-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
159 lines (139 loc) · 5.37 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
""" * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright (C) 2022 ipitio *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Affero General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Affero General Public License for more details. *
* *
* You should have received a copy of the GNU Affero General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * """
import glob
import json as JSON
import os
import socket
import subprocess
import threading
import warnings
import webbrowser
from importlib import util
packages = [
"python-dotenv",
"flask",
"pandas",
"scikit-learn",
"pgeocode",
"pandas_geojson",
]
for pkg in packages:
if not util.find_spec(pkg):
subprocess.check_call(["pip3", "install", pkg])
os.chdir(os.path.dirname(__file__))
warnings.filterwarnings("ignore")
import pandas as pd
import pgeocode
from dotenv import load_dotenv
from flask import Flask, jsonify, render_template, request
from pandas_geojson import to_geojson
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.manifold import MDS
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import StandardScaler
load_dotenv()
app = Flask(__name__)
csv = os.getenv("DATA")
data = pd.read_csv(csv)
corr = data.corr(numeric_only=True).fillna(0)
numeric = data[data.columns.intersection(corr.columns)]
scaled = StandardScaler().fit_transform(numeric.values)
pca = PCA(len(corr.columns))
pca.fit(scaled)
nomi = pgeocode.Nominatim("us")
data["lat"] = data["ZIPCODE"].apply(lambda x: nomi.query_postal_code(x)["latitude"])
data["long"] = data["ZIPCODE"].apply(lambda x: nomi.query_postal_code(x)["longitude"])
def json(df=corr, n=-1):
df = df[df.abs().sum().nlargest(n).index] if n > -1 else df
return df.stack().reset_index().to_json(orient="records")
def sort_df(df):
sorted_df = df[df.abs().sum().nlargest(2).index]
for _ in range(len(df.columns) - 2):
i = 0
name = sorted_df.columns[i]
while name in sorted_df.columns:
name = sorted_df[sorted_df.columns[-1]].abs().nlargest(i + 1).index[-1]
i += 1
sorted_df = pd.concat([sorted_df, df[name]], axis=1)
return sorted_df
def elbow(df):
distortions = []
models = []
for k in range(1, 6):
kmeanModel = KMeans(k).fit(df)
models.append(pd.DataFrame(kmeanModel.labels_))
distortions.append(kmeanModel.inertia_)
delta = [distortions[i + 1] - distortions[i] for i in range(len(distortions) - 1)]
elbow = 0
for i in range(len(delta) - 1):
if delta[i + 1] / delta[i] if delta[i] else 0 < 0.5:
elbow = i + 1
return models[elbow]
@app.errorhandler(404)
def index(e):
return render_template(
"index.html", files=glob.glob("static/**", recursive=True), data=csv
)
@app.route("/<plot>", methods=["GET", "POST"])
def analyze(plot="", arg=""):
if request and request.args:
arg = request.args.get("arg")
match plot:
case "corrmat":
return json()
case "scatmat":
return json(n=len(data.columns) if int(arg) < 0 else int(arg))
case "pcd":
return json(sort_df(corr))
case "pca":
return json(pd.DataFrame(PCA(2).fit_transform(scaled)))
case "scree":
return jsonify(list(pca.explained_variance_ratio_))
case "biplot":
return json(pd.DataFrame(pca.components_))
case "mds":
return json(
pd.DataFrame(
MDS(
2,
random_state=0,
dissimilarity="precomputed",
n_init=6,
n_jobs=-1,
).fit_transform(pairwise_distances(scaled, metric=arg))
)
)
case "map":
return to_geojson(df=data, lat="lat", lon="long", properties=data.columns)
case "kmeans":
df = pd.DataFrame(JSON.loads(request.args.get("data")))
if len(df) == 0:
df = numeric
if len(df.columns) > len(df):
df = df.T
match request.args.get("method"):
case "elbow":
return json(elbow(df))
return json(data)
if __name__ == "__main__":
PORT = os.getenv("PORT")
threading.Timer(
0,
lambda: webbrowser.open_new_tab("http://" + socket.gethostname() + ":" + PORT),
).start()
app.run(os.getenv("HOST"), int(PORT))