Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding offset to nb #1358

Merged
merged 9 commits into from
Dec 3, 2024
Merged

adding offset to nb #1358

merged 9 commits into from
Dec 3, 2024

Conversation

shajoezhu
Copy link
Contributor

close #1357

Copy link
Contributor

github-actions bot commented Nov 28, 2024

Unit Tests Summary

    1 files     84 suites   1m 13s ⏱️
  870 tests   859 ✅  11 💤 0 ❌
1 867 runs  1 171 ✅ 696 💤 0 ❌

Results for commit 18fbfcf.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Nov 28, 2024

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
summarize_glm_count 💀 $0.07$ $-0.07$ h_glm_negbin_emmeans_fit_works_with_healthy_input
summarize_glm_count 👶 $+0.07$ h_glm_negbin_emmeans_fit_works_with_healthy_input_no_offset
summarize_glm_count 💀 $0.06$ $-0.06$ h_glm_negbin_glm_fit_works_with_healthy_input
summarize_glm_count 👶 $+0.09$ h_glm_negbin_glm_fit_works_with_healthy_input_with_offset
summarize_glm_count 💀 $0.05$ $-0.05$ h_glm_poisson_emmeans_fit_works_with_healthy_input
summarize_glm_count 👶 $+0.05$ h_glm_poisson_emmeans_fit_works_with_healthy_input_no_offset

Results for commit 9764afd

♻️ This comment has been updated with latest results.

Copy link
Contributor

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      65       0  100.00%
R/abnormal_by_marked.R                        55       5  90.91%   93-97
R/abnormal_by_worst_grade_worsen.R           116       3  97.41%   263-265
R/abnormal_by_worst_grade.R                   60       0  100.00%
R/abnormal.R                                  43       0  100.00%
R/analyze_variables.R                        175       2  98.86%   497, 637
R/analyze_vars_in_cols.R                     176      13  92.61%   178, 221, 235-236, 244-252
R/bland_altman.R                              92       1  98.91%   46
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         84       2  97.62%   257, 316
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          59       1  98.31%   74
R/count_missed_doses.R                        36       0  100.00%
R/count_occurrences_by_grade.R               157       2  98.73%   177, 271
R/count_occurrences.R                        116       1  99.14%   120
R/count_patients_events_in_cols.R             67       1  98.51%   60
R/count_patients_with_event.R                 62       1  98.39%   123
R/count_patients_with_flags.R                 95       1  98.95%   134
R/count_values.R                              27       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  50       1  98.00%   65
R/estimate_proportion.R                      205      11  94.63%   83-90, 94, 99, 320, 486
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   141, 276
R/g_forest.R                                 585      60  89.74%   240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 632, 707, 716, 722, 741, 796-816, 819, 830, 849, 904, 907, 1042-1047
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R                               260      22  91.54%   204, 378-385, 424-434, 543, 551
R/g_step.R                                    68       1  98.53%   108
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    46       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_incidence_rate.R                          45       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           90      12  86.67%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           88       6  93.18%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       0  100.00%
R/incidence_rate.R                            86       7  91.86%   67-72, 152
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               117       0  100.00%
R/prop_diff_test.R                            91       0  100.00%
R/prop_diff.R                                265      15  94.34%   70-73, 105, 290-297, 440, 605
R/prune_occurrences.R                         57       0  100.00%
R/response_biomarkers_subgroups.R             69       6  91.30%   196-201
R/response_subgroups.R                       213       8  96.24%   100-105, 260-261
R/riskdiff.R                                  65       5  92.31%   102-105, 114
R/rtables_access.R                            38       0  100.00%
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       0  100.00%
R/summarize_ancova.R                         106       2  98.11%   183, 188
R/summarize_change.R                          74       1  98.65%   184
R/summarize_colvars.R                         10       0  100.00%
R/summarize_coxreg.R                         172       0  100.00%
R/summarize_glm_count.R                      238       8  96.64%   207-208, 401-405, 538
R/summarize_num_patients.R                    93       4  95.70%   117-119, 266
R/summarize_patients_exposure_in_cols.R       96       1  98.96%   56
R/survival_biomarkers_subgroups.R             78       6  92.31%   117-122
R/survival_coxph_pairwise.R                   84      12  85.71%   51-52, 64-73
R/survival_duration_subgroups.R              211       6  97.16%   124-129
R/survival_time.R                            111       0  100.00%
R/survival_timepoint.R                       124      10  91.94%   131-140
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       157       0  100.00%
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            124       9  92.74%   39, 46, 403-404, 526-530
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      10834     478  95.59%

Diff against main

Filename                   Stmts    Miss  Cover
-----------------------  -------  ------  -------
R/summarize_glm_count.R      +29      +5  -1.93%
TOTAL                        +29      +5  -0.03%

Results for commit: 18fbfcf

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

@shajoezhu shajoezhu requested a review from edelarua December 3, 2024 21:32
Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lgtm!!

@shajoezhu shajoezhu merged commit d0b25f5 into main Dec 3, 2024
29 checks passed
@shajoezhu shajoezhu deleted the 1357_offset branch December 3, 2024 22:02
@github-actions github-actions bot locked and limited conversation to collaborators Dec 3, 2024
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

offset is needed for count data regression
3 participants