forked from PurdueElectricRacing/PlanetaryGearbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GearStress.m
161 lines (134 loc) · 4.07 KB
/
GearStress.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
function GearStress(pd, ring_n, sun_n, planet_n, J_s, J_p)
%% NOTE
%INPUTS:
%pd = diametral pitch (don't confuse this as pitch diameter. Following
%notation from Shigleys)
%ring_n = number of teeth on ring gear
%sun_n = number of teeth on sun gear
%planet_n = number of teeth on planet gear
%
%J_s and J_p:
%Due to complexity of curve, the geometry factor (J) is determined outside
%of the code using Figure 14-6 from Shigleys 10th ed
%
%This code does not check for valid inputs of run, sun, and planet teeth.
%These must be figured out using the GearCalculator.m script
%% PREDEFINED CONSTANT
%Track and Vehicle Variables
end_time = 25; %length of endurance in minutes
Ne = 160; %Number of endurance events ran
motor_rpm = 4000; %[rpm]
torque = 15; %[Nm]
hp = torque*motor_rpm/9.5488/1000*1.34; %[hp]
%Gear Variables
dp_s = sun_n/pd; %pitch diameter sun [in]
dp_p = planet_n/pd; %pitch diameter planet [in]
Pa = 20; %Pressure angle [deg]
F_s = 1; %face width of sun [in]
F_p = 1; %face width of planet [in]
Y_tab = xlsread('Lewis Factor'); %Lewis Form Factor Table
N_s = motor_rpm * end_time * Ne * 3; %load cycle for sun gear
N_p = motor_rpm / (planet_n/sun_n) * end_time * Ne; %load cycle for planet gear
%Material/Manufacturing Properties
qV = 12; %quality
% v_s %poisson's ratio for sun
% v_p %poisson's ratio for planet
% E_s %Young's modulus of sun
% E_p %Young's modulus of planet
Hb = 400; %Brinell Hardness guess
%% STRESS COEFFICIENT CALCULATIONS
V = (pi*dp_s*motor_rpm)/12; %Pitch Line Velocity
Wt = 33000*hp/V; %Transmitted Load
%Kv - Dynamic Factor
B = 0.25*(12-qV)^(2/3);
A = 50 + 56*(1-B);
Kv = ((A + sqrt(V))/A)^B;
%Ks - Size Factor
teeth = [sun_n planet_n];
Y = [0 0];
for j=1:2
for i=1:26
if Y_tab(i,1) == teeth(j)
Y(j) = Y_tab(i,2);
break
elseif teeth(j) > Y_tab(i,1) && teeth(j) < Y_tab(i+1,1)
Y(j) = Y_tab(i,2);
break
end
end
end
Ks_s = 1.192*(F_s*sqrt(Y(1))/pd)^0.0535;
Ks_p = 1.192*(F_p*sqrt(Y(2))/pd)^0.0535;
%Load Distribution Factor
Cmc = 1; %assume uncrowned (.8 if crowned)
if F_s <= 1
Cpf = F_s/10/dp_s-.025;
else
Cpf = F_s/10/dp_s - 0.0375 + 0.0125*F_s;
end
Cpm = 1; %assume S1/s<.175
Cma= .00360 + .0102*F_s + (-.822*10^-4)*F_s^2; %assume precision
Ce = 0.9; %other conditions
Km = 1 + Cmc * (Cpf*Cpm + Cma*Ce);
%Rim Thickness Factor
Kb=1; %assume thick enough rim
%Overload Factor
Ko = 1.5;
%Bending Stress Cycle Factor
if N_s < 10^7
Yn_s = 3.517*N_s^(-0.0617);
else
Yn_s = 1.3558*N_s^(-0.0178);
end
if N_p < 10^7
Yn_p = 3.517*N_p^(-0.0617);
else
Yn_p = 1.3558*N_p^(-0.0178);
end
%Stress-cycle Factor Equations
if N_s < 10^7
Zn_s = 1.249*N_s^(-0.0138);
else
Zn_s = 1.4488*N_s^(-0.023);
end
if N_p < 10^7
Zn_p = 1.249*N_p^(-0.0138);
else
Zn_p = 1.4488*N_p^(-0.023);
end
%Reliability Factor
Kr = 1; %.99 Reliability
%Temperature Factor
Kt = 1;
%Surface Condition Factor
Cf = 1; %Subject to change from manufacturer
%Load Sharing Ratio
mN = 1;
%Pitting Resistance Geometry Factor
mG = planet_n/sun_n;
I = (cosd(Pa)*sind(Pa))/(2*mN)*mG/(mG+1);
%Elastic coefficient
%this value can be either found using Eq 14-13 or Table 14-8
Cp = 2300; %Steel to steel [psi^(1/2)]
%Cp = (pi*((1-v_s^2)/E_s + (1-v_p^2)/E_p))^(-0.5);
%AGMA Strength Equations (Assume material same for sun and planet rn)
%Uncomment either grade 1 or grade 2 equations
%Grade 1
%St = 77.3*Hb + 12800; %Allowable bending stress number [psi]
%Sc = 322*Hb + 29000; %Allowable contact stress number [psi]
%Grade 2
St = 102*Hb + 16400; %Allowable bending stress number [psi]
Sc = 349*Hb + 34300; %Allowable contact stress number [psi]
%Hardness Ratio Factor
Ch = 1;
%% STRESS AND ENDURANCE CALCULATIONS
%%Only sun is being analzyed right now as sun is to fail before planet
%%Gear Wear
sigmaC_s = Cp*sqrt(Wt*Ko*Kv*Ks_s*Km/(dp_s*F_s)*Cf/I);
sH_s = Sc*Zn_s/(Kt*Kr)/sigmaC_s;
%Bending
sigma = Wt*Ko*Kv*Ks_s*pd/F_s*(Km*Kb)/J_s;
sF_s = St*Yn_s/(Kt*Kr)/sigma;
fprintf('Sun ring has max gear contact stress = %f psi and a FOS = %f\n',sigmaC_s, sH_s)
fprintf('Sun ring has max gear bending stress = %f psi and a FOS = %f\n',sigma, sF_s)
end