From f21a939c96523d4781d14d8b606630e6a30422fb Mon Sep 17 00:00:00 2001 From: Franciszek Walkowiak Date: Mon, 18 Sep 2023 17:59:39 +0200 Subject: [PATCH] Update --- book/tables/pharmacokinetic/pkct01.qmd | 135 ------------------------- 1 file changed, 135 deletions(-) diff --git a/book/tables/pharmacokinetic/pkct01.qmd b/book/tables/pharmacokinetic/pkct01.qmd index 6bd0487c83..9bd8299988 100644 --- a/book/tables/pharmacokinetic/pkct01.qmd +++ b/book/tables/pharmacokinetic/pkct01.qmd @@ -10,141 +10,6 @@ subtitle: Summary Concentration Table ::: panel-tabset ## Data Setup -```{r setup, message=FALSE} -#| code-fold: show - -# library(scda) -# library(dplyr) -# library(tern) - -# adsl <- synthetic_cdisc_dataset("latest", "adsl") %>% -# filter(ACTARM == "A: Drug X") -# adpc <- synthetic_cdisc_dataset("latest", "adpc") %>% -# filter(ACTARM == "A: Drug X", PARAM == "Plasma Drug X") - -# Setting up the data -# adpc_1 <- adpc %>% -# mutate( -# NFRLT = as.factor(NFRLT), -# AVALCAT1 = as.factor(AVALCAT1) -# ) %>% -# select(NFRLT, ACTARM, VISIT, AVAL, PARAM, AVALCAT1) %>% -# var_relabel(NFRLT = "Nominal Time from First Dose (hr)") - -# Row structure -# lyt_rows <- basic_table() %>% -# split_rows_by( -# var = "ACTARM", -# split_fun = drop_split_levels, -# split_label = "Treatment Group", -# label_pos = "topleft" -# ) %>% -# add_rowcounts(alt_counts = TRUE) %>% -# split_rows_by( -# var = "VISIT", -# split_fun = drop_split_levels, -# split_label = "Visit", -# label_pos = "topleft" -# ) %>% -# split_rows_by( -# var = "NFRLT", -# split_fun = drop_split_levels, -# split_label = obj_label(adpc_1$NFRLT), -# label_pos = "topleft", -# child_labels = "hidden" -# ) -``` - -## Standard Table (Stats in Columns) - -```{r variant1, test = list(result_v1 = "result")} -# lyt <- lyt_rows %>% -# analyze_vars_in_cols( -# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)), -# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"), -# .formats = c( -# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3), -# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3) -# ), -# .labels = c( -# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean", -# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum" -# ), -# cache = TRUE, -# na_level = "NE", -# .aligns = "decimal" -# ) - -# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table() - -# Decorating -# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable" -# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM))) -# main_footer(result) <- "NE: Not Estimable" - -# result -``` - -## Table Implementing 1/3 Imputation Rule - -```{r variant2, test = list(result_v2 = "result")} -# lyt <- lyt_rows %>% -# analyze_vars_in_cols( -# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)), -# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"), -# .formats = c( -# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3), -# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3) -# ), -# .labels = c( -# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean", -# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum" -# ), -# cache = TRUE, -# imp_rule = "1/3", -# .aligns = "decimal" -# ) - -# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table() - -# Decorating -# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable" -# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM))) -# main_footer(result) <- c("NE: Not Estimable", "ND: Not Derived") - -# result -``` - -## Table Implementing 1/2 Imputation Rule - -```{r variant3, test = list(result_v3 = "result")} -# lyt <- lyt_rows %>% -# analyze_vars_in_cols( -# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)), -# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"), -# .formats = c( -# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3), -# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3) -# ), -# .labels = c( -# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean", -# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum" -# ), -# cache = TRUE, -# imp_rule = "1/2", -# .aligns = "decimal" -# ) - -# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table() - -# Decorate table -# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable" -# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM))) -# main_footer(result) <- "ND: Not Derived" - -# result -``` - ## `teal` App