Skip to content

Latest commit

 

History

History
193 lines (186 loc) · 7.73 KB

TOC.md

File metadata and controls

193 lines (186 loc) · 7.73 KB
  • 1 Introduction

    • 1.1 Who Should Read This Book?
    • 1.2 Historical Trends in Deep Learning
  • I Applied Math and Machine Learning Basics

    • 2 Linear Algebra
      • 2.1 Scalars, Vectors, Matrices, and Tensors
      • 2.2 Multiplying Matrices and Vectors
      • 2.3 Identity and Inverse Matrices
      • 2.4 Linear Dependence and Span
      • 2.5 Norms
      • 2.6 Special Kinds of Matrices and Vectors
      • 2.7 Eigendecomposition
      • 2.8 Singular Value Decomposition
      • 2.9 The Moore-Penrose Pseudoinverse
      • 2.10 The Trace Operator
      • 2.11 The Determinant
      • 2.12 Example: Principal Components Analysis
    • 3 Probability and Information Theory 53
      • 3.1 Why Probability?
      • 3.2 Random Variables
      • 3.3 Probability Distributions
      • 3.4 Marginal Probability
      • 3.5 Conditional Probability
      • 3.6 The Chain Rule of Conditional Probabilities
      • 3.7 Independence and Conditional Independence
      • 3.8 Expectation,Variance and Covariance
      • 3.9 Common Probability Distributions
      • 3.10 Useful Properties of Common Functions
      • 3.11 Bayes’ Rule
      • 3.12 Technical Details of Continuous Variables
      • 3.13 Information Theory
      • 3.14 Structured Probabilistic Models
    • 4 Numerical Computation
      • 4.1 Overflow and Underflow
      • 4.2 Poor Conditioning
      • 4.3 Gradient-Based Optimization
      • 4.4 Constrained Optimization
      • 4.5 Example:Linear Least Squares
    • 5 Machine Learning Basics
      • 5.1 Learning Algorithms
      • 5.2 Capacity,Overfitting and Underfitting
      • 5.3 Hyperparameters and Validation Sets
      • 5.4 Estimators,Bias and Variance
      • 5.5 Maximum Likelihood Estimation
      • 5.6 Bayesian Statistics
      • 5.7 Supervised Learning Algorithms
      • 5.8 Unsupervised Learning Algorithms
      • 5.9 Stochastic Gradient Descent
      • 5.10 Building a Machine Learning Algorithm
      • 5.11 Challenges Motivating Deep Learning
  • II Deep Networks: Modern Practices

    • 6 Deep Feedforward Networks
      • 6.1 Example:Learning XOR
      • 6.2 Gradient-Based Learning
      • 6.3 Hidden Units
      • 6.4 Architecture Design
      • 6.5 Back-Propagation and Other Differentiation Algorithms
      • 6.6 Historical Notes
    • 7 Regularization for Deep Learning
      • 7.1 Parameter Norm Penalties
      • 7.2 Norm Penalties as Constrained Optimization
      • 7.3 Regularization and Under-Constrained Problems
      • 7.4 Dataset Augmentation
      • 7.5 Noise Robustness242
      • 7.6 Semi-Supervised Learning
      • 7.7 Multi-Task Learning
      • 7.8 Early Stopping
      • 7.9 Parameter Tying and Parameter Sharing
      • 7.10 Sparse Representations
      • 7.11 Bagging and Other Ensemble Methods
      • 7.12 Dropout258
      • 7.13 Adversarial Training
      • 7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier
    • 8 Optimization for Training Deep Models
      • 8.1 How Learning Differs from Pure Optimization
      • 8.2 Challenges in Neural Network Optimization
      • 8.3 Basic Algorithms
      • 8.4 Parameter Initialization Strategies
      • 8.5 Algorithms with Adaptive Learning Rates
      • 8.6 Approximate Second-Order Methods
      • 8.7 Optimization Strategies and Meta-Algorithms
    • 9 Convolutional Networks
      • 9.1 The Convolution Operation
      • 9.2 Motivation
      • 9.3 Pooling339
      • 9.4 Convolution and Pooling as an Infinitely Strong Prior
      • 9.5 Variantsof the Basic Convolution Function
      • 9.6 Structured Outputs
      • 9.7 Data Types360
      • 9.8 Efficient Convolution Algorithms
      • 9.9 Random or Unsupervised Features
      • 9.10 The Neuroscientific Basis for Convolutional Networks
      • 9.11 Convolutional Networks and the History of Deep Learning
    • 10 Sequence Modeling: Recurrent and Recursive Nets
      • 10.1 Unfolding Computational Graphs375
      • 10.2 Recurrent Neural Networks
      • 10.3 Bidirectional RNNs
      • 10.4 Encoder-Decoder Sequence-to-Sequence Architectures
      • 10.5 Deep Recurrent Networks
      • 10.6 Recursive Neural Networks
      • 10.7 The Challenge of Long-Term Dependencies
      • 10.8 Echo State Networks
      • 10.9 Leaky Units and Other Strategies for Multiple Time Scales
      • 10.10 The Long Short-Term Memory and Other Gated RNNs
      • 10.11 Optimization for Long-Term Dependencies
      • 10.12Explicit Memory
    • 11 Practical Methodology
      • 11.1 Performance Metrics
      • 11.2 Default Baseline Models
      • 11.3 Determining Whetherto Gather More Data
      • 11.4 Selecting Hyperparameters
      • 11.5 Debugging Strategies
      • 11.6 Example: Multi-Digit Number Recognition
    • 12 Applications
      • 12.1 Large Scale Deep Learning
      • 12.2 Computer Vision
      • 12.3 Speech Recognition
      • 12.4 Natural Language Processing
      • 12.5 Other Applications
  • III Deep Learning Research

    • 13 Linear Factor Models
      • 13.1 Probabilistic PCA and Factor Analysis
      • 13.2 Independent Component Analysis(ICA)
      • 13.3 Slow Feature Analysis
      • 13.4 Sparse Coding
      • 13.5 Manifold Interpretation of PCA
    • 14 Autoencoders
      • 14.1 Undercomplete Autoencoders
      • 14.2 Regularized Autoencoders
      • 14.3 Representational Power, Layer Size and Depth
      • 14.4 Stochastic Encoders and Decoders
      • 14.5 Denoising Autoencoders
      • 14.6 Learning Manifolds with Autoencoders
      • 14.7 Contractive Autoencoders
      • 14.8 Predictive Sparse Decomposition
      • 14.9 Applications of Autoencoders
    • 15 Representation Learning
      • 15.1 Greedy Layer-Wise Unsupervised Pretraining
      • 15.2 Transfer Learning and Domain Adaptation
      • 15.3 Semi-Supervised Disentangling of Causal Factors
      • 15.4 Distributed Representation 15.5 Exponential Gains from Depth
      • 15.6 Providing Clues to Discover Underlying Causes
    • 16 Structured Probabilistic Models for Deep Learning
      • 16.1 The Challenge of Unstructured Modeling
      • 16.2 Using Graphs to Describe Model Structure
      • 16.3 Sampling from Graphical Models
      • 16.4 Advantages of Structured Modeling
      • 16.5 Learning about Dependencies
      • 16.6 Inference and Approximate Inference
      • 16.7 The Deep Learning Approach to Structured Probabilistic Models
    • 17 Monte Carlo Methods
      • 17.1 Sampling and Monte Carlo Methods
      • 17.2 Importance Sampling
      • 17.3 Markov Chain Monte Carlo Methods
      • 17.4 Gibbs Sampling
      • 17.5 The Challenge of Mixing between Separated Modes
    • 18 Confronting the Partition Function
      • 18.1 The Log-Likelihood Gradient
      • 18.2 Stochastic Maximum Likelihood and Contrastive Divergence
      • 18.3 Pseudolikelihood
      • 18.4 Score Matching and Ratio Matching
      • 18.5 Denoising Score Matching
      • 18.6 Noise-Contrastive Estimation
      • 18.7 Estimating the Partition Function
    • 19 Approximate Inference
      • 19.1 Inference as Optimization
      • 19.2 Expectation Maximization
      • 19.3 MAPInference and Sparse Coding
      • 19.4 Variational Inference and Learning
      • 19.5 Learned Approximate Inference
    • 20 Deep Generative Models
      • 20.1 Boltzmann Machines
      • 20.2 Restricted Boltzmann Machines
      • 20.3 Deep Belief Networks
      • 20.4 Deep Boltzmann Machines
      • 20.5 Boltzmann Machines for Real-Valued Data
      • 20.6 Convolutional Boltzmann Machines
      • 20.7 Boltzmann Machines for Structured or Sequential Outputs
      • 20.8 Other Boltzmann Machines
      • 20.9 Back-Propagation through Random Operations
      • 20.10 Directed Generative Nets
      • 20.11 Drawing Samples from Autoencoders
      • 20.12 Generative Stochastic Networks
      • 20.13 Other Generation Schemes
      • 20.14 Evaluating Generative Models
      • 20.15 Conclusion