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Executive Summary 
Galois-Counter-Mode (GCM) is a block cipher mode of operation that uses 

universal hashing over a binary Galois field to provide authenticated 

encryption. Galois Hash is used for authentication, and the Advanced 

Encryption Standard (AES) block cipher is used for encryption in counter 

mode of operation. This paper describes an optimized implementation of 

GCM benefiting from the PCLMULQDQ instruction and AES-NI set of 

instructions on Intel® processors based on the 32-nm microarchitecture. 

This paper describes an optimized implementation of GCM that 

combines function stitching with novel polynomial multiplication 

methods. We are able to achieve performance of ~ 2.8 Cycles/byte 

on large buffers, on a single core of an Intel® Core™ i5 650 

processor, with Intel® Hyper-Threading Technology. This represents a 

new record for GCM performance on Intel® processors. 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, 

training, Intel’s tool loaner program, and connect with an e-help desk 

and the embedded community. Design Fast. Design Smart. Get started 

today. www.intel.com/embedded/edc . 

http://www.intel.com/embedded/edc�


Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors 

324194  3 

Contents 
Overview ................................................................................................................ 5 

GCM  ...................................................................................................................... 5 

Our Approach .......................................................................................................... 7 

AES Encryption ...................................................................................... 7 
GHASH ................................................................................................. 7 
Main Innovations in our approach ............................................................ 9 

Handling Bit-reflection of the multiplication product ......................... 9 
Precomputing inputs to Karatsuba Algorithm ................................. 10 
Deferred Recombination of Karatsuba partial products .................... 11 
Stitching AES with GHASH .......................................................... 12 
Overall Organization of the Implementation .................................. 13 

Performance .......................................................................................................... 15 

Implementation Details ........................................................................................... 16 

Initial Computations ............................................................................. 17 
Main Loop ........................................................................................... 19 
Final Computations .............................................................................. 19 

Multiple of 16 Bytes .................................................................... 20 
Non-Multiple of 16 Bytes ............................................................. 21 

Conclusion ............................................................................................................ 21 

References ............................................................................................................ 22 



Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors 

4   324194 

Figures 

Figure 1: AES-GCM Encryption Operation for 48 Byte Min Sized Buffer ............................ 6 

Figure 2: Karatsuba Multiplication method for two 128-bit polynomials for GHASH 
computations ............................................................................................ 8 

Figure 3: Parallelized GHASH computations on 4 blocks ................................................ 9 

Figure 4:  Optimized Karatsuba recombination for the main loop .................................. 12 

Figure 5: Final combination and reduction in the main loop ......................................... 12 

Figure 6:  Stitching Two Functions When One Operates on a Block of Data Produced by the 
Other ..................................................................................................... 13 

Figure 7: Overall Code Flow ..................................................................................... 14 

Figure 8: GCM Performance on a Single core with Intel® Hyper-Threading Technology .... 16 

Figure 9: Number of blocks modulo 4 (T) = 3 ............................................................ 17 

Figure 10: Number of blocks modulo 4 (T) = 2 .......................................................... 18 

Figure 11: Number of blocks modulo 4 (T) = 1 .......................................................... 18 

Figure 12: Number of blocks modulo 4 (T) = 0 .......................................................... 19 

Figure 13: Final combination for multiples of 16 Bytes ................................................ 20 

Figure 14: Final computations for non-multiples of 16 Bytes ........................................ 21 



Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors 

324194  5 

 

Overview 
GHASH (“Galois Hash”) is used for high performance message authentication, 
usually in conjunction with AES encryption in Galois counter mode. AES-GCM 
is an increasingly prominent mode, used for packet processing in applications 
such as fast networking. AES-GCM mode is defined in the FIPS 800-38D and 
the IEEE 802.1ae standards and is recommended for high-speed networking. 
AES-GCM performance can be significantly increased by using the 
PCLMULQDQ instruction and AES set of instructions in Intel® processors 
based on the 32-nm microarchitecture. In this paper, we describe new 
methods to implement GCM for optimized performance using function 
stitching and novel polynomial multiplication methods and the corresponding 
performance results. The GCM mode we implement conforms to the IPsec 
Encapsulating Security Payload (ESP) protocol in tunnel mode as described in 
RFC 4106 [5]. Though we do not include the code of our implementation in 
the paper, we describe it a high-level. 

For simplicity we have explained the encryption process in this paper, 
however the decryption approach and performance are almost identical. We 
assume the reader has familiarity with cryptographic algorithms related to 
block ciphers and authentication, specifically with GHASH methods. 

GCM 
The AES encryption is performed using the counter mode of operation with 
128-bit keys. The GHASH hashing is performed on the ciphertext generated 
by the AES encryption and a 128-bit digest, and generates an updated digest 
in each step.  

In each step of GHASH, the previous GHASH digest is added with an XOR 
operation (⊕), to the current ciphertext block. The result is then multiplied in 
the Galois Field GF(2128) with a hash key value H (which is constant during 
the session). Multiplication in the Galois Field GF(2128) consists of the 
following two steps: 

• 128x128 carry-less multiplication resulting in an intermediate 256 bit 
product 

• Reduction modulo the GHASH irreducible pentanomial g(x) = x128 + x7 
+ x2 + x + 1. 

Figure 1 demonstrates the AES-GCM encryption operation for a minimum 
IPsec packet in tunnel mode (48 byte min sized buffer): 
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Figure 1: AES-GCM Encryption Operation for 48 Byte Min Sized Buffer 

 

In Figure 1, the top portion shows the computations associated with the AES 
Encryption and the bottom portion shows the GHASH computations. The 
inputs to the operation consist of the Keys, Plaintext, initialization data, the 
additional authentication data (AAD) and lengths. The outputs are the 
ciphertext and the authentication tag. 

The initialization data comprises of a salt from the security association and 
sequence number from the IPsec Header, concatenated with an initial counter 
value of 1, to form the value Y0. Subsequent values Yi are generated by 
incrementing the counter, shown by the “incr” block. The ciphertext blocks 
are generated by performing Ci = EK(Yi) ⊕ Pi. The very first counter is 
encrypted to use as a mask on the final tag. 

The AAD is a single padded block that is derived from a sequence number. 
We perform a first GHASH operation using the AAD to compute the initial 
digest X0. The GHASH operation is denoted by the “mult H” block. The 
subsequent GHASH operations are performed on the 3 ciphertext blocks 
generated by the AES counter mode encryption process. A final GHASH 
operation is performed on a block generated with the length data, XOR’d with 
an encrypted mask to produce the final digest. The Authentication Tag is the 
final digest or a subset of the bytes, depending on the parameters of the 
protocol. For further details, refer to the RFC 4106 [5]. For larger buffers, the 
same process is followed, except that there will be more blocks than the 3 
blocks shown in this example. 
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Our Approach 

AES Encryption 

We perform AES128 computations efficiently processing 4 blocks in parallel in 
the counter mode of operation using the AES instructions. This approach and 
performance characteristics have been described in References [4]. 

GHASH 

The first fundamental component in GHASH computations is the 128x128 
polynomial multiplication for a single block. To realize this multiplication, we 
use the Karatsuba algorithm as shown in Figure 2. The individual polynomial 
multiplications in the figure are 64x64 multiplications, which can be 
computed with the PCLMULQDQ instruction. The specifics of Karatsuba 
multiplication using PCLMULQDQ instruction, are described in subsequent 
sections. 
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Figure 2: Karatsuba Multiplication method for two 128-bit polynomials for 
GHASH computations 

AL*BLAH*BH
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To compute the GHASH digest of 4 consecutive blocks, we use a method of 
parallelization as described in References [3]. The method can be described by 
the following equations: 

Ciphertext inputs: C0, C1, C2, C3. 

Digest input/output: Digest. 

Digest = (((((((Digest ⊕ C0)*H) ⊕ C1)*H) ⊕ C2)*H) ⊕ C3)*H 

  = ((Digest⊕C0)*H4) ⊕ (C1*H3) ⊕ (C2*H2) ⊕ (C3*H) 

This resulting equation is illustrated in Figure 3. 
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Figure 3: Parallelized GHASH computations on 4 blocks 
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The constants H4, H3 and H2 can be computed at the beginning of the GCM 
computation for a given data buffer and re-used for the rest of the blocks. 
Throughout our GCM implementation and particularly in the main loop, this 
approach is used to parallelize the GHASH computations.  

For the final reduction of a 256-bit partial result modulo the GHASH 
polynomial, refer to References [3] “Efficient Reduction Algorithm” as we are 
using the same reduction method. 

Main Innovations in our approach 

Handling Bit-reflection of the multiplication product 

The GCM standard References section [1] specifies that the data is bit-
reflected for the GHASH operations. Reflecting the bits of all data and 
intermediate computations is expensive and there are better methods to 
handle the bit-reflection. Some of these methods and implementation details 
are explained in the paper [3], section “Bit Reflection Peculiarity of GCM”. We 
also avoid reflecting the bits of the operands before operating on them, 
similar to the approach in [3].  
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The operation: 

reflected (A)*reflected (B) =reflected (A*B) >>1 

is performed throughout the GHASH computations. Here, it should be noted 
that the result has to be shifted left by 1 in order to get the exact result: 
reflected (A*B).  

Our Improvement 

Since one of the operands of this multiplication operation is a constant (H) or 
precomputed as H2, H3 or H4, we precompute corresponding “modified” 
constants so that they are “pre-shifted” and the result does not need any 
shifting operations. The challenge is that these constants are all 128-bit 
constants and could have their most-significant bits set, making it difficult to 
generate  H<<1, H2<<1, H3 <<1 and H4 <<1 as 128-bit constants. We could 
generate 129-bit constants, but this would add more overheads to the 
multiplication and reduction, offsetting potential gains from avoiding shifting 
the result. We therefore use the fact that we do not need the result of the 
multiplication to be exactly reflected (A*B) – we always compute a reduction 
of the result modulo the polynomial g(x). Thus if we precompute H<<1, 
H2<<1, H3 <<1 and H4 <<1 modulo polynomial g(x), we can use them as 
128-bit constants and avoid shifting the product, leading to the same result 
after the final reduction with g(x). 

Thus, if we are multiplying A with H mod g(x): 

reflected (A)*reflected (H<<1 mod g(x)) = reflected (A*H) mod g(x) 

The multiplication operation will return the correct result after the final 
reduction with g(x). Note that for convenience, we do not show the shift 
operator explicitly in the rest of the paper, and describe the operations using 
logical constants such as Hi. 

Precomputing inputs to Karatsuba Algorithm 

In addition to precomputing H<<1, H2<<1, H3 <<1 and H4 <<1 mod g(x), 
we also precompute a few corresponding constants that are used in the 
Karatsuba algorithm.  

Referring to Figure 2, during a Karatsuba Multiplication of Ah:Al and Bh:Bl, we 
need to perform 3 multiplication operations {Ah*Bh, (Ah ⊕ Al)*(Bh ⊕ Bl), 
Al*Bl}. The middle product term needs some computations to setup the 
operands. In the context of GHASH, the 2nd operand B is always derived from 
the hashkey H. Thus we precompute (Bh ⊕ Bl) for the 4 derived hashkey 
values as well. 

Thus we save significant amount of instructions in the main loop of the 
GHASH computations. 
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Deferred Recombination of Karatsuba partial products 

In the main loop that processes 4 blocks, we use the Karatsuba algorithm to 
perform multiplications of each block as explained in Figure 2. However, 
instead of combining the middle parts and having a complete result in 2 XMM 
registers for each block, we compute only the partial products and XOR them 
together to be combined at the end of the iteration once for all blocks.  

If we name the high product in the Karatsuba multiplication of one block Hi, 
middle product Mi and the low product Li, we have the following equation: 

Mi’ = Mi ⊕ Hi ⊕ Li 

Instead of computing the middle term Mi’ for each multiplication, we do this 
combination just once at the end: 

M’ = M ⊕ H ⊕ L 

as shown in Figure 4. The individual products {Mi, Hi, Li} can be computed 
using a code sequence such as: 

 ;; %%XMM6, %%T5 hold the two 128-bit operands (A, B) which are 
carry-less multiplied. Polynomial multiplication by Karatsuba 
Method: 

 movdqa  %%T1, %%XMM6 

 pshufd  %%T2, %%XMM6, 01001110b 

 pxor   %%T2, %%XMM6 ; %%T2 = (a1+a0) 

 movdqa  %%T5, [rsp + HashKey_3] ; B, based on Hash-key 

 pclmulqdq %%T1, %%T5, 0x11  ; %%T1 = a1*b1    

 pclmulqdq %%XMM6, %%T5, 0x00  ; %%XMM6 = a0*b0    

 movdqa  %%T5, [rsp + HashKey_3_k] ; pre-computed value 

 pclmulqdq %%T2, %%T5, 0x00  ; %%T2 = (a1+a0)*(b1+b0)  

 ;; %%T2, %%T1, %%XMM6 hold the values {Mi, Hi, Li} 

 pxor   %%T4, %%T1    ; accumulate results 

 pxor   %%XMM5, %%XMM6 

 pxor   %%T6, %%T2 

     ;; %%T6, %%T4, %%XMM5 hold the values {M, H, L} for 4 blocks 
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Figure 4:  Optimized Karatsuba recombination for the main loop 

H0 L0

M0

H1 L1

M1

H2 L2

M2

H3 L3

M3

H

L

M

 

 

Once we have the 3 intermediate results H, M’ and L for the 4 blocks, we can 
combine them and apply the reduction as shown in Figure 5. 

Figure 5: Final combination and reduction in the main loop 

H[127:0]
M’>>64

L[127:0]
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R[255:0]
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Digest[127:0]

 

Stitching AES with GHASH 

We used the function stitching method proposed in References section [2]. 
The main idea is to interleave instructions from pairs of functions to maximize 
execution efficiency of the cores. For the purpose of this paper, we stitch the 
two main functions required for GCM computations {AES, GHASH} and refer 
to AES as function A and GHASH as function B. The benefits of stitching are 
widely explained in References section [2]. In the context of GCM encryption, 
the second stitching method is used as shown in Figure 6: 
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Figure 6:  Stitching Two Functions When One Operates on a Block of Data 
Produced by the Other 
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Here, GHASH (function B) works on the ciphertext data that has been 
produced by AES in the previous iteration and AES (function A) produces the 
ciphertext for the next iteration. Our GCM implementation works on 4 blocks 
in parallel, rather than the single block shown in Figure 6. Note that the 
column on the left corresponds to the loop prolog in our implementation that 
performs AES operations only, the column on the right corresponds to the 
loop epilog in our implementation that performs GHASH operations only, and 
the rest correspond to our main loop of iterations (for suitably large buffers). 
These concepts will be described in more detail in later sections. 

Overall Organization of the Implementation 

The overall flow of our implementation is designed to handle different length 
buffers efficiently. It is described in detail in Figure 7. N denotes the number 
of whole blocks. The detailed description of the actual components are 
described in the section on Implementation Details. 
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Figure 7: Overall Code Flow 
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Performance 
The performance results provided in this section were measured on an Intel® 
Core™ i5 650 processor at a frequency of 3.20 GHz, supporting Intel® AES-
NI. The tests were run with Intel® Turbo Boost Technology off, and represent 
the performance with Intel® Hyper-Threading Technology (Intel® HT 
Technology) on a single core. We present the results with Intel® Hyper-
Threading Technology, since our target applications such as IPsec in Linux, 
are expected to run multiple threads for performance. 

When a test is called, it is first run numerous times to warm up the cache. 
The timing is measured using the rdtsc() function which returns the 
processor time stamp counter (TSC). The TSC is the number of clock cycles 
since the last reset. The ‘TSC_initial’ is the TSC recorded before the function 
is called. Then, the function is called for the specified number of times. After 
the runs are complete, the rdtsc() is called again to record the new cycle 
count ’TSC_final’. The effective cycle count for the called routine is computed 
using  

# of cycles = (TSC_final-TSC_initial)/(number of iterations). 

When 2 such identical threads are run simultaneously, the number of cycles 
measured for the function represents the cycles consumed in the core for 2 
data buffers (from each thread) and we calculate the cycles/byte accordingly. 
Thus, if each thread was computing GCM on buffers of size 1KB, then the net 
cycles/byte = # of cycles / 2*1KB  

Note: Performance results are based on certain tests measured on specific computer 
systems. Any difference in system hardware, software or configuration will 
affect actual performance. Configuration: Intel® Core™ i5 650 processor at a 
frequency of 3.20 GHz, supporting Intel® AES-NI. The tests were run with 
Intel® Turbo Boost Technology off, and represent the performance with Intel® 
Hyper-Threading Technology on a single core. For more information go to 
http://www.intel.com/performance.   

http://www.intel.com/performance�
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Figure 8: GCM Performance on a Single core with Intel® Hyper-Threading 
Technology 
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Figure 8 shows the performance in Cycles/byte as a function of the buffer size 
in bytes.  

The performance for large buffers is ~ 2.8 cycles/byte and the performance 
for small buffers of 48 Bytes is ~6.4 cycles/byte. In terms of throughput, a 
single core can process GCM at the aggregate rate of ~9 Gigabits/sec for 
large buffers. 

Implementation Details 

In our implementation, the code consists of 3 main sections: Initial 
computations, main loop and final computations. Since the main loop works 
on 4 blocks in each iteration, we compute the number of blocks modulo 4, 
and consume those many remainder blocks in the initial computations phase, 
to simplify the rest of the computations. We describe the various components 
of the implementation assuming that these are used when we process a 
suitably large data buffer for ease of illustration. 

To simplify the explanations let us assume that: 

Len = length of the buffer in bytes 
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N = number of whole blocks = (Len >>4) 

T = N modulo 4 

Y = number of bytes in partial block at the end of the buffer (Y<16) 

Initial Computations 

First we take the length of the buffer in bytes and round it down to the 
closest multiple of 16, to find the number of whole blocks that we will apply 
GCM on (N). We then compute N modulo 4 (T) to determine how many 
remainder blocks to compute in the loop prolog. We handle any partial block 
(when Len is a non-multiple of 16 Bytes) separately at the end. In the prolog, 
we also precompute the various values that are derived from the hashkey if 
they are required in the main processing loop. We also compute the AES 
operations for the next 4 blocks if they are required at the start of the main 
loop.  

Figure 9, Figure 10, Figure 11 and Figure 12 show the GHASH computations for T 
= 3, 2, 1 and 0 respectively. 

Figure 9: Number of blocks modulo 4 (T) = 3 
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Figure 10: Number of blocks modulo 4 (T) = 2 
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Figure 11: Number of blocks modulo 4 (T) = 1 
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Figure 12: Number of blocks modulo 4 (T) = 0 
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Main Loop 

In the main loop, we process 4 blocks iteratively, computing the GHASH 
operations and the AES128 Counter mode operations. The GHASH 
computations are shown in Figure 3 for a single iteration of the loop. 

Final Computations 

The final computations in the epilog need to process the last 4 blocks, 
differently from the main loop. For the last 4 blocks, we only need to perform 
GHASH operations, but no AES operations. The structure is as shown in figure 
3. 

There may be a partial block that needs to be padded and processed for 
encryption and GHASH digest update. The final counter value Yn is encrypted, 
masked with 0 bits and  XOR’d with the partial plain-text to compute the last 
cipher text bits (padded Cn in Figure 14), as explained in the GCM specification 
[1]. 

After this point, the final tag can be computed by the processing the final 
GHASH on the length information and masking it with the encryption of Y0. In 
some specifications, we may also need to return a subset of the bytes from 
the authentication tag. 
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Multiple of 16 Bytes 

Figure 13: Final combination for multiples of 16 Bytes 
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Non-Multiple of 16 Bytes 

Figure 14: Final computations for non-multiples of 16 Bytes 
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Conclusion 
The paper describes the best-known implementation of AES-GCM on Intel® 
processors using the PCLMULQDQ instruction and AES set of instructions in 
Intel® processors based on the 32-nm microarchitecture. By combining 
function stitching with novel polynomial multiplication methods, we are able 
to achieve performance of ~ 2.8 Cycles/byte on large buffers on a single 
core with Intel® Hyper-Threading Technology. 



Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors 

22   324194 

References 
[1] The Galois/Counter Mode of Operation (GCM) 
http://www.cryptobarn.com/papers/gcm-spec.pdf 

[2] Fast Cryptographic Computation on Intel® Architecture Processors Via 
Function Stitching 
http://download.intel.com/design/intarch/PAPERS/323686.pdf  

[3] Intel® Carry-less Multiplication Instruction and its Usage for Computing 
the GCM Mode http://software.intel.com/file/24918   

[4] Breakthrough AES Performance with Intel® AES New Instructions 
http://software.intel.com/file/26898  

[5] The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security 
Payload (ESP) http://tools.ietf.org/html/rfc4106  

 

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design 
materials, step-by step guidance, application reference solutions, training, 
Intel’s tool loaner program, and connect with an e-help desk and the 
embedded community. Design Fast. Design Smart. Get started today. 
http://intel.com/embedded/edc. 

 

Authors 

Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, 
Wajdi Feghali and Martin Dixon are IA Architects with the IAG 
Group at Intel Corporation.  

Acronyms 

IA  Intel® Architecture 

ILP  Instruction level parallelism 

SIMD Single Instruction Multiple Data 

SSE  Streaming SIMD Extensions 

 

http://www.cryptobarn.com/papers/gcm-spec.pdf�
http://download.intel.com/design/intarch/PAPERS/323686.pdf�
http://software.intel.com/file/24918�
http://software.intel.com/file/26898�
http://tools.ietf.org/html/rfc4106�
http://intel.com/embedded/edc�


Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors 

324194  23 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.  NO LICENSE, 

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS 

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR 

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR 

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR 

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR 

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products 

are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to 

specifications and product descriptions at any time, without notice.  

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO 

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, 

FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY 

PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including liability for infringement of 

any proprietary rights, relating to use of information in this specification. No license, express or implied, by 

estoppel or otherwise, to any intellectual property rights is granted herein. 

Performance tests and ratings are measured using specific computer systems and/or components and 

reflect the approximate performance of Intel products as measured by those tests. Any difference in 

system hardware or software design or configuration may affect actual performance.Buyers should consult 

other sources of information to evaluate the performance of systems or components they are considering 

purchasing. For more information on performance tests and on the performance of Intel products, Go to: 

http://www.intel.com/performance/resources/benchmark_limitations.htm  

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel 

software to execute the instructions in the correct sequence.  AES-NI is available on Intel® Core™ i5-600 

Desktop Processor Series, Intel® Core™ i7-600 Mobile Processor Series, and Intel® Core™ i5-500 Mobile 

Processor Series. For availability, consult your reseller or system manufacturer.  For more information, see 

http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf  

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and 

an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the 

specific hardware and software you use. For more information including details on which processors 

support HT Technology, see here. 

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, 

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary 

depending on your hardware and software configurations. Consult with your system vendor for more 

information. 

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. 

Intel Turbo Boost Technology performance varies depending on hardware, software and overall system 

configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost 

Technology.For more information, see http://www.intel.com/technology/turboboost. 

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Turbo Boost Technology, 

Intel Hyper Threading Technology, Intel Xeon, and Xeon Inside are trademarks or registered trademarks of 

Intel Corporation or its subsidiaries in the U.S. and other countries. 

*Other names and brands may be claimed as the property of others. Copyright © 2010 Intel 

Corporation. All rights reserved.  

§ 

http://www.intel.com/performance/resources/benchmark_limitations.htm�
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf�
http://www.intel.com/technology/turboboost�

	Overview
	GCM
	Our Approach
	AES Encryption
	GHASH
	Main Innovations in our approach
	Handling Bit-reflection of the multiplication product
	Precomputing inputs to Karatsuba Algorithm
	Deferred Recombination of Karatsuba partial products
	Stitching AES with GHASH
	Overall Organization of the Implementation


	Performance
	Implementation Details
	In our implementation, the code consists of 3 main sections: Initial computations, main loop and final computations. Since the main loop works on 4 blocks in each iteration, we compute the number of blocks modulo 4, and consume those many remainder bl...
	Initial Computations
	Main Loop
	Final Computations
	Multiple of 16 Bytes
	Non-Multiple of 16 Bytes


	Conclusion
	References

