forked from harvardnlp/urnng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
executable file
·43 lines (38 loc) · 1.67 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python3
import numpy as np
import torch
import pickle
class Dataset(object):
def __init__(self, data_file):
data = pickle.load(open(data_file, 'rb')) # get text data
self.sents = self._convert(data['source']).long()
self.other_data = data['other_data']
self.sent_lengths = self._convert(data['source_l']).long()
self.batch_size = self._convert(data['batch_l']).long()
self.batch_idx = self._convert(data['batch_idx']).long()
self.vocab_size = data['vocab_size'][0]
self.num_batches = self.batch_idx.size(0)
self.word2idx = data['word2idx']
self.idx2word = data['idx2word']
def _convert(self, x):
return torch.from_numpy(np.asarray(x))
def __len__(self):
return self.num_batches
def __getitem__(self, idx):
assert (idx < self.num_batches and idx >= 0)
start_idx = self.batch_idx[idx]
end_idx = start_idx + self.batch_size[idx]
length = self.sent_lengths[idx].item()
sents = self.sents[start_idx:end_idx]
other_data = self.other_data[start_idx:end_idx]
sent_str = [d[0] for d in other_data]
tags = [d[1] for d in other_data]
actions = [d[2] for d in other_data]
binary_tree = [d[3] for d in other_data]
spans = [d[5] for d in other_data]
batch_size = self.batch_size[idx].item()
# by default, we return sents with <s> </s> tokens
# hence we subtract 2 from length as these are (by default) not counted for evaluation
data_batch = [sents[:, :length], length - 2, batch_size, actions,
spans, binary_tree, other_data]
return data_batch