forked from google-research/noisystudent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet_builder.py
213 lines (182 loc) · 7.26 KB
/
efficientnet_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2019 The Google NoisyStudent Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''Model Builder for EfficientNet.'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import tensorflow as tf
import efficientnet_model
from absl import flags
FLAGS = flags.FLAGS
def efficientnet_params(model_name):
'''Get efficientnet params based on model name.'''
params_dict = {
# (width_coefficient, depth_coefficient, resolution, dropout_rate)
# scale width: 1.1, depth: 1.2, res: 1.15
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
'efficientnet-l2': (4.3, 5.3, 800, 0.5),
}
return params_dict[model_name]
class BlockDecoder(object):
'''Block Decoder for readability.'''
def _decode_block_string(self, block_string):
'''Gets a block through a string notation of arguments.'''
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
if 's' not in options or len(options['s']) != 2:
raise ValueError('Strides options should be a pair of integers.')
return efficientnet_model.BlockArgs(
kernel_size=int(options['k']),
num_repeat=int(options['r']),
input_filters=int(options['i']),
output_filters=int(options['o']),
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
strides=[int(options['s'][0]), int(options['s'][1])],
conv_type=int(options['c']) if 'c' in options else 0)
def _encode_block_string(self, block):
'''Encodes a block to a string.'''
args = [
'r%d' % block.num_repeat,
'k%d' % block.kernel_size,
's%d%d' % (block.strides[0], block.strides[1]),
'e%s' % block.expand_ratio,
'i%d' % block.input_filters,
'o%d' % block.output_filters,
'c%d' % block.conv_type,
]
if block.se_ratio > 0 and block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
if block.id_skip is False:
args.append('noskip')
return '_'.join(args)
def decode(self, string_list):
'''Decodes a list of string notations to specify blocks inside the network.
Args:
string_list: a list of strings, each string is a notation of block.
Returns:
A list of namedtuples to represent blocks arguments.
'''
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(self._decode_block_string(block_string))
return blocks_args
def encode(self, blocks_args):
'''Encodes a list of Blocks to a list of strings.
Args:
blocks_args: A list of namedtuples to represent blocks arguments.
Returns:
a list of strings, each string is a notation of block.
'''
block_strings = []
for block in blocks_args:
block_strings.append(self._encode_block_string(block))
return block_strings
def efficientnet(width_coefficient=None,
depth_coefficient=None,
dropout_rate=0.2,
stochastic_depth_rate=0.2):
'''Creates a efficientnet model.'''
blocks_args = [
'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
'r1_k3_s11_e6_i192_o320_se0.25',
]
if FLAGS.small_image_model:
blocks_args[1] = 'r2_k3_s11_e6_i16_o24_se0.25'
blocks_args[2] = 'r2_k5_s11_e6_i24_o40_se0.25'
global_params = efficientnet_model.GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=dropout_rate,
stochastic_depth_rate=stochastic_depth_rate,
data_format='channels_last',
num_classes=1000,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None,
relu_fn=tf.nn.swish)
decoder = BlockDecoder()
return decoder.decode(blocks_args), global_params
def get_model_params(model_name, override_params):
'''Get the block args and global params for a given model.'''
width_coefficient, depth_coefficient, _, dropout_rate = (
efficientnet_params(model_name))
blocks_args, global_params = efficientnet(
width_coefficient, depth_coefficient, dropout_rate)
if override_params:
# ValueError will be raised here if override_params has fields not included
# in global_params.
global_params = global_params._replace(**override_params)
tf.logging.info('global_params= %s', global_params)
tf.logging.info('blocks_args= %s', blocks_args)
return blocks_args, global_params
def build_model(images,
model_name,
training,
override_params=None,
model_dir=None,
use_adv_bn=False,
is_teacher=False):
'''A helper functiion to creates a model and returns predicted logits.
Args:
images: input images tensor.
model_name: string, the predefined model name.
training: boolean, whether the model is constructed for training.
override_params: A dictionary of params for overriding. Fields must exist in
efficientnet_model.GlobalParams.
model_dir: string, optional model dir for saving configs.
Returns:
logits: the logits tensor of classes.
endpoints: the endpoints for each layer.
Raises:
When model_name specified an undefined model, raises NotImplementedError.
When override_params has invalid fields, raises ValueError.
'''
assert isinstance(images, tf.Tensor)
blocks_args, global_params = get_model_params(model_name, override_params)
if model_dir:
param_file = os.path.join(model_dir, 'model_params.txt')
if not tf.gfile.Exists(param_file):
if not tf.gfile.Exists(model_dir):
tf.gfile.MakeDirs(model_dir)
with tf.gfile.GFile(param_file, 'w') as f:
tf.logging.info('writing to %s' % param_file)
f.write('model_name= %s\n\n' % model_name)
f.write('global_params= %s\n\n' % str(global_params))
f.write('blocks_args= %s\n\n' % str(blocks_args))
model = efficientnet_model.Model(blocks_args, global_params, use_adv_bn, is_teacher)
logits = model(images, training=training)
logits = tf.identity(logits, 'logits')
return logits, model.endpoints