, 112, 113, 114, 115, 116, 117, 118, 142, 143, 158, 172, 181, 187, 220, 221, 222, 223, 224, 225, 226, 229, 237, 238, 240, 241, 243, 245, 253, 254, 255, 256, 257, 261, 262, 263, 264, 273, 275, 276, 278, 280, 283, 284, 285, 286, 287, 290, 291, 295, 300, 301, 303, 338, 343, 344, 367, 372, 375, 376, 387, 398, 409, 419, 420, 424, 429, 430, 431, 442, 444, 530, 531, 592, 593, 626, 629, 630, 632, 634, 637, 644, 647, 672, 673, 674, 678, 685, 687, 689, 691, 694, 747, 762, 763, 765, 777, 788, 806, 815, 818, 821, 826, 829, 831, 838, 841, 844, 845, 847, 852, 853, 854, 855, 857, 864, 866, 868, 870, 872, 876, 877], "neccessari": 29, "set_random_se": [29, 48], "301436": 29, "_c": 29, "0x7f252c392390": 29, "flatten": [29, 31, 32, 45, 47, 50, 57, 58, 62, 64, 67, 68, 80, 81, 85, 87, 90, 91, 340, 356, 372, 376, 378, 387, 427, 473, 483, 487, 492, 493, 496, 498, 520, 527, 528, 529, 530, 531, 532, 545, 549, 634, 637, 639, 644, 645, 675, 682, 694, 700, 705, 707, 744, 745, 749, 750, 751, 752, 771, 773, 812, 840, 847], "keyword": [29, 31, 32, 47, 49, 52, 53, 57, 74, 80, 103, 139, 274, 375, 378, 387, 423, 484, 522, 536, 539, 572, 601, 629, 632, 634, 637, 641, 647, 688, 724, 765, 771, 773, 777, 793, 794, 805, 818, 824, 827, 829, 830, 838, 840, 841, 842, 844, 845, 847, 852, 863, 864, 865], "input_arrai": [29, 31, 32, 840], "torch_model": [29, 31, 32, 49], "159": [29, 73, 110, 626, 636, 660], "thank": [29, 852, 860], "fledg": [29, 819, 849, 850], "output_arrai": [29, 31, 32, 57, 454], "0893": 29, "1504": 29, "1372": 29, "0991": 29, "0867": 29, "0851": 29, "0911": 29, "0804": 29, "0926": 29, "0881": 29, "softmaxbackward0": 29, "furthermor": 29, "relat": [29, 247, 632, 812, 814, 817, 818, 819, 820, 826, 833, 841, 844, 845, 846, 847, 864, 873], "continu": [29, 31, 32, 47, 125, 287, 295, 367, 628, 632, 812, 817, 818, 819, 822, 823, 834, 840, 843, 844, 855, 860, 861, 870], "regress": [30, 870, 877], "checkout": [31, 46, 820, 823, 844], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 31, "theoret": 31, "aspect": [31, 32, 813, 839, 852, 870], "easiest": [31, 812, 814, 819, 856], "defer": [31, 32, 818, 824, 829, 830, 837, 840, 841, 844, 876], "similarli": [31, 44, 139, 147, 223, 328, 335, 336, 369, 372, 629, 632, 825, 829, 841, 847, 851, 876], "essenc": [31, 871, 876], "becom": [31, 57, 80, 97, 346, 372, 378, 464, 639, 699, 801, 820, 821, 827, 829, 831, 833, 840, 855, 859, 861, 863], "slide": [31, 57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 418, 422, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792], "regressor": [31, 32, 812], "input_dim": [31, 32, 46, 812], "output_dim": [31, 32, 46, 812], "linear0": [31, 32, 43, 812, 852, 853], "linear1": [31, 32, 43, 812, 852, 853], "instanti": [31, 32, 784, 832], "adam": [31, 32, 43, 47, 59, 82, 536, 615, 616, 621, 634, 635, 796, 812, 852, 853, 854, 870], "n_training_exampl": [31, 32, 812], "2000": [31, 32, 80, 314, 369, 812], "random_norm": [31, 32, 61, 62, 66, 84, 85, 89, 545, 634, 636, 637, 643, 651, 653, 654, 655, 657, 658, 662, 687, 812], "linspac": [31, 32, 53, 76, 126, 629, 812, 836, 847, 849, 877], "pred": [31, 32, 46, 47, 57, 63, 80, 86, 377, 453, 456, 638, 696, 697, 698, 812, 827, 837, 840], "gradient": [31, 32, 45, 47, 57, 80, 97, 213, 364, 372, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 631, 640, 715, 716, 717, 773, 784, 796, 812, 822, 845, 852, 853, 855, 870], "grad": [31, 32, 43, 47, 615, 635, 796, 812, 839, 852, 853, 854], "execute_with_gradi": [31, 32, 43, 47, 635, 812, 852, 853, 854, 855], "lambda": [31, 32, 48, 50, 80, 123, 125, 297, 307, 544, 557, 617, 618, 620, 625, 628, 634, 635, 637, 641, 673, 725, 726, 730, 812, 818, 837, 838, 839, 842, 847, 849, 852], "2d": [31, 32, 47, 57, 80, 97, 313, 369, 375, 376, 378, 387, 390, 391, 399, 400, 442, 449, 463, 473, 522, 792, 810, 812, 841, 847], "5f": [31, 32, 812], "nonetheless": [31, 32], "extract": [31, 32, 39, 46, 57, 80, 98, 378, 467, 493, 841, 843, 845, 866, 870, 871, 876], "gc": [31, 32, 557, 634], "decompos": [31, 32, 57, 80, 97, 100, 323, 324, 325, 326, 327, 348, 355, 369, 372, 376, 440, 445, 448, 451, 841, 854], "said": [31, 32, 778, 845, 861, 863], "otherwis": [31, 32, 49, 52, 53, 54, 56, 57, 58, 61, 62, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 126, 128, 129, 134, 136, 137, 138, 141, 143, 149, 152, 153, 155, 156, 158, 159, 160, 161, 162, 171, 175, 179, 180, 196, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 309, 310, 311, 313, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 341, 342, 350, 351, 357, 359, 361, 362, 363, 367, 369, 372, 375, 376, 378, 381, 394, 395, 396, 399, 400, 401, 419, 432, 447, 449, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 470, 472, 474, 475, 476, 483, 490, 492, 493, 494, 496, 499, 501, 503, 504, 505, 507, 509, 521, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 597, 599, 600, 601, 613, 617, 619, 624, 628, 629, 630, 631, 632, 634, 635, 636, 637, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 659, 660, 661, 663, 666, 667, 668, 669, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 687, 691, 693, 694, 696, 697, 698, 699, 702, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 731, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 776, 777, 792, 794, 795, 801, 812, 820, 824, 827, 829, 830, 831, 837, 838, 840, 844, 849, 856, 863, 864], "x0": [31, 32, 50, 81, 537, 634, 831], "normalize_trac": [31, 32], "html": [31, 32, 46, 56, 57, 79, 80, 147, 155, 243, 253, 254, 269, 328, 335, 336, 369, 372, 375, 378, 387, 419, 492, 522, 629, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832, 860], "fname": [31, 32, 48, 50, 794, 852], "anticip": [31, 32], "addition": [31, 32, 827, 840, 841, 876], "normalize_native_comp": [31, 32], "return_backend_compiled_fn": 31, "immedi": [31, 32, 810, 818, 819], "built": [31, 32, 37, 45, 47, 50, 126, 629, 792, 793, 794, 812, 819, 820, 826, 827, 844, 850, 856, 863, 869, 870, 874], "eager_graph": [31, 32, 812, 863, 864], "lazy_graph": [31, 32, 812, 863, 864], "thought": [31, 32, 819, 820, 836, 860, 868], "matter": [31, 32, 37, 831, 859], "haven": [31, 32, 37, 856, 870], "jax_out": [31, 32], "ideal": [31, 32, 828, 829, 841, 847, 852], "worth": [31, 32], "differenti": [31, 32, 295, 365, 366, 367, 374, 870], "chosen": [31, 32, 50, 100, 126, 228, 629, 632, 644, 748, 818, 828, 841], "plai": [31, 32, 377, 456, 812, 815, 819, 821, 824, 830, 834, 841, 844, 854, 870, 873], "role": [31, 32, 812, 815, 820, 821, 830, 841, 850, 871, 873, 877], "dl": [31, 32], "effortlessli": [31, 32], "previous": [31, 32, 603, 634, 801, 818, 819, 825, 837, 839, 844, 849], "default_devic": [31, 32, 206, 209, 210, 211, 217, 218, 631, 830, 833, 834], "as_n": [31, 32, 54, 55, 74, 77, 78, 158, 159, 160, 161, 162, 163, 169, 196, 197, 630, 631, 829], "certainli": [31, 32, 812, 860, 876], "upon": [31, 32, 49, 810, 820, 821, 831, 840, 844, 847, 855, 869, 870], "unnecessari": [31, 32, 841], "extend": [31, 32, 57, 80, 378, 387, 484, 525, 825, 826, 829, 832, 833, 836, 841, 845, 855, 867, 870, 876], "infrastructur": [31, 32, 866, 872, 873], "least": [31, 56, 57, 62, 79, 80, 240, 258, 273, 375, 378, 387, 403, 408, 462, 463, 464, 473, 475, 522, 632, 637, 644, 677, 747, 812, 820, 824, 828, 829, 830, 831, 837, 840, 844, 864], "coco": 31, "seamlessli": [32, 844], "therefor": [32, 37, 53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 179, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 477, 484, 485, 487, 492, 496, 497, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 820, 823, 824, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 842, 844, 845, 847, 849, 851, 853, 855, 859, 867, 870, 876], "wide": [32, 812, 820, 844, 868, 870], "plenti": 32, "resourc": [32, 813, 818, 819, 828], "visit": [32, 818, 819, 820, 828], "page": [32, 812, 818, 819, 820, 826, 828, 834, 850, 851, 854, 856, 865, 878], "newli": [33, 34, 46, 48, 54, 77, 152, 539, 630, 634, 820, 828, 840, 844], "randon": [33, 34, 36, 37, 38], "mean_": 33, "std_": 33, "detect": [33, 37, 56, 74, 79, 255, 632, 641, 718, 729, 818, 819, 825, 827, 828, 835, 844, 852, 853], "inspect": [33, 37, 535, 634], "__": [33, 34, 35, 36, 37, 38, 74, 831, 852], "script": [34, 812, 819, 820, 823, 828, 831, 849, 855, 870], "comp": 34, "low_level": 34, "chain": [34, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 97, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 468, 469, 490, 492, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 640, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 720, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 797, 824, 827, 839, 841, 853, 854, 855, 870], "un": [34, 170, 630, 829, 849], "partial_comp": 34, "time_funct": 34, "express": [34, 56, 57, 79, 80, 98, 221, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 798, 806, 832, 841, 849, 854, 870, 871], "maxim": [34, 837, 840, 849, 867, 868, 872, 873, 874], "conclud": [35, 845], "collect": [35, 45, 47, 49, 50, 52, 74, 75, 626, 631, 634, 635, 636, 638, 641, 642, 643, 731, 788, 792, 793, 794, 795, 796, 819, 828, 833, 834, 838, 839, 842, 844, 868, 870, 873], "norm_comp": [36, 37], "global": [36, 37, 47, 58, 74, 81, 103, 158, 159, 160, 161, 162, 211, 212, 213, 582, 583, 586, 592, 593, 605, 606, 609, 630, 631, 634, 784, 795, 801, 819, 824, 825, 828, 829, 830, 833, 837, 841, 849, 870], "b": [37, 51, 56, 57, 58, 61, 62, 70, 73, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 127, 128, 129, 134, 135, 136, 138, 141, 143, 149, 152, 153, 154, 155, 163, 173, 175, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 330, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 382, 385, 387, 394, 395, 396, 397, 399, 400, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 425, 428, 430, 432, 436, 439, 443, 446, 451, 452, 453, 455, 456, 457, 458, 462, 463, 464, 465, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 483, 484, 490, 492, 493, 494, 495, 496, 499, 500, 505, 507, 509, 510, 512, 513, 515, 522, 523, 524, 525, 527, 529, 532, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 569, 576, 577, 591, 592, 593, 595, 599, 600, 613, 615, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 632, 634, 635, 636, 637, 638, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 662, 666, 667, 668, 669, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 721, 724, 725, 726, 727, 729, 730, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 805, 806, 810, 812, 813, 816, 820, 822, 823, 825, 827, 828, 831, 834, 837, 839, 842, 848, 849, 850, 852, 853, 854, 858, 861, 863, 866], "option": [37, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 168, 170, 180, 192, 196, 208, 211, 212, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 375, 376, 377, 378, 381, 382, 383, 385, 387, 388, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 419, 420, 421, 423, 424, 426, 427, 428, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 470, 472, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 555, 556, 557, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 581, 591, 592, 593, 595, 597, 599, 600, 601, 613, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 724, 725, 729, 730, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 777, 784, 788, 789, 791, 792, 794, 796, 797, 805, 810, 818, 819, 820, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 840, 841, 842, 844, 845, 847, 849, 854, 855, 863, 864, 865, 870, 876], "prioriti": [37, 74, 801, 815, 818, 820, 821, 830, 840], "normalize_via_oper": 37, "determin": [37, 56, 57, 62, 64, 68, 71, 74, 79, 80, 81, 85, 92, 94, 97, 100, 102, 103, 132, 155, 157, 164, 170, 171, 172, 173, 175, 176, 177, 192, 202, 204, 205, 216, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 253, 254, 255, 256, 257, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 304, 308, 354, 359, 367, 372, 375, 376, 377, 378, 387, 411, 419, 430, 452, 453, 492, 496, 522, 534, 537, 558, 559, 563, 564, 565, 566, 567, 568, 595, 613, 629, 630, 631, 632, 634, 637, 639, 640, 645, 648, 667, 668, 669, 671, 675, 676, 677, 679, 680, 682, 683, 685, 686, 691, 693, 694, 700, 715, 716, 717, 749, 750, 751, 752, 753, 767, 768, 778, 784, 791, 795, 827, 829, 830, 832, 837, 841, 844, 846, 847, 859], "think": [37, 818, 820, 828, 831, 847, 871], "uniqu": [37, 47, 57, 58, 68, 80, 81, 91, 375, 376, 378, 423, 446, 483, 484, 498, 569, 634, 640, 641, 645, 715, 716, 717, 720, 724, 749, 750, 751, 752, 778, 812, 823, 827, 837, 841, 842, 843, 847, 855, 859, 873], "rule": [37, 54, 56, 57, 62, 77, 79, 80, 85, 152, 155, 178, 179, 180, 229, 240, 273, 275, 282, 284, 292, 294, 375, 378, 387, 419, 472, 522, 630, 632, 637, 639, 667, 668, 675, 679, 682, 686, 700, 778, 805, 823, 824, 827, 828, 829, 831, 835, 836, 837, 839, 844, 847, 871], "broadcast": [37, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 97, 102, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 148, 149, 152, 153, 154, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329, 335, 336, 337, 338, 339, 340, 343, 344, 346, 348, 350, 352, 353, 354, 355, 359, 367, 369, 372, 375, 376, 377, 378, 381, 382, 387, 394, 395, 396, 398, 399, 400, 401, 402, 403, 404, 408, 409, 411, 412, 413, 414, 417, 419, 424, 426, 427, 435, 436, 441, 442, 444, 453, 454, 455, 456, 458, 459, 465, 469, 472, 477, 485, 486, 487, 488, 490, 492, 494, 496, 497, 501, 504, 505, 507, 508, 509, 511, 512, 522, 523, 524, 525, 528, 529, 530, 531, 532, 540, 541, 545, 546, 547, 552, 553, 562, 576, 577, 615, 616, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 642, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 686, 688, 689, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 778, 805, 827, 829, 831, 832, 833, 844, 845, 849], "elementwis": [37, 57, 65, 80, 88, 300, 302, 362, 367, 637, 642, 692, 737, 837, 845, 849], "taken": [37, 57, 62, 80, 85, 341, 372, 375, 420, 637, 671, 691, 818, 828, 841, 845, 854, 871], "account": [37, 47, 49, 57, 64, 80, 87, 287, 378, 474, 632, 639, 706, 791, 805, 819, 828, 832, 841, 845, 863], "fact": [37, 97, 820, 823, 828, 841, 844, 849, 852], "consum": [37, 773, 827, 828, 836, 842, 844], "thrown": [37, 562, 634, 819, 824, 830, 833, 835, 855], "doesn": [37, 562, 580, 634, 771, 792, 818, 819, 825, 827, 828, 829, 830, 831, 834, 835, 837, 839, 844, 847, 849, 855, 863, 868], "consider": [37, 818, 831, 836, 847, 859, 867, 868], "standalon": [38, 818, 824, 844, 857, 866, 871, 876, 877], "static": [38, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 106, 107, 129, 319, 375, 396, 409, 414, 423, 445, 451, 490, 502, 595, 629, 636, 663, 682, 789, 794, 841, 846, 855, 869, 870, 871], "flow": [39, 827, 863, 870, 871], "statement": [39, 44, 828, 840, 844, 847, 855, 863, 864], "opposit": 39, "exclud": [39, 70, 80, 93, 126, 147, 328, 369, 523, 524, 629, 643, 741, 757, 776, 779, 801, 831, 849, 863], "todo": [40, 41, 42, 47, 50, 80, 524, 818, 829, 841], "aim": [43, 816, 820, 823, 834, 838, 841, 844, 848, 868, 870, 873], "interfac": [43, 76, 134, 629, 851, 854, 855, 857, 860, 866, 867, 868, 869, 870, 874, 877], "set_framework": [43, 50], "underneath": [43, 828, 868], "sai": [43, 818, 819, 834, 838, 851, 861, 878], "clip": [43, 56, 57, 64, 79, 80, 81, 87, 271, 272, 378, 467, 492, 493, 540, 541, 632, 634, 639, 827, 837, 839, 840, 852, 854, 867], "a_min": 43, "a_max": 43, "tensforflow": 43, "clip_by_valu": [43, 854, 867], "clip_value_min": 43, "clip_value_max": 43, "clamp": [43, 57, 80, 300, 367, 854], "49": [43, 47, 57, 66, 80, 84, 85, 287, 375, 376, 387, 397, 407, 418, 443, 523, 632, 647, 692, 740, 759], "devicearrai": [43, 824, 841, 849, 851], "accept": [43, 52, 53, 56, 57, 62, 75, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 342, 364, 369, 372, 374, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 812, 818, 819, 820, 824, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 851, 857, 868], "jax_concat": 43, "tf_concat": 43, "np_concat": 43, "torch_concat": 43, "85": [43, 51, 57, 66, 73, 79, 80, 82, 84, 89, 103, 112, 225, 234, 235, 279, 295, 296, 299, 367, 387, 523, 592, 619, 626, 632, 634, 635, 636, 643, 660, 739, 740, 741], "mymodel": [43, 852], "x_in": [43, 852, 853, 854], "reduce_mean": [43, 812, 852, 853, 854], "49040043354034424": 43, "48975786566734314": 43, "4892795979976654": 43, "48886892199516296": 43, "4884953498840332": 43, "4881443977355957": 43, "4878086447715759": 43, "48748287558555603": 43, "48716384172439575": 43, "48684927821159363": 43, "48653748631477356": 43, "48622724413871765": 43, "4859171509742737": 43, "48560672998428345": 43, "48529526591300964": 43, "4849821627140045": 43, "48466697335243225": 43, "4843493402004242": 43, "4840289056301117": 43, "4837053418159485": 43, "4833785891532898": 43, "4830484390258789": 43, "48271444439888": 43, "48237672448158264": 43, "48203518986701965": 43, "48168954253196716": 43, "4813397228717804": 43, "4809857904911041": 43, "48062753677368164": 43, "48026490211486816": 43, "479898065328598": 43, "47952669858932495": 43, "4791509211063385": 43, "4787706732749939": 43, "47838595509529114": 43, "4779967665672302": 43, "47760307788848877": 43, "4772048890590668": 43, "47680220007896423": 43, "47639501094818115": 43, "47598329186439514": 43, "4755673110485077": 43, "4751465618610382": 43, "4747215211391449": 43, "4742920398712158": 43, "47385817766189575": 43, "47341999411582947": 43, "47297725081443787": 43, "4725303053855896": 43, "47207894921302795": 43, "47162333130836487": 43, "47116345167160034": 43, "470699280500412": 43, "47023090720176697": 43, "54": [43, 54, 56, 61, 79, 80, 84, 89, 168, 237, 238, 243, 258, 287, 293, 314, 369, 375, 387, 397, 407, 523, 632, 636, 637, 647, 660, 679, 682, 739, 740, 741, 759, 828, 831], "4697583019733429": 43, "55": [43, 51, 80, 89, 118, 234, 293, 387, 523, 560, 632, 634, 637, 643, 647, 676, 682, 740, 741, 759, 823], "46928152441978455": 43, "46880054473876953": 43, "4683155119419098": 43, "4678264260292053": 43, "46733325719833374": 43, "46683603525161743": 43, "61": [43, 45, 56, 57, 62, 79, 80, 82, 86, 89, 226, 261, 263, 288, 397, 615, 632, 635, 636, 637, 658, 675, 741, 834], "4663347601890564": 43, "4658295214176178": 43, "465320348739624": 43, "4648073613643646": 43, "46429020166397095": 43, "4637692868709564": 43, "46324464678764343": 43, "4627160429954529": 43, "4621836841106415": 43, "4616474211215973": 43, "46110764145851135": 43, "72": [43, 57, 66, 80, 82, 245, 349, 372, 375, 397, 407, 619, 632, 635, 637, 647, 682, 740, 759], "460563987493515": 43, "4600166976451874": 43, "74": [43, 45, 56, 89, 235, 265, 632, 637, 679], "45946577191352844": 43, "45891112089157104": 43, "45835286378860474": 43, "4577910006046295": 43, "78": [43, 59, 284, 621, 632, 635, 637, 643, 647, 682, 740, 759], "45722562074661255": 43, "45665669441223145": 43, "80": [43, 57, 80, 349, 372, 376, 387, 443, 523, 637, 641, 647, 682, 729, 759, 860], "4560841917991638": 43, "81": [43, 47, 56, 62, 77, 79, 85, 89, 168, 238, 263, 264, 288, 387, 523, 630, 632, 637, 641, 643, 647, 675, 679, 692, 726, 741, 759, 844], "4555082619190216": 43, "45492875576019287": 43, "45434585213661194": 43, "45375964045524597": 43, "4531698524951935": 43, "4525766670703888": 43, "45198020339012146": 43, "4513803720474243": 43, "4507772624492645": 43, "4501707851886749": 43, "4495610296726227": 43, "4489481747150421": 43, "44833192229270935": 43, "4477125108242035": 43, "44708991050720215": 43, "44646409153938293": 43, "44583529233932495": 43, "4452032148838043": 43, "44456806778907776": 43, "4439": 43, "selectbackward0": 43, "ivy_compil": 44, "ic": 44, "numer": [44, 53, 54, 56, 57, 58, 62, 66, 67, 70, 77, 79, 80, 81, 85, 89, 90, 92, 102, 103, 139, 152, 220, 223, 236, 240, 245, 246, 247, 254, 255, 256, 259, 268, 269, 273, 275, 276, 277, 278, 282, 283, 284, 288, 289, 293, 294, 375, 377, 382, 387, 419, 454, 509, 522, 582, 583, 592, 593, 605, 606, 629, 630, 632, 634, 637, 643, 644, 647, 668, 675, 677, 682, 685, 687, 689, 691, 693, 739, 740, 741, 743, 744, 745, 747, 748, 753, 760, 763, 765, 776, 777, 778, 779, 791, 816, 829, 834, 839, 841, 842, 844, 845, 846, 847, 849, 853, 867, 870, 876], "anyth": [44, 57, 80, 387, 528, 529, 820, 833, 844, 845, 870, 871], "affect": [44, 50, 57, 377, 457, 828, 841], "variabl": [44, 46, 47, 49, 57, 58, 59, 65, 74, 80, 81, 82, 88, 122, 123, 125, 322, 369, 375, 376, 382, 387, 421, 447, 510, 521, 522, 538, 562, 563, 564, 565, 568, 595, 616, 617, 619, 621, 622, 623, 628, 634, 635, 637, 640, 642, 686, 715, 716, 717, 737, 773, 784, 789, 791, 792, 793, 794, 795, 796, 797, 820, 825, 829, 832, 836, 839, 840, 844, 845, 849, 852, 853, 854, 855, 856, 863, 871], "original_fn": 44, "100000": 44, "var": [44, 70, 93, 95, 122, 123, 124, 125, 628, 640, 647, 715, 716, 798, 819, 831, 849, 867], "co": [44, 45, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 817, 829, 849, 860], "sin": [44, 56, 58, 79, 238, 243, 245, 286, 549, 632, 634, 824, 849], "tan": [44, 56, 79, 536, 632, 634, 832, 836, 837, 840, 841, 849], "comp_fn": 44, "compile_graph": [44, 50], "expected_result": 44, "compiled_result": 44, "irrelev": [44, 828, 829, 831], "opeat": 44, "_layer": [44, 849], "net": [44, 49, 50, 849, 854, 860, 861], "compiled_net": 44, "latest": [45, 47, 56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 387, 419, 421, 492, 522, 630, 632, 637, 639, 647, 685, 686, 714, 764, 792, 812, 818, 819, 820, 823, 825, 828, 832, 834, 845, 855, 856, 864, 875], "pypi": [45, 47, 50, 818, 819, 845, 855], "pkg": [45, 47, 50], "public": [45, 47, 50, 542, 634, 828, 839, 851, 873], "revis": [45, 47, 820], "req": [45, 47], "tabqrujw": 45, "filter": [45, 47, 49, 57, 61, 80, 84, 317, 318, 369, 375, 396, 414, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 778, 792, 812, 825, 828], "quiet": [45, 47], "commit": [45, 47, 815, 816, 818, 821, 823, 831, 843, 844], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 45, "metadata": [45, 47, 50, 840], "setup": [45, 47, 50, 819, 820, 826, 828, 834], "py3": [45, 47, 50], "whl": [45, 46, 47, 50], "cp39": [45, 47], "manylinux_2_12_x86_64": [45, 47], "manylinux2010_x86_64": [45, 47], "manylinux_2_17_x86_64": [45, 47, 819], "manylinux2014_x86_64": [45, 46, 47], "py2": [45, 47], "495": [45, 47], "nvidia_ml_pi": [45, 47], "pypars": [45, 47, 50], "ivy_cor": [45, 47, 50, 819], "1338326": 45, "sha256": [45, 47, 50], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 45, "store": [45, 47, 50, 54, 57, 58, 62, 64, 74, 77, 80, 81, 85, 87, 154, 375, 376, 420, 428, 432, 446, 450, 549, 634, 637, 639, 691, 708, 773, 774, 792, 793, 794, 814, 820, 824, 825, 827, 832, 838, 840, 841, 842, 849, 851, 852, 853, 857, 863], "ephem": [45, 47], "njrc_e6b": 45, "2e": [45, 47], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [45, 47], "4845": [45, 47], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 45, "b6": [45, 47], "0d": [45, 47], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [45, 47], "uninstal": [45, 47, 50], "vnd": [45, 47, 50], "json": [45, 47, 50, 74, 819, 834, 852], "psst": 45, "pickl": [45, 46, 74, 794, 827, 852], "imageio": 45, "urllib": [45, 50], "_src": 45, "back": [45, 57, 64, 80, 87, 378, 474, 495, 578, 602, 634, 636, 639, 663, 706, 791, 796, 806, 819, 824, 829, 830, 833, 838, 839, 846, 848, 855, 856, 860, 868, 872], "tf_cpp_min_log_level": 45, "mkdir": [45, 46, 47, 819, 828], "perceiv": [45, 46], "touch": 45, "io_processor": 45, "position_encod": 45, "jmp": 45, "tabul": 45, "29359": 45, "29k": 45, "67k": 45, "002": 45, "30179": 45, "47k": 45, "8107": 45, "9k": 45, "92k": 45, "itertool": 45, "preprocessor": 45, "vector": [45, 53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 139, 365, 366, 374, 375, 376, 378, 381, 382, 387, 398, 429, 434, 442, 444, 449, 484, 486, 488, 506, 510, 522, 541, 545, 562, 614, 629, 634, 636, 637, 660, 663, 668, 672, 673, 675, 677, 682, 687, 688, 692, 693, 694, 695, 776, 792, 870], "perceiverbackbon": 45, "input_preprocessor": 45, "_input_preprocessor": 45, "_encod": 45, "__call__": [45, 773, 792, 793, 794, 812, 864], "is_train": 45, "po": [45, 806], "input_mask": 45, "network_input_is_1d": 45, "_input_is_1d": 45, "queri": [45, 46, 61, 74, 84, 198, 212, 555, 581, 631, 634, 636, 663, 666, 792, 827, 829, 834, 851, 870], "decod": [45, 852], "cross": [45, 47, 62, 63, 85, 86, 98, 637, 638, 696, 697, 698, 812, 828, 829], "attend": [45, 636, 663], "encoder_queri": 45, "latent": [45, 640, 716, 717], "imagepreprocessor": 45, "deal": [45, 794, 816, 830, 837, 839, 841, 844, 855], "image_s": 45, "fourier_pos_config": 45, "position_encoding_typ": 45, "fourier": [45, 57, 80, 375, 398, 403, 404, 408, 409, 419, 420, 423, 549, 634], "fourier_position_encoding_kwarg": 45, "concat_po": 45, "max_resolut": 45, "num_band": [45, 58, 81, 549, 634], "sine_onli": 45, "prep_typ": 45, "spatial_downsampl": 45, "cross_attend_widening_factor": 45, "cross_attention_shape_for_attn": 45, "kv": 45, "dropout_prob": 45, "num_block": 45, "num_cross_attend_head": 45, "num_self_attend_head": 45, "num_self_attends_per_block": 45, "num_z_channel": 45, "self_attend_widening_factor": 45, "use_query_residu": 45, "z_index_dim": 45, "z_pos_enc_init_scal": 45, "perceiver_backbon": [45, 812], "perceiverencod": 45, "At": [45, 818, 819, 820, 823, 834, 844, 845, 860, 870], "publish": [45, 812, 855, 861, 864], "thankfulli": [45, 844], "perceiver_io": [45, 46], "imagenet_fourier_position_encod": 45, "pystat": 45, "imagenet_checkpoint": 45, "rb": 45, "ckpt": 45, "09": [45, 51, 56, 82, 89, 118, 278, 288, 615, 626, 632, 635, 740], "173": [45, 62, 637, 675], "194": 45, "125": [45, 57, 62, 85, 234, 346, 372, 377, 453, 632, 637, 692], "177": [45, 47], "193776248": 45, "185m": 45, "octet": 45, "184": 45, "80m": 45, "144mb": 45, "144": 45, "mean_rgb": 45, "stddev_rgb": 45, "im": 45, "denorm": 45, "resize_and_center_crop": 45, "crop": [45, 57, 80, 375, 404, 409, 420], "center": [45, 791], "image_height": [45, 47, 812], "image_width": [45, 812], "padded_center_crop_s": 45, "offset_height": 45, "offset_width": 45, "crop_window": 45, "inter_cub": 45, "ye": [45, 855], "dummy_input": [45, 812], "transpili": 45, "torch_perceiver_backbon": 45, "quicker": 45, "params_v": [45, 812, 864], "perceiverioclassifi": [45, 812], "max_pool": [45, 812], "Of": [45, 824, 840, 841, 852, 875, 876], "cours": [45, 819, 820, 823, 824, 831, 840, 841, 847, 852, 855, 875, 876], "468": 45, "huggingface_hub": 45, "multiprocess": [45, 74, 103, 634, 852, 855], "py39": 45, "132": [45, 80], "pyarrow": 45, "xxhash": 45, "212": [45, 57, 61, 80, 359, 372, 660], "pyyaml": 45, "2021": [45, 57, 80, 362, 372, 812], "aiohttp": 45, "async": 45, "timeout": [45, 74, 103, 586, 609, 634, 846], "0a3": 45, "async_timeout": 45, "frozenlist": 45, "manylinux_2_5_x86_64": [45, 50], "manylinux1_x86_64": [45, 50], "158": 45, "attr": [45, 829], "aiosign": 45, "multidict": 45, "114": [45, 375, 397, 407], "yarl": 45, "264": [45, 641, 718], "2022": [45, 46], "pytz": 45, "2020": [45, 823, 870], "dateutil": [45, 50], "wikiart": 45, "paint": [45, 812, 849, 859], "load_dataset": [45, 863, 864], "n_sampl": [45, 57, 80, 376, 378, 425, 433, 487], "10000": [45, 47, 53, 76, 138, 629], "huggan": 45, "split": [45, 46, 47, 51, 56, 57, 64, 73, 74, 79, 80, 87, 110, 111, 112, 113, 114, 115, 116, 117, 118, 211, 212, 213, 291, 295, 300, 301, 303, 348, 355, 367, 378, 470, 479, 499, 545, 572, 626, 631, 632, 634, 636, 639, 649, 656, 657, 711, 773, 788, 792, 812, 813, 820, 828, 848, 849, 855, 877], "wiki_art": 45, "gib": 45, "unknown": [45, 776], "huggan___parquet": 45, "36ee951979f9b56c": 45, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 45, "parquet": 45, "subsequ": [45, 801, 819, 824, 828, 829, 831, 836, 837, 840, 844, 853, 871], "reus": [45, 53, 76, 80, 87, 128, 462, 463, 470, 472, 474, 475, 476, 483, 499, 702, 703, 704, 706, 708, 709, 711, 713, 833, 844, 875], "curl": [45, 819], "2fwikiart": 45, "xferd": 45, "dload": 45, "upload": [45, 844], "spent": [45, 861], "25936": 45, "278k": 45, "abstract_expression": 45, "action_paint": 45, "analytical_cub": 45, "art_nouveau": 45, "baroqu": 45, "color_field_paint": 45, "contemporary_r": 45, "cubism": 45, "early_renaiss": 45, "expression": 45, "fauvism": 45, "high_renaiss": 45, "impression": 45, "mannerism_late_renaiss": 45, "minim": [45, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 369, 375, 377, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 683, 684, 685, 687, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 806, 832, 840, 842, 847, 849, 863, 868, 876], "naive_art_primitiv": 45, "new_real": 45, "northern_renaiss": 45, "pointil": 45, "pop_art": 45, "post_impression": 45, "realism": 45, "rococo": 45, "romantic": 45, "symbol": [45, 805, 818, 819, 870, 871], "synthetic_cub": 45, "ukiyo_": 45, "custom": [45, 57, 80, 299, 311, 364, 367, 374, 776, 805, 814, 822, 828, 833, 838, 842, 844, 847, 853, 860, 870, 874, 875, 876], "hugginfac": 45, "customdataset": 45, "__len__": [45, 827], "__getitem__": [45, 74, 827], "idx": [45, 46, 47, 535, 634, 812, 830, 851], "random_split": 45, "224x224": 45, "val_siz": 45, "dataset_train": 45, "dataset_v": 45, "dataset_test": 45, "dataloader_train": 45, "dataloader_v": 45, "dataloader_test": 45, "batch": [45, 46, 47, 57, 58, 62, 74, 80, 81, 85, 211, 212, 375, 376, 377, 381, 389, 391, 392, 398, 411, 421, 438, 452, 454, 501, 502, 503, 506, 549, 552, 553, 614, 631, 634, 636, 637, 640, 642, 660, 661, 662, 663, 694, 715, 716, 717, 737, 776, 792, 795, 812, 827, 837, 842, 852, 868], "train_featur": 45, "train_label": 45, "imshow": [45, 46], "001": [45, 56, 57, 65, 77, 80, 82, 165, 263, 280, 338, 351, 372, 616, 630, 632, 635, 642, 737, 776, 852, 853], "train_step": 45, "running_loss": [45, 47, 812], "last_loss": 45, "training_load": 45, "intra": 45, "report": [45, 815, 818, 844], "zero_grad": 45, "999": [45, 59, 79, 82, 291, 615, 616, 621, 623, 632, 635, 796, 853], "epoch_numb": 45, "best_vloss": 45, "1_000_000": 45, "running_vloss": 45, "vdata": 45, "vinput": 45, "vlabel": 45, "voutput": 45, "vloss": 45, "avg_vloss": 45, "model_path": 45, "model_": 45, "state_dict": [45, 793, 794], "highest": [45, 57, 66, 80, 89, 319, 322, 369, 643, 739, 829], "energi": 45, "augment": 45, "mayb": [45, 46, 52, 812, 819, 828, 849, 851], "finetun": 45, "deploi": [45, 812, 828, 857, 864, 868, 869, 870, 872, 876], "percieverio": 46, "ai": [46, 828, 868, 872], "contribut": [46, 57, 80, 387, 525, 815, 817, 819, 820, 821, 826, 834, 835, 841, 842, 849, 856, 863, 874, 878], "invit": [46, 818, 821, 841, 847], "g4ar9q7dtn": 46, "step1": 46, "printf": 46, "8packag": 46, "share": [46, 74, 186, 630, 776, 777, 812, 825, 827, 831, 837, 839, 841, 842, 844, 847, 849, 860, 868, 869, 876], "googledr": 46, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 46, "file_id": 46, "drive": [46, 47], "uc": 46, "tee": [46, 819], "file_id_wget_cmd": 46, "perl": 46, "pe": 46, "g": [46, 48, 49, 57, 66, 68, 70, 72, 80, 89, 95, 97, 151, 180, 193, 240, 253, 273, 280, 283, 335, 336, 372, 375, 376, 378, 382, 387, 412, 414, 451, 492, 508, 509, 510, 511, 512, 523, 524, 630, 631, 632, 637, 641, 643, 645, 647, 673, 674, 678, 685, 687, 688, 694, 721, 725, 727, 730, 735, 739, 740, 741, 749, 750, 751, 752, 757, 758, 760, 762, 763, 765, 791, 810, 813, 818, 819, 822, 823, 825, 826, 827, 839, 841, 844, 849, 855, 857, 861, 866], "uuid": 46, "anywai": [46, 824, 838, 841], "bin": [46, 57, 80, 387, 520, 525, 819, 820, 823, 827], "bash": [46, 819, 820, 823], "step2": 46, "interpret": [46, 53, 57, 76, 80, 127, 128, 134, 140, 377, 387, 454, 522, 629, 828, 871], "sudo": [46, 819], "apt": [46, 819], "yf": 46, "step3": 46, "delet": [46, 820, 828], "xvzf": 46, "rm": [46, 48, 814, 820], "step4": 46, "symlink": 46, "unzip": [46, 47], "fr": 46, "l": [46, 57, 62, 79, 85, 267, 376, 377, 429, 452, 636, 637, 663, 667, 672, 673, 674, 677, 691, 820, 822], "ln": 46, "sf": 46, "la": 46, "step5": 46, "step6": 46, "ipkykernel": 46, "step7": 46, "engbjapanpython3": 46, "ipykernel": 46, "reconnect": 46, "sy": [46, 878], "oct": 46, "gcc": [46, 868, 875], "lf": 46, "upgrad": 46, "cuda11": 46, "cudnn805": 46, "cp38": [46, 50, 819], "helper": [46, 771, 773, 774, 780, 782, 783, 812, 816, 826, 829, 833, 834, 843, 852, 857], "feedforward": 46, "prenorm": 46, "perceiveriospec": 46, "fetch": [46, 557, 634, 819, 820, 823, 828], "ogbanugot": [46, 878], "xmartlab": 46, "caffeflow": 46, "fetch_class": 46, "class_label": 46, "ground_truth": 46, "127": [46, 54, 57, 62, 77, 80, 168, 359, 372, 630, 637, 675], "path_to_imag": 46, "get_imag": 46, "spine": 46, "set_vis": 46, "bottom": [46, 545, 634, 818, 819, 828, 834, 876], "tick_param": 46, "set_xticklabel": 46, "set_yticklabel": 46, "show_result": 46, "listdir": [46, 47], "endswith": 46, "this_dir": 46, "dirnam": 46, "join": [46, 47, 64, 74, 80, 87, 468, 469, 639, 700, 710, 812, 821], "add_subplot": 46, "xtick": 46, "ytick": 46, "green": [46, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 811, 818, 819, 820], "red": 46, "perceiver_io_img_classif": 46, "normalize_imag": 46, "batch_shap": [46, 61, 66, 76, 84, 89, 132, 141, 629, 636, 637, 643, 662, 666, 695, 738, 792, 847, 849, 851], "img_dim": 46, "queries_dim": 46, "learn_queri": 46, "load_weight": 46, "num_input_ax": 46, "network_depth": 46, "num_lat_att_per_lay": 46, "query_shap": 46, "num_fourier_freq_band": 46, "weight_fpath": 46, "pretrained_weight": 46, "isfil": 46, "noinspect": [46, 851], "pybroadexcept": 46, "from_disk_as_pickl": 46, "action": [46, 810, 817, 828, 831, 835, 844], "fail": [46, 771, 816, 819, 820, 823, 828, 829, 831, 835, 838, 840, 841, 842], "placehold": [46, 641, 725, 730, 735, 792, 820, 824, 836, 857], "pyunboundlocalvari": 46, "max_fourier_freq": 46, "random_uniform": [46, 50, 66, 89, 643, 812, 830, 833, 844, 849, 853], "817437": 46, "gpu_bfc_alloc": 46, "orig_valu": 46, "tf_force_gpu_allow_growth": 46, "autograd": [46, 855], "declar": [46, 820, 843], "_3r2_73j": 47, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 47, "1297564": 47, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 47, "le3bu3_v": 47, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 47, "third": [47, 97, 98, 378, 471, 498, 637, 645, 687, 749, 826, 829, 840, 855, 869, 870, 876], "parti": [47, 826, 829, 855, 860, 869, 870, 876], "mount": [47, 814, 820], "mydriv": 47, "chdir": 47, "kaggl": 47, "medium": 47, "articl": [47, 812, 835], "insert": [47, 57, 67, 80, 90, 378, 459, 469, 639, 641, 644, 646, 702, 722, 723, 744, 755, 828, 835], "www": [47, 335, 336, 372], "your_kaggle_usernam": 47, "competit": 47, "digit": 47, "zip": [47, 849], "readabl": [47, 824, 827, 833, 835, 836, 844, 845, 851, 852], "chmod": [47, 819, 828], "recent": [47, 809, 819, 820, 844, 859, 860], "forc": [47, 826, 828, 830], "archiv": [47, 819], "inflat": [47, 829], "sample_submiss": 47, "later": [47, 74, 539, 634, 818, 835, 840, 844, 845, 870], "my": [47, 828], "label_df": 47, "mod_train": 47, "data_valu": 47, "test_data_valu": 47, "correct_label": 47, "train_path": 47, "str": [47, 49, 52, 53, 57, 58, 61, 62, 63, 64, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 123, 125, 134, 136, 139, 141, 143, 149, 150, 153, 155, 157, 158, 159, 160, 164, 165, 168, 169, 170, 171, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 192, 193, 213, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 375, 376, 377, 378, 381, 387, 390, 394, 395, 396, 398, 399, 400, 401, 403, 404, 408, 409, 412, 413, 414, 415, 417, 418, 419, 420, 422, 423, 426, 430, 445, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 474, 490, 492, 493, 494, 495, 496, 501, 502, 503, 504, 505, 507, 509, 511, 522, 523, 524, 525, 532, 534, 535, 537, 538, 540, 541, 543, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 573, 576, 577, 579, 580, 589, 591, 592, 593, 595, 597, 599, 600, 613, 617, 624, 628, 629, 630, 631, 634, 635, 636, 637, 638, 639, 640, 641, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 688, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 715, 716, 717, 724, 725, 730, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 753, 757, 758, 759, 761, 763, 764, 766, 767, 768, 773, 774, 776, 777, 782, 784, 792, 794, 795, 805, 806, 810, 829, 830, 833, 837, 840, 841, 845, 849, 854, 863, 864, 865], "makedir": 47, "valid_path": 47, "28x28": 47, "pic": 47, "int8": [47, 54, 66, 76, 77, 89, 134, 161, 166, 168, 169, 173, 629, 630, 739, 776, 777, 829, 844], "new_img": [47, 49], "builder": [47, 814], "batchwis": 47, "subset": [47, 778, 824, 828, 832, 836, 839, 841, 844, 849, 870], "goe": [47, 378, 467, 822, 835, 840, 847], "seed_valu": [47, 74, 643, 742], "randomize_dataset": 47, "create_dataset": 47, "num_examples_per_class": 47, "img_arrai": 47, "class_nam": [47, 773], "dir": [47, 852], "img_path": 47, "imread": [47, 49, 852], "imread_grayscal": 47, "generate_batch": [47, 812], "dataset_s": [47, 812], "ivyerror": [47, 807, 812, 833], "smaller": [47, 57, 64, 70, 80, 87, 302, 334, 351, 367, 372, 375, 377, 387, 404, 409, 420, 452, 522, 523, 524, 545, 634, 639, 647, 699, 707, 757, 758, 763, 765, 812, 820, 833, 849], "yield": [47, 67, 320, 321, 369, 378, 484, 644, 748, 812, 828], "x_batch_inst": 47, "form": [47, 49, 52, 53, 57, 62, 74, 76, 85, 96, 97, 98, 127, 128, 140, 145, 146, 312, 315, 329, 338, 369, 372, 376, 378, 429, 440, 471, 480, 484, 500, 535, 596, 598, 629, 634, 636, 637, 641, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 719, 730, 776, 791, 813, 818, 819, 837, 844, 847, 853, 854, 860, 870, 871, 876], "intialis": 47, "num_epoch": [47, 812], "inherit": [47, 824, 827, 833, 851, 855, 857], "creation": [47, 57, 74, 80, 103, 826, 829, 830, 836, 838, 841, 842, 844, 845, 849, 863, 870, 872, 876], "inform": [47, 49, 54, 57, 59, 77, 82, 165, 168, 319, 369, 535, 624, 630, 634, 635, 640, 717, 810, 812, 817, 818, 819, 820, 821, 823, 827, 828, 833, 837, 838, 840, 842, 844, 873], "insid": [47, 62, 85, 103, 378, 494, 637, 680, 774, 819, 820, 824, 827, 829, 830, 834, 837, 838, 844, 845, 863, 876], "ivynet": [47, 812], "h_w": [47, 812], "input_channel": [47, 792, 812, 849, 853], "output_channel": [47, 792, 812, 853], "gelu": [47, 48, 51, 73, 626, 788, 812], "image_widht": 47, "start_dim": [47, 57, 80, 378, 474, 812], "end_dim": [47, 57, 80, 378, 474, 812], "gpu_is_avail": [47, 631, 812], "120": [47, 70, 93, 103, 637, 682, 757, 812], "__name__": [47, 48, 50, 601, 634, 833], "heavi": [47, 778, 819, 841, 842, 847, 871], "lift": [47, 842, 871], "num_correct": [47, 812], "y_pred": 47, "epoch_loss": [47, 812], "field": [47, 62, 68, 85, 91, 376, 378, 429, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751, 828, 868, 876], "training_accuraci": [47, 812], "train_loss": 47, "train_correct": [47, 812], "train_loop": [47, 812], "leav": [47, 52, 57, 75, 77, 79, 80, 81, 84, 85, 87, 93, 103, 165, 168, 240, 297, 300, 301, 307, 378, 468, 469, 474, 486, 487, 488, 504, 505, 507, 523, 524, 529, 549, 597, 639, 641, 655, 666, 671, 687, 701, 705, 710, 712, 713, 718, 719, 728, 729, 730, 731, 757, 758, 805, 812, 818, 827, 828, 829, 831, 832, 836, 837, 840, 841, 844, 852, 853], "xbatch": [47, 812], "ybatch": [47, 812], "to_devic": [47, 55, 78, 196, 631, 794, 812], "entropi": [47, 63, 86, 638, 696, 697, 698, 812], "hot": [47, 53, 76, 141, 629, 812], "ybatch_encod": [47, 812], "one_hot": [47, 53, 76, 629, 812, 854], "loss_prob": [47, 812], "ret_grad_idx": [47, 617, 635, 773, 839], "xs_grad_idx": [47, 617, 635, 773, 839], "batch_loss": [47, 812], "set_descript": [47, 812], "set_postfix": [47, 812], "accuracy_percentag": [47, 812], "naverag": [47, 812], "6f": [47, 812], "_train_summari": 47, "writer": 47, "writerow": 47, "157it": 47, "06it": 47, "475401": 47, "11it": 47, "081436": 47, "13it": 47, "0187": 47, "029279": 47, "0324": 47, "008382": 47, "07it": 47, "00456": 47, "003816": 47, "82it": 47, "00277": 47, "002179": 47, "05it": 47, "00175": 47, "001569": 47, "00147": 47, "09it": 47, "00128": 47, "001005": 47, "106": 47, "10it": 47, "00112": 47, "000837": 47, "129": [47, 636, 655, 657], "12it": 47, "000989": 47, "000709": 47, "145": 47, "000873": 47, "000606": 47, "08it": 47, "000774": 47, "000524": 47, "000688": 47, "000455": 47, "000613": 47, "000398": 47, "000547": 47, "000350": 47, "205": 47, "000488": 47, "000308": 47, "218": 47, "000437": 47, "000273": 47, "000391": 47, "000243": 47, "238": [47, 247, 632], "98it": 47, "000351": 47, "000216": 47, "260": 47, "plot_summari": 47, "whitegrid": 47, "nrow": 47, "ncol": 47, "fontweight": 47, "bold": 47, "set_xlabel": 47, "set_ylabel": 47, "savefig": 47, "summary_plot": 47, "png": [47, 49, 50, 852], "save_weight": [47, 794], "model_param": 47, "ivynet_weight": 47, "hdf5": [47, 74, 794, 852], "deitimageprocessor": 48, "tfdeitforimageclassif": 48, "tfdeitforimageclassificationwithteach": 48, "distillation_classifi": 48, "cls_classifi": 48, "randomli": [48, 375, 399, 400, 401, 636, 659, 776, 777, 778, 779, 784, 792], "henc": [48, 68, 223, 338, 372, 632, 639, 645, 702, 749, 750, 751, 752, 801, 819, 827, 828, 829, 840, 844], "image_processor": [48, 863, 864], "distil": [48, 871], "patch16": 48, "outputs_from_original_model": 48, "bertforsequenceclassif": 48, "bertforpretrain": 48, "NOT": [48, 268, 632, 805, 818], "probabl": [48, 57, 61, 63, 66, 80, 84, 86, 89, 375, 377, 382, 387, 399, 400, 401, 454, 508, 522, 525, 529, 636, 638, 643, 659, 663, 666, 696, 738, 778, 791, 792, 812, 844, 856, 861], "ptarmigan": 48, "rf": [48, 820], "branch": [48, 228, 240, 243, 245, 273, 285, 286, 287, 290, 632, 819, 820, 823, 828, 835, 855, 863, 870], "moduleconvert": [48, 789, 794], "mc": 48, "from_keras_modul": [48, 789], "compiled_func": 48, "return_graph": [48, 50], "compiled_output": 48, "diverg": [48, 57, 80, 247, 377, 454, 632], "_all_funct": [48, 50], "convert_to_tensor_v2_with_dispatch": 48, "transpose_v2": 48, "convolution_v2": 48, "bias_add": 48, "binary_op_wrapp": 48, "cast": [48, 54, 56, 57, 62, 70, 77, 79, 85, 93, 152, 155, 180, 274, 387, 523, 524, 630, 632, 637, 647, 678, 694, 757, 758, 761, 763, 765, 777, 837, 842, 849, 867], "moments_v2": 48, "batch_norm": [48, 50, 57, 80, 381], "tensordot": [48, 62, 85, 637, 806, 829], "softmax_v2": 48, "_slice_help": 48, "save_to_disk": [48, 50, 794], "12265048989200113": 48, "11038777417100028": 48, "1167045795539998": 48, "ivy_api_kei": 49, "obj": [49, 127, 128, 557, 629, 634, 863, 864, 865], "combo": [49, 852], "permit": [49, 824, 836, 841, 844, 847], "usabl": [49, 836, 845], "neither": [49, 223, 240, 247, 273, 632, 637, 689, 828, 841, 847], "nor": [49, 223, 240, 247, 273, 632, 828, 841, 874], "specifc": 49, "invoc": 49, "externally_link": 49, "logo": 49, "patch": [49, 291, 632, 829, 870], "cv2_imshow": 49, "envrion": 49, "canni": 49, "original_img": 49, "fn_arg": 49, "dilate_edg": 49, "morphologi": 49, "hk_model": 49, "resnet18": [49, 50], "keras_model": 49, "odsc": 49, "talk": [49, 875], "228": 50, "352": [50, 84, 636, 660, 833], "nvidia_ml_py3": 50, "19190": 50, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 50, "b9": 50, "b1": [50, 637, 686], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 50, "cycler": 50, "fonttool": 50, "965": 50, "pillow": 50, "kiwisolv": 50, "show_graph": [50, 794], "to_ivy_modul": [50, 789, 854], "image_dim": 50, "v0": [50, 853], "urlerror": 50, "dev_str": 50, "comp_network": 50, "time_chronolog": 50, "ret0_nc": 50, "ret1_nc": 50, "ret0_c": 50, "ret1_c": 50, "pytorch_vision_v0": 50, "distribut": [50, 57, 63, 66, 80, 86, 89, 375, 376, 377, 382, 399, 400, 401, 434, 445, 451, 454, 456, 457, 459, 508, 509, 510, 511, 512, 638, 643, 696, 697, 698, 738, 739, 740, 741, 743, 791, 792, 818, 819, 828, 830, 855, 870, 873], "distributed_c10d": 50, "262": 50, "reduce_op": 50, "reduceop": 50, "004645566477999864": 50, "0044566806820000695": 50, "attribut": [50, 74, 165, 166, 167, 168, 199, 200, 208, 550, 551, 630, 631, 634, 774, 825, 826, 827, 832, 833, 837, 838, 840, 841, 847, 850, 851, 852, 853], "definit": [50, 56, 62, 79, 85, 292, 632, 637, 667, 812, 816, 820, 824, 829, 834, 837, 851, 864], "max_pool2d": [50, 57, 80, 375, 395], "__iadd__": 50, "adaptive_avg_pool2d": [50, 57, 80, 375], "_arraywithactiv": [51, 102], "abc": [51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 106, 548, 634, 641, 736, 791, 796, 805, 806, 851], "_abc_impl": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "_abc_data": [51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 106, 107], "approxim": [51, 56, 57, 62, 73, 79, 80, 85, 97, 100, 110, 221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 247, 261, 262, 263, 264, 278, 285, 286, 290, 291, 292, 349, 359, 372, 377, 456, 457, 626, 632, 637, 680, 683, 788, 832, 841], "complex_mod": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "variant": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 138, 139, 140, 141, 143, 145, 146, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 615, 616, 619, 621, 622, 623, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 683, 684, 685, 687, 691, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 824, 831, 832, 847], "docstr": [51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 110, 111, 112, 113, 114, 115, 116, 117, 118, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 153, 154, 155, 165, 168, 172, 173, 180, 197, 214, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 322, 329, 331, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 372, 375, 378, 387, 394, 395, 396, 397, 399, 400, 401, 403, 407, 408, 409, 412, 413, 414, 418, 419, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 507, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 544, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 566, 568, 569, 571, 576, 577, 591, 592, 593, 594, 595, 597, 599, 600, 613, 614, 615, 616, 619, 621, 622, 623, 624, 629, 630, 632, 634, 637, 639, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 817, 818, 822, 826, 835, 836, 837, 838, 841, 843, 845], "liter": [51, 56, 57, 62, 73, 79, 80, 85, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 375, 376, 378, 381, 397, 407, 411, 419, 434, 440, 445, 448, 451, 484, 506, 626, 632, 637, 646, 678, 694, 755, 788, 847], "magnitud": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 220, 223, 240, 247, 273, 291, 295, 300, 301, 303, 367, 626, 632, 637, 687, 688, 788, 829], "handle_complex_input": [51, 56, 57, 73, 79, 80, 110, 111, 112, 113, 114, 115, 116, 117, 118, 291, 295, 300, 301, 303, 367, 626, 632, 788, 838], "element": [51, 53, 56, 57, 58, 61, 62, 64, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 84, 85, 87, 89, 90, 91, 93, 98, 102, 103, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 126, 129, 135, 136, 145, 146, 147, 163, 165, 168, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 301, 303, 305, 306, 307, 309, 310, 311, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 342, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 367, 369, 372, 375, 376, 377, 378, 387, 388, 399, 400, 401, 404, 409, 412, 413, 414, 418, 420, 421, 422, 428, 429, 430, 452, 462, 463, 464, 474, 475, 476, 478, 481, 491, 492, 494, 496, 498, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 537, 540, 541, 552, 553, 569, 571, 591, 592, 593, 595, 599, 600, 626, 629, 632, 634, 636, 637, 639, 641, 643, 644, 645, 646, 647, 648, 659, 668, 670, 672, 673, 677, 682, 684, 685, 687, 691, 699, 702, 703, 704, 705, 706, 707, 708, 709, 718, 721, 727, 738, 746, 747, 748, 749, 750, 751, 752, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 771, 773, 776, 778, 792, 806, 832, 842, 844, 847, 849, 874], "138": [51, 110, 626], "165": [51, 110, 626, 636, 660], "hardswish": [51, 57, 73, 80, 298, 367, 626, 788], "leaky_relu": [51, 73, 80, 295, 626, 777], "alpha": [51, 56, 57, 73, 79, 80, 107, 112, 223, 289, 295, 296, 304, 308, 314, 367, 369, 376, 381, 382, 430, 506, 509, 510, 511, 626, 632, 788, 836, 841, 842], "float": [51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 73, 76, 77, 79, 80, 81, 82, 84, 85, 86, 88, 89, 93, 97, 100, 102, 112, 118, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 142, 143, 148, 152, 156, 160, 165, 169, 173, 179, 180, 183, 189, 198, 207, 211, 212, 215, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 244, 245, 246, 247, 251, 253, 254, 255, 256, 257, 259, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 302, 304, 307, 308, 310, 311, 312, 313, 314, 315, 317, 318, 319, 334, 335, 336, 337, 345, 346, 351, 353, 354, 357, 358, 359, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 387, 390, 399, 400, 401, 418, 419, 426, 429, 430, 432, 445, 449, 451, 452, 453, 457, 458, 473, 491, 501, 502, 503, 506, 507, 508, 509, 510, 511, 512, 522, 523, 524, 525, 530, 531, 532, 539, 540, 541, 549, 558, 582, 583, 586, 592, 593, 613, 615, 616, 619, 621, 622, 623, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 640, 641, 642, 643, 644, 645, 647, 659, 661, 663, 666, 667, 669, 672, 673, 674, 676, 678, 679, 680, 683, 684, 685, 686, 687, 688, 689, 691, 694, 696, 697, 698, 715, 716, 717, 724, 737, 740, 741, 747, 749, 750, 751, 752, 757, 758, 760, 761, 762, 763, 764, 765, 766, 773, 776, 777, 779, 788, 791, 792, 795, 796, 810, 816, 823, 827, 829, 832, 833, 834, 836, 837, 839, 840, 842, 844, 845, 847, 849, 851, 853], "slope": [51, 57, 73, 80, 112, 295, 296, 302, 304, 308, 367, 626, 788], "leaki": [51, 73, 112, 626, 788], "log_softmax": [51, 73, 626, 788], "0719": [51, 73, 113], "221": [51, 113], "mish": [51, 73, 626, 788], "30340147": [51, 114, 626], "86509842": [51, 73, 114, 626], "269": [51, 116], "881": [51, 56, 79, 116, 226, 239, 279, 632], "422": [51, 117, 626], "155": [51, 84, 117, 626, 636, 660], "softplu": [51, 73, 626, 788, 847], "beta": [51, 57, 65, 73, 80, 88, 118, 304, 308, 314, 317, 318, 367, 369, 376, 377, 381, 382, 430, 458, 506, 510, 511, 626, 642, 737, 788, 847], "threshold": [51, 56, 57, 73, 79, 80, 118, 271, 272, 311, 337, 367, 372, 377, 378, 453, 458, 491, 626, 632, 788, 847], "union": [51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 367, 369, 372, 373, 375, 376, 377, 378, 381, 382, 383, 385, 387, 389, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 407, 408, 409, 411, 412, 413, 414, 415, 417, 418, 419, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 496, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 554, 555, 556, 558, 560, 561, 562, 564, 565, 568, 569, 571, 572, 576, 577, 581, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 725, 726, 727, 729, 730, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 773, 776, 791, 796, 797, 824, 827, 829, 830, 831, 833, 836, 837, 840, 845, 847, 849, 854, 863, 864, 865], "3461": [51, 73, 118, 626], "6491": [51, 73, 118, 626], "_array_to_new_backend": 52, "_to_ivi": 52, "_to_n": 52, "to_ignor": [52, 72, 95, 641, 729, 730], "_to_new_backend": 52, "args_to_ivi": 52, "include_deriv": [52, 75, 641, 719, 730, 773], "nest": [52, 74, 75, 103, 106, 243, 567, 597, 614, 617, 632, 634, 635, 640, 715, 716, 718, 719, 720, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 796, 824, 826, 827, 837, 839, 845, 852, 853, 855, 857, 870], "unchang": [52, 56, 375, 378, 420, 474, 636, 659], "deriv": [52, 53, 57, 59, 75, 76, 80, 82, 131, 136, 143, 149, 313, 317, 342, 369, 372, 615, 616, 619, 620, 621, 622, 623, 629, 635, 640, 641, 717, 719, 730, 794, 796, 797, 829, 830, 851, 853], "word": [52, 126, 378, 477, 629, 643, 741, 789, 792, 827, 840, 841, 857], "args_to_n": [52, 840], "cont_inplac": 52, "decid": [52, 74, 641, 729, 730, 812, 818, 819, 829, 847], "args_to_new_backend": 52, "shallow": [52, 641, 725, 726, 730, 735, 736], "nativevari": 52, "mutabl": [52, 641, 719, 725, 726, 730, 735, 736, 825], "to_ivi": [52, 75, 641, 731, 840], "leaf": [52, 74, 81, 93, 103, 548, 641, 728, 729, 731, 758, 827, 837, 852], "travers": [52, 75, 641, 722, 730, 827, 829, 833, 849], "lowest": [52, 57, 66, 75, 80, 89, 387, 525, 641, 643, 730, 739, 806, 837, 855, 857, 867, 871, 875], "search": [52, 57, 75, 80, 744, 745, 784, 817, 819, 827, 831, 834, 844, 845, 859], "to_new_backend": 52, "_arraywithcr": [53, 102], "boolean": [53, 54, 56, 57, 58, 64, 67, 70, 74, 76, 77, 79, 80, 81, 87, 90, 93, 102, 103, 123, 125, 127, 128, 129, 135, 152, 168, 170, 172, 173, 176, 192, 202, 210, 216, 230, 231, 232, 233, 234, 235, 267, 268, 269, 270, 335, 336, 351, 372, 376, 378, 434, 445, 451, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 492, 499, 534, 537, 548, 555, 558, 559, 563, 564, 565, 566, 567, 568, 569, 578, 581, 584, 585, 587, 588, 613, 628, 629, 630, 631, 632, 634, 636, 639, 640, 641, 644, 647, 663, 702, 703, 704, 706, 708, 709, 711, 713, 715, 716, 728, 746, 747, 748, 760, 762, 776, 777, 778, 779, 784, 795, 827, 829, 837, 841, 844, 847], "never": [53, 57, 64, 76, 80, 87, 128, 378, 462, 463, 464, 470, 472, 474, 475, 476, 479, 483, 490, 499, 555, 634, 639, 702, 703, 704, 706, 708, 709, 711, 713, 820, 829, 840, 841, 844], "valueerror": [53, 57, 64, 76, 80, 87, 91, 128, 375, 377, 409, 420, 457, 462, 463, 470, 472, 474, 475, 476, 483, 499, 639, 702, 703, 704, 706, 708, 709, 711, 713, 752, 778, 807, 833], "buffer": [53, 76, 80, 87, 128, 134, 462, 463, 470, 472, 474, 475, 476, 483, 499, 629, 702, 703, 704, 706, 708, 709, 711, 713, 793, 794, 840, 855], "nativedtyp": [53, 54, 57, 61, 62, 66, 67, 70, 76, 80, 85, 89, 90, 93, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 140, 141, 142, 143, 148, 149, 151, 152, 157, 158, 159, 160, 161, 162, 163, 164, 169, 170, 174, 176, 178, 182, 192, 312, 313, 314, 315, 316, 317, 318, 333, 340, 356, 369, 372, 382, 387, 508, 509, 510, 511, 512, 522, 523, 524, 525, 528, 531, 629, 630, 636, 637, 643, 644, 646, 647, 659, 678, 694, 739, 740, 741, 744, 745, 755, 757, 758, 761, 763, 765, 791, 829, 830, 836, 845, 849], "datatyp": [53, 57, 74, 76, 80, 128, 136, 140, 157, 178, 182, 375, 423, 629, 630, 771, 845, 863], "nativedevic": [53, 55, 57, 66, 76, 78, 80, 89, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 148, 149, 194, 195, 196, 197, 198, 201, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 312, 313, 328, 369, 382, 508, 509, 511, 512, 629, 631, 643, 738, 739, 740, 741, 791, 796, 797, 829, 830, 833, 836, 845], "39999998": [53, 127, 128, 629, 645, 750], "5999999": [53, 57, 80, 84, 127, 128, 297, 367, 376, 425, 629, 636, 659, 666], "0999999": [53, 70, 127, 128, 297, 307, 310, 353, 367, 372, 629, 761], "10000038": [53, 127, 128, 629], "90786433e": [53, 127, 128, 629], "310": [53, 127, 128, 629], "copy_arrai": [53, 76, 629], "to_ivy_arrai": [53, 76, 129, 629], "empty_lik": [53, 57, 76, 80, 264, 376, 428, 629, 632], "uniniti": [53, 130, 131, 629, 835], "from_dlpack": [53, 76, 629], "full_lik": [53, 76, 629, 845], "fill_valu": [53, 57, 67, 76, 80, 90, 135, 136, 252, 260, 378, 382, 492, 512, 629, 632, 644, 747, 829, 842, 845], "scalar": [53, 56, 57, 58, 62, 73, 76, 79, 80, 81, 85, 97, 112, 136, 141, 223, 244, 289, 295, 338, 339, 341, 346, 349, 351, 353, 358, 372, 375, 376, 377, 378, 423, 430, 452, 462, 463, 464, 473, 478, 600, 613, 629, 632, 634, 637, 694, 829, 839, 841, 855, 870], "fill": [53, 56, 57, 66, 67, 74, 76, 79, 80, 89, 90, 130, 135, 136, 138, 141, 142, 143, 148, 149, 274, 313, 369, 376, 378, 382, 434, 440, 445, 451, 473, 492, 493, 509, 511, 512, 629, 632, 643, 644, 739, 747, 791, 818, 842], "000123": [53, 136, 629], "stop": [53, 57, 59, 76, 80, 82, 126, 137, 138, 213, 376, 445, 451, 578, 616, 619, 621, 622, 623, 624, 629, 631, 634, 635, 640, 641, 715, 716, 717, 729, 796, 810, 836, 839, 847, 849, 855, 870], "num": [53, 76, 137, 138, 629, 776, 820, 836, 849], "endpoint": [53, 76, 137, 138, 629, 791, 836], "logspac": [53, 76, 629, 849], "sequenc": [53, 57, 61, 62, 64, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 132, 134, 136, 138, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 316, 323, 324, 325, 326, 327, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 365, 366, 369, 372, 373, 374, 375, 376, 378, 382, 387, 388, 390, 391, 392, 399, 400, 401, 403, 404, 408, 409, 411, 418, 419, 420, 421, 422, 425, 433, 434, 435, 437, 443, 444, 445, 448, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 462, 463, 464, 468, 469, 470, 471, 477, 479, 480, 482, 483, 485, 488, 490, 492, 493, 494, 496, 499, 500, 501, 503, 504, 505, 507, 509, 510, 522, 523, 524, 525, 532, 533, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 572, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 614, 617, 618, 619, 624, 629, 632, 634, 635, 636, 637, 639, 641, 647, 648, 649, 650, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 694, 696, 697, 698, 699, 700, 702, 703, 705, 706, 707, 708, 709, 710, 713, 714, 718, 725, 735, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 792, 795, 797, 820, 828, 829, 830, 831, 833, 844, 845, 847, 849, 854, 873], "on_valu": [53, 76, 138, 141, 629], "off_valu": [53, 76, 138, 141, 629], "evenli": [53, 56, 57, 61, 64, 74, 76, 79, 80, 84, 87, 126, 137, 138, 292, 375, 418, 422, 629, 632, 636, 639, 649, 650, 651, 652, 654, 656, 658, 708], "hint": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 824, 832, 834, 836, 837, 840, 841, 845], "simplic": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 257, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 552, 556, 558, 560, 591, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 832, 847, 853], "nestabl": [53, 56, 57, 62, 79, 80, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 155, 171, 175, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 313, 328, 329, 335, 336, 338, 341, 369, 372, 375, 376, 378, 387, 394, 395, 396, 397, 399, 400, 401, 407, 412, 413, 414, 419, 421, 430, 484, 492, 496, 522, 525, 529, 538, 546, 547, 552, 556, 558, 560, 562, 576, 591, 595, 600, 624, 629, 630, 632, 634, 635, 636, 637, 639, 642, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 658, 659, 660, 663, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 695, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 818, 822, 831, 832, 840, 844, 857], "464": [53, 56, 89, 138, 227, 228, 632], "15888336": [53, 138], "2154": [53, 138], "43469003": [53, 138], "meshgrid": [53, 76, 629], "spars": [53, 57, 63, 76, 80, 86, 139, 316, 369, 376, 434, 445, 451, 629, 638, 698], "xy": [53, 76, 139, 629], "coordin": [53, 56, 67, 79, 80, 90, 139, 147, 228, 290, 320, 321, 328, 349, 369, 383, 513, 629, 632, 644, 747], "conserv": [53, 139, 629], "cartesian": [53, 139, 629], "matrix": [53, 57, 58, 61, 62, 80, 81, 84, 85, 97, 98, 100, 102, 139, 145, 146, 147, 328, 329, 369, 376, 378, 387, 426, 429, 430, 433, 434, 435, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 482, 522, 534, 540, 629, 634, 636, 637, 660, 667, 669, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 691, 692, 695, 776, 778, 791, 792, 806, 810, 818, 829, 841, 868, 870], "ij": [53, 70, 139, 629, 647, 759, 806], "rank": [53, 57, 62, 64, 71, 80, 85, 87, 94, 97, 98, 99, 100, 101, 106, 139, 323, 324, 325, 326, 327, 369, 376, 378, 387, 434, 435, 445, 448, 451, 484, 492, 496, 532, 629, 637, 639, 644, 648, 668, 670, 678, 680, 684, 686, 691, 693, 694, 701, 702, 710, 713, 714, 747, 767, 768, 813, 878], "ni": [53, 139, 629], "xi": [53, 139, 629], "scatter": [53, 58, 76, 81, 141, 576, 577, 629, 634, 826, 840, 847, 877], "j": [53, 56, 57, 58, 62, 70, 76, 79, 80, 85, 97, 125, 141, 221, 222, 223, 224, 226, 229, 238, 240, 243, 245, 253, 261, 263, 267, 273, 284, 286, 287, 290, 291, 338, 372, 375, 376, 387, 403, 404, 408, 419, 420, 424, 429, 431, 442, 448, 532, 537, 628, 629, 632, 634, 637, 647, 672, 691, 759, 806, 820, 822, 826, 863, 866], "unless": [53, 57, 62, 76, 80, 141, 273, 334, 351, 356, 372, 629, 632, 637, 680, 825, 830, 840, 855, 864, 865], "ones_lik": [53, 76, 629, 825, 854, 867], "tril": [53, 76, 629], "whose": [53, 56, 57, 58, 62, 64, 68, 70, 76, 79, 80, 81, 85, 87, 91, 93, 98, 100, 102, 136, 145, 146, 222, 226, 229, 237, 238, 239, 278, 279, 285, 286, 290, 291, 292, 329, 343, 344, 348, 352, 353, 355, 359, 369, 376, 378, 429, 450, 483, 492, 498, 539, 595, 629, 632, 634, 637, 639, 645, 647, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 691, 694, 703, 707, 749, 750, 751, 758, 759, 778, 815, 832, 844], "innermost": [53, 57, 62, 85, 145, 146, 329, 369, 376, 429, 629, 637, 667, 669, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691], "mxn": [53, 57, 62, 85, 145, 146, 329, 369, 629, 637, 671, 678, 680, 681, 683, 684, 688, 691], "matric": [53, 57, 62, 80, 85, 97, 98, 102, 139, 145, 146, 329, 369, 376, 378, 429, 434, 435, 437, 443, 444, 449, 473, 629, 636, 637, 660, 667, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 691, 692, 778, 816, 834, 870], "diagon": [53, 57, 62, 80, 85, 98, 132, 145, 146, 147, 313, 328, 329, 369, 376, 378, 427, 430, 440, 446, 473, 629, 637, 670, 691], "triangular": [53, 57, 62, 85, 145, 146, 147, 328, 329, 369, 376, 446, 629, 637, 667, 673, 674, 680, 684], "triu": [53, 76, 629], "upper": [53, 57, 62, 66, 80, 85, 89, 132, 146, 147, 313, 329, 369, 376, 387, 446, 525, 629, 637, 643, 667, 673, 674, 684, 741, 829, 840, 844], "zeros_lik": [53, 57, 76, 152, 269, 378, 492, 615, 616, 619, 621, 622, 623, 629, 630, 632, 635, 637, 639, 684, 699, 841, 847], "data_typ": [54, 57, 77, 80, 182, 630, 826, 829, 844, 845], "_arraywithdatatyp": [54, 102], "irrespect": [54, 62, 77, 85, 152, 630, 637, 687, 827, 840, 851, 877], "promot": [54, 56, 57, 62, 77, 79, 80, 85, 92, 102, 103, 152, 155, 178, 179, 180, 186, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 237, 238, 240, 243, 245, 247, 261, 262, 263, 264, 265, 270, 273, 278, 282, 285, 286, 287, 288, 289, 290, 291, 294, 346, 354, 359, 372, 375, 387, 419, 522, 585, 608, 630, 632, 634, 637, 639, 647, 667, 668, 675, 676, 677, 678, 679, 680, 682, 683, 685, 686, 693, 694, 700, 710, 753, 761, 764, 776, 777, 821, 823, 832, 833, 837, 846], "nan": [54, 56, 57, 58, 68, 70, 77, 79, 80, 81, 152, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 239, 240, 241, 243, 245, 246, 247, 248, 249, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 279, 282, 283, 284, 285, 286, 287, 290, 291, 293, 300, 334, 335, 336, 347, 351, 356, 359, 367, 372, 378, 387, 492, 520, 521, 528, 529, 530, 531, 558, 613, 627, 630, 632, 634, 645, 647, 648, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 767, 768, 776, 779, 823, 829, 832, 839, 845, 846], "infin": [54, 56, 58, 62, 77, 79, 85, 152, 220, 221, 222, 223, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 261, 262, 263, 264, 265, 268, 273, 274, 276, 278, 282, 283, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 558, 627, 630, 632, 634, 637, 647, 648, 685, 694, 760, 762, 767, 768, 823, 832], "desir": [54, 55, 57, 67, 70, 74, 77, 78, 80, 90, 93, 97, 152, 154, 155, 214, 319, 360, 369, 372, 378, 387, 482, 528, 531, 532, 630, 631, 637, 644, 647, 689, 746, 761, 791, 792, 820, 825, 828, 829, 830, 841, 849, 859, 863, 870], "broadcast_arrai": [54, 77, 630], "mix": [54, 56, 77, 79, 80, 81, 86, 89, 102, 103, 153, 166, 167, 180, 199, 200, 230, 233, 234, 235, 240, 241, 247, 251, 259, 260, 270, 273, 276, 282, 377, 387, 458, 529, 548, 550, 551, 552, 553, 562, 597, 600, 630, 631, 632, 634, 636, 637, 638, 639, 642, 647, 650, 652, 655, 657, 658, 660, 666, 667, 689, 696, 698, 699, 737, 759, 761, 764, 777, 779, 818, 822, 829, 830, 831, 840, 847, 849, 857, 870, 874, 876], "broadcast_to": [54, 77, 630, 829], "can_cast": [54, 77, 630, 829, 837, 841], "accord": [54, 57, 58, 64, 70, 77, 87, 93, 155, 165, 223, 234, 240, 247, 273, 284, 319, 369, 375, 378, 420, 484, 552, 555, 576, 577, 630, 632, 634, 637, 639, 647, 693, 701, 714, 764, 766, 771, 778, 798, 805, 818, 819, 823, 829, 835, 837, 841, 844], "finfo": [54, 77, 630, 844], "resolut": [54, 77, 165, 630, 820], "4028235e": [54, 165, 630], "iinfo": [54, 77, 630], "integ": [54, 56, 57, 61, 62, 64, 66, 70, 71, 74, 79, 80, 81, 84, 85, 87, 89, 93, 94, 102, 103, 126, 135, 168, 169, 175, 179, 180, 184, 220, 230, 231, 232, 233, 234, 235, 236, 246, 247, 258, 270, 275, 278, 282, 283, 293, 294, 330, 331, 332, 335, 336, 340, 345, 346, 369, 372, 375, 378, 382, 385, 387, 403, 408, 418, 421, 422, 423, 470, 479, 484, 492, 496, 499, 508, 509, 510, 511, 512, 514, 515, 520, 522, 523, 524, 529, 532, 555, 571, 581, 614, 629, 630, 632, 634, 636, 637, 639, 643, 646, 647, 648, 649, 650, 651, 652, 654, 656, 658, 668, 670, 679, 693, 694, 708, 738, 739, 740, 741, 742, 743, 755, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 776, 777, 778, 779, 784, 792, 806, 820, 827, 829, 839, 842, 844, 849, 851], "119": [54, 168], "1220": [54, 168], "int16": [54, 57, 66, 70, 77, 89, 155, 159, 161, 166, 168, 175, 190, 387, 523, 524, 630, 647, 739, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "32768": [54, 77, 168, 593, 634], "32767": [54, 77, 168], "is_bool_dtyp": [54, 77, 630], "is_float_dtyp": [54, 77, 630, 845], "is_int_dtyp": [54, 77, 630, 842, 845], "is_uint_dtyp": [54, 77, 630, 842, 845], "result_typ": [54, 77, 630, 829], "arrays_and_dtyp": [54, 77, 180, 630], "_arraywithdevic": [55, 102], "move": [55, 57, 78, 80, 147, 210, 214, 218, 328, 369, 378, 483, 629, 631, 794, 812, 820, 830, 845], "addit": [55, 57, 58, 65, 78, 80, 81, 88, 123, 125, 214, 223, 283, 377, 381, 387, 452, 506, 521, 526, 545, 546, 547, 614, 628, 631, 632, 634, 636, 640, 642, 663, 717, 737, 792, 806, 818, 819, 820, 825, 829, 831, 832, 835, 837, 839, 840, 841, 844, 845, 847, 851, 852, 854, 863, 870, 871, 872, 876], "__dlpack__": [55, 78, 133, 214, 629, 631], "caveat": [55, 78, 214, 377, 456, 631], "portabl": [55, 78, 214, 631, 812, 868], "_arraywithelementwis": [56, 102], "ab": [56, 62, 72, 79, 95, 102, 103, 278, 334, 351, 372, 378, 491, 632, 637, 641, 678, 688, 694, 726, 729, 773, 805, 806, 816, 824, 829, 834, 838, 841, 844, 867], "absolut": [56, 57, 62, 72, 74, 79, 80, 85, 102, 220, 284, 334, 351, 354, 360, 372, 376, 377, 430, 447, 453, 455, 632, 637, 678, 679, 680, 685, 771, 773, 776, 778, 779, 813, 819], "aco": [56, 79, 632], "invers": [56, 57, 62, 79, 80, 85, 221, 222, 225, 226, 227, 228, 229, 344, 372, 375, 385, 398, 407, 409, 419, 514, 632, 637, 676, 679, 683, 798, 829], "cosin": [56, 79, 221, 222, 237, 238, 312, 315, 369, 375, 397, 407, 632, 792], "acosh": [56, 79, 166, 167, 630, 632, 816, 834], "area": [56, 57, 79, 80, 84, 222, 226, 229, 375, 411, 418, 422, 632, 815, 840, 847, 860, 866], "hyperbol": [56, 79, 222, 226, 229, 238, 286, 290, 291, 304, 308, 367, 632], "sector": [56, 79, 222, 226, 229, 632, 860], "multipli": [56, 57, 61, 70, 79, 80, 84, 97, 223, 289, 352, 375, 376, 411, 442, 443, 523, 524, 632, 636, 647, 659, 757, 763, 820, 824, 825, 827, 831], "angl": [56, 79, 228, 238, 286, 291, 350, 372, 632], "deg": [56, 79, 224, 632], "radian": [56, 57, 79, 80, 221, 224, 225, 227, 228, 237, 239, 279, 285, 290, 359, 372, 632, 832], "degre": [56, 57, 70, 79, 80, 93, 224, 239, 279, 322, 369, 378, 490, 632, 647, 764, 766, 869], "1j": [56, 79, 80, 224, 225, 237, 238, 243, 245, 257, 280, 285, 286, 290, 338, 592, 632, 634], "2j": [56, 57, 79, 80, 224, 253, 338, 375, 403, 408, 593, 632, 634], "3j": [56, 57, 79, 80, 224, 257, 280, 338, 372, 632], "35619449": [56, 224, 632], "78539816": [56, 224, 632], "135": [56, 224, 540, 632, 634], "asin": [56, 79, 632], "sine": [56, 79, 225, 226, 285, 286, 632], "927": [56, 79, 225], "asinh": [56, 79, 225, 632], "atan": [56, 79, 632], "tangent": [56, 79, 227, 228, 229, 290, 291, 304, 308, 365, 367, 374, 632, 832], "785": [56, 79, 227, 228, 632], "atan2": [56, 79, 632], "quotient": [56, 79, 228, 240, 247, 632], "588": [56, 228, 632], "inf": [56, 57, 58, 62, 79, 80, 81, 85, 228, 245, 254, 255, 256, 257, 261, 262, 264, 274, 300, 344, 354, 367, 372, 376, 387, 426, 525, 558, 613, 627, 632, 634, 636, 637, 664, 678, 694, 776, 779, 816, 829, 834, 839], "719": [56, 228, 632], "atanh": [56, 79, 632], "549": [56, 79, 84, 229, 632, 636, 660], "bitwise_and": [56, 79, 632], "bitwise_invert": [56, 79, 632], "bitiwse_invert": [56, 231], "bitwise_left_shift": [56, 79, 632], "bitwise_or": [56, 79, 632], "bitwise_right_shift": [56, 79, 102, 632], "bitwise_xor": [56, 79, 102, 632], "ceil": [56, 57, 79, 80, 97, 100, 126, 375, 394, 395, 396, 412, 413, 414, 417, 629, 632, 792, 840], "416": [56, 237, 632], "540": [56, 237], "990": [56, 237], "cosh": [56, 79, 237, 632], "deg2rad": [56, 79, 632], "180": [56, 79, 239, 279, 632], "270": [56, 79, 239, 279, 632], "360": [56, 79, 239, 279, 632, 828], "dividend": [56, 79, 240, 247, 282, 294, 632], "divisor": [56, 57, 59, 70, 79, 80, 82, 93, 240, 247, 250, 251, 282, 294, 375, 378, 394, 395, 396, 470, 479, 499, 615, 616, 621, 632, 635, 647, 764, 766, 792, 796], "375": [56, 241, 276], "erf": [56, 79, 343, 372, 632], "exponenti": [56, 57, 79, 80, 242, 243, 245, 265, 278, 295, 305, 367, 376, 441, 632], "gauss": [56, 79, 242, 632], "328": [56, 242, 290, 632], "677": [56, 242], "842": [56, 242, 290, 632], "71828198": [56, 79, 243], "38905573": [56, 79, 243], "08553696": [56, 79, 243, 632], "exp2": [56, 79, 632], "expm1": [56, 79, 632, 829], "244": [56, 245, 812], "918": [56, 245], "147": [56, 245, 632], "floor": [56, 57, 79, 80, 97, 100, 234, 247, 375, 394, 395, 396, 398, 412, 413, 414, 417, 632, 792, 840], "floor_divid": [56, 79, 632, 784, 829], "fmin": [56, 79, 632, 829], "gcd": [56, 79, 632, 829], "greater": [56, 57, 61, 64, 66, 79, 80, 84, 89, 102, 103, 134, 221, 222, 225, 226, 228, 229, 232, 234, 240, 246, 247, 261, 263, 278, 282, 284, 286, 287, 291, 292, 293, 337, 372, 375, 398, 403, 408, 419, 629, 632, 636, 637, 639, 643, 666, 668, 679, 709, 741, 778, 792, 820, 821, 842, 867], "greater_equ": [56, 79, 102, 103, 265, 632, 867], "isfinit": [56, 79, 632, 841], "out_i": [56, 79, 254, 255, 256, 257, 280, 632], "self_i": [56, 79, 254, 255, 256, 257, 280], "finit": [56, 79, 220, 221, 222, 223, 226, 228, 229, 238, 240, 241, 243, 245, 247, 254, 255, 261, 263, 273, 274, 276, 278, 282, 286, 287, 291, 632], "isinf": [56, 79, 632], "detect_posit": [56, 79, 255, 632], "detect_neg": [56, 79, 255, 632], "isnan": [56, 79, 632], "isreal": [56, 79, 632], "5j": [56, 79, 80, 257, 280, 338, 372, 632], "6j": [56, 57, 79, 253, 257, 338, 632], "lcm": [56, 79, 632, 829], "less": [56, 57, 62, 66, 70, 79, 80, 85, 89, 102, 103, 221, 222, 225, 228, 229, 236, 240, 247, 261, 262, 263, 264, 278, 282, 284, 287, 358, 372, 375, 376, 387, 397, 398, 407, 419, 445, 451, 522, 525, 632, 637, 643, 647, 678, 679, 680, 683, 694, 741, 764, 766, 792, 819, 820, 827, 829, 831, 833, 836, 841, 844, 847, 848, 849, 860, 867, 870, 872], "less_equ": [56, 79, 102, 103, 632, 833, 867], "log10": [56, 57, 79, 319, 369, 632], "logarithm": [56, 79, 243, 261, 262, 263, 264, 265, 342, 354, 372, 632, 637, 685], "602": [56, 262, 632], "699": [56, 262, 632], "log1p": [56, 79, 632, 839], "693": [56, 79, 117, 226, 263, 626, 632], "0953": [56, 79, 261, 263, 632], "log2": [56, 79, 266, 632], "logaddexp": [56, 79, 632], "logaddexp2": [56, 79, 632, 816, 834], "169925": [56, 79, 266, 632], "logical_and": [56, 79, 632, 841, 847, 877], "logical_not": [56, 79, 632, 829], "logical_or": [56, 79, 632, 877], "conform": [56, 62, 79, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 155, 165, 168, 180, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 238, 240, 241, 243, 245, 246, 247, 251, 252, 253, 254, 255, 256, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 275, 276, 277, 278, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 335, 336, 338, 372, 375, 378, 387, 419, 492, 496, 522, 629, 630, 632, 637, 639, 644, 645, 646, 647, 648, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 693, 694, 700, 702, 703, 704, 706, 707, 709, 710, 714, 744, 745, 747, 748, 749, 750, 751, 752, 753, 756, 760, 761, 762, 763, 764, 765, 766, 767, 768, 832, 835], "api_specif": [56, 57, 79, 80, 155, 243, 253, 254, 269, 335, 336, 372, 375, 378, 419, 492, 630, 632, 639, 647, 714, 764, 832], "array_api": [56, 79, 155, 243, 253, 254, 269, 375, 378, 419, 492, 630, 632, 637, 639, 647, 685, 686, 714, 764, 832], "logical_xor": [56, 79, 632], "use_wher": [56, 79, 271, 272, 632], "formula": [56, 57, 79, 240, 262, 264, 271, 272, 273, 319, 353, 369, 372, 381, 501, 503, 632, 810], "exce": [56, 57, 80, 272, 378, 494, 632], "product": [56, 57, 61, 62, 70, 79, 80, 84, 85, 93, 97, 98, 100, 273, 365, 366, 374, 376, 378, 387, 425, 428, 432, 435, 436, 437, 442, 443, 444, 496, 523, 524, 531, 632, 636, 637, 647, 663, 666, 668, 675, 677, 682, 689, 693, 757, 758, 759, 763, 764, 806, 818, 849, 870, 872], "nan_to_num": [56, 79, 632], "posinf": [56, 79, 274, 632], "neginf": [56, 79, 274, 632], "5e": [56, 59, 79, 80, 274, 357, 621, 632, 635], "not_equ": [56, 79, 102, 103, 632, 867], "pow": [56, 79, 102, 103, 632, 823, 867], "expon": [56, 57, 58, 80, 81, 278, 346, 348, 352, 372, 381, 506, 593, 632, 634, 637, 679], "rad2deg": [56, 79, 632], "286": [56, 80, 279], "458": [56, 279], "573": [56, 279, 632], "reciproc": [56, 79, 632], "333": [56, 79, 240, 281, 632], "remaind": [56, 57, 64, 74, 79, 80, 87, 249, 632, 639, 708, 823, 840], "modulu": [56, 79, 282, 632, 840], "x2_i": [56, 79, 223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "678": [56, 283, 284], "np_variant": [56, 79, 284, 632], "841": [56, 73, 79, 110, 285, 626, 632], "909": [56, 79, 81, 285, 632], "141": [56, 79, 152, 285, 630, 632], "sinh": [56, 79, 285, 632], "232": [56, 79, 286, 632], "sqrt": [56, 57, 79, 80, 375, 398, 403, 404, 408, 409, 419, 632, 791, 792, 812], "squar": [56, 57, 62, 79, 80, 85, 287, 376, 377, 381, 387, 429, 441, 453, 506, 522, 617, 618, 620, 625, 632, 635, 637, 641, 667, 669, 670, 672, 673, 674, 676, 679, 685, 686, 687, 692, 724, 812], "tanh": [56, 57, 79, 80, 290, 304, 308, 367, 632, 788, 849], "762": [56, 79, 291, 632], "964": [56, 79, 291, 632], "trapz": [56, 79, 632], "dx": [56, 79, 292, 632], "apart": [56, 79, 292, 632], "trapezoid": [56, 79, 292, 632], "trunc": [56, 79, 632], "025": [56, 293, 377, 458, 632, 640, 717], "trunc_divid": [56, 79, 632], "_arraywithactivationsexperiment": [57, 102], "celu": [57, 80, 367], "formul": [57, 73, 80, 98, 110, 295, 297, 367, 788], "elu": [57, 80, 299, 367, 788], "scaler": [57, 80, 296, 367, 776, 779, 844], "hardshrink": [57, 80, 367], "lambd": [57, 80, 297, 307, 367], "hardsilu": [57, 80, 367], "66666667": [57, 119, 298, 387, 522, 626], "hardtanh": [57, 80, 367], "max_val": [57, 80, 299, 367], "min_val": [57, 80, 299, 367], "region": [57, 80, 299, 307, 367, 819], "19722438": [57, 80, 300, 367], "38629448": [57, 80, 300, 367], "38629436": [57, 80, 300, 367], "logsigmoid": [57, 80, 367, 788], "31326175": [57, 73, 301, 367], "126928": [57, 80, 301], "01814993": [57, 301], "00004578": [57, 301], "57888985": [57, 301], "31326169": [57, 80, 301, 367], "69314718": [57, 62, 73, 80, 85, 301, 354, 367, 372, 637, 685], "01104775": [57, 301], "prelu": [57, 80, 367, 788], "unidirect": [57, 302, 367, 636, 661], "relu6": [57, 80, 367, 788], "rectifi": [57, 73, 80, 112, 114, 115, 303, 306, 311, 367, 626], "scaled_tanh": [57, 80, 308, 367], "7159": [57, 80, 304, 308, 367], "amplitud": [57, 80, 304, 308, 367], "65537548": [57, 80, 304], "49570239": [57, 80, 304], "77637792": [57, 304], "selu": [57, 80, 367, 788], "11133075": [57, 305, 367], "05070102": [57, 80, 305, 367], "10140204": [57, 305, 367], "15210295": [57, 305, 367], "20280409": [57, 305, 367], "25350523": [57, 305, 367], "30420589": [57, 305, 367], "35490704": [57, 305, 367], "silu": [57, 80, 367, 788], "26894143": [57, 306], "73105854": [57, 80, 306], "softshrink": [57, 80, 367], "bound": [57, 80, 307, 319, 367, 369, 378, 467, 492, 493, 776, 829, 833, 841, 844, 849, 876], "tanhshrink": [57, 80, 367], "23840582": [57, 80, 309, 367], "condit": [57, 67, 80, 90, 123, 310, 325, 326, 369, 376, 426, 628, 641, 644, 728, 729, 748, 778, 823, 829, 831, 833, 837, 838, 840, 844, 863], "met": [57, 80, 310, 833], "hreshold": [57, 310], "thresholded_relu": [57, 80, 367], "_arraywithconversionsexperiment": [57, 102], "_arraywithcreationexperiment": [57, 102], "blackman_window": [57, 80, 369], "period": [57, 80, 286, 290, 312, 314, 315, 317, 318, 369, 375, 410, 632, 820], "window": [57, 61, 80, 84, 312, 314, 315, 317, 318, 333, 369, 375, 381, 394, 395, 396, 398, 412, 413, 414, 415, 417, 418, 422, 423, 506, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 792, 814, 820, 826, 834, 875], "symmetr": [57, 62, 80, 85, 97, 98, 312, 314, 315, 317, 318, 369, 376, 378, 429, 484, 637, 667, 672, 673, 674, 695, 827], "38777878e": [57, 80, 312, 369], "40000000e": [57, 312, 369], "00000000e": [57, 62, 80, 81, 312, 343, 344, 369, 375, 397, 403, 407, 408, 637, 684, 816, 834], "30000000e": [57, 80, 312, 369], "eye_lik": [57, 80, 369], "elsewher": [57, 80, 132, 313, 369, 629, 644, 748, 819], "mel_weight_matrix": [57, 80, 369], "num_mel_bin": [57, 80, 319, 369], "dft_length": [57, 80, 319, 369, 375, 398], "sample_r": [57, 80, 319, 369], "lower_edge_hertz": [57, 80, 319, 369], "upper_edge_hertz": [57, 80, 319, 369], "3000": [57, 80, 319, 369], "melweightmatrix": [57, 80, 319, 369], "linearli": [57, 58, 81, 319, 369, 549, 634, 637, 686], "frequenc": [57, 58, 80, 81, 319, 369, 387, 522, 549, 634, 820], "spectra": [57, 319, 369], "dft": [57, 80, 319, 369, 375], "stft": [57, 80, 319, 369, 375], "mel": [57, 80, 319, 369], "hertz": [57, 319, 369], "2595": [57, 319, 369], "700": [57, 81, 319, 369, 553], "band": [57, 58, 80, 81, 319, 369, 549, 634], "spectrum": [57, 80, 319, 369], "n_fft": [57, 80, 319, 369, 375, 398], "8000": [57, 80, 314, 319, 369], "75694758": [57, 319, 369], "trilu": [57, 80, 369], "retain": [57, 147, 328, 329, 369, 617, 629, 635, 839, 843, 857], "unsorted_segment_mean": [57, 80, 369], "segment_id": [57, 80, 330, 331, 332, 369, 798], "num_seg": [57, 80, 330, 331, 332, 369, 798], "identifi": [57, 80, 330, 331, 332, 369, 818, 823, 828, 829, 844, 847], "th": [57, 80, 98, 330, 331, 332, 341, 369, 372, 376, 377, 387, 427, 434, 452, 532], "unsorted_segment_min": [57, 80, 369], "unsorted_segment_sum": [57, 80, 369], "polyv": [57, 80, 369], "coeff": [57, 80, 322, 369], "polynomi": [57, 80, 322, 369], "coeffici": [57, 80, 314, 322, 369, 376, 446, 637, 686, 796], "indetermin": [57, 80, 322, 369], "simplifi": [57, 80, 322, 369, 805, 806, 833, 841, 849, 850, 853, 860, 863, 866, 868, 869, 870, 873, 876, 877], "substitut": [57, 80, 322, 369], "_arraywithdata_typeexperiment": [57, 102], "_arraywithdeviceexperiment": [57, 102], "_arraywithelementwiseexperiment": [57, 102], "equal_nan": [57, 80, 334, 351, 372], "1e10": [57, 334, 351, 372], "00001e10": [57, 334, 351, 372], "00001e": [57, 334, 372], "amax": [57, 80, 372], "keepdim": [57, 62, 64, 67, 70, 71, 74, 80, 85, 87, 90, 93, 94, 335, 336, 340, 356, 363, 372, 373, 378, 387, 489, 527, 528, 529, 530, 531, 532, 637, 639, 644, 647, 648, 678, 694, 713, 744, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 833, 841, 849], "singleton": [57, 62, 67, 70, 71, 80, 85, 90, 93, 94, 335, 336, 372, 637, 639, 644, 647, 648, 694, 702, 709, 745, 760, 761, 762, 763, 764, 765, 766, 767, 768, 849], "amin": [57, 80, 372], "binar": [57, 80, 372], "conj": [57, 80, 238, 243, 245, 286, 287, 291, 372, 632], "conjug": [57, 62, 80, 85, 338, 372, 375, 376, 382, 398, 424, 430, 442, 444, 446, 510, 637, 677, 681, 689], "copysign": [57, 80, 372], "unsign": [57, 70, 80, 339, 372, 378, 387, 492, 523, 524, 647, 757, 758, 763, 765, 777, 829, 849], "count_nonzero": [57, 80, 372], "diff": [57, 74, 80, 372, 831, 840, 867], "prepend": [57, 80, 341, 372, 637, 639, 677, 702, 819], "differenc": [57, 80, 341, 372], "prior": [57, 80, 341, 372, 382, 510, 637, 689, 833, 845], "expand": [57, 58, 64, 80, 81, 341, 372, 378, 496, 549, 634, 639, 702, 812, 827, 843], "discret": [57, 80, 341, 372, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 638, 697, 792], "digamma": [57, 80, 372], "7549271": [57, 342, 372], "92278427": [57, 80, 342, 372], "9988394": [57, 342, 372], "erfc": [57, 80, 372], "complementari": [57, 80, 333, 343, 369, 372, 868, 876], "84270084e": [57, 343, 344], "80259693e": [57, 343, 344], "erfinv": [57, 80, 372], "float_pow": [57, 80, 372], "fmax": [57, 80, 372], "fmod": [57, 80, 632], "divis": [57, 58, 59, 80, 81, 82, 234, 240, 247, 249, 282, 284, 294, 378, 470, 583, 592, 606, 615, 616, 621, 632, 634, 635, 636, 649, 656, 657, 796, 837, 846], "frexp": [57, 80, 372], "edge_ord": [57, 80, 349, 372], "boundari": [57, 66, 80, 89, 100, 325, 326, 349, 369, 372, 375, 411, 643, 741, 870], "33333333": [57, 80, 281, 349, 372, 452, 632], "hypot": [57, 80, 372], "hypotenus": [57, 350, 372], "4031": [57, 350, 372], "8102": [57, 350, 372], "isclos": [57, 80, 372, 823], "ldexp": [57, 80, 372], "lerp": [57, 80, 372], "lgamma": [57, 80, 372], "45373654": [57, 354, 372], "6477685": [57, 354, 372], "modf": [57, 80, 372], "fraction": [57, 80, 355, 372, 387, 532, 636, 659], "nansum": [57, 80, 372], "accumul": [57, 80, 356, 372, 378, 489], "nextaft": [57, 80, 372], "0e": [57, 59, 80, 82, 357, 372, 621, 635], "4013e": [57, 80, 357, 372], "4028e": [57, 80, 357, 372], "signbit": [57, 80, 372], "637": [57, 80, 359, 372], "0909": [57, 80, 359, 372], "sparsify_tensor": [57, 80, 372], "sparsifi": [57, 80, 360, 372], "arang": [57, 62, 70, 80, 85, 137, 360, 372, 375, 376, 394, 395, 396, 403, 408, 412, 413, 414, 417, 426, 443, 476, 572, 614, 629, 634, 637, 640, 647, 678, 694, 716, 717, 759, 812, 829, 840, 877], "xlogi": [57, 80, 372], "0986": [57, 80, 361, 372], "3863": [57, 80, 361, 372], "0000": [57, 80, 314, 315, 318, 344, 361, 369, 372, 376, 378, 441, 478], "zeta": [57, 80, 372], "0369": [57, 80, 362, 372], "_arraywithgeneralexperiment": [57, 102], "init_valu": [57, 80, 84, 363, 373, 375, 418], "reduct": [57, 58, 63, 71, 74, 80, 81, 84, 86, 94, 363, 373, 375, 377, 378, 418, 452, 453, 454, 455, 456, 457, 458, 459, 489, 546, 576, 577, 634, 638, 648, 696, 697, 698, 767, 768, 793, 829, 837, 840, 844, 851], "_arraywithgradientsexperiment": [57, 102], "_arraywithimageexperiment": [57, 102], "_arraywithlayersexperiment": [57, 102], "adaptive_avg_pool1d": [57, 80, 375], "1d": [57, 80, 97, 98, 375, 376, 378, 387, 389, 397, 399, 401, 407, 442, 462, 467, 489, 493, 522, 776, 792], "adapt": [57, 80, 82, 375, 389, 390, 391, 392, 622, 635, 792, 796, 860], "plane": [57, 80, 240, 243, 245, 273, 285, 286, 287, 290, 375, 378, 389, 390, 391, 392, 490, 632], "l_in": [57, 80, 375, 389], "spatial": [57, 61, 80, 84, 375, 381, 389, 390, 391, 392, 411, 418, 422, 501, 502, 503, 506, 636, 649, 650, 651, 652, 654, 656, 658, 795], "Will": [57, 80, 375, 389, 390, 391, 392, 801, 855], "l_out": [57, 80, 375, 389], "nhwc": [57, 61, 80, 84, 375, 381, 390, 395, 400, 413, 417, 506, 636, 649, 652, 653, 656, 657, 658, 792], "3d": [57, 62, 80, 375, 390, 392, 399, 400, 464, 637, 675, 792, 847], "4d": [57, 80, 375, 376, 381, 390, 400, 401, 450, 506], "s_0": [57, 80, 375, 390, 391], "s_1": [57, 80, 375, 390, 391], "adaptive_max_pool2d": [57, 80, 375], "h_in": [57, 80, 375, 391, 392], "w_in": [57, 80, 375, 391, 392], "adaptive_max_pool3d": [57, 80, 375], "avg_pool1d": [57, 80, 375], "kernel": [57, 61, 80, 84, 375, 394, 395, 396, 412, 413, 414, 415, 636, 662, 849, 855, 870, 873, 874], "nwc": [57, 61, 80, 84, 375, 394, 399, 412, 415, 636, 649, 650, 651, 656, 657, 792], "count_include_pad": [57, 80, 375, 394, 395, 396, 792], "d_in": [57, 61, 80, 84, 375, 392, 394, 395, 396, 398, 403, 404, 408, 412, 413, 414, 415, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658], "algorithm": [57, 61, 73, 80, 84, 110, 375, 376, 394, 395, 396, 411, 412, 413, 414, 415, 445, 447, 451, 637, 650, 652, 653, 654, 655, 658, 685, 788, 792, 806, 829, 841, 847, 855, 870, 872, 874], "ncw": [57, 61, 80, 84, 375, 394, 399, 400, 412, 415, 636, 649, 650, 651, 656, 657, 792], "avg_pool2d": [57, 80, 375], "divisor_overrid": [57, 80, 375, 394, 395, 396, 792], "avg_pool3d": [57, 80, 375], "ndhwc": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "volum": [57, 61, 80, 84, 375, 396, 398, 403, 404, 408, 414, 636, 654, 655], "ncdhw": [57, 61, 80, 84, 375, 396, 401, 414, 636, 649, 654, 655, 656, 657, 792], "dct": [57, 80, 375, 792, 852], "truncat": [57, 80, 375, 376, 397, 403, 407, 408, 409, 420, 449, 579, 634, 792, 833, 852], "larger": [57, 64, 70, 80, 87, 93, 165, 375, 397, 404, 407, 409, 420, 630, 639, 647, 699, 707, 764, 766, 792, 844, 847, 877], "ortho": [57, 80, 375, 397, 398, 403, 404, 407, 408, 409, 419, 420, 792], "onesid": [57, 80, 375, 398], "fft": [57, 80, 375, 398, 404, 419, 420, 423, 792, 818, 870], "symmetri": [57, 375, 398], "rfft": [57, 80, 375, 398, 420], "invok": [57, 375, 398, 812, 835, 863, 864], "batch_idx": [57, 375, 398], "signal_dim1": [57, 375, 398], "signal_dim2": [57, 375, 398], "signal_dimn": [57, 375, 398], "signal_dim": [57, 375, 398], "embed": [57, 80, 375, 377, 452, 636, 663, 778, 792, 870], "max_norm": [57, 58, 80, 81, 375, 402, 540, 541, 634, 792], "ifft": [57, 80, 375, 403, 409, 792], "pi": [57, 80, 286, 290, 375, 377, 403, 408, 457, 627, 632], "44509285e": [57, 80, 375, 403], "14423775e": [57, 80, 375, 403], "17j": [57, 80, 375, 403, 408], "11483250e": [57, 80, 375, 403], "16j": [57, 80, 375, 403, 408], "33486982e": [57, 80, 375, 403], "22464680e": [57, 80, 375, 403], "95799250e": [57, 80, 375, 403], "66951701e": [57, 80, 375, 403], "fft2": [57, 375], "20477401j": [57, 375, 404], "0614962j": [57, 375, 404], "idct": [57, 80, 375], "49862671": [57, 80, 375, 397, 407], "37691498": [57, 80, 375, 397, 407], "00390816": [57, 80, 375, 397, 407], "58938599": [57, 80, 375, 397, 407], "92713165": [57, 80, 375, 397, 407], "078475": [57, 80, 375, 397, 407], "19664812": [57, 80, 375, 397, 407], "95411837": [57, 80, 375, 397, 407], "30636606e": [57, 80, 375, 408], "43029718e": [57, 80, 375, 408], "18j": [57, 80, 375, 403, 408], "53080850e": [57, 80, 375, 408], "58689626e": [57, 80, 375, 408], "24474906e": [57, 80, 375, 408], "91858728e": [57, 80, 375, 408], "01435406e": [57, 80, 375, 408], "ifftn": [57, 80, 375], "24730653": [57, 80, 375, 409], "90832391j": [57, 80, 375, 409], "49495562": [57, 80, 375, 409], "9039565j": [57, 80, 375, 409], "98193269": [57, 80, 375, 409], "49560517j": [57, 80, 375, 409], "93280757": [57, 80, 375, 409], "48075343j": [57, 80, 375, 409], "28526384": [57, 80, 375, 409], "3351205j": [57, 80, 375, 409], "2343787": [57, 80, 375, 409], "83528011j": [57, 80, 375, 409], "18791352": [57, 80, 375, 409], "30690572j": [57, 80, 375, 409], "82115787": [57, 80, 375, 409], "96195183j": [57, 80, 375, 409], "44719226": [57, 80, 375, 409], "72654048j": [57, 80, 375, 409], "51476765": [57, 375, 409], "66160417j": [57, 375, 409], "04319742": [57, 375, 409], "05411636j": [57, 375, 409], "015561": [57, 375, 409], "04216015j": [57, 375, 409], "06310689": [57, 375, 409], "05347854j": [57, 375, 409], "13392983": [57, 375, 409], "16052352j": [57, 375, 409], "08371392": [57, 375, 409], "17252843j": [57, 375, 409], "0031429": [57, 375, 409], "05421245j": [57, 375, 409], "10446617": [57, 375, 409], "17747098j": [57, 375, 409], "05344324": [57, 375, 409], "07972424j": [57, 375, 409], "8344667": [57, 80, 375, 409], "98222595j": [57, 80, 375, 409], "48472244": [57, 80, 375, 409], "30233797j": [57, 80, 375, 409], "recompute_scale_factor": [57, 80, 375, 411, 847], "antialia": [57, 80, 375, 411, 847], "height": [57, 58, 61, 80, 81, 84, 375, 411, 545, 634, 636, 652, 653, 654, 655, 658, 821, 852], "width": [57, 58, 61, 80, 81, 84, 375, 376, 378, 381, 387, 411, 430, 484, 506, 525, 545, 634, 636, 650, 651, 652, 653, 654, 655, 658, 663], "trilinear": [57, 80, 375, 411, 847], "nearest_exact": [57, 80, 375, 411, 847], "tf_area": [57, 80, 375, 411, 847], "mitchellcub": [57, 80, 375, 411, 847], "lanczos3": [57, 80, 375, 411, 847], "lanczos5": [57, 80, 375, 411, 847], "gaussian": [57, 80, 110, 375, 411, 626, 847], "overwrit": [57, 74, 80, 213, 375, 411, 631, 820, 840, 841, 849], "thu": [57, 80, 234, 247, 282, 290, 291, 375, 376, 411, 429, 632, 637, 672, 673, 818, 828, 833, 838, 841, 845], "antialias": [57, 80, 411], "max_pool1d": [57, 80, 375], "dilaton": [57, 80, 412, 413, 414], "max_pool3d": [57, 80, 375], "max_unpool1d": [57, 80, 375], "unpool": [57, 80, 375, 415], "reduce_window": [57, 84, 375], "window_dimens": [57, 84, 375, 418], "window_strid": [57, 84, 375, 418], "base_dil": [57, 84, 375, 418], "window_dil": [57, 84, 375, 418], "trim": [57, 74, 80, 375, 378, 419, 495], "orthonorm": [57, 62, 80, 85, 375, 419, 637, 684, 687], "8660254j": [57, 80, 375, 419], "rfftn": [57, 80, 375], "sliding_window": [57, 80, 375], "window_s": [57, 80, 375, 422], "frame_length": [57, 80, 375, 423], "frame_step": [57, 80, 375, 423], "fft_length": [57, 80, 375, 423], "window_fn": [57, 80, 375, 423], "pad_end": [57, 80, 375, 423], "smallest": [57, 74, 80, 165, 168, 236, 375, 378, 423, 494, 630, 632, 637, 678, 776, 778, 779], "enclos": [57, 80, 375, 423, 871], "window_length": [57, 80, 312, 314, 317, 318, 333, 369, 375, 423], "li": [57, 80, 375, 376, 387, 423, 430, 532, 859], "past": [57, 80, 375, 423, 820, 823, 842, 844, 856, 870], "fft_unique_bin": [57, 80, 375, 423], "complex64": [57, 77, 80, 158, 172, 181, 187, 253, 280, 375, 419, 423, 630, 632, 637, 685, 687, 688, 777, 829, 834], "complex128": [57, 80, 81, 158, 159, 172, 181, 187, 375, 423, 571, 630, 634, 637, 673, 674, 678, 694, 776, 777, 816, 829, 834], "compon": [57, 80, 142, 143, 221, 222, 223, 226, 229, 238, 240, 241, 243, 245, 273, 275, 276, 283, 286, 287, 290, 291, 323, 327, 338, 369, 372, 375, 376, 381, 423, 434, 445, 506, 629, 632, 644, 747, 812, 843, 849, 860, 866, 871, 873], "linear_algebra": [57, 62, 80, 85, 637, 845], "_arraywithlinearalgebraexperiment": [57, 102], "adjoint": [57, 62, 80, 85, 376, 446, 637, 676, 686, 687, 776], "batched_out": [57, 80, 376], "j1": [57, 80, 376, 425], "jn": [57, 80, 376, 425], "k1": [57, 80, 376, 425], "km": [57, 80, 376, 425], "outer": [57, 62, 80, 85, 97, 376, 425, 637, 640, 715, 716, 717, 806, 818], "30000001": [57, 80, 376, 425, 545, 634, 645, 750], "40000001": [57, 61, 73, 80, 102, 103, 112, 115, 296, 367, 376, 425, 626, 636, 645, 666, 750], "60000002": [57, 80, 93, 103, 376, 381, 425, 505, 507, 541, 634, 761], "80000001": [57, 80, 376, 381, 425, 505, 507], "60000001": [57, 80, 376, 425], "90000004": [57, 80, 376, 425, 647, 761], "20000002": [57, 80, 376, 425, 541, 634], "20000005": [57, 59, 80, 296, 304, 307, 308, 367, 376, 425, 615], "00000012": [57, 80, 376, 425], "49999994": [57, 80, 376, 425], "00000006": [57, 80, 376, 425], "60000014": [57, 80, 376, 425], "19999993": [57, 80, 376, 425], "80000007": [57, 80, 376, 425, 541, 634], "20000017": [57, 80, 376, 425], "89999992": [57, 80, 376, 425], "60000008": [57, 80, 376, 425], "80000019": [57, 80, 353, 372, 376, 425], "4000001": [57, 80, 84, 376, 425, 636, 659, 666], "cond": [57, 80, 123, 376, 628, 855], "933034373659268": [57, 426], "diagflat": [57, 80, 376, 436, 441], "offset": [57, 62, 65, 76, 80, 85, 88, 134, 376, 381, 427, 501, 502, 503, 629, 637, 642, 671, 691, 737, 783], "padding_valu": [57, 80, 376, 427], "right_left": [57, 80, 376, 427], "num_row": [57, 80, 376, 427], "num_col": [57, 80, 376, 427], "dot": [57, 61, 80, 84, 97, 376, 377, 443, 452, 636, 637, 663, 666, 693, 806, 812, 819, 828], "eig": [57, 62, 80, 376, 637, 673, 674], "37228132": [57, 80, 376, 429, 431, 672], "82456484": [57, 429, 672], "41597356": [57, 429, 672], "56576746": [57, 429, 672], "90937671": [57, 429, 672], "eigh_tridiagon": [57, 80, 376], "eigvals_onli": [57, 80, 376, 430], "select_rang": [57, 80, 376, 430], "tol": [57, 80, 101, 376, 430, 445, 451], "eigenvalu": [57, 62, 80, 85, 97, 98, 376, 429, 430, 431, 637, 672, 673, 674, 680], "eigenvector": [57, 80, 376, 429, 430, 637, 672, 673], "interv": [57, 66, 71, 80, 89, 94, 126, 137, 138, 145, 376, 387, 430, 525, 629, 637, 639, 643, 648, 668, 693, 699, 702, 710, 739, 741, 767, 768], "converg": [57, 80, 376, 430, 861], "_2": [57, 80, 376, 430], "eig_val": [57, 80, 376, 430], "decreas": [57, 80, 376, 430, 778], "eig_vector": [57, 80, 376, 430], "38196": [57, 430], "61803": [57, 430], "eigval": [57, 80, 376], "general_inner_product": [57, 85, 376], "n_mode": [57, 85, 376, 432], "tradit": [57, 85, 376, 432], "inner": [57, 62, 76, 85, 106, 141, 376, 429, 432, 629, 637, 640, 672, 673, 677, 715, 716, 717, 806, 818, 840], "higher_order_mo": [57, 80, 376], "n_featur": [57, 80, 376, 433], "d1": [57, 80, 376, 433], "dn": [57, 80, 376, 433], "initialize_tuck": [57, 80, 376], "svd": [57, 62, 80, 85, 100, 376, 434, 440, 445, 447, 448, 449, 451, 637, 688], "truncated_svd": [57, 80, 376, 434, 445, 448, 451], "non_neg": [57, 80, 327, 369, 376, 434], "mask": [57, 61, 80, 84, 97, 375, 376, 378, 421, 434, 435, 445, 451, 491, 555, 634, 636, 659, 663, 666, 847], "svd_mask_repeat": [57, 80, 376, 434, 445, 451], "tuckertensor": [57, 80, 101, 327, 369, 376, 434, 445, 451], "scheme": [57, 80, 376, 434, 445, 823, 853, 870], "tucker": [57, 80, 327, 369, 376, 434, 445], "decomposit": [57, 62, 80, 85, 97, 98, 100, 323, 324, 325, 326, 327, 369, 376, 434, 438, 445, 448, 450, 451, 637, 667, 673, 684, 687, 818, 877], "miss": [57, 80, 376, 378, 434, 445, 451, 491, 796, 818, 819, 824, 827, 828, 831, 841, 844, 847], "everywher": [57, 80, 376, 434, 445, 451], "kron": [57, 80, 376, 441, 877], "make_svd_non_neg": [57, 80, 376, 449], "nntype": [57, 80, 376, 440], "nndsvd": [57, 80, 376, 440], "singular": [57, 62, 80, 85, 376, 434, 440, 447, 449, 637, 678, 680, 683, 687, 688, 776, 778, 829], "nndsvda": [57, 80, 376, 440], "boutsidi": [57, 80, 376, 440], "gallopoulo": [57, 80, 376, 440], "recognit": [57, 80, 376, 440, 815], "1350": [57, 80, 376, 440], "1362": [57, 80, 376, 440], "2008": [57, 80, 376, 440, 870], "matrix_exp": [57, 80, 376], "7183": [57, 80, 376, 441], "3891": [57, 80, 376, 441], "mode_dot": [57, 80, 96, 97, 101, 376], "matrix_or_vector": [57, 80, 97, 101, 376, 442], "i_1": [57, 80, 97, 98, 376, 442], "i_k": [57, 80, 97, 376, 442], "i_n": [57, 80, 97, 376, 442], "i_": [57, 80, 97, 376, 387, 442, 525], "multi_dot": [57, 80, 376], "148": [57, 79, 80, 243, 376, 443], "multi_mode_dot": [57, 80, 376], "mat_or_vec_list": [57, 80, 376, 444], "times_0": [57, 376, 444], "vec": [57, 376, 444], "times_1": [57, 376, 444], "cdot": [57, 273, 376, 444, 632], "times_n": [57, 376, 444], "partial_tuck": [57, 80, 376], "n_iter_max": [57, 80, 376, 445, 451], "verbos": [57, 80, 376, 445, 448, 451, 810, 844, 849], "return_error": [57, 80, 376, 445, 451], "variat": [57, 80, 376, 445, 451, 831, 841, 844], "reconstruct": [57, 62, 68, 80, 91, 100, 376, 378, 445, 451, 498, 637, 645, 687, 749, 751, 842], "return_erro": [57, 376, 445, 451], "svd_flip": [57, 80, 376], "u_based_decis": [57, 80, 376, 447], "basi": [57, 80, 376, 447, 820, 823, 852], "flip": [57, 64, 80, 87, 97, 231, 376, 378, 447, 475, 476, 632, 639, 840, 851, 852, 854], "decis": [57, 80, 376, 447, 812, 823, 829, 847, 849, 851, 870], "u_adjust": [57, 80, 376, 447], "v_adjust": [57, 80, 376, 447], "tensor_train": [57, 80, 376], "tt": [57, 80, 326, 369, 376, 448, 450], "kth": [57, 376, 448], "tttensor": [57, 100, 326, 369, 376, 448], "compute_uv": [57, 62, 80, 85, 376, 449, 637, 687], "n_eigenvec": [57, 80, 376, 449], "returnedv": [57, 449], "vh": [57, 62, 80, 85, 376, 449, 637, 687], "eigen": [57, 80, 376, 449], "namedtupl": [57, 62, 68, 80, 85, 91, 376, 378, 429, 449, 498, 637, 645, 672, 673, 684, 685, 687, 749, 750, 751], "tt_matrix_to_tensor": [57, 80, 376], "rank_k": [57, 80, 376, 450], "left_dim_k": [57, 80, 376, 450], "right_dim_k": [57, 80, 376, 450], "rank_": [57, 80, 376, 450], "49671414": [57, 80, 376, 450, 643, 740], "1382643": [57, 80, 376, 450, 643, 740], "64768857": [57, 80, 376, 450, 643, 740], "5230298": [57, 80, 376, 450, 643, 740], "23415337": [57, 80, 376, 450, 643, 740], "23413695": [57, 80, 376, 450, 643, 740], "57921278": [57, 80, 376, 450], "76743472": [57, 80, 376, 450], "1163073": [57, 80, 376, 450], "11629914": [57, 80, 376, 450], "03237505": [57, 80, 376, 450], "03237278": [57, 80, 376, 450], "78441733": [57, 80, 376, 450], "38119566": [57, 80, 376, 450], "21834874": [57, 80, 376, 450], "10610882": [57, 80, 376, 450], "15165846": [57, 80, 376, 450], "15164782": [57, 80, 376, 450], "35662258": [57, 80, 376, 450], "35659757": [57, 80, 376, 450], "02283812": [57, 80, 376, 450], "49705869": [57, 80, 376, 450], "40518808": [57, 80, 376, 450], "16882598": [57, 80, 376, 450], "fixed_factor": [57, 80, 376, 451], "tl": [57, 80, 376, 451], "kolda": [57, 80, 376, 451], "bader": [57, 80, 376, 451], "siam": [57, 80, 376, 448, 451], "review": [57, 80, 376, 451, 814, 815, 818, 820, 826, 828, 831, 841, 845], "vol": [57, 80, 376, 451], "pp": [57, 80, 376, 451], "455": [57, 80, 376, 451], "2009": [57, 80, 376, 451], "_arraywithlossesexperiment": [57, 102], "hinge_embedding_loss": [57, 80, 377], "margin": [57, 80, 377, 452, 459, 841], "measur": [57, 377, 452, 636, 663, 792], "semi": [57, 377, 452], "l_n": [57, 377, 452], "x_n": [57, 377, 452], "y_n": [57, 377, 452], "ell": [57, 377, 452], "operatornam": [57, 284, 286, 377, 452, 632, 637, 673], "l_1": [57, 377, 452], "hyperparamet": [57, 80, 377, 452], "aggreg": [57, 80, 377, 452, 645, 749, 828], "unreduc": [57, 80, 377, 452], "hing": [57, 80, 377, 452, 459], "target_tensor": [57, 377, 452, 457], "huber_loss": [57, 80, 377], "delta": [57, 59, 80, 82, 377, 453, 615, 635], "transit": [57, 80, 377, 453, 870], "huber": [57, 80, 377, 453], "kl_div": [57, 80, 377], "log_target": [57, 80, 377, 454], "contai": [57, 454], "batchmean": [57, 377, 454], "kullback": [57, 80, 377, 454], "leibler": [57, 80, 377, 454], "0916": [57, 454], "l1_loss": [57, 80, 377, 456], "l1": [57, 62, 80, 85, 377, 381, 453, 455, 456, 458, 504, 637, 694, 827, 852], "targetict": [57, 80, 377, 455, 456, 458, 459], "20000000000000004": [57, 455], "log_poisson_loss": [57, 80, 377], "compute_full_loss": [57, 80, 377, 456, 793], "favor": [57, 80, 377, 456], "likelihood": [57, 80, 377, 456, 457], "28402555": [57, 377, 456], "03402555": [57, 377, 456], "1573164": [57, 377, 456], "poisson_nll_loss": [57, 80, 377], "log_input": [57, 80, 377, 457], "poisson": [57, 80, 377, 382, 456, 457], "assumpt": [57, 377, 456, 457], "minu": [57, 377, 456, 457], "omiss": [57, 377, 457], "stirl": [57, 80, 377, 456, 457], "1977562": [57, 457], "smooth_l1_loss": [57, 80, 377], "smooth": [57, 63, 80, 86, 377, 453, 458, 638, 696, 697, 698, 839], "8125": [57, 458], "soft_margin_loss": [57, 80, 377], "soft": [57, 80, 307, 377, 378, 459, 491, 830], "35667497": [57, 459], "22314353": [57, 459], "60943791": [57, 459], "_arraywithmanipulationexperiment": [57, 102], "as_strid": [57, 80, 378], "nativeshap": [57, 61, 64, 66, 80, 87, 89, 127, 128, 130, 135, 142, 148, 378, 382, 460, 472, 477, 485, 488, 508, 509, 510, 511, 512, 577, 590, 596, 598, 629, 634, 636, 639, 643, 649, 651, 653, 655, 657, 706, 739, 740, 741, 836, 838], "byte": [57, 58, 76, 80, 81, 102, 134, 378, 460, 571, 629, 634, 875, 876], "associative_scan": [57, 80, 378], "revers": [57, 58, 62, 70, 80, 85, 93, 102, 103, 366, 374, 375, 376, 378, 387, 421, 437, 461, 475, 476, 523, 524, 544, 634, 637, 639, 647, 692, 703, 757, 758, 818, 827, 828, 829, 831, 832, 840, 841, 847, 854, 855], "scan": [57, 80, 378, 461, 855], "atleast_1d": [57, 80, 378], "ari": [57, 80, 378, 462, 463, 464, 470, 479, 499], "a1": [57, 81, 378, 462, 463, 464, 468, 537], "a2": [57, 81, 378, 462, 463, 464, 468, 537], "atleast_2d": [57, 80, 378], "atleast_3d": [57, 80, 378], "column_stack": [57, 80, 378], "concat_from_sequ": [57, 80, 378], "input_sequ": [57, 80, 378, 469], "new_axi": [57, 80, 378, 469, 854], "dsplit": [57, 80, 378], "indices_or_sect": [57, 80, 378, 470, 479, 499], "3rd": [57, 80, 378, 470], "dstack": [57, 80, 378], "fill_diagon": [57, 80, 378], "fill_diag": [57, 473], "fortran": [57, 64, 80, 87, 378, 474, 639, 706, 870, 874], "layout": [57, 64, 80, 87, 378, 474, 639, 706, 825, 840, 841, 847], "fliplr": [57, 80, 378, 840], "diag": [57, 62, 80, 85, 98, 378, 475, 476, 637, 673, 849], "flipud": [57, 80, 378, 840], "fold": [57, 80, 378, 485, 486, 828], "unfold": [57, 80, 97, 98, 100, 376, 378, 434, 477, 485, 487], "folded_tensor": [57, 378, 477], "heavisid": [57, 80, 378], "5000": [57, 378, 478, 637, 676, 806], "hsplit": [57, 80, 378], "horizont": [57, 80, 378, 468, 479, 545, 634], "hstack": [57, 80, 378, 468], "i0": [57, 80, 378, 387, 525], "bessel": [57, 70, 80, 93, 317, 369, 378, 481, 647, 764, 766], "kind": [57, 70, 80, 165, 168, 169, 387, 481, 523, 524, 529, 630, 647, 757, 758, 763, 765, 776, 777, 817, 841, 844, 847, 849, 855], "26606588": [57, 80, 378, 481], "2795853": [57, 80, 378, 481], "88079259": [57, 80, 378, 481], "row_mod": [57, 80, 378, 482], "column_mod": [57, 80, 378, 482], "ascend": [57, 69, 80, 92, 378, 385, 482, 515, 646, 753, 755, 821], "prod": [57, 58, 70, 81, 93, 376, 378, 435, 437, 482, 531, 546, 634, 647, 776, 806, 829, 831, 849, 867], "moveaxi": [57, 80, 378], "destin": [57, 80, 378, 483], "unstack": [57, 64, 74, 87, 483, 639, 827, 849, 852, 877], "reorder": [57, 64, 80, 87, 378, 483, 545, 634, 639, 703, 843], "stat_length": [57, 80, 378, 484], "constant_valu": [57, 80, 378, 484], "end_valu": [57, 80, 378, 484], "reflect_typ": [57, 80, 378, 484], "partial_fold": [57, 80, 378], "skip_begin": [57, 80, 378, 485, 486, 487, 488], "untouch": [57, 80, 378, 485, 486, 487, 488], "partial_tensor_to_vec": [57, 80, 378], "skip_end": [57, 80, 378, 486, 487], "vectoris": [57, 80, 97, 378, 486, 488], "partial_unfold": [57, 80, 378], "ravel_tensor": [57, 80, 378, 487], "n_1": [57, 80, 378, 487], "n_2": [57, 80, 378, 487], "n_i": [57, 80, 376, 378, 435, 487], "partial_vec_to_tensor": [57, 80, 378], "put_along_axi": [57, 80, 378], "rot90": [57, 80, 378, 840], "rotat": [57, 80, 378, 490], "soft_threshold": [57, 80, 378], "behav": [57, 80, 335, 336, 372, 376, 378, 429, 492, 637, 672, 823, 833, 838, 840, 841, 842, 851, 871], "invalid": [57, 71, 80, 94, 378, 492, 637, 639, 648, 693, 702, 767, 768, 776, 819, 829], "slice": [57, 70, 74, 80, 81, 93, 98, 147, 328, 369, 378, 467, 489, 492, 493, 552, 553, 555, 581, 629, 634, 641, 647, 727, 762, 844, 870], "inexact": [57, 80, 346, 372, 378, 492], "largest": [57, 74, 80, 165, 168, 376, 378, 447, 492, 494, 630, 637, 678, 687], "take_along_axi": [57, 80, 378], "arr": [57, 58, 77, 80, 173, 378, 467, 489, 493, 577, 630, 829, 830], "top_k": [57, 80, 378], "sort": [57, 68, 74, 80, 91, 103, 199, 292, 376, 378, 387, 429, 494, 515, 529, 631, 632, 637, 645, 672, 673, 687, 688, 749, 753, 754, 755, 778, 812, 817, 828, 843, 845], "trim_zero": [57, 80, 378], "fb": [57, 80, 378, 495], "front": [57, 80, 378, 495, 841, 848, 849, 852, 859, 868, 870], "unflatten": [57, 80, 378], "unfolded_tensor": [57, 378, 497], "unique_consecut": [57, 80, 378], "vsplit": [57, 80, 378], "vertic": [57, 80, 378, 499, 500, 545, 634, 820], "_arraywithnormsexperiment": [57, 102], "varianc": [57, 70, 80, 93, 381, 501, 503, 647, 766, 791, 795], "nsc": [57, 80, 381, 501, 502, 503, 795], "braodcast": [57, 80, 381, 501], "running_mean": [57, 80, 381, 501, 503, 795], "running_var": [57, 80, 381, 501, 503, 795], "nc": [57, 80, 381, 501, 502, 503, 795], "group_norm": [57, 80, 381], "num_group": [57, 80, 381, 502], "instance_norm": [57, 80, 381], "l1_normal": [57, 80, 381], "33333334": [57, 80, 298, 367, 381, 504, 507, 541, 617, 634, 635, 636, 637, 658, 694], "33333337": [57, 137, 381, 504, 617, 629, 635], "28571439": [57, 381, 504], "l2_normal": [57, 80, 381, 507], "l2": [57, 62, 85, 96, 97, 381, 505, 507, 637, 694, 792, 827], "44721359": [57, 80, 381, 505, 507], "89442718": [57, 80, 381, 505, 507, 541, 634], "lp_normal": [57, 80, 381], "lp": [57, 381, 507], "_arraywithrandomexperiment": [57, 102], "bernoulli": [57, 80, 375, 382, 399, 400, 401], "event": [57, 80, 382, 508, 844], "parameter": [57, 66, 80, 89, 382, 508, 509, 511, 512, 643, 738, 740, 741], "odd": [57, 80, 278, 378, 382, 484, 508, 632, 806, 817, 823], "drawn": [57, 66, 80, 89, 382, 508, 509, 510, 511, 512, 643, 738, 739, 740, 741, 776, 777, 778, 791, 844], "dirichlet": [57, 80, 382], "10598304": [57, 382, 510], "21537054": [57, 382, 510], "67864642": [57, 382, 510], "48006698": [57, 382, 510], "07472073": [57, 382, 510], "44521229": [57, 382, 510], "55479872": [57, 382, 510], "05426367": [57, 382, 510], "39093761": [57, 382, 510], "19531053": [57, 382, 510], "51675832": [57, 382, 510], "28793114": [57, 382, 510], "12315625": [57, 382, 510], "29823365": [57, 382, 510], "5786101": [57, 382, 510], "15564976": [57, 382, 510], "50542368": [57, 382, 510], "33892656": [57, 382, 510], "1325352": [57, 382, 510], "44439589": [57, 382, 510], "42306891": [57, 382, 510], "gamma": [57, 65, 80, 88, 342, 354, 372, 382, 387, 526, 642, 737], "lam": [57, 80, 382, 512], "_arraywithsearchingexperiment": [57, 102], "unravel_index": [57, 80, 383], "unravel": [57, 80, 383, 513], "_arraywithsetexperiment": [57, 102], "_arraywithsortingexperiment": [57, 102], "lexsort": [57, 80, 385], "indirectli": [57, 80, 385, 515], "statist": [57, 80, 95, 378, 484, 795, 810, 818, 829, 844, 845, 870], "_arraywithstatisticalexperiment": [57, 102], "bincount": [57, 80, 387], "minlength": [57, 80, 387, 520], "corrcoef": [57, 80, 387], "rowvar": [57, 80, 387, 521, 522], "relationship": [57, 80, 521, 791, 843], "cov": [57, 80, 387], "ddof": [57, 80, 387, 522], "fweight": [57, 80, 387, 522], "aweight": [57, 80, 387, 522], "overridden": [57, 80, 387, 522, 796, 824], "assign": [57, 80, 97, 387, 522, 818, 820, 825, 829, 840, 843, 851], "covari": [57, 80, 387, 522], "cummax": [57, 80, 387], "exclus": [57, 58, 70, 74, 80, 81, 93, 126, 376, 387, 445, 523, 524, 564, 565, 568, 629, 634, 643, 647, 739, 757, 758, 815, 827, 829, 837, 854, 874, 876], "cumul": [57, 70, 80, 93, 387, 523, 524, 647, 757, 758], "uint64": [57, 70, 162, 167, 169, 170, 180, 182, 185, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "uint16": [57, 70, 157, 162, 167, 168, 177, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 841, 844, 849], "bit": [57, 70, 164, 165, 168, 231, 232, 234, 387, 523, 524, 630, 632, 647, 757, 758, 763, 765, 812, 817, 818, 819, 827, 828, 829, 831, 837, 849, 851, 876], "uint32": [57, 70, 162, 167, 168, 169, 191, 387, 523, 524, 630, 647, 757, 758, 763, 765, 776, 777, 829, 844, 849], "cummin": [57, 80, 387], "histogram": [57, 80, 387], "extend_lower_interv": [57, 80, 387, 525], "extend_upper_interv": [57, 80, 387, 525], "densiti": [57, 80, 387, 525], "monoton": [57, 80, 387, 525], "rightmost": [57, 80, 387, 525], "c1": [57, 80, 387, 525, 827], "ff": [57, 80, 387, 525], "c_": [57, 80, 98, 387, 525], "igamma": [57, 80, 387], "incomplet": [57, 80, 387, 526, 820], "3614": [57, 80, 387, 526], "2085": [57, 80, 387, 526], "median": [57, 80, 378, 387, 484, 529], "nanmean": [57, 80, 387], "6666666666666665": [57, 80, 387, 528], "nanmedian": [57, 80, 387], "overwrite_input": [57, 80, 387, 529], "treat": [57, 74, 80, 103, 278, 356, 372, 378, 381, 387, 493, 506, 529, 531, 632, 773, 839, 844, 850, 854], "undefin": [57, 80, 378, 387, 388, 484, 529, 533, 829, 833, 839], "nanmin": [57, 80, 387], "nanprod": [57, 80, 387], "Not": [57, 80, 356, 372, 376, 387, 431, 531, 627, 825, 833, 842, 852, 853, 855], "quantil": [57, 80, 387, 867], "inclus": [57, 80, 126, 387, 532, 629, 643, 739, 813, 825, 840, 847], "midpoint": [57, 80, 387, 532], "surround": [57, 80, 387, 532, 847], "whichev": [57, 80, 387, 532], "_arraywithutilityexperiment": [57, 102], "optional_get_el": [57, 80, 388], "empti": [57, 58, 70, 74, 81, 93, 126, 378, 388, 484, 533, 540, 577, 629, 634, 637, 641, 647, 648, 691, 694, 732, 762, 763, 765, 767, 768, 818, 819, 824, 826, 829, 830, 840], "_arraywithgener": [58, 102], "all_equ": [58, 81, 634], "equality_matrix": [58, 81, 534, 634], "array_equ": [58, 81, 634], "assert_supports_inplac": [58, 81, 634], "ivybackendexcept": [58, 81, 538, 562, 634, 807, 824, 830, 833, 834], "clip_matrix_norm": [58, 81, 634], "894": [58, 81, 540, 541, 634, 642, 737], "clip_vector_norm": [58, 81, 634], "default_v": [58, 544, 634], "catch_except": [58, 544, 634], "rev": [58, 544, 634], "with_cal": [58, 544, 634], "catch": [58, 544, 634, 838, 844], "einops_rearrang": [58, 81, 634], "axes_length": [58, 81, 545, 546, 547, 634], "arrang": [58, 545, 634], "rearrang": [58, 81, 545, 547, 634, 843], "einops_reduc": [58, 81, 634, 829], "einops_repeat": [58, 81, 634], "fourier_encod": [58, 81, 634], "max_freq": [58, 81, 549, 634], "oppos": [58, 81, 549, 634, 829], "geometr": [58, 81, 549, 634, 637, 692], "0000000e": [58, 81, 549, 634], "2246468e": [58, 81, 549, 634], "4492936e": [58, 549, 634], "6739404e": [58, 81, 549, 634], "batch_dim": [58, 81, 552, 553, 634, 798], "gather_nd": [58, 81, 634], "get_num_dim": [58, 81, 634], "as_arrai": [58, 81, 556, 590, 634, 798], "has_nan": [58, 81, 634], "include_inf": [58, 81, 558, 613, 634], "inplace_decr": [58, 81, 634], "val": [58, 74, 79, 81, 253, 378, 473, 560, 561, 562, 581, 582, 583, 632, 634, 829, 840, 851], "decrement": [58, 81, 560, 634], "inplace_incr": [58, 81, 634], "increment": [58, 81, 561, 634, 820, 870], "inplace_upd": [58, 81, 580, 634, 789, 840], "ensure_in_backend": [58, 81, 562, 634, 840], "keep_input_dtyp": [58, 81, 562, 634, 840], "is_arrai": [58, 81, 634, 840, 841], "is_ivy_arrai": [58, 81, 634, 840, 851], "is_ivy_contain": [58, 634], "is_native_arrai": [58, 81, 176, 565, 630, 634, 851], "isin": [58, 81, 634, 867], "test_el": [58, 81, 569, 634], "assume_uniqu": [58, 81, 569, 634], "invert": [58, 81, 231, 569, 632, 634, 637, 679], "scatter_flat": [58, 81, 634], "occupi": [58, 165, 168, 576, 577, 630, 634], "scatter_nd": [58, 81, 634, 847, 851], "stable_divid": [58, 81, 634, 837], "denomin": [58, 65, 81, 88, 583, 592, 606, 634, 642, 737, 795, 837, 846, 855, 867], "min_denomin": [58, 81, 583, 592, 606, 634, 846], "_min_denomin": [58, 592, 634], "stable_pow": [58, 81, 634], "min_bas": [58, 81, 582, 593, 605, 634, 795, 846], "stabl": [58, 69, 81, 92, 147, 328, 335, 336, 369, 372, 385, 515, 582, 583, 592, 593, 605, 606, 629, 634, 646, 753, 756, 778, 819, 825, 829, 841, 846, 849, 855], "00004": [58, 81, 593, 634], "00008": [58, 81, 593, 634], "00004000e": [58, 593], "56002560e": [58, 593], "60001200e": [58, 593], "09602048e": [58, 593], "supports_inplace_upd": [58, 81, 634], "to_fil": 58, "fid": 58, "sep": 58, "format_": 58, "recov": [58, 833, 841], "to_scalar": [58, 81, 634], "value_is_nan": [58, 81, 634], "_arraywithgradi": [59, 102], "adam_step": [59, 82, 635], "mw": [59, 82, 615, 616, 635, 853], "vw": [59, 82, 615, 616, 635, 853], "beta1": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "beta2": [59, 82, 536, 615, 616, 621, 634, 635, 796, 853], "epsilon": [59, 62, 63, 82, 85, 86, 536, 615, 616, 621, 634, 635, 637, 638, 680, 683, 696, 697, 698, 788, 793, 795, 796, 827, 837, 840, 853], "dc": [59, 82, 615, 616, 619, 621, 622, 623, 635], "dw": [59, 82, 615, 616, 619, 621, 622, 623, 635], "forget": [59, 82, 615, 616, 621, 635, 796, 812, 829], "dcdw": [59, 82, 615, 616, 619, 621, 622, 635], "adam_step_delta": [59, 82, 615, 635], "2020105": [59, 615, 635], "22187898": [59, 615, 635], "24144873": [59, 615, 635], "10000002": [59, 93, 296, 367, 615, 761], "00300002": [59, 615], "00800002": [59, 615], "adam_upd": [59, 82, 635, 853], "mw_tm1": [59, 82, 616, 621, 635], "vw_tm1": [59, 82, 616, 621, 635], "ws_new": [59, 82, 616, 621, 622, 623, 635], "updated_weight": [59, 82, 616, 635], "92558753": [59, 616], "92558873": [59, 616, 635], "92558718": [59, 616, 635], "00000063e": [59, 82, 616, 635], "00000016e": [59, 82, 616, 635], "00000086e": [59, 82, 616, 635], "gradient_descent_upd": [59, 82, 635, 640, 715, 716, 717], "descent": [59, 82, 619, 635, 796, 853, 870], "new_weight": [59, 82, 619, 621, 622, 635, 852], "lamb_upd": [59, 82, 635], "max_trust_ratio": [59, 82, 621, 635, 796], "decay_lambda": [59, 82, 621, 622, 635, 796], "trust": [59, 82, 621, 635, 796], "ratio": [59, 82, 621, 635, 796], "decai": [59, 82, 621, 622, 635, 796], "lamb": [59, 82, 621, 635, 796, 853], "784": [59, 621, 635], "lars_upd": [59, 82, 635], "lar": [59, 82, 622, 635, 796, 853], "34077978": [59, 622, 635], "78025991": [59, 622, 635], "56051969": [59, 622, 635], "78026009": [59, 622, 635], "56051981": [59, 622, 635], "12103939": [59, 622, 635], "optimizer_upd": [59, 82, 635], "effective_grad": [59, 82, 623, 635], "3e": [59, 82, 623, 635], "preserve_typ": [59, 82, 624, 635], "_arraywithimag": [60, 102], "_arraywithlay": [61, 102], "conv1d": [61, 84, 636, 792], "filter_format": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_last": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657, 776], "x_dilat": [61, 84, 636, 649, 650, 652, 653, 654, 656], "d_out": [61, 84, 375, 392, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "channel_first": [61, 84, 636, 649, 650, 651, 652, 653, 654, 655, 656, 657], "wio": [61, 636, 649, 650, 651, 656], "conv1d_transpos": [61, 84, 636], "output_shap": [61, 84, 636, 649, 651, 653, 655, 657, 792], "iow": [61, 84, 636, 651], "woi": [61, 84, 636, 651], "fh": [61, 84, 636, 641, 649, 652, 653, 654, 655, 656, 657, 658, 730], "hwio": [61, 636, 649, 650, 652, 656], "conv2d_transpos": [61, 84, 636], "iohw": [61, 84, 636, 653], "hwoi": [61, 84, 636, 653], "conv3d": [61, 84, 636, 655, 792], "fd": [61, 84, 636, 649, 654, 655, 656, 657], "conv3d_transpos": [61, 84, 636, 657], "iodhw": [61, 84, 636, 655, 657], "dhwoi": [61, 84, 636, 655, 657], "depthwise_conv2d": [61, 84, 636], "randint": [61, 66, 68, 84, 89, 643, 645, 658, 662, 749, 812, 829, 863], "noise_shap": [61, 84, 636, 659], "42857146": [61, 636, 659], "85714293": [61, 636, 659], "28571415": [61, 84, 636, 659], "71428585": [61, 84, 636, 659], "14285755": [61, 84, 636, 659], "5714283": [61, 636, 659], "4285717": [61, 84, 636, 659], "8571434": [61, 84, 636, 659], "2857151": [61, 636, 659], "dropout1d": [61, 84, 375, 400], "dropout2d": [61, 84, 375], "dropout3d": [61, 84, 375], "outer_batch_shap": [61, 84, 636, 660], "inner_batch_shap": [61, 84, 636, 660], "lstm_updat": [61, 84, 636, 849], "init_h": [61, 84, 636, 662, 849], "init_c": [61, 84, 636, 662, 849], "recurrent_kernel": [61, 84, 636, 662, 849], "recurrent_bia": [61, 84, 636, 662, 849], "hidden": [61, 84, 636, 661, 662, 792, 826, 833, 849, 853], "recurr": [61, 80, 84, 375, 421, 636, 662, 849, 870, 874], "timestep": [61, 80, 84, 375, 421, 636, 661, 662, 663, 792, 849], "h_i": [61, 84, 662], "c_i": [61, 84, 662], "rc": [61, 84, 662], "multi_head_attent": [61, 84, 636, 840], "num_head": [61, 84, 636, 663, 792], "in_proj_weight": [61, 84, 636, 663], "q_proj_weight": [61, 84, 636, 663], "k_proj_weight": [61, 84, 636, 663], "v_proj_weight": [61, 84, 636, 663], "out_proj_weight": [61, 84, 636, 663], "in_proj_bia": [61, 84, 636, 663], "out_proj_bia": [61, 84, 636, 663], "is_caus": [61, 84, 636, 663, 666], "key_padding_mask": [61, 84, 636, 663], "bias_k": [61, 84, 636, 663], "bias_v": [61, 84, 636, 663], "static_k": [61, 84, 636, 663], "static_v": [61, 84, 636, 663], "add_zero_attn": [61, 84, 636, 663], "return_attention_weight": [61, 84, 636, 663], "average_attention_weight": [61, 84, 636, 663], "scaled_dot_product_attent": [61, 84, 636], "dropout_p": [61, 84, 636, 666], "num_queri": [61, 84, 636, 666], "feat_dim": [61, 84, 636, 666], "num_kei": [61, 84, 636, 666], "causal": [61, 84, 636, 663, 666], "attent": [61, 84, 636, 663, 666, 792, 820, 824, 860], "29999995": [61, 296, 297, 307, 367, 375, 419, 636, 645, 666, 750], "19994521": [61, 636, 666], "09994531": [61, 636, 666], "30000019": [61, 378, 468, 636, 666], "_arraywithlinearalgebra": [62, 102], "choleski": [62, 85, 637, 840], "625": [62, 80, 348, 637, 667], "vif": [62, 85, 668], "det": [62, 85, 637, 685, 828], "axis1": [62, 64, 85, 87, 637, 639, 671, 691, 711], "axis2": [62, 85, 637, 671, 691], "eigh": [62, 85, 376, 429, 637, 672], "uplo": [62, 85, 637, 673, 674], "eigvalsh": [62, 85, 637], "array_lik": [62, 85, 375, 377, 378, 420, 453, 454, 458, 459, 489, 637, 675, 682, 806], "203": [62, 79, 229, 637, 642, 675, 737], "233": [62, 637, 675], "inv": [62, 85, 637], "transpose_a": [62, 85, 637, 677], "transpose_b": [62, 85, 637, 677], "adjoint_a": [62, 85, 637, 677], "adjoint_b": [62, 85, 637, 677], "matrix_norm": [62, 85, 637], "ord": [62, 85, 637, 678, 694], "fro": [62, 85, 377, 453, 637, 678], "nuc": [62, 85, 637, 678], "performingth": [62, 678], "matrix_pow": [62, 85, 637], "matrix_rank": [62, 85, 637], "hermitian": [62, 85, 376, 429, 430, 637, 672, 673, 674, 680, 687], "largest_singular_valu": [62, 85, 637, 680, 683], "defici": [62, 637, 680], "matrix_transpos": [62, 85, 637, 851], "pinv": [62, 85, 637], "pseudo": [62, 85, 637, 683, 839], "99999988": [62, 85, 637, 683], "qr": [62, 85, 637, 842], "12309149": [62, 637, 684], "90453403": [62, 637, 684], "40824829": [62, 637, 684], "49236596": [62, 637, 684], "30151134": [62, 637, 684], "81649658": [62, 637, 684], "86164044": [62, 637, 684], "12403841e": [62, 637, 684], "60113630e": [62, 637, 684], "10782342e": [62, 637, 684], "04534034e": [62, 637, 684], "80906807e": [62, 637, 684], "88178420e": [62, 85, 637, 674, 684], "slogdet": [62, 85, 637], "logabsdet": [62, 85, 637, 685], "natur": [62, 85, 243, 261, 262, 263, 264, 283, 354, 372, 632, 637, 685, 824, 831, 833, 842, 860], "098611": [62, 637, 685], "solv": [62, 85, 376, 440, 637, 776, 812, 819, 823, 834, 841, 850, 872], "full_matric": [62, 85, 637, 687], "svf": [62, 687], "reconstructed_x": [62, 637, 687], "svdval": [62, 85, 637], "tensorsolv": [62, 85, 637], "vander": [62, 85, 637], "vandermond": [62, 85, 637, 692], "vecdot": [62, 85, 637], "vector_norm": [62, 85, 637], "mathemat": [62, 85, 223, 228, 240, 245, 247, 263, 273, 627, 632, 637, 678, 694, 829, 841, 847, 870, 876], "manhattan": [62, 85, 637, 694], "euclidean": [62, 85, 97, 98, 637, 694], "7416575": [62, 85, 637, 694], "vector_to_skew_symmetric_matrix": [62, 85, 637], "_arraywithloss": [63, 102], "binary_cross_entropi": [63, 86, 638, 828], "from_logit": [63, 86, 638, 696, 793], "pos_weight": [63, 86, 638, 696], "crossentropi": [63, 86, 638, 696], "26765382": [63, 638, 696], "34657359": [63, 638, 697], "sparse_cross_entropi": [63, 86, 638], "07438118": [63, 86, 698], "11889165": [63, 698], "_arraywithmanipul": [64, 102], "x_min": [64, 87, 639, 699, 854], "x_max": [64, 87, 639, 699, 854], "before_1": [64, 87, 378, 484, 639, 701, 714], "after_1": [64, 87, 378, 484, 639, 701, 714], "before_n": [64, 87, 378, 484, 639, 701, 714], "after_n": [64, 87, 378, 484, 639, 701, 714], "repetit": [64, 87, 639, 705, 712, 847], "flat": [64, 74, 87, 383, 513, 576, 634, 639, 705], "allowzero": [64, 87, 639, 706], "remain": [64, 67, 80, 87, 90, 223, 240, 241, 247, 255, 256, 273, 276, 282, 284, 375, 399, 400, 401, 420, 632, 639, 641, 644, 706, 724, 747, 806, 819, 820, 828, 831, 833, 837, 845, 847, 855], "roll": [64, 87, 639, 836, 867], "shift": [64, 76, 87, 103, 136, 147, 232, 234, 328, 369, 629, 632, 639, 707, 819, 820, 830, 831, 836, 843, 867], "restor": [64, 87, 639, 707, 835], "num_or_size_split": [64, 74, 87, 639, 708, 849], "with_remaind": [64, 74, 87, 639, 708], "squeezabl": [64, 639, 709], "swapax": [64, 87, 639], "axis0": [64, 87, 639, 711], "swap_ax": [64, 711], "swap": [64, 87, 639, 711, 801, 864], "tile": [64, 81, 87, 547, 639], "unpack": [64, 87, 639, 713, 842, 844], "zero_pad": [64, 87, 639], "_arraywithnorm": [65, 102], "layer_norm": [65, 88, 642], "normalized_idx": [65, 88, 642, 737], "new_std": [65, 88, 642, 737, 795], "learnabl": [65, 88, 636, 640, 642, 661, 717, 737, 792, 795, 854], "0976": [65, 642, 737], "3452": [65, 642, 737], "2740": [65, 642, 737], "1047": [65, 642, 737], "5886": [65, 642, 737], "2732": [65, 642, 737], "7696": [65, 642, 737, 776], "7024": [65, 642, 737], "2518": [65, 642, 737], "826": [65, 642, 737], "178": [65, 642, 737], "981": [65, 642, 737], "831": [65, 642, 737], "421": [65, 642, 737], "_arraywithrandom": [66, 102], "multinomi": [66, 89, 382, 510, 643], "population_s": [66, 89, 643, 738], "num_sampl": [66, 89, 643, 738], "unnorm": [66, 89, 643, 738, 844], "popul": [66, 70, 74, 89, 93, 643, 647, 738, 764, 766, 829, 830, 840, 844, 849, 876], "draw": [66, 89, 382, 508, 510, 512, 643, 738, 740, 741, 776, 777, 778, 779, 784, 791, 818, 823, 842, 844], "half": [66, 89, 126, 287, 629, 632, 643, 739, 741, 816, 834, 847], "235": [66, 740], "float16": [66, 77, 89, 134, 157, 159, 160, 165, 167, 346, 372, 629, 630, 637, 694, 740, 741, 776, 777, 816, 829, 834, 841, 844], "807": [66, 740], "_arraywithsearch": [67, 102], "select_last_index": [67, 90, 644, 744, 745], "occurr": [67, 378, 387, 498, 520, 644, 645, 744, 745, 749], "argmin": [67, 90, 644, 867], "output_dtyp": [67, 90, 644, 745], "argwher": [67, 90, 644], "nonzero": [67, 90, 98, 221, 222, 223, 226, 229, 238, 240, 243, 245, 247, 273, 286, 291, 632, 644], "as_tupl": [67, 90, 644, 747], "fewer": [67, 90, 644, 747], "_arraywithset": [68, 102], "unique_al": [68, 91, 645], "by_valu": [68, 91, 645, 749], "inverse_indic": [68, 91, 378, 498, 645, 749, 751], "unique_count": [68, 91, 645], "unique_invers": [68, 91, 645], "unique_valu": [68, 91, 645], "admonit": [68, 752], "dask": [68, 645, 749, 750, 751, 752, 860], "difficult": [68, 645, 749, 750, 751, 752, 820, 823, 829, 844, 855], "omit": [68, 283, 632, 645, 749, 750, 751, 752, 836, 840, 841], "x_i": [68, 70, 79, 98, 220, 221, 222, 225, 226, 227, 229, 231, 236, 237, 238, 243, 245, 246, 253, 254, 255, 256, 257, 261, 262, 263, 264, 268, 275, 280, 283, 284, 285, 286, 287, 288, 290, 291, 293, 335, 336, 338, 359, 372, 632, 645, 647, 749, 750, 751, 752, 760, 761, 762, 764, 765, 766, 791, 832], "x_j": [68, 645, 749, 750, 751, 752], "typeerror": [68, 91, 645, 752, 851], "_arraywithsort": [69, 102], "stabil": [69, 92, 592, 593, 634, 646, 753, 756, 829, 839, 845, 847], "msort": [69, 92, 646], "searchsort": [69, 92, 646, 777], "sorter": [69, 92, 646, 755], "ret_dtyp": [69, 92, 646, 755], "_arraywithstatist": [70, 102], "cumprod": [70, 93, 647, 841, 854, 867], "cumsum": [70, 93, 647, 829, 867], "einsum": [70, 93, 647], "equat": [70, 80, 93, 314, 369, 376, 446, 637, 647, 686, 759, 776, 805, 828, 870], "operand": [70, 80, 84, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 363, 372, 373, 375, 418, 632, 637, 647, 685, 691, 759, 760, 762, 763, 765, 805, 806, 824, 827, 832, 841], "contract": [70, 637, 647, 689, 759, 806], "seq": [70, 647, 759, 776], "ii": [70, 93, 647, 759, 820], "jk": [70, 647, 759, 806], "ik": [70, 647, 759, 806], "126": [70, 110, 279, 626, 632, 637, 647, 679, 759], "510": [70, 647, 759], "special": [70, 85, 97, 98, 102, 103, 220, 221, 222, 223, 225, 226, 227, 228, 229, 236, 237, 238, 240, 241, 243, 245, 246, 247, 254, 255, 256, 261, 262, 263, 264, 265, 268, 273, 276, 278, 282, 283, 284, 285, 286, 287, 290, 291, 293, 335, 336, 359, 372, 632, 637, 647, 685, 691, 760, 761, 762, 763, 764, 765, 766, 776, 777, 778, 779, 784, 791, 818, 821, 823, 824, 826, 828, 831, 832, 833, 836, 840, 842, 843, 844, 845, 847, 870, 871, 872], "arithmet": [70, 93, 234, 240, 273, 632, 647, 761, 841], "propag": [70, 234, 335, 336, 372, 632, 647, 760, 761, 762, 764, 765, 766, 839], "overflow": [70, 93, 223, 240, 247, 632, 637, 647, 685, 761, 765, 817, 829], "04999995": [70, 761], "freedom": [70, 93, 647, 764, 766, 825], "constitut": [70, 93, 647, 764, 766, 837, 849, 871], "commonli": [70, 93, 647, 764, 766, 833, 837, 839], "81649661": [70, 647, 764], "6666665": [70, 766, 852], "667": [70, 81, 240, 541, 592, 632, 634, 766], "_arraywithutil": [71, 102], "logic": [71, 94, 204, 240, 241, 267, 268, 269, 273, 276, 631, 632, 648, 767, 768, 818, 824, 828, 829, 830, 833, 837, 838, 839, 840, 841, 843, 844, 847, 851, 864], "AND": [71, 94, 230, 241, 267, 632, 648, 767], "OR": [71, 94, 233, 269, 276, 632, 648, 768, 819, 820, 839], "_wrap_funct": [72, 95, 826, 837, 838], "function_nam": [72, 95, 818, 845], "new_funct": [72, 95, 826], "add_ivy_array_instance_method": 72, "cl": [72, 95], "moduletyp": [72, 95, 863, 864, 865], "toi": [72, 95], "arrayexampl": 72, "hasattr": [72, 95], "_containerwithactiv": [73, 103], "dict_in": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846, 852], "queue_load_s": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "container_combine_method": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "list_join": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "queue_timeout": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103, 586, 609, 634, 846], "print_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "key_length_limit": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_ind": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "print_line_spac": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "ivyh": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "default_key_color": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "keyword_color_dict": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "rebuild_child_contain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "types_to_iteratively_nest": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "alphabetical_kei": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "dynamic_backend": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 102, 103, 793, 794, 825, 846], "build_cal": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 103], "containerbas": [73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 827], "_static_gelu": 73, "key_chain": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "to_appli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune_unappli": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 731, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "map_sequ": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 128, 129, 131, 133, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 149, 152, 153, 154, 155, 163, 165, 168, 171, 172, 173, 175, 177, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 313, 314, 317, 318, 328, 329, 333, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 360, 361, 362, 363, 389, 390, 391, 392, 394, 395, 396, 398, 399, 400, 401, 402, 403, 411, 412, 413, 414, 418, 419, 422, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 471, 480, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 496, 498, 500, 501, 502, 503, 504, 505, 507, 509, 514, 515, 522, 523, 524, 525, 532, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 650, 651, 652, 653, 654, 655, 658, 659, 660, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768], "prune": [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 134, 136, 141, 143, 149, 153, 155, 168, 172, 173, 180, 214, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 303, 304, 305, 306, 307, 309, 310, 311, 313, 334, 335, 336, 337, 338, 340, 342, 350, 351, 357, 359, 361, 362, 363, 399, 400, 401, 419, 452, 453, 454, 455, 456, 457, 458, 459, 462, 463, 464, 468, 469, 490, 492, 493, 494, 496, 501, 503, 504, 505, 507, 509, 522, 523, 524, 525, 534, 537, 538, 540, 541, 545, 546, 547, 548, 549, 552, 553, 556, 558, 560, 561, 562, 564, 565, 568, 576, 577, 591, 592, 593, 595, 597, 599, 600, 613, 619, 624, 641, 650, 651, 652, 653, 659, 660, 666, 667, 668, 673, 674, 675, 676, 677, 678, 680, 682, 684, 685, 691, 696, 697, 698, 699, 703, 706, 707, 708, 709, 710, 713, 714, 731, 732, 733, 734, 738, 739, 740, 741, 743, 746, 749, 750, 751, 752, 753, 757, 758, 761, 763, 764, 766, 767, 768, 774, 777, 828], "static_gelu": 73, "046": 73, "_static_hardswish": 73, "_static_leaky_relu": 73, "static_leaky_relu": 73, "38999999": [73, 80, 112, 295, 296, 367], "_static_log_softmax": 73, "static_log_softmax": 73, "371": [73, 113], "_static_mish": 73, "static_mish": 73, "30883577": [73, 114, 626], "28903052": [73, 114, 626], "10714479": [73, 114, 626], "_static_relu": 73, "static_relu": 73, "_static_sigmoid": 73, "static_sigmoid": 73, "2689414": [73, 116, 117, 626], "7310586": [73, 116, 117, 626], "88079703": [73, 116, 626], "62245935": [73, 116], "4750208": [73, 116], "_static_softmax": 73, "static_softmax": 73, "72844321": [73, 117], "19852395": [73, 117], "07303288": [73, 117], "_static_softplu": 73, "revert": [73, 118, 626], "static_softplu": 73, "53499615": 73, "42036411": 73, "948": [73, 118, 641, 718], "dictionari": [74, 91, 103, 212, 601, 617, 631, 634, 635, 752, 771, 773, 806, 824, 828, 829, 837, 841, 842, 852, 855], "asynchron": [74, 103, 870], "wait": [74, 103, 586, 634, 812, 818, 820, 828, 841], "arriv": [74, 103, 586, 634, 847], "cont_list_join": [74, 103], "whitespac": [74, 103], "indent": [74, 103, 852], "newlin": [74, 103, 832], "termin": [74, 103, 819, 820, 827, 834, 835, 849, 852], "constructor": [74, 103, 536, 634, 773, 789, 797, 829, 830, 832, 851], "kept": [74, 103, 640, 715, 716, 820, 840, 845], "encount": [74, 103, 792, 816, 818, 829, 833, 834, 844], "node": [74, 81, 103, 538, 548, 595, 641, 728, 729, 791, 800, 826, 827, 841, 860, 863, 864, 871], "alphabet": [74, 103], "__setitem__": [74, 378, 492, 824, 827, 851], "_cont_at_key_chains_input_as_dict": 74, "current_chain": 74, "ignore_key_error": 74, "_cont_at_key_chains_input_as_seq": 74, "_cont_call_static_method_with_flexible_arg": 74, "static_method": 74, "kw": 74, "self_idx": 74, "_cont_concat_unifi": 74, "_cont_get_dev": 74, "_cont_get_dtyp": 74, "_cont_get_shap": 74, "_cont_ivi": 74, "_cont_mean_unifi": 74, "_1": 74, "_cont_prune_key_chains_input_as_dict": 74, "return_cont": 74, "_cont_prune_key_chains_input_as_seq": 74, "_cont_slice_kei": 74, "key_slic": 74, "_cont_sum_unifi": 74, "_get_queue_item": 74, "cont_all_fals": 74, "assert_is_bool": 74, "cont_all_key_chain": 74, "include_empti": 74, "cont_all_tru": [74, 827, 852], "cont_as_bool": 74, "cont_assert_contains_sub_contain": 74, "sub_cont": 74, "screen": [74, 818, 819, 852], "cont_assert_contains_sub_structur": 74, "check_shap": [74, 798], "cont_assert_ident": 74, "check_typ": 74, "same_arrai": [74, 852], "arrays_equ": 74, "cont_assert_identical_structur": 74, "assert_and_assign": 74, "congruent": 74, "cont_at_key_chain": 74, "ignore_non": 74, "cont_at_kei": 74, "substr": 74, "cont_combin": 74, "duplic": [74, 378, 489, 557, 634, 641, 720, 825, 832, 838, 839, 842, 853, 876], "configur": [74, 212, 631, 641, 731, 819, 820, 826, 828, 829, 834, 835], "container_rightmost": 74, "cont_common_key_chain": 74, "cont_config": 74, "cont_contains_sub_contain": 74, "cont_contains_sub_structur": 74, "cont_copi": [74, 852], "cont_create_if_abs": 74, "noth": [74, 847, 876], "cont_cutoff_at_depth": 74, "depth_cutoff": 74, "cont_cutoff_at_height": 74, "height_cutoff": 74, "cont_deep_copi": [74, 852, 863], "cont_dev": 74, "cont_dev_str": 74, "cont_diff": [74, 852], "diff_kei": 74, "detect_key_diff": 74, "detect_value_diff": 74, "detect_shape_diff": 74, "container0": 74, "cont_dtyp": 74, "cont_duplicate_array_keychain": 74, "cont_find_sub_contain": 74, "sub_cont_to_find": 74, "cont_find_sub_structur": 74, "sub_struc_to_find": 74, "cont_flatten_key_chain": [74, 852], "above_height": [74, 852], "below_depth": [74, 852], "cont_format_key_chain": 74, "format_fn": 74, "cont_from_disk_as_hdf5": [74, 852], "h5_obj_or_filepath": 74, "slice_obj": 74, "disk": [74, 794, 852, 869], "h5py": 74, "filepath": [74, 648, 769, 770, 820, 823], "cont_from_disk_as_json": [74, 852], "json_filepath": 74, "cont_from_disk_as_pickl": [74, 852], "pickle_filepath": 74, "cont_from_flat_list": 74, "flat_list": 74, "hierarchi": [74, 810, 818, 843, 852, 866, 876], "cont_handle_inplac": 74, "prime": [74, 829], "overwritten": [74, 824, 825], "cont_has_kei": 74, "query_kei": 74, "somewher": [74, 828], "cont_has_key_chain": 74, "cont_ident": [74, 852], "cont_identical_array_shap": 74, "cont_identical_config": 74, "cont_identical_structur": 74, "cont_if_exist": 74, "cont_inplace_upd": 74, "cont_ivi": 74, "cont_key_chains_contain": 74, "sub_str": 74, "cont_list_stack": [74, 852], "cont_load": 74, "cont_map": [74, 827, 852], "func": [74, 97, 213, 364, 365, 366, 374, 539, 614, 617, 618, 620, 625, 631, 634, 635, 641, 731, 773, 818, 823, 824, 831, 833, 839], "cont_map_sub_cont": 74, "include_self": 74, "possibli": [74, 597, 634, 776, 844, 855], "cont_max_depth": 74, "cont_multi_map": 74, "map_nest": 74, "assert_ident": 74, "leftmost": [74, 641, 731], "cont_multi_map_in_funct": 74, "cont_num_arrai": 74, "cont_overwrite_at_key_chain": 74, "target_dict": 74, "return_dict": 74, "cont_prune_empti": 74, "keep_non": 74, "cont_prune_key_chain": 74, "key1": [74, 812, 853], "key2": [74, 812], "key3": 74, "cont_prune_key_from_key_chain": 74, "certain": [74, 126, 137, 138, 377, 454, 629, 818, 819, 820, 823, 829, 837, 843, 844, 847, 855, 863, 864, 865, 874], "cont_prune_kei": 74, "cont_prune_keys_from_key_chain": 74, "cont_reduc": 74, "cont_remove_key_length_limit": 74, "cont_remove_print_limit": 74, "cont_reshape_lik": 74, "leading_shap": 74, "cont_restructur": 74, "keep_orig": 74, "old": [74, 819, 825, 840], "cont_restructure_key_chain": 74, "keychain_map": 74, "cont_sav": 74, "cont_set_at_key_chain": 74, "cont_set_at_kei": 74, "cont_shap": [74, 636, 654], "cont_show": 74, "cont_show_sub_contain": 74, "sub_cont_or_keychain": 74, "cont_size_ordered_arrai": 74, "keychain": [74, 80, 298, 337, 462, 463, 464, 493], "cont_slice_kei": 74, "all_depth": 74, "cont_slice_via_kei": 74, "slice_kei": 74, "cont_sort_by_kei": 74, "cont_structural_diff": 74, "cont_to_dict": 74, "cont_to_disk_as_hdf5": [74, 852], "starting_index": 74, "max_batch_s": 74, "cont_to_disk_as_json": [74, 852], "cont_to_disk_as_pickl": [74, 852], "cont_to_flat_list": 74, "cont_to_iter": [74, 827], "leaf_keys_onli": 74, "cont_to_iterator_kei": 74, "cont_to_iterator_valu": 74, "cont_to_json": 74, "cont_to_nested_list": 74, "cont_to_raw": 74, "cont_trim_kei": 74, "cont_try_kc": 74, "cont_unifi": 74, "concatten": [74, 213, 631], "cont_unstack_cont": 74, "dim_siz": 74, "cont_update_config": 74, "cont_with_default_key_color": 74, "cont_with_entries_as_list": 74, "cont_with_ivy_backend": 74, "ivy_backend": [74, 842], "cont_with_key_length_limit": [74, 852], "cont_with_print_ind": [74, 852], "cont_with_print_limit": [74, 852], "cont_with_print_line_spac": 74, "h5_file_s": 74, "shuffle_h5_fil": 74, "split_cont": 74, "_is_json": 74, "_repr": 74, "_containerwithconvers": [75, 103], "_static_to_ivi": 75, "_static_to_n": 75, "_containerwithcr": [76, 103], "_static_arang": 76, "_static_asarrai": 76, "_static_copy_arrai": 76, "_static_empti": 76, "_static_empty_lik": 76, "_static_ey": 76, "n_row": [76, 80, 132, 147, 328, 369, 376, 437, 629], "n_col": [76, 80, 132, 147, 328, 369, 629], "_static_from_dlpack": 76, "_static_ful": 76, "_static_full_lik": 76, "static_full_lik": 76, "2324": [76, 136, 629], "234": [76, 79, 136, 159, 242, 293, 629, 630, 632, 636, 660, 776], "_static_linspac": 76, "_static_logspac": 76, "static_logspac": 76, "15443469": [76, 138], "64158883": [76, 138], "_static_meshgrid": 76, "_static_native_arrai": 76, "_static_one_hot": 76, "static_one_hot": 76, "_static_on": 76, "_static_ones_lik": 76, "_static_tril": 76, "_static_triu": 76, "_static_zero": 76, "_static_zeros_lik": 76, "frombuff": [76, 629], "expos": [76, 134, 542, 629, 634, 812, 828, 849, 853, 859], "x00": [76, 134, 629], "xf0": [76, 134, 629], "x01": [76, 134, 629], "x02": [76, 134, 629], "x03": [76, 134, 629], "x04": [76, 134, 629], "x05": [76, 134], "5443469": [76, 138, 629], "static_frombuff": 76, "static_triu_indic": 76, "triu_indic": [76, 629], "_containerwithdatatyp": [77, 103], "_static_astyp": 77, "718": [77, 79, 152, 269, 630], "618": [77, 79, 152, 269, 630], "static_astyp": 77, "_static_broadcast_arrai": 77, "static_broadcast_arrai": 77, "_static_broadcast_to": 77, "static_broadcast_to": 77, "_static_can_cast": 77, "from_": [77, 155, 630], "static_can_cast": 77, "_static_default_complex_dtyp": 77, "complex_dtyp": [77, 158, 181, 630], "_static_default_float_dtyp": 77, "float_dtyp": [77, 160, 183, 630], "_static_dtyp": 77, "_static_finfo": 77, "inquir": [77, 165, 168], "static_finfo": 77, "55040e": [77, 165, 630], "7976931348623157e": [77, 165, 630], "308": [77, 165, 630, 776, 844], "_static_function_supported_dtyp": 77, "_static_function_unsupported_dtyp": 77, "_static_iinfo": 77, "1800": [77, 168, 630], "1084": 77, "40000": 77, "static_iinfo": 77, "2147483648": [77, 80, 168, 378, 492, 630], "2147483647": [77, 168, 630], "_static_is_bool_dtyp": 77, "dtype_in": [77, 150, 151, 164, 170, 171, 172, 173, 174, 175, 176, 177, 192, 630], "_static_is_complex_dtyp": 77, "is_complex_dtyp": [77, 630, 845], "roughli": [77, 819, 823, 873], "static_is_complex_dtyp": 77, "_static_is_float_dtyp": 77, "static_is_float_dtyp": 77, "_static_is_int_dtyp": 77, "_static_is_uint_dtyp": 77, "_static_result_typ": 77, "static_result_typ": 77, "broadcats": [77, 153], "_containerwithdevic": [78, 103], "_static_dev": 78, "static_dev": 78, "_static_to_devic": 78, "static_to_devic": 78, "contaion": [78, 197], "_containerwithelementwis": [79, 103], "_static_ab": 79, "static_ab": 79, "_static_aco": 79, "static_aco": 79, "_static_acosh": 79, "static_acosh": 79, "_static_add": 79, "static_add": [79, 107], "_static_asin": 79, "static_asin": 79, "524": [79, 225, 632], "412": [79, 84, 225, 632, 641, 718], "_static_asinh": 79, "static_asinh": 79, "_static_atan": 79, "static_atan": 79, "_static_atan2": 79, "static_atan2": 79, "915": [79, 228, 632], "983": [79, 228, 632], "978": [79, 228, 632], "696": [79, 89, 228, 632, 740], "993": [79, 228, 632], "_static_atanh": 79, "static_atanh": 79, "_static_bitwise_and": 79, "static_bitwise_and": 79, "_static_bitwise_invert": 79, "static_bitwise_invert": 79, "_static_bitwise_left_shift": 79, "_static_bitwise_or": 79, "static_bitwise_or": 79, "_static_bitwise_right_shift": 79, "static_bitwise_right_shift": 79, "_static_bitwise_xor": 79, "static_bitwise_xor": 79, "_static_ceil": 79, "static_ceil": 79, "_static_co": 79, "static_co": 79, "_static_cosh": 79, "static_cosh": 79, "_static_deg2rad": 79, "static_deg2rad": 79, "0262": [79, 239, 279, 632], "873": [79, 239, 279, 632], "_static_divid": 79, "static_divid": 79, "_static_equ": 79, "static_equ": 79, "_static_erf": 79, "static_erf": 79, "27632612": [79, 242], "934008": [79, 242, 632], "99999928": [79, 242], "91903949": [79, 242], "_static_exp": 79, "static_exp": 79, "59814835": [79, 243, 632], "4131622": [79, 243], "_static_expm1": 79, "thefunct": [79, 242], "areal": 79, "static_expm1": 79, "71828175": [79, 243, 632], "38905621": [79, 243, 632], "59815216": 79, "_static_floor": 79, "static_floor": 79, "_static_floor_divid": 79, "static_floor_divid": 79, "_static_great": 79, "static_great": 79, "_static_greater_equ": 79, "static_greater_equ": 79, "_static_isfinit": 79, "999999999999": [79, 254, 632], "static_isfinit": 79, "_static_isinf": 79, "static_isinf": 79, "_static_isnan": 79, "static_isnan": 79, "_static_isr": 79, "0j": [79, 80, 142, 143, 221, 222, 223, 226, 229, 238, 243, 245, 257, 261, 263, 280, 284, 286, 287, 291, 338, 372, 629, 632, 637, 685], "23j": [79, 80], "9j": [79, 80], "static_isr": 79, "_static_lcm": 79, "1080": [79, 258], "1550": [79, 258], "130": [79, 258], "_static_less": 79, "static_less": 79, "_static_less_equ": 79, "static_less_equ": 79, "_static_log": 79, "static_log": 79, "_static_log10": 79, "static_log10": 79, "898": [79, 262, 632], "0414": [79, 262, 632], "_static_log1p": 79, "static_log1p": 79, "_static_log2": 79, "static_log2": 79, "_static_logaddexp": 79, "static_logaddexp": 79, "_static_logical_and": 79, "static_logical_and": 79, "_static_logical_not": 79, "static_logical_not": 79, "_static_logical_or": 79, "static_logical_or": 79, "_static_logical_xor": 79, "static_logical_xor": 79, "_static_maximum": 79, "static_maximum": 79, "_static_minimum": 79, "static_minimum": 79, "_static_multipli": 79, "static_multipli": 79, "_static_neg": 79, "static_neg": 79, "_static_not_equ": 79, "static_not_equ": 79, "_static_posit": 79, "static_posit": 79, "_static_pow": 79, "static_pow": 79, "_static_rad2deg": 79, "static_rad2deg": 79, "5160": 79, "10300": [79, 279, 632], "15500": 79, "20600": 79, "2860": [79, 279], "_static_reciproc": 79, "recirpoc": [79, 281], "static_reciproc": 79, "_static_remaind": 79, "static_remaind": 79, "_static_round": 79, "thevfunct": 79, "527": [79, 283, 632], "static_round": 79, "301": [79, 283, 632], "_static_sign": 79, "static_sign": 79, "_static_sin": 79, "static_sin": 79, "757": [79, 285, 632], "959": [79, 245, 285, 632], "279": [79, 285, 375, 397, 407, 540, 632, 634], "_static_sinh": 79, "static_sinh": 79, "835": [79, 286], "347": [79, 286], "721": [79, 286], "_static_sqrt": 79, "static_sqrt": 79, "_static_squar": 79, "static_squar": 79, "_static_subtract": 79, "static_subtract": 79, "_static_tan": 79, "static_tan": 79, "_static_tanh": 79, "static_tanh": 79, "995": [79, 291, 632], "9999": 79, "_static_trapz": 79, "static_trapz": 79, "_static_trunc": 79, "static_trunc": 79, "_static_trunc_divid": 79, "75j": [79, 224, 253], "01317055": [79, 224], "05634501": [79, 224], "115": [79, 224, 279, 632], "3461759": [79, 224], "524111": [79, 224], "644": [79, 225, 632, 853], "305": [79, 84, 225, 632], "351": [79, 239, 279], "00613": [79, 239], "0154": [79, 239], "403": [79, 243], "428772": [79, 243], "649": [79, 245], "220": [79, 245], "865": [79, 245], "metho": [79, 252, 264], "imaginari": [79, 102, 112, 115, 118, 142, 143, 221, 222, 223, 238, 240, 241, 243, 245, 253, 273, 275, 276, 283, 286, 287, 291, 338, 372, 375, 376, 419, 430, 626, 629, 632, 644, 747, 831], "4j": [79, 253, 375, 419, 593, 632, 634], "7j": [79, 80, 257, 280, 338, 372, 632], "956": [79, 263], "08746284": [79, 266], "32192809": [79, 266], "nuner": [79, 273], "413": [79, 279], "335": [79, 80, 280, 338], "345j": [79, 80, 280, 338], "static_angl": 79, "static_exp2": 79, "static_fmin": 79, "static_gcd": 79, "static_imag": 79, "static_logaddexp2": 79, "static_nan_to_num": 79, "static_r": 79, "_containerwithactivationexperiment": [80, 103], "_static_celu": 80, "formlat": 80, "static_celu": 80, "_static_elu": 80, "static_elu": 80, "_static_hardshrink": 80, "hard": [80, 297, 820, 851, 870], "shrinkag": [80, 297, 307, 378, 491], "_static_hardsilu": 80, "20833333": [80, 298, 367], "29166666": [80, 298, 367], "66666669": [80, 103, 298, 367, 381, 507, 617, 635], "66666663": [80, 137, 298, 367, 629], "_static_hardtanh": 80, "3899": 80, "_static_scaled_tanh": 80, "931": 80, "71587813": 80, "88367474": 80, "00376701": [80, 304], "2285642": 80, "99999881": 80, "49999905": 80, "_static_silu": 80, "static_silu": 80, "27777028": [80, 306], "23947507": [80, 306], "0900332": [80, 306], "_static_softshrink": 80, "_static_tanhshrink": 80, "36634541": [80, 309], "02005103": [80, 309], "00262468": [80, 309], "_static_threshold": 80, "389999": [80, 299], "19722462": [80, 300], "84729779": [80, 300], "31326163": [80, 301], "46328258": [80, 301], "51301527": [80, 301], "79813886": [80, 301], "simplywrap": [80, 304], "54939651": [80, 304], "09999998": [80, 304, 615, 635], "09999999": [80, 304], "08336546": [80, 304], "0379949": [80, 304], "22856998": [80, 305], "42028043": [80, 305], "31868932": [80, 305], "static_logit": 80, "static_logsigmoid": 80, "34115386": 80, "64439666": 80, "24115384": 80, "55435526": 80, "07888974": 80, "00741899": 80, "26328245": 80, "00012302": 80, "static_prelu": 80, "static_relu6": 80, "static_selu": 80, "static_thresholded_relu": 80, "_containerwithconversionexperiment": [80, 103], "_containerwithcreationexperiment": [80, 103], "_static_trilu": 80, "blackman": [80, 312, 369], "00770143e": [80, 312], "49229857e": [80, 312], "hamming_window": [80, 369], "ham": [80, 314, 369], "4180": [80, 314], "8180": [80, 314], "hann_window": [80, 369], "hann": [80, 315, 369], "7500": [80, 315], "3455": [80, 315], "9045": [80, 315], "kaiser_bessel_derived_window": [80, 369], "suitabl": [80, 317, 318, 369, 646, 755, 778, 819, 820, 827, 845, 870], "spectral": [80, 317, 318, 369], "analysi": [80, 317, 318, 369, 870, 871], "kaiser": [80, 312, 317, 318, 369], "70710677": [80, 317, 505, 507], "18493208": [80, 317, 369], "9827513": [80, 317, 369], "kaiser_window": [80, 369], "static_kaiser_window": [80, 318], "2049": [80, 318], "8712": [80, 318], "0367": [80, 318, 369], "7753": [80, 318], "static_blackman_window": 80, "static_eye_lik": 80, "static_hamming_window": 80, "static_hann_window": 80, "static_hann": 80, "static_kaiser_bessel_derived_window": 80, "static_mel_weight_matrix": 80, "static_polyv": 80, "static_tril_indic": 80, "static_unsorted_segment_mean": 80, "static_unsorted_segment_min": 80, "static_unsorted_segment_sum": 80, "static_vorbis_window": 80, "vorbis_window": [80, 369], "vorbi": [80, 333, 369], "38268343": [80, 333, 637, 673], "92387953": [80, 333], "14943586": [80, 333, 369], "51644717": [80, 333], "85631905": [80, 333], "98877142": [80, 333], "tril_indic": [80, 369], "_containerwithdata_typeexperiment": [80, 103], "_containerwithdeviceexperiment": [80, 103], "_containerwithelementwiseexperiment": [80, 103], "0003": [80, 334, 637, 676, 776, 779], "0006": [80, 334, 362], "2345j": [80, 338], "5772": [80, 342], "9635": [80, 342], "4228": [80, 342], "9228": [80, 342], "57299206e": [80, 343, 344], "67773480e": [80, 343, 344], "20904985e": [80, 343, 344], "84270084": [80, 343, 344, 372], "99532223": [80, 343, 344], "99997795": [80, 343, 344], "mantissa": [80, 348, 372, 829], "frist": [80, 349, 372], "coord": [80, 349], "6055": [80, 350], "160": [80, 352], "10240": [80, 352], "60000038": [80, 353, 372, 637, 693], "0707": [80, 359, 372], "0579": [80, 359, 372], "static_allclos": 80, "static_amax": 80, "static_amin": 80, "static_binar": 80, "static_conj": 80, "static_copysign": 80, "static_count_nonzero": 80, "static_diff": 80, "static_digamma": 80, "57721537": 80, "96351004": 80, "static_erfc": 80, "15729921": 80, "00467773": [80, 343, 372], "static_erfinv": 80, "static_fix": 80, "static_float_pow": 80, "static_fmax": 80, "static_fmod": 80, "static_frexp": 80, "static_gradi": 80, "static_hypot": 80, "static_isclos": 80, "static_ldexp": 80, "static_lerp": 80, "90000057": [80, 353, 372], "70000076": [80, 353, 372], "55000019": [80, 353, 372], "05000019": [80, 353, 372], "static_modf": 80, "static_nansum": 80, "static_nextaft": 80, "static_signbit": 80, "static_sinc": 80, "636": 80, "090": 80, "070": 80, "057": 80, "static_sparsify_tensor": 80, "static_xlogi": 80, "static_zeta": 80, "0244": [80, 362], "_containerwithgeneralexperiment": [80, 103], "_static_reduc": 80, "static_reduc": 80, "_containerwithgradientsexperiment": [80, 103], "_containerwithimageexperiment": [80, 103], "_containerwithlayersexperiment": [80, 103], "_static_fft": 80, "static_fft": 80, "_static_sliding_window": 80, "673": [80, 397], "0507": [80, 397], "79711437": [80, 375, 397, 407], "94867325": [80, 375, 397, 407], "74089146": [80, 375, 397, 407], "25980937": [80, 375, 397, 407], "64958102": [80, 375, 397, 407], "2442648": [80, 375, 397, 407], "247306": [80, 409], "908323j": [80, 409], "494955": [80, 409], "90395j": [80, 409], "static_adaptive_avg_pool1d": 80, "static_adaptive_avg_pool2d": 80, "static_adaptive_max_pool2d": 80, "static_adaptive_max_pool3d": 80, "static_avg_pool1d": 80, "static_avg_pool2d": 80, "static_avg_pool3d": 80, "static_dct": 80, "253": [80, 286, 632], "515": [80, 643, 740], "467": 80, "static_dft": 80, "static_embed": 80, "static_idct": 80, "93732834": [80, 375, 397], "75048852": [80, 375, 397], "29723358": [80, 375, 407], "6950531": 80, "93914509": 80, "88008738": 80, "18951225": 80, "06697273": [80, 375, 407], "57439804": 80, "68861485": [80, 375, 407], "41308832": [80, 375, 407], "0700836": 80, "2449036": 80, "6711426": 80, "514": 80, "501709": 80, "4924011": 80, "static_ifft": 80, "static_ifftn": 80, "static_interpol": 80, "static_max_pool1d": 80, "static_max_pool2d": 80, "max_pool2dd": 80, "static_max_pool3d": 80, "static_max_unpool1d": 80, "static_rfft": 80, "static_rfftn": 80, "static_rnn": 80, "step_funct": [80, 375, 421], "initial_st": [80, 375, 421, 636, 661], "go_backward": [80, 375, 421], "unrol": [80, 375, 421, 636, 662, 849, 852], "input_length": [80, 375, 421], "zero_output_for_mask": [80, 375, 421], "return_all_output": [80, 375, 421], "rnn": [80, 375, 870], "tempor": [80, 375, 421], "state_s": [80, 375, 421], "while_loop": [80, 375, 421, 628], "otput": [80, 375, 421], "funciton": [80, 375, 421], "static_stft": 80, "_containerwithlinearalgebraexperiment": [80, 103], "933034": [80, 376, 426], "eigenvealu": [80, 429, 672], "xx": [80, 429, 431, 672], "37228107": [80, 429, 672], "3722816": [80, 429, 672], "8245648": [80, 429, 672], "41597357": [80, 429, 672], "56576747": [80, 429, 672], "9093767": [80, 429, 672], "56155": [80, 430], "82842": [80, 430], "450": [80, 436], "static_adjoint": 80, "static_batched_out": 80, "static_cond": 80, "static_diagflat": 80, "static_dot": 80, "static_eig": 80, "static_eigh_tridiagon": 80, "static_eigv": 80, "static_higher_order_mo": 80, "static_initialize_tuck": 80, "static_kron": 80, "kroneck": [80, 376, 435, 436], "static_make_svd_non_neg": 80, "static_matrix_exp": 80, "static_mode_dot": 80, "static_multi_dot": 80, "static_multi_mode_dot": 80, "static_partial_tuck": 80, "static_svd_flip": 80, "static_tensor_train": 80, "static_truncated_svd": 80, "static_tt_matrix_to_tensor": 80, "tt_matrix": [80, 376, 450], "output_tensor": [80, 100, 376, 450], "static_tuck": 80, "_containerwithlossesexperiment": [80, 103], "_static_hinge_embedding_loss": 80, "_static_huber_loss": 80, "static_huber_loss": 80, "0575": [80, 453], "_static_kl_div": 80, "_static_l1_loss": 80, "static_l1_loss": 80, "_static_log_poisson_loss": 80, "static_log_poisson_loss": 80, "_static_poisson_nll_loss": 80, "06446016": 80, "55611551": 80, "30244565": [80, 457], "_static_smooth_l1_loss": 80, "static_smooth_l1_loss": 80, "_static_soft_margin_loss": 80, "3890561": [80, 456], "413159": [80, 456], "06429195": [80, 457], "43333333": [80, 458], "10666666": [80, 458], "_containerwithmanipulationexperiment": [80, 103], "_static_fill_diagon": 80, "_static_put_along_axi": 80, "_static_tak": 80, "69999981": [80, 307, 367, 378, 468, 492], "_static_trim_zero": 80, "_static_unflatten": 80, "_static_unique_consecut": 80, "ary1": [80, 378, 462, 463, 464], "ary2": [80, 378, 462, 463, 464], "broadcast_shap": [80, 106, 378, 776, 778], "static_concat_from_sequ": [80, 469], "30192195": [80, 481], "static_as_strid": 80, "static_atleast_1d": 80, "static_atleast_2d": 80, "static_atleast_3d": 80, "static_broadcast_shap": 80, "static_column_stack": 80, "static_dsplit": 80, "static_dstack": 80, "static_expand": 80, "static_flatten": 80, "static_fliplr": 80, "static_flipud": 80, "static_fold": 80, "static_heavisid": 80, "static_hsplit": 80, "static_hstack": 80, "static_i0": 80, "static_matric": 80, "static_moveaxi": 80, "static_pad": 80, "static_partial_fold": 80, "static_partial_tensor_to_vec": 80, "static_partial_unfold": 80, "static_partial_vec_to_tensor": 80, "static_rot90": 80, "static_soft_threshold": 80, "static_take_along_axi": 80, "static_top_k": 80, "static_unfold": 80, "static_vsplit": 80, "static_vstack": 80, "_containerwithnormsexperiment": [80, 103], "16903085": [80, 505, 507], "50709254": [80, 505, 507], "84515423": [80, 505, 507], "44183609": [80, 505, 507], "56807494": [80, 505, 507], "69431382": [80, 505, 507], "static_batch_norm": 80, "static_group_norm": 80, "static_instance_norm": 80, "static_l1_norm": 80, "static_l2_norm": 80, "static_lp_norm": 80, "12500000": 80, "37500000": 80, "62500000": 80, "27500000": 80, "35000000": 80, "42500000": 80, "0000000": 80, "5000000": 80, "2500000": 80, "_containerwithrandomexperiment": [80, 103], "43643127": [80, 510], "32325703": [80, 510], "24031169": [80, 510], "34251311": [80, 510], "31692529": [80, 510], "3405616": [80, 510], "5319725": [80, 510], "22458365": [80, 510], "24344385": [80, 510], "26588406": [80, 510], "61075421": [80, 510], "12336174": [80, 510], "51142915": [80, 510], "25041268": [80, 510], "23815817": [80, 510], "64042903": [80, 510], "25763214": [80, 510], "10193883": [80, 510], "31624692": [80, 510], "46567987": [80, 510], "21807321": [80, 510], "37677699": [80, 510], "39914594": [80, 510], "22407707": [80, 510], "static_bernoulli": 80, "static_beta": 80, "static_dirichlet": 80, "static_gamma": 80, "static_poisson": 80, "_containerwithsearchingexperiment": [80, 103], "static_unravel_index": 80, "_containerwithsetexperiment": [80, 103], "_containerwithsortingexperiment": [80, 103], "invert_permut": [80, 385], "static_invert_permut": 80, "static_lexsort": [80, 92], "_containerwithstatisticalexperiment": [80, 103], "_static_cummax": 80, "static_cummax": 80, "_static_cummin": 80, "static_cummin": 80, "_static_nanmin": 80, "static_nanmin": 80, "func_nam": [80, 525, 818, 831, 832, 837, 841], "static_bincount": 80, "static_corrcoef": 80, "static_cov": [80, 387, 522], "static_histogram": 80, "static_igamma": 80, "static_lgamma": 80, "static_median": 80, "static_nanmean": 80, "static_nanmedian": 80, "static_nanprod": 80, "static_quantil": 80, "_containerwithutilityexperiment": [80, 103], "static_optional_get_el": 80, "_containerwithgener": [81, 103], "_static_all_equ": 81, "static_all_equ": 81, "_static_array_equ": 81, "a0": [81, 378, 468], "static_array_equ": 81, "_static_assert_supports_inplac": 81, "_static_clip_matrix_norm": 81, "static_clip_matrix_norm": 81, "849": [81, 540, 634], "_static_clip_vector_norm": 81, "static_clip_vector_norm": 81, "_static_einops_rearrang": 81, "static_einops_rearrang": 81, "_static_einops_reduc": 81, "static_einops_reduc": 81, "29333329": [81, 546, 634], "53000069": [81, 546, 634], "39666676": [81, 546, 634], "20666695": [81, 546, 634], "_static_einops_repeat": 81, "static_einops_repeat": 81, "_static_exist": 81, "_static_fourier_encod": 81, "static_fourier_encod": 81, "classivi": [81, 645, 750], "89858720e": 81, "79717439e": 81, "_static_gath": 81, "static_gath": 81, "_static_gather_nd": 81, "static_gather_nd": 81, "_static_get_num_dim": 81, "static_get_num_dim": 81, "_static_has_nan": 81, "leafwis": 81, "static_has_nan": 81, "_static_inplace_decr": 81, "_static_inplace_incr": 81, "_static_inplace_upd": 81, "_static_is_arrai": 81, "static_is_arrai": 81, "_static_is_ivy_arrai": 81, "static_is_ivy_arrai": 81, "_static_is_native_arrai": 81, "static_is_native_arrai": 81, "_static_scatter_flat": 81, "_static_scatter_nd": 81, "static_scatter_nd": 81, "_static_s": 81, "static_s": 81, "_static_stable_divid": 81, "22222222": 81, "11111111": 81, "857": [81, 592, 634], "444": 81, "_static_stable_pow": 81, "00012": [81, 593, 634], "00016": [81, 82, 593, 621, 634, 635], "00001": [81, 593, 634, 776], "00032": [81, 593], "00256": [81, 593], "1679638": [81, 593], "395": [81, 593], "16777383": [81, 593], "_static_supports_inplace_upd": 81, "_static_to_list": 81, "static_to_list": 81, "_static_to_numpi": 81, "static_to_numpi": 81, "_static_to_scalar": 81, "static_to_scalar": 81, "_static_value_is_nan": 81, "452": 81, "static_value_is_nan": 81, "833": [81, 541], "items": [81, 102, 634], "static_isin": 81, "static_items": 81, "static_strid": 81, "425": [81, 613], "_containerwithgradi": [82, 103], "_static_stop_gradi": 82, "static_stop_gradi": 82, "976": [82, 291, 615, 632, 635], "49e": [82, 615, 635], "74e": [82, 615, 635], "95e": [82, 615, 635], "024": [82, 615, 635], "096": [82, 615, 635], "216": [82, 85, 615, 635, 692], "626": [82, 615, 635], "en": [82, 615, 616, 635, 828], "wikipedia": [82, 615, 616, 635], "wiki": [82, 615, 616, 635], "stochastic_gradient_desc": [82, 615, 616, 635], "01099": [82, 616], "01003": [82, 616, 635], "01015": [82, 616, 635], "99936122": [82, 616, 635], "99936116": [82, 616, 635], "99936128": [82, 616, 635], "99936104": [82, 616, 635], "w_new": [82, 619, 635], "708": [82, 621, 635], "445": [82, 621, 635], "6e": [82, 621, 635], "00036": [82, 621, 635], "00049": [82, 621, 635], "layerwis": [82, 622, 635], "01132035": [82, 622, 635], "22264051": [82, 622, 635], "2056601": [82, 622, 635], "1324538": [82, 622, 635], "56490755": [82, 622, 635], "96622658": [82, 622, 635], "90848625": [82, 622, 635], "93616199": [82, 622, 635], "77232409": [82, 622, 635], "_containerwithimag": [83, 103], "_containerwithlay": [84, 103], "_static_conv1d": 84, "static_conv1d": 84, "_static_conv1d_transpos": 84, "static_conv1d_transpos": 84, "112": [84, 637, 647, 651, 682, 759], "_static_conv2d": 84, "ey": [84, 629, 636, 652, 658, 847, 854], "static_conv2d": 84, "_static_conv2d_transpos": 84, "static_conv2d_transpos": 84, "_static_conv3d": 84, "fdfh": [84, 654], "static_conv3d": 84, "_static_conv3d_transpos": 84, "static_conv3d_transpos": 84, "_static_depthwise_conv2d": 84, "inp": [84, 636, 658], "static_depthwise_conv2d": 84, "_static_dropout": 84, "static_dropout": 84, "_static_dropout1d": 84, "static_dropout1d": 84, "_static_dropout2d": 84, "_static_dropout3d": 84, "_static_linear": 84, "278": [84, 636, 659, 660], "static_linear": 84, "195": 84, "_static_lstm_upd": 84, "_static_multi_head_attent": 84, "_static_reduce_window": 84, "_static_scaled_dot_product_attent": 84, "static_scaled_dot_product_attent": 84, "39999962": [84, 636, 659, 660], "19999695": [84, 660], "11600018": [84, 660], "88399887": [84, 660], "306": [84, 636, 660], "19999981": [84, 297, 310, 367, 375, 419, 636, 659, 666], "59249449": [84, 636, 666], "68226194": [84, 636, 666], "19603825": [84, 636, 666], "9960382": [84, 636, 666], "26894283": [84, 636, 666], "40236187": [84, 636, 666], "39999437": [84, 636, 666], "59999037": [84, 636, 666], "35046196": [84, 636, 666], "54282808": [84, 636, 666], "39989519": [84, 636, 666], "5998764": [84, 636, 666], "_containerwithlinearalgebra": [85, 103], "_static_choleski": 85, "static_choleski": 85, "577": [85, 637, 667], "707": [85, 637, 667], "static_rol": [85, 87], "_static_cross": 85, "static_cross": 85, "_static_det": 85, "_static_diag": 85, "_static_diagon": 85, "static_diagon": 85, "_static_eigh": 85, "_static_eigvalsh": 85, "static_eigvalsh": 85, "51572949": [85, 637, 674], "17091519": [85, 637, 674], "3448143": [85, 637, 674], "35898387e": [85, 637, 674], "46410179e": [85, 637, 674], "_static_inn": 85, "static_inn": 85, "_static_inv": 85, "static_inv": 85, "_static_matmul": 85, "matul": 85, "static_matmul": 85, "_static_matrix_norm": 85, "deimens": 85, "static_matrix_norm": 85, "_static_matrix_pow": 85, "_static_matrix_rank": 85, "static_matrix_rank": 85, "_static_matrix_transpos": 85, "static_matrix_transpos": 85, "_static_out": 85, "n1": [85, 139, 629], "n2": [85, 139, 629], "static_out": [85, 682], "_static_pinv": 85, "static_pinv": 85, "0426": 85, "0964": 85, "0605": 85, "1368": 85, "_static_qr": 85, "static_qr": 85, "31622777": [85, 637, 684], "9486833": [85, 637, 684], "4472136": [85, 637, 684], "89442719": [85, 637, 684], "16227766": [85, 637, 684], "42718872": [85, 637, 684], "63245553": [85, 637, 684], "47213595": [85, 637, 684], "81377674": [85, 637, 684], "_static_slogdet": 85, "static_slogdet": 85, "6931472": 85, "0986123": 85, "_static_solv": 85, "_static_svd": 85, "static_svd": 85, "au": 85, "aS": 85, "avh": 85, "bvh": 85, "_static_svdv": 85, "_static_tensordot": 85, "_static_tensorsolv": 85, "_static_trac": 85, "static_trac": 85, "_static_vand": 85, "static_vand": 85, "343": [85, 283, 632, 692], "729": [85, 692, 853], "_static_vecdot": 85, "_static_vector_norm": 85, "static_vector_norm": 85, "77359247": [85, 694], "_static_vector_to_skew_symmetric_matrix": 85, "09861231": [85, 637, 685], "static_general_inner_product": 85, "3475602": [85, 687], "93765765": [85, 687], "58776021": [85, 687], "10416126": [85, 687], "80644298": [85, 687], "87024701": [85, 687], "48127627": [85, 687], "79101127": [85, 687], "98288572": [85, 687], "68917423": [85, 687], "_containerwithloss": [86, 103], "_static_binary_cross_entropi": 86, "static_binary_cross_entropi": 86, "511": 86, "223": 86, "357": 86, "_static_cross_entropi": 86, "static_cross_entropi": 86, "20397282": 86, "83258148": 86, "60943794": [86, 637, 685], "_static_sparse_cross_entropi": 86, "static_sparse_cross_entropi": 86, "36354783": [86, 638, 696], "14733934": [86, 638, 696], "17027519": [86, 697], "53647931": [86, 697], "53647929": [86, 698], "1702752": [86, 698], "_containerwithmanipul": [87, 103], "_static_clip": 87, "static_clip": 87, "_static_concat": 87, "_static_constant_pad": 87, "static_constant_pad": 87, "_static_expand_dim": 87, "static_expand_dim": 87, "container_axi": [87, 639, 702], "_static_flip": 87, "static_flip": 87, "_static_permute_dim": 87, "static_permute_dim": 87, "_static_repeat": 87, "static_repeat": 87, "_static_reshap": 87, "static_reshap": 87, "_static_rol": 87, "positivclip": 87, "_static_split": 87, "static_split": 87, "_static_squeez": 87, "static_squeez": 87, "_static_stack": 87, "leavv": 87, "static_stack": 87, "_static_swapax": 87, "_static_til": 87, "static_til": 87, "_static_unstack": 87, "static_unstack": 87, "_static_zero_pad": 87, "repreat": [87, 705], "_containerwithnorm": [88, 103], "34198591": [88, 642, 737], "04274819": [88, 642, 737], "29923761": [88, 642, 737], "24053511": [88, 642, 737], "62221265": [88, 737], "20277636": [88, 737], "41943574": [88, 737], "83710337": [88, 737], "_containerwithrandom": [89, 103], "_static_multinomi": 89, "_static_randint": 89, "static_randint": 89, "_static_random_norm": 89, "static_random_norm": 89, "651": 89, "_static_random_uniform": 89, "static_random_uniform": 89, "481": 89, "0999": 89, "_static_shuffl": 89, "static_shuffl": 89, "431": [89, 740], "274": [89, 740], "_containerwithsearch": [90, 103], "_static_argmax": 90, "static_argmax": 90, "_static_argmin": 90, "static_argmin": 90, "_static_argwher": 90, "static_argwher": 90, "_static_nonzero": 90, "_static_wher": 90, "static_wher": 90, "_containerwithset": [91, 103], "_static_unique_al": 91, "static_unique_al": 91, "_static_unique_count": 91, "static_unique_count": 91, "_static_unique_invers": 91, "static_unique_invers": 91, "_static_unique_valu": 91, "_containerwithsort": [92, 103], "_static_argsort": 92, "static_argsort": 92, "_static_searchsort": 92, "_static_sort": 92, "static_sort": 92, "static_msort": 92, "_containerwithstatist": [93, 103], "_static_cumprod": 93, "static_cumprod": 93, "_static_cumsum": 93, "static_cumsum": 93, "_static_min": 93, "_static_prod": 93, "static_prod": 93, "11000001": [93, 763], "23100001": [93, 763], "30800003": [93, 647, 763], "_static_sum": 93, "_static_var": 93, "static_var": 93, "12666667": [93, 647, 766], "11555555": [93, 647, 766], "rtype": [93, 759, 805], "respectv": [93, 764], "81649649": [93, 764], "94280904": [93, 764], "509902": [93, 647, 764], "2472192": [93, 764], "44948983": [93, 764], "41421354": [93, 764], "6666667": [93, 766], "_containerwithutil": [94, 103], "_static_al": 94, "static_al": 94, "_static_ani": 94, "static_ani": 94, "add_ivy_container_instance_method": 95, "containerexampl": 95, "factorized_tensor": [96, 97, 98, 99, 100, 101], "factorizedtensor": [96, 97, 98, 99, 100, 101], "matrix_or_tensor": 96, "to_unfold": [96, 97, 98, 99, 100, 101], "to_vec": [96, 97, 98, 99, 100, 101], "cp_tensor": [97, 98], "cptensor": [97, 98, 323, 369], "cp_copi": 97, "cp_flip_sign": 97, "s_i": [97, 98], "normalisation_weight": [97, 98], "normalised_factor": [97, 98], "cp_lstsq_grad": 97, "return_loss": 97, "nabla": 97, "mathcal": 97, "mathbf": 97, "factor_matric": 97, "cp_gradient": 97, "quantiti": 97, "cp_mode_dot": 97, "keep_dim": [97, 101], "cp_multi_mode_dot": 97, "cp_n_param": 97, "tensor_shap": [97, 99, 100, 101], "n_param": [97, 98, 99, 100, 101], "cp_norm": 97, "cp_to_tensor": 97, "khatria": 97, "rao": [97, 376, 435], "khatri": [97, 376, 435], "cp_normal": 97, "normalis": [97, 98], "u_1": [97, 98], "u_n": [97, 98], "v_1": [97, 98], "v_n": [97, 98], "v_k": [97, 98], "u_k": [97, 98], "absorb": [97, 98], "refold": [97, 378, 477, 488], "cp_to_unfold": 97, "ie": 97, "s_u_i": 97, "exploit": [97, 873], "khatri_rao": [97, 376], "cp_to_vec": 97, "ravel": [97, 847], "unfolding_dot_khatri_rao": 97, "mttkrp": 97, "validate_cp_rank": 97, "percent": [97, 100], "validate_cp_tensor": 97, "parafac2_tensor": 98, "parafac2tensor": [98, 324, 369], "apply_parafac2_project": 98, "evolv": [98, 859, 870], "b_i": 98, "ijk": [98, 806], "sum_r": 98, "a_": 98, "ir": [98, 868, 871, 876], "jr": 98, "kr": 98, "coupl": [98, 819, 824, 851, 853, 870], "factoris": 98, "i1": [98, 387, 525], "classmethod": [98, 105, 106, 781], "from_cptensor": 98, "parafac2_tensor_ok": 98, "parafac2_normalis": 98, "normalised_project": 98, "parafac2_to_slic": 98, "slice_idx": 98, "frontal": 98, "a_i": 98, "j_i": 98, "b_": 98, "reformul": 98, "p_i": 98, "orthogon": [98, 323, 327, 369, 376, 429, 445, 451, 637, 672, 673], "sum_": 98, "ijr": 98, "constraint": [98, 806, 828, 829, 839], "projection_matric": 98, "parafac2_to_tensor": 98, "construct": [98, 639, 712, 792, 795, 796, 797, 843, 849, 853, 854, 868, 870, 877], "uneven": 98, "parafac2_to_unfold": 98, "parafac2_to_vec": 98, "validate_parafac2_tensor": 98, "cp": [98, 323, 369, 820], "tr_tensor": 99, "trtensor": [99, 325, 369], "tr_n_param": 99, "tr_to_tensor": 99, "tr_to_unfold": 99, "tr_to_vec": 99, "validate_tr_rank": 99, "validate_tr_tensor": 99, "tt_tensor": 100, "_tt_n_param": 100, "mp": [100, 326, 369], "index_upd": 100, "pad_tt_rank": 100, "factor_list": 100, "n_pad": 100, "pad_boundari": 100, "ring": 100, "bond": 100, "padded_factor_list": 100, "tt_to_tensor": 100, "assembl": [100, 376, 450], "tt_to_unfold": 100, "reassembl": 100, "tt_to_vec": 100, "validate_tt_rank": 100, "constant_rank": 100, "allow_overparametr": 100, "proport": [100, 791], "realiz": [100, 870], "validate_tt_tensor": 100, "tucker_tensor": 101, "tucker_copi": 101, "tucker_mode_dot": [101, 877], "tucker_n_param": 101, "tucker_norm": 101, "tucker_to_tensor": 101, "skip_factor": 101, "transpose_factor": 101, "tucker_to_unfold": 101, "tucker_to_vec": 101, "validate_tucker_rank": 101, "fixed_mod": 101, "validate_tucker_tensor": 101, "_bisection_root_find": 101, "fun": [101, 366, 374, 614, 634, 641, 729, 828], "max_it": 101, "__abs__": [102, 103], "__add__": [102, 103, 824, 827, 831, 832, 836, 841, 842, 851], "__eq__": [102, 103], "__ge__": [102, 103], "__gt__": [102, 103, 847], "__le__": [102, 103], "__lt__": [102, 103], "__ne__": [102, 103], "__pow__": [102, 103, 851], "69678056": 102, "59876156": 102, "82660675": 102, "__radd__": [102, 103, 831, 832, 841], "__rrshift__": [102, 103], "__rshift__": [102, 103], "__rsub__": [102, 103], "__sub__": [102, 103, 824, 827, 831, 836, 851], "__truediv__": [102, 103, 824, 827, 831], "__xor__": [102, 103], "referenc": [102, 833, 840], "resid": [102, 106, 639, 702, 841, 849, 853], "mt": [102, 851], "hopefulli": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861], "reach": [102, 103, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 788, 789, 791, 792, 794, 795, 796, 797, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 849, 850, 851, 852, 853, 854, 859, 860, 861, 869, 870], "eq": 103, "ge": 103, "le": 103, "ne": 103, "75979435": 103, "52153397": 103, "13532257": 103, "rshift": 103, "truediv": 103, "nested_arrai": [105, 106, 107, 826], "nestedarrai": 105, "nested_rank": [105, 106, 107], "inner_shap": [105, 106, 107], "nestedarraybas": [105, 106, 107], "from_row_length": 105, "row_length": 105, "from_row_split": 105, "row_split": 105, "ragged_map": 106, "ragged_multi_map": 106, "ragged_arrai": 106, "ragged_multi_map_in_funct": 106, "replace_ivy_arrai": 106, "unbind": 106, "nestedarrayelementwis": 107, "strictli": [112, 115, 118, 247, 626, 632, 836, 840], "24000001": [112, 626], "703": [113, 626], "683": [113, 626], "408": [113, 626], "313": [113, 626], "437": [113, 626], "40337825": [114, 626], "56114835": [114, 626], "20788449": [114, 626], "0768": [117, 626], "231": [117, 626], "\u03b2": [118, 626], "body_fn": [122, 123, 125, 628], "bodi": [122, 125, 628, 823, 844], "lst": [122, 628], "orelse_fn": [123, 628], "body1": [124, 628], "body2": [124, 628], "test_fn": [125, 628, 774, 812, 864, 865], "repeatedli": [125, 628, 641, 727, 828, 844], "ml_framework": [126, 629], "distanc": [126, 629], "adjac": [126, 629], "nestedsequ": [127, 128, 629], "typevar": [127, 128, 629], "supportsbufferprotocol": [127, 128, 629], "static_copy_arrai": [129, 629], "intdtyp": [132, 143, 149, 161, 172, 177, 184, 190, 629, 630], "pycapsul": [133, 144, 629], "interchang": [133, 144, 629, 639, 711], "plu": [134, 629], "x00b": [134, 629], "x00d": [134, 629], "x00e": [134, 629], "41588834": [138, 629], "7827941": [138, 629], "6227766": [138, 629], "23413252": [138, 629], "n3": [139, 629], "xv": [139, 629], "yv": [139, 629], "x_nativ": [140, 629, 840], "y_nativ": [140, 629], "z_nativ": [140, 629], "d_type": [142, 629], "col": [147, 328, 369, 629], "primari": [147, 166, 167, 199, 200, 328, 369, 385, 515, 550, 551, 629, 630, 631, 634, 777, 779, 818, 822, 825, 829, 838, 840, 841, 843, 844, 847, 855, 857], "upward": [147, 328, 369, 629], "downward": [147, 328, 369, 629], "2xn": [147, 328, 369, 629], "subarrai": [147, 328, 369, 629], "incompat": [154, 630], "closest": [157, 236, 246, 247, 283, 293, 630, 632, 844, 847], "xtype": [157, 630], "ytype": [157, 630], "native_uint16": [157, 630], "complexdtyp": [158, 172, 181, 630], "set_default_complex_dtyp": [158, 187, 630], "4294": [158, 160, 630], "967346": [158, 160, 630], "set_default_dtyp": [159, 188, 630, 829, 837], "floatdtyp": [160, 183, 630], "set_default_float_dtyp": [160, 169, 181, 189, 630, 829], "int_dtyp": [161, 184, 630], "set_default_int_dtyp": [161, 169, 190, 630, 829], "4294967346": [161, 162, 630], "uint_dtyp": [162, 185, 630], "uint": [162, 177, 185, 191, 630, 829, 842], "uintdtyp": [162, 177, 185, 191, 630], "set_default_uint_dtyp": [162, 169, 191, 630], "native_bool": [164, 630], "ieee": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "754": [165, 223, 240, 245, 263, 273, 282, 287, 290, 627, 630, 632, 860], "smallest_norm": [165, 630], "bfloat16": [166, 630, 776, 777, 829, 841, 844, 845], "unsupport": [167, 200, 551, 630, 631, 634, 771, 774, 816, 819, 834, 841], "encapsul": [168, 630, 828], "314": [168, 280, 338, 372, 630, 632], "9223372036854775808": [168, 630], "9223372036854775807": [168, 630], "65535": [168, 630], "4294967295": [168, 630], "native_uint8": [170, 630], "hashabl": [174, 630], "type1": [178, 630], "type2": [178, 630], "array_api_promot": [178, 179, 630, 776, 777], "unexpect": [179, 247, 630, 632, 829], "default_complex_dtyp": [181, 630], "default_dtype_stack": [182, 188, 630], "unset_default_dtyp": [182, 630], "native_uint64": [182, 630], "default_float_dtyp": [183, 630, 829], "default_int_dtyp": [184, 190, 630, 829], "default_uint_dtyp": [185, 191, 630], "ret1": [186, 630], "ret2": [186, 630], "reset": [187, 188, 189, 190, 191, 217, 218, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 630, 631, 634, 830], "default_complex_dtype_stack": [187, 630], "default_float_dtype_stack": [189, 630], "native_float16": [192, 630], "unmodifi": [194, 631, 825, 829], "aliv": [201, 206, 208, 554, 574, 575, 631, 634, 830], "139740789224448": [201, 631], "process_specif": [207, 219, 631], "percentag": [207, 631], "ram": [207, 215, 219, 631], "alon": [207, 219, 631, 812, 835, 844], "036902561555": [207, 631], "7024003467681645": [207, 631], "as_native_dev": [207, 631], "7095597456708771": [207, 631], "attr_onli": [208, 631], "soft_device_mod": [210, 218, 631], "chunk": [211, 212, 213, 631], "split_factor": [211, 631, 833], "max_chunk_s": [213, 631], "chunk_siz": [213, 631], "input_ax": [213, 631], "output_ax": [213, 631], "fed": [213, 631, 853], "fist": [213, 631], "gb": [215, 219, 631, 819, 834], "66700032": [215, 631], "589934592": [215, 631], "219563008": [219, 631], "902400346": [219, 631], "525205504": [219, 631], "na": [220, 632, 844], "noqa": [220, 287, 632, 792, 801, 842], "princip": [221, 225, 227, 359, 372, 632], "codomain": [221, 222, 225, 226, 227, 228, 237, 238, 243, 245, 261, 262, 264, 285, 286, 287, 290, 291, 359, 372, 632, 832], "\u03c0": [221, 225, 227, 228, 627, 632], "3\u03c0": [221, 228, 632], "unspecifi": [221, 222, 226, 229, 238, 243, 245, 247, 282, 286, 287, 291, 376, 429, 632, 637, 639, 672, 673, 710, 840], "\u03c0j": [222, 226, 229, 261, 263, 632], "3\u03c0j": [222, 261, 263, 632], "x1_i": [223, 228, 230, 232, 233, 234, 235, 240, 241, 247, 251, 252, 259, 260, 265, 267, 269, 270, 273, 276, 278, 282, 289, 632, 823], "2019": [223, 240, 245, 263, 273, 632, 870, 873], "commut": [223, 632], "tabl": [223, 240, 273, 585, 608, 632, 634, 776, 777, 792, 841, 846, 870], "dj": [223, 240, 273, 632], "z1": [223, 632], "z2": [223, 632], "yj": [224, 632], "nanj": [226, 632], "809": [226, 632], "569": [226, 632], "733": [226, 632], "notat": [228, 632, 647, 759, 828], "denot": [228, 632, 794], "quadrant": [228, 632], "rai": [228, 632, 860], "bitwis": [230, 233, 235, 270, 632], "170": [234, 632], "243": [234, 632], "xor": [235, 270, 632], "654": [237, 632], "ci": [238, 243, 245, 286, 632, 823, 829, 835, 842, 844, 855], "368": [238, 632], "670": [238, 632], "202": [238, 632, 823], "548": [238, 632], "1490": [238, 632], "57079633": [239, 632], "14159265": [239, 632], "71238898": [239, 632], "28318531": [239, 632], "02617994": [239, 632], "87266463": [239, 632], "01919862": [239, 632], "03839725": [239, 632], "05759586": [239, 632], "07679449": [239, 632], "09599311": [239, 632], "11519173": [239, 632], "35081118": [239, 632], "88139129": [239, 632], "underflow": [240, 247, 632, 637, 685, 829], "textbook": [240, 273, 632], "frac": [240, 262, 264, 284, 286, 290, 375, 381, 403, 404, 408, 409, 501, 503, 632], "ac": [240, 273, 632, 805, 806], "bd": [240, 273, 632], "bc": [240, 273, 632, 805, 806], "versu": [240, 273, 632], "riemann": [240, 273, 632], "sphere": [240, 273, 632], "c99": [240, 273, 632], "infinit": [240, 273, 287, 632], "unlik": [240, 273, 632, 823, 828, 831, 860, 875, 877], "698": [240, 632], "truth": [241, 251, 252, 259, 260, 276, 377, 453, 632, 771, 773, 784, 816, 834, 841, 844], "32862675": [242, 632], "67780113": [242, 632], "11246294": [242, 632], "42839241": [242, 632], "52050018": [242, 632], "16799599": [242, 632], "30787992": [242, 632], "43796915": [242, 632], "98667163": [242, 632], "79690808": [242, 632], "88020504": [242, 632], "91031402": [242, 632], "95228523": [242, 632], "96610528": [242, 632], "cut": [243, 245, 285, 286, 287, 290, 632, 859, 876], "08553692": [243, 632], "567": [243, 632], "00344786": [243, 632], "76297021": [243, 632], "197948": [243, 632], "53253174": [243, 632], "fdlibm": [245, 263, 632], "compliant": [245, 263, 268, 269, 335, 336, 372, 632, 647, 760, 761, 762, 764], "potenti": [245, 263, 632, 812, 818, 819, 828, 829, 841, 848, 873], "632": [245, 632], "20e": [245, 632], "72e": [245, 632, 776], "greatest": [246, 247, 250, 632], "pep": [247, 632, 836], "disambigu": [247, 632, 839], "former": [247, 632, 819, 829, 832, 841], "latter": [247, 632, 819, 823, 825, 829, 832, 841], "overload": [247, 632, 844], "led": [247, 632, 823, 872], "subtl": [247, 632, 829, 876], "bug": [247, 632, 812, 818, 820, 826, 834, 835, 841, 844, 856], "ambigu": [247, 632], "semant": [247, 282, 378, 492, 632, 829, 849, 854, 859, 871], "ill": [247, 632, 778], "surpris": [247, 632, 855], "arrau": [253, 632], "log_": [262, 264, 632], "742": [263, 632], "negat": [275, 338, 372, 632], "52095687": [278, 632], "92457771": [278, 632], "49372482": [278, 632], "22738838": [278, 632], "156": [278, 632, 776], "5877228": [278, 632], "189": [279, 632, 641, 718], "252": [279, 632], "1150": [279, 632], "2890": [279, 632], "344": [279, 632], "355j": [280, 338, 372, 632], "55j": [280, 338, 372, 632], "primarili": [282, 632, 818, 827, 870], "counterpart": [283, 632, 827, 838], "deliber": [283, 632, 847], "imprecis": [283, 632], "5654": [283, 632], "034": [283, 632], "433": [283, 618, 620, 632, 635], "signum": [284, 632], "textrm": [284, 632], "932": [285, 632], "746": [285, 632], "657": [285, 632], "indistinguish": [287, 632], "infti": [287, 632], "32455532": [287, 632], "89897949": [287, 632], "169": [287, 632], "analyt": [290, 632, 870, 872, 876], "pole": [290, 632], "546": [290, 632, 636, 660], "916": [290, 632], "996": [290, 632], "histor": [291, 632], "stem": [291, 632, 840], "older": [291, 632], "advis": [291, 632, 841], "462": [291, 632], "604": [291, 632], "997": [291, 632], "0375": [293, 632], "032": [293, 632], "57258511": [296, 367], "69999999": [296, 367, 625, 635], "90928203": [296, 367], "98772264": [296, 367], "99591321": [296, 367], "99863964": [296, 367], "69880581": [296, 367], "18126924": [296, 367], "79999995": [297, 307, 310, 367], "70000005": [297, 310, 367], "1241": [298, 367], "4897": [298, 367], "4090": [298, 367], "31008321": [298, 367], "1147176": [298, 367], "40899992": [298, 367], "20141329": [301, 367], "40318608": [301, 367], "48683619": [301, 367], "46328247": [301, 367], "59813893": [301, 367], "43748799": [301, 367], "parametr": [302, 367, 823, 844, 870], "71589994": [304, 308, 367], "14324772": [304, 308, 367], "70648694": [304, 308, 367], "54488957": [304, 308, 367], "10740992": [304, 308, 367], "19514863": [304, 308, 367], "6705687": [305, 367], "52016652": [305, 367], "40560818": [305, 367], "45630932": [305, 367], "2689": [306, 367], "7310": [306, 367], "7615": [306, 367], "2784": [306, 367], "7168": [306, 367], "8708": [306, 367], "4374": [306, 367], "1379": [306, 367], "0089": [306, 367], "59999991": [307, 367], "03597236": [309, 367], "43827677": [309, 367], "80100036": [309, 367], "12954807": [309, 367], "76459098": [309, 367], "20044947": [309, 367], "60000372": [309, 367], "taper": [312, 315, 369], "summat": [312, 369, 647, 759, 805, 806], "leakag": [312, 369], "wors": [312, 369, 860], "y1": [313, 369], "0800": [314, 369], "3979": [314, 369], "9121": [314, 369], "5400": [314, 369], "han": [315, 369], "ith": [316, 369], "00726415": [317, 369], "9999736": [317, 369], "2773e": [318, 369], "0172e": [318, 369], "9294e": [318, 369], "4149": [318, 369], "9138": [318, 369], "5529": [318, 369], "multidimension": [320, 321, 369, 870], "normalise_factor": [323, 324, 369], "parafac2": [324, 369], "tr": [325, 369], "38268346": [333, 369], "38268352": [333, 369], "8563191": [333, 369], "14943568": [333, 369], "cn": [335, 336, 372], "zh": [335, 336, 372], "amax_cn": [335, 372], "sentinel": [335, 336, 372, 647, 760, 762], "amin_cn": [336, 372], "4769": [344, 372], "position": [346, 372], "triangl": [350, 372], "999999e": [351, 372], "65999985": [353, 372], "52000046": [353, 372], "1500001": [353, 372, 546, 634], "11259177": [354, 372], "3574118": [354, 372], "20097363": [354, 372], "suppli": [358, 372, 378, 484, 805, 824, 826, 844], "217234": [359, 372], "hurwitz": [362, 372], "custom_grad_func": [364, 374], "bind": [364, 374, 818, 839, 869, 870], "upstream": [364, 374, 819, 820, 823, 834, 839], "primal": [365, 366, 374], "jacobian": [365, 366, 374, 620, 635, 855, 870], "cotang": [366, 374], "stanh": 367, "ndenumer": 369, "ndindex": 369, "random_cp": 369, "random_parafac2": 369, "random_tr": 369, "random_tt": 369, "random_tuck": 369, "bind_custom_gradient_funct": [374, 839], "jvp": 374, "vjp": 374, "h_out": [375, 392, 636, 661], "w_out": [375, 392], "area_interpol": 375, "01823380e": [375, 397, 407], "15385818e": [375, 397, 407], "36371466e": [375, 397, 407], "38763905e": [375, 397, 407], "60722279e": [375, 397, 407], "80319249e": [375, 397, 407], "05617893e": [375, 397, 407], "21500000e": [375, 397, 407], "24000015e": [375, 397, 407], "90734863e": [375, 397, 407], "10000420e": [375, 397, 407], "15899994e": [375, 397, 407], "24000053e": [375, 397, 407], "81469727e": [375, 397, 407], "09999847e": [375, 397, 407], "4135742": [375, 397, 407], "6779785": [375, 397, 407], "3770599": [375, 397, 407], "8719864": [375, 397, 407], "72109985": [375, 397, 407], "52869415": [375, 397, 407], "79182434": [375, 397, 407], "72489166": [375, 397, 407], "container_n": [375, 397, 407], "container_typ": [375, 397, 407, 634], "container_norm": [375, 397, 407], "1580677": [375, 397], "89422607": [375, 397], "86190414": [375, 397], "00041008": [375, 397], "75149155": [375, 397], "97056389": [375, 397], "87819386": [375, 397], "89381361": [375, 397], "50000000e": [375, 397, 407, 776], "22044605e": [375, 397, 407], "ed": [375, 399, 400, 401], "rest": [375, 378, 399, 400, 401, 470, 819, 826, 828, 844, 854, 872], "5d": [375, 401, 792], "emb": [375, 402], "51285338": [375, 402], "87183261": [375, 402], "2308116": [375, 402], "02733949e": [375, 403], "00j": [375, 403], "49660576e": [375, 403], "68178638e": [375, 403], "01j": [375, 403, 408], "98912367e": [375, 403], "21802426e": [375, 403, 408], "04549134e": [375, 403, 408], "82842712e": [375, 403, 408], "86902654e": [375, 403, 408], "25501143e": [375, 403, 408], "32978028e": [375, 403, 408], "52068201e": [375, 403, 408], "71158374e": [375, 403, 408], "generate_einsum_equ": 375, "get_interpolate_kernel": 375, "27279224e": [375, 407], "44232273e": [375, 407], "70464332e": [375, 407], "73454881e": [375, 407], "00902849e": [375, 407], "10039906e": [375, 407], "07022366e": [375, 407], "69506073": [375, 407], "93914604": [375, 407], "88008881": [375, 407], "18951607": [375, 407], "57439613": [375, 407], "15318303e": [375, 408], "15148591e": [375, 408], "19j": [375, 408], "25000000e": [375, 408], "35378602e": [375, 408], "02j": [375, 408], "65404249e": [375, 408], "17611649e": [375, 408], "24320230e": [375, 408], "79344813e": [375, 408], "22374531e": [375, 408], "45929364e": [375, 408], "14208718e": [375, 408], "07177031e": [375, 408], "indexerror": [375, 409, 420, 639, 702, 807, 833], "interp": [375, 847], "xp": [375, 410, 823], "fp": [375, 410], "nd": [375, 411], "tf_bicub": [375, 411, 847], "nearest_interpol": 375, "window_shap": [375, 417], "pool_typ": [375, 417], "irfft": [375, 419], "silent": [375, 419], "discard": [375, 419, 828], "1400001": [375, 419], "3999999": [375, 419], "3999996": [375, 419], "99038106j": [375, 420], "33012702": [375, 420], "23205081j": [375, 420], "33012702j": [375, 420], "superdiagon": [376, 427, 637, 670], "subdiagon": [376, 427, 637, 670], "eigendecomposit": [376, 429, 637, 672, 673], "qlq\u1d40": [376, 429, 637, 672, 673], "tridiagon": [376, 430], "38196602": [376, 430], "61803389": [376, 430], "35048741": [376, 430], "56710052": [376, 430], "06693714": [376, 430], "74234426": [376, 430], "56155282": [376, 430], "56155276": [376, 430], "82842714": [376, 430], "82842731": [376, 430, 637, 673], "necessarili": [376, 431, 824, 827], "generalis": [376, 432], "skip_matrix": [376, 435, 437], "khatri_rao_product": [376, 435], "kronecker_product": [376, 437], "n_column": [376, 437], "lu_factor": 376, "pivot": [376, 438], "lu": [376, 438, 439], "lu_solv": 376, "nnmf": [376, 440], "hoi": [376, 445, 451], "solve_triangular": 376, "unit_diagon": [376, 446], "solut": [376, 446, 637, 686, 776, 812, 816, 818, 819, 820, 827, 829, 834, 842, 844, 847, 868, 872], "determinist": [376, 447, 844], "borrow": [376, 447, 822], "extmath": [376, 447], "ivan": [376, 448], "oseledet": [376, 448], "scientif": [376, 448, 870], "2295": [376, 448], "2317": [376, 448], "2011": [376, 448], "convention": [377, 454, 873], "explicit": [377, 378, 454, 492, 819, 827, 829, 839, 840, 841, 849, 855, 870], "555969": [377, 454], "223876": [377, 454], "111938": [377, 454], "42649534": [377, 454], "68651628": [377, 454], "51119184": [377, 454], "59967244": [377, 454], "mae": [377, 455], "666": [377, 455, 636, 637, 660, 678], "91097307": [377, 457], "3467": [377, 458], "0133": [377, 458], "0250": [377, 458], "0056": [377, 458], "0025": [377, 458], "0675": [377, 458], "6987": [377, 459], "1606": [377, 459], "3711": [377, 459], "4032": [377, 459], "6931": [377, 459], "whilst": [378, 462, 463, 464, 854, 857, 870], "ary3": [378, 464], "check_scalar": 378, "force_integ": [378, 466], "force_posit": [378, 466], "mod": [378, 467, 823], "tall": [378, 473], "horizot": [378, 480], "shortcut": [378, 484, 819], "linear_ramp": [378, 484], "reflect": [378, 484, 820, 824, 840, 844], "ramp": [378, 484], "mirror": [378, 484, 815, 818, 870], "padding_func": [378, 484], "iaxis_pad_width": [378, 484], "iaxi": [378, 484], "unalt": [378, 484], "put": [378, 489, 812, 818, 844, 855, 876], "mul": [378, 489, 840, 851], "conceptu": [378, 492, 866, 871], "concern": [378, 492, 820, 822, 827, 829, 831, 840, 847, 848, 876], "regard": [378, 492, 817, 827, 841, 842, 847, 860], "mutat": [378, 492], "elimin": [378, 498, 819], "consecut": [378, 498], "batch_mean": [381, 501, 503], "batch_var": [381, 501, 503], "running_vari": [381, 501, 503], "local_response_norm": 381, "neighbour": [381, 506], "42857143": [381, 507], "5714286": [381, 507], "multivari": [382, 510], "bayesian": [382, 510], "supposedli": [385, 514], "indirect": [385, 515], "secondari": [385, 515], "is_ivy_sparse_arrai": 386, "is_native_sparse_arrai": 386, "native_sparse_arrai": 386, "coo_indic": [386, 518], "crow_indic": [386, 518], "col_indic": [386, 518], "ccol_indic": [386, 518], "row_indic": [386, 518], "dense_shap": [386, 518], "native_sparse_array_to_indices_values_and_shap": 386, "nativesparsearrai": 386, "sparsearrai": 386, "linalg": [387, 522, 637, 685, 686, 818, 840, 842], "aw": [387, 522, 860], "48447205": [387, 522], "c0": [387, 525], "ck": [387, 525], "c2": [387, 525], "nearest_jax": [387, 532], "trace_on_next_step": [536, 634, 796, 853], "recalcul": [539, 634], "my_sum": [539, 634], "val1": [539, 634], "val2": [539, 634], "cached_sum": [539, 634], "line_eq": [539, 634], "slp": [539, 634], "itc": [539, 634], "cached_line_eq": [539, 634], "0353": [540, 634], "424": [540, 634], "339": [540, 634], "271": [540, 634], "391": [540, 634], "78885436": [541, 634], "41666666": [541, 634], "58333331": [541, 634], "06666667": [541, 634], "13333334": [541, 634], "40000004": [541, 634], "26666668": [541, 634], "13137734": [541, 634], "26275468": [541, 634], "39413199": [541, 634], "52550936": [541, 634], "6568867": [541, 634], "78826398": [541, 634], "84852815": [541, 634], "1313709": [541, 634], "41421366": [541, 634], "27279221": [541, 634], "69705628": [541, 634], "12132034": [541, 634], "default_str": [544, 634], "46999979": [545, 634], "66000009": [545, 634], "93000001": [545, 634], "29000092": [545, 634], "33999991": [545, 634], "6400001": [545, 634], "96000004": [545, 634], "36000013": [545, 634], "51999998": [545, 634], "67000008": [545, 634], "suppos": [545, 634, 829, 844], "960": [545, 634], "3600": [545, 634], "h1": [545, 634], "w1": [545, 634], "40499985": [546, 634], "61000061": [546, 634], "max_depth": [557, 634], "seen_set": [557, 634], "local_set": [557, 634], "referr": [557, 634], "redund": [557, 634, 812, 829, 833, 841, 863], "example_funct": [557, 634], "repr": [557, 634], "ivyexcept": [562, 595, 634, 807, 830, 833, 838, 840, 841, 845], "allow_dupl": [572, 634], "fork": [573, 634, 813, 823, 828, 834], "forkserv": [573, 634], "mp_default": [573, 634], "defaultcontext": [573, 634], "0x7f4e3193e520": [573, 634], "mp_fork": [573, 634], "forkcontext": [573, 634], "0x7f4e3193e580": [573, 634], "mp_spawn": [573, 634], "spawncontext": [573, 634], "0x7f4e3193e5e0": [573, 634], "mp_forkserv": [573, 634], "forkservercontext": [573, 634], "0x7f4e3193e640": [573, 634], "garbag": [575, 634], "collector": [575, 634], "get_all_arrays_in_memori": [575, 634], "exception_trace_mod": [579, 603, 634, 846], "lenient": [580, 604, 634], "inplace_mod": [580, 604, 634], "break": [580, 634, 812, 825, 829, 836, 845, 855], "infus": [581, 634], "unset": [582, 589, 634, 637, 685, 801, 825, 849], "unset_min_bas": [582, 634], "nestable_mod": [584, 607, 634, 846], "precise_mod": [585, 608, 634, 846], "shape_array_mod": [587, 610, 634, 846], "show_func_wrapper_trace_mod": [588, 611, 634, 846], "tmp_dr": [589, 634], "tmp_dir": [589, 612, 634, 846], "my_tmp": [589, 634], "unset_tmp_dir": [589, 634], "49999999999975": [592, 634], "5015015015010504": [592, 634], "000444502911705e": [592, 634], "9999999999995j": [592, 634], "00000262": [593, 634], "15605032": [593, 634], "01208451j": [593, 634], "00048": [593, 634], "1296": [593, 634], "00864": [593, 634], "isn": [595, 634, 815, 820, 838, 840, 844, 852, 855, 872], "100000023841858": [597, 634], "200000047683716": [597, 634], "299999952316284": [597, 634], "400000095367432": [597, 634], "599999904632568": [597, 634], "hemant": [601, 634], "unset_shape_array_mod": [602, 634], "set_exception_trace_mod": [603, 634, 833], "set_min_bas": [605, 634], "set_min_denomin": [606, 634], "set_nestable_mod": [607, 634], "set_precise_mod": [608, 634], "set_queue_timeout": [609, 634], "set_shape_array_mod": [610, 634], "set_show_func_wrapper_trace_mod": [611, 634, 833], "set_tmp_dir": [612, 634], "my_dir": [612, 634], "451": [613, 634], "in_ax": [614, 634], "out_ax": [614, 634], "thereof": [614, 634], "summaris": [614, 634], "99999998": [615, 635], "19999998": [615, 635], "00000001": [615, 635], "00300001": [615, 635], "00800001": [615, 635], "0125": [615, 635], "17294501": [615, 635], "15770318": [615, 635], "20863818": [615, 635], "90000075": [616, 635], "90000164": [616, 635], "9000032": [616, 635], "50000012e": [616, 635], "92558754": [616, 635], "92558694": [616, 635], "92558682": [616, 635], "92558861": [616, 635], "60000025e": [616, 635], "01024": [616, 635], "retain_grad": [617, 635], "func_ret": [617, 635, 839], "666666": [617, 635], "333332": [617, 635], "66666675": [617, 625, 635], "argnum": [618, 635], "933": [618, 620, 635], "jac_fn": [620, 635], "639": [621, 635], "361": [621, 635], "52565837": [622, 635], "8418861": [622, 635], "68377209": [622, 635], "value_grad": [625, 635], "42333412": [625, 635], "5333333": [625, 635], "93333334": [625, 635], "43333334": [625, 635], "0666666": [625, 635], "softsign": 626, "718281828459045": 627, "euler": 627, "141592653589793": 627, "cmp_i": 628, "cmp_isnot": 628, "for_loop": 628, "if_els": 628, "try_except": 628, "to_dlpack": 629, "as_ivy_dtyp": [630, 841], "as_native_dtyp": 630, "check_float": 630, "closest_valid_dtyp": 630, "default_dtyp": [630, 829, 837], "dtype_bit": 630, "function_supported_dtyp": [630, 829, 844], "function_unsupported_dtyp": [630, 829], "infer_default_dtyp": 630, "invalid_dtyp": [630, 829], "is_hashable_dtyp": 630, "is_native_dtyp": 630, "promote_typ": [630, 829], "promote_types_of_input": [630, 829, 840], "type_promote_arrai": [630, 829], "unset_default_complex_dtyp": 630, "unset_default_float_dtyp": 630, "unset_default_int_dtyp": 630, "unset_default_uint_dtyp": 630, "valid_dtyp": 630, "defaultcomplexdtyp": 630, "defaultdtyp": 630, "defaultfloatdtyp": 630, "defaultintdtyp": 630, "defaultuintdtyp": 630, "as_ivy_dev": [631, 851], "clear_cached_mem_on_dev": 631, "dev_util": [631, 830], "function_supported_devic": 631, "function_unsupported_devic": 631, "get_all_ivy_arrays_on_dev": [631, 830], "handle_soft_device_vari": [631, 830], "num_cpu_cor": [631, 830], "num_gpu": [631, 830, 844], "num_ivy_arrays_on_dev": 631, "percent_used_mem_on_dev": 631, "print_all_ivy_arrays_on_dev": 631, "set_split_factor": [631, 833], "split_func_cal": 631, "total_mem_on_dev": [631, 830], "tpu_is_avail": 631, "unset_default_devic": [631, 830], "unset_soft_device_mod": [631, 830], "used_mem_on_dev": 631, "defaultdevic": [631, 830], "profil": 631, "save_dir": 631, "arg_info": 634, "arg_nam": 634, "cache_fn": [634, 837], "current_backend_str": [634, 844, 849, 851], "function_supported_devices_and_dtyp": 634, "function_unsupported_devices_and_dtyp": 634, "get_item": [634, 840], "get_referrers_recurs": 634, "inplace_arrays_support": 634, "inplace_variables_support": 634, "is_ivy_nested_arrai": 634, "isscalar": 634, "match_kwarg": 634, "num_arrays_in_memori": 634, "print_all_arrays_in_memori": 634, "set_item": [634, 844], "to_ivy_shap": 634, "to_native_shap": 634, "try_else_non": 634, "unset_array_mod": [634, 846], "unset_exception_trace_mod": 634, "unset_inplace_mod": 634, "unset_min_denomin": 634, "unset_nestable_mod": 634, "unset_precise_mod": 634, "unset_queue_timeout": 634, "unset_show_func_wrapper_trace_mod": 634, "vmap": [634, 855, 870], "arraymod": 634, "precisemod": [634, 829], "jac": 635, "value_and_grad": [635, 839], "feature_group_count": [636, 649, 656, 657], "oiw": [636, 649, 650, 656], "oihw": [636, 649, 652, 656], "oidhw": [636, 649, 654, 656], "dhwio": [636, 649, 650, 654, 656], "conv_general_dil": [636, 841], "conv_general_transpos": 636, "depthwis": [636, 658, 778, 792], "1428566": [636, 659], "49000001": [636, 659], "55599999": [636, 659], "21000004": [636, 659], "incom": [636, 660], "4269": [636, 660], "911": [636, 660, 833], "157": [636, 660], "753": [636, 660], "545": [636, 643, 660, 741], "547": [636, 660, 830], "963": [636, 660], "98495483": [636, 660], "0293808": [636, 660], "0159359": [636, 660], "74752808": [636, 660], "20942307": [636, 660], "3205719": [636, 660], "all_weight": [636, 661], "num_lay": [636, 661, 792], "batch_first": [636, 661, 663], "weights_transpos": [636, 661], "has_ih_bia": [636, 661], "has_hh_bia": [636, 661], "multi": [636, 637, 661, 663, 668, 778, 792, 831, 848, 855, 866, 868, 870, 874], "long": [636, 661, 662, 819, 820, 828, 829, 831, 833, 834, 841, 849, 870], "seq_len": [636, 661], "input_s": [636, 661], "h_0": [636, 661], "c_0": [636, 661], "num_direct": [636, 661], "hidden_s": [636, 661], "four": [636, 661, 815, 824, 829, 831, 836, 837, 844, 847, 852], "w_ih": [636, 661], "w_hh": [636, 661], "b_ih": [636, 661], "b_hh": [636, 661], "pack": [636, 661], "c_out": [636, 661], "vaswani": [636, 663], "al": [636, 663], "num_attention_head": [636, 663], "key_dim": [636, 663, 792], "value_dim": [636, 663, 792], "attention_weight": [636, 663], "unbatch": [636, 663], "nm": 636, "box": [636, 664, 665, 819], "iou_threshold": [636, 664], "max_output_s": [636, 664], "score_threshold": [636, 664], "roi_align": 636, "spatial_scal": [636, 665], "sampling_ratio": [636, 665], "23333359": [636, 666], "03946018": [636, 666], "0280633": [636, 666], "29981947": [636, 666], "29981089": [636, 666], "06345534": [636, 666], "9634552": [636, 666], "19336844": [636, 666], "09336829": [636, 666], "axisa": [637, 668], "axisb": [637, 668], "axisc": [637, 668], "293": [637, 669], "46997": [637, 669], "17157288": [637, 673], "9238795": [637, 673], "78930789": [637, 673], "59803128": [637, 673], "19127655": [637, 673], "31213903": [637, 673], "63418275": [637, 673], "84632206": [637, 673], "70548367": [637, 673], "70223427": [637, 673], "09570674": [637, 673], "63116378": [637, 673], "56109613": [637, 673], "53554028": [637, 673], "32237405": [637, 673], "43822157": [637, 673], "83906901": [637, 673], "50766778": [637, 673], "71475857": [637, 673], "48103389": [637, 673], "3676433": [637, 673], "68466955": [637, 673], "62933773": [637, 673], "77917379": [637, 673], "14264561": [637, 673], "61036086": [637, 673], "45033181e": [637, 674], "02829754e": [637, 674], "54220343e": [637, 674], "12647155e": [637, 674], "38447177e": [637, 674], "56155300e": [637, 674], "26794919": [637, 674], "7320509": [637, 674], "0012": [637, 676], "00342": [637, 676], "000565": [637, 676], "0104": [637, 676], "000981": [637, 676], "00282": [637, 676], "000766": [637, 676], "0322": [637, 676], "00237": [637, 676], "000151": [637, 676], "00101": [637, 676], "00019": [637, 676], "0214": [637, 676], "00171": [637, 676], "0107": [637, 676], "0167": [637, 676], "0472": [637, 676], "0536": [637, 676], "0177": [637, 676], "000429": [637, 676], "00762": [637, 676], "frobeniu": [637, 678], "nuclear": [637, 678], "induc": [637, 678], "ranl": [637, 678], "47722558": [637, 678], "776": [637, 678], "6000004": [637, 678], "118": [637, 679], "moor": [637, 683], "penros": [637, 683], "31622776": [637, 684], "94868332": [637, 684], "1622777": [637, 684], "42718887": [637, 684], "deteremin": [637, 685], "logsabsdet": [637, 685], "subject": [637, 685], "unset_backend": [637, 685, 801, 825], "ordin": [637, 686], "b2": [637, 686], "usvh": [637, 687], "cetera": [637, 687], "driver": [637, 688, 855], "cusolv": [637, 688], "gesvd": [637, 688], "gesvdj": [637, 688], "gesvda": [637, 688], "86217213": [637, 688], "31816804": [637, 688], "615": [637, 688], "ss": [637, 688], "25994301": [637, 688], "16403675": [637, 688], "61529762": [637, 688], "51231241": [637, 688], "39777088": [637, 688], "15413129": [637, 688], "1029852": [637, 688], "01383495": [637, 688], "86647356": [637, 688], "7786541": [637, 688], "55970621": [637, 688], "16857576": [637, 688], "86412698": [637, 688], "37566757": [637, 688], "88477993": [637, 688], "95925522": [637, 688], "6444726": [637, 688], "54687881": [637, 688], "16134834": [637, 688], "35037804": [637, 688], "31025076": [637, 688], "35769391": [637, 688], "transposit": [637, 689], "0x": [637, 692], "Such": [637, 692, 837, 844], "alexandr": [637, 692], "theophil": [637, 692], "dot_product": [637, 693], "9000001": [637, 694], "64158917": [637, 694], "skew": [637, 695], "60309976": [638, 696], "6666193": [638, 696], "01348412": [638, 696], "05393649": [638, 696], "49992943": [638, 696], "83330965": [638, 696], "02136981": [638, 696], "32844672": [638, 696], "26561815": [638, 696], "22314337": [638, 696], "08916873": [638, 697, 698], "44832274": [638, 698], "75646281": [638, 698], "13862944": [638, 698], "57564628": [638, 698], "honor": [639, 706], "beyond": [639, 707, 812, 832, 841, 876], "famili": [639, 710], "intxx": [639, 710], "floatxx": [639, 710], "rep": [639, 712], "fomaml_step": 640, "inner_cost_fn": [640, 715, 716, 717], "outer_cost_fn": [640, 715, 716], "inner_grad_step": [640, 715, 716, 717], "inner_learning_r": [640, 715, 716, 717], "inner_optimization_step": [640, 715, 716, 717], "inner_batch_fn": [640, 715, 716], "outer_batch_fn": [640, 715, 716], "average_across_step": [640, 715, 716], "inner_v": [640, 715, 716], "keep_inner_v": [640, 715, 716], "outer_v": [640, 715, 716], "keep_outer_v": [640, 715, 716], "return_inner_v": [640, 715, 716, 717], "num_task": [640, 715, 716, 717], "maml": [640, 715, 716], "0x7fed0e085120": [640, 715, 716, 717], "maml_step": 640, "vanilla": [640, 716, 853, 870], "_variabl": [640, 716, 717], "sub_batch": [640, 716], "40069818": [640, 716], "13723135": [640, 716], "reptile_step": 640, "cost_fn": [640, 717], "reptil": [640, 717], "batch_in": [640, 717], "4485182": [640, 717], "139": [640, 717], "9569855": [640, 717], "9880483": [640, 717], "01766968": [640, 717], "02197957": [640, 717], "02197981": [640, 717], "all_nested_indic": 641, "include_nest": [641, 718], "_index": [641, 718, 729], "_base": [641, 718, 728, 729, 840], "themselv": [641, 718, 827, 829, 830, 832, 837, 841, 853, 867, 876], "863": [641, 718, 830], "672": [641, 718], "482": [641, 718], "674": [641, 718], "341": [641, 718], "copy_nest": 641, "to_mut": [641, 719, 730], "deepli": [641, 719, 821, 855, 870], "copied_nest": [641, 719], "1337": [641, 719, 730], "duplicate_array_index_chain": 641, "index_nest": [641, 837], "insert_into_nest_at_index": 641, "insert_into_nest_at_indic": 641, "special_squar": [641, 724], "6666666666666667": [641, 724], "special_pow": [641, 724], "linear_model": [641, 724], "map_nest_at_index": 641, "_result": [641, 725, 735], "hh": [641, 725, 730], "map_nest_at_indic": 641, "ub": [641, 726], "tb": [641, 726], "multi_index_nest": 641, "nested_ani": 641, "check_nest": [641, 728, 729], "nested_argwher": 641, "stop_after_n_found": [641, 729], "nested_indic": [641, 729], "nested_map": [641, 830, 837], "_tuple_check_fn": [641, 730], "_list_check_fn": [641, 730], "_dict_check_fn": [641, 730], "wherebi": [641, 730, 818, 867], "ah": [641, 730], "bh": [641, 730], "ch": [641, 730], "dh": [641, 730, 823], "eh": [641, 730], "gh": [641, 730, 819, 834], "ih": [641, 730], "1338": [641, 730], "nested_multi_map": 641, "index_chain": [641, 731], "nest0": [641, 731], "ivy_arrai": [641, 731, 824, 841], "unappli": [641, 731], "prune_empti": 641, "prune_nest_at_index": 641, "prune_nest_at_indic": 641, "set_nest_at_index": 641, "set_nest_at_indic": 641, "xyz": [641, 736], "pqr": [641, 736], "mini": [642, 737, 792, 795], "uniformli": [643, 739, 741], "22346112": [643, 740], "0922": [643, 740], "9213753": [643, 740], "12818667": [643, 740], "799": [643, 740], "469": [643, 740], "287": [643, 740], "0366": [643, 740], "26431865": [643, 741], "475": [643, 741], "878": [643, 741], "861": [643, 741], "929": [643, 741], "789": [643, 741], "519": [643, 741], "0435": [643, 741], "381": [643, 741], "4608004": [643, 741], "8458502": [643, 741], "67270088": [643, 741], "31128597": [643, 741], "394": [643, 743], "zeroel": [644, 747], "fourth": [645, 749], "1141": [645, 749], "8101": [645, 749], "9298": [645, 749], "8460": [645, 749], "2119": [645, 749], "3519": [645, 749], "6252": [645, 749], "4033": [645, 749], "7443": [645, 749], "2577": [645, 749], "3707": [645, 749], "0545": [645, 749], "3238": [645, 749], "5944": [645, 749], "0775": [645, 749], "4327": [645, 749], "62519997": [645, 749], "40329999": [645, 749], "59439999": [645, 749], "74430001": [645, 749], "81010002": [645, 749], "84600002": [645, 749], "92979997": [645, 749], "einstein": [647, 759, 805], "117": [647, 759], "intend": [647, 765, 774, 791, 823, 836, 839, 868, 870, 874, 875], "07472222": [647, 766], "00666667": [647, 766], "08966666": [647, 766], "simplicit": [648, 767, 768], "ivy_test": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 823, 826, 828, 834, 842], "test_ivi": [771, 773, 774, 776, 777, 778, 779, 780, 781, 782, 783, 784, 818, 819, 820, 826, 828, 834, 842, 844], "assert_all_clos": [771, 842], "ret_np": [771, 773, 842], "ret_from_gt_np": [771, 842], "ground_truth_backend": [771, 773, 774, 783, 784, 816, 834, 842], "mark": [771, 815, 818, 820, 823, 844, 849], "assert_same_typ": 771, "ret_from_target": 771, "ret_from_gt": 771, "backend_to_test": [771, 773, 816, 834, 842], "gt_backend": 771, "with_backend": [771, 801], "assert_same_type_and_shap": 771, "this_key_chain": 771, "check_unsupported_devic": 771, "input_devic": 771, "all_as_kwargs_np": [771, 773], "check_unsupported_device_and_dtyp": 771, "input_dtyp": [771, 773, 783, 816, 834, 842, 844], "check_unsupported_dtyp": 771, "test_unsupported_funct": 771, "value_test": 771, "ret_np_flat": 771, "ret_np_from_gt_flat": 771, "specific_tolerance_dict": 771, "ret_from_np_gt_flat": 771, "function_test": 773, "args_to_contain": 773, "array_arg": [773, 837], "args_to_frontend": 773, "frontend_array_fn": 773, "arrays_to_frontend": 773, "as_list": 773, "convtru": 773, "nativeclass": 773, "counter": [773, 853], "create_args_kwarg": 773, "args_np": 773, "arg_np_val": 773, "args_idx": 773, "kwargs_np": 773, "kwarg_np_val": 773, "kwargs_idx": 773, "test_flag": [773, 816, 834, 842, 844], "on_devic": [773, 783, 816, 834, 842], "flatten_and_to_np": 773, "flatten_frontend": 773, "flatten_frontend_fw_to_np": 773, "frontend_ret": [773, 842], "isscalar_func": 773, "is_native_array_func": 773, "to_numpy_func": 773, "flatten_frontend_to_np": 773, "get_frontend_ret": 773, "frontend_fn": 773, "frontend_array_funct": 773, "precision_mod": [773, 783, 784, 834], "test_trac": [773, 783, 784, 816, 823, 834], "test_trace_each": [773, 783, 784], "get_ret_and_flattened_np_arrai": 773, "gradient_incompatible_funct": 773, "gradient_test": [773, 844], "rtol_": [773, 816, 834], "atol_": [773, 816, 834, 842], "tolerance_dict": 773, "gradient_unsupported_dtyp": 773, "kwargs_to_args_n_kwarg": 773, "num_positional_arg": [773, 783, 784, 816, 834, 842, 844], "port": [773, 861], "test_frontend_funct": [773, 842], "fn_tree": [773, 774, 784, 816, 834, 841, 842, 844], "gt_fn_tree": [773, 784], "test_valu": [773, 842, 844], "frontend_function_flag": [773, 783], "functiontestflag": [773, 783, 816, 834], "with_out": [773, 783, 816, 834, 842, 844], "instance_method": [773, 783, 816, 834, 844], "as_vari": [773, 783, 816, 834, 842, 844], "namespac": [773, 818, 829, 838, 841, 842, 845, 849, 854], "arg_": 773, "test_frontend_method": [773, 842], "init_input_dtyp": [773, 842], "method_input_dtyp": [773, 842], "init_flag": [773, 842, 844], "method_flag": [773, 783, 842, 844], "init_all_as_kwargs_np": [773, 842], "method_all_as_kwargs_np": [773, 842], "frontend_method_data": [773, 842], "init_as_variable_flag": [773, 784], "dictat": [773, 824, 831, 836, 840], "init_num_positional_arg": [773, 784], "init_native_array_flag": 773, "with_v": 773, "ret_gt": 773, "test_funct": [773, 816, 819, 820, 828, 834, 842, 844], "fn_name": [773, 774, 784, 816, 825, 834, 842, 844], "return_flat_np_arrai": 773, "as_variable_flag": [773, 784, 844], "native_array_flag": [773, 784, 844], "container_flag": [773, 783, 784, 844], "test_function_backend_comput": 773, "test_function_ground_truth_comput": 773, "arg_np_arrai": 773, "arrays_args_indic": 773, "arrays_kwargs_indic": 773, "kwarg_np_arrai": 773, "test_gradient_backend_comput": 773, "test_gradient_ground_truth_comput": 773, "test_method": 773, "method_nam": [773, 782, 784, 842], "init_with_v": 773, "method_with_v": 773, "test_gradi": [773, 783, 784, 816, 834, 844], "method_as_variable_flag": [773, 784], "method_num_positional_arg": [773, 784], "method_native_array_flag": 773, "method_container_flag": [773, 784], "test_method_backend_comput": 773, "test_method_ground_truth_comput": 773, "org_con_data": 773, "args_np_method": 773, "met_arg_np_v": 773, "met_args_idx": 773, "kwargs_np_method": 773, "met_kwarg_np_v": 773, "met_kwargs_idx": 773, "v_np": 773, "traced_if_requir": 773, "wrap_frontend_function_arg": 773, "holder": 774, "current_frontend_config": 774, "0x7fed01e55f40": 774, "interruptedtest": 774, "test_interrupt": 774, "baseexcept": 774, "tri": [774, 829], "testdata": 774, "supported_device_dtyp": 774, "is_method": 774, "setup_api_test": 774, "test_data": 774, "setup_frontend_test": 774, "teardown_api_test": 774, "teardown_frontend_test": 774, "hypothesis_help": [776, 777, 778, 779], "array_help": 776, "array_and_broadcastable_shap": 776, "searchstrategi": [776, 777, 778, 779, 783, 784, 844], "array_bool": [776, 844], "min_valu": [776, 777, 778, 779, 816, 834, 842, 844], "max_valu": [776, 777, 778, 779, 842, 844], "ex": [776, 777, 778, 779, 784, 828, 864], "strategi": [776, 777, 778, 779, 783, 784, 818, 842], "array_helpers_dtype_info_help": 776, "kind_dtyp": [776, 778], "array_indices_axi": 776, "array_dtyp": [776, 777, 844], "indices_dtyp": 776, "get_dtyp": [776, 777, 816, 834, 842, 844], "abs_smallest_v": [776, 778, 779], "large_abs_safety_factor": [776, 778, 779, 816, 834, 842, 844], "small_abs_safety_factor": [776, 778, 779, 816, 834, 842], "safety_factor_scal": [776, 778, 779, 842, 844], "disable_random_axi": 776, "axis_zero": 776, "allow_inf": [776, 779, 842, 844], "min_num_dim": [776, 778, 842, 844], "max_num_dim": [776, 778, 842, 844], "min_dim_s": [776, 778, 842, 844], "max_dim_s": [776, 778, 842], "first_dimension_onli": 776, "indices_same_dim": 776, "valid_bound": 776, "safeti": [776, 778, 779, 870], "0002": [776, 779], "hypothesi": [776, 778, 784, 818, 820, 823, 828, 838], "65536": 776, "44758124e": [776, 844], "array_indices_put_along_axi": 776, "values_dtyp": 776, "array_valu": [776, 844], "allow_nan": [776, 779, 844], "allow_subnorm": [776, 779, 844], "exclude_min": [776, 779, 844], "exclude_max": [776, 779], "subnorm": [776, 779], "get_shap": [776, 778, 842, 844], "1806": 776, "36912": 776, "6955": 776, "59576": 776, "arrays_and_ax": 776, "available_dtyp": [776, 777, 816, 834, 842, 844], "allow_non": [776, 778, 842, 844], "return_dtyp": 776, "force_int_axi": 776, "26e": 776, "10e": 776, "24322108": 776, "26446279e": 776, "96046448e": 776, "008": 776, "17549435e": 776, "038": 776, "06541027e": 776, "13725760e": 776, "07143888": 776, "arrays_for_pool": 776, "min_dim": 776, "max_dim": 776, "min_sid": 776, "max_sid": 776, "explicit_or_str_pad": 776, "only_explicit_pad": 776, "return_dil": 776, "mixed_fn_compo": [776, 777, 778, 779, 844], "return_data_format": 776, "cond_data_gen_help": 776, "create_concatenable_arrays_dtyp": 776, "min_num_arrai": 776, "max_num_arrai": 776, "concat_dim": 776, "common_shap": [776, 844], "stackabl": 776, "given_common_shap": 776, "create_nested_input": 776, "leaf_valu": 776, "dtype_and_valu": [776, 816, 834, 842, 844], "num_arrai": [776, 777, 842, 844], "shared_dtyp": [776, 777, 842], "ret_shap": 776, "array_api_dtyp": [776, 777], "shape_kei": 776, "37915": 776, "6322": 776, "26765": 776, "12413": 776, "26986": 776, "34665": 776, "000e": 776, "711e": 776, "100e": 776, "955e": [776, 844], "40817": 776, "56193": 776, "29200": 776, "5851": 776, "9746": 776, "9604645e": 776, "103": 776, "41795": 776, "1170789994": 776, "44251": 776, "44209": 776, "433075925": 776, "24791": 776, "24691": 776, "24892": 776, "16711": 776, "972": 776, "15357": 776, "72057594037927936": 776, "dtype_array_queri": 776, "allow_mask": 776, "allow_neg_step": 776, "dtype_array_query_v": 776, "dtype_values_axi": [776, 844], "min_axi": 776, "max_axi": 776, "valid_axi": 776, "allow_neg_ax": 776, "min_axes_s": 776, "max_axes_s": 776, "force_tuple_axi": 776, "29788": 776, "62222885e": 776, "68281172e": 776, "257j": 776, "40129846e": 776, "90000000e": 776, "63426649e": 776, "91931887e": 776, "29488e": 776, "14361019e": 776, "12445": 776, "einsum_help": 776, "get_first_solve_batch_matrix": 776, "choose_adjoint": 776, "get_second_solve_batch_matrix": 776, "get_first_solve_matrix": 776, "allow_simplifi": 776, "choose_sid": 776, "xa": 776, "get_second_solve_matrix": 776, "list_of_s": 776, "sampled_from": [776, 842, 844], "min_siz": [776, 778, 784, 844], "max_siz": [776, 778, 784, 844], "size_bound": [776, 844], "999999999999999": 776, "9394938006792373": 776, "mutually_broadcastable_shap": 776, "num_shap": 776, "base_shap": 776, "dtype_help": 777, "univers": [777, 841, 859], "cast_filt": 777, "cast_filter_help": 777, "current_backend": [777, 801, 818, 825, 833, 837, 842, 845, 849], "get_castable_dtyp": 777, "castabl": 777, "prune_funct": 777, "intersect": [777, 828, 844], "signed_integ": 777, "real_and_complex": 777, "float_and_complex": 777, "general_help": 778, "broadcasterror": 778, "apply_safety_factor": 778, "dims_and_offset": 778, "ensure_dim_uniqu": 778, "embedding_help": 778, "general_helpers_dtype_info_help": 778, "get_axi": [778, 844], "allow_neg": 778, "sort_valu": 778, "force_tupl": 778, "force_int": 778, "assertionerror": [778, 816, 823, 833, 834, 842, 844], "get_bound": [778, 844], "get_mean_std": 778, "matrix_is_st": 778, "cond_limit": 778, "instabl": [778, 816, 829, 834], "computation": [778, 819], "prone": [778, 829], "thumb": 778, "gradual": 778, "collinear": 778, "reshape_shap": [778, 844], "sizes_": 778, "two_broadcastable_shap": 778, "x_and_filt": 778, "number_help": 779, "arbitrarili": [779, 852], "safety_factor": 779, "backend_proc": 780, "input_queu": 780, "output_queu": 780, "frontend_proc": 780, "pipeline_help": 781, "backendhandl": 781, "update_backend": [781, 842], "backendhandlermod": 781, "enum": 781, "setbackend": 781, "withbackend": 781, "withbackendcontext": 781, "get_frontend_config": 781, "frontendmethoddata": 782, "ivy_init_modul": 782, "framework_init_modul": 782, "init_nam": 782, "test_parameter_flag": 783, "dynamicflag": [783, 784], "frontendfunctiontestflag": [783, 834], "with_copi": 783, "generate_frontend_arrai": [783, 784, 834], "testflag": 783, "apply_flag": 783, "args_to_iter": 783, "frontendinittestflag": 783, "frontendmethodtestflag": 783, "test_cython_wrapp": [783, 784], "initmethodtestflag": 783, "methodtestflag": 783, "build_flag": 783, "frontend_init_flag": 783, "frontend_method_flag": 783, "function_flag": 783, "init_method_flag": 783, "testing_help": 784, "handle_exampl": [784, 844], "test_exampl": [784, 844], "test_frontend_exampl": [784, 844], "test_method_exampl": [784, 844], "test_frontend_method_exampl": [784, 844], "given_kwarg": 784, "handle_frontend_method": [784, 842, 844], "class_tre": [784, 842], "init_tre": [784, 842], "init_native_arrai": 784, "_as_varaible_strategi": 784, "method_native_arrai": 784, "test_inplac": [784, 844], "_given_kwarg": 784, "test_compil": 784, "handle_frontend_test": [784, 842, 844], "alias": [784, 818, 841, 842], "number_positional_arg": [784, 842], "test_with_out": [784, 842, 844], "test_with_copi": 784, "handle_method": [784, 844], "method_tre": [784, 842, 844], "_gradient_strategi": 784, "handle_test": [784, 816, 834, 844], "test_instance_method": [784, 844], "num_positional_args_help": 784, "num_positional_args_method": 784, "geglu": 788, "leakyrelu": 788, "logsoftmax": 788, "from_flax_modul": 789, "native_modul": 789, "params_fx": 789, "rng_seed": 789, "constructor_arg": 789, "constructor_kwarg": 789, "instance_arg": 789, "instance_kwarg": 789, "flax": [789, 854, 855, 861, 870], "from_haiku_modul": 789, "params_hk": 789, "from_paddle_modul": 789, "from_torch_modul": 789, "to_keras_modul": 789, "native_module_class": 789, "modulehelp": [790, 794], "create_vari": [791, 853], "var_shap": [791, 853], "fan_out": [791, 853], "fan_in": [791, 853], "rectangular": 791, "firstlayersiren": 791, "siren": 791, "glorotuniform": [791, 792, 853], "glorot": 791, "xavier": 791, "neuron": 791, "w_1x_1": 791, "w_2x_2": 791, "w_nx_n": 791, "w_i": 791, "vanish": 791, "explod": [791, 858, 859], "kaimingnorm": 791, "fan_mod": [791, 853], "kaim": 791, "he": 791, "negative_slop": 791, "fan": 791, "propog": 791, "fan_sum": [791, 853], "Ones": 791, "randomnorm": 791, "stddev": 791, "w0": 791, "wlim": 791, "predefin": 791, "fan_avg": 791, "adaptiveavgpool1d": 792, "avgpool1d": 792, "implicit": [792, 827, 832, 841, 844, 849, 870], "avgpool2d": 792, "avgpool3d": 792, "e501": 792, "filter_s": 792, "weight_initi": [792, 853], "bias_initi": [792, 853], "0x7fed0dcade10": 792, "0x7fed0dcaddb0": 792, "conv1dtranspos": 792, "0x7fed0dcadd50": 792, "0x7fed0dcadcf0": 792, "filter_shap": 792, "0x7fed0dcadc90": 792, "0x7fed0dcadc30": 792, "0x7fed0dcadbd0": 792, "0x7fed0dcadb70": 792, "0x7fed0dcada50": 792, "0x7fed0dcad9f0": 792, "conv3dtranspos": 792, "0x7fed0dcad990": 792, "0x7fed0dcad930": 792, "depthwiseconv2d": 792, "num_channel": 792, "0x7fed0dcadb10": 792, "0x7fed0dcadab0": 792, "bernoul": 792, "num_embed": 792, "embedding_dim": 792, "padding_idx": 792, "lookup": 792, "num_embeddingss": 792, "renorm": 792, "insensit": 792, "return_st": 792, "0x7fed0dcad8d0": 792, "get_initial_st": 792, "0x7fed0dcaded0": 792, "0x7fed0dcade70": 792, "maxpool1d": 792, "maxpool3d": 792, "multiheadattent": 792, "embed_dim": 792, "head_dim": 792, "dropout_r": 792, "use_proj_bia": 792, "attention_ax": 792, "build_mod": [792, 793, 794], "on_init": [792, 794], "parallel": [792, 826, 870, 874, 875], "binarycrossentropyloss": 793, "store_var": [793, 794], "with_partial_v": [793, 794], "logpoissonloss": 793, "modulemeta": 794, "temporarili": [794, 816, 823, 834], "from_cal": 794, "module_dict": 794, "register_buff": 794, "register_paramet": 794, "weights_path": 794, "randomness_factor": 794, "with_edge_label": 794, "with_arg_label": 794, "with_output_label": 794, "output_connected_onli": 794, "highlight_subgraph": 794, "trace_kwarg": 794, "_unified_ivy_graph": 794, "_call": 794, "num_featur": 795, "trail": 795, "layernorm": 795, "normalized_shap": 795, "elementwise_affin": 795, "set_stat": [796, 853], "adamw": 796, "weight_decai": 796, "init_on_first_step": 796, "fallback_to_non_trac": 796, "ignore_miss": 796, "privat": [796, 841, 844], "_step": [796, 853], "stochast": [796, 870], "sub_modul": 797, "check_al": 798, "check_all_or_any_fn": 798, "check_ani": 798, "check_dev_correct_format": 798, "check_dimens": 798, "check_elem_in_list": [798, 837, 840, 841], "elem": 798, "check_equ": [798, 841], "check_exist": 798, "check_fals": 798, "check_gather_input_valid": 798, "check_gather_nd_input_valid": 798, "check_great": 798, "allow_equ": [798, 833], "check_inplace_sizes_valid": [798, 840], "check_isinst": 798, "allowed_typ": 798, "check_kernel_padding_s": 798, "padding_s": 798, "check_less": [798, 833], "check_one_way_broadcast": 798, "check_same_dtyp": 798, "check_shapes_broadcast": 798, "check_tru": 798, "check_unsorted_segment_valid_param": 798, "ast_help": 800, "importtransform": 800, "nodetransform": 800, "impersonate_import": 800, "tree": [800, 829], "local_ivy_id": 800, "visit_import": 800, "visit_importfrom": 800, "ivyload": 800, "loader": [800, 852, 855], "exec_modul": 800, "ivypathfind": 800, "metapathfind": 800, "find_spec": 800, "fullnam": 800, "contextmanag": 801, "choose_random_backend": 801, "global_backend": 801, "dynamic_backend_convert": 801, "backend_stack": [801, 849], "prevent_access_loc": 801, "previous_backend": [801, 825], "Or": [801, 812, 814, 819, 840, 852], "set_backend_to_specific_vers": 801, "set_jax_backend": 801, "set_mxnet_backend": 801, "mx": 801, "set_numpy_backend": 801, "set_paddle_backend": 801, "set_tensorflow_backend": 801, "set_torch_backend": 801, "sub_backend_handl": 802, "clear_sub_backend": 802, "find_available_sub_backend": 802, "sub_backends_loc": 802, "fn_name_from_version_specific_fn_nam": 802, "fn_name_from_version_specific_fn_name_sub_backend": 802, "sub_backend_vers": 802, "backend_vers": [802, 816, 829, 834], "set_sub_backend": 802, "sub_backend_str": 802, "set_sub_backend_to_specific_vers": 802, "sub_backend": 802, "unset_sub_backend": 802, "check_for_binari": 803, "cleanup_and_fetch_binari": [803, 819], "clean": [803, 820, 845, 849, 850, 852], "dynamic_import": 804, "import_modul": [804, 849], "einsum_pars": 805, "convert_interleaved_input": 805, "interleav": 805, "convert_subscript": 805, "old_sub": 805, "symbol_map": 805, "subscript": [805, 806], "oe": 805, "ellipsi": [805, 806], "find_output_shap": 805, "find_output_str": 805, "canon": 805, "gen_unused_symbol": 805, "abd": [805, 806], "get_symbol": 805, "letter": 805, "resort": 805, "unicod": 805, "charact": [805, 841, 860], "chr": 805, "surrog": 805, "\u0155": 805, "20000": 805, "\u4eac": 805, "has_valid_einsum_chars_onli": 805, "einsum_str": 805, "abaz": 805, "\u00f6ver": 805, "is_valid_einsum_char": 805, "\u01f5": 805, "legalise_einsum_expr": 805, "reproduct": [805, 806], "pars": [805, 806, 826, 831, 855], "intak": 805, "contract_path": 805, "parse_einsum_input": [805, 806], "einsum_eqn": 805, "legalis": 805, "legalise_einsum_eqn": 805, "za": [805, 806], "xza": [805, 806], "xz": [805, 806], "possibly_convert_to_numpi": 805, "myshap": 805, "__main__": 805, "0x10f850710": 805, "einsum_path_help": 806, "can_dot": 806, "idx_remov": 806, "bla": 806, "benefici": 806, "movement": 806, "costli": 806, "gemm": 806, "ijj": 806, "ddot": 806, "ikj": 806, "compute_size_by_dict": 806, "idx_dict": 806, "abbc": 806, "find_contract": 806, "input_set": 806, "output_set": 806, "lh": 806, "rh": 806, "new_result": 806, "idx_contract": 806, "iset": 806, "oset": 806, "bdc": 806, "flop_count": 806, "num_term": 806, "size_dictionari": 806, "flop": [806, 810], "greedy_path": 806, "memory_limit": 806, "exhaust": [806, 840, 844, 867, 876], "indices_remov": 806, "priorit": [806, 818, 843, 847], "hadamard": 806, "cubic": 806, "greedi": 806, "idx_siz": 806, "optimal_path": 806, "siev": 806, "input_str": 806, "output_str": 806, "parse_possible_contract": 806, "path_cost": 806, "naive_cost": 806, "propos": [806, 820, 841, 847, 870], "intermediari": [806, 825], "unoptim": 806, "new_input_set": 806, "update_other_result": 806, "provision": 806, "_parse_possible_contract": 806, "mod_result": 806, "inplaceupdateexcept": 807, "include_backend": [807, 833], "ivyattributeerror": [807, 833], "attributeerror": [807, 833, 851], "ivybroadcastshapeerror": [807, 833], "ivydeviceerror": 807, "ivydtypepromotionerror": [807, 833], "ivyindexerror": [807, 833], "ivyinvalidbackendexcept": 807, "ivynotimplementedexcept": [807, 833], "notimplementederror": 807, "ivyvalueerror": [807, 833], "handle_except": [807, 836, 838], "add_array_spec": 808, "fn_array_spec": 808, "set_logging_mod": 809, "debug": [809, 815, 819, 820, 827, 828, 839, 844, 847, 852, 870, 878], "unset_logging_mod": 809, "print_stat": 810, "viz": 810, "snakeviz": 810, "bonu": 810, "cprofil": 810, "tensorflow_profile_start": 810, "logdir": 810, "host_tracer_level": 810, "python_tracer_level": 810, "device_tracer_level": 810, "delay_m": 810, "toggl": [810, 820], "timestamp": 810, "awai": [810, 812, 868, 870], "millisecond": 810, "guess": 810, "tensorflow_profile_stop": 810, "torch_profiler_init": 810, "schedul": [810, 828, 855, 870, 877], "on_trace_readi": 810, "record_shap": 810, "profile_memori": 810, "with_stack": 810, "with_flop": 810, "with_modul": 810, "experimental_config": 810, "profileract": 810, "record_and_sav": 810, "dealloc": 810, "record": [810, 819, 855, 871], "callstack": 810, "aten": 810, "torchscript": [810, 849, 857, 877], "_experimentalconfig": 810, "kineto": 810, "torch_profiler_start": 810, "torch_profiler_stop": 810, "cprint": [811, 849], "pilot": [812, 817, 856], "grow": [812, 815, 821, 870, 878], "peopl": [812, 817, 819, 820, 822, 870, 872], "brief": [812, 840, 844], "idea": [812, 818, 843, 845, 850, 861, 869], "docker": [812, 816, 817, 834], "challeng": [812, 818, 825, 876], "pull": [812, 813, 815, 818, 819, 823, 831, 835, 845, 847, 855, 856, 861], "jax_fn": 812, "jax_x": 812, "torch_x": 812, "torch_fn": 812, "shorter": [812, 851], "ensp": 812, "customiz": [812, 826], "15c235f": 812, "deepmind_perceiver_io": 812, "sm_framework": 812, "segmentation_model": 812, "sm": 812, "torch_sm": 812, "metric": [812, 855], "iou_scor": 812, "rax": 812, "torch_rax": 812, "poly1_softmax_loss": 812, "madmom": 812, "madmon": 812, "torch_madmom": 812, "freq": 812, "audio": 812, "hz2midi": 812, "torch_loss": 812, "maxpooling1d": 812, "pool_siz": 812, "tf_kornia": 812, "tf_rax": 812, "tf_madmom": 812, "tf_loss": 812, "_forward_classifi": [812, 864], "forward_classifi": [812, 864], "hk_eff_encod": 812, "dummy_x": 812, "jax_sm": 812, "jax_madmom": 812, "jax_loss": 812, "np_kornia": 812, "np_sm": 812, "np_rax": 812, "np_loss": 812, "yourself": [812, 818, 820, 835, 844, 847], "favourit": [812, 819], "hyperparam": 812, "instantli": [812, 864], "everyon": [812, 813, 818, 819, 820, 855, 861], "interoper": [812, 860, 867, 868, 870, 873], "handler": [812, 848, 850, 854, 857], "facilit": [812, 821], "mse_loss": 812, "jax_ms": 812, "tf_mse": 812, "np_mse": 812, "torch_ms": 812, "someth": [812, 816, 820, 825, 834, 835, 845, 852, 853, 855, 856, 876], "motiv": [812, 851, 860], "contextu": 812, "explos": [812, 858, 860], "adher": [812, 823, 829, 832, 836, 847, 849, 854, 859, 860, 866, 867, 876], "orient": 812, "contributor": [812, 813, 816, 818, 819, 820, 834, 841, 848, 870], "believ": [812, 820, 860], "feedback": [812, 818, 828], "appreci": [812, 821], "amaz": [812, 878], "journei": [812, 813, 821], "ambiti": 812, "season": 812, "fellow": 812, "twitter": 812, "sneak": 812, "peek": 812, "credit": 812, "accompani": 812, "lenton2021ivi": 812, "inter": 812, "author": [812, 818, 820, 868, 872], "lenton": 812, "daniel": 812, "pardo": 812, "fabio": 812, "falck": 812, "fabian": 812, "jame": 812, "stephen": 812, "clark": 812, "ronald": 812, "journal": 812, "arxiv": 812, "preprint": 812, "2102": 812, "02886": 812, "year": [812, 823, 855, 859, 861, 870], "strongli": [813, 819, 841, 876, 877], "engag": [813, 820, 821, 860], "skill": [813, 821, 872], "veteran": 813, "effort": [813, 818, 855, 860, 866, 870, 876], "board": [813, 826], "stage": [813, 820, 822, 823, 826, 844, 860, 870], "excit": [813, 822, 860], "reward": [813, 821], "badg": [813, 821, 828, 878], "program": [813, 840, 867, 868, 870, 873, 874, 877], "climb": [813, 817], "Be": [814, 826], "awar": [814, 826, 833, 835], "linux": [814, 819, 820, 826, 873, 875], "regularli": [814, 826, 828], "internet": [814, 826], "codespac": [814, 826, 834], "make_doc": 814, "sh": [814, 819, 820, 823, 828], "pwd": 814, "ssh": [814, 828], "make_docs_without_dock": [814, 826], "award": 815, "formal": 815, "dynamo": [815, 878], "earn": [815, 821], "thoroughli": [815, 823], "valuabl": [815, 818, 820], "merg": [815, 818, 820, 823, 828, 841, 870, 878], "meet": [815, 821, 841], "wizard": [815, 878], "inspector": [815, 878], "acknowledg": [815, 821], "honour": 815, "dilig": 815, "bronz": [815, 821, 878], "silver": [815, 821, 878], "gold": [815, 821, 855, 878], "expertis": [815, 821, 872], "assist": [816, 834], "runtimeerror": [816, 834], "logaddexp2_cpu": [816, 834], "falsifi": [816, 823, 834, 844], "test_logaddexp2": [816, 834], "backend_fw": [816, 834, 842], "dtype_and_x": [816, 834, 842, 844], "reproduce_failur": [816, 823, 834, 838, 844], "axicy2bkaamobaar2waaaacvaai": [816, 834], "decoartor": [816, 834], "with_unsupported_dtyp": [816, 829, 834, 841], "25830078125": [816, 834], "258544921875": [816, 834], "test_acosh": [816, 834], "axicy2baabyqwqgiaabdaai": [816, 834], "quit": [816, 820, 824, 831, 832, 834, 837, 838, 844, 847, 870, 876], "41421356": [816, 834], "41421356e": [816, 834], "34078079e": [816, 834], "154": [816, 834], "test_ab": [816, 819, 834, 844], "000j": [816, 834], "154j": [816, 834], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [816, 834], "thread": [816, 818, 819, 820, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 852, 870], "pycharm": [816, 842, 844], "steep": 817, "curv": 817, "realpython": 817, "pyn": 817, "exchang": [817, 860, 866, 868], "stuck": [817, 818], "spell": 817, "sound": [817, 828, 848], "frequent": [818, 820, 825, 870], "outlin": [818, 819, 820, 822, 827, 829, 832, 837, 840, 841, 844], "broad": [818, 872], "individu": [818, 820, 823, 825, 829, 837, 841, 870, 873, 876, 877], "clearli": [818, 820, 831, 842, 844, 860, 874], "straightforward": [818, 821, 852], "lie": 818, "urgent": 818, "encourag": [818, 821, 835, 855, 860], "tackl": [818, 821, 841], "categoris": [818, 823, 841], "comfort": [818, 819, 833], "linkag": 818, "pr": [818, 820, 821, 823, 835, 841, 842, 844], "confid": 818, "submit": [818, 835], "scipi": [818, 860, 872, 877], "mindspor": 818, "simpler": [818, 820, 835, 863, 871, 877], "member": [818, 820, 841, 856, 860], "comment": [818, 819, 820, 823, 829, 835, 841, 843, 847], "composition": 818, "feasibl": [818, 828, 844, 860, 863], "pend": 818, "helpfulli": [818, 847, 868], "problemat": [818, 819], "unimpl": 818, "issue_link": 818, "alias_nam": 818, "notic": [818, 824, 828, 834, 835, 844, 847, 863], "push": [818, 820, 821, 823, 842, 844, 876], "liner": 818, "meanwhil": [818, 828], "reselect": 818, "faithfulli": 818, "creation_routin": [818, 842], "indexing_routin": 818, "ma": 818, "manipulation_routin": 818, "mathematical_funct": [818, 841], "sorting_searching_count": 818, "ufunc": [818, 841], "matrix_and_vector_product": 818, "matrix_eigenvalu": 818, "norms_and_other_numb": 818, "solving_equations_and_inverting_matric": 818, "gleam": 818, "uncom": 818, "test_numpy_inn": 818, "test_frontend": [818, 828, 834, 842], "unsur": [818, 844], "statu": [818, 821, 828, 835, 861], "refrain": 818, "checkbox": [818, 819], "aforement": 818, "parent": [818, 828, 851], "arraywithelementwis": [818, 824, 851], "containerwithmanipul": 818, "thorough": [818, 832, 836, 844], "add_reformatting_checklist_": 818, "category_nam": [818, 829, 830, 832, 836, 837], "autom": [818, 828, 835, 844, 857, 872], "bot": [818, 835], "markdown": [818, 826], "patient": [818, 819], "elabor": 818, "struggl": 818, "assigne": 818, "status": 818, "central": [818, 835, 847, 860, 876], "relevant_submodul": 818, "roadmap": [818, 828], "deem": [818, 841], "subtask": 818, "clearer": [818, 833, 842, 852], "backend_nam": [818, 825, 829, 830, 832, 836, 837, 838], "rare": [818, 830, 855, 875], "button": [818, 819, 820, 834], "centr": 818, "predetermin": 818, "superset": [818, 822, 837, 840, 855], "happi": [819, 834, 855, 861], "your_usernam": [819, 834], "your_fold": [819, 834], "enter": [819, 820, 824, 829, 830, 834, 836, 838], "sync": [819, 823, 834], "remot": [819, 823, 834, 835], "nutshel": [819, 836], "hook": [819, 835, 843], "lint": [819, 822], "succe": [819, 863], "whatev": [819, 827, 855], "elig": [819, 821], "student": 819, "licens": [819, 873], "remind": 819, "expir": 819, "won": [819, 820, 827, 829, 854, 856, 860, 861, 863, 864, 865], "profession": 819, "trial": 819, "jetbrain": 819, "month": [819, 859], "bui": [819, 876], "paid": 819, "rapid": [819, 859, 860, 870], "pace": 819, "person": [819, 820], "perhap": [819, 851, 852, 853, 855, 876], "conda": [819, 860, 872], "ivy_dev": [819, 820], "icon": [819, 820, 834], "panel": 819, "vscode": [819, 834], "palett": 819, "ctrl": [819, 820], "mac": [819, 820], "intel": [819, 860, 868, 875], "m1": 819, "optional_apple_silicon_1": 819, "optional_apple_silicon_2": 819, "array_api_test": [819, 820, 823, 834], "test_array_api": [819, 820, 823, 834, 844], "suit": [819, 822, 823, 828, 834, 843, 844, 852, 860, 870, 876], "cmd": 819, "bat": [819, 820], "virtualenv": 819, "tick": [819, 820, 828], "nz2": 819, "openssl": 819, "libssl1": 819, "1_1": 819, "1f": 819, "1ubuntu2": 819, "20_amd64": 819, "deb": 819, "dpkg": 819, "mitig": [819, 876], "desktop": [819, 834], "powershel": 819, "admin": 819, "deploy": [819, 864, 869, 872, 873, 876, 877], "menu": [819, 834], "introspect": 819, "dialog": 819, "persist": 819, "earlier": [819, 820, 829, 845], "virtualis": 819, "bio": [819, 860], "dropdown": [819, 828], "dockerfil": 819, "ca": 819, "certif": 819, "gnupg": 819, "lsb": 819, "keyr": 819, "fssl": 819, "gpg": 819, "dearmor": 819, "echo": [819, 828, 856], "arch": 819, "lsb_releas": 819, "ce": 819, "cli": 819, "containerd": 819, "systemctl": 819, "softwar": [819, 820, 859, 860, 868, 873, 874, 875], "press": [819, 820, 852], "4a": 819, "socket": 819, "rwx": 819, "sock": 819, "pid": 819, "editor": 819, "pytest": [819, 820, 823, 828, 834, 838, 844], "keyboard": 819, "screenshot": 819, "pop": [819, 834, 860], "test_elementwis": 819, "shell": [819, 820, 823, 828], "setup_test": 819, "run_ivy_core_test": 819, "run_ivy_nn_test": 819, "run_ivy_stateful_test": 819, "run_test": [819, 828], "test_depend": 819, "test_ivy_cor": 819, "test_ivy_nn": 819, "test_ivy_st": 819, "unix": 819, "test_": [819, 842], "test_cor": [819, 820, 842], "offici": [819, 829, 849], "wish": [819, 841], "ivy_nn": 819, "ivy_st": 819, "header": [819, 820, 843], "arrow": 819, "test_stat": 819, "test_submodule_nam": 819, "test_function_nam": 819, "debugg": 819, "studio": [819, 834, 844], "afterward": [819, 852], "background": [819, 826, 834, 870, 872], "overlap": [819, 828, 834, 845, 847, 871], "test_file_path": [819, 834], "test_fn_nam": [819, 834], "engin": [819, 870, 872, 873], "devcontain": 819, "comma": 819, "postcreatecommand": 819, "post_create_command": 819, "poststartcommand": 819, "safe": [819, 841], "containerworkspacefold": 819, "reopen": 819, "test_fle_path": 819, "slash": 819, "isol": [819, 820, 871, 876], "container": 819, "intens": 819, "headach": 819, "arm": [819, 820], "vm": [819, 828], "azur": 819, "cloud": [819, 828, 872], "theme": [819, 826], "ipad": 819, "browser": [819, 826], "quota": 819, "requisit": 819, "pane": [819, 820, 828], "dockerfilegpu": 819, "ivv": 819, "multiv": 819, "multivers": [819, 845], "dockerfilemultivers": 819, "dockerhub": 819, "upto": [819, 820], "minut": [819, 828], "launch": 819, "kindli": [819, 843], "guidelin": 819, "colour": 819, "chanc": 819, "troubleshoot": 819, "ever": 819, "flask": [819, 834], "toolbar": [819, 820, 834], "_array_modul": [819, 823, 834], "refresh": [819, 834], "pytestarg": [819, 834], "unittesten": [819, 834], "pytesten": [819, 834], "autotestdiscoveronsaveen": [819, 834], "conftest": 819, "serv": [819, 820, 824, 827, 836, 837, 841, 842, 844, 847, 848, 857, 868], "aren": [819, 829], "available_config": 819, "cp310": 819, "x86": [819, 875], "newer": [819, 844], "_compil": 819, "meantim": 819, "suffici": [819, 831, 841, 844], "bear": [819, 824, 827, 829, 841], "tendenc": 820, "land": 820, "unrel": [820, 860], "fly": [820, 870], "internship": 820, "suspect": 820, "iii": 820, "issue_numb": 820, "12345": 820, "rememb": 820, "respond": 820, "dai": [820, 835], "freed": 820, "situat": [820, 828, 854], "obvious": [820, 828], "hypothet": 820, "frustrat": 820, "delai": [820, 863], "busi": 820, "inact": 820, "unfairli": 820, "investig": 820, "name_of_your_branch": 820, "date": [820, 823], "complic": [820, 842, 849], "merge_with_upstream": 820, "abort": 820, "tediou": [820, 831, 847], "stash": [820, 835], "reinstat": 820, "uncommit": 820, "unstag": [820, 835], "untrack": 820, "atlassian": 820, "wrote": 820, "piec": [820, 824, 837, 838, 849, 863, 866, 868], "blame": 820, "eg": 820, "week": [820, 861], "grep": 820, "commit_id": 820, "handi": 820, "histori": 820, "approv": 820, "someon": [820, 855], "hash": [820, 852], "cancel": 820, "speedup": 820, "unavail": 820, "tickbox": 820, "intent": [820, 840], "discourag": 820, "adopt": [820, 824, 836, 847, 860, 869, 870, 875], "philosophi": 820, "infrequ": 820, "earli": [820, 870], "wast": [820, 828], "spot": [820, 831, 837], "mistak": 820, "mountain": 820, "advoc": [820, 855], "session": [820, 870], "beauti": 820, "care": [820, 830, 841, 847, 854, 860], "undo": 820, "stress": 820, "nifti": 820, "reassur": 820, "local_path_to_ivi": 820, "subfold": [820, 842, 844, 845], "dep": 820, "fresh": 820, "arsen": 820, "exec": 820, "ivy_contain": 820, "test_imag": 820, "test_random_crop": 820, "test_creation_funct": 820, "test_arang": 820, "cursor": 820, "alt": 820, "breakpoint": 820, "gutter": 820, "caret": 820, "f8": 820, "f9": 820, "Into": 820, "f7": 820, "smart": 820, "fragment": [820, 866, 868, 872], "wherein": [820, 837, 844], "failur": [820, 828, 842, 844], "embark": 821, "innov": [821, 860], "door": [821, 855], "elev": 821, "mission": [821, 860, 872], "opportun": 821, "testament": [821, 843], "stone": 821, "gift": 821, "acquir": 821, "peak": 821, "privileg": [821, 872], "bounti": 821, "cash": 821, "delight": 821, "weed": [822, 848], "tour": 822, "formatt": [822, 835], "conjunct": 823, "establish": [823, 872], "unconnect": 823, "strang": [823, 851], "test_linalg": [823, 842], "test_set_funct": 823, "test_signatur": 823, "excess": [823, 825, 831], "array_modul": 823, "vv": 823, "test_manipulation_funct": 823, "test_concat": [823, 844], "nb": 823, "liber": 823, "______________________": 823, "test_remaind": 823, "_______________________": 823, "test_operators_and_elementwise_funct": 823, "1264": 823, "1277": 823, "binary_param_assert_against_refimpl": 823, "ctx": 823, "620": 823, "binary_assert_against_refimpl": 823, "324": 823, "scalar_o": 823, "17304064": 823, "binaryparamcontext": 823, "axic42baaowcnp": 823, "rumwmabaear0": 823, "make_binary_param": 823, "numeric_dtyp": 823, "left_strat": 823, "left_sym": 823, "right_strat": 823, "right_sym": 823, "right_is_scalar": 823, "binary_param_assert_dtyp": 823, "binary_param_assert_shap": 823, "recreat": 823, "unexpectedli": 823, "discrep": [823, 842], "test_asarray_arrai": 823, "test_floor_divid": 823, "health": 823, "test_iop": 823, "__imod__": 823, "isequ": 823, "test_matrix_norm": 823, "alter": 823, "tweak": 823, "array_api_methods_to_test": 823, "test_special_cas": 823, "__ipow__": 823, "is_integ": 823, "easier": [823, 824, 825, 829, 842, 845, 857, 870, 872], "revisit": [823, 836], "_data": [824, 840, 841, 851], "organiz": [824, 827, 841], "underpin": [824, 827, 849], "programmat": [824, 827, 871], "backup": [824, 826, 827], "accident": [824, 827, 841], "absent": [824, 827], "auto": [824, 826, 827, 835, 852], "__mul__": [824, 827, 831, 836, 847, 851], "throw": [824, 829, 830, 833, 834, 851, 870], "imposs": 824, "inputs_to_native_arrai": [824, 837, 838], "outputs_to_ivy_arrai": [824, 829, 830, 836, 837, 838], "secondli": [824, 829], "__ivy_array_function__": 824, "__torch_function__": 824, "myarrai": 824, "handled_funct": 824, "notimpl": 824, "issubclass": 824, "enough": [824, 828, 829, 830, 844, 851, 852, 853], "ivy_funct": 824, "my_ab": 824, "my_arrai": 824, "implicit_backend": [825, 849], "__dict__": [825, 840, 849], "ivy_original_dict": [825, 849], "fallback": 825, "live": [825, 826, 829, 860, 861, 866, 868], "dlpack": 825, "set_dynamic_backend": 825, "unset_dynamic_backend": 825, "dynamic_backend_a": 825, "set_": 825, "unset_": 825, "backend_handl": 825, "requires_grad": 825, "memory_format": 825, "preserve_format": 825, "weren": 825, "vast": [825, 829, 870], "minor": [825, 847, 855], "fn_name_v_1p12_and_abov": 825, "fn_name_v_1p01_to_1p1": 825, "heavili": [826, 838, 855], "conf": 826, "cleanup": 826, "readm": [826, 855], "maxdepth": 826, "caption": 826, "related_work": 826, "deep_div": 826, "faq": 826, "glossari": 826, "autosummari": 826, "top_functional_toc": 826, "restructuredtext": 826, "discov": [826, 829], "ivy_toctree_caption_map": 826, "unfortun": [826, 835], "linker": 826, "foo": 826, "discussion_channel_map": 826, "1000043690254946374": 826, "1000043749088436315": 826, "forum": [826, 856], "seri": [826, 829, 841, 844, 870, 872], "discussion_paragraph": 826, "discord_link": 826, "channel_link": 826, "gg": 826, "zvqdvbznqj": 826, "799879767196958751": 826, "channel_id": 826, "autoskippablemethod": 826, "skippable_method_attribut": 826, "__qualname__": 826, "autodoc": 826, "__doc__": 826, "autoivydata": 826, "mutual": [827, 837], "containerwithelementwis": 827, "__repr__": 827, "__getattr__": [827, 863], "__setattr__": [827, 863], "__contains__": 827, "__getstate__": 827, "__setstate__": 827, "unpickl": 827, "num_dim": [827, 854], "restrict": [827, 828, 841, 849, 863, 867], "enforc": [827, 851], "lefthand": 827, "righthand": 827, "handle_nest": [827, 836, 837, 838, 849], "absenc": [827, 836, 870], "implicitli": [827, 839, 844, 849], "log_pr": [827, 837, 840], "intuit": [827, 844, 852, 853, 866], "chronolog": 827, "concurr": [827, 828, 837, 870], "despit": [827, 829, 830, 842, 849, 860, 867, 870], "__list__": 827, "whatsoev": [827, 837, 857, 876], "children": 827, "shallowest": 827, "deepest": 827, "rollback": 828, "incorpor": [828, 842, 852, 870], "techniqu": 828, "triplet": 828, "test_torch": [828, 842], "test_tensor": [828, 842], "test_torch_instance_arctan_": 828, "12500": 828, "daili": 828, "huge": [828, 852, 858, 860, 870, 876], "shoot": 828, "_reduce_loss": [828, 837, 840], "test_nn": 828, "test_loss": 828, "test_binary_cross_entropy_with_logit": 828, "test_cross_entropi": 828, "test_binary_cross_entropi": 828, "test_sparse_cross_entropi": 828, "test_loss_funct": 828, "test_torch_binary_cross_entropi": 828, "test_torch_cross_entropi": 828, "binary_cross_entropy_with_logit": 828, "torch_binary_cross_entropi": 828, "torch_cross_entropi": 828, "readthedoc": 828, "pedagog": 828, "f_1": 828, "t_1": 828, "t_3": 828, "t_7": 828, "t_": 828, "f_m": 828, "cyclic": 828, "intellig": [828, 844, 872], "tests_fil": 828, "file_nam": [828, 844, 845], "tests_lin": 828, "correspondingli": 828, "tests_to_run": 828, "determine_tests_lin": 828, "mongodb": 828, "databas": [828, 844], "mechan": [828, 855], "secret": 828, "db": 828, "ssh_deploy_kei": 828, "suffic": [828, 838, 844], "massiv": 828, "yml": 828, "felicit": 828, "clone_map": 828, "deploy_kei": 828, "user_email": 828, "user_nam": 828, "target_branch": 828, "github_serv": 828, "deploy_key_fil": 828, "ssh_known_hosts_fil": 828, "known_host": 828, "keyscan": 828, "git_ssh_command": 828, "userknownhostsfil": 828, "email": [828, 860], "methodologi": 828, "master1": 828, "restructur": 828, "_map": 828, "t_2": 828, "t_n": 828, "index_map": 828, "test_map": 828, "snowbal": 828, "recalibr": 828, "workflow_dispatch": 828, "cron": 828, "saturdai": 828, "night": 828, "pm": 828, "gut": 828, "lesser": [828, 833], "lol": 828, "hour": [828, 861], "cater": [828, 843], "master2": 828, "master32": 828, "synchron": 828, "runner2": 828, "corrupt": 828, "decoupl": [828, 853], "150": 828, "cycl": [828, 844], "yellow": 828, "queu": 828, "redirect": 828, "book": 828, "onrend": 828, "jo": 828, "ran": 828, "clickabl": 828, "all_dtyp": 829, "all_numeric_dtyp": 829, "all_int_dtyp": 829, "all_float_dtyp": 829, "replic": [829, 839, 840, 841], "thirdli": 829, "native_float32": 829, "importantli": [829, 851, 854], "arguabl": [829, 830, 841], "jaxarrai": [829, 830, 833, 836, 840, 845, 849], "_handle_0_dim_output": 829, "subtli": [829, 840], "promote_types_frontend_nam": 829, "promote_types_of_frontend_name_input": 829, "frontend_nam": 829, "upcast": 829, "nearli": [829, 836, 838, 870], "downcast": 829, "footprint": 829, "concret": 829, "aris": [829, 835, 855, 860], "utterli": 829, "meant": [829, 831, 840], "twice": 829, "disadvantag": 829, "relax": 829, "f64": 829, "unwant": 829, "primaci": 829, "resembl": 829, "compound": 829, "infer_dtyp": [829, 830, 836, 838], "settabl": [829, 830], "handle_out_argu": [829, 830, 836, 837, 838, 840, 849], "infer_devic": [829, 830, 836, 838], "deleg": [829, 877], "shape_to_tupl": 829, "with_supported_dtyp": 829, "unment": 829, "_cast_for_unary_op": [829, 837, 840], "target_typ": 829, "syntax": [829, 859, 860, 870], "unsupported_dtyp": 829, "supported_dtypes_and_devic": 829, "with_unsupported_device_and_dtyp": 829, "globals_getter_func": 829, "f2": 829, "lack": [829, 840, 870, 877], "mandat": [829, 840, 844, 845, 860], "confus": [829, 833, 840, 847, 857, 861], "inconsist": [829, 833, 839], "is_nan": 829, "supported_dtyp": 829, "anytim": 829, "84530": 829, "unwarr": 829, "risk": [829, 876], "needlessli": 829, "bloat": 829, "undergo": [829, 855], "unsupported_devic": 829, "supported_devic": 829, "downsid": 829, "coverag": [829, 844], "undesir": 829, "accomplish": 829, "upcast_data_typ": 829, "downcast_data_typ": 829, "crosscast_data_typ": 829, "cast_data_typ": 829, "downcast_data_dtyp": 829, "vice": 829, "versa": 829, "till": 829, "crosscast": 829, "exmp1": 829, "watch": [829, 841], "handle_numpy_arrays_in_specific_backend": [829, 836], "cate": 829, "understood": 829, "consumpt": [829, 874], "dual": 830, "categor": [830, 837, 841], "210": 830, "_handle_except": [830, 833], "1013": 830, "_handle_nest": [830, 833], "905": 830, "_handle_out_argu": [830, 833], "441": 830, "_inputs_to_native_arrai": [830, 833], "new_arg": [830, 833], "new_kwarg": [830, 833], "_outputs_to_ivy_arrai": [830, 833], "358": 830, "_handle_array_funct": [830, 833], "_handle_device_shift": 830, "handle_device_shift": [830, 838], "device_shifting_dev": 830, "__enter__": 830, "__exit__": 830, "soft_devic": 830, "eight": [831, 848], "op_nam": 831, "__r": 831, "unsurprisingli": [831, 859], "recap": [831, 853], "combinatori": 831, "okai": [831, 847, 849], "spec": [831, 832], "my_func": [831, 845], "some_flag": 831, "another_flag": 831, "jointli": 831, "5574077": 831, "1850398": 831, "5463025": 831, "8422884": 831, "91601413": 831, "9647598": 831, "3738229": 831, "1597457": 831, "0963247": 831, "9955841": 831, "3278579": 831, "asid": 831, "14254655": 831, "1578213": 831, "380515": 831, "trivial": [831, 840], "failing_fn_nam": 831, "onlin": [831, 832], "minutest": 831, "fault": [831, 870], "contrast": [832, 836, 841, 876], "preview": 832, "incorrectli": [832, 863], "needless": [832, 842], "renam": [832, 841], "judgment": 832, "operator_nam": 832, "succinct": 832, "docst": 832, "native_error": 833, "_combine_messag": 833, "truli": [833, 851], "wrong": [833, 835, 838, 841, 847], "198": 833, "392": 833, "_handle_array_like_without_promot": 833, "805": 833, "432": 833, "349": 833, "other_test": 833, "523": 833, "_handle_numpy_out": 833, "396": [833, 853], "_outputs_to_numpy_arrai": 833, "_inputs_to_ivy_arrays_np": 833, "ivy_arg": 833, "ivy_kwarg": 833, "453": 833, "_from_zero_dim_arrays_to_scalar": 833, "truth_value_test": 833, "visibl": 833, "unwieldi": 833, "squash": 833, "hide": [833, 863], "cleaner": [833, 852], "caught": [833, 835], "rethrow": 833, "_print_traceback_histori": 833, "error_stack": 833, "axiserror": 833, "polici": [833, 838, 844, 846], "moreov": 833, "submoodul": 834, "test_jax_transpos": 834, "manipulaiton": 834, "test_jax": [834, 842], "test_numpi": [834, 842], "test_manipul": [834, 842, 844], "preconditionnotmet": 834, "densetensor": 834, "holder_": 834, "phi": 834, "dense_tensor_impl": 834, "array_and_ax": 834, "aaegbaegaqaaaaaaaaaaaaab": 834, "black": 835, "flake8": 835, "linter": 835, "autoflak": 835, "docformatt": 835, "pydocstyl": 835, "yaml": 835, "patch1687898304": 835, "8072": 835, "3516aed563": 835, "reformat": 835, "akshai": 835, "jain": 835, "gui": 835, "cryptic": 835, "garden": 835, "utc": 835, "didn": 835, "human": 835, "intervent": 835, "typo": 835, "ui": 835, "handle_array_like_without_promot": [836, 838], "to_native_arrays_and_back": [836, 838, 849], "handle_array_funct": [836, 838], "inputs_to_native_shap": [836, 838], "rational": [836, 840, 847], "__div__": [836, 847], "484": 836, "brittl": 836, "freeli": 836, "technic": [836, 840, 855, 870, 872], "original_typ": 836, "cumbersom": 836, "hinder": [836, 859], "venn": 837, "diagram": [837, 876], "light": [837, 845, 855, 857, 871, 876], "maximis": 837, "encompass": 837, "partial_mixed_handl": [837, 838, 847], "handle_partial_mixed_funct": [837, 838, 847], "fn_decor": 837, "mixed_backend_wrapp": [837, 840], "to_add": 837, "to_skip": 837, "inputs_to_ivy_arrai": [837, 838], "modif": [837, 870], "briefli": [837, 844, 852], "get_all_arrays_on_dev": 837, "outputs_to_ivy_shap": 838, "outputs_to_native_arrai": 838, "handle_view_index": [838, 840], "handle_view": [838, 840], "handle_rag": 838, "handle_backend_invalid": 838, "handle_nan": 838, "to_native_shapes_and_back": 838, "modern": [839, 859, 860, 875], "inter_func": 839, "custom_grad_fn": 839, "args1": 839, "speak": 840, "val_n": 840, "base_idx": 840, "_manipulation_stack": 840, "base_flat": 840, "_view_ref": 840, "_update_view": 840, "contigu": 840, "c_contigu": 840, "ascontiguousarrai": 840, "copyto": 840, "_is_vari": 840, "tensor_scatter_nd_upd": 840, "is_vari": 840, "_update_torch_view": 840, "predominantli": [840, 845], "support_native_out": [840, 849], "_scalar_output_to_0d_arrai": 840, "_wrap_fn": 840, "dim0": 840, "dim1": 840, "res_floor": 840, "extent": [840, 841], "to_out_fn": 840, "add_wrapp": 840, "paradigm": [840, 855, 870], "expans": 840, "weak": 840, "_torch_bas": 840, "_torch_view_ref": 840, "_torch_manipul": 840, "weakli": 840, "adequ": 840, "tf_frontend": 841, "lax": [841, 842, 847, 854, 855], "torch_frontend": [841, 842], "numpy_frontend": 841, "jax_frontend": 841, "to_ivy_arrays_and_back": [841, 842], "fidel": 841, "algebra": [841, 868, 869, 870, 873, 877], "dynamic": 841, "mimic": 841, "arithmetic_oper": 841, "handle_numpy_out": 841, "handle_numpy_dtyp": 841, "handle_numpy_cast": 841, "from_zero_dim_arrays_to_scalar": 841, "_add": 841, "same_kind": 841, "subok": [841, 842, 847], "promote_types_of_numpy_input": 841, "underscor": 841, "unhandl": 841, "trigonometric_funct": 841, "_tan": 841, "check_tensorflow_cast": 841, "raw_op": [841, 842], "map_raw_ops_alia": 841, "output_typ": 841, "kwargs_to_upd": 841, "pointwise_op": 841, "sensibl": 841, "ahead": [841, 845, 870], "reduce_logsumexp": 841, "logsumexp": 841, "trick": 841, "max_input_tensor": 841, "preferred_element_typ": 841, "languag": [841, 849, 857, 859, 861, 868, 871, 873, 874, 875, 876], "finer": 841, "logicaland": 841, "np_frontend": 841, "_ivy_arrai": 841, "radd": 841, "_init_data": 841, "_process_str_data": 841, "_dtype": [841, 842, 851], "_shape": [841, 851], "govern": 841, "promote_types_of_": 841, "_input": 841, "promote_types_of_torch_input": [841, 842], "handle_numpy_casting_speci": 841, "new_fn": 841, "equiv": 841, "unsaf": 841, "array_type_test": 841, "_isfinit": 841, "organis": 841, "youtub": 841, "knowledg": 842, "np_frontend_help": 842, "open_task": 842, "test_lax": 842, "test_oper": 842, "test_jax_tan": 842, "test_mathematical_funct": 842, "test_trigonometric_funct": 842, "dtypes_values_cast": 842, "dtypes_values_casting_dtyp": 842, "arr_func": 842, "get_num_positional_args_ufunc": 842, "test_numpy_tan": 842, "handle_where_and_array_bool": 842, "test_tensorflow": 842, "test_math": 842, "test_tensorflow_tan": 842, "test_pointwise_op": 842, "test_torch_tan": 842, "_fill_valu": 842, "test_glob": 842, "test_jax_ful": 842, "test_from_shape_or_valu": 842, "_input_fill_and_dtyp": 842, "dtype_and_input": 842, "dtype_to_cast": 842, "input_fill_dtyp": 842, "test_numpy_ful": 842, "test_raw_op": 842, "test_tensorflow_fil": 842, "test_creation_op": 842, "with_arrai": 842, "test_torch_ful": 842, "add_nois": 842, "all_clos": 842, "_get_dtype_and_matrix": 842, "test_torch_qr": 842, "frontend_q": 842, "frontend_r": 842, "walkthrough": 842, "comparison_op": 842, "test_comparison_op": 842, "test_torch_great": 842, "all_alias": 842, "test_ndarrai": 842, "test_numpy_instance_add__": 842, "test_tensorflow_instance_add": 842, "1e04": 842, "allow_infin": 842, "test_torch_instance_add": 842, "_arrays_idx_n_dtyp": 842, "surprisingli": 842, "closest_relevant_group": 842, "strive": [842, 844, 847, 855, 872], "craft": [843, 844], "tailor": 843, "clariti": [843, 844, 847, 870], "weav": 843, "thrill": 843, "brim": 843, "stand": [843, 844], "landscap": 843, "forese": 843, "refin": 843, "inquiri": 843, "fixtur": 844, "hit": [844, 849, 863], "eleg": [844, 870], "unexplor": 844, "artifact": 844, "bespok": 844, "_array_or_typ": 844, "rigor": [844, 859], "test_default_int_dtyp": 844, "print_hypothesis_exampl": 844, "custom_strategi": 844, "randomis": 844, "simplist": 844, "intricaci": 844, "glanc": 844, "one_of": 844, "datum": 844, "pipe": 844, "array_or_scal": 844, "len_of_arrai": 844, "test_add": 844, "test_gpu_is_avail": 844, "pretest": 844, "snippet": [844, 864], "frontend_test": 844, "frontend_method": 844, "criterion": 844, "valid_ax": 844, "hoc": 844, "11228": 844, "268": 844, "wherev": 844, "9622": 844, "28136": 844, "6375": 844, "12720": 844, "21354": 844, "900e": 844, "57384": 844, "25687": 844, "248": 844, "test_devic": 844, "array_shap": 844, "test_lay": 844, "some_sequ": 844, "arrays_valu": 844, "36418": 844, "213": 844, "21716926": 844, "none_or_list_of_float": 844, "get_prob": 844, "103515625e": 844, "099609375": 844, "probabilist": 844, "number_positional_argu": 844, "unreproduc": 844, "x_and_linear": 844, "is_torch_backend": 844, "x_shape": [844, 849], "weight_shap": 844, "bias_shap": 844, "ivy_np": 844, "valid_float_dtyp": 844, "test_demo": 844, "failing_test": 844, "traceback": 844, "shrink": 844, "prescrib": 844, "scratch": 844, "test_gelu": 844, "test_fil": 844, "notabl": [844, 870], "max_exampl": 844, "deadlin": 844, "weird": 844, "systemat": 844, "safeguard": 844, "inabl": 844, "test_result_typ": 844, "9090909090909091": 844, "judgement": 845, "some_namespac": 845, "some_backend": 845, "another_backend": 845, "refactor": 845, "ongo": 845, "check_fill_value_and_dtype_are_compat": 845, "_to_devic": 845, "shouldn": [845, 863], "pin": 845, "unpinn": 845, "culmin": 845, "unsett": 846, "array_significant_figur": 846, "array_decimal_valu": 846, "warning_level": 846, "nan_polici": 846, "stablest": 846, "constantli": [847, 859], "answer": [847, 851, 855], "contradict": 847, "entail": 847, "sacrif": 847, "jacfwd": 847, "jacrev": 847, "banner": 847, "expens": 847, "incredibli": [847, 852, 855, 873], "price": 847, "pai": 847, "intrus": 847, "x_beta": 847, "equip": 847, "simplif": 847, "allevi": 847, "ineffici": [847, 855, 870], "fuse": 847, "hybrid": 847, "workaround": 847, "slip": 847, "radar": 847, "stumbl": 847, "gone": [848, 860], "fulfil": 848, "syntact": [849, 854], "power_seq": 849, "_determine_backend_from_arg": 849, "importlib": 849, "_backend_dict": 849, "x_flat": 849, "wi": 849, "wi_x": 849, "wii_x": 849, "wif_x": 849, "wig_x": 849, "wio_x": 849, "wh": 849, "ht": 849, "ct": 849, "hts_list": 849, "wii_xt": 849, "wif_xt": 849, "wig_xt": 849, "wio_xt": 849, "htm1": 849, "ctm1": 849, "wh_htm1": 849, "whi_htm1": 849, "whf_htm1": 849, "whg_htm1": 849, "who_htm1": 849, "ft": 849, "ot": 849, "reliabl": 849, "sacrific": 849, "hear": 849, "virtu": [849, 867], "pure_ivi": 849, "pure_torch": 849, "unclean": 849, "wx": 849, "temp": 849, "ivy_func": 849, "emphas": 849, "example_input": 849, "static_argnum": [849, 863], "static_argnam": [849, 863], "primit": [850, 855, 868, 870], "hierarch": [850, 852, 853, 870], "arraywithactiv": 851, "arraywithcr": 851, "arraywithdatatyp": 851, "arraywithdevic": 851, "arraywithgener": 851, "arraywithgradi": 851, "arraywithimag": 851, "arraywithlay": 851, "arraywithlinearalgebra": 851, "arraywithloss": 851, "arraywithmanipul": 851, "arraywithnorm": 851, "arraywithrandom": 851, "arraywithsearch": 851, "arraywithset": 851, "arraywithsort": 851, "arraywithstatist": 851, "arraywithutil": 851, "_init": 851, "_size": 851, "_devic": 851, "_dev_str": 851, "_pre_repr": 851, "_post_repr": 851, "framework_str": 851, "pypep8nam": 851, "immut": 851, "claim": 851, "_native_wrapp": 851, "genuin": 851, "some_method": 851, "rewritten": 851, "littl": [851, 859, 872], "compartment": 851, "newshap": 851, "new_shap": 851, "tidi": 851, "crystal": 851, "ton": 852, "ado": [852, 853], "soup": 852, "walk": [852, 853], "cnt": 852, "3333335": 852, "autocomplet": 852, "midwai": 852, "agent": 852, "total_spe": 852, "total_height": 852, "total_width": 852, "ag": 852, "tot": 852, "total_": 852, "total_h": 852, "cnt0": 852, "cnt1": 852, "diff_0": 852, "diff_1": 852, "config0": 852, "config1": 852, "l0": 852, "decoder__l0": 852, "decoder__l1": 852, "encoder__l0": 852, "encoder__l1": 852, "l0__b": 852, "l0__w": 852, "l1__b": 852, "l1__w": 852, "printabl": 852, "foresight": 852, "untidili": 852, "update_ag": 852, "normalize_img": 852, "img_max": 852, "reduce_max": 852, "img_min": 852, "reduce_min": 852, "img_rang": 852, "agent_posit": 852, "agent_veloc": 852, "agent_cam_front_rgb": 852, "agent_cam_front_depth": 852, "agent_cam_rear_rgb": 852, "agent_cam_rear_depth": 852, "agent_cam_lidar": 852, "camera": 852, "front_rgb": 852, "front_depth": 852, "rear_rgb": 852, "rear_depth": 852, "lidar": 852, "rgb": 852, "rear": 852, "veloc": 852, "cam": 852, "cam_max": 852, "cam_min": 852, "cam_rang": 852, "allud": [852, 860], "perman": 852, "_cnt": 852, "img_": 852, "_dataset_s": 852, "_batch_siz": 852, "_count": [852, 853], "__next__": 852, "img_fnam": 852, "loaded_img": 852, "batch_slic": 852, "0145": 852, "addbackward0": 852, "_create_vari": 853, "_input_channel": 853, "_output_channel": 853, "_w_shape": 853, "_b_shape": 853, "_with_bia": 853, "764": 853, "872": 853, "211": 853, "439": 853, "nightmar": 853, "overcom": 853, "key0": 853, "linear3": 853, "preced": [853, 860], "_w_init": 853, "_b_init": 853, "misnom": 853, "saw": 853, "_beta1": 853, "_beta2": 853, "_epsilon": 853, "_mw": 853, "_vw": 853, "_first_pass": 853, "_should_trac": 853, "new_v": 853, "_lr": 853, "_inplac": 853, "_stop_gradi": 853, "sparse_funct": 854, "_linear": 854, "jax_graph": 854, "to_backend": 854, "thinli": 854, "to_haiku_modul": 854, "loss_fn_t": 854, "without_apply_rng": 854, "update_rul": 854, "tree_multimap": 854, "trax": [854, 861], "objax": [854, 861], "matur": [855, 860, 870], "doubt": 855, "grate": [855, 878], "probe": 855, "lock": 855, "dex": 855, "tricki": [855, 857], "tight": 855, "dispatch": [855, 870, 873], "ast": 855, "autodiff": 855, "shine": 855, "merci": 855, "compet": [855, 870], "parallelis": 855, "spmd": 855, "mixtur": 855, "expert": 855, "sophist": 855, "depart": 855, "hundr": 855, "broadli": [855, 876], "supplementari": 855, "reusabl": [855, 868, 870], "fanci": [855, 870], "fusion": [855, 874], "lose": 855, "pmap": 855, "eventu": 855, "supplement": 855, "backdoor": 855, "callback": 855, "somewhat": [855, 870], "outsourc": 855, "ivy_root": 856, "pem": 856, "api_kei": 856, "asap": 856, "nail": 857, "scientist": 857, "correl": 857, "collabor": [858, 859, 860], "consortium": [858, 860], "grown": 859, "rapidli": 859, "shareabl": 859, "outdat": 859, "newest": 859, "prototyp": [859, 870], "obsolet": [859, 861], "invent": 859, "simultan": [859, 861], "runner": 859, "principl": [859, 868, 870, 873], "2006": 859, "cloth": 859, "forgiven": 860, "eyebrow": 860, "somehow": 860, "funni": 860, "comic": 860, "charger": 860, "instant": 860, "contrari": 860, "bumpi": 860, "road": 860, "technologi": [860, 868, 872], "motherboard": 860, "raid": 860, "bluetooth": 860, "wireless": 860, "btx": 860, "sata": 860, "tcp": 860, "ip": 860, "smtp": 860, "send": [860, 875], "gmail": 860, "outlook": 860, "growth": [860, 873], "necess": 860, "2015": [860, 870], "aros": 860, "ourselv": [860, 876], "quansight": [860, 876], "compani": [860, 866], "apach": [860, 872, 876], "onnx": [860, 868, 876], "cupi": [860, 870, 877], "modin": 860, "spyder": 860, "octoml": [860, 876], "sponsor": 860, "lg": 860, "electron": 860, "shaw": 860, "pursuit": 860, "complianc": 860, "convinc": 860, "celebr": 860, "streamlin": [861, 873], "awesom": 861, "love": 861, "slew": 861, "inevit": [861, 871], "erron": 861, "poor": 861, "spin": 861, "sake": 861, "wouldn": 861, "frantic": 861, "lucid": 861, "honk": 861, "hasn": 861, "spend": [861, 870], "sonnet": 861, "trainer": [861, 877], "quo": 861, "dopamin": 861, "ignit": 861, "catalyst": 861, "lightn": 861, "fastai": 861, "publicli": [863, 864, 865], "logger": 863, "arg_stateful_idx": 863, "kwarg_stateful_idx": 863, "include_gener": 863, "array_cach": 863, "return_backend_traced_fn": 863, "lazygraph": [863, 864, 865], "sum_j": 863, "traced_fn": 863, "impos": 863, "comp_func": 863, "bake": 863, "cont": 863, "new_attribut": 863, "wip": 863, "resnet50": 863, "breed": 863, "resnetforimageclassif": [863, 864], "traced_graph": 863, "predicted_label": 863, "debug_mod": 864, "rough": 864, "transformed_with_st": 864, "bigger": 864, "hf": 864, "tf_model": 864, "transpile_kwarg": 865, "transpiled_func": 865, "unified_func": 865, "rwork": 866, "vendor": [866, 872], "complimentari": [866, 876], "acycl": [866, 871], "fillna": 867, "pct_chang": 867, "_____________": 867, "__________________________________________________________________": 867, "scaffold": [868, 876], "heart": 868, "toolchain": [868, 873], "assembli": [868, 875, 876], "idl": 868, "middl": 868, "emit": 868, "gnu": [868, 873], "broader": 868, "heterogen": 868, "aid": 868, "coprocessor": 868, "programm": [868, 875], "gate": 868, "onednn": 868, "sit": [868, 871, 876], "tandem": 868, "possess": 868, "khrono": [869, 875], "appl": 869, "coremltool": 869, "albeit": 869, "promin": 870, "abbrevi": 870, "laboratori": 870, "proprietari": [870, 874, 875], "mathwork": 870, "commerci": 870, "1984": 870, "toolbox": 870, "mupad": 870, "simulink": 870, "graphic": [870, 874, 875], "simul": 870, "million": [870, 873], "worldwid": 870, "scienc": [870, 872], "econom": 870, "2001": 870, "od": 870, "solver": 870, "cython": 870, "friendli": 870, "2002": 870, "lua": 870, "luajit": 870, "idiap": 870, "epfl": 870, "2005": 870, "numarrai": 870, "cpython": 870, "partli": 870, "2007": 870, "forest": 870, "boost": 870, "dbscan": 870, "inbuilt": 870, "esqu": 870, "aesara": 870, "2012": 870, "polymorph": 870, "mpi": 870, "openmp": 870, "glue": 870, "jaot": 870, "nasa": 870, "cern": 870, "climat": 870, "allianc": 870, "influenti": 870, "2014": 870, "scala": 870, "ship": 870, "forgiv": 870, "decemb": 870, "announc": 870, "mainten": 870, "meaning": 870, "2016": 870, "imper": 870, "amazon": 870, "traction": 870, "cognit": [870, 877], "grade": 870, "dnn": 870, "backpropag": 870, "succumb": 870, "came": 870, "monitor": 870, "hobbyist": 870, "tremend": 870, "gear": 870, "batteri": 870, "zygot": 870, "jl": 870, "workload": 870, "daggerflux": 870, "frontier": 870, "hessian": 870, "2018": 870, "lightweight": [870, 877], "shortcom": 870, "barrier": 870, "inexperienc": 870, "underdevelop": 870, "fanat": 870, "ounc": 870, "infanc": 870, "nich": 870, "mobil": 870, "lite": 870, "enterpris": 870, "reinvent": [870, 872], "inertia": 870, "creator": [870, 872], "paszk": 870, "hi": 870, "bulk": 870, "haskel": 870, "dataflow": 871, "trace_modul": 871, "scriptfunct": 871, "scriptmodul": 871, "fake": 871, "proxi": 871, "graphmodul": 871, "travi": 872, "oliph": 872, "leader": 872, "cornerston": 872, "numba": 872, "numfocu": 872, "pydata": 872, "confer": 872, "consult": 872, "devop": 872, "mlop": 872, "dashboard": 872, "startup": 872, "mlir": [872, 873, 876], "Their": 872, "held": 872, "presum": 872, "llvm": [872, 875], "founder": 872, "tvm": [872, 876], "sustain": 872, "empow": 872, "har": 872, "burden": 872, "precompil": 873, "executor": 873, "julia": [873, 876], "fsf": 873, "gpl": 873, "biggest": [873, 876], "throughput": 874, "autotun": 874, "gpgpu": 874, "classic": 875, "sycl": 875, "dpc": 875, "maco": 875, "oneapi": 875, "ia": 875, "aka": 875, "xeon": 875, "gen9": 875, "xe": 875, "arria": 875, "gx": 875, "fpga": 875, "lofti": 876, "ambit": 876, "realm": 876, "bedrock": 876, "flux": 876, "bite": 876, "chew": 876, "eagerpi": 876, "tensorli": 876, "thinc": 876, "neuropod": 876, "fx": 876, "retrain": 876, "closer": 876, "greatli": 876, "modular": 876, "anywher": 876, "theano": 877, "plaidml": 877, "partial_svd": 877, "subsystem": 877, "bhushan": 878, "srivastava": 878, "he11owther": 878, "og": 878, "edward": 878, "amimo": 878, "moblei": 878, "trent": 878, "ogban": 878, "ugot": 878, "fayad": 878, "alman": 878, "sarvesh": 878, "kesharwani": 878, "krishna": 878, "boppana": 878, "saptarshi": 878, "bandopadhyai": 878, "tugai": 878, "g\u00fcl": 878, "sondertg": 878, "vismai": 878, "suramwar": 878, "leacornelio": 878, "samund": 878, "singh": 878, "samthakur587": 878, "suraj": 878, "zheng": 878, "jai": 878, "choi": 878, "zjay07": 878, "ebenez": 878, "gadri": 878, "akrong": 878, "aibenstunn": 878, "nitesh": 878, "niteshk84": 878, "abdullah": 878, "sabri": 878, "abdullahsabri": 878, "muhammad": 878, "ishaqu": 878, "muhammadnizamani": 878, "moham": 878, "ibrahim": 878, "medo072": 878, "sheroz": 878, "khan": 878, "ksheroz": 878, "suyash": 878, "gupta": 878, "sgalpha01": 878, "alvin": 878, "vinod": 878, "david": 878, "adlai": 878, "nettei": 878, "mwape": 878, "bunda": 878, "teckno": 878, "ramya": 878, "manasa": 878, "amancherla": 878, "ramyamanasa": 878, "rohit": 878, "kumar": 878, "salla": 878, "rohitsalla": 878, "sanjai": 878, "suthar": 878, "sanjay8602": 878, "muzakkir": 878, "hussain": 878, "muzakkirhussain011": 878, "chaitanya": 878, "lakhchaura": 878, "zenithflux": 878, "kacper": 878, "ko\u017cdo\u0144": 878, "kozdon": 878, "zera": 878, "marveen": 878, "lyngkhoi": 878, "fleventi": 878, "jackson": 878, "mcclintock": 878, "jacksondm33": 878, "ayush": 878, "lokar": 878, "ayush111111": 878, "garima": 878, "saroj": 878, "androgari": 878, "lee": 878, "bissessar": 878, "leebissessar5": 878, "mostafa": 878, "gamal": 878, "mr": 878, "array22": 878, "rahul": 878, "prem": 878, "rp097": 878, "vaishnavi": 878, "mudaliar": 878, "vaishnavimudaliar": 878, "waqar": 878, "ahm": 878, "waqaarahm": 878, "aryan": 878, "pandei": 878, "aryan8912": 878, "dhruv": 878, "sharma": 878, "druvdub": 878, "mehmet": 878, "bilgehan": 878, "bezcioglu": 878, "bilgehanmehmet": 878, "omkar": 878, "khade": 878, "omickeye": 878, "puriti": 878, "nyagweth": 878, "stefan": 878, "sanchez": 878, "stefansan26": 878}, "objects": {"ivy.Array": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [544, 0, 1, "", "default"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [404, 0, 1, "", "fft2"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [566, 0, 1, "", "is_ivy_container"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [590, 0, 1, "", "shape"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy": [[634, 1, 1, "", "ArrayMode"], [630, 1, 1, "", "DefaultComplexDtype"], [631, 1, 1, "", "DefaultDevice"], [630, 1, 1, "", "DefaultDtype"], [630, 1, 1, "", "DefaultFloatDtype"], [630, 1, 1, "", "DefaultIntDtype"], [630, 1, 1, "", "DefaultUintDtype"], [386, 1, 1, "", "NativeSparseArray"], [629, 1, 1, "", "NestedSequence"], [634, 1, 1, "", "PreciseMode"], [631, 1, 1, "", "Profiler"], [386, 1, 1, "", "SparseArray"], [220, 2, 1, "", "abs"], [221, 2, 1, "", "acos"], [222, 2, 1, "", "acosh"], [635, 2, 1, "", "adam_step"], [635, 2, 1, "", "adam_update"], [389, 2, 1, "", "adaptive_avg_pool1d"], [390, 2, 1, "", "adaptive_avg_pool2d"], [391, 2, 1, "", "adaptive_max_pool2d"], [392, 2, 1, "", "adaptive_max_pool3d"], [223, 2, 1, "", "add"], [376, 2, 1, "", "adjoint"], [648, 2, 1, "", "all"], [634, 2, 1, "", "all_equal"], [641, 2, 1, "", "all_nested_indices"], [372, 2, 1, "", "allclose"], [372, 2, 1, "", "amax"], [372, 2, 1, "", "amin"], [224, 2, 1, "", "angle"], [648, 2, 1, "", "any"], [629, 2, 1, "", "arange"], [393, 2, 1, "", "area_interpolate"], [634, 2, 1, "", "arg_info"], [634, 2, 1, "", "arg_names"], [644, 2, 1, "", "argmax"], [644, 2, 1, "", "argmin"], [646, 2, 1, "", "argsort"], [644, 2, 1, "", "argwhere"], [629, 2, 1, "", "array"], [634, 2, 1, "", "array_equal"], [193, 2, 1, "", "as_ivy_dev"], [630, 2, 1, "", "as_ivy_dtype"], [194, 2, 1, "", "as_native_dev"], [630, 2, 1, "", "as_native_dtype"], [378, 2, 1, "", "as_strided"], [629, 2, 1, "", "asarray"], [225, 2, 1, "", "asin"], [226, 2, 1, "", "asinh"], [634, 2, 1, "", "assert_supports_inplace"], [378, 2, 1, "", "associative_scan"], [630, 2, 1, "", "astype"], [227, 2, 1, "", "atan"], [228, 2, 1, "", "atan2"], [229, 2, 1, "", "atanh"], [378, 2, 1, "", "atleast_1d"], [378, 2, 1, "", "atleast_2d"], [378, 2, 1, "", "atleast_3d"], [394, 2, 1, "", "avg_pool1d"], [395, 2, 1, "", "avg_pool2d"], [396, 2, 1, "", "avg_pool3d"], [381, 2, 1, "", "batch_norm"], [376, 2, 1, "", "batched_outer"], [382, 2, 1, "", "bernoulli"], [382, 2, 1, "", "beta"], [372, 2, 1, "", "binarizer"], [638, 2, 1, "", "binary_cross_entropy"], [387, 2, 1, "", "bincount"], [374, 2, 1, "", "bind_custom_gradient_function"], [230, 2, 1, "", "bitwise_and"], [231, 2, 1, "", "bitwise_invert"], [232, 2, 1, "", "bitwise_left_shift"], [233, 2, 1, "", "bitwise_or"], [234, 2, 1, "", "bitwise_right_shift"], [235, 2, 1, "", "bitwise_xor"], [312, 2, 1, "", "blackman_window"], [630, 2, 1, "", "broadcast_arrays"], [378, 2, 1, "", "broadcast_shapes"], [630, 2, 1, "", "broadcast_to"], [634, 2, 1, "", "cache_fn"], [630, 2, 1, "", "can_cast"], [236, 2, 1, "", "ceil"], [295, 2, 1, "", "celu"], [630, 2, 1, "", "check_float"], [378, 2, 1, "", "check_scalar"], [637, 2, 1, "", "cholesky"], [378, 2, 1, "", "choose"], [195, 2, 1, "", "clear_cached_mem_on_dev"], [639, 2, 1, "", "clip"], [634, 2, 1, "", "clip_matrix_norm"], [634, 2, 1, "", "clip_vector_norm"], [630, 2, 1, "", "closest_valid_dtype"], [628, 2, 1, "", "cmp_is"], [628, 2, 1, "", "cmp_isnot"], [378, 2, 1, "", "column_stack"], [639, 2, 1, "", "concat"], [378, 2, 1, "", "concat_from_sequence"], [376, 2, 1, "", "cond"], [372, 2, 1, "", "conj"], [639, 2, 1, "", "constant_pad"], [634, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [636, 2, 1, "", "conv1d_transpose"], [636, 2, 1, "", "conv2d"], [636, 2, 1, "", "conv2d_transpose"], [636, 2, 1, "", "conv3d"], [636, 2, 1, "", "conv3d_transpose"], [636, 2, 1, "", "conv_general_dilated"], [636, 2, 1, "", "conv_general_transpose"], [629, 2, 1, "", "copy_array"], [641, 2, 1, "", "copy_nest"], [372, 2, 1, "", "copysign"], [387, 2, 1, "", "corrcoef"], [237, 2, 1, "", "cos"], [238, 2, 1, "", "cosh"], [372, 2, 1, "", "count_nonzero"], [387, 2, 1, "", "cov"], [637, 2, 1, "", "cross"], [638, 2, 1, "", "cross_entropy"], [387, 2, 1, "", "cummax"], [387, 2, 1, "", "cummin"], [647, 2, 1, "", "cumprod"], [647, 2, 1, "", "cumsum"], [634, 2, 1, "", "current_backend_str"], [397, 2, 1, "", "dct"], [634, 2, 1, "", "default"], [630, 2, 1, "", "default_complex_dtype"], [196, 2, 1, "", "default_device"], [630, 2, 1, "", "default_dtype"], [630, 2, 1, "", "default_float_dtype"], [630, 2, 1, "", "default_int_dtype"], [630, 2, 1, "", "default_uint_dtype"], [239, 2, 1, "", "deg2rad"], [636, 2, 1, "", "depthwise_conv2d"], [637, 2, 1, "", "det"], [197, 2, 1, "", "dev"], [198, 2, 1, "", "dev_util"], [398, 2, 1, "", "dft"], [637, 2, 1, "", "diag"], [376, 2, 1, "", "diagflat"], [637, 2, 1, "", "diagonal"], [372, 2, 1, "", "diff"], [372, 2, 1, "", "digamma"], [382, 2, 1, "", "dirichlet"], [240, 2, 1, "", "divide"], [376, 2, 1, "", "dot"], [636, 2, 1, "", "dropout"], [399, 2, 1, "", "dropout1d"], [400, 2, 1, "", "dropout2d"], [401, 2, 1, "", "dropout3d"], [378, 2, 1, "", "dsplit"], [378, 2, 1, "", "dstack"], [630, 2, 1, "", "dtype"], [630, 2, 1, "", "dtype_bits"], [641, 2, 1, "", "duplicate_array_index_chains"], [627, 6, 1, "", "e"], [376, 2, 1, "", "eig"], [637, 2, 1, "", "eigh"], [376, 2, 1, "", "eigh_tridiagonal"], [376, 2, 1, "", "eigvals"], [637, 2, 1, "", "eigvalsh"], [634, 2, 1, "", "einops_rearrange"], [634, 2, 1, "", "einops_reduce"], [634, 2, 1, "", "einops_repeat"], [647, 2, 1, "", "einsum"], [296, 2, 1, "", "elu"], [402, 2, 1, "", "embedding"], [629, 2, 1, "", "empty"], [629, 2, 1, "", "empty_like"], [241, 2, 1, "", "equal"], [242, 2, 1, "", "erf"], [372, 2, 1, "", "erfc"], [372, 2, 1, "", "erfinv"], [635, 2, 1, "", "execute_with_gradients"], [634, 2, 1, "", "exists"], [243, 2, 1, "", "exp"], [244, 2, 1, "", "exp2"], [378, 2, 1, "", "expand"], [639, 2, 1, "", "expand_dims"], [245, 2, 1, "", "expm1"], [629, 2, 1, "", "eye"], [313, 2, 1, "", "eye_like"], [403, 2, 1, "", "fft"], [404, 2, 1, "", "fft2"], [378, 2, 1, "", "fill_diagonal"], [630, 2, 1, "", "finfo"], [372, 2, 1, "", "fix"], [378, 2, 1, "", "flatten"], [639, 2, 1, "", "flip"], [378, 2, 1, "", "fliplr"], [378, 2, 1, "", "flipud"], [372, 2, 1, "", "float_power"], [246, 2, 1, "", "floor"], [247, 2, 1, "", "floor_divide"], [372, 2, 1, "", "fmax"], [248, 2, 1, "", "fmin"], [249, 2, 1, "", "fmod"], [378, 2, 1, "", "fold"], [640, 2, 1, "", "fomaml_step"], [628, 2, 1, "", "for_loop"], [634, 2, 1, "", "fourier_encode"], [372, 2, 1, "", "frexp"], [629, 2, 1, "", "from_dlpack"], [629, 2, 1, "", "frombuffer"], [629, 2, 1, "", "full"], [629, 2, 1, "", "full_like"], [199, 2, 1, "", "function_supported_devices"], [634, 2, 1, "", "function_supported_devices_and_dtypes"], [630, 2, 1, "", "function_supported_dtypes"], [200, 2, 1, "", "function_unsupported_devices"], [634, 2, 1, "", "function_unsupported_devices_and_dtypes"], [630, 2, 1, "", "function_unsupported_dtypes"], [382, 2, 1, "", "gamma"], [634, 2, 1, "", "gather"], [634, 2, 1, "", "gather_nd"], [250, 2, 1, "", "gcd"], [626, 2, 1, "", "gelu"], [376, 2, 1, "", "general_inner_product"], [405, 2, 1, "", "generate_einsum_equation"], [634, 2, 1, "", "get_all_arrays_in_memory"], [201, 2, 1, "", "get_all_ivy_arrays_on_dev"], [406, 2, 1, "", "get_interpolate_kernel"], [634, 2, 1, "", "get_item"], [634, 2, 1, "", "get_num_dims"], [634, 2, 1, "", "get_referrers_recursive"], [202, 2, 1, "", "gpu_is_available"], [635, 2, 1, "", "grad"], [372, 2, 1, "", "gradient"], [635, 2, 1, "", "gradient_descent_update"], [251, 2, 1, "", "greater"], [252, 2, 1, "", "greater_equal"], [381, 2, 1, "", "group_norm"], [314, 2, 1, "", "hamming_window"], [203, 2, 1, "", "handle_soft_device_variable"], [315, 2, 1, "", "hann_window"], [297, 2, 1, "", "hardshrink"], [298, 2, 1, "", "hardsilu"], [626, 2, 1, "", "hardswish"], [299, 2, 1, "", "hardtanh"], [634, 2, 1, "", "has_nans"], [378, 2, 1, "", "heaviside"], [376, 2, 1, "", "higher_order_moment"], [377, 2, 1, "", "hinge_embedding_loss"], [387, 2, 1, "", "histogram"], [378, 2, 1, "", "hsplit"], [378, 2, 1, "", "hstack"], [377, 2, 1, "", "huber_loss"], [372, 2, 1, "", "hypot"], [378, 2, 1, "", "i0"], [407, 2, 1, "", "idct"], [628, 2, 1, "", "if_else"], [408, 2, 1, "", "ifft"], [409, 2, 1, "", "ifftn"], [387, 2, 1, "", "igamma"], [630, 2, 1, "", "iinfo"], [253, 2, 1, "", "imag"], [641, 2, 1, "", "index_nest"], [316, 2, 1, "", "indices"], [627, 6, 1, "", "inf"], [630, 2, 1, "", "infer_default_dtype"], [376, 2, 1, "", "initialize_tucker"], [637, 2, 1, "", "inner"], [634, 2, 1, "", "inplace_arrays_supported"], [634, 2, 1, "", "inplace_decrement"], [634, 2, 1, "", "inplace_increment"], [634, 2, 1, "", "inplace_update"], [634, 2, 1, "", "inplace_variables_supported"], [641, 2, 1, "", "insert_into_nest_at_index"], [641, 2, 1, "", "insert_into_nest_at_indices"], [381, 2, 1, "", "instance_norm"], [410, 2, 1, "", "interp"], [411, 2, 1, "", "interpolate"], [637, 2, 1, "", "inv"], [630, 2, 1, "", "invalid_dtype"], [385, 2, 1, "", "invert_permutation"], [634, 2, 1, "", "is_array"], [630, 2, 1, "", "is_bool_dtype"], [630, 2, 1, "", "is_complex_dtype"], [630, 2, 1, "", "is_float_dtype"], [630, 2, 1, "", "is_hashable_dtype"], [630, 2, 1, "", "is_int_dtype"], [634, 2, 1, "", "is_ivy_array"], [634, 2, 1, "", "is_ivy_container"], [634, 2, 1, "", "is_ivy_nested_array"], [386, 2, 1, "", "is_ivy_sparse_array"], [634, 2, 1, "", "is_native_array"], [630, 2, 1, "", "is_native_dtype"], [386, 2, 1, "", "is_native_sparse_array"], [630, 2, 1, "", "is_uint_dtype"], [372, 2, 1, "", "isclose"], [254, 2, 1, "", "isfinite"], [634, 2, 1, "", "isin"], [255, 2, 1, "", "isinf"], [256, 2, 1, "", "isnan"], [257, 2, 1, "", "isreal"], [634, 2, 1, "", "isscalar"], [634, 2, 1, "", "itemsize"], [635, 2, 1, "", "jac"], [374, 2, 1, "", "jvp"], [317, 2, 1, "", "kaiser_bessel_derived_window"], [318, 2, 1, "", "kaiser_window"], [376, 2, 1, "", "khatri_rao"], [377, 2, 1, "", "kl_div"], [376, 2, 1, "", "kron"], [376, 2, 1, "", "kronecker"], [377, 2, 1, "", "l1_loss"], [381, 2, 1, "", "l1_normalize"], [381, 2, 1, "", "l2_normalize"], [635, 2, 1, "", "lamb_update"], [635, 2, 1, "", "lars_update"], [642, 2, 1, "", "layer_norm"], [258, 2, 1, "", "lcm"], [372, 2, 1, "", "ldexp"], [626, 2, 1, "", "leaky_relu"], [372, 2, 1, "", "lerp"], [259, 2, 1, "", "less"], [260, 2, 1, "", "less_equal"], [385, 2, 1, "", "lexsort"], [372, 2, 1, "", "lgamma"], [636, 2, 1, "", "linear"], [629, 2, 1, "", "linspace"], [648, 2, 1, "", "load"], [381, 2, 1, "", "local_response_norm"], [261, 2, 1, "", "log"], [262, 2, 1, "", "log10"], [263, 2, 1, "", "log1p"], [264, 2, 1, "", "log2"], [377, 2, 1, "", "log_poisson_loss"], [626, 2, 1, "", "log_softmax"], [265, 2, 1, "", "logaddexp"], [266, 2, 1, "", "logaddexp2"], [267, 2, 1, "", "logical_and"], [268, 2, 1, "", "logical_not"], [269, 2, 1, "", "logical_or"], [270, 2, 1, "", "logical_xor"], [300, 2, 1, "", "logit"], [301, 2, 1, "", "logsigmoid"], [629, 2, 1, "", "logspace"], [381, 2, 1, "", "lp_normalize"], [636, 2, 1, "", "lstm"], [636, 2, 1, "", "lstm_update"], [376, 2, 1, "", "lu_factor"], [376, 2, 1, "", "lu_solve"], [376, 2, 1, "", "make_svd_non_negative"], [640, 2, 1, "", "maml_step"], [641, 2, 1, "", "map"], [641, 2, 1, "", "map_nest_at_index"], [641, 2, 1, "", "map_nest_at_indices"], [634, 2, 1, "", "match_kwargs"], [637, 2, 1, "", "matmul"], [378, 2, 1, "", "matricize"], [376, 2, 1, "", "matrix_exp"], [637, 2, 1, "", "matrix_norm"], [637, 2, 1, "", "matrix_power"], [637, 2, 1, "", "matrix_rank"], [637, 2, 1, "", "matrix_transpose"], [647, 2, 1, "", "max"], [412, 2, 1, "", "max_pool1d"], [413, 2, 1, "", "max_pool2d"], [375, 2, 1, "", "max_pool3d"], [375, 2, 1, "", "max_unpool1d"], [271, 2, 1, "", "maximum"], [647, 2, 1, "", "mean"], [387, 2, 1, "", "median"], [319, 2, 1, "", "mel_weight_matrix"], [629, 2, 1, "", "meshgrid"], [647, 2, 1, "", "min"], [272, 2, 1, "", "minimum"], [626, 2, 1, "", "mish"], [376, 2, 1, "", "mode_dot"], [372, 2, 1, "", "modf"], [378, 2, 1, "", "moveaxis"], [646, 2, 1, "", "msort"], [376, 2, 1, "", "multi_dot"], [636, 2, 1, "", "multi_head_attention"], [641, 2, 1, "", "multi_index_nest"], [376, 2, 1, "", "multi_mode_dot"], [643, 2, 1, "", "multinomial"], [273, 2, 1, "", "multiply"], [634, 2, 1, "", "multiprocessing"], [627, 6, 1, "", "nan"], [274, 2, 1, "", "nan_to_num"], [387, 2, 1, "", "nanmean"], [387, 2, 1, "", "nanmedian"], [387, 2, 1, "", "nanmin"], [387, 2, 1, "", "nanprod"], [372, 2, 1, "", "nansum"], [629, 2, 1, "", "native_array"], [386, 2, 1, "", "native_sparse_array"], [386, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [320, 2, 1, "", "ndenumerate"], [321, 2, 1, "", "ndindex"], [375, 2, 1, "", "nearest_interpolate"], [275, 2, 1, "", "negative"], [641, 2, 1, "", "nested_any"], [641, 2, 1, "", "nested_argwhere"], [641, 2, 1, "", "nested_map"], [641, 2, 1, "", "nested_multi_map"], [627, 6, 1, "", "newaxis"], [372, 2, 1, "", "nextafter"], [636, 2, 1, "", "nms"], [644, 2, 1, "", "nonzero"], [276, 2, 1, "", "not_equal"], [634, 2, 1, "", "num_arrays_in_memory"], [204, 2, 1, "", "num_cpu_cores"], [205, 2, 1, "", "num_gpus"], [206, 2, 1, "", "num_ivy_arrays_on_dev"], [629, 2, 1, "", "one_hot"], [629, 2, 1, "", "ones"], [629, 2, 1, "", "ones_like"], [635, 2, 1, "", "optimizer_update"], [388, 2, 1, "", "optional_get_element"], [637, 2, 1, "", "outer"], [378, 2, 1, "", "pad"], [378, 2, 1, "", "partial_fold"], [378, 2, 1, "", "partial_tensor_to_vec"], [376, 2, 1, "", "partial_tucker"], [378, 2, 1, "", "partial_unfold"], [378, 2, 1, "", "partial_vec_to_tensor"], [207, 2, 1, "", "percent_used_mem_on_dev"], [639, 2, 1, "", "permute_dims"], [627, 6, 1, "", "pi"], [637, 2, 1, "", "pinv"], [382, 2, 1, "", "poisson"], [377, 2, 1, "", "poisson_nll_loss"], [369, 2, 1, "", "polyval"], [375, 2, 1, "", "pool"], [277, 2, 1, "", "positive"], [278, 2, 1, "", "pow"], [302, 2, 1, "", "prelu"], [634, 2, 1, "", "print_all_arrays_in_memory"], [208, 2, 1, "", "print_all_ivy_arrays_on_dev"], [647, 2, 1, "", "prod"], [630, 2, 1, "", "promote_types"], [630, 2, 1, "", "promote_types_of_inputs"], [641, 2, 1, "", "prune_empty"], [641, 2, 1, "", "prune_nest_at_index"], [641, 2, 1, "", "prune_nest_at_indices"], [378, 2, 1, "", "put_along_axis"], [637, 2, 1, "", "qr"], [387, 2, 1, "", "quantile"], [279, 2, 1, "", "rad2deg"], [643, 2, 1, "", "randint"], [369, 2, 1, "", "random_cp"], [643, 2, 1, "", "random_normal"], [369, 2, 1, "", "random_parafac2"], [369, 2, 1, "", "random_tr"], [369, 2, 1, "", "random_tt"], [369, 2, 1, "", "random_tucker"], [643, 2, 1, "", "random_uniform"], [280, 2, 1, "", "real"], [281, 2, 1, "", "reciprocal"], [373, 2, 1, "", "reduce"], [375, 2, 1, "", "reduce_window"], [626, 2, 1, "", "relu"], [303, 2, 1, "", "relu6"], [282, 2, 1, "", "remainder"], [639, 2, 1, "", "repeat"], [640, 2, 1, "", "reptile_step"], [639, 2, 1, "", "reshape"], [630, 2, 1, "", "result_type"], [375, 2, 1, "", "rfft"], [375, 2, 1, "", "rfftn"], [375, 2, 1, "", "rnn"], [636, 2, 1, "", "roi_align"], [639, 2, 1, "", "roll"], [378, 2, 1, "", "rot90"], [283, 2, 1, "", "round"], [648, 2, 1, "", "save"], [636, 2, 1, "", "scaled_dot_product_attention"], [304, 2, 1, "", "scaled_tanh"], [634, 2, 1, "", "scatter_flat"], [634, 2, 1, "", "scatter_nd"], [646, 2, 1, "", "searchsorted"], [643, 2, 1, "", "seed"], [305, 2, 1, "", "selu"], [634, 2, 1, "", "set_array_mode"], [630, 2, 1, "", "set_default_complex_dtype"], [209, 2, 1, "", "set_default_device"], [630, 2, 1, "", "set_default_dtype"], [630, 2, 1, "", "set_default_float_dtype"], [184, 2, 1, "", "set_default_int_dtype"], [185, 2, 1, "", "set_default_uint_dtype"], [634, 2, 1, "", "set_exception_trace_mode"], [634, 2, 1, "", "set_inplace_mode"], [634, 2, 1, "", "set_item"], [634, 2, 1, "", "set_min_base"], [634, 2, 1, "", "set_min_denominator"], [641, 2, 1, "", "set_nest_at_index"], [641, 2, 1, "", "set_nest_at_indices"], [634, 2, 1, "", "set_nestable_mode"], [634, 2, 1, "", "set_precise_mode"], [634, 2, 1, "", "set_queue_timeout"], [634, 2, 1, "", "set_shape_array_mode"], [634, 2, 1, "", "set_show_func_wrapper_trace_mode"], [210, 2, 1, "", "set_soft_device_mode"], [211, 2, 1, "", "set_split_factor"], [634, 2, 1, "", "set_tmp_dir"], [634, 2, 1, "", "shape"], [643, 2, 1, "", "shuffle"], [626, 2, 1, "", "sigmoid"], [284, 2, 1, "", "sign"], [372, 2, 1, "", "signbit"], [306, 2, 1, "", "silu"], [285, 2, 1, "", "sin"], [372, 2, 1, "", "sinc"], [286, 2, 1, "", "sinh"], [634, 2, 1, "", "size"], [375, 2, 1, "", "sliding_window"], [637, 2, 1, "", "slogdet"], [377, 2, 1, "", "smooth_l1_loss"], [377, 2, 1, "", "soft_margin_loss"], [378, 2, 1, "", "soft_thresholding"], [626, 2, 1, "", "softmax"], [626, 2, 1, "", "softplus"], [307, 2, 1, "", "softshrink"], [626, 2, 1, "", "softsign"], [637, 2, 1, "", "solve"], [376, 2, 1, "", "solve_triangular"], [646, 2, 1, "", "sort"], [638, 2, 1, "", "sparse_cross_entropy"], [372, 2, 1, "", "sparsify_tensor"], [639, 2, 1, "", "split"], [212, 2, 1, "", "split_factor"], [213, 2, 1, "", "split_func_call"], [287, 2, 1, "", "sqrt"], [288, 2, 1, "", "square"], [639, 2, 1, "", "squeeze"], [634, 2, 1, "", "stable_divide"], [634, 2, 1, "", "stable_pow"], [639, 2, 1, "", "stack"], [308, 2, 1, "", "stanh"], [647, 2, 1, "", "std"], [375, 2, 1, "", "stft"], [635, 2, 1, "", "stop_gradient"], [634, 2, 1, "", "strides"], [289, 2, 1, "", "subtract"], [647, 2, 1, "", "sum"], [634, 2, 1, "", "supports_inplace_updates"], [637, 2, 1, "", "svd"], [376, 2, 1, "", "svd_flip"], [637, 2, 1, "", "svdvals"], [639, 2, 1, "", "swapaxes"], [378, 2, 1, "", "take"], [378, 2, 1, "", "take_along_axis"], [290, 2, 1, "", "tan"], [291, 2, 1, "", "tanh"], [309, 2, 1, "", "tanhshrink"], [376, 2, 1, "", "tensor_train"], [637, 2, 1, "", "tensordot"], [637, 2, 1, "", "tensorsolve"], [310, 2, 1, "", "threshold"], [311, 2, 1, "", "thresholded_relu"], [639, 2, 1, "", "tile"], [214, 2, 1, "", "to_device"], [629, 2, 1, "", "to_dlpack"], [634, 2, 1, "", "to_ivy_shape"], [634, 2, 1, "", "to_list"], [634, 2, 1, "", "to_native_shape"], [634, 2, 1, "", "to_numpy"], [634, 2, 1, "", "to_scalar"], [378, 2, 1, "", "top_k"], [215, 2, 1, "", "total_mem_on_dev"], [216, 2, 1, "", "tpu_is_available"], [637, 2, 1, "", "trace"], [863, 2, 1, "", "trace_graph"], [864, 2, 1, "", "transpile"], [292, 2, 1, "", "trapz"], [629, 2, 1, "", "tril"], [369, 2, 1, "", "tril_indices"], [369, 2, 1, "", "trilu"], [378, 2, 1, "", "trim_zeros"], [629, 2, 1, "", "triu"], [629, 2, 1, "", "triu_indices"], [293, 2, 1, "", "trunc"], [294, 2, 1, "", "trunc_divide"], [376, 2, 1, "", "truncated_svd"], [634, 2, 1, "", "try_else_none"], [628, 2, 1, "", "try_except"], [376, 2, 1, "", "tt_matrix_to_tensor"], [376, 2, 1, "", "tucker"], [186, 2, 1, "", "type_promote_arrays"], [378, 2, 1, "", "unflatten"], [378, 2, 1, "", "unfold"], [865, 2, 1, "", "unify"], [645, 2, 1, "", "unique_all"], [378, 2, 1, "", "unique_consecutive"], [645, 2, 1, "", "unique_counts"], [645, 2, 1, "", "unique_inverse"], [645, 2, 1, "", "unique_values"], [383, 2, 1, "", "unravel_index"], [634, 2, 1, "", "unset_array_mode"], [187, 2, 1, "", "unset_default_complex_dtype"], [217, 2, 1, "", "unset_default_device"], [188, 2, 1, "", "unset_default_dtype"], [189, 2, 1, "", "unset_default_float_dtype"], [190, 2, 1, "", "unset_default_int_dtype"], [191, 2, 1, "", "unset_default_uint_dtype"], [634, 2, 1, "", "unset_exception_trace_mode"], [634, 2, 1, "", "unset_inplace_mode"], [634, 2, 1, "", "unset_min_base"], [634, 2, 1, "", "unset_min_denominator"], [634, 2, 1, "", "unset_nestable_mode"], [634, 2, 1, "", "unset_precise_mode"], [634, 2, 1, "", "unset_queue_timeout"], [634, 2, 1, "", "unset_shape_array_mode"], [634, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [218, 2, 1, "", "unset_soft_device_mode"], [634, 2, 1, "", "unset_tmp_dir"], [369, 2, 1, "", "unsorted_segment_mean"], [369, 2, 1, "", "unsorted_segment_min"], [369, 2, 1, "", "unsorted_segment_sum"], [639, 2, 1, "", "unstack"], [219, 2, 1, "", "used_mem_on_dev"], [192, 2, 1, "", "valid_dtype"], [635, 2, 1, "", "value_and_grad"], [634, 2, 1, "", "value_is_nan"], [637, 2, 1, "", "vander"], [647, 2, 1, "", "var"], [637, 2, 1, "", "vecdot"], [637, 2, 1, "", "vector_norm"], [637, 2, 1, "", "vector_to_skew_symmetric_matrix"], [374, 2, 1, "", "vjp"], [634, 2, 1, "", "vmap"], [369, 2, 1, "", "vorbis_window"], [378, 2, 1, "", "vsplit"], [378, 2, 1, "", "vstack"], [644, 2, 1, "", "where"], [628, 2, 1, "", "while_loop"], [372, 2, 1, "", "xlogy"], [639, 2, 1, "", "zero_pad"], [629, 2, 1, "", "zeros"], [629, 2, 1, "", "zeros_like"], [372, 2, 1, "", "zeta"]], "ivy.Container": [[220, 0, 1, "", "abs"], [221, 0, 1, "", "acos"], [222, 0, 1, "", "acosh"], [615, 0, 1, "", "adam_step"], [616, 0, 1, "", "adam_update"], [389, 0, 1, "", "adaptive_avg_pool1d"], [390, 0, 1, "", "adaptive_avg_pool2d"], [391, 0, 1, "", "adaptive_max_pool2d"], [392, 0, 1, "", "adaptive_max_pool3d"], [223, 0, 1, "", "add"], [424, 0, 1, "", "adjoint"], [767, 0, 1, "", "all"], [534, 0, 1, "", "all_equal"], [334, 0, 1, "", "allclose"], [335, 0, 1, "", "amax"], [336, 0, 1, "", "amin"], [224, 0, 1, "", "angle"], [768, 0, 1, "", "any"], [744, 0, 1, "", "argmax"], [745, 0, 1, "", "argmin"], [753, 0, 1, "", "argsort"], [746, 0, 1, "", "argwhere"], [537, 0, 1, "", "array_equal"], [460, 0, 1, "", "as_strided"], [128, 0, 1, "", "asarray"], [225, 0, 1, "", "asin"], [226, 0, 1, "", "asinh"], [538, 0, 1, "", "assert_supports_inplace"], [461, 0, 1, "", "associative_scan"], [152, 0, 1, "", "astype"], [227, 0, 1, "", "atan"], [228, 0, 1, "", "atan2"], [229, 0, 1, "", "atanh"], [462, 0, 1, "", "atleast_1d"], [463, 0, 1, "", "atleast_2d"], [464, 0, 1, "", "atleast_3d"], [394, 0, 1, "", "avg_pool1d"], [395, 0, 1, "", "avg_pool2d"], [396, 0, 1, "", "avg_pool3d"], [501, 0, 1, "", "batch_norm"], [425, 0, 1, "", "batched_outer"], [508, 0, 1, "", "bernoulli"], [509, 0, 1, "", "beta"], [337, 0, 1, "", "binarizer"], [696, 0, 1, "", "binary_cross_entropy"], [520, 0, 1, "", "bincount"], [230, 0, 1, "", "bitwise_and"], [231, 0, 1, "", "bitwise_invert"], [232, 0, 1, "", "bitwise_left_shift"], [233, 0, 1, "", "bitwise_or"], [234, 0, 1, "", "bitwise_right_shift"], [235, 0, 1, "", "bitwise_xor"], [312, 0, 1, "", "blackman_window"], [153, 0, 1, "", "broadcast_arrays"], [465, 0, 1, "", "broadcast_shapes"], [154, 0, 1, "", "broadcast_to"], [155, 0, 1, "", "can_cast"], [236, 0, 1, "", "ceil"], [295, 0, 1, "", "celu"], [667, 0, 1, "", "cholesky"], [699, 0, 1, "", "clip"], [540, 0, 1, "", "clip_matrix_norm"], [541, 0, 1, "", "clip_vector_norm"], [468, 0, 1, "", "column_stack"], [700, 0, 1, "", "concat"], [469, 0, 1, "", "concat_from_sequence"], [426, 0, 1, "", "cond"], [338, 0, 1, "", "conj"], [701, 0, 1, "", "constant_pad"], [650, 0, 1, "", "conv1d"], [651, 0, 1, "", "conv1d_transpose"], [652, 0, 1, "", "conv2d"], [653, 0, 1, "", "conv2d_transpose"], [654, 0, 1, "", "conv3d"], [655, 0, 1, "", "conv3d_transpose"], [129, 0, 1, "", "copy_array"], [339, 0, 1, "", "copysign"], [521, 0, 1, "", "corrcoef"], [237, 0, 1, "", "cos"], [238, 0, 1, "", "cosh"], [340, 0, 1, "", "count_nonzero"], [522, 0, 1, "", "cov"], [668, 0, 1, "", "cross"], [697, 0, 1, "", "cross_entropy"], [523, 0, 1, "", "cummax"], [524, 0, 1, "", "cummin"], [757, 0, 1, "", "cumprod"], [758, 0, 1, "", "cumsum"], [397, 0, 1, "", "dct"], [239, 0, 1, "", "deg2rad"], [658, 0, 1, "", "depthwise_conv2d"], [669, 0, 1, "", "det"], [197, 0, 1, "", "dev"], [398, 0, 1, "", "dft"], [670, 0, 1, "", "diag"], [427, 0, 1, "", "diagflat"], [671, 0, 1, "", "diagonal"], [341, 0, 1, "", "diff"], [342, 0, 1, "", "digamma"], [510, 0, 1, "", "dirichlet"], [240, 0, 1, "", "divide"], [428, 0, 1, "", "dot"], [659, 0, 1, "", "dropout"], [399, 0, 1, "", "dropout1d"], [400, 0, 1, "", "dropout2d"], [401, 0, 1, "", "dropout3d"], [470, 0, 1, "", "dsplit"], [471, 0, 1, "", "dstack"], [163, 0, 1, "", "dtype"], [429, 0, 1, "", "eig"], [673, 0, 1, "", "eigh"], [430, 0, 1, "", "eigh_tridiagonal"], [431, 0, 1, "", "eigvals"], [674, 0, 1, "", "eigvalsh"], [545, 0, 1, "", "einops_rearrange"], [546, 0, 1, "", "einops_reduce"], [547, 0, 1, "", "einops_repeat"], [759, 0, 1, "", "einsum"], [296, 0, 1, "", "elu"], [402, 0, 1, "", "embedding"], [131, 0, 1, "", "empty_like"], [241, 0, 1, "", "equal"], [242, 0, 1, "", "erf"], [343, 0, 1, "", "erfc"], [344, 0, 1, "", "erfinv"], [548, 0, 1, "", "exists"], [243, 0, 1, "", "exp"], [244, 0, 1, "", "exp2"], [472, 0, 1, "", "expand"], [702, 0, 1, "", "expand_dims"], [245, 0, 1, "", "expm1"], [313, 0, 1, "", "eye_like"], [403, 0, 1, "", "fft"], [473, 0, 1, "", "fill_diagonal"], [165, 0, 1, "", "finfo"], [345, 0, 1, "", "fix"], [474, 0, 1, "", "flatten"], [703, 0, 1, "", "flip"], [475, 0, 1, "", "fliplr"], [476, 0, 1, "", "flipud"], [346, 0, 1, "", "float_power"], [246, 0, 1, "", "floor"], [247, 0, 1, "", "floor_divide"], [347, 0, 1, "", "fmax"], [248, 0, 1, "", "fmin"], [249, 0, 1, "", "fmod"], [477, 0, 1, "", "fold"], [549, 0, 1, "", "fourier_encode"], [348, 0, 1, "", "frexp"], [133, 0, 1, "", "from_dlpack"], [134, 0, 1, "", "frombuffer"], [136, 0, 1, "", "full_like"], [511, 0, 1, "", "gamma"], [552, 0, 1, "", "gather"], [553, 0, 1, "", "gather_nd"], [250, 0, 1, "", "gcd"], [110, 0, 1, "", "gelu"], [432, 0, 1, "", "general_inner_product"], [556, 0, 1, "", "get_num_dims"], [349, 0, 1, "", "gradient"], [619, 0, 1, "", "gradient_descent_update"], [251, 0, 1, "", "greater"], [252, 0, 1, "", "greater_equal"], [502, 0, 1, "", "group_norm"], [314, 0, 1, "", "hamming_window"], [315, 0, 1, "", "hann_window"], [297, 0, 1, "", "hardshrink"], [298, 0, 1, "", "hardsilu"], [111, 0, 1, "", "hardswish"], [299, 0, 1, "", "hardtanh"], [558, 0, 1, "", "has_nans"], [478, 0, 1, "", "heaviside"], [433, 0, 1, "", "higher_order_moment"], [452, 0, 1, "", "hinge_embedding_loss"], [525, 0, 1, "", "histogram"], [479, 0, 1, "", "hsplit"], [480, 0, 1, "", "hstack"], [453, 0, 1, "", "huber_loss"], [350, 0, 1, "", "hypot"], [481, 0, 1, "", "i0"], [407, 0, 1, "", "idct"], [408, 0, 1, "", "ifft"], [409, 0, 1, "", "ifftn"], [526, 0, 1, "", "igamma"], [168, 0, 1, "", "iinfo"], [253, 0, 1, "", "imag"], [434, 0, 1, "", "initialize_tucker"], [675, 0, 1, "", "inner"], [560, 0, 1, "", "inplace_decrement"], [561, 0, 1, "", "inplace_increment"], [562, 0, 1, "", "inplace_update"], [503, 0, 1, "", "instance_norm"], [411, 0, 1, "", "interpolate"], [676, 0, 1, "", "inv"], [514, 0, 1, "", "invert_permutation"], [564, 0, 1, "", "is_array"], [171, 0, 1, "", "is_bool_dtype"], [172, 0, 1, "", "is_complex_dtype"], [173, 0, 1, "", "is_float_dtype"], [175, 0, 1, "", "is_int_dtype"], [565, 0, 1, "", "is_ivy_array"], [568, 0, 1, "", "is_native_array"], [177, 0, 1, "", "is_uint_dtype"], [351, 0, 1, "", "isclose"], [254, 0, 1, "", "isfinite"], [569, 0, 1, "", "isin"], [255, 0, 1, "", "isinf"], [256, 0, 1, "", "isnan"], [257, 0, 1, "", "isreal"], [571, 0, 1, "", "itemsize"], [317, 0, 1, "", "kaiser_bessel_derived_window"], [318, 0, 1, "", "kaiser_window"], [454, 0, 1, "", "kl_div"], [436, 0, 1, "", "kron"], [455, 0, 1, "", "l1_loss"], [504, 0, 1, "", "l1_normalize"], [505, 0, 1, "", "l2_normalize"], [621, 0, 1, "", "lamb_update"], [622, 0, 1, "", "lars_update"], [737, 0, 1, "", "layer_norm"], [258, 0, 1, "", "lcm"], [352, 0, 1, "", "ldexp"], [112, 0, 1, "", "leaky_relu"], [353, 0, 1, "", "lerp"], [259, 0, 1, "", "less"], [260, 0, 1, "", "less_equal"], [515, 0, 1, "", "lexsort"], [354, 0, 1, "", "lgamma"], [660, 0, 1, "", "linear"], [137, 0, 1, "", "linspace"], [261, 0, 1, "", "log"], [262, 0, 1, "", "log10"], [263, 0, 1, "", "log1p"], [264, 0, 1, "", "log2"], [456, 0, 1, "", "log_poisson_loss"], [113, 0, 1, "", "log_softmax"], [265, 0, 1, "", "logaddexp"], [266, 0, 1, "", "logaddexp2"], [267, 0, 1, "", "logical_and"], [268, 0, 1, "", "logical_not"], [269, 0, 1, "", "logical_or"], [270, 0, 1, "", "logical_xor"], [300, 0, 1, "", "logit"], [301, 0, 1, "", "logsigmoid"], [138, 0, 1, "", "logspace"], [507, 0, 1, "", "lp_normalize"], [662, 0, 1, "", "lstm_update"], [440, 0, 1, "", "make_svd_non_negative"], [677, 0, 1, "", "matmul"], [482, 0, 1, "", "matricize"], [441, 0, 1, "", "matrix_exp"], [678, 0, 1, "", "matrix_norm"], [679, 0, 1, "", "matrix_power"], [680, 0, 1, "", "matrix_rank"], [681, 0, 1, "", "matrix_transpose"], [760, 0, 1, "", "max"], [412, 0, 1, "", "max_pool1d"], [413, 0, 1, "", "max_pool2d"], [414, 0, 1, "", "max_pool3d"], [415, 0, 1, "", "max_unpool1d"], [271, 0, 1, "", "maximum"], [761, 0, 1, "", "mean"], [527, 0, 1, "", "median"], [319, 0, 1, "", "mel_weight_matrix"], [139, 0, 1, "", "meshgrid"], [762, 0, 1, "", "min"], [272, 0, 1, "", "minimum"], [114, 0, 1, "", "mish"], [442, 0, 1, "", "mode_dot"], [355, 0, 1, "", "modf"], [483, 0, 1, "", "moveaxis"], [754, 0, 1, "", "msort"], [443, 0, 1, "", "multi_dot"], [663, 0, 1, "", "multi_head_attention"], [444, 0, 1, "", "multi_mode_dot"], [738, 0, 1, "", "multinomial"], [273, 0, 1, "", "multiply"], [274, 0, 1, "", "nan_to_num"], [528, 0, 1, "", "nanmean"], [529, 0, 1, "", "nanmedian"], [530, 0, 1, "", "nanmin"], [531, 0, 1, "", "nanprod"], [356, 0, 1, "", "nansum"], [140, 0, 1, "", "native_array"], [275, 0, 1, "", "negative"], [357, 0, 1, "", "nextafter"], [747, 0, 1, "", "nonzero"], [276, 0, 1, "", "not_equal"], [141, 0, 1, "", "one_hot"], [143, 0, 1, "", "ones_like"], [623, 0, 1, "", "optimizer_update"], [533, 0, 1, "", "optional_get_element"], [682, 0, 1, "", "outer"], [484, 0, 1, "", "pad"], [485, 0, 1, "", "partial_fold"], [486, 0, 1, "", "partial_tensor_to_vec"], [445, 0, 1, "", "partial_tucker"], [487, 0, 1, "", "partial_unfold"], [488, 0, 1, "", "partial_vec_to_tensor"], [704, 0, 1, "", "permute_dims"], [683, 0, 1, "", "pinv"], [512, 0, 1, "", "poisson"], [457, 0, 1, "", "poisson_nll_loss"], [322, 0, 1, "", "polyval"], [277, 0, 1, "", "positive"], [278, 0, 1, "", "pow"], [302, 0, 1, "", "prelu"], [763, 0, 1, "", "prod"], [489, 0, 1, "", "put_along_axis"], [684, 0, 1, "", "qr"], [532, 0, 1, "", "quantile"], [279, 0, 1, "", "rad2deg"], [739, 0, 1, "", "randint"], [740, 0, 1, "", "random_normal"], [741, 0, 1, "", "random_uniform"], [280, 0, 1, "", "real"], [281, 0, 1, "", "reciprocal"], [363, 0, 1, "", "reduce"], [418, 0, 1, "", "reduce_window"], [115, 0, 1, "", "relu"], [303, 0, 1, "", "relu6"], [282, 0, 1, "", "remainder"], [705, 0, 1, "", "repeat"], [706, 0, 1, "", "reshape"], [180, 0, 1, "", "result_type"], [419, 0, 1, "", "rfft"], [420, 0, 1, "", "rfftn"], [707, 0, 1, "", "roll"], [490, 0, 1, "", "rot90"], [283, 0, 1, "", "round"], [666, 0, 1, "", "scaled_dot_product_attention"], [304, 0, 1, "", "scaled_tanh"], [576, 0, 1, "", "scatter_flat"], [577, 0, 1, "", "scatter_nd"], [755, 0, 1, "", "searchsorted"], [305, 0, 1, "", "selu"], [743, 0, 1, "", "shuffle"], [116, 0, 1, "", "sigmoid"], [284, 0, 1, "", "sign"], [358, 0, 1, "", "signbit"], [306, 0, 1, "", "silu"], [285, 0, 1, "", "sin"], [359, 0, 1, "", "sinc"], [286, 0, 1, "", "sinh"], [591, 0, 1, "", "size"], [422, 0, 1, "", "sliding_window"], [685, 0, 1, "", "slogdet"], [458, 0, 1, "", "smooth_l1_loss"], [459, 0, 1, "", "soft_margin_loss"], [491, 0, 1, "", "soft_thresholding"], [117, 0, 1, "", "softmax"], [118, 0, 1, "", "softplus"], [307, 0, 1, "", "softshrink"], [686, 0, 1, "", "solve"], [756, 0, 1, "", "sort"], [698, 0, 1, "", "sparse_cross_entropy"], [360, 0, 1, "", "sparsify_tensor"], [708, 0, 1, "", "split"], [287, 0, 1, "", "sqrt"], [288, 0, 1, "", "square"], [709, 0, 1, "", "squeeze"], [592, 0, 1, "", "stable_divide"], [593, 0, 1, "", "stable_pow"], [710, 0, 1, "", "stack"], [764, 0, 1, "", "std"], [423, 0, 1, "", "stft"], [624, 0, 1, "", "stop_gradient"], [594, 0, 1, "", "strides"], [289, 0, 1, "", "subtract"], [765, 0, 1, "", "sum"], [595, 0, 1, "", "supports_inplace_updates"], [687, 0, 1, "", "svd"], [447, 0, 1, "", "svd_flip"], [688, 0, 1, "", "svdvals"], [711, 0, 1, "", "swapaxes"], [492, 0, 1, "", "take"], [493, 0, 1, "", "take_along_axis"], [290, 0, 1, "", "tan"], [291, 0, 1, "", "tanh"], [309, 0, 1, "", "tanhshrink"], [448, 0, 1, "", "tensor_train"], [689, 0, 1, "", "tensordot"], [690, 0, 1, "", "tensorsolve"], [310, 0, 1, "", "threshold"], [311, 0, 1, "", "thresholded_relu"], [712, 0, 1, "", "tile"], [214, 0, 1, "", "to_device"], [597, 0, 1, "", "to_list"], [599, 0, 1, "", "to_numpy"], [600, 0, 1, "", "to_scalar"], [494, 0, 1, "", "top_k"], [691, 0, 1, "", "trace"], [292, 0, 1, "", "trapz"], [145, 0, 1, "", "tril"], [328, 0, 1, "", "tril_indices"], [329, 0, 1, "", "trilu"], [495, 0, 1, "", "trim_zeros"], [146, 0, 1, "", "triu"], [147, 0, 1, "", "triu_indices"], [293, 0, 1, "", "trunc"], [294, 0, 1, "", "trunc_divide"], [449, 0, 1, "", "truncated_svd"], [450, 0, 1, "", "tt_matrix_to_tensor"], [451, 0, 1, "", "tucker"], [496, 0, 1, "", "unflatten"], [497, 0, 1, "", "unfold"], [749, 0, 1, "", "unique_all"], [498, 0, 1, "", "unique_consecutive"], [750, 0, 1, "", "unique_counts"], [751, 0, 1, "", "unique_inverse"], [752, 0, 1, "", "unique_values"], [513, 0, 1, "", "unravel_index"], [330, 0, 1, "", "unsorted_segment_mean"], [331, 0, 1, "", "unsorted_segment_min"], [332, 0, 1, "", "unsorted_segment_sum"], [713, 0, 1, "", "unstack"], [613, 0, 1, "", "value_is_nan"], [692, 0, 1, "", "vander"], [766, 0, 1, "", "var"], [693, 0, 1, "", "vecdot"], [694, 0, 1, "", "vector_norm"], [695, 0, 1, "", "vector_to_skew_symmetric_matrix"], [333, 0, 1, "", "vorbis_window"], [499, 0, 1, "", "vsplit"], [500, 0, 1, "", "vstack"], [748, 0, 1, "", "where"], [361, 0, 1, "", "xlogy"], [714, 0, 1, "", "zero_pad"], [149, 0, 1, "", "zeros_like"], [362, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[51, 3, 0, "-", "activations"], [102, 3, 0, "-", "array"], [52, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [54, 3, 0, "-", "data_type"], [55, 3, 0, "-", "device"], [56, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "experimental"], [58, 3, 0, "-", "general"], [59, 3, 0, "-", "gradients"], [60, 3, 0, "-", "image"], [61, 3, 0, "-", "layers"], [62, 3, 0, "-", "linear_algebra"], [63, 3, 0, "-", "losses"], [64, 3, 0, "-", "manipulation"], [65, 3, 0, "-", "norms"], [66, 3, 0, "-", "random"], [67, 3, 0, "-", "searching"], [68, 3, 0, "-", "set"], [69, 3, 0, "-", "sorting"], [70, 3, 0, "-", "statistical"], [71, 3, 0, "-", "utility"], [72, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[51, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "gelu"], [51, 0, 1, "", "hardswish"], [51, 0, 1, "", "leaky_relu"], [51, 0, 1, "", "log_softmax"], [51, 0, 1, "", "mish"], [51, 0, 1, "", "relu"], [51, 0, 1, "", "sigmoid"], [51, 0, 1, "", "softmax"], [51, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[102, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[102, 5, 1, "", "T"], [102, 0, 1, "", "__abs__"], [102, 0, 1, "", "__add__"], [102, 0, 1, "", "__eq__"], [102, 0, 1, "", "__ge__"], [102, 0, 1, "", "__gt__"], [102, 0, 1, "", "__init__"], [102, 0, 1, "", "__le__"], [102, 0, 1, "", "__lt__"], [102, 0, 1, "", "__ne__"], [102, 0, 1, "", "__pow__"], [102, 0, 1, "", "__radd__"], [102, 0, 1, "", "__rrshift__"], [102, 0, 1, "", "__rshift__"], [102, 0, 1, "", "__rsub__"], [102, 0, 1, "", "__sub__"], [102, 0, 1, "", "__truediv__"], [102, 0, 1, "", "__xor__"], [102, 5, 1, "", "backend"], [102, 5, 1, "", "base"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "dynamic_backend"], [102, 5, 1, "", "imag"], [102, 5, 1, "", "itemsize"], [102, 5, 1, "", "mT"], [102, 5, 1, "", "ndim"], [102, 5, 1, "", "real"], [102, 5, 1, "", "shape"], [102, 5, 1, "", "size"], [102, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[52, 2, 1, "", "_array_to_new_backend"], [52, 2, 1, "", "_to_ivy"], [52, 2, 1, "", "_to_native"], [52, 2, 1, "", "_to_new_backend"], [52, 2, 1, "", "args_to_ivy"], [52, 2, 1, "", "args_to_native"], [52, 2, 1, "", "args_to_new_backend"], [52, 2, 1, "", "to_ivy"], [52, 2, 1, "", "to_native"], [52, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[53, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "asarray"], [53, 0, 1, "", "copy_array"], [53, 0, 1, "", "empty_like"], [53, 0, 1, "", "from_dlpack"], [53, 0, 1, "", "full_like"], [53, 0, 1, "", "linspace"], [53, 0, 1, "", "logspace"], [53, 0, 1, "", "meshgrid"], [53, 0, 1, "", "native_array"], [53, 0, 1, "", "one_hot"], [53, 0, 1, "", "ones_like"], [53, 0, 1, "", "tril"], [53, 0, 1, "", "triu"], [53, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[54, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "astype"], [54, 0, 1, "", "broadcast_arrays"], [54, 0, 1, "", "broadcast_to"], [54, 0, 1, "", "can_cast"], [54, 0, 1, "", "dtype"], [54, 0, 1, "", "finfo"], [54, 0, 1, "", "iinfo"], [54, 0, 1, "", "is_bool_dtype"], [54, 0, 1, "", "is_float_dtype"], [54, 0, 1, "", "is_int_dtype"], [54, 0, 1, "", "is_uint_dtype"], [54, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[55, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "dev"], [55, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[56, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "abs"], [56, 0, 1, "", "acos"], [56, 0, 1, "", "acosh"], [56, 0, 1, "", "add"], [56, 0, 1, "", "angle"], [56, 0, 1, "", "asin"], [56, 0, 1, "", "asinh"], [56, 0, 1, "", "atan"], [56, 0, 1, "", "atan2"], [56, 0, 1, "", "atanh"], [56, 0, 1, "", "bitwise_and"], [56, 0, 1, "", "bitwise_invert"], [56, 0, 1, "", "bitwise_left_shift"], [56, 0, 1, "", "bitwise_or"], [56, 0, 1, "", "bitwise_right_shift"], [56, 0, 1, "", "bitwise_xor"], [56, 0, 1, "", "ceil"], [56, 0, 1, "", "cos"], [56, 0, 1, "", "cosh"], [56, 0, 1, "", "deg2rad"], [56, 0, 1, "", "divide"], [56, 0, 1, "", "equal"], [56, 0, 1, "", "erf"], [56, 0, 1, "", "exp"], [56, 0, 1, "", "exp2"], [56, 0, 1, "", "expm1"], [56, 0, 1, "", "floor"], [56, 0, 1, "", "floor_divide"], [56, 0, 1, "", "fmin"], [56, 0, 1, "", "gcd"], [56, 0, 1, "", "greater"], [56, 0, 1, "", "greater_equal"], [56, 0, 1, "", "isfinite"], [56, 0, 1, "", "isinf"], [56, 0, 1, "", "isnan"], [56, 0, 1, "", "isreal"], [56, 0, 1, "", "lcm"], [56, 0, 1, "", "less"], [56, 0, 1, "", "less_equal"], [56, 0, 1, "", "log"], [56, 0, 1, "", "log10"], [56, 0, 1, "", "log1p"], [56, 0, 1, "", "log2"], [56, 0, 1, "", "logaddexp"], [56, 0, 1, "", "logaddexp2"], [56, 0, 1, "", "logical_and"], [56, 0, 1, "", "logical_not"], [56, 0, 1, "", "logical_or"], [56, 0, 1, "", "logical_xor"], [56, 0, 1, "", "maximum"], [56, 0, 1, "", "minimum"], [56, 0, 1, "", "multiply"], [56, 0, 1, "", "nan_to_num"], [56, 0, 1, "", "negative"], [56, 0, 1, "", "not_equal"], [56, 0, 1, "", "positive"], [56, 0, 1, "", "pow"], [56, 0, 1, "", "rad2deg"], [56, 0, 1, "", "real"], [56, 0, 1, "", "reciprocal"], [56, 0, 1, "", "remainder"], [56, 0, 1, "", "round"], [56, 0, 1, "", "sign"], [56, 0, 1, "", "sin"], [56, 0, 1, "", "sinh"], [56, 0, 1, "", "sqrt"], [56, 0, 1, "", "square"], [56, 0, 1, "", "subtract"], [56, 0, 1, "", "tan"], [56, 0, 1, "", "tanh"], [56, 0, 1, "", "trapz"], [56, 0, 1, "", "trunc"], [56, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[57, 3, 0, "-", "activations"], [57, 3, 0, "-", "conversions"], [57, 3, 0, "-", "creation"], [57, 3, 0, "-", "data_type"], [57, 3, 0, "-", "device"], [57, 3, 0, "-", "elementwise"], [57, 3, 0, "-", "general"], [57, 3, 0, "-", "gradients"], [57, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [57, 3, 0, "-", "losses"], [57, 3, 0, "-", "manipulation"], [57, 3, 0, "-", "norms"], [57, 3, 0, "-", "random"], [57, 3, 0, "-", "searching"], [57, 3, 0, "-", "set"], [57, 3, 0, "-", "sorting"], [57, 3, 0, "-", "statistical"], [57, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[57, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "celu"], [57, 0, 1, "", "elu"], [57, 0, 1, "", "hardshrink"], [57, 0, 1, "", "hardsilu"], [57, 0, 1, "", "hardtanh"], [57, 0, 1, "", "logit"], [57, 0, 1, "", "logsigmoid"], [57, 0, 1, "", "prelu"], [57, 0, 1, "", "relu6"], [57, 0, 1, "", "scaled_tanh"], [57, 0, 1, "", "selu"], [57, 0, 1, "", "silu"], [57, 0, 1, "", "softshrink"], [57, 0, 1, "", "tanhshrink"], [57, 0, 1, "", "threshold"], [57, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[57, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[57, 1, 1, "", "_ArrayWithCreationExperimental"], [57, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "blackman_window"], [57, 0, 1, "", "eye_like"], [57, 0, 1, "", "mel_weight_matrix"], [57, 0, 1, "", "trilu"], [57, 0, 1, "", "unsorted_segment_mean"], [57, 0, 1, "", "unsorted_segment_min"], [57, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[57, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[57, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[57, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "allclose"], [57, 0, 1, "", "amax"], [57, 0, 1, "", "amin"], [57, 0, 1, "", "binarizer"], [57, 0, 1, "", "conj"], [57, 0, 1, "", "copysign"], [57, 0, 1, "", "count_nonzero"], [57, 0, 1, "", "diff"], [57, 0, 1, "", "digamma"], [57, 0, 1, "", "erfc"], [57, 0, 1, "", "erfinv"], [57, 0, 1, "", "fix"], [57, 0, 1, "", "float_power"], [57, 0, 1, "", "fmax"], [57, 0, 1, "", "fmod"], [57, 0, 1, "", "frexp"], [57, 0, 1, "", "gradient"], [57, 0, 1, "", "hypot"], [57, 0, 1, "", "isclose"], [57, 0, 1, "", "ldexp"], [57, 0, 1, "", "lerp"], [57, 0, 1, "", "lgamma"], [57, 0, 1, "", "modf"], [57, 0, 1, "", "nansum"], [57, 0, 1, "", "nextafter"], [57, 0, 1, "", "signbit"], [57, 0, 1, "", "sinc"], [57, 0, 1, "", "sparsify_tensor"], [57, 0, 1, "", "xlogy"], [57, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[57, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[57, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[57, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[57, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adaptive_avg_pool1d"], [57, 0, 1, "", "adaptive_avg_pool2d"], [57, 0, 1, "", "adaptive_max_pool2d"], [57, 0, 1, "", "adaptive_max_pool3d"], [57, 0, 1, "", "avg_pool1d"], [57, 0, 1, "", "avg_pool2d"], [57, 0, 1, "", "avg_pool3d"], [57, 0, 1, "", "dct"], [57, 0, 1, "", "dft"], [57, 0, 1, "", "embedding"], [57, 0, 1, "", "fft"], [57, 0, 1, "", "fft2"], [57, 0, 1, "", "idct"], [57, 0, 1, "", "ifft"], [57, 0, 1, "", "ifftn"], [57, 0, 1, "", "interpolate"], [57, 0, 1, "", "max_pool1d"], [57, 0, 1, "", "max_pool2d"], [57, 0, 1, "", "max_pool3d"], [57, 0, 1, "", "max_unpool1d"], [57, 0, 1, "", "reduce_window"], [57, 0, 1, "", "rfft"], [57, 0, 1, "", "rfftn"], [57, 0, 1, "", "sliding_window"], [57, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "adjoint"], [57, 0, 1, "", "batched_outer"], [57, 0, 1, "", "cond"], [57, 0, 1, "", "diagflat"], [57, 0, 1, "", "dot"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh_tridiagonal"], [57, 0, 1, "", "eigvals"], [57, 0, 1, "", "general_inner_product"], [57, 0, 1, "", "higher_order_moment"], [57, 0, 1, "", "initialize_tucker"], [57, 0, 1, "", "kron"], [57, 0, 1, "", "make_svd_non_negative"], [57, 0, 1, "", "matrix_exp"], [57, 0, 1, "", "mode_dot"], [57, 0, 1, "", "multi_dot"], [57, 0, 1, "", "multi_mode_dot"], [57, 0, 1, "", "partial_tucker"], [57, 0, 1, "", "svd_flip"], [57, 0, 1, "", "tensor_train"], [57, 0, 1, "", "truncated_svd"], [57, 0, 1, "", "tt_matrix_to_tensor"], [57, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[57, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "hinge_embedding_loss"], [57, 0, 1, "", "huber_loss"], [57, 0, 1, "", "kl_div"], [57, 0, 1, "", "l1_loss"], [57, 0, 1, "", "log_poisson_loss"], [57, 0, 1, "", "poisson_nll_loss"], [57, 0, 1, "", "smooth_l1_loss"], [57, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[57, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "as_strided"], [57, 0, 1, "", "associative_scan"], [57, 0, 1, "", "atleast_1d"], [57, 0, 1, "", "atleast_2d"], [57, 0, 1, "", "atleast_3d"], [57, 0, 1, "", "column_stack"], [57, 0, 1, "", "concat_from_sequence"], [57, 0, 1, "", "dsplit"], [57, 0, 1, "", "dstack"], [57, 0, 1, "", "expand"], [57, 0, 1, "", "fill_diagonal"], [57, 0, 1, "", "flatten"], [57, 0, 1, "", "fliplr"], [57, 0, 1, "", "flipud"], [57, 0, 1, "", "fold"], [57, 0, 1, "", "heaviside"], [57, 0, 1, "", "hsplit"], [57, 0, 1, "", "hstack"], [57, 0, 1, "", "i0"], [57, 0, 1, "", "matricize"], [57, 0, 1, "", "moveaxis"], [57, 0, 1, "", "pad"], [57, 0, 1, "", "partial_fold"], [57, 0, 1, "", "partial_tensor_to_vec"], [57, 0, 1, "", "partial_unfold"], [57, 0, 1, "", "partial_vec_to_tensor"], [57, 0, 1, "", "put_along_axis"], [57, 0, 1, "", "rot90"], [57, 0, 1, "", "soft_thresholding"], [57, 0, 1, "", "take"], [57, 0, 1, "", "take_along_axis"], [57, 0, 1, "", "top_k"], [57, 0, 1, "", "trim_zeros"], [57, 0, 1, "", "unflatten"], [57, 0, 1, "", "unfold"], [57, 0, 1, "", "unique_consecutive"], [57, 0, 1, "", "vsplit"], [57, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[57, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "batch_norm"], [57, 0, 1, "", "group_norm"], [57, 0, 1, "", "instance_norm"], [57, 0, 1, "", "l1_normalize"], [57, 0, 1, "", "l2_normalize"], [57, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[57, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bernoulli"], [57, 0, 1, "", "beta"], [57, 0, 1, "", "dirichlet"], [57, 0, 1, "", "gamma"], [57, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[57, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[57, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[57, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[57, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[57, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "bincount"], [57, 0, 1, "", "corrcoef"], [57, 0, 1, "", "cov"], [57, 0, 1, "", "cummax"], [57, 0, 1, "", "cummin"], [57, 0, 1, "", "histogram"], [57, 0, 1, "", "igamma"], [57, 0, 1, "", "median"], [57, 0, 1, "", "nanmean"], [57, 0, 1, "", "nanmedian"], [57, 0, 1, "", "nanmin"], [57, 0, 1, "", "nanprod"], [57, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[57, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[58, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "all_equal"], [58, 0, 1, "", "array_equal"], [58, 0, 1, "", "assert_supports_inplace"], [58, 0, 1, "", "clip_matrix_norm"], [58, 0, 1, "", "clip_vector_norm"], [58, 0, 1, "", "default"], [58, 0, 1, "", "einops_rearrange"], [58, 0, 1, "", "einops_reduce"], [58, 0, 1, "", "einops_repeat"], [58, 0, 1, "", "exists"], [58, 0, 1, "", "fourier_encode"], [58, 0, 1, "", "gather"], [58, 0, 1, "", "gather_nd"], [58, 0, 1, "", "get_num_dims"], [58, 0, 1, "", "has_nans"], [58, 0, 1, "", "inplace_decrement"], [58, 0, 1, "", "inplace_increment"], [58, 0, 1, "", "inplace_update"], [58, 0, 1, "", "is_array"], [58, 0, 1, "", "is_ivy_array"], [58, 0, 1, "", "is_ivy_container"], [58, 0, 1, "", "is_native_array"], [58, 0, 1, "", "isin"], [58, 0, 1, "", "scatter_flat"], [58, 0, 1, "", "scatter_nd"], [58, 0, 1, "", "stable_divide"], [58, 0, 1, "", "stable_pow"], [58, 0, 1, "", "supports_inplace_updates"], [58, 0, 1, "", "to_file"], [58, 0, 1, "", "to_list"], [58, 0, 1, "", "to_numpy"], [58, 0, 1, "", "to_scalar"], [58, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[59, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "adam_step"], [59, 0, 1, "", "adam_update"], [59, 0, 1, "", "gradient_descent_update"], [59, 0, 1, "", "lamb_update"], [59, 0, 1, "", "lars_update"], [59, 0, 1, "", "optimizer_update"], [59, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[60, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[60, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[61, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "conv1d"], [61, 0, 1, "", "conv1d_transpose"], [61, 0, 1, "", "conv2d"], [61, 0, 1, "", "conv2d_transpose"], [61, 0, 1, "", "conv3d"], [61, 0, 1, "", "conv3d_transpose"], [61, 0, 1, "", "depthwise_conv2d"], [61, 0, 1, "", "dropout"], [61, 0, 1, "", "dropout1d"], [61, 0, 1, "", "dropout2d"], [61, 0, 1, "", "dropout3d"], [61, 0, 1, "", "linear"], [61, 0, 1, "", "lstm_update"], [61, 0, 1, "", "multi_head_attention"], [61, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[62, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "cholesky"], [62, 0, 1, "", "cross"], [62, 0, 1, "", "det"], [62, 0, 1, "", "diag"], [62, 0, 1, "", "diagonal"], [62, 0, 1, "", "eig"], [62, 0, 1, "", "eigh"], [62, 0, 1, "", "eigvalsh"], [62, 0, 1, "", "inner"], [62, 0, 1, "", "inv"], [62, 0, 1, "", "matmul"], [62, 0, 1, "", "matrix_norm"], [62, 0, 1, "", "matrix_power"], [62, 0, 1, "", "matrix_rank"], [62, 0, 1, "", "matrix_transpose"], [62, 0, 1, "", "outer"], [62, 0, 1, "", "pinv"], [62, 0, 1, "", "qr"], [62, 0, 1, "", "slogdet"], [62, 0, 1, "", "solve"], [62, 0, 1, "", "svd"], [62, 0, 1, "", "svdvals"], [62, 0, 1, "", "tensordot"], [62, 0, 1, "", "tensorsolve"], [62, 0, 1, "", "trace"], [62, 0, 1, "", "vander"], [62, 0, 1, "", "vecdot"], [62, 0, 1, "", "vector_norm"], [62, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[63, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "binary_cross_entropy"], [63, 0, 1, "", "cross_entropy"], [63, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[64, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "clip"], [64, 0, 1, "", "concat"], [64, 0, 1, "", "constant_pad"], [64, 0, 1, "", "expand_dims"], [64, 0, 1, "", "flip"], [64, 0, 1, "", "permute_dims"], [64, 0, 1, "", "repeat"], [64, 0, 1, "", "reshape"], [64, 0, 1, "", "roll"], [64, 0, 1, "", "split"], [64, 0, 1, "", "squeeze"], [64, 0, 1, "", "stack"], [64, 0, 1, "", "swapaxes"], [64, 0, 1, "", "tile"], [64, 0, 1, "", "unstack"], [64, 0, 1, "", "view"], [64, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[65, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[66, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "multinomial"], [66, 0, 1, "", "randint"], [66, 0, 1, "", "random_normal"], [66, 0, 1, "", "random_uniform"], [66, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[67, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "argmax"], [67, 0, 1, "", "argmin"], [67, 0, 1, "", "argwhere"], [67, 0, 1, "", "nonzero"], [67, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[68, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "unique_all"], [68, 0, 1, "", "unique_counts"], [68, 0, 1, "", "unique_inverse"], [68, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[69, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "argsort"], [69, 0, 1, "", "msort"], [69, 0, 1, "", "searchsorted"], [69, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[70, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "cumprod"], [70, 0, 1, "", "cumsum"], [70, 0, 1, "", "einsum"], [70, 0, 1, "", "max"], [70, 0, 1, "", "mean"], [70, 0, 1, "", "min"], [70, 0, 1, "", "prod"], [70, 0, 1, "", "std"], [70, 0, 1, "", "sum"], [70, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[71, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "all"], [71, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[72, 2, 1, "", "_wrap_function"], [72, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[73, 3, 0, "-", "activations"], [74, 3, 0, "-", "base"], [103, 3, 0, "-", "container"], [75, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [77, 3, 0, "-", "data_type"], [78, 3, 0, "-", "device"], [79, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "experimental"], [81, 3, 0, "-", "general"], [82, 3, 0, "-", "gradients"], [83, 3, 0, "-", "image"], [84, 3, 0, "-", "layers"], [85, 3, 0, "-", "linear_algebra"], [86, 3, 0, "-", "losses"], [87, 3, 0, "-", "manipulation"], [88, 3, 0, "-", "norms"], [89, 3, 0, "-", "random"], [90, 3, 0, "-", "searching"], [91, 3, 0, "-", "set"], [92, 3, 0, "-", "sorting"], [93, 3, 0, "-", "statistical"], [94, 3, 0, "-", "utility"], [95, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[73, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_gelu"], [73, 0, 1, "", "_static_hardswish"], [73, 0, 1, "", "_static_leaky_relu"], [73, 0, 1, "", "_static_log_softmax"], [73, 0, 1, "", "_static_mish"], [73, 0, 1, "", "_static_relu"], [73, 0, 1, "", "_static_sigmoid"], [73, 0, 1, "", "_static_softmax"], [73, 0, 1, "", "_static_softplus"], [73, 0, 1, "", "gelu"], [73, 0, 1, "", "hardswish"], [73, 0, 1, "", "leaky_relu"], [73, 0, 1, "", "log_softmax"], [73, 0, 1, "", "mish"], [73, 0, 1, "", "relu"], [73, 0, 1, "", "sigmoid"], [73, 0, 1, "", "softmax"], [73, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[74, 1, 1, "", "ContainerBase"], [74, 2, 1, "", "_is_jsonable"], [74, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[74, 0, 1, "", "__getitem__"], [74, 0, 1, "", "__init__"], [74, 0, 1, "", "__setitem__"], [74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [74, 0, 1, "", "_cont_concat_unify"], [74, 0, 1, "", "_cont_get_dev"], [74, 0, 1, "", "_cont_get_dtype"], [74, 0, 1, "", "_cont_get_shape"], [74, 0, 1, "", "_cont_get_shapes"], [74, 5, 1, "", "_cont_ivy"], [74, 0, 1, "", "_cont_mean_unify"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [74, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [74, 0, 1, "", "_cont_slice_keys"], [74, 0, 1, "", "_cont_sum_unify"], [74, 0, 1, "", "_get_queue_item"], [74, 0, 1, "", "cont_all_false"], [74, 0, 1, "", "cont_all_key_chains"], [74, 0, 1, "", "cont_all_true"], [74, 0, 1, "", "cont_as_bools"], [74, 0, 1, "", "cont_assert_contains_sub_container"], [74, 0, 1, "", "cont_assert_contains_sub_structure"], [74, 0, 1, "", "cont_assert_identical"], [74, 0, 1, "", "cont_assert_identical_structure"], [74, 0, 1, "", "cont_at_key_chain"], [74, 0, 1, "", "cont_at_key_chains"], [74, 0, 1, "", "cont_at_keys"], [74, 0, 1, "", "cont_combine"], [74, 0, 1, "", "cont_common_key_chains"], [74, 5, 1, "", "cont_config"], [74, 0, 1, "", "cont_contains_sub_container"], [74, 0, 1, "", "cont_contains_sub_structure"], [74, 0, 1, "", "cont_copy"], [74, 0, 1, "", "cont_create_if_absent"], [74, 0, 1, "", "cont_cutoff_at_depth"], [74, 0, 1, "", "cont_cutoff_at_height"], [74, 0, 1, "", "cont_deep_copy"], [74, 5, 1, "", "cont_dev"], [74, 5, 1, "", "cont_dev_str"], [74, 0, 1, "", "cont_diff"], [74, 5, 1, "", "cont_dtype"], [74, 0, 1, "", "cont_duplicate_array_keychains"], [74, 0, 1, "", "cont_find_sub_container"], [74, 0, 1, "", "cont_find_sub_structure"], [74, 0, 1, "", "cont_flatten_key_chain"], [74, 0, 1, "", "cont_flatten_key_chains"], [74, 0, 1, "", "cont_format_key_chains"], [74, 0, 1, "", "cont_from_disk_as_hdf5"], [74, 0, 1, "", "cont_from_disk_as_json"], [74, 0, 1, "", "cont_from_disk_as_pickled"], [74, 0, 1, "", "cont_from_flat_list"], [74, 0, 1, "", "cont_handle_inplace"], [74, 0, 1, "", "cont_has_key"], [74, 0, 1, "", "cont_has_key_chain"], [74, 0, 1, "", "cont_identical"], [74, 0, 1, "", "cont_identical_array_shapes"], [74, 0, 1, "", "cont_identical_configs"], [74, 0, 1, "", "cont_identical_structure"], [74, 0, 1, "", "cont_if_exists"], [74, 0, 1, "", "cont_inplace_update"], [74, 5, 1, "", "cont_ivy"], [74, 0, 1, "", "cont_key_chains_containing"], [74, 0, 1, "", "cont_list_join"], [74, 0, 1, "", "cont_list_stack"], [74, 0, 1, "", "cont_load"], [74, 0, 1, "", "cont_map"], [74, 0, 1, "", "cont_map_sub_conts"], [74, 5, 1, "", "cont_max_depth"], [74, 0, 1, "", "cont_multi_map"], [74, 0, 1, "", "cont_multi_map_in_function"], [74, 0, 1, "", "cont_num_arrays"], [74, 0, 1, "", "cont_overwrite_at_key_chain"], [74, 0, 1, "", "cont_overwrite_at_key_chains"], [74, 0, 1, "", "cont_prune_empty"], [74, 0, 1, "", "cont_prune_key_chain"], [74, 0, 1, "", "cont_prune_key_chains"], [74, 0, 1, "", "cont_prune_key_from_key_chains"], [74, 0, 1, "", "cont_prune_keys"], [74, 0, 1, "", "cont_prune_keys_from_key_chains"], [74, 0, 1, "", "cont_reduce"], [74, 0, 1, "", "cont_remove_key_length_limit"], [74, 0, 1, "", "cont_remove_print_limit"], [74, 0, 1, "", "cont_reshape_like"], [74, 0, 1, "", "cont_restructure"], [74, 0, 1, "", "cont_restructure_key_chains"], [74, 0, 1, "", "cont_save"], [74, 0, 1, "", "cont_set_at_key_chain"], [74, 0, 1, "", "cont_set_at_key_chains"], [74, 0, 1, "", "cont_set_at_keys"], [74, 5, 1, "", "cont_shape"], [74, 5, 1, "", "cont_shapes"], [74, 0, 1, "", "cont_show"], [74, 0, 1, "", "cont_show_sub_container"], [74, 0, 1, "", "cont_size_ordered_arrays"], [74, 0, 1, "", "cont_slice_keys"], [74, 0, 1, "", "cont_slice_via_key"], [74, 0, 1, "", "cont_sort_by_key"], [74, 0, 1, "", "cont_structural_diff"], [74, 0, 1, "", "cont_to_dict"], [74, 0, 1, "", "cont_to_disk_as_hdf5"], [74, 0, 1, "", "cont_to_disk_as_json"], [74, 0, 1, "", "cont_to_disk_as_pickled"], [74, 0, 1, "", "cont_to_flat_list"], [74, 0, 1, "", "cont_to_iterator"], [74, 0, 1, "", "cont_to_iterator_keys"], [74, 0, 1, "", "cont_to_iterator_values"], [74, 0, 1, "", "cont_to_jsonable"], [74, 0, 1, "", "cont_to_nested_list"], [74, 0, 1, "", "cont_to_raw"], [74, 0, 1, "", "cont_trim_key"], [74, 0, 1, "", "cont_try_kc"], [74, 0, 1, "", "cont_unify"], [74, 0, 1, "", "cont_unstack_conts"], [74, 0, 1, "", "cont_update_config"], [74, 0, 1, "", "cont_with_default_key_color"], [74, 0, 1, "", "cont_with_entries_as_lists"], [74, 0, 1, "", "cont_with_ivy_backend"], [74, 0, 1, "", "cont_with_key_length_limit"], [74, 0, 1, "", "cont_with_print_indent"], [74, 0, 1, "", "cont_with_print_limit"], [74, 0, 1, "", "cont_with_print_line_spacing"], [74, 5, 1, "", "dynamic_backend"], [74, 0, 1, "", "h5_file_size"], [74, 0, 1, "", "shuffle_h5_file"], [74, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[103, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[103, 0, 1, "", "__abs__"], [103, 0, 1, "", "__add__"], [103, 0, 1, "", "__eq__"], [103, 0, 1, "", "__ge__"], [103, 0, 1, "", "__gt__"], [103, 0, 1, "", "__init__"], [103, 0, 1, "", "__le__"], [103, 0, 1, "", "__lt__"], [103, 0, 1, "", "__ne__"], [103, 0, 1, "", "__pow__"], [103, 0, 1, "", "__radd__"], [103, 0, 1, "", "__rrshift__"], [103, 0, 1, "", "__rshift__"], [103, 0, 1, "", "__rsub__"], [103, 0, 1, "", "__sub__"], [103, 0, 1, "", "__truediv__"], [103, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[75, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_to_ivy"], [75, 0, 1, "", "_static_to_native"], [75, 0, 1, "", "to_ivy"], [75, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[76, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_arange"], [76, 0, 1, "", "_static_asarray"], [76, 0, 1, "", "_static_copy_array"], [76, 0, 1, "", "_static_empty"], [76, 0, 1, "", "_static_empty_like"], [76, 0, 1, "", "_static_eye"], [76, 0, 1, "", "_static_from_dlpack"], [76, 0, 1, "", "_static_full"], [76, 0, 1, "", "_static_full_like"], [76, 0, 1, "", "_static_linspace"], [76, 0, 1, "", "_static_logspace"], [76, 0, 1, "", "_static_meshgrid"], [76, 0, 1, "", "_static_native_array"], [76, 0, 1, "", "_static_one_hot"], [76, 0, 1, "", "_static_ones"], [76, 0, 1, "", "_static_ones_like"], [76, 0, 1, "", "_static_tril"], [76, 0, 1, "", "_static_triu"], [76, 0, 1, "", "_static_zeros"], [76, 0, 1, "", "_static_zeros_like"], [76, 0, 1, "", "asarray"], [76, 0, 1, "", "copy_array"], [76, 0, 1, "", "empty_like"], [76, 0, 1, "", "from_dlpack"], [76, 0, 1, "", "frombuffer"], [76, 0, 1, "", "full_like"], [76, 0, 1, "", "linspace"], [76, 0, 1, "", "logspace"], [76, 0, 1, "", "meshgrid"], [76, 0, 1, "", "native_array"], [76, 0, 1, "", "one_hot"], [76, 0, 1, "", "ones_like"], [76, 0, 1, "", "static_frombuffer"], [76, 0, 1, "", "static_triu_indices"], [76, 0, 1, "", "tril"], [76, 0, 1, "", "triu"], [76, 0, 1, "", "triu_indices"], [76, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[77, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_astype"], [77, 0, 1, "", "_static_broadcast_arrays"], [77, 0, 1, "", "_static_broadcast_to"], [77, 0, 1, "", "_static_can_cast"], [77, 0, 1, "", "_static_default_complex_dtype"], [77, 0, 1, "", "_static_default_float_dtype"], [77, 0, 1, "", "_static_dtype"], [77, 0, 1, "", "_static_finfo"], [77, 0, 1, "", "_static_function_supported_dtypes"], [77, 0, 1, "", "_static_function_unsupported_dtypes"], [77, 0, 1, "", "_static_iinfo"], [77, 0, 1, "", "_static_is_bool_dtype"], [77, 0, 1, "", "_static_is_complex_dtype"], [77, 0, 1, "", "_static_is_float_dtype"], [77, 0, 1, "", "_static_is_int_dtype"], [77, 0, 1, "", "_static_is_uint_dtype"], [77, 0, 1, "", "_static_result_type"], [77, 0, 1, "", "astype"], [77, 0, 1, "", "broadcast_arrays"], [77, 0, 1, "", "broadcast_to"], [77, 0, 1, "", "can_cast"], [77, 0, 1, "", "dtype"], [77, 0, 1, "", "finfo"], [77, 0, 1, "", "iinfo"], [77, 0, 1, "", "is_bool_dtype"], [77, 0, 1, "", "is_complex_dtype"], [77, 0, 1, "", "is_float_dtype"], [77, 0, 1, "", "is_int_dtype"], [77, 0, 1, "", "is_uint_dtype"], [77, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[78, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_dev"], [78, 0, 1, "", "_static_to_device"], [78, 0, 1, "", "dev"], [78, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[79, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_abs"], [79, 0, 1, "", "_static_acos"], [79, 0, 1, "", "_static_acosh"], [79, 0, 1, "", "_static_add"], [79, 0, 1, "", "_static_asin"], [79, 0, 1, "", "_static_asinh"], [79, 0, 1, "", "_static_atan"], [79, 0, 1, "", "_static_atan2"], [79, 0, 1, "", "_static_atanh"], [79, 0, 1, "", "_static_bitwise_and"], [79, 0, 1, "", "_static_bitwise_invert"], [79, 0, 1, "", "_static_bitwise_left_shift"], [79, 0, 1, "", "_static_bitwise_or"], [79, 0, 1, "", "_static_bitwise_right_shift"], [79, 0, 1, "", "_static_bitwise_xor"], [79, 0, 1, "", "_static_ceil"], [79, 0, 1, "", "_static_cos"], [79, 0, 1, "", "_static_cosh"], [79, 0, 1, "", "_static_deg2rad"], [79, 0, 1, "", "_static_divide"], [79, 0, 1, "", "_static_equal"], [79, 0, 1, "", "_static_erf"], [79, 0, 1, "", "_static_exp"], [79, 0, 1, "", "_static_expm1"], [79, 0, 1, "", "_static_floor"], [79, 0, 1, "", "_static_floor_divide"], [79, 0, 1, "", "_static_greater"], [79, 0, 1, "", "_static_greater_equal"], [79, 0, 1, "", "_static_isfinite"], [79, 0, 1, "", "_static_isinf"], [79, 0, 1, "", "_static_isnan"], [79, 0, 1, "", "_static_isreal"], [79, 0, 1, "", "_static_lcm"], [79, 0, 1, "", "_static_less"], [79, 0, 1, "", "_static_less_equal"], [79, 0, 1, "", "_static_log"], [79, 0, 1, "", "_static_log10"], [79, 0, 1, "", "_static_log1p"], [79, 0, 1, "", "_static_log2"], [79, 0, 1, "", "_static_logaddexp"], [79, 0, 1, "", "_static_logical_and"], [79, 0, 1, "", "_static_logical_not"], [79, 0, 1, "", "_static_logical_or"], [79, 0, 1, "", "_static_logical_xor"], [79, 0, 1, "", "_static_maximum"], [79, 0, 1, "", "_static_minimum"], [79, 0, 1, "", "_static_multiply"], [79, 0, 1, "", "_static_negative"], [79, 0, 1, "", "_static_not_equal"], [79, 0, 1, "", "_static_positive"], [79, 0, 1, "", "_static_pow"], [79, 0, 1, "", "_static_rad2deg"], [79, 0, 1, "", "_static_reciprocal"], [79, 0, 1, "", "_static_remainder"], [79, 0, 1, "", "_static_round"], [79, 0, 1, "", "_static_sign"], [79, 0, 1, "", "_static_sin"], [79, 0, 1, "", "_static_sinh"], [79, 0, 1, "", "_static_sqrt"], [79, 0, 1, "", "_static_square"], [79, 0, 1, "", "_static_subtract"], [79, 0, 1, "", "_static_tan"], [79, 0, 1, "", "_static_tanh"], [79, 0, 1, "", "_static_trapz"], [79, 0, 1, "", "_static_trunc"], [79, 0, 1, "", "_static_trunc_divide"], [79, 0, 1, "", "abs"], [79, 0, 1, "", "acos"], [79, 0, 1, "", "acosh"], [79, 0, 1, "", "add"], [79, 0, 1, "", "angle"], [79, 0, 1, "", "asin"], [79, 0, 1, "", "asinh"], [79, 0, 1, "", "atan"], [79, 0, 1, "", "atan2"], [79, 0, 1, "", "atanh"], [79, 0, 1, "", "bitwise_and"], [79, 0, 1, "", "bitwise_invert"], [79, 0, 1, "", "bitwise_left_shift"], [79, 0, 1, "", "bitwise_or"], [79, 0, 1, "", "bitwise_right_shift"], [79, 0, 1, "", "bitwise_xor"], [79, 0, 1, "", "ceil"], [79, 0, 1, "", "cos"], [79, 0, 1, "", "cosh"], [79, 0, 1, "", "deg2rad"], [79, 0, 1, "", "divide"], [79, 0, 1, "", "equal"], [79, 0, 1, "", "erf"], [79, 0, 1, "", "exp"], [79, 0, 1, "", "exp2"], [79, 0, 1, "", "expm1"], [79, 0, 1, "", "floor"], [79, 0, 1, "", "floor_divide"], [79, 0, 1, "", "fmin"], [79, 0, 1, "", "gcd"], [79, 0, 1, "", "greater"], [79, 0, 1, "", "greater_equal"], [79, 0, 1, "", "imag"], [79, 0, 1, "", "isfinite"], [79, 0, 1, "", "isinf"], [79, 0, 1, "", "isnan"], [79, 0, 1, "", "isreal"], [79, 0, 1, "", "lcm"], [79, 0, 1, "", "less"], [79, 0, 1, "", "less_equal"], [79, 0, 1, "", "log"], [79, 0, 1, "", "log10"], [79, 0, 1, "", "log1p"], [79, 0, 1, "", "log2"], [79, 0, 1, "", "logaddexp"], [79, 0, 1, "", "logaddexp2"], [79, 0, 1, "", "logical_and"], [79, 0, 1, "", "logical_not"], [79, 0, 1, "", "logical_or"], [79, 0, 1, "", "logical_xor"], [79, 0, 1, "", "maximum"], [79, 0, 1, "", "minimum"], [79, 0, 1, "", "multiply"], [79, 0, 1, "", "nan_to_num"], [79, 0, 1, "", "negative"], [79, 0, 1, "", "not_equal"], [79, 0, 1, "", "positive"], [79, 0, 1, "", "pow"], [79, 0, 1, "", "rad2deg"], [79, 0, 1, "", "real"], [79, 0, 1, "", "reciprocal"], [79, 0, 1, "", "remainder"], [79, 0, 1, "", "round"], [79, 0, 1, "", "sign"], [79, 0, 1, "", "sin"], [79, 0, 1, "", "sinh"], [79, 0, 1, "", "sqrt"], [79, 0, 1, "", "square"], [79, 0, 1, "", "static_angle"], [79, 0, 1, "", "static_exp2"], [79, 0, 1, "", "static_fmin"], [79, 0, 1, "", "static_gcd"], [79, 0, 1, "", "static_imag"], [79, 0, 1, "", "static_logaddexp2"], [79, 0, 1, "", "static_nan_to_num"], [79, 0, 1, "", "static_real"], [79, 0, 1, "", "subtract"], [79, 0, 1, "", "tan"], [79, 0, 1, "", "tanh"], [79, 0, 1, "", "trapz"], [79, 0, 1, "", "trunc"], [79, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[80, 3, 0, "-", "activations"], [80, 3, 0, "-", "conversions"], [80, 3, 0, "-", "creation"], [80, 3, 0, "-", "data_type"], [80, 3, 0, "-", "device"], [80, 3, 0, "-", "elementwise"], [80, 3, 0, "-", "general"], [80, 3, 0, "-", "gradients"], [80, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [80, 3, 0, "-", "losses"], [80, 3, 0, "-", "manipulation"], [80, 3, 0, "-", "norms"], [80, 3, 0, "-", "random"], [80, 3, 0, "-", "searching"], [80, 3, 0, "-", "set"], [80, 3, 0, "-", "sorting"], [80, 3, 0, "-", "statistical"], [80, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[80, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_celu"], [80, 0, 1, "", "_static_elu"], [80, 0, 1, "", "_static_hardshrink"], [80, 0, 1, "", "_static_hardsilu"], [80, 0, 1, "", "_static_hardtanh"], [80, 0, 1, "", "_static_scaled_tanh"], [80, 0, 1, "", "_static_silu"], [80, 0, 1, "", "_static_softshrink"], [80, 0, 1, "", "_static_tanhshrink"], [80, 0, 1, "", "_static_threshold"], [80, 0, 1, "", "celu"], [80, 0, 1, "", "elu"], [80, 0, 1, "", "hardshrink"], [80, 0, 1, "", "hardsilu"], [80, 0, 1, "", "hardtanh"], [80, 0, 1, "", "logit"], [80, 0, 1, "", "logsigmoid"], [80, 0, 1, "", "prelu"], [80, 0, 1, "", "relu6"], [80, 0, 1, "", "scaled_tanh"], [80, 0, 1, "", "selu"], [80, 0, 1, "", "silu"], [80, 0, 1, "", "softshrink"], [80, 0, 1, "", "static_logit"], [80, 0, 1, "", "static_logsigmoid"], [80, 0, 1, "", "static_prelu"], [80, 0, 1, "", "static_relu6"], [80, 0, 1, "", "static_selu"], [80, 0, 1, "", "static_thresholded_relu"], [80, 0, 1, "", "tanhshrink"], [80, 0, 1, "", "threshold"], [80, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[80, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[80, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_trilu"], [80, 0, 1, "", "blackman_window"], [80, 0, 1, "", "eye_like"], [80, 0, 1, "", "hamming_window"], [80, 0, 1, "", "hann_window"], [80, 0, 1, "", "kaiser_bessel_derived_window"], [80, 0, 1, "", "kaiser_window"], [80, 0, 1, "", "mel_weight_matrix"], [80, 0, 1, "", "polyval"], [80, 0, 1, "", "static_blackman_window"], [80, 0, 1, "", "static_eye_like"], [80, 0, 1, "", "static_hamming_window"], [80, 0, 1, "", "static_hann_window"], [80, 0, 1, "", "static_kaiser_bessel_derived_window"], [80, 0, 1, "", "static_kaiser_window"], [80, 0, 1, "", "static_mel_weight_matrix"], [80, 0, 1, "", "static_polyval"], [80, 0, 1, "", "static_tril_indices"], [80, 0, 1, "", "static_unsorted_segment_mean"], [80, 0, 1, "", "static_unsorted_segment_min"], [80, 0, 1, "", "static_unsorted_segment_sum"], [80, 0, 1, "", "static_vorbis_window"], [80, 0, 1, "", "tril_indices"], [80, 0, 1, "", "trilu"], [80, 0, 1, "", "unsorted_segment_mean"], [80, 0, 1, "", "unsorted_segment_min"], [80, 0, 1, "", "unsorted_segment_sum"], [80, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[80, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[80, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[80, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "allclose"], [80, 0, 1, "", "amax"], [80, 0, 1, "", "amin"], [80, 0, 1, "", "binarizer"], [80, 0, 1, "", "conj"], [80, 0, 1, "", "copysign"], [80, 0, 1, "", "count_nonzero"], [80, 0, 1, "", "diff"], [80, 0, 1, "", "digamma"], [80, 0, 1, "", "erfc"], [80, 0, 1, "", "erfinv"], [80, 0, 1, "", "fix"], [80, 0, 1, "", "float_power"], [80, 0, 1, "", "fmax"], [80, 0, 1, "", "fmod"], [80, 0, 1, "", "frexp"], [80, 0, 1, "", "gradient"], [80, 0, 1, "", "hypot"], [80, 0, 1, "", "isclose"], [80, 0, 1, "", "ldexp"], [80, 0, 1, "", "lerp"], [80, 0, 1, "", "modf"], [80, 0, 1, "", "nansum"], [80, 0, 1, "", "nextafter"], [80, 0, 1, "", "signbit"], [80, 0, 1, "", "sinc"], [80, 0, 1, "", "sparsify_tensor"], [80, 0, 1, "", "static_allclose"], [80, 0, 1, "", "static_amax"], [80, 0, 1, "", "static_amin"], [80, 0, 1, "", "static_binarizer"], [80, 0, 1, "", "static_conj"], [80, 0, 1, "", "static_copysign"], [80, 0, 1, "", "static_count_nonzero"], [80, 0, 1, "", "static_diff"], [80, 0, 1, "", "static_digamma"], [80, 0, 1, "", "static_erfc"], [80, 0, 1, "", "static_erfinv"], [80, 0, 1, "", "static_fix"], [80, 0, 1, "", "static_float_power"], [80, 0, 1, "", "static_fmax"], [80, 0, 1, "", "static_fmod"], [80, 0, 1, "", "static_frexp"], [80, 0, 1, "", "static_gradient"], [80, 0, 1, "", "static_hypot"], [80, 0, 1, "", "static_isclose"], [80, 0, 1, "", "static_ldexp"], [80, 0, 1, "", "static_lerp"], [80, 0, 1, "", "static_modf"], [80, 0, 1, "", "static_nansum"], [80, 0, 1, "", "static_nextafter"], [80, 0, 1, "", "static_signbit"], [80, 0, 1, "", "static_sinc"], [80, 0, 1, "", "static_sparsify_tensor"], [80, 0, 1, "", "static_xlogy"], [80, 0, 1, "", "static_zeta"], [80, 0, 1, "", "xlogy"], [80, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[80, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_reduce"], [80, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[80, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[80, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[80, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fft"], [80, 0, 1, "", "_static_sliding_window"], [80, 0, 1, "", "adaptive_avg_pool1d"], [80, 0, 1, "", "adaptive_avg_pool2d"], [80, 0, 1, "", "adaptive_max_pool2d"], [80, 0, 1, "", "adaptive_max_pool3d"], [80, 0, 1, "", "avg_pool1d"], [80, 0, 1, "", "avg_pool2d"], [80, 0, 1, "", "avg_pool3d"], [80, 0, 1, "", "dct"], [80, 0, 1, "", "dft"], [80, 0, 1, "", "embedding"], [80, 0, 1, "", "fft"], [80, 0, 1, "", "idct"], [80, 0, 1, "", "ifft"], [80, 0, 1, "", "ifftn"], [80, 0, 1, "", "interpolate"], [80, 0, 1, "", "max_pool1d"], [80, 0, 1, "", "max_pool2d"], [80, 0, 1, "", "max_pool3d"], [80, 0, 1, "", "max_unpool1d"], [80, 0, 1, "", "rfft"], [80, 0, 1, "", "rfftn"], [80, 0, 1, "", "sliding_window"], [80, 0, 1, "", "static_adaptive_avg_pool1d"], [80, 0, 1, "", "static_adaptive_avg_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool2d"], [80, 0, 1, "", "static_adaptive_max_pool3d"], [80, 0, 1, "", "static_avg_pool1d"], [80, 0, 1, "", "static_avg_pool2d"], [80, 0, 1, "", "static_avg_pool3d"], [80, 0, 1, "", "static_dct"], [80, 0, 1, "", "static_dft"], [80, 0, 1, "", "static_embedding"], [80, 0, 1, "", "static_idct"], [80, 0, 1, "", "static_ifft"], [80, 0, 1, "", "static_ifftn"], [80, 0, 1, "", "static_interpolate"], [80, 0, 1, "", "static_max_pool1d"], [80, 0, 1, "", "static_max_pool2d"], [80, 0, 1, "", "static_max_pool3d"], [80, 0, 1, "", "static_max_unpool1d"], [80, 0, 1, "", "static_rfft"], [80, 0, 1, "", "static_rfftn"], [80, 0, 1, "", "static_rnn"], [80, 0, 1, "", "static_stft"], [80, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "adjoint"], [80, 0, 1, "", "batched_outer"], [80, 0, 1, "", "cond"], [80, 0, 1, "", "diagflat"], [80, 0, 1, "", "dot"], [80, 0, 1, "", "eig"], [80, 0, 1, "", "eigh_tridiagonal"], [80, 0, 1, "", "eigvals"], [80, 0, 1, "", "higher_order_moment"], [80, 0, 1, "", "initialize_tucker"], [80, 0, 1, "", "kron"], [80, 0, 1, "", "make_svd_non_negative"], [80, 0, 1, "", "matrix_exp"], [80, 0, 1, "", "mode_dot"], [80, 0, 1, "", "multi_dot"], [80, 0, 1, "", "multi_mode_dot"], [80, 0, 1, "", "partial_tucker"], [80, 0, 1, "", "static_adjoint"], [80, 0, 1, "", "static_batched_outer"], [80, 0, 1, "", "static_cond"], [80, 0, 1, "", "static_diagflat"], [80, 0, 1, "", "static_dot"], [80, 0, 1, "", "static_eig"], [80, 0, 1, "", "static_eigh_tridiagonal"], [80, 0, 1, "", "static_eigvals"], [80, 0, 1, "", "static_higher_order_moment"], [80, 0, 1, "", "static_initialize_tucker"], [80, 0, 1, "", "static_kron"], [80, 0, 1, "", "static_make_svd_non_negative"], [80, 0, 1, "", "static_matrix_exp"], [80, 0, 1, "", "static_mode_dot"], [80, 0, 1, "", "static_multi_dot"], [80, 0, 1, "", "static_multi_mode_dot"], [80, 0, 1, "", "static_partial_tucker"], [80, 0, 1, "", "static_svd_flip"], [80, 0, 1, "", "static_tensor_train"], [80, 0, 1, "", "static_truncated_svd"], [80, 0, 1, "", "static_tt_matrix_to_tensor"], [80, 0, 1, "", "static_tucker"], [80, 0, 1, "", "svd_flip"], [80, 0, 1, "", "tensor_train"], [80, 0, 1, "", "truncated_svd"], [80, 0, 1, "", "tt_matrix_to_tensor"], [80, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[80, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_hinge_embedding_loss"], [80, 0, 1, "", "_static_huber_loss"], [80, 0, 1, "", "_static_kl_div"], [80, 0, 1, "", "_static_l1_loss"], [80, 0, 1, "", "_static_log_poisson_loss"], [80, 0, 1, "", "_static_poisson_nll_loss"], [80, 0, 1, "", "_static_smooth_l1_loss"], [80, 0, 1, "", "_static_soft_margin_loss"], [80, 0, 1, "", "hinge_embedding_loss"], [80, 0, 1, "", "huber_loss"], [80, 0, 1, "", "kl_div"], [80, 0, 1, "", "l1_loss"], [80, 0, 1, "", "log_poisson_loss"], [80, 0, 1, "", "poisson_nll_loss"], [80, 0, 1, "", "smooth_l1_loss"], [80, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[80, 1, 1, "", "_ContainerWithManipulationExperimental"], [80, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_fill_diagonal"], [80, 0, 1, "", "_static_put_along_axis"], [80, 0, 1, "", "_static_take"], [80, 0, 1, "", "_static_trim_zeros"], [80, 0, 1, "", "_static_unflatten"], [80, 0, 1, "", "_static_unique_consecutive"], [80, 0, 1, "", "as_strided"], [80, 0, 1, "", "associative_scan"], [80, 0, 1, "", "atleast_1d"], [80, 0, 1, "", "atleast_2d"], [80, 0, 1, "", "atleast_3d"], [80, 0, 1, "", "broadcast_shapes"], [80, 0, 1, "", "column_stack"], [80, 0, 1, "", "concat_from_sequence"], [80, 0, 1, "", "dsplit"], [80, 0, 1, "", "dstack"], [80, 0, 1, "", "expand"], [80, 0, 1, "", "fill_diagonal"], [80, 0, 1, "", "flatten"], [80, 0, 1, "", "fliplr"], [80, 0, 1, "", "flipud"], [80, 0, 1, "", "fold"], [80, 0, 1, "", "heaviside"], [80, 0, 1, "", "hsplit"], [80, 0, 1, "", "hstack"], [80, 0, 1, "", "i0"], [80, 0, 1, "", "matricize"], [80, 0, 1, "", "moveaxis"], [80, 0, 1, "", "pad"], [80, 0, 1, "", "partial_fold"], [80, 0, 1, "", "partial_tensor_to_vec"], [80, 0, 1, "", "partial_unfold"], [80, 0, 1, "", "partial_vec_to_tensor"], [80, 0, 1, "", "put_along_axis"], [80, 0, 1, "", "rot90"], [80, 0, 1, "", "soft_thresholding"], [80, 0, 1, "", "static_as_strided"], [80, 0, 1, "", "static_atleast_1d"], [80, 0, 1, "", "static_atleast_2d"], [80, 0, 1, "", "static_atleast_3d"], [80, 0, 1, "", "static_broadcast_shapes"], [80, 0, 1, "", "static_column_stack"], [80, 0, 1, "", "static_concat_from_sequence"], [80, 0, 1, "", "static_dsplit"], [80, 0, 1, "", "static_dstack"], [80, 0, 1, "", "static_expand"], [80, 0, 1, "", "static_flatten"], [80, 0, 1, "", "static_fliplr"], [80, 0, 1, "", "static_flipud"], [80, 0, 1, "", "static_fold"], [80, 0, 1, "", "static_heaviside"], [80, 0, 1, "", "static_hsplit"], [80, 0, 1, "", "static_hstack"], [80, 0, 1, "", "static_i0"], [80, 0, 1, "", "static_matricize"], [80, 0, 1, "", "static_moveaxis"], [80, 0, 1, "", "static_pad"], [80, 0, 1, "", "static_partial_fold"], [80, 0, 1, "", "static_partial_tensor_to_vec"], [80, 0, 1, "", "static_partial_unfold"], [80, 0, 1, "", "static_partial_vec_to_tensor"], [80, 0, 1, "", "static_rot90"], [80, 0, 1, "", "static_soft_thresholding"], [80, 0, 1, "", "static_take_along_axis"], [80, 0, 1, "", "static_top_k"], [80, 0, 1, "", "static_unfold"], [80, 0, 1, "", "static_vsplit"], [80, 0, 1, "", "static_vstack"], [80, 0, 1, "", "take"], [80, 0, 1, "", "take_along_axis"], [80, 0, 1, "", "top_k"], [80, 0, 1, "", "trim_zeros"], [80, 0, 1, "", "unflatten"], [80, 0, 1, "", "unfold"], [80, 0, 1, "", "unique_consecutive"], [80, 0, 1, "", "vsplit"], [80, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[80, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "batch_norm"], [80, 0, 1, "", "group_norm"], [80, 0, 1, "", "instance_norm"], [80, 0, 1, "", "l1_normalize"], [80, 0, 1, "", "l2_normalize"], [80, 0, 1, "", "lp_normalize"], [80, 0, 1, "", "static_batch_norm"], [80, 0, 1, "", "static_group_norm"], [80, 0, 1, "", "static_instance_norm"], [80, 0, 1, "", "static_l1_normalize"], [80, 0, 1, "", "static_l2_normalize"], [80, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[80, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "bernoulli"], [80, 0, 1, "", "beta"], [80, 0, 1, "", "dirichlet"], [80, 0, 1, "", "gamma"], [80, 0, 1, "", "poisson"], [80, 0, 1, "", "static_bernoulli"], [80, 0, 1, "", "static_beta"], [80, 0, 1, "", "static_dirichlet"], [80, 0, 1, "", "static_gamma"], [80, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[80, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "static_unravel_index"], [80, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[80, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[80, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[80, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "invert_permutation"], [80, 0, 1, "", "lexsort"], [80, 0, 1, "", "static_invert_permutation"], [80, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[80, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cummax"], [80, 0, 1, "", "_static_cummin"], [80, 0, 1, "", "_static_nanmin"], [80, 0, 1, "", "bincount"], [80, 0, 1, "", "corrcoef"], [80, 0, 1, "", "cov"], [80, 0, 1, "", "cummax"], [80, 0, 1, "", "cummin"], [80, 0, 1, "", "histogram"], [80, 0, 1, "", "igamma"], [80, 0, 1, "", "lgamma"], [80, 0, 1, "", "median"], [80, 0, 1, "", "nanmean"], [80, 0, 1, "", "nanmedian"], [80, 0, 1, "", "nanmin"], [80, 0, 1, "", "nanprod"], [80, 0, 1, "", "quantile"], [80, 0, 1, "", "static_bincount"], [80, 0, 1, "", "static_corrcoef"], [80, 0, 1, "", "static_cov"], [80, 0, 1, "", "static_histogram"], [80, 0, 1, "", "static_igamma"], [80, 0, 1, "", "static_lgamma"], [80, 0, 1, "", "static_median"], [80, 0, 1, "", "static_nanmean"], [80, 0, 1, "", "static_nanmedian"], [80, 0, 1, "", "static_nanprod"], [80, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[80, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "optional_get_element"], [80, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[81, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_all_equal"], [81, 0, 1, "", "_static_array_equal"], [81, 0, 1, "", "_static_assert_supports_inplace"], [81, 0, 1, "", "_static_clip_matrix_norm"], [81, 0, 1, "", "_static_clip_vector_norm"], [81, 0, 1, "", "_static_einops_rearrange"], [81, 0, 1, "", "_static_einops_reduce"], [81, 0, 1, "", "_static_einops_repeat"], [81, 0, 1, "", "_static_exists"], [81, 0, 1, "", "_static_fourier_encode"], [81, 0, 1, "", "_static_gather"], [81, 0, 1, "", "_static_gather_nd"], [81, 0, 1, "", "_static_get_num_dims"], [81, 0, 1, "", "_static_has_nans"], [81, 0, 1, "", "_static_inplace_decrement"], [81, 0, 1, "", "_static_inplace_increment"], [81, 0, 1, "", "_static_inplace_update"], [81, 0, 1, "", "_static_is_array"], [81, 0, 1, "", "_static_is_ivy_array"], [81, 0, 1, "", "_static_is_native_array"], [81, 0, 1, "", "_static_scatter_flat"], [81, 0, 1, "", "_static_scatter_nd"], [81, 0, 1, "", "_static_size"], [81, 0, 1, "", "_static_stable_divide"], [81, 0, 1, "", "_static_stable_pow"], [81, 0, 1, "", "_static_supports_inplace_updates"], [81, 0, 1, "", "_static_to_list"], [81, 0, 1, "", "_static_to_numpy"], [81, 0, 1, "", "_static_to_scalar"], [81, 0, 1, "", "_static_value_is_nan"], [81, 0, 1, "", "all_equal"], [81, 0, 1, "", "array_equal"], [81, 0, 1, "", "assert_supports_inplace"], [81, 0, 1, "", "clip_matrix_norm"], [81, 0, 1, "", "clip_vector_norm"], [81, 0, 1, "", "einops_rearrange"], [81, 0, 1, "", "einops_reduce"], [81, 0, 1, "", "einops_repeat"], [81, 0, 1, "", "exists"], [81, 0, 1, "", "fourier_encode"], [81, 0, 1, "", "gather"], [81, 0, 1, "", "gather_nd"], [81, 0, 1, "", "get_num_dims"], [81, 0, 1, "", "has_nans"], [81, 0, 1, "", "inplace_decrement"], [81, 0, 1, "", "inplace_increment"], [81, 0, 1, "", "inplace_update"], [81, 0, 1, "", "is_array"], [81, 0, 1, "", "is_ivy_array"], [81, 0, 1, "", "is_native_array"], [81, 0, 1, "", "isin"], [81, 0, 1, "", "itemsize"], [81, 0, 1, "", "scatter_flat"], [81, 0, 1, "", "scatter_nd"], [81, 0, 1, "", "size"], [81, 0, 1, "", "stable_divide"], [81, 0, 1, "", "stable_pow"], [81, 0, 1, "", "static_isin"], [81, 0, 1, "", "static_itemsize"], [81, 0, 1, "", "static_strides"], [81, 0, 1, "", "strides"], [81, 0, 1, "", "supports_inplace_updates"], [81, 0, 1, "", "to_list"], [81, 0, 1, "", "to_numpy"], [81, 0, 1, "", "to_scalar"], [81, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[82, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_stop_gradient"], [82, 0, 1, "", "adam_step"], [82, 0, 1, "", "adam_update"], [82, 0, 1, "", "gradient_descent_update"], [82, 0, 1, "", "lamb_update"], [82, 0, 1, "", "lars_update"], [82, 0, 1, "", "optimizer_update"], [82, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[83, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[83, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[84, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_conv1d"], [84, 0, 1, "", "_static_conv1d_transpose"], [84, 0, 1, "", "_static_conv2d"], [84, 0, 1, "", "_static_conv2d_transpose"], [84, 0, 1, "", "_static_conv3d"], [84, 0, 1, "", "_static_conv3d_transpose"], [84, 0, 1, "", "_static_depthwise_conv2d"], [84, 0, 1, "", "_static_dropout"], [84, 0, 1, "", "_static_dropout1d"], [84, 0, 1, "", "_static_dropout2d"], [84, 0, 1, "", "_static_dropout3d"], [84, 0, 1, "", "_static_linear"], [84, 0, 1, "", "_static_lstm_update"], [84, 0, 1, "", "_static_multi_head_attention"], [84, 0, 1, "", "_static_reduce_window"], [84, 0, 1, "", "_static_scaled_dot_product_attention"], [84, 0, 1, "", "conv1d"], [84, 0, 1, "", "conv1d_transpose"], [84, 0, 1, "", "conv2d"], [84, 0, 1, "", "conv2d_transpose"], [84, 0, 1, "", "conv3d"], [84, 0, 1, "", "conv3d_transpose"], [84, 0, 1, "", "depthwise_conv2d"], [84, 0, 1, "", "dropout"], [84, 0, 1, "", "dropout1d"], [84, 0, 1, "", "dropout2d"], [84, 0, 1, "", "dropout3d"], [84, 0, 1, "", "linear"], [84, 0, 1, "", "lstm_update"], [84, 0, 1, "", "multi_head_attention"], [84, 0, 1, "", "reduce_window"], [84, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[85, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_cholesky"], [85, 0, 1, "", "_static_cross"], [85, 0, 1, "", "_static_det"], [85, 0, 1, "", "_static_diag"], [85, 0, 1, "", "_static_diagonal"], [85, 0, 1, "", "_static_eigh"], [85, 0, 1, "", "_static_eigvalsh"], [85, 0, 1, "", "_static_inner"], [85, 0, 1, "", "_static_inv"], [85, 0, 1, "", "_static_matmul"], [85, 0, 1, "", "_static_matrix_norm"], [85, 0, 1, "", "_static_matrix_power"], [85, 0, 1, "", "_static_matrix_rank"], [85, 0, 1, "", "_static_matrix_transpose"], [85, 0, 1, "", "_static_outer"], [85, 0, 1, "", "_static_pinv"], [85, 0, 1, "", "_static_qr"], [85, 0, 1, "", "_static_slogdet"], [85, 0, 1, "", "_static_solve"], [85, 0, 1, "", "_static_svd"], [85, 0, 1, "", "_static_svdvals"], [85, 0, 1, "", "_static_tensordot"], [85, 0, 1, "", "_static_tensorsolve"], [85, 0, 1, "", "_static_trace"], [85, 0, 1, "", "_static_vander"], [85, 0, 1, "", "_static_vecdot"], [85, 0, 1, "", "_static_vector_norm"], [85, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [85, 0, 1, "", "cholesky"], [85, 0, 1, "", "cross"], [85, 0, 1, "", "det"], [85, 0, 1, "", "diag"], [85, 0, 1, "", "diagonal"], [85, 0, 1, "", "eigh"], [85, 0, 1, "", "eigvalsh"], [85, 0, 1, "", "general_inner_product"], [85, 0, 1, "", "inner"], [85, 0, 1, "", "inv"], [85, 0, 1, "", "matmul"], [85, 0, 1, "", "matrix_norm"], [85, 0, 1, "", "matrix_power"], [85, 0, 1, "", "matrix_rank"], [85, 0, 1, "", "matrix_transpose"], [85, 0, 1, "", "outer"], [85, 0, 1, "", "pinv"], [85, 0, 1, "", "qr"], [85, 0, 1, "", "slogdet"], [85, 0, 1, "", "solve"], [85, 0, 1, "", "static_general_inner_product"], [85, 0, 1, "", "svd"], [85, 0, 1, "", "svdvals"], [85, 0, 1, "", "tensordot"], [85, 0, 1, "", "tensorsolve"], [85, 0, 1, "", "trace"], [85, 0, 1, "", "vander"], [85, 0, 1, "", "vecdot"], [85, 0, 1, "", "vector_norm"], [85, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[86, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_binary_cross_entropy"], [86, 0, 1, "", "_static_cross_entropy"], [86, 0, 1, "", "_static_sparse_cross_entropy"], [86, 0, 1, "", "binary_cross_entropy"], [86, 0, 1, "", "cross_entropy"], [86, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[87, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_clip"], [87, 0, 1, "", "_static_concat"], [87, 0, 1, "", "_static_constant_pad"], [87, 0, 1, "", "_static_expand_dims"], [87, 0, 1, "", "_static_flip"], [87, 0, 1, "", "_static_permute_dims"], [87, 0, 1, "", "_static_repeat"], [87, 0, 1, "", "_static_reshape"], [87, 0, 1, "", "_static_roll"], [87, 0, 1, "", "_static_split"], [87, 0, 1, "", "_static_squeeze"], [87, 0, 1, "", "_static_stack"], [87, 0, 1, "", "_static_swapaxes"], [87, 0, 1, "", "_static_tile"], [87, 0, 1, "", "_static_unstack"], [87, 0, 1, "", "_static_zero_pad"], [87, 0, 1, "", "clip"], [87, 0, 1, "", "concat"], [87, 0, 1, "", "constant_pad"], [87, 0, 1, "", "expand_dims"], [87, 0, 1, "", "flip"], [87, 0, 1, "", "permute_dims"], [87, 0, 1, "", "repeat"], [87, 0, 1, "", "reshape"], [87, 0, 1, "", "roll"], [87, 0, 1, "", "split"], [87, 0, 1, "", "squeeze"], [87, 0, 1, "", "stack"], [87, 0, 1, "", "swapaxes"], [87, 0, 1, "", "tile"], [87, 0, 1, "", "unstack"], [87, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[88, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[89, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_multinomial"], [89, 0, 1, "", "_static_randint"], [89, 0, 1, "", "_static_random_normal"], [89, 0, 1, "", "_static_random_uniform"], [89, 0, 1, "", "_static_shuffle"], [89, 0, 1, "", "multinomial"], [89, 0, 1, "", "randint"], [89, 0, 1, "", "random_normal"], [89, 0, 1, "", "random_uniform"], [89, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[90, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_argmax"], [90, 0, 1, "", "_static_argmin"], [90, 0, 1, "", "_static_argwhere"], [90, 0, 1, "", "_static_nonzero"], [90, 0, 1, "", "_static_where"], [90, 0, 1, "", "argmax"], [90, 0, 1, "", "argmin"], [90, 0, 1, "", "argwhere"], [90, 0, 1, "", "nonzero"], [90, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[91, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "_static_unique_all"], [91, 0, 1, "", "_static_unique_counts"], [91, 0, 1, "", "_static_unique_inverse"], [91, 0, 1, "", "_static_unique_values"], [91, 0, 1, "", "unique_all"], [91, 0, 1, "", "unique_counts"], [91, 0, 1, "", "unique_inverse"], [91, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[92, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "_static_argsort"], [92, 0, 1, "", "_static_searchsorted"], [92, 0, 1, "", "_static_sort"], [92, 0, 1, "", "argsort"], [92, 0, 1, "", "msort"], [92, 0, 1, "", "searchsorted"], [92, 0, 1, "", "sort"], [92, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[93, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "_static_cumprod"], [93, 0, 1, "", "_static_cumsum"], [93, 0, 1, "", "_static_min"], [93, 0, 1, "", "_static_prod"], [93, 0, 1, "", "_static_sum"], [93, 0, 1, "", "_static_var"], [93, 0, 1, "", "cumprod"], [93, 0, 1, "", "cumsum"], [93, 0, 1, "", "einsum"], [93, 0, 1, "", "max"], [93, 0, 1, "", "mean"], [93, 0, 1, "", "min"], [93, 0, 1, "", "prod"], [93, 0, 1, "", "std"], [93, 0, 1, "", "sum"], [93, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[94, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "_static_all"], [94, 0, 1, "", "_static_any"], [94, 0, 1, "", "all"], [94, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[95, 2, 1, "", "_wrap_function"], [95, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[96, 3, 0, "-", "base"], [97, 3, 0, "-", "cp_tensor"], [98, 3, 0, "-", "parafac2_tensor"], [99, 3, 0, "-", "tr_tensor"], [100, 3, 0, "-", "tt_tensor"], [101, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[96, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 0, 1, "", "norm"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "cp_copy"], [97, 0, 1, "", "cp_flip_sign"], [97, 0, 1, "", "cp_lstsq_grad"], [97, 0, 1, "", "cp_mode_dot"], [97, 0, 1, "", "cp_n_param"], [97, 0, 1, "", "cp_norm"], [97, 0, 1, "", "cp_normalize"], [97, 0, 1, "", "cp_to_tensor"], [97, 0, 1, "", "cp_to_unfolded"], [97, 0, 1, "", "cp_to_vec"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "norm"], [97, 0, 1, "", "normalize"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "unfolding_dot_khatri_rao"], [97, 0, 1, "", "validate_cp_rank"], [97, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[98, 0, 1, "", "__init__"], [98, 4, 1, "", "_abc_impl"], [98, 0, 1, "", "apply_parafac2_projections"], [98, 0, 1, "", "from_CPTensor"], [98, 5, 1, "", "n_param"], [98, 0, 1, "", "parafac2_normalise"], [98, 0, 1, "", "parafac2_to_slice"], [98, 0, 1, "", "parafac2_to_slices"], [98, 0, 1, "", "parafac2_to_tensor"], [98, 0, 1, "", "parafac2_to_unfolded"], [98, 0, 1, "", "parafac2_to_vec"], [98, 0, 1, "", "to_tensor"], [98, 0, 1, "", "to_unfolded"], [98, 0, 1, "", "to_vec"], [98, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[99, 0, 1, "", "__init__"], [99, 4, 1, "", "_abc_impl"], [99, 5, 1, "", "n_param"], [99, 0, 1, "", "to_tensor"], [99, 0, 1, "", "to_unfolded"], [99, 0, 1, "", "to_vec"], [99, 0, 1, "", "tr_n_param"], [99, 0, 1, "", "tr_to_tensor"], [99, 0, 1, "", "tr_to_unfolded"], [99, 0, 1, "", "tr_to_vec"], [99, 0, 1, "", "validate_tr_rank"], [99, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[100, 0, 1, "", "__init__"], [100, 4, 1, "", "_abc_impl"], [100, 0, 1, "", "_tt_n_param"], [100, 0, 1, "", "index_update"], [100, 5, 1, "", "n_param"], [100, 0, 1, "", "pad_tt_rank"], [100, 0, 1, "", "to_tensor"], [100, 0, 1, "", "to_unfolding"], [100, 0, 1, "", "to_vec"], [100, 0, 1, "", "tt_to_tensor"], [100, 0, 1, "", "tt_to_unfolded"], [100, 0, 1, "", "tt_to_vec"], [100, 0, 1, "", "validate_tt_rank"], [100, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, 1, 1, "", "TuckerTensor"], [101, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "mode_dot"], [101, 5, 1, "", "n_param"], [101, 0, 1, "", "to_tensor"], [101, 0, 1, "", "to_unfolded"], [101, 0, 1, "", "to_vec"], [101, 0, 1, "", "tucker_copy"], [101, 0, 1, "", "tucker_mode_dot"], [101, 0, 1, "", "tucker_n_param"], [101, 0, 1, "", "tucker_normalize"], [101, 0, 1, "", "tucker_to_tensor"], [101, 0, 1, "", "tucker_to_unfolded"], [101, 0, 1, "", "tucker_to_vec"], [101, 0, 1, "", "validate_tucker_rank"], [101, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[106, 3, 0, "-", "base"], [107, 3, 0, "-", "elementwise"], [105, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[106, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[106, 0, 1, "", "__init__"], [106, 4, 1, "", "_abc_impl"], [106, 0, 1, "", "broadcast_shapes"], [106, 5, 1, "", "data"], [106, 5, 1, "", "device"], [106, 5, 1, "", "dtype"], [106, 5, 1, "", "inner_shape"], [106, 5, 1, "", "ndim"], [106, 0, 1, "", "nested_array"], [106, 5, 1, "", "nested_rank"], [106, 0, 1, "", "ragged_map"], [106, 0, 1, "", "ragged_multi_map"], [106, 0, 1, "", "ragged_multi_map_in_function"], [106, 0, 1, "", "replace_ivy_arrays"], [106, 5, 1, "", "shape"], [106, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[107, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[107, 4, 1, "", "_abc_impl"], [107, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[105, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[105, 0, 1, "", "__init__"], [105, 0, 1, "", "from_row_lengths"], [105, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[626, 3, 0, "-", "activations"], [627, 3, 0, "-", "constants"], [628, 3, 0, "-", "control_flow_ops"], [629, 3, 0, "-", "creation"], [630, 3, 0, "-", "data_type"], [631, 3, 0, "-", "device"], [632, 3, 0, "-", "elementwise"], [633, 3, 0, "-", "experimental"], [634, 3, 0, "-", "general"], [635, 3, 0, "-", "gradients"], [636, 3, 0, "-", "layers"], [637, 3, 0, "-", "linear_algebra"], [638, 3, 0, "-", "losses"], [639, 3, 0, "-", "manipulation"], [640, 3, 0, "-", "meta"], [641, 3, 0, "-", "nest"], [642, 3, 0, "-", "norms"], [643, 3, 0, "-", "random"], [644, 3, 0, "-", "searching"], [645, 3, 0, "-", "set"], [646, 3, 0, "-", "sorting"], [647, 3, 0, "-", "statistical"], [648, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[367, 3, 0, "-", "activations"], [368, 3, 0, "-", "constants"], [369, 3, 0, "-", "creation"], [370, 3, 0, "-", "data_type"], [371, 3, 0, "-", "device"], [372, 3, 0, "-", "elementwise"], [373, 3, 0, "-", "general"], [374, 3, 0, "-", "gradients"], [375, 3, 0, "-", "layers"], [376, 3, 0, "-", "linear_algebra"], [377, 3, 0, "-", "losses"], [378, 3, 0, "-", "manipulation"], [379, 3, 0, "-", "meta"], [380, 3, 0, "-", "nest"], [381, 3, 0, "-", "norms"], [382, 3, 0, "-", "random"], [383, 3, 0, "-", "searching"], [384, 3, 0, "-", "set"], [385, 3, 0, "-", "sorting"], [386, 3, 0, "-", "sparse_array"], [387, 3, 0, "-", "statistical"], [388, 3, 0, "-", "utility"]], "ivy.stateful": [[788, 3, 0, "-", "activations"], [789, 3, 0, "-", "converters"], [790, 3, 0, "-", "helpers"], [791, 3, 0, "-", "initializers"], [792, 3, 0, "-", "layers"], [793, 3, 0, "-", "losses"], [794, 3, 0, "-", "module"], [795, 3, 0, "-", "norms"], [796, 3, 0, "-", "optimizers"], [797, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[788, 1, 1, "", "ELU"], [788, 1, 1, "", "GEGLU"], [788, 1, 1, "", "GELU"], [788, 1, 1, "", "Hardswish"], [788, 1, 1, "", "LeakyReLU"], [788, 1, 1, "", "LogSigmoid"], [788, 1, 1, "", "LogSoftmax"], [788, 1, 1, "", "Logit"], [788, 1, 1, "", "Mish"], [788, 1, 1, "", "PReLU"], [788, 1, 1, "", "ReLU"], [788, 1, 1, "", "ReLU6"], [788, 1, 1, "", "SeLU"], [788, 1, 1, "", "SiLU"], [788, 1, 1, "", "Sigmoid"], [788, 1, 1, "", "Softmax"], [788, 1, 1, "", "Softplus"], [788, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[788, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[788, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[789, 1, 1, "", "ModuleConverters"], [789, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[789, 0, 1, "", "from_flax_module"], [789, 0, 1, "", "from_haiku_module"], [789, 0, 1, "", "from_keras_module"], [789, 0, 1, "", "from_paddle_module"], [789, 0, 1, "", "from_torch_module"], [789, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[790, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[791, 1, 1, "", "Constant"], [791, 1, 1, "", "FirstLayerSiren"], [791, 1, 1, "", "GlorotUniform"], [791, 1, 1, "", "Initializer"], [791, 1, 1, "", "KaimingNormal"], [791, 1, 1, "", "Ones"], [791, 1, 1, "", "RandomNormal"], [791, 1, 1, "", "Siren"], [791, 1, 1, "", "Uniform"], [791, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[791, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[791, 0, 1, "", "__init__"], [791, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[791, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[792, 1, 1, "", "AdaptiveAvgPool1d"], [792, 1, 1, "", "AdaptiveAvgPool2d"], [792, 1, 1, "", "AvgPool1D"], [792, 1, 1, "", "AvgPool2D"], [792, 1, 1, "", "AvgPool3D"], [792, 1, 1, "", "Conv1D"], [792, 1, 1, "", "Conv1DTranspose"], [792, 1, 1, "", "Conv2D"], [792, 1, 1, "", "Conv2DTranspose"], [792, 1, 1, "", "Conv3D"], [792, 1, 1, "", "Conv3DTranspose"], [792, 1, 1, "", "Dct"], [792, 1, 1, "", "DepthwiseConv2D"], [792, 1, 1, "", "Dropout"], [792, 1, 1, "", "Embedding"], [792, 1, 1, "", "FFT"], [792, 1, 1, "", "IFFT"], [792, 1, 1, "", "Identity"], [792, 1, 1, "", "LSTM"], [792, 1, 1, "", "Linear"], [792, 1, 1, "", "MaxPool1D"], [792, 1, 1, "", "MaxPool2D"], [792, 1, 1, "", "MaxPool3D"], [792, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[792, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[792, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[793, 1, 1, "", "BinaryCrossEntropyLoss"], [793, 1, 1, "", "CrossEntropyLoss"], [793, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[793, 0, 1, "", "__init__"]], "ivy.stateful.module": [[794, 1, 1, "", "Module"], [794, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[794, 0, 1, "", "__call__"], [794, 0, 1, "", "__init__"], [794, 5, 1, "", "buffers"], [794, 0, 1, "", "build"], [794, 5, 1, "", "build_mode"], [794, 5, 1, "", "built"], [794, 5, 1, "", "device"], [794, 5, 1, "", "dtype"], [794, 0, 1, "", "eval"], [794, 0, 1, "", "load"], [794, 5, 1, "", "module_dict"], [794, 0, 1, "", "register_buffer"], [794, 0, 1, "", "register_parameter"], [794, 0, 1, "", "save"], [794, 0, 1, "", "save_weights"], [794, 0, 1, "", "show_graph"], [794, 5, 1, "", "state_dict"], [794, 0, 1, "", "to_device"], [794, 0, 1, "", "trace_graph"], [794, 0, 1, "", "train"], [794, 5, 1, "", "training"], [794, 5, 1, "", "v"]], "ivy.stateful.norms": [[795, 1, 1, "", "BatchNorm2D"], [795, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[795, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[795, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[796, 1, 1, "", "Adam"], [796, 1, 1, "", "AdamW"], [796, 1, 1, "", "LAMB"], [796, 1, 1, "", "LARS"], [796, 1, 1, "", "Optimizer"], [796, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[796, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "set_state"], [796, 5, 1, "", "state"]], "ivy.stateful.sequential": [[797, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[797, 0, 1, "", "__init__"]], "ivy.utils": [[798, 3, 0, "-", "assertions"], [799, 3, 0, "-", "backend"], [803, 3, 0, "-", "binaries"], [804, 3, 0, "-", "dynamic_import"], [805, 3, 0, "-", "einsum_parser"], [806, 3, 0, "-", "einsum_path_helpers"], [807, 3, 0, "-", "exceptions"], [808, 3, 0, "-", "inspection"], [809, 3, 0, "-", "logging"], [810, 3, 0, "-", "profiler"], [811, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[798, 2, 1, "", "check_all"], [798, 2, 1, "", "check_all_or_any_fn"], [798, 2, 1, "", "check_any"], [798, 2, 1, "", "check_dev_correct_formatting"], [798, 2, 1, "", "check_dimensions"], [798, 2, 1, "", "check_elem_in_list"], [798, 2, 1, "", "check_equal"], [798, 2, 1, "", "check_exists"], [798, 2, 1, "", "check_false"], [798, 2, 1, "", "check_gather_input_valid"], [798, 2, 1, "", "check_gather_nd_input_valid"], [798, 2, 1, "", "check_greater"], [798, 2, 1, "", "check_inplace_sizes_valid"], [798, 2, 1, "", "check_isinstance"], [798, 2, 1, "", "check_kernel_padding_size"], [798, 2, 1, "", "check_less"], [798, 2, 1, "", "check_one_way_broadcastable"], [798, 2, 1, "", "check_same_dtype"], [798, 2, 1, "", "check_shape"], [798, 2, 1, "", "check_shapes_broadcastable"], [798, 2, 1, "", "check_true"], [798, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[800, 3, 0, "-", "ast_helpers"], [801, 3, 0, "-", "handler"], [802, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[800, 1, 1, "", "ImportTransformer"], [800, 1, 1, "", "IvyLoader"], [800, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "impersonate_import"], [800, 0, 1, "", "visit_Import"], [800, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[800, 0, 1, "", "__init__"], [800, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[800, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[801, 1, 1, "", "ContextManager"], [801, 2, 1, "", "choose_random_backend"], [801, 2, 1, "", "current_backend"], [801, 2, 1, "", "dynamic_backend_converter"], [801, 2, 1, "", "prevent_access_locally"], [801, 2, 1, "", "previous_backend"], [801, 2, 1, "", "set_backend"], [801, 2, 1, "", "set_backend_to_specific_version"], [801, 2, 1, "", "set_jax_backend"], [801, 2, 1, "", "set_mxnet_backend"], [801, 2, 1, "", "set_numpy_backend"], [801, 2, 1, "", "set_paddle_backend"], [801, 2, 1, "", "set_tensorflow_backend"], [801, 2, 1, "", "set_torch_backend"], [801, 2, 1, "", "unset_backend"], [801, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[801, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[802, 2, 1, "", "clear_sub_backends"], [802, 2, 1, "", "find_available_sub_backends"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name"], [802, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [802, 2, 1, "", "set_sub_backend"], [802, 2, 1, "", "set_sub_backend_to_specific_version"], [802, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[803, 2, 1, "", "check_for_binaries"], [803, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[804, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[805, 2, 1, "", "convert_interleaved_input"], [805, 2, 1, "", "convert_subscripts"], [805, 2, 1, "", "find_output_shape"], [805, 2, 1, "", "find_output_str"], [805, 2, 1, "", "gen_unused_symbols"], [805, 2, 1, "", "get_symbol"], [805, 2, 1, "", "has_valid_einsum_chars_only"], [805, 2, 1, "", "is_valid_einsum_char"], [805, 2, 1, "", "legalise_einsum_expr"], [805, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[806, 2, 1, "", "can_dot"], [806, 2, 1, "", "compute_size_by_dict"], [806, 2, 1, "", "find_contraction"], [806, 2, 1, "", "flop_count"], [806, 2, 1, "", "greedy_path"], [806, 2, 1, "", "optimal_path"], [806, 2, 1, "", "parse_einsum_input"], [806, 2, 1, "", "parse_possible_contraction"], [806, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[807, 7, 1, "", "InplaceUpdateException"], [807, 7, 1, "", "IvyAttributeError"], [807, 7, 1, "", "IvyBackendException"], [807, 7, 1, "", "IvyBroadcastShapeError"], [807, 7, 1, "", "IvyDeviceError"], [807, 7, 1, "", "IvyDtypePromotionError"], [807, 7, 1, "", "IvyError"], [807, 7, 1, "", "IvyException"], [807, 7, 1, "", "IvyIndexError"], [807, 7, 1, "", "IvyInvalidBackendException"], [807, 7, 1, "", "IvyNotImplementedException"], [807, 7, 1, "", "IvyValueError"], [807, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[807, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[807, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[808, 2, 1, "", "add_array_specs"], [808, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[809, 2, 1, "", "set_logging_mode"], [809, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[810, 1, 1, "", "Profiler"], [810, 2, 1, "", "tensorflow_profile_start"], [810, 2, 1, "", "tensorflow_profile_stop"], [810, 2, 1, "", "torch_profiler_init"], [810, 2, 1, "", "torch_profiler_start"], [810, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[810, 0, 1, "", "__init__"], [810, 4, 1, "", "print_stats"], [810, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[811, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[771, 3, 0, "-", "assertions"], [772, 3, 0, "-", "available_frameworks"], [773, 3, 0, "-", "function_testing"], [774, 3, 0, "-", "globals"], [775, 3, 0, "-", "hypothesis_helpers"], [780, 3, 0, "-", "multiprocessing"], [781, 3, 0, "-", "pipeline_helper"], [782, 3, 0, "-", "structs"], [783, 3, 0, "-", "test_parameter_flags"], [784, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[771, 2, 1, "", "assert_all_close"], [771, 2, 1, "", "assert_same_type"], [771, 2, 1, "", "assert_same_type_and_shape"], [771, 2, 1, "", "check_unsupported_device"], [771, 2, 1, "", "check_unsupported_device_and_dtype"], [771, 2, 1, "", "check_unsupported_dtype"], [771, 2, 1, "", "test_unsupported_function"], [771, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, 2, 1, "", "args_to_container"], [773, 2, 1, "", "args_to_frontend"], [773, 2, 1, "", "arrays_to_frontend"], [773, 2, 1, "", "as_lists"], [773, 2, 1, "", "convtrue"], [773, 2, 1, "", "create_args_kwargs"], [773, 2, 1, "", "flatten"], [773, 2, 1, "", "flatten_and_to_np"], [773, 2, 1, "", "flatten_frontend"], [773, 2, 1, "", "flatten_frontend_fw_to_np"], [773, 2, 1, "", "flatten_frontend_to_np"], [773, 2, 1, "", "get_frontend_ret"], [773, 2, 1, "", "get_ret_and_flattened_np_array"], [773, 2, 1, "", "gradient_incompatible_function"], [773, 2, 1, "", "gradient_test"], [773, 2, 1, "", "gradient_unsupported_dtypes"], [773, 2, 1, "", "kwargs_to_args_n_kwargs"], [773, 2, 1, "", "test_frontend_function"], [773, 2, 1, "", "test_frontend_method"], [773, 2, 1, "", "test_function"], [773, 2, 1, "", "test_function_backend_computation"], [773, 2, 1, "", "test_function_ground_truth_computation"], [773, 2, 1, "", "test_gradient_backend_computation"], [773, 2, 1, "", "test_gradient_ground_truth_computation"], [773, 2, 1, "", "test_method"], [773, 2, 1, "", "test_method_backend_computation"], [773, 2, 1, "", "test_method_ground_truth_computation"], [773, 2, 1, "", "traced_if_required"], [773, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[774, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [774, 7, 1, "", "InterruptedTest"], [774, 1, 1, "", "TestData"], [774, 2, 1, "", "setup_api_test"], [774, 2, 1, "", "setup_frontend_test"], [774, 2, 1, "", "teardown_api_test"], [774, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[774, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[774, 0, 1, "", "__init__"], [774, 4, 1, "", "fn_name"], [774, 4, 1, "", "fn_tree"], [774, 4, 1, "", "is_method"], [774, 4, 1, "", "supported_device_dtypes"], [774, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[776, 3, 0, "-", "array_helpers"], [777, 3, 0, "-", "dtype_helpers"], [778, 3, 0, "-", "general_helpers"], [779, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, 2, 1, "", "array_and_broadcastable_shape"], [776, 2, 1, "", "array_bools"], [776, 2, 1, "", "array_helpers_dtype_info_helper"], [776, 2, 1, "", "array_indices_axis"], [776, 2, 1, "", "array_indices_put_along_axis"], [776, 2, 1, "", "array_values"], [776, 2, 1, "", "arrays_and_axes"], [776, 2, 1, "", "arrays_for_pooling"], [776, 2, 1, "", "broadcast_shapes"], [776, 2, 1, "", "cond_data_gen_helper"], [776, 2, 1, "", "create_concatenable_arrays_dtypes"], [776, 2, 1, "", "create_nested_input"], [776, 2, 1, "", "dtype_and_values"], [776, 2, 1, "", "dtype_array_query"], [776, 2, 1, "", "dtype_array_query_val"], [776, 2, 1, "", "dtype_values_axis"], [776, 2, 1, "", "einsum_helper"], [776, 2, 1, "", "get_first_solve_batch_matrix"], [776, 2, 1, "", "get_first_solve_matrix"], [776, 2, 1, "", "get_second_solve_batch_matrix"], [776, 2, 1, "", "get_second_solve_matrix"], [776, 2, 1, "", "list_of_size"], [776, 2, 1, "", "lists"], [776, 2, 1, "", "mutually_broadcastable_shapes"], [776, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, 2, 1, "", "array_dtypes"], [777, 2, 1, "", "cast_filter"], [777, 2, 1, "", "cast_filter_helper"], [777, 2, 1, "", "get_castable_dtype"], [777, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, 7, 1, "", "BroadcastError"], [778, 2, 1, "", "apply_safety_factor"], [778, 2, 1, "", "broadcast_shapes"], [778, 2, 1, "", "dims_and_offset"], [778, 2, 1, "", "embedding_helper"], [778, 2, 1, "", "general_helpers_dtype_info_helper"], [778, 2, 1, "", "get_axis"], [778, 2, 1, "", "get_bounds"], [778, 2, 1, "", "get_mean_std"], [778, 2, 1, "", "get_shape"], [778, 2, 1, "", "matrix_is_stable"], [778, 2, 1, "", "reshape_shapes"], [778, 2, 1, "", "sizes_"], [778, 2, 1, "", "subsets"], [778, 2, 1, "", "two_broadcastable_shapes"], [778, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, 2, 1, "", "floats"], [779, 2, 1, "", "ints"], [779, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, 2, 1, "", "backend_proc"], [780, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, 1, 1, "", "BackendHandler"], [781, 1, 1, "", "BackendHandlerMode"], [781, 1, 1, "", "WithBackendContext"], [781, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[781, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[781, 4, 1, "", "SetBackend"], [781, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[781, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[782, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[782, 0, 1, "", "__init__"], [782, 4, 1, "", "framework_init_module"], [782, 4, 1, "", "init_name"], [782, 4, 1, "", "ivy_init_module"], [782, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, 1, 1, "", "DynamicFlag"], [783, 1, 1, "", "FrontendFunctionTestFlags"], [783, 1, 1, "", "FrontendInitTestFlags"], [783, 1, 1, "", "FrontendMethodTestFlags"], [783, 1, 1, "", "FunctionTestFlags"], [783, 1, 1, "", "InitMethodTestFlags"], [783, 1, 1, "", "MethodTestFlags"], [783, 1, 1, "", "TestFlags"], [783, 2, 1, "", "build_flag"], [783, 2, 1, "", "frontend_function_flags"], [783, 2, 1, "", "frontend_init_flags"], [783, 2, 1, "", "frontend_method_flags"], [783, 2, 1, "", "function_flags"], [783, 2, 1, "", "init_method_flags"], [783, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[783, 0, 1, "", "__init__"], [783, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[783, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, 2, 1, "", "handle_example"], [784, 2, 1, "", "handle_frontend_method"], [784, 2, 1, "", "handle_frontend_test"], [784, 2, 1, "", "handle_method"], [784, 2, 1, "", "handle_test"], [784, 2, 1, "", "num_positional_args"], [784, 2, 1, "", "num_positional_args_helper"], [784, 2, 1, "", "num_positional_args_method"], [784, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"credit": 0, "card": 0, "fraud": 0, "detect": 0, "us": [0, 6, 8, 12, 19, 27, 30, 47, 49, 812, 814, 818, 819, 823, 839, 842, 852, 856, 863, 864], "ivi": [0, 4, 5, 8, 12, 19, 22, 30, 31, 32, 43, 44, 46, 47, 49, 812, 818, 820, 824, 826, 828, 831, 833, 839, 841, 842, 843, 844, 845, 846, 849, 850, 851, 852, 853, 854, 856, 863, 864, 865, 876], "framework": [0, 6, 31, 37, 43, 772, 785, 839, 842, 850, 870, 873, 876, 877], "librari": [0, 28, 31, 32, 47, 49, 864], "instal": [0, 4, 5, 12, 22, 43, 44, 46, 812, 856], "import": [0, 5, 8, 12, 14, 22, 43, 44, 47, 804], "configur": [0, 833, 842, 852], "environ": [0, 819], "load": [0, 8, 12, 14, 769, 852], "dataset": [0, 45, 47], "preview": 0, "inspect": [0, 808], "end": [0, 47], "inform": 0, "identifi": 0, "miss": 0, "valu": [0, 842], "transact": 0, "class": [0, 108, 785, 824, 833, 841, 851], "distribut": 0, "separ": 0, "data": [0, 4, 5, 8, 12, 14, 22, 31, 43, 54, 77, 108, 370, 630, 645, 749, 750, 751, 752, 829, 841, 844, 852, 855], "analysi": 0, "statist": [0, 70, 93, 387, 647], "measur": 0, "legitim": 0, "fraudul": 0, "compar": [0, 6, 7, 14], "metric": [0, 14, 47], "under": 0, "sampl": [0, 44], "balanc": [0, 847], "creat": [0, 1, 43, 44, 818], "split": [0, 708], "featur": [0, 844], "target": [0, 43], "train": [0, 14, 43, 45, 47], "test": [0, 14, 45, 773, 783, 784, 787, 818, 819, 820, 823, 828, 834, 842, 844], "set": [0, 6, 12, 39, 43, 44, 68, 91, 384, 645, 819, 825, 834, 846, 856], "convert": [0, 6, 7, 789, 854], "arrai": [0, 102, 105, 127, 386, 776, 823, 824, 828, 836, 851, 860, 863, 867], "displai": [0, 48], "dimens": 0, "prepar": [0, 4, 5, 8, 12], "function": [0, 8, 22, 31, 32, 43, 44, 45, 47, 49, 109, 773, 818, 827, 829, 830, 833, 836, 837, 838, 839, 841, 842, 844, 845, 846, 847, 849, 854, 855, 864], "process": 0, "enabl": 0, "soft": 0, "devic": [0, 55, 78, 371, 631, 830, 836, 841], "mode": [0, 39, 829, 833, 846], "xgboost": [0, 14], "classifi": [0, 12], "benchmark": 0, "model": [0, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 29, 30, 31, 32, 43, 44, 45, 46, 47, 49, 854, 855], "time": [0, 14], "base": [0, 74, 96, 106], "predict": 0, "perform": 0, "implement": [0, 4, 8, 828, 839, 841, 861], "ha": 0, "demonstr": 0, "faster": 0, "standard": [0, 847, 860, 867, 876], "classif": [0, 5], "report": 0, "evalu": [0, 14], "ivyclassifi": 0, "xgbclassifi": [0, 14], "visual": [0, 48], "comparison": [0, 14, 852], "demo": [1, 3, 4, 5, 20, 31, 45, 46], "notebook": 1, "TO": 2, "replac": 2, "titl": 2, "exampl": [3, 8, 12, 14, 20, 39, 831, 836, 839, 842, 844, 847, 863, 864, 865], "alexnet": 4, "infer": [4, 5, 8, 12, 838], "torch": [4, 5, 8, 12, 39, 46, 870, 871], "tensorflow": [4, 5, 6, 8, 14, 18, 39, 46, 47, 48, 870], "jax": [4, 5, 8, 11, 13, 14, 39, 46, 870], "appendix": [4, 8], "code": [4, 22, 23, 24, 25, 32, 43, 835, 843, 845], "bert": 5, "dependeci": 5, "modul": [5, 794, 829, 830, 853, 864], "sequenc": [5, 836], "your": [6, 8, 12, 820, 844], "pytorch": [6, 7, 13, 14, 16, 45, 870], "project": 6, "incompat": 6, "transpil": [6, 7, 16, 17, 18, 25, 26, 27, 28, 29, 31, 32, 35, 36, 37, 38, 39, 45, 49, 854, 856, 864], "about": [6, 7, 43], "up": [6, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 819, 834, 843, 856], "sourc": [6, 856], "from": [6, 7, 39, 46, 856], "result": [6, 7, 44], "fine": [6, 7], "tune": [6, 7], "conclus": [6, 7], "how": [7, 27, 818, 826, 834, 843, 844], "To": [7, 49, 820], "paddlepaddl": 7, "imag": [8, 12, 60, 83, 253, 814, 826], "segment": 8, "unet": 8, "custom": [8, 824, 826, 839, 843, 852, 855], "preprocess": 8, "visualis": [8, 12], "initi": [8, 12, 791, 853], "nativ": [8, 12, 824, 847], "pretrain": [8, 12], "weight": [8, 12, 852], "mask": 8, "backend": [8, 14, 22, 31, 43, 44, 46, 47, 799, 802, 818, 825, 829, 839, 845, 849, 855], "acceler": [11, 13, 14], "mmpretrain": 11, "resnet": [12, 50], "label": 12, "resnet34": 12, "resnet50": 12, "xgb_frontend": 14, "xgb": 14, "more": [14, 819, 847, 861], "exhaust": 14, "v": [14, 26, 36, 39, 835, 855, 860, 863], "number": [14, 779, 836], "boost": 14, "round": [14, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 45, 283, 843], "fraction": 14, "guid": [15, 20], "build": [16, 17, 18, 47, 814, 826, 849], "top": [16, 17, 18, 821, 828, 878], "haiku": 17, "develop": 19, "convolut": 19, "network": [19, 44, 47, 852, 854], "tutori": [20, 47], "And": 20, "learn": [20, 21, 870], "basic": [20, 21, 43, 44, 820, 841], "write": [22, 30, 841, 844], "content": [22, 45], "handler": [22, 31, 801, 802, 849], "structur": [22, 31, 826, 839, 855], "api": [22, 31, 32, 818, 823, 827, 828, 839, 845, 849, 851, 853, 854, 856, 860, 863, 864, 865, 867, 874, 876], "state": [22, 31, 32, 853, 855, 863], "unifi": [23, 26, 27, 33, 36, 37, 38, 43, 812, 851, 861, 865, 872, 876], "trace": [24, 26, 27, 32, 691, 833], "lazi": [26, 36, 863], "eager": [26, 36, 863], "decor": [27, 38, 833, 838, 844], "ani": [28, 29, 31, 32, 768], "odsc": 31, "graph": [31, 48, 871, 876], "tracer": [31, 849, 854, 856, 863, 871, 876], "quickstart": 32, "get": [32, 812, 820, 856], "familiar": 32, "0": [33, 34, 35, 36, 40, 41], "1": [34, 36, 37, 38, 39, 42, 49, 870], "compil": [34, 36, 37, 38, 44, 863, 868, 873, 875, 876], "2": [35, 38, 40, 49, 870], "select": 37, "As": 38, "3": [39, 41, 42, 49], "dynam": [39, 47, 804, 825, 855], "static": 39, "todo": [39, 820], "explain": 39, "via": 39, "why": [39, 844, 861], "i": [39, 826, 847], "true": 39, "default": [39, 544], "when": 39, "numpi": [39, 46, 841, 870], "fals": 39, "kornia": 40, "perceiv": 41, "stabl": 42, "diffus": 42, "oper": [43, 836, 846, 851, 855], "ml": [43, 859, 872, 876], "chang": 43, "one": 43, "line": [43, 820], "No": [43, 819, 861], "need": [43, 844], "worri": 43, "type": [43, 54, 77, 370, 630, 829, 837, 841, 855], "differ": 43, "them": 43, "all": [43, 767], "standalon": [43, 837], "defin": [43, 44, 45, 47], "optim": [43, 796, 853], "input": [43, 44, 836], "loss": [43, 63, 86, 377, 638, 793], "loop": [43, 47], "check": [44, 835, 855], "simpl": 44, "neural": 44, "deepmind": [45, 46], "": [45, 47, 818, 826, 843, 856], "perceiverio": [45, 46], "tabl": [45, 826, 829, 867], "construct": [45, 852], "some": 45, "helper": [45, 775, 776, 777, 778, 779, 781, 784, 790, 800, 806, 842, 844, 845], "pipelin": [45, 47, 781, 826, 828, 844, 855], "download": 45, "dataload": 45, "gpu": [46, 855], "introduct": [46, 49, 841, 842], "python3": 46, "8": 46, "setup": [46, 835], "kernel": 46, "clone": [46, 819, 828], "repo": [46, 819], "ivy_model": 46, "run": [46, 820, 823, 826, 834, 844], "let": 47, "we": [47, 844], "ar": 47, "mnist": 47, "thi": 47, "temporari": 47, "loader": 47, "util": [47, 71, 94, 388, 648, 786], "plot": 47, "save": [47, 770, 852], "huggingfac": 48, "deit": 48, "can": 48, "html": 48, "file": 48, "browser": [48, 820], "interfac": 49, "telemetri": 49, "18": 50, "activ": [51, 73, 367, 626, 788], "convers": [52, 75, 838], "creation": [53, 76, 369, 629], "elementwis": [56, 79, 107, 372, 632], "experiment": [57, 80, 633, 818], "gener": [58, 81, 373, 634, 778, 839, 844, 847, 863], "gradient": [59, 82, 349, 374, 635, 839], "layer": [61, 84, 375, 636, 792], "linear": [62, 85, 376, 637, 660], "algebra": [62, 85, 376, 637], "manipul": [64, 87, 378, 639], "norm": [65, 88, 381, 642, 795], "random": [66, 89, 382, 643], "search": [67, 90, 383, 644], "sort": [69, 92, 385, 646, 756], "wrap": [72, 95, 838], "cp": 97, "tensor": [97, 98, 99, 100, 101, 104], "parafac2": 98, "tr": 99, "tt": 100, "tucker": [101, 451], "contain": [103, 820, 827, 852], "factor": 104, "nest": [105, 380, 641], "gelu": 110, "hardswish": 111, "leaky_relu": 112, "log_softmax": 113, "mish": 114, "relu": 115, "sigmoid": 116, "softmax": 117, "softplu": 118, "softsign": 119, "cmp_i": 120, "cmp_isnot": 121, "for_loop": 122, "if_els": 123, "try_except": 124, "while_loop": 125, "arang": 126, "asarrai": 128, "copy_arrai": 129, "empti": 130, "empty_lik": 131, "ey": 132, "from_dlpack": 133, "note": [133, 144, 629], "frombuff": 134, "full": [135, 842], "full_lik": 136, "linspac": 137, "logspac": 138, "meshgrid": 139, "native_arrai": 140, "one_hot": 141, "ones": 142, "ones_lik": 143, "to_dlpack": 144, "tril": 145, "triu": 146, "triu_indic": 147, "zero": 148, "zeros_lik": 149, "as_ivy_dtyp": 150, "as_native_dtyp": 151, "astyp": 152, "broadcast_arrai": 153, "broadcast_to": 154, "can_cast": 155, "check_float": 156, "closest_valid_dtyp": 157, "default_complex_dtyp": 158, "default_dtyp": 159, "default_float_dtyp": 160, "default_int_dtyp": 161, "default_uint_dtyp": 162, "dtype": [163, 777, 836], "dtype_bit": 164, "finfo": 165, "function_supported_dtyp": 166, "function_unsupported_dtyp": 167, "iinfo": 168, "infer_default_dtyp": 169, "invalid_dtyp": 170, "is_bool_dtyp": 171, "is_complex_dtyp": 172, "is_float_dtyp": 173, "is_hashable_dtyp": 174, "is_int_dtyp": 175, "is_native_dtyp": 176, "is_uint_dtyp": 177, "promote_typ": 178, "promote_types_of_input": 179, "result_typ": 180, "set_default_complex_dtyp": 181, "set_default_dtyp": 182, "set_default_float_dtyp": 183, "set_default_int_dtyp": 184, "set_default_uint_dtyp": 185, "type_promote_arrai": 186, "unset_default_complex_dtyp": 187, "unset_default_dtyp": 188, "unset_default_float_dtyp": 189, "unset_default_int_dtyp": 190, "unset_default_uint_dtyp": 191, "valid_dtyp": 192, "as_ivy_dev": 193, "as_native_dev": 194, "clear_cached_mem_on_dev": 195, "default_devic": 196, "dev": 197, "dev_util": 198, "function_supported_devic": 199, "function_unsupported_devic": 200, "get_all_ivy_arrays_on_dev": 201, "gpu_is_avail": 202, "handle_soft_device_vari": 203, "num_cpu_cor": 204, "num_gpu": 205, "num_ivy_arrays_on_dev": 206, "percent_used_mem_on_dev": 207, "print_all_ivy_arrays_on_dev": 208, "set_default_devic": 209, "set_soft_device_mod": 210, "paramet": [210, 578, 579, 584, 585, 587, 588, 631, 634, 783, 788, 846], "set_split_factor": 211, "split_factor": 212, "split_func_cal": 213, "to_devic": 214, "total_mem_on_dev": 215, "tpu_is_avail": 216, "unset_default_devic": 217, "unset_soft_device_mod": 218, "used_mem_on_dev": 219, "ab": 220, "aco": 221, "acosh": 222, "add": [223, 831, 842, 876], "angl": 224, "asin": 225, "asinh": 226, "atan": 227, "atan2": 228, "atanh": 229, "bitwise_and": 230, "bitwise_invert": 231, "bitwise_left_shift": 232, "bitwise_or": 233, "bitwise_right_shift": 234, "bitwise_xor": 235, "ceil": 236, "co": 237, "cosh": 238, "deg2rad": 239, "divid": 240, "equal": 241, "erf": 242, "exp": 243, "exp2": 244, "expm1": 245, "floor": 246, "floor_divid": 247, "fmin": 248, "fmod": 249, "gcd": 250, "greater": 251, "greater_equ": 252, "isfinit": 254, "isinf": 255, "isnan": 256, "isreal": 257, "lcm": 258, "less": 259, "less_equ": 260, "log": [261, 809, 819], "log10": 262, "log1p": 263, "log2": 264, "logaddexp": 265, "logaddexp2": 266, "logical_and": 267, "logical_not": 268, "logical_or": 269, "logical_xor": 270, "maximum": 271, "minimum": 272, "multipli": 273, "nan_to_num": 274, "neg": 275, "not_equ": 276, "posit": [277, 836], "pow": 278, "rad2deg": 279, "real": 280, "reciproc": 281, "remaind": 282, "sign": 284, "sin": 285, "sinh": 286, "sqrt": 287, "squar": 288, "subtract": 289, "tan": [290, 831, 842], "tanh": 291, "trapz": 292, "trunc": 293, "trunc_divid": 294, "celu": 295, "elu": 296, "hardshrink": 297, "hardsilu": 298, "hardtanh": 299, "logit": 300, "logsigmoid": 301, "prelu": 302, "relu6": 303, "scaled_tanh": 304, "selu": 305, "silu": 306, "softshrink": 307, "stanh": 308, "tanhshrink": 309, "threshold": 310, "thresholded_relu": 311, "blackman_window": 312, "eye_lik": 313, "hamming_window": 314, "hann_window": 315, "indic": 316, "kaiser_bessel_derived_window": 317, "kaiser_window": 318, "mel_weight_matrix": 319, "ndenumer": 320, "ndindex": 321, "polyv": 322, "random_cp": 323, "random_parafac2": 324, "random_tr": 325, "random_tt": 326, "random_tuck": 327, "tril_indic": 328, "trilu": 329, "unsorted_segment_mean": 330, "unsorted_segment_min": 331, "unsorted_segment_sum": 332, "vorbis_window": 333, "allclos": 334, "amax": 335, "amin": 336, "binar": 337, "conj": 338, "copysign": 339, "count_nonzero": 340, "diff": 341, "digamma": 342, "erfc": 343, "erfinv": 344, "fix": [345, 818, 834], "float_pow": 346, "fmax": 347, "frexp": 348, "hypot": 350, "isclos": 351, "ldexp": 352, "lerp": 353, "lgamma": 354, "modf": 355, "nansum": 356, "nextaft": 357, "signbit": 358, "sinc": 359, "sparsify_tensor": 360, "xlogi": 361, "zeta": 362, "reduc": 363, "bind_custom_gradient_funct": 364, "jvp": 365, "vjp": 366, "constant": [368, 627], "meta": [379, 640], "spars": 386, "adaptive_avg_pool1d": 389, "adaptive_avg_pool2d": 390, "adaptive_max_pool2d": 391, "adaptive_max_pool3d": 392, "area_interpol": 393, "avg_pool1d": 394, "avg_pool2d": 395, "avg_pool3d": 396, "dct": 397, "dft": 398, "dropout1d": 399, "dropout2d": 400, "dropout3d": 401, "embed": 402, "fft": 403, "fft2": 404, "generate_einsum_equ": 405, "get_interpolate_kernel": 406, "idct": 407, "ifft": 408, "ifftn": 409, "interp": 410, "interpol": 411, "max_pool1d": 412, "max_pool2d": 413, "max_pool3d": 414, "max_unpool1d": 415, "nearest_interpol": 416, "pool": 417, "reduce_window": 418, "rfft": 419, "rfftn": 420, "rnn": 421, "sliding_window": 422, "stft": 423, "adjoint": 424, "batched_out": 425, "cond": 426, "diagflat": 427, "dot": 428, "eig": [429, 672], "eigh_tridiagon": 430, "eigval": 431, "general_inner_product": 432, "higher_order_mo": 433, "initialize_tuck": 434, "khatri_rao": 435, "kron": 436, "kroneck": 437, "lu_factor": 438, "lu_solv": 439, "make_svd_non_neg": 440, "matrix_exp": 441, "mode_dot": 442, "multi_dot": 443, "multi_mode_dot": 444, "partial_tuck": 445, "solve_triangular": 446, "svd_flip": 447, "tensor_train": 448, "truncated_svd": 449, "tt_matrix_to_tensor": 450, "hinge_embedding_loss": 452, "huber_loss": 453, "kl_div": 454, "l1_loss": 455, "log_poisson_loss": 456, "poisson_nll_loss": 457, "smooth_l1_loss": 458, "soft_margin_loss": 459, "as_strid": 460, "associative_scan": 461, "atleast_1d": 462, "atleast_2d": 463, "atleast_3d": 464, "broadcast_shap": 465, "check_scalar": 466, "choos": 467, "column_stack": 468, "concat_from_sequ": 469, "dsplit": 470, "dstack": 471, "expand": 472, "fill_diagon": 473, "flatten": 474, "fliplr": 475, "flipud": 476, "fold": 477, "heavisid": 478, "hsplit": 479, "hstack": 480, "i0": 481, "matric": 482, "moveaxi": 483, "pad": 484, "partial_fold": 485, "partial_tensor_to_vec": 486, "partial_unfold": 487, "partial_vec_to_tensor": 488, "put_along_axi": 489, "rot90": 490, "soft_threshold": 491, "take": 492, "take_along_axi": 493, "top_k": 494, "trim_zero": 495, "unflatten": 496, "unfold": 497, "unique_consecut": 498, "vsplit": 499, "vstack": 500, "batch_norm": 501, "group_norm": 502, "instance_norm": 503, "l1_normal": 504, "l2_normal": 505, "local_response_norm": 506, "lp_normal": 507, "bernoulli": 508, "beta": 509, "dirichlet": 510, "gamma": 511, "poisson": 512, "unravel_index": 513, "invert_permut": 514, "lexsort": 515, "is_ivy_sparse_arrai": 516, "is_native_sparse_arrai": 517, "native_sparse_arrai": 518, "native_sparse_array_to_indices_values_and_shap": 519, "bincount": 520, "corrcoef": 521, "cov": 522, "cummax": 523, "cummin": 524, "histogram": 525, "igamma": 526, "median": 527, "nanmean": 528, "nanmedian": 529, "nanmin": 530, "nanprod": 531, "quantil": 532, "optional_get_el": 533, "all_equ": 534, "arg_info": 535, "arg_nam": 536, "array_equ": 537, "assert_supports_inplac": 538, "cache_fn": 539, "clip_matrix_norm": 540, "clip_vector_norm": 541, "container_typ": 542, "current_backend_str": 543, "einops_rearrang": 545, "einops_reduc": 546, "einops_repeat": 547, "exist": [548, 814, 843], "fourier_encod": 549, "function_supported_devices_and_dtyp": 550, "function_unsupported_devices_and_dtyp": 551, "gather": 552, "gather_nd": 553, "get_all_arrays_in_memori": 554, "get_item": 555, "get_num_dim": 556, "get_referrers_recurs": 557, "has_nan": 558, "inplace_arrays_support": 559, "inplace_decr": 560, "inplace_incr": 561, "inplace_upd": 562, "inplace_variables_support": 563, "is_arrai": 564, "is_ivy_arrai": 565, "is_ivy_contain": 566, "is_ivy_nested_arrai": 567, "is_native_arrai": 568, "isin": 569, "isscalar": 570, "items": 571, "match_kwarg": 572, "multiprocess": [573, 780], "num_arrays_in_memori": 574, "print_all_arrays_in_memori": 575, "scatter_flat": 576, "scatter_nd": 577, "set_array_mod": 578, "set_exception_trace_mod": 579, "set_inplace_mod": 580, "set_item": 581, "set_min_bas": 582, "set_min_denomin": 583, "set_nestable_mod": 584, "set_precise_mod": 585, "set_queue_timeout": 586, "set_shape_array_mod": 587, "set_show_func_wrapper_trace_mod": 588, "set_tmp_dir": 589, "shape": [590, 645, 749, 750, 751, 752, 838, 855], "size": [591, 855], "stable_divid": 592, "stable_pow": 593, "stride": 594, "supports_inplace_upd": 595, "to_ivy_shap": 596, "to_list": 597, "to_native_shap": 598, "to_numpi": 599, "to_scalar": 600, "try_else_non": 601, "unset_array_mod": 602, "unset_exception_trace_mod": 603, "unset_inplace_mod": 604, "unset_min_bas": 605, "unset_min_denomin": 606, "unset_nestable_mod": 607, "unset_precise_mod": 608, "unset_queue_timeout": 609, "unset_shape_array_mod": 610, "unset_show_func_wrapper_trace_mod": 611, "unset_tmp_dir": 612, "value_is_nan": 613, "vmap": 614, "adam_step": 615, "adam_upd": 616, "execute_with_gradi": [617, 839], "grad": 618, "gradient_descent_upd": 619, "jac": 620, "lamb_upd": 621, "lars_upd": 622, "optimizer_upd": 623, "stop_gradi": 624, "value_and_grad": 625, "control": [628, 855], "flow": [628, 855], "op": 628, "depend": [645, 749, 750, 751, 752], "output": [645, 749, 750, 751, 752], "conv": 649, "conv1d": 650, "conv1d_transpos": 651, "conv2d": 652, "conv2d_transpos": 653, "conv3d": 654, "conv3d_transpos": 655, "conv_general_dil": 656, "conv_general_transpos": 657, "depthwise_conv2d": 658, "dropout": 659, "lstm": 661, "lstm_updat": 662, "multi_head_attent": 663, "nm": 664, "roi_align": 665, "scaled_dot_product_attent": 666, "choleski": 667, "cross": 668, "det": 669, "diag": 670, "diagon": 671, "eigh": 673, "eigvalsh": 674, "inner": 675, "inv": 676, "matmul": 677, "matrix_norm": 678, "matrix_pow": 679, "matrix_rank": 680, "matrix_transpos": 681, "outer": 682, "pinv": 683, "qr": 684, "slogdet": 685, "solv": 686, "svd": 687, "svdval": 688, "tensordot": 689, "tensorsolv": 690, "vander": 692, "vecdot": 693, "vector_norm": 694, "vector_to_skew_symmetric_matrix": 695, "binary_cross_entropi": 696, "cross_entropi": 697, "sparse_cross_entropi": 698, "clip": 699, "concat": 700, "constant_pad": 701, "expand_dim": 702, "flip": 703, "permute_dim": 704, "repeat": 705, "reshap": 706, "roll": [707, 831], "squeez": 709, "stack": [710, 833], "swapax": 711, "tile": 712, "unstack": 713, "zero_pad": 714, "fomaml_step": 715, "maml_step": 716, "reptile_step": 717, "all_nested_indic": 718, "copy_nest": 719, "duplicate_array_index_chain": 720, "index_nest": 721, "insert_into_nest_at_index": 722, "insert_into_nest_at_indic": 723, "map": [724, 828], "map_nest_at_index": 725, "map_nest_at_indic": 726, "multi_index_nest": 727, "nested_ani": 728, "nested_argwher": 729, "nested_map": 730, "nested_multi_map": 731, "prune_empti": 732, "prune_nest_at_index": 733, "prune_nest_at_indic": 734, "set_nest_at_index": 735, "set_nest_at_indic": 736, "layer_norm": 737, "multinomi": 738, "randint": 739, "random_norm": 740, "random_uniform": 741, "seed": 742, "shuffl": 743, "argmax": 744, "argmin": 745, "argwher": 746, "nonzero": 747, "where": [748, 818, 834], "unique_al": 749, "unique_count": 750, "unique_invers": 751, "unique_valu": 752, "argsort": 753, "msort": 754, "searchsort": 755, "cumprod": 757, "cumsum": 758, "einsum": [759, 805, 806], "max": 760, "mean": 761, "min": 762, "prod": 763, "std": 764, "sum": 765, "var": 766, "assert": [771, 798, 833], "avail": 772, "global": [774, 846], "hypothesi": [775, 819, 842, 844], "struct": 782, "flag": 783, "sequenti": 797, "ast": 800, "sub": 802, "binari": [803, 819], "parser": 805, "path": 806, "except": [807, 833, 838], "profil": 810, "verbos": 811, "statu": 812, "ai": 812, "start": [812, 856], "document": 812, "contribut": [812, 813, 818, 843], "commun": 812, "citat": 812, "doc": [814, 826], "docker": [814, 819, 820, 826, 856], "conveni": [814, 826, 837], "script": [814, 826], "hub": 814, "local": [814, 820, 835], "without": [814, 842], "contributor": [815, 821, 878], "reward": 815, "badg": 815, "tier": 815, "error": [816, 833, 834], "handl": [816, 824, 830, 833, 838, 855], "help": [817, 820, 834], "resourc": 817, "open": 818, "task": 818, "fail": [818, 834, 844], "frontend": [818, 825, 841, 842, 854], "place": 818, "checklist": 818, "format": [818, 835, 869, 876], "extend": [818, 844, 847], "an": [818, 839], "issu": [818, 820, 835, 856], "github": [818, 819], "templat": 818, "fork": [819, 820], "pre": [819, 835], "commit": [819, 820, 828, 835], "pycharm": [819, 820, 835], "virtual": 819, "miniconda": 819, "venv": 819, "interpret": 819, "window": 819, "maco": 819, "ubuntu": 819, "detail": 819, "free": 819, "wsl": 819, "codespac": 819, "The": [819, 820, 826, 839, 841, 851, 855, 860], "list": 820, "manag": 820, "who": 820, "ask": [820, 834], "With": 820, "command": 820, "pull": [820, 828], "request": [820, 828], "small": 820, "often": 820, "interact": 820, "most": 820, "out": [820, 836, 838, 840], "id": [820, 823], "program": 821, "core": [821, 878], "rise": [821, 878], "deep": 822, "dive": 822, "termin": 823, "regener": 823, "failur": 823, "skip": 823, "integr": [824, 828, 835, 843, 844], "version": [825, 845, 855], "support": [825, 829, 838, 841, 855], "builder": 826, "being": 826, "option": 826, "index": 826, "rst": 826, "partial_conf": 826, "py": 826, "prebuild": 826, "sh": 826, "extens": 826, "custom_autosummari": 826, "hide": 826, "discussion_link": 826, "skippable_funct": 826, "ivy_data": 826, "instanc": [827, 841, 842, 851], "method": [827, 841, 842, 851, 852], "special": [827, 829, 841], "nestabl": [827, 836, 837, 838], "continu": [828, 835], "push": 828, "pr": 828, "trigger": 828, "A": [828, 847], "down": 828, "view": [828, 838, 840], "store": 828, "retriev": 828, "repositori": 828, "nitti": 828, "gritti": 828, "storag": 828, "space": 828, "unifyai": 828, "determin": 828, "coverag": 828, "workflow": 828, "multipl": 828, "runner": 828, "race": 828, "condit": 828, "period": 828, "manual": 828, "dispatch": 828, "ci": 828, "dashboard": 828, "promot": [829, 841], "precis": 829, "non": [829, 847], "argument": [829, 830, 836, 838, 840, 841], "other": [829, 830], "unsupport": 829, "attribut": [829, 846], "case": [829, 852], "bug": 829, "cast": [829, 841], "superset": [829, 847], "docstr": [831, 832], "func_wrapp": 833, "prune": 833, "handle_except": 833, "consist": [833, 844], "prerequir": 834, "common": [834, 835], "lint": [835, 843], "keyword": 836, "integ": 836, "primari": 837, "composit": 837, "mix": [837, 838, 844], "partial": [837, 838, 844], "order": 838, "wrapper": [838, 876, 877], "miscellan": 838, "overview": [839, 843], "usag": [839, 843, 847, 865], "signatur": 839, "design": [839, 845, 848], "our": 839, "polici": [839, 841], "specif": [839, 874, 875, 876], "consider": 839, "inplac": 840, "updat": 840, "copi": 840, "short": 841, "unus": 841, "rule": 841, "duplic": [841, 847], "alia": 842, "formatt": 843, "functionorderingformatt": 843, "work": [843, 860, 866], "own": 844, "strategi": 844, "ad": 844, "explicit": 844, "do": [844, 860], "effect": 844, "bonu": 844, "self": 844, "test_array_funct": 844, "re": [844, 861], "navig": 845, "categor": 845, "submodul": 845, "unpin": 845, "properti": 846, "getter": 846, "setter": 846, "set_": 846, "unset_": 846, "behaviour": 847, "what": [847, 876], "effici": 847, "maxim": 847, "block": 849, "monkei": 851, "patch": 851, "represent": 852, "recurs": 852, "built": 852, "ins": 852, "access": 852, "compartment": 852, "role": 854, "faq": 855, "maintain": 855, "deploy": 855, "auto": 855, "differenti": 855, "replica": 855, "parallel": 855, "altern": 855, "pip": 856, "folder": 856, "kei": 856, "question": 856, "glossari": 857, "motiv": 858, "explos": 859, "skeptic": 860, "complimentari": 860, "competit": 860, "infinit": 861, "shelf": 861, "life": 861, "One": 862, "liner": 862, "trace_graph": 863, "cach": 863, "sharp": [863, 864, 865], "bit": [863, 864, 865], "relat": 866, "infrastructur": [868, 876], "llvm": 868, "mlir": 868, "oneapi": 868, "exchang": [869, 876], "onnx": 869, "nnef": 869, "coreml": 869, "matlab": 870, "scipi": 870, "scikit": 870, "theano": 870, "panda": 870, "julia": 870, "apach": [870, 873], "spark": 870, "mllib": 870, "caff": 870, "chainer": 870, "mxnet": 870, "cntk": 870, "flux": 870, "dex": 870, "languag": 870, "tf": 871, "jaxpr": 871, "jit": 871, "fx": 871, "compani": [872, 876], "quansight": 872, "modular": 872, "octoml": 872, "multi": [873, 876], "vendor": [873, 874, 875, 876], "tvm": 873, "xla": 873, "gcc": 873, "tensorrt": 874, "cuda": 874, "icc": 875, "icx": 875, "nvcc": 875, "doe": 876, "eagerpi": 877, "kera": 877, "thinc": 877, "tensorli": 877, "neuropod": 877, "leaderboard": 878}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"to_dlpack": [[144, "to-dlpack"]], "Note": [[144, null], [133, null], [629, null], [629, null]], "default_dtype": [[159, "default-dtype"]], "is_hashable_dtype": [[174, "is-hashable-dtype"]], "as_ivy_dtype": [[150, "as-ivy-dtype"]], "set_default_float_dtype": [[183, "set-default-float-dtype"]], "is_uint_dtype": [[177, "is-uint-dtype"]], "set_default_dtype": [[182, "set-default-dtype"]], "check_float": [[156, "check-float"]], "invalid_dtype": [[170, "invalid-dtype"]], "native_array": [[140, "native-array"]], "infer_default_dtype": [[169, "infer-default-dtype"]], "is_native_dtype": [[176, "is-native-dtype"]], "is_bool_dtype": [[171, "is-bool-dtype"]], "triu_indices": [[147, "triu-indices"]], "result_type": [[180, "result-type"]], "tril": [[145, "tril"]], "triu": [[146, "triu"]], "promote_types": [[178, "promote-types"]], "function_supported_dtypes": [[166, "function-supported-dtypes"]], "is_float_dtype": [[173, "is-float-dtype"]], "as_native_dtype": [[151, "as-native-dtype"]], "zeros_like": [[149, "zeros-like"]], "default_uint_dtype": [[162, "default-uint-dtype"]], "function_unsupported_dtypes": [[167, "function-unsupported-dtypes"]], "promote_types_of_inputs": [[179, "promote-types-of-inputs"]], "default_float_dtype": [[160, "default-float-dtype"]], "iinfo": [[168, "iinfo"]], "default_complex_dtype": [[158, "default-complex-dtype"]], "logspace": [[138, "logspace"]], "one_hot": [[141, "one-hot"]], "broadcast_arrays": [[153, "broadcast-arrays"]], "closest_valid_dtype": [[157, "closest-valid-dtype"]], "ones_like": [[143, "ones-like"]], "can_cast": [[155, "can-cast"]], "astype": [[152, "astype"]], "ones": [[142, "ones"]], "zeros": [[148, "zeros"]], "is_int_dtype": [[175, "is-int-dtype"]], "is_complex_dtype": [[172, "is-complex-dtype"]], "default_int_dtype": [[161, "default-int-dtype"]], "dtype": [[163, "dtype"]], "broadcast_to": [[154, "broadcast-to"]], "set_default_complex_dtype": [[181, "set-default-complex-dtype"]], "meshgrid": [[139, "meshgrid"]], "finfo": [[165, "finfo"]], "dtype_bits": [[164, "dtype-bits"]], "Vendor-Specific APIs": [[874, "vendor-specific-apis"], [876, "vendor-specific-apis"]], "TensorRT tensorrt": [[874, "tensorrt-tensorrt"]], "CUDA cuda": [[874, "cuda-cuda"]], "Vendor-Specific Compilers": [[875, "vendor-specific-compilers"], [876, "vendor-specific-compilers"]], "ICC": [[875, "id1"]], "ICX": [[875, "icx"]], "NVCC": [[875, "nvcc"]], "Wrapper Frameworks": [[877, "wrapper-frameworks"], [876, "wrapper-frameworks"]], "EagerPy eagerpy": [[877, "eagerpy-eagerpy"]], "Keras keras": [[877, "keras-keras"]], "Thinc thinc": [[877, "thinc-thinc"]], "TensorLy tensorly": [[877, "tensorly-tensorly"]], "NeuroPod": [[877, "id1"]], "Contributor Leaderboard": [[878, "contributor-leaderboard"]], "Top Contributors": [[878, "top-contributors"]], "Rising Contributors": [[878, "rising-contributors"]], "Core Contributors": [[878, "core-contributors"]], "Contributors": [[878, "contributors"]], "What does Ivy Add?": [[876, "what-does-ivy-add"]], "API Standards": [[876, "api-standards"], [867, "api-standards"]], "Frameworks": [[876, "frameworks"], [870, "frameworks"]], "Graph Tracers": [[876, "graph-tracers"], [871, "graph-tracers"]], "Exchange Formats": [[876, "exchange-formats"], [869, "exchange-formats"]], "Compiler Infrastructure": [[876, "compiler-infrastructure"], [868, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[876, "multi-vendor-compiler-frameworks"], [873, "multi-vendor-compiler-frameworks"]], "ML-Unifying Companies": [[876, "ml-unifying-companies"], [872, "ml-unifying-companies"]], "Inplace Updates": [[840, "inplace-updates"]], "out argument": [[840, "out-argument"]], "copy argument": [[840, "copy-argument"]], "Views": [[840, "views"]], "Why Unify?": [[861, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[861, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[861, "infinite-shelf-life"]], "Docstring Examples": [[831, "docstring-examples"]], "ivy.tan": [[831, "ivy-tan"]], "ivy.roll": [[831, "ivy-roll"]], "ivy.add": [[831, "ivy-add"]], "Quansight": [[872, "id1"]], "Modular": [[872, "id2"]], "OctoML": [[872, "id3"]], "Building Blocks": [[849, "building-blocks"]], "Backend Functional APIs \u2705": [[849, "backend-functional-apis"]], "Ivy Functional API \u2705": [[849, "ivy-functional-api"]], "Backend Handler \u2705": [[849, "backend-handler"]], "Tracer \ud83d\udea7": [[849, "tracer"]], "MATLAB matlab": [[870, "matlab-matlab"]], "SciPy scipy": [[870, "scipy-scipy"]], "Torch torch": [[870, "torch-torch"]], "NumPy numpy": [[870, "numpy-numpy"]], "SciKit Learn scikit-learn": [[870, "scikit-learn-scikit-learn"]], "Theano theano": [[870, "theano-theano"]], "Pandas pandas": [[870, "pandas-pandas"]], "Julia julia": [[870, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[870, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[870, "caffe-caffe"]], "Chainer chainer": [[870, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[870, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[870, "mxnet-mxnet"]], "CNTK cntk": [[870, "cntk-cntk"]], "PyTorch pytorch": [[870, "pytorch-pytorch"]], "Flux flux": [[870, "flux-flux"]], "JAX jax": [[870, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[870, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[870, "dex-language-dex-language"]], "Function Types": [[837, "function-types"]], "Primary Functions": [[837, "primary-functions"]], "Compositional Functions": [[837, "compositional-functions"]], "Mixed Functions": [[837, "mixed-functions"]], "Partial Mixed Functions": [[837, "partial-mixed-functions"]], "Standalone Functions": [[837, "standalone-functions"]], "Nestable Functions": [[837, "nestable-functions"], [836, "nestable-functions"], [827, "nestable-functions"]], "Convenience Functions": [[837, "convenience-functions"]], "Get Started": [[856, "get-started"]], "Installing using pip": [[856, "installing-using-pip"]], "Docker": [[856, "docker"]], "Installing from source": [[856, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[856, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[856, "ivy-folder"]], "Setting Up the API key": [[856, "setting-up-the-api-key"]], "Issues and Questions": [[856, "issues-and-questions"]], "Operating Modes": [[846, "operating-modes"]], "Global Parameter Properties": [[846, "global-parameter-properties"]], "Getter: ivy. attribute": [[846, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[846, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ivy.transpile()": [[864, "ivy-transpile"]], "Transpiler API": [[864, "transpiler-api"]], "Using the transpiler": [[864, "using-the-transpiler"]], "Transpiling functions": [[864, "transpiling-functions"]], "Transpiling Libraries": [[864, "transpiling-libraries"]], "Transpiling Modules": [[864, "transpiling-modules"]], "Sharp bits": [[864, "sharp-bits"], [865, "sharp-bits"], [863, "sharp-bits"]], "Examples": [[864, "examples"], [865, "examples"], [836, "examples"], [863, "examples"]], "One liners": [[862, "one-liners"]], "Devices": [[830, "devices"]], "Device Module": [[830, "device-module"]], "Arguments in other Functions": [[830, "arguments-in-other-functions"], [829, "arguments-in-other-functions"]], "Device handling": [[830, "device-handling"]], "Formatting": [[835, "formatting"]], "Lint Checks": [[835, "lint-checks"], [835, "id2"]], "Setup Formatting Locally": [[835, "setup-formatting-locally"]], "Pre-commit": [[835, "pre-commit"]], "VS Code": [[835, "vs-code"]], "PyCharm": [[835, "pycharm"], [819, "pycharm"]], "Common Issues with Pre-Commit": [[835, "common-issues-with-pre-commit"]], "Continuous Integration": [[835, "continuous-integration"], [828, "continuous-integration"]], "Lint Formatting": [[835, "lint-formatting"]], "Ivy as a Transpiler": [[854, "ivy-as-a-transpiler"], [31, "Ivy-as-a-Transpiler"], [32, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[854, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[854, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[854, "converting-network-models"]], "Fix Failing Tests:": [[834, "fix-failing-tests"]], "Prerequirement:": [[834, "prerequirement"]], "Setting Up": [[834, "setting-up"], [819, "setting-up"]], "How to run tests": [[834, "how-to-run-tests"]], "Common Errors": [[834, "common-errors"]], "Where to ask for Help": [[834, "where-to-ask-for-help"]], "Motivation": [[858, "motivation"]], "Design": [[848, "design"]], "ivy.unify()": [[865, "ivy-unify"]], "Unify API": [[865, "unify-api"]], "Usage": [[865, "usage"]], "ONNX onnx": [[869, "onnx-onnx"]], "NNEF nnef": [[869, "nnef-nnef"]], "CoreML coreml": [[869, "coreml-coreml"]], "Ivy Array": [[851, "ivy-array"], [824, "ivy-array"]], "The Array Class": [[851, "the-array-class"]], "Unifying Operators": [[851, "unifying-operators"]], "API Monkey Patching": [[851, "api-monkey-patching"]], "Instance Methods": [[851, "instance-methods"]], "ML Explosion": [[859, "ml-explosion"]], "Gradients": [[839, "gradients"], [635, "gradients"], [374, "gradients"], [82, "module-ivy.data_classes.container.gradients"], [59, "module-ivy.data_classes.array.gradients"]], "Overview": [[839, "overview"], [843, "overview"]], "Example Usage of the Gradient API": [[839, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[839, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[839, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[839, "custom-gradient-functions"]], "Design of the Gradient API": [[839, "design-of-the-gradient-api"]], "Our policy on gradients": [[839, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[839, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[839, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[839, "framework-specific-considerations"]], "Commit (Push/PR) Triggered Testing": [[828, "commit-push-pr-triggered-testing"]], "Ivy Tests": [[828, "ivy-tests"], [844, "ivy-tests"]], "Implementation": [[828, "implementation"]], "A Top-Down View": [[828, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[828, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[828, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[828, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[828, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[828, "determine-test-coverage-workflow"]], "Multiple Runners": [[828, "multiple-runners"]], "Race Condition": [[828, "race-condition"]], "Array API Tests": [[828, "array-api-tests"], [823, "array-api-tests"]], "Periodic Testing": [[828, "periodic-testing"]], "Manually Dispatched Workflows": [[828, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[828, "ci-pipeline"]], "Push": [[828, "push"]], "Pull Request": [[828, "pull-request"]], "Dashboard": [[828, "dashboard"]], "tf.Graph": [[871, "tf-graph"]], "Jaxpr": [[871, "jaxpr"]], "torch.jit": [[871, "torch-jit"]], "torch.fx": [[871, "torch-fx"]], "Navigating the Code": [[845, "navigating-the-code"]], "Categorization": [[845, "categorization"]], "Submodule Design": [[845, "submodule-design"]], "Ivy API": [[845, "ivy-api"]], "Backend API": [[845, "backend-api"]], "Submodule Helper Functions": [[845, "submodule-helper-functions"]], "Version Unpinning": [[845, "version-unpinning"]], "Function Wrapping": [[838, "function-wrapping"]], "Decorator order": [[838, "decorator-order"]], "Conversion Wrappers": [[838, "conversion-wrappers"]], "Inference Wrappers": [[838, "inference-wrappers"]], "Out Argument Support": [[838, "out-argument-support"]], "Nestable Support": [[838, "nestable-support"]], "Partial Mixed Function Support": [[838, "partial-mixed-function-support"]], "Shape Conversion": [[838, "shape-conversion"]], "View Handling": [[838, "view-handling"]], "Exception Handling": [[838, "exception-handling"], [833, "exception-handling"]], "Miscellaneous Wrappers": [[838, "miscellaneous-wrappers"]], "Ivy Frontend Tests": [[842, "ivy-frontend-tests"]], "Introduction": [[842, "introduction"], [841, "introduction"], [46, "Introduction"]], "Frontend Test Examples": [[842, "frontend-test-examples"]], "ivy.tan()": [[842, "ivy-tan"]], "ivy.full()": [[842, "ivy-full"]], "Testing Without Using Tests Values": [[842, "testing-without-using-tests-values"]], "Alias functions": [[842, "alias-functions"]], "Frontend Instance Method Tests": [[842, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[842, "frontend-instance-method-test-examples"]], "ivy.add()": [[842, "ivy-add"]], "Hypothesis Helpers": [[842, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[842, "frontend-framework-testing-configuration"]], "Related Work": [[866, "related-work"]], "Testing Pipeline": [[844, "testing-pipeline"]], "Hypothesis": [[844, "id2"]], "Data Generation": [[844, "id3"]], "Writing your own strategy": [[844, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[844, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[844, "ivy-test-decorators"]], "Writing Ivy Tests": [[844, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[844, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[844, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[844, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[844, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[844, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[844, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[844, "self-consistent-and-explicit-testing"]], "test_array_function": [[844, "id5"]], "Running Ivy Tests": [[844, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[844, "re-running-failed-ivy-tests"]], "Ivy as a Framework": [[850, "ivy-as-a-framework"], [31, "Ivy-as-a-Framework"]], "Docstrings": [[832, "docstrings"]], "FAQ": [[855, "faq"]], "Maintaining Backend Versions": [[855, "maintaining-backend-versions"]], "Dynamic Sizes": [[855, "dynamic-sizes"]], "Type and Shape Checking": [[855, "type-and-shape-checking"]], "GPU handling": [[855, "gpu-handling"]], "Model Deployment": [[855, "model-deployment"]], "Dynamic Control Flow": [[855, "dynamic-control-flow"]], "Auto-Differentiation": [[855, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[855, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[855, "support-for-functions"]], "Alternative Data Structures": [[855, "alternative-data-structures"]], "Custom Operations": [[855, "custom-operations"]], "The Pipeline": [[855, "the-pipeline"]], "State": [[855, "state"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[843, "ivy-lint-ivy-s-custom-code-formatters"]], "Existing Formatters": [[843, "existing-formatters"]], "FunctionOrderingFormatter": [[843, "functionorderingformatter"]], "How the Formatter Works:": [[843, "how-the-formatter-works"]], "Integration and Usage": [[843, "integration-and-usage"]], "Contribution": [[843, "contribution"]], "Round Up": [[843, "round-up"], [23, "Round-Up"], [35, "Round-Up"], [33, "Round-Up"], [37, "Round-Up"], [18, "Round-Up"], [28, "Round-Up"], [34, "Round-Up"], [32, "Round-Up"], [36, "Round-Up"], [22, "Round-Up"], [45, "Round-Up"], [25, "Round-Up"], [24, "Round-Up"], [26, "Round-Up"], [27, "Round-Up"], [38, "Round-Up"], [16, "Round-Up"]], "Ivy Frontends": [[841, "ivy-frontends"]], "The Frontend Basics": [[841, "the-frontend-basics"]], "Writing Frontend Functions": [[841, "writing-frontend-functions"]], "Short Frontend Implementations": [[841, "short-frontend-implementations"]], "Unused Arguments": [[841, "unused-arguments"]], "Supported Data Types and Devices": [[841, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[841, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[841, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[841, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[841, "frontends-duplicate-policy"]], "Superset Behaviour": [[847, "superset-behaviour"]], "Extending the Standard": [[847, "extending-the-standard"]], "What is the Superset?": [[847, "what-is-the-superset"]], "A Non-Duplicate Superset": [[847, "a-non-duplicate-superset"]], "What is not the Superset?": [[847, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[847, "balancing-generalization-with-efficiency"]], "More Examples": [[847, "more-examples"]], "Maximizing Usage of Native Functionality": [[847, "maximizing-usage-of-native-functionality"]], "Ivy Exception Class": [[833, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[833, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[833, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[833, "handle-exceptions-decorator"]], "Consistency in Errors": [[833, "consistency-in-errors"]], "Assertion Function": [[833, "assertion-function"]], "Apache TVM": [[873, "apache-tvm"]], "XLA": [[873, "xla"]], "GCC": [[873, "gcc"]], "LLVM": [[868, "id1"]], "MLIR": [[868, "id2"]], "OneAPI": [[868, "id3"]], "Function Arguments": [[836, "function-arguments"]], "Positional and Keyword Arguments": [[836, "positional-and-keyword-arguments"]], "Input Arrays": [[836, "input-arrays"]], "out Argument": [[836, "out-argument"]], "dtype and device arguments": [[836, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[836, "numbers-in-operator-functions"]], "Integer Sequences": [[836, "integer-sequences"]], "Ivy Stateful API": [[853, "ivy-stateful-api"], [31, "Ivy-Stateful-API"], [22, "Ivy-Stateful-API"]], "Modules": [[853, "modules"]], "Initializers": [[853, "initializers"], [791, "module-ivy.stateful.initializers"]], "Optimizers": [[853, "optimizers"], [796, "module-ivy.stateful.optimizers"]], "Array API Standard": [[867, "id1"]], "Table:": [[867, "table"]], "ivy.trace_graph()": [[863, "ivy-trace-graph"]], "Tracer API": [[863, "tracer-api"]], "Using the tracer": [[863, "using-the-tracer"]], "Eager vs lazy Compilation": [[863, "eager-vs-lazy-compilation"]], "Array caching": [[863, "array-caching"]], "Generators": [[863, "generators"]], "Stateful": [[863, "stateful"]], "Glossary": [[857, "glossary"]], "Ivy Container": [[852, "ivy-container"]], "Construction": [[852, "construction"]], "Representation": [[852, "representation"]], "Recursive Methods": [[852, "recursive-methods"]], "Built-ins": [[852, "built-ins"]], "Access": [[852, "access"]], "Saving and Loading": [[852, "saving-and-loading"]], "Comparisons": [[852, "comparisons"]], "Customized Representations": [[852, "customized-representations"]], "Use Cases": [[852, "use-cases"]], "Compartmentalization": [[852, "compartmentalization"]], "Configuration": [[852, "configuration"]], "Data loading": [[852, "data-loading"]], "Network weights": [[852, "network-weights"]], "Standardization": [[860, "standardization"]], "Skepticism": [[860, "skepticism"]], "Complimentary vs Competitive": [[860, "complimentary-vs-competitive"]], "Do Standards Work?": [[860, "do-standards-work"]], "The Array API Standard": [[860, "the-array-api-standard"]], "Data Types": [[829, "data-types"]], "Data Type Module": [[829, "data-type-module"]], "Data Type Promotion": [[829, "data-type-promotion"]], "Precise Mode": [[829, "precise-mode"]], "Precise Promotion Table": [[829, "precise-promotion-table"]], "Non-Precise Promotion Table": [[829, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[829, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[829, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[829, "special-case"]], "Backend Data Type Bugs": [[829, "backend-data-type-bugs"]], "Data Type Casting Modes": [[829, "data-type-casting-modes"]], "Superset Data Type Support": [[829, "superset-data-type-support"]], "empty": [[130, "empty"]], "Elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"], [632, "elementwise"], [372, "elementwise"], [56, "module-ivy.data_classes.array.elementwise"], [79, "module-ivy.data_classes.container.elementwise"]], "relu": [[115, "relu"]], "hardswish": [[111, "hardswish"]], "softplus": [[118, "softplus"]], "Wrapping": [[95, "module-ivy.data_classes.container.wrapping"], [72, "module-ivy.data_classes.array.wrapping"]], "Statistical": [[93, "module-ivy.data_classes.container.statistical"], [647, "statistical"], [387, "statistical"], [70, "module-ivy.data_classes.array.statistical"]], "Parafac2 tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "Tr tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "for_loop": [[122, "for-loop"]], "Functions": [[109, "functions"]], "Utility": [[94, "module-ivy.data_classes.container.utility"], [648, "utility"], [388, "utility"], [71, "module-ivy.data_classes.array.utility"]], "while_loop": [[125, "while-loop"]], "Tt tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Container": [[103, "container"]], "linspace": [[137, "linspace"]], "arange": [[126, "arange"]], "Cp tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "cmp_isnot": [[121, "cmp-isnot"]], "Data classes": [[108, "data-classes"]], "Array": [[102, "array"]], "mish": [[114, "mish"]], "Base": [[106, "module-ivy.data_classes.nested_array.base"], [96, "module-ivy.data_classes.factorized_tensor.base"], [74, "module-ivy.data_classes.container.base"]], "Tucker tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "sigmoid": [[116, "sigmoid"]], "leaky_relu": [[112, "leaky-relu"]], "Nested array": [[105, "nested-array"]], "full_like": [[136, "full-like"]], "log_softmax": [[113, "log-softmax"]], "Sorting": [[92, "module-ivy.data_classes.container.sorting"], [646, "sorting"], [385, "sorting"], [69, "module-ivy.data_classes.array.sorting"]], "cmp_is": [[120, "cmp-is"]], "frombuffer": [[134, "frombuffer"]], "try_except": [[124, "try-except"]], "full": [[135, "full"]], "gelu": [[110, "gelu"]], "copy_array": [[129, "copy-array"]], "if_else": [[123, "if-else"]], "from_dlpack": [[133, "from-dlpack"]], "asarray": [[128, "asarray"]], "eye": [[132, "eye"]], "softmax": [[117, "softmax"]], "Factorized tensor": [[104, "factorized-tensor"]], "softsign": [[119, "softsign"]], "array": [[127, "array"]], "empty_like": [[131, "empty-like"]], "multinomial": [[738, "multinomial"]], "General helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "unique_counts": [[750, "unique-counts"]], "Data-dependent output shape": [[750, null], [749, null], [751, null], [752, null], [645, null], [645, null], [645, null], [645, null]], "Available frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "cumsum": [[758, "cumsum"]], "prod": [[763, "prod"]], "layer_norm": [[737, "layer-norm"]], "any": [[768, "any"]], "argmin": [[745, "argmin"]], "randint": [[739, "randint"]], "unique_all": [[749, "unique-all"]], "Dtype helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "nonzero": [[747, "nonzero"]], "Array helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "searchsorted": [[755, "searchsorted"]], "Globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "argmax": [[744, "argmax"]], "min": [[762, "min"]], "seed": [[742, "seed"]], "unique_inverse": [[751, "unique-inverse"]], "sum": [[765, "sum"]], "einsum": [[759, "einsum"]], "cumprod": [[757, "cumprod"]], "Function testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "var": [[766, "var"]], "Number helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "mean": [[761, "mean"]], "argsort": [[753, "argsort"]], "where": [[748, "where"]], "Multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "random_uniform": [[741, "random-uniform"]], "load": [[769, "load"]], "std": [[764, "std"]], "save": [[770, "save"]], "Pipeline helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "unique_values": [[752, "unique-values"]], "random_normal": [[740, "random-normal"]], "all": [[767, "all"]], "Assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"], [798, "module-ivy.utils.assertions"]], "msort": [[754, "msort"]], "sort": [[756, "sort"]], "max": [[760, "max"]], "set_nest_at_indices": [[736, "set-nest-at-indices"]], "Hypothesis helpers": [[775, "hypothesis-helpers"]], "shuffle": [[743, "shuffle"]], "argwhere": [[746, "argwhere"]], "Binaries": [[803, "module-ivy.utils.binaries"]], "Einsum path helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "Open Tasks": [[818, "open-tasks"]], "Fixing Failing Tests": [[818, "fixing-failing-tests"]], "How to Contribute": [[818, "how-to-contribute"]], "Frontend APIs": [[818, "frontend-apis"]], "Where to place a frontend function": [[818, "where-to-place-a-frontend-function"]], "Frontend checklist": [[818, "frontend-checklist"]], "Function Formatting": [[818, "function-formatting"]], "Formatting checklist": [[818, "formatting-checklist"]], "Ivy Experimental API": [[818, "ivy-experimental-api"]], "Extending the Ivy API": [[818, "extending-the-ivy-api"]], "Where to place a backend function": [[818, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[818, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Contributing": [[813, "contributing"], [812, "contributing"]], "Status": [[812, "status"]], "Unified AI": [[812, "unified-ai"]], "Getting started": [[812, "getting-started"]], "Installing ivy": [[812, "installing-ivy"]], "Using Ivy": [[812, "using-ivy"]], "Documentation": [[812, "documentation"]], "Community": [[812, "community"]], "Citation": [[812, "citation"]], "Inspection": [[808, "module-ivy.utils.inspection"]], "Verbosity": [[811, "module-ivy.utils.verbosity"]], "Framework classes": [[785, "framework-classes"]], "Deep Dive": [[822, "deep-dive"]], "Activations": [[788, "module-ivy.stateful.activations"], [626, "activations"], [367, "activations"], [51, "module-ivy.data_classes.array.activations"], [73, "module-ivy.data_classes.container.activations"]], "Parameter": [[788, "parameter"], [788, "id1"], [579, "parameter"], [585, "parameter"], [588, "parameter"], [587, "parameter"], [584, "parameter"], [578, "parameter"], [631, "parameter"], [634, "parameter"], [634, "id1"], [634, "id2"], [634, "id3"], [634, "id4"], [634, "id5"], [210, "parameter"]], "Helpers": [[790, "module-ivy.stateful.helpers"]], "Forking and cloning the repo": [[819, "forking-and-cloning-the-repo"]], "Pre-Commit": [[819, "pre-commit"]], "Virtual environments - No Docker": [[819, "virtual-environments-no-docker"]], "Using miniconda": [[819, "using-miniconda"]], "Using venv": [[819, "using-venv"]], "Docker Interpreter with PyCharm": [[819, "docker-interpreter-with-pycharm"]], "Windows": [[819, "windows"], [819, "id6"]], "MacOS": [[819, "macos"]], "Ubuntu": [[819, "ubuntu"], [819, "id8"]], "Setting Up Testing in PyCharm": [[819, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[819, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[819, "setting-up-for-free"]], "WSL": [[819, "wsl"]], "GitHub Codespaces": [[819, "github-codespaces"]], "The Binaries": [[819, "the-binaries"]], "Einsum parser": [[805, "module-ivy.utils.einsum_parser"]], "Running the Tests": [[823, "running-the-tests"]], "Using Terminal": [[823, "using-terminal"]], "Using the IDE": [[823, "using-the-ide"]], "Regenerating Test Failures": [[823, "regenerating-test-failures"]], "Test Skipping": [[823, "test-skipping"]], "Handler": [[801, "module-ivy.utils.backend.handler"]], "Contributor Program": [[821, "contributor-program"]], "Contributor": [[821, "contributor"]], "Core Contributor": [[821, "core-contributor"]], "Rising Contributor": [[821, "rising-contributor"]], "Top Contributor": [[821, "top-contributor"]], "Layers": [[792, "module-ivy.stateful.layers"], [636, "layers"], [375, "layers"], [84, "module-ivy.data_classes.container.layers"], [61, "module-ivy.data_classes.array.layers"]], "Norms": [[795, "module-ivy.stateful.norms"], [642, "norms"], [381, "norms"], [88, "module-ivy.data_classes.container.norms"], [65, "module-ivy.data_classes.array.norms"]], "Profiler": [[810, "module-ivy.utils.profiler"]], "Structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "The Basics": [[820, "the-basics"]], "Getting Help": [[820, "getting-help"]], "ToDo List Issues": [[820, "todo-list-issues"]], "Managing Your Fork": [[820, "managing-your-fork"]], "Who To Ask": [[820, "who-to-ask"]], "With Command Line:": [[820, "with-command-line"]], "With Browser:": [[820, "with-browser"]], "Pull Requests": [[820, "pull-requests"]], "Small Commits Often": [[820, "small-commits-often"]], "Interactive Ivy Docker Container": [[820, "interactive-ivy-docker-container"]], "Running Tests Locally": [[820, "running-tests-locally"]], "With Docker": [[820, "with-docker"]], "Getting the most out of IDE": [[820, "getting-the-most-out-of-ide"]], "with PyCharm": [[820, "with-pycharm"]], "Building the Docs": [[814, "building-the-docs"]], "Building the Docs using Docker": [[814, "building-the-docs-using-docker"]], "Using convenience script": [[814, "using-convenience-script"]], "Using existing image on Docker Hub": [[814, "using-existing-image-on-docker-hub"]], "Building the image locally": [[814, "building-the-image-locally"]], "Building the Docs without Docker": [[814, "building-the-docs-without-docker"]], "Arrays": [[824, "arrays"]], "Native Array": [[824, "native-array"]], "Array Handling": [[824, "array-handling"]], "Integrating custom classes with Ivy": [[824, "integrating-custom-classes-with-ivy"]], "Backend Setting": [[825, "backend-setting"]], "Dynamic Backend Setting": [[825, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[825, "backend-and-frontend-version-support"]], "Testing": [[787, "testing"], [45, "Testing"]], "Logging": [[809, "module-ivy.utils.logging"]], "Test parameter flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Contributor Rewards": [[815, "contributor-rewards"]], "Badges": [[815, "badges"]], "Badge Tiers": [[815, "badge-tiers"]], "Losses": [[793, "module-ivy.stateful.losses"], [638, "losses"], [377, "losses"], [63, "module-ivy.data_classes.array.losses"], [86, "module-ivy.data_classes.container.losses"]], "Sub backend handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "Building the Docs Pipeline": [[826, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[826, "how-the-doc-builder-is-being-run"]], "The convenience script": [[826, "the-convenience-script"]], "Options": [[826, "options"]], "The Docker image": [[826, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[826, "how-ivy-s-docs-is-structured"]], "index.rst": [[826, "index-rst"]], "partial_conf.py": [[826, "partial-conf-py"]], "prebuild.sh": [[826, "prebuild-sh"]], "Custom Extensions": [[826, "custom-extensions"]], "custom_autosummary": [[826, "custom-autosummary"]], ":hide-table:": [[826, "hide-table"]], "discussion_linker": [[826, "discussion-linker"]], "skippable_function": [[826, "skippable-function"]], "ivy_data": [[826, "ivy-data"]], "Utils": [[786, "utils"]], "Converters": [[789, "module-ivy.stateful.converters"]], "Sequential": [[797, "module-ivy.stateful.sequential"]], "Dynamic import": [[804, "module-ivy.utils.dynamic_import"]], "Exceptions": [[807, "module-ivy.utils.exceptions"]], "Error Handling": [[816, "error-handling"]], "Ast helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "Helpful Resources": [[817, "helpful-resources"]], "Testing helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Module": [[794, "module-ivy.stateful.module"]], "Containers": [[827, "containers"]], "Container Instance Methods": [[827, "container-instance-methods"]], "API Instance Methods": [[827, "api-instance-methods"]], "API Special Methods": [[827, "api-special-methods"]], "Backend": [[799, "backend"]], "vector_norm": [[694, "vector-norm"]], "permute_dims": [[704, "permute-dims"]], "unstack": [[713, "unstack"]], "constant_pad": [[701, "constant-pad"]], "nested_argwhere": [[729, "nested-argwhere"]], "set_nest_at_index": [[735, "set-nest-at-index"]], "concat": [[700, "concat"]], "sparse_cross_entropy": [[698, "sparse-cross-entropy"]], "vector_to_skew_symmetric_matrix": [[695, "vector-to-skew-symmetric-matrix"]], "flip": [[703, "flip"]], "fomaml_step": [[715, "fomaml-step"]], "index_nest": [[721, "index-nest"]], "trace": [[691, "trace"]], "prune_nest_at_index": [[733, "prune-nest-at-index"]], "tile": [[712, "tile"]], "vander": [[692, "vander"]], "vecdot": [[693, "vecdot"]], "squeeze": [[709, "squeeze"]], "split": [[708, "split"]], "clip": [[699, "clip"]], "all_nested_indices": [[718, "all-nested-indices"]], "copy_nest": [[719, "copy-nest"]], "maml_step": [[716, "maml-step"]], "cross_entropy": [[697, "cross-entropy"]], "duplicate_array_index_chains": [[720, "duplicate-array-index-chains"]], "tensorsolve": [[690, "tensorsolve"]], "roll": [[707, "roll"]], "map": [[724, "map"]], "reptile_step": [[717, "reptile-step"]], "multi_index_nest": [[727, "multi-index-nest"]], "prune_nest_at_indices": [[734, "prune-nest-at-indices"]], "zero_pad": [[714, "zero-pad"]], "map_nest_at_indices": [[726, "map-nest-at-indices"]], "nested_multi_map": [[731, "nested-multi-map"]], "swapaxes": [[711, "swapaxes"]], "expand_dims": [[702, "expand-dims"]], "repeat": [[705, "repeat"]], "stack": [[710, "stack"]], "nested_any": [[728, "nested-any"]], "insert_into_nest_at_index": [[722, "insert-into-nest-at-index"]], "prune_empty": [[732, "prune-empty"]], "nested_map": [[730, "nested-map"]], "reshape": [[706, "reshape"]], "map_nest_at_index": [[725, "map-nest-at-index"]], "insert_into_nest_at_indices": [[723, "insert-into-nest-at-indices"]], "binary_cross_entropy": [[696, "binary-cross-entropy"]], "svd": [[687, "svd"]], "cross": [[668, "cross"]], "eigvalsh": [[674, "eigvalsh"]], "eigh": [[673, "eigh"]], "Set": [[645, "set"], [384, "module-ivy.functional.ivy.experimental.set"], [91, "module-ivy.data_classes.container.set"], [68, "module-ivy.data_classes.array.set"]], "conv": [[649, "conv"]], "inv": [[676, "inv"]], "matmul": [[677, "matmul"]], "cholesky": [[667, "cholesky"]], "nms": [[664, "nms"]], "svdvals": [[688, "svdvals"]], "conv1d_transpose": [[651, "conv1d-transpose"]], "det": [[669, "det"]], "outer": [[682, "outer"]], "solve": [[686, "solve"]], "lstm_update": [[662, "lstm-update"]], "matrix_power": [[679, "matrix-power"]], "matrix_transpose": [[681, "matrix-transpose"]], "roi_align": [[665, "roi-align"]], "inner": [[675, "inner"]], "Searching": [[644, "searching"], [383, "searching"], [67, "module-ivy.data_classes.array.searching"], [90, "module-ivy.data_classes.container.searching"]], "lstm": [[661, "lstm"]], "tensordot": [[689, "tensordot"]], "qr": [[684, "qr"]], "matrix_rank": [[680, "matrix-rank"]], "conv3d_transpose": [[655, "conv3d-transpose"]], "diagonal": [[671, "diagonal"]], "multi_head_attention": [[663, "multi-head-attention"]], "depthwise_conv2d": [[658, "depthwise-conv2d"]], "matrix_norm": [[678, "matrix-norm"]], "slogdet": [[685, "slogdet"]], "conv1d": [[650, "conv1d"]], "conv3d": [[654, "conv3d"]], "eig": [[672, "eig"], [429, "eig"]], "conv2d_transpose": [[653, "conv2d-transpose"]], "linear": [[660, "linear"]], "pinv": [[683, "pinv"]], "conv_general_dilated": [[656, "conv-general-dilated"]], "diag": [[670, "diag"]], "dropout": [[659, "dropout"]], "conv_general_transpose": [[657, "conv-general-transpose"]], "scaled_dot_product_attention": [[666, "scaled-dot-product-attention"]], "conv2d": [[652, "conv2d"]], "scatter_nd": [[577, "scatter-nd"]], "shape": [[590, "shape"]], "inplace_variables_supported": [[563, "inplace-variables-supported"]], "set_exception_trace_mode": [[579, "set-exception-trace-mode"]], "get_referrers_recursive": [[557, "get-referrers-recursive"]], "is_array": [[564, "is-array"]], "set_tmp_dir": [[589, "set-tmp-dir"]], "supports_inplace_updates": [[595, "supports-inplace-updates"]], "get_all_arrays_in_memory": [[554, "get-all-arrays-in-memory"]], "is_ivy_nested_array": [[567, "is-ivy-nested-array"]], "set_queue_timeout": [[586, "set-queue-timeout"]], "stable_pow": [[593, "stable-pow"]], "strides": [[594, "strides"]], "to_ivy_shape": [[596, "to-ivy-shape"]], "gather": [[552, "gather"]], "set_precise_mode": [[585, "set-precise-mode"]], "inplace_arrays_supported": [[559, "inplace-arrays-supported"]], "get_num_dims": [[556, "get-num-dims"]], "itemsize": [[571, "itemsize"]], "multiprocessing": [[573, "multiprocessing"]], "num_arrays_in_memory": [[574, "num-arrays-in-memory"]], "set_min_denominator": [[583, "set-min-denominator"]], "isscalar": [[570, "isscalar"]], "is_ivy_container": [[566, "is-ivy-container"]], "set_min_base": [[582, "set-min-base"]], "gather_nd": [[553, "gather-nd"]], "is_ivy_array": [[565, "is-ivy-array"]], "has_nans": [[558, "has-nans"]], "set_show_func_wrapper_trace_mode": [[588, "set-show-func-wrapper-trace-mode"]], "is_native_array": [[568, "is-native-array"]], "print_all_arrays_in_memory": [[575, "print-all-arrays-in-memory"]], "set_item": [[581, "set-item"]], "inplace_update": [[562, "inplace-update"]], "inplace_increment": [[561, "inplace-increment"]], "set_shape_array_mode": [[587, "set-shape-array-mode"]], "match_kwargs": [[572, "match-kwargs"]], "isin": [[569, "isin"]], "set_inplace_mode": [[580, "set-inplace-mode"]], "scatter_flat": [[576, "scatter-flat"]], "set_nestable_mode": [[584, "set-nestable-mode"]], "to_list": [[597, "to-list"]], "size": [[591, "size"]], "inplace_decrement": [[560, "inplace-decrement"]], "get_item": [[555, "get-item"]], "stable_divide": [[592, "stable-divide"]], "set_array_mode": [[578, "set-array-mode"]], "dirichlet": [[510, "dirichlet"]], "native_sparse_array_to_indices_values_and_shape": [[519, "native-sparse-array-to-indices-values-and-shape"]], "nanmedian": [[529, "nanmedian"]], "is_ivy_sparse_array": [[516, "is-ivy-sparse-array"]], "array_equal": [[537, "array-equal"]], "nanmin": [[530, "nanmin"]], "einops_repeat": [[547, "einops-repeat"]], "unravel_index": [[513, "unravel-index"]], "poisson": [[512, "poisson"]], "is_native_sparse_array": [[517, "is-native-sparse-array"]], "lp_normalize": [[507, "lp-normalize"]], "container_types": [[542, "container-types"]], "einops_reduce": [[546, "einops-reduce"]], "native_sparse_array": [[518, "native-sparse-array"]], "igamma": [[526, "igamma"]], "clip_vector_norm": [[541, "clip-vector-norm"]], "default": [[544, "default"]], "bincount": [[520, "bincount"]], "current_backend_str": [[543, "current-backend-str"]], "fourier_encode": [[549, "fourier-encode"]], "median": [[527, "median"]], "einops_rearrange": [[545, "einops-rearrange"]], "nanmean": [[528, "nanmean"]], "assert_supports_inplace": [[538, "assert-supports-inplace"]], "clip_matrix_norm": [[540, "clip-matrix-norm"]], "cache_fn": [[539, "cache-fn"]], "cov": [[522, "cov"]], "arg_names": [[536, "arg-names"]], "gamma": [[511, "gamma"]], "invert_permutation": [[514, "invert-permutation"]], "all_equal": [[534, "all-equal"]], "exists": [[548, "exists"]], "corrcoef": [[521, "corrcoef"]], "lexsort": [[515, "lexsort"]], "bernoulli": [[508, "bernoulli"]], "arg_info": [[535, "arg-info"]], "cummin": [[524, "cummin"]], "optional_get_element": [[533, "optional-get-element"]], "cummax": [[523, "cummax"]], "beta": [[509, "beta"]], "local_response_norm": [[506, "local-response-norm"]], "quantile": [[532, "quantile"]], "function_supported_devices_and_dtypes": [[550, "function-supported-devices-and-dtypes"]], "function_unsupported_devices_and_dtypes": [[551, "function-unsupported-devices-and-dtypes"]], "histogram": [[525, "histogram"]], "nanprod": [[531, "nanprod"]], "l1_normalize": [[504, "l1-normalize"]], "atleast_1d": [[462, "atleast-1d"]], "column_stack": [[468, "column-stack"]], "matricize": [[482, "matricize"]], "partial_unfold": [[487, "partial-unfold"]], "as_strided": [[460, "as-strided"]], "choose": [[467, "choose"]], "partial_fold": [[485, "partial-fold"]], "atleast_2d": [[463, "atleast-2d"]], "unflatten": [[496, "unflatten"]], "l2_normalize": [[505, "l2-normalize"]], "flatten": [[474, "flatten"]], "partial_tensor_to_vec": [[486, "partial-tensor-to-vec"]], "put_along_axis": [[489, "put-along-axis"]], "unique_consecutive": [[498, "unique-consecutive"]], "fold": [[477, "fold"]], "i0": [[481, "i0"]], "vsplit": [[499, "vsplit"]], "expand": [[472, "expand"]], "atleast_3d": [[464, "atleast-3d"]], "instance_norm": [[503, "instance-norm"]], "soft_thresholding": [[491, "soft-thresholding"]], "batch_norm": [[501, "batch-norm"]], "take_along_axis": [[493, "take-along-axis"]], "dsplit": [[470, "dsplit"]], "trim_zeros": [[495, "trim-zeros"]], "pad": [[484, "pad"]], "broadcast_shapes": [[465, "broadcast-shapes"]], "dstack": [[471, "dstack"]], "fliplr": [[475, "fliplr"]], "partial_vec_to_tensor": [[488, "partial-vec-to-tensor"]], "check_scalar": [[466, "check-scalar"]], "top_k": [[494, "top-k"]], "group_norm": [[502, "group-norm"]], "hsplit": [[479, "hsplit"]], "unfold": [[497, "unfold"]], "flipud": [[476, "flipud"]], "fill_diagonal": [[473, "fill-diagonal"]], "heaviside": [[478, "heaviside"]], "associative_scan": [[461, "associative-scan"]], "moveaxis": [[483, "moveaxis"]], "rot90": [[490, "rot90"]], "take": [[492, "take"]], "hstack": [[480, "hstack"]], "vstack": [[500, "vstack"]], "concat_from_sequence": [[469, "concat-from-sequence"]], "unset_array_mode": [[602, "unset-array-mode"]], "to_native_shape": [[598, "to-native-shape"]], "unset_exception_trace_mode": [[603, "unset-exception-trace-mode"]], "Data type": [[630, "data-type"], [370, "module-ivy.functional.ivy.experimental.data_type"], [54, "module-ivy.data_classes.array.data_type"], [77, "module-ivy.data_classes.container.data_type"]], "gradient_descent_update": [[619, "gradient-descent-update"]], "value_is_nan": [[613, "value-is-nan"]], "unset_show_func_wrapper_trace_mode": [[611, "unset-show-func-wrapper-trace-mode"]], "Linear algebra": [[637, "linear-algebra"], [376, "linear-algebra"], [85, "module-ivy.data_classes.container.linear_algebra"], [62, "module-ivy.data_classes.array.linear_algebra"]], "to_numpy": [[599, "to-numpy"]], "value_and_grad": [[625, "value-and-grad"]], "unset_min_denominator": [[606, "unset-min-denominator"]], "unset_min_base": [[605, "unset-min-base"]], "unset_tmp_dir": [[612, "unset-tmp-dir"]], "optimizer_update": [[623, "optimizer-update"]], "Nest": [[641, "nest"], [380, "module-ivy.functional.ivy.experimental.nest"]], "grad": [[618, "grad"]], "unset_nestable_mode": [[607, "unset-nestable-mode"]], "to_scalar": [[600, "to-scalar"]], "lamb_update": [[621, "lamb-update"]], "vmap": [[614, "vmap"]], "try_else_none": [[601, "try-else-none"]], "Device": [[631, "device"], [371, "module-ivy.functional.ivy.experimental.device"], [78, "module-ivy.data_classes.container.device"], [55, "module-ivy.data_classes.array.device"]], "adam_update": [[616, "adam-update"]], "unset_inplace_mode": [[604, "unset-inplace-mode"]], "unset_precise_mode": [[608, "unset-precise-mode"]], "jac": [[620, "jac"]], "Creation": [[629, "creation"], [369, "creation"], [76, "module-ivy.data_classes.container.creation"], [53, "module-ivy.data_classes.array.creation"]], "Manipulation": [[639, "manipulation"], [378, "manipulation"], [64, "module-ivy.data_classes.array.manipulation"], [87, "module-ivy.data_classes.container.manipulation"]], "Meta": [[640, "meta"], [379, "module-ivy.functional.ivy.experimental.meta"]], "unset_queue_timeout": [[609, "unset-queue-timeout"]], "adam_step": [[615, "adam-step"]], "Control flow ops": [[628, "control-flow-ops"]], "stop_gradient": [[624, "stop-gradient"]], "Experimental": [[633, "experimental"], [57, "module-ivy.data_classes.array.experimental"], [80, "module-ivy.data_classes.container.experimental"]], "execute_with_gradients": [[617, "execute-with-gradients"]], "lars_update": [[622, "lars-update"]], "Constants": [[627, "module-ivy.functional.ivy.constants"], [368, "module-ivy.functional.ivy.experimental.constants"]], "unset_shape_array_mode": [[610, "unset-shape-array-mode"]], "Random": [[643, "random"], [382, "random"], [66, "module-ivy.data_classes.array.random"], [89, "module-ivy.data_classes.container.random"]], "General": [[634, "general"], [373, "general"], [58, "module-ivy.data_classes.array.general"], [81, "module-ivy.data_classes.container.general"]], "hinge_embedding_loss": [[452, "hinge-embedding-loss"]], "batched_outer": [[425, "batched-outer"]], "rfftn": [[420, "rfftn"]], "matrix_exp": [[441, "matrix-exp"]], "lu_factor": [[438, "lu-factor"]], "multi_mode_dot": [[444, "multi-mode-dot"]], "smooth_l1_loss": [[458, "smooth-l1-loss"]], "multi_dot": [[443, "multi-dot"]], "make_svd_non_negative": [[440, "make-svd-non-negative"]], "initialize_tucker": [[434, "initialize-tucker"]], "soft_margin_loss": [[459, "soft-margin-loss"]], "eigh_tridiagonal": [[430, "eigh-tridiagonal"]], "partial_tucker": [[445, "partial-tucker"]], "sliding_window": [[422, "sliding-window"]], "dot": [[428, "dot"]], "pool": [[417, "pool"]], "reduce_window": [[418, "reduce-window"]], "khatri_rao": [[435, "khatri-rao"]], "max_unpool1d": [[415, "max-unpool1d"]], "mode_dot": [[442, "mode-dot"]], "nearest_interpolate": [[416, "nearest-interpolate"]], "kl_div": [[454, "kl-div"]], "tensor_train": [[448, "tensor-train"]], "solve_triangular": [[446, "solve-triangular"]], "kron": [[436, "kron"]], "tucker": [[451, "tucker"]], "tt_matrix_to_tensor": [[450, "tt-matrix-to-tensor"]], "eigvals": [[431, "eigvals"]], "truncated_svd": [[449, "truncated-svd"]], "poisson_nll_loss": [[457, "poisson-nll-loss"]], "cond": [[426, "cond"]], "adjoint": [[424, "adjoint"]], "higher_order_moment": [[433, "higher-order-moment"]], "log_poisson_loss": [[456, "log-poisson-loss"]], "huber_loss": [[453, "huber-loss"]], "general_inner_product": [[432, "general-inner-product"]], "stft": [[423, "stft"]], "l1_loss": [[455, "l1-loss"]], "max_pool3d": [[414, "max-pool3d"]], "rnn": [[421, "rnn"]], "svd_flip": [[447, "svd-flip"]], "diagflat": [[427, "diagflat"]], "rfft": [[419, "rfft"]], "kronecker": [[437, "kronecker"]], "lu_solve": [[439, "lu-solve"]], "erfc": [[343, "erfc"]], "erfinv": [[344, "erfinv"]], "fix": [[345, "fix"]], "vorbis_window": [[333, "vorbis-window"]], "allclose": [[334, "allclose"]], "unsorted_segment_sum": [[332, "unsorted-segment-sum"]], "vjp": [[366, "vjp"]], "float_power": [[346, "float-power"]], "fmax": [[347, "fmax"]], "random_cp": [[323, "random-cp"]], "bind_custom_gradient_function": [[364, "bind-custom-gradient-function"]], "trilu": [[329, "trilu"]], "isclose": [[351, "isclose"]], "lgamma": [[354, "lgamma"]], "zeta": [[362, "zeta"]], "signbit": [[358, "signbit"]], "diff": [[341, "diff"]], "tril_indices": [[328, "tril-indices"]], "frexp": [[348, "frexp"]], "unsorted_segment_min": [[331, "unsorted-segment-min"]], "digamma": [[342, "digamma"]], "nansum": [[356, "nansum"]], "amin": [[336, "amin"]], "random_tt": [[326, "random-tt"]], "lerp": [[353, "lerp"]], "polyval": [[322, "polyval"]], "hypot": [[350, "hypot"]], "reduce": [[363, "reduce"]], "amax": [[335, "amax"]], "sparsify_tensor": [[360, "sparsify-tensor"]], "nextafter": [[357, "nextafter"]], "random_tucker": [[327, "random-tucker"]], "modf": [[355, "modf"]], "conj": [[338, "conj"]], "unsorted_segment_mean": [[330, "unsorted-segment-mean"]], "random_tr": [[325, "random-tr"]], "ldexp": [[352, "ldexp"]], "count_nonzero": [[340, "count-nonzero"]], "jvp": [[365, "jvp"]], "random_parafac2": [[324, "random-parafac2"]], "gradient": [[349, "gradient"]], "binarizer": [[337, "binarizer"]], "sinc": [[359, "sinc"]], "xlogy": [[361, "xlogy"]], "copysign": [[339, "copysign"]], "fft2": [[404, "fft2"]], "fft": [[403, "fft"]], "max_pool1d": [[412, "max-pool1d"]], "dropout3d": [[401, "dropout3d"]], "adaptive_max_pool2d": [[391, "adaptive-max-pool2d"]], "avg_pool1d": [[394, "avg-pool1d"]], "area_interpolate": [[393, "area-interpolate"]], "interp": [[410, "interp"]], "ifftn": [[409, "ifftn"]], "dct": [[397, "dct"]], "ifft": [[408, "ifft"]], "max_pool2d": [[413, "max-pool2d"]], "adaptive_avg_pool2d": [[390, "adaptive-avg-pool2d"]], "dropout2d": [[400, "dropout2d"]], "adaptive_max_pool3d": [[392, "adaptive-max-pool3d"]], "avg_pool3d": [[396, "avg-pool3d"]], "interpolate": [[411, "interpolate"]], "generate_einsum_equation": [[405, "generate-einsum-equation"]], "get_interpolate_kernel": [[406, "get-interpolate-kernel"]], "adaptive_avg_pool1d": [[389, "adaptive-avg-pool1d"]], "idct": [[407, "idct"]], "avg_pool2d": [[395, "avg-pool2d"]], "dft": [[398, "dft"]], "Sparse array": [[386, "sparse-array"]], "dropout1d": [[399, "dropout1d"]], "embedding": [[402, "embedding"]], "kaiser_bessel_derived_window": [[317, "kaiser-bessel-derived-window"]], "sin": [[285, "sin"]], "square": [[288, "square"]], "remainder": [[282, "remainder"]], "eye_like": [[313, "eye-like"]], "mel_weight_matrix": [[319, "mel-weight-matrix"]], "round": [[283, "round"]], "reciprocal": [[281, "reciprocal"]], "ndenumerate": [[320, "ndenumerate"]], "tanhshrink": [[309, "tanhshrink"]], "positive": [[277, "positive"]], "subtract": [[289, "subtract"]], "trunc": [[293, "trunc"]], "celu": [[295, "celu"]], "indices": [[316, "indices"]], "stanh": [[308, "stanh"]], "kaiser_window": [[318, "kaiser-window"]], "hamming_window": [[314, "hamming-window"]], "tan": [[290, "tan"]], "ndindex": [[321, "ndindex"]], "relu6": [[303, "relu6"]], "not_equal": [[276, "not-equal"]], "threshold": [[310, "threshold"]], "thresholded_relu": [[311, "thresholded-relu"]], "sqrt": [[287, "sqrt"]], "rad2deg": [[279, "rad2deg"]], "trapz": [[292, "trapz"]], "scaled_tanh": [[304, "scaled-tanh"]], "real": [[280, "real"]], "selu": [[305, "selu"]], "logsigmoid": [[301, "logsigmoid"]], "sinh": [[286, "sinh"]], "hann_window": [[315, "hann-window"]], "tanh": [[291, "tanh"]], "elu": [[296, "elu"]], "logit": [[300, "logit"]], "silu": [[306, "silu"]], "hardsilu": [[298, "hardsilu"]], "pow": [[278, "pow"]], "hardtanh": [[299, "hardtanh"]], "trunc_divide": [[294, "trunc-divide"]], "blackman_window": [[312, "blackman-window"]], "prelu": [[302, "prelu"]], "hardshrink": [[297, "hardshrink"]], "sign": [[284, "sign"]], "softshrink": [[307, "softshrink"]], "logical_and": [[267, "logical-and"]], "bitwise_left_shift": [[232, "bitwise-left-shift"]], "exp": [[243, "exp"]], "log1p": [[263, "log1p"]], "logaddexp2": [[266, "logaddexp2"]], "cosh": [[238, "cosh"]], "isfinite": [[254, "isfinite"]], "log10": [[262, "log10"]], "nan_to_num": [[274, "nan-to-num"]], "deg2rad": [[239, "deg2rad"]], "erf": [[242, "erf"]], "greater_equal": [[252, "greater-equal"]], "ceil": [[236, "ceil"]], "lcm": [[258, "lcm"]], "log": [[261, "log"]], "equal": [[241, "equal"]], "floor": [[246, "floor"]], "isreal": [[257, "isreal"]], "minimum": [[272, "minimum"]], "logical_not": [[268, "logical-not"]], "maximum": [[271, "maximum"]], "logical_xor": [[270, "logical-xor"]], "gcd": [[250, "gcd"]], "exp2": [[244, "exp2"]], "logaddexp": [[265, "logaddexp"]], "bitwise_invert": [[231, "bitwise-invert"]], "expm1": [[245, "expm1"]], "multiply": [[273, "multiply"]], "less": [[259, "less"]], "isinf": [[255, "isinf"]], "bitwise_right_shift": [[234, "bitwise-right-shift"]], "less_equal": [[260, "less-equal"]], "logical_or": [[269, "logical-or"]], "negative": [[275, "negative"]], "isnan": [[256, "isnan"]], "bitwise_xor": [[235, "bitwise-xor"]], "cos": [[237, "cos"]], "divide": [[240, "divide"]], "fmin": [[248, "fmin"]], "floor_divide": [[247, "floor-divide"]], "imag": [[253, "imag"]], "log2": [[264, "log2"]], "greater": [[251, "greater"]], "bitwise_or": [[233, "bitwise-or"]], "fmod": [[249, "fmod"]], "bitwise_and": [[230, "bitwise-and"]], "split_func_call": [[213, "split-func-call"]], "abs": [[220, "abs"]], "unset_default_int_dtype": [[190, "unset-default-int-dtype"]], "unset_default_uint_dtype": [[191, "unset-default-uint-dtype"]], "num_cpu_cores": [[204, "num-cpu-cores"]], "tpu_is_available": [[216, "tpu-is-available"]], "function_unsupported_devices": [[200, "function-unsupported-devices"]], "atanh": [[229, "atanh"]], "to_device": [[214, "to-device"]], "num_ivy_arrays_on_dev": [[206, "num-ivy-arrays-on-dev"]], "set_default_device": [[209, "set-default-device"]], "unset_default_dtype": [[188, "unset-default-dtype"]], "handle_soft_device_variable": [[203, "handle-soft-device-variable"]], "unset_soft_device_mode": [[218, "unset-soft-device-mode"]], "set_default_uint_dtype": [[185, "set-default-uint-dtype"]], "default_device": [[196, "default-device"]], "type_promote_arrays": [[186, "type-promote-arrays"]], "set_split_factor": [[211, "set-split-factor"]], "atan": [[227, "atan"]], "get_all_ivy_arrays_on_dev": [[201, "get-all-ivy-arrays-on-dev"]], "print_all_ivy_arrays_on_dev": [[208, "print-all-ivy-arrays-on-dev"]], "unset_default_complex_dtype": [[187, "unset-default-complex-dtype"]], "unset_default_float_dtype": [[189, "unset-default-float-dtype"]], "unset_default_device": [[217, "unset-default-device"]], "dev": [[197, "dev"]], "as_native_dev": [[194, "as-native-dev"]], "asin": [[225, "asin"]], "set_default_int_dtype": [[184, "set-default-int-dtype"]], "split_factor": [[212, "split-factor"]], "percent_used_mem_on_dev": [[207, "percent-used-mem-on-dev"]], "acos": [[221, "acos"]], "clear_cached_mem_on_dev": [[195, "clear-cached-mem-on-dev"]], "acosh": [[222, "acosh"]], "add": [[223, "add"]], "angle": [[224, "angle"]], "atan2": [[228, "atan2"]], "dev_util": [[198, "dev-util"]], "valid_dtype": [[192, "valid-dtype"]], "num_gpus": [[205, "num-gpus"]], "used_mem_on_dev": [[219, "used-mem-on-dev"]], "set_soft_device_mode": [[210, "set-soft-device-mode"]], "total_mem_on_dev": [[215, "total-mem-on-dev"]], "asinh": [[226, "asinh"]], "as_ivy_dev": [[193, "as-ivy-dev"]], "gpu_is_available": [[202, "gpu-is-available"]], "function_supported_devices": [[199, "function-supported-devices"]], "End-to-End Training Pipeline in Ivy": [[47, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[47, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[47, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[47, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[47, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[47, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[47, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[47, "Plotting-the-training-metrics"]], "Save the trained Model": [[47, "Save-the-trained-Model"]], "Image": [[60, "module-ivy.data_classes.array.image"], [83, "module-ivy.data_classes.container.image"]], "HuggingFace Tensorflow DeiT": [[48, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[48, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Deepmind PerceiverIO on GPU": [[46, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[46, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[46, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[46, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[46, "Run-the-demo..."]], "\u2026with torch backend": [[46, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[46, "....with-tensorflow-backend"]], "\u2026with jax backend": [[46, "...with-jax-backend"]], "\u2026with numpy backend": [[46, "...with-numpy-backend"]], "Resnet 18": [[50, "Resnet-18"]], "Ivy as a Transpiler Introduction": [[49, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[49, "To-use-the-transpiler:"]], "Transpiler Interface": [[49, "Transpiler-Interface"]], "Telemetry": [[49, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[49, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[49, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[49, "3.-Transpile-Models-\ud83c\udf10"]], "Conversions": [[52, "module-ivy.data_classes.array.conversions"], [75, "module-ivy.data_classes.container.conversions"]], "Unify code": [[23, "Unify-code"]], "Learn the basics": [[21, "learn-the-basics"], [20, "learn-the-basics"]], "ODSC Ivy Demo": [[31, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[31, "Ivy-Backend-Handler"], [22, "Ivy-Backend-Handler"]], "Data Structures": [[31, "Data-Structures"], [22, "Data-Structures"]], "Ivy Functional API": [[31, "Ivy-Functional-API"], [22, "Ivy-Functional-API"]], "Graph Tracer": [[31, "Graph-Tracer"]], "Any function": [[31, "Any-function"], [32, "Any-function"]], "Any library": [[31, "Any-library"], [32, "Any-library"]], "Any model": [[31, "Any-model"], [32, "Any-model"]], "0.2: Transpile": [[35, "0.2:-Transpile"]], "TO REPLACE: Title": [[2, "TO-REPLACE:-Title"]], "0.0: Unify": [[33, "0.0:-Unify"]], "Transpile any model": [[29, "Transpile-any-model"]], "Round up": [[29, "Round-up"]], "3.1: Stable Diffusion": [[42, "3.1:-Stable-Diffusion"]], "Using TensorFlow Models in your PyTorch Projects": [[6, "Using-TensorFlow-Models-in-your-PyTorch-Projects"]], "Framework Incompatibility": [[6, "Framework-Incompatibility"]], "Transpiling a TensorFlow model to PyTorch": [[6, "Transpiling-a-TensorFlow-model-to-PyTorch"]], "About the transpiled model": [[6, "About-the-transpiled-model"]], "Setting-up the source model": [[6, "Setting-up-the-source-model"]], "Converting the model from TensorFlow to PyTorch": [[6, "Converting-the-model-from-TensorFlow-to-PyTorch"]], "Comparing the results": [[6, "Comparing-the-results"], [7, "Comparing-the-results"]], "Fine-tuning the transpiled model": [[6, "Fine-tuning-the-transpiled-model"], [7, "Fine-tuning-the-transpiled-model"]], "Conclusion": [[6, "Conclusion"], [7, "Conclusion"]], "How To Convert Models from PyTorch to PaddlePaddle": [[7, "How-To-Convert-Models-from-PyTorch-to-PaddlePaddle"]], "About the Model": [[7, "About-the-Model"]], "Transpiling the Model": [[7, "Transpiling-the-Model"]], "Demos": [[1, "demos"]], "Creating a Notebook for Demo": [[1, "creating-a-notebook-for-demo"]], "1.1: Framework Selection": [[37, "1.1:-Framework-Selection"]], "Unify": [[37, "Unify"], [36, "Unify"], [26, "Unify"], [27, "Unify"], [38, "Unify"]], "Compile": [[37, "Compile"], [36, "Compile"], [38, "Compile"]], "Transpile": [[37, "Transpile"], [36, "Transpile"], [26, "Transpile"], [27, "Transpile"], [38, "Transpile"]], "Accelerating MMPreTrain models with JAX": [[11, "Accelerating-MMPreTrain-models-with-JAX"]], "3.0: Perceiver": [[41, "3.0:-Perceiver"]], "Tutorials And Examples": [[20, "tutorials-and-examples"]], "Guides": [[20, "guides"], [15, "guides"]], "Examples and Demos": [[20, "examples-and-demos"], [3, "examples-and-demos"]], "2.0: Kornia": [[40, "2.0:-Kornia"]], "Transpiling a Tensorflow model to build on top": [[18, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Ivy AlexNet demo": [[4, "Ivy-AlexNet-demo"]], "Installation": [[4, "Installation"], [12, "Installation"]], "Data Preparation": [[4, "Data-Preparation"], [8, "Data-Preparation"], [5, "Data-Preparation"], [12, "Data-Preparation"]], "Ivy AlexNet inference in Torch": [[4, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[4, "TensorFlow-inference"]], "JAX inference": [[4, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[4, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating PyTorch models with JAX": [[13, "Accelerating-PyTorch-models-with-JAX"]], "Basic Operations with Ivy": [[43, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[43, "Installs-\ud83d\udcbe"], [44, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[43, "Imports-\ud83d\udec3"], [44, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[43, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[43, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[43, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[43, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[43, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[43, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[43, "Set-Backend-Framework"]], "Define Model": [[43, "Define-Model"], [44, "Define-Model"]], "Create Model": [[43, "Create-Model"]], "Create Optimizer": [[43, "Create-Optimizer"]], "Input and Target": [[43, "Input-and-Target"]], "Loss Function": [[43, "Loss-Function"]], "Training Loop": [[43, "Training-Loop"]], "Transpile any library": [[28, "Transpile-any-library"]], "Developing a convolutional network using Ivy": [[19, "Developing-a-convolutional-network-using-Ivy"]], "Credit Card Fraud Detection using Ivy Framework": [[0, "Credit-Card-Fraud-Detection-using-Ivy-Framework"]], "Library Installation": [[0, "Library-Installation"]], "Importing Libraries and Configuring the Environment": [[0, "Importing-Libraries-and-Configuring-the-Environment"]], "Loading the Dataset": [[0, "Loading-the-Dataset"]], "Previewing the Dataset": [[0, "Previewing-the-Dataset"]], "Inspecting the End of the Dataset": [[0, "Inspecting-the-End-of-the-Dataset"]], "Dataset Information": [[0, "Dataset-Information"]], "Identifying Missing Values": [[0, "Identifying-Missing-Values"]], "Transaction Class Distribution": [[0, "Transaction-Class-Distribution"]], "Importing Ivy": [[0, "Importing-Ivy"], [22, "Importing-Ivy"]], "Separating Data for Analysis": [[0, "Separating-Data-for-Analysis"]], "Statistical Measures of Legitimate Transactions": [[0, "Statistical-Measures-of-Legitimate-Transactions"]], "Statistical Measures of Fraudulent Transactions": [[0, "Statistical-Measures-of-Fraudulent-Transactions"]], "Comparing Transaction Metrics": [[0, "Comparing-Transaction-Metrics"]], "Under-Sampling for Balanced Dataset": [[0, "Under-Sampling-for-Balanced-Dataset"]], "Creating a Balanced Dataset": [[0, "Creating-a-Balanced-Dataset"]], "Splitting Data into Features and Targets": [[0, "Splitting-Data-into-Features-and-Targets"]], "Splitting Data into Training and Testing Sets": [[0, "Splitting-Data-into-Training-and-Testing-Sets"]], "Converting Data to Ivy Arrays": [[0, "Converting-Data-to-Ivy-Arrays"]], "Displaying Data Dimensions": [[0, "Displaying-Data-Dimensions"]], "Data Preparation Function": [[0, "Data-Preparation-Function"]], "Processing Training Data": [[0, "Processing-Training-Data"]], "Enabling Soft Device Mode in Ivy": [[0, "Enabling-Soft-Device-Mode-in-Ivy"]], "Configuring the XGBoost Classifier": [[0, "Configuring-the-XGBoost-Classifier"]], "Benchmarking XGBoost Model Training Time": [[0, "Benchmarking-XGBoost-Model-Training-Time"]], "Benchmarking Ivy-based XGBoost Model Training Time": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Training-Time"]], "Benchmarking XGBoost Model Prediction Time": [[0, "Benchmarking-XGBoost-Model-Prediction-Time"]], "Benchmarking Ivy-based XGBoost Model Prediction Performance": [[0, "Benchmarking-Ivy-based-XGBoost-Model-Prediction-Performance"]], "Based on benchmark tests, the Ivy-based XGBoost implementation has demonstrated faster performance times compared to the standard XGBoost.": [[0, "Based-on-benchmark-tests,-the-Ivy-based-XGBoost-implementation-has-demonstrated-faster-performance-times-compared-to-the-standard-XGBoost."]], "Model Predictions and Classification Reports": [[0, "Model-Predictions-and-Classification-Reports"]], "Evaluation of Classifier Performance": [[0, "Evaluation-of-Classifier-Performance"]], "IvyClassifier Performance Metrics": [[0, "IvyClassifier-Performance-Metrics"]], "XGBClassifier Performance Metrics": [[0, "XGBClassifier-Performance-Metrics"]], "Visualization of Classification Reports": [[0, "Visualization-of-Classification-Reports"]], "Comparison of Ivy XGBoost and Standard XGBoost Classifiers": [[0, "Comparison-of-Ivy-XGBoost-and-Standard-XGBoost-Classifiers"]], "Ivy XGBoost Classifier:": [[0, "Ivy-XGBoost-Classifier:"]], "Standard XGBoost Classifier:": [[0, "Standard-XGBoost-Classifier:"]], "Image Segmentation with Ivy UNet": [[8, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[8, "Imports"], [14, "Imports"], [12, "Imports"]], "Custom Preprocessing": [[8, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[8, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [12, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[8, "Visualise-image"], [12, "Visualise-image"]], "Model Inference": [[8, "Model-Inference"]], "Initializing Native Torch UNet": [[8, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[8, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[8, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[8, "TensorFlow-backend"]], "JAX": [[8, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[8, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "0.1: Compile": [[34, "0.1:-Compile"]], "1.3: Dynamic vs Static": [[39, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[39, "Dynamic"]], "Static": [[39, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[39, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Quickstart": [[32, "Quickstart"]], "Get familiar with Ivy": [[32, "Get-familiar-with-Ivy"]], "Functional API": [[32, "Functional-API"]], "Stateful API": [[32, "Stateful-API"]], "Tracing code": [[32, "Tracing-code"]], "Accelerating XGBoost with JAX": [[14, "Accelerating-XGBoost-with-JAX"]], "Tests": [[14, "Tests"]], "Loading the Data": [[14, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[14, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[14, "JAX-backend"]], "Tensorflow backend": [[14, "Tensorflow-backend"]], "PyTorch backend": [[14, "PyTorch-backend"]], "More exhaustive example": [[14, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[14, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[14, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[14, "Comparison-of-Metrics"]], "1.0: Lazy vs Eager": [[36, "1.0:-Lazy-vs-Eager"]], "Write Ivy code": [[22, "Write-Ivy-code"]], "Contents": [[22, "Contents"]], "Installing Ivy": [[22, "Installing-Ivy"]], "Compilation of a Basic Function": [[44, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[44, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[44, "Function-compilation-\ud83d\udee0"]], "Set backend": [[44, "Set-backend"]], "Sample input": [[44, "Sample-input"]], "Define function to compile": [[44, "Define-function-to-compile"]], "Compile the function": [[44, "Compile-the-function"]], "Check results": [[44, "Check-results"], [44, "id1"]], "Compiling simple neural network \ud83e\udde0": [[44, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[44, "Create-model"]], "Define input": [[44, "Define-input"]], "Compile network": [[44, "Compile-network"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[45, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[45, "Table-of-Contents"]], "Defining the model": [[45, "Defining-the-model"]], "Model construction": [[45, "Model-construction"]], "Some helper functions": [[45, "Some-helper-functions"]], "Transpiling the model": [[45, "Transpiling-the-model"]], "PyTorch pipeline": [[45, "PyTorch-pipeline"]], "Dataset download": [[45, "Dataset-download"]], "DataLoader": [[45, "DataLoader"]], "Training": [[45, "Training"]], "Transpile code": [[25, "Transpile-code"]], "Transpiling a haiku model to build on top": [[17, "Transpiling-a-haiku-model-to-build-on-top"]], "Write a model using Ivy": [[30, "Write-a-model-using-Ivy"]], "Trace code": [[24, "Trace-code"]], "# Ivy Bert Demo": [[5, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[5, "Install-the-dependecies"]], "Import the modules": [[5, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[5, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[5, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[5, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[5, "Ivy-model-inference-with-torch"]], "Lazy vs Eager": [[26, "Lazy-vs-Eager"]], "Trace": [[26, "Trace"], [27, "Trace"]], "How to use decorators": [[27, "How-to-use-decorators"]], "Using Ivy ResNet": [[12, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[12, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[12, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[12, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[12, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [12, "id1"]], "Model Inference ResNet50": [[12, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[12, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[12, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "1.2: As a Decorator": [[38, "1.2:-As-a-Decorator"]], "Transpiling a PyTorch model to build on top": [[16, "Transpiling-a-PyTorch-model-to-build-on-top"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[51, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[51, "module-ivy.data_classes.array.activations"], [52, "module-ivy.data_classes.array.conversions"], [53, "module-ivy.data_classes.array.creation"], [54, "module-ivy.data_classes.array.data_type"], [55, "module-ivy.data_classes.array.device"], [56, "module-ivy.data_classes.array.elementwise"], [57, "module-ivy.data_classes.array.experimental"], [57, "module-ivy.data_classes.array.experimental.activations"], [57, "module-ivy.data_classes.array.experimental.conversions"], [57, "module-ivy.data_classes.array.experimental.creation"], [57, "module-ivy.data_classes.array.experimental.data_type"], [57, "module-ivy.data_classes.array.experimental.device"], [57, "module-ivy.data_classes.array.experimental.elementwise"], [57, "module-ivy.data_classes.array.experimental.general"], [57, "module-ivy.data_classes.array.experimental.gradients"], [57, "module-ivy.data_classes.array.experimental.image"], [57, "module-ivy.data_classes.array.experimental.layers"], [57, "module-ivy.data_classes.array.experimental.linear_algebra"], [57, "module-ivy.data_classes.array.experimental.losses"], [57, "module-ivy.data_classes.array.experimental.manipulation"], [57, "module-ivy.data_classes.array.experimental.norms"], [57, "module-ivy.data_classes.array.experimental.random"], [57, "module-ivy.data_classes.array.experimental.searching"], [57, "module-ivy.data_classes.array.experimental.set"], [57, "module-ivy.data_classes.array.experimental.sorting"], [57, "module-ivy.data_classes.array.experimental.statistical"], [57, "module-ivy.data_classes.array.experimental.utility"], [58, "module-ivy.data_classes.array.general"], [59, "module-ivy.data_classes.array.gradients"], [60, "module-ivy.data_classes.array.image"], [61, "module-ivy.data_classes.array.layers"], [62, "module-ivy.data_classes.array.linear_algebra"], [63, "module-ivy.data_classes.array.losses"], [64, "module-ivy.data_classes.array.manipulation"], [65, "module-ivy.data_classes.array.norms"], [66, "module-ivy.data_classes.array.random"], [67, "module-ivy.data_classes.array.searching"], [68, "module-ivy.data_classes.array.set"], [69, "module-ivy.data_classes.array.sorting"], [70, "module-ivy.data_classes.array.statistical"], [71, "module-ivy.data_classes.array.utility"], [72, "module-ivy.data_classes.array.wrapping"], [73, "module-ivy.data_classes.container.activations"], [74, "module-ivy.data_classes.container.base"], [75, "module-ivy.data_classes.container.conversions"], [76, "module-ivy.data_classes.container.creation"], [77, "module-ivy.data_classes.container.data_type"], [78, "module-ivy.data_classes.container.device"], [79, "module-ivy.data_classes.container.elementwise"], [80, "module-ivy.data_classes.container.experimental"], [80, "module-ivy.data_classes.container.experimental.activations"], [80, "module-ivy.data_classes.container.experimental.conversions"], [80, "module-ivy.data_classes.container.experimental.creation"], [80, "module-ivy.data_classes.container.experimental.data_type"], [80, "module-ivy.data_classes.container.experimental.device"], [80, "module-ivy.data_classes.container.experimental.elementwise"], [80, "module-ivy.data_classes.container.experimental.general"], [80, "module-ivy.data_classes.container.experimental.gradients"], [80, "module-ivy.data_classes.container.experimental.image"], [80, "module-ivy.data_classes.container.experimental.layers"], [80, "module-ivy.data_classes.container.experimental.linear_algebra"], [80, "module-ivy.data_classes.container.experimental.losses"], [80, "module-ivy.data_classes.container.experimental.manipulation"], [80, "module-ivy.data_classes.container.experimental.norms"], [80, "module-ivy.data_classes.container.experimental.random"], [80, "module-ivy.data_classes.container.experimental.searching"], [80, "module-ivy.data_classes.container.experimental.set"], [80, "module-ivy.data_classes.container.experimental.sorting"], [80, "module-ivy.data_classes.container.experimental.statistical"], [80, "module-ivy.data_classes.container.experimental.utility"], [81, "module-ivy.data_classes.container.general"], [82, "module-ivy.data_classes.container.gradients"], [83, "module-ivy.data_classes.container.image"], [84, "module-ivy.data_classes.container.layers"], [85, "module-ivy.data_classes.container.linear_algebra"], [86, "module-ivy.data_classes.container.losses"], [87, "module-ivy.data_classes.container.manipulation"], [88, "module-ivy.data_classes.container.norms"], [89, "module-ivy.data_classes.container.random"], [90, "module-ivy.data_classes.container.searching"], [91, "module-ivy.data_classes.container.set"], [92, "module-ivy.data_classes.container.sorting"], [93, "module-ivy.data_classes.container.statistical"], [94, "module-ivy.data_classes.container.utility"], [95, "module-ivy.data_classes.container.wrapping"], [96, "module-ivy.data_classes.factorized_tensor.base"], [97, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [99, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [100, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [102, "module-ivy.data_classes.array.array"], [103, "module-ivy.data_classes.container.container"], [105, "module-ivy.data_classes.nested_array.nested_array"], [106, "module-ivy.data_classes.nested_array.base"], [107, "module-ivy.data_classes.nested_array.elementwise"], [367, "module-ivy.functional.ivy.experimental.activations"], [368, "module-ivy.functional.ivy.experimental.constants"], [369, "module-ivy.functional.ivy.experimental.creation"], [370, "module-ivy.functional.ivy.experimental.data_type"], [371, "module-ivy.functional.ivy.experimental.device"], [372, "module-ivy.functional.ivy.experimental.elementwise"], [373, "module-ivy.functional.ivy.experimental.general"], [374, "module-ivy.functional.ivy.experimental.gradients"], [375, "module-ivy.functional.ivy.experimental.layers"], [376, "module-ivy.functional.ivy.experimental.linear_algebra"], [377, "module-ivy.functional.ivy.experimental.losses"], [378, "module-ivy.functional.ivy.experimental.manipulation"], [379, "module-ivy.functional.ivy.experimental.meta"], [380, "module-ivy.functional.ivy.experimental.nest"], [381, "module-ivy.functional.ivy.experimental.norms"], [382, "module-ivy.functional.ivy.experimental.random"], [383, "module-ivy.functional.ivy.experimental.searching"], [384, "module-ivy.functional.ivy.experimental.set"], [385, "module-ivy.functional.ivy.experimental.sorting"], [386, "module-ivy.functional.ivy.experimental.sparse_array"], [387, "module-ivy.functional.ivy.experimental.statistical"], [388, "module-ivy.functional.ivy.experimental.utility"], [626, "module-ivy.functional.ivy.activations"], [627, "module-ivy.functional.ivy.constants"], [628, "module-ivy.functional.ivy.control_flow_ops"], [629, "module-ivy.functional.ivy.creation"], [630, "module-ivy.functional.ivy.data_type"], [631, "module-ivy.functional.ivy.device"], [632, "module-ivy.functional.ivy.elementwise"], [633, "module-ivy.functional.ivy.experimental"], [634, "module-ivy.functional.ivy.general"], [635, "module-ivy.functional.ivy.gradients"], [636, "module-ivy.functional.ivy.layers"], [637, "module-ivy.functional.ivy.linear_algebra"], [638, "module-ivy.functional.ivy.losses"], [639, "module-ivy.functional.ivy.manipulation"], [640, "module-ivy.functional.ivy.meta"], [641, "module-ivy.functional.ivy.nest"], [642, "module-ivy.functional.ivy.norms"], [643, "module-ivy.functional.ivy.random"], [644, "module-ivy.functional.ivy.searching"], [645, "module-ivy.functional.ivy.set"], [646, "module-ivy.functional.ivy.sorting"], [647, "module-ivy.functional.ivy.statistical"], [648, "module-ivy.functional.ivy.utility"], [771, "module-ivy_tests.test_ivy.helpers.assertions"], [772, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [773, "module-ivy_tests.test_ivy.helpers.function_testing"], [774, "module-ivy_tests.test_ivy.helpers.globals"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [780, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [782, "module-ivy_tests.test_ivy.helpers.structs"], [783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [784, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [788, "module-ivy.stateful.activations"], [789, "module-ivy.stateful.converters"], [790, "module-ivy.stateful.helpers"], [791, "module-ivy.stateful.initializers"], [792, "module-ivy.stateful.layers"], [793, "module-ivy.stateful.losses"], [794, "module-ivy.stateful.module"], [795, "module-ivy.stateful.norms"], [796, "module-ivy.stateful.optimizers"], [797, "module-ivy.stateful.sequential"], [798, "module-ivy.utils.assertions"], [799, "module-ivy.utils.backend"], [800, "module-ivy.utils.backend.ast_helpers"], [801, "module-ivy.utils.backend.handler"], [802, "module-ivy.utils.backend.sub_backend_handler"], [803, "module-ivy.utils.binaries"], [804, "module-ivy.utils.dynamic_import"], [805, "module-ivy.utils.einsum_parser"], [806, "module-ivy.utils.einsum_path_helpers"], [807, "module-ivy.utils.exceptions"], [808, "module-ivy.utils.inspection"], [809, "module-ivy.utils.logging"], [810, "module-ivy.utils.profiler"], [811, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[51, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[52, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[52, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[53, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[53, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[54, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[54, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[55, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[55, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[55, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[55, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[56, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[56, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[57, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[57, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[57, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[57, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[57, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[57, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[57, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[57, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[57, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[57, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[57, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[57, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[57, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[57, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[57, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[57, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[57, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[57, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[57, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[57, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[57, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[57, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[57, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[57, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[57, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[57, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[57, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[57, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[57, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[57, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[57, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[57, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[57, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[57, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[57, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[57, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[57, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[57, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[57, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[57, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[58, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[58, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[59, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[59, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[60, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[60, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[60, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[61, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[61, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[62, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[62, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[63, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[63, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[64, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[64, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[65, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[65, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[66, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[66, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[66, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[66, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[67, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[67, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[68, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[68, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[68, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[68, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[69, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[69, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[70, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[70, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[71, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[71, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[72, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[72, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[73, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[73, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[74, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[74, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[74, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[74, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[74, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[74, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[75, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[75, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[76, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[76, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[77, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[77, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[78, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[78, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[78, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[79, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[79, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[80, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[80, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[80, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[80, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[80, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[80, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[80, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[80, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[80, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[80, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[80, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[80, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[80, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[80, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[80, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[80, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[80, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[80, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[80, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[80, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[80, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[80, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[80, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[80, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[80, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[80, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[80, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[80, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[80, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[80, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[80, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[80, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[80, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[80, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[80, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[80, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[80, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[80, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[80, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[80, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[80, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[81, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[81, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[82, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[82, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[83, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[83, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[83, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[84, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[84, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[85, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[85, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[86, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[86, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[87, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[87, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[88, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[88, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[89, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[89, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[89, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[90, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[90, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[91, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[91, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[91, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[91, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[91, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[92, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[92, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[93, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[93, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[94, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[94, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[95, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[95, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[96, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[96, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[97, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[97, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[98, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[98, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[99, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[99, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[100, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[100, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[101, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[101, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[102, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[102, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[102, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[102, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[103, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[103, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[103, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[105, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[105, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[106, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[106, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[107, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[107, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[110, "ivy.gelu"], [626, "ivy.gelu"]], "gelu() (ivy.array method)": [[110, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[110, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[111, "ivy.hardswish"], [626, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[111, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[111, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[112, "ivy.leaky_relu"], [626, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[112, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[112, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[113, "ivy.log_softmax"], [626, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[113, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[113, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[114, "ivy.mish"], [626, "ivy.mish"]], "mish() (ivy.array method)": [[114, "ivy.Array.mish"]], "mish() (ivy.container method)": [[114, "ivy.Container.mish"]], "relu() (in module ivy)": [[115, "ivy.relu"], [626, "ivy.relu"]], "relu() (ivy.array method)": [[115, "ivy.Array.relu"]], "relu() (ivy.container method)": [[115, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[116, "ivy.sigmoid"], [626, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[116, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[116, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[117, "ivy.softmax"], [626, "ivy.softmax"]], "softmax() (ivy.array method)": [[117, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[117, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[118, "ivy.softplus"], [626, "ivy.softplus"]], "softplus() (ivy.array method)": [[118, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[118, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[119, "ivy.softsign"], [626, "ivy.softsign"]], "cmp_is() (in module ivy)": [[120, "ivy.cmp_is"], [628, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[121, "ivy.cmp_isnot"], [628, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[122, "ivy.for_loop"], [628, "ivy.for_loop"]], "if_else() (in module ivy)": [[123, "ivy.if_else"], [628, "ivy.if_else"]], "try_except() (in module ivy)": [[124, "ivy.try_except"], [628, "ivy.try_except"]], "while_loop() (in module ivy)": [[125, "ivy.while_loop"], [628, "ivy.while_loop"]], "arange() (in module ivy)": [[126, "ivy.arange"], [629, "ivy.arange"]], "array() (in module ivy)": [[127, "ivy.array"], [629, "ivy.array"]], "asarray() (in module ivy)": [[128, "ivy.asarray"], [629, "ivy.asarray"]], "asarray() (ivy.array method)": [[128, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[128, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[129, "ivy.copy_array"], [629, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[129, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[129, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[130, "ivy.empty"], [629, "ivy.empty"]], "empty_like() (in module ivy)": [[131, "ivy.empty_like"], [629, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[131, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[131, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[132, "ivy.eye"], [629, "ivy.eye"]], "from_dlpack() (in module ivy)": [[133, "ivy.from_dlpack"], [629, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[133, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[133, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[134, "ivy.frombuffer"], [629, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[134, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[135, "ivy.full"], [629, "ivy.full"]], "full_like() (in module ivy)": [[136, "ivy.full_like"], [629, "ivy.full_like"]], "full_like() (ivy.array method)": [[136, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[136, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[137, "ivy.linspace"], [629, "ivy.linspace"]], "linspace() (ivy.array method)": [[137, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[137, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[138, "ivy.logspace"], [629, "ivy.logspace"]], "logspace() (ivy.array method)": [[138, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[138, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[139, "ivy.meshgrid"], [629, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[139, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[139, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[140, "ivy.native_array"], [629, "ivy.native_array"]], "native_array() (ivy.array method)": [[140, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[140, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[141, "ivy.one_hot"], [629, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[141, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[141, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[142, "ivy.ones"], [629, "ivy.ones"]], "ones_like() (in module ivy)": [[143, "ivy.ones_like"], [629, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[143, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[143, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[144, "ivy.to_dlpack"], [629, "ivy.to_dlpack"]], "tril() (in module ivy)": [[145, "ivy.tril"], [629, "ivy.tril"]], "tril() (ivy.array method)": [[145, "ivy.Array.tril"]], "tril() (ivy.container method)": [[145, "ivy.Container.tril"]], "triu() (in module ivy)": [[146, "ivy.triu"], [629, "ivy.triu"]], "triu() (ivy.array method)": [[146, "ivy.Array.triu"]], "triu() (ivy.container method)": [[146, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[147, "ivy.triu_indices"], [629, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[147, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[148, "ivy.zeros"], [629, "ivy.zeros"]], "zeros_like() (in module ivy)": [[149, "ivy.zeros_like"], [629, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[149, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[149, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[150, "ivy.as_ivy_dtype"], [630, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[151, "ivy.as_native_dtype"], [630, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[152, "ivy.astype"], [630, "ivy.astype"]], "astype() (ivy.array method)": [[152, "ivy.Array.astype"]], "astype() (ivy.container method)": [[152, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[153, "ivy.broadcast_arrays"], [630, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[153, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[153, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[154, "ivy.broadcast_to"], [630, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[154, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[154, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[155, "ivy.can_cast"], [630, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[155, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[155, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[156, "ivy.check_float"], [630, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[157, "ivy.closest_valid_dtype"], [630, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[158, "ivy.default_complex_dtype"], [630, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[159, "ivy.default_dtype"], [630, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[160, "ivy.default_float_dtype"], [630, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[161, "ivy.default_int_dtype"], [630, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[162, "ivy.default_uint_dtype"], [630, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[163, "ivy.dtype"], [630, "ivy.dtype"]], "dtype() (ivy.array method)": [[163, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[163, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[164, "ivy.dtype_bits"], [630, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[165, "ivy.finfo"], [630, "ivy.finfo"]], "finfo() (ivy.array method)": [[165, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[165, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[166, "ivy.function_supported_dtypes"], [630, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[167, "ivy.function_unsupported_dtypes"], [630, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[168, "ivy.iinfo"], [630, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[168, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[168, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[169, "ivy.infer_default_dtype"], [630, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[170, "ivy.invalid_dtype"], [630, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[171, "ivy.is_bool_dtype"], [630, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[171, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[171, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[172, "ivy.is_complex_dtype"], [630, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[172, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[173, "ivy.is_float_dtype"], [630, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[173, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[173, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[174, "ivy.is_hashable_dtype"], [630, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[175, "ivy.is_int_dtype"], [630, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[175, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[175, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[176, "ivy.is_native_dtype"], [630, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[177, "ivy.is_uint_dtype"], [630, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[177, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[177, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[178, "ivy.promote_types"], [630, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[179, "ivy.promote_types_of_inputs"], [630, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[180, "ivy.result_type"], [630, "ivy.result_type"]], "result_type() (ivy.array method)": [[180, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[180, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[181, "ivy.set_default_complex_dtype"], [630, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[182, "ivy.set_default_dtype"], [630, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[183, "ivy.set_default_float_dtype"], [630, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[184, "ivy.set_default_int_dtype"], [630, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[185, "ivy.set_default_uint_dtype"], [630, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[186, "ivy.type_promote_arrays"], [630, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[187, "ivy.unset_default_complex_dtype"], [630, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[188, "ivy.unset_default_dtype"], [630, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[189, "ivy.unset_default_float_dtype"], [630, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[190, "ivy.unset_default_int_dtype"], [630, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[191, "ivy.unset_default_uint_dtype"], [630, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[192, "ivy.valid_dtype"], [630, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[193, "ivy.as_ivy_dev"], [631, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[194, "ivy.as_native_dev"], [631, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[195, "ivy.clear_cached_mem_on_dev"], [631, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[196, "ivy.default_device"], [631, "ivy.default_device"]], "dev() (in module ivy)": [[197, "ivy.dev"], [631, "ivy.dev"]], "dev() (ivy.array method)": [[197, "ivy.Array.dev"]], "dev() (ivy.container method)": [[197, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[198, "ivy.dev_util"], [631, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[199, "ivy.function_supported_devices"], [631, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[200, "ivy.function_unsupported_devices"], [631, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.get_all_ivy_arrays_on_dev"], [631, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[202, "ivy.gpu_is_available"], [631, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[203, "ivy.handle_soft_device_variable"], [631, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[204, "ivy.num_cpu_cores"], [631, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[205, "ivy.num_gpus"], [631, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[206, "ivy.num_ivy_arrays_on_dev"], [631, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[207, "ivy.percent_used_mem_on_dev"], [631, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[208, "ivy.print_all_ivy_arrays_on_dev"], [631, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[209, "ivy.set_default_device"], [631, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[210, "ivy.set_soft_device_mode"], [631, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[211, "ivy.set_split_factor"], [631, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[212, "ivy.split_factor"], [631, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[213, "ivy.split_func_call"], [631, "ivy.split_func_call"]], "to_device() (in module ivy)": [[214, "ivy.to_device"], [631, "ivy.to_device"]], "to_device() (ivy.array method)": [[214, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[214, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[215, "ivy.total_mem_on_dev"], [631, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[216, "ivy.tpu_is_available"], [631, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[217, "ivy.unset_default_device"], [631, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[218, "ivy.unset_soft_device_mode"], [631, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[219, "ivy.used_mem_on_dev"], [631, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[220, "ivy.abs"], [632, "ivy.abs"]], "abs() (ivy.array method)": [[220, "ivy.Array.abs"]], "abs() (ivy.container method)": [[220, "ivy.Container.abs"]], "acos() (in module ivy)": [[221, "ivy.acos"], [632, "ivy.acos"]], "acos() (ivy.array method)": [[221, "ivy.Array.acos"]], "acos() (ivy.container method)": [[221, "ivy.Container.acos"]], "acosh() (in module ivy)": [[222, "ivy.acosh"], [632, "ivy.acosh"]], "acosh() (ivy.array method)": [[222, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[222, "ivy.Container.acosh"]], "add() (in module ivy)": [[223, "ivy.add"], [632, "ivy.add"]], "add() (ivy.array method)": [[223, "ivy.Array.add"]], "add() (ivy.container method)": [[223, "ivy.Container.add"]], "angle() (in module ivy)": [[224, "ivy.angle"], [632, "ivy.angle"]], "angle() (ivy.array method)": [[224, "ivy.Array.angle"]], "angle() (ivy.container method)": [[224, "ivy.Container.angle"]], "asin() (in module ivy)": [[225, "ivy.asin"], [632, "ivy.asin"]], "asin() (ivy.array method)": [[225, "ivy.Array.asin"]], "asin() (ivy.container method)": [[225, "ivy.Container.asin"]], "asinh() (in module ivy)": [[226, "ivy.asinh"], [632, "ivy.asinh"]], "asinh() (ivy.array method)": [[226, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[226, "ivy.Container.asinh"]], "atan() (in module ivy)": [[227, "ivy.atan"], [632, "ivy.atan"]], "atan() (ivy.array method)": [[227, "ivy.Array.atan"]], "atan() (ivy.container method)": [[227, "ivy.Container.atan"]], "atan2() (in module ivy)": [[228, "ivy.atan2"], [632, "ivy.atan2"]], "atan2() (ivy.array method)": [[228, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[228, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[229, "ivy.atanh"], [632, "ivy.atanh"]], "atanh() (ivy.array method)": [[229, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[229, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[230, "ivy.bitwise_and"], [632, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[230, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[230, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[231, "ivy.bitwise_invert"], [632, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[231, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[231, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[232, "ivy.bitwise_left_shift"], [632, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[232, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[232, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[233, "ivy.bitwise_or"], [632, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[233, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[233, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[234, "ivy.bitwise_right_shift"], [632, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[234, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[234, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[235, "ivy.bitwise_xor"], [632, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[235, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[235, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[236, "ivy.ceil"], [632, "ivy.ceil"]], "ceil() (ivy.array method)": [[236, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[236, "ivy.Container.ceil"]], "cos() (in module ivy)": [[237, "ivy.cos"], [632, "ivy.cos"]], "cos() (ivy.array method)": [[237, "ivy.Array.cos"]], "cos() (ivy.container method)": [[237, "ivy.Container.cos"]], "cosh() (in module ivy)": [[238, "ivy.cosh"], [632, "ivy.cosh"]], "cosh() (ivy.array method)": [[238, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[238, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[239, "ivy.deg2rad"], [632, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[239, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[239, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[240, "ivy.divide"], [632, "ivy.divide"]], "divide() (ivy.array method)": [[240, "ivy.Array.divide"]], "divide() (ivy.container method)": [[240, "ivy.Container.divide"]], "equal() (in module ivy)": [[241, "ivy.equal"], [632, "ivy.equal"]], "equal() (ivy.array method)": [[241, "ivy.Array.equal"]], "equal() (ivy.container method)": [[241, "ivy.Container.equal"]], "erf() (in module ivy)": [[242, "ivy.erf"], [632, "ivy.erf"]], "erf() (ivy.array method)": [[242, "ivy.Array.erf"]], "erf() (ivy.container method)": [[242, "ivy.Container.erf"]], "exp() (in module ivy)": [[243, "ivy.exp"], [632, "ivy.exp"]], "exp() (ivy.array method)": [[243, "ivy.Array.exp"]], "exp() (ivy.container method)": [[243, "ivy.Container.exp"]], "exp2() (in module ivy)": [[244, "ivy.exp2"], [632, "ivy.exp2"]], "exp2() (ivy.array method)": [[244, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[244, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[245, "ivy.expm1"], [632, "ivy.expm1"]], "expm1() (ivy.array method)": [[245, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[245, "ivy.Container.expm1"]], "floor() (in module ivy)": [[246, "ivy.floor"], [632, "ivy.floor"]], "floor() (ivy.array method)": [[246, "ivy.Array.floor"]], "floor() (ivy.container method)": [[246, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[247, "ivy.floor_divide"], [632, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[247, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[247, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[248, "ivy.fmin"], [632, "ivy.fmin"]], "fmin() (ivy.array method)": [[248, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[248, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[249, "ivy.fmod"], [632, "ivy.fmod"]], "fmod() (ivy.array method)": [[249, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[249, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[250, "ivy.gcd"], [632, "ivy.gcd"]], "gcd() (ivy.array method)": [[250, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[250, "ivy.Container.gcd"]], "greater() (in module ivy)": [[251, "ivy.greater"], [632, "ivy.greater"]], "greater() (ivy.array method)": [[251, "ivy.Array.greater"]], "greater() (ivy.container method)": [[251, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[252, "ivy.greater_equal"], [632, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[252, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[252, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[253, "ivy.imag"], [632, "ivy.imag"]], "imag() (ivy.array method)": [[253, "ivy.Array.imag"]], "imag() (ivy.container method)": [[253, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[254, "ivy.isfinite"], [632, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[254, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[254, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[255, "ivy.isinf"], [632, "ivy.isinf"]], "isinf() (ivy.array method)": [[255, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[255, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[256, "ivy.isnan"], [632, "ivy.isnan"]], "isnan() (ivy.array method)": [[256, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[256, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[257, "ivy.isreal"], [632, "ivy.isreal"]], "isreal() (ivy.array method)": [[257, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[257, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[258, "ivy.lcm"], [632, "ivy.lcm"]], "lcm() (ivy.array method)": [[258, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[258, "ivy.Container.lcm"]], "less() (in module ivy)": [[259, "ivy.less"], [632, "ivy.less"]], "less() (ivy.array method)": [[259, "ivy.Array.less"]], "less() (ivy.container method)": [[259, "ivy.Container.less"]], "less_equal() (in module ivy)": [[260, "ivy.less_equal"], [632, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[260, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[260, "ivy.Container.less_equal"]], "log() (in module ivy)": [[261, "ivy.log"], [632, "ivy.log"]], "log() (ivy.array method)": [[261, "ivy.Array.log"]], "log() (ivy.container method)": [[261, "ivy.Container.log"]], "log10() (in module ivy)": [[262, "ivy.log10"], [632, "ivy.log10"]], "log10() (ivy.array method)": [[262, "ivy.Array.log10"]], "log10() (ivy.container method)": [[262, "ivy.Container.log10"]], "log1p() (in module ivy)": [[263, "ivy.log1p"], [632, "ivy.log1p"]], "log1p() (ivy.array method)": [[263, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[263, "ivy.Container.log1p"]], "log2() (in module ivy)": [[264, "ivy.log2"], [632, "ivy.log2"]], "log2() (ivy.array method)": [[264, "ivy.Array.log2"]], "log2() (ivy.container method)": [[264, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[265, "ivy.logaddexp"], [632, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[265, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[265, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[266, "ivy.logaddexp2"], [632, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[266, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[266, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[267, "ivy.logical_and"], [632, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[267, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[267, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[268, "ivy.logical_not"], [632, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[268, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[268, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[269, "ivy.logical_or"], [632, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[269, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[269, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[270, "ivy.logical_xor"], [632, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[270, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[270, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[271, "ivy.maximum"], [632, "ivy.maximum"]], "maximum() (ivy.array method)": [[271, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[271, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[272, "ivy.minimum"], [632, "ivy.minimum"]], "minimum() (ivy.array method)": [[272, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[272, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[273, "ivy.multiply"], [632, "ivy.multiply"]], "multiply() (ivy.array method)": [[273, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[273, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[274, "ivy.nan_to_num"], [632, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[274, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[274, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[275, "ivy.negative"], [632, "ivy.negative"]], "negative() (ivy.array method)": [[275, "ivy.Array.negative"]], "negative() (ivy.container method)": [[275, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[276, "ivy.not_equal"], [632, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[276, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[276, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[277, "ivy.positive"], [632, "ivy.positive"]], "positive() (ivy.array method)": [[277, "ivy.Array.positive"]], "positive() (ivy.container method)": [[277, "ivy.Container.positive"]], "pow() (in module ivy)": [[278, "ivy.pow"], [632, "ivy.pow"]], "pow() (ivy.array method)": [[278, "ivy.Array.pow"]], "pow() (ivy.container method)": [[278, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[279, "ivy.rad2deg"], [632, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[279, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[279, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[280, "ivy.real"], [632, "ivy.real"]], "real() (ivy.array method)": [[280, "ivy.Array.real"]], "real() (ivy.container method)": [[280, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[281, "ivy.reciprocal"], [632, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[281, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[281, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[282, "ivy.remainder"], [632, "ivy.remainder"]], "remainder() (ivy.array method)": [[282, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[282, "ivy.Container.remainder"]], "round() (in module ivy)": [[283, "ivy.round"], [632, "ivy.round"]], "round() (ivy.array method)": [[283, "ivy.Array.round"]], "round() (ivy.container method)": [[283, "ivy.Container.round"]], "sign() (in module ivy)": [[284, "ivy.sign"], [632, "ivy.sign"]], "sign() (ivy.array method)": [[284, "ivy.Array.sign"]], "sign() (ivy.container method)": [[284, "ivy.Container.sign"]], "sin() (in module ivy)": [[285, "ivy.sin"], [632, "ivy.sin"]], "sin() (ivy.array method)": [[285, "ivy.Array.sin"]], "sin() (ivy.container method)": [[285, "ivy.Container.sin"]], "sinh() (in module ivy)": [[286, "ivy.sinh"], [632, "ivy.sinh"]], "sinh() (ivy.array method)": [[286, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[286, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[287, "ivy.sqrt"], [632, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[287, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[287, "ivy.Container.sqrt"]], "square() (in module ivy)": [[288, "ivy.square"], [632, "ivy.square"]], "square() (ivy.array method)": [[288, "ivy.Array.square"]], "square() (ivy.container method)": [[288, "ivy.Container.square"]], "subtract() (in module ivy)": [[289, "ivy.subtract"], [632, "ivy.subtract"]], "subtract() (ivy.array method)": [[289, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[289, "ivy.Container.subtract"]], "tan() (in module ivy)": [[290, "ivy.tan"], [632, "ivy.tan"]], "tan() (ivy.array method)": [[290, "ivy.Array.tan"]], "tan() (ivy.container method)": [[290, "ivy.Container.tan"]], "tanh() (in module ivy)": [[291, "ivy.tanh"], [632, "ivy.tanh"]], "tanh() (ivy.array method)": [[291, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[291, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[292, "ivy.trapz"], [632, "ivy.trapz"]], "trapz() (ivy.array method)": [[292, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[292, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[293, "ivy.trunc"], [632, "ivy.trunc"]], "trunc() (ivy.array method)": [[293, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[293, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[294, "ivy.trunc_divide"], [632, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[294, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[294, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[295, "ivy.celu"], [367, "ivy.celu"]], "celu() (ivy.array method)": [[295, "ivy.Array.celu"]], "celu() (ivy.container method)": [[295, "ivy.Container.celu"]], "elu() (in module ivy)": [[296, "ivy.elu"], [367, "ivy.elu"]], "elu() (ivy.array method)": [[296, "ivy.Array.elu"]], "elu() (ivy.container method)": [[296, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[297, "ivy.hardshrink"], [367, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[297, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[297, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[298, "ivy.hardsilu"], [367, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[298, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[298, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[299, "ivy.hardtanh"], [367, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[299, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[299, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[300, "ivy.logit"], [367, "ivy.logit"]], "logit() (ivy.array method)": [[300, "ivy.Array.logit"]], "logit() (ivy.container method)": [[300, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[301, "ivy.logsigmoid"], [367, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[301, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[301, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[302, "ivy.prelu"], [367, "ivy.prelu"]], "prelu() (ivy.array method)": [[302, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[302, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[303, "ivy.relu6"], [367, "ivy.relu6"]], "relu6() (ivy.array method)": [[303, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[303, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[304, "ivy.scaled_tanh"], [367, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[304, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[304, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[305, "ivy.selu"], [367, "ivy.selu"]], "selu() (ivy.array method)": [[305, "ivy.Array.selu"]], "selu() (ivy.container method)": [[305, "ivy.Container.selu"]], "silu() (in module ivy)": [[306, "ivy.silu"], [367, "ivy.silu"]], "silu() (ivy.array method)": [[306, "ivy.Array.silu"]], "silu() (ivy.container method)": [[306, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[307, "ivy.softshrink"], [367, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[307, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[307, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[308, "ivy.stanh"], [367, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[309, "ivy.tanhshrink"], [367, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[309, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[309, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[310, "ivy.threshold"], [367, "ivy.threshold"]], "threshold() (ivy.array method)": [[310, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[310, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[311, "ivy.thresholded_relu"], [367, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[311, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[311, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[312, "ivy.blackman_window"], [369, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[312, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[312, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[313, "ivy.eye_like"], [369, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[313, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[313, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[314, "ivy.hamming_window"], [369, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[314, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[315, "ivy.hann_window"], [369, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[315, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[316, "ivy.indices"], [369, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[317, "ivy.kaiser_bessel_derived_window"], [369, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[317, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[318, "ivy.kaiser_window"], [369, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[318, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[319, "ivy.mel_weight_matrix"], [369, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[319, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[319, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[320, "ivy.ndenumerate"], [369, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[321, "ivy.ndindex"], [369, "ivy.ndindex"]], "polyval() (in module ivy)": [[322, "ivy.polyval"], [369, "ivy.polyval"]], "polyval() (ivy.container method)": [[322, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[323, "ivy.random_cp"], [369, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[324, "ivy.random_parafac2"], [369, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[325, "ivy.random_tr"], [369, "ivy.random_tr"]], "random_tt() (in module ivy)": [[326, "ivy.random_tt"], [369, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[327, "ivy.random_tucker"], [369, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[328, "ivy.tril_indices"], [369, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[328, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[329, "ivy.trilu"], [369, "ivy.trilu"]], "trilu() (ivy.array method)": [[329, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[329, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[330, "ivy.unsorted_segment_mean"], [369, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[330, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[330, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[331, "ivy.unsorted_segment_min"], [369, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[331, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[331, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[332, "ivy.unsorted_segment_sum"], [369, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[332, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[332, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[333, "ivy.vorbis_window"], [369, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[333, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[334, "ivy.allclose"], [372, "ivy.allclose"]], "allclose() (ivy.array method)": [[334, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[334, "ivy.Container.allclose"]], "amax() (in module ivy)": [[335, "ivy.amax"], [372, "ivy.amax"]], "amax() (ivy.array method)": [[335, "ivy.Array.amax"]], "amax() (ivy.container method)": [[335, "ivy.Container.amax"]], "amin() (in module ivy)": [[336, "ivy.amin"], [372, "ivy.amin"]], "amin() (ivy.array method)": [[336, "ivy.Array.amin"]], "amin() (ivy.container method)": [[336, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[337, "ivy.binarizer"], [372, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[337, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[337, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[338, "ivy.conj"], [372, "ivy.conj"]], "conj() (ivy.array method)": [[338, "ivy.Array.conj"]], "conj() (ivy.container method)": [[338, "ivy.Container.conj"]], "copysign() (in module ivy)": [[339, "ivy.copysign"], [372, "ivy.copysign"]], "copysign() (ivy.array method)": [[339, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[339, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[340, "ivy.count_nonzero"], [372, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[340, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[340, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[341, "ivy.diff"], [372, "ivy.diff"]], "diff() (ivy.array method)": [[341, "ivy.Array.diff"]], "diff() (ivy.container method)": [[341, "ivy.Container.diff"]], "digamma() (in module ivy)": [[342, "ivy.digamma"], [372, "ivy.digamma"]], "digamma() (ivy.array method)": [[342, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[342, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[343, "ivy.erfc"], [372, "ivy.erfc"]], "erfc() (ivy.array method)": [[343, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[343, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[344, "ivy.erfinv"], [372, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[344, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[344, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[345, "ivy.fix"], [372, "ivy.fix"]], "fix() (ivy.array method)": [[345, "ivy.Array.fix"]], "fix() (ivy.container method)": [[345, "ivy.Container.fix"]], "float_power() (in module ivy)": [[346, "ivy.float_power"], [372, "ivy.float_power"]], "float_power() (ivy.array method)": [[346, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[346, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[347, "ivy.fmax"], [372, "ivy.fmax"]], "fmax() (ivy.array method)": [[347, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[347, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[348, "ivy.frexp"], [372, "ivy.frexp"]], "frexp() (ivy.array method)": [[348, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[348, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[349, "ivy.gradient"], [372, "ivy.gradient"]], "gradient() (ivy.array method)": [[349, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[349, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[350, "ivy.hypot"], [372, "ivy.hypot"]], "hypot() (ivy.array method)": [[350, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[350, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[351, "ivy.isclose"], [372, "ivy.isclose"]], "isclose() (ivy.array method)": [[351, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[351, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[352, "ivy.ldexp"], [372, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[352, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[352, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[353, "ivy.lerp"], [372, "ivy.lerp"]], "lerp() (ivy.array method)": [[353, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[353, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[354, "ivy.lgamma"], [372, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[354, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[354, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[355, "ivy.modf"], [372, "ivy.modf"]], "modf() (ivy.array method)": [[355, "ivy.Array.modf"]], "modf() (ivy.container method)": [[355, "ivy.Container.modf"]], "nansum() (in module ivy)": [[356, "ivy.nansum"], [372, "ivy.nansum"]], "nansum() (ivy.array method)": [[356, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[356, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[357, "ivy.nextafter"], [372, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[357, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[357, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[358, "ivy.signbit"], [372, "ivy.signbit"]], "signbit() (ivy.array method)": [[358, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[358, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[359, "ivy.sinc"], [372, "ivy.sinc"]], "sinc() (ivy.array method)": [[359, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[359, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[360, "ivy.sparsify_tensor"], [372, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[360, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[360, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[361, "ivy.xlogy"], [372, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[361, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[361, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[362, "ivy.zeta"], [372, "ivy.zeta"]], "zeta() (ivy.array method)": [[362, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[362, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[363, "ivy.reduce"], [373, "ivy.reduce"]], "reduce() (ivy.array method)": [[363, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[363, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[364, "ivy.bind_custom_gradient_function"], [374, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[365, "ivy.jvp"], [374, "ivy.jvp"]], "vjp() (in module ivy)": [[366, "ivy.vjp"], [374, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[367, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[368, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[369, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[370, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[371, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[372, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[373, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[374, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[375, "ivy.adaptive_avg_pool1d"], [389, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[375, "ivy.adaptive_avg_pool2d"], [390, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[375, "ivy.adaptive_max_pool2d"], [391, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[375, "ivy.adaptive_max_pool3d"], [392, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[375, "ivy.area_interpolate"], [393, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[375, "ivy.avg_pool1d"], [394, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[375, "ivy.avg_pool2d"], [395, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[375, "ivy.avg_pool3d"], [396, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[375, "ivy.dct"], [397, "ivy.dct"]], "dft() (in module ivy)": [[375, "ivy.dft"], [398, "ivy.dft"]], "dropout1d() (in module ivy)": [[375, "ivy.dropout1d"], [399, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[375, "ivy.dropout2d"], [400, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[375, "ivy.dropout3d"], [401, "ivy.dropout3d"]], "embedding() (in module ivy)": [[375, "ivy.embedding"], [402, "ivy.embedding"]], "fft() (in module ivy)": [[375, "ivy.fft"], [403, "ivy.fft"]], "fft2() (in module ivy)": [[375, "ivy.fft2"], [404, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[375, "ivy.generate_einsum_equation"], [405, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[375, "ivy.get_interpolate_kernel"], [406, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[375, "ivy.idct"], [407, "ivy.idct"]], "ifft() (in module ivy)": [[375, "ivy.ifft"], [408, "ivy.ifft"]], "ifftn() (in module ivy)": [[375, "ivy.ifftn"], [409, "ivy.ifftn"]], "interp() (in module ivy)": [[375, "ivy.interp"], [410, "ivy.interp"]], "interpolate() (in module ivy)": [[375, "ivy.interpolate"], [411, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[375, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[375, "ivy.max_pool1d"], [412, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[375, "ivy.max_pool2d"], [413, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[375, "ivy.max_pool3d"], [414, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[375, "ivy.max_unpool1d"], [415, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[375, "ivy.nearest_interpolate"], [416, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[375, "ivy.pool"], [417, "ivy.pool"]], "reduce_window() (in module ivy)": [[375, "ivy.reduce_window"], [418, "ivy.reduce_window"]], "rfft() (in module ivy)": [[375, "ivy.rfft"], [419, "ivy.rfft"]], "rfftn() (in module ivy)": [[375, "ivy.rfftn"], [420, "ivy.rfftn"]], "rnn() (in module ivy)": [[375, "ivy.rnn"], [421, "ivy.rnn"]], "sliding_window() (in module ivy)": [[375, "ivy.sliding_window"], [422, "ivy.sliding_window"]], "stft() (in module ivy)": [[375, "ivy.stft"], [423, "ivy.stft"]], "adjoint() (in module ivy)": [[376, "ivy.adjoint"], [424, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[376, "ivy.batched_outer"], [425, "ivy.batched_outer"]], "cond() (in module ivy)": [[376, "ivy.cond"], [426, "ivy.cond"]], "diagflat() (in module ivy)": [[376, "ivy.diagflat"], [427, "ivy.diagflat"]], "dot() (in module ivy)": [[376, "ivy.dot"], [428, "ivy.dot"]], "eig() (in module ivy)": [[376, "ivy.eig"], [429, "ivy.eig"], [637, "ivy.eig"], [672, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[376, "ivy.eigh_tridiagonal"], [430, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[376, "ivy.eigvals"], [431, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[376, "ivy.general_inner_product"], [432, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[376, "ivy.higher_order_moment"], [433, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[376, "ivy.initialize_tucker"], [434, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[376, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[376, "ivy.khatri_rao"], [435, "ivy.khatri_rao"]], "kron() (in module ivy)": [[376, "ivy.kron"], [436, "ivy.kron"]], "kronecker() (in module ivy)": [[376, "ivy.kronecker"], [437, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[376, "ivy.lu_factor"], [438, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[376, "ivy.lu_solve"], [439, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[376, "ivy.make_svd_non_negative"], [440, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[376, "ivy.matrix_exp"], [441, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[376, "ivy.mode_dot"], [442, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[376, "ivy.multi_dot"], [443, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[376, "ivy.multi_mode_dot"], [444, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[376, "ivy.partial_tucker"], [445, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[376, "ivy.solve_triangular"], [446, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[376, "ivy.svd_flip"], [447, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[376, "ivy.tensor_train"], [448, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[376, "ivy.truncated_svd"], [449, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[376, "ivy.tt_matrix_to_tensor"], [450, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[376, "ivy.tucker"], [451, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[377, "ivy.hinge_embedding_loss"], [452, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[377, "ivy.huber_loss"], [453, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[377, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[377, "ivy.kl_div"], [454, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[377, "ivy.l1_loss"], [455, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[377, "ivy.log_poisson_loss"], [456, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[377, "ivy.poisson_nll_loss"], [457, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[377, "ivy.smooth_l1_loss"], [458, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[377, "ivy.soft_margin_loss"], [459, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[378, "ivy.as_strided"], [460, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[378, "ivy.associative_scan"], [461, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[378, "ivy.atleast_1d"], [462, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[378, "ivy.atleast_2d"], [463, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[378, "ivy.atleast_3d"], [464, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[378, "ivy.broadcast_shapes"], [465, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[378, "ivy.check_scalar"], [466, "ivy.check_scalar"]], "choose() (in module ivy)": [[378, "ivy.choose"], [467, "ivy.choose"]], "column_stack() (in module ivy)": [[378, "ivy.column_stack"], [468, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[378, "ivy.concat_from_sequence"], [469, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[378, "ivy.dsplit"], [470, "ivy.dsplit"]], "dstack() (in module ivy)": [[378, "ivy.dstack"], [471, "ivy.dstack"]], "expand() (in module ivy)": [[378, "ivy.expand"], [472, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[378, "ivy.fill_diagonal"], [473, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[378, "ivy.flatten"], [474, "ivy.flatten"]], "fliplr() (in module ivy)": [[378, "ivy.fliplr"], [475, "ivy.fliplr"]], "flipud() (in module ivy)": [[378, "ivy.flipud"], [476, "ivy.flipud"]], "fold() (in module ivy)": [[378, "ivy.fold"], [477, "ivy.fold"]], "heaviside() (in module ivy)": [[378, "ivy.heaviside"], [478, "ivy.heaviside"]], "hsplit() (in module ivy)": [[378, "ivy.hsplit"], [479, "ivy.hsplit"]], "hstack() (in module ivy)": [[378, "ivy.hstack"], [480, "ivy.hstack"]], "i0() (in module ivy)": [[378, "ivy.i0"], [481, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[378, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[378, "ivy.matricize"], [482, "ivy.matricize"]], "moveaxis() (in module ivy)": [[378, "ivy.moveaxis"], [483, "ivy.moveaxis"]], "pad() (in module ivy)": [[378, "ivy.pad"], [484, "ivy.pad"]], "partial_fold() (in module ivy)": [[378, "ivy.partial_fold"], [485, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[378, "ivy.partial_tensor_to_vec"], [486, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[378, "ivy.partial_unfold"], [487, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[378, "ivy.partial_vec_to_tensor"], [488, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[378, "ivy.put_along_axis"], [489, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[378, "ivy.rot90"], [490, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[378, "ivy.soft_thresholding"], [491, "ivy.soft_thresholding"]], "take() (in module ivy)": [[378, "ivy.take"], [492, "ivy.take"]], "take_along_axis() (in module ivy)": [[378, "ivy.take_along_axis"], [493, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[378, "ivy.top_k"], [494, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[378, "ivy.trim_zeros"], [495, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[378, "ivy.unflatten"], [496, "ivy.unflatten"]], "unfold() (in module ivy)": [[378, "ivy.unfold"], [497, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[378, "ivy.unique_consecutive"], [498, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[378, "ivy.vsplit"], [499, "ivy.vsplit"]], "vstack() (in module ivy)": [[378, "ivy.vstack"], [500, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[379, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[380, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[381, "ivy.batch_norm"], [501, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[381, "ivy.group_norm"], [502, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[381, "ivy.instance_norm"], [503, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[381, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[381, "ivy.l1_normalize"], [504, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[381, "ivy.l2_normalize"], [505, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[381, "ivy.local_response_norm"], [506, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[381, "ivy.lp_normalize"], [507, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[382, "ivy.bernoulli"], [508, "ivy.bernoulli"]], "beta() (in module ivy)": [[382, "ivy.beta"], [509, "ivy.beta"]], "dirichlet() (in module ivy)": [[382, "ivy.dirichlet"], [510, "ivy.dirichlet"]], "gamma() (in module ivy)": [[382, "ivy.gamma"], [511, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[382, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[382, "ivy.poisson"], [512, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[383, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[383, "ivy.unravel_index"], [513, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[384, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[385, "ivy.invert_permutation"], [514, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[385, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[385, "ivy.lexsort"], [515, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[386, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[386, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[386, "ivy.is_ivy_sparse_array"], [516, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[386, "ivy.is_native_sparse_array"], [517, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[386, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[386, "ivy.native_sparse_array"], [518, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[386, "ivy.native_sparse_array_to_indices_values_and_shape"], [519, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[387, "ivy.bincount"], [520, "ivy.bincount"]], "corrcoef() (in module ivy)": [[387, "ivy.corrcoef"], [521, "ivy.corrcoef"]], "cov() (in module ivy)": [[387, "ivy.cov"], [522, "ivy.cov"]], "cummax() (in module ivy)": [[387, "ivy.cummax"], [523, "ivy.cummax"]], "cummin() (in module ivy)": [[387, "ivy.cummin"], [524, "ivy.cummin"]], "histogram() (in module ivy)": [[387, "ivy.histogram"], [525, "ivy.histogram"]], "igamma() (in module ivy)": [[387, "ivy.igamma"], [526, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[387, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[387, "ivy.median"], [527, "ivy.median"]], "nanmean() (in module ivy)": [[387, "ivy.nanmean"], [528, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[387, "ivy.nanmedian"], [529, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[387, "ivy.nanmin"], [530, "ivy.nanmin"]], "nanprod() (in module ivy)": [[387, "ivy.nanprod"], [531, "ivy.nanprod"]], "quantile() (in module ivy)": [[387, "ivy.quantile"], [532, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[388, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[388, "ivy.optional_get_element"], [533, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[389, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[389, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[390, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[390, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[391, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[391, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[392, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[392, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[394, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[394, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[395, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[395, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[396, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[396, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[397, "ivy.Array.dct"]], "dct() (ivy.container method)": [[397, "ivy.Container.dct"]], "dft() (ivy.array method)": [[398, "ivy.Array.dft"]], "dft() (ivy.container method)": [[398, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[399, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[399, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[400, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[400, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[401, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[401, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[402, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[402, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[403, "ivy.Array.fft"]], "fft() (ivy.container method)": [[403, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[404, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[407, "ivy.Array.idct"]], "idct() (ivy.container method)": [[407, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[408, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[408, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[409, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[409, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[411, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[411, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[412, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[412, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[413, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[413, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[414, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[414, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[415, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[415, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[418, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[418, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[419, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[419, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[420, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[420, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[422, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[422, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[423, "ivy.Array.stft"]], "stft() (ivy.container method)": [[423, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[424, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[424, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[425, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[425, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[426, "ivy.Array.cond"]], "cond() (ivy.container method)": [[426, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[427, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[427, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[428, "ivy.Array.dot"]], "dot() (ivy.container method)": [[428, "ivy.Container.dot"]], "eig() (ivy.array method)": [[429, "ivy.Array.eig"], [672, "ivy.Array.eig"]], "eig() (ivy.container method)": [[429, "ivy.Container.eig"], [672, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[430, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[430, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[431, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[431, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[432, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[432, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[433, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[433, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[434, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[434, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[436, "ivy.Array.kron"]], "kron() (ivy.container method)": [[436, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[440, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[440, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[441, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[441, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[442, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[442, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[443, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[443, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[444, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[444, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[445, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[445, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[447, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[447, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[448, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[448, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[449, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[449, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[450, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[450, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[451, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[451, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[452, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[452, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[453, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[453, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[454, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[454, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[455, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[455, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[456, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[456, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[457, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[457, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[458, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[458, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[459, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[459, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[460, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[460, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[461, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[461, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[462, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[462, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[463, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[463, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[464, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[464, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[465, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[468, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[468, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[469, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[469, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[470, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[470, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[471, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[471, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[472, "ivy.Array.expand"]], "expand() (ivy.container method)": [[472, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[473, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[473, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[474, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[474, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[475, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[475, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[476, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[476, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[477, "ivy.Array.fold"]], "fold() (ivy.container method)": [[477, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[478, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[478, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[479, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[479, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[480, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[480, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[481, "ivy.Array.i0"]], "i0() (ivy.container method)": [[481, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[482, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[482, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[483, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[483, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[484, "ivy.Array.pad"]], "pad() (ivy.container method)": [[484, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[485, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[485, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[486, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[486, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[487, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[487, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[488, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[488, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[489, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[489, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[490, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[490, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[491, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[491, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[492, "ivy.Array.take"]], "take() (ivy.container method)": [[492, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[493, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[493, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[494, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[494, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[495, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[495, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[496, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[496, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[497, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[497, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[498, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[498, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[499, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[499, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[500, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[500, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[501, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[501, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[502, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[502, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[503, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[503, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[504, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[504, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[505, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[505, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[507, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[507, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[508, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[508, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[509, "ivy.Array.beta"]], "beta() (ivy.container method)": [[509, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[510, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[510, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[511, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[511, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[512, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[512, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[513, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[513, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[514, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[515, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[515, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[520, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[520, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[521, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[521, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[522, "ivy.Array.cov"]], "cov() (ivy.container method)": [[522, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[523, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[523, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[524, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[524, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[525, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[525, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[526, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[526, "ivy.Container.igamma"]], "median() (ivy.array method)": [[527, "ivy.Array.median"]], "median() (ivy.container method)": [[527, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[528, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[528, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[529, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[529, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[530, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[530, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[531, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[531, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[532, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[532, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[533, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[533, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[534, "ivy.all_equal"], [634, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[534, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[534, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[535, "ivy.arg_info"], [634, "ivy.arg_info"]], "arg_names() (in module ivy)": [[536, "ivy.arg_names"], [634, "ivy.arg_names"]], "array_equal() (in module ivy)": [[537, "ivy.array_equal"], [634, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[537, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[537, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[538, "ivy.assert_supports_inplace"], [634, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[538, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[538, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[539, "ivy.cache_fn"], [634, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[540, "ivy.clip_matrix_norm"], [634, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[540, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[540, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[541, "ivy.clip_vector_norm"], [634, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[541, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[541, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[542, "ivy.container_types"], [634, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[543, "ivy.current_backend_str"], [634, "ivy.current_backend_str"]], "default() (in module ivy)": [[544, "ivy.default"], [634, "ivy.default"]], "default() (ivy.array method)": [[544, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[545, "ivy.einops_rearrange"], [634, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[545, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[545, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[546, "ivy.einops_reduce"], [634, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[546, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[546, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[547, "ivy.einops_repeat"], [634, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[547, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[547, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[548, "ivy.exists"], [634, "ivy.exists"]], "exists() (ivy.array method)": [[548, "ivy.Array.exists"]], "exists() (ivy.container method)": [[548, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[549, "ivy.fourier_encode"], [634, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[549, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[549, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[550, "ivy.function_supported_devices_and_dtypes"], [634, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[551, "ivy.function_unsupported_devices_and_dtypes"], [634, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[552, "ivy.gather"], [634, "ivy.gather"]], "gather() (ivy.array method)": [[552, "ivy.Array.gather"]], "gather() (ivy.container method)": [[552, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[553, "ivy.gather_nd"], [634, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[553, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[553, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[554, "ivy.get_all_arrays_in_memory"], [634, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[555, "ivy.get_item"], [634, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[556, "ivy.get_num_dims"], [634, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[556, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[556, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[557, "ivy.get_referrers_recursive"], [634, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[558, "ivy.has_nans"], [634, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[558, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[558, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[559, "ivy.inplace_arrays_supported"], [634, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[560, "ivy.inplace_decrement"], [634, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[560, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[560, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[561, "ivy.inplace_increment"], [634, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[561, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[561, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[562, "ivy.inplace_update"], [634, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[562, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[562, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[563, "ivy.inplace_variables_supported"], [634, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[564, "ivy.is_array"], [634, "ivy.is_array"]], "is_array() (ivy.array method)": [[564, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[564, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[565, "ivy.is_ivy_array"], [634, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[565, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[565, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[566, "ivy.is_ivy_container"], [634, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[566, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[567, "ivy.is_ivy_nested_array"], [634, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[568, "ivy.is_native_array"], [634, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[568, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[568, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[569, "ivy.isin"], [634, "ivy.isin"]], "isin() (ivy.array method)": [[569, "ivy.Array.isin"]], "isin() (ivy.container method)": [[569, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[570, "ivy.isscalar"], [634, "ivy.isscalar"]], "itemsize() (in module ivy)": [[571, "ivy.itemsize"], [634, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[571, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[571, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[572, "ivy.match_kwargs"], [634, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[573, "ivy.multiprocessing"], [634, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[574, "ivy.num_arrays_in_memory"], [634, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[575, "ivy.print_all_arrays_in_memory"], [634, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[576, "ivy.scatter_flat"], [634, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[576, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[576, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[577, "ivy.scatter_nd"], [634, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[577, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[577, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[578, "ivy.set_array_mode"], [634, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[579, "ivy.set_exception_trace_mode"], [634, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[580, "ivy.set_inplace_mode"], [634, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[581, "ivy.set_item"], [634, "ivy.set_item"]], "set_min_base() (in module ivy)": [[582, "ivy.set_min_base"], [634, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[583, "ivy.set_min_denominator"], [634, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[584, "ivy.set_nestable_mode"], [634, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[585, "ivy.set_precise_mode"], [634, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[586, "ivy.set_queue_timeout"], [634, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[587, "ivy.set_shape_array_mode"], [634, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[588, "ivy.set_show_func_wrapper_trace_mode"], [634, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[589, "ivy.set_tmp_dir"], [634, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[590, "ivy.shape"], [634, "ivy.shape"]], "shape() (ivy.array method)": [[590, "ivy.Array.shape"]], "size() (in module ivy)": [[591, "ivy.size"], [634, "ivy.size"]], "size() (ivy.array method)": [[591, "ivy.Array.size"]], "size() (ivy.container method)": [[591, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[592, "ivy.stable_divide"], [634, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[592, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[592, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[593, "ivy.stable_pow"], [634, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[593, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[593, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[594, "ivy.strides"], [634, "ivy.strides"]], "strides() (ivy.array method)": [[594, "ivy.Array.strides"]], "strides() (ivy.container method)": [[594, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[595, "ivy.supports_inplace_updates"], [634, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[595, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[595, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[596, "ivy.to_ivy_shape"], [634, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[597, "ivy.to_list"], [634, "ivy.to_list"]], "to_list() (ivy.array method)": [[597, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[597, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[598, "ivy.to_native_shape"], [634, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[599, "ivy.to_numpy"], [634, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[599, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[599, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[600, "ivy.to_scalar"], [634, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[600, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[600, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[601, "ivy.try_else_none"], [634, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[602, "ivy.unset_array_mode"], [634, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[603, "ivy.unset_exception_trace_mode"], [634, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[604, "ivy.unset_inplace_mode"], [634, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[605, "ivy.unset_min_base"], [634, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[606, "ivy.unset_min_denominator"], [634, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[607, "ivy.unset_nestable_mode"], [634, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[608, "ivy.unset_precise_mode"], [634, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[609, "ivy.unset_queue_timeout"], [634, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[610, "ivy.unset_shape_array_mode"], [634, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[611, "ivy.unset_show_func_wrapper_trace_mode"], [634, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[612, "ivy.unset_tmp_dir"], [634, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[613, "ivy.value_is_nan"], [634, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[613, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[613, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[614, "ivy.vmap"], [634, "ivy.vmap"]], "adam_step() (in module ivy)": [[615, "ivy.adam_step"], [635, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[615, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[615, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[616, "ivy.adam_update"], [635, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[616, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[616, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[617, "ivy.execute_with_gradients"], [635, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[618, "ivy.grad"], [635, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[619, "ivy.gradient_descent_update"], [635, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[619, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[619, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[620, "ivy.jac"], [635, "ivy.jac"]], "lamb_update() (in module ivy)": [[621, "ivy.lamb_update"], [635, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[621, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[621, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[622, "ivy.lars_update"], [635, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[622, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[622, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[623, "ivy.optimizer_update"], [635, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[623, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[623, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[624, "ivy.stop_gradient"], [635, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[624, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[624, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[625, "ivy.value_and_grad"], [635, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[626, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[627, "ivy.e"]], "inf (in module ivy)": [[627, "ivy.inf"]], "ivy.functional.ivy.constants": [[627, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[627, "ivy.nan"]], "newaxis (in module ivy)": [[627, "ivy.newaxis"]], "pi (in module ivy)": [[627, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[628, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[629, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[629, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[630, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[630, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[630, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[630, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[630, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[630, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[631, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[631, "ivy.Profiler"]], "ivy.functional.ivy.device": [[631, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[632, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[633, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[634, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[634, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[634, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[635, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[636, "ivy.conv"], [649, "ivy.conv"]], "conv1d() (in module ivy)": [[636, "ivy.conv1d"], [650, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[636, "ivy.conv1d_transpose"], [651, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[636, "ivy.conv2d"], [652, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[636, "ivy.conv2d_transpose"], [653, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[636, "ivy.conv3d"], [654, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[636, "ivy.conv3d_transpose"], [655, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[636, "ivy.conv_general_dilated"], [656, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[636, "ivy.conv_general_transpose"], [657, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[636, "ivy.depthwise_conv2d"], [658, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[636, "ivy.dropout"], [659, "ivy.dropout"]], "ivy.functional.ivy.layers": [[636, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[636, "ivy.linear"], [660, "ivy.linear"]], "lstm() (in module ivy)": [[636, "ivy.lstm"], [661, "ivy.lstm"]], "lstm_update() (in module ivy)": [[636, "ivy.lstm_update"], [662, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[636, "ivy.multi_head_attention"], [663, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[636, "ivy.nms"], [664, "ivy.nms"]], "roi_align() (in module ivy)": [[636, "ivy.roi_align"], [665, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[636, "ivy.scaled_dot_product_attention"], [666, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[637, "ivy.cholesky"], [667, "ivy.cholesky"]], "cross() (in module ivy)": [[637, "ivy.cross"], [668, "ivy.cross"]], "det() (in module ivy)": [[637, "ivy.det"], [669, "ivy.det"]], "diag() (in module ivy)": [[637, "ivy.diag"], [670, "ivy.diag"]], "diagonal() (in module ivy)": [[637, "ivy.diagonal"], [671, "ivy.diagonal"]], "eigh() (in module ivy)": [[637, "ivy.eigh"], [673, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[637, "ivy.eigvalsh"], [674, "ivy.eigvalsh"]], "inner() (in module ivy)": [[637, "ivy.inner"], [675, "ivy.inner"]], "inv() (in module ivy)": [[637, "ivy.inv"], [676, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[637, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[637, "ivy.matmul"], [677, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[637, "ivy.matrix_norm"], [678, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[637, "ivy.matrix_power"], [679, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[637, "ivy.matrix_rank"], [680, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[637, "ivy.matrix_transpose"], [681, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[637, "ivy.outer"], [682, "ivy.outer"]], "pinv() (in module ivy)": [[637, "ivy.pinv"], [683, "ivy.pinv"]], "qr() (in module ivy)": [[637, "ivy.qr"], [684, "ivy.qr"]], "slogdet() (in module ivy)": [[637, "ivy.slogdet"], [685, "ivy.slogdet"]], "solve() (in module ivy)": [[637, "ivy.solve"], [686, "ivy.solve"]], "svd() (in module ivy)": [[637, "ivy.svd"], [687, "ivy.svd"]], "svdvals() (in module ivy)": [[637, "ivy.svdvals"], [688, "ivy.svdvals"]], "tensordot() (in module ivy)": [[637, "ivy.tensordot"], [689, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[637, "ivy.tensorsolve"], [690, "ivy.tensorsolve"]], "trace() (in module ivy)": [[637, "ivy.trace"], [691, "ivy.trace"]], "vander() (in module ivy)": [[637, "ivy.vander"], [692, "ivy.vander"]], "vecdot() (in module ivy)": [[637, "ivy.vecdot"], [693, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[637, "ivy.vector_norm"], [694, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[637, "ivy.vector_to_skew_symmetric_matrix"], [695, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[638, "ivy.binary_cross_entropy"], [696, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[638, "ivy.cross_entropy"], [697, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[638, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[638, "ivy.sparse_cross_entropy"], [698, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[639, "ivy.clip"], [699, "ivy.clip"]], "concat() (in module ivy)": [[639, "ivy.concat"], [700, "ivy.concat"]], "constant_pad() (in module ivy)": [[639, "ivy.constant_pad"], [701, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[639, "ivy.expand_dims"], [702, "ivy.expand_dims"]], "flip() (in module ivy)": [[639, "ivy.flip"], [703, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[639, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[639, "ivy.permute_dims"], [704, "ivy.permute_dims"]], "repeat() (in module ivy)": [[639, "ivy.repeat"], [705, "ivy.repeat"]], "reshape() (in module ivy)": [[639, "ivy.reshape"], [706, "ivy.reshape"]], "roll() (in module ivy)": [[639, "ivy.roll"], [707, "ivy.roll"]], "split() (in module ivy)": [[639, "ivy.split"], [708, "ivy.split"]], "squeeze() (in module ivy)": [[639, "ivy.squeeze"], [709, "ivy.squeeze"]], "stack() (in module ivy)": [[639, "ivy.stack"], [710, "ivy.stack"]], "swapaxes() (in module ivy)": [[639, "ivy.swapaxes"], [711, "ivy.swapaxes"]], "tile() (in module ivy)": [[639, "ivy.tile"], [712, "ivy.tile"]], "unstack() (in module ivy)": [[639, "ivy.unstack"], [713, "ivy.unstack"]], "zero_pad() (in module ivy)": [[639, "ivy.zero_pad"], [714, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[640, "ivy.fomaml_step"], [715, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[640, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[640, "ivy.maml_step"], [716, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[640, "ivy.reptile_step"], [717, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[641, "ivy.all_nested_indices"], [718, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[641, "ivy.copy_nest"], [719, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[641, "ivy.duplicate_array_index_chains"], [720, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[641, "ivy.index_nest"], [721, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[641, "ivy.insert_into_nest_at_index"], [722, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[641, "ivy.insert_into_nest_at_indices"], [723, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[641, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[641, "ivy.map"], [724, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[641, "ivy.map_nest_at_index"], [725, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[641, "ivy.map_nest_at_indices"], [726, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[641, "ivy.multi_index_nest"], [727, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[641, "ivy.nested_any"], [728, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[641, "ivy.nested_argwhere"], [729, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[641, "ivy.nested_map"], [730, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[641, "ivy.nested_multi_map"], [731, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[641, "ivy.prune_empty"], [732, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[641, "ivy.prune_nest_at_index"], [733, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[641, "ivy.prune_nest_at_indices"], [734, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[641, "ivy.set_nest_at_index"], [735, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[641, "ivy.set_nest_at_indices"], [736, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[642, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[642, "ivy.layer_norm"], [737, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[643, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[643, "ivy.multinomial"], [738, "ivy.multinomial"]], "randint() (in module ivy)": [[643, "ivy.randint"], [739, "ivy.randint"]], "random_normal() (in module ivy)": [[643, "ivy.random_normal"], [740, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[643, "ivy.random_uniform"], [741, "ivy.random_uniform"]], "seed() (in module ivy)": [[643, "ivy.seed"], [742, "ivy.seed"]], "shuffle() (in module ivy)": [[643, "ivy.shuffle"], [743, "ivy.shuffle"]], "argmax() (in module ivy)": [[644, "ivy.argmax"], [744, "ivy.argmax"]], "argmin() (in module ivy)": [[644, "ivy.argmin"], [745, "ivy.argmin"]], "argwhere() (in module ivy)": [[644, "ivy.argwhere"], [746, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[644, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[644, "ivy.nonzero"], [747, "ivy.nonzero"]], "where() (in module ivy)": [[644, "ivy.where"], [748, "ivy.where"]], "ivy.functional.ivy.set": [[645, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[645, "ivy.unique_all"], [749, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[645, "ivy.unique_counts"], [750, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[645, "ivy.unique_inverse"], [751, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[645, "ivy.unique_values"], [752, "ivy.unique_values"]], "argsort() (in module ivy)": [[646, "ivy.argsort"], [753, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[646, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[646, "ivy.msort"], [754, "ivy.msort"]], "searchsorted() (in module ivy)": [[646, "ivy.searchsorted"], [755, "ivy.searchsorted"]], "sort() (in module ivy)": [[646, "ivy.sort"], [756, "ivy.sort"]], "cumprod() (in module ivy)": [[647, "ivy.cumprod"], [757, "ivy.cumprod"]], "cumsum() (in module ivy)": [[647, "ivy.cumsum"], [758, "ivy.cumsum"]], "einsum() (in module ivy)": [[647, "ivy.einsum"], [759, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[647, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[647, "ivy.max"], [760, "ivy.max"]], "mean() (in module ivy)": [[647, "ivy.mean"], [761, "ivy.mean"]], "min() (in module ivy)": [[647, "ivy.min"], [762, "ivy.min"]], "prod() (in module ivy)": [[647, "ivy.prod"], [763, "ivy.prod"]], "std() (in module ivy)": [[647, "ivy.std"], [764, "ivy.std"]], "sum() (in module ivy)": [[647, "ivy.sum"], [765, "ivy.sum"]], "var() (in module ivy)": [[647, "ivy.var"], [766, "ivy.var"]], "all() (in module ivy)": [[648, "ivy.all"], [767, "ivy.all"]], "any() (in module ivy)": [[648, "ivy.any"], [768, "ivy.any"]], "ivy.functional.ivy.utility": [[648, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[648, "ivy.load"], [769, "ivy.load"]], "save() (in module ivy)": [[648, "ivy.save"], [770, "ivy.save"]], "conv1d() (ivy.array method)": [[650, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[650, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[651, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[651, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[652, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[652, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[653, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[653, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[654, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[654, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[655, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[655, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[658, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[658, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[659, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[659, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[660, "ivy.Array.linear"]], "linear() (ivy.container method)": [[660, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[662, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[662, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[663, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[663, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[666, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[666, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[667, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[667, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[668, "ivy.Array.cross"]], "cross() (ivy.container method)": [[668, "ivy.Container.cross"]], "det() (ivy.array method)": [[669, "ivy.Array.det"]], "det() (ivy.container method)": [[669, "ivy.Container.det"]], "diag() (ivy.array method)": [[670, "ivy.Array.diag"]], "diag() (ivy.container method)": [[670, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[671, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[671, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[673, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[673, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[674, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[674, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[675, "ivy.Array.inner"]], "inner() (ivy.container method)": [[675, "ivy.Container.inner"]], "inv() (ivy.array method)": [[676, "ivy.Array.inv"]], "inv() (ivy.container method)": [[676, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[677, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[677, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[678, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[678, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[679, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[679, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[680, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[680, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[681, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[681, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[682, "ivy.Array.outer"]], "outer() (ivy.container method)": [[682, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[683, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[683, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[684, "ivy.Array.qr"]], "qr() (ivy.container method)": [[684, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[685, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[685, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[686, "ivy.Array.solve"]], "solve() (ivy.container method)": [[686, "ivy.Container.solve"]], "svd() (ivy.array method)": [[687, "ivy.Array.svd"]], "svd() (ivy.container method)": [[687, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[688, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[688, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[689, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[689, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[690, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[690, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[691, "ivy.Array.trace"]], "trace() (ivy.container method)": [[691, "ivy.Container.trace"]], "vander() (ivy.array method)": [[692, "ivy.Array.vander"]], "vander() (ivy.container method)": [[692, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[693, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[693, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[694, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[694, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[695, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[695, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[696, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[696, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[697, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[697, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[698, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[698, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[699, "ivy.Array.clip"]], "clip() (ivy.container method)": [[699, "ivy.Container.clip"]], "concat() (ivy.array method)": [[700, "ivy.Array.concat"]], "concat() (ivy.container method)": [[700, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[701, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[701, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[702, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[702, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[703, "ivy.Array.flip"]], "flip() (ivy.container method)": [[703, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[704, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[704, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[705, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[705, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[706, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[706, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[707, "ivy.Array.roll"]], "roll() (ivy.container method)": [[707, "ivy.Container.roll"]], "split() (ivy.array method)": [[708, "ivy.Array.split"]], "split() (ivy.container method)": [[708, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[709, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[709, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[710, "ivy.Array.stack"]], "stack() (ivy.container method)": [[710, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[711, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[711, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[712, "ivy.Array.tile"]], "tile() (ivy.container method)": [[712, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[713, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[713, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[714, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[714, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[737, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[737, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[738, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[738, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[739, "ivy.Array.randint"]], "randint() (ivy.container method)": [[739, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[740, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[740, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[741, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[741, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[743, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[743, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[744, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[744, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[745, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[745, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[746, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[746, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[747, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[747, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[748, "ivy.Array.where"]], "where() (ivy.container method)": [[748, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[749, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[749, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[750, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[750, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[751, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[751, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[752, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[752, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[753, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[753, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[754, "ivy.Array.msort"]], "msort() (ivy.container method)": [[754, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[755, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[755, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[756, "ivy.Array.sort"]], "sort() (ivy.container method)": [[756, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[757, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[757, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[758, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[758, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[759, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[759, "ivy.Container.einsum"]], "max() (ivy.array method)": [[760, "ivy.Array.max"]], "max() (ivy.container method)": [[760, "ivy.Container.max"]], "mean() (ivy.array method)": [[761, "ivy.Array.mean"]], "mean() (ivy.container method)": [[761, "ivy.Container.mean"]], "min() (ivy.array method)": [[762, "ivy.Array.min"]], "min() (ivy.container method)": [[762, "ivy.Container.min"]], "prod() (ivy.array method)": [[763, "ivy.Array.prod"]], "prod() (ivy.container method)": [[763, "ivy.Container.prod"]], "std() (ivy.array method)": [[764, "ivy.Array.std"]], "std() (ivy.container method)": [[764, "ivy.Container.std"]], "sum() (ivy.array method)": [[765, "ivy.Array.sum"]], "sum() (ivy.container method)": [[765, "ivy.Container.sum"]], "var() (ivy.array method)": [[766, "ivy.Array.var"]], "var() (ivy.container method)": [[766, "ivy.Container.var"]], "all() (ivy.array method)": [[767, "ivy.Array.all"]], "all() (ivy.container method)": [[767, "ivy.Container.all"]], "any() (ivy.array method)": [[768, "ivy.Array.any"]], "any() (ivy.container method)": [[768, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[771, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[771, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[772, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[773, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[773, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[774, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[774, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[774, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[774, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[776, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[776, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[777, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[777, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[778, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[778, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[779, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[779, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[780, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[780, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[781, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[781, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[782, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[782, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[783, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[783, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[784, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[784, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[788, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[788, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[788, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[788, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[788, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[788, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[788, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[788, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[788, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[788, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[788, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[788, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[788, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[788, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[788, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[788, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[788, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[788, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[788, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[788, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[789, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[789, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[789, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[789, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[789, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[790, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[790, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[791, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[791, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[791, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[791, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[791, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[791, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[791, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[791, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[791, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[791, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[791, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[791, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[792, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[792, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[792, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[792, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[792, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[792, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[792, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[792, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[792, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[792, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[792, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[792, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[792, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[792, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[792, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[792, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[792, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[792, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[792, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[792, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[792, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[792, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[792, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[792, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[792, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[793, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[793, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[793, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[793, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[793, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[794, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[794, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[794, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[794, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[794, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[794, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[795, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[795, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[795, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[795, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[796, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[796, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[796, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[796, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[796, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[796, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[796, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[796, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[796, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[796, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[796, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[796, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[797, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[797, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[797, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[798, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[798, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[799, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[800, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[800, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[800, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[800, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[801, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[801, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[801, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[802, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[802, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[803, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[803, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[804, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[804, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[805, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[805, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[806, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[806, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[807, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[807, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[807, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[807, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[807, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[807, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[807, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[807, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[807, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[807, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[807, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[807, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[807, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[807, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[807, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[807, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[807, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[807, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[807, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[807, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[807, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[807, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[807, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[807, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[807, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[808, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[808, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[809, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[809, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[810, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[810, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[810, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[810, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[810, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[811, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[811, "module-ivy.utils.verbosity"]], "automatic code conversions": [[857, "term-Automatic-Code-Conversions"]], "backend handler": [[857, "term-Backend-Handler"]], "compositional functions": [[857, "term-Compositional-Functions"]], "convenience functions": [[857, "term-Convenience-Functions"]], "framework": [[857, "term-Framework"]], "framework handler": [[857, "term-Framework-Handler"]], "graph compiler": [[857, "term-Graph-Compiler"]], "ivy array": [[857, "term-Ivy-Array"]], "ivy backends": [[857, "term-Ivy-Backends"]], "ivy compiler": [[857, "term-Ivy-Compiler"]], "ivy container": [[857, "term-Ivy-Container"]], "ivy frontends": [[857, "term-Ivy-Frontends"]], "ivy functional api": [[857, "term-Ivy-Functional-API"]], "ivy tracer": [[857, "term-Ivy-Tracer"]], "ivy transpiler": [[857, "term-Ivy-Transpiler"]], "mixed functions": [[857, "term-Mixed-Functions"]], "native array": [[857, "term-Native-Array"]], "nestable functions": [[857, "term-Nestable-Functions"]], "pipeline": [[857, "term-Pipeline"]], "primary functions": [[857, "term-Primary-Functions"]], "standalone functions": [[857, "term-Standalone-Functions"]], "submodule helper functions": [[857, "term-Submodule-Helper-Functions"]], "built-in function": [[863, "ivy.trace_graph"], [864, "ivy.transpile"], [865, "ivy.unify"]], "ivy.trace_graph()": [[863, "ivy.trace_graph"]], "ivy.transpile()": [[864, "ivy.transpile"]], "ivy.unify()": [[865, "ivy.unify"]]}}) \ No newline at end of file

    dJcZaNq+C9wdnfen) zew~w?%;;$@XaS?2GWvqiL!5FOMk_gZihs)S{A?L#_$L?i8l$KA*$PHK;C!!gl8I1x znfez$n}(oFoyTY_^7T?jbEL!hUPjPMZOv8n6QB`lXMQ%B3z~rpz0~U*`3VWybZ)K3shQ-5PFXEN)*1NBq`@vOhPo6%T)HjH^z zFj|J7Ol^h8aRnE<4F~5U zn5^DLl78wBobo(=)(+HDb#UY@9NEA@PyT&_@vN8Hm&;qv!2%9;<&?W|FowCbGMdcj zN>2GQ2M^;}FLfS2`v<3djDvn0Y{$=bKv1T>%V+>Udx9gMWV94Kd#M+=75tt{n94y7 z=lcUtnYx707|wSn2je)nnKLY7^jAg-8G5PjFuIzHJ&w8b;NWP^@O@75FOKZb!SNiF z@w1Z{4dP%P2W|Z90=HO>?8Peo8>8De_&W#lIKzAn9^fB6gwgRF{G5aPIYT+K{xJuO z_}LIH;WS2Pa_}f;c$9e_#F0Ze<4sTxFrw2!1?y(po4>9;7QYZMk5#asyCb^#OwKsvjY;ulhE) zOjRc!a-ed6`m57``l){-=%o%sP_A~uv%zWvP?`Dx&;a!{pb_f72%b=*5gefIM|JF@ zeuyOHYA6btrrJ5fo(TG?f%px*)ILDH)hS3qb19(y>Q_L$)jUo)323l760Aq5g@_!j zs(|{buj5%C^%BbKt6oMhQw>FuO0^V0FI9(>73y6)8?1f~)KeXcd}pd(0}WTdK`>NR zL8O7|TA+dI2FkuswBL{KCAI#Z*%_U4^^gT{F z5cvkF$%q`NsyT8nBKxax$Ua@oLS#?%KIeN0sJEKJ0**$?A!@#lGl@9bM2-9xofqb8cqwULxFF&86`hfH! z;;1T85#k@dh@u`L;;38QsIp5asuxH(NNoa&f`8Y*A1@bh=GejJ1kj2CAmG$hQegN`Akjp@R3UWEfl_0+$ z;;0R-M72XGst%-{h@&m7V6@!?irOAz2aqa|YLHnVvq5$QnFF#D$j(F@ZH7huA8b!i z7lZr|0egg7SB91oCBI{?fDe7~O0Xq^I1Tq9<637&gYLM9=b3k?m z*%f4WkOM&u2dM{X1Id826LGZt7v=mKQCERn4RQ_0wIJ7n`~l=fkefmN4DwfyTS0CE zxgF$Akh?+d1-T#OL6C<*9tC*}%in;>iN|2uuaTH97;QRZtDe78~>p-ptxq*nIU`j-a$G=WdPk=lL z@)QwAUF$Z%7tf=pmq1$72YCbJO^~;UII6c>@^$A^)b$`Yfc$}oqi%Bf zE_{=s4g^^QvKZtbkb{Xh+KK_$ZhD)dZU*@i$e%&}0`gaoTR?6F`5VY>Ab$tB9pny> zJ3;OOxf|pjkb6PyBjRW?3CcPCeTq5({ta(?CuKIRoTOkh4I}2KgGu zIUwhPd>!N)Ae|uJ1o;-oc_3XN-v&7!*tOCpZ8fI+hL{U~Y!$VQM&AjgB80CFP8NgyYKoC0zx$Y~&_gPZ|!CdgSt9Boqr z<0}SI)RiDVCqnV=ETL&AMKy!8fV6@f2hv8wQNMIw`ZI@9)L9^BgM1C-9FTKCz7FyY zkWP?qf_w|)JdiGsZ-bl<@*R-PAQymK2=ZN!i$J~y@_mpW5OK6o5Aq*9hN8X#atz37 zkgtN&fE){w0;vV51E~jbKpH^SfUE^cgD8-7AdMhRAk82xM5wcKJC55CbqC0uAa{Y> z4RR02y&(62+z;{q$b%pcfjkWI2*{%#{{VRmc@E^CAkTxm z0P-TpOCT?UyaMtn$ZH_4gS-LqCdgYLZ-cx8@-E1GAn$|x3*-Zk4?#Wx`55FAkWWEA z1Nk?|=OF(9`2yrikpF`87)zulNEt{kkaCdTAbmjkg7gFF4>AB`Ajlw)!5~9GhJp+O z84fZ6WF*KakkKGxK*kbrv~73wW;J)4vK}b~3oly8)r8dVK&}D#J;=2n*MVFQas$X8 zK>i4FBN0b^-_3v2Oo}=h{ta(?CuKIfDqz ze%)7i;!YGb31l+J6p#v#sUTZ}RDw(cnNGyfmT{ z1M&qCN89BgPi7yAY6s~6Sr4)SWFyEXkmEs4067ulB#@IqP60U;AioCr4aij>zXiD(9hyYVcFx(VcFkUxR^8RRb@e+9V(z zaw5n{ASZ*I0&*(IX+#`td4^K1?xLvQfm{Rfdys2Et^>IqoNjh2`Htw*WIV zfr~EyfE607?zoT=-wART$lW0KfZPjmAISY64}d%f@({?wAdi4N3i1z-$3Pwjc>?4~ zkf%VN26+bLS&-*I{t5Ct$O|AZg1iLsGRP|+uY$Y=@;b;HAa8=a1@bn?J0S0Zyhp^* z7IXZnYky2p*MVFQas$X8K>i4FBgjo4H-r2MpSWG!(T%8Z@bB#{xv;+2IN_g=ZHAk77t!K zT}4qlgX}`YQ83OUzUOZ#stlwTNI6JvkUk)NLHdF82N?h|5M&U@V2~joLqUdt3Sf&3HXd5{-CUIcjw zj<(Gq!@F}S>V1$8Kt2Nb1mrW2&q2N*;%JK-GNhMM)H)(gN9VAHG<{(n*A28e`n;Yt zaKV6e9;G~%!Y*ye5(JZ$Aef$j-u*UG!UiP>#wbBBmI3wCJYh8x1oN37n7M#Xqp(Zc zy9B}TB?tyJpdJ)H$kwz34$3;5bSY+V3-pG3!NaC>IA{g2K4ri zAQ=p9f?#y_$Goc{Z3kAV&Cf=y8njEjO`WfTN+qac_Y zfi_aurR|P_V1N_^OQax}Bn81XDF{Ynpg&UBrLD<=V7CPN>>fOW0aFkxnSx-_6a;fH zP(6iR+Ab^z24X?56bpjMSP*Q-f?z}z1Z%P&n3V;=zAOlaWYyAQ82xSq9(af%o!GW zBwz&7ydc=<1;JP^2v&PRFy9M;9beFa27+Z@p25T~2)2Gf83V!kFVC=30(2UMU3$wz z5cW<4VG~6Vc2fjlTSXA|R|H|BMG$ryfG(o2OK&>}!v2GxYYc=P33-OC2|<4_(2WMV z*+AI7kbKz35QGg4LD<<4bi0AD*CEfa=^+TaAA+zAA_)5-f*v*yc1YwIwn_v&VW6iB z^o)V9+kt$SP}rrnJp^I@Ll8DX1Yt)+5Ozd>Zl$nGZ;c4T9*H1qmI%U*2hfix?9y8w zg0Kf72%8~-u*m{+ABA0dw?z=PT?AqOMG!V(1Yt);5VmFnVUI=-Hfsc7*G3RFlYq{n zuuJbM3BvZ0AnY>UJ#7)f?%Z=1arM0 z*zE+qKoE8W1Yv7H5cUWJVY5IGb`1n! z`#=zkyFd#l?9x_VK`{3Ug56gT48Ve52^IvCuprom1;I!x2-adjFdGYk{a6qT$%0@} z76j9>AlR4%!PqPaR%bylKMR5#S`ZAA^95m7Ul6wU1!13G z5H|b;Vdq~ETmS^Y7eEl40tCT3KoHyn1i@cG&;OA6 z;CCR;erTW{8R!xN!8bwj{n$Y8R*+|KTMz{Q1wn9R5Co3~L2zvl1Rn=MaCQ&`uLnVJ ze-H#e2tja&5CqQ%L2!`}1YZe3aGDSV?+HP0qYwmt3PINz2p$&l46YV};Bz4e&KH8< zg(2uh1Hmstp51JqKN;xH27>Q~e{_0Tgy=uK_$`bd2$A zwSnMJASr7M1Q!E&244d~a5@kK?*l<_LlEQ`2#yKzY>k1|8YpcbWuSEiYBW%jftn4} zVxZey^g9Z>w95k|V|1tS>@EY{ZJ>J$bgzN#Gtm78g6o8o2OkPS4;ctv74qy61HsQi zp26Wl5Iipg!39GQd@%$)X&`uK$g`&n^o)VvxFIQ@GZ0)k22 zND&0j6hUxN5d>cqLH{-oyjSGee+=}6f#BF8DgSFAxVp$Q_`C>$^NS#O!3csoj3D^M z2!ex*Ab83Mg3F8`_|6D|6OABv(+GlFjUf2f2!f-HAb8veg6oYS_}~bFGmap5bA*rlCG1i`CB5Zp@y!Ouhx98Ltm^F$C_Pz1pjMG%})1i?E+5ZqJ*!CyrX z99IOvgGCTrSp>nSMG%}@1i>#7=w1rDw1cD|cuER_%cLOqP6~n(r671y3W8guAoy1b zf}^D%cw7pC>!l$0U!4FFi9I^z#GfNO$v;@IdOAws41i^bt5Zt%~ z!JkVI9J>U;!%Glcy#&GMOAwsD1i=eT5Zu88!7oe@9K-~{Q%n#Xrhx9GuuFSR3Hqn; z48BzI3{F*o;9VsMZdQWeZzTwhSAyVyB?zuqf?hWeoU`N^ytD+tT}u%Bwgka}OAtJ{ z1i__C5PZ7?!O2SyyuAd$?Mo2+zXZV%OwcC=f@_#OgO8XXIEx8_dmhkp6w?0kRg5N6 zNTZB_;FE`x{0x4iKnGFSr5#EI!Lw8lTucSQ*HjRkP6fgHR1n-y1;HOx5FAql!9!IL zTvY|ZXH^iKR|Ua~RS?`+1;MXX5FA_u!P8X`TwVpi_f-&_UX2ri$3;QJ{EPN0I|4Jrt3p@QHaDhQ6E zg5WVK2(F`o;6o}1&ZL6iRVoPXrGnsRDhLjzg5UuSbTNgrS~3uPqU9N!qXofBS`gf& z1;KAx5FDrl-EkqKYbfl}{?d5H=q}^g-3GeHK=&HxJ_Frvpa%@}pn)DT(8C6L#6XW4 z=pP1p%s`JD=m`VCkz0Q4QwD--w>*Q7x1eVY^qhhIX`tr~^n!t2G|)>1df7m)80b|4 zy=I`-4fKYA-Zao#2722-?-=M^1HES;I3YtXt10Z#-pGRBmMjSV$%5dhEC?RUg5bI= z2%hIa?_Yru;DRm)zUYGBlr9L~>4I=h0B9cyyY$fup!@0c1^Imv6$ICHpxY_z(mw2h z;LI)vUhRT#b_3{g3cK_n4na80AqdAh1mS##ARP1%gcBcvaP&hE&VUHQVGuz$6(R`7 zLj>WRh#(x90Qwq*UD~l5=t=V4?$RFKg5c^c2tMC};QTEJUf_b@4lW3O;ey~74z!ZO zF6|&L2wv$x`%>7Y-O~lZPhAik)&;?HT@YN@1;LkH5S-e5)X_P3O=C+f`K9aY7c!gA z+uS*v?`3f6jo1P8ElsI(bA75k1=sb?o^?7H*w)h0UX$6>RNKH(h#>qJC`ls}DVK7O*x^z1WLciI~Ncr4IeVfH#50Pho z17bQld)2kJf~8uNBA>vYlTy@T`pZ;^T0&7v)l$&T{`$us+IDCw{o*0*4qYCeYIl~A z7Md~?GsugX+qQ-6c_x>>SFrsfuGVhd~5gW z%`;|n_Q_B^H9DI+w@PK&H?=x5W>(Cg4?oZsemWYRiuC$TGwC}&6jbx$&1-L5+D^YV zL&bJZ2xOrYbKBZdn<|=|_O&hblxrAr>A1MOQ_Q^cTbkRc$vJJ3e-!fj@dgh^UpEf< zS&+$e9eD@cCsLoTb24$iK+6(LWc-fl!6!OFyeUyI7xQ!U{pTbXi#4;gt)+>+ zrB?&RW@=g*NW|8T_E-rgfOnSk%si!URhJ(SzK=V@RSruDgD|J9gQ}1WN@M5GJW-d99KURk9XQyGBu6qb+OHE2v|uH<9AGv zc(1}jKSehm{wb2y;87{@9*>wGw3YdTBoFg))R+95xXPy(RTx(_TE#{xW|Y$R>hv8FYDA)rly(txAjhTb|djyL+LzbEzHcVx+&>Q zO-H&phiLkD8mX9*%V2Bck*EJq9gc-OT!%(-gVQ#~Bac%|P3l+7kFPeeF-J##jzC_q zu?_U`la{zz><`KGQ$v>VlEIT)UX7vhYoa+P8##R`CAY2{KR#HtqcTR_K(%!(_$I~1 z>{YE_k8nccx6BMb&7s=K_-P_sIH#xG{eumXzCp&VyP>fqm7^i)Mi7&hnWoes?rCG) z%BOe)ctrGP1mkzOV`I${~-KcFM*-8NnWg{tx%I5A&tOGY2=^k z#d`UDtx8iEV`|&W!F(M3y$tysW3y^Pw_*L%kYK!I$k~RYIVT%AV+0Si;Q$9mf8N9I z{U+6|b?VmD=#~+ufBh;2((n&RsfED?Hko=d(p2_$K+g(-i99xka+7kqs>!u&EvfoC zny}C;IZhhQCz#04=hWa6uU12?Lf0sFbivdHpXtFT9-kN`hh{0kT+Gi=_-cx;>#By1 z<~mHk>GQ0aj@H(ewsu+%=(>rWsZ2rZ%aO-Z;-$fHak~DBRQCg#e%WKvdQA5-CJRgY(3fF8i?eZ6wDW+as5vF@quz3^{63l1$B(w^mdw;naubN zmF6?A9faDGp0x0AxJNU47q zozDcCL1&*L4+cj+h4G^&`_bMH4yjIe#@t5yqy~qr{b-LvjLLKc`0-&`95p`JBahXy zXU#3N#MEPve(I^=0z=P!f0IuSrS+UOhgZN8#;Z9topY+EpBma3FBzh}NnolM%{ke~ z>FZA3w$Lyc;NYnKhScNhQq46Onc{S+Cn;V6L-t8ttXHw2rV*H=cqxtiQ@vO(f6R{v zO;WrZ%!h8DFglB^Wt2+6iV!>S=qYPBp&?gbhzziaR*xPcx#{QRH#7V+$L|eIfx|hy z-+eOIpKCy&J0j{ETT^xG;_6So+c`g-U!%XC6b2nqP9xk$^_n40e*7q3nsBt3d+QLIGTW2uaL_Ha+sZGb5j&#LI5|0JG zO6O1Vrlgy@(Griw!Bie2eAmurw5_*v>UOjnhp{O(wa56DpyDgNq&ck$+TamM=`qAN z_vGD}?6x%B6~t*>&)b8En2$T{pBj9kvq#^Vz`Q+}+Tb%i_{8HA^A3gP?ZI5k&rx@< z!dw9-wK*ABhq4)m^dJ;SV@OpIc;E@8dqf$Aw63|A3?w$VOba~lxWxQ4-4y)z>Ody% zm*M+}Qgh=QTh?T#TZ}ae>S4`GU`R8`i}gea{h+|G=A|_9PxWHG{JzMdl+du|(WJ~WrOJ%?;AH99)VVy+i6x}39L!iXQ)f_ygv(se~wX{jIb(SC1-j-_4w9-vg_+dQN@M63l_blt|3NH9L4xVP& zUgY2f4i4gHhj6e&2X6V(vX@`y)U0VswXTH(y0apgyf{yWZ}Ct1F_-fa7ciBBGdSqt zB=|BYsp4vmtmI%je)c&BZ|TV3uGjdv9qqK)*`BVen2)awQxjfKSJ#s@B(u45O1sn6 zROP3rLJA^*6y?|_-K=-SUV^g6&L_KTOC}9-N~*D9p=((oUK2Gh<8hTdRzp8y@h%gRfFEXO(SITBCpsHi+ScI`e*6xJ2$eS6e^Rk1)m-1`(5o=U%u?k& z2xT2QkLIpUbG>97r8BzG*|H5e5YAIaNeUyWB#T6b zvW!3}UMr#YGxo`f@vvy$$8nCD#te#aHKur8LXOh!8A_)!;qJURu9p=~joF z5on8huvUVPL%(MDvbJ`c3 zE%!xEV=HZgdv!}fa5v>+am~Z4MW~gBrX$YRLH_LrbV? zT6w_eo5I@L0Gm5^rXf(F_AInwyBYyPRL1I6($ zLMH_3sCPc7hNe#G_L>@R!jj+b3G$PP;C^-jReLfRk{#JVo&q&(EgNbYo#r*|Yk85F zx5f<#S--v;#(|b{h9xrOJ;HyQX>IhDr6mz}VX@+}KrF4J9?@?C`HAQTFkx+~tv<6M zouMg5)Xhatg8UT5@15*NdrgNMv#;fVG1X6MaM;?9_Bi+hg|w-VG1brF{hCkoEXeyc z6Hy7Z9SsdmTinmlW&ufJNK+~CIm8LMK1d!4y69O)XIU*oIoh;;kf70j+8N2e0uN1e&;kwz9tRUKQ9p~R&%soJ`lG;Op~ zTM9S+JQ-G`+R3z5+tKcjSo3VTRQr+`0v=sM!zN8_sb60M#d}q4bbI*<%B-ZVF0vQa zl*$mf#uGW?q}uA%LTZP1;B6HgmU~IjatB2-gg?R;zSPP-pm?E4BtzJPOVKF&{%?P4 z0bMZ+*%mhy-CTXi_O+Hw3t`B$ELinLy-mJ&_B9)n#gKAQ>6EvRwelc?A=MG?TVH(D zhTrHSRLI?9prRf1DUY!{VVKz7wyDP1Sm(6H?y%`0R+8}VO{u>a!}Rz}OGA5WV@Isv zUmG*M1ctsQd9hwQ3(YtJ#!N4zk$*b&C4Z_lghm4tC4(8*ia&LIoL+`j$Mz0Sv zztHxr_BVB(8&XURW}+@U^dt19gN`G&L(SdDT@lJ1^Aofw(2qB{_@C&Tq4Wf0TGk1Q zF1nfp=&Z~(H3_B)PD*&ynrjjg$Vub;){(a=@SIg-sA1O1m6D!SsF#l^82st@+iq=9VxHAKC$w^+9+@5ni}W0!i$@k*UtmzaA|9t zq)G$lNNL$twK=LTzu&foI2)zy>aAeCj>VWx<|uFbymZMcbfZM7JK7D1U$y5bFTdXh z&XLj*(-tty5G89}~es8&EZInlCr7dOin&;P6n72{l9#mpm zW^KB`q6(|?YM?%Qqukx8T+3pkrnN|;CaaOh-6$3M&2-cjUZHvFSMxSXq!wgVV16wq zS{~JBds~N7pI%@1kIb(=efHtsxv{0K@G|rJotm{-Uah;65;Y}6T0?N8&!;?>wNc)j z+Em6VbXu`(9xn*^nk8X;NTMY0HA>pK-dRs4zzQuZpK*dY8>Q`}U2Y03ERX7~){Kp^ z_Nm`Q$NR{VW7$gP9q(9X!3LVs#Ltp$9Il6Fng`NvH9_=0OOpB~NQZIn2> zso?4L^gPtrWX`YW(BZ_UBs2)V#_yTa=FnDQ9_=jHjpS2T;A@n$6ZvVh7FK3c(|xPZT0AhE$^THt}lCFUoE{N)0f zm>YctRo8^-;r&2u-`F9meWT8^{Z#vZZSLGYo1Mc?6G$DjckCe|=e66kaP4 zTMDGu;Qw*%2C-RH)ym>A3yotg)> z=;Cr$gmTaKW|}g(>v^#sZ^}SlyElHpM7j>CeN*l$VI+z1JElmy*Em8G^uU!clGfl+ zDe)c;UvT+BA-^ce!@L}Iy7!y(w0!5R)AEK?U3*I#EkNo1EvK2b%&Xh!IFJ5obLURk zrsuhG1*hrzuUxrO^UAd|nS&Y4)}vE^9OdTQ&{&<(mgMFW= zn1y~mYz^0~s5fXnEVB4*t*D`9&|K4sE5W>GXpD>b@U95ENz9E5OZl*=4#;BE>q@$A zi!PYyXeG(`oEG&R#Y-9Wfy+zEpfHA*i(Eb0R&rodJ?adTmuRj4hEywBQ}oKW(?qP9 zkN%cKca}9Aki`)4AUb=@osoSb^!)@ZUl3meL$W0l-9a}qHP(|aX$ge0Y;-{>4EYYE zC+nTM5=geU-Al{m8#1lL&{BMbhIR`kBvb7wP^MSZY!W>WO2B zdKimZR7Ho?Y5SUJDM=DTz$5jMZ|a^)-_=Cj^z*5d>aakDxJL({7TfWJ6}!l;`lBMT z$d1~?rdKxIZ$(2jT`#I%_>gPd02IuRIcrM&#IV}BX4sfhIkJSPK(22oJxmQ#%xhq1s z=X=_cd2o0|73AWm6O87S{Zxi==u2jYsj)39QeNJ&J$ z7}Cto=5o?4x1cc5(@))Ik8w#^oNlJ;nrpJT0CdYTC{c7>-);8lK=Fo-=4ElT=$2zp zAe*)mal}{_EHZX25KK@V`>KTwb4I6!-Lf!`^9FnE#cp0KLW_ObY-%u2yitRT+EQ!Q zkV&j5)oQ6Vf7KaXvUjg9Dcz82l^0J}?xc&5Ej%%`={&=t7=qGVlhx-5O0z6;-WN7D zbgPp{kAJ8|kDp5{;|Cnk=FpY+G%3VfQ9D1DYM_dq6zcY;(`7|rVGLpCm!t!<>5`*9 zQVTkoYsnB+>`P-aSaHd$8AqMPb7)>0jc*`7+Qya^ewjn7BYpnKOTgJv>g-_l(axsW zbyZ(9L3-w8`kgUvA5S+vbaR80o4}~eNk+El)ID(M%1deFpX$YWbr3Uo9|OVt_-Zc) z^KsNsrjJ!yE}t+wG|C_6Cy&Y=@Cl3LqpQSR*R!B(GA|DKgh_r!Jri69k4rbyIE|Uu z3e(Fa_c;rlQb&6~R&SK-UdTpC2VFeV=5LnlR={S7kux|TE?TJ{S#6pGnbL|TI`G8U zM}m2(gJm0adRWfIO(AThKBH^qLioflc~<0F@)W|}Sp6Ir8EFb(m1QAx7_}C)jX0(C12u z_Ds264_$()UtC-p4G3jOdni39z_^@;QuDHbXXR7P@)$C%Z0F>4Ev3tMc(ayHgk`S@|f za>=s9I;6lkRxIyQsLzwbsN6-(G|=ZcgX%`Id{+9gEUF=cAr;)33hG#6`HIr)>(m#- zkPi!z0%s82NSM!pB$fr%BAzIQjBr}Ze~J*xTND`GZppJJF_ub>8X4@2x2kJutw~2+ z9jNEhz9RgXe^g3M_C9H#yW>3z=#Jq&O5)D(ZDf1o-!q5v20Q6P@Tpobw&|injOjP$ z(=mo}RhtqR^}njXZaX(?X$lABF)_)_E50K?qOguUcM(R9p3j^%H@hrddo%eWHEz=G z$+~@!bqU{F#+~VTcB#3GjjZjCDPH&4MK)T`vAE;3X8tm6+NJq5p)K6#)>*Vq$*rGi zLr6pZm4z4#bC(j_4$sFNlbc(0oLQj3&x4_m3ViKf|Jj=4%BxxqEA1}{n|2PTR#(ba z!n4=y;~&@qW|Gyc~0Hg>?;9F($4$&-1!kD?US4snZQeomJV^QSs@6Yo~)l zx60%GVP>1_jAkrfS~}&tbX!=5udF_X5j`NFUvlERdrwJxOSY?tf|^v9=Q(6m4aPh=%aK-jixIrPF)XCbK@p-!1w7 z+hj;WL+dL_+0*2hiWJ&RT(JyUms4b^8iy}xbd$?M)Nq4X?vN{Hi8{X$O3G3hIz808 zIj-0y>x&sRfETJz63LKpS(B40O;_v-8TA<}SV)q|kn+${jTgR_vk3V!(sNpH?ev~g}&0-vA za2lN^r@5Uzct#uZv$HK*vSu+>E=%Pbeg_EKT+5bhd}CKG*%Aj29|p=bnpe)1OM#5L zS-BL*Ez8PfH813A=v1<|jy2p+3oIovX^vWu3gpNOUixrYz560N>QBK#854Muvf1^Z z4w(T4!z|&a;HpZg*Nhfi(4|P?=U>RBNPezhJKlfg@|8B1B6-ZH@#b|Yl9#^PE6-@L z1z(C3VJGH}=+V3AhEjVZfBbG_p_d{>*cz`-KHKMUl6jxiGgMaCMLto%XyEj|j+2ke zMvPo>TUdqPkrS27A22NS6>sc4q;O+z^fyZ@%V(QDnm?;ix4;{6awsi&JU*}H&qigV zg)Jxf-8zo#mGj{n>58K^x_sDFiztSOE1}{7w;iIj5)m>VN1-Si2l9doP2dtA z7Rb{q48dbguJO&>hol-CDry|lskN9Y5# ztC(G`X>_D)nu0`KTqCJM#(B3Oqpp_bXYqG`Mm$4fz>oGLd5V=~o_x4xT~0MN#$Wg<3*19_0SD#({v?zwzKbgw^WjNEN;~cEmdu9 zyf!+ib(?DZW7;7>G%HDBRQD8#_uirG8?Tbq;87{@9*_Cn=BUgOLmRJ>hk4QWIJ_mG z-b|jP{n+XoTj|SJaoW}2;|QcNB&rBJ@I(szEPYFsj$@BGF3I3BErv_X4-0*dBaq4a zWp^62HKC!Su`%l<#(H_|r!eH1>_=z$O@Z&s`$-KBTl>)-hnU|p77KJgzS_^?{hFh6 z^H=+L)m88{#&xZ}*Kq+WcF7eSG57b}F>?))(P^O1EYB6YpT62F&(Le3EA}Wmc~A0L zu}AZlWW^q3YYgD|%v_@^vW(t~C?%XPyoP9)xN=mOUjd@Ad{*o+a=8K+6}gfk8yeHC zHU4p`@Mcb4qJ`(u(Wy^9Y^sC87-FuXCykl*%yBhq=*tQADh$gRy>2L9IYk;n&=n*o zS(XdAPJwdpG+b&rEM`9DhA11T)04#zaydOHY-t~59+{ctv$T)0fsApMq(c#(|EZ)X z_z=&wR`y zQ8s9iSJ0z>upTb9Ic;3N%+oImDj0 zIH0&5#@AHz3o3byB9VUOApbosLG@X-D_;bo{t7niM{7W)FP4(U_Z}98{amtHjH2kvk7K2 zMX>-AhXU@8h?W=Wiu17mN7;x$)fLDPS1iDO&eG{Q9}BQwtUtXp1U4zP`eDJ0hx|)Z>elieJyvg?F{86jhMH9)xmQ$B&D7K3!H(uM-Dk+Iydf_77CkeW zr@0?Cl=tYYG@p4|3z;>vm4(e3W_p9yw&pXBm%r$j&S|1)3^4OCPe)zi**CPHlQT}L zt!^!Su&CYrL__G84g=3%B15*R!6%+%p~QiTQ=&&0iSI<^8_T zyo~_;`^II~b~H3JX1~VJeQroIF_?*de&`1UzoW(6jocNX+%Z2ReCvCVi=%Gxj5Ycf zj6vOKm4s?Ww`4ptN+0JZj|#4Bi*8MX^GyooixD|=Z={s#sK>cQDOcRo`dDqVxb%?4 zO{u+%hB(@D$PE3;zNqnlXQVDi>9q^C(G^ z<30?Oc;6&2eP7da@9q?KX0bSU09@>a1@^)o0CAATZ>qoUu5YTl8dcqMz%)h6mVAw9 zi(cBYBeovw-**g86CE6A#o3yN_!=fnrnG_{Gn<6P%7AeY+kyrdOBft8p zyTSQmYUay`$cV_u$jHd+=YZ4Y!|~x4>xmt55^lfFaO=vUS=J;{&b2Tp4SOrW4qV2* zpO_R-shg)=r+D<`N7Zmb4?s|)dorqd*BQ;=DLc_KfAhrJ?~z;?;Dz#L3gA`DL`|hcSmTtiJR^gJ>20cp*>!p%Wh(|RNA0@j%g0<$Wpte>FDeVRx zyKcV5UtqzNU+}vuHBQ5J$LrQBEP3GE^aZCW)|$YY&1t|Uow~J~pEG0e(;aMm|KZX2 zc)y+wr+sJs?>ut*+S<%rL1T-rnjb#!erOp)zl20&i zZ_WnnrImr!JuB1dfSy@;c$AM~vul`}l~5V5@~UGrl=dkiwGT9Oc2%Gsli-}qz1NRY zEwK0UV80&RrTBPya&*LzW8Xe;aXRKqvZe!brAmRdPnDopgZ${m>6rZ3*_e#g1G}G4 z*gd`JnKbd~6lv-N#$MrYK(=u4y{XwXQm-(1li7ea2+?W<<~~eEolmHbQp9q)#(c6H zH?bO9eck-qZeZaNaA8{Ob0!<=QlUkwn!oDim~JqvCVPGiPR0ZG#F!}tiB|#v*p5T7hi@MhPr63$s>QwVi02k@M0F_L9?>k?1l zI2p+ze%<^#ek9{I+N4SR7syt)Db<_0INkv$kYF2%*xYhacop6@0DuFft5D=ADZ;H{ za{!v9SU1l?tI(r$dwz10v`et4c({xe!xmLN@N6XEV`5PWE?ZQ@RYXuM%G0QuKjmA9 zV~s9Tk)z>JO|L7|E;#En6-jX*>iDRg7krF{)logc?Fc0|l@KJSW}esR2;IXP!7x5! zU*7Gz$%<=|(-GcE?x<=Twi1C77JJAQaQrcp<`r5rKCKSh#;kS*O|8JyTW{9KjxoNz z{B#;*VX9-wE8jUeHkXi|UWJBKFERzpzWwRp@&1>9TXVtJ=>_izu7KT-i2~E#>j%fb z9W9>M3S6ZRYIGGmCmRzfCXs%6I@#79cD66?)yMrX`yY%CcZc?|W9h6rR!SDx7BHuM zMyc7Vux|b+j3JBn_v=YM=b`F&ZzPw3@>e24J|gmtKRY7km>Ynp3?IBVE`09^3U%`$ zaJ?kX#!F=q+dT5wV&HpKpyZ5;kx#+hMBKn)G@oSTlQin)$1U#-4}9*SoAycey=pkB z?$FlLU3x*jzCWJaoziUgfU|e4(`^mW;MUwlaa#1A;0c)hyeM!j zm>KtJDuqfu(qZWK}NI zSvQvxPTlD%l~aE#%CE|aqgvd-V;CzrO|aGkRtHW!cHOMI=$GZC9UsSibC*TGqGe}# zahaBxGi#tm<-k#awJNWgf9#zGQ(Zg=+ZYlB@Fa#yp|MsXf^V9r1Tl%pF*g8HQA9F{ z5ftj?*MRFS=L?62_h{i=or7`06Tv_Z?}8cXe^2t_qY~CNW`Ca5oWGX{KbtCTY~oF9PrDyd~mrd@!uky=81K0tQ-W zOB8sOCY??ka}&To<+3R7R1~3-V{QV;x5|h7^oUiwLJ8zJDNovkU-tC?z|Fe<>RCwy zVym^GgNFqCi~g&}S42r3+4UG+jyIr%mZ`Yp0XUR%<-o<7M9K|JgmN18R)VdFkc4tT zrEadE1NWDJC5^yCjkt}An{CMh=UfX1o?@*DEQQ--s0rA0^8|3ZY^L2buyflb+_J7+ zIqF&>JXTo zE|-8rWL&yui_AuWI}_qP%pdu6@vM>Nh~=P88j?RVUnmIZF1b+P5=`Z7i+E=|9_5k2 z8Q7mQ+n}+}JOQ&q0JAe-3Tt-9=a6~;(xm^-on8OV3UfX|sL$J)U3Av39w=`eouMJ- zOrd}poE=Hlfc0Hu{pf_^%+Z*R4VVXp2pMm2~oLS+KFJRhQ`?ODc{`*JdbZF1(d3w#WTRX4@tbaCme7i~P zT>YiFKl-%o)k_%zw!e2UrqPNIlke4sUjk40`dL`lm;?6j4kmSVT+_+;!vXysa<f%N0mHjyC1!Uxp`_n*Ji1rYj;G_ne*eH6;4+DFKv^YY0}urB?weypy%Hx=H@h)9#Avm#a@}lN2Acoe!Dm@a69714t|T#pS{HL|c!fiaFuu z)(tEa2B86hzybVd`wNdqumYmH7sx0gw5qb4J zf`ELR@jIjD!im-Q2n#eW#qXYmB382c9&s$Ky7`osiF2IpuD90xQvO5;+Z~?}b$hvQ zwm8TPN#-y=VN&Df1{)fXjw{;mZJ!nD;{8&(r1-Y2#VNQs^nf*kjz8{;{U*+=p-Y`F zt%&$C*I{%84}AHGfvuO_Y?CzR%g@4C+rH9N4x4~umHDcHwU1U)x;Am1aUrdNH1)o@ zH03HpHpr6h9Zyd3Mb)k?FfSXvLSW-%H=|}Vx_jUJ{I)ezUNx}x% zr{-xVS06C(3HOnw?PSe|M`uybTpd5F85sMxFZM=$7QW`{_-Vz!)|+W*fA_xen`hIT zdDEzCx1e1|Y&OC11P*}F*E6s)b7}5yJ3W_NJ+Sz3o+tV1048AKTjYLS~E>>IWuY=cCNtfA>9&vsmL?E=aE)SbP;>?B#rCVX$pJ=M}&X zgTi)u=sM`fRu1gFXxTf5Zah~ffm(r~&q0wtI7zdH16rvduX8qE)0VO=D9@=z;{+K0 zK4g4vLKEYiKE5(W^WuJf-M4W9j9c9Y@RG1+>2~w$ zekMC0!t-oCXLk=Dm}jgKbpkV=5e1szpGA>vi~PC~Tcv1x0Mp+qnf_9kK--dYE9WI< zfc=+`C)I$Wz~L^1hF>@tPLvBM<_HAmn(*gU18Z;JpHy@oyN{!TtY@9;&K0<{@L-v( znc`ee3yGpX)#S z+N&?T^dcQn?=s(ZBq?q;clFL-vR9}Jn(CWgq66HM$;lDj`S=!X!KeG+I#5oLK*T>tuW;nw>PQd014L|ZB+MeMoSP!06)cvAm1vS4Zh7M`JN-0XO8dObWn zhZ*!jeZaGfFdVC3nUYMUEnjZ>%{Sp3MbIf1i#czTxRvKLnyvOtG>PAI8yG-TJ- zIcjk7l3Tphp{cMEVBk4h7Dg_^RQks+6|*o>z)qnPsSM{u@}9dj52WLTPtlJ*h_VRH!>#+O|-oEPJM8Hpj;oY+g+H*b&!@XW z&zJi-ciN`hr_2HCpW7K8*!{!f-CgR==gWE9?00s<^%CBI@z2+EE_#Q~>+GGwez8Pl zWHD#ddCDBHevnj`pISKIRxr09m%{80tuT{Y5RNZQIP0N=q)KX!IWJ5|2=Fc?!xXUk zDYF!C$7HO!XQF58iM&AM-kW0~5n-s}Zv$X6<^$faSN1 zhR=LnE71?}+ct;p$S-pR%zobPT<66MId+%K!R)3b+b}OpoxU^lEK9)Vo70m!G&G*GlW1F!qa>ALx4pM~Rd%onC7>ejihBF$0D z9e}7y9ys4D_YDUA8FPdp!&(zq%Jw+khZw#`?7I2q{(Tttbi%Tjg7nOT+SA@>ytl{u z-Q@s0Su`CBYLXX;zY6+=5i>9(+%W@GecO z3{R-%aX|}D9Zl%KIKMtV{`xe0PG2h@BGN`c-NP`%lwg2JbrKZ#qM=& zw$(+HK%Dm`NyefyHvdJM5-pl(DoY}ABYeodt3=ld-8T&u69CqqsS1pA;0HO}{eCDf_T$GX-zK7uOWcRZ%2kGzNz&R~~%h*up|cU7w{rvz0! zomACTothnLq@c1?uIX_nHFl88P_k9k%^oLan!mw5p!q@X&)F4R$z6e4C#EL`j$<0; za^^2JFxj=f?WF_r;=o&Uufxx@j{FMGp8ezi?eQ!>#_*qozO*>)s^7=tnFWwtYX*I|y^h}(Y{dDCv z&6}(zYX+V^AxmDEjBUU%ANAOd{9^Dt8cS;j-fq8i@8QdIXUAODEPR97Xr3h0^zCz4 zu_q9vesV@@cnsZYKU_bk2PW8|m!~=yg(nuPH){=T#^5n}q9Ty~{iNsDtKZi}>47r8quqFQ3Q>_}ok-^> zsZ=-L?;Pxp>475iZl`%2(%C^NVDM%VWmZNX&#_7wME}6xWHK>3Yv-=^Mp^2FCRF&$ z&O=&A9u9nk=130RPN&`ctLv0nS?RA{;v#im;=@Oi`ks-x8kkq;Xu>ow$N0MITya>Q z1D!Nf|3L#Y9G^_R61rC`V$#GCX!?Lep~|Pslx^-dzEW;uK@Tc=Q52Z{yT(Ngcd5P2 z6@=Ob%3>>tqx%51BRiddN9BAEf${8gbF`o3J)F}o<`xyc;M|SqncMr zSB)OgSycN5Nq3u?Q7KS`O25tUbX4uoTPO3^`b2y4B3Y>R!=_p>t(#lmmfowAhU&R} z?PO{0nrEmQs6wSr+ic0)6)M4;Hz=S8mA&siy&*Dxi;9V!5wa zNHpJUfBp`nepd6ag51cRF--yD)%-MP0Gpq-dRPF-yX+sF(*EuN-GAI=|DcDJdigGz ztx$}0xbsSVyg%OQzNyU-BYm~)W^z!yycRIFmy+PCv}RBy7bCH@eWzu7JuLflcp1ZP zLA0jWx}m9D1tbAKL7s1ZDSIkEpvq71UdfsJ^g6QH_OxD^L@)3FtntndE;>IwwyoT> zF-Y1MoB*4zxb5EOrNg!hCt6q(Tv+z%=D)RGViCLqq{b=tcU;p8^z=^jRbT#_9}Eb8tXX3WN~^tx9-2UXrq`gIFl?7%!+l`GJD>a~~6JqbpF zS^Tdl{0C&<{>d5K2dv0D2g?cX0W9I1o*UwZY_653(SejPR=OFQ)@Ucxta2KygUHss zNz-V8I!s>Gij5(OQw#HAkV@9fWtkG_>HS4LNx}g)YKtSG_KFgnU2k|5;lu9SIX%lf zG&kefMM-IwGiv79nJ1kcaTvK0|}o=?TTa4V*3a(QBJcTxX_*gzL(YneBAy-HKeCt_l(c1 zMjhpCX;UBvHFa!LAP{A3X;Z+^+w|E~2kqJhijfCiS<&qZFxoYK<2AZivZJDLlm){w zR6xJwQ8vSiBDJ)nsX*7}tv5J7IhV=sj8NB|qy`dwTQ`3v@uOs%3!Pn|F5yS#vlpEM za|E)`JtacBwLCV@xWeoFy39-lwEI*y?b`aoT0f`NTdL6Y`NVu<#>KMc93hb8>28vE z9)c{KLDgk(u(~wgIiGc8^|p+|zTUJ3koU3A){}8p7t&%AOa>@-vYa!HXGRU#In;`dldqz2V_NtE}N=9a|2k>o<>k61}| z>U*^6Ld!k_I-+GFfa7C|1v-f&mbx;Lbh04ZQ;vb*0d3teE!?S6u?mq_8c0D!Puq&> zQGGyjeZDZPQ&l`N7VJV2gUVc!(z$8neqyc7c$!eE#ZUqA?{%`!ws~dmt45zaX^B3Q zfeIY|yL1*gzs^jf-^M>v0rKB&`QM}Uak|ZrFa0)mB@gqx^IBbM*LNJ}B%$IDL&daQ zK5yM(oggzjS2t3H>YsGg^A+j&g@c-~Vk>4|p``;=e21-qqc3qkF<8W4B(9Lq%x^g516*(F2)|10}#H&r_tdV+yZ6*sj;Wil+no#vkt6s`6 zbaPZ<$7R-hh6oUM);T_``}gUs-f%k1#O?d6RpMCybGKb;dBt~o~Q?R-GPf!Xi@B*$l8o+qeXgu0@E}N$mR@0y$4bgt<69T z5g`78m5i3@Xd52g%`vU_XxKcq{hK-hJ>1>REXCfyOvF~|mYur!E}MJ)MaVtF+FXdI zM#%)PzW>2Z`>JEcjorA$2<^Dg#tFCzo0{7`YO zP(qJWN_HTL2zhl$wCe({RJz;eBi(KHfS9XgUg?O75XE=3d4Kp3?be&= zrCMqTM4*Nb%(DBGgCGp=q|vn$s?w$6cIeOnitUhCf2gIc9i-_OwN$cuvyyc0_H#k5 z)3<{lGJiV=gMbbif;zXK8x$8x!)U_ z+IEK1^?`&4a6eP`338M~?E?w4F4fiNCgY>=$!z`e5xq?R78#_-&a@SfBKLfztpKHS zef@cV{l&~yP-CEg4xG=7fdX3OU5z3FoX-9B3opDilW*1D2@yD+Y44_{c6%oXoy$uv zbzzeqqDb4$U;>{{%<7k1S6~#^BwWWdAUdblUfQ7<8f{LTsZ`vF;t4x!;JCaKCBcg7 zRcA<^HJ$TIFTeTLD>J!Pb!;$!(;0j{0<4q<5<_eo^hm3tYSwsBvIPrdFt1aocNC-GcY?qx{V#(gQO zyY?Cy4rchJl$ay;b!^-y`GE?*iw0o-}Os{kI)}*jlYPHSXbTrF3w_Izuxe| zp;8(%H;0)wBSi$2Z%TXW~{fj>4B&k?y&_MXZzZwm*c zLbLU{3#(l?0H*6sOiLp;odBOcM*$=^Ak4E<8e)ZAoQ_rHe5s)6dlsMN65oN5PbZ9M zhrLe6oOy|~gCTUN9~ge#9;y-YoQ^%-MPygzS`50E)n=Kgo3FPS`#%90d)R9c0+{`J zWX}BKUW=?$I<%Xw@KNiJS;W!+;pkGQ!#&0Bdk=_szTdXHqCW+EZ|1Jry#-5)AhcJ6 z_N8ae8382s9~syKrxZidp;L0r_sqTL>QmItK!6s>BQ`-mQLjiDY~+I;jI3ljm<*4~ ztNK8mY8IzIp(xZGNkWw$VBbrVYkJ0_a1UHTR&fRrYs@G@g-=8AadGtd{7w(lX&8wG!)UfydrI2;@jvFzKn;i5{na_Si43P zs~y#Qv_pgr#XH3M!BJ-$Dpsozg=#-Snf)m}E%neJN;l&TAAjvCa?v#uDO(2W=I0?g zg@ZkA92g$bi3i&L3kQ3WGU@2t3P0`e>fdp=B{6(CnT%NB_h0?~AVCP!_U$I(JT!N0 z({32LJDBc1@~9mulo7RKlS5dYpjX#_Z3l{9vPUTYE}WuqCuI1I(YO`2qPN2C@f$v* zLN}z~^0b7IioEvx%Ws!PIe|mU!>o=d>k$diSvjkdV8zKaW_1#i4_Z4@OF|jz9?7p?vyE#f`$?=_?huAkoWpb@$;Lbyuq@OB4v5LZX1%MWO(#OVoRL zy!YmC?_fOK>DEY?kCVEKlt8BPYKo2=g~HVo9lAxT@$T_K_24|DvXo9Km183$aN4D^ z(7IGNNW;V83X#wc`QoxaVP?z9(cLB=!H#C6%Zu;k{1N&wD8#tZ&8>Z;} z-8ytx|4an<@1}oSc@Utie+JYgxc+A6p`)ySLj(Blrhl$FuwT}{fh%!8>^ktZa8EQ& z!@a4x3-<)4bN~2U!yN8O5WcnN$bby*E3T_5m{ANo6Rm)jB$;PuYmr15*E&j)4r(ou zw2f#_yh)`;qm$ynE};_|)Nnmol=VCvXqECAISn;73$B%FuzI^(f2%s|80wb$hoJ#d zbnD$*b%*|8;1cfZ<{!Arxb4~yBpgF3)TQk>S1J>Z8i1TWK4mkV&-#1ricK9Wpq9qt zb+O3hO(Qi>)hBq(gkJT2klcrGC;#YGy}eYtqUgIO+!mHqFP|;WiH*XhIdcS zgR5^dsr&9+$$AyG=nM$u!fgJSvlShQXUdwBEm<$H^$KgtU4M2Ce3_RI=TH|^42;=k zv{#g!17CCMOV$f)Jxe({sm!?=G58B!TkT|2Np-->Q&dRmmgWRYlu8BE)iJRnx;jv^ z71hn3hP4spM(mJlr90fh;!b`ewgv`nYd|mD?2Pl5sM3{!SdEv(CMA^$dX6S2?Yr#r z+V=Qb|IWky&Tueit$en+rB;5w8!G@7zJr%5Nb|?^46gdjcdO9ijF~2MN*tGncuYIMv|GI(#dJF*@(_P!%A-O zmI6R}sGDyF#L|>FVp6kWE;1JNA|23NIlHRj#<&Tyt1567fiA)N4=iC=$L4P~w%79G z5{3#PRrNlLRUDW!0;DmXBWq>mqJBD+=;-;z{{41QW(!2o+nhVEyU|PyrUif$|S{IhmVk!*J2W^*upquCtyk2y0w^FyqCn>(U(Oi34W{wa})`f z-8o|jg4N#SZeyQ`2|Xx5-J)klXw%2>!>m^%fHrUh`qz#AK3(c?5uZro94{7e6MPz| zmgjgWT1V}CT5pAGFF*6jM>{cJv>!tOc<*FCTyF?Bi}qu{bk4ik4^~sOAFd`CBuF#M zez=A%_G9bF?2}sHjW^HQ0&lztJa=pXs<%rEyz%DQT0mCQ(gIY?X0t9-;uid=8MH0{INFjvv?vZ7WIe#a9%zUg-DTaJQ0OZdVBB- zbZm5O?O{Zl-4_X}&_|w_G0GYGqKg!5m}`hVq;CEg1TTe44rrT@*@&ZGa$pN((DL+0 z&Bm68&(i%})8}b2Fg~JJd8WlY;D{+uyJDBHpL;qjXyy+Wlku%IVuRonsjW!55xjS9 zS<%p3l_?dF@`JOaOtGVUxbLS>nJ(E)THJkoJe<-aSub~KL!5NDs*naqRi1RHxKSo_ zXDVXLWpVeI7{C?Pb)nx z;6z2>{tN&Lw9*>Pd9w4W!P0^nZr(ZB-KB+tBq|5qq`N|+0kEDU1@s@kb21#+`?NYJ z2-m|>>O=@=KgqPsOph)-fLt)sg-cmx&ca9$(btc}%ITHffkJYsKHXBBPrD*qf=OY013>~0+Yc#HA8H^cX<#JG4 z1%@0}U>V?KZr5hTAPFT9Zdfg<2n*(lLduqP4Y?p#zj}n=k$Q^>A;~>kGOz3dT36vOo;#xMi}&^?V9z>p_AX z)bltM4DF4k9h#)gfiWSV-Q!PmVP97l&^CB`T2RBadtFImLI+#m9?-n;3WqSS)W_A# zFb20-0ab%<>DJ9Zfei+563gaS=^90PDb1`s;YqBlRK{Aj>Fuq4W!@#{^O420ek4wT z7h7UVwwF)>eLP8r8)GeO@vy9!5~E5uf=R#kfR0zqkHZqdZL30FA}BqQb6ii&jkR%g z^Oi+24z??fRO5^GlyAR&P#qj8w=Z_2Nn)EF6CI)5+gQF*Q21+(A=(PS4>a}dR5{ap z$Et|2XXa-tsT>%5C1ubw$r;%D$Qjr(RReP`IOfi*G_wHLQN_MBZJof*bB>)es>rb=}&bgYDo>cexeq|^*rdQ$;#9sCS-_59g5bPUX9 z^vtGqRz?-O`_3t?^q)a@=AMO)wm?a`+J*mhvujrYe-m;G%7|A#7|=ad<`!^m#1o~` zRWH0`?>c^)7qy@FB;I+%=?^>LMATjZT2lN-nnvnKBu>2EM~d?MLp(#%Le)tM#;py0 z%S-nj(v2IF;hmG?`uWLZOlO)ol*@U^0HrM1y&ALeqZr~QT&cmdLS2G)lLQ~N508pQ zk$Y5xW)x5K8VJeX*Qo+Jh zEM2N^B&nX`G>9`V4zxA%kWf;J>=e@sZ?gACkL;PYl^hxlJjhZyoeTgE&329uXFeHhCAO(ZpXP= zRe+IPW~+a#sF72-*UJ+oA1YYUx%~zLdFgPce&7@;<{juS1d!x6OSfzMM%>77(E=l| z&hZL!%!lezANJ0pq7Q!QP{)w6JUe?NGs;p4MZx5*GiZqdW?9Nt$Hy<3`INb}yxtKu zRg|)XF}IWjLLH-$tSI`Kn9(fS0Cl%4W`5T%Y^c1l~Zb9n9ytm$_0I=xOydDK0+$?^=e;o0LeG3nU> zMZWcd%a6Qpa>%K(w~&V*F76A(UR}^*vqWBd+JNVi|D`taQT_@uoWO5?c~+d zDjDeMHu8C)_OsXsR25nOccOLeUR1nqt z`Z=+z+sO9{^`FH?itN96UhE4-LHjSC?|3sSH=p~DbhrcV-aeCUq@<%&e0*-TrnGc> z_->)*Q`tjWO=S6%v$HIi11-O5TvTd;@DTW%QOC3M@~SWZ9De#NcAyZCYJK?}Sk-Oe zvqIgcv4vK)Upo)B1%sgNkDsS4%vui1JVH`AaQ5a|>>wc=ZQx_`Dl?&^xBsVvdQa2- zNhOipPn?xq!5C=wx$}t={e&3rB%xRyqoyw zC2*E})x6)YYX9uPm%r=L(!F}1U6DXUzSa=2#a?5KvMNvr;u*7fD>~b6Hdy>k!`(z& zx&!8zcJ9$JE~^Nt^*shZd5H#X`D=Hx3*Uf)yo6fR(>7Y7d zvHO*IO@@@9$$!C6%OJf1eian3NZX|ccQq*~ZB-X`yimi2NSU~rt2I1){^79g9_};>I-FyKo zaA`0;98~Hs!DF2*2HsW$O5TcMtW$6|5%<}dW1XZ?HxuA}g9@qp(Bs(!Pr$rLAdust zEb+Qc+Dv#k2@Q0v$P!QI*<7;3%SkLtuWr_`Z|%1AEmH`5EC=wsRYc#)@YW@s!gtcQ zB7WWc&(I#rbPbK!S;aa?x)XadR}NgSNu-={;mtJctpr}=DGt+j6cQyGx;c215)Lvk>+J8EDfQ+o4)4lihS!Us{>kZd(o^DW@kH)r~D zHY9)oHElzYS4z?Zi*aZLaG-P*iae#D#yDp2`Tp>|2WVcI|EoP+59f%l@EF9o&B5r7n*h=Z#OVnRC{}n`~3&%s{n2Db(nL?<0 zIe_O}3xA#AtxG(G3HN$AtpYXXDb2*xZe^5-pG^g!k*W9 zECCEuE{g(BMGCNq$U{ymB-- zIjm=QYxaf;tS9;jN%SW9d%Bv+JkLds??jJLVwg|6w&3_m{tH>jT6^AuJ5>bnB>p}) zpmjIQ9gZglnsa1h5HOaCb46RCz?*ZqQwU(7a#<93DvDtxokAd4YISo3I>l9fzK32x z>NNGyfPu>!8iZ#z5n4=rG%TQdQ-kny6*VMN9}U~<vNX3bim zvx0Sc*UCJaR7$?E2?-bwe@hg2sS|Aqzbb%%%4JdDsVKTjOh_PkmHh>&vURJ3`rznT zjX+p10pr!vv%`*!86Ge6YCTuSTj`4!zJmW-dVwoRYOmC+?7tLPPxL3CQCFt-tE1|H z?p`_NE0so@^>hYCUOj1rB!_ujn_sS;Rn3&U9Bf2%$-*%M@ z`W!DwAg_+UD9QLxv@m4JP*jXup9YOCPw9ft`itr?&C^9!4*FP=Ncm7Lri&W(R)Vc4 zGnp;|mAd(EkYI`QRJSBgY%%b^Do}FvMX;*iZX&M2d=jim8g=t!kX%@t(!@;7``E;` zDFx0~B0|o%2$2{JFgE~GVLJ(t1ckc!XL1I#dQcsVil+MwHc)a9mW8T$O4=>uu8tmZ z{K5Sxv3({GAUuKpMG{!w9k=qpiV!fK$oDwIiECCS^LFo+n!)y&H!Ajuyf~(XDU*5g zD0v$Q4GZYr)F3=vMFmMntzr8X{qLYfdsDj9 zjn?65^}J8_H13=XOlGJ>FZSM<79^14)=cubLGT$T>t))op`NGPAY1hI7^W%OsCfN- zE&43Fu<2ekn&y}I`*lqZ0Q|1|ub#KWRz#5LAp!rQ|LXA-n@D_?$MAAI3vw(Lb4oV2 zFc~M{U?n2tO(=tl408i86~@!xB2uWE+hDzm!$aD3!8%C15p&I@$aO?$49!~xo1RE=Mk+LsKF7tQVrOWt(xBhrnqo4JiMo=hIg=-LJ(^?fafhLlCl}z zy2MjdktAg!e%(CdhWkffepC(ViimA-u(Id3kyWFfaW3W@^YHi~?Rbi3C`&NzxFio$ z7by3qDS>l~R0cY@Q0WT{7WnWX0560q2a`U-`jr<5G9wG&$~z4_-eXrcpMYk(P-sQw zDQ(0h51h9lhxm3lNUcapUQySB@di4D=a6)S`%0btBK_V?7I1Bu$%?s zAT?H5v!)PuT@K(mvqG~O9(#UoSqi&}W+Q&x{47MjOJpn*8)_W$4AvF{&oqG#C^^?+ z2CLw1BCf)DGJ};g>gFQo`oi>{I=Zkwp)%ll$phys3#&-6)&!QqY+@AwyKa6MINcu5 zz<7J7PYXwMnc#S;=F3>}6cA)EyHs*Axj^g>tZzv%fZmO?w8f%$uJWwUIP_9XOSf+R zD$2b>naX{7Wu4zzBGxrKW4Tj6;PXma>iJB3s*pRy0D3plQco|)7kyMBcZ%ude#gpf z!>cH)mvT7L;`|%Y$meQi&s`xS~1XLGtubHR+mn>{tjGSws$=Gi8ff`ls(As0)`k#o!q zz*GcC=E#CV-8|{J{v##@?OvR;Z@ndxlWAQ|2K#g*& zO5y?&Ty}vGR}nyQfu2U){Ho>Mj?1f)@vvWwhI?v$mq(8PVH<>&o_yEgX5~Qcsjefm z1cV0W5n7gd$J9PTOAMgLBeX2_^b~a^j&8uCPW0TCZr%KX96J^al-6@NpfQDBUBBwb z1@<)V{lJ2!Ii`2$+I$R-`*dVtNQ=$Xe(G$6XG;+T)U)Zn^INX!-YOpd0SXAvfeWsi z5(e~Eh#I}~j0?elgy(@$!zcO%1j&PivIOepu5617hx&0K4wk6QB2~>lfnK{za}$%5 z)*8_+)Z234+01?dQr>ZyVLQ!mfPlS~U@NwmtkVFMy7@8adaHKFVBt_7cisR2d~Afz zzE>o@j7Lr@M*sy1+u^gPpvb~oQNnk(zmd4Llvho=0m`M1Y4rOTS8(>Vq6x$K;^P1@Kh9;l5treS!#9jC%i?muf5um za;6hD$Mh5nZQ`egeBHz3H%%@&js66jjO>;NCkJLNP}3M&t1AaNm+0g4M4boQK!J-9 z#lEJjRl_K@7*J@(tr~H%JESrIUO1>Lb?oPH%oGCng#$e_wX~DCbfKgmrfmw5_Vid) zC)1{~1X$Oj1wO&(@xr}IT>xWXDzlX9<`x93OCvh3tRu4OZ831QDp2wsEy6klcN1|H z`%l6;NuzGQ!gp#m{kGK>+8l3Qq-b4j@i1WWG>b6bHCtqpcjcgw#e)(G`$R4Ugbh2B zGFbXb8Ea7j0s2CzI<`4eXu<2|o>N%dyRxd?kSJF}@ zlbeH>v!@uI$Dj4%3lm-#(#-%GPb`}$1U{AncwV>2q-S{R5>GM1B$FQT>*l|=v2Fu; zaQpZxb9;csJ%Q#Bv%6WJN4n1_^as5oz{SC z3ks|!`n#+xSOdFi0QqdDJBC+c)Sh})fIZoFB(E!b1Zf&iV~{P(19 z+@>+pqmhxphKlOE$n>#Gtyk+}m2@~kwDnYgMU*1#|`gN~F!PZkZ z|0n2a!x)9>r={}|-18(5@Ox2~cph2aI2REMRh zm;PJ9t6B!f_f^*|aAWNodenz^68%E8OnqF6(P|}3{H8`0}hx#!^mc9V*iN6P0 z=pv1w7g2 z4*aZ1q}FD3fPlS~U@LMY%?woP=I_d8Hk-f(`~AE3%}h@-R(69D$TCwkFG)9ek+)vc z{GX2Xn!C<4O6;f-I8W^V0k^kC8boAJAE=)}+QY|oiYs0L_U z%4sM{<_I)=Hyg?w%a&H%{7YadOMBHZ-T0;{hEor=82DHfD7l$%!&o^K+)cy{d`5Sc zq#h)Vy7_%_sN6C=z2av+OTjMtR|K=7RLwt>=JuEw{><@iCO2cA#Gz*i!IR&E;lrt{ zU^tvVw}KJ`=z1f3E|?8luT*zRVLPLsC_Txa2NcUo-TWd*69TlIx@&+IAVInipoQXs zluCdWP=I0x&_c1Ns7PH1&;qKL{?CIKSSY0gY~F|R1;EjA0MGl1$c-2%z+0Di3iC;B zB;wc2ughK%G~!I#%{BCl7n`;ZR8s`YUe)}tB)@KY*YUv-4XCOU;hesJ@kA=n>B@d( zVmtjx8xF5L0P4tp^^MFOA^H*#UU^8szv#bud_~Vmc;zuHox1tGa=77S2Cb9QO6l?N zpr)k|CY&rWg=7Xmdc{00wM(}?*hvGWj)x|0nf6=Tk1e_d$5(P0#()iqGR>TW8(ia< zeYylfEy@zF$)qL3gi=BS9iPpNY*3F;S|piJ=Je{O2J71JgCJcAthNZtCxL*ki?U?4 zd=eVyT#+T7&TRQ4mZeuW{~EL(1#TSE(pGh?^=w=cK!7J74tvzxN6ENEr*SE%UT?KD zE=g$B%@Epb%Uf}IxsZD|f`M#dm=Yv%`Is-Z)-Xf2@IdPt*3;5@>_S7Usx<57SD^hC zi<5m`x!_XZW+fuz0*TdJfmt`dDFdEu zWdka8^Sy5HV_wYOKr*Rab(bGEng{R-7=Z$4lg^~NSC5EB;oe~u2cSS1+fd}YXfhCq znK^(1rK?cnDJkknX6ArqDb~&31SvO0bip$1Ii#I%`oa>AMG^=&yC_RMV~L1jtd-C} z=ZY-xbQA%Tu~uSv`QGK1ve^o@&DF8)wnr9}i6;>dJC+m>`AbVZkBO{eWi!P9dNIBFB9ZppYjh@_Z$diM|NnK-DSrW=RzoZ>MpYD z+ntPkbC*_(7?QsDl-Y_jCmpMhs`-PU&ZXgAb#PE|6D5^!D#;duGFJsku1k?h%5i_> zUGMs`cbPwrHj#*;(j=!OiPg;^2(dC4PbPzLy{n1AqnHN(LDv0OZ=i{(iM<-G+G_`Ltlp_7hvSpcXs8Lo{wP2ICmZ2&K@{PS0w_?}4xc>*MVQ1N z1r#sM4_JR>!<;L$dNrZTL1?eR;BIZK`B+UhFi{2860Mpy-Ey{#R|eH!zwYm<4%@c0 z1Muj7UG}{zqcMf3V&c`&&f)s(NOOjolt17v4ifCuTGC;)lWO8VJFWV_Hm>Rd9MxTlV+tnm~OxW1B>dUg|Kh~Oy20D3plQco|487Blu zaFk+Nx^?p@u(Yz$@K;NXGzjQnFDZw|qTLkiy(Kkl=cL zKMnk@?$Z+KcyCgv8*|us1_#nA+R6CN}Ojv@zVT@&@XLB zF0MCa%E<^FLvjHKoL%7%T9kSQ6A^{gr5HfZhU5x8Mc~Bhbh>r(OAy2^mE&>trM4J& zS`{eXkwmqNctpY7L|jFR#Ft7Mb@LB^_hk;y^~nT>rmh^gUz12V`yv~lVQ(eaiU3Jy z3RLJZgG_?bu52%X+?dV7pOGLS&5|I)HWEneP7*{ab@PqTZ!QeR>bWc4%S~mVdpevP zE6JZi?y%SCJuc zZIVXa{26czt7e_O{=$iV;TCt6009zggwI}?Nkm3z$TC%-sz@Xb38iZGK(oj5{TaTz=0o|J#gr}=CUvl@NhHdH7 zODmv{#bWk?S7EpmI9rJbd503KFgYge>hOsYy*sfb2jO~xLf!o5!1Yr7fMQj3?SVak zEe5_<1xn7i@B|9(CgKJbqrXl(fuvD4*I_yovy7!%pfSs6pg@xCF#QMwa)G!%TVn%o zpcJ!=l9D1`Da#mntDDC`N}kf|=j6haJ|2~`$z(Ilb||?(qJ=CRNWxS4h^vT@w2-7x zH~%jBYTDH?9PE$uD`MEa1qk3`BYgHM^_= zKLstcLJwQ;9Ry4;X>XRp0{|cE{;TJsEQf~#{EPmp$Db{S$MAC80y&m<>fMSSsnx{b zd6g>%F6aiPh?IL2F*5{gx+>MyZDW-Wg=mA`z_dqi%w5HuqLs%XT4~3(tXIvK%iimE z2g$V#O$Y1}+@2r_>xurl3#8*Z{^stGB2sfrU+ETD)(=2=?f%4+mhQKq$TxIiC}J1_ zaG-P*iaaI7WRhVB&@9Ee`8D5lEw_Rg!`t zQR2!IN_2rfNV9SU}K)}<*3_Wir*0GgLLIa&EvZO^i9_xeDJ&EPz`%ORjw%z^CWL)hGDtfh#S5;LT zWZkELz~7Cuw1vkc|CwTXKL1C%3+j4f`J}~-@nC4rY0-8mb)k#-OaXz?Z!*`hWMZ4je`MD7&R%l$jS{w__&yR;{H-@H^h9_orRD@5qr)Q{M`maNeQXP+KW1ITZDC|)p2ynLemu_{n<{~@MO3hpN2D*Uq^!uOt}LDyMB zFI=OY?e?To`Or`V0U0*qcdyHq_6XGgjY~O=z<2CtX?rBJXj*97!#b8FdT^z1kFK53 za0BdsU$1j0m|vp*`rEi)GaioMnn2&@P+td%?hjOc54nT#Da4joC6q9B*U4 zA7t93w>pojL%RGVTpgSER!&9$6mYc-MV_&w!9+3wz=0B-&P-X+dr^{%05mV5u46lC>ud z+w0@|p?A`lRC-O4J&P>{-e^n;D7lovvnaSUCP`dHlEkw}8nglhyl)J~qmzR}3UUh} zI`bldKn~jZnxN;>h$u%w10A~7H>aaWmP9!c%eT$vphv!EsD?QFR^#wV;9=2$<`Qs9 z%0{CJ&T7O_xMkgi?>&!8`vG8*ap9;^XBWIxh01`-B@djl$s@95GsRjHSb?Ev`s|g$ z_g=uRn?DIX|Dp*NW=sHhY){}og3C#v?~;j^6IaJ12te(6Qs}7#X`+=6+VD6HJbwBDJ%N8 zgqvYibgz{k1g}Bs*5-|GO%3evY%y?0>(&7!H(lZJ6kJ-jmbi*2iN}*P>ShII5TQk> z9ZhrEhSfxY76oXKEVL+qc)ibVQ9uLAp+y12Q&!YaXi-4-E&8Xx&KHlzM}75$Rh|uU zDe$%u5%T5~v%ws5127dSlG&i3Kv%DVcVD8IpOS=Hnw+kxWDr5*p}SktLpvB3%+qNGwaQZr+1_&rH%z%Jyc9 zfft@bI+Rv>Q*e0>8F3W}5_^+0=uAG?8>L}G*qF2m_Z3@=ybF|8-W6O*!-nbzcQ)^m z23_C=dcPbV7@)&C19}EhzYC9TBL@YUuI1(4LJ~{koFRYfiZtrx3h=&4uaV!QtETna z0eOZLAV7kR@Y#3W#2tv7WdH>V+u^gPpoo&>ECY(AL@%sEpI<1Aqnt4|g}}jb0MFY% zWQ;Ssb&01ion(w7KJAvY+P6zf8+0UdaJOH+{eulb0$KK}=GUMR*Y5EBfu$T8ixNRV z1)K4^Z-t~CMQ9XZfySly-P2H%l7vPP$I_~sC#+0ytI`$PI7OSa&E4g#_hqw>2{pfkyoMn0alJ|!2SWYc|1 zy>)$1E6+0S&l<%g~AUPzbrlHe4kD3t){;$eN?tRUy$ ztT|WeHTT!NQ)JC;T2ofd-Sn+@9=XS}G-GD~sjtiCh=_Ymz}>u{*$#)6IVcE4?^PZ> zWLg>p9(w`=Aog}nXhfqNxVw?rUZT?<>{pbH*JyDF*@gt<>1l7elc&fSyVD2)sB~bL zPlZ!=9y5VH<^35}V~Z1PMGPQJcjKvq&CwZ+w7VOxhy%pwWt$_72wN?c0q`aIFk3W^ zb2CUFL~n2cp^_-<-W6CNw$0wv8GUE;*t3lRU2p^7+&9K<;`xDb8$z21Va4kMpBd3Tr8#!VH~N*Ro#4- zpE9wZZhKbC9auB(Tem)|CE=vkzEIs!-30e=Dg*Hrs)4@7%;UN#1n@=kWnYt@Q=wc6 z2p6gyH6>)3*};Q;N5N1Y7!_FLHCKB>S0A3>!LbVfj>1Ovzm zgLG;gv?TNlx%7LRR2c)I)YXO|ju*HC~ zSUd{GM$V;xaG{>4cTTYjpt1z`fjSym;0HJiF3?(*+TB<~rVwZ^(wBofuCFannX!Ulh8d4ho_`4R}w7j_Fr-&r10n1bt%Cpz%>HX!$!3wwjIE2c7_y}UP} zGpYLZ`D{(D9FXYX1|yXZ!Sh5Fpn$-_@SswkGGK{JA%N3us=LEOdNV_7Q{I^10RU~$ zJh!HrBsVLUrU*2j(<*TY>1=OlI3-P}j)A+CErvQSj0Wn&oDHAK0C<7!%T^r;>&X-X zI9;YXot7JgU2Oyb)C=@jt0uT*YmDu&NWiz$JteFsE(Pk0p!WBGko0(>QSR}k5a_Sc z7YabA-)l1PtTR9W;#&Bu)@C*4X=9!1gle8dHJ2P{weol(V4&WBd^lDIRzM~gKsHQs z&AQL>Ogj)j4fVDSf}VUj2rko!?%{#{mMHrQR}M8UlQ(NevgLrZ!V{jOkvdzkhvVn~ zDQ#ta2x#W=9kZQ*o)*(ugcTD(0CnZCrZ*!BYieAh2LQBHYMXM0W5Wv&fVgrro(@~< z^8kQ$!C!NpWVg7RQW*eK5_0D@MFW~HxV>CCAT5*}8oL}*2;ghx%51uUh&qB+4XZqY z0O~3|jYi3x9ewa&-316hq+RPu5P6FyPLJsx0eF`%qWPwtop6ji^%mh1rl?E=j~ib7Kv z0Mjo17NN7*%p&n~^hJ$2HyD=!eL|r3AX^Zq6c9ETVOBsUfh;;5t?+qOj-77Mm3ccu zb5SR~JvA`D;_CgR&+(?=0z5GHL;;B9%U7wy4Uh#yp#Ee5$WvFAZIT-x3k1A|e#+fU z&kDM3*JSwE=!~a}cxQyRy2~eKU*GfWejR_tn z(QJvQjg~=x^+f*%zgWSNZ}45jeZEse?I|4dOCU?f&1Emj65lq-vYgo0BcXxL6ycQNUfrBXrCqNdm|Z1x|NiiJzwb>#4L+H)4jxozvtYJiX}gI@m{A}=y{h#| zTTc3^(4O#1kY2mdvJ7IM{HBe%d-a`3_0FT~<<-9gR3_P0=%gTp%y-L?hzEdHS{%@k z4pn*V@wgNaF6`(x)bN-?WdOWju6occngq9L93CF(;R36bO99~mrNA^ru?$oOz)N&x0|lNMJP)?E z7*N*vmIqo_DlE5h94}x1+1^X>pigm|E);tdhs{8M?(3%2Ty@i`tlPi0SIIk>4hkrcWw|a1%!p8LW{7Sm_h)5&le_IbMPYV7cfP)Jf(R{ zp%-zq>&k)t;&eRH_t7!`TnY#mruWp@o{bIfCCL>6Hdd~QU|F)|P{XR-jJ=~z3^^yY(g~s023>MO95f&9?g68rsvLLixZT3P!P+aa512))3$AT{=B_^ z2^c`WHD*~lQwZQ2_8M;U2CiNivnqiAeQ8pMJMt14 zSvj^CP?pVA9MzE;mD;JaEeE89$#|rWCM=aH1n|YU1u)^t`l7hu&xMrBH2bS-{ShAP zUTk?%OX-xGt;LiA!pii1byPjjwUJzc(yaCLIhiNyww}tic0-0@nRkFMTpUjwkVW5$#zZZ!ZtW?e?H%vQ}e_`^T!Q66sz0tR&4nw);0mId$k>20ca9z9l`l4iit z(<}|>xmx|^I6Jy?F{pFZqEIrL)tL-1+>!wT5Laj?X`hxyRhPy-)&l_A@^F`PIa+P( z&s{kn(RB!v0pj-2@Hm+qK@j!+zHx#jMj17NSX8=%K6QbU>1-DmV1NN~fuX=#Y|?$f z1qNWCLM|{Acq+lZV<*mBU_kPc{kZo>Y?hbW%+jpoa$LIIVvZgN%&?-#qy7X8o1rZR z`4%g4%dFP89DQ&pAS_qYA`07)D+eTclz=v&7V+2^A_$-^7B|T;gIo#-Yy7D{8tT{D za9t4uP%qRE)uG2GSRP`4w9Yq8?2L{IcNEy@!rVq-VW6fpgM5c}YU>j=W-@{R>cTEP z!KF2r4b7<#z*h};Q5)=M0t6tgP!f)AJJsi)>}Nbcf;Qfpf#v`ZjqbbO-+N4&=-rB>u`VOQb1VaPelcC zSBW5iy8bHdk*#;$bhp85T_23-zDIfo+H6(7@y;U--w?*)*UcL)Up_OFKr`r??hK-p zDO!ka%On6Gd+n-u#s_y?jdSA8Ew5-lZpp>xUCDFh{e8a&B zGT-AGT<6(dAz~80eNVzTF@JmSb@#fZ4MY2SK*iy&Ee3;Fwcq;s?iC(m0|X#GW?r~4 zN3S@jozi&NKd2AJ6E&3P(w7j8(;}Zk}5;uL>y=pQvr+4X+ zUH^!JCZ0R5W~)_jfH>{(Er-?IejWhOHrzuA#mOFrhY|?Tw_QmXwlq1|(Wihw#y{;q zp*ID9WjQ!s=bZD!$nu;0IXpJF<-zjC8VAV9xpcZbrZL)z|KxE!4ol)wRztHytI@uqyn zT>}PkPaI9?d}wDE&B?_w3Xt9)#nT0}6G|NFD|)Og2?XeCzC<5%ctR6F0Cmf3+hH9Q z)8yX3DyzT-m>t5Pv2zNDg#(bS*D1gO$N&k1Sfxj1uP*Jto2gO>2xOQa*iNT; zp}-G70->u$@-F)fxr1uJK<>7Mm~Rp2vYGbILWFA84fHYP-{~bUO>j=r2^c_LEUq!z zwOO+Q4G6UPSYQ5SFK-F~eA8XJQ9caD(+PkA0&A|QunXP#5__>nwi(?%A)vZ@o`<<| zsPD1#C3cscSE*RAo1Fq z%^nt8nFlRGcB4PT0g+R#E1r58@AO-8U4TG$m>XknA4Awrr+^^$mtyJ8aY)yy84kU< zlpG%~o93Xv<(4gP8yI-FL@*$6ep_Xoc;|E94(dw!eytA(T}e<7^nCVcJHF0yQ@SJh z+p%lFRYf;yiUC1WD0^jq0$rYQXZpgu!o?Cih?qjCZRr`ag!c-?Tv>vf6BwZwuvT8T zk%fxKgQ5Vin050Du!!ldZ&LHsX8$cMsJm-%v~0D7kh$u$QT33b>eAL-9?T+$=jjjl zC1cK^x7}bA_RzQ9U=*PwZ>!Z#Mfb`Vb`r6k0|e-Koj;f7_^fIH1IXuj2EZBjf{{UD)lT8ud`AaaB!x5P=p*-;x(aJ`vL}P-Zn2iA5hFTY1xCoV`T~m zWGKj^YmB{FXbpskCXc04w#!bJ)k*ClX3WQm?TqvaBhJq0|45(z5kGQLg^U|?k55U zkgp6zbY6jOBO(JF(uU)b=6L$7zyh&rZuzG_7#|#s=!UQ&Io@-lLIc4~4^kw=-4CFE zz!hJ_+9~tH;wi8|?2-pC$*CeoJR8p-fzV}Ne9}sZL%$ppNG%rm;8`x00>T=9>eB@; zs*&?R9YFwfk?xJyRqdMV;!;3(JiHJbQrlK$BrXvNT4>tm99vNwyYQ1j0wG@5XzR4>n5nkV9|2t~A{4nu z77-W@h-?!1_WthMB|;$qx*6bLOovK~n*o>rKmmapP}Cpqnu+>}?gx0OumBH4*Xb|^ zT_3?rY2y};J^}`iA2)L~-*0Bx96N|21`y`NsV7`)vyeCiNFa1W);GhPS!V@!AbL## z1(VaX$K#|54Fs=CkZ3*{MLut=g9FJc#>)EM0?JVlJ2eFsh~2dFZLj8;EzSPA1qX<` z?1v{_Y;EQgiRQhOZr+#5nbG2GkwpyP@&U) z7BGOk{an3UkwWm+sKj|+!hKTP+D~WItg~!5(03yT*(V2D%J^b@6W)1%7!a` z>99b9y?z1&6gFMq+tlDX8$6PxP?kpB{7pY=H|*R46t2cHz;?_|&psVjERf>Js{ju~w{~olV+fHxG`4tli(o*4ZmChl;Y>P}0q_ca z=+iq@>e&$XV;%s|o(M?~ktSh|RX@t3a~TCl_W~TnlraZWCeCjRv>^fc$IZT0vq{&O zjh%k9v>ONFMGPRky>~=MU}%5jy=piznFX!wI4Da2fy~W)>T2esI1NkA2q=eYw{mI} zc}mlQ1H?DY7P$fOIT+K_StG|b4^Tj0#S{_$DlVIg2LQBd=4&T~^Tbqz27))}fQ`NR zZQ8Bx72tvB&A8XE6R)iL791dcSx*0`PZc^hk6Sq?kg}Vugng9uL&Qy22{4f3J!O2Y zMSqu~S^d6JHeAD(1Ozf0vP3g2o>)mBK)>ip%;A5!r&9GtJp3haK*a2!DeIP_=l}tT zbda6SYRz!stb-IVA=A|d94CN4<|@vn%Mx(|YrsIx@4QHiKx-qOnpuL<0T}}Wk{3^A z_d9N_1P+L-x!LJ++#9mFJi8(Q0qn)sC*xf@PCm&H*$??ri&HoMS?5TEw-d|=zs;ru z+^$9!#Ot@1@dU>d0{7kh zWA!`|Te~R)@OAU0Wy6HcG(;FczRD*A`t$-J9onEh_J`&o1dUm4JPjDgT{zUQqvG(G z$^dwEG9FU2Sh$&(2b2H-h&|e^Kcditu2M6}ZaP{>QD+gS z{-JKWkE-S`$-KeYb_-X{pM)kk^Om6Pd{0r{Fg*9S4FllNG*_XByBbka8i%K~;d>9z zeDh3Y^PI;<-m3XSvK3ChGqY-b*yZHn)0c~r-Q8o=yYOBFF7>+lM_;7p5mzEYu5I>f zR@*t|24Ds)M$_j2Dtzw=3U%{mz3ng)tJdok?rmf@6(E57jqusGGIN{oU?m8kK*7EL z=Bw82B*{1>lvno(>E9Qxt)r*3=iMT<^C_RTQ;d@WgsGF}u-j7cPcUz8Y+hXKhptSO?;BF#r z;IYWNq)|8D1f6ipnzflLnPH#JA-T(dQ+EgkvRuM4Z&68~dsBn(bc5hgA={KU-F395Exy`pr(`qF;c%)|;csVG700*1#dx3q{m}Ni0 z0u6eh7pj*Q9xb2yX%r^nSXy=SSL_VW4d=_%PBSJytJwih>0LQ+vL=!8QIYj&MbWTn zf)}gQh2RNZ6auK!%>(GM7Yd`HU66|JW?B33z&Y2#eh3KV6q0(RXzw4B<= zY3=U5xktZ0snp%bY(5dhGEg;N>lc5S|E($QcQJCvcxl(h|a4- z(G~g1fDXO#ov@+zWX@0q1yE!XvAlfW0`hH6YI9Roi-B`@11R8Z8;S}dibMr~1Es4_ zjxow9>dG=A&`Skhtrap$#6*=>|jhWz1+)k zz*-%hw5-|kco`rpfvWjw=*$!=(msO&y5om#N-51OT&#$IAm|m9Om6-{aVZASyOEZ5 zS6qte759f>=vtT_>#t>VXl)9CpXC6a%fw-U?a~?Ey2Mi&o!vqBP6oPHFF{nsrpmRl*cshaq*n^WnMPm8(*aAboJE042OQ|0= zRpCy$sc>@8?1Kwf&Pj6fl)KFq>!u0q!>A_ky5e;uB$k#-;e((+DC&qevz`5y#84 z12SDXHjasWI=yQ(?pqUL>dE-UV~+w099~xdJgZ5&iZrl-1XQ0;06bMi0ZAHILH3&X z6}QO8Q;HSx;l&4|I27>!7QJfz74RK2D`qXyZNr-W+^pDxfPgeB_TRl+iME7sL|C9f zv*MJ7qMO7xB92$d{|DpNf>{mGq+$PU3W0~^0N(1qGrV<)r*NJ4?}%SF-v-9KOyfE2 zq*eFL@hskz1J@=i5|DDn#VlUK-b%0)_LEsWP^p_6pz&>UTHt6*cMwu?w&ZBo8d5-z z=}KB!uqzQMq!>W&Mq29WDdHv}R*Grq*3CO0x7paE#?5SLrV#j94&Zr%iAW*CTbFpx z=Ih{zrA7R@`4QlE#jgfvy@S1l2LQg;{a3HQq@Rn4i-!b!v$s30d+1|ZGI8-3Uhg{~ z$8t-8mwSvW2QJnmQr-Zf$7tAF3AWMX_(2jeF2LPVd{a4RTxtDlIz`y9fdVEEiq?dRMFUMmb$F}##hvr3(!pabP z(^KS4ymE@^<^Fvj_vRgQJ1r$Oif@~8Uk51Qa2tv| zdx^LrtpVUb=_(X?N{XOK5(?0~lwaj~WZaQL?+EYiGSwvRWiMh1JvTq}{j?utIe@o% zkqnO#SFRe}cPCyX;@8ce_FjY;STT?Gw4RLf0Khkme*!J%U5q~-67cC!1H@MvAn92i z!|VRfc?)AX7Am?Uu&8%a2=y-q@SJzyy)(RZiKp;ubaQ**R`yEY4|VOwJAh?19&UH8J>x2Y&C>8o8O3EH~-YyL&NM| zxYww&Ctk#&GRth${5fb8da-w?AI#MD|LZ%Qn zSPtNM8we+q;jK%&z+7ZHaY7NlZk_|})2qFuS5(+?Y%%b>Do}E+h2*gx7)8=4&LN`Ux&NlNfnbxH_UX6TaNPw^es^*Je;LF2lQ4gHGaOEJznncPQS7a|VY`PdN zR!P{34wCEzP^p{O!5uE_(pCVi89AObg~0oA0M8j0Lr;dcF7XtWlc6W#*UisEJZTP1 zjwig%UGJGK~4B7WWcA#m&TgvDWbZfOdU-vHjqZ-%!n@n-WI@$2Rn!51v7IQLKzSwnTcCu+-AP+O z%%z}$m57jQK(u|1xdE7p{7Ksj3U#vxzHXTgQ9PuzKCSK8Tf1`Ld`lt`?+OQrzXd9F z^I6#h7n*yjPvQ&*m3ej7;2O+h7|D26SL(RSPEv&iq0HTb1%i3=h&`Yx8c^=3AT4e^ z*#oMg+ZyWT{{pRS-WyNu&}A^?O~7o<00q2Wg`yT7lNcS)Ja5~6hcXAZ=5Dn^x~I8l zYOWmkS(8Y4JBYwQ!`@1;XB#R|shj`AY4_2WA63K2JCB~CJRM!gr#>?wA64$j>-iqt zwpcgK(G!1RP&MkA{}z$lZBsTIGbr4$$HTTM1f5+dKy!ymf!FwYzkPb3?ylA_Jj_QB zsE1zFq`L!s@-JB>;7OMU$kC3gL-oeNfMx&yZIQAhy7AbAgDC}sHA0}~EM4cvl0^_e zU8HN?TGFRniUqLs4Id1>gw@69R=JUkJL>P9JT}qK->a3d$80=U1_C@oE zh-Rr=e}Dk4H^OH|%z5X4!}1q9>?s6(ft;6 z=qimfD5BabFRgNIm4sH*odcaoJ^P_e%(9)ePX5UX&)Y2Jpk~%?!WqekYp@G9@Iku z{zd=Q<0~>Gc~FmG>D0}>oDy7g^DRo&S9CYrZ6=!p80>NqI7_T*{*i4&JH>l1`H`Le z;Dl}op*sZWQK_Lx()l<{BhC9|Td{mae_3)JCemt%%kI_BBVD9YHNOE}#q9ZOG>&Yb zM}?qvv**u(x0;)Q0z9+lFW^1fWzV0(r)v|EfcU*#17b6`qT`A0JnD4}hCPA}gyX)H z%am!TCv>|}Jvlfz=9{uLjj_4qpk5De{eaoCLT~z*YBYSi)z6k&q`LV@+gQ!(2KkAu zk{_7W(npVX6q})0=BoJ$-?zEK&T|h6vySNn(jnah^-kxxheUF757yBN^#fjj(Uim< z#RGt9X*bSfG8otDP76l!0DyL3Fjmt@97|Cd051(rD9^0MUOcea;v7X!&j*ya!G;yE zx=*?sliyJHC2+3}5Lj0^56*SjVnjKp=^&Y!#b6X$3@FRADdC`y`CuD%<$z>%O_Zx* znF0hLnjIR2X1M?8h@`$^mKR3nvxbx29ia%jV+&EE>(!p|3b6Gkc!y zFI~LZv3ojr*+Z_--C*=MAHDHb-7`DYOUG|Hx>aC7@SK=_C7(_#-k->(8;MajVa~b` zi?9XGJb-@L0df{$f!H=(<5E%Z-Fk})$7v}bkXdWjIEP#jL`T(C0;q{vL#?_305#q# z$t`kWXP}NY?BA#iSiG>KA2qSS@uZ1$Q|^XE{pdG$=>P$>th&#-9wcI-29Ky~K_Vtf zSPgf|Xg+}v0|c;op>X!b&a@MSED*37IC3my3W2t}0)U>Qs)uG1TE8X_Q@ZhyH-6ir z`8fiRy>2e?7IxmJTc!?cHQmk=O&uIaE({As#DbZ^1iYX%3r>XqzDV0~TP~vGQb1U; z(rHa;hdJ)#fU+(WqTzA!OTYkfxNAkXbnbosKX-2)bJ>yh2YF!lzCZ$Bh+th`8`WL z_0&^UPf4ruGR`Whs$bWks-^6zs$bios-^Dj^D?l3{j1ZDed#gwcmG9CLMtElxB>Q* z1ullB_&GD>)}>4C1>QjTy*XYyCLJQL5SFs8q^4W06hV)=U~Mf+`KU7QQ~xy?P~i2H z9>r^~$`n*qb=Q1+!W2=siV>hP1?e_C>p$mCq;MYOXv(MmxD0r4n&d>_A64c=U=6BM zIQ6&$8DT|L6x8^6^)nv{)Pjc`J|NWZ164(|MCZfHXaQeky&Sr%8!Z9V^CwbqxaeI|*UM_mL&7?(DZ_ZE9ak5}q`k5n{c z-xKoD%Lk%e5UB2!O->-OGfq?@u?tGY|4&TCF9Q_KOD1}a;lcfH2C6(OTq^rl&}b+Z z&j-842|R@rYmJ5~3cP<_{mi=#G8(Fis9Ke)*c%2>R zd$sayNm6!AP$ry~ zu8YiUdO`}B4>&b<`zJc^0j-%%&D~{HS8F|Ux7CK4yLB6CQqy~A6?3<2E1zDFH1X*! zIDX6CYAUw(!sEBHf~mA$WA7ufG)eR(!giR?@~RZeoC;rIDd@ilUX>1X=+(Z@tYB9+tRye zlpDClv(`oYRci*etSSdmxs*`7)~pLFZ>VAaU49%Sw^Ou=?!<`c#KHF8QpqEwHXRJa8wdig}WiR40RC$(O z31S)1s}sZV85&AK11DKNKgvJk>y$^%%kNO>1WPV3^B(Zvw29Adm0dM$tjZ1}DNjr) z&fSRM8hwNwo}x!oj*AUh2Ollm*;6H;;)$br;fl|8m0IB*akYgif4umP57%!nYgl{- ziax~?1dZqnjjsl$M3sPwlpf_c&+Zo9lPY{iLl%H)kFPSXV0g%rzCqzrG6O}GbojtD z3qf_A_#$UVVOjR8DE=J#rGZ!;VzJ6WBVXArS3|Fv=hX7AP~mBE1Li|^+t91)+!fG8pz2ek z0o68-k1kaLDxRp;FmClcnnh2-6g2nHlaz~1J|b`R*vnadj=(L7y&u8^QfsA- z4J(yT|F}FzE!H90arNnf@U_%dBy{_%Rkd~z1tv5OSA_~e%$^QPbT=#Gu>J@{Gl=>YwTrudfz!AM-&;=^M`Bn_N611vU z47z}9HDbk}D@#uN%gA}QrNi6xMY7pPKy^|TcXh|$yi@NPvz`aOb;M2A&!_)wdF+M@ zE@rzaoBn|$l`oFUIBj!?Yec)#VqsLSj~f?8s)o5JdhTFGek84#YVKoj`)id0hCi9# z%ZIbVZ}++5APYdX(?@g(Gaw&47K0|9q33<;p!01yqYP9&S#vO#JFn$;s5H2p6&uPY zdXUpg^yE9|YqHAY8t(De>*^{&^Uszg8*axyDQMt@Iib2k=?afzicsIc;S;%25*m7D zG0y3=;e1{3fDLD@Q3fiXq$AJt%^UO+Cu+oZtYqHVvPL?u1Xr}m)vY|y7=9nUtk~@U zr`3D-#YDTJ*RF9l!a9gqR&0M8uxz0HnRIU4V$$~T3Mp^F@dn+)>lMen`26nPOtTKp zxy{K#=9UWjn^R}XrF`I;nQ!dzB{h^1qadGt3_HNK z>HET85r<8K&$Ed)n;+Z{-5M;*^I0pK{x@d$JoSl~Z2BpPz;(g=;WxhvX2s!L7feUV zE&s621+!XpT`=9MN19bZTj_$y*7NCK0>30!y25IOOSdd<`XoO|fNdGgA&0-SSV)u9G)X|DS8)0NgJQ zKFYqJxA(%2vh&iVW%<8h^%ZrH?}S{R)H2;(r#x-cYG%5solj?=9v#kls-jmJWZg1^71}+~-SPrx>*IWL2Y@V)SDqDYd2g{)ymi$B(4$1|aPyd=UJDh9Z4?Pkv zE7+-F+AlcF57u;L?R$Y|ysUaA|6(7JI%VyjtkhFH<;>Gb>3Kt*OqugZJyjLM`8H$3cRPM*uw`=PfV5l z#6PlDR*ZeOr>vIp8EnC0{g{qV_4#grE&?MU{xK23Yw?D-e3aFSF>wz|m4N=by`j$g zR-4_`sl;Hj+kDc!lt9-9l%@RT(+xhZ^Bn_O0C>>;sW(o4mj@qt1F7EK;*FiCmIB`p zHo2cq|E~0G1rX=7T}WU`uHa;lrxb<`Oz8q#F7BGd7nstOKvp_1r3=VbJ)V74U`kgO ztyA(~;6&67#1rzmqDvVcd19eUg@BT$janY$c5p=2&ZmD)BIQm_@a6dO(CHo8X9~X@ zZ&othoA|WDT*1P#ipb*rE9?B!hklu%)VMZTendYbnHIt_oV*|Q5hNG?;0EudOG0V^ zQ@t4CgQ*_~DcKR5k5=?SDI>inpExVnM_@%<0!-dRXx1oRxNSySL5s?C?BkbCY+Ujy zCXXd=KR)LSuNIRll~;&OZ7q7yx#KPBc{JHb6?M^yp-{W$~^l_=Q;YLk3o- zT&%{s1rnrsX~HVcL7ERs{2d56l>2DSM@AOQ^_;>DWhlKdyd{d8bIH^ET_#G@zxE~? z;ohZ|G^Q1w~5>`u2B=~?xvj`<7>rJ#XR^b{Sd%3r|sIh_2=saeRX z{z^!7qYzZ5R~_lxJ7w|Ptk^NWN+Ni$%~KW{J2ewLY#_xbB&z4re_QGdS5CEO;CCCj zByG>DR8zHQp!XTAP_Jjt!16fNo`G(|<5*Sf8OXNs>7SSWl^AgBK$iC;Iv;TSD=_m( zUBUGSdALvbgKo`JP}2jQN4wSU1EYm}x)qWTyXL|1!g03EhTD59atTB4^6Dyl5NFd} zsRKGwRl7u*|NZY#a;az8Ibb6%rprP@4|G{60p12bb&PE&rd8e-v)jt2|Gv}%-snln zpZ3Z)_r|jL3{iduBu|@_TvE7&5!&FZecGz+A%cgW)$apnC7(`!f;M?WIq9d=0dBd{ zvWBLy3!{nxA9UtX*@D8X1!C>OSS{t#FUhmO98|j`x4i1JI{B@HV-aNNm@W$xy`X=W zZFoqsY>loX+RCT@ptPR?7#zUk?OKyI*BB@TsJ;fDYJgcutf893_A?nw=h)ij?d6qE z8wq_SDvRY@lf_st3IlatH9p8zJWRJP%Nms=Wye4nduzd)l3BWODjhSYg|c~<#oYmI zoC9X106lwaL3Bg)Jg}{Ez`8!27)QKxM%SB1hvQ`*q2H6Lcr9M1-ZN&sX1uz7KK(w} zoyUn3pDyzq0Qv@KPsqY9SR+Uq60P>c#?JS8@9=Tys}jJ!Q|f2QKuZ9|{G^IP3(u>cWeXlk ztocb*kuo?1GI(P1nLod#uqyNs5S&!ST>+R@#jf{^Seen!ehoWrYURc1=QU z)C@tbTF9q=6EwZ;{Q^GXzG_@NsL@ty7BnhJef{&GuU)Tf2yE7U4vEhij~tsYh*kxV z)fwxfY|X=azJs8CA6OM7#s3*df$kLgEj=Hhj+H;Dio1$qj8LcEGiE&nQM3@!Rt6rQa{S^J00ha~&Df)F}25UBzHKd+=6Gny@_;jEBxZ)Z&5A<;BP!>Ww<`;>{ zqKV@X1Hvo~?NHi&GAJet(nAkzPTGE5OVamkLElv9Nz|p9Z2A{~IggXRa-ytBgFAQh z4M;d43%eu8aPI6{?5PaNHxIp*bEj(O(|-WevE6$woJG$vcMAgwmH>?fqb>`yzo37w zA;wxT>N-+%|Ai^K@K;B&>E8lo#J^y}8NoeW(>_>iFvcc_Zrc{_>6-OD^0dY#wv$h< z!2I9svLC1E>v$2cMmRkAsX{!!dQw1tTV|!~>KUl!VmC~uED80WlfTxC z2+MTJ8gf8f1v=WjK*eS7EKRcJ<5ey-#(b#D0zEJ2-)ktc=0jaa(sUANq68&7f370F z9OPdC#gn>%ON6nAb!(o2njVF+7O_SP`Sjlf(?kKtL$4E6I`)U?Me*kZCC@C&YK{PE z6lf*KzU+ob^#HawHwu^9{5M%iFf56)p%}1kh1VX{hRIo-urMS!m-0{d)~* z*6`7FBu!H=#reVw1Dbbk#zmjAgixLJW|M!KB+6X!ZFPP z%`)Eyxlk-pzK3Xn);esP1>HhE{nt(BJ}!?$HvJ4l8J|3Z6aI`$sUelhvM5Bq|J)cc+7 zURo@DmKW6?sM(B57GLrUyJ*({3cq20t&tLcQBN^pVAqt=`e$LFJrVp~E0@(tRotb? zn90m{UWJyL^%O>}Vb)Bh>*v$|v(zr*umZiz%MQg3m)?B`jzbrb{Jj5 zycmXDmxVT7(7($zJQP`mT-T9u`1|Fk;lQ4lR3xw99tHad7*49*v$Y0q==oqjnpuiIgvs#b?0$lu^Y+Z7h>Lb)Ut$9^}?C*=!@9{ykFXIj^5#c7UD5 zy6aaUK3y1PfQr+`2Pu9_g^Z1HqcF7cRpWzf#Y2>}C16w%t>x3-1*tqE)vS&(qYPj= zZG4cJswp!HLn~i3KFC&@DKjcb%KivY_LX8or$>2%mb!^UUF<91cv4qzmCbMncrmDX z3Tk?=TeFJMLOy*RP%D;-*Zq9(`G}L`i(-IASsSAXmmqF!#C%fI*4Ob{jd-lU8P<~$ zTEnP%obt;02oyn(yDOmTge>fmVuWj`5Y&3wsO6E16|PaW^XaeTTrX@beGwV?ELGyR zmVJa?PpaZBSYys}>OEuD^T4%it*)O>|0-zFvxj7ADd~K5Xpd74rGSFx;gb}*HMV(h zPN)zRhnBtupJYoO;;iFJP))R$Pyb$dJd8_)MtHIC9yTvWIDG{yG{R*CS1>Tb?V2>g zjhY_x&Ing6(2Zq~jWTz$e8Q4r7ybl=+=G^*NEZcq)acaTC4((d@zIH+UDts&zvcER z+w_plQ`D*72X0*{x&Huozz+8D`P4t1@-d=|06uoG&#dYS((uQ0S!jbD?6cZXG-wag z^2c-?Nz;D_G(AoiXE>)U6CteG8a0vKsgZ28L}gkttJc#-Ee~MZn#tNU$AH~^qL^pi zGp^j4v5&y5ld8DOYr~p3^`0^7dEi>sOxMq+Zvfttlwzuw@4Pn$__5sbJD_IoS*S`b zaLy|+Abhn?TeUs#tz)^+NN$3giWkkj=U z?g~h8Th_)H2fo^;t=b;^);NGx^66g(8~K&WtwzCjwh;;FpVSrV`R>#_1vNdmZNBRk z^68hs`(yE`m%W}UN6o(?YF(igwOfGUDsG`RTF9sW5};NqyNZ_`xYo)Eo5}zM zY8fIcyL1?9)~Z&Nt7Ej{k%YBoby~}(=V2VE)wpcdnsGU0#2G%tJCqq8D#nCCnNb+{ zqgLY*f?rw|Wln2kN5P|gk|%Ij&F=YzINx`a1pv)6^4AK2xLqtKyWMO{PiWkO`p?<* zJwmb~y0V67C!hWvNa*p|$U9qeUx>az?f~kLy2W!WDU_yKK-vyi$?wjIJg$kH|YI@EbNNG z&?39m(?%^1TuX~o?R@%YL5ogQd;L7_Ej|NYN-wLXm-r6opEfJG@D1x&7KGZTt=b*}Eb9oZP$Ea5;46Ib;!}3+yYa8k z|C73ci{0?_-I`*NSEJyT?`E`+PycJM=})Pl??cXYR+Rws%zqT)U*fO^D#svP0aX-Q zU@ysH3myqr$MRGa(NaGB+u(^(#=4F7x)qv>RHGSKz&>HiM)ov*p7pP?d+ds#h0#X~Gl@}DZS-Wa!TO}^$5 zT@kS!(AKy$TF9sW2cV|C@xpslNN75JL@ul1wOnSUpx!fPJr7`u%esC(eI7<81;i(0 z!MEPS%iJ4~1+ahlYX!RvZ$OrW`p?N^!R@92nXvITT#fnh1mQVjO%mgpW)$p3X%Tl>rz%8<;EKqvJQ$UKq znkS5OZJtWd>bE@wWUC$ySn1k4m8FdT3h3(Nha;~6;~pP<1577mVON%h$7k1i+NkA0 zZh3sFc0OH$%$}y5WtPX7-oWuGBe$Qr2;hEJ|1Mc*3C5T|bXjQQ1^v5h!$XWUf9N`r z`+rl6Fnx&TMS2j09yT85lZ=80!!b)K;-inNqNl8AIGYZISf?NS6Lh@h+Y`FF#9pHs zZg#8Ha=oQfP~zDR@0ymMSgNifyZDl{4!n=AWXdzJ>;m@z`B%w7Ug1ey!POsQE^%v~ zf|?$-TXTugLO#7KwWvf*C!xJTb%C0FwNR@H^{Abirzk^A*%j3cK&@NIr~k2-0fjif zPCCyMm}e{@`esOSC29J!gd0L{X(_}^4u8&$Cm2RwLwsswAAuPsRdJUWh6Cf&d&aEi z;e<7{>iTq(Qz)Ha#Iy7sbeWdCf&tu`Kq*Q1zh~*e;&A32XhILzS0Me#OjU4cH?`NP zc?xQJsJFFOw?L6h3pH(+d!2rPntioUs|xj~otmdIvt|Hl-2z4WWpqT3xf;}@Wj1Q| zlQgrIsWy4-)Z}AM)eJzbTga#1HBIQVY!r=FJ9_MsQib`32v;>IB~|So2BAGgla?^P zzE=3esY-zGPN|_z7A4Cy+^e7P;3((sNpuBD!`Qc!=x9K6qOY2ebs z8`*JI%(4T&q31rIT~IdnQ)uomv^l$=Y;I>Z$6mNIUB3LdsCmuaS6DXtM}?gg`ZiD= z990Q%`}i@Vx=ON}pPA?>8Rx9n4p}`KW;5?N<%Y>BCmZ`?Cg!g(M(_u$Nt1~SLke_w zXJzhK`wGiuFPTQ4X^CW%4NVrGzQPe9({7F^Z9Z05o zWY>Gftmhd@wtJ-N=hJVQW9b=s+od2+ziJJ^r%t1cB>FwGk>@#=g^Vlt$H$IcP&W5H zQxwnbHjRdutBX}mHuh&kV1tDq$RggIJhkF#7QR+%-qNz+S4@(h zCg+>IwIru8Yi-Dffi5DOc+MpAjM>|+792lQi4$}$#w*5H(vu(){q_i)a>AlfD_^ua0B2kE}Qi1Uk`*unW z(t7K#;A=yrW4DU!(VN`hpN2Qo>RY52*1q4^?ZDTIApFeqli#OE;-z7BFd7!5rKiud zYwmQm-L8v+-8Lskzi8LSK%oF|H-_S#yP9m8*zBeEw0&9r^|l~28i4tsgsGO++}@=D zd%h!Bg$W>^mD6`Skn?cPXf7}usbq{#nRxmrTPN8b6g$jhgmQVk$(l$&#WMc*1 zWUd(Q=Cd&H;&wp!GW9zF**fd-BhEs)@B4X z4A$dfjWz|fR$)gzkptA2;+y4B%?-z*TJb~nA_x2BblBCp zwFLjE30_5QlXCt_QuHcJ&Bvftn=;mxn)M0QMo0WObgeeV0y!z;6RM3`T{~(+Umkk3 zVHm+YYTnc4L&J3Tg%4SR2;lXQr7!B%P*TlFIAj^dYWNSm>JWTXoryG<@_dJJQ6i}f zZX`3C22zkjVUvRQ>XTA)D>*foAb^|HxlNG13f#*e|7CKbG+>YvMay_Lv7r=Y8B$L@ z+g(pi&~gog&}kSX#6JC%nxc=AQ)D0p(j3De6OW`ODZODJq(F+A9?j#JNzFkz*F>KI zEnO4k687bdr*jEyXI%4Lo-0qSI|=!2oNnjF_dpJ9>lRp2y}6cbIK$PmQgt##0$fu` zO2O516mXC*aFuHacZ8GTPv;tPi~wH^T_YVtQt;`9E+MRdUZ(y@J#rI5*Qtc~z|~5l zatEXapHOKSM&P`H5BHmrs!clh#?`3O<{V0!!#|msG*S!Uy=0chgbK1ybAXjyA*nRd z%>j_op_Ipwlt=l|xGt4iAUBf<1h9fcMv@$P&!m@y&^yT}kuZS>HN+uVRZ^u&H^e!{ zD)@98p%($9gija&zVeDN@nll=r}K);Y?t&S^TtM}~7nzDu z&%$Zpt1O+k$3v9$6RA%)e2rvg9Q;_i4g{W#j#IXfUUdK6WWIyK34>R~<><3aoYV^; z>Edz*(t1)B<*ne%~~5Td_%)Fe(%gGTG5XPK1OBM5qan zj8~6gfOHd}!U<$3S;&_{A97hpm_USb!Hs9?lG>$oF1UId&$daFjqerOcIbuu>160D3QUq#M!-Cy=35b?}Z`((#aPS!6sOSB?l3)i57* zONu_-vWP(h-YZMg*Rj2HmdHM}XYjqJLwhOtzQBW58vJK#kqarcUzZR(K?J2yF;slx zHmT01i=mni>y|@SIT7+*&R*;-!|?RU;h zs_BZJo?U(33;J}^6~_p?H{jEa`-dJrVFdVUhk3hZ2?H>VYElc7Zim@~3dCGZbw5Pi zM0&Gx{L#J;a?Q*o(22ncGmvqz3Ib4#AVPj&G_akabmXg~wrekeaAyy2l>cVBlPIzax3{HAY4ByqqL z`tBho7a>q^Q+`i$XG0->yYpnLkpW_L%fz_qke2D)_ZKB}10v9%Mro?;IK}pKqtxDi zyO!*_g#z1sK5_0>TupVaLV@h=kJ-NMwe+rS0#4dDCa$NvDWSMomyIImE-R%@;V%cl zczQSCvQa@j*V%#zRDkrIbax*V(C*%&d)eV?s!I+EW%qGp-)gv;>d;S0jMnvqYw8)J zuJK?6vin$Pm@KVKcDX{qOrVv{ZHjl&-J(c{)4ewFzIg{Bt#i^n5NcurEx0zJH+|Bg z?XIf~6QI0mycUpVS=-$*sW%DANXGS)H%yeKcAqltaq-#zXP;6M+qneQB@ zQH1W=s$WwsHQ|Q5GLn|D7drbU5*P6Fope`Nl-72i2i!X=gfrD$m83ZB%PH?Byp*DV zcK1s?w@|L8x_zQxcDJhbb(3q!u9+y1-ABB0ujHn_rjd5ccaNxOWH9Ql(vjP=P!q`B zx+(GwVSHJ=7M8}`cehL&6!4PcOmh`MDQOy`PAK%I_8-PI~V|@wj^=(trkBR+#BTaay~T4l_Xm%uF*lpC7(B zyG90x6_+2v7`23K$EdHTyc?o4x%;}ycNyfm_2O=tIV}NJ&#jLe@)||j;nsZ>BXNP| z-Xu5NdH#yS6?LI3jV1W0Ayt9!OZg=gKxB%_d zRCh>}{p#+G+m}YJr@SnpaCWy{zS|+!)_Er0AWCKjx_i0|6G;80z7mpFOS{`FjSLXK zr!Ie_1>D^VC}4p1opiTRl*V>nnYq_bt|hy6qF{E{SLdF|)l~OO6v*yY%08(_oJ@2Y zU4cx&$pxMuy|zhpV*VxA1eT8cv1p6wXC)-5q4Z5?X_;E>7s+~m}dG|S31N8Dd*;bf^{8!ID_NB+z z-~D8Ii3e`ah=%~b9r8pd-HaQuhq@o!|5m^&p{lfLpU&YU zfNxTv8`R<^%sTNMDTaV-(@$#-oT+k_Wm4UtdWAjy*Vri7q`LXKv84)o^syZ3*+#vW zUOko@dvV5b-Kwy$H8q9>IN-3lQh%^sX5$f+7-s8rc27KMo05dOEA` z+AbUBhQ_WPS=6QWXlzZ%!h{G!sQefs+L>emNlrkWXBAF>ga_bfavaFl;N3T=Q|i=* zT`Y|fg%>N3HMPm2bMcw^%za9t-cL%DffPvkNRiZw!K#}U!*y)Tu=!z6ip3=T*iHkR zV*}VL$?XZPptiJ@7;bi})pEVf$Ktv6^!E0XBx+QN7sy*Xw^>x^PEJXkJgLfev0DRt|N@Zk;^fehuQP?3J8lr(ON4HJk_IVh==VV;u< zr7j^rlu!(iK#20Uh>&8@*L;}9-!dTr5#|Wl^+!dr5uz~y87g1&I^XPOTfQ1hu2FTl zS;IBTKnNsUNwj!UYx6fc%@Cf|()-$LPqa!>Si3ppHZI`n4gEF2a!4Vr+w5po1``vY zy(SkHowZjXt=mXwMk?_D%FEm}O$YJyPO9qq$(Pgk$BKpB@VO50F7v)cj#K!HBKPoL5{MhbE_%VgsM)Hms?;asE}PTk^VhzbzX9o>Ykj^c4QTWVqg zv`mY&zmSf-owZnl0=(A^*B~9*y0gN~=HGxMu;$a>`HjaO`}o0`GC=>$$^bq05eCLC zz=QkWs0z=!WzFFHTOumUZz|+>h6mZ`cD@*M7A;PTCQmyvh|?s+=6~2+ibC8h0&MjK za{3|rNG-Jh@XZhap8cDja6EdaERO7#0(&(#V#-_jzpxn5g63C3d)J}`cKN+z%MrbM*#D*ipqbM`1mBNAp?d;e{Ghece_jj+pXRXlSz61VxVDXq>NYDD`Fb#0ZZFh-vV*9*bUBIfQ9kr3;g9ltzY4iJ{pzg$C2nB!(peq?{R@r)! zKeRIN!2?1li)d0MQa*H@&tJ!TA09w_6{Nz=VfB7rO;7q(K;7}nng#{{1Tfz8@jV69 zwp{h$5s35Y?}7hZ8g7q~7Y^(u&(@=(VsZH3{@1H)yj{{X@joBF#{Ah^#rEjBY^u(} zTWyhn|E^=;wF);2wYXhgkw7*5}72P=ZYDx$$HTr(i3Y6#_Sj7=l zP9A?=NnU|{dnJhBE z=7Hmv=pGDPiI;2kVnIIDVw4ZXxD=-fn$~NwAA(Y4T4a$yeRl#{K0OD_|EgeVCG!`{ z^_(2|7wS1LN||i`fwsC=SQE`gowq?`R;`Wrcf*+TW`WH)!Mtfu{yEq zRgY+mWbZQHE@UmQL@%HPfvYvqr?)xKhq~2TO&b-Op-!ssgeQyTylBj6P}7NX{IM?f zThoqOq#3Ayr|-)%M640ohxclAkf$u3Acp2KYcs%ICVJWGLw6yu=02 z)d|xQ`fgE7s?10`hSzNwMPM(10eGb*o1@)iGV}Xn?NE1BlM)fYy=0dQRv#B?843SHfryN+`J1TbDJKXo5J3S`|$g#eJg z0dt}IKvD48N*G2)KK*0dJ)Hh?;5{^j0S+l)PeCz9@)R4w0J@~rwly7B_(Ekpqu9Dn*4LJ+Z80w>-jWQUYwAOUY~uh9Ufyh%tD)3` z?t17t8zB$@gus_i{|rO~UTla6@RcSR`Z97*wR>L{Gp+oObWGq9TObDn1w<=k->c#< zqJUvdMa#hYH=E-E70rN6uR5MlQMbaH|APFkyrNl+=jW~P=)M6N=g%v9=g%u1{=72Q7;6S>FZ?n4cKP$_ z-ud&Yhd-}=f&4N12L4(D#LtT%!%og^7ejtu(rzkgTkc` z$g}$VpuxK|D-JTcj(beUN_l#p@7HfZRaP`T(2ukS`kHS0tU+0G)S;>)a#G#fa6(8` zRSdVa0uCtGVY46Gz9(>Xe_7$twQs({8_q`gY*#aa+jpql)0^puVW>egpY~6Nd-=7i zat&-M4v(_+cyqKa7Potr$w%pBqOpTya{hbKyOz1>E;@@xB6sPj%;(p&Pd#dSqQ}Yl zcfj5Nsq=|bn1Ea9)s4dj$sE#8lwW(kEb3NgDah$z^l0or)4^)pzh&z|Ivh4q!U*|( z&t|O$N;qtw0i-$@B|oYi;n*1nm*_t)Ii7KW;xkDs=k26 zjx@0$^Qh9Ku>(z$?GfFAJX+5Bo^*Ox6Da6F(OmsZ3+X*fKL_cJoK1nGFMbKkVwft! zZOjtbtXQ!GenYo?w*3;==qPjvY*aCpz!h*L?>_ncFF$rab_pESQ~VM*s(E(_%+=w$ zF%gjwWlLxAkO%i)jR=RRTBai0)Ul8^%2vB*LD>YUKvk#;JYNaPl)ncB2tSLAe+2dc zVh>tn2R7^qoa^x9U`AKO=afP6PC*B5?}YlKfxYS_T#&^MY;|CP2Eh#Td--ry+^*Y2 zY$JV5%8d{k9ZHHs3p6a}`D}P6FAk5k!+Ew{7j^e;S`lO4s0?zhLuqo*192Y_J>e0M zz&^Efg5sWmtqwR;KtH4Oe2WXu3gB@#uml{t?)(rY1|NYhLI;-EFr>?G39| zx~EPFe%dc_*6l2pw#}~YO2orV8zBd|y}nw`?j4uM%A2n7cnPDqvg+8PxBQ^&QNrNv z!}ns`2bEEUdXDfPbT!j~cwajZZ_2FYXWRRcsuN<1dq&+euvG=ahwuWC{Nl6kDAI`t z?giY4pg>S?)2<`IMgK~a==0-ZL^RUyXY(RE^+K1ZA|z~9G{tOel%5rB-=elV$lBVuN``_n z)1HaxLBkkopd%kqBA?2)ggp~wOTqLo@+EShXF6K$XbIPxAt8kcVAt;l+|L@#GM0;K z(3N3yn%aO5l+hii$>h<~IEEVN7>|p?Y(CF=Cgp?lvMGTBHCeu%jCv-e2Rpz}105s! zrC1#IOv(G{g(7eREuT)p!)qVL8vaZU2M<(b zlSk4sW2kL9mce_XQLO9LGn>%r4d^(StZ63fdDsWVE25Y*;IM&`JmB_Qib=l*PevjK zdJc~6t(L(@*P^(mRjdceaM(b}xY+DtaoNL+Ujhee4rb#=a>Q`hKndL?Sob~jd+=Qt zYM^5@+lNEhgYP1611%XD=tt1YXQ+XW5xpEAu^ZFUeDxp`fg5OSN&keoDcTTizwT2&S|Hheq~B#-#c$S`uBFQ^CD zRM|%8`2&T@R94xD2}JU%)%k*;I9$<-!?h_uU<3s8s(rkmRZ>8UEWMiz7zE-{RGUcTVWh}PLZT_6cs7^O zBSVn}Tp=S_pftnF^l&6|K02Luo_=H__vup^!z;*awAK~4u57KfoRngG6NPA8kG6-?y! zW$>vFo(~tjQ_fsT( z+fR|dKkR;r#tHnVdysdByG4%+#h`1QAw$4K3N(BwLY9$NZ3DX0HYn(%SwM>efC^OH zT0itwpCJUy@3UVXa;wiF0_totE11{Vr@{p79EB(hVg)*GZMHqRkjeZ6hEQVW@#G(i z*l<`pS)?l+X0yZmV4Xd<|D%Y&vQ^g%MrJy~e2J%EeNA+5)(8hjMw+oVicN;epZ6~5 zGh>uhup}>etZx<>gGP`c-9h9s=vr}n9~FVjA{$SaRS)C%VkObM)YkozkZ^ko%1RPI zXv>3aJ36AQHatwWNy17@&1>dtIB6AERX*=E1&ZcZMG*x--vi=flnMnB7<%F7iXlzjhpaRI7^} z>T8602?CmDA_3Nrq_q!I6m-lro|6Mj1yDDom153bXxImBefevW2B7S=c%NcVr1iDt zQ$zr5EAg|WdmpmPdorO&2~xSr)@-iW<3!OHl}HItIc4T_GAs6CUHTe)$y4j<;Dt+4m5YGEo{(Z8?1Lq zE@NyS@E=U+4}6GGBuBdgS`qg~N!WgU2qg+9;Q!$EY)HmBcur{UNlW2M&^*`N;y_>o z+#k+f?vLp~$Mr+hrvwSe>C!$s$X#qUv^MQcZ-Vad29aQ)MOq{si`ncEpv6WDv}Bw4 za=ASk_NiE5yNCfJ0%LM7BRU4u{b(iR@of7qn7~ zY@Mh>Du70!ZkA`8?J)d^V`TrDx_)G*@cZcsKl=D^(q$cqRPqWx68Uh_WnJmGJzCCo z^99)vdfFq@0d7rMP~?Zh76XiZkoPFrN_lorz<0jQg>Q&AL2?%f~;?FL8FCBOqkIoq|E1?T;V?6PP5 z6WCpPcK!Rkz1Rmv&koPxjV2KfA-0xIP(UQI^#MZ;vN<}+v*Thz>yqBbPcN%21s|x& zj~?L}R$#a3d30ykBkr#PJz4Rc-qkHAbQL>(ithj&NBs21hz?!#PEIeQN5KcG=ymbq zJiA*2Z*@d+QO`g@+a8gv40p)hKLG_LM2aPcfCDAB<(Y@Q%tF1a0!<2lwypdk zPX;W9$9Zs0$4JgQcu4_j=d#Fdu@_key+PcTOhE(Cr=&?Tj6dTL31m;w z1X6(7`D(YNn^a4>*0&ei*^e}V2B2@eUT%NX|Fj*HEH+X%1{^w2v*O!0>Iv9B5gvU-mh`f=<1~%F7}GC>(E>t6~3v-Cjl* zhYr*fwA(cw(pz84{{6^ac1<*XpzDZcx;;gldhz)ce4r}dlMm8MjK<@8e70K@w23gJ zVEiT@?P9J|L=I_f;3s{!kuDu5x8p}R(jl)#HX)aEZ1{79vYLrR#Y*M zfEej(udwzyoc-X9)1i-`^tHUOaoWS_9ON9EzP7P-IM@+%9^zGwT5+Q1CGw)noPf zHO)}Bys<;AJ3(h}8`~S0C@uW2JQDZ~loo!W`VTw*4U`gp{AGhRZDB9xahDCsI_7j@ zTsC-@x7cAm5zU8QHV~za8O7~ia;Md0gMjv7QVF_j5YTAFwDJ)h%U>*avsn>p83Ov! zwjmjM1rwNm>mcGWlqldqsh|Q{9594{`J-{ME=EVQJou7sKsP;bT)_nN??=6M7KJ=0 z;blOJ0}c^Te^?%A??uOh+`bUpB}j>!8{hB69PQrZ*?Pq8;>5i{qN|xE*m#5Fx@@)Ar6wXs$ke+FA&KuZjMKh2f2fL0iztW^@L51DUmMeTM5_mZ70>;lG45w5@#U{ zpsvuZ$+&Oizr14 zB+j5GyGlH!NL>gZ*4QVzf_eb)2CWx^nsvp@HS?ocewWn`wm5<%^-R*%CdefW!(RfG z0^mwoUT6xt3q>pYZL!%FBlfo3_hW30QPEV^j|`imi*!*~-3lpf81HlyQzrUX6OQB^ zmpttuAB={@d^J0LCdk_9Hk*3_B@UZ%Vw$f|=KO#jx?JwU({LFo5kQlAi7se|A*$_x zL=Ga#N6Ynkw9JE_>5b}BkJ29Kk;s9bPe;q(Th%Q|2})ue)izzWI0h<4qureHbO&3^ z7{%5y3EJ_FB!uI3X$jBp64hVtv=o@(Y;r`_eMyf22FJ`>lGB4dQ_xX5MbrYkB{@B4 zn!t^;%yYUP5`2Z?;h{y~23p4SboV^(otU6g6j6*Cl)!KK7-@*x&sgTpLM( zBrJZpOlL*ta^}6b7p`R`a|L27m){d@n(lsN8iuli(B*Pj-0+({5G0TIiX(Qp9Ml7> zG=i4PLCsdIFp4F;~-4ev`0$%Lub+I zlp1(D0-d~4w+aqy5LEE>wy-KR?jv>=pMn;2EOjYD#&K=-lbu>LV_J2pn46fK^~iiWVDQ4H0xpVoM21*-?|E10oR-20T9z zd9hfoHp4aTw$XOsq2D12T+G0u%sNPJ{S1tjIJH$RbC(yE_dE7r-7$MPbhMVmGIRBJ;HR z?H)!5a3r38OOdCX|ho));fgBc54!UE8g{91UIrEfDF=c9FA`I1RspN_(~ zr$z%?Qfznd)ssQ{Ko2z;3LlW645g%Yw;ETy+8f9~M-<%+C4vJ2)EFo>L;mVbQd8M| z3`kf2T3H?XN~@tBfOoe#CNuzlpaw8AI_wTo5BS{+1A*G7hcBW75)}U_wU$3Wr@U7t$V&Fmh~DK0KcVxSEUvS?8vb&?p2<^mXx+^2oiu*3l5sC z4rcV|O>tb6PAIT12X%Lk9k2m>tt0~eYI!HAVN9ST3K#&tt(3%yfegjWl-9>__aFj= zsTHRJCJ^BO?`;PkBIX0`HzSVlH0hkJ$orAC`aXL}gi+T5Gs{;7*_KbAHtM6juGR+ujAC^Qk zAnS_>;-?9C=n0r!RsqR0>}x-7Dj>kQYi8In4aD}#G!qM;yd-0cX%M=Xa6;Du5(l7r zPX?~i#5k2Aws%AwKz_U`SeS;b-SH|wfcITVPJ*bVVs3joglGWiB^d`y!_fA6Dsce1 zYi6)74Z`+g-NXVYuhW-g0Y@e7_RD7r4q!b`*{8cL;S|8%Zas4|41nrVvCZc!)RjiY z9kj5-0qCyDxMAmLtm0jJEi|zJ$}93q$FQry_(p5_Y9xU0d^!oY*F7ho`VIsu(PdXo^c<9VG;jA%!n%xfRmFc1MVKa?L**c}^gd&_O10>~ef zAH}<7X~WI!T?+&SfZtAmRB7uk+FK+35Znf^ePo|xOcKRcVB4RZtHK57-==VF=Wx9O z+n%!}48V4Ye(WBXSK!)D?ui&*`+$tb|@0uCTPBRy^cQs5b0%bn^ z>t8mH$iEzLL>^!MuF1EkSF~0Y^T7NyJjZ^CPT^G?VaVPWeK zJ#-FYtj)JrMQ2^>aIU`Y+)6m$ibM8Ca!YV@w4CLe+fDmx;T<~r%o(nJVQ7I6b#8rJkwB|We~w7%Ca!SqD3K6WAVQt7W6z^Cn78om z94hM0*o8N%sUWaGh8iQaue>D@Na8Uf0RuToDtU2u^vFnsfdw*@ROky$U7H?BNh}o! z7|2nUt60!Yv;M@A*m7~SK!~zj#loNRBFR8WY`F+45HXSS2;CT(@0u>2g&P^icHO91 z=Y%(_Y?puwq^Ofj;g_GnJ9g-)JINH@tVxf&umwcT4EeAE6ea0%(71Q0+bFS36$cGu z*|MVhQT`_@+H}7sSuxB&)XI|8mP%|^%S}`CH(XsD%G?XYZ5U?DO92P+l;K|P=m_s4 zW4Jk5AVm2Et6nX4VsDLs1v1pR@XvY_M%`JaaJ^Lu_SqUpIFuu1Gg}_^x&UyKMs*q} zC0-y#jgQT8cHHBbPwd!mv_Ob*Y&OUKoFr{n=a{afv7(%En8WD zZ6Dmu?+iEh=Cm0>iS^4=7X1-APrEQ}paY2iK!$eHQKxor>MlEl+n#|$2)J*K(gvLs z=(<}@F`%6&^Npm=rNUcxXg&h39Zr5PZ5Ua>tvePN1J{lle;~uJ53e3egrLXor406IwtJ7g&XccX+ZtYW;IezKMC>V*pw-Ao+3Rum+% zfNr$hr^3Hm!yR76IVjVZARW&v> zpzHECR8}8o1X4eK>+du5<7<`r!Bf@fy!$U!X$O`wb>k=ct-64G`_K;Q#djP*Knddw zh_Z3eiMQ%>qM;$shabnnsL+M8Dmjr?6`CL^HHgQfItB)v<2}}7MG8jr(`XJET?3}; z73qe$am-yxHjp-`fB{%9*;$6Vfpo85HG#DI_n6n&YM|=xn%QDAJeMX}O zYPBM{7keA34jce}d@5m3H@3CMrvL!HixPfK#-aueXy(P+1?(M=y-De8c+cG!7O!Wr zUqD0obB3g`DGs@*ka-8FMN#3kcOn^ z!Jy*(JLnv6y;Xjy%FPoDss*R~xp;0=B@*do8QeXf2GRyqIDmg|&~esD{Zpvro}C+C z(E~Al>G0zV32lrp7k7tTfW;F8$I+}Tb zHBlGk782rZP$cu)6;_#lH^v!n78w6}a}?9t2t+WyAJe@Zz09Y-4f_dA@#6Ar*a!C; z;>EI@$zda2{GNDOxS7XgJ2mm*vV_6svT@*aK)krJA>ek^n5(R9bNtMdKV1BC3ftBU zwaVtSWpp=Igj!Zs9Z;9Rl%Hn{e^#1?hB{$b+>@jHPs2_{^((;wP5ChLonk|yyYiJ_ zx2&mwZ|E_8cE+D1W6d>dq0u*KV%79$lrpr@=m?m9rFrZ(HVB$owUTXYr9wl`We5IC zj1G_e)M_oM+CgYWMi78$=d;l=5vZz}DgYE=08|$kDu0%gXkJx$(_yeMk;}Pk?7vSN zjjDqL$9PTl0>$8G{>#eIs5D-!Y2pU@+)8$D>; zOxJ-;DDf{bU&k$pa7{_dk}}mj^A`)%fCOAsqv~!dwss#?1O+gjALT{e@*~1fwx8`7 z20(Q#nRD0PU$K3=^XXi>4xA$Q5;*ntI6r)4oh7o`RXYKVT0kc*I1Ipcaa{e9X5bjp z7Nu$jEC3ou0mv@opY5_lYTw>J;2;3kxqLlIGqJVTdxBtLy1V+qG2LAOrt|sTRU-GU z{a9oe0M!NhW&Uy+UUkqa1_E(SX3JDFPHf2w5tbiY8DUj9xRRP9G32LZg|xDxrZ-EdhREkXUlJz9nVxOJI+ zp{)b*Ytu-w{mzsE0{E_|pA+$}!`PIZLJnRfgaw`Oco-t91{C0;!nml&?ioENw2xCs zj06QRGD&kjrdr5!l5~j#5GpP{1kpapEIZow_B^{=%y)@q{`MYv2?O}|HZ5@;3Ty%f zV7o*Q6l{yttnQFRqf4z_%=TWn!~y88klQ&F=gZQV>GoqoBLRe$7CBwSC@OMON1K=S z{F68U-DNU1DIL7_vz!6~_%2Z<|Kefbp2Pv@&eb2$jTjc~y-$JwnBJy{_$w5WPBR?Z z+qn`3U^|~~Mc6)`#4rG=E9-nzPUYL_q_eef`b5D^hWTZ|9$FcmbKS6h5=BWqd-y`MQd+02m)XtPNh0x(}hzD+~GUF z`7G6GhYqL+1MuqNhIY`_iK3M4BU=ImAiK2L9k851iOyWK_cbIAKzEML-h9z|PY?jp zd3GKs4XE}S=A22oKtf!7o(5KXd&)row+Pp6G5X?h5eUF_jpKSqcGFBO0%bn^O>v3i zUxmZo{Ud$E`%T_R^XYEU86E5%)OKT>auzLv z9Nug`&Mo?Jnt?;yRcFg9>Q)@x{%tB=qpB5+>6Pj$ag3m2Aox-gyM`t@>4GAb7phaK zdap-aZP_f>+hTFpc(p~AGqujR+Hzeq)2w!7J2h8Z$`Xdgl#PSt1zc^ZYzTC(>S{}6 z?F#LCBU>M`IyJJdY*OoBmGmpC4$5wUIj_yTBdNMzRgHvq3OLSh=y~nY5v!8d?ci6o zsTor>*;ZB^n0*7PU$8pe#8h=@y9N#QDNy9oXJA(NcIDMRbsxW^g^$y3RbBD(l{QD~ zIZSGIor{K=tQ)hQHfiL#s}N5)E5V)W4n*;8-TV>JD2!J=~n4mb?JE0&=VUG)guTA&UMj^8=TE0$kfpx5R16~==`N0l0z zJm>I$>z_#Qi{;|;e7#JrFYZC^2u>*MB|3oqk%Zn4)9Vtphcn&f_?1KhQ>7$yV|pDt=S?u9#y`& zS$WR%5G*ItDZ{5J&*syYw3+)LCqYtJ85nQ?=f%lGqKOO#AbWR}ujlkmdQuj4k+q2jkX~Bn4M|0##N1`f z2qb`x_8T`x*{W`fBMP27UxjO72?g+7TrX=AheUzvVhb4#K=$@#H7k;t!m8c(0Qv?T z2w=NRJ4Si_`9mSq5(?mZo6O?qcB(0^6Ym%hz;_OfVdP?DCFHc$9(Oud2s)w=D?*{-dsPtjiJlebhC9!2=cqObciNj4~%wc72z5RZ%Hfi zV{{54yIHrEh-?^E6m^jjgP>}d73&HWSUb#TJMSonMNNZ!Ta2_1S{GOgL@t^fGKj$K zv5Za~W$W>V(s=my^1D({_l#y71qvsSkxMdWd3O8WaNU^uQfVz)vMViBbZ|=CB(r-$M)iX)lkXARX z9dHxFM>7^?gM9iDY;!f8yreg>#>;u*$;+~sximFSUcSp4sauhXh>vK67NS)rFGT@k z*GaSt#vqT;~l7MSxIt57WJ z!m<@jYAjXf-zq8&$}R!NIZ>FumD!Cm?vX1~mmF2$XqNM`W59I2#I#!!ld2~?YunZ= zsydTb$07n%_6(?A+Z^pCliGM@MXMT4ti;ML1&)0BPr|9ZCW|p!ZZgT~AmXW_3}HwFwf2(12DU0AoG z0T?G$w+RRoc3Uw*enw`Jw(o}ZFD5vxY1zISO7}qb1T1*1{Cz}sJ-7a7KoujD7g}YL z9o!Ox=nQbYUgF@{hc|UwUQVl;8&yv`I#nc)vNu2?Il^CW*%wDdX97n){U2eJRUhBd z{_}_>s;fV~<>lcWyCjJ45ybVyHd772G6@R`>W;a61*_ z_m?u9mXYIf=-1ldKAdP~-GWI9yn>Y~fF^(eXVu}~Y{Q4PcW!Bqx-LEyj9MTA*eY~C zA}^xmamDt?>!RPG$Tc_s|DjZre7@THeW3QZ>mnARxH&F>toY484QIve)cT!*-x?f% ze_!$YUTW0t;k#hTsZp8V!^0GxO1P6Xt)0fRRn@_Y;I15Fa>el!g4uguM0?CB%prpXfR#C9UmjL-sIUQa#p~_5;@OWcme&kc zCE%u$S+SNRg>n#JJh-7;S9Vk|wK}J8T{$k`v2tDcr#=)qh3l%p0r<;lmSrkB;~uOH z9ub2Q3gEk@mpC0)jtXMk4tB#Bpo=$hHHawn!r);*snGz+cMOj@70fQ{69W$5yv9Bp z(B@6WTL{4#rDJtnWUkQw%B#v_PQ}YE5hDc#FkX?qaVm)Jo=C7T1`>;fFpYn%Mt3KK zK8O5@^mZQx9!f00!*@-WHWkV)v%850kX|OYDuHXQgxzJfDWL$qtIF+5#l|jUT7dzK zpOgpLwOQ(j)jn(AC7R%11L&WYpPAP;q+Fzwnk==8*Cp`eK?m?JCh+=|>bjSF!Y!%e z<}+kn-TPF?(4T)dp{y0cF1E?U1Jb>wJ>-r9O5yC{b!apKWj_5axGYt^-0n%Up!H~$ z-OJZ>qU21~rnpno+@pI9_vkM1#=>^!M8~v0=Wf>8U0Pd8q8AX%rMi9dpyps-uI{du z!0m-pu_t#+M!g8g@ykv33~JhUVqJC0Q`3$LLkmE_Nfn|K--eW(lcKuIiVg5E*4nd2 zU5G9mwuS}-0JmRx*tq=)zUKzqer2plYA`P~Tym5o1-DIT)!csdVdM6zHQavn;pMgo z4Y;k;Wt^|JNBlW)HcXRhc~^C@p#cGE7j#S~@0L6NQQ1~TuL{qQKy#=~s8rQ^GFzAPdBx@*fJ z_4ok-uM)NU+D4eE@%grIr|@YNvbLcU1p;^`v86FE9kE$9Mq*1dcspXV#_##g z?x+%ITdU&nKQ9{|UW#E_x3yC@p&2kh+ivv*kSa1I)ZEUWlA@X6vV|aVR`5Z+hKmN z&K}$^pSpO-VU4%ADUb8|>fa^4zJE=$Stk=;qa+yDjQR>1cl4k`kkIuy3B|MuqH?|4 zn5Jx*otb{}`(J+S{yU?i;apQY2?F=L$VCfZpx7BNmVj9;V-6JM3 z?F={^KzM1K`=g~X?P`2gnS62VRH-99LWTEMFOQ3??kU)?W;Hx_W{)9rz|a8q-eJEi z7q!_CVlj5qLx~7*UdoG`>{bhXe-DU7crJa*Y!*(Diy_v}GXh0LB~i+q$^R zbD<;z>fXSO1u8)S+V@Jd^vZWq#dNm>+Q8+g0I%dO9Zsmrs1OzCrY?iZQ|1M=r+j_us)Ikmh5MJ6G`_H|!!`E@HBrt&P z8vVe0qJ(o$S1AiXfbw11&81f?X;(2J&W<_H4`94;oR7B4^+V=w8lV8}QTc(Mk>1?S z?+iEh=Ct9kE=EJ)kR-GM9|wi~DkB{YKm}F#^zTA~r1HhO$_OPt5WAt*3$odR`{gO^ zs_>*)){ITQp<|QR*-Hqbx#q~E(H?~*t1@vKr3}^>9f3HnG)E*G8-!qFl^@pFN<|#< z?a^+|j;qw@Rb$iIg{bnw8k-oDFo1a%>Br4(o(7tGWklHdAZUaFk>!-p30R+# zImkA&Py4mzeOg}7oO*xwhJ54cb!ww-%EjJjzIA7LEHZ$mK^NW}(!)gCVw=y0L+@l! z*OE4PKXUw`x_SenQ$X|DkZxxd+fGpGZhkSQBQpq!=n-%bS16h0{<)$$1vGEeIYM=O z2Jgqs8d_Ji!sYpJ$STp{+~Mt#h&|;g~uo zn)e?>4q(pvAW%TfyCpUJ(Pf@J-M@)n3z|DD#v5&}=Ui94WIq+5cb^3WfcTbxNLFz; z&i(sUb~e*Ud79{VVGRcrmkMeDvpVDT!pIoz1_OjHK$sm;vEC3 z3z}E_W0x^ech0EN9x-N#o&neE0vD;o=`&G!ahhC8dWm^^kLLMU6VA9lq}~9@HGzb! zD^d->R*cdB0N%#}-fF$0j2%5pGIh@(RtmKq4dDN%34gb#rtZzL7VrrSpf88dW=0t@ z829%+e00x%>#E=?#SK#FY%80i`Ui05nF~Fn1oxEUp81R&Jc(FT*fF3w$45VN8z!_< z=!UyQs4B*?!YZ~S1Syd?i|p)rO<8HyDkiiocW)Tk6J zXBg)B6|>BUQaRG``gj4_`ql#MZ9TCDd&R7dX6WR{OPg#@BXcY)R`+CXSiWkf3 zIHJ9a$aSge5|CUGKeGpU$c>&*%yUDtT>R)z9BVVR@ie?f_ki%SK)Bm3Cj^g$hbUi8 z2Y~K=bRE0J+&jYF0bj{MRpN-9W#2mot?mJ#Sd)zNd_`_TCzWfnCQys@g#-9U8O>>7KB4q5$)-^E z&}K6;T>y0`)vVQlrJYbJ0Dw~Xa+4X)7^I!Kc#!r;Y2(W|FaT;Pb{lFJN4*t89RPsx zs!&dP#TWJ#;~A<3QY%i{{R75Q==|-fVso4Acpi->-;2kXMCdk*CaBX*V_qxQzBqXw zTXEHd%3uK04}|2+GOJ>AoAN<*XRLczJHS49kN{w@yyR~Pu#rdaZfv?ZS#5%t*g2rP z&e?fH=bvd)n0Dr8RY$e!IN^xB4M@ZQAce1UL<5MX%y==YG2X`4DSHJxBDzw35yu)j zplTCcfxZEo@ak3MDjt_@ZQ8ibs(XMYg2C!r=>@gjceQc0S@HU@0BB*wbwL^j6y<0! z9ol%?m_`Q%Kz*N&WnD)3BHfk1y@6b355(Hj0|elT)g3L}=}5|^;+5sPUUWdAm5R!K z0h2J+r5y~*PU)EimBDFa2eETNC)S?b4h6JXd)j9L#H69O#pGsAvG6Aj2$N!6a#WYe zLdU!qfM>!UvPpM1T~-`JuEl4M+cwIkx(8^&iRIs@lac=taTK=5{b1HM_ea=Ku@T-E z7VG)hGE3lBwOP-zo`G9J`RCax-kPcL*hcxON5CN_fBID|i(5aIRvE{Nn&ewO=bfg6i{B{_wZCpA(2tX?~$NdGnFw{*n zQD?lx1Xh6p@Cs8b4wdmI^E$9J^6VYgHlt_2B{n#$!)_h0wb|gXdIx;M@>nIh2)NA_ zk=;EY6mel)gfG;!Pt$>yZQ{a}H~_P-K&osPezvhdx??~k);{{AEj zRd1YhF*%|$RGTmm^bOcb+qI-K_XqbnB5P&4bkBfG z%;?h3$Yyi{IK^?HHtR+U1i%#Ajg%Is;|1k5+l^(ffJdye`Ij!o2$U^p!!N7%dVKB9 z4y3~892pSi*r1^GfdK`vjX8D!02jpqfeNKKCD3MpV0I12ggK$l6xv&7l;Ep_1#V+b zjGh6PaCD8Y%+z)9)7m(?cK3i#X`bZVkkTOT8Xps{b5L4po&^9%aB8qnnkc1<-TTttx+k7XziwSGv zNJ8H}Z2XZ<28~X>bdX^yY-ZnpO*oT0tI0T@WV=~;7j8N0G(oiq5BWg=T5)887o=+{ z>muK<^PtS4b&+z^F@ne0LoixGq2j+144tFY_}v)fVwp| zZ47`_1iLsnA~;Pa>bu=kY7^{o`Ui}L#M1=OTT9&N9uSI634;ojR)4rzWutC~j@oQW zRG+f{3KI3XC$$>u zS7hrun{9Yi@9=AERPSQBW}&h2pzIo%#4de`m~>Z2u03dmqD~d=1%BRPJfjKGe~vT)mK&pKtUNHf2VCbSJ4)>{D{lLzo5qGUv)bsn>Krh=MZN>` z96CdC7s-wE3}oLHqUGTihp6lu5zXnO!r{8`yZw!1YO%H9k?b1~U0jfvrV}Z=@2>X1 zjgK~xG%))IWM`M;iXPQI8zN^b&%B^n)y8g?T?3wT^dnnaelcTCbq<(br!}uX|4<|2 zHG|yE*~ZEP)~|zP*HwR7BH00w^PlJIWg0=XnMri-0#!c!OW=W3KQt`3&V5aO)xG+m zVY{U1gZ*6lU~iJ!dV??f5vcAU4RH`9~us53_P)_c~e35!Kv`Y z-pV$NwKaNL+o~QjRra^GI=N#`4ufk4Yr2v#qAzvF1VVVG;zI6TMnLs}jRORFNq^lg zyK~RIz!isZy99LSN0ddCv9LR`su5o=SJ^+HI?EGQbca+mf7L^Bvt^v6oDY)(!fS_z zcaHoizDPX0bHH<%LI5no<1mrj-17h-N)8|Z-xc~aq5E5u@+gfBbEAoY01Xs?@Dd?p z=Y$jCYiA`)41kWwcb5=eYx!yrfbVTO4$HP%(g@ex6$%lq0YPBPr!W1X#~%Cm!I?AD z5812l-xg7^+SfM@*V(wBSp4R}{cklt!J$i=Ud*}S8!{o#Ey}QePBvNR$>_kGYLmPf zcY*6EH>l_i1oUoQbSa`y@NVjk_9-%|;8l1zlv;>A8#bcigzZ8fo;dB>ymiO zPB+!ieHek??_}d_PBi3AcT*cX(|%hwb}K-D^E&@|$G22FGg*0Yb=zi*1P=^IfK_P& zU1i;jXpn~8#&7IUbNGf6!;R3ff$YeF2Q*xtW%GmNxV!P&fMjD`)3ozY>BcNmkO1rZ z%hi@HBhdmjIpDg>UQ*=MrozSrsNYL#k1F< zzt}v9vU2A1`4gPauIJmZiIdu)Df2ruLzqffCY>6GzTXO)CcO>8)aWiWv?cM@u9yzr zlhYxc5~BA3SXTT7Gwp5Nxr*-k&yD!XIZp!t&b@B|9W8g{MJ2&nH}83=9eA+-+z+fG z^g?>RZhYgw+ndANx}0I&7HqsF7yxYZH|W%;w>JlGXZ{K-0QW7eCarWpnKCz6)ugDp zXFznJ{Jn!>Do}1%FA$XI9B^GMadpu^1;r_ zCju69`CWSZsF;(t$R0HwG*3rRp`4fa^6@8;y$v!-8*f@|IXxM~lQfl@`v*`OZvuIT{Yiji)1Jz%I&99NpI+tAi8O@ce-c23)`R!NLN;S zvu_3O-)b|GfLLY9Hp|KO*V2?}!u*6Y&Hl9{ToVR_|4BKrw@0*Pa1yxOf7ak?u|r715kC?x3i^)`lvUeY?>C@`Dln8bem}vX`|jq)0BYJX8iZQ zXBS0Z)-Qebl)|a&-Cx)fb&L*>T`^l8HYPnwq?n)dCOA$6(6ykSHpSt5S#iKO)qJ4j z*59bplmLarYP~mW*`MS%5l9y!>-+mLmHpAhi2%BmhJ(Hz>iUZ$7^DD=N1MH=WPe@> zqrswTZ*yCZRN3>|La!wDqmKPqNKFaI?M@lN>wk*dU%b*J35flZ`pZ7%J)7eG)@||C6CjaevW`l45sil*INwL++hecfLF>+0grxV$<5=v{{}7v?rK+JnEYDFF)SO1iy@RT0?V?w}$B=-aBF_o2Ot%>FhM zYaDF#>@;{T{sBjA(se5dqqHnBNO}_nVWRy_@;U?*)MyPy~}}O5ypVcZoV%S*ee5wE?|J1%8r-o14>Zy>ob)B zK|u0t(<1aGWVKcEX&>rsQUJ7#*_Ym;sfwr%`XUO$r(1XY_Gp?Fb-k=Ayrh8aHg1vr ztgs@s7kAP}Ndv7t8r(h8YMa;@n4;bdPA`EuAVEr!Z}9ync7spl4SaCF+#Gx<)SBq3 z<`&G#Xezc0@$F%x*aQ}OeJHTU6&s2^NE#=@Px@rb*gw*0{uv+jMwv-$!pb(TO=3q1| z=BrulDZ7Ah z7#)&g1oPCWW=X9A8mP#!g^EP?2+9&1Uykm^RU2*==aemJG+Q>N^?_j!-MNmh21i|@ z`xr<{K!im$&!V=nqWjgf1z-G#?qk5Hu<43(UZeZm6J1uoU~y0^vNcOm7vsovAg;#| zr$|A`(aEpro`~yFBN-Jy*POllLbn8>LVFzq*P|tolmLBeo|tO5ST5KT0DBT(aNstY zk@U_LWuKGe0HsC11LLXYgB~@MQ2}(##>F9>Jj(VYyWoXlyzELsfVv`IPnzC}eFUV& zr~tZd(=U{IZBIfA4kyM7P0#_f9ZllS*+h4$C-LB;r_p^3hzOu+B@)Q5mUs3xiwB=2 zYC#>($Wp|A}TEy%|Sj z0A+KTuXsQH6uJghCy}*Q1pz2?6SgO|kejShq1MfUYe)%}Q5O zC-;WioSgvMlUWHqToA1x1B)P_R-V(ALFj&|wa@qUNwi2WAn5|4W$K9jW9&A;J+Al4 zBYRH7T@%}P;Qfmr)(XR`YbE=M#@iGJUn^-bh=o4;WAjqR{fFpniu+e+Ctxp4mW+1) zx|u9V*Mnc3d+bY(u|IRC`X4FBIfTLY%YsGd@rKq~4#as)cmJXO{cE}t_?L%p_Y(iN z=?y*r*jmcI-2iFH`rj0=>FwW=Ia>tsYQ;Ww3T$$F+@TX)4L$n?GL2R5+Xpta!D*~o zE3>_sATLJkZBM}_Irw5!dy*@57~~l4f1|;sx&JZjY&&RT``&%{B8av2BIE_vJ#0zX z)COO0ZLiMG28HxAWpsbPZdU(`V@VfySW?D&*u2=kjNPpa>0|9>N5dw#e;>=Yzab^O zhiwj<;QmLkyXhe!C)c^|tZHo5)#&z?OK8QxO+ z4f~yu`VVg@!eC00HhM4nDYl^dx6!`c6*-Rk-(<1r?cZoQTQ2g(y|q!XU*!(Iao^g( zw8#S$mvi!6%Fljpzl8TcCv&2JT&dol=i8o-weDZN8BIX!bPqyRcUgNp2jq&8?mP4? zKSfxN=Ppc%@tcWdirJr>4vlml=5&^ey+T~xX$-!)Dl3{H{*Ul7+Bwno*>2ZX%Z}(0 z+B=a%Sr^bea6sD+TU_xYtY>+4>s?j znyDJ^qjA5$+BGH6;(d4C38}>8P{YnESnA*a0aX~aFzP|QfC}77N(H0Sbho&qxO!A`WbM;31%a!dD)33SYqsPFjX^rHjk(k)==*P$5HE z;MGS}hMEANFyGVg`!Li)2p)dQZ20NvSrvPu#~NcwK0Pa5Z}hy1Hsh1=sF!(LtyF`b z?+H~j0t_1V$+#cSqeluXS7V&d5Arc{GWzhK6dlPuLIoS;(UT{r=t!slv$a$GCrCWLq}hk+!s@zb0gBa_Xfm%k?w$?OocM93Xomfb<-zwW$rx zix4}c{h=e9$o*(?-$YvD)+Ta4dfPXVR*-2{s%uZnYFkf}uNyRc7=?}#geRMZmrX!|UZ$O@lDetxul z7EJ|6Qa&)uKKB`WvK2P@xroy4m~;T4axUyEAY~KS*Iej?r{t8;Ta?PCtgk7YK+u3q1RKiTCuH=&0){P(V$mLBnIVP}4pYS_KjGWZU9& zFtRDMTR1Bkd^59MUlm73Kg-6`C3%Zc&TcCn>pjx&qm`{XqC<$BBoOMIgKRrGqUVp7 zyT}}^?bxlU4bEKCuA>1E1~e}y*<9SoyjJ|yq=vgqtvaH|QWkh{YCSHp!wGHb?^At) z@5;9nsH6#GIUmR6UT@d87G?Otw4Er49HcKV;tpQ5>UMwh5jjBL=k&wTklrn3(p@gH z**-Nk`0ed>S~IX|1Ij<6ugBSJvrmHio?%LofX?4NA_?c~;c`8uf9Ff~tm8guUI!m% zYc+HR9`bNX8WuFqJ{_YLnsZAW^m zn=GE?)*ymsGox-~CKY~l9x5p*SRKp=&i=a(|7Iyww@{;cO{t?nat0%SuD-AbzBT2PNy_lx+13J|- z$dBNMHjN}1W*Uz0dKa}?(rqf#N=;lVJ4897O}z`jSi>pa%~)-l@^q4GFg?`j^+jIx zz?80Gdc`X>+K?IiHI}WOA@Xc8EbVP`5$IbxwZ(k|-7dr8=|(Zo&IoRGdNvF*Y(7lL z>+Q6>)fJs!o?(BvZDp9BzGGj{(OjjGa4hny#1iVpPs}Z;)do$RnCsy5CDZnaxd<`X zwbBsM(22P~*o%}I7td=rVz#LhbK~hTRzb%PG`%SiuF-#5)_%4)6wVq@fQ*-<^!VSi8)iA{{*H6^dQkUvP zSGu$R1Bu!;#xS`gRY*`ED zmiCO@vyEwsP)T;QusHDziG9sS+~g+JhEwSxy_VO4zDe=Vfr%M6HhUwrO|@%?mgb=$ zx6Nj6*p@XbgO*x0o}`*AI8q}ECvy#HLp7uZrw#S_ z5?$Vt>dQ7XwlWl6h&`s-gfia?riq3d{1$(W_D?lZNH)QTC4t!8*d~tlvk_TrhrMAa<>{;_c8Sa~Bn16(4e!Zx6rqc{dyQ4k!0@T4+?^|aW-yayComS5z zX<2?XlddB{gZ_ZlND#PY!saighs@9T?ouStRk9NhaZ;xze zW5?+I|F_dRP|uIg#!k}v|8J*t4)FAjN-5QuRw=jIlPYIgUOBfXui91_X}Fp$P^-f84IOmTgz7e>SH~7^U%h>O zmzI_{%D%dJe%#cqQoeoG#U93PB8?=JB}Uwpd+3_fY?b<+Z7XM5I@ao&V^~?}`5&tB z9b0Vs{&#Bp9<;v=`?A@M+m<|IPmnc}|FRn!c9pS1B29;(wavVi=04vX!^%>j)SGF? zu)bf#$6nmgOdNXF7&hk0srFS7v6t92V;&h|SXTA6zO}U$Y-z7px5%*dQ12IS$3rRE zn@P7VZ?<$YPBhK1zU~E~QTukbcw%q$Z!S4IXL>m{8TR_IO>vxTYLi+Mgo0*zTVmTV z&9J_1&PTQ_k+(LsjcH`V-h8E0+p2xdh}gH;G?9i9FvYO04~tc5J(Wzghw^TN7t}Yw zAxOt9ok(P68CDO-n~cFpB|Kr_h)4OCyn>5i!{FV(@sB1%)7>0 zlTd!LcYkjET-1+gyfriBZM3(ia@w8vV{f!?qHy)jE3|DivVeCSi$2HGZYRV(j%5%| z(CsrE;2qf|P589i5wVZ#8k8djnAq}8Hf+!QmR%;abpF6mmK0{Y0;Ah81oqYG;b4 z-I3iMqgh=&-AxCrpTn|axutVGzEwuD_Hwj86V&cVZby#xjWbL?%=L&jKh$o^W1j*w zh!Whh%`m*rHM|W|V0H>`=`!}fEW=!{-|fwov}3Nsw!0nuZrwh^0Vn#7aj#3s6sx6* znn7v9WSQ-WzE*Bvi!#)3$uU;Q_ROH!zG&%;l4zmf1Up?Ab5HFq4cnP63_}f<9PE0n zEptzHa%kxsx^9?ZvUf-_o4ILs3W$A3@*wI%W~AW?|7cuwE8hR;?p8M)sQsOqiG~}z zOi(M8lP%v@@nd8H7-pF4b##85dY~O09br9%XLN5{7F*g8-43H2%fy)OB|fd+HT2^c z&APNx+p$mGU(MIj713;CdaqTKwYu8!&1`A^%`(bJ!uhro%)Xs1T^YlR;%V(WV8A!A zrQOoN9wQdZR3f+MBmv*dmX0s^<``BM+Eb(YCbo31iBN~m;AaK2tpIB2c^KR-GhW-% zXlPHo3eAKvX8Y0_6l8uQC!tI>T15iv4ox`|V{ zVrenX;fj4sVl2@iCvT;3+b>;FUnw+Fw#HH!tPI_INaG?Aa5kf*yHcu`|I2I%I2*Qf zWsB6mp>qgYZBFc?>|#ZE!k}$fl%Z2Pm5fxr!7W~~6bET7_K~l#EA7!( zTlP3v=f5p}G}eYa)12{vWKdWPeF0|=LB!sS7BB5F3q%8h66C+tz`z2-z?y5nQKq!s z#@OAQh9c20!Z5SynyHsGt+z7v$U{R`>NdzmYQ@igt&y4yvXNSu^j~YFW`k#BbGHFi z=zN+|q4C>*T%6uruxL#q(Ozw*ke}V{{r~-v$&@cu2RQ zlPL>wa!-@{~r2Cd8t=Pi^G2=Snk~S=#UN&i#tE3wIVs%*0n0`d?SpwQ)4ByY&zMp zQo}ZH|Di5CbOQ|2%I+^MEJ|$SVxRicV9K-#7PKa}YINwinn_jC>VBcwv$kw-_&I>; zZOVhpA?V4T{6RJ=ePz_Lj9u0EAgggHk}{IX)Fy_c8`5U9GGmW(G^8S=t?6xbs~0P& z-b_B3Ep}%58Y#mXBEe2YkG<8cAvNBvX2U2WMvKNzt+UskCX0O*WMhUJW_T7N?{C_8 z-mlG`HKO5MU-Pu0CpN{-@3lea^jafRbJa|Zk(VdOt;z-@&hsy# zd5ealxkPK}RRQl_JRJLCAX<43pkBQ1Z$-BgWUx{0NTF!oJ+}88h#mEujuHKI1x!ae znJtuQCUnR(8Ob1abJTV6z=rVTfc#g=7JD<5T9PJt3w70OD>ZcYL2UIwKO*)Cc(G;E zG?#6I5pA9M3>`vLX{ak6TX|qu?BS8vvJ)9&TQ^!4tNiYQ^+LMSDx`y8 zgDt27NmN+J&o2SYF6V+@bZSPjDK%4Q2XfHdb{v z9KU|2EB0h_<7wHm#I!G6s#MaYOjkoy_y0@#JWCAwdeWudHko!n>;`$G?xPi(y@pj& z+fmH=X)=Bbq;bPgU2xl4UAVN%Hmd+F_E2l5)Llt6w79b2tRD0TTG$ZqO)+CH+whqC zAk1rF%5>~7ZOi|U*yh+V`^<^M<`|~_=}qscg$&)d+v4U-JF=f+hY^8!Rl#T4W?bwg zRSoBWglmXlT@fGK7CMO(|4k9!5_U?u~>P<^|c8NxN4e$Ro zqdmI}qt#wDwX~q+{R%shp+6m@ESXKOPWUqs;n^#asdM6rh>Tb}@HVxzXJsF6h!F2t$<1v;MZu;QSZMHI0$ z8S`+l7g59(A2RFn6-Lx~x4TFI zTVt+W#>KwTDZbTiEhgFI7@x`gW8PuI4w${pIyq$ijbf~z(hu&NJu5Nr#JmB}Gy8aR zGJbrjNVfpfX*!hN;^lH(GUe{k5%VN^P%BsKdW|%(cf9HKn4*pRyX)YohGf`O(v9^r z-Kji4%8kq1PO7^N1$&LA;q|m{KuO)a(jpV0mea*_OE8BIqJ|M!%?L8INUP8Wys9*& zTDD3dYF|!FnYt-HUBjRr&!9|SnKnZvJF|sqi=t-FAxvEwTf-bbm#AAXT4cvi<`PBI zFu+e>&g#ZYDxYIESJ(8w(SMFc!emFu_ks)oJxiX2843n>Au6lakBS zFe8YG7$>zhYs8So1UqFd<0q!+sdB0>)2ezeYJWsb&-nFt)un30g`cfs%$LPf$cm<+ ztn?I3!vH@|)YU%B0T2Fd)`p?X6E0K33_n2~oT-#r*f1Q*1m#gR44E{9eGGr)#*RZ! ztSVjx(<#nLi9=ME`COxpNsO8L+(Q!$w)+xWzZpK%oQEQZ>ii7m`)CdBp(Z|I2oi=y z&)_|22>Stk>KKZY%o_gt>MiJ@cJWZ84V|Ci<0(VhviH3_6nRi+%I`6>O?aQ~E<=!t zr8fJdA#AJrWQQUJv&Q-4p=^}HsXM9e{tDX%+HmxaZJuI4 z#o)M8VaOu5`Lw4vn5>2_R-0#~I2f$PRkPiNQdVA=-f&!Q*K}OEG%RjIna&2m&7om% z+g0U(a=tE)LpJQVQO!Hf<>9c)6z`FMu&-zY3M$PIUXyVv<^ zp5eef;sklq`K{{wb)pkwmh;~#&VO?`zdh;v^|bTfLXMPi4*Xi@zZIST&T)b)=-^g% zJ|>)x3p*c|bKn~}AOGnDdE5DG73a65osi2r|9v_)SpVDkZ?f~T+ri!B;5K&t+Sq~L z<^=h{`M8er*C(z%{8z8fnlo3Oec0@Ea(kub9(LI5S@SvV1@$d=9POzZH>^HuZn_D% zM-Q}cPpX>C&}uHVa>9ZClBCbf{RhvjN#V>~8t)t7`8}S8lFpgAB7QC5IStP$p4;KM zE5gi62F%Pog7>%aeFr>u!lt3_K44>MOh#AnjE=x52ZF=l1w@PH4Oj?+*aA6W*W1`=faOHQp}+>Nj|Q2^!bM zuS-M13i$N~JYT~1*AeD&g#Rm^f1&UFxwr7^-|*Z8-*?4xJf5dO!bSM?ZG2e`&tvfX zC4OBC8gIatpW?Y5zJG(~NBHs;w4aSH8{*6Jc>fP1Z-w_S@qQ1UbK}c>2-$<@xA2ohWEn|@^UKjO=Kc)uRse~0H5_;Me9P2gF=mq+lv55jCiU;1V;a|p=pX2#Do}1y<$MKvWo_`!6Pr>sUJb#Jj^N=|mA)Z zj(A>;=YjY>7oLmZ%X^UUDfF%iU2EXE5`O&x-~WZ@D){nuJhy^`NqAoq;Wxl@ZG>DG z?*)X}17Y^Wvy3mdCMPaw=P z_;Lr{e}eZN@mw3IHSt^$+_poQzvI^<@V*e9x8Tbjck{`cz%s9Un2a~2-$@%-{Scx!mN$wDR|z6=jILy?+H9F#+T3W{te{3 zhA)re%L@219M(<4mkORM;`>v0zW~qQ0<}0oJ_lAu;!7`neGOlJhc7=tn49pv8=hAo z%uaZY!}A(EKLBb?gjoyE74iKZyeA;%ANX=Jo*Uu&19cMxh3)a34D1L zGFQX<>3BYm=WIM*#`9IkoCMVQ`0_4L7vOzkJXe72`ykBccy8*1#Pf56pNjV{@#|H1 zp90C>*&c=HI&*kyuZwUDo zp4;QO1fI_z%u;yY9U-5`mlq-b&v;&nFK^;~XS{!c@JHeOWW0ZbU%MgU?|9yg@Bha0 zbUagd9uL&|cwYnW8NB!7J&X6x@cu1iK8Y_Q@cbTMevS8M@H`M9^LT#+&tdT1Cip%Q zUw(!6bMQPD&mx{b$MbN6nGDV^lurg6C9(`4+!E0`JX*FAL(=AMpJ#d_N2CQ}KKVzb=dCeBd(^?{nhUlkq+;-hYbs z)9@S*$%o?m6?pE4?{7i=ZTNLBJdeb$%R}<-@nsW)yb#Zo@O>$S$>PiIcuykaad`g# z-#^6rns`2nU)RU`zwq1u&pYwF8_yRJW;??6=jOxvs|PA58f}r_bu_97tclM z*Zy1hn9M3r*VJkfQ@LUex zpTP6i2>&|1uZk~!#g{km?8Ngk=sFf*zCxI-@qJyq&&KmidiLi!@qQzIz1ax^)Oz&n z&z+3-`SAS@c>WPzhU5J~X!#mn{)jIp;{9;E{{@oA;{8&*e~0&H5oRsCPr>t5$T=9_ zCnDq<`0^g!|AOz6@qQk{{~f=s2=9G{?`z%__6JH*~`!^J(KQ}MJKZNk};QJ+b-j9&S;@1c9z948UI^GY$^E&)` zG2U0e``VE9AB4=~`v>^GKc3&=`^R|y5Wn6}U;1;O;LBQg&ZK95?qmFVJD#WFdkyb( zJnzMqEIeb4AVP3@hOLz{) zb3J_D0MB3Hxd6WZ8Sk&)eFEhC4Su^B@2laNM3~$0{u{h6gYdiIxg4H%(XaiviFp4L zLgoUXgk<*Tj>7w~c)oy;FF?*N__8SU z{smw9=}UiZ3ci1g=W7W6H^`iYFF(ce9~8bn_fMc!$FCjuem%n9iZ2zsKZoy0e3=99 zefa(`uqk|h3E%I=_eJoW8?1hYUl+%hHxOnaJp1wGdpwuIb2&VpM);9<*6~~na(;pL zCGfs0B%Fot>*Kixo}1zO33$GWFUunQ9r!W=Usl7HcOh*ve0dM=>*4$Rcuynzukd^b z&s!04B%VLRm+5%_9M22ziV4f*fjxhQ^} zfM*(EKEd}Z>AgR95W-)J@7LkEA++Cu_umt$9~-J>Vv2Ak21NTY9y$}lq5Zk<5atX# zM?vOrlG&fT7w>8yv_JOqO`1J?+GBdXh-akQ@f2wEQ8^+ANO2e7KNas4U7EGFlX1l{PBqATqZbigiqk_F#$hax)$d5b~j;N(3r zb%V^p1C#Lq|K6X-OyQC_856P>hafKz>$WA`sR{N+^JqkpN2tF~?zVs%-Qt&S+UP1%?36R)UK10Y+$RPxAixG~RBB2&g3{zF6VlOE$SUKg038{`F`}?>Va9WUl1<)ZOppHr@ z)tM%MQwIAn3j6n!$RXi4VlPl?y!XnC?tY#o~nM^6; z6`uA`GzG-~$GpZdD4-EC*^#Z8`Tr1!6b$If7Q4*sceoT*Gr&L`F_8?ojgzqq;Fvo& zW+j!@yykVXS}&LBl8ua;R84!1k~pqn;AsVDl!Rj?3GhgkdE^8stmY8|anQcxkr6!C zS{~t;%{T_Rf#_r^NiT&ONdd*>i4r^HJ-QGiB(I+wj;SU)N~OGzdwwZlz|cw9SqXXX zUgV7>xMeG-xC#<@ICg1{MIA|q@Z#tUiK{JawXcCs0_Sbe5zO%^BZ4 z0(4&GpW)ob6`6m+zzcFPibA4FOLlrv9eLWf&kFlsBprg@i^qMw@+91<#Vn)e-{9%SqG%?(h_OrJu(e zS`tBy4?~{Bk*F8wzBa!M4A1!2h4R($JUiSV;ow&tCuBjCz&A^1__bD{ai%04nP2Yl zT9BU|Oa6ILS!oX?IlXAQhO}B%o08oTo|%0V{!uABYO8uN+cm=rduNuy-YA7#U6m)D zsah(T&Znx>4pdu0-2o`~>LpLelIM|--O?BxDs|S0i8Ip0SN1az)}cp}olCL|!IPBW zc|gLI%NLo)l&dYxcYOuwdngU_r)ty@?x@#1_EFo5BJZB^x4Wk*-727A&EAfiGBj-1 z>6$ZsU{A|#@)bEZQYu{;f1D4N?Z>rkKX`4nO$TxuD3Y9(;tGDzv>62!C!Jh; z^Ii&#i*BxkFI$i6C1yj8OCN*{&Y92LQw6SNt*D3yPAc{?!K6P?S#f@5?qRt-&zpOg zQ%*!CmOzA^34&h?;TMu{v%HAf9!5J8y(`(m<@0g_W?Z5)v2tT#JcmSS11UOlyI#QQ zpKe(NotG({=Ip?3L#eP@FBsmulIx2)B`&5rT?6TI14G$0Tv=q{7%%QzWz3bo274Bix$Q6J@625(BW<~Nm4us+ce zC06=+x)n<7-2WU`64jV@4{r4mPtU_tK`+^5RM1fk`N(r$4WY}BP_tr=YRE^*nR1E-f5)35i#(Iq>_~M#)A!UXOcM9ecmCC&{St9rU?B~ zpTr@zb{p?2h(76EmNe{e4-;&^?UF~{((HOEoEb^ zk<9a;EF-alFM0|jdwzh>(W-1PI@5fkWlXt=BzYoROC}8k+w;PQ=knMZyxZRm6+0;v zESEQL2W@7g0ncEO2OKqy+rfKlaqTFUDt@aP(kF1~&3lQKQ8;PH@Y3#F1uvuG8bB)Q zH0zV^48|8=#}uw)+n8ycrPBl{>CL1KBlhC*H;5rWUA85tJA+ z(acSdI7Jn7MsDK665Pc;J6|ZvN|3%6FGk}yR}ydMBgo%Z$!GZ}PAV5v(5G~%?AKsW zZ~!+TPAZqBt0Tvfv?<Aouk>ETNHaO(ciVSRLUi!(U5 zbyLN3f+fUe8EmO3nmNYUIXWjLB?^Vh0E%^6$`A82b>joF%m zqO-Un-X-FSR82r%M_A3F{=29-l%%$m)*OnHm@ILLiLQ9FX$0vVs^w-hjrb`1fP5_l zteFH&8QwHBTYC8cAPH}t1&_9*i z%18ejwzZ2^4ba}2Nxa?)nIa28jz@8BcNue~ioMut3< ztBy0uP^(zc^X3Cot-eRXv}!fZD1$F3F=dijl|tf&ik?xG#%a=Xp{)9Z^nY;U5*C42{Y7Qv)mr`KY98H?QavU`Lhr1|FYf0cQXILM!$ z%a7A35sdJQHTq5Olt9fwTuq!JdjK_NO$0@Yaz(MqO~@ zE88Hy&gC~534ZmW&89*{A6F5pe&LZ|7HbfG2p8Tgf6`~Sd7?{|J;b6_!pAv30zIA;y+rAP-36R6>S`&#a^qYr_%N$Q{a@_ zs0#Rw1Zqv^SjB`cEHMRtnN##iPxlAa>TX^Z|~-346I z`mwAt7Z5_$MO;=qPtmSr)905qEy=d;@@6H`=}{)9tGJ|iNvd3$Zi%{ad8{Q6DLW#l}n3hXtmy9Iqh~XE1v(ks5`l+cs{FD>Y2`L zuf^OwnKahTQmo5@naCd^xjLBe;j4>C2fR>EUK2sXfR> z8UL6hDNY&Dnd#N$V!`T3N!B_s(yFl|9HO3)MDax$+*O@3im5_2os|6lyd*S^|FeaZ zzn~uUUXmom$w%2*rcl+^<3ZXhlC(8r_^n{p*RM%(;@C%Lo%u@~!RU=yhe|HBY zy(LMClP2iwjNlY8hIy?4Rd3`$>dHeRRjc43bu}(^i-zONZ2Up)8eDGUp4A(Ikh=DeNVR>i-cU%@ z8;Ib#A(z^Ck~JEO5W6uK+jxYT4M)h`l*{D{b_dD|tPu&(n{&}yHJrxm<|!m^#U(f4 z45LK|xg)vU#^a8Q-Ij}O+{diZ3C5$j=*Afv4N!>Po{QyGRgsPsr0s7`dr1Gos~GM$ zo9dVisjAY(6gWE_nK1sC00pD;VG4-cMAd#qUBjn&3_->pnp8Fm0P#Ol;?0TS9a*|H zL>hnS^06?pLOs8Hrr2HU@mKUg&lX${p8_yM8-Iv;aMie}W^1m759}C{^``$JH&7g2 zM#({oL*6E4@Px*0w6-x4;;vMw%ZR_9NBdV1vL&*(gXn8`!sYX%1G44QHW21K7ImACC8NjD?b$Zwb%`$5x)!j{XMIlu-=s(KoH2#o7mg#tc>)=c7<6GeA zpuN*K1BE{Y8J()pLU6^pEQ;s z@_CH{GhS1gSdB7n(AvCXFFJkyL){xnompB8SGsVkyt_?hzD?=y^iQPY4Hr>C(Hb)V z8~>K#<8$7~SV9FK;~zPw>j3269I~*21oz16j6RbX;b2gQ5kozE4$&ILb^OGnCF90& z9IV%_kk`q5A(6wGwGKHBd*D%Gw;5l4xva@91h^#!;_ON7CVMa6Av(X5_${qex%{+i z=Uuz5xQqzS$MdUorl+70$OSkODGhhX>#qAoqNb%Z9q^G#Y2Wdvu~Hg?3=1KHtK)St z-w!}W2W);Tk@<{Ew#YEZ7aX#niV5$!c%9E22dlE!KM%#(PmA+nop`e_cdK((e#7M> zrh}X)p)Teqhn0I#yv}OwfmoTC`qjj0S1#XXC7^cWsD7r?+e5vF&xDfm{DL7&}+m+1ZgIX4$?~p1>mkw!1NwE z;Fj~bM*_e%v@^BX?N|D^bL1H*@chb=DSeCpVV{@6!q8Nehki*4tz|R|vx!c^P1t5(3tVI>cYEoN9 z%WfQY`sZZUDLt%RWzM+|ACi-!0rf%omL@On3X>!W@~f#R)rv;*5fGXQDJFUzq1C_;C8gc z4T;EU=!nSW|3(Z?;=Z$PE(ph-!m-FAEt&uitVAWDUgan>?YOTdOPo-cJ88;5^u9risyr%CwFgOx zV|qCT^%)fh)9Q4sXwcrc??g)IM@po$`i#S_c$=8r$hBDYSqShJ4n(xL!PBLBF}Q05 z43Ci*YUQ$seDO0Pc`Q#bR=FIGJ%MA9tX%|M2$iV>-8v9GULvZM%QE!V_lW6-+$&bO z90C3Z2kS1Sb@cUMofDYOl$dgtn#dhqBcfxtF4?65b_b4idXDCGAQzoZ$?`Lap_YHC zfY7gcxa>pXwj_@-EB{KUWjG4?*SO>XoW77aY5CVceEoM~^d`61%D)`*Hpigek?zj` ztuG~7C{LYYMFL*;EU~+Wmt4zRgEW~`CEcSO9n|oE{*FVPrhs+@3dnsUkwbaplG6Zd zJx`?W;gXT>f+A0kcR=pr5Tq;XVE!jhrF8Y6#79e47UrY3h|(22Myzxtp|0jAXK>0m z#UG>|kw|Hc4fEjt5pNQw!?<*-W*0z5au6t)2mXW7;{#AKA(i)u(idF1MM(gC$w3%R z&>C0Z^OVE~-C`#lY2nAdKxCfeX#%kvBqJN~3`aOa>)HhZpz^FlMN85J4Y1^&iOW3P zMk`4($Z!sE+@iJBRC0bn;-b4H2tV#6qVh2}(sql5_>?2y7X2~;xaDPuislv_aN=Kx z%U0Y*%PkBtl0)DY?al&lc~#<~xkU@#@exs3iPr&^TWrLt9N{ntE;ay@*9T$}gg@{H zVzNh;b;E5Y7GiIX02A%@12B1W047@a`CcX_|KSmDF|iR}a|D=ZP0mvfrbK&5N$6W? zv7?1w^<84}2#iz8*eczzU8RF#^+OY%QsvS@4mbT~ zy3J!raRsWr1YLqhcOiRSFNj@KiM40f8WUVi6`VU84Z%xDg4Gg*f$jDf`+}1+3}miZ z0{5jQ6>8;A3>D5j(#B=E#)2*=SXNT7)8G`q7GvKHRIMPXQj3h5vqfJ(2Kg&X^3^J= z81j)sbyxY5vF-peG^{3R*f^dB^gqDFNJDE#A~%W>*_+DdarJ8#9Uh*UUaCy>XBPjV zT4KkN#M~Med3Uz0A0f*#6123VXeRuNlC&Z+^Wg(u;kbJhP ztLzM^mT!hdRH%HK+$hpEY`^4!`12(3QF%rXPdlbzfT-XCNx{z=;$NkS6Dk@Fw_G%6 zvE=SvwSL?Xd#NP0A$O!{=M|l+j7Xh2UHxY$xLi`OX(R6F%F~^m8UMln#Nt(w)P@qF zD;1>?rNyE@Lk{`ZO7a^@gr0mcja)B@SL*{~r*T_+vTM4^QkEGvNqW?&PR;A#N^X^u zG~}ypn)dSil&oa@Nf<=M?UMLi8nHo%C#i^P*Kf26wOBT1+M(>u!7HQfHCbA$Nb`5< zx?;MPQeDLD6(UB~xLZ=DmSV?_9d*eCl&KoZkbSQtd&j0^>lGjBZ8L*EAZb$TcVk=O zlo~4eq7W%2g<|AkNlQa18I`!7%ESnHOi~inWb>rJRH`DK#;mWzxmn7HmnS6^4aK=* zN4W-oJYWiWOVT#6S#7ag_pYR} zp#}}^Zl~Mgx~S5aR?k*~!DLhs?@J0ADp{TT?cBzxUp1icGxGCCk|wolE39Pg&X+n; zdB1r6^;gtT|CEGi4Ry8UZ~%B>%pQ{_Z9id3a)(K~O_;L%gt5snyG__(=N&z65c|2} zHaB(`ISW!p#1OnQHODKJdYQ)Or)U)x1pZqIoZneZs0tcKs@f7Z5M4_u+Y$!xUn%kC zqW7r2kL$^VqB&MOxdO7jRkDno0a49+Ta?W22hK05k<5g46_a%Qgx|IY&pFjt8{1dV zsMuO1V~U+e6uViBnDV@t$X4B37mYMETofGDlwfYC*2`tg|0JDLLXu{K1#VeTRMU`K zoO;r)4Iy?BQS2r$+(N6q>eLu5XOYqkmn^P?+MVI3(J9X(j!eHLq6iy;my!g>Nyasr zWa}(VFUov>B8iP^-gta{vEh`Lmt=1k;oqJaE1AjxBmFxK9lke@_FzTFDqy z)No18Vq;tG$bXRB5tNlRx%)K4(3I=`rAGh!&7v6HF?MW0>t?C|u~SM^wKR}TuI`Rf zDX3APX-i4deuKBtjUy+^QunE==P*O^q!tz>tmDCLWZlF9=HW1%~+ zN1D?#z*j`MlTuqOs#dKElP631cN+rz?jFu;kur)=66`5y98{d5v49jSRCTGQVUndTy0AF7$QGHiCaF>vR)lp{2aHi;#s@m4 zOF9M>frWalPP5=Mq{gIKfgLRAjv5Ia&^~>249q)BQqf=|+$qtl#{G+Glf&ueJZFQc zz>w=Ugz?Sy5|o@NP0u#i<~CKOQAq)?rN)Ig3hEmR8e#f-FzBt=nEheFb(Hdv;T%Day9Y{-X!@%_K?2Gpz7y3$azsidgEqFGYZq2`UuT)4TU zDr(j^mRD;uY?&%1wdIwtYb!}vgY|%9modr%O(P{ugG`-HONx#lAiGrIY-ERRC53}5 z(<&JlW_6rl-)Kplx^bm}TEO9Gp3| z>7~f_8w?yLDQ<8$$M$2Nvw#AP6VuEIlD4Q7Ac8xKbt)t)c8%Kk4%Mi)Q;n_Fs8JIF z0}4)b(OT9ZmLUI5sYTFWW8S2npq<3Ni=g9fNyp$Uaa4M_6IlV(9cYoI#&dl0AZu`IcIAZI4oK8J}RnpB`YM-<3p1*#9rB2kEARu zDr>}Rn&dHR-D#iSu7uaRnAf6OShgixIGaX>maNiZ#(dP;2V0G5wfQ-W270=({_O)0 zpI74T>>ITrfsU=Or-Pz!qs7%`NmX0SOE-qqsjcBm^G8h{yCM=hxCuI+ua$K!Uw84RU))u9-@s8n*+9W@!~VW+)wI z889d%6eBeM)9uerK*^y>2}`6=g|ldkm#KGf*E3F`F0XQ$-*|$uBbe8s2G1K)6!`GW zrH9QiO#O2+BUB&Fow-LubEQGu&S(oye#ddGQJFJR>&{fn$ZqXtZjI_m##a)!RQKdb z+@`3pss_}BdGQpkF{)D@snMx*WIvw9{1`RW+lU(3le4*9QFAK|DGc-Fuei>rQe4&< znaR&(UW^*9iKjsJ-}&5@r~$>8s=_>XA=ehw?-RADJRFq*FJZom8ls7-LiXNe+@7du z{@BXG{C6eS7u6OL^+oya8s@vGPFWoBvfqBk?TBhZ#!?jKvm3dts4lFiYl>JE-@?4r zaK+>cPK43_J*OYFZds(?QP1W((XuldV1H1e?H)|SwSwPA@;89+I{c54riOFAuL&(| zuH{dXmWHFm*Fx=K>Rbs8;`=2%Q9Ud%QX<^-kffmDD#q!Dgc`GQu!csVXSr7B5n^IRNzXu?dfguVphqxYMUuEI_2v@l zri2WgA)83iuDV|Abn|oL!Xqd*o;lUXjVp$M65H>(hnJoJJez=Khkwl|ENePI$azYL z*`r@MRLYLq?`UzjfN@wm8ZEQ9h_hHJLXJh^QbuB}NU+S|a?U{wKZ+5U*ok&3RO!-? z9wSDsVno&-Sc1&v+D6#ynn_KaF)3rY<@yHL_!49`H*q#U4Yh37QupL+ccGN^Pe(vX zyOq(|AchE;&+U!!G0*-7pF11mqBN3j96jg#WS2mxF;Bi=NXA`Pbjd=;U&%?+!IR7 z=0;ia3L_Ej37};buW=UPo|tSGA#X4e;hs=nnZsKRamZT5*t?BzAh68gea>Ok(Belb zzCL0!)*T2hGx?+;CPKmWStCrMO06$Alhwj)B1z?Z-E6yj$*8D4iCkq)b_K{@`G#`| zPp4B-MYH1lp797zrwS}{m?O{HLO2T6Z^F^EB^`E4(>lHvw%m$ZaPtsO>rbs?xFEnJ zXhxdmC20m%5;9yVHzpZXzbtTNgdDYUp`bd}eb$^G*e%Gd!sW1nRg9q{xhIvKT9-sG zGHB6LX{{@5*fnME+sp?YJ@NTr*(ujpo%+3gRDYR_fSkA(%{0$b9XaKWR5WK!4W1|LyLehjT zMP{`NXQfs-#*r84^YL8nD&cZ@Q8AI3X*O33X8|tTH<|M=+m41Hsc6`fF)`bYk^q^@ zKAcNL`R8(p&dd9Akr8g*moD8f({_>>7vW~WWz#x1k0p)h#$`#q?)<7$YhFhft=2Tl zM<;w@RA;J8!;zU$z1fHpJmH!sK*YQ=CS0%AD@t zoXqZq=O@=cW4)3K7Tv|Tm?e%4mO0$h7>5xihx;1hFk-CC;lai@Y-)0Nq#+KQhH!YC zb68$VZmQ$7iAmroM!+1FbR)t+${u)@YmbmIg>Hqa(o~7RY#Hg{1xCXh+B9hRB4j=< zb3UQou#&{9j7F#>Vd>#@u02AAZ;FvS-efdFy)j~}FGBXl+ni6RH>||@cSa-BlCYHd z0oNWO!#Bn7#>b3Cs5dqp$Qz$>KIQ<0o6yFl{f-dQ=jV)rIrbI6y zqpng{8O}N;hck*7IxTSilKc$rd>=61e5hH!u6W-oUZLV+lm)wip>V2hLbff z#WkCgrJjUNIwLn5+$M`?{|VDBwn27wu`+|@IRnx5T_;Z&Z#aD=rd_mM;bhILa?NII z*|i-K)K&|(^{njcABNSVg;8V;royZOeu@gjH`p=Nx2rsvA~!%A`6+sl(Fs zvwD##e!<9?J!dy*j%QNj*cruHSzVqI-QwYQdAdeZm*;F6*VMW^R@OlH#OQ1>Rhcn{ zdTQ0}i#4hlX6#C@UN(i8^VIODF<@v8^3e?+q&Y+qvj!qB;N!MdedEZCX636(z`QuHtOW*fz)S?;oQ&xP;MS+bq4D z@a|}|7rTJnz*w85mw_a;7=jc#T&ZVRCmtA;b~;w;PxQ4pYJ6#TjbMDA&Zh~GAai2EcFX6T zD;Z)Ih^C-QrkjqUqOEG?J@4T30_S9wJRzd|{clDzz09RWd8n#g_XIYta=bZWY_d`K zKs3OTQHIZ)ez&+^|q2?XJxa7Fs-7=Js}7D zos)@5Jhe(Hoe^yMfQyOBMkFSQibJlBo>AY3n{6;HRb?g4QIU3$gB~ znWPz-RihBIDDM%Q9&_aEs^$+B3(sJHmtY*s>|kMK21|1WW`DFq1I`6wj(4SBknbju zw>96HtOJZ1Z1!0LxCe_SleL9qtRZA?CB!VW&3t1^p>tTwJ{835$Hka+IuoOJ%OK)F zCBiNU%&w6oWG^ogflo1aL>jV}?2k@vNN9}gI%@oAgF-i>5E>&2D>KM(2BC&PiX0;a zE+#Za95F0L%1VSCBN5)1G}-V*wGnSjnk;*xmzxpc4U!^zV+I!!;SD8*dE-#Y8)iFA zOP{-WncZ;75zHlK!$cAw`{ihEkl6(hMaj-Nj>`)5v2Pc7DC6Jjg$&rw#h8PV8l}lQ z`r{hFp2QquHUUhi?2=Qs{?P14`a@F6X+9QfHXVY#~#u>KC;_POl^f4W>yL{B-y zQd(K)cSs=NSCWLNI4sdwWz*@bc>laq{j^4iJXaDK^9k$I&g zdhwt@c2C6f%BJy)P-gjvPGQpOBJ?91B5r892fAjTh z>0HIgMpg7ufl*63E;59l$%St>7~wn6`hP>g*<68EONyTFrRk7Vrxk(cDLF<2YK2Io z7&+oD;Jh%y5}Gs-b<8HMF&8a|MIr>=!0i!A36EL2r$o!8lC*A$*4^4iNL#Y%Y5Ly2^q z+L}~gy4<~l4_UWKvVcAbOW161`#BXeBaRs#7KAoB?X^yGIhH)y;M+tA4N~=RQdewjs%+G&$;uU6t~) zUD{P(IoMFM3N-NXQO!thR?wy7asxyUco2{BBPx5wzl0XuAj!66riGn@MWF z_^mkz-AOHPuuHp9yq3`fc;uY=CDohC=5f=77R1ysPSP!&Hr<&<1nn+q7HVwGQNAx#D%8Fka;HdgcaCR~B{!;Eg!lH6bZrq&my?&m ztk_qQjHxU)KdA*V*!A9RRC!2@&JfNT8iv zF`DUUcP|B_Zd)~IcdfS}DepEtsWrL`Ou}t)(BKJ8!c*DNn{fwHJTE|6PV$1*UXW!{ z(x|2@*>W)I1Yre9m{u2?!qBRvWwdIz$moniR#}pzmH!d4YJO`MlB$xVP!s72fn>c{ zuadW_GYTErO`;IiD+$wvoJ?A3#iS#}aQX~Mh}N1kh4j!)W{ff=-S6ohN)^dcF=+aM z+M$wEt%YDprMokjP=n+V4T;NVx@p9Z8sx5)OkdfIg`*{Lp^2BaLR7OIbnTayim4fh zwvj>cI7y~9CgEF56}q+m`1P$RE3IbcW35mUkcl*1qtaROyYrB+hLnx5NzBT|0RzgI z1xoVH_+heRhOu@7Lf4jrY6E`~IbuTK=1FO|vr^`dF;hLR{L zi)#jV({8N1x;XF-!=Kyhqb0CLw;a?MdW zt;W@b_RgS{#FcCZoyg+>7`?& zEScTroLxxV5N>2K_i(K?tz%<7DOXf3$^U)h;9vC@tXBwvMbRuD*gZq77N@yl8V}WL->uc*yI)h~uhrsM z=i`*30U$v$!*mL(y1ZM-@byB#cT(#?bEzhVMr#5oUW*(;hDqcX51Ih^Qg^quh+}!W zz9M%34XbI)HI;5?EGcr|jlBYZr=(Fi&3sRYGpG?Nrc)B5jcU-Y2)g7p=!;*csP~xE zu`bJTx)(e_l>^63RmzO{FRf?GpowyYI`LQ@>PH#W7nK-xqlq@Z%tiHP5B4GqBBqHV zH1}~4Ng7hncb`B`P02AEXem)0Hec2WT}yw6v1Hd=A16mV{~f zG7yHdx4b`Lqv5H;BtcTNIb+(sAa380lB5`vsx`~DVbS+pv^f5S}3Sm*jZC+GQFGwViP4|%V>TQfHxmV^tR!eP=Sx}>qbc@ zpxbdMidh<}S5sx`hIxbIWQn6z%nG<)=ZNBST#r@Eh9O_%NF=i^EeXJVdrH)_WTpek zN#e94muw|72HAx}5T~@fub_tSnZNdtNNI5@0e9V($j!kuS#cT)ots0E7b=-@#>xx( zOZ2q7U_$OF60vzotRZIQ1pzdif$HnbT2Liz_Y!p@ktHQoD8QY<*urd}YQNpN(MXm- z9*|H|I0}iYQp)@5?~%AVBuZN1(gBsdiO>7I{bD692Kk6X&`_;`9x7z7=H>>U)lIyi}vX zbR!u}l{o2M(hvrZ);HRm$!NF!;>^d)KK0}VqOBCeK1AVoV6#nu2^ zCjl^dLZa#16SZK578?*OnNoj{UITxFgvXd$2%dTAW=X<)P7M0ZY53#E5o}uOu2>^3kHI7v_>~RT(Tv@KvX-iY4P!0yw!0agr0gpR~@bvVoghYdxAz5s_ zAYqX{)N;Xaoi9r`Y(e*~J51#hsM%=EX}U)nvH#8Sl+DMM(JpjuS8z@VLg~Q3e$Kn^ zM1mbgu-vj&c{h}!jcY?_xtyl$qSFcXi3vm3*M`w*=pTOsNFdVSs-s5 zHVRVLOQf_cU_#zGjX1r>ZMKRL0rVjUp(4pwYyNZw2;C$RLSsV(O*+f|jH>5W2>~xT z1-5`&LRE)%a!S_7Tp03hjzsownom7+h9@#GV=>!Ye zJ@-l?Fcs_$62uVnfO1m@w{bnyfD20LIGi9V!$qN|Ogk>=K!B-!J05d{pY#enKCP#0 zgI=f**{!(-tEVi&w&5@g2Vw5S%OGI&nZ!yP4l)pL9Y>V5;R)Ot4&s>YI0oseGvl{= z!R8Bz4bqhp$y)gF#}JnlxLg#PL0sC1l{o@sO=mXcAD99vUrJQafpV#6fMX6PF0XQ* zTjM{v4nSV#5TqX!P~8J<#MCzuAuavbpj-Ng)QMb!m3~Cn$sC6GqN5x=P9Ob_TK3-` zDWqvFzO?YK>`LJeIt1Mzy$Ni^myJks1ma5_D(O){e9a+^#AxxQ0~S1tT=NjO(TXny zd6YvCUlfqm4hB~dgV5X(AuYaa&{4faD$g}o@g>4a9ESX!EmCvLaMOGeD=ohph_9v- zr6aj)E5CEhF&u;RlMQ-?@X-Pi8!i24;m2AKh@T0e3r;INrs5f!29YfJ-_7y@x|}H&XxIpZGvpTSnr@ z-KgVEs}jYrT#xKVhTM@Okvd$HSVspmmy>8}J(e)=+Ny5elt-M^V~K=s&fzFVXzQUB z;VVikwPM6T?0E`NyOGPbiV=>vg=0|om$h6Dr>!E<(F%VZ@Z1byb2g6}tMF%#^EhN) z)oz?-7O<;JR8UJeSs@6%oNC~0%%vi$1sT8sY{~)7{3ET`)fzi+%bF4wtyft!G3TC4 zgs$K|w|bQl>S~U1<{wM>UVmU3oYs*zX(`889J!6EfO@&bR?6X+861NOsM_m~Nr27z z5*w`o(!zhE3j9yFT&n`I5ub5{6JNcZs?A{3KnaPB9$zMA^;yJdHut<8Ujph^90jYL z1*-P)#!Vz%hyy20Gt}#f*#%q&hWUe}E#ofYI8@orsd=8mZd``ill%4w?N6=BHX#>Z zM69l##+sm3l`Vj7;vl%oJ;<-jOxa1ksuX67c17 z$RE3MyR4=`D0DXt#p*)^sARe_bb1kO3#a2U>vT#^P(FcgR^khfsNLm7niVioU|tHY zweoGy@|Tfm?{R)sD_?|t$YF?S@0dk5rmOX`I!hrKeT7{mi6}}658j!fdr#FSCBwjq zgo8JoydR2wT_x(rIb}=$2W3Ds{wa<(IA@Cz=Xy-e3_bf?;=Cu<8Nyk{@5Av(5T2#x zFeM_VPa=$AL(|D7^vNrU?XneCo*_|i4-4QGIM|(^cMk6Kug#`|TBJmEh{PM2g$_+X zax~J?;Zkrdv)G`ge@zBfxI3-PBEsq%hJuO$Q>#rNca%g7lKqD~_u9pOmDsNmBR zB@}v3Zn~DSOR0G8;Y_jiL`&Ea=&2lyu7f&3)-dd3iK5nZ&;cW66R!ohWUK4IAPaMd zn@QAAb8y8Q%7R}?gq+}19qUKcBKR3na6M01powRa4a;&ucAk=8D{vU{6m=@;?4YUB zQ%T7ser?CcC2utD@2NdSzb zsG@nBO0tV)HjNZ?u>{cy4hgvD6%-3|^U~KUI6|TGaVXNP2e4YCzm+JWq;c{ghrN3t z5xk7YH=-fPf+4^wIS@%wt+he?8JklP=~qY;QIjcHZkMTM78p5*!vP zxL5Tu*mV*NnGG4GKaRUY6+p6z$+L($#Ge z60IMFR3$aepkp@OA>n*i&@q;2b@~v4-6g?%b+o#z`2)_!*JbVc614(*GRHb4nxl<|jyLnV3EumV= zi}0wiOEej{I0rhzI5e=`8LaIEx0fYu`Y?`(>G};3o6XHf-qT`MK>doNoFda{t*ctn zX~;Wmf3tFaRicR%18zJIAY?_=OCQY{U{YS=9Y@UeTnvg;T3@VM>&BsX@bT*sdBg}o z=y)}=jCxZFt;L9inRPx{b||N0#fXGDf}@aia00P9i>gff)iTB;&jEMRNY(>Kg^gt8 zY5B6c(<86tY(O5CAX>Xa0{-nfvTRSDmaTS2D0CkV#XwjGU8qp1=kr-Flm7E^GOACS z9@YlJ7^>%HqIV(J0T%{IO2%EnaVT~>wCm+S>kx^SR_yA4m+m4)D^yt@+iLPN$jTf7 zM^R0bP50!3bq`>4xWq_v6hm$C0MR;(>#!UpMUb-H<3D%w4R|+ zHg(~F-UNj)FGy0+uc2cCjI$~)JC1DclwwC4M6f|mJVep+8=h^gK?D(YF^7Sey1*)3 z%5-^=0%F|*5VJwo+(g9A;wiu)Cc@6)Fw7aIOa68SaLP%XP`EqoCN2E!cM_e2xxq;I zK|Zq)i*W>Iz|wUpp#42oAXAXYpy}k2F(8NBPkgFeIvUOz9}eo}AfHk&q6SLk7?c9Y zF1He;Te<56N*3sL4ni#SQ0uQmw*~uCS723@SZP%(LoIwe5qp*Eu&P)Y_d3VHU0I{{ z1F>F-m==R3 z5SnExWGqgHN}RL`#KMgF1CjcQ%eN{J3H2>UAzdLX^VJa&FD+d$)V|jfvmDo9r7Ia% z;5bC03LRt*MB>pBF)dx0klpSkRvYn5ZbhO18o@zcB&rqNMsa?e#L0|A9rK-v#JRY9 z9*GP!FGr!4p*sZW+RI?CH(b>((bB3v8??Bp{?6nYtXf8doy}nwfl$Xat2Mv0g@%SZ zozo&c-<@zK)zJq?txIixK$L)!{zQbwan08LfB{8J;3AMU)UY~T2^y?eMjw3*sn@M# z4Tf6q9-_Gw*I{K188?#S5aTo{L2ah4lIKiNTU(;$m_osese(16vz`-lA z5JaN`%AU?{PTtaN3)kPO6ig&7sAS5?|zE z>*_E%QNbLU-&R7RKIzPKrD$Wlk!(jxp|$$N!pwY_+;Jt(CWrt!qrOyDtAbSiDt7y$ z=!k&rB}H0_2?O7&GRC9agH{AY!k^%9nCOFO*ObY2Cy6cG@8o6?xr`brsc~J_Ktwop zI>(wk^@En+)p2oo>d3qABc53viD5h$HqWtWLuHK1fkAMBL{Mu(nUJ{@vm}>pwV?!1 z2M3|~(N(I`{Xi8uQZQ{#cD-;hPe(|GHS29mayBn^YQv}}(`8JeZ>+oCs}MeV7g)Sg0A zc~zbbTj&{b-tsjz7HrKRaeV-;#DUO8m0~HKbym>Obh_UY1IcL;Nv+%o1F!fbQT>cZ zl~wLU!oT2f$DcL2BZ!FEvYXJDidqn3zF4>xa*L47r z;t*$gfG&8X6}rKqC&b#N5+iM_iVp5DQ6m(sDO`s&Rwd*1;yA=z4=+V8mxyV}$%H(r z;%-?k-HJN_v;qgYl=RXKzPf5aN;+iX(?n@8o>&jX{01^_m(x$alIdIPP5*sZcG1U2w5~=%msb?i58TTN^!SX_> zH3)w+-6oF=F-v*I*5Ei?F9T43nwa@!oLPtr91=*NHqWeC01h=Vl%m zDDZ>Wvk|v(1mc@cldolIyj?FiK2UMi5^*$y zP2wi>j(3UicHCRm0EVm=;4vI*xSAZS{OtJ4aP_?sW5Ly;gpR)w@xO34g}6Fg#$UM% z$JKN>a4KIab|+cJe?TIxyIO><_bf49hikK49S&ZfgR#)8QmSobmf;Ue47G)32IAu9 zh}cLj8>MWJYB^?GjzQb6TI!;8;yvmtbV{Y#b`&Jk$0TlO&pHV;6#cRqg!z^igh(<0 z&uIJ)9FI0tEj88b9X=`1)Y?=!VEGq_*+lLQt4+lqlQ{%VR{_Hk-!l>~Z4X!oHld29 zKXQH693IQI%fvAY702caQuSo2)b`C?msM6fNT!+=pk#Prb z99pMl<$$<+O(Lc>m`%tlDl$Li(yi910Q#JR&`78kvov<24x_Bn2J@P>zZ~@5km#XE zbz(Ife*D`+b#-2QS&KFY5U?f}08jSvuE$#vRn3zor1$ScZx=4z@}vM7&p|FFy-NV^ zy*nT!9rC^E@NdqgGfE7!6$c@!c3`KYe$N(`;@>JQ#fKIrQaNm)4~SZxYq7Fw2(ZL~ zpx0d~)t&7EUc&|SZXbXihb{d$(R+zkJr=zX;42)6Mmin)PIvs!_C4mnJ0*tNSd)l+ zP!)Ga^K591HHBl3<5(o`{3an=F7B3SYFz^f_>6Mpo7^K-*B})7HitSSM}&~PcOa4i z@Lko`8^PUSlMI7y#-UEbfbIuyr?&Jp%9vbzTbi*$@0FV0w9_}ZLJh(HE(OMBfepAP_j5^rTSqFr-sUu>`QH){ zQSE3JH`;zBfzZwjKw(>Lzm>3v4F?;(+4ctsso5C1-FD6y!u|_QW%!2Mc_btjp>+wCF}289_mGbFLm!XM&C+Fe|NXeF)$96twTuh-OZ zsbP!`Ax-qzr=GSWxr*)+8T0y~3*Kba!wbaSS zrX^NEA>-ENIA_J8;^u4!^;!vFx4y(qU$Mw>yNx1#PjEfRc0msp{7j8NKFyJcqfDP_ zIcJj7v$dWit>o{_(y2s#=LlpI5?REO3UAo8i4+uV1Wz=rEvcqSh2)i=NoZ|l$ z+?Lf%9w4uU_6NEZj z3`OhLjZo*=p`0BTnd$n_FXUZdhs1a@x0|jkrm2uTRsOUH*3-53qU5{lC?ja*Bc5$M zEt=Ign3fhN+><5_aXf(zEy;9FwidS__;RWtHBUNEOVV5?uBR^rbR(EfdxNIL0FrWF zQGE5+W*;?smK4z{s<3R?vvlmb#CQUw63tQ+6sn!-t|F%PD!r@4&K_!m#pfE9Tj_Wr zKHT$&%N==M$JQD6Qw3gA0wW75J?ct?Ldmp-kIk zP2yiJMG|%l)on^JOrC!ZLhdK&#=xwJr1V4!nhgAk!wG+jgh#?M@yut-EJ^51B;JT+ z6U|+|@6rSxC&5wqPzjW!t0?psK7J8G{2piYJXS{{MLny^9V1b1EF@|_ zH74T7%dLH*m$cDzb}?M}3rxAOP}j{-Ot~y5m+-ZsVc=@rLB%jfyv$T5;@BM_Ew`Dk z9}Q+#|IS50`>Ra*26429%F2!Ob)yO3>fVErCpZ0drhLOV%EN`_#`xM%B6%f^7k^k} z?UhJRZb9YPCRD>}ZO&pr@$vXEiA^pxJ=KPN_Df>ze~i&)kGLPRb6* zy=ht)TuG+YPMuD5+HA6dxlQhFU!AXLl`fpb5*-(;zp$olX zV5at0l&XUdx$B7qyauqvqaIHQZd1M$|5t6|x{b zO4C0jO(>dOh&s597Igdh?NXK2-;sItVLC2erL*|IQ+zM-IRN>H={9cWmrt*lb{WQi_(S(j7jE{hUsJ_&{F=T=Z- zje-#r>_=72J5vhlkkyX0y+$RD z1tq&2u@uxNd;B~U_Ka|`)Eo9(dW|Ym50Qd8VkzhdFYGCEQrJRdSf9dZRV|z^g+-&h zBU@7utIoOcq-Q^&Mo#Wnq5p$+gokiWFY-WFzD1x%j}bs9l08s9LzP~&C)?$3G~MIx z1pHP4Iy1s9zo0}N`Bws*A_356@HAEE1}jU|3*QrR;W|X{LN%5fV zW41SuZs4ug>D&Em-*Vjw^wv-_n#hY~9V?qi>(LeamAre@k~a^bDT!zDguRHWF^T5iLu| zhssXRvq|0gG)&&H<_GlYqE6cx%>{k)%#Z2I9c^E-L5!;Pn{bTSNVVHko3uQRb-tF_ z6`oege%UE@u^c|+cgidD>9RKVJYp3aBgIOw84MbSen_9MVUwMkMy2%*?CAWz)3&tDdSrPQY(4^p~=ZngWK4;?^d>eGX ztKXn+54Z7c*RDDmbiZ4a&2MV^lp{+LA)C)rf9-a`cT~4}&Gvm;8{O{%fbaa92!3iK zXm46nN7Z}k`Vh6+KZ&B*lcG`$hM8rQ?_b}ho32od5juy@C{MOfPY7+WX#JHauCkdH z_f1MIRxGyy^P2Jx`g&Cx|Mu6^b+oUKd6&L^!uB2=<^G0pL6%nk`-U_D1G_1?Mv1o4UX&Q3qfa^dK-QHrtSO=8@=u)zI7LUx`vH0 zYfxqRrqyFI%dQ4rc#;Tqw6#8~gr0uMQfk4_H_!MjeZQv-fIBOlGz%lLYads_*m$$t z4edSP=}*w7>)SqM)oF3;(>?OP5mnsqgSm%+u~mDyimBjJS+V^&8Vw?HSG zX^TT)}jOFTEg1w!bH21+)w1Wlp$|f%k+HKCyC~$-ZbiH*PL@Un`hp6)ZesM&R<}j zHKtwhIxQdkP%a^`zk@rl2GiyX*i|_Q>&#g zal@`B6TqKsx$1antG#KDWasWiWYh2+W#cTbgRqQ*>>t$Ut%?#b%mcy#K5Y|FJF#UW zyzFZv;>C!>t|2@}!q3t9EV+^;(szDsb&A>vJ|)*#oPJb-N3H`hx9K zo~6_aDghH6R-$GN9w}g&zuRb7uy$KnDG%R^ba5qCh*z#dUASqlMp~{?eI#7eVDVnD ziO06r5l=&&n#iAbq(e>FsAeD)dN zlW6(9NvNM=v+z(6Hl~&Amq^CFSbMmZmGps4rZ8|E(!T%n9wg4!kuO_`CQdkGXNu#I zf(PRQt?tr$MdT`EW)&7|UfT?h$GWzvT*PzsAsO#QMB|uXB>DYF&fSxU==@6%%&?pb z*yPl@r$MvdAtc@q+KkaXZB&zxio@7Wj7|f1g-%@3gqDU{X?CBm$;g3aTbGd>URJL6 zT-1nhDZ4k1^N|O;iZL<+61-Zci8VdBrN6Gq8eY^UJ@5UurH`N=+L2^m6mdC_4-K{# zhsBTsx0hNOrSu4N(lyg;<)(-00xb7pHo4i!wdHnF?|cAB{T^a+i-l50(|>^U?D?jT zWvR<$>e(RKFAKYbO<4A-)9c}@82ssywof&$suRq2I926vG+e{00!a=@*d?hCDGi#T z>7{HE@%N>cu`kaxSjP4}du{q&Je1C#FK_#tyIxt{>897r>6TfAUYnEaYfQV6jaKV= zksO}ig|xRhHl)$@dh^%{d2oYq!jzfxa$vCT%R;YW6I#rl$b^I*`)jj0th%*r0&20ho%F7qNy@Jvnh|?P5U-2GENV9ciN$#i z^$^ug`WxkLreUKQqDByxk(dpiy@Co>DD5$=ywpWlH_0Y!d-aoigUU-LKHt#xxn{x2 zq3A?MW~o+96wI(-E7=SrYcE|ED)j!4dMz@15`k@G6Ps|_(nL2$j!wAN{v_Z(u#t_W z2`B06NXiiuudmX21ijuf9_*g7l$+b6)FvKQ$|qDb{TswGCLV6u+mV(roAgMj8dYav zQXH0cE1R@h1QS7j+kqtWr?3%?2&NZ@#gPLq`Ztm$Sjb(7wn6S4Ceo)s6Hkq_Jl|i#(hJ@M=t8C1vY*Ys#6<3A!!)al; zNNJ}lDBc%s;%QS;7x8D+62qp5XiQBb$+tjq7Pu>Hg^oglKEKpMU>EVmYNh7uh-e5L zNq#(%^HA3)SF3b$)o2tp$uHZ))xs1z=|Nv5VRuI>GsgZ1;;$hw>z2=@mg$WYdWafy zyQWQ8%@|z7*X>KfZX?N`L~`y^w2D8A7Am@4^WsYgYD3#HkI_R6y6?^)x(kni z1!N9^+dDLLf?c3&Vng8&xbr=QURgR^9UL2B**3RP=_ug?82tTKJ--juKluA?ZQrv$ z=}0AqC#IQfqiKgu^&-D)sq*%V%I|0+F=HSLaphRj^WtjRSuWIf_O6SimVnvC2BU2P zP#_Xg+&)UY@54T5Yyu$7?~#V5ymVBX-mO$2Sz%Ny)zI_U(-41ihuJ#6A@;YAdKf7M9(DTr)@7d=_*j4bTJH^S3DEc{;m z3a>HvP?_OUXokInH(4x$EV!?YSL?%c(?;$Avef(9q&A{*EAcmdlfly z*THV)eK*j@2iu}sZSG|f9aElYc}-5$+C9cB|sTT#;qTE~+> zYoUs{4q?CzBne7-g^{kiyEILRHEI(}Yqeap5)dq@o)g{`IU9-slHHJmZ97-3 z&C*Ydam!7!38dM!NmR{~P#0oT7`AOCyBNv1lk>Z|YB^NpY82`!+oaQ`>{iN4$|T}4 z*pCe7;HF(3X}LA?#gX8gGAplU6HjYRo#2`rNp&`Az-Ub%ITuMdUdzj;NLikSO&)Cy zWYAoD1c|f!L&G|3#4hae@}(ug_aonRA9 zvn8Ei6BSi$ft(Fn0+OwfghT3)y0+oLmVKg48ZD$26iB5BUtB${*rNwpyk7lt#pl5K)ytf;YBwQwt+6?LjjDos&>;s;FP!!S} zi8Smdiwz9uPP0j*`ALK3s4B@c3Hcj-(nhr*Qn8jw`n?I((wR1yG%X2=HA^JXg2>y@ z64ES;G~CzderYf%XL07(#L@biPOy4|q{$&?qptzU2$HbhE{VsyS)A|M#L@h=B)Rc8 z66lL)poZVJ5Pb=WSU@LgL(ngOs5kAo&fFuzu(khc2j#>l$Y8h(>#Dd^Qf9L-iYREcmNyK%}B)-MHez;q;$DWB+a69f)`YeD0C6N3B zN!U5G&o6h4{n?)o_n+C8N;KynNq#nsNZvy3hI6nG{TqpR%aP{H`An`wsp}{c3Ej+6 zStm2y6aQUFSG<;BpSMZMf%CNSV0_{)Uvz#sK23i4vhB;YE%#RRdo@FrjCZFWNfO@P zwn;tX9os;z5U!sd_Y8gb4d-|NMHWXcJYU;Wh`6IH^%D4O7N<}ZR&p0tu_LV z3YkD#$$jQw`uu^&&-E)&AFG>TTiQNv2Q73TGjO8|KTY3OZIxuvsf&^~ELV%c9{gRm z6T$pW=9JJk)Zk6`(6>7}zg3@Z+%=q`r|8@LZGx}^P>#* zs6WxCi`tlXoOmd6<@faI**31M5Va{I+w#;~iQq+>t6*)bjETWzwWC!--sfblK9$V> z^%xPXXcL^r>)=tAt`-+ot@FN381DDM_oPa_q3%*vFv|wBX0IMb>sB%;WbF*%wV2u( zTZlrT7Uk$Tg%b^~(UVgrd11FMygs}nb^B?{{HmK>lAZf-iQXxti%`aT@_&9uz{lE@ z%blt)tB@%b!&hOZ{)Ij-*y_wadn{X~WB}$phVMN>M337r*h(oilquDyl4_=nqCKyv z` ze2~8WnN6;qb{Qn@>&lu@{q#BN8k#xT?jeftL#8si;&Nh8X_NupMk(@*w=I0mD%J5?0JwG7I z4{Xx1Q>8m}S=$x5;v6EIY9r&31hsP1MMUtAo&;f)Ub=+{es5ETKnQE{B^5_rX466Y zen@zEV1*ykmnXZw3~x>?ruNo$w+X>RRK8xV(e0t|7UUjR(f7Zwan`>NEBW)&>HGO@ zTG77`>-fp5>HAxq{DaeF-HvqpS@iuR8~^rFZ&=gOE9uMc**J3)L09&IvkjXlllixe zDW6Gc_hrglTcFohC{v%x)}!C(eN;J`Q5zDUDNubiT{5QciWY5S#cJ`4I9 zRZ?@3z5T4XAl6DT29=|68zDVA= zKfZ!R>~T;km|H$5f|#Dbdz2BeU<-NN7DBU2Gl_uO@@cm9`jzZMS9u>ui4P( zte&^&3iDg#Jnxe#;Sg|l&L6Y4T3{;hf{~zjf+%F(#I1W-rj9<;oBOn9X%5iNSk7+2 zCCO7D$)kSkA=#z`~dGHHUu{WgUL_ z4h}~khba6oEa4#XBh;R&{#|^7!@P*kL1=ps*AY{`j<9^DEL^{J5dIShEoh;VIUs!q zo5+D?5dHxPEoh-aIGViz72-fM2(Ls!4k+82)Pf`qg-^w=jU9WF;xwet`G;X82hd-` zx|{qBihYnm+mo?}-M>Pac=8h(f}QRrq(iK*H92Ho2yMrXWza2xbchwUC5QWWpnP^L zgYIsm)3EGQg$+?Y1Itdg3DRlyphem|&A1RHGwi{nxELuox^3GteJv*^@1i)`=P*e) z1i2eq8$gml5*F6?{`6JC=kcI=I4hCk<;n~R) z)UI)i#x<|m87Va<*c}y&xy}F7+(wRTh7)uUevE_`w6KTr#At66(Sc?V?uUe0ce7_5 zd{wRf$*LLM%})0Q(y=+U+s&G>@M0t}j?h@iE=4k}W1Gni-@&hqj%`xB=b&iU#FirQ zZHLWugxE zNwFzXh#G_&Wt_2cW&9j!V34eeBszkb=<-nf+(a-*4o4Dg58jd=^RGz2Mjtk{h3Icc z#DcZ^yfv}r7qIaR?`0)h7Rj_Wrya?zQE^VrU!hz^o0}9jA%)f=`sOHS@|=yI8!ZAP zrz45h_b>tID1Og=A#4z&nT9k1!%Q4{1bz<~CQTD*xB=U3?o2p(C6d9#Ge@q{tC3V| z8#oJb5}Jz9Hb8O;l4#bY?a=cPijPqq!@5k0`H;UhqBss-+<`F0h~gl;8ws^uX+5>^ zFp?O((n|Iyk{L*PH{b&w+aQSr3COlbGR?B-{D*N?q>dUlEE{QBNTaoqc#gYZ=()X-E{ zvz+Ex8I@q5IS5xpLbjpK_%KGPT*s=V;Gh;C1^ORKXvDL@k)ZB4&vYLnop!N3ps^hz zIvT|^F1AOKAB*JLDb=W>KPO<@^U`cMu18Uyh}4?LwH_WCLs1QnYbBeGWJaQbh_gq3 zMlp@W6jH9Gwnjqrc%LrX8*5viTUJNXeC`_ z2ZQ;r&YDl`5{K_}@N-aSBC6pN9fWg`P}`2_61m=z+D1K?AzRkij_Ji=d*ooTDD9CE zev#@%l-glYCgsgYsg0oUp4G}Io-u*~$*M@AMeOD?Sii;AHX?SD;&(`)*T8%{>wWy( ztbs}LKO|w9+V)S+iNKp%=O6{QVrcX>s`HRaTM3|KOT~PUfPi1?dISl$YiKY?^hYGp zB29ee>p=Y8h%}Mr5Tw!CobJVTV*`F3Y)SmuXmgWdDWuT(hbbueQL)F-#!dbP#h;Nv zvne`w5o~?%Q)GX|&kdUblD{E|-U{%7*%Yj?*$P0jGty`n`109{_`QLFG%q8Kw#MLm zF>Ml(8EXtq(hZSRYa4iQ?E+M^(KbMG5t0Z53# zG1WoQ_E@$@;r2kS8Xn6=wHH$HY(U`1m!J4KxmQucM!e^KitY`h)mjIhqgw$*G+GBp zzUUxn*UI{e-P)*dBXYNr4I!DN^!%(dacM#c4>PSr)wS_XGUguq+_?A(CjZtm9e0 z`O!#>Sk^(f5EAP8GTs#YG0JA@%b>UlDKyKX#Wdq3!Y`mahGikmvPffK1h@M51;ZT5 zWWkU$BS@pSyZQ3r7Wlc@?k36BNWxOJJqp#@@?hedNMo$D*y-LzI^D*)SV08Ck1bx0 zM5c||32#6`ZN5ShT3>3MfmFtP#YK4}Qd;n62fypn_?^d%(25**Cgr9`DYa>PC2|oI z618a~{1g&eYNyTN_=(AD(Jwk`XHs5=l-%drc1cG(^d~3zfy&h#5{6R_8`WA!rQ=wh zwtNaHjCh1D)9KRjgP6}C6?e@}eOjevv1UAqc|4LBBR3}_H_5(z z!!8_z`yruLFY~bgevI=L6ws)bmFzYo)5Z+Cz1Hnl+pEXa??SnZF~g+zEmCNnklrAb z7vv8A1fg7mG=?X%)BOzTw7Qrt({HO@aF=U0MqNyb$w;A%8}Od}dnk@EZUD&#NTQ8? z>hs_x@E_(SO^x99#^{GMMWoTSln>VbKT<9JAbxFX$)I=yDfBv2M(ILt=NiZF79fP# z_`O*NpgA3B^p?<$ja;=jL3|n;&TI*jSy3F2Io$gBm>oR2hmEoc{~ ztEj8yCy1}(=VmQTlH-v?uLXS`gaxO~M-Vmq-mC@CG?2!?2sE|*LWFTKes95$G?yX` zXBOon}LqFD@OcqrMw*c{s~*DQ|n zCA;AAD>I(07%#{|bS|oIAD8b?COe$V6w9^X$_FEyt`HWHzLD?!c%BZ#z z%K&G!byH}L(Yi(ZvVHtI@NtA0#n4kR#5o8tId%m~h3xcMBL4tmoQD`Y#K)j4?rPVT z!kca{WRMFGBz{YjO*LJVBzHYQ1IvC1a^E(#f{e5t3~*VZ02b|EfdJdZuK@wnN-f!) zuS5iwtI1U>z%cCRkIjL@MeUF*Cc-#%vvjB28u$zR4%}-E8BxzAryVjc>Iv9r9pG z+4dVsm1eE)urZv}2SZEE@3!&WxF4R5+TUwq%$G}hw6~?=_uF{!_0HbBEOma+#?D8N zBwEE$-A8OZd2ik(qLJvO@-+3j^Qoek-49uxXX!+YlO;0h^|sM%e%eIeReY33*}mKmPn_=+)qdDd=WUp z2rLabG*YJ&WBF2z{HRdPS;#(4tB$nPODS3^AeQ|cWWGg=CZ+rTbhSAbOp=)Qc?t2R zY+S(mf@FA?>GaqrJ;*8)ei8ECCWcPhPRL@7mmvQ*-H0BB%#4L=h^+FCNcD)p574pzA`bs!C6gK#?{C-j!#jE-7VVqDRSpCLzZ68KQ(97g6?tjbL9Jf zP7Jh&YeR=B17gi*?2v6{_aS~k2*(V6sU#AUI+q)YDx&K;m2mkMK7SRaV2593J zROgg98W|d{SF`yXA+&p*RMBmS;tIv1YY?I|gRK9oraKYAWpvR9Ia;1o)#!E==6(-y zce##e?s;f{`;uZ!dFw}{PJW*h>msmz2wA&U0iqQ`548+a=Bx}V<_`$rS_S9{K?g=C zaXn)E2{Gc?B~^p&*jf;tK!n(eYS|&4LI~GPJz7z8rki#_GGL<5AixSPA5j>m41?Xi zv&hBdZ%d~Of9sl*wb%A_XN#<=#7cTv*L>N*4Sg(&SXX?($GT<(F5dLJsCY|pm9cfd z;?g9jjV2h+M8>XV2TMM{1J0yIIq5XfC@#4)a;;^ilnUxaE?Tz>TAG=jLQG}zxJZxn6UhWVea_{%19jUpb*wbQ7~{Ve3}iWK~~2MgcK{v2dKfM&v- z8fJbTG9N&8eUpaSUx4ffP`tK5!`v@I?gI#~@69m#OOX8l!fX37%>6RtK7jE0mJGAM zB5C&0D6d5Ju66d_Hs3uUuU(qpI$Vt)J2?g@e-L?7f^mL|IA0wY2d_3T*7bcI7}+<#!O8xd@9OVAFjFv!ga62B|z*A z0yF<3GLLUJ`dtL({y1_UK<)Z91ZMx|B-x7_2+aOzWbazt=xvm?TL+Bt9HPW;0sY1S zbAJK3$G1%FG5|CGJ2H>&7K~c}4Dbp9>==89u^#+qnAZ@-HIeV#(B^S`MtBnu;&%jb z5}(<>oh*Cp5I(bi2ieE>&hq#@^M4Qd$2U^#>^(F80GY?{U;4Rw=Kc|Kj~{5^X?w<) z7ia7Ps3$yX&&(G<=J73)&Q^yf^O^l8l4c(quxIv*BKrXvS36wK+!sUc@z*5aOg%#^ zfe-`O51gcDj3p5xe(Y>HKF=Uar2(RynP-q?5M&^287Ji#V|m0FTwCT$V=-D8d`!2{mzI~eOzf+OQYrkBZqi8T>i~KPV+|EzKZ9|6;X9(W?y~)VN)<{ z%pl5jet1H_l@pPfNE!T51W#e446=QS@ZvGV9!}oE18gHvDOdkV6u~RX(JoYpD*c7{ zX{VUIq8yEv7UfJ1Z>Bk;oM)Bv;)t_X+w}$Lh;p7+&=BRgE+o)eKMs_bP@nOBI^mAMC$Ls_p{mF3q~?(02z9furgZQ01*Q1CJ? z+{dS%`BvJ@aLb@?A*k2z#p}X#pSUu8Ety-Ej9xg+2 zt>#xu%{OCR7i|UG;8?d1av|cU4H3KfG*Q4w^FKS#trtENuKNLjw1|>i3=dubvp1N- z+kHyG!qDKl=PWfQ4wtj~7nkaC9w5{Q2FFowr=mU!it=(69xx6Secq}fugF6?Cm|Yp zX{jf#3TV7E!}tf?+-p(D&IA_W9({F$O`)BKiNEZu*L9d0_DQKEv;b{VP9fVE6w$#mR zeY1rdc|C;A_>2zy*;bAo6>DZH)rz{wDXP8!;-{eTJiV_dU^hnC1Cy_IzBrmKm$L$S zGel0I!gTC3Ct$Zk*aMQUFu~GUc>%l)0(;GV`ZKVRVvuf!&3b!8^_mIviOP2gX$#zN zBU2DPg*F~B9rn%>1RG|lW?g?3VZCC$K6PEEs7+Yb?ueU$*Bqro2t}Iv26lONFBTd6i7ZE#!-lReGyq4DjPI}{XVvUBgdA<$JF!&2j6+2~u&T&wr1t^M=Cd_Qvs=hy$44_YN+L5U z$S1}o_d^9QSJ2YKUSDGW-$Y>3RFLa!VE4 z1%2f6X*I$M60)h31owLa_Tl6@I^h}>a zLDKR})9Y0kMtlLW(=v{7c6uSx7|*NoFZ7VbsCWm3L;ht^7_WVq7;dVZrQSL-Lt%rk zi4{Y|Udozq|?Ug6~yqt!l_WVp)r~i7c#*bYDUorrS5?3B*l18Z0(#vu zMc^)IMZJS$+R)wz?6*qc(V&fTwb~rZ*c81V!X~C@b@`UuYJIe5QS^Zbyq=E%m$Q{( ztwl3kdO%Qg!b6Cm=GnX!s&!_X57(+CUXzx7Eg)AdwaOJTLhW5To;Nm80I!*R{{mEU^k@!0kJq4t*@cR6oN5LN;9F&1Km062 zPo=TP(6^j3VbI`P&O>OgXt>|TF0Lnf)&&TgN>lS%Lyp#k1^PvZ?lp()x6lh}pfbKmm&VPDDKB4nti5x@&IL%y>cGPq-2# z@k-9qe-pIVK3numqT%bVMiEj~2B|>3Ic`~T`zcD2jxt*GPG_k~#~z?dT#q7nU6ARw zJ?howX3`JcfXH6U@%6=g`J z@tf6JCU|a}gWEe0Ih9E*P3p@Tep^^5|89g&Wegw;KsNIp14Tl009*6BHHj)VY5DW7@` z0bf8suNB9uXs8&|;IUuS=QM~N%?v)6v52aKafzo!79M<)hK8-|r? zt5hn^IcKMN=AB3V=_l+zz}E3P%j;9$Ve<;`M+lZ!J@dtSF*jB!$n#zE&L-u`%Whuh zv3;tC2@4iLG_S$H2d%STC>+Qq5N{oyAf-VkqjPE_TX0*HxM{u1OHTnOt%L2|) zh!$!(+h!SP8?S3%jY886;AoHKt?l8J6hP(TH0^gKsh3^6^wQ>|i{Adlsh?FqKVG3p zN8o56hn`lm>dDJ<`oWe8Gu4N}TGvpZ(sQosrO_sB&o-Ls0W!gFZP_}0(ucfs#f85* zTWJVd$*-G-ta}4GT5FQEwY+9+6q|N+=K)V?`#6`JQ1gb^Y$-tJs`YxVT9A2jHbH2w z>s|fTI#-p4kv2zEuXU+DQCpO|PP+50CJfj(j=3!Yr(oP;)QPK)$lMy=wZCg?W z?l>X9GW4$0*xLn1zMpv6)tMghWQts>e^F*StRb zj%XRz0mlxh))<{URb5$_**xlbX3+qfM~i~|P|wVHe#IH|+&_0p-z=Z>WbO;$v(j7k zEqJzG&(5+iUj&)&+&^d2%klSP5V|>zA%z)m4cZAGyXg>?q4~DVx?MZWav2vYHK=i zFN}X_MA*7-(E|iMAsSa;xkTC53gJauX1^k`-=u%(>BvSi*y~`vDWF*;JMa)An!tcRRk&*HlMOUH3#@&$U+MZfvV!f%iy1kFS(5E~;z{|4Eu zMXN^dVn~DB4Egu3|6(J%UmdLq(yCKeG4HoX(Aou^?qblj;A?f-G48l3=(uK zgRi;Aonl2dQmrpYgebMPo`Jc_AfTab_#xD z_HvwLfc+4_wZ|K&^`UMlg%pjPdIQY@b|8Yqt4%3e9<~7-k{m$2VFSn@fa}~)S0VbH z;jlf_f%?xwIM%M~1)+X>IQV*Pgqs$Y?mqt$OHl2WVS zRFS2aS(TKYMGalUnj`TV){*&E6u4CRz&x6(N)}OR)U-#s zn12iT$B{a`;mBNPBG))lub+2FeH8MKBXxK&lBNDSa*ZSP1}>?OADn-_P-~9Opy%e) zG1PHG>)%BFuKw$?m3+Ngqg-sF`+W=9_SC5OXLuRxK48(}T$mBh?j>JX_*4Afa$KOkGQ%!5A&Xa4oWUYAqk0 zEo6k5h~SFgd=V&fplJD{5MsdgFz+vOO}>sW1L{gk!^jB7Bf@~XQrQ-TuD*#71L~@i zNKwLk3t^I*+DvKx%AyK zuFlzrwCljtQMm!ddxi{kEFD^6ocH7JV+sDw##h@GGMz{&P;H1?nI-8n|JBCes)i+@!m4HF3WAcAYq@3%<6C$``V4nu5 z7aC*PTCg9^5Kkb)AdOM4mV${L^M4BYyJBpgDu~878i+qftIyg-q-&#<3AGV;cRkky zGx~yB#unR#~X~47RR=pLWi?LN87rGwT&_-Q5+>wr@yx_4eLRNN<}^ z5TxnN70p)T@Pc&N= z_g%#u%+___FdBgperp#enf-qidl_5D=N+CPW!@hmZHNstqudK2>t&q=986QrxQ0wON4Bqd*)`l`!e}Lv5!Hc&e|0_K z2WbS*L|Lq&;s_?Xfvl#3vY-ydF zUPlk?k@?n#XTx-b3=VYe-T9>qY)?kE zPVeSq+jbs`cbLSVg+3LzyUw8~YD&Lh(KX0?8ggC5WlUlEgRTu+dM6pw?`YjqGbm>h zh2*+m;je<}18Ol<7?x{h)AJ@b`Y0CrVTAw&=9*;oM#<43a_!PGV?2sW!minq7eJ#G z-1lexk0r^UZrqvtpG5x75jAW`d-D!yfd&iz7i8}2F1?u-!o&c~{aNHbfaqZy!_1#Y z=J7=bt9cQ*#}~cP4DQjh=r1SA+_1-2lVm;~UYuab-$3TBaj$cuyz5a$&LB56E>BFm z#y#g{bir&EoSJrxdrp4nmRQWAttY2la}qaqEp}qQ$11)utdGI85^U8l(-V;CN{-QE zMm<}j(*VH%s>Rjf%AyqcYD0%>k)TUElu`f7jI=5_{X`*XR!Y&3_!UphVsBLiLZzxMbj?)c2${pLaosEA) zm426oT&>bL;#gS>WhQs;5~^z@+c}v3SB>Xl+{BYMeey>`qtjuj9 zL+V8yO8P}lnT=*tB5`dj=87(Ypvkpl*;MPN(nJG=E{{StL@Rouey?Pob(396f6igt~ui|Vyc%4*$EIoHU1j4gXeb>m=V>dt~4AnxU z;cU2=wdOq(wfu{sZ!K!UM7EN4XmU4N+1}*z9~H-o5Ct!7M==}9s1#7eW}%$PbOQty z@qL^i;Id8+&gvO>gYEy2ZQlaZx}injkC8JjJVpy_uAQ+W<~z$4nqjWvXx6HfuH3)QyeWL4RfjMc0&_qA;_lvOTEfLxKEBM2?E!-N=0AD5Lhtf;kmy^3w=_`!61v zRC#gog&-Rz^ZpF-#&ru{-pyIzxfbUBxdge3Q!~u{3&8{ciFDXBKv;(B3l$$ zp|F<~6yJqujfc)OQ7%B&ywpQ*m4VV?FJDB#qozepgRIqCm4aVq{}Mt*#hWo8&Hnyn zM2yw=jZ%@O_vF!JbR|e;G zBwI2@{q>PKp11R39u6Zy{EZNyPj?rH->kQS4LEignv8D9w5CL-O4pv;dVL$Zij$)G|Qvy+cl(|Nt9VtOFPaO zJ0M2XxMZ@!^k&|*Pw)jlus~I9LZ#d8{|1eTNe-mcZWOL zF4Tvd?a^vhM+iX0$&_M4K#UK8P4AFD;bbv@wrkmHFaG@c02+S;;F?pEt9BC6dYBkSgjQJM5 z7f-iP)Ra@DPo{9GJ?R!2ItJ?zwVLMw8=>cKB0`Ph5=OCmpl={boMEB!GG#a}2!)-5 zAh8tIe*Q89k%Q+ch!U$R>K!`g;6FPdkUE|H%@-Tf)jG~teq+7+ziU|shX8;`VQn9r%}t<;F2(ldpEL;?(y`3mdsi;_ib6MO9k04MSlT;c0IWU$@@JHkxXAr2;;r$tP zT3QwRU1GR-9Fd~VBDfrc9Z6Q|&j{7$VmJ5V_JV$)TnnEd;ud)t*~ghZ8~X)9Sg$`U)=9H)=aTNTtzc&=3{R7Pn#wnT}V<=V;H2o+~u*MX|l>6)blB24az~Esn#hs7p23s#5l_!Oq{XDvGu(?a*q=wx4DlOv#`pr z5(31se7e(?8Rm6S;UQK*_Hm+_t^=j_1!3`cHH3(>1Vc&0;Mmj}$U2Vn%-XS{w|3$X zu%0)B5OKPjRtwu|-XuhcGZ+(!eJyW8REc#PZ;VZ$Ue?crm>%|a;#%iu_NLEf>Xu9FkZ35`!h&T*m#Jj=KTGLAF2bP^NslA1L5y%GZ8*XtC2 zbMt>+1c(zt^P$qtYn<&Ex>_>)!vTmCXGMmQR9eMifu7E5u<=Ws9gIM691#Q2LTYB1 z)(H#YgKO*}4nvICl~Gf2=R7crKyiY1u1tFtNL!=kd4oKH#MYQ=syT`napuliMO1p@ z3?-|~nM=^q5US6BGC!-5Ez@-}Tho^ncXP(jXS_7F5x*jrQK7N$RJDOc?_?0lbRY!x z26FGy!*Z@Xi=P@t&X`He*xgajyIBXwS*&5>s_SaKj=$4Q!8GZ>e$yiR&U!{lbes-e~1&Y@?9iMr+iy2~V`n zT+rU9!XYbM*H)wL^Oy-~wc56)<}Ec&qu1MD^` zOzDZ!vDhqSc?%!+X0Q|R9$93wc9i1KRd6vm+u)TC(Ih7#RMfJ#Z>7{xx%N7XKsy=H zqCys5G_n7}8ax$&lBgB~i6v%6I}OpI7OA|eH7gjH8RkrciMs#g3)4R0Q=%XyNK49a za}X}liFsP#NGr@Z#yHcb<1i8zCFdfS-x7latZw(Mif zvj{TCfYzBCIeN?U2sTI{++8}T7h811j`k0Y!TLpni`o?H)o)Qz+)|fpYf*dhl z1%%mySTohYuBkT=XAo!U7%1ODlvN{^BJ$a0HltrET5dyHi`awKGqkmcs8gQ-17m`{ z12Nu*5;O!s12f)BEtH7Wh^S$yCvRMjV3d6o3am#&O=Ucgx+@Y5(AELC`m?W(%3T@@ z)+C1ObW%B&rGwV;R0db_U__0|f#6@m5VaX(AZNtG5HTv^^GD24UI|sr?s5pDWfAS5 zM6}x71*7Y{HOjJ*5qIhsI*-r?Bnmx3N6_igCs@)b0!K~e{56bF)6#;Xt9>KVZpsLC zSR(4|?m*BHsalN_R=0I3eNGMG4^I}JwuhqxXrKVev}zGlJ&sUO%lZBWL|Z{B1%<_C zXCY)V-j5*NUG!)~jY^E!S4CaD^H{`8#^X{=)$w2Kq$eO^V$IpIL!O9`QE5f|6-$SB z=^_Zm8Yd%Q)WoYdAPpp1Vkma#ry|B+BUd;^T1Mv65G`siq<4)%G-E_Q6Op1q%HBxU zk$4WGL`}nbqoARGH)#kQg}#?G1bW{K5n?b$@AkSEBh+9P9qDZ^MYO@9X+m>(*~<}Y zu-@bJu0KYkft$LF>LMhi z&>(7a8iOnkCzf*77j;4-f-BDVSmd1I5A(f9ALW)jn0;xPM;K*9p~$Nsk!|P!L8l4Y zwG}N;M4+hC08#of>rg`0aht*}dldnq4)hdCg)$v>qrB&V5pJ+F8DWFiXbTWgGHNUg zOPu0hKCWaGix5%W-itpPCRbyYLIT5#TKn@v>n=tN2U8u!I~uhgH7fK8mJ4@)80}a@ zi&|;yA1%m;#Be7dT!Na+2Uo%w>_h}hP?L@D+B~D3jA#jJlF+0kPer%{D@QL_bln+O z?leS8uyTa9zJNP3Z8)jRIS3c^T0(!FV7SPxF+<42p!-LR^6^0VMY&*2j+^p( zhVUy9(#Th>gY#+M^# za;_m)2oFWDet(Q;$+>iMxVj3#60BM^e7S|Ib}gbst)uj3uKB{~`t>l02?Jh-fKdmJ z`UEVFQ(_5H2}WDb#~(eGGO}s$esNOehTY8w5*Gkuz)M zNuu3uPZN$N^@c;a3*n-chx;>2hNDZZV4S~2)Z}{Ks5-M3o>AdO{2c=Bm)JUbnSEm#sx5Re966L5Y6 zOm4jATza)qkfW8WxKNsimBOgFOvi|eAYyX9fcl1I-1rniCa2a~wNY#q!@N>l$;A;d zxsj?CW+P&-&mvfIW=iwW^=UpT#;VUFU~(R(UdR>cIV0^Q53c0Wh?$((P?|PMzeE|5 zL^YQ~$mAk`dbMS&`mKm?$qmW$3ZY!KT^Z4mvruyZd{qQXvTDZq_v)#l9Z{DHmun$f za&w9XEtG`M=5R+?2l0|~X7oHzvrZ37i+->kA|_`l=61pc2$r0w5SU!v-x$%7>*A!z z+L1z&o23g!@0JU=EfFrc#Tm*7S;^TJXSPAqs5=*a!9KmxBC57Mfj!i;s)`L(t$BIhJS)EgO5Fy4dH7L zXYej$ZUp}fK?XN9*Z}@Hq6{9EIyQcPiC77!&Dik$HG&Lo(YVojOIk2;gZDOsNx%rq zjomvDW$?rH_6^;85GnzC>+T)PSmZv$8hl3L+BE)snqcN;@k0ofh!%M}+?Y)M0kM+P zqB*bo6M_vMH`q3XpGXDBvKjmo0u4TvTQ`B9L8QTrf`-_PN~dby0QEZL>hb~G&huAN07n$l5HdTp9nPgAO)xJ{)H%mo3~?|`ag&@ zxY60Sr{71Y!Q&O&mi`~Y4Bket9sMz)3~txvuEBhGdp3!x7<-Bfrh;N_J1>kVgU?tj z+s&UuoWU0|y7wDl_vq7zHh9R;L4y^i&!h+jizlB$u)&>Br)K6F$`=qTF)hN9!?FlA z_`#e`#e$iD49{0c5z-O1d=ViNQz;BsUqZ0K!wKurjxQt9;BMF4-&_+x26ww~l;bOi zGWc+aM>y6^2gW?Qu|C2K?slC=Ha0@E)uXPr%&ZmY1u44OAKrIZ?S7G!-Th|GzRPhARAh>cK)>8T4bmaXR-WAtoq@Gbx= zWK)!-I5Dymji%XRZb_m$Ue?LhC`l=GoiyltFg?8o!fc1aq~C8EX5;LDQlxLPjp|6# zVzN8U4OvvXSY+81Wto<`sWitZo6=ad6znsy)$WF(9GaRa;8^!W^vKKu+E~^1;5KAB z)V&crms-^wj&whiA)BrYW*Sj+UOeDNQ-&jPNV+fyKc;y-~r=t+*Il_k70+k6xH+{enh@M^- zaE#AQlp(!{C0tiAoWTr~BE6A0l)~l{jzm#XR|vX>W9EVs=pl|nDN^(hO`3w|GSElA zfkM<$8>>6E5d>`%ECQ|P+wr9|?v_^n_)Zj$F*3d(7eeaPE{>pbXxV&3gcna(SZ+UkEbil81!9^y32xl*>#C^Uws*EZ=6c%eQd z=2`vJe=J+E>i?&R?>&C@gFih>d3NiWVM?A;pr;&YIeeU)wZ$N=M}bo579D{s65N0i zc*l7CsH9Aam{H&ijO8pn-856U!y8eG$b6SEUE)x!TADR(Y?a)M*xmtmKN{$GrYQe# zD~ghekLrkGbrW}>4BoL!40S|!i@Q;hku;SzO42 zD2VsALkx?F_9Ty>FsY1k9iy>1ls}>fqbW9wddbgxF^~uR$5D<{M!SwG=y9g@(@>4V zsM?XvlnY_fKNjfEC{Q&;#h^gpH7b_p>A5UVBRrAI@;ry~q}ij#tMy@ev%}J(UqC^k zUh;|^r#Vgc?J7LVQ?ebp?~FQ^0zOc65DO~abFjWZ9g6`U zDR@{-8S>Vmc=d+e=DgNg%_kVXDvttgh49|7X^b|g7sC8H+y%Bp{1mREGy9-TW<7&EtND24Z)X$<>lw~BoNS4L6NZx)!x)liBwJ4{<4*6CaWC8_u>uElN| z_pELl#Yw+;U~)GLrSM)$kF6Bj9PelpBz<+jRPR`nBE>0x$CX)Td?%nB-iK;qH;Xy( zI}wHO-oB16gk%19G76KveZVyE)VU*tF&jJ$rSLxg5x-$zQg|kck-lrU&JE|FB}TXffL3HQH=EaEX*4(o*PoY^zl-ZBK?uYGK;(%H+>l{?DZ{@fQU+SeXFV7)ygN5!*g)#x zzbL~&zD~^B9_(iD;RHe(nxE%f=!~h=+EDoX2D?Dc%*aRE^uWWnRf}e`es&^2&6<85LA`@i@0t>5@KiEe z@Y0By_{d$X&}jg=)|G9_fO0v+PTW~^M+jr2TyX-S4Hvoc1VS4wa#e)(zAW!+VoKqy ziX}K%9l;at$#t_+t%ab8cPa%cJJmXf>b>ORtLKPNbUlRkUa9ql?;Pvs5s_{%7ez7p z-Nti4l&<$NMA>XEiek8gEm0Kjb6Ne`ialE0X5u9svrj@XG$LIAXdpc{KH1yb6sY(0}LjTVOMa$|WWvDJ38 z{AU<~rMbz#h1<2^oO=yNsTzr`E${OerC8{Wt%t8GIbe^=fB8S2EZO|DDh(}SZR~h# zWA7u6F;z00ZRW-(30k#fUbgrq3ghotkiaGSEI~s_j(HPA_B{<9T(lK4ZSY%1h@zM4`M-F~@AFcAm#f z!MJ4me<(@XzLt)u7BZ%z`w_~Kc3i-3{(>MsK|#uC+e@p|EK-NIsO6f8mxiwYsV;5n z&p(@ZX*#noTio<>l%|n#OLe4ihflvmnf%w!~3>4;(trfxxT z(sp@Wag3Piwz(#W8CumihDf}9XUUw=SRj+&Up>m7vs31v$=T<(~;BNlrC1)3m_ZH+yiLUGcb_;vNe z0g)LZK7;b49mxxMtV;UpToWoHPWu}QH9>}?W<4XNqD-Rl5{i@dRJqe|?GzTYlt51y zh^g{FP^1Zp9r>|gI?j|=GejZN>nPI%4RlRP56#a2WSUi5+K+#tWNEKZb{h~E75;_7 zq&;J`TJ?WW4)4cIV~+k#bABIXNxOmEcKkmSChhLt%YZ*dk-V?-#ceCJ-1)u>C!GCn zh*Z^cEW%$bNbIyt9RC|4%*x!n;UAs5HVZ4!#jcJ2!C^l*$2QF;6)7T|n^xqTcSD4l?E%bs2pFt7)H}LutVLCmSQ<|s|V>VE<8{Z|V6#jmQ%GQ~!N7IL8-mYqOBx;Rlwy|pXwlLzUqV5=6WRD$XirD+Wfa2y zl!RxajM*K;nh3q0_oUks+Ts|#g0S9qFMZW+v%7T>*Z(Y_XLTt-fZGwQKLG+nI)IH( zfW$|Hh>pK0!YAGUksW>u6ktPNgQv#cw(KWsjG7*%QU_-a;5eoK{7h z;-Pu6P|n^cjrTswVA2$iXcaQFHPlJl*s!S zQ@o~WAAF@bq^X?CP?QN#4ynYkC4U7f4I{7s0v-|7kk~H>t^$l}Z8e@8W0FD>9ZAM<1%9!)B?&|nOQ0mF?#jTqoh4C#RLAeAKC=|clIlVp zc9vyOf>a|2It^nxy|g@vk!qZ2KeeX6w<;YtxAqh$DY!hbNrmy>-b_-s`auw6*!6bX-8^z>x+|d zj&yg$-Fb+1LnXO5MC*MNoyG12<~TOHiGqb=v)=Ds`9X8`5y~x8FN^Ke%@wu`!V(4^ ztyfz$1l|gPy$?(K)wo!ph>uP?A@;V2?S0F_51Vcrs1G^EmC*O(^r6>xK<}77bi19g z*1I6I_kOvb!aKpe!^)>l6u!gQ_dtB_A*iqVyKR0i6u~=8>q`Wu>F+yX61aN60TU*H zt0NqY5_n(ctF_~ z2d7)Jm1?V0Dhhu+iVe1pZvf(3?P2o;*J%ivcy;r|dNDUvD#&DzWkmLVzQnh>quFv< zCKj$Cs(0Y!i`uygCmOebxZd-4U)=7%WVNnw6u>(O>RSNgnc!K7omS=TwstfM;GK@V z&&s389gE=JXDRyxw^`l^2tUc!tu!b7`f4LMb#^i6%zMaav|0BCbm;C_`&Dv-db4H%_ z>xif3cl?_*hwS};9ewLpN(Asr-n)-%GHreOiqWyMT#LeS zIhfsq4Ld=C7zy`&GgkzuWGiJuklRrZ?**Lxn`XFJ$yHlMp8mTgRD@i$Ue8qvBf|Ur z7DYHTMu+z_&|Fofkop~>`}@1Td#R;cJTTz`7*_Z&3Xr0o8YBN)9j#~OlGCFoLyE0X z#F^V;6DmLn1$c5o1t=FNtBFiZ@fQ@pdnvbnXQaGg!I0otlpsYzWC=hE&!Y?}8lq)P zco79iw;5{ns=NmHGD?u*sB}atTWJco#+SKB*tuMl2)8f9HlAmI36$xgm#T9GT~Qm`0}< z=6CGWHk{0lf~0S&_EBXa6lFqm0=|6_6eNAeYIX6SLP@-r%P4&nC3~4AW)X`MKW&Qd zybZ$a+x=vV@m&d1r1Yr@1u$S@YR}HBBR%rMhneMp;Ul3 z-j>ED^uFrsFGi<__mpNilxCHPY2;|3QmBW^L`zlYpJ&?GY+*y2_9i#XW+w~N>BLl; z%Jy;jqD8RS6@>s6v1@#kj>@x?{E%`x8A>`rp~+>^se?n+>)BZruqJ{<9VF{Cs=ZZ$ ztd3bq{7mb>jaIEjE3pmQcd3=KVg4%C=?nypaw&emIm!mqeceEve(5?eMm#b#M7m1S ztk%VWHAXxp4a7pRQmr*Ib=v5o9nH}ou4lyK5OMc`Z6`p?w~R*oMyhbNLik22*X|^Q z+iCFHQJT+YaCDV%PC=ZgGdg~@IZ|!aiGP%*?f5I|nBi`Wk8qGH80a1Z-I^qoO z#M(HSFe@6X@GOLiIsxpbLN!iST4hQY8=f_0v~v(GYU|SvZH!WAQnV>e<2*##YhV-X z_{U7XkgJO*fGc-Fnvk?)ZGpT9AqVdO-CDM4d3q8@80IC2H+cIM8yV#ygD94jc^M)N zZkL2aHef-!0@3yy+**`baza(C-jxVAc=af6D`nZO(_2r5KfW5#zB+LAx@d+&`6*&e z85~PXQ^w|TJ)#Ugep0kIT%uQSi{n~?Jchdg;Sx|_8?IKJA^O;jh!wR>>*piQ5HHj2 z+|p;>jL16=+;nusxkLlEsN$^%G`JffAR2RO(v94KNP~~0gha+)%F03eZiE`VOVbPI zl&hNj77cJhh4&&_{MnR!ese!U>=4@=*aceVH4h?4e9!AMpLqlU_mOmrXjLuyS1{+ zFFrt=`0ZnzSA2vB@$JkxpP2VMurwGylH$?dF^^aPfwqcm(3BWj1{t3~?gKPOvrulB zar~l)5WhLPGZL8pEQTnPV{564V$6G%K#ce;0eV^zxyK)O-SeEK5M}^H+2=RQAV&PK zva>)Bmb*NH#P5Jz5Ssz7gh258>_hp@44k1GPz{ozWoP-eZJ*0Cwxgnyg8f9MfY`$2igv;^ky+FH$&z~)J z4Y%}RVD3;^8NW!3<<4QG^Xu|(@y6Xl7XM|10=tKitH!;Nf-X%tsOYdKYppwxXVg~} zs@z2!ta90WmY$+%7Q*M=RolFQFp&8bS0GdZv-8zcBO22*aq}&@<8>54d}lJ6uFuds7pTM8>&$q8z@uwRkxvih-i_s zmY!&IwAo?r^UMKz|6+urD3-I~*6BgFkR@l%6kcY-Uc`nM*aa946GQ1;wvNLSy$Xw4 zP~5?*tQ>(*%FZg(gTZ-~Us9dlIYZQW&+s6p!h?* zqlT_XjE*0r>`3F`t8fhTkphwqG-?mbA0^YIefvhO+6eZ*7;j$Hpb{^MT7_Bg8D#-P zNupNk=N+~B1mY!8t1z2B*J@EjNupL8xN5an@_6||tvNQM*x(l=$BkB70`Z~-b01sG z*Q>Q^E7(6_H7iSnEHUJ-Md0QldsYpXu9;#%F$E8>U~Cvqg(7IC7Y+9=zyjX;x; zecbS|!`>Kqc1#?=Fxy=c2QVyZDgwl{SIY>q2Xc>Ed5UUZ*T}LLLPQ;UiGt`kqU?)U zQH#P+SniSJ00fCURCWbxYhD4GLqN=tOwy^hGJMQ|}^ zZCtpW1z`)d2q^AyL_6V1~G#w|1iH6&!KT(PMCh#`NG+5F>AgtDTXC z&__+X^VE8^5lrD3a|gtXT3>H>`K}>&RW%1$AT*|~F z5D!Ges5RsmmP_yU(3m7Z4?)nVbC>Zz>&2Pk`U#tF29cxkCC5jmqozjN4kL6rm8PY% z;0X?{bODj0G6cr2G_2w={20O~+>vO}#!&Wj#7x*t)y$q$LCC1%l`*t@gme~1AYfFk z#2A2$QgzfE>Y9j}aBDWIrSV`Lm@Q}qVkYbs8{|!s8QKt zW3*`dwP{+75xB=8Zo;mqjoWV7b3QlEyz{8PX|K@r*)^uI!oPtcBy3jXoWiSmjCm4b zCOr0yQzB}^Go6w?Xd!1d@N5K4xPdL_rCG z^ePPfER-hdE=wOB%sTlw2jL>8_5PEe987x7L#(L7_I*^%904vsq{tO_|5~XThiI>h z5GtYevQBO;LAZo!29ui05GtXXStm1BAYA0izJHr_E=AFWcACs|*Z4&vUWwQV^#Ytg zU5!`?^#U{8`zaztZp`>=)G}eZ9>Ed{fcRBa%S7o0L`*1v?jYg>=|+T1wvsS0x)~7@ zT3P5+(mo-&6=4(V5I7OK1F;fvX)po08=)e%%KdwUG4Z(bzo|9s|8s;K`iAqS>)EYn=9^%vB*y;{;)3=x$qE$(Q&er)H7S3 zmEk!W<+f?kv9e%OjA5Tqu<~4EWbg67bc6jB!3M2hgWh^qr}ES!)LOy6A!ej2il|^u zWxj-1k^9*ZSndk_13}_esHgH?N37K&`jY;td3WCR&mroHE79tjwu>EgW4KE13N%D)*h(!j7_GPXtRpRaIF{VL?BQ8o#~qy1U4fCQWE>4FxItXw*2+ zH(s?uDP#oV+K3pn`Wpk0>PnY7YT00|n;UWnaieBI{o)p8)@T(}B&cH8NeG){gN~RD zx*_5vsowSrFDj)?n23w(xe4MXX-M^go@;>-H%G*%xqH72S}!!lvbA7`h9S2?$Rr!H zUM&SX$c(ow;zez?^;^Y8jdHz;&N&$YlhkSBh*qI+q}1t-2$^Ud^@p`tskW9ukSsSsLIQ z6_ska7#@XYw6zqPTp@_Mf$9ULzA1*UfBKuPYELD)(G(D2r8GnFfYo4Ob&Z zl*jU_2Wso5h!W*|d!yJ||9S+88l!rHU_EX?h!rFDmFQXeu6?feB00qcD4UQLW3LxY z3hq!c`-DnOB;xDM`{jqukHuV6aR%oXZQf0kHn`PDV;HT?((S-t0h(bJ!`w>IuG|BI zUrG-4)EQ<8go&D1Qk(Uz3O~jkX4+w#B@t)f>Tm`;S)HX2W{bYt-O(b;An&Na!mg?g zZ%a!okL;r+Y?173EwB>uk1f7M^Q!>+*0iT-+I`HNHKy%*0rl*c)ExYiyHSdcQeg_6 zS(r8FY${sv0=lNLM{a?6#%>zB>6GT22Wtv={AD%=f5A|ZvOz4eob(0hNUOpLZul&`^&KOuXj`F z%cAs+u=Mq-sPs@F)jAgjxcmH)N@gswggOCP<0N*5QjyIvG<{`GlO zx{jbdG%P*pXH9n_prQd&_O8+TJ{}-0t`2>}IB--fXuyo5esC0cnJMzOo=Et6=(zAqA$AqN^ z{*OvmEb3C-7MA8;q|zG&?L%Sd&5u#(b3&>=ho!%HhD!Glv>%40>wae5d8WNBaF@9> zkollJskBknrJ56#-nTQAE+9&83QHGTpGwb}uG8**S-^SI&8T$2l3sd5So+l3RGJaA zGsDu|m!i^Tr|Gm$g{7r0Qt36K^oRc!;ErrhrRNFUTf)-2CM#M|`o+rw+AWu)(nSR4 z4Z_kDwx-g(1np^I>5sOg(rrcQ`C(~kIVv3$oc|q`?)GUaeND8{yJ6{Z3sUJRqI8uj z0-4YH1eN|olorF%rPiX-DMHUDhovj8t2m3&v%}JDx1!QrMUB1}maer9m5vJ9yTj6F zHmA~+1?_8L={{ej(p80B?fs*mMw=_E`>&uqEG%7?uHj8PRMs~vy+)OeiPAH|(pMLw z(icVP7p@F&e{d3&?oiXMZn?1Z&TmucF`{(Eu=J9%sPs)yx^h_h;OSI)rzl-DEIs{5 zD!sU><39egK&nq{Fdx~*EWPxpu=LE=i1zfBUix-edcfjDd(8~J^qsJ@`WY&HP?UZg zmhP}7mF_NZceyT*>cLH@bkdPJ=X=7^!doQOvqGwOt`BIZEJd^{%+zV$3rnw4r7Mfl zMSdR8e*eozjo>1*RU?q|c&6*r>NPYc@5ho#wtsdOiy ztEI!zvpz|sM~Twq!qO{VCvE&tXk*2&^ed`HD~cMe9G0&8D$&jov=9F>(8lRU67B8B z=rvmUS3zm*3@TmhSiN-lu=L_fsC3EW^wOQe(#)+?`rPq)>8@ev6_-N}m;_`-P>uo=l~)zphJlOIZ4vqJ2%!-WHaAUuokr zLK}C6rPrTJrPD>}Jz?pQCsOI50{6bKbc-vg^jv}a`>^!To2m4Ap^b;a(zmXl(w3n8 zLs+`i*;KlPkm^ri>Aq)C={lnHiLmscZ&K-ALguH!(%)W9rS}Qk*TT}vReiI9_RX;L zTjx;eK?3*kn**y`V{$?~Mzy4&sblzJ6+RD>ZdK{%14&(M6!qTIk zqtc&?(qqHYMJ}e&5-k>lv}c8-2b@WzC!MC3-u{~accY!D^x{+W(z}e(OGWA8w@TW- zh|*<^(icVP6r*&ZZ|k^w8l{Vi(u0lCrA6s8M(I(a^mU{3TcY$mqx1|>I{$65zUPb5 zx>5SND1Fi>-QrZez6;zgIUgcQuP{m<7p1>5O5YZxuNb9^&en0?GfI~drSsn*rCLdp ze%2^mTadru_2T!NclCbBM!_xom zK&3@NI~JC{t&(IH&(v{W3QLc;no9RPLofX(EWPA1D*d(SWxL%KNOjRRRQfrAdq`ON z-cP7>6T$hYu=L!msPrx28NL^mo^cJ8<^=68!qN{^-#=PN^>A2v>77*iJ5k^H?+#=h zIfF{ag(jB@OBYu)T2$0%<*;<)A5rPM0=F5Ku6YlY{!8F~ zl&&dC?=?!#5~YtCr5A|O-G47}-xH+=8m04|qf3=HN*5KS`#&H#-!4k08Kn=4(w0&B zq$oYkD1Ba(?)0FDj#n}j4c8A1}EW=J9+g&#PXB@CIF zOlBsTD1lB*clAu2RCjf%x@QStQx=u0C=?2cxPuGIDk`9eiVJ?Yp(6U{6HrjxaNn2z z^So!h_nuo--M2dF$?umlUFV+rKJRwkv!9!J`rh2r4VhlS$NW?IgzCvmoczPz^<3Fc zhxj;o{wLj2cjdo-dWnB37X}zPYO5o-U|Y<7S$>&Ra;&@8UbE zoEtsX;2f#X@6As!KV6I4j8E`G57tIqviSSN|>f7YF561?9gSl>fV+{KlaCrl9-n7{u6@yuL$!0EujDJ0sZws z`AdTGYl8f>LH<7kbpA1*^Up#4zXbVT2=c!e()GQ$ldah^+uI%9l-*A^O&rC}ik?1jb*S4p!-@D?Fz^2Ewdb9eUTh9< z_tOja37OaSkH5B`uA1p!&j`uFG0)cAuah5AF9nQ!UA-JX(sg>0KM4t3q!$$X>YIeC z$XjcV$c~2O5I+*4Q8Q5LTeUn}4xODp*_lmpAnDyZraF_o9n%Z5ldLq2_6{uk?7)}S zN$^QV0V)ttbgxyj~sRLX7kM_<*CLm{i&@8C~pWbb(3Gz!%CMo0&;N5(^T z8|8DHizMpxa3e_o^R;7yk%&s+-(Nun@)6FQ{ry+M_+yGVY-|99sCKn3hrhp5>BJQ-F~35yM<)M-E4-& zP@h1 z{(V49EVfr4p_|bGtl96ZWT2jPFYFuo!xzK1E&%CX-~0ms?x;>)Q-(|ZmUgMTs*|+- zWVlu*SjU-=<0>leQQwy8Z&KGZ{M*50$U>8TxN2$|_ya zwhmGQ!2*AzEpTr&3pl#Y44PvRM_of(Fo6KoYFnVQOx4!;S}2tejtSr<#wk~(dS@WF z5t0cY4^;9t(VMv31EC5(O~(_r(7C{=;C;BMb*hc=+(S~==Q}n1tFQVG(EEG_|29P{ zdY_|1NDTz<`%-1^%g`0?b2%DC9iVNPRI-huTA%McU{xaeQhy<~aRsU>s@rO7v*3@u zdcl1R!MIJgjSwvVK#U3@m?X3bNEs&hCvAcXA=r}C+IL*5|75Gjq@uGLj)lDLOo|>v zHR^u|!UP}{f>=fdU(W-eC(woyC0^)IZ*q`RQq zW`SN=&25CdrVO_^{|`kI)!asN%t$Vr3fJl$Dw;`UxAEki+ZffTqXc16*=;;X#%(On zF#<8E>NX2>8%y;opnYRr(5=u}CQV!%Jk^?P>W&{XY9^zvzH&d@Xk8{x|FrMWttt$C z^Y9uG?zLIFSB2g}p0tflPF#(pUd{l*1d=qD-dl*mWj(^_Ow_8rp1@21y!26Mh$|lQ zKn`XTT}4dj9sqFP(k11wDeWurS6{vLYvCjp>L2!BK*a9<(M$`D>a%(LO0YN;+!Hr-8|KpZ%oXeoomL{g51OHjot*LnwVlq zk+IRMA)_W4eRc9E+l)*efBJXWX6%o8rNdYp0~!;a`E2c(ad%lFaoz0<*%t}b7ic*q zkmkOa<(7a~Z}bqpPo2d8gUZ!%sjs2|3mS}%Y)1z*)0Y`5>O5=6#@#UF1{gAv&76tw zWtua-*0XeG`ikJN=x%M%$%^h0^6RQ)UJk)jZ>L?EK&%I<*)>EJ)9MUoUCO9-(Yi66 z#@o7)bsE%8?MuD8V9tvgJ^AJSfRyo-vqb~-6%k;wyS2^Y^An3EYwDkuK`qciOu&1* z5n3XMtp6AVi7@I6p_l+F-WOdOly4C-a4#Vo6Tm&clJ8MnaJfKh2kB?l{GcCi;zktb zc(>D-ngo5luA#ewE>ka@anAIGaJh|z{2zay9~43W*kku zh#u~}EpV+$-5m!vG2fB4!)4Uwaeu_erMr{KOV_!dc&BoACnQD&G$#CdM*DT8?oOV# zxK@~{(bSh1nwY?vm0IJFwr`3h^oEZN>|Ya>31Cl*$B&H_S$AVTY;CH(OlT&6zIQDC zJKqU?*8#QZw*{A})O=1hW+xb)MZx${;}7hKWISHwe#@Uyjy@V6D2^B&LqLrK|9n*Y zXM9?A353NrEs{o2&t{Zi0tqU$(3Wn_CvCQY`)a~50bHdXxTWjhyf4~E2J(4?WCFS>iJKw63-zQ$G)te#9D;#7rZB7$Bwc@Jn+x^W|AR&SyMSPSHJT}cm9 z&FRKMdwycFGc(t2o(WvRJgJ!{)*1e10?u$*{GrRwlA}XZY8OhG>?^VZm-v3|5|w(t zr6^MQqfa%y>d`HjK+uyF+#-rmH@OJo+D6VbD7*STx`wrfEn=pWz)qzgX!-H+!Q@zH zcp5k9uFqz=-=2v|vl|5_`iihH`a8AJD>cmp>KS93nK|OAUuUdm0<9h!gOP={H*N^^ zRyhHYe zN0u`?WmO-g*{#mA`mHphWo2A&Oo;f_xXiX@{}-O~*&KP|GABG08vbyVp?aJ#>^uP% zu>2>q`S82h>vo3+!v#&nI(98skSLFS}im_>q zDTw+b0xj;GhW2E5REuC6uJ&rqrubuTzgt|>p0RnK2V98agj?s#JIo&a@`ez|@^$&r5nm|kdRLQ}zK)(8iU>_tH6M$8z{z9`JQvQ3X{yGQ5dsRZc zJvuzmTbP^cbmyC94oOD?`?Ths>b?bn!~bym*w*p_{#k)ELq|3Bo3qdb%Ipeh*5I^H z__XN$^zx~P?U>a-ffvn(dMe`#69_$5AU9V?0{I_izTf zQSjV3(rfO8BVBEUs6~qSrxU?bJ>==pnJP_KQgi~f#~z&aH%3Ufl~z!y;}(%Yw1?bauNN}HkF#YmTT_hFAV3tj?JC^VgCh4 zrRL6oX!0=i724F5db^IQGxywT6<}L)fjX+EQR4LwOfqZipf<1#^ zOaNA;xf7c8kn-hpGh=fQuQYc6e``+y@pt|BQzh;NZlHXTETm35|4iku2W$rA3UY9&X7QKAohS5~Mx{;>W z7O(~UJY}V*kDKIk3uY$APM*A#gP--;O!wO}QE5WFzyvnV>s63jwW%vjh!?0EBL{+O zJk?>{Wdie7nGnw)!mxtmEK1ST(`iwwRaM0>Rz%L^>6M)}ep-Ys(uD7tSn||b6STy_`?ZO!@09$EiCUA@Ewyj=%$@V#1 z&DmJUXIA!ox^tzSnR$ZRqlpiXzDs*_RriWWi~&_1xvz+-ex6Mb6G&ERaX3%kxpv0G zGQ1fUK1vptfQ1)VbFvJ1@iUX-Tup?20bMO>+)BF#p@PENSx;~5u_5y!hRjRgX_+NM zWQ1?h%MMl<4`s<|A0sk+?0)TIRclp2PVHeqHZ}k;ZeGX;!UQr^>tbe9=<9+d?{v3+6N}9@lTRQ7KM$*=1{8&2XU2uYTS?2~)3wseK-Q`gdsHN(b6P zV%oOEgl)UpwpC+vPC9K?m)TcDQ{O|2GJ!Nz>yV>ej9TuIf&D(hG68H=A9l1IY$js4 z#|HWb3C#r1RgUn5<`ee?kn>#8?Zfokg3nYNlx0uhS-;gs%xsi;?~CBN8{oQ`Z03yj z2w#q#_F;mkJT6Hk$ zw+LACGRGSCmv}xCgU?!!DT7h}8Y5HH!KkOE%}Q99HPvRV>cd&;b};I5`-*t#$Jk?L z0)eWI7Cdq1N3KuhpBdnvATSdER~?Lc;tn_ypZs$J{%(RZ0eHp1sHZJ%%%3hqiH2WC zC+1X!FG=sI|xQLELrSCaN7tUt7-}<%6E?i(j!@`BXdkijI zpe`<)$<=u3Z8RnmXtm1RScZ1p{CdDBOEjv!OKh1bNHta(?PjP=bf(e$nOiV>JTOC?<7eB%M&^Kuw(8TG^T6KkHa8=>3m@fd;INu_^_ll0Zg8t{y@VV31k8uv-zzOs0w0cdp&zag}!kJI?nc~QTWxe`3@(R4_JR^K8PaK;8(aK$-0nGLlnSx9Ffp&?p#nXU)*NBwxp?Oe~3>Hk_ z9#y(TB`7&35&qmTh)PhuPhX*V%8amkN9R=03YW6{m5BloRNw~qK(P!zU_X(}q5ko84d1#+(PusCbYz+g$ zeoh;9=OW+VHs74>b-La8n*GBtzRCXf57JFXrSRdSiG4_)efDA@Cl{s~H6{jXwa-Xb z@49#Q&O{!9^wnJ|zL(^bm;?$oMQXVs+6Lu%e%|ONuIESx=<2idrBY))cM%{~qsgQ8 zuSd0d)E9}d+Nqu@f94_xQIe7g<^&wMl$| zN|bSa3xAT@{iHT(g>fpC$U1v!a?+5yK>kiIIC!6CFDa=ej(~a3lq=K~Uv7wL_KoIu zj$WbaxF?z;^`CUb!R~PTVli7*PwEMO1nSm?OQ2)Sr!F*f#Cl)3Sbn_W)M^rPW_xal zkDfl+K-<)5>Kh3gQ~D!G%&jq3Zem1kU;W%Pdz!@u>E>f7oUm}R@6_33=hW2m=y*?C z44@{D8g(t0#>@4^yu1w&y4IU-%uY4BQ)ml?)AiZRbUhlq@uwZKAx9(5gZ&?l(;jPoNC!<=kNlHX;zY<<f+c*a)K22$BN^5Miyf-w0!L-I;ppvD5(I9e7i z>+wimFlW6CQ(eP&UlNR;F)DR9Mv@DqY8wd`5y3+g7#aWqukHY&#js!t`= zTyz{+eu;reCNQcUB7Y$oe$}WP+JKj20-?H{WTT<4WV}%H1zVevSkzO`BEX;k_xw>M z2xC^_Knt3G4gp7sUSB;baxQ+D;Sj5>dLGeAheJD;ieSYv(LwDZ%-~+*{}~l42sEO` zAPT8FiBleOzNReP>Dn{ljUgTQNT)=7nnR_guz2$G`26o= zO;Srf%u3fDWr0K&0Qu66Xk1Zx$lg9{=1SUU4TzaU2_M)=l>KMTBnk=x@YY4yRS#6f zdGtVa)xqXMw{xg7MOv;YG*R69p<&Aus6{-otegCtlKNE8N8J!j@~CQ#wW*{RUe<6G z$r~3-9yNbpQiFO>r$~L3bwsM6WRj%lfOYYzeGLSeUcd||%Rt+kttsb=?h2SYu~@p9KJI`{F%Z2R1kWPk7?xW8r~ zq$Z76_Wj@$rMC|(y=}fThhC+_Len9fZ7k%c8;^G8(3cE~Qj>$JcUwK(Z4KVi09#^@ z(k+MOg#t`4-5b|(w;7XS(_|>(ObX{IEPj^0+b*kB%o0!7ajdxH*t=Wanf^1xFqTkGqz)Ro5KjIc=`>3ye{iUd_mzO+E zFW==TVl3`o%htY87|=+lyuSi*@cP}0=6`0UHD8-s=$)+1bumlQI)NTXa|#V^4>F%H zlCTFixLkU}E-8}SdXBY(4lK42Mj^5d32F%;&#?q%O-tKc5k9XQRxG_P>r0Jxa*%|QJ1rsb zwttbDq!}?tz#1v0F7>=mqm{GuHG>PK*U`)%k{ltC^Kn6xa*K6(gBcM)|1!weG^~ ztjr6G4L26@(~UAiiK5A2QxtHEjWwKCW`AR<6~>xeZhFaKsvm8GDF&cL#~OYOpvLt8 zs@(?74YKDg$VRMTL9UMb0J>NmVu_&D!RHTiZN~=()A4w|`tSyY>NRzGFTx+h`hNqi&wKmL3H}Be) z95Mxx&%f>azx*?=XLY)Lk=2|*($K#^{!TAoh$E@zESglijke+81vrQyxo&PD$V=B9 z!q4QeDFTSaHri7-2WW;Zy3zI->FV9?At-;1>#_~gw)BE^FAP(FzRx6$g!&kJa|60n z`xk@5u1<0@)x2Y_i?+`7V_2tL6RLiLm?L(3{37X4IXS%^R9^L4gvoYw{B-PaYT53K z*48IUGSaho_UKw_plQ{en#6Z%)Tc-|){i+jI%PIiY`UX;j+w9%qyCt1Ph#s;`hsc0 zqzN0H2h-({t_1xc=t|`KC+bhg#OR$5ztq1-+o8K4{f;Et?@)hA{873Vi$FFVhD3T5 zzC&QNe~S(q>dysvgwDeYM%TRS4@e!rxWhE|*?xoiD?*RdGw?HDL-lPN|0L5XP+uli zv>UL9ddRk(!`ZM0p#G7RBdz{o>Y=pbT*?Y##=nwqtc_oUHf%F4gniWePtiuKLBDf! zE8Au|@ojlxEo|Cy^}hrf-eCI~zoGV>Y$dj>woS2)hv)w>ph{Zm?W0R24YQ_rF)6wx z+RvB{<&iBhMp{AZtk#lNp-o;yi{e{f&D;hO%(lb9@`q>9T_UTeCi&BzK6}zDF~6}U z$Vu1i#^dCu98N>SenYHRk|o$zq=LDN1K3eUMmwlvOdmp$St(1xaao(^wG2jCIJKlv^N-UjESM7{IVvv#H#!o@;m&qu zF^d!@t_^kdpd#tj2SH!}577}yj)z9~!~$n^c;`T^gLw+UmRBY2U!gR{n|nBe}#8u`ssqbH427X2K1t*3NL?)BGvCcCYx%Mj-9 znAoc|=F#=VQUrI8h~jpP!fE(gx?>cklbs%D#EK(Z!Z8zrkF!~~UYE&B*U1)ebeeXt z2*?Htr=|7rcw_P*Y@ziwsvTcAVWq#k66sa2th^pbZH!I9Z;mvZ z9>2~%6LXT8uBG;~P0F<)v8FdhBMI9Ab(oZ*(ciD)#T>x%l(@jC6`}4U$+9@_moTDK zO*|xz##7bTkz66L`+YkD={Vk!Af~GqljNZA9qUpCx(vdymp+4VoCw1LbgX+Bpt!i} z18Xiet7*avjlg#d_AdCXzDHXkWe|Lmg5N3PjT~AJRL4#7QB}>7g{1__A)aUAVd7(? z>Jq9D8U4=dsOOom=XIC(pr}rf;(!1+#H*b>$fblZ))N!^)FUK5D9ptMV1d8c_!Y2j zT*FlCml0q{B)civoMK&NvT6Fo`tQEleHxwOi>J)b^y1y-FNDMEh7i#&qc8kp;0Wd8 z{qX{*>jew+dJSze)AgExp#S^TL)h5nYG}0gBq&vTPw{?nQ8a9*p2D;$mLLUogAvYU zryGoTE(dzMAyz>(ZG0+5Y^Ld{AEoI-6GdCB%&V@QAw%k2Bv4fGvj%YBv>T0oLiK&5 zIyC-8Ykrnjrxj73`f1XQX)L;w!L!Eb`^}!1Xr5_s2GMxB&92$(zPfD=PQTf`;Gd+M zciZC09z%sagJ9=G5N>SI44|ftTJdY(9HZ#df~W%bzNcbVp%rE&y;^{$Jq$7 z5+8Av)9ZHHZ9{Ms3Ci!3e{PpQm%yT&H}Nd;r)H6VfnGGi6*#Or{U=$=s9&YsODs`~ zxoVNNRhVc}eS!o-B}RK`aVlPa>UT&cqq#+Jyb_Hh?hS7%1Fyb7A#$+MYKh&|%{i_h;+jMq9A&ug zvT>uLjhWYf1FL1^NxFHDrII|~76;SOYU$q30QMEBL*6fId81PU@mHlvd3|}OI`rG(bYruc81+;n0B3Roml8{DnrIrJf_1_RQR~EY=1W# zTtB>EdOenB9WfbiajQE|TTMQs&kwQI?urGf67DEAd%rQH*?Tv_@&y^^}& zs}pu_=ppkeSP0Ip_%K_-g1Al7E5C;W_Sk>bz`}}A&DDd7q)+@B{TRX9IA{-Z^Ogdb z33hZ3Wd=s*wR+f|IeC_ykY=~r;khkQ#%1w`>1D8reTi-B9{m!K7gLYmi_I>pmzyy% zu$v=K(#<<|L;Lli-#Tv!I4YSteNz5YRrSc4j) z{)@l^>qcxnDuQRQiq8EYwyjw27ROZQ{eQq5S`GYW??JVIE8U?phc!T5K%jDWk98L! zk~x2t@S*plu!5;oBwym$(TxVvtuqtTjTSrV6S4v&EfR8TCf9C6`3>IMu&MYU-MqJT zCfTb==*=i~)}vcuAvB8CSEP;R=ms#4H>0~1qHk`)P}D3F0x3A4J4^!Z{zO!?jwq&FpUq6ybN^>24876W`nV{kF-?!1Vx3x}_mDKs zC!1}nt;^yM)60(WC5nZYBnCa7FHy2cI4R)bYi?%}iA}c@`GbdK-9c)Q+ChR*U-2gt2e=C2mUuwu zChB(5Ec!-lqOi!PSU$9{cMJ6_5-#_F=r}+hN~9Kblo z2&DEg2u6n-S(R=(#qV!$=3I1hvHh7|eBTl5l+;V2qtKZ0j&(%)1=DBa)38lHbW^keOnq9i0>=Pmhi6qnvv!OU}5?!k*aAHp- zpqm`*hZ99D<>U8SC(j-?7W7(X+$!f-oeN)S5MSKgcz`IG&U&}NFl!Be;cRkk!Z|&qk~bq0yg1h zhjrs*b{y1Pc3=JL0w;Cs3&9g~qD}E+r`^23>JpEPrf3#WQ%B?VMsSZ;qjRGcI{WH2 zKj$bMu5!O|a5R|ty(=1EqTFngLm(K6V~rn^R5-wV7W>1d0+F>clA-0&@0Sb%haTOZgDq9o}`-(n&MeGV*`In&(~J>N!h?`;=$?-j9Dd7 zBsRkzq3vqDrub%3%+&wbG*5(%uhQaYrs@|sekK;C#fG2dim-bI|LEYi`2__)zcdP5mFygL*?|8T)`Q135vQf^-k6)ZN0KA z8TVB0B;4>C7#)ol5ltOSa+OcLn<&xR7F`>&Oa?x0YmuAlvI4xHq)X~ka7;gw*Pi_@n!^~D|rqR_a z3vB!#v#_?Q_#oYMNEgmVl<2CC6)f0BhQW@nv0(%kJlt3if2?oo@lCVUkVNh1KHUiR zOzR9zf!POE#tr%Gbi)A_T$+4y4Xg>E8*T#dWh|F%pr&~7bt&@lw);e1fESjNaB>gAUqGK5z*mv#yjiY;R}p^iR4RN zKRQ6n(zae-p!_$aT+&7iY}v%YIQVqFYE58ju=;zF=2DI;vDejcMEb!oLRNg;M5cL9 zFCoi(=HI>q?a(F*=^vz{4btGa627_3Et=IZ zlxt#XS(x0A&*nBIv$~e(f?#m)&^ZGmI`8(ljw|_cyj!5Q#2%$v#02t!)(Kw#pQV@H9gG>1V54??!6|0> zZMKr+5H}X`(~Sr1ASFN=JUGnA7jIN^xYrITm0lZ|4CQHGP1+>^X<)1GNOLr6hq;N{UQMS} z*O7Q>;xErx~ra6gIfqM1RGKH_y8*|rstrPgxt6WJgR=9QXFQ&I2#SK#c z+it)nxJo+Vz;3?9_0$s&2Qdx|7o&llEP7P}>P7!|fJ{cqPhHF_X>I4M-G!Y9z(6^u z`)F6+$ttcjxqv$vX1ohnWn(ZQI^J4dAlD6~yh4U*!ls_N<7LE<~)e}wJPKC)QcgsK7u;)K!Lc>g;qm}FXxg}F^8=%wBEpdH z85^-!QoTAtV>AG2TRuYigMwsi3jzvQO+TzJy}FC)OPFnD;NQi!g&IZ@qVt``bJ`6sZiPw;c(Lz;pjsVM&ZCoBSu`q{|t>z$}$-|an$?L1n z^XTb@e0I8FpMDvei*-T7!{~X|2#6+%{_i^>0N#u4c#gccEu4TdoN>p3-_)QtFxW98 zJ3!IZwixZn4zA62Z)&mEXERgz?S`ZzAKkeaBhMZ>s<&wKLj5DX@IJ`|nb>$NM}>>X zv{sU_jQVli@Pz{G$igif`Y;{`6fUQ)?)YXn^7?FMx_%!{e(bfc(V{m-6_+Qj z$-#v`4%TSEk>1*drRXlM44TyEB7`Gs@Cov`B_Q|-%F#}2QCJRytgz_D^;(ngHUZcY zdz5bBD98$qE||Okxaizl5$-fDmgNA)K?b7+LA`1~iS(*t`gPBMT{@8I@!+FXzGGA5 zp?9)_k6=0u^1Vha{k20%rPm%I8P7@fCf)Ki<03x`vkN_}8QXee^}n%@pKiQYin^Uv zf)YJeS41)MU;yHE1bQ1lu<6R8+WDsPa;crI#`5)UUYc^0H*Co+5PkezxC%ZHHOLln z6b##zxudQ%%k?y@yUsM{Pj>h%Iq`@m4lI*CQ4U}l2KE^e$pJ$Go*A9wFY3qngHsQ- zQFmrKta3Qff&=G zW8V}<#pEHjyDMX`I(}i~YJ#>#RKG55#=d-9j_sGt5ep-y_?-GJ(kg`1SjRR?ibEO8 zR}w~3^+{4J3!bs5$}C|M6+Q7>+*F?;{UPzuf7z;}O4cRld5~ymRDVpU5yD?=(LXDd zj&QE=H#JQC2?3(9&VN^`R04O=4(qYL&?(rVW+DER5F-UL|9Po0NE4p~#m2BC6T{S> z6K-gvimel573O@)2^ZXr6a*>tR|Fg}2n|=NL>64VihJ~MeVL6v2pr~$98&|oEJ__E z$_#gSD`_ur0mcj)4cI>tY)Bx9u3u*~8k`VCzV8&6t4rVCMc;38)q%RoVNLTW1u16?*4(kyPZ;}ITSpCaEPCGk|+9ODpmpn}`-)oz_ zqgZawT(UB}^Btg5``FBy>>{c^jhaZ zxxSpQW6|3r%fugum-p)@k61c=@<1-D`Mq2vBgzuL=g(C99)D>MT~t^*d3KH$hT`~s zjb~M54PU5ljyy>>Ki?HkczD@tJc@ozWvI&ie3W&5Oh@UP8uUO`__*0AeOUSQW~X*H z&n|AkN`h(jfHa&pwpSp+a;7h7udF6x>Pm#=vN#{xh#4iG>01ifYe}}yw;bBd&^4`Y zl_i|oMLiQ_)D0v(AO=ULV~X*TDlt)301Jc^(9WIVm!wQ=)wG^MTDg!Ly9Yj| zP2)y#IFEBsdM%T=y(EmbYCAzjjHaMhJ}u#sQl5sye|J5%Ct|Wjdy5RX&$E*+@5P9rmFt$pkrd2WgfBwYwLqEEk`| zHVitEc&7Fea#4}0bOwiqIc41!j#J|g*%*NH=X&X#M`i7ydWq|={Z4dOZyc>~`s95e zx*tUA3I4jNmzXtqo?*A=?M?Vk%K8D8!M-9iy0RSzkJuaCybHc2>Ve;ie+EviUPaR79voeOG7c=q z`sH?d=e+70Np2mwrrxXJvIDIx-igIJBWp?u89yzZVvv52YcAwhU%ltGXcE|{nqgS( zyG_wehqSXJrb!^Q|0p;C^Q9|R?u~8yixJs=+Qe|Nv5=2Xx|#v6{U8}@bm>Z(N03WD zL^OTr#~MFu8JWWEhAmLIy^meeoG#S+jAU>EMoP!oo)NoRb(TB6_&rT*3TPl^;$|CR zZ);>!uYvFTn0cxii71oyokJJuHLD=l{6d3vRV_ImT<>-f@l=o9W6sQy+) zG(`d`cV?2s@R7dY?&4{ z8LqnEJGo}JR*zSei9E&**AFk4UcXa_VY)&SbMqFw;7SvNBkn9~UcCBFpTsv1JGIlz z+H4aGhq?%DOgtJ>le<8g^dQ{+%#FKpeNkZbIDUWKDXjyiuS1WH=vGls5notry zV>EcZ(cAKP2W!ls(wb+uH3DXxZps#FThnhCp=A1`J4mh`=;Z`B7#C)T+rn|9K~Oyiam zy9N@m)CWm+a0jBS2cHG-g4+ovVf*Jve_$`6Y?eophoyy{zn0d74fTtpEEoPBg$Z;0 zfwGnVEYFs>CHX5P8E^Z`X5kE%*|ym?`?_t;<9wVri)zqg`!zw;%#G?M8q;m2`L%7i zZ+^A0f0MYQHP&U*$VP#~npchYyTlu*EsouvfKoNX!dj+SXDHSQk}cX91&>|2YT z0ZJ`F!rXgNxCuaf{f`JcO6ys+P_C6L&0#(9a^3{XnwBoxbgKVH#3vV;MobdK8^^)G zxwcLkG3Qf81tzL}p1>owdV{MtDd*caZO1PXrL6rMT*Xb3#95Y1Jo-zLjJI{M9pT;u zd>bZL>!Ov)lm1(h9@d&gZw{VqoNArG84+GIeX=>h$siei`+PYh$NawfZGM$xOYBj) z<)9-Z2jMsa%dSFnr0*$YKs5k{>9_oe4AY~-$C7uqar@SZPPg@l9C$IjUXsgAFWHqX z1`eYqwaQR>3&-_m(J(aR=`Dk^v5=4B>b5A_2Ps=P2kEB!Fy)E4uH;@<7-n+EkAi+y1g-A##OHk_Q8&Yb zOY20eSK~>!DpAiluT(#^os=VP96J;fBkHVxZjJX~bsNb>eKr>CVuTr!oM)+Ll3wVk zv2Fe_GR7kVQgxEb`(~^;iIMZ-YNzu9ab0!Qb4h)O`^Ca@49qxKlJh)u2QlKV7OlV? zxg3r$S-#sQ0omorw^q~mcBfAU-5QAmN96g-k-t-`vC<5>UU>Nlv zI+qi9Z`+A>=Qz$&;`o09n+9>&BeoqwhIvd88Ah)jR0M~agaC*AngBN%TLNGty2m)m zNOPX>44t?uSmq?$mjMkYPdqWGOnTj&@>mv0wtuxD@?8IYK{jeHj!h@U*x~D*9nTVX zii1UbLlGYewT#*kwpH0Pm-u%2oFjn);*15FL^#dy=1FwvFs(1) z$7a`Dc3(ZCj|j9m@+94S#D2#14oijgCVJU}eLoARsUs9U0!i^|bOty6DlSgukOdJ? zx~}?yv+k7P_wtgb>E(J(kAah0;Ps7vcn#puo^uKK>5~m?all+QR=RBw1AS@q89%qs zm`_?g4Qmu9)5OvEYl&v{wXIR(*Jj;D<2?42rO(qVcP9KoxIe{k#PC4T7sG-TZ?-cZ z6aUK6=a>aDD!{8nH5`eB+Y&XP8N&G++TI*-H3I^Dtp;YcvEqO`!Z2$t-h1=N<u^W zWTBYrL%2%>%Li_O13Sa!ol-_FpWb}Hk@gp%92C;72d_y}DUlFa)JffDCAm&ux4Grq$q(2}G#CH5gFzDvCI@`z3({@$gK#1}RA8RHpi9m`* zlBw%F?m}IN1u3PzPt6opw zMODbyW>+gtATg_5uy>F#LcNh-#R@p0WWFx>+bDG1bB%gX_tbZaWQ(a)SBKG&BRXlX z?cnag8MM(CnP2HeyWLd8rLougisjMjz8`F$#$Fy+kEC%&n;tW=n0g<14M=7-y0P4j z;|r}e8{&!M_)y0~`e?GvtLePH`q76tkjZDK8}2YKCwIup40=z>GaWa=99vuRwKe zCT$(f>Ti->-fEe-Sz!?3PBeNG4ctV4F+4ZBNg$$U9#n0Br}0A08Nud)&D$r#(UvRTghv(j4Oya2G!>%x15nHGL+d?RYG}(XoQRB zUJ?A&SMzU#{Ia1<*4A-0W*?_?Tm>{nuYt?Pv4Sx^>-v2bBVBrIh?q) zd6M%6^-od<jVHvL61xtwp+6UtjNneL?0oqv5F4#Ze)cCXd*%@v{=(u;QLY|zczOENm+JxnYj^mFrDyMx;^8G}WF&51hx;D&8*YXn(wg6xbEzK$P;fmHH*prs^Jd1kOfD-9d`WzEq zPqKb0O~DfV1y}U&zLlnBVYSalSKr&i-RklXLT9!ck8W43$oU!8Jv%#QlzeIQS$e6~ zcJ38$u*AR!TL&j-O<>Gs^1HcVA%HD0q;a=g&Vkou^3rv(Bj5TskVfvYWSw@lInNF? zb|<$^oWzcBE!c*9cDmu9E{NU7x*#CKIi-*FZO!a0BwZ4&N9}ETbLxl@L~2zd{d|DF zD?g$g*0h-`NF}&tUB*-_bt`d(#Nfr77SWcM&Dij(o?Lq_{wb$?c$V5pO6Sa2ska{d$?i;ni$Lhg+ z6ZZm4U})ibi*VN6h*454j$ZyTzCFn+Q9nO=;oB=)|yk(;nQo4D@>7bmh~AjeDvVqGSWS4sp$Aj-(y zfC5-&Zk}si9%@aHldiejKL*V15o1V*BF&`D(A$+LlIqd1q6RL^OqN6{OO*DlTN{W; z)L9Y_tubnK$k5CvT@!vO2^Z8qYLLiK5A>{Qzml|b8Xqts!3^YVZw{w1{8(2e5Pg1M zsWvK>oYTuc();pd#tswBh7c#IZZ5Cap0XbBk~*r>8^AYS95B$xzPQcagOQucM|~20 zuPl9@UbEL;I+dN)@40F60W*#{F1nqz`?v)jVXocaZ;m`kuQ-h2_O|S!*{S&f{o))Z zqAfPR$$l%_DTU)U+g9|gP(*NFH< zxRWp&EIl26Wlet3Kvprtyy`oNGJ+vXV@-fZOIf2J+pU*qr0*uuK*NoK;Z1^*iZZ^C zy{JlHxVMW|jD5{I0#=RS8D6zdz zV%rQRzc`b{c>}ZbQ8U{u;bVgG#DQhfCm!%5>~|Luv;9{_)z=kKr_RncX7DM99vTu0 zvp$=duHUT-B}b$X*bigAMyaRR;O>fo z;**OMt;*nXxZ$~7n{Ibb8>*K^pQV>tts*$^m1HkpiBoSZ;Nb973rAw{`9Jh9^wBku z{?h2P^wOPtWq0lsP!IZG)^r#m@N!svzpo7MPxWLEuHNt3Za3Sl-i(pv$s?9dZ#rzq zK25AE^8}}QvSqg|+h8qSFcqwRS*EacVNPy<&VJrqWWFr^Fum-Eeu-C7xYc9v{NPd( z3(#m|T>%rB7ilkTX^aS+%!AI<;1_W|j(Mj}#m{}0Qo_q_msrVq> zq$kMCa*z~;q9Qed>sS5`2VEmFdFeVXXoYt-Tv23A`ZvbJ7wRABg-6(br%P^h(H7dP z<9}UJy^FEaM!j1yg@RCpJ9cH~L6Qw;>Zkbj(4ciyhODVe_;{0xSL$a;rx>LC1s-IY z0Z1Itd```V8Hudw=SX5uDB7Cg0ujfD7){}$q)>=G*JNIk@PbnbE|%z5KgL(1f#&+m z>sEFXV-g=@)UT67X++7Ai3SYK$tQ$NS?KV$!BC+#4(RGFqgzyOEh2X~+v=?;{|+fH zCM4XD5#3aHso1uIVrq~2eUdJ(`u;W;avfCZM0n2Edi80N8&rY&I%+_J`Ilfz{xtlY%L8Vn+V0m9-Z}e3hrvWBVvOC|Ll3ojbbFj|eef6@} zp!c#i%u3hdd;o{;QUH~IYbh!HI(jvielFju$%D$eVH-F5aDygOh-=UOn=)t1-KR`>jmBncM0E0)P&7 zk;R~=J8k)nvWUi89&uxtrQQ?_sBpHY*K2h3PAL1MuO>J;T;+bJtL`-A=<=5b(I|LbzlE@R z5a1~0dq9>BPZ9~5E~*ZY%M9tD_sOqgoRT4fgn$3DuU2vI?3y4aU30*dCWlvg4t*&- zg~WHk<1x*nZxDSs%?RbC4CcN9jx*#m5k!S=1#9r6 z;LK#%E8Au}m>=S$9r&;_s&G@Pu<4cwOIHmjkzRMOgJ~cfLpfY{-OYywx89a=fsfO3 zod>57aq@i{H@{9JY6$$6*rW8C&%ffW`^-C^f5rDCN948rc+Kwm_hZEvXdQaP$#-n) zg|84teG9FbQ@LLmj?$RzV2ljei>fm_(uMFFNq7`J`4zV)8YH%=pu}ELdN;jbeJ8Po z>n7+?bY`2pBN{7@;*a>rYjkv%A#i(m)5aTDc7{OF|toSzFan_6J!pE8*CtY(?FO4AFGs^Gq(IHCAeAonyizZ@3 z+gQlQhnwW1C5%<3D98u>l_>cpzBSxsJKb(P!kxG?Si`hiP^rSLvFx%NhQR}mr>3ZEV+Crc@O!wv`07E8?wkztdHF z^r!4av=J&ySP!&>>JN@zaGoS!q}(s-`oO<9nXN_-K4?h%1Z!`+n)%t=yteHD9<;88 z%=;t=WUIxJ)J6=;daJFhNO3H2co9qjuzm2;}Q5!Rz6 zPN|QOV$s(J=qqq)P2!hCUs?C|^Q{FLohR$Jf0b`%e0l)3IIs3s{q}DNcGistU^|c1 zZ~vBHhrS!k=w%t#8zaJiuXFn9o6ewG$zcN6-(*Vor<3d7I@AZfr!v}_8p8eGgELfw z;AB(TD-8J>rK`if@N-EnH@)PjD`xjk1t%>_iDyE+fiWUq8hw^tnrRB`E0CqMInZT9 zwU%p61qKuIBGP5?hv{WjGEVLKmzIFoZXNGpCp%Z{iirMU7ID9O35Y>Ivs9&_7+BxX zUl|p=EwM-VfTXb;<-_{1-B%VYLY86$!Cs3rDEtS9R7(l^3M3qtH31`5BVR+b#?{B! z2r!}Vmjp8HF1{hqzi+;U%>bEFf5%$Q{+B1OE1nEVYKjay=S$;#1e0L_0Y7$TC*O>nKionyAZJu{ zM!J?BD1Q&?={s6|MG6T0HE;p<9|kQi>WHtQeFip3b69EPe6V~I6~cTAL#SM+f20@Q z+d~JN9o2ZR*Rj1V3^77tP>6~5dOb035Fu3-UWVz$XUfR(T==I>+-&iAoBigd_QXuzlu?OTl6lzpq|M$y(OakBF%YN83eS> zS96si+Aq@YXZ5b0%eONXAuwFGiBVc}YQmjZHyLJ@^SlMrgLRp_blqY7j?8V+sjl)p z{5-k7A_dfgqhJC>J=bAL>=zI&WUfuWqK=U30#wi>hXi(@zt44SnLF1L58>P?x&V*P zvtO6ZL{B-GDV5Pq;ERLlYl;x;MOv_6kUIFqZLO(W4Li7I{?>lFSr1J^R;biq+%<&Y zeB*c(zdu%AeeBp3NgH(Uu zNY78h4x%Rqu0yI?N_Ct>OZ4W)b^|Djmhdqm>P$_OTA;At_+N&E9>6ub6PPvYHr(D2 z>FU~NIFA}W!;KnTMZ2QxaeBornJB^J2PPi_qV#}Z@oQ8*G#SFnci6Z_f zY-|6#VE_L64v?Rv5xdRk0K{(VrxzU9zwhwUiQVpr;fp^P-96hhlV8^wC%1y(`uB`F zwH-_;GdsnrDYK;pn!}$?8pRqo>Bku`7&eC?oT$_Exq-%a4cka)?e-~b!lc#IOG(-p z&G&3aqBGNO@yZ&~d8N>?_VW9?Mxuk35cSqjdNnBp#tKe9WQaA-OyWM56U_?%%+8*vF)<9T z_8IBwyAK|`Kaq!vB|AIY#BFs*ELoqCu0D8h&)!5Hg6y;7t?&-3sEk%8vCM!Ka{Z4X zy*``CgKga=*3C^JKwM#JnI&mH?`Cac9%C(D+tHaUZW@2AVW4(#Yn>*SMN@B~S4C}J z;`5e{RRk6cX3r##GJRC5Kz%Q1UMSX*2pq431wu4I@+ebF=m&+6*hiw>h=jDNlSlQx zme@N;>|$dLk_!gp8Py@=>AQz?)$u?3>iXBC(yR$`(lvWsY0|v0#C`lLZ0Iy0RFMyZ zC%hGG6BxwFOk=*?I9}8L7-rUIGjYe<&ZGNx-jSF>ARf$@4IK&oHq64EP<(_heXzjjWM>yWOW3{M(gi5oi7o)L!TRi=iaa?x|4@yIA-dXUq^oxwJbG6m4@bAf+*uvA%)iza`RsJV zp|d)o*@C0^>yljDV z>+U`GC;QFII2;nZ3=M2D-7#PJ3`z6AUpj~}eXhCp`)5n+fJ2|QGoh)f53w7PBjYy+ zmyyxUdGe_K7hM`^U42x#G^WL;GW~wCGD2vV=FTRM%0HIO$4KTPG+$^jN24NjA$e5( zu~dFtsA%UOjf%9+=<%^Fw^TkMRCMc2D*nok0TQ95O{C2h!Cbp*Y5opru7`ZSc_!)M zTGuTsUNA& z{E}OlOS5f)q)07|e`cEr za|Vsru4JY^BWOK>pbm(y-I@1=l9-XD2a`#L7Em1_sf-={I$tL8WT^xuRL4ld+s_}| z81TNLDHLpN@ye$4Oz3jmL+P(JX;9Zs+9i?pks1#o#p`MQ#l+_bgz42CwNOLrbBD4!os@g#~>pP@}t4YPWl8va&Ea-#M_K#GYt6*@2Sf@Ihz+ zQwF2_n3V3c3 z^6jVsJnwGl7pzkwqpe%ihMR=>phY_B0@x{y+Fr(f6B{17u+H?}f~F0sIrAmhXdF6ccFUdsif*VV6KG`GaJc z30VH&70R;d9!z2xs@p+hD~!LLj57h_KeXZ*?=4{5DSZDZ`DOyXzkg-(J=2;sOuv&% zGXc{-u(FvBT;yHkn#synwfB$rl4&L@pXpPa?GmT{DKgCjOn=YH^p9-x_!%2$|%LM$6X{6~}Tj{n88nFjObEEd)3BK8Dy!WGImI;{s zu9fKwGuTOJxcy~v%jC8Fg_~Eba$VE$t7MnS%2jUAWPF_5GFiEP+ncvtpihulCM%d( z7ZHA&%raTI%=-51lVp|&n0?_`MtDB(@Cq_FY#K0}8qdV;!hEaUn%7q{>T}G4CU#Bf zzB>7980Br5=EUy3n!@-db_13)5Jq=j@n@pz@l5On0E0$$wpg}_Fu6trmqP`L2^?WO z6T21_rwo?NTsVpoOKl~aOu*)NM#$q~(@yNRF#|1(K9P(vS)q*1;%tR5dL0>M0!F`O zEPaBpXcU)08wPJ6gG^Q!gHD4tl0hb5a4fTAMuBznuhByxNIg0hYn{dhpSjUj#BA}t zdiuK&Io~ja$hqp6p~293&)B)rP>7wE>)83Ku_FwMPgdaV6Z~t!USVV8e-q?aOd$E2 zA0NINQ&STdBlzHsL%;|}vy;sU_XS_E)tkvH6YzTPINExvn!5d?)G5+os+n$J*GCuM zd6=5eyI_lJxP>CykK^-$17~*Quk_U`J_Of&9(q0L1$Tf3-S$Px%AtmY3*Yc(qW+UY_vc^%WiY7ZkDGzhD&{HkHEl*O6-`;CgwQchAJqxdx5N4lgYbo?k?snSke^ z3(f_tj1tJl#Pf8!H8;U;g&M{mB;!oL_}iDi+ApmR(reni`QF34XBe%JsC<%~GXdvA zm&zYcmHTd$@I6hwnSk#fT*(@ro#5Br(7h72TV$IF*j~}KQg;c3=Qep}0-jfNtt8L# zb#bHY4jE^%(ismrw4(7Y8D|2<-?5UNJJYKb))&Y+6R^H=8%s6=9UO;2*H*YbL#~;C z>y_It$%Vj|kZC4hdgaEFZ2Wr}d1eBhmuJv3jut)$ey=3MOjfi%=Of>%$TgD{&2>KP zy_Q@v0oNlR1 zhCewda-5_bOd!X{&LKIlh~GXdqjRa`*y*R5ljbXZBG^L|j0pt$nR7@me&iUfO{UJw zQWhqV<-O;SEN=Kfi@a&ic~3Zx|EY&54ikv;bLWsaHl9tG9y`}M#MkC25EBUW;d4nTOwLsUS$S}KkO=e$1!8gz3zUfnFQq_CAkat7QIGRWs$!#8P$VW0 z>4WE}NHQrU(tHD@VFGE+rTzhGPR7w*Lphj0jt`teR)HKj|N16M!UU2mk84_bq= zC_Tc4pZsg~x1j<_yj!Idf(eB9rE|y}ZX9ie%X-=CDHaom)mx4MX%4n-f7>zKkn!E} zY+sn~E^Tn?-s`K+eGL7nzkuS>)knKl7$|Xhwl6qfJrpH4hN5p?&g}~s$WaEN{)PFj zjbx&wzoL&ZfqIr_nZQGjxTfx3u)GGtOkw(O$utu%y*%?Io`(ud`$45}{rBXW3AkRK z#f@=r?M5fU^FNViCM#OgLGvtJ|0}s>05)_okB&NRlt_kWOYCg6K{X5Gicw=})N z@_&Wl$MFxou(mWn`QQ7+jQbIWu>MN2&IGKl z;94oH%Me<)eigZ907gfRw%`w>Pa5WbeoGXe9DZ3e`Kz@7X-M%{d(->*|H`IkM8wu55v@yLb z3ojW4^oWB@V8rp+KNG7hQ`fSfvk{i8vb^eF*4spL=W()(3B2tm9vgLyG+N3C8}c2D zL_~n|DF71)@RR3;0De>=5?n+Hn4B{v@JA#>fYlU$2?TiOIbj0V;}`zdk$)!Vj0*)F zB#~ePC13&x-hED3!1btkcfZK6nKCee49nDPXM)P8(+ZiFGLgu3u7&-}$Uc*E#{^n3 zeKJ^NxRNq3feg#D7be>tjll$3hFn0pnsP9K9LuwHd70$M#-(d11`~+!Q|Csl*5(Kf zN{L@xPeGWRYl7tC?2{-66A1Ft=aNN=;r1qq!UUo$&sODSsw0`G`xHvS1XBF$Ibje# zXw`K^FO5kxsZkgv5avVYq%fJG#nUMc6Ns~7d*&0zTRnXqVWQi?@waKtV&hVEG05$d zfC(h%EXQuQOckl?Uv~UDaAf;6!`!1VHf(ge4Sfl%{DoP}x8W;;7wRABg**9}_vzG^ zPFd5$IC%XRL}f#-t{cE)$s;XAAc0ExDHtZ;ePZdn7YC&Q)OP(hE&`&`)awb!1dz?; zg`B_##Cp6;PJrJ)U?z_VFs^U3z;7Zj697*wx5Ukd9qyZn%jB`ZJ<)Wy-%VU5j|r~a z7AOXO8*!Nccj)9*Nfn89s*BF-?o$3o(^*Ypn&m&s#->oxrj;xc(GaA&=| zKSo?8z+Lv(G1ocmT>2*n%ml#8?pnC{$On&i6PXE+Tgx3hy4~K%*0i_t`v}ei;6o4p zR;^Jv><sFA|u^@&g}lVC7^Mb7m5?KSp3C03N!vs+xD}8zTkv*NDnw`BC|?TqEmm5S0l~ zm$?rz)jTCnC5UFLe!JK1pc=!=A9vi!mZ&h#asG6Cu`H^4ny*E7|` z0cz3mUlW)KfS)sD$|Bw%)WgyBI*jCl$${rDx?Z?XcFQWi`_)&UdubO6 z&1s0|RzuSCF%@yYo{Cs}1a+JV;{{du$C1A@y4uX0984h3LN$4c(-RTc;A`@3-hgUW zmyr=Bj|(GuC?JenNk*7}k@?43BYIvz__&&UFnK)q(DMw!$F<~x$>YL@jFN

    hf{O**oq-SU^9su+ z-@m6LP-Nvea)tRmW2hsE>#sQ&@qAOQa3 zHF$P+4&+az(DjjpSt>iYZu9rWYT;pnvBBYl(~hMT(7ci5mIUHGVro}_Cpwdk*Cxmo z=^7rZog`r(5rcm^0e^-o|BfELAm@@Sm~g|d`%f`AAsLXOI%@D$7Z1)WI(Ev}!wpr)AC1tsd2#FjJi*n}YoRcJh3c)>J$S$uDV{auv&ZEn$852e;UV4yG zB{^8%;BaXErsI_!o{7SQ2c=4ng;NZ;=gP9B$1?OiLm@>6b62)MNXnERu#5Z=v%bPF zJv8?|Bv@jMiwc@0dRC1*YR)Q@j=C%( zj?^B+``C&WFQeXc(4<5b*VG^>uhrN{;g5`P1aIND^V1$K=ncL}6nswBK;W=3j*2Nos z$#-~q_)gF4BEHfq?VRXnXr6dGe6}e*G1#=t-AW%lESPgA0VrE|q-b>CJL@ zHDkm%^-;N<(!~dvUG~!7L-V@lAWAmkgJQfi9BkZXe?hkVVHY!2hKQKAYQ*F(VlfYw zvnZ7EGY@AGBY{}w6w#MOaM@${NHQb=!;6YC)S^qSE$lZ(OPaIEmjryzF3dMp{L$n` z0)7wA8!KwcIt8OsRkF7*W_+ml7Qv8c{54ua=!GLEcNDn%qZ!? zp1U?$!=l@^9d)w5@nZch)<*7du<-`HiEWqMwUNhI86tyxQ8P#(;g~(7@j~IuvuH*V zh*X>%=P`ucbI6Va>~hx^o`zCaE_J!zsqlLq`H__2*K6)X14#J2ko-u%FK_*0#jD%@ zmeYSo{c}U?&~Q3mYVJY%D>MwJSGaHOPD#J~F*L2+h?s-qxBUl6!|l}Etd%Rm=DQj; z;ZAmLcH*O0T5|_&NngS!P_h1l73dAXJE|CJa&cz`bHBq+C`6=-2FLo&~ zabBa?f4*c2^jT4qp&>GY?E$4zV48JQ^ZFMQ&%A{$BY|N{q(Gl@)b;j5F}Aw}{tE(= z0Jua73<9Uaa|Haa2u=d<;wjL_mK3-Zn|6D(DIID~i&CI}JA8(1OTNn)Dgwbb9 z)M#_q8e(x*o8Oj1@wPpb=;Vx^9Ga_Nz#47jym!hzU!q2fxO<`~G91374lg*a5n?T_ zPG3+wvqmSAz{v$`v^3`^$!Oy$ec1x@|TUK;BId5`Yx!9i~9y@JRr@mp~){D%LwxcJ&0; z7ch35gTcAryxmf-zpR0SA4BuJXCrJ5;>n@?2i67W?Hp_6ih%hY4Va=q?j&VG5D7(E zb6=X5gpw92oMcw_IKG0WRU?3B(EtR~#@fmpx+#%;XY_bzHa!DoK9rE|lpfg!*dV#M zSV|*L4_2XI`#)6M7Y+0zS1qyeIYlvFGKhj#|5w1(~Tsr5*_9&(NqeA>)SM33-%YY*h@HtE-J3s!Bj#5qlb4$ znb^MLflFrNFYS9VS^BJ_X0O#h_CY` z;?BI4aj(G_h_ZqW-;VuKEB+77&u&9_AIP6dpO>b?w#pK*`aX@-f(hFR$@qu_ zHE(93A%U1@7fLkXRgd|-m-ZFy!LVSff3@4ja`E#fWY z1zRQwI0b>R|5=S)uu@L&lxz^4Q3P`kgP#O~2VX~=7#nkD zLpr$nGwSMHdk03mKhBIQhxrBrf&>~rZ7+(Vt(+VJeTxE-K%i&sMSefQ}Y8*&iFJi2@i&x2PJSQp zyGyO!4t+n{9SqH*Sh!(29uC@-;0j84ckCgDD}Tq(mBt zhUWFGpGcrpD;$KSA+WHMuL+7{KjCE7salpkiN=Lj>8Ce z89leD0av>{-H&yazlP?lJ_7b&J#ha47v6hj`cQRn3WPZQk;ZBGW!>WZHArKX%(e6t z36!a-P&j1-%!a22xs8w{fXwK#6?YfghhAWMus0Hx1hBzRR}`~q-3t)&L&l?x62N3M zzoyl0u4MeI13&GFGZ1%F^@2HB($6Q zn)n=k49%6liI6);e%pW0C1VXhQ7A=0)E%c$moZgQl)a>)SR3=NY>1ISlkjc<)4RnP zEgr(~06#@Q5&$-fV93G){VYLA=&wpDVluCL2*)z|G&F!wRS5=2w`1SeBp45d z=2KjHbx3sV{RDJHZAQnPc2z`#GwHbY_yh_=fRz=Mm zfk^;dQJc{rWQ1w#SF=EH5`b6JW^~vRt{&3K4B0r0fLBp9-D+!b#Q&lBDVLod$e&69 zQ&BZ-VH5(r9RZ%tVpcDmBcfLklMb)%p zFUcv^#>}ztL;_7Js-_cAQQ%qgnFRup0I;HJIsupnJqKzCNq{0eCglv;$zc`u4qsAsdGg@G7d| z+8wNoR!#Y9XkNv6nSlwj7J+KfT^g>hz*-;DB^AS z4{|qv191v%MpD33)Mm6W3V{&pXb4tTqO1~VGg59*#JrTLf&^+*RO47RyxbVWy^L@q zfU7LpW4-*qa~i&akR*Vtrp*X-5Oj|JGDFTqLPagDTR55jJPJ&Jxn zr;IiJ(~iN!ki(a4J>V_}@J~Pyh)>f%tSCNWBnc5;LG$}`76}xqsAZRe({z{seHB4T z09sKaAq5)8Wdis$1SSD+@Due@4{s@Zd?|wQqd{Yy$^dndQ>k57+xRv_cU9M10u#qG zJRX|OFGRE+>Ys8)@&J=&MQKejA~6&iF+0$ht4RF548<6EkvRXg_j3~xEz&H3AUCvi-`{>n9Kg^?(L-VX>BG!+xnLR%5PI+&lL$oJUntmcQil&kv z^xvVOUu_5^p#1ocE-1eFDf1i&v|ZbK+Ky)Yv>?BrAS4iE&t4W}q)eoRIe-O&1i~y- znf)W6sB}bUtV8~qMa0HuG8ijL!FZ9=HhJXN(7fbnC=mzif%^}=D;j-^;1mb}{~-$Q zAmh?T31BLkKwEJGO8hZ2Teug-LGs)F15`y5XbwtI5Qm@EIIL(`$FY|%jI}WzU@9Sj zCKXMfC7?72J-`nUkOY7gH69ayaR_>#A0a3S{Z&cAB=fq5@F~Whh6XSyN=~=xG{mi# zgLutz5qfvUFCl=qvYJXrA(TIY?yDMf6%`*VKSwP7A9LRsAjwglEs!|rq?1qt*~$ zz&7av118yE3p6NuU)!j+GH0tki6td1mb}_REgTu z^i&p@dM{2D2*G1C1nbHuTM0VISH#?lPN6_GYI^Est09qYgU{K`{2J9!KwVwY9@Hxc zJg@S8R7nAq^*ohD1>30wk7me8JU~HR&Bd+-u6>b7BWU7rVlKNzx@migM%NxeZGCa> z)T%lJ;XO47>*}V1irGL+D`(zCS5cr!bu~;Gg+3qyweO}{3aG8Co6e|>0y9wkKB}gG z>YBP~)yx15^xT6%8b(Y_{=~b}_%IXRFO^XBXNmb|?ufHBEeMZM*P8A)JifM@REm&2 zSwps_+s#OaG-|#?t7-1Xu@*&r@#9s9U70BwxW3$~ejrs-Ky^(|4ZI4kIt^Zb&8k0< z>M5Z9l3MP6yoRjU9g+D6jm-Sw5QV`zLmeHej@A%k#LgeE^-BxfF@DOM`7?4S zbM{xEszFqpuTfRe>8=`VY?L|KN>$9u=?Myu&mZFKFZp0}m{s;FDx-k1{BEk0vTTs0 zwfh4qq=3S6@>;R|(Pu*qOGljX&Xa~KttGVNuVg5q2H*U}=es(Rn3GO_*jeeVjK;d1 z!V*5fjEgP3*y;~kdJ)af?;#$KpLty_<>E40pHw_3zkKsHDFwfm~Xg_qQ zvr-e8WqO8o^2W)(6ECP^xW0ltz3tvwv_1;3?>aZx8om-9*%p<_X~+EyJ#%)IG;}~Z zPNqJ1XHC6RzCnj+LSXM9SEw~JJDFk>s73xwe;E^|gJQZUqjE@<6i}IeCs|fy(2Y#1 zy^?Avpf-1z?S5+2m_*&UU%ZPHGhtvdT+&)YU;gmFpu%x)u{R#$TZNr*Z+?9|>D$Ry z#-zW7BYQ0|?|2D9_Rg~|%N0OPfijTGk5f?N988UA5<*O0r!hUMk}NZH`0&oTt_Cr` zME_Hun#&bBlN=2i3jV@e>L{!Gw-^=lNS=*o_tO2ya(B`h;$wJnLx__WPZINm*RUV) z=W-~&tJIH#%2Wru`U3T8>3$>x6*sy9)nML6zfr(UrEh8+roV62yC+v{RozTg6i}5v z;aVVN9i~^6wo2}jRrfBcqky`yJ*0zd;{fAY?|gFuLyi&P-ClZN+aInDy7N6Zu$`>0 zuF99lwT61p4Q&0z#B5{FdA$AO>FfT|6fR@5^uTr_vdRfD`znpu(gWL#lt>KE`hhYq zOY}SiYKnKJr`HS@h_hKL@KTbvD;?Knd}3b7&~T2)wSMW5fFrfgn;-X9ut9GWBfb>h zy?qOU<0$*{R(ipgb<#2zsdW38OGwot4&J13P*EHAOQ*xxU^#2d;Mv^`yyN4H!{#&ki`L2 zIl}wHya@NDi8=WVVT7j_QbK829TD!)7!0Z&5&rI)B0NHmBHUk5o#u;d+bHUYa1TBs z!u@rt{L55MQAdP(aIbti!u@Y7fv=GOMGX<|vC|0mMONLPMG>A}h4#|7jxKqFo&If+ z+u7f&zaFuDM5fdi1pB<_e_MG!nz)oiB3cpBw`fS0o_@@$ALdo#V%26oNq17fpp|=x zv@ViBaa--aqd?P|&rmG|)aF0+EM-DbI~~K3>d#R%1yo;Dv58jTG+2VEsKI5c_AOLP0kvgkokIgkOd=?JV2V9|z`&e} zkMbiVtw&lhv`zQ2!RQO|0O8dL(j%wJStNm){uGtZe@UXqFeU@00ZZKo*k5SC<}W8I z3GNz9=4V<3sjYb--AREOl^>Yp)F>PgW-hCt&5Nm;0;-={w%^S_r_q$H=&g*XTt`+- zo?&l-&m2#;d|K`rz$d&6v2~1%t>_Xl)HixB`isayFkdXv}?69BI;_r~JZ#;5z zCx&{>Y4kS*s@ARM?@)8Gy zf*I`ekLl@iN{@hJEcG%K!^?M4FIVY~LY|?A!}7#XpLsvMOM&X-?@m*!^$MZAO5X{F zSFPd?QZWS-m!E)~wqy3*GX8~C{$VPofb!fmiTht^iD#{+4`s3NaSY|W=qbIzt3T=M zhoX3pn4A9)0eg@f+y79j{BMyKs+NK)F5>Z5H6BZ^qfFWIw$3v)-=z;Iz_vn@=}Zxf z`<+qD_o;#cDoQ_5j`;iTDXhuAQVj*|Ub=QtasxP|2Ree4Hp`x8CE z!yk^Aa06k_gF`4Qy}ZZaX>&#$2%iUO_*A%s3~L}E6xPCAPvcX7`Prq7uaIy+gncTV zkeaEIBe1M$(!W|?SK|UAo+Re}uM$VNb0~9%l^hW$Qyp-`!>c+X0M((Xqbjv9>vRMK zn3tb|$||v4NUUlPRZ&1y`N2R|Rgl}Ux@)M80_sYKn1yV62dmY7Q$x%tgoe_$^4K9} zez~)AcXzy`%P^#%r3HyOpWOsEYnoqnW%ktmO{H7;ta8bR0%=(m?yruHs70|<<~C(WXclrPi!LY zm@S?z0g=+<(G0pa;8Y9;K1Cf^dOVtgtv*~Ito75%Yemg7=|&1vCwH^x0z;ULM*TeM zl%`AQ%PG4;ZRue!*B45Ah5N#2(KRmU-38{+(goLN|2`ahZ0@v3O=xHLGmq8343@uAxh> z$ypuuhxrS&<-SNR&sc(g^Xm{1zr4XO?8TYO!1MQaED#+Vlg7OOm?1_++7_&rz3<&v zjl{|9pC}7+3!{Ys(Ngxg&uk@axrC^hwIH9CFhhopI%=jbO84U!g5rC#t`r!Jj)%B(O@hq@7J1kU9=D+A(3b?m)pA+I{W+TE& zR^@+FB?a4`vY{Q~dX?#rGQ4cn{(@>LptkIYC4}XtTp2iX8U+$4<|;<2ixwXqrSHa^ zKKnYGJ(c&_e*Z?q<)J}|KjCXmsN1LrsXt=V?S%&NEvVOtWuKtEXDb0rU|C z_?N!ZNKt)Y=xt4U!Kyou>L{SDa_|TBnvO%hc}6>$EmTPXmFJf1eA9ZQG3XWi4kOUT zg$;%Btq7K`i|slqqXoP73*Tttn^P?o;iJ8Ogg8865|>Ir@Ry9o(rbc%9YE2isueN$ zGL6a7tA?kc@3q<;cUOAIYg@IgX~EvDPw*E}q0-OUae=dhWFmQ56$l}aOlXu*!0`^Wur7gYNuwDkTI{Ky4awl*QSzmZ_j*hb*(=da!*XG zT8{$OUu?-m8@f;63p2;#k6XFdQW>Y1 zw@>Fsr3S~XHjDDYEqv2vV1+~7Bbg6TxfJ0RTi*tepTaApAMDerA(%Gk)QtxH{TlbB zAMEFW>(Do&H8Ip^e#AJVK#j^iUC-*&__9@WVI|uB4}D4lM+RVPQu>L5fMGgQhB`R0 zFBBicmAZ%cb2;?y%$9!Q5GqRyb--nRsV*x&#-%x24P4W}0@YwXK^IZLOl6mLIpWqe zDflh)2<_yJQ+|94kQGcs?dVR@krE18EJ)0)di>pePYY-||eelj_ z)jO3&fFZC?CReDM%uDGd3e=+Pf~T+&>M1Ch6N6eUpP{>GL|<82t^7@-1zPA0M^M#W z8|ikh&PzdgV&1~}!(;L;NvSXj{{Y0!uhMBROtUQH49ult@A7NIIW&%-}3itz~ed?t{0C-imucS5wCv}oPHFY9$%2M z7@~4B?lgEpiJ^M9`#b9H(vSIQzA5zZPDiRadl*K0^pJ^1Ao;0VEvfyD5OBH7aaiuZklwKFZ;RQ64 zsHvG}Gf4qURvA-<&>F$E#09Wu`zd2d#+2dj>BZ8MoEbZZ;VUZtXF7ZXBt^LWRl{3-hoOcuY+CwBEi-qr++DQ`L45~zFI;HJg=k9g`+SA= z*xYMUJcUJvmwr+^i(F#J13tgA`aJ(rKLsB4%~BAyT~g)QZCB|Pn=^I0_ABcat+n|E zqmBZWE&Gf(Pqzl1D9y}4(gNmA3_f~3*TrSuOU%Oy8#PgVSE`Qtk;$6S+@NesCnSMH~| zve=}uFmJ>}v-9TKMtP(;w1MfxGUh$ZCklAt=@o{x8+qB~)@U~#Ng}4^T;yeDIB7F; zUxqtlYoCEr_9cXUVTTzgl(tW2VChxFRKB*diY>a*J9?aBb2mKK`840?JdAneisa1w z0kh?-DuELyR%J+x-_XRUbPE^Y`XPfYQ$6NB3^NK;A$LFjg58xx)ri6g_d2tNGi|zw z)~m-}92V%9k4MVv&Qw>FUcD#Wgt9aMDQ$Bo%})Ws z<>x~kVezqjavdl+oJuI5ft&| z=L+398YKA<2$c7JmVl~6Tv__mZ~muU;2jv6)8VM5d!;`$%b5b%_@BW zl~O=y`J1{B*eeZ!FuZORZ>M4kD88_4G={isjSlutY0Q`|1JnkNy8?~nn`BjqZ!v36 zC8zunI5r5l2{C%8jZv1k6MmqXBZ>0Mup*_Z388tVhGzN4R1s_#m%cvck?dk9z`tq^ z0M!Ra6p^XA$50&w)Rmt|ny%MWET$^YqDl&=EWHfNYxGf=Dp+L*+PH9`P=3ULFW)cp z?6+t17y~{=-oX=lnjWD>k1pMNr;1bo0`6HFaOJzf6w^kVR7Ua5IdlXCXjh2o)ILFH z8(PYoM@1A+RQ_pbrY>QGg|)hX$|#`h%+l?gAR@Lx zP@$4P|SL7cgfwjLXt3&)P`#q)2ZG*G95;kG-|p%P-h$i^_PK{tc6&^rDXt zNE3njkO;r8iBP(k%K}UAhlPouCUX(pN`YFGeOemAw%0~*B6qn7>}Os@_f1)?bY}{M zgZ{*R9c$F$F($qFoc~}rN=|tsKcag|ccy_NRRGVtSv^y_GYv4EQ_>2UEgW7`fOeIT z_V!6TQ)dvdl-Wu}6i`$p$|6N+YZ5ElMr9OGc2>#G)FMiN1qOQ)Lo0OlRk>|tZx810 z@sw=1)*YNU9F12dd0(;$f3;nHwS6$cb^zG?eX=?l;`uxar5%@Y?A@>BEtV(dw{AfU z9+P*;mc~Gg&HS6UkVqYLl^UY=JsQ3F&qeCiD)F6TKxJdDpCBqIV1`|JQBfzKw(#Hv z|LQSpx$a$N-pwFVzxf~Nbx_+`b3m;Ma(Cb+eg>-&JyMXEe|-o0o2ZPZ>EAGD@)wnt zH&+0!y%1R-T0WxDGHTcYY@?zoiWSWB*lJLq#_O9vLGNvIi0ma13J|HgdC8bwQYLLi zbI81qWGFypsoty!xU>g&V!#Xu!qR-0X)+az`AZn1U>tXc3!{~Nwz&GU?K^to;b?s@ z=u1QE&l0otVdTcvv>-f&HS!l=)kQ?rBPl+sNl~C#s8Vg_L|Rj+y19rACIu>+e~VOC zWhD$XAF?DaAqfhQD3Fy^ZII?dmdK?fLIEN>_L&GJd9<@yKf@ddVz8OGTkG1`U+X63 zmX9Lr58BbgvHcH9FWGm4xW83arK%5c{tp`G`BU1J0?pP=L)_KSTuXmapmq(kDS=WK z*k1LsshR?+8_4TGbr{ZG{d1|Ff_|+%lGnNjVz2A(8NV7#P1qR^nfvq0gPz`;`Lo2l zhA)|JO$)+f5UIWG_L_7+L-mO1e{HDkjiQ3z4ugsH3gWX@VL{29W3J|Hg?e@Cb{>Wd(fiTfXl^Y6LqP^>Bu?Ej;|p1;zy4owp1K{d@?*^p77g82&`Yg4Ojc&PmD zR89fq`BUn(DNh4CBydj>pa6l~RpV9l<14rbF7>bZ1%uhf6%^L)<<$}P_8aN8nf5p_ zpS>Bue6TxBk3b;*DPx5y2Lx0xLi&iGigjxr9t651s9g=E!sZ&bRuoM{R#vqJc1++I zBtQWIwRav_0%>r^B(5b13Xr(G=242()Q&YC4sS;>R-n(C^t$8uW$X>N&$~_k%kAsK zad%g5fQJtYy*<)<*%CY(LrG%p#IQd+F7)U6XPlNP5SCtP6?#et>F_I>4h7~UYSAmH z5gALFm@63?6fnXw_kCkh9~n)SJW6Y%L;*_IZ6>8Oee!7SCM^okx^kaMRM}8%%YhHp zd?cH@GOt`Xr{SCblrd_-C-{71q1@8n;nPgJdSkrv)f=y@uVF86+n;E0D=5Y`(;O!q zopZ$%hA7Oo=5DGl+NI-*H~qT=@79BW*4U5{W7E07knFtmrbR6?poxzac;9?ctwDH)4+y^Pa!pxXGQS zN1#yP&bI;uRgKs^O=GvfsJwzUi4IpwskAwVfk1((7I=;1JM3eT&NY`wgPHSJY-c{$WP<1D>|n(e z?i%~pYabu#9IWF%JjT~`eY1kJ#f6gkH!b~}7XC&z2uRG1KSltbsH&pa-tf=dUqr#Z z5jh&`h5yTprIklg^ff6y^1qDVtc2On&f-w>NG1~n%>Eafn@k(A%TF}CNX-SR8lrPH zu91Yp1;1jIQEHZ%i8fUCEAWck<8UTqvew7K!hH`>)8B62fv<#*)`xm)=}r=J>bsFu zhxqg05Dv+IjX%EANL7@kqbv~KYZ~4~`kfloO4RzAizUp57>*REeUXXLx@hQ~XNJs2 zNQMGr3aq)rOK8<2gO7jH8JY~CTS$lkgmRbh*BTn_jP?n$Dh*X|XfR#oN8|DQsJAG6 zl{-ny&p*U;@#n!I=rouvP9y0k3#7|+ji*bfR?@{4CuF}DNx-;8z!}MmPOtaM&rK8(DO>QF9_;ycGKq+sCSVE?Um~-6m-}W zI>KB{A`~FfWS5k&#R%^P^@qLj_K3{WNrnPs7WaL3Q^_dpNb?^sA6!sEd&4PVKMP9= z{HE%QKjKmXXG#MHpwVzjxNqrFKT_gPHYFv3PvVC4H}iBp1?t^!N(29*0w*g9{O`;P7t-A(O`elmxZc&du7+GKJZW3 zpXdejC-wj|8thL}8i}EPWXmTT?@v;t5}~%DqTjrMvo92=cY_I=p`iUqMC45*LIENT z_9q!4X?jFt-bykQAk$obqAJ^w=D(5t#1=t&gDJ7nTj+OnHMJfl=J5A2CG43$0F4Gy zBBi1FkrH2RJS9@4k`iJ4%@^r>3e>y7l*mxfl!%CYnM5c+q`{QP5J^)aBJ(wpp#YiY zQbJX>Bh6otl(0q6Uf@lNvO}z4cev8CIbn|z^PKk~DGqk0=@FiK&S)iPI~C84PiQ~4pOP=HE<V1+<;d+AV9dkD6P=HQ@_aI)a4z{C5fBu@KbPg#|fKqe! zAYQ8`PT--RF?E8d1&sy=T;yTrGV~Ci?|nN5T=vW#fJTD@u9SxAN46aLGjTzK)4Zut zpDLV6V*Sl!i~%TZAZ$ctanylA#Vby{6wNL|GU z=B=Egp+MD}9dJb?d};(#-bN}EpwjGsE20u5M?mLh(xCvIMh9Hf$@BYfJ@3i zpuu+Y%JuGWtv}GO8Mu?g{3Ew@JH(#{hoIBok`bp-$6928EV-{{NrMlEL$#77u0Sne zUdU*mKhnnsFE1IVyeTm z=uZlee@cyN#^WwN@8Yazm7PRo6i}A`j_!WDCSGloRd^~DQb6H3dC|H*`r1H8_%SMM zea>L;F&NSSIJdM7$4gj4zc|u>8!zFVkHt}9PU4!8L%Qx<4&`@@w#U?=Om!gGF4ADT zpbk)tHCrXsU^;XL1(=upWIYTawQu8q?;JQ2nJ3W|w39bZ`P>J{u)AWvEJ4%DSz^Ax z6`Whs0y);7R?GcRp{jv9uBe*(A*%OBP!)4L9YRqhJDe8vNC@B2>~KGziOM%*Y)`@# zndh!e{sv!rK1}*nTV&7Dv^=YPP)CXrLuK&JPW4Xd&pZj+phAAu({dI)=0Z-PP{4NO z8_bODyej?tR;2LBR7e4Z`KyzQw3s;x)4@ehbG4><3YAho>G@?_=~O2o5kB)RH63OQ zV^KpS4T}7k(jpa{Ot=M$`@{m89Qne6Hr;Zq<*uO_murc6~;QRck(>f?HAhxUNrwuHgF+U{{3J}S^1FwNd zkOdoB<>w?r0W!IhL*==&)eLww&wiYQ-DnV^<|?L&jZ^<4{~Hi0J;a&s&M)^mi@IV% zPFjnYLVxf3ImGej_7K0TG{gy&sSd>Y^EB2=4{<_J=~7*RYA}bgN2P$7$_{ZHWLpmK z(OPRF^E-5m+Q}NHbeAwc=&yEGy7-3D9@&vxS}qp0w9tNg;Z`Q`RZ~E9>8>e@ zEuM{UlCnRs>bFom1=QzmwOOL#ZR(n{k>WlNLC=~S8O#z|**K~e)Vq4~Yol={sI|}r z^>?^xQiD1yw`799uO8F^82ykK>PAq%u8yG2fTuwnTu_bX?d(n{DhG9d?ISA)>fo|f z{SK<8s2tP*wpX3@rxMh`PptYsrFx30K^;Kbpw)by-*Z5q_U?-@szmTnx~D>R+8 zt5)qTsjqcQ$`bQO??g!7F+T*f@AV7`O*-G{w+Q0VYP&K+GddieEb3Rarr)RM#ZIXn!cu$H=m%dDNwcC zmnO@Z9IwEL8|GYfF&uUVH}9v@oz>kB;DW6KG3)PRDDtATc-&Y!ifK0y7bUGi|tkW&SQJ_CszG; zsGb7qpHebzv(RlV;MdoppfaChDBH*iE<$zb$x5$#VSPRm&@4&J5!^=YaQzvgTngPe zILJ8&Jhp7(FhxLBB8dM{gShngY6>}y;Iw+?_vl0lRHS;&5ZDJ$CUyg*FQ-xpD9v9w zR-gmSuVYTs28v%r#S~Cn_M7yP-XLBBHQ!{g+Q10{rFx{U_PW~FDhUK7OA_G?J+1Eyh0w#L*I+D;*2n$cxYNUib_?3I*rJveCFX+nAgqqal==eummF_C zuB^+ZNvKwY+ff>BrN`CN(BiJRShbl?vL&EET}t1n$H+d;wc(2|TD6~{S_-HwJ;05T zz1lP^;~!YnpQCCDsJ^IVc*ekOdy40%5>Zysk&IUtL+%okKDTtptPkh;5exUIskhKs z=Q&ZUkdS4ZssPof)p^wZ3klL;C==K)?pS%?;VxbN`e3xGJ~y@$>YTo#2d?aX}E78LrW32=yJo^hheY2@M;e<3#6LZ7gAXpC#N_gUa&D<)m z%skXpg_yEI<|o)179em?~xJ(C|#GE zna$ZJ9koo+`T=QCfY!dh+Es_4u<}Kw`O`2q4`$M3!uQ%{Z8RCp_mPmhdY#F<-KYU8 za$I4Hg_ySg7IN&!sq&~u{+{`^y4i%4AF}QY&AR7oHUSOy)M{!9v6^YEBd#c5nfzY9 zws7}eOI<0Af?I9ooEp+QiS#HyFTbB`nqHWbaShb3=2TLo0L7>0^^*-TG9;=` z1oIeXX_yUq5%ikv1J?$mBcwzDO3n6x)0BdI^B1k9ZXqoS z&}y^~^orZoG;@e*OX5Q91N~1JzMGO)r^I=63J5KID$FaCqFjylnwG~ zeiQS`+C;h$&qkS;1J)2N6tKglY6Wvd4-ZRuW+(id8NdZ4f1NdiFsvh66Te&iy1On zC^jpvLNZZac}iE362)faRX}MvuRN_a(xTX;ygD_=D^KFeD6dcqGL7D|?HG@`3-cTa zPL{iF4W=*D4{>3^;H6*XJ=;`yP-Op}gd4qQ^Be-g$`4t0t!7=L_iT9tWUQFIpsdWF zGp;CLnMQAlvikkFF%A0cPb|g1AVmsLZ1ScktG?|Ea7!fNX9+!vX^@7Sy9j!XPJ-bL zp81`;{~C1d!c`V<+5!cMx!d0(3AV|PT$w$!f5YG(G&x_8C8(Sb_%G1FfBI%Bm!JC z*rvcnK;>r!RiEBMlL2DnCXJB-+hx_E)<#Ea1M}~^A*4XvbKm=`Y3fC*j)(|!zl@>a zoB;jJHY20K`U;-;u3;IxG{W;zfTs*7NX%3IN}7?d3{e{VP4mr2piD!AoDd?f-;8D? zqg(?eC{zoXPcU34;I2k*ze3ZCyV7~i@RFtVH>5=YTKVe&>I&n)B%W5!FxdI*!3Vc_oi@C|&lu7L_9Lp$@QjA@-L=l*c(l@)U>g&x>#)tRTxjt^ z%Uwv!w(lYbkA*eyN11D`IL2ZH)*9_OW>i4AA~)Zuxp~8FLBi(fw276S>2p?{0#>^5 zHY2F>qw3U*_r&35K$;Yw`Fpn+%`k^&T69FJ6rh^B7^SvWW|{(D7(-s*?QA3sGTWw; z_4PZL+%|PGRtDEbM^_7zRqQ(_jiDYU=00EM=*ph?0}yF+bd?fO21w5jYkD?1x=Phb zLWVXlf51^U1?s-L$=J@2(4>o~ypB{TK&8NDq~#m^43#voB07IaIuxMO74xmh%}rYj!0t20O|3WO-T=@)~1KlS{Rs*G6*P8 z_lDCWBH_{_pz<+Np#YVJ(<7o1rbj^MuSkaibec^MDn)t(x<75xLyDlk(eyx%iAA^4 zd+1?eKKQpx4}0bhK%~+1NQo!|q{rWHLVBcXB|SnLm<0v_1?t{tdSpmwdPG!~NQDAa z8cmN3l{7sfI)-#8K&Q#{P^EZ(fu&NOQWIP8I&b0SAs91 z{Ueg)@VHRV{h#qJsnHysBB`{HK|j5-Qdh|q`S>CtX{T}Z>ju%sVBjnUID97 zlOyXzEM{Ko=?-G{I5DsI46^QEcbXo7O#W*)XfAr=KDXHJ4o)mTwhqWB3FO!>G{+{J zWdu&dxtfb1%-z@;Q=s~d&fx~tmn63tr5;j)n0t^61;{k||5EWrmHl7~qdb2|k>ljk5e$%A~&XfoaHX}Whh%!KW+;x-E!`5GWk<GbIfrG?c z|2d?_L5n=L|G@wSKJr$f3$+APHVA+9;=zt=$%NaR?|kzp$yD_vmK>C-J4C{)CuYGozNZT7o_LF=^(?cHnkcfN! z({Oq?B8edbq{k(jk{(X2O%JK8FfbP}2q>CQkBEfrPXc$COGt&H`SggWgy|7j=2Ft3 zXgocr6zLJ@zSyRR6hVKl$vct$N!qENl$f(VkF>ab|D;3&6z^zWv1&ysENLnq)$xgbW)-Kr9p%D>W)#{ z9as-No4Jz)Em$=ANPD%bbH4aLF|Ym#66Qc2s)X|SCey?!SH;MXL^C9R!}gkbdRJlI z5&KG;cX6CSfhsrJRE6p_B~lXaCJ73VXtb3GNu-I85_unqP=Lse26F%!+o{$Y8Tk@@ zP}}H2hSlzPt&dNybCOy53|r9BS?9O%?Zj=ZE6OPcN3 zb4bj{-N=}h=mSWU0z_}R?TAiia~|34BufFZ&ug^1%rR=3-%1VNGaJn@x2z>^W~#e1 znogHZ=}Fe{+4f9Nt3`?V45vDda9M6keF1jGl~xOe9d1Sxq(qe&68bMRp&PxscL|-U zkNR9|1hJL*8v76m*kn_>w+yMc-;JpK1F2Df+NSg+8EVtn8qxbl(xU*qt2QA`Re749 z5t$D$EnVCPVZJGLL+ii}SR0I}55^UCz4PH@p6GN|N58XVzfQ6g zAiEiTaKs_aaTIF@9A=RDRMZDYf68=ewhvxk>vRXB;Zn!Xkgl$;wWO%UqQo5Y|D+F& zOVKz*e@UXv_Q8=lO=vPhLVtZT`rs+`n#obI+RB{5V55Ldn(c!l?LH-J9~@n@)E-P~ z6rk2@UlM8e)Pih{eqibSI_Xh>-qlU^!IAPdLK)u>VHV&&AM@sG+6hO$Wt{J9a;!NX zt(~UNx8*1?cl|cf?+$w6{s)OhpRjupsvbG^1I@8UA2)lgl3GFa%_BMMPJxOydIuj< z&_oJ}JcdLlK%~(*$e2i)HX)g_NQMGr78}eK(b*0)f1jCQV-m_6o!*;_7S}p!%j4c; z8Fz{O;gU2aENz9QiTRH&B2kW-zMy3h1hcr&dHh_`N)gF)t0q&UeM2q-Nvx?W%FFx~ z8(#_-=Y}SmxG4g@d(ecNx^4+RhXg4=@I|)`!88$Pk^CK!qyWihHkg!C`r9nQ=rYI@ zYqy^>TO~2#t6qeJMMFcdX0vhL$1_fv|x?U%uk>*W6r1~Yk>Mzhc2e${u-6ZyZhlO!6w+43Y*J(BJInrzJ`yRSN*3JM3+ zZ@$gYpg_eNz1i{=mn^sGL|T@}cS(c-L>j%>iirfN6Oj2n$xwjIQj-Zoooz6h^LDr& zbAv&t!Pu-%un$V->fU&yt0nP~$CZ|xCgz*mH}cS+L{IeB%#ubw#zVa+F=c~PIZacg z+3<)|YnSAUl!%f0megeHvM{H7y8_VWCEE(7aZLl2SoR zovkU==*>Z-Su)C(C=YWe!-N7xX!Hq)SDeWwUv3Edyh z3Xp1YF~8T__D7b%SG4J{YQfP}k^9LZ(=(~|A5oLhPxmYu& z(V4|mtxFqOw?`Y8JMe~@0(EaXeVr51SBFD)m_tZ~0#q7(lOSV{C{y{N9SB|g&_*Z zcjL_`t}KySi<(-E-ssP;9V2}Dk}@+7V*^Y9`!u?$bDDwg9`w#>`UjTc!%2|>6mQ&o z7fLe~re!ujEzL)fCIx6-+u#k>w4IQyyQGKdF?Vf_M3+Ib(Qa;6x;cX$Cgwod zdD))r-C_?wq|t6JC87+Fi|d=v&82E3er#pM2Ii@Z6bjV6(QYn7Lh~%5av7;mfJ&p? zT!u=TPZ6CfNQVM+n(XFOX*<%rCf%GZg8qingF6jK3%JYfL-2%u<|xpf`2!GXI6WMZ z#E=2fn78664UI#Gc5nIj);)l8Wj_THL52bRX8 z_0=>7<`iD z;6r|C8n_ah2@mBexx?ea^xWq|r`|rn>GQM_Ln26tn>8hBZkMO@NmfLq%E0VlC{Vx` z1x8C1eSz*t`-eO#*N_SYs1z72Ri~0>NFJSMkPZdt^lR-XB5iGV=2C@$Vg7`v;=|O3 zWzD09!O4Q$9k^YV1}96JNI_!0@^R$Kwy2D!>EAGcFRwRKLU=Z1$^wb~dRF#?$m~n#hj;Uh{)2kRP9F zCO58vL*A&Btubuegw+e zgHxjX5QltH^CS2fgYnYb#(JqY?2Ym1pPXB5dkG7qI>Rm>r*tOE-Br7+dDPOfmXsyt z#P1;=?uZv;qhgjse@r6h)JQ}XBL%*uDUd&QD_Kd}B+FkaYW8q8g#y*NByW7M{~EFG z37!-?<0HB>wARghmEO#={VUWY zS-o{Z9iY-Id8$$i^O9Zg4+WTCT$>W@m@}$gMpYD0RVl^1M;LZ#(~?p53aX=ky2nTzd~FrAiQc$48(DUGo#sp8s*robWE;e%?94a zACJ3Nbyi09Dcl@Z@S<%7fJ#FET?g{E7xc{;WWC+i)Z> z+kA;33-dGv2nFgpsuUo3)peobui-UII?zRpP`E3jM*TF?6%`YvKU^K;#EmVs@$%w( zpoPbh6$E!Hx?&4EAqwN;ylU|g!f9NP0pjAm8W;KR&J>P|EPT*RgqIRSt>zPZ5C;^f z*X5PsAOv^*w`I=lqVYa-yPA8-vZaSY8t*IpVP{8o;#Tm{p(tvxC@~-S1)7B;)Xl!s z7IfTS(!GzX=3WP-uBBGE_EdFk#hxyN4&3UBwT|YE9PCq|E>EuHQU~nZiSs!zu+?-5 zU8yFGESUe8vTy`b?Lu!j!vEd1k=_fWehaQ7=2ANKxcrN@T$qJ_1hbUBg-qitKvYkY z3OxOr>goJ>#Y!ef+x3ir)C}fz^g9JAnEQ5cS?!VggL+%Nr!xxF2YI%hua-{39-hzb z7)t^HecHYi`|j0oZ@!Nkv&@*!7F)OfDCoPR zE3StLQEKSBLpb$08NlaHQlD4syR-0t%fm~Fp;q%r_T3clc(uMe1a}U%WzOHC@k09B z_TAy%(6SZt9P5d(41WzDl^?CI(X{u{WR~)lElDa3GH9bt7|9^`rSSF~^b8+V0U8=18ZZW{yN z%cba6e*R>*|4teiQ&;T;od*vPN%D!+dZ9d$i6I-rfzdd~Uzk$O4r!mCWuV&4dl?NB zsAKK})zbQ1K#1bZT|X;s`V0#7MXt&7-}&1QKBL_ouH)?N9(Pw)d)VVVZw>&PTl#z}uRhhLE@)~tthlf; z_u~MQ0(QuK;iMK`Y21x=W0QS&cFsjWW)^{_GHZ-N_3%EOS9+FMM|^85tDS{@ct3)Y z7D^Ix_y0kh9j{D4mNGwE7b~bspkQ_CMjeZBdy$ zwSPm$on4o5)d#;_uYM~%<1tk$b`@cvYBG1H*CBFY*l2v(6s-%F* z(xbu<*Q-n)Ifa+4+Fzww3aEWz$$5_uwk;=fhyp%hw~=C=&*;=}3F4#l1IS$~-Bk@r z93aJT~UFfdqB(;Q|o+swhMM0k5^}wU%omZpZtZJG(#4UQVxMK$)ABx;m#ZgG;iBAu0ItOX|=3jl>+l zJ_dL0XE}Pji*t;o9L#a_It8km|8|7KuSi4hmK<1ytR-_i$xwjI)0+wu4&BpUYhyxp zAt4G7%Kdn+`}1ELtA622@0%AKw{WeW6_5f_9hG5WL z*%7u>Jol~BhYsVIH!RY#z{izLmQkJDDNK zmKHyqg9)x!rB_lZ1(a4A^9ImfY1(=OSFPeTDyD$qDr4RNxy|FWVW0!ezcV@|Y=S_k z7^UM$9HrxlkJ1-$bPIK9k)8$0D@JLg9BcHT5K(&j{}Dr0jM50(MyW4TUFMY>rczXo zQV;C|M*BXR&lyZAXkJaF6xE~DLwluRl=`c-wy&jPipo*ykrAb1Occ6N7aeGB2lq_{ zN~Jbngw?Psc=vW3hN>_0@p>&EM;tj-9uzsEFu)V4baP%uKqxWPkMKQ8!?#icl&3&q zID0|0nzwVvLV=p?th;8SSfhD{`gc%01=Lp>>u2$E;yU{iYk@x{1qx8OtipI83*Yty zX_(W|=17Kl8f`&nRcg2<+`!unFs1q|@skdT*|Ht2^5Jozp8G%JT}-9B#VHc17Quaj z2KS6-D#h+ar_d$9qEgjop3fGG0u`#1PZ78eDvjyrnpJ!Q6;nX*jFlc$>YBFFdCGs6 z$|<1y;tHW0VYhjfPLnC+*DsAh!mi5kY0dZlT2iQ~9fHJVqmb)rC>^50A;QziGT4i;0-T5a3u zRW)y9&HP(Cj;J#`hjp=y*e<+Zi|t{>f5CZTUj8T!3&Wzlhdna=1G?>@xn0n{6)8CU z(^miFKLgx1jyPheH&|Cd^Z%}f`6Wov$Um`LEkn`{N3z}gtTI%qdUn|``mh@K$O#$di7G6mW@pWQSRK*NT@C{;80JC)H z(n^#5(#oih$y$c4`4(X*D#J!r{SIL%0GmJmThL*2*6Ls#pVSq)-y<$X9k{Rr9_b72 z4~RXCzuK9PG;t!az1GFn(4^jaJJE-~kx1b6-+ zI?BCUAMO5{&Ci32W@4mM@zD4@SsS00BE~lsCw77{gI`Z6EOLM z<^14V8;=H^#Q_#fj#f2Rp@4-g7Pe5Bn72L8n{_a|X?Y6p%zs0ysF70W;RugH1pR8FQvf~xncV)M zFOJ5Y!Dxg9E&~2^f>QuIe<9ocfcF>W#cqrJEMijtJAVpnf3We|xP2AW!e2*tidx`z zFZb~xQDB+hCOic#Q#_rb*ke|)AdO_T`ZD`~+%PZRUX6P)^puh3ygfYA(kw}?nliKrlU z27P{ER=o5b!cqXXcncgvk9PD|IlS)?j{i-*IDF9n8Gqr^q3@qS}2uK0IN0pBH#r44;^wLj=N&(d3!-=ey2G~0i zCUvg*89^zkfsU3!&|3*gQ3-SfpD$k;^HxQ?bO2jw3V;^AZ=DJ%-6<DF9eLqzD*>)Hb40R6@l@Oi`NNk*E}vDvvMF zxqLdBfD}~$F$W^nJdS`A04yI%V7QJA3>NzH-c837m;%7%`#byfNTGTcB2oaceBUI9 zq37>LSPH-vA17xU6TTAMTbT6lMj$p&w#K~&p(z0U>qUoD7P;*b)?z)KL#SwUQ+Qy4 z6}H{Z+EsSrL7ugEh7Y`RcbKhd!QQQp!Nn8gA}ANWVU83iEXGgo)$vo|39tx72T+p^ z`jgH=%GNxad$mx2U*VgBTx8q+h2YO6I0e89w|{xy0paHplLDB9@0F%8cZ^5fh57Ep zZt;Z1kj^tV5S;?(6%3uCuZ=A7?-H2;$c3BPY2NeQVTZIW>WxID0BYgpCI@x7H@}lN zsa*&BQUX%|xbS^@4)96HL8o4opZTgs5W{!o4Bn7@l^D4-_)4aWUbgBK|C6}_8^D5{yLADHNUgropu zh4uxASg+#JC=8bmPyq!LR7n2*aJuRG5TPk5LQgt7MwsOcS$~Ak6o9VKyWxe@yaw?W zqEi69@MPU|3ITn(!TLC{DS%y}!2!J2L*Ig=uBi};DT0WaVN=3 z9&o_z4&Xn%KloQ_qJX9fU9N6buu*jV2Nh9Nt5U2ejISS40RYTJO$t@^vxC?VH1KML2wFyR~TzqaE42WeiYFu zfL`=zx*uw_d8G43+U~rEvsLkI(rJZnntQu2k0=kQ7UVE7k2oAp`L@`zy;~lm#bA2M z{(~wS=BMs?z#UlG!jE}Wz3^JaqrH{h8lRg8wXJEv-mOpY7lB^*@kD^mTNLBYW1ZR<(>(LbxaC{vt#q(SHR@xT zKaUzHprLp>6l<_SOH{;$1>Q?w3IMnFKM-V!F{SxJqEP^?_!K~v=C02A8fWVn7Uso- zqyS{`&LoD+yQ!96VDKwSUP2`lP*S{OoS_6=N_tBjsd*XIP(V%baZ#*hi96KeQ63^n zpF2(BNO=WyP(VlVyN`^HRXmB9bh^8`{Q>XFtd)MB&=i0!-sQ&7%UDs1+dQtsvw?_t z!f`*)@)~NPfR?gJiVwzg=240H5pESM`_~hf0=Q*klekN(TtFyc^F~5a0J8XuT5J$P z&hq73h))6hvh4~sy3<#?CwcA4A5#MbG?aDe>X>7*jbidosD%Prig)R;ox+=es0Di` z!6^Vx?rT}!|hjChWzw{&r z_WgvV0BrG*U&bKHmb)e5`#G*H{veSlfL#39PK?aQyHa9v=)=UMs9@i<(OP#f-D!T5 z&=ggm^P9qt5t;(fWrHrh^@xn}SA?ekeDS-3*w6|;BdR}11r$(FHb&NSTa?cbnF7dV zn{PW(iA?f2;!*&&Z1au#{6(zTbNTlLLQ(+oK?NTzE2nlu?H(8ehXd+|?jKe0LLT>*mSgfqQw0T7 z)Z*7Yp8auzrT}!MrgFZ=dvCGG@x-J6W~CNAZGG=TNQ%ldM|@RKXx@#O6u>OqQ*wr8 zp|^Aj-WIj6_aH0imH}f#HWC)5gtZNit3mnmr@TWCIv7n#p%+#gM1VrDF9h1 z`Ioq8l=lV_t7j0F0z%OR&-)>>)Ho4fYV$zAwLq$P{&vPRH@jAT$M_EA?mCm7>40 z?%JGd2}@BK7M(*1`)tBe0Jc)Evw{U({nY_pO%&HXm$($btrW`W9yG7e&GBg6PY1n$pcGYYtNWiw^1g|f6u_($S?L_(TM0=~ou;2+d>b(-Dq~*h z=f7?yCIv7njX@{4yC1u@=U5kP1YVPEx=bDhj{iXkE1aV^#zIfFgH`&7M1PYc1HLU)Z^ESt~d&D z^m!BU@x1A<+sOj7+>Zq1EV>GD@U4R^VRIbxi|i-s#31%KF(;e~TO908 z_a1y!Z`d27!+-@&Eoy-PSOHP_W3}>yUkMK|?iDSWNQ)+@dHHAF2Cddb+kPoT}^1&(OgR_u@Tg1pcTpo#4WOi1HRyBXiH?1iU zmW78|Q=sD|yz;@f;so9I;bG=9QS1T})&J{+r2uT< z=RZ@hlL?-NxwrTD=F#dv_Qw$B-=GSLDkhdSqMb#|(+cLdh)Ds=!hKGb_WYo~+F9vh z4}v|N;b@GzM#26Lu_-EJ@9J^kQ;7XNVp9OS@SMUFZ|s$XK{7w)s_!xh?H>@D0?>t5 z=S)GbkH_fTIyD-2&fAUi-uGgP@t*#KFP;h2 z1Gpt41rQ70?qv}dN9*H0LJhl9$ofD*K9I;1K)$R*XD%yVW-m~dU1sGS16P$TR7e4Z zoyrPx7AsGy+)9-cRs4b3l4ah@iq*CekphUN`vpbp@LpCx??_MzfEHd}oprKXU#;(g zq5bB%!qFHLQ=;Q&>Y#v*(w!uA;0cRsWsf5!1uzTW-sSP;TH=NNii?!viAw?8(j6MP zj(d3Hdfdae2{7BSKAy;|mzd)&R6$Y29C-PcA4GMu??y}tV3u~H?RVW0dA}mxy73;= zK>;0wAMa&N?sP2lu+I!{ge>^I2~JT5cz+m!--qB7059E=Ip*%`65`AI6PW_YgA(bXzhm)ngY;;-~5^i6q($UzR* zDt&;0iD*2(?GG_^E~Y()&=i0!{Dw-_RqR$~bcg2=p91)W-yg~1r!SDq&~gE_P*gEI z!eb5VJFty~A7?&^xD>!GJX@P(?{NJvuOK!BuuCVpV5ftpd16ukvvg7t6Dyx^ zuQzeYzDQgO;FfNl9qvMJI0AlG-u)3*_6bh`_|gLq!n5g@ol^ok4+u^H@Jc>h<RQ9L;R}7&v0X!03c!|{_~op)n8$Vz&mbTL0897g zK`(hN@hE^-db+{Jw0i&|Df4UsQvkSpYpuy5&#VRYxkRM^YU#-w%nf0Muj|jBPe=+t zmT#u@9b!L&XupExblgB46wpz+*~7vJj(Edp_+8>sR51r|2bg@Z0d^xHDF9h|c*8Xu zvfLtK`%*$v0J?OCqRT^8-Mz$3#H0Xb>8S}|M#Irp5|jdGMLFo~QQqLPC+)Q|i>UPf=CcKO26xGS+4HVu@cnZK5 ze$Oc1_%ntI@1q6^Xn1Pbp@Ld}vb@j1!Uw300@_Nq52`I5E_{f<6aX&WPw0o&WHP`# zb@~W#DS%sg)Ua!%i?yrL4c|gM3gDG)b)^Lh#;PADC0 zHul=~e_QKgxZEII4p4N5YX_Hkif>v3jNctDKB#dY%G1RQ?kq7^Z^iP3t?tX26Fh)E z%U^^E3U6`k5p)FyVX=teYr2S`xPP2(p~=x~ccHt2$8$Zz5;4u=`JN{Q$Q4hfd{{R_ zD!}Ixm;%7X2X<4yy*-#k$M%c6`)kYovWgw6Fb)ygmrw}>loY=$nW8P{e~h3a=PTAtcT4m;jr8k(s%b+sRRYQQ@4*fjb#3fdC#rXHWpJ za17-Fa=HUwe!)iX7WzO!Q&i-7isQP4fD{$Ep0Y5-bt|DMDsny5aot8hii%uMo#uK+ zLQ?>`@J&FD%Q|+%fSDxBfAe9SM8wgArvQB6o0yH@vvF}86;M<#%>w4Cmt`9RCWnuZ z;|Wax=)yf^hWo;Jv?|k&VvV~HkphTi6AoWQ!ulI)-n$Wy0)S;3gu!GD3k8JVJqSku zxWY4FnHm$$_bh^XZ=zBFwQPvV)2GgIue;FUQNde5l556;)obBOW{djo?Z-Zcw6dvDX3~>_GP(V%5 z?S@oKTmQ2r_&GblptCCc_&`GwRbT4u7v25vlHCU z_REv=2f$*8%UwqV`V2x-0J>_N^@mu(YH`mdE=3LY z#ojy?^&Fy70JZS#)QmX85(c#Q7Wg~@QvkT|UC(UbbOEv$`2wO-0KItMl%I5Vc{3jU zcw0Y-@D%lt$G8|Dm=y9C6P*I+=NG=C*pPfMyb={pr3wnDs2YSA2YJI>MqCQuR&AD6 z($FkbryL4LZ$7p2GYCvkgPo(7IVAS3B{~JrFR$3t zS#&-^-PzmSnOwDkZQ{rMdHa5f^}w^KkpdbYQ*aVK4#~Ej`cbWB(fu$e%^UC*pJ&35 zv1jL*m(b049UeQCysCfsLBjM}lGQ!0h z4fx_XpMaC8xt^w_plJ&`GltK@eF1SPfLoR}J`6m@6YxCv7ZIKU@P+TMgmv4xMyo$y z1O!ehoZlMxV>D&Vt2qA-t)z%10iwve`~> z3V;{xuyVoijxcAm^{ooQKAG4Qz^-QG#ni|TA}B>=YhW$f3Lh>7j2}vH3V>Jh;JBx6 zX^A1)grxv%;btP&$k?Qx>-DVjPA4u!Wdn~#+`3%IK7ybW04+S^$|Wm1u3OYc6P2Q} z39#Qoug8_P)W;H)0;uI1HCaEnySv)m!v${w{CEOW0JvI8;JY8r z2Imu$qOxtVE+VkP6NyVv*$Vs&cF^ctL|_U47u}B_jIefiVl8_O`=Y5%qVN-U44ibH zj|YkQ;Qi499VEwl4?34cpn6i#9^Qc|4tkn5Xirmk8rA_w53@L0>8=dyV|x-abF?1? zNEM#Xk1(@{9U@Wyv3OiMn=#PQ;4vganmY(eLE9A^c#>tCLTzVWPq%sx6m}<9-_a1Z}i}uHz4oq?2&UdLh3r`n10C6Wb6JP=6!2LJu$qcV#9@oEG; zkCCZhD^v49B2oac@Op*_abX>wx4=-utq|ufOM5!=%XmEtO`6dDFqKe1N#PYVkrD-E zk%jyyAt?Y^c+FY{QZ^UB=T@*97QlGKKx_B*SPdVe1`22>ygsFf27E8d8RoC3g917V z4^|@`vgk{U{7GU_0ITrKO%^NH5}zS51&|9505?JoEbuvEQvkbgHyUGevpe-%7}#GR zFa?0i#T>OD1G_`q%87;lj*t|9EIdYwxH`!3(r&!Ijm}wcze-$+s#Mcp_Fj)s>lYb*o~>z>8-4;IlKN7F)4sqF1{3#YO-1U&%~wxcHtSZ9KHc| z5WW9GbPAxC%Q^SfQI_`)iA+)2CK=>_^}iFF0@y`6UDm%%VPp24(&?VZ0-zM$f{5Fp z=yZ-8CFZm$f{zoJ0>FjWt7L#DJ+3YixW6VGMFopame&^-c~dBepCTd! z5R1<7DZjSf3_XF?{-#4qrs^Q zb|!F7OHUK?vJSH0Q2fA^$cg2J=9W(j50t59eALuzgTIw?le(q4%KcheHt7| zf%;B1fq=XkFiqof(x3p1-J3weZvrt*rAsOlpwi20wQC6gOfu}5bFn6&Xl{=%$cA7e zF|j^m3Y?r~geyqQD=$D!U~YU*%a_S%$DhI~S2W=ur$Fb>$pe{jv}VSYO)J!%2u+1! zp_VYOz6P;C(NtJEebP8FLDT$jmn@ank_rW=T(c?mh;t-E=MAJo0XqE#vc##=JaK2% z7Dq8t7^SJdny?BNkn+9&1Bu>vb;R|$;wM|)3d$36?1jjjWAZNf(h!LK%TnELoIzO0 zA)W4_>GaG^(koe&!%6v=cQS-1V2a%}hft1I+=7TZ=OQXNDCfNBI=Ed{x4GE* zN+9tdF?W3eBIh7Ew*NtC{;miWx*n%g^&uD@sKL-}tafb9(i)l@=xz$uu4Z>rO*_!_ z0Qyr+3T>mht2pj)_eH!nhC8g?;z=!OX-Q(9L6;sL7rJx%XKVm!xBV0`r2=n1RJ~pM z5N}GOBz;t>9L$U8e+pFms^&eCcBXk`5|W_+nWt|KnY262BlLSDL;*rOYtD{HUt7=S zTo_8Mnujo9Y{0rJU{ZV2H(p%SCnr2e%=R5@`sCRD2c@+)eNL(BLo%G%P}AoWX%6@r zny2%Yf&#Uxz0;4B>hMtvD#kU>qG}4pRqcW9yvbw>;ybPRbyQD5zt$brP}2^odWJOm zQUGn8CMv7TiKqf^)oec#!FvZiasNZ{QyNpODiOaIY5dMNrpX7et)@Ac%@YMGSo<7} zm@sn(6xi4tO63$#Ui%GktUL~4SNp?BfC2=b+CUT!C5)Z6Cozs~TtVTbwR?GJ!*~dd zPr3p@eBc;|DxvV=h7_tYgztieZ~Yl+E5_D{HImAi9-ANvRPD)iJ8uZrc}??loY)eo zYM-;14EmVTUJ6H@w#W}VUwY|HtgvlQ(-9~G z#SED|E_Q=Zt$heOS+he>9$^2M%Q*y9P0e!GLO^*s%KhjWvkP<wm{!lE1@(|Vk_N+q$ofNb6fM16Vpem zjD-{93CKD)wPOZ*nL$2!L8D0jSc%6DZUm0STJqYZq>?RZ*%vX#XCR>tj|=^|{uw9p ziVXPbC7KvgLyEmpQ|!8?!)V%69BN0U%E{cyt=TAGnCIO#w6q_}BXY2a+HK2wu~08b_dJCoH95Bb z!92@N`_GY3{YbXAYO*z+?oP3EW~l|tVQix*Q2WL^)rf>G`YU&WwzrEEImDj_hafd* z+Cxq+Nhuek%lkB4iahbD&m!!W92;d~CJYV=SfcSUh0`tWAsI~_S8OTmA|(n?YP|1u zx;-TXuT3F$$!|Z#iny(w1%BJZ7`aTF(V`*p}O&8z#dD|P{_tm4?LI2z(bWF(0DRf z0*Rq=B*PasDH&YF8Hv8~rbo9^pz4h$Lr6jUjg-hTiBNz@5;xLvsjHi6J^Ny0?7{X@k{*H3 zX7sR*P+~{~Y58MK%f|2OLu1%%Obueb&(NWO85*A|&rq{R-BkSim8bz8zg%Ue?3((=TdbSavFWAZM!(g=v-e&)l8iNdZ&6LIc0=&Jw?;C z@te|Ez2s?Hq-@M97*Z6l$9lsdl`3!R;hcCv9A!>s5Ls_I2Q|JlW9Qgzt;>VNJmDfl z%t3N&|ASQ;Uz*`asD8x9=^7u6FU@d@H8Q*f%%>O=6sUdU1K5a!PMe4W#2MzZq(T8I zjW5lJsH6j}fX?Shhk|j@bhf}D?Lha#m>?RQo8_0DA0m;5oF(SFeA#hpS`Z$C*rw#H zC#H0eGmqDt*_0UZ+I`{#rZLau=$it@z=sJMU3}`jAb}FHIET>^cxf|2X0YB_?9Q)^ zbW}Z9Z|PZL{_re@Oj^KW`&0JAjfafa#xa7@LC9RZNg)$ymyq!#%EjD;%?bsKF=;qt zyzcg3ea<;SJY=3MG2?%*DK|FICLh?4(HkPfer@CN^N5&3{5cQxcO=#L3NWWk!-ZTB zE;}?_8XwVy%3ZVsRx#JJeW8FQu53P7M76|9NTSP7iJa2-4AV+?CpJ#rwSc|rhS=tG z3ExH7r5oAsN()z7xYBZ067w+L!ylJ_QOl>`7+sA!cxFYEGD2-dL#^>y`{5l=Q9Rp$QA5`HuZQ-JUd4X1c6 z4{TSpvp2`|m}9y@*nG1D2TXrSt=lSvaMQo1gV%V(vid2u7EUo9$e|$lqfzm(tYK9QgIJ| z&8lZT7Fo4bE=z$ucElRLTaJh&hIEivFW1Cse1av?uDzFh-ar~0axteeU?>nUjjyAc zrekv}L+T+UMFCQcujHL36=YY2*l8q20b)(hEqGpSIkE{RPP>T-ra|ojd6RtSa$ZM@ zl4dN@Ts!1!oAg;hu)$Uj%C ztjygRRur&JDFa>-BU`x_jOdwg84j9-H2<2qMU$_yJ`Hl~tl3$d0ne8d;T15EKdW zJEy+2-P^Zkdb+Bf^T)UEt$U}=`Bt58ZFi#qz2_eKs?+qUF>pCGCup<}jsK$xiyQ*$&Zq1?~CR4Fudf`0I&RHf?g zsXM9HN+o7rfZ)16zi+E!mP`HevD>%twU0-+eZ8sAJ0uGbA*n)<3l#N9QB?K?h!9+q zWQs_bs4g!P(Lh1j7a%6c$k5Ct8%jM=q5-AstBw}Crj@sc46Ola(STO&1qch>#0IXu z>Mu4^IO-FOEh^c`H~T{IxYHjEhKOW*r&5=aB%morLZQxND}G!l&F;$oFviw$kFBdD zg%{%Ns}g6~$EH;RI@ZEOVWi&27Mlj8l6~zu#CHOhm zhYh_CkRA=_9mqVs3gMfw!;a1gUVVjeXjJcIp1lDbl`#pn>fh8)`5RgBRfXv>oPcV>(w8f=MLKm0%FA9qW1(SV*S5M2t zWDU9hAvqe5dv^9#G$c?LmEm!zQT1~YqyfR)Z*MCVUeoRAE6|3{_ZgTz0IcBiw`b#) zxgLkFBuk4S@i}ftdSg6jNP3|@cm<;L!MDkRk-yl&M5Y2u^%tl0mzIH0vZ<8zy$UZZ7mpjR# zIUeJ&Fmq{pJU|buhoT}$^}metY2lK;gY(aY*@s+?V^kku_S^=FPGxVm9hpLr1;X`& z!}Sy0*=OA1uInqpvQVF+d}vSx*)IrIh?qDu&mXZ+)E7vH26Xa|)LfP5mMe(1kkXe) zi3XHd!g!kgUa`4>a6? z1`ibKjprbQPN_X+k}G+!Ynz8na9) z(~*)e+ko0nNR0;6W*LN~qvk_y1A0FtJsQxvX7d1yW`~EK5fHdh%SObmmRG*IJ;PDt z@6V7Ez^^+)H?lQ?>$~wf10RyyHG%kNyAX)StoRhOkg(3rl+C3%IX1SXs z0!{+V6^Ed!dvV2&28BP%E1O~om|&{XxDRR2fW|D-fLIzq;8dxcMJhC)GQ-!R=Va2< zy0ei%A*g#WGDMF~g6-7tu&38r?C#aw)1F=fn}yoT@7x|?_PD__*y%hnAGn}G`@bdH z@8pBhx;IW~U)9?=BB6ngdolxy-b?U*O?Vo>4>H4hotG%Qixg-;;n9h^1OaO9>EV6~ zD=*cgwgYJ`r1raahHvD1XP6fL3;Yt$k#?6`F0dYzkwBpc3~@h1#J!vmORL-ZrE%56 z*?`fYa+CKdVLAIpPRax>BLNx^m}Qc>r6#mWz$?5=;!2XB0SVk@x7o9&^KfYP&ae$Q zD_osVk%uCiWoEiH;K6chZO|Q!@Z6Uh)AR<*4U=ee{~f-a>7$7Dq5-8@E*+$y6vR(` zNu5qwG@v!ZL)=lUnkX8)7flpyV(a=}JM3nM@lPu55ezbF+n(l{^yJZIBdy=-`Dn9| zhC~x>H}QJZNfYTVsb&8^OSILIEEG8*+Ey|}TOFwGiK+*LiMkmzM3W=hs+ew}PNJ=P z*ihO|N;Em5t%~U=`Dm-2VrU&nS~MA=tqR#R33#TlhtZl$(y1J^tb?q2KJ}ZtKOe0Q z2IG}h*sV)a!;ah34f@XXN-DlAS^7_so8=>@TWX)m5Uj;Qvq5O>lh8`u=uATDz$zyT z3w3u6<7wdgEQ`;PzH1^9RJC;ONjfy3le|wYBh~~|`2Tf z4GO7SwU?n(qt*1n87%Sg(r~#Oj15Of#Kl=An%?Ry4`pvPkuFK$|7Yo~h#P`PNRbml z>S>vJt2$5#stTJzk%@XZMMINC#}!PcWD{7G!-mpjq(lQs$;XCM%g6Ut)l&?uD@lt6 zv{H`^tB|-CcS&C>rI>ARrR(cD-CI@9r+#Occ`pn*czwp8zv^4qi5X`WKy!C=8kr4_|;Gc*BXIRyYMARB|90Xr|m1AcbIK7;q@*Q4Nwsx_Ab?K{D zPywb2OtH^!8Ds83zymLByix2--3AGnhD|Hf`>ur^POK)|l$JY@#gwCMGUa4(q>m>l zDCG5`kQqj+X$pr+KovexKn!IhucEO+cebW-4fHX{H_i|yULzrek5DJ3dV=bhVRdfn)q&?(d-!C@Vt1h<_q8zr-v!bM zh5FAvlyY1tO?K`7%(##cPfWN#CZ7|TWSNOflm=B2CJGC6SBiuNBAH<^EZ%!PB=+;7 z8cKH~B^pp#&7j*55>GC4v8G&7iTW&6tEJ)&fXWQ_0?b!B>w0)hBI|`Zs36nBWyk&k z{LwiEz#2t{y@Z7#zafguGTe4(S^f4+U(Xhg^I;x>%1uG=*9TK1cfoyG)R5Qb{ ztbSAJ>iZ-?0}_wPB>Q!(cZ>LS>fC4zpffDkZC&8&d}38UCD&Qzx0+h3owhu?YL7HV za-_i{h1z`$0^pYQ2Yq_W{FBa(Eq4~(SQaHT2^i8u!2DPO=IJ?9I~854xb~vkyHr39yX_zLx}PK=Ap8o}drFjYz(qBxykM+6)0%i`}%Tc#=-y0?*yJz)=6m zkaf{vPjOK&!)@>>LfAZgZmIeR=2Pguy@mijrS_Ol_RR4wDBl@g5T1^>a76TOKSDp5 zGs9b0(t%G2UR!eNK2#kIO66IHCNxZSvTK?ax{lsiq(=jKGdzHpxZE}hTu1SKq(}pb zo4=+j4a3^7b&R$_XVbNRXo7aMzN*KW6M=~Xc&vZ9HfVXQhB%WCSOCC0(Hyd%4T((&T2Jq9Nss1`1#L)ggP`>k|Be)C4pqQF4D3J>)cR1ggcAWM^40@bxsp3Iew8&Yp1DH@O(WEex1Fq^Ws%PK+3MctV? zHkz?V$Y%4gMW@%{lx<&k)Y1YgxZ4C6vWZpqCG$1p>lgG)(_`ab+ z=x<1f287h6ffLK8SwY{)nDJ5thZ&Z{<|eV)-mjaJHZ}@%*i0;31|()!nomL^2m?>#*(5^4 z`p*{v0BiOxt;_ zE@MU0z~ij458;jMZPBYMNrDC>vdTUn5z5{Xc_fL@u>Ld3zT1cF9qI)}_M*FtwXnO} zZx8V~bGfy}?G@_FPeuS7?GwUn6h+2JbeIwkB!YO@CGn6^3ng6L7q}ED4t00l{6vES znBiWmdD~(K>qhl5rFQ9t&OJ$o26Se)SelNG50omU(@BX2ls12DO*Ers75`C;n?SXB zm5Opux{kPkPjMb#pP{$S58yNQ85UlU5hHuD_Zb#ahllrCy_u~f4Lr`+T9x1>C;}31 zBMBOi$k- zgk)$yCgX&9f(+E?!lOj!LK30@p?ni+%LidnLO;Mz@lwrQL+iNF0AInxC~IK43#9O4 zvrH+}E1!hGIeuXfCYpWwZ=8K(oB?ZWizRVHQi!8xN*ra?OtpAq9WzLkB2vdwGc+iS z8SW05cXTmP7_u&)XDFp(hSo`>MFUzh+@K%gSKCJUdb?0R<2^7(nnQ)(0+mkAx^Ps40;1qgB?_|2(4m?@2ns2k*6d9_(e29{EM>D$gGEUH z2(#xlKx2k?o6XxWdK!X{0QfrzfQ;)E9@K^aibC+!AF|qMvg^+lzwZyiico(n7w>6P9~Ocw~8(uZr}?m ze5K5Gy={I_7#SxM7G97MHb0cG$vBR*kkXMjuhnN*{WPrpd}|6Nc+-`55}zjt8j#4@ zp4wV3&!=_0YYnI`k_Zj!KVNSG9?bytKd63@A8>QF+QZI%d7sh}w+i*t0fc|J?ATvW znBf`axf=pYLBOH?n;og2p31nkru}n`Vc@#DCl^m>;B?MGjCDF3N%>9CQg!=$SBDWR;$t`2nTg1UV);4_ZdfX7S%D|!oGd*Hht50@SL3kn(g z3`ar05g&KT-e)*W9UOt{YQz?j22N)T&@urDi;%`%(x3s2jD1F#h7X94$^lZL0hN4x zhDL0LxOdcjhNJ*G;|QWV@=qd}?Ls|x4+7yxyX&_=CFAN>Kt(7Z9Ck`LWE{T-s5&65 z*SZkYk2q|m$*aXG2?>fam7kCb4X9+iI#;FQ1EWmmr=&vzI{B{78O&xGyTR~q`UHWD zy+m)(&Mfp69$Vxa77v#l`wI#gdkIHDz!4Vr&)!QoOdS+~>uMWE2sCgyV=qxAAOR85 zID#~2KqF%>QKsR8A*6CNsnCE*zFtBjHbdO|>0Uxo0G)AFsn;3G?3x>edOlw;xm|CY zAHZi^RkHAc4EwkWFbZV&TF-sBLW(DoUvCb!5i^=5*?DD0f~&ON+lA3^gWRk z5}{%JXPZ-#N0UbCUpuvJ`_>4V)g%@N5g38_#SV$cP-fQ(*RyPei z&e#)_;H4)BNW6|DXh0%kPf#M^_24q5g3n0^?|(5N?A~ z#?HxM%2V=1u4;hQoiT39iyh(GBxycMoyqw(8###%7;~VcjfAX*)G)MR}nZz+Fic|DjAnu z11drRA@f2BnT)MRfT{z=daVmV-JD{ef$JF;cd8^LSjtpRAr%@>$r!m+Dn3xkbZ$*L zG@z4j+0|e+%h)eqh&X+MK*pwg)a}bd5!@)$OP<1chTb+mfX_J3u<(M6hLLw1&Ki)W!2ML)7rnX3`)``_*pJM)*H_GPh!X~K-HAKr> zC0b^9%jCRwTUqbJf}(OO>B2}opRFbhisb3}?ggxX>)H##sa#-&T0v?wp!TdoPb~Z1`@%mqxfQ-yS8V?{18qml%L@d+r z(GpTQn^b5(CExWwjo1uv-_LL`N(6Mq(bzSeu{^-djY7Sb7eTh`ZSw>8jH59NFUZjU zr$ql5M`IRJ%invgj%0gC1CKL~#!B!a{(!_WBtZib8AoF!5?=ZNk>g2(hV`GVcOYOh zK>Z|jFY*KK3=Qvc2d~3w_cnbyu{m$&u(P-UIYVC)2`w@&5xABFXh2|wXp1D^C0-)&RFa?piOs(| zH6Mp&3Gu5GxD^{vub)9<=HBno<|4Oe?!>DK7h4PKqcOflZEwVFEv@$#_#JgUoOXlb0FaZMle#WoyOka+2BQG-GJ~fb!L{*s$7Xc$#@07t~(4RSCa^YVi}= z+qfwf1^4JYwQOJo5}LY6G}Xz9rkiZ%sJb-=qBL-GR~CH$tLgE6#){UZ3&2d(xmQVb z;NKzdiRwJ^DE%x~rs}j#vLSGes()a((`2hoU^PA75%6&<J*>`df)v%!9$?)W%V<*{MX!DAoj|AGC&!#9teEm9Cz zROcu)kXSgBGTkV9Jl)`#>dYPkp_s5%HtzenYwsNPCNK{!qMcbM!@0P&g!7M zXfVG>OqzTyt_{6Xzd|^gd~ig&kMZtb2}c9C8TzR$wkkU2M+@yrs+eD+uh~{JPJ4B-aTBep}G*}v!TAJ?@lLnZXqHq*c-wz2#lg~w>m0bKWF=>F= z%G1z{SB9O@%AjWh|Gx=I1IQU32A(H0931(>%C56Gpg>N3U&GGF-G|4wcBy)$=Nn54t*|4Oihq5@VTE1 zd@hSFZ|4MG_%3BI-JL5FxHIhNp`>1yu-_yt)RR$wcyG2jSR6d+Y`ck4d{|moK|>)v zND6U=74J=@5PHRvclX*0dsf?h`yo2*p!z2$L>oAjpy{*4JpkF$#%BnJt=*jwMg^@!OvCn~y|o|4WSpq4kpc}UBJmj16w6Fh0TpHl!kW+uL(_df3WreYgn(q>k28cQ21T_KF z`u78((PTnf8}ttBZTC!R{)lKaK%3!;$Chhx*v1!KS6d5M`ef@i9P+ zeJrtQfIY*N!7T^nBsRYWr=d?EG|i!c)}Ni$&^ISE4WM&~xb($f;EX!O)o$hE0*yQ=SUKCc0o!; zf`QU~vXt(_qD3s;HsxoE3o~45+pJLv?hn-^8|)YARnOx!gfQvgu@Ca!~)-?@3W67+h8m^l;vPaG7xG7^p)VC?mn(vKCRlwo;=VPc)jGXzWZh+DSyC0a}6~ zLY;58axEVfHIOG0k|v*nSQfz-7`219A{q_QGReh%PD~@-mWVV!oZ$wktwtfwuY7n) z!`_~-H2I2EK4GKL?nE>ipk-)k=%o89hz9&+0@CDj53iob<1QNQu0*2&T7o%OU0B!` z-D|wN5swCV2`*LE;psPxYp{C|j0Ru{mY8b6{F|9giS8sQO}_e*m)~j^&mbBN&=M@# z)w(F}H`Q>zK{y(~Wol&X?Kq}5f0Kwb`5ZJa#nTQp2}c9COyTZcGo}IWPe7V{{+ZV~ zX}AXvjs|d z=Me;^0dS^f+dRaf{d^SRX!4b++&Zt(9z!%5pv7Nv4Z5Ueux(=SnOx4O&c`l~pVgW> zto3xzY!~XC&%spiNV|LR$n)fue@+1}ObRJbnEri4rhf?*7(<7sV|y<+eNx}&J)Jc0 zq;(fnXVHM z_4Qe)uNfXA*sLun<*z5}o7}uj2I^F6UB%$xi)lhdN6iqHDeb1%CJmLa<28EemJdTnU|7d>>P^@&512WQFRTumGr;3Sw~R>ZM5 z9IOr2$F7|j6OAS(nv=#pqS53;bIQ1eXf#>SI;*=oi@4ik+34d5M56&(dL1q~eOyZ% z8sH=ts8{p>9NcK31^-k6(Ew+zHX|;5HiV_cIAilcj*Wi>^gENFbU#KwdJ>B@hjOu1MZQ;+yqjTqV+F z_xnVm0aAkTbEVp(CpA#l6N&~<3D(AHp~6o4MZ}{4Uiwbk4v1XC{1U>^WQB7r^UDZF zlNHW2&95LF4d4>2i&ZL*g}L4@ji+BlKpFt1A5Zr?ZQQV5YEz6#|CG2iz)jy;(?tXH z=LDhwP=YH9l@gWJ4tJxfj`i0QktU04L*IP8fj~3>O5c1D$TnYZCK3&h()Z!RzQuVP zacF>(U?sXzS)*Q;}M=OBp2V9G$fny1tJeq>JyFFf5!Hw{kned)e7Pa~jk!gUOqKlX)QoRC$ z8$hrWpaFkEKpFt1SPG~IT4x38@ zn8e_vNv*XZo@wK>LNhpu3~0chmyN*+iX6~`As%9BtqyqGv%x=>_%y&*+3>sl?zr3T zb+75P?5*tD`xA&x1N1x{0~^UbD}0QlHEa)z(>Et94Pf)NR(pm63?a0irx1_^fC(PH zn9?v4up`2u;h zy{FR}?Okm32mMyRvy3$m$6yB;(11ZcDa!*{E&V}m?f7YgrO8^_xDTY$T6F!=uMm_5 zp!wvyy51Xi1Jt_{l?JFOR+;J>YeB6zd{08tWQE4FQ*0&6P2}l>rU7)mK3T^SJLPtN zdA--Rv3w@MX#k!tmKjk?y)K?q(~`b7L1_S*;69ZpjitQ$87{YZ*R%${FM(+QoNxF% z9^!p)xV*H;mc$_c7LjRyoNp8`whwf+#shbUj`sZj5uXP5DWF1!gzS>9B z;`KfTRuPs4urs{LezQSky`KY)-djsUyj)|1`ye{~1?%-H;b}4!^Wtc&$JZL_VqPO4 zO;*65fJX$R$q0zG4ZOOz;#=fPaz-;0253X>dREWhEMx<9pPvIm*9FrE!;|{ zy|+8UsKJ!!Gl)r(u}oLO7T{R~q{#{xv;fZ`APoQ$JkwBHs@-2V#rb@K(PXSby`s8+ zD-#B@ASMkka}2B5>8uX+cG~;9c2w{}Lec;-!A+#KWxCe3VfcqcqXAm3F^FBsT=L=g zM}(yTY=R}ODNdRNRQ;(pu5#_|;Ms589K4+PG{8@=O0psTdOvXdl?0|a1dhYqaBWXJ z{u<)b)%MApl$>{CgaG>-70@7p!3 zVbhV&6OFb!9IUT}XqOU=251R7p0aOvTnI07U+9E@R}hc}fCKb%oOKU z#G}cAcjg4%F5=MuFTn(>;@Pa7uuJnHo!~0Hyi8X&!?IbZT`%TUdb4-%h)eWKli7kKxJvKg1P4vXEsoLmgC_`T zpSiRlcqVSJ-s^P*NU94uA@hxj=5bdI_;;fE9neSfHBnV-Ri*-G%B-uyQxT zBNz+3IYh^k+rxWHUxtu6+9w=5`ciu;1M8yr4$b8)7l;Xn*t)C4R)R@lDSsVa>-}MS zFJ6mpUKdY9^=;M~4V;R9Plv;7x-BV6br;rMxeUiC%5Y2L(Gf%N8Gi`3{}>)0+;%DU z;rIE;h)C|J#?z%59~|AIfHKOmmUe;`aWueEqZPkw7wQ&of%K0whl+zoUTO}Yq!PR` zDS#9xl-7Nvv=Uqz3v$MLQA{q`o<-v!7JN zL-pGPqXAg_yPAxTP4jCoev<(f)>VRKfBhmfET0XBZM=PIG(Jrd8ae?lym}{ua$G6x z;Bl8?)qK?1A*aCK1b5R^X%yEVdDzVkg=iIMB z=hXr8X@?e`gIe#5S{U-mO)92b{+`Tez%0QsdTqrBGdUE5g!%_!(>%Rczgvn&3u@6P zasQFHH1Iiou`UE{%8rR@9d+s)HaHXEo?z~cx%Rj_8h0^8lt#zz7wQo&MVoVMa7uCT z*h_;G;Cg};njn8t5LmP`kCb*M!Mzj}1eyMH`}*bC0;k^1p&1Q)%7nNu7!DT(9lRZt z<*MFCL>eHb=oEduxM*G&;O=A%b_2m^0G40@rLI61)-e^rhmkbi2Z%?L7mv?jXuJ;* zj|O-t`r?|xTtS!&@NPUTxoOCc5RxXJi(NCl)Oa5!9!);H)ei1yvPJqS;?V#vLqo&P z7H{vBFX?Cp|CxX^`RY&u20ng{kTm(ql#ouQUmzY$)-vVe!bYTDCLj#}Gc{{?uTy{A z?cqAJuEiUPNCU+9m)iynO*7awSXZ%EtoBF=W@@c_@kD zeuXg}3+)UyD7EL291Y0r-*mAmT0c!&OuJZtyWIO{sVMbyhM?1YSi>NfKOE0otPe*% z=J8T|?95Yhk%~h;)e%N22*eIKC!#IF@ns7|IqFp62xLx+Wj>BMzZxvWBCFb@P2$ zJDyJLCnQFbH5_Y*)r6xzOC+X#N^&$g!_lJ#;fO@(9j)BetIOf&|Lf3%W;!sUEA{C{XuXnTsBZP$bMQQTKZCVSeSM{xVWUVx#n? z|NG*5u?J7WdtuAzk`%sunjtvD)z&SJ_iIQNikuLCH%R;)I3y*bgRjCyn5f+xVbP!j zu1-DSsX#Va6T3>~u8TvxpW@N=R5}PsGu*cRdH1KznT$~QAIv#Qd42{DmOB&GFcL-<% z&25#+Hd3Jhl}_piabV5T{GUQlA7xZfkAVcU#eo&Mg-Nyq`JQ?idj0Yhj z3=j`r${Y{Dq|}zS^!IxNT3uCj>eg!L6b8c0veO?;Hcc2RA@5B0|(zW9vtv@O7VbX5SZa9)vb*g z@TnBtSL;uveC>sZfNk6q3&0s(*)|top$G=C-y~w6;f{g1aP%n1Ij8osv!`KYrXF|L zvXtRC?;-TSk0US*fRi_BA+T4n2Y({LX#jpj;vo)DnjYzA)T~wzpwf$V$%vI-LO6_f zV{Ti-rdR-`7pnjY7{q$)vHD4n^kOxRQ91NTJEz{jmWKwer59@eDT|gK_{{{S0dRV; z2Ec(>o!4(8I1Rv)i**TNbx6mcHl22ouh6;Az)Ab+KMHs9yCK}8-QgnKhR-wH=(EL^ z&_a_)p$HEt-%g}F!wa_}(4_UX_=2rI&I+c1vom~!HWuE9yF%hqBtZib$(OHO-MVRT zAoL26e&dZ7Kagg810a}eRa{pO;!6f-G6p~ZUkU(Q{_4RbL6b260umDe;D|hwL}>B_0H&MOI=EXH z0HV8G0br&Xh5?87hw&rrHu{hdZle@(1%MC{cm%+G^9DdLyQ;XZZsZ~)O~wES;7b8u z%U^w+Bxo`QKtN(5034BTkqAw`0KojRS_i)w1^~DKJb3`P_mAs-(Cy(HV|obW6Am8j zw?QO%0Jz*`2t;@UzROtkyA3SeFJce=5rWeI zJoSVXC{2%aIVGzV1gPYVByi5OYCW@1&wLi-x}AxI`2pw*FICvue9eLi9u(UV#m?|T zfcb!Qd#t_E9;)}U_GsW;@($2?r$L=)P2sBd6Pktvn|SI+WGcsEEmAsCn?SoR_0s3G zPmOCm*@F%F4tc|Whx`rifW~e!^|(JY@dvw_ll$GEYe?rfJYkdtjF-GW@!4%(J}I)s&s9;A+8g(D~%_1zGw?wE6J7 z5#l(!fv91>Nq-AIeR3;2h*Nh|9|-STv7fRB`5B%-->L+sk;iKfdhyXK$@HA-M zdhs!(;N~k^2%4388pTJ0GI?Th@znuCdgIcqM!U+49#7%1O6y32W%Ay$>n_6Rt0BAa zuET@dnTXy~{{S?3?`c8t!XSCK;xj}X$$L)=q@|$U(TM6rtauuDm%R5ZflBWgK);00 zG=NUNid};CgT4U%WrU|;y(X4CVVVKf(pe3J&5~=UBi|6L=##EmoxF$;0n|N}9cefuQW3Iw&(A(5QX2Br1phC@W6*YJAL5Z9LU)2(8lm$obiJ662t=vg!?>twF?k1LpT#;up0vZRdmF^3xl(>ikfL{j+vJnqiCZRv zcdX0u`Nt$KlJ{?AINcKZBtci7;OZa^>Oc9D8Xm0@6#jsr@oCba0gdEOYIrn9!-s@F zXsCRKRA@jY^^+PN3?FJR55Ms%n-qfjC9?VS>Ky%N3zXh*w_3?na6+9Wa zbs<|k2$@2W0s4tAWsZm7h7nuZyibJa>XjTF(BzDVfPi!o6Et2!8ZHCU_16zX>iJ z*9N05zlNmyD!Wst_TNLFN4foA6E05qBEjrF+I$HrSP|NUp#{Ks@tW5Fk~x%j>~Z=Dh$-I#*gA1u*(6s@Ufutxs0A8O zPY|wBHiWQJvp^3Z5DkD5M3Dyy1!lp{CKwIC&W&vHP*#wY&G{JAhO6r--&&cyPKNEp zGZ#DZX$Z4jsGolfqB_#<`Yrept=<4ofFQ8jiNK?%Jr1_ z%FT57ZY}6Et8SFKt^yf!I9MmkC7! zsOZtFEhz0zATtklBjIRRFOiKK(VDuhb-k;*QC(8`$UVB99(ESGcrmYi&${0&)YET( z%#I0CN;?35SiCYqa6yFd?kmEJZ-dIdQ5k_Z+COzSRuv8Wi5^<{+}+ZRbh7?{IH~SI zSQ@}ixkq3N&CsNup)73~8|a;crU7*Q*M8`^+R2h@>M+(C4V;PZD{Z+=$g~W) zji59Djh+y@x^bYPNXx)S5SRwQmqa(9CT~czjB+j&8fXS!(PMagld><1_j;>PAAUcC zdARJ@UjUsS-F8|afq)pV5HZFNd2P-jMD7WOx+ANF1`fpcJS7;@P6l9iCKwIC;=6(p zSRlLr@Gb3nGT&w(0d+aWW^@36=mu%jU6z|XxKXGZzQ{45-Znn~i5?SL z5Xm1J>xjmp$AmUxEivzbI>2cm4cJF_79|i7SOE2SLeT&!x&bdid3gnJPa+%*>m{;D zW46s8??q}$Dj&H=PeDgrt1JlXPVa@Vwjl`%D6{~GUO+Jbk~vg07F9(zzLq#gdgQ9f ztMBllF%76kFQ9}FR#Fz|`vjr^P;~Pc0)>LIU_T@n4Zva-P=EzF*_=mIldbCn?Non7 z_xJ!$kGVG0{j0fs}*jLbieS&r>0CA$SP(LRW z4WJUVQvp;-Ru=9swo^2$m*{q?zd~Wzyq{v)DXH~%X(dvr(GDAWVFDz{y4o1Y}o zG9Z#ar1kr$q-EJ_X*mznTUg&TNu(8m7-@N^w-bsciL^qfKw2K|uL(z!LR!eS>FZrR zU!+AaL=_$XwuZaD=-3CsReL9B^(XlqOY6zBCD*zg|($_A|wqU>p$#1`-omLhU5a5UQW?j zNdP0hy4H7(hi&uvxsll^)Ezzm=^f?vgH1XXEx!O%upq!UhydeO+( zCW$JlU`B>z$O{Qc1IXwlKU*m^iyHQjl&QLyurz>;y_#yXZrTll@s|{&7YdM~Cj;ZQ zOa|~gpk3>W~(9Ljr-C@*?4V2QIia^%$$Sqn6v9v!YBgh z0E&*H5Xg6}9_)7sMgy?e$pCU~`kdcQMd=zx*3lz2vqh0ppNB`nFj2mCj%uACn{4|>I6d304jPiP=YGS%EH~8a5Su! z$jJcFC@h=zN2n~ReB>S54v_uq5kUQ5ZB?dV}Ah@z3{4Yl))Mypsz2A zzM>aiUCtsf?}qvyX(XIDf6 zucEJ**MbHDEkj>MXc|E8NnN1Y--=wz@K+L^2JlzKcEZ%F$zH^}s|@x(6tSqv9++O> z``0?dF7IV;_fE&GwY#^?@Ar;sZ!Qnc-5H#_bD`5)*R3fx3U&PlIV9BE<_GY*>kB=| zG8$fxq3dIg*Ee%csppiCQuEGh^%%BJH1PQ9{2ps~(Y!Bu)g}oVkXS!NB)s|qB8wzK z!}_mPeX6=>2B=4)_Py>p`3k_QURQtbpCS5f+!PC!r?jgnd^XU9A}kbtTT%QB4{rr= zyQLVn&T_Qj99FkvyG8?d2l-3d4|Y9;+mHecD9rFYVG94f*gcI?NrMJ79-B?;z-xNU z+feCRb9sGVX%81iE5mMok8b7tZlR9iJqyPKDWx6ITFIvhk1A6+azQNIO=4l+p#s*8 zu;(IWq6X9h4a(pNhm?x+2NQ&bBt!#3Pd=oCe7H=IS|=$Qkm_fP8V}p_o2H(Al`#|w z7)&y@WE#I~hD&w_Z|?al!ssZsA8dloQs&w+bc6*0=r<*RGB&2xQQe%dQMU=gLEVe8 zpn>-X4vqK0P^v=aJ|sf}GPxt!DuZQG2^$C~4d>08gWeA|K__##SUPwYF<2m6&OIdIVqslx<4Z!FM?uiQ`^@1|qTzd* zfXqWkh6ZFZhf9e}Ia~rl7m^SS2;~hIg6ePy&>!T&MJIwo#zA^-u-ui~Y4jG};q@5= z%HgtOe?ei&CDRl$6GuV75g(UJe5~ec#~r2)j=*(wC)Pa;oX*&vl?g~#gfxDcG-yC0 zL}5tavs7M_cgiTVLoYG_af85?bn>qdSqSW1o zQbVW|Hf2&jAt@S=$~Rl_oESi51`CX$P{3f4u|HWGVzEJ2mEJ1U1z%u)B0KgM6f*WF zj)H(AVn*5f6Njn$lfZS=Ve3f)r!)2^Wdaf+A&nK%paG4HEk~J#4~&q?9#WwJm3;k) zMr?+-L*1W93ZOFv0b}4kItcVup&tH^3L8mz z8aSOX2+9N`2tpdqB@G(T$QT4=8a@a@D!)%EG@z0%2s9#|fP@@H2kOZ>2qXp2887yX z@N{`+vBf!z4h7k7$V6xT69|Z7!z8<>|A7~=Gsb6yTA@e>A@Y0)k&F}K3bGEAAWfL4 zPf{E-D26BHn*;^GmBCeT#8CPtQlbH+ryg2LK7b}^eU`LnKS3G_3!8!2rN!;Qk*|{Z4l| zWp9_dM|x@bYh0+p!-TwkEWXS$6^UL0POx<~})!jLQrpYY(5MD-80f~E( z1Wjhyha>{oBUx%folYV&d1VhkJk{t>|3YNX1mI>I)Q$#AGYr6g!j1{oKpYN(hnsSJ@` zLP5w>Nj;OKXh168;*{sq^qZ!h-o+pa1q>!R$NhdXBGZsJ{{!dcBfVpPK_TP3Tw_VZ z5F8Qn5s8?L7dsrL1dDfF^*Canfz$bBp&Gv_rL5?+`bXBgDR)3;Y(430(0cmaLcRL$ z*m?#jr5(`9*m`0%Iwo0Foez`AsP_M z*m`{r%<82-^_H9hzvkn zx}oz*(xCyJj4MhGwl07wCG;9nq5-8|w%Mv<)O1^>NWQ`7DJ%6*lnjpqG;>7=0i+k@(8E3>XxEFD*`js|SRW`g3ZD2Bq@M zLt833`YSIE^QS6f(x4b-7^kJ9Bk@;H>MrwBi3mPI=@bd28Rp`Vp0h8r3(s*&}&s_ z98VfFppm7$wRkl{M0?1T$VsF^11g(;9Sr-0RREf<$CQTwP7 z8kE5d1JYzl)Ic0j$7bfhMvHr7_CyE_6oH{m3@%jpBuX zBh8`0Z=o=zytOdAkz?z%6Oa&ai1Pj-${B8>h{DrKu%2qi)e2iH8o0apjRSL|;{&_8 z=*44oKUTRbb3i{o$Easd8(&-;wsv<$xM!h-Z%E*?b&Fwq$_WiQp($ zC_gttgSiofrX1X5B!{=Th^~F3%DPwQF~W>^r>iqdFKE~YYbuiB0_&C>*&bg`wEIC9 zFvH6@w%#61kSi4FAXYAySjjT+nLrJL!!9(DhgxHMOap0USx2d-G9mvGsS!!hfYczL z-UZVMyhPzL>e*-}&`6e*uT}IG`#Rm_m2qpeJsx)V>j48&8XKIF1dI%6llUEK|z>k@^xM2)3&w*s^r06-*swL7H$-XHqIOaDDTq z*S9X?0I?Zt8}v1bqf{TDk!2!>$pqk~T{hc=`aa)PeWcy>TOg5TA{USla7f_sB7rOu zxd6{pzb*v9R?lG7)4<&v6FGy9Y7bE#$0~Pa4(RB26z}ei_hH)BYMZaBnf(U#3w7aP z+n}&8$?fqU*vVd0KZTh6z5f*g0*b1Ax>W5HDb1a~uF3#Y@YKcEp*m^c(v*R49HhB! z=1bcEUrJya08bgP!~y#bZ_?{42u=g=D{H&Dxv-lCX_pp>R*`y|ZmdEIz-*@yPq)9f zW4={mAR3ZXs6YA-G*c&3Qe8sJoCY$Nq$eZj5c3N}%*m7$_{&94Tdbka>KVVw777Nw zO=%#vUb_|GvZ_n)&muex;HQjLqTwgCU83+DQlJ5aM<lkqS?&f2{6{DDEo|_uf9ihh$!Xxvlu6ju6=n*PfMtO@*xx2B4Pd9tJfdJH1?`}JhtM>D zzC4kT2SYDl2lQs@*6PPdCRu+v)XQFzExJy(P5SvihJsJF3Jwps)K-uYHGO3&(FOU6 zxJd@$e!qx2Sl*o6Mv2vERgKAJsrxJKJN66pC%h^MHf-1IBvf{ZgRy+%xZcn!;+$hw|zXiSG6AaikKXB~9 zsX!!uNb{>A&4;JTSZmUIppIa*(6CyPf`|$OsG|u*1E}b>g!#Jm-RmxZJC1NPte41k zl-c3~2)5qUSEw+leB}Pn=yDs#?KKO7QK8=WQwVDtH^lHLP9a+g%a+>zN;|~_`ih32$3$G0NJ%Z8z^kI?OGdVZQ2*;zgN}7ls$poKzvmbd|{U1p1 z2(#xl;8XNR$30k~hywlHLG%~hvH7e;e)U^7F?)RY5j1B-0-RE_NOL|O=-$K3k8xYwxZi)p!^kl#QNam2&Z;8C(Bg7Er zO0y%ce#kC{2Gpb5OhaAk*9gm&lKL@$XaE$i;lP(bR1WOF2}T33*vSB#YWnhOQck+Y zk#)S7_OFSU_OIbv&tK7E!X^M<0T3@H0g%igriY{wlOe9fWXY>PVX@PIdc2qd2qPv3 z^lAdp04QEe0Z?7;wnI-Z))2ivrLf!QTkkfW1 zVrHp-01`d3v>=i{6m^v-Dtg>#GnUSethEPf%-(?p?4u_YB@ibn3$>3>G=Pd8)|H@2 zva)d35RQiR5;?{q8ii%^egu`}YCXR1*uS=VhSk>U8HKv)hkA6yWPC0h!1#q5@uMpX zBoNTois&nTbY*k40<&(Y-)BA0z=0Hvi76?6MOTVPmzlbrU^D=WA6=DvDv8W__aXw) z05E!VMLf#P<-Sav`TCC*+EQ;|u0H9lLf!1&DKy!!zbS;~fCK_U+m}daE@v&YzzwyN zRY8+NXk{2_%R;a-2u71aXk{=jv=Hz&2uPDaXgc3!nEPHWG)YP3k@+~dZrF6z?z{9~ z{~2U=Tq(`$1|JlU{w}@FKOj+Df68GuJB)vd1R%<%i72C2oT^A(o7NwVs7~R$p9W$C|05*CA zxP$dZ z6Oaag(Ie6-U?92@=zR%F1JKxOpa!#PeoZ;Pj{Pt6yUKNdp3piX7^d@U574mEb;3OY*vqGuQuMDmANzanCd4hNgD)~KedJy3UK8$$#3(T#QqM4Hh6 z>du6sp$=k&Sc3BU3*hcTI2zVVr0ke&GsyeP)R?RF=%G$`wAAf)%{vk74!+L(uaMYL zZa>(BOBY0!U;rvuklXh~ZqZ{ZOWHLNHbIcohuA35z?0}c$L8(8jP#6y2J$0>qyc1f z+dlyrNU#k1al+C7_TpF>nyi}^-njNX%Fzo2NYMlQ?x@?BtNnVbP|yBPi1BdQvA+O{ zzU<+E1OgiTU(sOnc-ZAEZ5|yG4D|-~NHlODfz(||xd+*TGE;9R7!AOp$EszYLeY8e z-bO$g0LEVS(0GuW&;94rn$ZCO5(ur|mX*8i2wR0Zi;vp?fIIdVKna9qfCK_UJN_hn zzh(lVITxUSzzuaHtAYj&BoJB%W7{|ulP)v$b%N0VEP>EMuuy0o@LL3=0bsn)kS~Ph zb3YEX6V!kF2xx@Km3cBlZx-rZyux-wSN7Zny@~H!EtsG{ZMPS-B^WH&tWCSdT|rUz zWsT6lhxj2@P+&pJ7Qp=$;b;JtpcgOs6-q9E{C|X`0c7mmnNsl(U6B8&RGpOsFrpVp zdJC(1T!P<1eT0u@ZR4g`07NhG834%~I=hGHEV^N~#5uck04#Qi54kpd&c8-I=^97Y(R0uq-hC@-!bYJ!@gvA-I}a~QT0aSDYS%L~= z<>6jOI2zVVy{FuP=T_)j3SV+d_hWXG?qM8DyJd3*3e z5fQ>WUxXJum?>xP3V>t|F+M`X z7~iiN;<{h88lJZv_q?mM>sm~CM24L~+Hob64E(y$5lKMOWX#f~I3Du5JWG?q5%FO5h z07--<&pi+YH^Z-g)d~&IK4>6)M|={YX&`}s(Do)2nz&$EFzbeT9jk&SmC!tl={uvJ`FXCqk z21N3Q#;y~M#m^Khdm}O9fw~*7>Ck|E{7fMPaRReY_aGDvpyFo=Ayi3T7H%iuXjm_? zGXWP?Iai&R(vdpu>}0P1f~J-CGm=syeZ2P z${$dhfo1@fVpJ*^t_3u^g*t=p96833!1H0@4#4B5verQjE{IU+D@CO#hD4!nC7B}L z>7RNVdny|E6F-$L`J)Gy6`@+#zalIRVB@E0C4W0Xu}%w~ zdJgN526dRCp|jafwy*Yx0e(J#X#m_!(8Aj69dJpw_NW0b2u=g=*q6@*<;-@LNahvk ztWfnviq}fXiYJ+R`vZArv;l5lzfkx7Zm3=+c>>&n(wrE+!B!-bthKf8HnoD)uNZy( z_rlheNxrq^9z0Ig+8P3dA}B=r<;1P6$-ksp`k?XDV_Atba4FeXA%raJ)&nmPmxu?$M7QKsC{bq_@G1h*05E!Sq6+9$Sq9xj zP#S>7KA~cAZk7?gOCdUS04839xYgQ;P__$o;5%A`W*2~F3xM$=^nd~c5&k@t2z}ln zLc?1-q<)9hLjyPBMOc9{A}j$uh=4Qzj2B@AFc4u0^uYwB0cf-cCFiECe<{bCM1%$v zFws|NSJ!*v?pp7Fo+H{Fe7lx6^c>~(gH3=&-|=trC8%IQiO1bs-vk>yk`6N$DH<0A zNxhV{L<3KvR}?0|j2O$1e@sXkKt>O4Cm;hkmSO*durz>;z2o1aHtmKf&0|q(WpzYX zAnv?vjR!4!pHqtxyN&Unf!#vgnJ>~kCP>jc=IkU>p)$B2LY$|HIHTLHa`sxDK1tBj zm$(u`lR_;%cee^867>fR>{kg(1K8-Pkk8%0dYSrz2KsA+rUCR7k*lUY^CmWTK^wa$ zC4+Q3%9R2NG!xy1_B+e%ad)rzlC0S&)D!-TZKyq11ea%QFXy8e78#)1I1X_mt7edkiGP(_&fDFW0hW!#@X#gABhFa97-4KnayX!X8 zB?4(r?dtDhd)#h~53F@g=hc>__5Q-RJLuz40`9tlJ4c;yYq7J`MrVLe^I@C+qQekJ z8sGI$qtB?IhLLavZ z^${G^2OLkIBZ=03aWR@`p~wglIY%UNbt;K?_O90oE5RQY2I|!m2@QPRlSm{Uq@ofY za57;5sIw^(*2|RQukXcYEPl$dwKg2A4#xOs@^IKbAUFIoyA3b72;PX5zp!lMim?`86MIum4CqWZ41w)UxYmN!F zdNCD30~ceOm>Pr$Wdwz<7IhO-^Iwe8QM$;%n;YBVs8u66Iq0LddAX6z%WbEhV2(Ly z1X+`G{ZhqTO-qoo%*aR$GFcOuBy52zNHt;!&L|Xls1H*zG;sRrWQ|IIGa(#(%rz*Q z#DMyd%9>UoQG@-mGRs5TvP6Qh?LB`93cB^Q!{&&i>oTQ!>Mz{Pr5=~BXosYroyUoG z5{6a@r$#yMc%jHab*UQ~xVxH6Hx6Y&H8|olqX}F?%}DjsS3=a-zpNNP^46pOvL<-Y zwmQ$DW^Oa}xH;tb`h2OHN2F^gea0di@`7xhCbC)21yrLO&!kXfp;jpz8hAWNCL9kl zp&TA^($N&IqjaQ}rc^~#0Pk)0x{JXuSnpef-0EZ~WrtMf@$E&r4bbzUMgiYWj$~PclvtyJggZ> zk;>V994hB{R8Ek{{g(eXR?&HLSCP+0+ED_cmi|;~Y04mR>uz!WS7xneI&>a;$-4 zjX~d3tLBXgf)zgHxS*?>F-&RT z;!15RIwyWpF7FS`RHO)?_@RFvJ8suf%7$oC|gry=oVjdEb3_+lJGVIT6l8*sB9%mRKo|Q8Xgpt zo9_C^OA}R}Vu90u=9JOZ<|QuP>!zB^tEgI={Xa8%8e~7`2n3nw!qpAKzu4^SJn=H@Sw*813dNgi1@xKpUN+yc@#%I)h-eI7;fJ9Ag7gAxQN z#Ol_O?8X73Eu@mTtGf8UEm8?ySkn=Br7IIGL%8u*eH_d!y9t zlm(8+a$%57=OJaIu4Mhwz}Mbf^*AYndq;q@gLZj{+f4CJK4yjMM06cTe)?_OJB0C7^yCR?|tE;gvy1}p|Q0t;1 z4|RaeHVrCkElxx=4hJ#{js`-~9KJ&#x$3GV3wCo3a+h(5x!vpO39(#t49EL8+Q3mg zo0g+)#Q)BtA)?z(KS3X>&zj1gbAr4fT};A33flQ^(aw|w#Lcv`A%+&t)H8&EdJk1Y z!+M!ZHB%9qID+fLJv?=ZR?uE44kiFB0`*^%3@c}P1iRO#tzZ#B|2xU-ImAVUJ%ZlP~EuD^qAuB@fz zEA9)Px|Dql4ZL~8d=*~FxC!r2#aN!Hl&bnAcvfGIbLxGi-Cyi=TBE@d?>6D^qP4d@ z?7G^O;|(4+eMrL|$54*fZcp9l6nnH5fYm?e;?gFxg&LG_f+%6in)zmp!6qnL6dRl) zEYu&dL7;)VgSqsv0Y+1fVJLzcvYp2+SBHke@sy3JsMJ+~n{ZnT5b(laXhyC`X&|Mc zQwsG1URF82oT&HxzflQuuJcX63n1$Lwo>thIxWhJSnXuZv;6DJdCqcJ>kJnG`Zkzjx~6!wBUZu36R3AryX`js+m#_ zb1t}VK(kP!13@%J5OdB&HbBrJKIOQes~=GmG;ndg1@|fWH%&U0fKUt71$TO`&Z01E zZPbt#`nR95i32h9Tubz_NqZPSWWKsVp(43iTHB90Prn;UY zpn*@j<{B+bW?i|*-xQiIV|5Yhn+07{rV(z3Q@GW^qJJ_doV)P=?kqnARecH=l;(B% zm`*ND5p*(&rv7a-Gu22PHDQ4Yf0R`Cl>4VPi$4})UG}G~wTJE14n9|E+&$VS96b7B zcMy(Exz~AaWDa2JXbBN@e-2J*0NtKjZdIQ}a7^`+KwsJFk<=V(e4?-z$@5*ttjn$G zOIfQ-J(j@b@}6_?NyDx6y5rVTdtq$er-a1Dh=~nJEY!>R$jV6*={l*UPc{Ef$LCyp zs-q&v(DSP3IikT1S-R_rRZPKCZ)D>|18?SAe5z(_l*B^aWs6Fes_L;WS+o=7IOl@y zgrnuEyphi@9#={;yOtN6K6kz=SygDF7F|*MSX)whL2=Ew8e;syqp7&3q$eM_(rFD|N5M@&JzP6J`evxF6RXK4 zrNtBVKQr*okE%7BlUy?*EGq7)QgQW<@^9WvNpXfbhjnMu#Yy!jRv!&qseQ10t9Y&k z0mQp|Y;mfmuok6E%O!Z>d?kn%FbFr@u;Bd*vR9~2Zb#)E?Gw0dPGyCiod8ZiP*u;7 zs+w~y>Ug=f(WMB2dOE9z2E^wKWS6A_(U-t>x^x5edxW9^)SMlg%hEylr`Fvu1NUsg z(E#rJx!MhvW0P-C2y0(Gn_4SZ``j*#@xIy0{e$BH5=-kCFXK4$q=|Hs6#RcgU#)Ww zvSJ~l?*uZ0_(vkdIs59mtaYPNJs^1MfgJhKpz^Mov+~O2iaJC>byb4Ssh6@crECN5 zS&;MAY2_l7R_l1;;@>5_zu=^abe)vy;vaG^WhHe=WYp=O#nov|)>5aH19)hU_Xw;r zAZbvr^Nqi%&NPuQaq&-M{i#%Gl?agMoHpXVgNa$Fu2y|uVuj!w-Zpqj?J<*FGozhz z+Bl6G*89K$)%<3u<~b*C)3Vo9U3XA$)yG)fG${1P&K1ISnNK|RVw+|9s@}wEmtwCe z->3qp&LV@#=OHsVXvjqJR{C`jnt#o@!L7uxYL0AhE}n1fP@kd1I=Mgu?-mj4NevLl zV8S6qZ1oBXfd>9{B7{)Q-b#V#wtGhVu9s~z@Vlsn4GMeC0e;=}hl%SBpXcSl6RXLR zQt4#o9N^c`!2Qtj5Y#_NWzRXlugO_zxqRV8(9~J%s%cQYwQoX|2;JZYl?q;y`_+z` zj;Rl_LUo~5im?9DZl~8-#Ra2%-BIl`QNiJz?cH*H7r%vC;TZhmjQQ&NapYBtAx8u1_17lmh0u3|d!XF}q5)8SIL!&<$Mqhp zLogbE#eTsKxi)>ypQ5mIjU(&&>Ec%WSQr>JVFP#O^AhCtHn+_WKsr^lx{=C~%17?;;SSa-dgwunl|tRX2g(kY9s3KQ`aWfgerOp1qH-JW1H z0E=(6N??J&0>C>FkOqL!trqib1`<#wQf9vX<40bjZeN-$Y@p}jWAoeF+%`Y(B7Wp$ zKqP-?>`tPw_>q@ouiGx?f%+=PCp2ImKk_Pph`>D5*9b)esQ8gr2o=c7!+n!*G_04{ zkr%SXga5YP)g7rVseI%f--aP)GxFkAp$_8OqWh8aNQ&Yn5S~#7vo~2NR42VDW8O39KwK3;0k1(f}~J4I`eGna#Z+ZI~`i z0K~UpK%ll0aSb&7D5H`@^F7cI2zVVY#WAbo4T&0)b1y37{QQxd>e+0+ozLF%#Dj8<=7CH!GoRTGof(Lsr<{eDEx>@5zJ3T=OL*%*(?es^3A>N$3uL6DQ zMyDKfM|X@}1|f~Jw&uHP@2|k0Yzc;k4%*ZmNDbk(Sk!n>ZtXw?&=x5_`V<`WMXl3A zP`rI-qox#xrG4EIG@@(+T_dWxY@A(7I;E|=$0jh7&7B%B--$-!gI9TNC=oO-rB*|L zoZsTZ3}dFuH% zH9TvFJ!^+OYe%=ggJ-cI=3y&LFwS}tiUOHnv11OGyQ_Rr7>cCP>+T-nJso@*n0E2x z^J@+r^r<`iKL8y!jm?4H>x_SO)Y!e=?V;e&VY|ZCeQUenyD8u9YjS5^u*rX3<~lg{ zp9kfic4#;qz!q+Yj;{6&|4(6$fvYi7I|8wEP&cF1s$^W^`{?9?2z5@_DG{g>l`VIrJ0}$}AJKEt+ zM;&3hKZhgZ4t3BT;swZtKZnnY2m0;R?m`1!U|8f6aoT~qT;|R_Cph<<^0^27X*<8f@+6>QPRtkx~A&K8W`+VcIFCJ}>L49NU z$gQ#57dC;qm7Qz?%dM<>5BY7m?Yv}byj-K{=x}ksG@7=Blk$2$`OMrTp1U<3wk_21 zhdg)m!?sX;fY=+hdRz6|woPpArnODt_lL!A`wyEmW)Iz(-?kO=VUKRuH9$h(VK!)$PL<~-wv9^m8F)CG2Eu#9h*_=%KGv$yustiXbk-@hi4S( z@p_r>!E(yEJjKUZ8YU5C)$=f=BqDaEvsS`0}v5wt^=+ z`;Fb5#@_D#=kDACth?s(A3{i_w2H>Hqfxhd-`q-htCS=NNr;5BZYO)r*)y}}J-3{F z&b;r${gwzLAtsTy#4W@valbT5DW#NBN-3q3QmS?7k5by-^I3cCz1O+S%$YfRve&LZ z9(iZ>ob!3sT6?YUy2k@ujB&1NaT8BO+T|In@~?Q$Qoq&Qvk)~yh9>8GodYo;hOzdC z51#2m){?)U6U5wnIG0112&9oh%mwir5OYA#`%fWc_1<}T7myS{E z_vElb`|S7XF1bU$$2HWyqGyymcV_oq3Z~29S_pG+C$+eHz&8-Nw{PN5`DH-;t z80=TyB2StzXJ$WGbN*YOstxs7u(#Ex z9=kU$8F_@f=LfG?f3^Ld+v<_b)}9Axd$S3mlSkI{+q^u?Wxt&>AFxf9<6M@kx2rFD z(MwVmJ(9DWlJ=mJN7in8oXe8^RxJ7ev1kYM)ai1(%VL_8Sl_bt0t<4aexHMw_}2b@ zO}}zdB>9yP^ru2_8n+E|W}kkOylDNbq-pSC^qpP4zTO-2;%@m?I>S~Qe`|m8%V7%J z@{RefP2L};lHTMShU~a6&him_{)VrKnOI1s<2L#9>~%h{HeZ61vdY#ti&e;Huid4M0J|2?Pw)*En}jXx#%TeS%H z5{n+aeQqoJzJ1Am@nPnhmhTC-{W|*@5 zt?1e#4HTF)n@XyIA|n;NKxUYX%J60(6K!3AhyW8nN~(YB7dEj6g($_yRu?P`6&~U#<1>WNgBSi1CG^CGz8@JJM~kgaq-6=_Ejb7v;t`LDnV-p8_Ew!sLj%*;`QUPaAEsCN|l#MG;!Xro~?Ilu?B9^!oC5 zE>;wA!G%N-C*+?pdlcb(34u-WMT#OGS40#s^5JF~teaOhTyh^vq6nsn+u?y)x;iJZ zzb5<3h%)}bOhwcEM!B8}Oh}4?Y))JR3L=zq%RotPjI=ZtLxYIssin}2<<%u1AwqiM zb&VAC7GsJ~o?n-Ng9zs-W#J6v*-IfpMD)zkh{p2m3a}7i6{ z>w~+ltzOqjL=9x_xwY@umEa&{lptWnvg#^`5E0GP4mw$|&-rg_d}5=cCD5JvNC(=j z*^l0|H(l?ArY}83S2}%kefgNXsRex6`Dy`ge1iRZnm@b$W9Z9={xLO4@)c_P4km5i zlZx}WQQ1$^A@4hn_X^tCrN;`VEcy;?>YE6LLAybLg;e6Y@<3-(gLkkY|gVZ5~1qhD@b zfGYq)1a?8GFF+D?BrSr4dlhhq;L5FQwK=A?)KNFlB-)j5A>u0c%@kMczL{4+hKTIx zrDms=>}iPEB-a~(LVSSI$g+XD8Yo0i<+hjShP}>ECcYIkL};fL5pV8Gt6A%PJeusy zR8~yf*+f3*=o1^dv^>M#HLgv$#w~3h{$G}YAJwBtFnSdU3^KJrdfL#jEET53Vf?J2##_i zld?8v>}vz3$=#R2hlp>sh&TW09p|oA!s&JZhF=Za6|f;ZnlB@{Bt)9?GpD+OPg3)HZK22E|(EGd|E*cw@Kp0a)#*ym=H0|Hea{n)X|3K zmGvZr9s~_iVhU+WA+chaPKF5)Q*s53d7ZYuR4(~ctuE!(dHdm`1%I{z>Kt}E#T)26 zy}o?pz4aPC{y9vepOl}tKKnGf^Cig($rtH`{JSEi(MLXfqj$l5EPpkfpIZB8%l9Y~VV;As(e&a=xv>>w$-ORPeO3-X`7v zI>e*IGY4HJd3z8%#G}O1VPiJ&o(LV{QR0bCXYQGj_Z09DzwpvZ<>}xd!kcYbZ(()b zd}Qu&scBoKO~Ypai3oCirm(nh$cSZ$8hkQ&eLkFsI4|>yvl%YvlG>$cA!U6otcX}= z8wf2tO*`5wYtr-iFd|~S+^_WPMT<+r3HkzH5y5))CLPRD^hH1-g7hQ+(=m>k#8S_z%y~2?G}IwcsJb^W@dghEogodf*U`;0|^z+?#+y1m{VW7ar`U z;o&vVAs!XGgWcA#>z6#@kn0`7|B~0^ZEzy~aB8|EYuDZh9wNMp{fHC{UajHQG4FvA z@uw&*w6b34wa_7=^Q4Mdtf$S#`+-9Q=Slmv$P#1@b}{Y82LVI`_#!__parbC?Z}70 zM1(opoMmCna1?XiT|aGzKMEltLQfjvNP{71TlaDB5TEec*=Wco!9#@SNthMIdQs9i z=F{*Y;`5}EY1Uiz9sVqEh~PX46`EnJWkIHf`8;%p=sfAMLpM~td=W;(qwMW0+64SE zaERbMsacwx#bb}LcwYq%@e41FqrVOwB0OJSj?Q8lM}HGKM0B3a%qeem)1qR1o4?-% z5fP#SJK>mLA#c$M2GC9_`Bk6}do zOUQi4@+Uwdg7hTv*O3oVYmi0_KLZf)2v7la4)_ZI5dnG<^S88+E$TLPCV+Wa{ue?- zgq~E53aQOe3RyN^{{k^0{-k0%T(tYFO)B0HLPUg~w1KJ*hvLHL9Chxyl@L zi0C}2U-E@WM*)ZUlyqDyY0BN5p+h{PJ11NGaX07?(RniR7Ha~rmo{wofDaL$CsANL znAZ`i^|Z@$G=zu--rylV;pyaU zi}wfMA;R-y_OP!@+UmozhxdaL5#>yW7CAFF`<(x_i7|1B|H0X2v<~Vr!l)Itb&u&Z z+YX$^*OxC`*1m(+Yj?%k5huC7P%4~SC{^-R+Ii5sr8zG76@`BKhFcFDPkWuC6t%FQ zTY^Up1=eU{mXbDUu3`5Hq6B$^=g97E1(UCD10E6lmA=E*&1txX`<-wj;(m?q+&T7p zz($1qM&Gf`DalK{sIAkCOrl>4JtF$oSAss`6l%l%e%O(!uqVNVVgDfPh}d82d%81S zpn%eVe;9D23dLRE*?Gr?{-e+%RY>-3a+0(G|2W`C6~N)Xmn|=!1RN3gn|v?mvBr!- z-3%MhKQ`(9Y48!@d*7JGd8_nUxRFY5=XLt$;YP&meQO%)B=Fd6O}_{|QU!WS`4Ih= zp+`jTebn1u($Nh|ou(Euniut}z$1cxtMBzp2CvG-spP+o2Sgr9=qWje?K(Xr=cf~T zO5X++$W8a2yU(S^zq#c02;K=P{R3bT!IscHni6&_ zjeiU_Qc?l23A#lZ@11Yzgx8klrw?dWhPgpgsr&?ZMDVY^?kkmP(>z=a?P-&S`e#rh zqAnrinwGj1Hfsk$v*)iB=v+!&IAidC0X`!9GHSsoOAIGzrajUB1sM_YTl_62gLd5M z_0{IY;UXi4wN}U?XOrsJUy}ty7Ott11@>AP2RFn4QZWZH%VCUz8{+_xgJ+bO2i;C{ zb%oh;Lv<6V5K+DKx~IyH(Q>Nr>}M0&$zKN-5pD@1D;e5WxMMBlEdWOZen|=GJoyx@ z2`PLVKoNnKP(de0Il0Me$X(E}w7osZNIA&PjF7|a{M3cFuia4~BSJ2rH|D@?jXaj# zcLp92dMbu@?t8+Gh}-)Yl&edUHm6f-Eqm4;oeDlu zg>t@-2QQC+8>t3&C!KaU18zjzCGg*v7&Z(upca#Q+~_~dJgc2;JvRD z>4xesRa>9;K}V`k(zPWi?NuCr8xeO2^Htl6T6AHfE~#Hwt@T6ZuWZtviv>g$ybrt% zY9XTbWt-yuWWbRsl$mqGe%gb68r+DuUwqy7L>I$$*wa>rd7QX%-`)0BS)@QC1FdEHllQV0GA{N!q`L7V(!h%3rj%27KEdbOar7|!TVe`6!9DIBjUfd5*cA<)N4^&bL}-9p{&W?^mV=!ZV9ev zYpo6&o^8(D8ZU^vyt@)!xXddGn%a0&>ksPtv*q5m!wDiM)o9}O_d01W;J1KBD)WN0 zg8gAFUTLtOrRDZr_XF!2%)+)rdJ-okm#8+wHqz z0Fi-e^c>8k9gc(F#Q`D*@2Eu8lsFj4h`rcADq};745?v< zdl*1u;BA#CPRSxqg@d{t!B$JZj|oI3s?i%YCrxWmUni}sq#e3_xIpBh8Ua*a2gI0z zdAPJ^Xz}eI;sueHH&vrpxlz*}fsY8kjD=sFI1YyvewiOk7zuk2pol=rnA_eObZqGB zWRMXdzp;d(F$MCH#&yG5HYs1z*$-)-?G)${(U&p(HVyq?Ui}$|`Qb1lVt$#QDZanS zvHP|n8A{07e8{!cMHIfIBQuSt3ppb4GG>UTC?s*K)9EkOhRezm;70sSaZasO!`@qrhRR9+IU@2BmP_dD#i%>b z@Nv{>J9985}lYb=++M}%L(5a)LBgSZwmP8+5%Z3})x{3S%@ z+vkrv^~hZBSkqD8Y5$^&3#1~s&~Ju8+^=QpZ({h7YVl`laaQ0*s>PqJ%UOjV5q}Az zPTPG8>Ye7G)z+J=6K`!u_9Pr2a!|s6`1T#N>p{P^(Cf5xl<7Hxu$}Emdn!&4IVoY* zal1|$akrW6CVmF&NLARK67+1?k!r9jlnAn^_UFKkh`of7`|XyQg-D_D$Xx03uz<)y z3G+bPwxBpq14_2`xe$1y8fAy!)n>X4{e`e2)nOl`(c3!gh}cW$*KWJe_}DEokr@Fup?qGVNhYa1wJ~)mY3JSjZ~w! zn@NMZ)+$*1*MW}+zl0&-?IwGxvl0deqjX644bUT^FX7mL?b3IHw0eIt;E2F0&@D+P zU>EXg{w+8_`*3* zO<=wkD@aAMW6;-1){eF#I2F_T@PNoe3Fl^Q_wDF)`u9m2v=4xe2)%?=F55*nBj(wi zUHLxV4`Bn5jS2+NeXU-zP4Y(|M?_x2x{&Q=0OaE@z{fCwRO1Ecce=H7!0i*DBSNph zz`q9lTQv?aPlKXQ!HgLb3=+M0H@ z#9@8Fc{{cW`T{>_}DEolfvqU`NFMqU*l=v^%|)yY|Wad&11_H^4-M zS;8ujEiuRDa=!&IBH$}LOxL|;i=0-j_tNXez5_AhEAe8lGw8a+--8$taS3Y_wk{M= zThnTqjdG#?9cV<*C9Emi8d@t@c*txov6b@=VMe@VK5mTpKVe3^WlqYno6bLl84+^{ zD^Yuz1nab%l`F{)CRE421QZcy2`f>j03EB454ljth`-2M$=U7G;?diN(3j5~se2(g6Y8aG88D-3r677^@=OGr=MDLwMa zB|n*vu6G9&5o!qmJl9`ui8_|Pdw@m+T|(?L9dt81$bvp*~a~-K6GHe zx<=_wClrl)fs6>bj4CaMb8CnEr!MkX5xEcWh~P^YP;^pu3V7XNYHp>pW#zuGBUNCp zcY3{gCrq#Gxj*cP*h@HEZhPro@1$Fx9tbuf>=Gu9wuwE^HJWMLeG=qIRmihl#1DZS z5xMvE%aUr(j&6)dhw2^%JW_>ZAG&z;G{})Ekhemut4)`so(?%8@)G9PxA&6jIK>e>AD7Jshh};AMZ}MvOL@7eGaXT0;M4D%7#yHUb(EbP0dk)Y6$EXfFS~VVToX>6ngzyJm_{co)T;1vfB*UUuaVAe}O~< z`P}j#>)L~q9?p}@=o`B0KSy+k2XtC?+wb)3M7W{5A#{l7o?c$sHNu5p(9}qofx0nJ zNV!QCM(s{FuJts5p;?#3w7A^_Iz)8mmzQK2U2^-QNw}MWhIoS34LN$)p#3^%h|r!^ zVybBqNna}_4bv@PLd5i(@|YGngI=WbgS2H@M<-gg--Hb*H@y~vz7A})Ot*mv5mSkc zdcss=udvC++k=G&>%8)^ks!A{XlWa8D=lDikRc*_MtNjQIwXX<$!&Ta1r;Ky=aolg z8}V8rtoOp?Bw&-BcLopf15X3rOwO{*>R8|A}cX+v}9V3-PZ}5S#^6)=n&CeP~v+^<&j*b-$O z1oxCO;TY*N^~N7Sgp^y%bcm78QRwN!*DUtAA7qHgo>g92rDR#d`2e^Oag`X!YE*r` zsUxGK6|)`RWaf#WAtfhSg4XREu!Zcwa3SKlxWud+=?T}8W*}|h9||QR$`X5Z+HI?Y zQPRfgRG^U3p_=Lg*!+A1P>7&PjL?))3LU#?<$4BGh^R^ov_+*lqZy>}|D(Y|gjHfg zuKPT+dr6I^Vp^Mxe*zgIvWLwwoNPxi_YIF`jt$)QW_$H}K_k-D7xCUHMv&8I*O&kH zK^jB;;|nx~eE5U2pUUtAI$B^NOSW_tPH&j83nL=N=awMN}qS|V)`i~&Rh`0$xp zx%6G$mwtmH$Bmko<(ZNqY6Xko6z!aOZhiT(yQ+;_(Ok~j4NvATnI(NtF#ySjt8KeD zY1=f*Jj1+m?rVdpFnJ(vKwN{X%vd3E_v8{V+<8%x;!gqy5zvEYPL_SH*OAO@&Scl# z61#QSlsve;+&@mn9(%dU(_yCst6?vuKs~r1hUDW_qOM3v)Jj30yHV@9!5z8Q}n5-k@-AK;o7wlkx#f$jk+O=S&(_Tj5-01JnQr5zuTy9vVNPvCYR-h!7E#Rf$@ntj>B8Oi1}mS>YdtOo*6fi>h{BnvyFYZDD#gK!|{58(f?LDDJniZjPy{o&yyks@aAFc21RCP^dF_ z8#Qz4H0wldqCF2hM0m5Eg|l-!Mm=>=oG!6UZ`>Wjybw%8m?zH?F(;J!lK-=5FdDEv zX|}*}_|o$!g6E+>SYQ6uo#pk?%M?W4^c3@}xuCfi&i4X>>4z80mVBLp>c2{Y>e+hY zBUi9)GBz~wWZrR0evvv(6610u#xkM=m~Gr@-J@4NAnn zOc$jl7vq%losc3T^{hgQ+Gd@QDVy&B6Y;NXMs01cHjvi>i3oDtuVzSR<0~GuobQJd z5$9~Dj1*pR+KYday#*#wKL{)$*xAme+AUbEoMAniq5Uwlh_^|r5jmX(Y+yeMEF#$1 zj*i@|q;&%%g^ zakhgB3ula*oy9yD{XC$Eemuu#Go8z%(H)EWbx;wZde-JAsBS6!Ca{QLJ*(!`BC#pcl+$m6i3roPcyC1~ ztY*#8ci}`lB8X z+S2=D3?MS_Co_%i4vj?ZOB&j2_%wM{HX2!-aj8UdUHTNGz2?F7<)ve^^yVvC1EQr8 z$&X}y#-$P&L-O$&)xGJF=7543mr7)xyWt3A@`N*rn^;O*evRcWh#by1%ePY!cbwLw z{5N1i#5Ciy%#N9K3SH1!t(nnIZAa~EYE*->2Jc(oA;Oz&4@+~$c$2uk0~b$Hm9+&*bC`}Ke#0-Y@;FA`LTHYp&t+vW}Do8UyeDwNzYZFBq@01>Zpyc_mf z8fbG<@@;@30`=$Z>4nL`ASScl2_hoI*+$xmER?-4UJAPE%o@h`z=(KNAbXvrW-Sch zwE!Xlys*$_cB24$D6uCugnRAvT!!%d5F%b>bF6#NLM}x%j30y%@hcURi^2@yhap5n zINK2AQ2uSQKw{{*jq>?G&Gj9|aN-q(3o5ayX>{{5XJ!S7mX)JymthKN-eP z!iad4h$~U3o$vOU(A1Pk5jZoUF zjJ7V|$%E_5hwf1c|B#HW9rj3bOWN$4xpIc&<5k8VSHuWq{<#|!a{EMH%99^hmmeVy z5#`}*Ba}NPaZ9>M`H#Vbh-tRv>^o;N3&-1?R>aw!JE!6=qqfEa4AG|` zLPRv%Q0Z($otC|i(Q(%UM)^yC#2#H3tQtxoP%nzz~5we3r@gjB8)^U)KACif>`2 zJ`J}6PE-G?Qat>Js(BB&L^bcBXK25MOrBW8S0^8=+V(j~ZQCm1LpQEBM(%60whoo8 zWkjwHT&DnTO=?p3Fi;So%r+mI=Iw@c=tx@ZRdl0q#hOm}x5;uiEQna1c-+uDueO{K-KC@jw;`-a@ zt+U_l#4STs&tv2dk;~bRP@DzEt(8m;TmTj#tl3WHoC!;j9e;0&#TrnEpk@rx^AfRP z)3H&;?QJm?VU0;4+sL1IwE_Axd8P3mT`;^)0vHZi5x{NPUUG~?llJqA9+A3ohSlk+_uK16&oj-WV& zYo-h~;}j{XLUEEhxV3Mv0 z9O4mNR-bf$L;QhT;ZSjtay{S>!JRQvZ!51$_BjoQ{hEnk!)(2<^b*XiqZs?-`tn(~ zQv`GEdGx{_m0VHE_|I&;Fb5;~0!1#LDWVtVeDFpMTlz>I7}%d!tM8Z9WkfD#>xHG? zv`H(GJ~9U5_QFgKd=M-|ShFo6NWXJOSZ0980DTxBq-3DBwtE<$j{<}UXr?}eO`v`D z|2KLCx-+%Z2YNwQo3|II7=le7U0=S%t@SQGLl)O=e3t!tUdEFPBT2qOZ{t5DZ{uvE zkSVzFxIrMCJyYYqY72vQJvmv;czrf`ipb?`^Ca2#Y*OsAXM#o}zj#SkcdBk~*Tb5& z-7R$*8gnyj&w&jQ+o`j(0_oT8OaEiTjNWnyLv|n2_}#=$%20CEvLDl< zbQ01g%YQJgfhaXzu^Xu|GpO6Jn4J6($cT_%?J2T}jq19SyE(84{r{jwM17Ut)Js9H z5$hmX9noYG{J%g)g#LQJ(VJnge^s~1X375Fup?rBgXip>#ai51=$me~N%;Q(9`V1V zxANk0J@$1Y{!=>zM_ZiV02vYTEB!1QV=c|CU`E9J zDo>fmT9{h{jrd!VotEWx&?5fQIxWg?L5qm?<$e~3;g;mL0Y*Fq9%?~;2Vg|NTb>_S zPCZOO=d>Jmg%}a>W4GvnZx?vqc<*jvr?+27S)32z&99uw@b~iQ`tqZGq@kc&X~oal z4Iao3lme#~N|Jnq`rWs?wK@J~%SB)r;btv!=5uT~DEo6`aBucc$L_6J<%G!WmMc@U z4=5gIZ%tj%e$)?JwVKU|+ku7%ZOaW5yNedJqkhKqTW}%eCz+O&4JFxcgN6ug%k>Jo znq>LynC7ke9l#KQ71Pq}tkmx{qfNTTp|(HN2}eu1XkGWgx4VOWEr@kwLS2iY4Dek6 zMg;t_LMwsIB4=YN%NO&nO@ZU^9LxK=@FL$4M})rRsRdc$>_!#Dhm+nq)TPGWBu#^u!f-5vhzPe_>9G5Rswj0i zsgBe(aK8r}BDgJ247-lt`l}q8Veoz*Jj5S7d!~oM+Xo&Zye$_2T{o#`@Y0v#58*?^ zS8k1td1i2IzWxzlh#v{Z;+mm%_5}D4@fFiSpQ%FZ_6F^6t48NRFe73vW*lUfnDch$ zWRMX*ib33rG^wbzJ$-*pfe#U%2eqSC&kdE*hl7Wdjz^=S?JC-^LPTj_@<)P)2ye?( zbh}wQn#zZmVnIhsr%lVFphHBrqNjU2KB?Dqy~`aKpn#1FW* zHs9%RaJXrhp8y;pxMD_5c32lCDHq3K&%}m((`ASU^ZC5BB@Q4)yd{p6`St#QZK)=W z8xSKR-tru&-G70SG>#fNayC*2!a^0uT{ksokw4JsrUG)$c-xh;YjlO4m^mrfe~6h!<@2PD_V1r?2x0Y>3#lJZpB> z(@kuxPTL82ZTVY;5)oyoBaWv0Nfx*{&D4ia0u2$`mX}pr2MO5TxUqREsEB{4qc!3) zKt+UFY8TdKIER^=?0z<2h``Ek{_4Fj(6O!2f;LjcY630fbAUtyx#hvAyI&>;{mz02 z8GzDV-j?xsFd}{=WX8C}eS>L2UI-*2$nyI#jWFygg3QX|3!y_qSL$Skc}eoo#dWw4 zah2Z|i;IBE7P}Y2hKQ~Filq@PELgCY0EP%`%WccM{?0a>(b$(mhKQ_~bwRWAsv3i? z#%rkc%#KoGg=9*`rsFH2MMS&hB}coSjth~_C!f^udkvU~Uznrq@aw=tgjs%gxS$&$ zbgfk$AKE;B1C)p#i8)G{_5J+`9IZd0GZ-El=gR-Zy2pdtnpSjkh#=<=< z<=de|{G(isb!kZwExrp%M3lvBn3$#NTyWE}8`bwWIhw+RweJNK5or0tq6UkQ%tKtzOCe&DmDH%6_aO}-DohKQ~FAsow=tfsJp zAAt}NVfn#!Hd<%tJ_a2ky7K$^8J&%ShUR}i0V*QY@*C|ORneBlP14rzQ&1wJ-1179 zT@Tc9%Fz($GjJk)6w8I0R>Q>oG!;Jw9U{8&D{fmI)&|{%B6R!ad;vs6h~;-v^VJAn zf(sGXrKL|2#(fdp6;_5!aNd8M406-Z?gAuig16L=eGqA5n%akjsQp2 zhur}_M119k8V+AR6O&d%cLWs?YWcmbI9N&Z_)dT!0xQ2w)F!-1f!bYwL$lWMp zn#XsC5)ozjuS-su^6h~S5nuUJ>F&;_G37VS4&lWp91V%)R9V-&IA(?X8D~HVUDhQI14~T zfaTXW0@NU5FX(sDhVL=(A>u1Puy**U6Vs6J@jxQJ6vi|WYw7(_Ce}F{OvIPG=6w!y z_JWPY>hK}rD}T0GdEHiDSrLx2OlSc_M2O{w*h1_DX(Stgh6t_vjh+2o)N;axCUA%! z>DE(7Q@5qA0~#W<^80h{As;=+5RsK1tqwRKyT0G7A4n^{0fdMjgl1g`fcXZhgAgJj zEPrszoH)}67XnS2@^*-|nKgA!1Qii#`E#cRRhxc#Q5ds2mP#JJqGi;{|Af65+;!kpt;}Ztjp9Lu*((=dUOmZf}?Al(CZ~HnQO2nT`AD;|(E|7>I z%b#CylCr76oLbxs>iN2>=fjGKwbZea#%eog=~%4c_vZ!RA;K%Q7rk`P+Crq&(2P3S zHv2`eA!R3Byfj$Q31T(NXz?xu4-sCeQDUs!OvxD$Y1Mr>Xo%3xy>1t4)S|dH67jzb z8bmblbxhL>yJ;u$6<{F3*y@sxsn-hcV>5*<5Vz8bll%zJVlMa)2zM1no%XaBd^mrx zzWj>Y%JUa=PX5|WPRKv0xC=g29@;b#k?!_6O$U6uTl+tzodpPW;8f8vSqE8l8jV&spTXce#vcIh*F@K zE^eheJ~uhz_oip| z2C-QmZFvua7ZGnkEp*CJ5HBZbBy-~y`EZaCAs4eEwdfLI7b2SiaRju8w+U=$?K(Sy zd^3;{As5s4FFb)))A#M>up(kD<}BEvS(EMDO^sM+tCLCJTf&Tp`SQY>pG{-;^xfQ| zj#wBpbw;0oJrY<%u*DqKSa<>p)-Arbg%}ZWF$dBYO{_62MzGQ{d{3U|+)X0i9bQDd zepYMZ)$pBx-2*HlSU;;ZVBKo%7>E&XlUGw*X{&KOu!zsFx*gS&g?j;u2-eSl^4zf3 zNlWg1phZOMXT)x3-J*M6kP#slv*@;{>UX#^bbmMzaTYVjT@>e7C+LBoBHp2nbtg^& z6%ndm-HGwg{2{O+-X$xn^O_@LCA+D$9tJ8RRKJFB=smcv|7nmSA}wgTBJIb_IL0s% zh@TE9;veX60DdN*hK^(k}a$Y!O(BZ~)1zDzTZmnJih#jO3$ylge~m_Il? zyv)yWtsbmNjGuE4F;duDmVfgW0b%~&28izbqk;V;u!vxbX~J@b*C9bVOZxT9aWv6m~@H#jL)`kqS%goW0+%Mfxzf z5pfq2HtYg-UH2%G;5U(7t!E|eJ;_~rm3J_GA0|Aq9eyd}VhfZyh80a+Nd>nujnaRuG3wux(> zoJsVwwLB6Nh)lf0dlTB+G}*>&v4Qwpcp|6p+yP)jz_0Z+-L(>&n-z!Zl{*5C2;AHD zU*MCf^gF?hi2ZdQC;E78eiz6Qk$W4tDAhUj%dOP!4maX?F&~VA?*SYU_-lMEDmsLV z9g0q?e+<}&urKuuTfw2Z-ra;($3u#U)Vr8AkHLrf5BGu@5pywXCJKzHa^|exa36RP z@fI^TRv_<4f8oBcB4RCO8mB;3w@SM|poov4ZhZPcKoK87-B{=(KoNm@*HxJm13d&_ zM8MwFT^qzc4}%#Ivv(s+VjhoqPJIaL7rot6XtxY@3ZysJ>e)dV)TlBySG{%3}iOG+Y z0uL{kC;1wU?te8I-7n^h72Ug;`qgH_y(Y!$%|I8n$LyfAdnxTxBcr;m`;+8;8Ikj1 z&a<1D%pJ=&IrI=15iu5XK12bGc0gR8WXsXRphQGjP)s;$9%q|}w68F+Y*|l(6%lJO zSA5K#qIpW54jtlAnH){QGhsx;czPjqrpfGmL)kQ1H5IdQK5T|99cywRil?nFoxfOL zzVaceG!Mx6+D%T%KdHEl^Ujx1ohM(Y>hniMZk!+alFcT^+((BiQs*}|Sw_t6bO-OAPE0gj~!X3zuVy$vgMaO_0;+(s>Q88|bG2jR^YHg|yc$ zNwLs%mVg`TXF`pLx|pG_U8UAt@&@}nu#pOskcPGn8R!duMk-K3VlI0#)N4>96(}L1 zPD{u|U?UYs?0%3Y_Qg;m6-aDRA7{(RC14}fz)s7^Wnd%1euLjt_IzZ5qna)uwrT!S z;1R*Uxf<{hr|8(|Y55BH5%IsZ8vM<0pKK_G6lIb2Ze6s67wP^Dy_V zKqD1M>Q0=tPw#*l5p^-^Mt1ELZG?-*^|jtIP%6%4xv9MmVVu>S&Rqyh!xV7GOw#r{jM5&y9@ zHJCM!e+4!o>^J%yA{uO6D&tfpe+@k%de3X`MK-~*9oQ7|zX2Q(crlBicdhoe;5D~4 z{9Eu5;TN;;Z`bgnSZg?RF^En0zk?hRx#!JKq@k9yCjWb|kt$%fv$2+c02>ju=Rryo z>jh0)`+tNR5x3{9eY4)OMf;zCMg;A7U#A(y>FD@BLyd^q^Zq^5L)GBFz>ZX)m~<9x zG5J@Z5kY%i12#L0#~x#`{|#)U8rW$x`yXH@22(%|C(~5p^-gQ}0^)t}+rd z8e!Ib_QO6XBtcR1z)&i@5GQXTjEg1n+xIZc{$%2K^80NOclE zALP8=a|MqG-t%5iD>xXn25H1{1Hh3AfU6UcgWm{nMBtwHe_Gnn5_Oxpc)+}*zXCbp zKY2S`w1?sw@?V7<5xM7WlIp~vIPup&NBmFpZYPeC%N|Uk{|4lU$UW}}b-CQ!K;H^z zM9`kshZ@g6PUHF({MLXY0{6TH?S=KI+v_NNvFx{l9TB_duV*i8>CPElXp4vBck?v@G#a)VJ{tGJ{E37+@1%A@nF8+3+ibP?)M-^MDF=3nXl*j zeV`Hl3%8)tbqD*PMnvs-Q=<~nJ=eDKe+V{G1#BJFVzK`SY(&_e&vN#A!XBRGJOO${ z^u?TWSommMkgd^w5U_|~i#eXXc-VZ=(#g;wqAh02=C07DwZ)%>&U#L5p~txXxCAKL!`^IC1lk;<3;o9w)A|HQ)*0B7Wnhl~@2S zB3w_S%ycDpJ~Pt*8WFUooskrJXbZq1+=#e69a2iU$Cmyt!;Xl(m}5Z-Z=6&1Y$B-z zGa_bBryo=1@umJ<;1R)l{$}R0Uop^#pgj#Zou&ON&?2JsG?ve!<5gf0kCQfE%Ks#2 z5z!WN>`~#>#qbjTrvi)!xR?WZiU)RA+dczcM7*AMmfS_E&juF}uBWeBzEuA?z#<;Q zW@~Jo2P`63Ppe!l2uc?-T?j4Waj|ta61)&x#9v%@1Hn4Dh;Tife44Ov;KfiQ{+8f{ zR(3wXOQ1zW>uF84SWh>my&PCXu%0%bc7(hgUPQc}R>ApB zkaq!#2-eg1%-I3*UT6`~dOFNAw)5kCFe4rphiu2k2Y^Kc>uF8q?)3N&xQO4l=?;&N zfQty%*Ox8d+3_)G5z%^jRNd%~j!%G$2-(;AA>D+M_BlTVGa_bBM^eXkpL_;r#DC~~ z*U9IAM!YT^W}i@j5&si9A7}p((1@Tt?bi+OF8K<;h{wP~yGp(WFd|@2`$!|Z zNxlIwB4SUgW_3AgI>oo0Z94iE%!t3KJhJoUI}jrx_O#6&-SP50kP&|qd1R-{ze9|O z*wYSPzQg5*z#@Y6v@Rar+47$NBLem`NOq2Y_$joAXg#gg#`fR*9A-q!o>mh1zMEvb z%`ZVlgzRa*)ZJ!t$n%7Y_*;gZ?KOu&i-^|K`Yd0~co?vV&q!#ADig8_f~W zBBJ$lq;+Wf%+26M#OvvVVtO#WvwHaEP$Q!Dw8L+yotg1l0*!bN?M#Lq2{a;TPa9{O z()pa|ZDB^dPiSY#?hZgBg7$PruTAJ|#4sIxyCdj`_vmBY(>sBVcwbbUfcY*!BZBsH z~sFx?)RK{Pt~)EIo|eQH|#~+q!l!$ymwF$SN13C%U`=x z7ioR!LS3YF#7XWilroRn6~g2zb(PkgZ+An||C(L-mQC-{a(wR9cJpXO2m5r|@!sLf zpYq>KNU_f;#g-8{cyF~FxR-C4-2Vbz5P5lD)x6l4s~$E7wlIGQJBaLDTTwf?o3G#o zk(&=y)Xh@RYs5>vsJ-82(bq7A$kd-#*;JI3x^G|!sko&iax(S8x3GlB(qB|Gmtq|W z6*g*)tMA|nk*liKc5zW7#@Wa@(zeVzJC zy109()70vEQ$_qIo)CF@N5wojA;V9xfyl<&D`q1P6@HEjL@xfcVlKu)gkNF?k(u{Y z(M(=NA99hbAQiRZG@gfI1(B6^RxDRoVW^|UOucm&K9CB&D)OO;)mA4;E8)X2gH$k6 zy1l&qIszX^1$|)SUbb-E3?GPmRILL#9xvY z*{NJh)7Pkbz2;QWcgGDPHy^E7aB1J4tbeRACnvJmgEK_Vs#a@{jbj{x8AN8PHuaI^ zj}6t1#|t7aRU3%TybPDMdtnKYrIP2?>K(3sk0;En<-eIQw{~9~AmtaZoO5(`F#nC~ zU~F#f{&+#;rJw`Y+}X=s+@E@;v(A;D%8QX{&h*Ew4f}SS1Uw@6l0*NLatipdJa`B; z5ZNesC}~?Z(l(`+hyM@53UdDX;I3siCEGDG-wf*eTiX0|Kv!LGHHsOAISo6Aa;D^Q z*X@`ISHoH}+OMN}jf>N9fyhP44dQlOECnr{>9aVTBWL0Tk(YOs8-s1nOM9eforMuZ zMoJDQw_{{~5XE7yHm|!q!)8sF!bB@--iKbA$KVW+vkFyb*4dDi$72PNm68Vlwv$OM zWzB&wT3qVaT0y@T9kdm}+1Np3=WW$_dAgnE>Iyd}ncA$52}CAJ9>v&Bp4i56ayzqt zCq$k~?tksT(@1j@VFrFf*~$X<`YHr9Z3Ai(|{&QZU;1bnt`7&!;NqXNoqc zhe1RJKTuVJLru{DM~EDiyx3_6Z`DRE(m`Aya#f+w)V^554bv0xg2>DJD_7rY_9+-bWT-+Rs?D51JMQ%Q3Qps2k@e@bRv73qJ>%@@I78&@FDsW->m zIydauO!+WokSb=1Ryr(OA0NdBA|I7|;p?65YH}i(>G6IXFNnO9Je;)s7rx#ZXvC%6 zX{(HNZ039tLr4`1StD9lus%MG4@5pn4%)Y$F^y@>#4PRm>9I2Br(k&Aak> zd?4~s@>t6DvqV002dQ=PMVugVQu30f?K@e>W}3f@4Ma9do;crujb zE?$r-X3ElPx04$AK1L83sayje#cr?h2UtO>m?zCf{-XRCBZ!PtuKU{zd+7`R6MP_5 z^wH`x(jfR}_(0^NauJtKk<7>7e}NN3PAWIz)eaB#gN1$;sQfQx5Sgi5)kWu5x2@ae zz18{w8)1 z*{NPNmt@h%2<&aJgvioI%AL~QajBa$5PN%kAr&rp&Uow`b`aSqd1=^=vuSu(_9z@7 z70w`MboS2JL1d?LGa0sR9U7#)8-@@WD*0H09hbO#to9zbLFA_7mE}8kGd5&#tu?pJI;vjL$QO%PF170p@H91F@(ra zRR>#pJ@}9aK2R@Srh5rO+h@4e5q&ujy zYgg?c_v7$`RJh=s8}`$sUN!6>vQxPw6K=lDV+4_r%FP5j84}_Hk&lAz3*6~Ojm5AX z_H;kf@clyerxP{_><1kYddcUAOpQLaIiQURL?%j}!QO@mI~>&u8-sefHQ*eaAaYXj ziF(sJ8FJ9a0U`$_Zyrl~!K3HtWj~+rKAa0aBK(r;)(ms>WwvXzVi$kxop>@v5E*$* zxicQztU9`P%>2wXV4Lb^f{h6K>Iz_wrTcjpKxClgO?%B?RYziul%C{=6HfTuDg>Xk zrf({S7Va9rab@Pt&~Q&#Q%Bc71zdP7yK`Lt{D`5YI6+~7l5(nE^fxI{P zA9z5j=OG&p`4Juvc_?|Bew#1)=&;ED!wDiM73m(@66Fjq{1+yW>Y2!6;{V13A`=zq zm!vu2gvS4a3q&qTK09WcZ^rnj!}VS$FNnNUt2s}jt!(h&23SEVYb9&WZ-f=3vR1O@ z{8zAo$Vx>flfyhL)Dq(kg;x}-C$VIin#9licW4RR` zkjfROxSz#|x5fk_6BQYybLejeJtF$Dhqow>4c!MS<(IvpZt2)qid}W7xLLc_(ym{RutDr?J*C=PcBAB!zSwmx3TLTGJG>K8r%bBN59z3gUZ zfs-}obPoeOA@Wr6v6MS(tE{JyUSb1Zh4)-9t*g|CM(^by4jXRPt77d6Zp@r+3-b(oA@WttkGHH}x-%0m z!4)D`)f^ihsX|_kAw-5gRLL-MLf!F7Od*vmdy^`S*We0~t7_Kv8`l=E!y6)RC7)ou z!=bsM3CuTO2a%n!k0tBGaX5A?nfc*_WoT~!91-|iO0Ev310P#=_I4~FvQT!zGpz;N z)GX;Jkg%3*f2lR~_v@EjddT$-;eW}E-S5I4B70>o3EHl`!MxTm7*mOt_u>VSm$Dac zZqv*DW~~vWcaOghABcREe2gWjJH_k1w`Pl6^H?`SK7bKKM#`Qk-mZ}jhsQ;6tThTw z5&IC1km@-~-L#uc*U?9Cgve3ZOSHC`M{%pu=`YoW%iPECgH$hv;?4s7pWb3LROUW` zBSel$zU6A#>R@8alT^~5!VMxfWpC7&vb-&gHZ-5X10oM^u0~ih)WCcWenk8wpVK>S zi5h;%zkmTm2Fl)yJY^x$jRun%lrP}~sg9Ek8j`Qz1d)@9L|+pdkgwqbsZNe;&~SVM zCy1PsygjiMw4?4oI}xHzdt@t<`>P3E$nRhRk%^MK@-FF=CdRsx-@^_fJ0B~z>DZAS z8|N=XiXulA`~N%E5LqjEKxr0h-9cZQ?mF$oT5vE*7ykbcZ-~5=+>@EbTVG4B?VQ1X z;s}wWl4p!(a@31jwR6K>C(Ws!;tP?llGhE*;%m@m-qAl3+owm*gGl-wZ~%MT(yB@Y|!%un2@M`mY6Ev^S? zDLfQcNJVq0-wcDeU(3!2ISfBYwf$rVg&d9_q}qP6(?X8G4^qvyXuj788g)usycBf9 zw28VIt`NDZU@%edGzYCVBfjojM8Mp&p5P2zi!^KX@*rdMT z9kGPSQpsCxcVuZO_P!HlkZP7SR`@l0wx+%dUXbc~8Kg1x-SL9ROUa|aJ1S(IX6j@Q zP7pb%;2_sh7_3CGdOx<19fKXDnuTo1Z8VR^3sO}tPNR7*ydd&Y@(}$_UYO_@TfXjt z52Tu}i&^4Y*D)2=&V8|i$WF-Zl|^q*6lm=5Ue4xR`Q;_ot3)epaTv2=GpZyJR#N2 zE@e_}bUFWNSVJnBU6baBPRA1>PbHt7yptl>>-6uFHn3-61(B5sPNJCk@cvRSjFxQ{S~$XLl|HOype!}0qj1`!#o;Ml4ymP5n%9V{Ug zx8w{=^st0f+S1UV{s2peELE^WlCJX_8VEm#C#2HZG&COmL@Xhdx0DTwKLtyOES0>e zc!oON=?6a@Lx>Dja4n5}l|~22pM@)=(j{+bto(c|Ar-gev`o*%5+X|#oSCs@FB>_3 zK6a2wze=M6=r6z(B3C7!Ixs_xH!_a?B1|DNRlyaJw&dl*>6hXMk)P`Jq0%vEr+K;@ zV~C9XP4$-aXBlOW+6~)rr^kS8KDhoe93pa9!FhubheKoRufQ7eeMafHj>79lgYZ=3+%#l)j4xq%t0k8}sme zJRp_vkh}|SKKuX=h&+_M)_%IOWJia_>ZTuK1gV&ju`22(7(ryD`rUsRIlWR6QbE0 z1C9v1-?bGtKWHX|E_+!PClEWEMYkbK%)m=F7brT=y4k?LeX zBkD!_ZN?y{xJtOwr z7_@uAO4zJL?M8UeHX--K6CzI~AJnrwPm|2t8#9Q^lsudthyAfK)}Qcl+z(_#$ZsgO zrri>G?1gv$@QC2ADjB|`<%{FhQu5OY>Hc8Q5uukHaA>*Zbm(L0|4>XIGEwruA=8_P z+ACqNU+adw)_@Joo%C?gQ*ndHP05|=>D@HLgFI|&(??(dk%f|%vP^HmwhkNS%NdwL zWUAy|#;@~S@2h(a1p&Ep8Ex})sk+z>}dl^wN%b}MtVgd;?bN}i(GeyN*}+V#$$ zoi;f8@q$#*OTE+U)jQ#WZ9Lm}LFDBfB}bFnuG;FI^!C1Uuz|=%+0EtlZMcUqlcwwBX*fZu=%f|uCZDty z_Dq~0a#Hf7|Mpu)+W9cEavoL?S*hGxZ>%`^asg(LDweRJ_-hR(NJUFnx7SIJ2)zg^ zh^$mDlssn;wEIyrJ%#pSydd&Y@=mtxzxd`a>a~&R_!2B36}B`IBwvOlM3%}P^4oTF zX>%!$m0yY*L~hESQQ4`R(eUgFJR$N_^6@)6evgKtv{zvWsj#7;VC_l_Ar&?>6ti80 zAw-5MH;!g2h2hZcjW|N&sHzpiXasjPo{(zik`w;C6-S61RW)Q7iGtpNB}A4=p3>Cy zh`PIJb!2Sa{&d3Bz@LJS2)*Pf&8gAHrUd>B6NpTdyxDkq6P+&8m_f6)81`#nGi-&~ z0PUaS2a%tWPtu;=kFAn7vGo_&LS*aljZQs2x)Jn)TD=*>aX9i1ZD#BTQ9JA%9j&bH zb)Vat{c5jUp7*)`u!F;&y6^^vtQ~REK}{P+ByZ4M*H@og$T0C@C^*f-_2T|ftxjXm z4EJn8YM)+T{`+qps#|W>#dV_xC!YY)BZ@{!zG&%v%V+-94N2|`ivEJ5wl+Ib2Ms5| z@k)YaL~t+i2F|TnOitYkOhlM3^$63xY=JJ+*42Y5*Ga*;54ebMU+y7puNSNi0pAy3 zM8L(YWOCojotDvTnwE-5%TD4!x2yFUu@=E~n*rB6n!<5^;1R*U+P~DU>k7A;IrZ?M z-AZbx9|$$#F}02)>+3u@HgMUrJ_%~XPwFsgce-({rkcU8xh`N}yg@qRH zjJh$%3iZQ4Mm$IEhJog@O^H4YWJJi9`S%`%2Q?R`YkUps>98VVeWib_3!OnP3VStO zX4~OrKEr$_%!r@qyBPGBLS0p9SkHnL5vzv{cEVcY7FUD&7;q8cUg2MHpli||v}%p0 zl@{Q~LyU;{CH@gF1#wMdC@JmP&?2HO=HQb;D_|Q>)EZ&EXFGtVSk%Er{KnR@q9N=B zun}Q9)I(l#(W`iq*Y*L>OEFxGB!#BYy-t4B$-E*NuMC)NRFIrV>%^>Z3JRe*{ zxE{97D?xJ*)=Z11g?px^cmc$Sh&>vH9Ua$v5txWDFY)IUGamuY%qTLGH4MGX~)McUjZ%R7i~83H#}bXYG@JBzSy7lETeVCDPIdJ;wh># zKKXi35uv`oqf~XrCEo-iB1VtKP$!N@UIQ!QS9%VOL%t10M2sFatfS+P?*tPOrbped z3FD6MffNzx#s0iRBjb(NLWzjdqkuIX`5GN(d_TB|pSYvriys6R5w1s-RGPX&<-K z#QH*ys;42y?*oYl(xdfsTMYmI0BXdqq#Yji|1pq=AU*0mjSTny1WH7d9(9^Whxva7 zCL&Cag60Xs`@et`5$PF4thl%HYWwW}+hFn-eZ$at_NNq6#q@$kq-Fc@w2SQ1=hv4{ zzP*;&f8so09sc0#r%HrJ77vzunU>mrGg)eXQSo1~>0dbX8DJ5?7IVgb{#|U?m<={- zVRfZz`neYTbATg0rgG2-TD7n zGMF&Wt}nlAQGvwD^At$j@MQj)-Fl}L3zK|_0*FKA%wD}`7W?s=HFimY47bXz@l_dL zM&$bW9$>lq^Gwb>2|z@E4= zIrK>w5iu4s+ExIgjae0cuNfFc4dW@T&9ptZhs)5YCRtkwDk`LiG+o~G?_ zY1)1sP{h-;J+3j9wqFDp@ic9ZPt*3xfFhoz?eXJj`&Ez;50M*Tx4(2CibLw%m8=AR z9b`nv#f)+lS35L%oo;8KHO;0{_$H)?NQ)VWFPt>1bH5EM;xB7f0=^3?;xB7fCww1P zM6A9wx=o#9!WwZ?SbqR0BG6(M+ZI$P zA*O?Re=NCw0X`!9V!Da5;}1o;{|g`@z+%=E6a_dIg5E{}{7({Pr*+V)UhP9EwQi07L{>%-WFIUzhPn^e8A1Q5G{h4Sa&qn2=L+#HgW+>eB z25UicF`VxOQ_e;uFKqfp>&q`WT>f8ksip#MdW!kHIs17`37oY{oXOW}YT%EPsexkV zEr+dbwU%V$>5-`dlN4!6B#HDoCDJmYgehj#zzD)tGY7-jy$P^8kzn%o4WJ`Jzh;;6 zbkpgWZJ?*~3rn4581L8qedFNGI6&l}pnmNzQ-O(}I_Py`O+*{~w}6ibznIf0cdzVN z{6?rzQ3L;W;1R(WbEwAd!$-lQrGFRnNOj7-?%i4BKxgaVy*NOslm20}xMb~d;1R*Uxf(5(4$4(HZ}~q4 zKO+8OPQ~B#x^w8DU(*150uzW#yuC7+(2EY%bTU--9()QHNaeCZOBeRr^7I)@ATsgp zN@az!0K*ij&*21-lZw=;nkddn(-*);gkO=MsGC=-UxFSH{p+hyjLu2hv#-F8i2dqn zu*c2LVjfR_4FgDZN`BmFu4v_yd2zo1J|g^z#1rv~R{R+FZvl@~sPL>bh(@h}?_dCt zfwxqn^lL^v?({V6Yb|^a3y3UKBqmBMxNpI~V*-(hiZowpfjOMtyazu79}#{<;_8*4 z-N>5X|AZf@5Pw+D-+`aPk5uO!7&?;96r!JF0+ETotVUgAO|TJne|Vr4ueMsDwvN~B z^(OZ1_$9^=8GD`I#_Gf4q=&p%{2hMRg7y>vU8|*W z&vbR6t;}zU4Ma9PuM*v1+atk7gzb5in2#&m7HCA!SNdIKhK6bH05>9T&-=9F!?Sk; z9ud6fLs1sq9hSWl^hjlr-WiU)3-E~GJ)c;&Nk2Ladv_cla^QLG=nlW`0UHsv=dqVF z?0O8;h^UJ>UtrfF#%#Ftc$g6}7juHjt}zb}v)&7E#Q&1*4lLaVY(&`C`rU-ul_Hx3 zU-!igA~&8#F$@x4a)(2%cL@JWM#=6EJyLb|D= zzYUs-XB83*w1Rfj9q2w<9l|i>o+kHC)|aoIllOaEre^GjQ=QLZKhvXjg)sR_HEBOc znzUk0j&V(GwU=q=+2Q8R{gq9dqm?$xh*G4Ou`~Be3SxDeJ(HuyL5+yIm~p6Gp-wmd zG$S33YryXbI3n<3`r^9^-f8PjXp4St&=H{*v($2z(Utl-F}E9Nxt~eRQoSG4wUNh^mq$a6h`g9#?p-Y}2ZC;JkV}9J{GR}i z2;To#tRFSg^71&qkxG>HL0j=mR$^+fBb6vII;Xzl1Y+~RBZ4pHw1?d&?pzdZi+Bhy zBH&_5gY8;#QU1C9v1nCYk8NbB+FybU+vb)j~m@^b)2ye=UV zqVYc9h`{}Q8;7Fs10W+pE@rLIZWQX_==)rl5w8oh6LmisU_`)I?8@NYX7foy8M5)P z+g>-?ej3Dx*TrHu%6=xyh~KH~#7gHujEK0HWk*AKy~SZcL(gtjE{3D(3xGxh?Qe|a zMAK^kBVL!~;VAkdm=Ui_#z^#hG0=#hA78`@1-FFmbN^wZ-^tS_#oV3L?(|yIE=@4c zt}j1-PWRP(Usp!0-S9O2y12WOGMMB`G>LQHI~I6%QugtiH6zJG!}WyunKk|cF3dud z`^B95IUANcHDhw-#{eP%EasTp83E1Vi#0yPCgD#YL`3-TB3>W^xX-j=87Dyy}_9%=r*xZ9m_p5$xvzC1K}Uy8ZiDgXSR%uMFKH71A7gAoy9G50qVz-Xs0&3Ux#PAlRNIzxK_w1{Ynxx}S7 zT0SXiYdqVKu0e{3w3vlP#gcYfre?}g_9A!@@fH*I70x?oM+>GhH3@t%z=(%MAzm6R zEHK<_NH2jD5os|8QqP{W&I#-_}bxTq@P0cRLpJf*%twpe3=5M7n`PT{;$G{h_#rT(F$Z8ez%?k zDk9Wk!o&hm-86kFpol=vDq`3wP;6a0z32! z-9RAYrxb~ie1W2_=O$6tlZ*WD&Eu{9-qFY)wR?^1E+cY#eyKoiL}hZ~ZJ;4SD`p@q z4wLc_t*q{C1pS~^Zw6+wq85hq1MQsb?d6fNwAx#<@soN|S_7yXY&0}w7~csaBE}b$ zoP5KK_0FK(*P=Ot`5rJ4VHVSgE-EQ?ep9IZWR~+3#NS8j>4Y(pjS!{8ypTk`^MxCDL_KE#{k8!CAp2M-b6!-{E@`)ZHV z)?ldd)3i$1>cmG=IrgIYLBG?h*`MeVwx~Z>4|Axyz z`uFe7*BsT1bQ@c5bx*`P$7ZsT(Wc)mPO-l`+5O#G`s2BwA1fuEyGw{stJ~@I$>jt# z3gbN*@ZF{&X$>tGVp2 z=JbVg&R@;x3+LRwlKc8Ras z3s<607kf`aywxLyf1C2GIlmYM)ok>xR3j?mUFw{yyfpT77EI9@PS!iBWV;WZq{3z& z%{gMmyn1Vy=`y>IZIS;COStD`=T~d#Pxa2`f1o09&Tgf2gL~;0 zR!Qns6q_nKZIw*Pz0Jwa6Q|lI9-Tx?Ywj=S>@Vl+F9ki=C1`WlU|`y$JtoZG(}?1v z9aA%9)AtT%YEB@wPn|$#V9$x}Q)})6bLN4$p$BB3u}cQ>ic-y?<^9#X3RKgzzLx)+ zri>nIyh}83sB<4wG*tvBu6tDQRBZ>%)i_dAY)ZlH&d8sk+?r<|kUq2K{CbXG&*>xP zvR?~*x8e=cFN*t7J!tM}g+V;f!eeTHX1EyjBfW3o9;dLRZjL^qFT3{7PIdn5l>E<} z(i5+*xqmU2{sq-Y{ugsYe^G+x1p=o*Q}6S(Je%k#`LiJh8+*?GV$5@Ymx^e;(^45V z?Sb=FCui)ZxqAB(vWFZadrmb6@hcDW-@Dk#O%CceYyZyOCHet3Ozeq+mbORgCFA{? z51K){9yZJym&XZ5J<2?KhWqFP(?@NCvA#C)lzH3Ir_B4u2dV^Wq-|H4XGQr*brEdj z3+D5BP74t_dltlLY7GL_z6SI|MpjIvch@u6 z&T5`Fb)I?tLGJTs+UM8uN0a)GN9WQEp}F`7I-XP%ea-K!E9UdnS*d8x*9PtfZHtEoG^ z^4UWs3-yp1(>)JJ9->M}f1lVw$?U~VUqj|1o+6swFGKwQ6h}BI@fV%#f{qhwNQ`CyFGU76H~_NI8rvG6UAklCBmE?iKI;au0dmL z_0(~brc_OztZmhEqGeL6(=7CpGS!rAZVVcI(&;@v>iF6UuSXRlG<`#-bkdCHDke>; zTudt2JMM2PtE}uv6_XLYUZy2YXS7G!`q-=D&XQTqx=E`c)HRj)!~QQapPgmt=Em1x ziJ2txj)~m1~w- zMbZ2ZO^Im8y1QtZryP>LTWbD$f0tikMVC>G4yu?TbC>$gu_wxJ3bJUgt=2tDnb^u* zld9^ahn}LZoy+1`n#_c%difpKij?~*wC2>y_NOjhB!$dAbo)~lty9PAR=3r-F6QRr z`;@dO-|vgwA}i4@vPT?^$<$5F&^;NrC-%WKhV?qzn2fkbP7V_HWZ<4m$~~Fro{YOE zBa<)PtabOebrP5sQO+M2m}HLYM{+Gtd6a?f3EJIYR(u5U=0ZbGO2O?k6z zsCwxWqzUN|;gbekUVFzyn3SmZ9hJ66WfHU(^+8l6$i5^-28Zqpd5)s7A$7B6UvBm; zGWIBbGhzB>X@pb%Ca0v`kmR`1x{}q>c}y&-Y;4e&0=8EEty|shU@y0PgV%CDvShNX zW^^&r4_U;`suE}F1yAJds9Q=v&+5}>>fuT`js8=|w|nD27j9QO ziybRZSk!jNw8_qs3z%}3no{EIc>hIhO>$^#g~)T>Y#-gHhLv|JyvR$=ERnVlmsmQx zw32%umRvuSW+vzKH!N~rC5O5hJNC`!lusXn(`}6Ku$t4v@va`r6f|zpYWzy+w}2g{i3!l``j~D+Oc++8LM$JZoR7(mV2x@c~RTx=b3UGS;W2% z)xM^VEoU!kyLh07MjsCq{k$?xT(Zt9!$LK(StpSP|6f=v%^#;HvbKp^NV1Whk)rp$ z;0rao`R9s%LrdaWVC-XMJ4z?k=>x^^joRAuso^3Yuao0KRE6B*!tjF{*2J-3&7v;t z=q8y2`f*<-`#doGtVWeS_?xt-ZAwo3v_nM2Q#)`lReRR z5~ur)dJ>mRC0eX6mX&pEH+@lCn7jV5#WCh!sq?z9q}o{KdE6rJ4Y?1k{fC6U71vyRvfU(|lhvRF#m4!fGRy_MSjC(p{}{;j#lwq4r3ZEDB8eDi!8wZ55$ zUnl&nRu}Vq%Kp^3gk@tD&Bk9nyn20+=S$CsiXO}4XLQjY%UBh#Q>)Nk-Sq#l)1reG zwb#+jB-I6HIKFvk8_-$DL}4xUOS2DuW-MyUlT#mEmAS>$)6)lWR^c;haoJ}&i+=wm zeVCIrFK0E=QOzvxv}TdpD0RQE3v+Dj6m2Z)9Oi&UUE)~>FzG@sSWP>trOi28Iet;w zn;fdBvC@NaaMuNc>@UP45yHg(zJTbaS@?^GBNG>OuG0BPOtw>zu$h`%>HuWX?;sWT zqZ_rA8r9_a#;SIVBoFwGpHkgr%J>e^b&X;7Uh*p6QV29G)lc^Z^(d!JZhEAY7v`=P zeUhLeH-WxID4R<9&}zlhx*65-@Yv+|(6q`nJ!_Rr)38=w6Cq3bT}?#Xe^9g3sL~__3qohQl2Bz2xS>(88FG>x=pBn zKq-g&P!5|Qr}-9D%1YR6k$E0%3HNGN3oGwt%ByGVqwLl7qoozg+oDn@;#V6S$H$T* zZVYGdA=ztNAf};hf0Gh7J^HB>EyJ}->VQDW-XqA~rpTVlPYkMb6s4z(2@h-jiYV_@ zRC(8`+UnU;t7pXQT50OM%y4{Ys4=wML2}z>pzz+3eAjAy+*9gML>WWz0UFI|=jJGb zY{~cnWPI!9+}t7ilrCD?O5U?`D}bL!R}n zn?9ko?f|jHtTJO(84=?KWXCn6upS;EBkGUJW+@I;v-32ruygM{Qm{e8**f-amX4}v z)2ihwkFzT}X{{euCr>Zy8!uk{vlk>ATeiFO=3QDEyvrL$?p+PMA=61qM{kHdu{WLE z8^l#x6zc)9T5P3QEkCLrn=l$+Y^&jE?F_WRvL?g^D{_03DL37UAoB&4*($4fm2amu zq)c8z3a>;v3pJg7W!jm_KdYKn_Eeh*Z>W|s+69KzuHMBay>7P8lLnEhdGOIYs;Ox8 z?^#}+q~7NV{y+uiSN0L*N%UHt(ORBVKd(5s)em|3L{g^A1m*`q(_<#@v$VO zHqcb>E(1;L4)F=?K8pLrai(>L_yCa-c{>1;qK%8U^BgseLB+}#vsi~Xhbz(j<=p85 z4BqCJ-qhSx#%m=>E>ovTWR)i7YihgZDkC1Bbt#j={MP4D-NicF-czZl201xi03O1ECJ2e zn@DGtd&h9Uqi@#psf`VqIB7x|6`%3MeDc%8i-!g`&+fRtl50!SDVV_>)ZnI)HfX9$ zOqFYIN}!lHU=f%o{fgPPR#Dq_mNX3-UDzm%7Hf7|1lCvw9V=Lz)D-qrYEo0!O)-Jk zRD57#EwAhlSL_3`eQ{ETW~%*xEyQqo1V99?&zgkc4({Wn%QCplxaxe zD#HmannPGsEhx7oZvR(Qvk8VZRA-Y7t@mG1mTF;P9aR^nK!si6t!QlVmMsTwv!+(h zo-ukxo%}B=5?e0fQ%Om8g-)+tI>?GSbu;B1lQ}W9j4O3PzLO$D*ect|DBo>l{C>xX zWCby}PTo69?i)I1glds-$L_ORGRZCR9l_dq={hs2Dr2|EGR$s~7Ur851!i?cas&fq zzOaorO(c|9#TAjzfe*Nf7vh%TjGD1E@_x2FiWM`zx;%A*Ct&4^D%lAdk~n#?E;~+) zDY3jMW=wpfX_}~yn^d_4r7!we5t(rtkI+ZkcthfD8_whgb97@vI<4$8C24K^klh$h zE5^%bEOkGm&H`cl3q-dNpqyySxl<$B_e2p%tHmH|L2WuULtmM;ud8pLU1s!_2DxgCz z**h0s=I7+Of7rhn zMH4&1!j%Zw-%0g1(cu-JH|6I)>FJ`@td0sA2dT!UI<&o-kw-NGJy}#4dopw|Dfj0& zeyE!9XF8`Hnq`{xO3^a!VBm)lYC!QWXqRTFN%cLY%6bpgSXS>+e1VZ);zGO=LB{q` zH96hMxZ)kEd{3}$Ru7#YPOBO}zSd8NCdtmRj3ZXK=tJu6HIN2hoT{x*iNtxOSn z>?C)NsH^CUYEgmy1b5n~6bGny=g|09)`4=9Y<25r6}2w;6fq7{c9XVUB)6NSmn?n; z)U|N7V57_u4-zMdfE}9cmt<-aE4pR6buyoc`E6_fiPZr_w3XNoC~R(rRCkt46HI5j z5vduU4y>j*&Ht+Y*kkjnnruL^pp&)}P4mbSZECk>dpp&#q7wHs@_b!7TPLc*bR907SafezzV6(b8BSF#>FO!+N-SLD+lCXXN7q+Rz3^3npty3&y>SwKX=w-vJIRh!^W^AtI%YPVZcBc6*2>3y5V{0bW?Mr98Svzg<=xf z@=Zix6IeGkV-hjAM2B6T!LUb0fUCtFBCy1+Xn6u{zh8DpVn&z2CcnH)%`4GTqUS49 zOa3l@R9EgU|H$G!TbTxon^`|YR;PL#$WK~Xo>%FMI6YfW;u;Lc^YsLaH%9+uWAy#h z*wIJhD{Pyn;+u=kyzlF~PBydF(N7|mNYxM%#I_d2WK2xP#fYgx|FWs}uw1=76rfGO zY-?>_B_M7{NCpWPiT2pdB*z}EeQ=$AEovZ-`5RhCqHl#J2mgP)nB?V%8S+c4HFI@U zK2@H$nk8%WxIdWc8rB(@PPHpiVHXh{Lso(e65zQAb_@O;-~#)F(V1oRV`(G2^Fmi9 zRbD!7**6$paX@v=#7Q&iE8f5Un53R!h{iDOL6Hn`6mKHL*`w&6;ywbc4lYEGBsyN38PiTmShYm?@1R*$b1^ zg^eoMk&fk9FHQX1L#-BXJhJQ?8Z>Qe>9IlR)XIco4;sRy;frv|%kaPK;biG6uVjpy zEN9SWblVZh-nqv#q@cVXh~#2MzrSooJi3U5x`aG))7TLIisWg3S+YN!AkPlU(nA}J zweRfb67(x3skYwLAHuigh z^Ukr~hIA;ClcyW5|y57rj)hEJIFw3=0Fh_#P}{26b_ z*jncB2V0&~Tbeg$4*K(cNk&T!e=y@EHKWMr*z3>hcy0(OHHu$6m&WpB%ZgBZc2|oX9<^w@FPY>q=#kQW!k{=(7lFgEs zeNJbxCN|A-Z2rCo9NVwFhyD9E$9QR2`kB=@qqaGTk|Nl(IYp43eE13m8ym2f)~uhN165$} zLQco@5h*Hf$V!wwQDP#o(0?na!1x5M=?*8$!ld8nxmlBY8nN8A%CbA@pZtEQ>BaUn zvTjZFV?8%3V{gNMLa(em=4}|*L&$Rq>=?vcZIZWRQ2dStO`JVv^27!A3>HBh-n?7s zIxO+U>aavD>N-qovZ`mHI;?hOB`Q>hVd0{v!<%>eYjxP~{}Xk1^KNC-;jYcJsb;A?XF=Ez4x~5mwPDPr>;{_oCCRv{-wLIyG4cYpBRpx$hfw zE>B!~ZV=W{Nt_@^^27Qut2!yjecf-nvTU=Vzrg4nXEI?!m0x;{?^~9l zrnW9(ZZ=VEWo%s(KQ2rcBS&uErHDGZsE%a#P7WoCue;Jh<0zeaJpyq)E`}Z|z2tbj zV_EJ>4|CbO5jhICP=!r)QkV+ZhaF3gLHQdHuCd8Yi0I!+HRvyml|#z%P~OVF_$Y>| zysH}4%)#%k)CnJFLZ1?K0;9*GsS{K#6feMpJpwtJET|0{ycfs3O_E7m+mbq)s9&k0{$RZY~}SBj^l1XRx*EzJZr^m zTLC3rIL|k*t?%@`*&6`<*bGcY8)f#wLF)OkjW4lWvu_urr{Y;& zws^QK>TkEJxOeR=_xi`#+2!`>t^MrsNyFmgk)1Q%fBik2jp22vcBv?30XAx zUOzrpm#EK57C$a(aW7fS35NqYU6taLS&%9@;I#*$xNswPo`hPZtz(zkDxBa>L%ykUz)jQlYQ4_ic_FoTN3CSnUkq z^ce`7Sy&ZVZE%t3h8QD{rTC5hgo+kkiAQ=1Sl}P&(zhe*qm}WugDPg#cd3{yJ>JBYun6@RQZ)eUsW&w#wvl_W*az*HH{X0(>6)L`!{ z`ZTMKTW4WE&A~4yM<4ssv=-^V8Ox_>g{xxc;-TW}iL`^V2SJNTjee>;9HpaQ(?d*r z-@o9CU|AaFU>-ka6lI^FvN=YG-9(=|&_6o`1|3w5xEIT9OO^`T?>;SXOUc zybmwFQqQtkI&XGgu~CQfRC#Wny;adAMV7Rrv(6EEkqWi*I_Pj+ouwt|WwSpR8#@s6vf7Bfm(8Sm*>Ig2 z@fUi`;!h7`+2~zm{GMtwj9sPLmTD+BsX^uTgxi!?bCNDlm1T8-;WpKm>IZZByY|-C zPMj&{wD`yuE*rzz`UR4uE!42|jxmJ}k}KuigTylPeN(haij`qE?yXD<3~#7CDPj9$ z35#D;OWwd3T_sB^+14K&*B5r?D!xv=lk4-1m_pxy89TG4c6^2W)YFW*X^mmhzLJSe zWq3;6;&YM0w`8T3*WLV0nV4Fiaf=G{Q?9B&GVAZlAe&|609J{&K7zOWGcjcg=n$)T z#Z1p%%Q(VUjGWfkfXj?rie)3y#Zb~P{Duc!be24OcTqUc(W&7>Ey%QI%khnMLJdfcsRhN~!y>e=fyl#~gv(%hPRW*}mmZ&)~9t-pQdNXB|)SL7xjPg;#Qa5C! z6;H&pSfZCxXPUHKwzI_|sWbmUof)28v?cD(DcVwoMIGS>^>jMxO=l;!5%RD)c??TzklTp;T^aZIX0kY*Rb5** zO;$Y8hV@k~edt5?Wb`E&8v>Fv(kwMiUF}SLthB1OLQ)@4H+^yipABgYZ}*kz(^-B? z+vGNJkDSZOryG;xQg^acWK4zqikl{vzScK;nw1gQCN*e9af}GDXKc%qAs^-OEHz=H zcn+$<3R(iq&fG>;-Zk=Q;q3S&&>1sjV3xNK@FS`|xo-@Q>2pr27Kv?Gb%fuR=`9}# z?r+}*RsXfgRRLMzo7Lc(^>Pz*sI9J=F2lS$DJ?%?T{BJ=)=_(#JT40pO&ZrMmQ*yZ zmM0K?H!+1~J{|II@tmi>h#IYE&KFVFM`s?rTS?!=<%!FOQDIdrz7k$sD=jJdA)V>y zpRkt7DCm*4>ATa;2pPR6HEUZZoziWL2FD1qwxixv8RZpp4`#Z*XkV-zLTYI8A8YQaXxNp8~02(p}~CWOt3I&ZroN_F0K!1S6K)$t|2 zadqSUW$*~&L;eaI!}UWYi!1J~N#j@lA~g`7_=rGE?%GUE5G`5W4q5gc%G^8`wN$!4 z8Bg@nBhki|eLdWeT#8-I_JAFA>*iMMq2K{K=T;iK;uRC1ZqUxc_pZy%0d`Na6(zs_ z20cmG)%0zqqdQ10e4|xni&N#r|LNwlmBsRkK6neIVke7gP?|BCaVq)qUEZ?urwdH^ zA=~LQ$IX~2C#I&fweG0NuhSAYM3PAnQRdriWh>KM`rA!1;#N(oF@0?{lLKZ>jT?Uw z(|hPZ`DC}|F@YI{qSfCyZI)L3)w=2lGt)Zbx0r`Jj~e6GULCo@-TjfF~IWR10D z;r=7PEmg+$9zVO6wD-_U`x7+!tTt{tP)&QMGP`kxzA7-QS(a~M(jL`J6l&NpTA1Gk zZNIP#3)%QmQg>0Q`7LhSvb`w=`aYN}wo*+k3{la=T9)m_m0`6uDft-#ww>7bh2bi^ zP%E;nnlc2dV(c)^xYepO4B{Xcd{YB=;3i zzL`Db_4b+xb7Vr#@h^h-$>_!~Qiu2DMrsle3&bz>FK# z@+dwG7QR1KCeg-XWm0sI$ra0e3NITK8!l9rCi!P}i}p=2%v;P$oyQ6_GWD&-G_6Rv2Wkzb0%%Sho8!2uoknrD(@cPz&Tr zbGZq{Q@pDxczcJ~!I*JN#qLuc@xZ?&JHEowVv})cv7zV#BifF%3oc%Dib_LmHi^r! zdN($tu0`^e&2w6+PR3FxRwwOjtjPke)S}i>OciywQ7cd^@2v7I+F|7Q09`+F9&T4z zNwJhIBUK*Zt|)_rQM6&?+95L1r4a5@Ioa;-R&3IhD=TSZ>i6(~ih}d)z`?(2n(y*0 zM$5;S^f@_sa#FVV#?{F?b9K|}t*uF%Zox~O_{QU8{<){LxpwjuvjUNk>(;tHikZ4e zs#EbqpUkp-4`=Eo%nCYbrZw z%gvURD#!3vl!d~S3RiTFU(BwY(hKjYyi^g2%%ba^VltC99<%$AiY&8@Z<(6wR85^T zy0&KQ^s4E;XHR2gt8`9<#WjYbb#tCyAFIxaOmW#;oRjgJO1ANmRzRP$@&8J`L`?Bo zT~bVH1d8@IyH*#Go|+t`^BbKMe%7K$JeBK_q9t8SS5nfNhww*UN&8p4@*Cw=IVBxW z;Bt=VQIs*JF`S~mfwr>LberF56+l#q#vFl4(G;HwmCz1NQohS>7|XZ#MqvpdsnU&h zTj|PCw6_Gg6btPuBxSlMr)*P>2`$CgqJAj4&r&c4sdb{-9#&M*)_!5NKLeO=_SUvf zU4_G18LIUVPPQwoWU*mgWv8^M1GaN?^|BgvuCt>D$~Kb4$Prb{bM~=W@kwP9)-(py zDkZ%-O4=UOX-2MWLoVAa$t@&@_Ubugs<7!DZPq%arhZ)4y7Ben%uRY3xAk>e)fifD zCC*u4NWbBIllKCbq?5?Pi!#MdQtbI=3G{-&J z7$eVG;zRqkCtD@IhMP&C*sw`q8wzi0$9y$!TYJMI^7D4DqwMl_uS+>3*=55fbrjp2 zO=>^)EaYw9V@ruHcQ4wH5p%^(oL)6;l0Hg2PR|XZwXJrHOnOdb4G8LEzZz_!$YQCB zH1xSHF&0^j5-A>q{nA(?QuLU{nVlMn8LM5mJJ^lwon{TKB*>jkHFo_X<*%ZAY)7`2 zS4oZt*O0EzqjuF4EexW^NhionCu!29Cp#WvTLrlq5WspjGHVTp6=g_O+aHfeUOYf%k9P_jadP)*q?n!Zo=S&TV=S} zUo=ZPe;_J1U5APCrH%AhoyZ$_5RTk@a6ji#zUe7x0f`Y8V zM=`~FZ13~)L?jywQ9`k$n6=U5_R8cEwLVPK)|PHHS~Jl^leCpm^K&XOYkrue5{g%I z>#I}3lKPEKQnL`|s+0nC+6JxE?OvHvH_y|X^Qv(EtyXtYF=K}j4v)9y*4U1D9+3QE zyvwbs;b@gmtbfh7LAy!!fR(}V(FUoPNraSwb#bQeFr1`!=Jv2_fKYVy#+)w`}Z-B;U>O6C{>nd$dms2ZZT0Dx4AXEvTjbTd!tpwnv(4o zHzBi9^CX`yWG=&9>b9KRbwL3&B`YZawJglfD**qhQZYf@<@9rkJm2mQUv=x!y;Az^ zh#JF)U8E3NMb_6Cg7VuLNFu)Uqn$EUK&lkQ<0y)zsz|PdNxv4YD^?ixHHs#UlH%xI zDXl$~*6OYyvh;_;U-%C|KsplD^W0w7d3TxhJGUq^#P;n4DwM z2r~+^&eFQ3%B&o%a+)S8q{u!+k)=Dga_;w&8I|H&`2Md{p>zW+OPn{RGnQ(xSPT6x z+Sjm*_Zi8RNKe z)JtlA`xwv7zl!0EM^v&eC|~0CTP0&9np_EMpi~;}iW|jQNqVr(adrtQ-h5*Q@()&h ztG}6!Vzr23StGLQMtU4;hP|nZ5{0MgNKSq6=ZBhUdolt=`Ni6?ec-2D;nJFArog%* z-);8_5bI7@K?<>SElJHu%5j&sZ_PwlS*0iK+fF~qwmqvj!)hvwWh(VIH5iv=Sxym# zHC14$97Uu(`Bb)rNsEv9T~{S$wRryuMgfUEMpxC#TTy)6fsI|}M{!G+F^%D>eWabQ z++C+mz4c(ApFdb3ujeYw^w$0Vgi2P@lc*f`6xIwa(y)69M%gDv zt0JHStH z%2z0+$@Z-T5eS%A~kQpn{C<;khE$?zBMWJcL_xO3- zSQIgcqL9xu%y2<53uQ}6iXw`OMIm+2z7SMi+n2srny=?ens2&_huyVjDbd1<&!Y;o zp-R(&>Js)<+36NpygMxj8Z#yqJHHMTi+;?Q z&gsIB?XVdVlj5gXsRCohSbGfB>XiRq)adj;(!-wGtEsN<+Cw&fCf7}$T2p27%pSVy z1JW3d)Q>VOAJHx`Q6oYb3rSP)$0xL{loAYKGAhjypUQpqW#i(vRjS%d+LAC+izAwo zG9W!4?TM$F>bv%oY)z}4KCW6m8s`uD_tcybHiq-{HTD%F9qLIN0Wt~5$zmxD5Gh$a z1X)ZCWQA|5ROOi*lfpdBWwa~XjP#lzC9k_qLB`g~6W28pCddO@+#cwu+XINJU|eHZ zsD}~lV&w36V?{r|QI2nw>-<9mW)dz=Nbii7p&fd}7stXEsi|$ryTv790IbgBSRIa0 z&lEQ??V$Lg`RF?FZT!e~eeTyKVthpspE}>}pJgdGJ^-DHn?IUF>pjP3>-J9YO4G~FE>f*b*fl5 zwOUTa<&S*xQ6CAYc>nAR%+8JbmVHBmrA>BV>UGo-;d0<9f8+~aDm&8h}o5>sQT3+e~NhqI0sg~b{tII^O z8T^iQd=M#$l{z3|#aRDN&|ff?E|2{depfZt>08Y1?nUe_abttrQ!op>Cw4ccOdHHC znw#{gNmDgC?sLRt!=&md719pZ6JMWrtJ%DoR?ImCq8k{apQ4zO(Hlj-+$j2oHlxDI znLXNxbOKYySJi4=&1qB(-l#TUqe>-~c13T9>5{lX(_x<>NvBPV>BLe=Czkr_Ddm*A zuD|R#xJ0A*soiji^sguk@Xc=-nuPN^3JDj@&FR!+eW9(_o(_opORIihgQdmQ%Hx*^ zW)N(q_;J&#E(G-HO$1sxa)$U;(n??4vxwRQTz!05CUMmQX#uz}%B42y=;oTX^NRK}Q0GLgVsK$;@d zgj00Rg4sl|8AED2t+*Z^@3m*L@jjfXvN`A@M(j?Vmz9v09=fAP!nrCgZ%iMMECfqP z^Ik&xKpCPlQ);ui2p`PDg{q^>!Fq5xnlVZz%8C!9$mFGJK=X!Q`)Gd2j;(TP;n5{` zfP@iOsu9f?Q%9ELi6RyxJ+)4!v&J_VbFCWl=SIiW>2dM8;lpC?=mzaKs`gSNpuO}_ z+WXSp@vV%-2^%9gLnNoN!yA^rPAd_ z6+VHN8YveaCM(r-`^F=dC=AK^#HDL8cBWJ4(xOVHQL?zr8coy3f+@Ylt!oUbUDmEk zbc*{q>ErFP1mvz@V`ey*$@Ei(xdMY*`VoLK^`zIV(P|EIqD2<249WVkp*c$I zOK!>kP|ZW7n>)JX=!pdegqV&gQLWl+8n(!+S_)SgF-bnHs9}$Lr-sEM>}R zDq0OsGkGpL2IUvDG>ItLrP)eskwDMNS{l~L*>Eh=HEhXHC`E%svYXL0v)?Y}_z$O+ z?^U}weg)Gtnjx$7#rbM>ocuIAaQwC*ZxQ9qZ>8fVRgasjKNTtmWb(~9w9>v=uwjK5 z)}P3WiA2xHX8RnO)H!;6O)TQ6)ibB3zV-UeMOS%^?ugtqk+va8mVroF{;NoS+ck<5 zW1C+Kt%BGpGWw*cRb=y(U|jXJB$Qx)_V?Xd*?0{*{z^`=+LKjoFitVpp3)0_lv;TM zS+#$+*J@E~tE9vYPP~M)_4+H~H(@IrDiSrqR>_A@Gl~!uR2;Edy-U6-}GHv0NmbqD!nL8{r zL#El88V|x&X*)Rzq?W}^)l{!J_DywbQ`@T8LOuSF)ZAfwb@j9<^3CkzFn4rKoh^^F z0wgbz=xo4KZ&aV0^VZ1c8AgqebyBB(F}$zMn`REYc-C4}1p>X|$w#6+>%I zk~BG#m83F2`FpL}hTMPx=E4eDFHM(x%WdiH%M!PBz!7acZSoH^$Ly>$LeFS*!Iylg z8BE6>GSQTNT(OjRINpF>~#P7mSn*8{rw;#7?$8 zcUe?QtLzQ1rscYnpZLk~YMN&|HhsuZN~`}?&a|3o)q0j_*=*xKh(q4sC_^MJEmw{1 zYwBumeBA+4_2%VGL^fcZcAvr{to z6|_u#HA4Evtmo%E-A47v11H`$hW)iK-XwOA1$({s4?U+ox8F$QlzN~Wno*j z*U9fdAovIsT)c~EQg*6u$#caqQMS}%?|o7!#O~A%abdgthoRUlz~mEDY{5RGNr~23 zBs~Bmo*X3>>K-;}vVQ0E3*mH?mD3+|YD$WDF^+3!y5TI9k<|s*4@VRo+AFi#emGAB zq?>({79@|MYkLnDMGIo1$E#s88K z>7nB^q<>=ENgC2WF?6bij@eUQU_4E(Dx#N>tqDAgZ{-L*b&T z82t}|O9AdCxB}o_0+TpjLEpVZ#r<+6DjsqWRXpsW&NN%!D7mCb0D1DR^?22>4#EM8J;@qJW=06rO^BUkIK7 z_>JIsfIkRK;$p9gierY0ipAwhR4nBns#wND;bjO|mf$sjKsHB z`+F!H1p)O0#{$eGI04`Q0+Tpb!E4$T94J?!VxEJj;!qETogv_Gg24bs5)1`6n!qF; zr{K_CMaA)QB`QvI5LKM)p>P%o^Hc&$->Bf;y+yzoawP)Jb`S-e>!GkMEI6OQ(qE)t z10B3BmMal(nS&_c3J--fAmAzjOMk6`*R?mhPOe12jSixKn>`ffAPct=So%8@EVG9Q zxKpk~z}*g_fO|a@TET*U5?J~N6pR@o0v?nr5%92sDBw{Kg##eqF#=2fq=NUf**_&$ zBH$SZQNVK^3N0Yu1p-U|vVw=yf>-291ibDb3V72);Xnv@n_wQmy99>;yiZ^fKT@#D zcv11OT#1TL9YhtMdnjB50bdeW`fn8MF-`=0D_0`m2M1BWj~)saK)}xg7X$o4a2ddF z1Sau+3a%I-Dq6f2RV*R@L=aUh<)QE)s=_h^mVP+}eRmfD%gdG6xT1q7ppA#ZlCYpH zfu(P!phoM`s&XX)R(B8utm&c91_IV5SQ%hlf>i<5OMqO7#EuGD3>6g{0CaK?Rczv+ za1AoqnZVL_Rq(#H`EGJ05_>v`0yg(hI1d80B(U_A3LaJqwvj6lu$_Y_Ut;ufWRaURPfwrQL(dJiHgAvqKY9N3e(`F-3aOdh7*{8Q3{sPVQY7}5{Y{` zh!XelP*@0)_9OTlU<|=m0AmSEVzq*8b!eR+SE8cEK~yo>L*ZZum_lIbrzvQsx!zx{ zM8FIOQNSz@g$c;yY=RnqxdgQU2N9UWLllhFvO83+M8y#fqKczD6mEcx#}HWh<0BX> z0#1-C5pa@&DBu(ih2tRLG=c_zMuL+8&Ll92=P2l_&G=lo5)~IXh$=4fP*OLk^;fhdmTdhK-LBSo+5mtfS5N3AqvhPdkVLp7BsP9Tq%C zVCi2}&_YY{CAks-uR4eVUiVNq3Ig6Fu=MXJn59F)yK*H0K5!5PeB`0u_zd7n zg0BF+B`}FU5SWag2u#K=3jU);{3=&s#2*f#5iMT#=*8qpqL(CC3ZNyyvH-0JRsd*2 zU@BH7Frljwn9$V;Oz2t)wwfqrt}Rz$N5(-kbA1nm4v5~6U?YG{2sQ=iLeLeU2SHDO zEeN&*s3h11U^{~C0s0X11sFiEBf!oCy8!G;U^&~3!16MJ!1A&?f#qc{0?W(31eTXE z1eTX^1eTWx1eTW?0?SJ+f#s!6!RggfDAVLh3Z>pbER>lZ3bPPBhhQ$i!36UF4kI`m z;3$Hl0gfX$9^ga*GvX8iQ+qmrsXddx)Sg3NYR@MywHGNkV1i`zV!4v6UgjWX^$HJ# zD-nGS!LyT_=@0bfbR&t2l$cT zCxBlFeg*i0;C}#%zv0eULaxLaOA{;uupGhi04ox-253uQ4sAzZE^JR=E?kqqT(}N_ zxo|xKb74mUbKyn==E6+~%!L&M=E80S=E9x?=E5xq%!OMMm>+& z0bmNjRDk^nrUT3*m<2G0U@pMH1oHq6Be1L&1sF!lQMy{kBuXhm3@kS4Yn-F~~!EFF{ z68r<;9s-m2PXd$i0D;N)7lFxmRKda;vFhJ)C00G*AX@d5hr-i{ewN@lfENi~0(h0c zB)&mlGTtUI8SfF8j1LtIJ4USfNUp@Hg$|-spLximzf=%Tl=NRA{kINc`tLmyen9k3 z1V01(O7I)N{|H*V87){s{(*`m0hS?X39vkY8L=XPsa=V{)UHBcYF8sLwQCTV+O-Kx zZAL-;EXn(NawWd%=pg2OLl1?G5WNY(rT|?Cx&rhd=n1d|!Il7(1g5hWfoa)+z_j!w zFf9WJOv^w5(=tfG@EMY`!Ez-z8|onDY?z0_a72$H*d1Umg1rIuBNz=ZmS7yf1cHeG zfnYMgRDwEy=>+uvvk1)YIRtjgK?G*$Ap~aW;RI&sQ3Ph`u>@x62?S>8Nd#utsS2Jw zSsZ$rT!}-^a1b4OmWRUGh(3?te1MAxE(W-a;BtVg2(AXWj^KKLn+R?OxQ*a;fPWB} znfDNwVgDpB!yX_o!~R8JhCNDPhCNPThCM}KhCM@IhCQ#~wyEO37vxI(_p*cNzgImJ zUPJVo1aASnOYk1RhXfx1EF}08;0uB;0lp#l7T^a0v+5@Tv*Q;6v*ULHv!lgZo-?y! z2?DcYX#%rjSpu`8m4b&474NJdSK^&E4x)G3dMK=n=v4_;16YG#O@MU>)&*FfpaZ~$ z1RDWtLa-@77lN(;JqUUNY(cOkKqY}?q!)piz5{`o-j~2kA3$KH4wU<$!hfc*)k1I#3t z1u%zTF2KPA^8gMbI2_<8f};VBBe0A#5SZyF6PW3z5t!*`5SZy_6PW4e5t!*05}4_i z5SZzg6PW2&5t!-MDtK~|l)-g!C1r48$NZxg%&@IJu@03Q>4 z0`M8Z=Kx<3d=2m&!S?_^5?Dt5OJJt|MqsA@kHAb{{B3uJnZ6W(nckAXOkbYBOka_} zOkat>Okah-OkYjG?uSbmw3jO>gEbw*GFaO~VI4%TN3cG?1_T=dY)r5TKm|b;fbIl6 z05&Js0$^)`N`PJj+X3_@=mXH7U;w~C0?XMT0?W$~0?W%V0?W%t0?W%D1eTY*2`n%B z5m;WT2rMt-2`n!Y2`n#x!16Lh!QA7dl%~p+l+ykVVky;oD9k|g0R*!F4kS1T;1GgC z0gfOz65tquV*ySeXaG2wz^por!0b4K!0b4i!0b4W!0fn?!0fn$!0fo3!0fn6!R#Z& zJ6FqHo$uX?*n{9@G-!r1fKzXN$?fGw*=}23Cv@y2+U)x3Cv?{3Cv^d2+U*c3Cv?_5}3!LAv*3J--Yi0)3%17LH4EdaJAs08RmupK~ef<6HK z3CxI{2u$rR1g3UZ0#myifvFuqU}|?KFtvLrXtTfMeQ&vvyzl2A=6#HZLKULN6I26C zBB%kVB`}F~1SVrTfytOjU@~Sa*r7qJnj=?Y)jhjr@dPIT zoJ4Rkz-a`h1Dr{47Qnd#X4M4*X2-<@X2)d&X2+ETX2&%IX2pj`Jo;V*9Vbir`;h*A2QmGF9tsa3`VoRh0UjrK0^n(a1pvtG5yyb3g005 zdx9STej@l8;8%j*0RBf{Di(j&b(+wn2ux^80u#DCfeBqvL5oJQyR}?NKHEBocCX^0 z&<@e<304PKi(qYl48eK;9SJr7=tQtFKxcvqfNlic0X8Gp9AGPgtpT$9f9R`x`MS&m6EQPD=Fz&4q{2q_E4CE=z|Cj1~`=9Fn}WoOyV&FCgXSllW`(} z$v8#9OEbl)Q{_smYIG2-I@3epEJUA6a2~*g1Q!8ZN?;PNATSwM6PS$a2u#L}3g&6+ zze%pds#_gIt8VvDxC7C55!?-MAHhEX9w2xS;9-JC03IWF9N;N}rvaWNcn;u2f|meZ zC3p?sO@g-o-X(Ys;6s9s02UHh-ajX>+ZGJsmMbagRUO2VZttP6I-=JiSQ{Wi zupU51f(-yV5o`?5nVT^7lGNa1A*Dmm%!{8Kwx$ZBrrP$ zDR}X8@y=km67LLk5WO?ZLmoX+!R|Uc7=`qEI*94__K-*Kr(mG&=#57Du?}MT@gDN% zi3)x@L()$|`pFJr`Y9d?QxUyC!E}I`1hW9<5X=QQn7~vVN?<~dATXgv6PVEB2ux^$ zf+>0sd7@m2A5U=*?LN&z;dDfwNpKdxxdbNQ0s_0`VgkG6G6kdcNcM8M5}j8$h&r$F zkVjvyV5ie0{S8QevxAuaRu6^S5Pc`XKLG9_xEEkP!TkUa5&R3_QG$O1JVEdzzygA2 z0G=m!7f8yp-h3lh zQUKpOhz|Xahr*AD{x88V0KXIb0kGKnE^%?W5{XL@EDf+M!EyjA5UdEW62U!Vql}da z%*<5@%&^r7%&@fx%&>I{%&_$d%&-jz%&<-bX4s|*zSq8^vs_8$x;lvN>h7V?1JRok zYyq$}K_x&hg6#l$6Ff3Ds_08#ItLJ#mVpGOWe|aB8A4!MhACKAH<56(Vl^8wO zK{VnZ4~2sfeJH_U07nuW1#m3EaR3bjrs8A*6M7nf2|a_rgr2S7v)N+iIdUatp6?)< zd7+2GMTowX;4*+K39bUTmf$*o8wpIsEd(a?b^;Un4+0ZM9};{7u#n(WfG-HX z1o(#FTYw)3{sZtc!G8gMBlsPl#Ru-L#pFudwIsn(04)iY1!zUE0zexAbNR{y=Hyig z%*m@0n3LBcFek4|U`}42z?{4RfjPMofjN0o0&{W~0&{YA0(0_a1m@%|3Czir1m@&k z1m@%&2+YZS3Czg@2+YX?3CziZ6#O<%s_|gCl5!d9AXejH9ty(|J&Is=fV~Lz2H1~a zG{9JbaR3ttOlJ*&X{jYJEp-H@WjcXrnW^CDAQ_n@SCWxA4q`?Q^iVhm(T5Nm3UCC$ zkpRaK91Cy)fvGr&z=WPkU_u)SOz2q(8cz~4&z37O^E?O9%nLjeE=2St1eXF_L2xC& zH3ZiJ+(2L|ZYD6Hw-K1oI|)qa-3mrNDrUBr5Y4>LK{Ru|hr$wwet=+UfQJZ{1$daC z6~LnetpOe*XbbQJK|6q_2-*WIAXpRNS%P%{o+q%3yrkfo^Cf2!$Hknz>LBLqbq|Gr z=r;+b0K82w4d7jZdVu!{W&wOiFbCjcf`b4S5*z~X8NuNIUl1Gx@D;(a0N)Ut0Pr2b zNfFHK6n-E&6={AXXax9~;4FY&2+jrgjo<=+KM2gFi+w0Qo_D4Ac&YKx$4fehK3>{G zp(UbQ5-bm}9KnhJtq4{ESdm~AfHnlH0kkDBBibogLrZ>N*xlYiv}z3xg)xX;i(nkU zIs_(QJq0H`BNAt$wsmw6C2r`Ua3G>P5zGVFgy1lM&ICsSbRjqfpc}#Q06hp!1lWw= z6o4%V%*?G7JbjbcefIcRKHEBoc5mmQa2}#}Ah-~q55Xk>{Rl1x7(j3pz)l3$0_;q1 z1Hd4Hn*nwuxD8+^!JPoZ2<`?LL2w_yD1!R|_8@o&U@wA40QMnx3}8QkCjrI~EC3iw z@EpK+f)@cM5WE5~iQsjBK=2koErFF%or0AvmSVdE6>_?RSZp&q6fQ^fEP|^5W)oZs zFqhy4fP)Bb2AD^18^ECicLE$va5un_1or_PO>jTJu>=nR98d5FKm);J04EVV32+L* z0)W#9o&#tkFn67$VBO2ae=i}$xelWL&i7Dw710+Gya8}A!P@|r61)d+Il+ejR}y>z za5cea0M`snY)#8kG$76(d5S=mK zLt%YHKR~bnz(WL`03IgT6yQ;UE&z`abO(5XU^9TH2(|=RKu`(rEI}`T=LvQIc#)tl zz{>;!0A3{+2=F?=Ab>Xs%scNW_;tRx>!j-FuJ;{8cYWxga4ModCTIj$NN^UwX9VX0 zd_iylz*htp1AIep8Nhc0R|5P%a1FqZ1lI%nOmGvxF9f#&{6=sGz#jy60krtYopCR~ z;so;nmLzx(U}=Jf0a_B6Lzh?Z;O*k!R&pgX@0wkPNU(3_w;KwpB*0QwVb z39utUCBQ&}UI4og>;N#BpfA7>f&l=#5ex(vPGI$El!6tmlM1%GTuBAn%R#JQ`*M~-Nd(mZfnX9qEx}}fsRUC2rV;E9Fr8oqzzl)| z0A>-)1(;26Fu+`bLjevVI09fE!O;MR5|~4eP%w9ac=$-U5)U8aAbR*X4|#Nhf;avp z=}$!ZQyj$fr+Fy6Qys-M61)#^Cc#GlXA>+0IG4awT%h2Ad$krI#l;Sy&PzQM_CoaK z1p5M9NiYWBYJzb9*Ah$sxSpT};6{R4fSU>G0B$9i4sbicOn^HHW&_+sa3H`v1oHsy zBRC9TKEaUy4-gy!@DRcA01p$G|NgCDy>rB&JuuaH!a;QCQyvPNBYFYBRshcuYypW7z$89FdU#Ofl2J4 z;A5?^J>^PNY~diP*vdm;dw9B%pbx;d1pNWFBQS}*6^wgGRP>Q6QPJN)RI#In!eg*; zAi8i91bYHZCNPOp75rO=j5@gz71JF=6*D{(rcH>^vj{Bx z90emE69IGON(3D2APP9dLt*_1G5Rn9OMj$-Rkd?DO0Gn}u@0hu<2@AK!>HFlVChd* zaOD*u;1szM0jE2N0?zPIXaNCd5m@?j6&(Jg2slr!M8Jg(qJWD%6b4R+(U%ff`YRL+ zcw7WrDOV!k8V6Cpbsh>86JqoY1eX401y5Wh0&bBj5pcVMDBw;Hg*B0dy9g}(y$UAl zj?#T{B?9hu5CuHwq0k5c|01yTk1E($x6=MCS0dmE2T{ON9ttxi#OMVCmi{>f7e6He zo|h{T@REZl;1v&r-6zE8*9i6kc!OYHfVT)t;=2kS)nVd2xe^s0I*2Mh_E6YSsQ5;%M8)?GqKf}`C{&<5{X}5te^Jo=IT7%yT#0}`97F*v zKJnC<5^CwM8ygYqKeiY3RMuW5`m>(MZt$!-`mNR z2x#vh3RuHKVK4-&MKBa#9fIKi83L2oLBT(?SLi5LqGBTlQN_j{3L8SerUV-UR1lbe zZVIl}Hr8FPMB-)+qQosc6uLveRtZ4*Z4|uqun5=|V0#BqKyMF)FVNxlCHNYkKf!kZ zI}(`0ofX`4qo~+LuEfS&9YhsFJrs^dD;!2}BESfOQvgO0n8ZC5eDk}g*h{WN#l8-r ziqRelJJiJJDgsMCUct(*ihydl5&@GOL;=A=p~b`)T}!Y8z*K^z0j3d{#Cio^Y8#j# zSEAwo2T{cw4~2_RR0k4V3UDyN6#$12n8d>s?D)Et_b9>LE57Z8}lixvFzy{NcE zu0+M<4x)-HJrr(+fU5~^1GtvpPJrtPOyW%n*7`(L+$>k3;x-3S#T_0BpG}O>{~)mR z_b9mZ4-s&$T#11B4x)euJQQ|9g?or#7l4Neb_IBpz$8Ad;PQ_|#S?NRDxP)_RXpRN z@bbhM{T#t-051@{3GfnuNqkko39pHY*W^l6yy+mSc-uo^m5DL>U4qpB-X~ZC;6nnF z_=$r3{wFFH%9W`2+(A_FrH8^WxZ!JpkpSNk>;dpSfl2&P!Aoz7il5|4RQ%!~s`$-A zq5s4f{RhEL04)}}fL#C0?>D4ahjMz26{5kPB#O956Q zFo~-uSmF&)(N3;JMSBNP#Tp(8onYfy1e*e^L(l~vLtqj+D7ftdu0+KM2T{c+4~5ev z#ppc<&H&hp;B0_>2u$K=1^4|bD#pl_s2JxUs;Kr*SRb{1BEbd#H3XdiCKH&%sR}lI zUsTk|m8h8RAgY+*p>QEQJ&WKHfY}6>1I#5bi3cl~{hO$mCs(54Fb7e^5grPiVdGH* zT>*|E=mBsXfk|voaO5)XwhQ0p%v_!{5}g6{yXA~1>9D)@1ssJKq9M8%B`qKcb66c(Qpqi-cx z3gC8vmH>AWn8dpkY^HOdd*n(~{L?{HalePc7Vz|g1X~0Ai(p%TM+i*fV-aY(cwDYT z#ZwNViUl4D$4-jT&k~#f@I1ju051}l#8(uI`B+rEDp#W74F^%hTOJDUqDsC)@BzSk z1Rn!@KwuI-RN^BXLOum0F{gk}FZs(m_DCUjbGm z_yeE~fk|9h!F^wgidE!FRIKJ8s#x7aVSm`TCczAVwFwRYSeL*guCHL+e?>(Hxe^r{ zI*2Mdc_{n_0hQ zfL;V9aR&vr{U9oO%ay3;=OC&W;Gu92jNXaB((j_+Ijt{)D;f^`5U z6PTG(71U|hyAVxje+SX-dJlQ@ECo|Plk}^?6LTEI^apwwrX=nilq!Dav_6Kn}^DnTW{=>)w1&LG$U;4Ff^0Ot@4 z0633eAixC#g8(if7y@t!!7zZ!2u1>2L9hqFRRntjTtl!Qz;y&w05=ef2e^q~BET&K z0pK=*DFAm6SY5bF!6!Q5xf%`iUI(#q{L@3>Iz-=3a3jEj1h)YEi{N&EM+p7_@Na^9 z03Ij!C%}^g4*)z(@GpR82p$D^j^J^C7YLpLc!}T{fL92f2Y8LZobjfDVY*~}ORl7k zdDlVo&ifwn=#Lbf`j(_00*MP9#PpweC=5gN7X%{#z9QHI;2VOy0lp*H58wxaDu5pe z#smCJFcIJvf&lOv!4!Z$2&MtF_{?)w53o4FEPy2m<^U{Ba1cOCfkr<2(|<0Owb#k3xVnEuHeS!#fWRs@o(lJ8nK0k!VQStir{8|N`l(} zwk5a|U^{}l0d^p`51J{|-Q6xTv6tf&eiL*TvoJ>shZ4L2 za5%x+07nwM2XHjOhXBVCn3*RiSYpG)T7)eo$FB1v2hr|RJQTJ@^l1d!0yGkA4{#cnBBiCIB6Nl$RBbg^O(gxHxM(jgoiwOX$711mh{WW zm84(JK}_GuLmu5)!KiMMz75i^>>#FZ=OK@7uV9aslKz64D1S`{G5y*e3hT&~s9%p@ zeSi%JE{1@O2rdKInBYo)O$n|6s35o=pew;m0Nn|01?Wj|2f*e8cL8ika4*2t1oHv5 zA$Sm=7s0~-+Y|g7pf|x20DTFb2Ix=lEWnNgF8~ZAco|?9g4X~B6TAs9gy0>3-3Z4zMS|R{(nxd<(EI!4CkV34Q{oBKQSh9Kr7Z)dVd}7)R}+i}xRzid!1V+H;6{Qe z05=m%1Gtr-9^iI@Spatu%mKKI;2?l|2o3?bkKk~C`2`dJ6D9G~}4s7LgR1hW8MCYS^8D#1YjuM->s@Fv0G z0B;i<1@JDxu>kKAoB;44!ASrg6PyaLkf0IZGlH`Kz92Xk;46X)0KOr(7~ngC%K&~L zxDwz;f@=VNCb%Bp7lNArej~UQ;17a309t(ErF0j-;so~sEJ-jQU}=H}0a_9~46q!* zzX4hiJOQvG!P5Y32%ZIKOYj1~Dg-YBtV-}2Kzo8W0oEXR2VgCN_W{-+_y{0Fun=H< zg3kdu5_|=)A;Gr*od|va*o5FGfX)QJ0CXYv9iSUQi^;JU>_M;uz-9#2zP42G;5OQE z*2Y^Z9mEE=t%t%8L~lnh3}6R>kpO)N_5kQdus6T}g8cw?A}}L%QBb#=Samoikh?mF zRt@z~I116j2#y69L2v@VD1ws!_8>SFU@wA3fPDzg0@#n>T!1kI7XXYUxENqO!DRpw z2(AQ}L~sp2Ah;f&mf$9UsRXwIOe44hU^>BF05b^g1(-!JA7D1Yg8*|09tJpw;NJlA z2%Z2ql)#GZ2nCyWkaAoG_3vm0u^f-}P*@Jp#}ljo&_K`z;3R^T0Zt(>6{jnhy`|_} zx;ED6GaW>oXL~3ti|BI+S^=C-&>G-Eg0=t`6SM=kl%PGp6zxoR8=Q1Q!83OJD+CP_WNnk+>~tLog2DJAw%SKM>Ra{76s>@H0Ujz%K;T0e&Nx3GfHOY=9PDy3-E?Se#%Uz>)-3 zEXydka+H))OSzJ@^zsg3Ij!I!k8Y!2#6U^^OKnWQvV)kuorl8jh+d7L#gv$Sb%G@T z)+AUOU~PhB0oEmG1+X4LYk&>}Z2>kQXa}$nL3@CW2`nR>6`b5oa<&!5@2(DF&boUj zY=h{Y1ls{@PS6`*OM-p?TNCUEunob^0KEtX18h$)6reZ3aDcu9qX7C7>L{~UgFTPs0({Khz{M`L!lbc`w~n77)>x4 zpo(BBz&L{a0jddR08At}0HB7ztg2P8Mhh`>Uu+K4If!QN@1anI=z41nU5tNU$Ej z$pjq%P9@j~;BUq^c4hC z0j?t0AK)5-835N28~|_w!CZiw2o46gh2T(t+X#*TxP!p#zDvRS{UjsTq7d(O5Hs>m z4}}{LeLum?01pz}2JkO}I{_XcxEtW#1or_vPH;cKlLQX|JWcQjz%vAo0X#?WB)|&< z3jkgscn;tdf)@c^BX|Yi4T9GJ-XeGl;2nZ@0p26{0N?|Hj{!a+_!Qt1f-e9*CHNZP zbAs;xz9je$z}Ey;j^8P`U}-7X<5BegaS#jkCl7@a5&d6+QviM?FadukxK4M!FTf;u zv9An7iA#7WT#V?Y2rdIyhQI_Yr=VL$k+>RCtl%I@Z0(`22BKFYSQ}tvf($@Af(`(y z5o`#sI>E*OYZ7z@Seu|Lz`6uI0M;WgyE`iAtOpN`aNb4^Vn#OhP&fvtYf`I^o2nGWTCD;vM1c8~k zJAoOt7l9eJFM%00hQJIPM_`6cATYyf2+Xir0yC^m!7%mTG`SN0)jNp(o9Q8so~@vw zi=>}}^anYJ>F0SU9D?Y>3620bn&23K;|WdxIEmn7fYS&}=NSa1i_z>U|f`tH|6MO;iHNiIk-xK@*@Dst$0KXFa2Jk-u%h}>zdsZzkOA%OJ zS`t`ZmM5^htVm#aS&6{%vI>FaWi2XU(xsqD2k%L%D z8+#~hg6Il@E&$yLdH`%rum!-@1eE~22(|<0P0$CRKfwTifdo4P3?|qWU^jwc03!)T z0qjYz7r?#*`vFuDj0LDBm;g{i5CEnSOa<7Vz#KY*z+89$fw^!lfw}Nt0(0S^1m?mc z2+V~?6POE+Be2Xh5SR;3Ca~O|Mqn;HgTP#PHi5bDJOXpjg#_lHO9;$Cmn&Gcv(&gN z!ENRqHiR)3E)Fx&aoNKH(?(>}c&z7rYD5ZOoR}cRpDR#Vwg=P zx$c|>{s$1WX}>KQfIF{>Ti4 zabHX4Oqrx}wt?@QW1E|chZhhQ0+tY#0+th209FzH1gs^j18g8{1Z*K}1?(W~1neRF z4cJdO060uI0ys|i2XKmT8gPyfZpKAIc=}fe;ptx^gr|R#5T5=WLU{W33E}BKB7~>^ zln|c&3qpAMuL2PGZR8+Hifh;DP+vbwt z8V3-P0|pUN0)`Mm;&6rO9i?J~Oj0r0z*mg5%_ZyLA0AIg4wyhl37AL-i9absZ7vm4 zWRi+$2EO7K+uTT8<4nRBz^{byfZqrqah^hxx>7M;CaG9t;47Bc<~~HgGD3X7azY}& zN(z*pR~&7HzE-X@#{+$CH9+$V&@M+#^3=i;$UQt`~dSG=&zr9r?eLOQ@3LI%J) zLP(78SSps)l!}NlNyP^Sz9On^?gDN@bi!poOu|(_Y(hwktB|6tRK$}>DiRv_io~|L zE4ap_glmA02sZ)A2_Z41hYnJaN+zjDW8f>&+UBC-XZLeL3_u1#Y(OSLNX)8mNq;3} zlSwLa8u*Ibwz=83#xDqS0bddp0P+(;VnKygO{AibOj1$Az*iKt%{c@VC$s~UByQQ0=v2mw_IO##&jEdVtMA+e6aDSf%?$|MyH417f++uU6Q zG$A|yG$T9)v>=4U)(Uf+R5+QWqMd=S=wO>Wh=5LnBY-Z1>3=c6l3*OxJdOcD^=zz2M2n_Ge_h(`$L z6Dpk2Ujm6_l7OTJKHwwUTs&MsazZ$tQsI*Rw4{U~=2UN1nMZ!(2LI~%pD-_kw<{C0dKy3pbP}erM z7f+!+A)IfdP)o0%u}l)s%)keg%Hkn zSJi-3NFaDIS7as7fjP$mf&V&DUY+2$f3U<4tYAFWV#pahJO zNdm?j_<#wvxx^j)!xIU~0Fw#H0aFMm0aFR70n-VgbEZO@?s5^cWRi>c&A?y8T-#hH zycOmXx&jswdH@y^dIOdcLd9~0xr3#1g-p`9%D{K7w$0_mMXx2~2dpO)1Z*G_25cgP zimeJCb(YR;GD+u71K+vZHkT6@{Wl>GU?1U2zyU%5z#&2*z!5?bz%fEGz(0hNfRltW zfYXHXfU|_~L@p?_>LJhUqD=D4t{C`dcGWgF00Gwtg8?@Q!vMDlBLQ~_q2hr;^PbZA zP$uboV&FTU+2+O~-~}O^f2}ZZlmxtyNdn#*_<#sc?cpEsdPX8l27EyH84#5a5@RTQ z)K@BE$|MzW417gg+uSBxV|>C^KtjR}Kw?5jOr~&Uf>eAYlT@TI@D(X-bI)*%pAudI z(h%MN(h@>qdWF?vq#}b%QjyufS7f!#tw2C_!YV*c!WuwsLP*T3@bze^_);dRC}7|# z3fks=LBQ99S%4yh-vC7kA+dzQ$HSzeq)bv##=uvUv(42+Km|e_z_*0@fXalBSWV&f zIH{;ElT_3)@D+7zbB7R6j}Xo`RM_!@1T>OK0-755fabQj8whAg24**dVExB9l~1Gw>C^*yhq9U?w4) zpREw%dkOeWCJC5l-~$%e=C0!hcM;(hUPAKu27gTTq;(|Bo%)e_=+{Qxi+}Q zb%geSzX+WG8wnwCi^7}UQn6Jgsn}uQD|XrDmg5@t5W@L=3WWwpzYf3 zUGjlUQW4F-SH!T*?Lj~+!ahJ8!a+b>LP$)YP=35rB$P=ik{I}kWVX3uxYHjKP5@F6 zP6JXBLSkx#6Z$EfMkc99XW%Q++vXZ0AS0m}ATyyQAS)px=1_R8ze{q;Bo%oKd_`W{ z+1 zRwk*aV&E&P+2-mXpa!8npcbJKpbjA<)>oLRKf4WNl8VL#zM`pZE;?>Qb3!aYOTveM z)`XDQR$;e(NoyyQRCF}(6`gH!6L5`P36lWb2~z+)2_dnM!k}JK(N`v^_};)*46w~j zN5CM$Ou!JrY``!=NF1pUbEH&^l1VDY8u*Iwwz=mBZUgH`!6W#%~5+a~tJ0T?QQuyIJsn{)(RO~hI75i;- zN0E4t@DJcH;S}H~Ate5zkWIhFosdZ?P8;}&v$naNxW@B@J%EdZeSph^ka$&L_7JJK zCX-a$H1HL-ZF9vCaFj7B^Au+qcE&aBc zLnf)nZQv`uu+3$}o&J)L1(2VR9q<()Bz~=Mf2vdzmPsm#8u*Ihwz=A!{KF*)^#G*_ z4FP2dA+dr&!&y>MQ6{OVY~U-Z+UBMrpgQ3fKuy9dKy5-utfz4QC#k3}lTz#;=5u*5d^ zFuz*n5M&BaH+Swc8}K_Ss( z3AiYe1Y9xj0atBvpCI5m;Zwj(!e@ZngphboA-TTc?#m<D zBOo*39v~~>As{;;B<50xtv5EeOj428z*pq6&5c4p0YW%mNFmcN67aQ567Y?I4=84v z>xO_5gr0y>gg$^WgpgQX;aj~86=af%N(R27if!&X0;&6{8G%#TeUM z1O$vDL#U=w^vBfs`6p7mi;rvd8 zg!-FfmrN4yw}B7XXPeuLfCGeZ{;2oqk zz(oTeaM?CD3<3WV!ujh8qZUZO4Vfh1wt)}0Yn!`=haVCm;gx($2m#Ls;g7sjSTs#4 zUdbdCZw-9Kd)wT9csSBaJKq!+{Q)5aL?eVh5>sKN{u+oSlT>_Y;49+U<_aM(0U?}E ztZ+}iW+ahG0zNYE0m*H1De!PA!WAT@CWL^rgz!hwEBvUxX)?$(bmFAQ5h6y=|8be^ z5#N>7HkZwxb2$lX(UqHkB$t;E{z!g>!}@ihfK2jq3K{r{!nV2eNc@Hn&KFl`s9#u0 z$Rq)!4SYaZ+gwZplqbXiR3wCe$_fh?N@5k6B(b`IPpoO1i--4BZ9+moT|yE-eL_fV zq%cVTUeH)3sc2^4D_Yp*G9aK8Av3@cvH{u>LShGnL_bSKN13Fei-E7`W}Ev4x1k52 zIG`7y6rc|wB=%D{tQFtOBozYnWSR9fv?zLn;X@|KfH+$&TmzCxKaYP z$s_?g4Sc|E+uR6T!QX_@fPI85R1+Fm)Ar&ARAq^k~Atc6DIJ!bA z;>aWw@eF)L0^3|4Tw@|aKR^<~06;QANKCGfL@QFrBo(O)d_`*8Tqgv4M(7GiN9X}a zPY8*b6rSmg$}E#qWHay;Ic#&E<2K|XWCY|Pgn%y<)^3%=d@@PmR|Y<@kZrCU0tyo< z0=^+s1{5QN#F7gAmq|q_nWUnufv+fUoBI~ex*{Q*udFaue^jf;Bmvb8d_Yax+zOD3uK&A?a8 zwaxWFzHykCwJ7648V z76VQZLgHD4IP0Y1oJ>-2(ZE++w#}VFz`umEfNO*cfE$F6cw1q}da1Z0lT_R{@D&ej zb9WK&nD7Abl<*kvoDdRUDeTan-PbZn#XAFE@t9eGP?*pK@C_j(7FQU&St?4%Bo(C%d_`H?Tvh~>C*%NBB;*EEB80@M3OV!x zq?$}pQPaRz)V9qvL_l3aINw0wq<)Szlt}`b82Er@wz*^oXh8_)TPs}AU#U(e320~F z13K8|s^aa`iBJR3g-{#NjSv!hDtz;oRP>TbD*77uihj1a=LqOecm)_pcncUz2#LcK z)@_iA;WA0ZC<9+H#x@rdw_zM1oS&fZPOtGtnIvGcfe)Bsn~Q*esf5UY>4d0&8HAAd ztHMqFn4K+?RLnK-74vO#zvD?RB&-B1Cj1FlN(hO|6_)%V6)R+tid6=_Vzq7VM+B@T zg!6wXJkT!}8)TAz%?3VTt8H#C0=5&v`CSTgR!hKcnIvGZfe+Ykn_Gu~gMcM) zD&Q{R7r=c&NPMJFXSq~7mPsm}8Tg79wz-xFctvo4H-vV8cZ84_;f+)j(Qj=LWs-^y z417gY+uWCUgGMJ50K_B|0>mbS#JCET*Gfe^nWQ42fv-qxn>&bWOiDNc_=s>Ekem<_ zQ!32bEfuL`l8Q72z9Ow{?q^)%=Y()Rqe3M8!jwrS3CL>T1G3xZenCJ^LO7pCVax#u z_(CQL$Y=bBU$mq{v08Tg7awz;g`{KMr4IRF(1 zxdGo2LShw#U-n8xRhgushJmlBWt-cAYpg@q4yZ@i1!zDBiH#Ln9+HYCGD$^q17Fe7 zHW#6*f4DUvGN271Dxe)9Bz9Ejb5bfg$s`qB4SYp++gy7D^dxiw^d@u#^d*GE?-lBv zmx}%}NyQ)oUopfsw+R8m2wMRo2q9p!Ldr{$I7TK(9B<$gC)noxMZiQtIRBGEnS&BA zMJ5TDX5a&UvCTckD>IW2&d*k;y-xyulSu;R8Tfz&wz<6sSVTAgSVA}qSVjnmD->ei zmWq`!NyVQAzG97St~K7E>j-TDe-SzWHWEVO7KQX@rDCg0QnACpSM0LQ&BA@$L--A_ zmoN{opAZrcDcsf<|FBF_am>J1{9~KjiGY)YJ%H1MeSouska$61^9iZAD3erNG4K^v zZF9{KaGlT+aFgHww+SKfou?XRFKv6-DHSzkl8QP8zM`IOt~vr55NZJ$ z5$Xb(5JF;eg;M`WMGKjvqP2mqXk(kJgo|!Rs0!#nr~&9i2#H-467QFaZZb(lPXk}k z+ctL`pQC*VCjtEkX8`>PA#spGqw7*JSSG0$X5cGE*yg^(Z5Tx;02o6k1Q)WBC9x6Pf#HJ%`x1DqmU1e_s+#PbRX zk4eP^nWW;ffv@=2HkS(l*9cz#ZV>VTZV^J_U4;}kq~e}TQt{BhS3I`OeS^2;Q$lgT zb3!S=OF~F|qwwUERJ@f*D*iL@6%pUr!vk@RkqJWpQ3%5U(Fh?irot(G7O`ZKiVqEZ zMLgSFIb34`LPbC#LS;Y_LP-2bq0Jeo_*f>X_{6|hq_WLT#xQ}XVGD*c(2EL+@ZEg_)3KNzB zz9B3J6eEPhk_w+4mWom`Nkv%$Us2vR7ZU*$32^|G2=M?_2qCe$!m2A$Q9~xFsBPdY z>e}X_;Ki&@hz@8-hy`d&2#L)U4(X3xbD5-~m4UBtwz-11#Pis81ohPVwQ2~7Z_ z3C#gx2_f+Zh2Kw0#RQq8Vv>Qc_{lam8rS$UVH{u@VFKWn{|A{Qah5_s{gU%5V2**W zm}i@Ngn$Kvr+`I-7l0*%kodd8m--pCTqf!K!@yVkX`AbbfHj0ZfOUj^fWHVKag)M1 z{m1#6Ws-_*2EJm4ZEiJw;p`%;1MDGe0PH1%!~+T!^+)fZOj2>gz*iiz%_YJ${zFI# zI7#>zaGDSj&naZTBNgXml8Q?PzT%2)t|#6vR|(<#4TVDQB;ck@5^%@B2i&vGP3rC+ zen6N4ctn^6ctQw?&lNUBj}*bZkVz_D8~BR1wzO5tuac?zXvl7MmsKA?haE)QOX zZwcXi6@{mI530%}0W}PKKrP$cLEM8ngmAvT!kEkw&_E^$Xl&pEn%d@C^zsikCxr8@ z6q@FgfYvfeKwASJ(B3w;4gnnr;d~c`UeDzwc9ls2dKmbCUbeZ6xQTrT;e0=ZRR2l9 z_cBSqKm#8z*fzHq0YeGl{0N1O&m>@^OcF50zz2-8&80%X4}>&;9|`FIlL#Skib7xg zar;>&shDoyD`wc{dg6tiMF{7AQ+S}S(;S&3V7`G5SZJGbxXp_R?Ep&&9Ra@+LgGq= z!wIC~51FK5wSli#YnwZZYg|vb0N6md4A?{niCY!2XP1g?GD*cw17ES*Ha7*=_%|V( z->>i{vIHEENdgWV_<*Cfx#xHxjuXQ9lL`^_wLT@21e`VS0q1RVi4ky-kPL8{kR0$Y zAtYW`sF6ml@rF!NaofOG+_lXe#n0q@LOB0OVM{Ctcr23yJTveCFKlz|ahqQeIsx7g zx&q!2LSlsfq~ZsCAtK5o6(1P*im0}^>3AWc6J`Qp5@rKp6GCEKg#r3w8BZpuNNC_I z65Hl}$9+snSPA%u@FyTSAta_$h?-5FMJk!3B8`EsNNbxLiEI3vFb0r;FdmSJ5E8R0 zywczH*<_N6oCdxkw{31FuJH>(IG;~pYEiky{4z;EK?5J~wQcTLZ~t%+!U;f8!f8Np z!Z|=m!bL!7!WBSS!Zkp7!c9O$!W}>*!hJv$LUO>K^O|?MFwKB;I`_52IEWX zX2LMQR>DZYcET9IPQrM=Zo-d%zX_88`v^Y+4iKgT4iRPoju2)8juGYp{vj*?oFps; zoF*&-oF%LPoF}XTTqLXkTqdjs{7cvfxJK9lxIx$sxJB3nxI_3GaF4Jb@PKd#@Q82} z@PzOW;2Gf*;056<;1%Hl;0@t2;2q&A;6K6*K*R`9!W-;1ATr?|APV6jAR6HbAO_(% zAQs^jAP(UzATHrQKzu?Z{9;Q;hyqAVhz>|fhz0nF@F5^MAwJ*}Lilm|RG~;5`QS_~ zll*+8HSj-QpWEir6AR#hfFd-^nC?N)5 zI3YG*Bq1(fG$8?CEFm#qJRuoi0wFnIA|WMUG9fi!3L!0EDj_{!Iw2Ea1|ch879j^< zHX%1)4k0gK9w9$q0ihsZ5uq?(385%p8KDGVIiWOQC7~Q(6`>+vHK8(KEuk7lD4`GFIH4cl z1YrQ+6k#yn3}G1H9APBj0$~i`5@9^x3gJhN%$GCiZC6pnlKZvmM|Nzo-h}%fv^CuiLe;3g|G~;jj#f+ zgRly)i?9Z;hp-;7m#`7ApRfgRkgy$an6L|Ql<+s;IAK5F1R?w$I86v2(&rR<$B^F? z=Vg-LEtd@ZZ;C6nx$^ive3kGm;5wlS;3lCu;5MNa;4Yyq;69-N;31(g;4z^Y;3=Uc z;5oqoUJ}AHd!tbQ19_@%Ws;}*pMig>5hK~d@9;O?$b<+;j6#SEh(?GCh(U+}h((AE zh(m}Ah)YNSh)+liNJvNqNK8l$NJ>Zv_=u1ikerYf@ChM3AQd4KAT=Q?;4?xFKsrLW zp&1m;>VH0%Q6{;=Sq%Ig&Ssm-fjgXokQA0Gw>DtZF3p$ooyf?Ghi?w8(=6QCtx@s z4`3wWOTcJC0l-*7A;5S-5x@jOF~CGZNx)=68Nd`mdB9Y{w}9z{Du5Y;>VR2?Y=_iv$Xt{wsw6B+`R5}E*hCxpb63WXv_#UCz!XCgj!al$b!a=|;!V$n8!g0V}!b!k>!WqCp!g;`9!X>~_!oPsy zgzJD4gj;}9gu8$VI$Ko=g(((7*>gw#{w9i~f|b9q^p63-FTgH{dm4Kj1Cl5a2x_Ttvjka#d3r%2h>@ zNvokfM?VWR^(+vKjb*9JaYJ2*^bU z=f61k@+Q0W>6p#3l;W8c9V{nWUnH zfv;#~n`@41bcAreox+@o63|{I3Fu_t1G?Dedf^JX5&8mp5WWZWB80@g3ZFKRitl8S ziv9+^VxVoV6s~bFp)6o1p#oqyAta7c=vqfAM$04>;|zSo54O3)2>6kZ3^0k19Pkq% zBu-W6TtX_Q$s`ps41C2b+uS?+HD@*<0`AKkLS(=^LP%Vwu(q~TERsnomKykq-)(cT zaE&Vn9|Ha$#0UII2#ISIIyaVzbuvlC1_NKQ$u`#o0b2;&0ow?@06PdFakoOFZ>3_7 zOj5DWz*iiw%?-kBI7AoAu) zCaFkb;46~Z=29WxV?r803PL(SN&5>VT~2h_FACC3%iCxr8j z6v{W1fW|UOKr;g$(84x13RlpI5YD$zD5$SwTbU%FgMkm|WSc95E9gQf0_a942IxTu ziMo46tGD$^017FeKHWwcO0||)$g9%9iLkS^qghH(*^2qAHbLjN*S@v}@)G2Osd%&^VnM!+mWUchWZe!v_;NSv<_y|h#;kVz^Q z8~BQ)wz*UY_??gju!4{d@CP9zu2#6IpVMn(l8W^PzG8!It^)!#5jq355V`@j5klfl zh5OZ{VwX%(@wb7m*k_yDhkyfwaQ?8uYW)UvL?#J1Zr}q>*ydW}J$;JM7I22p0dS5G z5-%#`(rdgVlT`d`;47}#=CZV`3^?hr!aeT5>mq~d{0Qt{ZpS3I@Ny+FWo z!fU`w!aKlgLP&h4u&0Jpyq8HTB1Q?|D2#GZn?&?>ES~5vR zT?1cH-!_*K0SyUR0F4RR0Zj=Zv4z50{kdo%?U;*Sayx=O`FnWW+;17Gp8ZLaNi{vRt$BXj`#LI?q~6!x^1#9w8S#5o2& zah`4NGH&bwLO8!zVQYU0SR#`I{BGa_R@ml}_w$$Z2O*qatuUmY1gw!s0@fS&fDN{} z|L_zx5yJVc3fa3zz&4pAV5fl(*ln9@fPlXV;rxDu;XNhbfJ_o_*uV!Iwav{%z;Qx2 ze^TLTdkHutlLVYK@B!y-bLkLpk&pp!nGgc5DvWlLcugirylLPQZ`;bpl?xC^*X zcmQ}v2#HS=n)H^6r!q;!3j<&A$~LzV*Z7981@Mlr9q=C^Bu0uV6@@!WMP!+zBC3I} zh;Ez9i-4Gf{D9bmf`AVRAu+x}u9i}fKqje3Y~U-B+U7RnHhe_b21riW3HXE%5RP;6Q75!{;rErb?31tBT2^9c? z2_bQq!f)S8#c-LVVw8ce7-O4@gMe{_cz_=W2?0M6LgHkFeEK2xlT1=E)xcLwx6LKT zZJ0qw37ADl4VX;`iE|a+=;y^enWSQ&fv;F>n=68VrG#RD-w7oFD+nQRmBKRp%kiHw zNySSNv_8n~H#agkJy$2(ti( z2qE#PLT3F)Iwq4;oG|ber)+a`5O9VtA8?Ma2ylTA5-%%MY9$p{WRi+&2EO8kZSDX9 zZV?Ux?huXv?h!)bLxtG--Q$r=Qt{NlS3I}PokYM(!WqD8!g;`3LP-2iVNeIDh!D+J zM3(>M!B<4F&1J#+B^n_+AO;~9AQmAceyH%7en!QWNuEUl17DHIHkS%NSV;(J0LcjH z03Q=V;wK8{^lM*AnWQ4Mfv@Q}#UcxItK0-+RO5uin(JLsER1`Mw72nwABI7m`BSZz1AjANaB80@U3P0#q z!E!Q5MMVQ&QOP#f1h=6Ip*f%$p%tJ8AtcsT_@J#+)R9Rl>KpiqhPJtPxDAa75s=uF z5E;;%5E5G{+}7`-t!0vmwg$eUy=`tG0y+|w06G(X2XrNb#2yN3I!Q%OnWUnRfv@<^ zHdht_-xDeT1`sL%1`$HyP=)I2> zm@Jc2{A}PWrrGA=Bj6W8BEU>SQoyf-kT^$S+CZt8E0a_#Fz^+NY;(EsmRv%}3s^?T z4_HnJiGL`>(;Kx)CaG9s;49YICjZZi{okPeB1{BqB>V)}ObChF6lxBVitRE<#V!M1 zvBx%72-momPz11_Pz-R85E73lY|)>KqcTawKL)Cg3a~4&Xc?BwkXO z(oHHZ%On+74SdCQ+uU~uxJl>_xJ?)YxJw9$4-_)#-@6{lBo$8#e8n@{+%^1kzaWJ3 zuN4~VUx(kwBmwUYd_aWg_Ha_%$4G>5K8nJ9{R>T0nIs^Ffe(mfoBJDA5Qh-X$5Tkz zM*`x@Bms#Gd_WT0+&VzABnuObc+Jt+6 zx`c;-`h+KdhJ@#U#)MaZri8bE=7j$MEeVkZ_`BJf5CzbN5FOBt5DU?_*dyW+w9@~3U4RNd580Z4E*^aw%NnO73PeW^CM)E zcfn`_e}1fOE+*o}6XF0S5aIzQ5)uL?6OsU?5IzD-C8PjMC!_+*Afy4zBBTS%CS(B2 zA!G*3BV+?CAmjurBIE%qA$$o~MkoMSPACLeNhktXMJNVXO(+RiODF?aPbd%AK=>B0 ziBJWwg-{)^jZh1)gHRW+i_ieDhY;Qi`xG{el{d$JndHrJ$iTljj@afN;J3svLO6dy zVgCvVI4P3^oH6hL=WKJy@%Fz!NC~(^NDa6`2#MDe4(UI&xGs}a+%oVLcWiStaEge6tpKkGZ2)fw?E&uyodEw4x&k7`uxHi-5Sh>$5QXp^ zAR3`RAO>L&AQoXLAP!*!ATD7vAU)n@HOE%pa|g=peW%jpg7?_KuJO*{01vchyo}}hz=-Ehy|!f_z+Nu z5Fb#5kO)wXkQ7jZ@G+nk;S)d|!l!_GgwFsC2%iHQ5i$ar5V8Q85wZhX5OM)p5xxL8 zLOwuS!dHOygs%Y|3Eu!Z6T(a1P2t6Ac`tOAN!|;+4E%eck8Q3sKF_`*v;}-m=l~c% z=nNP{=mr=<=m{7`=mQu*=m!`@2$wllVa!~)?r}27bx$zx*FDiTR|QXeGNC$P3ZWKY zDxof5I-vnz2B9%v7NHqnHlZb84#5HD5!wM35IO=D5xM}D5V`}F5qbfZ6Z!&H621ql zA`AqqCJX_rB@73wCyWAYAdCfUBK!c@LYN5HM)(P^gD@4ai|`9z4`CKyFX1=9e!@J! zLBc}7VZsu?QNr(luex=avPdWcuCiy{nXW-BO zXPc{pxQH?Bd{sbXLJdF^LTx}aLOnnXLPJ0-LK8q7Lb$4U3iW=L%Zx9RTxKEzf0;>a zbK~&qB^hA?;A6rhKnlVXKuW?iz^8=J`I*Ao8FCS6Ws-|XZ{RN?qiyaM0x}cA`D_Zq zr%J#~oXBb519IDD59d`#uu9H>p_GD%`7 z1D{yNHn$N02h7QWs>WvXW*}^ zfo*ORZd@b6RzMTN4nQ-)Za@pdUO+3t0e~YM2DBv{1GFcc0CXgr26QHz19T-^1av1{ z0rVt<=iWzQ{1~|zePxoH@x6h+83Sx{7w`>l5Fwl&s?c?v1Pqf&0!AA6fYG+Ok$5@A z62<_=6UGB35JKW4h3Wbi{mC*(#m@%5Vw!Dk1)k(DgjIl?skh;vOcHR!zy}<&&Ar2u{D%+$i6;q> z0jCKe@ti_3{iShUCaJh&;47}!=4RtbUM0*0Tqi65+$4m=I|?=akczu9NyP&LU-8H` zmmL952)O{y2wwnR5JKW>g{wbF#T%KV;=O^dh!D#j?upwFiO>h|0ihotDj_7sP>7%( zpD|^UiZ}+oBCc(2Ij%82;SWGU!fHTbLP$)ekZ_Y!d?b@pq%iOmDQ$Cy5%4MD7$6Pd z1RyOTB&Jt5GDj*h$Rrh+4SYpb+gu5JDalSK4ai9-2gpqbiFp+w=s$}2QYNV=VBjkX z+UBm{P5U+B8lVW_CZH%GB$iM(q&KRhOj1$Cz*m&B&7Hw*s6aRm_?B=9P?-=Ct0^QK zEfv*el8RaezM_t8Za1#69$_z_0pS3k5g{ZtRTwc!Dw@e86)g>XMQhvK76h~*YzMR> zgn*6;%hyU`Cz&L%tAS7KZkrp3XWf$!&i7GBpuau($|M2b8~A_$wz;7Q7(@u?hbq+5 z@2taQl7Nv0K47$MZVCd%5~cyh6J`J=5JKW4g;`UiVzNw9@w0)im}Z+Bh@a$N2txof z3Bv)u5<=n}g$(*}GFK+4SYY5Q7TM<7BVY-k6JQykD_}VxB>tf=Rev|El1VDo82E~H zwz(Dv_=^zEZ&FyHUl2FTBmvtDe83LdTru3oU4)W=J%loVy@Zf>K;gLl3>=h6DvlWV ziet99BX~dlLpTmNNjM2OO$dqS6jtfi;`1^|#U%q@am6bw< zB;HYob3iKY$|MyJ41C2S+uY=VzTyetXTUSUbifNjNPMl(c$ZYXkx44v8~BO{vF+g^ z2#7=|2Kazb5)hRT5@RUTJ1rG4Ws-_G2EHP$ZLZKD|19DYiU1N4iUAT6LSiz7cZa0n zBblTkg@La~X`9=GYy6b36_AFo1CW*w64NW>JSr6#WRi-^2EHPzZSEWbvJ)->auTip zauY&gUWH*hq~c4Nq@sX+xr(14H@(1;Kcn=0%$FBQ#X zl8TlFzM{2lt{2`fZ3uka-Nh$RZ^8pWU&3QR zKSD?xpwRrdR1B0!Dux*Niea|7*SHNM2=4%+2odls#t=f{c!h8D=i&#Mq++6hub6C` zTZP0agf)Pvg!O>wgpfE>;jG@MSu#n*Zw9_%u5Io)Zo_=SE5Jg+TfkyMNL;4y$!@9m zT_&kmY2YhX+2+dP8dno40M-&J0oD^j;zots`=nx%Oj5Dcz*lUy&GkdTPQn1dZo*)| z--M93Ut#$_QgJ{gsW@!lD~{UcV&TO+PWTXTf)F2YiVzadDy%y!73XA6f@D*8X za~%+njnEm8gU}6-ix3jOP?&W}D)P!C75NQ(#aFhu+z2Q{$O|Y;$Pf625E6?kB-59> zgiKOV+Q3(owat}6KzTx0Kt)0YKqW#*tg4XVq*PRsNh)d@_=?)Lxl{p8(nto&(wwLSiR{^5>+YvrJOa&A?am zu+25cHTEL30`wuY0enXYiTxES@0W@JGD*c?179)JHa8mAIGivJFp@99> zA{FChl8PS{h6|)U|#T?t*bp*^K+yX2h z+yyKmgv6x^SM?pWOeU#VVc;wNu+3$}o&J-M1+a#Y9k7lN5;rLHzaSMGWs-_52EJmO zZEg?(b`XXFb`eGZ_7FniK7~L2mWur{NyQ-pUvb1X*A}2J$Pc(gCGsB7FEiiIEk?pOuOaWRi+#2EHPOZLTg}s#t^u zfH;K4fVhN^m_VWGHmOJ`lT;)z@D<5yb1`v^9~0sLQV`++QW8R9YK1v_r6P??QjyNU zSERSi^*}&ILT^B3LI}vFkXpYKWtT}3a~b%=Jhr(H@T~I^q5<*|LcmuFmGwPcP$o$% zY~T~WvCXx@B^4ut^CcBVZI*yiGD$#L10PV{Hg^qQS1S^30xA(gKvjjrdfTeWB#AW* zd}3|eTt{3|T|yT?eL@Imq!3sCj@4KuNo;1|6IwJ zqfAoK#lTl|v(4o~Ko3GV-&^5dslLYiL@B#g8bHfoZkPyxfQK%3has)S2CJ7i} z-~&e4<|+;G|J+~e2{Qn{6GGxjg@4{l#UC?Zs03U*yipc;1uBj;0)n0;2a?&UQ~#GQz|aWBo+S}_=;<`xu^)ZL5KmkMTiZ! zLkNlY6;`~GiU%@D#bX0s@zgf=90AV>uK+IzZvn3fA@QBUy(?1jUM8uC7&m~gh-{nN zg7-@l!gfG3!Y)7zLP(6QaQ>Q9#F0rV;u-jg1h%=G2uMV@14u%+4@gD`iOCh(y_Sj; zGD$@$17DHaHWvYJ$74>X$A0wav;S)e3!l!^H zgpk-=q4`y*Xd#nSv^MY+ZESPL@vd)2I0@)LI0NWJ2#H-4x?PrvZZb(lPXk}k+cviZ z0euO-1NsqG0{Rm|;vj|k@1$a|Oj0q-z*mg0&1JyH!ze;#z!*X{z&JukoS<-7zaIQ3 zlT=JL@D)>RbNz6qrxFGLrV|DOW)MQ+uL?Q!JMC%GDpncziq*Ecu?Sd8_yMqy3UUn(xh zBo&tpe8s=Exkd=MMraDSL1+QEMF@#^6&~r0x+jxVJT&kXk8N``5b%^x8}OV^5Ac!@ z65lBFx+@iLWs-{j417hz`1Wv71Vkp307M~_21Fx-#Fz?+^^-Q1Oj7Zofv<>Xo12b+ z1caG@M1pAoJC(h)*p28HilNJU1O zq#}!fugGSbJB4e^K{yM@MYsUSLkNjqD)f&d|0E}$Oj7Zcfv+fJo4bQgpu&W3zNkXa zXcACNCJ88M-~&qA=H?=xEFqk)pinTn1XPqs0xBE$fU35+r3k1_2}r-l7PJiK48CX?id0N5>5aP6HWt;5<=oX3ab)G#R-|D z;w!$j?fsZ4T1jIA&0SRn#zu*cI5yJVT3J>+iEtyObklerrd}5pHgn(3pa6XMf zPyKQGOeP8V+`tE9u+4per;v#d&SzB^8$|-L$s_?e4SYau+uRShf-eZ+d_INZA4))e znIxc~fe-lFHunSpMF`=1F@==+p;ufc2`FXY1IpOuwj-b%A)K$M@KB$^w=zjU6$2ko z%{Dg)0W}EWd~Jn-i6o$oOcGGvzy~z6%{9WqO$mi?SDO<;Kr2G{BW)CB=r5 z=Dxvw|BVpN&r_(PpDFWYlEg&@K46J$t{bjk86lisp-@~uc~{CL0e>3!fHk(cLkL($ z2`P~X<^e1|cOcJoqzy}<#&E>~EI7A5Nk1BN3 z7y6h?5^%!62b{9aHN+L1Av6J;BQytGAcVxr3iI@5{)$Xeam~P2+_25PK)@}+Yrq}C zJHS0cNPMWULw^ZBl1VC_8u*Imwz(*{4KE4N0j~+M0B;E)@jr$B@uVU`LSGSC{+9<| z5ydta7Xi@-2>>w&i2<<)A@M_ng7Kvyu1xYQ5*YZ3M7Ft)5RinB0+5W53h*%@Bz~f> zL%;5%lu0U58~BRPY;%`!r_&Lx0@4$105TFnVitu6`jsrJOj41m0L=*@v6aI0 zY*Nu$CaGv^;49kO<~rcv&V(+2?t~tI-h@7YeuVD<0||owLkYtGBMGAbV+rE`6A0nD zClSJxP9cOVokj>(I)f0d^jAW-(m8~1rSl2lN*58rl`bWOD_yQoCY9Xb6*9>kUS;6# z@M_!K8a%w7@E2ecVKZPGVLM0XIS2IbBB$FgYG4P4eY;)1^a4bS>KwLsR zKte(yKvF_7KypF~Kq^AGh%|&yn~o4_GY~>;W$d7Eqqh0Z@_98BmGP z4N!&96HtxN2T+614^WE`o>^Umn-k=zju`9zfkOiW|5O{<=0@Y;CWLW-W`qfV7KBNF zR)i@4N0=mJNx$MuN5ULHXTp3yS3-CyJrr_el;_ren161)4g7QKYnvN{ zhx-wR0{Rn100#bFZTACbQ?>tpe3FEOgoHFnlEfGik|aq;l5izs{+u!An17u)BP2RG!7Q}%k1>=Eff+FAZyy_MbCZW)o11+qGCW(&##F9<3C^8^)vmj#u9g@P);tAeV)5B%QTaXB>71RaZ6VwAX2Yw!XaRgHXbJ2Wv<7|{F3>${qr|EEonX6buJm z6^sCu2u1?03q}FU1*3sC1!I6!g0aBcf^ooFK^%BbFdo<-C;~ndOaL|uih)lAlYni4 z$-w7=DZp2PslXn=G+@7AI`D&F25?9)6ZlCm3pgs64g4yY1C)vfhtpi(G{HQetYAKH zhF}43mS7=JRj>%CDOe1gCs+bpC|C;A7c2uV5iAE9304421S^4L!7AW#!D^tTU=47k zU@g#AunxFJupa0j*Z^EF*a&nMYyxf+YzDduwg9&XwgSBb+kig_wgdeHJAf3yP9RON z3kV5z16hJSz#ze1AXl&txI?fXhzSk=cM1*y!vu$by9I}Vk%A+@7{O8CLBTN~E=Z{E z&sh@$rGSZo(!i5~GQc!JSzxB1Jn+1r0x(BV5qMEh8JI7q0=y!q3M>*-2mUIk0W1~N z1pX$d4XhB<0sbyX1Xc^`0`Caw0qX?yf%gRsfQ^ENz(;~cz!pJc;8Q^ouw9T0d?9EK z>=Lv9z816u_6k}9-wE0P2Lx?_!-96e&w}>AF+m65l!p~-0Hp<;fYSw?f%1Z`z?p(> zKxIL9;A}w;pt_(ZaIT;iP+QOkIA72gs4M6PTqNiZG!P5`E)}E!jRhG%Q$Z%sT#yA^ zA&3C21=+w=f?S}TARp)`hyphVVnA2HVBjXf5TJ)(7;vj#IM7Eh0=P{u66h}&1*8f_ z0|NzP0P_z*+ec$#fgHg&AYTv%3IyYU!Ga=Ss9*vxTu=<$BbWq?5=;i}7fb=h3Z?=N z38n$#1=E2?1v7wR!A#(B!7N~kU^eiSU=A={Fc)}MFb|j|m=F9}umG4VSO~l%SOhE( zEC&7}SOP2-ECpT@ECZGamIH4HRsbsnD}lEJtAI6v)xf)gHNbkoTHpi0I$)DvJ@Bz$ z1F%)F5!fNv1bivj4D1$c0lpDz1@;NH0pAO@0|x~=fFA`rfnNl>fCN2t+zp&6*aMUi z>;=jR_5l?H`+-V=13)#wL7;}<5Kv2S7`Q-i1gIxC3N#cP11=LJoa5tlg`hOh zN>B!9BPa`8EhrDP7gPYQ6I28`2`U3!1XX};f~vsHg6cp|K@Fg{peE2)P#d^iPzM+w zNCYwkb%C&;9*`}l54hXTODw!%zkArP$E=M!1oxqheJb*UvXg*Af@I()L37}!pat-& zpe0aBk04qDrwQ5sWd&`4GX(8`ih}mQS%MBgRY6DK96=|brl2!$o}ep`DCh=UDCiE< z7xVxw5%dHa33>rd1bu*HL0{lU;xlokOo{M$N)MBGJ)#_SwLq&1h`R< z4Rjae0=EeAfnI_r@FzhGa4YUk3-5O{OR$d~mJIU{EWzPE6}e5>BY^&bkwB_o6p$ep z4Ga{F0V0C2K#pJ>kS~Y>1%mN_>-VD;CO0qx8LWj~>>(J)B%g{5RrX|HxL^w48hFY= zEV;D#7j>Tq!k_6Lf);1^RHVPMX9B5$SwMzhHZV{y2Z#vf0y%GW| zh6)w|!v%|hdjv~>QG%tw{eoq{Siy4OA;Ah@ykI5Z=I<>FU)DDhI%#q+p=&$@6S~%? zB2OrL9WYg}9(Y=?0hl4!2s|g)1k4s}23`WHoEAy__Dd@Aypva13+1l55r z1vP-(f||fLg4%%F=J^)N*D!1NiN}LAT-QU;iF!U2nX2siz|(>Tzzjh{;5k7fV78z! z@PZ%-m?uaEUKTV577AJbuL@cMO9ZWf*9C2W<$|`rn}T-0DnWbTZ9xZMt)L_Do}d%3 zLC_g+Gkl|kwvEhwU#OkZ-9s?tJ$x$isTN$MiJ3Iv2-04%1`<1;57%SKfxCXwl@J(&AuJ&pl@AD9} zxZkHD-zob5a6oVn_=n&Sa9D5{_*rlSI3_p>oT97eF`%>{;auO%(*>n~@`BR9nSwGv zWkFfsY(aUTx}XAZuAm}NTTmG|Ur+_8E2s)wB&ZHF5YzzNl-IIw>jAS@tLx~m<004w zi9QuMSJ`!e+Jbt(`GWdDT|oojB0)o-fuIp^sh}~?SdauX6(j@A1FLkh6>Vv;erg{9ziBBN{|KIFNgqR1=+wuf?Qy{ zARl;C5Cw__G2n5*U|@=12=J6(7%*Kh9C%hR0+=Nj3H(_w3YaSx4ZI{611u1X1^yx! z2P_uEf!74%fn|as;0?h9V5OiKcuOz|SRObVj4rNF6z zWk4Cha-f`G1yDh-5~w6t1ym8N2C50x05t?_fm(ufKpnw)-~z!0pq^kOaIs($&`_`$ zxJ46;uI63#tMS2&x0)1T}z%1vP;pL2ckMK^InJ*7YOBAB*+As39^6|f(Xz`kPWmE&$twy}rNN?jcxDJA5i~ow9cVodmmpE`r@aH^Cm@X2D*dr(hr8I`O@Q znVn3p?o^3`9)eyS@~Ox$WgiCa790Ua3XTHz3623{1PQhLHXjs}0^)+wz$1b(zyv{A zV4|QrFj-Imcv4Uim?o$UJR_(A%oJ1wo)=UH<_Ky4FA8b`^98kmR|Iu{MS?`&uY$V3 zQb9f7Z-V;33PA(l?}CQFYC$959YJGYogfK#UyuxJ6f_4u60`ue2wDQ43R(l(1#N&Y z1Z{y`f_A{yg7&~(K?mSFK}X<#pcC*9L1*BwpeyjRpc`;Z&>c8sTyR^|11K%%37jtI z1(X-`0nQZk1u6^r0cQ*P1JwlsfO7?DKy5(=aK0cDs4K_4$un3qUSPVQRSOQEJECrqwECXfwsl~^}ri~4ZuplM&K>MCSZ+VGw`lp3$R|W z75G4~4cH{u4ty-w0c;iQ1U?h&0(J;?178aE0J{Zyfo}x+fPI4f!1sa!z(K)5;77qB z;E3Qb@QdIGkf86Fjsm9&jsax^3AKIvQBF__s30f}R1%Z{stC#g)db~%8iEQyEkQ+~ zj-WDdfuIUdPf!)OSWq2kD5wEkCa4J{32Fn)1a*KGf<&N|pf2Eo!iy|?HpxVZ@9GQR z1|EVav7t{zK2UZeV3VLR@Ub8X*eXZ{J`*$tb_iMkUkX|Ry9KR*Zv<_CeS)^Y_kwo7 zK|y=qM?nYRh@d0zi=Y#b@JJ9RbOufpbOp)?x&h?`-GK^%9zZ2QPoRpR7f?;m2dE+F z3)B+y1L_F+0~ZJe0QCfEz{P?LprIfWxJ-}*BncuwGeI`cLXZoz5#$3`3!=bvf*8;# z0P|mk7z}k$nIS+o!7$)v!Eg@~=Vd1Z|BLig&Iq3q=`9!u^c9Q(ZWoLO1_;Ig>4LF9 zreGWp7Q}&U!FV7~Py|E;6M#ZNF)&0h3Ajrz85kj$0^BQ@3XB#^10E1e2gV6z01pdh z0!4yZz+-~hz$C#O;0eK8V5(pqFhejOcuueYctNlbm?u~SEEFsTUKK0>mI#&tuM3s| z%LU7UHw7zzRf3hk+k#cVTES}IJ;54agJ3Q2p3bq0J1>1oi1UrC3f}Oxmf?dE-!EWGJ!5*MgQE;x^3!Em{2b2};2hI>2 z04fR&0%r*h0aXQufpY{$fSQ7%zH@t4^?*MK z>I3}*4S*CuLm*Ai2nY!p1A_!fK&~JexI@q!hzVK%!vrmXy9KR*`vh%(F@m;0T+j}9 zM9?0XAm{*06m$e83pxQ$3OWPR1YLn=1l@p{g6_ccf*!yeK~LaCK`&swpbzkhpf9jU z&=2^lpg*uwFaY?QAPra{$N>H>$OKjkvVeC45n!Dl8+c!k3v3kR10M;Zz!pIa_*5_$ z*e)0Xd?6SH>=FzIz7~uC_6kM<-w8$m2Lz*me+b3^hXrGSp9SN9V}dwv%A>&vc05p8 zPz0PVm;jU)6a!}pCIOWNlYz4ZQ-JD%sld5{X+UkkbfB(a25^yJCeT1I3%FD;8)z(; z12h%P1)2-y0apm-1FZ!MfU5)xfp&sLz_o(KKu5t6;0D1`psQdRaFbv;&_l2SxK*$c z=p$GK+$LBJ^cSoFQUz;)48b~JpkO@^5o`c*1RH^T!6u+Uuo)OE*a8d{Yz2l3wgLAD zwgaOCJAnHIJAtu+UBE+v-N1Ok9^g^IUZ7a84|rU#ADALI06Zl)2uv3o0-hBd24)G4 z0Dl%71zr*y0~QDp>iGEMFM?9QVnJ!(H9;9*nV>B2hM+vKQcwYSOHdJ5Bd83#E2sjj z7gPm45L5>?32Fcz3u*#e1+{_C1a*KNf<$1qpf2!@pdPSKP#^eS&;U3nXbAi$XapP) zGzNYVBmoH%f-`P1aH^m=P)5)KC?{wMR1mZVDhb*ERRnE;YJzq^4MBULmY@SrN6-4F%LDHsfd1w(*r!7w0CFdT>q zMgWC^k-!kaDBv!^Xkdh33~;YtEHGLy4tPKi2gV7;0}l&|fFi*J;4wilFi9{8ctS84 zm@1e8JS~_C%n(cio)b(5W(#HjF9>D=^8~Yimj$zdg@QT2tAe?}62Uy+b-{dKxnKeC zreGnkO0WocTd){dD_8=&Cs+z>5G(^e6f6fm5v%~V304B13swO;1*?It1Z#jjg0;Z6 zf_1=t!Fu2a!3N-vU?cF8U=wguuo?JOumvdfSa6cw3X~OW1I`d^2Pz770A~qy0#yaO zfO7=9ftrFnz%3Dgr5j%0QZ+3J?-h1+oOyfkA>AK(3%B zaEG8a5EIk^?i3^f!vuAKy9M=tk%IcbeS!wS7(qkeK|v!RE@%uqB1i%z2$F$`g66a*Xb-$7=m5+YbOc@zbOQb==nO0sbOrt<=mxA1 zbO+p*UAI{HXs7x1E2%g*_Ir5<56bU8+j|rv#lLS+N zCj`@gseJ{Qylb_(hNUkU01djt)DZv_p3{enio4}!+PAwd%GlOP#5 zDrgS;DrfGX9?N^RRtY@a|9iMnu1Qid4kSBqM$2q zp`aU3U(g-6M9>3hBthjzY6`7^%{=lCF1Aw`LG~gvc z2CzVo3H(Kn1uPasfY$`sz%oHD@P;5CSSg4CZwX?+8o^-TUBM7wyD4 zCs$K|Qw39jGJ}|kg!FJ$D!46=WU?=d5 zU>7h`up4+@um_kU*bBIBerMsuMAPp^`g^DY9)f-!^r=V_Wgh~P1&4vl1xJ9Ef}_Bd zf@45iLBa*T6W0hz0UZRTf$IfjfX;%lz>R|PKzBg};1)qepqHRB@FzhPpr4>BkRqrK zqzP&OAwf+bOHdmaB&Y-A3KD@k1a*O!pdN6ipgu56&;Ynw&=43YXaw9RXbg-IBmoZ! zl7YCOIq-;}1u#L-5^xLbN(&DsnmF!T#g1(~1S_tcPet}CyFKuOpaXD7&=GJg-e945 zmf6He1(RJp1e@sQQ<3|W-5nSs=m9(^=n2FHy?{pqeSisqzQ9C5KVY(;Kk%er05DCE z20SCk0A>m@0XNjJg^a4^fWA$qs%#Iz*mHd<(qGy6K&l`LWC&uwK*3-jA{YYX2!;Xq zg5f}cU<5E&FcKIl7zGR$j0Wxzi~-zGAGGjUvDxo0=r_M{55d^S`&49}vWtM11rvaU zf@0uR!6aabU^4K!U<$BYFco-HFb!BGm=3%xm;tzfJZGVN2eVganNQ}w@cm~G!N^|l zsmNSqzXZ$|yaFr~yb3H9yap^4{0&$xcoSGDcner9cn4T3cn?@F_yE`__z2i6_ypK0 z_zc)C_yX7|_zKu9_y*W3_zu`F_yIU5_z^fP_!&4V_!UT~8|;Hq&6{>gX~F40S-}}V z1wkdCvfyl>s^A=;hM*QuTW~&*D7X-)C%71BAh;B0BxnL837P@T1y=wq1y=%Y3AP2? zqPqrgi>?FU7TxuLTXdZPx9DyJ+@k9axJ7ph;1*pkz%9Bz0dCRt1KgrZ0oB;$18|Ej2Dn9cC*T&{Fu*Oky8*Z8Mgnfp-3PcuHwJKv?m@sU zx;Wq#-6McobQ1u#=q3Vg(M<;2qI(i>i*6d=7Tq&|TXZu4x9FY++@hOfq4!nhy!V3n zWX^l@JOt;x`92kSS=kE#SN>JNl~`h-g87GJBd@8-G7mwE%YDjcziDA|A5(s%%D?3y zDF3!k`Ruh8%C`#E(>`}mN_E!s`-e&9x7wQaY-U0~5ewt53$|$=WP+o8*P*HFe zP(@G;s4h4cs3|xPs3W)laJ{MrxPDv=xPCMQTt6-YTtAWk*NqiT~^`n)As#luX zX>C54wS1L_V0NzdsYp9zUkh{)Tn}^-bOE{wZUVXsZUK4 z0$j(k0N1fWfa_Q;;5v2(;5rrqT*vMNT*ro4h_o^DcbEBO=5K_DVE#t>RODV|j|T1+ zj0GMP#DRweMZlwiV!&r;^zl|3JLS+EfJi(oPESHV)?b-{Ar4Z%v_?}F99+k&;gyMpz=`+|+Yhl0(($AYcE zr-JQ(8~Yc48|^N@jrME6jdm~KM*AJ$MtcBoqx}cqMtc}=qx~6hqdf+=(VkMz?>0Bu z(tsQ7>3|z;c?iqus0c|aY( z1wdWFML>PQB|t;LWk6#=Qy^JzInYAT3TQ333TP|1252w14(KSj0q88a5$Gnk8E})) z6L7=t4Y=X=1>Ep&2i))n0B-o{fE#`$;D#Rt-0-sjH~c)nbv+8W;THmK_(K3U{JSia zxyJ1J;pUTBD))E@cKy9R<+DdysMgJtzhC9YdI-vo^Qp)~${r6qBA5U?CYS^~E|>y5 zDVPR4Etmm3E0_g5FPHND-s~uA3pibu0^T9UBC=j^zTb zV|M_qV==&W>`uUSY#87=cDIFF?R<|gpUiyU>miuG`+O=gTGDFnaX}1aOLL!uEdKLzOlET z^Hk+!4?&Bs_*7(}vR?%j3tj`33jPKx7rY6$O{@Z3qi+MQ(Y1hU^gX~ey1~NSKbd}i zU_P0>waG)!@6A3H`B>Roflme7fzJgyfiDHS0k?^70N3a~z%}|k;2J#$xJG}pFvgyn z4x3M=-#>c@`u&SfMUE-^l={CZUm9>FPPb5GA2^gXpG=EqcnDfN)2AX8m3*>>g>*)-@_4GNw^>jAidinz3dO8nqJ$)H) zJzWU6p1x|Kr9ILXn@?tjU-J;m@asMmS*Gka09Sq`;7Yt@p=TG<;%ZfS$3xKKyFL|J zr|kCuSAHYlN_=EtVJp+(W>xvbL(t-JL9O`w*b4sgDpF5otC5#Sna0Jugk1ze+z0oQ0#3(xm6{Z2NYOusMp z5cK;BpNh0p_LV>z!PP)J!L>jK!S#UKL}$P?dL!T(?GCs`ZvkARy)4YNYq_`iWcuCL zL(uPjJ{7rL*#m%7K?V>KWC5S49pR{2+R|_3@i}*1z05bE3icHI;>F>d&dlUco|c?ed^={^-HtL!s?3W7>NWx?4% zRlzwx4M8oSw%~jqQE(wpPjE5NKyWG0NYDgG5;Oyv3$6fK3a$j&2(AX&39bd)>~sX& zeB1!I`REF``M3#i^U(uv^KmQS=A#eb=HoWN%}0O0^)wZ5^N|6#`4|Ye`G^2+K5_sz zANdw~^)!p)4)e(@j+lpFaSZmU$eqd_2HYhW0o)@P1>7eX13VxY2RtMg4?H5606Zp` z1UxR70z4_020Sg80l1Mp2e`4!2HaR)0NhyS0d6cW18yt}0XLRc0XLQVciKw~M4+4QSK83iuuSXz*Erp?NX=HEH8c3y7icSY*D>BtS4LTTB*FL163R0~Fs8xG~B|Gvy#^`b(q8SvmxVrn#+ zI@HZ(byY8Cr@N&8?B=PUFfAu9qtI+PE0modivF&H7X=Lz78b_Kn28z~DkzShQIMY% z&K=UYFc!`(j#utzmQt=+Znx%!@8}Rtj}<>we967V4I-_pCnP*#-gh-VHK8beaYiU7 zuOQ{laDGZgD3qTQ&do?M+e;6b9!JA@DalDGNsaS!2Ns)?R;&N4W^zhXU$f zZC?4G)ogKmn-{p6H=J+B+2Z&(&2gC$%S#E~qUN9q=MGHqhj~gkH^uCelx8iCcj0o^ z(C}cw>K$(=D>KC$0)65|k zHNCUD`PyhG!}Rjn)M!RZ$7pI{MoNcJEEF8<|1|H4q+JHSYb3;R7 zc4wO@NY6@XT4FK3^Ix~pti)ujbFJ9lA{51&p0qC+;oQ8z$+jo?sTt<1S#qJgdqNw@ z|9%_ECDzMs*NFY;KvBH?NgD}H7AXaxfjJ>_MX{$(bL_{mf<<2#EG#=Zx2wMXUo~2? zr(gch8f|raQGWHmYP4C2bI-2-Rin+5j-Qr(c8%I^^8eZ4!it|=Sm z7sVT>SATqAO)*#2=1mz;p}ij0zQNohoM~Um+m{>c%cb_Ew0)^=UmDn#ruO9``_j?A z++<(QwJ*)>OJ)1g+P<7_U)tH1tL)1u_T^Y7^Kz~I)YZORVP6{Cm%8@leEV{?c_~VZ zpPrGOX#xlncKu}P#Lw)IcV}*PUTTJoDhd=z#H-{*!vn)6Oia;Pr7#*cL36xZERo4XUdeq-NzYC#C@_mJGRXGJ?`N~0(g&sG4KW!HW+mTV9IuuY9+;JF{%=>=@fjZ* zKO=1JwQ@}$q{UsBX7)^)TdH>6%;mxi%`CCt&LFNhw~0A_HTk0(gT~?fp}A?r5gT2* z7%V9JZv@xAs*R`Pb%WDnQ1$oWv@dBx==deaOP(}>_7!Z@96$GX1%hT@z{bh(TUEdu zVJC*kO%x_4+AujW2$K^DlU?2)hS0uo`;+o`9W`$ES*)N*Qd4uQU?OC*Z+$5nKfBw4 zCch7#o0JTneHHtAYIkAzqblYo)Ain$w-ItYNgervO_&qTi2<^&XAk+f+3n_*;g7cS z+hEpLv$1FV>XTOcSD~kC#zoP8wBhW6SWd}XE+5zz$FDf)R!>&v-`!ep<6t+$o!-CR z+VAW5DYC!!{3m-PCnrA|GPi~1F4Sz&oB(`18!g5go^+5Uf<<4${#@{%EHB*xM40<<9S1RPgnTdUFSJ~Q z-Q>5?r5)y-QFEmT?wstI*4MJXOY*zw_qCE!3Ulq{q+|{IyQ7oW2nJ}bt0imL-xZy_ zXU&|VL`}D zYIbHeYdwsLzeRh3NN z?K&_Q6~ATs1DSX=jX5V=klrLOqafX9+TU%&t1I)4!mtTvVyV%X&$Yif@W+t7b|$5y z6^65ekVdhOktD4FU&a2Y!0(omRcUH=fAEyoSF*nw@JG;O;qxS3Zk{$ic7L)ZTjHTnN*>9)gdKMA{ z2fwM-EG1*83An@QcDUv@O?LNvChTcqo^7NI%8TZPQ+;Xs{c*|C z&9o*8nwW=c#~+0H()QcqlDn!z>87?DHkQi>XJ(oem6z))*{_gGMlZqbX-b|6NrUGv z_Tj4@!1xOGTf~x6rd_XxHF=rlgryezLvLTr-gm|?IzI5;U)-%Q2o7z7Z<~9{|N04RR|KyP?4@-T6Hnyat|K?$*Z^%ZQH1vOX;K{=| z-|#bLdi)MCS?OKws!J|-X#LD<4^5;!!{%{P1!JurcS0H&oq4l?k$JPRj(M|ji+Qtwh zE4FFXUVY7*y^5MQd%ZMo_QGi1?8VN!*~^!CvzH_DX0I>i&0Z?Zn?3cLH+vp8Z}tRj z-t3vzyxDW9d9!Co^JdR@bpPLf;O4qp7_ZDZ@Xm0?Ky#mFo>w%`AI{ii8nj;&uSBWT z!Xf6-hKc{1WaZ_AnnVk8%{Q`5?Dx4%O!N@^KO--_phlE=+6u F{{VZ_=~@5) literal 5666346 zcmc${3A`jnS|6zUXkD#anvq7O9v$71y58BZyEW6&Xr$JRM(0SHLnCQw@>ONM%J-@& zOO;ix`$=jH7>3bM1K8BSg7Gc}Y{PGt!`v`{F^f6YUIX@mm%|tg*xW4GhFz9p|Nr`OwXVYDqL3^hf*3k9s763wx{Av$FHoZ;1nf|8jb;70}wugh8tZ%l0UZcO+!LUHk zEz(fY)2sCMIzBeBho)v30q+IPsy|AT5i2ALT*WJS!lIB_vp$Cyx;Tj3Y`Z(GNIvsDb=~wFgwpu4}m3)ld zuGGAq7q1&T)$0bE$ZdT7I$WFX{Q@*18ty}CqOTQ%elsG zu+<>Jt}d@GAH{#x9w>dN9n{f$39!=$F|mvF50`fRrtd}Aj0FvW4z8&*dab7YOMi(3yd>niMB-h-V$}c2yEs8hp!=oH9>#62l~Wbc>Uc(0{`LC;`8n!xN8^X|x1=VChmsaGL z;o!qF&3%llmSVsUW&`G)FR9av?uyT7A~YZSgR9lFtJv#$&;)Vw2wsgpmxKb#_$N>4 zWu0yic7xvD@afWp(IfwdPW0f?QXRw-mAArh3%lD1BAn0G625x4?zMvE-l-?r zJ-_?l%JT99tN7m<{@3-l`c1FH}w+2E?} zXlcjmcx5jrZ*yLzvp2Xd*`Z3<;n`;U;lY8nx4Y?eD}KAC)^-rggXiXGbSCIk8$3Bz zD`?*ihQqIZ5-8S-5cE2@V%PfRmU=_Z2I-E z>sM;suu}`qw1-dD1~-HCgzXwmbS1)h@{Ep@~$BZE2G1IP0Q7d6AJP%Yt#poO0S zQ605U7{vEG&CshwN291&KI3oJo8cLS`;GOr`sUh7ebujTtXAu5tLt@d^F-BK+Bmkp zx>jAS`YZK~m3qxvU)k6^c5<~^;YgJ}k8L^H1qVMM17eQ29NK0)FN*wLbabm3ZhC4& zb-EPQeEnE;d2{`Qw|=}$_jXYwPD!GW!n+BV!sQvey^Fj0kNbGg#Iid-vAkbMfV4ndu^||hoh^g{dyti zO8jFbzU6c5O})m)4fjU3_<*G7A5_}1W-xUt=Db#T4JZJ!#vBW?@Y)n>ouSAurXtKj%G z*biUdIo1Q*W*0ZZ{+*(ZUk$uw(&pHt zHlXyhj|;z+hHy(ptN!?QnRiAfS>`+T?V|zRnXF)6V25)1X@Ccx#RcQ_!V!#IJNmP9 z_XoGe!Y7119{AV#Adq_C*FZUM_nK$Cy@iQ{X>)=nH>T|c&tTlucB z&%msOgu$WpzvS~1tH=5M>WLE@>#M8BPM*N$@8IY4_~@1Srw0ig%ueA6<6aL@X?b~l zZT;l(+Um*GV=E_4E@ym65jB7W&FjPZ^4RLe34DEQBC)YRDj`K6ua0<_)9DBIqnB$2P>uVcpE64EN zt&ZWKCj`~>N5_vXudbX}-B?{ciH}_PgqFcu^-KU&!&=>m)nm&i@bSjlNlx<)$8i2x zoV`F@$xZ#~Dt2*o9bc`kV@p;}Zs60~ou67tY~xqG!P^|2wtR3p+@#Io0;Pvo-<@1t*;rdU4!T+<9$d(4dV3I6?ZHlN96x#D z692b2Mrngxr4|LuFCWJ!$2ZhBF5Gv$b}ekB<_5eUJ8@#=*s%@H&9%{@N>HG(*0f6c zJHCzseS&P@CdULJmZ!eJ#FjTUFuxOAl8X?du-h9Q=lJ@{`iYejz&nqJ>tIC`E+P>J ztr@PZZLA*$5wCzrW{gL}6m>`YE3ge5sTI&M$5V*s06uQ9ES8A9T0MDueeEQ0f^XFR z#@~RYL9oZIV(%5y&6CHEod5#YR){{eSMev5Lm@y0uaA7RvbK7B8JzGKG$wp>J#ij? zG=8jBm%(qr=r=YL!qeSbVXY5|KUp~r5EwMB268e$zb*xRl-Sl**N&Y4$6G#ra*ey0 zUNaTl*4Xq{j~_pAeEB4HW&QZrClRhmFcU1>p40O26Kf|{){n0pKZ!Z@MJ3RNr;4zx zo?67^LA&OkEq8H>a6=@9CLBe`U=_-t0d!%-1`)?X~<$WjMI2a;EEbVyjg7 z-OUiXMf6a)?VpK%9Y)@uM3uz0(Lp%y>%rMrl7WDG#a`I&^*8WF`&AG z?dn2`xZ-4MuYRoO@4WXT9~ur0O9$8~y6p;-{>r8oLE~FmUctPee?oHKtBAeuisnln zseE|-V>>UM4l(bn4_8HPHXpt8WcTb#?>)Nm(O|!i)+)WOSM|+D_1D^s)4|c#9$7!L z&lK1BQ9HtYAAh*A^4n@ekU1sH9SeTvycley#t+>8E!#U)tyUldo#&dZ6VKIQYdD%U{)v(Aagb=Ly`sPNe6Y3pWZ&b)9FecL`m`o<9}SYg-6|et z58F(|e0k>6B6c0XFqE+O;ffD}TyS-8aT;S9pV;QNkUm1v3 zHaKmARE82Uj2JtKrt!o^^2Qq_Sc~c2Sf#RXSpPvb^*{+s!9Vp3Out9ogf8C1Nj-c> zP;uyi(jokBQH5~>9uzbJ*4KS<_Qx_3BHmd6BVP{l3K~pO|Q14 zj9?nryO+F&4k*mLPq`lopu}M;lDYr?w|KRxHduUbN&Rz)_N^tE=)?T?Df#z3${CYd z`Wttbg1Xu&bc1uLY_a^8txbEiboV*pX^dhT>!ql-*Yr;vf(vCUXu~4cd9YMoKGyYH z?>h9*hw1Pry@S8b0l@rw-vdKQuDP zW(dbm>%r2B8YQNS6iJ*pbH=PjQ7lbwwIxlMd8-Ba#ZcAEHkHlp)FI3ZR=@DfsY5VL zb@w_wzjm|*C!zPQQYWbP`d$Ahkf8sm`_gO>L9z4OLc;G}lGWhECa7-ki0tRgLM>ZzDN zje!G(WewW;cG-NZo8ph{zu$zo(dqXp9(3SgzdyLz@ANk-DbGpc1Lt5mYdpjM!hZo< zD2SG}M@&Yc;8HEqz{dW9cpyu6WA2xr8}Zgl)bl}0(@go1P`sn~glcPAu zRdDA6Pf-+aZ?UC6cw5X=6Eld7E{JVCe@ppq25V8nTRpaM^bvpc!>=!``_I*$=x=;% z?}?>jAA4W)QhW3M*766M&$ga?Zo9Yf(T|<{zz237IfWag+J$z9bAnR@-=EhG+k36B z&%tj{hHI$KEy&VvmQ=)mef~SKuwAd&$M%5^8taW?g9~wJhtGW3uyLYsa{CLg@%Z=P zT40%uMG%c~C^kL^Up4kt_1$P3-~M9V_fl=VA2vQ`zHdC(c$fM2;9@w8Jvg)D*1_fK zmrA|W8$J_vy9_LQs}Fey1n0Mh@$XkCffVviAZo;=@^>`!;x4zyUO}o72+D89n*;Wy zH@aciJ6C?gw4Hkcwybjr_!2G*nzx`|KDMR2 zvf5%bd@G*RftClCR9D&42Nx?DJsI^f&Pp|He*@4Me{@w8_PdZnqkbKtwW809lw?0R zh+*IxPzasHo^=JZujAG#o)A?Z-(K{upbX`jUEEr zD6CQA99-V-)sLPy3Qu@4!GqeeN6Q@msX&0i4fowABUIp}tL}6{Bg$KayKA>y2ft1w+*CA+PrE^? z^^Wn@N<>*&2I6stZ2-bkf`HorqXj+@_J~86GPQ33PFsi{);?dU0EuTE#1hZ;>du}L z1|v9jaou69=D=Lnz%`{@hcU&1&1l3VGq^VCmhcS&zVYtHsTklj#zSA(L<|Q`P%_q4 zJHFpZVg};rHC7vI2G-yvAXO14j(ZFK8LipjMu>+v0QIusL)C$Fn4DSlE6zar*XtDO zz}=y9_A2$JhhT+d7jcb1Sca=rV|;KyXD?awm2Cvj0AgoH#fBg0qzD*{qF6j!O($@z@ zWQ}?)FU^Yo8VJzbTFG};s75{01jPq>&8Pyd%%G3t*DLsI6~x^uwQ1}@Xd-D^Pb-U1i1;Hr|mKZi^q-I!<;A4V1cWJ-9(`INx z+()JpfotPV+`ijh-(~7^DC_!nBLT?5RAATeh@o*rhEc#$y1n(Qo;b+c1gyj#$m}{H z8G#OFF>Tv5F5b5>AjmdX&*%pO!5(Mkxsr<r8t1sukaYBx|( zF(W%7?U2^RZijfS^p0JtzNdAJb`e@qAbKLKD|nsGu4X)i#v_gQ#{BylB@p&V0OE{G zczff+jgOdqjW-%^ntz+{DS(CtP$)cUl<=$3tL<_%46cJPxq}+#8ed>wHs0TOBL4RW z8_&o8ezftJ`S(EP3U=T1M&~-XQ3il$Rq1!&!}1|DC^1rBu8rNsnHZ3ChSZ<}4&eHf zU_nTK<|@8kfs>nv8wJ-E?<&(QGfBkgq-pzglF}RekLfI7TlS8d79EEMKWtA^!&~uJ z(nc}6B7#{mhL++Ll}Q_Ad8_>e4b$~_2(@ffm7&J3rZEv6aD|pyE~B8@3fj3Sfex;(~-9?_IGfr)d>axM6c=|Y_tbpKVCaM6}6+jy~p}i z-R7KN(C#a583bdv^C9?vdw*_lyVVs89XbqzRG3WRAkaN-uzF|{BBH(U>Gf7a1ovqb z_7JFLwP3d#i-jea{Gj1jJw>fma`f<{Zyq@BJmX_7f!jc7f8O6ZeYSI0VuX&A-cS|` z*bV#LHtZz~9D?ai>}yLem+!m(;g8?-#<{~s-hBC$S6_MM)upWmO836<%3b%|d*ofE zrKQqc_mo;b4B#cOmC_m9#(oL%2rikL26h0ZiKYAQJ5ai>^t{4yRMNb?R^pzP>Ig3= zd8KE-!^-Hzj_*0GA$p;f0bxSShTR+JJ)@ zhNgpjENhNRZ#?$w(=VunpDVo>&*&3kNBjhgOTC87RH&rJua^$QSe5zk!^85)17;Y5 zTo6apD^;7YU6xMi<&@Q*T;O3wdjXlmru6aDT%mH5D3jOs6mFZru3y4T)po(;b68{1 z3_=ShAjlle3~I9U*eIpom*HvZ?!BN1>XBwM22}>_oc5}X!$er=)I;iPPy-Lg;Uh=h zrQn>i2}S@03|l7#-lcYXsq`r1*G7!q^pT+1EN%Lw z4(+X=2hfljy4Ub}r8B^T?s)(!1B>Z5RiAbVzV}VlTTu{<{aCjmS(wv&uy1aRDZRaftuApGEG`)bZJKpOC1Ul^`%gcA`lzwd zMTZ_%dr!zfBd5$sVitGa>6)?K`Ta6&)z@A^JU11>;_DUgtb$ijTLOb)_>r0pC=vQO zt!o@kf#*pu8(}cPqac{TaByLQ@hFye@5c|{Te{!5oA~+OBZtfP9l7_20t;S(9o5V+ z2VRP;azjT+<;WOxSv4>Zz9581WRfgiel^)WS^48(A3LFGENR>dd)5Xh0!%d~2)Ei~ zL?Z8fVNYn$8j~b(IO$>z5%(C!pd3+lIehOc?R$^dm{v3fD1=&8e;gL%3nqy?Zjy9+ z^UabyarskE)dtG1(#sc^WttNXbEpJ5`=*vu?)0O^Ve9jBU(QB&nqVL*-E)sU*yub6 z-`XUBu9oxi>Z@tcV`Rf``TxegA76s-Rq0+zVM*f_rvB(7xQx{DxhXbxI8wUDK9h=w z4JtEVUE}(wF+96 z4j(Cm zPNX0j6vxM^93dm-@GdV={0CE2x4b=D-cR~y;q=&8*@jJ3&Y7HONKo7eF!1NqRg4Rj zUS5p8MfS#7kYReeVNg>M8b_Il!&Y_u;&P>y7|+uh80l@ArVhQ*K9oAvRxeD?`l}q_ z_Vy1iKTtZlBGjLf2&|qE28N9vZ2V9^Rx-pTA!|kIhcP~1tc=fzt|Cbz45Ne?4Rcup zV^yLOh(;$CINHjzoqTXXxs-sAk+jMY+gcKpMyoB#Lv7o1j5;J!Fe(e8ER-}arX;O$ zAw&k6r%3GB16wH*t%WuyCOlYL)@@21qQgk}i*F7K>Z#H*k34<4^zPG7 zKk~#=?|J00$DTj^!V3=#<0;&je62lPJs+tHgBzZD^wB-rJ>xb_n@b3$f~OOg8(i_VBILoY?0q>@l$5%kQ_! z7l;*TB4(utgMuE z1NmLgPi%LICrBDKwxv-;*&A%@sbhDQZ!(_xLGml52PEzgf%W#J#h74i+8FDkJf>iS zU8X!^KN9p@oj{@uJf?tKli%qSr+Y|p^O8@mwY%WD2mL&Gz6@4?BQ`g&mJ zf#p=D`o8yce_Z(;r1RxCO4=S7A3K%wJ-GAmlt^Dk+6$R! z#42LK26sFQfdlLGF~it^O>F^!lVl=a^)wQp{U+{R>`;`jitEfE4$g4Uw2dD$)8anY z@yrvn3@$THTYXkGW56zSvF^r=Id26{nxSVLb1j;TR25EhIRp_#2VA-z*%HoGs+K9 z+sUWbRFMdo4)Tq`UdOCw$PXFK2dm6$hmn29-@~z~sa+pjiii<-E4fPbudt5QfNvqt z^HN@@2#*B!qUaN}Rq*I#jQXJok*T+gN3T|B(qXLcl|4iUdNrguLSVv0Z{ zHF|Tk(-EWjxO3WoyH@qd!om$~-473UvP04N9Asx4q5c+D74E>@q|f2?NrNIrm1L^h z4sUzAo*b9L1Kmo?X2)_J)2IfaA!=CO;X5U>UIhgA+i{+mN+;7X60ysFaF^~}bg74Q ze=W6<^}rJZLjW^oOvYNgr#IqUgU9&I4rHWu4ZZ~JgGFSLX;Hq`>*GI7M~GX`Y=0rx z3#F19l4dYL8upcw`C`9)6znAKc1zMt4`=+lgY#FCZdWJWR0x!FoSjXY|7!@Y0gZ$E zA^>_f0dX(^fsW+&P9QWZfa#~(Z%)3I01I;my%jIy)}%{|(YuJ*N&*B7QY@UI2t`Lu zt9Xx17i*dlA*H>`ru~{^9C79iF5^Y>er#B>*0(2}sHiY*0qljYWiXv&*%tESZW8AK zk=G1(Qvyq^9qO7APzKj5^`q|6CK96?0n<>DPb_rBaOIn8<8Mqu@>MAr2&AftY=Ez+ zY-XF+_cYO6iI^JqdAorIh~l(K zc$;;fC7JJtsf32z0nbTkQfd{PRh;&U>nNF9Jly!*HAUqj+?F z6sL8=VQf}<%Q#eVx&bMQKPFvoGF^4W7R0SU-tSs#eVgeKv|*KltQe!l77lJTy>Ryf z1bmfons36}Z#E@(v<$1`AE>s5hpAabhK1#$c#@w-mTB7@a){xl3SN6Au$t zToHK}S;Kn#DtS6`5E7Yxd|+LF!>C(H2T2N|(m)~9i1Ki>YT!x$VL}{o^+OCq^2zHJ z^=i~5w7h4*Ld_l|Z;;l&n6-Ca-{^1>n-S@|ZUw0PgJ=xgjYv$?eMHj&8^t`Lu(^x4 zJcWzx`(cepBsjIdT6S0Q_7o8$!X-BOG`=X_>c$txpEmw(^6Qr*|NPRV!zYtpzbyIZ zr;>lZmHhM5$!A|4|2nuKu5>`1TuX`x4L1gH*T!d(>3(J7tIUyUd_@BHJ7Zf_<2#b? zzANeQ&ys(BcjJ3v5Z{}0{=RsS!Oh9Z=G+n<5ceLuBcls;L`kf1Plgs4CcOPg=-%;6 zx4#U3#TLlzPo@5PEA`i>@mFH-+y3(OpM&(DpTVEoU%~%qqaV$s=HG)G6K9e(Gpc(q zfsP7e2z>z?_s)R05Y?ls2bO4fgDPny0i6sHuFyVjwO^&$x9Y9YhMQCaBIsDHiWjM_ z1oo8)Yr9@`F_&$$hgmRi((KpZX4MYPN+Tzt&&_pg4S!H|fwWYSurzXm!;CQRv6kA! z%5;f;z~Tg-Kca~S7uMO51O*BJhDC~MXvZ|l_;uC-fi9vIVmQ%<)*7UbR=6lsAZZ9! zPU@}^94c{%>_lu8)*_^xKlAV#+0Kd+6I_}OQ4?AN`7T5$bD>oCb(h`;udQ^ScAw`q8Yb}4ordS zcm5mrA5$h`Ft;c$+)fsgkT7|*xz=O^r8Q-?R>mO^C5pM(mzf~M?jrHj@wwNuWA~^b z!9jTe49;XO(gm!WbgB)|@p&G|x+F#n3{@)8C8NmB8S}Nd=mwK#ox})A9UEm|+YEWh z#Z%gThDPdV`5&{88{!-h*sNFzLsX_DQzA(s(Mfwqb=itdG%=hTV>p6#C1@n~P~2*4 zQQBmhRO%r8(`W*ZrG2gF?K)_5e`cqr8t;mpN- zkF76vlD^x|5fLA>v5}-9js==06A0Q&_>pNq=6d<==+y@kD!nP50B&@v9D z>DKYZ-D9dPGGGirK^+vB`SlkY2r+^j&S;^Ahp4FrA|6!{p3)X*v0Xy8BEm^ZT*q#J z@DK(I!R`CT8{mMFT5|4ODgHMCed_8H1q&(DC1tcG4}G8nYX=m#Qr-8P2xRk>9~RcG zYJ(14!~@~~bW1ODqOh&Kdiaeu^gq>|c<$U0Mj~sG#}iV(D{`% ztl{8xVdk2HSN?DY0Mq@sImQhJ*zVhJ}Cju|dwu{j!XIwrvf_{mZ0 zyMBLjaFuuhRc%CAf1W&_fsynL>R$vH^zy+aa0{_`&NGem!PSyJQjTrXmp-Sh)285Q zewYMs;H2(l;!`ZA_WLL8xB6;f}+dPxWMS9GJ;-Vm8c*JfkDu!Qqpkn)$9KW9Co|K`apG7Y7#W98yT&O%v3-P|<6Jcm zh%89g$qV-yZj79Jo%8^4dTAGqVOXhXHe{A1{oQrf$f*_5Dv%UQa-q=fu8Ni=-OFB$ z@i#DwJ+B6`YmqIb{@_Gakvuhm-Gt0>-82F`<8WH1!a3Wda#k7TL{TykA>h~s6t8vR zLd}FauM1Y(7#}HcA=VX!jRY*D#_u5eJ9$VxUei4o4G1b74&LROCYhFNhWs4?D#Fp) z;6RVKzLv-wl8A#n#EmE$w*_rzIC!rM#sp|*a^v7(7mxxpPl~5eXgIhrrg9WrhI_bH zp{p8IVw}G(ok18hG+R_+Ry?YPbNAS^bC56uLpaXkYo7`iTJ81}Pa6(iaZStazhp|( zOs~@gJKY1t>6uf73JDa#?^Yn`JfOCyzBYgGLWj19 z;|B75)-`m2LjV&27i45jOU8b`3u1gzyVemmmV-8Gc_8{j-P{@XgS8}T z-g_rhn~Kxj%gsKtLHch{fXksAIHeE}zEkumKrFj7&bX;O-h0;);>NOZ!|He)Lm-*O z_QosOLG;Mcg7S9B#;4V{+}!e1W#T*32=xC;)pzwTkTgq(i#~H@eE93$YZG`e3vE#kl+Ag{<-A1~y1QWtXc)WT4HS{$W(uEZ(OTD0O?s@05| zq#>fA-0Hv8FAogXzb9fftogCZmj7Rsj7-g%E}I77IuiJLaq z612@nB9pzQW?>@-J^UI8mYnmf8CnS!3~Uhegg{|Q8kiaj#zxUjMdYTQ^h z|ANH^v8Etd@$BQmSao4sNm=J8ysBc88rshd*vu3VsZhTH)@A5(nBjzB2b0vt8L{=E`Q(&bh zP3k7FG1fz{C!1Q9AnM{7J2{Ciq}ZL2*qwAP>oaWsmcgVZkgn?R^$Z7}$ep&K%-kuP zj>br61PV9LQ5T{Mrd*X}gdwvSon(JNl)$rKkW8J7a9^u+2YI&;3doZ{Tww5Wgq%7c z?^py>yJn@EaFNppm9K>vWVm3ZHrjM7!~WAu=9fQ$;3*frMklUv@IgdF!kxyShJyzz z4#N;VLUI{P_08ct1tzZ6ts*-h zcR6VoyxzP<L2D<0EfyoLG_8OlTM_Xtu|AuqA3 zc}`vlzgnZ6by{hXS0hYwDjgxi%xrU#rO6n=PLo1~@xa*E{uI`5^GM1}q5xyZn5m=O zot3Z-W{5~J?5gvAwsd3H;j@}yfI()Q)22~?vi+bPc38)Z8p3dJ$0*lSdFP2TI~>$< zd78x-TvN9<)qdWk%p(R$#bZ>Ez7ZRrBX6XI_S})u-GMY_uI|>TPvdlMDK%m^c*Zqs zEY7(Gi5p|gT73a$9H+c%!tzuxLo!20SG46VtmOXb4ypa-p|o8|xKR=I%*=0O%?$^5?RjCOjxqRr z7YtJjonWd6yvrFZaw0|}$2r55SZK>>kosuu(v2D;_)Fw+6}W28I5xdUGd*{We4(*S>$$zOmO_oO^p($84~#fz*MCjXP~4_(-Uem z%@u9gaMEi5GJ$-}H#PV&0@iq|CFvUrtRf*G^N6V6j#tXyJq&kO$!QR+gklTBK|ZOO zHa_B@BV%C$d-Gs%hKw@p6=vi|HQ&Ck909qg zP`%37a{dFsHm?`LbZo}Xg&+4s*i#n?E6Oy-3M;oe$b!rS7h#)$bWX=(aq(N5dbI@Z zR0|3MgYT!$r~wV?oz}e5=01rzgMA5?v6D#`9I(z(MYHn;P`t597^>1K90lirg^$G7 zo9K-yJ#)G*UKhIR1X#mjS}ViB%lT7QFGlB2 zRdu5U3Y?LC$Q5AyVHflQOcs|4Or4o-kQ}p;)r>-@^`26FoZPCwRI2?hUxI=iKv5EN zP>fiuPN`1ZO`8(c?Ws^^_tBxb)+S}B(EBQiY@`*Jl?zo8rQ2#~jpE!p+XPUBt|Oeo zo^EP zgBmtYePpx`OV_g)7x?+RT_nGs++*6x{$7>_GQnQraU#g$P9bRmC?-+E=^iL}Ic;{~ zK&-OXsF5Ybx}8m8`<@!Pw}yjN7k(X9REr5@=!g^G1I|2@kYI7M4BQrABy@796>44c zhFDBtXf~|)Oo1wrR**Mu+dyUYEh9si0!L!&w6lPg;=BmPmzba!Ff@-7b1GH0FEqLa|{9vM7Mr6~s$5fRB`p^as%wyP@V*afi zH#gbHO=B;5YGOit3V5}hl2-wW7v#h=@4UqdfZ-`riJ!Xu;ou5U(N%>zlOK}JWaH1r z@9(%tC!9p8Qj6Otrv0F6Wm_M3*j^|fpy)LNVBm+wyx{B<6Rw1x zj!=_>fDD4nrJT(K_La1Z#b2BLj5lyar|hYhAK(r|^e3_^IYS6VPG)9tW!E-X&1KkW zT6jMqL%PbdP}}Wg#t#+J_b1Y8y&4__Vt6qXT&lNpWF2zRy7p6xoe>AZnLuu~%7qux z#-LlBG~`rX^Cgya57IjQpH5SobtYVMvYHXU3_=xISlnJFvRQp-{xC7osF0*@rtMrA z%-%=mENm&y?p*FMhQq@fXK+-X4S@ChXixk52?q;16?e zf>)m>)6%QZH-bp{b(|jT0;`LZ{oSeL?|W%VaIU(!W>-h)vqTITf}~82_sHc?kVqT^ zBHSwb=HRtsx0c6@K1Ku`nUXDsIQQK?+iAv?;e6f~-)y9njCrii%c;O#(+a68<*;JR zaPWeQgB8SeS~ar$70&4ugo;Ey*a4L$U~c^pyc^cy!ntXKP@)QDQlQEY$DW>X){%2q zB&EsB%Qa`4j>g=CJt&g-;XPKwWbO!7Uk2(|@gNt*$VbwIZWg9xqC_eZS+!@^sX-K= zS@QjKOhf)nXsvM~e8AlfE`%L*vcrAjyz8NrE1Yl4*hkw;(SuPvQA3jd%wQY^&=@E) z>MS9k>GQsym(!AiUFf%(5oQLP8%mwQ-*vn5CdYoTz#(@o_FUS|X!I)v#s?B)*9OInkont8*BcJr;Uqg0)7T6nzR)mu zac*~HDtP)PF>;M2_h$$j1x~om&0)1c2`r8kHmB5D03yx!OwgzWOz)iKR+qQ2)cWUP z;b6Jv!2_;+aTpO)xXEyEr|NE$IYk`i4{a_hqGRRB`nJqx^@TZFm*~j9Xs5lrT6i*y zs6N)>; zsc+hQy_CI$cDLBUp(eQ>Ylk_vPxI;B4q*&8CifDdFg}V=2dFKLBr!!6WA-Ft#>N`* zh5O0YP(ylj*zeK&>SWz%To%AKfKgt)QjY2KryqIj>C;7wdzM`88YP8)tFKA~0;xFV z16y))0kzwaIFA(W3|~|63(PVO?tb2Qq`EE>7TI<&7aM^yR1^RoC;v`Y6eyaCr@2s; z&D;`ST)Snj0D)*o&|sOW{18oxf#-s?`a)`|qonoX;NvoZAn6p3t!X%?Y#DXyNUzCo zJ5GFdQ8I>{66&y@OG5V9an8}&O@uMpHM4tAJ0LbOqH$J#Bh1f~;_?N>$!%ae9^dzh zQ_yCeDI>{%*j6rL^LH(E5YpXsA@L-#B?(VbCjMX(mkV;PaPRQ{qRdu?Fq3PnfHl{6 zHg8KrvPNA;D5`M3noo|JZ&{e^%CcRC5(774qn+UNAl1UejAzT*aUh4HbGx5a=tc|B zi@fS!h-ARbyhQ*X0ydsHCo|1INA^jc?AUk1-pS?J6fUNMsFz}x?JqLu3>FKBUhV(^ zXSiqH!tM5QwHe@G%?_uo;M^BWk16vRp2w&mbdcpWgF4^n?a)&@>wOZvMnkVI{^-b4 zYDT@54psmQkZ@!k_Tk`T`K)cC7y*b<$UhBPT0KKzNb^1yIi`D1703`3;{*y9l(-R+ ze;3&?9q<6mX_1#C5))b#UD9h78z2=7AiP@b7j0Hb;VAMLLmp?f?|iE-*d+Ws zEC?Z1&wJI##sH=;ZvH^MSiFd)^0HW-d2t3Syo;_Rrw#Yvl6(Mt#B_~GB>3Uc3ZK>B zF*Ro}x3y>&Az94`AAuo}rBu}84^I81pxTkLKjojo$weX5zCt7g0`X=FIhPRHI0rJT zq$hG9(KC{wo?4BRpefYpcd;0U)it)X7x7=(oZGo+HdWi5VU-aV?8B~UIZ)60ruY+b(*`-qzExpM{PSYuk*O`&5NbL zf$&*Z9!1E>p)(9TQ-!viX|QaTq@XyDW_%^MC?;;i`!ilEzAv0tb4;o(Kyf4AJ~@LY zg>mcDbGJBs>AB$A6fs(iQY(QO5lgu=spJE5Lpph6F1?7aSJhUQzB+JIRB>DWo`X%i z+R;MH^yzi#jbIhX}38+5T4pK#4-f0t8E?* zj=AvXxF^$uHyq?w4@!UGBoh0&Om~OX4v#M2zJjZ8tFNm5IiqLOU%3WJ_u#u387e|S z5z2_j+VMCG%WrzE&6wpcy4ac~Z=6De#8Wi}mCtCzP7)3AN^=1LJo`pSpA1Q8##=ug zW@~A7PT^^v<84kfEYa$~3^xVFR2SE|C0;{9v8rL3VYGDgOzsk9sAsFV~ zpw#-(b-}8+bJZ4g*J-oYWGwGIb71`RySDm#BZdzaZsw1YJSUSsQqmV374P~&u0m?H zu#73$s4c%|7)vbgl52`qvr30FbdWuvv6x;3*6u$Z_N!l2h-H&}H-x=1*Su4kXm>6L zFw32C?c9EvqG^L38^9D-s}UZK(@v3UgLpJb;Ro z=hOUz9C9=@h6TTz`e6YkS%+IWz|G(z)Rq;w?pE7uj4f)h<_{zo;`Iu=JjyV5@deu? znijS96;;xg^Kj60(Uy(WrSuoMdywwVvIyoCG-Hu0QU=~oaPDxXBeTjz-qBMrL{6o< z$mYNRq_WfE!q(cQf}0IGt&&AxXnKzeeFeay@+vgO3d42evBK=_)ZzUZyK1-EkNz6Y zH|l<|1i%^I)@f*me7;O-_NVwpYTw=_>JXqn6P|!XDjJ^egq4ei>=Q18XCGo|DYqB# z3Wc}J>g$po=Z^WwjTut5SCElg&MIbT5%Y@E1-c*dO&e+@pk!#R*+J2l37-GhYKEIC za3{a2jv1*q37|X(QstSV;j}RLg)>;H-+t!-Q8!o~kn*C&e}$8lBxP znMLv{M!x)KU2M5nwE99GtoNb@ikM+*r%kiaQ6;gXHU9#NyQ;a`oXzsdikv)qlz|8R zdUZIsE4CdZ6&GL@MeSWl;? zYV3J)d8uGDN>5j`Qd3lIW&H~tcIzdC&Nw4bgqp~_b8)`HjF;`-b4q~7wgLbq2~tO@VCz!h4r<1I9Ahe)I0tTTOk#3yL8Yz)Lj)_& zmnDB7pZ+EnO*T=Pe+LVU1=5o)fizbQj(ir1$@d2<%d%^=sdJ%v@ikZ6g(#)LKQq+Q zTuGUC(`w3XIi+Z;{C^N_o%qR}20c}?C0H4HPhKX9l{P1J<=te-6{=oB&9Hw=00nzh z+-V+rEm3twTu7!?$y)4^XUrgKmDEk4lA;dzSe{s9KrJFH5l}mCOH|ZjDuPpj$R#mS zdPU0_wwvB5L8WgV*MUs;K)SYik1O9aXo>4Cu&Hxy^@Z$51DEgOKK3^=DEXd_1!n%i zZ4U980RvjBo_B_cGB7$NlV;;5IXQV>j4pz`xZ9$e8ox8-qL-5!fqE%3r_^ zD33knTTRkblsiPadzo*E4hM&YtVffvmzG!bOY7uC|{Dr8my_9`ssn_axm>PJhf$idzTyX^pFHj>&Ssf2|%j2iDfbYT?Z#0Y`ogT-Sxwt4VZY*mXaZ>Unv6Z)x=FI0HAu+K4jofI?z0W`A z=^jWh#OY%t$ul%@ih;I(05@K5U|!ZqRKq|%)!m7}x?G8??`$^1>JA>@#fj;+gF50o zou0Kx2u$in=4I_D5m#mAF?ELpM@@)n0bKFfVC38)iWDxqSk6ry@X?GUbKvpCVfPnj zP%jn{M5)9Ir~f2Z)vlq^YePk(ig_u+z&8O>S*1SX?C*Cun6@&WiI234F?st3Ke9qM zTr*2nn!|KU=0aCecC`E&n${KJI>#w_*y;<3Nj)CxG=s!)l?!6rs8rb&!lb)#bfk0H zxiVod>_H!H`K?$KObYBL%!ZO_(C&wQmL%%=n1+O?ImO0FsKPw(S*Sk!L?qng+eU@=yd^F9Ad_I82bRVS>71fwO?01VZ-pqnG z*3@dh-_2E8O<}COX~=_+eePq}d$aVcW0j`&`d(!hk5YJByg>5vV9hCak$mb9nU3Y% zu)7Jd+yt3SXS3#!HxZB{@<@T}-ozKwe9TH7{T1V(y1t!H?@SlFh!->UJ2hLmlxq-F z9Ft>VSa=n*$ZJv4`;3fQY!bel_FH?~a~Bh{#Ujow9uDnx$^~roErWl62~wMI2DDE! zVI`cJ46tl^A=}M02-q7D`x%Y1A<6#}X9Ei1@AQqo!6}JbOLn2hYA!2E(NdWsxf#!- zpQTxmj3Pr4oZzZ3Y6(>cskk&F-mI~UJQr`H*@YN;|I;NplsH{gDNXq%uo;E{`cix1oZViQIDdNS8RzJ9Z(8!Ai`=Z{a!VCm%@pYb*$&=v58WiYi|_1U24VX<2i(`g|Y6WRnqM7-vf z4_izwmPQn3>Z$T- zsIt;NA1+Utc#kIb0TlCK6sh_@UEH9&{9ORMl|`&`#sOAD zm>&{YMQ93NqAQX&X&rj!*T(^R#7ld6R&)#7Q?}P zS>(1vQJNuw#JaYHI0O0Zv#fNMX(X{~2$mvJqkYoT0iA_pC*wvi5(iAG0?87>9Uje%kltFQ43WE@I6pV_a zfba;+Bjgs$+G&-uE*dAoEwx0w4wE0BGK(%D?klHLqwrCS8hFB-S0uu+#BE98%RDRD z%+;UMgy2MqeN(5qOT9R#HMNSWVrW(Qp*)FVV(^N99#rA9F2x(ZFOr|dGg+W0d^qh8 zuUiEf5<@P{ZGql!b9%eTnIqdWtit9=X{~5qLyHcl&9EKh&PLbB;Fd!32j6l=s2bkn z+A-6H?FsO`>j_J>09NNTk<4WmrI0Zv;+OrH>5M4SF;*EbXT}+2uEoWTEI)>_yBT&+ zn|DrFLLU|MS2JP*3mi)cNif+L@!K;-rOc+OLYlV4ZZfFdx+k3IOWZb8x0QT6xlSNY z9a>s}k9}}z{{=8M#=2cE6C_n}lXO6*YQ#yo7S7+9D#ZFQU_{7`#t$i-W-Y$iYj_)E zt4%1v!{QQ~>L+5Dh8!NB;o#Qzt8^FzpJA1FuNk*oY3z$MYw;Q~$Qa)+`zn`cRIoFcypUQElP)1Fiy1{5rYy_idwWl+KG zV{Cm+dQ9J#uBD`Vlp~moYd*$w^8HMglWLGxKy)IUl#D14MP*pLx(k%>Oe~Gp>FzPR@1i=>#sIxaBLuZi ztATSiW5KiYvGOakL=nB#IySDw<{z=);Kuk`wbg7Rc8+XP&UjWc%&d#3k40}M#RtwAUuZM(;lLR&QSb!qugK;r z;yH4!jVI-bGb!^hG<2(>k6?J`iL+?OwOLj(Uwx{u@QhMQoHytMED5o2aJZrh)I4rb z9HA<2P-lHzdkbAlwA&d407Rp1zItx-h)6}On!cjK=T&Xr2!E`K;EbTY5J9dCHhM?W zm)3Q#s9N$qUXT^plzU}}!7(nC>hB^+F2ne!vm&KKtUn(qp z;9XmgBHna&76WOpdTqidoJF*v5+MrSM>DwZqrg@ZX+l;Kf$N|$eM4wU2EG5jP z{@`Xo(8@5h*sUmO!`BD%IfPBfE;OXDYih$Y?KB>tewV##tB+=j*LoOewD^pfX6O~Z2q@PYbaA2)D)=$FPY{tB)c;>5)GcIr%)M7sN;6{DtI3W zfD8vhB0gz8KWM=cY4hh|c^Az4?&7{r9i-GB86uwgxg6gvZtkLA5kXigBMrdu=3;Tz zX(diuc>1b$Atc?Sti?WTLbT(bsYH9NmJe~g8r#B?*E3RitMttQ_38}`EKKC(5dw^P zjcXopBfK8S7eG8}-Rn2wJI1N)PH?DAB8d|4@liG>f{?aQ6m6hPuLP?{)N4oDQ>ciNb%U|>DuVHv8-QXN~&pEacrip zcY=V0MiZgbP^(P>rhqD^a)fwOm~sg7c6;nh%D9a7Rqa`;MJtSP{Gx;;74VJ3K>?|B zaHn~F-$~Gxb5>2G2;oc`0MSE%3#X&SMxu*$>~>vvD?memTGO|;L zGxbNIlNyInWH3lv4INrO5beTO8ShlLDleXH&1$HcmxGwfb@YqBJ@tt$9zc4~u4NuWHj&A1DBcrUfFsXq$s zvQ2=)!CAHF0>^T^NCr`x5i43A?+rfyBHoa)ug9`OaucQ*uK@dz8E&cyQ6l0>N{19R zRmcg?VE6lS63xnz$M+UV)qKajXgy6}ivkN3Pt>d%H`v%)J>%;d4H!Kk(x5gT{@V&A zZQNb8C9~RrmeHAB1r-(*n9NgEFaaY|T#6hxV_GISPewosZNXJlXaS zhLt*_1JjtyT%p~~NLJ>datc&;#y+-$o)PMr2O9!`ED31Nidv}dxuoklmCm%9*SxAWx|5s#elS2hk^pzL<$Xk;*d z>w0iOv6_+p3N(~rnjrJ*n($^QT6j>xi&!<%6`sZOj^0qjOwLh;S<=RUYeIHAp0d(f zsxt&U*EiG~i|cf1Q3Xhawvet5EvgGy1OKY_@r(fjiyFC%E{|DQN69u@mX%tMWDwkG zECMHLJ}D z7ZD0cgwg!WXX)zN^OV^-U@LSF@vDP*fs4ba)y!=MXChjh)%K(!tUZzz^2~JLsZ7GnJvWl)|9Yux^IaBotGLv+qh2^bsQdI6z>3ob$ zk~(a|$wce}k$YhDUA|av!>$eoxHguR@G4jod0m)3oUXu$mSEfSGjd4w)el=9%FHkr zZL)mb84a|o98uV)rjj{PzsiFt910xjaBLM)8e?xjJ{_1h#al62s&a_>I`=f^6ED^Mq_Jlc(-<3-5n?;3EkLAU4-JNhFu=Mh%o{ zVlG*Jy4y5ly}OOz66ega53;s+=rHjj;>z^WJJfEReu@9j) zju^xj&g-DyZH3@Fq}C&{1)hC?$`^sBUur`iVdp_Bz)Dnfm@XE~L%zsdAH=9acx#0L z*!4B>^(FaE8JA6-0&AI%Q4pYwKw7swBkAWlzt$*ahT}srgf`F$qa{al=}O{^K`E0a z0_#*=GUs78jKMXiX~Vl&QDX~ky~PqrO%saKO&~rB*DR$)3<5AS^MM_dWI`%!2l9q9 zkkFDuT>!1-GQ`UwYH~JHNwIXzVWK9&QDF-*bwy=k)X8-g^xQWDKpB;5nGQD`BI!e(|6HKky=K*>gd)#~67t%*G=y!TOK z14iJo{-x{Jf?nxS7=B8RcfEeC^cZA##ekO{Rc#fvRa9FgZW|6dxwet%Z(vgj7qK>! zBaFp#KG;p&%&+9G!rUn?WT$wg>8RcA;9^B8E6$FjI#L*oh>^{br>e0`l@1@GTCTQP z>sN#vSNQU1d24we!5lYjj?*y!E?nxSvMQ0_W{##Px9js*jHK@*HbmG#xcRo-JU*Uj z+DCFZ!lyC>rG2%5xUq~7sTSgEe5e6aqpm#%0V3*wn(WBmjMVvzsAl^}xc13zS9O81 zu$CXV6|-MSC*D;@`STHLpv0Rb(!iM}o_k@Ucxx5c50#`zAKkU&y<8MqeOVtug|#@< z%v=SS9bhFiCb4W*L-{K=tU4zAj6A)4b^4654@~l!-q4^!ZFR_#4i7QjPZeS-Hzxc! zN%?MP;8?bBt>tOC?}uMCIEcKv9)g~b0~A(K>ChjZ8y+59uB;X1E_`s?-+wX6KVBmv zKY#j>$DTf2Zqk{MHocZP!TYnY zvSe3YH=q0|k)f}(aYQb~)gVm&7r4sh%ppMg>4LB3yQ}z})_EM`;ADlnxMxEqV&V;T z^Vt?x^l;{IdDTA+m>W6z@k}s$rC8tbsh4}q=RZ#*<$cbleiCVoaLng-@bhe(wNNA$ zA=F?Q{2ZZZ=DXXt`0V1k)A`@gMeAeyBxk8jHKS}`{Iy8))%S2fy;b91*%chk7l(<&%rER9JoClp z_(kT-*5eJ3&^`0jpI?NpbPeqBnT@>4Vm|t9F6WrwZ~UVS1E=};uQ|`mk2B00=Hn|# z!FuP$M|Q?8nNNR~qRqqc+;unl^`^o z|1WN>zNk6Ic;}>VkI2z@W#0m&(9JNH@>5+fh@UpwH~hpZ`tJH<1;@VyUKQUnmsz|iYn+5v z#h;ZqR<>PtL@6{gyn{5po~(K#>&WLZmdz7a4PY@wi?=?AX(b5_o;!`3&jDKCz`%j5=Ypbl@E6lY}FRLOU5@$7R zn~w$@;zp(H@bpr^XN0_nXjgK!*Ts!0Y(!e_=4bCTEudh$c0E>wSGwLSOJ>M#O3LSO z_7BqgCH9{9`3WUv3xNNX08Xiy+0b*wjPB zqRR5^geO+yDdDNl=;@OQeg^@HXMS3M$_y&d{+F3CXxWJbdaKA9e)bir)MS^+j1;e{3vIb#{>6Wx5TZg3BGUU<%&f~rgoIjW+J~ND^gAG ziwIC67NNI?r}~vkF&<#?+2Pyg=D&);L)4QbjPmJ|B;}@O*JDX(pT#5 zkO0IfG9z5|d2+S>J>oZyRTjdpc04KqJ2N+e7`tl!D?v-mkr^>De&zlkkujIh;ndZ8 zBd0u<%^SIbkMh=(0M!|BVO_<~%#9-KEBP8im1-U{PStfa{~V9UT&UQ-qJ7SJE~GYo zRsS(*VlG=}UD^L|Zd+$x-D`w87xEps!fz+D%u{6w@t*i9|30F1E+;s3rJtPJjWKq$ z{|>P`ml>z7`0pavxm-l)tNxn_SAr(8&+(X6J$^5bbx~FSOR*vCeY^FsPGZHuszX$}%3-PJJ zKE_o^!b>(;*fyB)jj~%Uf_sBRErDorfjlO(G&uEp6rPO1TLNN6U*k~H)0eaNhNHJy zPy#@`-(jb6$=BSI^@3l6yMiMj2u}9%pA!*Imo_bDBO{YD+bbSu9JU?G8IO~*5`3QHa=q`_l zjsL?WxUz+~f65QV(woo%iPA-wE;;RqiAGlC$u*b_rEb;9>^Sh!nY)fcAG6^w^2w}_Il5)Yx#&XtwrNCX3a8shx#T>6F za~qSEzK<&{I&MlJdW6Vz2KrhY)J4Zuvnn<(d)(keoPl3f|2%Li+xiS%DHoXk2dC)F zH=F<_9KSnz2uW`C1!$Q-MKu~Zvy%W#DxnM1kjtMHn|z;L!2K18Vped;nqML~XQ7h` z)~wTNWP;y8EY1v3YRL=4bA%|$&-DAkfcs9fuW#=k=d$Mkk`bRW%irWaJFC2m-u^CH zAMI0?x040*^#m;zfe{3Zel`K=$o#;cX&{Ec!pw1kch(Uw_Dtty8Zl7n)e9o_ zhzMswOF>YmTqlselaQP_Y{eiU5j=)<5x3sSsS3fWBF9T=;LFrrA-L%miSWmsUgWi0 zONy2gFeHMa)k`66h9$yd^lE9{4CgE)&j~5{r zN?G~~f|G2v(UYuca$kBy*oBU}c$w&TCXW|eCjeR4|5;*f`bcJo-Y7ay)m!l0GXg_~ zX#(soDfmr4Gn1Do*uR9jqBGsB5Yp^`Z2`DMfYYCJ{Z^B}s&YrCCk?>T*Yb6*Wo=Z-A$3uap+a`QF)KRh!aEw8@9^-WI`cC`Rm;$LuP)3aDSTp#L< zd>aqa^t?wwvUYNb6LX4dv2DY}eB#D3A`78=OMxv}>*JiEQ`nEc$_1%Ul`7jMP}`Xd zq%hRPQ1ew>wb;8yIBr2;Ng)DtE$h8`i*uX>nF-ilD9e5}^QtL0)2i3Ti@(Mya5)$5 zR3VCjQxCeUl2=bYd&ef!!GRm}x!W$Os z|IQo4sX0#w+k*KNw`vwlnE5K~+OvHRG2zTRop82seI?nupCDXus!g|dX2wZ|qX7PL zl9}@gEIQ$Y41P9~7f%99y>tqKxs{4y~+%LxFe(KiJI&)-PMvz*tUJ;q=DXjUG8>XMtN z6>Fc=ze{?UP>4qbh$jd3he@-u+=75R z!l*7F$XP@RfE*VoexF#KiKwE=DCY}jg_$ZbBpdZN+$g7!s^IRYU^4L~Xya*4&0-$p zjAs!EkS@X(KoSD@8A6S5(I?I-qZzaNKx!uy$BORpjwM5J;b5D<8 z5zD`umB`bO$H?V32!9r0Ov4``nBOH!aav#t5=iKL$ks?bdO`8Ki3j&> zlQ-3U$^{GT|4i7^9iVolFcaHnG+_ZW=>dy4er^cocfhS$-+-i>$WA)?S}1I~pS0O({tKR-RWq$LY`*?j_aE7y56C_vp*_--zKx_urgnY-)>(HK@${Nqes&)07vNeeve?(>u@$f@nUnTMgy$5WCZH7s4^Jv2 z6!Y`*I3snGSCUmI|h zvCiGUm#$@IR6J2ETtYWk7Z3x1K4n^hhmIGYFu^EiBXTtZg-i)1vj zZZM#&EDO9po)T<;|n;|S%pPZS`J!$%`zUH z3q-K+7~+eBIP0~b-jc(+7P9YGla0^1Ltx^p;tI2_0PS*zW}T;bHA6sN!+FknJVBQ> zzx>{LptBQ30U!5}XU7QJS*A6cC(H7OwQPmb~(9O zFWTreW9NAXnZvAtUIdl5tIynjqF^yAw~6|jsO4PM=AxU3!CChsHWYp>S3D~M6T99o z&4ZS)*v{*6HolenJFB4A>%#jY@P3EzW>tI@yp-a5AF=3G-K;k{oThoJeZ1P(HxsT~ zoUp#jg^Nr*yQ;!Zag*GfaU!TXBS|p(Z3H^|RO6Tvf!ZSi+~;SKsoJiikCFst-z!V< zmZ`o)1h}t;Nv4{rs_^^sLF!1og+G`NQte6%-%O-B!#M0B6S;)ys?qS11U)+m*oCyN zAV{~LV3MsGuj}wDWcTj-VcY1(C};Q~|7<5w0xSR!5?=U|%)LnJLv`f#7O*e%0Isd^sglPxc9VR+BR z?AJ|P*y2XwKpVnxzM7}2v9QgGpp+vjGa-(L7Rxs94zNxM{-21##qp;oK3o5u;v4WH0Pl;<3IkO6)Zd!P>y9mqPb-j@DZIXdwRNSbwb8 z68EcPU|$Yp)3LnSL~=ePUH#UwEb%M3e|#b?TH5c1F+g(Ve$%mxIvrL<`fD5}{~|MA z7aykKwcuqo??=m;o+10lXN=Pf)=p#Z-*K-#z5wjOs2EgDF!etp@}dQdvf~92QZqN< z;q#I4=yzdZuBFIhn?u(YH?%zaE!%b#$I8EDCf~Le7I(&1kx%kMuZ;H`H*XPS0)sG| z6nwu*+YWz-1i1(@;j@`=1j>3IApRCHN+)dYA$LbcxtUnYm$WC}B~crZNFd|$SF`z9>K=a@U6moZI9)^G59eO`u)jKlW# zxXMKkCL$Zh*2yvaEM3c3E(mY|B9ZFNuC}RKXg2iM#c4q>Am_Lp?1H ztMC)|D($e%>QAz~dlpNFHM|!n16|62@=x-#OREK25bJfRMJ?Y;#h`p=*eIYEOuFqy^g73`(MZj7k7g3$S>Sb=%aJR#$1xv%t#7L2KE|Ee%^w0GlmXPjD1Q*svkW=9R;l)* z9%>nzo1|jwxI&PB%00_hna$UejK00Ax#7o%#KnxUyRFCg%VI1;LRoTAs3Tsyn%7}i zZN=N&f*cbzSG48-n?5h2t?JSKWTB%$Xi{r4qkV$(n6KMSiAgisnqJ#?6}u@X91Q_$ zEGLKiIBdpd*5|meS91^AghP!`#tmffiyFji(GM+hC1z)u9K@YiY)8>dhOU|kZvCc( zKsTAz_Y~u56VAOGcEWzo@PJnqIELBiFCmulIpaYz2U>bDbXJM(3MCCj&2%K+muED4CB+L`>sM9whs9;wzXl zt717Siz!xi{BGOVZkxArjq^rf5TEu}xt_U$j|t!(bN0^SlQR$itXVys7W$QhFVFND z>B$vmH5moSR)`e#AE{gA`{t$@z`6iS+=Y4HP3A&3Z1E?Ft3?fB_~I=*@rxS7FvjbN zuKd`C$u@=P>bGrK@(r$K-ttx(RR-}aoPFMf(t<@CbS_80|1`npTP`QVSyyRGDgVv2 zi(vWPn4$bX1V3+vLhzcQ{C%Qn-m+DY01} z8+ZWoJtXN|f_&XB;Nd`F#w~xd>y^FQb_iB1PhdcTAZVJStBW`*w=3AZ^*v@ZIHU}(hm=%Nu1abJ#qNTTfJ~%MO zjKZd=3h-yV+ZKIrTi%XeiFRuYJgB6LCp^q0FPeNMfD;c-YP0Z{@VqYirh|{nhn}EW z#AiPr7hJ_bfCCi!8C8GbJZUi6)-P7g0#uf5f8dYWH+ zfI}~urg(Go;*{{dB zz5>RR$%gB1LR3ly`3(+Iz+^VjAUnuH2y~3p2_nt;j!4?(H_-si6>AAKj*uVlAo=D+ zw*@|Ic-w*~!u^&PO8GQ+g_!fU+y_wj5MFb+(Fx2P3{y+$R4zTP6%q^fzhyzW+D zqwjy`Q28g;PUFwrFS|1zyo{)O`I3~sK4d4-g^BMV%njilxhh6A8 zdw8A%WSgJWrGVEE2Uf^-_h1CvPr#A8Qs;FQtWdkt@Sx9hZOnLar=d5ubhs>jAF9v;pnU zIcC14aE38q0)=!bdskUBp-^RLYCYvMWNnMwI}X;@H{uP%W4^F710LhF>;H{N%#T{1 zeyE1;?V`xADUW{lq7PidI^DsdH?3iv?!V>A@@2v4F&Qii-M`FLEpp40CRc^URL1*n z94}v^ntoxeaMwqfRc#ah?;I{af_?hoI;QsjZ&3nVq}*U^Ep>C;K6~?d=by*_w|zVB zf_&TeEUVOZ9&LySE4#i9XZ{G!e7^B;_ObhT=GoMD_jdv9UwSBSOzIB==H zkxR$A0w)ai?Xcf$2C_5n;zII+xh5T>r}MPGo#5xagj&!Is*R>8)cG|;Q-0XqWJ|De zE&nm;D&OZY8GLP~mreLuVkzGo5f?no-Rrn#x!>-3yC`*Jl>}-MU-@d1E?k;F7V4K! z&XNc9DtHRF)$dtR?H?xk@=0LQ;hO$gej*6`1um(ZD|6X(Q}fpar3hzUJ>gtNArZbB zYy*&yFXHO@iyc`%L_R+FcXIGWE<1DNLqzyjEO6P5k*O@{!ao&6ruF@ZZ^+=OMHtv+ zGro@JDBt#lJFpi-J-$MdPX$R|CRVEY8Zy|wCJGie7~ak9RzqK>VYj)m{0Qr5S5^(R zfAwmPldmUDJx(7LJaid~`>E?Lb|@3kaG2+$0Dn#PdLp`LfS5w$%4*T@BOGmU3$x3h zeEnj#tL4LNu8r8gM{>`XuBN376aq*pU;P2cTHJoAv67XoEEb6z%@E>maj1nNkx{e4 zpMGw!{0W(B?OtG>U;abVe7;FQ*8$HxU8Y`mh(v6LJy)2;rmGgn>b`{oKIXcB_Q}dO ziTEhgWk1IBBgE9B)57X*;Z~~az}b&;gQuPrK()P=sqpzKr}g;M)9QMA_9BlG+Vj&w zLoLuQo(S%DI*_>_3$;6_8>?^K(_Hhk=&O40Sy$?s$-KZ_eR9f4R^ga3!Ch4Hgiy}o zH8T@P*lBx+kV`nx7(0?Hz%?cB$rw#Ko=Q%A?G4t$q@En(BDggmHb5jc(b^~x1^*g;yybYXi7eVX& zgg!07!}cOZ81iW>`jg}t z(+VAcstqa@#2dIN4^K<$@sp4LcDB8>gB4e20tKEJ#jzj{%|a%KE2%arJ7*AatXa-) z&Vqe;_7=~KqNIN8k$!@N=X|QLz=0#vRy#R%wfsv?^g~l_Y6p)D?RRhe4S`R4_OQ_i ziR&W2#fVrwxBK*zb2Z@1b^RvoWv6?JYxq{@JRp^j9X=z~`2L zejAB%TBbwLhT$e4|B72PEr(SgW0B&Q{y*xj13rqPi_@3hd+(iu(0lJikWaw|=OsDF z9ciS|I|wX?oDc*R5fl|cQ4s+V1(aR|5$RQmH0etJ=KtPY%_g}EfxF8uzuW(t_vX!; zH+5%cXP>H+g>_=NL)?s55Bh8jKc=-igk?}CKAsRIu6l7J#+_^^non8>RcJ*Ii?Pa~ zSc0EsEPzh&9i|ZR@eBu*dyx63F;hIb7tikFj1dNLZ~$lht*7ZZU?#1YC#mmaQ7JVa zn!C{1DaCav9v{i(rCSe4ds z&_3dbxEPw!+%38+AnAAt zDpj9>2h%#d;NcLS(AmqiAk?Kb&q7_exQFK!cK~@#>)cCdvOdhR+qMO^rM0_;#`uV6 zc{4c*s?xgTC{#I4z_KEvX|2O?F=D|noVH0s%Dajjuq~|vome>#O`fJX4n67ss7&hw zhgBv&FfWDjo@wk-Sb5T+ITjsjT4yG#)OkdG5mst`?9+{&+O9Ckn7R#yrgfxdy&9ux zZPcl!^J&s?^>w)5=}graS#v_G=I2@6cC7Z;x(j`|=5`?u6sI=2HhG%H%f;t3zJ362 zq_sPy2lP6+@04r%+hAT=huMS(y?iPDHe9LQMOjZk)_S~TJIYub{iKf&Yvcy0uM*aI zwflAt^f@l2G(j`c?xEb%Xc&flng((7nRvU_Za6J}#G_EO2M+g?Lm!W7k+4&H$;W+F zIGkF{&SOJxb@YM)L$ya=_q3bz@-2WVs5nnkLgD&|U?pPjKIfloYWqHTJ75h_tc7w3DLGH#KpcEI<@;__jGd8#?~8qU1|iSEwu*D&yL7Uo^*CH`U<2B~onpwBErUdOEwTZ#ln;7Lj(l>WPox zI@>kt>Flz;4BhAH?5dx{uKKV`vxd1<0ODc4cswc|`iC0DQjzuL`*|o;%@*dFQWqb7 z2wT%uD4}9?Cu}J0_fdtdrF;MiHSbDOwKJ5Dn&xKuAlczERXu!87OM%u@RqiQ86F#F zeaM77Y2IR_Zi`Uj)TK2~d*$Gxh{SuEVqqL_*V<1`-hoL$i!^mVk=93FgJGEFfR$<{ zW1@`WX`lGw2mAaM8kFV)AXQDc8N-9pC@dz?`FE~a-H3XjIY&+Xcr<5;fDrLfV?*p< zc^}yt`PZCMJ4e%+T{%mLuM67_9$5gbnj@HV95=LvS~q+jg$uO%msC&ZaZWV=uZ44= z?S`T0<5%Z*%}ua2eLP@0d$JH}So(MXCrq*jia=@lctD;VDHZ2TznVoyL$bN`($BB9 zPq1}|rP_mxr!`AFLlXTJo4Oy}(@UD&QySFb@GAReq*CbMwL6UQ{a+fMi+T@4pA z82J|ALR2@+v!a~as2e?l^+Ye{>Ct(3J$*VfheLZGr(e^Hw$;1I@U!MRna92uB3H-n zpm}I65_zmLRvcet>wI5=-t_UR!!ecZ;ehn%ByH!(Re;WP@<2kU{Vd%7Py;mg$aw5o zK7h`4h~(1rYi_LB!NbMSPoz(|(c?_+*}j7>(x<~r5Ok=qVMK9Ls zX_h8-7RHI&4mk&`0tab6piBO|JE>GdTLDzLw3#U1b<$9p9ZEHC*iw5#+L0fC&BE-+ zQpxtcjuEs*AxA!zF~kN3RyhP^qdAjujN*<;@mx@>tJw|$iAlCo_ee1xzvQs(uQc>N zy;JQ+mzIW8pWXxfGNCwT*S10NLHd+djKRLs_Z4JbbL{cRsp2hR`}4iM>EqCtsBk%j z41hw-B}1N2mG)QpZ$YDGAL3cQhw7vC!>n&stW2NM zvA_QEHTun`_oa9UW6$}H^vOAn(Xe+Q$6=`E>XaB_^qM^qzKS_8DncI-?(o#)H|S}l zHQJ@9$3@E{jG3DIzEjj98ZTV$U``;+(R@^e2a;OZLU;gnXak597x`i-_uot5dd=LW zs19FxCw;7?K8(`r15?xz8Xp}lUQHFxfB4Ziy}7Lm2@@}k$bAx@Lb2vLd5Vfz5k%O& zFOf^l8DT1F=v^SOQ&4O}5X!^?6})GVuXP4seAb+Gr$wt#?3rY1yTjThS~V_3y|(9u zz2G#>sZDC}wQ~6}v}rzt^hBFIch`_R&CNb3>l1J27}@&{74JVN^Spi_CG0tll#{{V z(K>%NONyLDxt zPjeJV_NW$O1kh@_!&2DGP^4L5#llc%RD{+zz?=Z88rWiL{lv}%=+dklsp^7&?b}kd z(H&~K-Yq@i6VAx1)v5uQvuTcV?rIZGtnwQ8#6%c*0&ul&^|qsS>M_|05@rR-IjQ&mO1o=P2n)jD&eL& z@s$Udl{fwrw#>D|=kVA*Hznr3|vjaNI1apHs-I$li7rP!d0@RnwMNL>jXuOSEg z2)IeJTS#3Goke4Pe1ALHem-?Ye9j1GY&Hzid_b7O*)@`d%4t8Yrcbh+iyN9E?0W7X zXWA8$59QG;GkIPQR}Uz&w&ahXPIKPihFNy2*1=DjP#ld9knL|+1i03e`vW9Pe3k<@pyFH*IZ*6FDe-{gPV5A|*j9uWe+G&ZdkjOPVg^e+%TN<} z6NwvoY%kKoKHFP;eW9biyEz#Y9u;i+#9}nE!PUc!CME3$b;J|qK(l8Jol1jaDlFY6>hshyk8wN4b!N=z|Vsen3%1KqgK`=6EKh%2FCNzaaJNgA0iIcrBe@OJw6S` z)kq-*HVuk?OmueKW-epiTs4IVP6mAsgKDK9ZU3C8HGyids7eY^cy}6Ga{>BO6sD() zEW82*l#+0S*ve+T&$|!Jl~XW-Z|ZSPg1DN>Q&F+ZFHWqKvyHy6qPC`To3wbnz^PLGh&bBLu)Q-S9sMwQQL#=PEsjhQ z12o(HA1b!C-^9ie@l7we1MdmswEZTADDf2+Yu5fi+7&gkCR$W*RIJguGPR!q^pe*SCRTxL7Egc%zCCc?j@bBM+nG*I+Qy6&xIVgv9_J7nNY>^+gJnjL%0a< zAxd#uI1YLdJ)ix~@oo6Ih@Fo;0b+{*N4^4UirJVEQP!T4*&X242yrS%TR}}s!7fxmG0cbrV#Og) zw&x&q;g8DNNkl~(B6V^4SZlU-rywiVK2TxA-fYfqewdPsUU){l&~LQ*rZcjcj63cA z7mZfDAR_O$ccYZ5+RV09$v~d<=%bBtx=;On8yH?DIce$afv`eLrEHWsnMKau+fW&# zp)yJN>#S2+j(8Z!RM3csT0kecNqg2J1$&LLXAy$N$oQyuoYoO%5Kggoj>q73E$!lH z9=+ocac3Y{R>KT=d>0#A3dYvZk`fhL^b(@L4a4*i(PG~>N7w_SHPg37kb)7(X||0F zE_J&bG~3&P-5mqP{?&ovCJe@4-YpXto}4GJUM=?f+Zs&;DAvlO?Uqa|w#DQ8C8@ax zdbKJVPO(LBIQ49EvS!Ce(xAqt8`!M*9P;Hgl;h4a*y&aHZ{clw zYqUEL_r>B{bfOwXT05P;pt+`o1x~V#uKo<#%Ow*-l#85j%!8O#*6cUu)LIvzapwi!Q`|gxwCr&~k?8!O%KH%@9*YYaN}B3~Cj)IJ`@Y6Jjt5HiU_!L^sKm z`T-2DMq zWW{X@5OkwR9U&)E6Y(0j8PC=YaoiK=XdAm3*LwS+6a6no?*U)iE1rF@4ix)8#J({x zvfCzh_fU#p<%;ycrYa=43%Jmz4y1z2m&2;p7w;0 zz2kBg5;IWS(X@XeSxs#YNxlhf_N+M0G6FF+Su-RX^G6W34<=6HAyE-XJVx~OqJVjA zBi{NP{8t!bZz@g^MMo-T2jcV1+~LWjj-oEu3&bggtpZ6|3uKeYh3Jl=!}vrN>(uI7 z&NvGSO&5LW1a=#9YVb30FI7Ktq7G1{oK(5XOPx z4oG-k=B^B4)pswJHE9`jKcd!=-v%9Z3pXh*fRQ?s6L6f6ewbv8UuX@ZWEx> zKuv*4LarH53H&t2PhD_Z0Np^`mO%f5Tq~eFK&^oWL9Pu@5rnk``VBGK0hI%44^$d* z9f0cMrz3t=BSt5nTtJ(KlPP#ogE3ZwwN z22>DouLCth*c(7!Agn*o9-sk0*^!10C;(w^0+qv$9zR*}6O5l&XbAzD4HOFW3t||6 zZa~XGATz=S0p*5V7*G|28G))H%mnl*&|sinfx>|@07Xz3^hE;IL0A;fdkBjL8VP+v zfW88X0a^|e3-l%A;(*2i#REM7HvuRg!iEBU0L{aIa^YtL!X^RTM~ulpoe=gG(3?nY3eW)@HQ>$wDuS@Lf$HFACVpN3*8-Fe=pCTF&^!ysfUwy> z*AO=m=tG3f0jdx5E>Ia*H5cf6$jt+4im>;9&Oz>dpl^Ua0Qv-IKF~GDeF)SNaTfrU z#m`6hxrnfZKocOh2wv-#_7l(ng#8Q@0JI(`3fv7q z520lv(5pbd04;~yuRx=LHUVt_cQepw#N7f^2xu$N&yd>&G#O|+&~b2g0R4x!JAoPl z?E)GO?rxy3f%X7pLEODSZvg!UQ~=z4K%XOQKhRr1zXL@<-vOY1f&Kt`9Wf39ZHL^S zKr4U_0o{lH4g+Pw&k_6t;^!!SLJ;>DP(h&MKnJ1u1kf0SodjwPbPDJVa8CpMi?B05 zC6U@$pg@HE1=I;)=YS%C&I4J%y#O=~VHbgVLEqm%Il#RH^cT37fvx~u0lI^HTm|ZZ z7}tQ>fcp>7FF@CUrbEjOpzV;m31mjtEubNgyA3o4+&e(~p!qJ)VaWXpv=Hb&psV2C z1Dc4q_km)89svCTxrab&q3;n;CZNYammv29C<-V;4)OCCF){)*Ls%xDZ9tiUDkE+d zpiw|sfy#lK4QMTp0#pG?vjdfYTn?bQ;N}GS9Vi#jDWKdy7m;orpsfhY3sehn^8wWZ z$`AA>xCMZwBCH@#aimrV=rO_y1LcNX5g;8j7X``>xne-8AXgly1-K=E&I6SMY5-J< z5VVvA+6F(D0jdctWq}$(OF5vw5u-d%L2xSoy$o(epdQdt38)q1DgzY&w+hfvpsGN> zfm;nI9;iA{3vg=yHH4O$Kp{Z2fZheSHc&={)d4DuumGU-K!HG0z^x0E7hyp_dZbYg zXc)rk17(5r4S*Jb+YqQ7xQ&1|0W}7?3DgAW8=$5@qk)X~V4>ST{9e}O^bp-kiX>nc;&MfO12w7tjcx-az9K<3*r95Y`9CjIjSv7;Je7 z=o-+=Kv|%}jP6S#wc z8X+tkC;?#+KxJV;B+wc7APT4`7LEI5Q)4&}GbO~q_&}GPt2KoeYV}LdRjRndDG!EzpY#tA^6=(ub zHF$C&&{b%e1hgEQCj;e2+_!*sB5Vp!Hpoo{x{9!AKv^ND0(AwN4)i{d8Ayj1Gk|g; z#@j$gfMxnud+;@TggqFEL@d%p-bQtJ8 zpkCm<4>S4_XSXCe%dV{+GXeQ7`pxQvc09`=3zXFXwj7>m~pk*`A{~)&o z=wHZf1=<3%4M;_d?LcD?V+T-0cycGu2MF5*v>$T2ffhsG9-w1Ddx1JY?l+(tklP3J z8o2v`?j!7XppStL0R02>2hf{{dl2Xw#P}1aH^L496^1Q`fqp>P5uk9Oqd*@69RsQg zeaC^`06GCQ3EY!FkD&P!P%(s^2KpCaXMj2&##x{f;Qj?v3SsAf`XlT-(5DEy05lWm zBG5^A@^7H>kh=u53Eay-#gWDpphDnY1saL4Yd}WG{R6ZW=sHjVaBl$J1G)(`3*1{k zix74jC@1`K2WUPt-v!zOTmA)_ff)Y*B_hT>po|E+4>Sy64}ji6+=mnf?jxXP2zw0l z0?-qn4d7D$^kt@Sb3mY zKox-A1*!&=lP#M_L0H_}{Hw3x_xkf-G!EFpQ z7@C^^6$iH|P-etv1~d&}&4E@UtOd{-pq40CfTyj5Im}ZADlYphJk!73c`K-GG`StUJ(GKs|uo1-B>Ar-=Ik z&|GkP0fmFx8>lb1F9PjDSRbG)2>Tz<*FY};RRs5Cp!cAqFVHT8^#h7T*egJJfnEiw z1@FEFR2^Dg2kHm(2GIME>ksrdv* z?FX6)R1atxP%Fexf$*IU({!M&&}Rn1CoxPjfbjha)7wA>#GMKB50C|D2GBb|C82K? z5I(D5nhk`nBA60^8bfXlP$<%P7bqBLF3=uu=K;Niu=jw*Lf`v95eWMLXcpw=1KmW} zhd}EQwg3o+zneY+nhNehpv6FofX+bfW1xaSp8y>IcQMcwgnbG$3g|PStl)kQlmlT) zfCd140kjloDNrmdT?X_b!oCFBhOn=IYD3F%px43u8Ym~wH$XV#*z_$>6UeOq`T*ST zfVLrQB@j;VHGL0M3H5XpP!puF8Ymty)&NB!><1tPVQYb=K+BInJ;7ZER1xSWpd&y( z1FZ&H57Y=~1JHS(jX?dOTW2Riv>AXcodY1NA}J7NGhF+X^%fakl||h_LNI z2Y_|}JpgwnP!RIA3n&rX-9XKO_5k6)LepNL!3g^e=oV7j2ec7d_5-yB_jjNLKnH-1 zg8K*1ZiF2KG9m0wphD1c2&f3qVW6ClI|5V>az}x>BkULuPA4-R2Py@dPXO%%_ax9l zXgLLh^R!H-fgU654A5lAodvoB&3^&C1auClJ-FwADga#o`VVn00xd<@-$2EX?j@k_ zz`YEFBY;d-fEpp}DiF@tF%fHeLAssiqHpaRfx11LMtO`uXp;}*~m#JCL<19S(d zG|*i_koygU3Ilb4ToItE2rCMdfUsgf zWq^tUy$nRnyLUrK&~p#ZOByvnvJmPKz$IS2GAXFYXW@)R10VwIi*C&^VyY2pbRdInV^4i9i#9zJ{c+7Gl42s=_ti-3Md*vA6J#|N7xXUvd6Y%nqBkBts9Mh*)Q2OZE+F(HZFGn{hVQm-7}esxP(U!j|)TkS(2oWjfNtEt6Ad3PZ1neTg1r5x)Qs$h&LA&d*iWB zjdw4J;}|Gg)64~(!o{wp7(?PTvm#w4_UV|j%T2?v*tBELtB)6Zc#NU=vX|JlnrO~s z3{5oWF-GXcHZ8mcDH2EwGnw-n#4AJi^73%8u{O*g+&j%&Bt!@d76*lht*$zKXsFo7 z9cze9oNCS;Ew(VQ2O^hH(i{a+FH z1#|A0fguiYt6Jk?w=g!x4HoZ67!7d)NrBjg6c`p45e`j==cFmG*moK)K2nDd3nLe% zrJ^30^NKie#yIhIn+N7%FX_xH;cp)S?t>#(c1rqhJz-6Ky z6ZP?LSxIt~Xoae>Cx3RLB1wz+cb1GIYWqtpIfSUrogb5ySfYOFk%{89A!_paTg2-@ zI>Re7h3EFFQv08i#M@51jhX%<>Mx3SckB(KIuUg`fm82Al6U_6hj@6(Ewq$;LexUa zL#GiLDD~Dv1=hPjyg!J_-Y7HiCX&u;Q!^4(nRHhCP9f?bQB!_6NAXIMz3P z$?=5K!-%dbbLN#M9>z*lDXVWp6lMyl5)o94D2&yrQZ+PyD2&%a%WkGH%8PidDiaUm zr>g8&!zo~nB=RthDU6S*l6yf5lElnHRZIg)5rsL5s#FdwOcZ7lsxql!d7>~*t4h9A zO^CvXuPP00)FTRW5mni;y9`m7ovF&PGL4DCTu4>ce4n2vjMJ)8QqQSlb|ka}6e1qx zK&sL?PYI$hlTej*mik0tzMv|N^Kj~z9jeOPRoJ_j&8W(u;dMw7GaupWi4}>$97pP zFTO(N$4SeivFw-E zhJy4a^bzUcG9ckIrGMp&fON&11@noW!6V>DAAw*#{K~<`kc#|mH zIjhR|vlkMzi>SRp@kHUyT~&I$JDz!zLYs}Vh{8I6s^pvyOBC+dRpqUprVxb{4pkX? znXSf(hN_(Uvp?~$R-h`E{!SnY>lCU|WAPxO+7mCYUMO ztWl_nIwp!JtP-fos4P>7!kUY!oV)QNQJIPQz3&G^E|~p^)gM*Kf2Aw&u&$yik6M|C!WxXK?9DZhsB$D(dtfwC z7l_)srYBKN$+DH32M~pI8dZ7qH6u}2M^TlZ>y9A`>q%k`wyGCVSTRwR$v?0ySjSM6 zcTT-WJgfz&$`_+TiNe~H7=4d+CkiVlsuDfdLKId}ROO8e?+}HR4^1yqgPOU%6z|yk z^N9*3$wS+?_F!#E%*gW2BOX>`RHf4ywxvArhE--stZIqb#lB%AiIpu?nSYGyCsv+B zd;gpJ5UjDO%GqL^+kqq*-s(Gwht(=oDPNBzuai#G7ww5xjj68Ph{F1fs4vGj9#(Bt zW!>(x#A`%a7BBjmD6H~|dBK^}LC- zc2rtV6xP>OrQxVwiNe~xs^}_k{;=LHdN9jT;$e+nRc=*XO%&FyRi(fOXNbaDwXmhd zd7`i)Eo%9`zlp-r1TjB*cR5j5lNY0fX%|s=`XE|(^fIFG1VZ$?A>78WiY|JFB`1i7 z^>{HNC`X9GI=HHw`QZXlSb0~K!o^wgOQJgWIz~J^w@{TAUgGvpg>;6+b6-%EsC#oR zk|dr;2v7X_6H!=mSCvYqI7e9J7iHA&IPtELoiONW&@>>3_MB#~qs%Lm@;XW4 z8JMbkkoz`KIZ4Zj8(An`d!lY$DoRv6lI-6<8&M{r*3G*|@#Ya#do#BVJgrid{lf~9 zWLvVOPb;nk-HEsKJB4^ViTZnLZla2ikA3Qh{CfpRf&B& z2gR#EJl*2rMB%xjs9Dpv{P4_BRbonU?ZGob(O)NCCM|d>sVYr=*-sRn_lf>2?q8zt zOj6t}-Q#wPXOQAvv<#Omp3sSwb2A^MhbM;Oe)Frl6t6B(x7u;d!jnE#8MinWN#fb3 zuQlUjv$&1n8LFzxnzx&Hctb-~GK}DUVleT>zQXbTBQ4oxmY@`t z60gk2l0@MNq3Bz`E5QTjNV!h`a^IDPQtYVFchus0HQmStgq8d}YKaaN}3QzUL z{q)M#MB!<_s{Gf1DLm5`WAWoo#7iVzn~$mz6+zTMLuaC}n?TGJ+qER>45cvYo1R2r zKZTepzFm!|j%@X&+C&v(s`Lv)?IWF6T306u`yoVM_qZNW*hL|FhFgI|9Uw`iN-v_Y zZ$Zow44fnED^QhXUvwiLb`+>erVo1%g}oDEd{1P*VE=@wRD8(PKa}3*|7$^#FJCwYw5^m#BvS)*xyY zQHS@j2eHFMtk8YHJnX9wJy=8=lEhvTk%w~uL{%o<;{06F2I7@6HzVFu;!V!Sxy5c2 zF<+X-@oo}tNXITDiCrJ6(rr7J*dCIsS&GxEN7Nq?T(hvFL{*l5z_n*S@v@$rNm}+1 zRcgM8r~#D1suk0S!mcMV&w3+_s3Sz>kLynq_5g_)%aa*I1yQ_{xkeM!f+SnFOeAV9 z@gkcJBI-S&URfMY6m~Uq9TcUFg%K==0sJ$sUvC(>6{;AA?klrMj3{gi8@4* zRi?Z|RCVGRbH)?Zk$9PNvn2K*iMxV1vxwK1BwN34B&r`#VHbuHHJaj`oxooDn^Lda zd<5~Z?@IIqi$)T)m#FH^#u1g5;!RsSgs6(dD>9OE`xWulX9*^rp3Mlk&M0w*lI1<3u%k;=a^09h)TcxR_cai;gs3VT-X#kAtwbNP zXAV)=ZKf)VOtD10ODWu)8A23xv5A?$vB5;uA>P2;(}}u5y!t zdQ#yXqD(}!j%PcuM^07#YRfwBQf}XWe;rBQCf>4DTZqEGM6t40aT`&0iBe|$P1Io0 z*|*s>q8^f#d8@u63VStG<@ZZVh{{Zo9~A$cs9dBaN5iE=J)wBbf;SO`-JYtl^W5h| zy-U1Phn5pHn5d3@eBoDpPlSNfh>wiu>D9JBcbxI*nsC5M?CE+ljvt^&;`!73lVq%b^X~GUfa*;wi)%G%f>C*j=V7^Z`3_fxJ} zc_`k9F=vR^lO&6G%1l%fl03VT(;G#Svx{G&6tWVp$s?wg5^r1)P7m+iihHLAg?9 zQizH`}mXrTvJ%ziFpGb1b$SOo_AYQ&*rHI0t z0pc#}-)uxRA?n?(jfu)e)XW({MCBtbLvB|k%1BxkR?a|FYm(e_q#{wBNOEq=21LaX z?}oV*QClhAsrwwS8%gdPQj>UZ5fykZKT(B<`sj~Glv})`pemL{xrsN7bj~QnlEaC* zv$ibp@P>n`d>5OYs251f%qJy@8cC9?{`Z7*79i^2<4nZMNS4hhoR6rcM2*>Ahp1sh zg>EcJR0)bVb7Og;b`zC#Z)>9FQ+lsv%t_PJjla)r=u(Kk2;Qa1>Eh zi8p3lC{ZsFHSFx`MB!aBRq2w@iKr12uT`ZXMD?Z=R$d%T6y6dOclwoIAPR4Bsmd>t z2N89Q;%$0hBIo_8os1GQ;7u$~{3U6zP`+ygth{9WIsPL{%m# zf(Zqx3p{)RCyyh<9uNd)Gke{TtMic;|>3Qnoiyc(+U3hu>rGenPxm zH{T{+1EP*9oQJZM!jz3~5)bdsiCNH-Zbbb}l6jS0MB%+M@f>zYJW=0Kyt%9U6IGky z^(q%hR2Wf}^qq;iL6ToRLuOp@6sy@mDIFL?7(RqFrDwJs~g z%axsL&nHCH%Tb@=ZK4!%E&7P4Nu;G^sdtFlLcC=qG82`H;{8>ceYTT$=Oef#7o&L7 zr_UzI{3JQ27xT&!ui)qpiPxK`9up=JRh%S$*tv+Pu0-|!i0%BCQ+Sh03~!aH%99S9 zBfRq_R*l-cMe#b2P)GxYRhD?6V^$Njgmj*Y zSx?kCq7rs*AnJFD7d-bkQ8OuC{-uYBI!L_srGF;sPoj1Y*iTe;qUyiAfT)@juT6_z zh^kH0na?f~HJ7Mk0qcm$N%3A>ww0*E#M@Tw08vMXH(=#9qFx|7f1Y!UD7+^w?o3y& zA!;S@^4^_KR0X0;-!CLeM>-=7TZsCBct18|TRtM*in{xVSCrCA=(ConUPN8$@CQ*P zh+0@-DN#R>mcs8XBdRy?dcAjnsEx#XZR}@6nJ9(0x#x(QO}x&N_7L?g@g`gTB5DXx zwR;^UDg#mDGID)+jZ(P1{7>S&&ne{DOw>)1JoF;hi5x^d`hq<;f~eoNpC!pm6i+F7 zm#ERido7sjL~fRxeujAMh^qYcw?xHIybsrJB5DrV^6+C$eIrTEeUGiqOtn0;JndDoKWZ#;x%sqE@xMNAa!_HCo5@^Ejn9A^soYouND|$jt4?Op@62f)Ve2J zUvRF3sx0YpiQ?g;4e`8qJ-3{Sq~-eZlf(e&zHY6V>Spt_6jOif)*PQYb-Gvk$o){YL3kDUp?UEr=TQ`6J3vJW=_FF%M_S zsEYm$r`L*jD^_KqcsK(_%)vHhAgTvhR%>lWqTZ$S4o%2GR4t;`Py3Hjc$uhGZCSD* z#hdbKHjw5%n`jH~VtRgWZlT;>#TE{~`$l{vTP z$?AY}oWF)7`SI;16z?MOj_+mf;>;T{V~J+o-^5d1=KO_FdP{F9WZ7JzPG02{wi30i zIH$gfQh4Q6POk+~`3|x_8<6BLGq|LO5^v+1z3Kk%7E!u&-x0NdBzM=YLDV~B%g(R) zNySK#v^;4;ch?5u{XD5USvH<{xvKD*$9HLtiY&h4DsC<;8 zsT25VXB_cPuIBwq&4@Z$raGmbi^}2G8=QJe;)z#+$P;5p%a!2+Nm3!+{n-jpUlMQh z8Gbh3j(9Dr+$UZc;?+>vkS(u})wi;-CpwYjm!Z7=Qiph@4)OCpmEt8V;OF)@H&0d8 z@8$IuoO&mowshq+mVBh8erIlRFA!C%+D-CH2p43@OtuWq8?P?I^UL3xR@)D zQpis6A|lO{`Y*)mxsiK~tYme8UOaQ$PFf1bU!oLFQ@p50oO&$r&V9|JlS*2yzuk&b zFcUTX$KphlBkIFM-Y1Zm;#Gf8i1N3GcyUjLk}bax^>)cmiI9qV)bO#w&?sNiy@kAWAQQB*(6qPgEX~+_>va zO1%W7{OE~9K%s>C(CnNtO$sg)p0xZ!I@_+VMbr(VuC%HH$#`?_Q1K0T@!jIc z5OK0?qB&QH_|`hV)Bq~fFi`hf zGsTM{H3I^0h;tyF+8z>)PgKRyhZ*RAcn-!Pa@^tb}+!Le5I2Gj@DY} zrHyoOfn&DJ9=RY;)`O=kgR~p)SQ_BHG8iSAmv?JHr05E~YeAH>z? zX7^#C6GFXP8G3lVLE!x{uXc;ur3*Z24+Z7eqZ98A8sl_2x5rEi9Utr6Lht1DKB!k( zeD2n;;r^5auN-=}92RjT0;&Wuwj}Hw8$~((=|F)G0&>w8{Te^m%KhrxZ-sS z%6Z*_g5Iu&W@&(1qpq8`KAyD%9EsrFjv2==c-Mkoyj~G;+ys2^l;d;Smyfnd7kG27 zh;uc(>V)ZDZ;hFJ;NESm*Qd*MWI5E;T7-@iUknvTE%8dYBSFgq)l-dvgO?y`p|1s@ zzSY)>V_)lb{IWZi&^41_b6iC$OU*6|{Vrl+1wVbJBc9BM9J>k&eX0ts&>UjyuCV$} z+Xr^JSnw3D2GY~5#DqJ@(JZh*eicY{1WwSwg#QSBFMfQwd>zaR+ zts#YaCwwRmHp2m8iRPjX^^QMRD~<&N!#dA!dQ2tjZcL1RI5&(inWFcd|IlZuL6pz< zB!jfX-L{&_kZxr6p2qUiw-Z));ZR5 zPd+YA#$?A2m&N*&{fsALfTOI1K1k@;PdoJywptSC9BH}FRF{#`f12H-<2=DuP!{@v zpJSHY8k*ippL*%&N88xwmd{tDj{%M|fYc0dl(o?36X7=R_Yucsp?fs9cufu}jofUf z@ixA|>hpR0PHTNKyE{oO;O!3TnymLN)96lpa0t3ukBhHs8q;&wP!uTB zw$O(}J??UFmK!29aj(XTV{P?fe5&W&I{SvVyQy<2H5&VXW*fIt>CVI_;Ny(3aYk`k zEsxk?vLA7O#4!hI6`<4LWC%Az7$W0_8m)J!KT9`y)Wuztrg_>^xjS`n><%sTQDan3 zcW0!U4zm|Xe4H`d7$$Xs4qtD}f@e&RGYX7e1xEcD3`FJ*k4tYY5D_#xTC zlJTWOcdFe(Ki&M%LSH~hw%BDsIgg#m%{g6$*wk(?T*NK(H5gc8UFLGBtFZ=sOo;eK z0&j6nWnIKsIECFNPJ$Nt-U@7J%Qahc4zY2uf%w&7gLs%BJX(C4ATVrrbW~iJA=VhH zvj&A?gSeHVmKl_?4r}%(4QsaKqIq)Z!Vn?qluRm7BE&v;V{}ZE_yR$!H5JcuM-{;_ zSqpt8$2Tetj`Q^mOLobwq`fHmfCNKig6mCTtTE0|Ct7^zL3|m(u^I&$BjXG)k>Xtf zv68Njo5w$M4%AipR2N@y_G5T=Ff-il%th}Al5cOO;>3!0Y zS}A)4uh596NKujGLkoQy3{5oEdC0RFc2Q@asiMoIC0)|kg&QNH#Zzpo$in4RYzHR(npEQ6a&#%wA zE^o}zXD*i>vj_`)XfoOIuy@OjH;q<@xpd8rBAT5%k4O$;7W%lQ_fjt-yM!{@V-40} z(atUOJy18ybXb0{)hZV!If|sQ-^w!o;48PSV^}2Ki7#SzV8A{yig6Qd3jk4pRYmI(_`dLpApD& zOQ^0m-NvS64iO<6q;(*A_IDdE%jQ=$nUO+#8k2ABt$l=sNs%@o&Ba4|Ben@z=u^%p z^Rz7dy^zLQ&JwS z1z6{j$*pR|#>K>oPnM?fPRl}H(MBP3Ort|l7vvEjX|y4=91aSP3fA-Dl7&9a4Rh0H ztuK96yq;>YDh=z67W$|oT^j3goFO6_2JxJDoa}@?-3+1I9xy6n$ILW$IOhC6Dwy64Z}hV(YCdI zvqv@9V)|a@CzS`fwh0%tII96Rmpk-1Vjd<{T2~6VHXFqGU-1z-G3ODFCb(BTCG%q~ zTv_dnk@^^Msu-n&xttqM^5TYsMg)q_*|XkN(tz9|a-WWEJM`=r5D_X?CQi%BV4axS z%y->Nlwv91D~K3>tl6_^5k3;_T69coy0ywVH)f~K;YVqxb7yYzl=v#UgJW$8ChN~& znZG2K#Ttghi+ypTMUhie%wBPq**m8eIy_PzVGPmnKtx)4q_Nwzk7bS>n^;_v2`8~$ z?Ee+trnhzl7SjqTm?RtFQ8+m+^(@|Zsi4V~V7lKFq||Ow>c>($AbqZX}&*UF~ua#3l=Uj7}du$PgT(rzW7eq1e`z#NLr4F|32D#)?H! zY0(hfwLL%zS~mf^*dC#eG)BjV+fSm@+?s5+Jc+z@|E-4IuCf->$1dHYi!pYO-|{7^ zAIQGQCtP@3y3i+#+2KpYRLYl%37=fXRL(k8bE)YL^9gIG;?#ib4bDN*I+t^jk6aG$z6R^Z#?UTSLi(7EFcn~U4* zV?PWs1(imaEr^>V4Z^|Fh*g5BK} z{L)>)OTO16s!0EOVH!}?-J&fm{p%Am$_?&X9U$9xsvYGucdO4zU-Cm>%6<^fcIigb zV%nUtpnVAH=S$gp#g~l9=u6YWM=4J!>;+%n-GcuuWkI{f{<2U~y3epbPq2<+PIn^? z_bqnGTn3OulE*JZX}3=I7Lv^TJYEUwBV;;me`ZpX__}rmgH@ zty>yh#vwfJvTd#C?tA9%^gWY`_}-XR$YYZ{nmU-}OSZ{rIhb2qQC0B3Vur_?WK;czV|x1^WJURw`9{!?J$DD z-Zk?-kLQ)o{2}U6=@B35fnM^xLG!Wi67`_D*BxHNwU`p5tTkI2iyiWiCECHKxv$N>zU;Ivl1%ar>MW-HvW~f#yyp8-_T(K@ zC-;J}gNVhnN%o-6V(4-w_pPM!HNPR6&UxMJ<-9h2hSLOhd>#A@SM}UUKh(?VkCk=J zTXj9r%lVJ+a{48`?Ef=f?Pirizo8YALsCz*A-aGS~ zgI*r<56kqull#Te_s?T?b=u3G?&{?>{*PDN_;|0jvKe0P->-PN?hW#44|~C@sjru1 z|2+DbyI!tmv%H+XUZ(Gz(c~>J_pr6R?ET7K?PCpIE&Hin&AZX7dA}+1uGz!6v+(iI z%fr(iFE^ZeUQYk9m;FEA%lY3Y)3?6D?Xqz1wC~7aY213Mo%4Pr-u{iVFK0b%!nxjP6oyMYi>ZYyP4BpCu5_36%V#Oo4EwjEtjBSrnp=k`4LoqJJ(|Vz zp0u!@jGvN)v2@lGe{3F4>nx`C{jEAg`kTSceZB^bkuA(y4}SjV!WC?lH`&&%a zrP+SdlXjH(^iEG&)T_f@Us+h5&hgSbU+d>@wPUnbYscTR5AvJFblKkw-s^7$=am)G zZ>mH^>EX1^#J-Z*_1&4KUUq5T89&bYTXk3`tAlsk)nBIWtx4TLSy{Z5{$iQFCj+>{ zYl>!fCJK)7)?O;L#Ri8s7SpHFNZ)PqOT60Vt9y0MSWBjEE!q_CtX-Bnys}jCu59zZ zTb;g^)hTU5WF4>es8^)zep4NGNq6~;!9kvtZ+dSvH_7C^HDqOZs>X3w&X1aTu#V_@ z(yY0WR%DG;+9VO(Y0$2b#HZn8j{V8zJAP>MU1_tAJ`ou#8=jAv_b@$LR@xfKcKK-5 zpBhMJS(^T2b1pw@)KAi*T0Z9vf2SYT=Xa%_)7F9q`(Y_<_3h!JxF0rFMczyLQ>Qr1 z5B;3U51ZQzKlF1pKlF1YKlJlE(q8u#?Wx!x#0th!75(B{|uu(_S}!};lIKWu~j z{Ltoce%J;}`r)*5jUU#HAV2Ku7W$#hW&E%{7xu$`!{~=~<3&I8v(69uy2*a%=SzNA zpD+8NpR4$x%{%WX=TW!;$Dj{2#?t4MEha@OPR5KuG5S!Wh`=A> zPUXAu&caob-w@y=Xff^b@>`@iqz}ARYjS!y{cW-;TI-C)Mns3B4bAC%j8VKNHSie} zk;Sx4wwY(3+^wS`yUO(4J~Gx~3U}$~T$*{({W5u^my_v0?4P9SDUI=FhtR|&cN!Ja z=`_&v-p(~jI?Fo^BCA)M<5DkoMtS6Yy0uJQYBt^(j)@A_4GfPOs*8%2!(&AssI<$Z z<0@#sO&bzpuzm8~V(KFe4$u~MdY4+KGe#QYbUJ?Rwymrk?i`PCUYb-^I~9jF%jbFE zK#S=`FV~UxQ?{16i@4#@a*A^#Wof6$i1`^!ai&X;S$hGbT{=kQI7@EahY- zl8zrAf8EQ4F~G~|SCSouHwUano>Z}CFwL--K9d$CQ(;043C0lF9zIW5G~D5PVYj_J zGjHOFU!PIajr7EZXHvFPWM|-34SyyUZ1Hj%U+qa5JfnILD{XiN4tDD<;R7$1!7Nz| z>n49+?=)?(_akO^-YRks_vAbido+vbCs{&G+_f<27i+CayNu7y8A}@NX}>?WLHgGJ zEMFvRrDsKKF*WfdUQ}$Xfmfj1u6*_=)*^MfiA?6`A;)=DHff>%l}SFoZ3jl#4m_<* zt^KyFI?1wfE64Uq{T$mtoX@w^t!b<^-K6iWJ%neSzQy#GjPLfko!NR$kW*j8FUckS zEa_8!)wGbb&+W=$oB2Pl5qpokzwp04c9`GxIK!poX|44+<^8tr)~Xj|y?_3-O7pR( zeXfzTjay73WpVhfI}1EF3#}cgQ}^iLK3o4}F=h1I8FN#=wS1W0T3+HQ`@G#UzVFV` z=KK6uf5LBTPx+^;Jtw_39zE^4#3^aH@7DWJzxC}+IrmNLJZzHRwx@f~Z9-x7Z88%I z=Vd*I*+nzItyMLAexyp27C!&k`P24>bNtrwP@k_AEBv;_t@K;VYxwO5Qd3&)yYrG6 ze(PIB)@RM*FEtMIGB|H3wtd?qrPWl|IG&t&=n~gr`qAGE{#n)yzwvN(fAjDbIk)y3 z58szn!n%N%QsZ&jux2s+EDOi_LWk2_SEIc;ZbZ~Rwa>od<}^Weis;V9MaKvhlj?7^ zevH4>`eSmI=Qp*!gY>ZVn9nwd8 z^*0Z{@lv!^{YOt4zK9t$#Ts%f{Cy92fn~vB&(a>i*B)Jp6&b^@A7u?M9}w z+#TY1$9>b^DpO@?u;*Ew>2FyrCVM8$Gk=qrbUWVtnLYQ>Ytlz)xFa^mR_^Nq)H!MA zbM$IO**rDxo-`H!(nr=?#FQ3BlDtLNz~8$2vi>#$s4iRSbF9LD`$_Bm z*T;wMB%e$E&fh9uZGRg^!=%BUkA^p7*`#4K+?nP?ANY6;b{U*3rfjlnaA%D#HYz60 z7&(Yvs^2PeYJGJurBTLyR7O_mS$D>!B(3ce8QHBzm=0T0Hp!acyZePF$x^74{A+mj zxAr`J)4+o*!dpCOGhzNP?y*;~sBrAcp?YJua;m%AXHd-GOYtYd;E6@Ee%ZlR8%-Ut& z*Cy!z>m8BH6e#Jtrnb?|Mbhc6Bxy8@=^vRz-<|1J^?3`YNekUsD@d}gaaGn5>+u08 z6`;eRen0qpFErEV%Pr1>21?u4?B@=~%c$-Yxyz#qvnLy(UE{j@Y{w;@#q^6T4b207 z<-;MD&ED3jjML6NhX;Z#;>jF;n54oF^q{r4WWzhI%P1!@epA+YWaWI04{ln?0n2ZE zlpqcEetYO3E%C6q6_hKmjwi^P-ED)7e5N;O>~Fn6QGe_CqkX2V%SzXIzs)W2nbv>K zXDs<$)|2NrYRr@s!g_z@G}F-7vEsDt=sDVX&}W*^pZ?ZeX7?G_)%2O(r?#}j^OfPb zK9h%>{#FqWOV_1ghH5b#@weQ*AcvLb*h!v|&q=&Ly07$^F|~rvSfWdN_4m$Q_Ycx_ zo_CTT`CC?t`pg*F%isFB5C!2l7 zk}W=CNjuq!pXUS9_CC{d{N^*uYNA!c_nH3WjL(e4 zW}hjYO41T{cX_+)t#)(!r$^5ZT#~SuuK7$)bHisWspvCxIoN0F@;5%y)2#BD(uwgI zpZqTCNiv_EcY52!{0zQ|ZZYX(sg#rZ*j?UxvcEO_Y?9CDGYw^!&s2(SvP1P!k?4J< zo&G5+hnF0&-e+n=UZ1ffi_hF@HSli7RX`R=>UA@Px2GL?SL-Xr$vmdEOIl2)ygq2; z_HM(R>bCEn$&mTj?c~$F=nMNyM^Hjq;=P&6Z{FlI469(G^cG~RCHWmSX6AB zAv7*3Dm+9V5@rbOJv=TfDl)KsKv3O)pay}%8Z`(EHwFhrQ!qjUBjY22h4-kAR89Vv zb(gca@26Bn_$ZB`G5Y9e+u_}vWd!TU>EvsU;Beer{q*&h;|Zt*r6J8i4G~eXfkTba zfmIr}!+-tuRqEAE(8q}17{QA(=z{g3gA4&7QQ`Vv5m=>u$106Gi2p=$%iwrpcxYfi zXjDjCjKL5a7#SQJElw&Q7D!rkLaQ!ppf1i3DZULbFg$9gF4SO*(>2!B4Tz2$lxS}5 zcH)DKabfY!sas4RNcW^rUM?p*PLa7zVWrOTFx4kg-1@qpMrk=6_2_Wqx7pp@1TKxl zT-4#ooQ^7wA%<#Y{p4$*PPgzZ^W!O43w_V_L!kYC= z-PDqiUx08sGfv&P_NTiw4n&G@IsV>lFBl{Aq9esL#N9Hr4{^2+g{9^Lr?Z8N$R5ny zIY4?eU(FeTeJbW;-(LCf+gziG7(xz%LedysJsyUk2ld#ofiz%O+z@>-NtY-*n zl&+J*;$&{xxH0sG8Vu19#>h}zv>_(MU=*`MW0bC5JzWrwzG+uc*E)cwT}7j(x1xcx z!eVMBozlS#rx+84>-4cYF_jfVL2R@!+z_KPM#jZN=^EMe<#JhH(kK*LQ?{5|%G6UR zLWhZg#WYq{8_jkiyBp_IUM(g?rtwtMwWpeHnR~h6T!W}=aZx(D#ORHYV&1EZHbxuJ zE`^tMaDIKepTCrzNMSl=AJiYlwY_w3z;q!%6w%r*^iF zM4gken(ndp_fDrDrbjus=~*$ncvuvv-7PzO^6Ui?=KArDHduSv`4Fa%>6~({h=pX5HWjRQT3=1=059u&SAay~Wwq>Qd=Too;k3rthUa z?rPT@uI*OX`iV8Ntvt;E@@YQe$diapcTA17dO&;boK_5+ib?z4DVdnI$#A;d_c!yv zX4jER`}Qaqv#qy@Ej&mtX|HAb`iD~=mrRoOLCx$*(KyW)JSrMnpX`yD_UV>K@2iMR zJFY!zZyvXM#@50;X;ZFiDQWw%m`C1s>R~+cqkU4My;fxRg;Ps(xKHpXp2IDoN9E=+ zrh1g7(^UJKhn;VFOr$gyh3t-X?IA3t_vE0P!XzWfeDy;aCqFM$4~jR28e#)tV&f9c zr8&qjOdk;)ZVE;u|YWN>U+OziO#`n2r)MOM2`cD?m<;>k{o zKE@~>M|l23!@-9hDAFhmiz%y|?f7O1$NF^rGs|-AU@zDDx`?PygP8oLQm7hbVQ%la z8m-#4M_T3Uts=Lqc`v4NcjDSL>FPGNuZoH8Y`APn!*xN{wKj7)>a?yRT1>fQW$c`a z!AZMX-LOHyQQ~1Qb-cO;;vS3FHlJ2g!v^W4sX^29($uiN)MPOQ_(@I7BMY{N=LL%? zWu#$P9M%)#qQnQVbwSn&V@?-!_3PR0#!JWsGb9x=+ee9oVqlCAp57l)r#2G?xZ=NEru|4q{a;){OzOI~4k6uM&y?Q;B0@LU)=)Oo7YZw$^ zh>W8zSc`26abdJH9gl^Yde-%6^Rv(%gn~Cki_H(uLVJU{*3RZxXs>S@1)hcWdQENZ z@w!|MY@15)Vt+}}hg>@Gl&e9It*;y;+gG<#lxftJP-A3NLOt|A(fZKPaD#p4O80b7 zW~*oxQ(f8GI(e>EE-zw+!^1Qxm&J5Lju2@W2=(EHVQ2`XvVKEreNBUHPMVrXMV5GT zc4K5nczmcKG|{v_SB4CxKg7@E#6F4DO%`g{rhoa;jEc?_!c-t%9`j`sWzZDKB2j!9 z!k1XSwBbt+mdr*zHf?9>FXnaPOD_)GNA=FMkW*;Qmp}M2ktHj$WP_;Q5<@3BeqIIs=}9$@NUPN*qU|1q_JFIhP7SB?4iY0Ap_Fja-))#ghzj!=WC2$p=ACHwLvngf4e>N-DabI&yHf~`kQSz%_&@F>PL zDGtoe4jICMF?=b_yuC~<;LE2Ry#Pn}oy{G`fe9>foCCk+z+x=<9aFvdvXmve@TEIn zzU0d#j$VZ&tMa8Z^ENOQz&fvS;7Yy(GH)|q`f=bZe96dJdBm#gv&e6J>CYl}_|lps z7c%bw2kzi_8=1<dOdxxyA7YGxZ;fEM@8?PUtZQHs`?a zIWUM-XXU^IzU*hoO{}vO2X1DnG4p~sdMIDUvPdFR5qv4hfoC|vS-y1SOF_QuW68oy zy~q&`aNt2s?=W8$bKq&Fx-#_-#~aVo45qHI$RJjBfiLTscb6}-_@d{_TO7R>Q(d7m$ld}+>? zF)aB%&e0(btj<(Nri!xaz8u((FQb|FH%GtBm%V(+%e;zAeZ`cX?x0*%z z@nsx~l;niga9|KeSjd+$%qz^2Mh<+DDIG_c%+w|3U1q8ZUv{uaEv9bsr8ZyI@nt<< z4zgq$)}k=Ai>=PVR8GEZ;|TGR;s{;&63)Cl%N=fHU!_##v9Gj)V7(>ZVgM|hp70eq>%DKuiq&-n5=Uv6{$nlKf~mnp1e3rAng zfw6q~fCFc-$WI)&fvH8zYr>aoe96ZmMiyz!ft@%oj;XE8>&Ag^@ud)7_OOA&SaLXD za&nGdV3Cm=Sb#4XSy@xQ4C6})=I!Roe2#a5dF46qBnO`2ODJD%a_W;<@*YbzV_prW z68SQRFQI%{!6GZABuB5wml=FfnD--Je&)dJOl{$0?{nbK9H=rihN)wmPzR^`*&OZ}Hf6Ef)hwRm04K7Sr`c4%Zfn`pf!$iMrH4&3S#)H}Ni447 z0PiwUTaM9Kw!DqKtYXtg?BxbF9m)?ofW3Ukro&mRW-nK@S}g{06}*9hTRTf z@ejLgVAHqk^O$d)^@IE}>y_HsXqv)HnhO)(aavtYQIh)#ZxEU-uv3Q8R%w*GJY_d4OayH%0riCn8usDbVT*O{}V#_=hOId8k zZbz}Hki}>g5q3K-PRo{j#f$YMo1S9vG>g$3Ur}R!!(s!A4>;U(62?i(T056c+EXC7(fJJ;0Vj*^&>& zu)g3&@4}W}v5AjNu)b!KkHcNS;u#kAaDcs73}?$lZ2FnSWo&s4KjjFv^t0(WHvPq7 z0*hhn)|yQhv*{Ez{l}sm3*HM9->(zjTw~R8fDtTsV@7<(MSLSgd~bwxGix@QeRgBh z0sQFkY&n2Ur?VR`7PojEczm_BHJyF>*e5Sbj;}Pf4(D*Uu-j@Dyr?z4`qa9QgMZI% zD>=X#w!G9f^{p@D)d;+lXhnTTHoB)DR@Ap=C+9ppjghqAC;!7wUe00^v*xnf<80z( zDAsfA@qIvX=r5*PSf~vSkrl@&v0j zh%J9)FQ2iAXBw?`?6Wfqo&mCc;|6awTUK(oJ2~87Hu2PnbuWAQk1hMMX=9wv7P0!G zh(F@@me2PF7kQUNSDZ!j4OfzX>ni-AWw!zp&O#sCS_LBpWvn_FZ-Nmmw1tk2g}$ z>%{s4Ml{71I?2}S_``>-g?7?HOK8o&-v_X3gFp1bEcD2%Zumpb!rBd<(T}jc#~(Tm zRu%l=d)-3k%EAYd^#}g`!r$Nc+ZVymE4P-wGx|mrK3A+`VZ_IYbrKM|Le~Cpod~oH zc2j`RX|&L$S{TMUyS_c`HS#S8`e_*+Z%ChS@BUwL6uo4$l{!FM*~!7}m|N|y^gpZUUF^I*#ERH07$TGxU!YmfDh_cw1 z#Z>l*c_|9;9GgC4xA81yuqEcD$jcSXun&tjS)9N=d$Z5CSafE~^VqbGede(^joprB z(;@8T8@Bw8MGqFO*-JeO%uA6Hn3p2)ID5go6q%l76XvDJw2T96$B%x1#my{UWAQo* z%u7*#Zfsh@;&2ZBC!4DI(eJSs$)bkEIQD{hDSFBiYH`>_|yOOdGyd%2y(+w6vUDRR4x!+pf!eRlhl#d;Q#*=;I|X)MmL_xFGW5tWXl0;`39SQXQDmWgm;~MKFT7KEuY{3 zRV@Byw=kQQv8e@{j^Y5a+2{T&YS{9AHvPaR%u7*#H#vAEyRBo>vFzn|7K7RC1U9u| z@e%u6!~*kD^spD%XM47MfK46PG=W7Q4!#2m%u7+Yec9)i?By6X6|%USE$6b>pT)=Q zc8_hU&s!9Zl>5T5P%X6~ee1JejINkgoK>Gg`>JEL{^*J+*|DfSV?}JAFgIqb$h3x^ zSjLte`N8L~rH4&-u=tBDF=IvHZsGtHZ232fAJ}If7H6_}h{dk);A|Sm0(}~K*w1X* z#LxVIEuUx0E^LVzEAqLJEh8+tvfImSx{L+-MC21QRwU3lB7w%51bRs%Fk?mHR<^{9 z6`Ag26M7P4LLY_%+Hw+T$VuGH0y9=*+JSxU$f7H|J<29D_2dOT4H9>;7{qQ*v6#n} z2e4?#Q962w^7$B>^4ZH67DL(6VsRmhlh|z( zKV=G=*0N~FmTg$P$d;I~B8KhRbS{fGSgc_24vY7gVHO9!lr1r1MZqs)(_j{uu_DU@ z+2_wJhQ$N0z>F1nS-_@0*vpMY>62w zGEHLBMhy~CD$ z*))z#n6aWqqkBza9*d*c?Q0JHEsK{~6ti1THr>J|FNgb-O%Jl$p)4xc?HU%VSX|En zGgd^487mU!a{zoLk!b*%zGKr1Y#PGCVu7z2^7$Ln{=%kTCJ=DWAo&93U1qaezrIg6vkrZqwLuceXr|Ewk8k zBb)FENDMvM=S^%mi%p~0=ND{wAzSXpCVYugxOZ7BV@rILljXr|I*bKotjKa#_KDAP zGF`_4Ggf5UolPMYr|?sr=HU0TWt7FmYQb5)Stv zyLs61BewjQML7$MZxGRm?DJ3dIfC8#v1tX1^H`L#xP!gi75B-(cVck{iyU@a!{TAK z%w-d1tcVt42P7V5%hTC(G@IUMqOokchE4yl={5GbBb(;1z(5W?Y$?0V7lmio~gGIfumt z79Vi9^~_Mumc3YD#)`sW#)?Ew_EN@fw{f_8*fPSV*V%18Tef7=Vs^uf6+OkvZf~>O zBkWep0y9?RWjK2&Wy_D*XCaGI+45f&ZCP|;@d}6Ai$#nDW~}I$d$S2MR%DvW4?Ca3 z^=C1c#V+i23XAvH5;Im5?g6$O%9fb1BFiuM(YvtaS8T$J6}f%QCLf2pfWTMl5;>FkCXD|#4atVoowm+35g>=QFq z=X#w!D;0Em-`+mdja;;sCkq_Bfj`*+h?i zj=g-sZc#R!&R*(S^k9*}ZZEOv6&9FmqNhyZ;J2{o%3>vZDd2G3*>WIT7O^EJn<)4o zw)~O3e8whBHj!I9_Su;QCY#6-lT9RMvt=cRyOYBWW)mix$jiO#10XXJCjnJV#g5XW2ezDx%+U_Apdl z#JeaOj?s~RE2`Gi=lZJX4Bm)8wBpbe)}P%lb1{duO_KNeY;P2Y@6Z$m0@i2Oc*$Gs z3hQt36)p4D=X+~;J0sKAX9Q?;>(CYTIliDb8YN4@Ss`yVqulaXO_QO_>st`mp*|45Lc+jS>Ji-m?@jN^@4*oRt2Tg(qvK$n_W zt*J^cdZI=ZA7#6sN^UqrYE*@5jWignBpxIa7cBKh!W8vjU_nDM;q)J=RRH-(d6o>GU9Tm(zKl=dOogjz@0@7ADPsX&V#OVCXMEnbt{0n9NtcpOWB5dUS(Mr~+%-R~U_Jwh5%i=^4U#3)HUs;8AjU|uH zMfWC5{tJ~_OqE}P;zljprEisz9`oA5J4h4n(W=Twpxh_`cPNRUljEJ`j_xB$*3aZT zFQlsod<$C4w{zTx@(W7x@iKWa>KZzKHBotAr=*`Dr+86WBrmQJv?H5PR~*r$rB4r(+*ki%jZ$ z1&vZzq$GV)CT)e9H))O6S*gGY@@rr>cywe;FwuL^N6Ft?eh<2u-Hy#PLc^8Hyd^7> zPyJ5H4_EJRl#;r$oDW%c&(kP=)0M2}$r0|-R1a*v7C2a`%R2d0$O^c+K2=KAJef7m z=M7Qchw5P??PE&j)8rg4ZPo(V$HSWS?(s?uj+Wz|UmK>kK3GGau14g~Qc@ox7d%w9 zF@y9HCFwUQq&OgbF>c;y@^A)_*zC&Xl zYcnnF?@B!$my2MVMm>^zYiD|N9X>3?71E-pp(?OzU!xF~D%qcvQ=pIzDzZmfTmvoL zmE>4;EJQsw7_N*`y>AY3^;Z%vlV82IjrpEzkY#tJ65Gj*PchnoB;{_LlKugiz76QB zywNIeSuo)^*DR$DH_JM7Xm)g;XDV$1@kh$SbZDRP7R)#G*y8bUdnCGH*q#QXUz7Fg zv_IXM5{?X*UE}u!Dgr*w7#f|z-85!n5ivEiD#=X4;sF*5SX8qJ+af+JzK{&0$?LKv zt>@vwLVv_V#~D`pX~pXTQ-x#bNzI4D(^UaW{)M--^}H%?t*1Qfk9sE6E%A&hFW<+= zr+TFd-Q-kg>&%Z)Gbfqpuu`eS5?P7X;{%I5{8}>!%+agqHmd^D`>i1;oR^t}? zs=T2}zh`_nQtfqgEjKC^7%3}IG8(s!;@uc+A4qPb{ohLd8kxThDkpE$SgWmDJc$CDhW{WBt)UrCH*8DQTaOV@xeMw~U@ip^6BN zV?<)U+E~Qw*$r0e@ziE(Kzs7Kczi5mpY!XPLv!rr+c#24KT%GGlG(L%-vISs0!!Vw zKUvBDk{tckjTH}7etZFfQ2^&DRd`-bf;Q8=b%9EXJ=FkozXElc%FR+xuGHZYIT=c3 zP*;gnm}almXugPHp_2bvxejWLI%s@^&ZVaQBli)EY&cq}!sT)j6j9g6(@+}C_h6Zl z9Xm6HTBvZAKj@{o9M3%JsTxtgP)XiTE`gqD^hFyOz#h7+#M47o$8LKnG2=8W~%xt8-hqU60@<}H~NstM8;zGrR?ZRK`U$S)}Q-`;Fl zc!>HM@l{UEmp7H5ciVW&sG}$Req1BFC)|d6!p;0P^oFgc>DlRYgsm4Tz;x>+``=zl zwT_rHU0`f_7K&XFY9V}K)0Ln8i18NwpiKGe5q1o%W)JWAw31tpHtFh06zw6zHH-<5O9UcGIQ~n2QfS zG{)$m(G}T_cd)loi}kV=`D5u2hXnnxAxi4WauH}vUqgH+qh}&@%<#!>Z1TMo ztHA?^OH&P=DK|j{6a2Nv0IV%B(mt$A`zz(5pNGu1$A}E(BbCgbZ8q0=6)%_@x}auv z<1{7v_A+}u4?f@{z=-(yO6n72>bwaNZ+XDg$GTd{e70QB@{^3s-ln9+u_HoLZ+~#u zgC31K80r3yQia>)bT6WGuc^YIi_h8MKCfi&C9~(xt6Ji*n>uq)`fVlkPI9)}@A#-l z#Jj{u^3Rman`GwJvt#s~OVj9{(f%s>>ZaWXh6+C_RrpR$_uL7%Q_~wUMoSiyD!zL1E$iH-3ZKptUq>T)H5a)tqoV(gB--(JCXKb~iP$29TMi5eBgs!eSVU zU2GAbEZdC?*uf&Vy7?8fhomf4LCZM}>T&dh<|F^H%U#=_tYoc{ zSu-pBL36R%awX~Ca^7ZEJKx_cl%!!friHXFq{V!cs%r0Iqcq>5Bwr@SIIm&c!Ys}Y zD4AQx(auXeR`ZOK`KT0Lq(o``hLZO>nYX}ST~kZ-mTRf=Cra+)W$wH=wH_Ltr~9&v z68624d5N6Q*F~l*0qVN<&@5$3CZfPV>?khCGQb(gfmBb zqh>1iRFa+~M>ek_OnXRz;c$&ntOhBWPnMZ8{7cN(?xp0sL*~q-5jFP;zDY{r1Laye zGvaIv_g9jBAQ!0I0PRJl%dX92_9=-El4DymC+1r~i@y@oS2arZPg00BS_jvnf}@ng zr804r-8>lY(dkOo@8vS>t~M@ElD3hfn&Ydkq1B*fpW_-OFHUI{KBG%!Qe#x%^$kr_ zwr*GQA0j7qfiGM`9RPPX{$VBe=W?1CU{pR3tqu5S#a#0h0&A7rRq`8MFfQoFL@<3G zo3+V1O74f{G|!KhwUFavgU^-JU&+zVo0G5-`$@@so1ED>b8BhEX016+^`DaWR+%@; zU9<~#&~>?Xlhe6i5gk85tGZqNkWNbOC*(euXCBr0l^O6G&*XlEkDjmD!^Ns6P+rAC{+AInk7u$Y@x`5OGknfzOA#P{+n zQLnTYs&$2_lyw@JY0!5Wi!)f9#o`=W#0PzslYs_(|CDngCt5`#zCp7! zy^?}AAMs6>_d&VrWg@yp4y;y^zLO=UbY|3BXU24ml5|g*G{ZR>_pFlhLzy!t6b@le zx{<(dDtUL2OH+xxhLFxeq9d@P&hh;9O8ysQ{tPR#Y8Wfd~3{a!Pz+bc<5l}YnQMWcS2DGGhM9wPW6-TuFPM9P5&qff_$nTgKmG<27EWz) zFL;%bK0~H28jC&a30sXjl6R`U0d6F=KeGg^)cy^oUiOPRKy z8he&P;p%{+A|0;e-XmKq7|a=nw`Rfm7KVn zP2kKyV@XQ~jq+Tjm^d4p!6 z-=pNcUygXm1V8Qb@&*%@xhItTKgjXUaJCt*C^>OoqwtpHObu67I`jAglXt5P|Gp_# zHMuh*;R>9NW0d+IOogn^$xK7PU$Xd`#kVXr*djjkyO9hu^jn!DCPZQ5F+$GN_=ld+ zeEc_E@^x~oJ2#$pf!*%dfA4Ad5;oEyzpqY}W933vFe+M`@CE3gXp0?q!8uCmC+{kN+op%Im%hnsT*gq zUaMrCAhYJrp|*sUuLgW3^_@!UK5~6hI4KmUrLRz0zu}mRc~nWhgG`=j;Qpx|NT+p(o;$y{3@n4j*$H>ucGdou1!DU4_ zABT=BD|hx9TlUlSmI`GZN*lMzdJ-*LDOPH5x19Jn=({*mzl)N0uFPBN>arT`XkVoU z`^y>>jk8DDJaqRJO@kWjyC~T|mUBLLbRgu7I8VYDtt7rjj&?RyoI3W&%}~;QE%#dT z#`^s=p0RYFk&)7eD49Qz>+^z9bQl{SglE<<0VVgha;)>I(?CPWuKl=mO6oOoKDTKs z-nCT;Kgdo{>QE*pJ$)C@Bs85u;}}prTS?tfe!q&xE}?tp=(yZKHLi3q3f-kj`g2l9 z{pOwYS^h=XhHU6?qf!TtoCMTKuMJeY`%w2Psqc`fv!~LIe8;kbCzZ5+$*G=AC+)=? z%kN%Q(*BXcTRw?4Ao=YhAB{ZzP)U80{DzgF$A&NOMDwBFD)}o?NO8OGXcp~1l(c`# zwE2x^Dw)(-JL$S?KgdP9Em9nv23qn!^}44b=yja1+ghnaA6bc zl-Ia})>+WrQ?hqWA;T-28UB@$^kq59IdmCLmACO~ZoaGFS0(RdGH)+xw`j*4uHd9& zPZszW(f^Wa>f%HKz83T85dTQPtXH?|uWM0O$#qN*x>r0%J7ZDD*;^PJ+c&yifCg`j zx1dC+PpSMe7H{Sy?5d=HUH;4{Xzctr)&uraavv*aMe7Fcct3-hT_g2(RjN=Ym(aHE zC5euvevDFy59B<^uA_ls$7tb9CGD+p@@LYNggJ0_sFJjUT-*zI=WH|_bPU>AO71)5 z2xrlW*N!{67AaY0$gH%x%q-R?DmiaVp;*(3V(!7>yC%^(+jEpkOq7*qUlWOisFvMa zNBT0Q8dGF7dQhcKqoqg&G((0qu9M?$QtETFtWN=DN5apk`;^?@$Tdx2Lxb#E!}pYu zdx{9MybYKvKqP3Mcx|kV#fft zM@c+LE(%2voFpHlnwo~e%%*C9lKm-}y|Dx8Y$iu2x#!7Ao)e{+B>z&g6Es1|dw|TF zO)2hoeEH5%(zcYpJ+q?p!a zN&SjUU04xL67N%$TI{rTnTZ#sfu+enQ7?y zau!#zxSGW(Tf~R1uOkBuUGF0o^;}<7IOvZqFbB2nrtr-NtkWgFB87bCQ4Kny#~U&) zhT(`o!uTpRd+A8ljC;T@h@fevn%l&zsF+f-Jhsw#H6$m-6 zV``;jwPe=Z@_@H89C9oM>82#UP$q7VO18!PO5UG?Uc7xXoYBziq*UW1Ij=KoXhW$% zx|@=8lw8XtJalfXl6Q(6*$ih~_fvANl{t$VYV?}$BF7-zVM_LPa!O}X9b(=yus})L zMkdW5Qlm&MR&u^5Cvzs=V}tZ0CFyH&!<9{WOKq1yd#;jpdpWKd(K@qpcDa)CT$!^J z)zwgH9QoS6aMb+jxml^f8!2c|PT!eTI2e?MfNW)qbiZGz!3tS}%wV+E+}856lJp&! z)K2&zNfZ8cr3UZGEmcOj-|P~8tmK>}S0R|(ts7>R@(oJbOXbAw=xCG^7xurDihLp0 zETs*tMq&+e2I{(Fm&r+yWe>9&uUK0p>tLBRZ?=6@qI19M_Dbe1@}Od2LyEh`wg)Q7 z4@|MR4>gPXo=V!EW!n5mI6xmbLFdKj6P47%bnL5ma(&ajemfgI6{kYg#&kRSu|kd_^!B3$-1YU&V}d-(LuZR?bSvmKcpnTTTbev2h=~W zVCP<6u8hQ?9 z|8Tidl}}|=itS=zS7NSZGgm0-$I0}q1EF~Q10i3;zUjs&uD2*vXf3Nyj8$xQi|$_2 z{eY7GRrzh{WM@FcPj}EpXp28CBk{!|QRg1)XOx<>l@p>AO*z$>L>;fWjI4M=slk5o zJDLX#-2I17l+16)xsZ!O5TrYvj3|GvBz{ZoKjhiflB=5Dq-0(vGZ)jQ4ZE!_57Y%5 zt#$5TUB~enImL6Lv|FLvu{x`rlJ^ri+L(UwRkfJEfVO)(_JsCSvQLs@U1HDd(^Pt* z>mmjz`8Ue%cmYl6({ciwI%y8B?WN>CPL6warI${=GdpCHl(c8aQEp|wVezdgu72tM zN(H`?OI%mGhPPLc3*QMor81Rr6`RkQ;L86RCH0pwbyHhk?oZU#AEi{`5xFd6x;_z4 zSCalFlXh0!D(A|o6xr`WEv}F(514P_HA;4`%$`@}wR;$jO<}hy znNOCh9{xO~#i=ps+R%9$e&?dDhm|_?mt#+hwBub}x;`g>rk4^UaYqARWj1J#VO74Ih^ODA5kYKF%KPCT9 za@@1rUpa+CbiKX5BC;HS~F9ub6PDu%l9ip|T3Ofhd+# zI!4QfDT)7;lfQdSgm!Duw-vUrHMBxW1}pbfs&k2)4y_u;&Z#!0yIIUpk7=d?TWtva zRavo|pntLJqJhIreXO};rcv~HEDmIGFpEQN5g$dLPX-!AKTLip^XOXyqsJBI{dLv! zfadF~(`63IF{U%{BXmU|6$^VColzSuRnosJ(-#GCGKhUGkaO_<6eW8LdG4w;PK#*R zIL~?*39v$`!jKelKI9Em`)RG7IdgNRl6fyV>5J(ClW-07K_Y%y*KLm0uU67uAV)l> zCQP+q*o^iXCGSd^ch`myu7*Q9?COx}A&dgj%^UP#-f$rsRh8II=x#8dRjPTBtY&tg z(pz2aHHzb#O4^W2o9hclBEGP{!XRF+B;Hdd&ZGOHLSeciH()StR5BkezX$DTxHUo> zEHH6qpEHZSRpz(R-%2fJ%OA&iKCiEeK29pk7b0({t_65UPWg7hF!f1L4Mc0`Bp1@b zwcxA0Qj5NF{Bb{?^WMi^O4@O9@R0Q8~Y|LdJp)_Dw+sz)XtNYI?R)G$g83;c=u`f^OVd-$t5A)7f8CHzg(%p*K$pi zouDJIP)Yl(Oq*kOK^z^Bqm{fbr^bs-WyYJfOvzg;=X8cIY%X)WP|4X-j%&Mwy$&Ph ztCU*YBF8+l%wKDEDeh2`dgWKTq#_)nGqh>S!5{KDmxVl{L|xT_I<7KP>n_!_jPLlg66;b=&2z7b#hX~Thgmu+ zY5U53nr5GvuJalCDCzsl^md=pYo3TVTuFPr{QBk5)Jnit6?80YAEjizRnF#4%~x<3 z-?v6fGhM04067f`<6qV8`tM*R`FC+|BGaCFmsseAEgEvat^ePhASxg zwN*H~HyorZmd)Mq`NMSuupos3=&cR04qLt zrJwnoKSarWehN{hGmD(t^7mHKE|6(k)x@Zrd4u5)eT2E{xhYBoo{@`LQE+Ioy5;~S zdq0j^(o&9YZs*=$I9i6hUjp5u|eBcN!wX&IGf^6apuT# zLKuqdqEzHQIU}-b!}M)t9`QI@NjpS-(Xy#ArLO@awlkEpSID$YO`79OpF@<~-Q+AU zYAo`umXZBr=c=tIQJ1g}%l2IK^%?;qD;y(cJX_mgAWCKd|NvUB^ifGBP3!{$1p ztevgYVZQuk}jtX=jj>coW2GY2}F>R3f&ra|Qr7NsoO zuxMwC_@HtJGSHy%BQkB?nD`}R=11BN^nm80%IPw{l|t#CPWfO|=|h#I`^t4(!8o41 z#^H|!_dZJQ967?BDkI+VfW2Unw(t6EkYFpzRHY^_$X_g-;%|aIq)lHDv}}&f<#BE7 zI8doco}4BnwYZ1HALP}OAu~@Zl>GTJe?y(HnH_FXr54Z1FJUnqaE87P&qAA{Q^zXl zV{#&N^e;vaixgNCsHGj=4dv9V63$R6@~r%Jc8Hft`!t?pN6}oQ)MJvYNAXnqXfBU8 zSm`f|mgAV|!TFOU;M48cSKjx2I(I3@FEXw`Z3C8iBf@{DZLmt+9p9ap{tVoCOI#1 z$3*CIAZH!aPf0v0g;9m{A zEMPO0tQX2joi`!gDK(i7RWk1<$G27U#@==Go~2aaq7rPp^bNInHVL37MI3rjm1anKNgBy++>LmwB<0H(Tb-u8q;2 ze{)6K^-9_jxs0`nmodEUv^OAZ=JDN11p;zOYl}1cY2pHBUeIxnHDTPfXB4!@l}hX* zCw|9jd-V_9jDZDiwA3o(r_%|YGvqHT6&WvQNBb&T4Ne*1uP*bKV`Vs<1xuZKBR$?% zs!=PaN2_RcIE;~NY!+}S@U>EbXXH|mSrZPMm$&_fD`{L@O(59LfRYFtDe@j8y& zcwNcvkyAZyK_ncaRbh_){Krb>kL1Lrqpbs2MNVVkROH>C6dRN(d@QR_P!*#i)Do1n zzm(kNGI#r0`jBY2E)qjJ36_xOjL`MtevM5PKVWEF5t zra9t2S4n!FOq!Q?q@Ya6TrM-`Cj1x;D~a!ri&!RVbE8}zsU*EiCT&_go}d;#P08O+ zu1NCi!4PbbFk*hbl6fbYxpm`96~cKHt}e^fN)^tKRVcPsRinR};0jMAeU6;>ndN~B z^W4*iOwz433cW^Fh7Mw_SrT>LL;Q-Vko6RqX$<-q7SFL*%i={_#K)jtCIgK@KP+cL zrq_8`+6NT2`H*wEq`7izGyRbYbMomMCF#?0cOjGNR5QPSSCalECvQfbWxm>(d+Jj6 zVL5fPsBaRC85K&YlJ#^srZ{&m8Z&nSbXU?IEk`ylFtt#Doe++WH3zT8q~E_E(B z-CapKR*r6Vg44UlDQT~fu}|=&!_-GkwiF zhHoBFs_~T^_nh(sXWl=fq1%;jbkq8G9bsu(Hlzg*>a>agEaeUWcVja(u?Ic znyx_$ncc1Lm84(Fr7WvzNsVKody|s2t2_tOScf={^v~T(*X{aA&f0A1)Y6gaM&`Ct z()N~ViyLaq1YfW{mGo!H^jQ@VXB$08$=X4Fhv_zv;1U{;G7@_)CGSCUY%{Dn^X;9a zX6NARxGZ1}eby*>ua={o zbj|ruO77t@cSc3P>>Zr0SIkTxrb)E^^$>iN?`4)7VpZ zjJ>^5i&ZH^ou=!}&S@_t=|^%w%jOEss8X9@n)nQhkxJr21S|26nX)4rj`f^s z>SG;6W*RL%hQ)C#PGE78E#jlar;ve0iz{T_yvDoKj9UFXdO-8B;&ho?%6+7KT6{>e zzt!P@xe?$usP-mSV2VdhCG{OePg*oe|lcf{P|@vf5gE;-uyp)f7I$1uCu$@@}C zy}eAGK@0wk_vsfU=X|+PXE=LWEl274JNL`+ETGCN6sz_}oJYJBE4eS1Vl^eqW#_5_T?>3n-~A`IYL?FalBLkJ8&k zy&$?{pbldK2^x+%r9R8$q{zb8VgG)j^o$QR`M>CdGq{BXnHsp za9sO+sgk*c%$!AoUXI-kH!4{Vl3%vc#z8)mFxNoAy-E!(lFL`7&)I}LsU-bLPV55O zSc1#da1^gmv|ly3x7s*wo~#q?4Rwr4eP$|Sts^rH^1jF70~Q~#_{0|RLEcZvK!dzX zWzy_G)HMM2BZY20!kaGbc5BtJ@yb75oVJIM=1>tbFglV=5@ zbZ~-E<~k}_N6V}wjZvl@i+;!O*bYkmh@9UU&OL)em7M3vRa+);noH;QQIb9;Cv31*f2Cx-Qf6)Hf6)0SMneCpB%df}a8u9ANxt0}UFWA*Zk}@O zdl71a<}QX3CGl}`tTTc>^Q5Y-O3o8y&Kz2^G1Pf`R6ix}oARqfM~*n|HrQ25Dp$}M z^d=cad5n^CvYfzJCgLr}kx^#lJX1+sl0rdFc$LMWO5*oZNM~Qzytl$qa-J%ub9RDO zcaf5Ij!c_FpTn-c#)(Sa4Ki<*-PbS*^Epb^59GHtudy&2%$F&d*UQZj?Z=Lq%YJTB zlGe+KT!2a{(MQsKO731VHx0Ce&35-GCF%F_i)(i^1{-<%nv(TLnUx0D0_McqM@rJ3 za)HVXMCo9pfaAiU@07%4a>h3GZD`ifNa{b8_b{i#UM2>kO4QSDdMLHLrrXh`F_bAC#FIeQQ+o7z3H+pmPmp* z|42}hZP&d;i~3Gf6lt$`9UbavZ%m=K1~-sV${Pi=QmKhoE&`c|zd>57Bz;@X>Jl$S zI26Bl(;4aGl>CpRlIfw!pt;!OOeJe^Dy*&*%oi(JGv#jqyMUV=sOy!i!{uUCVi#~< z4PA-h3)5A9MhUxH$zLj`bw28QuE-4P$CcC{%Z0nEv&xSj@aeAkUsftpC@YgkX+W1> z(cuh6GQ6*3K2^?vF1{cg147yF^;Kc=w%SiMUZP6wYo#v#%DQAY>zLn^oNZI!q;G#C z%`?X78naF^XFGH*?2Fc_!`Mg8ZHu8rE2S2%$nSpZTDZ|-=;QPi&ZsA`vUhXb?7L+_9dIEho4sR zKOiT3N3$`YGd~i&2d^s?87gN+AwI(FPf%y?=wl`M_Hr(CGE*UzBpEg+HTgnrh`Q5u zvGO2wmduu*jt(7m^<4f^sC@TSeMyp4ZI!C* zBo~@4HU5atz8^xUKet!v^0k~SZOsCl;8Sy;QVCy{*p6g)%gnZWPbKFCGG}*ZdGLj+ zYl42debU{UPgJV&jI2%#mewPc%!}kSNOYFlX(sJf8*u+wRwwD{FqfD*S?7?M28)-oIFH2z zELPegKE8f28EAa{GC30p#)PrBHW~9=~2{LhllaGE^vJOij ze-j)~m^nfBGPRZ?+ht;`k}h_y9Pjn{J#+lHj)jJp7kS3|19OZo`BJ4W7t2YIC zO6F7KR7iAUdw(VEe==?1xW&{94d9wG$DZNcmE`SY@`MKmj#Ki!oGDhKn>$TzmXiL` z9Fac3+dW^&S|YcX2@^Z0!$!XeLunRAWTdx=t) z5wb3xNp(v+-l)gxnL~G!L~8JQL$Q8c_l6-Vtqh!8YjU@*7C*B1nZ>WRh>s)xP6irBZXv7DVP1qb zPtYeJW)gy)7_B3ybbSnDO)~pT>FV*1oI~v<(wJ9mm=y4P%Kfy;)Jv&jrbcU}7RzNV z+7B5xY=md*l90DL;Pcc)J@zGr=AoxOlxmEU-_uUi^br3H8k@3jjEQ;{1!}8Y*|M`z zlU%uY6b>FZWQ1o7O$yRrfzbl*p(KA?PKJV^0|$@rObJIq0k6S5Udf%6E4E40q;kR^rqFZ%O zQR-7K>(g!+N+?xOv?A9tmaa~qx;t!c{#c>ZqKB+S{$8Q5r#4U<^zUtC$dyX!47pIW zZfG;<#VDt8QSDgzxLT>gODV*DFlwl|p+JQ>dbUPM{YnbdNfQ29C3T@(H?}jYq+p;d z;*FRI@TO9WDRQN>^H_hKKN!XYCB2Ju&vRWkNLwSqA#cz_UyOFGowz%*Ua8zIvU2?! zl8CjNxnxe5E>VqlvZ$L=77GN+F%3`~Hjf0^sMM{itXrQ^J~{@^?pjdNO`A3|;wNos z4A|}h#`_wRM;&0i&wnfRS}B+4fo7UDn+xT>>E@CxZ?dk3S|C?9-Hc>AV8ZBdI9kgc zGiPG8S8CH;&cvb_V`q=CCv;Hp8Clg!$v#lds^Y=+JK(ih2DF?g>1nZhMx zJZ8(M;p-)eiHs%TSj5xtzRiq;E$X(J{gshQ1v|+#>?-vXB7SQ4Rj#DBpR8s#S4{Gm(db6nxLpzPB`e`&(zy8>j(WX*5X@*f!Rw-5c zO;)YAv0`I=-IEtx?-{~Id4pj7crxh5&*Q8TQkaE&RhQ_>HXQ>b*#49~1_GpCLkGmc6y zKE8|u_(H3JT$#1v78nUY6Ex16<7cG;_sWH|x6vDGXzw@IgKaTI*G2qK&X+9rM`)3f zwXd8M`S$mxyC8N}Qg4*sgMJM)6@TVbc>@b#DSYJgQEK+1tXV4*%~7ghPRP^CTW5w%YRIUCvZH=PM${SMTgjs>wspuqG3^1*H}&>*0ZK>q?w209Y4 znFka?h;pDX&_bYvKt}^bftCU73v?mSRD@jxl#Q464xr~?_XyBu@b?1Hc%XGaGvN9K z(5q;Peg?V%y0qv)fBOIx0lf*-8R!Ir?E};sVTS{~1vCn%GhC+wod>&vfz}~x6;K{f z4CplYJ09q0*qsG*2tr%}^bK5Z0QwH-9-tmTPXM(>h*yB>fj$7*0PVj4`W5JRpvMs+ z(?frQkQ${x&%&-d&|mP^A7~k#vOCar&|nVdk! zZY9tXplg8+$CK{|`V)3<0#!qU^+4|dZ3G$#^fyoqP~P_RHx41%18oQGdjUNGyTL$D z;mIR`CcK>F<5`>j3mAP;a31Ktq5g!{6ROQ-P)cO#?ar z=uEJMfv!Y|BY{4H>uEsS1Dy|a0?^e!XCuUIKs!SFhk$N}>+?XpfZhh$3I09<+643? z(06eC7wAvKsGt}9T?p5XKm*{q1JE0=+a2h4Xf+OK57^BD`U7_JfgS}40%gK=3D6UG z%E>@gK+A#thQBL-!mzsqXc_Dt0BQldXMm2vQ{Di&4(Jo04}snU+65uj1HAyW5hxEa|J%01Q}TACzcYc_1HB5=3+Qa1!9Z_7mytk= z@RZ3w%i%f?XbkMif$oFdLZEA5cQnuhpk+We0bK}mST_Bw0?Gio1E>{T9|8IbY%c)) zkVSv%fIQIo3!vUWKLd3`h!%b5?^pOM0{R80Gf)q>_5u15XgJUw+4MIGXcp|I1MPt4 z9SpQHP!&)gJS7Iy4|c}`RU_fo=e*f$Kd$_rvZ9pdVoO3ebOu(FZ_p z;>kY%Rp!v&KS1kXm*1EEjzx$LK*t011{w^1Lx4_z-QGa0fTjR_gs=wyEdufby$H65 zjS%)2p!RUB2YLW@D}g$|?pmM;Kz9Q5!IK{a+5zZApfT__mk99-&@r%U z*^mATfr^3dhHDp~xj=n^_6OPp=wtXB4RjCeHh(@@=EQKd`GqjX(f|3pkG-(qOBP?V z_?E>6Tf`R@Y$O9MEchD9a|q}^K@jAXbn_40jLbFX9IQ2p}$Lk&VlQVKpxoL z3v>t2lR$sL^;Muh@VpO!Zo*T(1*(ASA3%QtW$i?NKOk&tpgur7fX)Qk8R#LPJ%Dya zh^at-!0texfj|{NSHU$3^fT;^1=qS7%!}U6#E^xgIC>NRg7|=qvz62Bj zdJm{8{Cx%VGVFc@x(sN${`9vBPc8u}#Z$Thy^fgo13DJ2y8_iA#2BCt;5rlNR=6Gt z)B#~FpgUo=2xtb-i9k0Z>^VRafi44@0(2A5%|Q17eS;@I1+)Xgz6P`-&__UB;qN=3 zM`8CT&_M8J?@WK+!?g|2T|ge7LGU*K=qaEPK=a@_0q6jrIY2FuLSCSMpg{;|7(yHY z^a{|aK!+m4c|gAcT@SPm!rl#Z1^hh@v+13i!Dy$|#l?7jxdM~L5m#sFmupueGT zZ3ScjbpyH(XeXeP;BPmeQQ#O0GzE710j&i(45%Gk7XY;ZS`73eTu%ae4Z55Qv_0%D z2Raw%W}r8K?gv@{^fb^rK(7P62VFh}nuRBC0J;>ee*t}gC+7^Lzsq3P7HBZg_CQ^b zM+1QlMA$uneg>KdGz|Xc0(}8gX1n5fVW0)DI}+#*gg6c8M%bMXGzVH;4fHQuZv)yB zt`7m-4cF&^hCqY2fwJKG8BiV2k3g>>Y~~>PdlI~*KzqZrJJ3_G>kqUW{Ot}@h9{2$ zDhHYcbPPhw2U-EUAW${X5}?j-JsD^{p0XV1Q=lt=#sS>|)EejkpjQ$08KAbXdjn`c zJmnLhH{kj`&|A=N6VN)K+`;sB4P4s+eFD3lK$BoM2xudow-?ZHu$u&Q2JH3+`VJv{ zK$T#t0s0c?D4<8+?{uKwfGz+!7w8%wFVO8kC*#Qv1NDd9TA<#rdk4r5yU&46h22j; z0oeTq^b_m~htS{O(4`a5OK{y0XeiJypnu`IFVH2hn+EhM(BVLb;VIQXLD($?dKc&v zpcW_*D}aW;-<3dn!F4sz1+ZHKv=Zo9po@Us1PTGI2ig;8Bhb+Z`!~>Rq*dNf`g;ei z?ScBjt{2ca*bN414-G~F?GM+PSwNZacL~sM(DVkNUtsqj(62zx z*{(ou0WCn-Pl5hMh#!ESLy7nYCig!1Dyf8l|b3ByB4Sy?Cu0Q2k23tY0&CLpd;b$U7+iM zz63fL{(b@a6#BK?h5qhEh+?35KwW^2MTovYouSn(K=;9QG|&({Wd_g{K!*TzgTDY! zTZF9x3c&RQp#5NXHqd-Lc8BYGKu5y$E1)dc{R(s=?6%vD{)&)(B|tq9 zwkyz0aP0>)3wFB#jY8NlKwrRhCeVd&Jrrm^*jYdq!EO=IyFe!bEraVhK*!@LmjN9N zyPJRx1G*2W7j$_FXjg=N4d_~+kASWN`VQz9q~D)FyTdMfclrwfwE;Q>93G&j@#FzO z_ri4qP!wna(8X|_19UDzc!3^*Yc0^DusaUuO87eyXm_BCfwFv zaD5qQJY3%gs)gOxK+nM6Z$Ojbnz0A{oeb0ps0~mzpqCKKoq!f2>~26yfW`vlBdzuW znvM{M0UZI?1wf@hi-B5#?IfT*fX)S440JhAC-}P==tZFWfiA)Go(B35{$2<2!1ZIG zkKnoi=wqP2fXab#M$q3+(77$pi3qzr(4Po95NHJa?FrNmb`ybC0L=wD52y^N94HKQ z2SOYPbQjQRK>hIK^MQ5(x*F&Vpxc0Q;O`-zH9)TbJq*_mfO28?4baoj^mm}Y;F`H7 z{XGoVQlQge*B$6+*!2f`A6o4WG!}N_fUbevETDg2Hy`LVgbf1i2)iXfbAV0;dJnwI zftJGG6+koblv{v4hU)`BU%~Dfp!ebL4WQYu`vmA>Jnws;FA-uBP*;?Q+`Z`UC-`dz z)ElTL&{;r(fI8rLdjTB;yGcNPJa2!X&w+eEJ@LF6psQhb6wq*>(}B9`npd0DmihTEX>7AP?+T1I+|l1Jn_& z&jL*XdK2g>JY_x5yU=PQP+O$c-#}yGnzuLo-G&hDfmXq;7tlutF&O9u*o_1_6l{}$ z4nT-`Kp(=c9O!VMg+Qwj;%K0&V7CmY3+yfg>H`f{0sW4r+yNAXzej++fxj1k4gp#R z^bh=f0ki>jKLdS>5H0qhzbD~Z1hf&Zoq=`)>H~Bd&~Ts)2r&xiexT_TM8;O|zTy`jN_Ky^UR0gVNE3usq_{S;_7pdWzRBkVsw zHL%Oym;SoLt^?5Z2-_RzbD$wWufyNoKxe_<6ri_YcL31aKz^WHpa{@T@OKQ*&Or4* z7XYmU%7?#ef!4w9PM~*T_bAYG@V*GN9_8R&pu1rACD8UjzW~igSX?-7-48ol|889l zJKV``wa4>tNxC%y2zQoSoq%wUxb+Z1;Bs$kChTyq*$*-bw2zAlw3J zJq?7r8LiQH3NB2v#sJ|8L(9I05Z4J>#jwL2f7VhU+`DJp0EC)Wh}@Q1t9Ec-$+gZp5to(O>pTC6ho!)+jv0i zzqEBYo`+4$)-ABZu3~F75O(=m19IsPyKb$!VTZl2)_r&~Hl|wN!w$Pdt(ABR_H0^f z;EFAj)}^q+Zbja5i2Z`rKXApKJ!?4-w#`|i@DyxYvvLsvd&sQEVTT=Emc1#X@JR2(DOBY}w0# zv3A!Q1XnDlwSGhhtZcPDgB@0xTJ};=EcUe8AuLu|TAhKg=+UxQE@F+LWiJ%OazAS} zT(R)Zs>JiKzRkK5&%;tPYcTAv12UjdYviiafYl5te2#Ym1 z){j6~3=^x*tPRt?F5GZ)Haz~>jV`t+D2oMy{@VG$K(uzn@)Zehz_C5%!N+{sNLro5 zTi^PUXiZfhw0Iz`+6&QQ?dXd7Qk*qPCw9-T@kYFrbkK?&2qCdYv=HaZTBt5u)x4f(2QOCxP8Tv4@#r`774#m&kg z1+4kVlQOTBO9teLta1EF2@;i`c%c16Yc`2Q`PkPwAc>20STYA+GKYseiAngnq+Cvl zzWt0vi>J}U(#xZGjC1Jb0ou$GT*2`?nVyqg$|cNeD@xBXGONCz7jiV7kMa4?82Mt} z6Vm5x6I~FfnIGkC0l3esj8>(e8h`SUjZZ!{?I*`mrrBG`Iv!;|Y1`#=@u*0|+mK|A z{JxKL*^>OW&TmYZyVFjXRI|F&&g$mcuW)7f9qF^DnBljk{p7fEs~eMMTjz9ZTC815 zd&vBe_zU95?axUwWp1xeJ5^H6?RIu6AarX~&1jPvIuKSx6>TkoYLUHq` zJF1k4Y3ED)ooQ-7#-*KB3A5H3PR}v&rJfs*=GwcflhNt3r&yirllGHc)yZD=Ba*&o zTkxK3zEjw-srqf6YK}aQkyh!wi>^G6q@6aY=6M%KGtxXB?%WTjuSbfxA58nnNpgP+ z8UWPZ+=g%^vIUQ5YD2niX++{}$OwG`Hl?OU29O|8pn`w{8q z%T}*)IweU2N1gL_+S%o*bKXch)e`2o^#nb~$f5eKcAb+XBJN7()$|ofvC?@d?I*h` zowZx~h^9)1%a*Frxk;l1EsgeV+m35)I7GKyRXMJpZ$EA8R5AM|s$v@YrHN{o2DgEv zmaUahToY6%ZAjDfhHK*Grl~?{Wj`Wmg|ZF1t9kKQJ8FetOzZPLk(a(405*2)J?Bf=4uch7@gSMB<+zgSKstpkS##5~i<@U|@l{>FYI$ zM|u@h!qQehW{W!owq~rD(Fi5z7reZsiQd#Nc)@uEDQq=ZUM)_$lp_ zN|>$IC-fX6SL#dbN~B45cZ;zxeeM)%kMGicva9y^+J3~g>m9V_=Cvuk9C_Vydb;nQ zE3bRdBhu?Fr<&J12jYx@JIA}GuR)4A-YM-T|DWf0`=&lZ(p;aR&-JNkr%bB3-pSET zXo`h9=O?AFMT$8;KJ6zb$@wj4=9_v7++1wIBbs^&&uwX?74IqhyKQ?4#pZyeu^i*f zw2N)RGFLw_QD>oX95T@mLZhQONV&pjn-cUGmThS%YU(kZYCj@rk73(2B_+m)o}(SP zJ?*SC>lJm0X|plU-HGsx5s)Q&qy{NL7`b zq|t(gA&Nt)WqN6Vxdiwlo)- z>XdKnN2H$>TYc~fS!71vQLnU_k!}{b>XlaXh^^5-{f`pO$eVf|&~Qb;UAGjauR@A- zOMco>EQSFq!q`}Qe~cK zo<(W8HENd0ikih6jVqX9y)t7<%Ry7UGSz;>|3JM$*<(cBQLDt#&K_5-5=lF?68BcT z^c=HRX={J~I3nP#Q^M&hkYb$@O#8{MIwi2Bk7%k>xGbsalt~&bsJ{~4wslHLfa;VO zt?^G(qufPt*%~#9=G!L_wbe_pKDm8MQ@^P`S#3WeX??N{XHh9{n#J8woxGiP-ngoh zH_}e5#MQ|Y^c=G~;g26feRpN@YWnmkRwgf{{bW~VvetgYw)@a+$0LqLk~wlbb7s14 zqbtW-(j&G;x73~E9qk4rK_uMy{%_j3Q=ekKZ%X^g|L6JMscGbNb9p~RpZ5d*zvVrz zy-E@hcmDTJUy&5^zi--4PLlsy&;w}dL~sML1&?SNKfP&73v&F!WZ|~$L}XP2LKWuS zJ2hz+*o19MeZqxTjU%I*A2wyJjFu_E&_?x^7Mi9mgJnPBf1%5eW5?Oia4b(dFI)}B z*=Z+I!tAt;q30MGQlD=(9Gq2g+NMQUXQWS?VpVZ^+D~>>6{pyb*mhlnB5qw1yWi4U**Z1L>2en9uj7{pA1id@gNjNfYJu27O+ClXjw{n%6vz z;D~^`3-D$73Z$6dpQZieB>BAs?RQfbfE$D@ctledpmIwi67K>;w`~`oHO3Kejse{? zl4vMl=l#;Hp%NCk`YDRRN$Oz7HB50dp&u!o-se)hFg0}zcC;VyztAlpXkdbe3yr*hHEgf$e))K=_t zCXJPS*ADh0{s*d+5+mx43T5B4v&L1Sj7&SN5?3fY({s!Ug(t!c_1)c-5$V&XSe5LS z_LE&z$?z?GL{nA5dYL2VY&JS13ae3P5l(^yr$5UNJAxoc zv-hru@ISZAyYIgH-tN8Uy*rz~pWkm^NICc1@Auqu&TZ$mF7KSdmd2ZC`FQ>gXk#|+ z6rTUj7!zHdyF9DoP5o82zhU0KCfi>#mOSQc&k}0^O~ibRzYv}Ae;MPV%lKU1dPcJk zD(inY*Flr@zZgpnVI2|GMPk501VV&Z$Jm4I2w%teMr-F76V$22D|eWBr$9rCv{SA( zr8ogJjX0$^j*8eHl7dOJ&py9#t}z!%qd9#|X zVwbUG#Z_#lB3hRY@SXA?hOYrtBIW{D8Uv!suy?0Cgy+l58`tFd5@X3@&a-EyJc#Sh zMCbZb#-QkO?cXU6;rkwQ1vL5ogt6ohz7g?TqyQ`+AVi21;23O2cna`bYqv5wvI9F2ML})(H!jR$VxGyPKu+x+l zK2St`-MJvbEOQEEHa`*M$VmYU86M@;S;Q>!#x-5YOk>H43z>!$AzTQvp-3*|_gG8j zE@XXcUC1hVdk5r8%D}JPm6(Rfxv!Y0TWLp$1V4LEM z)~-fO?WvS9y;*q4Wn8)@pWnY9dNS5-#MO={C)sPjj>TuN& zK0orLF*AxEdE6MQU_bIrkR$QJ%l&(`SN+JN=B;b`k%x^XD}LnrR7C6Y&RJ~d!i$)X z?!8W{fyR=@oORD54+R@Vv(uxj^RgmxCOMrAC5oqK?EWS4M1+44W&X>4V;3ELrhE*J4Eo zAH-}dk`F3I(E{c#?{970#@TS~*r|ZeVYSSHmP39FJ&I!<6XjGm)v~Fi=Bmh#uuKS_ z^8+ekKkzw>CK&*quX(|kCdJqM%NVg>U-L_lBl{Y5Dm;iq#mD^JTnSAd^A}^uijVmt zR)p{|%%&pwnD0i>0({IVt@SbE;q|hDl+L{J%y?YNtAo;+=26WNk8x6!BpVG_5IF(V zG@JBsgApF&I4UC4gS2o#WFqOZ&u5%#%!A@HUT=(1u+KOh(ijh2e%X@%LU(n_dzpFLnk-*pEP2dX zo*|BG1~C1Z=uCgg7!zHl*#TWyf0gZf%-h#w`xC~JL)b<{Z4vlcC_so13mnH_JHi(@ z9&T;mpFt`bgx)s&2Xw~FIR)BVV`ESfpjqDtE_It+H2o_Ue~}RUiHg`C5&~ey+j(DV zu;46Hc9hUD7ett)Pk{vICxRR~HDC@!)?alfv&`GqbSN{8B`XeP8WqvHBw-E^JFZSK| zkb9z9K+#+iO$*p=je$v=> z0}U_I6Ek3vL_N*b$-A&-BvOexsfhg{l^|u7Mc;i<V)@+BD1oK1+0CE>>@`+gk~45 z3pfiyVeq-0cN$ZsBpTNl;}*zz{>>mqPBadt6PVDhsLrQhu8OAfxyo3w;(RX0iV)6+ z*;gdz(-%bx*a!VlYn@L!yqpdTqRM01--B+LExQC7U1N2StI^sGC5q|2rTuLzXO6+;&;AJa=;YdZE6rVj=YaZFWIrr8B&Uk6ma7n&=e$@e^C$z#s1jYGRNgn3E1}8zI%CNpyd%Q9$PiedK!_02ldoeP7N4FhXzd#3 z1o~*YbX4kX#>N_GX^oT7$pOSP{ZuFawI@FfNUv1xzWfZ|#&~Ve|O@xb(;uNd5r*ieruuWjUj%t58+<`p9pw ztO)1wD=K0?a4s%o3JgAn)A>46$`n5{9Yn;Dn!X6&$$o|{XM{7V_?`}PRWyCiWMj#S z@0o}dA$$+BuSmY<=U6M}$;yvgd%9~vPI9A(Ui5-L*0 zI0cfLUj%X_PI#UErsnE8=Mm;DYx<4DjU_97;}9yMb@>3V)89nP$MZR$O~jPob;g+J z^6ahC-_&1a`z-VJHQC;2EP2e?_SETbBIaZK>gbGLVT_9|`lggR5G*mod{VXEZLIsZ=sUaz&eOKyS=ERiM#Ddd=3= zu&JOFmjZHyuVE<=xx!bdi2Wf~==68r=UIMh%#e~Z{K^=wK$7#1f*gsP27Arc-viaJ z{M=jvO~3N2v1G-sJViycE_ay6juQA$^YK3a4W=Vg;e8H>Fw3cRd1p1#g8QMe-({|c zCi^ptC677#p0|ugv4Hi_Entl?KDrj*f6Lh47u5<*HP=Pc3SMn2Im8MOiGj#1SV%#L z5V^${vCfR=7H@9txEnVcN8+Tx4pO?RtB&JV^QJW&$1TQ^6~}Qi zR)laI%zh#{jtin_0p}&&(Ax77q!d+Mav8sX4#Y7JiByWJK57BY=dd^nZ}Bu05$Y{k zxL-+1QPq8(qWv6G9u!Y82}Hz^b^aZIl0Ai6imI+UiSg#GYC4Gnj3p~h;zh>!*_+0V zTXFI5g~QA9FD@Q8Zs7j>OYnh1Yv+djK{o6U9!!LYIuMS!HAE>YKfkYl&X|oeh2NJO z;}IMQRDOM>r~+6%+PrN|mRA}}9&?uEQdEAXd!sX*F~&rf>3~vH0c@XZ-o7T=uQ!$) z!Zspmi@?u90YZeBF+52wl~e8m{8K!)@8 zfE+nFV5c8^9Z>UxFPbZ$=~EswmaO=c&tXLfpTcY@l25rYiWV@L_-$)_%Is{RRCUP9 zKYKETT(fY$G`pB^u4&d2XmyP!wX?aFOi4}Oav`8AhzlOe%$3meF-wdkD?VlsR)p{|%%&pwm=_}Y zm?f?CF$?5^6`{p6`vF|D=~bZlHMU1cV7$c*OsZ=3Vhuw$n+z4PA2^%&At3l1&eg_r zDGuifW7Gl}&+h>_vcq9jazZ+yCN`IvE28OiE;g2|IGs0RMF^+EY%7w}IX8+Hkl1v# zc6((!xj8N6G2eg=#Nl4>tE5yV$xZ|IRKAAAS$LAKP!aoqCz(ik>~kBxHKsvv8^1D! zDA;X03UVYmc)fng6K_={CO-72p_?$CX$c%ViYaFM>JaNBc}A$ zhRU#((vz#nuHt3scwEK02$=}gjj1NtXn@OD4(djn=^RQ$><2ERL-gC{IJO#-qBxFC z#y|x-j*~!+L`s9Lz6;&e6k~&V+nVlUov~!aeXPcc5blFnP$c)UEQ%K3K7QBQw-2Y~ zilK`pZ-cJHk!);;;6b>0n#(0uW5E}B#}!n>e&9r=OI`Q*k-LnkQT)iA##jaWk()t| z>_>PlUuIaGIo`a;L_T8PyrwI;-B_~XN|oQ4#xrZ)s8`L*VlZG~UH7??9~twa zxRM_jV-@U5z6^3CUK%s0EAeWtdXev%x31|$9x|4!c#&^X5v@CfG>cs;^CITs`=E^J zI8^u^2O{D~O;x_xWoxw$D(n9-=0^Kn6JyC^&iXu2Yj*_ZkBZKG${O?RQe<#HRQ8WB z*F$s6A8sr;gndNV7nuVK9S9NPaO+2~X3S?LUvKTKq@&_g>jjvPkS!T0aVQy^ZD4e1 ztdB4qVahSxqzDy|ITWxKBr=B_6|p~L4pTin_XU!78uOwAlIx723ZypwW{@M%(qN_A zJj$y+q+#B;rVqKwShC_nE~g?|mp62=nCk(|$MzRMA+z*dVfz7NSajKDGft%oD(9ay zS3#5W`-~-zIp=dlv<>I|x6yh3l`%BByt9?ez;3AA|J+;+P41sHmK?%8BH)XhfdvhO z2$3`NVLQTehUZ(mYtmLI^;h8ny__$+tjE+-1)5u9RZza5wb0wGRAD)&YBrJL zh9gpiL#c@UAysH^cH0*@wi@%HM2=0yI0aIgKMCYWobbARP0dxOvBA7$O{cNWShC_Y zR#OqJOA>h9z9w2ep5Fx8M9dKO8DpZ$v$t+vQ-781x_SGWY*&mWk2%|(x_wQ=e2m`_ zo$=d@anWVmU$?K>2bJ|(&2`XZ{T5@%A*>^!x=0LIh(L%CiNP{#M|fgzO=}N!&T_Xn z>mhrbzkm*zIjcasYitQh5;V*EHh18Oj+&dC&tZ8G3B%J=L}i{)JgoB>(bc z6fIzz^T5`Y;F(5l;)i&ajmAbBXmO3xB6t?K$gS^F)??tNM5s?`ppi< zFlI(^CplxR0?Eyv4RU06!ge~n+N+65pLy$=jwEX=S#c!iQ4uW+A8fhLi=)pOAlEr%N8707aa z7RZrP3AP)ibV2nk%gj~K^esz_B`dyV5mtooEzF)G`IZ+V`j(Hi*0<0ty-Kd9UMp1+ zo1ILrQ|T#XD!tNyihe-Wn-}#bXdT5I`|M_)LG~%pPoU*B=9Tt1l|4CUZ}*;3phn3XhUlItg#Y%N{RR5JaQOnHDy z%utD;9wgR@2rU*lV`r(HARCYzbon0fRq-I5-ve^wF+MX{E0t4OZ^L{9?SsF|;JuuJ zA0JuKXg74aeXhs+i%!4EI~Rh)3}ziSQr&SVx^9tHY`u(*i<@J*};>(FV<++OB3HE1r&2xd7;j^*dEPs zNJgFi{=}AE;h2A>Q|v8OQaj2{HrJQS!ss3>=L$|m4sAz*axwVTMz@|ce61*j7CkEpUhBv!Ug%>9J(&Sjz zC3%v799D#Nc*k!&(`UZ#w1)45WN}Y6s{(u-79A0J8dwp2fDzGxxO$eTG2ep_A+$(h zJHi9b4_X^=I?sX$T-m84)>krv4)OkSr1>UvCx*e=SRNc{_OjN~eWG>AV+Mqn|HT3< zjO~A@h!##%+ty|JoyxYMgyaZ+9S^qoAA=kTH8_CpkOs>`DgIT*>@T9j_#9S*7%fjz z5wXXdiJP2CrYfU7wJ#P+4nVsjxtlbXqCZun+o56a+AJdcOu~w=kMz!gTrn#neUwF{ zYoxgp{i!0I!onn6!x2~!){&mP(yWo?b?TMUwvxPpyT=;hA=85@79fFf87sn%F(Nk-=@pB+2oXYyFJWU2Pp=*w-_rSf z=UD@pTB5h)R1+Kb3?)|e_MRf803VOXmKukLq*u^-nzWwI?HNjEdV7O62l8Sn`cbT* z2wS^@ifCbWHFedtjfow#OtBX>Tjcch+wtI=e-PxzDb}=PrkqPv-By+5xNk*A^6OX; zV!V8niikbI8g1I}CulZ?X+r?+T}eJ?NO|TA3i!XrA}7rFH&_wY!EX$vcs9!S%I5wzE#*)Si^f-lJ2XfYP?m&zF&^TOW60(SP|AC zpRsOVb|6#icM|JMmBEa!JoM|Vp*}O|@P<=;ykQ0Sv#_WM;CEt0SO*>sFtFW*#Ks~F z_-d_E&(`V{`G)6(*6^PP8(ggYR8DSRq2Y~K3+dwjBi9y_}qpV!?l5Q5D48h!tU-m|6baIY>O^eDf>T$e5kvG&FbRQjmXE z)d~3*vFHf`9>j{UPJrh2=+CXOus~sVh4cW zL|8HBd-G-TfUSIVPI9o2s`J*VV`8l?$pUxYY}7ql~hCv*H8G$^7ftb zGJYl=c=Ovpjs#nyxw2fT@s;IDO$}t{Mo04XSP^2-oJ~cY+X6wC~6#1dTd@&XyVX$w;itxjXaBspxvSEV|A+$IF+Y#;|hg$0)JJ;v-CDvzh z1rmaH!aK6nlcdGv2YeRwadxWwF7~;HeePwS`{*b5sQDqTf9!Rfa=I6u!0ztL?MwHu zrqeajbnwcudhGnOK8#0KiUsxXW9Ro#i7oV()3;UNB>nmIT*Vo5iZvPZC*uJ<|1FRs zd(G*|vea&KEI$N)lO11qoFXAk-|1qT|Dh}5QKSg<%=yDqQtY0yeTP%45rf}VmW=(t zoa{bF?|Y!J2jD&>2`^caCR6pYiup@Oz&x10fEDp?_=k*nOJL8~P}-ZQl@gVDF~LUp zWy2Q_U&xQ=9%>EpnaP3D-c+rWf`%bQAnt{y_QKegLF?YsessdQ2x06?up+DjKNVKu z21~`nx=N+wTXo)G4fSbc{S8`8IjmI$@^x6e1mvr+BCJC``>X-*>crYJ)!hkL08VUh z3bK#cZ4LT4$-Sg?V)D>BS$<9pkk%Cn2C(=E3LLBmKLsM!(j9w2hx}RiHkXwb>Un;XKrt#Egv2%BWxv?sv{VO}`! z4;ZVUIPmu|{><+REYF`Ca=##-4f_Mi)MUEmm4Jm`Df@Vc^Q6y7Ae{LJK#rXCwI?Z> zWVKiI2H%Vh;s1^dVVwD!$M}go58SUe2L5P_Ew>XoN~pE}&KM_sdfcI_((`NcW=Fi@ zEqwSdj3skSgwuQuD}p#pmUS}QiR8NfhiVb0mC<23VOJFnKubgPuzWld1a*i`Ox9^@ zO0Z5slMz$Y1XhF~+7iU=I|ee9azc5&d80L)VIoGFOwlG4u-9Xe5~FGjR)lr1+t%&N z43-PN4VHp6s3*fw2;QIqbPkJ>0J;w=!VfgU_XzjJvIm3+p~X#6oG4r`{TFJ*5SzSo zY}uSxx363%Rdc1H(;a7J-9`?$yTN*<)K> zC}n*Y!f%Ynq#8@y$kXdobN$8c9^PoWhczns&wxbnJy`1y1~yDZv@ql>T%F18hTK+DpK)JM@RTxtOzl9 z?xrGQ4@+~%eLR^4g@q@e={Vw)$^v~6#m9i^Lm$JUCrtbitO)A_bT!Aq2DrEf6^<12 z#}#a$Kf@gZaLt6YtwR4FEN%k&=dmKJLqCPxW=j0=mK$%E+)mOOoL$?!y>+}cE;i}+Bevyma!#xplr;C z+n-DeU&IPHm9sB8$aSm;F^(!!MC>`k-0h`;lPL8iY6A|x5vuyo_d(lnBn>JLUC9cx zpDOi1{S!DULhpvE{`4j+e8S9cz>2WWz`;;=6Y3t*1Atqd8mU*6*i!0s3RRVeFIgjE z0jb2v)kqbY8mU35hRVn1v0w^5?#GJo^MMFXBEB)_hY%sO*pBT8k8kTx+a>5V*!C^% zCWaK&{uPg9HM-oeCU#3kJvQ@qEQZ3K{z65BhOzt`HbDrOR4Zj`6~`HV*RXtIiJ#pd z2a&{IGB}OYm!%4G5mRFOGMf2C9}LS>cl{e@D`@Kue81G(N_r#O6NV=5QTf8(k~Td_Xa z1LypDhc`itt>tRaWT{vff`8Rs$?O$K(En^UlRpyFsOKMo(_5RS(nDO0SIMvBj`aoxoNsgTe`Hq9Vebz%2Ol(1D+y2Y+fX=JQL)-#?H1 zNWc#|)JI(bl!q~2CJf5_$zNRNgOH2`Hbro+tCQiLU(TA(*NHBB$&VrU;pC5ipLBTV zUk1NwG}+Fl;J>cQuY{jh=DX>ykAk0@#^sNu|8WfbJZCuna`@ygfFFFA9>Ip`F}lN) zb0n2HD;(edw~j^Dib%q@~b{9HWX=06N_B*f&>*`77(=&;?36(RE4yQzrS z=bPiVY~HwC!uJViC`B2i^Q>AV-1^Y7>-M z%kEldz$)ji=!kB|iV&ma3@Re_s6(?TI3mjTr<*n|6YwTzJB~o462Pi}x$Tcc!#*sA z!m#UD5!Pv#z9qNM5hn#?_}^y@{u#+Z((XvG--N|XziHJnR-t=JLmmRpS>s@KlC2Yx#zz_lPh-&& z1U!iqVV!`^t#Iw0Jdzs%|D=+w0ML~z@}@@ue>}7wF{wEKE5bVXv*|V$6jX!fIz#Y3 z!W#Z_*zOi=q$HXwi)w$b9Cqp|vYz)0um%^fq@w zymdW#;xR3~Ef^{L4w$^8u@)kX>R$*;GOy9y!g5`8ak7`CGjLf zifoIj>uq1f0w=KlGFF6j?C0!+lS!*8l?=Q!;&~K98V0|yhX33oIhd3o&66YLE)^;X zzr-RaNcb66gr5XN+!v_>i!BHdLW|d8JHk_kZ?|^Q6NWdx`3ZN411_Z}%dvRb#-RZV zpYEkoxKPZSmf~PQ{*VB5BF+;QQxPr9A11-x^-6eIMjEzj;=wh449Jl{YqTYyy%cFr z2~?*>NAJ~G5n_a#L`B4&IkXX&;Yejc!nqF`iz7==ah^3rBCNx`K=>6> z%9cFx&aZsSJ86T~&|m0rETo>TQyFPLA&*5;kkOA7VV#VbXF_FExHOR1RV?R;)rN!hXoIJF@9*(5wW59h8y$ zv*;*4Gcw9?o+DqLrw1w9PIGDi?n!d>qP7Z2c=MjJ!QPtLQ_1ShtN7ClCri$BI{k;4 zJh`dXn0elL(%(Gqyy3WtXcGnDmILiVdm>YVdu%=Rnmj9IoiK4o!L_bb!&sc`r>Lc% zd#UCV6+#KcGA2-M5x2g?_&X3QLU`Agm~ovAR}A^>BDof{ab51F36Xa}6cc(iwS+Je znn?@;kV^-f(OUYCxf#u7W+eUX7)^;N+BBsJ38+dU4~3EY(M9@EFG{*e1L90?Pv)|o z`2N17zO*Nrhn3~P#5!bSSiFKh*8-U)9~NS06np9K(T=;nE7Vg4%t@4!NCV~-SP}jK zV}ca#h)9Z|W+H_LWZM|z^mlcC*;wN?=!ZlNMVGqgB!2NribHp2CBSUjWU)FgDj8V|bp zdqIwzl1)wKyp1Z3nGLnu`5gQH+K>43%;> zf)y5ihJ{dA^D_*>utLu9Tk~WR$zdnf_Y6#1)fSv1?EOxFMkB8H9*7kotoWsotr%Mh zy`2EvS1%NNNWaV)(rovaG^uV&F2~{|O!ZK#2T*P7~VBd`u;fEcOw2Hi!1rdY@p~Wbn9P0!Rb|d-5BDwMc zmkqW!Fh+aX;FLz?`>ol+5)sjJT#Xd0wSgL8Pe1+_mRDgKH)2I-lY(AzJZwZ(g7dAf zSYzk#k=Yp`|N0^pV!_gbR7B`(A~d(f4hWil!NDP4Qt+%bbVoR<^i*{Cp1_I_M*bL9 zgz$fi#Qo9#b#53cm*6~4HCLsNeZoGONi9!rCF;>~~4MK#_;%4l$n`i-Rbhos2`*f=Jo`gL72jj6d&pkM)QWP9W zNwbT_mEO^JPxDy&5GK}7MVLoZbSBd|%1xBF#RG8u0+1uG(2Y;#dXH8e>ebOfyaEX# zHYJ(3lU%|+Ns3E%TElH(lHU1Nk^4w=ZaEqbG9 z0e<$8@ldibY-KYvvqt-Zj_pnX4*B-d3xSd~{|P!0!&-4;wtHd7>t;tiru};?j>572 zhKdLWa~71fin)~LxH_=smeLf(ZoOUamLm+QlDRw(qwc+xOc_qKz=jde#Hvs$(_4&J z66^b0A&vKg%mGrLKTC33B2FBvm&7TL&5^%rSY46)ljDQ?Hdrsza_K!#L%&pkgZqQ@ zl>&cHj|l#^{9jeePBzz<%ccQP)|GC(zu#<*{iBx!|08%Fla?)pJd^5|fyxW)9~>V1 z5B3gZYU$pRQ%#diK620Ha!+B?*~BvDk{|QQkA>vNV)A1N`LUGzNRl6ik{^eYA1mO8 zQUFyRuO?+sj|6eN4C-oD2K5BpGN@j=@DxLBBNC$(LuErWlEeKa)=}`pc13IN%OtiC z!%v+_4WHhLhXU7d1Xv7l?^5sS0C5~n7&{21^ex~r&1qN@5MFvM6%p#CQL2$rsULoEAc)(BXdEW3)N;Jk2ZH&X=4uQZ34vP``ki>e^zP^<{+ z#K1woG8`_UOOCR8*=mghau5(2WhHL{HgGm!(Gq}fz>2UBI62GHbm&rUaK1&rp;6bw z)g+;aMN0s_8!N&(;0t<5y>IGudYwHvIISVZx_2%&Yz_W}NvZ<%H%tYWiva6?2Np>| z#t<>U6oGO=ka za97wxtsfTHM&FS?26Tux&FQ8hS~yLd%D^OVrb4+HDQVjk52X3EAV;1nPD}D!ffcz? zv$pNgkvsz{LX3;eR7C6xlZ%=uGEEi8akH>IVIL?E$BL!Oz~ZEvDbh@VC^6F6>pB)q z;Vvs!5!MNr&d0z2%$f_Z=_ZYWo2+p#qd5xPc9j(21}tU*_Uo}C{IDZJjEGXquOUPT zEsn%?gh#2nTN|aO!|Fo;wz?C$%Dr&RL5@~Gh{vb`t8l;q1Zg*2=j}?aH(+t|yI5R> zjXgv~v@mLQkd=m}2a|^DU*bVF{|v~HkZVj$j=a+F$LKiz4l6>8l3!C1vB#{b*;08Z z81Xs#;t5hJ;?tmrdKn5w^Yu$LP3VHABPLukup+EOKH>CRPrf@XHEvv_ z`bz%UrSOA1=$`)?JTh+Zt}{F5vy~q6*_xk3B%E)|e_+8I&l~UX3{x5sH8@7r4adn? zZ$>@VS2R|G4+de$yQv67oI@XyoVK&szlu_h@ZT`MSSzG%zv_A4 z6CKRqk->~Jgn5R8Tw911Y8r7=JZKCuw;DQbsQrJ=7^^`058!DUsUN=58eA^XQbI`^6-_)P`KAvG8ZA->D^cn!l^SGisaPaLA40AHuT7y#V)nO#5&;; zRFP9vXgQAAy*hqpC;2sYcznatIA=h-mHkI71HvW#j=>jpY&`xmbhCGIj|da>kX!0q zL$-jO<2pui2dsILBw(j&2B;7*Go6YRAx2m`6%lIN*pqb<1)Fm{l}yE7{qXn}QBZJO zSB(2uEPleckHU(uPC=J<6tJ~hd8+VQYXr=a#sFKv4HyAuVzCqO@4$-i!;c6MBE~Qe zhY%sO7$wGF$6@=9flQ^G=*js`&s}Madw5ljG?}7JDkJVPEMJ21ORyrWgB^UH?xWVA z9_c*Y9axkE(6?bl_<=?Y3^BIYgbE=-Xfc4zVfdu{$=2R_o4OGy0K#qdT87MDrF`(& zcx@Q%6_$jQh2zz^iia<=AvCgprK(5v* z0c8LWdSg84;h&*P5^}Ia448^W6$d#ET8@|%{s&8i7%|T?D&jr|J8ipDt~gcl>ZVep z;V^5EPfu3lW);wr(LqmOMOX)Y=5{ArhhqMFnuVI=EO4VW+&ckx-ZHPv6p#b1$KodZ z#u}^$>(EbLUC$M2uzM~;Ua$svd$PxEQL*wI7AFC9A6A5Qs3)$-Uzp6gDx~BTCLoah4U428s|t@dW~#n3G7H~iD@|{Q<#8vK zr7bFUKM$IXn4{0eim(p#EaqlvqC3bTZbEC+BFqttyb8i^WSo{(7tk>yUS>&D1i9W?JDz{8DR(Pffy^zf7vx zr~>%KShNJ-Z^nwS4*2w~PK_3C-0S4}2YhSOw_C$}MzYA-O*Pw9VE-T%GXeVtup<1h zBNjcyx+z;tLx>PsJceCJ;_Ifjx3((dOt)gdS)??Te{%BEc+9GCh-dAz`K(=Yn>S61 zVv&}mRlk7s(w|_BMA+GnsfZS?m%<_VYzgYC!lgyHz3y9@ekmS!^S=i<5_k=A2%fi_ zV(luU_J!zZ{tGKYjF-Pt5wY*3cR@nHpW{qW%l4NXUUoq|X|M|YERq&9p919t-vZ_y zOF)5$3GpJV2>E+82xqD(C>mPqP*!;IQXlv$O%t!3RZ-5@MoRjsTYvg zQ7@NEm728rF<=e;+0tqLRFyZbI3EX#o*M&w4y*|4q|AWhG*C@L1Z2q-ea{*VGs&TvGAu~B(O5mm`)w?00{CxXMOX)ZD!J*B z*bsF4@~_rVpGI%Iq{8oB{t1hhfc*DZ5!NB^T(>Xll*vAQFz$0Nw3T&sL7gz(^a$Y3 zg7zaOoini_tb;#iORk!A3WZG3Db=gNiRVey2$-83^fo_2^7#rZf?@=`94o?40%EO0 zESIp!G(v>X;z!sSBwsH1X=|5D+RrFD33f$Fiei;`%&O7lu9JwnSfehBl(5Di?5RLS zgf5HZEfiM27@8D?)#nFvoLoZ7I<%ts;*dY)chpE#@<0i+-nUe>``x738_16v;fKE( z_g207+q~-bJXUr4c-^Yof>Te;?W;fyluH)lkg*qO9Oj~E0goK~q-A$7>D{t9kWIq- zl6B(eX)&sR7mPj!U5eozP-BH_d!lp=g-rC6;fiR|mScZC{btS;_T74KA2q@n@tYSNK>wu;;%4awI$(OUX_rsFEs! zCaH1-?qG36n$Jh63H~F|5&t1pgotwAqatEo_NB#iqXSP|Btp0;tYTyW_AzH$mT@n&0iPfzCLW|eic#n3h?dI-=LU`1F5efp}z z&QdwGwzRjHAahyC&#bYAI=q>iszJNG&~A#w$WpNVA>8vl4>*lU%g)|oa&l=hXQ(pyoq^d-Z6jvkM zO?@Le)?dSl5M$sgjIOxvEhW}EHK#HN*YRkI3hV!{Cr(H@t5n(DS18HR{14VxSqdj1 zxFR%jh5Z1gNQxY$qKYVk;I~**#US_=no+%WD5^Hmi4AtOu zKK39jiMMjV`G_?Z4o(hoEmFO%7H-rJIFffe7EeLR2eBfwDM8OkI@fGWY|E7$vVE0! z=6xUd!)LCOBL73yh=40`xm1}qtuCf~6N{OE{eP*57EU?FlZm$k-|wu!Hz7&p)hcek zj*i=SqbeU>obeW08R}F3x=?^?gRD^{QJM-ZN6b#! zu_F9{BeEQkD6!#!5Fxa%lqgMJo2d@;lroiGX>grljq`T6Qq*iwA^cTXwuEOo5i7zE zHG(ZcINLQuh!9%bjoq6eTEGtRv#s4Bp1oyrYF9DWH$+xP>Ge$d+PC+f+TM7Ks$ulp zxU{7iuti+M+KVu`^Qnjy2E)m(sYA73aw$z3wC{-r-~8nuM}n;}KAG!1S`CQ9(Xo36 zR)iQR*HRI&Z}v{2Ha3KwPO6$0IfXyEQa^wgzlif5Yz^1}p z(>f+Pp50gxVvHO~MTCYM^m0L$Kz>`LG+0uWtj~sq8 zFIYl^asCl2LYT!UgrGBuL-;jZ*a{*?*LD^8?Qr;SH`kC8=lPe|N-+*ix{cG5YjvSa zilo#jmQpJ@#~jcoVh-I!MTF+i@#h@fI=ClR)!>|GPu>5d;)&KMI7*9xR7U8fuyK5J zHjYKIfptqAJIas%!ht|inNP}AUTY2MsmUs9losbxQ!`F)|}X zqobm0!3KCFEk<#{SmT?sI+NY)fbVtvZDMu3U-r4f0Dzro-P~jkYhHNRR1axh8Q1T? zk|5&XwOA3tAT5zFSAY*b0Ires)5)OB!l$jVFwZl&hFYDZeL61;py6IDhJuE>u_CO~ zumGYW9Da0ap25HarR0_$v&O_i5&)?Ro&f>BMa%UlW8x7kl7fsMVnz7LK=?M{q}duG zLWIzw1DoU$EnqM5^w!=QAFV1x=UZcOxs5{uZmPOfA<}M14r!$`U<-0Os1q^A?Vut; zbKLmXgSyC7NKt%aO(El}Yky2U80VLQ90|b2EP5%@#W|IwZ7buqJ36XIVnv9Nvx15U zonv4Vi=}X?nbqGVRjC?}n5 zR(63kN2Y*cPj##@2z#nvMOd|`5R2(NmBtn)?K(j@nZ3trHw(DksQ+ek>&agYl5n>3 z2?{8)op!jJ#EYX!)}|&1Ntylghc~l z=+A~&QO#9rP#ttAkt-(FRVpRlC8Vb*5hnfD9maD=d}y`~j|`<8*19r=pTy!PD0mzz z!a4<=tEyE8N)$qwvSy7$X&{Wh)K+}%N!18eK9WZP22&uA~Dxt zc`!nRFoDU~j_|q8=GM-2W{_+H^1hnWS1%-1ZQCdr)~n(%tj4jPna)UWF+$o$6-mPl zs8Q=^ofzHfj;A78IPYPn0)6L=-VhJU`Ar~4p6j$F*7PM&`wv7DoQqS&}H%X-akW+B;XoTk`&GgxjC(-r{kdAi0SEnMg}p? z0OlD4#G(i8msWd584HIQL(J`kj+RLW!;ncDqZMfNd6lIZWKG69kX5P@=8bn%cjwCK zs*@%2qja%8*aOR8S1Q9`v9V+>LO9X|SP{aVGdqgp&Yx$d70Q&)~2=o9ao(vCz@CFs2UyemdjIE=wBK$xj28I}0Y)*<0A+-1&O@mGLoH(3(RpZ(T zkX*LzBH5JF;N%*(=}OI!OJ$Vev82Wu8RlL{F_0JgkWPfEb=xRPqBFmXug%u&j z$mLW-oQo6mEXTyPB{-HWS2nl@nu=q7s6sv|*~^+!K>h?4Az{29!-}vD@*Izq_rayw zM730}_|9cLYz_3eUOOkvr+D)U3E#&eC`kAYR)jVQ=tYsmus!-W9go$`p1$ zj5VoXI2+oHn9_D)MF^{&PDRA-zvt|5psG1U&s}A@+y}eeoVV#6o8>>~Ql}A0wYe>;NSiP3#80T7}0J0d`ICUko zcphzBA>j2`^aKHCV@3E0Kui|Ie1rKjgb1Mp%cT$^gcdAQMu-qv^kIEFpY?oTVoPT| zAuk@?8joc+7P)gCQD6tQn9^`57M4b&%spW4a|_lqg>~OdMYJ$Z&LHKeiR*4whLz?$ zUycXY{M{f&La#A1Nic#!owL|nge+yUdr|HL7g z>?Ze;RKV#OdhL)0#IqxE70>fc_e+2%f!FAQ8M)UQBP(Em z5rPtXh&NU0YsLsr2(J0SgLEShbvG7eLDa{wBCHd&bX9LJ3E%7Xl?%BnJmlNlf23~) zD$(N+YYZ(*W~e4`2aah1zhE1a^u0i;i4xC$h{aV<^F6Ex>(nI98W>9SmJ)lNMA3mN zSOZQ0>OmyPB~!Y3bBdI$K5vbgL~`%I5IlF9+Uulld&;P0DI*$?b!Y)V$RwCu65tBPb!3GngK!L88Y>N zGVb;88r{rra}_et0zac}DqV-=SeQuzE5bTKU8LJ-`iNk1G_Uxo@9lVN17%*jKxhr|9z|o>(DRU?xdRNug~NP z5T$}i__s9@79}g}XF_S4yyAQS6m-)MKxXWfIXygluKP*(=_vv>_L;op}^!5^>&;q9R(jSpoO- zYn4)Ooz9=7K(!+tT=T0zj)Yu;+|&0os^pQ|qT{#)D?*Hr)2WEqw=uhR!u7tUB_~#A zs=2Ie&wHTVIQBDD+-D`p4Zo&6r+Qf13j9?pcEU}Tu_CO)zo5AQ?otpu^L?*178bfI z;Vu)+L@{95=-pT(1sU(cim*<`!8-;@m6{k08_6|~L8k~;o0PLy4_G5)30$oKHN?Qk z`P5KG$Y-&L3R3RFim*<~j9oDEhh%P5rN2(NkiFASt z6=5Ct1TUrx*t-R<+3Cc!&YoP>xA=45HMYXUQqMC3z3$5nbaLOz6;X(J35%*A<^`+> z>%=Ug#c}ybQFa1-|MECCi&l zN{bBv%QRoXnuV~eFH#XLT&9__8J0{EYX+R`ZaE+Sc|4fr9|k!RaE*>6-0!WWvaC&I zd_Ef;#iy_$#K?GpiU?h#L7#%22N$&JWw;O5w5r7BQWkDJ%f51QBc2>w1%E!dq6N3J zgjuHwTmglNiJ(QqRPP`vqJ{R{4o_f`a!7-@n&cu@SVMFQd4ROpq=MmL(J@S7MF?w7 zFdE`M1wHA^9Z>wr_j>MTYe=^xq23jJv_OG*BNij!de>t`*oS%B&>E=GGAJ2z$s)|< zp)74rfw_RiNWh%KitxjXNPI-@#QYLMgwSG?2!X8tv>2+%4MH_|eus2#t~LNuPzR1? zC_e3d)=c1FsLfBbNb$?0L<{n;Z>XEQ3CpT5j2o~bv?)Oc?KyBR29nNtsa{RMwpR0O zvos#RWQ~lu!KJUKw^Hm?lN&toAJEZk2;v@l?YCZJDS12p9N-ILMLdmJl5*zlu_ zfVe~TbeiXjv{SO(@o%%0Zq8u2zQ{J!V?+l);}NsW7vq8*5fDU7VM7NYLXgj53POa? zg3TZiB7_zXVy91hRp70yT@{#oS|!t)Q#O<~#ADQfH__p83vW@H+6Jr%tcz~ltEq?< zy5zPq_BfS2IcKlrBnINaGk+Gykx*+)PBu@-sNTVej$aQ}gcuQNDkA>XfTjEfP-0gV z>iLq(TX2vf(X?l!%K9~+MjR(NR0@_gOA|unGth+G+9F3fnsy#seEmu+up-^Ki~$=~ ztS`Fjf|@E&`bwbjlrvWq6Z{GuuX`wQ^DH!5?TK!ozov3B`S>g}{~(CO+9&B&J%&gARFgY0nSuA@ z*qugR%Q4*k)S&YeRV4rwVd5OQ0~2{Ui*yJPLJM12$bz*{`=-A*YWlIxnn^57_EHt}@{ZM5 zLPab%g^FllPCfSwDA~fcq!X~Z=LSE?&pXxto|hyATUh%kSl1KnE0MM*I=X4B2x04Q zUMAjLj}8hQmtnCK#(oJ_ zgmpTOW96Uze~e@I|kYLcQ03)7Ia%M%OYp1;mH4s|oB^z!Sql z6NQ>@VR04Id>t#oPYohB5a|UAXb2HP3zl9WL;Hx-`?8d|Lv~% z%g1LruZtyp_FNvTIPk=j)0-x-s@pa7(Q9E&2TdYo&>d7n3$vw3TUPDdylS<)PIF8= zkmi?y9C-n9S`v`Xey4C zMiuLhWHp;3r)SAe73u9*n1n+<11rKl(mP9)?0}5)K8r}h6J6N>C{_bMRix`!m;}-l ztO)x^v$NuoP2Xe@X?7x<{#22^0Sl8r`g*Jg>qt)p@39GLnQeA5m7;9gpSK410^&q= z=W3|}X_fdA_ditl@5f>%;QtI(gmw5Q!FEQbSdxK%+8XfF$XY(MM|Owcqk{b;7AXPt z<5&^)!QKXUq%u_*?D2266)LAC%e1`|`>0?a08K|s?Oxn(!Jc?}y^zbuSRZZ;>yBie zG?$`3RiqDzj`UKj2ycqU-5TtNB{Q^bn6X3KsX=)9 zs|S|Fh&tZiQVBT?i>B~1Yq27%6Ebm41_~R>91L3Hpd*v^;c z`X{Y{z5q%>l2-em)zr~YBU=223jbYL>;(LGVntYof8v(2x58tU(zNJD)^P7g4(=;D zwG{oSBK-p_OakfeVntX-dcvBmJ2%Nd|H~TC?a6GhwmU_Bs4)K>i;;l&FIW-QVQ$+t z6tJeU=pD9F@)^nU5L;E@Uls59(0Ih8d=6HGb-X96FVy$RW_^k^u-lV;&{~T8P+@)* z79(NSCt^idhk5+ztIn2D?y-h)TQZ;7mxBLSF-~Iv5*WV$E5bU)-c;lm8SKlffi0yX z$9PkbfcKy-!D1)izX&VBKKyIfot@a6DfZXN$!94exx*s-z0ST=fwu~;wTS;vt^YPG zb^`ueu_FBNBeqnPsOvWw~@m<-&+FDxGvvVU<^@N4G43vQ5X96S(dnz6a zYb zp7xn_Fwim&{xshPzq)XEdH&-G`sa7C&pqsOFZv6DRJ!TjJ=h2VqZ{5nuXc~#la-ZfZ8$%PF!c|tsR&=d zOeK;pcqEDza3A6B)?N>r3P=9R1BsoLOxCH$hcs3IT`}x(H{AP6-O?cqIOkU$NW*JP zv|;JULBLJ1!-(zlL^^byq#{E7K%BQ}*m26XTHi_vujE}f#sh2q1dt=41~Pc`6kV`x%W1r)Tz+8-VgeG9!T2l+$uKEIuMs^k)!iumCbsK}aZ=d8g?y-h6xD9#|1{zd= z{sa~!0rbbPBK$xj!m^0$%=sfk2rUxWj_@o$+1kk7P9AOBRm}Ab$Ivzvvl!F^A z!6RezG;=q+&z7!}Hb+hDe}P3)Sk`k?L<!C@lVPtO!352uCP< zDI0eP5kiZnv7?{+(j!`Xj(sv&F|rICACJTT{LAV&hPF@s*drwbt|TIgFHwUb?%ngITnSP_2U5piCm3M`NyLafI7hVF8OZF( z!Oe0hm>o78i%V@B>RB6i%IRKs=DEAdn@;z*O-u1EAX!L)IuU0F2`Zw6$-*4=J}(Jd zaL^uZN0W2lm0k(v_3^-*KMv$b7&hiYF(~pJ9tmC0JY0X~%`5J6O>}He#flK)=hak1 z?5V@-vj#G?M6Svx;D#r!G~}S=II;(ogW2#9e5MBVR~ZAmbv1eG!@?*0XcjBNIs@}o zCALDb3h}H&)AL9Jp<#`L`N>SG2nvWtC7S+6CE_Y9ih_vCu_CM!F~2z!ily2J!{HMa znP?6N&|s7y@i8onf{71fMObHI`RWWDU&)flz-wpZ-bfcF6SPwFx<06v0ktrFZ?Amc z8Zj%9JxzsD{SNGLX9`>)R^`nR3MtX!J6MzjQU8Y(VV$U{bQzV`ca-Oxf3wC0Tx2JU zro8f5z^jjc#^NO){{vQpb;y@*$?VGw=H5sKhg(o{D~ygk@GvS=P9$$Xf_c{DC9Zkb z+lt{UpsYYsAyHQoYA=F9ZqY-gkTN!AgH{o<)=sPlKT(LujhG*?+!-N4Xt5Y;aeRLC zThz7`wwyxSX@yd?nyJWEwk;kjYs_>fMg7fYq~twd0<;Bd2V%^hjujzDJPj*?llZUk zZ~!W-PHbrIk1qLt(E3%ck+RGSVj{4^C9p4Z{-}G1Ls--VcYCOaQ0U@66trjy9PuN^ z{D>dswY(B%!is_N^zO~^V4A-M5Hya(ms1^jkK@O@KY>?f`*@9MOdey z|WY$0iUr2o&zf+);i@vX^1@X zEgAfBYoO1Bi4QakH#*#g72pqz4*W8#2UO!qu$9im*?>s(P)ITAPC!3Kg*X99@)=2q;=4AVV7O^);>#up5h> zAYcG1!a4zmZ-=oDuMby`q;Z!%;Jv2`+t0)yZOg#IRKY3as`4v(@36+n;mHcuhdppl z-n)nA3z?gOVkfRT3QN~wAr>rMgB4+&rP;8AUoKT@33w99U6hfR$L_Vp$($st-;>tK z^QZ0#Oh9gWHx@rZ!N;*8tW&UXRiWlo*fLat4imTfvP{Gy)`(b?%m^J)^nrV~#&Q51 zKg41w==dI1gmpS*^7k0n`6OkI{Jb?1I-Bn>u;WRzWyKl&1B;u0{;yaO)}ikpXY#h? z$`BWdjufjGzsKJ6fNZIkn~f@fFMyUKP7mf{MOX)X0-R*1$w;4S4e5zVIJf|-OcU@W^j}m<`_#4ac!ktAaiYj(f4T zNm>jg&>=evNWwmY1y9)Trx)B7lO!fyw8q4|f~6Ag#0#Z$WNtD*;ks4DkENujW&r6zX^pI#cY}>Qvz!pad&!Bt3=ZGo@6LRwn9ZpQG95SoS%NegdEHZM=$B zCL*hHX?kVQsdh{M0aKop-rrbRq#C7}Mp8!KJdV_u3=bKTjghRwYZ=|)GoR6wW!|DO zGg}&j0^zkZSwv^GU|4me+o;45W=A8I!D>vZm9n*p1Nt>33Lh$*^}Ly1G!FP68y4~V`^{B{{YZ~+FJP^ z(y!BKgR_gUn_3$fruDHJ^ojr|CEw{Ewa9)%gYUWn^9PN=P z(lol9z#*3Z9LSLdO5+vDk&VG?H!Ho}8eAI$fn^Ln;xe! zd?lCs6<6|;RPqQTER1PHnm97ib36#FOs7e8gml{X9((6|ah&J>>UMZKi0~$W@zH%M zl5V%N&6qBD?=V+ZllRHSlKJSF3>&VsG>o7@K7J-rNukRpvD?YPUOVZllm^q4(%y8z zDfZU}sy=%;6?DV+2#>wI+88KZ_pkwLFaA!ec5{-s(wcVj3S-IK#Ff|}o620_V)_L4USNY`FYi)=5f&#Jlfo9nD;F1^N*L(D}?2S#_;+*3{Isl)k@ z8Z70z)iznQGnbVY*2@wggoyV56yB^BAwp)kIb9a z^kzRWmaKTQ?@|%1%a&%+iIcE!AJda>G#!Bo(-T2N90|3`G?XZVf$Hmk%J)I$3TW~@ z&RFu8^F5m^0n>Wip`0Hdo%3Ujfzch^^C;&5olto{%3KLe-c!bsLwHBTc#$TsK!Fe; z(uBLP4vVJ=|Crd)8+z?zX46wA=dGnYp>Axkf#%j&6O<=pD-J!_9h4+A|7@j4F)11a zqzDzP@rV?mL`Ccmi!vReLNFPLkg$@~Mxl0%qB z_2PC`6sK~CF=T-} z=et0TL{H;H>Qtm%QH9Z!!F}Xfigkmf=2~hxor9_5P`+b5fH(4T!jeENR;DvO*)%Em zEv0m?0ktEBlda~Mwvkgpa8IT%d}U)IY+u(ax#0lj*PxmA^j5KfP3HP)+Q0^5$y_<% z^4C!jq23|(U7W*1jD?)<&t>7!HI%(d1u zow~8)F*ltfM>d_Rlc{6}i1j$VKKuD-bo;r(7%yG>*&5w`yj@p~=r(iJHI3+2W65J~ zM2C!GM5^<7G`jITY>bnx@vM)*c%aLw(R|-rWlf{`ja-_Mg znr5=XSn`;gNk|y-26A5xla6jJZ!pG5*R4bdL*6c{M)O*8l{Jm#Ok>GoZZwO6eM^9A zX+$@ctBmo{HI|d{u7z|}HImECRn;_-w;D?xb0Z1!ENp%q6o)<=-B|83#!1&$qIech zmsO+rq`AtPMst_34%XD54I7S*f0ync+wYD^=)|M`n15dt@MQo_(=Kh_PplMT4X$3rJ zg94N{n~`vv_H0nlVG+7u-MS^n4$*I4j&-;(MZA~d{M#YMKn1d#?*cgzDSU5R=&ri7 zrRHsGy0n9hB`Yp%Ay$OPnNSOg=1j1@neT9Zv9->mty=1I(~}c~a$PWQUX$yb zvE(u5x=V!9V7_mO&iBp6u;}s)HL>9Ol+pz?A$YI33Ywh1+gNf4=ZI)75&{++5F$iE zFdy3yo)CPcwFQMHP$wlVJ3a|LFmp|TcGfsw)#1jfC^+W^GyPGyDrAO8q1ndiQ4}GS+cTAPrqJ*7R5HWYA2{xS zapZr|%!oX#2!*ktkw2Iz=F0T~dk7{P+(jr`3+hA~8Wng3t27wVe%Qeaa($+8N)+0v z4iwC0H!P9kf$Zv2JtDbOdX^gME@vZ;Pbi~FpO%g0PWM(am@!=r-^RV?=aq;0QfOK)R)xz;otmX_~;(#*+6R6XT#+@ugTJ=Ha$?a{5^3}Z}mJ%MIY$U3H) z!De&CG|gb6vE(r~gRbTxQKeEH$n~jd!9~$6;R0h=bSm8Y z8DpYr2)f~cc1$&cADAnqX$IdlmOSQW;HHW}Rxt6_$f@E%AYx2Y#SkMHXReo~5&Y-> zKO=B+gj%KU^yc;`?%>$yhH#WQ;F_ljG;;*EZ>mQ~nd_!$3`ZDC-hVv8zEVXog!7^s z!a2r}=*9)j$s_HTY6Pz{*Gtm~&N7xf=0-4;C5k~5#nE1fWUTXYk++8B^nO`zE; zj;5CTq#ZR?>3ga zzmQLkT}tHtB0Blc8KV&^`Ls(4`A?fGrAhvi#*)XJ{0=tqd)aLg?;Gp0{yXx7U?zyL zGa=C0MdY1Q3}BkMTABth#aQx~8^9E90Q5?dm;Y7K`9Ikh4&C9uLdW;_(mpBlztUVQ zP5MtTmOSS4&*t*U+)x?7%(LG1 ztHy}v8i3Y9vD+=h2)=Btn5GeY!C3N`8$lZj3WM@>qrXL`|Ifx)=+b|fP8@&^Da8N5 zTqRB7e`_px%!%i&zu21_lwAL^4@RB~ECCUA<^o!-pLR(hf04OTn&i(nmb|}^5AVLp zZ<3u6o&3$lXy}f6E%IrX6!JHkE2T;PdSl6BPClOoRtGXrnZld>Ul5)BA!9gn+1Hu| zvOX#F?=ja(lm4o)RqiV1wzTrW)%c*t0ChzTHSbBXd^tat%JgedRD z3RWOQ2rXFkDTD~2#ly60M#i8B6^D}-85?MAk+JdpPN6OhqNTT)X3v2mfLD>}s~5Ai zTnS!lCDpUKJr&1;s*Za8cqLU#s<;tQaqM7F)+|rwXp4$t3#o|xp=`!P(q&)C(Y3~G z@D7R!D65Py3M4dt6v&bIXiTQlSV|OcRqR-wY~HG-!+NE$WUibTq$f}jt*eZ|_pJi> zJs&iQc<-fXjE642(<#4fc_o} zy83j3dHb4dUvDfqgl$CZ7U7?T0)z|Co!o&Xyt$mYZ{9vv+Acg-YpaW(ODbU6u zhkvS=6m9~-|6^FRMfiV&ir6p0Kk2eB{Ez#PDI0uTi17a(V~hd`&HonUNPO_{Pl@8K zitzuud8?YP;vdG66<6_BDx&4#KY-sL_18M|og3RPJY(tD(vLRAb2@+#`a%$QxMDK!^}|!`rb&%=3n8Cc?WHJ2s6Q zx8maA3x}8IUtBzH+`#?$m*8{GaHuoG)bKv=VDR{p*Yjn4dH-#fvB?JdnZ`0&!d^}q zR*L^z2|EeHQq&1Z2DW2OLnH%dP!Zv<+IfoPn1IfYvR5+PI7;&$WlKdUtxw;Xc!mBy zkzSe}ZglJZOE}3w_I~u$qs7$Ob0aCuM)VN`S8~K z8~OK5{CffaUdX?1=HH9>_bvQ;G5=n|zi;K=OZoRQ{=J-kui)P+`S&XRy_$co;ok=T zzKwsc<=^Y**Z8@M0{k*wyB<~9w@~d3Lp?UvwC4{$H23{VjjG7*N2@AAH4?a&tgr*0}^LFxsGe!Z$#egOa z!SKjWmTibbBE7oYh($T*fp`UNa~#Tv*U+}aAu~HQ=?e;@Z?P!-?G9E$m~w|F$S8fF zPs%siV`o}!faZg-3@bHPg&SEZ#lnakgJVa3)#nulV=Z{QDdJ{Vo6g zj(>m8zklH0Kl1ON`1jBJ`xpNGEC2qDfB(+E|KQ($^6$U+_j&&PH~+rCzyIOi7wOkH zYkeI48Kiw-FMDAYcpglItRk_MpEYiZL~-iZVZd=z{eOx z@atX`a~(B}qGT+2%#EVcJBk8c__{5+P26gXimpu@Z|*39U;DbnTt!WjxY=0p{$&yY zFMfSLx=DP;7!`{q5&Zhs|Cy_(X%gQsmb{;tgj(JGrRXN{f-x#KO(O6Cn17k8sA&>^ zHwTcnMa&p9y-Ea2RqDMNlmjz8cQB?vyk$MfEU7E z8{H_*G)BdurwD#6Y=^munkKQ$Sn_^m5^C_cJi1A|)fg39qSQ zmv8!UQgq9Bg)ua`{^FJ9(+{_w>XydK&GpnYj-!nwkGXNo@lH%bUZd-eZX3PE$mrU} zNeJ5reT^(*uBN7GoNFw3%uPcMCqZvf4M#VOcNpWMYZ!<%i%Q7DRM(m-sc9D17)u^= zvyf8HAglONbgTHhF)X@Pfk-_=jN*QC9W{;OGscp~+$f|R!+q7umt*`sx?%jr7#dx} zK;#&1Kh+%Lm*#qE8pqF!C6BprNFF2T1+#@8jXW)x2O{iDOAsC-GJGY&3n#SnF2basG6sFdV=B;7 zHrCVAyW%bty5sSGH+g!>pP7lk2%+#>?N4*XQT7|lrb#2e6unYVv#45^C!$z z(B%9vW62?$BVxKp3s`VKh!APPIoOU6E#R#B?X67B2x%G&=U=bCuKjZ}+qT{~QV4X21yqh95 zSZ$0{Ag%eML5{>qgO$S*x~ucuQ_S1e^d7G=maKS>6RC*SWe1%syb8R0TvtG!hzUZ; z7!_TvXL}L^(F2w7g1H8ojOUCck2&L>T@-u)KLG(gp{=Mc} zXfpq9W62@RBf`AM6j-=Gh!B~=d~8Q}rf^AXGlj`JYl)gugu9bcF@q36?nz4H_fzA@9!&rWo50#|MI8>4<5&oAu@%9N5lyl9M4AldoffgCw|2)K7L0-Y<}4ssR662!mFRn&Am{~Vd$<)H+}f9B**ZgJt;zz_URgGl#9XfnCO^=-S4qSle*BsyKx0=E`as#~H?w$J{vP2;+d*SWK5Q zmCT?o2fZx1fm~vYjIM#K#u|v|uIfK7GFMmAL@qFvJmw}c*ENw`vDev`u9v}8J3bq^ zC%TP%!WbG|8(D+25pRE0Bl(!QzM4kzVPnZ-ZX`2YBjG+oniKpqx^?`-7!zIVI2maj z&5kMo=Evr$Y8u9mj3tk`VTb@z&cIBqmWGl-yM4~1^APz5 zAXYE-l?uJNV!zKq`l4G%))*RH3&G|e-u|jaa-O-qnnrStvE(r~l9^r~vd78#%;R0r z&ExIHpy-;%tC0x^m4_NyRi7#J_ZXORBL!)aRXz$_a zuWBTpGuKzsNIq>WdCZMuzVIFtG!|u?UY{5FU34?~wJ|ulX0i_JMWi09hVlz@jWrGB zIb+FVZYZ8qmBOY*ngySTJeQdZBJ9j%(5Y&(v#NQ_GFMj9JZ2h89&__p==za8nL>^% zlZDK9Pm69PYmMR2^(3buJ&C{1s z%f=YYg`XqfoQTcaqPf>^r#bf=%yj@L?^gK{Uu8ca2*GO z)@D-+ZbQO#ETkerT}KN~J}q~V>s zfl_bPXCdc zXqwC!`G4Gf37i~N@&5ujHurs#u&^NE*olCE+~gqK0g`YE43pX3>`Z27hB=Zfh=K@$ zjwrf-D1suF;(?+lg7^bb6uCt4Kv4lvE@`e0wr-2_K^+fmdVismPYpOjn%*E|svzDQ^f8Fg-XOGe zwEknPDXUm?*yp|qLmwkEq|}ZYIapefvu6X2*db^}tqPY3**o7p-bh?bw-1?UE@a4| z97i}cF<**8<69-ERk$52rZwpb-M7)hsl6jkrF(yMl44l88;+{u&Rgk*B6+`sjI0!x zuP}(vEYR|K?|F(q8XqhL?}_{~m}RMtr^&&=rUT8sHH1DIekzIKk913s0(pXr9J@fa zlLfM_R7mxvQ{_ss+@C5s@?_SGZ&)j3DnPWN2~{)63X@DCJFI4uNpypef*DUnj$JS_ zWx==~)Cw~~2ir^J0CHTg$wYJT^6<%oxv1oked$IbWwAFIId)mhR%GF9%%sI(!GOIm zvgF8Mg`qjB9U%1HCO(Mv{-T^h3#X;cP_qB1^huZ%0mfx#+cACs!m%Y0OX zF+{f#DU3_W$gvA!fh>$nKJS#gzC)-e_u0$iUUGP_^3WVBF?`|(da8)zZn~{Vk=#W_ zj$I^5zmf0F3<&CY&0Za^kmG_?hf%-5TvTN765U9oEM6cZ$1aOSa_$JebJFa`wzpc3 zSr!3Ad&Vr9z4Ad<*un1#>OkV5DHK zAtT2w7^Q5>@q?X%VcSX{vlq{!IYW!HJ>4B0rwwJ7ct3XYe(d4>*pvP6-Qyp^>dOKd!G(f}2hXg`$vsZzR81 z+P9*1oc2Rd_{^tN$R+!7g-yvqv8??dRQjC+*y))m?8nkp+9cLO)h$<3*}e29BU9PkWMn0k-DL{FlZdAt zt0Z!@jTMkYE{rybY~>7!Yo_DAMQ!o5;;QYhO&=vERml|c+O*;SS;DnQkfkP5i~%cY zZJ{q0o+-9s5F;Q{j0T6LB(W=*1SLuAM2?V_$Lw6d5!k48vLxZM$hLH=@lCojLdnwFr{}LXWWloS<#&)QYRN)Hq2r%o4Pz z$rSyj@#dMrVGyC2BEpT?_3lxtM@!=Q4zPyy-YGnPha3|u&ofwE5baml{ucfDNVdO0Mvk5B znf&XPUiXZ#s*T(FGKVT`LjsH{Ilw*kreAIQidtQ%By-WYf#!T^HLfvhui#I*t% zgOkTZdIr^~l9Q_nO~H=0QInHaXZkBv3Ae8^!-Nu~X$!UoV=V^|+cJoe&=!nwU6xA4 z5o9)$QgJ9bMp{C%djXEXM{OKS9E>RcseBBvg8o!ws#r=!R#L@*3?jOAV4_z}HT-S@ zODtP~3OOEFe!a_cx$SB}IFtTtB+Gd+a_lTmfv;l(agl9jl!e zkk%EnlZevqBr<)Tl|uc|^aFo14L_eIc!EKM_5;xsjd8xyQb#c6+f;J=SB0;}Zv_yv zu1U*p_EiX#z=(f*Pn|9Q!MrKxpg$OyK;ASZp1->PHih5`#M6#d0(soV3K&0}67Be5 z(%NczgHzJo!F&i=s9KfPQY?$OUs)#8xm3CAl$QwqN4cg|J?umIl|+S^jlG9?8Ckc! z^m$r2h(Uy=mGIfe)}Q?`(c?^W8FN3GG9|Y-R4**eV*PKB~p}pa=+RoPKHY54J zn2hWPlvkq*8ANp5#%xh2jRP`*2Z4MaY_inJo#e=1)5BqGG9p+R5;UDOTvigr?R2A& zLb;8M9J^4&j51K@b&|b>ij+}av{%Y=`N4lCJY2Hj+&NT!mJV;9L>K_p>UemCkXk$vFY< zRq@&eKmi)ZT)@u;Kj-`eZu*W~zMb#qk9bfX=7KSnnkDVayf$gxYNTaXOD zxZN9DxJU3w8K?8R*3I!~fM`#1yv9;FI{($2vnAbrq=4T3-xJUdO$DUA#C}hE3GGg& z0J+uS_!dhj>_Yn`bPtds+LeqPl7$TR(D7|}-u4><2)_N|RJPt4-S&&Q$#t2slXkzV zPnHUWO0o~m+Hp!!0?ga1cLSLrZ0R&u2h%&PX1#v8(MZ8MWMoCKo>UCf#s%wb4m5z^ zg5BSAgMh#B{K<$no|g-K6}X=?FMNCU6|%my;;bF2+jvg+_N-x?ume%E-~3Ca^5Gjp zZ)6amdj+FQLF4OQOG)PuGAaHm!Z(~hNDh;h*X*5uBT(Xhm0q`8%^dgBpNz~L_mPp6 z%yF+N1kW6vdaN?Xbv9POj`L~JW{%O$K(R6?q>U+eP{##YdDRZorHwS|up4HRAWcoS zm#1|Pm;c(xeFAVxs87|UpoQpN6MB9v6Igd8I+m)S*tBk)lh&$??*J^o|)mnpl_ zAB)TrJCTuy(yE=*jt^2$SJ387 zDc}iY1B0L^kk)^OGIb?%WQ7teX7y@5MHwQKrKFNe$N1*8 zd{i>eC3Gv1ndc)6Ih5+~PmWst70LoR42`ccqylmmm`r;`71r;d$5T5!qq4pXGd-ha zz2UCfpnivLE|UIlk&%_c^9=?O-4JBHs*}c78NrR?FMwT^GI^F99c*$~ZXuI~w@R9L zhHfuXCr^=)W7mnAPeL|f&AroFD6;^9*0f`VVv$ek?yC7@I^A5PPNtBNW7o+XC7ko%IU@jc`#ihGlT zq-8hz4!{uzsZC(Rcb_Z&xqO}AUG(Q7Q`l}~WF>_qOd)vk@RVbfJSN*%0m)-gXQU_K zPB}JJN&PN?N*{ZZ0w{eUc%EG9KX~!aOkujX8CxxcmqV zroFNX`9GjXQ@ezql7A#-Zn!!54Zqd?`v2&5BUSJ{GO|*fzRMt@Ydz-5a%s%12UimQ z4pv#JMIonlFN_v8WyQ)9c{0o zBghfLsz`IAw>lNncvZZw4y2YPAvmuJ=TN%wNa3s?BgZbB*^+STAIt{}*ID+0*+h;E zRxqd&Nrn+j-D#z4Rp@3TrE(@2Id-XZOHyeB)m{CAlLE@}NdY(7>*hLgn6SD*eE`*P zQJ-iUf82`QLThQ<{6jTp@ zDxinx4j={eQ!;Yw0t(GR_4vsx^A_K?ZkgXAhY72omgb;F1XKzAhwcGVLT`|fN3?{z zG%xkb3400c0ub#Pb+uYTUIbJLEv9>bl+X@j;7&3C~QrSt8O5>0z>1C9X&Hmu2<*MjDE3stUsE81oC4WGwY*Lk5b{}!2_ z8j|_{kdZ@}Hz@PGQ}D`#0R-BFYXx))&qVum%Y-$RR3%fcWYVde@P*5AvSzhu z#{a@4cyp$B!Ezctc1dOOPD#C3x$#Gda==KTK54p!gUN4-uO!|z9Kaw#yN1wm()x|) z^OB7h^TbT0Ka8wCGFiUQyoE@U!=~jsyBcr=ifT*MA(fWdM7XcMwfsw&Gw9YL6VYi5 zIh6Ydx1@K6#v_qz?7I!_+WI({ZrNOXlpa^@=5$pBn$77%6$HFi^zdQ2-AFxrh>YwT z$4kNo8ANE-X!(IiyEG9F%cSXKx;g-xj(er<^m|~arGUOm4i`3!Xf9nK3rO@{?QgzK zw;m~@Z<3K?m(k8B8I`N@ktfgFtLQJ}Xkk^P*==m0B5+<6(VytXBSrKi898`kx@|jFVj$J;BhnJ70j;*lQ&r))% zuo+0RoN1~b*L77u2hvSP3TQtva_j;^>J!ItAWwTv)*8>4m>(v|fs(GCpC9G;RH}@E*Mq8?0r5lYD&C6uu zkt`Y~lUGHv!w;+nS=#|bdj?r85RK=wnrXJ78;umr)@0<^MYBzKrWr_WmWJi4?GjG|4ZTX};gs z>*bf^7-99&g8ZVN-upS-WTapoAtT2wm?rt9T#=VI$J}e(@oohW?df=1kYB)KwH$TO zEk?@a&HumTqO4=?VK0|=(u0rOPSFav=oT+~=oTa8vNIWZBxe_O*7pp1xtvB05w;q& zKrY(Z-c#rnBjs`;8978Q2D>@=hEQ)em;nUe{d0=xqCL05+mC2v#lALHz_!%>F_E5| zJmHX>GvMSao8XKoVO#3W73~oz(1MIfkRroqRsM7Pz5bXYm01cb&D^waqSd}wx+2XFjX{fsj+2(-?E3*n;G{O0Ev7U~SJT-?>5oRHvk#Mzm2~zYQwW|&JpEWDlJz!L zKq7fI+7a5gwI$u1HjjcAt;i#%4KqGdjtEx=Y09r8Dkbb~HV>PU!Bffu41%6gT0c(f zT)TR$lP?!aLdJic%#@N)UL{9KpHQ9z95JEnrLN94p)=8N&^M6}$6ltJh)g^$GUQNx zBOH#+sJq{|y+x`W+x&?7QYut$4G^tpq*ba9GNZcTt6FU4(QQR?KAViJ6q^|gBD#iR zIv0obqtTL#>E}b`D3|h{($+Z z`l0S>2eOuKFH$7Ok&$B;$vjCUAx+4K>}B#na&WLR(QL}XW|F3T$a!>&kwSSN898>L z1V%FK?NVEjZ`y0*>*Tm#HDWxHsXMFYk+0H?Matu5GIH$lSkTBLjZ?d!P?u8q4N}2* z(q1LMCx-{Cl0yv(j_k84mfzBCMvCRvWaQYzvQR4)?IkRee{4OznE(*&X<;=V@}mk* zP%dHDhIP`dMha#$8978S2FtX3rPo{bF@WG3SDquUN%@X&E4;-;D=U6tV+E`?-!eAR zjVoi1uViwWig=v;$>g_8n^9{=4zt?a_>x#%Wp4aYqUswctYm7otDIn}W4^Y$hCzg` zJ%+9>wSH}RmiR@mj->aJN%G~+cdiVQL#E|9+YdMbJ+*z*%Be6a9ZXyI(YKPXAZ(;t ziA;TEh8)Uwglo;x2X}rf0t;@z1*99mY|FL9FVJJE-TA9BuNkBxnGblYXy9{ndyyLW zEE(B1ju)O!Gl{}oJbB2Hk;T;M3+U@(k(?wlAvs1`F05gP z9m#>xvYed_I07mD?UmeiwN2ih{%mA2*_Mo~B$Gv^5ImW93bINjZ&@ajAB>JPnM_-m zN>>V{%vnya?gO<9#FRG0q!n9j=`c$MZqE_C^)8{TunqfNYo96oJb|PcM0f(3IndFu z(|JSZ3@y&Sy|AO>w4v-<@T32Z?94?#+Wnt`zjeYtxqsf%&Hj9e_hUEj#~$8~J-r`4 zgWo@GXmRbNVPd0%LS0r-ekHLkRd$AIZTT)RU2J?8m~MyZ(tYS{@}jX_xn1~`MwC+R zh*G7R-rzL8&~&nod1_jf{V0g|!l6~!OZ=Z7^M8Ka|9PqZ^Aqf+ll=|+hex~(e`Ozs ze_ECOE&KcL7+f{`V3+&v9%6qV>#F=*_|J^$G|#f$Yi5;Y&#43gaog2S?dSAoBRjQ6$jC~k_8^0Z zZb+0Qm+u+pUZ~9X(5*l+zcU#*%Y>?==@km5`r*AojzNrs zUSU$eb19WvMrK7RAfF(IN=t0^JirlXsZC|m!vW*f4DvDh!;u-JMn+aL$i)mIx^7{{ z(o!ik7}UAM_B~(_t!Y=-{ysS@Shi;~wiOpt&hMm~faLskGIH#k&sh#r*Qre2DK+8! zWqaOVB!>pe`+UZ`)(w^W=jdi2x&Jd6IfQ$Ia?d*kuV@%R@Qxv4>WJSl{3O~LhVgyX zTn^TRG8@Dbpc4;JbCp(bwPoi00vP7mC6pyix3CM?N*hD@+Tq>8Vg@l1x`hcYA7 zdK^b)M5!LD$br(5nmqt;1XBE?2^*%Xnd3`<#bb zvZ}s6_4&bb+lK<{j*}ns)*Yw#Kd1UXr?H>pb;d2=KQn3u`8)0j!Rj4<(o~NAJAOd4 z^M>P=7j?Th_JCNn;stN_c7pM#e7e6-%BKdLAQPNpFn0x862!3M@gH_v&#TS92}sI8E)(jNi-bvP2_u0kENT4Y%Y#w z$f5j3xUxK>?tbIwU8z$%7fhwSlnT}7(Br6Gep0DM9W$&_-SAayD9@tXisXC~8Chv4 zD-0sKf#Y;84(&0+Ujch8wecl#RIq6Pb;yoR8x2>Lgm5F>Sfn_vBO{L>aX=8$g`)fo z=i~O`_!T)SSaF~Z8rF!zcU8?Bzo46nl*Z4<$gxXfP9twXy!vvPVzQiBFJB}-_95%! zF$y4P%{NvbnsWry&8vESH2hUXvIX5`cg{1F6>?QD%p)5 zb!7Xof=yHf$It49@Pu9^++kHF3A({Zne0MFjy;#m4$5Sp(CZ|7m1~qz_98i*92smX zL7hsi7fIb+RU+@9n~RjlNo3^MB{C~05&hxAm)I-hBjmtf6@of^Sg(-K!-p@TTZ7mHbzN0+$G7OFBBk*SGIH$F5L#6?Ua1^> zWG3n3S$lmvLk6p)9_an z$rQT1NRdn=BgZb1dBH9uaFn+slV$cYIfxt_Y%bB9hK3#X20T`UvOnEoq)_%DBgZb3 znUYY{!^;cy8p)C4g4KxWysF#47LwqsDvu1^Sfo7q$jGtFgRjWchksHAxyoK0SCYem zRfp+{Ox;&i9GBB=MT+B-WaQYzF}0C9>Lb74(X2nQSH_RXF~KUsbR1K6)Q>%1p8Wyc zRHQKekBl6sz*z4l&v7g~2s(x_$H@cljQT&yR9J?rZr_mVcNwuW= z5$i!q7eKUU&|=zYG@Mn7$wIoZNO{aBBaa|?G{$(6JdU-O$I;}tU=xR_JQ~ib@;HKS zEK(kal96MV2VZ#!jO`?WoMSJLv&fOb3dD5fCE%_qkxg`SkrJtpkz<$0v_{tfF;mB} zU$R%njpU$U)uB0f7d6-6d8!KII=ZDuVSJv99J?^O8^ZAJ@XO@ayX&^e4gIM~DFat= z6{JM+D|@N@f*dBSRE{xhQNw&!#q%?|?MU%FL`IHXJPR7)Y1~Z(lSi8C+eZD&x_jLM zAllQtqONb#tm?`>t73VJOlb`%mj95EV;9Rptyr|zx9w&xmqgp-g1WwK7`cR9-?j_g zYNTKmlaWINWAOP4|ANNbPHzCgzmhw`bORl?!ux2$%8H$Btbp@>-V^P&dZXMgu!V2* z-b;SPv^BVP0Q=laIw%l#?vHDd@Ii>?6P-a*+44_xHZq9NPdK96q(8eJGMW7d;0Sco#<6aSNymRGpVPgP{#0b9x}1!xWU5b^Lhu~nsm3Ztlx?hl z9Pxuuk)GT<1^TvL_mr?|KGWy!M+z=j{2qJ>en4{Z4(vGMk9a>m>izhb_v2FbLo2e{ za$UOc9;`bg%=?ps_oHE$pwfEMsEsQ*eNM^Ar=6iJJ6ZO(Qv8Rv*%MN2TDmX*2c=b# z?#aQh)w$U3BmSBphNhATzXqEshD6FLTRlo;%lCXN-0|s@QaRt>4!{Za+`~su%X;>& z5I2Fe+6erPxsrq^4frwoCqs&^ip=)T z2oXak@xQwv|JkYVA9|r*(l+Y7lPGmwr~=rPZbj27!v(Mt8QHHgiyI+|n)&(sw2-Fk zC&5BmuJ&Ey?4L@G4)(=g$X@&~PgDh*Ot%E7fD_2bAqwD4!tnXg&mt4nK`ZD~;5esp zMW`)wtSlGgV}?mBdoc?|_L|X=HXIYnPO6mdFBeJ`r&s7Ut^s>!3f9U`-)*?hgIP{p zyW#&)LNH7yT=i}v%Zt=iraI!u=t?jCYeEkT2s=ig<#)zT4!SN?m3zpnD0$`kSY8QQujZ0F=}$-IlH1A1N-nvLK}6R_%=9X7Fk%wlFM~z2w@~5xMRHuQ ze9vKgt3If#KS#F#$@-tk$g#6Nmsj2<%y0d3Yv$(xL@S04>YKhm>L7xCsO-b`sOej_3Y;u^iWM;E~BT!PC z=yeIcfcyvZR&F!>!N_D$B_k`zqQoGgYY?XR#nlUz#PZExjAd_d6FDSUmZt}MgD|eI zr#~La^|fT=*twn&XbZG_|Jt7K$H-y9^6ec_uehK#1CP>8Kyv;t899V=gG$bu0k1e1 zK=5W@wW%Y1GjM0L2NaHShwQ@K!JJ=EGm}%kJs`rk{A2bSL{!TRsMjta{u`m>QNpH4=Oo#m;4%BeCvWY6@a z3jNBpw?>u8q_MwL?=#R-6) zg9EgLq}7{lxpSQsDF%>ej+lwbx4Wkyr>A2E$GFZ&NNh|sbhU2PcSdMs7_e~?M= zUk6_G|4t5(mdETx+D?!+Tj z4GvUxF91VmrC4G21LSaE*_|918)!LxKmE~2j^9g0j-BHvytP(&{)RozUn7SE%d#;sMQn!?{9&SQmr!dorT-<TwP*HZbP`AaGvN`aUL z5VQ_SOKG+Pa0E*HCBiyg{)74a;AHxPktt&W8CgjgoeUzn7QkO3)U&)4jG?`C3d;wQ zLxN>FxI`Gr^?vlnBe{Mz898>Y151Q@zVr5cZy<*S%eTBl7|MA+-2^1(4jDOwbAx)$ zTLP~*7(nor;91iW<+lWTM!R2V%F)$aB~vUF(oVSyrC4YUzCsqQR&lkx*=k|GlPfx< zvO5KktT=E}Lc;xf(!I3M|D(i!WQ@*m2Fo+r~EicAwHkdc)%v4%lJS2^ml&kDOWFvPNI zTucrJmR(`?S;z5(^hYB(KA(&nJIBGs#rMM{<1&899V& zgPP6DzE=bcAb8o|!_*PK?2qe=^o!Q5Hl|8K*?$AYtrC(9yBec|+$6EzZ8ZkR2cP z7X0YHBRg{ul*6%=Lb_6N;P9?a_`mKi4S$+SZDJ;$&Q*JzzD&+351lr&xVF(eM$M+} z)rclirBZ5;$2YnM_f`gr4uA0G$UI)}Wu$J{f9H5)5p#9d;kCYuIpEaSJfkh;yD5-(rM?X2l3M;*N2-kOoCNlG#w&=IzNb z(h{1T0XPC5{*Ha7Apfa+RJ1MqsmLyB5gA$Oq82cS=tf2UcX}Fr*McRM!=mHJ@xbyM z{7z5L@+$hXkt`ocMvk53z;}8Yrq8oy`hDb>V40S`)6=tkHvRcXwl|ZJL)bQ`-MsvJ zrN97!kBt6fS^j?(ZTTO+v|M)JxV=KYER2Z$k1STL(rUY78_*QDL#Q#DkJxMuk(uRjGP06ce#Ic7>lW&oD5nOTq&t?BdcvuXTlWl;0D{&xw@DKXA5~3^r`w3s z#8@(N?3&oxe}@|JO2T3A$#Q>6QO5!H>e!bYAFMi-(lUm|TU94})2&77ALg2ktPQmd3uUa{B6OXToiHNvh# zMrb6|Syd%3(2Yf^?)ZE7c*92WCNexNU~V;TkDa{0)S}G$YwWW@5;SXbugE1 z9a0Cg$jBi&Fqr=0Gict#iU92i$I$RgGzrrJJi?yR0b zy@P9(41d(MYmP8YqnScG#Z)YO3hhJ&5juqy-E7GimjEe`oJ*#_e;N3!**WA8X<5wX z07syse$JK4lmAq{YIYX=smT1WiHxk|hl(i#&kvqztn$NJ8!KRe{TI>R+BYUuS}%WW z^nGxFw&FNB~C@tIj+q1n7IV#vUdKP=5We-%w_o7>X zWPA@YatPxFb)2^XURf}J;6sJmOp}y9RM-^lN5`Y!R0Z)Ky|c+e)v7Gy9zFb5$ILLH z@Mv0r&8D*9tw5DQjD%KTjO()02wY8OLn#uUA;(BdX!gT^BkUjQ~9XjQ}m}I zQ^jRuWF=L6fDS3I!7?rHwbQfxD*gFLwqGVAhp=r>yLtKdN`V0cFaIS|NBr{t$!KQ^Cs*^C zGpkNVl1&hc`|b9Af|{DNYSUkjS9U7e&Gt?u;h9voNT@iP4&Ys2C2a`gD~ERgyD^B7 z&;d*le3x2*Q^Q7~T}KCGob9+^LmBO@#MV-mhri4%&2if<^4Rm5lG(OM@EjF_j!Dn-HiKh+H?PPa&WNR zZ!OIi2#%=yf0b?slK-2@$RYe26n)+|cm>1&g7*yxQ%C&1VR^LE25bdEx-8@G-~ugM zY2{|Uf`GUy<8P+X=1s$28N^6v8rTYga$Uyk-&5I8x`i14L2IqFgl4w{9I;#AD+sz9 zGp5p?i%b`j$jC~%7|$T0YZC%12nxr`!4}#Zr*M2QIU-n&j%0dYGIH!p zODhNp+eLe}2gp&uvaMS|&@rB+TYzMIJsCNKaf3R}TLG^u7(nn=;Ca*HbDo4v1*HLDdI{;2GtZ;XHH!?3%KzHF)*-U)n>K^Sxbi?gR6**M+A zKi0%QRLF>L-YRjLkeu|*i<)X`33)MIzlF3XyQ%NSJcKl^~?q8$_6j|gBrKGGTKC8|6b99@LBKR{I zSt)T(n?mq3!fX{zOgcGh~Ql5E^FlrH4^GV3L=F8-r+ecb^d+S86VJ(EFh$2GpH zBHfN|D^jG}kdYOUdR5FoVO*r%T$KR?ucbHGj9cMbryHVOsT{qj-zkYh%=JJ8t!LC$ z&f38ipE`L~36o%&%}u?gqT#cXDFzW*AtM|Ij%7Ye`Q^i8F8tSme--&5a*(uiW;X(k zKuB#o+vea=r8G4kq(2s!D$XM#E2-jr3?jPrXOg!MNXPKE!4%rtrZD_XazL;QPh|`T zj8{v-*Xa*O^88gYa_l@$r_Q>nF)U!E!y5aV4vn@27?Z9Jl&b^60KEH2YF5(9tagaD2f%;j7;5ViaocmvzLipUDJ|@!3HYa;$Rdpouh0*|QO}Svmy;~~F?&_KFRBLEorfUg@ zJtNEeg}PnCk>3fnTK0pZ8N^8F2d4dK1i7 z2b7EHk4ILJ9mvQ^1=)^4MAseqU%d$-lNf&wm_$pz3gah{1A}Ee_|==>gv$HzbR&?w zuO=hM&U@giHz8~i_ZQi7e*rl-SnlPo-ULTf{y#uB1j+yV$;cu68?=4AbMy*`0R-kc?Wnr`!6Q>J*g zc{hU?2@S{O6uX9#MW8HYpy$a%D%IyN&C;6dMg@-j%SS!0)pYeI zy4A>Z^&}ZtNmsvT5Ye?MlhUa&Y>mj|U<kU39N-*iPFGXa9uy<-J(ShMXr!wMwe zw5pG3bfb~_m`p~FT^}<8q4Ga9l4P>NUM5S)aly*um{!T8{+X3e2%i!^kZwCtE&Gv? z<5!Ej_sCU@JL{BW30P9gnf7YQlj9PNT2$ZF+_HggJ5nwEWaQY@GSQ8gwl}%jUL~I) z#{;X9raMQ6Ej`?4RUMzA+l*AlWn|Z`L5e0wBDK_(c`A#;X|TdF^G{cBpT;?E!Cxt zKUp`sZ<52Lr8WB^;0Tn|CbA7Zb-I)mf1n>YE;R&ql9}*d4Za+EJ2_JN)NvEw2&~k+ z^QyV+YMr=^{%mB$lcR#=+S|V+d!RD@ zG~EIu<9{S0$Ikd{-Wi0lKKmJK)@J}jE1E&|4WB192iyyl`Kfd(kjzgaBZn|=P~3Tc z;FSvl2;Luj+*HDTfAF`_k@g3ZS5*hrIVJ4^?D4<}Em>(ZO>GmKJwR;QQ>V0=ZShlo zJCSG3_%rC`VH=FqrlR8w#xV?HBs3VEeYrxaBCow}CUdA1oGLj=S{Y<}0Y_{uRuI=r zM0yjR!)lf)(G5mssR9{U$x=B65nV?z2F?tVMR7gYKzp$jQCv%o1XdKw>_p+Zt4iV; zy17V6Tt!BXT@sz%dnC1{kJ^jkVR9_6qOi;qp2Mmv9-teHl*LcT$RV;YXhwKH<5edE z2;R>eW$K9E&vbQ0+Rtny&vQ)sGd0&~HCfwNw**qHWOA9xpzhig|Bn)wiH^x&Bdxjj z#lriL2@GN+^dY0w8IE_6IZ*1&ZsZVYY0P#3j@X2Bvhj~glmAe@<03(SC^9|lLPl27 z!(s*zT_Z8Un;1~pO@Sen-NfnSaA4V;%-C(1u5$by`lFE?pF~EEo#QEdGDGG05__IM zLJkR*XKzVMFkj{RBKqTzTwg#&4&mCMR`YW26#)YXUhX?h9r4Tk_EDGn{GhO`@gUew zOGa9SnU{O8N2o8Fb&dN?W6aC_eGFn`l>7XkG?MrmnFIf2;0qdmC5K2$WA=A|BhXRv z%RSKKKa`jI=jjhcriZ_fk(KoDCk7FHxmVa-_!sIMrm#C7AZYzAmR+IT>o}f6e>9Tg znPlYHIS!V4h36yec|MdJ5-iV3xz};Mg8q0U*GtLBAzT~OYF_TWB47Z)%l*BkiODbb z3&%z}x}Oaj3*bX@rwo5j!T&P(-b~sNj~cibxM@WPutGQBcOR`A?YsXz0md=gz_f;C zLh;e`0vDPpiT48MGlnO#DAecoqp7)nt%oP2S$o zc~APokv#8CMvk55z=5VZuKVq|cE~}&axEWd8p8KFx&cVOlVs!&z71+OFaKUaFo57A zi>FM>l0UL|E!y%w#oPAg4krA!7JAuzLh>_3Ga_r2{=WBN2 z8zZs5{d3mrZwnBu7zC(q{6hA|hk2qZU=iICqyiR@kwX+r2;M(jZ7OBI zf7oVhq|*muoJ?Lm5Is$ntTx+NABgUoCKM@6`*4P-ba?x48iN=K?L(*Mw3I|HBr~G4 z4d;`iq$M?50vv%6|3Gw~EdRNDD&buEbCD_I95S+!GR|TU(X|Wyf#_O}Zv|T{+k{)l z5y5gCJP95eAj%4~vWaQYH4jhQCW&4lzY(GJc3YKm8K=d%iAE#S@Wc*iT#NOt4YIf3!O@C3EcY3OBNx}P* zM9?as_-NXJt-(@Sx9m%Yw*&JS#7JldCIvi~dV*zSMtnc{Zl#0Bq0*9?O#qHSOU;{m z4j8YFCHAL39GN`!AtNivV=o2~U1KoA8-WJ`Cb3-rgDks)962mlw!L#Y6c<#^GjtP> zocEEDW9NJhA9siIew97%SCT`6<$b<1eGqU%<^FQI8A$FwNk$Ig-k{R+X2B~O1`xbi zm~HBa-z@AiCepcs&Qxi=cOz!-?6%*66SPdFm0NAOe$gRSO81BDKXCj%gyW5U!-T4& zX%>EM8gbq%JjNhKLbEWw?zU7r-Xb%ibPE3=$4N_S_Ibb&IH^ryIizm6nl|2`KN*=e zUMC|fY2#G}5nY=w)vK}fXh}Tp@&fhEQ+Qqs5VYnQ%d@w*B-*dCy#xLENVc~lBgfA6 zOx_@bFn*FfVF1BfgGWu1mERhy zj&>elERe12OT2=tR;|=(2WmTm;rAuhZ4wHQrYRUQ6%B6+E@coSp(z;Wdo9(9?~=Jt zYQ?w7Vbao>y#a6pO8nDY>vZ`K=1U6Sq(2y$F1}7iR?@{+8ANm~fq$B-p5?!QF|=M> zVfjzwkYHI3p5_|L^^^3+Bf0)P898>Y1E;y_`JVZrHQ&avUmrBh_3ki za{zjllVFTx18^!iBv_V%a{!@SpGLU;x3Jfib3z_|3qM(SE5o3Xb^}Cjov64$v}_R%W&Rbn5|# zBTkt?LeGRM2fFtIgQ{4QMtiT~z<%Ik9B>dlm&uKz)kB2}y>_RK029qISQ0Fs` zpu2%gXor%Km4vo}K}1)oCV9bIS19DQ)q32qL{PD0l_NfuoftWIj!nr6WwT} zJ}PA7*!8ik@Tz%tWWyO4eFgs#9VyFv$zC%zl7ocR%&9HVjGvU$K&U#pj_wFjN1rDn z$F8H9o{szj8I!5a89Ckj%3eCZAjbtOonu-couKckT7E{i9jTUw$jGs)Ws#_sVzmPI zlNR#pb-Ee#vUQo-0w8EzAyzjhw@^1?6jTMhMdrDNRM3CO$gwMEvZtVpsa(~OGtF-H zib=FhF^9K6F`n0|LUy5Bja0~DGIHz+nZ^`SX5)s`W=HDozqYmxiDD)ViFL z^t+he%3x9HVW$7hdT2BSAlfrDI^9k_!-YcC(nPu|NG**cBgd|#S-zIsiz%F5n9+mL zrPS6OWUrq6$$`NppJQ90o}lxpUiP6IkJQUvWaQZOGMyzDHdxY*sdM&X$&jOh6^mV8 zBYUnYrH^hoQYmRNa_mZ(;m3JOCk8VCvGv6a4$F3Pazj#$hw;=F$ zd%gUP92TrzT9ID@uB%%4E8TRYR-Pv#$F7wr-iey}!FAUw)}y0^0MVY&(Gga8MQ~fy z$b7olNR7-PBgd|hMeE^OzP?Neb{&-qxs6V8U8<7qPY$FirOalj6di3ZnIp&%!lo9x zwZ>*qP!)72-3z3GR*;cnSI}HJc3SP6Wv`u01n!Q=!|BRLz-W^Up{vQrv1@3a5z#$^AOzuq;7snMvh%KlXDqpcM5&Ua^@^~qxcrDTDQe-kt2c?i{0*+ zpx3HG{zJDKsgO6w$gwMAtQ#wN@j78Ija>kuJtL-NR(XWEt7>8~-CU$5b|53iu8D01 zs+DRgmmAc5ZX#>tJ@#5Ti5wzq8nNqGnubBu(D8IPkQ!P|Mvh%WV~VAM{AuJx_ENck z90{ycmRhA1*IQK)AD~-{RK)wq$RUa__#TpfQt5pnX8^%Jy58P&%du+(d{Q|O?Gf#h zy}JoJU~fh>UnvU*vD^oo(7vP6YEyp@3tR)MyU!(XJFIV!@WGwt`|Ep6mBYWkzMDae zgfAog+j@OAq)EKz$$a?l2>%lMFXUipDb4;8a0Fs%-a#GyO_x4({^R*4*?*!x9+^L$ zBqJ;Nvti0A(I%N^LOeSs4zYgAX?G4s*KNd3rs@egjzSI(Tzaz zKADUhJMZ(B7xI-<<#mCeI|H zIBB|ub4_)_yM}WZ#7O8GCUVE60&)YH4W)p5fgC9^P!ZFBspMOO0%l~M#i8 zSJiBDD&16MwmF%MtYn)L7(|4fMLl4BB@l;`m*=@Z2KHEX7BzBIu+lidNE&rdRb^aE zw-l+23(3f_E2I7mIpmFc#H6%wr@c0AC&vY=jf05VfcZFbQ+=D^eY|l96Lq z$M{q^satM;&R!FLCPxFSi9KnW@I6$O@HE{*q!Ru}Mvh+z&{b@#l&bQcoY}8iSB@C~ zLF>ZWqlCJLsuHHsEkr6|5*aymCCv1{&t)yehE47dsbVa**Tli(xL`Fws~D=UsyYs! z+lo}jzGURs)iJIwm#RRADM_MeFNpziFtCz%7pY+Q4yroH(hWrFU_BW*b{)*{!^FPJ zhUPL~loatNbh54(hWD(t7q)HZ$kz-fMboMErKmD03Ir5o8 z$Jy&+6*(%{L_#Y%vZtytj-*?PRK{Us>*)im{6Rn7HuyOFB7mW&*`YNo8ON6%d`mqhYwdyzaw4hdEy`_fWN&`nhnkJ8OV zYT{usa_pK|*w92ZU#=F5g_3*jAv=Fco>?9JPwOUjOMqxk6WjFSn|fZX@6AXwaaz^O z+hkU;7YO{9j2ydO=6RFu?r@mR!RM3OS@_-UwX&pbT3JELCLs>1I@y(OFfy;~L`IHX zCv(|-W%W6>u+AiDFOyTrvB4G{+PGNnud0%h>GmR3asnASc9qN)qc-4F`jyXMYxWws zm>e0bMw)&GtCSs`x2i%eq+5$r$oXXC*cCFxi2^A^z*2 zb6wTWAL*tewetiSId<(V7PYg!1RtjNCSh+;rN4=QX1rlN^qC3}?HT$sJ)~|J0fqUm zs%R43ex!=VlaXUrk(YrQqsZYi(82ZsI)EIeHfEq^uB+PFmu@;zJA0FnW7m$Cff@k} zdjq9bXTV-SS#qqf0y4-z!}_nPXg%G2q>6gU$g!(v602j{0n?}LrEAXurqn>6?*9!Txh=B zSYl~evXWe`V-TSy5iHK0eq_i#{dCwLG~cZ~<#0HFpj4_BVUx>R z*aIb~;t8h3q*Mk(!N?Fn8_k0X-criWM5TMxxUHQ)5oEkrV%A|osL=5z)T+H|zM=a||E zSYJMwPYpQ23x5SzW7%{Jkz;~wI+}i)uIQoep7P>fN;eQGhfB!FBTEjIk|WCDUVAy* zO^!+1e69BD6)!^kng<_}tbQFl*~!y$A7k#bl@Mh=mK!Pt}!Z@uA- z0R*2wA7*&l`lc6d+Nr`f%*71*=1Lj_eb8Q%=aHGgigI^MQ4`%$M?mkRn}?L-*<@rz zl2MCcmKUwY$3X6jEGgpa_KNr_IWSm7?2T81;G-&wo9Q+pWpNW3Id)mhs5q%oZ(&nD zEKU60UKGD2hXpGN)Le<;p(=@A(=9|w;xRIE?2>@527O5gFOrljCj8gBrA4Ip@D^Ff>C1Go|K_GoV{m~yBCS97Iu zUHwk3=#<1Q0!NUAt<6@o&Dbph{e#6qrQa#T(A>Ajz5XcdBz*O^6YD*1>i_kymmVBy zDm%W{UlI| zhG#h;`R!ZIHyx~}TaHXyy<}u1ZKW7Qbo2kSQpFtnL3j{zr@PnIk4cZHAHE96mfM6e2JdKxmKxefZQYUE+M z-AIi*Kt_&TBNNdbxZp;IUHDlH2tCwDG=tgs*eBCjYg{DUu5Li)iHe_ zRVigQCt;4eTuH$(*^)?>*o$OWfEbzM9@%$QD?8C`M{4CAWaQYjGPUHeS4uzccB;Kn zPA10$n@()!^hM8Aot!|o9I2BvWaQX&(pk=&<&@=5$}YCo$A#orVD)i`Wyk7ytm@)? zy2VIcoJ&TIT^HlZ)pallD-UIEvlqs#B&D@{4K zOnuvWj57%!+S9%^J;@7^TLi~dm5iqwj#SB5GIEGY4E8qh?NQ!V7Xt{sJ!+}xLX~R; zY>)a|v?r%*Rjv*Q`)H0K%UhewYRlM`sQUR|shqpdX$g!6E17a7llK09g8y*>{x}i% z(|516ruD_fNPtB3F(;~ z+1<^5@qRq#{dmFq@mKaktFqeGtn^nanOxbe`U&<=iJbpLp^DUtdTkt>g5s2%eA*ex zj$H(?=mcYeJ@W9zc*>|vWA`(rE6HN2l!8;Qi~T<0XoeUXBl2E zQ0SFs$lpmO!uNe_E(0SLI9A4sVGlWmT0*n)0Y{*%*3Hs}Kx{&Gs-8!-hX2~LXJ@)S zP4h^119?X>vLCT=Ip{}|5VZk6X4^BQ=(I2st^sVWh9p=-doBGOc|apPr;@{i6~Yc0 zA*ddyQaG7z5mE{#kdggx9p4C-rvY9M(79*Ax@s=xvI(LRvJM?9%gx!+)T4{pf0%u2 zbfmSV^Vm|MFOze`?=!9eTWBiQO0c$2TU?6uM+#}GUR|<01zlwtOP*`4^r9Me@?Lly zF{#$y>k2uLk(F_MsP7?%T1gn+Cx=PPR`#oaBT!P?I*>5xtR)(X@eSd8-AOkDnI~>% z$RnX0m|1r}Q7pm1aPF#kMf^_fMX;6j@+gcxM-Qa-5Hpq0#myKMTvFKmGunJd>Pma|my^SSWk1;e75yUINau|+8C3}!Ot%Orfdk0MArdg?+1!T98|rw~#Q=im zpW7nNKl3Y2zFa8v3h_&o!wq!1kaG9}898=2%!2Qz)BW|- zP-3TiOH%lay%c^)4h&WbJ8Gq%`lQO>=X9HpGI)fH9J>r=OES=vh%sAQH>_I$M0*-m z?RZ7!lq!S{x=~0Wy!pQ;1UVm+D@tkD!(IpPq=y_iZpGvS*C$m5J#?FpGT51n9Fh+V zI#1rbdNW)G5WIQ4+;sfy&snY?8|j?oM0W+WlvxKW8q%Uzi7a7lJ*v$rY;;N+GtQENS;$uZ4*Wx-Sse7-WrAVMd)vNH!7Q;csfWGjAe!H@nsvNK^Ft~Rz(NV8+5vz_pN z&ly^r9ey^vHU`$-oIFf{p9jybjfHnj)pDU)N<*mK7;dk}hWmH`wLg{b&ADQ~aLB1m z%;eL#YOmu?+cTQ7R|0X_&$xg4toyfX-M?Mu{_O_$Z#TJr`x5-ksdWydHupNkO8?Li zZ^K`;vFTK?k}2eeYT`Rp8|9wGHgs`qOn;`g*U7`p7nA&_`v2nMT4%lrM<&31hC@ff ztZ^k%0c#5R+#vi{<4dVcTt?Yz;MpnmFYAxX-U9!sntc%F%a82IJ_J8%?_Sbh7;u)9 zs(IL$v1C)Bw1I6xb6IAK2-@%@N{ywPi(SNZDT46*WXv%W>)1@u0jY@x?>`1^(WbQZd9|m(V&jEfqP+jfV%>z{^6jIh(dPN~ zVFnSJZ(F-Q#Fl}&4l8V8;RadvFz208SEk&x&Vd)a3-m9{CcoaA$Y=iqI6^pU+jjRC zHuV7SJpn^{GUXm-NRMlX|Az1do>%Py{&M62pS>2e4GDXrlh3$&R=UdRQl=>0ZZ>PH zmIz!E<~iMNhy#!B@gJ`QcRJW$l)<=~r!a_6HMeqk#M_y43@abv`q!Rqi)Ckb!GE3- zyxr}Cx5N~JH`2SBLhvHwQD{|!CNe8pPWDvyJ%Sps!Od3#sr6!s=!J*2phRfiplR$4 zf+PhG?(rV1(4R65Jb!miH-+Hzdx1CLj??d@M*|3M#fx5s4ZBm&WMcz+*%!Hm>+p?( zPn~;ZxeMqhyH%@PDOJ;zs@n!$Fm&F~IsQhPPqs}B3t8EMwy>w{7Ot{eu>wXY%J{e` zty~!&We}lRHM~c#+l%Or?^x`|W%9kwX4dWo!+e_`W_Ju&n{>t*jo&)sj3G86%(87| z_`#spldobe`6_R5>{fCBwY{I_#U9_y?Co)zc!jrH$dC0QIB#Duh2Zbfml#AVQ)yt2 zP>|p$FbJ)3_SA0QYPT2a>j4iH z%AX)VT%r7NQ-~NSpHM70tp87x`vtnEjtbB{1?c9#*Fvf%!Bc4MCYI`n-F1t5z%zyB z@#F_9G>P1>K3oITxhHJPeb3h*V-K&m9B?TjB~mbPb~afbTq zEqtB($T7uII-^c$&`*WaH2L|;TYW}zP9vzo6ZeJbO{a$)gtV`alRp{ca_Sjp1b?xG zEPk9EMJ$UGy18p=PW~wQxe9w9Hih8X@I$5$JSTe^vdYP)F)Jca8=OvEhMeH0XZQ#q z55rqQau0wVjjnIj8D}WJ-9p{{gdBOS?xuHhyL)^umE`dw^5Yfx{lFB0%P%tGrA5d-&~Fm;ja zm2b9x$LPSjJ`o1;{x7wV=WcjJd;0xx?q01P=99v17x}3Qy9-SrWOfaz0xv9H!)XA) zt?-(C0|;(~w_Ifa!L4|}bPdO~0+uMxjrPow2}{cr?R8LR`mc=T7^b$bJBzqP{s4Mi z3Z|R$y@5}n{eP2y3yp@k(21{?ipB!OUd!l*P?R)M_lcEXJ9|6hRKBLnv%*cp&N(XNcItiY{0SI1haah-(=A2nWC|HMcAaeBTqi3_ z1^KY1L+rJ(j2tIyW?5>b71vu;F9*@BMe1dLGIEGs48|sWc;huf1`xa=Uc?e)XhpP~ z{@0YmaffdlJPK|)mAc{g*=zG`GACGV2EVG&cEb&qe3to;W;5L=qy(!Bc_ehfGaHmP z`a-En-DJ=1_4Gg@yWic0%RF^<8{Vmz=32USNSd!9BP*HaDh3hyj<7ZK+3cj< zQ^2aqO&O1YQI>7)qvX(FU-);SB@u8?RmH<}1CgqDfQ%fX3WMUo>yMX$3?O2xKa)V5 z$EGU%E8Wdh;tJB_vDT8D01)lzrGp>;ht!~eTS^`3q#K5m;%J5(T8E-bJM#o)6MaB% zvRri1QZ0J7JILq8cHTCRHHxbGA5;C%qdUiF1;Hk$`T?!ieaKJZDa<=R4A+l#oiz`pYXTZFl5&4;Gv zn(B?OE1bh1LbF`>rsmdt0g`UNt<$SyhcsGb^Ig=A3kYp-^^`u$I|d7=X{z*>bO> z%yFI8${Yg_t>~XsW$IQm>&Zv!oT|&M=*A&+*+E8DbQ!fGrlqST_Z)-}E$n5lg+0hY z!4{&On`9};EmZ~Yq??6QK@S-@b`>n>9n7Z&GU>Vs-0yMVED$)TUCIq%4i8oj zy6K*JZU}WyRmN#_1Ch!&g^V1#GUmcZE$|6B+*_Z9Gds#~B>-HElpB;}@o{@ue3Tp; ztSodB!*yBcy;C*uVY+olO?-%q9J?l_yHU#&s^xmRkks%!do_HQ92Kk@f~PIkC*Xo= z2>PY!;M;V&kUID#898JvXwRr(Uz{RzZmKGoMmH0wlF4M`*i|yk zRY^9rIV4Z4uvf)Wa!{~&qS^RDa!XagfpoKwD%g*V9J>l;xZxVuoDZ!RXWHu^PYw%K z2f8)8ddr|VrYd0r-7usQ`pL*6LkVz(UU4uaBV28-gwK$}(kdkgj;Tuc6x}eS5-uYn z$F78#?yFNw^};e#h!lQmFNGhIuMozr>@ePXM6n$}v}Z&yT+bjl zrYd0@x?xBqY)wXvT?tdX+Zy#MSZ%L@W5^-FCI#J&<9g>PIHfA!D7sNd1sqOBj$Hwh zH)SgQAzi}z?FH~&azwBK2p-_?>o-vsK+q?Z|3SJt7 z>MWZzeAsjKPNM_-4fa{H!wjb#=AD4vwYqTvdhk%gyT~%uYOoe^-n@GJy0EE7v)k$p zQ!aivHKU(xN>&? zWD3FAebN-dXLqU*yC!@2*eg7Kjdue?*YQQ+_inypvDwFmAg@bK1jrE`V6`_FKEcvs0O7KAwO)tWeGcK{qAlC_21 zaI}MKL=PCz;~T+_iDyRmLE_(o?O`A1cbY=**QbX;v~v5HC-Y-VPS5hfz(7VkF8*YA z9Bs>@R_2=UPjJu9gdYed>NTbiZ4dU?V+WV_r%D5Y(BIp(NOyJ@2h;3% zN|*;tW5mO}(G&t5X5-x5bwZ|8sityWPJUyiRLBp&rj~M7PuHq~f4aLsz%^|nV4H4u zylY5L(2$;d!9Ca8Jq%Cb3N;K~jqj}j@@co7R7vjz+AB%_eb`c8?!R3CN$4uC<^`h=;@Plnsk8bzwzh3S9@9OLN*Bs%2|ms=K0JM` zGKFY+h{qhi4sQLc3NhZ)wiu7?u6mDCbX+lw5D)U1rVw(F4H7)B5ne7bfZ$dPQzJ~< zf`xnnqid~Gc5k!n%H*{L;)b>Mwt`!15*ezQO5n%jQYz{Eq1|dQP;|nBVGpfV%tcW8GL2n**$&kvy}|`oN4fQ z{Qt}#;_jm+PHI45H=pdAb6>q^%Ktw;JJHO~b>r zxsxeG+atWyiEEA$`lr=x4DY6LP7Uudrm^ASJ<1fK?ctqvXr^*lbzRr;La$RUrrgV; zgDY#*wgr27_j(w(R@cGQbmPfN)-9RFjfcKq3L%Hypy}j&tC#x?Ah;E6>RTtemvAo2 z;lep^@l37f8LZcPW#oS5OTl`IODW?3w{O=+=@x2b91g0uoL4C z(Ov*P?gXc_t^kMeiZ@sNt~FY!Ez+KU1D{3t&lHv(H9IeUV=4=-tY0#S&^E4>Ek@v) zFwHrko#|o;CIY38!QLiE+JF7{`8NM02T8ve`2yewgwz%Uc6K*NOL%^$h4)`{JCOUd z{y|3egT&vQFf{nLgP+g&$e ze4f~{X2I56a#F6Yt8X$*`nxoToa_~z53924AaoZFt;(kTpS|p-ll?0E!Vz!7U)it2 zKds7sjs5*L_Md647CxRakRpW9f3NvV>5*vlQtoME1-z6GjsiKXIkF)ZG53cp1DH>~ zxTk8BGV9>d$x_#`rNa7BO58GW0r=B`%_(8~CpQ*yFiGw>rDV~6xKK1SRr~{{0p?Zw z{R|>B%B|muH6ajXA^lz7n&@VS07nR1ZDKcU5U4Y&me*_Tqj-%e1h1o4F^E=nO>Cpp z)aCBnZ&=KK3=eIAqBSv}1~F&*t(pY>ho({E^1a6tqV0j7z8bFLfVGdX(7({O(9h^D zu}8c2frqR9S<}ez;6Gyu(e~g^Sz9QEMt<^?c8Pv!ccoBl9`*_FaLe|p(-cAuyFqd1 z{ef3F3?R4_?={trKcs)q=;I3G{$TtuMJM02HdWpr&JC_?jh<>DTeA!B)MSM{RVZtk zeqgz&GWa`vFoQ7Y2aLlyb7f|;nZJSAT{IR0+}D}_XO9OQA%wMA-F@ugJ$>H8 z*;=t?b4J=euxB(6Y|9J(w8ILUx+(>p1;vHL3)>dc>D~Q>O+A$Y&x4v}#PjU~dafx1 zPeA9GLhv-`(Q1_jPh(bu3c&cqngmxJ!FU3`cvyPu;o=+hEqG)r`aboIn%v#zKeZ=S z%xGSvZ*c5`lZ4Y>~g^k-yHyllG$UNQeq&MU;W$}}eH`+$V z46b$lXk`)Sb<@ak!M|z>AqU?ePw`aey>z6RO zu;bKrCA^v4^%T$pyJqUoR#dP(7+~4=Z_6M;TeHvtV)|muNHxU3H}h2SrjNA8Gxx!g-Gw`*e?b&%OO z*y98q?zR=`9A4R!0iI-w3?lUPYJFER>yXWEcjk_H+)q*6D9eGpylsJ<-3|AGcu!~F zpt@n!M)s5Tk^Q(S1b@Rm>XFmx-eFs%vGbS7^nKm!ZKGp5wXgFnY0}o+W*S#6`ddvQ zWNHjD7f*iPt7ibgtr(`WFs*^_T3&KeY!7=X-*tGoTy?sj$$(e&sdKL^clmq9*av|y zC|K(ZKvP~32iniJO*4CRr+wq#i}Id~Yg|tO{sG?Pa*w~M%==a`1@judX-Wls##8}Z zL{FJQ$n+T~fQ!hRxiWy@Rvcj3XS-Iwg5~UpcM+_ql&WcIvaD-bOFG@!61K4Ip6LQ- zExQZZaCja}%q85vC*l7l{69*ReItaKHO=JYLNLs-1D?+yLQ8aL2W&Eh(tOWRW6*iD zQ|T}Cu1HnH?~j+0S@2&>zWeB4a=i4rkCp(Az)g)^9XJe~iTbEI;GmK_4xpQe+?cd4 zLk?xSrOjA#rWdM#Xk17oZ8;kNqiM5h3h7yTM78&AsiYs|ZaJfq-tblJx!2QeMY7*Z zM)m{AQ+bL(gk}VTexSKb7HeeE2OCJ7O>pQ-63!@q!>QTj#=^kq(_p2gVy+;^3Y#X5 zGE|J-Z6$dO(G5q+=Tb6q?DE-KBOfLjxHC!YC-1YD%)R9JU?p>~p=7wLicIdN8;g|5 zU1a3gWwM=4CXm*{^2=-XVtIueC9GIhnu08wyAkgda<~1ZGIo~<^Z)T&j#NF=a zKT;U)X~yCiQ*rW1pFRc=%?OR{WS!p#Y1iTTawV0Ag?MjpDu%e$nhV`(jk!s;e^B(?MNDy!Z- zF5#>;oKh#^D|Dlf^qxsZ_9Mo#Z{8Gw*8opsRyAM+vm#WEtxqlEj!F$WB{#JQiRD(X z!%~8`kOPWMEDLpsh5MnTm9Nk(LF(>H9$jHOyhC|x`LfQ;hWm~8Pf99J*faV#J&wqv z;$1^6B^A{rHKqKDZW5B(UyzZNl=3rE2%b_rfwdr|7(j3U3bETzhswAkS;o=MG%+N2it4IS*Sgi{yTQ-xki)8Xy_mRNSU+cAjHrl_Tx7uamf z#6$f{W8C|ngnDyWYvP*S8*qfk)h2bX_m5b0Hv*{{K9z zVMU?qDEQRG+Y~5@c>_F@R^+u})&zYTd|=#L=yAVs@izQvhW`DgQR722#}uONfuDYK zDxX^KZkay0P=)hRVRMC`_eNO z_Tx|NFLbRfbS*85QU7||qCNrkMHk$!-QfFYHQHY_4Hb{}%?u*KTs{3n_r3)8>Ld3q zs-s|uXkS6WKWkeor^EUFa7BW91(JIM6?|;1`7rk(`;h+B6oL!*#~v%K-tIq%#eP`{ z?o@C}V%T46Ti7RgVPEGxRTc3ors3iue#sOi;n1s+Z^cc0A?U8Yj*DX?cN;a_eVJO17sYzoo#@Wa|H+|84MZ(=ukUzV-#F79cp zp$lAO+Q!AU-Rz1U&k*)$3M@gu6=dvi2)0>4O^AJ_QRT#>O(D?4823=KR#)@v`bl=q z3EaSt2Ca&R#MatI$L#Ks_jK=|6S!`{d%E&+Tx=RZ&cTHYBDAw=`Iu}1EAF1o1$BS9 zZQ-2gm3B|ks*t~EAH*9>A-IsgU<$!2yGLa^E4%UQw4grq;eJ9pP=En>p$h-&>pFbJ zA%Y5i+cp(!-Ixgh8+u$DdcX!KJ3X0RO^5w!Q$F~s^%#SQ?$w&;4ji;s`244BQT5yA z&S=G!*?+*r9juiG`5TPj}d`{XV zGdEwV?}R24f|3`H=~+h(y5F?$Ef-00nDq0ms{lu!q}DC2j0VX|G`vxos8i|oAQ#b2 zX2=F?wtRtfM&13e_0bxbN}CK)x!;l1@Pe%5m#?$e+ z45F27cJtSIK|=}bSOO=x5w22kw@8+y74zG{FiS<;Mh*}5O@9|g5we4-GH#_Ch*ZWc zWaJQK7}R>+E_eyZ0D|lD1m;MnK3iXRrmW1A$`!WzVNIqaO-H>7)>w-2Wim5ZQSRJC zl(JJw6?&0w7E+4Oc?`zCOJ}|mghtAiGSAj?tVx~+5VTedOY$Cgk{kZ1iDx$5J|x>S z$jD0KnQ98b6OX64|ECjxERHz)E&$x%$39}N%Lqsgo&T4W{v5J(oqzYZH=#r9j zj-eZcl;KefIkfc+ttTz-eCG-wXuOhA%6Y#%!SAKV650Ol)+FWVy;Bp;Al*77(;Lai zO2R3dLhyv+>Fs|j;Y(1o1jBVviSzxB%}nt#*jxq zvRM=eKtdjVNGazjdy@Y^k0>(b?A;{gH1knSJinvch-CdYWMn1r{L&PHCmv6G|67S? z(vhjm0PN0lzk5jKgw(TOu662}3lQz;y_PR%$6(XB&Ly+0XQ$vFEki0IniE-`Au)T9zvXW4iZ$T7k; z9{V(@NzJ`fHIk!SiPT7jj2xm7gOb9ll9!YWAYz>O8+8nPGA|UPo9*Rz6PXUI9HsAj zg+7>hqST=4>9!z6cP&E>twGVHn<=j6VU_1GdpaMbhY(qLn)McfQ))7Km~Ir3*9XYR zN;3J0DFja@p1S_GlF7u?uz9{Ppy_ZY&$F&^69A$;9qx`zYMkJal3Y6JHX%hgnjwcK zmk1l&Il&NwWtn%|^SdWKmdGsgP9(n#=hSSoJKZ=W(M!n4O19aRK}1(?wh@npCR*s zm19>EIeM-r73foRW011Dj3I|spy<-gROWgkIZHFTKei|Ihx8aCE6+~D5!&!dO(^%! ztwJ*UeKN9=Q0_E^;0eXk*Z)>R8LL~T-eSIWg?oz}PHalqu89Kc&L~OcKXh}D(tCp; zhbEN>+uG^A_l-AD$}79rv$_}{+B0I=Wq4K_eyN#d2fAHIdbcAZE16{*1`%C#nP1m| z+~P@kI0@{s>|>87M+f_sH`^Z-=AWvI)pYxix;Tc69HI+@a=|N(mwXH$;%s40aY_Yo zg7*JW_a$(071jC!B$*^+-w0%zB*cUz69}s;LRJz25lC1>p}8}CXQn$n-JR~9Nd^Q# z+0+&Uhv$Y12*N{l1W`~FMMYM{g(rV}DuVDpaYYb>|G8DwUALCosZ-T+yT{+}&G1P0 z?m6fC?pLSk)~$PmyAm%$^I@vQS}iP1MHy{Ajt|CAc9#<5$k8S~lbJ+PuUfKXE%&(- zdN00)b!cJ5tW-m}8y}S+vv;DA6+^kr7J?fJ)mI%1#R7syL0@08fZ(=vFnS*}D`yY| zyq>lw-q+Jco?J?0L{l6!3p+e(9j!cpyq6XnBHKrC1QCsUt^`-XACYW&m)PFB+1)%4ogXKB;KTc)g z)fRZ9SYD|8^W*@0StZq(NcHA(h0ok0Wj)m`h^yCWUQ$-qUI^C94ZcV2Wh{&SGI9=bBeCR#_ z=YdGg)A{IfGXv)D#-58Vl$Nn{25^M&f*nULTWfnY7qw+N8y|~d%d`!Rth7ue0uf)^ zJiS_|M6QtVvIB{(tVI7U5EAZgQ|P}5T^LjP>GE$h{X8pG2shxPG8DpfXyk?qp>p?U z2PFD`?N0x%(B&|tpKex)qCY#JlKyjiEQX~26ph?)(&y58aA#2_K%JG~OP5(wM@ek?Qrc#bCA~$>BhE zIqZ+Gw{}HEZ3^hSJW+C}rld-s9UqdR1olBAH{2bjQ3?1NzZX97nh1`4mPFvWi{MOj zT}(ZJ?tF|8K{zQ@2JgoQWhjHw(8vv!!FVQvt$m(6Gq}v1|Bs^!V#+@p{#aRK3N5;@ znE@P&3U3Ip+Rlb0wltZhUy6^$kob$x$PFic0waDq-1xHn-{;Q!z37UVGEbk#N8R}( z9hLgK@!=R!ea_!eYAGKieJ z6f)?Nm`Z^js2C*$nvY6;3LlRl`CVw_hLb;wk`E(9#_RMGML5T_s2wS;b{E2D(d97} z!m?T;g(f#u6#s>f%}^AdLL)a^6l~EbRjhoUUNVJ;-L>#TbX82XP;=3Ur=&{Y`}mLy zCGcG|a>FISd;vbPko7aLy&#!{rDS3ck``Wb*TUb?%}y1@vH0i=g>eiTx#7ZKeL~Ue^%Kd` zKwehEx$bH>8(kGsHPq}AcuJ}Sw&6oElt2lM+;9o76~Q)4qthL0`5Ad)579qUd+S zh7`q`HAlC`x}kmIibBB~Xj^f@`Zn_YMd4JqJX+V&a2``^Yl*l(|g+0`ojqSa*0^u9m(*(j|W4rb10+TD>whTVTr`GqA^{H?A zLx3aHuRMi+*AhO#M=Q*37{0aS6YeGbm~BZdj$|b-U`#j}R&u+cmIXLgS2|Jm_8}|h z#D#sqWucJlvPvy)aj)e~wh-KWZlHA3{WIaT=z)mkuSh;MWHp~qsW}K(``ySVZR^Dy z;W1kXx#Si@1|N0kO=JPVqqt;fh~MKRzuV8kcawwN*Tlfu)_SQ-UqL!Pbmul~L#!Pr zG)6XSVIdR(ak8adl@OG>@Euz|xg_4Qg&1-&#s>pP+omn4d>+^k2I@saR{seLgTZ5I zv2s;uhj}A?*$}}{ z;>S%8vg2EeH{k23e?J9qM2hL-<;wlq9z}6AH+5~`I(%$~TwjAmW&T|ltqauHcE^J**2NF_D=UIG6hC=)`6DHm|bj zEKgQ%OzA21`1#Hhj|B)^hi6K$k?DkTQ@L)%$7aa&2sE-{Iy>1yaMPiR8(yX}rqbc8 z7CM}@Pz^`3S%ogBsS@XsU6;!6$6B@3s_>4+hhiwaBMEX7bT-qfJVu#I-ks83d>sut z8tH)lN=H+nw3?I3Z5khwA-COVWW`jHwh-J@sKSP)sVo;w<-egCj;8WebV2K4Dv*fM zxqJm5ilOknOpu$%RF_2yzpd$^nt4azFQ{|jGDLsQwa2CLPCR7d#~KA>9k zhFJY18d-6aPuN0mN1@spUXC)6%5ZbRgY#;0MPFD}`5Dy2(ORBBm(|o-YKf4iqj=1t z_<#&W_%K0k0&Cer;qzBY7V_AVXG9K_e?hvdI>L8wu6c@G=t8wJcv<9S4N2s*K#F3AVU#ePLP|xT1eLtDnfN^mptY{cX}VdSJTjAqPrGdW~$lTkB`id z=Wn8s6|=d=7J{1%Ron0~8`8B%%eZesDI7iKb#ygNJtn$q(XHYB6Ca16$x|U1b>AeVFP3Nvfmziod zAI3*!$n%HL$cou~&=!K54OQFlGMimicb0@{(f6PZjt27`bSX^@W~O$vFGxW#mHY5P z7>ey)g4_hAG652gGLo0wX?zi1K|>><$HmB79mCnEd_Iql#*ok7qmdQ!_+MKHZXQ%s z!^=D-u7Gu3R?;UhETc?}v_F`JdP5Zr92+J=|ew5~4X^0_{-Te$>k;n=NQ zh%TpTw=!Gbt*|r{bGZN?h@t4tBgjo)E>jqXQKoW-JDs=Ut7vE{i)ztX%}6zqui+yy z+Pj=7oeU5|(}wC_5K?neO=SW;CPQv_MI$SwGTIh`n+jFf z@G_NM)~?+w*vauw2S+&ZXmJ-fJ<#Q`O8bdy_Xk^7aw%9^&^Ps94Ugj}kz3d*hLm?d9;}&!+P2FR6Z8J=A zQ0(I-d=!RqyMZ7#fqhI2GLQ0)U%M0eD|`tJ{eylMQeKM{(oqfM=lF088T~05Suv2u zZ6UaUP+bi#0~x(O31qtlrijm~;Q5edtmmo(P$&$#Ex9WaC)5IY4C>Qy%JCk3)*U->K^eu^y zj_M$v!-r!?>8H`iih~Rii1@glNs86&m*BIssZz?zBuIlNEsZ?}Q90huKS9^V^mg7y z+Z*WfQq}Myd|ZZV_yHO@LJby!0UuAO%~(M2^9W-<32@YLsjTl6gb`)b5@!kS0uV#f zp6WM9vn-S`r3D{{q2&HUBo{fR#Ahp$Y3@;j%6{%-F2xtoa8S|jO_dT-jbv|pK!&U? zMk6amvZpNsHxjC?;bkOaj`y~c^NYn3E>chp$Kk9CT~O2EO#kqXC!*L%Cq5KI;hja0 zo4`({Rnw1hlux-+`bm5p4IM@Q@J`K1HI+}`V>0CSV`yZ>R4%cF;HE+qHaty5+Qs-N zRKw9!9!3|mE~cV;_56qUPz;6leS+LXrV@HtTblN~=1%F~@pY_+sf2P;P3156m<+l7 z6B=1DmH)Ga;HE+qHaty5dM$L>Ue2bnFF*{l3`T7|7=JB#r|3Ewa`Z2q* z`fu8ceH{t*r-@2j!uOFhpC=muvErIQR(pQX=}rV9()(h3UOBBZ15XDMp*qOlxZWF0 z4NI4QplmU^Vp?|7GXO_mryTyqHRDmoX}g-GYJPj-qck+X`DkRt{N@sf_#QgU=}Kjj z39lc%xaoCd{8|Dz6+(0Dd^V#CWGaxAz zUaz0%D&%?-@V)OMw8n{I-tSCxr8*PrPo;_5h3=ZU09`6m%^YW{8I#0S^_+(f+)zE| zpphG{o&${36Sf~oNq4v_=~i^vOqFz6J(UzLf~u;o;gc{_)s1N6hO26F5jNq3dKyVH zzj4>hGw7n2YUW@=%}6P#ig+3yqM;&wfktk)A{I&IN|bVZjADb9q>^3taqeqI0|aiW zV5*X1?Np*mTUE|TeAtG{*%^)8aOF(x%SzgjbaJS>P7Xqs#Z)JU8tOzzQdPxre2|8! zScXQ9P=&>s3SX9?lX43PzAW>$%MukV%Z!V6S!VLu0yOU1a)m8zof)rK^u{q++4^)mhSC;IDV`1@xJE-Al@`8EC~ z{Zi&&x#r)=5t-EdJH5GNU&bFSx7D~-HdpA~K^1cOQmU7QU8`C}e`{axK*q}q`sq(o z9yX>w5A`-|-Nm)P$wv)|XS-`BF=UtzzmBftIhtpI%NJMh2s9q>;Z z)3=eI_mIo=r5|f+fq(Zn`Pmxi=Q8-ua3epnH10=Kz)pUYb%_G}=kI%XX52czOSGwrDZMs4B&`Mz6(i5Q#DoQf$d^8ES}l$w1cYXC44-F z&C3gDWTkm|&K8231(lVPS$y9m3NVY4<28%PEBjKJWGdU;R_gKFR_8j!=B0h#`q;+e z91O+%DSz8C7?n$fR0pgjXSjzp=+qAD$EYXc9C6y2q zGVZXgBq!rmTL_s9i}rwb7}O6fAb1pONFw!oh)wR-HbD|FG8NmlrAj?;YN>9RdTz*s zF<%r08KzhukptClZMo(0c-9s|CdPtWE)Uw9SU~V77TG2eL;(%xDe*R-aP}s7ZIGB@L zeHL39gE#D9c?`BL_4`Tq=X_sDT9khengQnAd!M& z9pw+jhi5pWJqV4=YR7NoJD{mF(n#u^&7kQS9;ZzT^y_aTmf>=(3m!Ved$1P|{L$ za3wx0Lmga>MsBzcCJO~C6(kir!b@o6hAUxQa4Hj(fMf*o z+MWA?*#Lp-uuT;}pLOW^0-le`{OJ2^p&Gt` zMsBzoX60e0Q>r5~kfeW;UvFL>HJ);p#FOaqm`Wmgr71E!RTq!p!!y*yPteE_ zy0BPx=1bRfdD8-duXjzcZHd{^^>15a-Dov>Wh(0xQqq3UDa){}uvUiUIl+^UW%8{gHegUT}?^#jAi(c3_W9CG_v9udl88ER;OnNuODao@(FnJJ<;Wt zI(wqT&;gM-u2Lt^^)VGgduR&6#SodADvA%_Lo*b``_RY{qOceR_&`E!#{z;6Bx7t7 zVFSrMwVr`SZxFM1P)DA}joMW5N`2zayK5i?oQAamERTdY(EaT@+*kKS+lukw;`6o; zoVU*qhlb%tweD9JkI?9M;zHOR!7jTL-Z@e=JOZxm*kA5s3&Az~Hl?H9 zdl$#hy^HImdhb1C^&ZQ%C~8Z+*tSkwwtLz_$fdRzmifp|ZypN>9>oxi5aVILTVF4{ z|3qFa6CCS(Lq__9g)qenT~+a`Q*2q|#BZ{N81j;jTNQc}K&bc!hpgh`7s4`B_4NbQ z)CO#;#S7kV3o+ycAG0dg+Y4=p^p&+Q4Oz9vLbWSbRJ47yZJl_jKWhsyx-p%l8luM7Vdyf;dk7xuzxdBnOLymD9`QS>uigBK5a zY5GEO=(SV&!fEjG=||Id!p}?7caeYoI{e(wlD?b#KlFXn^h=PoN8d`_&`MrQEiYNt z16Np9=*wpP!m{9<@8IQR@_%Hxj!d@N3&j$9?UD^wL!0)Jjpb?8_p8VwZPs|ho4e&n zNxwH&T(-3@)wzW<#!wfZ)n!Tg4M;KlCj1D$nj6%pJa#j@54O@Prr@P4^0MxZ>vb>u zcj>nSt&lf)H%uTkOaD2z26+iJu4>GnIR|I*Wyz~$9W;-i9^>erb@!!`uy7mvo0;_A z_}jhSe8w-5!1{FneglyZ$+9h4bWsmXxDDz#gqDmAsLo8DaIwR%#N z>D50d_!$poafv|eLPh2T#h9ln#@Ll`NM&~+*OyJADzboAWPYP6GO?OC=p)sgm8v21 z4@5oHzu%wB^uc~=zmO<+*)3FCQ>uTO^!@ioIX(V|no7z~INh!H+}XhoVN_Tjk*N1I+DvIKVMc?%fayHkP?2b6GzD6W`#- zg^-ya10i~nrI*LAIAML;Nq(1K2wwR^rF<+;`H)yrrh^hYlcK9H3kO={vR;N9bHV@L z_FyjPv5{?K`V@#VC<5{Xg(0zAA%Ub<@)Di&;1iNU_+Nw)NH$#pOSEUIOrQgK<=ET7 z^1RBwNR<3ysn{O;OaM9Um4ib<=VcT~k{i=S_Pa!Whwo3Lb1x`s787N*e*MyjSRaIr zSqrZvVB1N{FG&Y^NBpp!ZYyNJiVm&%R}z)>HIh5RNy5vgsEv`oH#;H&Vszwhv_(mRz8 z+QAH2t!!wz{N(_y!$TYy#+Ezy8Z&imi=mURRh;h<1-wD~yHT-@zPqjnoro45f8T~Y z>M{NrpT@R>bD!R{tt(%NdYwQ-j>*xF=53y4)_z%Xmo>+oEVMiGmt)J##LKrJ%>@XY z{J6Cm-Z zPtj!sR-A1+|~3QMshs$)dQdrlgX(1|O0ksVmXQtX|x8kFtf}-cP0FiZNm!W*(j#68Xu3L`c@F+CNPz0)%2@(q12_6+Z5cSpmnJ{AKs6lgtHWD8^vC3z{g{#zUv5b zGuTTt{V03+l{>FL$Jf!_Uev@?d-*9oFhhbLMunciNJS`zV+)f55-MB^=%5DRePS-KECUA)1L|EKlNNF;v}S1i1-}WfDm}%2Qena^~|t z_!=5|N{y#OVp6J|{2L#XA+i5LBP(|D4_gRsCsba;%T7idFR$jl+g*JJ1H{lwhiW_> zB8ezwasWOQL(T0+kek3vCI*>Dc}b@`n`hxmXy_$1o(>5)saA3ZJ|;t2Pe&swR&uH> z1h*0@uHj`RBTrD4Zm)()ICdtVMHjOUoe9lEF_Zto$6~0uPZ8uMFq26n^(Z&_p*x@7 z$Jfx%O=@%|Vp6J|d>0>-A+g^^BP(|DEn5g~Csba;%T7ipZt@Nk!qH9MLf6vNO=@%| zBoW0--oS@qsJYh&aub-z#31u1FWKv0XExsj5JS^v*62)xoK!1Wh>yvT);2V>iFrKy|L z=uAi=ikUos55-V(_Y>qMFq4Tv=22eqsymyn;7e%eB{ez|At%*JUc$#@Nb3t|WW`FJ zvxVSRLd7-QtRyAvc3X0Yvz06Yh@okVYgtKv8y)3~61DMpmq3tt|w%5-P6YWhJe;y=@ zwuRufLM1lbY(=x5?axpPM_YLrUCw&gO4Mey7xB>;D(`uM+!VGV?e~)2_L+I8GpEx5 zVrUxATDBskrP|6Ad{~C$PDCRswldBZg4+s}*zmHI(VKv_d`9}j$%#-5M_<{9uBWN5 zEU3}0RFYBpl@0iC47In8AUA=rOs!BE)v%o7&gyo284Vj2`Y~vI!@^jt=A~LoA3iQa zdJAY|#aeQ<5Zqd*$cC4-jM(gD#TS&n4ux>El{?V2G_{o)YbqoW#ZqoH4dtp4EjzUY z|2tza{insjud<=|zD6$51l}?+C_(l9lRB2)xYPQKX)SpP4Sl7?I<1hC>M2j-V=|=m z7ieU~Q+{R(!99hFs}7!G0l}l7=f+t;@bjtuX?uEI5CxnH_;S2w@{V1V%l7;5{Vg~= zJA5eMUhl@bqt@EWi^!?Sm64Pj{9O5e+To1O%B6)<=rrf_z6-*^O(K{``I&$V2}GoQ z#d#*+q~mkRzKkDH`s2{0XSwnN0@tIJpcDz#AKFpYHB~5h*%j3f| zq`w!9tPEjk0ugzjU)^=Gr(P#LUTRC9UMOFI2pxs;WptfPZQ*dFP{MhtO8EjlPD7=9 z4vpNbO4$O(Q5W?}dD2}ekD=={R7wfwsVe0s_&5!f@*^~I!Jif9e&lkUR&1ezFAVM>R!hvwBnN~#J! zh7ZY5g_od_6%|tcEhNNMNSAFaAh-(KY=>vIBzND)SU=P;bq#z}y|1?|@0EJmDjyFE zugyJy7P3}_hY(TpqLl-|v-FFyO9&esn!dRY0HFM7sjdO69+ZkIIn$JQ}&-{EzQ0_NJDge4sGFkwkv{VIr86TFR0=|GoZny#_8&P&z6WB9lXHSiNOa>F$+E$_j1a1(5v1fP%XlShM=BbC>m%8g>Z-5w@xdUAqjdqCWELD9h#z$$W zk3G@I4cEsE`eo@vuGHff5(U55mnjvc_ThAQWt@txjHzSnXjZAqPu0X`e0+wQI1!B; zp$UssM!rx<7qBcK_(J6mZI?{gLS;w1Ulbm@$=})sAI(mA8Da0>XVGHTDzWC?!6Lu3 zuo9+Oocu3adGN)_PZ5a7#mUGOs``HiG^*zJqifFY0lqr~{Kw54wZ9D$Rv^tmn0 zU3*ADES}l04L0367gpTw!N+507Dj) z+tLzSO-vmUev1#xkl|<1$jXrLYg-6DBv73>4GFiqM?uZYDT+_JL;;)HXST-r1Z~3V zfvne?>TFB(=5qz{T>Sly#NJO@mn$#SK0Hg(3n$ox1sl{1P3;g2uA65v2-Y^yrJc^ImCcZSgi$W8WJ*`hblQ z(wl-4-cuJX)tv2ncBmX@CT z((k}8csZPmbQ6QrtCL`9-S_O<*_8IAN^DkBQrqH_@gW(~dJ-C$ z)r;HidkI86$J*NbPa^ym{ZfLw_$&$FQi#S;02iTaVtPAE#}&u|sOF?9;KTTs3>EMp zG;+fgFqSHy1kx2ike-AM-kl(3-^8O4lIJ(ZuXg*ApC!KvGDeqL(Y+l5NVko-jDOZ~|L=5n! zMg75v$v9gG zZYES+!^=!Y9Jk{5m4cU?2!(L;l8xwEnu;%aLPGLT#;*8dWdQ^ilLYB@fh;{Q8aP{?-mUJ z?;+^0Vgb>>9%9UUD^H_^M&c27_5B#liK+UeZv})FHhD6N_#VQCV<^4{334-Z6Vs~s zN3|6Hbm#SN_(B@C6w=oMbi7vcQb(0n@o^av{0bUbahI0}M0|b4bgqP`=3>DL=jLJ_ zKn%@XLD~?nl|nT!RSUE6ff;IHcQkUtwJ<59g_56_)~Vj>E`#IHH8FMi=pIwdNmaml zd`yN4Sc^uEP=H0FzlC(a4I6e3d}N*HcUk z*sl({68--R!8k5e{6BO_OmF4r4R}IID*yk356O`KU!sv4&i@!vEM=i$+)8KW#{k68 z^pVk1MV^de<)iT77_z<#8aaY>i-Di_4s<}VfRK9!3kV*?XtF2B0)j^|61`!Gl{1I} z-if+1-ktxWj)S93q<3{rMc+MI(<{%f@qM5Sy{xdsT(jeUv#mJ!J0&L)2#Z#w{=4;N ztW0IS!oaEmB)x#op!D5M5d-1&QAEy44Hl#ts%v5-n50_ zhC}r>ybNc;ak=gja;ai5msL8RqutebB%X4^K~Q?C%R>b$5IhPxf3tw# zbMlQYrVDfOf5&@H$te0&CSh85H_(ae$+Qhs%{e*!vd*9|<(5rgX&+u^=dejpH*@DBm zzw|Jf-Y?+Pon9uBNJ!o8&a1Jvj>6_U_$q3LAeGHMYp_{ONTu~Hd_ab@zJW$ohMw1` zGGcpylJlR+rb-I`%iQ_j7a-~}+d=bB6H@u#3m=dn|L;O0H=O?o?EdfQ>*|tEu=#*H z`R_wl#MH{A$%SC$?Uig;dHJzcr{Lo;Ws;Kdf7G4(i_sM^<$iuG-%n-4gJ7R?C;zwTdYF>G!#lsE-uchsqcPhwu`FowK)Xym5hJ(Kg~ z=Kj;}ybq!aQWxHXWK`a-zz1W<`(ObbPX71MRWT)BdO<`S z=EE5&p8p+uOoke`4~^V#4a{U3DEQr}VhO&kMHfUQ`~R!E68?;?jj0l(?Q)_Lq`Xu| zco`p;p&DL9BR5y?$R(!3K8~tV0*X)D~)Xg+VeZ?`!bE81lXnjofhFr!y}IN|o5=r@DKT zZ!T_k=f4kK7*qb2)S4B9lTvk1zz1chgB%*U;X0UF(LqmcTcW$*<$EL-xZYg_*P_c} zs)Cwpz{P4xss_G<56MsiSEG>|u7S!^0CHH3I#KwUy8@m-7o|Q52wrNV39%ycCxDOQ zLo!sr!)WA&E1)u0Eaeh(4OKFMcibiL7P=~?5|DPYiw$8lBh>@mz(-`LfY;E-4OhT4 zHV%{uUZ<}e2=+b3c~Y`whh&?PaYzUJ;fLVb`9 zD=;7b&&LO3$o{!#Z~~G_p5y0f{(RKG zqCCpEg>1O;=!*yz5L|gT+isW+qJWo6ULO(b_p`^Y&ldB3XDOA-3c}rI9kxZ*s;)dw z`|a!$zo_swgXZ;;B@hU%(PqNnua_($5KZxFf|pDtyh6bnNCZ_cN`2`@bkSL^{6&)u z=yGX!OCJU}0ySkiH>ID>=KQrw8L6YyI($Tip0Ngvta!#s0ulMDecj(pnb?&L@h{PT z4g`aHsY{`MJGvyM^wZ7h3jIPpD*1i*cnrxepphfUw{UwtU{GtZfZzkh0^3B`fbq3a zu?`p$H~Yol^W|+lekL!!Uhyr+1*c%G{K|)rQG;D!S*m{^QG%-$+k>A8_m$&u7tGC~op=bhWf}rXL0z zftm7QLF;KqYP*=GYBImVhiPasKSv`gCi7DQ5#IGS3Ll#M3tWq~}h`U4%L|4XCB1gMO zBuG{j$o}|X4F%GUMsB!3CNhC&%_Hfq3=drrQ)Rr{LK!qmRT5|7qcoJn`_ae^m&AA` z35``;;Vy{F&;>CS#32@f&^yG(@i7|8;Zihm!{snN+t-`O=ZdLd>B!5#thQTT&iIbI zEbc=W##9zZVPv7nRdtJd@v$1p<8Cx^!{sqsQ!+M7llqL8-Bt1;x;~~VS?j10ma;0A z=kXyMiskocCY8DWD8TAg^r5d)3+7i#JsLP1x!PV-p_^+w<*uX)fO8o=dI&sN<&lY0HOFe;zx@}#s&@XRg`@bQp_r!%n z)=SBZU%Tb(kG2)#MgM~>#E=(#;d)p(hZji5W3JA=Vky_#)|v5w4`Z}#OO<-sK>vcz zjNdR+%7-0+JeH+2mZdC~r9mu9;m%O)XDkGS>v7qr&gp5jg^=m77}a@WKnD{G2p+{b zwmM^t!CUb*24mN3@ATn=x4Ep?9IUC2#v(T4`23>6K&N?xy3$q{Tw6yG2#Xe>{^z~U zSf9;j;5~tp^GSHYrdoU9_U=KKp50A+TaJ$|nzpq|Zw4HJpfWwQn(oWsEVf6a#RB7d zhdc0r8O|&c1UZuAdUhq>Zfj}T>w>{^2bZMZp3~COb6@%$_;to$nzSqP^|h#;KkY5yo1nU#+__QkdkeB7Yoa~d~3 zK%$70Y5lEeGPD&dN~J=oqYs>@P{OfHwFnwBz34I(Nn4u;wCCE)+Li6<$S8r6whwgJ{ z`(Aue4SgtT0;XlVnxSe%cjF^8r2S4bvSLNI*+OtDqT(A~Rx|;0x|$p!tZ>_E1ZsEJ%7drWT?TH333xy&+a0n)f-Z>oVmw4vpWkQhNi_`8rk}U z*sW%!TFp#+WQH_PMscL~T7E(y*P9Dg`&G+16-wi1Ih)bd zHMN}Ru1A-aVm&9~12fd*MuOY~))RC+np#wERLO!aaA*5Gd{Lddo?02IR&)+NLPOfO zqmdOW>a&I5Rz$@&ysT(6=u|bIZ$U8}&F35FdYYQg+{h7;CZgEQ*YTkk>h2DL+yr(L zEaQ>vqYUN`?u`BpUq(ZNiGF?{=A>H6Z}2f0Qu_=VS+SI-Z6Ua&P=O6EOBokvv9hB; zc!)J;qqD8-0T4seXwwh!=%!IT8O2(5!-r$2zi9-y39MzeFr88Ma*R8(tMR2Yv=@5v zeobbpd8rn&0w0$l#qU8QD;9IOEd;k1DzxEcG2=m#>$6FJyV|;(4;682UCu=p)wFd9 zAEOf9t|Mfln9SMucnlS|jUYFH$;=c8t=^5&Ea@h9Zg0TX($Hn1=fqs8)x=brxegzg zA<5UEkrkWyqAdis87j5mWixvaRl=9KQpuXn$e)AqIC{=+(G@oJoal`k>$CdQ6a#t| zADp2!e@&2^zsdCv*aKI?RK3A)~i{n*3^oR(vbcUXk^8j zcCv-w)|0bL6qk_<<9Ms_*xozPV_8IlbC8VkKqF|B>5+3 zWW{EFWDCJP}@RQ}Oi_X$%~9g0t6*0f?dL(<2^zC^@N89EFd`P>Q>t zkrgS@*Jmtr#HC1I6SRQfuM!>MvZo(TWB*HQtcUAP+YCn&wpBm)+18cuy2aN(H=w1g z9rMaZU{2UgR3l2zh=f-VHSdV7v(*oOM|2H=h#c~k#Q0*?uB!*KUT>;%EwCXx&B~(5 zV7CdMQEfq2O3P>ZbiffA?qTXf{4UwqUyM1Idg~1)_SJ z&p@<}ed|^DQfhk}mGd<&oL4heN17|~5gU?!IT~3RY03m5(huscl4)U;6ydW>a9D(R z9>hZsk)uW)MAyaC7u+;b%~vsq2k;RaYUF-2a)d@KS_$5bP@A%V;N3_ENhDIK^?#*! z_qFU4@U?we@{O0EzX*mgv8i|);&RmMn`n+q^?EGY)1s4BMEg2EY(vrhlX4yP_HlIo zQg^@FGqN64$Cu_yOHOpw!yTm7a!MUV6e@wLqxa%dFx1g;XygbTSqy1>RHQa% z0nxxwae770>$9nnenh;?UA!Mh^J6OB9iB6*%c|7dJ#cxhB;oFwieZq zKr*p=-F0v`zNm(?z4uz1m>~RW?y7s;iI3e-5VxU`75BQCK*To+F4QY0WdD+Qo`(P( zN5J2s%VcUIC)G(jq4ZV#{4YLyL;d_eG;)M~EQT&V`cYf6fN0?8w_8QV$CD33>Bqmh zCpk-Z7C;Qm3}BtLbmf$l5pX6xXhXqHC&im*zJ?+l_FYpC59QQWhZA<3Anz!m!Kf}juD1;}_$ckG%N+9AJ@#d+D z30b`)nvt8F$GV*XVrUxYjdc)BD0Njg@1WT&8|vmQG;)M)EQTmP%26A$fN0<-H#J!7 zktaSE4F<<$r(5Awfb@IZC42agNp>|_vbuDYk?v4@z=lFSh#)t^NH{F;V6swI6GAF?6)A3`H5mh?ee2yRJKgF|Uab>A8~uA?uNNs}(@50b*!caQy1DCSg@0 z)A0ctYGeu;x#1ewty;2PvSCfDl6CGXS%WT(shi;YA#KX4PFCVWHq^;cXyk_LWKzxH zrq5j<1$0eJ1#%R+8xeC=m65~8YN(718oA-hm`Vnh8t!qeyEwjtE{mx+@H>5!bX9#^ zjStsQAD=}dH(VbRYDnV=cWFF|u865Ljzs%LI8#*>591>>RK*X`$Pucrm>l!@H9b?r z0)j93twg^t%n}KrfCFU~$9temYp}AC%8JL9OgIJGQfmcSo=47*i9TgyP&kl8b4<*x z5D2a@XT{{l#Ed2o(aUzzdaIv?XWxWpUx=R;Y<;RLkS1KTTD%F})nbd-34L^a1Smf$aA|?DxU!_aW@}q3rj& z+3&;H@59M&KYc3zANvmcFMS96)5i2|Jx+d-jbDr4KeM|1xTDhB z&&g3ox*<0Gc0xnKQ8aaj@D_bRpgJz|HXC!^21N^s08z-XF6?1uVXRbHzb<*aeyWr(}7~<0eG18ao=?CA2c44nzulSNQYn)jdO^jkPWvW^d z=@H;Ar;4s%oOx>|Rq_j7hUMD=IN?TR$2eNb(|>}x38a;$1v6-cSY{@#!e6Iu{~t7k zwcl%at&03_G%^#%m`n=VQYcd|E7HGgk#_Cq%VhjgA^;Qw#yw}p1!pB&0!-18{lYSw z^fE$r`rwhVp1eA$-|tN3#6fKhTE1G@l{e^|CYZf=g@l*s_B#rm&U3`S(ar)C^jk5V zG?(g1^u5BUP9I$*Ew$;*fFm$c-jz5CBa2;^ zv(tgUZp{@oPFezutlY96AQ1759urm+3f=${w#4yO5KFkBG)b=mAP|urQr8vb+DjLsf|MoW zxERfcVjLeq*GNlgx&Sx=ALTKm4IxA+W^q3Ls)lB9E*e=ei?azteA9|?v@zH4dly84 zyWbRkZ%5a|l;4S=Nrj%}TkzL5WcemEa>H4k#2a!A)4z3R`dM^MOqrf4O(^ti{~CXN zL$-f~Mvh?HV)W(>038Y}Aoz6RblXH&18{A;YmC!+y*!;oz@v>4n^p)7!Myij4N9xI z@=9GpP0;7#}#O58|pw5O^aV;`a5$^_eClHa{Kzu{SRA5F-U+N52qKQ#P zj-$}^(sG+_2OP08m_htRNkLtqI07Gnp{2YVjjUM8!L|_GQmCGsEMt%Nit}tM&VA$@0ukvWG0rMlNzRga zT!&^vF^_A|MbeU*{v_ZCgp|h;^Pp6*%W{wZBL1?5hVgkcvSJvYArSEm665K-LdWn= zAr#y_r!f3Dx*(W+bgi@$r;h_1 zftNCU)E$mqb(7QaS2uK%Q_;wZn`|Z!@pTE)XqOPKn8f!dAR@_-2t<4x!z9`v$a*gtIf8YI;hlE~bcnEk;2pwWYzHdVA^arX zhYhWLS-O50{(8jSXtipkR$k}aA5@|fh9XUSaHp+&czbXgfoO*IU<}Jz8a19qv!aX| zzd)BsOKkcFfFn>+9!I)^3SI2N{Gr3o@E0~TjwjH_ig7$jAmVEdCep!G&+^C*IQIrS z14KP~K$Ybwp_PP4uHQj3V)|m;TWI8lb3K(0t9rhdyYszl$oQta5R??u#$aE32!{9f zUTEY9&MiiD-Wbrq!2*Ie1~=P^mo)~n;(hoqqBE1q3#$fO(Mr`09%c8P%_KBo{L!=o zSzF=omS78kXoi+xRFJaN4-BIDV0Q+8CE^NnjkJ`e&j%cV54N+J5XG*_n}N&lS2Z+? zkE4+lv$&K%#Mcb4oy{74zXy>xt`d9)T@O=!!#kVxEZ>K}wjs;+qLCZUa%g9>hUq`M zGyO8UCZE{O1J@CBU2?TBuc2AkE(|2@bMU`;Tkk@gc>Y*2Htkip~eD&w;g-h zCc@f|t?@pP7}c4}c6#EO3@)n3mS`>rg6z5q4k`Ba2;^Hxi@p*EKYaUC_viX|xcC_!x-y4ZzzGjJIG z!iL6i2pU;2jspoqe9ZuR$wAL@F9hS*52Vp0F=aXYl0zid-T2EJa-BpYH=OIxOAdOz zKj+T(r_p6G42fw!q8y^1$^1~UIR)yuHZYP5HaVYJ^N8tlg z!FN|6dI+Ax&O@(6E{tB9hT@mDZ1INTDFV?94aNK&R6}Ys-a<3UZaLm)yn!yCRt)JE z0Y{*!yeHWVwS$DzrOVgw0T~+9-_gj5LH&h5#MgiKYn7?rPEqru`f8LkNcI^h7NRgTYPy&!ZMDU_n9B)7WET_Ppf$HvB_uDp z7fqKkR^5#*otE+Rb$}z#RGv?~s8%-W5OpU$8bkZJ4UMeW&&{?F+6$O@*$^3E`_QG7W!uLl>EhMpj&80)dEcJef`>K|;wS#*cxJaQC6Y z_-b@v^uvhC_{`9hM@T~DeFZ)UL*CzmMs7IoyYmT-P&SGCk~{ZX(Zw<4ezr875fV}P z&*B3y+YV!F^77P(Sl>Y3HJCH_Ntn50#n;a7Ld#aG zx$@z3R4AjzQ|Llz*-SqO zI07kUy0eGJuA0V^_-h-Q#$#w?#Wa3m3&Bl;D#*z+ZgPnNrX1(TyW%m0(hW~<`ZA?d z@DN8l#cFydw%yUH&EossOo#L{(Lq>(STznZ1wzF&(o90!K_(K2CU6i&3uPrBMe>nD z(X=Q&auB*)T4vLG0**ip`@XlrAB%u*09lTYz|c*Wp^+6g+1D0=y9rg3lbeili2~fD zKi&t#(~3U4cNQ=o^?A>2kPvSAq*a~8=RF}b@%xrLG?bEU@wuUFB@j(uC{va6B}e%j zni$1VK8>!ImfQ5jfFn8z-E*R(pf)Ij_z(;&p z;vsLKtEBgk7Xe3LgdK9h)WojKdy&`h*EKYbzoU^A~A zg~OYH%Lzm?Gy|i8l%-bSUNj%dFmX4!Mp{bK*8z^e2YW@85XG*_8-Y9VS2Z+?+tA30 zS=>w@;%fxhE2E+hX+Q4FDYqEFgFTP_~sVYXEkOcc;{@B|lrt z6^gk`zt{(yh*qoCRLUpRWoaNBr7#3(T7r$XQsOPa1_IFxEy4Iu=2B-+LNla{99z+) z(vp1DsFs~tg8!w@0ziSE@+7jGB9w)?)|kadVdyGb(8!9b^bm;nI)$lp=TxX*67APO zK#mQ=7tv+W(yn2ft}iPosGNTuAA%w0pFtxxob%oIuBm9=A9v^d5p-!xdEZ0YGZjih z<^IR`FbuhW2#p-Uy+sSay9hdZSU~VDVx4Uwtc$oS-erW5rGnQf_7CH`ur{UDTKU-e z^baIHVPw*D4r3u^Tzk#r!#jso0?`beLo4A#8a(zxv%)guZ=Wtj7fDNOdN$w)gp|k9 zR)J8(F3Xn__Qqe<&@>jKkrmU}lR(7RB#dVxY)~qR;WHo<$M)cKbU{oRrp;g|cy(|% z6@PIUPe_=_6)!gFY3#TR~S z3&DMXYR1VIzUvYNJZrou<~@yGCPVi$2Jcp+vdL7ZFTM!APj`KcVinpbAT+Y4(N9(b z6O^i%EG&Uw9VZKm2t*V3#xym5sjb|Irbe-m4d{aDZR9Y(5y&aiBi7X%R99JtkHOGY z)}WCUS6OKb!Ci$a%E?t0xI_W2vMyd%nUOE_W#N>GT6?8G0V&m^0a=aq6%rhBxAezs z3E&OMB?O`gjAgo}0FtxZjwVNOmRryj(>u%6fFn8!eGgcZgla7};e#-=mK)H>inUy4 z3&E|0YRbu4E_8_ktYt&I)-n$cs__f(21Y6yoYN;bjMBTj3c1z8V~#_642_Zm8Fm^H zp`d0>6Z48KBiw6VA`ngBHFIhdLh_s`Jy^07&zT4ixb{!)Id4Px1eVHeWKvWk8P$8n z;e#>so-t@-#d}8CLU8Y)8gufV7i^UtL;>D&bG+WOE6k7l?bLLHS2j+BYSzPN@b93L zh={}N@P)69wv=;Q*+3wgz*ffbyd@VYp{Y<@WGlK*dKWnha6}iOTlaYEs%d2L*ETeb zEofxLGfmngtA{x9BFyvEU!7r`}hg;TrYX&BYFgBvA^g z)pRJg+fu--xnw54L^GtA$y4Z3>CNOpz!7L+o47*3t8Vfn{^Evi z@)#Ofag(1Ai1^mw*(R<~!6deKNn!6th3yuAs7C{;vK`*U6-q(n{6A=B%7&c(8;#s> z&O@8HLPe8!-_M=*r9;NMyooE6hRXfk_%IB)UyMeM;ND{B=iLJxG%O(abK9G2Ma-rg zi{gE5JEJ3&^$KuOFFEk6rFux^MS~X%o;#RsoeTSWb7=i)hnVtu-73cp56`3l()g<3 z2_u!Jfymg(i8l}_0?`Z&1mj37f#fk)qB&B=mdnvK)6$$i4{!v2%Da=r4K0x@3jPSV zjE}<5Vm^vSRxIXX0uf(JF`Mq1(p664{{e^$*Xt|%-;b`3DgW~b|IxXq1I;(_u^6i0 z9yD^pRnW#agc&H|6?Y}PgszdP5*89A)Xqm$!wdL$4At-)8aYA@7Ci%RJLphj0m0jj zF55&{+wrb=+m4yK2e``Pm3`7!Q`73OyjItE)Z9a+Jp40yu(AZ=#m&x`nt0c-h(JVk z9q|o4yJ<@xjXE3A1SzA=26WA|9H$Qh9I@-5GaGFhs>Q6shhb)j7Cj7+>o#X~Ivf?Dy5s3Ik5w<28DwxFfvk(yOUR2orHM%UOY=_rGLn)}7{|X<1 zA?H6wBR8D$(3)tdXcF&Zw>b0O3J|z%%anI{O*E8-%KZp@7>3;Mghr0w-eTD2odX>- zEFk#gDM_5isXhg!0r0Epa+UkaP3abc2 zWTz0{05YET?<8@_LNaJFl%XSqu9TL~^l5-2u)-RJQ1Gg8bm1>JfaD9(fdHOfyYc6d>>@kG+1O;n+-i6Zf1wS90 z8QqeAPp67sKHR4l>rz_5m5fH zurVQ=xin~OMAM-R8XM51(lVMp3~&Tm%JjQ4;pkQKSckv5p?R!9BP-^y(iVc72UU@i zc`R^=0?gx~c+I2w!DX0T3a_nw0`kB$I9j3Ee{eYnNKmN8I6h`uY(Ay9gg`Wbaa2CI z40%hoaXXp{#Wrq17fQ=!`f9)tND)7{9B{_2%~v~b!e86aG;Tm6E2eRsEd)0WsvsxR zxX>jEFpX2=U6N=mZte5^v&B<~Uxgg%VHoSQy#{7KS0y?@s2cZp#kT6)JzgRZk?s-W zg2Wh>wd5UBvRGCW@0bV>xb95v9dARe1WL-|=z0VblVTj>@E0~TjxlIt#W+S0i1_-- ziEKJgizTsq6a<62_Y{_oK$pannSOyoOj_vFyy=wjU2(b#i-6313EZZK=7rA7i@A5fc4*WV}Fw(e|q|c1{PdcOiU}reA zqCB#g&!ohDpc}1Jt*Pi=C&letAh8L9kER_++DeDF10I2hEPITr1g(S*sT=qhnh|z$ z@b45{f-aJl)O0`K2!yaN6Hytl%kpO6Li}Y74dVhdvSJwL5s1ip%Ho##c3Z@KOYSxH zWg;EJ-+)jYdx5W`3u4M}_{&5QJl}!8xFOHCqLCZUbLh)NIqZ+zu7}w%2ZD<%@LL)1NakVW3Hw>yDC&T!lOB7%jPsVE)f1yC7*uW?jY~Y|G6}<97t22~1;rC~?U)#%{%uq1Z+%K;Zf@y=}Y(gq|z_!OV&rf zM1NgFe|?4ix}N;fN=(1|G2;#Rg`#fjH2sry7LcIL%F1MUOu_H+3w{#r zS5C`v`ZT~1$YReh8ISBXJstiQWvmB(-I^ZaRgrx(GONs(OsZH)Ky`XqZ8`{2d=pdl zC{xS#7a*4K0B)-A^f}eSd=6b0Q>w#{GNTCpH2&&_gb$*TnHoP;Elu1^haP2W+5QPc z=E(Ms&{Z*ITYi)o#rO~K5g0Q5Jv4Fz<9v)ay`RdvcJyU3ekl={g)mm&vC>?CN84uf z5Aq+T{~2$;u=Cb}&?}5BVD+jMn|^~+CYANQLc+^*`yB=C>sI35Xouj0p{UX~r1|jE z3IT`vXH)vqe4H6UAex~=7_qe=bq7n)e6SmYj~08QE2O0~y*uCtY?NEcN+yuRuE|+h zjK8L#W9*4WRvcqKfrzgg7)!ScE8LzAaX5|*r=qK2$}N4pz7o00@Mip#4H-TWjofgC zC#=e4OCGpe0W3?pgD-Js`9gF>Oj)M=UO0M{=?m~zH)Q%eG;##f79(~r+|mgQwSNl; zKIrdcn+O~9kBWCA)9B8gT*fbM5l^E0AtZsbBdyBH$LpS6iUYfLxj<+R+N&W7Lyo2a z_`YrJc?0lW0?`Z&z}QOKl8L;8=7!xVybX8(T_-KQ>0bbjzzI8vr4qSnAkX2iY-k|A zMI$Q)@+^UfuNhz`u~e!h@jRo5y$2PZrve17AvWbXd=g6~ewFP>`0E?8JsyqRaJEAy zu~aH1F}}*3@uSgoF=bpniKUW*%KDM`7z|lI42>MYy2S|3n*=&USU~V5;oG)m#hQdK z$NUJg*DDoL@agb^m)#<)5quaeS*_m6_4x=e4U!S4gf%Ly z+VtPL*x^QmN<_kFq-hckhbVCqC?*-+Bpga0nxRP;!?KpF!$UKn3>jyl%cLbUeLUa@ zl(3UjDs-_6^Jfe1$6wgcEKWlsD`s&rfrzg;U?-{QS-uQ{acm4ejxLEQ%i)t$BDua4 ze|bZ$FG3?Xoa@j@Dtf-}bLabBbXiRKmQPZNBiAIj#++rl>%>W%7EFgF@ zaFA^xtQq)8yzfiR=0_ zzEF6=sHABW{$;VwC=1NO*dJNzQ{FHa6 zuT=#~ld@3f8@u77FtnIyXk^7=CKHJGT8P>7A;0bxkoZ3qBE#LI3jfET>to9QywJ&P zx?EHhtj5P;sDc$}E4e{$v+`s7HUQ z>S1xHKf$S@1s{{4D*iM4RI!AQ>$R#VDdPZlW$cG%VRR}BZ)j!V6|GClaGGdWUm-Q9 zaf*GUex+7ks%I?4$7QIFz0t@Ko?+2+@Vc-$WxfobAx|%u2;1#$R=3{1tRvOc|HAXI64hS$_#1gCXlLpphe3w;17hlR$?E z3kcpMq-+ymO~R^pn}m_YT&7?AXifVztUGCiRz6m{gdx11VekS6jZYYgH0{AY5HoJR z#pJ`=gCzu_8QOzZlC$I>C!$$l8S;lF8_`A55}Q5}a0Egs2htKLvCHy}78~%FH8hQN zXk^7S))0vJ8iUG#v_YvPhR=gg9J_*Z&;>DNSU8YY&+~Tt#SMAxLnAkw=kS5F8m_bo}U6wZkt@z6tn#Kq;vSJ!L5s28E0Ug7KK`6NUPGR^EbU{oR4mSf4 zJRgX^xFOH`qmdiVbEp~6aoz3CbrM|^Q?BJ^AcAiXAAlj>XQGiK__i3yc{4x<1Pch> z4E)Y^SYpjUI^JerbTZ|2=YpqB7YzpA#i6HMd=;%#tg0I+$h_?h^ zCJ@cg5{#{+Ep-JCqq$MWj31)wq@_1~H{b}Iu*V0L$knCA@8hp*XdvH3BP#~-Z2}Qr zW56CCRH`NM{2D~#*c<#ET@zED!;cRt@vChA1%G`*w*Q1iZaCYa#|M>)NsKQXaAv#> zAnMWYt9Q2i_@I)5%K99942G=lfkuvC-C~62O#&SvEFgH3@C94>vL@j(@iqxFI^mq? zmPEG?>joZt%O;u1cqLyvH@X8YUai+yzLF6HSc$J1o-j0N+J%IzoOrwN0Rj=(F2pyM z5Q^jqNd9sWnj)oh_%OO;T9(sW0Y{*Ry^*2ikww9m7e0iK!q8zph(=Z%X22GLI}BBo zlf%5vB?>r+{-SsvP>#r_vi-somU5k?f)5|V84dq$@JaI>A7@`4m&$f#`jUQE3eNN$JY#T){&Rq= z3c8(J?2p>LOlHvjKh6#e>OT==aOF(SOWOa}MGtnu`Q=tPR-llgHQ1Q`Do}Cp;KuX~ z?DviA_kWY$etC4Sw>|0SOFe_fz61X&kLb?iItDkETRXixIh|l*d2GSk#xeWSkHIIa zH>MvaKU;yI^rry}I_uM-J{yn!(0uK$Vvhudqz3Lg5CX2LRtEU{NERMObJ{msE(aXp z9xIO~1AHJWc2PdzyBB{^L$ALZjjVWm{JdrdBwk;JEF5`#5nTwa&!!`Jg*#s1^?Ce7 z4SD@N8oA-TjtYEDB6j9E&csd!h9$Pvt1G|jy4rd^o@1n;}I*_sdQyEnwU__m9@_I4p! zn_6L&*Xeq0^v4~7=!8x|(~VzXD;?gApGP2SbmQ?gZtBY04QNK#t--efUWYD`melm8 z07syMHEsb-idkHPzo?;Ed=ZVTn8oJ_M0^eTu5{r|W%uV0h-3TqQ*=2@*_{wtchhqG zIR4Ux96y3aZaBvi`LdPD^G+Xh=J{=ONlbaBM{Ek=tM~Jp_{$q|{W=;sf@_PBn-BhU z5U_yYga0|UiLk-{k$4Ax_F(`x@+h}WdMn^)v|P1Xi#X*7`v{Jm2~NWl1|Us8a3q9| zoAfX>@qXYi0?`cpz=Uw>(lnwI%@IqKHwI^+Yo(<*{a(Nkcq!8l#)YF-9pw!C)wPat z)y^$DwFLjWRAKUT^d%H)Ih8=f*D6e7$1IYss?b|gBL0&Qkz>#B33OddiKm;z)Erd$ zKZcJ%OTWtcC1~V^vp$oLzTuljV*cCi%zq1A8&l?Ik#13+hsypp@NpQj|8+ES1p5}f z0Bp1f01krlIefztvVeeE822h-Mi6M+GTMawel1t<(WnnqwL1dW>p zF#+*LU~dA^42=N1#S*Y0wE~;ays#Ac!+;aeRnk(MJ_>LIM#{UA=ZTCgc3r+2a6JCH zhQ@I$8d))pV+cfi&A^1}^LCZv^C1?;cHmreMNB!S+eE_AtLr{zApc|)$xLL*0T zZ8385!JiHS77%>!f6jI&VuSyc@eclzJK>1F^SPqN1i zIRmvrcnBYXp`$#AMphi<0RjGBpNGo+-|%r5 zvi~X?x#8^3UX{z1Jb3@A(7po&EV{s10Sf@49@7E!&YveOB*?j_Dwv0l#ZU#a(Z~@h zuxJT*S3!pq3kcp-e92bMtgHBW%v}XJlxbV4=(i*&|H31OBwD{(`?2gQsP)(Fm#mj(8!9T zoI@aD?<(Y~NxXj@qH^pi?m*YZl=pB~A?Km8e=9x?L-xOhMs7I!p{_!%oTPx?xhvo| z==zu{K<+B!TvQc2gO9~f1y7@qBUE6~67a5q4k;E8ysLP>Z6d6z7>u{87?CNKdWA-! z?Za5p((0}JZmZ=95{@uHX_|*Q5F)P8W@6#Z!yW`8vU!MaBpDTCEV;%iGzBa_{%GQ8 zbcwVqrk4SZKnL5gNO)pb<(m|a#9!6W9}Yt!EBRH_ zW$qujmib}G2G`+eWo9|+2&O^%ClPCzAF?ezH;xYyh)Cmz@v{YFEi;_H9MMJiT4p!{wd42_J_18Wxf+eEILc=UM0{gKXe~2bHHr71K~%VVQsMmx zbZty|56?Q3+n2?`$CF3#aTv1yFdDhx?1yF@a^)liyyLEbx6t)5Re(I}kaJNz;0=5% zhAMasjU1r@isea4)oFWF5S=hw zY33k@L&T1AkV6SXGqe&TA!EryJTxQ9C~_vcL|RhQ#{-T)2iqPM(4-6*@5f)%&@4_v zBP(WcGJ%M%VPM;%RCX_eKpcC7kE6?B%5Hdjl$PU5@s~E__#!lN!#NIZk5YNQ&z7I{<@#>?{~+5$*x-Lsyho;t3Oc?6#O=}l zh7@pqq!pR|J3ASZJy8&lFve(x{D0ZjnXexFgFrOHkUyHTAdUKSF2wS{?g_r~xCcPs z8Y3;0=`nyKFv4DtV(MYn<#WZ|@YgjoifL$M#V95di1-G6_JWj_<6|Kf+`Xo7d`Os_yAH=OCv3sPFPx4E-jLRZCsp1cGC7(GQ&6VOahobAHr8~VCa73S>y^NfJ z>M#f4BQSKB6+5QqB z+0A_efj~Iq5&{H86hUs}Mk1FA%Vc)4nPzronVAg)K?LP)?gbP@1Vj-OLGBymJ_Q8i zPy{(tP(0uRL5|FVn0q1j)6$Kl9+H;mkJ z_G3>p^~`Bk{yFI@;4C;lt`(p^(bVT+YQX7uERIzW!pI3#;9(J@%it}=147=HMoUD}Dq7(_eRi7{-> znv%Q+vtoFNci<#hi49&M9EFf@EPKz3QzeF#3!MMPhjkQv;6KGZgF zuBYp7ZL$_&T-Uqe0XXvgWf(buZ;wtc%>Zu*9uU$DJnSn_!VGMjtr_T=U&vMSi;89S zaOgAOVzpLUxUtO;6c;alrCdw`=|OAifsEQGl-?M{po!j z9qS!4c+}v!!6&mjIu0BRKBk{Vw*=Ey?dS+DpznwWo%G+LKfhoD_U9M!pNsg5Ij1kgZ_VyvHv?JqWfp`&&Z@__MP!g&b8(g9;7HRhi*89``AQsKEJ@b zQLa+)v|H4u(KPPH$8~HPcf!a<(`X61#j?ikyEKuM?7j`>0%w=h!(jJc__&Vj{sTsC zIlE)&8eqDl@w?^;srj8l5X0f~&8v3;^L~xUO@?RVBReuY3r21^!(F0xX$0?;p5Wc# zWVl|y;~Bw?rfXcmyWj&m^1Bm^+;V=$*e>6r(zAO6oC;TV`9chLLk72p;lny|TZfSo zxb?W(k~eJJ%6mY_8@3aC+l;tjTe*`=;{08kcMRfILEJbb*~WE)gOdJ9KIsoeksS@k z^CkO^?sBE7z72mXT&30$3-_{_@{;G{VHTz07A^O5H~H3*yr;XKK_v2!;gjJB;+aY` zbFEAK31&!KGjhx7AK+A3Ne&(+9EFyUFZacQH=V$9_~4Fe@(he@sLAgbM0WRS)0F4I z7PiNqnA-Gp5yWtqK9lX4vBlk`ay}Xl!IAT2VdR!`zJgrhjU`RH%0Hi;_s!tcxL)P6 zw1wW-G|cOLQ#=eu?l*>!6S((i{n9<~rr`l0-NQA$!X@0p0WEl;WuE#%%i(anT8k~k z3oR6o(u*t>VZgUwq(!JQh<30D?1h$j`YHcEfO#<7!S~=SS*Z+8ARL8}*b6O0mKaw) z?>z?}*HI|Wf{_iOIGsUcXAEL5v=|&eK(VA;=(`urh%3kX3oSOLe}j+i$n+gBa?6?4 zUT87c{=f8W{|C;BE8DggT5OE}6OX`=@xQ~!35hM>q;6AwTw@8Mndf$cAX_>I)%7 zgV#?g(fD+lDCmLorrB;3VW;bDns~b2xilNh*jQ^V#p!yRBB$$}?VEflA!jg%Ll(4s z_2OC6cz>Ou!mde!_gCQDxbhx<7bSY*F+LBI{g?1K9NGUPjNEeeWACEqnbRs@+R3Ra zU@}2qX3Mn#^mkG8xtLWj0guJ83dX|7302@>38bswEyV*u-in;+Th8KE*Q(*LsDx4xKi$RWX z6gtG2-i#+Ps$7Pw;G;U~LkUJU^r7erA@zY*O)7oZIZYIF*YS3?Z^SPwle#`jXgrmy%B=#Iy#%`Lu*YL3&#r)4O zvLWVKvph*;ieEh%(JP*kn&=q>F&r-6B$}U`sf2HGJry6`k?Tn?a?81%ERrRpP9uAV z^ki=f=fv7W1C#7&@vFKa)gqzNrhN$?-;wPv!pJRWyK!an#-x#5O;2_OPKhho%9Snp zs=;*$AKsDcB8;5CwTGXUmYf?m4+we7euZy461VJ!WP8iLY`IT8JmPA&NUaqXZf#xDcE$4dLcFkjE?0lb*p6^rPw7Bxk-#am;U~+yk9)ct1C&0)FoO^V3X%2XE z@PLpv4r6^MB5oWm&-TWlt6nJAD%GBf`aP}R(kw7}vesI-$FSG~8KcsTEC%5b-|S0+ z@F0U|2ZJ!KId9D({0C-7TrBe5;-7G$tON%y5{^QO*oN2)-4v0(<3l@&$lqXOLquL@ z5ZRf8DZI-z)1@)J+NtPuXfVABL13QQm1%xHnKl8F@0IWX9QmFJBe$II8M4bJalTu6 z&Uc0rU!Y(xt8TFT zESwTomX(!+B(9&vhj--qNf^21T*p@utbBK#mYVP731T=bp?OssD+x)QkHSN6g^0f@2S&2`2(_~4G}F&joU)MFNd$j%jr0}x{g)7YL*0j2Z?d%7HJP|Vh~HQ2P5->;f}U!)a2ByFB-}}o|_-&>#tVmc*q^n1Jwrl(&H40 zWrkz_{Edu!sEM(!`Pje21Ar8A^gW-{p(KA4$UPL!Qrb{zb)q^oNW^nmkj1%b{3X#> z=<FM2oAg~)* zYZnbnddIQdAUtl&WifFmmhJ*(mF zN4sJtpPAYsPaueq@lgDVWw&a^6+0Fm)sfjTFmlV8U7l`4HDb3+PwW@qL||8JboXrV z`Z;`1M_xYzBewys#!XLi`byBNw!~X9L>L-s61_W2ChzP zX?cEgNd%;!O6ax*~urZ zsl@v*58|4T8xr1yvt*?*c#UurM#MLl1X+eqyp50RC=~yKkqx2v2ZP9NFM{~yl9l7N z&q{5{*CdGHu;eDk@oz3AF+B$#-I3|pFmlV8j(u~<%J%&9Z0`kU#r2BTzqype`0jWF zj*RaDBPTHK(ZQt&;BCPJLYja_eML%`faSB@r8s7OrCKkRdleUO7F?^=LJQ~G9**1g z9Ecc{He+f0r~4L(Z2TdESW4p`nf(UVPfyXI6H)4|kL39u&COMNqra7OtnknPef*!> zpXd+$&ufKTHNPmrD9{t|Eo^)`%!0)bJKFeqA|ZNeeS`SDQT*P-e&MIkKc|0|=~HOI zissoKq%cx$E4+`*B>hw9iwH-#n8Z`)MmZU#?QVQvM`6DcMmB^!YktSDi$-JjU7ANq zcHf3mVU^XuWOpooLHrwT^Bw#U0)B z@tAs!&J9)HAU<8I+4twN8vP&t`H25~!he?8DEc#NorOEu%v*1PhRc;~7F7Jv++r?UV1OJoSkzUB-~IThtR@In>=>?j4#zDRD3uEJ?x>s;g~71`8P4&( zGnz2S?qZ+J_Q;CmiZ$9#6FG8eTBhBj|rqK z&0)!sH_EQ02U34#^L)?W)&6uQ!&9(FM;vJCu_MfaxGf?vY{1UU=Z1Lit+qpNDIF;iUhmL41W9Je7N$h6fj`ldFp08Oo&D%4CnLb_v3P(YKBW&? ze8C@lX^_6)IR=qPOfDVroeoN z2jM6%@59K3z`W}VAq9rlR4RdaCQTIdbZo0^SG78$`}11y2=(NfZQy#f7F+lw-?gkp zP)em*bYv?EG`^1SaeuJ|gGkho4DT<-Hn`B#qX%ZgP>&p(Co7@BUWB7?5>8-`v>K6{ zl5r3|vZG{t9Y!`JV}AybU8|TZyt*iFjps8d8my5UJf8;V#Fc06K-Kt7wok#wcVzoS z7`f$aPmlR^JL9*fXZ#j8FRqNQz^-g_4kqh2;xRa~ejSXQz`93Im$rbn2oDH(-?6#x zM8ti^z1iM(tWX}HGx6BHM)cIH+|k`v=&MxK8;_4@PMBUM z>9D9lp+%ALz?7o3Xv#Ny*_WDf0E1`)O^HZp&Ro-yV_{MZEjb!am0e59grm?BHa1?# z=uHhd5+B`BLzckEhK4Nmg^(J;t0v-3q7Bp}qDP&+CMmDN^ca%zGMq2Fq&!YI z3O6A?wE6@5uNL}IeluB1_OcMp^N>8@BGK1*~^Cmroa)tg& zu3k|${H=N3@F>eJDU>C$DDn7|`n71w9EusU@}iuiw#;S_ZJ;d?Ma-$h5}>Kejxa@r zx@-q$%&so;2uEQ@Ja@57!qk_o@gN-aWlI>@(3daxLP&k#HI+(VW~GUO^yTPmpS!HU z^rf~a*H5N}t+QCX%W*WP;qWfL3oKD>vJiQMZuaF^Um~Q$9L*rwKw@UvGN5V9WiUyG z##{=g%&swmgrjNwLlCc~PjU#7pIAWMCZ@hKA)ad8|d$+!wJ|9nEn!TKm0S1HDv?-gzvXlb3~Z5 z3x-80z8YB@^6k8_6gYO{APP%r&KL%fs5u$#o^7(Fr$G~)jbXM7(b*8rn_YBPAsnmd zBoQhik#F&>k4NGtI_tp5hUl!tAhO#IHHYs`ZCtfO)WLxi9p)5_I`|r#BiA}ulQo~E z&&O;*`{D68R>N0e%T5{*AV?~^tz9LS5^W<6)>#&L#dQN6ld>4<&u_}&%krS%I z!&OLQ!ds9BgxsCGobN=UD9D(+lC3eB$kuh)7Tum=pK3-Pq^V%CX05=`cjH{NSQu^S zWPvHo&9cCIpKso!0lAw&w1WYOSZPjOGaY}2SuvW;-{4$Xi4C459EBILb1ojeDI%}q zqdSVoD=@MlA}=wB?2N{A-k9SV)A(NLeDo?b_?}4+m^pXlo4?p$&cS4T8Xkiq>yu&R zmb1R1Y`#lje#i98ZwKebm3e-gkbNE|`&;92II_PbjGVx}N7t9efwvA12x%Pd^c62* z9CpaoI7}5Q1ko!!`D&rBP_8R08OOoJYpuM{ce89`0YgTobSjI3IM%n4q=Pt`L9~N| zm}bmhYb%$*{1|QJQaE8&ii1JIQOFUyWsNDAx^gidf}^fn2qPQ1@~@E23F^%oQC6>&x`+cv6r zi*4ZQwU(au!bH8ojw#}SDV@t=E4HFwv70YZK+;xh!5|WCMRpyANRczwB&7!?#b_%z zI8|0&gS`kxp+&4q#G^MgM-BNpjBIGg{=N`WLwFUX(vZ#5L_v$2Ph`6TZ6&(7 z?&xNxR96dCdiGi^*KA0*)WbTHuW@S70HQ^`>h1|O)OvKciJMlmq_2xDh+0dJteIcaY z@Y+hHH|M8`g7jv3ww`55bi^XP-A4jrJ6&=49}bVs?C7a8bS@tcj=zI5m~SUv@(%PuU_2}c!{>FkC`n}8`OYv2Jm3d(9QvLPs| zFo^7|>Iz~pWT~w0LqTDk-(Y=jI5n=U&x$XFsM9dH-xCkRk^9|X4a%>?)O`LYs zADf>4qv7Et`L|%p2Fq+8AaGtD$29Fbt zY8}Lxstv-#$a2@`i}=Wnn(+dRY-q-_3?e(v&^S}o&hwNDQk#W|1c5nfSDuwKRTJ4B zhmY^bb|;M7a<=1Vs@fUfDm~*{zXat{AK*3;BvLrT4?=pwZlP&w7kw@QaX@j-SPb?^Ze&CsG&sgtb@3b4I^L+kC zs61I~&3m07dUu-zrL-T5BiM`r#qNtl-AG5UDT7FK1lcu=v5i@4j^G#E;{MJHAna22=6cTnN z8jSxHPK+z#{A+)fNtnF9h6mxu`=4Rtmh--n^yo|De#Hw@b3cP1Fkj`$J>Tn;FcFjg zsdylc{7-_B6ZrRN{?b422I2uBZ#mBLEo5=a@sn(qAjj0|Rq_q$8{_-IC2OrW?-j^K zOiE|6Scb3q7LBwFUttjKU>Ul^thLs01k8oeIu3)=WTi7$NH_{5Vg<56ml#;CK-Ter z9p&Os7}=1EGK0v@CWsYCJIg<#U{V@{pTH?`WjVeAnaK4;`0$Qg{|H8IIoGijNITz8 zrRVzzI4!Px>no6noIi$#;K=#IFmeLt9=%-J0p1)uAfz4G!*?RW4!oT0a>9hZTs^<2 zqx+DU0Fp;jxFdzDu{2WT#s&#@L;==<)39-C6I79FYj=3eSZg+a7| zj!e-euSv=GU}_90IS0;`mEGXGgrhJM@>eIc37Bef79N13nw$B1$}S+U6OO`4IEn3|k+GZF@eV$=qjvloMmDtLEe4UD z=bS1Y2Q-UZ<9eNo(5uhjdM$#$EV?V#Gh#cYmd5z%cm$4&uL>i#obj2lhX6^ee>FYp zUx72@$~ynBnQa#4wY~=)g(LI3!pI5Cdo+3J6L`DufRGCpkNJw0ShzSQ+q;g@y}A0L zg8Dhuv*B{J)>^owr$rDUDUHZt569cD7(5w*^*?U!hnqLvC>V5}XlNj;F*d zK@!t{#7B2z`gs_+!)bG_83GCd<&8C*ZVM`3~+R z9EGBge_}9cCZ_5S{Q++j z9uRVcW32B)#0tk>vh@e@gFQV3+Xs7oOVh#B%35}*KiDIqQ(BYdCgc%c0;FGfkU_MA zUub@?r#XMkH~a_Y$LJ>igcD|^ICzn86mql=_B5wp>dN2o5FB;oZ!ofT`up=IfV;yVhdGe`f;Scq2?4k7M?2)EFh&%Sxm%{GJI4=iMSL-HYDO=29cdr7|-w2E&RSfkzl^v;P+WLAFllJ-Lo=w zvk^RvkL}3vlQ442S)MHK%`HrKUYeTek{3hF@@bMkl{$#k=_UPHN z?ekXP0U_J|vAz=#ZU5bD+x{%^bw>HDvo_G*U#Zp$>T4G}!NqIU81F}&jgLs?qAeb^ zZW*M~kSqpad$?qUj7Wp94TDHD2-$U!23d^elU_ z(@ZcoWG%aJTi<&Q+EGD)vAC47wJ6I^eX}l=2)3e-%5ALWRcf-hre%$E`A@zgTP%8cSahfPdKXTdXN7tep`%qt5 zJ*Z;bPlrc4zT~ML6cv4ZV zJ`Lx|E*rB5N8v=Am)nTk)QolUksUSTQ!uij8EY_z>|Ce#tWG0a8qZ&+Xt0iL@Vq~q z6IY(&pVeu^Z?e4)KE5N{d&9^rXFK*;okqqq#!pPo_;GMvTp8CttJ9c+$@;N)434ZH z4I?M8?$OkxFW@c0146E4jPjj`Sj#v*+jl{yvHOZc2MPo9{oZ=9uTUANEBm$Yr}&q&1V>$Y8AdjA$W69Q=Q#l z$_&-n8P1$tbv7p)g{6>h%~%?%A{e<|x+5NpqyB6MBOCg&wJ(I!A6{dr^k+_*C`fh`^NEwJ6MqzIm5!<~RnCs4y8W zd=M*g>YAop3A18o$`x>~?3!{u;V8U_<2mEenQcx~ zaNSyq&ihpF#`%0KFr`0Pe8cu|WeW9>zF`{%(H6cTK6R~+1TZT`AL)g2WhFM)mv9tb zgl~vPZ)!*nKDwiZ%JjA50m}d@i-jWzXe84VBe$ZOW(j-hX;i84O{t6 zMEHgivt4i)$G>aW(cND;Oj&JM_UEWxSxYYTK76|#t-i9bl-^|V3>_3I=Bh>QNYC&Q zW33%L!+7zbLE=Nxk+oq)#5CoHK-PpaWhFJ3N;nEDjl;JkX<}@-SUCqD+fh4a!^nnq z%wiDP`Gv;e+s%AwT+gR?Qo4n`;HInA>5E#UIMdXi~LI~gD<8pgU`d+aV-OW2xihu%u?74kHoP8HieNBD!{`HNJGK< zi3fx<6xaKznOJ!EPqqsW%hwj=`c)h8O}JvM*$9@B=tWRw{#&2}dC$9Lrw=W5pwem1_*&!-sX0iF06NLnh8*5ZQT! z3B1eN7=D;SNx8i60Gtq4hWU$rvEa>ia4$Z%BhSBqkrR0K&~n)hxIlP7$aYZmorq`$ zA7*3{SLsoE!`Lg(inW$oxRY;hpbhPfI~5k3qDq!FF@^%hEVL*j*(R1_ z5Q%LfJ0*$8QD(0-j16IO#9ZZF=K65Dto#Nm5spGl$X6@%8JL=~4jzG{rmO`c8=A7Z zFND+-UQMYqWtlWl&}Q1lvR$*{n$lk_g?|0T`5N)6=t0d<^)0+7( zVTRW11t-p~HD4keRclsbOJ&J(G1X^xJQhdw*#$;6)MqDO2&q22!cwWvI%%RH_4#48 zer0mLQm*HUhg*$rcO*1$V zn^M0G`x16l3kwU?LOEX;492Y5(Gi@kaWHh)yqLl%`AT1ZE?@8N&sB51)m;A~ffzEx zHjo~QQ1Hc5qUp^IFkxcmV@kz(p_(g+`CbcW&`Nx85#cDLh5Tzp+AJDMa|!)*PT|#f z083Sx%bUno!pI^;U8Q1;mbvPMK9Qs=e38a27$}u!$t(g?3QQ`GYsm(GXin@T&v1fQ z*gp)O$X0pAlnRH}=yX|SSMmE4%5VtI{x-oW9Nu53(pfNc0hKn2hAx(SH=Hpf0lFp7jU>=LuqRA!Z5qAZDKeGkoyU*9VcMBEMz zUGH{*=_DM5l5jk8H4VDNz>=St_`r_BG7Ux+!O2T_GK0vD-%0!_nw{mHDH!ZpG+5pd zPKhhaQyI%j_+}H?4j#bqrmUBIAyM}XUXqk3ZFHX;Q4Ni+I-!mEC#uQA>`|%JQ zIq!p!6FB$i@==TC!pWP12ZU6afBCj3VH6I^b|+9*uG&k7o|G3>6svF@T&~ty3w_sA zDJmY6(ta$C;Mcx&BOSr77(^S~evEC*TGNhaVKR(f@id$!E1$tVgriU*)>Ipjo09P) zKC+`^{1!$wB;yfZ2q_u7dQwToFVaLos~V+j?=2<{l&iVLg;FFNJ%z&+-B{sD)Ye$* zEL<@3Ek+?%%`bAg$!Pq|xgu~8w^GLzX_-!Q!CbVcFDWfk7(}A9WO%bNNtwGQFkgUK zGX&;yaI&n#2Wu0KLQKfbs1m-ZGM~YRcT|~8U}QsO<}!%vZaiji=dPqoW4xC_N_qRy z11H9nasK^f%Op(Rb9fMrydMN3x19Htq=R1?_k-!VKNC)lEBE|6sRnJDLe5TGpxy4;a#1 zMB~?nT)kv}Yi_AO7Ov8|ES}zieegF$5HD8$K(@r-GFulXzV+BEo{LlBtXcI7*M!cu$= zChN2D7#vxj1tYhd_1FnZ@vLdg@0FhU-QnE0GOwSo6rYF5{w{bNj_mIQBPX!$VFjd{ z;H|?0Lb{2Ee8o$+iH=U%LXhFC_E7za}f#Ow7R6ZLLK@Rk~9z}F^EJGGF+5k?8K+9Nz1Qcc8sR-D>z?Pf`cCs zj%p(Kt1SkBA_B?SFYpK)Mdjx(vLPxzWe|zioyTRj^k?2H^1FIHYZ~u=qNp&VZ}9#H zI5)1m^Oji9Zer`%%pzJI36mw<8PwWcUtyOkho`2MH zb=u)pr1xQlT&SQ^4I6)Vu8do0XO^{!FZ-63v>H1wh<30VOs;X^wLO94hUgk=GP$j)3$;Z3=jE{*9QP&g@F#rNQ(xH8Rm z?rIY-`922^z>)8>VC0tbJwvwOB+eg5&-uM@Vq7`r&$%pAW%%R_5KrnDrBPgstk#f-M7An6m9VG!-$6DBEh*E-1hFfU@Ja%=WF zaI&n_1~UmqAx7+zP{KELWG#GnM;%!mMmBV0RR)orUl98wl$2?V??)k}^bB8x6XVKw ze4m6e36uA);6XU@z6Xrla^7S6B$Tvi+E%R z?`LZhHY?N8|6)3TuSTaXL9IyMO)*OjKy!@V^oXV?W*ALS%ui{17AJC~Z@o$?fh(oZ*;LY*VmU*)>U7oDPXHP)-nvchZZvV#C2#LlYe)v z2wJIei#omN%Y{^@7Z^mMI%T*Etdmb#Q=R3mLAf$iXBmPR4g>u!N|nM$IF6}~Aj=Sw zk70I}{>2nY+W%l=Lrnh5dC%;WlZpJ9rj_GO(sMj_#5kV9IF3heE~|YSAKkHStP3Nz zoaw3ZNv4(UgVMA8bvP?l0T0Y8n(yY+XJ9hEKOTW2+`4U%;yh*tY&Xbk$;1`6Wa3apgXhd#`%FX!5j-qk{jBJR?wG1M=yVc3OOG93M03i?dh`RCNMth+SH7%KoG-mBVbh+LfkXfUGiGHuSc`BJ zc0#T%HWoz?mo#^D&BKFm)R&E5WJ6yz@P&~2!fPs(zKl;31wHtjKRVMRFS_!%{36=u zu~6L_dKk?DGeOpB^FGm+MHL05l&VEY>b~igLUJgBXagY`+nBYc9_Pbk80v8zoF*%u z!SRHnP|{efjH)Q&%aDvgd}K$-I1@%TB;zz+2q_u7dQwS7IZYHK8P8_Bk};!Hq1VWx zSJ7(ym2$L8EIQgwS=D%sW;7h~aj?yjC_Brcv-hI7n_;`1p!19`H&S1I#~|83UpR4U z0yL@l5GKx$n)l(1*`?;MgriCgH!7_9)Jd4C^DZ8Qqw2g3BO9voFJB0$I=rS*sm|kR zq9D~-H(R4JIzQ0YS5#ff7S|7t%#7R)EfKU*#}*f}IZY(x?a*f#M54-MxkHOjT2q#T zV6F^h`8u2>yRz&;I0_?Thn65qj4SVY_Q%I{6q9{mWJ65$W)Ruk?TQ^*R*p}hSg^Kl zaC{=15m%1mJG7FRJ`NwqLlWRS!&FW#u zDVa4<#zS(fi9=xIgqrYh6Vj0I=Hme&4ar-+El?Penc1EyK82sQ5-phK=ylq1uX=pf zHEeJUm<{6kBqv`w(&X<+o;5US$ za1-*I9DN3+raX>E;HW8&!pMfEJj5Wf^Bm$(aXo7q@5|np+H78VG5+L z;4Q@iLi&o!eal(+ihZ+vA~LO5Ud$Fc`U};*f#|hx?R>8aT*21H6XtD89LiJJ8m+T9 zeO#6Qy}3N{?s(uzXS2ADl5dqs*HL5;?ch45n+ed==PZ~z!*`qxXUs}}@GZho*a`W2 zEan_c)d}$!998Ee7}-#r;~7MD&SO=1J80%kDnq zG>(;UJ&c@C2_DTu_8%@T9uTtsEcBg-=s){q+kd(i(HA8uz15t$_vd4p1y;G%vKzsV zTFAH+S+g{q|M@Z^o6dh3L_0K{am{&aTC@61C}T#iS(PA$<6dV1;V7htcbl4_o5Hd( zKD48-tOz3;!ZL$FWY=QEyG_k>X-w}y;b7OM!St?hQmmJEU@{$lx2ZV+lkYF%0XXu# z1B~2qzGLq;HB+W>{>}899}XwRm2>^wrsgC}-Usj?9C@$8$O*iAbbo0ec%$%ukOt!a zeA|^U5JzSEq+Wb(b8#VGuT(9&h;N1~*IIVoE92~|b38h?&B8bM7Lv3J*D{E9unYWi zo3ZI@y7EVu9ix{#59iBDaPT1EsIDRQxy{%NOi}qg9)Y8%JOv{gqVfcT$j&^(Kerjn zn#TLsn^Sv;F$6IjZqejDzA|oHz9PYwG+$?14v)i;{bgX}ma`vQ8P_wXRlw)cSHNfB z{J38E`pURI7gGZ^!DDf(g1InqLKS$p0%3W-%ii=zu>I6vaP=>ki_^u@CY0ke*;ENVBDk2OQXQsf(L{&3Vps45k}$7 zY>mPg_9a;DtK9Q$L6yl`XyMQ=FUP*L4W0Ymh+1h(7OSuk%>=v85@jW=!UhbY9jro^ zn6>5=_JP?FbCh0TZ#Yd>!h>xHN1;S~Age)_82FOr{pX(ez>b2l8;ooS%FYZTJF_4@ zkY#82SPCYkTR0j{i7U(T4`d~BeI!1-BiBn{7S5Y1XM3{!4J*%FtIGz=370`pZ?!h??}R|+N4Ffh8rz|t^` z!v}U0luj7g5R~N^L@Nw~h2^a%80?xfSl$9oi7U&RVX$+(IX=82*Pn%vTh6s=7%Y4r zlAiBHa9UjXwipIG=LI|jN6r_($O)W#bbDzScysW8kcQzk-xehd!^CX&I4qm5ELP0I z<#3@|t1SG+(3|q*m*Sw+g(zaBD_M-f&wR^C8ik)Qh;}dv%hQZClkh0alF>dMf>UHA zI=G2&6gt9Aw*5MyNen6t!u|N5jskKIjBE(VT?`^SgD|e~Z55r}4=9k7=HNXz9j@$7 zjGZK4<@g5uSF2UVfD?cn43T)eDiu<9UtD2>s4Xo z1g<^0xikd433xzALvWFA(F#MbMz$*mGpwK3RxH9oxNNQ35|)Ry2<$W8!}JC1Ax%Tx zx8$U0IG8~snuhFpi=a{Ygt+D*PJ(F^SD0LAI3CWJwGx5>!cjd0-*|2L)VHZY-@$`$ z)Sz#}$c6?Tm*A-ed6s$N1Ke z^a9^v5bfXvCaaUzT*1#^W{j@!6F6H|a)Yx8M`0%9TB62pYRN_T_>NlgBN*Axk{>XL z?EJw@?hn+QX`DYrF=0O4;QR?VGp?Mk6mtsdEKKGf!=rFy{$Uuo<;>5LJy*?}#{M#Q zq-OtPI6JQF&t~i=&BUyL|KX81R=|H@@HXNBA$`O*eJ3J(#4Fh@D~ygd z!fBsq*%~fcYrT!&YgZy@rF~h9#g;S?>;_8|l{6M#U=ZzKEIRq5HF?RyTp7*fU^q)w zx`RClM`1*~b|uIX<6hF-NqrzbuA`WI4MsM^WIqOxoskf)U0FFkgJMZ(AWnrd;>vOS zwW}niPsT@gWcmacx#dj9Uc0igeOr3AZ-%qt%C`R6RTASj;1M`7el3igz_>@3mqvlN z1rG>m6h7xW5n&W=&Gs4S*j$OeA6YnbAXicze11sNz{JT~YvIcAh{S4A)GT#`JC!4tC`kOz#XQ#g*y!!Ent9n0)Vu2jIx}b}(|w`Hme7 z*G!ql`I7XUFNPE2%DH|pTyqj8?=?IKN8bBk>_G<&fS2eY3VuD)be~b;b1@NmIh^&8)>37Hq2`%4b{#>cvvA zzGTR^#l+v6+Xz02y&1Yv?-qSp;>(cKr^O5+QJ*s0t=Z%+o&rseE`<3r^yr6h&a5R6 zoI*GXKOui+ZzWPhaY^$b%lGjp9OdU+7}=1Yvl&Eou6Px`Tf>$)jsHg|GVJ;__KCShxt0pkI`ZFhm&NbIM|7B6hgwWOjkHnVpwS@ z_Q8jBl#jh(WJ5moWDwa|iV3_8+ZaBPLP_Z%j)N28%J5{ya4dMUO&p64?#T1eFmlUz zo+3?yjqB^ubNy>LDXv`eXK~sDOum1G2jIx}FJR;ZzCC)nv<18&ctA*7u#xXXge|x% zTU#)?a5#PLPkkQq4ov}5C2N_5TiSeq!-A;@N$EEh1MqL(Ov@FAw-`h_7=TVbY0Uww za5u_?xGLmMjp+n|*(58O!Lo#-Fe0{Y3bMqw(gIAu$90s7i7>Ju72_C0b{0Tv-L!JN zJ;j1uZ3f5Nz!`DnIKFi=iRrEI(H)uI0!D5*)3L3aR<;jK&vqHkiYwdt*3Bfw55XgF zWPA~foWQt850^H8w*?OfX#?K$ZBD`ltlQbqk=U0Kg=^j5pj|sU);nhKsKIrEk7svu zEV?E5gnsBbeLm?AMy=Y>5l$==%awk5h*~Z57jo)@imTv~wbom>y{{c$p*12?dXU8x z{L;6Aq${|bK_q5B!{-o_I4xrCnmPC#%!|=D9*2`%fehiipzIi+GC_cQS zjywb-8#;17gGjv8Jg&6c<|JI3>=K;8@3fVaX^eN=liDhL1SiIoalWTw*Fyset@1X9Ik9|D8UtLm6{QJM^pr@bS{gfDEbzav=j>&L_1iD zPCjX^vz!idWq64Y&XSex;G2Y_Fd`Nj1X*I-OPbpkPQu4^6qDm&WJ658!yvLV5n`di z%JHofOUi|Yo8XMNavWc1NMibWd~`>quYr+U&U9>{!OHgE(zE?KoE2BL^@WBc#$UlB zaAf=?7&(D)k1j8b0&fc*5Yi~*eJ3J}!nxVL1Jcz~tQPZ&N(FU|VcmOCZL*eHxW8?U zLD>w6ZAFmLDlN%k5*>t@(sqVV=Y+( z6jH=1Aoa!}JW-Ffdd6*YpuC(Tbl+s?4DwQ zIi7d39bA{<5|g5`HG@bLl?)%2PKeE1laeCLi6JEm;Z#{^4fY`%RZ93i+gR|Xe&q4N z9rfd27}+p12QrB4y2rF_qDyaXEMXek=TbnJ3ozI|8%~QW+x(-E#uQA>&%i@)04nz`aMamwtga4G#$ETDJ6^ zh`53Id$u<)opdT*ncl-zPvIYRKdMyLatm`dub?b@);zx&+6-IiS(f$BPki~1R^mej z(GFH(Y-8G5XZaM&m(f|)Ac*0(C7D7v3Mb(NrZA1jO;K45AK6h!lr-Jo9fbsPUU@?}m@>$o9@Ka?9DCF6~1C<431w{75)2 zu8gmsd56XvOxBm+F*vfm7)DND-J|PEl2ZS^Z@B20?VH_UGcA=qjL6N@RGoT$F zb30tF)><1uy2UQB&Brm2b1;B;xRa~J`YAtVBMqZOXI*>ga?E)4%hjL zl`syQWNRG8^b{8621@Eat0UlQwU%1Am2JVn;o(FhCZz#cOu=EkMI%i?ok6sNDd-Zj z)|BG{mN^q98iH(F z!>1bu)pm3blxqY1{grCn=_uu{2hn1-R$_RNXZvWx9S_^*Fy+xS56okW!jtV~Sq72V zUb0i4=Be02Bt`2!8^BbG6v&;t>%m#HRzt8N;i%nb1J-?9*%pDx?zA=@n4@B?2_qYd zHOCi1Di*K3REpJ+CJNeavs|{1&t^vZ|B8!g!wuhfN2k3;6sBtq|I`yt$k3yaYQ?s|&3-so(1MSLEm zsl>(S>P^|HE7$O!>-f(N{O2b2V=cLG(U9WPmn#?h2THlIEtK2#QPayq8Mek zV{np^5lx5w12ZZnK86n4FI1^Mcmn?kC(v3M!5;`m;Y^&dqRgQoLod=_=EMITAAYGa z^jZ`7Z!oe*P*;hL9PFkf^@$X{&XBUR%;KmOC3714t3QNZ&q8BAY365Df{5Q_41MLe z5+6TmMVW+2|H^m}j`XhxBZ~~JK>v`}X4bsNj#^RDrg6Uq1&C?6!Tqjqa$LFBk6KYC zV)FlGJP=3zcYu)-_?H%9=qrRngyR+rl;{=W?np?Ku7YC)vK;U66tv)QmWtq=Z10J> z`f_!8m%4a_x~K3o3I?lQYw3kOBj`kA``d-VUPd2>6;8-)jiv=GPn7O=1o|Cg z?K5HIma`q(Uf9T(#`yi|8NUb4i!0;$_QJ*-OxEwhV{l~sb{IKD@-2KaUmDl@QamYr!+ba^u3YoOK=m1zjPHd<;K=yyFmlTo zpDEvHOl18#=~@3aoEcZv`4_5fvoM)I3Xj5(`6FQD1m-d4~}O{<9q6( zseQyGg23FhE8qNX)SQFK`glABN7lPw&fS8b=n`kDA!+5pJ#jv zu3c;4g@+93DB{~Khg_J5|K+*O88jxK^fHUb_@-~INsnI(@y5m=VDgD19&WsRd6qioKOWGtwVMnE-D@nvil79PDFH{2batA+o@A>wOS=# zqz(Ct3)Fw|xw5hzKH)L6eyznfqTMGp13m#o;Vj)}EKLe?@uJpb_Zh<=+M@gD)7KPe zW0*ms`)mm3%UT4%DuknOBf5`115-IBL%;FtVXNFENPh{KrbXZyRaTm|y9)=+$d5Ka(IZqwdN)e-SNV zA}0US@IV~-p9~|nod4N!^<$_S*fD(#YzHUEwFc&B%OA#M%sSW_55}<$wuF%r>cGQ5 zNDsmriwA`CAb0u-n(!dwGTsT8tCtFF?R}FT#e5tGm#($$!omoe4-tDeg|0LaNlmkVKJLtlQ# zAhPorVqc)lm&Wze6c2WLU~v5;oE2BDG!^V_Oq7+h5L+;acCZkgeA1e@^uTNx zEhPtM$x3*z7vU(3gyY!#iXcmjE6)Fm zVB`eGJ^H+~3cM|NKuD{wx$i`TRd_htZ5QKmbR=wzPC)7@sLKu?(L6A9vKHIOE<4nk zp(`EA;u${hrA2y%_ZUPwc!u%0=EODMFy{%BHE|iq*AZtE1m>=+#0TREM`5M0?9hze z)R$TK*pB+L0*q|v%X9{jop)#~J2dm9alJdmgI%Ep*So-3aphWBc4*GPWPB$)0!PNT zhml*(czoHRnKO;`Bhs^e7@Qeb){SL{<}6I+>v$B7%pVFPCou0}1f-YX?ZN{>dWm;@ zo0jkr=VrX@kY7}()YNknZ-UF!T5BV^>>$Ecnw7;uT<=>}(n4IrAQCM^cD<#O&so!! zKfq)e9pyPVNmjmt2M9+YM65apuEe-<)!`X@Tt_we9gJ+K$>Y8dQcZZ}q*9Zs(nLY$ z#2=EanoRB=pgmc+Ql;EWKlvA8Vb3#SwfeN)zDm^YE2&w&=@>G$qVPv=)v_|a3Ca($2Rxo>p&};!`%US@z`h=q}6Y>+d)c8&NvN=A!qu_iNMm7Xz z9)rlPoy_D5g=)?;&JUrOQr@mCf-~dFIXAAhS(wZh@F*OaUjQSwocURD(Qv8ke=j}z z=fK%nFcB5qyo&vy6KgwnjE zlT?0BGr@GrT6V*IlFB^bB$cOp$&k+C2?o&)&SGLIHg&DXd;oK0_=@-7Tv_Q3UMC#Y zSBR5TV$qw*@(w<_qq6)PMmCh?Ee4UDt7x3063dvz_d35ruT6vRwFm-p-L8BqC#l5d zV6whC9)lz6tHQ`FXFYzBN-S#{^IuKR{8!-IxH4~?q!OEl$^IUA9FFYo3L_`5?_mX` zo8Ya(146oq$9%<0xQP|BbrZ{1EA`KBtZctJ8?IMtv4sbZ;Ccm*T4`FAWr{O=i%Ob_ zQyD}%n29lL&YHGd4|8R7m22Q6S?LZgCLD#3a4fr5;Z%uX7QNG5iXJf_Zv_;g{fqxH3GMF&qotY#D#V2Y2N8c^J9nJWr8J5H_wSKb4y6 z2?Q}59?`s-`L}|!37CA3#RG8Udkl=6z_&+#mllCH1P=&l5l;3kTwxK$bY^ZmF-8;v;82P6<46V%UPZ*Z^JE2pO~KMV*q%|1jI}u?GMrFH4vTLBcu#~IU3+iFH_tPveRk9Y^ zhUKgJ?GoNiE-sz|9E|K5+?6k;Xyd^z6Fe&z`IBPmllFI3J(Zr zA#V2-EMXx|&31KR^ukiHzf@H=D|`p8R%@w^=z|Cmw$i68=Hc7EWhKqSQ4FFT%tI%i zw5BaTh1oLt$t7@>tb_+=5st!$cn~4T664BMh9BeOI?BlfFtQ;h=QD`xY=d|ZVdeOD z6bt6)4UQj&Gvdl|{6Rz#(~sh#J2L$cjNEdjV-F&%Y3d zj*PztBPTHK(dVUA;BCPJLRy6*d?zBT!su*Q8^(!K1UtItsb|G}39eUbv5o9mG5mPl zD0HPmSv4r09B|g}La1>S=XT?a; z#Msh1d;=fbQC|*#kqv#>mq9pthjT`CEYlJFXVEReC$l>`4jc^fyLNP}cg)~XgX;z# z)Bi{Q!EJLA{$SLq9UWog(3oc8G}2F}z)~8C5KfOP>B^xo%^8??p(o)HI8uK+jGUHw zNvtR1@k3*pIn!9bH9hM$!I^Po-8eL+ISZ5d>+vWYnZE``PGH`{5lBiq zPDGfBHM3oR7)NK%^>uU~QK(kb@6G;?=7A}dwctk7R7A0h(3SROF%|#yrA3;G|6>qs zVJhUrHKkegS(G(#8Og^OD-#4}zpTUuV+luLMVJa1yQwcL;$u7N%M2LV(3hzU!r4@$ z?kvJf$b4yB?@IAtSE#}Dm*K3qavk>)at0>jJKzyGGQKU0+;YZaUP9(fWBu^-tPjAM zab;ci5^@$M^Hn?wN9HRqasu-nMnHNA-Yz^Kq?h=QZ_^T9;>>Kl#KdBm-l{0)=>x*$ zO0`dUrf~yYw$_>pzc%Ea$!O@>kO$whzcsfJFppR1Ru&I&t#4gP4{H`V1Se0WE7c>+c@)a5Y-k)4y6!8ai)DbpAq z^IU2(u^d4RhjBC+=TFEjlQ4N-1`ooK_mBVo<9#K$C2?uoeD=l*LC(|8R2bP1 zqLUd!b_Qe>-n(s?)A+xeB1^fbaVMM~SN{3O>XYYUwxiqdSRAY1W*E8URWN6}O1YjZ zmJ8Ln4wdk)^p)@rI7hCPuqL|)S^9j;YIp;W$FUmz0wX6>gNL(_=7hHz4+v>a0^f-U zb8=+1dot)8iT+Ztu9%UHo<}9jT6H73eN%+3v^R_W*np;j-O`D&lJ;Xg2GI`ogU*qN zxY8QV-Y{EYit>rco^Y0|ga=y@j>1Uu90^uqVq9r4cEiVYl#`udWJ6ANWDwa|jOIBK z7LJdmSW=pbBjJp=ava~jDK1Nc=_UB+j!Z9xkz3AmZ2PA5ivC48(VMpbU78{%LaSuMGqkP;2BOCH@JA=s1GK>|w z5_E3gqc~C;g?Hd=xNa;2 z%L?*c!N`V$9Kj&6vjgLJQ#IMWh5||H2d;wC;mYpBm>;lm{7ZajM~*Lt zkz3C3B-v6;o?lAO^B>`qxbn<*PAlP?*YorE@Qz&n9!5^!+M}OKOTe3e2ZXc)U-O-a zumm?`yMuB{be?MRx4c*TBPvbSdJBUQGzifQV&AhK(k!e(bHZG;C^cyoR$>tCU=|pE zvDs_JVOy9#F<1Ev;!AM4tR)c4B^=c_@B{_Ktzm<;e#f7}GSMmj#6sBU<5)AuC(0ho9ho`P#g!&~$p7G^S<4}KgK!jrLf(c_P357}BNihT{PtUCJ)L6A>=u#%v$EjILMu zJGu{1JjtY&P!+S5U3l;aK4hV=DQcy~Sv<&inhECXMO8@;(#0U!!GnxpbJkR59?X@P zp?rw45u79|-NCAaqYx5~Wy_|VDlx2F&Da1R)=^8=gOLp_S(`y*=P@RTEgVr*YYcZ& zC@DR~H{gW0GCVoO+r*X$qJsS<7rhA9{$e zm7ZiV2@m+PAx*-)45A%OLMNZJ)}-N~=wan}<(JVb(%^VSg23#uE64GN9!X5kz(;pvdMb?Ea;9Ss zJ*;ehIX&Auz*%u+TYu=0#Q3&&1dfb<2}Vv}+@sG+tH9fW2ZXc=zws3*VHJLytyPfU z9Nkp)3n#$!YAv=A{XCfXUTQamu5>7iXZWsfeM!%741;I~&(Qql=%)HRrkBI489n7^ zaHg!p2j>!w!ix6IQ6f!@Exp4}@Ub2B)%s6n4>qiehSWt zE7$SQgT*dWgYhTu2pk!I3`TA_3LF}@nFL~&z58J_2YZaOiJpi+@ zN0G(4 z>de9T=#DybAdGD2%-0x1cAi2UfEmx2#`oD2QA$^F2AmgHzT*dA#^+$NekvY=BkL!_ z$Sr3*b^vBPYZ~)+rf2>(I5)1$>jz-Q=V7vcGaiQ{`!~SI3G90q1L-Yz>+pb(-r@_s z6A|8GddBZ@EG!lK2h=5sPiP95R9UNSL?3C0u$8uDu@fKqvLWrn`wXHT>_jJ@v?ecW zyn?c27>U&gVmNMGCK8UqhcHeU{zxN<>7DV>9hu${Ms7LNu}2zKwvSBD_7XTNu59a%G?Ex!j7Q+e zcnwBQVBDk6ORK=!f(L}O3h(+hCt($e**?-3y~zAz*DY|VTI*~?t%3+!X-pQYaHDTo zNvm)jgJ=t@z$dL)g%@GAj5hKDoFyya!9#?jFe0piAWMuZt-`bTxQ=r2G>mM>$&(Bs zbE{zGc-*V0twJY342K;wIgVR}B&L_gM|Wg;6pY+*rejvY%J$~z+5Rk?71t|Tw+cy& z&%+~dWPBqSIe~GHJ}<2TZwnp}(klGgSEPhh_)4~`3eyJ4Mf%!!M|Zwbt`+hF_2Odn zyW@w!b!#oUux|w4tl)D{rl52zi-)ND)|>PYhcbwE@DS6@1ZaNZe3(UXdC6xO=fN4X z7D8}5;VA5cd`;V&gSo0Xh{xclKWD@0tWf=THqz740um1X`72qk>8eH?`k@5uEL zFmlVeo+gcio$ssC^ZiRWEv|ge)Z9bj^?f-Wf+OcYgOL+B_vrW1GVtc$0U<5J`o0qp zmf^T;moG*yHa|7~PnrUzP1Zsi(I*`uY^6I{48z}j*^q|eZw#Ux3_~ZMwB{G4zK*gb zt{mwXCJ_W?tE_|vA5*FnM#Pg2L6#U-+J*7>xQ=qt1tS}BGMYhTXBWh#2rI{5qFAsi z(%|@ua7J7?jz8&0V*2y==#ETp1|zqe>DZGFE8C^?Y!~6IxU#K3=}2OHAs&Gv<9Qf4 zfpL#MFRcP^3my>CD!lI7oP<2&ljy)d$&H@{&J*?EbX{N7#7na275D5jL2;=gcaTsh}&0orC^GXH;g z6pqaQ2S#o=^Rwha#8TN`_b;j0{}e$C$6bSY#q(!cNi#7kU=2JH#|l^tMoy>z52GNx z25%!C5YlU0>|4shYrL8HvP6HWSXUlo^ui@;RhtoBmSABk4a{OKdVI@DT8kWmXa{RS z%M#I~wf1r{%$8v(PJpvyB|KP6I0_@pWeG->7*{S!d>0?rQBID5kqtTd7K6ynN;H=x zEF9lJv81#R*TNZb>0rY z2^qQ4o-Br84$TJh+M>9mVVKPz+QBf4YtCEq3_HS{iCM}=8QZ~$veF*RBOHa4a3WiV zXohayg=~!v?Ie<$OhL3q*4gChzCtK{)b$9*ms8yGQ?*7J@el4+v=? zX8BG;Scr$R-8Z?MaoE(KXabl%Sqm-f9zplubjZ{ne3_8O;W-A;4#r`0G-a)mjQShO zl;IgZfpcUfJ9vw5RL{`GRD}^GMwP1!AL64r%EU$Sr4ivNQ=6roWM%=>y=LxH8QjLaOnbZ10PY@5uIi z7&(D$kG?Lg0dEB!5Yiev<10?W8hkq2)rAT9MTPt!9o@Bju9T}P&m(>S*Q>SIM)W{R z7JValr8ij?8NTORW6~>}!ypp9LUs*hVtnSBWw;$CPFzcJnc)^VRaWkU%LzxJMVv<& zkKUA-8}ZQ{W#&2<*^rrE`$9;W;Z>AMX3k0z#lV8#oor=h+=5&^zo?_TT&eacBJ&Z= zV>oU^_8am>BpSN5QE~B-xeEu%`FgQZ&Xwjy|C2snU8olO3gtTeKiJ=z%cAAMD%EQd zl@EN0kfQP)gGdyWb+c2I@p9strp$Q*<;l>L*#t2hHg!DVD6EK6^JVO&qRhg_c2txV zU}Qs4rZb4_SQe+|%Y12E?@sYx*QCMqE^t=t{lny%KM3QuByt8O<2&III5NIHjNEd@ zW2ffJoN25dk)HL#;LNzPuAiDOXJIm5$D?p${!kb>fq9SCFWm!g7akDuCgmO9rX_At zHptdJ%ow1fXX@l03iLA9f)X7@(^t_Rhu)-B?}W`dIu0BRCh?ys{AU{fnZbUnr5EmE z^AWv;a-o_l+029Zqq!`?W`I0CrAalcL)cXrd zg(juQwRD4J-)yApD$j6&u>?UkGPhSpmA&)>D9W4-8In014XXLocgx+VC8 zeh#GnIlZs>C;b1__zTl%(2&0Fov&95By{dEgyW0ld}*Mku&`Jv)COsgaBEv$coJ-q z%>QI=-$1EeELZx9BoW~ky&xi_V!1vTZtMNeD}C%XGKyilG$3@~&BEy3IsCjAO07_! z55W0lp|)sX;lfg3un>-+d*o`7v$999BNfN-gL?!!iQg}a-<`$pF5-7r_FD)$`*Mf( z6#DCn26y>{{u3_OTdFJ=+#?*5&-F*QTtEQn*B88IQ zlkkBZ`8^&+ZaKe`cvBEstg(D+dX{g3Q{u`pKdVLw-@KNu$A@?1`WhIyOG91S7Yc?a`67(Kw#@_tdgIjUeKS)kB+SSC09f z8D_`~&7O>p>d5Q_7`f%lb_wIDk-J@ba<_();Yu#=$qmPB@Vg~Gup_@;fRPjU^|+aj z?!@`}2fttRfRN5_1z!mg>j8IUyB^R*TV`lcvRtnzk2Q~li_}_S;l{SRJ|!`QR^oy)2}hwK9L@I970h;i zAwHy|DEtscHbmk33?jQ5?os_kB#AWFmlT| zUACN4kL>*cXAlaU&QY_R%1KByzB@50EfXSG;fs9dTW{3G?Hx*kCchwC=g zm$Mp$Y_PgEKByzBYr@DaXLU@ua9Hl}qUvT2NYCuPa4KA{S8ll*VH@nu#|L&~cP|(@ zfn5*3EG;)TV;&IFaxd`}A7Qzl$@p!iJ!l(%qCDS&>(g3X;inzlcC-&+P;qw_qkWEV zc}Syu7K2!d(O&A~w_wZYzRdl}Td+O-{pfj{^+8oMXWP@Z=>I=AS1PfG{Dq$GB0Vz8 z(<7qr3$|n~6(wKkU&3Gp!`-9MUz97BDVQx_JpS)F z)7DKPOPvZ0TBy=v_j0|$X4IXF{s%=g81Ci~iWQ8f`7sliRMzLME^{m%Jx2E z$3gfMw!vYdXS;%8P7zLU^zW!%bLAz2_9x6s%|_#2S9=dzM7w!>Doj8yI`9-U{x!=4 z!>~TxUFszIs{`diccHJpPC3BIzTpITXZY4>M9(vy_c!AAZt;7M_`O&B-Y0(V7rzgP-v`C- zL*n;g@%xDQeN_BD#(oRIS1CaDSUuQ>{@WhGzU=?*$HKNeNBmB%7az(hS|?csf3`Bga!<1>e3vTM*B|bY2O~s zkk#`CChh!NV@sQjSqaMm=fjnE{<6D_-DJ6p zkL}3vAuw{wSzbBu9!DenqV%Ny2u_bH>8rBU-o&YxHShyG6vrC)9*o@b8kn7sxX3kY zRq$B)DtH)9kZTppSy~maTL6)2xxMZIJQ&A1xEDrlc^xcIH=r8d|4YyJf8j*9^39(H zM0d>wum6V+>d5PVVC0tbI*n4K-coBUulvu`{{2$~F*5$0fA-Cog30+BcnFT1uLdKx zobwr4!Yo?8PkPq(h7;p@ZS&W)ER!&K-xCkQk@wwT{so*5SFZVenvC6K`RDl9jx7Ha zMs7LFQyQ5Pk18~(|B#;Q=isEcQq51Q)h1x_{R|#}Bj3M+kz3Ap~qv{t*Y^XbVx7*2>Q+5A=1Snwv#2jYV}^87Uzx#c|1FrJ4O4%hfTBR$`z z!ijO^o8Ny~CSme^G9H8@?E$4j&BW0F5@7vNde>0pKSLSE&?eJ_sM9ud^9bFt7Jl@emw2e;Gz@Ip;I9gjufk z75<&tuumt5kumIC=Pi>kd7pv@;mG?$7&(D=j}6pv4>sSY>j5G6V4v>0sYmR=-a6ZF zWslpTRESPYJ*-$$U%}fKE?KL}g!63M2rVx@7GiNITeU1Zvgi92i`#DL6k)a`;QTr9y-q`bu8sxI@c(DVrs?m zFa$#=l$g{k(aXrg5DcNr8y*;%lXd?*K=y(n6B^p9O{8024e$UfmKW0&{lV}nHl^{v zD-{;jyK9Sz3kh@QVZy9b2gALG39DM{UDOP4xEMJ+iZE@-<_kqS9xbiLF?C8EN~K2i zYTd&QltfRVcV0C|wYoz}?s|%gqwhYZ7P`Wr1JMa|X;WONE*u7s!|C;tv^>$7?ZY5X zgwnT3`s^+&Rieva*OX*4nC=GUX*0C2FKSBZQ7Tl%Y3rspPatV8s@`gW-tMA2TVJ38 zu1*2eEiQ_*DJu5mdI!UuQj%Y+Ei9Jll-BgsNS}(Ox13W;MzI#X0-svJiZ!Bb7^J6^ zr?W59Qbh-fl7mg#oFkM*@ua;nN)@V|v^JJNHraT1V1_}ODH@XIFQ>d72qo7;yT~b^ z)Ocz#>0n%POR8I|kN*h#vrB>uYrB%BA%38}>@#r|rA1R*_X)j}V=s@@YBoV5L*S{aCLl+$+0TCtZ5Kw93} z+DQ6PhGS`@c4&0JpZ1=tM)y+D3*Tukt=hnXdX>K3kUqt1#V2iw354!^)0Q61sQ-xJ zfT2%xrN5)9)1%0I; zir?eJ@A2aI1o3;K_&rJdo-BS(5x=4MJyrakCVo#Bzh{WwGsW*&;`i+TN8Opg$x&2) zd;-aCvbpaB5(tM95W*$MeFcysg!?88lik_uOlD`6nb}RkCCH7VC@zXziYTHe%6*Hs zh=K@$D2fV-a>;#P|JPMD)7@3o+4t+(o!&p6k5q88zk2n)Rj*!GS5>RBUzHcD@++$R zswyv0<=0essVXm1<>jipLX}sl^6RSnhAOX8kAFA?4s=Ps!H>&a`Ro<-1TU2?gDsNNe?W(*(m3ON0E>+&G%6nA# zV^!X(%Act6r>gv!Du1rZUx*Sugx^iS7I_GN2u@*-qSpZ0PLj1>b$-J*izEi)4P%zP z5qg7Dlc#jNcNglVoqzgjI$kOBjp7to*?6PaY_2UCTKm+%?&A)2FW3{-S9y68th@r* zv)UxP2VN_a?5?nK;$&MrA9ZPHd)?8NVOMa`wuwDJ!fcam39pvPwg4+9&UO^7Z)jw{ z=}z|Rup_u+RWzpeu0}Mz9Iuqg^=q(l;#^xZ-dkmj?C;&l{tk8pm#iAI;$^tO_BVL7 zOt!y*l@n*%lA*_04ek5xXy1W7!9}ZPTJIs;Ap0g>E0gSNuyW#LTRpP+OuO-G&e`$D zNn&WSV>N0$vrV=e;MFqO&V!W`XWNpY#SLxL9^sDmP}mdTsP)!$j8S_KUMrLA0kCr7 zWLrJ5TWM&|bVqwS>8<-|Eps=G>Vw$xC!z3!Y| zwUWfpq*wA&Y+?IN+9UD$nY2g1%8ApSR`-^_6;>nuDR<(Zg#E%D+%v_}mDvW9`j)s2 zOzI0@<;1Cvt9z_e)@XOQ)6T&D;L?`&4fwX3l#j>jW>P*DR!*Gq^tz`4+sHNCUvkI& z1=ulM-14-Vr4c6g&*4Text|9sC(gZ*snK3AjrWh;dEW&)gv&desd*dOlq>yrh_~aF zGdbS^D<{sm#XE$d0e;>c@PA=XZ~@DeO>uO@Ap38;Rwmh}VCBTgjxt{k&w9f-@t#f+ zLz8&R_e|Dz!&C4|nOrBr%87GrvAi1I%N^_z%MNM(nP5txU2z!ODq~9iz^V zY2mo+4z~n5g9}%Fg{^+@&EQ+WD`xV|!ODsA9WBpzX?VZxj`wod7hJq!#j~+Gn`Y4c z8eT7x?pI*t#Obz*b7dOb-?_v64eSaoT=`By9)~m7{tB;_$@b^4a^h@9(Fs_M>^tsc z--I2(B`b3&@7S)v^)zYfw7hMKp1SlgICLB`z=^GakdkJw_Iq5 z|Kg7LPq0V0h$o9DprG|;g#II5JCpPuVCBR~w|F;@XoOqea!#s7lEly?RdVhX_of(Q zcm!T6lkA88FUgklqYIyOC%Yx?Y1!> zgq0I#-Qrz1rXl{XJK}%Cp5P*ud6l>(%^1Z`;k7c!{vB3MoNQbD5;%?S^tYX}<|!mG zG+Fa_F@Woqn`3t(UNe*MI9NGx!mZ+RJ`L|4?s#{FUBMl^a@9)SDQJw|o$zXzY`2G% zhXY%>4oqWPa%WqBU4gRoE_yWB=J0BnY&&7)#MzFP*H~(BFL#IgHP{zixbls?x_;B3 z`xU%iCfzT?%8An*MVE_eXn*65_E)eYxM<~5uXiJ=!S&~OrA)3rft3^I+Tz{Rs)2pe z9qencC%9l`rYvr$HORh<*UBXOBCMP^*>V0Iyc*vP-f_;A=aIzF@sqSP? zf?dHSE1!ad*(Tc+c(qKnRakj=u+{fceb1fkcVJiGY%RN~zJ*uIWP25?oH*MS8UXrk zsz14-{UhuNE?SjOc^A?f5%~{ztxU2H!pe!09ZO{8b^BUW9{H|wIyHhMh9;ewAeJ5* zrkjjEgh|wxjNgNm6K6cG;V69!Z|M$s!H_{#Idi>#T1N6G@Vc3l=fld0Qyx#0>tCqQ z#`5v*n2&`W!VT5(yl%jFb2J}?SI*>oIIKK;IMc@-G|r!M=X@UQka(QQc$4$lc;!sa zpM{kZ=j=soF`kX%_qV%az6JIN7jq+OE89)VH{x|ODgO{wPMmThYMZw#{M#M#Q?Nt0 zn8Q)qddtG!@yeN;{|YN7&UuXb7?KvTr@ZH!WltoDp~WS+W+vf#VCBRKkEKUT`4L17@oVmgUxwYmMJ!h|8>X9# zU&O0sGJXzLPMmRD{p*w(;(6~or_*yuVrbH7Ig0C+n}pZGYi1Ij2`eW~cocm#RD*kf zJKX(XM{vil+yUTy>QuSTe@^-|UMZ97p0IM_T*s&nxoT`ra%Z~&b_SQNd`_x=f!5$# z#Vcm=JrPz;oG+cl%;>jCe#af|w_s0j;mS9~;;X<0*{kqcnPjhol@ljB&j04IHhBN& z&i4t<5^Ev%e4<*|*gQEQM#eBhi~eF(dQ3t48*4bx4=@8MN5 z8NUrHC(gK4d?sAuyTG0ACrDywQfIjfPk!Cph|=@%YME?51}i7dw#EB)yN32yceF>r zp5P8$Isb|;&KqP8$7^MhJp@)xoa`v`1BBve@UwWOOs=1Sl@sSm zBi8u*;4SW8Z-hO;1zR7nMayl@Kg4TglKnocJPgR5Sk|}bJmpUI@31F8vShWHLH!l4 zl}Yx`uyW#LM^{el&6M>|{Z9PQIYk~v5<`0w}zDyCp^mhENsplZYS&rE?k*QS-%R~j#tX$ zdIGGRIM)_(k^bS(uegK#GVBR1SeZ+CR+}UCi+HU}vY&^Q6DQkB0lDWS?ZNiv?r47k zyMl{Wu2~4PO}6*o)iT-M2`di=w!Ou6jqS_sY+r<3fwCpDO}5YB)iT-s2Ubp;?SyKX zoRqeH_hjxz&iV3MBr!Dkvb^;-XuU~#CSE&}^fXvGf^;@NdYx42)c*PT@!O_SOZxK@ zWieS6Q)Mw-6iTA)`4OpnEB#jfpjSNa#*kREA#s3^$i%avcWJ(L6xng;{;AZ)XY_lm z_;7A2)pb|?BPysdM@9T#e*XA~pXA%4ey|3$xHfwkz2?nji`7)RBU@<~f9UP$$W*ia zXZL#+NXHxp_grgasU6Z$YOieGNh741E74`Po9FsgZC*E_;{DeG|Az~_|7`rQ@u#|> zX=P`vEmLgoD$(7z-P!)GyA)J^JHpX%yVf6`tM`i|ghV8k`H@^=V7X^r1p6>A%?sLO z@)?+ya@+HbHlG5!&5As~oOD8nYID>@n6l$(4KahxD%=oe(CLGfji6Hz63yek?(XGs z#vc`$^R!;@eKM}HG)64)d%<^M7jb*R`l1)CwmD{BxCS?e*%z*cl@sp^8!RjptC?Ie zTaJp2T7USndw+Ngb`!Thd|dR00h?s@iAQjgn0?|QSUI9k#K zX;#+xjYua1sJ6C{9q${mQ%2q=wby0n=#FO0-9JY zQ*g-^DimporD8b5oJ4KGGAL`etL+&x#E@;mG-+9=<60uiinyNlBTH3C41>txVey-; z1(YjbEJi@N6!w*sZ2o-G32~{(d;UY_n{ni;c=gOU(hn;eapX&JCHy!d`;k)|Inl)m ziX&~!jU&@l(sE*NwwFRlHP@Xj^;ScxD1W6E4MsHCFJ?56lbkTHVPB~4T4Ktd<5KWr z%40%e7{nBbC>?Tu7Fj-m5gC!?eb{66$nretgy_^}1yYqzBh2{n4sHZ9zPt%58}a3} zxDtMRk$uW3zC7Y$1;v;9TATV%G@&n3@B&M&LU{^ZV;@|e-DSk!1eS#{1B) z`m80Q>`2BsKL2bdBqAe96W3!U71eYtmSkWmMl3lV_LV)B96&lDE;aeOCj?H_?ysC5 zi`UK!B1gf>Mi4n%NHp(JcbZ(P40=rC{ROfJo8ArHpM(9vI0_GKD=2a3ZSI4~tnA8cdvBFehZVVMS1R3jqZ&#f-laxi!OPnJY6n|W2=$VAfH%C# zP+@1l%+SPTNhscm%fo*}d0j|ECKSz^W$LgrA87Gr?iwg8W2RY)B(N;Z$~!-XbV7jC zf@%ayWrv?*%*5?r#+zxdvJr14$CdEojqF)Y@#dAd{aeMG`&yd%pfXb}gwQv!y-g*> z68#}lEtNyz<~Z`~V1%1R)^NjpcSDwiEDUvIOQbnEZh!D2%@IOk7(^P0DXqCc3pAgB zF&Tm86xe6>K(m~5LVRj#1(rj!W|(=+D%=caoauv=jW|<@E8)i(*{_`9%%Lt;P+qfd zbK}f}MYQ!HQ=XS8EXyt}XF}oS$JCU;2rt{%!i!~>T0xkSuA36-r+PHx|%#J^D1% z@>Tsc>r!_3Z*%m@rAnp0wvUY#EY^{&_Sg0u9I0GpS^psUtb???Et7-Q%xsQK8=Pj6 zRM%iNleFkTyFz+{(=~EM+Q%_iKFbyR`fK|SO4sPlROz15{@Ounk`mJr21za3K8U{S%eK>#rHXqUgThxyR!iy1^6ZLqWmR`~ zmLg$$S_Z`aY<`iAyHRrxPf{#%vLsPaFm{I4pXRpoQ4d|s6=sPaWs z{!f)Jsq$r2zM{%kRr#7KUsvTDs(e$GZ>jQaRlcLjcUAeGD&JS-2dex~l-c}Y)ZqO- zqJQ#-)1MaSj}ZSpQn;Zv{{S6WSe$=Q{9Bx&d6a&Q9tWb%sto#>h_-q;dvk=;@#)&#~8=P_NlvAX^Wwnfc(l4yw9mSueFpXg7p=TMQ@y4#=su0t%cT1cSUGXJ-VOE$cPz`p9zp9((mUg|GfD3N zD<@96KBB!h)f(s?chKFiL%5(rBU-#>HzIc)ubjzw8LXT*=P7DTG`0_Du&;23eJSh} zF6`-I|D)alb7X%Nw}45!A68DBc&pghp<%w?9rLeYS8y@Qrzg1|#Td=Mz^i4l{VA-R zINKI)pN)q0EqAo9!=B)xm8)7}caTB$6}(m^+5f@HiIW|9Vp-$5VT*HOy&g#nO=8_D zA~WsOGN`VD*U6;1HmsaD)iG)ZnuhjZceIOPXK;tC{5EEN>zu)Nf4pKQ-+f@^#QC<0 zO>G+8)79v|3Ju2J5~o$}^GMp>?21&lX2Z;DsW zTugpY$=!Hv{1zmmrjj5vKXUM-XD5wLRNY)8vu7uxWxxx+ml z_5~NNd}FANix_mz!RuwxJrh({7?sRX3eF4&y$9D|6H{ta%>HY{-PMq%e zz_BC^@iXp-pN1X6MJ(svfbr)1`wzTwCg;Dw%87GcZ-BF68vCiEoipr7Br!A@_J(4~ za)1Vz{b4+A5VJqD!O9W+A;z5;{}&k?+vU|Dz<0nT(k9q7^qT(KJr;j_hh2ZaYK69l|6I{nZBym zP3O4X9o8uv=HASnY`L562~c*q11M*EvK|2I8G6WJ<*fL4%3wIFTq@8#6?;4P(n?Pu zHz;kRZ+d65C(-%#L9nTsX{W0wthYQs{;sUZ^ki0M2c>sbbA_mT6d;@E9=5@1-bvYV zNsQ&d>GwVgm)`036{=jR%2ld7NtGw7@)T8`s>;(;`59H7uF5l1`B_z-smilddA2Cw zQ|USSwPv15Z}FnCmH}QxHelCMshq|?h<>GL29ix!C*gdCbV74#O>RaIbBU_eKhSy^ zUMn-ry98D?(!6Gq9o;VGNsaA;)DTCuzlD9lWh<9vq}^r`e;-~ilkP8J<;3YuATKp? z7me|I?u_4tJ;G%yH~9vwH%Y&N*UlvUDy*D1>G6TAQUg7IjPqdr7)cDqqq-TW%z*3b8hj{eGTy8?tl-0J;5ExawZlJDav{NOne|-E0gRZSUGXB6M_$5 z8sX2n6aEbB5iVgFtAo~?WB3%jb|&dnuyW$0N6SZJjqwlN8Gj%41(&hRxzr=QF^<2B z*UO}P4Xm6v-7#vpLc{x4cf5awox#N`Hyzd2Sq#39;T1FaJ_0Kz&bP%|L(<@mX>(4o zT1aAOQY<+Gi^}+r~4n+6I{A7rxGu>jIsMKyjCXJf5OU%lO3a8+-Y!Uj&)9$r;)_aB+PQ&t-o;P;2k1eZsbv#I^ydtf*(v@nK_IvFB|9aq;cZPqN7BaoLTUH*} z2J#(pp0^F;T2+2ml<@Y9OC^J*eKcTvz?WJazMV{Qe3O5RXpQ?Wjf+SpGyrPyk)hC&lfu zDzQ4CxgV|^SIBfPO{IH#Ix^L4Xovm5aA&m!6#K^5#&^GM=|$s*3q0fMwuPo1OYXHe zZV&Qvul?$kT{0XEJ!lE*QfbnJwDdLqgW5{w? z*@z)sLZW$}i<-K7xtv)Q?B^QotH>b7%-~AcEnM0paa2`2N)a1)r!FM*X4XFhXb zsaVa>M|#Vv;r^gI_us;<;c}NByS6sNWPcxS29y0SVdV(+F(!OJXONRd3<*DH*e7m7 zRL-znb5G@ML`$pLYARjnDy>MRJ9~@msq~6+riZqWrPAU)g;ct`)Dcc6#*aq>nYB08 zj|bplZFJcWeeb(Ao#`b4VuytG1Dti3Vm9+A?znB(EMqn6Jnx1gIc%Tj2Sh&W@gMdA67PE z#yLWwd4wm){J-ukjq|-^4L0fw&UeE;;c}iDcz&tdZ_>U4ub)Z#R#-W4+SB~3zwR-O z_zUjDpN0LxB|cLSH``!Re+IXKN&RV9If8nON!`y266JE$K+ro z>=Z8PY2oBR4N>J%{|sa=ZUB>a8CFi5_w>-rYGr<{JM(YDj^Q$&Wu^yF+`ow%!Q}pR zSUG}wjLF^459CA=Dk0|@X-PhXp zYM-*j8_Qba~r`Me_sO zhP$cjdE17Isw}CpN0le4vMfq?JMjthYt6jvZM5u(+7x&eS%Kv&#uRvlXo&kx;-g3> z6j5sGPB1xwRK5N))@gXX%<1lASlO8FnoW1Cq)Smj1AGIu#S!rJusf{tOx^@6*G(Fx zn<>q8c-2hC*TTw)Gj6K~X$|p{?ueg&y}?B+Pi56DHwizE*UTjRD6E_~;W28;)Bum2 zbKus^tCc%pa|^=&st z@m6@{mk*8N4dg1=y6rt9^|hzTqz`0v)0hegC32RYa!&< zFc&pa{58v8z^<~Q&EG^i;RiN(^pjqtH?XP7{in8{;*~RF$d6%VBZk~1B$~HW-8ksc zaF|B>bu!5D>FpKREnM2+gC310nDfT}a1)r!pNEwbXC6A}(Qul^eZ9%f+}9zA!N~Z{ zQEndeXf(rQzcy|Lll?4MIf8wR3E$5d)LM(~fP5i{*7$LEm#9(M%LRj~dx2twrSM}A;7G%nq z;xbxz-^J!krUIQn?6>b;;|WwU-XX^R+QQg2w3m8TrIkwjmSnqos!nDIfpj6aoE&Ps z5QXKB>?->8J!AW#vs~&t!bLx5COsBHwJfts*Va;J!fZaD@9T>l@Vc3l*MXH2r`+N#25Wo|bLV?7>CTz-RFW8)Oj>=k*4yl+oaZ05nS|HMBs(5f9u{PKHL?rc z$?gVwf;(^Wz`U0;g0xH*cDvFa#x4k!)wInuj17*+4jTAiL)K&?^D(Q-|r6i*RVghfaUu_ z-*$5Z{{pX@N%^O+a^jRHEY8x$fjbV(p4gi$(&>$}`@L)N@~z%&ZEv}AejWA*m$UpV zfM&fhqF=%5XR`hutQ^5Q##u%GxT8D@7em57?s#O}Ey3!z;~`DHB4MwU^a-n6ca}cS zRtR<1ZD*j51=hY++uC*p%5vl}8#E-eb>DLAaceRTd*D#r#Xt7Ag^-9m_BcdWFD|lq zBiMA?$;aT&7i8M$G?h4^O2=mQbC#p~6f4zCu}Wh5x{EcAt-2dVA7{;^tE+nG2;8Tg z4eQAE(LtsDn!Ee6g{(JNR^+^^ANO%KOnt>|Fi18&Av+ijD`Zw>%hV^VSA_=q;Px)cV~*Zp5B5y?`=Qf2(`64Tcs9SPf9{MwAf0= z9QSr^U$Io~CP%rCA3AZ}QR*IyURt5f(B73RE{ixX4Ec#Z$v7B;uu>{lg+=Z?iVobC zD~+?R?%{@Fb2V3~=I9eHgVEC7YOau@1LJ{{lE=_I=$({2R+Y!8a)~OBS7ln2C#W)` z%B8AoS7nDPv#RV= z*3Sj65E7BO;85MeZ9NLl_^xY)b}rHrrWX>dw`g!A%FF2Vc4sN#5)7t-hlJ)A>rr@? z1l^%gZ^>d?x8R6SGElCjE4@8E6vivms-A+lI3ccU+B5B4*>qLHDtUTVbrXkRVDOz21|8vrG?NBNTB#1IL<` zH0u*3Yc9$7{mv3?TFREwvDs#usXo549clS2RY_AynC|c%(8$c= zUFGRZAaVdlRA9a6g5if{nQE7J9ZcL%D}O&-qzh22k3t+1vQ>KeDaiXzy!e#v&UTl| zbZbxC2(^q9bJZ-x73;MbOq=M-yy=dd_k0jH^m=yC_P8ts1iB-woNezdSLmjf_zmmI zRMN#vkxYu~Y!&_M&Te$7h~$~!s=8uFmM*FB9{t^=a>a&J-0@wvs<(&MNyy{Y4{!jj z>&ujLnWY8V=vAUix2?~@@JT7{r65O>m3O5Srh z1t`_HxKlBSg*J`Wc8nQ4bCn!rDe)<(@4UrVpcquiokZO)ZXBW{sl6+`d_|_bj0SyN zhjvp6k?Sd!=qe)e2(2vaAJd^;NEC2GVcPl~8b&AXDbqgUh|nL`VT7zodz0xaMP7Dc zy&H^SSzX1O*5XDWT6>YcN_UG4BW}d@bnIVsi#zN+#d>^{w#6MHLdj{O^%S~k%3qrC z){EnYpSns%wpb#y3_T9SpM^XzFOYfRUa@oWbPvt@v>2|GtSjQ29!W;gJJa55x=Jsj zO1;#%;|^l4eU+|Ek6MLOh8-C*BuF*-B$$^8r&p9SJ@mdT^zp&CPrsgWmA?Mdkt3Ma zs~0(b^BUS8dj^rwJMOcN>O&p5zMS`r5jz^muGmvr5&uDwo_c?L_zfeK0zC@GpBza*WgE(pxWUj9>h11{x;K^4SxKRua>VU&;xire*)>`X zDN>h<8@S|$C&g5+;zQg?el?%4w7*bg_(^Jpr?9xwwAAvaAnPj$woRT+XcCG$qe-*0 zX~_Blnr&NnB62fKn~JROh1iCflhM&JCnM>#O4sV9qqrkWYBwgNxKXb!Q=my)JmS!^ zN!%x!zV1v<@Fmr+X@TB*Np+tpf1}F#Rry<0{!Wz-sPaKo{$7<2sqzo1d{~u_sPd1h zd{mW>sq#;%d|Z`(R^?w*`GhL}s>;8q@<~ZU6pUB@=aB~rOLNe`Hm{zRpooC zd|#CxsPaQqex%COOv!PCD%ViunyMVB%2BFpQDv(tN2_v-D%(^!R+ZyaIbM|$R5?+V zlT8t}v2fgb{UgFDFOY+bk9 zBzz!VGn4QlSUGXRQ}k^=8tKovll~0s6)x%NVrc6vFo~anTfii~3RWH_!~@&2G~z#W zC;oldD=~-%T3{0YE^Yyn_%*O{;>0I6_7cc#bQ=Z8WX>y3yH$$j>fXb!* zGxlS+0ZiVHz{-j9o=#hu^xcjc^D(oXGqx6z7@CZ2mSk==!W`#o;zlsJr(os8xsOpB zQ#IDxy0hLIb_RER%bUvTJ8F$_y#-z|lkaA*a^ifa==+8>(CzM^Pk_C`1ub(my#?lo zUV>Y|Bz_F6oH+4`4S#w2yEWWjbjSU9*d<)tQ$!38nQyYb0I#0O`dnCf7_s&?;cKk# zac6xe?2?$Q#Tf!4lHZ0`&t!cwteiOO(OGd)LWBIAJLLbszTiS0D+jbZ;bGAI7hW%u z?muDW#OY27pJUM|&s@tn^`1r&Lz8;T8&$&gn{j(GUO$ue1Xww7+8eP>8)=9=;{9W^JgKMQztSE5Ww0-}_+=iTPADn|`s;9);Po=;UJNTIPIqkM z9Hs{Nx9))NgWbUeEO$aQOgBgHFY&6GjDH3zC(d{+?>MRLpsa@cZFl5vz~12^pDRLo zR7=br@G5Qzvj@BcD<|Fq+Uf_JHR2yz+d0o)pCpDR&zJAW>z12@*TrjQ5}pGqCr)^R z=coF?bB*#L?vxLNJ;EK=@-E|`^(N^>cwat8jiRA%nd6+etw|C? zleoB4pK#;5d&wCC2nWw{edL;rbq^cTPm z;-a4yitm=jnEl{f+!$s*I15%zydSjDA#Rb{Y0&R|F~2B7wi!(Ww{y?wB98BPrP;}=_g_3#7R$4zG`e=*Jw|h>zt@h zCW)a*)a8Chy#*%m3AhDJ;$vau#EDN={t8}Ms6pS|9r`Y?W4J?H?p(Jt!sNaqZUmG2 zcCd2d+$WREg11X*%!}^Km%~osGM6V*v<8^GyKn=TytA-!;=EhDOF%Wqm$^f}1oi|M zvi$C+xVlt1&)@TKF_xD0;$$iRmbay8bnkPg`%BmxT)OrATix?!5dIlnGn4SW zu<|ei2*2S@_*K{&AmRGezXsu#@S2%~Ux1YpCp;l|!Ldep{dJsk?sZ9GXmW1( zgcY>joQLP&wKGZ2hLsa1Jz2YiT7!L{JM2ZUQ@BG~=3QC?Oy2wA1~7T=4J#+kdxq_< za1Ht??$B4kp5a2DEtW@ZtuV>=;Z`uoS77DD$t^IdRI9yzBVob#~r2BQ(-mxRc&&$Vkg~ z++q7o+MD3@Gih%GD<@8SEzeuFua0Qkm$-932KEj&lFPkoQ7tihz>&Bm%pPzUtekic znBw`ZzSF@n;xBL~e=h75E_wMzOmBfn{4Cr8Ch;?1<;01%34hVLl{Ut2b0>W>>&-%KwBt!lkTo@__Xw=_m2pnWUe9l@ljD zy-qstF%k{<;}n&e!*-L^Es$c8%;2oZ-<+}WWEiooH%olsRcjoqak1Jj=T%@3KzMbsRdhL63^lmFo`dPl@li} zMtSHHOd9e_+>u`lyM>F~ALXGYn9MK2O<*#=5LQl{`3x^C>R-yzu>aB>`_Ev{aIwqx zDYjOa7QLk9ZbV zPP|8q_xz{6M5n=DcRlBv76i^lfep^ds(|AA?vg0vuSxHLB)*Y8{w8Pd%%XUa^gK; zLbW7L`q~oiW8A49344S)%;lT0p!Fu{!|>Xfqz{Ib6DK`}d{xL*^eu_!xkgh{ZDt$Pr}~df|k2h>Xw^?pTKKo5`G+3PMq*q@)K>-Eo90X;t3l#=ig&V zVrbGadAD`Lbd&LDylN)nQLu92j3-vhtJ2v*C7Ujmiu$tHj_#bdgI&TM%5u#lWWLFI z8@zfZ>#bnr#92?F?>Nx=i^#p?UGBKEuvfUa<$eXd1t#&OxCKn&X;?XN;&Y_G82iaD zc4vPP>>n@(;=N#+^jv*m!m_9QXYTaxh5f>%KU2KgGTUHM zzZ3b`B=kc5k zo%8nDBr!C3`&xlv?seKgGfeg~a5I?fr^3pKv!5>6uWtA8zV77rh8@El?sCt$r4c6g zg}4z+?z_RtiE~%;dT{@)_MqP9j=ci=g^N8nuLs*;Qt!cSU{ddfl@q6~Mtf)ruZI0< zckJJQ9mB;Q9POb-nB1?xjbL)W6jn~0`z#qC2iS@HkURPZVBc`juN|1;^>&!_@5k+6 z(*HHAoH+dr>-5>Xkw0+n3Gc#w;`W4%LOmh6O=hon3%7~cD_)0{6YmuhWv{UBNZ#aQ z&e{G(Br!DEzFfTxnQyY*5U-xedOcVZ70JLmV8U3gB=UdlFrSdnp!@VAM1{bb;pXwW~oamn}xDKzHN%&e=IdQ^c4=QKd zbCs;Y_(^xhPr&ZrGM49qf~FgkAIB?aQhpRxj-Z^)kEYRdYXAKF_-#|ECH?t{vY0H3 zsj`?Z3MJ9@{D_nsgICP(Qk@tQYc?b<6%v_vR`f2-KQoGA!J+%7QX6}rVSfI@xv5mw zUHOlwpvD{(@q_vK<0F2OZ;$%H8sw+isKupncO?{v=6)Pa8Ld66wrNMHy|Q^{Z?V0a zD-|<^&FNz<-v1W(|JMTVKa0YGT3e>r-c>3WGu_$#uDgt`w-#B2WuZ#q56{)<&J+@n z&Yhp1*4=Qs^0)H-G%rB!>@ntduKb?#_m}k7cDA`ev^mll3ksQ4*)na$D0lZ~@{5Gd z;{5Jp{yFsDhtYrU_YwV*Kb-!wIDdrr_mSdn_2wU#m!kjgLGf=fuY6LrI;!Wy=s5R~ zxV3kR9yQK4UQ1sVlO>gYbV5C@CJ$x!wwp=JK6u^C;I|j7 zYy>|^IY#92gP$B8F(mxpH!W^MJS!;pUDDFj;5X*e8~B)sNnTwdS_Z`_sV)xcX1HSXWHGI zUdVJWZCK($k2auI8bbR!G^x~6&2`i1-*Q839|yHcwbaw-1O2sq9i-&qNT%2!^!l@E z;-9}be*=x#bNUzOZ&c+?s=Qg1x2W<~Ro3ZG}bq{v;Gn62rlc< zg0=TpV~pz`;FU7Deh*eooa^|&gPX?pAMSkr20MhySLS5_<4w+g!7FES{u8V`95^?g zt2NH!=Q}53Z6q-?$yl9p!+4W(D_%L1^GH}Zan4ipWe*MZ4(_l&1$%`%sO7Ogy#*%m zPvRCZiEjxjCr+F$LJKTSX}FiU@UGS;lh^3yu$XIw7-DY&!qi1SUG}rj2CDAyEpk(CWeIn?(M9&i$dz%+riDmGEY$N8m1N?QgZctn2aFVzw;zBj|e(mdPJ2kb6?=$0qwjE4-HXau3Dr zME-lZ2ZTiAd%5PVy08Ao=$kMYHC+6q_t#)&S=r{FBApPJ8t=&H%Xt0FSn?vQY{Zi1 z;!60jMD`@7SaQFM74(Ye(k8#h-!oIq%&V^I2?vpFHbx&{tR0R09>0UENDC`M-O>^- zwj#^0=OWcn{CKgskcf;IL$jG_e(lq?fZAxd?LB_uhYK=vFJj-Sbcb}&er`(YmN6x^ zyOWqS$of*bVg2fxwzOQzbhKwG>SC2jzmubUwQ8xqw$Pz%?U`cQGb`dHKC^Z0UD@{K z>CQqaLqdyP%qf&AS#lDkd%2E!M>xnqup`@<=`B>#?WOLXLUv_c()vc9+1R?I>RB$$ ztxE~d)ooie2+hrT+dO2iJzx;zdINg9x#&rgtVtKw`<_I4X^ysJ)m%*J%oRIn>>TFM zn))`?w7Q=*t9mS1cEn)FQjRIFiwy|7G&v`m?9yRLf%e7JyRGVBE`upo3=MTBsY-fj zsZ^-YUY@ zE>b<^Qg?~=;(1|%2Bvib9g|~7DqZUIE^+Sl;*fRQ8dJ2Kt$6d342&+($h)+yJ}|Y; z>oTJRWz~3h@nKLdG$>pq`JiZ^J6pGKGO+|DgI&=jc#4^;-igHhdX6)NT!e^#?qX?J zSYdbRoMFKbc$eN3mJOgk)M5S&iw5DljPu|$7udOZG(DwxJ2#I}<*}+fPL)ekdAusq zsysoJ8C5P-WxFanRGC#}rz)4JvP+dYRpwQ>T$Ke?cB`_e%91L3RC%H*%c`uXvZ~5n zRraZJg(_F7a+NAiQsv32JVlkKs`4~denyq2tMUw0epZ!diW1(rx`=+QnLAe}1Rr&^ z)%ZKf7RPOkw~6MsZ(iM#bV5rNHF-=sXuY`>e=}Y?bN%cFSlL)VYc}c0tI)G$xm#2NEslE9V(xtPa_ zEl<*JlkNn(UMAhKuyW#br}!&xGJ(@L@9xfd7uYLY&T^N8-U5^Oj<^L(;@iQ>i4&jT z`>R^gXcygSFNZzCr7dUbp!Fu{F1&Uo=`5_AIO(?fTDV5}GIz?Cz~10emY=GqTW%7* z7_XU0_##+2al+#R?4#A8rJbdj(cbocq+e%Ni^F8ujnGQ@;jw3zzx~vCLvL!DN0lZUU3} zH(=$&nNO=b%zqK1L4V90`XjJkxX|VG^=2DP>JQ;IFsVNPD<@99)i#T-xv6vJmLiFv z$=urH=oatsmHYe?;UB;RYD~88!pe!W9Vgg|EnM12-ohR5W5xC1^0b_F+7%MmR11sWsxNW5Am+rwbx#M!PLx${xueStggb7A*z zd9NcPc4Sk`@qHF<3bPNK0V^lo2j(^$NBd>8ZK_%?xXry6+zdO2+Y9D}dx6;)vme}m z8^i1e*Tc$*_k&ikt5_rcFL&bqgk8ZUF5|r13~j{uC-G{TY@dLY6K6Z!vfW!FJ$W=N$SmTRdY^G(*<;ng!) zZv!h21J=P~6B_H~?yS3Dmw>E;=9{duc=b%yOBu=+ubCQ=^8U%&J}clK&2RRm#3^)I zBXmYU<9>-d_lp_s344XhU2bF2TVSHU2)BTV{z6ze@nJrR{1yGS) z+SjIdT5u184s==Bdq{6Sfavhj5w8?dSpHP0sJ)l`}cN1uG}cdF|k30;^kg+032# zCL}R5X}Ww}8rc-H4{U^+!t4VZ!pe#FfvG{q*)}&FC59N)@GROugA?`vcC>iPMrO$pwl8B-v8+i|4G<4T=?>HR`zz7^q;`(VA6jaR!*G$ zbjwvwT82Mi3+D`fEJ+Mat|vE6SQ=q+AB`Kq zWzjkR#qRVkg5ATVFQ4=yn_~8X3vpAJeV_&_C*B8UhaDG{_y5ej2iyxghuZ_>Q(r_w zO#XM{hA{cx0V^lYf32|FB6I(j+&jPvuy?o}V6NB|AJr1G2Rw^g!t4Rhz{-jDfboI5 zKDDfW&X&$u|7?;Nnyg>0>j#WCInTf=XL6njD<{r*>YnoB0t@B01@;tYKhN$zqyN2qIq+Iz!p;SO<`^9P1xnU5FdOq`n)hoH+Gy%4H_*K6l&|*dJWna+g)e zc7t;dUOSU>H>{jE=gG=fdwX9sF=1cr4*MIhQ@F6@`x>(W2JtI!6PUy=g_RR0K2bSr z-=c;0L+-pEfL+4nEqB%F<{Px{#|>c8{xz(eIPFQwU5C>XnmN2baL4^F>=Q0-c>=<) z-{AcgZUK|`>#%YJ?-*a9^FL%KKXDdA!asSlY1|v8)kiV^(%cW(O>TVSIF;`0p>J7) zKWMkpR_Nn}waeA4-_BW9&UECm#cIX&rL)El7c?xa8yLDk-tw)x?a65DfkyQu|66z4 z3W?Qx>+Y!iQ>l%;#C(4K!?~$c*IoIKs94gUKR)UQ?NL9tXI_NV8kF+a2KtP48YZL~ z>wg~eIM`oS$oc(AC&Z@4{fzd}xCP9(as;ew#FayZMDsp}I&1fGIkU>>_S%DgjjVFK z=l^`zH(c)WO|QKj<{H2`xE)OTXTr*f)1R}jRIFxl^u6GLdcYm-J>XW@KinR$u2}Dj zZj0FqZo+M0_JSY5$`QRFMq=RS7II37A>rp1TgPpP$}K+E+z)P#-Mzh<>&sMgrDCN& zxQz8SwF8S?)^1nZ%Jxwv`rxbnjqOapj?e^UNgm#a>tjE8cvVQOCV80F-I(!J)}V5T zY2G5=&d-lXyyRm1wj!&TD2vIm2%Y`T?@51uN&kHNS6c&3w`Ey@A1_#zE%f%+ zte?gU{I!8px-#XC%8Fd2tG{Ob#33M6$Yz$WN|%LM)-MSnTBT*_N~yEjomm<2eOo}R zTQtx5m0UnYHq817FhHe}Th?95bwqqK5D}_-$NKq4P^hQSOP`_}3?*t`u|M#AvpHMK z@0-n4C zcqa(F4b#muZYf?hlW`hWPMq;Le+tteU+fO~BG?~X$ns`V-*%Jog?Qae$~9OyamwQh zesZB<{+T=GdtrxgG0WHU0pm^1cjJ{aIo|;*C(gOW%lkCIFS!GL0rmtJu$+rUwyK=x z&&AK;wKB;*11l#_*2~2;vU5J^JPpq#32Y%6BP*UD46-xuTA5_0!pe!09iyI)G`Rb^ z!`&Np1{dx)kz>^#>n2>)eGm?YCr$fF%B7xF{k1)8P90E76NzU~r6*IaWHo~V zYuH%tlI7=VavqN%;pb^B zaT}uYv}2pQ>13KXW0*?!l(X%*N;Z}5E_HEZSsCYF zAe|7Ln*9Ezg`u*+Utxb2w}Ba3-h!2l*z$T@2|u>T9_18U{^()_ZNoUexv^!6iY*y$ zgRUjA>_i4TJ}GW5B!)p;k#N#}>$Rw|6oz9&l{D-wE8qNL z(g{Zuxlvw56~6^$zH%IH0W+o?4J#Wl<%qZveoT?Q$tk96>tY4Plnq8VbzP|~(~;>; zr7P8JPiT+qRn&~Z$Wr#SErT=;*I4tE`mvk^o@vsuP;a#)C|AaHx}Tt2CL|&Q$^7PJ zC}SJ#)4c!v1OQsFlXn+~ zY#Q#;NWVhnV583<{Xf_#T+;GzuGRpP_w%>`Oy2*6l@sSZ-9L&F#eAJlIWu3IB(Qvn z%UoWrVQGZPeHLy6llyd7If8qP3Es~U1y#h zsb^KCr;w|rJL!~asoY=NJys_TYgpIK25y(MgQ5im&jN*;U1FJ1Ej2=AJfBoc)l4B2 zxMS)V0l>N=YCylpm2G_*u-*#9)G~WdJYxE23vAPRni2@q{^37`HCuERpo1{d|j1qsPau!zNN~yRr!u8-&N&%s(fFS zABYm(X7(8US~HJ4kMnaN?O|%e?a&<6c$iv`BnD%J=0S2wD0i*NLzBMk=EBT6c-_ng zskLEc<3Xy~lqZs>{5(|yeXu*|#js1P&og-wwA@k_GT&sqKVChP^**q2;;d&!JWgoT zPjjb!GVB~Kb$Nq*L_L#Q9GOPy8D8>)f$l3;TqNT`rM@?Kf$E8?T>9 z`DO>tY8y7F z=fm#db_4nKvB;*Fec&A26lNbd6IM>V4@{x;@z6T}4gDSN=x>F+!bLB))#@!UiQj}< zz$E@7SUGXxb64}WMuY#1JN&0%2XW!cZ;q~}F=jvb2W||rAN&ngPP`vX483C0$WPtD zIq9E75<`>p%N4qi`6lb}c=b%yZLo6UtlR2uLN(00xntfL_6B!=%V)c~32V_RKn#P#@;HS7T%zp4= zSUK^2FwNY+qv3zu9set^U%2??(QC5}CiVZ}HZZ9_4=X25eTLW|rERv-xUaXPb2`5c zNeoRouP*fPws~o-Fv+itTfrnh3sz2?{1km_oJM`IJN5lxuW(1ZT)WX*U=rU4w}44} zFIYKo;uC_K7&Y1_yVG6?dxT3{eoZ)Ny-B(kuboM{3@ay2db09WeXFSk`&xI{--eyS zg)I-TY7H=Xe-k%=$@}ZDa^k$lHueN-q#t!B{V?nfE@^ovyyUf?M2AI5mgd4!* z{R3Dzao*$ilxLpzG>_Up?auliutT`4<-7B+@yeP0l@Nc!t7nq_3#^Cp$3OP#qw zwj8>ZWzx>hx%zmL7@EvYzBzB$ZSZZwYi9Cog_R@t#<;J;zw$#~2@ylWze4C%aViqI zrCv2eT_N91K&x?@@aO7UoSWP7Sz^ksJXFbVZIkJnDI z`dkNnU!~MrjoVoYxgy;y(_f1>SPGSDcYkfSScZGQo9^xDAS4m@Rt!j_ySGryrMt43 zj&!D4rQ15_PMC=6YzEXScGJBh*83p_{MB+PM>l(TUq-jzJ~N;|g>I+t?yxCU=_2-0 zM{hgb6w+u<;0lBa1yb({gsLigRoSP?6{=jR%2ld7NtGw7@)T8`s>;(;`59H7uF5l1 z`B_z-smilN313~%Nx#<2s|#AZk)=J^eUog!F4j_sf`6O+*F`gsT*Eq1=Z`0y(Cn+e z)-GlsBMH15ua%huehpSOlE7w@9qsvO%MOk0@2Me9mc)bNC@i%b`n8aU$l@li}#`9MCc;0vy=kfe; zk{FDKb~9G{Y8Cr*5Zm(S?yC>r&@xl{iO>=`a~`I_9;3X}Ywa4VSP{|GB5 zPJUL%XN^@ajeXm$&Y4;(NeoS%_IA8hCfQqH<;2O354BsV3MB*D<@8V6up7gK=0)adJotU+>tFWYV}^5 z8zXvGyiz9DonYm}xsGjY576kA-RYKKcW~*-qhbxyO~wVhY9`|xteiOGbyl~7L&N@c zckGwL9^zt`mvpYKHD*uv8g317!v;W)V<@rl2zMNUmw}j zuV9bt>&}F~fBhufX{|lZzN1m?&$DgHR6klE3<_qighTCJ5}b^D;61!nW`uYfRyHEU8*wH42qAloQ-pZb z#R}R~w_S5Lu#fXT+nlOD(w*IZM*pe(`POwPO6>-BQfm*Z?QPps>V0iDNBcZ0)>u*h z;R5kZ>H5~vwoI|Tt5hy#y0iV3ps_RAi#-Xc9^?m&9fU+=(3s!6s4+g!axHkY!(3E5 z{f&<&z^<~Q%^yfQ;ou=x2?EBOS;i8)a%K!U239s=$dN*#d7P&PJ~uD>xkmeoWRT-l z$j`%W;nJQV)`W~En9MK0O<*!V7gkQ3`OJl-Vl_kC^~=Hdrg6W=o%@}zYq;Fym7&&V znCx%E&0w;>8CH&9A7jGza|StS#E|fxDn1prA?m53*xa09q&ItqPG!DN4Zxz5wX4;v zA9rTv3c{$+Y-C9i-ihmJKS_8~NJJ(H&6_(~ycTO=W8FPa5Jqw^ha|8(%E~f7mUKcm z)RTqaq-yow?asz)Wk!h^u(A;)rpA@`*hBUZ(M>ub8a4SY z!lPtFh?DV3nGs?otZYPx-nbHegphs4DMB3XVg;=|{AyHFBgEutDWyJEn@U%@GCkQ) zy!Z*VW-#J~eE}j%`FEyZU4D>1T0qz9sW0hD+d@6n5;yLN>wQ0N+$ki6LEIoTp~h=5 z#0B}n5@5WaDvG`4y&1-dA@a_PHPD#>ypJ-9o++FOp6OPECGw$HGwA;4h87hugr6 zEpNlhMr?T_u7n?3WRG%+EswfbK@TdIHFx1-qKYlmZhBnl$c1mX+zsxv)-G4u)B2<` z@Un;Ol4P2&EYxW&5oKqx*6}H22O%*GB8tS4R!!G}Njr?i2qq`MzOs_dA4obOF6tpA zOwNcSOYrKMapV|S*@z=Y#+C5ni0nsBapY4jR!|(dsJX9LMwL4|tHsbd$2X}3!K5U& zT`IMtKfhcS-Lfdj;zUtc`&jKTTlC1Tqz^^rx@q4Qt(-<*h8O&63*=v0AT15`+Ilpp zjVWh4v*m2DJ*&2!eO<#aa3f@Ys!eV$b@ycG*1eugIYa9}JzYxia-kR*W16@U(keWm z1(#pL)Kr683%RPdj;)&c3)pd1`uQ73C&a4OCZ2^QMKySDqQ4}!3jP$YcD0e^&W7@j zVP)l*F@;>EnkMITE7#m5l$w{Gj+d(-Hrj8JDcBfQ9{*#*FR#IV;ewVs_yWe)A9j7* zFXNRnalZ&FE6=>p@JzEgPxjXcY^*of%bE2&k_e_)14lzHYx$-`Ykn*PHk?j`{`vxWJk_&4G+otGi@YDSPKevp{K;sE zM0Du>sno{aKKc3i59g**U3cX_qGAdC=TQ+q$sZr}gZ8K&+%wN!Nq!C5n_nB-Xt$O~ zoC9++rj|2dM_JM5%cK*6QjX9q=5)MjW}rD0RyG37NkXD|j3>)ExZy61^i53KZ2dYB`qfwtpO(QAK(Tsd4CU9PMr62e;$rv{ttKNe}f&vWiH>ASsGz-{|jye zllz}w=)5i#gObEJat{&QC683yI;dLZMiOJfKZJd%!G> z$!AyCW!CPHUqCt`JnFT*4Wlx`PYQR!jbH|%?O|mj5N#_YnwM~_E$3^C<23puGR!gc zD8TOF(qAXAX~WVKb27@|rZD?JC#;-!A6VC)zb($w`oZPy{ore`i@5z@ebEnA+Z?km zd<8d$*%!VHD@XK&7+Hm%n8-;chJ>G(%!u0%m6%-B+*hq@mW$yRBu|k2Sn#s;xY{8D zry=6IYy+=oh`+YLvokc0S<;NhPa;;v zpC?=Ck0{dT;4Ji#>h&KvX5jTQL&{WG*$638jSabJ;G%iOc$a^FT`tS zlHLtgPMmZgU9i&bbEjQ_y~3rfrwdWUdvFVw#JgeT2;wp3dOux|(?SdhKV5h^?&PG> zg^A7GWi?5>(3eNZ%)M5(z@66G<7(YQoH)o`3EnX{v0W@QU0D){8{>91KY{q6kQfdL zgd`{qnR$)Z5{buQg2p8CDC{k3C&>STbV6imQ^hl>22a)RCln9k^)rLc?_p&l==@Gd zG%ul;5!|^{@9-M)QTsY47Hg2iU?h(wbNTHKTPw_`(~n?2H75D@VdcchujN0@hewP? ze=B$Tn-3ZNx!SAGa7)Y{uqkc{vj=PpD@XKz7}GRd_QhiRtZP0x!bX( z6|(uuhaRUo>C!G4If@V5$?d&`KGpX;G_e34XO+e*&UkCESW|zZZGpQjpafj zGSg_@)HB`U04?_P!|2qY@?VpF3HF$ke*SdQ3DHrTuPlu)!_F6QBbZ_5bFi`zcFv0{ z;fEdBr<}r0mx~qj+H}|EE{o3U&Mc>!GAex?bgy5jNdL+%%T#lH;n4F4H40mjv39;% zb>PqwTKPm5O1;K-ZSk7ow)@GOy>1EsuW<+`sRyHEib3&qdGtpf2_+T3aS`XM@KXgPJJzyS5 z492sN*#qVU-pMli!Cc%JWpaU_<@M$kre;F6@UJ z#Ox2BhLt1wLyR=T&s5}u6GOs(K)OF}fKv}hdpCDQc1BmOxQtSjZ1>V^M+f~ml`hb3 zs?dI~3*nw@?S{4Xf%6n-zn3uGw_F+?n)NJcNiA+i^V5>^g~V`3OC&wb1=^f+BTUbj zlYR*M%-R9+SCUSMPff1RSwSi*{FT}7<5n<(&v#*EBluh+B$}6$%#lfn&2t+6zmsLy zQ-;C+udsi({MQZSB(}DgQ_!DrTbRAzF<3eAUNFy3No?NJdcwHvEJ!Wrc!R=x8hBaa3h~5w*oA477In~6F@Dq}A;&yA5kW`zybTX;ZT`E<(C=J=t zl8WpPcVTNJsx2AhR74t0HuI8@ed2a5KMC1ONDPN0L=meuUJE)!n3ysBEQh^ig`Pi# zbi(O}d?l>GQ}z3aM;Bf{Gst9NWh2Ne6%x%$Jk%@Uu+KE+myu15DaR$SXSmFRuY|*` zFsGM`aVwbQFM^d5Cm(nv9QK<=|2}v6zl6QRrLVsd4!6YY0YAenVfKJ~VdaP(5F@Ne$8Dgom?pu`e?1RTFzyP%X$l$@O|Yu@+p?} zSi4!RG;kPkdYvm;5o|=LPg_DvXWY)>hnRLDF$_Y?6utFYxT(Pqjc{{5>@I6R$gd=w z5Sp6YIIp+BOj^#tEntS8Ght;T^qd}7!Vf*NH#vo#6I`sI4JGF^H}tHT%`FS%EWaiD z2P4=pwyik@8_(`gC$_|w`{J_j|X~MxGK9&C5;4$`>vs-L(%uN1{P@7D-?^JeRJ#X|`dy z$#^=iC+`EaSXz$E?$+yW-?2Vv#JiO=w- zTz`~k)JHCMrapos1|vZ{zI4#_kiSkuyO?X7?Z!BKgj7KhJ>F#oEEns zDt~xzWGWRoUquG8`7yq$AwHkcn(4@w=ww_dcUTDbS8Ir=bq<_6I4v#IZ4XUZmPBGV zc<`vsTvL75mE!C*Tz` zCzK_yvJqB}5fYIjFUG)I{ReF($_dy``O9RCWB%|(*d<)b@)0y-zBz?_9;-6_tOSBImD3g(}o@5HbkWj zE1SDVb4~p#X&;gOSYWdDGR`4-r<8&7eYE%EvhdS|cZ9@nNEb$#cl4}(Aj(P&8h=B@ zx+F0ek0TREC!8vb7D2_sq$>5(ggJPn%rG(=RyM-O3?b3HG(o+MFzFshhF~Mnpt}fm zhjlRLO}fFi5mv_g;#D&l?+q&_&N%Qk!sL94JLgrfOSqi%w-Hv>eR%au))iPef_02J z-A@bTBoITwPYd3RI~A$4U{!O|g0aiHGPE};l`dyWp%sO@;Ld98X|>!CuP8|Sh54ar z$+D<$d)z+eX9>3miO4LWd6UUFzunrh!jmvKV>WpLc9fNU{(jO4K~XO!eA~^G;c>if zW{7zdRyIP+!*M125F>k#Q;50I#R}R7)i%1R3zicrg`7O4z9LubD6I&EnYjm{xsSE0 zaSn$;FFlpbX=QS#7h6KhTGR|IyHEF?*#WPg8Dl;LD;qK9lR~0-GfDk$m>i_4!)wgD$tK4qlsxPiF7wdg zuuv;Z^2=~5nB+TP<;2Mc4~K>PrqRFDo&Hy0?{MiGhr>cGF?&EiZV9sodn{}E31gg(KYi!lAH}xP3vtx6j%jvp*b!8^r7n2f)e^ z{UJt{;U_9`!igc_Cn^uc4R9(^Ik~xOt>bCCVJh8Q^!9#l8Q%MSG2DTzy{~rcz^kp$ zGKjZ9vSDy&lCxwX7sc&Yeim|}kQfeG$b?|iwQzGgOv{*hZh?Je1)l#F>4dn{d@%}eiggrbMyq|*o!sR_vynZ*^U{e1( zZUdA0Ut#6Msn7B^as|hVMt;g6&g3VO#9$}NZU>Y87+5)ievD+m z&nM*65ktbyCu(uKvC1bVH#eV{P|ngi2VHJqd9QLX+;Oe(rgq#QClu1;y2YWH%aTzn zj@z^RjADNwF&r|AiJ`V@fu;)cGNzalVP{#9=T9J=5SW_W8xk_#j4wsJdS-lC4l5h+ zrAtUOFQ=F;=i`veG~!p0NsdXym9S&D#AgMPiclj=?w8?4Fu7j>D<{r+OeyN# z(l{?6YaFwQV_=_fIm;`X!}goBkHqU|(mo7UPMr2MKaq$aet|pjb78-5iOWSPvkfNo zvv3=j)X#vGBdEui`~CDmP7yIA{PbaD+=i(1Vf*H$4-=~8-eNm_vz0!iNM9ffB@w@& zreI;p+T&`4Axz&03aB;#YA2`I*Geg~V{kBqoO1u1zy9!2FDK;#t^P)-I5L zoOD89)G|fLd^6rWgICXtH&4ULM!fllkZ4{`p_VB^F4Kt5J`5eP2JsmrfhF2p;=yH# zP$Nw4Q*k4h+$X`xiE|GuQ-s{6vESRB{X*C|T=x1hMW`Vr|J`synEZE!l_U7aND}-! zLrx$uB>X(%CvgLq$}?6rH_w<%_dU`#hv@X0mm!ymneZ0^&W1a$wdW1_)!tq!LX8Mb zYL;x{vvK>IpKW|bNDPN;V~XB4ey*yS?=mn6c-ZxCPAE z^L1F+h&`7JiRR@Tv*bE}?lq13qhuBKpkQ!+81@a9yL|C(Z-+_$_qZKQ`oDvf6Q@7N zUlSOh2dr_pa}W3k_7ArQ$Zudqx5exQ@8h;Gd%-)fazrnPkv#bMhn!MkNcj23DRCR3 z@{ifg-G0$l=uM?NGwsz<_?sfT!yVV!>uOy?yv9-Jty>?O)hrpuF4Q9I0Z#QWKjYX@ zNJM5F&6|G4Hkz%?I2|xHW5&tAezKC!A4EDKCN+5rOT%ebX7EJLz(wpx1NFav$z-7{NR z&HJ$GH{x>fqstXSA~L!(@$9^y7Hqy2Wqt)yGosATVSib{=WisPaFnTkt4IT=Ebx!4 z{RFpw8Eo!>m5pF?r;upggrc5j^lqq_;2zunnai7dj(%jN+8N&Rm4>^lwZ9GeM^=TQp{dLA&~jYdZseyGM+=GJkXE#K zP1XX+XJIiBB5SSitUI@NL}R}AgqTKh;e zGFdxYZTY}U4^CUbWeZdTLi3X)UzkOW!jfy%&-{F0x{w$S`ND)?)3v-|7nq)EsJ|tA zN7z@^4v^o3bV6Lz>Gh!XW~|u`ubmldwtt)R)4_iBk`pUJrUrBY%lI`HNxSaLMbZ*Msda>0gA~!K8m7tQrp2Q{py65N znqbDCBXAR#@#j!j*@!;}35n*-F|*~WqTx1;{P|=SmM9qH&w-u8B`*&rL^QbnGE#fvrJ>~qPxp~OguHL2Io#X}DLls&>eS_M8g)eKrs~tUX0s?K{687>oZoL{8 zh5umll8_hu8jeG0{vX2`neG!p@H*op6dF-^2N~n=xeyUN6??$x zkSkpsUMLJg_6BQ%>?Rx_@T+wc4w<2oTR z9CD25Rnr671oTIkr7;2h0d|?SJLG>tIw3qYdEJ7g5oRQM5I2GuiGB+!8vP?)srXtOok?8EQY_%3|z6e7z(vQ!>ZnAREpF%nz zBZ>R9=_kVflOB%Kfy^?7>Vb~DDjfY;58G0(!vMvQqzNHlL2QLCxGzckkC9*d4rgY_Je7>w-I zWF1^h^;=*PpN(6Oq1(WyV9i0kLz&T8#xgMP$S7#fBeeH``&mv8WhtDW+rc->6O55vldQw|()wU8ctoHOZBBrzDN zpgEHDBd&JZYvA=WX@4|Wv}4TWemWqhf*2BhI`G-J4N>X94$XbJ+DcbY_GJp;jai?D zd#W{{)H;XwZED^2(4=HZ6840?SMr{1K!R zLQ)$iUX#>usfztnp#!g&8CEi|vN4GqFC?0mDom7bO6`=tO2#;53;nQ5xRm8LGDGH@ zPn2K6t7o$Q0<4@k>#6>WP&@Bmxbyxg>=rI>dA7r7g30{HxCu<=cfraL%wx>?e%c@> zhZqum+OSL9hN!e*rP4j6T%}U7-ORb>5;RU(JKdn)%t>a~t>$g;PEkX! zj9YauKXv#(pdAjWgGVjYd@YCgI8047*1r~G1K3|y@cAjE6V4&zVzu4^GuX_-Eno(l zxv;VkY}OJI%}XZK&78W|H13CzRgPK3L9lPQ+=DlB>g_P;AAsAzq`x1moH+f!&78XD zv>tG}dk;7j_7ArQ=r?ofZ83YnNw_V{Ua$gIj_3t3vIRfkkW)$w2|wX@*D>MfZ*Iad zvb|Ice@F3NxXW7mTdjSF7b%3{p{dNWLUDK8Zsn&LcL<5$kY==aP1XX;Q!p(fwfH;i zBP;OygQOGUpUaZ8SbmrjyB{Qus!RA@u7Lik|(T;+rRug zp;t%@hdiOJ-fS&bxDuwO29duEaT)9b!Q$RM^XLp1(H3oAr}yC z2p|wV7C96zytr@W5Cp<9*`3{;$?VKBGrLJpR1_3t1dl~QP!trw1LVFzZV?d`PekrR z5ClO`RNz-#RWsFfbmo1lx4ZY3KT?EjzV+&Ts^5EEU0vO@+`jcV9q*YKTTX+Ot=RGv zE|FfnFi$)TXnM=wd>6AO=CZ@jV4qMqi%g>1Z_~aF@1IEfW>`6M+H3DpDc9LS$@ywu z1o3~zC;k%b7b28;t5uBi`y@vTB8vquWoYO4v#}M3bEju}u7oPW}p$dj) zxx{oR7&?O?8`Z+XqfuJ&x>41_T1)~fs+_=!t1}&qhkOjdLCIcKsW1=kl^9Cagq5vO zGK)*3S1QQI5Dvb(FiWtj(c=4l*dJ8B;l~he$~)tI6Dhw7R?eJq=rM$Y^jLh-qp(k? zq|L_=ZrVk>elzhb0@59#hlx@M0$0^Lb1HB`^;eeION{u= zFI8jYxx{p+F=jP~ZDg8LU}{!%aWd>DC-~yAOh;oPw>>m1w`0pmc+bSxaw4p3#g=!C=bK6663^w&ga2tr!AB2@7sCy)TRX>On;US^who!y)k@dqH)2$yCwBFz>m)N3( z^@X0Tm!hG{IqRnUHBM=EKeL*)6XFeQAXpJDCzvWAHscc0p@3*oYYpEBH+#d>|&c2t^SVufo&|GE^-yuHnx8g4EE|gj5DCbI(Cp9{&`JwS@VbVcd ze5uJX2%Gy`a3hG^-v}#Pc_wY{>#Ij2t73n2eD+IV=TNV9@$Kn|f!O>H#|)}g8k;41;q=Qj)qEZ-sBABCHxciGosfU@LpFLU#@H^ zUkfWszx0#}wR%7E&8YOuRa_~(B@MZU)4}>hW=Z%yfI7E}zizqZdDtyf%;7zpZrIP_ zeG_3n4J*r;_*Ba=X;TjE;dGE*G#H!o#!Mo7$IyPVP)VD6INh{2!22iCUKdu5psn(L zd*{gL(7SZJRLa-;gCL>h2VASDCg0b5=kMO!6~$}Qts%MxDq|~ag<<`DkE59_Safnu zxJE9qI-+H^mY|xoL{X)sCB8FE<)6a^nS&y3F;o29)~x2RjmqIOFfVx-sciBo*iTO6 z#R}8Wn8;lfP0O1%CW_E;c+bS>axAQDMVIAVBE5=1?y6{d%i#PIW({^-TAY6j`-I9l zysM&VzfJoGc>hG&--nemrybf=(e#)>{4eo|-v|4JO5EI4(Hw(K{SUYeMC!kVl_RKo zWc?szi<=*jB0MBi;c%$$KxE-?L%I(+X5>Z-deN{^9t}>;d6wYf12jfY%e;Gkr$s!(_*-YYSPyd74y zg2)bBBE3REE-g6tmY5|mi-ZE~4=UgA(t?}v5Z*VD@&K%yIpxsOf`jxK@kxIT_6e1= zxwPP>{Z+hwBJD51$`Q0Zvbrh^L@Mx*P=&!-z5|hkL3g?<3N!N6p#klw#2?uJuz=*8 zV+j@p++-~gISPZ{`EpQ&!Ed<4v?vUMAsdCke_>AYiczZw|Au|!L|uH6>1aG;VZcGj zUR7c665cB@h`azRTS4SGE|Gd+;NZJ>2)zz1zFRU0tT?9f4HpJ(%A4bT6De;BD`!qQ zR2Vo&9}=JRfv``gq|L&>P5S`6extTPgCa{ORzBDCToevQ5byLcS5Pc;1n(q2_wZv44uJ{ zjl$qcn3I(_E`xpKL|r_W>1aG;VZcGjUR7amG2SaNh+GIOTS4T9Tq5#1^SI1bz1LB$ z7&!Po#w@`Kbc^r9us^7L!-avH@&kC^M9P1Ll{2RtDhwQ?=MTpwJ%>q5MG0tM$!1~T zrrnG8Po&)qD@V}w$m*&v5UIdJLKOxl`%YU~82l&QM+s|86!oJWJ_OHFXE13T)^_^= z+Z;GpV7nA+Z8tHtezGsHR!c#Sl3+jIsiaDRy}3kWNswONn8^lg6a+OGkd-jTU=KMN z7yFrxMx)WqPmBpD$xc;0Fp76dj2%T-*@_**z7i^Sh&dB0cI*+yit(kz8`52EoLR3H zO5@sc<0WhaST*CES%l~@P|fFpP0wwENAm~!gtgjybwrPgd>N?d@gpt~89h?Gq3Ggc zHUh}+U`AE|`3>wOC+6Z!Oh*IKn8gE#KxKuHd+=_FA>Im(5t*;ugh zT23uhF1&$DOowuzx5dk-81{pSS=nT7*ilaC#dk6t4N7Bp9h#H<^Z!%m@+7I&P+0PI9k#|G4n!6Z_ow?|-5JN` z>p5+m;R!YXEIv6WT7o;9xXD_Ea+D2^`f^ZZ!$VwRI+P8a!H|tS(o;k^$ty-}dG2Hq zSZU=%U3`f-O5-7SHgQn0S5+*mf%i%bA|0@@6+~VY%u_qXP3~-R@O^uHzB|DFpz;mx zY;se6E8aJe@>^i#%qfR=PRNMN%_pyVpSxZWeGT{i{DW%GU!??tBC=?| z{1A2sm2h|yV+7~(@y>~yzXvO4&N;M+(Z%}D@mc>7b_$iXxrs4?_wR56h`fITD@XA5 z$nL5@5DCFULKO&y_zpxC2(PBQf-ti*$j(yN3WNSweoncaPglZY#U9gj!u#4L;9Sw*q5CkgOttt?9!n-8~k{w}X zE0Ao*B~mXCT!f3vl$Zs=FzgU2;c$Tv!FdqxoX9x`D`(C*R3Nxme?30yN!Te=)@Fea z!TZa&0Yu)Xz{(N4J+iwh5JW=okWdA}eBXh{0^v95zU45l#y)aVD-5md=&$F?wMtd1 z6@JeKgT*K3glmi>wwTZ~ziGXeq#RYly}o!<)$l7WF&(Og`Nrst`r#Frp1h`1{qQpE zF6RU&KF)MBGz}4Pi~-oYonFKZAV!?$VPz}gJj*50t0dMHn*t4|8PvBLMXy#pnMa*gaJKn{fV-L$T+;ez+;b zIj}dZ95Dwx$^}(%h-Bg+p(>8MeFK@SIJQc6Nn*}GWxQPP=r32w$L6aQt={+wJa?TF zuQ8NZy}^xd*{-EDN40UP?;KOrMuSUChiYT4Hg+TGTn>}7vd$&2vz+jY-(fl$82Mpa z&3rr3T!eQ|j5I%jm90o~0hdUx(vTmv)m&x}e}tKY-5XfMAA}u4B_95;tu_do`~A2P zMDBlrl{4oa`mn9$HiP}#a%}dqnZ#7onD*6fe%MwUh|RwTH-yN)6IPDk?@=D83PU6i z4+&LaeBO5=%L?P*bSsSRT&Xlrs?_w2ll#MS)){OP{3u<^Y%O~^%8Gq_CzdKJ_T&=N zp{$tI9JUc-j)8eu`K1i|$%(wUgz0EZSTGp8N;C|%QI2JyS%6aN|P7b+i?dD3IsmoAz=*e6U5EY>oVqiX14qrfU|IjdCFFoR1(Rt@Q;l-|~` zjo9)Q7?m8Pdgk#)*iTN{#r2tv#zdas&@$Z)DO=-R6GO@yU}Y<$Z00MWLW-C_u|mpf zajakm%pRNW^VP0G&At^Wu`ysJk8_4Kj&2)IeD`QKt=8tRBc>F5X{eYo#3dqQN{UC# z_Q+8iA>~w5t#3oBaza!#`Z z4};+*YkA30Ds0Jy5%czAb1pF*N`=l~$VQ#856sERAbY|-a-uHo#B?+s@-P?6DLS%g{m%A!>u4jqSt)qgo*+G6>}oBqvkdeOAs#48T@yQ&wo4I z^WB9qJIA`5D^0GF|E8h!2-jHbmF+&<7UC>;6Rd3IqqJwiBDFZ-@}4mha`9)vQLvAw zkzfmBrNT8Hdo~<_+e4fUhr!Abv%#aZP}PY@H69WwGX2>%xXJ3|ujwvZbPX1UbEBjB zF}B}^XRdSFCHS19X|kpC*iBC0#fzAZ zhD1K+XyUSpjO+1^i2>yrSlJ3FS8|E;mN4XV4maiJnK9Tcf<^gR*dIrDYZqC_9F*=7#EeqDs_)xg zuZBh`=Tu8@=L9!d%T66qBUa_5AD?+CLbX0?!q{Xyj$-Z|l> zycF-7NVy+Y&YW^+=Y)gwY4J&a1@;M*w7GM_P5V^5ezK%@c>2~`-( z^&N;T49-mVeefBzLU};jC-GZ004yLm=U9S;0XJDoM2^DX*S;K7Vem^XF)a#%V8}*c z@GqE?ykb;g@K4xBPSnLmnU2Oo76u%Y>{S&8|G;}C29dwR%2p8h8<$AEFmUjFLmj;i zExwyE39LA#@(mXTZpxeBeG@5f2rFk!IaC-pNPjp!>HT4!P)VDGft&U|c>hG&d&0^Q zv^}!ADhxy_@Q_f2!Ck(=NfriArn{wb=E%yiN?ofAz68%x=Ojz;bbMj6mWmvu!54j} zlqwCrz$KnT`fTo{le2$!=9~@MFANVj%eetZW66 z?{kUtiUaxi92en-m?>D5ZV~<}v9@agywobSUsCvyG+teiRL(CPRt)@zQ(W<85Z zOhqMVU(M#}_z}Fja07_EXTZu4ygjnJDiB0M@Q_di!smP^t}GBX>h9=>%t(!ZT`WA(K;o0g8D@h&*!z|WP zlA}i0%Xe0(8ew-XffMlna{ZzRgq&3KK$v>fC=)6$Dl3VUU_Uu&7mr{%8Wa6M7)DHX ztxAOg-Ze3#48h7)NEz^zP$5OkpI9MfmpE3i17TiB_bFv(zB*JWPiQwC7qTH>g^qKA zHTo0V@g$AbX0Icn{Lq($iYVuEiO7hO;&CwDV$eoB`8CYSiYLE>z2wAQyq@W3MC7-< zB`hnL+=cf`3?@H=m91cM8<&Vo;ZvS46c*T%t?p7?d_!fris|J7c+^exb?8FX!G0NQN*{zEg%x#99E7X?vdqHp&-(NhlINK z_@3|7mG>TRNVia!)4KN%wX+KRGIfVc*%MDuzKW z5m_;$mr~|xLpSP%FT%*IobmB=#b>=c>=f$NY(D>p z;JpiO0Fn3mVdV(k9@$+L2qGbPNT_>|TYLkQya!n~-Ip}G#ww+i6YMmY6DNa*C&e!I zP^5SgJXM|ZtZ{hT)k^&4qiL^}jU45{iM|s`l?R{Z64RkP=#ir~3WOiRoUHV5KI|qZ z>f+a#j)p{@=g`C@J60va_wbI1q2wG`*$O3RbBXjygwQ+wZqk2b24O|JMf!KJTd1VX zcl;xn{{}aK$ow8yIfA)I>{sbS1Pl)el|DY{I}n*Z4o~;~a*g7I{zBfmE6|DRoMnx} z+NO@-YHqN=&Pc4aJ(sZclYN1;T9k4mj>(%P;#N#YqtWQ*XN?7vWTz@$?1*?^OaDsL(G|2v13jgE7;mp zKHZmg)@`077e4MZpVQAfUCG9TB|hg|YmBswCwM8^v|pX^8Cb8)Xh(dR@TH{UON~oJ z#+MY=ty&B<9~dF$ESRAca?XIA=9~t_lbDVMs3DFNaHF(>(ARJ?h(YM9u(B0|zQiTc zOD-Enopj2s0%Hc;$xOqpVrvH64m*fC0~W3FsMFw*w&uYtxG}_e@Kabh^LenDI*-G7 z85wio<@j^qMc7Hyx$uUzhn+g-!}GX7#QE?ntQ;{PJSq!SoQQX(IQK>F1)H?c?7uW|Qmut&oZ(E5*Gw1Y6KwJm_G~0E?{&8264Rj; znX8T6h&qSC%&ZJ_2<$8;_TsKgM*|}t&THn|Ip;vUdt!_^09LkQ%)VSAz1m}am2)(= z8Prc?X2q;KJ`FpEN_`_E*JuN=`F|2OgvkHnuyO={j|8D|j0hwi5-P{M*>@l^$84VN zyC+?>!f<(ML4Q5Gpe;_{Z_rh+W@;0BgMKXUkZUT|{J7DDq z<{sHz6$~Odcu1&%;acB7B@2dg)4eI}{lGxIFp;YlD&?AXNBSvv!a8SLW8b!`Xm_dHJ_g>cC$YQ?+)MgF8dRcrQt895wEz1oinfk=%5uRfg)#t2;T`HGv_yVFdckVJuAyc73FpuZ>hn?9wYF z-wB(&{3^^hx>#PW7DS@jzjz+Ym!F;7zxaLGo-f-AWcvfz{!q3*lI@RWd!cMElI>4q zd$DXUk?p0jy-c>3%k~Q1<{RDYC?|9@mQV5>FOo#F5JFmgx*;{1l= zsZ2+!xa9Gbyo8Xws+<4c;Jp%W4(@@Kt($|i$BSUGd9vsL|RT({fD$GdG}c*U`#%66OboAJJhl(&JEGp9U@dy3UM2IKzt zjE{u9;k>Ud+L!Q}{NYd2a+~l+@t%o>|vv|)$ z!k>YaGbh}|?|lutSI5VD1?&nc-dX$t7Pssc+e`6oiEMuYD`(Djwpw;D06!5Q@T0Il zsDMQlR<_$Q`XRh;BIUop%9&H{;>$h;;I%#;yNaI2B$BD3#T6`8tE?+{O}two+gY%3 z_H6lzo5A+|@!9SSyMlW03btaQ&|>>8yjvpMonYn6*{&H{>@*0E#wT2a9YQ56PA3Q% zZ^!3hymKPwL0CC+&Yi((vjO-U@d1Aw_5>Ah4==Fz8o6}^PvX52$$lADo(5#?d*3_a zlf4!81V}b`I$@E$3GbCi_6ArvbF#D56Bgsj{bzi>|A75La6Ru2~q!28DsybtUT>H>&CVmcX0g?FGuyO=(kNuu%%c$5c=pmuDj4thlMVqcD3tFbzjJLzPCNl1Wl{05NSG|a8a~_P(IS0Fh%2~WOq?vECJ__%i$odFa zIfAuEHdh6KNCF-bsvvm4Hx2teiRT zbyU`kV!r5;v6*koB&Om9z`nZI<10swLD<|kz>OesUl&%6;O>$ARRJLqg@=SHAim){ zfn@=)INc*(*JQ7glsfv^u}Fmh_F75!-0*&Q(mJCI;VXyuVU2;+Eu*z$<)|Qz^qpI( zg7_$xm<|=hobb?%)beSVm{ml4684o7da=xOG%gMC9lWshc6|9b-a9eAtb~=V_%gvI z(yJrZQz1F*HG}y@%&M5>#E)R#P?>LNq?YhFZ2A}Ab`a^G2P;R=_ec#YyNDp-A)&I% zM|=k&v&&QIu2(N?9w8Yz6u34%s->B~vms#<*g5+e!)@Qg#M4aE{MLE6f$>^cbEKQU z`7%=J=C530I;5Kx!LSRA5H$Z&C_yXj%wZB!QQf}E9H;SVtj|M`6Qs04t#|k0RuBVF zH>_+0pqX4Ez4Wt@xC?Z7&fx!EW*K$`Tm0V*`^OmsiZ=gEIsfRf*lFk;xGlt4@HSXE z^I5P+6(NL~uq^&e7=e96oe5hQ#fWP>_H4-G_7G>oQdl`+Hh5GNswfeu#zR6CC6D_i zJXw_dYXcKHVou%R2=x9zWLVf^GT<5GK-0S)- zm`kIz?>OAwlhay6W1YQ@3kpGJd{bDj~7z4a{) zT4rkr$x$F|%7%hf({f^|0%0RAF&zqoS~3zhh~M$yn5gH8Pm+y)}`uffU@)IGAkDjYaI~X;ELY79VYsqe%T|sG;?KTd zR0Z)zE)iKlq?cai8-q9U%W9uNu~~J*Yp}PR^+N4krbi`ZWD!H)ic@mf6yIL$26(ck>uixzs`56@xe z1Z-5>Zo+CBQfvEVlh#l61w)Y|X$?e;L!0o9P_#1}Tg;o8cX5en5Q;Wkr7MiUGyp@j z0@Km3@0|0ZcmUJUI5jrsWzZ^zV~43FxH-fybvUeSg{eb*B~+La^DI`F+9{3|EKJ>% zZbiht3n40^y8hwJbJ#GZq82)`Z9wv_g_yDuP(Msw?oQ}c-O>`aviK}g_Ns(B~(Ze^CwnFIU|l0ETsH5 z-ThrN1}f#ER^7}vVQPX&`;R;MuFP_iwVCUPCabYw#4Kc9<0vDeNs4>BI)fn_kz{L_ zlNCwc0Q<-tN!DUI8jt4pcY?VkdsUBZH^X}+29Zr*Wh;nm$R*OdU6zk+9efXFmS9QU z;`?FPA5^~K$F}@(v?%Y7_f4d{53HOy<lAMFD@R6zSC$`sdUXI0kn2vTKHNr&=Wg?UT7VzA8Jn_lle;y-UYSrF^|Vm@ryg z$F+*eoGU#iZt)QAisBt!O8_2mjEAck`{nEU`(4YJ8CZC7hLy%{ZPP}(EI%5UrbVV^ ziZ80EIpRBkRH(`ON+{?{eI+FHndvSi_Z}1^_gcNczW1$_cwe6)`1{6&&kosdS=eq4 zO!|6X&4Dj-3EzUQ_+XH?y4fp}K~>N`02QBLKfh#hF<}E^$PewSIOVh8LEu1Tyv!Ef zb8T7p_AyYYRtGBip-IA_$o_pyOcLG|^_CxJ@3*pJm-~}*66>K*o+NBF@g2hmyOJyH z?u4DUk=!r};!WTLdl=0R7IMr{M<<4&oGXv!gD%=1*6GWFcOk}+9E+fnU`i$Gsj+Hh zFv;L?%y_O`FO>3=`Qp5QB$$#hT2N$w`#vab3b`LqL z8N7{Kh=-URSZOAUWpxYj7e18uH;v~p9W5=(ZP-oA?OVnB@SchH5PyJ`t$T>n2{%)x zL3qv2#wI+ANle8}Vie(~6iyk{ce8L)EZgl7&^CJeamiVt@u*b&Z~v!V^Ro38*c zqiwD`;++z?ZU-x8&b51hSBwVQ;rM6=VP8d|F4xY8}BZ+FFeqkt(7820MjHS_Eo&r)^!zf5rPHVtyP}&K|Q^ zEif=|__^5S^Lk7onetiCm8%>U-F5JOiF6mh%9+#ckt;O@-aX^v-3@jI_2Lze(3(q3 z7T*uz9TWM!4_3~cZ*Oav%pg1-pKuj+2bHi$#4Xe9L|nnUCNeI;%9%6n4jg5b(&xkn zd^YS0Dqs-qkCq0Bx7)SqW%S-ntUyH@g3Z2vIZ!W)WD{mb&za=tY6 zek$;5a;m*w;7kvmVxI)6%+-fXwJc8qla0d@(M>45G&67zp{67Vv}HvjxevyNo`bzYg)Y8xWsblmeiUv2k@yj?a^}Qmt2KRt z^_SzbJ_Ys%m9;qQNZD>vJ{j+uNckjKdHPVc()SJVDPIfw!;iA7TDuDGn@IU`Sb6$T zwvzSV;#2-B><>T6t{nY1-Zzo*Bd~JjlxMO9ZzEK%_l4Ls_&Q7?nHpTY!W691OV_D; ztp#|eM6PpT<%hjv8%Ray3M$RcTHqmfR(2WW2?M6J3iyHV0U;ic2!qr;9V0Le+^ciHjJ&}>KE}D z-wC_Ji?OS=x*hMD$oLjmIeW&fT_Q%TekDHRmtl8cj9aGLvHC^4Ya-+4Vdcyj&t#8f z4Z2&M9J_wrf=MJRn@&Vc2xa^^E&J@;-x zga41?^ZxuSU<#%3^yWQs9K)>)0MhWAP&``Z6MvR!b0X&x zVdcy@&u;F9+s@qDb!~jiSHb?EVir3;l)FI3c;7_I55mgRhqCo>Vx2F>uBI0-iDas2{aSWCotTUFO{6>eW1-r{=KrcGP|k-aC=>J7ML_Nw4F0SI+=mi4VL4JBA8eyl3MWgw4Hx z8$skg1S@CGy)$@y(g1x{e9&jWo}hvj>mmH5Pw71Mbn0t(uSBw6g_ScWJ6C&!)j)h_ ze8jiIE}v=Ucbmro9~RpGdn7 zD`!r-GdO9&VElvljK2?ig34IrUVc7?bsc{f@0CdQJFs#DS&w5a)ybIRd_)fkbu#Am zzAx3wlQD1Y>gb3(pfU2>VvBu0?Apr~K{}deD4sYOe6Ly@68aQ8N1YQav7?lNW142= z$^#>nYB@KWpL86U`GoJBQU_)}$|WLsERF=?!DH1Q43B;~GW*on>r4#R)7*p1Om93c4!6nk8yx;@XYHnqpdYWWpj(0M9VjgPpcGxS<3%h8u z7Vo>8Be03@fLlN${#IBybK(nksg&!v0y_mUn)*I1N6sMOcz%Q3D|*yNAKtss(L z0xL(5_elP#eh}%xLqgRL5BVl7SwEc6nQHyeBj3nlPejAj!}s7B>zr;=e(0*QR!dWk z;^7?M38jjMv$@1{C?1-xd|J=ke+F}smyP<))ork&oT!VJF&zy`Lwn`Z^~n8ZylY}O zxe->j!pU`9BE8aKzDT^S8E#Y#FEMjsRt_(~PN9-so97T?0CxI#4mW_v`x#g{bKdKy zlpDo-^Do6_zA2NKiaP`Q>K2b=9fPpBZ-g5`YH?QGFU4xX>h0MppJ?J>yhKFKlAvQJA%jymBe-x;Lp zgd=<<6#m0}B_#gdw7nvrXZYqQI!_}~fblRn+-zi6K*Ek411e#zwG#z5Qaqr_d%{(CI^ z$NEOtNzLp8|KIz%1oWqfJADzynG);Qt z-uET4y;QcB$@X&DULo5nWqTEG;d8OS%l=uK=VC8(U6RHf!7rFiG4BZO(Nv8v=6g)ca29Aqo40sQplr7( zzlirur2IUroH^xgk+2NHTYWh;;VqcNRNU{`gvA?gGSNy0s=b+u@P3JOH-?onr`sb_ zqJj6I_;^1AJA--wi?60ObGgNLKfGfi-@Rew%=s=bt2YDmr{aS?4)zKaw0O#Aj=+xB z$Kn{qDx#eP4Xue}H{L z33&VME@<`KauvYVdczeFEH;l4c=W}iCvk^U=qnxW+I}SBe1XU)o=@l#9x~# z;vQ@0Y8hUv#(7Anb=VVpZzbe9>|LoY!>@5rzOFsC-yNQ&&Y05Jwe2!my9M|fvrJnN za4fy=0?$VoC)5J$`+X%8@|}GpB=U7r-muYHrq#$-r-*!lU&(E=+q2@!LCuB|msrJe z{9*gFmgD6*yj+z(D(Wu=qW)slyFGhbl#E1j8q7(~d9`8VE3l)S7kTk`rlVb=a>GW; zbUTBbig!)SAPrdAsu@1dB~st8(Q=nT`etTM%;mZpVW&_@hc|4r24M5P4mW_v`)XJ@ zbKap18!eX^%%6+T{2ACWROaS}jn*J+?oZ)H5V=1AD@SnmDDzaMC=!K-gen^fz5|hE z!@P8#*!LX7KGr-CJde@JhQ6<&LCQJXreMcLt!1B>Dpva})Uz`wI79e#K<2_%z=nuz&GDHpb7gKmVQmdGFWR zui|s;zxFRa&wu|1|Eclf-HSTd|NABXy(`$0u$ypAYL(Jl&3+@E_A_H*=FlVgc;Y|e z+?nZUGqWMiG0@DnBk4!+?un7~Be1d+Nd;?W=Mt-kt*M2URUABd6U<6pJnA;= z2G~_j+{GU=9Suu^aPZ`{c<02hauuv>g_X;>M0z)3Yl)5Lp?Pkkk-sy8uq)G|{WsVx zRN4zed*?$#uv5ujaTAElABUAQXTGl5cph?^!F|KY*xc7+5?HZG<-URO-d$)IHv4sO zGl=XLz{(NqJ!$||Mu?>0A)(5M(|jkfEF(UYZW%E@_^xyZtJ>@N>R6?etLL?1;&6EC zI_F)3ux~ZDGGDE=z2OiwN1ydIY%O&;DvCpW=a;G|4(1Y(6-9c9rrp=fkAtCEdFEKy zT~6-B0@KmZG^k%QUyfTq3^jFF*$Oqs_)4fyBW6>qQ1jt9R!rK)qs|C1-txVU zjRUKToRclFGeVfT+8lO-m#ckIsPJ+Hmxv56S)37Kz32NNOv;KZ_rsoY!YLh9ZUK?_ z8nANa#2sgZSk&JcpZeQj&rq-Ms53%b033aP-sc+Dd zw<>$3TR(IiQZJMW^_AKU$_jYCIwxCW&$g?b?Y0_?OY5|xI-JON^yemqorgI7m5m6Sz3w2}{>d};NU3RgV0iQJ zNo{I7!tdk0bX53#giEX<{H7LqTI@m|Fd|Ry*HCs=dn5HxDmv_vpTG71)kT%j7W|9hT`7M;W&f-JL1!S8|)tE#b31PZxVXs@laO}CzkDEiB3rE7r5p%(#icp1! zNHQK0st|e5H`U2P~&7P#(r(@VA|c}jfPFs za+#yl_>S*HQl-YXxWp<-jU?{$7B|}8>V+NA_I@w?!+p70f303E4CdLY`m(k_!v7TQ zr&bv#u*o!$@2?Hy%9F{Cs$RlZl$KU2xxs7#PV9EDL5sDOa6rJd34C`fR9F7%L@weFlAuGcN5nro?borNnv|OpyFYJ~vUQv0R!gkdYKF z#t|9D+Mf>R52WzcWO0nS53Fh(mA`P_;E%aunZIJd@fZ1N_VjK^}- zdVwwe5An-nEYYEeo>=6nRjU2;1V>r99j( zCgRZvy0TiSzmr|Kr3Aa+hgQ@_s`=Uon~cHRX^AF=dTtpD5yb=t6!ef9pn7GjpB11< z-j1-iI@*71zFJ{HFUf?;F4r_FoMu!QO>hc~mkX>=?+=ck&JVCBt`i9t2@@$42@|47 z2pz!sGqyky9Kd>~Y=17>yJY(d+1@SNU&{6#+5Sqlzn1N9WP7h{e=FPH$@cfM{ex`( zDBC~D_CDGES+@7f_Aj!1K(-Ic_959mEZaw9`>1RmlkMZOeL}WR%J#3aeM+`Z%l2=w zeMYv=%J%QFeNMK|^A=%0DHx`lw7n~%Z=^E2yEi};ua8z z?*%JoPJDK*wQg##{$zaCABX)xWi5^wR<_%eSK@sWDNn%4(}%LP-SkKCDPI8l!;i9S zlj(VQ-$csi!phT!@(zQ>wfv{}lz$KV!;dn1-XR^Sww~OJ_f4eyD_A*m$_vaVHU{g? z(_`0TYcPpq>M@a{%@NqdJ8%n##9#gYM|@8BshL50hxoMLiu<~ozpffQ>^P~>Sei-kU zNcRC)c{GGX67Tq~`zeKvduyXcv#aiNuuG_r#Q~F=`F0i_!Mi82&cn)?v+j`( zkqydc#;1Hb>^6p++4$cDL&m7U|-;L*`8L5?sIs*M7qzw%9+#c4EEz0SMKKDh+RQ% z$|RDhpnLc#Cf`M9k=+RIl}L7dSUGdDy{+BQ2HpeWZ*cVj5BJ;{E^wt$Tf%i+KTZ5IS16{}Z#s%@|o(KB^rR!eb zI2Z4iNcY>Ya^`er6y9oFx4(~1_FmWzRI*(>Ftb-itZVjHc%MY7cf-n=Q)Q=m%9maY zxNDplyQu1563G-*BI~wHw;8_*lV}hb{|8piobjyY8%GA>x5h{Omc$UR$*6r z;yn`yZw)JFPIxAJ+slBvBtG23VMkDdb2o<@yrO1B=R@&MiChncl{4o$C;XC~0r(5? z0e=qm2oDp-gY$DUm2hMWw4K^ z?8PT3oWrmu!Ns^4#7S@=tlWMQB+PzZ(`n)bGXwf#@u5Eq`-BQzd@WwL-=_Tl-anD{ zpJC<9X}7L)?ZsaM`uwwEm*I1mL^5T#ex+-}u-W(GW)RtT!^)YnpEstxfo(v4Z+z(Q zhJ6BF>6-mE?RVh)6KTHxdfV?a|ZxWgR|Xa6Uag=hI-fP&tdw##uwKujjAeCJ>pQ3M*&MyfZkT!N7c5e9Sk)o}gkD z4~*km=49s^CvO;#Ux*L+IoK&w$ZPYMZ4AJ^lApm1Ao6|+R?eJv z7eD;OpuFifW7pgpF^ObqZjqVAnJw0}yguG7k?lfQIditN)u}TE;Ca6PIqnls4L@AzBfMUU%`H%l3tgWUG^Ak>UZNd z5UKwhR?eJyw>WUjAl>n;*rnI2urH{j#WgJtN|O#$t0Mow`z6x-7py!T=sLE7y(K=~ zH!_K23hO3a_g1j2@qUSP-vBE|(DnG(g!*2E_)>v~g!*2^nfy>Wym zy^7wb&t;Y1S?UZRQ~o_;;44`L-#Mi|T`|NZR`KbI)V`K9TMgXE7N^3bxJ2sTGmd0^9kU1fh@Hjy zYS=4O*5U6Ns}a~0;1#$9MB=J$-%C~WeN;#LsJ zKLjgBkoQRbs(ujZ!b3vU4+Fjfk@dr_>3(=~#?VlGd+j?{i_bH1?fM zZm5==9ACTIk{OQ`)^ZxDl3{Z$F&#>V&S1z!DA@<5V_bYm95b6J}!}7nJ`;?I@7^-1+ye(fiMpHgUVMd>MPrA%2m8?BIOFK z96{M5x~l{sf`f;IN)Vg+4n!u1pQQW2`_|WeJNid+E5w(X+4-a=P98sb+@!esxRQ+s zo3qXdNBCwGmN8nN@MMPbFEa<nVt$!fInJQp z^=LcC(Rj!^RSrt_ zs_s<3g!f7e9bbf%thBs&2~H<9!n;Ujr*= zPI=xgm2y2-DCetv4${xZC;cq!6Dn!(%ARh&T@E~r_fMq#B&-}k+as5&azLa44+&Kc z6nzIG%Yg@Hr262ylYf3;Oe+Ys{SF$EoU^QP$P_PKOH;KJw2e$1!|4uk<&IpYA>NlwPa_c9#~NJDI$k*s9Dsw&tQ@0S=s_JWnI2(r7c zgo+?y=ERC1Tg9=0eaP{GbZ;oScd6!c^+Khr#gH$vL11N#bAC1UY8yie6D#|M#>)eN z3As{V@JDutb)J1>HqVlAsc)cZo;FP#apM$UzpJ=$GM9*q8;gr;k9Kry6D;{IF225T zN5_)M<{<)W2m4PRJb~>*>1O{G{QYJ-^S|FhG+T;hYtd{YnkU%LFPU6SSn+K-VOy%V z`j(d1>GbTo=KaeH<-yAG$;J_FN#LF2SLXXmh2R6qxdhZla-*Z{`_HWrwEx07K7x^4 zS-I%&1O~ypUl_=f-~;@@xeC2|#97 zR;j-goeoQ=hw;hANCML1_(J=MlXlbK!-Bm9o7`wpYvc8rfbe+v{X|y=-rg?TxbiscdhO?ai{iMYgxf z_BPqxF55d~`!m_zDchg(7XDQF`Rt#i`Kk2zMipk<2R_5h!HR6_KJY0%B4nSwvraF5 zo9So;c0;^@ZVbR)QhEY6fOtdrD6DMV5T?z0R*suoHN=y%75{&UzvROp-W3wu?gv9I(yaBGM&;Z|5V^O-PLTfj2V|0h2B zf59%Hq8Fe3)6BP7{}b{qfF;ocDp1Gw0kRSJw^3$H!;<3D_A_ z#-d_tJ{FKJR2AFD@Q#UmSHQ~I^OX-c489k}=let085rN@lNpQe`FO`fzTbnDGw0je zdd6fB{&Rf7e}vsZB`i*QYng7x=-=U86B+*oR?eL9eB(i%LAv|9v8%6{Od^@;ORRny z1F(6ojvGMa{rdku-py;eUNuO+Ek5b(aYsAftFfPRXxB7*Tx`YdZSk&&jNc3^XMRn$ z7@O}oERD~&A9jaV+^*Mc#z*2^6B&OLR?eL9Tp9Mn?gQgmJ~ck)2J8|lXR$`2nQycH zJl;K#^=Dz_%vsL~Zv!zyCz zeoa_8bM^~urxnTu`d#9qe?ROQ>SZoYUUQAYCciUo1(E!_VC88@o^2R3$dAP*KMH#$ zCi!67qjauX9WCNk5Xle2%9)d&t8L&kkbg5i@^8Q{p&}O*x@Nx3`s;Z2MAnnAas+FS zH^kISX5uv?4+-^}>PfzvBjszVOFC11O?5_La6mt`;(mCRI;YswpIQ+Zs_lezylVC* z-)W>?HTyl6SjDSmsU6AO8L%;8$m=j2d7Y@knEwa+$O*XkH>RWUXr5XTfU?rWD|oNO z(D5>?Y=w>&xkP$zA2&~}u=&3Eyx8{w+c1f#xEHYbYNu8>DQ|`MO{Ba9teiRJ@TnCx z>5s-I{SnwF)GOIKwZcjJAiRGf?GM4q5wtyWxhe-lD)5j{<-onZ!AX__hk2c*Sv+c= z*6Yx(ZQRi@a&7ai=z*xeSe?Bc-RRskKfzv#)m}J19iFGoN!Hk-?JHpIUZEZo#%Vdn zQ3IUjJ9ktK@D*PP1^!fD2?_pzbnCzkhV$%n9rns?M}NLhW;c4QJ!afKe&E(Anhot= z2*l1(ZJIBwSH`!SEjRgcQnTd-E)iKVrdL+9Aevq1@q|bK}p0Z^JI4&V#l`I=kk=H*s@_ zbKx7Xa>QKls3KG$B9e@Ugt{r(*mofErs%?SPhjgjke|1s-3~v(hJeK{=cJp0+hMVr zs%?4kps&wWd2v6NSVeh}%;{_GkG>HuXnXdW__4mF`D(c`UMdwP2@fYw>3VLmG1UeS z7OI7Tky4&L_c*xi>Ir7>FgwDHS^SYHmL01UYBhFZVd&(V&hy2|HC?jpmTix0XYm$3 zG3FI9CsTVE)7zRoMmf77vmXlxGB~T7>GhZdb_d{$DaC&X`Lo(;Q#%2({86{%RdPpxa7g?CG2dj_nW zIolptSQvEgiBIY&S4rU|Ar^@y|*hNmf#f_PchNIEVpMg2|T)YYIlo&P^!^&3J*pf@6x9Z$0 zzV&L;J&G9;^QP_&0S^gP2F&ywh%5s(On23Iz2SVlgB{>q&sW)zBYaB@ zJ1e}LFKM;G&)J}`2<4o1jr}{H> zr6EUMIG+t6W?eXkOH7BVV73~#ac{X3Ov*|hJHnoF!Y*#XbTldr@fN7E-L4U~!}})2 zls;J5iYag666w_l3&cXN@|VGSkl7QnRLH?zp|W0wuOpZvu!$dqTR&S^ivKH9t7c-s;X3pFSb@uJ!)Kf3ksnmi_tf?9Y3@&VCi2 zWB;{(@p=CHKlo3L7w=xw!T#Sb`R`r9XSAOb{z&byeYY^&NSLer2%U;nar7EIH=MJ% z_#o5K=3%3kCrs&Z*{@nW`7hotF{d%zt4&)+_}rO|Am*LcyST(E!e?rMq_;J0BbE%n zoUB-KH0&rR>f!-RM}yLk+kaaV%nBz<@UDsBgv8eKJ#l}$55HC$14TLAZ+ee z;zkg;Uj{2jaQDdhs%#L6!b3up4LkV`M3xP&ru(S2SvD9ewEttHz=D)>wk1_IFl)68 z*HM$ z!^uKe*$O9Xafz(T28;B*%pB~Bv`Fs-JB3QxQ8u`E?~WTlG371$!xsb#n?czqct)s$@ zXuDJ!{^7ntt)F?hKm7kD8^;o%qsU8_A93!)I9B&*s=?*}C~(Wcz?@ALK23cEvsHpRql`sV#r4OgcI1nu-~jFU zGKL#SoG+uWa^~}8{{Fo5JBZiq{27FHXK`-)`S5MnDb)F}kk1Eu0Me;y&Fh=E2}I)G zfR!^R-W$dGSMgcj4ZDNNdLCyTHr=B9bG&mRI2+AJI6>7yp-0ONss1=Wke9Kt5 z;_3rce@LTgs%ENkrD_I|V7a>sDXKJA{xvDPu0*^Cv*atf)n zjvg+N`dUY|t(RI}XuHtS`pLef?9RJ?V7ykZjP^JGZ~xGEd7xfkCrA>WVKx6z4d}Eu zF_x6{L~$&!>3F9^uBXAu5nMgWHC6G6jPD_#D!xwN zfyj#Q)^xYV%-Oe4&gZI&a;4$?(rQjC`~Jd)f<+(a6l)yNwxDTO_LaDi{Y@ja%;Tv2 z?(=1!YQH~liPUSqp|-BlUD37{(|^1#H(0E&vyvtorGz_LnyU|tGOHjHyY=myF`|R7s(ed|`O9QAwB#>tv+AUM&Q^tCVx> zO`@ddIO~x;U93$u>In}`zVO4IX|j*`^^a96?7bg`t^NI*eo>;caD;i3^;fA5vfoE5 zqwIElvN4wMSPSJsy^t#vj?MSi#|PLkWs{9U!d)&K$+3CUU(HpLj~~mb!Ao79o=^8|ziJBFPT%WV?bUSV5O`Dy`Sq zhZFh5&9)|qkxo+1_>5KC$^04mXwPat5sR0r%XSUf&XDa)*>=jdOSavz?UC&)+4jnI zwrtmw?Ht+8mF+y)&X?^1*{&tqwPm}GY!}LQUD>WD+x2C;fowOF?MA$X7h(S??!8i5 zgzb@cMaCk{uFQJu_E#=Rs58qyz$CDT5Y9X3;xo)6+D&gmeD0umJ7+D_ych47xKQ(M zSlL>rNt^Fn?Pk=Vd`x`GW!NQD%Hm8h&3t=NZW-P^k@X0yoH^^xU?spn{H^$i&xAce zMJzrl#n&&atN3)hS0dTdbmh}JI#%llei62jW{!APa~a0Kd{=zTKhxbp@CFt0ntVG& z({lSFz76l0i27z&Idj4@*$t2Z_uuj1z63jh3RiwWgx$4Sm+%XCr$nyL!OGclWlM7g z*DWuOU1V*}B$6qz1lM4h)Z)4+-YJpmMzC_`To;&&yawb0<3m0G_6qgl6^HJbBe03@ zi(5b>z89>VIq@FmuV9hg0R74Mpg#^fg9=*QGD*X2zAN#LiF_wu<;?l6>wLCh(Ed?; z+84mCq0-)f7hKL^*zC{4%^>c96ek<0je+>d_=q2ay+K7R*0h_J z+k_v+dnOWo09MYN@Vd^;O9t+>FO6Mc&u0?JRM_H<+BpoH{T$p3BKuxgIdk^2)ebTP z_y^(xe=qD0>h&$EY-PJm`Q3QmM9S}gl{2S2tGU6=U|f#Rcp2;sDq|7Do0i*zNARAB zg!8a+=7f7&dnOIUXU0c-I_wTAVo`0kOt%@IhIdV5{1sR^bH?-Z&8i0IpT!4#8|)J* z=(YHgw{E{p`)0gFgI!& zyf?orcKN+2lSrog7SE~85!l2x!Yv>YUmsS^ocOHfMtOtu0r5%i3wwilWs91uX}L{! zFT7_W;oV{7%n8p4zo1}H{&;-KD`AgNDbMHGI&8g7dIImANV*0qXHI&q_Hu}U`hxhV z&x2h;MJ={*Yv$Xm&&9hZvi>%#oH^@t9B<|r#D5>3_`R@WsKmt{1jit3?!Ur~AacJO zR?eJzw|F_qK)uH0vFox9CXq~CCcZ%^U+R($R8K2kg&8!6bpHb@N6_^+?nIrKBF@S1 zkWeS4{MPrh4tZkAbLoB+V4d7xZY(&xy`!IfZ&-Z#eS7_Tgdc?Gt23@pPMOH9%val= z$R<8p$WH$dmIsFOZ@@FVwb#lVXQ{jozHsC;Q)j8XhfA#DES1#W^lPyTdBBJ@d6=CX zuX^imDeN*Q{^Ez3j)q4b&F;cz1)hG~2x8zl5>~bX&qujLdPnkaC_eV*aGXK^E6lK% z?|hyLyN61D6Mn}KITX9JXyB$0=fLM-<;>^6rt0H=?dQRb@#n#Hu#2ekKpeHW%Hh~^ z;cDC*;#{}_R*skp9#w=YL`0JDkWhulJADTt3z4nTEkxEB9I9*QwY|pd$AXu0#x)LX zf20Idb_8~6dCXB}{MXm_s?7K|mzWM^#!NP1Be86D1I^{D_db>9WIex8PO|puT6JH{I_Mg z&3I3|Ya-*_VCBpi&sBNV=KQhvoL9gup>h_hjGFm2>v6n$BI_!w9KqTnhpRF`BmoZz zRR+A|n~G!^@cDGhfZp9o`QQw|<%L>aD+jKDC#!R&HTG>=4zxSIH6OB2%RG)k;7Z?V zqzZw{xWp<7fn>f>m}~2&kRRF}`WX7zzFes^P^vJzjU~zTF`8SEtbTBQ*wV!8XD83+ zs_b}5cKBLyP8z6`i<6DyKo3;LR@Mr`%u($RNexX9Xfh2{#>@5K1V!d6cCu!2&KfKX z4NW$VPK@|qVK_HBnoDvB`RdTXWP=@&I8fWR`K^pxDRB3;>@>)HwGaee_CI`CF#SS# zVzO~$Vm%BM*i}84oP4R0tFxu#<;h-mLp(SgmE16@{BY0YF6`#VQzje94Ps>FSa5D= zau-~oCbLj-V<-)B5Xl9lQohO#%}nl!E+rn5*j{ZGR+Ae+IajWYk0zO_%lQ@c+z>w( zKDo&nq|v1Xc0D9FmuiJF%MR_&>GjPH{EO6up_Q$ZNt3(oR+K8kE0grqvH5x~{Jo|J zSdAWhujxVAJ|x?RW&4P1AC>K6vVB~(PssL3+5T0wPs#Ra+5Szo&&c*!+5TO&&&l?A z+5SVeFUa;q+5S_uFUj_0+5Stm|Ca45vi%Ql;iFG~&Hh=M->RO~ytOcvE4R2Z_JY5FnkWo--`RdnJ;s!^)YH?QJb) z7#Hpj;^X~3><%hk@tmP$y3P2zc-KV6-+`4gXB-?oxw8{P& z@0CdQm#}i?WM?&3@eH~%u8Lh#t;Qshtf`uo+k{_(IZ*ep{ufrxobX(24b{NBU3|=a ziD4Gc2sQI<)^EbQCtl5qVdczOcLvMY2I8aQBR&H51Qw_H;=6R7s#|^V8A^&KHQUFXHemaGi;krJ}kZ`;vEzDei~NJoNs6F^u~aDReZRY!=9kR6%`hL z=46q*1n-qd_99q0bF$syxtYQC@%U^Xfqg+`E8Y^4&-*O8590k2>D~`3XHIt}duC~% zU2t{m(s?eENTzfayC;JOtrpkWc&9|JJ+N}-T-O{@4~q@H?~Bj(J+MQlm+n0N+C|8C zoAW#I&WW7g4l8HQxiffLZvZaE2V8(XK?N-GF5hEdUBN?muSBu~uyW>PyM}^&5(e5c z;-mc<>oE|+dC|_U&Xs6vi%aQoH^TB%`GYh-rM8jy#@9L6|Z;_*tFb^%Rj|? zCKA3LR?eJo7vCUc;C(SZ-sfRgQ1ObZSL|!DuHI+yZi#H4hLtmC+avd88FUw26T5ES zm`Nm4H;c85=B6@>?*@3sM8507%9-=+;v3@(y8FeayEp6#?AjIk`7E}3;N240?g}es z&bBkylW3qlHa^BzqUEoH^NUu?N~< zyV|v}i>cROUr^bK>sIdFw&?yB@0UpT->`D#bbDL-&kewR@d3YyNhDJ(i``W%)9riR z#dz05##_S5nKSN@+y4#1N5m(580-w{B`ofTn(r-G*YF{D$3(sd!pfQR?F`<%FyNjP zAMS~;C#Y~m?&WWcSY$tq_ev!DNmw~^vh$6%UJS^W$A^3g>=Y{GwfSnZF#tPKUxXV# zmN?EK*iZ`aLYx#b>TO!*(!OEGl?F`=fGSJSwE_M|? zn@J>7WQi!v-&M27_Taq|$#%lZ5oA4%Jy9p8h*L8>B-F_%7xTB*a>edVIy#P-D3 zb=I(+2crIBb!K5>=KhuHXiYmaWq){fI-^Eo_qMO9w>vYX%x%+Nd~=+ZvXAf7QKzNs z$t5D)zPOmoX(@-c^$_DYdy!uGMqp zfxHy|=#+|=w&Sw75<3!QvN6Tl+lRH=zru}xEL8?_rT%KZHdZOu5^{~eDO{5;K7GRK zEL1GszgT4#Lhwp*O}2H}j>~pJw##L^g17K1zIpb~(tO2twz@WqRD3eCB<87gC-K1` z5#Jdvi%Xb}7V8?~p9^RZlGRpee7#` zE|Zvwn)u}3ZpW0D@V<#L!^L6S4@{>QUNp7%Sd_(NJ zfi0QDRNM{Nti@-G%@NqdH^(g?65kY7&Ybu{b&9{bN(}0U#HW5B>>276zCM2v?iz(n z{s7zxBKdt`@mF4psJjLmuulbDK%(7u|*E;(ZWHt$~C03z>hSUG~XM^0B|fk+4*5~?gX z*>~c~vY_s@tl)8f!*64HcFomui|Q-K^v@K12%f9Xpwig8ZDr7I%grFOub!3$AInv9>|lej5ve%A6{kb}I9s{HC?dZDla!T_Jm7I>TEAw*mBO@uyd%$!wXPq1UC4e;}#IX-vKMjdgJz%d(tKzT7XhM zGpN7HtcywgKd@)0)XfDbH42;jzi=yv-#d?1S0c`VdV(s9yvWo$l{hqBnJ-( zRTk{%I}lkG45eEZ^wdY#D<&hA(x6rtyuwC-g(v4+BYfpJw7TG|5<(xB?F;>EpR!xa zP>!PEWnUtyXn2uJOot_h-qyH{vSFi}P-0d>S)WOS7rNV5S5D}~ZlAjda*tKbq-W_%dm9%)IVGO|Ly$fytk@x#y z<;;1nql$+p<`eOm*I>s`nTx&9jzQSm$8aNv+(%*M2<{%)UlkA{QFutG0^)h!bR`Rj z)w)xCb$k~4UM@SSXS7n#D~QYC8S9*GjpUwXgbdfRm7|2X#CLM365=8*F&#>X*=pcM zX89w`%*rgkgFWTMUc8m*XjJ3_3uU_T>-bteiRV(31+~GlTl}@u_c{7``*#A|&USUG~cM-`w736U;5Bvc{sBi|`33yC$;-4rorS*}paS3CNb7s`W`<=S$@ zG4Ql?W|c8?OH_h2m6HCO{=w><)|dezOze(re$1WI#d#KwXqwaW)fy* z6%${Eo#n({{1nsCz%;}Pw`RT_V@|=lC&rkQVPz}EoWv#4t0&f1_jj7x4C*&Avtlkz z+yFa=N_`_^om(4-&Hq~55F-DpVC4w@9tlF_7!gQ3Bvg(W@g0cFG4Gw3>dorx8aq=d zKiJXFj++|MGEB!U=)84Ky2fB~Tkp8(!g4K`IkL>FzF1V2`45+v4q0YR0gaE`h&Efm z)T|t{h)GPvP0U=TqhV=?o%|u=?Fh3m-Z?SCYyc};5oTR3kzR&bORO4)9A?n|5Hl!d zZrKlZi}Nxs+O)+pRBH$}^SyBsh|KqZl{06)uBs}cxgQsw`?0WVsN6R&YKqV>Z1&4> zGl=Z#uyO=@k8(g&6e4MONT`b9U%shJRumKIRunVXLFRfTaUDEcol~u`i?fnYo93K% zsOqo#xM5mGaufEBKHX1s4AA{&Yp^>`E&K0y8yb(CQ>^j9_&5KPTC#B@|LvHq*nN+jG%ES`af#`W z{AV%}M(#fpW+BI?a{s}wi<~%%yD%LMN28nHFa*;_cB<|YK8$xt3={jq%2t@zhfAcF z`g>b<&j#HSm?1GU|M9RpsC32q4lUDd#-G5uCNlmQteiRHx!Qfd!TI9&oG*l3Lgg&B zk!a@Itbd4iPh@>QtQ^7GBWJ6$FOqA?jaDG3t z2D>gT&O5_Cp>h^?j=KFe?RVk*6KU@RD`!r7ZIy2$h>yl6UWENZCBCllsGvCpoBA+r z1Cjb5tQ6@rz;jl2>J?=Bds`=8mwqo!jc&<7pTH~n1ss>@R zmYy6X!v(%mN|g-faf#_rGIa4V8+qg&n3R=AegQkl3A=bL)6sy)gP{c~*{xbpxD)S| z7)Wl1m90Q>3ztZ*Sda%py9ob}nbNEjPMguOT1W6J_?B|}lMpP_ufU$6q7I)B9Rd7h zymKP(7h&bhfrn0rc0u3f4h7wl^;S$`DsBVp%i264I)e8WxB*1oi(usl-X3XQRSF_A zcu1&9;auN|D=USube9;|Il7}c_99%qs#Oak@MLvHmByaVYC-KDbS^8XzwT4kX=%t& z7vy~>kg5xoa*63s7xcEqZPW%Q!(6O{aT4q(C)(n2rlUcTr|+~(w{J8~#JeVjk59wO zR`~cNmq@QZkf-mo++~oyikZ`_5j@ky<*-wzq{FB0v<6`Fz63Xb$onE#Idk5j(|1}f zGnhXfpZO!OW2nr{(|1~fu(>~o8$slLKdcBqxt$lFoR^TYRTXOc(24z@m^Tj3Kj3>66uu$&DRfXzIA3v%xd5m z*dJ8B;r)mFa{biBI}luurI@&HaaN+GpbZ6KS6gD@V}w z$lWUai&Wqtq0;|`z5|iz|NL}cKbTo(-^Dpr%l{9t5nvI?ImsHk##|u~mT3vcQ2_kK z*WaoDxQ|OrhXSCBkJ+dI*0>YpAukP80dz14tV(hsEk4IQr2&yo4FoDHIlKz9p&qXG zA6VH67ylB}Q~SQSd}`n#{MPt{-;x;N@WX-#&Tqs!C#Hq1Vdcy@haMKVSTBjs`f%7O z)T`NiSP;ScP}~3_?}K6G2;Lq!T$KSLA$UlrGT;xs0ZNtukEdP+jF$(rGT{U z6qEshWm?v8lmTb>P8?MRe2q&?lQMvf*(d{Ugn7tILzMy7!A^1_E&h<{Xh2$JK!8ei zt5yQ8#=9kkiz{GdD_mU4CDL07Xq5pr;b)jBSmA9EehPL7m9Sn0I5|IocTVK|D6E`0 zXRQpdS+D=|*sK>aiK!^+?W@@?1Dw3q!VMtuo(C&O@b<{zstgbb!9zlo0blilDx(}J> zEiL5+mW}4zx#dYV7;NS`ryb!_am|!L&n->EsrltGUoa}aJj^AgLw=cWjNXViv+hE< zSvjVQNlZlz`!e&Ho?}D}YYf1SH8XGnh_PlhSlNm-uZfwE+7k7;;w>`6X$JM3;#1!d zc8&9bFWS^ao^cMtX1^V729bRqteiRf4b?kwtL8r#pMMT^50(EW#;bA0Q0zHy6mAM} z4jch1N6Z0_LP6CUBAIwds9NIz-;^e6jo+tx4?Dwpt^Qni#yY24>tSUp zR9wR)(z_*<8`>OvUu2eG)x5>`dDtIRzTpjRZpzQ%eG@4^4J&6(Ikch8L3+_IVw2vO zNlZokZ(qsghBi0t4eHizP(^jVcKct-g|Bt#a50I;< z)*m4ILP%IcAcRE-ND>Gj$Syks5C|fmFmz^mX1bY~9(ra%f`ITu7H#2yg9t7tiXw|U ziXtff(yWfqauFfu73D$7ZtpB^Wt(mSe`i!SwIKnSKP$372Wx7`WN~H9kI*?FV7x1hzf8x;6$;EAW8O z#^5;Li6~<*C0k=KWuP)x8Y-Pw?#&CfIkf}3;UhCk z$1X53DIH5CM0R#SU98v0mc{d_BAP%;&;#d$%X9o=3W;PdHajg3Hec9D|qIZ23Gg9zCrkui~RKYst$nGN~mmN{HEqiUmy z{9VMK#`+`llVJ6@3~f59#VfwK*45%A36WSW7G_s2CW;wbrDCJ|P%cQRSYJS-;XWq_ z9D@$^Nw7Liq)g1g2W6ItSuipw6Eh@4cD$-jf>Cx46oFvBG{WwFa5~(LfU+C^B$$)q zeej`~9PbGu=gx8LlVFtRYBXL4PFkrTM~=-ImMM@_&3LN6d* z@NGqE0WmGx=acdyQ-eL#Qvaz&_x}d0Rj1Hu9b>K`LOu$n0yp}R!ybIqS6td2+#n%Z z!5)aWrK_FM#4VTbE0{CVM}7%s%1L|qM*_!Sr4}7^(Xmsra4$YKv$)(1Ba`BCmxRd9 zEX;{^^K`x}uGhFf*fYEVXNAl4`f~AT&ww)iZ#)7fc9 zq7PQ9v%oNJ@9^~yQOri8a@dEmucWkn=#~(P_945zGFeX9Y9{{+6Ge=}$KV_}xh|h6 za11`wC0`L!YFNDw`4N0rW*xZzMkaOSJYNW1M)sfDSD8xSGZ?j#H$Zr(O)3F~O zId|l&k@DpEZEfZI#3ZmS5~sYz`5VPDY(u?{YVr$TK6EwtnS@BJCK>KkM$1R~R>dnY zU!~dHHdHV{j7tMzQ-8_6zvP%%bufj7*BkGZG@Zh7tQlaXnjB=h*C*=Mmydw9Z_I zkI$?#*TTr8&RioQvhxxf$G5oTk5!4@;{8z(7v}Z}?+?S-;qtyI+2)GRgeu@6JQAh? z9)OV(6yVV&bf<}mi3f!4H2>o}5!Gq_FhML4moIB;+qS-9Tv&c%)3&yrTgz{XKTaA+ zl=s5&$w~i8N77%cDHfwO@xip=Le)I2zwra8WSx4e9q4>sreE0`>y17Yno+78i_i^4 zxR~iy($P(1JqeMR_6!%HQ=&;*MPx6S5mH2UhqL4)wY;ssF&L>$mqkR8rN-5}TD#)o zGE2tJFfu6_J4%SeUzNv?>b3<5zg+oiTRVD=T{`$3;23DM$S_}T>y$DZ5XY?S4D|pa1@!A#KFCkjN z6-*zUw`B}ohj~%I6aAY1Kj1_;sVzS(a12t^H}6M7r}g7+_|VMy@mCm`)Q`VNi0r(9 z`sV#;x-6!*eh~cy5~jBl5SUTsG9CZs{pbWJ-wW^nn0#*vBj?U{?3?$aDYH0V9?tnu zaALTe+uyt&odo6m2s{WT?}x$23A}qWdF>OTM&SXWeZoDy1xxva&9n6hYYkLRHw?mM zuvDEotA)N{Q;*B&LJn(iiLYq1HK<95RLQYOA4A+oar>J1yp?jJ-Tm=!1N{vJ*Tm)-aqHcpOzhY!u< z_z@U6caCFk*ifEl{VJH}83G~=!$*I`_8T@%uBYO|Gr67wBPVd}(X(~ikD7o7gl_v6 z`HEJx{q}4R#;#SgZU#OQ7OAt6)ZXuWR1kkX-}hK-Jz}E+ISj!vUpZ+*aEOFx2}2-e zY#D;nV3tVB=!a9}B)WW(z%l4hhM-Q98dMvCQ}IEW1*8W?CIzG@Au=}vl-WG=eyvPaCx>3fs^Yy@!^?V{}@J2;M${` zYeNt<0S^dm2oCg}h%yA<%XS}Ny11~Xf4Hw$Eex4w2&O%R7A2?B81KvAht%RR8@$fUAt?hBzSOQfNo%CbgC6yn{PtFv8dOc<=UkobEuye?7Yt-u39FF87VC!&@d8)W=a?cnf= zp{m#pG|a)mU!z6Isk7j(kck^Hc$)|~aAC29glGjDFs(6d%L*)mSs|_B5I9dx zV#~V<9D@_}>TDx&x~4b~ADLM?_Jfg0>DWg?WM>D|tFw)4Sv;>2(F9t8VK^sTp5w31 zHsYsjSMl+gY*%39+}V!3I@`#Y#rU=1j9&xih0D18>TF{Ul=Z9e7?`Yo8b(fF-J`c_ zdl0n<4+w1!HuIf`vIpy@&9) zglGlxFhft=Dl(IQgK|df!vq0=*(@jR<-dt^8LX&F0CnuNxU7MX%`7f&`0}rR*8h(9 zKR)U0K>U5e=C3}fO8|AgEUtGB=Xysx-&0EcL&a*pc-!H^+N5f+Yq(k(ac~{K1W?a_ zGQJp(fXVpVVPw)yvSvJX382oI#d;x}^^@VuaDUP zV6Hb75NWu5`fHBfaI+>r`Q8u@fXVlIFmeLl9z9&!fT$sOKxi9qg|Bdx4Y)1a6HXHb zOWo$jgx(M9)LBq!`vIzb$Y74L$AC*}uR>H`nR18Xp>?}azv;pP!MiEJ%1NaJ@4=%sPX#*$A zU&6;`vit=YId_)hrwu66kAyS*Yd9xdrpajoC)*F=<1^X5A4X1K+oN~u_8+wZ4+!1< zm-|jcwg02C-33^;uh=VY;VhQAd&I>keTAWF$^1a+MvtKN$tk&7r_&9@-+;moI*Zs< z=#9vY_T;b&>xmUq|#=1$F4pL*U6PMDMa@-_m;Ag8v0 zyjG1&ff|Wj@DP|qXDN(Kip~-Vk)4s48!g94+AQXKL|B2Yq6jC4%lsyi`Gkp3{#W3E zF!^tXk#pyNQ@unVO9PjOYv3|CL0k@xQomkMZ(-QJBJ~p$2ya*$c67sx+$j(Zr z6AL)LPJL9nv3p!^O>qm#Pek7b3 zF6;J*1w9MO{4zWWCi92D$O+7Q^m=Uts9Om22+p)^>mwzaP) z4vP1-+S)sd)zZphr}HZ!{|oEbDZ*OC=^?`QEuwj-X*6cR{ievreATC&#z!PXD>#k$ z%~D}irfUtQNRH!dYi0s_RLcOqU zmPJbwPlzb7l>*VkV{opxns~dl#%(q)s*c~{aWU2L8yGo39Ujd`_phi3c|hp?b%F0h zRR8*Tw#(g#Rq+bvJB$-|n>~u^*C{^6H6p(Ei$yUT#m=$(-9*d-Gx|zWx+%?-5UtRZ zCd)Znm1aMfDNV9nSTYa8kHjle2hkzCVEn zz~uYmFmeLl9^G9Vgs35SKxl)of$v0=LHI_t3*5=2{?1ZIanP^`kBT{9Wyz_t+KJ<^ zkZr_kbR&m7c-WT*Z4Vxj5Q+96yACo{P1@=nZ@@IE-;93N{%<%-PNvI$7B~hYwHb0H z(qKystR2E@_`u9c@^=`SRFYSGA#^2)v=dZG9tep-+%9%nwv}XRadok+y|;9#d28Wb zze}fsqTNfwdBQxvCdtqc!PmYxk+4T!`vq&Rb7SA6O(O})3@ca=tCtRN6H;Xjl zr)*z5=bFj@ZwjGVx_N5j{i zA!-pG5PJ2ov+qRI>Z2`N&oHsK(p@rd9eZ8O0IN<;p^fAAWE8W}o*b6pAHGcJ^~c{N zL@QW^$#TwCRoUb*lqu3j<_ZYRS2@WpPZ2lUvqDl>`7atqo!!irWx-c>+Bqe-~llC?t_sN`1a`T+8{&?!2?1YgunW>C1ns!%=TTO*+V_m;$Tmux3hlcrv8x3 z*r>c27OhipwbGcI3%<`XWAR7f8*R$r8@}nQH0>L{CLvnEH_Wl8Z&`?kVg5*ic?iyz zQv&6m2pof(T6Esio&jB!Jb*{QtUC9>$fWB0LP8|CiObh$TcfT1pOZ$)XQlCw%LvR9aTk}uIdW26K1bjfe5iX&BvEQq zy+3g=J}R?_d=y3|MdU&Wk>DuCp_Qn6OdR~)AtDLfp12*(2bbUYJtl6JZ^g%EvV04S zoIA_0drTZmzZlN+^KeeMOxyRExY>RdAD_wg(=c)Z+a6tA8-u77ctB`l(BnH1Wei@) z_Tk0!6{Vrm#oIw`?UkyrE3xSJW?g#ZU2=u>X!OTp(I3B${&-UU;gnkNyTmHKdU!_f zX?TI!RB=6Xv0Ci!D2|jT&u?ohZzm#;ucgM0Jd#pvc1NXeKUuxEqdrRV~Yw;#|l)ZPu*>mz<-c#ThgsInz^#mI0j=jY{8I657 zK6caca^NWPp)j(_&eY!0;845BP@l@rK@urD=b+v;)@ieNKUc&P_YYjPm)l2^b2gkD zF6HsJjr9yD@gKk=U=qIyMpk|0^wIQW&3No>W1TaL^{D9)e?)wGg-RozcVcUo20})>=&H>MNNy zq`oNPz*Os$T<{I4GBBe#HQYp5H>2l$v#q<%vr*ocCwxmI!{d^Z>QlCA$m}OjHq;M9 zcaF6M1ZK6IgqHs+5@qnAb`~U2YE;e4bbM51&6olslbSJ6LS*L;)Xsu~-@Qd7*sqQ7 zy9b;PF2C`e1vksP;bSvd-UUX^o#oihf`jQ(!E;PbxHRd!&_ zY)>G}s2_I~7nZiQud<#rbismk)|T2~fu=wODC0Bwki!{t_^L=dgHt3#D>#Fhv6)-; z;3AkC^=r|41n0x4a?)EK7B~hiwdnACEO=T+K7tRv^Z$fS;(B_Xo&2iYo#LX8#a*;E#VttGq*a)fiO2}p4vC;2dBzOZ+S<7W6+{}Lo9e& zNA|%7XV#HDVPsNA-YFq6_YJXxS!`EDK!LuY0;h$`cHB3_ra(FG#Y13nUV@Qx=RD>c zVo9@jzdD@vPs6F<@^1Tv*fc2jSK?tXx&H)=oWQ+D)7QQsY8oC8+BeMgorv-cGqUv! z6H9~r1@rj9<6;I_nR03^_%rQMWJXVNScOM@^R2DI!xEwutiohDXRCay@f6AjF$r(L zNpezJ{)@md2vK)0L{zC^^`nP>*L|1aJjbcUP$2kJ$L|2zK?;C6ZrP%;o1g7 z4Z#CK+kl6B3zV_}`(WXfz^+Gq}Q6 zOWGNXNQhQ&2J4uUw=BYKFhlBRqxTWM4`<6sa``I)$6%%wooq7Wr%Q|P;^Q-G%C}); zQd7PmA+qxd8$|o}X3i|m|14s{Y&zlmPjF_qoJVKdU9+If{}GRZ$^4Tra_-D;tRF-) zWq-pz2D87OfJnnK(qH_h*0Tt6CR72l@kp2oSQ|!8P=JRS(0(FnBOVaiPh9FNW#uQT z*&bt9tGH^wcu(>;Sg+1fQ`;}lL)7Ck+LOaLEcX?SHV#Kgh*mHT6UB_J&aoQif^?3R zaEhFCmWu+%prbZL){Z(&YEZqMFo+MzEE5ATGAR>%5+XZ`Fgtlz|zY#?km^iC{5DtYo7b z{|pJy3XOkKeacqn-vwqvO;GO>EQNFAB(%J_z%lqx?=niF)Tp}kFTqD;mWu6RWKt@& zl@Qsre)TS+gWnY*lEB{I4(Ef*Z~R?GH_PwG$7Zs80*stH%dvME9ZX*m&U6jV372X6 zT}C(C7vbYG**+gePGH-kckA{awE_uy(h2l~LT1)7D-*ZPt4M??+8148?VJADh7@)2uI5f=s~-OrO))E0VNG{2^}ny@AgC6@ZTjD3WU zz=CzEErmmg^~j9w_o?FXr zia*5N&GMHvdMJ@H{96$UX4nbCzkw6NW!OBF=;ZlV_~1;Qe+eV!&a-hSk#arxPr+PI z5D;ltLHcW^hZ3E9uYm`^4G!nB)j|`fn%^!i#|*1AW_Aj%|izs1GC7S0wa^Aa*~9|&OB^vp6}D* zx48d=h%3-Zd>qaWm;30fTGC9Yef(cM5~cz^1|#RLfcbj2f&O|d75u+&75oU!5LX48 zTU!ovHdG0>;n6Ua@O>CLK?xpiK^u;!y?8)q!?Bm|M3mvUGh4$kU0s?%zVfi6?1(Fa9GTTESm5Zp9Lxx3H?p+hAtYPenhr*g`<0v2vL$a7Sf(0<`{-=?Mf!vAIK7uG6P&8HN%!&-F;E&MG95tq@592*d~`ie#ygj*y;D;R`{ zf(ff`JPC85eiYgnJPxPGNoV;Ufn(6oc*{Z1qz2WN;8A=~W|?>xMkZzAAqkP4C1||m zK-gXTxnM6aT|lJa`zX7{TMjOcr{F^~Ii3h3=gx8bEeFE$9^pLi2B(DkD<*F_xVYX0 zAD+qeQW!abYmc6-+kVspJRo%2zuC7iskXmgwl6nMDD@S(jnfHdz$$f0Ech)48JN*& z9F6~UU)ku!KO`Yqq47_uPuc4HpMlv>zYE>@uYz;rB(!{yz%lqxZ#hV!)Tp}kUxAOx zEEOX#GAR|8N{H-Qzk18T!SBySB!T+?KZWzbpa89^P+iy9z*?t)xpUL)%FmeLh9=%()|ELvsKUZH9c}*q}=dtgXOud|+nTI0{B4W#b45k)0Ko6+NDJvwXe?CeRIh z2u=x?LUeizP}aD_t)XHaQTjI(I!)%oZp0pz~uaT z7&(D+kDjh=LDU>PAha!5NQ1(lB98C7RVB`e$J(|Dv4^ivz zfYAQoIo}4R{KMMWZYxX>XGhGtlfDYe)v2}MrwTGKqb)h?!VSK%(RSfF3DF96VN!j{ zR@?X`%m!&2_rf`H5?a1Z;23;9&agF9b8aP(Y+%_~|d%eyZSR`)&C6 zOt!axkrUYV=-s;gN3FmELbv~GePyfK{~6h~|N1?>eLEW424z^M&TmMY z>p#Lt;c{)?d62;OlXw73z8{B?6ZrP%;o1g74Z#CK+kk@aM3fEqO13s&vbyZbFalfu z1uaWXodq8*XvAi89)}g!QpAh7VXBG&`> z@Jz1zVC3AnjvX#=^ZkWzzCQ=2h0C{nxFC`9&)^|2Ill@9IKMM=hsj^@j z5JhHm9fuA0l&^5K4fv#lXbBr2=WG>@J77N4Pea>)+u6? z%uv@;wzU`fJB=p=C&GGl7M9v!fo~c#?$4~pXS5)PCwQ-~inJ#zX|94S8!^$yl-s1V-TAL<^Gp= z7)nQb(az z`WmA_Ief#qB4*53D-~(qu#SXi3EvQ#xz$PD33H?7sdp6K0jJ7IZ~1Kk$Dl>|hFI{l zj_iaF&a5Llz{sSIERqnJ`-WJ;EVjEuK!LuY15OKNv7&(D^kEXAEL)0`pAhd6o={phS8`jSD zdyG^1hI@xf1HG$_y@m(GB(O^5lw0lKz`cgi;Ec}XFbwzkW?dVGUr2~nFbvZg)3)l! z-(gmWTX+S|latu;lLE)!q&73U^r)dGHL`vL@e)2Vvvj-wBa_ncoP@~EDy$Q&&l7mw z;$`&LM|j>$Kwt)%%X9P+n;AcC6r14VGufUCBj?WcdU|sqf$?{TGk!Rn7cS$`y%ls0 zl=VaL7?`Xd1S2P~?$O(|J&0O_2ZXiNy&dLdh!?|3b;>OGGYIv# zj0WT|1t0YljWz`rN{Ci41rx=LEkE!Lm_|3eFmXUlNwZ8fgA8a znPuWS7@3rbYb8W>RzQ6QfwKF!2n6%sgxyEsba2^?e+I$H@x%DgOpYIdk#pxb_8A1q z^YmAOd7dI5(r|n9S8RUk)i-CfAq3$hmVJdsWfR_fNz5{t28GF5mX6iiw=xfrr54{B{^Qfpd?Zu5Cfo96TVj zEqIsjM3gOfDBD*RC-fEv2aN{>lm3QQCa288?=h?gW^^BiAy`WUi`ir)8*K>MBt$D1 zf=P8QEH|(%%!ZnvK2ESToFgZp<@E)Q!AIjB!#YuFRBZ*e#7AY8iUlw-DHWSai0rID z;~qoG?{OlMKp(Ii&IgxY;~qmN%SYj3Gg&?YM$Vn(_&tV{=?{f7eGZ%xF4N>5Lnqs3 z;o~#eJ_ANhVB4d2>-HbD0uKn?{{I`={BvG9ihA}*uZIGXVQ5%c55Ae;VdO{U~(r{{x&NC!OVA3LJxu#=`(XlNwaF{@>$+GRws8 zU}RDz9+42)wf@G#0K)E^SA#qMECGSJUoN}G!vGh@Gw`9A98ZOjbLTkzFo5v9PdLwe z!YSeMOdbZfxPB)-Jd^8pz{m+)d-QDG_M;}?0ioOe_k0VJTJ;~6?Zbd+qS+KWJH&>-{Zh0S_$-_$ zC%NU12^@o!TC`5ou~SR%DST{Z3Hc<9OiIY*5+XZGFef@{r}JfTeXocoa8KZFI4fMP z*O!Mv?HN$U@4_QsGJYqFoIB$i=%aRttp7Wl_1ECca9N*gy^5%3L7D$M9tD&6S777> z<~@47whK|a@PN>EVVFOW%hzgKqpkj*@{{jsYdfitZsi+hW&CPEf3dqTR9b0%Fmd<4 zqxH%uyWm#~MuRiDlfyIYDgwsVO-e`FGwduOTER0+YfRhfA}7JDs7Y$aa3Y*1C$Z&2 z1&+aqdbOYtc|+8C3*o)^$jlmYER0NQ$k7raJHMb_EofxR;`t*Ynn1U30h|*q&+%6a z8u3%M&%?)OvVAU$oIBgGR|^^$vl#zwIOE@j^TK7^ezl-62g>?4@EDk^e-%bfVBMq1 zYo8Fc2oDJD6L$2Sh_VO2%lK(RN5wo#@DC9`R-2qM3x1kVkIQI44pZ9?Mo!?`qi5^3A2k6F2;KJo;@gT;+rKc|rwNlfODjvA=AOVeVVycfRy#28 zNrDQ^=r)e#|21Ff=;nW;glL84KP8&9)&C!Y86h3w0XR!eQp5NSAi`iqX96WKGM_I_JD0w&{I!^jDYd-QT`2cov%0io@{SA3Ib5q5L^tW$w_PZEP-QCqTV!Y(4_{}mf)lKz|697A&gAQ#)lG;~_9P{{xJi zz_~|H*R~*P4jvHN78HFaqHMumvb6;hyLu~?s`0YHcCVqO$*Hs8uOUT|8U4p$3APc@ zVqRGZM_YoeBt$D%g2{5umLWI-=0nX;8-l~&BsnQ9zf<5Cgs86}MO3L_wH-JZAC_4z z4uFwKxp+knLM8cBj?U@>}yCauD=}4 z^%vo!aJja>hLphf=kWlTe18^3PT7Cl!U4V`W-u7wZHEFWz!GASSbjo8oZTgkJnL;Duf?+9mlCpalwrlWRY zO@Q*f10DdA??o_j?tHJWH{VBpA{OTz;hdiWCx*-UMoI4+P~K0%gJAN0B8;5CyGM`L zHX&*h9uV3lJm%Z3luh_UwjWKLAkL2T7!KhYSgTH<1>Z{~12g)N!yH`gD;sSNJ}n_y z!5mDgPuZ#*cfxECU+`l%M@~Y^-w-$kAL?ErNt7B@?-cwHAC*}uegGqrQt>?rk=;&# zx|hho?<*n_%#Ra(UxM?&NAK3{KWYUY5W4+e=_^~+{%hGjESO%u3a_obc-nBG*Kh$R z!)kRFmGB!1M0_edqxU$x!25hPq`koL5~3Bnz>GRE(ZnrBa4yUY=@@6jnR1d_?h`l$ zD~%fpMq{T-h!5anGi%5y7@5?NVF{6)FKFCQFq$um>#vG<0^Pw4a8|fn8#fe;&VVw0 z9UcLb@oQn^+!>GGP%xS^i}gptS$`PL43~9sL&4}QDDw~DQ81Z*07gz=-lN%TzYw(x z4+!lS-s3wFZ_QaHrV*zXo+$vEqJ>?24*xPheg;>1dADHB^zxK){_ve zU=b$Or)-suy;I}Ly2{Z)Va6Y*F#ALxONdr50F&jMEeG&A%!m4EXb12QI7v=Q%TEg&gAjGLFrrEgt1ZCa z@L`$d;;%3=DHnf{5ZPG(b+*vO@Yer9e{qE2Ed>PTgSiaH&lV=|yZ|4Z$@8W#a_&6G z&KA13ULMZ%QE*bYT-#?06Zk#?4}i({VK8z6-yS_&+kmJcctB_yaF1_+Qa0e_Y;C}V zj$+AtTyPnzQ>Vy+cL8KzM$d7WfJ=O3qfJ0fLbQSjm{gy#7WHhy?T8gx}x8`QY*!-vy9A zN5b;&@UfXJKLR7?&T?!Q!0}6-_1|EoX9$QiydM1}+q(d6wx{CbGufU5BPX!!(Ytl~ zk6M8Tgl_*A`N~$c|1GjTGdQI**d?wW7&31nIue$uv!VpwPCOc%(RLg*V41Icv<)~! zLbQSnnAVuKWd%-ySs|^WAI_7L*z!pN$KXWWPTYu`+JRH?k(s5V2Sz5PqbMP=vjggO z;zqVCoj$ z+ld=mI#b+k>b@ctB`-aG>u*ls#CH?HPgk$8|~_h2FOI{>qT? ztYF$3XpwU2t#(-W%ZK#RR5|G_&lNZZEwyM@ITk#vBirDEGwaA!Ffyqln@fo7yu!MpZ}2sAZn1r$2q@4l zycbRjm+k2C8ZrgS`LTEiOwNynk#pyKL*q5X1l}(Q=lwi5HC)~|rY|Bkra`$s7Y~EU z{n;>b0{0$GU;BorX?Q?r->`=7M3is%dbT$ftiPf(bb4v9*w$Vxb@vRlwGZ}`x=aJ{ ze_}>h*>Y;Hc1)mwP?1J~syK~~~&ufRRa|c}zlNXDsGLUD=U1i~SAWM1QG-{dENd z=DfM=&yU@Z?3fB|HtXP_Ff}j}M$TOWn`xurNS>vG{lj&zFPtK-4z{oihhsWa3wz<= zFtxBdjGUka57(fLN7Q6IAhhwg&9|^A$V>?0S^e>_E-B(q#niaigGpE{e~I+h5oko zp^A7;VSPkl@3ytTs^pYf@Z|?0KoOq|&*(c28?c868CxtV5osH+n}lcu8&GFPP26$= z1(+GqFHVLtLWS0%wNHx_$Y9o&{z8W;_Ze z^WTJ#6PWkt_S!H+?ZN{>8-`tcC!!3)gV`QzSbw;Guqd8ObQZe`!@c$YGPHWYJOueK zF{60R+U0<@wv$H6yGDP!Gx}qX=#RbRA5Q7jj&wbs=qwBs+Ur9uDXm<+xNEq-W2jW= zFZ3?1|Ig9CTr8t(1gT;)8dbwS)TUO8UBzm#zoR%(o;<&;t^7}mkg>y$lvSJEQRy2f zbPTl*6sm>pYGI&9A-*aR6HP^S-6kT>Op8@|Hd_NFPtAUEuQ&`_6*p)_S=>b6#J$+q zS#*k^JXPQr#Hq&?E`rrBe7g8oq9EqtK{PEtb4HOjfRR<2ruLQwhuTG|`c$IU^+lS# zVz{@rIMiMTG=!$h(b!2>DLY_vVlR8Dzr0M&quieDw&f;`3Lu`84i5}eszb%jdU0A= z>L{9@hcAfu(x^)Bc2*@hptB^&zZor5I?B-?4RtrlQdx`mWKV&VwOZd7akG3`Tidqh zj+`~Ju>8iRZEZcbmfsYAh|-+dwcw+4(L7jn=scJ%CFSkKzZm`c&xI4`E4cpU+ehEb&q$FG4%;CUuKIFsjTFmmoZ$F6~JalLOi*L%T9;r^QKYakN% z-W?Bs$@i`>asuBTJzU#>s3CYj=mp64eG61Q3Sk3QW%~eSqS%kTFmx;2M|@(j=~iljNkde6heW2x-^=DIztjwgI2U zhh>(FD`8|(EaB%&f zaIRm6lfvbi*Z?=*|G)!a^8Gg$Ie~AF9(4aO~9G_@w7tbKt+6&ccVYT?4L`58|5F3$(HP~YMl<^t;$YBt66ER~8Bqb?r5O$FeI2|5r+_oTLk5kgLp)&=RUpN^i ziFA|q!8vpCTs}{!Noe^-fn)HYZk>}vsZsS(-HbD0uKni%oy>Nty*UMCfkROvkGEi(O(!UtrTyF+lz}6V8uG+=6+*q%*91v zPzA|@n1&#F>B9)0E+SUq z!!xVMAdF0^$bc_|t|F0+f~v?-AyJ4$#1FH6X3^i>Yo6J>Rm=eMHBOC%KeLdL87g%w zBX04{x2_&HONhkkk>N68a-lwFt86?D^FhkSqi~X(l$L)ka125k&nzTWYFNFHco-j+ zSuP%ekx99DKtg2K8X89z91KsNi2mXT!&3xA8vc?pY&^4Y^E?qBoXPW=FmmoZ$Ddg^ zxZW+C>s{caaDUC@nT4D0rFZ~LzL&tr34D9>aBTykhTs9A7Zcy~El_GPv3AxrV6fER zV{9g#4hz+(vTz$9BQv^=!v+lb3P;<3(BUh?-%g^n0!AEBPa0f(ZjV3h#Gd}D zJMf%@NVEglb&NVGdg_)dm@^qAMg3CrE7G$B1ZJI_yq4b(2{U-9MUNJZ@adz)8Tjzb zDl!#DCRJpTFNCflk&c3@$TPlbR#jwnwtI@x>Q~7{X9bLn#iKTnEouB6fV<|*R&=;`Ti6h0F&=e z!pOPvy}rJ9K8f>t!#TejP7Igx=%W*kNl@PJ!h>M)ekY8az`I9l*X|%{6dn+Ijd6(Y zM3g&tBHQDOo7k7fb@f&X&O790PC@IIQ-HN&oqj6?@tF`3g*f#%BirILRV)G8+J}cqy~fIoIcQ>%P~Q4P8<0mJlsaQRXHj!74DX!bFh*^D>+@cY%3A;Ftww z6M3m*!bE7jc@YnUS#O?)kx9LI))zw8n@C$h_2#aSC`7$^BinkjmS`@9HQ8xuI(20? zuewr?#!#rkmFyrQ3|#0ek`ReCB*X2}iDJf9!8i_PfE0}7aEjaoV?Tjo(4juORi{Y} zI$hj=7TrX86h0`kI2-{Zlj3lggvf3Mt3JF%+5M0R1nb*`-E-h{aM_K2c+1K0S@_UQ zj?aLRbLTkr;VsJZ*TZ?f2~G)@XZyojPOh)Vhi7vAWf(buYmZK?n|;&-JRtN|=ytvn zsYfB2{dyTU`$DJrz0H?I{8%w^D$ISvB6d5p>wc)%UoWo5W%L~qkgpo;&`LQpAt}&6Of@;h)AyJ5>#r@fy2k7L-bCOS)YPKSz1lONtB~#R2$&UR8yJ~Xl&yRrbVZ5O6jV_rghU}K z%AOflliL~07EC|w~@h>9|tZAIC@J_#zey~QUx zjfK!J#gx*hDu;Uc6!Wa03eS+Q!>iou%Yv>fcT0#Cs4Njh;>8*Hp=b31ja6MH$M~{6XGbrq!b;6N5d>dN5IIW6dmRZ zp-WLDx1dtAT}Tw76z!d@*_k~!&|4C(xzvB?_2ZInK`pN5;kV&^P*< z#WFS-S`?WfV28!I%s2Pi;#?vj?1Ga+or#FilebFCEif^pwA>75%UxQ&C~ypBYSGJ+ zHhZL+d=n3VSxvqMBa>=!qc4Q6CXtqcs!1&*3QRW8gyZKSwgfxVcEcy0js)fJQJmeRF@3} z1ZMu+)n$^vG3ZfiC)X_K?#z046wDGc8%8E2W^G>xU1B0t1(lc=eYIVWLX?=pvwc-= zX2Y-)I)*A$V^ih?kG3&&B2 zD0EZ?jkQlB# z#^W#>q+~n_=g3_$elBnfJ{q4XtSd;3I(_uTmWT0CnWf?(7@3rc2P8yxr<59>DWv>P zUmN|k5q_r#h%~$<<=6O3p_Ao__}EOA*MyOCXF2|vLdx`R;Y{xW=Y;!9CZ8#Evb_`^ zpUL(T7&(D$kKV1@f7A**AoMBMZ~7J|wSIVew(Wn$%0h2RyfNQdKY?i2fYV{QI<;0i z$YldMdH4Fr;Fvf04EZWZJAuztaK`h-(%Q% zaLDaFyNPJA<(X2EE-1T5h!!X)v#rTn_2guj7*bE(2WQJ&PYx3}W<7}>!&(!d<>Yug z0A@LP4~$I8$uYhVx|~E>3MwZ{L!uDnp;E^d z=T*Mh*7f5G36WSoGTq`7Q?{zck6<=P)wm7Lk-KW#C~you8e5!oqSUC}k zhblvb-X@oVo&c-XDLKz~;$(Eldg3@=9ce$XTtX!Jf$W;b9DDYbH8>NdhO~~=aJroA zmU{$_X${m{wsm#I`BM>So3Ij(fLT%oVPsNL27DoONr}`HR8o!#i9(c=jj}!1IZM52 z)i~B^EG}*pbHVJ6Q*brs;$qB0;^s?WV=gXk@lCugCO1on7APj`m~*#E$>T6Bq?9}g zC(Frf`R4-1EG3aQG2^G}jfe5^nT6yb7?~832YexPA&Ha}R7k!V5``!v-_LeyVk7zN zWVD);`kkLx*>rX~73HXaN3r#N_=Y}3n9PT=8;i&>H?MT1%gcrmq6NxJ{WL#KfmLPp zg{dM{W-mBr?kcmrz%i@L#?c8+*EDFc*&PpqS!{NNkx8-H*%v|=n@Cqd#b&*bC`7SY zn(abpMnPOOR9d-Ox)#H-d{9gz4a>5Rv%rk?WtGBUJ*xT}C}Y}{Gkr6z>&a>f(E{~E z(9xK;RYb0V=^#bqYB*8uB66|7F^fpFVWwlJmE+U+*v!gtC5%ie$0vLtbmfQ?6jV7@ zhD0GM$L86tcjlTlWjMj7JSk?CMj3IxoX_jahL14I`6+^O`S&E;y00 zf(p*VAyJ5e^Gvqy;m_|W^mq1(TUX7OXIB=gC2~pP{;-gpDy+FzM`M|nC{W`a+R-Qt zO*@|K?hF5Zl)7}$*-JvSK+)N>Ng}Mu(*+YoDo+QTIVb1kV+4-DQf+~(JWVD;%g-rz zFwF9E5{yjB&xyVey8J{M3o1XmheRRD&o0@nlokwBrNt5Vf2b8xbo;aWqjJ}Z$)#a? z{0fi^wOvFi7ZXvO+z-oL<4cP!KvzqMRwzJC5@8jfyI{gd0lE{;oVx&hTj00~P?O2f z0`y}%7-j+bA&g84&<}hebODMq7F2*f9TJ5oK+k6De>RqP;ng>412nb-F5ms}G>?AYo-X-gNMH6%m}6rZ^XNw5mfb}(I}@N5HT&0Tml5IAPx ziN0!?FcDgGw!#Bp7M;yuWKwkI`$FiV6KN}`=)4hFbhgWOmuKEUvD#6r7n(87-&^LiAk2F6AsCs|n{#|2biIkR6;y9d35i0OoaeGNIqR9b%F)plkd#q-y z!V2?FqebhbQ%Lr66_VJcMPuG+B;qn;>Zl>xiC6>IMcYV-#2S*}`#uu|6IRtY3g&`T zjU(U`xvR#W0>_}E@ySj>6Dbpi;e#^E#KAB!DH8`si0lq-t1op^cFz)lU@e=ldj^~i zF1yAjJ6#-~jt|Y`cnC($o#Xf?JISy3`f#4V45x(4Gx=nvi|a4q!!x=5JdB*cwMWm^ zZ9i%P9uWFXpRIf+QjbEk{VTF<`}6Hx(~e5tKyPuC>w2T-#MH1l6W%(n1Ehac>-y5vJQvo=Vl<}CB7IZK~ZRQIcv)V-O1-R!y zOU?Fp9L!R)EsRV`&DOpUy3|C<3Mw^|LZT3*X6I}dS5y0k``X&YXQ<7`JEw_Rq+w_F z@+vJNrYIystByrezi+a2F*#L2v_LVL)|jXt5_}ei_fi>C(mzdE8lNrf9%jB8P#UjcbCNl*zE&_YN5MY80b-m_eey% zpe!t(ysWKl+jB?G8d+F=W7GJ@hdYw~;(QOz5Lie9xm*ce7uKclI=rNNZq^lEHiSnh!3muL^Maj z$>NG;e{a#~`8F(!t{cnnc$u;}1V&cLJXrjT(JwG-y)101m!XRLSmW6u-ayrS0L~Rx zHHU_(W^~q6JFD=hnc5kKk#pD1#!l_f8goOqTCRh$!&S>3zG@Nkr24oPkCUm7YhdKu z^|8RIkI`S3)rlSsSII+gj<_oEwlAZzrCNCakCv&G`(We*t>|^|*iJBls7+rn+}kUj zUe%3|@<5TD#<9w}ExrJIeKn&sH)?d&Xc-q2#m_^c5G(t?O%e;#$bTF99y3#8R)g$dyWm`L^>bv3`iXtgS@)wm@z9w9 z`Z0{0yMVT3)E|+>9&2&;TDXG#4kwGNpm(RMpdMO-UcqB$O6VmRId=(hT3BbNC7`#> z4Q^pu2ncNPz!gxMEv&PX%4ah?a;AJXfsu2U52uCE?`|CvuAg_qx#H?4%@!8>WS4GX zhvT6$1#~EkoV$QHElgz5Zebq`SJ0VovbYLLvxU{?PHWI=Ja(ppR>H`+ONdj0h6?sq zJZ}tF&{yDGaTSzi4H8qQ0{RjjI#WPjfRS?-5T^!-EH1TN&?Dgr`Zb&^u7c96LG`&) z2|b9%&XmyoF!EbPLUtRQv~jSJUQ0lXkC9GULXI}phR4p7(0|{05?V6$Vtz$QK0ay} zm(5$XXs2)??SPZP+>w4ydQ19P253cEgwKE}r|n?m+$+*jzMM+^D~r`3OHrqUE9xXT zYuxU3eEN!tl0ZduB0dSGsNM@B=Ps&u@I}>I6tAug_LRD8VSOxISRa8i#}(H5(-)Rb z1Qpi>_(YiEIuAz9U0lhJrAHr!G|GRaYE`T6hl}dFaK^ZzIyQY#RjO1>-^M4v6w^0g zYFVf#%I+x4rX0sfXZoYd1b2%P5Q$Ux&$hiyX?PJ^R&SLk{YQf&PyenKocf#r7YUt?nEVi0G zmC=v!=$SJ5A&i{6jJ9LQsI;=wX@A+_@8K$X1%MMtHmA~|^~qL=XCnId`tM$TPC zjK{gf(}oMSo8DrR;8odX0%CktWhp+3lXIsM+60fCDWSPAa_$mh*y&=m%UX`TJ6u4A z!>QsHp%m@3m^qctp?Ks>`5Xizza`|eYQU1unc?zT4W}v(`K%hC@>z*T&Xms}jGViC zI1OyoK;Mp*fW8tgpfAD6;tD9u23DUtmCzUP*qIXg9E|){kWg1|h3riKI$S~z!pX`( zLUQg@LigjbGbMBnjGViKb{KmtCezs7=~|JkwP~=MZW9pWGZ$%bQ0TtALVcKg< zLH!Fx&RtN9J)-Vvu^`@Ywi??G;aXZWZdyulk4Vj)%4j=0dZvuFfsu2U(T-!+C6&l_ z*E0X4a50?-Cym?U-kV-wGIBsA^X|Su*FRl`_O4CQe)pP-z zFRq%7Nl#6U=~E${hlkG;(z!5l?m}X$+)Cn&E_>(byWuMOHk>T3ic(y;$+=SreFKl3 zDWR{z$Zrh^^^@1x{unNyC*fq}A|Ww%Dxt^m*qIV~6h_WnLX4+qr9t7e?I$3!=LfIZ z))o-svt~>2DOxmnDx&Fl@Jta+fsu0;5#td^Z%3bHhxQIv&>nEAxK${{M<8P6R6e`m zku&A93yhq*d>AK+dW(bhx7JS$*G~_eE3ST0JW*7iIu%e651lEX6)XTX%x&tc@;<;2-LQq_qZfoxk4?7066XN;?+H20216F|lEFMI+_ zG5r%p&RtAEtD{#vEDBfCb^>C2)^Fp`>YP_SY=h5$DW|Pqs@c=3bSxe{Q$|O_$ZrW5i34j?Mi+$3=sY-GdB`Z5J(bb9c=Sve zoed-BE+fXt$G+j-q0&I_YHM@*+u=I;2AnUhj#51N*qA;Q(pT~DnL@e&Mt&;@slV7Q zzI(mWK0^CsxR4%)^Ob{;8q=pjdK3?zDWr#CCc?eQE!l~kFD8=I=V&+snE4YzgKCf+!w)%fg8Yy3SQ2h_?8<6eXAx4pN z*AZjwFK)3t5AX>v#q>QGId?HJ{C2h2S19#&lJ~M-3fIyLaKgA+ zO3`nR&Yw!@IXr%*l%9c+bC(k1m}IpwOuk*S$ri!Owz&dge3oq~o^g|NrxMx#kDV!@ zbz$V(CB!)6HdyMmzvXvmxPlIXbHy!0DV}kwPn`;Ae>`-ifcAxva~BX}sU}{)woK8= zaQzIzsp9G<#ig2f1;T1#GLWg~rcDpTu7h~H9i1AsBrTAFC zF?}ket?=-fLfRZg&Rs|hJ54{W{@!p69Sf(5TZ&S&)6OreAB{)Ol+Teca_;hB*lCeO z`>WXJh3n^BI9FW#q-dw>Q>XRkY&>+PfIa{t=Pn?|mZIol17}zZ`fr3Q=&NwDxC%;f zOHt09O6UeWcBX``gOT4F5*qIBuq5<&xP%^sla-5v#N4Tb9>!y5O6VaNId=&$uEHLw ziZr^f!k)fWu%(_NAjZd1r+5{1JOxxx6Y(i91+^xOoV%blOMVl(u)@9+YqxOy>;k8V zTZs+~fA?C{L}$a9;)>|- z@TUxV;#52zzyoKBXBCW`yLg)1sM*M2wbb3?E=6ArSJ4e{%D5^@;YLkI2B@5_!)L&h z)3q>i?s8(7YkD#3qv0}o7)}*eMk$(W=Y^~f;gK`t^8k#TyL_5#8Fmy)_Wc=Cwh6Y> z69vThSn3qE4C_;-^=3^xWTs%=eCr9O$&+$=7-yGoy)4C(Kc&<^RIK(FdPgp-O{x~V zhO4EK@=hDA)mEEU=JkZ z;ZZYXb3TlmyKJ^-BAe36Qm1_+=Lg}c`5v4lu4)cRK{ayHR5ahggJz26TQG9&qG|H@ zvnbv&x83h^;hK2{P7+r$DLnp^bEcAc3Xhp7nI~Z6+$Gb*{uZlUR%_Z|VeoQkT>&vZ z%cT_Tub45F%Q|?(Ou5X2ky~0W&7`_1ovhAZb)I9FWdq;Qc*eCkv{FXN#z1@t0}oV$RU_?oUhav|wf+XgS2HWv`% zvusMi*VLy>1v4KHnJJigFmmpKX|l}j?yz@&j}F(%k#LH*g(ih{lbA7;%Q8G-rd$qz zk#mu6cFQMhYt&XRN0s|70#P5z1+{I z{Rc+QT{um)`by&6X#3gI(s0!*88_9Wu+=B$OeM2D9y7DnYzrf|wq*JX_J=^)!zJ^6 zI7!^@l!|1;oT+3^z++}g<~SHRcgZw4M^hRUODX$IL@iu17r|NLY9@tqG|{A~XwJuj zW{T!RFmmpqX|h|>+tFt&y}uW(nD4+T;wmPE-5N1tDwl8J5i{lTbr?B!xincb^%e*1 z3qYR<*UM9Ij<|YBVa-&ZG8N1dc*sn_JO(4@E|@0oTh_DZ+@x9e?ZK<2bp*utteR4I z-%?MUif1MsI8!{+VC3Az)2umF>NzR#8m~K2~rer!{FtE9NI~j<||R!vc#b(;9OJ9x_ufx5LP}3+8Rfj}1hL zE_8N^!?ISLc{N-$FT;uAs%BaEbA!=&Q|Y{j$IX<^^DuJm(rLDOYDmYfIGb-Dyn321 zAX<0zG&*rAo_ToSOz~_4Bj+xjCfAFI-(RVt(CfIn@5pfVEQ3?Utvo4QFA|$MmCqq~ zpnbkrhI+@ zBj+xkCTEKK3ad(e!}f#CH5UbY<~QLqaix>OnPN3-T6O+|N6nPY>o9Ul%SN2;qq12N zE}QKI#P}?=(vVFwYbu*<@u-=y*&0U9T{caQh4u~i4wVLaS6kaV?+@3_32>gc;bJRiaXXNu<> z7&&+GG^slM#qPpTX{CJ_{X5~(`4*ffu5?nUI*n;l;d~trn<<=|VC39|)8ui4*wt_z z$ayMUIZwce;wmSF#}T9RrqX!~kDDo--@?ebOQ%WA8K?}F95rX1#lZ`!nF3;b9C8XZ zr!j3RoN0L2OyNw1k#iSLlY?9XmD4SEyjQqpc862Mtu`qfBOUE%BBD#=PsKjCvzOHzg!WnnGrZg zT+O6#GN(ReDws?0kePzH7)H)rFijTV)nZ3!pjr_R$*ofJlW^JG0cVOUn-mt{dg4?( zx8s2`#d9l+oV$3MtfQ*MzCx+LlU!Z$a=3P0gcHTpP73R&(RowpJdelCl+Lp-a_-V; za!|cm8Sb|)Nt(YTco8*EK#b2KDusjUa?VsT8{siCC9^(^oV#S2c$>jexBWW!vT(&5 z0_TWZXj1St^(j-q9EgX^6wH1wa_)j@vg8(5PFSX9Rk&V;;S_Q8lERW(%$Ulhibu?p zO9e*GT`o=QOTYcGpKHVQat)j#u3l29Fa3^>{alTQ%oNP0VdRz;%xUC<&JTnO<~}$_ zSqer>nO2xz;2|>w^D`JZcfmBdo@7vbv88H1u6#3GGXH_I#Fb16*ONq(rlNTr51J{O zf56DOi>Ar-)q_LgA$Ny(g`vCGmd^G&1TUDj6%gaIU`pZo>iE>DfVRd%X9{Rb7&&(V zH91MFvgr6a#|h#3ISx)0xAdfNk~lVVDxc+etW>F#WQy6 za$HmVM7Vk$gHy#-PkOD(eOvKw@yMC-`3;PmyL=WUUpt_Ff}?NY+pmz%+%eccPZJR1 zCcwyV0V(NY+t$wV?%`6}6;2qp9;GKGJ%1{to$>gYQrZzl z&Rt4lH#Nsmo$hcEb;7CQiYUFN=034gz$0hM=VTZ;clk6qfjl_8VyIf^ux}(73D?f0 zaGto@N#O)?W7@RtT#Sd!6wXIsKD>77v*zn5SXn+y&F*NSEkJ17}#a zc;3?B71l-qVtiIuDIDpNbEcA6ACH+SnK>|WYfEOhzr&KuA>ooa5Ka=e$fP0}F=r~7 z{qUHXlGz7F&RsH19)}K9Mf%)d^BoRXP8H4-S2-y>4vkNp3aEmI&J<8DjGQ2#VtLB^ zwzjiI7M3qPsIBd!k@Cl*KQ52{xFY)FO8JL^SaYMb+RBr~zg6B_{I}s19uNm_*nrqW zLKH%xm>(X+ypSk{SCl_HQDkHJvbMHu&mF1f@{LW~+Ins+zbXC@DLp>nFBX=askBWT{q;Nnr_ITC`96VTP*i(Yv#stJvx}4G zN=SYTkCs^ue=Cs_xnG$06ZH56Hs{`Ye>BGZ;`YLdj`mXDK(FzWow-x69iJv3(y-%H z1x;VfVW}WCYodqAc-%}qOn{M9aJn(AAtAC8&UT4Eq{Z#(p^>;O`3}4VmxT3Xg&%f z=PnxS#biq~&bo6)xNdHT6UEg{3jU{lm7c7(R64ifaWkcJ3yho~9gnrW-X4ftxd()H zVZVWw3~C}eifCOJ6vcN#q7d5ymrl-fdtmATV&T4EX!StRSZU1I8Fh-zpGobAG&Tq1 zo`DR}Sa&+M2BwOzvDJ-|fZiIIBq0))hlwWNXM?8s@^C}b<=2TiR`6u*;w*uQQZv?; zetS4+POi)I1dc&aZLemQew0;fTR_iKMXGmxw#6f57QwA0aw6*)ZVFgW=ti>9DfWTH0Tp2YzO~7w&jj2-!O~ylKN@xO%oV$c}9jn207P|`K6Bz9s z74gKaxT?L=VV8Cf*VC?W>bQD(Upi&UnFlJao$+}v#kC`hoV&Po;fkxPw^A5#N~=3u zTAgs>xY9ZyU1`O#K!sJnXTcQK$uM&6!m?gLqK(g0rAES~bSa!Fu9TYYkn_8qoHrHE z#dzFI@q83UZhi4|mHN9H&inE;+tz5S|EF;@?2d31-45q0V-?8+P!-*Z$IVpHEiiKK zD%xYL-qs}!^A3rVh3$jG0|S-nP_Z*=aP}6#i{XNL9!?)uQ0?h-xWrsgkv)sgg(^LYo64=PtA{4OJ=D6C17Y zkZ?&I2&al$xl%Gza^6%t`{8jj#j_8LoV$3Ij8&ydgY7FSm0srpZ#Y~;RXAl_5j8z8 z$9Lt%{Hd5Kc>GK;^}@)xi)qX!E+U!D_M)x{*VEN-*0_2~>4}S-0xGFb<5OTt>Pi?n zcS-HQs86xI7i+WpzHmYP0?rv%P{*cYoP?la37~TN89o7~oc<3+&RtGpKEM;%6lXx3 z-R?i(VtO6U7*|XwJ-~}kpGxT;c=${y{S8LWT}mA1G@PWRZFdb`(QPdt#%D#Bo^#Uk zr()U?kDn=~1u$~%VzORZp_}5>;$Zzrp5p=Dap6*04kwITmX1!R$Hit(g>)1iJyS?W zz{t4^$+|g53(0v_?nB|)IS0-WS33uUX(yU6mCIRpz)ZQE0VC%wm&8*jW1Nlqdbn_I zg0saHPT(mNd+Jm|*W;lxCG=$&Id=(Jmu%~bqw`44!aWu)pWnin;>xG#t$<^19L1+i zrSls+Y^HR61taG!9qau{EuF>zFl#wKZMR_8JXt`Dk85sv(c9RvX-t_)W&$2EQ!;D7 z$hk|#x=2z>#&v3B*Kob;45x@&X7&%WHwmXjcEsalie)j3+`3|kpAu<25$g;WO94(% zMq)`g6ml{iFHY*)A|BpeAZ8aug01ar}CMD2hNnwEEqX= z`6TYyh%6>OvN|waJo~|!;#Qx)J)8KnsdV+0ys5ZyiN+EmBYvYlTE1ZpQk+q)czdO1wDx&+sqJ z`7@~ z#c<~C!3KVsfJno@zb-Oo-iq~3S_}!N;_jpRRV&skY4MwkN69RH6JTUg{ML{V+1-OQ zwVp1=t;Zsaz>AJ{g_Gg@$(N}Z-p&$3(uJZs<8d+R-w{U6o&Fi}*W$ddI9vgpa6Y&S zSj<&G($$~^JT#^VPKJ?l7r|_+WLk}3BwPuX!b#yOVJEf{bmOBf;bJ^KrW`&BBj+xM znT2Zipt~*H5iW(>;e>Fdu!JLp*xaZLZpC9`%HS3lId>VX(@2%`TImCtBJX*@ip7_Nko6U5-L{j7Je zqb*Di2)&Q~r0+&*JqoddUCj2|4wDYA)IY~)eAwYhSjSEg)(#tE^ICi;XY8*&_D1m; z+oO)JIy~;HAH9G5sDwz|zfRnvO#iD6>zOa=J1Cm4XR!HPLqMcqKL0AxX0TIpn9otF z7e{7fV?;6Cvn-! zui+D5D(XfUId?_9-C30w{p}CoO8PyVF0PWAp2=?3-&_-?3i=%$I8#B7z{t5PXe+0J zjH+(!-OSo6*c#0c5aY9;I?%VD88fDunTkiu)XXFpId{#ttB$LDThiGxTsrTB(>3l@ z$2D=Ppm*SbGZnNGjGUk#kKH`IAsB5FctGe4!PnqD3^frQMYJ;&6ve|KQHX8HbF)2I zJ9T-nQ0?d`^>-UPlNZ20HRtc7cHkI0lTDA+4vvOqYKa z=|*#xgvf3?aub(K#JQQi!Ya!lt+98oO5T9;!>tT^`l%$ED0M{t#sg(aG{DdlUdQY)xe~$Wn;UYO6&Jeeb z?Co7gV=z-oe3Plc zj z*p2O!$DaxOP6Qm-P#(dv>3k+Yd3KylkDdcLd5+DHF#c;iMkeDA!pNkN+%F*#fBC5& zO^!VakUx;cy@l1qYI{AYmJyx0Z?HNh35Ya|C{@R9NlS0HI`kx|&sYl&k|~ci7&$>6 z9wtHijHoPmKxm)wC10KED5BOE6vg==Q3$uQQ^qfB9aHGPM^B-$QW5oGh0+1dhQ@^B1-v zKCKtF)C@^eJPnVLS@rrQaw6Fo+92zNttb^Srx5o-pBGUFdZEwaDRp`wN_*26wwll$ zn=28(r|@W*0{A41OxoV%5+boKr0$BW%jp|RQSU4DiH}g0`YU~pW@%_}f+?z*vF>vQO)(kItur1C6$S8(Ndn}A4Tbw>MD)7SdA>KUCm z)zB7rRuT{l~pFYu}AlkAwk z7Ot5a;Vf}A)AZ|<%}P#ezEm$?!Q*A>r$?LhL4*7TCT6qM{5LYXX2i`n~ ztmaB}@@qU+rcNG&k#pCH^YPKx-oAyEird@9>B9aDuAI!oftM)MTw zM*E{n52yITZoB9n4b9N6qn@oV!o`+3iZ?C5IT8Y|XX&5lh~0MKCT9fRn_PisOVBr>01$M6;!0`5qoEQ!L+sk#iTzB9~Yi1zRj52Rno-Yd0K2Pcdx9LG@&j&KrYPDS(#9ywD)Pr=B!i^y4VdJBCk+`^fAKyY)~KtNztpDP^C ziW8eH70bGKv`n$A10%PpSgM0=u^bdGmi^%*jk{PzXG_JhFCHyZEPKJoxr=3MS9_`q z43+xCreD>qn89$x48WP;UP0+Q-+aqm(7+g*$fU<2HG19-dZnx zE?hI8fz!m*jN|wYM>EEJsbH?c<7Eow3K%&-Fdkd5dKWj^;PHUaOZ+9iR!m0`Z72ps zF)Jhrv6puOvUjI zR27a=$Kw zOStSNArJ%v3~gYI&Z$$?)zupxDDFo#P!j2^ zOA^(QS%y0DUOYr58SB8x&dD&>ky-XSa-f`%{b8F@tt0VdX&w0h9xRiVy zces#P?~SzWk<@dfYOcyn{BDCFSGC zc$7>&eh4d1UOvba^Ith1|AGBUn-A0a_g{FFOg{brD^FfN$f9QZdE!OQHcBF$MNQKB zVOrO0g-6NcV+&Z>IUjVzn-2==`>oop$Wd}QJ_wt`EgtZSx0WKESq{TPWRh_Rtn8eO z*mvjZokzZ0889DdI$Ms%M_`AzcvwFdW$R31c~V9`jK|4jWGSrdoRRIx)7|h!o=l(b z(+M@@te5w5nOw1w z87viZL)nUzp5M#q`7LZ2m!1VEJ*^U_6#WJdoJrBIU}XzM2~LtlhtX=sRuV`=N8(mY z`p_YYqINn;6vcB%&uCSnP)Fk4nb;$7YaXz4&@Tl8s$6@`_Y7=z5V|NZ{!~T}k{pcl zs`F{tI$ZPN;i@Me zy>opa?4NPO`*%}1O=C5Bq^&r{$G6*y(u^IUvn5{-KRQ#lKOR1_M1CMtPC!N5Z%yAR znm;YR#15dv580Jf3c_<#gSfxOLv|F86WfnR%mxC=0G{E)UO@HrKw5U0<=UU93D=#lZ zsqahoX;tbdIZ+>k{c=rI)dxz{VR#-)q7H$TofEag_%$kD><#q8L1)Wx`Uq?m7pLP= zC{UpZl%)^jNibPj3M)HjiP1$V8_PlOKrzq{Ie%3S)K_4~xIm@RMMX|fs=kD0!ldd( zSlKyMj0!baqN}{$%YphWY!(-&G%8eR0%hqpcoIyOeg!Kp4=hztnyocYs~s$E$5&Aj z>9pf%uoRj=Sy~ZKg2~c5%O6Xz=gPLdr~30&Lp#2koTy#!!C>x28r6s0{2Cce+bscf9HWCFw*w2PR3!!^#sx(iJOotk6;Yr+$^c z;ocJtQgjpQ6LO?RVbh!Os#__!enYKSlKyKyN=2Vmd0^(vdf%1`%$61F#<50kJxVPy+p3C`z6M|^8%`4UJ(N3`}1pMG19Xr+1- zbbob)fV#r6SeI){zRpQ>6m%F5p9yg}RJI-kwL+2R zNl=R|u_KW2lb|=r>G(WuFLSqxH=ROs#B3m(d=5{9$;oG7Wm4=uom3(!b~Rd;uVNQ_ z`EdV|AD()*9(sRTStLA$`XuZ!x6)bP2x>a?o~`E?FLS1}3A<0=fiu~CEL67ExCy*M zHnvx0Vj=d^j#s$V7l^4?RY|0?VBno8Wl|9{fbg*ro&uAP4p^Dgw*S=-v)%CB_Steq zv{W#Hv?%Xo7Y}%a%#xsxD=yI62*Ij%_WLhLD9MhPlbur1+cPnv|`^WGS(MmavooQ*Kbe_QA7Z0=5^dYym96-ez)d!3Dkzp^dp?iiL-P7P9;i9`6RvYUXQXH4y5i)VCz{&*234ds~Wi+GC z^(tPbGBW5}H`2c>=i`g8M_fJ*WAUNBA74u{wv%p7ygoM3MuWoA{CSDn=p(N5-863o`ZefP;(neDz)K0;JW>ULys5}YkT5NZV zLJ<2!$BWwTavXNWon;m^-tJazd>mrQ6EJ4t;WNSLhLuS<+bO9;RL*L6E??y=cHiFt zdB3`icC7kljJ0DMR4xgRJ`BJ{b2~O3#C|Q!>ZfsHh0T^cfw&(Jp9yhqsBEon6L