-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
182 lines (153 loc) · 6.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import json
import cv2
import numpy as np
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to intialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# You must parse model_config. JSON string is not parsed here
self.model_config = model_config = json.loads(args["model_config"])
# Get OUTPUT0 configuration
num_detections_config = pb_utils.get_output_config_by_name(
model_config, "num_detections"
)
detection_boxes_config = pb_utils.get_output_config_by_name(
model_config, "detection_boxes"
)
detection_scores_config = pb_utils.get_output_config_by_name(
model_config, "detection_scores"
)
detection_classes_config = pb_utils.get_output_config_by_name(
model_config, "detection_classes"
)
# Convert Triton types to numpy types
self.num_detections_dtype = pb_utils.triton_string_to_numpy(
num_detections_config["data_type"]
)
# Convert Triton types to numpy types
self.detection_boxes_dtype = pb_utils.triton_string_to_numpy(
detection_boxes_config["data_type"]
)
# Convert Triton types to numpy types
self.detection_scores_dtype = pb_utils.triton_string_to_numpy(
detection_scores_config["data_type"]
)
# Convert Triton types to numpy types
self.detection_classes_dtype = pb_utils.triton_string_to_numpy(
detection_classes_config["data_type"]
)
self.score_threshold = 0.25
self.nms_threshold = 0.45
def execute(self, requests):
"""`execute` MUST be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference request is made
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
num_detections_dtype = self.num_detections_dtype
detection_boxes_dtype = self.detection_boxes_dtype
detection_scores_dtype = self.detection_scores_dtype
detection_classes_dtype = self.detection_classes_dtype
responses = []
# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
for request in requests:
# Get INPUT0
in_0 = pb_utils.get_input_tensor_by_name(request, "INPUT_0")
# Get the output arrays from the results
outputs = in_0.as_numpy()
outputs = np.array([cv2.transpose(outputs[0])])
rows = outputs.shape[1]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[0][i][4:]
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(
classes_scores
)
if maxScore >= self.score_threshold:
box = [
outputs[0][i][0] - (0.5 * outputs[0][i][2]),
outputs[0][i][1] - (0.5 * outputs[0][i][3]),
outputs[0][i][2],
outputs[0][i][3],
]
boxes.append(box)
scores.append(maxScore)
class_ids.append(maxClassIndex)
result_boxes = cv2.dnn.NMSBoxes(
boxes, scores, self.score_threshold, self.nms_threshold, 0.5
)
num_detections = 0
output_boxes = []
output_scores = []
output_classids = []
for i in range(len(result_boxes)):
index = result_boxes[i]
box = boxes[index]
output_boxes.append(box)
output_scores.append(scores[index])
output_classids.append(class_ids[index])
num_detections += 1
num_detections = np.array(num_detections)
num_detections = pb_utils.Tensor(
"num_detections", num_detections.astype(num_detections_dtype)
)
detection_boxes = np.array(output_boxes)
detection_boxes = pb_utils.Tensor(
"detection_boxes", detection_boxes.astype(detection_boxes_dtype)
)
detection_scores = np.array(output_scores)
detection_scores = pb_utils.Tensor(
"detection_scores", detection_scores.astype(detection_scores_dtype)
)
detection_classes = np.array(output_classids)
detection_classes = pb_utils.Tensor(
"detection_classes", detection_classes.astype(detection_classes_dtype)
)
inference_response = pb_utils.InferenceResponse(
output_tensors=[
num_detections,
detection_boxes,
detection_scores,
detection_classes,
]
)
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is OPTIONAL. This function allows
the model to perform any necessary clean ups before exit.
"""
pass