forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pair trading backtest.py
349 lines (266 loc) · 12.2 KB
/
Pair trading backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 6 11:57:46 2018
@author: Administrator
"""
# In[1]:
#grazie a my mentor Prof Giampiero M Gallo
#ex-professor in statistics currently a governor in Italy
#neither Lega Nord nor Movimento 5 Stelle but Partito Democratico
#and his mentor Robert Engle, the nobel laureate!
#for their tremendous contributions to VECM
# In[2]:
#pair trading is also called mean reversion trading
#we find two cointegrated assets, normally a stock and an ETF index
#or two stocks in the same industry or any pair that passes the test
#we run an cointegration test on the historical data
#we set the trigger condition for both stocks
#theoretically these two stocks cannot drift too far from each other
#its like a drunk man with a dog
#the invisible dog leash would keep both assets in check
#when one stock is getting too bullish
#we short the bullish one and long the bearish one, vice versa
#sooner or later, the dog would converge to the drunk man
#nevertheless, the backtest is based on historical datasets
#in real stock market, market conditions are dynamic
#two assets may seem cointegrated for the past two years
#they can completely diverge after one company launch a new product or whatsoever
#i am talking about nvidia and amd, two gpu companies
#after bitcoin mining boom and machine learning hype
#stock price of nvidia went skyrocketing
#on the contrary amd didnt change much
#the cointegrated relationship just broke up
#so be extremely cautious with cointegration
#there is no such thing as riskless statistical arbitrage
#always check the cointegration status before trading execution
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf
import statsmodels.api as sm
# In[3]:
#use Engle-Granger two-step method to test cointegration
#the underlying method is straight forward and easy to implement
#a more important thing is the method is invented by the mentor of my mentor!!!
#the latest statsmodels package should ve included johansen test which is more common
#check sm.tsa.var.vecm.coint_johansen
#the malaise of two-step is the order of the cointegration
#unlike johansen test, two-step method can only detect the first order
#check the following material for further details
# https://warwick.ac.uk/fac/soc/economics/staff/gboero/personal/hand2_cointeg.pdf
def EG_method(X,Y,show_summary=False):
#step 1
#estimate long run equilibrium
model1=sm.OLS(Y,sm.add_constant(X)).fit()
epsilon=model1.resid
if show_summary:
print('\nStep 1\n')
print(model1.summary())
#check p value of augmented dickey fuller test
#if p value is no larger than 5%, stationary test is passed
if sm.tsa.stattools.adfuller(epsilon)[1]>0.05:
return False,model1
#take first order difference of X and Y plus the lagged residual from step 1
X_dif=sm.add_constant(pd.concat([X.diff(),epsilon.shift(1)],axis=1).dropna())
Y_dif=Y.diff().dropna()
#step 2
#estimate error correction model
model2=sm.OLS(Y_dif,X_dif).fit()
if show_summary:
print('\nStep 2\n')
print(model2.summary())
#adjustment coefficient must be negative
if list(model2.params)[-1]>0:
return False,model1
else:
return True,model1
# In[4]:
#first we verify the status of cointegration by checking historical datasets
#bandwidth determines the number of data points for consideration
#bandwidth is 250 by default, around one year's data points
#if the status is valid, we check the signals
#when z stat gets above the upper bound
#we long the bearish one and short the bullish one, vice versa
def signal_generation(asset1,asset2,method,bandwidth=250):
signals=pd.DataFrame()
signals['asset1']=asset1['Close']
signals['asset2']=asset2['Close']
#signals only imply holding
signals['signals1']=0
signals['signals2']=0
#initialize
prev_status=False
signals['z']=np.nan
signals['z upper limit']=np.nan
signals['z lower limit']=np.nan
signals['fitted']=np.nan
signals['residual']=np.nan
#signal processing
for i in range(bandwidth,len(signals)):
#cointegration test
coint_status,model=method(signals['asset1'].iloc[i-bandwidth:i],
signals['asset2'].iloc[i-bandwidth:i])
#cointegration breaks
#clear existing positions
if prev_status and not coint_status:
if signals.at[signals.index[i-1],'signals1']!=0:
signals.at[signals.index[i],'signals1']=0
signals.at[signals.index[i],'signals2']=0
signals['z'].iloc[i:]=np.nan
signals['z upper limit'].iloc[i:]=np.nan
signals['z lower limit'].iloc[i:]=np.nan
signals['fitted'].iloc[i:]=np.nan
signals['residual'].iloc[i:]=np.nan
#cointegration starts
#set the trigger conditions
#this is no forward bias
#just to minimize the calculation done in pandas
if not prev_status and coint_status:
#predict the price to compute the residual
signals['fitted'].iloc[i:]=model.predict(sm.add_constant(signals['asset1'].iloc[i:]))
signals['residual'].iloc[i:]=signals['asset2'].iloc[i:]-signals['fitted'].iloc[i:]
#normalize the residual to get z stat
#z should be a white noise following N(0,1)
signals['z'].iloc[i:]=(signals['residual'].iloc[i:]-np.mean(model.resid))/np.std(model.resid)
#create thresholds
#conventionally one sigma is the threshold
#two sigma reaches 95% which is relatively difficult to trigger
signals['z upper limit'].iloc[i:]=signals['z'].iloc[i]+np.std(model.resid)
signals['z lower limit'].iloc[i:]=signals['z'].iloc[i]-np.std(model.resid)
#as z stat cannot exceed both upper and lower bounds at the same time
#the lines below hold
if coint_status and signals['z'].iloc[i]>signals['z upper limit'].iloc[i]:
signals.at[signals.index[i],'signals1']=1
if coint_status and signals['z'].iloc[i]<signals['z lower limit'].iloc[i]:
signals.at[signals.index[i],'signals1']=-1
prev_status=coint_status
#signals only imply holding
#we take the first order difference to obtain the execution signal
signals['positions1']=signals['signals1'].diff()
#only need to generate trading signal of one asset
#the other one should be the opposite direction
signals['signals2']=-signals['signals1']
signals['positions2']=signals['signals2'].diff()
return signals
# In[5]:
#position visualization
def plot(data,ticker1,ticker2):
fig=plt.figure(figsize=(10,5))
bx=fig.add_subplot(111)
bx2=bx.twinx()
#viz two different assets
asset1_price,=bx.plot(data.index,data['asset1'],
c='#113aac',alpha=0.7)
asset2_price,=bx2.plot(data.index,data['asset2'],
c='#907163',alpha=0.7)
#viz positions
asset1_long,=bx.plot(data.loc[data['positions1']==1].index,
data['asset1'][data['positions1']==1],
lw=0,marker='^',markersize=8,
c='g',alpha=0.7)
asset1_short,=bx.plot(data.loc[data['positions1']==-1].index,
data['asset1'][data['positions1']==-1],
lw=0,marker='v',markersize=8,
c='r',alpha=0.7)
asset2_long,=bx2.plot(data.loc[data['positions2']==1].index,
data['asset2'][data['positions2']==1],
lw=0,marker='^',markersize=8,
c='g',alpha=0.7)
asset2_short,=bx2.plot(data.loc[data['positions2']==-1].index,
data['asset2'][data['positions2']==-1],
lw=0,marker='v',markersize=8,
c='r',alpha=0.7)
#set labels
bx.set_ylabel(ticker1,)
bx2.set_ylabel(ticker2,rotation=270)
bx.yaxis.labelpad=15
bx2.yaxis.labelpad=15
bx.set_xlabel('Date')
bx.xaxis.labelpad=15
plt.legend([asset1_price,asset2_price,asset1_long,asset1_short],
[ticker1,ticker2,
'LONG','SHORT'],
loc='lower left')
plt.title('Pair Trading')
plt.xlabel('Date')
plt.grid(True)
plt.show()
# In[6]:
#visualize overall portfolio performance
def portfolio(data):
#initial capital to calculate the actual pnl
capital0=20000
#shares to buy of each position
#this is no forward bias
#just ensure we have enough €€€ to purchase shares when the price peaks
positions1=capital0//max(data['asset1'])
positions2=capital0//max(data['asset2'])
#cumsum1 column is created to check the holding of the position
data['cumsum1']=data['positions1'].cumsum()
#since there are two assets, we calculate each asset separately
#in the end we aggregate them into one portfolio
portfolio=pd.DataFrame()
portfolio['asset1']=data['asset1']
portfolio['holdings1']=data['cumsum1']*data['asset1']*positions1
portfolio['cash1']=capital0-(data['positions1']*data['asset1']*positions1).cumsum()
portfolio['total asset1']=portfolio['holdings1']+portfolio['cash1']
portfolio['return1']=portfolio['total asset1'].pct_change()
portfolio['positions1']=data['positions1']
data['cumsum2']=data['positions2'].cumsum()
portfolio['asset2']=data['asset2']
portfolio['holdings2']=data['cumsum2']*data['asset2']*positions2
portfolio['cash2']=capital0-(data['positions2']*data['asset2']*positions2).cumsum()
portfolio['total asset2']=portfolio['holdings2']+portfolio['cash2']
portfolio['return2']=portfolio['total asset2'].pct_change()
portfolio['positions2']=data['positions2']
portfolio['z']=data['z']
portfolio['total asset']=portfolio['total asset1']+portfolio['total asset2']
portfolio['z upper limit']=data['z upper limit']
portfolio['z lower limit']=data['z lower limit']
#plotting the asset value change of the portfolio
fig=plt.figure(figsize=(10,5))
ax=fig.add_subplot(111)
ax2=ax.twinx()
total_asset_performance,=ax.plot(portfolio['total asset'],c='#46344e')
z_stats,=ax2.plot(portfolio['z'],c='#4f4a41',alpha=0.2)
threshold=ax2.fill_between(portfolio.index,portfolio['z upper limit'],
portfolio['z lower limit'],
alpha=0.2,color='#ffb48f')
#due to the opposite direction of trade for 2 assets
#we will not plot positions on asset performance
ax.set_ylabel('Asset Value')
ax2.set_ylabel('Z Statistics',rotation=270)
ax.yaxis.labelpad=15
ax2.yaxis.labelpad=15
ax.set_xlabel('Date')
ax.xaxis.labelpad=15
plt.legend([z_stats,threshold,total_asset_performance],
['Z Statistics', 'Z Statistics +-1 Sigma',
'Total Asset Performance'],loc='best')
plt.grid(True)
plt.title('Total Asset')
plt.show()
return portfolio
# In[7]:
def main():
#the sample i am using are NVDA and AMD from 2013 to 2014
stdate='2013-01-01'
eddate='2014-12-31'
ticker1='NVDA'
ticker2='AMD'
#extract data
asset1=yf.download(ticker1,start=stdate,end=eddate)
asset2=yf.download(ticker2,start=stdate,end=eddate)
#create signals
signals=signal_generation(asset1,asset2,EG_method)
#only viz the part where trading signals occur
ind=signals['z'].dropna().index[0]
#viz positions
plot(signals[ind:],ticker1,ticker2)
#viz portfolio performance
portfolio_details=portfolio(signals[ind:])
#the performance metrics of investment could be found in another strategy called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
# In[8]:
if __name__ == '__main__':
main()