From 74d70ca910a54392d0a0d8bf8ac908d1b1b63f9f Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 4 Oct 2023 19:05:03 +0000 Subject: [PATCH] Update pkgdown documentation 536a69acc9149ab853d6fd2cf5459e3457f998cd --- v0.9.1/404.html | 102 + v0.9.1/CODE_OF_CONDUCT.html | 147 + v0.9.1/CONTRIBUTING.html | 198 + v0.9.1/LICENSE-text.html | 93 + v0.9.1/SECURITY.html | 102 + v0.9.1/analytics.js | 1 + v0.9.1/articles/index.html | 90 + v0.9.1/articles/missing_values.html | 308 + v0.9.1/articles/tables.html | 883 ++ v0.9.1/articles/tern.html | 330 + .../figure-html/unnamed-chunk-8-1.png | Bin 0 -> 89626 bytes .../figure-html/unnamed-chunk-9-1.png | Bin 0 -> 161744 bytes v0.9.1/articles/tern_formats.html | 437 + v0.9.1/authors.html | 139 + v0.9.1/consent.css | 28 + v0.9.1/consent.js | 95 + v0.9.1/cookie_policy.txt | 11 + .../bootstrap-5.2.2/bootstrap.bundle.min.js | 7 + .../bootstrap.bundle.min.js.map | 1 + v0.9.1/deps/bootstrap-5.2.2/bootstrap.min.css | 6 + v0.9.1/deps/data-deps.txt | 4 + v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.js | 10881 ++++++++++++++++ v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.min.js | 2 + v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.min.map | 1 + v0.9.1/index.html | 231 + v0.9.1/link.svg | 12 + v0.9.1/news/index.html | 787 ++ v0.9.1/pkgdown.js | 156 + v0.9.1/pkgdown.yml | 13 + v0.9.1/pull_request_template.html | 84 + v0.9.1/reference/Rplot001.png | Bin 0 -> 1011 bytes v0.9.1/reference/Rplot002.png | Bin 0 -> 11065 bytes v0.9.1/reference/Rplot003.png | Bin 0 -> 10979 bytes v0.9.1/reference/Rplot004.png | Bin 0 -> 16876 bytes v0.9.1/reference/Rplot005.png | Bin 0 -> 15315 bytes v0.9.1/reference/Rplot006.png | Bin 0 -> 42134 bytes v0.9.1/reference/Rplot007.png | Bin 0 -> 41904 bytes v0.9.1/reference/Rplot008.png | Bin 0 -> 31709 bytes v0.9.1/reference/Rplot009.png | Bin 0 -> 42241 bytes v0.9.1/reference/Rplot010.png | Bin 0 -> 37631 bytes v0.9.1/reference/Rplot011.png | Bin 0 -> 33931 bytes v0.9.1/reference/Rplot012.png | Bin 0 -> 35022 bytes v0.9.1/reference/Rplot013.png | Bin 0 -> 42233 bytes v0.9.1/reference/Rplot014.png | Bin 0 -> 42068 bytes v0.9.1/reference/abnormal.html | 290 + v0.9.1/reference/abnormal_by_baseline.html | 302 + v0.9.1/reference/abnormal_by_marked.html | 341 + v0.9.1/reference/abnormal_by_worst_grade.html | 321 + .../abnormal_by_worst_grade_worsen.html | 267 + v0.9.1/reference/add_riskdiff.html | 160 + v0.9.1/reference/add_rowcounts.html | 155 + v0.9.1/reference/aesi_label.html | 121 + v0.9.1/reference/afun_riskdiff.html | 191 + v0.9.1/reference/afun_selected_stats.html | 107 + .../reference/analyze_colvars_functions.html | 149 + v0.9.1/reference/analyze_functions.html | 194 + v0.9.1/reference/analyze_variables.html | 2289 ++++ v0.9.1/reference/analyze_vars_in_cols.html | 377 + v0.9.1/reference/append_varlabels.html | 171 + v0.9.1/reference/argument_convention.html | 301 + v0.9.1/reference/arrange_grobs-1.png | Bin 0 -> 23625 bytes v0.9.1/reference/arrange_grobs-2.png | Bin 0 -> 40261 bytes v0.9.1/reference/arrange_grobs-3.png | Bin 0 -> 26242 bytes v0.9.1/reference/arrange_grobs-4.png | Bin 0 -> 36219 bytes v0.9.1/reference/arrange_grobs.html | 179 + v0.9.1/reference/as.rtable.html | 143 + .../reference/as_factor_keep_attributes.html | 125 + v0.9.1/reference/assertions.html | 214 + v0.9.1/reference/bins_percent_labels.html | 111 + v0.9.1/reference/c_label_n.html | 129 + v0.9.1/reference/c_label_n_alt.html | 119 + v0.9.1/reference/cfun_by_flag.html | 112 + v0.9.1/reference/check_diff_prop_ci.html | 117 + v0.9.1/reference/check_same_n.html | 106 + v0.9.1/reference/combination_function.html | 164 + v0.9.1/reference/combine_counts.html | 156 + v0.9.1/reference/combine_groups.html | 138 + v0.9.1/reference/combine_levels.html | 126 + v0.9.1/reference/combine_vectors.html | 121 + v0.9.1/reference/compare_variables.html | 997 ++ v0.9.1/reference/control_analyze_vars.html | 133 + v0.9.1/reference/control_coxph.html | 122 + v0.9.1/reference/control_coxreg.html | 147 + v0.9.1/reference/control_incidence_rate.html | 159 + v0.9.1/reference/control_lineplot_vars.html | 141 + v0.9.1/reference/control_logistic.html | 147 + v0.9.1/reference/control_step.html | 191 + v0.9.1/reference/control_surv_time.html | 121 + v0.9.1/reference/control_surv_timepoint.html | 116 + v0.9.1/reference/count_cumulative.html | 241 + v0.9.1/reference/count_missed_doses.html | 236 + v0.9.1/reference/count_occurrences.html | 368 + .../reference/count_occurrences_by_grade.html | 419 + .../count_patients_events_in_cols.html | 218 + .../reference/count_patients_with_event.html | 346 + .../reference/count_patients_with_flags.html | 381 + v0.9.1/reference/count_values_funs.html | 314 + v0.9.1/reference/cox_regression-1.png | Bin 0 -> 34391 bytes v0.9.1/reference/cox_regression.html | 524 + v0.9.1/reference/cox_regression_inter-1.png | Bin 0 -> 34391 bytes v0.9.1/reference/cox_regression_inter.html | 288 + v0.9.1/reference/create_afun_compare.html | 134 + v0.9.1/reference/create_afun_summary.html | 128 + v0.9.1/reference/cut_quantile_bins.html | 209 + .../d_count_abnormal_by_baseline.html | 120 + v0.9.1/reference/d_count_cumulative.html | 114 + v0.9.1/reference/d_count_missed_doses.html | 106 + v0.9.1/reference/d_onco_rsp_label.html | 139 + v0.9.1/reference/d_pkparam.html | 102 + v0.9.1/reference/d_proportion.html | 115 + v0.9.1/reference/d_proportion_diff.html | 120 + v0.9.1/reference/d_rsp_subgroups_colvars.html | 114 + .../d_survival_subgroups_colvars.html | 131 + v0.9.1/reference/d_test_proportion_diff.html | 106 + v0.9.1/reference/day2month.html | 110 + v0.9.1/reference/decorate_grob-1.png | Bin 0 -> 43633 bytes v0.9.1/reference/decorate_grob-2.png | Bin 0 -> 61778 bytes v0.9.1/reference/decorate_grob-3.png | Bin 0 -> 80348 bytes v0.9.1/reference/decorate_grob-4.png | Bin 0 -> 71121 bytes v0.9.1/reference/decorate_grob-5.png | Bin 0 -> 92755 bytes v0.9.1/reference/decorate_grob-6.png | Bin 0 -> 72324 bytes v0.9.1/reference/decorate_grob-7.png | Bin 0 -> 72324 bytes v0.9.1/reference/decorate_grob-8.png | Bin 0 -> 51272 bytes v0.9.1/reference/decorate_grob-9.png | Bin 0 -> 74023 bytes v0.9.1/reference/decorate_grob.html | 308 + v0.9.1/reference/decorate_grob_factory.html | 106 + v0.9.1/reference/decorate_grob_set-1.png | Bin 0 -> 68000 bytes v0.9.1/reference/decorate_grob_set-2.png | Bin 0 -> 59033 bytes v0.9.1/reference/decorate_grob_set-3.png | Bin 0 -> 61484 bytes v0.9.1/reference/decorate_grob_set.html | 152 + .../default_stats_formats_labels.html | 889 ++ v0.9.1/reference/desctools_binom.html | 156 + v0.9.1/reference/df_explicit_na.html | 205 + v0.9.1/reference/draw_grob-1.png | Bin 0 -> 9219 bytes v0.9.1/reference/draw_grob-2.png | Bin 0 -> 34609 bytes v0.9.1/reference/draw_grob.html | 133 + v0.9.1/reference/empty_vector_if_na.html | 108 + v0.9.1/reference/estimate_coef.html | 177 + .../reference/estimate_multinomial_rsp.html | 301 + v0.9.1/reference/estimate_proportions.html | 306 + v0.9.1/reference/ex_data.html | 120 + v0.9.1/reference/explicit_na.html | 127 + v0.9.1/reference/extract_by_name.html | 116 + v0.9.1/reference/extract_rsp_biomarkers.html | 280 + v0.9.1/reference/extract_rsp_subgroups.html | 335 + .../extract_survival_biomarkers.html | 258 + .../reference/extract_survival_subgroups.html | 307 + v0.9.1/reference/extreme_format.html | 163 + v0.9.1/reference/f_conf_level.html | 102 + v0.9.1/reference/f_pval.html | 102 + v0.9.1/reference/fct_collapse_only.html | 139 + v0.9.1/reference/fct_discard.html | 117 + v0.9.1/reference/fct_explicit_na_if.html | 128 + .../reference/figures/lifecycle-archived.svg | 1 + .../reference/figures/lifecycle-defunct.svg | 1 + .../figures/lifecycle-deprecated.svg | 1 + .../figures/lifecycle-experimental.svg | 1 + .../reference/figures/lifecycle-maturing.svg | 1 + .../figures/lifecycle-questioning.svg | 1 + .../figures/lifecycle-soft-deprecated.svg | 1 + v0.9.1/reference/figures/lifecycle-stable.svg | 1 + .../figures/lifecycle-superseded.svg | 1 + v0.9.1/reference/figures/tern.png | Bin 0 -> 19687 bytes v0.9.1/reference/fit_coxreg-1.png | Bin 0 -> 34391 bytes v0.9.1/reference/fit_coxreg.html | 244 + v0.9.1/reference/fit_logistic.html | 166 + v0.9.1/reference/fit_rsp_step.html | 257 + v0.9.1/reference/fit_survival_step.html | 216 + v0.9.1/reference/forest_viewport-1.png | Bin 0 -> 30255 bytes v0.9.1/reference/forest_viewport.html | 158 + v0.9.1/reference/format_auto.html | 161 + v0.9.1/reference/format_count_fraction.html | 133 + .../format_count_fraction_fixed_dp.html | 135 + v0.9.1/reference/format_extreme_values.html | 134 + .../reference/format_extreme_values_ci.html | 134 + v0.9.1/reference/format_fraction.html | 133 + .../reference/format_fraction_fixed_dp.html | 138 + .../reference/format_fraction_threshold.html | 138 + v0.9.1/reference/format_sigfig.html | 146 + v0.9.1/reference/format_xx.html | 138 + v0.9.1/reference/formatting_functions.html | 109 + v0.9.1/reference/g_forest-1.png | Bin 0 -> 32575 bytes v0.9.1/reference/g_forest-2.png | Bin 0 -> 48012 bytes v0.9.1/reference/g_forest-3.png | Bin 0 -> 33157 bytes v0.9.1/reference/g_forest-4.png | Bin 0 -> 13116 bytes v0.9.1/reference/g_forest-5.png | Bin 0 -> 16026 bytes v0.9.1/reference/g_forest.html | 327 + v0.9.1/reference/g_km-1.png | Bin 0 -> 82804 bytes v0.9.1/reference/g_km-10.png | Bin 0 -> 99170 bytes v0.9.1/reference/g_km-11.png | Bin 0 -> 101462 bytes v0.9.1/reference/g_km-12.png | Bin 0 -> 111824 bytes v0.9.1/reference/g_km-13.png | Bin 0 -> 119173 bytes v0.9.1/reference/g_km-2.png | Bin 0 -> 81012 bytes v0.9.1/reference/g_km-3.png | Bin 0 -> 81838 bytes v0.9.1/reference/g_km-4.png | Bin 0 -> 88872 bytes v0.9.1/reference/g_km-5.png | Bin 0 -> 91947 bytes v0.9.1/reference/g_km-6.png | Bin 0 -> 83174 bytes v0.9.1/reference/g_km-7.png | Bin 0 -> 88174 bytes v0.9.1/reference/g_km-8.png | Bin 0 -> 100675 bytes v0.9.1/reference/g_km-9.png | Bin 0 -> 95981 bytes v0.9.1/reference/g_km.html | 433 + v0.9.1/reference/g_lineplot-1.png | Bin 0 -> 94007 bytes v0.9.1/reference/g_lineplot-2.png | Bin 0 -> 32509 bytes v0.9.1/reference/g_lineplot-3.png | Bin 0 -> 89286 bytes v0.9.1/reference/g_lineplot-4.png | Bin 0 -> 83648 bytes v0.9.1/reference/g_lineplot-5.png | Bin 0 -> 83214 bytes v0.9.1/reference/g_lineplot-6.png | Bin 0 -> 121095 bytes v0.9.1/reference/g_lineplot-7.png | Bin 0 -> 121866 bytes v0.9.1/reference/g_lineplot-8.png | Bin 0 -> 86124 bytes v0.9.1/reference/g_lineplot.html | 333 + v0.9.1/reference/g_step-1.png | Bin 0 -> 57925 bytes v0.9.1/reference/g_step-2.png | Bin 0 -> 59784 bytes v0.9.1/reference/g_step-3.png | Bin 0 -> 53017 bytes v0.9.1/reference/g_step-4.png | Bin 0 -> 65274 bytes v0.9.1/reference/g_step-5.png | Bin 0 -> 59584 bytes v0.9.1/reference/g_step.html | 204 + v0.9.1/reference/g_waterfall-1.png | Bin 0 -> 18530 bytes v0.9.1/reference/g_waterfall-2.png | Bin 0 -> 23057 bytes v0.9.1/reference/g_waterfall-3.png | Bin 0 -> 45381 bytes v0.9.1/reference/g_waterfall-4.png | Bin 0 -> 50101 bytes v0.9.1/reference/g_waterfall-5.png | Bin 0 -> 46544 bytes v0.9.1/reference/g_waterfall.html | 207 + v0.9.1/reference/get_covariates.html | 103 + v0.9.1/reference/get_smooths.html | 122 + v0.9.1/reference/groups_list_to_df.html | 120 + v0.9.1/reference/h_adlb_worsen.html | 162 + .../h_adsl_adlb_merge_using_worst_flag.html | 163 + v0.9.1/reference/h_ancova.html | 136 + v0.9.1/reference/h_append_grade_groups.html | 218 + v0.9.1/reference/h_col_indices.html | 112 + v0.9.1/reference/h_count_cumulative.html | 159 + v0.9.1/reference/h_cox_regression.html | 275 + v0.9.1/reference/h_data_plot.html | 190 + v0.9.1/reference/h_decompose_gg-1.png | Bin 0 -> 32676 bytes v0.9.1/reference/h_decompose_gg-2.png | Bin 0 -> 18104 bytes v0.9.1/reference/h_decompose_gg.html | 145 + v0.9.1/reference/h_format_row.html | 135 + v0.9.1/reference/h_g_ipp-1.png | Bin 0 -> 166654 bytes v0.9.1/reference/h_g_ipp.html | 198 + v0.9.1/reference/h_ggkm-1.png | Bin 0 -> 50630 bytes v0.9.1/reference/h_ggkm.html | 220 + v0.9.1/reference/h_glm_count.html | 167 + v0.9.1/reference/h_grob_coxph-1.png | Bin 0 -> 21600 bytes v0.9.1/reference/h_grob_coxph.html | 152 + v0.9.1/reference/h_grob_median_surv-1.png | Bin 0 -> 27101 bytes v0.9.1/reference/h_grob_median_surv.html | 154 + v0.9.1/reference/h_grob_tbl_at_risk-1.png | Bin 0 -> 23711 bytes v0.9.1/reference/h_grob_tbl_at_risk.html | 187 + v0.9.1/reference/h_grob_y_annot-1.png | Bin 0 -> 15210 bytes v0.9.1/reference/h_grob_y_annot.html | 140 + v0.9.1/reference/h_incidence_rate.html | 185 + v0.9.1/reference/h_km_layout-1.png | Bin 0 -> 63925 bytes v0.9.1/reference/h_km_layout.html | 168 + v0.9.1/reference/h_logistic_regression.html | 462 + .../reference/h_map_for_count_abnormal.html | 203 + v0.9.1/reference/h_odds_ratio.html | 173 + v0.9.1/reference/h_pkparam_sort.html | 115 + v0.9.1/reference/h_prop_diff.html | 318 + v0.9.1/reference/h_prop_diff_test.html | 128 + v0.9.1/reference/h_proportions.html | 234 + .../h_response_biomarkers_subgroups.html | 252 + v0.9.1/reference/h_response_subgroups.html | 388 + v0.9.1/reference/h_split_by_subgroups.html | 228 + v0.9.1/reference/h_split_param.html | 160 + v0.9.1/reference/h_stack_by_baskets.html | 207 + v0.9.1/reference/h_step.html | 183 + .../h_survival_biomarkers_subgroups.html | 268 + .../h_survival_duration_subgroups.html | 413 + v0.9.1/reference/h_tab_one_biomarker.html | 121 + v0.9.1/reference/h_tbl_coxph_pairwise.html | 145 + v0.9.1/reference/h_tbl_median_surv.html | 129 + v0.9.1/reference/h_worsen_counter.html | 193 + v0.9.1/reference/h_xticks.html | 149 + v0.9.1/reference/imputation_rule.html | 173 + v0.9.1/reference/incidence_rate.html | 261 + v0.9.1/reference/index.html | 1169 ++ .../reference/individual_patient_plot-1.png | Bin 0 -> 120224 bytes .../reference/individual_patient_plot-2.png | Bin 0 -> 83897 bytes v0.9.1/reference/individual_patient_plot.html | 227 + v0.9.1/reference/labels_or_names.html | 105 + .../reference/logistic_regression_cols.html | 114 + .../reference/logistic_summary_by_flag.html | 114 + v0.9.1/reference/make_names.html | 104 + v0.9.1/reference/month2day.html | 116 + v0.9.1/reference/muffled_car_anova.html | 109 + v0.9.1/reference/n_available.html | 102 + v0.9.1/reference/odds_ratio.html | 330 + v0.9.1/reference/prop_diff.html | 323 + v0.9.1/reference/prop_diff_test.html | 246 + v0.9.1/reference/prune_occurrences.html | 721 + v0.9.1/reference/range_noinf.html | 113 + v0.9.1/reference/reapply_varlabels.html | 110 + .../response_biomarkers_subgroups-1.png | Bin 0 -> 51577 bytes .../response_biomarkers_subgroups.html | 198 + v0.9.1/reference/response_subgroups.html | 256 + v0.9.1/reference/rtables_access.html | 195 + v0.9.1/reference/s_cox_multivariate.html | 175 + v0.9.1/reference/sas_na.html | 130 + v0.9.1/reference/score_occurrences.html | 298 + v0.9.1/reference/split_cols_by_groups.html | 248 + v0.9.1/reference/split_text_grob.html | 170 + v0.9.1/reference/stack_grobs-1.png | Bin 0 -> 33677 bytes v0.9.1/reference/stack_grobs-2.png | Bin 0 -> 33356 bytes v0.9.1/reference/stack_grobs.html | 156 + v0.9.1/reference/stat_mean_ci-1.png | Bin 0 -> 32865 bytes v0.9.1/reference/stat_mean_ci-2.png | Bin 0 -> 32979 bytes v0.9.1/reference/stat_mean_ci-3.png | Bin 0 -> 32946 bytes v0.9.1/reference/stat_mean_ci.html | 166 + v0.9.1/reference/stat_mean_pval.html | 129 + v0.9.1/reference/stat_median_ci-1.png | Bin 0 -> 32683 bytes v0.9.1/reference/stat_median_ci.html | 142 + v0.9.1/reference/stat_propdiff_ci.html | 175 + v0.9.1/reference/strata_normal_quantile.html | 142 + v0.9.1/reference/study_arm.html | 104 + v0.9.1/reference/summarize_ancova.html | 296 + v0.9.1/reference/summarize_change.html | 239 + v0.9.1/reference/summarize_colvars.html | 247 + v0.9.1/reference/summarize_functions.html | 134 + v0.9.1/reference/summarize_glm_count.html | 318 + v0.9.1/reference/summarize_logistic.html | 248 + v0.9.1/reference/summarize_num_patients.html | 388 + .../summarize_patients_exposure_in_cols.html | 353 + .../survival_biomarkers_subgroups-1.png | Bin 0 -> 47290 bytes .../survival_biomarkers_subgroups.html | 245 + v0.9.1/reference/survival_coxph_pairwise.html | 284 + .../survival_duration_subgroups.html | 284 + v0.9.1/reference/survival_time.html | 240 + v0.9.1/reference/survival_timepoint.html | 352 + v0.9.1/reference/tern-package.html | 105 + v0.9.1/reference/tidy.glm.html | 164 + v0.9.1/reference/tidy.step.html | 150 + v0.9.1/reference/tidy_coxreg.html | 254 + v0.9.1/reference/to_n.html | 114 + v0.9.1/reference/to_string_matrix.html | 123 + v0.9.1/reference/try_car_anova.html | 134 + v0.9.1/reference/ungroup_stats.html | 120 + v0.9.1/reference/univariate.html | 116 + v0.9.1/reference/unlist_and_blank_na.html | 103 + .../update_weights_strat_wilson.html | 168 + v0.9.1/search.json | 1 + v0.9.1/sitemap.xml | 669 + 341 files changed, 60540 insertions(+) create mode 100644 v0.9.1/404.html create mode 100644 v0.9.1/CODE_OF_CONDUCT.html create mode 100644 v0.9.1/CONTRIBUTING.html create mode 100644 v0.9.1/LICENSE-text.html create mode 100644 v0.9.1/SECURITY.html create mode 100644 v0.9.1/analytics.js create mode 100644 v0.9.1/articles/index.html create mode 100644 v0.9.1/articles/missing_values.html create mode 100644 v0.9.1/articles/tables.html create mode 100644 v0.9.1/articles/tern.html create mode 100644 v0.9.1/articles/tern_files/figure-html/unnamed-chunk-8-1.png create mode 100644 v0.9.1/articles/tern_files/figure-html/unnamed-chunk-9-1.png create mode 100644 v0.9.1/articles/tern_formats.html create mode 100644 v0.9.1/authors.html create mode 100644 v0.9.1/consent.css create mode 100644 v0.9.1/consent.js create mode 100644 v0.9.1/cookie_policy.txt create mode 100644 v0.9.1/deps/bootstrap-5.2.2/bootstrap.bundle.min.js create mode 100644 v0.9.1/deps/bootstrap-5.2.2/bootstrap.bundle.min.js.map create mode 100644 v0.9.1/deps/bootstrap-5.2.2/bootstrap.min.css create mode 100644 v0.9.1/deps/data-deps.txt create mode 100644 v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.js create mode 100644 v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.min.js create mode 100644 v0.9.1/deps/jquery-3.6.0/jquery-3.6.0.min.map create mode 100644 v0.9.1/index.html create mode 100644 v0.9.1/link.svg create mode 100644 v0.9.1/news/index.html create mode 100644 v0.9.1/pkgdown.js create mode 100644 v0.9.1/pkgdown.yml create mode 100644 v0.9.1/pull_request_template.html create mode 100644 v0.9.1/reference/Rplot001.png create mode 100644 v0.9.1/reference/Rplot002.png create mode 100644 v0.9.1/reference/Rplot003.png create mode 100644 v0.9.1/reference/Rplot004.png create mode 100644 v0.9.1/reference/Rplot005.png create mode 100644 v0.9.1/reference/Rplot006.png create mode 100644 v0.9.1/reference/Rplot007.png create mode 100644 v0.9.1/reference/Rplot008.png create mode 100644 v0.9.1/reference/Rplot009.png create mode 100644 v0.9.1/reference/Rplot010.png create mode 100644 v0.9.1/reference/Rplot011.png create mode 100644 v0.9.1/reference/Rplot012.png create mode 100644 v0.9.1/reference/Rplot013.png create mode 100644 v0.9.1/reference/Rplot014.png create mode 100644 v0.9.1/reference/abnormal.html create mode 100644 v0.9.1/reference/abnormal_by_baseline.html create mode 100644 v0.9.1/reference/abnormal_by_marked.html create mode 100644 v0.9.1/reference/abnormal_by_worst_grade.html create mode 100644 v0.9.1/reference/abnormal_by_worst_grade_worsen.html create mode 100644 v0.9.1/reference/add_riskdiff.html create mode 100644 v0.9.1/reference/add_rowcounts.html create mode 100644 v0.9.1/reference/aesi_label.html create mode 100644 v0.9.1/reference/afun_riskdiff.html create mode 100644 v0.9.1/reference/afun_selected_stats.html create mode 100644 v0.9.1/reference/analyze_colvars_functions.html create mode 100644 v0.9.1/reference/analyze_functions.html create mode 100644 v0.9.1/reference/analyze_variables.html create mode 100644 v0.9.1/reference/analyze_vars_in_cols.html create mode 100644 v0.9.1/reference/append_varlabels.html create mode 100644 v0.9.1/reference/argument_convention.html create mode 100644 v0.9.1/reference/arrange_grobs-1.png create mode 100644 v0.9.1/reference/arrange_grobs-2.png create mode 100644 v0.9.1/reference/arrange_grobs-3.png create mode 100644 v0.9.1/reference/arrange_grobs-4.png create mode 100644 v0.9.1/reference/arrange_grobs.html create mode 100644 v0.9.1/reference/as.rtable.html create mode 100644 v0.9.1/reference/as_factor_keep_attributes.html create mode 100644 v0.9.1/reference/assertions.html create mode 100644 v0.9.1/reference/bins_percent_labels.html create mode 100644 v0.9.1/reference/c_label_n.html create mode 100644 v0.9.1/reference/c_label_n_alt.html create mode 100644 v0.9.1/reference/cfun_by_flag.html create mode 100644 v0.9.1/reference/check_diff_prop_ci.html create mode 100644 v0.9.1/reference/check_same_n.html create mode 100644 v0.9.1/reference/combination_function.html create mode 100644 v0.9.1/reference/combine_counts.html create mode 100644 v0.9.1/reference/combine_groups.html create mode 100644 v0.9.1/reference/combine_levels.html create mode 100644 v0.9.1/reference/combine_vectors.html create mode 100644 v0.9.1/reference/compare_variables.html create mode 100644 v0.9.1/reference/control_analyze_vars.html create mode 100644 v0.9.1/reference/control_coxph.html create mode 100644 v0.9.1/reference/control_coxreg.html create mode 100644 v0.9.1/reference/control_incidence_rate.html create mode 100644 v0.9.1/reference/control_lineplot_vars.html create mode 100644 v0.9.1/reference/control_logistic.html create mode 100644 v0.9.1/reference/control_step.html create mode 100644 v0.9.1/reference/control_surv_time.html create mode 100644 v0.9.1/reference/control_surv_timepoint.html create mode 100644 v0.9.1/reference/count_cumulative.html create mode 100644 v0.9.1/reference/count_missed_doses.html create mode 100644 v0.9.1/reference/count_occurrences.html create mode 100644 v0.9.1/reference/count_occurrences_by_grade.html create mode 100644 v0.9.1/reference/count_patients_events_in_cols.html create mode 100644 v0.9.1/reference/count_patients_with_event.html create mode 100644 v0.9.1/reference/count_patients_with_flags.html create mode 100644 v0.9.1/reference/count_values_funs.html create mode 100644 v0.9.1/reference/cox_regression-1.png create mode 100644 v0.9.1/reference/cox_regression.html create mode 100644 v0.9.1/reference/cox_regression_inter-1.png create mode 100644 v0.9.1/reference/cox_regression_inter.html create mode 100644 v0.9.1/reference/create_afun_compare.html create mode 100644 v0.9.1/reference/create_afun_summary.html create mode 100644 v0.9.1/reference/cut_quantile_bins.html create mode 100644 v0.9.1/reference/d_count_abnormal_by_baseline.html create mode 100644 v0.9.1/reference/d_count_cumulative.html create mode 100644 v0.9.1/reference/d_count_missed_doses.html create mode 100644 v0.9.1/reference/d_onco_rsp_label.html create mode 100644 v0.9.1/reference/d_pkparam.html create mode 100644 v0.9.1/reference/d_proportion.html create mode 100644 v0.9.1/reference/d_proportion_diff.html create mode 100644 v0.9.1/reference/d_rsp_subgroups_colvars.html create mode 100644 v0.9.1/reference/d_survival_subgroups_colvars.html create mode 100644 v0.9.1/reference/d_test_proportion_diff.html create mode 100644 v0.9.1/reference/day2month.html create mode 100644 v0.9.1/reference/decorate_grob-1.png create mode 100644 v0.9.1/reference/decorate_grob-2.png create mode 100644 v0.9.1/reference/decorate_grob-3.png create mode 100644 v0.9.1/reference/decorate_grob-4.png create mode 100644 v0.9.1/reference/decorate_grob-5.png create mode 100644 v0.9.1/reference/decorate_grob-6.png create mode 100644 v0.9.1/reference/decorate_grob-7.png create mode 100644 v0.9.1/reference/decorate_grob-8.png create mode 100644 v0.9.1/reference/decorate_grob-9.png create mode 100644 v0.9.1/reference/decorate_grob.html create mode 100644 v0.9.1/reference/decorate_grob_factory.html create mode 100644 v0.9.1/reference/decorate_grob_set-1.png create mode 100644 v0.9.1/reference/decorate_grob_set-2.png create mode 100644 v0.9.1/reference/decorate_grob_set-3.png create mode 100644 v0.9.1/reference/decorate_grob_set.html create mode 100644 v0.9.1/reference/default_stats_formats_labels.html create mode 100644 v0.9.1/reference/desctools_binom.html create mode 100644 v0.9.1/reference/df_explicit_na.html create mode 100644 v0.9.1/reference/draw_grob-1.png create mode 100644 v0.9.1/reference/draw_grob-2.png create mode 100644 v0.9.1/reference/draw_grob.html create mode 100644 v0.9.1/reference/empty_vector_if_na.html create mode 100644 v0.9.1/reference/estimate_coef.html create mode 100644 v0.9.1/reference/estimate_multinomial_rsp.html create mode 100644 v0.9.1/reference/estimate_proportions.html create mode 100644 v0.9.1/reference/ex_data.html create mode 100644 v0.9.1/reference/explicit_na.html create mode 100644 v0.9.1/reference/extract_by_name.html create mode 100644 v0.9.1/reference/extract_rsp_biomarkers.html create mode 100644 v0.9.1/reference/extract_rsp_subgroups.html create mode 100644 v0.9.1/reference/extract_survival_biomarkers.html create mode 100644 v0.9.1/reference/extract_survival_subgroups.html create mode 100644 v0.9.1/reference/extreme_format.html create mode 100644 v0.9.1/reference/f_conf_level.html create mode 100644 v0.9.1/reference/f_pval.html create mode 100644 v0.9.1/reference/fct_collapse_only.html create mode 100644 v0.9.1/reference/fct_discard.html create mode 100644 v0.9.1/reference/fct_explicit_na_if.html create mode 100644 v0.9.1/reference/figures/lifecycle-archived.svg create mode 100644 v0.9.1/reference/figures/lifecycle-defunct.svg create mode 100644 v0.9.1/reference/figures/lifecycle-deprecated.svg create mode 100644 v0.9.1/reference/figures/lifecycle-experimental.svg create mode 100644 v0.9.1/reference/figures/lifecycle-maturing.svg create mode 100644 v0.9.1/reference/figures/lifecycle-questioning.svg create mode 100644 v0.9.1/reference/figures/lifecycle-soft-deprecated.svg create mode 100644 v0.9.1/reference/figures/lifecycle-stable.svg create mode 100644 v0.9.1/reference/figures/lifecycle-superseded.svg create mode 100644 v0.9.1/reference/figures/tern.png create mode 100644 v0.9.1/reference/fit_coxreg-1.png create mode 100644 v0.9.1/reference/fit_coxreg.html create mode 100644 v0.9.1/reference/fit_logistic.html create mode 100644 v0.9.1/reference/fit_rsp_step.html create mode 100644 v0.9.1/reference/fit_survival_step.html create mode 100644 v0.9.1/reference/forest_viewport-1.png create mode 100644 v0.9.1/reference/forest_viewport.html create mode 100644 v0.9.1/reference/format_auto.html create mode 100644 v0.9.1/reference/format_count_fraction.html create mode 100644 v0.9.1/reference/format_count_fraction_fixed_dp.html create mode 100644 v0.9.1/reference/format_extreme_values.html create mode 100644 v0.9.1/reference/format_extreme_values_ci.html create mode 100644 v0.9.1/reference/format_fraction.html create mode 100644 v0.9.1/reference/format_fraction_fixed_dp.html create mode 100644 v0.9.1/reference/format_fraction_threshold.html create mode 100644 v0.9.1/reference/format_sigfig.html create mode 100644 v0.9.1/reference/format_xx.html create mode 100644 v0.9.1/reference/formatting_functions.html create mode 100644 v0.9.1/reference/g_forest-1.png create mode 100644 v0.9.1/reference/g_forest-2.png create mode 100644 v0.9.1/reference/g_forest-3.png create mode 100644 v0.9.1/reference/g_forest-4.png create mode 100644 v0.9.1/reference/g_forest-5.png create mode 100644 v0.9.1/reference/g_forest.html create mode 100644 v0.9.1/reference/g_km-1.png create mode 100644 v0.9.1/reference/g_km-10.png create mode 100644 v0.9.1/reference/g_km-11.png create mode 100644 v0.9.1/reference/g_km-12.png create mode 100644 v0.9.1/reference/g_km-13.png create mode 100644 v0.9.1/reference/g_km-2.png create mode 100644 v0.9.1/reference/g_km-3.png create mode 100644 v0.9.1/reference/g_km-4.png create mode 100644 v0.9.1/reference/g_km-5.png create mode 100644 v0.9.1/reference/g_km-6.png create mode 100644 v0.9.1/reference/g_km-7.png create mode 100644 v0.9.1/reference/g_km-8.png create mode 100644 v0.9.1/reference/g_km-9.png create mode 100644 v0.9.1/reference/g_km.html create mode 100644 v0.9.1/reference/g_lineplot-1.png create mode 100644 v0.9.1/reference/g_lineplot-2.png create mode 100644 v0.9.1/reference/g_lineplot-3.png create mode 100644 v0.9.1/reference/g_lineplot-4.png create mode 100644 v0.9.1/reference/g_lineplot-5.png create mode 100644 v0.9.1/reference/g_lineplot-6.png create mode 100644 v0.9.1/reference/g_lineplot-7.png create mode 100644 v0.9.1/reference/g_lineplot-8.png create mode 100644 v0.9.1/reference/g_lineplot.html create mode 100644 v0.9.1/reference/g_step-1.png create mode 100644 v0.9.1/reference/g_step-2.png create mode 100644 v0.9.1/reference/g_step-3.png create mode 100644 v0.9.1/reference/g_step-4.png create mode 100644 v0.9.1/reference/g_step-5.png create mode 100644 v0.9.1/reference/g_step.html create mode 100644 v0.9.1/reference/g_waterfall-1.png create mode 100644 v0.9.1/reference/g_waterfall-2.png create mode 100644 v0.9.1/reference/g_waterfall-3.png create mode 100644 v0.9.1/reference/g_waterfall-4.png create mode 100644 v0.9.1/reference/g_waterfall-5.png create mode 100644 v0.9.1/reference/g_waterfall.html create mode 100644 v0.9.1/reference/get_covariates.html create mode 100644 v0.9.1/reference/get_smooths.html create mode 100644 v0.9.1/reference/groups_list_to_df.html create mode 100644 v0.9.1/reference/h_adlb_worsen.html create mode 100644 v0.9.1/reference/h_adsl_adlb_merge_using_worst_flag.html create mode 100644 v0.9.1/reference/h_ancova.html create mode 100644 v0.9.1/reference/h_append_grade_groups.html create mode 100644 v0.9.1/reference/h_col_indices.html create mode 100644 v0.9.1/reference/h_count_cumulative.html create mode 100644 v0.9.1/reference/h_cox_regression.html create mode 100644 v0.9.1/reference/h_data_plot.html create mode 100644 v0.9.1/reference/h_decompose_gg-1.png create mode 100644 v0.9.1/reference/h_decompose_gg-2.png create mode 100644 v0.9.1/reference/h_decompose_gg.html create mode 100644 v0.9.1/reference/h_format_row.html create mode 100644 v0.9.1/reference/h_g_ipp-1.png create mode 100644 v0.9.1/reference/h_g_ipp.html create mode 100644 v0.9.1/reference/h_ggkm-1.png create mode 100644 v0.9.1/reference/h_ggkm.html create mode 100644 v0.9.1/reference/h_glm_count.html create mode 100644 v0.9.1/reference/h_grob_coxph-1.png create mode 100644 v0.9.1/reference/h_grob_coxph.html create mode 100644 v0.9.1/reference/h_grob_median_surv-1.png create mode 100644 v0.9.1/reference/h_grob_median_surv.html create mode 100644 v0.9.1/reference/h_grob_tbl_at_risk-1.png create mode 100644 v0.9.1/reference/h_grob_tbl_at_risk.html create mode 100644 v0.9.1/reference/h_grob_y_annot-1.png create mode 100644 v0.9.1/reference/h_grob_y_annot.html create mode 100644 v0.9.1/reference/h_incidence_rate.html create mode 100644 v0.9.1/reference/h_km_layout-1.png create mode 100644 v0.9.1/reference/h_km_layout.html create mode 100644 v0.9.1/reference/h_logistic_regression.html create mode 100644 v0.9.1/reference/h_map_for_count_abnormal.html create mode 100644 v0.9.1/reference/h_odds_ratio.html create mode 100644 v0.9.1/reference/h_pkparam_sort.html create mode 100644 v0.9.1/reference/h_prop_diff.html create mode 100644 v0.9.1/reference/h_prop_diff_test.html create mode 100644 v0.9.1/reference/h_proportions.html create mode 100644 v0.9.1/reference/h_response_biomarkers_subgroups.html create mode 100644 v0.9.1/reference/h_response_subgroups.html create mode 100644 v0.9.1/reference/h_split_by_subgroups.html create mode 100644 v0.9.1/reference/h_split_param.html create mode 100644 v0.9.1/reference/h_stack_by_baskets.html create mode 100644 v0.9.1/reference/h_step.html create mode 100644 v0.9.1/reference/h_survival_biomarkers_subgroups.html create mode 100644 v0.9.1/reference/h_survival_duration_subgroups.html create mode 100644 v0.9.1/reference/h_tab_one_biomarker.html create mode 100644 v0.9.1/reference/h_tbl_coxph_pairwise.html create mode 100644 v0.9.1/reference/h_tbl_median_surv.html create mode 100644 v0.9.1/reference/h_worsen_counter.html create mode 100644 v0.9.1/reference/h_xticks.html create mode 100644 v0.9.1/reference/imputation_rule.html create mode 100644 v0.9.1/reference/incidence_rate.html create mode 100644 v0.9.1/reference/index.html create mode 100644 v0.9.1/reference/individual_patient_plot-1.png create mode 100644 v0.9.1/reference/individual_patient_plot-2.png create mode 100644 v0.9.1/reference/individual_patient_plot.html create mode 100644 v0.9.1/reference/labels_or_names.html create mode 100644 v0.9.1/reference/logistic_regression_cols.html create mode 100644 v0.9.1/reference/logistic_summary_by_flag.html create mode 100644 v0.9.1/reference/make_names.html create mode 100644 v0.9.1/reference/month2day.html create mode 100644 v0.9.1/reference/muffled_car_anova.html create mode 100644 v0.9.1/reference/n_available.html create mode 100644 v0.9.1/reference/odds_ratio.html create mode 100644 v0.9.1/reference/prop_diff.html create mode 100644 v0.9.1/reference/prop_diff_test.html create mode 100644 v0.9.1/reference/prune_occurrences.html create mode 100644 v0.9.1/reference/range_noinf.html create mode 100644 v0.9.1/reference/reapply_varlabels.html create mode 100644 v0.9.1/reference/response_biomarkers_subgroups-1.png create mode 100644 v0.9.1/reference/response_biomarkers_subgroups.html create mode 100644 v0.9.1/reference/response_subgroups.html create mode 100644 v0.9.1/reference/rtables_access.html create mode 100644 v0.9.1/reference/s_cox_multivariate.html create mode 100644 v0.9.1/reference/sas_na.html create mode 100644 v0.9.1/reference/score_occurrences.html create mode 100644 v0.9.1/reference/split_cols_by_groups.html create mode 100644 v0.9.1/reference/split_text_grob.html create mode 100644 v0.9.1/reference/stack_grobs-1.png create mode 100644 v0.9.1/reference/stack_grobs-2.png create mode 100644 v0.9.1/reference/stack_grobs.html create mode 100644 v0.9.1/reference/stat_mean_ci-1.png create mode 100644 v0.9.1/reference/stat_mean_ci-2.png create mode 100644 v0.9.1/reference/stat_mean_ci-3.png create mode 100644 v0.9.1/reference/stat_mean_ci.html create mode 100644 v0.9.1/reference/stat_mean_pval.html create mode 100644 v0.9.1/reference/stat_median_ci-1.png create mode 100644 v0.9.1/reference/stat_median_ci.html create mode 100644 v0.9.1/reference/stat_propdiff_ci.html create mode 100644 v0.9.1/reference/strata_normal_quantile.html create mode 100644 v0.9.1/reference/study_arm.html create mode 100644 v0.9.1/reference/summarize_ancova.html create mode 100644 v0.9.1/reference/summarize_change.html create mode 100644 v0.9.1/reference/summarize_colvars.html create mode 100644 v0.9.1/reference/summarize_functions.html create mode 100644 v0.9.1/reference/summarize_glm_count.html create mode 100644 v0.9.1/reference/summarize_logistic.html create mode 100644 v0.9.1/reference/summarize_num_patients.html create mode 100644 v0.9.1/reference/summarize_patients_exposure_in_cols.html create mode 100644 v0.9.1/reference/survival_biomarkers_subgroups-1.png create mode 100644 v0.9.1/reference/survival_biomarkers_subgroups.html create mode 100644 v0.9.1/reference/survival_coxph_pairwise.html create mode 100644 v0.9.1/reference/survival_duration_subgroups.html create mode 100644 v0.9.1/reference/survival_time.html create mode 100644 v0.9.1/reference/survival_timepoint.html create mode 100644 v0.9.1/reference/tern-package.html create mode 100644 v0.9.1/reference/tidy.glm.html create mode 100644 v0.9.1/reference/tidy.step.html create mode 100644 v0.9.1/reference/tidy_coxreg.html create mode 100644 v0.9.1/reference/to_n.html create mode 100644 v0.9.1/reference/to_string_matrix.html create mode 100644 v0.9.1/reference/try_car_anova.html create mode 100644 v0.9.1/reference/ungroup_stats.html create mode 100644 v0.9.1/reference/univariate.html create mode 100644 v0.9.1/reference/unlist_and_blank_na.html create mode 100644 v0.9.1/reference/update_weights_strat_wilson.html create mode 100644 v0.9.1/search.json create mode 100644 v0.9.1/sitemap.xml diff --git a/v0.9.1/404.html b/v0.9.1/404.html new file mode 100644 index 0000000000..c90d024914 --- /dev/null +++ b/v0.9.1/404.html @@ -0,0 +1,102 @@ + + + + + + + +Page not found (404) • tern + + + + + + + + + + Skip to contents + + +
+
+
+ +Content not found. Please use links in the navbar. + +
+
+ + + +
+ + + + + + + diff --git a/v0.9.1/CODE_OF_CONDUCT.html b/v0.9.1/CODE_OF_CONDUCT.html new file mode 100644 index 0000000000..b718fa9eef --- /dev/null +++ b/v0.9.1/CODE_OF_CONDUCT.html @@ -0,0 +1,147 @@ + +Contributor Covenant Code of Conduct • tern + Skip to contents + + +
+
+
+ +
+ +
+

Our Pledge

+

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation.

+

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

+
+
+

Our Standards

+

Examples of behavior that contributes to a positive environment for our community include:

+
  • Demonstrating empathy and kindness toward other people
  • +
  • Being respectful of differing opinions, viewpoints, and experiences
  • +
  • Giving and gracefully accepting constructive feedback
  • +
  • Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
  • +
  • Focusing on what is best not just for us as individuals, but for the overall community
  • +

Examples of unacceptable behavior include:

+
  • The use of sexualized language or imagery, and sexual attention or advances of any kind
  • +
  • Trolling, insulting or derogatory comments, and personal or political attacks
  • +
  • Public or private harassment
  • +
  • Publishing others’ private information, such as a physical or email address, without their explicit permission
  • +
  • Other conduct which could reasonably be considered inappropriate in a professional setting
  • +
+
+

Enforcement Responsibilities

+

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

+

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

+
+
+

Scope

+

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

+
+
+

Enforcement

+

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly and fairly.

+

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

+
+
+

Enforcement Guidelines

+

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

+
+

1. Correction

+

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

+

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

+
+
+

2. Warning

+

Community Impact: A violation through a single incident or series of actions.

+

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

+
+
+

3. Temporary Ban

+

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

+

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

+
+
+

4. Permanent Ban

+

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

+

Consequence: A permanent ban from any sort of public interaction within the community.

+
+
+
+

Attribution

+

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

+

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

+

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

+
+
+ +
+ + +
+ + + + + + + diff --git a/v0.9.1/CONTRIBUTING.html b/v0.9.1/CONTRIBUTING.html new file mode 100644 index 0000000000..e6a08464a2 --- /dev/null +++ b/v0.9.1/CONTRIBUTING.html @@ -0,0 +1,198 @@ + +Contribution Guidelines • tern + Skip to contents + + +
+
+
+ +
+ +

🙏 Thank you for taking the time to contribute!

+

Your input is deeply valued, whether an issue, a pull request, or even feedback, regardless of size, content or scope.

+ +
+

Getting started

+

Please refer the project documentation for a brief introduction. Please also see other articles within the project documentation for additional information.

+
+
+

Code of Conduct

+

A Code of Conduct governs this project. Participants and contributors are expected to follow the rules outlined therein.

+
+
+

License

+

All your contributions will be covered by this project’s license.

+
+
+

Issues

+

We use GitHub to track issues, feature requests, and bugs. Before submitting a new issue, please check if the issue has already been reported. If the issue already exists, please upvote the existing issue 👍.

+

For new feature requests, please elaborate on the context and the benefit the feature will have for users, developers, or other relevant personas.

+
+
+

Pull requests

+
+

GitHub Flow

+

This repository uses the GitHub Flow model for collaboration. To submit a pull request:

+
  1. +

    Create a branch

    +

    Please see the branch naming convention below. If you don’t have write access to this repository, please fork it.

    +
  2. +
  3. +

    Make changes

    +

    Make sure your code

    +
    • passes all checks imposed by GitHub Actions
    • +
    • is well documented
    • +
    • is well tested with unit tests sufficiently covering the changes introduced
    • +
  4. +
  5. +

    Create a pull request (PR)

    +

    In the pull request description, please link the relevant issue (if any), provide a detailed description of the change, and include any assumptions.

    +
  6. +
  7. Address review comments, if any

  8. +
  9. +

    Post approval

    +

    Merge your PR if you have write access. Otherwise, the reviewer will merge the PR on your behalf.

    +
  10. +
  11. +

    Pat yourself on the back

    +

    Congratulations! 🎉 You are now an official contributor to this project! We are grateful for your contribution.

    +
  12. +
+
+

Branch naming convention

+

Suppose your changes are related to a current issue in the current project; please name your branch as follows: <issue_id>_<short_description>. Please use underscore (_) as a delimiter for word separation. For example, 420_fix_ui_bug would be a suitable branch name if your change is resolving and UI-related bug reported in issue number 420 in the current project.

+

If your change affects multiple repositories, please name your branches as follows: <issue_id>_<issue_repo>_<short description>. For example, 69_awesomeproject_fix_spelling_error would reference issue 69 reported in project awesomeproject and aims to resolve one or more spelling errors in multiple (likely related) repositories.

+
+
+

+monorepo and staged.dependencies +

+

Sometimes you might need to change upstream dependent package(s) to be able to submit a meaningful change. We are using staged.dependencies functionality to simulate a monorepo behavior. The dependency configuration is already specified in this project’s staged_dependencies.yaml file. You need to name the feature branches appropriately. This is the only exception from the branch naming convention described above.

+

Please refer to the staged.dependencies package documentation for more details.

+
+
+
+

Coding guidelines

+

This repository follows some unified processes and standards adopted by its maintainers to ensure software development is carried out consistently within teams and cohesively across other repositories.

+
+

Style guide

+

This repository follows the standard tidyverse style guide and uses lintr for lint checks. Customized lint configurations are available in this repository’s .lintr file.

+
+
+

Dependency management

+

Lightweight is the right weight. This repository follows tinyverse recommedations of limiting dependencies to minimum.

+
+
+

Dependency version management

+

If the code is not compatible with all (!) historical versions of a given dependenct package, it is required to specify minimal version in the DESCRIPTION file. In particular: if the development version requires (imports) the development version of another package - it is required to put abc (>= 1.2.3.9000).

+
+
+ +
+

R & package versions

+

We continuously test our packages against the newest R version along with the most recent dependencies from CRAN and BioConductor. We recommend that your working environment is also set up in the same way. You can find the details about the R version and packages used in the R CMD check GitHub Action execution log - there is a step that prints out the R sessionInfo().

+

If you discover bugs on older R versions or with an older set of dependencies, please create the relevant bug reports.

+
+
+

pre-commit

+

We highly recommend that you use the pre-commit tool combined with R hooks for pre-commit to execute some of the checks before committing and pushing your changes.

+

Pre-commit hooks are already available in this repository’s .pre-commit-config.yaml file.

+
+
+
+
+

Recognition model

+

As mentioned previously, all contributions are deeply valued and appreciated. While all contribution data is available as part of the repository insights, to recognize a significant contribution and hence add the contributor to the package authors list, the following rules are enforced:

+
  • Minimum 5% of lines of code authored* (determined by git blame query) OR
  • +
  • Being at the top 5 contributors in terms of number of commits OR lines added OR lines removed*
  • +

*Excluding auto-generated code, including but not limited to roxygen comments or renv.lock files.

+

The package maintainer also reserves the right to adjust the criteria to recognize contributions.

+
+
+

Questions

+

If you have further questions regarding the contribution guidelines, please contact the package/repository maintainer.

+ +
+
+ +
+ + +
+ + + + + + + diff --git a/v0.9.1/LICENSE-text.html b/v0.9.1/LICENSE-text.html new file mode 100644 index 0000000000..24c140b1f2 --- /dev/null +++ b/v0.9.1/LICENSE-text.html @@ -0,0 +1,93 @@ + +License • tern + Skip to contents + + +
+
+
+ +
Copyright 2022 F. Hoffmann-La Roche AG
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    https://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+ +
+ + +
+ + + + + + + diff --git a/v0.9.1/SECURITY.html b/v0.9.1/SECURITY.html new file mode 100644 index 0000000000..f362af9b5a --- /dev/null +++ b/v0.9.1/SECURITY.html @@ -0,0 +1,102 @@ + +Security Policy • tern + Skip to contents + + +
+
+
+ +
+ +
+

Reporting Security Issues

+

If you believe you have found a security vulnerability in any of the repositories in this organization, please report it to us through coordinated disclosure.

+

Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.

+

Instead, please send an email to vulnerability.management[@]roche.com.

+

Please include as much of the information listed below as you can to help us better understand and resolve the issue:

+
  • The type of issue (e.g., buffer overflow, SQL injection, or cross-site scripting)
  • +
  • Full paths of source file(s) related to the manifestation of the issue
  • +
  • The location of the affected source code (tag/branch/commit or direct URL)
  • +
  • Any special configuration required to reproduce the issue
  • +
  • Step-by-step instructions to reproduce the issue
  • +
  • Proof-of-concept or exploit code (if possible)
  • +
  • Impact of the issue, including how an attacker might exploit the issue
  • +

This information will help us triage your report more quickly.

+
+
+

Data Security Standards (DSS)

+

Please make sure that while reporting issues in the form a bug, feature, or pull request, all sensitive information such as PII, PHI, and PCI is completely removed from any text and attachments, including pictures and videos.

+
+
+ +
+ + +
+ + + + + + + diff --git a/v0.9.1/analytics.js b/v0.9.1/analytics.js new file mode 100644 index 0000000000..9d4ec4d0a8 --- /dev/null +++ b/v0.9.1/analytics.js @@ -0,0 +1 @@ +$(document).cookieWall({id:'UA-125641273-1'}); diff --git a/v0.9.1/articles/index.html b/v0.9.1/articles/index.html new file mode 100644 index 0000000000..2aa5802a49 --- /dev/null +++ b/v0.9.1/articles/index.html @@ -0,0 +1,90 @@ + +Articles • tern + Skip to contents + + +
+
+
+ + +
+ + +
+ + + + + + + diff --git a/v0.9.1/articles/missing_values.html b/v0.9.1/articles/missing_values.html new file mode 100644 index 0000000000..b78c42d1b0 --- /dev/null +++ b/v0.9.1/articles/missing_values.html @@ -0,0 +1,308 @@ + + + + + + + + +Missing Values in Tern • tern + + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +

The packages used in this vignette are:

+ +
+

Variable Class Conversion +

+

rtables requires that split variables to be factors. +When you try and split a variable that isn’t, a warning message will +appear. Here we purposefully convert the SEX variable to character to +demonstrate what happens when we try splitting the rows by this +variable. To fix this, df_explict_na will convert this to a +factor resulting in the table being generated.

+
+adsl <- tern_ex_adsl
+adsl$SEX <- as.character(adsl$SEX)
+
+vars <- c("AGE", "SEX", "RACE", "BMRKR1")
+var_labels <- c(
+  "Age (yr)",
+  "Sex",
+  "Race",
+  "Continous Level Biomarker 1"
+)
+
+result <- basic_table(show_colcounts = TRUE) %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
+#> converting character variable x to factor, better manually convert to factor to
+#> avoid failures
+
+#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
+#> converting character variable x to factor, better manually convert to factor to
+#> avoid failures
+
+#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
+#> converting character variable x to factor, better manually convert to factor to
+#> avoid failures
+
+#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
+#> converting character variable x to factor, better manually convert to factor to
+#> avoid failures
+result
+#>                                                A: Drug X    B: Placebo    C: Combination   All Patients
+#>                                                 (N=69)        (N=73)          (N=58)         (N=200)   
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                                               
+#>   n                                               69            73              58             200     
+#>   Mean (SD)                                   34.1 (6.8)    35.8 (7.1)      36.1 (7.4)      35.3 (7.1) 
+#>   Median                                         32.8          35.4            36.2            34.8    
+#>   Min - Max                                   22.4 - 48.0   23.3 - 57.5    23.0 - 58.3     22.4 - 58.3 
+#> Sex                                                                                                    
+#>   n                                               69            73              58             200     
+#>   F                                           38 (55.1%)    40 (54.8%)      32 (55.2%)      110 (55%)  
+#>   M                                           31 (44.9%)    33 (45.2%)      26 (44.8%)       90 (45%)  
+#> Race                                                                                                   
+#>   n                                               69            73              58             200     
+#>   ASIAN                                       38 (55.1%)    43 (58.9%)       29 (50%)       110 (55%)  
+#>   BLACK OR AFRICAN AMERICAN                   15 (21.7%)    13 (17.8%)      12 (20.7%)       40 (20%)  
+#>   WHITE                                       11 (15.9%)    12 (16.4%)       11 (19%)        34 (17%)  
+#>   AMERICAN INDIAN OR ALASKA NATIVE             4 (5.8%)      3 (4.1%)       6 (10.3%)       13 (6.5%)  
+#>   MULTIPLE                                     1 (1.4%)      1 (1.4%)           0             2 (1%)   
+#>   NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER        0         1 (1.4%)           0            1 (0.5%)  
+#>   OTHER                                            0             0              0               0      
+#>   UNKNOWN                                          0             0              0               0      
+#> Continous Level Biomarker 1                                                                            
+#>   n                                               69            73              58             200     
+#>   Mean (SD)                                    6.3 (3.6)     6.7 (3.5)      6.2 (3.3)       6.4 (3.5)  
+#>   Median                                          5.4           6.3            5.4             5.6     
+#>   Min - Max                                   0.4 - 17.8    1.0 - 18.5      2.4 - 19.1      0.4 - 19.1
+
+
+

Including Missing Values in rtables +

+

Here we purposefully convert all M values to +NA in the SEX variable. After running +df_explicit_na the NA values are encoded as +<Missing> but they are not included in the table. As +well, the missing values are not included in the n count +and they are not included in the denominator value for calculating the +percent values.

+
+adsl <- tern_ex_adsl
+adsl$SEX[adsl$SEX == "M"] <- NA
+adsl <- df_explicit_na(adsl)
+
+vars <- c("AGE", "SEX")
+var_labels <- c(
+  "Age (yr)",
+  "Sex"
+)
+
+result <- basic_table(show_colcounts = TRUE) %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+result
+#>                A: Drug X    B: Placebo    C: Combination   All Patients
+#>                 (N=69)        (N=73)          (N=58)         (N=200)   
+#> ———————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                               
+#>   n               69            73              58             200     
+#>   Mean (SD)   34.1 (6.8)    35.8 (7.1)      36.1 (7.4)      35.3 (7.1) 
+#>   Median         32.8          35.4            36.2            34.8    
+#>   Min - Max   22.4 - 48.0   23.3 - 57.5    23.0 - 58.3     22.4 - 58.3 
+#> Sex                                                                    
+#>   n               38            40              32             110     
+#>   F            38 (100%)     40 (100%)      32 (100%)       110 (100%) 
+#>   M                0             0              0               0
+

If you want the Na values to be displayed in the table +and included in the n count and as the denominator for +calculating percent values, use the na_level argument.

+
+adsl <- tern_ex_adsl
+adsl$SEX[adsl$SEX == "M"] <- NA
+adsl <- df_explicit_na(adsl, na_level = "Missing Values")
+
+result <- basic_table(show_colcounts = TRUE) %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+result
+#>                     A: Drug X    B: Placebo    C: Combination   All Patients
+#>                      (N=69)        (N=73)          (N=58)         (N=200)   
+#> ————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                    
+#>   n                    69            73              58             200     
+#>   Mean (SD)        34.1 (6.8)    35.8 (7.1)      36.1 (7.4)      35.3 (7.1) 
+#>   Median              32.8          35.4            36.2            34.8    
+#>   Min - Max        22.4 - 48.0   23.3 - 57.5    23.0 - 58.3     22.4 - 58.3 
+#> Sex                                                                         
+#>   n                    69            73              58             200     
+#>   F                38 (55.1%)    40 (54.8%)      32 (55.2%)      110 (55%)  
+#>   M                     0             0              0               0      
+#>   Missing Values   31 (44.9%)    33 (45.2%)      26 (44.8%)       90 (45%)
+
+
+

Missing Values in Numeric Variables +

+

Numeric variables that have missing values are not altered. This +means that any NA value in a numeric variable will not be +included in the summary statistics, nor will they be included in the +denominator value for calculating the percent values. Here we make any +value less than 30 missing in the AGE variable and only the +valued greater than 30 are included in the table below.

+
+adsl <- tern_ex_adsl
+adsl$AGE[adsl$AGE < 30] <- NA
+adsl <- df_explicit_na(adsl)
+
+vars <- c("AGE", "SEX")
+var_labels <- c(
+  "Age (yr)",
+  "Sex"
+)
+
+result <- basic_table(show_colcounts = TRUE) %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+result
+#>                A: Drug X    B: Placebo    C: Combination   All Patients
+#>                 (N=69)        (N=73)          (N=58)         (N=200)   
+#> ———————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                               
+#>   n               46            56              44             146     
+#>   Mean (SD)   37.8 (5.2)    38.3 (6.3)      39.1 (5.9)      38.3 (5.8) 
+#>   Median         37.2          37.3            37.5            37.5    
+#>   Min - Max   30.3 - 48.0   30.0 - 57.5    30.5 - 58.3     30.0 - 58.3 
+#> Sex                                                                    
+#>   n               69            73              58             200     
+#>   F           38 (55.1%)    40 (54.8%)      32 (55.2%)      110 (55%)  
+#>   M           31 (44.9%)    33 (45.2%)      26 (44.8%)       90 (45%)
+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.9.1/articles/tables.html b/v0.9.1/articles/tables.html new file mode 100644 index 0000000000..547f973187 --- /dev/null +++ b/v0.9.1/articles/tables.html @@ -0,0 +1,883 @@ + + + + + + + + +Tabulation • tern + + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +
+

+tern Tabulation +

+

The tern R package provides functions to create common +analyses from clinical trials in R. The core functionality +for tabulation is built on the more general purpose rtables +package. New users should first begin by reading the “Introduction +to tern” and “Introduction +to rtables vignettes.

+

The packages used in this vignette are:

+ +

The datasets used in this vignette are:

+
+adsl <- ex_adsl
+adae <- ex_adae
+adrs <- ex_adrs
+
+
+

+tern Analyze Functions +

+

Analyze functions are used in combination with the +rtables layout functions, in the pipeline which creates the +rtables table. They apply some statistical logic to the +layout of the rtables table. The table layout is +materialized with the rtables::build_table function and the +data.

+

The tern analyze functions are wrappers around +rtables::analyze function, they offer various methods +useful from the perspective of clinical trials and other statistical +projects.

+

Examples of the tern analyze functions are +tern::count_occurrences, +tern::summarize_ancova or tern::analyze_vars. +As there is no one prefix to identify all tern analyze +functions it is recommended to use the the +tern website functions reference.

+
+

Internals of tern Analyze Functions +

+

Please skip this subsection if you are not interested in the +internals of tern analyze functions.

+

Internally tern analyze functions like +tern::summarize_ancova are mainly built in the 4 elements +chain:

+
h_ancova() -> tern:::s_ancova() -> tern:::a_ancova() -> summarize_ancova()
+

The descriptions for each function type:

+
    +
  • analysis helper functions h_*. These functions are +useful to help define the analysis.
  • +
  • statistics function s_*. Statistics functions should do +the computation of the numbers that are tabulated later. In order to +separate computation from formatting, they should not take care of +rcell type formatting themselves.
  • +
  • formatted analysis functions a_*. These have the same +arguments as the corresponding statistics functions, and can be further +customized by calling rtables::make_afun() on them. They +are used as afun in rtables::analyze().
  • +
  • analyze functions +rtables::analyze(..., afun = make_afun(tern::a_*)). Analyze +functions are used in combination with the rtables layout +functions, in the pipeline which creates the table. They are the last +element of the chain.
  • +
+

We will use the native rtables::analyze function with +the tern formatted analysis functions as a +afun parameter.

+
l <- basic_table() %>%
+    split_cols_by(var = "ARM") %>%
+    split_rows_by(var = "AVISIT") %>%
+    analyze(vars = "AVAL", afun = a_summary)
+
+build_table(l, df = adrs)
+

The rtables::make_afun function is helpful when somebody +wants to attach some format to the formatted analysis function.

+
afun <- make_afun(
+    a_summary,
+    .stats = NULL,
+    .formats = c(median = "xx."),
+    .labels = c(median = "My median"),
+    .indent_mods = c(median = 1L)
+)
+
+l2 <- basic_table() %>%
+    split_cols_by(var = "ARM") %>%
+    split_rows_by(var = "AVISIT") %>%
+    analyze(vars = "AVAL", afun = afun)
+
+build_table(l2, df = adrs)
+
+
+
+

Tabulation Examples +

+

We are going to create 3 different tables using tern +analyze functions and the rtables interface.

+ ++++ + + + + + + + + + + + + + + + + + + +
Table +tern analyze functions
Demographic Table +analyze_vars() and +summarize_num_patients() +
Adverse event Tablecount_occurrences()
Response Table +estimate_proportion(), +estimate_proportion_diff() and +test_proportion_diff() +
+
+

Demographic Table +

+

Demographic tables provide a summary of the characteristics of +patients enrolled in a clinical trial. Typically the table columns +represent treatment arms and variables summarized in the table are +demographic properties such as age, sex, race, etc.

+

In the example below the only function from tern is +analyze_vars() and the remaining layout functions are from +rtables.

+
+# Select variables to include in table.
+vars <- c("AGE", "SEX")
+var_labels <- c("Age (yr)", "Sex")
+
+basic_table() %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  add_colcounts() %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+#>                       A: Drug X    B: Placebo    C: Combination   All Patients
+#>                        (N=134)       (N=134)        (N=132)         (N=400)   
+#> ——————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                      
+#>   n                      134           134            132             400     
+#>   Mean (SD)          33.8 (6.6)    35.4 (7.9)      35.4 (7.7)      34.9 (7.4) 
+#>   Median                33.0          35.0            35.0            34.0    
+#>   Min - Max          21.0 - 50.0   21.0 - 62.0    20.0 - 69.0     20.0 - 69.0 
+#> Sex                                                                           
+#>   n                      134           134            132             400     
+#>   F                   79 (59%)     77 (57.5%)       66 (50%)      222 (55.5%) 
+#>   M                  51 (38.1%)     55 (41%)       60 (45.5%)     166 (41.5%) 
+#>   U                   3 (2.2%)      2 (1.5%)         4 (3%)         9 (2.2%)  
+#>   UNDIFFERENTIATED    1 (0.7%)          0           2 (1.5%)        3 (0.8%)
+

To change the display order of categorical variables in a table use +factor variables and explicitly set the order of the levels. This is the +case for the display order in columns and rows. Note that the +forcats package has many useful functions to help with +these types of data processing steps (not used below).

+
+# Reorder the levels in the ARM variable.
+adsl$ARM <- factor(adsl$ARM, levels = c("B: Placebo", "A: Drug X", "C: Combination")) # nolint
+
+# Reorder the levels in the SEX variable.
+adsl$SEX <- factor(adsl$SEX, levels = c("M", "F", "U", "UNDIFFERENTIATED")) # nolint
+
+basic_table() %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  add_colcounts() %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  ) %>%
+  build_table(adsl)
+#>                      B: Placebo     A: Drug X    C: Combination   All Patients
+#>                        (N=134)       (N=134)        (N=132)         (N=400)   
+#> ——————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                      
+#>   n                      134           134            132             400     
+#>   Mean (SD)          35.4 (7.9)    33.8 (6.6)      35.4 (7.7)      34.9 (7.4) 
+#>   Median                35.0          33.0            35.0            34.0    
+#>   Min - Max          21.0 - 62.0   21.0 - 50.0    20.0 - 69.0     20.0 - 69.0 
+#> Sex                                                                           
+#>   n                      134           134            132             400     
+#>   M                   55 (41%)     51 (38.1%)      60 (45.5%)     166 (41.5%) 
+#>   F                  77 (57.5%)     79 (59%)        66 (50%)      222 (55.5%) 
+#>   U                   2 (1.5%)      3 (2.2%)         4 (3%)         9 (2.2%)  
+#>   UNDIFFERENTIATED        0         1 (0.7%)        2 (1.5%)        3 (0.8%)
+

The tern package includes many functions similar to +analyze_vars(). These functions are called layout creating +functions and are used in combination with other rtables +layout functions just like in the examples above. Layout creating +functions are wrapping calls to rtables +analyze(), analyze_colvars() and +summarize_row_groups() and provide options for easy +formatting and analysis modifications.

+

To customize the display for the demographics table, we can do so via +the arguments in analyze_vars(). Most layout creating +functions in tern include the standard arguments +.stats, .formats, .labels and +.indent_mods which control which statistics are displayed +and how the numbers are formatted. Refer to the package help with +help("analyze_vars") or ?analyze_vars to see +the full set of options.

+

For this example we will change the default summary for numeric +variables to include the number of records, and the mean and standard +deviation (in a single statistic, i.e. within a single cell). For +categorical variables we modify the summary to include the number of +records and the counts of categories. We also modify the display format +for the mean and standard deviation to print two decimal places instead +of just one.

+
+# Select statistics and modify default formats.
+basic_table() %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  add_colcounts() %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels,
+    .stats = c("n", "mean_sd", "count"),
+    .formats = c(mean_sd = "xx.xx (xx.xx)")
+  ) %>%
+  build_table(adsl)
+#>                       B: Placebo     A: Drug X     C: Combination   All Patients
+#>                        (N=134)        (N=134)         (N=132)         (N=400)   
+#> ————————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                        
+#>   n                      134            134             132             400     
+#>   Mean (SD)          35.43 (7.90)   33.77 (6.55)    35.43 (7.72)    34.88 (7.44)
+#> Sex                                                                             
+#>   n                      134            134             132             400     
+#>   M                       55             51              60             166     
+#>   F                       77             79              66             222     
+#>   U                       2              3               4               9      
+#>   UNDIFFERENTIATED        0              1               2               3
+

One feature of a layout is that it can be used with +different datasets to create different summaries. For example, here we +can easily create the same summary of demographics for the Brazil and +China subgroups, respectively:

+
+lyt <- basic_table() %>%
+  split_cols_by(var = "ARM") %>%
+  add_overall_col("All Patients") %>%
+  add_colcounts() %>%
+  analyze_vars(
+    vars = vars,
+    var_labels = var_labels
+  )
+
+build_table(lyt, df = adsl %>% dplyr::filter(COUNTRY == "BRA"))
+#>                      B: Placebo     A: Drug X    C: Combination   All Patients
+#>                         (N=7)        (N=13)          (N=10)          (N=30)   
+#> ——————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                      
+#>   n                       7            13              10              30     
+#>   Mean (SD)          32.0 (6.1)    36.7 (6.4)     38.3 (10.6)      36.1 (8.1) 
+#>   Median                32.0          37.0            35.0            35.5    
+#>   Min - Max          25.0 - 42.0   24.0 - 47.0    25.0 - 64.0     24.0 - 64.0 
+#> Sex                                                                           
+#>   n                       7            13              10              30     
+#>   M                   4 (57.1%)     8 (61.5%)       5 (50%)        17 (56.7%) 
+#>   F                   3 (42.9%)     5 (38.5%)       5 (50%)        13 (43.3%) 
+#>   U                       0             0              0               0      
+#>   UNDIFFERENTIATED        0             0              0               0
+
+build_table(lyt, df = adsl %>% dplyr::filter(COUNTRY == "CHN"))
+#>                      B: Placebo     A: Drug X    C: Combination   All Patients
+#>                        (N=81)        (N=74)          (N=64)         (N=219)   
+#> ——————————————————————————————————————————————————————————————————————————————
+#> Age (yr)                                                                      
+#>   n                      81            74              64             219     
+#>   Mean (SD)          35.7 (7.3)    33.0 (6.4)      35.2 (6.4)      34.6 (6.8) 
+#>   Median                36.0          32.0            35.0            34.0    
+#>   Min - Max          21.0 - 58.0   23.0 - 48.0    21.0 - 49.0     21.0 - 58.0 
+#> Sex                                                                           
+#>   n                      81            74              64             219     
+#>   M                  35 (43.2%)    27 (36.5%)      30 (46.9%)       92 (42%)  
+#>   F                  45 (55.6%)    44 (59.5%)      29 (45.3%)     118 (53.9%) 
+#>   U                   1 (1.2%)      2 (2.7%)        3 (4.7%)        6 (2.7%)  
+#>   UNDIFFERENTIATED        0         1 (1.4%)        2 (3.1%)        3 (1.4%)
+
+
+

Adverse Event Table +

+

The standard table of adverse events is a summary by system organ +class and preferred term. For frequency counts by preferred term, if +there are multiple occurrences of the same AE in an +individual we count them only once.

+

To create this table we will need to use a combination of several +layout creating functions in a tabulation pipeline.

+

We start by creating the high-level summary. The layout creating +function in tern that can do this is +summarize_num_patients():

+
+basic_table() %>%
+  split_cols_by(var = "ACTARM") %>%
+  add_colcounts() %>%
+  add_overall_col(label = "All Patients") %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = c("unique", "nonunique"),
+    .labels = c(
+      unique = "Total number of patients with at least one AE",
+      nonunique = "Overall total number of events"
+    )
+  ) %>%
+  build_table(
+    df = adae,
+    alt_counts_df = adsl
+  )
+#>                                                  A: Drug X    B: Placebo    C: Combination   All Patients
+#>                                                   (N=134)       (N=134)        (N=132)         (N=400)   
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE   122 (91.0%)   123 (91.8%)    120 (90.9%)     365 (91.2%) 
+#> Overall total number of events                      609           622            703             1934
+

Note that for this table, the denominator used for percentages and +shown in the header of the table (N = xx) is defined based +on the subject-level dataset adsl. This is done by using +the alt_df_counts argument in build_table(), +which provides an alternative data set for deriving the counts in the +header. This is often required when we work with data sets that include +multiple records per patient as df, such as +adae here.

+
+

Statistics Functions +

+

Before building out the rest of the AE table it is +helpful to introduce some more tern package design +conventions. Each layout creating function in tern is a +wrapper for a Statistics function. Statistics functions are the ones +that do the actual computation of numbers in a table. These functions +always return named lists whose elements are the statistics available to +include in a layout via the .stats argument at the layout +creating function level.

+

Statistics functions follow a naming convention to always begin with +s_* and for ease of use are documented on the same page as +their layout creating function counterpart. It is helpful to review a +Statistic function to understand the logic used to calculate the numbers +in a table and see what options may be available to modify the +analysis.

+

For example, the Statistics function calculating the numbers in +summarize_num_patients() is s_num_patients(). +The results of this Statistics function is a list with the elements +unique, nonunique and +unique_count:

+
+s_num_patients(x = adae$USUBJID, labelstr = "", .N_col = nrow(adae))
+#> $unique
+#> [1] 365.000000   0.188728
+#> attr(,"label")
+#> [1] ""
+#> 
+#> $nonunique
+#> [1] 1934
+#> attr(,"label")
+#> [1] ""
+#> 
+#> $unique_count
+#> [1] 365
+#> attr(,"label")
+#> [1] " (n)"
+

From these results you can see that the unique and +nonunique statistics are those displayed in the “All +Patients” column in the initial AE table output above. Also +you can see that these are raw numbers and are not formatted in any way. +All formatting functionality is handled at the layout creating function +level with the .formats argument.

+

Now that we know what types of statistics can be derived by +s_num_patients(), we can try modifying the default layout +returned by summarize_num_patients(). Instead of reporting +the unique and nonqunie statistics, we specify +that the analysis should include only the unique_count +statistic. The result will show only the counts of unique patients. Note +we make this update in both the .stats and +.labels argument of +summarize_num_patients().

+
+basic_table() %>%
+  split_cols_by(var = "ACTARM") %>%
+  add_colcounts() %>%
+  add_overall_col(label = "All Patients") %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = "unique_count",
+    .labels = c(unique_count = "Total number of patients with at least one AE")
+  ) %>%
+  build_table(
+    df = adae,
+    alt_counts_df = adsl
+  )
+#>                                                 A: Drug X   B: Placebo   C: Combination   All Patients
+#>                                                  (N=134)     (N=134)        (N=132)         (N=400)   
+#> ——————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE      122         123            120             365
+

Let’s now continue building on the layout for the adverse event +table.

+

After we have the top-level summary, we can repeat the same summary +at each system organ class level. To do this we split the analysis data +with split_rows_by() before calling again +summarize_num_patients().

+
+basic_table() %>%
+  split_cols_by(var = "ACTARM") %>%
+  add_colcounts() %>%
+  add_overall_col(label = "All Patients") %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = c("unique", "nonunique"),
+    .labels = c(
+      unique = "Total number of patients with at least one AE",
+      nonunique = "Overall total number of events"
+    )
+  ) %>%
+  split_rows_by(
+    "AEBODSYS",
+    child_labels = "visible",
+    nested = FALSE,
+    indent_mod = -1L,
+    split_fun = drop_split_levels
+  ) %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = c("unique", "nonunique"),
+    .labels = c(
+      unique = "Total number of patients with at least one AE",
+      nonunique = "Overall total number of events"
+    )
+  ) %>%
+  build_table(
+    df = adae,
+    alt_counts_df = adsl
+  )
+#>                                                    A: Drug X    B: Placebo    C: Combination   All Patients
+#>                                                     (N=134)       (N=134)        (N=132)         (N=400)   
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE     122 (91.0%)   123 (91.8%)    120 (90.9%)     365 (91.2%) 
+#> Overall total number of events                        609           622            703             1934    
+#> cl A.1                                                                                                     
+#>   Total number of patients with at least one AE   78 (58.2%)    75 (56.0%)      89 (67.4%)     242 (60.5%) 
+#>   Overall total number of events                      132           130            160             422     
+#> cl B.1                                                                                                     
+#>   Total number of patients with at least one AE   47 (35.1%)    49 (36.6%)      43 (32.6%)     139 (34.8%) 
+#>   Overall total number of events                      56            60              62             178     
+#> cl B.2                                                                                                     
+#>   Total number of patients with at least one AE   79 (59.0%)    74 (55.2%)      85 (64.4%)     238 (59.5%) 
+#>   Overall total number of events                      129           138            143             410     
+#> cl C.1                                                                                                     
+#>   Total number of patients with at least one AE   43 (32.1%)    46 (34.3%)      43 (32.6%)     132 (33.0%) 
+#>   Overall total number of events                      55            63              64             182     
+#> cl C.2                                                                                                     
+#>   Total number of patients with at least one AE   35 (26.1%)    48 (35.8%)      55 (41.7%)     138 (34.5%) 
+#>   Overall total number of events                      48            53              65             166     
+#> cl D.1                                                                                                     
+#>   Total number of patients with at least one AE   79 (59.0%)    67 (50.0%)      80 (60.6%)     226 (56.5%) 
+#>   Overall total number of events                      127           106            135             368     
+#> cl D.2                                                                                                     
+#>   Total number of patients with at least one AE   47 (35.1%)    58 (43.3%)      57 (43.2%)     162 (40.5%) 
+#>   Overall total number of events                      62            72              74             208
+

The table looks almost ready. For the final step, we need a layout +creating function that can produce a count table of event frequencies. +The layout creating function for this is +count_occurrences(). Let’s first try using this function in +a simpler layout without row splits:

+
+basic_table() %>%
+  split_cols_by(var = "ACTARM") %>%
+  add_colcounts() %>%
+  add_overall_col(label = "All Patients") %>%
+  count_occurrences(vars = "AEDECOD") %>%
+  build_table(
+    df = adae,
+    alt_counts_df = adsl
+  )
+#>                 A: Drug X    B: Placebo   C: Combination   All Patients
+#>                  (N=134)      (N=134)        (N=132)         (N=400)   
+#> ———————————————————————————————————————————————————————————————————————
+#> dcd A.1.1.1.1   50 (37.3%)   45 (33.6%)     63 (47.7%)     158 (39.5%) 
+#> dcd A.1.1.1.2   48 (35.8%)   48 (35.8%)     50 (37.9%)     146 (36.5%) 
+#> dcd B.1.1.1.1   47 (35.1%)   49 (36.6%)     43 (32.6%)     139 (34.8%) 
+#> dcd B.2.1.2.1   49 (36.6%)   44 (32.8%)     52 (39.4%)     145 (36.2%) 
+#> dcd B.2.2.3.1   48 (35.8%)   54 (40.3%)     51 (38.6%)     153 (38.2%) 
+#> dcd C.1.1.1.3   43 (32.1%)   46 (34.3%)     43 (32.6%)     132 (33.0%) 
+#> dcd C.2.1.2.1   35 (26.1%)   48 (35.8%)     55 (41.7%)     138 (34.5%) 
+#> dcd D.1.1.1.1   50 (37.3%)   42 (31.3%)     51 (38.6%)     143 (35.8%) 
+#> dcd D.1.1.4.2   48 (35.8%)   42 (31.3%)     50 (37.9%)     140 (35.0%) 
+#> dcd D.2.1.5.3   47 (35.1%)   58 (43.3%)     57 (43.2%)     162 (40.5%)
+

Putting everything together, the final AE table looks +like this:

+
+basic_table() %>%
+  split_cols_by(var = "ACTARM") %>%
+  add_colcounts() %>%
+  add_overall_col(label = "All Patients") %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = c("unique", "nonunique"),
+    .labels = c(
+      unique = "Total number of patients with at least one AE",
+      nonunique = "Overall total number of events"
+    )
+  ) %>%
+  split_rows_by(
+    "AEBODSYS",
+    child_labels = "visible",
+    nested = FALSE,
+    indent_mod = -1L,
+    split_fun = drop_split_levels
+  ) %>%
+  summarize_num_patients(
+    var = "USUBJID",
+    .stats = c("unique", "nonunique"),
+    .labels = c(
+      unique = "Total number of patients with at least one AE",
+      nonunique = "Overall total number of events"
+    )
+  ) %>%
+  count_occurrences(vars = "AEDECOD") %>%
+  build_table(
+    df = adae,
+    alt_counts_df = adsl
+  )
+#>                                                    A: Drug X    B: Placebo    C: Combination   All Patients
+#>                                                     (N=134)       (N=134)        (N=132)         (N=400)   
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE     122 (91.0%)   123 (91.8%)    120 (90.9%)     365 (91.2%) 
+#> Overall total number of events                        609           622            703             1934    
+#> cl A.1                                                                                                     
+#>   Total number of patients with at least one AE   78 (58.2%)    75 (56.0%)      89 (67.4%)     242 (60.5%) 
+#>   Overall total number of events                      132           130            160             422     
+#>     dcd A.1.1.1.1                                 50 (37.3%)    45 (33.6%)      63 (47.7%)     158 (39.5%) 
+#>     dcd A.1.1.1.2                                 48 (35.8%)    48 (35.8%)      50 (37.9%)     146 (36.5%) 
+#> cl B.1                                                                                                     
+#>   Total number of patients with at least one AE   47 (35.1%)    49 (36.6%)      43 (32.6%)     139 (34.8%) 
+#>   Overall total number of events                      56            60              62             178     
+#>     dcd B.1.1.1.1                                 47 (35.1%)    49 (36.6%)      43 (32.6%)     139 (34.8%) 
+#> cl B.2                                                                                                     
+#>   Total number of patients with at least one AE   79 (59.0%)    74 (55.2%)      85 (64.4%)     238 (59.5%) 
+#>   Overall total number of events                      129           138            143             410     
+#>     dcd B.2.1.2.1                                 49 (36.6%)    44 (32.8%)      52 (39.4%)     145 (36.2%) 
+#>     dcd B.2.2.3.1                                 48 (35.8%)    54 (40.3%)      51 (38.6%)     153 (38.2%) 
+#> cl C.1                                                                                                     
+#>   Total number of patients with at least one AE   43 (32.1%)    46 (34.3%)      43 (32.6%)     132 (33.0%) 
+#>   Overall total number of events                      55            63              64             182     
+#>     dcd C.1.1.1.3                                 43 (32.1%)    46 (34.3%)      43 (32.6%)     132 (33.0%) 
+#> cl C.2                                                                                                     
+#>   Total number of patients with at least one AE   35 (26.1%)    48 (35.8%)      55 (41.7%)     138 (34.5%) 
+#>   Overall total number of events                      48            53              65             166     
+#>     dcd C.2.1.2.1                                 35 (26.1%)    48 (35.8%)      55 (41.7%)     138 (34.5%) 
+#> cl D.1                                                                                                     
+#>   Total number of patients with at least one AE   79 (59.0%)    67 (50.0%)      80 (60.6%)     226 (56.5%) 
+#>   Overall total number of events                      127           106            135             368     
+#>     dcd D.1.1.1.1                                 50 (37.3%)    42 (31.3%)      51 (38.6%)     143 (35.8%) 
+#>     dcd D.1.1.4.2                                 48 (35.8%)    42 (31.3%)      50 (37.9%)     140 (35.0%) 
+#> cl D.2                                                                                                     
+#>   Total number of patients with at least one AE   47 (35.1%)    58 (43.3%)      57 (43.2%)     162 (40.5%) 
+#>   Overall total number of events                      62            72              74             208     
+#>     dcd D.2.1.5.3                                 47 (35.1%)    58 (43.3%)      57 (43.2%)     162 (40.5%)
+
+
+
+

Response Table +

+

A typical response table for a binary clinical trial endpoint may be +composed of several different analyses:

+
    +
  • Proportion of responders in each treatment group
  • +
  • Difference between proportion of responders in comparison groups +vs. control group
  • +
  • Chi-Square test for difference in response rates between comparison +groups vs. control group
  • +
+

We can build a table layout like this by following the same approach +we used for the AE table: each table section will be +produced using a different layout creating function from +tern.

+

First we start with some data preparation steps to set up the +analysis dataset. We select the endpoint to analyze from +PARAMCD and define the logical variable is_rsp +which indicates whether a patient is classified as a responder or +not.

+
+# Preprocessing to select an analysis endpoint.
+anl <- adrs %>%
+  dplyr::filter(PARAMCD == "BESRSPI") %>%
+  dplyr::mutate(is_rsp = AVALC %in% c("CR", "PR"))
+

To create a summary of the proportion of responders in each treatment +group, use the estimate_proportion() layout creating +function:

+
+basic_table() %>%
+  split_cols_by(var = "ARM") %>%
+  add_colcounts() %>%
+  estimate_proportion(
+    vars = "is_rsp",
+    table_names = "est_prop"
+  ) %>%
+  build_table(anl)
+#>                                   A: Drug X      B: Placebo    C: Combination
+#>                                    (N=134)        (N=134)         (N=132)    
+#> —————————————————————————————————————————————————————————————————————————————
+#> Responders                       114 (85.1%)     90 (67.2%)     120 (90.9%)  
+#> 95% CI (Wald, with correction)   (78.7, 91.5)   (58.8, 75.5)    (85.6, 96.2)
+

To specify which arm in the table should be used as the reference, +use the argument ref_group from +split_cols_by(). Below we change the reference arm to “B: +Placebo” and so this arm is displayed as the first column:

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  estimate_proportion(
+    vars = "is_rsp"
+  ) %>%
+  build_table(anl)
+#>                                   B: Placebo     A: Drug X     C: Combination
+#>                                    (N=134)        (N=134)         (N=132)    
+#> —————————————————————————————————————————————————————————————————————————————
+#> Responders                        90 (67.2%)    114 (85.1%)     120 (90.9%)  
+#> 95% CI (Wald, with correction)   (58.8, 75.5)   (78.7, 91.5)    (85.6, 96.2)
+

To further customize the analysis, we can use the method +and conf_level arguments to modify the type of confidence +interval that is calculated:

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  estimate_proportion(
+    vars = "is_rsp",
+    method = "clopper-pearson",
+    conf_level = 0.9
+  ) %>%
+  build_table(anl)
+#>                             B: Placebo     A: Drug X     C: Combination
+#>                              (N=134)        (N=134)         (N=132)    
+#> ———————————————————————————————————————————————————————————————————————
+#> Responders                  90 (67.2%)    114 (85.1%)     120 (90.9%)  
+#> 90% CI (Clopper-Pearson)   (59.9, 73.9)   (79.1, 89.9)    (85.7, 94.7)
+

The next table section needed should summarize the difference in +response rates between the reference arm each comparison arm. Use +estimate_proportion_diff() layout creating function for +this:

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  estimate_proportion_diff(
+    vars = "is_rsp",
+    show_labels = "visible",
+    var_labels = "Unstratified Analysis"
+  ) %>%
+  build_table(anl)
+#>                                      B: Placebo    A: Drug X    C: Combination
+#>                                       (N=134)       (N=134)        (N=132)    
+#> ——————————————————————————————————————————————————————————————————————————————
+#> Unstratified Analysis                                                         
+#>   Difference in Response rate (%)                    17.9            23.7     
+#>     95% CI (Wald, with correction)                (7.2, 28.6)    (13.7, 33.8)
+

The final section needed to complete the table includes a statistical +test for the difference in response rates. Use the +test_proportion_diff() layout creating function for +this:

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  test_proportion_diff(vars = "is_rsp") %>%
+  build_table(anl)
+#>                                B: Placebo   A: Drug X   C: Combination
+#>                                 (N=134)      (N=134)       (N=132)    
+#> ——————————————————————————————————————————————————————————————————————
+#>   p-value (Chi-Squared Test)                 0.0006        <0.0001
+

To customize the output, we use the method argument to +select a Chi-Squared test with Schouten correction.

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  test_proportion_diff(
+    vars = "is_rsp",
+    method = "schouten"
+  ) %>%
+  build_table(anl)
+#>                                                         B: Placebo   A: Drug X   C: Combination
+#>                                                          (N=134)      (N=134)       (N=132)    
+#> ———————————————————————————————————————————————————————————————————————————————————————————————
+#>   p-value (Chi-Squared Test with Schouten Correction)                 0.0008        <0.0001
+

Now we can put all the table sections together in one layout +pipeline. Note there is one more small change needed. Since the primary +analysis variable in all table sections is the same +(is_rsp), we need to give each sub-table a unique name. +This is done by adding the table_names argument and +providing unique names through that:

+
+basic_table() %>%
+  split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
+  add_colcounts() %>%
+  estimate_proportion(
+    vars = "is_rsp",
+    method = "clopper-pearson",
+    conf_level = 0.9,
+    table_names = "est_prop"
+  ) %>%
+  estimate_proportion_diff(
+    vars = "is_rsp",
+    show_labels = "visible",
+    var_labels = "Unstratified Analysis",
+    table_names = "est_prop_diff"
+  ) %>%
+  test_proportion_diff(
+    vars = "is_rsp",
+    method = "schouten",
+    table_names = "test_prop_diff"
+  ) %>%
+  build_table(anl)
+#>                                                          B: Placebo     A: Drug X     C: Combination
+#>                                                           (N=134)        (N=134)         (N=132)    
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Responders                                               90 (67.2%)    114 (85.1%)     120 (90.9%)  
+#> 90% CI (Clopper-Pearson)                                (59.9, 73.9)   (79.1, 89.9)    (85.7, 94.7) 
+#> Unstratified Analysis                                                                               
+#>   Difference in Response rate (%)                                          17.9            23.7     
+#>     95% CI (Wald, with correction)                                     (7.2, 28.6)     (13.7, 33.8) 
+#>   p-value (Chi-Squared Test with Schouten Correction)                     0.0008         <0.0001
+
+
+
+

Summary +

+

Tabulation with tern builds on top of the the layout +tabulation framework from rtables. Complex tables are built +step by step in a pipeline by combining layout creating functions that +perform a specific type of analysis.

+

The tern analyze functions introduced in this vignette +are:

+ +

Layout creating functions build a formatted layout by +controlling features such as labels, numerical display formats and +indentation. These functions are wrappers for the Statistics functions +which calculate the raw summaries of each analysis. You can easily spot +Statistics functions in the documentation because they always begin with +the prefix s_. It can be helpful to inspect and run +Statistics functions to understand ways an analysis can be +customized.

+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.9.1/articles/tern.html b/v0.9.1/articles/tern.html new file mode 100644 index 0000000000..296e3ca4c2 --- /dev/null +++ b/v0.9.1/articles/tern.html @@ -0,0 +1,330 @@ + + + + + + + + +Introduction to tern • tern + + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +
+

Introduction to tern +

+
+

This vignette shows the general purpose and syntax of the +tern R package.
+The tern R package contains analytical functions for +creating tables and graphs useful for clinical trials and other +statistical analysis. The main focus is on the clinical trial reporting +tables but the graphs related to the clinical trials are also valuable. +The core functionality for tabulation is built on top of the more +general purpose rtables package.

+

It +is strongly recommended that you start by reading the “Introduction to +rtables” vignette to get familiar with the concept of +rtables.

+
+
+
+

Common Clinical Trials Analyses +

+

The package provides a large range of functionality to create tables +and graphs used for clinical trial and other statistical analysis.

+

rtables tabulation extended by clinical trials specific +functions:

+
    +
  • demographics
  • +
  • unique patients
  • +
  • exposure across patients
  • +
  • change from baseline for parameters
  • +
  • statistical model fits: MMRM, logistic regression, Cox +regression, …
  • +
  • +
+

rtables tabulation helper functions:

+
    +
  • pre-processing
  • +
  • conversions and transformations
  • +
  • +
+

data visualizations connected with clinical trials:

+
    +
  • Kaplan-Meier plots
  • +
  • forest plots
  • +
  • line plots
  • +
  • +
+

data visualizations helper functions:

+
    +
  • arrange/stack multiple graphs
  • +
  • embellishing graphs/tables with metadata and details, such as adding +titles, footnotes, page number, etc.
  • +
  • +
+

The reference of tern functions is available on the +tern website functions reference.

+
+
+
+

Analytical Functions for rtables +

+

Analytical functions are used in combination with other +rtables layout functions, in the pipeline which creates the +rtables table. They apply some statistical logic to the +layout of the rtables table. The table layout is +materialized with the rtables::build_table function and the +data.

+

The tern analytical functions are wrappers around the +rtables::analyze function; they offer various methods +useful from the perspective of clinical trials and other statistical +projects.

+

Examples of the tern analytical functions are +tern::count_occurrences, +tern::summarize_ancova and tern::analyze_vars. +As there is no one prefix to identify all tern analytical +functions it is recommended to use the reference subsection on the +tern website.

+

In the rtables code below we first describe the two +tables and assign the descriptions to the variables lyt and +lyt2. We then built the tables using the actual data with +rtables::build_table. The description of a table is called +a table layout. The analyze +instruction adds to the layout that the ARM +variable should be analyzed with the mean analysis function +and the result should be rounded to 1 decimal place. Hence, a +layout is “pre-data”; that is, it’s a description of +how to build a table once we get data.

+ +

Defining the table layout with a pure rtables code.

+
+# Create table layout pure rtables
+lyt <- rtables::basic_table() %>%
+  rtables::split_cols_by(var = "ARM") %>%
+  rtables::split_rows_by(var = "AVISIT") %>%
+  rtables::analyze(vars = "AVAL", mean, format = "xx.x")
+

Below the only tern function is +analyze_vars which replaces the +rtables::analyze function above.

+
+# Create table layout with tern analyze_vars analyze function
+lyt2 <- rtables::basic_table() %>%
+  rtables::split_cols_by(var = "ARM") %>%
+  rtables::split_rows_by(var = "AVISIT") %>%
+  tern::analyze_vars(vars = "AVAL", .formats = c("mean_sd" = "(xx.xx, xx.xx)"))
+
+# Apply table layout to data and produce `rtables` object
+
+adrs <- formatters::ex_adrs
+
+rtables::build_table(lyt, df = adrs)
+#>                    A: Drug X   B: Placebo   C: Combination
+#> ——————————————————————————————————————————————————————————
+#> SCREENING                                                 
+#>   mean                3.0         3.0            3.0      
+#> BASELINE                                                  
+#>   mean                2.5         2.8            2.5      
+#> END OF INDUCTION                                          
+#>   mean                1.7         2.1            1.6      
+#> FOLLOW UP                                                 
+#>   mean                2.2         2.9            2.0
+rtables::build_table(lyt2, df = adrs)
+#>                     A: Drug X      B: Placebo    C: Combination
+#> ———————————————————————————————————————————————————————————————
+#> SCREENING                                                      
+#>   n                    154            178             144      
+#>   Mean (SD)        (3.00, 0.00)   (3.00, 0.00)    (3.00, 0.00) 
+#>   Median               3.0            3.0             3.0      
+#>   Min - Max         3.0 - 3.0      3.0 - 3.0       3.0 - 3.0   
+#> BASELINE                                                       
+#>   n                    136            146             124      
+#>   Mean (SD)        (2.46, 0.88)   (2.77, 1.00)    (2.46, 1.08) 
+#>   Median               3.0            3.0             3.0      
+#>   Min - Max         1.0 - 4.0      1.0 - 5.0       1.0 - 5.0   
+#> END OF INDUCTION                                               
+#>   n                    218            205             217      
+#>   Mean (SD)        (1.75, 0.90)   (2.14, 1.28)    (1.65, 1.06) 
+#>   Median               2.0            2.0             1.0      
+#>   Min - Max         1.0 - 4.0      1.0 - 5.0       1.0 - 5.0   
+#> FOLLOW UP                                                      
+#>   n                    164            153             167      
+#>   Mean (SD)        (2.23, 1.26)   (2.89, 1.29)    (1.97, 1.01) 
+#>   Median               2.0            4.0             2.0      
+#>   Min - Max         1.0 - 4.0      1.0 - 4.0       1.0 - 4.0
+

We see that tern offers advanced analysis by extending +rtables function calls with only one additional function +call.

+

More examples with tabulation analyze functions are presented +in the Tabulation vignette.

+
+
+

Clinical Trials Visualizations +

+

Clinical trial related plots complement the rich palette of +tern tabulation analysis functions. Thus the +tern package delivers a full-featured tool for clinical +trial reporting. The tern plot functions return +ggplot2 or gTree objects, the latter is +returned when a table is attached to the plot.

+
+adsl <- formatters::ex_adsl
+adlb <- formatters::ex_adlb
+adlb <- dplyr::filter(adlb, PARAMCD == "ALT", AVISIT != "SCREENING")
+

The optional nestcolor package can be loaded in to apply +the standardized NEST color palette to all tern plots.

+ +

Line plot without a table generated by the +tern::g_lineplot function.

+
+# Mean with CI
+tern::g_lineplot(adlb, adsl, subtitle = "Laboratory Test:")
+

+

Line plot with a table generated by the tern::g_lineplot +function.

+
+# Mean with CI, table and customized confidence level
+tern::g_lineplot(
+  adlb,
+  adsl,
+  table = c("n", "mean", "mean_ci"),
+  title = "Plot of Mean and 80% Confidence Limits by Visit"
+)
+

+

The first plot is a ggplot2 object and the second plot +is a gTree object, as the latter contains the table. The +second plot has to be properly resized to get a clear and readable table +content.

+

The tern functions used for plot generation are mostly +g_ prefixed. All tern plot functions are +listed on the +tern website functions reference.

+
+
+

Interactive Apps +

+

Most of tern outputs could be easily accommodated into +shiny apps. We recommend applying tern outputs +into teal apps. The teal +package is a shiny-based interactive exploration framework for +analyzing data. teal shiny apps with tern +outputs are available in the teal.modules.clinical +package.

+
+
+

Summary +

+

In summary, tern contains many additional functions for +creating tables, listing and graphs used in clinical trials and other +statistical analyses. The design of the package gives users a lot of +flexibility to meet the analysis needs in a regulatory or exploratory +reporting context.

+

For more information please explore the tern +website.

+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.9.1/articles/tern_files/figure-html/unnamed-chunk-8-1.png b/v0.9.1/articles/tern_files/figure-html/unnamed-chunk-8-1.png new file mode 100644 index 0000000000000000000000000000000000000000..f4d95e9c58ca20337082ea38c01761816aa7082e GIT binary patch literal 89626 zcmeFZcT`kcw>?;>h>D5{5Ca%c2?8o8f&>#vfdV2yiDCc&0m(TSxmQ%M0Lf7@0xCI+ zh$va2WDto(k|M|7Jm~k{>(PI|(PMOXjr)CSQPeqS@3q&ObFR7fzY1~}H>}&Sjzl7D zAWNTDB$4QCNTiiIYgXeO%@s9T_+#}=*^B4#Ctfq>vYqkA+WXSi%}J!)uEhW7+`E6@ zA(8fw$mh=}*#r)@+B$5lTU`2W?Rg?)1N}OUv=3Y*`vUG?-{x^yiABnbm#gC;myPKe zQ>o8xT4y%XODUXx?B=qkkC~pnJABU?={u}+*SD>^mbPx2T2s`w`Nci~+U2`V5k}Qp zY{WU-ZN;Me1obNX5B%`4*1v!Mw2h8<2;#No z>MEPRAK7zha|ivOcU_K1{V#qvebb;-_PrAUiFvaF6#f!=>gRvA+6|>P)J9$2>CLCE zaw6a|{^L_mJKP^mH#3mrxs(;UoA1>_lSY%gruZ- z&!t!C-z@K&W>kfc`Nzj*JiWc|XdTM6o8amHsiE+U`s3-G$SM*^VHdw2$)q{WsGMP( z7Ofa56RVP-Hqe+H-R8XHxLd@Gvpr|mMpyjzAvxJCa`35+?;Rt2`u)9RE~mvAJ>^7= z>-#S}ugbEddindSML1e5zUS4>%L$az`$$c?o_w(3=+aoJ0Hel64YBowM=HsMM;=n5 zYx--a+MScmJX#&AQ~31RzyDq-dd6IrtS5gt;KXHpeSNxa+V_hb-L^?%$1MkHxkDYC zmlmuyu!~(&j#p9kJ9eiwL0#B!ZYZ6uL3028b9mFcT(<__$WbLKWjZ^qUmkQy)m?1t zAOGWqQ6KJ<@*F&P!AH}|&u(%s_UNrIeZ3*h{8hOfXD14oBxBT44eVyReNs)kE<{E~ z&gAHc2FcNAH`Wwcx;*?nzm#S@(ss7{N=qdteRq;W=je0uu#v7Dhv`n&p1j>+HuuA5 z{k5^4e(t>s`5BX?MfW!%b{;n!*xFHEQE`G}Q)S494c4eEq5*Bl8SX9#Qa!A^u+DhuOj8%K4sdw$F?fW4$%_>8=5pP__k1MmWv5DUAa3QYtYX8MJjCPzx=7%=>5%D{B?mT&WDeTw%lNPjc zVIPa53TMTZ@-<7Ad_Hxv9cpPYE#BRe7bM}BRe|~F5PP{xBplyg(s}=@L28`i+~i&^ z{qLq2Fc;ZY3>aTbdYhfBb&KgmGVA`q!IsRc+}zxhi24L|>S$-7nP||l_2-`I+@b(?M z`sFFlbL`l$yWK01Z$>pJbZwg1R({&S8wx#2yA{>c{8f^)6283H8PK0MKPF2=@qugA zqsb=i66TAMK3a;Y26eaJuNo0DXJ}@wD#qVL&|Thj0=X{6Ri z%Z^O3C_moNm)f9p_0py1Z&l)rGrL({a7b!V#y@YB|J69~t>0o`vf0GPibc1FnT(US8Xb+H$UUeR*-UE>8KJV(`xo z&Pz__ZSCUbv*Z0ertWTTyir?zp7rteK2UgMoSKyX+Tw~sR#mC>d;8h`=<*pX$!&Kv zeM%$W-zxTZmYnW*q*dxh{b5EdrD<#OYMaWXv0a-thyD0*P1Cy7vI$Rwg{{kP-|emX zEZathPh7k;(B0jg$!^hIaxp_>sZLdU=JL`&e3A?$%X&mE|K6G`d5M|xv9YlfvxnLF z3zGqOJ24~Uq}2KIL@3%#4D1lpea^zKaW_%;-j8=KW9e!MQamB0-PMDQ$>l~D&Y!p8 z8)?taj|g0}v>s~e7Igo2>mdU~nZft)Cs<6u`@9bcFfg$zxh_8$L=btrF7cRs(%#0Z{rNjo?_OR_1wUFjjd8;rnPXlZK0#a?1 z^rPwRPs29sJkj^Nn4c_>7r1PCeb&Ur3)a(=jNE_(Pou4-YS^+_H76l-Wglp{6*;sgEs{G@pFFzsb$BDL&?QXOiB+w-+gSq*x4(bRNw zA|fLCTCLlaD}%+AGtKT4ef}Kdv@mPe7v`FxTkh{N%WrvdSJQ_(Zf%ZJniE6Ks;Zin z-X*X3cyUJ;UhL=(b7ikaCYkT?Zjf#ZIAK)%PNz^QT5dP-J;tqBJ47vFoUk&^)`_%G zUwL~+HYV%E<0*KqMm_)8)kRbaVy#}eaN$DOK(G%zBa1KXYSg7yt;UstLq_SXQCQkC zl-Gx^hyVKZEA({{>lDeAlG7%4KVB)8A~Is=5?$!ZM2(FOrf@n=HtJ=r_*`JtplR(# z!&KDFPEeKKTzKJ9pL*@^z>oKDRN3>kb+aF$pUUC;DlVARU*;$1RJwDJ8X7ZIsGvP} zNItlByuYR{TArgW=E}K98E?hz67RY^NBi9ApKdajF0JodvOO|9SM<#|y;L{3A7MF} zDVDUb*yS!cfP`Lu$44{D*LVAIgIejN+)4kLH{Q{bOY>Kk7N_zjrt+6GBV~P5UhFt7 zWHZ_!=DdAfghPSN7ZIoVjDzyQZxc1MQBe$dl;gaJad~@P5R>BQFQ_LcJ)DYUi8~?Y zL@8c{uW`ugxMBSzf&BRoFL$4M-D`*NJ3<{t{-;k#IOn?2kGierGA9DHH`u;nK6_8= zV9vs1bI&{~h&kVs^>8Nh#K|XPyH=1$8F#n)`~#H0Mp;k(GTfR?yKIjlEttUBm6X3Y zrpC_9d`J4&4xzgqCKAQ&9KuK#L*70~`kx-JeOlUGlDde=Tu7t_W7R2-25pHjLtsgE znCafWy)DBbxOjN_ch{HdNZImyPYPvB!=yIm%2Uol-DI}w*ROv;Su{#azu)=EA-(_p z$+8Jr01~tm+35m8J`Of+8ZGPXRC8N4A+l6@Xs#cWsR!T072M{^=SWRVs zaHXDqe@%3NewuNsTHgn@r#hU64h7imK6(G6-j3{6W9ehM6@mQ|nWf#wn$nC6rH@^3 zXV;7{`=vKE+^SXFhhg3@d*Yd$yWsPV;B@*-y`JNdQBghD+iz$y6l8Hc9cZ#Xxl5}- z#i?eeNzUdmJC^fjf-jH#9P#@#zc76N&dz^Wu>&4Zp6igyK}_sXI3<&8Zs)o z5_4|*xu}Q@g~O>q1Slc%Wzo%})ipKdk!ye1p4?u{t<<}TMEY3tn3Tj+ux6B9+^&{) zy353Fw1C09`^qk+!~!loQwAGBLBS32bq3PMzC35^G7lOYytkj9zry3T*vv1_r#jo| z7;JWLbp4J{b)hOnU1IC{@&1-=59{3ZKQm#Ivo>Zmo(-`qgMTr$^bt`WS-DF|(7qF5J8KcJDU=Tn0;WW!}-#3y}Pz9HUTx zSbUP`+H3j2Zo(kHzqicqR#YW5uWzJaU7L*y-(?#le;$F!VP7v(3SP!pYRK*=@+U=x%)l*{;AOICHmXjwAY}9 zuzHyVb95YEUuZM_{bIR5SYF=f+v~|+H1zPBPjyzYcQ}rHJ5+9g93dz%KYDJzh)Co8 zle@4+k0AzL035RMsiln0RtNfoopaq`k~b6eUccrbvB-}hz?N?#NUrPGH_tDKZll^n z&E_&{$kKdtrGr@h?W|}SZyq)`7QSP0AreEDWn%7z32Le9-lfy5_BIrDo3UN?7dl$= zn)~XP>3Le^i`rTx;!V81Apho8XGDjuvH>*XsIu(rv8||0(r(w=QArx{*n94|x=C(b zj6&GM%{zA*3f-;xxc$ft7h?5>B*a$qT8Nf&oRe4>uhA%V-+fBgxKz;B0oiH4sA!YN zZPfOH5vyn6ARW4FEQhacs?B+1>&{p=q3U7Z<3hKxEG2J6PFTjqhqjXIizMbzV*0(c zQPZCT`0W7f>RISVs{exO@*JRLdrj13Mq6>l@Qjr?!E@ttBl*JB)z!qf1fH_4xc1@p zzigMhZm;g(V{tob`tv*y_fIiVAW|<{v#srSznOOm{H>bzNvumLL9LD|F@x;pSKOi* zf|a>Ea&}Y0yHiL>_Rn6vJRz|-eT$Y;j+}PFsOh$bdHHdzeuva?r{6`a<=p|oCKcAr zz!FDlS~2&wKdbsFX~Y)ylFMF& z${NJ`BA?-MWk-0OLAkj-LT>wsd%k{Ym_vz2-oXij2xR6PFBTZBL^c#2>8S`ZjFLrV zlM!*Gw@Ei@em!Egm1 zE+vH$IHXc2SbJAe&X`OWK$Zlpw4`LrPHL_y?A#N6^)p^d;;1m)%z>sMhkDJC8qYM& zuTXzr1D;Xtz@I;F*42_}ZX2bUcF(WDDnTW_(ju6yZ9a-fkduRrPU|razwKqOj~Q7j=?TNRBO|6^S&Qq;D#r&aKB~G1 z|7bY#Zp5{q&6R+Ps!j;vl4OS&?%26J9j{9+>7cE)d6#J*kH4}S?zQK&>NT17R@l-% zris3OFwdpsp%;jM`}JpA^#2rgyb_eZ6#nK7Ehj1&gI(bc#?~uiKH71{d zUY>GDE|AMiyruYTNxm{I&vCBIV(r?swu>R(Mt-cOour>zuDjcher;L;jE)4xivbH) z%XiA1nfYh){&j&3t{hHxD{#NfaaW^XR$6S{ym^PPaiB=mcOIXlvlai9sM|tjPw+9chXj~T_G0gzAU% zj6``!qO)3@r^#c8E)kp`!iuQnK!m*HLW=ZCxgbe}YshzuK|TUuImMd)G-$s|dZf_K zQmmqc4=A{tsi|pCJJb$^!lxS?qh4TD zj_g&e=y*_6K$9Re1lH0M;uzNJm^ulc>j^65!Q##H_8>te6%~^*S99$wQ;nKcC_>O? z2&tir_rL+Eb_d!E&i6<*9Cuq<#Icn=?q<<5+cb~E|7<-Z z=i5Ek@rcQcZ|a^DF{b%^!dtg)Eg!etFui5nfh$av5*JbQ7hb!7khk%nqvZNY ziNl}+nK@hwov(j6=4YsnuKv(|%6j--)Ko*#`EuFyjhf@TQZ}`3Ib4A0)SM5%737PW<&`G~yr~$X4)<#seoVH1`%by=Bb&N7a z2AZm%6^D)f!h)op{QeNi;m3U05A;c;-IT)4BZsv4s#b5@6;tHK%9>Gk*3K>q8UQC5 zkua0C%FM7mFIOZVD|Us^@+zFkq$XyU*;@0mk_qC;+5dE>F_(gy4|3z~Q&yK0HHFllQU$-JIrp>N*S8lDov|Jg1gGLoB@SCF2&e*??nDYM)zy=`KYzEK!ypR z$Dc>6^eTfBh~i2WtYnch&b6Pa@B97+oSqlR#=6N zYbSg{0Gh*cIAo;SU6Dtw8W_ZJ#v*uUo7)#(n`qgtwG*(O%#%xAAMwd z*nYe(Y0q{BzoCu)Ck6$@=t4g%z6k(w#V=#@}##HO=5Hn|G*A~$g~U;VDYu+zwI;;49#N}o zaa9*V1*p^mDp>LHJle$ z&55q5Tc}EinXB5};vE4LHe1ds5SG~c`nNlD2I zp@midwwT@i5~0PQ8f01Yha;JKSi=X2rey{|1hY6)!gbh)r$B_vcNJz^@P-Kfa4Od*4W4~~J6ii{C5yvw-gXZA!S@<`FU8ee zP$etr+Y*azUI8E~%Rgu7^n@m!c;un!?#Jc}j6W4)dyBXvB(xBz3P5Y1y>Uzu)2ERY zPB>4i0e6As#v@fGOFKTXU)PiS3j-t6D?aD>Is(t{PeZ6^pLy2T069jtLLOj)TK+GB zicdRFL$QMC{xHXPw{Xt?UKvmKWpwp4iXN|nS|8YH8Y$& zVlY4bn-bx?NDHAielV0N4;t%3y-0HQOlm0Ac3!X~(uty+VP>Vo+$A!ZENVab7LShz z$aI1-tYdxdtLE2yeFjgP?M|#t6;O?y=byZV=ukA~_YGMj_-7X3-D~pnSH~ zkRkxS<=rH=pEIm>;+@)vKj?1Zz>E3?59wtfKi|9=jzw{RtoH84gQ!b>TfB^B2C6@@R?_t% zss0qaeD>_aM!vELvS*ojKTvVcX(P=n3vP?4{kEn{+quabUC*^UP6cJ&Ys<0inHQ`S z>q_1k_KByW3yqxn+*zC}bHZ+?H3BqRfV#`P=^w7H%!ur*m?I{HYt(ykSSbUIA z{1R?}r{2m-o2xp<#C%c!@(jF>t<(-A+mY~$7({DX8R>> zHFzz|`C3*L)i!qR7r~cx2Fj(c`BHBdt)uyK-IMI>m6eep)bw@>ye-%ZVPj0JhEUun zX0sgD>46JB-2}?IA>laaxcMicS=JKhjE)+o?bICaH)?U7!kRkMaONXWvy?V>Y@n+w z$nU8P2{BPaZ>p~SI^cqNI5foOUYGO>uNVX+^VivVLAsX9rDfkNJ-oMRn% zyJ!^PoyiBhu?oF8I@<>tl0rBMC>^Jnoz`GhsWNIi@t(?lFYX;(56X)_Uq(dWN9%WL zQd<8BwVs6|+r+d@LyqX24WngZklr)a3Cf{RVdZdg_ewCoohw0`D|loK5UoGCQo_@V z_T^fTsO8wD=J&TQLJTA?37;O!Us^CBizL)0We;cF*e2rBQyviD_%cZ=SM8!ZdtI7Q zbJ^lU^;CmM)BxAp&Ap6YOxM*BUBgXsYet{C^!ii~iPd%E?h?VFm@99}R71f*W1eo< zIeW>+!($J3@5IL&sd8(iL}br;9=x2h`r-}=2b(YkCtE_0n3)^S76_F%1IUk|Pil8w zYNeV3*53$j!?g~mu6MNN_H7^D!5}A`O&~7s$#E3J4BhIlJQ+|d!(~{$0@6~ zsvUO$v!!+fa-BM*zA!r>cu^D$fvJJSy$ae6zn`ciYQ#Q%yefC}6JzG=e=x5fLGt`*FGrJ_-X zt6hY)KF%bJMJ_;3Z~H~WVfvkJnQv!$>IA{3hEE-4kqu)=6>EoDVS%|1DMb-4xRzqrz7>%9)HX>FPvZY72ZQk5zS-CXb<$m0D>^99rdx>dX zT!#Bqu3%57{-4&;wQb4(#42Oahgw3gJ%Wzs?He@9BqRtbDyxwCJ?Uy9Pm0YkSTR|2 zT8JLMQ{okxqOd#@=g&WW$u4d%`ETFMo!n5Aoi~SqZO$rIXYwjnV2rE2o&P=FaYXx--S7`2?->B^tWGEECnT0{sx? z?88czXKdqcQD44mR}~eNvaO8xG_z`R z7*R)zBAq1=bP9e3xL8L$-V9RgzrY_nQYw&N3kZ^G)-AJJ+)fF)ovssBqw~UqPu}!T z#<~P`RYq2Rp$2;tAjVy5PD0mgWa=W;g5IW|4;a`zylO7~n$h+b*Zw_q?}@qsK@u@} zI*YkFg{#4gFGGE)1GYdr+hCZX@Cg1SM&$0;uWwmDpYakPC1l~-|79T#)F;H_@dKQ# z`>Ul;Osk=FmJRKE8a6&|G4$j8Ig{Lp*Q)W>>5RF-J`W#?b=}s}qvB2!!1%_S43qQ$ zVo@A~eL_UcFT|@R)gN!r*dJZP%^jUIaznEQ{cz&KDfc_iCTFjXu8GCn#9&oxP4#?# zb8)V`lI9viw{o>FEo^vS!NTNIPJ$)(i2p!i3*w+uMgD)s&NI`0@7Be6@BQX+d$27x zTiO;3o{jQ+^@bh4{CW_7LO*~0EHj!77|xqBh8)-J*Z#A}%`uS`iay9D8^9{JlIBCr zicIrfe|<1QM&&4)EqiuXu{*11NP4?dbD3V}rzf^i5Ns~sp;opX8YUhta|~3)@FNwd zyD89l@O`max3{04KK}^8v}b`0Yc5Hm&;M}f?UA>|nCJEJbpz=R-@kwVa#ddZ&SI`X zUEIE*fG3Qst8+{M-)^4V^-_$67U1j339PhWTUZqqp72;hs6#`75LGT)10R{sVJeRO zRpjoqWPJbU#f#&dY(NM1!bWp9~NU9&@xfb(_HE`D9rdEnun*0xp;U=q-A8r)JJk`hV!9T??6IccQ+dpWTVYaOzXH>I;5H> z{3d5wENU)imJCssthB~Xr4@+D6-dBGL*l>C*>Ilw67)i4Xf9WvOwC8(_uc|UzH!iQ z9LA&)?NO?^YvEqBW(Nlc8N&lvAAS8Qjb{EOEM>XVd}M?Ax3L0w)1P{I#~{Lf2aQ=3$oBdK8i<=ZCy8-PP#);Y3q=w5w zR@vx#uvM9gv;&SEw;t9&X~DO0x2G`kC{ zJa|`5s6S^2N3YW#g)EqFN+8u<1B%RzHl}k0y2<)OO{sS1&$)S3K2eZ|uDU2cC7h`) zrgeDT*z>E&y33B3P)F@Z8D^uV6f!z!Yh*;ae*PRU7j7r0=S)<9sHMS!Mb<0^b#ulG ztZN_Kw`S@jY#3+0Wn)#u{K=^F$f$&+0S(a!$Og+c4ek6qa1|^E3xLDB0G^^&gT7Ft zMDn${pyv`jd^kE{(UK<&5mj2k>vcs0STH>9;*-8myc1?&F1o1JlDHx1xQ}9Y6$$VIW{WIt~^9 zoy<1QdUx*hb1Y4}a_R$qIx&=cnrS&o!Wr^(JzF?Nfd`Nf(nNirhaH}9pV*g|KdGW#Ilj!l*beR6cNS~5 z3q=0#M#~!t3L!rdJ|bYo8erryx}1kah%-onuyFjldj0lLj1^%Cz@6?mdh;=e^kAK( z^d7O5Um*V3T6Jx`H`JUi%wX$j=Cp_Bp7TI2?{L?)lHS|U=I(FO*}jy2>l|SiD>6Xa zPgk}937S=%k+7C&h)wJ7#GhPyiE1D+B2u*j|JuZ*Hj0ia=|BhYa~yj3oUsTe=(>(; zeb(Up&X|rj3;2`7B~*CC0&#+suIbQ)k1Nh^vP_zLuckxG>SM%9?Nv++DV~x!hEN8X*q91>x^W%=r0?!oLw8{LwFw@PMY*K3fpxJIRgX2nF~{mhb1Z3;(~Q5!5B#fbxR@|#%%kAK(~?=4@JX&Hfzw?cd z(}`V_lPo)hjcZZtYN0I=4gLnRDR;34Jt6Sl{K@bx)nM1xK@G+2#*awy4vHti2eM7#i(txxUy?XYEVGIL$qeHdbSHDLZW4vr*(&~VviWqY#WryBgK3S;00 zc!j}Txn?sex%r~v3A^#TWD&=!Q*eS%gpjK}OoWw+Zz4mfWm_d|*|McJ$Ceh_y)$Mc zZ%&Rf4pz#&Z{I#H+k>2(F;Kn;k0W7+2>rEo`K!;mk_23CzK6?b0eGDf(QKT3**0!nb#Tj1H!q0_~5pv*4mj15@FV z6unAzlr3_4is(8_KyJCjX@>jQBQkoob&qvVgEtP&^A$6w`@BES6UslCR(0KIIl4AN^wfuM9x1G z3m1_+5x1~kNmC@yGS^snJ#*#FB4q(UJ!E7AoIV81nPF{AH_VJB_%}4GnWzmc_yBGt z4ym1B={IlQtbM0*ZUcve2CPWq*-kL@TzI)F7NTb?B7#RVD+T^i1M$fpw+N=*V5|J2 zYwKa$lMg3>=!yGI%Hq_+CF$@1K6(s*@1(}l4W4VMUXDu2z+qrwsS1&_A%xKWdm^*%+DmKaf#v%FMB}b<{r)noYs3m}LX25Vs&V`Oo zbeYV$yVCA89)tNJ4oZjtbm-vzhlF}D00#nEhg}mh0A?w-iZ|wh4El>&#;s;zA2eUE zrS-(36`U#2o@NvPVjT6&^N=B+tFG#rCn6HK+j_il{BG5rT+mwj#5d}28n)R{`N&HR z#V|+Ip|lBM6};FfEEjajn%`paKqm&K$5tIn>1KQ0+{J%@;aBA{dSJ?VQQpDrnsRKD z0jgMQ=aI7sGhx-k1||&t=KU847o^PP%ihRkFsZ@poC0Bl2u=00d*2BJT;2t5;#@w-_QAF{)@+)k9DT2MYo{ zylT++ArjtAiV0g{?xfm=9YWHm#jnu!0QVL))=(J0Gwg;M`MaxFmI4~?X}Bl;BD-zG z4=N#^$x`YQH3LlIf1u8jDOyf5cdj1}%N3Ff5{*O#F@S*#c+?Nr%lp-et0*CYb z6)>h}&z>Dqca=F-`Q}dPYwiOFBBh(TjE6twv>K~kx^(HiiF5ti>y(J>k-Sr!Gud<7 z+R}{FrN>Y(@hUju(%=pu#IVfwC}GtD2!uEdRvre}8;^8Eq)fnx@kYIn{$(!UZ%X^|iY3cRV6z_j=!P;L2{bhTUHcYocC2sEy)H%s30Qs1mOX zYgaX4IRiyTok<=k%PFaXttEG&UY!7?l@jM3UD38SJnMX>`e&Rf>QtH0HoAW6vr&WGc=oUo4v@hROH$`CeLkE-UuSQU{EHBT>U&o*Gt&Rg66Q0W)PF zUDAK-PkqzKSTnl%W9NPFLMcLVR|aT9?o4_ROXNs$6L3SYZHjTLXuE`6>q3OnM4hTu zi2Z6+e2G`@Z16%4I(6`r{q^nJ_H?p5pPj{{65>CR(%!y3OqheUN{@=qBZhK zgCmGcYhF=X$0|I`%K6?O0ybBdra4^wL|c z0toLv3^P=;@)aS`VN@dtb^{w$9rU29KUew;K`2?@BMFG0#aAF6jl@Q#NKALE6ntkB z77rZ|?&JVk*G3O^Nhh&T2l>F0ovCdzSkaNFj+TQzjz$!yPPsgW6Ic0b+Hyr9J$s4A zog8j8Ona;WS}JPM7m8xbd+b;>?;fJ&=i3qhYlh#N;VO?(%#Do?50GK0^YYqyevJ8- zxp_W6Ke;Ymb;|FHwugxC#6$D4MovY~Z4@h!qhU1{EtP+ME;vU;aFfGB2%rZGHxl{UZUjh;vE{DU;H z1nvB`zD(A#FCOqu>XXrm)*| z(B&tHG8Q@>j%<0*a{8tGk;B?~EiIEs)_uYYFc1?2p4c?A|KiIS!mAe?c7J}_G&%k`uf|JsBG`yTQDls6vL#9b-#E04n71N%dNfJxpJSlfvbkfaid zk#=63i6(Z@1dH4EtgEi@6TAp8QHO`M=qY0pyz3hjlz{H)0CK&TSIv%Wlv6G0YC8wc zSg0w;D7vA!ds_HRM>4uL7Jd0Ldl_idQ8`YDOc8?d4)(5$>xWqgC5IA$gm|#h0@wmB zSRYQ9IHidMV>QxdG+8ugA)1P4XvN+f!kKZPTVp4j9hqZlDR*CS_QQ|9(Ll4J*O;yi z5G!>4-Ji60wwJ;<+B7sN#$abAk1_M~s?npeYCG&D6S4_z6hpKRqXe2d08CYb`lX!b zV4L5Z07(N#>y2sG7jE>D;Y!1U5HOs0fSyf$G(6v&1o0q*DtxD}OQNWqQ<)sVME%1N|Tn6oh^N0$g+ z{)S=06$xKo@30G^heIA?p0`5P6_F(haQT4dK1PgI^(9&cY^%fZ|k? zQzotqstSN5s8&CAJ1F9b0bFYVb_t&agoU#7NDUu;O$$_q+?k#L(4kZe=FMBTi2Vx$ z79(P|QZ4)jo#Q>LWq7S zWF8=&UM5Wvj81o^1dsOb9D`5wJhM%RB<2YRF(e(SjNqQgXg&7s?WCl;)O)h7^} z;`&Q?lYnsuRRJ`a%(_;mqSf6D73G0i1IuU22F+-c;JZLGx~w}3UIzy!qJYNW2Jsqe zWI{t5uZ(vZW|~4B)mBi3TOr|~TX%hbhT9F_Q`U)`{RlIr#uHBSzb~>q-Ta{=(W_?a zeNBIvxyPUSc)v4@UVwisbjUiGddl*#XC@rYSY~3tb#VYf)y8=6)k1Lp`zA?eAl#^c%8fM*Aja2!^FJTv z?f<;@KVAR~fan)flOY6Ps~%T}7@b zU}rH}M~Ora=Bxoy2~=v6kNx>D%o2WAYBCr=475|a-rqpEs;b(KmLL0<;lmnLqVdD} z7U-X7fnBw;vm>)E>)2}>p=f)J6hb(OArGb^j= zyR*x%@J|=$EP-I4lN!9D5gh&ef;L z(sXCn9AC3fik^9`;R7j6#%rg~D{W$tl2T!{9LoBKnZ=u#Uh4FDI#%bm>k=I`H@^zs zw}$7R$8B3=)~wa1&2@1`lbJ4WA^;X={N!N2(H$&NkWzeJ+0yZOnI;(`Lj znuEcy45SYGH8u~{0WPXi&Eey@0OQ45hB&%+@Ub`o?NK7o9F4zq(f{*uuqbS%6Ciyw z1mD)eCV*F*8+M(n>MTlz5bf+tm?753S)C-^cL`IyqH#}W<=06!Y|H@Af ztD&^ar(5hpI5sfi+m>JRGSbrJ?5c`~nSGunpE;v=Bed6G#lX7%`tb#gw<&`(e{rkM zef|ApU58$yYL7F)@r*IN4#fWR<(I^>|2q4_VcUOxlQhlcKHlNjAL%pRA03jFvxNVz z=Z+3k?Ee8JoiHjA`&_Uy>vdtL0>Lv2=vn&!^i}U48G6up3d=hJTj8}RwXov_#Q(X} z>2sa0wxwodTmygPAHj}L@4Tg<^mYsEO%^F96beY`@x&< z9I@-{q>shKM4|OSiO9$}`S-3q&e;fcY*@4AzM&SBWy10jU5plrB4J@Cm<`dhd-CMT zy0vS6-~N|G;xGfcnee~> zOj#Wd87g^>q7!bXIPlbizxVb;CX=eA;IdB=Cl+a4neL-+b;dY0s zaL}m0{HWdwl>L;m9~9bxIs+Z{rY&K@1@a%RH(!yOimnd9NGK746(uSadUN01w17P z~yu8kTbhGpH@rg!XPKKhsbHkreAO&~4a{ zX4|Alol`z@=1dlLNq`d^zN4#~wcZ9hS&VYA4=f9Mwq@4~;b4nM6F<FleBLFi)Vnm9TA;g_)V4D-949ESind z`_Vo~G-CVvMO7WOq8)r(Tvc$G#G%U7jV(@3+g!#5NJZ^d?2y)iF7j&G4Mzw--M6s4 zI1%R-G`%LA6~xOa7B_-yCIo}DBLoAYEebU>9?U$|q+JVnJP#hkZMz0%^}((*+IsJw zG*JJqKul0$$f2X7BW&GJcAMS%L0Ccba+@UnDCi`T(A@`C|6v}a7(cb74*ESrW9UOE zzbB_a2oonX-0P;cOQ#h*rM%_jPc{F9)#`X+5dS;q9_@UkAO*)2PdaQ@sa; zP6(6NZQzw;-}XyP_~bP#(xy6XcOp-weCBwx1GaM34F1V`f zvp_}@Zwzungot@iZ<@T%Vpa3Z^q~+LKlLDY_wD@jt7_kBk=WBM`W1;D2c;HZVg=!u zA(7(tbUc}wwS1E@s@dDs8`!;Tl!ZmDawte=_VMb~DiVw3X6Eq*pGW;0{*r)N!4+E5 zFbv38x9yd>*sQs>WA5kAh@Gzfrfw{g^($-w-rm!HQlxxn_bF)=-pc&xB(D(dnQNDx zPxL(5DNGJHA;KYo#n3YYVpWK4%UwSpQ%-E>O_TK93tiI*$<-F8Ht)3i8tQ4PC z>koHIP1<}{`e#=Jb#=2QeMeB5iI3KNH0`(gh3gDC$!#8!!wC*=EqSRf*4;AH6X%DT zHZPlY@KCIV^<^zBn|B=!a#Wd_qOkjcfEWUY<#|7C z6d57y%--)XpCVUJOUhOe_1F8NE#O(7{r5OO5%4Zcdx(Rx zViF?G_s7u<<59!MekW=k?68cy#bCY+Ul|b+^0|T~%|{+T{-OSN02MB-vFQwnOMX_e z68;Y~rT3Btsvan-j9xuuB`q(e|3xp**il53xG_?U>Z%+U1|gF+4XAb>ve$%*ocjeRHT_gWlV^5`NG<_OlPrm1<;_sbAT1;0hoGQ_z(gxJYR>m)-(Drcs%ys@ylzi`R-H;3KU z;*%w!{2;a$i^GOC&ib=WRV+sfzMc_jkVN{SKYh8{qd<4pZX**u zV(fv$faY9+_U$jXWaPu1|>!b&0?FITgW9i3?+E4g&_=~~9+d0WTCB)JHK6xUZGh(C;K_CG4p zov&RLtFDTe#NEmJN;*3wRDRF3wr~8+$sZB<1Drqr1;(SS|U{~m##e2)^po5-RpaYrCIw~slzjt#1*T%yZ z5Uv%%5yR@I9@#v6q^pgsdZlx6`ky+9Wo7dT&3eSY0GWce%tfrT`|XW-*cz+b@-`M1 z!E01x`R-D&1qsN-gc1Q?P%PQ=;0e`LwGW2%{Fi%NwIpH*80Mna?k{ei#;Ff=csc4x zB&E&&w{@yL;_Wn3^t`v+JN(U10>dc7_wR}!jOEi_lgPxxHDg|Rcx*}qj-?Q7BlF{< ztB4?=Y>CbIfmOLg@#1=s-At@cyi%(mnG+`kp)@n0E|Ey@YSd{FOHTSSngOK~2=y z`@miOd2>O%lcK6wPXEw;`)I$aPmFgsyhp*Vzi5XyaJLrW+M-0r@@GDV&+hN??%PDv z0GAP*e>LmqM*HpHcG*H!=56llU6TwkVh7@XQr&%_YX6tbhjHXTJlRp`~PEl)wVZC z&OHE>JN4t zhIB`P*k6{rlxHsc1XScQL0{A>tzlg*?Sh4R-Nub7xCS~*%&e@|Vlk<+Z88@wJO#{t z>Ff-P%%Adf*G7(d+nRpV6jxA?N8>U9H&!mxq>66hWLr>%8%WHOhh}V z)qf|rCAuo2yW8LCJd#+NH%||tr8OHTJ04xpk?`>0!BfU#Cvc&W*y?ARn!@sAU^kOwGHaZ_wT>MHyj=*#qp397URG7r2i~Y zw|>+FvmXvf%u<#;U_UA2zR>#IUQe27K4G?Z^c`q!t5vfRc3(Us_NQ5k;BMc&!$}*& z=^zQ2a6H9r8|~@oi33Fk`8S)}MOkY@cTHAaz5zYnA^w%@Ks)K%n91!9h9(=tE4(xg z8=POMY$;^~3yY|w*|4UN<$w~g!L4{@Ys-h82^QkC2ewh1sF$JHfVyzlJ;bU>pWv!N zc6BO7FYbqjrlBiNoV(VXI!%H8*dCkkd47iGo>aRX8(rkYCzQy#p6NJ1;yO;XQ3Yun z##va{{N4|{olfLxhf4325wyh{UlP>t?0{OuS9*UOmW7&N4V%PNnZK6>hcgbeisD$Sx%fsF2AsC-;18aWMd7Rv#OS z%r??`J2gVDC?g2vsTJz1B9dlzlFL^E>P`%h|K_lT&h1atqm_WuvWP8g0YllU3DvRJbK8pEsv^YK#je{EH0$|A(pf zj;H$n|NjpvEmTOEDO6@z(vm7%)Pdt3@HJ!r@OqC}(D2Sqk`OJ^T-n4!F%$odjAy zF%CzTu4>y0B7=6F-=&Kei!YmxmRcCQhw0c>Jw{aG&|RzYn(R7r?%X2c<%7{W1o?aD z13>oW!{rMa%`)wLxV`kvySY^+MLJtBb>gV8-4K- z3tfnj$t{TB!e?sj9Tb-+&exhx!J&}7#vm*baz`s zJ@K6yku`joJgb7Lp9^0R16ut-+n)%TOV|W018v=M$ARcz7E3sItTlry9Cgx-Hiw?U`cu*e0Mj??Z%yXz1G@P)M7C^JR}4FYWmSi`)EY zEC;U?GSBZlLh!rLuIYgosNk^*ip8-`vZv6!%#fz?lJxP}XKs3XekmH-k0`$&ur}&| z_@RNJ_W+WP-G9XRInw0*BcNez_bCLSVjr9$mcXil*CU|I(mGcQ$I~{jCSs|+3=CDu zwzjKiUUC*4Wvf8>A4-$Z8^ZuZ54jIKpxr%WO;m6A^XdQP+v?>1U5a`&GOcLSdQJh4xC?uF=p+rM?e^=lVS`UMkL!bv5)||vdWfd_hCM^n z%FBz`edZb#xwBfbw!cPuC%Jzd+X~H_vn?H!4qnOqXHb3|)nMZetEdPG4lb^u+)G>$ z%=mHY;Cpg6741vQRA#FteHM=!?nvk@K&{jZRU#uA%x;*z&(#7Fl9GtSo7;9w6M^e7 zEFi8uuniz~g|lCuZmeWdo z!n=za6UGrcAl@iwR#0jdesj`2Xs|RPU=69O-9Uq7Y5^Ldhz#%vx6z zmNHm;<^w78KQOTARw@DSrW=99K=(7e?=our+U__e%LV69O7f2%tLWEX zFai#mT&`JKCS z>y{W4D9R8dk^dH&(B3EeIK-m_9cKL*@}_l>OOv_7Gd{!jh^S0{9v{eri>j7vo;f$L z?0^z7UlG`3uh-(NVZlQ+sJo~w|0~Qiw9>EN{3`1d9^->8^vX-?UQO+wEZm$5MNVdl zkNU__%}vFWd+tRV&%ji5u)AikpsAn`hGbl56=)ba4``XGRi}2J_n~KfDp2i^+v*?bTmMbBHF&8%0-!S!_m4f6|`B zW|5m7qR7$kxMwCm6{&;nb~#=H~0K7D39*8+bHW<3s+p_&NL1-t;!aL2+YTZG5e z4Ma8zR|`1a=2Jpt%sb{OQK@Uk7^C)pH!{=Y_(Q*n9bU{DBcJ1i#dE4vue?8FMGr_f zw1+DctBpQfs2{(2<6g4CW`TqLXNd2Jn_=9f(I4r^5UE4xhX2g&KOh zfZw@%7`}Kw&H`ABJ3QL{!sXT5SV~^TLR2huog0RhmIJ4$ zTw(3p!Aad=M#I=0dAFyFp07gC&|Y_uOb$12d$koSm>e#;{eBDUh?@zyF0jT^W|X-V z@VEveXd8R5?V?v1SgiInki4mvTU7Sdx4huc_YZESsmUx6VT`=x&EIY{No|@ft++Cu zcB1DRCL1vsg0^3p$v3VBROir~#5IdDGDR8iPIJ();ODru$8rq9oE32f59wV*jzztJ z(;xear|5TELubA?-Ti_t4neDtvbMUA_I$d%v~M+t)~iv~CSUsHc<-Ch>SF&7?NqfA zwXZ?Dv8lM#!(>jAn#vMpp4&&?#q&iA;a8%k?}_`}v+bWrku4i?Y8ZQmg>#=P&RF$OIX zrb4Wv@9J0Mo}`Kl2j4GVwK+0vqLgWG177e`=Q@vi=X|U`6>BTJ)~H{}uWloOJ?j1= z^f>mfOoYDgyatwiUd2LfSxY?K<6Z~9n$PacdGF;pCUuu-sq|bEo!6v!!9*my-)v;w zdW(`QD$Ib|TSlvKbV2p>va6G$=nvMxJuMtcj%%iHRs)!7j^+Bd6=L_b3ax$_PP9`W+T6!xsT0J>K)LdAg`6TBAf@t=OifR=V7a4u~#8YllT?)*bJ#Hps$ zQf+x;EklwJdmO9J@S~-sin-kRSz(dVn%4Fuw-88j=HYFOX3&F-H{p>V;%eErJUag)rM&LWHcEnsM0vZ-rwbBk*hIq*ZE;RLQlCnKq3_ zL@Wx|7bzWh%OyuKwQjM=zx{HYJ2b;ffiWtqdU7yL$O+Tj`|Jg)K1_`~RJ`$u#tbFa zab9@+|GUFJONS%QM-GG`pj9X0DkkQKup*$mMBq#?SpKi0?6qePB20N0`)+HKpwbdV z4##wPX|K|63kst4iQQ^@AA%f};Z9EVRK% zh&YxI%Q!%w$_LJ&_+FtS z9Yxp$1J@f!?!j?l#S;*b(asSmA!)-#=x0|0x^*%NifjnkEYSF+;<4^d6Zc1Y=Rk5C z)`Mo}`ZekBn4n4%yw#Zeo^l(LW4rO#sC#8kBegT*3sa9Z4yL7d>3o$_1%}S&xxVSE zD!JLhv$5WahvJ4j`E+Z7u%}Bj@!#X)MWHDy7Ass&U;_S4f!Mlvm}P8|L2l5&ce`go z+xi3eM__7e`Tgxx#8!z|5uuJ=gxpdU#*pK)uuj241-|95PW3h3l8xLk??a4hLHCuC zo^sajHvKA=!%go$=jO!-V`{jZ13Yc0C|jVy%GGDHeHZM=ei`*#5P2UE+sJ>0J!sjw zdOc%mEDU%f`{m0^4MPlor4b_;V#z}0wJ;8b+;LRzy4U!cPR4i*cCRl?#X2v47KM8M z*}Z4LCR*c*r60swk2=0v>U(F%EA>N{(XsOz79!xx73ipQUK zcgf^#1dV8Kq;GvQ;`Fh6-ItGnn@WrT`7y@L#;IJ_>KBt)7^GxvR;mA#KaDi{B>ZfR z@i^nV)WWcDoB(EVM6232sjocLETxMIKnpFa*ZitoO?(%o#5s4|?8v#!{CDuS!8T&` z|4*lQG+w{}SqglM70^|0d?&Q!w@*oHYe%zwaeqG(~22Oepb8nM`|I;`Tni6RV&n#Aw`ni|24o+Zr$J*K@7LA)7-!C@``TX`pLJcFskWM(o0eEc? zAM5dgqHoU~SbmXqp!t&ken+R}xCQ^jc&)1ZrU9E-JG?P+Dl3VxTpMzg1oXFB9f?21F=oZQV(1h-RE>7FI3O~X# zXV2aTw)yI#DRJa5>@I)lu4Q)$u`zKg0lSA5k~#vRFB{4)gtsF3=JIdQ_!OMc)^3ar zqv;?*9Yr|4kz z8&oAPV+m12Etwi|e~Yx9S^UJj)aboMMkXuxQkB@D{in1eeCPRlq$BD!nC{vtvNlUy z)Cm(yP19>ikzZol$gppAPWA_*DK#lpdSA>YUzhQC>)EVv;nP?qk>*s6ONc}Q5$QuY zk2KTUIy(9w3FHO`jLUqZtUM}*f>?S1yDD)M0_6&y<_Kwpgic_GO_rW7`rRS!;$^OV z&;BbFY6)a?U2>NT`?5lvSHw71?SqlQNZ1`Dub5X}z@=jMlHFCDOW}2{&&!cXI7!(2 zx4o2k>dlzE8+1_EN|*$~G-RU-`1P`&>1GanvuZ$O0bSF18x{bpZlF+n=}i)(L+Z<+ zI@jlEJHJd+-M%BIF{8c^I(l2p$c~P#S7dw)wO3kOD+KNyg$Tr62(aFPxnLz7WX=pO z9&Jz^eP9SI@+UaL5{6{1jOMQ;{;PKG9ENGa@xb3Z;2uMKn&u$zKLF8IRAl65#E}au z1$8L5kieYgAC%`gV>_u_*I$W;2Qs;6jp>-cstci7p_fn-3}6U@3@MpmAwrHF;ksD= zuZQ9$27etoaMrFj{ctn_40Zc4ONYBFu_t9p)jl%E{eO)?AOdr6p-^gm6=a(Y#I6gj z%EMNLa&+F-Kf{F>Ttu)F9;m(KPq$0rwX|3Q+2UtsB!hBY3*N5xT&a-N2`p6=Sv%`T zDQ98Ip8R1?>N2+kGNoGy<&{@lBGp>wSP1uxiii|C*@CqhgRrlH2`%D1tOR|0W4FbjF1U@>#$k;o3H==z0^>#Bc>}r-sSJ(<#h+Xb<_r-I+?t- zMz@CvP;O(Bt7SF#dwek1T!)|*<@>a)D{^B4J2-ECpMThW^$+75&2xPyaX41G9(li1 z%t{lhUi0~agIg&OAV#F z!6ERlV{9B_v_wSgi#%`_NnDBTb+XWG+Huh^u5RQ7y@hD%?LhQY|tMAF8;;O|nyr)Ol6_cq|?I z46(EmD8CuUFjf6Poq;>9qc3|M(*+_T;jl0<%D#H#@=WxokGDN@|5C?ZaC_z@4rJcw z#{h{6<`PHLM2a0d6-nXYETOx*`v{B`81D1%#He`?i7S7+VEp-0l79;UVTPSXoLGs` zmC;S=h4;P5T`nz}7Na~R*UFzRsrU5x3Uujhezr(d>gU!FB&;=L_u1Xt%nz5A(xfX4 z%ejX$e*Ac@A@IeB@ZULE&m9>wyS4zUM`10UMSR*Vi%wQtyY=oWr<1XfEWvcoIv?ZX z;1JAq__IM6F(LLn7^lc1Ri?hj0wXw{M)a51PpWt#+T=6xPrn=@$bUP=CEZC|KIs zS0W+~+P5q_*i4+wWHDtq^R>0Lhwf0ID_L0j;OG)3&Rl=LCw|`!9ZIQ|QsWuE_4)^U z#=Cc*|1vb3wbyvGt?5AC6mvEwdhU%JFc1r;ug+OX1we#7p!O$3gNW!N@kgc;$+ouQ z6xZ8=t^#z>eq8JpZ)<&+PwD8`AviK`zT_0OeLFv=a!5dEqF&Eq$p$x5@jl|5?zGp@ z@Vl&(;#+(IKdsHzgC_2tR4x93@ktqo|Ij@kT+5`gtrSOgzx<(6YLJn!9C*6uoO@IH z>N>&6J>J2`c4Iaw;)dIu(NUW97b{Ex)vDwpAYz;%XsR4=0Y+r3duY}Ypz7bkYzvpY z-4lDtIRjFoZ-PDYyhA#qmh4WL3zY4zhmO2R-xANS3GLRbWe(d#1(iw5;U)z;1sXjM zv~bV2w`>RS0Lj)fQPx zP(D$hi-;svKhe~imIYXUg`0DOtU%^A^_zd2sIw+BU)BwDx*AS9@LR+MyZk)e*`qjOnmk|83Abk+rvxPedv3R=ZAN4n z7*tbql%6-O6j!CE+m=Pm_hyG@DJ172?L-iDXoC(E0aGBBHfR#w^%gq%u13&7+eSY{E$*}p+xK?y-~QxyWvM7G@x!gq+NzD* z;dT2G*{-%oMNPVjh!|5_7eF0o-_nP z6K~Q7Gf{^*^A&z@lqgPSe{t%LGy^7dn3{O=P$L@iU~iq?sUY{&`md{s#>#@oo>M?~k3yax+8fFDHY-m%*^yDAhY!)Ra z|IJCeUP_S_*KlZToH@-oNESjF#vild)^3%XZ5@wz$L|q2ZDI|dzIWbMTg7hkG#oMO+1GD- z^GjzGHt@`3$!FT?<>O{?iKn9J3QIP^9QF?&eY@*$guS6{+r# zghYp2esE%987qx+2_;266Kmd4*|Yw^KPc2F+)lpK!pztt8}G@U!c4kBSv`S4J9%zp zU0r%rHXu)uF|&1c}590gK6M6 zJ@fTF=2nNA96lzxM4jVIbCa$?r_bC?(^+{px7q$8^>%H6RHkFA`YO?TzYe^}iD;cS z_)W$t$0j(EMtjHdUf4ztI-!w8FYi_XDMdGv`XPH zn9Uze8fAWA%S~}kO?qZ;W2*d5?pT!R(bqS0Ra0JrAs}5UhbGmjn`eEM&{(ua7W&ld zcS&JUNbu9Q?w@F0xGqQ49~GCK($DH;=Fw8*!a`t7?EfqZMqr_ z{~zl0HyXxH?5zT&Sl8e6Y3@$FM(IXNuh-AtFRR)dYZO~3TbMPp(Hwern!0uPxvJ_8 zUz}Xhl1e+5#e{ARCdU^KFKgORHEKznV`W5^M0m<;%&@;%vZtHgwBO^$z_t7LVS3gN z!)|V)@8^*;6!Q6MlZnv-X~$=Jl+Q8;OVq61B{k2jCFM3X!FadjXJWSqSE*N^y-@_$ z$wOR~=dSE%xyCA*n*6b)vJP<&2!~2^?Ke#qW)#CJ?%^H%C>ZaVW1F4yt$4C%A56CJ zCljs5S5H|XYd0o*ePvsbflt%&_n5WqORvu*Jvw*Tb3w557LlvNj3t`kaY~Lit=Bp9 z`J?8rCwD$NmaD_)IjM>|C z(OQH(z6YFCmqx0qtJLc$IUIT9nEl_%rh!&JLaS~!VIQ(ogvSI2w>OXcIzNaxs&+1z zSe&1;rVTvT)Zb=@Y0!{`X@xlumneljN@4Vzg{ZWv%#w!P3XM{yHABd^tEBT47jwJT zKlU_OUA)+l6{R(7T2>ql66j|J4k9PtCzDUvS=f1O?lBkK4tw`8B61-}zdtzI)c@Bb zPSbdjj-kgFe5Te77pf>SPQ7&Z_euvla2pk2Q3X{!P86+wafw~&Z6nO@?Pc&DagY+K zmN=>C=53xc%hyimuUyq-IMe8~3V==6kRpx{Y$UjItG_+;v%Ew^1d^+KQ2!xXiPQCw z_ZvmqQu@jCjEwQTU24ahj5uTAuCK&K`1oUQ92}zkH8o!Sa>t>w zlm68Hi|sd=2ANZr$cjEzW!(1f*{J}8LIeQW1#llAbyxqtypl1`=PkrNe|9tORLxR- zpZ!}oF~z~HrXpq`_l}x$tJ<2y;roGG)DOr(s(N0#CWY^=+&SK6$IX=B;`%Yae@APa zH*lzO+L*E5Q*4j=bQ^avEA5z3F%fej)RU5cB5Cc6c`{*(ufY=Jlwo#PF3}e@H;f*O z4iE>Giee;K0xx15T~`W(cIWOn>1$9tJ99QZBs9rmru@NpI?62wj6{ntnT=(Lt{j;} zt-H*uGOrOy`C1{;KCemFNxAk07i4w@asS&lQ#B+vn<>z~_Pr%B+T0}FQaL@UYS_cp z(rIDBAzB0bMmp|^jXJI8_v2K?%=jw2b;0!XbPrg^n0wmTDCU%0Bsh3cW8AAatDQC%_uoDaH$)dS&k%{qSq*?HosxOGp~-y}qN}fvLA^jFD;bQx z7y6zh@RH2)}QZ3pY`TeKx;*20DeTMG|cPBF@$4R}O8l=Y{oS zu!3RN)h75RH_S?+?$kCt(J$a3r}B9=J08bt6LC`V-NW|t6Kg3{<7XtLE-HHPSjw&P zm5F)Ik~-^n7Z zX9IpsKL}@W{%wSVG|phT`ya^NnJwm>dYaCfZreT9d6enP#=62m&GtCfXJts-a%AhT z=q8nuLhWUTAF?pi`r^48nR;pcQR;Dp$0i9)Ov-+cr<3s~mQs~_mmGCuzufQCVMXN- zh~~#;MU|IRJxl`sgE9gO80cYT1W+4Rx6IkU3tDPx0!eqU?j@$-dSz|34r|l#yqz#L z0tjI^L;OU%pFvw&gnpdS&pOWYZZ?hpr?!%}5cG${0gyxgqtyLk)hD(d$hy;rSf~; zE#ePaY+jFg^&_iYW+)x^lGx(QJiVT$Er`wbQSoARb!X+1)uB=SxZ(7qhP`I_5xR#l zR`(OIw}y1DT86k@Ue~khC7iR@>LS>4KH!~4*AYM7gD}l@N3Zneam8hyY8ZIZvQ!L zqHca%(q~|~=s?3l1N{653>Gw5>d3MY;9V@UcU5c)XvnI#H+pK{UHGjq;MB#hldz>b zTYgPCOeSB4zl-f&jy~t_;0Zm3y4_b=O?$g7db@83tsVKK59V|%79Lp)J8pW*>pErj zZL)R^WNj~D2SLzLmmH)>jPfHCKBz2p_f!s* zg3F^NIcps4LPj3X`0?xYt_tIzt>$p1TFd^PZ64%&c`=hQ}0)5aW1&*^2}n}+n)h2XUr!UNFh3%qCkdL1>NreKSWPjge7b%dKVP7 zYKTe0YB0LOZvJ=jNg(P-0bIjn&~gvG@lXP0AWHiBDF|2xLD_>MuWEcYJ=YIq(HgNB zR0HFSr^Y?G>IE@b^1PrRFBw&>Deq~-U|m-I2+6L?g1sPpwa27D=fN35IWyshDuCFxtDZRCjOD%3@!3VP1L3{hxzMVT#I{e$ViDW^tXV zXYw7Q1~oude(&nVWIH#zq~zC?L#Jvyg^G;K+3N@qvOo_!A_Fp;!0LS*YXI%&IwSfW zI8@e|ktU=yXo|q}^pyc2Q6gwc#M*J|k&3`*FVQt+9hkQv<=e?dY{NWA1U@n#xak9+ zzU2VqBoWi>P}s$VXCrVL0V2t8X z3%{>Co_#a)xmVcnay;ui(b-X}!hhsby_(DrWqa)a{OVtT_aYa8z^*~-GphS>7mi?0 zzy(sS7r(9~t3O=#KZe=N>bTzI=}OxM><3Y)DB$)j_!+8Kp#(#uMfb1^9=mHCqA3%d z?#O(cdoUpYi0K>s^){n%@-tHRuU_vz+X# znl0(7nzQ_G@Q;31g`OjLT2O$GDg@KVDVN&^=NxAZ5_L+v6yO~-GTI$K8q=H70I zd6~!@m46s(g_)lGGt-f4q`?y66c#7%yt7j1HD*~>$RO|5cI2s3K2jl1b^p^FIT2+m z>2O&Vb@b_>_JK#$!k8iBqoz{zHSYrFRelxxLoY40g=TcAqAO~z_g~chSjZxc07~U6b*}UlPlVI z9F~T@x!b~oXqjpguiGp&(HIYJZtdOS8fLJVsyMl(jaNqJxXvQonlV#r|C~j(Yovrl z$z_z7e=pbq5Jgo48Eh#1pOhPgI{MER4(M4lIQT~YBgI0X2fk_~HhQ{}v+KjB+t{H| zbPc@*5W>N@?+w%Dk4Y9qi^39(y${?K`zaL((R^4C1xqn zjbdM{a6JQ;aI*Q@2jWX-QABNs3J-{vpbG$N@Z*|;-Lrn9V5$R*G~151-{3!)#zSOX z2Lv4#_fz;Y|Cs{+kA=$S>25^8`=a$4g4BnBmO3zDU0~BXGjlK&wgKnl1H#N4))^t{ zE#z8-DJ`O!Dy-cIMrc~D?jM+Ue{Mg90(WzghsCR1{lIqYZ*_9BC!I_pZ=!>kUtevN zvnAmIhcTK~@sE8Nl&=?@W7%Sf>B>_mNNu#)UnH?4dzORh=Xl@(Dh1gWzX)@b4-Dkw z8`DJ?$O%I3#q9NaMj-SOH7C21>`+}5 z{nhO_`!)W3&XSF!l~MTyeT@C?E*t1qRYrMKUSzbi@4SSeMOB$s^eTy{07ndaZ>|Z% z$%5p}w6uf#ewNT`HD(8phxSA&4(Wk=t>E}5r1Y!vT~&?KA%eS8zpoR4)cRRQB1b)} zjgv&A*D$s7`1?^B5uD9}2_6RfeISD`L}p3I`euAh&Bk(l9Rh0wrD)avw_z3(G zsIU(3IKHoLOoiv^H=jKxJ444|Fk9mgS?XCaoP=%jT$4N9|MfmGJIe0QPPXX&3X^SM zAk(ko$w8)}@%m;DefuKkC%mNdJB#j}<1MR!%kN_7#8yBIP}j+A98xa0?gMgp#PS6Y z4Ge54(fvPa;m#W55XL{()0r3HQx6X>ZQ0JYz%(d~T(fJk6huYF*;U?kPpkhp;;P); znSO14^W7{ViHo@;7mJ?Ed%zZ)|Gg#tL4_;F!t$!f{^x@-IgUEjSbdK#<0dEM$auHaP4H6Vl{Qd$yJ2vFaKq+-kr>T@tgb?^Wr*S~ z5hLkOM#EM$!U0R=?=${5Qzz&eZ_K763*t4W)5FZIKcbmYrn4;Gy`%9Y8BKLoWrfZ3 zHV4>JJ*^;jWxx-QODPRlsd1?s*|54A4uOyBmPY)V5}&+_Ikpwa%`g z>kz0QxWa{2Io#PH!Mx?^f$EP|-R@ru;YF3_nu~)gVwbk4{TmC#RL8hY4C5B55UL0-d$z z>m+ZHeq<_F8$26bb}P-u;A7cgb8&F-t@5*Y7CdC#YTt`x9x{|(5jd|RfqwMrgP4Rz z@+6&IMC%LFTi%Z%H{D@dDmK}5u0H+g9GE-#omWQ4H8eDUS-|JIN)6@36f6_zNZ<|u zV7*4)4hyTQ%YZJcZt}gZJ#5`iw1S}_y+(oV!^1cX#>&Q*nm*u)ycCSk7e+M}Yq=5O zo3`f#iN5f|Rkb_36bg(v?5{`hXC{)q~qA|2ZK{M?L;GfK(kg+KfI$?fdyO2W}JeWnG*g!Zf~DjJzmZ?DLs z6^LKpG}rdn*_jvQ-{!)XmQhs9mZz!`)g6kv&X(rN!OdC~mvuW=?b76%z=TdV_BXy= z{$Vs~<#yQ$-EAKhKv-MsWL%E19+!({Wo@T_M$*?7!)tso)(|3 za+ybROG``J0;Cv%!#79|S@3I5PEPzR%S{#B)ou5^5kpa2m+5%m5d^kEd^#s-p6| zea*7QnDD~-MZ?E{@5qBaySG0i#>Bj-znahylJ!NLpcX}Js(t(>AOMxCum%K1d0J7= z9aa>8BkYELTu@eo9XVJym3TLJZIKgNv=JO&j^gJpvM3p0XN^J?(&)hAL+G30Pr->c z{P*X_Wm?v|_C!C&$3Muf^-a-XrTAT4=lh?9V))&AUc?$7Jmxti7Q~!+NkcvL^(EDX zl@&=GmEhHZUO8Eg^Yl_QuskH|6NP`25!nti2S?#;C7qKpFF`i8P}pVt<57 zj<+>f@-?}*i9D_=tEe==U2|DXQ&aQDNm|;ivGH+!=lLtJZ;WY{3^+WO8ezK|rK7vV zc|#ZRSGnm5Hq`v*s!V2S&g~EcX{+8@7^!;Ma(!n73P~e~UP%Hj!H_C3DW-J5P5x{C zcUhr4bAeIY3vQ`MN5)Gpe|{@i(e9y^Fi&)iuqD2`u<91ElOPoqQ)xr{xFIuI=@!D z5z%0(mtNU+1Ygg~%j^9Pm|fJYYpScSQByy)w|@Zmm?s7#)O?MgLKy58jVLM>Aanx} zcsn$v-o1U>*wR7>hgVik4y~YI3Qr+P)HemXLZ4BE{{93IM>zo2G!0I5Lug{{9UeZ@ z)cgel?H^FGLy?i@WcE(zJpJ-$2e6$4&^sCj!Q!$mt=>`RjUymu3g zw&~BHLZ3840F}qDg;dB39ItR4&dkghM@;Lm^Yd5L`>6g7=;v?Lfu8`@UTH#gG2G(q z<>dyS|LI9Ol3srQ@dNo{kck>?#nsdZBCd}gzDe*&5`w^&3%l{~BncFL^TC6HY=FZJ zs7!C)y-P1Gje@HGBbcFR-Tz+Qr(s)`Q2u!F?@w!uSL5FqHaDqh48=sFGpYEgnUNx@M=QiWS9g|Flf1bi+&pEH2(GzG+6W`t>;Bjr&$Q3xwy{Yr*G5Xmf=TjTnx1}@m^fYX11ekeQn?LFu{{AkzWqxcw!dq0 zb59EOH7uA}5~AVE2)ZnOhb1mU#U__vGZ{TMH@T~;D=4g+0F(Rf{d=w|6+GsUT^RP= z5)ep8^*xD)Jz_IBoV2PcneXwEK_)snC(%Vz!ZLTHeog;_w!Fl7W#iS=RaX7lI1rho z00tfJ0q6uFS#$?d4|ZUf;?tKJ=bPngs(9lx4j&S&d{Qc6FU~z74ode=&y?oYA8VmH zal}j?zQ*VCrqr(BN!HQMO{m4o$i{qiq6i3#Ct1HvAs1>&AFv&IlL)A)<;ku&-B|3Tq&6*|^` z3>1Y4?kb=jfFZe`MeHqQ&Zc1Tlh5fux-DbQPWx?sgWr(>Xx4d4j{+W)Gg5{{kJtF@ z>Rp>6|0Ggsb;+thdGy)~bDpH+Pga z@3GVs5fPuJ@5J}=QjgyST8v-bFX#ibS7ZWTY1{8P5uYw-+$HCKn$+I`WF-FJNQ(-6VI`tx&fL|As*h z5ixPW(9X_IL5_=#d(@iMcr|xeSQb_#DJf|l40OjQ_Sc{i6HV&6qdd^>Qsj1J2e2xEh(kdt0lfM5*h{EiKP!8)eUVMB4N{5fMwCf$BeJ>5u z+qQ%qt}!QbQSv)nV~4eb4wfi$uJskm){UzYLuGK$Mt(?Jb#sF^_1}lC&-g$;V+5MV z?WJ-{BHd(#7Em@rqzV1K$wf&7CYyc{g@Sk;@1x`6eV`^vLu_2-Sr@GIJw4f4o17eJ zze4mBzZPEAfJ!C^1fa3|x4Ah3d(G!QO4ELvvi05T}j zFQ!QK&7Xsn7oC4yXsD^rlYl0SM0NP@Aw7$nO*@U_r|S%jERcP@wM=|qhz~N!4DkF9 z=m(q6$;wR+rM@|5(GsSUGWxkDU0i#xlZO(QBq(iikiu_e{zpAC@nxW7kfCcWrJkwi>UO}ksrSWpU^snWe+nFr1>mRu-UJBF+mH~< z06_W2TRS?qh9{vt0suJ)F)a@fsSZktn<8&u>wNo(p{<33dl`-Duk=lt{&U`qbC2 zs|TePz0!T^&pY`BXWI03dO$z4NF3hkorPJ7w4&vmw-LtmDa4WapJlh-|u83wbpP0EL^dQ)e9(lRLtm79DpJo78N~f$A^_fd&=MtHK+1i z=lkn(I+iuj+3Bxzz87J5-RGAI*)ggbS1(*>38Q z0*ob4(c}(1JUTl1)y~Ogg!yd_NyE3%(NPA!vAl)t^;V-9@5#J3Uq5I5E6BO}-)(QM z1diA5KYyxwo&fENxnLxmiZ=|>x{b|Ee)kQASXT0}yxYvo7wP1%K~i<#nSyMjehM7% zCeSAUT+Ra!c*9K`4Qj-3q-h`^XTuvipYIu4p=cB(aF{J7* zX~?{#980U`V1M%>dEd``)_M|t9M@DzS~e`98;6-+MeOz?ZwjwZkK8o!0$S)wIw=FL zeEJwQX=|{peh8T>{Kg_6a{l$}SLNK&yt6>0H*(YL?R|)ib?vXNc=hU4WmT1ymyLme z=lx)Va2{I~3Qd;wuAo^K!@0{#dFUaA{kQM~eiDabZXLKG@V%izV#cop|Dy>kC{N;Z zcny#JA7vNU9>gui#?fCwLPC46b|9YLi3w&;oG4gv#st*@GU=iuz7QPz{8U_0siIa| zQ7tU&L0am?MaVpgx_|1KmEiuq*nchgJgtpS)Zv;!s(Kl|xXC~D%)w^K@EmQ*8V?Mn${WOTj*PEK3^76Z1_WN_Vrz`)L<}#xPVtKiuvO$q*Y?)d zU#OPI@t(_3Q&XGwW)T7C#FTEb)}0et*HK;0+xK}j`X{)}dQB^5ndS#7i6jG8B2a}z zinuOG@nN*IW{yA=oZjDQ5RHKi1@DK57tpa#tXjnZkXRzcc<}1Rr~S$#ywR6Aeyd@8 zF0{sB|I4T}`kA%c#<%334YFJMwQb2iRr#jxgg3E?qrWR{vo=a{_9K_JUq!~5>uUAm zYJ~{{wIUdClEkPeRfkJXFl>d3$gX?lf+6{MP4iYz|4RtydLcCTS!&i7qu{@0RUYehmQBp!GEz_m(7+<<8SM2+{EK^caxR1Vk=k~7C_SP)^8_D>< zx4@>amO}lmnRb&%oghUR&9hOf`ZqCbR9p5Qb@iWa3CB%bzZ0OhzWqv?R%P_tw|*aO z8JY8^do7~5!jtV!mE}c68z}4E=h_I16d6P=i^ zvbD7ZyrnK@r4H@)vM9Yn1TS0W{JIEV@8Z$!A*O48Q*o&F>=U^LItLph^Q48EH1|*J zKXA=!7CnFUUu$E1<29^R``7#0-`^c9Rg2E%1_qM?4R6eaC_~?5r+8fS_4P%Tu;>?> z!6;a0y^$afD7UX`)uN+rd`b%o>nApcWg7Nd^S>>z+dDfv2R`6-kBW&YhD_M9;SJ;2 zvsW4huk_V@u=Gg@;k-<%8uNt;?-iblK%V(xQ?uHDGWr4oQs~um`z_bKFCHJD>CNa9ih^i8eq}^80&jJFcb9Mq+%G)ntoVn< z=YaieS<0;*9UB|;g(%;Haj?BhsW=H9bW!# z4{(t`icap92_Le}4_165+4nu&^#zD*PjQTErS8*bnG{CllDf5vXN|%dQZLRw3H1{v zm>tW|a&!*ZS)nIu$D3%6Rr@%X%R0_hJk87Js$jDJay4Tv+Tg~%V|3dYp1b$a#|D@m zKV<2pX5NN{@lDG8<%H+pLExxz*_5NIkQDnTuyx$6@kSD(F>xaaiM)vrUbKu+Y-zOd~9pP&oK1qH)Nm!Ua0ynF)C7*yo@ z(KfA0h+-PYUJT##sK_g*CQchme*&n~%Qv*=vYPjyL8W1mGt>83}1BN{$uIrIJL9_65CEFF=~UL;l-gIvx`a0C#=Q z74Fr#UH#8EOD;-iN*3H4+g@M4#lZ0W56#0#fUW)r$!j`CPT{XWh`ZMRxYg<1hp5X= zlYzN6huCxy?9$3zSdxS_N@lK;f6H#4ijK8xcxku`3H)+zoN{+X#Ynk5CIlYPQtyKE znZY!RRCCSyxOV*NQF@=${hB%P?fRZDC9P_L!`4FW-@oQMAHLX65xS7A@G3RcL4B?N zXzS8tT6{@D-erNnBI(~chQp3!-h)z=3s05`T3&;J4#>R!0nmLZT0-utr_26W}QtnPO9>gQ_s&|c$0Q(z8g?%3(@!(sk4fFDKO1K*z{}NfWW~T3 zf6h%2(;KPboX62%umw58Q=qrG_owaNN0pm4?U+R^$k=nP%BupWFa(&vK6>BWIl z%b|*8&S)BNK+>m$ZVxa8yfids2O6K+te$< zygJsU^K0in-svlMZ5}*}ZQ~jH;X_ZJC2Z=WFGuqB#yRC?dZU~uR&x2FYP#v8zyx93 zFS;Uc!uL09hhn2LUe}s+Qg(T7UEK?b4^i@^)kr?$?L8YDbVdFtB#ysYTOWRL)!E0? z)EufANWQLl3CPFje-6%E2F)-3WiN((Xp`kg^vze8evsDC_KU4y=*D%+eMyzsDO*$6 z&MUTSTXx9bMk93Q_^^M4Tgm$dtl~`w8zDu$_SZYa`Uj%F3LG7n1*rzS2t`jW7dGI3 zE-2|dfcH^T0|v`Cxh=_Hs~{B$Sy=@+DH2z)YXO!=M3!7>B{II zS4Jo)GqzWVdIleJxyN!&wX2nRu0~`ohDB{q-l5<~NHt?GK^F$$^!=J7>|NC2>)l;` zwOy0w!+?jsaYXLQKtwDdW{~ocqlbff?5TIsey|fj5)iD7wqb^ zYFymizcoyj9qlEQy;7AVomyOMYoYV)0KQQh*n9BcQpJPsR0{@mzJca^Gpv^K)n(B$UrjP8u0?iq^_o9l zM@5U}(G)}|1r*(95q)-dv&>-{-)mQROz$PtDoq83eYTp6{7U!2EiJ;8k$90^qlAmA z_+(^_@tpRv%&rxAr|9I$pr}}%^XL9Qs{S%8%I+{q7)rWRKvB9GQlwK!$^V-B^Zh-?@$d%k`+(t^x%Rd9TIV{$jPd&!d9T*9 zXRKhm%p@*ulw9^cd2oY?d6=|uYmVeqaQKRdc*nY6p8gjyvfdW!IK6oNd;MKRgdvRd z7N#9%codxu!DM$w4&%N@yl}A~ft_Yu_Ze&B!S-lygS^{HYcltUUm5J8%bkOR(O^MO z0EGZxw}^bF;Y4mTG;#ddYInkn$EaV_fb=?}0Gs;?sk`6zra=41r|A^xg z7B*V^_4*mPYV_y3?wgs__8JX$1qHzYfC`dE-$q2-VP+17+2t3AgT^t;FJo7TYKu`H zCEwU|=(qqiEYYr*Xn{C)Oizi^>A!*)e3ORcz^zZRBc$zJib47#$aCCSJw( zCN3sVCApto;JQ>71x%qXwHU`jNj(;S5pJQ7TR1O5E$6+ z&Igl}Lk_6D=VzzBeP0oesezkYyVt7vQ~MU+43zY{UuvrH_|_k0i$$@@H_qda1J3%c zu1m|A-{d%+_$#qun0g%>tMw=K>m4`OT29{RKTb{q^@4r66_oB`!{fVu`7Sed18H>< z59V*mR@BU!Q}IzXHrY4pF|7~3UFfPpa(?UYzbhrxd@J7%V)9}|VWP$ipO27Zj;L~l z?ql0;T~MsF%zpl)bqFW^*AZHN@}{q_5Lr7*0vKV zO&*`Ctn4Rs=e^RI8ujzi@jg0e{Ka<~$%23s$m?usIi5p$pgOB6*Hr)X)8tcs>Cc~j zrU*xcCD1tNd>XZ@15G%F?Pwu68nwna1_R||u{*%P8~pXIPNa9F=taP5j+wUL z5{7;;2pgB=G{w{8OcO_H($nDDE?w0x4?jvFz`M)Rc6LNG*U*4;m=kx>zH>Xo_Gw8; z30MRtZ90#a&>I#ffZ5q=V*2-Q-n=2#yGvti$CfINyV6tsoQ$lk4P&{{Qf$1t`>a@D z<+|#X#_jFhP8+R;Muzx=gcyCjj^?t)yvDL;&>|f4Aa#2)Dr^{wE+}A36wrLol9xPD zW^v`Snr>-VNMfSCTu@Cpbf9IBvS`PsjRr_9NU5p60~z!?&>O%KANTTXMY^~t=e5@v z78-GhqE&wO*yuu{1hbwOHJ`L*QcPa&rH#f4R)-YRWUn&yh=>)6*EwuScU7|5J++}N z4;UV5HNMYrr}Oxw)#p!U63J=CaK>Wqsj z-*kxm4EPZV(J9Z-6{-P}uEUWnK zv+cVWIhBw;Ur`R0XJ-M6Q~bduhTBR~A0!aG{HRxa+p>gOSxE^U%?wMS48ktT*#&Fg zzkA1fbr*_I^tcV$I(yxK1+dN+n5==^`1gn%KsY1>*gf^<&gmk;AMqju+jz!#0~vBBLkN;8vv%d+N* zbM_ZG&{X35)xS&MzrR2SFu_NbgANlV#hK93izf>-tyG*=w(m#@k z21X%=SDZ#n{MwRwTA1RV1q;8iuE~z6LqpzxTnq^OnU~QM+MI?a0p&#qi zb-g;*(()aA)~?B8%z`Nn?0bqZ%>-Dsee1~fc%C^({*-NEZF`PZoR3$d_-LQUF@me3#} z53^v>QKp^9ESYIn=KWP1<%Eu%FY8`-`2<1H*Lb#MR`qgIld_o!8S=aK_|1<@Cu*sy zA0o+~YG5oTmH)g8<1;D3u5e%)SLgrrQ-%>1I)BLw4ow6UE>broCDUMLPu^XqDsH#7 zDSEt(+i|3Dq2ZMnK9YQhU6<_k4vLsl;(WsEZd0!d!s6-QsASiof<;8zNGWadGZURqe?zzL zcx%XD<`&nw3DA##Lqgs=7|9^11epHd;2?|46u1vPUmszuG~_fa9(!U?-?a~XK_kDb zs&gk9=A*)S1>mDRa#`HNb}7BLuk#XBZ83m)AQTv9jOTP?rB7yZ#kjrW&Vl|&5|+1I z@Y)21bqfZtXS`Ml{G(Jtad#RH-G1C9gI!G@w9N`g|g-U+~gFS>WPj=I_=ZqqmJvQ^q6 zmGE_&cntpiJ0+3X6e6Ect<*^98@z_I4?6egYwN~J&%5&FgGsXjzB*}}%}kpQ+}|ka zOn4?xIB1B}OIVo}U=Z_SV?X~;q$ItnrL#3#81sYgRaAyXHuz+O6p$qMNxR%Xr^mrH z;*w?xUp?>z9vj>G>h@ICkDUIuFa%*@dI?8g_Bp^`zu@ND{#?RWhWSF<#e3*rJ))O# zDOFZr0$fCs}y-Ue=@FCk^XIe&E)6h=JXfIcPe!ybUKQfYS*XUq}i$iCNfQVN>n1CSIl*0F?KyWi}I;X{- z?lIF)(g=mw!BExb&tK+062!+J`F`-acO9$YEXzGW>W18o`N|mKp_uI0F0Zll)JF?h zT?1VBD5@QS>3w{1^7sGxd!T@S{9n1;(cfPxUwSYqtWUC?zeN2-`Nw)JUs3DqbXj<{aJuPmyjQzK zlX;0k;1bjHNQZ>vbNoseT^n*Z1<)U|@T$IF0C$`8+BHp0&rjgmQYHOu7cah;Xx^w| zuCCYgSpoh8OTuV3=jBul$FlAx-QKW8WCU0N1v_B|zVT31yK$DG~sa&g1MU-6E2e2@`rGwlTOzzJyXI>jf@ji9Gpp90!~ih~0OXk@0rs+*9SZ)EikD4Pdzl_}LyMPz{TG-y}# zP)=^J)J!^cW8?RV;gVQ#L(FxNK$)3x?W(hv@>ed8lAm#IxUKwb(K~YbkZhM4O-oUD zF{g7!KUR(i8w+c99a)MwvXvEO%Lld5=BtJjyJ{ip8^4zyERfxQ|0i{m?(t<9O|gV- znb+n$DuGPTT;>p4Ph%4zYT5?^7|_l9hO^rSDA7-?tz8c{4Im$&6$)uZXy;1*oyjWb zU>Z0cpB9u8Of9fc_cn1=&Beyt~72%}tpkP#A~B&rq8oysYoTo}KMw_0Q=3=Hn$jFF}hPUUI9bvv|f3;ya3%hbR>sIS&yUMXBh3B?ji#E`{J!5ehbH$S%cHl>5VnCU~}n}M$;_CW0&Kr z)*^L%ll%dm5kwQ)0GqBO#ku)AcyE{b{`x$QbgQIqFrVocl-5fb8)&kpr(lP@uwN>> zSt!>*da&$8<7nB)<3c_!;nfKl>{kT%gr~v10)7py*a@Wqvnxy3!n5Y77RCyY!N>sx zXT`C%x3>sP7Hz8xaYz`9ox6*_jOZNLj6LK_+c4P_I^H2+dz2DyH8IyLxxea!&fGG& ze~>`BMwrt~qm{^wQqNFdcNL{2OBAti{YvR_&nMHhbJuI4jwj z`=jiz#qRjDZ8e&$qQ*=8>LETbMJVX#ezu1a^hzb95HuVWW^Ny*eQ<3)>|UGrbl6Y+ zK%jguyQm3sFm8rNji|{q4GRj_bDWeqg0It@j2}O0*nL7RZ+hu29L}2`_%bmSVm;=)&u%wk-f3)%%9TbguH9dI>-a9V`Hts4Py@UNB7ncIH_h*- zNJrt}_P3^{E~mwI#`T0oS@1aT1a#o$R=OWA8wpNT>h(@`MZQj-;Y?J#-d;jZDJ%ba z%JaFdzG{f=D*%Ul@T+&UWM-O9-B+(-s?0SC5@&K3U)V>{n*?s$crcNOrXPT562^d1 zvc@EFguI~n-d?C_)6f2^_#uH3R`*UdE(E`-RCBjxbT71HA1~hXoma77;*F$vGF4>- z%T`2Oyu$Cu30P{QjYST4SLKnTeCDk|@0V?%B+zn8jw#iXF;1N_t;DiE>!{x-DDk=^ z8Z?T?{zXHil9u(VGCnk3(B8vC&=27&w|$WPP_ zE-BT&GBDVkGHS8)DgU8Wuu#>!6C80d3E)b86)~1iSvcO&8OBB?%&Y0I1{6`xEg0pf ztoV5+9QRD^p1>bo%3Us(A;2o#=ux+qKasN(%f6Gv~~sf8VaHQ{v~NylG{8 z+!$~Rq=E2Tl|4v>EyT~qcMNG0@7}#zX#FC6kC*Zc8-~?rq4vUgP2(hO>k^^h#qkw} zRELw_dz9v*YUWhc%d7A%Of0Q{&CZHKT z=h|~aRp|zr#`C*&wErA8_Vm=NalyCf2CDnOn$EwE%86VCK7v_NkAn2^2n=gp`>_;8 zyEb!FcoCdEAK|&nO0D;zL>|RMC2VMQ^ji4W3I|h&Ef-f_Tc3!oFOyS^UHUWh3}+pq z9$C*)( zCVEx5kK%9#6`pI#-gva(GWJ0dV*1&d zGE-!CBaX~ewDn&gO{1F*C5ZaOYU@j*t&JJ7<;L7(CwwM{ zfw^t1m+8>m_bZ^8XV1X^4#E#o02qhbcEGMmKFZJ6cc>*W5MJfa(a~K#zU#$$Kfq-H zX5}?!?SXZ=L>iZ-!$S*0clK(+b@~pQD4H0y)3LTW*#!LvUYD3;I?t`QsMYD3A$=d| zE-km)WONLx>p81FTVr!UHKpJ`)lc|%b#G4C-_+vMzj0ayjD-a@vKq&GA+Kfb)7BMh zO|Y2Yr;27*7Z1s3PKW{b=v2qpVZzhBXx!{CQyb4eQ^CGF3GvS-uNdW`u&djsVtKA`jBi48w2abw{MIU`nUi%H z$-&<+UXEmxR#QS(xpu;bC=5;cf_QuaHL zc78cUXKSjEm_aM*F3SV0n1##5mN{NWJIWjReKTw}GPqdx`^fjYn@+iY*k6Z2UmhxK zsq;N-5l1syne;e5G39o?<>4=I-$Al7E3CW z8-I7&wPH%>2*dQP;kW)blBYTvUZ-56%$+eG%&DYQu-$PF-%xBPtmp|^|D;0eQNSWq z1;*{rx~nAdyae*m5a@mCFK@y%ID>DW1muw-&=5a(av1r@W#w_1HUD274g9f~{;F8psL8L7Vt%9!@t*1M5EwGWkzYw z+q84;$K@l(f`vmH3%xbwom#`lVoL7zWzM{QMHN2u#HOvXpin{%#Z#rHuYZi1)46X1 zz=a%|x03E|i%TMzZzsxFf=9z&$`f!dh#DW;I47OMY}%y-{*S5^vGJwRUpWZ{9kyL&LBI_MML z0}u(FiDh{UQ0C;@OmJ~=L2@Gdzv^m#3pFkj97aq$kQYI7&S^X_yrEkc{QIfwzc+Dv zaNdL^>RdwJyzFnh#lOT`sJ4a*U5#-RQZE-+qAB`|D|i-eXD=3%e3tdeT7qsT--dl+ zFi3!Ab;uy1o8gsZV1l46Doct#Uflh0#OsyJmjA~EIFi!Bi1?CizJIVTX^O|>p!%$! z-sn@K=u}&WU4|&9r1`43Y=TpYeC;=K8k!!+iSB@zM4kKEb+q8fi3NN?nAROx(+u!5 z-TY62nssJg-bzMi_kgXnrl#@{++?V~agW%Dn!%;vDlxG&cy2?B2#DXynwpw;y_s(U zG`0Wa7yWZ{%MOhmHrHu>fUutoIt_eX&sI0oo@n3y?gk))n$X*EzdTVTTpLI>{LS&`e|LBLut zT}c20?8W+x68@?2dJlVGv84p8g?7cH5h2IN&V1&IUVgFU6n;+ze4m@>&Q-fb>h;)4 zr0PyaoqYBynkL`Y;i!&J%uww;4`cJfURNuSJRM2mXT%}8M{p=#aDfj~AJsc|)|-$L z%15gi2`eWj`Q~V*Yw^bL!|PcLP@TY4{ zHncdt?rlMai)eT~>g+`R>64)1dxY&*I{biL9m!=TaCfD@L*Y^r)#TeQ>171mu}18PEtY>+1J+g5+=LBpb3xde&O%WPLmC; zr9*}^rpBl>{@p$9s=$k#L6?o*2rX?G&xwPUPvT%i8v$yF$sXjj0~wft2`~{87jkq2 z1@P=WoAA4Db?6lN`lpKE=bWz}cvtqFsf4JYMaX}o`$Ow3PHZBH-%)|%cV7nzd;*I( zjDvs*|3tC5irbk)gp7Gg+=Mi?4Lb@zq{P(0*oO@%HgO!4qh{H(w+AZ5k?IDc4hFz< z9X^-`Cd%6!UN}c3k}Z`zz?e0N{Xr4?-CugE>vDD)Ts7kSw>B zpFV|kZr4yHeQan;Q+}s@7PAo?i54DA@_trLd7YASR&pb&gbf$kpAWDdsm7sk=FBd) z{`+U9@sp>gdbKgR%Qq-xH;Dy}Q+4yECk8X=i8&1)d!0YPLuHT4YL(+JZ%^dTdVwQb zzsK{}80SO=^;@X1LSD~UxBXR3b1VdGy5@g>`+(Gks`PbHgxk?WL0Bm|!1gtV%pCdN zK?GVNa(y1#d-cXt=mY zsXz6Igi~={wRnK{!_`gqrdKzYZUB>kjgM19HB=)^>uOj0BwA>ApI~Kh@V{uW>1RM^ zAi!bD)H@MUCK#50@UcO83g1I<|)XlC9NJ5;uK>?j5*fWEEgX%L|TNE5T!ed&Y zq*)i|N4O%-A2>#}z{<($`fV0YD%3SeE&nk8&o60<6|Q4P0*8o~(-MN8%QWIWCg_SW zd8V%M9Qt~kRw9uey;`Qv;}`v66l#>tu)xb_WX6j zxY>AbMK>~VWd(Wr!xSEVNZEj$ny0&f@j^Tz4%EEVe zi=Mnd9uh^z93}{PQ6q08G|U1~Ir0QvZ-)xacgjAk|9ha5f)md`{P*Q-mvLQ|+DVTx zcTO(oPwHX|vuSy6oa}2+#wQ~eI^K}g^hUuR2kIAeg$Hd%E)a0XOp{5ouF^>Q3ILpO z<%7H_1@Q4xnwpy7pkry90c4L9cmR4xE7-EV{rrT-_-JQhmI|LbnixL{?anBear--fysBj0|!aTM3l5cYi2vx*(R zaJqpbC?R2+z}JwqXh%AQF0|roHfxDypdb{=4+!?0hHC29zK$o;LLJdGMB{3t0Ol!5^wL4Gnu3 z1J7gtur#W1vVwjV9_wF5xxC|L79F;e<#)jM7>T#;xjyoJo6iH*P=N?ooy)~mf#VLE zFw9>1Xe1sMf0^vI6VI}*pzEHF{El;q&Y`JhbaHI$73uRrd3JSjDh6?U9HI}uRhS$! z4aGLYwJ~PW8g$1>L}7=mX!x}GAj-)ugQpar;v&!bDdeKU799rGh))Su@B$^-K+r*%t(2XOVK$_*FsH$3Q8%aS+`vVAV;S6)tj!58fi#IXThb3wnqZ zKPPANx~4{0pTqd2LrI%S5X!mf5JdH9et(~Lh#LABNHE!D{=1+c&!VA4HOtw5pdg?rg9D{ePybCuU=zUh)5y(ngCg*Wm=}up@s}a@%d@(H z;*>wlsm90Ss64msIfS~j!Rf(!{Q4WRlc6(ygc0OOS68h|n;#YK;vQIaKdPK0B*Dt> z2{sfBd_WyeP{Cz#Xe(DA)vq(0$^0Ly=_VMt|K%8a`wBh1wGS`&Z@_ zXrLk7_kz!(4(Lm6l`>Z{<-)p*Y}^)LvDf6pRY>xAevhOydx5{DqD_z=I>N}d*rIte82Rlr?-MFY79hA z5AZMml9)hx&A!rVn(}n3+BS3uN~D|)2%|~lLUJ{?IO@H;<3Gu0X(;w$ub9TsFmd#l zKG)7u(K<7t?vMPpLRY_>T))Exuiyrjr0pX??R$N_qi546jqx*mYX>gNsZ7dVJ5v9( z5u>`;uFS6sTb*p*o|#qV0Vf+i;pZOlbD|Ff^jjcCS1vXgcm{m_^;<$GoUE)1a0ruI zQKBI#AnJh=2Z%^9RZ>NwLFq>Z(_=v6i^`r1+7dH_kVt8vv>8DM5BuviwC+k#t<1i6 z9Cy3XBw}B=>=}W>H0CJ@&8sE=?ylD_u3CQ%c zx9ci*yBQEwnB8DWnc8CRfif4}^nff( z!r1O90TZyU>uzN>_@8=~mzS$7f9>v$1yX%OL&M+&lk97rr{6ww85Y`FL#cEXPlNg& zjp!tF?iEl-hLnBlr(~He=;{nBTl1PIqb8;o`hVEi?Z?=@-H}>%LVoWhlI8)o;aE{N zVH=>4@_V{I-mL>Nq`WGEj|gmsYwgL$^Ts!PK;|GCa3+F)l(Z*cI8*sdJGiCj9hv!= z2*~)R5l8_KP+@`o{1Iq8V1gXsssfbEN~<3fplxvkw*klJYLFN6Haz?xa#SfuRiM5z zj1tDl4+I(;U)Yau-ZlG$ok@}_Ri4ds2(8@EIoo2lF zdlg!-G1GL?gI_)5x=-?ixbmp0FD0Dn1bRnBL}gl}s>B1_G=Y~7o`Il=vw%_oZUzkg z03f@#IBKEY0%_YVF)T*g5O4$`VCPEq1PkKR27ZISan@_-s<7?~X{qEaAWNMAq!Rp)jW7M1misF+yR@Y+u)mNpYj$Coedpan>d ziXs6g6-I=l?|#`|yNCZ(>{&9E&bY%Y$Y>WsXhSA)l!W6>_d;kc4X|b!+G;h~=4q+S zi**T}d%RPGJ>l5@LxyuedIdk>s(wPQIF?vtqS#2U97uKH0Q?2gC~IJCgYxAM5Fh^n zA%p+f(Ct0-o*u0T!TWM$#>OBh^#Xe^df6Fblo%Wmy*>GW}W;yT{ck8G4qKhQ@XZ6a8^ui_}A7} zZ%;hC4@~eTK`94QK2f)29;a!Mv-4g7?bA(y$Ct5F>E{Xc=eloM@>OYJuCYPiQkM{d z-mAfs;`i_0JdkA;+g)YoC>JyiVBp)gZ{KG+L1B_Bnq1}s)*-B?M?1Ll5Ir4@UhcuT z1!_x($Vd>ll_|om{XhV8!(v`qi(lTr)N9yf`Zr2&WoyC z2aQ(`T-MzIvAGKrafsVksc&e@e94wC?tmBaT438yZg_cnyYCe?f%jT&;_;tuMuSS* z=zsGiq(V8e;@%4e_N7@k+jZcF@!6)SWgqATs_Q5Q3GcEe;!;xSPZ0dac{AivgJRJNV{f1SA2eae|0PmpYF-LH@QU(DzD*f~#U`zCY zaVV6O|0ykwO6(+f=_Ba`vHY~TX_mL7^Sh==MmTpY9q;zFr#xIzqWIcLTkg&- zj9FOdR{KfRFk^Q9*R=P>jq2|2-`~LyJ`pO)0Z>rcb1R%l`*|_U>cn3@KZ`AiE9P)~ z_UxKLA;&Evqc~NHP{tm-9=6rDS$My?Y7t_@i?4#N@V_S@#9w@ccMtD9?W-VsJDJQ| z@9%5o=v2S5+DKkL>aJqF^GtC#=ey%v=}H~R!t!*AbLI-m`S0I!I+CVmR{sFt8%5_G z|2l^h@o^CGg>5w~C)+C#dRLT}L)Ml9iHEkfHvQBY_*aTSnnTAMIe z@i-XVY@cay9^I{{t)cFmKjNTRE7$AtoSW%doe|8S4XdR8!80}C(51iBf?_$}kk)#D zYx&f-{;DrhHCwLQ3_6Z}zGYh)wS|h)a)?$~d2) z=YdZ{ENzW6G|t2?dXuRG^-8xPR8D03g-6b7-lCA-;A05xbzMRWrmR+PzKEb!HgXs5 zh6`b1cfI}bn{%l0qt<7vwdC0$-I?(F#3E*0&(~6(G7p?vSHyi>YfS6BRpn$*DPo9B zPei?q#yy`_QZ=RGk^9 zsDGQr!uhB~tCyy^n6WuF!#NylZhytNUV4YM&auf?E-c$a$^4;6Be%4)+0nFHl#s(j zCYaC|D(}?kAC&GmPaDX@MsORHKNLz)ZEO3OqjC4Y^k=O%R~%D>o(F6nFW*tGzuH21<7tSS{%u9FOKX+UGV8R; z3xc(M>TFfh^vVTxOM^~S6RYj-@>I6`&z9M5;dQ|X@BD{1DRZd}Bmy5NONdF0nv zDiiH^>S?7$iVXNUO&cF)%SQ}B8}9+VTDmtg@IvJV234?~uw6IJ$IV9!|#dZ6e zL=0bRi~-xnZ2S@|#JrbQbK>FIzbaYw;f%~p^r8?mdj^SENS5}u;lV3}3NciVF$d8JxcV{gdOt``VTMnM1T(M|7l@6H`LQBhF{ z2}?x><3Lq@43|1&1V;qgvfJ-1=tBNnN6E{}>zP{xF)FV8}BI{O%FSt*)w$N%rgFQfTP2dma0O=;J|qucVm!Rt7EB!V2Mx#p$9V%e|G}r)nJ;F`91b7cv#D#bLlxuX?z2If4ior1r{3M zLfZJ3>b~5MzCIwc;cjI+JC{#BjgI^Hk=16yCIBiJv}wAr*b%r$Nf@#t#<6j6+2ho= zF*0=^bdRmcZZrq!M}wN=SVO7~+1Tf*&ONI0kxzk-ibR^X+E6gU{5W~GE6Yj7n6+s= zN@WezE2qsJ#}}l;$;C>Oi^>zc6y9YvFc@lc?>@hFaL0z7?6Q9DF}0S~#0in11~M|B zp)qay)F;t%`Kdif5y9m#4vhk2Ytu^aA*z4w%@zC4agOWP8dkBEq`E6Qa7tnz<#W zC#exSAz)aJ8oz@Gnp@PjMCd9V@D!*!TZ+5MpFGLFb{LT6&~NCzUb)|<&_%((b+GAF zxig^lFXWA~J`45BZSr?oO}^wt?DOR_emRO!V%shD z;R3t9-RIirA1>(R*cB-hBkmAEbdsu%a~&oo<_J^>i+$=+@v|>}{GqGJ;HMzMW_t&b zc)6cHqpqN!zl9N!Iy}#=wx^Re8PC8EEH{0pOwbIYeD!T-7LM9BBOtRSb;~s1PEY`R z2~%2L5=1Muq%d+-s8qq_3amFaq&!i98Kb4RhvC$2?*8OTm+esdGYmfdTyjP#qo#VT zQe=2^(-v1ECguyHmXCCjb|I@~f$Vpjqt((~XSr_PuP=(fw(7ZkyQ(%W&_;)emzRcj ziBW8{s9=4(v=o@SQ{&_qrhkA*w*l5f+(IWpoSdrQZI!UqsD6evz5k5i40OmZEpJ}G zo>G{jxTxDo)vWEi5!r{0Xk9tZ#a%)t-SXvGthU!*op0k? zhUIe~Y+L-C^!sPk$dJJ;+@BsHnSg?S;{f%}QZu8Lp$@2aOm+GUqr zCUixGUbEwBeQDP*d5Y7dl`=~CoxIjKJZyJRz6eANBnY?4c-IP)wR}lCmNl$tqnd2+ z@Y9^|oRq*CXx4~vM?Z&7;OaXyu_ zvHA%X0-{9TX%Wdp`1ou>Cx_FbE{;MevfijhA2&hg?FLpQG^CE+OgazINt&QWj=K#m z?LB`wXfpXkT<)K&S}uC32w-rVYk~M2GKp!2-=gyxyGL8e;O%AJ@Yr}HOw3aqzBsh9 z5mDxKdL*~k#URSYX=vv#NEDt~qt0#V`?815*xE{Y&hZqsRp;C*eYggSd}FWbfA!b7 zi&qOTKfsx<2StJ8-*3!QjXo7lH) z+&vh+i4xh6k&!`36!Juy4ZvNt5AU`yME*cP)Ecl=KHNT78&+UqVv;Js<7t7&%JsR+ zi<;6OLAX#Y1cj}S$G)DnbpW?(`*CHYbfV{(#>n!3#j^!e7X?bAJ}>c0r?7C~gnfnL zX#i`ovX{~OxWtu4$0|FmCvT)F6_oiPNO3y_+;XLk=dUOZ0bsljyi^L#cAVP$%*^}f zm<>?LZSKvcH=rMDg?V`eg$;OaAlX21m=LI+Y%DDDF!An`pQE^OLjYrB~XYBjg5~FUFF57gh&jP(t>GP*b9Q?jVmIEPszwRj!dZZ zlTHt6h9cAC_J}h|^;8SApA6oc$^Z7gm^@zzw)jdg(T-q{Gz9O2V3@6VK)C0#u5fC# z6%o0mrxla#n-jdBvzV_`TOX$e)Q&12BT*5OS+Zt)LZrDBA zbmQ(9#GFlnd}^@sEkJ+NxPsx)7h>%b#5v@lO@3NoQ)lI7zDt2!V~uMWZik0lC;^-n z#+Zw594Dv!e&L}%rm3l4oYn64T3fD%IyZ9$%(@wHX#Jpo8o0{oyYQQ!_c|>B{!L(Q zf-WRrgmN1>S_u9ckKhr8NlRtvk6_#h2O%qK>q6MuiI0lG`2%f~-ZJL;e z5_I`&)tBHGqz5*<9jmC?S`j$~1@Vx&dnxcs&%oC#CI@_$N4iH5rb88P;^J(liILmG zS_p(3dRtP4HBvM4#Gz$dxP5liKG!UO)2_lR<4doP zo7Ok~KP~`e=TTH$chbrc^Z|#IkFf-$=cqm!)rw5jF-P?4mzG>xHl6%V1?Csixu1z! zmF-6IKY{2)mqc>^gVf0?v*J+YvtjfdK|k!oVFqn2@J`c2p0`W=I-DM?3Elf;Sgf}- zU8fDowa!Q)5|S44T3T{)D-s8QkmxXHA&|-rjzfk(Q=S_as4MY?w)tN$c&gyWqOCb& za){~0R;y7?d(Y+Wal;MFM^FkUY*Se|oCZWgIy#(F13U)?2cYq6V!ZMlU%jBaxcy_)*Kp4l>ve~a$ zum9*zZ_XYc4nhhD99d}bWubm)I&4q(6n(+P-5mtNk|46@>J1iy$k<5-q0qm|^$PI) zGt()w68j_C>R|h&3VjWwL_a)Xfc5A)n8BG3|FB~8_q(_^jYiL;!K7IkZfGuSXcHG+ zn5KKo^VmW7W0mjR$8Dee+!~tIVctC7bYtBz*G$Rqq(<#=D?1u0OP0pW`j`H8srfL< zCiy4aU6UD%)otUpxlfg)Sn6d4f7xE8&rKGT*ptBURyQ}#1ZXS^nsaofed2BOK@j-w zhZ$Jdj}tKLDA9_PPdbPJqvgxBnw7rbl=Soxa6}(tvIXnHvGn#(Z6!DeKTS+LPJ8~B z)fkkaaEn=@Bq1BATJJbKhw?Dg+^EGN09Z7PZtzE*sd= z=likf85|VdaObs9pFe*_g2=SatxRJ|&+=@8@9=DAX?qul{kQ zM<9$Jt+4x>V5md}Q6kQQpwVs|nb@XgKd=4qICZO{KbKkIM?mvl$4nO`dBl+8oL-?` zFTcl?-6r55@2R877dR9PdFUNG7mG42JKIGyc5Vz5r%iNd8Ib)m=Tg?r*i~(_7v+PSt ziCYr%C}r5f+ng38nh|Vw+f7ygj6Hw|GIFDz9Q^zhUk`Cf7~Ju^`%MJcB_xc2&i=vO(m3G{?N3bjGlmB$hX)5mMMY1* zEzY2VHaBY^ zEszZ#qPCAk!{qEHG)}7GLWfeHQ7xwVB9c152Q9zOZN(1!4rnC2UB38O*!)alf_)N1 zR}tXCv@n6b7s*j8u3&XIQmBi3A6f^#-(mr0wZn(#v8QaSkqB(=aPbth{(jrG)96bm zF+nXfLhsILSh+h*b_EglJxeZZlQB89b#w~AuqU`>`7VF7p*tj@;%T+Va8^@`gfjB6!~PZo2oxnH{mM{6XRP20FTP0Zg06roEHrcsLB@{~Rz=iE9M;Cw_t&1c{L@OZ z-|2v!$Esq|*p8NpDnIjPH&t0?X6wZkmsdZ=++rX$LdE>6#@ftL&Zfio)EsXQatX2P z2AOPz(1)V^uVMeJXlIm$lMXZ`#M#cnLqqQS`HMZ#aB#Tdc{4LJli#?Jb9R<>^;<`K z`}m+W-b~4RlBgo!{f4JaP^xeF==ruY-$Z+pq z)s)u*W7iB$F9>RoDv$}5Xh5hzx)Chztv1IRrxJ9em{B;23+DmiOx@kRQZgS(lYoM-fp$9d;dZ-ZjWhJMl6FRX zWQI$lw8-Q7^U^LHM9is~y{fwUI0$aHvYqc5Td z96rs%!J3te$r2Os&mPl&r#PW)?qjTb!-;~-Y^N#O z|N3>UuCA6-zQdP6FQ%a;WZZzJVUxVCMTt&QT6mqw$&V^6_bYQ_xS6iC;8$Xj-p>i6 z;I#{sbBhUhM0e)t0Q7ARZ!%K_jQHF^n5j5Ku5a9SmeDGTCh={%fxrBZEAg%4wS1UC z-*rf0aW3QxF9I}M#a)whn(Cc5Fg1K0K71&W#x5)(GGVdrsHGJ%>^AMzFFDIahS0!9 zQ>dnz{TpsSgIcpt`*UOz*raDFTC(07sO^2TfbJaucYVJ$(@+EDxBtH50tGd70o(?& zMBLit!tJiF2Od|05r_b%_AAXL2o`kG4I=0XXs9yb06DEE%zVKjwYh;0FT#fP-)kY_ zv;oLJfI)^*3>X}3EZQNs|Jh~lFB^4j$p}C4FZtv6zX&_{6@-Qpm|*AvA=cjnXWrzq zx^m08^)#0;AtqwpO(hEl{Uh+j(uoJf8TzYLfA;denCH)0{~x_tE@jReFW1l!K?of! z*l&g*c1>$}5&Q|7G>A0X@}$`(9kgcZhbDNNOK=cDF~$Fkrz*N@{fAvJP2;H17kmHC zD8zyIgB^A=*OlD}?q-4iRf4VBh5EuLakoc{)=-8BgeTx5@TH*!?2J!nYP8}IJPRJ+ zKz&kstCgVMi(d#4WQKkM;0(-YKGr(%Xj#0t){&dJ7Z49cdhvPV>Q1%v<i0)(fiHTG`>et-8Cx(*Fu%L6`WPj9a-K#o-~7Bow|66dhU z!u(ruZue8_1?SFRAIGPjPSZ#{g8?Dephu7ZkX%rZ)Hc|!})>dgBJDkJ#vRxLGc0(fde3k6e$ z&!?rezwptmS2_p5ZV@ex()p?QHVM)5Y5j)k$}^Mh^OtwRJ6<@HKjpk<=AS?EzYESx zg>j$NrII&9g+w7S8gH{|o{YOMdIsAjlGqRByh|2%=DP4Y7ig&fhZ)!PVR-9meE3q= z{v^7+ur6Sm^ez*x3o&{@AQ1OHLv3AX^&vFVxI_ zU8;=!pfvsq6GQ0!1lMtY6L{Vb2ohF{Lu>Ru;47%b5{uh7Cgm=t+1l(EaZiew*^4Hf z_N;u$k(LadSmzk@Zv;6*%Dt#)*VcdrMF1v38g|UY-@hMKq;p^TG#~d&Ob<3e=Ld!YK(f246r!{Y{9`m*ol>lgbZXI$V4e-#q<+8zNOTiDi*Uihg9+N$S^@&^!O4b+h%d7uAYBC}}9*xCVsX!-Srl?G;v z=tx6*K)mi$e}UQ!oF{LCBF6$<8t9c67r^~}2539})vJRLAXEqvP``SK|6T_orvxMz zc46&ngYB{wq!ubUxSi}jOOx_9go78I8LCrZtqOxPfQgZ?OQZ9JZa)J-Z#vii$KIQV zW7)oKqqinK4K$FFNTo6qiexU8LPh3TNC^=#WUfdNN}-e#$rO^zQxY;nWS%4QJkNal zSv~Liz3ZQ~wzYlh`|G{8=PAVPx~}s)k73{U<2Y#lz5~a4pY!DpU%Ytt>61-p`EhF6< zfa`|PpOA&IYO<<{w43PtpdM47X`f6mAOzQ1)@nVLa}XLRl33VI=jzzf?~Mp6ZqSO8 zi#s9He*gz`$2i0<_rIjt8{q|?HrN3$oL-2p0{98S#DcceXRlrM}x|gzmQJP@9JZHz+@YUP#|QQwtv57CU`s-AM712?(a|_SsP32D?+BKL}L|P)7LEVqeoQ(w5*?D#Kt>N4}C#4&E;rq zir)+)1jZ?-IpFc*P;8J?&CS?UB8wwWo-EqWl*ZqTj!$i`3lDp#;x{ys*#iV-((3m! z7J1W1HRR6X6w%*rf}vV(Y8NdT1k-=s-M&W(&4TY5RYirNEJ6wa5ki?G7|7-O5%XI{ z{i*+MJ3s$|EouqsF$Y^zrma4KZjS=`Ml;|H0fZEg`3VsvW?YCw>;UJ&qn`8vpKIOe z1tgS^OMD{Ss+D#l^2dU5bd{LJ6!cl#);d^4HYw26D$r?FLYAi#r>%w6#JGiWWVU;x z@Qxg2SjJat(u_aGaZ==}OfZWYjaU8ltY;C^T)t}Eu=yz$hVcRY-^Vh3V@6j34ni{n zGjlA)fcAw2XjedxH(=&kS_L`M#9&i{MhCGcE(J`&)@Pp!nECI~vhrh*{k;CkY4+@{ zVEyxCtlglc+%B^*czhfFy*W z6~lBI6M0S@t%)uIXc?nxbaxCtb_V3}m@;|%*V{1oK^X=PFhd7C6kbmhT;dSc{duJn zTu~sSt?=3`XmPTB%F}!<#1jm6Rtz;|=Y6EmhDr$!nl(w!W@mZNwJaU0PpC<8FpWo3VJ*oTA2|(0FCIuR-t!XI8OKnb4 zj`Q*(ik)g^BMfke8^yoM#;*f#EU1_^*Eg z01D+P-Jd`iU;f|wq2j~eXZToNZ*yikI?gKrbk+$VF7nljzt;tXWj1XEzCvOCy-pV; z)-oKdL>vg@frTXw#!9$fC&}bl7Bsd2r5iz|!b+!{$G@(;?r$8JAIU^;5cK*ZF|5a#+3J&+`*4LBMDo zlh4_eFK>DBa?HcNKNwjS@!c0XIey$xQyQS^yHipL=_hOjvWKHup23q>ED2poP(wQpAh8w z>Hjoz?tg6=g>u&8e?BD7>wlgDc?$pY9RAq%{~w{ zsiCv8(+G+e^=zk1c?AXVln1OJ*hbc(qNw;ppy|UD~rY@^2>U@?7M|?f*!6Y;uy&qWIAs#5ntbUKa;& z*Wd|Rb(U;H`|D`*Zh@Yzc;)FyC)_D{zCY#=SH4BBs6*oargJ=NF-;T25*2AyePp`q z$`zWna>IB!Y*M{L(YfjsyR$97mW1b%t5yg#VtazrH>?$f6LZEjl-Vw$PezwgG!^5mA^rHCrIQ z_!|9Ydq`x@-#P#ZAzXULxR__&uIMU`!lx|L5Cd7Jiv7L3;kT%n&E4I_Zu4mls1FA~ zGGvJCNiCNX>dacM=dSmCgOb$~fUo7xo_(+<5|q^B^(jpN2)=JZPx};IPVhU*U}j=s zazFGg2unhQNy(%B8Jo9wy5#RK`IN0?`&pAg4ejgt$KBQxxuANwO#F^ zHBj-fNug^HgQg)S8UKDoad-|izD{CBSURxV1|8fT-RB-ZemsHEDbc7DNJAAS{kCoF zQkWq412eO%F#ZlnvsM~Hq(-NC^t?)0T5-_`MSWF}hU}5j&wp?MH{qbU@uCyjUi|$L@g4eX`~qLYmRQm9}4T zbSBz;#HBg1l<8YJ;#Oub=*6q@VO#|G6_^B*5}B%G?Im>J<`afmskATcgr z8g_;9F#_Ti-v>&Msca=tt3Tivja*DDc2$H3PTt<<-`+ykkI+q#5gQG61Fj!9gd#I( zrae}&;Fl3Tr&!OMi$RC9qrmKm;?j4 z0c2C3Y!;V2-@)zSHP4{|lx!zO>f~`nuLBcIm{nR1=8H=TBX=`mQOUPfY!Lf*0?K(~ z+=`IH^!v}BKNF2A+upq#yu8@f7Z~1+IY1PUh=~(J<0))1{`>dr`E}dMuQKbpGfY9V zZTosKWqZJ7|dxk`F7MWXTY!c_K>RsCg1E=gX5k%tlJ z2A%hF5#v9-w(?34&wrb_8{fF$jvk zK88&SmNFnukA0%n_r+2pY&U`KJP)Rw!STRgZX(g4-*EkB*-q{oL24N1LgYW>B73nN z?su`9*ub7f1Aky}XoOVQ5e`lI{P}9&Pl}v86!$-Y912g{sx&dp|%!K0IRJ}`Cl zWbKwhyG!z|Khm30oXZy8Mmt+e^{( z+AQ=5xYm@W1f6>o(PR^RF-jwOaAlv!QfkWVytMG?t6haq$)n)c3gs1oA8{f8YjNz~ ze?8j!L*+kHiokJT*J_5cmtrv&H3B(v-XNyszJoq~XQAx{o5{PEFn||7(+dJM*KrWl z675&)^E~L)vCa@0@nIYnz@W^^F_{WX|9y*yLi4?r+RGJwETRDjk?Ip39qZmcey$d9TB2Uw8VKo>RkWO2=Y;P{7JYMnF75orhq>_%K^4G_bw zVaqGli`8+BqNUpxihc~~mNdq#@$0ghM~oDB)LbvV9ZVLv%NW&o32dMn_B(y+HV%g< z!U-wi9PHV~@DfdXdlSmUe&Cpn4>>Ps1PR+HLyeMajv@e}uZQIUsTfXNF35c%arjYy zI=c7n>3E(Br~_6?x4tHoA1;g{P*1e{?voG7Lf_5TFkc!ZNW}gta>$75bH7ogq|yVR z@`9036kyy@y{UnQWLaN=?vV-XJ2rhy?-0KkXQA--78x3F{p(f*b}&W`N;eds)|EG_N9Y~LR*uhXcNTDoH8%AVk* z`Eb~|ICT3lLRgolJ#1-dNyt!+J$p_|9)D@#v^&n7+do zjw7lxg0OnFOMFSKGp(f7W{uxe;0N0gz2w_#5=INMI{IqZq=2sap&Bugh{YD2M!+`A zq80}ZaF-~kVs(tyMKkka#Q?QAf8m<#X4;`8E?G)xP@!ecj~0`yh2NkM8@R`E@_^0U z8N||}jX~I=u^FS%Fyg)FkUfjLC6BTjTIQZ}@E>AC6~Me!X#PdNJyQeQ z<~kHc(!Scx3s%YAQ&tNPg>H23B;rfYTt^gSD!?sCKG@1CRiADXcj7sB*0h9gCC2b> zV#y6!>Ka`%fr>42`14v+X+FayLKyt=8! zn=3DGO2Sm0_pzA}`Vnzqw-=M3JPEe<1v|+1XQ6_w8*71+6e1J)gakiO97V%Mq92B< zQT01^&%6-OhKW~yNFus>vS*+!p&-%ORr+(oLP3+0+{;CU<}6DH8;nby@{;`vWa=P( zgoqtY8*3L?a}WvvdQ<7F|GO{bt0XT?>$i+f^!e^N2iGqpC6(9Aeb?RH7%B;+!>`QzOtJoC4}q7!Hdym4-Ym7@G^T&CNkNpSj1^S^d*UxAi=`}cN;kb9i!{WEEHLLkScrO<9@h>83ge>v5qS~T0}Uq&_2Tzq zn*%&Uh~eO8A7^_|o-HM8SZ~voEuG_wC{x$*C0+)EzYJ=}$ZnI)NC6Ea=}X7LGUR5I zIRr{f1@;TXd9U=0o)$gUN6~kL-*3zjPYBG+V@5v1SMT5RKnHE}*CjyUikvTdmLs&v zs0vepLg9=fFnwVb*!19yFPY-K=t_Pt_1C73U%w0y=$vnO(jj#C($@_HTSpohKUEGt zqm4LG2?rT7RJ!HSfLnJ`V7ioU(C5K}8$AwwrwsbUn+Jtq3_mzu?CH5`JD)i8Npw8s z1E(f!&X2OXcaFtDeO>}_7Zz`4DSi0$>k>x3b%UCUeE90i1IOr(Viw)sS*6IPdBKc1 zfO`s8i*RnA^;_c6&*o69=(7b%D(b>~`0`ml8VebTPo9S`rlA_!D+Fry2!u!HxwDAC zDdDmgn$?)H1Rb^=zKF0RJh)TpRB#260pg#V?U!lup_Wss0(p6VyL78J9u(3x4wRgP zpAY&l#O;t!9;vVoOALHh4RX8v)+Rr99Y+V9xbJ~7ghE_E|BV{hL3H2yaS2UQBZ*2Q*bv1;a(}uGf{rrS>d1;hECgMTL!y`;fMQ`ISS8RuJAbQj^ur4pm|WxN3fsnTjq> zx6h)TBj+^=TX}L(8zcn3Egn)CWC39%Yo)dB{g<(uhfhrXzmo4O_gh|!^BtayshB;3 z5oeeLp?zgdIO{YT2#Uyiioe$Ji`~_d`!rrhtJ_Kh>Mvj3hi^H!-zYP7ww{W_pb(>_ zOK*nTF#75Zy3VSRq651UJQz-?yg{?N4`Ddhk*FaR(sGT0ckjhm-z3wfC}eC=WUL?3 zhCmei!8>RTf9puKdO1|MFZkUq7!`^$MOIBOPS%kTJX03Cd#^QJy zpZ%l>{Br3cb0RQ+G|U8LQl^@sI}A^QfF(whC=BKPUArV8`i93zFGnojoPzuU=Bw`FGG}! zXfzfn{LgY1=hMLq`ZK^c(4aSt}G;ua)>2K_ykAjmwFK0D}obx=NGUa4jj>Y z%`tL$$vl}Q#qve+Tq)sRahenf8xFUaIl6VR-lnKM#PeW7AC0*vV zEDG63tu92v^09u+3(vAA4mjIs2`!n+LZ}R;76M57e%?}pB;qID?t-O<{c1!w^U<_P zNOZDRpMEih`|w1}+KER<K~T3)PMyY>gk8bFE5kXj3%QhvU^AyA4aV+X&h*tTZ3?S-f@mCGei zP9WZ%C^=ka2w!N2qMiYr6OSIq?jo{CY#Tubi;9FRvMBsHM%En3Z2z#Tn@&wPk^oXp zfO0w#ETRZKlAOl$p)3v3)32XKE{fQDU@=xbN1Y?Hqd4cEj6ucv zK6{4a1$WeNS1O3HDCL+yOymwBDs==#LU!X3j7LmV+g?<tg|7xY9<0JMxKi3l=|Tp6NwsIIEYIcdT_;TCj+7%~H zu`e>!U;8I+*BAUma$=#u<=uyT2YIPEI@tnjzh>OnamA{G^eG71$#Ij{kdZ}3Z9{d z=sHS-PBtVj_IcZk_w3u(4&4EnYK&lQIXcIGy>w{5pR@>06oWBcpT z>79=YU&-y?uxZn6c)IPBb+Zx7d;67kMMDt2mNNeGtE!xw3*wOF`Y3sVD-bjr+%Fb;pK>KcNl92oA8cj`}a58}}E=g2l}qa!ZF}$9yd*`GPkI zdoz*N@Th2$xVZQ`^~5zwQHnW0eB#mA;fhM3iNxxjlTqFAR+nDzx(^am<34;Z(7yMqSy>l>6`0|IKrQrrG?V;C2*Cp8aOcQlFEhlgyWzE<< ze-#szPRmNcvub84Y`hbq%ye`sC=r^eAI2}Hgn)pcqAV@WnWdg^7P%1k4*AO zh*pY%9;yvHQ7%%^5Qzm}%OmrArc*2{%3q(LzSBWEFurnjo6(hjS??oS@2wo2hw|$Y zJg=QXLiN9Lr3ND3CG9v}Zpb$c2@!-?8IK(M9ndG6uNFfQMhW6D3@vp0^>!&949V_ zxfj_#gQIEEK5A zX5=ew@{uQTfN}M%&@oa`^1XL(c5FW2QyaTD_Nr7@Gfayr$R5ReXvKR z7-$fA+=UQ|;zF0eEZN^0wuuBtYw}TPW)@+Oof*cRhDZBC*oFqxqG;L89bbYtVhf<{ z;|>lPH|Y8H?W2YstN_8(In%D8As@)z0@TaeP|E!t_wAXyUCbfnTwx_{&kN)Mo`YXn zY~sYeIfY0?m|roNW9m=S44!BAo4J<6Q6vKw37&QZpF|mfegr6N9Znz)Psi+p! zo^Uj8m}J<%G(qRI z`!!JGk`v)yk)qd79>4c3T0H8*600IHEI+icuz->5jTWNnp@z{%eX^TJw!{}CZD5)8# zB$=o@NgOD8)Ws898%t@(DuCk68-ZYdQ#!+L$p<{D%*@Q*KsxGTVq@>_$WRPvyY;!I zh5^|#LbAh9va)tOm;t{)_0%Tu4M;wU3!<*qC|$t;v+a!xmjfusBxtb$`agz)T4}C` zcwfthNk^!}F+-2yiE#Lt1EYl$?P1Oy>k!|h1b#EDOz!kZJCr347JqHUJNlhJ zuy?>p1;l^SR+YMqV5_4{+F-JYJdh3J(IY{BsO_(^PEVm7f; z^4Tf`>Z0C#Bx}TPQo8|gWPX|W(gX04Z4k;`x3M{mQ~Nzii4$cd|G-{tsX9^M*Wm9B zTluIfH`e7^@rY*THMM%lRqGjDK?d(Sc#sB9^%O#X(yM5^zfPfOw|cXmpS3};b)MRf zSf-ma?NI|o{zK-^&fdkt+ljvSP%M8zfJ)pl3=INr@$u~3OKrN-)q5dN{qy2*FIv)f zzmH0nKd&No>)}nHW&XTU_y3>z?2!yqzdIB;=x3*fhWew<6zK(V{k%7uKFf=m|6LaR z{jF^H+wLpc`>x~gTZ8|$3z*)pwkmmBZum+$`huKXD}IXkMi8R^HGa}7(I-Em$|xZ@ z-F75o{3X2YP=&+k%51JISybel?ARu3OYWI@7f==G{JHTKua%=mh+I5f`qC}fW{DW( z-JG0czT0K9Dd_l4#3<+f_^}yI#^&OBnIwx2=?F!Rb<85QSFLv9$~eqwb7b(&;~VNS z?FA^W0B=!T-n`j^Kue(wGIS7Y^;QMlAUetmZhT`0*lQ%L;v zYjnwJ+0l?iHowR!Bf+!)T;kW#f8Q7xFb##wD%yJV`cBG4ScTGeo74;uKT=#!{6d9_ zEe@*%$Sqi5BPr-nxWT>Ji>xZM$e&dd-9wHbx-D#{3`1zFi_4+7bQA|zo(x+Hv}G+k z2<0jNs5M}AiVJ)t@gOuY+sRfCwf(yQXB;N$u25WZ7U|O;Zjug7lhQeo%!5y#54bS?sx_+7&>x#!SB*U*s^w`?da~~m` ze(R@OWVS4Z&K|Hk2cL*k;*NBf1hSv|eNk0L(=#*2!{mRWUf zh8_URD9A)}+h!a3o?`M66*d-(@d}DbbB3B-_j6MZFE9S3oggwcK62fWLG}*qEfAFs z;1Vf2ttvR^*7OVk`0`K5lnlM49&=YR^thztD&UxRFg;*5JNrLy7`X^PHtyKr1sfIE z|9&39wH)++4_L&Rp<~X01AO%SxhJSjeZV%|&6&bLmN>#T^SDdA{sdcst+{dYW`(vi zG$=s)>zbXN{iHzo3TS#5wtPHrbJRDZZQD+)Ix(}bscy(sNaw%3KAw>qzgPQf1Og&j zP9XsUw&deJEYoJn&Vb@_bRzTYH7nEK|7fZ>=oPhL&h;~S1Nbb2y5q@`dsg>XTNpzDG|2%CT&xg`KY7pM&?&w_YHpqFem$mR`-J1;Ohu%0Z4t zDoT&xxp_W(xPkHsLIvpqSHL*f0-25nRihZAPJigxI)slTc;;I(4Sx1;+BK{Mys{>M z*{xz?Vh@Wu;QJ!vUM~Y};exV&&C+3;&;$E4>Tv7gV)XJnSNw8)n;Y!fQnhHseK>B%aE(Xe_L)&mPS5j0Hjr?-D zRVinrq#j95_0|ks^Y~W_FnT~ZeK4&t=ag_QF>+szh$IkW&(UStlI2BmFpBog4*EMC z01T<+j@BoPtyo+>f28t%qxOAdYz(7M#Me`fqLlYk1A2+Br@RLl z6&e&oS|L-A12E!_?TT;Qbe6Fn@W)aJrL_kI2b=M^k7BD(QIM~%rln1eFgaaA`Uu|Z zcmH#SIvSDPQs}J5fzW@wcoW_w(uH^k%?pB(bOo+wUzAd5In)y((DCH9(_~J`VzgJo8kDpNV4idCnr4p-2 zMLGLYM9u7@NjW=$2MURfe|2^Sa>)jqsFIgh{n4z288VF1XmfBK3Z+YzE**o{{&zNC`o{r zwT~us74O`?i{b%;VPB30;FKk=%2hkPnqhSgbEw3cDAjq#3KI)cNBzeO7sVq+?lFr| zjuud_uKfzQ&G=#4C+35iDLcJpMI5GiAbIft*pTz>+c`7E5t!R|&F<1+pRptUY0Z9- z4k{=Q)|SNXM7WTW85hS5sd2o`kT$~ScC^D(&9vjkuYLf;9rxWF_2Q#92g80Qeo^A6 zmOA9J0PMhKuB7Z8V+(Lg+l-5Q>*vJP!MU8{0PVz&8zpJNIn9!yfqJ=hSMH_oV^tu zY$atL^!*uG+2lwk@BIQeOO)$yX&}p1f#|2FoMET$&wFWgMNH?v?Z)4lsU24V5#NaH z%O0md#eGCZSEt?RS%wV<82-%er>DIb z4XmD}r7fQvc=}N#6={}X?R!?2&yR}JXlBt8SG_Xw+CRp9u`&!fOj*R?P3F>Q;}SwF zq-)A+pcP}6HI{;oNG{PxiSh|~*noNfiW1i$Q^5G8ZrG1l&D339Oj$^-N%V?xAKuhCr9}N`{54G_G^a){v#L_DC^S_63aN0qArbPp_0>$Sf3?Q z<@IF(L&tc~Y#t=&3dHJvEW8|t-|F@2^MJ7ZghfCikm-;UX0Di;Ki*pI4XB4BC3_+6%#4)m7&;Hb6C+0Oz8t}AXFm&jN7nqh#!(7n7uh_wwjrlvFEL#kb3sFqfAOR zshZwMRrFA=f%1CxjEsy|zoYDD0ly>}QB8sbM@5PDZs+{s;i z)%|0PPIgFJSR8^&r^Y)%r+`3EI9-}-s*^OibnD6Ail!uP01CBAZn~A%dhqxA-YnSo zJJ$L&di(b6hyMP17g)A#y$5Cr8J|$RGWofa-haPG(R6xlP9JY_)T)1Sdk|65C9PmaM)K=?)+I|{25WA@3HFN z@7lGCA@BF0`}>9e=)z(-P(Kd=9D$@>4h-{&h;CNj28k;9J< za+-=dr9-W2thi)AOMgszm6kjR1w&$;Gt}>4#*1hF$;J#MBVPf#uNr+~}!T2~FK8l$1V* zEto17^kBBM2Vr##n2R}9;f?`%f(?(1n16M;fA4FKt4l$z?1f>~-M_NG*VH8vlp1^Kr1ysp|LDG=hs3fpmU*Ke zDH*+s92s)Dgy_-lU(3o)A3H|b!mZukANAxbe!=UbmRknXtxs4V&aJC5S3`!2NjIgj zl95mmA<`U1RxX^*u_-^Cx=g8Uv!8f%{!W#9@v(BJ^EJBOvvvAEr_nY>RV@|3{V&KP zgS6$h*G(Au*(16{3mii@*ItX|E!0R>*eb`GF+2}1Z$JtlYRRA~Z~ zn2(Er1`Jb-B@FVQEqt@qCfIo~^~B@_6tZWobwyGYp&Y~b5|S+RRHFy%($O~Pf{`5( zNa3+88zi=Bb%A*q9veG>APO0?@r4=Wk>Kw)k-;7CF?|Pq?9d19)0l2k);$SO56Ho1 zMD7Rbhwi|CU7ze%d#9PY37EwbF-|teeW(o4MH)#W7UrA3Ho~=F4VOWk@}ZmB2ZKQH z(HqAt;eazBrN}^s7`S6^rMR-6qhmj_eikn+HcyLpRTtcAGe5?#R^r47UeL9B*w{oL zI<8u=;uVPSTJ&})PYL~vPFe=EYAwXczdl9cZoRtqHVUtIA*rO3Vk|{}n=WVC3$> z!7LB~+(VDBT`ecmIG^jqUiU>J=Lw#?@FE1+$x#_VH2KK8+4w&R5 zIEi)DkBd71gw?&|_IY<5GNwCI=t$B~SH-~qHetQ@08*!G90_lZ>~q}!%7vt?yY}z@ zdNC7BVUHg@Dw~rHfy}mgB!O-*KZzUys`;(_{Af#>3aajwBXczXaslsfw znqE`BCa;m^t?oLN-FCF!@7*_x%8PB9`Vu5O*&qwOS(7)W0KG%c5NhhR$OV!=Sb;K= zS?EV0i3ho*!8xbz02Ej$_pl|ma{Vw$48gHj=5iDqexAWlUBYR~1`r0ks> zC6mSRFO;2ndU{;V$)V?7iqv&?NraX^ZG8K&jPxt{RzHP|eAh3F)Q>^DKm;WY20Rx@ z@_%pBh>litsm9qGLX2rM+4qgy)0)yXZsgrZ19+&ev)#B*4E=^#D~%GHkEG2QXrXx$ zWhZ#op8lxStXqRU?4P#(0K~*WR@U<^T2OrI={m*0txbpG{r&vsiQKi*QP47YQodU6 zVJaHuBd8>|QX1<~CGC+ckz!qvxVL$Y?#+^_OeX~eGz0wtbNOJfxc;d|?CIg64mWPu zy^nJW3aBA+%t2c^L!Pv=(N!Txh&uEx(LUnMkCg;<-QXymc7&P&e~EG4E35|_ufA`_ zc^SwueIU#jmT)-p$wUIPJrJUG$uHbj`2nj)&Wu z?OQg7?z{O@(yngSh(V$i_{Rw#nLOyKrc$shy~D51Cbak_p&ktw{|EyT=^`>G-?EC&ws z_3QN*jd4z;C|7W7tgws7q4|wr>+3H<(uX9<9q=2lH-v{+WeNp6Ez&RT`vz~q!`l;U zv~$74sJ7YROIr_LUPolIo$`u>hYr1}Pc6QfHP@v>*(>QQtWbUwb1lv1Ca?7<7a+11 z{&g@uWDcs8JX~UHU!Ny3t#_D>Iyh%v%OkeU4$F(18wOXc&L^1O3H?;NnV4p*)I8j&zS)ebSU>jp^X=dU z+;yB6=t1(3yE%TG>ikO)M6|0l)2-LTE%K#t8|$0a&C*Z15cm+Ts^U4?;#_qAWw|#Q z!|tYmR1-TyQWeAtF35xd#JEG4$pY1O*x(ct`A@~2#fZ6h^=fBIdiw62J1Ou7Ptnb9 zT$la+hGj5Zc@V^uquUk&Yl3-$?b#}5u?N=o3g1J5*xDs~!=-PcJbe844h#!?-!j^3~{6Q~vZ2~-zg)lYCVJhMMvh}s_kz)wbMzK38-Hf|nSO~Rzv1If@F zq_eK5ZTbl+$sK?)hhhW)pwUhCpQBK3Mdps48{lSRTZxqRxT@+_j2s#Po7NVS-29>8 z+S%%AM_7BZjkVH~az0?+WY)ArI8=huIr7v71}(a%!YJ{m<1C-p!ngu3`>hCI;7IPI zrwc>ocORF5La7xvm|XEp_E|pO(`RdUH&Z?Va34mp{t7TS!Sl$4f7nqkGeWlx9Q_xd z50L_9(3&YHC;I9s;|jb?EvJWd*D>;~h9cn>C|TrK?l4$V_2*Y(1JPUrx=jo{2{?ef z0_H3Dbzr#k;f?dR*nebRKYZe{MUZ6|{nO#Q`%GJSGfVGSkN%QEX5R)U?%(_vq7p$9 z=TqE#g&h_E!im(THrXur#;s%=hJ!)0jo-elM>U!#SYWUZY>D9nUql1mQ-FAQAm8&W z7PahL2UNucwT}TQ&A@L~QNqLw6W%=&wA@R=DzLdv7fx6c$P+04#tj=NshTv%+z?F@ zX4a^@qOo=`hk zOL$2u^U)v=SA3_sk*py^7l5_RftI-s{%C620r3%Gbg3u=Fm9Tfdavtn=*#pkA=eGI zgQ;B)gM)o=$-4n4%ZknH$;ixPeOw6m`X>lGFnVn$H{$7zzV7EJKXdUvPn7A&lPd@< z4>CI!WQ9d46HK6w=;YIJ4S*1td%3@;(OVv195OylyX({msjCbq(b0eJ1kuBTSbIGB z3viC|X2v)#S%nSfy{gJ8G4E0^)Bv20C*o203?x6FLwR{Kn-O8M1Z z1_T5E)buSJEzy-}0-<9x8UGDM77^N=NrFu={HMaf-}lDo56*4fyjg#;@4mP97Pw@| z;`pvP!=W-)(KfFQ5+%XnEx(dL1|u6D~R-p)Yd06P)FW_dSqLP?Afzi@m$7w z$|&k+{s1-peUS6dL}(CB&;!12b7RovNiB7uT5fWF-$fsdjb=?nbY&AY_by*^Rr|61 zaMk&2CG~xf`cgJv=h0(g6KXeD1B&xd{@@k61ax6dm^?e8y^G~eHb%7bHWAqK6nh1au9c&l6EH>gs{;gL**fC5uTh4nEn%%9?Yr z4&c-m&`jKzx^-%zw<-?;5|kv|ot|tkgB;;w)B?ykS;_{)bejPM@8aWA1hy0X<5jm_ zK;+QzCf?GrG6uAm*+}_S%1Kr*>LV>Uew)b;E!D&VO*gB@8 za`U*ERehJQT=4`k=Lslh4G>hY0sEl=<^q9q`Mqg*Lnwp^ClMkUqOI8Q=;$U0OgF$6 za*PNQ*j*3eg%Btl$`mr%8!0^0Au6^Wo3k=TqbB4kcKmryS?u#o zl#>AEPC>Gm*PyXE*rX|ZgMZ@Bwyq0s&|9EKq=)Myp@|-YyBwKZPb-QU#-=VONwwxztJW`YLHCRhLQ}cS{)dHnujLwxf8VcJcs>f*O{@~AQ zqiO?Yc-dw@)dt{ye6=bl0Xk){wXYQh?!j@#bLTp541-9Ladmg!ZXyf^^0?vYj~wID zU+wL?7rrxm9@&wBdhGZJC+VgFXOu!%;(LtVk*yB zdkoI7z)*0~fn`9=|MvkiX-p|^6QWA88QwBfJ2^S&pS2&oJIDR$z4$wsR4nzBM`*My z_gaqf4?=bPwq4JM0b6J0>R@03|iKHLGwx~y5LE*jLdhDt;T1HcLqRQ6v#&a-% zYbknYPP%2F_yvtNt1Ec41j;x!&FYaBpLr$a=LCntdL0ANqXlC zID>|g6xV=6$$zv*{l_AtD<@(2S5P9qk&va$;sykp2PpTzjf56k6{yB2d!mYg>e!8e zdL^?RDuT}#KF@BRO}82Hz~ZP;C^?gpjicm6Y?L;W#6 z648PrwLp_<%H!J095RHo9eBD_?-W_HfugH^D9lCD-pH)=-;b2g(iw2kn?X{43=B8&|v znnA2al#Jl1!YgaCjcX3R5V^Stq~rVu-427K-({?;>;$|nevc|@!7X6lJn@T;KrJB=! zHD?#C=M=Br$AD9F)06fFJ#OlTHL;&x1R-Yi?@TmpVgx<|y_$E^)D@a08)wujly_i5 zf&VJF53pxf!*CF62p39FY}8~t#i*Yu15U^Sl45{jhM-nq zD>Ug!27vOQURR9Otm{^&^n|V?2QsV?$mUxS6DSWPMBoARg{kshIaK|22OHQR;4}dJ zKJov0p#I!tlVPV*BX9vgEb`izt81^rh~j5B`nMql;%V?S*o1}DH)Uc>_@_!E3riPLS7c7?*C6ApIR z_`{$gp7WzKV@;GJQE_mDA{~~jnE}idW`)_Ry2UaTWC}OMtt*Vyo{9owzD|d z8klRi49K5H4G1FDbn63PHFV#5vBg6nUs_>)6&|s9=$e+$as?C7LA3SM=kiLX=*J53 zCLe7wYp<{v*I=|{si)C?_5Md_%KWaGyve~PPiXOa5BPX`=Au3GKLP>*L~w-U0>`XM zBYb)(&(c&3WuZu99$U27-n_}WXU_^)?L2=|uD!Mt$_@$A7vO+~9Kg{#j$6u7Qvth@ zSYY+))enmz<-^thRJ?)FKY63X{=zdmF|FmW3!<@M|D)n)>uH#0D}!v-Ed7(lW> zoRK4Em>1BBgYnlI<^6Q44CsgYlPb}r!3FY$zHbfCJwanf<0e6cYbDQ(=zS)t1??xf z(7!;pTFhyF!v+|Eyo{CLMMgiSREAK?Dru z1A&XQ1%OZ6QoCLzM9t%3bvq9Oez%pBp=AaF@2Nt6oBW@Nc64gIR1oNT zIn&XSb|AM(ajw7>{2~Jiuj~r64hHB0Zy*wia!*W4q`kXg89?1+dq>JEh!ZL6vY&f; zKna5eHDCrWk1e9GWer6YGmAlCv4Mz~5S(9kXcwsOb4 zi!)s;eVit)^A+@8k#xSW_^`g(uc>f;$zZC4QmX= zlGGm-L`}(Q;-Fa&sxfPYf54)FmLygg+cpIG1e@6IkO*WUM2SeCh_id|NW4Bq2yj&B zeJ(C8-Wf22nC3drmIutDj0iDKqqgu#dmOeLDS;rEEXA$GUBImQ3%rFVsHNPR8WkaT zQhPrBu#$8qFl<7<02gc!qG^6DM|AKk~PFYmPuP8fc}tHMk@?*qbvy9Ov{Ws%I{rgLER^h-GT1C7_6h-*7hw*3N~kp~3}m zs_`L8zhmRN@R)1UXxaK1Ow$@{_b~bU$e~^%fgx@P@D@t#c6BU^RZDm~{xI8D?=~B6 z1RsicKys~UY;1%c6D8q?GayQ&T>MD;siO9sFhj!li;_PPa6TYjo=$%{OV2rs6eVJA z2-KFt2p%xklF=VL(UhZ+ad@Rmvy#V9*4%kBHIzf=MCiO4UUT9CTvdwAQ1<4wHri*5 z5D5~=E77Fmp(7U9KN5Kdf-~Ny0;uJF-1q!Mq$0`m-bb#}M_D;JM0aLDFn^!Z2`zsT zINrkSA%0Z$U_d)q6+YECz(T9WoEB5ZFR)=>ugZx-sm`iCwXyg7r)!!v0&@Tgnqz1g zg!lw7$MP+~XSZ05b)LhyT*aL+e7mwdI^E(*|BCz{S=!H`9gxM2MK?NxE zuGNRLRmbVjvaUchhWU5zVOAmV4ngL>%EkkNlTg`UF^D;%ly*!bX`)=b9`9We5EOL4 z@jRXq2FDQOpXm0nU-(m|O=#238+b_)q0Ei$?^HPEpU|LWd@zaQzIsePkw}0ndJREB z#f(>Y_&%Hhcev}mm^fh-E~kJ8yqL7J+~u<+udJ*r7>v&VQvk&gEKDt7FQq+*0xv27 zoN!$yreRP+>~Tg~y26+`E#*qD_cARML`4wRYG;2;Vfc-VE`80*ETaTJ%AV0`~K>nzXxcT|33|}RMw-p@Z;wmxh3W?`_O&FERQ7SJv zFu=i(YKjc>3b5PZRIQq75vC?P##Qv-;NQw)fWR*Mdd?y;e z=b;nOc;~sNJUOov%ux47#?!u8!lQhE1mG2xDr_(}@Toz6CS3E6IrQkQZ9UpxLG@YF z>}*lq#P&`d{e_uV+uJ5J{3Ud2ABt2)NAue+d>87BGxi3)wSvNfCP-%k`J~LADQl#} zfi|EZ0kZx&^@tt8&a#WM{-?AwJ}@-xIGQJJFO+}KBarmW0of#swg|Uy6ha{Z1xZ7V zXt-ohuA)4X8qwR9YXXq4Kythq`O0aJZONnQLV)&giV4d4wXiS;TYjX;rsXv-oeH6} zM<-!kVwL8;YkeFWelNl=BV|$GeQW;hPg;?4LG`P~K2|NG2nfnuRMY&vN>Q@;{c9IZ znv`uz>pE!}@7Uu78_#2UU=zHWUdu(kM62y20$8@A1Z%U1|p8kGRbZZ z2`SO-vNhjSoPQx%b79AZ4RS^^X_IR8Hy_1oI3u$@8@mLwcNg$qVwIhOyCoT)NiT&7 zQ}a&w>*ntpOR;dUgJ2ZYDSa0ZXDpOPhEGW3wzEMt8MD37@*W}@L+{yp@9%s039ir_ zVK`Lxg{B=sM!`uRb@i8PxGZ_6#vhIJtb4mkQ573pFUl!xY^lxa{oW%Q#TyHnD*F!Q z)f21C=$U#79dNdTksxwyl(m>uuQnrAS@^a}fLVM599r*=OHH)jLmsTB7D&=AFTaU6 z9?SN5yIBV7#Ha0+GouC>P;Fs0clmRj3f{>Q8_|Q2kB){%U&5(bA(I4%d`h*{nG2 z80)emxx5z`91{k24#`y4M~9P4`~WiXx6|~4K!!qtw_Bc;dU_(jGIGCukX?T72z2?+ zt&V>VEb|u}a@#GQFiEF+&Xd8eDin4YK zm+i#~%TnLWS>mqQUk{YIkos7T<Bo9L3G% z2x%)+RI{GWx`utJRqQlInd~r>TM*VWF2dOA0DYu*SOD{PAkZjTJ3#4SuFH zY%-(DZ*1dLLFp2DDw5L!<%WrQmZ6M(tnvJZ!~{&6TTNiT<_t&*@37dzL)tC5ySko{ ztxP&XeQz-581`&FAQA!*gyz>f4*$y-k1Biw4F$c1->Aw1Iha6!{5DWq@cTpziuX!&DtQ*u>pBrLNuL7!UW$kaDn-y|{rGUl zdhlJ4u#|!3+wAQD1kM5d{+~rIl1M%X192W7;4hUrrV}$-br~DnldhWBq|Tgnw|$NR2moZe>YcwOhn>crzaq|u5ITgQ(XZZ%fck?f+; zZ|z?z$#`NXA(hqX_7Vw11)bo(QmMWbKU4oh50J!8M8EX5#Od5f7v&3Hqu; zL}dS2=p03RWIB+t%I+Z1$O3uNzfvaTjs>!Q!wp}Q&?5){JN$&fI>Rr~zBu&ikTc%< z$7eb(#=M`!y}t3+sp5^SibV8vpU6?^!g*UH21W!&9*;_gK0xS3kX3;WQNAQ}bfTanD>uxd6qU!_6z*|V_ zLo~`K@&j*fJv4&&FMS9_NU5iRpUY4eWku_F8ZQ8vm%(nh8B|T^t`7f3dtZpjh~XJn zD-*=hw@)k2x%;lW-D0J697P89du6k0Cyy1}q% z^N`HCWXTdew2KAtVzJS&NK+TD;jUu}K;b32%NP?LltNx zDpnu}KZrp+=OAPkPFH8PZmVpMJ-;+&F5cxNhnjn>7=ZmGG2K#Nl2uDMX3*+mo%Frh zBRijw(9lqmy_sOhiAywu8;RnR!%+>qe`4q1Wv99#p((l3}sY|5ME_h~8D2fyWR+ zwP0GLZ9IKu6_@$|*R4-!Vq`?MH|8tRXTf2N1S$2OSCab(+=HI8J#b?No6Rm|LGl)f z?oM`*lL!6Z$_@aAV~_UJye?~?+S}(6h6?u1r9xqXeGfeDe>T?tG^m38gIQHEV1)yXBpwdhD(*WXmKzducQn z#yZcM4&cnR1mrTJL%zT3Q9mp4&&YSwdG_-Uu+^w|A8k(-#U(1Vy<>t`jNlRY+W0-b zJ1~6aMr`Z}RT~~1C#?^&0KoAj(5nKOK)WV_^;aLSOhLX^PQ(EdXgu$8)UM2QFiMoG)I7&G&mI23l8uEv|&igxDn#=GutA0x8O5=^b?S`rzT4 z@PxhJc$Z1u9{Ner|&3*bX&+TPfcx@5@)80ipWOC*F4kfKY;2k}HQgPj6LP`W@n z#l&+2mRSTZ8&R#m{Xq)G`=2_w#_KD9r;cFlNdv2mR*q;;fkLXC?fL=SfDBEVkGBkG z#e_tLI85*mU=&3-%7(;nBC;(*l#wcmU1Gk#V?Yu}Fd!0u3bbDi+))RANB^zJ6O$or zsA2R_=gHcpH2trMN0UGv#90FWMxUb>vEQL##^1FP8XK=^-H+{|t`4+s9!R<{Kf%gM^o;!|_%KNWcGX)QItFq5>rt3T+*DcM?gxd1y)J#>En%jas~YFX>p zfIqLIC~fmH!`zr}s^@UeXt76RSWR5rWTwyvE08nIYaly4)@I=2_eJ&(r>`;pAt7XS~bUnP7ak8B?8v z1@xSpoweCo2Eua4K$WLl0R->-6aO|cvE?DDj7Pw4&2hCMOJ68@_Jmu6Ta2A?;CL%T z$X2|rbg6h`JyJ?RcfG87)+qQ2!es(GAP#ic7J~t1 zpFgij9L~U<`uIz?y8%a;>|1DK2OWFarn>x(2{mn7;j0E){3%qis|KcWx6@X(f46F@ z?gaxy?i5ATB5Z5Fe^MV@JAlc|=c^Ohe1(&s~4f)#Z5F)pb*na9Y8^yUnfpq&?{3hF)G? znd>qX2Zx6%o0^&uTm6s%F*`e3qcfHxyLN2_)W`U<7rY+HrVdO^?e=4_n8%OvYmU|q zZ}R!s`mesaXp6ls6>K6nw2au-t{mz?3Wet6=(rI=4o6SVosm&d-F(kdv60 z($hGmy*SA5*3HE!gBuQ5t6N6n{xr#xFmSzBf8n>tKeELaM=vGN$&eKa#mS`f%fNx_ zihp-NziGb!B`rb1Pz-PVXDPjFRcbzA>HBrQvUD!im8?=o<0_sPNQ(?hzk;)BVp5bc z^YUmzlx0<(VtN6G7e_(;{ipxWum7(Do@TCl-!U{iOs?E#DRK^!W%oNpdARM6n40R4 z311Yw=Y{ECGSN32s1oJTb7J~i$bVC4az{$vHaANcT4k1C`X~+@|5bv+_t-5cDCl4H zcj5m&AV6rnxRaE?;p1}TgMKtL|KXm2{l$L)2{Lw! literal 0 HcmV?d00001 diff --git a/v0.9.1/articles/tern_files/figure-html/unnamed-chunk-9-1.png b/v0.9.1/articles/tern_files/figure-html/unnamed-chunk-9-1.png new file mode 100644 index 0000000000000000000000000000000000000000..a4801db86019bc4ee9cca508e5d7c2aaa646c037 GIT binary patch literal 161744 zcmeFZXINBgwQ1>}~pZ?LeZ$I7r^6dyq1POdQY$z{t6TZXO#*HFR_(p0it7VHq(fT0&C-NIvFhZd&qA)kF zt2sqX6P)c%sc-HrD7AE5B8%HTCrzL7f!k+z)12;^mXm zve5!oeQCn>lj9SK(H&G0+cC?_%O_^Cy{j_d3QvSCcyN{7FMlajwVmB4P9{XD>2v?w zsACKFyO_2KJKOC!JzC-6Pt()mQq)sZ9OwG9bIpSKd!mDa z;@8)mknxn*+fb66;(X8hsKI1mu)<|L*2iunNMrKTTTYdDxuCYMHV;_1i!i=}=g&RaA2_3k21hJPC313rAX*D>U>!H`OVs7Nl8h=uGuE!SrSsRA2qVFvB{V1Zl(rv8DtdAmFmE_ zwoc*7X7OuQghKli{gT3$RP-5*;#&%)rlvJNe<~Xqe!8LdBFu&^}aZun4E|FZtc zO@97m?BkxiLq=k}#&z?lyS5RsP^PN4hjpK%uZ{aXoKhDH>wG| zT$`?6qK((J_07u4dc!VgRC9`gRygP9%kpO=RAx;v*RhM#3%tC%LE+)4L2Mdw*kE?8 zPtHrDrwgK@J$JQW$*Dbj7}w`K7J0cg_y<$8+b6goV!MWf`1pxfAG(&hP~ID7G?*Xv zm+GBAe;zC4T2HLJpq6^~_RiK?NZ{JqSS?o>`PcW-Z_k9b`iXBQUA}zT`wTrivRBKU zOD9o9j&lMu8sz04S|`+Q-Fn%9Gr$Qv?*2F;zBSF8uAQ4g&QLNx-IL!K5e2~kSxCt4HjTW<@7&cVQ?rt9Rh!h(iB@S&pbVDJ+) zY%s_%x#O>=eLF(v4t9UrBGC+X+{5fHJNP@($+l!{T-nZymHu3qozR8CkzgJ4h&|Jt z&$lQfR^iMrDaBhV&b$zQAE_m}lYtlHN{NO+cRII?kaW&~co=^PRez);Q&o24O(vf}e1U39zH?)uQ^@^E#) zLG6wSyUCFd1A+d2$9{LqCHbk&MOq{Q$R$W!K^+yyc>dx=@{^I8$?n`#EEbD|jj$zs zr(Z8xDCfL`Lqkm!HE{Z3<12pWc`GA!x0f2-gFP22&N5=$HP?GTnbN|JXyaM zF7UXeWUVi?JJ*~|R8;r={rf2@@ox$pW>PqG@{%wCSB$$L@;Rj~t>6s=x16k66MW(C zRzk|QrTzW=k5W--xVaS@H$)`ETSIF_*9V@_6)o5ZN4o6otTAF9RJ~W%)cn}94Y5*H zMSpJ>*2U_%#&_p=mtpItxNof%Zp{|$ba4=gIL*hrBtLIhYSojMuA-vC=eg^q=f2XO za_93)3xV)|{`u$B@#C@7{AS~C*fN?@uOg#(B>iY8idpXF&F99AQIAXezudp^ z`fw;8`3;>si{_74AJ}b-gs=$++(knBTwlowMAYy-O=qmXe{50`v-GW7VbP3NuDD$I zxxU(C#pUph(U+HzvEp5M?(w{&yGB52#j#ldF+Uo788X9}MJ1Y$$bL-P8Ov;Ihkvxf0c-)*ri05^f zU6;YvOm%A{loy!Qu0U!~(8f4BR>;W6xTeh|Cq}81xU8TtGVd=mLvkVus;2kS!S=M? z-Y~;wJXUn2_F4u!;4+Eo?8hG}efZx&Evz=K4Wt8JSd=;>o^} zqA1tdYcLI)D{G?X@H;K1XlPPlcJw?pM(D;|d*%Rwl+d}&U+1^%)r9=4GS!j3(jw2r zA|_U%OpC+;j+PxJKX+_hkyIsOYi({#q#-RW&1=Y3%mG3rcj@LN+mgGS+#CGJ6@`!Y zWO+V)`t&X$;=%*uo}NUzEn@tqa(ZS)7o|%eKs>r2=92TX5CZNPzSI;Vfz5c+CEUux zM~}jdwpOMd30CmqLu&mHCF&L%#nyCVH(-@r9itbr{`P=2 zGc)rgdWhiIZ@<+$VMnc3Xm=HTKH$pj#q;tuGlU}i%(sUmvBtOUf zZE96LL$|B5#5KR5c*?%E)x06%TE!b&T$xRRLg?VyVxm$sXJyn%@g5-8cTr-lX9`MR zkezi&t6f>Eg+2QVzX^HP**4UdM(~U|jf$#jz3|}R;Je;l-RRl~G1m^=E25&kKkMq) z)heU=%fAaL#%}Hd-qVLjQB>akC?SXGk9X3w`OEgM7R;4y9c{luz1K<1(9oiYf&r%y z2(SO}P$5dRYlx?ypx~CSZp5W(r{!iDK)~CIsLmOO&pP>*9#*P=vV4cC{9Mx;`(N5( zZb3jR-aR@TRo%MjDfVK!?*}HB&vraMZb% z_jAng4Qb~13_bnYF1R#ged8{O?Wb9Jt@=c5cLS8fCu|AT)z!w%N_Yl5@r%SxNQHP? z!-Tce zuZEC&j3|h;ZUVbwWoOtmm6JGO9@St5KRo}+q771LhQ&vey5dP6WD9Fg7 zJEuBbVK+67)XTtgr(Hp|qN3t_Z7>HfKoqL%`(uE9DSb4ejptGayMN&^eVef z9($5K$rAP1lqIeY=A&Qkm)B)Qoj}D3QF%LykynVj4Ll|3ouuJ;_$t$V%YlKHx3yS2 z@|ta>tehOr6{RSPx^O|R;hyuaU~hb#ZAFIY7TgESkS`<-8Uv4w_^wX&YK5lfK0Y*n zu(=^HTf(3*KvL^0a>VsqWo309V=Eopu6*t1Cm3>`-z+fmQ6t^b$1y7gU_VsusK@ccmzUylB_K1)Q9l!sZ}an2;)bC z7FPUTnGa>x8!r`#C$>&>3~1zA>iPM0WjIbaOm{Xna;$Q6+EBl|&#qtG$sY3Y|;x5N0ZLhu^m=kzJRzdX@e#a;$`*U;*LgF~Lq zXI&VnDxM4qvJicjWE)5sek&ux!(Z)*uwh}^)13$I-0jJ zP((lNEc5h?eMzr`+diyir8`%*Gv~QCWm}SgKWw!Hpl(h8eIDvMHa;u(?3ZW;9-fvN zPN-TR{djfUWA^Ew&Ep*Z;f@(uZsNc5o?z~H4QBnjIF+}%82PGrZ}uZU9e1|7Y4g+u zcWNdJtU)1U=)FSWnqoJadll-r0xVtkj2zc9C$OV^n*_exgMh0tAnQCye>Qj45R6CPGfg zFs=`CWs3MzdI zWDf^gHkQW1Tch1qL!nxo+{Z=`$?lczL4mQOuXG(a7RzT!R$W;YV?404G%PIAs+<9) zg>m2a-q;N>@L+MUc*>kQW4*)4rTIk?Lj9s9=jF?vZdO%?Lmh7lOVVZimrqHsX?sdg zo<-LuWIdXPLJ=C;3K3wbpzq5UZY0XOMf>~TNviAL+jYdWK(=4`hm4CEQ09eiJQ95x z2JY&|j~~az0r)iS$}&oUYOV+M0l`xU^aReLqOy|p(xvOj=5O{&Iz*C{u9~QrIkkum z#D86M+C8)-dSqqgOWc+Jzpu<4v*B z!M?9vSLD{vz%=(!S&8;8X0_vRz)*;UX%4!$|+je z3EKIVGudvD!uEBy@?caCMyBgnm8h%qiPz&?XS#EN zRCt;I3miBTW?o)ZKm+Xn$?aemTy${~M>)@)KCPbSQcT*;pHUp;3A{aR^5`07kgcq{zC=IrJ1>fJjvKRPiq#;SB9 z0STI2Gpj0E`DlX2){Jxm4r)OFvllUNlig6m#PV#s)?(qB7_J_ycw0ZQ-7mtp^6eni z$5sRmY9b{I$HtVoYYEHL5JJWbc(Oh`@NL4b#xg&gOUdyICB3*VOa}RSMq*u^LiTYS z!~*F)%tstx?a^f=iJenTn{TG1US~4{r6Q2HG=~j{s}5k2$7TSHKMRXVR~&)`cc&fkW#Ir>Z2XP53db+ocCTokGJ{>B29JhLHYoFW^ZIqO z!QQ3@#4ULUwJOHO#`(&*mD71neV-J&~3LBWG;)t}ro8wQCpz)f=}0$6Yr9qz((rHB@b;-@OkZ zVg8@;a$rcAICQ@%tLV4XuL!Nz=B6IU7~inqe!fVpab_%<3z>L(u{w`8wE8VcM;>;ckcp$)~pF)TlvZ0Hx5AhE+jUW)#+qd zWryucGL*iaj)z=5x(v^MwBGO4tER6uLud>zNt|sJ>MAPO_jF>c7?;t|N4@Vc7_qJC z?9pW;aG7}Q&atq}_un}b)NX^2J_8v*ojJ_)aWGh+9xmB04rAPb6Q>q&Nb8ZXWc)QJ zVUe*XN%Qh}pgqZ;)a%xO?W)0(Cr{cB|2z%^nJe(A4-U?ZGM?%QjEc$t2Eznm)^%JF zpB{71uQ|tSn!YR*VKorsM-UO`VU`Jy1um{No!u0D~0WZQ?G|jW*o>XdZc9B0r$lHca_h%3N zt2bGZchyQ<>~Dt)+y-K{yVSi1i31cDgqn(-AFNEaPqxIrwJh6NJ>jc9$odhF1t``S z;XvCcg*C4Gcwey}$cv}X$6KM=woq&g zfWAQV;>u#1do?g2pCI{TYKnSRKl_QR0Mh{E?jwie0cFKgk-a0go%<;9L!-$!Bc;{3 ze)>RrtIjXqBUYJyA=-!SCXiPzqCQxcsES>^+Wg2pm0kzoZ<6*xI11I zQy2#YFKPc}1_p#Z_C0r13aT4bW8(yb7R@9Fl%8~wvlc3|Q8ZUPmifTRVVqw_UTG`&?23uOek=IO7%z?`suUkYF zkumL6|4A,XBKqA@u+*^;2_v;<6Ec|6XA3Q@E&eRu{() z_$|G)9^BI-KYsieAB*rA_4@SXD+V41U7gjU@)_XA z3*3(IKpwP$_^S+Z@Ra2doQgxP-)&I3Th6-!ru_h1ctY<)`U6gdY%6*X`>=n06o zAv)e|_Fo3Q2`j_3^h>c{s|fZVnyt!qI_4_P4bqkC5_ zilV`5GifHkn^hTSC&MggXB+!EE1q(Uz) zA!oEYAX={EcYl`glQPn!IrFTm-}=iCI~&wxF+E!lu?pFWhb zA7>dGATZolOQyRc6`Y>{HTCW3LBDINGkrH z9UDQbzFvzQamY3Pj^VrktDa;m>23mgl4=+u|@M^EWb-nw_SG zBs{s*@ZTj5HbeMcqEyCEbKjF}noY^8;cqZN>Ki~thwz+gkY?^qyVPtsXzL|;3;|oA z1+-Xjpkw6G4*L({Q1H{XEOfL*jS{1E54Jw%UPjCwKw z>>RfgXB-e`qaT@o!o_Dks9FZ-9IDr75B1_>g)rr#l{QD)_p8k>M^B(G4RkXvK)_|@ z=WjRfB0YKKqn<@uin=_c=|#;9Ktk9>Iti){!tK~s+3X-^bUdDK0D&c|Q!f_bF-Dig z)_R9DqK83Nkq_Z)hxIYK>I_k9W8DoZWPitC%bvX3o_kyUZ%^AM=^g30YWU-btxM;Z z`@-&aFlaM-iNr*jQfqQo!@=JwGoo~KNLhlv>lNmZEwj*{#&6GY-d0P?jEu?u9 zOCGVC>25Fn%nxcQ0H0O_*>W-iDFX;t5P`v?vKtl>x^2*|pWkAxJ*eWn)Lc4(2wBlmNk+w&u!kkPJc(N*Eg% z0X1?PWVV2w!lfb)W|Qg8OykduaFcBXwvUji9-s*}4metq-mf;6uf5On8WX!I0?pbn zO|l6)W3^j$#dB}X6T7&X#MzlN*!|+&l-~AJv)-?n`!#cameE^8R`jJ4(*}-44v4L_ z#QW#qJH&t@KJyNCL`jB{Yq2xBL_Nc1_votgvAU`I%zzhrIg&fFA1NUz0dkB0-s;>- z9$sGH_&G~fyUn$~THlXF_Uv8ar`wg)_4Vz0JN2Hiv)pjm>EP^2PmC0)0mW#|d;1-D?oTs3KmF?=llWk|Q!DN{?} z>eWomtB~iX6#>6YyFi&|*|7xo<;3wQzsGkfqo`rd9lIx|sK}{?hk9*C-=ifCGrA10 zMI{L-Fl{}`Ja*hHt)4u|((-_^{^?8_nY9SK^AQy4(F?%9obwY~{kY));DE7PF!gTw z(eG;`gg()_2oyg*1;2H#dvTGPA& zX&>3>ojyP?-+~1yzb!^O>TvjN5UzIpeK57L^OWxim>7EZ>G?v|94x4~2-5E1=|0l}vy3&ve9 zbBN-HuV9}hv!#+}ehJHD=iw!xLtFdC05!g|eH`!4z5;K>4%lkU`b$e1vyf7v58%w@ zqI3xRem$tz4Um(k9b99-->hX-WP1hJ7XS#q?WjW8>`n8|FR|hf3-fmemU18W+y$z0 zO{)s1-sPqnRHxbcT0nh~fl7FJsZk;omZyI0kIG6j1hmfd?|}5!2A5I?Bw1Di5w#W3 z1>dr_0;lH=h)LRk_R@&GdA8feqE}-z#4$7Qr@Zm?Z3op>|6vy}E|Z}D2ckh?Y`m~u z0BNVDu1+oAlCWJ^+fMJ;YvY5^*y1*We&BsE1AmBq^meid{_DMHlJCWIFQwGf0tGC4 z$5(GE*aZ5_*a=6D_S+fYwnY-sFGI)$JqWqEo$fVYLlA^d&1Z5fP-tjya2ZtSR1h|# zgTqA}EhRn4$i$DIdB^Fr?ccxiAr#h-EA8oXyVV%%9 z4<858`4*DyfPGBAay#s&aW)Icv5_K<9Z-`jms3fMul0K(nrevvH9{`{#6t=bNUUtO z{j1Ymsu1;BA(FP?49cGLk2}E(!Ts2Sj8-2lVSqRAEP>>SNQe;W%%Ipt5)5a_a!U+u z?In$66Oz=SL^A~n)eK~EcrQ2>+JNibS;2X>_gIysBN20PxY}c7$_x0V zS7%azOat9|5>d|~YkmfClrUE*rvZ|1;Yx=NBSt=$ec@VCb|5~t2A-YItc|$>m?a(_ z6$p}u=_v;+QPHp8NVa9@>436TfC$(?tC=D90(>H?Mg}{Gnt;8MfjdPgNtoayNDscW zA|2Cjssr9Q_>%pJu{Ys9f;9A-LC@fK-?UqqXq5r}Q5D8GMFW??saH4-sJRJ|{UHiiQxJ2O86uswbHbUady4gd7lE^*04lr|#cXN+J< zLntbsMU$a=1f*S<)n!o#?C~<-qAAd(E%j74%K2lD!AgK~nuOojs?c%Hl2VF&gz?y0 zktq4=@$L~)8zSdnA$@InalUeIP7`@8nGDnu&N*>A4ig|Z^V>{!`e1$~{0e0>oQv1z zP1GYffMj#8djtEwjv>Dw>ZA;dIuH$5><&;FtV6Gmw`<{vJM%s9oCFgbiPTm6!6L9>=f{ei{s~zT!3O`0PfSkZQ+pb z9`d7w8*0Du#%X4(#hP6ha~P%zv(I{XOLisTagb4S469H*Z=1QVrmF zAhGa-R5vtm^7a3+{Zg6@evx+XD{8tm`1tZo%2ei-p`ScHoz$Ae64%q;}Cf0&g z!#nc+>1IQN@p}EB)LR=24rX0KkSpe*Ku3lN$3O7C5ts|*Kss| zu9lYZ4mLiHNqgpDbxjLmpA{|Xus94sv+)24P41;Slr&qRjcf-x(N_)0<|nEYzDp& z85tR2u#olcPELVW=o#7+0Lt~54rT)gj;BtZWWaO-htM>&znS4)*;18By+Di52Zjd0 z3Uizxi_~8jO`&7~rx@Gk@dImcSF%{c2M@qn8n0ro_sP<`wm|bhpd4rw61EG<^JHFHsY>O3d&&p#V zd7R5y8Me}aJn^&RuVeVG8dwscrfLDkjS&MRA~W9}xOuSXlJ&v2JmjC%9God&O zhOsIJj*xtzbha#-5dew6$3hIatq*8e1Z)qd{@fjkErpxZYos=CY&O};*6dHvM2nfPrFJoN59|757WFgmO#SGH|B%zUjXviZdvjX<% zVd>ynD^UrX!RH1mQKHT*j|;qkElhv+j(lajnPHe>36NnRdS|22lXAl4&(nW1gZmyp ztSgDYH2_+x3Na4_LLo>xiO3XEG};v0s?x#cV0uEE_LsT?k1id|PhLK4)vxn;3zUC! z^^)e%?;!i!#l+H@ocnXxw4aNlUVy6+yDD}W>aZH_cb5%dRpi7KfA^{_f(e2leKUP{ zJS8;)8yM30lU}GZ9CErIO`ai4BbI{i)>ecfPhCY!H6~ce44a zsb@Kb;5xe}U{wqjFcRR9*bkL=RRHe^kW>@$t)lTy5C#|WJ0pf#&@uv_i6SpY%y*Yq ztQ4M8(h8qq4ZvbQ0SyDwe%ClM_Q~K6(rmT_p#6B_rV!2*`AW@nJ8*GNaks~^=r(wN zR<%lvYJ*esit^B=zy5h~$u~U?h-Le^k~KMO>F%aEZUp>(!JK-m7{q{VS-N2iwjK>I zxnLI$?*OPVum>yc1k`}RXoSWFE%L=A@=o*wL=5uDJg2Pt<%coO2Pvv5Dqgs`|Go#* zJ;q=~6!@3aXap?-(Z1CDH8>-vcljKqH8CxLEULw;q4YE~Q}*1yw(-dBi=beU^0=`L z9;D*FE-nlrGQd5hK#`TMnJES3tTODwKdwXo*ZcPa%sEoo19o#s8w23~0S)HF#<_EE zi*SoY)YK9l#r^*d%5bLLfqTuLq_K;$UUOjL?5`!*RMBGNS`(Gnfb4v5-lzN*+>H0L zqdtgntsTl@&Arc~a0B#6Ge z|2${GpoYd3_PZ19tG|0>faX6#7ty~Dg8JXk5%K4F|JOBKykVX~NmWePv4S@-t^Duh zV>$s`hR@Xx5U7}z!)@Y`~YG{+5h_A+hp?hQ~xIr zsLqmq9wxX?@n)82wb$R5?%iRGX| zNnVFPeR5GuOb=`|7BCv$l%hR0llLoEm#Or8J7@?Cwz&xxVtyZ7zocJbl)uMCG@q#5 za?+DbQ5Qy%j1+b82(&$Z0wrNfU4WfE?dJwa{_WtF8_kZA3t~OJnFiflVPdX%;40sK z^LrXlUiRQ$_KpERT?!azlqZq4H_PIMN<$7EC>;&C$bJvSH|>9Fkp=(z>zLcW;3=lJ zCr3-zH6!iwPt`3Ym7WeG+Cu|0|8|Uy^wnK!=`*Miej|$4XUL6IgQ+RqU%tPubmqrC zUxoZoQ=+qpVQPI-ww*Vl(&FdbDprWO9e%1TL!SDqr&bK#Z=W^1QF)f&AYUEqxkcDx zL}g4}S}DwoJ5Dr0uZQ}JT>e{L3RYCjQ)rhN2M#s}4KAjj$J{74q_pFASvJ9dF-qaQ z%DsX?L!41ARWKZq|3S?Og(h>t!ST!J@)d34av5k1apekwskk1H$83tNvzmroj z=OYXfD66T!#3QX*2!$xl4rLco5CDm~g4AL5LdfHzP;@~>*S&zHNBk)m)-0V%zyBGW zH+srNs4!vs6sW|3NCTG@FC!W~9%i254-V&|_h6C&B1I0m<-qerYV7p)@6^s+zl}m) zxf0fj?0k@u0JL64M7YB7Pj9zV9)LXy8wV`%7JCu&h9bf|-Pq2Al4lFt)hu54?*jS~ z2FR9Lz#{3azSDK2bOV1Luo_60nd_SPRMApD%6=_f(j|ClI9AUGetU}hu1dIx7zEZp}Pa2 zOWJX#;B8D2n<4S>ABP87Sp_=0?-3PgN?t#vEP3e?=|t$pjtvhwpy1?{4|S2~=(Q<( z16v{6(LRzubi`Q1*mzoYLzWvZDM=Q(x0>%){cTW}bibQOiozVFpjg?6svQASUIJ*v z_K24h93*ynK7R*E^0RUxsaIAO59p36*kZXA5FrsKpLs`GGjuDJ)ExOcJznLGKS;fh zLIDS~B*CG`W))2ZN5Tz9OyCHuRGY7}M_<}3j)kd@wU{>Gr{aX+zS086W zy?Og~<;O`SL__%ECIMw9&`mfQy**IZRG^h17mZZNh*6J2B0Mw{5pHQs_vv_KM)-tf zB2bpf6`g;*0OKGsK#yQLTto?xJwU`k9FRaCnu8Nlcp@&~6y5CBRahZouACuLvgHRS zUw{*|K9pAmiwPq-Vu{=(h(l-$*zhy2QU9KHbNG}aq@;I%hXYQUsZ6332wfl+24(3f z_|AbwD-1Ta8OnoR(Ll=tef((R_^0Y^KbkA@cjcgzw`Bi)-Gur#qM~Amga>)yHzpPc ze+8HWgN4!i3|eD2!|xnCUr7o1<)M*LGI$1&RyxFNR#Z-8eMCuoBM#)&*y9YhOm;R` z9RAGbz1OrT$q&q|tXOnVU|{EkKPkcMr5EkLx4K_dy8uSQp#K(_Am3E zwnZehc#9-zI1*)DkXE(3kl2=+dWx1Y*HpE+?3c&{VXe5z;95nIRlm6H9B`q(Z^Y}c z&k0GC*XBejE-n=pG%9N0_y<{Bhi5=}eVcOp6c{y2=+8)ZG|>FWx8>1TS}Zz|QItOC zKEc>BpIyB5`BU+humj)P``6bV{``H_6$*G_$pJ>D@LKvymsIjIqTILEw&?l`g9^5f z(@eQr?Z3_Ius3}6pD$!MB+G3YCF1{)YAjv0GhIZ_WwP~u=tx_cE&Jud!dQ`Qg}0pe zB~x5QNr#T~2y@))byjf+v+D@;@cFyla(#(W)bFiIgD5Y|PqVRP(iPbzE{|yR?L?;q zgrVgLMe?Kz3Ais!E*2pT9cz7G@4R_8FJXz|KYN6B0nUt2TaA{f zpPCL;$+skOO#@*A=q)s+{$m|6C5LeLg;nza#O2Xz+Zcq-eQa)HeYL5{qL=x!1|~&D z1`{dl>_^C!=`N`%Dtkau{R_Dte~;dAu{_Mlsccb?E>`L1@{haMY4?!@pD`NMWG%Xy zH2lPQReD|XwP&?SvfJWp%ptP4cJtz@JW~!1?QsG<%>(zj^NyPy8C1YnAo85q@_E!M zY|#RcAS@lvNe*nAC$PNM&~gde=z}u@9ODy1oYvqt2giRdGRYKfSoJ;diDtYVJxY-9 zeAH0aR*7p}dzrA;&+LVk@?MJ=+-8i6J>9^!Lz2IK2-gR<`?F1^Qq5^|gSljDkXcSxC-^Skn z9-{JF6$1(#1!scKkWd{sLRV1G!jT{5;6vF$fhSpBfL2XB$gpS(XnjxA#5zwQcLiG( z?ylFxPB4TbD?8i1L+cR+`~KSKIYfpJ7V>f_pGecZePL)wa#olR?9Uv~1%eHP777Kj=7Vi(EytL2IbLE;?cHi+|t=tb0zDM@Acw2h& z+3@`pbWAzc;V-L>LYdJcVQ583HYqU7th>7U&tIXA#law0`qc;YZGFqxyLw}?rJ}17Jh>b^g~!yC>>`8G3n zXEf_NAcc&gSz!!f8+iPhC`sceS$q}m?IPEFFDBG2Ke}{q^Jrn)z#QZyPJ=qOeMOIx zR>*oidT-#y#1c+ntN3`ryT)IWO}q0FFp6HAen=Su*aLCcKuq5b1XBR$hCa_A&NeNEq0hDN>|Xf8Hu?uF-DKSRT|GquOsO>|dRHx05g2GNs%$38&!J8^%D z{c;dxy|ry?y5U)$Yh@)#UjphK1$Y?%QsM!Zo@#n@a7D%GYunN}Tl?u_^Hm^6>VS}u z^Im+@#C`rd36ZBbayKY13Ah1bqQq9j$SsG3GUfM5yQ|9{6!_6WEf6!fj{qhw>}|r5 zlO$;8Xd*LPy2UxMUbQDP>mw$lLK$e?L|PeeyTG%9 zrmBG$2B*Zo{KpA8M+}j+8@Rh+d?#cy%_}H4BjFI@gu=O!gJqhBXdVpbW}wlaQIp4E z-FR(QjbM)+RS@A*d-Fa|kZ%7;ygL!c1SplQv)uO%!rJW_36Vdm_YlHsH}z4k8$YZ4 zZ~0xFnI*(&@y__}ZxSzIyK2S|Fj-yq@P#upN;INtN3g9Ef#^twZd2jeuR|#%GC=Ed zY&8lEkprmj#|a&~fUM4H%;=vo+52bcqbM!&HQ|LHC&8bxUcNc)MRd@NgOd30pRK7F z85cXkFBP89`8&w-UH-F24pZ^$bMhBsq-OqR5*SQz(10vm*DxfD3PsMgEUY#A3*z`C zifa`)?iUn@_aC;Y6M#hT8Lr?yeWUK|M{x`a3 zQ#Nv12eu8IqKJh%?*~yEO?-SySZ)HLMCTj51URmct_Lg@PR6-xHEV znau+#@!?SPr=)sj=p z+TS8E35$zy={?0;I(dOAVNPpSz05&@F00o*#Z%H2SIu@Y%xsh+pn*lWI~(^^vwJz9 zEw*IXdYxW^ngbaYwIMhVs1=^ly|k>k#5M^#^j;)`^TvV6==}a*eO9g>`!&6m1^3^R zn3Q~50+YW-DDv!9GyT!kx3jk{VLGSZSo)qePKIugZmXlGCA-met#QXM(0{fopG&@Q z;><)WNqj@(wlAIUIiG(uXT6?M)i43Q!WqgUhU*OfP@=wZTuJzZzJAV=-z(;>%4PSB zAk(S}456_5cMgiVZyt7;LIfT~Ph@K083~4j(rGn)GkUr9E`sLD9>`3&R#iE#RS4B} zJ|`~w=kUi7;@$)Wfe;F?DIxA=j0zmP!f_R~BIi+RhbO?|3grnK*OY zs^@mx>pu56&x=99E^BKd&APj?vPoJOOqP+Qb`k7m;2X&jAxEiy)#VJ*-m(6j*OjS| zY`~|D9ByTu;6d$f_>T6H+3+1>&~Js6q`1k^OAa=Q@OF;)9wABQ34+B#Yo5 za~w81>WeRwg8KSVRViC3YzyV!LWTviSzHB98oPRayxLX-)N=*8oG+d~cUop*WZc+R zfD;Sg;F>_>5GHjh%l!==lfXltJ=0u8=bC2u_19sH3V3HM-X44^a{w~ZsE%nBW$Uct zrcTBA=)karsM#7D@3sIDq35^Yt5f&P&FR zp@ZhLcxjPd!LlMeEaFlE_mgJd5VW1GPC097X$8kS0uOT<+G%ZDO3k8!Abw9mdz(`I z-mwGsMrwizCsR^~t%as3f0K%Qh7hb{qL?A3DJs6l6XmP-z(wRRn9PU^1_e*z>0HJy zl|_ZXnE_n}_EO?#^v&0=UyCy>f*%5Z6zQ^_sN-#1UUJmm+Xjj|jL#GcZfY=cm^%u2 z?L_HcF3D@ju`0k!-mV9DI2{aaryv)vis2f&=q^yw}10lBD9lEqoMLz}B&|q|=^Jpk2=>h1+ zVC6zccW~h&hFf2H34NqY2JiL(I>BRV00|>5w2J>Ifb#MpH`tIwkRxb3{E)uw_ADcL zzf#~f+Q;c|rJE_BhEF!#mH1Pqg2re$bL8XZ3 zo&yvcSo+cTt{y~DXJ+wC-PCdV`Y`AV7wh6I8R^xr88vlnvsnXma3LueafYbrTI|qy z9Ug+I%@-k#@zDCx#13tEq)rF!!NF>X`4l}-!-i{v#!{N5v2t-VO4+>6O~z$}zvy$) z{P;5!6B7z??k90}EtmvC-s8w0&j*ZiyY;Y03vhj<%^sLR+`Xqsu5)ASb23@3i9T1|6&# z{a{`2m@gsY{5tSq?Mt`+1#tC(f0q@`iJH?ywdulM^4Q&Ygee`PZQ}MvNv3z@>TFJv z6@3;uaDHM`>e(W2iKgJzrekzStC>Zp8t^@9gIgajCcZs?1K>y#Zj3g?(gXTjMryWz zg}e~)ZEfY*98h9>7MWEyA zXAoTkLp)zlrSqH|aTB-Qc+++8q2Z4c%1gXhIXP#)%mLwJ_rnH-a$_JuT}*<(I(_Pt znuv2W>{Rgg>bcJ3>PJVzL`T7SH)T<|u()eI4B~a5%F$q5&+-H5i*68o~CcXr81UkCA=A}mWOCyu4d}_bK;7Pb)N;(#K;8bXZAZG0x1KDPg8wZ%$b;l1^x|a zVPYYBUOCchTX!gCc4gLx(^HJQb_owa@|Azb0~tLNPS2dj3}TyK_FyzoF^V5x)?dHA zivLx^m1H7wORhd_gH9(JXwM)m+Niq?BTv+~JiY+qiMSheIYYqNT+(L%E1)AyYv^iM z86-e>FD?^WC%!14;6S(y{td2;31Z=#e!Ybs1O=v&IM5Vk@6 zGy`*)$8N(NtLHB;vynVA-CZ>D6c%v2AYyri6oj-kBN!WKi5wAj;6009a!W5( zQdC@Bw};`!TvNWa$hKu9{|NxylO{~BS43)`u9WG;Co?0FB)9< zJE{F_bLnzxvV8$-L5Qw$_3FX^diRbDtFGu=tEC?CQF1$iv7Yp@nWo|Cqe^2yK?_k29mae z(0it#?;I}!uGDh&lc-%f7q*Fe=c7{;C3fuKm`SaU8b3e3wW;|Qn2vQ?lBSPvUXgh< zma%Z~4cjsxf)pV55z{ZUE~K?8iqy}}dlfEB2u~EvDQxAa#^*f-%2)QH_2efBOT-;6Qt90-=p!uXA zu0TmvNo-~(s+G}wJ9&A+Wx`5Ob}aIwmsjOGUL7hGl{m(?2j;&Wg}SyK#0*9ZVRE7% zL`W2}c0N?)+lwXl7D!hsRisT!l929t;CH-buE#F-E+r6(3;4DbT!*eH0O5%QVuW8R z*;(y*QlN`;Vw^s4;u9HHantNP+?kgdv~Srv_@LCxyW~3p_JXcO8VgFA@tR7OefweL z1EnwG(}NP52GDO1bMtoG_BQ^&b8^Tglam?q@dR7?vny}%wZU05xFT4cY| zJ|Wz)1(fqZ*sCCymF7uFA6%%=XrZy{qLqFzh4VM;%p~VifH=HEl|Xx%(SG`#6&TVl zBQT0lBgR7#|q11Ks8f=G9F zBVC7Z1nCZGlupS*^XZ`3nke`NUhf_yXtk{#{ZIPw+!gLIG$Rj*h-=n;lC}8!ESaZUg9tc#sqF_oU zuojl_ZqD-<43qcx4d4`#mmXixkS%FG20EsA0mI)-p~7<+nDYwo>O zK1UihYD#yyU~dO6KwwRUK0P+5$iOF>_5YudOB*t`&F-^AhZQ+!tR5s$=+gnTbtO3ijvZf8>0-Bt*!dJ zNe2Bjb8BwLEI1Fa1Fu4Cl%WjeCMC&`OZ@c)pVw6~WOD2QwNgGbPrynYrB_H*RaZZm zb$2Y(3f(8bF*4jJ45nzE34U&pXKeC3?J736u>AYLcD=P$XTn5<^Tct&yGBN@<761L z6fcFI1ztb~s}{y|?4-zANq0^OJ|NN*)NHVXaK7va9!9bz&7XS_qZ;Tw>NcBcIXOA| zKzx`2rMl)j9!l_ja&jLPrII*vFMzs94E9wW_%+(uw9+fX`n%x~qbD`rs4vb)9x#~j zyKZz}ef0S<{mT&4qa0;R^Im~I>-r-R47NDKfUTzo8KRl|5Y;FULlAKY^!$@(tRccn zhf5R0AVuO54br;5)Qw#44rVB`J}QOr{V$K8M)hCZnpD7Gxp;Q1pHHTiqu)9Px?`8! zBHP!e!poM~rcCJP3bk_Ac#P=DLQzByFJA03tdQ?75O*+7snl62kF{XmMB&pSwGY1v zfGtGWQoUZiqM@gk1Msp1C=_GBKK8e$1o3WTz%7Mab+1RAr&#Hyh7sH>i{MUGUyd`E z=SfRqUk#%i`)=fQ9|zgeWSgqArt4Fo8@>jH#xKLscQG0U&#@bAdM^9P>@z0ZY@6f} z|7G816Kk7wqYapBQ7G96U9Z${6MrhnRu(O|at8g^+dxvH%gE~*!2AA@w7=GMThMA$ zkm|~n6)>$t_zh*?$j8dc`imamQkm4Pt=zuv_UYrb{+N?HeLT)`Jo<88^@H7dzY7b) z_SUvn13rD_6`gWlZ4T_K-km(T=c|yf=e8Ffq0lY4At@|rNaGUXe6~#9nRl2JdO}n^ z-_}N^_PhB}O?Av(V|Df9MJvNt4E%X8znpw%aCf)W+p|xxTd|ub+{jgVRNM1{$x1|@ z>w-dRmx$LS4!?cGoepMRmFm4^l;q_=dSs1v@{nS2gt#s2r3`a1w?<<1OgA z^#Xd^Md-W-|KB8JH7a_F?3Y)C&p4Jg2{2P<=t#j6x203}^iZDpQOVlPh*H-QQ{(;& zsY@tn`EEU><;--=4(dk_V=#T{E5$y9y6mVS&ljG}3=ZE6c(b#9*30jQY-w)0y0RV2 z3U)8pW_}rl!&kFCQMV+>wtF{&h@cdv+2pCQsw!=8bo-Pnlh$ zsvv*N;9!n+l$mDd5GU#(X&sAD*TsiC(%Vv-Pq49499X zCCj4e^7Mp`Q}wL!cb-`HU`!sXd15pwjlYe07uklE9(!(_Kg@P#(T;XF;u9#|a5%&+ zhHTw4CkaqGNUf%(Uz0q)G2Hkqy#0?x%-=6Wne*b_A7KwNJ#WPE%m?~vpoMpoFW_ZG z|6i9_E?JMbrGIL`gC__qvSPDb=kzf2R6X59_Dm)XGmG}R=C-+h(!$<=Ez zHb-mD+X^%04fj+EcIJkKjyg!%)5)c`xC8!FRb#YC*N1YBbAm5bJ-K&7dWS|ggD;258yotbysa zoIEaJzM^Hm#(o;vY|F(PQT`_PBue&P=d8!;w6ra;<7-QO4fCh;+$(CsQq6P*D_w)b z|5?q&Ubx>aD|SJl7F)lG)Kg@ryj>TZ{dOfbCpVR&#=@o2BFNIK@(qQ3+{2dBDjfz9Shc2+ORT)(uz+j{@+D@;=AH!66@T<<<}=1b5&8 z&#tW0L1fc$ckCTN+dN9oK$EMjCC8X2ye3bHSKUsA>fyUgtuR*Z9=ZMt^S!>+rDDHw zOa636A@pQPeOtr6Xg%3son^u)bf?=Z)=n1lpJ4*yf&ex08LAJ86aj~+c@46% zpJZA9=Ms?Xeh}8?HZ{q{J5Rbg`T91Sbu$2sL|J^pyRH}*k9w0h0*%I1FS;Z0`!;HF z5^V}|85GtdVh**dY|MHRqi3>B@2Cw9`bTrfRNPLY~mrx)NO41%c0_dU2`n1*cdcMgikp--~v zVd6-wGZ$HC5Mauhn*-IL$tWD^9doCLl%=3$MRrt(Wt$r~^RdXo=aorJLLy|Fg7&?M zhw^T2oV!hVNNBljooi+~Jbg92NA*d7^o_db-|ErTVG*ws)<#$*48#hwe-ws>q!k$A z()~x6o9;X%u(sVD>c&9X(*mHp-oe2E^z@{Q_BaFM(A}0=406h=!>s}v-nY=u+pJ8q z8=&49>qdiWH)BFhOPjs`Y*P?Y6tq+j9ew_6`^w-9Grz;O`{&=~D)M*Ox>YReQ1Y%r?bKX=MOskpnif z7ay**V=a_>Sn(#*Kj5VPu|}9~>qbHQhSA_uHPsXwT!&U3mISDzi$tWPgUB4!NN{B_ z$^^GYh^}XZAJ(-4Bo7|+l^aVc?j3*AJaqK^<+lV|u8q;-HG#DG?2J5^F|*wN)l?Q) zS=lIr<4s5}%4BsiXdmL$uC-J#rF`P)B_zMc{p%0!Ouu0ICf!F8lxLNle{0&qM`QHo zY5upGW@ovt;1{W&kUpYQlbVf%CCCnNb<9ESOKdtN3Fk&-&vV7c1$(Ska+D@4z_m}V zvKJY-F0YU`=RH#&9PGb#`GvmswDY04(g(^H!8u5h2!ZLGE!1a za2{mI23-8#o|lzHj*>T$!QCLnQ?r55tAoE~@f`_ou*TV07g!-p0GSzaJpuA9qdD-? z{b$4AWh~Q2DjwPwVp+~^>8IzthA-~YbBoQIm93h>9jCk+B8Ajj!myr}LJF^)J!eEi zSQ!3JFDwn*U}=PVsFY+RZX@GnQGCa0z4b#Mj|joeCc-@c8ZO>pNA(t*$ff$TlR}my z@LU}N`kW9v@DEB@sZcbTfRHrm!T|Hqn!9M$L7~RUJ!17&b!RPu==2%7sVU9Ls$)^MmIs5Gn>VydigtIk~o1k6cT3x;V)+#BgCo%z-tGBX|wu6cwo={yhi< z5XiA|0EIgF5~5`4A`^{^W9qk7x~7zL8NFCp-5zhjofRYek_R7mW8leSO*OTP0S{4L zhMpgOH4n1ry6t@RmZ}DZ0OAzMk_}4_9JKH%yi6O*(T>aD7GhzH*SJ*Dowl2(TaO*M zzLbXZ>VTH49iReag8298c6Seh+^`Um8t%iDqXnqg#0(Bf_15gHM)d5Ig^}|{_Ahjd zP;S)tSKfs_X%@!&`XJAeGLKJ}%|1I$!+TSS7_-5Am2u6wR< z&4R#^Q@#%b*beag4;%>KrNeH@4Za%$q62rwe@<-3-Vm0NdI$m~E`gFUw698A-LiLT zl4aG})dNVW?uc`F>+D;8ibpqw``@8Z*r|j=p}3!xDQ`>n1J5f@my5^f`KZVQ6EHH6 zsqU^XLKlMa?FjBHiXqVX00vUDHM){<>g9NP?m5>lIQU~Plo$u@SdsS z2HIxvC?Y~ZU_IhvBI}P9#X9$r$ESP%Eo&m~4G5B9`=^=z;L8pB=A{t#Or=Z}1hAoQ zYg6JmZDVyWeQYi6Tiig`H_39`RwpLScjewS0K>0RyEz3`*01*) zFIo(D8K9n){Jyj_yr$W<_gVnW%6dA*-aMoGtwnNXD(7YD@mCzwbYWL~TFP_#6mbeB z=-1jjlG*hSc(N|7erg@Pp=}&F zsXI5})q8UzrjeOBL+6d=0l|>%BmGt4tnBwL8<;pc^I=|lSE6DS)bSr9z{AoiMMH1; zJq|8EetlBA`Z~1K?~6by(2m{Cgg&%-p=8iu#!OaY^SZHcyOg|XT-rI4I)8pL6ng*p zxIwp59)>I`5P;Xf`T|@qk^sc+U$^m|#%>(FcHaTAR2mhRmRtzJ0tS3~gqj350H(FQ zP4+&2?M~t!BwZrXgLrR$+eL>j5qy}V+$G3}4|}2VHrL{pUCAM4%Oz4V=7@2lcx6Zt z+YOtvUFr>d896`5h|(}vg|($MIPNVmv>xZySl}|TJ@og#tvF9dCeX$ zoEQ#koxfb!w)av#GH@Hy68$~RGQ%C~b(CLvD$p&3O>-LbN99dqx}S8FrMr;2^#(sJo9Cr{|b6)snd8tBAF@U&TOXKE|$WM;-%7s}LyeFab&<$-)cR)^W@?x6$uvFPF? zrz(StEX(`vv9m5JK|8Ht-CLpr1nN_NIy47&MHHmZUSC4J;n7!kEHxv!*Am#btyp)2 zUE5Yc{Wo9}GC7>)srEIxp)k+Y9=5de0zq4N&h-512nE{3qu??X&x1$wZmqF}(wU>G z2Hc%qTYse!BiVUeAI1m|9@Pa?2)Hs_Vb`5~BcZ{Io^^8Zl93P zvD$Iwr#)5@49(Z%(SNhtcSS4b*@lBc0JYo3>i+iQrN%pxSigXhgb`k@?YQH}4*R_Q zn1Nf|JL>^K!jxNNz6*1fA)ezpODQCs_c89zrQ2HGqmM2u&C}*@n6Td=TP?NoZp-E-mG2Gb6;4B!x5GVt;|4r2C*EvlYt-m(Z{oqF7>V67hsl|Szv(xh zsZ7ZHtzaX!U!@xuMKMevK&nOI{pSB`8rhF4-UzMmA5&dqPA?0;eVdc*Xe=|m7V_APdzM3JJAj6WAu{U~z_3k)&%9mSrv@F>N8CP}FQl zQrGJT{)+rb&AKpGHP_0}pxf&=L8a&#=lVelH)Fz1>isO&DZvM$_4O%&DxbgDiG&QS z06tqE-TFIfOA{Mpmi_66(_t`$c^BRgwz#i4{LEw}_s?NeZnA$s=);6RXZyLC@?Put zq5(|o+QhrX{?%+XB>n-)c54kdPmCKowRMv-sk!FkHDfj$mUAjy(7}n=%N{^2mo~ZR0Vlp)q zIk@w9uM?t@f+S8p>uOx3ykRJ@-1FzH9<;YENA%{~uQpCI6ThA#FXx?5n}QwEbIjJP zd#;xH>%4`^kV{M152z>)2?$=PpDi-fD3zby0FAGLjuQnphoU%1C}P zDCMWjZGZ0HcPYrI2#I4+zPh1XKRNSPif(wVOFRz>nc2*dl;~|u^1oIW=I)C*@I^{L zjI+Xc&V{oRkDtfO#Y-n4?&yjdH|TyDiE&b%os|noxp!|@CqS#(bJ*IA>y|cF>$(8z1F~-bK&Y# zasTniQsMi31;W2tdV`6h+|w-+(BX?19Tr9#%gZz4czeT7Gkg{1z5PQQn%dH}5kN{q z+$lm3M<~gpybcc^qVxQ^zjKE2!ab+vbhp^Jm8uUpH;Sz>tdcu^&h?t|AA5TILrB99 z#3;(E#r8BQQJO0QimyHwda;txTWHPIX!nZK4RI~8J}G}O@ZmJv#!fUXU_V2D1KuqV zN}RB7`tqW2&>pan7ed@)!4_FTCUGtDuTAKzkVDxZSnp#@Zg&~=+h6_ z^>=UC4^;LWrG%n!@F_~|ww0n2c=Xfr$2i-t$C%t#Sb1~xY+)||Em~UxZ)B1WPW1Ak+&Ihb!-{w4Nn->ZK=h{JU%5YaxD+R@=!u?LJ%V0UhSnz zFq>z$P5t1L7a$>_a)d0d>H#`8NucN=*nNyZxBAa4l8(=6b3R}5L)g;Ohm3upgpX9V zy0!G$qH8Hp`kr6cPamb@eQggthj%VY-B5FGF1k=Y4)2LO2qw)Sqz-NSZ@nKay&JBW zU$PJxk-Zb-b+cY(ly*|7eay(wM)NGu-O{Nrf(P1U4H(%eL`HDSIXL)hN?A8b+F;EH zpV}*NXNAJNEYHvFtP@!4rHI(hyE&Q@(ql?5Gou^y}FhC z{6j_=8fOYn?;h$nlp=)2J9LQIs@y-Q5aKMe?b*+)9ggx}ZB4}A{MjiaPL>xId4217 z**y-ZF3H{Pu`DtKiZS*s<%a{`U1#= z#B#KOpG;}NV@nB*?3A{{_?!9rg&I20K5MX$j+SjRtk^{#UOvLc8WP>P^J=d{yN)>5 zr=6UxD4}O++jqw$!};t%YR9u#P08&%S5FVwA7nnWFP26U2G2ZwS|fPoYd_{tOK`-y z;Ff%psdC-UXFuZtWbLeGDlTBM;tTeOm36)cJWxHcWoz2mmH(aTa5DA}u;^BwkqP_) zT#YskEwAi1piKH#0ptvNTEB(FM@j}h)Gsq<_&yop1reA z32T$L5=(R19k5O6tSou{TUw&_@chx6iHPzWq?}7_ky&~H+OAK+! zI9SpoHfeY?vESdw`8k}`b9t`WMc=l@IDMvf)Np;yJZvxWPP3^&`&Wt!BVn#r(WrZ* zZoqtB6Tzg(8Ma_&c_qR3I{SZ$nF$tk?j1Sz4Xj|Uca5Ge%aQbwyMv+s;bV=?E8 zb@ZN&h~cE4_+AX z0k=g|LCMq)c3p_)9v7tFtlJzf@V3miXW#3b`=XVf#+9kysu@Cn3DLPjT|@Gl5`>p~ zVE>oud}iC?%8r5!TuHac0;`6~)twFYc-v~Mq|;i+<>$>H;AAHo@?=5RG-8in^i~nq zw3z>MfhOsz%XWN>^0@VhCXGnz*`{)cq~*5hi>To+HmOsw$eicd(u${Vr$rq6s!*uE zz@MOrjH3e-^F&ScCXXJsp_k!WGYf~bv~k6RQ|$l05y65Fm?fkSfnk=4cp!cQa~`;I zA^!#NdVV^P$BgP06X=JTMKt>GImhv0gm8Qb%t;%waol@CzPI z<%U;Y{E^_}eE3QMHu*Y#)c*1D%uJtU;ed)Nl(ZsPGz;)O7Yx=!Wj~3!6sd|es=DTm(9=H z$@A!G(8aCJuc*$}DzpMJ9`}V}>5uB{Ele;2y5p>J%6*FN#Z({*4Gnvw;%H69e4^sx z&~xz`YSpj-IqXz`7i3l|hf3PK$rU*45RKk`X1S z`hN?4q&r9UJV+Q-b0BRdJecb8!UH*0!BD_0&fdGo=jSle(({~{V$37MqgiBBf-bMz zVD7K0k!P9JP~hI@d@yUtF6(&e8Tsp4Z&k@adWmBnu9-}n%2F&Tcy%glc$tx{=Vx!4 zq?L5%os0lRNk4WF%M!^^GMw^Zq8AYXc{ktSR-$nY+Q3#=e8)u~fZcQE$N8Gp$trkdr&?e>Abf zMZmxeHfpznSe5`a9R!=VEB|9cqbf|k2<2X9)ndeLk@r(La~o*IDzZzY5Kt zucZPvd@T12tP1*pmUmp;0)YE2SV_C?BCh$`pl6!zieDKde{|1LbU=Itk_8(|Mi*g77>37S-SGL|MVf1@wZ2ieUSX8(q%7Dz0jWbc1wfZ z=KsS`Uz(a)LRqQ?2g)+AJt*50+6*{^W%InG=YC@M&tO^Ev{W(odTl+hhVvu4%0vq@m1&m}v2wA( z(c5m2e)nLYMrV~eIL(()i0eA+3%lYwDpP}q_Z40VDnTE#TS4W!zkb~5X7D^ku&7>e z|Hab#Kb)M(hqsIBceY6S`sVt!BGb{j8TIy$%m)bietqwlk9_J3n$MxpI?xVfK;#d@ zkZEDne2iWIkY1CdatWnnaZ%nMvw(-}29ZxYi>Y5M;NkW6^D7c(p(_ZcSgIC_du@MT z5$zVMc>DYZX{1Yup8o{gWsVV83E`RpBa`RvQICeAEo_YnpH3R0!} zAHo!tIPokAbN>9-7@;!H!Xi}~r;oo_i{>Kz`|if02kv)y$Q~ZjW-CVePvDxH3nf-P z@PX*>{DYCat+TY4dmiG>w<%A32xIWjtqAaw*!-nL99K{lSyjL^mgx0t^a-0H=#9`G zKqqbC^0r`Mk!w#7v7%*LLVO*71uBQwcarnd_(B-;Be14%@_l>A2BfEDg??TR{slr% z@k4yC3aLNyA{5E#UZ-dI6KXZ$xZLB-#Vi(Miq75xsmonh2P4P zmjI>n54W4*MemlGFC2-Y^MeoqaX%YlW;4!T>Pyer4qo4eDIGDwDqj#ehnRaHyDLHl z7n#h;Gc}R{jr;F)6V@zu>)To9=H0NM>6bh>8yxNvnbKOlET>X1;d0TY%+b%<=MpvB zgoBTHOY&7lx!nVt!ANQWcEyrjR9KrU?h)B52C)T3B$xwIT7h0k0O!Yd&A)Z<@SES++aj zT(qU=czi6lIM|Q*lik)r=!R9#7dy(~CYQEVr@G-eI~9R0DVbU1H=9yfyHDX1o=C1= zk$wJ*l$N%@uMqha?n627jkgYh6i5hV2eiQj5i z^8E54&!WejkH_`Oym!Ac=bGx^t+DA{-RW6;&|HVzE#~h@6?btT^IYXo{c#-=Tak6x zqnC#Ko&h5V2SK=<_74w7-EYbYl0KFuIUtyxJKrs7*{|>J<_0Ffgs9rN6SDx=ATf8u z#c96NM#W$LO_id?#rdwzeXzJjywuuyYSYhcVR^X?6k7*iE!_$IDPOdbQoLArZLI{G zN}Soo%qOsnO|!UHs5Z4Q*SI7wita2!`};pV^BlySkQv23yN2S69?*_Q!Jz)%!;#SwZ1yWcXg^q3S#ffh zYzmF8$lqnUuNWDM_eC;0NZk3|uyNVa8ia$gm%o`HZUA$jPyYVjmQM7E+1c4AUH*`c zkB{qA*|DO44RPsV>Q^wE9&vS$O$ur9E$#KpyBDUwQF<%i?Qk z`lQy9Pb;7Q{$ZZ*0}sNzCkH1F{($w9iYyexw{PD%F$7X5H!KepJ^d=?xq2~s1|EYZ z**bj06NiJBxBRfOwKgaF9c-43JT@P|UQo+v9j-2JV@w?A+aiD~;_L10eRws2BG5=h zg$($~@5te5Foj0jiQy|niWpq!&tT7wg6>ff7e)HBxA!X~vm_0#=+?UMqd=H?T|^`j z_AL1Ec~R7XgTakC(Mma5GI}(0(gpFnH+ht)u1|i`6e=M+CI2Xovzn9UXN?EXf&QcH zKjl_4`692~j(}Q~06&u%*vrUcY}U0bM9>2+*S5~i@ZAF|CIJ@97pbY6fg}4!Rh0ss zK5o5IKM0Kc2y~$>U?j$be9>aj?AJV~EJgE-=)f z9DP%D?coLAdtPu5&CQF>ymRFAH9z8D4$6<+uUzr-e`o32Bwg@rBFaj}f1ensGQT!o zlk#@;R6kpB?1I;EwTQjuGLDqn&Q0)Cb^t59*IQFcnf?5r zPd4&AcnOayCmdC%9H?c`P!a##k?$1xr9s zkFJ%h9y}eJXbC!vh^ij}*k#U}i@#h=NM9-up-J9&YWk)@!E{sHG z5T~|SaL4dRPybqA646d)x_#x!`X~W!O~;m? z1;E9_V?{ARDb=Vuhbn)=b4#z>enG`)eY_O{G2lxQ`J3~X_XI4{P>2G>sAXJ4pkLuZ zp*pygA+F*vUmy|7<^W_ieftkcuqPHeM?PW+2RR@BGvyB!PLj> zL|(@Tr}f`8SX#(Rl8K#?x^pL*(NlG!6>J&I9eblFQU>M>H7VgS%gc&H$+)S}cZgN~W+zR{BI!sh1YO0mLVSnZOU_fY2UT^tlIFK^7Sz{b^|LS9dcf5R(8 zkc91GZ*SCj6mqxl+}G2i0Zu-%uy6#@I+K%=yOYZkjrA-sX}GJAl9AbTQj{q&Ng68u z^%*^%G*`7S<58|~@A8w;CfOC%n>HL!y?*4%Vj`WtUdK4iED{MAm5;3f>$ek5Iu4X1 zAU+^>7xQwK5iSZ$>a#r5*x4cVpc{;*n?Muu1MX(Ns~14@hBHTbHZLQi3HK=K+q=ie ztGlA9s@ecd!B#L&gwjOZ|n|Fn_ck-`g9z)G8$ zcXhtZG+)p0;I1w%{silY78sRf-Q3)CQ4LeZR%&p}vgWs8e#B`z)DMk{k^^=@p41ym z5WG3XR@$VjpOdMo*GFX?!s;F|$8cV`as{c(z+7X1iRu9A!Buf5Zb&g`fxqCUMlE!I z-~6*IYV3~VXZG~Xo1XL%3q6%Ytq*>=-}XF@TN0VLNS>Q$8ot%aML3ll8>C=OW@BShBzlF0hB!+M2id{= z_yZxKC`c459=($a~*@iAPsfkX4d<&?ED*knWPrpcr4K9^7wj(m`l z2TqACa3~-f>m`Vmfid?Hf{*plg-q|W8oJ3NxYa`s&5s6oz0u}5Pm3ZPrJK6qUrxQM zu=vi%S}YN=OYwk)k>9{D+1gr;jtK8iA)6JcMy0A7Cy%WHcD74sP(Qo6nxFE8m4R~( zkeJ$ox)U_3E`R_2{Q!nz?gZ-uXR4;WyLc#gB=Ypih`r&Wi-@=G&meWHO8{|QJd{{X zPKpaf5bKTtP5EH(cgmD+mW3bICk8hkI3*G>uW}zrNbDDh1%3LMnNYN}c5-~&=9E-b zQ!}%~tSaY1o=-^ocBoSIC5fyZr785~T(b*JwG#hil}5wW_}G%9yO!CyIQ zZ$0z5n`bx4qfdh28ZpNrS2pQKcSUX09vY;MDX4qFHDYZ!)Z}b2`N7sC*_8Y!=n;|H zjRz0(6xo2hC^d}`Uweh%ZGvdMSjU5&o?iLsQzlU0@A9el(hb}}1t%nQfv{?Etm2lG zl$5BL82B2#YkWEllD=6GXTTBBBu0sfit<69E_JwgBLTgq3$xY7`g&>TUp#=uv^r4} znUur?wRc5Kg4u#s_@R*a->t3Zu%D7~z4)4$X0($3Y5HZwz`VyFP6!7#rG4)jQtP%j z*8RsGr7%6h@3^|4e?&Xnhn!3JdAWV$9{_q$T3~R!f*?E~3V#HaCoDF9K-nZBC$GT% zeQ)-SlX_Emf{1y+IH}|wO+0=7;%reOk?#ekD=lVMHsg;ZYb#`}@cfol4->ek-F7vy zKi&VMu8zy-nHPlim@d~}6=z_+zpIk?@q}<-^I&_AK7aygY#_iaxynvjKp^y%qspSA z7<4Q5yqmXy?v+!Asi_f9PELkT$pE+G*85Mi7Qnyt zE)LipUWA{o^MBw|t%dNE#T<=oM34gsWL)CT>n}iX7|zhYvJ0*#B-Gs(Q>yH2Y=WPM zH_fvJ7LILyF%2g~y`g&}sra6vd5S7{5)^;6U97IbY&rnJV%W#od+gg+SfJXa$}XUy zl++1ECKVK>a|;J;?^pgSnSR8;>JfEZ4x7J!Vw#9<27V+*PQi$g26qxJ0rX0hny$Al zU%Ms`&VvY@^|g_a(QRW+Ufp;+6bOzw;_ie(x>C9Il!}%XH5?aEPr_t*jqfQ+MJ1xb z*2ZQUoFd5KQG|o#59;sZ<72-sUlu@1m;!2jNBS6~XzPI!=}qMQg74wajt&+st^nZO zyaQIzPuf@Rz|tAKpQ?Ry9m9~W{GDo|q4)0K<)0ipQj~P~dI5~WR$95;CMFvG6(c%j zmNK{A-at;jU@Z&+a0qy`)?>eveEVkO==c&0g{Tv`;9uk<9v3zY4pOD|nq5RK!h;9q zHI8*B60$Oq_$UW4dJtNcDGaCfFUct>u|U*a!FS|UzRzO0e*GPU7~Fm{E(+Dw6^wab zY#IA;DzS;~UtuZq4I?cQQLZtL_urp%3b0_KeDNwrM#i?-X{z)jhr(8i`n8-UXvkgW z>c0&t!AzG7N660JeiMtWz^cB_`U-6IhF`yrs~uOO#2h)vozdgM`V1caj4-%(!BTaQBXut(7m22_It>~ z!t$O~F(NoNRx#?b%N1PJ+(YNn0=DB&5pU)vHHlSz*1u&I2U8jPc2^uIXmVnNOuKVD z*`6HS3C%vX_I!}}`1`kR1!v;_vQ`v=9~1TVElxCcKc=s#9zEWJ^ICEs`Jt%!#cd?# z5Qd``OxBOoZGHUk3&TmI;65 zF0h^%lx+gWx!HghA#Lg?A(6K_e_1&J9!x&>75e>|M~=sBUdc}$#ZFYiBa%mC14gTh z5CYk`&T~I>pjxO_dhAUFSXNL%AUf_-5RBiCv5yUS$Wg>gmGi-j4Jw9VBC%<=Ikuns zx1}PvG!b^3l#o0t9@qS6rsLY0!(I2irs1hDuZ1L5KjHv6joh=iF}SwVpq zx@{aL$iKuzDTA7W4Z5rle^o(!IN(~;wE1kul;>nMjvf~I8Eu?1tj^MkM{90T&CNDg zi_gr{@*Kq|6|yzd7KzD1pYfSx zlH^o!_B>VP;kecu^meR8XHO)Wrcvu(_h#PO-hM+spx=V*6ntU(Ql6HoWd4Cb<$~T_ zJX~DpFNP%QA@DOG9w$)!huEVnqkAJ@PKfkVy}u>EE`Uzl=`(O@pWlvl0h-s(_I4B4 zuFvhZnug)WbC3K#sh!~B&G}SQ z$Z8Y=Yz!6K#@;@3$B?H7I&xR=3xcZo-%~z=Qon-6r$t1lDD4e#Q80+3Gbq=q|J`;1 zs$l^Bd~(BOhsELx%#}{@#vKCM+7}lH1LntehTus9V+DF|=#@jji#B%Bcm#0l_k00< z@7J|+OvqbFx$dV%L=qZ%rU&8SPBUu%a+XMGwY9aKfu?x|{2czk0Df*7)LSiPf_9J& z^b3#)9gEu!JZN)O;x+IpZSGQCQBm}{8c2>|e|&ddZ4gYSjy;ZLT$ay|eTMef!s6_7 zOVC~0!Ka8XcJdS+NjAU*8X9C^DQ3$S`Ux7aXM9(G{``3}c0i;8x^zmdxwBjGDlJIV zOzH}h7+a7d1Z+bZG8>FE)6-AmR#n|ISoyCgo`YhVgOAdqIOx38w3=}-=RAy(#~xAj zs`Sq5EI24NuArcxTCj+&tg0&ZIIu$*0dW(`E}~tY#i4Qct2?7Q-O}>mspqOF`;2i!1i=7DNecB7>K0izyJcU6FY9u}(A>2Mt zao|N=q@l4WBf!U>o}Nx}UCSA^8tM=t+Y;iuNYX3Af()Coe$?%Ns{p(7Vx3X<@qq=& zIxuway?Minm=59NyzeXnTrp5HlDFu2bPi?Ft^C@bHZ4KO;G%Ot5O*gRGrYufovzy1 zw>9*&`1+x`!38XgI5(PRPJRj3oq$}&1=!>`e*XUdD!_oMtu22G>@rF%rp6Hq3NeR8 z)$Dq}PN01&*xZFX*PcvFTzngF-HVqmzb`B-taZjjZ7(Ee$x_(rmjq3_=(e`DqJ*tt2E!G8U;2C%=hOLR(fhph^Q z);i%W3C(O{Kf8P4a~fZ;Okj2(P9GOPu<=$Y1i7fwVFD6xULRNZ-~^673dOFDu2f(v zQ1JlOFg$!kL_}muq2lV{{yqf_je?HORj~S^=GvE(loTqQXpMXR*kC;6aeDwNGOWQg z@q6XinmAkUbvcv_fG+_hFwesvXE9KLxa+@>pQ!hehNrGzj|K+^2XZR);-)IB8N0f= zN`dnK(BvZNqs;zI*g5=OU+)6h7HS`m=_;^O(jSVL{dj4*Fa`yXR>|)*g2FCufQAj< zqRoTD3HWM+`Yuz_rutvNF7e>tKxLbOr{uvT+NZGr?Cd*VMjC2m7lwvX z!nRN)u+WO{DtFhCgBa}H0umF!cbIu`_fYKYLJG~2@66Z+XQKY*9RvHa-4A%O1C;*; zb2D4SjSI3@)l)HmVchy6vE?_|Vhk2N0Y)YO27z<@S+S_JN%Mtw@7{sL`C(x5b(%@A zL+OD&7R)C);>ESu&K}fdn_rv?7Pe?I_TLx2*wxij7GUwpwA%tJ6s;k~>>Wq9zbi6W zTdRRe;;*)8oV)?g>??Md3qductF)6Sh1M%MOS<41j+@6ONZv8qwI;2sjBC zIJ_!$tB21!W_W!tSNr7DMmDw;pV9M0^jL8cYQDn`6Zy@zFf@dHY;na6-@X$;GvUE+#L)6pLbC1E_>^FQ7By(%| zXiVkRbF4Y>xJTq+SIz|jbl0w$O)(f4ETeyh(}`(#dhF#9PjL`jb8Vz(ORhB*5w~M17k=!o|+|1g*2Pb8dI| zbxac{JA0-5H!)t`kKZ2+1feW(@Jixqrn{|{M|v+(ci-ywL7UEtMl#2T|rWY6G;B~D@USQVyjQGcP4M*L6sSsbt z577o<#`i|LK9F2-fxI_YP?wpr=03ZntfF$Tg&oSjWlpdS4q#Q_t!Fvz1^u*(i;IRB zVyd=YTQW}>1=9%tYFc8EU%xgYC=hhuoM;Mw%2KrG=#ycI5Sij=`FFEeBC*^!pXqa; z8V^&FlfJyVNE4%%h7`85!e))njEkf9Jw>NBQX7Nlx%8_N;eQ5?^x}BcR?cgxNP}TLJytjL-=e>?5bO!RWpko=){rU zL)PGZuh|PAiN78z4+H}levq%#-YU1y4m)xgz$w9m8%gCgWD$g3rq)YZVbgGWcx#YL4l_iU+?~9szwa@?^0jP?%4~R3v@|+6U1uWG~LF} zkayM8kd&syj+@aBQra+Zi z%(V;MW8d8LxK;ip6yEAbF$Zr9ea=QnVcSrs{elK&=4ica)w1IW7ip@PMvy|j&Usz- z(!zQx+T(AeZhMub#qeeW0SrQ{gmyOp^S6{r05(Dqsruz>fe)c8ZfCuK02uj*UnMlXJy+jJZ)8v z@_6J!s+QRwp5EpV>~N3AAD@;({Q3Xm0w8^%pd>464j*$?TwBN^W5FUwTmC;3tjcBv z7f$UQyH3KT1+52%ex0#x(^*HfK=`2)#Dd4*ctfKdfbvdFy&iqW;_Tn|Hvsv&|E<0%ErQW4Pe`EGgqbER z{m&=xeYKbneCpbwmGNbd7EU3r%H(#-@mB>rs8uv1Cx zyTm|-cbF^VT^1%i)NzEr^|>cgq}1AY;hDwP!B4V+j{)=xx7*OR0vP8d8vGC6bfRRy z{qGe@rf@its$VE`c4;U-c3u>G$qkY3@lYlH-9TN^@I5RS598UIh}?wEfq_cUD8clC z{(;Bq3lc8%Zt;?K_>&$rP9~$@sGyr=n6SipFbn?cj^0!Jz66o+-+++=^I;3bq~C!= zSs3A7HNGSG@4x>>++6~nv;^6plf}p`ly2w*LxugYGWA%A}9oL{{W{F-aR-#YzQd{VVDv#}=b_(^#)rfi}pm)(BMeQFQMdtr2jJ&)m zB~yT~(%Si@WOH$<7n=Ki$qJLSwe3k)peG_E?BT?<;wc*#JX3x9*3V|QT8mPb{po); zD_^|6$pj8g&^LenHn}mt5v*sDk^mpLAhBszQ*~ln{n?83NI71$F*AuTQdm^L9hMs$ z6XEl>hoE>~gUW`b{>(K=Zne8k|c%LAvuON=lcsG&o52+&$;}zI)fY{~gy^OK0AB zpZ)Cp+rQXb8UIsXkTSoL!iK8&{X16qGNpAcAy@N>^@$H3^{G70RjJ4H90ZtHBfme8 zWDdeK?dstJ(tU77y{A|0z*R+c6tDvUc{SlF;pk3FomYuYdj`36#=4*RjS;{0rEpXmZj zYz&MFXNiz7zz*&(F$IFFBcxpofH9@%b!5-j*9g`4o&1DkqWjI3Gg|xN+>fDXkSFmb8QEVT zKR$qX0d!Y^T$mUyM4BuyyNdX5{PWFlmuYv;q=(zO!?*L>M%XbCTi+_(IGIFnZ5Ilx z*k??$NjPQwTCERnQfBHR*;XwEYPR&W@$Bs*6SPje@}GHpF6MY+UMS?|^fr=&j6f#D z;pW%xf#tQ}O$4y;vsbSkf(jq5(Tt%bXzp3yE-7&-Mb|T6YJj8i?E{_2 zirL-sA8PSsvJ2PeSMxM?rJv;U_Fcce;mP^%g!@S~^x9jCZS>m)t)sHK-2X226(2)a z8zFjlt4OO1oV@wK#QK5t$URTu9v^}$6Mu_@T0XCEuS`yso5UpVquh&@f2B{FJ+ST& ze?Ti#Rdkv({1&41^2Z)iNbzEle(OATay)f$4}Yuh&W$8%G5CW&=JA=sXmO6eb^|pv zjhq^OVE&X;f5o;oFE?CZ+1c5V(a};se4^me|GAYnzA3A$T#JWTa}nwrk&tryjdz|_ zs=1Pv*STZ zyL-FF{bNa@08pt zAl`uWi!S$j=sZHmW%AUDBrneI{CTx`(bP1bOuxJy*dJ$4agA{B59%ug zTeHg7GndvIhHqLfzi|c70DF}Oww^_T=dkxz1}Y9DEoVwc(AH_oZ!+nYW-^eexW2CS z+JYtc#Fy^XipuITQmUfMmSpGs;NYSR3HhEMs4Zt}jj(j1J;GNZ&%kx3gNxewfq-4F z+BAyF) zYt};!v`(PZ>h0|96%D=#u#A57YQD8Be<{QfCO_}4yHCiJl$4rIR#Jc*20>+4+rX6& zJ(qOHvbxb4EU6ANw7`0~wl;YO1}7=JqRg!M&$!*Kt&Wl zM0#(qQB6^-l!-}>(c{nFo*G`Nc%Bn=SH~PO%F841-`)6o`%%VFClE+nwx{Cee9j0F zu;>OigHD*JWMpLSi2Ra+NJ9XKd#<@?@xrqN!0z($ve>YBYSBrVb!4XM_j3D~5!>qe zKyLt*bQ=vNz79hNCl)NFjCuVHjZVCd*n#FSkqSMT!ILNYr_Rv%(048rV&CG&_RufT zM2w}(Hmg^@gQv3xR%m-*c0ILxDa9-J^l7>FP6gPswux?53MNWIVL!Z8Nj6TMTkO>ec#7zIUTh zN&~a;=071RMQn_=_tm+c*>Wm=ZGY^TU!_s?3TLed8v(z>mJV!)V@#w*cw&D1Gu!Mb z*!lve`7n2ZfYFR*H5d3deh@?$1tDW-$^hUgKef^lOE9FRrJI_YIr~%Q24J6SDaJ+l zIg{bOX`#BPhSnSfSsZs&;XP4k-mh)ihZB5&oX7t?Y%3BRT)Cd$)@ zMmj*?0wLk5uRkAZU#MZqS-mP4F0Sw6lkvJzr1gN}&4KHIbg`l%)R52P5_;?ySLnGI zSXhD~HYT2Ir?0zvQOro(;{*p$?s;Ty&!Ko#ZxDzP_7MxA-#U!_(xchS*0{NX^3nqe zF|ssE+Qzj;^&jjV;nK0UrxoD}Oq2(b9Q=EvfVcTdK;+P+?-cj6C{P$^jDEcNQh(FA zv^W{4gA7Y_wJkftr<0++KCqoA7czJW&b;svoY5i%IF)_Lt~KzEy$VahX@sQ?4J0?mR8oEf2wR} z_*+I1T)_fjCVBVH-|IC{ozu4epe{%BUs{)0JIzb#||pd@72{k*cS;Dr6Kq@ z7pI%482@?fg$m+cJcCsVW@LK$T)DsvDPG@CCGC3;*WTzHT=@Hs_G7-os8EVcAJ;8$ zIe)}axcmA00L8Okh`SD@XNgZ^;**oRd$?O|oecAauTxM+x0ctK;kej0Zu9pvZDxX5 z;niq0wz4(ckoRxrGrGO+7LK^%?P!snjm`QQytccD02pQb%{{hwiL!E5^!X~78 ztLg0R;m4_2(S@Y09-{;(>bX?v!X5-;=NbMOxa`>r=NHPO<}HNY9_{5t^geg$dd}|9 zCsR0!8T=?>PmXN-(|`|HJg`WKC1A=+Isc8y0rmoQe(15Bq6GbuN`BLFYsAS(;l%rP zgcv1z>_dY1Ri(5m>`5WVNOl!%?S_|ks?Ljk8#z?Kj|f*gdVy6}SEug5K~MjAYoezo z41ykD(f&Rn0$@Dcc#i7JMH?(&IKzk55fVQ|;WqrnW2Z;H!{ z$nJr;8oL;yLDYHAMps$MlFo7$oi`?XOYuc@gAvBjtowWA29r124%*Tnj-o=-SN*=u zQ4Ti!D1Kkgo<{WST&-E)aziiiphjqp3s|8r+&GM9{2@L&m#`Pr>1@n1bGXv@!i&qL7+MOrY>m3w~`aH8BWVe^_TNbp+xA z_2=7cX93y2jNE$wmzf1VNlQ!H7D@J4+$a>AuL>LSX?pDW=2((%AtCB>3$17&#O;{+ zZwsqOErc@MUGSx3?e9<5swVnP?3kshuKo|;ezJ0M3~&a3MTz)XY9I^x?Yo96nXoA9XMs zq`OY^_HF$5=z6k7>17pGq^9zNvQBCBB2MwS)7!x%kA#H<(#JKOWTBIy#Ca{cze!jr z*Xlr}dGXsscCkCC&Xj;pE!sO6M+H^Q-=exqm}@*L_allp&dkhoxa`Dz4V%{sbpwue zOLta!&A((C;SKKmj+5eL2Rfgbz$mS!cFCntv!VS6cNMl^p8u)1!i^vep9M zC7WQ~Ls1`nJLENXMOMc8sg19IBGP^ z_RWH`xG4<39mk0(9h@x&hVHPP2Fv1!!yUhgi6AP^yN9i{-SV^(DIB>Jih%4qsa#$x zRwaTmi7yx#o9TANcKUfs;cxPe3*?EESTjf+d%roZMVM-aQaI{TNKtck1|0?1pn6)qba8ioMYhe{!twev(%=>fzFV@;C+fpk2^N+<~4i`)*#GtzM8juMu5*XdmdpV=xjry^Bsa2fRn_TvV#N& zw|V=p61|jz9^OAJ3?IyGD~=o~XFoOXtS!aIoZ3z6Lhup8-8Mc<0f8cn`!-Y*v?puxO2wL~^SR|#aW^QNaXp6*imsp!sGbZxFx9NeoPpjRtk zBnm2uWI!{=Ho{M~h>P-4rvIgiCSPUA+x_8T=?J$6w%It9nhtD=8=_X#1-!3TRkB2Z?wsFz)L_VR^3hLoRhHKH{u|6wdog42>B(!imY{dAZ(VRcP(wqJXVAsekZBlKwogSa(x%C*lbiK^=oqDCIR1t!H=7kH}nq z)yJR@(9aS*0qCQ9fo>16!UV9c6+lOj16w{IIC%V6XqCGyNXY9l9;S;bN9LHqQ$lN| z+VH!+XtoGYR1g_jWrk0lJekI)@6zIrZCt6yOsf90eE&0uR{S#54Qb#MojSu3ApNplgOndwbd%0Q8_uyub(hz zJ+VtEM;wo=H$uazS(aMQDOdU{MNqHNSL-zXR4uO2TsQk^Nsd$W4`2ExcR>e5uaa)p z;P!lb?x-`~$oN1=WB+H9|L!@?@vhz|Cf0m%`~5A-kW$GFMJNrK%tEdk|3ov%-xBu` zfqHz4APC^!;N;&PSBPjE_B$+@KZk+s2}->#?#Ed% zM~|}*P1BJZ^iV)N0~f1+{Ei=2PmeS>$MH4=+Kx8WKR?-1YAq%$cYJS6Gu8RCNJC;i z^C?LnEPld(PVfS9B|cCIeC+L2fE=z{q8_}^9p|CrJ;Z9WvE7jM`<@LA?Z16T?VI=> zT9Q1GE?OemrrLQH4-`H0N&&54;cu>m3sO%>=_kKJb=Z$S4PmT@1aV=*+Vax-+pl*n ztX;P@bX#oZTUZHoFNRGY>SV87#m8R)#&}%6yQe299UXcAhgc|BDm`v3qO{e{6bcN4 z6^!L}`LQWRwtba|?`hRF4vmr0G`Y7LHJRf2pyA258(_%{ulp0eUk7Z<13&4lk2Z71IX{t%*f3sHG z+_~F%y21K5a9`@=#Bq(}{2)QjL2cB?7gS~Wh_`|&B-F*2Hz}TLYk&WL4G0>|02C)!sK zm{<$FIz0#pV?@*a=FiVKpP1QAOG%2o5iqvCPhW`Uxbgko#HyVw)(w)x!PG2MLkjo$ z%oI#*I!MmV-rus;crww~_n$|>8yFN+0X!y9#14Q%7_g_zfeqz#G{Y7e+6gGWsz7`H zT(!-hL1;_!rbRCrp4Skf!9Ff>dn&Mbv4|_Bq5@M60oi&De?hAQU9q9sN$NW+kppak zHHSgb&0{Cku`(8D`9?<6VLa`ol?RzO9(anum0QOfgZVAo(B$)J`F5!middcRi1d+9 z({6pIbXA$_Q-L@)HU{brv!|_=PiB2OfvLcWey{IOw>&00!HC1I-zfCE)*+=)7$D5t zHp{EsOg?s*PhN$9EoV@8Vg06wioYD`NM+*);zp+7+QH6o)`oV?bci_zFbV;51WcZ# z{56s`^To5jz7YY@?&^)LS$FksHK>8S$J_RJ-Rz`b)Km%OfpNaZE5a{ zv~n-a#y%gls0YalEX#8=Pgt0~ct#wExJ!SuRAv-7{ec3emQ>rPPb8#v$U*&N*n(or z!W^K;Tz5d8_^7?Y_sw)ShF_ZmU%ipK>FqlkzhwE~9{~n_X7A}i`5~_BuLm_#2)`ty zyau-qfw;(bcEa;#)jMjTa;{ekKeoLt(%3r)q(`X;V+k2DKP3;$=cAyw6>EuvMMs8G zYCw1jy=x4&#fLDbqw^1UyI3&dj6}SeG-i@9E;3##TP}ZI5uE~YGkDH%;^ zglCdFEcwD;=^WMLL5dKBKEI+)j(&!s>YlsT~fJ~;2oX0ztP(hmn@$~7?pK!UDjO??bf`NmhMb^PIy9UketbI zy!O)7_F+3NU7^?Up}tj(r$DiGf$CnO);^ZVUaXlev$FEeVNj*T=+WD^Y-Y*{{Zl}l zsa*KR2^@t)c%dy3rKN==JM)r}X@ug;MNqi@a3GzJ@w^^sRrk|qd|sf}Dlou=gQpt= zva$=^y!orG7+<=iuQ@YTgRUTm@iG|yFL7kP`^WhKop0=Z~sdM zfNWr6qzb?O2)*j(vI+(fF|kjeSB@pyv70NUY1msGEp%}X$0*@_z^vx(@p*A^x8tit zza|~x`;WJebx0^P4MV7=wC2>6-c>nM*iI2#obmNupgWu4(eW=YInI7ln(Ph4ua+!t z`2IE_!?TrwHEnaEyjVx;eUJqmB~hkPdWlNW}Dg&GNTV&Zf`1VJAZ$nHIIS4|_v zFY(D>QEKx(Dq2GLzIkaLuG%x!om9EAexqlPuJ7$9(W<#eBV*m%CZlY?IcdqH1H?Ms z`z}Lw#5;eObKJHwy|-y+HXTx>cyZFbiM~E%3mhfv+!m!AltS-$sjd0w2&6(h7XR`)mp=G+QK91Bv^lMOkEh)BjY6px9w zaHFn|BIoBo76BnkSm-wLR`|0&O?&-Uj<3Q|!n<*vV}!wl zCp#M*eT0|DmR)4HyCd)3kXUS*Sk}*2w{wlcJbe{PyoDSsrTu!zG)Ih7H zuNZE%e6bN7-vYS49#97BHoQjmm(6!=Ue70z*Fo^;9)W z`G%;AP{~-~P`b zva#sFY~fpmbwwC=OGruz6+Sr!Vjd7&G$$BzAyWPbsgNmFt{^QVtuBnq`zIea&c-W2 z4}IUP`)10l+Jv%+2|X~yI%j6m05g+|sIPHPchzG z-+;5s=}#*B!f^vfTNvzG-$Q+Xo0*BeQSL4-77txA5~v(xMUO#Yop#ILmq18Iv^ND7 zetpteUbK+h9)~Xl!duHX_0J|62>I<*1uv9!PehQ5n4*mdO3**A&u@eQpB7;Cukam! z<4orV6V9!y!S67XZV1pw83Y7%#A)Tfd=E8cU_7+9UCbX{NICq{&)4M*?W^~}&@W~mo_B&t50HTHYi)uRGFeGNA?4W*mzNZX^3y!c> zL1%-$Qlw9=)mhi-jYz*n=61S9jr+zk5stb0qOOwkj5+yZ-B_0oWVQ+FD)hGZ6z~Vv9tld;4vBn; zA~dSftKzU2DDdE*;%^_&n?J|d_9+p`aInIF@Rjyy`Nnik2>-bb%xN^^8wTe&?;{#5 zeJ7mGU{nuSP{4fCkt*UIUDkRzwde(uY8WgaWEPD*{i1x8qVN1_g`?Qed3`{y4sUUZ zio+KL6By_{nV>HQ%!co~Xn>_==C&52=V+nE|9BA(!7aTp{OLqIy2zZ(ouRu_kv)yI zksmEf^>};M!=-5p3n(@B{8l4e*3I_Byi@(}Z_8RVIPXY|Uc2R1J!QpKP5(4zWdQ@_ z{bM$Zq%YtHHZDVEv(&d(zZP4uDsv{Z$(Q9ef?>+;R2AI>P=r04G zJSsJ{7nV%-xVWxl7`6JG@1>)PN9Lg5;NX-01OcLMbu@#SYlWu(W8TQ+NqSj;O^}46 z%0>9UpB~M%PQKlok~~4@Q9Z?U+No@9(T4PmJv!NRNWA!L?POrGMpEZN@`lfUpA6m( zm5(%9I9>ww{w32T+?jhvYB3iVXOd;K^QE=hk2d8YBVjaf*DhrG9*P~Us?#QG`c*Dl;->gP ztKH9VhRRM9kmT}6Z(5((!pnHOS^v>rM}IulhUFEHk2bMeU{<<0U}xAk zvTO(#^u{#O&XK?BdHy@_1K(CIS&%-UPCe$2`iacNx$&TvXT-BA^g!5Atj2QhLBY$i z6{^6|_4$fhqqK>b)4uPJ<88{Ukuh1P&_j<>j(T~UeAi&R^>h6pD=i1*)vW7ctlpI) zxr86;+FO>cyS;o^V4zr#V$%7nI_rln#$1gFa9@nY*WBED`W#JwA@8zAf?hF&k#jO| zaP-bTz5(y}%l~d7fa2Z;7(M4H)Q}4M8KEmg)G{w#FhHM!zPCK`VFFuSVE>+u^a%~@m z5Y>dSv^4BVClk`Um<;rO#uD+70g*{37fv!#iB}02lRO`~x0Y_|&!(RBdiy$G4M;@_ z&fT?}eNoDDDyOAyVh6#Ntza{GkHL6r>>tMrVs;a>J>sBTcFr9~zz!YXMYsmk# zg1j8B1-`z(h(1<4D{GY4@pt{#a!eR11F^A*zs)8wT5yRxXen+o9;}&L!%)RuEw^iz zddc?NcI7TNx3a*TS0%85^Z4ziw5iDutqZSYjl8T%J3IT1bVl64suTtSR`E6g7M8qo zLy+Ptr3vK#(Mc}-Hot8mfa98%-dH}?XKw3#I4eS5m>}8151kjtC`(8wGj5*jwwPVT zpr>2+ZUC1C7T1104EZUj|d@1*0os;9|EE6cu@ztVzneItDY zN<99aFG#X}3+~!SATa6RYuHmhmCce)a$75}GOd@rvh_>j!OAA}@F#D{4e#p7+xK@U zSs6MS>M*d0^3=K~pMU8_r8pGPPJd1tX-!W$R^GlffqOg_0IE1h{y`1d)z0KXy8&+f zn_zG-3c2QmTm}sz{qkM23^Vtq^aZTdg^~IG!|Nkh#3FZOt!JC+(X8?Gz9)7D@%A6(mpM$ceP2C$TU$pUr`!7U%*~E2pi#t z9~u$!ZRW+)YtQUJ`JAuveH-LI6oyLXET@Ktb8H^=_WOx7Z#sC}Are+cSgkHB%sYIy zJ=WKhKXnBL%35iqXk1>L%6$3K63#;cr^Fg4wv+<)sfSyWSG@LuZfs z!w23zOzX!Yk>hDmy}ch z@7?!r3x}wX+vXW*-zzja@ey;S$Z#q^Kx=} z6m3RiC?9^`B3PSBBCAJ;^vqZg?HDvao2t@a<2(@I`dqKGoIa?v;U34T7qnpoPjl95 zPf;=Pz9cx~sYpt`wQs#}1DcsUcu8nNu*^=|@+&LAE8(Tlgme-y)VZ_h=~@=0u$yg; z6G((8MLnwE(nZsN4z{PqIb{)9Mh*Las5GUY)3$h;=*D|LcTeAvhQ`wX({C6yQTY6qxc>8ftDl4h+Bj?M(z3YsLQ_*zUbuMVgek5_;YY@1^;YzVPU<=$;m13BFH&||FFM` zko5qcF0Y#=GvwFls|$O~6oQEpPWK;-e|aG03k~SD_oWgdA^tE0HL>Gxm5~WyJ#$tJN*eAv9oZt7IClT~RvQlCN-s}|L8!}&iq(WM&uXX# zn`h4cdDx!|Uk`;1SJ!2+;K#|2et6qH6JL*@m2+=;sHYpXJc~ls=IrcrdkYE%S|x9R^uOzv`V`A=s&~s!AR0 zJ`;nI@HVfNKbo^B&GJHl8OG~h&&85xo<|TTbocZOqZ5fCSRS57QMPSdpL;Sd#G}>; z)tFNA70FgvArR^?qxw;jUZ)SIwx5d1%DwrsBWI<2{-N;eq{DNCf-a5R^O@=-)tk#m zKR+n2!fu+>^Npf;8(&zp5;ZPwd*^VaO@x@B4cO3eWT0iTo+u~3l)8LiB;NBD0=FPywTLl)xM?T6$J9hj7 zFN+FUMjNVE|9&!$&&ur8_Hit&>0qebv*^=R8x}`}tU5t;Z}#|YO4X z`U|Vb=mJ(`Gt0%9sPn~fmMYQ^ES(YgkBMl6vY`XF0)I36Bee2`6ag{7>JaJ$f8aB2 zLwx;K5l)Ukya7e9pYAxDY_eCd%lMP^O$Rvl*-Sl(>#jdWum>RCGAL>&L!pu}-b=TJn;;A;;m}sS0_B&qWmKto>J@WRxh1P#EZA0S)G$&M z{7*-J0|){+ry5*~KtEvNdJmzJ2kzu{vrW(z=;+qJ%6avwm%JYR>NDrQ+CBt333SXZ z%zi46y)I}><^yJY%24Or8Vw*Lv`UD&4Rx`8)tTHN>)Fub)}!?zWw;SJOn?Rnabwqx2XOX|MLz zo?<*+UYud*Aw zfzorEnTLavoSCqBtm#k?Cp{IWfKG#+q;ka7(ytzWRwk8vE4AI!+jm2YWBld=Q0r_ht{V8<372+&jA)}4^*mUIIxGbsCvExR)G1!Se%%A$114GU zegHd_sLTC4an|qCSXG{fu?$qnHuxJ@7N(}D-h9>XG0Lb#tuLuYe@;C*kL_6=f)*ZK z_#h7#9o`uCXWEvZ@Ya0^@a3ynTv|e3->_O^6BSMK=s_UbR%O5}TaWWb_WPymX@?lM zKhfk|d{^Jn`SKpo5IG~(H(bqk#rG)T_#Tbs{zKwdc;T48h?omEN_5T_d2eOTe0Fxg z=Uc_hgbi6*E zxzYxYN%hPv_hMXhC?O>W`iy0rm7m74Y;63(IOJSW$^2141P@^&WgzRyBJt47tHw?| zg;(!o_qjULL3b#Y*L0qYTO)EY0M&5zr;+UX_0L^&zWUMoVC+`}X4SrD({nd(+<4*S z;^*tWL#%ok)q^@G7FX97Kl9%o5KKT7LmTFQO}_zn62RGJXJ?nE;vm;@J9@L|J_f?|$25NNN5lbyIb`(ynOPapk==-8d-_y|iddv#I;Y4p@$e_s zP_nDJMcYR8e`bXAY~N-Z-52uCjytZ8b2Megz7ZV*#b)Rn4Sz=O$F!k#Ixew( zDo^L4qmx*6YvzxqrciP`z&8*=Yd^7dp?&MJFzHg^BigvZ zv$)%9=W~^5QvKy7kE(TH_22nSh^e|lbbs6QZ56}x7Qyk07{TxA(YuE!8qTQHy9Sfb z8|*`PUG9^n;weCy)`ekZx9=#WbEKOF?lCh{@>SHOcTQ15^690YfPK^7XMur%>!4I^ zrX~tT2i!xn9+ZQO^2uzs?Oserx#;_N4< zFPy*r|MOPQ$6M+HkQLHBfc*yMmYX0=c9rona(Djt+eL>a(CG(L&^v#K0V;{pK7ZS} z@Do-#-8Lt!VBlm8uXD}=&{=4J_T?d|8skp8_vdx?W}Xa1kBa<$Om ze?s=vBj9$o{rXxchcG?qaNlJ;*(djjiU(y;#&dyxXDkQn6NmF(sc#o#V=N1d8g$mv z$Km1^>U_Pn|5OM3kZ1`!| zSDedbn4?ZX0TmY)mjh;`>u@D4AAzBq>)Cd#7A4)yo7u}f35}x%U{IVN22}yi(oR?Y zNHP9Tv;5R)T$SbfD&C?@au2ZH=IE(<7M|UX1&`6*;L-8T%g*)KS8nQHLcB6v*yU!) za)7j8zEl(5J-b!ivpHHW9U(X8>rjdxX3a^f48Hm+1L@qdV6hHZ(Q(x4S$Ao0!73i9 z1*`pCU`w2<0C6eq59FkcQa&{Oj+4IWB2*1c>aNBmAX#xe%kJ{ufV?1j$a6xB$S1QI zlOqbgNy(N2%u~t{Quysh@cC1cMv!AqPiM+mD6iA2#oOPdd~(Cs5+v^q2Eg$$jN^wdG*Ph9lzm z3)m)Eehnqlm^FgF0|XB`1xWDyp-@Epf(+Bst;zwBS$rZQO-=wp!+rqQ0KkLP4DH@kasgcXc`P9Y4 zD^PUKGnDgbrtj^9pE$rNk!a5I^78UJ7~GG6AxkOjX>@4F{SZ(i(33Ww)zClNhTsvv z&V+y)qQ~Y05KFD75lg8%IxSMVP5}*K~=B1#@(vbEu|Le42>P z+>QhA9LOPlyY!A&vG0Sk>!06(80B^;`^ckTXVM=Wl@Y0rSerNLF-UGK3SvaYF}bcQ zU}g|mPeJ#dkh|T(gNw_puj;PqHcUSJ$$czV@3z>8!uOycT?&DX_A(Wi%C-ahQvh#JK{&H@Pbf5SUmj2VzzyBV)%KiIYOjh$a?mf)IM&$apSR3)o+ zy%nMQxH%>S^jY0y#Iz#$?{JA5O3W4H<%j)o@V#ijkI~Nvox4fP$Rzh#G4@ZBLHEfs z-8yyMieCz|a=E-c-J`irpUJ(u0wb+xqw^XY8$^@P2(uII%zRQin22TXWkY>vQB6=f zH7a0e63w)b7bbF!^Ha{gc zMu%Z!+M^?Bp@9(dflrDh#u>EELTTLt16uGEpqS(>E-uRZ zJOdXoUf30)+ocB&9#oSs`N=y08X_CrXRg*6bWTm6KZ4a7MNK46^a{Gb(Ig%VMp@u1 zTq82qt!tS_@nT93(9TBKjdt@ofOtq(FkPu&HsWd84Z!i%p(`%P4e05}8Jap+Ijdz{ zri+?=(^K_Zb7+SizL9)?9MPLI;zTU3@!~kKIn#|WDNCaNaRJUeZ&26}?QACio=6`U zc*3vLrUjpP{~MLV8u-SH1B_qN(IEw!nCD_f@O$=N`XY%^YZaB}um zXf^pVzS#p{Bs7M=D2sN20b#4L4#y5BV1|yjAq|;+JlXBM4($9(^V>N z4*g)n3esoidtbw4KavW)_NEqDj`!i#fk?kOPgm5wxZV`Y@-?@hj7v*+IEFx9MXR}| zn%pa4qX!nKuOSiIa0meM5+dR@Gf2=t4Yp>vwxoI_rrr)Jz2gr z3^x}hpiud_-@~GOXlvRaqNhcnqNEpi6{JS#vJvy=_308~Wjc`imEtqb3;naw?J6 zE_Z#=pXQKGteB>(N!5x8_`7Esy1IqvgcAsOA9klBR0Rwh?0&=|B0h$Nsi~@>z4c*@ z#jc4D5d_EJfQ!hNyxNyD-6czEALF(i51lJHcMK8A@{e#@uIbOI19J*VbKgpyJ0%HB z!fsC2xe}^2h1JF^Ms=aW_MsjtPch10oF>Oz8VK*9NFQna{v_(L9b~lDIZxu+vZn;L zV*PnY0QV~yfjjdf4~esp3>tQ8@F5ZMIX`~drOEdLOo@!pX{4;I1x=7nEC=JUI=FY_ zd;tYwSyUYq4Hdpz7DNX5gsp1h&EY?-(o5lQcOZ8f`;{e zy}$85Q^;HQbgL(HNGzDhla}HJ!@-t)_o->Nb3Ya)P^x8cR_)y1+jAI*4|#9Zlx1`3 zu^)M#B*+11br-czmfzgyv~!X_v#HZ~hZpoo_cdHsX(Ob9BGiZ?U| z8S#_b=9zUCuh-k>WNpTi(lCm~<(MppLoe17_YYeYZ6-UmV6cB;on~vdb?}uqm<_7n zaiF^DqPu=&t_92anOt*OJVS?Q1Qurh88Suu-l}z)zAL8jCDoscsO!<9`MZaSnG6Fj zr9bYZBDABJzW$@HiiybQHhi;y;|(q}%P|*VnOXR13wkr;7c?>qU552&VH{up8dhY! z@S5mCdK^rhBSTt%2Z=iFm6-DxSLP0FX%&CGa)1r5&Ccg5^r|a-xn!x)nx-kBoAkBn z?vok1#2VTfSJ<2|q!d%9^eBOR39B`Xui%~au-K5L#PC1kkDS_A9>6M}(`45Wbp*=d ztS5E*#3~6eox^*OP&UPF1Mn&uI-Ne=+Oh?Vt>~Vv zDccfG>St0p$qNjdz~JD`NsIJ2#=dlMBQ!1mo`=xCsc*l2l%{k6=|BmLd^TeWFhQ3c z^1O9U1MFs~@WPpRcBa-L9Z(!KF*m@!Xh{+9$?d)28x>Xgw-z(8cq*0WWM_~3qQHR< z?I($T?y-H$uG_Z%LiOS?8|Srh-Xp@{ zDMNZfx)-{8Z){$cSt;ekR%X43LqQ0NXw73`H7*ztW2d5MZup6(Kv4t-rUP-*o_KUN z(1f(n&l?QE6%1Zwkkg3!G!0$5bS9nwqqPJ6^s0!sHj-YL3B)uzRg}Tbo8;I79Qthi6`w! zgvBSnk~DMkWobSp9&UKe^WLu=Yx57oJGH!CqL5LWoa)WK@oib{#E~;=bWNgTFBND!)4j9gd`rUR|82|6IEZUTF?8aDZOS$D%ob|DAu=nVl>kXmRqgD z)O9!9^`)Hm4otJ zO8wNO+UolCp$rV@FUvk%KBrvmy=}Fp$+OUET_THk^P*OMrXf-HKl`OV_p8vRL(`Q9 z#!fT9DU1fAE#?O&!~)=^GyzjpO% zK?!%e_~iD`Z(&YPZ!fQ=#U-p_A9^^Bflx>!{JuN%>)dwiA9@cMt~ZL3wHmfQw;o;@A|4aWo$$auzXjRo)L&aADb)GI4|25(sP zorXpWNqy;X)?OY2YiLE-*4J^1q3DGtR#?;(im-+j^9 zfk5s+%>NspF2BfQ_&GfIOIOzd)_NtN30E!n1S{q=G4ClmTR@Duu-odFO<-50+F}j8 z!Iz=XOXy;1-=iM7wLq*P!pLJeeI@ws_n@KU>Hl>D`7Ds7C)xH6R}MB9J(W<`6!qA? zZS}=nKA5iRFIdS~pnun^gB469AM=L~b&x$D%e&;hex@H|druzoCb?|7H$5~5H;Bbo zJTJZ8UCE_>{%sP=i!^zBErIxs9~#964+;$_DgV*W^CCblfH|2heT4hoy`L~r&3v<) zD3?SRMy&x6x2;69ZThoSJJiN>ZJF5l&STh%6@U<)?}j*HehBT7gH9FuIra=acdIQ~^T%*`(5W6E1u6`)}P z;4Di*H|Exe`oWS8W0jSm=q8j&^r)+^ub*=X(ihR)?{}9;FX0MR*gwUG4ecSWGYuX0 z#pP=;?+f(A1NK%j(Yea$rGr`0XZsftX-ls(Mn+6;&?4r+=>{QDAIqM7hK%}?!eKXQ zE{DxI5UrHjbZ)`_A$F*TXh$(7xm=r6f=?ltR~A-Vu!~jm@o7Pa!wEXC~&Xha0J zQM(a;J>7L+wDQA<3M;PsxH96=-@t#d6BuVH`b&&H!^b$#Um^tD8b_K_tXfeeE~xJ=vCS^-sJ102PskHKOO z;Qcc(l`xnl@+IG0vA+O>VCdp#&dBh^vJ~7x;2BhgHcHuWfZHU9h-QO-a1Owv2qawN z2xFRDQv`xy&R6%%W}4tu1X9yUj{40Fnf=lFhn75dlFYsVFFjNX|jq96&b7 zKo9{*0wOtMKvV>j;FgREl0kBYJ0@!1bKiZZ?vGb>>fNfdtE)wUy}xgLYt1m`m}45@ zs1-rK_lwo}a~2joa1oyBu4WJ&XeB1c|K5vrAr#$^6?K`7i^)4($ z6`67V5OYmPjJa6bhN!=dRxf1S35GNpMP4X%mH=LYIVU4eS++8$DWzXZZxB#&&%j?u zoUNjzq%B=+EdiEvmLKKfe@A??$Wh(fRsR&lel2gn~1_fPfwF1-v1~VWz*% z{Bug!n|2$cMfeVuL#yQB{%~#0GY#iDULQ>LOC4u8tP&QMkI5X0 zps^@0zI$NIz$AFVFQbQ2%?wV?n2>3=L6V^eFKXk*03V-F*bE!4fCmp+ycvR0?~kmP zT8SDSh{m)Tuw@&p+)c$a><6_4aLmqQ^)0(~PBfKh4=oH-^0%Mi8jNWWMDH zaKC#u4CpzL1*I_MlC)s8xF){oE6{|M0?eX+%K zk_#VVW~g;&EJehI(GoKQGAn*Ym|kifZp*ePg8Sz6nhLQPS<*L@f*{kpA_w}#)NLYy z^yRN7@6q2JrcOH@h=AQDtCFxopoFAViQzviHefOYOEXQnJ8H7B;D69-8V`MxzZsUq z=y6d$%Fm3+XYtr8m#3GGI{h>EOy!X?UEBi48H~*N_!#Jv8Dg%>rm@zdBIWwJIze&q z!YEa0->W;nRrvNn1qE{j#;cqhA!tMv-57^FMbgrdQ;~yuC#2a|(ad9f+u0FM>xX+s zriZVX(AIs1Rpp^EJdm{f6r&ph$MPz)<8m)z2uAv+XO}m&aGc58+%&GgFRj3P%2Im| zi;8?-gDKfZee7-8kmW#SW(B&M4`Sl8p;h&Y8+5w9Tv?XxqywN&Q&&mpj=x>A5D@QO zu

s_p6>h-FPZzCc`C**qMaipza>Ib5iq_a871U&i4=PY~8eAH$~Vo6rQ>a&muj~ z9fRz`Zg`6R<|Pf{r-iyfkk!IihMwjnKRDs97(TD`J))b1Ezjz@GZy>4t&?*}ZGljb zcX5*^Uj}MKOJyBwLWZGAqo%6rS-~j@S^}8&uz`6;K|YenY*1!R1F_=N%ROgC|1_65 zd#xlk=%B8g{`{wVjH+VOK^UZsCMSz z-_8yS`HOweXy&`JQIxkRzQElU*34%7n1cwih4hGGRwyS_2URl_wba{JayF8gz00dL^`7 zs8Qe#4QV{x^maVqR|#t3d(Dq{yF*Y&XRp!RcYB%UGESG7!(;ZC{%rW^{eQgcu$$g% zJice1i{|wep1t(+Zw@KF$K;$XHT!rS>Z+YbrwMH;%@{AsQZOh`9VxG8J(Ke~%VKFV zH|Rb|PCA>?Q!mhOP`N<^`Mg<8;LakW?%*^5=7IZKpM3BrU7CMB5f_XU>aDi#V6rfP zc;m@8bFqMiWnXwho}BF;(^0oqWH_Y0^IW-Aeb*&VPd@&QF_l^7p$!H#vfCw1#&kJ2 z^jo9!m~>%BC{e}rd4q7UlT(K8S2@on$Wf}PX>}B=p-c9>Wvl#T514Vu?#30+5AW`e zM9tK)!_B0+oRSiGbmDbNMaDVFwJuxnE7s<8@Q+bpy zE*Ow+)EthmW%?OsEvJNCo!FHq3tzjjK3`MFID>cDBBT3TcI*tXYD;(C?2=a;^}r&x zEZi^A=SM@zmHob3KQ_Q0Yb~Xq0I#gIkm5@?Tc*q^3EInfGiXw?ONq#VKNt^ZOdKKx z!zmEeMnm*B(8I1RsAqA_>32%2itqOFwsTT^dbR0DXmNZu2M2TWgNCirRewnT-V92G zb#--(Wd<_7OO!8TyiK7Y;;)cQq#`n%ujc81%v@`N+mDIFh< zpZUty)KMtkCX{sb=I?{0RLF&NNkr|*54#aGlUEHvq1cvLXj6M(YUL0>^#pXyV%&93 zO9RX)w5)!;#Q3DO4E4d4k!j?Q9iEB(1K7$Z9n3q!Jjk2&Y+ z%de+#kIk|Z&wknwSXyvNpGs0;it&`7R8R#(0r0?0!&U}DxW+V40f=n>ood3hpWF1 z7}&+omgZ*y!ao{++C7IRFEd;^FsS4Em73h z_C3|wL@328p%b_8+aBtI46cNay;&1-9ZxcB& z{bL~O^J1Z1`QoKpKuch_@J4*(W}q>s1WJlM5?`-9`c1JCx8CAgEN;ZFy=2>WQ3+z3|3Do31-fd@GFSWUCQ+Y3V(-8 zGJ3tMZ5y~T(nlHGG0g8CLSe8Mw;hRkIA|f=95uG!8$#9S&9{u18NB$I-hZmjvGJVp zV(4){lnsxal1(5Rd@mp&ty&smBC;Tc3Z{pRDcBL~=?@8@^y$p0!i{}PVMc!X1 z-F++99-|=b8UwGUkCRQAdmixzh!cjEi}5$cvFl5j42SOgE$`mFE5Zk4=xEfR-x?2@ zeQpV}S5eN`V3M|7!2m0bR!*!Ze20pbsGqDcIvPU$oc-kXR7S0Jgdal?HCM>xM`1`( z7@}4kM?Cs7FtK#2l&#~*sS-yO$KR^;b0AsZRE*RhTvG-0+{3cae$W6i-fttmetp-o z%%2;}Me>VW$G;i-?D)+*440a4D^zqw23h-=7(`l~p$Ve0)q@4v{O%XX$83>k)Y#jK3 ztYC16)wf`^TqHZ*{B@@L(|udD=i$wAd57#e*Nwfvx}b%c6^vjO-H=DQ{-Tc=P`u4O zx%K?k^vp#I7VtBNy7I)q25j04OeD*PZ_Zhq@ofo&!#AsEvG{G78( z(6E^)FtGxR3n35#8tRR4Uc+q0B>S9?49jgtO{i|XBZ{BVYL%wh6wnPD)Pxu*DrzpR z8pCoQn$Suj)x{?q#I(g$kyxl-uT3C7|9(yS84^wWb<&$>J6(PnQKi`;a$agD@3rVw zF1KtkoQUpT{rz=G%1oL-xdX7}-e^esTFRP)iexD?T-^ zrAy5I`m}Iw6o4}2EJI7TH?o+pn ztW?($t=jm>v31jENH}M5|9E{2>*b0A_HTx9sg_iKpLmIQ`nt=@R}M>?ZmrCfXBBJY z#L3)RgFcVM_!4Pe*oa?Og~Fp_zn_Li*~9IBVC6MvuQr@6+I8c0cqKbNydn0>@pe7_ zx5X>^5pKoaek3g?B^=QVSNBlyf5x=1&uf{=uvJh$IBB{IsrWZ%-fpMXJI^26uG*-2 zUn+OlpvF0%Uk_J!qpJDWC1Stl|BjsSHRI8gi6@>dZqZb<8#O2&z65A}{m1piS^a>v zir$Wznu%qc{3pN5?>C#a?e~fTK>j~{?eqmG5*uyT8!2PJ-T_o+xlU67H4duS=}3X z$DLPZeS~Fw2zo~gI=_oB(FLByqPc`gV}&)xD@?MeDun#@?Qkvb?f0i{yFF0naj*x& zrEE8Ssy9pFXYieYvgpway9D*Z#S&)0fHuG_w*3Bn3Ek1d>TeT4;KW5vo+~x+Cu7rB z4ER<@tC6}M#+tOpjzdYM1d~YXOE;kRM!K)Yy2jB=(oaW*;-NbfE8$gg4Z-N);U!e9 z?At(7ui6ao&r>GNgSi!4l!+VlwfT+p>XnqRf8hSGLJN@eA|= z*rdPm;Q#IGuM@X3MbsycKeSk5tOXJ6%%F*9Uo-J5E|mL~q5#{g`dJ>BOsRH)Zuu(M3`cS&{_rHp+G$ z^?{0b$g5YoV!lmWxCpMs#je?}KX?Pb&-kEBjk=b&wwPmYZ@pZk-qdjWq`Yxymu$4B zJp{S^Q%fgc_M#Z$%@3$c4Gef-j4}T7ypuAY722gv9Gx+!)-p;|#4|+~_(t3_$QV@Y zm36LIgOgh_2Zsu1DBM{^vl3nW1UDXkm>{Ou4^FC%8|NIW@djg1I}-vvVkLog*`)t^ z+kj(?hyFutqeb_WBZJnKhaTac#BjzF#(#f&oyY`gjqoY>nZaJQz4Z3DxAIr(1%7_{ zKld^H{r8^!@2~%(MfvZq|9`k2vd0ZN3SK@CWRJT!vl4|uwyl{qUt`V91)`6({dGh1 z#iBVgE?yL@opEud*wjOlI5wEXbe6vL{kej)$JGX*s=pAf8w?Lp=~p{pdXXnWG1aePpP(Ty;o{mV#N&YepKaI!SJL)=u1LUfqA$WF>my6mXjl8t*94W zmR*9`E)NmQu$!I%EI~ag@=eF@&vw~X>pnTVy(%riY1EDy7xc})a4rZA31PCRudC9$ zP)I_eEcPsJqC8gbD)l5I_Xc87Ur~Sx4CVEqdBW<^TCc2sU*)!1L90p2ktd>HOD&m) zp+4f17<)vN6^vQl=(E{#e}jQ58vg|V#euzUh>_^!8TLuCqdh8?NP3f3{EkqRn&+o6 zejqB_$AVsWL)T{fzQu?=N?O92iBI@w-7%!w4kgW=&w6f6s6PljWt>OXa5FFh>r_!R z+@kL7I=<}67c+<7&&AUsM~v|V^*}Hm30yJD@bA7jjDF%3OoH6r`H07Wpvh$6+14cw z1gM~D!`B2w8|=Qp0uD^meNua@!DL0lX6(REkXO)hR{8g>&tK;J+_5sU^nOdOeq6nV z{vtG+;YOQ*>A4Ov%s|9V<_pKnipz>q{*6bwg!|?(@_fXthf+%oEh`79lwYSIi@wR* z+)`>-!w-t@Its4qpBF~IvE z|GVHqP0@viBUIn!{xu1Wpz=4cC-}9wW~|@1u>}A0#_jlGDoO_5Jg8MMuJ}i70Pw9) zh!rWM+Qfy#9a_j3a6@VI?b=!Q^7Rj6mNfgz!zph~=5zTZ_8#L(nQztL1VU3OWSF9~ z)6@{apZBi^C`52s#cpE?l6KJ7PB;Um%P>aA6 z`q%A52hUAE1Yx5FuGv5I(8r$I^!NcE6OVVW`Ugk09ERX+i!&(nw&*k|hxFy(=H(2I zRLmivb9^{ld3S(g-@TZZ+l9U)Ox|`JcHmD=o+qe2;y^2Bjda~a8zS1ef`Dm&%x5}l z{NL^WAYF~I_Cdbl)v**+z<+d6CYS%+$>DXeOqbt(a~Xg5`#~czfApVxy?)7+;{%e@ zvUz>M6hUE<6^xA}_~o)UJtTn)Q-e zQ2D9h0N{2PvfLS{$UVXm$kWaYes(Hv2ss;vgu}qoSud4P>Wofp7S_G`kMhOerw4_s zYb#uSU*@!JXkGpF`p>_9o;incA;@`rOcDjNXf_rSXZy*rbIIG$>81kHG1GW8uovK8 zF??r!)IM(po#R3aubh)s0EF5}TMb-8E!;!|rs3Y-ViFDRO(ZtFSdLvdSlovA728A_ zcPF|~A+TdrR&QGjHY#eC`>-Omi3b!FKVhawDFmZ>VUs?`2AyOoD5zl0m}-dpf_y(I zc9SG5#wUDOI8j>BU9Ib1PX@Ur(-CGf9A!jF9q|I|EWwJpO0g_oOe6ZI+UDDAGML29 z17FFZXH_MGiJ}6H-4ECM0XDT3ZMJGh|2mDRg|pQKu|4@od>65HAD)`ode4K*lcu zGqrunw~dXgSzT3CP%I(D#Ehm;`Z)-496~j9{j8mqEuRjfreBHy1sqcswW$_+NC++P z^{IZxv>uKi3;+m0p7kJXzGeO<_WV@m0o{V3Jkye~Owv@L7I_SDeL(g<>gXmkvF)JV zoDg}h8OAR)ZdvhnZf#bS``(lpv#~qL!O~jFq^>0d8x1RNS(`nHS>!xET(dIiP?34! z))Z?9j8VV39ENn$nMJRB7@#(Q%W(?MHQ!b`=V>@gzP20EiVkjwR88+D{pKj$tZGwP z?Mw&ToZQ?uy_c=`L@n}(nvp*nbC@GA3a~k@P_`J&s-ZybQ?jj~`Pq2d zps6SXFx}2f=e04wLO`{C(|Z&_LgKlq2!JDoXjLUQI)4f1fKPm)RZ5JtG-}3%@WkU$ z=jv@LUR@}8<@g)Jgm?OJDV688WA6yTOVDA#CsJMF%a<=H-q0qYu{A6)|GQhI!sQhe zy-N*|wnmv{v`2L~ZLhI3K${=!qX-nEXv@3%4=% zg-MOx-7=I}^uDI6w5l!LJ;nzWJ0+CyVqK^5OBmeru&)75Cvec;wG71r0|yVX-+757nAOW;_q=O+z)%pG z!T6Dk_%3q)z4a_HtMiD!2#roS|78a?zvIW0VZMruXTSUatEQS_cFGcn9J*x84o6oySFteffJp45M; z^+zUXPtB-Lse;Er-C#xx{vP6ct`6@IsbuzC07FR$xSFE zsqNo?3pBQtF77RO>MAH+Em*WD6hncV{q5U@)I=q;%T3CL?}RA$P>T(9UC&Gx{3>6w z009D+bVjgr^pOGw?t8Wb^CJ==UnsipCL)IKMbmE|UrgWSYr?Klqxa_FiADnk6(96o z-}(shL1}`KI_yB&R^CJ54Q>(|zHO~HJUq5<-`-rF5Q#EK5CUFm|Gsj(5!?Ab&?u+z zQEQZYcVoAUnQ7(ZGl#7>>O;1eDGNL4CO~I9Nqo*1-m$xJnX<0(%CLK-nU40_=J}gk zyT3yy(h&j#L#UkuVMU3;u7U|$?q7w&a}QY$tuyI!4DpitZe*GmCvqr;m1vW|!+Q5zSl2W5bigbZ=LtNm1$VFd>`4G9%K18eE+iP$g56qG>Tc?h%brpuKUU-PVg1<}!< zVkXEWeiwi%zjGaiHQ3?@pk{Iqm5Wa(intqY{VAD)d*Y! zR>c=?dB=_&^Or4)oS=xKrLjTT{!M_~_mifH9ybC!KveyR8EF*p;6%MUx&H0h&5?+j zTwj!czlfIb!*!o;Jn&!{K@!{7^G1!j=@t)z0X&nTt-?&~46p&UqPxFeyEcs!1tQdA z{Hb&N>#OT4bJdjHg4%oZs#}NUMV#NWzn)!fE1+vmc5*42^dUW#Qng3%=Vrhb!0Pul zhv53??61GKpDv#Mg^HLUgPBKmh(wL7GZ_7{*r=h&JcV^P#;V=dTJ-;rWJ%~+{h>bB zwCuA~)YGR=9oU0_g87(8b#U_2ahe~aLF2`ly%-54%#6^@%3SoQHxrf53Bo>P{#P%1 zvr1C(Xi?7IUa?*X%0}SCM;uLvK)wS`{#_$m)b$|G5)Cspod2x>n+(+fHcmd;EA3Ho zU0<{M!pH&CF-uXzICb)5Bc8iOs^Xy`&>d41Kvu!@=xycAHvAW)Ft1e_=dICj*mgtv-3oPhN9laEeWyB+< z=C(`(=2{iyt9{QFKh8gOTS5*aPuOqVSM|achheJq5X~olHY1Wx=_dwGHa zYG6dJqxD~za5MeQ+eerV$p$5c!XP(Jb@d~P^1JgC4t@__jY%bkA;?-R(_a~cOtcAp z`1_7W%id_PLl79?k+G5LMG$XMVD*}7a=d$IenrTXpDBLFJ!Vh=?+VFRXxd~?4mjH% z%(@%LQC|($Bh>U&Yf{1It3hR8jqN=lH2Y22MeTx#4b9!<}HQ7A^a>1Ue_);=29@7qKB1lQkkaB)k6h zD0K7FqrTzlss>y`Te7KONlS>1ZT$itfyJV(kf*Z5V*y zIA#b!)~xdn7`-GUAg~9FY+G}vE~radxBKdeO&@0BVIAl;uJG${ORGs)vGYnJynX8U z*f1T%3~% zoRgoi?ZJi?979V`7|~mBPQ*%c_n{&)oR&D}EePlyLjgJrG>2zLL{rayxrlZguG}gd zs^V3#o(spk3Aw<`QeGihEu0bok6Tefs&zNL^C@k21&CBl<8Oh zQK@8h?)k3k=zHsWujUVw2Tr32cekarrdl*T!fwKo ziU1J^`elKdu^Lfoxyi0RnVCrWw5;nN+WgE;DkM_$^OsU?PbUtcf1Q`(d`}OSy=_yt zuLUJWJ)pQ6QpF9ho7$5jfjDfDurWi3eR~nyEozdUH0Fb4($cf(@U4(F=sUysojCl0G8S2b-I1uZ~{tBQdT1O7kJG7JASuF9ZoE z*vJnE5U6q-ZJ%;sH9`rW0wsUQBcaS`I5N;l1-NRbVdGpq8!O7oFreiLbhY>n^2dN5 zcr^KZAohp_@{jLF^_`zQLB=2tV}L2Jq>uonwIQs$-AHF{FX%oJbEG+Pnnl3Op%?(? zI2zfe2CgJSp<-}n>klz|ekyEQ`ra+iRgG_8lEBF0{Y!|?N^Bdi`}ZTV#)cHswJi_p zw%<#m>Kt(aE_53wcaNI(OKkxompBB3hah=@C%RdAC8q4)eleMK7D*i}u|8dZ90aKW z(E6gLb>;YJ=(?4sS;z3$)K0=NW>Q282_}+>#4R*~oM=_v@u>0V!+#)=V%KX(odc-K zS`TIPdye3IR!i(QHGj5M%u#+l3^8ySv@Nly9Si9Jm_57Dc$?fB>!mtzc(}ONpS*Tu z){>Pk*HWx#T$y|b;1U}LZ=*@I^yN#J=G*g147Qk-EU_Mn%`5HaSnr&tZk^PvnyGJK zV1)RIS~3uKw5u)4Iizg%skAZ;)E*>Lkw5@XBSV%4DgblU`(Y=iguv`RpUy^w8I+N3 zeLd8y70p){8QH+ycil%FI}>T#8I&F))S~XAT0RGg8L*$EBuVl(+&g)nZ<3zGa7(ke z(uGE`oY$`nA+>{wtn2iBX3q-O%Hn!Sry#|N){a>OG;hX}E-xXKJ!qg;PP1wwI8 z@dn~b1y(t_2#!@CqO2S(&_?f+9Y|D!X~0aK!2>&&@J(SVCyytQJ(jau{2SA5tU`te zcS^0NrEvxay~K5O5Z?kaN^MVV*?8jBG>||X2fkd@DRVya%|xQ9-KzTCTcYBD>_jUJ z5?e>IwQ|54cF|-l&gw({=r;y)vo6<>rUM6{0soLM#u<{K0A3GJ_}7Jc1(mu7L|TZ z)Bz&%ecM+Pi59oqBT^;-d0v+s5=2_lgHGh!aCLUW&c@a!FrQF6bbiq9vV3*acRf$O zcrEWS-j3yIpx=dj30w-qacLUjj#_z6+oe~n+DTwv-tbK~&^draRd%eNE~fJM7RBK> zQhBE5rvy6->_zXouK&6PZ3Ivu_3@Lj|Fo{tZPb0gGtO)v>75WAX`z@_7y^wq>=h~R z*UrkleypIdRMS!Y(C4gqI9`fA72|h^%BbF_yVTvo7MUYjUJNnJikjhQv&85y^2As3 zkH1kcdDz$?Yxc>qZ~8Y64-c90Xv7ufuaA^CwVL%ihD;h9a>LS0xLd-bwc}~CbGLlf z?e016Hs&AaUyyhk8sgFFZ}s8`O3L%@r`S?>qGEtYvcs(#n97KF9Jvm>-C2-Ypd;GXbH{Yd zfeQm0a~(eRd;M8wq{C5luO%wYYE;5N#?PKien-}L^!iipwuXi% zVuJ>5JZOsfDbA0NkC)!^yrZ^nu`S7k?momr4?8ye=`lwt0ZsV!-_t3W&0>JDHViuN|+IIAErT4T; zuSU%R?b*q|1%k0(h9tQLrVo2;09h1$4Ev(7DG9K`HB;=w#)(7oVHB)~?j_AI@F}R7 zfjBdmr~455KR~A3m-ppbPj~k~gz7s9=z)#pqZ}@;Hzl>g+Lq<`D2_^Oi1^yd6I4LW zK9z73U4*ivw9B%{Ta#pCkrlE;V$cn52ZfkDv~0wqb%rRi&h?L_zMdni#H&mJC5>VT znIRgjLC^;wln<#n=)b3{(`~7efJ|chr0m&st#W{=Nd|>bQ;Y_SNCU*bSacR(NG~+ z6kQ&mWX9We>mLY^)n@geb#&`%o~tcy%AB>L5oxnxSi=q6C@_}Lv>h_aNDEyb5r(wM z^y@CBS6bJ)^krZO$BS)e=G}3@0X;Y|4 z=mBWLgir&KdT0Fr6*L)4QYSzgS)37We|Nb)ROxc=Z+wiX0API)S_@}rv;96F>N+C2 z5Y~Dd9f7(LH#3j7pqOhKBL85ab2u~QgO$u^mH0dB=(A^U7+m%z8zvD^0JiiiTO*jXH~1j=RTb#*!=U20X494r7E=E`=vtRI#R>iG96P z+U9AsUCSC0s)eBB+qePtDORRq>vPEBm2f$B&2j&FDdjC0}!ZxdY3xrjbfX-pt zg+YNtOD}-9b1b9MG~lT6Eb2o>8Bsf_((ERRwn2ohBeIVpcnmpSIGhY28s{(pUh>JhUf{GLsUURF+$7Mp|H4S z^pR5ol}N$5CY6g)pa7zA9*P7*_h_kTdv2!}l9)hp_pMG@`Wqrj_!3W``rg%l5u=+|EgVq?Q3 zga!}lq!z0qFFT0gFr|2BFLWDHwE=h_`Vf^6mXrXm_R6%7fEB?W)h7FYQX3Ye^^A-S)b@*2vy^O%%hO>vv zV*o%=-HKviJWCW9nQ(=q1g7`iG&xt->=Qfph>3rmSBZmVfBMUl>#0VBPF{k9dof;6 z5Y`WwOKR^Y&B5VM2L%4vFz-~sJ zJ>c*z&sYE#P~T+*nEL!kfislxb6cvf)$lqW#QO=#2-2NCEJ4F>G z%YA|uG3`tc6@6@wVnA2g)$M-P)rX*ajvYsdyZD|XPvLUkorrBjWY(=g)#PcvF42&p zB9wXP;n$mji7keM&w8L z^2bM*b+-p*8W!uvbz0C>rr(&TDauE|vdOb>J)yX~eJm(DcI4er+J%0PJA95nz-g>f zV2cULP!oku%?f(rU9tyFVo z^gT?F8p090>)ZwtobhAR1RF@u3!SaYnZ$jVk5CPjL#nW$l0O8w!x@!U5WL5efs*7k zz9!f$s+WVZFdyhTqQ)kyp?j%ee$wohYsp2y6se#VP)a%?$Qda>cO2^Zh>m5k2l;Bj z{Rm_ZL#7E^0vd?(lh0xKQ9nExdj!Rr$I^M@1K&8Q17l0&`G2s#L(S^nHNhCLQ78#V zyQie12`LN%@^8l@a_DbSOyih7dv@t6H|dp4UpsQv-g00cU@||V)tQfp#^fFD-}*}o zo`DLC4;%$Y#+z>q<`1kBiXAmT{u1px4a=}i_Sd#~i`faluEdzGHwP$gcZL&7$!?39 z*ozc_0h!Y#QO$KHE>W5Xm2AiH(f($1{UZ7e=-_A@hX9Y^hldx)+EIHn$v)WGrBZ@~ zqDC{dgJ36fzbs8&iN}IQ3U%B+f*F~Gqv-*sffEcmi4DqZ|8g$vvMqKXKNFcu2{vb!wh2-j7GGT16JYf7g`5sL30ygj zoiD<+>$@J-CbxUdCEPZnV1lE$Exa4e+C=_Gj$>H-`1ZG61VTzhIXAzdBUd!u548dz zSy>%U=^rkzrFe>udwMLeimEJ%Rx^g%(-e~uj)>ZQxx6UexMDN99)8vfn^1ozZ~rJL z2;!qwd-q3Ee+!>BSIZbs(!uC{KpF}x+`Na;%1S`}R1I*oBsD}tO}X}HnJofX25I3# z!O7{R(R{!eKCJUSxZQl~Er=Sk2p~hs_}U;AihH_9$KjV)!9aQP*51;RL-E2&LKZi< zT<)ihY2Hs~kti)_qkh$ChtfNuz%@)X+-U^1IUu0}_!K}r6o?gxf3$ICwj32e$nQr1H(Va z6W_+is0?H!KBgfWHXx531#l6(ABk#BD3|y<4V|fi1gcnWUA`6nTNrw1*x)SJIBY1a z>SX~GX|<8emaX|GMlY#Q`%WB#2p2Yg8{Eeqf`_S|4DY3YhBmId27{Pf#HXFEnf|b| zF68E-^H)(Jv(P}82EvN>W5JgLpD{DHaeS;}oR0~iI`N`J(!1hAvxt$R_?0a95>_yb zTO^S56z{SIZo$@!MP5ne331NVQ0`W2IDZ7_4PQ7?B`624QLdI~9AxSM27E8)hTJK=c&ZZ_(F;deI}YZtE_b zFSve8j*=5HZ90v^?}Q-4%hoc#jp|MUPK8z;H4;HRomqrZijP6XM2teEoQtU4Xw@d1eKJ2tUN}XcvSVo8(geh|NrhUBL}4#qNQTV+F&ZOJvOD zLRbdF$z*}trhUvFfpWgJ24=u~t0@rhlCkRvqtF9PiWWj*_b>M~UwK5zz`AphKAQMh z!APuy*e!r}X`%+?i_r|`VUUJ&vMFnPH0Hg29PDc_;x8B^l&#e$KZ9_?4X&G8D)Qgz zd_cnT0fGQrF($w+362kjTNpUiitBXQ^6S9HBGVfM&7Ku(;BPCyuIiI;M)1JLL^`Nq zXJ?n$R+f8ST=?Z$C{$>2qnj1DRuM|17BF9MhiIIW5V+VzBH?WcMX1$?-OPCeY?U}^ zovDspy7m{c@A1gkQSMB*ARG`Mf@~1P)qaWBJ;W^}Z)A4WV~NSpHqo+BJNu`75I%YG5m}S?3N*hkix59kR|i4gth&X|a#f_4 zNOcoCJ6rSTdZ`{sI_LLoM+-@KEl3^9=&u%GLS*+QPSMwoN8mB}$l9v{GcUFTx_z{D zl$3#B0zD8mQAcU+yt$+^T47wS=Ob z$#VT=PLA;34}YpVtsVPA&v)SBE5yy%ysThUqHH&M14~gn_0H2B5|J<_y@=1Z`b(2S z@=#w}Bs%J(1XhX78RpBLkaKGye~0Dn)^kf_pnpf#FdG{CBkGu`!ll$5!d0^6FDb3 zB2l|WhG{n9jHHVr+8L+h_TqIrC;|~y4O@=i!tO`IVkz7VH8CPp2d{HTt9!xx*SOwd zWVu@7F(`?`fpl2eSKp9cG7m1CL2Mn3} z^IP=oxh^*UGWGteavb{H|NB2{erpTE<