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Executive Summary 
Cryptographic applications often run more than one independent 

algorithm such as encryption and authentication. This fact provides a 

high level of parallelism which can be exploited by software and 

converted into instruction level parallelism to improve overall 

performance on modern super-scalar processors. We present fast and 

efficient methods of computing such pairs of functions on IA processors 

using a method called “function stitching”. Instead of computing pairs of 

functions sequentially as is done today in applications/libraries, we 

replace the function calls by a single call to a composite function that 

implements both algorithms. The execution time of this composite 

function can be made significantly shorter than the sums of the execution 

times for the individual functions and, in many cases, close to the 

execution time of the slower function. 

Function stitching is best done at a very fine grain, interleaving the code 

for the individual algorithms at an instruction-level granularity. This 

results in excellent utilization of the execution resources in the processor 

core with a single thread. 

 We show how stitching pairs of functions together in a fine-grained 

manner results in excellent performance on IA processors. Currently, 

applications perform the functions sequentially. We demonstrate 

performance gains of 1.4X-1.9X with stitching over the best 

sequential function performance. 

We show performance results achieved by this method on the Intel® 

processors based on the Westmere architecture.  
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The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, 

training, Intel’s tool loaner program, and connect with an e-help desk 

and the embedded community. Design Fast. Design Smart. Get started 

today. www.intel.com/embedded/edc. 
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Overview 

Function stitching significantly speeds up pairs of algorithms, e.g., 
encryption/authentication, on existing Intel® architecture (IA) processors. It 
applies to algorithms which, due to instruction dependencies or instruction 
latencies, cannot fully utilize processor core execution resources. In some 
cases, the type of instructions used by one algorithm may not be able to 
utilize all the execution units in the core; the other algorithm could have a 
different instruction mix that permits better overall usage when stitched with 
the first algorithm. In this paper, we focus on cryptographic applications and 
restrict the discussion to pairs of functions; however, function stitching can be 
broadly applied to any set of multiple functions that are called together. 
Stitching is a transformation of high-level algorithm parallelism into 
instruction level parallelism (ILP) exploitable by super-scalar processors.  

Note: Note that function stitching is not the same as software pipelining [3] which is a 

method used to optimize loops. These methods are complementary.   

Function Stitching 

We define function stitching as a method to interleave instructions from pairs 
of functions to maximize execution efficiency of the cores. This method allows 
you to significantly speed up pairs of algorithms that are typically called at or 
near the same time, for example, encryption and authentication algorithms. 
Applications or libraries typically call one function to perform one algorithm 
and then call a second function to perform the other algorithm. However, if 
these two function calls are replaced by a single call to a composite function 
that implements both algorithms, the execution time of this composite 
function can often be made significantly shorter than the sums of the 
execution times for the two individual functions and, in many cases, very 
close to the max of the execution times of the individual functions. 

The advantage of having a single composite function is that this function 
contains code for two different algorithms which are essentially independent 
of each other. This allows the two code streams to be interleaved at a fine 
grain, often on an instruction granularity, which we refer to as “stitching” the 
two algorithms together (see Figure 1). This in turn allows the processor core 
to execute instructions from both algorithms at the same time, makes better 
use of the execution resources, and results in a lower total execution time. It 
may also offer second-order benefits, such as only requiring data to be 
fetched from memory/caches once rather than twice. 
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 Figure 1. Stitching Two Functions 

 

Stitching is straight-forward when both algorithms work on the same input 
data or on independent data. An example of working on the same data 
(shown in Figure 2) is if one algorithm is encryption (function A), and the 
authentication (function B) is applied to the plain-text. 

Figure 2. Stitching Two Functions That Operate on the Same Blocks of Data 
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The same technique can be applied when the functions work on independent 
blocks with different data pointers for the second function. However, it can 
also be easily used when one algorithm is applied to the output of the other 
algorithm, e.g., if the authentication is applied to the cipher-text generated 
by the encryption function when the algorithms are being applied to a buffer 
containing many basic blocks of data. For example, the AES encryption 
algorithm operates on 16-byte blocks, and a given input buffer typically 



          Fast Cryptographic Computation on IA Processors Via Function Stitching 

 

 

  7 

contains some number (N) of blocks. In this case a non-stitched encryption 
implementation is applied to the first block. Then the stitched code is applied 
(N-1) times, with the encryption code operating on input block i, and the 
authentication code (such as GHASH) operating on output block (i-1). Finally, 
an unstitched authentication implementation is applied to the last block. This 
is illustrated in Figure 3: 

Figure 3. Stitching Two Functions When One Operates on a Block of Data Produced by 

the Other 
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Similar techniques can be used to handle the case where the two algorithms 
are handling input data of different sizes. 

Since the code stream from each algorithm is essentially independent of the 
other stream, they can be interleaved somewhat arbitrarily. This makes it 
easier to schedule the final code to optimize front-end decoder performance, 
since on IA processors some instructions can only be decoded on a subset of 
the decoders, in addition to execution efficiency. 

Types of Architectural Stitches 

The Intel® 64 and IA-32 instruction set architectures have two distinct 
instruction subsets that can be used by cryptographic algorithms: general 
Purpose instructions and Single Instruction Multiple Data (SIMD) instructions 
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[1]. SIMD instructions include, and are mostly known as, Intel® SSE, SSE2 
etc. extensions. Current SIMD extensions work on 128-bit XMM registers. 
There are some instructions such as AES and PCLMULQDQ that are defined on 
the XMM register set but are not in fact SIMD. The general purpose 
instructions work on 64-bit or 32-bit general purpose registers. At the 
instruction level, some algorithms could be implemented with the general 
purpose instructions, some with the SIMD instructions, and in some cases 
could be implemented with both. There are various benefits/complexities to 
stitching for these different cases.  

In this section, we briefly describe the methods we used for the three 
different types of stitching. These types of stitches are broadly based on 
architectural properties of the code found in the functions; it is possible to 
also exploit microarchitectural properties for stitching, which is beyond the 
scope of this paper. Note that an algorithm could be implemented with a mix 
of instructions but we can classify it based on the predominant type of 
instructions and it can be analyzed for stitching based on the three 
categories. 

Intel® 64 provides 16 vector XMM registers and 16 general purpose registers, 
while IA-32 provides 8 of each kind. Since stitching requires the registers to 
be shared among the two algorithms, it could become difficult if the individual 
algorithms need to use most or all registers. Running out of registers implies 
spilling to memory which could reduce the efficiency of the stitched code. If 
the two algorithms do not use lots of registers, then stitching is not 
particularly complex. It particularly makes 64-bit code better suited for 
stitched implementations.  

Mixing general purpose along with SIMD code is very beneficial for stitched 
implementations as it extends the effective number of available registers and 
provides additional opportunities for creating a better balanced mix of 
instructions using SIMD and general purpose registers.  

The underlying superscalar microarchitecture of Intel® processors provides 
significant execution resources which a single algorithm can rarely utilize in 
full. A single algorithm can be limited by low ILP, as in the example of MD5 
caused by most of the calculations belonging to a single long dependency 
chain. It can be dominated by either Arithmetic and Logical Unit (ALU) or 
memory operations, as in the case of RC4, or can consist of a low number of 
relatively long latency dependent instructions as in the case of AES CBC-
Encrypt implementation using Intel® AES New Instructions (Intel® AES-NI). 
But when stitched the two usually reach much higher overall utilization of 
available execution slots because of the significantly improved ILP and/or 
instruction balancing. 

Integer-Integer Stitch 

Two functions that are both implemented with the general purpose 
instructions can be stitched together. Here the biggest potential problem that 
can prevent stitching could be the usage of the architectural (arithmetic) 
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flags; they are defined as implicit inputs and/or outputs of some instructions. 
No flag(s) producing/consuming instruction from one algorithm can be 
inserted between flag(s) producing and consuming instructions of the other 
algorithm. Fortunately, the algorithm pairs for symmetric encryption and 
authentication do not require architectural flags. The main issue with this 
mode could be the register limitations as a result of sharing the general 
purpose registers among the stitched functions. 

One example for this type of stitching is RC4-MD5, our current best 
implementation; however, it does use a small mix of SIMD instructions. The 
MD5 algorithm is defined in a way that has a critical data-dependency chain, 
severely limiting the amount of ILP that can be exploited by IA processor 
cores, described in detail in Appendix A. Similarly, RC4 is an algorithm that 
has a critical dependency chain that limits ILP; RC4 performs lookups into a 
small table which involve load instructions. Stitching these two functions 
together allows for more operations to execute in parallel. The execution 
efficiency of the RC4-MD5 stitch is also helped by the fact that the MD5 
algorithm uses a different mix of instructions compared to the RC4 algorithm, 
leading to a better overall utilization of the execution/load-store units. 
Another cipher that can benefit from this type of stitch with MD5 is 
DES/3DES, since the implementation has limited ILP and performs many load 
operations to tables. There are no examples using DES/3DES in this paper. 

SSE-Integer Stitch 

This is the easiest type of stitch - a function implemented with general 
purpose instructions could be stitched with another function implemented 
with SIMD instructions. The AES-SHA1 algorithm pair could be interleaved in 
this manner because SHA1 is an algorithm that can be efficiently 
implemented with scalar general purpose instructions, whereas AES can be 
implemented on the Westmere microarchitecture using the Intel® AES-NI new 
instructions that have been defined as a set of SSE instructions. The 
performance benefits of this stitch are increased due to the use of different 
microarchitectural resources in the execution units and hiding latencies of the 
individual functions. It should be noted that the best SHA1 implementation 
[2] uses a limited number of SIMD instructions; however for simplicity, we 
categorize it as a general purpose type in this paper. Stitching applies equally 
well to the SHA1 implementation that has a small mix of SIMD instructions, 
since the AES instructions do not use the SIMD execution units at a high rate. 

SSE-SSE Stitch  

Two functions that are implemented with SIMD instructions could be stitched 
together. The main issue with this mode could be the register limitations as a 
result of sharing the XMM registers among the stitched functions. One 
example of this type is the AES-CBC-XCBC pair of functions that use AES for 
encryption and also for authentication, which are efficiently implemented 
using the Intel® AES-NI. Another important example is the AES-GCM that 
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uses AES in Counter mode for encryption and Galois-Hash for authentication; 
these can be implemented using Intel® AES-NI and PCLMULQDQ-NI available 
in the Westmere microarchitecture. 

Performance 

The performance results provided in this section were measured on a dual 
socket system running two 6-core Intel® Xeon® X5670 processors at a 
frequency of 2.92 Ghz, based on the Intel® 32-nm technology 
microarchitecture, supporting Intel® AES-NI. Results represent peak crypto 
bandwidth of a system, measured on common pairs of cipher and hash and 
comparing stitched algorithms with optimized standalone algorithms running 
sequentially. The tests were run with Intel® Turbo Boost Technology on, and 
represent the performance without Intel® Hyper-Threading Technology (Intel® 
HT Technology). 

Choosing the baseline 

We started with the fastest available implementations of the individual crypto 
algorithms found in libraries such as OpenSSL. We then looked for 
opportunities to optimize those further and found ways to significantly 
improve the performance of the standalone algorithms’ implementations, over 
best known baselines for SHA-1 and RC4. 

The article [2] describes details of the optimizations to the standalone SHA-1 
algorithm. RC4 optimization targeted the improvement of the runtime 
disambiguation of memory references in the algorithm, which in most cases 
are independent, and can be executed with higher throughput.  

In the case of AES-128 and AES-256 we achieve large performance 
improvement over any legacy baseline code by using Intel® AES-NI. After 
developing these highly optimized standalone crypto algorithms, we 
proceeded with stitching to achieve yet another major leap in performance 
improvement. 

Methodology  

Secure communications is the primary usage model of paired cipher and hash 
algorithms. Current predominant Ethernet connections are capable of 
transferring 1 Gb (109 bits) of data per second. Faster network connections 
capable of speeds of 10 Gb/second are also widely used today, with a push 
for faster connections such as 40 and 100 Gb/second. In the next few years, 
we expect to see greater usage of 40 Gb Ethernet, capable of transferring 40 
Gb of data per second. 

We therefore represented the performance results as time, in seconds, 
required to process 40 Gb of data. It represents the system’s peak crypto 
throughput to run each particular pair of a block cipher and a hash. The 
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baseline code has cipher and hash functions called on an input buffer 
sequentially, while stitched code calculates both with a single call.  

To keep the comparison fair for sequential code we chose the input buffer size 
to fit into the second level data cache. Larger buffers may give additional 
advantage to the stitched code as it would have to fetch data from memory 
only once, while usage of large buffers is much less common and the focus of 
this paper is primarily on execution efficiency achieved with stitching.  

Note: The throughput of the memory subsystem on every level is much higher than peak 

achievable throughput of computationally intensive crypto algorithms; thus different 

buffer sizes lead to only very slight drifts to the performance results provided. 

Results were achieved running baseline sequential pair of functions and 
stitched function on all 12 cores available on a dual-socket system running 
two 6-core Intel® Xeon® 5670 processors. 

Performance Results 

The RC4-MD5 pair is part of the SSL protocol, and is still one of the most 
commonly used pairs for secure communications. Figure 4 shows the 
performance of sequential and stitched implementations of the RC4-MD5 pair 
as an example of the integer-integer stitch. Although our baseline 
optimizations already provide at least 1.2X better performance than broadly 
available standalone implementations of RC4 and MD5, the stitched 
implementation results in an even larger performance gain of ~1.4X. 

Figure 4. RC4-MD5: Time, in seconds, to Process 40 Gb of Data 

0.0 0.5 1.0 1.5

Stitched

Optimized

1.38

RC4 MD5
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Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate 

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration 

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or 

components they are considering purchasing. For more information on performance tests and on the performance of Intel 

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm 
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The AES128-CBC-Encrypt-SHA1 pair is part of a more modern and broadly 
used TLS 1.2, very common in secure communications. Figure 5 shows the 
performance of AES128 in CBC-Encrypt mode with SHA1. With improved 
SHA-1, and AES-128 implemented with Intel® AES-NI, our baseline is at least 
2.6X faster than broadly available non-Intel® AES-NI implementations. 
However, with SSE-integer stitching, we achieve ~1.4X additional 
performance gain. 

Figure 5. AES128-SHA1: Time, in seconds, to Process 40 Gb of data 

0.0 0.5 1.0 1.5

Stitched

Optimized

1.37

AES-NI-CBC-ENC-128 SHA-1

1.0
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Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate 

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration 

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or 

components they are considering purchasing. For more information on performance tests and on the performance of Intel 

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm 

Figure 6 shows the performance of AES-256 (CBC-Encrypt mode) with SHA1. 
We achieve ~1.5X improvement with SSE-integer stitching over the 
optimized sequentially-called pair of AES-256 and SHA-1 functions. 
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Figure 6. AES256-SHA1: Time, in Seconds, to Process 40 Gb of Data 

0.0 0.5 1.0 1.5 2.0

Stitched

Optimized

1.59

AES-NI-CBC-ENC-256 SHA-1

1.07

1.5X

 
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate 

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration 

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or 

components they are considering purchasing. For more information on performance tests and on the performance of Intel 

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm 

Note: AES-256 performs 14 rounds of encryption compared to AES-128 that performs 10 

rounds, and one would expect AES-256 to cost 1.4X as much, as is the case with 

standalone code. However, due to stitching, we are able to “hide” most of the AES 

computations inside the SHA-1 function which is the one with the longer compute 

time. Thus the net performance “penalty” of using more secure AES-256 over AES-

128 when stitched with SHA-1 becomes almost negligible ~1.07X. This allows us to 

remove the performance factor out of the trade-offs for choice of cryptographic 

strength.  

The same applies to the choice of newer AES128-SHA1 over RC4-MD5; with 
stitching the newer cipher-authentication pair does not come with any 
performance penalty as both end up having precisely the same performance 
when stitched. 

Figure 7 shows the performance of AES-128 (CBC-Encrypt mode) with AES-
128-XCBC for authentication. We created our optimized sequential 
implementation using the Intel® AES-NI as the baseline. The second bar 
represents the performance achieved by stitching the two functions, an 
example of SSE-SSE stitching. We can thus process AES128-CBC-ENC-
XCBC with a performance gain of 1.9X over the best sequential code. 
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Figure 7. AES128-CBC-ENC-XCBC: Time, in Seconds, to Process 40 Gb of Data 
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Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate 

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration 

may affect actual performance.Buyers should consult other sources of information to evaluate the performance of systems or 

components they are considering purchasing. For more information on performance tests and on the performance of Intel 

products, Go to: http://www.intel.com/performance/resources/benchmark_limitations.htm 

Conclusion 

We introduced a novel method to improve computing performance called 
function stitching, and demonstrated its benefits on the example of 
cryptographic functions. It unleashes the full potential of the modern 
superscalar microarchitecture of Intel processors. Stitching is the source-level 
fine grained interleaving of the processing of independent instruction 
streams.  

We stitched the most common pairs of cryptographic functions for increased 
performance, such as RC4-MD5, AES128-SHA1 and AES256-SHA1, achieving 
excellent performance improvement with the speedups in the 1.4X-1.9X 
range over the optimized individual functions called sequentially. Stitched 
functions are able to execute very efficiently on IA cores, closely approaching 
IA core peak execution limits. 

Stitching also allowed us to take popular pairs of block ciphers and hash 
algorithms such as RC4-MD5, AES128-SHA1 and AES256-SHA1 to the same 
highly improved performance level; now the choice of cryptography strengths 
comes without any performance trade-off. 
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Appendix A MD5 Data Dependencies 

Stitching is motivated by the fact that many predominant cryptographic 
algorithms used in encryption and authentication have inherent definitions 
that severely limit parallelism opportunities, causing under-utilization of the 
execution resources in processor cores. In addition, microarchitectural 
considerations may also add latencies or cause sub-optimal resource 
utilization within a single algorithm. 

As an example, consider the MD5 algorithm used in authentication. MD5 is a 
block-chained algorithm for computing a digest, working on 512-byte blocks 
of data. The digest consists of four 32-bit words {A, B, C, D}. Until the digest 
for a given block is computed, we cannot process the next block. Within each 
block, the algorithm is defined in a way that limits parallel execution as 
explained below. 

The processing of a block consists of four similar phases consisting of 16 
steps each. The basic steps are defined as: 

A = B + rotate(f(B,C,D) +  W[i]     + const + A) 

D = A + rotate(f(A, B,C) +  W[i+1] + const + D) 

C = D + rotate(f(D,A, B) +  W[i+2] + const + C) 

B = C + rotate(f(C,D,A) +  W[i+3] + const + B) 

http://intel.com/embedded/edc
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://en.wikipedia.org/wiki/Software_pipelining


Fast Cryptographic Computation on IA Processors Via Function Stitching 

 
 

16    

The MD5 algorithm uses different constants and different functions f(…). We 
can illustrate the basic dependency with the F function; other functions are 
also based on logical operations and have similar complexities: 

F(x,y,z) = (x & y) | ((~x) & z) 

The MD5 algorithm uses a mix of rotates, logical operations and additions in a 
way that prevents reordering in any significant way, e.g., addition does not 
distribute over rotates/logical. Consider two consecutive steps of the 
algorithm as shown in Figure 8: 

Figure 8. Two Consecutive Steps of MD5 and the Critical Data Dependency Chain 
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In Figure 8, R denotes a rotate operation by a constant. It can be seen that 
the algorithm has a tight dependency chain highlighted in red that spans 
across the steps. At most only two operations can execute in parallel; on the 
average, we can only execute one operation due to the chains. 



Fast Cryptographic Computation on IA Processors Via Function Stitching 

 
 

18    

 

Authors 

Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, 
Wajdi Feghali and Martin Dixon are IA Architects with the IAG 
Group at Intel Corporation.  

Max Locktyukhin and Maxim Perminov are Software 
architects with the SSG Group at Intel Corporation. 

Acronyms 

ALU  Arithmetic and Logical Unit 

IA  Intel® Architecture 

ILP  Instruction Level Parallelism 

SIMD Single Instruction Multiple Data 

SSE  Streaming SIMD Extensions 

 



          Fast Cryptographic Computation on IA Processors Via Function Stitching 

 

 

  19 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.  NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY 

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND 

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND 

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF 

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life 

saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice.  

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO 

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, 

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE 

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including 

liability for infringement of any proprietary rights, relating to use of information in this specification. 

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted 

herein. 

Performance tests and ratings are measured using specific computer systems and/or components 

and reflect the approximate performance of Intel products as measured by those tests. Any 

difference in system hardware or software design or configuration may affect actual 

performance.Buyers should consult other sources of information to evaluate the performance of 

systems or components they are considering purchasing. For more information on performance tests 

and on the performance of Intel products, Go to: 

http://www.intel.com/performance/resources/benchmark_limitations.htm  

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology 

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary 

depending on the specific hardware and software you use. For more information including details on 

which processors support HT Technology, see here. 

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, 

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance 

will vary depending on your hardware and software configurations. Consult with your system vendor 

for more information. 

“Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology 

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and 

overall system configuration. Check with your PC manufacturer on whether your system delivers 

Intel Turbo Boost Technology.For more information, see 

http://www.intel.com/technology/turboboost.”  

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Turbo Boost 

Technology, Intel Hyper Threading Technology, Intel Xeon, and Xeon Inside are trademarks or 

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2010 Intel Corporation. All rights reserved.  

http://www.intel.com/performance/resources/benchmark_limitations.htm
http://www.intel.com/technology/turboboost

	Overview
	Function Stitching
	Types of Architectural Stitches
	Integer-Integer Stitch
	SSE-Integer Stitch
	SSE-SSE Stitch

	Performance
	Choosing the baseline
	Methodology
	Performance Results

	Conclusion
	References
	MD5 Data Dependencies

