diff --git a/NEWS.md b/NEWS.md index 6f234c8432..948ce5f668 100644 --- a/NEWS.md +++ b/NEWS.md @@ -25,6 +25,7 @@ ### Miscellaneous * Began deprecation of `na_level` argument in `s_count_abnormal_by_baseline`, `a_summary`, `analyze_vars`, `analyze_vars_in_cols`, `compare_vars`, `h_map_for_count_abnormal`, `h_stack_by_baskets`, `summarize_colvars`, `a_coxreg`, and `summarize_coxreg` and replaced it with the `na_str` argument. +* `strata` and `cohort_id` parameters renamed to `group_var` and `subject_var` respectively in `g_lineplot` and `control_lineplot_vars` . # tern 0.9.1 diff --git a/R/g_lineplot.R b/R/g_lineplot.R index c3f838436f..7aed484867 100644 --- a/R/g_lineplot.R +++ b/R/g_lineplot.R @@ -5,12 +5,14 @@ #' Line plot with the optional table. #' #' @param df (`data.frame`)\cr data set containing all analysis variables. -#' @param alt_counts_df (`data.frame` or `NULL`)\cr data set that will be used (only) to counts objects in strata. +#' @param alt_counts_df (`data.frame` or `NULL`)\cr data set that will be used (only) +#' to counts objects in groups for stratification. #' @param variables (named `character` vector) of variable names in `df` data set. Details are: #' * `x` (`character`)\cr name of x-axis variable. #' * `y` (`character`)\cr name of y-axis variable. -#' * `strata` (`character`)\cr name of grouping variable, i.e. treatment arm. Can be `NA` to indicate lack of groups. -#' * `cohort_id` (`character`)\cr name of the variable that identifies group belonging. Only applies if `strata` is +#' * `group_var` (`character`)\cr name of grouping variable (or strata), i.e. treatment arm. +#' Can be `NA` to indicate lack of groups. +#' * `subject_var` (`character`)\cr name of subject variable. Only applies if `group_var` is #' not NULL. #' * `paramcd` (`character`)\cr name of the variable for parameter's code. Used for y-axis label and plot's subtitle. #' Can be `NA` if `paramcd` is not to be added to the y-axis label or subtitle. @@ -76,10 +78,10 @@ #' # Mean with CI #' g_lineplot(adlb, adsl, subtitle = "Laboratory Test:") #' -#' # Mean with CI, no stratification -#' g_lineplot(adlb, variables = control_lineplot_vars(strata = NA)) +#' # Mean with CI, no stratification with group_var +#' g_lineplot(adlb, variables = control_lineplot_vars(group_var = NA)) #' -#' # Mean, upper whisker of CI, no strata counts N +#' # Mean, upper whisker of CI, no group_var(strata) counts N #' g_lineplot( #' adlb, #' whiskers = "mean_ci_upr", @@ -173,11 +175,11 @@ g_lineplot <- function(df, y <- variables[["y"]] paramcd <- variables["paramcd"] # NA if paramcd == NA or it is not in variables y_unit <- variables["y_unit"] # NA if y_unit == NA or it is not in variables - if (is.na(variables["strata"])) { - strata <- NULL # NULL if strata == NA or it is not in variables + if (is.na(variables["group_var"])) { + group_var <- NULL # NULL if group_var == NA or it is not in variables } else { - strata <- variables[["strata"]] - cohort_id <- variables[["cohort_id"]] + group_var <- variables[["group_var"]] + subject_var <- variables[["subject_var"]] } checkmate::assert_flag(y_lab_add_paramcd, null.ok = TRUE) checkmate::assert_flag(subtitle_add_paramcd, null.ok = TRUE) @@ -193,21 +195,21 @@ g_lineplot <- function(df, checkmate::assert_scalar(unique(df[[y_unit]])) } - if (!is.null(strata) && !is.null(alt_counts_df)) { - checkmate::assert_set_equal(unique(alt_counts_df[[strata]]), unique(df[[strata]])) + if (!is.null(group_var) && !is.null(alt_counts_df)) { + checkmate::assert_set_equal(unique(alt_counts_df[[group_var]]), unique(df[[group_var]])) } ####################################### | # ---- Compute required statistics ---- ####################################### | - if (!is.null(strata)) { - df_grp <- tidyr::expand(df, .data[[strata]], .data[[x]]) # expand based on levels of factors + if (!is.null(group_var)) { + df_grp <- tidyr::expand(df, .data[[group_var]], .data[[x]]) # expand based on levels of factors } else { df_grp <- tidyr::expand(df, NULL, .data[[x]]) } df_grp <- df_grp %>% - dplyr::full_join(y = df[, c(strata, x, y)], by = c(strata, x), multiple = "all") %>% - dplyr::group_by_at(c(strata, x)) + dplyr::full_join(y = df[, c(group_var, x, y)], by = c(group_var, x), multiple = "all") %>% + dplyr::group_by_at(c(group_var, x)) df_stats <- df_grp %>% dplyr::summarise( @@ -217,20 +219,20 @@ g_lineplot <- function(df, df_stats <- df_stats[!is.na(df_stats[[mid]]), ] - # add number of objects N in strata - if (!is.null(strata) && !is.null(alt_counts_df)) { - strata_N <- paste0(strata, "_N") # nolint + # add number of objects N in group_var (strata) + if (!is.null(group_var) && !is.null(alt_counts_df)) { + strata_N <- paste0(group_var, "_N") # nolint - df_N <- stats::aggregate(eval(parse(text = cohort_id)) ~ eval(parse(text = strata)), data = alt_counts_df, FUN = function(x) length(unique(x))) # nolint - colnames(df_N) <- c(strata, "N") # nolint - df_N[[strata_N]] <- paste0(df_N[[strata]], " (N = ", df_N$N, ")") # nolint + df_N <- stats::aggregate(eval(parse(text = subject_var)) ~ eval(parse(text = group_var)), data = alt_counts_df, FUN = function(x) length(unique(x))) # nolint + colnames(df_N) <- c(group_var, "N") # nolint + df_N[[strata_N]] <- paste0(df_N[[group_var]], " (N = ", df_N$N, ")") # nolint # strata_N should not be in clonames(df_stats) checkmate::assert_disjunct(strata_N, colnames(df_stats)) - df_stats <- merge(x = df_stats, y = df_N[, c(strata, strata_N)], by = strata) - } else if (!is.null(strata)) { - strata_N <- strata # nolint + df_stats <- merge(x = df_stats, y = df_N[, c(group_var, strata_N)], by = group_var) + } else if (!is.null(group_var)) { + strata_N <- group_var # nolint } else { strata_N <- NULL # nolint } @@ -239,8 +241,8 @@ g_lineplot <- function(df, # ---- Prepare certain plot's properties. ---- ############################################### | # legend title - if (is.null(legend_title) && !is.null(strata) && legend_position != "none") { - legend_title <- attr(df[[strata]], "label") + if (is.null(legend_title) && !is.null(group_var) && legend_position != "none") { + legend_title <- attr(df[[group_var]], "label") } # y label @@ -291,7 +293,7 @@ g_lineplot <- function(df, # lines # further conditions in if are to ensure that not all of the groups consist of only one observation - if (grepl("l", mid_type, fixed = TRUE) && !is.null(strata) && + if (grepl("l", mid_type, fixed = TRUE) && !is.null(group_var) && !all(dplyr::summarise(df_grp, count_n = dplyr::n())[["count_n"]] == 1L)) { # nolint p <- p + ggplot2::geom_line(position = position, na.rm = TRUE) } @@ -367,11 +369,11 @@ g_lineplot <- function(df, .groups = "drop" ) - stats_lev <- rev(setdiff(colnames(df_stats_table), c(strata, x))) + stats_lev <- rev(setdiff(colnames(df_stats_table), c(group_var, x))) df_stats_table <- df_stats_table %>% tidyr::pivot_longer( - cols = -dplyr::all_of(c(strata, x)), + cols = -dplyr::all_of(c(group_var, x)), names_to = "stat", values_to = "value", names_ptypes = list(stat = factor(levels = stats_lev)) @@ -397,8 +399,8 @@ g_lineplot <- function(df, legend.position = "none" ) - if (!is.null(strata)) { - tbl <- tbl + ggplot2::facet_wrap(facets = strata, ncol = 1) + if (!is.null(group_var)) { + tbl <- tbl + ggplot2::facet_wrap(facets = group_var, ncol = 1) } # align plot and table @@ -474,8 +476,10 @@ h_format_row <- function(x, format, labels = NULL) { #' #' @param x (`character`)\cr x variable name. #' @param y (`character`)\cr y variable name. -#' @param strata (`character` or `NA`)\cr strata variable name. -#' @param cohort_id (`character` or `NA`)\cr variable to identify subjects in cohorts. +#' @param group_var (`character` or `NA`)\cr group variable name. +#' @param strata (`character` or `NA`)\cr deprecated - group variable name. +#' @param subject_var (`character` or `NA`)\cr subject variable name. +#' @param cohort_id (`character` or `NA`)\cr deprecated - subject variable name. #' @param paramcd (`character` or `NA`)\cr `paramcd` variable name. #' @param y_unit (`character` or `NA`)\cr `y_unit` variable name. #' @@ -483,18 +487,29 @@ h_format_row <- function(x, format, labels = NULL) { #' #' @examples #' control_lineplot_vars() -#' control_lineplot_vars(strata = NA) +#' control_lineplot_vars(group_var = NA) #' #' @export -control_lineplot_vars <- function(x = "AVISIT", y = "AVAL", strata = "ARM", paramcd = "PARAMCD", y_unit = "AVALU", - cohort_id = "USUBJID") { +control_lineplot_vars <- function(x = "AVISIT", y = "AVAL", group_var = "ARM", paramcd = "PARAMCD", y_unit = "AVALU", + subject_var = "USUBJID", strata = lifecycle::deprecated(), + cohort_id = lifecycle::deprecated()) { + if (lifecycle::is_present(strata)) { + lifecycle::deprecate_warn("0.9.2", "control_lineplot_vars(strata)", "control_lineplot_vars(group_var)") + group_var <- strata + } + + if (lifecycle::is_present(cohort_id)) { + lifecycle::deprecate_warn("0.9.2", "control_lineplot_vars(cohort_id)", "control_lineplot_vars(subject_id)") + subject_id <- cohort_id + } + checkmate::assert_string(x) checkmate::assert_string(y) - checkmate::assert_string(strata, na.ok = TRUE) - checkmate::assert_string(cohort_id, na.ok = TRUE) + checkmate::assert_string(group_var, na.ok = TRUE) + checkmate::assert_string(subject_var, na.ok = TRUE) checkmate::assert_string(paramcd, na.ok = TRUE) checkmate::assert_string(y_unit, na.ok = TRUE) - variables <- c(x = x, y = y, strata = strata, paramcd = paramcd, y_unit = y_unit, cohort_id = cohort_id) + variables <- c(x = x, y = y, group_var = group_var, paramcd = paramcd, y_unit = y_unit, subject_var = subject_var) return(variables) } diff --git a/man/control_lineplot_vars.Rd b/man/control_lineplot_vars.Rd index f1100df4dd..87c27b9657 100644 --- a/man/control_lineplot_vars.Rd +++ b/man/control_lineplot_vars.Rd @@ -7,10 +7,12 @@ control_lineplot_vars( x = "AVISIT", y = "AVAL", - strata = "ARM", + group_var = "ARM", paramcd = "PARAMCD", y_unit = "AVALU", - cohort_id = "USUBJID" + subject_var = "USUBJID", + strata = lifecycle::deprecated(), + cohort_id = lifecycle::deprecated() ) } \arguments{ @@ -18,13 +20,17 @@ control_lineplot_vars( \item{y}{(\code{character})\cr y variable name.} -\item{strata}{(\code{character} or \code{NA})\cr strata variable name.} +\item{group_var}{(\code{character} or \code{NA})\cr group variable name.} \item{paramcd}{(\code{character} or \code{NA})\cr \code{paramcd} variable name.} \item{y_unit}{(\code{character} or \code{NA})\cr \code{y_unit} variable name.} -\item{cohort_id}{(\code{character} or \code{NA})\cr variable to identify subjects in cohorts.} +\item{subject_var}{(\code{character} or \code{NA})\cr subject variable name.} + +\item{strata}{(\code{character} or \code{NA})\cr deprecated - group variable name.} + +\item{cohort_id}{(\code{character} or \code{NA})\cr deprecated - subject variable name.} } \value{ A named character vector of variable names. @@ -37,6 +43,6 @@ A variable's default value can be overwritten for any variable. } \examples{ control_lineplot_vars() -control_lineplot_vars(strata = NA) +control_lineplot_vars(group_var = NA) } diff --git a/man/g_lineplot.Rd b/man/g_lineplot.Rd index f14c9a4b93..6d1ad188cc 100644 --- a/man/g_lineplot.Rd +++ b/man/g_lineplot.Rd @@ -38,14 +38,16 @@ g_lineplot( \arguments{ \item{df}{(\code{data.frame})\cr data set containing all analysis variables.} -\item{alt_counts_df}{(\code{data.frame} or \code{NULL})\cr data set that will be used (only) to counts objects in strata.} +\item{alt_counts_df}{(\code{data.frame} or \code{NULL})\cr data set that will be used (only) +to counts objects in groups for stratification.} \item{variables}{(named \code{character} vector) of variable names in \code{df} data set. Details are: \itemize{ \item \code{x} (\code{character})\cr name of x-axis variable. \item \code{y} (\code{character})\cr name of y-axis variable. -\item \code{strata} (\code{character})\cr name of grouping variable, i.e. treatment arm. Can be \code{NA} to indicate lack of groups. -\item \code{cohort_id} (\code{character})\cr name of the variable that identifies group belonging. Only applies if \code{strata} is +\item \code{group_var} (\code{character})\cr name of grouping variable (or strata), i.e. treatment arm. +Can be \code{NA} to indicate lack of groups. +\item \code{subject_var} (\code{character})\cr name of subject variable. Only applies if \code{group_var} is not NULL. \item \code{paramcd} (\code{character})\cr name of the variable for parameter's code. Used for y-axis label and plot's subtitle. Can be \code{NA} if \code{paramcd} is not to be added to the y-axis label or subtitle. @@ -143,10 +145,10 @@ adlb <- dplyr::mutate(adlb, AVISIT = forcats::fct_reorder(AVISIT, AVISITN, min)) # Mean with CI g_lineplot(adlb, adsl, subtitle = "Laboratory Test:") -# Mean with CI, no stratification -g_lineplot(adlb, variables = control_lineplot_vars(strata = NA)) +# Mean with CI, no stratification with group_var +g_lineplot(adlb, variables = control_lineplot_vars(group_var = NA)) -# Mean, upper whisker of CI, no strata counts N +# Mean, upper whisker of CI, no group_var(strata) counts N g_lineplot( adlb, whiskers = "mean_ci_upr", diff --git a/tests/testthat/test-g_lineplot.R b/tests/testthat/test-g_lineplot.R index 0c07eece42..9003191230 100644 --- a/tests/testthat/test-g_lineplot.R +++ b/tests/testthat/test-g_lineplot.R @@ -13,7 +13,7 @@ testthat::test_that("g_lineplot works with custom settings and statistics table" g_lineplot_w_stats <- g_lineplot( adlb, adsl, - strata = control_lineplot_vars(strata = NULL), + group_var = control_lineplot_vars(group_var = NULL), mid = "median", table = c("n", "mean", "mean_ci"), control = control_analyze_vars(conf_level = 0.80), @@ -30,7 +30,7 @@ testthat::test_that("g_lineplot works with cohort_id specified", { g_lineplot_cohorts <- g_lineplot( adlb, adsl, - strata = control_lineplot_vars(strata = "ARM", cohort_id = "USUBJID"), + group_var = control_lineplot_vars(group_var = "ARM", subject_var = "USUBJID"), mid = "median", table = c("n", "mean", "mean_ci"), control = control_analyze_vars(conf_level = 0.80),