

324194

Optimized Galois-
Counter-Mode
Implementation on
Intel®
Architecture
Processors

 August 2010

White Paper

Vinodh Gopal

Erdinc Ozturk

Wajdi Feghali

Jim Guilford

Gil Wolrich

Martin Dixon

IA Architects

Intel Corporation

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

2 324194

Executive Summary
Galois-Counter-Mode (GCM) is a block cipher mode of operation that uses

universal hashing over a binary Galois field to provide authenticated

encryption. Galois Hash is used for authentication, and the Advanced

Encryption Standard (AES) block cipher is used for encryption in counter

mode of operation. This paper describes an optimized implementation of

GCM benefiting from the PCLMULQDQ instruction and AES-NI set of

instructions on Intel® processors based on the 32-nm microarchitecture.

This paper describes an optimized implementation of GCM that

combines function stitching with novel polynomial multiplication

methods. We are able to achieve performance of ~ 2.8 Cycles/byte

on large buffers, on a single core of an Intel® Core™ i5 650

processor, with Intel® Hyper-Threading Technology. This represents a

new record for GCM performance on Intel® processors.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions,

training, Intel’s tool loaner program, and connect with an e-help desk

and the embedded community. Design Fast. Design Smart. Get started

today. www.intel.com/embedded/edc .

http://www.intel.com/embedded/edc�

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 3

Contents
Overview .. 5

GCM .. 5

Our Approach .. 7

AES Encryption .. 7
GHASH ... 7
Main Innovations in our approach .. 9

Handling Bit-reflection of the multiplication product 9
Precomputing inputs to Karatsuba Algorithm 10
Deferred Recombination of Karatsuba partial products 11
Stitching AES with GHASH .. 12
Overall Organization of the Implementation 13

Performance .. 15

Implementation Details ... 16

Initial Computations ... 17
Main Loop ... 19
Final Computations .. 19

Multiple of 16 Bytes .. 20
Non-Multiple of 16 Bytes ... 21

Conclusion .. 21

References .. 22

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

4 324194

Figures

Figure 1: AES-GCM Encryption Operation for 48 Byte Min Sized Buffer 6

Figure 2: Karatsuba Multiplication method for two 128-bit polynomials for GHASH
computations .. 8

Figure 3: Parallelized GHASH computations on 4 blocks .. 9

Figure 4: Optimized Karatsuba recombination for the main loop 12

Figure 5: Final combination and reduction in the main loop ... 12

Figure 6: Stitching Two Functions When One Operates on a Block of Data Produced by the
Other ... 13

Figure 7: Overall Code Flow ... 14

Figure 8: GCM Performance on a Single core with Intel® Hyper-Threading Technology 16

Figure 9: Number of blocks modulo 4 (T) = 3 .. 17

Figure 10: Number of blocks modulo 4 (T) = 2 .. 18

Figure 11: Number of blocks modulo 4 (T) = 1 .. 18

Figure 12: Number of blocks modulo 4 (T) = 0 .. 19

Figure 13: Final combination for multiples of 16 Bytes .. 20

Figure 14: Final computations for non-multiples of 16 Bytes .. 21

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 5

Overview
GHASH (“Galois Hash”) is used for high performance message authentication,
usually in conjunction with AES encryption in Galois counter mode. AES-GCM
is an increasingly prominent mode, used for packet processing in applications
such as fast networking. AES-GCM mode is defined in the FIPS 800-38D and
the IEEE 802.1ae standards and is recommended for high-speed networking.
AES-GCM performance can be significantly increased by using the
PCLMULQDQ instruction and AES set of instructions in Intel® processors
based on the 32-nm microarchitecture. In this paper, we describe new
methods to implement GCM for optimized performance using function
stitching and novel polynomial multiplication methods and the corresponding
performance results. The GCM mode we implement conforms to the IPsec
Encapsulating Security Payload (ESP) protocol in tunnel mode as described in
RFC 4106 [5]. Though we do not include the code of our implementation in
the paper, we describe it a high-level.

For simplicity we have explained the encryption process in this paper,
however the decryption approach and performance are almost identical. We
assume the reader has familiarity with cryptographic algorithms related to
block ciphers and authentication, specifically with GHASH methods.

GCM
The AES encryption is performed using the counter mode of operation with
128-bit keys. The GHASH hashing is performed on the ciphertext generated
by the AES encryption and a 128-bit digest, and generates an updated digest
in each step.

In each step of GHASH, the previous GHASH digest is added with an XOR
operation (⊕), to the current ciphertext block. The result is then multiplied in
the Galois Field GF(2128) with a hash key value H (which is constant during
the session). Multiplication in the Galois Field GF(2128) consists of the
following two steps:

• 128x128 carry-less multiplication resulting in an intermediate 256 bit
product

• Reduction modulo the GHASH irreducible pentanomial g(x) = x128 + x7
+ x2 + x + 1.

Figure 1 demonstrates the AES-GCM encryption operation for a minimum
IPsec packet in tunnel mode (48 byte min sized buffer):

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

6 324194

Figure 1: AES-GCM Encryption Operation for 48 Byte Min Sized Buffer

In Figure 1, the top portion shows the computations associated with the AES
Encryption and the bottom portion shows the GHASH computations. The
inputs to the operation consist of the Keys, Plaintext, initialization data, the
additional authentication data (AAD) and lengths. The outputs are the
ciphertext and the authentication tag.

The initialization data comprises of a salt from the security association and
sequence number from the IPsec Header, concatenated with an initial counter
value of 1, to form the value Y0. Subsequent values Yi are generated by
incrementing the counter, shown by the “incr” block. The ciphertext blocks
are generated by performing Ci = EK(Yi) ⊕ Pi. The very first counter is
encrypted to use as a mask on the final tag.

The AAD is a single padded block that is derived from a sequence number.
We perform a first GHASH operation using the AAD to compute the initial
digest X0. The GHASH operation is denoted by the “mult H” block. The
subsequent GHASH operations are performed on the 3 ciphertext blocks
generated by the AES counter mode encryption process. A final GHASH
operation is performed on a block generated with the length data, XOR’d with
an encrypted mask to produce the final digest. The Authentication Tag is the
final digest or a subset of the bytes, depending on the parameters of the
protocol. For further details, refer to the RFC 4106 [5]. For larger buffers, the
same process is followed, except that there will be more blocks than the 3
blocks shown in this example.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 7

Our Approach

AES Encryption

We perform AES128 computations efficiently processing 4 blocks in parallel in
the counter mode of operation using the AES instructions. This approach and
performance characteristics have been described in References [4].

GHASH

The first fundamental component in GHASH computations is the 128x128
polynomial multiplication for a single block. To realize this multiplication, we
use the Karatsuba algorithm as shown in Figure 2. The individual polynomial
multiplications in the figure are 64x64 multiplications, which can be
computed with the PCLMULQDQ instruction. The specifics of Karatsuba
multiplication using PCLMULQDQ instruction, are described in subsequent
sections.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

8 324194

Figure 2: Karatsuba Multiplication method for two 128-bit polynomials for
GHASH computations

AL*BLAH*BH

(AH⊕AL)*(BH⊕BL)

A = {AH, AL} B = {BH, BL}

AxB

C

AH[63:0] BH[63:0]AL[63:0] BL[63:0]

C[255:0]

AH*BH

AL*BL

C[255:0]

To compute the GHASH digest of 4 consecutive blocks, we use a method of
parallelization as described in References [3]. The method can be described by
the following equations:

Ciphertext inputs: C0, C1, C2, C3.

Digest input/output: Digest.

Digest = (((((((Digest ⊕ C0)*H) ⊕ C1)*H) ⊕ C2)*H) ⊕ C3)*H

 = ((Digest⊕C0)*H4) ⊕ (C1*H3) ⊕ (C2*H2) ⊕ (C3*H)

This resulting equation is illustrated in Figure 3.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 9

Figure 3: Parallelized GHASH computations on 4 blocks

C0 C1 C2 C3

xH4 xH3 xH2 xH

Digest

C0

Digest

The constants H4, H3 and H2 can be computed at the beginning of the GCM
computation for a given data buffer and re-used for the rest of the blocks.
Throughout our GCM implementation and particularly in the main loop, this
approach is used to parallelize the GHASH computations.

For the final reduction of a 256-bit partial result modulo the GHASH
polynomial, refer to References [3] “Efficient Reduction Algorithm” as we are
using the same reduction method.

Main Innovations in our approach

Handling Bit-reflection of the multiplication product

The GCM standard References section [1] specifies that the data is bit-
reflected for the GHASH operations. Reflecting the bits of all data and
intermediate computations is expensive and there are better methods to
handle the bit-reflection. Some of these methods and implementation details
are explained in the paper [3], section “Bit Reflection Peculiarity of GCM”. We
also avoid reflecting the bits of the operands before operating on them,
similar to the approach in [3].

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

10 324194

The operation:

reflected (A)*reflected (B) =reflected (A*B) >>1

is performed throughout the GHASH computations. Here, it should be noted
that the result has to be shifted left by 1 in order to get the exact result:
reflected (A*B).

Our Improvement

Since one of the operands of this multiplication operation is a constant (H) or
precomputed as H2, H3 or H4, we precompute corresponding “modified”
constants so that they are “pre-shifted” and the result does not need any
shifting operations. The challenge is that these constants are all 128-bit
constants and could have their most-significant bits set, making it difficult to
generate H<<1, H2<<1, H3 <<1 and H4 <<1 as 128-bit constants. We could
generate 129-bit constants, but this would add more overheads to the
multiplication and reduction, offsetting potential gains from avoiding shifting
the result. We therefore use the fact that we do not need the result of the
multiplication to be exactly reflected (A*B) – we always compute a reduction
of the result modulo the polynomial g(x). Thus if we precompute H<<1,
H2<<1, H3 <<1 and H4 <<1 modulo polynomial g(x), we can use them as
128-bit constants and avoid shifting the product, leading to the same result
after the final reduction with g(x).

Thus, if we are multiplying A with H mod g(x):

reflected (A)*reflected (H<<1 mod g(x)) = reflected (A*H) mod g(x)

The multiplication operation will return the correct result after the final
reduction with g(x). Note that for convenience, we do not show the shift
operator explicitly in the rest of the paper, and describe the operations using
logical constants such as Hi.

Precomputing inputs to Karatsuba Algorithm

In addition to precomputing H<<1, H2<<1, H3 <<1 and H4 <<1 mod g(x),
we also precompute a few corresponding constants that are used in the
Karatsuba algorithm.

Referring to Figure 2, during a Karatsuba Multiplication of Ah:Al and Bh:Bl, we
need to perform 3 multiplication operations {Ah*Bh, (Ah ⊕ Al)*(Bh ⊕ Bl),
Al*Bl}. The middle product term needs some computations to setup the
operands. In the context of GHASH, the 2nd operand B is always derived from
the hashkey H. Thus we precompute (Bh ⊕ Bl) for the 4 derived hashkey
values as well.

Thus we save significant amount of instructions in the main loop of the
GHASH computations.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 11

Deferred Recombination of Karatsuba partial products

In the main loop that processes 4 blocks, we use the Karatsuba algorithm to
perform multiplications of each block as explained in Figure 2. However,
instead of combining the middle parts and having a complete result in 2 XMM
registers for each block, we compute only the partial products and XOR them
together to be combined at the end of the iteration once for all blocks.

If we name the high product in the Karatsuba multiplication of one block Hi,
middle product Mi and the low product Li, we have the following equation:

Mi’ = Mi ⊕ Hi ⊕ Li

Instead of computing the middle term Mi’ for each multiplication, we do this
combination just once at the end:

M’ = M ⊕ H ⊕ L

as shown in Figure 4. The individual products {Mi, Hi, Li} can be computed
using a code sequence such as:

 ;; %%XMM6, %%T5 hold the two 128-bit operands (A, B) which are
carry-less multiplied. Polynomial multiplication by Karatsuba
Method:

 movdqa %%T1, %%XMM6

 pshufd %%T2, %%XMM6, 01001110b

 pxor %%T2, %%XMM6 ; %%T2 = (a1+a0)

 movdqa %%T5, [rsp + HashKey_3] ; B, based on Hash-key

 pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1

 pclmulqdq %%XMM6, %%T5, 0x00 ; %%XMM6 = a0*b0

 movdqa %%T5, [rsp + HashKey_3_k] ; pre-computed value

 pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)

 ;; %%T2, %%T1, %%XMM6 hold the values {Mi, Hi, Li}

 pxor %%T4, %%T1 ; accumulate results

 pxor %%XMM5, %%XMM6

 pxor %%T6, %%T2

 ;; %%T6, %%T4, %%XMM5 hold the values {M, H, L} for 4 blocks

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

12 324194

Figure 4: Optimized Karatsuba recombination for the main loop

H0 L0

M0

H1 L1

M1

H2 L2

M2

H3 L3

M3

H

L

M

Once we have the 3 intermediate results H, M’ and L for the 4 blocks, we can
combine them and apply the reduction as shown in Figure 5.

Figure 5: Final combination and reduction in the main loop

H[127:0]
M’>>64

L[127:0]
M’<<64

R[255:0]

mod (x128 + x7 + x2 + x + 1)

Digest[127:0]

Stitching AES with GHASH

We used the function stitching method proposed in References section [2].
The main idea is to interleave instructions from pairs of functions to maximize
execution efficiency of the cores. For the purpose of this paper, we stitch the
two main functions required for GCM computations {AES, GHASH} and refer
to AES as function A and GHASH as function B. The benefits of stitching are
widely explained in References section [2]. In the context of GCM encryption,
the second stitching method is used as shown in Figure 6:

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 13

Figure 6: Stitching Two Functions When One Operates on a Block of Data
Produced by the Other

Block 1

1

1

Block 2Input

2

Block 3

3

2 N-1

Block N

N

N

Time

fA

fB

Here, GHASH (function B) works on the ciphertext data that has been
produced by AES in the previous iteration and AES (function A) produces the
ciphertext for the next iteration. Our GCM implementation works on 4 blocks
in parallel, rather than the single block shown in Figure 6. Note that the
column on the left corresponds to the loop prolog in our implementation that
performs AES operations only, the column on the right corresponds to the
loop epilog in our implementation that performs GHASH operations only, and
the rest correspond to our main loop of iterations (for suitably large buffers).
These concepts will be described in more detail in later sections.

Overall Organization of the Implementation

The overall flow of our implementation is designed to handle different length
buffers efficiently. It is described in detail in Figure 7. N denotes the number
of whole blocks. The detailed description of the actual components are
described in the section on Implementation Details.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

14 324194

Figure 7: Overall Code Flow

AES, GHASH on T = N mod 4 blocks,
N=N-T

 N>0?

Precompute constants,
AES 4 blocks, N=N-4

GHASH 4 ciphertext
blocks, AES next 4

blocks, N=N-4

GHASH last 4
ciphertext blocks

AES and GHASH last
<16 bytes block

Final GHASH
Computations

N>0?

Data multiple
of 16 Bytes?

Yes

No

No
Yes

NoYes

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 15

Performance
The performance results provided in this section were measured on an Intel®
Core™ i5 650 processor at a frequency of 3.20 GHz, supporting Intel® AES-
NI. The tests were run with Intel® Turbo Boost Technology off, and represent
the performance with Intel® Hyper-Threading Technology (Intel® HT
Technology) on a single core. We present the results with Intel® Hyper-
Threading Technology, since our target applications such as IPsec in Linux,
are expected to run multiple threads for performance.

When a test is called, it is first run numerous times to warm up the cache.
The timing is measured using the rdtsc() function which returns the
processor time stamp counter (TSC). The TSC is the number of clock cycles
since the last reset. The ‘TSC_initial’ is the TSC recorded before the function
is called. Then, the function is called for the specified number of times. After
the runs are complete, the rdtsc() is called again to record the new cycle
count ’TSC_final’. The effective cycle count for the called routine is computed
using

of cycles = (TSC_final-TSC_initial)/(number of iterations).

When 2 such identical threads are run simultaneously, the number of cycles
measured for the function represents the cycles consumed in the core for 2
data buffers (from each thread) and we calculate the cycles/byte accordingly.
Thus, if each thread was computing GCM on buffers of size 1KB, then the net
cycles/byte = # of cycles / 2*1KB

Note: Performance results are based on certain tests measured on specific computer
systems. Any difference in system hardware, software or configuration will
affect actual performance. Configuration: Intel® Core™ i5 650 processor at a
frequency of 3.20 GHz, supporting Intel® AES-NI. The tests were run with
Intel® Turbo Boost Technology off, and represent the performance with Intel®
Hyper-Threading Technology on a single core. For more information go to
http://www.intel.com/performance.

http://www.intel.com/performance�

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

16 324194

Figure 8: GCM Performance on a Single core with Intel® Hyper-Threading
Technology

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

48 96 192 384 768 1,536 3,072 6,144 12,288

6.49

5.79

4.15

3.48
3.13 2.96 2.88 2.83 2.81

Cycles/Byte

Figure 8 shows the performance in Cycles/byte as a function of the buffer size
in bytes.

The performance for large buffers is ~ 2.8 cycles/byte and the performance
for small buffers of 48 Bytes is ~6.4 cycles/byte. In terms of throughput, a
single core can process GCM at the aggregate rate of ~9 Gigabits/sec for
large buffers.

Implementation Details

In our implementation, the code consists of 3 main sections: Initial
computations, main loop and final computations. Since the main loop works
on 4 blocks in each iteration, we compute the number of blocks modulo 4,
and consume those many remainder blocks in the initial computations phase,
to simplify the rest of the computations. We describe the various components
of the implementation assuming that these are used when we process a
suitably large data buffer for ease of illustration.

To simplify the explanations let us assume that:

Len = length of the buffer in bytes

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 17

N = number of whole blocks = (Len >>4)

T = N modulo 4

Y = number of bytes in partial block at the end of the buffer (Y<16)

Initial Computations

First we take the length of the buffer in bytes and round it down to the
closest multiple of 16, to find the number of whole blocks that we will apply
GCM on (N). We then compute N modulo 4 (T) to determine how many
remainder blocks to compute in the loop prolog. We handle any partial block
(when Len is a non-multiple of 16 Bytes) separately at the end. In the prolog,
we also precompute the various values that are derived from the hashkey if
they are required in the main processing loop. We also compute the AES
operations for the next 4 blocks if they are required at the start of the main
loop.

Figure 9, Figure 10, Figure 11 and Figure 12 show the GHASH computations for T
= 3, 2, 1 and 0 respectively.

Figure 9: Number of blocks modulo 4 (T) = 3

C1 C2 C3

xH

AAD

xH xH xH

C0

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

18 324194

Figure 10: Number of blocks modulo 4 (T) = 2

C2 C3

AAD

xH xH xH

C0

Figure 11: Number of blocks modulo 4 (T) = 1

C3

AAD

xH xH

C0

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 19

Figure 12: Number of blocks modulo 4 (T) = 0

AAD

xH

C0

Main Loop

In the main loop, we process 4 blocks iteratively, computing the GHASH
operations and the AES128 Counter mode operations. The GHASH
computations are shown in Figure 3 for a single iteration of the loop.

Final Computations

The final computations in the epilog need to process the last 4 blocks,
differently from the main loop. For the last 4 blocks, we only need to perform
GHASH operations, but no AES operations. The structure is as shown in figure
3.

There may be a partial block that needs to be padded and processed for
encryption and GHASH digest update. The final counter value Yn is encrypted,
masked with 0 bits and XOR’d with the partial plain-text to compute the last
cipher text bits (padded Cn in Figure 14), as explained in the GCM specification
[1].

After this point, the final tag can be computed by the processing the final
GHASH on the length information and masking it with the encryption of Y0. In
some specifications, we may also need to return a subset of the bytes from
the authentication tag.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

20 324194

Multiple of 16 Bytes

Figure 13: Final combination for multiples of 16 Bytes

Digest

LEN(A) || LEN(C)

xH

E(K, Y0) TAG

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 21

Non-Multiple of 16 Bytes

Figure 14: Final computations for non-multiples of 16 Bytes

Padded
Cn

xH

Digest

LEN(A) || LEN(C)

xH

E(K, Y0) TAG

Conclusion
The paper describes the best-known implementation of AES-GCM on Intel®
processors using the PCLMULQDQ instruction and AES set of instructions in
Intel® processors based on the 32-nm microarchitecture. By combining
function stitching with novel polynomial multiplication methods, we are able
to achieve performance of ~ 2.8 Cycles/byte on large buffers on a single
core with Intel® Hyper-Threading Technology.

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

22 324194

References
[1] The Galois/Counter Mode of Operation (GCM)
http://www.cryptobarn.com/papers/gcm-spec.pdf

[2] Fast Cryptographic Computation on Intel® Architecture Processors Via
Function Stitching
http://download.intel.com/design/intarch/PAPERS/323686.pdf

[3] Intel® Carry-less Multiplication Instruction and its Usage for Computing
the GCM Mode http://software.intel.com/file/24918

[4] Breakthrough AES Performance with Intel® AES New Instructions
http://software.intel.com/file/26898

[5] The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security
Payload (ESP) http://tools.ietf.org/html/rfc4106

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design
materials, step-by step guidance, application reference solutions, training,
Intel’s tool loaner program, and connect with an e-help desk and the
embedded community. Design Fast. Design Smart. Get started today.
http://intel.com/embedded/edc.

Authors

Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich,
Wajdi Feghali and Martin Dixon are IA Architects with the IAG
Group at Intel Corporation.

Acronyms

IA Intel® Architecture

ILP Instruction level parallelism

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

http://www.cryptobarn.com/papers/gcm-spec.pdf�
http://download.intel.com/design/intarch/PAPERS/323686.pdf�
http://software.intel.com/file/24918�
http://software.intel.com/file/26898�
http://tools.ietf.org/html/rfc4106�
http://intel.com/embedded/edc�

Optimized Galois-Counter-Mode Implementation on Intel® Architecture Processors

324194 23

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products

are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to

specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT,

FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY

PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including liability for infringement of

any proprietary rights, relating to use of information in this specification. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted herein.

Performance tests and ratings are measured using specific computer systems and/or components and

reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance.Buyers should consult

other sources of information to evaluate the performance of systems or components they are considering

purchasing. For more information on performance tests and on the performance of Intel products, Go to:

http://www.intel.com/performance/resources/benchmark_limitations.htm

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel

software to execute the instructions in the correct sequence. AES-NI is available on Intel® Core™ i5-600

Desktop Processor Series, Intel® Core™ i7-600 Mobile Processor Series, and Intel® Core™ i5-500 Mobile

Processor Series. For availability, consult your reseller or system manufacturer. For more information, see

http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and

an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the

specific hardware and software you use. For more information including details on which processors

support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary

depending on your hardware and software configurations. Consult with your system vendor for more

information.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability.

Intel Turbo Boost Technology performance varies depending on hardware, software and overall system

configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost

Technology.For more information, see http://www.intel.com/technology/turboboost.

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Turbo Boost Technology,

Intel Hyper Threading Technology, Intel Xeon, and Xeon Inside are trademarks or registered trademarks of

Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others. Copyright © 2010 Intel

Corporation. All rights reserved.

§

http://www.intel.com/performance/resources/benchmark_limitations.htm�
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf�
http://www.intel.com/technology/turboboost�

	Overview
	GCM
	Our Approach
	AES Encryption
	GHASH
	Main Innovations in our approach
	Handling Bit-reflection of the multiplication product
	Precomputing inputs to Karatsuba Algorithm
	Deferred Recombination of Karatsuba partial products
	Stitching AES with GHASH
	Overall Organization of the Implementation

	Performance
	Implementation Details
	In our implementation, the code consists of 3 main sections: Initial computations, main loop and final computations. Since the main loop works on 4 blocks in each iteration, we compute the number of blocks modulo 4, and consume those many remainder bl...
	Initial Computations
	Main Loop
	Final Computations
	Multiple of 16 Bytes
	Non-Multiple of 16 Bytes

	Conclusion
	References

