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Executive Summary 
This paper describes the Intel® Multi-Buffer Crypto for IPsec Library, a 

family of highly-optimized software implementations of the core 

cryptographic processing for IPsec, which provides industry-leading 

performance on a range of Intel® Processors. 

 This paper describes the usage of the IPsec library and presents a 

summary of the performance for some algorithm pairs. We can 

achieve a single-thread throughput performance of ~14 

Gigabits/second on an Intel® Core™ i7 processor 2600, for AES-128 

encryption in the CBC-XCBC mode.1 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, training, 

Intel’s tool loaner program, and connect with an e-help desk and the 

embedded community. Design Fast. Design Smart. Get started today. 

www.intel.com/embedded/edc. 

                                                   

1 Software and workloads used in performance tests may have been optimized for 

performance only on Intel microprocessors. Performance tests, such as SYSmark and 
MobileMark, are measured using specific computer systems, components, software, 

operations and functions. Any change to any of those factors may cause the results to 
vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product 
when combined with other products.   

Configurations: Refer to the Performance section on page 16. For more information 

go to http://www.intel.com/performance. 

http://www.intel.com/embedded/edc
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Overview 

This paper describes the Intel® Multi-Buffer Crypto for IPsec Library [5], a set 

of functions that implement the computationally intensive authentication and 

encryption algorithms for IPsec. These functions provide an easy way for an 

IPsec implementation to take advantage of the benefits of multi-buffer 

processing. 

This paper assumes that the reader is at least somewhat familiar with Intel’s 

Multi-buffer processing. If not, the reader may want to read [1] first for 

background. 

Background of IPsec 

Internet Protocol Security (IPsec) is a suite of protocols for securing internet 

traffic using the Internet Protocol (IP). Two of the most computationally 

intensive operations on the bulk data within IPsec are encryption and 

authentication. 

IPsec is embedded in the IP stack in a number of implementations, for 

example within Linux. Once a connection is established and data is flowing, a 

significant number of CPU cycles is spent in encrypting or decrypting the bulk 

data, and in computing a cryptographic hash (MAC) of the data in order to 

validate its authenticity. 

We’ve previously shown [1] that multi-buffer processing can significantly 

speed up processing in many cases. The IPsec functions described in this 

paper extend that work to handling combined encryption and authentication 

using a variety different underlying algorithms. 
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Supported Algorithms 

This version of the library supports the following cryptographic and hash 

algorithms (for both encryption and decryption): 

Encryption Authentication 

AES-128 CBC 

AES-192 CBC 

AES-256 CBC 

 

AES-128 CTR 

AES-192 CTR 

AES-256 CTR 

HMAC SHA-1 

HMAC SHA-224 

HMAC SHA-256 

HMAC SHA-384 

HMAC SHA-512 

HMAC MD5 

AES-128-XCBC 

AES-128 GCM2 

APIs 

There are two independent sets of APIs in the associated code [5]. One 

handles multi-buffer processing for packets requiring AES and HMAC 

processing. It is primarily with this interface that this paper is concerned. 

There is an independent set of APIs for GCM processing. This code is the 

same as described in [2] and separately released. 

Multi-buffer API 

The multi-buffer API is essentially an extension of the API described in [1]. 

One “theme” of the interface is to pre-compute data that is likely to be 

shared between many packets, so that it does not need to be recalculated 

multiple times. These calculations will be described in detail later. 

Basic API 

The basic API exists in three forms, with one version using the SSE 

instruction set, one using AVX, and one using AVX2. Each of the following 

functions exists in three forms, one with the suffix “_sse”, one with “_avx”, 

and one with “_avx2”. In the following discussion, the functions will use the 

suffix “_xxx” to represent one of the above. 

Note that the data structures are independent of the suffix; however they are 

initialized differently based on the suffix. Thus, one cannot mix different 

suffixes when using the same multi-buffer manager object. 

                                                   

2 Not Multi-buffered 
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The functions are summarized below: 

init_mb_mgr_xxx Initialize the MB_MGR state object 

get_next_job_xxx Get a new job object 

submit_job_xxx Submit the job that was previously gotten 

flush_job_xxx Return the oldest job object 

get_completed_job_xxx Return the oldest job object only if is already completed 

The basic idea is that the application needs to provide multiple jobs before 

the previous jobs complete their processing. This can be called an 

“asynchronous” interface. The application does this by submitting jobs to the 

multi-buffer manager (MB_MGR). For every job that it submits, it may 

receive a completed job, or it may receive NULL. In general, if a job is 

returned, it will not be the one that was just submitted. However, jobs will be 

returned in the same order that they were submitted. 

These routines are not thread-safe. If they are being called by multiple 

threads, then the application must take care that calls are not made from 

different threads at the same time, i.e. thread-safety should be implemented 

at a level higher than these routines. These routines do not make operating-

system calls, and in particular they do not allocate memory. 

In general, there will be an arbitrary number of jobs that have been 

submitted, but which have not yet been returned, and are therefore 

“outstanding”. To avoid having the application manage this arbitrary number 

of job objects, the management of the job objects is handled by the 

MB_MGR. The application gets a pointer to the next available job object by 

calling get_next_job_xxx(). The application then fills in the job data fields 

appropriately, and then submits it by calling submit_job_xxx(). If this returns 

a non-NULL job, then that job has been completed (unless its arguments are 

invalid) and the application should do whatever it needs to in order to finish 

processing that job.  

The returned job object is not explicitly returned to the MB_MGR. Rather, it is 

implicitly returned by the next call to get_next_job_xxx(). Another way to put 

this is that the returned job object may be referenced until the next call to 

get_next_job_xxx(). After this, it is no longer safe to access the previous 

job’s fields. 

One measure of job latency is the number of submit_job_xxx() calls that 

must be made before the submitted job is returned. Since jobs are returned 

in order, and at most one job is returned for every job submitted, this 

“latency” can never decrease; it can only stay the same or increase. To allow 

the latency to decrease, there is an optional function that may be called, 

get_completed_job_xxx(). This will return the next job if it was already 

completed. If the next job is not yet completed, no processing will be done, 

and this function will return NULL.  
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The usage of these functions may be illustrated by the following pseudo-

code: 

    init_mb_mgr_xxx(&mb_mgr); 

    ... 

    while (work_to_be_done) { 

        job = get_next_job_xxx(&mb_mgr); 

        // TODO: Fill in job fields 

        job = submit_job_xxx(&mb_mgr); 

        while (job) { 

            // TODO: Complete processing on job 

            job = get_completed_job(&mb_mgr); 

        } 

    } 

Integration into an Application 

In general, how this library is integrated into an application depends on the 

design of the application and is beyond the scope of this paper, but here are 

some approaches. 

One main issue is how to accumulate multiple jobs without blocking, waiting 

for the jobs to finish. In the best case, there is already an asynchronous 

interface, either providing a stream of jobs, or perhaps providing a work-

queue containing jobs, which can feed the library. 

In other designs, there may be many threads, where each thread wants to 

submit a job and then block until that job completes. One way to deal with 

this is to have each thread enqueue its job into a thread-safe queue, and 

then to have a compute thread pull jobs off of this queue and process them. 

Alternately, each thread could take a mutex, submit its job, signal the 

returned job (if any) as complete, and then release the mutex and wait for its 

job to be so signaled. 

Note that the library is designed to fully utilize the core, so there is no 

performance to be gained by having two instances of the library running on 

the same processor. 

There are probably many other designs or architectures that one could use to 

interface the sources of jobs with the multi-buffer manager. 

Flushing 

Using the API described in the previous section, when the stream of incoming 

jobs ends, there is no way to get back the remaining outstanding jobs. That 

functionality is provided by flush_job_xxx(). This is similar to 

submit_job_xxx() except that no new job is submitted, and that a completed 

job will always be returned unless there are no outstanding jobs. 
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Note that a “flushed” job is completed normally; i.e. it is correctly and fully 

processed. The flush_job_xxx() function is different from 

get_completed_job_xxx() in that flushing will, in general, perform algorithmic 

processing, and will always return the oldest job unless there are no 

outstanding jobs; whereas get_completed_job_xxx() will never perform 

algorithmic processing, and will only return the oldest job if it was completed 

in a previous function call. 

Flushing is more expensive than submitting in that the system is less efficient 

when flushing than when submitting. So, for example, one could use the 

library by always calling “flush” after every “submit”. This would result in 

correct behavior, but the performance would be worse than if one used well-

implemented single-buffer code. The presumption of the multi-buffer code is 

that flushing will occur much less often than submitting. 

A typical reason to use flushing is to deal with a lull in incoming jobs. Imagine 

that there was a steady stream of incoming jobs, but then for a short period 

of time there were no new jobs. In the absence of flushing, the last jobs 

submitted before the lull would not be returned until after the lull, when more 

new jobs appeared. This would result in an unreasonably long latency for 

these jobs. In this case, flushing can be used to complete these remaining 

jobs before new jobs arrive. 

In a sense, the concept of submitting vs. flushing is that when jobs are 

coming at a rapid rate, they are all submitted, and the multi-buffer efficiency 

is high. When jobs are arriving at a slow rate or not at all, then flushing is 

invoked, which reduces efficiency. But since the jobs are coming at a slow 

rate, the overall system can tolerate a lower efficiency. 

Exactly when and how to use flush_job_xxx() is up to the application, and is 

a balancing act. The processing of flush_job_xxx() is less efficient than that 

of submit_jo_xxx(), so calling flush_job_xxx() too often will lower the system 

efficiency. Conversely, calling flush_job_xxx() too rarely may result in some 

jobs seeing excessive latency.  

There are several strategies that the application may employ for flushing. 

One usage model is that there is a (thread-safe) queue containing work 

items. One or more threads put work onto this queue, and one or more3 

processing threads remove items from this queue and process them through 

the MB_MGR. In this usage, a simple flushing strategy is that when the 

processing thread wants to do more work, but the queue is empty, it then 

proceeds to flush jobs until either the queue contains more work, or the 

MB_MGR no longer contains jobs (i.e. that flush_job_xxx() returns NULL). A 

variation on this is that when the work queue is empty, the processing thread 

                                                   

3 If multiple threads are processing jobs from the same queue, then unless 

the application takes steps to prevent this, the jobs may be completed in a 

different order than that in which they entered the queue. 
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might pause for a short time to see if any new work appears, before it starts 

flushing. 

In other usage models, there may be no such queue. An alternate flushing 

strategy is to have a separate "flush thread" hanging around. It wakes up 

periodically and checks to see if any work has been requested since the last 

time it woke up. If some period of time has gone by with no new work 

appearing, it would proceed to flush the MB_MGR (after taking necessary 

inter-thread interlocks to prevent the main thread from accessing the 

MB_MGR while the flush is in progress). 

Job structure 

At a high level, the paradigm is that the application gets an object that 

represents a job, where a job is a unit of work. It corresponds to one packet 

or buffer that needs to undergo encryption and authentication or to undergo 

authentication and decryption. 

The job object/structure is filled in with all of the information needed to 

process that job. It is then returned to the system for processing. At this time 

a job object may or may not be returned to the application, where the 

returned job has completed its processing. In general the returned job, if 

any, will not be the same as the submitted job. However, the jobs will be 

returned in the same order that they were submitted. 
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The job structure is defined as: 

typedef struct { 

    const UINT32 *aes_enc_key_expanded;  /* 16-byte aligned pointer. */ 

    const UINT32 *aes_dec_key_expanded; 

    UINT64 aes_key_len_in_bytes; /* Only 16, 24, and  32 byte (128, 192 and 256- 

                                    bit) keys supported at this time. */ 

    const UINT8  *src; /* Input. May be cipher text or plaintext. In-place 

                          ciphering allowed. */ 

    UINT8   *dst; /* Output. May be cipher text or plaintext. In-place ciphering 

                     allowed, i.e. destination = source. */ 

    UINT64 cipher_start_src_offset_in_bytes; 

    UINT64 msg_len_to_cipher_in_bytes; /* Max len = 65472 bytes. */ 

    UINT64 hash_start_src_offset_in_bytes; 

    UINT64 msg_len_to_hash_in_bytes; /* Max len = 65496 bytes. */ 

    const UINT8 *iv; /* AES IV. */ 

    UINT64 iv_len_in_bytes; /* AES IV Len in bytes. */ 

    UINT8 *auth_tag_output; /* HMAC Tag output. This may point to a location in 

                               the src buffer (for in place)*/ 

    UINT64 auth_tag_output_len_in_bytes; /* HMAC Tag output length in bytes. 

                                            (May be a truncated value)*/ 

 

    /* Start algorithm-specific fields */ 

    union { 

        struct _HMAC_specific_fields{ 

            const UINT8 *_hashed_auth_key_xor_ipad; /* Hashed result of HMAC key 

                                                       xor'd with ipad (0x36). */ 

            const UINT8 *_hashed_auth_key_xor_opad; /* Hashed result of HMAC key 

                                                       xor'd with opad (0x5c). */ 

        } HMAC; 

        struct _AES_XCBC_specific_fields{ 

            const UINT32 *_k1_expanded;   /* 16-byte aligned pointer. */ 

            const UINT8  *_k2;            /* 16-byte aligned pointer. */ 

            const UINT8  *_k3;            /* 16-byte aligned pointer. */ 

        } XCBC; 

    } u; 

 

    JOB_STS  status; 

    JOB_CIPHER_MODE cipher_mode; // CBC or CNTR 

    JOB_CIPHER_DIRECTION cipher_direction; // Encrypt/decrypt 

                                           // Ignored as the direction is implied 

                                           // by the chain _order field. 

    JOB_HASH_ALG hash_alg; // SHA-1 or others... 

    JOB_CHAIN_ORDER chain_order; // CIPHER_HASH or HASH_CIPHER 

    void    *user_data; 

    void    *user_data2; 

} JOB_AES_HMAC; 

 

#define hashed_auth_key_xor_ipad u.HMAC._hashed_auth_key_xor_ipad 

#define hashed_auth_key_xor_opad u.HMAC._hashed_auth_key_xor_opad 

#define _k1_expanded             u.XCBC._k1_expanded 

#define _k2                      u.XCBC._k2 

#define _k3                      u.XCBC._k3 

Most of the fields should be self-explanatory. The data to be encrypted or 

decrypted starts at (src + cipher_start_src_offset_in_bytes) and extends for 

a length of msg_len_to_cipher_in_bytes. The data to be hashed starts at 

(src + hash_start_src_offset_in_bytes) and extends for a length of 

msg_len_to_hash_in_bytes. 

The output of the encryption/decryption is (dst). The encryption can be done 

“in place”, i.e. (dst) can be equal to (src + cipher_start_src_offset_in_bytes). 
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The msg_len_to_hash_in_bytes can be any non-zero value. The 

msg_len_to_cipher_in_bytes can be any non-zero multiple of the cipher 

block size. 

In the present version of the code, auth_tag_output_len_in_bytes must be 

12. No other value is supported.  

The cipher_direction field indicates whether the data should be encrypted or 

decrypted. The chain_order field indicates whether the crypto or hash 

operation should be done first. This is provided in the API in order to support 

possible future enhancements. However, in IPsec, the hash is always done on 

the cipher text rather than the plain text. So the only valid combinations of 

these parameters are “ENCRYPT / CIPHER_HASH” or 

“DECRYPT / HASH_CIPHER”. Because of this, the cipher_direction field is 

actually ignored, and its value is inferred from the value of chain_order. 

However, it is always safer (to account for future changes) to set both of 

these values correctly. 

If an invalid parameter is passed in, then when the job object is returned, it 

will have a status of STS_INVALID_ARGS. Otherwise, it will have a status of 

STS_COMPLETED. Note that in general, it will not be returned immediately if 

the arguments are invalid. This is because the jobs are returned in the same 

order in which they were submitted. 

There are two “user_data” fields in the structure. These are not used by the 

IPsec code and can be used by the application to associate other data with 

the job. 

Pre-expanded AES Keys 

In the AES algorithms, the primary key is “expanded” into an array of keys, 

each of which is used for one round. To avoid having to expand the key for 

every buffer/packet, the API takes a pointer to an array of pre-expanded keys 

rather than the key itself. 

The sizes of the data fields are given in the table below: 

Algorithm Key size in bytes Expanded key array size in bytes 

AES-128 16 176 = 16 * 11 

AES-192 24 208 = 16 * 13 

AES-256 32 240 = 16 * 15 
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The API to generate the expanded key values is: 

void aes_keyexp_128_xxx(void *key, 

                        void *enc_exp_keys, 

                        void *dec_exp_keys); 

 

void aes_keyexp_192_xxx(void *key, 

                        void *enc_exp_keys, 

                        void *dec_exp_keys); 

 

void aes_keyexp_256_xxx(void *key, 

                        void *enc_exp_keys, 

                        void *dec_exp_keys); 

where key points to the key, enc_exp_keys points to appropriately-sized 

buffer to receive the expanded keys for encryption, and dec_exp_keys points 

to a buffer to receive the expanded keys for decryption. 

These arrays need to be 16-byte aligned for use with the IPsec APIs, so one 

way to declare them (using an OS-neutral alignment macro defined in 

os.h)would be: 

DECLARE_ALIGNED(unsigned char enc_exp_keys[16*15], 16); 

DECLARE_ALIGNED(unsigned char dec_exp_keys[16*15], 16); 

In this way, the arrays are sized large enough to hold any of the AES 

expanded keys. These expanded key arrays are then passed into the IPsec 

APIs as inputs representing the keys. 

There is also a function to expand just the encryption keys, which is needed 

for GCM: 

void aes_keyexp_128_enc_xxx(void *key, void *enc_exp_keys); 

HMAC IPad and OPad  

In the HMAC algorithm, the underlying hash is performed on two buffers. 

Each of these buffers is pre-pended with a one-block long buffer consisting of 

a fixed pattern XORed with a secret key. (The details can be found in [3].) 

Implemented directly, each of these blocks would have to be re-hashed for 

every data packet. But this is wasteful, as the same key is used for many 

packets. So instead of taking the secret key as input, the IPsec API takes the 

results of applying the underlying hash algorithm on each of these two 

blocks. This then becomes the starting state for hashing the rest of the data. 
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To assist with this process, there are a set of function to perform a raw hash 

of a single block: 

void sha1_one_block_xxx(void *data, void *digest); 

void sha224_one_block_xxx(void *data, void *digest); 

void sha256_one_block_xxx(void *data, void *digest); 

void sha384_one_block_xxx(void *data, void *digest); 

void sha512_one_block_xxx(void *data, void *digest); 

void md5_one_block_xxx(void *data, void *digest); 

These functions will initialize the digest, hash a single data block, and then 

return the result. The digest sizes are given in the following table: 

 

Algorithm Digest size in bytes Block size in bytes 

MD5 16 = 4 * 4 64 

SHA-1 20 = 4 * 5 64 

SHA-224 32 = 4 * 8 64 

SHA-256 32 = 4 * 8 64 

SHA-384 64 = 8 * 8 128 

SHA-512 64 = 8 * 8 128 

Note that in the case of SHA-224 and SHA-384, the entire (256-bit and 512-

bit respectively) digest is returned rather than the truncated digest. 

The digests do not need to be aligned in particular. 

For example, to compute the IPad for HMAC/SHA-1, one could use code 

similar to: 

unsigned char opad[64]; 

for (i=0; i<64; i++) opad[i] = 0x5c; 

for (i=0; i<key_size; i++) opad[i] ^= key[i]; 

sha1_one_block_xxx(opad, opad_hash); 

Similar code would be used for the ipad, except for each byte of the buffer 

being initialized with 0x36. 

AES XCBC Precomputes 

The AES XCBC algorithm is defined in [4]. It defines three 16-byte keys (K1, 

K2, and K3) derived from the secret key. K1 is used to encrypt the data, so it 

needs to be expanded as described earlier. So the sizes of the three data 

structures are: 

Field Size in bytes 

K1 176 = 11*16 

K2 16 

K3 16 
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They are generated / expanded by: 

void aes_xcbc_expand_key_xxx(void *key,  

                             void *k1_exp,  

                             void *k2,  

                             void *k3); 

Selecting a Set of Functions 

Some applications might want to only use the SSE functions, or the AVX 

functions, etc. Other applications might want to choose the family of 

functions at run time.  

One way that this could be done is via conditional branches based on some 

flag. For example, this could be wrapped in a macro along the lines of: 

     #define submit_job(mb_mgr) \ 

        if (_use_avx2)     submit_job_avx2(mb_mgr); \ 

        else if (_use_avx) submit_job_avx(mb_mgr); \ 

        else               submit_job_sse(mb_mgr) 

Another approach would be to embed the function addresses into a structure, 

call them indirectly through this structure, and change the structure based on 

which family should be used. For example: 

        struct funcs_t { 

            init_mb_mgr_t       init_mb_mgr; 

            get_next_job_t      get_next_job; 

            submit_job_t        submit_job; 

            get_completed_job_t get_completed_job; 

            flush_job_t         flush_job; 

        }; 

         

        funcs_t funcs_sse = { 

            init_mb_mgr_sse, 

            get_next_job_sse, 

            submit_job_sse, 

            get_completed_job_sse, 

            flush_job_sse 

        }; 

        funcs_t funcs_avx = { 

            init_mb_mgr_avx, 

            get_next_job_avx, 

            submit_job_avx, 

            get_completed_job_avx, 

            flush_job_avx 

        }; 

        ... 

        funcs_t *funcs = &funcs_sse; 

        ... 

        if (do_avx) 

            funcs = &funcs_avx; 
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        ... 

        funcs->init_mb_mgr(&mb_mgr); 

 

GCM API 

Since the GCM code is implemented in an efficient single-buffer manner, 

there is no advantage to trying to process GCM jobs using the multi-buffer 

interface. Therefore, the GCM code is packaged as a separate set of single-

buffer routines, which are essentially the code described in [2]. 

Similar to the multi-buffer interface, the GCM API comes in three families, 

with suffixes “_sse”, “_avx_gen2” and “_avx_gen4”. This reflects the 

implementation where the gen4 version has been optimized for generation-4 

processors, but it still uses the AVX instruction set (i.e. the gen4 code will still 

run on gen2 processors). 

Within each family, there are three functions. One takes the hash_subkey 

and pre-computes a number of values into a data structure. The other two 

perform either an encrypt or a decrypt operation using those pre-computed 

values. 

Note also that key expansion of the primary key needs to be done before the 

pre-computes. So a typical sequence of operations would be: 

gcm_data gdata; 

… 

aes_keyexp_128_enc_xxx(key, gdata.expanded_keys); 

aesni_gcm_precomp_xxx(&gdata, hashSubKey); 

… 

aesni_gcm_enc_xxx(&gdata, cipher_text, plain_text, text_size,  

                  iv, aad, sizeof(aad), 

                  auth_tag, sizeof(auth_tag)); 

// or 

aesni_gcm_dec_xxx(&gdata, plain_text, cipher_text, text_size, 

                  iv, aad, sizeof(aad), 

                  auth_tag, sizeof(auth_tag)); 

 

For more details on the GCM interface, see the comments in “gcm_defines.h” 

or [2]. 

Building 

A Linux Makefile is provided in the release. It will build the sources into a 

library. That Makefile will need to be tweaked to point to the user’s local 

version of YASM.  
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There is a sub-directory, LibTestApp, which has a small test application and 

associated trivial Makefile for verifying that all of the required APIs are in the 

library. 

The main thing to note about building is that for Linux, for both the C and 

ASM files, the pre-processor symbol “LINUX” needs to be defined. For a 

Windows build, the symbol “WIN_ABI” needs to be defined. 

There are three top-level include files: 

mb_mgr.h Main include file for Multi-buffer API 

aux_funcs.h Auxiliary functions needed to assist with Multi-buffer API 

gcm_defines.h GCM interface 

A (fairly trivial) example of using these can be found in LibTestApp. 

Performance 

The performance results provided in this section were measured on widely 

available Intel® Processors. The SSE version was run on an Intel® Xeon® 

processor X5670, running at 2.9 GHz (SSE instruction set), and the AVX1 

version was run on an Intel® Core™ i7 processor 2600, running at 3.4 GHz 

(AVX instruction set, second generation). In each case, the buffer size was 

swept in 64-byte increments. The tests were run with Intel® Turbo Boost 

Technology off. 

Methodology 

We measured the performance of the functions on data buffers of different 

sizes. For each size, we called the functions to process the same buffer a 

large number of times in a loop, to generate one timing measurement. This 

process was repeated a number of times, collecting many timing 

measurements. The main processing functions were included in the loop, but 

the pre-compute/auxiliary functions (e.g. AES key expansion) were not. 

For each data buffer, we discarded the first and last 1/8th samples, sorted the 

timings, discarded the largest/smallest quarter, and averaged the remaining 

quarter.  

The timing was measured using the rdtsc() function which returns the 

processor time stamp counter (TSC). The TSC is the number of clock cycles 

since the last reset. The ‘TSC_initial’ is the TSC recorded before the function 

is called. After the function is complete, the rdtsc() was called again to 

record the new cycle count ’TSC_final’. The effective cycle count for the called 

routine is computed using  

# of cycles = (TSC_final-TSC_initial). 
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A large number of such measurements were made for each data buffer and 

then averaged as described above to get the number of cycles for that buffer 

size. Finally, that value was divided by the buffer size times the number of 

iterations of the inner loop to express the performance in cycles per byte. 

This was then divided into the clock rate to get the performance in 

bytes/second. 

Note: Software and workloads used in performance tests may have been 

optimized for performance only on Intel microprocessors. Performance tests, 

such as SYSmark and MobileMark, are measured using specific computer 

systems, components, software, operations and functions. Any change to any 

of those factors may cause the results to vary. You should consult other 

information and performance tests to assist you in fully evaluating your 

contemplated purchases, including the performance of that product when 

combined with other products. 

For more information go to http://www.intel.com/performance  

Results 

There are too many combinations of algorithms to give results for each 

combination. So the results will be presented for three of these. These were 

chosen to be illustrative of the performance and to emphasize different 

features of the processor: 

Algorithms Emphasizes 

AES128 CBC Encrypt / HMAC SHA1 Vector Registers 

AES128 CBC Encrypt / XCBC AESNI 

GCM Encrypt AESNI, PCLMULQDQ 

For the HMAC and XCBC examples, the indicated buffer size is the size of the 

data being encrypted. The data to be hashed is 24 bytes larger, to reflect 

IPsec normal usage. For the GCM examples, the buffer size reflects the size 

of the data being encrypted and the data being hashed. 

http://www.intel.com/performance
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The following figure gives the single-thread throughput as a function of buffer 

size for the AVX version of the code (when run on an Intel® Core™ i7 

processor 2600, running at 3.4 GHz)4: 

 

                                                   

4 Software and workloads used in performance tests may have been optimized for 

performance only on Intel microprocessors. Performance tests, such as SYSmark and 
MobileMark, are measured using specific computer systems, components, software, 

operations and functions. Any change to any of those factors may cause the results to 
vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product 
when combined with other products.   

Configurations: Refer to the Performance section on page 16. For more information go 

to http://www.intel.com/performance. 
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The following figure gives the relative performance of these algorithms for the 

SSE, AVX, and AVX2 versions of the code, when run on corresponding 

processors (all normalized to the same clock rate)5: 

 

Note the dramatic increase in performance of GCM on Gen-4 due to 

PCLMULQDQ improvements. 

Conclusion 

This paper presents three IPSec implementations, optimized for different 

generations of Intel® processors. It describes how to build and use the 

library, and it presents some basic performance data. 

                                                   

5 Software and workloads used in performance tests may have been optimized for 

performance only on Intel microprocessors. Performance tests, such as SYSmark and 

MobileMark, are measured using specific computer systems, components, software, 
operations and functions. Any change to any of those factors may cause the results to 
vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product 
when combined with other products.   

Configurations: Refer to the Performance section on page 16. For more information go 

to http://www.intel.com/performance. 
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