Skip to content

Latest commit

 

History

History
858 lines (590 loc) · 43.8 KB

validation_results_openvino_intel_models.md

File metadata and controls

858 lines (590 loc) · 43.8 KB

Validation results for the models inferring using Intel® Distribution of OpenVINO™ Toolkit

Object detection

Test image #1

Data source: Cityscapes

Image resolution: 2048 x 1024

Bounding box (upper left and bottom right corners):
CAR (0, 431), (231, 914)
CAR (279, 430), (442, 519)
CAR (428, 444), (494, 498)
CAR (719, 431), (827, 519)
CAR (789, 405), (874, 493)
CAR (828, 413), (970, 536)
CAR (938, 417), (1021, 497)
CAR (1037, 428), (1069, 457)
CAR (1092, 413), (1196, 509)
PERSON (1455, 419), (1482, 491)
PERSON (1476, 416), (1503, 481)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
pedestrian-and-vehicle-detector-adas-0001 Bounding box:
CAR (720, 439), (821, 505),
CAR (824, 424), (967, 525),
CAR (945, 420), (1023, 486),
CAR (1092, 422), (1188, 501),
PERSON (1474, 416), (1499, 481)
Bounding box:
CAR (720, 439), (821, 505),
CAR (824, 424), (967, 525),
CAR (945, 420), (1023, 486),
CAR (1092, 422), (1188, 501),
PERSON (1474, 416), (1499, 481)

Test image #2

Data source: Cityscapes

Image resolution: 2048 x 1024

Bounding boxes (upper left and bottom right corners):
CAR (360, 354), (917, 781)
CAR (906, 402), (1059, 522)
CAR (1175, 366), (1745, 497)
CAR (1245, 372), (1449, 504)
CAR (1300, 311), (1825, 605)
CAR (1599, 314), (2048, 625)
CAR (1697, 315), (2048, 681)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
vehicle-detection-adas-0002 Bounding box:
CAR (384, 363), (921, 754),
CAR (909, 407), (1056, 509),
CAR (1272, 348), (1742, 592),
CAR (1618, 305), (2036, 669)
Bounding box:
CAR (384, 363), (921, 754),
CAR (909, 407), (1056, 509),
CAR (1272, 348), (1742, 592),
CAR (1618, 305), (2036, 669)
vehicle-detection-adas-binary-0001 Bounding box:
CAR (370, 353), (905, 756),
CAR (902, 406), (1048, 509),
CAR (1246, 320), (2022, 650)
Bounding box:
CAR (370, 353), (905, 756),
CAR (902, 406), (1048, 509),
CAR (1246, 320), (2022, 650)

Test image #3

Data source: Cityscapes

Image resolution: 2048 x 1024

Bounding boxes (upper left and bottom right corners):
CAR (0, 380), (88, 524)
CAR (107, 384), (327, 480)
CAR (506, 375), (623, 458)
CAR (626, 367), (734, 452)
CAR (919, 362), (968, 401)
CAR (1053, 360), (1091, 388)
BIKE (300, 402), (558, 778)
PERSON (310, 171), (536, 749)
PERSON (1779, 268), (1882, 539)
PERSON (1874, 288), (1976, 545)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-vehicle-bike-detection-2000 Bounding box:
CAR (121, 391) (318, 477)
CAR (551, 374) (647, 456)
CAR (634, 385) (722, 437)
BIKE (310, 210) (551, 774)
PERSON (1790, 284) (1885, 531)
PERSON (1892, 301) (1977, 515)
Bounding box:
CAR (121, 391) (318, 477)
CAR (551, 374) (647, 456)
CAR (634, 385) (722, 437)
BIKE (310, 210) (551, 774)
PERSON (1790, 284) (1885, 531)
PERSON (1892, 301) (1977, 515)
person-vehicle-bike-detection-2001 Bounding box:
CAR (108, 394) (310, 477)
BIKE (321, 185) (545, 742)
PERSON (1782, 278) (1889, 538)
PERSON (1877, 295) (1971, 530)
Bounding box:
CAR (108, 394) (310, 477)
BIKE (321, 185) (545, 742)
PERSON (1782, 278) (1889, 538)
PERSON (1877, 295) (1971, 530)
person-vehicle-bike-detection-2002 Boounding box:
CAR (554, 376) (666,455)
CAR (0, 401) (86, 517)
BIKE (334, 200) (540, 635)
PERSON (1783, 269) (1881, 540)
PERSON (1878, 298) (1973, 527)
PERSON (329, 193) (545, 627)
Boounding box:
CAR (554, 376) (666,455)
CAR (0, 401) (86, 517)
BIKE (334, 200) (540, 635)
PERSON (1783, 269) (1881, 540)
PERSON (1878, 298) (1973, 527)
PERSON (329, 193) (545, 627)
person-vehicle-bike-detection-crossroad-0078 Bounding box:
CAR (-4, 400), (80, 515),
CAR (114, 392), (326, 480),
CAR (547, 382), (645, 457),
CAR (627, 379), (724, 444),
BIKE (319, 232), (546, 717),
PERSON (329, 228), (541, 697),
PERSON (1783, 278), (1887, 530),
PERSON (1882, 294), (1974, 524)
Bounding box:
CAR (-4, 400), (80, 515),
CAR (114, 392), (326, 480),
CAR (547, 382), (645, 457),
CAR(627, 379), (724, 444),
BIKE(319, 232), (546, 717),
PERSON (329, 228), (541, 697),
PERSON (1783, 278), (1887, 530),
PERSON (1882, 294), (1974, 524)
person-vehicle-bike-detection-crossroad-1016 Bounding box:
CAR (-1, 405), (85, 518),
CAR (533, 370), (637, 455),
PERSON (319, 213), (554, 722),
PERSON (1783, 270), (1884, 536),
PERSON (1883, 299), (1975, 513)
Bounding box:
CAR (-1, 405), (85, 518),
CAR (533, 370), (637, 455),
PERSON (319, 213), (554, 722),
PERSON (1783, 270), (1884, 536),
PERSON (1883, 299), (1975, 513)

Test image #4

Data source: GitHub

Image resolution: 799 x 637

Bounding boxes (upper left and bottom right corners):
CAR (232, 119), (509, 466)
PLATE (330, 410), (393, 436)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
vehicle-license-plate-detection-barrier-0106 Bounding box:
CAR (232, 119), (509, 466),
PLATE (330, 410), (393, 436)
Bounding box:
CAR (232, 119), (509, 466),
PLATE (330, 410), (393, 436)

Test image #5

Data source: Internet

Image resolution: 320 x 320

Bounding boxes (upper left and bottom right corners):
PERSON (35, 17), (84, 192)
PERSON (79, 13), (122, 194)
PERSON (211, 78), (273, 279)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-detection-asl-0001 Bounding box:
PERSON (35, 17), (84, 192),
PERSON (79, 13), (122, 194),
PERSON (211, 78), (273, 279)
Bounding box:
PERSON (35, 17), (84, 192),
PERSON (79, 13), (122, 194),
PERSON (211, 78), (273, 279)
person-detection-asl-0200 Bounding box:
PERSON (28, 12), (66, 155),
PERSON (63, 8), (97, 158),
PERSON (169, 65), (215, 223)
Bounding box:
PERSON (28, 12), (66, 155),
PERSON (63, 8), (97, 158),
PERSON (169, 65), (215, 223)
person-detection-asl-0201 Bounding box:
PERSON (41, 19), (97, 235),
PERSON (254, 96), (320, 335),
PERSON (93, 15), (147, 236)
Bounding box:
PERSON (41, 19), (97, 235),
PERSON (254, 96), (320, 335),
PERSON (93, 15), (147, 236)
person-detection-asl-0202 Bounding box:
PERSON (338, 127), (430, 446),
PERSON (127, 16), (195, 315),
PERSON (56, 27), (129, 314)
Bounding box:
PERSON (338, 127), (430, 446),
PERSON (127, 16), (195, 315),
PERSON (56, 27), (129, 314)

Test image #6

Data source: Internet

Image resolution: 512 x 512

Bounding boxes (upper left and bottom right corners):
PRINGLES (133, 195), (257, 195)
SPRITE (240, 487), (380, 10)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
product-detection-0001 Bounding box:
PRINGLES (130, 178), (275, 493)
Bounding box:
PRINGLES (130, 178), (275, 493)

Test image #7

Data source: Wider Face

Image resolution: 1024 x 678

Bounding boxes (upper left and bottom right corners):
(189, 140) (288, 284)
(616, 45) (704, 213)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
face-detection-0200 Bounding box:
(188, 143) (284, 275),
(616, 47) (700, 204)
Bounding box:
(188, 143) (284, 275),
(616, 47) (700, 204)
face-detection-0202 Bounding box:
(189, 139) (285, 277),
(613, 38) (701, 204)
Bounding box:
(189, 139) (285, 277),
(613, 38) (701, 204)
face-detection-0204 Bounding box:
(189, 142) (288, 275),
(614, 43) (704, 204)
Bounding box:
(189, 142) (288, 275),
(614, 43) (704, 204)
face-detection-adas-0001 Bounding box:
(189, 140) (288, 284),
(616, 45) (704, 213)
Bounding box:
(189, 140) (288, 284),
(616, 45) (704, 213)
face-detection-adas-binary-0001 Bounding box:
(186, 137) (289, 277),
(616, 53) (706, 211)
Bounding box:
(186, 137) (289, 277),
(616, 53) (706, 211)
face-detection-retail-0004 Bounding box:
(189, 143) (286, 275),
(613, 57) (694, 201)
Bounding box:
(189, 143) (286, 275),
(613, 57) (694, 201)
face-detection-retail-0005 Bounding box:
(189, 140) (296, 277),
(609, 44) (714, 206)
Bounding box:
(189, 140) (296, 277),
(609, 44) (714, 206)
face-detection-0100 Bounding box:
(190, 142) (290, 282),
(615, 46) (703, 210)
Bounding box:
(190, 142) (290, 282),
(615, 46) (703, 210)
face-detection-0102 Bounding box:
(187, 141) (292, 280),
(617, 50) (712, 210)
Bounding box:
(187, 141) (292, 280),
(617, 50) (712, 210)
face-detection-0104 Bounding box:
(190, 142) (290, 280),
(613, 43) (709, 211)
Bounding box:
(190, 142) (290, 280),
(613, 43) (709, 211)
face-detection-0105 Bounding box:
(188, 141) (286, 279),
(612, 45) (704, 204)
Bounding box:
(188, 141) (286, 279),
(612, 45) (704, 204)

Test image #8

Data source: Internet

Image resolution: 1999 x 1333

Bounding boxes (upper left and bottom right corners):
(1537, 385) (1792, 1184)
(541, 299) (845, 1161)
(229, 337) (453, 1048)
(0, 293) (193, 1129)
(955, 387) (1169, 1009)
(435, 370) (599, 1019)
(887, 292) (951, 479)
(749, 252) (866, 657)
(515, 317) (599, 580)
(833, 264) (894, 464)
(954, 283) (1020, 476)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-detection-retail-0002 Bounding box:
(252, 294) (465, 1048),
(966, 361) (1183, 1028),
(429, 262) (849, 1048),
(695, 283) (872, 839),
(421, 315) (612, 986),
(1560, 360) (1766, 1204),
(885, 283) (944, 503),
(771, 276) (868, 574),
(0, 314) (180, 941),
(1879, 459) (1936, 694),
(962, 279) (1023, 499),
(1890, 302) (1992, 638)
Bounding box:
(252, 294) (465, 1048),
(966, 361) (1183, 1028),
(429, 262) (849, 1048),
(695, 283) (872, 839),
(421, 315) (612, 986),
(1560, 360) (1766, 1204),
(885, 283) (944, 503),
(771, 276) (868, 574),
(0, 314) (180, 941),
(1879, 459) (1936, 694),
(962, 279) (1023, 499),
(1890, 302) (1992, 638)
person-detection-retail-0013 Bounding box:
(1537, 385) (1792, 1184),
(541, 299) (845, 1161),
(229, 337) (453, 1048),
(0, 293) (193, 1129),
(956, 387) (1169, 1009),
(435, 370) (599, 1019),
(887, 292) (951, 479),
(749, 252) (866, 657),
(515, 317) (599, 580),
(833, 264) (894, 464),
(954, 283) (1020, 476)
Bounding box:
(1537, 385) (1792, 1184),
(541, 299) (845, 1161),
(229, 337) (453, 1048),
(0, 293) (193, 1129),
(956, 387) (1169, 1009),
(435, 370) (599, 1019),
(887, 292) (951, 479),
(749, 252) (866, 657),
(515, 317) (599, 580),
(833, 264) (894, 464),
(954, 283) (1020, 476)

Test image #9

Data source: Cityscapes

Image resolution: 1999 x 1333

Bounding boxes (upper left and bottom right corners):
(629, 310) (934, 811)
(392, 435) (440, 525)
Model Python (latency mode, implementation) Python (throughput mode, implementation)
pedestrian-detection-adas-0002 Bounding box:
(614, 307) (945, 803)
Bounding box:
(614, 307) (945, 803)
pedestrian-detection-adas-binary-0001 Bounding box:
(629, 310) (934, 811),
(392, 435) (440, 525)
Bounding box
(629, 310) (934, 811),
(392, 435) (440, 525)

Test image #10

Data source: Pascal VOC

Image resolution: 500 x 375

Bounding boxes (upper left and bottom right corners):
AEROPLANE (127, 62), (251, 443)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
yolo-v2-ava-0001 Bounding box:
AEROPLANE (127, 62), (251, 443)
Bounding box:
AEROPLANE (127, 62), (251, 443)
yolo-v2-ava-sparse-35-0001 Bounding box:
AEROPLANE (129, 19), (258, 410)
Bounding box:
AEROPLANE (129, 19), (258, 410)
yolo-v2-ava-sparse-70-0001 Bounding box:
AEROPLANE (100, 66), (222, 450)
Bounding box:
AEROPLANE (100, 66), (222, 450)
yolo-v2-tiny-ava-0001 Bounding box:
AEROPLANE (96, 51), (223, 464)
Bounding box:
AEROPLANE (96, 51), (223, 464)
yolo-v2-tiny-ava-sparse-30-0001 Bounding box:
AEROPLANE (118, -6), (267, 440)
Bounding box:
AEROPLANE (118, -6), (267, 440)
yolo-v2-tiny-ava-sparse-60-0001 Bounding box:
AEROPLANE (94, 42), (225, 473)
Bounding box:
AEROPLANE (94, 42), (225, 473)

Action detection and recognition

Test image #1

Data source: sample-videos

Image resolution: 1920 x 1080

Bounding boxes (upper left and bottom right corners) and actions:
sitting (1157,517) (1407,1057)
sitting (452,495) (627,874)
sitting (201,555) (469,1084)
raising hand (874,444) (1052,849)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-detection-action-recognition-0006 Bounding box and action:
sitting (1157,517) (1407,1057)
sitting (452,495) (627,874)
sitting (201,555) (469,1084)
raising hand (874,444) (1052,849)
Bounding box and action:
sitting (1157,517) (1407,1057)
sitting (452,495) (627,874)
sitting (201,555) (469,1084)
raising hand (874,444) (1052,849)
person-detection-action-recognition-0005 Bounding box and action:
sitting (1160,528) (1409,1082)
sitting (202,569) (455,1079)
standing (453,495) (624,869)
raising hand (836,404) (1048,862)
Bounding box and action:
sitting (1160,528) (1409,1082)
sitting (202,569) (455,1079)
standing (453,495) (624,869)
raising hand (836,404) (1048,862)
person-detection-raisinghand-recognition-0001 Bounding box and action:
sitting (1160,528) (1409,1082)
sitting (202,569) (455,1079)
sitting (453,495) (624,869)
other (836,404) (1048,862)
Bounding box and action:
sitting (1160,528) (1409,1082)
sitting (202,569) (455,1079)
sitting (453,495) (624,869)
other (836,404) (1048,862)

Test image #2

Data source: Internet

Image resolution: 1920 x 1080

Bounding boxes (upper left and bottom right corners) and actions:
standing (186,15) (276,224)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-detection-action-recognition-teacher-0002 Bounding box and action:
standing (286,84) (357,283)
standing (0,81) (101,281)
standing (186,15) (276,224)
Bounding box and action:
standing (286,84) (357,283)
standing (0,81) (101,281)
standing (186,15) (276,224)

Object recognition

Test image #1

Data source: GitHub

Image resolution: 62 x 62

Model Python (latency mode, implementation) Python (throughput mode, implementation)
age-gender-recognition-retail-0013 Female, 25.19 Female, 25.19

Test image #2

Data source: GitHub

Image resolution: 62 x 62

Model Python (latency mode, implementation) Python (throughput mode, implementation)
age-gender-recognition-retail-0013 Male, 43.43 Male, 43.43

Test image #3

Data source: GitHub

Image resolution: 62 x 62

Model Python (latency mode, implementation) Python (throughput mode, implementation)
age-gender-recognition-retail-0013 Male, 28.49 Male, 28.49

Test image #4

Data source: VGGFace2

Image resolution: 48 x 48

Face landmarks:
EYE (17, 18),
EYE (35, 21),
NOSE (24, 27),
LIP CORNER (15, 34),
LIP CORNER (28, 36)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
landmarks-regression-retail-0009 Face landmarks:
EYE (17, 18),
EYE (35, 21),
NOSE (24, 27),
LIP CORNER (15, 34),
LIP CORNER (28, 36)
Face landmarks:
EYE (17, 18),
EYE (35, 21),
NOSE (24, 27),
LIP CORNER (15, 34),
LIP CORNER (28, 36)

Test image #5

Data source: Internet

Image resolution: 60 x 60

Face landmarks:
LEFT EYE (17, 22), (9, 22),
RIGHT EYE (30, 21), (39, 20),
NOSE (21, 33), (23, 37), (17, 35), (30, 34),
MOUTH (17, 44), (34, 42), (23, 41), (24, 48),
LEFT EYEBROW (6, 17), (11, 15), (18, 17),
RIGHT EYEBROW (27, 15), (35, 12), (43, 14),
FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18)

Model Python (latency mode, implementation) Python (throughput mode, implementation)
facial-landmarks-35-adas-0002 Face landmarks:
LEFT EYE (17, 22), (9, 22),
RIGHT EYE (30, 21), (39, 20),
NOSE (21, 33), (23, 37), (17, 35), (30, 34),
MOUTH (17, 44), (34, 42), (23, 41), (24, 48),
LEFT EYEBROW (6, 17), (11, 15), (18, 17),
RIGHT EYEBROW (27, 15), (35, 12), (43, 14),
FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18)
Face landmarks:
LEFT EYE (17, 22), (9, 22),
RIGHT EYE (30, 21), (39, 20),
NOSE (21, 33), (23, 37), (17, 35), (30, 34),
MOUTH (17, 44), (34, 42), (23, 41), (24, 48),
LEFT EYEBROW (6, 17), (11, 15), (18, 17),
RIGHT EYEBROW (27, 15), (35, 12), (43, 14),
FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18)

Test image #6

Data source: Cityscapes

Image resolution: 80 x 160

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-attributes-recognition-crossroad-0230

Test image #7

Data source: Cityscapes

Image resolution: 80 x 160

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-attributes-recognition-crossroad-0230

Test image #8

Data source: BKHD

Image resolution: 60 x 60

Model Python (latency mode, implementation) Python (throughput mode, implementation)
head-pose-estimation-adas-0001

Test image #9

Data source: BKHD

Image resolution: 60 x 60

Model Python (latency mode, implementation) Python (throughput mode, implementation)
gaze-estimation-adas-0002

Test image #10

Data source: GitHub

Image resolution: 24 x 94

Model Python (latency mode, implementation) Python (throughput mode, implementation)
license-plate-recognition-barrier-0001 <Beijing>FA9512 <Beijing>FA9512

Image processing

Test image #1

Data source: GitHub

Image resolution: 720 x 480

Processed images are identical.

Model Python (latency mode, implementation) Python (throughput mode, implementation)
single-image-super-resolution-1032
single-image-super-resolution-1033

Pose recognition

Test image #1

Data source: MS COCO

Image resolution: 640 x 425

Processed images are identical.

Model Python (latency mode, implementation) Python (throughput mode, implementation)
human-pose-estimation-0001

Semantic segmentation

Test image #1

Data source: Cityscapes

Image resolution: 2048 x 1024

Segmented images are identical.

Model Python (latency mode, implementation) Python (throughput mode, implementation)
semantic-segmentation-adas-0001

Color map:

Test image #2

Data source: GitHub

Image resolution: 640 x 365

Segmented images are identical.

Model Python (latency mode, implementation) Python (throughput mode, implementation)
road-segmentation-adas-0001

Color map:

Test image #3

Data source: CamVid

Image resolution: 960 x 720

Segmented images are identical.

Model Python (latency mode, implementation) Python (throughput mode, implementation)
unet-camvid-onnx-0001
icnet-camvid-ava-0001
icnet-camvid-ava-sparse-30-0001
icnet-camvid-ava-sparse-60-0001

Color map:

High-level description

Test image #1

Data source: LFW

Image resolution: 250 x 250

Model Python (latency mode, implementation) Python (throughput mode, implementation)
face-reidentification-retail-0095 -0.1658423 -0.5230426
-1.4679441 0.0983598
...
0.8537527 0.8713884
-0.8769233 0.6840097
Full tensor
-0.1658423 -0.5230426
-1.4679441 0.0983598
...
0.8537527 0.8713884
-0.8769233 0.6840097
Full tensor

Test image #2

Data source: GitHub

Image resolution: 960 x 720

Model Python (latency mode, implementation) Python (throughput mode, implementation)
action-recognition-0001-encoder 0.0794002 0.0583136
0.0020747 0.0903931
...
0.0785143 0.0922345
0.0033597 0.3115494
Full tensor
0.0794002 0.0583136
0.0020747 0.0903931
...
0.0785143 0.0922345
0.0033597 0.3115494
Full tensor

Test image #3

Data source: GitHub

Image resolution: 1922 x 1080

Model Python (latency mode, implementation) Python (throughput mode, implementation)
driver-action-recognition-adas-0002-encoder -0.0142664 -0.0064784
-0.0334583 -0.0108943
...
-0.2324419 0.2686763
0.0168234 0.0029897
Full tensor
-0.0142664 -0.0064784
-0.0334583 -0.0108943
...
-0.2324419 0.2686763
0.0168234 0.0029897
Full tensor

Test image #4

Data source: Internet

Image resolution: 1922 x 1080

Model Python (latency mode, implementation) Python (throughput mode, implementation)
image-retrieval-0001 0.1158277 -0.0189930
0.0530676 0.0290345
...
0.2057585 -0.0367919
-0.0067885 -0.0031499
Full tensor
0.1158277 -0.0189930
0.0530676 0.0290345
...
0.2057585 -0.0367919
-0.0067885 -0.0031499
Full tensor

Test image #5

Data source: Internet

Image resolution: 128 x 256

Model Python (latency mode, implementation) Python (throughput mode, implementation)
person-reidentification-retail-0277 -0.5144883 -0.4489283
0.1324019 0.2539501
...
0.4898967 0.1124130
-0.1284953 0.0117971
Full tensor
Errors in output
person-reidentification-retail-0286 0.2997471 -0.2456339
-0.1295844 -0.2274195
...
0.2052885 0.1565714
0.2504670 0.2383912
Full tensor
Errors in output
person-reidentification-retail-0287 -0.2050491 -0.4432146
0.6389340 0.2023722
...
-0.6498539 -0.0128914
-0.5972998 -0.3941978
Full tensor
Errors in output
person-reidentification-retail-0288 0.2380135 0.3185425
-0.3636540 0.3864555
...
-0.3466439 -0.3920009
-0.0821614 0.1705070
Full tensor
Errors in output

Action recognition

Tensor #1

Data source: output tensor of the action-recognition-0001-encoder model

0.0794002 0.0583136 0.0020747 0.0903931
0.0154800 0.3712009 0.4007360 0.0830761
...
0.1126685 0.1257046 0.1392988 0.5075323
0.0785143 0.0922345 0.0033597 0.3115494
Model Python (latency mode, implementation) Python (throughput mode, implementation)
action-recognition-0001-decoder 9.0227661 tying bow tie
7.5208311 tying tie
4.8729849 sign language interpreting
4.3601480 answering questions
4.2990689 tying knot (not on a tie)
4.0868192 whistling
3.9643712 playing harmonica
3.7044604 stretching arm
3.5711651 strumming guitar
3.5514102 playing clarinet
9.0227661 tying bow tie
7.5208311 tying tie
4.8729849 sign language interpreting
4.3601480 answering questions
4.2990689 tying knot (not on a tie)
4.0868192 whistling
3.9643712 playing harmonica
3.7044604 stretching arm
3.5711651 strumming guitar
3.5514102 playing clarinet

Tensor #2

Data source: output tensor of the driver-action-recognition-adas-0002-encoder model

-0.0142664 -0.0064780 -0.0334583 -0.0108943
-0.0555940 -0.0013968 0.0001638 -0.0007524
...
-0.0093990 -0.0028726 0.0074722 0.0303789
-0.2324419 0.2686763 0.0168234 0.0029897
Model Python (latency mode, implementation) Python (throughput mode, implementation)
driver-action-recognition-adas-0002-decoder 4.3797836 texting by right hand
4.1073933 talking on the phone by right hand
1.6492549 drinking
1.2682760 texting by left hand
0.3225771 reaching behind
-1.6658649 safe driving
-3.3440599 doing hair or making up
-4.6270852 operating the radio
-5.3927083 talking on the phone by left hand
4.3797836 texting by right hand
4.1073933 talking on the phone by right hand
1.6492549 drinking
1.2682760 texting by left hand
0.3225771 reaching behind
-1.6658649 safe driving
-3.3440599 doing hair or making up
-4.6270852 operating the radio
-5.3927083 talking on the phone by left hand

Instance segmentation

Test image #1

Data source: MS COCO

Image resolution: 640 x 480

Input tensor: 480; 640; 1
Model Python (latency mode, implementation) Python (throughput mode, implementation)
instance-segmentation-security-0083

Test image #2

Data source: MS COCO

Image resolution: 640 x 640

Input tensor: 480; 480; 1
Model Python (latency mode, implementation) Python (throughput mode, implementation)
instance-segmentation-security-0050
instance-segmentation-security-1025

Test image #3

Data source: MS COCO

Image resolution: 640 x 427

Input tensor: 800; 1344; 1
Model Python (latency mode, implementation) Python (throughput mode, implementation)
instance-segmentation-security-0010

Color map:

Image classification

Test image #1

Data source: ImageNet

Image resolution: 709 x 510 

Model Python (latency mode, implementation) Python (throughput mode, implementation)
resnet18-xnor-binary-onnx-0001 6.5452480 Granny Smith
4.1318626 fig
3.5715680 bell pepper
3.1780813 saltshaker, salt shaker
3.1212788 hair slide
6.5452480 Granny Smith
4.1318626 fig
3.5715680 bell pepper
3.1780813 saltshaker, salt shaker
3.1212788 hair slide

Test image #2

Data source: ImageNet

Image resolution: 500 x 500 

Model Python (latency mode, implementation) Python (throughput mode, implementation)
resnet18-xnor-binary-onnx-0001 9.1701651 junco, snowbird
5.4874449 chickadee
0.4869275 jay
0.3719085 indigo bunting, indigo finch, indigo bird, Passerina cyanea
-1.1992515 brambling, Fringilla montifringilla
9.1701651 junco, snowbird
5.4874449 chickadee
0.4869275 jay
0.3719085 indigo bunting, indigo finch, indigo bird, Passerina cyanea
-1.1992515 brambling, Fringilla montifringilla

Test image #3

Data source: ImageNet

Image resolution: 333 x 500 

Model Python (latency mode, implementation) Python (throughput mode, implementation)
resnet18-xnor-binary-onnx-0001 4.7719054 lifeboat
1.7933186 drilling platform, offshore rig
0.1516396 fireboat
0.0121927 amphibian, amphibious vehicle
-0.2893910 pirate, pirate ship
4.7719054 lifeboat
1.7933186 drilling platform, offshore rig
0.1516396 fireboat
0.0121927 amphibian, amphibious vehicle
-0.2893910 pirate, pirate ship