

323686

Fast Cryptographic

Computation on

Intel® Architecture

Processors Via

Function Stitching
 April, 2010

White Paper

Vinodh Gopal

Wajdi Feghali

Jim Guilford

Erdinc Ozturk

Gil Wolrich

Martin Dixon

IA Architects

Max Locktyukhin

Maxim Perminov

Software Architects

Intel Corporation

Fast Cryptographic Computation on IA Processors Via Function Stitching

2

Executive Summary
Cryptographic applications often run more than one independent

algorithm such as encryption and authentication. This fact provides a

high level of parallelism which can be exploited by software and

converted into instruction level parallelism to improve overall

performance on modern super-scalar processors. We present fast and

efficient methods of computing such pairs of functions on IA processors

using a method called “function stitching”. Instead of computing pairs of

functions sequentially as is done today in applications/libraries, we

replace the function calls by a single call to a composite function that

implements both algorithms. The execution time of this composite

function can be made significantly shorter than the sums of the execution

times for the individual functions and, in many cases, close to the

execution time of the slower function.

Function stitching is best done at a very fine grain, interleaving the code

for the individual algorithms at an instruction-level granularity. This

results in excellent utilization of the execution resources in the processor

core with a single thread.

 We show how stitching pairs of functions together in a fine-grained

manner results in excellent performance on IA processors. Currently,

applications perform the functions sequentially. We demonstrate

performance gains of 1.4X-1.9X with stitching over the best

sequential function performance.

We show performance results achieved by this method on the Intel®

processors based on the Westmere architecture.

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 3

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions,

training, Intel’s tool loaner program, and connect with an e-help desk

and the embedded community. Design Fast. Design Smart. Get started

today. www.intel.com/embedded/edc.

Fast Cryptographic Computation on IA Processors Via Function Stitching

4

Contents

Overview .. 5

Function Stitching .. 5

Types of Architectural Stitches ... 7

Integer-Integer Stitch ... 8
SSE-Integer Stitch ... 9
SSE-SSE Stitch .. 9

Performance .. 10

Choosing the baseline ... 10
Methodology .. 10
Performance Results ... 11

Conclusion .. 14

References .. 15

Appendix A MD5 Data Dependencies ... 15

323686

Overview

Function stitching significantly speeds up pairs of algorithms, e.g.,
encryption/authentication, on existing Intel® architecture (IA) processors. It
applies to algorithms which, due to instruction dependencies or instruction
latencies, cannot fully utilize processor core execution resources. In some
cases, the type of instructions used by one algorithm may not be able to
utilize all the execution units in the core; the other algorithm could have a
different instruction mix that permits better overall usage when stitched with
the first algorithm. In this paper, we focus on cryptographic applications and
restrict the discussion to pairs of functions; however, function stitching can be
broadly applied to any set of multiple functions that are called together.
Stitching is a transformation of high-level algorithm parallelism into
instruction level parallelism (ILP) exploitable by super-scalar processors.

Note: Note that function stitching is not the same as software pipelining [3] which is a

method used to optimize loops. These methods are complementary.

Function Stitching

We define function stitching as a method to interleave instructions from pairs
of functions to maximize execution efficiency of the cores. This method allows
you to significantly speed up pairs of algorithms that are typically called at or
near the same time, for example, encryption and authentication algorithms.
Applications or libraries typically call one function to perform one algorithm
and then call a second function to perform the other algorithm. However, if
these two function calls are replaced by a single call to a composite function
that implements both algorithms, the execution time of this composite
function can often be made significantly shorter than the sums of the
execution times for the two individual functions and, in many cases, very
close to the max of the execution times of the individual functions.

The advantage of having a single composite function is that this function
contains code for two different algorithms which are essentially independent
of each other. This allows the two code streams to be interleaved at a fine
grain, often on an instruction granularity, which we refer to as “stitching” the
two algorithms together (see Figure 1). This in turn allows the processor core
to execute instructions from both algorithms at the same time, makes better
use of the execution resources, and results in a lower total execution time. It
may also offer second-order benefits, such as only requiring data to be
fetched from memory/caches once rather than twice.

Fast Cryptographic Computation on IA Processors Via Function Stitching

6

 Figure 1. Stitching Two Functions

Stitching is straight-forward when both algorithms work on the same input
data or on independent data. An example of working on the same data
(shown in Figure 2) is if one algorithm is encryption (function A), and the
authentication (function B) is applied to the plain-text.

Figure 2. Stitching Two Functions That Operate on the Same Blocks of Data

Block 1

1

1

Input Block 2

2

2

Block 3

3

3

Block N

N

N

Time

fA

fB

The same technique can be applied when the functions work on independent
blocks with different data pointers for the second function. However, it can
also be easily used when one algorithm is applied to the output of the other
algorithm, e.g., if the authentication is applied to the cipher-text generated
by the encryption function when the algorithms are being applied to a buffer
containing many basic blocks of data. For example, the AES encryption
algorithm operates on 16-byte blocks, and a given input buffer typically

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 7

contains some number (N) of blocks. In this case a non-stitched encryption
implementation is applied to the first block. Then the stitched code is applied
(N-1) times, with the encryption code operating on input block i, and the
authentication code (such as GHASH) operating on output block (i-1). Finally,
an unstitched authentication implementation is applied to the last block. This
is illustrated in Figure 3:

Figure 3. Stitching Two Functions When One Operates on a Block of Data Produced by

the Other

Block 1

1

1

Block 2Input

2

Block 3

3

2 N-1

Block N

N

N

Time

fA

fB

Similar techniques can be used to handle the case where the two algorithms
are handling input data of different sizes.

Since the code stream from each algorithm is essentially independent of the
other stream, they can be interleaved somewhat arbitrarily. This makes it
easier to schedule the final code to optimize front-end decoder performance,
since on IA processors some instructions can only be decoded on a subset of
the decoders, in addition to execution efficiency.

Types of Architectural Stitches

The Intel® 64 and IA-32 instruction set architectures have two distinct
instruction subsets that can be used by cryptographic algorithms: general
Purpose instructions and Single Instruction Multiple Data (SIMD) instructions

Fast Cryptographic Computation on IA Processors Via Function Stitching

8

[1]. SIMD instructions include, and are mostly known as, Intel® SSE, SSE2
etc. extensions. Current SIMD extensions work on 128-bit XMM registers.
There are some instructions such as AES and PCLMULQDQ that are defined on
the XMM register set but are not in fact SIMD. The general purpose
instructions work on 64-bit or 32-bit general purpose registers. At the
instruction level, some algorithms could be implemented with the general
purpose instructions, some with the SIMD instructions, and in some cases
could be implemented with both. There are various benefits/complexities to
stitching for these different cases.

In this section, we briefly describe the methods we used for the three
different types of stitching. These types of stitches are broadly based on
architectural properties of the code found in the functions; it is possible to
also exploit microarchitectural properties for stitching, which is beyond the
scope of this paper. Note that an algorithm could be implemented with a mix
of instructions but we can classify it based on the predominant type of
instructions and it can be analyzed for stitching based on the three
categories.

Intel® 64 provides 16 vector XMM registers and 16 general purpose registers,
while IA-32 provides 8 of each kind. Since stitching requires the registers to
be shared among the two algorithms, it could become difficult if the individual
algorithms need to use most or all registers. Running out of registers implies
spilling to memory which could reduce the efficiency of the stitched code. If
the two algorithms do not use lots of registers, then stitching is not
particularly complex. It particularly makes 64-bit code better suited for
stitched implementations.

Mixing general purpose along with SIMD code is very beneficial for stitched
implementations as it extends the effective number of available registers and
provides additional opportunities for creating a better balanced mix of
instructions using SIMD and general purpose registers.

The underlying superscalar microarchitecture of Intel® processors provides
significant execution resources which a single algorithm can rarely utilize in
full. A single algorithm can be limited by low ILP, as in the example of MD5
caused by most of the calculations belonging to a single long dependency
chain. It can be dominated by either Arithmetic and Logical Unit (ALU) or
memory operations, as in the case of RC4, or can consist of a low number of
relatively long latency dependent instructions as in the case of AES CBC-
Encrypt implementation using Intel® AES New Instructions (Intel® AES-NI).
But when stitched the two usually reach much higher overall utilization of
available execution slots because of the significantly improved ILP and/or
instruction balancing.

Integer-Integer Stitch

Two functions that are both implemented with the general purpose
instructions can be stitched together. Here the biggest potential problem that
can prevent stitching could be the usage of the architectural (arithmetic)

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 9

flags; they are defined as implicit inputs and/or outputs of some instructions.
No flag(s) producing/consuming instruction from one algorithm can be
inserted between flag(s) producing and consuming instructions of the other
algorithm. Fortunately, the algorithm pairs for symmetric encryption and
authentication do not require architectural flags. The main issue with this
mode could be the register limitations as a result of sharing the general
purpose registers among the stitched functions.

One example for this type of stitching is RC4-MD5, our current best
implementation; however, it does use a small mix of SIMD instructions. The
MD5 algorithm is defined in a way that has a critical data-dependency chain,
severely limiting the amount of ILP that can be exploited by IA processor
cores, described in detail in Appendix A. Similarly, RC4 is an algorithm that
has a critical dependency chain that limits ILP; RC4 performs lookups into a
small table which involve load instructions. Stitching these two functions
together allows for more operations to execute in parallel. The execution
efficiency of the RC4-MD5 stitch is also helped by the fact that the MD5
algorithm uses a different mix of instructions compared to the RC4 algorithm,
leading to a better overall utilization of the execution/load-store units.
Another cipher that can benefit from this type of stitch with MD5 is
DES/3DES, since the implementation has limited ILP and performs many load
operations to tables. There are no examples using DES/3DES in this paper.

SSE-Integer Stitch

This is the easiest type of stitch - a function implemented with general
purpose instructions could be stitched with another function implemented
with SIMD instructions. The AES-SHA1 algorithm pair could be interleaved in
this manner because SHA1 is an algorithm that can be efficiently
implemented with scalar general purpose instructions, whereas AES can be
implemented on the Westmere microarchitecture using the Intel® AES-NI new
instructions that have been defined as a set of SSE instructions. The
performance benefits of this stitch are increased due to the use of different
microarchitectural resources in the execution units and hiding latencies of the
individual functions. It should be noted that the best SHA1 implementation
[2] uses a limited number of SIMD instructions; however for simplicity, we
categorize it as a general purpose type in this paper. Stitching applies equally
well to the SHA1 implementation that has a small mix of SIMD instructions,
since the AES instructions do not use the SIMD execution units at a high rate.

SSE-SSE Stitch

Two functions that are implemented with SIMD instructions could be stitched
together. The main issue with this mode could be the register limitations as a
result of sharing the XMM registers among the stitched functions. One
example of this type is the AES-CBC-XCBC pair of functions that use AES for
encryption and also for authentication, which are efficiently implemented
using the Intel® AES-NI. Another important example is the AES-GCM that

Fast Cryptographic Computation on IA Processors Via Function Stitching

10

uses AES in Counter mode for encryption and Galois-Hash for authentication;
these can be implemented using Intel® AES-NI and PCLMULQDQ-NI available
in the Westmere microarchitecture.

Performance

The performance results provided in this section were measured on a dual
socket system running two 6-core Intel® Xeon® X5670 processors at a
frequency of 2.92 Ghz, based on the Intel® 32-nm technology
microarchitecture, supporting Intel® AES-NI. Results represent peak crypto
bandwidth of a system, measured on common pairs of cipher and hash and
comparing stitched algorithms with optimized standalone algorithms running
sequentially. The tests were run with Intel® Turbo Boost Technology on, and
represent the performance without Intel® Hyper-Threading Technology (Intel®
HT Technology).

Choosing the baseline

We started with the fastest available implementations of the individual crypto
algorithms found in libraries such as OpenSSL. We then looked for
opportunities to optimize those further and found ways to significantly
improve the performance of the standalone algorithms’ implementations, over
best known baselines for SHA-1 and RC4.

The article [2] describes details of the optimizations to the standalone SHA-1
algorithm. RC4 optimization targeted the improvement of the runtime
disambiguation of memory references in the algorithm, which in most cases
are independent, and can be executed with higher throughput.

In the case of AES-128 and AES-256 we achieve large performance
improvement over any legacy baseline code by using Intel® AES-NI. After
developing these highly optimized standalone crypto algorithms, we
proceeded with stitching to achieve yet another major leap in performance
improvement.

Methodology

Secure communications is the primary usage model of paired cipher and hash
algorithms. Current predominant Ethernet connections are capable of
transferring 1 Gb (109 bits) of data per second. Faster network connections
capable of speeds of 10 Gb/second are also widely used today, with a push
for faster connections such as 40 and 100 Gb/second. In the next few years,
we expect to see greater usage of 40 Gb Ethernet, capable of transferring 40
Gb of data per second.

We therefore represented the performance results as time, in seconds,
required to process 40 Gb of data. It represents the system’s peak crypto
throughput to run each particular pair of a block cipher and a hash. The

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 11

baseline code has cipher and hash functions called on an input buffer
sequentially, while stitched code calculates both with a single call.

To keep the comparison fair for sequential code we chose the input buffer size
to fit into the second level data cache. Larger buffers may give additional
advantage to the stitched code as it would have to fetch data from memory
only once, while usage of large buffers is much less common and the focus of
this paper is primarily on execution efficiency achieved with stitching.

Note: The throughput of the memory subsystem on every level is much higher than peak

achievable throughput of computationally intensive crypto algorithms; thus different

buffer sizes lead to only very slight drifts to the performance results provided.

Results were achieved running baseline sequential pair of functions and
stitched function on all 12 cores available on a dual-socket system running
two 6-core Intel® Xeon® 5670 processors.

Performance Results

The RC4-MD5 pair is part of the SSL protocol, and is still one of the most
commonly used pairs for secure communications. Figure 4 shows the
performance of sequential and stitched implementations of the RC4-MD5 pair
as an example of the integer-integer stitch. Although our baseline
optimizations already provide at least 1.2X better performance than broadly
available standalone implementations of RC4 and MD5, the stitched
implementation results in an even larger performance gain of ~1.4X.

Figure 4. RC4-MD5: Time, in seconds, to Process 40 Gb of Data

0.0 0.5 1.0 1.5

Stitched

Optimized

1.38

RC4 MD5

0.99

1.4X

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or

components they are considering purchasing. For more information on performance tests and on the performance of Intel

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm

Fast Cryptographic Computation on IA Processors Via Function Stitching

12

The AES128-CBC-Encrypt-SHA1 pair is part of a more modern and broadly
used TLS 1.2, very common in secure communications. Figure 5 shows the
performance of AES128 in CBC-Encrypt mode with SHA1. With improved
SHA-1, and AES-128 implemented with Intel® AES-NI, our baseline is at least
2.6X faster than broadly available non-Intel® AES-NI implementations.
However, with SSE-integer stitching, we achieve ~1.4X additional
performance gain.

Figure 5. AES128-SHA1: Time, in seconds, to Process 40 Gb of data

0.0 0.5 1.0 1.5

Stitched

Optimized

1.37

AES-NI-CBC-ENC-128 SHA-1

1.0

1.4X

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or

components they are considering purchasing. For more information on performance tests and on the performance of Intel

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm

Figure 6 shows the performance of AES-256 (CBC-Encrypt mode) with SHA1.
We achieve ~1.5X improvement with SSE-integer stitching over the
optimized sequentially-called pair of AES-256 and SHA-1 functions.

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 13

Figure 6. AES256-SHA1: Time, in Seconds, to Process 40 Gb of Data

0.0 0.5 1.0 1.5 2.0

Stitched

Optimized

1.59

AES-NI-CBC-ENC-256 SHA-1

1.07

1.5X

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or

components they are considering purchasing. For more information on performance tests and on the performance of Intel

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm

Note: AES-256 performs 14 rounds of encryption compared to AES-128 that performs 10

rounds, and one would expect AES-256 to cost 1.4X as much, as is the case with

standalone code. However, due to stitching, we are able to “hide” most of the AES

computations inside the SHA-1 function which is the one with the longer compute

time. Thus the net performance “penalty” of using more secure AES-256 over AES-

128 when stitched with SHA-1 becomes almost negligible ~1.07X. This allows us to

remove the performance factor out of the trade-offs for choice of cryptographic

strength.

The same applies to the choice of newer AES128-SHA1 over RC4-MD5; with
stitching the newer cipher-authentication pair does not come with any
performance penalty as both end up having precisely the same performance
when stitched.

Figure 7 shows the performance of AES-128 (CBC-Encrypt mode) with AES-
128-XCBC for authentication. We created our optimized sequential
implementation using the Intel® AES-NI as the baseline. The second bar
represents the performance achieved by stitching the two functions, an
example of SSE-SSE stitching. We can thus process AES128-CBC-ENC-
XCBC with a performance gain of 1.9X over the best sequential code.

Fast Cryptographic Computation on IA Processors Via Function Stitching

14

Figure 7. AES128-CBC-ENC-XCBC: Time, in Seconds, to Process 40 Gb of Data

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Stitched

Optimized

1.09

AES-NI-CBC-ENC-128 AES-NI-XCBC-ENC-128

0.56

1.9X

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or

components they are considering purchasing. For more information on performance tests and on the performance of Intel

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm

Conclusion

We introduced a novel method to improve computing performance called
function stitching, and demonstrated its benefits on the example of
cryptographic functions. It unleashes the full potential of the modern
superscalar microarchitecture of Intel processors. Stitching is the source-level
fine grained interleaving of the processing of independent instruction
streams.

We stitched the most common pairs of cryptographic functions for increased
performance, such as RC4-MD5, AES128-SHA1 and AES256-SHA1, achieving
excellent performance improvement with the speedups in the 1.4X-1.9X
range over the optimized individual functions called sequentially. Stitched
functions are able to execute very efficiently on IA cores, closely approaching
IA core peak execution limits.

Stitching also allowed us to take popular pairs of block ciphers and hash
algorithms such as RC4-MD5, AES128-SHA1 and AES256-SHA1 to the same
highly improved performance level; now the choice of cryptography strengths
comes without any performance trade-off.

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 15

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design
materials, step-by step guidance, application reference solutions, training,
Intel’s tool loaner program, and connect with an e-help desk and the
embedded community. Design Fast. Design Smart. Get started today.
http://intel.com/embedded/edc.

References

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1

[2] Improving the Performance of the Secure Hash Algorithm (SHA-1)
http://software.intel.com/en-us/articles/improving-the-performance-of-the-
secure-hash-algorithm-1/

[3] Software pipelining http://en.wikipedia.org/wiki/Software_pipelining

Appendix A MD5 Data Dependencies

Stitching is motivated by the fact that many predominant cryptographic
algorithms used in encryption and authentication have inherent definitions
that severely limit parallelism opportunities, causing under-utilization of the
execution resources in processor cores. In addition, microarchitectural
considerations may also add latencies or cause sub-optimal resource
utilization within a single algorithm.

As an example, consider the MD5 algorithm used in authentication. MD5 is a
block-chained algorithm for computing a digest, working on 512-byte blocks
of data. The digest consists of four 32-bit words {A, B, C, D}. Until the digest
for a given block is computed, we cannot process the next block. Within each
block, the algorithm is defined in a way that limits parallel execution as
explained below.

The processing of a block consists of four similar phases consisting of 16
steps each. The basic steps are defined as:

A = B + rotate(f(B,C,D) + W[i] + const + A)

D = A + rotate(f(A, B,C) + W[i+1] + const + D)

C = D + rotate(f(D,A, B) + W[i+2] + const + C)

B = C + rotate(f(C,D,A) + W[i+3] + const + B)

http://intel.com/embedded/edc
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://en.wikipedia.org/wiki/Software_pipelining

Fast Cryptographic Computation on IA Processors Via Function Stitching

16

The MD5 algorithm uses different constants and different functions f(…). We
can illustrate the basic dependency with the F function; other functions are
also based on logical operations and have similar complexities:

F(x,y,z) = (x & y) | ((~x) & z)

The MD5 algorithm uses a mix of rotates, logical operations and additions in a
way that prevents reordering in any significant way, e.g., addition does not
distribute over rotates/logical. Consider two consecutive steps of the
algorithm as shown in Figure 8:

Figure 8. Two Consecutive Steps of MD5 and the Critical Data Dependency Chain

~

&

|

&

+

+

+

R

+

 B C D A

Const

W[i]
F()

~

&

|

&

+

+

+

R

+

 A B C D

Const

W[i+1]
F()

 D A B C

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 17

In Figure 8, R denotes a rotate operation by a constant. It can be seen that
the algorithm has a tight dependency chain highlighted in red that spans
across the steps. At most only two operations can execute in parallel; on the
average, we can only execute one operation due to the chains.

Fast Cryptographic Computation on IA Processors Via Function Stitching

18

Authors

Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich,
Wajdi Feghali and Martin Dixon are IA Architects with the IAG
Group at Intel Corporation.

Max Locktyukhin and Maxim Perminov are Software
architects with the SSG Group at Intel Corporation.

Acronyms

ALU Arithmetic and Logical Unit

IA Intel® Architecture

ILP Instruction Level Parallelism

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

 Fast Cryptographic Computation on IA Processors Via Function Stitching

 19

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life

saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Performance tests and ratings are measured using specific computer systems and/or components

and reflect the approximate performance of Intel products as measured by those tests. Any

difference in system hardware or software design or configuration may affect actual

performance.Buyers should consult other sources of information to evaluate the performance of

systems or components they are considering purchasing. For more information on performance tests

and on the performance of Intel products, Go to:

http://www.intel.com/performance/resources/benchmark_limitations.htm

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary

depending on the specific hardware and software you use. For more information including details on

which processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance

will vary depending on your hardware and software configurations. Consult with your system vendor

for more information.

“Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and

overall system configuration. Check with your PC manufacturer on whether your system delivers

Intel Turbo Boost Technology.For more information, see

http://www.intel.com/technology/turboboost.”

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Turbo Boost

Technology, Intel Hyper Threading Technology, Intel Xeon, and Xeon Inside are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010 Intel Corporation. All rights reserved.

http://www.intel.com/performance/resources/benchmark_limitations.htm
http://www.intel.com/technology/turboboost

	Overview
	Function Stitching
	Types of Architectural Stitches
	Integer-Integer Stitch
	SSE-Integer Stitch
	SSE-SSE Stitch

	Performance
	Choosing the baseline
	Methodology
	Performance Results

	Conclusion
	References
	MD5 Data Dependencies

