👋 加入我们的微信群。
[ English | 中文 ]
微调大模型可以像这样轻松…
tutorial_zh.mp4
选择你的打开方式:
- Colab:https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- 本地机器:请见如何使用
- 多种模型:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- 集成方法:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练和 DPO 训练。
- 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- 先进算法:GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ 和 Agent 微调。
- 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA-Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA-Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
变量定义
- Training Speed: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
- Rouge Score: 广告文案生成任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
- GPU Memory: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
- 我们在 ChatGLM 的 P-Tuning 中采用
pre_seq_len=128
,在 LLaMA-Factory 的 LoRA 微调中采用lora_rank=32
。
[24/03/21] 我们的论文 "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models" 可在 arXiv 上查看!
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 FSDP+QLoRA。详细用法请参照 examples/fsdp_qlora
。
[24/03/13] 我们支持了 LoRA+。详细用法请参照 examples/extras/loraplus
。
[24/03/07] 我们支持了梯度低秩投影(GaLore)算法。详细用法请参照 examples/extras/galore
。
展开日志
[24/03/07] 我们集成了 vLLM 以实现极速并发推理。请使用 --infer_backend vllm
来获得 270% 的推理速度。(尚不支持 LoRA,请先合并权重。)
[24/02/28] 我们支持了 DoRA 微调。请使用 --use_dora
参数进行 DoRA 微调。
[24/02/15] 我们支持了 LLaMA Pro 提出的块扩展方法。详细用法请参照 examples/extras/llama_pro
。
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该博客页面。
[24/01/18] 我们针对绝大多数模型实现了 Agent 微调,微调时指定 --dataset glaive_toolcall
即可使模型获得工具调用能力。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 unsloth 的 LoRA 训练加速。请使用 --use_unsloth
参数启用 unsloth 优化。该方法可提供 170% 的训练速度,详情请查阅此页面。
[23/12/12] 我们支持了微调最新的混合专家模型 Mixtral 8x7B。硬件需求请查阅此处。
[23/12/01] 我们支持了从 魔搭社区 下载预训练模型和数据集。详细用法请参照 此教程。
[23/10/21] 我们支持了 NEFTune 训练技巧。请使用 --neftune_noise_alpha
参数启用 NEFTune,例如 --neftune_noise_alpha 5
。
[23/09/27] 我们针对 LLaMA 模型支持了 LongLoRA 提出的 --shift_attn
参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅此示例。
[23/09/10] 我们支持了 FlashAttention-2。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 --flash_attn
参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 RoPE 插值来扩展 LLaMA 模型的上下文长度。请使用 --rope_scaling linear
参数训练模型或使用 --rope_scaling dynamic
参数评估模型。
[23/08/11] 我们支持了指令模型的 DPO 训练。使用方法请参阅此示例。
[23/07/31] 我们支持了数据流式加载。请使用 --streaming
和 --max_steps 10000
参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目(LLaMA-2 / Baichuan)。
[23/07/18] 我们开发了支持训练和测试的浏览器一体化界面。请使用 train_web.py
在您的浏览器中微调模型。感谢 @KanadeSiina 和 @codemayq 在该功能开发中付出的努力。
[23/07/09] 我们开源了 FastEdit ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 FastEdit 项目。
[23/06/29] 我们提供了一个可复现的指令模型微调示例,详细内容请查阅 Baichuan-7B-sft。
[23/06/22] 我们对齐了示例 API 与 OpenAI API 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中。
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 QLoRA)。请使用 --quantization_bit 4
参数进行 4 比特量化微调。
模型名 | 模型大小 | 默认模块 | Template |
---|---|---|---|
Baichuan2 | 7B/13B | W_pack | baichuan2 |
BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
ChatGLM3 | 6B | query_key_value | chatglm3 |
DeepSeek (MoE) | 7B/16B/67B | q_proj,v_proj | deepseek |
Falcon | 7B/40B/180B | query_key_value | falcon |
Gemma | 2B/7B | q_proj,v_proj | gemma |
InternLM2 | 7B/20B | wqkv | intern2 |
LLaMA | 7B/13B/33B/65B | q_proj,v_proj | - |
LLaMA-2 | 7B/13B/70B | q_proj,v_proj | llama2 |
Mistral | 7B | q_proj,v_proj | mistral |
Mixtral | 8x7B | q_proj,v_proj | mistral |
OLMo | 1B/7B | att_proj | olmo |
Phi-1.5/2 | 1.3B/2.7B | q_proj,v_proj | - |
Qwen | 1.8B/7B/14B/72B | c_attn | qwen |
Qwen1.5 | 0.5B/1.8B/4B/7B/14B/72B | q_proj,v_proj | qwen |
StarCoder2 | 3B/7B/15B | q_proj,v_proj | - |
XVERSE | 7B/13B/65B | q_proj,v_proj | xverse |
Yi | 6B/9B/34B | q_proj,v_proj | yi |
Yuan | 2B/51B/102B | q_proj,v_proj | yuan |
Note
默认模块应作为 --lora_target
参数的默认值,可使用 --lora_target all
参数指定全部模块。
对于所有“基座”(Base)模型,--template
参数可以是 default
, alpaca
, vicuna
等任意值。但“对话”(Chat)模型请务必使用对应的模板。
项目所支持模型的完整列表请参阅 constants.py。
您也可以在 template.py 中添加自己的对话模板。
方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
---|---|---|---|---|
预训练 | ✅ | ✅ | ✅ | ✅ |
指令监督微调 | ✅ | ✅ | ✅ | ✅ |
奖励模型训练 | ✅ | ✅ | ✅ | ✅ |
PPO 训练 | ✅ | ✅ | ✅ | ✅ |
DPO 训练 | ✅ | ✅ | ✅ | ✅ |
Note
请使用 --quantization_bit 4
参数来启用 QLoRA 训练。
预训练数据集
指令微调数据集
- Stanford Alpaca (en)
- Stanford Alpaca (zh)
- Alpaca GPT4 (en&zh)
- Self Cognition (zh)
- Open Assistant (multilingual)
- ShareGPT (zh)
- Guanaco Dataset (multilingual)
- BELLE 2M (zh)
- BELLE 1M (zh)
- BELLE 0.5M (zh)
- BELLE Dialogue 0.4M (zh)
- BELLE School Math 0.25M (zh)
- BELLE Multiturn Chat 0.8M (zh)
- UltraChat (en)
- LIMA (en)
- OpenPlatypus (en)
- CodeAlpaca 20k (en)
- Alpaca CoT (multilingual)
- OpenOrca (en)
- SlimOrca (en)
- MathInstruct (en)
- Firefly 1.1M (zh)
- Wiki QA (en)
- Web QA (zh)
- WebNovel (zh)
- Nectar (en)
- deepctrl (en&zh)
- Ad Gen (zh)
- ShareGPT Hyperfiltered (en)
- ShareGPT4 (en&zh)
- UltraChat 200k (en)
- AgentInstruct (en)
- LMSYS Chat 1M (en)
- Evol Instruct V2 (en)
- Glaive Function Calling V2 (en)
- Cosmopedia (en)
- Open Assistant (de)
- Dolly 15k (de)
- Alpaca GPT4 (de)
- OpenSchnabeltier (de)
- Evol Instruct (de)
- Dolphin (de)
- Booksum (de)
- Airoboros (de)
- Ultrachat (de)
偏好数据集
使用方法请参考 data/README_zh.md 文件。
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
pip install --upgrade huggingface_hub
huggingface-cli login
必需项 | 至少 | 推荐 |
---|---|---|
python | 3.8 | 3.10 |
torch | 1.13.1 | 2.2.0 |
transformers | 4.37.2 | 4.39.1 |
datasets | 2.14.3 | 2.17.1 |
accelerate | 0.27.2 | 0.28.0 |
peft | 0.9.0 | 0.10.0 |
trl | 0.8.1 | 0.8.1 |
可选项 | 至少 | 推荐 |
---|---|---|
CUDA | 11.6 | 12.2 |
deepspeed | 0.10.0 | 0.14.0 |
bitsandbytes | 0.39.0 | 0.43.0 |
flash-attn | 2.3.0 | 2.5.6 |
* 估算值
训练方法 | 精度 | 7B | 13B | 30B | 70B | 8x7B |
---|---|---|---|---|---|---|
全参数 | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB |
全参数 | 16 | 60GB | 120GB | 300GB | 600GB | 400GB |
GaLore | 16 | 16GB | 32GB | 64GB | 160GB | 120GB |
部分参数 | 16 | 20GB | 40GB | 80GB | 200GB | 160GB |
LoRA | 16 | 16GB | 32GB | 64GB | 160GB | 120GB |
QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB |
QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB |
QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB |
关于数据集文件的格式,请参考 data/README_zh.md 的内容。构建自定义数据集时,既可以使用单个 .json
文件,也可以使用一个数据加载脚本和多个文件。
Note
使用自定义数据集时,请更新 data/dataset_info.json
文件,该文件的格式请参考 data/README_zh.md
。
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 bitsandbytes
库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的发布版本。
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 flash-attn
库,支持 CUDA 12.1 到 12.2,请根据需求到 flash-attention 下载对应版本安装。
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
接着即可通过指定模型名称来训练对应的模型。(在魔搭社区查看所有可用的模型)
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--model_name_or_path modelscope/Llama-2-7b-ms \
... # 参数同下
LLaMA Board 同样支持魔搭社区的模型和数据集下载。
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
Important
如果您使用多张 GPU 训练模型,请移步多 GPU 分布式训练部分。
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--do_train \
--model_name_or_path path_to_llama_model \
--dataset wiki_demo \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path path_to_llama_model \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--top_k 0 \
--top_p 0.9 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
Tip
如果开启了 --create_new_adapter
,则使用 --adapter_name_or_path path_to_sft_checkpoint,path_to_ppo_checkpoint
来进行微调模型的推理。
Warning
如果使用 fp16 精度进行 LLaMA-2 模型的 PPO 训练,请使用 --per_device_train_batch_size=1
。
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
--do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
Tip
如果开启了 --create_new_adapter
,则使用 --adapter_name_or_path path_to_sft_checkpoint,path_to_dpo_checkpoint
来进行微调模型的推理。
accelerate launch --config_file config.yaml src/train_bash.py \
--ddp_timeout 180000000 \
... # 参数同上
使用 Accelerate 进行 LoRA 训练的 config.yaml 示例
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
Tip
我们推荐使用 Accelerate 进行 LoRA 训练。
deepspeed --num_gpus 8 src/train_bash.py \
--deepspeed ds_config.json \
--ddp_timeout 180000000 \
... # 参数同上
使用 DeepSpeed ZeRO-2 进行全参数训练的 ds_config.json 示例
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}
Tip
更多训练脚本请查看 examples。
CUDA_VISIBLE_DEVICES= python src/export_model.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora \
--export_dir path_to_export \
--export_size 2 \
--export_legacy_format False
Warning
尚不支持量化模型的 LoRA 权重合并及导出。
Tip
仅使用 --model_name_or_path path_to_export
来加载导出后的模型。
合并 LoRA 权重之后可再次使用 CUDA_VISIBLE_DEVICES=0
、--export_quantization_bit 4
和 --export_quantization_dataset data/c4_demo.json
基于 AutoGPTQ 量化模型。
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora
Tip
关于 API 文档请见 http://localhost:8000/docs
。
CUDA_VISIBLE_DEVICES=0 python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora
CUDA_VISIBLE_DEVICES=0 python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template vanilla \
--finetuning_type lora \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 1 \
--max_samples 100 \
--predict_with_generate \
--fp16
Warning
如果使用 fp16 精度进行 LLaMA-2 模型的预测,请使用 --per_device_eval_batch_size=1
。
Tip
我们建议在量化模型的预测中使用 --per_device_eval_batch_size=1
和 --max_target_length 128
。
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
--shm-size 16G \
--name llama_factory \
-d llama-factory:latest
docker compose -f ./docker-compose.yml up -d
Tip
数据卷详情:
- hf_cache:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- data:宿主机中存放数据集的文件夹路径。
- output:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
- Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [arxiv]
- Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [arxiv]
- Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [arxiv]
- Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [arxiv]
- Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [arxiv]
- Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [arxiv]
- Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [arxiv]
- Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [arxiv]
- Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [arxiv]
- Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [arxiv]
- Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [arxiv]
- Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [arxiv]
- Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [arxiv]
- Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [arxiv]
- Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [arxiv]
- Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [arxiv]
- Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [arxiv]
- Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. 2024. [arxiv]
- Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [arxiv]
- Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [arxiv]
- Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [arxiv]
- Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [arxiv]
- StarWhisper: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
- DISC-LawLLM: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
- Sunsimiao: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
- CareGPT: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
- MachineMindset:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
Tip
如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
本仓库的代码依照 Apache-2.0 协议开源。
使用模型权重时,请遵循对应的模型协议:Baichuan2 / BLOOM / ChatGLM3 / DeepSeek / Falcon / Gemma / InternLM2 / LLaMA / LLaMA-2 / Mistral / OLMo / Phi-1.5/2 / Qwen / StarCoder2 / XVERSE / Yi / Yuan
如果您觉得此项目有帮助,请考虑以下列格式引用
@article{zheng2024llamafactory,
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Yongqiang Ma},
journal={arXiv preprint arXiv:2403.13372},
year={2024},
url={http://arxiv.org/abs/2403.13372}
}