-
Notifications
You must be signed in to change notification settings - Fork 4
/
Project_Facetracking.py
86 lines (66 loc) · 1.86 KB
/
Project_Facetracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import cv2
import numpy as np
from djitellopy import tello
import time
me = tello.Tello()
me.connect()
print(me.get_battery())
me.streamon()
me.takeoff()
me.send_rc_control(0, 0, 30, 0)
time.sleep(2)
w, h = 360, 240
fbRange = [6200, 6800]
pid = [0.4, 0.4, 0]
pError = 0
def findFace(img):
faceCascade = cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(imgGray, 1.2, 8)
myFaceListC = []
myFaceListArea = []
for (x, y, w, h) in faces:
cv2.rectangle(img, (x,y), (x+w, y+h), (0, 0, 255), 2)
cx = x + w // 2
cy = y + h // 2
area = w * h
cv2.circle(img, (cx,cy), 5, (0, 255, 0), cv2.FILLED )
myFaceListC.append([cx, cy])
myFaceListArea.append(area)
if len(myFaceListArea) != 0:
i = myFaceListArea.index(max(myFaceListArea))
return img, [myFaceListC[i], myFaceListArea[i]]
else:
return img, [[0,0], 0]
def trackFace( info, w, pid, pError):
area = info[1]
x,y = info[0]
fb = 0
error = x - w//2
speed = pid[0]*error + pid[1] * (error - pError)
speed = int(np.clip(speed, -100, 100))
if area > fbRange[0] and area < fbRange[1]:
fb = 0
if area > fbRange[1]:
fb = -20
elif area < fbRange[0] and area != 0:
fb = 20
if x == 0:
speed = 0
error = 0
print(speed, fb)
me.send_rc_control(0, fb, 0, speed)
return error
cap = cv2.VideoCapture(0)
while True:
# _, img = cap.read()
img = me.get_frame_read().frame
img = cv2.resize(img, (w, h))
img, info = findFace(img)
pError = trackFace(info, w, pid, pError)
# print("Center", info[0], "Area", info[1])
cv2.imshow("output", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
me.land()
me.end()
break