-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_training_generic.m
78 lines (66 loc) · 2.91 KB
/
create_training_generic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% MIT License
%
% Copyright (c) 2019 Asim Iqbal
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
%% Boundaries using Local Maximum
tot_brain_sects=1;
for k=1:tot_brain_sects
disp('first loop')
% list=string(ls('dataset')); %get list of images in training folder
list=string(ls('dataset')); %get list of images in training folder
list(1:2)=[]; % delete first two entries because they are . and .. (???)
list = sort_nat(list);
list(:,1)=strcat('dataset/', list(:,1));
trainingdata=list;
trainingdata=array2table(trainingdata);
trainingdata=table2cell(trainingdata);
for j=1:size(list,1)
disp('second loop')
% [num, location]=count_localmax(char(list(j,1)));
% bounds = zeros(num,4);
% stats = regionprops('table',BW,'BoundingBox','MajorAxisLength','MinorAxisLength');
% for i=1:num
% close
% % bounds(i,:) = [location(i,1)-9,location(i,2)-9,18,18];
% % bounds(i,:) = [location(i,1)-4,location(i,2)-4,8,8]; %6,6,12,12
% % bounds(i,:)=stats.BoundingBox(i,:);
% %disp('end of second loop')
% end
bounds = [1, 1, 10, 10]; % here a bouinding box is drawn in the top left corner of your image
bounds3{j,1}=bounds;
%disp('end of first loop')
end
s1 = horzcat(trainingdata,bounds3);
s2{k,1}=s1;
clear bounds3
% s1 = horzcat(trainingdata,bounds3);
% s2{k,1}=trainingdata;
% clear bounds3
end
training = vertcat(s2{1:k,1});
training = cell2table(training);
training.training1=char(training.training1);
training = table2cell(training);
%training = vertcat(s2{1:1,1});
% training = vertcat(s2{1:k,1});
% training = cell2table(training);
% training.training=char(training.training);
% training = table2cell(training);
%save('training.mat', 'training');